1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/kernel.h> 8 #include <linux/types.h> 9 #include <linux/slab.h> 10 #include <linux/bpf.h> 11 #include <linux/btf.h> 12 #include <linux/bpf_verifier.h> 13 #include <linux/filter.h> 14 #include <net/netlink.h> 15 #include <linux/file.h> 16 #include <linux/vmalloc.h> 17 #include <linux/stringify.h> 18 #include <linux/bsearch.h> 19 #include <linux/sort.h> 20 #include <linux/perf_event.h> 21 #include <linux/ctype.h> 22 #include <linux/error-injection.h> 23 #include <linux/bpf_lsm.h> 24 #include <linux/btf_ids.h> 25 26 #include "disasm.h" 27 28 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 29 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 30 [_id] = & _name ## _verifier_ops, 31 #define BPF_MAP_TYPE(_id, _ops) 32 #define BPF_LINK_TYPE(_id, _name) 33 #include <linux/bpf_types.h> 34 #undef BPF_PROG_TYPE 35 #undef BPF_MAP_TYPE 36 #undef BPF_LINK_TYPE 37 }; 38 39 /* bpf_check() is a static code analyzer that walks eBPF program 40 * instruction by instruction and updates register/stack state. 41 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 42 * 43 * The first pass is depth-first-search to check that the program is a DAG. 44 * It rejects the following programs: 45 * - larger than BPF_MAXINSNS insns 46 * - if loop is present (detected via back-edge) 47 * - unreachable insns exist (shouldn't be a forest. program = one function) 48 * - out of bounds or malformed jumps 49 * The second pass is all possible path descent from the 1st insn. 50 * Since it's analyzing all paths through the program, the length of the 51 * analysis is limited to 64k insn, which may be hit even if total number of 52 * insn is less then 4K, but there are too many branches that change stack/regs. 53 * Number of 'branches to be analyzed' is limited to 1k 54 * 55 * On entry to each instruction, each register has a type, and the instruction 56 * changes the types of the registers depending on instruction semantics. 57 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 58 * copied to R1. 59 * 60 * All registers are 64-bit. 61 * R0 - return register 62 * R1-R5 argument passing registers 63 * R6-R9 callee saved registers 64 * R10 - frame pointer read-only 65 * 66 * At the start of BPF program the register R1 contains a pointer to bpf_context 67 * and has type PTR_TO_CTX. 68 * 69 * Verifier tracks arithmetic operations on pointers in case: 70 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 71 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 72 * 1st insn copies R10 (which has FRAME_PTR) type into R1 73 * and 2nd arithmetic instruction is pattern matched to recognize 74 * that it wants to construct a pointer to some element within stack. 75 * So after 2nd insn, the register R1 has type PTR_TO_STACK 76 * (and -20 constant is saved for further stack bounds checking). 77 * Meaning that this reg is a pointer to stack plus known immediate constant. 78 * 79 * Most of the time the registers have SCALAR_VALUE type, which 80 * means the register has some value, but it's not a valid pointer. 81 * (like pointer plus pointer becomes SCALAR_VALUE type) 82 * 83 * When verifier sees load or store instructions the type of base register 84 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 85 * four pointer types recognized by check_mem_access() function. 86 * 87 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 88 * and the range of [ptr, ptr + map's value_size) is accessible. 89 * 90 * registers used to pass values to function calls are checked against 91 * function argument constraints. 92 * 93 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 94 * It means that the register type passed to this function must be 95 * PTR_TO_STACK and it will be used inside the function as 96 * 'pointer to map element key' 97 * 98 * For example the argument constraints for bpf_map_lookup_elem(): 99 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 100 * .arg1_type = ARG_CONST_MAP_PTR, 101 * .arg2_type = ARG_PTR_TO_MAP_KEY, 102 * 103 * ret_type says that this function returns 'pointer to map elem value or null' 104 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 105 * 2nd argument should be a pointer to stack, which will be used inside 106 * the helper function as a pointer to map element key. 107 * 108 * On the kernel side the helper function looks like: 109 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 110 * { 111 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 112 * void *key = (void *) (unsigned long) r2; 113 * void *value; 114 * 115 * here kernel can access 'key' and 'map' pointers safely, knowing that 116 * [key, key + map->key_size) bytes are valid and were initialized on 117 * the stack of eBPF program. 118 * } 119 * 120 * Corresponding eBPF program may look like: 121 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 122 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 123 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 124 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 125 * here verifier looks at prototype of map_lookup_elem() and sees: 126 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 127 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 128 * 129 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 130 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 131 * and were initialized prior to this call. 132 * If it's ok, then verifier allows this BPF_CALL insn and looks at 133 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 134 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 135 * returns either pointer to map value or NULL. 136 * 137 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 138 * insn, the register holding that pointer in the true branch changes state to 139 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 140 * branch. See check_cond_jmp_op(). 141 * 142 * After the call R0 is set to return type of the function and registers R1-R5 143 * are set to NOT_INIT to indicate that they are no longer readable. 144 * 145 * The following reference types represent a potential reference to a kernel 146 * resource which, after first being allocated, must be checked and freed by 147 * the BPF program: 148 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 149 * 150 * When the verifier sees a helper call return a reference type, it allocates a 151 * pointer id for the reference and stores it in the current function state. 152 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 153 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 154 * passes through a NULL-check conditional. For the branch wherein the state is 155 * changed to CONST_IMM, the verifier releases the reference. 156 * 157 * For each helper function that allocates a reference, such as 158 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 159 * bpf_sk_release(). When a reference type passes into the release function, 160 * the verifier also releases the reference. If any unchecked or unreleased 161 * reference remains at the end of the program, the verifier rejects it. 162 */ 163 164 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 165 struct bpf_verifier_stack_elem { 166 /* verifer state is 'st' 167 * before processing instruction 'insn_idx' 168 * and after processing instruction 'prev_insn_idx' 169 */ 170 struct bpf_verifier_state st; 171 int insn_idx; 172 int prev_insn_idx; 173 struct bpf_verifier_stack_elem *next; 174 /* length of verifier log at the time this state was pushed on stack */ 175 u32 log_pos; 176 }; 177 178 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 179 #define BPF_COMPLEXITY_LIMIT_STATES 64 180 181 #define BPF_MAP_KEY_POISON (1ULL << 63) 182 #define BPF_MAP_KEY_SEEN (1ULL << 62) 183 184 #define BPF_MAP_PTR_UNPRIV 1UL 185 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 186 POISON_POINTER_DELTA)) 187 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 188 189 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 190 { 191 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON; 192 } 193 194 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 195 { 196 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV; 197 } 198 199 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 200 const struct bpf_map *map, bool unpriv) 201 { 202 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 203 unpriv |= bpf_map_ptr_unpriv(aux); 204 aux->map_ptr_state = (unsigned long)map | 205 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 206 } 207 208 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 209 { 210 return aux->map_key_state & BPF_MAP_KEY_POISON; 211 } 212 213 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 214 { 215 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 216 } 217 218 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 219 { 220 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 221 } 222 223 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 224 { 225 bool poisoned = bpf_map_key_poisoned(aux); 226 227 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 228 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 229 } 230 231 static bool bpf_pseudo_call(const struct bpf_insn *insn) 232 { 233 return insn->code == (BPF_JMP | BPF_CALL) && 234 insn->src_reg == BPF_PSEUDO_CALL; 235 } 236 237 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn) 238 { 239 return insn->code == (BPF_JMP | BPF_CALL) && 240 insn->src_reg == BPF_PSEUDO_KFUNC_CALL; 241 } 242 243 static bool bpf_pseudo_func(const struct bpf_insn *insn) 244 { 245 return insn->code == (BPF_LD | BPF_IMM | BPF_DW) && 246 insn->src_reg == BPF_PSEUDO_FUNC; 247 } 248 249 struct bpf_call_arg_meta { 250 struct bpf_map *map_ptr; 251 bool raw_mode; 252 bool pkt_access; 253 int regno; 254 int access_size; 255 int mem_size; 256 u64 msize_max_value; 257 int ref_obj_id; 258 int map_uid; 259 int func_id; 260 struct btf *btf; 261 u32 btf_id; 262 struct btf *ret_btf; 263 u32 ret_btf_id; 264 u32 subprogno; 265 }; 266 267 struct btf *btf_vmlinux; 268 269 static DEFINE_MUTEX(bpf_verifier_lock); 270 271 static const struct bpf_line_info * 272 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 273 { 274 const struct bpf_line_info *linfo; 275 const struct bpf_prog *prog; 276 u32 i, nr_linfo; 277 278 prog = env->prog; 279 nr_linfo = prog->aux->nr_linfo; 280 281 if (!nr_linfo || insn_off >= prog->len) 282 return NULL; 283 284 linfo = prog->aux->linfo; 285 for (i = 1; i < nr_linfo; i++) 286 if (insn_off < linfo[i].insn_off) 287 break; 288 289 return &linfo[i - 1]; 290 } 291 292 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, 293 va_list args) 294 { 295 unsigned int n; 296 297 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 298 299 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 300 "verifier log line truncated - local buffer too short\n"); 301 302 n = min(log->len_total - log->len_used - 1, n); 303 log->kbuf[n] = '\0'; 304 305 if (log->level == BPF_LOG_KERNEL) { 306 pr_err("BPF:%s\n", log->kbuf); 307 return; 308 } 309 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 310 log->len_used += n; 311 else 312 log->ubuf = NULL; 313 } 314 315 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos) 316 { 317 char zero = 0; 318 319 if (!bpf_verifier_log_needed(log)) 320 return; 321 322 log->len_used = new_pos; 323 if (put_user(zero, log->ubuf + new_pos)) 324 log->ubuf = NULL; 325 } 326 327 /* log_level controls verbosity level of eBPF verifier. 328 * bpf_verifier_log_write() is used to dump the verification trace to the log, 329 * so the user can figure out what's wrong with the program 330 */ 331 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 332 const char *fmt, ...) 333 { 334 va_list args; 335 336 if (!bpf_verifier_log_needed(&env->log)) 337 return; 338 339 va_start(args, fmt); 340 bpf_verifier_vlog(&env->log, fmt, args); 341 va_end(args); 342 } 343 EXPORT_SYMBOL_GPL(bpf_verifier_log_write); 344 345 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 346 { 347 struct bpf_verifier_env *env = private_data; 348 va_list args; 349 350 if (!bpf_verifier_log_needed(&env->log)) 351 return; 352 353 va_start(args, fmt); 354 bpf_verifier_vlog(&env->log, fmt, args); 355 va_end(args); 356 } 357 358 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log, 359 const char *fmt, ...) 360 { 361 va_list args; 362 363 if (!bpf_verifier_log_needed(log)) 364 return; 365 366 va_start(args, fmt); 367 bpf_verifier_vlog(log, fmt, args); 368 va_end(args); 369 } 370 371 static const char *ltrim(const char *s) 372 { 373 while (isspace(*s)) 374 s++; 375 376 return s; 377 } 378 379 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 380 u32 insn_off, 381 const char *prefix_fmt, ...) 382 { 383 const struct bpf_line_info *linfo; 384 385 if (!bpf_verifier_log_needed(&env->log)) 386 return; 387 388 linfo = find_linfo(env, insn_off); 389 if (!linfo || linfo == env->prev_linfo) 390 return; 391 392 if (prefix_fmt) { 393 va_list args; 394 395 va_start(args, prefix_fmt); 396 bpf_verifier_vlog(&env->log, prefix_fmt, args); 397 va_end(args); 398 } 399 400 verbose(env, "%s\n", 401 ltrim(btf_name_by_offset(env->prog->aux->btf, 402 linfo->line_off))); 403 404 env->prev_linfo = linfo; 405 } 406 407 static void verbose_invalid_scalar(struct bpf_verifier_env *env, 408 struct bpf_reg_state *reg, 409 struct tnum *range, const char *ctx, 410 const char *reg_name) 411 { 412 char tn_buf[48]; 413 414 verbose(env, "At %s the register %s ", ctx, reg_name); 415 if (!tnum_is_unknown(reg->var_off)) { 416 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 417 verbose(env, "has value %s", tn_buf); 418 } else { 419 verbose(env, "has unknown scalar value"); 420 } 421 tnum_strn(tn_buf, sizeof(tn_buf), *range); 422 verbose(env, " should have been in %s\n", tn_buf); 423 } 424 425 static bool type_is_pkt_pointer(enum bpf_reg_type type) 426 { 427 return type == PTR_TO_PACKET || 428 type == PTR_TO_PACKET_META; 429 } 430 431 static bool type_is_sk_pointer(enum bpf_reg_type type) 432 { 433 return type == PTR_TO_SOCKET || 434 type == PTR_TO_SOCK_COMMON || 435 type == PTR_TO_TCP_SOCK || 436 type == PTR_TO_XDP_SOCK; 437 } 438 439 static bool reg_type_not_null(enum bpf_reg_type type) 440 { 441 return type == PTR_TO_SOCKET || 442 type == PTR_TO_TCP_SOCK || 443 type == PTR_TO_MAP_VALUE || 444 type == PTR_TO_MAP_KEY || 445 type == PTR_TO_SOCK_COMMON; 446 } 447 448 static bool reg_type_may_be_null(enum bpf_reg_type type) 449 { 450 return type == PTR_TO_MAP_VALUE_OR_NULL || 451 type == PTR_TO_SOCKET_OR_NULL || 452 type == PTR_TO_SOCK_COMMON_OR_NULL || 453 type == PTR_TO_TCP_SOCK_OR_NULL || 454 type == PTR_TO_BTF_ID_OR_NULL || 455 type == PTR_TO_MEM_OR_NULL || 456 type == PTR_TO_RDONLY_BUF_OR_NULL || 457 type == PTR_TO_RDWR_BUF_OR_NULL; 458 } 459 460 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 461 { 462 return reg->type == PTR_TO_MAP_VALUE && 463 map_value_has_spin_lock(reg->map_ptr); 464 } 465 466 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type) 467 { 468 return type == PTR_TO_SOCKET || 469 type == PTR_TO_SOCKET_OR_NULL || 470 type == PTR_TO_TCP_SOCK || 471 type == PTR_TO_TCP_SOCK_OR_NULL || 472 type == PTR_TO_MEM || 473 type == PTR_TO_MEM_OR_NULL; 474 } 475 476 static bool arg_type_may_be_refcounted(enum bpf_arg_type type) 477 { 478 return type == ARG_PTR_TO_SOCK_COMMON; 479 } 480 481 static bool arg_type_may_be_null(enum bpf_arg_type type) 482 { 483 return type == ARG_PTR_TO_MAP_VALUE_OR_NULL || 484 type == ARG_PTR_TO_MEM_OR_NULL || 485 type == ARG_PTR_TO_CTX_OR_NULL || 486 type == ARG_PTR_TO_SOCKET_OR_NULL || 487 type == ARG_PTR_TO_ALLOC_MEM_OR_NULL || 488 type == ARG_PTR_TO_STACK_OR_NULL; 489 } 490 491 /* Determine whether the function releases some resources allocated by another 492 * function call. The first reference type argument will be assumed to be 493 * released by release_reference(). 494 */ 495 static bool is_release_function(enum bpf_func_id func_id) 496 { 497 return func_id == BPF_FUNC_sk_release || 498 func_id == BPF_FUNC_ringbuf_submit || 499 func_id == BPF_FUNC_ringbuf_discard; 500 } 501 502 static bool may_be_acquire_function(enum bpf_func_id func_id) 503 { 504 return func_id == BPF_FUNC_sk_lookup_tcp || 505 func_id == BPF_FUNC_sk_lookup_udp || 506 func_id == BPF_FUNC_skc_lookup_tcp || 507 func_id == BPF_FUNC_map_lookup_elem || 508 func_id == BPF_FUNC_ringbuf_reserve; 509 } 510 511 static bool is_acquire_function(enum bpf_func_id func_id, 512 const struct bpf_map *map) 513 { 514 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; 515 516 if (func_id == BPF_FUNC_sk_lookup_tcp || 517 func_id == BPF_FUNC_sk_lookup_udp || 518 func_id == BPF_FUNC_skc_lookup_tcp || 519 func_id == BPF_FUNC_ringbuf_reserve) 520 return true; 521 522 if (func_id == BPF_FUNC_map_lookup_elem && 523 (map_type == BPF_MAP_TYPE_SOCKMAP || 524 map_type == BPF_MAP_TYPE_SOCKHASH)) 525 return true; 526 527 return false; 528 } 529 530 static bool is_ptr_cast_function(enum bpf_func_id func_id) 531 { 532 return func_id == BPF_FUNC_tcp_sock || 533 func_id == BPF_FUNC_sk_fullsock || 534 func_id == BPF_FUNC_skc_to_tcp_sock || 535 func_id == BPF_FUNC_skc_to_tcp6_sock || 536 func_id == BPF_FUNC_skc_to_udp6_sock || 537 func_id == BPF_FUNC_skc_to_tcp_timewait_sock || 538 func_id == BPF_FUNC_skc_to_tcp_request_sock; 539 } 540 541 static bool is_cmpxchg_insn(const struct bpf_insn *insn) 542 { 543 return BPF_CLASS(insn->code) == BPF_STX && 544 BPF_MODE(insn->code) == BPF_ATOMIC && 545 insn->imm == BPF_CMPXCHG; 546 } 547 548 /* string representation of 'enum bpf_reg_type' */ 549 static const char * const reg_type_str[] = { 550 [NOT_INIT] = "?", 551 [SCALAR_VALUE] = "inv", 552 [PTR_TO_CTX] = "ctx", 553 [CONST_PTR_TO_MAP] = "map_ptr", 554 [PTR_TO_MAP_VALUE] = "map_value", 555 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null", 556 [PTR_TO_STACK] = "fp", 557 [PTR_TO_PACKET] = "pkt", 558 [PTR_TO_PACKET_META] = "pkt_meta", 559 [PTR_TO_PACKET_END] = "pkt_end", 560 [PTR_TO_FLOW_KEYS] = "flow_keys", 561 [PTR_TO_SOCKET] = "sock", 562 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null", 563 [PTR_TO_SOCK_COMMON] = "sock_common", 564 [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null", 565 [PTR_TO_TCP_SOCK] = "tcp_sock", 566 [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null", 567 [PTR_TO_TP_BUFFER] = "tp_buffer", 568 [PTR_TO_XDP_SOCK] = "xdp_sock", 569 [PTR_TO_BTF_ID] = "ptr_", 570 [PTR_TO_BTF_ID_OR_NULL] = "ptr_or_null_", 571 [PTR_TO_PERCPU_BTF_ID] = "percpu_ptr_", 572 [PTR_TO_MEM] = "mem", 573 [PTR_TO_MEM_OR_NULL] = "mem_or_null", 574 [PTR_TO_RDONLY_BUF] = "rdonly_buf", 575 [PTR_TO_RDONLY_BUF_OR_NULL] = "rdonly_buf_or_null", 576 [PTR_TO_RDWR_BUF] = "rdwr_buf", 577 [PTR_TO_RDWR_BUF_OR_NULL] = "rdwr_buf_or_null", 578 [PTR_TO_FUNC] = "func", 579 [PTR_TO_MAP_KEY] = "map_key", 580 }; 581 582 static char slot_type_char[] = { 583 [STACK_INVALID] = '?', 584 [STACK_SPILL] = 'r', 585 [STACK_MISC] = 'm', 586 [STACK_ZERO] = '0', 587 }; 588 589 static void print_liveness(struct bpf_verifier_env *env, 590 enum bpf_reg_liveness live) 591 { 592 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 593 verbose(env, "_"); 594 if (live & REG_LIVE_READ) 595 verbose(env, "r"); 596 if (live & REG_LIVE_WRITTEN) 597 verbose(env, "w"); 598 if (live & REG_LIVE_DONE) 599 verbose(env, "D"); 600 } 601 602 static struct bpf_func_state *func(struct bpf_verifier_env *env, 603 const struct bpf_reg_state *reg) 604 { 605 struct bpf_verifier_state *cur = env->cur_state; 606 607 return cur->frame[reg->frameno]; 608 } 609 610 static const char *kernel_type_name(const struct btf* btf, u32 id) 611 { 612 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off); 613 } 614 615 /* The reg state of a pointer or a bounded scalar was saved when 616 * it was spilled to the stack. 617 */ 618 static bool is_spilled_reg(const struct bpf_stack_state *stack) 619 { 620 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL; 621 } 622 623 static void scrub_spilled_slot(u8 *stype) 624 { 625 if (*stype != STACK_INVALID) 626 *stype = STACK_MISC; 627 } 628 629 static void print_verifier_state(struct bpf_verifier_env *env, 630 const struct bpf_func_state *state) 631 { 632 const struct bpf_reg_state *reg; 633 enum bpf_reg_type t; 634 int i; 635 636 if (state->frameno) 637 verbose(env, " frame%d:", state->frameno); 638 for (i = 0; i < MAX_BPF_REG; i++) { 639 reg = &state->regs[i]; 640 t = reg->type; 641 if (t == NOT_INIT) 642 continue; 643 verbose(env, " R%d", i); 644 print_liveness(env, reg->live); 645 verbose(env, "=%s", reg_type_str[t]); 646 if (t == SCALAR_VALUE && reg->precise) 647 verbose(env, "P"); 648 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 649 tnum_is_const(reg->var_off)) { 650 /* reg->off should be 0 for SCALAR_VALUE */ 651 verbose(env, "%lld", reg->var_off.value + reg->off); 652 } else { 653 if (t == PTR_TO_BTF_ID || 654 t == PTR_TO_BTF_ID_OR_NULL || 655 t == PTR_TO_PERCPU_BTF_ID) 656 verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id)); 657 verbose(env, "(id=%d", reg->id); 658 if (reg_type_may_be_refcounted_or_null(t)) 659 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id); 660 if (t != SCALAR_VALUE) 661 verbose(env, ",off=%d", reg->off); 662 if (type_is_pkt_pointer(t)) 663 verbose(env, ",r=%d", reg->range); 664 else if (t == CONST_PTR_TO_MAP || 665 t == PTR_TO_MAP_KEY || 666 t == PTR_TO_MAP_VALUE || 667 t == PTR_TO_MAP_VALUE_OR_NULL) 668 verbose(env, ",ks=%d,vs=%d", 669 reg->map_ptr->key_size, 670 reg->map_ptr->value_size); 671 if (tnum_is_const(reg->var_off)) { 672 /* Typically an immediate SCALAR_VALUE, but 673 * could be a pointer whose offset is too big 674 * for reg->off 675 */ 676 verbose(env, ",imm=%llx", reg->var_off.value); 677 } else { 678 if (reg->smin_value != reg->umin_value && 679 reg->smin_value != S64_MIN) 680 verbose(env, ",smin_value=%lld", 681 (long long)reg->smin_value); 682 if (reg->smax_value != reg->umax_value && 683 reg->smax_value != S64_MAX) 684 verbose(env, ",smax_value=%lld", 685 (long long)reg->smax_value); 686 if (reg->umin_value != 0) 687 verbose(env, ",umin_value=%llu", 688 (unsigned long long)reg->umin_value); 689 if (reg->umax_value != U64_MAX) 690 verbose(env, ",umax_value=%llu", 691 (unsigned long long)reg->umax_value); 692 if (!tnum_is_unknown(reg->var_off)) { 693 char tn_buf[48]; 694 695 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 696 verbose(env, ",var_off=%s", tn_buf); 697 } 698 if (reg->s32_min_value != reg->smin_value && 699 reg->s32_min_value != S32_MIN) 700 verbose(env, ",s32_min_value=%d", 701 (int)(reg->s32_min_value)); 702 if (reg->s32_max_value != reg->smax_value && 703 reg->s32_max_value != S32_MAX) 704 verbose(env, ",s32_max_value=%d", 705 (int)(reg->s32_max_value)); 706 if (reg->u32_min_value != reg->umin_value && 707 reg->u32_min_value != U32_MIN) 708 verbose(env, ",u32_min_value=%d", 709 (int)(reg->u32_min_value)); 710 if (reg->u32_max_value != reg->umax_value && 711 reg->u32_max_value != U32_MAX) 712 verbose(env, ",u32_max_value=%d", 713 (int)(reg->u32_max_value)); 714 } 715 verbose(env, ")"); 716 } 717 } 718 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 719 char types_buf[BPF_REG_SIZE + 1]; 720 bool valid = false; 721 int j; 722 723 for (j = 0; j < BPF_REG_SIZE; j++) { 724 if (state->stack[i].slot_type[j] != STACK_INVALID) 725 valid = true; 726 types_buf[j] = slot_type_char[ 727 state->stack[i].slot_type[j]]; 728 } 729 types_buf[BPF_REG_SIZE] = 0; 730 if (!valid) 731 continue; 732 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 733 print_liveness(env, state->stack[i].spilled_ptr.live); 734 if (is_spilled_reg(&state->stack[i])) { 735 reg = &state->stack[i].spilled_ptr; 736 t = reg->type; 737 verbose(env, "=%s", reg_type_str[t]); 738 if (t == SCALAR_VALUE && reg->precise) 739 verbose(env, "P"); 740 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) 741 verbose(env, "%lld", reg->var_off.value + reg->off); 742 } else { 743 verbose(env, "=%s", types_buf); 744 } 745 } 746 if (state->acquired_refs && state->refs[0].id) { 747 verbose(env, " refs=%d", state->refs[0].id); 748 for (i = 1; i < state->acquired_refs; i++) 749 if (state->refs[i].id) 750 verbose(env, ",%d", state->refs[i].id); 751 } 752 if (state->in_callback_fn) 753 verbose(env, " cb"); 754 if (state->in_async_callback_fn) 755 verbose(env, " async_cb"); 756 verbose(env, "\n"); 757 } 758 759 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too 760 * small to hold src. This is different from krealloc since we don't want to preserve 761 * the contents of dst. 762 * 763 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could 764 * not be allocated. 765 */ 766 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags) 767 { 768 size_t bytes; 769 770 if (ZERO_OR_NULL_PTR(src)) 771 goto out; 772 773 if (unlikely(check_mul_overflow(n, size, &bytes))) 774 return NULL; 775 776 if (ksize(dst) < bytes) { 777 kfree(dst); 778 dst = kmalloc_track_caller(bytes, flags); 779 if (!dst) 780 return NULL; 781 } 782 783 memcpy(dst, src, bytes); 784 out: 785 return dst ? dst : ZERO_SIZE_PTR; 786 } 787 788 /* resize an array from old_n items to new_n items. the array is reallocated if it's too 789 * small to hold new_n items. new items are zeroed out if the array grows. 790 * 791 * Contrary to krealloc_array, does not free arr if new_n is zero. 792 */ 793 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size) 794 { 795 if (!new_n || old_n == new_n) 796 goto out; 797 798 arr = krealloc_array(arr, new_n, size, GFP_KERNEL); 799 if (!arr) 800 return NULL; 801 802 if (new_n > old_n) 803 memset(arr + old_n * size, 0, (new_n - old_n) * size); 804 805 out: 806 return arr ? arr : ZERO_SIZE_PTR; 807 } 808 809 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 810 { 811 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs, 812 sizeof(struct bpf_reference_state), GFP_KERNEL); 813 if (!dst->refs) 814 return -ENOMEM; 815 816 dst->acquired_refs = src->acquired_refs; 817 return 0; 818 } 819 820 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 821 { 822 size_t n = src->allocated_stack / BPF_REG_SIZE; 823 824 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state), 825 GFP_KERNEL); 826 if (!dst->stack) 827 return -ENOMEM; 828 829 dst->allocated_stack = src->allocated_stack; 830 return 0; 831 } 832 833 static int resize_reference_state(struct bpf_func_state *state, size_t n) 834 { 835 state->refs = realloc_array(state->refs, state->acquired_refs, n, 836 sizeof(struct bpf_reference_state)); 837 if (!state->refs) 838 return -ENOMEM; 839 840 state->acquired_refs = n; 841 return 0; 842 } 843 844 static int grow_stack_state(struct bpf_func_state *state, int size) 845 { 846 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE; 847 848 if (old_n >= n) 849 return 0; 850 851 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state)); 852 if (!state->stack) 853 return -ENOMEM; 854 855 state->allocated_stack = size; 856 return 0; 857 } 858 859 /* Acquire a pointer id from the env and update the state->refs to include 860 * this new pointer reference. 861 * On success, returns a valid pointer id to associate with the register 862 * On failure, returns a negative errno. 863 */ 864 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 865 { 866 struct bpf_func_state *state = cur_func(env); 867 int new_ofs = state->acquired_refs; 868 int id, err; 869 870 err = resize_reference_state(state, state->acquired_refs + 1); 871 if (err) 872 return err; 873 id = ++env->id_gen; 874 state->refs[new_ofs].id = id; 875 state->refs[new_ofs].insn_idx = insn_idx; 876 877 return id; 878 } 879 880 /* release function corresponding to acquire_reference_state(). Idempotent. */ 881 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 882 { 883 int i, last_idx; 884 885 last_idx = state->acquired_refs - 1; 886 for (i = 0; i < state->acquired_refs; i++) { 887 if (state->refs[i].id == ptr_id) { 888 if (last_idx && i != last_idx) 889 memcpy(&state->refs[i], &state->refs[last_idx], 890 sizeof(*state->refs)); 891 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 892 state->acquired_refs--; 893 return 0; 894 } 895 } 896 return -EINVAL; 897 } 898 899 static void free_func_state(struct bpf_func_state *state) 900 { 901 if (!state) 902 return; 903 kfree(state->refs); 904 kfree(state->stack); 905 kfree(state); 906 } 907 908 static void clear_jmp_history(struct bpf_verifier_state *state) 909 { 910 kfree(state->jmp_history); 911 state->jmp_history = NULL; 912 state->jmp_history_cnt = 0; 913 } 914 915 static void free_verifier_state(struct bpf_verifier_state *state, 916 bool free_self) 917 { 918 int i; 919 920 for (i = 0; i <= state->curframe; i++) { 921 free_func_state(state->frame[i]); 922 state->frame[i] = NULL; 923 } 924 clear_jmp_history(state); 925 if (free_self) 926 kfree(state); 927 } 928 929 /* copy verifier state from src to dst growing dst stack space 930 * when necessary to accommodate larger src stack 931 */ 932 static int copy_func_state(struct bpf_func_state *dst, 933 const struct bpf_func_state *src) 934 { 935 int err; 936 937 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 938 err = copy_reference_state(dst, src); 939 if (err) 940 return err; 941 return copy_stack_state(dst, src); 942 } 943 944 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 945 const struct bpf_verifier_state *src) 946 { 947 struct bpf_func_state *dst; 948 int i, err; 949 950 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history, 951 src->jmp_history_cnt, sizeof(struct bpf_idx_pair), 952 GFP_USER); 953 if (!dst_state->jmp_history) 954 return -ENOMEM; 955 dst_state->jmp_history_cnt = src->jmp_history_cnt; 956 957 /* if dst has more stack frames then src frame, free them */ 958 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 959 free_func_state(dst_state->frame[i]); 960 dst_state->frame[i] = NULL; 961 } 962 dst_state->speculative = src->speculative; 963 dst_state->curframe = src->curframe; 964 dst_state->active_spin_lock = src->active_spin_lock; 965 dst_state->branches = src->branches; 966 dst_state->parent = src->parent; 967 dst_state->first_insn_idx = src->first_insn_idx; 968 dst_state->last_insn_idx = src->last_insn_idx; 969 for (i = 0; i <= src->curframe; i++) { 970 dst = dst_state->frame[i]; 971 if (!dst) { 972 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 973 if (!dst) 974 return -ENOMEM; 975 dst_state->frame[i] = dst; 976 } 977 err = copy_func_state(dst, src->frame[i]); 978 if (err) 979 return err; 980 } 981 return 0; 982 } 983 984 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 985 { 986 while (st) { 987 u32 br = --st->branches; 988 989 /* WARN_ON(br > 1) technically makes sense here, 990 * but see comment in push_stack(), hence: 991 */ 992 WARN_ONCE((int)br < 0, 993 "BUG update_branch_counts:branches_to_explore=%d\n", 994 br); 995 if (br) 996 break; 997 st = st->parent; 998 } 999 } 1000 1001 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 1002 int *insn_idx, bool pop_log) 1003 { 1004 struct bpf_verifier_state *cur = env->cur_state; 1005 struct bpf_verifier_stack_elem *elem, *head = env->head; 1006 int err; 1007 1008 if (env->head == NULL) 1009 return -ENOENT; 1010 1011 if (cur) { 1012 err = copy_verifier_state(cur, &head->st); 1013 if (err) 1014 return err; 1015 } 1016 if (pop_log) 1017 bpf_vlog_reset(&env->log, head->log_pos); 1018 if (insn_idx) 1019 *insn_idx = head->insn_idx; 1020 if (prev_insn_idx) 1021 *prev_insn_idx = head->prev_insn_idx; 1022 elem = head->next; 1023 free_verifier_state(&head->st, false); 1024 kfree(head); 1025 env->head = elem; 1026 env->stack_size--; 1027 return 0; 1028 } 1029 1030 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 1031 int insn_idx, int prev_insn_idx, 1032 bool speculative) 1033 { 1034 struct bpf_verifier_state *cur = env->cur_state; 1035 struct bpf_verifier_stack_elem *elem; 1036 int err; 1037 1038 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 1039 if (!elem) 1040 goto err; 1041 1042 elem->insn_idx = insn_idx; 1043 elem->prev_insn_idx = prev_insn_idx; 1044 elem->next = env->head; 1045 elem->log_pos = env->log.len_used; 1046 env->head = elem; 1047 env->stack_size++; 1048 err = copy_verifier_state(&elem->st, cur); 1049 if (err) 1050 goto err; 1051 elem->st.speculative |= speculative; 1052 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 1053 verbose(env, "The sequence of %d jumps is too complex.\n", 1054 env->stack_size); 1055 goto err; 1056 } 1057 if (elem->st.parent) { 1058 ++elem->st.parent->branches; 1059 /* WARN_ON(branches > 2) technically makes sense here, 1060 * but 1061 * 1. speculative states will bump 'branches' for non-branch 1062 * instructions 1063 * 2. is_state_visited() heuristics may decide not to create 1064 * a new state for a sequence of branches and all such current 1065 * and cloned states will be pointing to a single parent state 1066 * which might have large 'branches' count. 1067 */ 1068 } 1069 return &elem->st; 1070 err: 1071 free_verifier_state(env->cur_state, true); 1072 env->cur_state = NULL; 1073 /* pop all elements and return */ 1074 while (!pop_stack(env, NULL, NULL, false)); 1075 return NULL; 1076 } 1077 1078 #define CALLER_SAVED_REGS 6 1079 static const int caller_saved[CALLER_SAVED_REGS] = { 1080 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 1081 }; 1082 1083 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 1084 struct bpf_reg_state *reg); 1085 1086 /* This helper doesn't clear reg->id */ 1087 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1088 { 1089 reg->var_off = tnum_const(imm); 1090 reg->smin_value = (s64)imm; 1091 reg->smax_value = (s64)imm; 1092 reg->umin_value = imm; 1093 reg->umax_value = imm; 1094 1095 reg->s32_min_value = (s32)imm; 1096 reg->s32_max_value = (s32)imm; 1097 reg->u32_min_value = (u32)imm; 1098 reg->u32_max_value = (u32)imm; 1099 } 1100 1101 /* Mark the unknown part of a register (variable offset or scalar value) as 1102 * known to have the value @imm. 1103 */ 1104 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1105 { 1106 /* Clear id, off, and union(map_ptr, range) */ 1107 memset(((u8 *)reg) + sizeof(reg->type), 0, 1108 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 1109 ___mark_reg_known(reg, imm); 1110 } 1111 1112 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 1113 { 1114 reg->var_off = tnum_const_subreg(reg->var_off, imm); 1115 reg->s32_min_value = (s32)imm; 1116 reg->s32_max_value = (s32)imm; 1117 reg->u32_min_value = (u32)imm; 1118 reg->u32_max_value = (u32)imm; 1119 } 1120 1121 /* Mark the 'variable offset' part of a register as zero. This should be 1122 * used only on registers holding a pointer type. 1123 */ 1124 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 1125 { 1126 __mark_reg_known(reg, 0); 1127 } 1128 1129 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 1130 { 1131 __mark_reg_known(reg, 0); 1132 reg->type = SCALAR_VALUE; 1133 } 1134 1135 static void mark_reg_known_zero(struct bpf_verifier_env *env, 1136 struct bpf_reg_state *regs, u32 regno) 1137 { 1138 if (WARN_ON(regno >= MAX_BPF_REG)) { 1139 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 1140 /* Something bad happened, let's kill all regs */ 1141 for (regno = 0; regno < MAX_BPF_REG; regno++) 1142 __mark_reg_not_init(env, regs + regno); 1143 return; 1144 } 1145 __mark_reg_known_zero(regs + regno); 1146 } 1147 1148 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg) 1149 { 1150 switch (reg->type) { 1151 case PTR_TO_MAP_VALUE_OR_NULL: { 1152 const struct bpf_map *map = reg->map_ptr; 1153 1154 if (map->inner_map_meta) { 1155 reg->type = CONST_PTR_TO_MAP; 1156 reg->map_ptr = map->inner_map_meta; 1157 /* transfer reg's id which is unique for every map_lookup_elem 1158 * as UID of the inner map. 1159 */ 1160 reg->map_uid = reg->id; 1161 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { 1162 reg->type = PTR_TO_XDP_SOCK; 1163 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || 1164 map->map_type == BPF_MAP_TYPE_SOCKHASH) { 1165 reg->type = PTR_TO_SOCKET; 1166 } else { 1167 reg->type = PTR_TO_MAP_VALUE; 1168 } 1169 break; 1170 } 1171 case PTR_TO_SOCKET_OR_NULL: 1172 reg->type = PTR_TO_SOCKET; 1173 break; 1174 case PTR_TO_SOCK_COMMON_OR_NULL: 1175 reg->type = PTR_TO_SOCK_COMMON; 1176 break; 1177 case PTR_TO_TCP_SOCK_OR_NULL: 1178 reg->type = PTR_TO_TCP_SOCK; 1179 break; 1180 case PTR_TO_BTF_ID_OR_NULL: 1181 reg->type = PTR_TO_BTF_ID; 1182 break; 1183 case PTR_TO_MEM_OR_NULL: 1184 reg->type = PTR_TO_MEM; 1185 break; 1186 case PTR_TO_RDONLY_BUF_OR_NULL: 1187 reg->type = PTR_TO_RDONLY_BUF; 1188 break; 1189 case PTR_TO_RDWR_BUF_OR_NULL: 1190 reg->type = PTR_TO_RDWR_BUF; 1191 break; 1192 default: 1193 WARN_ONCE(1, "unknown nullable register type"); 1194 } 1195 } 1196 1197 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 1198 { 1199 return type_is_pkt_pointer(reg->type); 1200 } 1201 1202 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 1203 { 1204 return reg_is_pkt_pointer(reg) || 1205 reg->type == PTR_TO_PACKET_END; 1206 } 1207 1208 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 1209 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 1210 enum bpf_reg_type which) 1211 { 1212 /* The register can already have a range from prior markings. 1213 * This is fine as long as it hasn't been advanced from its 1214 * origin. 1215 */ 1216 return reg->type == which && 1217 reg->id == 0 && 1218 reg->off == 0 && 1219 tnum_equals_const(reg->var_off, 0); 1220 } 1221 1222 /* Reset the min/max bounds of a register */ 1223 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 1224 { 1225 reg->smin_value = S64_MIN; 1226 reg->smax_value = S64_MAX; 1227 reg->umin_value = 0; 1228 reg->umax_value = U64_MAX; 1229 1230 reg->s32_min_value = S32_MIN; 1231 reg->s32_max_value = S32_MAX; 1232 reg->u32_min_value = 0; 1233 reg->u32_max_value = U32_MAX; 1234 } 1235 1236 static void __mark_reg64_unbounded(struct bpf_reg_state *reg) 1237 { 1238 reg->smin_value = S64_MIN; 1239 reg->smax_value = S64_MAX; 1240 reg->umin_value = 0; 1241 reg->umax_value = U64_MAX; 1242 } 1243 1244 static void __mark_reg32_unbounded(struct bpf_reg_state *reg) 1245 { 1246 reg->s32_min_value = S32_MIN; 1247 reg->s32_max_value = S32_MAX; 1248 reg->u32_min_value = 0; 1249 reg->u32_max_value = U32_MAX; 1250 } 1251 1252 static void __update_reg32_bounds(struct bpf_reg_state *reg) 1253 { 1254 struct tnum var32_off = tnum_subreg(reg->var_off); 1255 1256 /* min signed is max(sign bit) | min(other bits) */ 1257 reg->s32_min_value = max_t(s32, reg->s32_min_value, 1258 var32_off.value | (var32_off.mask & S32_MIN)); 1259 /* max signed is min(sign bit) | max(other bits) */ 1260 reg->s32_max_value = min_t(s32, reg->s32_max_value, 1261 var32_off.value | (var32_off.mask & S32_MAX)); 1262 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 1263 reg->u32_max_value = min(reg->u32_max_value, 1264 (u32)(var32_off.value | var32_off.mask)); 1265 } 1266 1267 static void __update_reg64_bounds(struct bpf_reg_state *reg) 1268 { 1269 /* min signed is max(sign bit) | min(other bits) */ 1270 reg->smin_value = max_t(s64, reg->smin_value, 1271 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 1272 /* max signed is min(sign bit) | max(other bits) */ 1273 reg->smax_value = min_t(s64, reg->smax_value, 1274 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 1275 reg->umin_value = max(reg->umin_value, reg->var_off.value); 1276 reg->umax_value = min(reg->umax_value, 1277 reg->var_off.value | reg->var_off.mask); 1278 } 1279 1280 static void __update_reg_bounds(struct bpf_reg_state *reg) 1281 { 1282 __update_reg32_bounds(reg); 1283 __update_reg64_bounds(reg); 1284 } 1285 1286 /* Uses signed min/max values to inform unsigned, and vice-versa */ 1287 static void __reg32_deduce_bounds(struct bpf_reg_state *reg) 1288 { 1289 /* Learn sign from signed bounds. 1290 * If we cannot cross the sign boundary, then signed and unsigned bounds 1291 * are the same, so combine. This works even in the negative case, e.g. 1292 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1293 */ 1294 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) { 1295 reg->s32_min_value = reg->u32_min_value = 1296 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1297 reg->s32_max_value = reg->u32_max_value = 1298 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1299 return; 1300 } 1301 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1302 * boundary, so we must be careful. 1303 */ 1304 if ((s32)reg->u32_max_value >= 0) { 1305 /* Positive. We can't learn anything from the smin, but smax 1306 * is positive, hence safe. 1307 */ 1308 reg->s32_min_value = reg->u32_min_value; 1309 reg->s32_max_value = reg->u32_max_value = 1310 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1311 } else if ((s32)reg->u32_min_value < 0) { 1312 /* Negative. We can't learn anything from the smax, but smin 1313 * is negative, hence safe. 1314 */ 1315 reg->s32_min_value = reg->u32_min_value = 1316 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1317 reg->s32_max_value = reg->u32_max_value; 1318 } 1319 } 1320 1321 static void __reg64_deduce_bounds(struct bpf_reg_state *reg) 1322 { 1323 /* Learn sign from signed bounds. 1324 * If we cannot cross the sign boundary, then signed and unsigned bounds 1325 * are the same, so combine. This works even in the negative case, e.g. 1326 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1327 */ 1328 if (reg->smin_value >= 0 || reg->smax_value < 0) { 1329 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1330 reg->umin_value); 1331 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1332 reg->umax_value); 1333 return; 1334 } 1335 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1336 * boundary, so we must be careful. 1337 */ 1338 if ((s64)reg->umax_value >= 0) { 1339 /* Positive. We can't learn anything from the smin, but smax 1340 * is positive, hence safe. 1341 */ 1342 reg->smin_value = reg->umin_value; 1343 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1344 reg->umax_value); 1345 } else if ((s64)reg->umin_value < 0) { 1346 /* Negative. We can't learn anything from the smax, but smin 1347 * is negative, hence safe. 1348 */ 1349 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1350 reg->umin_value); 1351 reg->smax_value = reg->umax_value; 1352 } 1353 } 1354 1355 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 1356 { 1357 __reg32_deduce_bounds(reg); 1358 __reg64_deduce_bounds(reg); 1359 } 1360 1361 /* Attempts to improve var_off based on unsigned min/max information */ 1362 static void __reg_bound_offset(struct bpf_reg_state *reg) 1363 { 1364 struct tnum var64_off = tnum_intersect(reg->var_off, 1365 tnum_range(reg->umin_value, 1366 reg->umax_value)); 1367 struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off), 1368 tnum_range(reg->u32_min_value, 1369 reg->u32_max_value)); 1370 1371 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 1372 } 1373 1374 static void __reg_assign_32_into_64(struct bpf_reg_state *reg) 1375 { 1376 reg->umin_value = reg->u32_min_value; 1377 reg->umax_value = reg->u32_max_value; 1378 /* Attempt to pull 32-bit signed bounds into 64-bit bounds 1379 * but must be positive otherwise set to worse case bounds 1380 * and refine later from tnum. 1381 */ 1382 if (reg->s32_min_value >= 0 && reg->s32_max_value >= 0) 1383 reg->smax_value = reg->s32_max_value; 1384 else 1385 reg->smax_value = U32_MAX; 1386 if (reg->s32_min_value >= 0) 1387 reg->smin_value = reg->s32_min_value; 1388 else 1389 reg->smin_value = 0; 1390 } 1391 1392 static void __reg_combine_32_into_64(struct bpf_reg_state *reg) 1393 { 1394 /* special case when 64-bit register has upper 32-bit register 1395 * zeroed. Typically happens after zext or <<32, >>32 sequence 1396 * allowing us to use 32-bit bounds directly, 1397 */ 1398 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) { 1399 __reg_assign_32_into_64(reg); 1400 } else { 1401 /* Otherwise the best we can do is push lower 32bit known and 1402 * unknown bits into register (var_off set from jmp logic) 1403 * then learn as much as possible from the 64-bit tnum 1404 * known and unknown bits. The previous smin/smax bounds are 1405 * invalid here because of jmp32 compare so mark them unknown 1406 * so they do not impact tnum bounds calculation. 1407 */ 1408 __mark_reg64_unbounded(reg); 1409 __update_reg_bounds(reg); 1410 } 1411 1412 /* Intersecting with the old var_off might have improved our bounds 1413 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 1414 * then new var_off is (0; 0x7f...fc) which improves our umax. 1415 */ 1416 __reg_deduce_bounds(reg); 1417 __reg_bound_offset(reg); 1418 __update_reg_bounds(reg); 1419 } 1420 1421 static bool __reg64_bound_s32(s64 a) 1422 { 1423 return a >= S32_MIN && a <= S32_MAX; 1424 } 1425 1426 static bool __reg64_bound_u32(u64 a) 1427 { 1428 return a >= U32_MIN && a <= U32_MAX; 1429 } 1430 1431 static void __reg_combine_64_into_32(struct bpf_reg_state *reg) 1432 { 1433 __mark_reg32_unbounded(reg); 1434 1435 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) { 1436 reg->s32_min_value = (s32)reg->smin_value; 1437 reg->s32_max_value = (s32)reg->smax_value; 1438 } 1439 if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) { 1440 reg->u32_min_value = (u32)reg->umin_value; 1441 reg->u32_max_value = (u32)reg->umax_value; 1442 } 1443 1444 /* Intersecting with the old var_off might have improved our bounds 1445 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 1446 * then new var_off is (0; 0x7f...fc) which improves our umax. 1447 */ 1448 __reg_deduce_bounds(reg); 1449 __reg_bound_offset(reg); 1450 __update_reg_bounds(reg); 1451 } 1452 1453 /* Mark a register as having a completely unknown (scalar) value. */ 1454 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 1455 struct bpf_reg_state *reg) 1456 { 1457 /* 1458 * Clear type, id, off, and union(map_ptr, range) and 1459 * padding between 'type' and union 1460 */ 1461 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 1462 reg->type = SCALAR_VALUE; 1463 reg->var_off = tnum_unknown; 1464 reg->frameno = 0; 1465 reg->precise = env->subprog_cnt > 1 || !env->bpf_capable; 1466 __mark_reg_unbounded(reg); 1467 } 1468 1469 static void mark_reg_unknown(struct bpf_verifier_env *env, 1470 struct bpf_reg_state *regs, u32 regno) 1471 { 1472 if (WARN_ON(regno >= MAX_BPF_REG)) { 1473 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 1474 /* Something bad happened, let's kill all regs except FP */ 1475 for (regno = 0; regno < BPF_REG_FP; regno++) 1476 __mark_reg_not_init(env, regs + regno); 1477 return; 1478 } 1479 __mark_reg_unknown(env, regs + regno); 1480 } 1481 1482 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 1483 struct bpf_reg_state *reg) 1484 { 1485 __mark_reg_unknown(env, reg); 1486 reg->type = NOT_INIT; 1487 } 1488 1489 static void mark_reg_not_init(struct bpf_verifier_env *env, 1490 struct bpf_reg_state *regs, u32 regno) 1491 { 1492 if (WARN_ON(regno >= MAX_BPF_REG)) { 1493 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 1494 /* Something bad happened, let's kill all regs except FP */ 1495 for (regno = 0; regno < BPF_REG_FP; regno++) 1496 __mark_reg_not_init(env, regs + regno); 1497 return; 1498 } 1499 __mark_reg_not_init(env, regs + regno); 1500 } 1501 1502 static void mark_btf_ld_reg(struct bpf_verifier_env *env, 1503 struct bpf_reg_state *regs, u32 regno, 1504 enum bpf_reg_type reg_type, 1505 struct btf *btf, u32 btf_id) 1506 { 1507 if (reg_type == SCALAR_VALUE) { 1508 mark_reg_unknown(env, regs, regno); 1509 return; 1510 } 1511 mark_reg_known_zero(env, regs, regno); 1512 regs[regno].type = PTR_TO_BTF_ID; 1513 regs[regno].btf = btf; 1514 regs[regno].btf_id = btf_id; 1515 } 1516 1517 #define DEF_NOT_SUBREG (0) 1518 static void init_reg_state(struct bpf_verifier_env *env, 1519 struct bpf_func_state *state) 1520 { 1521 struct bpf_reg_state *regs = state->regs; 1522 int i; 1523 1524 for (i = 0; i < MAX_BPF_REG; i++) { 1525 mark_reg_not_init(env, regs, i); 1526 regs[i].live = REG_LIVE_NONE; 1527 regs[i].parent = NULL; 1528 regs[i].subreg_def = DEF_NOT_SUBREG; 1529 } 1530 1531 /* frame pointer */ 1532 regs[BPF_REG_FP].type = PTR_TO_STACK; 1533 mark_reg_known_zero(env, regs, BPF_REG_FP); 1534 regs[BPF_REG_FP].frameno = state->frameno; 1535 } 1536 1537 #define BPF_MAIN_FUNC (-1) 1538 static void init_func_state(struct bpf_verifier_env *env, 1539 struct bpf_func_state *state, 1540 int callsite, int frameno, int subprogno) 1541 { 1542 state->callsite = callsite; 1543 state->frameno = frameno; 1544 state->subprogno = subprogno; 1545 init_reg_state(env, state); 1546 } 1547 1548 /* Similar to push_stack(), but for async callbacks */ 1549 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env, 1550 int insn_idx, int prev_insn_idx, 1551 int subprog) 1552 { 1553 struct bpf_verifier_stack_elem *elem; 1554 struct bpf_func_state *frame; 1555 1556 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 1557 if (!elem) 1558 goto err; 1559 1560 elem->insn_idx = insn_idx; 1561 elem->prev_insn_idx = prev_insn_idx; 1562 elem->next = env->head; 1563 elem->log_pos = env->log.len_used; 1564 env->head = elem; 1565 env->stack_size++; 1566 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 1567 verbose(env, 1568 "The sequence of %d jumps is too complex for async cb.\n", 1569 env->stack_size); 1570 goto err; 1571 } 1572 /* Unlike push_stack() do not copy_verifier_state(). 1573 * The caller state doesn't matter. 1574 * This is async callback. It starts in a fresh stack. 1575 * Initialize it similar to do_check_common(). 1576 */ 1577 elem->st.branches = 1; 1578 frame = kzalloc(sizeof(*frame), GFP_KERNEL); 1579 if (!frame) 1580 goto err; 1581 init_func_state(env, frame, 1582 BPF_MAIN_FUNC /* callsite */, 1583 0 /* frameno within this callchain */, 1584 subprog /* subprog number within this prog */); 1585 elem->st.frame[0] = frame; 1586 return &elem->st; 1587 err: 1588 free_verifier_state(env->cur_state, true); 1589 env->cur_state = NULL; 1590 /* pop all elements and return */ 1591 while (!pop_stack(env, NULL, NULL, false)); 1592 return NULL; 1593 } 1594 1595 1596 enum reg_arg_type { 1597 SRC_OP, /* register is used as source operand */ 1598 DST_OP, /* register is used as destination operand */ 1599 DST_OP_NO_MARK /* same as above, check only, don't mark */ 1600 }; 1601 1602 static int cmp_subprogs(const void *a, const void *b) 1603 { 1604 return ((struct bpf_subprog_info *)a)->start - 1605 ((struct bpf_subprog_info *)b)->start; 1606 } 1607 1608 static int find_subprog(struct bpf_verifier_env *env, int off) 1609 { 1610 struct bpf_subprog_info *p; 1611 1612 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 1613 sizeof(env->subprog_info[0]), cmp_subprogs); 1614 if (!p) 1615 return -ENOENT; 1616 return p - env->subprog_info; 1617 1618 } 1619 1620 static int add_subprog(struct bpf_verifier_env *env, int off) 1621 { 1622 int insn_cnt = env->prog->len; 1623 int ret; 1624 1625 if (off >= insn_cnt || off < 0) { 1626 verbose(env, "call to invalid destination\n"); 1627 return -EINVAL; 1628 } 1629 ret = find_subprog(env, off); 1630 if (ret >= 0) 1631 return ret; 1632 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 1633 verbose(env, "too many subprograms\n"); 1634 return -E2BIG; 1635 } 1636 /* determine subprog starts. The end is one before the next starts */ 1637 env->subprog_info[env->subprog_cnt++].start = off; 1638 sort(env->subprog_info, env->subprog_cnt, 1639 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 1640 return env->subprog_cnt - 1; 1641 } 1642 1643 #define MAX_KFUNC_DESCS 256 1644 #define MAX_KFUNC_BTFS 256 1645 1646 struct bpf_kfunc_desc { 1647 struct btf_func_model func_model; 1648 u32 func_id; 1649 s32 imm; 1650 u16 offset; 1651 }; 1652 1653 struct bpf_kfunc_btf { 1654 struct btf *btf; 1655 struct module *module; 1656 u16 offset; 1657 }; 1658 1659 struct bpf_kfunc_desc_tab { 1660 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS]; 1661 u32 nr_descs; 1662 }; 1663 1664 struct bpf_kfunc_btf_tab { 1665 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS]; 1666 u32 nr_descs; 1667 }; 1668 1669 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b) 1670 { 1671 const struct bpf_kfunc_desc *d0 = a; 1672 const struct bpf_kfunc_desc *d1 = b; 1673 1674 /* func_id is not greater than BTF_MAX_TYPE */ 1675 return d0->func_id - d1->func_id ?: d0->offset - d1->offset; 1676 } 1677 1678 static int kfunc_btf_cmp_by_off(const void *a, const void *b) 1679 { 1680 const struct bpf_kfunc_btf *d0 = a; 1681 const struct bpf_kfunc_btf *d1 = b; 1682 1683 return d0->offset - d1->offset; 1684 } 1685 1686 static const struct bpf_kfunc_desc * 1687 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset) 1688 { 1689 struct bpf_kfunc_desc desc = { 1690 .func_id = func_id, 1691 .offset = offset, 1692 }; 1693 struct bpf_kfunc_desc_tab *tab; 1694 1695 tab = prog->aux->kfunc_tab; 1696 return bsearch(&desc, tab->descs, tab->nr_descs, 1697 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off); 1698 } 1699 1700 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env, 1701 s16 offset, struct module **btf_modp) 1702 { 1703 struct bpf_kfunc_btf kf_btf = { .offset = offset }; 1704 struct bpf_kfunc_btf_tab *tab; 1705 struct bpf_kfunc_btf *b; 1706 struct module *mod; 1707 struct btf *btf; 1708 int btf_fd; 1709 1710 tab = env->prog->aux->kfunc_btf_tab; 1711 b = bsearch(&kf_btf, tab->descs, tab->nr_descs, 1712 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off); 1713 if (!b) { 1714 if (tab->nr_descs == MAX_KFUNC_BTFS) { 1715 verbose(env, "too many different module BTFs\n"); 1716 return ERR_PTR(-E2BIG); 1717 } 1718 1719 if (bpfptr_is_null(env->fd_array)) { 1720 verbose(env, "kfunc offset > 0 without fd_array is invalid\n"); 1721 return ERR_PTR(-EPROTO); 1722 } 1723 1724 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array, 1725 offset * sizeof(btf_fd), 1726 sizeof(btf_fd))) 1727 return ERR_PTR(-EFAULT); 1728 1729 btf = btf_get_by_fd(btf_fd); 1730 if (IS_ERR(btf)) { 1731 verbose(env, "invalid module BTF fd specified\n"); 1732 return btf; 1733 } 1734 1735 if (!btf_is_module(btf)) { 1736 verbose(env, "BTF fd for kfunc is not a module BTF\n"); 1737 btf_put(btf); 1738 return ERR_PTR(-EINVAL); 1739 } 1740 1741 mod = btf_try_get_module(btf); 1742 if (!mod) { 1743 btf_put(btf); 1744 return ERR_PTR(-ENXIO); 1745 } 1746 1747 b = &tab->descs[tab->nr_descs++]; 1748 b->btf = btf; 1749 b->module = mod; 1750 b->offset = offset; 1751 1752 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 1753 kfunc_btf_cmp_by_off, NULL); 1754 } 1755 if (btf_modp) 1756 *btf_modp = b->module; 1757 return b->btf; 1758 } 1759 1760 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab) 1761 { 1762 if (!tab) 1763 return; 1764 1765 while (tab->nr_descs--) { 1766 module_put(tab->descs[tab->nr_descs].module); 1767 btf_put(tab->descs[tab->nr_descs].btf); 1768 } 1769 kfree(tab); 1770 } 1771 1772 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, 1773 u32 func_id, s16 offset, 1774 struct module **btf_modp) 1775 { 1776 if (offset) { 1777 if (offset < 0) { 1778 /* In the future, this can be allowed to increase limit 1779 * of fd index into fd_array, interpreted as u16. 1780 */ 1781 verbose(env, "negative offset disallowed for kernel module function call\n"); 1782 return ERR_PTR(-EINVAL); 1783 } 1784 1785 return __find_kfunc_desc_btf(env, offset, btf_modp); 1786 } 1787 return btf_vmlinux ?: ERR_PTR(-ENOENT); 1788 } 1789 1790 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset) 1791 { 1792 const struct btf_type *func, *func_proto; 1793 struct bpf_kfunc_btf_tab *btf_tab; 1794 struct bpf_kfunc_desc_tab *tab; 1795 struct bpf_prog_aux *prog_aux; 1796 struct bpf_kfunc_desc *desc; 1797 const char *func_name; 1798 struct btf *desc_btf; 1799 unsigned long addr; 1800 int err; 1801 1802 prog_aux = env->prog->aux; 1803 tab = prog_aux->kfunc_tab; 1804 btf_tab = prog_aux->kfunc_btf_tab; 1805 if (!tab) { 1806 if (!btf_vmlinux) { 1807 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n"); 1808 return -ENOTSUPP; 1809 } 1810 1811 if (!env->prog->jit_requested) { 1812 verbose(env, "JIT is required for calling kernel function\n"); 1813 return -ENOTSUPP; 1814 } 1815 1816 if (!bpf_jit_supports_kfunc_call()) { 1817 verbose(env, "JIT does not support calling kernel function\n"); 1818 return -ENOTSUPP; 1819 } 1820 1821 if (!env->prog->gpl_compatible) { 1822 verbose(env, "cannot call kernel function from non-GPL compatible program\n"); 1823 return -EINVAL; 1824 } 1825 1826 tab = kzalloc(sizeof(*tab), GFP_KERNEL); 1827 if (!tab) 1828 return -ENOMEM; 1829 prog_aux->kfunc_tab = tab; 1830 } 1831 1832 /* func_id == 0 is always invalid, but instead of returning an error, be 1833 * conservative and wait until the code elimination pass before returning 1834 * error, so that invalid calls that get pruned out can be in BPF programs 1835 * loaded from userspace. It is also required that offset be untouched 1836 * for such calls. 1837 */ 1838 if (!func_id && !offset) 1839 return 0; 1840 1841 if (!btf_tab && offset) { 1842 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL); 1843 if (!btf_tab) 1844 return -ENOMEM; 1845 prog_aux->kfunc_btf_tab = btf_tab; 1846 } 1847 1848 desc_btf = find_kfunc_desc_btf(env, func_id, offset, NULL); 1849 if (IS_ERR(desc_btf)) { 1850 verbose(env, "failed to find BTF for kernel function\n"); 1851 return PTR_ERR(desc_btf); 1852 } 1853 1854 if (find_kfunc_desc(env->prog, func_id, offset)) 1855 return 0; 1856 1857 if (tab->nr_descs == MAX_KFUNC_DESCS) { 1858 verbose(env, "too many different kernel function calls\n"); 1859 return -E2BIG; 1860 } 1861 1862 func = btf_type_by_id(desc_btf, func_id); 1863 if (!func || !btf_type_is_func(func)) { 1864 verbose(env, "kernel btf_id %u is not a function\n", 1865 func_id); 1866 return -EINVAL; 1867 } 1868 func_proto = btf_type_by_id(desc_btf, func->type); 1869 if (!func_proto || !btf_type_is_func_proto(func_proto)) { 1870 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n", 1871 func_id); 1872 return -EINVAL; 1873 } 1874 1875 func_name = btf_name_by_offset(desc_btf, func->name_off); 1876 addr = kallsyms_lookup_name(func_name); 1877 if (!addr) { 1878 verbose(env, "cannot find address for kernel function %s\n", 1879 func_name); 1880 return -EINVAL; 1881 } 1882 1883 desc = &tab->descs[tab->nr_descs++]; 1884 desc->func_id = func_id; 1885 desc->imm = BPF_CALL_IMM(addr); 1886 desc->offset = offset; 1887 err = btf_distill_func_proto(&env->log, desc_btf, 1888 func_proto, func_name, 1889 &desc->func_model); 1890 if (!err) 1891 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 1892 kfunc_desc_cmp_by_id_off, NULL); 1893 return err; 1894 } 1895 1896 static int kfunc_desc_cmp_by_imm(const void *a, const void *b) 1897 { 1898 const struct bpf_kfunc_desc *d0 = a; 1899 const struct bpf_kfunc_desc *d1 = b; 1900 1901 if (d0->imm > d1->imm) 1902 return 1; 1903 else if (d0->imm < d1->imm) 1904 return -1; 1905 return 0; 1906 } 1907 1908 static void sort_kfunc_descs_by_imm(struct bpf_prog *prog) 1909 { 1910 struct bpf_kfunc_desc_tab *tab; 1911 1912 tab = prog->aux->kfunc_tab; 1913 if (!tab) 1914 return; 1915 1916 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 1917 kfunc_desc_cmp_by_imm, NULL); 1918 } 1919 1920 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 1921 { 1922 return !!prog->aux->kfunc_tab; 1923 } 1924 1925 const struct btf_func_model * 1926 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 1927 const struct bpf_insn *insn) 1928 { 1929 const struct bpf_kfunc_desc desc = { 1930 .imm = insn->imm, 1931 }; 1932 const struct bpf_kfunc_desc *res; 1933 struct bpf_kfunc_desc_tab *tab; 1934 1935 tab = prog->aux->kfunc_tab; 1936 res = bsearch(&desc, tab->descs, tab->nr_descs, 1937 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm); 1938 1939 return res ? &res->func_model : NULL; 1940 } 1941 1942 static int add_subprog_and_kfunc(struct bpf_verifier_env *env) 1943 { 1944 struct bpf_subprog_info *subprog = env->subprog_info; 1945 struct bpf_insn *insn = env->prog->insnsi; 1946 int i, ret, insn_cnt = env->prog->len; 1947 1948 /* Add entry function. */ 1949 ret = add_subprog(env, 0); 1950 if (ret) 1951 return ret; 1952 1953 for (i = 0; i < insn_cnt; i++, insn++) { 1954 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) && 1955 !bpf_pseudo_kfunc_call(insn)) 1956 continue; 1957 1958 if (!env->bpf_capable) { 1959 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); 1960 return -EPERM; 1961 } 1962 1963 if (bpf_pseudo_func(insn)) { 1964 ret = add_subprog(env, i + insn->imm + 1); 1965 if (ret >= 0) 1966 /* remember subprog */ 1967 insn[1].imm = ret; 1968 } else if (bpf_pseudo_call(insn)) { 1969 ret = add_subprog(env, i + insn->imm + 1); 1970 } else { 1971 ret = add_kfunc_call(env, insn->imm, insn->off); 1972 } 1973 1974 if (ret < 0) 1975 return ret; 1976 } 1977 1978 /* Add a fake 'exit' subprog which could simplify subprog iteration 1979 * logic. 'subprog_cnt' should not be increased. 1980 */ 1981 subprog[env->subprog_cnt].start = insn_cnt; 1982 1983 if (env->log.level & BPF_LOG_LEVEL2) 1984 for (i = 0; i < env->subprog_cnt; i++) 1985 verbose(env, "func#%d @%d\n", i, subprog[i].start); 1986 1987 return 0; 1988 } 1989 1990 static int check_subprogs(struct bpf_verifier_env *env) 1991 { 1992 int i, subprog_start, subprog_end, off, cur_subprog = 0; 1993 struct bpf_subprog_info *subprog = env->subprog_info; 1994 struct bpf_insn *insn = env->prog->insnsi; 1995 int insn_cnt = env->prog->len; 1996 1997 /* now check that all jumps are within the same subprog */ 1998 subprog_start = subprog[cur_subprog].start; 1999 subprog_end = subprog[cur_subprog + 1].start; 2000 for (i = 0; i < insn_cnt; i++) { 2001 u8 code = insn[i].code; 2002 2003 if (code == (BPF_JMP | BPF_CALL) && 2004 insn[i].imm == BPF_FUNC_tail_call && 2005 insn[i].src_reg != BPF_PSEUDO_CALL) 2006 subprog[cur_subprog].has_tail_call = true; 2007 if (BPF_CLASS(code) == BPF_LD && 2008 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND)) 2009 subprog[cur_subprog].has_ld_abs = true; 2010 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 2011 goto next; 2012 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 2013 goto next; 2014 off = i + insn[i].off + 1; 2015 if (off < subprog_start || off >= subprog_end) { 2016 verbose(env, "jump out of range from insn %d to %d\n", i, off); 2017 return -EINVAL; 2018 } 2019 next: 2020 if (i == subprog_end - 1) { 2021 /* to avoid fall-through from one subprog into another 2022 * the last insn of the subprog should be either exit 2023 * or unconditional jump back 2024 */ 2025 if (code != (BPF_JMP | BPF_EXIT) && 2026 code != (BPF_JMP | BPF_JA)) { 2027 verbose(env, "last insn is not an exit or jmp\n"); 2028 return -EINVAL; 2029 } 2030 subprog_start = subprog_end; 2031 cur_subprog++; 2032 if (cur_subprog < env->subprog_cnt) 2033 subprog_end = subprog[cur_subprog + 1].start; 2034 } 2035 } 2036 return 0; 2037 } 2038 2039 /* Parentage chain of this register (or stack slot) should take care of all 2040 * issues like callee-saved registers, stack slot allocation time, etc. 2041 */ 2042 static int mark_reg_read(struct bpf_verifier_env *env, 2043 const struct bpf_reg_state *state, 2044 struct bpf_reg_state *parent, u8 flag) 2045 { 2046 bool writes = parent == state->parent; /* Observe write marks */ 2047 int cnt = 0; 2048 2049 while (parent) { 2050 /* if read wasn't screened by an earlier write ... */ 2051 if (writes && state->live & REG_LIVE_WRITTEN) 2052 break; 2053 if (parent->live & REG_LIVE_DONE) { 2054 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 2055 reg_type_str[parent->type], 2056 parent->var_off.value, parent->off); 2057 return -EFAULT; 2058 } 2059 /* The first condition is more likely to be true than the 2060 * second, checked it first. 2061 */ 2062 if ((parent->live & REG_LIVE_READ) == flag || 2063 parent->live & REG_LIVE_READ64) 2064 /* The parentage chain never changes and 2065 * this parent was already marked as LIVE_READ. 2066 * There is no need to keep walking the chain again and 2067 * keep re-marking all parents as LIVE_READ. 2068 * This case happens when the same register is read 2069 * multiple times without writes into it in-between. 2070 * Also, if parent has the stronger REG_LIVE_READ64 set, 2071 * then no need to set the weak REG_LIVE_READ32. 2072 */ 2073 break; 2074 /* ... then we depend on parent's value */ 2075 parent->live |= flag; 2076 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 2077 if (flag == REG_LIVE_READ64) 2078 parent->live &= ~REG_LIVE_READ32; 2079 state = parent; 2080 parent = state->parent; 2081 writes = true; 2082 cnt++; 2083 } 2084 2085 if (env->longest_mark_read_walk < cnt) 2086 env->longest_mark_read_walk = cnt; 2087 return 0; 2088 } 2089 2090 /* This function is supposed to be used by the following 32-bit optimization 2091 * code only. It returns TRUE if the source or destination register operates 2092 * on 64-bit, otherwise return FALSE. 2093 */ 2094 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 2095 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 2096 { 2097 u8 code, class, op; 2098 2099 code = insn->code; 2100 class = BPF_CLASS(code); 2101 op = BPF_OP(code); 2102 if (class == BPF_JMP) { 2103 /* BPF_EXIT for "main" will reach here. Return TRUE 2104 * conservatively. 2105 */ 2106 if (op == BPF_EXIT) 2107 return true; 2108 if (op == BPF_CALL) { 2109 /* BPF to BPF call will reach here because of marking 2110 * caller saved clobber with DST_OP_NO_MARK for which we 2111 * don't care the register def because they are anyway 2112 * marked as NOT_INIT already. 2113 */ 2114 if (insn->src_reg == BPF_PSEUDO_CALL) 2115 return false; 2116 /* Helper call will reach here because of arg type 2117 * check, conservatively return TRUE. 2118 */ 2119 if (t == SRC_OP) 2120 return true; 2121 2122 return false; 2123 } 2124 } 2125 2126 if (class == BPF_ALU64 || class == BPF_JMP || 2127 /* BPF_END always use BPF_ALU class. */ 2128 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 2129 return true; 2130 2131 if (class == BPF_ALU || class == BPF_JMP32) 2132 return false; 2133 2134 if (class == BPF_LDX) { 2135 if (t != SRC_OP) 2136 return BPF_SIZE(code) == BPF_DW; 2137 /* LDX source must be ptr. */ 2138 return true; 2139 } 2140 2141 if (class == BPF_STX) { 2142 /* BPF_STX (including atomic variants) has multiple source 2143 * operands, one of which is a ptr. Check whether the caller is 2144 * asking about it. 2145 */ 2146 if (t == SRC_OP && reg->type != SCALAR_VALUE) 2147 return true; 2148 return BPF_SIZE(code) == BPF_DW; 2149 } 2150 2151 if (class == BPF_LD) { 2152 u8 mode = BPF_MODE(code); 2153 2154 /* LD_IMM64 */ 2155 if (mode == BPF_IMM) 2156 return true; 2157 2158 /* Both LD_IND and LD_ABS return 32-bit data. */ 2159 if (t != SRC_OP) 2160 return false; 2161 2162 /* Implicit ctx ptr. */ 2163 if (regno == BPF_REG_6) 2164 return true; 2165 2166 /* Explicit source could be any width. */ 2167 return true; 2168 } 2169 2170 if (class == BPF_ST) 2171 /* The only source register for BPF_ST is a ptr. */ 2172 return true; 2173 2174 /* Conservatively return true at default. */ 2175 return true; 2176 } 2177 2178 /* Return the regno defined by the insn, or -1. */ 2179 static int insn_def_regno(const struct bpf_insn *insn) 2180 { 2181 switch (BPF_CLASS(insn->code)) { 2182 case BPF_JMP: 2183 case BPF_JMP32: 2184 case BPF_ST: 2185 return -1; 2186 case BPF_STX: 2187 if (BPF_MODE(insn->code) == BPF_ATOMIC && 2188 (insn->imm & BPF_FETCH)) { 2189 if (insn->imm == BPF_CMPXCHG) 2190 return BPF_REG_0; 2191 else 2192 return insn->src_reg; 2193 } else { 2194 return -1; 2195 } 2196 default: 2197 return insn->dst_reg; 2198 } 2199 } 2200 2201 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 2202 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 2203 { 2204 int dst_reg = insn_def_regno(insn); 2205 2206 if (dst_reg == -1) 2207 return false; 2208 2209 return !is_reg64(env, insn, dst_reg, NULL, DST_OP); 2210 } 2211 2212 static void mark_insn_zext(struct bpf_verifier_env *env, 2213 struct bpf_reg_state *reg) 2214 { 2215 s32 def_idx = reg->subreg_def; 2216 2217 if (def_idx == DEF_NOT_SUBREG) 2218 return; 2219 2220 env->insn_aux_data[def_idx - 1].zext_dst = true; 2221 /* The dst will be zero extended, so won't be sub-register anymore. */ 2222 reg->subreg_def = DEF_NOT_SUBREG; 2223 } 2224 2225 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 2226 enum reg_arg_type t) 2227 { 2228 struct bpf_verifier_state *vstate = env->cur_state; 2229 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2230 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 2231 struct bpf_reg_state *reg, *regs = state->regs; 2232 bool rw64; 2233 2234 if (regno >= MAX_BPF_REG) { 2235 verbose(env, "R%d is invalid\n", regno); 2236 return -EINVAL; 2237 } 2238 2239 reg = ®s[regno]; 2240 rw64 = is_reg64(env, insn, regno, reg, t); 2241 if (t == SRC_OP) { 2242 /* check whether register used as source operand can be read */ 2243 if (reg->type == NOT_INIT) { 2244 verbose(env, "R%d !read_ok\n", regno); 2245 return -EACCES; 2246 } 2247 /* We don't need to worry about FP liveness because it's read-only */ 2248 if (regno == BPF_REG_FP) 2249 return 0; 2250 2251 if (rw64) 2252 mark_insn_zext(env, reg); 2253 2254 return mark_reg_read(env, reg, reg->parent, 2255 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 2256 } else { 2257 /* check whether register used as dest operand can be written to */ 2258 if (regno == BPF_REG_FP) { 2259 verbose(env, "frame pointer is read only\n"); 2260 return -EACCES; 2261 } 2262 reg->live |= REG_LIVE_WRITTEN; 2263 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 2264 if (t == DST_OP) 2265 mark_reg_unknown(env, regs, regno); 2266 } 2267 return 0; 2268 } 2269 2270 /* for any branch, call, exit record the history of jmps in the given state */ 2271 static int push_jmp_history(struct bpf_verifier_env *env, 2272 struct bpf_verifier_state *cur) 2273 { 2274 u32 cnt = cur->jmp_history_cnt; 2275 struct bpf_idx_pair *p; 2276 2277 cnt++; 2278 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER); 2279 if (!p) 2280 return -ENOMEM; 2281 p[cnt - 1].idx = env->insn_idx; 2282 p[cnt - 1].prev_idx = env->prev_insn_idx; 2283 cur->jmp_history = p; 2284 cur->jmp_history_cnt = cnt; 2285 return 0; 2286 } 2287 2288 /* Backtrack one insn at a time. If idx is not at the top of recorded 2289 * history then previous instruction came from straight line execution. 2290 */ 2291 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 2292 u32 *history) 2293 { 2294 u32 cnt = *history; 2295 2296 if (cnt && st->jmp_history[cnt - 1].idx == i) { 2297 i = st->jmp_history[cnt - 1].prev_idx; 2298 (*history)--; 2299 } else { 2300 i--; 2301 } 2302 return i; 2303 } 2304 2305 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn) 2306 { 2307 const struct btf_type *func; 2308 struct btf *desc_btf; 2309 2310 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL) 2311 return NULL; 2312 2313 desc_btf = find_kfunc_desc_btf(data, insn->imm, insn->off, NULL); 2314 if (IS_ERR(desc_btf)) 2315 return "<error>"; 2316 2317 func = btf_type_by_id(desc_btf, insn->imm); 2318 return btf_name_by_offset(desc_btf, func->name_off); 2319 } 2320 2321 /* For given verifier state backtrack_insn() is called from the last insn to 2322 * the first insn. Its purpose is to compute a bitmask of registers and 2323 * stack slots that needs precision in the parent verifier state. 2324 */ 2325 static int backtrack_insn(struct bpf_verifier_env *env, int idx, 2326 u32 *reg_mask, u64 *stack_mask) 2327 { 2328 const struct bpf_insn_cbs cbs = { 2329 .cb_call = disasm_kfunc_name, 2330 .cb_print = verbose, 2331 .private_data = env, 2332 }; 2333 struct bpf_insn *insn = env->prog->insnsi + idx; 2334 u8 class = BPF_CLASS(insn->code); 2335 u8 opcode = BPF_OP(insn->code); 2336 u8 mode = BPF_MODE(insn->code); 2337 u32 dreg = 1u << insn->dst_reg; 2338 u32 sreg = 1u << insn->src_reg; 2339 u32 spi; 2340 2341 if (insn->code == 0) 2342 return 0; 2343 if (env->log.level & BPF_LOG_LEVEL) { 2344 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask); 2345 verbose(env, "%d: ", idx); 2346 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 2347 } 2348 2349 if (class == BPF_ALU || class == BPF_ALU64) { 2350 if (!(*reg_mask & dreg)) 2351 return 0; 2352 if (opcode == BPF_MOV) { 2353 if (BPF_SRC(insn->code) == BPF_X) { 2354 /* dreg = sreg 2355 * dreg needs precision after this insn 2356 * sreg needs precision before this insn 2357 */ 2358 *reg_mask &= ~dreg; 2359 *reg_mask |= sreg; 2360 } else { 2361 /* dreg = K 2362 * dreg needs precision after this insn. 2363 * Corresponding register is already marked 2364 * as precise=true in this verifier state. 2365 * No further markings in parent are necessary 2366 */ 2367 *reg_mask &= ~dreg; 2368 } 2369 } else { 2370 if (BPF_SRC(insn->code) == BPF_X) { 2371 /* dreg += sreg 2372 * both dreg and sreg need precision 2373 * before this insn 2374 */ 2375 *reg_mask |= sreg; 2376 } /* else dreg += K 2377 * dreg still needs precision before this insn 2378 */ 2379 } 2380 } else if (class == BPF_LDX) { 2381 if (!(*reg_mask & dreg)) 2382 return 0; 2383 *reg_mask &= ~dreg; 2384 2385 /* scalars can only be spilled into stack w/o losing precision. 2386 * Load from any other memory can be zero extended. 2387 * The desire to keep that precision is already indicated 2388 * by 'precise' mark in corresponding register of this state. 2389 * No further tracking necessary. 2390 */ 2391 if (insn->src_reg != BPF_REG_FP) 2392 return 0; 2393 if (BPF_SIZE(insn->code) != BPF_DW) 2394 return 0; 2395 2396 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 2397 * that [fp - off] slot contains scalar that needs to be 2398 * tracked with precision 2399 */ 2400 spi = (-insn->off - 1) / BPF_REG_SIZE; 2401 if (spi >= 64) { 2402 verbose(env, "BUG spi %d\n", spi); 2403 WARN_ONCE(1, "verifier backtracking bug"); 2404 return -EFAULT; 2405 } 2406 *stack_mask |= 1ull << spi; 2407 } else if (class == BPF_STX || class == BPF_ST) { 2408 if (*reg_mask & dreg) 2409 /* stx & st shouldn't be using _scalar_ dst_reg 2410 * to access memory. It means backtracking 2411 * encountered a case of pointer subtraction. 2412 */ 2413 return -ENOTSUPP; 2414 /* scalars can only be spilled into stack */ 2415 if (insn->dst_reg != BPF_REG_FP) 2416 return 0; 2417 if (BPF_SIZE(insn->code) != BPF_DW) 2418 return 0; 2419 spi = (-insn->off - 1) / BPF_REG_SIZE; 2420 if (spi >= 64) { 2421 verbose(env, "BUG spi %d\n", spi); 2422 WARN_ONCE(1, "verifier backtracking bug"); 2423 return -EFAULT; 2424 } 2425 if (!(*stack_mask & (1ull << spi))) 2426 return 0; 2427 *stack_mask &= ~(1ull << spi); 2428 if (class == BPF_STX) 2429 *reg_mask |= sreg; 2430 } else if (class == BPF_JMP || class == BPF_JMP32) { 2431 if (opcode == BPF_CALL) { 2432 if (insn->src_reg == BPF_PSEUDO_CALL) 2433 return -ENOTSUPP; 2434 /* regular helper call sets R0 */ 2435 *reg_mask &= ~1; 2436 if (*reg_mask & 0x3f) { 2437 /* if backtracing was looking for registers R1-R5 2438 * they should have been found already. 2439 */ 2440 verbose(env, "BUG regs %x\n", *reg_mask); 2441 WARN_ONCE(1, "verifier backtracking bug"); 2442 return -EFAULT; 2443 } 2444 } else if (opcode == BPF_EXIT) { 2445 return -ENOTSUPP; 2446 } 2447 } else if (class == BPF_LD) { 2448 if (!(*reg_mask & dreg)) 2449 return 0; 2450 *reg_mask &= ~dreg; 2451 /* It's ld_imm64 or ld_abs or ld_ind. 2452 * For ld_imm64 no further tracking of precision 2453 * into parent is necessary 2454 */ 2455 if (mode == BPF_IND || mode == BPF_ABS) 2456 /* to be analyzed */ 2457 return -ENOTSUPP; 2458 } 2459 return 0; 2460 } 2461 2462 /* the scalar precision tracking algorithm: 2463 * . at the start all registers have precise=false. 2464 * . scalar ranges are tracked as normal through alu and jmp insns. 2465 * . once precise value of the scalar register is used in: 2466 * . ptr + scalar alu 2467 * . if (scalar cond K|scalar) 2468 * . helper_call(.., scalar, ...) where ARG_CONST is expected 2469 * backtrack through the verifier states and mark all registers and 2470 * stack slots with spilled constants that these scalar regisers 2471 * should be precise. 2472 * . during state pruning two registers (or spilled stack slots) 2473 * are equivalent if both are not precise. 2474 * 2475 * Note the verifier cannot simply walk register parentage chain, 2476 * since many different registers and stack slots could have been 2477 * used to compute single precise scalar. 2478 * 2479 * The approach of starting with precise=true for all registers and then 2480 * backtrack to mark a register as not precise when the verifier detects 2481 * that program doesn't care about specific value (e.g., when helper 2482 * takes register as ARG_ANYTHING parameter) is not safe. 2483 * 2484 * It's ok to walk single parentage chain of the verifier states. 2485 * It's possible that this backtracking will go all the way till 1st insn. 2486 * All other branches will be explored for needing precision later. 2487 * 2488 * The backtracking needs to deal with cases like: 2489 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 2490 * r9 -= r8 2491 * r5 = r9 2492 * if r5 > 0x79f goto pc+7 2493 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 2494 * r5 += 1 2495 * ... 2496 * call bpf_perf_event_output#25 2497 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 2498 * 2499 * and this case: 2500 * r6 = 1 2501 * call foo // uses callee's r6 inside to compute r0 2502 * r0 += r6 2503 * if r0 == 0 goto 2504 * 2505 * to track above reg_mask/stack_mask needs to be independent for each frame. 2506 * 2507 * Also if parent's curframe > frame where backtracking started, 2508 * the verifier need to mark registers in both frames, otherwise callees 2509 * may incorrectly prune callers. This is similar to 2510 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 2511 * 2512 * For now backtracking falls back into conservative marking. 2513 */ 2514 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 2515 struct bpf_verifier_state *st) 2516 { 2517 struct bpf_func_state *func; 2518 struct bpf_reg_state *reg; 2519 int i, j; 2520 2521 /* big hammer: mark all scalars precise in this path. 2522 * pop_stack may still get !precise scalars. 2523 */ 2524 for (; st; st = st->parent) 2525 for (i = 0; i <= st->curframe; i++) { 2526 func = st->frame[i]; 2527 for (j = 0; j < BPF_REG_FP; j++) { 2528 reg = &func->regs[j]; 2529 if (reg->type != SCALAR_VALUE) 2530 continue; 2531 reg->precise = true; 2532 } 2533 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 2534 if (!is_spilled_reg(&func->stack[j])) 2535 continue; 2536 reg = &func->stack[j].spilled_ptr; 2537 if (reg->type != SCALAR_VALUE) 2538 continue; 2539 reg->precise = true; 2540 } 2541 } 2542 } 2543 2544 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno, 2545 int spi) 2546 { 2547 struct bpf_verifier_state *st = env->cur_state; 2548 int first_idx = st->first_insn_idx; 2549 int last_idx = env->insn_idx; 2550 struct bpf_func_state *func; 2551 struct bpf_reg_state *reg; 2552 u32 reg_mask = regno >= 0 ? 1u << regno : 0; 2553 u64 stack_mask = spi >= 0 ? 1ull << spi : 0; 2554 bool skip_first = true; 2555 bool new_marks = false; 2556 int i, err; 2557 2558 if (!env->bpf_capable) 2559 return 0; 2560 2561 func = st->frame[st->curframe]; 2562 if (regno >= 0) { 2563 reg = &func->regs[regno]; 2564 if (reg->type != SCALAR_VALUE) { 2565 WARN_ONCE(1, "backtracing misuse"); 2566 return -EFAULT; 2567 } 2568 if (!reg->precise) 2569 new_marks = true; 2570 else 2571 reg_mask = 0; 2572 reg->precise = true; 2573 } 2574 2575 while (spi >= 0) { 2576 if (!is_spilled_reg(&func->stack[spi])) { 2577 stack_mask = 0; 2578 break; 2579 } 2580 reg = &func->stack[spi].spilled_ptr; 2581 if (reg->type != SCALAR_VALUE) { 2582 stack_mask = 0; 2583 break; 2584 } 2585 if (!reg->precise) 2586 new_marks = true; 2587 else 2588 stack_mask = 0; 2589 reg->precise = true; 2590 break; 2591 } 2592 2593 if (!new_marks) 2594 return 0; 2595 if (!reg_mask && !stack_mask) 2596 return 0; 2597 for (;;) { 2598 DECLARE_BITMAP(mask, 64); 2599 u32 history = st->jmp_history_cnt; 2600 2601 if (env->log.level & BPF_LOG_LEVEL) 2602 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx); 2603 for (i = last_idx;;) { 2604 if (skip_first) { 2605 err = 0; 2606 skip_first = false; 2607 } else { 2608 err = backtrack_insn(env, i, ®_mask, &stack_mask); 2609 } 2610 if (err == -ENOTSUPP) { 2611 mark_all_scalars_precise(env, st); 2612 return 0; 2613 } else if (err) { 2614 return err; 2615 } 2616 if (!reg_mask && !stack_mask) 2617 /* Found assignment(s) into tracked register in this state. 2618 * Since this state is already marked, just return. 2619 * Nothing to be tracked further in the parent state. 2620 */ 2621 return 0; 2622 if (i == first_idx) 2623 break; 2624 i = get_prev_insn_idx(st, i, &history); 2625 if (i >= env->prog->len) { 2626 /* This can happen if backtracking reached insn 0 2627 * and there are still reg_mask or stack_mask 2628 * to backtrack. 2629 * It means the backtracking missed the spot where 2630 * particular register was initialized with a constant. 2631 */ 2632 verbose(env, "BUG backtracking idx %d\n", i); 2633 WARN_ONCE(1, "verifier backtracking bug"); 2634 return -EFAULT; 2635 } 2636 } 2637 st = st->parent; 2638 if (!st) 2639 break; 2640 2641 new_marks = false; 2642 func = st->frame[st->curframe]; 2643 bitmap_from_u64(mask, reg_mask); 2644 for_each_set_bit(i, mask, 32) { 2645 reg = &func->regs[i]; 2646 if (reg->type != SCALAR_VALUE) { 2647 reg_mask &= ~(1u << i); 2648 continue; 2649 } 2650 if (!reg->precise) 2651 new_marks = true; 2652 reg->precise = true; 2653 } 2654 2655 bitmap_from_u64(mask, stack_mask); 2656 for_each_set_bit(i, mask, 64) { 2657 if (i >= func->allocated_stack / BPF_REG_SIZE) { 2658 /* the sequence of instructions: 2659 * 2: (bf) r3 = r10 2660 * 3: (7b) *(u64 *)(r3 -8) = r0 2661 * 4: (79) r4 = *(u64 *)(r10 -8) 2662 * doesn't contain jmps. It's backtracked 2663 * as a single block. 2664 * During backtracking insn 3 is not recognized as 2665 * stack access, so at the end of backtracking 2666 * stack slot fp-8 is still marked in stack_mask. 2667 * However the parent state may not have accessed 2668 * fp-8 and it's "unallocated" stack space. 2669 * In such case fallback to conservative. 2670 */ 2671 mark_all_scalars_precise(env, st); 2672 return 0; 2673 } 2674 2675 if (!is_spilled_reg(&func->stack[i])) { 2676 stack_mask &= ~(1ull << i); 2677 continue; 2678 } 2679 reg = &func->stack[i].spilled_ptr; 2680 if (reg->type != SCALAR_VALUE) { 2681 stack_mask &= ~(1ull << i); 2682 continue; 2683 } 2684 if (!reg->precise) 2685 new_marks = true; 2686 reg->precise = true; 2687 } 2688 if (env->log.level & BPF_LOG_LEVEL) { 2689 print_verifier_state(env, func); 2690 verbose(env, "parent %s regs=%x stack=%llx marks\n", 2691 new_marks ? "didn't have" : "already had", 2692 reg_mask, stack_mask); 2693 } 2694 2695 if (!reg_mask && !stack_mask) 2696 break; 2697 if (!new_marks) 2698 break; 2699 2700 last_idx = st->last_insn_idx; 2701 first_idx = st->first_insn_idx; 2702 } 2703 return 0; 2704 } 2705 2706 static int mark_chain_precision(struct bpf_verifier_env *env, int regno) 2707 { 2708 return __mark_chain_precision(env, regno, -1); 2709 } 2710 2711 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi) 2712 { 2713 return __mark_chain_precision(env, -1, spi); 2714 } 2715 2716 static bool is_spillable_regtype(enum bpf_reg_type type) 2717 { 2718 switch (type) { 2719 case PTR_TO_MAP_VALUE: 2720 case PTR_TO_MAP_VALUE_OR_NULL: 2721 case PTR_TO_STACK: 2722 case PTR_TO_CTX: 2723 case PTR_TO_PACKET: 2724 case PTR_TO_PACKET_META: 2725 case PTR_TO_PACKET_END: 2726 case PTR_TO_FLOW_KEYS: 2727 case CONST_PTR_TO_MAP: 2728 case PTR_TO_SOCKET: 2729 case PTR_TO_SOCKET_OR_NULL: 2730 case PTR_TO_SOCK_COMMON: 2731 case PTR_TO_SOCK_COMMON_OR_NULL: 2732 case PTR_TO_TCP_SOCK: 2733 case PTR_TO_TCP_SOCK_OR_NULL: 2734 case PTR_TO_XDP_SOCK: 2735 case PTR_TO_BTF_ID: 2736 case PTR_TO_BTF_ID_OR_NULL: 2737 case PTR_TO_RDONLY_BUF: 2738 case PTR_TO_RDONLY_BUF_OR_NULL: 2739 case PTR_TO_RDWR_BUF: 2740 case PTR_TO_RDWR_BUF_OR_NULL: 2741 case PTR_TO_PERCPU_BTF_ID: 2742 case PTR_TO_MEM: 2743 case PTR_TO_MEM_OR_NULL: 2744 case PTR_TO_FUNC: 2745 case PTR_TO_MAP_KEY: 2746 return true; 2747 default: 2748 return false; 2749 } 2750 } 2751 2752 /* Does this register contain a constant zero? */ 2753 static bool register_is_null(struct bpf_reg_state *reg) 2754 { 2755 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 2756 } 2757 2758 static bool register_is_const(struct bpf_reg_state *reg) 2759 { 2760 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off); 2761 } 2762 2763 static bool __is_scalar_unbounded(struct bpf_reg_state *reg) 2764 { 2765 return tnum_is_unknown(reg->var_off) && 2766 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX && 2767 reg->umin_value == 0 && reg->umax_value == U64_MAX && 2768 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX && 2769 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX; 2770 } 2771 2772 static bool register_is_bounded(struct bpf_reg_state *reg) 2773 { 2774 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg); 2775 } 2776 2777 static bool __is_pointer_value(bool allow_ptr_leaks, 2778 const struct bpf_reg_state *reg) 2779 { 2780 if (allow_ptr_leaks) 2781 return false; 2782 2783 return reg->type != SCALAR_VALUE; 2784 } 2785 2786 static void save_register_state(struct bpf_func_state *state, 2787 int spi, struct bpf_reg_state *reg, 2788 int size) 2789 { 2790 int i; 2791 2792 state->stack[spi].spilled_ptr = *reg; 2793 if (size == BPF_REG_SIZE) 2794 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 2795 2796 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--) 2797 state->stack[spi].slot_type[i - 1] = STACK_SPILL; 2798 2799 /* size < 8 bytes spill */ 2800 for (; i; i--) 2801 scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]); 2802 } 2803 2804 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers, 2805 * stack boundary and alignment are checked in check_mem_access() 2806 */ 2807 static int check_stack_write_fixed_off(struct bpf_verifier_env *env, 2808 /* stack frame we're writing to */ 2809 struct bpf_func_state *state, 2810 int off, int size, int value_regno, 2811 int insn_idx) 2812 { 2813 struct bpf_func_state *cur; /* state of the current function */ 2814 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 2815 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg; 2816 struct bpf_reg_state *reg = NULL; 2817 2818 err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE)); 2819 if (err) 2820 return err; 2821 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 2822 * so it's aligned access and [off, off + size) are within stack limits 2823 */ 2824 if (!env->allow_ptr_leaks && 2825 state->stack[spi].slot_type[0] == STACK_SPILL && 2826 size != BPF_REG_SIZE) { 2827 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 2828 return -EACCES; 2829 } 2830 2831 cur = env->cur_state->frame[env->cur_state->curframe]; 2832 if (value_regno >= 0) 2833 reg = &cur->regs[value_regno]; 2834 if (!env->bypass_spec_v4) { 2835 bool sanitize = reg && is_spillable_regtype(reg->type); 2836 2837 for (i = 0; i < size; i++) { 2838 if (state->stack[spi].slot_type[i] == STACK_INVALID) { 2839 sanitize = true; 2840 break; 2841 } 2842 } 2843 2844 if (sanitize) 2845 env->insn_aux_data[insn_idx].sanitize_stack_spill = true; 2846 } 2847 2848 if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) && 2849 !register_is_null(reg) && env->bpf_capable) { 2850 if (dst_reg != BPF_REG_FP) { 2851 /* The backtracking logic can only recognize explicit 2852 * stack slot address like [fp - 8]. Other spill of 2853 * scalar via different register has to be conservative. 2854 * Backtrack from here and mark all registers as precise 2855 * that contributed into 'reg' being a constant. 2856 */ 2857 err = mark_chain_precision(env, value_regno); 2858 if (err) 2859 return err; 2860 } 2861 save_register_state(state, spi, reg, size); 2862 } else if (reg && is_spillable_regtype(reg->type)) { 2863 /* register containing pointer is being spilled into stack */ 2864 if (size != BPF_REG_SIZE) { 2865 verbose_linfo(env, insn_idx, "; "); 2866 verbose(env, "invalid size of register spill\n"); 2867 return -EACCES; 2868 } 2869 if (state != cur && reg->type == PTR_TO_STACK) { 2870 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 2871 return -EINVAL; 2872 } 2873 save_register_state(state, spi, reg, size); 2874 } else { 2875 u8 type = STACK_MISC; 2876 2877 /* regular write of data into stack destroys any spilled ptr */ 2878 state->stack[spi].spilled_ptr.type = NOT_INIT; 2879 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */ 2880 if (is_spilled_reg(&state->stack[spi])) 2881 for (i = 0; i < BPF_REG_SIZE; i++) 2882 scrub_spilled_slot(&state->stack[spi].slot_type[i]); 2883 2884 /* only mark the slot as written if all 8 bytes were written 2885 * otherwise read propagation may incorrectly stop too soon 2886 * when stack slots are partially written. 2887 * This heuristic means that read propagation will be 2888 * conservative, since it will add reg_live_read marks 2889 * to stack slots all the way to first state when programs 2890 * writes+reads less than 8 bytes 2891 */ 2892 if (size == BPF_REG_SIZE) 2893 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 2894 2895 /* when we zero initialize stack slots mark them as such */ 2896 if (reg && register_is_null(reg)) { 2897 /* backtracking doesn't work for STACK_ZERO yet. */ 2898 err = mark_chain_precision(env, value_regno); 2899 if (err) 2900 return err; 2901 type = STACK_ZERO; 2902 } 2903 2904 /* Mark slots affected by this stack write. */ 2905 for (i = 0; i < size; i++) 2906 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 2907 type; 2908 } 2909 return 0; 2910 } 2911 2912 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is 2913 * known to contain a variable offset. 2914 * This function checks whether the write is permitted and conservatively 2915 * tracks the effects of the write, considering that each stack slot in the 2916 * dynamic range is potentially written to. 2917 * 2918 * 'off' includes 'regno->off'. 2919 * 'value_regno' can be -1, meaning that an unknown value is being written to 2920 * the stack. 2921 * 2922 * Spilled pointers in range are not marked as written because we don't know 2923 * what's going to be actually written. This means that read propagation for 2924 * future reads cannot be terminated by this write. 2925 * 2926 * For privileged programs, uninitialized stack slots are considered 2927 * initialized by this write (even though we don't know exactly what offsets 2928 * are going to be written to). The idea is that we don't want the verifier to 2929 * reject future reads that access slots written to through variable offsets. 2930 */ 2931 static int check_stack_write_var_off(struct bpf_verifier_env *env, 2932 /* func where register points to */ 2933 struct bpf_func_state *state, 2934 int ptr_regno, int off, int size, 2935 int value_regno, int insn_idx) 2936 { 2937 struct bpf_func_state *cur; /* state of the current function */ 2938 int min_off, max_off; 2939 int i, err; 2940 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL; 2941 bool writing_zero = false; 2942 /* set if the fact that we're writing a zero is used to let any 2943 * stack slots remain STACK_ZERO 2944 */ 2945 bool zero_used = false; 2946 2947 cur = env->cur_state->frame[env->cur_state->curframe]; 2948 ptr_reg = &cur->regs[ptr_regno]; 2949 min_off = ptr_reg->smin_value + off; 2950 max_off = ptr_reg->smax_value + off + size; 2951 if (value_regno >= 0) 2952 value_reg = &cur->regs[value_regno]; 2953 if (value_reg && register_is_null(value_reg)) 2954 writing_zero = true; 2955 2956 err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE)); 2957 if (err) 2958 return err; 2959 2960 2961 /* Variable offset writes destroy any spilled pointers in range. */ 2962 for (i = min_off; i < max_off; i++) { 2963 u8 new_type, *stype; 2964 int slot, spi; 2965 2966 slot = -i - 1; 2967 spi = slot / BPF_REG_SIZE; 2968 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 2969 2970 if (!env->allow_ptr_leaks 2971 && *stype != NOT_INIT 2972 && *stype != SCALAR_VALUE) { 2973 /* Reject the write if there's are spilled pointers in 2974 * range. If we didn't reject here, the ptr status 2975 * would be erased below (even though not all slots are 2976 * actually overwritten), possibly opening the door to 2977 * leaks. 2978 */ 2979 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d", 2980 insn_idx, i); 2981 return -EINVAL; 2982 } 2983 2984 /* Erase all spilled pointers. */ 2985 state->stack[spi].spilled_ptr.type = NOT_INIT; 2986 2987 /* Update the slot type. */ 2988 new_type = STACK_MISC; 2989 if (writing_zero && *stype == STACK_ZERO) { 2990 new_type = STACK_ZERO; 2991 zero_used = true; 2992 } 2993 /* If the slot is STACK_INVALID, we check whether it's OK to 2994 * pretend that it will be initialized by this write. The slot 2995 * might not actually be written to, and so if we mark it as 2996 * initialized future reads might leak uninitialized memory. 2997 * For privileged programs, we will accept such reads to slots 2998 * that may or may not be written because, if we're reject 2999 * them, the error would be too confusing. 3000 */ 3001 if (*stype == STACK_INVALID && !env->allow_uninit_stack) { 3002 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d", 3003 insn_idx, i); 3004 return -EINVAL; 3005 } 3006 *stype = new_type; 3007 } 3008 if (zero_used) { 3009 /* backtracking doesn't work for STACK_ZERO yet. */ 3010 err = mark_chain_precision(env, value_regno); 3011 if (err) 3012 return err; 3013 } 3014 return 0; 3015 } 3016 3017 /* When register 'dst_regno' is assigned some values from stack[min_off, 3018 * max_off), we set the register's type according to the types of the 3019 * respective stack slots. If all the stack values are known to be zeros, then 3020 * so is the destination reg. Otherwise, the register is considered to be 3021 * SCALAR. This function does not deal with register filling; the caller must 3022 * ensure that all spilled registers in the stack range have been marked as 3023 * read. 3024 */ 3025 static void mark_reg_stack_read(struct bpf_verifier_env *env, 3026 /* func where src register points to */ 3027 struct bpf_func_state *ptr_state, 3028 int min_off, int max_off, int dst_regno) 3029 { 3030 struct bpf_verifier_state *vstate = env->cur_state; 3031 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3032 int i, slot, spi; 3033 u8 *stype; 3034 int zeros = 0; 3035 3036 for (i = min_off; i < max_off; i++) { 3037 slot = -i - 1; 3038 spi = slot / BPF_REG_SIZE; 3039 stype = ptr_state->stack[spi].slot_type; 3040 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO) 3041 break; 3042 zeros++; 3043 } 3044 if (zeros == max_off - min_off) { 3045 /* any access_size read into register is zero extended, 3046 * so the whole register == const_zero 3047 */ 3048 __mark_reg_const_zero(&state->regs[dst_regno]); 3049 /* backtracking doesn't support STACK_ZERO yet, 3050 * so mark it precise here, so that later 3051 * backtracking can stop here. 3052 * Backtracking may not need this if this register 3053 * doesn't participate in pointer adjustment. 3054 * Forward propagation of precise flag is not 3055 * necessary either. This mark is only to stop 3056 * backtracking. Any register that contributed 3057 * to const 0 was marked precise before spill. 3058 */ 3059 state->regs[dst_regno].precise = true; 3060 } else { 3061 /* have read misc data from the stack */ 3062 mark_reg_unknown(env, state->regs, dst_regno); 3063 } 3064 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 3065 } 3066 3067 /* Read the stack at 'off' and put the results into the register indicated by 3068 * 'dst_regno'. It handles reg filling if the addressed stack slot is a 3069 * spilled reg. 3070 * 3071 * 'dst_regno' can be -1, meaning that the read value is not going to a 3072 * register. 3073 * 3074 * The access is assumed to be within the current stack bounds. 3075 */ 3076 static int check_stack_read_fixed_off(struct bpf_verifier_env *env, 3077 /* func where src register points to */ 3078 struct bpf_func_state *reg_state, 3079 int off, int size, int dst_regno) 3080 { 3081 struct bpf_verifier_state *vstate = env->cur_state; 3082 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3083 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 3084 struct bpf_reg_state *reg; 3085 u8 *stype, type; 3086 3087 stype = reg_state->stack[spi].slot_type; 3088 reg = ®_state->stack[spi].spilled_ptr; 3089 3090 if (is_spilled_reg(®_state->stack[spi])) { 3091 if (size != BPF_REG_SIZE) { 3092 u8 scalar_size = 0; 3093 3094 if (reg->type != SCALAR_VALUE) { 3095 verbose_linfo(env, env->insn_idx, "; "); 3096 verbose(env, "invalid size of register fill\n"); 3097 return -EACCES; 3098 } 3099 3100 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 3101 if (dst_regno < 0) 3102 return 0; 3103 3104 for (i = BPF_REG_SIZE; i > 0 && stype[i - 1] == STACK_SPILL; i--) 3105 scalar_size++; 3106 3107 if (!(off % BPF_REG_SIZE) && size == scalar_size) { 3108 /* The earlier check_reg_arg() has decided the 3109 * subreg_def for this insn. Save it first. 3110 */ 3111 s32 subreg_def = state->regs[dst_regno].subreg_def; 3112 3113 state->regs[dst_regno] = *reg; 3114 state->regs[dst_regno].subreg_def = subreg_def; 3115 } else { 3116 for (i = 0; i < size; i++) { 3117 type = stype[(slot - i) % BPF_REG_SIZE]; 3118 if (type == STACK_SPILL) 3119 continue; 3120 if (type == STACK_MISC) 3121 continue; 3122 verbose(env, "invalid read from stack off %d+%d size %d\n", 3123 off, i, size); 3124 return -EACCES; 3125 } 3126 mark_reg_unknown(env, state->regs, dst_regno); 3127 } 3128 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 3129 return 0; 3130 } 3131 for (i = 1; i < BPF_REG_SIZE; i++) { 3132 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) { 3133 verbose(env, "corrupted spill memory\n"); 3134 return -EACCES; 3135 } 3136 } 3137 3138 if (dst_regno >= 0) { 3139 /* restore register state from stack */ 3140 state->regs[dst_regno] = *reg; 3141 /* mark reg as written since spilled pointer state likely 3142 * has its liveness marks cleared by is_state_visited() 3143 * which resets stack/reg liveness for state transitions 3144 */ 3145 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 3146 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { 3147 /* If dst_regno==-1, the caller is asking us whether 3148 * it is acceptable to use this value as a SCALAR_VALUE 3149 * (e.g. for XADD). 3150 * We must not allow unprivileged callers to do that 3151 * with spilled pointers. 3152 */ 3153 verbose(env, "leaking pointer from stack off %d\n", 3154 off); 3155 return -EACCES; 3156 } 3157 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 3158 } else { 3159 for (i = 0; i < size; i++) { 3160 type = stype[(slot - i) % BPF_REG_SIZE]; 3161 if (type == STACK_MISC) 3162 continue; 3163 if (type == STACK_ZERO) 3164 continue; 3165 verbose(env, "invalid read from stack off %d+%d size %d\n", 3166 off, i, size); 3167 return -EACCES; 3168 } 3169 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 3170 if (dst_regno >= 0) 3171 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno); 3172 } 3173 return 0; 3174 } 3175 3176 enum stack_access_src { 3177 ACCESS_DIRECT = 1, /* the access is performed by an instruction */ 3178 ACCESS_HELPER = 2, /* the access is performed by a helper */ 3179 }; 3180 3181 static int check_stack_range_initialized(struct bpf_verifier_env *env, 3182 int regno, int off, int access_size, 3183 bool zero_size_allowed, 3184 enum stack_access_src type, 3185 struct bpf_call_arg_meta *meta); 3186 3187 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 3188 { 3189 return cur_regs(env) + regno; 3190 } 3191 3192 /* Read the stack at 'ptr_regno + off' and put the result into the register 3193 * 'dst_regno'. 3194 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'), 3195 * but not its variable offset. 3196 * 'size' is assumed to be <= reg size and the access is assumed to be aligned. 3197 * 3198 * As opposed to check_stack_read_fixed_off, this function doesn't deal with 3199 * filling registers (i.e. reads of spilled register cannot be detected when 3200 * the offset is not fixed). We conservatively mark 'dst_regno' as containing 3201 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable 3202 * offset; for a fixed offset check_stack_read_fixed_off should be used 3203 * instead. 3204 */ 3205 static int check_stack_read_var_off(struct bpf_verifier_env *env, 3206 int ptr_regno, int off, int size, int dst_regno) 3207 { 3208 /* The state of the source register. */ 3209 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3210 struct bpf_func_state *ptr_state = func(env, reg); 3211 int err; 3212 int min_off, max_off; 3213 3214 /* Note that we pass a NULL meta, so raw access will not be permitted. 3215 */ 3216 err = check_stack_range_initialized(env, ptr_regno, off, size, 3217 false, ACCESS_DIRECT, NULL); 3218 if (err) 3219 return err; 3220 3221 min_off = reg->smin_value + off; 3222 max_off = reg->smax_value + off; 3223 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno); 3224 return 0; 3225 } 3226 3227 /* check_stack_read dispatches to check_stack_read_fixed_off or 3228 * check_stack_read_var_off. 3229 * 3230 * The caller must ensure that the offset falls within the allocated stack 3231 * bounds. 3232 * 3233 * 'dst_regno' is a register which will receive the value from the stack. It 3234 * can be -1, meaning that the read value is not going to a register. 3235 */ 3236 static int check_stack_read(struct bpf_verifier_env *env, 3237 int ptr_regno, int off, int size, 3238 int dst_regno) 3239 { 3240 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3241 struct bpf_func_state *state = func(env, reg); 3242 int err; 3243 /* Some accesses are only permitted with a static offset. */ 3244 bool var_off = !tnum_is_const(reg->var_off); 3245 3246 /* The offset is required to be static when reads don't go to a 3247 * register, in order to not leak pointers (see 3248 * check_stack_read_fixed_off). 3249 */ 3250 if (dst_regno < 0 && var_off) { 3251 char tn_buf[48]; 3252 3253 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3254 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n", 3255 tn_buf, off, size); 3256 return -EACCES; 3257 } 3258 /* Variable offset is prohibited for unprivileged mode for simplicity 3259 * since it requires corresponding support in Spectre masking for stack 3260 * ALU. See also retrieve_ptr_limit(). 3261 */ 3262 if (!env->bypass_spec_v1 && var_off) { 3263 char tn_buf[48]; 3264 3265 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3266 verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n", 3267 ptr_regno, tn_buf); 3268 return -EACCES; 3269 } 3270 3271 if (!var_off) { 3272 off += reg->var_off.value; 3273 err = check_stack_read_fixed_off(env, state, off, size, 3274 dst_regno); 3275 } else { 3276 /* Variable offset stack reads need more conservative handling 3277 * than fixed offset ones. Note that dst_regno >= 0 on this 3278 * branch. 3279 */ 3280 err = check_stack_read_var_off(env, ptr_regno, off, size, 3281 dst_regno); 3282 } 3283 return err; 3284 } 3285 3286 3287 /* check_stack_write dispatches to check_stack_write_fixed_off or 3288 * check_stack_write_var_off. 3289 * 3290 * 'ptr_regno' is the register used as a pointer into the stack. 3291 * 'off' includes 'ptr_regno->off', but not its variable offset (if any). 3292 * 'value_regno' is the register whose value we're writing to the stack. It can 3293 * be -1, meaning that we're not writing from a register. 3294 * 3295 * The caller must ensure that the offset falls within the maximum stack size. 3296 */ 3297 static int check_stack_write(struct bpf_verifier_env *env, 3298 int ptr_regno, int off, int size, 3299 int value_regno, int insn_idx) 3300 { 3301 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3302 struct bpf_func_state *state = func(env, reg); 3303 int err; 3304 3305 if (tnum_is_const(reg->var_off)) { 3306 off += reg->var_off.value; 3307 err = check_stack_write_fixed_off(env, state, off, size, 3308 value_regno, insn_idx); 3309 } else { 3310 /* Variable offset stack reads need more conservative handling 3311 * than fixed offset ones. 3312 */ 3313 err = check_stack_write_var_off(env, state, 3314 ptr_regno, off, size, 3315 value_regno, insn_idx); 3316 } 3317 return err; 3318 } 3319 3320 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 3321 int off, int size, enum bpf_access_type type) 3322 { 3323 struct bpf_reg_state *regs = cur_regs(env); 3324 struct bpf_map *map = regs[regno].map_ptr; 3325 u32 cap = bpf_map_flags_to_cap(map); 3326 3327 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 3328 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 3329 map->value_size, off, size); 3330 return -EACCES; 3331 } 3332 3333 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 3334 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 3335 map->value_size, off, size); 3336 return -EACCES; 3337 } 3338 3339 return 0; 3340 } 3341 3342 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */ 3343 static int __check_mem_access(struct bpf_verifier_env *env, int regno, 3344 int off, int size, u32 mem_size, 3345 bool zero_size_allowed) 3346 { 3347 bool size_ok = size > 0 || (size == 0 && zero_size_allowed); 3348 struct bpf_reg_state *reg; 3349 3350 if (off >= 0 && size_ok && (u64)off + size <= mem_size) 3351 return 0; 3352 3353 reg = &cur_regs(env)[regno]; 3354 switch (reg->type) { 3355 case PTR_TO_MAP_KEY: 3356 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n", 3357 mem_size, off, size); 3358 break; 3359 case PTR_TO_MAP_VALUE: 3360 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 3361 mem_size, off, size); 3362 break; 3363 case PTR_TO_PACKET: 3364 case PTR_TO_PACKET_META: 3365 case PTR_TO_PACKET_END: 3366 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 3367 off, size, regno, reg->id, off, mem_size); 3368 break; 3369 case PTR_TO_MEM: 3370 default: 3371 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n", 3372 mem_size, off, size); 3373 } 3374 3375 return -EACCES; 3376 } 3377 3378 /* check read/write into a memory region with possible variable offset */ 3379 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, 3380 int off, int size, u32 mem_size, 3381 bool zero_size_allowed) 3382 { 3383 struct bpf_verifier_state *vstate = env->cur_state; 3384 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3385 struct bpf_reg_state *reg = &state->regs[regno]; 3386 int err; 3387 3388 /* We may have adjusted the register pointing to memory region, so we 3389 * need to try adding each of min_value and max_value to off 3390 * to make sure our theoretical access will be safe. 3391 */ 3392 if (env->log.level & BPF_LOG_LEVEL) 3393 print_verifier_state(env, state); 3394 3395 /* The minimum value is only important with signed 3396 * comparisons where we can't assume the floor of a 3397 * value is 0. If we are using signed variables for our 3398 * index'es we need to make sure that whatever we use 3399 * will have a set floor within our range. 3400 */ 3401 if (reg->smin_value < 0 && 3402 (reg->smin_value == S64_MIN || 3403 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 3404 reg->smin_value + off < 0)) { 3405 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 3406 regno); 3407 return -EACCES; 3408 } 3409 err = __check_mem_access(env, regno, reg->smin_value + off, size, 3410 mem_size, zero_size_allowed); 3411 if (err) { 3412 verbose(env, "R%d min value is outside of the allowed memory range\n", 3413 regno); 3414 return err; 3415 } 3416 3417 /* If we haven't set a max value then we need to bail since we can't be 3418 * sure we won't do bad things. 3419 * If reg->umax_value + off could overflow, treat that as unbounded too. 3420 */ 3421 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 3422 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n", 3423 regno); 3424 return -EACCES; 3425 } 3426 err = __check_mem_access(env, regno, reg->umax_value + off, size, 3427 mem_size, zero_size_allowed); 3428 if (err) { 3429 verbose(env, "R%d max value is outside of the allowed memory range\n", 3430 regno); 3431 return err; 3432 } 3433 3434 return 0; 3435 } 3436 3437 /* check read/write into a map element with possible variable offset */ 3438 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 3439 int off, int size, bool zero_size_allowed) 3440 { 3441 struct bpf_verifier_state *vstate = env->cur_state; 3442 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3443 struct bpf_reg_state *reg = &state->regs[regno]; 3444 struct bpf_map *map = reg->map_ptr; 3445 int err; 3446 3447 err = check_mem_region_access(env, regno, off, size, map->value_size, 3448 zero_size_allowed); 3449 if (err) 3450 return err; 3451 3452 if (map_value_has_spin_lock(map)) { 3453 u32 lock = map->spin_lock_off; 3454 3455 /* if any part of struct bpf_spin_lock can be touched by 3456 * load/store reject this program. 3457 * To check that [x1, x2) overlaps with [y1, y2) 3458 * it is sufficient to check x1 < y2 && y1 < x2. 3459 */ 3460 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) && 3461 lock < reg->umax_value + off + size) { 3462 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n"); 3463 return -EACCES; 3464 } 3465 } 3466 if (map_value_has_timer(map)) { 3467 u32 t = map->timer_off; 3468 3469 if (reg->smin_value + off < t + sizeof(struct bpf_timer) && 3470 t < reg->umax_value + off + size) { 3471 verbose(env, "bpf_timer cannot be accessed directly by load/store\n"); 3472 return -EACCES; 3473 } 3474 } 3475 return err; 3476 } 3477 3478 #define MAX_PACKET_OFF 0xffff 3479 3480 static enum bpf_prog_type resolve_prog_type(struct bpf_prog *prog) 3481 { 3482 return prog->aux->dst_prog ? prog->aux->dst_prog->type : prog->type; 3483 } 3484 3485 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 3486 const struct bpf_call_arg_meta *meta, 3487 enum bpf_access_type t) 3488 { 3489 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 3490 3491 switch (prog_type) { 3492 /* Program types only with direct read access go here! */ 3493 case BPF_PROG_TYPE_LWT_IN: 3494 case BPF_PROG_TYPE_LWT_OUT: 3495 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 3496 case BPF_PROG_TYPE_SK_REUSEPORT: 3497 case BPF_PROG_TYPE_FLOW_DISSECTOR: 3498 case BPF_PROG_TYPE_CGROUP_SKB: 3499 if (t == BPF_WRITE) 3500 return false; 3501 fallthrough; 3502 3503 /* Program types with direct read + write access go here! */ 3504 case BPF_PROG_TYPE_SCHED_CLS: 3505 case BPF_PROG_TYPE_SCHED_ACT: 3506 case BPF_PROG_TYPE_XDP: 3507 case BPF_PROG_TYPE_LWT_XMIT: 3508 case BPF_PROG_TYPE_SK_SKB: 3509 case BPF_PROG_TYPE_SK_MSG: 3510 if (meta) 3511 return meta->pkt_access; 3512 3513 env->seen_direct_write = true; 3514 return true; 3515 3516 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 3517 if (t == BPF_WRITE) 3518 env->seen_direct_write = true; 3519 3520 return true; 3521 3522 default: 3523 return false; 3524 } 3525 } 3526 3527 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 3528 int size, bool zero_size_allowed) 3529 { 3530 struct bpf_reg_state *regs = cur_regs(env); 3531 struct bpf_reg_state *reg = ®s[regno]; 3532 int err; 3533 3534 /* We may have added a variable offset to the packet pointer; but any 3535 * reg->range we have comes after that. We are only checking the fixed 3536 * offset. 3537 */ 3538 3539 /* We don't allow negative numbers, because we aren't tracking enough 3540 * detail to prove they're safe. 3541 */ 3542 if (reg->smin_value < 0) { 3543 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 3544 regno); 3545 return -EACCES; 3546 } 3547 3548 err = reg->range < 0 ? -EINVAL : 3549 __check_mem_access(env, regno, off, size, reg->range, 3550 zero_size_allowed); 3551 if (err) { 3552 verbose(env, "R%d offset is outside of the packet\n", regno); 3553 return err; 3554 } 3555 3556 /* __check_mem_access has made sure "off + size - 1" is within u16. 3557 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 3558 * otherwise find_good_pkt_pointers would have refused to set range info 3559 * that __check_mem_access would have rejected this pkt access. 3560 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 3561 */ 3562 env->prog->aux->max_pkt_offset = 3563 max_t(u32, env->prog->aux->max_pkt_offset, 3564 off + reg->umax_value + size - 1); 3565 3566 return err; 3567 } 3568 3569 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 3570 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 3571 enum bpf_access_type t, enum bpf_reg_type *reg_type, 3572 struct btf **btf, u32 *btf_id) 3573 { 3574 struct bpf_insn_access_aux info = { 3575 .reg_type = *reg_type, 3576 .log = &env->log, 3577 }; 3578 3579 if (env->ops->is_valid_access && 3580 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 3581 /* A non zero info.ctx_field_size indicates that this field is a 3582 * candidate for later verifier transformation to load the whole 3583 * field and then apply a mask when accessed with a narrower 3584 * access than actual ctx access size. A zero info.ctx_field_size 3585 * will only allow for whole field access and rejects any other 3586 * type of narrower access. 3587 */ 3588 *reg_type = info.reg_type; 3589 3590 if (*reg_type == PTR_TO_BTF_ID || *reg_type == PTR_TO_BTF_ID_OR_NULL) { 3591 *btf = info.btf; 3592 *btf_id = info.btf_id; 3593 } else { 3594 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 3595 } 3596 /* remember the offset of last byte accessed in ctx */ 3597 if (env->prog->aux->max_ctx_offset < off + size) 3598 env->prog->aux->max_ctx_offset = off + size; 3599 return 0; 3600 } 3601 3602 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 3603 return -EACCES; 3604 } 3605 3606 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 3607 int size) 3608 { 3609 if (size < 0 || off < 0 || 3610 (u64)off + size > sizeof(struct bpf_flow_keys)) { 3611 verbose(env, "invalid access to flow keys off=%d size=%d\n", 3612 off, size); 3613 return -EACCES; 3614 } 3615 return 0; 3616 } 3617 3618 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 3619 u32 regno, int off, int size, 3620 enum bpf_access_type t) 3621 { 3622 struct bpf_reg_state *regs = cur_regs(env); 3623 struct bpf_reg_state *reg = ®s[regno]; 3624 struct bpf_insn_access_aux info = {}; 3625 bool valid; 3626 3627 if (reg->smin_value < 0) { 3628 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 3629 regno); 3630 return -EACCES; 3631 } 3632 3633 switch (reg->type) { 3634 case PTR_TO_SOCK_COMMON: 3635 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 3636 break; 3637 case PTR_TO_SOCKET: 3638 valid = bpf_sock_is_valid_access(off, size, t, &info); 3639 break; 3640 case PTR_TO_TCP_SOCK: 3641 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 3642 break; 3643 case PTR_TO_XDP_SOCK: 3644 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 3645 break; 3646 default: 3647 valid = false; 3648 } 3649 3650 3651 if (valid) { 3652 env->insn_aux_data[insn_idx].ctx_field_size = 3653 info.ctx_field_size; 3654 return 0; 3655 } 3656 3657 verbose(env, "R%d invalid %s access off=%d size=%d\n", 3658 regno, reg_type_str[reg->type], off, size); 3659 3660 return -EACCES; 3661 } 3662 3663 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 3664 { 3665 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 3666 } 3667 3668 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 3669 { 3670 const struct bpf_reg_state *reg = reg_state(env, regno); 3671 3672 return reg->type == PTR_TO_CTX; 3673 } 3674 3675 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 3676 { 3677 const struct bpf_reg_state *reg = reg_state(env, regno); 3678 3679 return type_is_sk_pointer(reg->type); 3680 } 3681 3682 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 3683 { 3684 const struct bpf_reg_state *reg = reg_state(env, regno); 3685 3686 return type_is_pkt_pointer(reg->type); 3687 } 3688 3689 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 3690 { 3691 const struct bpf_reg_state *reg = reg_state(env, regno); 3692 3693 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 3694 return reg->type == PTR_TO_FLOW_KEYS; 3695 } 3696 3697 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 3698 const struct bpf_reg_state *reg, 3699 int off, int size, bool strict) 3700 { 3701 struct tnum reg_off; 3702 int ip_align; 3703 3704 /* Byte size accesses are always allowed. */ 3705 if (!strict || size == 1) 3706 return 0; 3707 3708 /* For platforms that do not have a Kconfig enabling 3709 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 3710 * NET_IP_ALIGN is universally set to '2'. And on platforms 3711 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 3712 * to this code only in strict mode where we want to emulate 3713 * the NET_IP_ALIGN==2 checking. Therefore use an 3714 * unconditional IP align value of '2'. 3715 */ 3716 ip_align = 2; 3717 3718 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 3719 if (!tnum_is_aligned(reg_off, size)) { 3720 char tn_buf[48]; 3721 3722 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3723 verbose(env, 3724 "misaligned packet access off %d+%s+%d+%d size %d\n", 3725 ip_align, tn_buf, reg->off, off, size); 3726 return -EACCES; 3727 } 3728 3729 return 0; 3730 } 3731 3732 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 3733 const struct bpf_reg_state *reg, 3734 const char *pointer_desc, 3735 int off, int size, bool strict) 3736 { 3737 struct tnum reg_off; 3738 3739 /* Byte size accesses are always allowed. */ 3740 if (!strict || size == 1) 3741 return 0; 3742 3743 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 3744 if (!tnum_is_aligned(reg_off, size)) { 3745 char tn_buf[48]; 3746 3747 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3748 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 3749 pointer_desc, tn_buf, reg->off, off, size); 3750 return -EACCES; 3751 } 3752 3753 return 0; 3754 } 3755 3756 static int check_ptr_alignment(struct bpf_verifier_env *env, 3757 const struct bpf_reg_state *reg, int off, 3758 int size, bool strict_alignment_once) 3759 { 3760 bool strict = env->strict_alignment || strict_alignment_once; 3761 const char *pointer_desc = ""; 3762 3763 switch (reg->type) { 3764 case PTR_TO_PACKET: 3765 case PTR_TO_PACKET_META: 3766 /* Special case, because of NET_IP_ALIGN. Given metadata sits 3767 * right in front, treat it the very same way. 3768 */ 3769 return check_pkt_ptr_alignment(env, reg, off, size, strict); 3770 case PTR_TO_FLOW_KEYS: 3771 pointer_desc = "flow keys "; 3772 break; 3773 case PTR_TO_MAP_KEY: 3774 pointer_desc = "key "; 3775 break; 3776 case PTR_TO_MAP_VALUE: 3777 pointer_desc = "value "; 3778 break; 3779 case PTR_TO_CTX: 3780 pointer_desc = "context "; 3781 break; 3782 case PTR_TO_STACK: 3783 pointer_desc = "stack "; 3784 /* The stack spill tracking logic in check_stack_write_fixed_off() 3785 * and check_stack_read_fixed_off() relies on stack accesses being 3786 * aligned. 3787 */ 3788 strict = true; 3789 break; 3790 case PTR_TO_SOCKET: 3791 pointer_desc = "sock "; 3792 break; 3793 case PTR_TO_SOCK_COMMON: 3794 pointer_desc = "sock_common "; 3795 break; 3796 case PTR_TO_TCP_SOCK: 3797 pointer_desc = "tcp_sock "; 3798 break; 3799 case PTR_TO_XDP_SOCK: 3800 pointer_desc = "xdp_sock "; 3801 break; 3802 default: 3803 break; 3804 } 3805 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 3806 strict); 3807 } 3808 3809 static int update_stack_depth(struct bpf_verifier_env *env, 3810 const struct bpf_func_state *func, 3811 int off) 3812 { 3813 u16 stack = env->subprog_info[func->subprogno].stack_depth; 3814 3815 if (stack >= -off) 3816 return 0; 3817 3818 /* update known max for given subprogram */ 3819 env->subprog_info[func->subprogno].stack_depth = -off; 3820 return 0; 3821 } 3822 3823 /* starting from main bpf function walk all instructions of the function 3824 * and recursively walk all callees that given function can call. 3825 * Ignore jump and exit insns. 3826 * Since recursion is prevented by check_cfg() this algorithm 3827 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 3828 */ 3829 static int check_max_stack_depth(struct bpf_verifier_env *env) 3830 { 3831 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; 3832 struct bpf_subprog_info *subprog = env->subprog_info; 3833 struct bpf_insn *insn = env->prog->insnsi; 3834 bool tail_call_reachable = false; 3835 int ret_insn[MAX_CALL_FRAMES]; 3836 int ret_prog[MAX_CALL_FRAMES]; 3837 int j; 3838 3839 process_func: 3840 /* protect against potential stack overflow that might happen when 3841 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack 3842 * depth for such case down to 256 so that the worst case scenario 3843 * would result in 8k stack size (32 which is tailcall limit * 256 = 3844 * 8k). 3845 * 3846 * To get the idea what might happen, see an example: 3847 * func1 -> sub rsp, 128 3848 * subfunc1 -> sub rsp, 256 3849 * tailcall1 -> add rsp, 256 3850 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320) 3851 * subfunc2 -> sub rsp, 64 3852 * subfunc22 -> sub rsp, 128 3853 * tailcall2 -> add rsp, 128 3854 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416) 3855 * 3856 * tailcall will unwind the current stack frame but it will not get rid 3857 * of caller's stack as shown on the example above. 3858 */ 3859 if (idx && subprog[idx].has_tail_call && depth >= 256) { 3860 verbose(env, 3861 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n", 3862 depth); 3863 return -EACCES; 3864 } 3865 /* round up to 32-bytes, since this is granularity 3866 * of interpreter stack size 3867 */ 3868 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 3869 if (depth > MAX_BPF_STACK) { 3870 verbose(env, "combined stack size of %d calls is %d. Too large\n", 3871 frame + 1, depth); 3872 return -EACCES; 3873 } 3874 continue_func: 3875 subprog_end = subprog[idx + 1].start; 3876 for (; i < subprog_end; i++) { 3877 int next_insn; 3878 3879 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i)) 3880 continue; 3881 /* remember insn and function to return to */ 3882 ret_insn[frame] = i + 1; 3883 ret_prog[frame] = idx; 3884 3885 /* find the callee */ 3886 next_insn = i + insn[i].imm + 1; 3887 idx = find_subprog(env, next_insn); 3888 if (idx < 0) { 3889 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 3890 next_insn); 3891 return -EFAULT; 3892 } 3893 if (subprog[idx].is_async_cb) { 3894 if (subprog[idx].has_tail_call) { 3895 verbose(env, "verifier bug. subprog has tail_call and async cb\n"); 3896 return -EFAULT; 3897 } 3898 /* async callbacks don't increase bpf prog stack size */ 3899 continue; 3900 } 3901 i = next_insn; 3902 3903 if (subprog[idx].has_tail_call) 3904 tail_call_reachable = true; 3905 3906 frame++; 3907 if (frame >= MAX_CALL_FRAMES) { 3908 verbose(env, "the call stack of %d frames is too deep !\n", 3909 frame); 3910 return -E2BIG; 3911 } 3912 goto process_func; 3913 } 3914 /* if tail call got detected across bpf2bpf calls then mark each of the 3915 * currently present subprog frames as tail call reachable subprogs; 3916 * this info will be utilized by JIT so that we will be preserving the 3917 * tail call counter throughout bpf2bpf calls combined with tailcalls 3918 */ 3919 if (tail_call_reachable) 3920 for (j = 0; j < frame; j++) 3921 subprog[ret_prog[j]].tail_call_reachable = true; 3922 if (subprog[0].tail_call_reachable) 3923 env->prog->aux->tail_call_reachable = true; 3924 3925 /* end of for() loop means the last insn of the 'subprog' 3926 * was reached. Doesn't matter whether it was JA or EXIT 3927 */ 3928 if (frame == 0) 3929 return 0; 3930 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 3931 frame--; 3932 i = ret_insn[frame]; 3933 idx = ret_prog[frame]; 3934 goto continue_func; 3935 } 3936 3937 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 3938 static int get_callee_stack_depth(struct bpf_verifier_env *env, 3939 const struct bpf_insn *insn, int idx) 3940 { 3941 int start = idx + insn->imm + 1, subprog; 3942 3943 subprog = find_subprog(env, start); 3944 if (subprog < 0) { 3945 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 3946 start); 3947 return -EFAULT; 3948 } 3949 return env->subprog_info[subprog].stack_depth; 3950 } 3951 #endif 3952 3953 int check_ctx_reg(struct bpf_verifier_env *env, 3954 const struct bpf_reg_state *reg, int regno) 3955 { 3956 /* Access to ctx or passing it to a helper is only allowed in 3957 * its original, unmodified form. 3958 */ 3959 3960 if (reg->off) { 3961 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n", 3962 regno, reg->off); 3963 return -EACCES; 3964 } 3965 3966 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 3967 char tn_buf[48]; 3968 3969 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3970 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf); 3971 return -EACCES; 3972 } 3973 3974 return 0; 3975 } 3976 3977 static int __check_buffer_access(struct bpf_verifier_env *env, 3978 const char *buf_info, 3979 const struct bpf_reg_state *reg, 3980 int regno, int off, int size) 3981 { 3982 if (off < 0) { 3983 verbose(env, 3984 "R%d invalid %s buffer access: off=%d, size=%d\n", 3985 regno, buf_info, off, size); 3986 return -EACCES; 3987 } 3988 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 3989 char tn_buf[48]; 3990 3991 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3992 verbose(env, 3993 "R%d invalid variable buffer offset: off=%d, var_off=%s\n", 3994 regno, off, tn_buf); 3995 return -EACCES; 3996 } 3997 3998 return 0; 3999 } 4000 4001 static int check_tp_buffer_access(struct bpf_verifier_env *env, 4002 const struct bpf_reg_state *reg, 4003 int regno, int off, int size) 4004 { 4005 int err; 4006 4007 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size); 4008 if (err) 4009 return err; 4010 4011 if (off + size > env->prog->aux->max_tp_access) 4012 env->prog->aux->max_tp_access = off + size; 4013 4014 return 0; 4015 } 4016 4017 static int check_buffer_access(struct bpf_verifier_env *env, 4018 const struct bpf_reg_state *reg, 4019 int regno, int off, int size, 4020 bool zero_size_allowed, 4021 const char *buf_info, 4022 u32 *max_access) 4023 { 4024 int err; 4025 4026 err = __check_buffer_access(env, buf_info, reg, regno, off, size); 4027 if (err) 4028 return err; 4029 4030 if (off + size > *max_access) 4031 *max_access = off + size; 4032 4033 return 0; 4034 } 4035 4036 /* BPF architecture zero extends alu32 ops into 64-bit registesr */ 4037 static void zext_32_to_64(struct bpf_reg_state *reg) 4038 { 4039 reg->var_off = tnum_subreg(reg->var_off); 4040 __reg_assign_32_into_64(reg); 4041 } 4042 4043 /* truncate register to smaller size (in bytes) 4044 * must be called with size < BPF_REG_SIZE 4045 */ 4046 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 4047 { 4048 u64 mask; 4049 4050 /* clear high bits in bit representation */ 4051 reg->var_off = tnum_cast(reg->var_off, size); 4052 4053 /* fix arithmetic bounds */ 4054 mask = ((u64)1 << (size * 8)) - 1; 4055 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 4056 reg->umin_value &= mask; 4057 reg->umax_value &= mask; 4058 } else { 4059 reg->umin_value = 0; 4060 reg->umax_value = mask; 4061 } 4062 reg->smin_value = reg->umin_value; 4063 reg->smax_value = reg->umax_value; 4064 4065 /* If size is smaller than 32bit register the 32bit register 4066 * values are also truncated so we push 64-bit bounds into 4067 * 32-bit bounds. Above were truncated < 32-bits already. 4068 */ 4069 if (size >= 4) 4070 return; 4071 __reg_combine_64_into_32(reg); 4072 } 4073 4074 static bool bpf_map_is_rdonly(const struct bpf_map *map) 4075 { 4076 return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen; 4077 } 4078 4079 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val) 4080 { 4081 void *ptr; 4082 u64 addr; 4083 int err; 4084 4085 err = map->ops->map_direct_value_addr(map, &addr, off); 4086 if (err) 4087 return err; 4088 ptr = (void *)(long)addr + off; 4089 4090 switch (size) { 4091 case sizeof(u8): 4092 *val = (u64)*(u8 *)ptr; 4093 break; 4094 case sizeof(u16): 4095 *val = (u64)*(u16 *)ptr; 4096 break; 4097 case sizeof(u32): 4098 *val = (u64)*(u32 *)ptr; 4099 break; 4100 case sizeof(u64): 4101 *val = *(u64 *)ptr; 4102 break; 4103 default: 4104 return -EINVAL; 4105 } 4106 return 0; 4107 } 4108 4109 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 4110 struct bpf_reg_state *regs, 4111 int regno, int off, int size, 4112 enum bpf_access_type atype, 4113 int value_regno) 4114 { 4115 struct bpf_reg_state *reg = regs + regno; 4116 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id); 4117 const char *tname = btf_name_by_offset(reg->btf, t->name_off); 4118 u32 btf_id; 4119 int ret; 4120 4121 if (off < 0) { 4122 verbose(env, 4123 "R%d is ptr_%s invalid negative access: off=%d\n", 4124 regno, tname, off); 4125 return -EACCES; 4126 } 4127 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 4128 char tn_buf[48]; 4129 4130 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4131 verbose(env, 4132 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 4133 regno, tname, off, tn_buf); 4134 return -EACCES; 4135 } 4136 4137 if (env->ops->btf_struct_access) { 4138 ret = env->ops->btf_struct_access(&env->log, reg->btf, t, 4139 off, size, atype, &btf_id); 4140 } else { 4141 if (atype != BPF_READ) { 4142 verbose(env, "only read is supported\n"); 4143 return -EACCES; 4144 } 4145 4146 ret = btf_struct_access(&env->log, reg->btf, t, off, size, 4147 atype, &btf_id); 4148 } 4149 4150 if (ret < 0) 4151 return ret; 4152 4153 if (atype == BPF_READ && value_regno >= 0) 4154 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id); 4155 4156 return 0; 4157 } 4158 4159 static int check_ptr_to_map_access(struct bpf_verifier_env *env, 4160 struct bpf_reg_state *regs, 4161 int regno, int off, int size, 4162 enum bpf_access_type atype, 4163 int value_regno) 4164 { 4165 struct bpf_reg_state *reg = regs + regno; 4166 struct bpf_map *map = reg->map_ptr; 4167 const struct btf_type *t; 4168 const char *tname; 4169 u32 btf_id; 4170 int ret; 4171 4172 if (!btf_vmlinux) { 4173 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n"); 4174 return -ENOTSUPP; 4175 } 4176 4177 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) { 4178 verbose(env, "map_ptr access not supported for map type %d\n", 4179 map->map_type); 4180 return -ENOTSUPP; 4181 } 4182 4183 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id); 4184 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 4185 4186 if (!env->allow_ptr_to_map_access) { 4187 verbose(env, 4188 "%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 4189 tname); 4190 return -EPERM; 4191 } 4192 4193 if (off < 0) { 4194 verbose(env, "R%d is %s invalid negative access: off=%d\n", 4195 regno, tname, off); 4196 return -EACCES; 4197 } 4198 4199 if (atype != BPF_READ) { 4200 verbose(env, "only read from %s is supported\n", tname); 4201 return -EACCES; 4202 } 4203 4204 ret = btf_struct_access(&env->log, btf_vmlinux, t, off, size, atype, &btf_id); 4205 if (ret < 0) 4206 return ret; 4207 4208 if (value_regno >= 0) 4209 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id); 4210 4211 return 0; 4212 } 4213 4214 /* Check that the stack access at the given offset is within bounds. The 4215 * maximum valid offset is -1. 4216 * 4217 * The minimum valid offset is -MAX_BPF_STACK for writes, and 4218 * -state->allocated_stack for reads. 4219 */ 4220 static int check_stack_slot_within_bounds(int off, 4221 struct bpf_func_state *state, 4222 enum bpf_access_type t) 4223 { 4224 int min_valid_off; 4225 4226 if (t == BPF_WRITE) 4227 min_valid_off = -MAX_BPF_STACK; 4228 else 4229 min_valid_off = -state->allocated_stack; 4230 4231 if (off < min_valid_off || off > -1) 4232 return -EACCES; 4233 return 0; 4234 } 4235 4236 /* Check that the stack access at 'regno + off' falls within the maximum stack 4237 * bounds. 4238 * 4239 * 'off' includes `regno->offset`, but not its dynamic part (if any). 4240 */ 4241 static int check_stack_access_within_bounds( 4242 struct bpf_verifier_env *env, 4243 int regno, int off, int access_size, 4244 enum stack_access_src src, enum bpf_access_type type) 4245 { 4246 struct bpf_reg_state *regs = cur_regs(env); 4247 struct bpf_reg_state *reg = regs + regno; 4248 struct bpf_func_state *state = func(env, reg); 4249 int min_off, max_off; 4250 int err; 4251 char *err_extra; 4252 4253 if (src == ACCESS_HELPER) 4254 /* We don't know if helpers are reading or writing (or both). */ 4255 err_extra = " indirect access to"; 4256 else if (type == BPF_READ) 4257 err_extra = " read from"; 4258 else 4259 err_extra = " write to"; 4260 4261 if (tnum_is_const(reg->var_off)) { 4262 min_off = reg->var_off.value + off; 4263 if (access_size > 0) 4264 max_off = min_off + access_size - 1; 4265 else 4266 max_off = min_off; 4267 } else { 4268 if (reg->smax_value >= BPF_MAX_VAR_OFF || 4269 reg->smin_value <= -BPF_MAX_VAR_OFF) { 4270 verbose(env, "invalid unbounded variable-offset%s stack R%d\n", 4271 err_extra, regno); 4272 return -EACCES; 4273 } 4274 min_off = reg->smin_value + off; 4275 if (access_size > 0) 4276 max_off = reg->smax_value + off + access_size - 1; 4277 else 4278 max_off = min_off; 4279 } 4280 4281 err = check_stack_slot_within_bounds(min_off, state, type); 4282 if (!err) 4283 err = check_stack_slot_within_bounds(max_off, state, type); 4284 4285 if (err) { 4286 if (tnum_is_const(reg->var_off)) { 4287 verbose(env, "invalid%s stack R%d off=%d size=%d\n", 4288 err_extra, regno, off, access_size); 4289 } else { 4290 char tn_buf[48]; 4291 4292 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4293 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n", 4294 err_extra, regno, tn_buf, access_size); 4295 } 4296 } 4297 return err; 4298 } 4299 4300 /* check whether memory at (regno + off) is accessible for t = (read | write) 4301 * if t==write, value_regno is a register which value is stored into memory 4302 * if t==read, value_regno is a register which will receive the value from memory 4303 * if t==write && value_regno==-1, some unknown value is stored into memory 4304 * if t==read && value_regno==-1, don't care what we read from memory 4305 */ 4306 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 4307 int off, int bpf_size, enum bpf_access_type t, 4308 int value_regno, bool strict_alignment_once) 4309 { 4310 struct bpf_reg_state *regs = cur_regs(env); 4311 struct bpf_reg_state *reg = regs + regno; 4312 struct bpf_func_state *state; 4313 int size, err = 0; 4314 4315 size = bpf_size_to_bytes(bpf_size); 4316 if (size < 0) 4317 return size; 4318 4319 /* alignment checks will add in reg->off themselves */ 4320 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 4321 if (err) 4322 return err; 4323 4324 /* for access checks, reg->off is just part of off */ 4325 off += reg->off; 4326 4327 if (reg->type == PTR_TO_MAP_KEY) { 4328 if (t == BPF_WRITE) { 4329 verbose(env, "write to change key R%d not allowed\n", regno); 4330 return -EACCES; 4331 } 4332 4333 err = check_mem_region_access(env, regno, off, size, 4334 reg->map_ptr->key_size, false); 4335 if (err) 4336 return err; 4337 if (value_regno >= 0) 4338 mark_reg_unknown(env, regs, value_regno); 4339 } else if (reg->type == PTR_TO_MAP_VALUE) { 4340 if (t == BPF_WRITE && value_regno >= 0 && 4341 is_pointer_value(env, value_regno)) { 4342 verbose(env, "R%d leaks addr into map\n", value_regno); 4343 return -EACCES; 4344 } 4345 err = check_map_access_type(env, regno, off, size, t); 4346 if (err) 4347 return err; 4348 err = check_map_access(env, regno, off, size, false); 4349 if (!err && t == BPF_READ && value_regno >= 0) { 4350 struct bpf_map *map = reg->map_ptr; 4351 4352 /* if map is read-only, track its contents as scalars */ 4353 if (tnum_is_const(reg->var_off) && 4354 bpf_map_is_rdonly(map) && 4355 map->ops->map_direct_value_addr) { 4356 int map_off = off + reg->var_off.value; 4357 u64 val = 0; 4358 4359 err = bpf_map_direct_read(map, map_off, size, 4360 &val); 4361 if (err) 4362 return err; 4363 4364 regs[value_regno].type = SCALAR_VALUE; 4365 __mark_reg_known(®s[value_regno], val); 4366 } else { 4367 mark_reg_unknown(env, regs, value_regno); 4368 } 4369 } 4370 } else if (reg->type == PTR_TO_MEM) { 4371 if (t == BPF_WRITE && value_regno >= 0 && 4372 is_pointer_value(env, value_regno)) { 4373 verbose(env, "R%d leaks addr into mem\n", value_regno); 4374 return -EACCES; 4375 } 4376 err = check_mem_region_access(env, regno, off, size, 4377 reg->mem_size, false); 4378 if (!err && t == BPF_READ && value_regno >= 0) 4379 mark_reg_unknown(env, regs, value_regno); 4380 } else if (reg->type == PTR_TO_CTX) { 4381 enum bpf_reg_type reg_type = SCALAR_VALUE; 4382 struct btf *btf = NULL; 4383 u32 btf_id = 0; 4384 4385 if (t == BPF_WRITE && value_regno >= 0 && 4386 is_pointer_value(env, value_regno)) { 4387 verbose(env, "R%d leaks addr into ctx\n", value_regno); 4388 return -EACCES; 4389 } 4390 4391 err = check_ctx_reg(env, reg, regno); 4392 if (err < 0) 4393 return err; 4394 4395 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf, &btf_id); 4396 if (err) 4397 verbose_linfo(env, insn_idx, "; "); 4398 if (!err && t == BPF_READ && value_regno >= 0) { 4399 /* ctx access returns either a scalar, or a 4400 * PTR_TO_PACKET[_META,_END]. In the latter 4401 * case, we know the offset is zero. 4402 */ 4403 if (reg_type == SCALAR_VALUE) { 4404 mark_reg_unknown(env, regs, value_regno); 4405 } else { 4406 mark_reg_known_zero(env, regs, 4407 value_regno); 4408 if (reg_type_may_be_null(reg_type)) 4409 regs[value_regno].id = ++env->id_gen; 4410 /* A load of ctx field could have different 4411 * actual load size with the one encoded in the 4412 * insn. When the dst is PTR, it is for sure not 4413 * a sub-register. 4414 */ 4415 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 4416 if (reg_type == PTR_TO_BTF_ID || 4417 reg_type == PTR_TO_BTF_ID_OR_NULL) { 4418 regs[value_regno].btf = btf; 4419 regs[value_regno].btf_id = btf_id; 4420 } 4421 } 4422 regs[value_regno].type = reg_type; 4423 } 4424 4425 } else if (reg->type == PTR_TO_STACK) { 4426 /* Basic bounds checks. */ 4427 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t); 4428 if (err) 4429 return err; 4430 4431 state = func(env, reg); 4432 err = update_stack_depth(env, state, off); 4433 if (err) 4434 return err; 4435 4436 if (t == BPF_READ) 4437 err = check_stack_read(env, regno, off, size, 4438 value_regno); 4439 else 4440 err = check_stack_write(env, regno, off, size, 4441 value_regno, insn_idx); 4442 } else if (reg_is_pkt_pointer(reg)) { 4443 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 4444 verbose(env, "cannot write into packet\n"); 4445 return -EACCES; 4446 } 4447 if (t == BPF_WRITE && value_regno >= 0 && 4448 is_pointer_value(env, value_regno)) { 4449 verbose(env, "R%d leaks addr into packet\n", 4450 value_regno); 4451 return -EACCES; 4452 } 4453 err = check_packet_access(env, regno, off, size, false); 4454 if (!err && t == BPF_READ && value_regno >= 0) 4455 mark_reg_unknown(env, regs, value_regno); 4456 } else if (reg->type == PTR_TO_FLOW_KEYS) { 4457 if (t == BPF_WRITE && value_regno >= 0 && 4458 is_pointer_value(env, value_regno)) { 4459 verbose(env, "R%d leaks addr into flow keys\n", 4460 value_regno); 4461 return -EACCES; 4462 } 4463 4464 err = check_flow_keys_access(env, off, size); 4465 if (!err && t == BPF_READ && value_regno >= 0) 4466 mark_reg_unknown(env, regs, value_regno); 4467 } else if (type_is_sk_pointer(reg->type)) { 4468 if (t == BPF_WRITE) { 4469 verbose(env, "R%d cannot write into %s\n", 4470 regno, reg_type_str[reg->type]); 4471 return -EACCES; 4472 } 4473 err = check_sock_access(env, insn_idx, regno, off, size, t); 4474 if (!err && value_regno >= 0) 4475 mark_reg_unknown(env, regs, value_regno); 4476 } else if (reg->type == PTR_TO_TP_BUFFER) { 4477 err = check_tp_buffer_access(env, reg, regno, off, size); 4478 if (!err && t == BPF_READ && value_regno >= 0) 4479 mark_reg_unknown(env, regs, value_regno); 4480 } else if (reg->type == PTR_TO_BTF_ID) { 4481 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 4482 value_regno); 4483 } else if (reg->type == CONST_PTR_TO_MAP) { 4484 err = check_ptr_to_map_access(env, regs, regno, off, size, t, 4485 value_regno); 4486 } else if (reg->type == PTR_TO_RDONLY_BUF) { 4487 if (t == BPF_WRITE) { 4488 verbose(env, "R%d cannot write into %s\n", 4489 regno, reg_type_str[reg->type]); 4490 return -EACCES; 4491 } 4492 err = check_buffer_access(env, reg, regno, off, size, false, 4493 "rdonly", 4494 &env->prog->aux->max_rdonly_access); 4495 if (!err && value_regno >= 0) 4496 mark_reg_unknown(env, regs, value_regno); 4497 } else if (reg->type == PTR_TO_RDWR_BUF) { 4498 err = check_buffer_access(env, reg, regno, off, size, false, 4499 "rdwr", 4500 &env->prog->aux->max_rdwr_access); 4501 if (!err && t == BPF_READ && value_regno >= 0) 4502 mark_reg_unknown(env, regs, value_regno); 4503 } else { 4504 verbose(env, "R%d invalid mem access '%s'\n", regno, 4505 reg_type_str[reg->type]); 4506 return -EACCES; 4507 } 4508 4509 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 4510 regs[value_regno].type == SCALAR_VALUE) { 4511 /* b/h/w load zero-extends, mark upper bits as known 0 */ 4512 coerce_reg_to_size(®s[value_regno], size); 4513 } 4514 return err; 4515 } 4516 4517 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 4518 { 4519 int load_reg; 4520 int err; 4521 4522 switch (insn->imm) { 4523 case BPF_ADD: 4524 case BPF_ADD | BPF_FETCH: 4525 case BPF_AND: 4526 case BPF_AND | BPF_FETCH: 4527 case BPF_OR: 4528 case BPF_OR | BPF_FETCH: 4529 case BPF_XOR: 4530 case BPF_XOR | BPF_FETCH: 4531 case BPF_XCHG: 4532 case BPF_CMPXCHG: 4533 break; 4534 default: 4535 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm); 4536 return -EINVAL; 4537 } 4538 4539 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) { 4540 verbose(env, "invalid atomic operand size\n"); 4541 return -EINVAL; 4542 } 4543 4544 /* check src1 operand */ 4545 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4546 if (err) 4547 return err; 4548 4549 /* check src2 operand */ 4550 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 4551 if (err) 4552 return err; 4553 4554 if (insn->imm == BPF_CMPXCHG) { 4555 /* Check comparison of R0 with memory location */ 4556 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 4557 if (err) 4558 return err; 4559 } 4560 4561 if (is_pointer_value(env, insn->src_reg)) { 4562 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 4563 return -EACCES; 4564 } 4565 4566 if (is_ctx_reg(env, insn->dst_reg) || 4567 is_pkt_reg(env, insn->dst_reg) || 4568 is_flow_key_reg(env, insn->dst_reg) || 4569 is_sk_reg(env, insn->dst_reg)) { 4570 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n", 4571 insn->dst_reg, 4572 reg_type_str[reg_state(env, insn->dst_reg)->type]); 4573 return -EACCES; 4574 } 4575 4576 if (insn->imm & BPF_FETCH) { 4577 if (insn->imm == BPF_CMPXCHG) 4578 load_reg = BPF_REG_0; 4579 else 4580 load_reg = insn->src_reg; 4581 4582 /* check and record load of old value */ 4583 err = check_reg_arg(env, load_reg, DST_OP); 4584 if (err) 4585 return err; 4586 } else { 4587 /* This instruction accesses a memory location but doesn't 4588 * actually load it into a register. 4589 */ 4590 load_reg = -1; 4591 } 4592 4593 /* check whether we can read the memory */ 4594 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 4595 BPF_SIZE(insn->code), BPF_READ, load_reg, true); 4596 if (err) 4597 return err; 4598 4599 /* check whether we can write into the same memory */ 4600 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 4601 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 4602 if (err) 4603 return err; 4604 4605 return 0; 4606 } 4607 4608 /* When register 'regno' is used to read the stack (either directly or through 4609 * a helper function) make sure that it's within stack boundary and, depending 4610 * on the access type, that all elements of the stack are initialized. 4611 * 4612 * 'off' includes 'regno->off', but not its dynamic part (if any). 4613 * 4614 * All registers that have been spilled on the stack in the slots within the 4615 * read offsets are marked as read. 4616 */ 4617 static int check_stack_range_initialized( 4618 struct bpf_verifier_env *env, int regno, int off, 4619 int access_size, bool zero_size_allowed, 4620 enum stack_access_src type, struct bpf_call_arg_meta *meta) 4621 { 4622 struct bpf_reg_state *reg = reg_state(env, regno); 4623 struct bpf_func_state *state = func(env, reg); 4624 int err, min_off, max_off, i, j, slot, spi; 4625 char *err_extra = type == ACCESS_HELPER ? " indirect" : ""; 4626 enum bpf_access_type bounds_check_type; 4627 /* Some accesses can write anything into the stack, others are 4628 * read-only. 4629 */ 4630 bool clobber = false; 4631 4632 if (access_size == 0 && !zero_size_allowed) { 4633 verbose(env, "invalid zero-sized read\n"); 4634 return -EACCES; 4635 } 4636 4637 if (type == ACCESS_HELPER) { 4638 /* The bounds checks for writes are more permissive than for 4639 * reads. However, if raw_mode is not set, we'll do extra 4640 * checks below. 4641 */ 4642 bounds_check_type = BPF_WRITE; 4643 clobber = true; 4644 } else { 4645 bounds_check_type = BPF_READ; 4646 } 4647 err = check_stack_access_within_bounds(env, regno, off, access_size, 4648 type, bounds_check_type); 4649 if (err) 4650 return err; 4651 4652 4653 if (tnum_is_const(reg->var_off)) { 4654 min_off = max_off = reg->var_off.value + off; 4655 } else { 4656 /* Variable offset is prohibited for unprivileged mode for 4657 * simplicity since it requires corresponding support in 4658 * Spectre masking for stack ALU. 4659 * See also retrieve_ptr_limit(). 4660 */ 4661 if (!env->bypass_spec_v1) { 4662 char tn_buf[48]; 4663 4664 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4665 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n", 4666 regno, err_extra, tn_buf); 4667 return -EACCES; 4668 } 4669 /* Only initialized buffer on stack is allowed to be accessed 4670 * with variable offset. With uninitialized buffer it's hard to 4671 * guarantee that whole memory is marked as initialized on 4672 * helper return since specific bounds are unknown what may 4673 * cause uninitialized stack leaking. 4674 */ 4675 if (meta && meta->raw_mode) 4676 meta = NULL; 4677 4678 min_off = reg->smin_value + off; 4679 max_off = reg->smax_value + off; 4680 } 4681 4682 if (meta && meta->raw_mode) { 4683 meta->access_size = access_size; 4684 meta->regno = regno; 4685 return 0; 4686 } 4687 4688 for (i = min_off; i < max_off + access_size; i++) { 4689 u8 *stype; 4690 4691 slot = -i - 1; 4692 spi = slot / BPF_REG_SIZE; 4693 if (state->allocated_stack <= slot) 4694 goto err; 4695 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 4696 if (*stype == STACK_MISC) 4697 goto mark; 4698 if (*stype == STACK_ZERO) { 4699 if (clobber) { 4700 /* helper can write anything into the stack */ 4701 *stype = STACK_MISC; 4702 } 4703 goto mark; 4704 } 4705 4706 if (is_spilled_reg(&state->stack[spi]) && 4707 state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID) 4708 goto mark; 4709 4710 if (is_spilled_reg(&state->stack[spi]) && 4711 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE || 4712 env->allow_ptr_leaks)) { 4713 if (clobber) { 4714 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 4715 for (j = 0; j < BPF_REG_SIZE; j++) 4716 scrub_spilled_slot(&state->stack[spi].slot_type[j]); 4717 } 4718 goto mark; 4719 } 4720 4721 err: 4722 if (tnum_is_const(reg->var_off)) { 4723 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n", 4724 err_extra, regno, min_off, i - min_off, access_size); 4725 } else { 4726 char tn_buf[48]; 4727 4728 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4729 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n", 4730 err_extra, regno, tn_buf, i - min_off, access_size); 4731 } 4732 return -EACCES; 4733 mark: 4734 /* reading any byte out of 8-byte 'spill_slot' will cause 4735 * the whole slot to be marked as 'read' 4736 */ 4737 mark_reg_read(env, &state->stack[spi].spilled_ptr, 4738 state->stack[spi].spilled_ptr.parent, 4739 REG_LIVE_READ64); 4740 } 4741 return update_stack_depth(env, state, min_off); 4742 } 4743 4744 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 4745 int access_size, bool zero_size_allowed, 4746 struct bpf_call_arg_meta *meta) 4747 { 4748 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 4749 4750 switch (reg->type) { 4751 case PTR_TO_PACKET: 4752 case PTR_TO_PACKET_META: 4753 return check_packet_access(env, regno, reg->off, access_size, 4754 zero_size_allowed); 4755 case PTR_TO_MAP_KEY: 4756 return check_mem_region_access(env, regno, reg->off, access_size, 4757 reg->map_ptr->key_size, false); 4758 case PTR_TO_MAP_VALUE: 4759 if (check_map_access_type(env, regno, reg->off, access_size, 4760 meta && meta->raw_mode ? BPF_WRITE : 4761 BPF_READ)) 4762 return -EACCES; 4763 return check_map_access(env, regno, reg->off, access_size, 4764 zero_size_allowed); 4765 case PTR_TO_MEM: 4766 return check_mem_region_access(env, regno, reg->off, 4767 access_size, reg->mem_size, 4768 zero_size_allowed); 4769 case PTR_TO_RDONLY_BUF: 4770 if (meta && meta->raw_mode) 4771 return -EACCES; 4772 return check_buffer_access(env, reg, regno, reg->off, 4773 access_size, zero_size_allowed, 4774 "rdonly", 4775 &env->prog->aux->max_rdonly_access); 4776 case PTR_TO_RDWR_BUF: 4777 return check_buffer_access(env, reg, regno, reg->off, 4778 access_size, zero_size_allowed, 4779 "rdwr", 4780 &env->prog->aux->max_rdwr_access); 4781 case PTR_TO_STACK: 4782 return check_stack_range_initialized( 4783 env, 4784 regno, reg->off, access_size, 4785 zero_size_allowed, ACCESS_HELPER, meta); 4786 default: /* scalar_value or invalid ptr */ 4787 /* Allow zero-byte read from NULL, regardless of pointer type */ 4788 if (zero_size_allowed && access_size == 0 && 4789 register_is_null(reg)) 4790 return 0; 4791 4792 verbose(env, "R%d type=%s expected=%s\n", regno, 4793 reg_type_str[reg->type], 4794 reg_type_str[PTR_TO_STACK]); 4795 return -EACCES; 4796 } 4797 } 4798 4799 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 4800 u32 regno, u32 mem_size) 4801 { 4802 if (register_is_null(reg)) 4803 return 0; 4804 4805 if (reg_type_may_be_null(reg->type)) { 4806 /* Assuming that the register contains a value check if the memory 4807 * access is safe. Temporarily save and restore the register's state as 4808 * the conversion shouldn't be visible to a caller. 4809 */ 4810 const struct bpf_reg_state saved_reg = *reg; 4811 int rv; 4812 4813 mark_ptr_not_null_reg(reg); 4814 rv = check_helper_mem_access(env, regno, mem_size, true, NULL); 4815 *reg = saved_reg; 4816 return rv; 4817 } 4818 4819 return check_helper_mem_access(env, regno, mem_size, true, NULL); 4820 } 4821 4822 /* Implementation details: 4823 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL 4824 * Two bpf_map_lookups (even with the same key) will have different reg->id. 4825 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after 4826 * value_or_null->value transition, since the verifier only cares about 4827 * the range of access to valid map value pointer and doesn't care about actual 4828 * address of the map element. 4829 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 4830 * reg->id > 0 after value_or_null->value transition. By doing so 4831 * two bpf_map_lookups will be considered two different pointers that 4832 * point to different bpf_spin_locks. 4833 * The verifier allows taking only one bpf_spin_lock at a time to avoid 4834 * dead-locks. 4835 * Since only one bpf_spin_lock is allowed the checks are simpler than 4836 * reg_is_refcounted() logic. The verifier needs to remember only 4837 * one spin_lock instead of array of acquired_refs. 4838 * cur_state->active_spin_lock remembers which map value element got locked 4839 * and clears it after bpf_spin_unlock. 4840 */ 4841 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 4842 bool is_lock) 4843 { 4844 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 4845 struct bpf_verifier_state *cur = env->cur_state; 4846 bool is_const = tnum_is_const(reg->var_off); 4847 struct bpf_map *map = reg->map_ptr; 4848 u64 val = reg->var_off.value; 4849 4850 if (!is_const) { 4851 verbose(env, 4852 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 4853 regno); 4854 return -EINVAL; 4855 } 4856 if (!map->btf) { 4857 verbose(env, 4858 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 4859 map->name); 4860 return -EINVAL; 4861 } 4862 if (!map_value_has_spin_lock(map)) { 4863 if (map->spin_lock_off == -E2BIG) 4864 verbose(env, 4865 "map '%s' has more than one 'struct bpf_spin_lock'\n", 4866 map->name); 4867 else if (map->spin_lock_off == -ENOENT) 4868 verbose(env, 4869 "map '%s' doesn't have 'struct bpf_spin_lock'\n", 4870 map->name); 4871 else 4872 verbose(env, 4873 "map '%s' is not a struct type or bpf_spin_lock is mangled\n", 4874 map->name); 4875 return -EINVAL; 4876 } 4877 if (map->spin_lock_off != val + reg->off) { 4878 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n", 4879 val + reg->off); 4880 return -EINVAL; 4881 } 4882 if (is_lock) { 4883 if (cur->active_spin_lock) { 4884 verbose(env, 4885 "Locking two bpf_spin_locks are not allowed\n"); 4886 return -EINVAL; 4887 } 4888 cur->active_spin_lock = reg->id; 4889 } else { 4890 if (!cur->active_spin_lock) { 4891 verbose(env, "bpf_spin_unlock without taking a lock\n"); 4892 return -EINVAL; 4893 } 4894 if (cur->active_spin_lock != reg->id) { 4895 verbose(env, "bpf_spin_unlock of different lock\n"); 4896 return -EINVAL; 4897 } 4898 cur->active_spin_lock = 0; 4899 } 4900 return 0; 4901 } 4902 4903 static int process_timer_func(struct bpf_verifier_env *env, int regno, 4904 struct bpf_call_arg_meta *meta) 4905 { 4906 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 4907 bool is_const = tnum_is_const(reg->var_off); 4908 struct bpf_map *map = reg->map_ptr; 4909 u64 val = reg->var_off.value; 4910 4911 if (!is_const) { 4912 verbose(env, 4913 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n", 4914 regno); 4915 return -EINVAL; 4916 } 4917 if (!map->btf) { 4918 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n", 4919 map->name); 4920 return -EINVAL; 4921 } 4922 if (!map_value_has_timer(map)) { 4923 if (map->timer_off == -E2BIG) 4924 verbose(env, 4925 "map '%s' has more than one 'struct bpf_timer'\n", 4926 map->name); 4927 else if (map->timer_off == -ENOENT) 4928 verbose(env, 4929 "map '%s' doesn't have 'struct bpf_timer'\n", 4930 map->name); 4931 else 4932 verbose(env, 4933 "map '%s' is not a struct type or bpf_timer is mangled\n", 4934 map->name); 4935 return -EINVAL; 4936 } 4937 if (map->timer_off != val + reg->off) { 4938 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n", 4939 val + reg->off, map->timer_off); 4940 return -EINVAL; 4941 } 4942 if (meta->map_ptr) { 4943 verbose(env, "verifier bug. Two map pointers in a timer helper\n"); 4944 return -EFAULT; 4945 } 4946 meta->map_uid = reg->map_uid; 4947 meta->map_ptr = map; 4948 return 0; 4949 } 4950 4951 static bool arg_type_is_mem_ptr(enum bpf_arg_type type) 4952 { 4953 return type == ARG_PTR_TO_MEM || 4954 type == ARG_PTR_TO_MEM_OR_NULL || 4955 type == ARG_PTR_TO_UNINIT_MEM; 4956 } 4957 4958 static bool arg_type_is_mem_size(enum bpf_arg_type type) 4959 { 4960 return type == ARG_CONST_SIZE || 4961 type == ARG_CONST_SIZE_OR_ZERO; 4962 } 4963 4964 static bool arg_type_is_alloc_size(enum bpf_arg_type type) 4965 { 4966 return type == ARG_CONST_ALLOC_SIZE_OR_ZERO; 4967 } 4968 4969 static bool arg_type_is_int_ptr(enum bpf_arg_type type) 4970 { 4971 return type == ARG_PTR_TO_INT || 4972 type == ARG_PTR_TO_LONG; 4973 } 4974 4975 static int int_ptr_type_to_size(enum bpf_arg_type type) 4976 { 4977 if (type == ARG_PTR_TO_INT) 4978 return sizeof(u32); 4979 else if (type == ARG_PTR_TO_LONG) 4980 return sizeof(u64); 4981 4982 return -EINVAL; 4983 } 4984 4985 static int resolve_map_arg_type(struct bpf_verifier_env *env, 4986 const struct bpf_call_arg_meta *meta, 4987 enum bpf_arg_type *arg_type) 4988 { 4989 if (!meta->map_ptr) { 4990 /* kernel subsystem misconfigured verifier */ 4991 verbose(env, "invalid map_ptr to access map->type\n"); 4992 return -EACCES; 4993 } 4994 4995 switch (meta->map_ptr->map_type) { 4996 case BPF_MAP_TYPE_SOCKMAP: 4997 case BPF_MAP_TYPE_SOCKHASH: 4998 if (*arg_type == ARG_PTR_TO_MAP_VALUE) { 4999 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON; 5000 } else { 5001 verbose(env, "invalid arg_type for sockmap/sockhash\n"); 5002 return -EINVAL; 5003 } 5004 break; 5005 case BPF_MAP_TYPE_BLOOM_FILTER: 5006 if (meta->func_id == BPF_FUNC_map_peek_elem) 5007 *arg_type = ARG_PTR_TO_MAP_VALUE; 5008 break; 5009 default: 5010 break; 5011 } 5012 return 0; 5013 } 5014 5015 struct bpf_reg_types { 5016 const enum bpf_reg_type types[10]; 5017 u32 *btf_id; 5018 }; 5019 5020 static const struct bpf_reg_types map_key_value_types = { 5021 .types = { 5022 PTR_TO_STACK, 5023 PTR_TO_PACKET, 5024 PTR_TO_PACKET_META, 5025 PTR_TO_MAP_KEY, 5026 PTR_TO_MAP_VALUE, 5027 }, 5028 }; 5029 5030 static const struct bpf_reg_types sock_types = { 5031 .types = { 5032 PTR_TO_SOCK_COMMON, 5033 PTR_TO_SOCKET, 5034 PTR_TO_TCP_SOCK, 5035 PTR_TO_XDP_SOCK, 5036 }, 5037 }; 5038 5039 #ifdef CONFIG_NET 5040 static const struct bpf_reg_types btf_id_sock_common_types = { 5041 .types = { 5042 PTR_TO_SOCK_COMMON, 5043 PTR_TO_SOCKET, 5044 PTR_TO_TCP_SOCK, 5045 PTR_TO_XDP_SOCK, 5046 PTR_TO_BTF_ID, 5047 }, 5048 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 5049 }; 5050 #endif 5051 5052 static const struct bpf_reg_types mem_types = { 5053 .types = { 5054 PTR_TO_STACK, 5055 PTR_TO_PACKET, 5056 PTR_TO_PACKET_META, 5057 PTR_TO_MAP_KEY, 5058 PTR_TO_MAP_VALUE, 5059 PTR_TO_MEM, 5060 PTR_TO_RDONLY_BUF, 5061 PTR_TO_RDWR_BUF, 5062 }, 5063 }; 5064 5065 static const struct bpf_reg_types int_ptr_types = { 5066 .types = { 5067 PTR_TO_STACK, 5068 PTR_TO_PACKET, 5069 PTR_TO_PACKET_META, 5070 PTR_TO_MAP_KEY, 5071 PTR_TO_MAP_VALUE, 5072 }, 5073 }; 5074 5075 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } }; 5076 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } }; 5077 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } }; 5078 static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM } }; 5079 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } }; 5080 static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } }; 5081 static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } }; 5082 static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_PERCPU_BTF_ID } }; 5083 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } }; 5084 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } }; 5085 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } }; 5086 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } }; 5087 5088 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = { 5089 [ARG_PTR_TO_MAP_KEY] = &map_key_value_types, 5090 [ARG_PTR_TO_MAP_VALUE] = &map_key_value_types, 5091 [ARG_PTR_TO_UNINIT_MAP_VALUE] = &map_key_value_types, 5092 [ARG_PTR_TO_MAP_VALUE_OR_NULL] = &map_key_value_types, 5093 [ARG_CONST_SIZE] = &scalar_types, 5094 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types, 5095 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types, 5096 [ARG_CONST_MAP_PTR] = &const_map_ptr_types, 5097 [ARG_PTR_TO_CTX] = &context_types, 5098 [ARG_PTR_TO_CTX_OR_NULL] = &context_types, 5099 [ARG_PTR_TO_SOCK_COMMON] = &sock_types, 5100 #ifdef CONFIG_NET 5101 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types, 5102 #endif 5103 [ARG_PTR_TO_SOCKET] = &fullsock_types, 5104 [ARG_PTR_TO_SOCKET_OR_NULL] = &fullsock_types, 5105 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types, 5106 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types, 5107 [ARG_PTR_TO_MEM] = &mem_types, 5108 [ARG_PTR_TO_MEM_OR_NULL] = &mem_types, 5109 [ARG_PTR_TO_UNINIT_MEM] = &mem_types, 5110 [ARG_PTR_TO_ALLOC_MEM] = &alloc_mem_types, 5111 [ARG_PTR_TO_ALLOC_MEM_OR_NULL] = &alloc_mem_types, 5112 [ARG_PTR_TO_INT] = &int_ptr_types, 5113 [ARG_PTR_TO_LONG] = &int_ptr_types, 5114 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types, 5115 [ARG_PTR_TO_FUNC] = &func_ptr_types, 5116 [ARG_PTR_TO_STACK_OR_NULL] = &stack_ptr_types, 5117 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types, 5118 [ARG_PTR_TO_TIMER] = &timer_types, 5119 }; 5120 5121 static int check_reg_type(struct bpf_verifier_env *env, u32 regno, 5122 enum bpf_arg_type arg_type, 5123 const u32 *arg_btf_id) 5124 { 5125 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5126 enum bpf_reg_type expected, type = reg->type; 5127 const struct bpf_reg_types *compatible; 5128 int i, j; 5129 5130 compatible = compatible_reg_types[arg_type]; 5131 if (!compatible) { 5132 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type); 5133 return -EFAULT; 5134 } 5135 5136 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) { 5137 expected = compatible->types[i]; 5138 if (expected == NOT_INIT) 5139 break; 5140 5141 if (type == expected) 5142 goto found; 5143 } 5144 5145 verbose(env, "R%d type=%s expected=", regno, reg_type_str[type]); 5146 for (j = 0; j + 1 < i; j++) 5147 verbose(env, "%s, ", reg_type_str[compatible->types[j]]); 5148 verbose(env, "%s\n", reg_type_str[compatible->types[j]]); 5149 return -EACCES; 5150 5151 found: 5152 if (type == PTR_TO_BTF_ID) { 5153 if (!arg_btf_id) { 5154 if (!compatible->btf_id) { 5155 verbose(env, "verifier internal error: missing arg compatible BTF ID\n"); 5156 return -EFAULT; 5157 } 5158 arg_btf_id = compatible->btf_id; 5159 } 5160 5161 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 5162 btf_vmlinux, *arg_btf_id)) { 5163 verbose(env, "R%d is of type %s but %s is expected\n", 5164 regno, kernel_type_name(reg->btf, reg->btf_id), 5165 kernel_type_name(btf_vmlinux, *arg_btf_id)); 5166 return -EACCES; 5167 } 5168 5169 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 5170 verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n", 5171 regno); 5172 return -EACCES; 5173 } 5174 } 5175 5176 return 0; 5177 } 5178 5179 static int check_func_arg(struct bpf_verifier_env *env, u32 arg, 5180 struct bpf_call_arg_meta *meta, 5181 const struct bpf_func_proto *fn) 5182 { 5183 u32 regno = BPF_REG_1 + arg; 5184 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5185 enum bpf_arg_type arg_type = fn->arg_type[arg]; 5186 enum bpf_reg_type type = reg->type; 5187 int err = 0; 5188 5189 if (arg_type == ARG_DONTCARE) 5190 return 0; 5191 5192 err = check_reg_arg(env, regno, SRC_OP); 5193 if (err) 5194 return err; 5195 5196 if (arg_type == ARG_ANYTHING) { 5197 if (is_pointer_value(env, regno)) { 5198 verbose(env, "R%d leaks addr into helper function\n", 5199 regno); 5200 return -EACCES; 5201 } 5202 return 0; 5203 } 5204 5205 if (type_is_pkt_pointer(type) && 5206 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 5207 verbose(env, "helper access to the packet is not allowed\n"); 5208 return -EACCES; 5209 } 5210 5211 if (arg_type == ARG_PTR_TO_MAP_VALUE || 5212 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE || 5213 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) { 5214 err = resolve_map_arg_type(env, meta, &arg_type); 5215 if (err) 5216 return err; 5217 } 5218 5219 if (register_is_null(reg) && arg_type_may_be_null(arg_type)) 5220 /* A NULL register has a SCALAR_VALUE type, so skip 5221 * type checking. 5222 */ 5223 goto skip_type_check; 5224 5225 err = check_reg_type(env, regno, arg_type, fn->arg_btf_id[arg]); 5226 if (err) 5227 return err; 5228 5229 if (type == PTR_TO_CTX) { 5230 err = check_ctx_reg(env, reg, regno); 5231 if (err < 0) 5232 return err; 5233 } 5234 5235 skip_type_check: 5236 if (reg->ref_obj_id) { 5237 if (meta->ref_obj_id) { 5238 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 5239 regno, reg->ref_obj_id, 5240 meta->ref_obj_id); 5241 return -EFAULT; 5242 } 5243 meta->ref_obj_id = reg->ref_obj_id; 5244 } 5245 5246 if (arg_type == ARG_CONST_MAP_PTR) { 5247 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 5248 if (meta->map_ptr) { 5249 /* Use map_uid (which is unique id of inner map) to reject: 5250 * inner_map1 = bpf_map_lookup_elem(outer_map, key1) 5251 * inner_map2 = bpf_map_lookup_elem(outer_map, key2) 5252 * if (inner_map1 && inner_map2) { 5253 * timer = bpf_map_lookup_elem(inner_map1); 5254 * if (timer) 5255 * // mismatch would have been allowed 5256 * bpf_timer_init(timer, inner_map2); 5257 * } 5258 * 5259 * Comparing map_ptr is enough to distinguish normal and outer maps. 5260 */ 5261 if (meta->map_ptr != reg->map_ptr || 5262 meta->map_uid != reg->map_uid) { 5263 verbose(env, 5264 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", 5265 meta->map_uid, reg->map_uid); 5266 return -EINVAL; 5267 } 5268 } 5269 meta->map_ptr = reg->map_ptr; 5270 meta->map_uid = reg->map_uid; 5271 } else if (arg_type == ARG_PTR_TO_MAP_KEY) { 5272 /* bpf_map_xxx(..., map_ptr, ..., key) call: 5273 * check that [key, key + map->key_size) are within 5274 * stack limits and initialized 5275 */ 5276 if (!meta->map_ptr) { 5277 /* in function declaration map_ptr must come before 5278 * map_key, so that it's verified and known before 5279 * we have to check map_key here. Otherwise it means 5280 * that kernel subsystem misconfigured verifier 5281 */ 5282 verbose(env, "invalid map_ptr to access map->key\n"); 5283 return -EACCES; 5284 } 5285 err = check_helper_mem_access(env, regno, 5286 meta->map_ptr->key_size, false, 5287 NULL); 5288 } else if (arg_type == ARG_PTR_TO_MAP_VALUE || 5289 (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL && 5290 !register_is_null(reg)) || 5291 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) { 5292 /* bpf_map_xxx(..., map_ptr, ..., value) call: 5293 * check [value, value + map->value_size) validity 5294 */ 5295 if (!meta->map_ptr) { 5296 /* kernel subsystem misconfigured verifier */ 5297 verbose(env, "invalid map_ptr to access map->value\n"); 5298 return -EACCES; 5299 } 5300 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE); 5301 err = check_helper_mem_access(env, regno, 5302 meta->map_ptr->value_size, false, 5303 meta); 5304 } else if (arg_type == ARG_PTR_TO_PERCPU_BTF_ID) { 5305 if (!reg->btf_id) { 5306 verbose(env, "Helper has invalid btf_id in R%d\n", regno); 5307 return -EACCES; 5308 } 5309 meta->ret_btf = reg->btf; 5310 meta->ret_btf_id = reg->btf_id; 5311 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) { 5312 if (meta->func_id == BPF_FUNC_spin_lock) { 5313 if (process_spin_lock(env, regno, true)) 5314 return -EACCES; 5315 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 5316 if (process_spin_lock(env, regno, false)) 5317 return -EACCES; 5318 } else { 5319 verbose(env, "verifier internal error\n"); 5320 return -EFAULT; 5321 } 5322 } else if (arg_type == ARG_PTR_TO_TIMER) { 5323 if (process_timer_func(env, regno, meta)) 5324 return -EACCES; 5325 } else if (arg_type == ARG_PTR_TO_FUNC) { 5326 meta->subprogno = reg->subprogno; 5327 } else if (arg_type_is_mem_ptr(arg_type)) { 5328 /* The access to this pointer is only checked when we hit the 5329 * next is_mem_size argument below. 5330 */ 5331 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MEM); 5332 } else if (arg_type_is_mem_size(arg_type)) { 5333 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO); 5334 5335 /* This is used to refine r0 return value bounds for helpers 5336 * that enforce this value as an upper bound on return values. 5337 * See do_refine_retval_range() for helpers that can refine 5338 * the return value. C type of helper is u32 so we pull register 5339 * bound from umax_value however, if negative verifier errors 5340 * out. Only upper bounds can be learned because retval is an 5341 * int type and negative retvals are allowed. 5342 */ 5343 meta->msize_max_value = reg->umax_value; 5344 5345 /* The register is SCALAR_VALUE; the access check 5346 * happens using its boundaries. 5347 */ 5348 if (!tnum_is_const(reg->var_off)) 5349 /* For unprivileged variable accesses, disable raw 5350 * mode so that the program is required to 5351 * initialize all the memory that the helper could 5352 * just partially fill up. 5353 */ 5354 meta = NULL; 5355 5356 if (reg->smin_value < 0) { 5357 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 5358 regno); 5359 return -EACCES; 5360 } 5361 5362 if (reg->umin_value == 0) { 5363 err = check_helper_mem_access(env, regno - 1, 0, 5364 zero_size_allowed, 5365 meta); 5366 if (err) 5367 return err; 5368 } 5369 5370 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 5371 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 5372 regno); 5373 return -EACCES; 5374 } 5375 err = check_helper_mem_access(env, regno - 1, 5376 reg->umax_value, 5377 zero_size_allowed, meta); 5378 if (!err) 5379 err = mark_chain_precision(env, regno); 5380 } else if (arg_type_is_alloc_size(arg_type)) { 5381 if (!tnum_is_const(reg->var_off)) { 5382 verbose(env, "R%d is not a known constant'\n", 5383 regno); 5384 return -EACCES; 5385 } 5386 meta->mem_size = reg->var_off.value; 5387 } else if (arg_type_is_int_ptr(arg_type)) { 5388 int size = int_ptr_type_to_size(arg_type); 5389 5390 err = check_helper_mem_access(env, regno, size, false, meta); 5391 if (err) 5392 return err; 5393 err = check_ptr_alignment(env, reg, 0, size, true); 5394 } else if (arg_type == ARG_PTR_TO_CONST_STR) { 5395 struct bpf_map *map = reg->map_ptr; 5396 int map_off; 5397 u64 map_addr; 5398 char *str_ptr; 5399 5400 if (!bpf_map_is_rdonly(map)) { 5401 verbose(env, "R%d does not point to a readonly map'\n", regno); 5402 return -EACCES; 5403 } 5404 5405 if (!tnum_is_const(reg->var_off)) { 5406 verbose(env, "R%d is not a constant address'\n", regno); 5407 return -EACCES; 5408 } 5409 5410 if (!map->ops->map_direct_value_addr) { 5411 verbose(env, "no direct value access support for this map type\n"); 5412 return -EACCES; 5413 } 5414 5415 err = check_map_access(env, regno, reg->off, 5416 map->value_size - reg->off, false); 5417 if (err) 5418 return err; 5419 5420 map_off = reg->off + reg->var_off.value; 5421 err = map->ops->map_direct_value_addr(map, &map_addr, map_off); 5422 if (err) { 5423 verbose(env, "direct value access on string failed\n"); 5424 return err; 5425 } 5426 5427 str_ptr = (char *)(long)(map_addr); 5428 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) { 5429 verbose(env, "string is not zero-terminated\n"); 5430 return -EINVAL; 5431 } 5432 } 5433 5434 return err; 5435 } 5436 5437 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id) 5438 { 5439 enum bpf_attach_type eatype = env->prog->expected_attach_type; 5440 enum bpf_prog_type type = resolve_prog_type(env->prog); 5441 5442 if (func_id != BPF_FUNC_map_update_elem) 5443 return false; 5444 5445 /* It's not possible to get access to a locked struct sock in these 5446 * contexts, so updating is safe. 5447 */ 5448 switch (type) { 5449 case BPF_PROG_TYPE_TRACING: 5450 if (eatype == BPF_TRACE_ITER) 5451 return true; 5452 break; 5453 case BPF_PROG_TYPE_SOCKET_FILTER: 5454 case BPF_PROG_TYPE_SCHED_CLS: 5455 case BPF_PROG_TYPE_SCHED_ACT: 5456 case BPF_PROG_TYPE_XDP: 5457 case BPF_PROG_TYPE_SK_REUSEPORT: 5458 case BPF_PROG_TYPE_FLOW_DISSECTOR: 5459 case BPF_PROG_TYPE_SK_LOOKUP: 5460 return true; 5461 default: 5462 break; 5463 } 5464 5465 verbose(env, "cannot update sockmap in this context\n"); 5466 return false; 5467 } 5468 5469 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env) 5470 { 5471 return env->prog->jit_requested && IS_ENABLED(CONFIG_X86_64); 5472 } 5473 5474 static int check_map_func_compatibility(struct bpf_verifier_env *env, 5475 struct bpf_map *map, int func_id) 5476 { 5477 if (!map) 5478 return 0; 5479 5480 /* We need a two way check, first is from map perspective ... */ 5481 switch (map->map_type) { 5482 case BPF_MAP_TYPE_PROG_ARRAY: 5483 if (func_id != BPF_FUNC_tail_call) 5484 goto error; 5485 break; 5486 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 5487 if (func_id != BPF_FUNC_perf_event_read && 5488 func_id != BPF_FUNC_perf_event_output && 5489 func_id != BPF_FUNC_skb_output && 5490 func_id != BPF_FUNC_perf_event_read_value && 5491 func_id != BPF_FUNC_xdp_output) 5492 goto error; 5493 break; 5494 case BPF_MAP_TYPE_RINGBUF: 5495 if (func_id != BPF_FUNC_ringbuf_output && 5496 func_id != BPF_FUNC_ringbuf_reserve && 5497 func_id != BPF_FUNC_ringbuf_query) 5498 goto error; 5499 break; 5500 case BPF_MAP_TYPE_STACK_TRACE: 5501 if (func_id != BPF_FUNC_get_stackid) 5502 goto error; 5503 break; 5504 case BPF_MAP_TYPE_CGROUP_ARRAY: 5505 if (func_id != BPF_FUNC_skb_under_cgroup && 5506 func_id != BPF_FUNC_current_task_under_cgroup) 5507 goto error; 5508 break; 5509 case BPF_MAP_TYPE_CGROUP_STORAGE: 5510 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 5511 if (func_id != BPF_FUNC_get_local_storage) 5512 goto error; 5513 break; 5514 case BPF_MAP_TYPE_DEVMAP: 5515 case BPF_MAP_TYPE_DEVMAP_HASH: 5516 if (func_id != BPF_FUNC_redirect_map && 5517 func_id != BPF_FUNC_map_lookup_elem) 5518 goto error; 5519 break; 5520 /* Restrict bpf side of cpumap and xskmap, open when use-cases 5521 * appear. 5522 */ 5523 case BPF_MAP_TYPE_CPUMAP: 5524 if (func_id != BPF_FUNC_redirect_map) 5525 goto error; 5526 break; 5527 case BPF_MAP_TYPE_XSKMAP: 5528 if (func_id != BPF_FUNC_redirect_map && 5529 func_id != BPF_FUNC_map_lookup_elem) 5530 goto error; 5531 break; 5532 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 5533 case BPF_MAP_TYPE_HASH_OF_MAPS: 5534 if (func_id != BPF_FUNC_map_lookup_elem) 5535 goto error; 5536 break; 5537 case BPF_MAP_TYPE_SOCKMAP: 5538 if (func_id != BPF_FUNC_sk_redirect_map && 5539 func_id != BPF_FUNC_sock_map_update && 5540 func_id != BPF_FUNC_map_delete_elem && 5541 func_id != BPF_FUNC_msg_redirect_map && 5542 func_id != BPF_FUNC_sk_select_reuseport && 5543 func_id != BPF_FUNC_map_lookup_elem && 5544 !may_update_sockmap(env, func_id)) 5545 goto error; 5546 break; 5547 case BPF_MAP_TYPE_SOCKHASH: 5548 if (func_id != BPF_FUNC_sk_redirect_hash && 5549 func_id != BPF_FUNC_sock_hash_update && 5550 func_id != BPF_FUNC_map_delete_elem && 5551 func_id != BPF_FUNC_msg_redirect_hash && 5552 func_id != BPF_FUNC_sk_select_reuseport && 5553 func_id != BPF_FUNC_map_lookup_elem && 5554 !may_update_sockmap(env, func_id)) 5555 goto error; 5556 break; 5557 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 5558 if (func_id != BPF_FUNC_sk_select_reuseport) 5559 goto error; 5560 break; 5561 case BPF_MAP_TYPE_QUEUE: 5562 case BPF_MAP_TYPE_STACK: 5563 if (func_id != BPF_FUNC_map_peek_elem && 5564 func_id != BPF_FUNC_map_pop_elem && 5565 func_id != BPF_FUNC_map_push_elem) 5566 goto error; 5567 break; 5568 case BPF_MAP_TYPE_SK_STORAGE: 5569 if (func_id != BPF_FUNC_sk_storage_get && 5570 func_id != BPF_FUNC_sk_storage_delete) 5571 goto error; 5572 break; 5573 case BPF_MAP_TYPE_INODE_STORAGE: 5574 if (func_id != BPF_FUNC_inode_storage_get && 5575 func_id != BPF_FUNC_inode_storage_delete) 5576 goto error; 5577 break; 5578 case BPF_MAP_TYPE_TASK_STORAGE: 5579 if (func_id != BPF_FUNC_task_storage_get && 5580 func_id != BPF_FUNC_task_storage_delete) 5581 goto error; 5582 break; 5583 case BPF_MAP_TYPE_BLOOM_FILTER: 5584 if (func_id != BPF_FUNC_map_peek_elem && 5585 func_id != BPF_FUNC_map_push_elem) 5586 goto error; 5587 break; 5588 default: 5589 break; 5590 } 5591 5592 /* ... and second from the function itself. */ 5593 switch (func_id) { 5594 case BPF_FUNC_tail_call: 5595 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 5596 goto error; 5597 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) { 5598 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 5599 return -EINVAL; 5600 } 5601 break; 5602 case BPF_FUNC_perf_event_read: 5603 case BPF_FUNC_perf_event_output: 5604 case BPF_FUNC_perf_event_read_value: 5605 case BPF_FUNC_skb_output: 5606 case BPF_FUNC_xdp_output: 5607 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 5608 goto error; 5609 break; 5610 case BPF_FUNC_ringbuf_output: 5611 case BPF_FUNC_ringbuf_reserve: 5612 case BPF_FUNC_ringbuf_query: 5613 if (map->map_type != BPF_MAP_TYPE_RINGBUF) 5614 goto error; 5615 break; 5616 case BPF_FUNC_get_stackid: 5617 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 5618 goto error; 5619 break; 5620 case BPF_FUNC_current_task_under_cgroup: 5621 case BPF_FUNC_skb_under_cgroup: 5622 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 5623 goto error; 5624 break; 5625 case BPF_FUNC_redirect_map: 5626 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 5627 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 5628 map->map_type != BPF_MAP_TYPE_CPUMAP && 5629 map->map_type != BPF_MAP_TYPE_XSKMAP) 5630 goto error; 5631 break; 5632 case BPF_FUNC_sk_redirect_map: 5633 case BPF_FUNC_msg_redirect_map: 5634 case BPF_FUNC_sock_map_update: 5635 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 5636 goto error; 5637 break; 5638 case BPF_FUNC_sk_redirect_hash: 5639 case BPF_FUNC_msg_redirect_hash: 5640 case BPF_FUNC_sock_hash_update: 5641 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 5642 goto error; 5643 break; 5644 case BPF_FUNC_get_local_storage: 5645 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 5646 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 5647 goto error; 5648 break; 5649 case BPF_FUNC_sk_select_reuseport: 5650 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 5651 map->map_type != BPF_MAP_TYPE_SOCKMAP && 5652 map->map_type != BPF_MAP_TYPE_SOCKHASH) 5653 goto error; 5654 break; 5655 case BPF_FUNC_map_pop_elem: 5656 if (map->map_type != BPF_MAP_TYPE_QUEUE && 5657 map->map_type != BPF_MAP_TYPE_STACK) 5658 goto error; 5659 break; 5660 case BPF_FUNC_map_peek_elem: 5661 case BPF_FUNC_map_push_elem: 5662 if (map->map_type != BPF_MAP_TYPE_QUEUE && 5663 map->map_type != BPF_MAP_TYPE_STACK && 5664 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER) 5665 goto error; 5666 break; 5667 case BPF_FUNC_sk_storage_get: 5668 case BPF_FUNC_sk_storage_delete: 5669 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 5670 goto error; 5671 break; 5672 case BPF_FUNC_inode_storage_get: 5673 case BPF_FUNC_inode_storage_delete: 5674 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE) 5675 goto error; 5676 break; 5677 case BPF_FUNC_task_storage_get: 5678 case BPF_FUNC_task_storage_delete: 5679 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE) 5680 goto error; 5681 break; 5682 default: 5683 break; 5684 } 5685 5686 return 0; 5687 error: 5688 verbose(env, "cannot pass map_type %d into func %s#%d\n", 5689 map->map_type, func_id_name(func_id), func_id); 5690 return -EINVAL; 5691 } 5692 5693 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 5694 { 5695 int count = 0; 5696 5697 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 5698 count++; 5699 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 5700 count++; 5701 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 5702 count++; 5703 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 5704 count++; 5705 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 5706 count++; 5707 5708 /* We only support one arg being in raw mode at the moment, 5709 * which is sufficient for the helper functions we have 5710 * right now. 5711 */ 5712 return count <= 1; 5713 } 5714 5715 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr, 5716 enum bpf_arg_type arg_next) 5717 { 5718 return (arg_type_is_mem_ptr(arg_curr) && 5719 !arg_type_is_mem_size(arg_next)) || 5720 (!arg_type_is_mem_ptr(arg_curr) && 5721 arg_type_is_mem_size(arg_next)); 5722 } 5723 5724 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 5725 { 5726 /* bpf_xxx(..., buf, len) call will access 'len' 5727 * bytes from memory 'buf'. Both arg types need 5728 * to be paired, so make sure there's no buggy 5729 * helper function specification. 5730 */ 5731 if (arg_type_is_mem_size(fn->arg1_type) || 5732 arg_type_is_mem_ptr(fn->arg5_type) || 5733 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) || 5734 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) || 5735 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) || 5736 check_args_pair_invalid(fn->arg4_type, fn->arg5_type)) 5737 return false; 5738 5739 return true; 5740 } 5741 5742 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id) 5743 { 5744 int count = 0; 5745 5746 if (arg_type_may_be_refcounted(fn->arg1_type)) 5747 count++; 5748 if (arg_type_may_be_refcounted(fn->arg2_type)) 5749 count++; 5750 if (arg_type_may_be_refcounted(fn->arg3_type)) 5751 count++; 5752 if (arg_type_may_be_refcounted(fn->arg4_type)) 5753 count++; 5754 if (arg_type_may_be_refcounted(fn->arg5_type)) 5755 count++; 5756 5757 /* A reference acquiring function cannot acquire 5758 * another refcounted ptr. 5759 */ 5760 if (may_be_acquire_function(func_id) && count) 5761 return false; 5762 5763 /* We only support one arg being unreferenced at the moment, 5764 * which is sufficient for the helper functions we have right now. 5765 */ 5766 return count <= 1; 5767 } 5768 5769 static bool check_btf_id_ok(const struct bpf_func_proto *fn) 5770 { 5771 int i; 5772 5773 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) { 5774 if (fn->arg_type[i] == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i]) 5775 return false; 5776 5777 if (fn->arg_type[i] != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i]) 5778 return false; 5779 } 5780 5781 return true; 5782 } 5783 5784 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 5785 { 5786 return check_raw_mode_ok(fn) && 5787 check_arg_pair_ok(fn) && 5788 check_btf_id_ok(fn) && 5789 check_refcount_ok(fn, func_id) ? 0 : -EINVAL; 5790 } 5791 5792 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 5793 * are now invalid, so turn them into unknown SCALAR_VALUE. 5794 */ 5795 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env, 5796 struct bpf_func_state *state) 5797 { 5798 struct bpf_reg_state *regs = state->regs, *reg; 5799 int i; 5800 5801 for (i = 0; i < MAX_BPF_REG; i++) 5802 if (reg_is_pkt_pointer_any(®s[i])) 5803 mark_reg_unknown(env, regs, i); 5804 5805 bpf_for_each_spilled_reg(i, state, reg) { 5806 if (!reg) 5807 continue; 5808 if (reg_is_pkt_pointer_any(reg)) 5809 __mark_reg_unknown(env, reg); 5810 } 5811 } 5812 5813 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 5814 { 5815 struct bpf_verifier_state *vstate = env->cur_state; 5816 int i; 5817 5818 for (i = 0; i <= vstate->curframe; i++) 5819 __clear_all_pkt_pointers(env, vstate->frame[i]); 5820 } 5821 5822 enum { 5823 AT_PKT_END = -1, 5824 BEYOND_PKT_END = -2, 5825 }; 5826 5827 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open) 5828 { 5829 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5830 struct bpf_reg_state *reg = &state->regs[regn]; 5831 5832 if (reg->type != PTR_TO_PACKET) 5833 /* PTR_TO_PACKET_META is not supported yet */ 5834 return; 5835 5836 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end. 5837 * How far beyond pkt_end it goes is unknown. 5838 * if (!range_open) it's the case of pkt >= pkt_end 5839 * if (range_open) it's the case of pkt > pkt_end 5840 * hence this pointer is at least 1 byte bigger than pkt_end 5841 */ 5842 if (range_open) 5843 reg->range = BEYOND_PKT_END; 5844 else 5845 reg->range = AT_PKT_END; 5846 } 5847 5848 static void release_reg_references(struct bpf_verifier_env *env, 5849 struct bpf_func_state *state, 5850 int ref_obj_id) 5851 { 5852 struct bpf_reg_state *regs = state->regs, *reg; 5853 int i; 5854 5855 for (i = 0; i < MAX_BPF_REG; i++) 5856 if (regs[i].ref_obj_id == ref_obj_id) 5857 mark_reg_unknown(env, regs, i); 5858 5859 bpf_for_each_spilled_reg(i, state, reg) { 5860 if (!reg) 5861 continue; 5862 if (reg->ref_obj_id == ref_obj_id) 5863 __mark_reg_unknown(env, reg); 5864 } 5865 } 5866 5867 /* The pointer with the specified id has released its reference to kernel 5868 * resources. Identify all copies of the same pointer and clear the reference. 5869 */ 5870 static int release_reference(struct bpf_verifier_env *env, 5871 int ref_obj_id) 5872 { 5873 struct bpf_verifier_state *vstate = env->cur_state; 5874 int err; 5875 int i; 5876 5877 err = release_reference_state(cur_func(env), ref_obj_id); 5878 if (err) 5879 return err; 5880 5881 for (i = 0; i <= vstate->curframe; i++) 5882 release_reg_references(env, vstate->frame[i], ref_obj_id); 5883 5884 return 0; 5885 } 5886 5887 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 5888 struct bpf_reg_state *regs) 5889 { 5890 int i; 5891 5892 /* after the call registers r0 - r5 were scratched */ 5893 for (i = 0; i < CALLER_SAVED_REGS; i++) { 5894 mark_reg_not_init(env, regs, caller_saved[i]); 5895 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 5896 } 5897 } 5898 5899 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env, 5900 struct bpf_func_state *caller, 5901 struct bpf_func_state *callee, 5902 int insn_idx); 5903 5904 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 5905 int *insn_idx, int subprog, 5906 set_callee_state_fn set_callee_state_cb) 5907 { 5908 struct bpf_verifier_state *state = env->cur_state; 5909 struct bpf_func_info_aux *func_info_aux; 5910 struct bpf_func_state *caller, *callee; 5911 int err; 5912 bool is_global = false; 5913 5914 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 5915 verbose(env, "the call stack of %d frames is too deep\n", 5916 state->curframe + 2); 5917 return -E2BIG; 5918 } 5919 5920 caller = state->frame[state->curframe]; 5921 if (state->frame[state->curframe + 1]) { 5922 verbose(env, "verifier bug. Frame %d already allocated\n", 5923 state->curframe + 1); 5924 return -EFAULT; 5925 } 5926 5927 func_info_aux = env->prog->aux->func_info_aux; 5928 if (func_info_aux) 5929 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL; 5930 err = btf_check_subprog_arg_match(env, subprog, caller->regs); 5931 if (err == -EFAULT) 5932 return err; 5933 if (is_global) { 5934 if (err) { 5935 verbose(env, "Caller passes invalid args into func#%d\n", 5936 subprog); 5937 return err; 5938 } else { 5939 if (env->log.level & BPF_LOG_LEVEL) 5940 verbose(env, 5941 "Func#%d is global and valid. Skipping.\n", 5942 subprog); 5943 clear_caller_saved_regs(env, caller->regs); 5944 5945 /* All global functions return a 64-bit SCALAR_VALUE */ 5946 mark_reg_unknown(env, caller->regs, BPF_REG_0); 5947 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 5948 5949 /* continue with next insn after call */ 5950 return 0; 5951 } 5952 } 5953 5954 if (insn->code == (BPF_JMP | BPF_CALL) && 5955 insn->imm == BPF_FUNC_timer_set_callback) { 5956 struct bpf_verifier_state *async_cb; 5957 5958 /* there is no real recursion here. timer callbacks are async */ 5959 env->subprog_info[subprog].is_async_cb = true; 5960 async_cb = push_async_cb(env, env->subprog_info[subprog].start, 5961 *insn_idx, subprog); 5962 if (!async_cb) 5963 return -EFAULT; 5964 callee = async_cb->frame[0]; 5965 callee->async_entry_cnt = caller->async_entry_cnt + 1; 5966 5967 /* Convert bpf_timer_set_callback() args into timer callback args */ 5968 err = set_callee_state_cb(env, caller, callee, *insn_idx); 5969 if (err) 5970 return err; 5971 5972 clear_caller_saved_regs(env, caller->regs); 5973 mark_reg_unknown(env, caller->regs, BPF_REG_0); 5974 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 5975 /* continue with next insn after call */ 5976 return 0; 5977 } 5978 5979 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 5980 if (!callee) 5981 return -ENOMEM; 5982 state->frame[state->curframe + 1] = callee; 5983 5984 /* callee cannot access r0, r6 - r9 for reading and has to write 5985 * into its own stack before reading from it. 5986 * callee can read/write into caller's stack 5987 */ 5988 init_func_state(env, callee, 5989 /* remember the callsite, it will be used by bpf_exit */ 5990 *insn_idx /* callsite */, 5991 state->curframe + 1 /* frameno within this callchain */, 5992 subprog /* subprog number within this prog */); 5993 5994 /* Transfer references to the callee */ 5995 err = copy_reference_state(callee, caller); 5996 if (err) 5997 return err; 5998 5999 err = set_callee_state_cb(env, caller, callee, *insn_idx); 6000 if (err) 6001 return err; 6002 6003 clear_caller_saved_regs(env, caller->regs); 6004 6005 /* only increment it after check_reg_arg() finished */ 6006 state->curframe++; 6007 6008 /* and go analyze first insn of the callee */ 6009 *insn_idx = env->subprog_info[subprog].start - 1; 6010 6011 if (env->log.level & BPF_LOG_LEVEL) { 6012 verbose(env, "caller:\n"); 6013 print_verifier_state(env, caller); 6014 verbose(env, "callee:\n"); 6015 print_verifier_state(env, callee); 6016 } 6017 return 0; 6018 } 6019 6020 int map_set_for_each_callback_args(struct bpf_verifier_env *env, 6021 struct bpf_func_state *caller, 6022 struct bpf_func_state *callee) 6023 { 6024 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn, 6025 * void *callback_ctx, u64 flags); 6026 * callback_fn(struct bpf_map *map, void *key, void *value, 6027 * void *callback_ctx); 6028 */ 6029 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 6030 6031 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 6032 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 6033 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr; 6034 6035 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 6036 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 6037 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr; 6038 6039 /* pointer to stack or null */ 6040 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3]; 6041 6042 /* unused */ 6043 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 6044 return 0; 6045 } 6046 6047 static int set_callee_state(struct bpf_verifier_env *env, 6048 struct bpf_func_state *caller, 6049 struct bpf_func_state *callee, int insn_idx) 6050 { 6051 int i; 6052 6053 /* copy r1 - r5 args that callee can access. The copy includes parent 6054 * pointers, which connects us up to the liveness chain 6055 */ 6056 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 6057 callee->regs[i] = caller->regs[i]; 6058 return 0; 6059 } 6060 6061 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 6062 int *insn_idx) 6063 { 6064 int subprog, target_insn; 6065 6066 target_insn = *insn_idx + insn->imm + 1; 6067 subprog = find_subprog(env, target_insn); 6068 if (subprog < 0) { 6069 verbose(env, "verifier bug. No program starts at insn %d\n", 6070 target_insn); 6071 return -EFAULT; 6072 } 6073 6074 return __check_func_call(env, insn, insn_idx, subprog, set_callee_state); 6075 } 6076 6077 static int set_map_elem_callback_state(struct bpf_verifier_env *env, 6078 struct bpf_func_state *caller, 6079 struct bpf_func_state *callee, 6080 int insn_idx) 6081 { 6082 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx]; 6083 struct bpf_map *map; 6084 int err; 6085 6086 if (bpf_map_ptr_poisoned(insn_aux)) { 6087 verbose(env, "tail_call abusing map_ptr\n"); 6088 return -EINVAL; 6089 } 6090 6091 map = BPF_MAP_PTR(insn_aux->map_ptr_state); 6092 if (!map->ops->map_set_for_each_callback_args || 6093 !map->ops->map_for_each_callback) { 6094 verbose(env, "callback function not allowed for map\n"); 6095 return -ENOTSUPP; 6096 } 6097 6098 err = map->ops->map_set_for_each_callback_args(env, caller, callee); 6099 if (err) 6100 return err; 6101 6102 callee->in_callback_fn = true; 6103 return 0; 6104 } 6105 6106 static int set_timer_callback_state(struct bpf_verifier_env *env, 6107 struct bpf_func_state *caller, 6108 struct bpf_func_state *callee, 6109 int insn_idx) 6110 { 6111 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr; 6112 6113 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn); 6114 * callback_fn(struct bpf_map *map, void *key, void *value); 6115 */ 6116 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP; 6117 __mark_reg_known_zero(&callee->regs[BPF_REG_1]); 6118 callee->regs[BPF_REG_1].map_ptr = map_ptr; 6119 6120 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 6121 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 6122 callee->regs[BPF_REG_2].map_ptr = map_ptr; 6123 6124 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 6125 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 6126 callee->regs[BPF_REG_3].map_ptr = map_ptr; 6127 6128 /* unused */ 6129 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 6130 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 6131 callee->in_async_callback_fn = true; 6132 return 0; 6133 } 6134 6135 static int set_find_vma_callback_state(struct bpf_verifier_env *env, 6136 struct bpf_func_state *caller, 6137 struct bpf_func_state *callee, 6138 int insn_idx) 6139 { 6140 /* bpf_find_vma(struct task_struct *task, u64 addr, 6141 * void *callback_fn, void *callback_ctx, u64 flags) 6142 * (callback_fn)(struct task_struct *task, 6143 * struct vm_area_struct *vma, void *callback_ctx); 6144 */ 6145 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 6146 6147 callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID; 6148 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 6149 callee->regs[BPF_REG_2].btf = btf_vmlinux; 6150 callee->regs[BPF_REG_2].btf_id = btf_task_struct_ids[2]; 6151 6152 /* pointer to stack or null */ 6153 callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4]; 6154 6155 /* unused */ 6156 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 6157 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 6158 callee->in_callback_fn = true; 6159 return 0; 6160 } 6161 6162 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 6163 { 6164 struct bpf_verifier_state *state = env->cur_state; 6165 struct bpf_func_state *caller, *callee; 6166 struct bpf_reg_state *r0; 6167 int err; 6168 6169 callee = state->frame[state->curframe]; 6170 r0 = &callee->regs[BPF_REG_0]; 6171 if (r0->type == PTR_TO_STACK) { 6172 /* technically it's ok to return caller's stack pointer 6173 * (or caller's caller's pointer) back to the caller, 6174 * since these pointers are valid. Only current stack 6175 * pointer will be invalid as soon as function exits, 6176 * but let's be conservative 6177 */ 6178 verbose(env, "cannot return stack pointer to the caller\n"); 6179 return -EINVAL; 6180 } 6181 6182 state->curframe--; 6183 caller = state->frame[state->curframe]; 6184 if (callee->in_callback_fn) { 6185 /* enforce R0 return value range [0, 1]. */ 6186 struct tnum range = tnum_range(0, 1); 6187 6188 if (r0->type != SCALAR_VALUE) { 6189 verbose(env, "R0 not a scalar value\n"); 6190 return -EACCES; 6191 } 6192 if (!tnum_in(range, r0->var_off)) { 6193 verbose_invalid_scalar(env, r0, &range, "callback return", "R0"); 6194 return -EINVAL; 6195 } 6196 } else { 6197 /* return to the caller whatever r0 had in the callee */ 6198 caller->regs[BPF_REG_0] = *r0; 6199 } 6200 6201 /* Transfer references to the caller */ 6202 err = copy_reference_state(caller, callee); 6203 if (err) 6204 return err; 6205 6206 *insn_idx = callee->callsite + 1; 6207 if (env->log.level & BPF_LOG_LEVEL) { 6208 verbose(env, "returning from callee:\n"); 6209 print_verifier_state(env, callee); 6210 verbose(env, "to caller at %d:\n", *insn_idx); 6211 print_verifier_state(env, caller); 6212 } 6213 /* clear everything in the callee */ 6214 free_func_state(callee); 6215 state->frame[state->curframe + 1] = NULL; 6216 return 0; 6217 } 6218 6219 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 6220 int func_id, 6221 struct bpf_call_arg_meta *meta) 6222 { 6223 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 6224 6225 if (ret_type != RET_INTEGER || 6226 (func_id != BPF_FUNC_get_stack && 6227 func_id != BPF_FUNC_get_task_stack && 6228 func_id != BPF_FUNC_probe_read_str && 6229 func_id != BPF_FUNC_probe_read_kernel_str && 6230 func_id != BPF_FUNC_probe_read_user_str)) 6231 return; 6232 6233 ret_reg->smax_value = meta->msize_max_value; 6234 ret_reg->s32_max_value = meta->msize_max_value; 6235 ret_reg->smin_value = -MAX_ERRNO; 6236 ret_reg->s32_min_value = -MAX_ERRNO; 6237 __reg_deduce_bounds(ret_reg); 6238 __reg_bound_offset(ret_reg); 6239 __update_reg_bounds(ret_reg); 6240 } 6241 6242 static int 6243 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 6244 int func_id, int insn_idx) 6245 { 6246 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 6247 struct bpf_map *map = meta->map_ptr; 6248 6249 if (func_id != BPF_FUNC_tail_call && 6250 func_id != BPF_FUNC_map_lookup_elem && 6251 func_id != BPF_FUNC_map_update_elem && 6252 func_id != BPF_FUNC_map_delete_elem && 6253 func_id != BPF_FUNC_map_push_elem && 6254 func_id != BPF_FUNC_map_pop_elem && 6255 func_id != BPF_FUNC_map_peek_elem && 6256 func_id != BPF_FUNC_for_each_map_elem && 6257 func_id != BPF_FUNC_redirect_map) 6258 return 0; 6259 6260 if (map == NULL) { 6261 verbose(env, "kernel subsystem misconfigured verifier\n"); 6262 return -EINVAL; 6263 } 6264 6265 /* In case of read-only, some additional restrictions 6266 * need to be applied in order to prevent altering the 6267 * state of the map from program side. 6268 */ 6269 if ((map->map_flags & BPF_F_RDONLY_PROG) && 6270 (func_id == BPF_FUNC_map_delete_elem || 6271 func_id == BPF_FUNC_map_update_elem || 6272 func_id == BPF_FUNC_map_push_elem || 6273 func_id == BPF_FUNC_map_pop_elem)) { 6274 verbose(env, "write into map forbidden\n"); 6275 return -EACCES; 6276 } 6277 6278 if (!BPF_MAP_PTR(aux->map_ptr_state)) 6279 bpf_map_ptr_store(aux, meta->map_ptr, 6280 !meta->map_ptr->bypass_spec_v1); 6281 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr) 6282 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 6283 !meta->map_ptr->bypass_spec_v1); 6284 return 0; 6285 } 6286 6287 static int 6288 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 6289 int func_id, int insn_idx) 6290 { 6291 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 6292 struct bpf_reg_state *regs = cur_regs(env), *reg; 6293 struct bpf_map *map = meta->map_ptr; 6294 struct tnum range; 6295 u64 val; 6296 int err; 6297 6298 if (func_id != BPF_FUNC_tail_call) 6299 return 0; 6300 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 6301 verbose(env, "kernel subsystem misconfigured verifier\n"); 6302 return -EINVAL; 6303 } 6304 6305 range = tnum_range(0, map->max_entries - 1); 6306 reg = ®s[BPF_REG_3]; 6307 6308 if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) { 6309 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 6310 return 0; 6311 } 6312 6313 err = mark_chain_precision(env, BPF_REG_3); 6314 if (err) 6315 return err; 6316 6317 val = reg->var_off.value; 6318 if (bpf_map_key_unseen(aux)) 6319 bpf_map_key_store(aux, val); 6320 else if (!bpf_map_key_poisoned(aux) && 6321 bpf_map_key_immediate(aux) != val) 6322 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 6323 return 0; 6324 } 6325 6326 static int check_reference_leak(struct bpf_verifier_env *env) 6327 { 6328 struct bpf_func_state *state = cur_func(env); 6329 int i; 6330 6331 for (i = 0; i < state->acquired_refs; i++) { 6332 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 6333 state->refs[i].id, state->refs[i].insn_idx); 6334 } 6335 return state->acquired_refs ? -EINVAL : 0; 6336 } 6337 6338 static int check_bpf_snprintf_call(struct bpf_verifier_env *env, 6339 struct bpf_reg_state *regs) 6340 { 6341 struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3]; 6342 struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5]; 6343 struct bpf_map *fmt_map = fmt_reg->map_ptr; 6344 int err, fmt_map_off, num_args; 6345 u64 fmt_addr; 6346 char *fmt; 6347 6348 /* data must be an array of u64 */ 6349 if (data_len_reg->var_off.value % 8) 6350 return -EINVAL; 6351 num_args = data_len_reg->var_off.value / 8; 6352 6353 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const 6354 * and map_direct_value_addr is set. 6355 */ 6356 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value; 6357 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr, 6358 fmt_map_off); 6359 if (err) { 6360 verbose(env, "verifier bug\n"); 6361 return -EFAULT; 6362 } 6363 fmt = (char *)(long)fmt_addr + fmt_map_off; 6364 6365 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we 6366 * can focus on validating the format specifiers. 6367 */ 6368 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, NULL, num_args); 6369 if (err < 0) 6370 verbose(env, "Invalid format string\n"); 6371 6372 return err; 6373 } 6374 6375 static int check_get_func_ip(struct bpf_verifier_env *env) 6376 { 6377 enum bpf_attach_type eatype = env->prog->expected_attach_type; 6378 enum bpf_prog_type type = resolve_prog_type(env->prog); 6379 int func_id = BPF_FUNC_get_func_ip; 6380 6381 if (type == BPF_PROG_TYPE_TRACING) { 6382 if (eatype != BPF_TRACE_FENTRY && eatype != BPF_TRACE_FEXIT && 6383 eatype != BPF_MODIFY_RETURN) { 6384 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n", 6385 func_id_name(func_id), func_id); 6386 return -ENOTSUPP; 6387 } 6388 return 0; 6389 } else if (type == BPF_PROG_TYPE_KPROBE) { 6390 return 0; 6391 } 6392 6393 verbose(env, "func %s#%d not supported for program type %d\n", 6394 func_id_name(func_id), func_id, type); 6395 return -ENOTSUPP; 6396 } 6397 6398 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 6399 int *insn_idx_p) 6400 { 6401 const struct bpf_func_proto *fn = NULL; 6402 struct bpf_reg_state *regs; 6403 struct bpf_call_arg_meta meta; 6404 int insn_idx = *insn_idx_p; 6405 bool changes_data; 6406 int i, err, func_id; 6407 6408 /* find function prototype */ 6409 func_id = insn->imm; 6410 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 6411 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 6412 func_id); 6413 return -EINVAL; 6414 } 6415 6416 if (env->ops->get_func_proto) 6417 fn = env->ops->get_func_proto(func_id, env->prog); 6418 if (!fn) { 6419 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 6420 func_id); 6421 return -EINVAL; 6422 } 6423 6424 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 6425 if (!env->prog->gpl_compatible && fn->gpl_only) { 6426 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 6427 return -EINVAL; 6428 } 6429 6430 if (fn->allowed && !fn->allowed(env->prog)) { 6431 verbose(env, "helper call is not allowed in probe\n"); 6432 return -EINVAL; 6433 } 6434 6435 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 6436 changes_data = bpf_helper_changes_pkt_data(fn->func); 6437 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 6438 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 6439 func_id_name(func_id), func_id); 6440 return -EINVAL; 6441 } 6442 6443 memset(&meta, 0, sizeof(meta)); 6444 meta.pkt_access = fn->pkt_access; 6445 6446 err = check_func_proto(fn, func_id); 6447 if (err) { 6448 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 6449 func_id_name(func_id), func_id); 6450 return err; 6451 } 6452 6453 meta.func_id = func_id; 6454 /* check args */ 6455 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 6456 err = check_func_arg(env, i, &meta, fn); 6457 if (err) 6458 return err; 6459 } 6460 6461 err = record_func_map(env, &meta, func_id, insn_idx); 6462 if (err) 6463 return err; 6464 6465 err = record_func_key(env, &meta, func_id, insn_idx); 6466 if (err) 6467 return err; 6468 6469 /* Mark slots with STACK_MISC in case of raw mode, stack offset 6470 * is inferred from register state. 6471 */ 6472 for (i = 0; i < meta.access_size; i++) { 6473 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 6474 BPF_WRITE, -1, false); 6475 if (err) 6476 return err; 6477 } 6478 6479 if (func_id == BPF_FUNC_tail_call) { 6480 err = check_reference_leak(env); 6481 if (err) { 6482 verbose(env, "tail_call would lead to reference leak\n"); 6483 return err; 6484 } 6485 } else if (is_release_function(func_id)) { 6486 err = release_reference(env, meta.ref_obj_id); 6487 if (err) { 6488 verbose(env, "func %s#%d reference has not been acquired before\n", 6489 func_id_name(func_id), func_id); 6490 return err; 6491 } 6492 } 6493 6494 regs = cur_regs(env); 6495 6496 /* check that flags argument in get_local_storage(map, flags) is 0, 6497 * this is required because get_local_storage() can't return an error. 6498 */ 6499 if (func_id == BPF_FUNC_get_local_storage && 6500 !register_is_null(®s[BPF_REG_2])) { 6501 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 6502 return -EINVAL; 6503 } 6504 6505 if (func_id == BPF_FUNC_for_each_map_elem) { 6506 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 6507 set_map_elem_callback_state); 6508 if (err < 0) 6509 return -EINVAL; 6510 } 6511 6512 if (func_id == BPF_FUNC_timer_set_callback) { 6513 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 6514 set_timer_callback_state); 6515 if (err < 0) 6516 return -EINVAL; 6517 } 6518 6519 if (func_id == BPF_FUNC_find_vma) { 6520 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 6521 set_find_vma_callback_state); 6522 if (err < 0) 6523 return -EINVAL; 6524 } 6525 6526 if (func_id == BPF_FUNC_snprintf) { 6527 err = check_bpf_snprintf_call(env, regs); 6528 if (err < 0) 6529 return err; 6530 } 6531 6532 /* reset caller saved regs */ 6533 for (i = 0; i < CALLER_SAVED_REGS; i++) { 6534 mark_reg_not_init(env, regs, caller_saved[i]); 6535 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 6536 } 6537 6538 /* helper call returns 64-bit value. */ 6539 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 6540 6541 /* update return register (already marked as written above) */ 6542 if (fn->ret_type == RET_INTEGER) { 6543 /* sets type to SCALAR_VALUE */ 6544 mark_reg_unknown(env, regs, BPF_REG_0); 6545 } else if (fn->ret_type == RET_VOID) { 6546 regs[BPF_REG_0].type = NOT_INIT; 6547 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL || 6548 fn->ret_type == RET_PTR_TO_MAP_VALUE) { 6549 /* There is no offset yet applied, variable or fixed */ 6550 mark_reg_known_zero(env, regs, BPF_REG_0); 6551 /* remember map_ptr, so that check_map_access() 6552 * can check 'value_size' boundary of memory access 6553 * to map element returned from bpf_map_lookup_elem() 6554 */ 6555 if (meta.map_ptr == NULL) { 6556 verbose(env, 6557 "kernel subsystem misconfigured verifier\n"); 6558 return -EINVAL; 6559 } 6560 regs[BPF_REG_0].map_ptr = meta.map_ptr; 6561 regs[BPF_REG_0].map_uid = meta.map_uid; 6562 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) { 6563 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE; 6564 if (map_value_has_spin_lock(meta.map_ptr)) 6565 regs[BPF_REG_0].id = ++env->id_gen; 6566 } else { 6567 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL; 6568 } 6569 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) { 6570 mark_reg_known_zero(env, regs, BPF_REG_0); 6571 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL; 6572 } else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) { 6573 mark_reg_known_zero(env, regs, BPF_REG_0); 6574 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL; 6575 } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) { 6576 mark_reg_known_zero(env, regs, BPF_REG_0); 6577 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL; 6578 } else if (fn->ret_type == RET_PTR_TO_ALLOC_MEM_OR_NULL) { 6579 mark_reg_known_zero(env, regs, BPF_REG_0); 6580 regs[BPF_REG_0].type = PTR_TO_MEM_OR_NULL; 6581 regs[BPF_REG_0].mem_size = meta.mem_size; 6582 } else if (fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID_OR_NULL || 6583 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID) { 6584 const struct btf_type *t; 6585 6586 mark_reg_known_zero(env, regs, BPF_REG_0); 6587 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL); 6588 if (!btf_type_is_struct(t)) { 6589 u32 tsize; 6590 const struct btf_type *ret; 6591 const char *tname; 6592 6593 /* resolve the type size of ksym. */ 6594 ret = btf_resolve_size(meta.ret_btf, t, &tsize); 6595 if (IS_ERR(ret)) { 6596 tname = btf_name_by_offset(meta.ret_btf, t->name_off); 6597 verbose(env, "unable to resolve the size of type '%s': %ld\n", 6598 tname, PTR_ERR(ret)); 6599 return -EINVAL; 6600 } 6601 regs[BPF_REG_0].type = 6602 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ? 6603 PTR_TO_MEM : PTR_TO_MEM_OR_NULL; 6604 regs[BPF_REG_0].mem_size = tsize; 6605 } else { 6606 regs[BPF_REG_0].type = 6607 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ? 6608 PTR_TO_BTF_ID : PTR_TO_BTF_ID_OR_NULL; 6609 regs[BPF_REG_0].btf = meta.ret_btf; 6610 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 6611 } 6612 } else if (fn->ret_type == RET_PTR_TO_BTF_ID_OR_NULL || 6613 fn->ret_type == RET_PTR_TO_BTF_ID) { 6614 int ret_btf_id; 6615 6616 mark_reg_known_zero(env, regs, BPF_REG_0); 6617 regs[BPF_REG_0].type = fn->ret_type == RET_PTR_TO_BTF_ID ? 6618 PTR_TO_BTF_ID : 6619 PTR_TO_BTF_ID_OR_NULL; 6620 ret_btf_id = *fn->ret_btf_id; 6621 if (ret_btf_id == 0) { 6622 verbose(env, "invalid return type %d of func %s#%d\n", 6623 fn->ret_type, func_id_name(func_id), func_id); 6624 return -EINVAL; 6625 } 6626 /* current BPF helper definitions are only coming from 6627 * built-in code with type IDs from vmlinux BTF 6628 */ 6629 regs[BPF_REG_0].btf = btf_vmlinux; 6630 regs[BPF_REG_0].btf_id = ret_btf_id; 6631 } else { 6632 verbose(env, "unknown return type %d of func %s#%d\n", 6633 fn->ret_type, func_id_name(func_id), func_id); 6634 return -EINVAL; 6635 } 6636 6637 if (reg_type_may_be_null(regs[BPF_REG_0].type)) 6638 regs[BPF_REG_0].id = ++env->id_gen; 6639 6640 if (is_ptr_cast_function(func_id)) { 6641 /* For release_reference() */ 6642 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 6643 } else if (is_acquire_function(func_id, meta.map_ptr)) { 6644 int id = acquire_reference_state(env, insn_idx); 6645 6646 if (id < 0) 6647 return id; 6648 /* For mark_ptr_or_null_reg() */ 6649 regs[BPF_REG_0].id = id; 6650 /* For release_reference() */ 6651 regs[BPF_REG_0].ref_obj_id = id; 6652 } 6653 6654 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 6655 6656 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 6657 if (err) 6658 return err; 6659 6660 if ((func_id == BPF_FUNC_get_stack || 6661 func_id == BPF_FUNC_get_task_stack) && 6662 !env->prog->has_callchain_buf) { 6663 const char *err_str; 6664 6665 #ifdef CONFIG_PERF_EVENTS 6666 err = get_callchain_buffers(sysctl_perf_event_max_stack); 6667 err_str = "cannot get callchain buffer for func %s#%d\n"; 6668 #else 6669 err = -ENOTSUPP; 6670 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 6671 #endif 6672 if (err) { 6673 verbose(env, err_str, func_id_name(func_id), func_id); 6674 return err; 6675 } 6676 6677 env->prog->has_callchain_buf = true; 6678 } 6679 6680 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack) 6681 env->prog->call_get_stack = true; 6682 6683 if (func_id == BPF_FUNC_get_func_ip) { 6684 if (check_get_func_ip(env)) 6685 return -ENOTSUPP; 6686 env->prog->call_get_func_ip = true; 6687 } 6688 6689 if (changes_data) 6690 clear_all_pkt_pointers(env); 6691 return 0; 6692 } 6693 6694 /* mark_btf_func_reg_size() is used when the reg size is determined by 6695 * the BTF func_proto's return value size and argument. 6696 */ 6697 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno, 6698 size_t reg_size) 6699 { 6700 struct bpf_reg_state *reg = &cur_regs(env)[regno]; 6701 6702 if (regno == BPF_REG_0) { 6703 /* Function return value */ 6704 reg->live |= REG_LIVE_WRITTEN; 6705 reg->subreg_def = reg_size == sizeof(u64) ? 6706 DEF_NOT_SUBREG : env->insn_idx + 1; 6707 } else { 6708 /* Function argument */ 6709 if (reg_size == sizeof(u64)) { 6710 mark_insn_zext(env, reg); 6711 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 6712 } else { 6713 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32); 6714 } 6715 } 6716 } 6717 6718 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn) 6719 { 6720 const struct btf_type *t, *func, *func_proto, *ptr_type; 6721 struct bpf_reg_state *regs = cur_regs(env); 6722 const char *func_name, *ptr_type_name; 6723 u32 i, nargs, func_id, ptr_type_id; 6724 struct module *btf_mod = NULL; 6725 const struct btf_param *args; 6726 struct btf *desc_btf; 6727 int err; 6728 6729 /* skip for now, but return error when we find this in fixup_kfunc_call */ 6730 if (!insn->imm) 6731 return 0; 6732 6733 desc_btf = find_kfunc_desc_btf(env, insn->imm, insn->off, &btf_mod); 6734 if (IS_ERR(desc_btf)) 6735 return PTR_ERR(desc_btf); 6736 6737 func_id = insn->imm; 6738 func = btf_type_by_id(desc_btf, func_id); 6739 func_name = btf_name_by_offset(desc_btf, func->name_off); 6740 func_proto = btf_type_by_id(desc_btf, func->type); 6741 6742 if (!env->ops->check_kfunc_call || 6743 !env->ops->check_kfunc_call(func_id, btf_mod)) { 6744 verbose(env, "calling kernel function %s is not allowed\n", 6745 func_name); 6746 return -EACCES; 6747 } 6748 6749 /* Check the arguments */ 6750 err = btf_check_kfunc_arg_match(env, desc_btf, func_id, regs); 6751 if (err) 6752 return err; 6753 6754 for (i = 0; i < CALLER_SAVED_REGS; i++) 6755 mark_reg_not_init(env, regs, caller_saved[i]); 6756 6757 /* Check return type */ 6758 t = btf_type_skip_modifiers(desc_btf, func_proto->type, NULL); 6759 if (btf_type_is_scalar(t)) { 6760 mark_reg_unknown(env, regs, BPF_REG_0); 6761 mark_btf_func_reg_size(env, BPF_REG_0, t->size); 6762 } else if (btf_type_is_ptr(t)) { 6763 ptr_type = btf_type_skip_modifiers(desc_btf, t->type, 6764 &ptr_type_id); 6765 if (!btf_type_is_struct(ptr_type)) { 6766 ptr_type_name = btf_name_by_offset(desc_btf, 6767 ptr_type->name_off); 6768 verbose(env, "kernel function %s returns pointer type %s %s is not supported\n", 6769 func_name, btf_type_str(ptr_type), 6770 ptr_type_name); 6771 return -EINVAL; 6772 } 6773 mark_reg_known_zero(env, regs, BPF_REG_0); 6774 regs[BPF_REG_0].btf = desc_btf; 6775 regs[BPF_REG_0].type = PTR_TO_BTF_ID; 6776 regs[BPF_REG_0].btf_id = ptr_type_id; 6777 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *)); 6778 } /* else { add_kfunc_call() ensures it is btf_type_is_void(t) } */ 6779 6780 nargs = btf_type_vlen(func_proto); 6781 args = (const struct btf_param *)(func_proto + 1); 6782 for (i = 0; i < nargs; i++) { 6783 u32 regno = i + 1; 6784 6785 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL); 6786 if (btf_type_is_ptr(t)) 6787 mark_btf_func_reg_size(env, regno, sizeof(void *)); 6788 else 6789 /* scalar. ensured by btf_check_kfunc_arg_match() */ 6790 mark_btf_func_reg_size(env, regno, t->size); 6791 } 6792 6793 return 0; 6794 } 6795 6796 static bool signed_add_overflows(s64 a, s64 b) 6797 { 6798 /* Do the add in u64, where overflow is well-defined */ 6799 s64 res = (s64)((u64)a + (u64)b); 6800 6801 if (b < 0) 6802 return res > a; 6803 return res < a; 6804 } 6805 6806 static bool signed_add32_overflows(s32 a, s32 b) 6807 { 6808 /* Do the add in u32, where overflow is well-defined */ 6809 s32 res = (s32)((u32)a + (u32)b); 6810 6811 if (b < 0) 6812 return res > a; 6813 return res < a; 6814 } 6815 6816 static bool signed_sub_overflows(s64 a, s64 b) 6817 { 6818 /* Do the sub in u64, where overflow is well-defined */ 6819 s64 res = (s64)((u64)a - (u64)b); 6820 6821 if (b < 0) 6822 return res < a; 6823 return res > a; 6824 } 6825 6826 static bool signed_sub32_overflows(s32 a, s32 b) 6827 { 6828 /* Do the sub in u32, where overflow is well-defined */ 6829 s32 res = (s32)((u32)a - (u32)b); 6830 6831 if (b < 0) 6832 return res < a; 6833 return res > a; 6834 } 6835 6836 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 6837 const struct bpf_reg_state *reg, 6838 enum bpf_reg_type type) 6839 { 6840 bool known = tnum_is_const(reg->var_off); 6841 s64 val = reg->var_off.value; 6842 s64 smin = reg->smin_value; 6843 6844 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 6845 verbose(env, "math between %s pointer and %lld is not allowed\n", 6846 reg_type_str[type], val); 6847 return false; 6848 } 6849 6850 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 6851 verbose(env, "%s pointer offset %d is not allowed\n", 6852 reg_type_str[type], reg->off); 6853 return false; 6854 } 6855 6856 if (smin == S64_MIN) { 6857 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 6858 reg_type_str[type]); 6859 return false; 6860 } 6861 6862 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 6863 verbose(env, "value %lld makes %s pointer be out of bounds\n", 6864 smin, reg_type_str[type]); 6865 return false; 6866 } 6867 6868 return true; 6869 } 6870 6871 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 6872 { 6873 return &env->insn_aux_data[env->insn_idx]; 6874 } 6875 6876 enum { 6877 REASON_BOUNDS = -1, 6878 REASON_TYPE = -2, 6879 REASON_PATHS = -3, 6880 REASON_LIMIT = -4, 6881 REASON_STACK = -5, 6882 }; 6883 6884 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 6885 u32 *alu_limit, bool mask_to_left) 6886 { 6887 u32 max = 0, ptr_limit = 0; 6888 6889 switch (ptr_reg->type) { 6890 case PTR_TO_STACK: 6891 /* Offset 0 is out-of-bounds, but acceptable start for the 6892 * left direction, see BPF_REG_FP. Also, unknown scalar 6893 * offset where we would need to deal with min/max bounds is 6894 * currently prohibited for unprivileged. 6895 */ 6896 max = MAX_BPF_STACK + mask_to_left; 6897 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off); 6898 break; 6899 case PTR_TO_MAP_VALUE: 6900 max = ptr_reg->map_ptr->value_size; 6901 ptr_limit = (mask_to_left ? 6902 ptr_reg->smin_value : 6903 ptr_reg->umax_value) + ptr_reg->off; 6904 break; 6905 default: 6906 return REASON_TYPE; 6907 } 6908 6909 if (ptr_limit >= max) 6910 return REASON_LIMIT; 6911 *alu_limit = ptr_limit; 6912 return 0; 6913 } 6914 6915 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 6916 const struct bpf_insn *insn) 6917 { 6918 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K; 6919 } 6920 6921 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 6922 u32 alu_state, u32 alu_limit) 6923 { 6924 /* If we arrived here from different branches with different 6925 * state or limits to sanitize, then this won't work. 6926 */ 6927 if (aux->alu_state && 6928 (aux->alu_state != alu_state || 6929 aux->alu_limit != alu_limit)) 6930 return REASON_PATHS; 6931 6932 /* Corresponding fixup done in do_misc_fixups(). */ 6933 aux->alu_state = alu_state; 6934 aux->alu_limit = alu_limit; 6935 return 0; 6936 } 6937 6938 static int sanitize_val_alu(struct bpf_verifier_env *env, 6939 struct bpf_insn *insn) 6940 { 6941 struct bpf_insn_aux_data *aux = cur_aux(env); 6942 6943 if (can_skip_alu_sanitation(env, insn)) 6944 return 0; 6945 6946 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 6947 } 6948 6949 static bool sanitize_needed(u8 opcode) 6950 { 6951 return opcode == BPF_ADD || opcode == BPF_SUB; 6952 } 6953 6954 struct bpf_sanitize_info { 6955 struct bpf_insn_aux_data aux; 6956 bool mask_to_left; 6957 }; 6958 6959 static struct bpf_verifier_state * 6960 sanitize_speculative_path(struct bpf_verifier_env *env, 6961 const struct bpf_insn *insn, 6962 u32 next_idx, u32 curr_idx) 6963 { 6964 struct bpf_verifier_state *branch; 6965 struct bpf_reg_state *regs; 6966 6967 branch = push_stack(env, next_idx, curr_idx, true); 6968 if (branch && insn) { 6969 regs = branch->frame[branch->curframe]->regs; 6970 if (BPF_SRC(insn->code) == BPF_K) { 6971 mark_reg_unknown(env, regs, insn->dst_reg); 6972 } else if (BPF_SRC(insn->code) == BPF_X) { 6973 mark_reg_unknown(env, regs, insn->dst_reg); 6974 mark_reg_unknown(env, regs, insn->src_reg); 6975 } 6976 } 6977 return branch; 6978 } 6979 6980 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 6981 struct bpf_insn *insn, 6982 const struct bpf_reg_state *ptr_reg, 6983 const struct bpf_reg_state *off_reg, 6984 struct bpf_reg_state *dst_reg, 6985 struct bpf_sanitize_info *info, 6986 const bool commit_window) 6987 { 6988 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux; 6989 struct bpf_verifier_state *vstate = env->cur_state; 6990 bool off_is_imm = tnum_is_const(off_reg->var_off); 6991 bool off_is_neg = off_reg->smin_value < 0; 6992 bool ptr_is_dst_reg = ptr_reg == dst_reg; 6993 u8 opcode = BPF_OP(insn->code); 6994 u32 alu_state, alu_limit; 6995 struct bpf_reg_state tmp; 6996 bool ret; 6997 int err; 6998 6999 if (can_skip_alu_sanitation(env, insn)) 7000 return 0; 7001 7002 /* We already marked aux for masking from non-speculative 7003 * paths, thus we got here in the first place. We only care 7004 * to explore bad access from here. 7005 */ 7006 if (vstate->speculative) 7007 goto do_sim; 7008 7009 if (!commit_window) { 7010 if (!tnum_is_const(off_reg->var_off) && 7011 (off_reg->smin_value < 0) != (off_reg->smax_value < 0)) 7012 return REASON_BOUNDS; 7013 7014 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) || 7015 (opcode == BPF_SUB && !off_is_neg); 7016 } 7017 7018 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left); 7019 if (err < 0) 7020 return err; 7021 7022 if (commit_window) { 7023 /* In commit phase we narrow the masking window based on 7024 * the observed pointer move after the simulated operation. 7025 */ 7026 alu_state = info->aux.alu_state; 7027 alu_limit = abs(info->aux.alu_limit - alu_limit); 7028 } else { 7029 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 7030 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0; 7031 alu_state |= ptr_is_dst_reg ? 7032 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 7033 7034 /* Limit pruning on unknown scalars to enable deep search for 7035 * potential masking differences from other program paths. 7036 */ 7037 if (!off_is_imm) 7038 env->explore_alu_limits = true; 7039 } 7040 7041 err = update_alu_sanitation_state(aux, alu_state, alu_limit); 7042 if (err < 0) 7043 return err; 7044 do_sim: 7045 /* If we're in commit phase, we're done here given we already 7046 * pushed the truncated dst_reg into the speculative verification 7047 * stack. 7048 * 7049 * Also, when register is a known constant, we rewrite register-based 7050 * operation to immediate-based, and thus do not need masking (and as 7051 * a consequence, do not need to simulate the zero-truncation either). 7052 */ 7053 if (commit_window || off_is_imm) 7054 return 0; 7055 7056 /* Simulate and find potential out-of-bounds access under 7057 * speculative execution from truncation as a result of 7058 * masking when off was not within expected range. If off 7059 * sits in dst, then we temporarily need to move ptr there 7060 * to simulate dst (== 0) +/-= ptr. Needed, for example, 7061 * for cases where we use K-based arithmetic in one direction 7062 * and truncated reg-based in the other in order to explore 7063 * bad access. 7064 */ 7065 if (!ptr_is_dst_reg) { 7066 tmp = *dst_reg; 7067 *dst_reg = *ptr_reg; 7068 } 7069 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1, 7070 env->insn_idx); 7071 if (!ptr_is_dst_reg && ret) 7072 *dst_reg = tmp; 7073 return !ret ? REASON_STACK : 0; 7074 } 7075 7076 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env) 7077 { 7078 struct bpf_verifier_state *vstate = env->cur_state; 7079 7080 /* If we simulate paths under speculation, we don't update the 7081 * insn as 'seen' such that when we verify unreachable paths in 7082 * the non-speculative domain, sanitize_dead_code() can still 7083 * rewrite/sanitize them. 7084 */ 7085 if (!vstate->speculative) 7086 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 7087 } 7088 7089 static int sanitize_err(struct bpf_verifier_env *env, 7090 const struct bpf_insn *insn, int reason, 7091 const struct bpf_reg_state *off_reg, 7092 const struct bpf_reg_state *dst_reg) 7093 { 7094 static const char *err = "pointer arithmetic with it prohibited for !root"; 7095 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub"; 7096 u32 dst = insn->dst_reg, src = insn->src_reg; 7097 7098 switch (reason) { 7099 case REASON_BOUNDS: 7100 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n", 7101 off_reg == dst_reg ? dst : src, err); 7102 break; 7103 case REASON_TYPE: 7104 verbose(env, "R%d has pointer with unsupported alu operation, %s\n", 7105 off_reg == dst_reg ? src : dst, err); 7106 break; 7107 case REASON_PATHS: 7108 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n", 7109 dst, op, err); 7110 break; 7111 case REASON_LIMIT: 7112 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n", 7113 dst, op, err); 7114 break; 7115 case REASON_STACK: 7116 verbose(env, "R%d could not be pushed for speculative verification, %s\n", 7117 dst, err); 7118 break; 7119 default: 7120 verbose(env, "verifier internal error: unknown reason (%d)\n", 7121 reason); 7122 break; 7123 } 7124 7125 return -EACCES; 7126 } 7127 7128 /* check that stack access falls within stack limits and that 'reg' doesn't 7129 * have a variable offset. 7130 * 7131 * Variable offset is prohibited for unprivileged mode for simplicity since it 7132 * requires corresponding support in Spectre masking for stack ALU. See also 7133 * retrieve_ptr_limit(). 7134 * 7135 * 7136 * 'off' includes 'reg->off'. 7137 */ 7138 static int check_stack_access_for_ptr_arithmetic( 7139 struct bpf_verifier_env *env, 7140 int regno, 7141 const struct bpf_reg_state *reg, 7142 int off) 7143 { 7144 if (!tnum_is_const(reg->var_off)) { 7145 char tn_buf[48]; 7146 7147 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 7148 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n", 7149 regno, tn_buf, off); 7150 return -EACCES; 7151 } 7152 7153 if (off >= 0 || off < -MAX_BPF_STACK) { 7154 verbose(env, "R%d stack pointer arithmetic goes out of range, " 7155 "prohibited for !root; off=%d\n", regno, off); 7156 return -EACCES; 7157 } 7158 7159 return 0; 7160 } 7161 7162 static int sanitize_check_bounds(struct bpf_verifier_env *env, 7163 const struct bpf_insn *insn, 7164 const struct bpf_reg_state *dst_reg) 7165 { 7166 u32 dst = insn->dst_reg; 7167 7168 /* For unprivileged we require that resulting offset must be in bounds 7169 * in order to be able to sanitize access later on. 7170 */ 7171 if (env->bypass_spec_v1) 7172 return 0; 7173 7174 switch (dst_reg->type) { 7175 case PTR_TO_STACK: 7176 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg, 7177 dst_reg->off + dst_reg->var_off.value)) 7178 return -EACCES; 7179 break; 7180 case PTR_TO_MAP_VALUE: 7181 if (check_map_access(env, dst, dst_reg->off, 1, false)) { 7182 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 7183 "prohibited for !root\n", dst); 7184 return -EACCES; 7185 } 7186 break; 7187 default: 7188 break; 7189 } 7190 7191 return 0; 7192 } 7193 7194 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 7195 * Caller should also handle BPF_MOV case separately. 7196 * If we return -EACCES, caller may want to try again treating pointer as a 7197 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 7198 */ 7199 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 7200 struct bpf_insn *insn, 7201 const struct bpf_reg_state *ptr_reg, 7202 const struct bpf_reg_state *off_reg) 7203 { 7204 struct bpf_verifier_state *vstate = env->cur_state; 7205 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 7206 struct bpf_reg_state *regs = state->regs, *dst_reg; 7207 bool known = tnum_is_const(off_reg->var_off); 7208 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 7209 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 7210 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 7211 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 7212 struct bpf_sanitize_info info = {}; 7213 u8 opcode = BPF_OP(insn->code); 7214 u32 dst = insn->dst_reg; 7215 int ret; 7216 7217 dst_reg = ®s[dst]; 7218 7219 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 7220 smin_val > smax_val || umin_val > umax_val) { 7221 /* Taint dst register if offset had invalid bounds derived from 7222 * e.g. dead branches. 7223 */ 7224 __mark_reg_unknown(env, dst_reg); 7225 return 0; 7226 } 7227 7228 if (BPF_CLASS(insn->code) != BPF_ALU64) { 7229 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 7230 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 7231 __mark_reg_unknown(env, dst_reg); 7232 return 0; 7233 } 7234 7235 verbose(env, 7236 "R%d 32-bit pointer arithmetic prohibited\n", 7237 dst); 7238 return -EACCES; 7239 } 7240 7241 switch (ptr_reg->type) { 7242 case PTR_TO_MAP_VALUE_OR_NULL: 7243 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 7244 dst, reg_type_str[ptr_reg->type]); 7245 return -EACCES; 7246 case CONST_PTR_TO_MAP: 7247 /* smin_val represents the known value */ 7248 if (known && smin_val == 0 && opcode == BPF_ADD) 7249 break; 7250 fallthrough; 7251 case PTR_TO_PACKET_END: 7252 case PTR_TO_SOCKET: 7253 case PTR_TO_SOCKET_OR_NULL: 7254 case PTR_TO_SOCK_COMMON: 7255 case PTR_TO_SOCK_COMMON_OR_NULL: 7256 case PTR_TO_TCP_SOCK: 7257 case PTR_TO_TCP_SOCK_OR_NULL: 7258 case PTR_TO_XDP_SOCK: 7259 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 7260 dst, reg_type_str[ptr_reg->type]); 7261 return -EACCES; 7262 default: 7263 break; 7264 } 7265 7266 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 7267 * The id may be overwritten later if we create a new variable offset. 7268 */ 7269 dst_reg->type = ptr_reg->type; 7270 dst_reg->id = ptr_reg->id; 7271 7272 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 7273 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 7274 return -EINVAL; 7275 7276 /* pointer types do not carry 32-bit bounds at the moment. */ 7277 __mark_reg32_unbounded(dst_reg); 7278 7279 if (sanitize_needed(opcode)) { 7280 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg, 7281 &info, false); 7282 if (ret < 0) 7283 return sanitize_err(env, insn, ret, off_reg, dst_reg); 7284 } 7285 7286 switch (opcode) { 7287 case BPF_ADD: 7288 /* We can take a fixed offset as long as it doesn't overflow 7289 * the s32 'off' field 7290 */ 7291 if (known && (ptr_reg->off + smin_val == 7292 (s64)(s32)(ptr_reg->off + smin_val))) { 7293 /* pointer += K. Accumulate it into fixed offset */ 7294 dst_reg->smin_value = smin_ptr; 7295 dst_reg->smax_value = smax_ptr; 7296 dst_reg->umin_value = umin_ptr; 7297 dst_reg->umax_value = umax_ptr; 7298 dst_reg->var_off = ptr_reg->var_off; 7299 dst_reg->off = ptr_reg->off + smin_val; 7300 dst_reg->raw = ptr_reg->raw; 7301 break; 7302 } 7303 /* A new variable offset is created. Note that off_reg->off 7304 * == 0, since it's a scalar. 7305 * dst_reg gets the pointer type and since some positive 7306 * integer value was added to the pointer, give it a new 'id' 7307 * if it's a PTR_TO_PACKET. 7308 * this creates a new 'base' pointer, off_reg (variable) gets 7309 * added into the variable offset, and we copy the fixed offset 7310 * from ptr_reg. 7311 */ 7312 if (signed_add_overflows(smin_ptr, smin_val) || 7313 signed_add_overflows(smax_ptr, smax_val)) { 7314 dst_reg->smin_value = S64_MIN; 7315 dst_reg->smax_value = S64_MAX; 7316 } else { 7317 dst_reg->smin_value = smin_ptr + smin_val; 7318 dst_reg->smax_value = smax_ptr + smax_val; 7319 } 7320 if (umin_ptr + umin_val < umin_ptr || 7321 umax_ptr + umax_val < umax_ptr) { 7322 dst_reg->umin_value = 0; 7323 dst_reg->umax_value = U64_MAX; 7324 } else { 7325 dst_reg->umin_value = umin_ptr + umin_val; 7326 dst_reg->umax_value = umax_ptr + umax_val; 7327 } 7328 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 7329 dst_reg->off = ptr_reg->off; 7330 dst_reg->raw = ptr_reg->raw; 7331 if (reg_is_pkt_pointer(ptr_reg)) { 7332 dst_reg->id = ++env->id_gen; 7333 /* something was added to pkt_ptr, set range to zero */ 7334 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 7335 } 7336 break; 7337 case BPF_SUB: 7338 if (dst_reg == off_reg) { 7339 /* scalar -= pointer. Creates an unknown scalar */ 7340 verbose(env, "R%d tried to subtract pointer from scalar\n", 7341 dst); 7342 return -EACCES; 7343 } 7344 /* We don't allow subtraction from FP, because (according to 7345 * test_verifier.c test "invalid fp arithmetic", JITs might not 7346 * be able to deal with it. 7347 */ 7348 if (ptr_reg->type == PTR_TO_STACK) { 7349 verbose(env, "R%d subtraction from stack pointer prohibited\n", 7350 dst); 7351 return -EACCES; 7352 } 7353 if (known && (ptr_reg->off - smin_val == 7354 (s64)(s32)(ptr_reg->off - smin_val))) { 7355 /* pointer -= K. Subtract it from fixed offset */ 7356 dst_reg->smin_value = smin_ptr; 7357 dst_reg->smax_value = smax_ptr; 7358 dst_reg->umin_value = umin_ptr; 7359 dst_reg->umax_value = umax_ptr; 7360 dst_reg->var_off = ptr_reg->var_off; 7361 dst_reg->id = ptr_reg->id; 7362 dst_reg->off = ptr_reg->off - smin_val; 7363 dst_reg->raw = ptr_reg->raw; 7364 break; 7365 } 7366 /* A new variable offset is created. If the subtrahend is known 7367 * nonnegative, then any reg->range we had before is still good. 7368 */ 7369 if (signed_sub_overflows(smin_ptr, smax_val) || 7370 signed_sub_overflows(smax_ptr, smin_val)) { 7371 /* Overflow possible, we know nothing */ 7372 dst_reg->smin_value = S64_MIN; 7373 dst_reg->smax_value = S64_MAX; 7374 } else { 7375 dst_reg->smin_value = smin_ptr - smax_val; 7376 dst_reg->smax_value = smax_ptr - smin_val; 7377 } 7378 if (umin_ptr < umax_val) { 7379 /* Overflow possible, we know nothing */ 7380 dst_reg->umin_value = 0; 7381 dst_reg->umax_value = U64_MAX; 7382 } else { 7383 /* Cannot overflow (as long as bounds are consistent) */ 7384 dst_reg->umin_value = umin_ptr - umax_val; 7385 dst_reg->umax_value = umax_ptr - umin_val; 7386 } 7387 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 7388 dst_reg->off = ptr_reg->off; 7389 dst_reg->raw = ptr_reg->raw; 7390 if (reg_is_pkt_pointer(ptr_reg)) { 7391 dst_reg->id = ++env->id_gen; 7392 /* something was added to pkt_ptr, set range to zero */ 7393 if (smin_val < 0) 7394 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 7395 } 7396 break; 7397 case BPF_AND: 7398 case BPF_OR: 7399 case BPF_XOR: 7400 /* bitwise ops on pointers are troublesome, prohibit. */ 7401 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 7402 dst, bpf_alu_string[opcode >> 4]); 7403 return -EACCES; 7404 default: 7405 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 7406 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 7407 dst, bpf_alu_string[opcode >> 4]); 7408 return -EACCES; 7409 } 7410 7411 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 7412 return -EINVAL; 7413 7414 __update_reg_bounds(dst_reg); 7415 __reg_deduce_bounds(dst_reg); 7416 __reg_bound_offset(dst_reg); 7417 7418 if (sanitize_check_bounds(env, insn, dst_reg) < 0) 7419 return -EACCES; 7420 if (sanitize_needed(opcode)) { 7421 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg, 7422 &info, true); 7423 if (ret < 0) 7424 return sanitize_err(env, insn, ret, off_reg, dst_reg); 7425 } 7426 7427 return 0; 7428 } 7429 7430 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, 7431 struct bpf_reg_state *src_reg) 7432 { 7433 s32 smin_val = src_reg->s32_min_value; 7434 s32 smax_val = src_reg->s32_max_value; 7435 u32 umin_val = src_reg->u32_min_value; 7436 u32 umax_val = src_reg->u32_max_value; 7437 7438 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) || 7439 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) { 7440 dst_reg->s32_min_value = S32_MIN; 7441 dst_reg->s32_max_value = S32_MAX; 7442 } else { 7443 dst_reg->s32_min_value += smin_val; 7444 dst_reg->s32_max_value += smax_val; 7445 } 7446 if (dst_reg->u32_min_value + umin_val < umin_val || 7447 dst_reg->u32_max_value + umax_val < umax_val) { 7448 dst_reg->u32_min_value = 0; 7449 dst_reg->u32_max_value = U32_MAX; 7450 } else { 7451 dst_reg->u32_min_value += umin_val; 7452 dst_reg->u32_max_value += umax_val; 7453 } 7454 } 7455 7456 static void scalar_min_max_add(struct bpf_reg_state *dst_reg, 7457 struct bpf_reg_state *src_reg) 7458 { 7459 s64 smin_val = src_reg->smin_value; 7460 s64 smax_val = src_reg->smax_value; 7461 u64 umin_val = src_reg->umin_value; 7462 u64 umax_val = src_reg->umax_value; 7463 7464 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 7465 signed_add_overflows(dst_reg->smax_value, smax_val)) { 7466 dst_reg->smin_value = S64_MIN; 7467 dst_reg->smax_value = S64_MAX; 7468 } else { 7469 dst_reg->smin_value += smin_val; 7470 dst_reg->smax_value += smax_val; 7471 } 7472 if (dst_reg->umin_value + umin_val < umin_val || 7473 dst_reg->umax_value + umax_val < umax_val) { 7474 dst_reg->umin_value = 0; 7475 dst_reg->umax_value = U64_MAX; 7476 } else { 7477 dst_reg->umin_value += umin_val; 7478 dst_reg->umax_value += umax_val; 7479 } 7480 } 7481 7482 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, 7483 struct bpf_reg_state *src_reg) 7484 { 7485 s32 smin_val = src_reg->s32_min_value; 7486 s32 smax_val = src_reg->s32_max_value; 7487 u32 umin_val = src_reg->u32_min_value; 7488 u32 umax_val = src_reg->u32_max_value; 7489 7490 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) || 7491 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) { 7492 /* Overflow possible, we know nothing */ 7493 dst_reg->s32_min_value = S32_MIN; 7494 dst_reg->s32_max_value = S32_MAX; 7495 } else { 7496 dst_reg->s32_min_value -= smax_val; 7497 dst_reg->s32_max_value -= smin_val; 7498 } 7499 if (dst_reg->u32_min_value < umax_val) { 7500 /* Overflow possible, we know nothing */ 7501 dst_reg->u32_min_value = 0; 7502 dst_reg->u32_max_value = U32_MAX; 7503 } else { 7504 /* Cannot overflow (as long as bounds are consistent) */ 7505 dst_reg->u32_min_value -= umax_val; 7506 dst_reg->u32_max_value -= umin_val; 7507 } 7508 } 7509 7510 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, 7511 struct bpf_reg_state *src_reg) 7512 { 7513 s64 smin_val = src_reg->smin_value; 7514 s64 smax_val = src_reg->smax_value; 7515 u64 umin_val = src_reg->umin_value; 7516 u64 umax_val = src_reg->umax_value; 7517 7518 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 7519 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 7520 /* Overflow possible, we know nothing */ 7521 dst_reg->smin_value = S64_MIN; 7522 dst_reg->smax_value = S64_MAX; 7523 } else { 7524 dst_reg->smin_value -= smax_val; 7525 dst_reg->smax_value -= smin_val; 7526 } 7527 if (dst_reg->umin_value < umax_val) { 7528 /* Overflow possible, we know nothing */ 7529 dst_reg->umin_value = 0; 7530 dst_reg->umax_value = U64_MAX; 7531 } else { 7532 /* Cannot overflow (as long as bounds are consistent) */ 7533 dst_reg->umin_value -= umax_val; 7534 dst_reg->umax_value -= umin_val; 7535 } 7536 } 7537 7538 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, 7539 struct bpf_reg_state *src_reg) 7540 { 7541 s32 smin_val = src_reg->s32_min_value; 7542 u32 umin_val = src_reg->u32_min_value; 7543 u32 umax_val = src_reg->u32_max_value; 7544 7545 if (smin_val < 0 || dst_reg->s32_min_value < 0) { 7546 /* Ain't nobody got time to multiply that sign */ 7547 __mark_reg32_unbounded(dst_reg); 7548 return; 7549 } 7550 /* Both values are positive, so we can work with unsigned and 7551 * copy the result to signed (unless it exceeds S32_MAX). 7552 */ 7553 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) { 7554 /* Potential overflow, we know nothing */ 7555 __mark_reg32_unbounded(dst_reg); 7556 return; 7557 } 7558 dst_reg->u32_min_value *= umin_val; 7559 dst_reg->u32_max_value *= umax_val; 7560 if (dst_reg->u32_max_value > S32_MAX) { 7561 /* Overflow possible, we know nothing */ 7562 dst_reg->s32_min_value = S32_MIN; 7563 dst_reg->s32_max_value = S32_MAX; 7564 } else { 7565 dst_reg->s32_min_value = dst_reg->u32_min_value; 7566 dst_reg->s32_max_value = dst_reg->u32_max_value; 7567 } 7568 } 7569 7570 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, 7571 struct bpf_reg_state *src_reg) 7572 { 7573 s64 smin_val = src_reg->smin_value; 7574 u64 umin_val = src_reg->umin_value; 7575 u64 umax_val = src_reg->umax_value; 7576 7577 if (smin_val < 0 || dst_reg->smin_value < 0) { 7578 /* Ain't nobody got time to multiply that sign */ 7579 __mark_reg64_unbounded(dst_reg); 7580 return; 7581 } 7582 /* Both values are positive, so we can work with unsigned and 7583 * copy the result to signed (unless it exceeds S64_MAX). 7584 */ 7585 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 7586 /* Potential overflow, we know nothing */ 7587 __mark_reg64_unbounded(dst_reg); 7588 return; 7589 } 7590 dst_reg->umin_value *= umin_val; 7591 dst_reg->umax_value *= umax_val; 7592 if (dst_reg->umax_value > S64_MAX) { 7593 /* Overflow possible, we know nothing */ 7594 dst_reg->smin_value = S64_MIN; 7595 dst_reg->smax_value = S64_MAX; 7596 } else { 7597 dst_reg->smin_value = dst_reg->umin_value; 7598 dst_reg->smax_value = dst_reg->umax_value; 7599 } 7600 } 7601 7602 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, 7603 struct bpf_reg_state *src_reg) 7604 { 7605 bool src_known = tnum_subreg_is_const(src_reg->var_off); 7606 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 7607 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 7608 s32 smin_val = src_reg->s32_min_value; 7609 u32 umax_val = src_reg->u32_max_value; 7610 7611 if (src_known && dst_known) { 7612 __mark_reg32_known(dst_reg, var32_off.value); 7613 return; 7614 } 7615 7616 /* We get our minimum from the var_off, since that's inherently 7617 * bitwise. Our maximum is the minimum of the operands' maxima. 7618 */ 7619 dst_reg->u32_min_value = var32_off.value; 7620 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 7621 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 7622 /* Lose signed bounds when ANDing negative numbers, 7623 * ain't nobody got time for that. 7624 */ 7625 dst_reg->s32_min_value = S32_MIN; 7626 dst_reg->s32_max_value = S32_MAX; 7627 } else { 7628 /* ANDing two positives gives a positive, so safe to 7629 * cast result into s64. 7630 */ 7631 dst_reg->s32_min_value = dst_reg->u32_min_value; 7632 dst_reg->s32_max_value = dst_reg->u32_max_value; 7633 } 7634 } 7635 7636 static void scalar_min_max_and(struct bpf_reg_state *dst_reg, 7637 struct bpf_reg_state *src_reg) 7638 { 7639 bool src_known = tnum_is_const(src_reg->var_off); 7640 bool dst_known = tnum_is_const(dst_reg->var_off); 7641 s64 smin_val = src_reg->smin_value; 7642 u64 umax_val = src_reg->umax_value; 7643 7644 if (src_known && dst_known) { 7645 __mark_reg_known(dst_reg, dst_reg->var_off.value); 7646 return; 7647 } 7648 7649 /* We get our minimum from the var_off, since that's inherently 7650 * bitwise. Our maximum is the minimum of the operands' maxima. 7651 */ 7652 dst_reg->umin_value = dst_reg->var_off.value; 7653 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 7654 if (dst_reg->smin_value < 0 || smin_val < 0) { 7655 /* Lose signed bounds when ANDing negative numbers, 7656 * ain't nobody got time for that. 7657 */ 7658 dst_reg->smin_value = S64_MIN; 7659 dst_reg->smax_value = S64_MAX; 7660 } else { 7661 /* ANDing two positives gives a positive, so safe to 7662 * cast result into s64. 7663 */ 7664 dst_reg->smin_value = dst_reg->umin_value; 7665 dst_reg->smax_value = dst_reg->umax_value; 7666 } 7667 /* We may learn something more from the var_off */ 7668 __update_reg_bounds(dst_reg); 7669 } 7670 7671 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, 7672 struct bpf_reg_state *src_reg) 7673 { 7674 bool src_known = tnum_subreg_is_const(src_reg->var_off); 7675 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 7676 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 7677 s32 smin_val = src_reg->s32_min_value; 7678 u32 umin_val = src_reg->u32_min_value; 7679 7680 if (src_known && dst_known) { 7681 __mark_reg32_known(dst_reg, var32_off.value); 7682 return; 7683 } 7684 7685 /* We get our maximum from the var_off, and our minimum is the 7686 * maximum of the operands' minima 7687 */ 7688 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 7689 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 7690 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 7691 /* Lose signed bounds when ORing negative numbers, 7692 * ain't nobody got time for that. 7693 */ 7694 dst_reg->s32_min_value = S32_MIN; 7695 dst_reg->s32_max_value = S32_MAX; 7696 } else { 7697 /* ORing two positives gives a positive, so safe to 7698 * cast result into s64. 7699 */ 7700 dst_reg->s32_min_value = dst_reg->u32_min_value; 7701 dst_reg->s32_max_value = dst_reg->u32_max_value; 7702 } 7703 } 7704 7705 static void scalar_min_max_or(struct bpf_reg_state *dst_reg, 7706 struct bpf_reg_state *src_reg) 7707 { 7708 bool src_known = tnum_is_const(src_reg->var_off); 7709 bool dst_known = tnum_is_const(dst_reg->var_off); 7710 s64 smin_val = src_reg->smin_value; 7711 u64 umin_val = src_reg->umin_value; 7712 7713 if (src_known && dst_known) { 7714 __mark_reg_known(dst_reg, dst_reg->var_off.value); 7715 return; 7716 } 7717 7718 /* We get our maximum from the var_off, and our minimum is the 7719 * maximum of the operands' minima 7720 */ 7721 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 7722 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 7723 if (dst_reg->smin_value < 0 || smin_val < 0) { 7724 /* Lose signed bounds when ORing negative numbers, 7725 * ain't nobody got time for that. 7726 */ 7727 dst_reg->smin_value = S64_MIN; 7728 dst_reg->smax_value = S64_MAX; 7729 } else { 7730 /* ORing two positives gives a positive, so safe to 7731 * cast result into s64. 7732 */ 7733 dst_reg->smin_value = dst_reg->umin_value; 7734 dst_reg->smax_value = dst_reg->umax_value; 7735 } 7736 /* We may learn something more from the var_off */ 7737 __update_reg_bounds(dst_reg); 7738 } 7739 7740 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg, 7741 struct bpf_reg_state *src_reg) 7742 { 7743 bool src_known = tnum_subreg_is_const(src_reg->var_off); 7744 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 7745 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 7746 s32 smin_val = src_reg->s32_min_value; 7747 7748 if (src_known && dst_known) { 7749 __mark_reg32_known(dst_reg, var32_off.value); 7750 return; 7751 } 7752 7753 /* We get both minimum and maximum from the var32_off. */ 7754 dst_reg->u32_min_value = var32_off.value; 7755 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 7756 7757 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) { 7758 /* XORing two positive sign numbers gives a positive, 7759 * so safe to cast u32 result into s32. 7760 */ 7761 dst_reg->s32_min_value = dst_reg->u32_min_value; 7762 dst_reg->s32_max_value = dst_reg->u32_max_value; 7763 } else { 7764 dst_reg->s32_min_value = S32_MIN; 7765 dst_reg->s32_max_value = S32_MAX; 7766 } 7767 } 7768 7769 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg, 7770 struct bpf_reg_state *src_reg) 7771 { 7772 bool src_known = tnum_is_const(src_reg->var_off); 7773 bool dst_known = tnum_is_const(dst_reg->var_off); 7774 s64 smin_val = src_reg->smin_value; 7775 7776 if (src_known && dst_known) { 7777 /* dst_reg->var_off.value has been updated earlier */ 7778 __mark_reg_known(dst_reg, dst_reg->var_off.value); 7779 return; 7780 } 7781 7782 /* We get both minimum and maximum from the var_off. */ 7783 dst_reg->umin_value = dst_reg->var_off.value; 7784 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 7785 7786 if (dst_reg->smin_value >= 0 && smin_val >= 0) { 7787 /* XORing two positive sign numbers gives a positive, 7788 * so safe to cast u64 result into s64. 7789 */ 7790 dst_reg->smin_value = dst_reg->umin_value; 7791 dst_reg->smax_value = dst_reg->umax_value; 7792 } else { 7793 dst_reg->smin_value = S64_MIN; 7794 dst_reg->smax_value = S64_MAX; 7795 } 7796 7797 __update_reg_bounds(dst_reg); 7798 } 7799 7800 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 7801 u64 umin_val, u64 umax_val) 7802 { 7803 /* We lose all sign bit information (except what we can pick 7804 * up from var_off) 7805 */ 7806 dst_reg->s32_min_value = S32_MIN; 7807 dst_reg->s32_max_value = S32_MAX; 7808 /* If we might shift our top bit out, then we know nothing */ 7809 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { 7810 dst_reg->u32_min_value = 0; 7811 dst_reg->u32_max_value = U32_MAX; 7812 } else { 7813 dst_reg->u32_min_value <<= umin_val; 7814 dst_reg->u32_max_value <<= umax_val; 7815 } 7816 } 7817 7818 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 7819 struct bpf_reg_state *src_reg) 7820 { 7821 u32 umax_val = src_reg->u32_max_value; 7822 u32 umin_val = src_reg->u32_min_value; 7823 /* u32 alu operation will zext upper bits */ 7824 struct tnum subreg = tnum_subreg(dst_reg->var_off); 7825 7826 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 7827 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 7828 /* Not required but being careful mark reg64 bounds as unknown so 7829 * that we are forced to pick them up from tnum and zext later and 7830 * if some path skips this step we are still safe. 7831 */ 7832 __mark_reg64_unbounded(dst_reg); 7833 __update_reg32_bounds(dst_reg); 7834 } 7835 7836 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, 7837 u64 umin_val, u64 umax_val) 7838 { 7839 /* Special case <<32 because it is a common compiler pattern to sign 7840 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are 7841 * positive we know this shift will also be positive so we can track 7842 * bounds correctly. Otherwise we lose all sign bit information except 7843 * what we can pick up from var_off. Perhaps we can generalize this 7844 * later to shifts of any length. 7845 */ 7846 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) 7847 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; 7848 else 7849 dst_reg->smax_value = S64_MAX; 7850 7851 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) 7852 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; 7853 else 7854 dst_reg->smin_value = S64_MIN; 7855 7856 /* If we might shift our top bit out, then we know nothing */ 7857 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 7858 dst_reg->umin_value = 0; 7859 dst_reg->umax_value = U64_MAX; 7860 } else { 7861 dst_reg->umin_value <<= umin_val; 7862 dst_reg->umax_value <<= umax_val; 7863 } 7864 } 7865 7866 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, 7867 struct bpf_reg_state *src_reg) 7868 { 7869 u64 umax_val = src_reg->umax_value; 7870 u64 umin_val = src_reg->umin_value; 7871 7872 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 7873 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 7874 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 7875 7876 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 7877 /* We may learn something more from the var_off */ 7878 __update_reg_bounds(dst_reg); 7879 } 7880 7881 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, 7882 struct bpf_reg_state *src_reg) 7883 { 7884 struct tnum subreg = tnum_subreg(dst_reg->var_off); 7885 u32 umax_val = src_reg->u32_max_value; 7886 u32 umin_val = src_reg->u32_min_value; 7887 7888 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 7889 * be negative, then either: 7890 * 1) src_reg might be zero, so the sign bit of the result is 7891 * unknown, so we lose our signed bounds 7892 * 2) it's known negative, thus the unsigned bounds capture the 7893 * signed bounds 7894 * 3) the signed bounds cross zero, so they tell us nothing 7895 * about the result 7896 * If the value in dst_reg is known nonnegative, then again the 7897 * unsigned bounds capture the signed bounds. 7898 * Thus, in all cases it suffices to blow away our signed bounds 7899 * and rely on inferring new ones from the unsigned bounds and 7900 * var_off of the result. 7901 */ 7902 dst_reg->s32_min_value = S32_MIN; 7903 dst_reg->s32_max_value = S32_MAX; 7904 7905 dst_reg->var_off = tnum_rshift(subreg, umin_val); 7906 dst_reg->u32_min_value >>= umax_val; 7907 dst_reg->u32_max_value >>= umin_val; 7908 7909 __mark_reg64_unbounded(dst_reg); 7910 __update_reg32_bounds(dst_reg); 7911 } 7912 7913 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, 7914 struct bpf_reg_state *src_reg) 7915 { 7916 u64 umax_val = src_reg->umax_value; 7917 u64 umin_val = src_reg->umin_value; 7918 7919 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 7920 * be negative, then either: 7921 * 1) src_reg might be zero, so the sign bit of the result is 7922 * unknown, so we lose our signed bounds 7923 * 2) it's known negative, thus the unsigned bounds capture the 7924 * signed bounds 7925 * 3) the signed bounds cross zero, so they tell us nothing 7926 * about the result 7927 * If the value in dst_reg is known nonnegative, then again the 7928 * unsigned bounds capture the signed bounds. 7929 * Thus, in all cases it suffices to blow away our signed bounds 7930 * and rely on inferring new ones from the unsigned bounds and 7931 * var_off of the result. 7932 */ 7933 dst_reg->smin_value = S64_MIN; 7934 dst_reg->smax_value = S64_MAX; 7935 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 7936 dst_reg->umin_value >>= umax_val; 7937 dst_reg->umax_value >>= umin_val; 7938 7939 /* Its not easy to operate on alu32 bounds here because it depends 7940 * on bits being shifted in. Take easy way out and mark unbounded 7941 * so we can recalculate later from tnum. 7942 */ 7943 __mark_reg32_unbounded(dst_reg); 7944 __update_reg_bounds(dst_reg); 7945 } 7946 7947 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, 7948 struct bpf_reg_state *src_reg) 7949 { 7950 u64 umin_val = src_reg->u32_min_value; 7951 7952 /* Upon reaching here, src_known is true and 7953 * umax_val is equal to umin_val. 7954 */ 7955 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 7956 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 7957 7958 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); 7959 7960 /* blow away the dst_reg umin_value/umax_value and rely on 7961 * dst_reg var_off to refine the result. 7962 */ 7963 dst_reg->u32_min_value = 0; 7964 dst_reg->u32_max_value = U32_MAX; 7965 7966 __mark_reg64_unbounded(dst_reg); 7967 __update_reg32_bounds(dst_reg); 7968 } 7969 7970 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, 7971 struct bpf_reg_state *src_reg) 7972 { 7973 u64 umin_val = src_reg->umin_value; 7974 7975 /* Upon reaching here, src_known is true and umax_val is equal 7976 * to umin_val. 7977 */ 7978 dst_reg->smin_value >>= umin_val; 7979 dst_reg->smax_value >>= umin_val; 7980 7981 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); 7982 7983 /* blow away the dst_reg umin_value/umax_value and rely on 7984 * dst_reg var_off to refine the result. 7985 */ 7986 dst_reg->umin_value = 0; 7987 dst_reg->umax_value = U64_MAX; 7988 7989 /* Its not easy to operate on alu32 bounds here because it depends 7990 * on bits being shifted in from upper 32-bits. Take easy way out 7991 * and mark unbounded so we can recalculate later from tnum. 7992 */ 7993 __mark_reg32_unbounded(dst_reg); 7994 __update_reg_bounds(dst_reg); 7995 } 7996 7997 /* WARNING: This function does calculations on 64-bit values, but the actual 7998 * execution may occur on 32-bit values. Therefore, things like bitshifts 7999 * need extra checks in the 32-bit case. 8000 */ 8001 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 8002 struct bpf_insn *insn, 8003 struct bpf_reg_state *dst_reg, 8004 struct bpf_reg_state src_reg) 8005 { 8006 struct bpf_reg_state *regs = cur_regs(env); 8007 u8 opcode = BPF_OP(insn->code); 8008 bool src_known; 8009 s64 smin_val, smax_val; 8010 u64 umin_val, umax_val; 8011 s32 s32_min_val, s32_max_val; 8012 u32 u32_min_val, u32_max_val; 8013 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 8014 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 8015 int ret; 8016 8017 smin_val = src_reg.smin_value; 8018 smax_val = src_reg.smax_value; 8019 umin_val = src_reg.umin_value; 8020 umax_val = src_reg.umax_value; 8021 8022 s32_min_val = src_reg.s32_min_value; 8023 s32_max_val = src_reg.s32_max_value; 8024 u32_min_val = src_reg.u32_min_value; 8025 u32_max_val = src_reg.u32_max_value; 8026 8027 if (alu32) { 8028 src_known = tnum_subreg_is_const(src_reg.var_off); 8029 if ((src_known && 8030 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) || 8031 s32_min_val > s32_max_val || u32_min_val > u32_max_val) { 8032 /* Taint dst register if offset had invalid bounds 8033 * derived from e.g. dead branches. 8034 */ 8035 __mark_reg_unknown(env, dst_reg); 8036 return 0; 8037 } 8038 } else { 8039 src_known = tnum_is_const(src_reg.var_off); 8040 if ((src_known && 8041 (smin_val != smax_val || umin_val != umax_val)) || 8042 smin_val > smax_val || umin_val > umax_val) { 8043 /* Taint dst register if offset had invalid bounds 8044 * derived from e.g. dead branches. 8045 */ 8046 __mark_reg_unknown(env, dst_reg); 8047 return 0; 8048 } 8049 } 8050 8051 if (!src_known && 8052 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 8053 __mark_reg_unknown(env, dst_reg); 8054 return 0; 8055 } 8056 8057 if (sanitize_needed(opcode)) { 8058 ret = sanitize_val_alu(env, insn); 8059 if (ret < 0) 8060 return sanitize_err(env, insn, ret, NULL, NULL); 8061 } 8062 8063 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 8064 * There are two classes of instructions: The first class we track both 8065 * alu32 and alu64 sign/unsigned bounds independently this provides the 8066 * greatest amount of precision when alu operations are mixed with jmp32 8067 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 8068 * and BPF_OR. This is possible because these ops have fairly easy to 8069 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 8070 * See alu32 verifier tests for examples. The second class of 8071 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 8072 * with regards to tracking sign/unsigned bounds because the bits may 8073 * cross subreg boundaries in the alu64 case. When this happens we mark 8074 * the reg unbounded in the subreg bound space and use the resulting 8075 * tnum to calculate an approximation of the sign/unsigned bounds. 8076 */ 8077 switch (opcode) { 8078 case BPF_ADD: 8079 scalar32_min_max_add(dst_reg, &src_reg); 8080 scalar_min_max_add(dst_reg, &src_reg); 8081 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 8082 break; 8083 case BPF_SUB: 8084 scalar32_min_max_sub(dst_reg, &src_reg); 8085 scalar_min_max_sub(dst_reg, &src_reg); 8086 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 8087 break; 8088 case BPF_MUL: 8089 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 8090 scalar32_min_max_mul(dst_reg, &src_reg); 8091 scalar_min_max_mul(dst_reg, &src_reg); 8092 break; 8093 case BPF_AND: 8094 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 8095 scalar32_min_max_and(dst_reg, &src_reg); 8096 scalar_min_max_and(dst_reg, &src_reg); 8097 break; 8098 case BPF_OR: 8099 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 8100 scalar32_min_max_or(dst_reg, &src_reg); 8101 scalar_min_max_or(dst_reg, &src_reg); 8102 break; 8103 case BPF_XOR: 8104 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off); 8105 scalar32_min_max_xor(dst_reg, &src_reg); 8106 scalar_min_max_xor(dst_reg, &src_reg); 8107 break; 8108 case BPF_LSH: 8109 if (umax_val >= insn_bitness) { 8110 /* Shifts greater than 31 or 63 are undefined. 8111 * This includes shifts by a negative number. 8112 */ 8113 mark_reg_unknown(env, regs, insn->dst_reg); 8114 break; 8115 } 8116 if (alu32) 8117 scalar32_min_max_lsh(dst_reg, &src_reg); 8118 else 8119 scalar_min_max_lsh(dst_reg, &src_reg); 8120 break; 8121 case BPF_RSH: 8122 if (umax_val >= insn_bitness) { 8123 /* Shifts greater than 31 or 63 are undefined. 8124 * This includes shifts by a negative number. 8125 */ 8126 mark_reg_unknown(env, regs, insn->dst_reg); 8127 break; 8128 } 8129 if (alu32) 8130 scalar32_min_max_rsh(dst_reg, &src_reg); 8131 else 8132 scalar_min_max_rsh(dst_reg, &src_reg); 8133 break; 8134 case BPF_ARSH: 8135 if (umax_val >= insn_bitness) { 8136 /* Shifts greater than 31 or 63 are undefined. 8137 * This includes shifts by a negative number. 8138 */ 8139 mark_reg_unknown(env, regs, insn->dst_reg); 8140 break; 8141 } 8142 if (alu32) 8143 scalar32_min_max_arsh(dst_reg, &src_reg); 8144 else 8145 scalar_min_max_arsh(dst_reg, &src_reg); 8146 break; 8147 default: 8148 mark_reg_unknown(env, regs, insn->dst_reg); 8149 break; 8150 } 8151 8152 /* ALU32 ops are zero extended into 64bit register */ 8153 if (alu32) 8154 zext_32_to_64(dst_reg); 8155 8156 __update_reg_bounds(dst_reg); 8157 __reg_deduce_bounds(dst_reg); 8158 __reg_bound_offset(dst_reg); 8159 return 0; 8160 } 8161 8162 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 8163 * and var_off. 8164 */ 8165 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 8166 struct bpf_insn *insn) 8167 { 8168 struct bpf_verifier_state *vstate = env->cur_state; 8169 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 8170 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 8171 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 8172 u8 opcode = BPF_OP(insn->code); 8173 int err; 8174 8175 dst_reg = ®s[insn->dst_reg]; 8176 src_reg = NULL; 8177 if (dst_reg->type != SCALAR_VALUE) 8178 ptr_reg = dst_reg; 8179 else 8180 /* Make sure ID is cleared otherwise dst_reg min/max could be 8181 * incorrectly propagated into other registers by find_equal_scalars() 8182 */ 8183 dst_reg->id = 0; 8184 if (BPF_SRC(insn->code) == BPF_X) { 8185 src_reg = ®s[insn->src_reg]; 8186 if (src_reg->type != SCALAR_VALUE) { 8187 if (dst_reg->type != SCALAR_VALUE) { 8188 /* Combining two pointers by any ALU op yields 8189 * an arbitrary scalar. Disallow all math except 8190 * pointer subtraction 8191 */ 8192 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 8193 mark_reg_unknown(env, regs, insn->dst_reg); 8194 return 0; 8195 } 8196 verbose(env, "R%d pointer %s pointer prohibited\n", 8197 insn->dst_reg, 8198 bpf_alu_string[opcode >> 4]); 8199 return -EACCES; 8200 } else { 8201 /* scalar += pointer 8202 * This is legal, but we have to reverse our 8203 * src/dest handling in computing the range 8204 */ 8205 err = mark_chain_precision(env, insn->dst_reg); 8206 if (err) 8207 return err; 8208 return adjust_ptr_min_max_vals(env, insn, 8209 src_reg, dst_reg); 8210 } 8211 } else if (ptr_reg) { 8212 /* pointer += scalar */ 8213 err = mark_chain_precision(env, insn->src_reg); 8214 if (err) 8215 return err; 8216 return adjust_ptr_min_max_vals(env, insn, 8217 dst_reg, src_reg); 8218 } 8219 } else { 8220 /* Pretend the src is a reg with a known value, since we only 8221 * need to be able to read from this state. 8222 */ 8223 off_reg.type = SCALAR_VALUE; 8224 __mark_reg_known(&off_reg, insn->imm); 8225 src_reg = &off_reg; 8226 if (ptr_reg) /* pointer += K */ 8227 return adjust_ptr_min_max_vals(env, insn, 8228 ptr_reg, src_reg); 8229 } 8230 8231 /* Got here implies adding two SCALAR_VALUEs */ 8232 if (WARN_ON_ONCE(ptr_reg)) { 8233 print_verifier_state(env, state); 8234 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 8235 return -EINVAL; 8236 } 8237 if (WARN_ON(!src_reg)) { 8238 print_verifier_state(env, state); 8239 verbose(env, "verifier internal error: no src_reg\n"); 8240 return -EINVAL; 8241 } 8242 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 8243 } 8244 8245 /* check validity of 32-bit and 64-bit arithmetic operations */ 8246 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 8247 { 8248 struct bpf_reg_state *regs = cur_regs(env); 8249 u8 opcode = BPF_OP(insn->code); 8250 int err; 8251 8252 if (opcode == BPF_END || opcode == BPF_NEG) { 8253 if (opcode == BPF_NEG) { 8254 if (BPF_SRC(insn->code) != 0 || 8255 insn->src_reg != BPF_REG_0 || 8256 insn->off != 0 || insn->imm != 0) { 8257 verbose(env, "BPF_NEG uses reserved fields\n"); 8258 return -EINVAL; 8259 } 8260 } else { 8261 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 8262 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 8263 BPF_CLASS(insn->code) == BPF_ALU64) { 8264 verbose(env, "BPF_END uses reserved fields\n"); 8265 return -EINVAL; 8266 } 8267 } 8268 8269 /* check src operand */ 8270 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 8271 if (err) 8272 return err; 8273 8274 if (is_pointer_value(env, insn->dst_reg)) { 8275 verbose(env, "R%d pointer arithmetic prohibited\n", 8276 insn->dst_reg); 8277 return -EACCES; 8278 } 8279 8280 /* check dest operand */ 8281 err = check_reg_arg(env, insn->dst_reg, DST_OP); 8282 if (err) 8283 return err; 8284 8285 } else if (opcode == BPF_MOV) { 8286 8287 if (BPF_SRC(insn->code) == BPF_X) { 8288 if (insn->imm != 0 || insn->off != 0) { 8289 verbose(env, "BPF_MOV uses reserved fields\n"); 8290 return -EINVAL; 8291 } 8292 8293 /* check src operand */ 8294 err = check_reg_arg(env, insn->src_reg, SRC_OP); 8295 if (err) 8296 return err; 8297 } else { 8298 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 8299 verbose(env, "BPF_MOV uses reserved fields\n"); 8300 return -EINVAL; 8301 } 8302 } 8303 8304 /* check dest operand, mark as required later */ 8305 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 8306 if (err) 8307 return err; 8308 8309 if (BPF_SRC(insn->code) == BPF_X) { 8310 struct bpf_reg_state *src_reg = regs + insn->src_reg; 8311 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 8312 8313 if (BPF_CLASS(insn->code) == BPF_ALU64) { 8314 /* case: R1 = R2 8315 * copy register state to dest reg 8316 */ 8317 if (src_reg->type == SCALAR_VALUE && !src_reg->id) 8318 /* Assign src and dst registers the same ID 8319 * that will be used by find_equal_scalars() 8320 * to propagate min/max range. 8321 */ 8322 src_reg->id = ++env->id_gen; 8323 *dst_reg = *src_reg; 8324 dst_reg->live |= REG_LIVE_WRITTEN; 8325 dst_reg->subreg_def = DEF_NOT_SUBREG; 8326 } else { 8327 /* R1 = (u32) R2 */ 8328 if (is_pointer_value(env, insn->src_reg)) { 8329 verbose(env, 8330 "R%d partial copy of pointer\n", 8331 insn->src_reg); 8332 return -EACCES; 8333 } else if (src_reg->type == SCALAR_VALUE) { 8334 *dst_reg = *src_reg; 8335 /* Make sure ID is cleared otherwise 8336 * dst_reg min/max could be incorrectly 8337 * propagated into src_reg by find_equal_scalars() 8338 */ 8339 dst_reg->id = 0; 8340 dst_reg->live |= REG_LIVE_WRITTEN; 8341 dst_reg->subreg_def = env->insn_idx + 1; 8342 } else { 8343 mark_reg_unknown(env, regs, 8344 insn->dst_reg); 8345 } 8346 zext_32_to_64(dst_reg); 8347 } 8348 } else { 8349 /* case: R = imm 8350 * remember the value we stored into this reg 8351 */ 8352 /* clear any state __mark_reg_known doesn't set */ 8353 mark_reg_unknown(env, regs, insn->dst_reg); 8354 regs[insn->dst_reg].type = SCALAR_VALUE; 8355 if (BPF_CLASS(insn->code) == BPF_ALU64) { 8356 __mark_reg_known(regs + insn->dst_reg, 8357 insn->imm); 8358 } else { 8359 __mark_reg_known(regs + insn->dst_reg, 8360 (u32)insn->imm); 8361 } 8362 } 8363 8364 } else if (opcode > BPF_END) { 8365 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 8366 return -EINVAL; 8367 8368 } else { /* all other ALU ops: and, sub, xor, add, ... */ 8369 8370 if (BPF_SRC(insn->code) == BPF_X) { 8371 if (insn->imm != 0 || insn->off != 0) { 8372 verbose(env, "BPF_ALU uses reserved fields\n"); 8373 return -EINVAL; 8374 } 8375 /* check src1 operand */ 8376 err = check_reg_arg(env, insn->src_reg, SRC_OP); 8377 if (err) 8378 return err; 8379 } else { 8380 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 8381 verbose(env, "BPF_ALU uses reserved fields\n"); 8382 return -EINVAL; 8383 } 8384 } 8385 8386 /* check src2 operand */ 8387 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 8388 if (err) 8389 return err; 8390 8391 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 8392 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 8393 verbose(env, "div by zero\n"); 8394 return -EINVAL; 8395 } 8396 8397 if ((opcode == BPF_LSH || opcode == BPF_RSH || 8398 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 8399 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 8400 8401 if (insn->imm < 0 || insn->imm >= size) { 8402 verbose(env, "invalid shift %d\n", insn->imm); 8403 return -EINVAL; 8404 } 8405 } 8406 8407 /* check dest operand */ 8408 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 8409 if (err) 8410 return err; 8411 8412 return adjust_reg_min_max_vals(env, insn); 8413 } 8414 8415 return 0; 8416 } 8417 8418 static void __find_good_pkt_pointers(struct bpf_func_state *state, 8419 struct bpf_reg_state *dst_reg, 8420 enum bpf_reg_type type, int new_range) 8421 { 8422 struct bpf_reg_state *reg; 8423 int i; 8424 8425 for (i = 0; i < MAX_BPF_REG; i++) { 8426 reg = &state->regs[i]; 8427 if (reg->type == type && reg->id == dst_reg->id) 8428 /* keep the maximum range already checked */ 8429 reg->range = max(reg->range, new_range); 8430 } 8431 8432 bpf_for_each_spilled_reg(i, state, reg) { 8433 if (!reg) 8434 continue; 8435 if (reg->type == type && reg->id == dst_reg->id) 8436 reg->range = max(reg->range, new_range); 8437 } 8438 } 8439 8440 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 8441 struct bpf_reg_state *dst_reg, 8442 enum bpf_reg_type type, 8443 bool range_right_open) 8444 { 8445 int new_range, i; 8446 8447 if (dst_reg->off < 0 || 8448 (dst_reg->off == 0 && range_right_open)) 8449 /* This doesn't give us any range */ 8450 return; 8451 8452 if (dst_reg->umax_value > MAX_PACKET_OFF || 8453 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 8454 /* Risk of overflow. For instance, ptr + (1<<63) may be less 8455 * than pkt_end, but that's because it's also less than pkt. 8456 */ 8457 return; 8458 8459 new_range = dst_reg->off; 8460 if (range_right_open) 8461 new_range--; 8462 8463 /* Examples for register markings: 8464 * 8465 * pkt_data in dst register: 8466 * 8467 * r2 = r3; 8468 * r2 += 8; 8469 * if (r2 > pkt_end) goto <handle exception> 8470 * <access okay> 8471 * 8472 * r2 = r3; 8473 * r2 += 8; 8474 * if (r2 < pkt_end) goto <access okay> 8475 * <handle exception> 8476 * 8477 * Where: 8478 * r2 == dst_reg, pkt_end == src_reg 8479 * r2=pkt(id=n,off=8,r=0) 8480 * r3=pkt(id=n,off=0,r=0) 8481 * 8482 * pkt_data in src register: 8483 * 8484 * r2 = r3; 8485 * r2 += 8; 8486 * if (pkt_end >= r2) goto <access okay> 8487 * <handle exception> 8488 * 8489 * r2 = r3; 8490 * r2 += 8; 8491 * if (pkt_end <= r2) goto <handle exception> 8492 * <access okay> 8493 * 8494 * Where: 8495 * pkt_end == dst_reg, r2 == src_reg 8496 * r2=pkt(id=n,off=8,r=0) 8497 * r3=pkt(id=n,off=0,r=0) 8498 * 8499 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 8500 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 8501 * and [r3, r3 + 8-1) respectively is safe to access depending on 8502 * the check. 8503 */ 8504 8505 /* If our ids match, then we must have the same max_value. And we 8506 * don't care about the other reg's fixed offset, since if it's too big 8507 * the range won't allow anything. 8508 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 8509 */ 8510 for (i = 0; i <= vstate->curframe; i++) 8511 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type, 8512 new_range); 8513 } 8514 8515 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode) 8516 { 8517 struct tnum subreg = tnum_subreg(reg->var_off); 8518 s32 sval = (s32)val; 8519 8520 switch (opcode) { 8521 case BPF_JEQ: 8522 if (tnum_is_const(subreg)) 8523 return !!tnum_equals_const(subreg, val); 8524 break; 8525 case BPF_JNE: 8526 if (tnum_is_const(subreg)) 8527 return !tnum_equals_const(subreg, val); 8528 break; 8529 case BPF_JSET: 8530 if ((~subreg.mask & subreg.value) & val) 8531 return 1; 8532 if (!((subreg.mask | subreg.value) & val)) 8533 return 0; 8534 break; 8535 case BPF_JGT: 8536 if (reg->u32_min_value > val) 8537 return 1; 8538 else if (reg->u32_max_value <= val) 8539 return 0; 8540 break; 8541 case BPF_JSGT: 8542 if (reg->s32_min_value > sval) 8543 return 1; 8544 else if (reg->s32_max_value <= sval) 8545 return 0; 8546 break; 8547 case BPF_JLT: 8548 if (reg->u32_max_value < val) 8549 return 1; 8550 else if (reg->u32_min_value >= val) 8551 return 0; 8552 break; 8553 case BPF_JSLT: 8554 if (reg->s32_max_value < sval) 8555 return 1; 8556 else if (reg->s32_min_value >= sval) 8557 return 0; 8558 break; 8559 case BPF_JGE: 8560 if (reg->u32_min_value >= val) 8561 return 1; 8562 else if (reg->u32_max_value < val) 8563 return 0; 8564 break; 8565 case BPF_JSGE: 8566 if (reg->s32_min_value >= sval) 8567 return 1; 8568 else if (reg->s32_max_value < sval) 8569 return 0; 8570 break; 8571 case BPF_JLE: 8572 if (reg->u32_max_value <= val) 8573 return 1; 8574 else if (reg->u32_min_value > val) 8575 return 0; 8576 break; 8577 case BPF_JSLE: 8578 if (reg->s32_max_value <= sval) 8579 return 1; 8580 else if (reg->s32_min_value > sval) 8581 return 0; 8582 break; 8583 } 8584 8585 return -1; 8586 } 8587 8588 8589 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode) 8590 { 8591 s64 sval = (s64)val; 8592 8593 switch (opcode) { 8594 case BPF_JEQ: 8595 if (tnum_is_const(reg->var_off)) 8596 return !!tnum_equals_const(reg->var_off, val); 8597 break; 8598 case BPF_JNE: 8599 if (tnum_is_const(reg->var_off)) 8600 return !tnum_equals_const(reg->var_off, val); 8601 break; 8602 case BPF_JSET: 8603 if ((~reg->var_off.mask & reg->var_off.value) & val) 8604 return 1; 8605 if (!((reg->var_off.mask | reg->var_off.value) & val)) 8606 return 0; 8607 break; 8608 case BPF_JGT: 8609 if (reg->umin_value > val) 8610 return 1; 8611 else if (reg->umax_value <= val) 8612 return 0; 8613 break; 8614 case BPF_JSGT: 8615 if (reg->smin_value > sval) 8616 return 1; 8617 else if (reg->smax_value <= sval) 8618 return 0; 8619 break; 8620 case BPF_JLT: 8621 if (reg->umax_value < val) 8622 return 1; 8623 else if (reg->umin_value >= val) 8624 return 0; 8625 break; 8626 case BPF_JSLT: 8627 if (reg->smax_value < sval) 8628 return 1; 8629 else if (reg->smin_value >= sval) 8630 return 0; 8631 break; 8632 case BPF_JGE: 8633 if (reg->umin_value >= val) 8634 return 1; 8635 else if (reg->umax_value < val) 8636 return 0; 8637 break; 8638 case BPF_JSGE: 8639 if (reg->smin_value >= sval) 8640 return 1; 8641 else if (reg->smax_value < sval) 8642 return 0; 8643 break; 8644 case BPF_JLE: 8645 if (reg->umax_value <= val) 8646 return 1; 8647 else if (reg->umin_value > val) 8648 return 0; 8649 break; 8650 case BPF_JSLE: 8651 if (reg->smax_value <= sval) 8652 return 1; 8653 else if (reg->smin_value > sval) 8654 return 0; 8655 break; 8656 } 8657 8658 return -1; 8659 } 8660 8661 /* compute branch direction of the expression "if (reg opcode val) goto target;" 8662 * and return: 8663 * 1 - branch will be taken and "goto target" will be executed 8664 * 0 - branch will not be taken and fall-through to next insn 8665 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value 8666 * range [0,10] 8667 */ 8668 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, 8669 bool is_jmp32) 8670 { 8671 if (__is_pointer_value(false, reg)) { 8672 if (!reg_type_not_null(reg->type)) 8673 return -1; 8674 8675 /* If pointer is valid tests against zero will fail so we can 8676 * use this to direct branch taken. 8677 */ 8678 if (val != 0) 8679 return -1; 8680 8681 switch (opcode) { 8682 case BPF_JEQ: 8683 return 0; 8684 case BPF_JNE: 8685 return 1; 8686 default: 8687 return -1; 8688 } 8689 } 8690 8691 if (is_jmp32) 8692 return is_branch32_taken(reg, val, opcode); 8693 return is_branch64_taken(reg, val, opcode); 8694 } 8695 8696 static int flip_opcode(u32 opcode) 8697 { 8698 /* How can we transform "a <op> b" into "b <op> a"? */ 8699 static const u8 opcode_flip[16] = { 8700 /* these stay the same */ 8701 [BPF_JEQ >> 4] = BPF_JEQ, 8702 [BPF_JNE >> 4] = BPF_JNE, 8703 [BPF_JSET >> 4] = BPF_JSET, 8704 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 8705 [BPF_JGE >> 4] = BPF_JLE, 8706 [BPF_JGT >> 4] = BPF_JLT, 8707 [BPF_JLE >> 4] = BPF_JGE, 8708 [BPF_JLT >> 4] = BPF_JGT, 8709 [BPF_JSGE >> 4] = BPF_JSLE, 8710 [BPF_JSGT >> 4] = BPF_JSLT, 8711 [BPF_JSLE >> 4] = BPF_JSGE, 8712 [BPF_JSLT >> 4] = BPF_JSGT 8713 }; 8714 return opcode_flip[opcode >> 4]; 8715 } 8716 8717 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg, 8718 struct bpf_reg_state *src_reg, 8719 u8 opcode) 8720 { 8721 struct bpf_reg_state *pkt; 8722 8723 if (src_reg->type == PTR_TO_PACKET_END) { 8724 pkt = dst_reg; 8725 } else if (dst_reg->type == PTR_TO_PACKET_END) { 8726 pkt = src_reg; 8727 opcode = flip_opcode(opcode); 8728 } else { 8729 return -1; 8730 } 8731 8732 if (pkt->range >= 0) 8733 return -1; 8734 8735 switch (opcode) { 8736 case BPF_JLE: 8737 /* pkt <= pkt_end */ 8738 fallthrough; 8739 case BPF_JGT: 8740 /* pkt > pkt_end */ 8741 if (pkt->range == BEYOND_PKT_END) 8742 /* pkt has at last one extra byte beyond pkt_end */ 8743 return opcode == BPF_JGT; 8744 break; 8745 case BPF_JLT: 8746 /* pkt < pkt_end */ 8747 fallthrough; 8748 case BPF_JGE: 8749 /* pkt >= pkt_end */ 8750 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END) 8751 return opcode == BPF_JGE; 8752 break; 8753 } 8754 return -1; 8755 } 8756 8757 /* Adjusts the register min/max values in the case that the dst_reg is the 8758 * variable register that we are working on, and src_reg is a constant or we're 8759 * simply doing a BPF_K check. 8760 * In JEQ/JNE cases we also adjust the var_off values. 8761 */ 8762 static void reg_set_min_max(struct bpf_reg_state *true_reg, 8763 struct bpf_reg_state *false_reg, 8764 u64 val, u32 val32, 8765 u8 opcode, bool is_jmp32) 8766 { 8767 struct tnum false_32off = tnum_subreg(false_reg->var_off); 8768 struct tnum false_64off = false_reg->var_off; 8769 struct tnum true_32off = tnum_subreg(true_reg->var_off); 8770 struct tnum true_64off = true_reg->var_off; 8771 s64 sval = (s64)val; 8772 s32 sval32 = (s32)val32; 8773 8774 /* If the dst_reg is a pointer, we can't learn anything about its 8775 * variable offset from the compare (unless src_reg were a pointer into 8776 * the same object, but we don't bother with that. 8777 * Since false_reg and true_reg have the same type by construction, we 8778 * only need to check one of them for pointerness. 8779 */ 8780 if (__is_pointer_value(false, false_reg)) 8781 return; 8782 8783 switch (opcode) { 8784 case BPF_JEQ: 8785 case BPF_JNE: 8786 { 8787 struct bpf_reg_state *reg = 8788 opcode == BPF_JEQ ? true_reg : false_reg; 8789 8790 /* JEQ/JNE comparison doesn't change the register equivalence. 8791 * r1 = r2; 8792 * if (r1 == 42) goto label; 8793 * ... 8794 * label: // here both r1 and r2 are known to be 42. 8795 * 8796 * Hence when marking register as known preserve it's ID. 8797 */ 8798 if (is_jmp32) 8799 __mark_reg32_known(reg, val32); 8800 else 8801 ___mark_reg_known(reg, val); 8802 break; 8803 } 8804 case BPF_JSET: 8805 if (is_jmp32) { 8806 false_32off = tnum_and(false_32off, tnum_const(~val32)); 8807 if (is_power_of_2(val32)) 8808 true_32off = tnum_or(true_32off, 8809 tnum_const(val32)); 8810 } else { 8811 false_64off = tnum_and(false_64off, tnum_const(~val)); 8812 if (is_power_of_2(val)) 8813 true_64off = tnum_or(true_64off, 8814 tnum_const(val)); 8815 } 8816 break; 8817 case BPF_JGE: 8818 case BPF_JGT: 8819 { 8820 if (is_jmp32) { 8821 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1; 8822 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32; 8823 8824 false_reg->u32_max_value = min(false_reg->u32_max_value, 8825 false_umax); 8826 true_reg->u32_min_value = max(true_reg->u32_min_value, 8827 true_umin); 8828 } else { 8829 u64 false_umax = opcode == BPF_JGT ? val : val - 1; 8830 u64 true_umin = opcode == BPF_JGT ? val + 1 : val; 8831 8832 false_reg->umax_value = min(false_reg->umax_value, false_umax); 8833 true_reg->umin_value = max(true_reg->umin_value, true_umin); 8834 } 8835 break; 8836 } 8837 case BPF_JSGE: 8838 case BPF_JSGT: 8839 { 8840 if (is_jmp32) { 8841 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1; 8842 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32; 8843 8844 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax); 8845 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin); 8846 } else { 8847 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; 8848 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; 8849 8850 false_reg->smax_value = min(false_reg->smax_value, false_smax); 8851 true_reg->smin_value = max(true_reg->smin_value, true_smin); 8852 } 8853 break; 8854 } 8855 case BPF_JLE: 8856 case BPF_JLT: 8857 { 8858 if (is_jmp32) { 8859 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1; 8860 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32; 8861 8862 false_reg->u32_min_value = max(false_reg->u32_min_value, 8863 false_umin); 8864 true_reg->u32_max_value = min(true_reg->u32_max_value, 8865 true_umax); 8866 } else { 8867 u64 false_umin = opcode == BPF_JLT ? val : val + 1; 8868 u64 true_umax = opcode == BPF_JLT ? val - 1 : val; 8869 8870 false_reg->umin_value = max(false_reg->umin_value, false_umin); 8871 true_reg->umax_value = min(true_reg->umax_value, true_umax); 8872 } 8873 break; 8874 } 8875 case BPF_JSLE: 8876 case BPF_JSLT: 8877 { 8878 if (is_jmp32) { 8879 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1; 8880 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32; 8881 8882 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin); 8883 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax); 8884 } else { 8885 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; 8886 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; 8887 8888 false_reg->smin_value = max(false_reg->smin_value, false_smin); 8889 true_reg->smax_value = min(true_reg->smax_value, true_smax); 8890 } 8891 break; 8892 } 8893 default: 8894 return; 8895 } 8896 8897 if (is_jmp32) { 8898 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off), 8899 tnum_subreg(false_32off)); 8900 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off), 8901 tnum_subreg(true_32off)); 8902 __reg_combine_32_into_64(false_reg); 8903 __reg_combine_32_into_64(true_reg); 8904 } else { 8905 false_reg->var_off = false_64off; 8906 true_reg->var_off = true_64off; 8907 __reg_combine_64_into_32(false_reg); 8908 __reg_combine_64_into_32(true_reg); 8909 } 8910 } 8911 8912 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 8913 * the variable reg. 8914 */ 8915 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 8916 struct bpf_reg_state *false_reg, 8917 u64 val, u32 val32, 8918 u8 opcode, bool is_jmp32) 8919 { 8920 opcode = flip_opcode(opcode); 8921 /* This uses zero as "not present in table"; luckily the zero opcode, 8922 * BPF_JA, can't get here. 8923 */ 8924 if (opcode) 8925 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32); 8926 } 8927 8928 /* Regs are known to be equal, so intersect their min/max/var_off */ 8929 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 8930 struct bpf_reg_state *dst_reg) 8931 { 8932 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 8933 dst_reg->umin_value); 8934 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 8935 dst_reg->umax_value); 8936 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 8937 dst_reg->smin_value); 8938 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 8939 dst_reg->smax_value); 8940 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 8941 dst_reg->var_off); 8942 /* We might have learned new bounds from the var_off. */ 8943 __update_reg_bounds(src_reg); 8944 __update_reg_bounds(dst_reg); 8945 /* We might have learned something about the sign bit. */ 8946 __reg_deduce_bounds(src_reg); 8947 __reg_deduce_bounds(dst_reg); 8948 /* We might have learned some bits from the bounds. */ 8949 __reg_bound_offset(src_reg); 8950 __reg_bound_offset(dst_reg); 8951 /* Intersecting with the old var_off might have improved our bounds 8952 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 8953 * then new var_off is (0; 0x7f...fc) which improves our umax. 8954 */ 8955 __update_reg_bounds(src_reg); 8956 __update_reg_bounds(dst_reg); 8957 } 8958 8959 static void reg_combine_min_max(struct bpf_reg_state *true_src, 8960 struct bpf_reg_state *true_dst, 8961 struct bpf_reg_state *false_src, 8962 struct bpf_reg_state *false_dst, 8963 u8 opcode) 8964 { 8965 switch (opcode) { 8966 case BPF_JEQ: 8967 __reg_combine_min_max(true_src, true_dst); 8968 break; 8969 case BPF_JNE: 8970 __reg_combine_min_max(false_src, false_dst); 8971 break; 8972 } 8973 } 8974 8975 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 8976 struct bpf_reg_state *reg, u32 id, 8977 bool is_null) 8978 { 8979 if (reg_type_may_be_null(reg->type) && reg->id == id && 8980 !WARN_ON_ONCE(!reg->id)) { 8981 /* Old offset (both fixed and variable parts) should 8982 * have been known-zero, because we don't allow pointer 8983 * arithmetic on pointers that might be NULL. 8984 */ 8985 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || 8986 !tnum_equals_const(reg->var_off, 0) || 8987 reg->off)) { 8988 __mark_reg_known_zero(reg); 8989 reg->off = 0; 8990 } 8991 if (is_null) { 8992 reg->type = SCALAR_VALUE; 8993 /* We don't need id and ref_obj_id from this point 8994 * onwards anymore, thus we should better reset it, 8995 * so that state pruning has chances to take effect. 8996 */ 8997 reg->id = 0; 8998 reg->ref_obj_id = 0; 8999 9000 return; 9001 } 9002 9003 mark_ptr_not_null_reg(reg); 9004 9005 if (!reg_may_point_to_spin_lock(reg)) { 9006 /* For not-NULL ptr, reg->ref_obj_id will be reset 9007 * in release_reg_references(). 9008 * 9009 * reg->id is still used by spin_lock ptr. Other 9010 * than spin_lock ptr type, reg->id can be reset. 9011 */ 9012 reg->id = 0; 9013 } 9014 } 9015 } 9016 9017 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id, 9018 bool is_null) 9019 { 9020 struct bpf_reg_state *reg; 9021 int i; 9022 9023 for (i = 0; i < MAX_BPF_REG; i++) 9024 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null); 9025 9026 bpf_for_each_spilled_reg(i, state, reg) { 9027 if (!reg) 9028 continue; 9029 mark_ptr_or_null_reg(state, reg, id, is_null); 9030 } 9031 } 9032 9033 /* The logic is similar to find_good_pkt_pointers(), both could eventually 9034 * be folded together at some point. 9035 */ 9036 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 9037 bool is_null) 9038 { 9039 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 9040 struct bpf_reg_state *regs = state->regs; 9041 u32 ref_obj_id = regs[regno].ref_obj_id; 9042 u32 id = regs[regno].id; 9043 int i; 9044 9045 if (ref_obj_id && ref_obj_id == id && is_null) 9046 /* regs[regno] is in the " == NULL" branch. 9047 * No one could have freed the reference state before 9048 * doing the NULL check. 9049 */ 9050 WARN_ON_ONCE(release_reference_state(state, id)); 9051 9052 for (i = 0; i <= vstate->curframe; i++) 9053 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null); 9054 } 9055 9056 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 9057 struct bpf_reg_state *dst_reg, 9058 struct bpf_reg_state *src_reg, 9059 struct bpf_verifier_state *this_branch, 9060 struct bpf_verifier_state *other_branch) 9061 { 9062 if (BPF_SRC(insn->code) != BPF_X) 9063 return false; 9064 9065 /* Pointers are always 64-bit. */ 9066 if (BPF_CLASS(insn->code) == BPF_JMP32) 9067 return false; 9068 9069 switch (BPF_OP(insn->code)) { 9070 case BPF_JGT: 9071 if ((dst_reg->type == PTR_TO_PACKET && 9072 src_reg->type == PTR_TO_PACKET_END) || 9073 (dst_reg->type == PTR_TO_PACKET_META && 9074 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 9075 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 9076 find_good_pkt_pointers(this_branch, dst_reg, 9077 dst_reg->type, false); 9078 mark_pkt_end(other_branch, insn->dst_reg, true); 9079 } else if ((dst_reg->type == PTR_TO_PACKET_END && 9080 src_reg->type == PTR_TO_PACKET) || 9081 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 9082 src_reg->type == PTR_TO_PACKET_META)) { 9083 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 9084 find_good_pkt_pointers(other_branch, src_reg, 9085 src_reg->type, true); 9086 mark_pkt_end(this_branch, insn->src_reg, false); 9087 } else { 9088 return false; 9089 } 9090 break; 9091 case BPF_JLT: 9092 if ((dst_reg->type == PTR_TO_PACKET && 9093 src_reg->type == PTR_TO_PACKET_END) || 9094 (dst_reg->type == PTR_TO_PACKET_META && 9095 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 9096 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 9097 find_good_pkt_pointers(other_branch, dst_reg, 9098 dst_reg->type, true); 9099 mark_pkt_end(this_branch, insn->dst_reg, false); 9100 } else if ((dst_reg->type == PTR_TO_PACKET_END && 9101 src_reg->type == PTR_TO_PACKET) || 9102 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 9103 src_reg->type == PTR_TO_PACKET_META)) { 9104 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 9105 find_good_pkt_pointers(this_branch, src_reg, 9106 src_reg->type, false); 9107 mark_pkt_end(other_branch, insn->src_reg, true); 9108 } else { 9109 return false; 9110 } 9111 break; 9112 case BPF_JGE: 9113 if ((dst_reg->type == PTR_TO_PACKET && 9114 src_reg->type == PTR_TO_PACKET_END) || 9115 (dst_reg->type == PTR_TO_PACKET_META && 9116 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 9117 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 9118 find_good_pkt_pointers(this_branch, dst_reg, 9119 dst_reg->type, true); 9120 mark_pkt_end(other_branch, insn->dst_reg, false); 9121 } else if ((dst_reg->type == PTR_TO_PACKET_END && 9122 src_reg->type == PTR_TO_PACKET) || 9123 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 9124 src_reg->type == PTR_TO_PACKET_META)) { 9125 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 9126 find_good_pkt_pointers(other_branch, src_reg, 9127 src_reg->type, false); 9128 mark_pkt_end(this_branch, insn->src_reg, true); 9129 } else { 9130 return false; 9131 } 9132 break; 9133 case BPF_JLE: 9134 if ((dst_reg->type == PTR_TO_PACKET && 9135 src_reg->type == PTR_TO_PACKET_END) || 9136 (dst_reg->type == PTR_TO_PACKET_META && 9137 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 9138 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 9139 find_good_pkt_pointers(other_branch, dst_reg, 9140 dst_reg->type, false); 9141 mark_pkt_end(this_branch, insn->dst_reg, true); 9142 } else if ((dst_reg->type == PTR_TO_PACKET_END && 9143 src_reg->type == PTR_TO_PACKET) || 9144 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 9145 src_reg->type == PTR_TO_PACKET_META)) { 9146 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 9147 find_good_pkt_pointers(this_branch, src_reg, 9148 src_reg->type, true); 9149 mark_pkt_end(other_branch, insn->src_reg, false); 9150 } else { 9151 return false; 9152 } 9153 break; 9154 default: 9155 return false; 9156 } 9157 9158 return true; 9159 } 9160 9161 static void find_equal_scalars(struct bpf_verifier_state *vstate, 9162 struct bpf_reg_state *known_reg) 9163 { 9164 struct bpf_func_state *state; 9165 struct bpf_reg_state *reg; 9166 int i, j; 9167 9168 for (i = 0; i <= vstate->curframe; i++) { 9169 state = vstate->frame[i]; 9170 for (j = 0; j < MAX_BPF_REG; j++) { 9171 reg = &state->regs[j]; 9172 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 9173 *reg = *known_reg; 9174 } 9175 9176 bpf_for_each_spilled_reg(j, state, reg) { 9177 if (!reg) 9178 continue; 9179 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 9180 *reg = *known_reg; 9181 } 9182 } 9183 } 9184 9185 static int check_cond_jmp_op(struct bpf_verifier_env *env, 9186 struct bpf_insn *insn, int *insn_idx) 9187 { 9188 struct bpf_verifier_state *this_branch = env->cur_state; 9189 struct bpf_verifier_state *other_branch; 9190 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 9191 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 9192 u8 opcode = BPF_OP(insn->code); 9193 bool is_jmp32; 9194 int pred = -1; 9195 int err; 9196 9197 /* Only conditional jumps are expected to reach here. */ 9198 if (opcode == BPF_JA || opcode > BPF_JSLE) { 9199 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 9200 return -EINVAL; 9201 } 9202 9203 if (BPF_SRC(insn->code) == BPF_X) { 9204 if (insn->imm != 0) { 9205 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 9206 return -EINVAL; 9207 } 9208 9209 /* check src1 operand */ 9210 err = check_reg_arg(env, insn->src_reg, SRC_OP); 9211 if (err) 9212 return err; 9213 9214 if (is_pointer_value(env, insn->src_reg)) { 9215 verbose(env, "R%d pointer comparison prohibited\n", 9216 insn->src_reg); 9217 return -EACCES; 9218 } 9219 src_reg = ®s[insn->src_reg]; 9220 } else { 9221 if (insn->src_reg != BPF_REG_0) { 9222 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 9223 return -EINVAL; 9224 } 9225 } 9226 9227 /* check src2 operand */ 9228 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 9229 if (err) 9230 return err; 9231 9232 dst_reg = ®s[insn->dst_reg]; 9233 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 9234 9235 if (BPF_SRC(insn->code) == BPF_K) { 9236 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32); 9237 } else if (src_reg->type == SCALAR_VALUE && 9238 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) { 9239 pred = is_branch_taken(dst_reg, 9240 tnum_subreg(src_reg->var_off).value, 9241 opcode, 9242 is_jmp32); 9243 } else if (src_reg->type == SCALAR_VALUE && 9244 !is_jmp32 && tnum_is_const(src_reg->var_off)) { 9245 pred = is_branch_taken(dst_reg, 9246 src_reg->var_off.value, 9247 opcode, 9248 is_jmp32); 9249 } else if (reg_is_pkt_pointer_any(dst_reg) && 9250 reg_is_pkt_pointer_any(src_reg) && 9251 !is_jmp32) { 9252 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode); 9253 } 9254 9255 if (pred >= 0) { 9256 /* If we get here with a dst_reg pointer type it is because 9257 * above is_branch_taken() special cased the 0 comparison. 9258 */ 9259 if (!__is_pointer_value(false, dst_reg)) 9260 err = mark_chain_precision(env, insn->dst_reg); 9261 if (BPF_SRC(insn->code) == BPF_X && !err && 9262 !__is_pointer_value(false, src_reg)) 9263 err = mark_chain_precision(env, insn->src_reg); 9264 if (err) 9265 return err; 9266 } 9267 9268 if (pred == 1) { 9269 /* Only follow the goto, ignore fall-through. If needed, push 9270 * the fall-through branch for simulation under speculative 9271 * execution. 9272 */ 9273 if (!env->bypass_spec_v1 && 9274 !sanitize_speculative_path(env, insn, *insn_idx + 1, 9275 *insn_idx)) 9276 return -EFAULT; 9277 *insn_idx += insn->off; 9278 return 0; 9279 } else if (pred == 0) { 9280 /* Only follow the fall-through branch, since that's where the 9281 * program will go. If needed, push the goto branch for 9282 * simulation under speculative execution. 9283 */ 9284 if (!env->bypass_spec_v1 && 9285 !sanitize_speculative_path(env, insn, 9286 *insn_idx + insn->off + 1, 9287 *insn_idx)) 9288 return -EFAULT; 9289 return 0; 9290 } 9291 9292 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 9293 false); 9294 if (!other_branch) 9295 return -EFAULT; 9296 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 9297 9298 /* detect if we are comparing against a constant value so we can adjust 9299 * our min/max values for our dst register. 9300 * this is only legit if both are scalars (or pointers to the same 9301 * object, I suppose, but we don't support that right now), because 9302 * otherwise the different base pointers mean the offsets aren't 9303 * comparable. 9304 */ 9305 if (BPF_SRC(insn->code) == BPF_X) { 9306 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 9307 9308 if (dst_reg->type == SCALAR_VALUE && 9309 src_reg->type == SCALAR_VALUE) { 9310 if (tnum_is_const(src_reg->var_off) || 9311 (is_jmp32 && 9312 tnum_is_const(tnum_subreg(src_reg->var_off)))) 9313 reg_set_min_max(&other_branch_regs[insn->dst_reg], 9314 dst_reg, 9315 src_reg->var_off.value, 9316 tnum_subreg(src_reg->var_off).value, 9317 opcode, is_jmp32); 9318 else if (tnum_is_const(dst_reg->var_off) || 9319 (is_jmp32 && 9320 tnum_is_const(tnum_subreg(dst_reg->var_off)))) 9321 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 9322 src_reg, 9323 dst_reg->var_off.value, 9324 tnum_subreg(dst_reg->var_off).value, 9325 opcode, is_jmp32); 9326 else if (!is_jmp32 && 9327 (opcode == BPF_JEQ || opcode == BPF_JNE)) 9328 /* Comparing for equality, we can combine knowledge */ 9329 reg_combine_min_max(&other_branch_regs[insn->src_reg], 9330 &other_branch_regs[insn->dst_reg], 9331 src_reg, dst_reg, opcode); 9332 if (src_reg->id && 9333 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) { 9334 find_equal_scalars(this_branch, src_reg); 9335 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]); 9336 } 9337 9338 } 9339 } else if (dst_reg->type == SCALAR_VALUE) { 9340 reg_set_min_max(&other_branch_regs[insn->dst_reg], 9341 dst_reg, insn->imm, (u32)insn->imm, 9342 opcode, is_jmp32); 9343 } 9344 9345 if (dst_reg->type == SCALAR_VALUE && dst_reg->id && 9346 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) { 9347 find_equal_scalars(this_branch, dst_reg); 9348 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]); 9349 } 9350 9351 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 9352 * NOTE: these optimizations below are related with pointer comparison 9353 * which will never be JMP32. 9354 */ 9355 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 9356 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 9357 reg_type_may_be_null(dst_reg->type)) { 9358 /* Mark all identical registers in each branch as either 9359 * safe or unknown depending R == 0 or R != 0 conditional. 9360 */ 9361 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 9362 opcode == BPF_JNE); 9363 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 9364 opcode == BPF_JEQ); 9365 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 9366 this_branch, other_branch) && 9367 is_pointer_value(env, insn->dst_reg)) { 9368 verbose(env, "R%d pointer comparison prohibited\n", 9369 insn->dst_reg); 9370 return -EACCES; 9371 } 9372 if (env->log.level & BPF_LOG_LEVEL) 9373 print_verifier_state(env, this_branch->frame[this_branch->curframe]); 9374 return 0; 9375 } 9376 9377 /* verify BPF_LD_IMM64 instruction */ 9378 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 9379 { 9380 struct bpf_insn_aux_data *aux = cur_aux(env); 9381 struct bpf_reg_state *regs = cur_regs(env); 9382 struct bpf_reg_state *dst_reg; 9383 struct bpf_map *map; 9384 int err; 9385 9386 if (BPF_SIZE(insn->code) != BPF_DW) { 9387 verbose(env, "invalid BPF_LD_IMM insn\n"); 9388 return -EINVAL; 9389 } 9390 if (insn->off != 0) { 9391 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 9392 return -EINVAL; 9393 } 9394 9395 err = check_reg_arg(env, insn->dst_reg, DST_OP); 9396 if (err) 9397 return err; 9398 9399 dst_reg = ®s[insn->dst_reg]; 9400 if (insn->src_reg == 0) { 9401 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 9402 9403 dst_reg->type = SCALAR_VALUE; 9404 __mark_reg_known(®s[insn->dst_reg], imm); 9405 return 0; 9406 } 9407 9408 if (insn->src_reg == BPF_PSEUDO_BTF_ID) { 9409 mark_reg_known_zero(env, regs, insn->dst_reg); 9410 9411 dst_reg->type = aux->btf_var.reg_type; 9412 switch (dst_reg->type) { 9413 case PTR_TO_MEM: 9414 dst_reg->mem_size = aux->btf_var.mem_size; 9415 break; 9416 case PTR_TO_BTF_ID: 9417 case PTR_TO_PERCPU_BTF_ID: 9418 dst_reg->btf = aux->btf_var.btf; 9419 dst_reg->btf_id = aux->btf_var.btf_id; 9420 break; 9421 default: 9422 verbose(env, "bpf verifier is misconfigured\n"); 9423 return -EFAULT; 9424 } 9425 return 0; 9426 } 9427 9428 if (insn->src_reg == BPF_PSEUDO_FUNC) { 9429 struct bpf_prog_aux *aux = env->prog->aux; 9430 u32 subprogno = insn[1].imm; 9431 9432 if (!aux->func_info) { 9433 verbose(env, "missing btf func_info\n"); 9434 return -EINVAL; 9435 } 9436 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) { 9437 verbose(env, "callback function not static\n"); 9438 return -EINVAL; 9439 } 9440 9441 dst_reg->type = PTR_TO_FUNC; 9442 dst_reg->subprogno = subprogno; 9443 return 0; 9444 } 9445 9446 map = env->used_maps[aux->map_index]; 9447 mark_reg_known_zero(env, regs, insn->dst_reg); 9448 dst_reg->map_ptr = map; 9449 9450 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE || 9451 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) { 9452 dst_reg->type = PTR_TO_MAP_VALUE; 9453 dst_reg->off = aux->map_off; 9454 if (map_value_has_spin_lock(map)) 9455 dst_reg->id = ++env->id_gen; 9456 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD || 9457 insn->src_reg == BPF_PSEUDO_MAP_IDX) { 9458 dst_reg->type = CONST_PTR_TO_MAP; 9459 } else { 9460 verbose(env, "bpf verifier is misconfigured\n"); 9461 return -EINVAL; 9462 } 9463 9464 return 0; 9465 } 9466 9467 static bool may_access_skb(enum bpf_prog_type type) 9468 { 9469 switch (type) { 9470 case BPF_PROG_TYPE_SOCKET_FILTER: 9471 case BPF_PROG_TYPE_SCHED_CLS: 9472 case BPF_PROG_TYPE_SCHED_ACT: 9473 return true; 9474 default: 9475 return false; 9476 } 9477 } 9478 9479 /* verify safety of LD_ABS|LD_IND instructions: 9480 * - they can only appear in the programs where ctx == skb 9481 * - since they are wrappers of function calls, they scratch R1-R5 registers, 9482 * preserve R6-R9, and store return value into R0 9483 * 9484 * Implicit input: 9485 * ctx == skb == R6 == CTX 9486 * 9487 * Explicit input: 9488 * SRC == any register 9489 * IMM == 32-bit immediate 9490 * 9491 * Output: 9492 * R0 - 8/16/32-bit skb data converted to cpu endianness 9493 */ 9494 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 9495 { 9496 struct bpf_reg_state *regs = cur_regs(env); 9497 static const int ctx_reg = BPF_REG_6; 9498 u8 mode = BPF_MODE(insn->code); 9499 int i, err; 9500 9501 if (!may_access_skb(resolve_prog_type(env->prog))) { 9502 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 9503 return -EINVAL; 9504 } 9505 9506 if (!env->ops->gen_ld_abs) { 9507 verbose(env, "bpf verifier is misconfigured\n"); 9508 return -EINVAL; 9509 } 9510 9511 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 9512 BPF_SIZE(insn->code) == BPF_DW || 9513 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 9514 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 9515 return -EINVAL; 9516 } 9517 9518 /* check whether implicit source operand (register R6) is readable */ 9519 err = check_reg_arg(env, ctx_reg, SRC_OP); 9520 if (err) 9521 return err; 9522 9523 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 9524 * gen_ld_abs() may terminate the program at runtime, leading to 9525 * reference leak. 9526 */ 9527 err = check_reference_leak(env); 9528 if (err) { 9529 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 9530 return err; 9531 } 9532 9533 if (env->cur_state->active_spin_lock) { 9534 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 9535 return -EINVAL; 9536 } 9537 9538 if (regs[ctx_reg].type != PTR_TO_CTX) { 9539 verbose(env, 9540 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 9541 return -EINVAL; 9542 } 9543 9544 if (mode == BPF_IND) { 9545 /* check explicit source operand */ 9546 err = check_reg_arg(env, insn->src_reg, SRC_OP); 9547 if (err) 9548 return err; 9549 } 9550 9551 err = check_ctx_reg(env, ®s[ctx_reg], ctx_reg); 9552 if (err < 0) 9553 return err; 9554 9555 /* reset caller saved regs to unreadable */ 9556 for (i = 0; i < CALLER_SAVED_REGS; i++) { 9557 mark_reg_not_init(env, regs, caller_saved[i]); 9558 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 9559 } 9560 9561 /* mark destination R0 register as readable, since it contains 9562 * the value fetched from the packet. 9563 * Already marked as written above. 9564 */ 9565 mark_reg_unknown(env, regs, BPF_REG_0); 9566 /* ld_abs load up to 32-bit skb data. */ 9567 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 9568 return 0; 9569 } 9570 9571 static int check_return_code(struct bpf_verifier_env *env) 9572 { 9573 struct tnum enforce_attach_type_range = tnum_unknown; 9574 const struct bpf_prog *prog = env->prog; 9575 struct bpf_reg_state *reg; 9576 struct tnum range = tnum_range(0, 1); 9577 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 9578 int err; 9579 struct bpf_func_state *frame = env->cur_state->frame[0]; 9580 const bool is_subprog = frame->subprogno; 9581 9582 /* LSM and struct_ops func-ptr's return type could be "void" */ 9583 if (!is_subprog && 9584 (prog_type == BPF_PROG_TYPE_STRUCT_OPS || 9585 prog_type == BPF_PROG_TYPE_LSM) && 9586 !prog->aux->attach_func_proto->type) 9587 return 0; 9588 9589 /* eBPF calling convention is such that R0 is used 9590 * to return the value from eBPF program. 9591 * Make sure that it's readable at this time 9592 * of bpf_exit, which means that program wrote 9593 * something into it earlier 9594 */ 9595 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 9596 if (err) 9597 return err; 9598 9599 if (is_pointer_value(env, BPF_REG_0)) { 9600 verbose(env, "R0 leaks addr as return value\n"); 9601 return -EACCES; 9602 } 9603 9604 reg = cur_regs(env) + BPF_REG_0; 9605 9606 if (frame->in_async_callback_fn) { 9607 /* enforce return zero from async callbacks like timer */ 9608 if (reg->type != SCALAR_VALUE) { 9609 verbose(env, "In async callback the register R0 is not a known value (%s)\n", 9610 reg_type_str[reg->type]); 9611 return -EINVAL; 9612 } 9613 9614 if (!tnum_in(tnum_const(0), reg->var_off)) { 9615 verbose_invalid_scalar(env, reg, &range, "async callback", "R0"); 9616 return -EINVAL; 9617 } 9618 return 0; 9619 } 9620 9621 if (is_subprog) { 9622 if (reg->type != SCALAR_VALUE) { 9623 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n", 9624 reg_type_str[reg->type]); 9625 return -EINVAL; 9626 } 9627 return 0; 9628 } 9629 9630 switch (prog_type) { 9631 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 9632 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 9633 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || 9634 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || 9635 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || 9636 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || 9637 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME) 9638 range = tnum_range(1, 1); 9639 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND || 9640 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND) 9641 range = tnum_range(0, 3); 9642 break; 9643 case BPF_PROG_TYPE_CGROUP_SKB: 9644 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 9645 range = tnum_range(0, 3); 9646 enforce_attach_type_range = tnum_range(2, 3); 9647 } 9648 break; 9649 case BPF_PROG_TYPE_CGROUP_SOCK: 9650 case BPF_PROG_TYPE_SOCK_OPS: 9651 case BPF_PROG_TYPE_CGROUP_DEVICE: 9652 case BPF_PROG_TYPE_CGROUP_SYSCTL: 9653 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 9654 break; 9655 case BPF_PROG_TYPE_RAW_TRACEPOINT: 9656 if (!env->prog->aux->attach_btf_id) 9657 return 0; 9658 range = tnum_const(0); 9659 break; 9660 case BPF_PROG_TYPE_TRACING: 9661 switch (env->prog->expected_attach_type) { 9662 case BPF_TRACE_FENTRY: 9663 case BPF_TRACE_FEXIT: 9664 range = tnum_const(0); 9665 break; 9666 case BPF_TRACE_RAW_TP: 9667 case BPF_MODIFY_RETURN: 9668 return 0; 9669 case BPF_TRACE_ITER: 9670 break; 9671 default: 9672 return -ENOTSUPP; 9673 } 9674 break; 9675 case BPF_PROG_TYPE_SK_LOOKUP: 9676 range = tnum_range(SK_DROP, SK_PASS); 9677 break; 9678 case BPF_PROG_TYPE_EXT: 9679 /* freplace program can return anything as its return value 9680 * depends on the to-be-replaced kernel func or bpf program. 9681 */ 9682 default: 9683 return 0; 9684 } 9685 9686 if (reg->type != SCALAR_VALUE) { 9687 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 9688 reg_type_str[reg->type]); 9689 return -EINVAL; 9690 } 9691 9692 if (!tnum_in(range, reg->var_off)) { 9693 verbose_invalid_scalar(env, reg, &range, "program exit", "R0"); 9694 return -EINVAL; 9695 } 9696 9697 if (!tnum_is_unknown(enforce_attach_type_range) && 9698 tnum_in(enforce_attach_type_range, reg->var_off)) 9699 env->prog->enforce_expected_attach_type = 1; 9700 return 0; 9701 } 9702 9703 /* non-recursive DFS pseudo code 9704 * 1 procedure DFS-iterative(G,v): 9705 * 2 label v as discovered 9706 * 3 let S be a stack 9707 * 4 S.push(v) 9708 * 5 while S is not empty 9709 * 6 t <- S.pop() 9710 * 7 if t is what we're looking for: 9711 * 8 return t 9712 * 9 for all edges e in G.adjacentEdges(t) do 9713 * 10 if edge e is already labelled 9714 * 11 continue with the next edge 9715 * 12 w <- G.adjacentVertex(t,e) 9716 * 13 if vertex w is not discovered and not explored 9717 * 14 label e as tree-edge 9718 * 15 label w as discovered 9719 * 16 S.push(w) 9720 * 17 continue at 5 9721 * 18 else if vertex w is discovered 9722 * 19 label e as back-edge 9723 * 20 else 9724 * 21 // vertex w is explored 9725 * 22 label e as forward- or cross-edge 9726 * 23 label t as explored 9727 * 24 S.pop() 9728 * 9729 * convention: 9730 * 0x10 - discovered 9731 * 0x11 - discovered and fall-through edge labelled 9732 * 0x12 - discovered and fall-through and branch edges labelled 9733 * 0x20 - explored 9734 */ 9735 9736 enum { 9737 DISCOVERED = 0x10, 9738 EXPLORED = 0x20, 9739 FALLTHROUGH = 1, 9740 BRANCH = 2, 9741 }; 9742 9743 static u32 state_htab_size(struct bpf_verifier_env *env) 9744 { 9745 return env->prog->len; 9746 } 9747 9748 static struct bpf_verifier_state_list **explored_state( 9749 struct bpf_verifier_env *env, 9750 int idx) 9751 { 9752 struct bpf_verifier_state *cur = env->cur_state; 9753 struct bpf_func_state *state = cur->frame[cur->curframe]; 9754 9755 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 9756 } 9757 9758 static void init_explored_state(struct bpf_verifier_env *env, int idx) 9759 { 9760 env->insn_aux_data[idx].prune_point = true; 9761 } 9762 9763 enum { 9764 DONE_EXPLORING = 0, 9765 KEEP_EXPLORING = 1, 9766 }; 9767 9768 /* t, w, e - match pseudo-code above: 9769 * t - index of current instruction 9770 * w - next instruction 9771 * e - edge 9772 */ 9773 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env, 9774 bool loop_ok) 9775 { 9776 int *insn_stack = env->cfg.insn_stack; 9777 int *insn_state = env->cfg.insn_state; 9778 9779 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 9780 return DONE_EXPLORING; 9781 9782 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 9783 return DONE_EXPLORING; 9784 9785 if (w < 0 || w >= env->prog->len) { 9786 verbose_linfo(env, t, "%d: ", t); 9787 verbose(env, "jump out of range from insn %d to %d\n", t, w); 9788 return -EINVAL; 9789 } 9790 9791 if (e == BRANCH) 9792 /* mark branch target for state pruning */ 9793 init_explored_state(env, w); 9794 9795 if (insn_state[w] == 0) { 9796 /* tree-edge */ 9797 insn_state[t] = DISCOVERED | e; 9798 insn_state[w] = DISCOVERED; 9799 if (env->cfg.cur_stack >= env->prog->len) 9800 return -E2BIG; 9801 insn_stack[env->cfg.cur_stack++] = w; 9802 return KEEP_EXPLORING; 9803 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 9804 if (loop_ok && env->bpf_capable) 9805 return DONE_EXPLORING; 9806 verbose_linfo(env, t, "%d: ", t); 9807 verbose_linfo(env, w, "%d: ", w); 9808 verbose(env, "back-edge from insn %d to %d\n", t, w); 9809 return -EINVAL; 9810 } else if (insn_state[w] == EXPLORED) { 9811 /* forward- or cross-edge */ 9812 insn_state[t] = DISCOVERED | e; 9813 } else { 9814 verbose(env, "insn state internal bug\n"); 9815 return -EFAULT; 9816 } 9817 return DONE_EXPLORING; 9818 } 9819 9820 static int visit_func_call_insn(int t, int insn_cnt, 9821 struct bpf_insn *insns, 9822 struct bpf_verifier_env *env, 9823 bool visit_callee) 9824 { 9825 int ret; 9826 9827 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 9828 if (ret) 9829 return ret; 9830 9831 if (t + 1 < insn_cnt) 9832 init_explored_state(env, t + 1); 9833 if (visit_callee) { 9834 init_explored_state(env, t); 9835 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env, 9836 /* It's ok to allow recursion from CFG point of 9837 * view. __check_func_call() will do the actual 9838 * check. 9839 */ 9840 bpf_pseudo_func(insns + t)); 9841 } 9842 return ret; 9843 } 9844 9845 /* Visits the instruction at index t and returns one of the following: 9846 * < 0 - an error occurred 9847 * DONE_EXPLORING - the instruction was fully explored 9848 * KEEP_EXPLORING - there is still work to be done before it is fully explored 9849 */ 9850 static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env) 9851 { 9852 struct bpf_insn *insns = env->prog->insnsi; 9853 int ret; 9854 9855 if (bpf_pseudo_func(insns + t)) 9856 return visit_func_call_insn(t, insn_cnt, insns, env, true); 9857 9858 /* All non-branch instructions have a single fall-through edge. */ 9859 if (BPF_CLASS(insns[t].code) != BPF_JMP && 9860 BPF_CLASS(insns[t].code) != BPF_JMP32) 9861 return push_insn(t, t + 1, FALLTHROUGH, env, false); 9862 9863 switch (BPF_OP(insns[t].code)) { 9864 case BPF_EXIT: 9865 return DONE_EXPLORING; 9866 9867 case BPF_CALL: 9868 if (insns[t].imm == BPF_FUNC_timer_set_callback) 9869 /* Mark this call insn to trigger is_state_visited() check 9870 * before call itself is processed by __check_func_call(). 9871 * Otherwise new async state will be pushed for further 9872 * exploration. 9873 */ 9874 init_explored_state(env, t); 9875 return visit_func_call_insn(t, insn_cnt, insns, env, 9876 insns[t].src_reg == BPF_PSEUDO_CALL); 9877 9878 case BPF_JA: 9879 if (BPF_SRC(insns[t].code) != BPF_K) 9880 return -EINVAL; 9881 9882 /* unconditional jump with single edge */ 9883 ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env, 9884 true); 9885 if (ret) 9886 return ret; 9887 9888 /* unconditional jmp is not a good pruning point, 9889 * but it's marked, since backtracking needs 9890 * to record jmp history in is_state_visited(). 9891 */ 9892 init_explored_state(env, t + insns[t].off + 1); 9893 /* tell verifier to check for equivalent states 9894 * after every call and jump 9895 */ 9896 if (t + 1 < insn_cnt) 9897 init_explored_state(env, t + 1); 9898 9899 return ret; 9900 9901 default: 9902 /* conditional jump with two edges */ 9903 init_explored_state(env, t); 9904 ret = push_insn(t, t + 1, FALLTHROUGH, env, true); 9905 if (ret) 9906 return ret; 9907 9908 return push_insn(t, t + insns[t].off + 1, BRANCH, env, true); 9909 } 9910 } 9911 9912 /* non-recursive depth-first-search to detect loops in BPF program 9913 * loop == back-edge in directed graph 9914 */ 9915 static int check_cfg(struct bpf_verifier_env *env) 9916 { 9917 int insn_cnt = env->prog->len; 9918 int *insn_stack, *insn_state; 9919 int ret = 0; 9920 int i; 9921 9922 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 9923 if (!insn_state) 9924 return -ENOMEM; 9925 9926 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 9927 if (!insn_stack) { 9928 kvfree(insn_state); 9929 return -ENOMEM; 9930 } 9931 9932 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 9933 insn_stack[0] = 0; /* 0 is the first instruction */ 9934 env->cfg.cur_stack = 1; 9935 9936 while (env->cfg.cur_stack > 0) { 9937 int t = insn_stack[env->cfg.cur_stack - 1]; 9938 9939 ret = visit_insn(t, insn_cnt, env); 9940 switch (ret) { 9941 case DONE_EXPLORING: 9942 insn_state[t] = EXPLORED; 9943 env->cfg.cur_stack--; 9944 break; 9945 case KEEP_EXPLORING: 9946 break; 9947 default: 9948 if (ret > 0) { 9949 verbose(env, "visit_insn internal bug\n"); 9950 ret = -EFAULT; 9951 } 9952 goto err_free; 9953 } 9954 } 9955 9956 if (env->cfg.cur_stack < 0) { 9957 verbose(env, "pop stack internal bug\n"); 9958 ret = -EFAULT; 9959 goto err_free; 9960 } 9961 9962 for (i = 0; i < insn_cnt; i++) { 9963 if (insn_state[i] != EXPLORED) { 9964 verbose(env, "unreachable insn %d\n", i); 9965 ret = -EINVAL; 9966 goto err_free; 9967 } 9968 } 9969 ret = 0; /* cfg looks good */ 9970 9971 err_free: 9972 kvfree(insn_state); 9973 kvfree(insn_stack); 9974 env->cfg.insn_state = env->cfg.insn_stack = NULL; 9975 return ret; 9976 } 9977 9978 static int check_abnormal_return(struct bpf_verifier_env *env) 9979 { 9980 int i; 9981 9982 for (i = 1; i < env->subprog_cnt; i++) { 9983 if (env->subprog_info[i].has_ld_abs) { 9984 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n"); 9985 return -EINVAL; 9986 } 9987 if (env->subprog_info[i].has_tail_call) { 9988 verbose(env, "tail_call is not allowed in subprogs without BTF\n"); 9989 return -EINVAL; 9990 } 9991 } 9992 return 0; 9993 } 9994 9995 /* The minimum supported BTF func info size */ 9996 #define MIN_BPF_FUNCINFO_SIZE 8 9997 #define MAX_FUNCINFO_REC_SIZE 252 9998 9999 static int check_btf_func(struct bpf_verifier_env *env, 10000 const union bpf_attr *attr, 10001 bpfptr_t uattr) 10002 { 10003 const struct btf_type *type, *func_proto, *ret_type; 10004 u32 i, nfuncs, urec_size, min_size; 10005 u32 krec_size = sizeof(struct bpf_func_info); 10006 struct bpf_func_info *krecord; 10007 struct bpf_func_info_aux *info_aux = NULL; 10008 struct bpf_prog *prog; 10009 const struct btf *btf; 10010 bpfptr_t urecord; 10011 u32 prev_offset = 0; 10012 bool scalar_return; 10013 int ret = -ENOMEM; 10014 10015 nfuncs = attr->func_info_cnt; 10016 if (!nfuncs) { 10017 if (check_abnormal_return(env)) 10018 return -EINVAL; 10019 return 0; 10020 } 10021 10022 if (nfuncs != env->subprog_cnt) { 10023 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 10024 return -EINVAL; 10025 } 10026 10027 urec_size = attr->func_info_rec_size; 10028 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 10029 urec_size > MAX_FUNCINFO_REC_SIZE || 10030 urec_size % sizeof(u32)) { 10031 verbose(env, "invalid func info rec size %u\n", urec_size); 10032 return -EINVAL; 10033 } 10034 10035 prog = env->prog; 10036 btf = prog->aux->btf; 10037 10038 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 10039 min_size = min_t(u32, krec_size, urec_size); 10040 10041 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 10042 if (!krecord) 10043 return -ENOMEM; 10044 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); 10045 if (!info_aux) 10046 goto err_free; 10047 10048 for (i = 0; i < nfuncs; i++) { 10049 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 10050 if (ret) { 10051 if (ret == -E2BIG) { 10052 verbose(env, "nonzero tailing record in func info"); 10053 /* set the size kernel expects so loader can zero 10054 * out the rest of the record. 10055 */ 10056 if (copy_to_bpfptr_offset(uattr, 10057 offsetof(union bpf_attr, func_info_rec_size), 10058 &min_size, sizeof(min_size))) 10059 ret = -EFAULT; 10060 } 10061 goto err_free; 10062 } 10063 10064 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) { 10065 ret = -EFAULT; 10066 goto err_free; 10067 } 10068 10069 /* check insn_off */ 10070 ret = -EINVAL; 10071 if (i == 0) { 10072 if (krecord[i].insn_off) { 10073 verbose(env, 10074 "nonzero insn_off %u for the first func info record", 10075 krecord[i].insn_off); 10076 goto err_free; 10077 } 10078 } else if (krecord[i].insn_off <= prev_offset) { 10079 verbose(env, 10080 "same or smaller insn offset (%u) than previous func info record (%u)", 10081 krecord[i].insn_off, prev_offset); 10082 goto err_free; 10083 } 10084 10085 if (env->subprog_info[i].start != krecord[i].insn_off) { 10086 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 10087 goto err_free; 10088 } 10089 10090 /* check type_id */ 10091 type = btf_type_by_id(btf, krecord[i].type_id); 10092 if (!type || !btf_type_is_func(type)) { 10093 verbose(env, "invalid type id %d in func info", 10094 krecord[i].type_id); 10095 goto err_free; 10096 } 10097 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 10098 10099 func_proto = btf_type_by_id(btf, type->type); 10100 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto))) 10101 /* btf_func_check() already verified it during BTF load */ 10102 goto err_free; 10103 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL); 10104 scalar_return = 10105 btf_type_is_small_int(ret_type) || btf_type_is_enum(ret_type); 10106 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) { 10107 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n"); 10108 goto err_free; 10109 } 10110 if (i && !scalar_return && env->subprog_info[i].has_tail_call) { 10111 verbose(env, "tail_call is only allowed in functions that return 'int'.\n"); 10112 goto err_free; 10113 } 10114 10115 prev_offset = krecord[i].insn_off; 10116 bpfptr_add(&urecord, urec_size); 10117 } 10118 10119 prog->aux->func_info = krecord; 10120 prog->aux->func_info_cnt = nfuncs; 10121 prog->aux->func_info_aux = info_aux; 10122 return 0; 10123 10124 err_free: 10125 kvfree(krecord); 10126 kfree(info_aux); 10127 return ret; 10128 } 10129 10130 static void adjust_btf_func(struct bpf_verifier_env *env) 10131 { 10132 struct bpf_prog_aux *aux = env->prog->aux; 10133 int i; 10134 10135 if (!aux->func_info) 10136 return; 10137 10138 for (i = 0; i < env->subprog_cnt; i++) 10139 aux->func_info[i].insn_off = env->subprog_info[i].start; 10140 } 10141 10142 #define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \ 10143 sizeof(((struct bpf_line_info *)(0))->line_col)) 10144 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 10145 10146 static int check_btf_line(struct bpf_verifier_env *env, 10147 const union bpf_attr *attr, 10148 bpfptr_t uattr) 10149 { 10150 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 10151 struct bpf_subprog_info *sub; 10152 struct bpf_line_info *linfo; 10153 struct bpf_prog *prog; 10154 const struct btf *btf; 10155 bpfptr_t ulinfo; 10156 int err; 10157 10158 nr_linfo = attr->line_info_cnt; 10159 if (!nr_linfo) 10160 return 0; 10161 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info)) 10162 return -EINVAL; 10163 10164 rec_size = attr->line_info_rec_size; 10165 if (rec_size < MIN_BPF_LINEINFO_SIZE || 10166 rec_size > MAX_LINEINFO_REC_SIZE || 10167 rec_size & (sizeof(u32) - 1)) 10168 return -EINVAL; 10169 10170 /* Need to zero it in case the userspace may 10171 * pass in a smaller bpf_line_info object. 10172 */ 10173 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 10174 GFP_KERNEL | __GFP_NOWARN); 10175 if (!linfo) 10176 return -ENOMEM; 10177 10178 prog = env->prog; 10179 btf = prog->aux->btf; 10180 10181 s = 0; 10182 sub = env->subprog_info; 10183 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel); 10184 expected_size = sizeof(struct bpf_line_info); 10185 ncopy = min_t(u32, expected_size, rec_size); 10186 for (i = 0; i < nr_linfo; i++) { 10187 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 10188 if (err) { 10189 if (err == -E2BIG) { 10190 verbose(env, "nonzero tailing record in line_info"); 10191 if (copy_to_bpfptr_offset(uattr, 10192 offsetof(union bpf_attr, line_info_rec_size), 10193 &expected_size, sizeof(expected_size))) 10194 err = -EFAULT; 10195 } 10196 goto err_free; 10197 } 10198 10199 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) { 10200 err = -EFAULT; 10201 goto err_free; 10202 } 10203 10204 /* 10205 * Check insn_off to ensure 10206 * 1) strictly increasing AND 10207 * 2) bounded by prog->len 10208 * 10209 * The linfo[0].insn_off == 0 check logically falls into 10210 * the later "missing bpf_line_info for func..." case 10211 * because the first linfo[0].insn_off must be the 10212 * first sub also and the first sub must have 10213 * subprog_info[0].start == 0. 10214 */ 10215 if ((i && linfo[i].insn_off <= prev_offset) || 10216 linfo[i].insn_off >= prog->len) { 10217 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 10218 i, linfo[i].insn_off, prev_offset, 10219 prog->len); 10220 err = -EINVAL; 10221 goto err_free; 10222 } 10223 10224 if (!prog->insnsi[linfo[i].insn_off].code) { 10225 verbose(env, 10226 "Invalid insn code at line_info[%u].insn_off\n", 10227 i); 10228 err = -EINVAL; 10229 goto err_free; 10230 } 10231 10232 if (!btf_name_by_offset(btf, linfo[i].line_off) || 10233 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 10234 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 10235 err = -EINVAL; 10236 goto err_free; 10237 } 10238 10239 if (s != env->subprog_cnt) { 10240 if (linfo[i].insn_off == sub[s].start) { 10241 sub[s].linfo_idx = i; 10242 s++; 10243 } else if (sub[s].start < linfo[i].insn_off) { 10244 verbose(env, "missing bpf_line_info for func#%u\n", s); 10245 err = -EINVAL; 10246 goto err_free; 10247 } 10248 } 10249 10250 prev_offset = linfo[i].insn_off; 10251 bpfptr_add(&ulinfo, rec_size); 10252 } 10253 10254 if (s != env->subprog_cnt) { 10255 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 10256 env->subprog_cnt - s, s); 10257 err = -EINVAL; 10258 goto err_free; 10259 } 10260 10261 prog->aux->linfo = linfo; 10262 prog->aux->nr_linfo = nr_linfo; 10263 10264 return 0; 10265 10266 err_free: 10267 kvfree(linfo); 10268 return err; 10269 } 10270 10271 static int check_btf_info(struct bpf_verifier_env *env, 10272 const union bpf_attr *attr, 10273 bpfptr_t uattr) 10274 { 10275 struct btf *btf; 10276 int err; 10277 10278 if (!attr->func_info_cnt && !attr->line_info_cnt) { 10279 if (check_abnormal_return(env)) 10280 return -EINVAL; 10281 return 0; 10282 } 10283 10284 btf = btf_get_by_fd(attr->prog_btf_fd); 10285 if (IS_ERR(btf)) 10286 return PTR_ERR(btf); 10287 if (btf_is_kernel(btf)) { 10288 btf_put(btf); 10289 return -EACCES; 10290 } 10291 env->prog->aux->btf = btf; 10292 10293 err = check_btf_func(env, attr, uattr); 10294 if (err) 10295 return err; 10296 10297 err = check_btf_line(env, attr, uattr); 10298 if (err) 10299 return err; 10300 10301 return 0; 10302 } 10303 10304 /* check %cur's range satisfies %old's */ 10305 static bool range_within(struct bpf_reg_state *old, 10306 struct bpf_reg_state *cur) 10307 { 10308 return old->umin_value <= cur->umin_value && 10309 old->umax_value >= cur->umax_value && 10310 old->smin_value <= cur->smin_value && 10311 old->smax_value >= cur->smax_value && 10312 old->u32_min_value <= cur->u32_min_value && 10313 old->u32_max_value >= cur->u32_max_value && 10314 old->s32_min_value <= cur->s32_min_value && 10315 old->s32_max_value >= cur->s32_max_value; 10316 } 10317 10318 /* If in the old state two registers had the same id, then they need to have 10319 * the same id in the new state as well. But that id could be different from 10320 * the old state, so we need to track the mapping from old to new ids. 10321 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 10322 * regs with old id 5 must also have new id 9 for the new state to be safe. But 10323 * regs with a different old id could still have new id 9, we don't care about 10324 * that. 10325 * So we look through our idmap to see if this old id has been seen before. If 10326 * so, we require the new id to match; otherwise, we add the id pair to the map. 10327 */ 10328 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap) 10329 { 10330 unsigned int i; 10331 10332 for (i = 0; i < BPF_ID_MAP_SIZE; i++) { 10333 if (!idmap[i].old) { 10334 /* Reached an empty slot; haven't seen this id before */ 10335 idmap[i].old = old_id; 10336 idmap[i].cur = cur_id; 10337 return true; 10338 } 10339 if (idmap[i].old == old_id) 10340 return idmap[i].cur == cur_id; 10341 } 10342 /* We ran out of idmap slots, which should be impossible */ 10343 WARN_ON_ONCE(1); 10344 return false; 10345 } 10346 10347 static void clean_func_state(struct bpf_verifier_env *env, 10348 struct bpf_func_state *st) 10349 { 10350 enum bpf_reg_liveness live; 10351 int i, j; 10352 10353 for (i = 0; i < BPF_REG_FP; i++) { 10354 live = st->regs[i].live; 10355 /* liveness must not touch this register anymore */ 10356 st->regs[i].live |= REG_LIVE_DONE; 10357 if (!(live & REG_LIVE_READ)) 10358 /* since the register is unused, clear its state 10359 * to make further comparison simpler 10360 */ 10361 __mark_reg_not_init(env, &st->regs[i]); 10362 } 10363 10364 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 10365 live = st->stack[i].spilled_ptr.live; 10366 /* liveness must not touch this stack slot anymore */ 10367 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 10368 if (!(live & REG_LIVE_READ)) { 10369 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 10370 for (j = 0; j < BPF_REG_SIZE; j++) 10371 st->stack[i].slot_type[j] = STACK_INVALID; 10372 } 10373 } 10374 } 10375 10376 static void clean_verifier_state(struct bpf_verifier_env *env, 10377 struct bpf_verifier_state *st) 10378 { 10379 int i; 10380 10381 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 10382 /* all regs in this state in all frames were already marked */ 10383 return; 10384 10385 for (i = 0; i <= st->curframe; i++) 10386 clean_func_state(env, st->frame[i]); 10387 } 10388 10389 /* the parentage chains form a tree. 10390 * the verifier states are added to state lists at given insn and 10391 * pushed into state stack for future exploration. 10392 * when the verifier reaches bpf_exit insn some of the verifer states 10393 * stored in the state lists have their final liveness state already, 10394 * but a lot of states will get revised from liveness point of view when 10395 * the verifier explores other branches. 10396 * Example: 10397 * 1: r0 = 1 10398 * 2: if r1 == 100 goto pc+1 10399 * 3: r0 = 2 10400 * 4: exit 10401 * when the verifier reaches exit insn the register r0 in the state list of 10402 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 10403 * of insn 2 and goes exploring further. At the insn 4 it will walk the 10404 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 10405 * 10406 * Since the verifier pushes the branch states as it sees them while exploring 10407 * the program the condition of walking the branch instruction for the second 10408 * time means that all states below this branch were already explored and 10409 * their final liveness marks are already propagated. 10410 * Hence when the verifier completes the search of state list in is_state_visited() 10411 * we can call this clean_live_states() function to mark all liveness states 10412 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 10413 * will not be used. 10414 * This function also clears the registers and stack for states that !READ 10415 * to simplify state merging. 10416 * 10417 * Important note here that walking the same branch instruction in the callee 10418 * doesn't meant that the states are DONE. The verifier has to compare 10419 * the callsites 10420 */ 10421 static void clean_live_states(struct bpf_verifier_env *env, int insn, 10422 struct bpf_verifier_state *cur) 10423 { 10424 struct bpf_verifier_state_list *sl; 10425 int i; 10426 10427 sl = *explored_state(env, insn); 10428 while (sl) { 10429 if (sl->state.branches) 10430 goto next; 10431 if (sl->state.insn_idx != insn || 10432 sl->state.curframe != cur->curframe) 10433 goto next; 10434 for (i = 0; i <= cur->curframe; i++) 10435 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite) 10436 goto next; 10437 clean_verifier_state(env, &sl->state); 10438 next: 10439 sl = sl->next; 10440 } 10441 } 10442 10443 /* Returns true if (rold safe implies rcur safe) */ 10444 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold, 10445 struct bpf_reg_state *rcur, struct bpf_id_pair *idmap) 10446 { 10447 bool equal; 10448 10449 if (!(rold->live & REG_LIVE_READ)) 10450 /* explored state didn't use this */ 10451 return true; 10452 10453 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0; 10454 10455 if (rold->type == PTR_TO_STACK) 10456 /* two stack pointers are equal only if they're pointing to 10457 * the same stack frame, since fp-8 in foo != fp-8 in bar 10458 */ 10459 return equal && rold->frameno == rcur->frameno; 10460 10461 if (equal) 10462 return true; 10463 10464 if (rold->type == NOT_INIT) 10465 /* explored state can't have used this */ 10466 return true; 10467 if (rcur->type == NOT_INIT) 10468 return false; 10469 switch (rold->type) { 10470 case SCALAR_VALUE: 10471 if (env->explore_alu_limits) 10472 return false; 10473 if (rcur->type == SCALAR_VALUE) { 10474 if (!rold->precise && !rcur->precise) 10475 return true; 10476 /* new val must satisfy old val knowledge */ 10477 return range_within(rold, rcur) && 10478 tnum_in(rold->var_off, rcur->var_off); 10479 } else { 10480 /* We're trying to use a pointer in place of a scalar. 10481 * Even if the scalar was unbounded, this could lead to 10482 * pointer leaks because scalars are allowed to leak 10483 * while pointers are not. We could make this safe in 10484 * special cases if root is calling us, but it's 10485 * probably not worth the hassle. 10486 */ 10487 return false; 10488 } 10489 case PTR_TO_MAP_KEY: 10490 case PTR_TO_MAP_VALUE: 10491 /* If the new min/max/var_off satisfy the old ones and 10492 * everything else matches, we are OK. 10493 * 'id' is not compared, since it's only used for maps with 10494 * bpf_spin_lock inside map element and in such cases if 10495 * the rest of the prog is valid for one map element then 10496 * it's valid for all map elements regardless of the key 10497 * used in bpf_map_lookup() 10498 */ 10499 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 10500 range_within(rold, rcur) && 10501 tnum_in(rold->var_off, rcur->var_off); 10502 case PTR_TO_MAP_VALUE_OR_NULL: 10503 /* a PTR_TO_MAP_VALUE could be safe to use as a 10504 * PTR_TO_MAP_VALUE_OR_NULL into the same map. 10505 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- 10506 * checked, doing so could have affected others with the same 10507 * id, and we can't check for that because we lost the id when 10508 * we converted to a PTR_TO_MAP_VALUE. 10509 */ 10510 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL) 10511 return false; 10512 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) 10513 return false; 10514 /* Check our ids match any regs they're supposed to */ 10515 return check_ids(rold->id, rcur->id, idmap); 10516 case PTR_TO_PACKET_META: 10517 case PTR_TO_PACKET: 10518 if (rcur->type != rold->type) 10519 return false; 10520 /* We must have at least as much range as the old ptr 10521 * did, so that any accesses which were safe before are 10522 * still safe. This is true even if old range < old off, 10523 * since someone could have accessed through (ptr - k), or 10524 * even done ptr -= k in a register, to get a safe access. 10525 */ 10526 if (rold->range > rcur->range) 10527 return false; 10528 /* If the offsets don't match, we can't trust our alignment; 10529 * nor can we be sure that we won't fall out of range. 10530 */ 10531 if (rold->off != rcur->off) 10532 return false; 10533 /* id relations must be preserved */ 10534 if (rold->id && !check_ids(rold->id, rcur->id, idmap)) 10535 return false; 10536 /* new val must satisfy old val knowledge */ 10537 return range_within(rold, rcur) && 10538 tnum_in(rold->var_off, rcur->var_off); 10539 case PTR_TO_CTX: 10540 case CONST_PTR_TO_MAP: 10541 case PTR_TO_PACKET_END: 10542 case PTR_TO_FLOW_KEYS: 10543 case PTR_TO_SOCKET: 10544 case PTR_TO_SOCKET_OR_NULL: 10545 case PTR_TO_SOCK_COMMON: 10546 case PTR_TO_SOCK_COMMON_OR_NULL: 10547 case PTR_TO_TCP_SOCK: 10548 case PTR_TO_TCP_SOCK_OR_NULL: 10549 case PTR_TO_XDP_SOCK: 10550 /* Only valid matches are exact, which memcmp() above 10551 * would have accepted 10552 */ 10553 default: 10554 /* Don't know what's going on, just say it's not safe */ 10555 return false; 10556 } 10557 10558 /* Shouldn't get here; if we do, say it's not safe */ 10559 WARN_ON_ONCE(1); 10560 return false; 10561 } 10562 10563 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old, 10564 struct bpf_func_state *cur, struct bpf_id_pair *idmap) 10565 { 10566 int i, spi; 10567 10568 /* walk slots of the explored stack and ignore any additional 10569 * slots in the current stack, since explored(safe) state 10570 * didn't use them 10571 */ 10572 for (i = 0; i < old->allocated_stack; i++) { 10573 spi = i / BPF_REG_SIZE; 10574 10575 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) { 10576 i += BPF_REG_SIZE - 1; 10577 /* explored state didn't use this */ 10578 continue; 10579 } 10580 10581 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 10582 continue; 10583 10584 /* explored stack has more populated slots than current stack 10585 * and these slots were used 10586 */ 10587 if (i >= cur->allocated_stack) 10588 return false; 10589 10590 /* if old state was safe with misc data in the stack 10591 * it will be safe with zero-initialized stack. 10592 * The opposite is not true 10593 */ 10594 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 10595 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 10596 continue; 10597 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 10598 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 10599 /* Ex: old explored (safe) state has STACK_SPILL in 10600 * this stack slot, but current has STACK_MISC -> 10601 * this verifier states are not equivalent, 10602 * return false to continue verification of this path 10603 */ 10604 return false; 10605 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1) 10606 continue; 10607 if (!is_spilled_reg(&old->stack[spi])) 10608 continue; 10609 if (!regsafe(env, &old->stack[spi].spilled_ptr, 10610 &cur->stack[spi].spilled_ptr, idmap)) 10611 /* when explored and current stack slot are both storing 10612 * spilled registers, check that stored pointers types 10613 * are the same as well. 10614 * Ex: explored safe path could have stored 10615 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 10616 * but current path has stored: 10617 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 10618 * such verifier states are not equivalent. 10619 * return false to continue verification of this path 10620 */ 10621 return false; 10622 } 10623 return true; 10624 } 10625 10626 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur) 10627 { 10628 if (old->acquired_refs != cur->acquired_refs) 10629 return false; 10630 return !memcmp(old->refs, cur->refs, 10631 sizeof(*old->refs) * old->acquired_refs); 10632 } 10633 10634 /* compare two verifier states 10635 * 10636 * all states stored in state_list are known to be valid, since 10637 * verifier reached 'bpf_exit' instruction through them 10638 * 10639 * this function is called when verifier exploring different branches of 10640 * execution popped from the state stack. If it sees an old state that has 10641 * more strict register state and more strict stack state then this execution 10642 * branch doesn't need to be explored further, since verifier already 10643 * concluded that more strict state leads to valid finish. 10644 * 10645 * Therefore two states are equivalent if register state is more conservative 10646 * and explored stack state is more conservative than the current one. 10647 * Example: 10648 * explored current 10649 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 10650 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 10651 * 10652 * In other words if current stack state (one being explored) has more 10653 * valid slots than old one that already passed validation, it means 10654 * the verifier can stop exploring and conclude that current state is valid too 10655 * 10656 * Similarly with registers. If explored state has register type as invalid 10657 * whereas register type in current state is meaningful, it means that 10658 * the current state will reach 'bpf_exit' instruction safely 10659 */ 10660 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old, 10661 struct bpf_func_state *cur) 10662 { 10663 int i; 10664 10665 memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch)); 10666 for (i = 0; i < MAX_BPF_REG; i++) 10667 if (!regsafe(env, &old->regs[i], &cur->regs[i], 10668 env->idmap_scratch)) 10669 return false; 10670 10671 if (!stacksafe(env, old, cur, env->idmap_scratch)) 10672 return false; 10673 10674 if (!refsafe(old, cur)) 10675 return false; 10676 10677 return true; 10678 } 10679 10680 static bool states_equal(struct bpf_verifier_env *env, 10681 struct bpf_verifier_state *old, 10682 struct bpf_verifier_state *cur) 10683 { 10684 int i; 10685 10686 if (old->curframe != cur->curframe) 10687 return false; 10688 10689 /* Verification state from speculative execution simulation 10690 * must never prune a non-speculative execution one. 10691 */ 10692 if (old->speculative && !cur->speculative) 10693 return false; 10694 10695 if (old->active_spin_lock != cur->active_spin_lock) 10696 return false; 10697 10698 /* for states to be equal callsites have to be the same 10699 * and all frame states need to be equivalent 10700 */ 10701 for (i = 0; i <= old->curframe; i++) { 10702 if (old->frame[i]->callsite != cur->frame[i]->callsite) 10703 return false; 10704 if (!func_states_equal(env, old->frame[i], cur->frame[i])) 10705 return false; 10706 } 10707 return true; 10708 } 10709 10710 /* Return 0 if no propagation happened. Return negative error code if error 10711 * happened. Otherwise, return the propagated bit. 10712 */ 10713 static int propagate_liveness_reg(struct bpf_verifier_env *env, 10714 struct bpf_reg_state *reg, 10715 struct bpf_reg_state *parent_reg) 10716 { 10717 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 10718 u8 flag = reg->live & REG_LIVE_READ; 10719 int err; 10720 10721 /* When comes here, read flags of PARENT_REG or REG could be any of 10722 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 10723 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 10724 */ 10725 if (parent_flag == REG_LIVE_READ64 || 10726 /* Or if there is no read flag from REG. */ 10727 !flag || 10728 /* Or if the read flag from REG is the same as PARENT_REG. */ 10729 parent_flag == flag) 10730 return 0; 10731 10732 err = mark_reg_read(env, reg, parent_reg, flag); 10733 if (err) 10734 return err; 10735 10736 return flag; 10737 } 10738 10739 /* A write screens off any subsequent reads; but write marks come from the 10740 * straight-line code between a state and its parent. When we arrive at an 10741 * equivalent state (jump target or such) we didn't arrive by the straight-line 10742 * code, so read marks in the state must propagate to the parent regardless 10743 * of the state's write marks. That's what 'parent == state->parent' comparison 10744 * in mark_reg_read() is for. 10745 */ 10746 static int propagate_liveness(struct bpf_verifier_env *env, 10747 const struct bpf_verifier_state *vstate, 10748 struct bpf_verifier_state *vparent) 10749 { 10750 struct bpf_reg_state *state_reg, *parent_reg; 10751 struct bpf_func_state *state, *parent; 10752 int i, frame, err = 0; 10753 10754 if (vparent->curframe != vstate->curframe) { 10755 WARN(1, "propagate_live: parent frame %d current frame %d\n", 10756 vparent->curframe, vstate->curframe); 10757 return -EFAULT; 10758 } 10759 /* Propagate read liveness of registers... */ 10760 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 10761 for (frame = 0; frame <= vstate->curframe; frame++) { 10762 parent = vparent->frame[frame]; 10763 state = vstate->frame[frame]; 10764 parent_reg = parent->regs; 10765 state_reg = state->regs; 10766 /* We don't need to worry about FP liveness, it's read-only */ 10767 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 10768 err = propagate_liveness_reg(env, &state_reg[i], 10769 &parent_reg[i]); 10770 if (err < 0) 10771 return err; 10772 if (err == REG_LIVE_READ64) 10773 mark_insn_zext(env, &parent_reg[i]); 10774 } 10775 10776 /* Propagate stack slots. */ 10777 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 10778 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 10779 parent_reg = &parent->stack[i].spilled_ptr; 10780 state_reg = &state->stack[i].spilled_ptr; 10781 err = propagate_liveness_reg(env, state_reg, 10782 parent_reg); 10783 if (err < 0) 10784 return err; 10785 } 10786 } 10787 return 0; 10788 } 10789 10790 /* find precise scalars in the previous equivalent state and 10791 * propagate them into the current state 10792 */ 10793 static int propagate_precision(struct bpf_verifier_env *env, 10794 const struct bpf_verifier_state *old) 10795 { 10796 struct bpf_reg_state *state_reg; 10797 struct bpf_func_state *state; 10798 int i, err = 0; 10799 10800 state = old->frame[old->curframe]; 10801 state_reg = state->regs; 10802 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 10803 if (state_reg->type != SCALAR_VALUE || 10804 !state_reg->precise) 10805 continue; 10806 if (env->log.level & BPF_LOG_LEVEL2) 10807 verbose(env, "propagating r%d\n", i); 10808 err = mark_chain_precision(env, i); 10809 if (err < 0) 10810 return err; 10811 } 10812 10813 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 10814 if (!is_spilled_reg(&state->stack[i])) 10815 continue; 10816 state_reg = &state->stack[i].spilled_ptr; 10817 if (state_reg->type != SCALAR_VALUE || 10818 !state_reg->precise) 10819 continue; 10820 if (env->log.level & BPF_LOG_LEVEL2) 10821 verbose(env, "propagating fp%d\n", 10822 (-i - 1) * BPF_REG_SIZE); 10823 err = mark_chain_precision_stack(env, i); 10824 if (err < 0) 10825 return err; 10826 } 10827 return 0; 10828 } 10829 10830 static bool states_maybe_looping(struct bpf_verifier_state *old, 10831 struct bpf_verifier_state *cur) 10832 { 10833 struct bpf_func_state *fold, *fcur; 10834 int i, fr = cur->curframe; 10835 10836 if (old->curframe != fr) 10837 return false; 10838 10839 fold = old->frame[fr]; 10840 fcur = cur->frame[fr]; 10841 for (i = 0; i < MAX_BPF_REG; i++) 10842 if (memcmp(&fold->regs[i], &fcur->regs[i], 10843 offsetof(struct bpf_reg_state, parent))) 10844 return false; 10845 return true; 10846 } 10847 10848 10849 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 10850 { 10851 struct bpf_verifier_state_list *new_sl; 10852 struct bpf_verifier_state_list *sl, **pprev; 10853 struct bpf_verifier_state *cur = env->cur_state, *new; 10854 int i, j, err, states_cnt = 0; 10855 bool add_new_state = env->test_state_freq ? true : false; 10856 10857 cur->last_insn_idx = env->prev_insn_idx; 10858 if (!env->insn_aux_data[insn_idx].prune_point) 10859 /* this 'insn_idx' instruction wasn't marked, so we will not 10860 * be doing state search here 10861 */ 10862 return 0; 10863 10864 /* bpf progs typically have pruning point every 4 instructions 10865 * http://vger.kernel.org/bpfconf2019.html#session-1 10866 * Do not add new state for future pruning if the verifier hasn't seen 10867 * at least 2 jumps and at least 8 instructions. 10868 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 10869 * In tests that amounts to up to 50% reduction into total verifier 10870 * memory consumption and 20% verifier time speedup. 10871 */ 10872 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 10873 env->insn_processed - env->prev_insn_processed >= 8) 10874 add_new_state = true; 10875 10876 pprev = explored_state(env, insn_idx); 10877 sl = *pprev; 10878 10879 clean_live_states(env, insn_idx, cur); 10880 10881 while (sl) { 10882 states_cnt++; 10883 if (sl->state.insn_idx != insn_idx) 10884 goto next; 10885 10886 if (sl->state.branches) { 10887 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe]; 10888 10889 if (frame->in_async_callback_fn && 10890 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) { 10891 /* Different async_entry_cnt means that the verifier is 10892 * processing another entry into async callback. 10893 * Seeing the same state is not an indication of infinite 10894 * loop or infinite recursion. 10895 * But finding the same state doesn't mean that it's safe 10896 * to stop processing the current state. The previous state 10897 * hasn't yet reached bpf_exit, since state.branches > 0. 10898 * Checking in_async_callback_fn alone is not enough either. 10899 * Since the verifier still needs to catch infinite loops 10900 * inside async callbacks. 10901 */ 10902 } else if (states_maybe_looping(&sl->state, cur) && 10903 states_equal(env, &sl->state, cur)) { 10904 verbose_linfo(env, insn_idx, "; "); 10905 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 10906 return -EINVAL; 10907 } 10908 /* if the verifier is processing a loop, avoid adding new state 10909 * too often, since different loop iterations have distinct 10910 * states and may not help future pruning. 10911 * This threshold shouldn't be too low to make sure that 10912 * a loop with large bound will be rejected quickly. 10913 * The most abusive loop will be: 10914 * r1 += 1 10915 * if r1 < 1000000 goto pc-2 10916 * 1M insn_procssed limit / 100 == 10k peak states. 10917 * This threshold shouldn't be too high either, since states 10918 * at the end of the loop are likely to be useful in pruning. 10919 */ 10920 if (env->jmps_processed - env->prev_jmps_processed < 20 && 10921 env->insn_processed - env->prev_insn_processed < 100) 10922 add_new_state = false; 10923 goto miss; 10924 } 10925 if (states_equal(env, &sl->state, cur)) { 10926 sl->hit_cnt++; 10927 /* reached equivalent register/stack state, 10928 * prune the search. 10929 * Registers read by the continuation are read by us. 10930 * If we have any write marks in env->cur_state, they 10931 * will prevent corresponding reads in the continuation 10932 * from reaching our parent (an explored_state). Our 10933 * own state will get the read marks recorded, but 10934 * they'll be immediately forgotten as we're pruning 10935 * this state and will pop a new one. 10936 */ 10937 err = propagate_liveness(env, &sl->state, cur); 10938 10939 /* if previous state reached the exit with precision and 10940 * current state is equivalent to it (except precsion marks) 10941 * the precision needs to be propagated back in 10942 * the current state. 10943 */ 10944 err = err ? : push_jmp_history(env, cur); 10945 err = err ? : propagate_precision(env, &sl->state); 10946 if (err) 10947 return err; 10948 return 1; 10949 } 10950 miss: 10951 /* when new state is not going to be added do not increase miss count. 10952 * Otherwise several loop iterations will remove the state 10953 * recorded earlier. The goal of these heuristics is to have 10954 * states from some iterations of the loop (some in the beginning 10955 * and some at the end) to help pruning. 10956 */ 10957 if (add_new_state) 10958 sl->miss_cnt++; 10959 /* heuristic to determine whether this state is beneficial 10960 * to keep checking from state equivalence point of view. 10961 * Higher numbers increase max_states_per_insn and verification time, 10962 * but do not meaningfully decrease insn_processed. 10963 */ 10964 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) { 10965 /* the state is unlikely to be useful. Remove it to 10966 * speed up verification 10967 */ 10968 *pprev = sl->next; 10969 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) { 10970 u32 br = sl->state.branches; 10971 10972 WARN_ONCE(br, 10973 "BUG live_done but branches_to_explore %d\n", 10974 br); 10975 free_verifier_state(&sl->state, false); 10976 kfree(sl); 10977 env->peak_states--; 10978 } else { 10979 /* cannot free this state, since parentage chain may 10980 * walk it later. Add it for free_list instead to 10981 * be freed at the end of verification 10982 */ 10983 sl->next = env->free_list; 10984 env->free_list = sl; 10985 } 10986 sl = *pprev; 10987 continue; 10988 } 10989 next: 10990 pprev = &sl->next; 10991 sl = *pprev; 10992 } 10993 10994 if (env->max_states_per_insn < states_cnt) 10995 env->max_states_per_insn = states_cnt; 10996 10997 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 10998 return push_jmp_history(env, cur); 10999 11000 if (!add_new_state) 11001 return push_jmp_history(env, cur); 11002 11003 /* There were no equivalent states, remember the current one. 11004 * Technically the current state is not proven to be safe yet, 11005 * but it will either reach outer most bpf_exit (which means it's safe) 11006 * or it will be rejected. When there are no loops the verifier won't be 11007 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 11008 * again on the way to bpf_exit. 11009 * When looping the sl->state.branches will be > 0 and this state 11010 * will not be considered for equivalence until branches == 0. 11011 */ 11012 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 11013 if (!new_sl) 11014 return -ENOMEM; 11015 env->total_states++; 11016 env->peak_states++; 11017 env->prev_jmps_processed = env->jmps_processed; 11018 env->prev_insn_processed = env->insn_processed; 11019 11020 /* add new state to the head of linked list */ 11021 new = &new_sl->state; 11022 err = copy_verifier_state(new, cur); 11023 if (err) { 11024 free_verifier_state(new, false); 11025 kfree(new_sl); 11026 return err; 11027 } 11028 new->insn_idx = insn_idx; 11029 WARN_ONCE(new->branches != 1, 11030 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 11031 11032 cur->parent = new; 11033 cur->first_insn_idx = insn_idx; 11034 clear_jmp_history(cur); 11035 new_sl->next = *explored_state(env, insn_idx); 11036 *explored_state(env, insn_idx) = new_sl; 11037 /* connect new state to parentage chain. Current frame needs all 11038 * registers connected. Only r6 - r9 of the callers are alive (pushed 11039 * to the stack implicitly by JITs) so in callers' frames connect just 11040 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 11041 * the state of the call instruction (with WRITTEN set), and r0 comes 11042 * from callee with its full parentage chain, anyway. 11043 */ 11044 /* clear write marks in current state: the writes we did are not writes 11045 * our child did, so they don't screen off its reads from us. 11046 * (There are no read marks in current state, because reads always mark 11047 * their parent and current state never has children yet. Only 11048 * explored_states can get read marks.) 11049 */ 11050 for (j = 0; j <= cur->curframe; j++) { 11051 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 11052 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 11053 for (i = 0; i < BPF_REG_FP; i++) 11054 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 11055 } 11056 11057 /* all stack frames are accessible from callee, clear them all */ 11058 for (j = 0; j <= cur->curframe; j++) { 11059 struct bpf_func_state *frame = cur->frame[j]; 11060 struct bpf_func_state *newframe = new->frame[j]; 11061 11062 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 11063 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 11064 frame->stack[i].spilled_ptr.parent = 11065 &newframe->stack[i].spilled_ptr; 11066 } 11067 } 11068 return 0; 11069 } 11070 11071 /* Return true if it's OK to have the same insn return a different type. */ 11072 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 11073 { 11074 switch (type) { 11075 case PTR_TO_CTX: 11076 case PTR_TO_SOCKET: 11077 case PTR_TO_SOCKET_OR_NULL: 11078 case PTR_TO_SOCK_COMMON: 11079 case PTR_TO_SOCK_COMMON_OR_NULL: 11080 case PTR_TO_TCP_SOCK: 11081 case PTR_TO_TCP_SOCK_OR_NULL: 11082 case PTR_TO_XDP_SOCK: 11083 case PTR_TO_BTF_ID: 11084 case PTR_TO_BTF_ID_OR_NULL: 11085 return false; 11086 default: 11087 return true; 11088 } 11089 } 11090 11091 /* If an instruction was previously used with particular pointer types, then we 11092 * need to be careful to avoid cases such as the below, where it may be ok 11093 * for one branch accessing the pointer, but not ok for the other branch: 11094 * 11095 * R1 = sock_ptr 11096 * goto X; 11097 * ... 11098 * R1 = some_other_valid_ptr; 11099 * goto X; 11100 * ... 11101 * R2 = *(u32 *)(R1 + 0); 11102 */ 11103 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 11104 { 11105 return src != prev && (!reg_type_mismatch_ok(src) || 11106 !reg_type_mismatch_ok(prev)); 11107 } 11108 11109 static int do_check(struct bpf_verifier_env *env) 11110 { 11111 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 11112 struct bpf_verifier_state *state = env->cur_state; 11113 struct bpf_insn *insns = env->prog->insnsi; 11114 struct bpf_reg_state *regs; 11115 int insn_cnt = env->prog->len; 11116 bool do_print_state = false; 11117 int prev_insn_idx = -1; 11118 11119 for (;;) { 11120 struct bpf_insn *insn; 11121 u8 class; 11122 int err; 11123 11124 env->prev_insn_idx = prev_insn_idx; 11125 if (env->insn_idx >= insn_cnt) { 11126 verbose(env, "invalid insn idx %d insn_cnt %d\n", 11127 env->insn_idx, insn_cnt); 11128 return -EFAULT; 11129 } 11130 11131 insn = &insns[env->insn_idx]; 11132 class = BPF_CLASS(insn->code); 11133 11134 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 11135 verbose(env, 11136 "BPF program is too large. Processed %d insn\n", 11137 env->insn_processed); 11138 return -E2BIG; 11139 } 11140 11141 err = is_state_visited(env, env->insn_idx); 11142 if (err < 0) 11143 return err; 11144 if (err == 1) { 11145 /* found equivalent state, can prune the search */ 11146 if (env->log.level & BPF_LOG_LEVEL) { 11147 if (do_print_state) 11148 verbose(env, "\nfrom %d to %d%s: safe\n", 11149 env->prev_insn_idx, env->insn_idx, 11150 env->cur_state->speculative ? 11151 " (speculative execution)" : ""); 11152 else 11153 verbose(env, "%d: safe\n", env->insn_idx); 11154 } 11155 goto process_bpf_exit; 11156 } 11157 11158 if (signal_pending(current)) 11159 return -EAGAIN; 11160 11161 if (need_resched()) 11162 cond_resched(); 11163 11164 if (env->log.level & BPF_LOG_LEVEL2 || 11165 (env->log.level & BPF_LOG_LEVEL && do_print_state)) { 11166 if (env->log.level & BPF_LOG_LEVEL2) 11167 verbose(env, "%d:", env->insn_idx); 11168 else 11169 verbose(env, "\nfrom %d to %d%s:", 11170 env->prev_insn_idx, env->insn_idx, 11171 env->cur_state->speculative ? 11172 " (speculative execution)" : ""); 11173 print_verifier_state(env, state->frame[state->curframe]); 11174 do_print_state = false; 11175 } 11176 11177 if (env->log.level & BPF_LOG_LEVEL) { 11178 const struct bpf_insn_cbs cbs = { 11179 .cb_call = disasm_kfunc_name, 11180 .cb_print = verbose, 11181 .private_data = env, 11182 }; 11183 11184 verbose_linfo(env, env->insn_idx, "; "); 11185 verbose(env, "%d: ", env->insn_idx); 11186 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 11187 } 11188 11189 if (bpf_prog_is_dev_bound(env->prog->aux)) { 11190 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 11191 env->prev_insn_idx); 11192 if (err) 11193 return err; 11194 } 11195 11196 regs = cur_regs(env); 11197 sanitize_mark_insn_seen(env); 11198 prev_insn_idx = env->insn_idx; 11199 11200 if (class == BPF_ALU || class == BPF_ALU64) { 11201 err = check_alu_op(env, insn); 11202 if (err) 11203 return err; 11204 11205 } else if (class == BPF_LDX) { 11206 enum bpf_reg_type *prev_src_type, src_reg_type; 11207 11208 /* check for reserved fields is already done */ 11209 11210 /* check src operand */ 11211 err = check_reg_arg(env, insn->src_reg, SRC_OP); 11212 if (err) 11213 return err; 11214 11215 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 11216 if (err) 11217 return err; 11218 11219 src_reg_type = regs[insn->src_reg].type; 11220 11221 /* check that memory (src_reg + off) is readable, 11222 * the state of dst_reg will be updated by this func 11223 */ 11224 err = check_mem_access(env, env->insn_idx, insn->src_reg, 11225 insn->off, BPF_SIZE(insn->code), 11226 BPF_READ, insn->dst_reg, false); 11227 if (err) 11228 return err; 11229 11230 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type; 11231 11232 if (*prev_src_type == NOT_INIT) { 11233 /* saw a valid insn 11234 * dst_reg = *(u32 *)(src_reg + off) 11235 * save type to validate intersecting paths 11236 */ 11237 *prev_src_type = src_reg_type; 11238 11239 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) { 11240 /* ABuser program is trying to use the same insn 11241 * dst_reg = *(u32*) (src_reg + off) 11242 * with different pointer types: 11243 * src_reg == ctx in one branch and 11244 * src_reg == stack|map in some other branch. 11245 * Reject it. 11246 */ 11247 verbose(env, "same insn cannot be used with different pointers\n"); 11248 return -EINVAL; 11249 } 11250 11251 } else if (class == BPF_STX) { 11252 enum bpf_reg_type *prev_dst_type, dst_reg_type; 11253 11254 if (BPF_MODE(insn->code) == BPF_ATOMIC) { 11255 err = check_atomic(env, env->insn_idx, insn); 11256 if (err) 11257 return err; 11258 env->insn_idx++; 11259 continue; 11260 } 11261 11262 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) { 11263 verbose(env, "BPF_STX uses reserved fields\n"); 11264 return -EINVAL; 11265 } 11266 11267 /* check src1 operand */ 11268 err = check_reg_arg(env, insn->src_reg, SRC_OP); 11269 if (err) 11270 return err; 11271 /* check src2 operand */ 11272 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 11273 if (err) 11274 return err; 11275 11276 dst_reg_type = regs[insn->dst_reg].type; 11277 11278 /* check that memory (dst_reg + off) is writeable */ 11279 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 11280 insn->off, BPF_SIZE(insn->code), 11281 BPF_WRITE, insn->src_reg, false); 11282 if (err) 11283 return err; 11284 11285 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type; 11286 11287 if (*prev_dst_type == NOT_INIT) { 11288 *prev_dst_type = dst_reg_type; 11289 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) { 11290 verbose(env, "same insn cannot be used with different pointers\n"); 11291 return -EINVAL; 11292 } 11293 11294 } else if (class == BPF_ST) { 11295 if (BPF_MODE(insn->code) != BPF_MEM || 11296 insn->src_reg != BPF_REG_0) { 11297 verbose(env, "BPF_ST uses reserved fields\n"); 11298 return -EINVAL; 11299 } 11300 /* check src operand */ 11301 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 11302 if (err) 11303 return err; 11304 11305 if (is_ctx_reg(env, insn->dst_reg)) { 11306 verbose(env, "BPF_ST stores into R%d %s is not allowed\n", 11307 insn->dst_reg, 11308 reg_type_str[reg_state(env, insn->dst_reg)->type]); 11309 return -EACCES; 11310 } 11311 11312 /* check that memory (dst_reg + off) is writeable */ 11313 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 11314 insn->off, BPF_SIZE(insn->code), 11315 BPF_WRITE, -1, false); 11316 if (err) 11317 return err; 11318 11319 } else if (class == BPF_JMP || class == BPF_JMP32) { 11320 u8 opcode = BPF_OP(insn->code); 11321 11322 env->jmps_processed++; 11323 if (opcode == BPF_CALL) { 11324 if (BPF_SRC(insn->code) != BPF_K || 11325 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL 11326 && insn->off != 0) || 11327 (insn->src_reg != BPF_REG_0 && 11328 insn->src_reg != BPF_PSEUDO_CALL && 11329 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) || 11330 insn->dst_reg != BPF_REG_0 || 11331 class == BPF_JMP32) { 11332 verbose(env, "BPF_CALL uses reserved fields\n"); 11333 return -EINVAL; 11334 } 11335 11336 if (env->cur_state->active_spin_lock && 11337 (insn->src_reg == BPF_PSEUDO_CALL || 11338 insn->imm != BPF_FUNC_spin_unlock)) { 11339 verbose(env, "function calls are not allowed while holding a lock\n"); 11340 return -EINVAL; 11341 } 11342 if (insn->src_reg == BPF_PSEUDO_CALL) 11343 err = check_func_call(env, insn, &env->insn_idx); 11344 else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) 11345 err = check_kfunc_call(env, insn); 11346 else 11347 err = check_helper_call(env, insn, &env->insn_idx); 11348 if (err) 11349 return err; 11350 } else if (opcode == BPF_JA) { 11351 if (BPF_SRC(insn->code) != BPF_K || 11352 insn->imm != 0 || 11353 insn->src_reg != BPF_REG_0 || 11354 insn->dst_reg != BPF_REG_0 || 11355 class == BPF_JMP32) { 11356 verbose(env, "BPF_JA uses reserved fields\n"); 11357 return -EINVAL; 11358 } 11359 11360 env->insn_idx += insn->off + 1; 11361 continue; 11362 11363 } else if (opcode == BPF_EXIT) { 11364 if (BPF_SRC(insn->code) != BPF_K || 11365 insn->imm != 0 || 11366 insn->src_reg != BPF_REG_0 || 11367 insn->dst_reg != BPF_REG_0 || 11368 class == BPF_JMP32) { 11369 verbose(env, "BPF_EXIT uses reserved fields\n"); 11370 return -EINVAL; 11371 } 11372 11373 if (env->cur_state->active_spin_lock) { 11374 verbose(env, "bpf_spin_unlock is missing\n"); 11375 return -EINVAL; 11376 } 11377 11378 if (state->curframe) { 11379 /* exit from nested function */ 11380 err = prepare_func_exit(env, &env->insn_idx); 11381 if (err) 11382 return err; 11383 do_print_state = true; 11384 continue; 11385 } 11386 11387 err = check_reference_leak(env); 11388 if (err) 11389 return err; 11390 11391 err = check_return_code(env); 11392 if (err) 11393 return err; 11394 process_bpf_exit: 11395 update_branch_counts(env, env->cur_state); 11396 err = pop_stack(env, &prev_insn_idx, 11397 &env->insn_idx, pop_log); 11398 if (err < 0) { 11399 if (err != -ENOENT) 11400 return err; 11401 break; 11402 } else { 11403 do_print_state = true; 11404 continue; 11405 } 11406 } else { 11407 err = check_cond_jmp_op(env, insn, &env->insn_idx); 11408 if (err) 11409 return err; 11410 } 11411 } else if (class == BPF_LD) { 11412 u8 mode = BPF_MODE(insn->code); 11413 11414 if (mode == BPF_ABS || mode == BPF_IND) { 11415 err = check_ld_abs(env, insn); 11416 if (err) 11417 return err; 11418 11419 } else if (mode == BPF_IMM) { 11420 err = check_ld_imm(env, insn); 11421 if (err) 11422 return err; 11423 11424 env->insn_idx++; 11425 sanitize_mark_insn_seen(env); 11426 } else { 11427 verbose(env, "invalid BPF_LD mode\n"); 11428 return -EINVAL; 11429 } 11430 } else { 11431 verbose(env, "unknown insn class %d\n", class); 11432 return -EINVAL; 11433 } 11434 11435 env->insn_idx++; 11436 } 11437 11438 return 0; 11439 } 11440 11441 static int find_btf_percpu_datasec(struct btf *btf) 11442 { 11443 const struct btf_type *t; 11444 const char *tname; 11445 int i, n; 11446 11447 /* 11448 * Both vmlinux and module each have their own ".data..percpu" 11449 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF 11450 * types to look at only module's own BTF types. 11451 */ 11452 n = btf_nr_types(btf); 11453 if (btf_is_module(btf)) 11454 i = btf_nr_types(btf_vmlinux); 11455 else 11456 i = 1; 11457 11458 for(; i < n; i++) { 11459 t = btf_type_by_id(btf, i); 11460 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC) 11461 continue; 11462 11463 tname = btf_name_by_offset(btf, t->name_off); 11464 if (!strcmp(tname, ".data..percpu")) 11465 return i; 11466 } 11467 11468 return -ENOENT; 11469 } 11470 11471 /* replace pseudo btf_id with kernel symbol address */ 11472 static int check_pseudo_btf_id(struct bpf_verifier_env *env, 11473 struct bpf_insn *insn, 11474 struct bpf_insn_aux_data *aux) 11475 { 11476 const struct btf_var_secinfo *vsi; 11477 const struct btf_type *datasec; 11478 struct btf_mod_pair *btf_mod; 11479 const struct btf_type *t; 11480 const char *sym_name; 11481 bool percpu = false; 11482 u32 type, id = insn->imm; 11483 struct btf *btf; 11484 s32 datasec_id; 11485 u64 addr; 11486 int i, btf_fd, err; 11487 11488 btf_fd = insn[1].imm; 11489 if (btf_fd) { 11490 btf = btf_get_by_fd(btf_fd); 11491 if (IS_ERR(btf)) { 11492 verbose(env, "invalid module BTF object FD specified.\n"); 11493 return -EINVAL; 11494 } 11495 } else { 11496 if (!btf_vmlinux) { 11497 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n"); 11498 return -EINVAL; 11499 } 11500 btf = btf_vmlinux; 11501 btf_get(btf); 11502 } 11503 11504 t = btf_type_by_id(btf, id); 11505 if (!t) { 11506 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id); 11507 err = -ENOENT; 11508 goto err_put; 11509 } 11510 11511 if (!btf_type_is_var(t)) { 11512 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id); 11513 err = -EINVAL; 11514 goto err_put; 11515 } 11516 11517 sym_name = btf_name_by_offset(btf, t->name_off); 11518 addr = kallsyms_lookup_name(sym_name); 11519 if (!addr) { 11520 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n", 11521 sym_name); 11522 err = -ENOENT; 11523 goto err_put; 11524 } 11525 11526 datasec_id = find_btf_percpu_datasec(btf); 11527 if (datasec_id > 0) { 11528 datasec = btf_type_by_id(btf, datasec_id); 11529 for_each_vsi(i, datasec, vsi) { 11530 if (vsi->type == id) { 11531 percpu = true; 11532 break; 11533 } 11534 } 11535 } 11536 11537 insn[0].imm = (u32)addr; 11538 insn[1].imm = addr >> 32; 11539 11540 type = t->type; 11541 t = btf_type_skip_modifiers(btf, type, NULL); 11542 if (percpu) { 11543 aux->btf_var.reg_type = PTR_TO_PERCPU_BTF_ID; 11544 aux->btf_var.btf = btf; 11545 aux->btf_var.btf_id = type; 11546 } else if (!btf_type_is_struct(t)) { 11547 const struct btf_type *ret; 11548 const char *tname; 11549 u32 tsize; 11550 11551 /* resolve the type size of ksym. */ 11552 ret = btf_resolve_size(btf, t, &tsize); 11553 if (IS_ERR(ret)) { 11554 tname = btf_name_by_offset(btf, t->name_off); 11555 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n", 11556 tname, PTR_ERR(ret)); 11557 err = -EINVAL; 11558 goto err_put; 11559 } 11560 aux->btf_var.reg_type = PTR_TO_MEM; 11561 aux->btf_var.mem_size = tsize; 11562 } else { 11563 aux->btf_var.reg_type = PTR_TO_BTF_ID; 11564 aux->btf_var.btf = btf; 11565 aux->btf_var.btf_id = type; 11566 } 11567 11568 /* check whether we recorded this BTF (and maybe module) already */ 11569 for (i = 0; i < env->used_btf_cnt; i++) { 11570 if (env->used_btfs[i].btf == btf) { 11571 btf_put(btf); 11572 return 0; 11573 } 11574 } 11575 11576 if (env->used_btf_cnt >= MAX_USED_BTFS) { 11577 err = -E2BIG; 11578 goto err_put; 11579 } 11580 11581 btf_mod = &env->used_btfs[env->used_btf_cnt]; 11582 btf_mod->btf = btf; 11583 btf_mod->module = NULL; 11584 11585 /* if we reference variables from kernel module, bump its refcount */ 11586 if (btf_is_module(btf)) { 11587 btf_mod->module = btf_try_get_module(btf); 11588 if (!btf_mod->module) { 11589 err = -ENXIO; 11590 goto err_put; 11591 } 11592 } 11593 11594 env->used_btf_cnt++; 11595 11596 return 0; 11597 err_put: 11598 btf_put(btf); 11599 return err; 11600 } 11601 11602 static int check_map_prealloc(struct bpf_map *map) 11603 { 11604 return (map->map_type != BPF_MAP_TYPE_HASH && 11605 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 11606 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) || 11607 !(map->map_flags & BPF_F_NO_PREALLOC); 11608 } 11609 11610 static bool is_tracing_prog_type(enum bpf_prog_type type) 11611 { 11612 switch (type) { 11613 case BPF_PROG_TYPE_KPROBE: 11614 case BPF_PROG_TYPE_TRACEPOINT: 11615 case BPF_PROG_TYPE_PERF_EVENT: 11616 case BPF_PROG_TYPE_RAW_TRACEPOINT: 11617 return true; 11618 default: 11619 return false; 11620 } 11621 } 11622 11623 static bool is_preallocated_map(struct bpf_map *map) 11624 { 11625 if (!check_map_prealloc(map)) 11626 return false; 11627 if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta)) 11628 return false; 11629 return true; 11630 } 11631 11632 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 11633 struct bpf_map *map, 11634 struct bpf_prog *prog) 11635 11636 { 11637 enum bpf_prog_type prog_type = resolve_prog_type(prog); 11638 /* 11639 * Validate that trace type programs use preallocated hash maps. 11640 * 11641 * For programs attached to PERF events this is mandatory as the 11642 * perf NMI can hit any arbitrary code sequence. 11643 * 11644 * All other trace types using preallocated hash maps are unsafe as 11645 * well because tracepoint or kprobes can be inside locked regions 11646 * of the memory allocator or at a place where a recursion into the 11647 * memory allocator would see inconsistent state. 11648 * 11649 * On RT enabled kernels run-time allocation of all trace type 11650 * programs is strictly prohibited due to lock type constraints. On 11651 * !RT kernels it is allowed for backwards compatibility reasons for 11652 * now, but warnings are emitted so developers are made aware of 11653 * the unsafety and can fix their programs before this is enforced. 11654 */ 11655 if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) { 11656 if (prog_type == BPF_PROG_TYPE_PERF_EVENT) { 11657 verbose(env, "perf_event programs can only use preallocated hash map\n"); 11658 return -EINVAL; 11659 } 11660 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 11661 verbose(env, "trace type programs can only use preallocated hash map\n"); 11662 return -EINVAL; 11663 } 11664 WARN_ONCE(1, "trace type BPF program uses run-time allocation\n"); 11665 verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n"); 11666 } 11667 11668 if (map_value_has_spin_lock(map)) { 11669 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) { 11670 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n"); 11671 return -EINVAL; 11672 } 11673 11674 if (is_tracing_prog_type(prog_type)) { 11675 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 11676 return -EINVAL; 11677 } 11678 11679 if (prog->aux->sleepable) { 11680 verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n"); 11681 return -EINVAL; 11682 } 11683 } 11684 11685 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) && 11686 !bpf_offload_prog_map_match(prog, map)) { 11687 verbose(env, "offload device mismatch between prog and map\n"); 11688 return -EINVAL; 11689 } 11690 11691 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 11692 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 11693 return -EINVAL; 11694 } 11695 11696 if (prog->aux->sleepable) 11697 switch (map->map_type) { 11698 case BPF_MAP_TYPE_HASH: 11699 case BPF_MAP_TYPE_LRU_HASH: 11700 case BPF_MAP_TYPE_ARRAY: 11701 case BPF_MAP_TYPE_PERCPU_HASH: 11702 case BPF_MAP_TYPE_PERCPU_ARRAY: 11703 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 11704 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 11705 case BPF_MAP_TYPE_HASH_OF_MAPS: 11706 if (!is_preallocated_map(map)) { 11707 verbose(env, 11708 "Sleepable programs can only use preallocated maps\n"); 11709 return -EINVAL; 11710 } 11711 break; 11712 case BPF_MAP_TYPE_RINGBUF: 11713 break; 11714 default: 11715 verbose(env, 11716 "Sleepable programs can only use array, hash, and ringbuf maps\n"); 11717 return -EINVAL; 11718 } 11719 11720 return 0; 11721 } 11722 11723 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 11724 { 11725 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 11726 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 11727 } 11728 11729 /* find and rewrite pseudo imm in ld_imm64 instructions: 11730 * 11731 * 1. if it accesses map FD, replace it with actual map pointer. 11732 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var. 11733 * 11734 * NOTE: btf_vmlinux is required for converting pseudo btf_id. 11735 */ 11736 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env) 11737 { 11738 struct bpf_insn *insn = env->prog->insnsi; 11739 int insn_cnt = env->prog->len; 11740 int i, j, err; 11741 11742 err = bpf_prog_calc_tag(env->prog); 11743 if (err) 11744 return err; 11745 11746 for (i = 0; i < insn_cnt; i++, insn++) { 11747 if (BPF_CLASS(insn->code) == BPF_LDX && 11748 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 11749 verbose(env, "BPF_LDX uses reserved fields\n"); 11750 return -EINVAL; 11751 } 11752 11753 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 11754 struct bpf_insn_aux_data *aux; 11755 struct bpf_map *map; 11756 struct fd f; 11757 u64 addr; 11758 u32 fd; 11759 11760 if (i == insn_cnt - 1 || insn[1].code != 0 || 11761 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 11762 insn[1].off != 0) { 11763 verbose(env, "invalid bpf_ld_imm64 insn\n"); 11764 return -EINVAL; 11765 } 11766 11767 if (insn[0].src_reg == 0) 11768 /* valid generic load 64-bit imm */ 11769 goto next_insn; 11770 11771 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) { 11772 aux = &env->insn_aux_data[i]; 11773 err = check_pseudo_btf_id(env, insn, aux); 11774 if (err) 11775 return err; 11776 goto next_insn; 11777 } 11778 11779 if (insn[0].src_reg == BPF_PSEUDO_FUNC) { 11780 aux = &env->insn_aux_data[i]; 11781 aux->ptr_type = PTR_TO_FUNC; 11782 goto next_insn; 11783 } 11784 11785 /* In final convert_pseudo_ld_imm64() step, this is 11786 * converted into regular 64-bit imm load insn. 11787 */ 11788 switch (insn[0].src_reg) { 11789 case BPF_PSEUDO_MAP_VALUE: 11790 case BPF_PSEUDO_MAP_IDX_VALUE: 11791 break; 11792 case BPF_PSEUDO_MAP_FD: 11793 case BPF_PSEUDO_MAP_IDX: 11794 if (insn[1].imm == 0) 11795 break; 11796 fallthrough; 11797 default: 11798 verbose(env, "unrecognized bpf_ld_imm64 insn\n"); 11799 return -EINVAL; 11800 } 11801 11802 switch (insn[0].src_reg) { 11803 case BPF_PSEUDO_MAP_IDX_VALUE: 11804 case BPF_PSEUDO_MAP_IDX: 11805 if (bpfptr_is_null(env->fd_array)) { 11806 verbose(env, "fd_idx without fd_array is invalid\n"); 11807 return -EPROTO; 11808 } 11809 if (copy_from_bpfptr_offset(&fd, env->fd_array, 11810 insn[0].imm * sizeof(fd), 11811 sizeof(fd))) 11812 return -EFAULT; 11813 break; 11814 default: 11815 fd = insn[0].imm; 11816 break; 11817 } 11818 11819 f = fdget(fd); 11820 map = __bpf_map_get(f); 11821 if (IS_ERR(map)) { 11822 verbose(env, "fd %d is not pointing to valid bpf_map\n", 11823 insn[0].imm); 11824 return PTR_ERR(map); 11825 } 11826 11827 err = check_map_prog_compatibility(env, map, env->prog); 11828 if (err) { 11829 fdput(f); 11830 return err; 11831 } 11832 11833 aux = &env->insn_aux_data[i]; 11834 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD || 11835 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) { 11836 addr = (unsigned long)map; 11837 } else { 11838 u32 off = insn[1].imm; 11839 11840 if (off >= BPF_MAX_VAR_OFF) { 11841 verbose(env, "direct value offset of %u is not allowed\n", off); 11842 fdput(f); 11843 return -EINVAL; 11844 } 11845 11846 if (!map->ops->map_direct_value_addr) { 11847 verbose(env, "no direct value access support for this map type\n"); 11848 fdput(f); 11849 return -EINVAL; 11850 } 11851 11852 err = map->ops->map_direct_value_addr(map, &addr, off); 11853 if (err) { 11854 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 11855 map->value_size, off); 11856 fdput(f); 11857 return err; 11858 } 11859 11860 aux->map_off = off; 11861 addr += off; 11862 } 11863 11864 insn[0].imm = (u32)addr; 11865 insn[1].imm = addr >> 32; 11866 11867 /* check whether we recorded this map already */ 11868 for (j = 0; j < env->used_map_cnt; j++) { 11869 if (env->used_maps[j] == map) { 11870 aux->map_index = j; 11871 fdput(f); 11872 goto next_insn; 11873 } 11874 } 11875 11876 if (env->used_map_cnt >= MAX_USED_MAPS) { 11877 fdput(f); 11878 return -E2BIG; 11879 } 11880 11881 /* hold the map. If the program is rejected by verifier, 11882 * the map will be released by release_maps() or it 11883 * will be used by the valid program until it's unloaded 11884 * and all maps are released in free_used_maps() 11885 */ 11886 bpf_map_inc(map); 11887 11888 aux->map_index = env->used_map_cnt; 11889 env->used_maps[env->used_map_cnt++] = map; 11890 11891 if (bpf_map_is_cgroup_storage(map) && 11892 bpf_cgroup_storage_assign(env->prog->aux, map)) { 11893 verbose(env, "only one cgroup storage of each type is allowed\n"); 11894 fdput(f); 11895 return -EBUSY; 11896 } 11897 11898 fdput(f); 11899 next_insn: 11900 insn++; 11901 i++; 11902 continue; 11903 } 11904 11905 /* Basic sanity check before we invest more work here. */ 11906 if (!bpf_opcode_in_insntable(insn->code)) { 11907 verbose(env, "unknown opcode %02x\n", insn->code); 11908 return -EINVAL; 11909 } 11910 } 11911 11912 /* now all pseudo BPF_LD_IMM64 instructions load valid 11913 * 'struct bpf_map *' into a register instead of user map_fd. 11914 * These pointers will be used later by verifier to validate map access. 11915 */ 11916 return 0; 11917 } 11918 11919 /* drop refcnt of maps used by the rejected program */ 11920 static void release_maps(struct bpf_verifier_env *env) 11921 { 11922 __bpf_free_used_maps(env->prog->aux, env->used_maps, 11923 env->used_map_cnt); 11924 } 11925 11926 /* drop refcnt of maps used by the rejected program */ 11927 static void release_btfs(struct bpf_verifier_env *env) 11928 { 11929 __bpf_free_used_btfs(env->prog->aux, env->used_btfs, 11930 env->used_btf_cnt); 11931 } 11932 11933 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 11934 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 11935 { 11936 struct bpf_insn *insn = env->prog->insnsi; 11937 int insn_cnt = env->prog->len; 11938 int i; 11939 11940 for (i = 0; i < insn_cnt; i++, insn++) { 11941 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) 11942 continue; 11943 if (insn->src_reg == BPF_PSEUDO_FUNC) 11944 continue; 11945 insn->src_reg = 0; 11946 } 11947 } 11948 11949 /* single env->prog->insni[off] instruction was replaced with the range 11950 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 11951 * [0, off) and [off, end) to new locations, so the patched range stays zero 11952 */ 11953 static void adjust_insn_aux_data(struct bpf_verifier_env *env, 11954 struct bpf_insn_aux_data *new_data, 11955 struct bpf_prog *new_prog, u32 off, u32 cnt) 11956 { 11957 struct bpf_insn_aux_data *old_data = env->insn_aux_data; 11958 struct bpf_insn *insn = new_prog->insnsi; 11959 u32 old_seen = old_data[off].seen; 11960 u32 prog_len; 11961 int i; 11962 11963 /* aux info at OFF always needs adjustment, no matter fast path 11964 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 11965 * original insn at old prog. 11966 */ 11967 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 11968 11969 if (cnt == 1) 11970 return; 11971 prog_len = new_prog->len; 11972 11973 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 11974 memcpy(new_data + off + cnt - 1, old_data + off, 11975 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 11976 for (i = off; i < off + cnt - 1; i++) { 11977 /* Expand insni[off]'s seen count to the patched range. */ 11978 new_data[i].seen = old_seen; 11979 new_data[i].zext_dst = insn_has_def32(env, insn + i); 11980 } 11981 env->insn_aux_data = new_data; 11982 vfree(old_data); 11983 } 11984 11985 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 11986 { 11987 int i; 11988 11989 if (len == 1) 11990 return; 11991 /* NOTE: fake 'exit' subprog should be updated as well. */ 11992 for (i = 0; i <= env->subprog_cnt; i++) { 11993 if (env->subprog_info[i].start <= off) 11994 continue; 11995 env->subprog_info[i].start += len - 1; 11996 } 11997 } 11998 11999 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len) 12000 { 12001 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; 12002 int i, sz = prog->aux->size_poke_tab; 12003 struct bpf_jit_poke_descriptor *desc; 12004 12005 for (i = 0; i < sz; i++) { 12006 desc = &tab[i]; 12007 if (desc->insn_idx <= off) 12008 continue; 12009 desc->insn_idx += len - 1; 12010 } 12011 } 12012 12013 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 12014 const struct bpf_insn *patch, u32 len) 12015 { 12016 struct bpf_prog *new_prog; 12017 struct bpf_insn_aux_data *new_data = NULL; 12018 12019 if (len > 1) { 12020 new_data = vzalloc(array_size(env->prog->len + len - 1, 12021 sizeof(struct bpf_insn_aux_data))); 12022 if (!new_data) 12023 return NULL; 12024 } 12025 12026 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 12027 if (IS_ERR(new_prog)) { 12028 if (PTR_ERR(new_prog) == -ERANGE) 12029 verbose(env, 12030 "insn %d cannot be patched due to 16-bit range\n", 12031 env->insn_aux_data[off].orig_idx); 12032 vfree(new_data); 12033 return NULL; 12034 } 12035 adjust_insn_aux_data(env, new_data, new_prog, off, len); 12036 adjust_subprog_starts(env, off, len); 12037 adjust_poke_descs(new_prog, off, len); 12038 return new_prog; 12039 } 12040 12041 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 12042 u32 off, u32 cnt) 12043 { 12044 int i, j; 12045 12046 /* find first prog starting at or after off (first to remove) */ 12047 for (i = 0; i < env->subprog_cnt; i++) 12048 if (env->subprog_info[i].start >= off) 12049 break; 12050 /* find first prog starting at or after off + cnt (first to stay) */ 12051 for (j = i; j < env->subprog_cnt; j++) 12052 if (env->subprog_info[j].start >= off + cnt) 12053 break; 12054 /* if j doesn't start exactly at off + cnt, we are just removing 12055 * the front of previous prog 12056 */ 12057 if (env->subprog_info[j].start != off + cnt) 12058 j--; 12059 12060 if (j > i) { 12061 struct bpf_prog_aux *aux = env->prog->aux; 12062 int move; 12063 12064 /* move fake 'exit' subprog as well */ 12065 move = env->subprog_cnt + 1 - j; 12066 12067 memmove(env->subprog_info + i, 12068 env->subprog_info + j, 12069 sizeof(*env->subprog_info) * move); 12070 env->subprog_cnt -= j - i; 12071 12072 /* remove func_info */ 12073 if (aux->func_info) { 12074 move = aux->func_info_cnt - j; 12075 12076 memmove(aux->func_info + i, 12077 aux->func_info + j, 12078 sizeof(*aux->func_info) * move); 12079 aux->func_info_cnt -= j - i; 12080 /* func_info->insn_off is set after all code rewrites, 12081 * in adjust_btf_func() - no need to adjust 12082 */ 12083 } 12084 } else { 12085 /* convert i from "first prog to remove" to "first to adjust" */ 12086 if (env->subprog_info[i].start == off) 12087 i++; 12088 } 12089 12090 /* update fake 'exit' subprog as well */ 12091 for (; i <= env->subprog_cnt; i++) 12092 env->subprog_info[i].start -= cnt; 12093 12094 return 0; 12095 } 12096 12097 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 12098 u32 cnt) 12099 { 12100 struct bpf_prog *prog = env->prog; 12101 u32 i, l_off, l_cnt, nr_linfo; 12102 struct bpf_line_info *linfo; 12103 12104 nr_linfo = prog->aux->nr_linfo; 12105 if (!nr_linfo) 12106 return 0; 12107 12108 linfo = prog->aux->linfo; 12109 12110 /* find first line info to remove, count lines to be removed */ 12111 for (i = 0; i < nr_linfo; i++) 12112 if (linfo[i].insn_off >= off) 12113 break; 12114 12115 l_off = i; 12116 l_cnt = 0; 12117 for (; i < nr_linfo; i++) 12118 if (linfo[i].insn_off < off + cnt) 12119 l_cnt++; 12120 else 12121 break; 12122 12123 /* First live insn doesn't match first live linfo, it needs to "inherit" 12124 * last removed linfo. prog is already modified, so prog->len == off 12125 * means no live instructions after (tail of the program was removed). 12126 */ 12127 if (prog->len != off && l_cnt && 12128 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 12129 l_cnt--; 12130 linfo[--i].insn_off = off + cnt; 12131 } 12132 12133 /* remove the line info which refer to the removed instructions */ 12134 if (l_cnt) { 12135 memmove(linfo + l_off, linfo + i, 12136 sizeof(*linfo) * (nr_linfo - i)); 12137 12138 prog->aux->nr_linfo -= l_cnt; 12139 nr_linfo = prog->aux->nr_linfo; 12140 } 12141 12142 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 12143 for (i = l_off; i < nr_linfo; i++) 12144 linfo[i].insn_off -= cnt; 12145 12146 /* fix up all subprogs (incl. 'exit') which start >= off */ 12147 for (i = 0; i <= env->subprog_cnt; i++) 12148 if (env->subprog_info[i].linfo_idx > l_off) { 12149 /* program may have started in the removed region but 12150 * may not be fully removed 12151 */ 12152 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 12153 env->subprog_info[i].linfo_idx -= l_cnt; 12154 else 12155 env->subprog_info[i].linfo_idx = l_off; 12156 } 12157 12158 return 0; 12159 } 12160 12161 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 12162 { 12163 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 12164 unsigned int orig_prog_len = env->prog->len; 12165 int err; 12166 12167 if (bpf_prog_is_dev_bound(env->prog->aux)) 12168 bpf_prog_offload_remove_insns(env, off, cnt); 12169 12170 err = bpf_remove_insns(env->prog, off, cnt); 12171 if (err) 12172 return err; 12173 12174 err = adjust_subprog_starts_after_remove(env, off, cnt); 12175 if (err) 12176 return err; 12177 12178 err = bpf_adj_linfo_after_remove(env, off, cnt); 12179 if (err) 12180 return err; 12181 12182 memmove(aux_data + off, aux_data + off + cnt, 12183 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 12184 12185 return 0; 12186 } 12187 12188 /* The verifier does more data flow analysis than llvm and will not 12189 * explore branches that are dead at run time. Malicious programs can 12190 * have dead code too. Therefore replace all dead at-run-time code 12191 * with 'ja -1'. 12192 * 12193 * Just nops are not optimal, e.g. if they would sit at the end of the 12194 * program and through another bug we would manage to jump there, then 12195 * we'd execute beyond program memory otherwise. Returning exception 12196 * code also wouldn't work since we can have subprogs where the dead 12197 * code could be located. 12198 */ 12199 static void sanitize_dead_code(struct bpf_verifier_env *env) 12200 { 12201 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 12202 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 12203 struct bpf_insn *insn = env->prog->insnsi; 12204 const int insn_cnt = env->prog->len; 12205 int i; 12206 12207 for (i = 0; i < insn_cnt; i++) { 12208 if (aux_data[i].seen) 12209 continue; 12210 memcpy(insn + i, &trap, sizeof(trap)); 12211 aux_data[i].zext_dst = false; 12212 } 12213 } 12214 12215 static bool insn_is_cond_jump(u8 code) 12216 { 12217 u8 op; 12218 12219 if (BPF_CLASS(code) == BPF_JMP32) 12220 return true; 12221 12222 if (BPF_CLASS(code) != BPF_JMP) 12223 return false; 12224 12225 op = BPF_OP(code); 12226 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 12227 } 12228 12229 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 12230 { 12231 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 12232 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 12233 struct bpf_insn *insn = env->prog->insnsi; 12234 const int insn_cnt = env->prog->len; 12235 int i; 12236 12237 for (i = 0; i < insn_cnt; i++, insn++) { 12238 if (!insn_is_cond_jump(insn->code)) 12239 continue; 12240 12241 if (!aux_data[i + 1].seen) 12242 ja.off = insn->off; 12243 else if (!aux_data[i + 1 + insn->off].seen) 12244 ja.off = 0; 12245 else 12246 continue; 12247 12248 if (bpf_prog_is_dev_bound(env->prog->aux)) 12249 bpf_prog_offload_replace_insn(env, i, &ja); 12250 12251 memcpy(insn, &ja, sizeof(ja)); 12252 } 12253 } 12254 12255 static int opt_remove_dead_code(struct bpf_verifier_env *env) 12256 { 12257 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 12258 int insn_cnt = env->prog->len; 12259 int i, err; 12260 12261 for (i = 0; i < insn_cnt; i++) { 12262 int j; 12263 12264 j = 0; 12265 while (i + j < insn_cnt && !aux_data[i + j].seen) 12266 j++; 12267 if (!j) 12268 continue; 12269 12270 err = verifier_remove_insns(env, i, j); 12271 if (err) 12272 return err; 12273 insn_cnt = env->prog->len; 12274 } 12275 12276 return 0; 12277 } 12278 12279 static int opt_remove_nops(struct bpf_verifier_env *env) 12280 { 12281 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 12282 struct bpf_insn *insn = env->prog->insnsi; 12283 int insn_cnt = env->prog->len; 12284 int i, err; 12285 12286 for (i = 0; i < insn_cnt; i++) { 12287 if (memcmp(&insn[i], &ja, sizeof(ja))) 12288 continue; 12289 12290 err = verifier_remove_insns(env, i, 1); 12291 if (err) 12292 return err; 12293 insn_cnt--; 12294 i--; 12295 } 12296 12297 return 0; 12298 } 12299 12300 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 12301 const union bpf_attr *attr) 12302 { 12303 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 12304 struct bpf_insn_aux_data *aux = env->insn_aux_data; 12305 int i, patch_len, delta = 0, len = env->prog->len; 12306 struct bpf_insn *insns = env->prog->insnsi; 12307 struct bpf_prog *new_prog; 12308 bool rnd_hi32; 12309 12310 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 12311 zext_patch[1] = BPF_ZEXT_REG(0); 12312 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 12313 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 12314 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 12315 for (i = 0; i < len; i++) { 12316 int adj_idx = i + delta; 12317 struct bpf_insn insn; 12318 int load_reg; 12319 12320 insn = insns[adj_idx]; 12321 load_reg = insn_def_regno(&insn); 12322 if (!aux[adj_idx].zext_dst) { 12323 u8 code, class; 12324 u32 imm_rnd; 12325 12326 if (!rnd_hi32) 12327 continue; 12328 12329 code = insn.code; 12330 class = BPF_CLASS(code); 12331 if (load_reg == -1) 12332 continue; 12333 12334 /* NOTE: arg "reg" (the fourth one) is only used for 12335 * BPF_STX + SRC_OP, so it is safe to pass NULL 12336 * here. 12337 */ 12338 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) { 12339 if (class == BPF_LD && 12340 BPF_MODE(code) == BPF_IMM) 12341 i++; 12342 continue; 12343 } 12344 12345 /* ctx load could be transformed into wider load. */ 12346 if (class == BPF_LDX && 12347 aux[adj_idx].ptr_type == PTR_TO_CTX) 12348 continue; 12349 12350 imm_rnd = get_random_int(); 12351 rnd_hi32_patch[0] = insn; 12352 rnd_hi32_patch[1].imm = imm_rnd; 12353 rnd_hi32_patch[3].dst_reg = load_reg; 12354 patch = rnd_hi32_patch; 12355 patch_len = 4; 12356 goto apply_patch_buffer; 12357 } 12358 12359 /* Add in an zero-extend instruction if a) the JIT has requested 12360 * it or b) it's a CMPXCHG. 12361 * 12362 * The latter is because: BPF_CMPXCHG always loads a value into 12363 * R0, therefore always zero-extends. However some archs' 12364 * equivalent instruction only does this load when the 12365 * comparison is successful. This detail of CMPXCHG is 12366 * orthogonal to the general zero-extension behaviour of the 12367 * CPU, so it's treated independently of bpf_jit_needs_zext. 12368 */ 12369 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn)) 12370 continue; 12371 12372 if (WARN_ON(load_reg == -1)) { 12373 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n"); 12374 return -EFAULT; 12375 } 12376 12377 zext_patch[0] = insn; 12378 zext_patch[1].dst_reg = load_reg; 12379 zext_patch[1].src_reg = load_reg; 12380 patch = zext_patch; 12381 patch_len = 2; 12382 apply_patch_buffer: 12383 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 12384 if (!new_prog) 12385 return -ENOMEM; 12386 env->prog = new_prog; 12387 insns = new_prog->insnsi; 12388 aux = env->insn_aux_data; 12389 delta += patch_len - 1; 12390 } 12391 12392 return 0; 12393 } 12394 12395 /* convert load instructions that access fields of a context type into a 12396 * sequence of instructions that access fields of the underlying structure: 12397 * struct __sk_buff -> struct sk_buff 12398 * struct bpf_sock_ops -> struct sock 12399 */ 12400 static int convert_ctx_accesses(struct bpf_verifier_env *env) 12401 { 12402 const struct bpf_verifier_ops *ops = env->ops; 12403 int i, cnt, size, ctx_field_size, delta = 0; 12404 const int insn_cnt = env->prog->len; 12405 struct bpf_insn insn_buf[16], *insn; 12406 u32 target_size, size_default, off; 12407 struct bpf_prog *new_prog; 12408 enum bpf_access_type type; 12409 bool is_narrower_load; 12410 12411 if (ops->gen_prologue || env->seen_direct_write) { 12412 if (!ops->gen_prologue) { 12413 verbose(env, "bpf verifier is misconfigured\n"); 12414 return -EINVAL; 12415 } 12416 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 12417 env->prog); 12418 if (cnt >= ARRAY_SIZE(insn_buf)) { 12419 verbose(env, "bpf verifier is misconfigured\n"); 12420 return -EINVAL; 12421 } else if (cnt) { 12422 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 12423 if (!new_prog) 12424 return -ENOMEM; 12425 12426 env->prog = new_prog; 12427 delta += cnt - 1; 12428 } 12429 } 12430 12431 if (bpf_prog_is_dev_bound(env->prog->aux)) 12432 return 0; 12433 12434 insn = env->prog->insnsi + delta; 12435 12436 for (i = 0; i < insn_cnt; i++, insn++) { 12437 bpf_convert_ctx_access_t convert_ctx_access; 12438 bool ctx_access; 12439 12440 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 12441 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 12442 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 12443 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) { 12444 type = BPF_READ; 12445 ctx_access = true; 12446 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 12447 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 12448 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 12449 insn->code == (BPF_STX | BPF_MEM | BPF_DW) || 12450 insn->code == (BPF_ST | BPF_MEM | BPF_B) || 12451 insn->code == (BPF_ST | BPF_MEM | BPF_H) || 12452 insn->code == (BPF_ST | BPF_MEM | BPF_W) || 12453 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) { 12454 type = BPF_WRITE; 12455 ctx_access = BPF_CLASS(insn->code) == BPF_STX; 12456 } else { 12457 continue; 12458 } 12459 12460 if (type == BPF_WRITE && 12461 env->insn_aux_data[i + delta].sanitize_stack_spill) { 12462 struct bpf_insn patch[] = { 12463 *insn, 12464 BPF_ST_NOSPEC(), 12465 }; 12466 12467 cnt = ARRAY_SIZE(patch); 12468 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 12469 if (!new_prog) 12470 return -ENOMEM; 12471 12472 delta += cnt - 1; 12473 env->prog = new_prog; 12474 insn = new_prog->insnsi + i + delta; 12475 continue; 12476 } 12477 12478 if (!ctx_access) 12479 continue; 12480 12481 switch (env->insn_aux_data[i + delta].ptr_type) { 12482 case PTR_TO_CTX: 12483 if (!ops->convert_ctx_access) 12484 continue; 12485 convert_ctx_access = ops->convert_ctx_access; 12486 break; 12487 case PTR_TO_SOCKET: 12488 case PTR_TO_SOCK_COMMON: 12489 convert_ctx_access = bpf_sock_convert_ctx_access; 12490 break; 12491 case PTR_TO_TCP_SOCK: 12492 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 12493 break; 12494 case PTR_TO_XDP_SOCK: 12495 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 12496 break; 12497 case PTR_TO_BTF_ID: 12498 if (type == BPF_READ) { 12499 insn->code = BPF_LDX | BPF_PROBE_MEM | 12500 BPF_SIZE((insn)->code); 12501 env->prog->aux->num_exentries++; 12502 } else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) { 12503 verbose(env, "Writes through BTF pointers are not allowed\n"); 12504 return -EINVAL; 12505 } 12506 continue; 12507 default: 12508 continue; 12509 } 12510 12511 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 12512 size = BPF_LDST_BYTES(insn); 12513 12514 /* If the read access is a narrower load of the field, 12515 * convert to a 4/8-byte load, to minimum program type specific 12516 * convert_ctx_access changes. If conversion is successful, 12517 * we will apply proper mask to the result. 12518 */ 12519 is_narrower_load = size < ctx_field_size; 12520 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 12521 off = insn->off; 12522 if (is_narrower_load) { 12523 u8 size_code; 12524 12525 if (type == BPF_WRITE) { 12526 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 12527 return -EINVAL; 12528 } 12529 12530 size_code = BPF_H; 12531 if (ctx_field_size == 4) 12532 size_code = BPF_W; 12533 else if (ctx_field_size == 8) 12534 size_code = BPF_DW; 12535 12536 insn->off = off & ~(size_default - 1); 12537 insn->code = BPF_LDX | BPF_MEM | size_code; 12538 } 12539 12540 target_size = 0; 12541 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 12542 &target_size); 12543 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 12544 (ctx_field_size && !target_size)) { 12545 verbose(env, "bpf verifier is misconfigured\n"); 12546 return -EINVAL; 12547 } 12548 12549 if (is_narrower_load && size < target_size) { 12550 u8 shift = bpf_ctx_narrow_access_offset( 12551 off, size, size_default) * 8; 12552 if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) { 12553 verbose(env, "bpf verifier narrow ctx load misconfigured\n"); 12554 return -EINVAL; 12555 } 12556 if (ctx_field_size <= 4) { 12557 if (shift) 12558 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 12559 insn->dst_reg, 12560 shift); 12561 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 12562 (1 << size * 8) - 1); 12563 } else { 12564 if (shift) 12565 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 12566 insn->dst_reg, 12567 shift); 12568 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 12569 (1ULL << size * 8) - 1); 12570 } 12571 } 12572 12573 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 12574 if (!new_prog) 12575 return -ENOMEM; 12576 12577 delta += cnt - 1; 12578 12579 /* keep walking new program and skip insns we just inserted */ 12580 env->prog = new_prog; 12581 insn = new_prog->insnsi + i + delta; 12582 } 12583 12584 return 0; 12585 } 12586 12587 static int jit_subprogs(struct bpf_verifier_env *env) 12588 { 12589 struct bpf_prog *prog = env->prog, **func, *tmp; 12590 int i, j, subprog_start, subprog_end = 0, len, subprog; 12591 struct bpf_map *map_ptr; 12592 struct bpf_insn *insn; 12593 void *old_bpf_func; 12594 int err, num_exentries; 12595 12596 if (env->subprog_cnt <= 1) 12597 return 0; 12598 12599 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 12600 if (bpf_pseudo_func(insn)) { 12601 env->insn_aux_data[i].call_imm = insn->imm; 12602 /* subprog is encoded in insn[1].imm */ 12603 continue; 12604 } 12605 12606 if (!bpf_pseudo_call(insn)) 12607 continue; 12608 /* Upon error here we cannot fall back to interpreter but 12609 * need a hard reject of the program. Thus -EFAULT is 12610 * propagated in any case. 12611 */ 12612 subprog = find_subprog(env, i + insn->imm + 1); 12613 if (subprog < 0) { 12614 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 12615 i + insn->imm + 1); 12616 return -EFAULT; 12617 } 12618 /* temporarily remember subprog id inside insn instead of 12619 * aux_data, since next loop will split up all insns into funcs 12620 */ 12621 insn->off = subprog; 12622 /* remember original imm in case JIT fails and fallback 12623 * to interpreter will be needed 12624 */ 12625 env->insn_aux_data[i].call_imm = insn->imm; 12626 /* point imm to __bpf_call_base+1 from JITs point of view */ 12627 insn->imm = 1; 12628 } 12629 12630 err = bpf_prog_alloc_jited_linfo(prog); 12631 if (err) 12632 goto out_undo_insn; 12633 12634 err = -ENOMEM; 12635 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 12636 if (!func) 12637 goto out_undo_insn; 12638 12639 for (i = 0; i < env->subprog_cnt; i++) { 12640 subprog_start = subprog_end; 12641 subprog_end = env->subprog_info[i + 1].start; 12642 12643 len = subprog_end - subprog_start; 12644 /* bpf_prog_run() doesn't call subprogs directly, 12645 * hence main prog stats include the runtime of subprogs. 12646 * subprogs don't have IDs and not reachable via prog_get_next_id 12647 * func[i]->stats will never be accessed and stays NULL 12648 */ 12649 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 12650 if (!func[i]) 12651 goto out_free; 12652 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 12653 len * sizeof(struct bpf_insn)); 12654 func[i]->type = prog->type; 12655 func[i]->len = len; 12656 if (bpf_prog_calc_tag(func[i])) 12657 goto out_free; 12658 func[i]->is_func = 1; 12659 func[i]->aux->func_idx = i; 12660 /* Below members will be freed only at prog->aux */ 12661 func[i]->aux->btf = prog->aux->btf; 12662 func[i]->aux->func_info = prog->aux->func_info; 12663 func[i]->aux->poke_tab = prog->aux->poke_tab; 12664 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab; 12665 12666 for (j = 0; j < prog->aux->size_poke_tab; j++) { 12667 struct bpf_jit_poke_descriptor *poke; 12668 12669 poke = &prog->aux->poke_tab[j]; 12670 if (poke->insn_idx < subprog_end && 12671 poke->insn_idx >= subprog_start) 12672 poke->aux = func[i]->aux; 12673 } 12674 12675 /* Use bpf_prog_F_tag to indicate functions in stack traces. 12676 * Long term would need debug info to populate names 12677 */ 12678 func[i]->aux->name[0] = 'F'; 12679 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 12680 func[i]->jit_requested = 1; 12681 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab; 12682 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab; 12683 func[i]->aux->linfo = prog->aux->linfo; 12684 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 12685 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 12686 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 12687 num_exentries = 0; 12688 insn = func[i]->insnsi; 12689 for (j = 0; j < func[i]->len; j++, insn++) { 12690 if (BPF_CLASS(insn->code) == BPF_LDX && 12691 BPF_MODE(insn->code) == BPF_PROBE_MEM) 12692 num_exentries++; 12693 } 12694 func[i]->aux->num_exentries = num_exentries; 12695 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable; 12696 func[i] = bpf_int_jit_compile(func[i]); 12697 if (!func[i]->jited) { 12698 err = -ENOTSUPP; 12699 goto out_free; 12700 } 12701 cond_resched(); 12702 } 12703 12704 /* at this point all bpf functions were successfully JITed 12705 * now populate all bpf_calls with correct addresses and 12706 * run last pass of JIT 12707 */ 12708 for (i = 0; i < env->subprog_cnt; i++) { 12709 insn = func[i]->insnsi; 12710 for (j = 0; j < func[i]->len; j++, insn++) { 12711 if (bpf_pseudo_func(insn)) { 12712 subprog = insn[1].imm; 12713 insn[0].imm = (u32)(long)func[subprog]->bpf_func; 12714 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32; 12715 continue; 12716 } 12717 if (!bpf_pseudo_call(insn)) 12718 continue; 12719 subprog = insn->off; 12720 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func); 12721 } 12722 12723 /* we use the aux data to keep a list of the start addresses 12724 * of the JITed images for each function in the program 12725 * 12726 * for some architectures, such as powerpc64, the imm field 12727 * might not be large enough to hold the offset of the start 12728 * address of the callee's JITed image from __bpf_call_base 12729 * 12730 * in such cases, we can lookup the start address of a callee 12731 * by using its subprog id, available from the off field of 12732 * the call instruction, as an index for this list 12733 */ 12734 func[i]->aux->func = func; 12735 func[i]->aux->func_cnt = env->subprog_cnt; 12736 } 12737 for (i = 0; i < env->subprog_cnt; i++) { 12738 old_bpf_func = func[i]->bpf_func; 12739 tmp = bpf_int_jit_compile(func[i]); 12740 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 12741 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 12742 err = -ENOTSUPP; 12743 goto out_free; 12744 } 12745 cond_resched(); 12746 } 12747 12748 /* finally lock prog and jit images for all functions and 12749 * populate kallsysm 12750 */ 12751 for (i = 0; i < env->subprog_cnt; i++) { 12752 bpf_prog_lock_ro(func[i]); 12753 bpf_prog_kallsyms_add(func[i]); 12754 } 12755 12756 /* Last step: make now unused interpreter insns from main 12757 * prog consistent for later dump requests, so they can 12758 * later look the same as if they were interpreted only. 12759 */ 12760 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 12761 if (bpf_pseudo_func(insn)) { 12762 insn[0].imm = env->insn_aux_data[i].call_imm; 12763 insn[1].imm = find_subprog(env, i + insn[0].imm + 1); 12764 continue; 12765 } 12766 if (!bpf_pseudo_call(insn)) 12767 continue; 12768 insn->off = env->insn_aux_data[i].call_imm; 12769 subprog = find_subprog(env, i + insn->off + 1); 12770 insn->imm = subprog; 12771 } 12772 12773 prog->jited = 1; 12774 prog->bpf_func = func[0]->bpf_func; 12775 prog->aux->func = func; 12776 prog->aux->func_cnt = env->subprog_cnt; 12777 bpf_prog_jit_attempt_done(prog); 12778 return 0; 12779 out_free: 12780 /* We failed JIT'ing, so at this point we need to unregister poke 12781 * descriptors from subprogs, so that kernel is not attempting to 12782 * patch it anymore as we're freeing the subprog JIT memory. 12783 */ 12784 for (i = 0; i < prog->aux->size_poke_tab; i++) { 12785 map_ptr = prog->aux->poke_tab[i].tail_call.map; 12786 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux); 12787 } 12788 /* At this point we're guaranteed that poke descriptors are not 12789 * live anymore. We can just unlink its descriptor table as it's 12790 * released with the main prog. 12791 */ 12792 for (i = 0; i < env->subprog_cnt; i++) { 12793 if (!func[i]) 12794 continue; 12795 func[i]->aux->poke_tab = NULL; 12796 bpf_jit_free(func[i]); 12797 } 12798 kfree(func); 12799 out_undo_insn: 12800 /* cleanup main prog to be interpreted */ 12801 prog->jit_requested = 0; 12802 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 12803 if (!bpf_pseudo_call(insn)) 12804 continue; 12805 insn->off = 0; 12806 insn->imm = env->insn_aux_data[i].call_imm; 12807 } 12808 bpf_prog_jit_attempt_done(prog); 12809 return err; 12810 } 12811 12812 static int fixup_call_args(struct bpf_verifier_env *env) 12813 { 12814 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 12815 struct bpf_prog *prog = env->prog; 12816 struct bpf_insn *insn = prog->insnsi; 12817 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog); 12818 int i, depth; 12819 #endif 12820 int err = 0; 12821 12822 if (env->prog->jit_requested && 12823 !bpf_prog_is_dev_bound(env->prog->aux)) { 12824 err = jit_subprogs(env); 12825 if (err == 0) 12826 return 0; 12827 if (err == -EFAULT) 12828 return err; 12829 } 12830 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 12831 if (has_kfunc_call) { 12832 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n"); 12833 return -EINVAL; 12834 } 12835 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) { 12836 /* When JIT fails the progs with bpf2bpf calls and tail_calls 12837 * have to be rejected, since interpreter doesn't support them yet. 12838 */ 12839 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 12840 return -EINVAL; 12841 } 12842 for (i = 0; i < prog->len; i++, insn++) { 12843 if (bpf_pseudo_func(insn)) { 12844 /* When JIT fails the progs with callback calls 12845 * have to be rejected, since interpreter doesn't support them yet. 12846 */ 12847 verbose(env, "callbacks are not allowed in non-JITed programs\n"); 12848 return -EINVAL; 12849 } 12850 12851 if (!bpf_pseudo_call(insn)) 12852 continue; 12853 depth = get_callee_stack_depth(env, insn, i); 12854 if (depth < 0) 12855 return depth; 12856 bpf_patch_call_args(insn, depth); 12857 } 12858 err = 0; 12859 #endif 12860 return err; 12861 } 12862 12863 static int fixup_kfunc_call(struct bpf_verifier_env *env, 12864 struct bpf_insn *insn) 12865 { 12866 const struct bpf_kfunc_desc *desc; 12867 12868 if (!insn->imm) { 12869 verbose(env, "invalid kernel function call not eliminated in verifier pass\n"); 12870 return -EINVAL; 12871 } 12872 12873 /* insn->imm has the btf func_id. Replace it with 12874 * an address (relative to __bpf_base_call). 12875 */ 12876 desc = find_kfunc_desc(env->prog, insn->imm, insn->off); 12877 if (!desc) { 12878 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n", 12879 insn->imm); 12880 return -EFAULT; 12881 } 12882 12883 insn->imm = desc->imm; 12884 12885 return 0; 12886 } 12887 12888 /* Do various post-verification rewrites in a single program pass. 12889 * These rewrites simplify JIT and interpreter implementations. 12890 */ 12891 static int do_misc_fixups(struct bpf_verifier_env *env) 12892 { 12893 struct bpf_prog *prog = env->prog; 12894 bool expect_blinding = bpf_jit_blinding_enabled(prog); 12895 enum bpf_prog_type prog_type = resolve_prog_type(prog); 12896 struct bpf_insn *insn = prog->insnsi; 12897 const struct bpf_func_proto *fn; 12898 const int insn_cnt = prog->len; 12899 const struct bpf_map_ops *ops; 12900 struct bpf_insn_aux_data *aux; 12901 struct bpf_insn insn_buf[16]; 12902 struct bpf_prog *new_prog; 12903 struct bpf_map *map_ptr; 12904 int i, ret, cnt, delta = 0; 12905 12906 for (i = 0; i < insn_cnt; i++, insn++) { 12907 /* Make divide-by-zero exceptions impossible. */ 12908 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 12909 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 12910 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 12911 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 12912 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 12913 bool isdiv = BPF_OP(insn->code) == BPF_DIV; 12914 struct bpf_insn *patchlet; 12915 struct bpf_insn chk_and_div[] = { 12916 /* [R,W]x div 0 -> 0 */ 12917 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 12918 BPF_JNE | BPF_K, insn->src_reg, 12919 0, 2, 0), 12920 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 12921 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 12922 *insn, 12923 }; 12924 struct bpf_insn chk_and_mod[] = { 12925 /* [R,W]x mod 0 -> [R,W]x */ 12926 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 12927 BPF_JEQ | BPF_K, insn->src_reg, 12928 0, 1 + (is64 ? 0 : 1), 0), 12929 *insn, 12930 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 12931 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg), 12932 }; 12933 12934 patchlet = isdiv ? chk_and_div : chk_and_mod; 12935 cnt = isdiv ? ARRAY_SIZE(chk_and_div) : 12936 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0); 12937 12938 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 12939 if (!new_prog) 12940 return -ENOMEM; 12941 12942 delta += cnt - 1; 12943 env->prog = prog = new_prog; 12944 insn = new_prog->insnsi + i + delta; 12945 continue; 12946 } 12947 12948 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */ 12949 if (BPF_CLASS(insn->code) == BPF_LD && 12950 (BPF_MODE(insn->code) == BPF_ABS || 12951 BPF_MODE(insn->code) == BPF_IND)) { 12952 cnt = env->ops->gen_ld_abs(insn, insn_buf); 12953 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 12954 verbose(env, "bpf verifier is misconfigured\n"); 12955 return -EINVAL; 12956 } 12957 12958 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 12959 if (!new_prog) 12960 return -ENOMEM; 12961 12962 delta += cnt - 1; 12963 env->prog = prog = new_prog; 12964 insn = new_prog->insnsi + i + delta; 12965 continue; 12966 } 12967 12968 /* Rewrite pointer arithmetic to mitigate speculation attacks. */ 12969 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 12970 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 12971 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 12972 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 12973 struct bpf_insn *patch = &insn_buf[0]; 12974 bool issrc, isneg, isimm; 12975 u32 off_reg; 12976 12977 aux = &env->insn_aux_data[i + delta]; 12978 if (!aux->alu_state || 12979 aux->alu_state == BPF_ALU_NON_POINTER) 12980 continue; 12981 12982 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 12983 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 12984 BPF_ALU_SANITIZE_SRC; 12985 isimm = aux->alu_state & BPF_ALU_IMMEDIATE; 12986 12987 off_reg = issrc ? insn->src_reg : insn->dst_reg; 12988 if (isimm) { 12989 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 12990 } else { 12991 if (isneg) 12992 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 12993 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 12994 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 12995 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 12996 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 12997 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 12998 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg); 12999 } 13000 if (!issrc) 13001 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg); 13002 insn->src_reg = BPF_REG_AX; 13003 if (isneg) 13004 insn->code = insn->code == code_add ? 13005 code_sub : code_add; 13006 *patch++ = *insn; 13007 if (issrc && isneg && !isimm) 13008 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 13009 cnt = patch - insn_buf; 13010 13011 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 13012 if (!new_prog) 13013 return -ENOMEM; 13014 13015 delta += cnt - 1; 13016 env->prog = prog = new_prog; 13017 insn = new_prog->insnsi + i + delta; 13018 continue; 13019 } 13020 13021 if (insn->code != (BPF_JMP | BPF_CALL)) 13022 continue; 13023 if (insn->src_reg == BPF_PSEUDO_CALL) 13024 continue; 13025 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 13026 ret = fixup_kfunc_call(env, insn); 13027 if (ret) 13028 return ret; 13029 continue; 13030 } 13031 13032 if (insn->imm == BPF_FUNC_get_route_realm) 13033 prog->dst_needed = 1; 13034 if (insn->imm == BPF_FUNC_get_prandom_u32) 13035 bpf_user_rnd_init_once(); 13036 if (insn->imm == BPF_FUNC_override_return) 13037 prog->kprobe_override = 1; 13038 if (insn->imm == BPF_FUNC_tail_call) { 13039 /* If we tail call into other programs, we 13040 * cannot make any assumptions since they can 13041 * be replaced dynamically during runtime in 13042 * the program array. 13043 */ 13044 prog->cb_access = 1; 13045 if (!allow_tail_call_in_subprogs(env)) 13046 prog->aux->stack_depth = MAX_BPF_STACK; 13047 prog->aux->max_pkt_offset = MAX_PACKET_OFF; 13048 13049 /* mark bpf_tail_call as different opcode to avoid 13050 * conditional branch in the interpreter for every normal 13051 * call and to prevent accidental JITing by JIT compiler 13052 * that doesn't support bpf_tail_call yet 13053 */ 13054 insn->imm = 0; 13055 insn->code = BPF_JMP | BPF_TAIL_CALL; 13056 13057 aux = &env->insn_aux_data[i + delta]; 13058 if (env->bpf_capable && !expect_blinding && 13059 prog->jit_requested && 13060 !bpf_map_key_poisoned(aux) && 13061 !bpf_map_ptr_poisoned(aux) && 13062 !bpf_map_ptr_unpriv(aux)) { 13063 struct bpf_jit_poke_descriptor desc = { 13064 .reason = BPF_POKE_REASON_TAIL_CALL, 13065 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state), 13066 .tail_call.key = bpf_map_key_immediate(aux), 13067 .insn_idx = i + delta, 13068 }; 13069 13070 ret = bpf_jit_add_poke_descriptor(prog, &desc); 13071 if (ret < 0) { 13072 verbose(env, "adding tail call poke descriptor failed\n"); 13073 return ret; 13074 } 13075 13076 insn->imm = ret + 1; 13077 continue; 13078 } 13079 13080 if (!bpf_map_ptr_unpriv(aux)) 13081 continue; 13082 13083 /* instead of changing every JIT dealing with tail_call 13084 * emit two extra insns: 13085 * if (index >= max_entries) goto out; 13086 * index &= array->index_mask; 13087 * to avoid out-of-bounds cpu speculation 13088 */ 13089 if (bpf_map_ptr_poisoned(aux)) { 13090 verbose(env, "tail_call abusing map_ptr\n"); 13091 return -EINVAL; 13092 } 13093 13094 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 13095 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 13096 map_ptr->max_entries, 2); 13097 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 13098 container_of(map_ptr, 13099 struct bpf_array, 13100 map)->index_mask); 13101 insn_buf[2] = *insn; 13102 cnt = 3; 13103 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 13104 if (!new_prog) 13105 return -ENOMEM; 13106 13107 delta += cnt - 1; 13108 env->prog = prog = new_prog; 13109 insn = new_prog->insnsi + i + delta; 13110 continue; 13111 } 13112 13113 if (insn->imm == BPF_FUNC_timer_set_callback) { 13114 /* The verifier will process callback_fn as many times as necessary 13115 * with different maps and the register states prepared by 13116 * set_timer_callback_state will be accurate. 13117 * 13118 * The following use case is valid: 13119 * map1 is shared by prog1, prog2, prog3. 13120 * prog1 calls bpf_timer_init for some map1 elements 13121 * prog2 calls bpf_timer_set_callback for some map1 elements. 13122 * Those that were not bpf_timer_init-ed will return -EINVAL. 13123 * prog3 calls bpf_timer_start for some map1 elements. 13124 * Those that were not both bpf_timer_init-ed and 13125 * bpf_timer_set_callback-ed will return -EINVAL. 13126 */ 13127 struct bpf_insn ld_addrs[2] = { 13128 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux), 13129 }; 13130 13131 insn_buf[0] = ld_addrs[0]; 13132 insn_buf[1] = ld_addrs[1]; 13133 insn_buf[2] = *insn; 13134 cnt = 3; 13135 13136 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 13137 if (!new_prog) 13138 return -ENOMEM; 13139 13140 delta += cnt - 1; 13141 env->prog = prog = new_prog; 13142 insn = new_prog->insnsi + i + delta; 13143 goto patch_call_imm; 13144 } 13145 13146 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 13147 * and other inlining handlers are currently limited to 64 bit 13148 * only. 13149 */ 13150 if (prog->jit_requested && BITS_PER_LONG == 64 && 13151 (insn->imm == BPF_FUNC_map_lookup_elem || 13152 insn->imm == BPF_FUNC_map_update_elem || 13153 insn->imm == BPF_FUNC_map_delete_elem || 13154 insn->imm == BPF_FUNC_map_push_elem || 13155 insn->imm == BPF_FUNC_map_pop_elem || 13156 insn->imm == BPF_FUNC_map_peek_elem || 13157 insn->imm == BPF_FUNC_redirect_map || 13158 insn->imm == BPF_FUNC_for_each_map_elem)) { 13159 aux = &env->insn_aux_data[i + delta]; 13160 if (bpf_map_ptr_poisoned(aux)) 13161 goto patch_call_imm; 13162 13163 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 13164 ops = map_ptr->ops; 13165 if (insn->imm == BPF_FUNC_map_lookup_elem && 13166 ops->map_gen_lookup) { 13167 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 13168 if (cnt == -EOPNOTSUPP) 13169 goto patch_map_ops_generic; 13170 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) { 13171 verbose(env, "bpf verifier is misconfigured\n"); 13172 return -EINVAL; 13173 } 13174 13175 new_prog = bpf_patch_insn_data(env, i + delta, 13176 insn_buf, cnt); 13177 if (!new_prog) 13178 return -ENOMEM; 13179 13180 delta += cnt - 1; 13181 env->prog = prog = new_prog; 13182 insn = new_prog->insnsi + i + delta; 13183 continue; 13184 } 13185 13186 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 13187 (void *(*)(struct bpf_map *map, void *key))NULL)); 13188 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 13189 (int (*)(struct bpf_map *map, void *key))NULL)); 13190 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 13191 (int (*)(struct bpf_map *map, void *key, void *value, 13192 u64 flags))NULL)); 13193 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 13194 (int (*)(struct bpf_map *map, void *value, 13195 u64 flags))NULL)); 13196 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 13197 (int (*)(struct bpf_map *map, void *value))NULL)); 13198 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 13199 (int (*)(struct bpf_map *map, void *value))NULL)); 13200 BUILD_BUG_ON(!__same_type(ops->map_redirect, 13201 (int (*)(struct bpf_map *map, u32 ifindex, u64 flags))NULL)); 13202 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback, 13203 (int (*)(struct bpf_map *map, 13204 bpf_callback_t callback_fn, 13205 void *callback_ctx, 13206 u64 flags))NULL)); 13207 13208 patch_map_ops_generic: 13209 switch (insn->imm) { 13210 case BPF_FUNC_map_lookup_elem: 13211 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem); 13212 continue; 13213 case BPF_FUNC_map_update_elem: 13214 insn->imm = BPF_CALL_IMM(ops->map_update_elem); 13215 continue; 13216 case BPF_FUNC_map_delete_elem: 13217 insn->imm = BPF_CALL_IMM(ops->map_delete_elem); 13218 continue; 13219 case BPF_FUNC_map_push_elem: 13220 insn->imm = BPF_CALL_IMM(ops->map_push_elem); 13221 continue; 13222 case BPF_FUNC_map_pop_elem: 13223 insn->imm = BPF_CALL_IMM(ops->map_pop_elem); 13224 continue; 13225 case BPF_FUNC_map_peek_elem: 13226 insn->imm = BPF_CALL_IMM(ops->map_peek_elem); 13227 continue; 13228 case BPF_FUNC_redirect_map: 13229 insn->imm = BPF_CALL_IMM(ops->map_redirect); 13230 continue; 13231 case BPF_FUNC_for_each_map_elem: 13232 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback); 13233 continue; 13234 } 13235 13236 goto patch_call_imm; 13237 } 13238 13239 /* Implement bpf_jiffies64 inline. */ 13240 if (prog->jit_requested && BITS_PER_LONG == 64 && 13241 insn->imm == BPF_FUNC_jiffies64) { 13242 struct bpf_insn ld_jiffies_addr[2] = { 13243 BPF_LD_IMM64(BPF_REG_0, 13244 (unsigned long)&jiffies), 13245 }; 13246 13247 insn_buf[0] = ld_jiffies_addr[0]; 13248 insn_buf[1] = ld_jiffies_addr[1]; 13249 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 13250 BPF_REG_0, 0); 13251 cnt = 3; 13252 13253 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 13254 cnt); 13255 if (!new_prog) 13256 return -ENOMEM; 13257 13258 delta += cnt - 1; 13259 env->prog = prog = new_prog; 13260 insn = new_prog->insnsi + i + delta; 13261 continue; 13262 } 13263 13264 /* Implement bpf_get_func_ip inline. */ 13265 if (prog_type == BPF_PROG_TYPE_TRACING && 13266 insn->imm == BPF_FUNC_get_func_ip) { 13267 /* Load IP address from ctx - 8 */ 13268 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 13269 13270 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 13271 if (!new_prog) 13272 return -ENOMEM; 13273 13274 env->prog = prog = new_prog; 13275 insn = new_prog->insnsi + i + delta; 13276 continue; 13277 } 13278 13279 patch_call_imm: 13280 fn = env->ops->get_func_proto(insn->imm, env->prog); 13281 /* all functions that have prototype and verifier allowed 13282 * programs to call them, must be real in-kernel functions 13283 */ 13284 if (!fn->func) { 13285 verbose(env, 13286 "kernel subsystem misconfigured func %s#%d\n", 13287 func_id_name(insn->imm), insn->imm); 13288 return -EFAULT; 13289 } 13290 insn->imm = fn->func - __bpf_call_base; 13291 } 13292 13293 /* Since poke tab is now finalized, publish aux to tracker. */ 13294 for (i = 0; i < prog->aux->size_poke_tab; i++) { 13295 map_ptr = prog->aux->poke_tab[i].tail_call.map; 13296 if (!map_ptr->ops->map_poke_track || 13297 !map_ptr->ops->map_poke_untrack || 13298 !map_ptr->ops->map_poke_run) { 13299 verbose(env, "bpf verifier is misconfigured\n"); 13300 return -EINVAL; 13301 } 13302 13303 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 13304 if (ret < 0) { 13305 verbose(env, "tracking tail call prog failed\n"); 13306 return ret; 13307 } 13308 } 13309 13310 sort_kfunc_descs_by_imm(env->prog); 13311 13312 return 0; 13313 } 13314 13315 static void free_states(struct bpf_verifier_env *env) 13316 { 13317 struct bpf_verifier_state_list *sl, *sln; 13318 int i; 13319 13320 sl = env->free_list; 13321 while (sl) { 13322 sln = sl->next; 13323 free_verifier_state(&sl->state, false); 13324 kfree(sl); 13325 sl = sln; 13326 } 13327 env->free_list = NULL; 13328 13329 if (!env->explored_states) 13330 return; 13331 13332 for (i = 0; i < state_htab_size(env); i++) { 13333 sl = env->explored_states[i]; 13334 13335 while (sl) { 13336 sln = sl->next; 13337 free_verifier_state(&sl->state, false); 13338 kfree(sl); 13339 sl = sln; 13340 } 13341 env->explored_states[i] = NULL; 13342 } 13343 } 13344 13345 static int do_check_common(struct bpf_verifier_env *env, int subprog) 13346 { 13347 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 13348 struct bpf_verifier_state *state; 13349 struct bpf_reg_state *regs; 13350 int ret, i; 13351 13352 env->prev_linfo = NULL; 13353 env->pass_cnt++; 13354 13355 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 13356 if (!state) 13357 return -ENOMEM; 13358 state->curframe = 0; 13359 state->speculative = false; 13360 state->branches = 1; 13361 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 13362 if (!state->frame[0]) { 13363 kfree(state); 13364 return -ENOMEM; 13365 } 13366 env->cur_state = state; 13367 init_func_state(env, state->frame[0], 13368 BPF_MAIN_FUNC /* callsite */, 13369 0 /* frameno */, 13370 subprog); 13371 13372 regs = state->frame[state->curframe]->regs; 13373 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 13374 ret = btf_prepare_func_args(env, subprog, regs); 13375 if (ret) 13376 goto out; 13377 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 13378 if (regs[i].type == PTR_TO_CTX) 13379 mark_reg_known_zero(env, regs, i); 13380 else if (regs[i].type == SCALAR_VALUE) 13381 mark_reg_unknown(env, regs, i); 13382 else if (regs[i].type == PTR_TO_MEM_OR_NULL) { 13383 const u32 mem_size = regs[i].mem_size; 13384 13385 mark_reg_known_zero(env, regs, i); 13386 regs[i].mem_size = mem_size; 13387 regs[i].id = ++env->id_gen; 13388 } 13389 } 13390 } else { 13391 /* 1st arg to a function */ 13392 regs[BPF_REG_1].type = PTR_TO_CTX; 13393 mark_reg_known_zero(env, regs, BPF_REG_1); 13394 ret = btf_check_subprog_arg_match(env, subprog, regs); 13395 if (ret == -EFAULT) 13396 /* unlikely verifier bug. abort. 13397 * ret == 0 and ret < 0 are sadly acceptable for 13398 * main() function due to backward compatibility. 13399 * Like socket filter program may be written as: 13400 * int bpf_prog(struct pt_regs *ctx) 13401 * and never dereference that ctx in the program. 13402 * 'struct pt_regs' is a type mismatch for socket 13403 * filter that should be using 'struct __sk_buff'. 13404 */ 13405 goto out; 13406 } 13407 13408 ret = do_check(env); 13409 out: 13410 /* check for NULL is necessary, since cur_state can be freed inside 13411 * do_check() under memory pressure. 13412 */ 13413 if (env->cur_state) { 13414 free_verifier_state(env->cur_state, true); 13415 env->cur_state = NULL; 13416 } 13417 while (!pop_stack(env, NULL, NULL, false)); 13418 if (!ret && pop_log) 13419 bpf_vlog_reset(&env->log, 0); 13420 free_states(env); 13421 return ret; 13422 } 13423 13424 /* Verify all global functions in a BPF program one by one based on their BTF. 13425 * All global functions must pass verification. Otherwise the whole program is rejected. 13426 * Consider: 13427 * int bar(int); 13428 * int foo(int f) 13429 * { 13430 * return bar(f); 13431 * } 13432 * int bar(int b) 13433 * { 13434 * ... 13435 * } 13436 * foo() will be verified first for R1=any_scalar_value. During verification it 13437 * will be assumed that bar() already verified successfully and call to bar() 13438 * from foo() will be checked for type match only. Later bar() will be verified 13439 * independently to check that it's safe for R1=any_scalar_value. 13440 */ 13441 static int do_check_subprogs(struct bpf_verifier_env *env) 13442 { 13443 struct bpf_prog_aux *aux = env->prog->aux; 13444 int i, ret; 13445 13446 if (!aux->func_info) 13447 return 0; 13448 13449 for (i = 1; i < env->subprog_cnt; i++) { 13450 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL) 13451 continue; 13452 env->insn_idx = env->subprog_info[i].start; 13453 WARN_ON_ONCE(env->insn_idx == 0); 13454 ret = do_check_common(env, i); 13455 if (ret) { 13456 return ret; 13457 } else if (env->log.level & BPF_LOG_LEVEL) { 13458 verbose(env, 13459 "Func#%d is safe for any args that match its prototype\n", 13460 i); 13461 } 13462 } 13463 return 0; 13464 } 13465 13466 static int do_check_main(struct bpf_verifier_env *env) 13467 { 13468 int ret; 13469 13470 env->insn_idx = 0; 13471 ret = do_check_common(env, 0); 13472 if (!ret) 13473 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 13474 return ret; 13475 } 13476 13477 13478 static void print_verification_stats(struct bpf_verifier_env *env) 13479 { 13480 int i; 13481 13482 if (env->log.level & BPF_LOG_STATS) { 13483 verbose(env, "verification time %lld usec\n", 13484 div_u64(env->verification_time, 1000)); 13485 verbose(env, "stack depth "); 13486 for (i = 0; i < env->subprog_cnt; i++) { 13487 u32 depth = env->subprog_info[i].stack_depth; 13488 13489 verbose(env, "%d", depth); 13490 if (i + 1 < env->subprog_cnt) 13491 verbose(env, "+"); 13492 } 13493 verbose(env, "\n"); 13494 } 13495 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 13496 "total_states %d peak_states %d mark_read %d\n", 13497 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 13498 env->max_states_per_insn, env->total_states, 13499 env->peak_states, env->longest_mark_read_walk); 13500 } 13501 13502 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 13503 { 13504 const struct btf_type *t, *func_proto; 13505 const struct bpf_struct_ops *st_ops; 13506 const struct btf_member *member; 13507 struct bpf_prog *prog = env->prog; 13508 u32 btf_id, member_idx; 13509 const char *mname; 13510 13511 if (!prog->gpl_compatible) { 13512 verbose(env, "struct ops programs must have a GPL compatible license\n"); 13513 return -EINVAL; 13514 } 13515 13516 btf_id = prog->aux->attach_btf_id; 13517 st_ops = bpf_struct_ops_find(btf_id); 13518 if (!st_ops) { 13519 verbose(env, "attach_btf_id %u is not a supported struct\n", 13520 btf_id); 13521 return -ENOTSUPP; 13522 } 13523 13524 t = st_ops->type; 13525 member_idx = prog->expected_attach_type; 13526 if (member_idx >= btf_type_vlen(t)) { 13527 verbose(env, "attach to invalid member idx %u of struct %s\n", 13528 member_idx, st_ops->name); 13529 return -EINVAL; 13530 } 13531 13532 member = &btf_type_member(t)[member_idx]; 13533 mname = btf_name_by_offset(btf_vmlinux, member->name_off); 13534 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type, 13535 NULL); 13536 if (!func_proto) { 13537 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 13538 mname, member_idx, st_ops->name); 13539 return -EINVAL; 13540 } 13541 13542 if (st_ops->check_member) { 13543 int err = st_ops->check_member(t, member); 13544 13545 if (err) { 13546 verbose(env, "attach to unsupported member %s of struct %s\n", 13547 mname, st_ops->name); 13548 return err; 13549 } 13550 } 13551 13552 prog->aux->attach_func_proto = func_proto; 13553 prog->aux->attach_func_name = mname; 13554 env->ops = st_ops->verifier_ops; 13555 13556 return 0; 13557 } 13558 #define SECURITY_PREFIX "security_" 13559 13560 static int check_attach_modify_return(unsigned long addr, const char *func_name) 13561 { 13562 if (within_error_injection_list(addr) || 13563 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1)) 13564 return 0; 13565 13566 return -EINVAL; 13567 } 13568 13569 /* list of non-sleepable functions that are otherwise on 13570 * ALLOW_ERROR_INJECTION list 13571 */ 13572 BTF_SET_START(btf_non_sleepable_error_inject) 13573 /* Three functions below can be called from sleepable and non-sleepable context. 13574 * Assume non-sleepable from bpf safety point of view. 13575 */ 13576 BTF_ID(func, __filemap_add_folio) 13577 BTF_ID(func, should_fail_alloc_page) 13578 BTF_ID(func, should_failslab) 13579 BTF_SET_END(btf_non_sleepable_error_inject) 13580 13581 static int check_non_sleepable_error_inject(u32 btf_id) 13582 { 13583 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id); 13584 } 13585 13586 int bpf_check_attach_target(struct bpf_verifier_log *log, 13587 const struct bpf_prog *prog, 13588 const struct bpf_prog *tgt_prog, 13589 u32 btf_id, 13590 struct bpf_attach_target_info *tgt_info) 13591 { 13592 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 13593 const char prefix[] = "btf_trace_"; 13594 int ret = 0, subprog = -1, i; 13595 const struct btf_type *t; 13596 bool conservative = true; 13597 const char *tname; 13598 struct btf *btf; 13599 long addr = 0; 13600 13601 if (!btf_id) { 13602 bpf_log(log, "Tracing programs must provide btf_id\n"); 13603 return -EINVAL; 13604 } 13605 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf; 13606 if (!btf) { 13607 bpf_log(log, 13608 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 13609 return -EINVAL; 13610 } 13611 t = btf_type_by_id(btf, btf_id); 13612 if (!t) { 13613 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id); 13614 return -EINVAL; 13615 } 13616 tname = btf_name_by_offset(btf, t->name_off); 13617 if (!tname) { 13618 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id); 13619 return -EINVAL; 13620 } 13621 if (tgt_prog) { 13622 struct bpf_prog_aux *aux = tgt_prog->aux; 13623 13624 for (i = 0; i < aux->func_info_cnt; i++) 13625 if (aux->func_info[i].type_id == btf_id) { 13626 subprog = i; 13627 break; 13628 } 13629 if (subprog == -1) { 13630 bpf_log(log, "Subprog %s doesn't exist\n", tname); 13631 return -EINVAL; 13632 } 13633 conservative = aux->func_info_aux[subprog].unreliable; 13634 if (prog_extension) { 13635 if (conservative) { 13636 bpf_log(log, 13637 "Cannot replace static functions\n"); 13638 return -EINVAL; 13639 } 13640 if (!prog->jit_requested) { 13641 bpf_log(log, 13642 "Extension programs should be JITed\n"); 13643 return -EINVAL; 13644 } 13645 } 13646 if (!tgt_prog->jited) { 13647 bpf_log(log, "Can attach to only JITed progs\n"); 13648 return -EINVAL; 13649 } 13650 if (tgt_prog->type == prog->type) { 13651 /* Cannot fentry/fexit another fentry/fexit program. 13652 * Cannot attach program extension to another extension. 13653 * It's ok to attach fentry/fexit to extension program. 13654 */ 13655 bpf_log(log, "Cannot recursively attach\n"); 13656 return -EINVAL; 13657 } 13658 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 13659 prog_extension && 13660 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 13661 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 13662 /* Program extensions can extend all program types 13663 * except fentry/fexit. The reason is the following. 13664 * The fentry/fexit programs are used for performance 13665 * analysis, stats and can be attached to any program 13666 * type except themselves. When extension program is 13667 * replacing XDP function it is necessary to allow 13668 * performance analysis of all functions. Both original 13669 * XDP program and its program extension. Hence 13670 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is 13671 * allowed. If extending of fentry/fexit was allowed it 13672 * would be possible to create long call chain 13673 * fentry->extension->fentry->extension beyond 13674 * reasonable stack size. Hence extending fentry is not 13675 * allowed. 13676 */ 13677 bpf_log(log, "Cannot extend fentry/fexit\n"); 13678 return -EINVAL; 13679 } 13680 } else { 13681 if (prog_extension) { 13682 bpf_log(log, "Cannot replace kernel functions\n"); 13683 return -EINVAL; 13684 } 13685 } 13686 13687 switch (prog->expected_attach_type) { 13688 case BPF_TRACE_RAW_TP: 13689 if (tgt_prog) { 13690 bpf_log(log, 13691 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 13692 return -EINVAL; 13693 } 13694 if (!btf_type_is_typedef(t)) { 13695 bpf_log(log, "attach_btf_id %u is not a typedef\n", 13696 btf_id); 13697 return -EINVAL; 13698 } 13699 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 13700 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n", 13701 btf_id, tname); 13702 return -EINVAL; 13703 } 13704 tname += sizeof(prefix) - 1; 13705 t = btf_type_by_id(btf, t->type); 13706 if (!btf_type_is_ptr(t)) 13707 /* should never happen in valid vmlinux build */ 13708 return -EINVAL; 13709 t = btf_type_by_id(btf, t->type); 13710 if (!btf_type_is_func_proto(t)) 13711 /* should never happen in valid vmlinux build */ 13712 return -EINVAL; 13713 13714 break; 13715 case BPF_TRACE_ITER: 13716 if (!btf_type_is_func(t)) { 13717 bpf_log(log, "attach_btf_id %u is not a function\n", 13718 btf_id); 13719 return -EINVAL; 13720 } 13721 t = btf_type_by_id(btf, t->type); 13722 if (!btf_type_is_func_proto(t)) 13723 return -EINVAL; 13724 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 13725 if (ret) 13726 return ret; 13727 break; 13728 default: 13729 if (!prog_extension) 13730 return -EINVAL; 13731 fallthrough; 13732 case BPF_MODIFY_RETURN: 13733 case BPF_LSM_MAC: 13734 case BPF_TRACE_FENTRY: 13735 case BPF_TRACE_FEXIT: 13736 if (!btf_type_is_func(t)) { 13737 bpf_log(log, "attach_btf_id %u is not a function\n", 13738 btf_id); 13739 return -EINVAL; 13740 } 13741 if (prog_extension && 13742 btf_check_type_match(log, prog, btf, t)) 13743 return -EINVAL; 13744 t = btf_type_by_id(btf, t->type); 13745 if (!btf_type_is_func_proto(t)) 13746 return -EINVAL; 13747 13748 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) && 13749 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type || 13750 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type)) 13751 return -EINVAL; 13752 13753 if (tgt_prog && conservative) 13754 t = NULL; 13755 13756 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 13757 if (ret < 0) 13758 return ret; 13759 13760 if (tgt_prog) { 13761 if (subprog == 0) 13762 addr = (long) tgt_prog->bpf_func; 13763 else 13764 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 13765 } else { 13766 addr = kallsyms_lookup_name(tname); 13767 if (!addr) { 13768 bpf_log(log, 13769 "The address of function %s cannot be found\n", 13770 tname); 13771 return -ENOENT; 13772 } 13773 } 13774 13775 if (prog->aux->sleepable) { 13776 ret = -EINVAL; 13777 switch (prog->type) { 13778 case BPF_PROG_TYPE_TRACING: 13779 /* fentry/fexit/fmod_ret progs can be sleepable only if they are 13780 * attached to ALLOW_ERROR_INJECTION and are not in denylist. 13781 */ 13782 if (!check_non_sleepable_error_inject(btf_id) && 13783 within_error_injection_list(addr)) 13784 ret = 0; 13785 break; 13786 case BPF_PROG_TYPE_LSM: 13787 /* LSM progs check that they are attached to bpf_lsm_*() funcs. 13788 * Only some of them are sleepable. 13789 */ 13790 if (bpf_lsm_is_sleepable_hook(btf_id)) 13791 ret = 0; 13792 break; 13793 default: 13794 break; 13795 } 13796 if (ret) { 13797 bpf_log(log, "%s is not sleepable\n", tname); 13798 return ret; 13799 } 13800 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) { 13801 if (tgt_prog) { 13802 bpf_log(log, "can't modify return codes of BPF programs\n"); 13803 return -EINVAL; 13804 } 13805 ret = check_attach_modify_return(addr, tname); 13806 if (ret) { 13807 bpf_log(log, "%s() is not modifiable\n", tname); 13808 return ret; 13809 } 13810 } 13811 13812 break; 13813 } 13814 tgt_info->tgt_addr = addr; 13815 tgt_info->tgt_name = tname; 13816 tgt_info->tgt_type = t; 13817 return 0; 13818 } 13819 13820 BTF_SET_START(btf_id_deny) 13821 BTF_ID_UNUSED 13822 #ifdef CONFIG_SMP 13823 BTF_ID(func, migrate_disable) 13824 BTF_ID(func, migrate_enable) 13825 #endif 13826 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU 13827 BTF_ID(func, rcu_read_unlock_strict) 13828 #endif 13829 BTF_SET_END(btf_id_deny) 13830 13831 static int check_attach_btf_id(struct bpf_verifier_env *env) 13832 { 13833 struct bpf_prog *prog = env->prog; 13834 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 13835 struct bpf_attach_target_info tgt_info = {}; 13836 u32 btf_id = prog->aux->attach_btf_id; 13837 struct bpf_trampoline *tr; 13838 int ret; 13839 u64 key; 13840 13841 if (prog->type == BPF_PROG_TYPE_SYSCALL) { 13842 if (prog->aux->sleepable) 13843 /* attach_btf_id checked to be zero already */ 13844 return 0; 13845 verbose(env, "Syscall programs can only be sleepable\n"); 13846 return -EINVAL; 13847 } 13848 13849 if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING && 13850 prog->type != BPF_PROG_TYPE_LSM) { 13851 verbose(env, "Only fentry/fexit/fmod_ret and lsm programs can be sleepable\n"); 13852 return -EINVAL; 13853 } 13854 13855 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 13856 return check_struct_ops_btf_id(env); 13857 13858 if (prog->type != BPF_PROG_TYPE_TRACING && 13859 prog->type != BPF_PROG_TYPE_LSM && 13860 prog->type != BPF_PROG_TYPE_EXT) 13861 return 0; 13862 13863 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info); 13864 if (ret) 13865 return ret; 13866 13867 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) { 13868 /* to make freplace equivalent to their targets, they need to 13869 * inherit env->ops and expected_attach_type for the rest of the 13870 * verification 13871 */ 13872 env->ops = bpf_verifier_ops[tgt_prog->type]; 13873 prog->expected_attach_type = tgt_prog->expected_attach_type; 13874 } 13875 13876 /* store info about the attachment target that will be used later */ 13877 prog->aux->attach_func_proto = tgt_info.tgt_type; 13878 prog->aux->attach_func_name = tgt_info.tgt_name; 13879 13880 if (tgt_prog) { 13881 prog->aux->saved_dst_prog_type = tgt_prog->type; 13882 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type; 13883 } 13884 13885 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { 13886 prog->aux->attach_btf_trace = true; 13887 return 0; 13888 } else if (prog->expected_attach_type == BPF_TRACE_ITER) { 13889 if (!bpf_iter_prog_supported(prog)) 13890 return -EINVAL; 13891 return 0; 13892 } 13893 13894 if (prog->type == BPF_PROG_TYPE_LSM) { 13895 ret = bpf_lsm_verify_prog(&env->log, prog); 13896 if (ret < 0) 13897 return ret; 13898 } else if (prog->type == BPF_PROG_TYPE_TRACING && 13899 btf_id_set_contains(&btf_id_deny, btf_id)) { 13900 return -EINVAL; 13901 } 13902 13903 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id); 13904 tr = bpf_trampoline_get(key, &tgt_info); 13905 if (!tr) 13906 return -ENOMEM; 13907 13908 prog->aux->dst_trampoline = tr; 13909 return 0; 13910 } 13911 13912 struct btf *bpf_get_btf_vmlinux(void) 13913 { 13914 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 13915 mutex_lock(&bpf_verifier_lock); 13916 if (!btf_vmlinux) 13917 btf_vmlinux = btf_parse_vmlinux(); 13918 mutex_unlock(&bpf_verifier_lock); 13919 } 13920 return btf_vmlinux; 13921 } 13922 13923 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr) 13924 { 13925 u64 start_time = ktime_get_ns(); 13926 struct bpf_verifier_env *env; 13927 struct bpf_verifier_log *log; 13928 int i, len, ret = -EINVAL; 13929 bool is_priv; 13930 13931 /* no program is valid */ 13932 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 13933 return -EINVAL; 13934 13935 /* 'struct bpf_verifier_env' can be global, but since it's not small, 13936 * allocate/free it every time bpf_check() is called 13937 */ 13938 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 13939 if (!env) 13940 return -ENOMEM; 13941 log = &env->log; 13942 13943 len = (*prog)->len; 13944 env->insn_aux_data = 13945 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 13946 ret = -ENOMEM; 13947 if (!env->insn_aux_data) 13948 goto err_free_env; 13949 for (i = 0; i < len; i++) 13950 env->insn_aux_data[i].orig_idx = i; 13951 env->prog = *prog; 13952 env->ops = bpf_verifier_ops[env->prog->type]; 13953 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel); 13954 is_priv = bpf_capable(); 13955 13956 bpf_get_btf_vmlinux(); 13957 13958 /* grab the mutex to protect few globals used by verifier */ 13959 if (!is_priv) 13960 mutex_lock(&bpf_verifier_lock); 13961 13962 if (attr->log_level || attr->log_buf || attr->log_size) { 13963 /* user requested verbose verifier output 13964 * and supplied buffer to store the verification trace 13965 */ 13966 log->level = attr->log_level; 13967 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 13968 log->len_total = attr->log_size; 13969 13970 ret = -EINVAL; 13971 /* log attributes have to be sane */ 13972 if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 || 13973 !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK) 13974 goto err_unlock; 13975 } 13976 13977 if (IS_ERR(btf_vmlinux)) { 13978 /* Either gcc or pahole or kernel are broken. */ 13979 verbose(env, "in-kernel BTF is malformed\n"); 13980 ret = PTR_ERR(btf_vmlinux); 13981 goto skip_full_check; 13982 } 13983 13984 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 13985 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 13986 env->strict_alignment = true; 13987 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 13988 env->strict_alignment = false; 13989 13990 env->allow_ptr_leaks = bpf_allow_ptr_leaks(); 13991 env->allow_uninit_stack = bpf_allow_uninit_stack(); 13992 env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access(); 13993 env->bypass_spec_v1 = bpf_bypass_spec_v1(); 13994 env->bypass_spec_v4 = bpf_bypass_spec_v4(); 13995 env->bpf_capable = bpf_capable(); 13996 13997 if (is_priv) 13998 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 13999 14000 env->explored_states = kvcalloc(state_htab_size(env), 14001 sizeof(struct bpf_verifier_state_list *), 14002 GFP_USER); 14003 ret = -ENOMEM; 14004 if (!env->explored_states) 14005 goto skip_full_check; 14006 14007 ret = add_subprog_and_kfunc(env); 14008 if (ret < 0) 14009 goto skip_full_check; 14010 14011 ret = check_subprogs(env); 14012 if (ret < 0) 14013 goto skip_full_check; 14014 14015 ret = check_btf_info(env, attr, uattr); 14016 if (ret < 0) 14017 goto skip_full_check; 14018 14019 ret = check_attach_btf_id(env); 14020 if (ret) 14021 goto skip_full_check; 14022 14023 ret = resolve_pseudo_ldimm64(env); 14024 if (ret < 0) 14025 goto skip_full_check; 14026 14027 if (bpf_prog_is_dev_bound(env->prog->aux)) { 14028 ret = bpf_prog_offload_verifier_prep(env->prog); 14029 if (ret) 14030 goto skip_full_check; 14031 } 14032 14033 ret = check_cfg(env); 14034 if (ret < 0) 14035 goto skip_full_check; 14036 14037 ret = do_check_subprogs(env); 14038 ret = ret ?: do_check_main(env); 14039 14040 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux)) 14041 ret = bpf_prog_offload_finalize(env); 14042 14043 skip_full_check: 14044 kvfree(env->explored_states); 14045 14046 if (ret == 0) 14047 ret = check_max_stack_depth(env); 14048 14049 /* instruction rewrites happen after this point */ 14050 if (is_priv) { 14051 if (ret == 0) 14052 opt_hard_wire_dead_code_branches(env); 14053 if (ret == 0) 14054 ret = opt_remove_dead_code(env); 14055 if (ret == 0) 14056 ret = opt_remove_nops(env); 14057 } else { 14058 if (ret == 0) 14059 sanitize_dead_code(env); 14060 } 14061 14062 if (ret == 0) 14063 /* program is valid, convert *(u32*)(ctx + off) accesses */ 14064 ret = convert_ctx_accesses(env); 14065 14066 if (ret == 0) 14067 ret = do_misc_fixups(env); 14068 14069 /* do 32-bit optimization after insn patching has done so those patched 14070 * insns could be handled correctly. 14071 */ 14072 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) { 14073 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 14074 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 14075 : false; 14076 } 14077 14078 if (ret == 0) 14079 ret = fixup_call_args(env); 14080 14081 env->verification_time = ktime_get_ns() - start_time; 14082 print_verification_stats(env); 14083 env->prog->aux->verified_insns = env->insn_processed; 14084 14085 if (log->level && bpf_verifier_log_full(log)) 14086 ret = -ENOSPC; 14087 if (log->level && !log->ubuf) { 14088 ret = -EFAULT; 14089 goto err_release_maps; 14090 } 14091 14092 if (ret) 14093 goto err_release_maps; 14094 14095 if (env->used_map_cnt) { 14096 /* if program passed verifier, update used_maps in bpf_prog_info */ 14097 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 14098 sizeof(env->used_maps[0]), 14099 GFP_KERNEL); 14100 14101 if (!env->prog->aux->used_maps) { 14102 ret = -ENOMEM; 14103 goto err_release_maps; 14104 } 14105 14106 memcpy(env->prog->aux->used_maps, env->used_maps, 14107 sizeof(env->used_maps[0]) * env->used_map_cnt); 14108 env->prog->aux->used_map_cnt = env->used_map_cnt; 14109 } 14110 if (env->used_btf_cnt) { 14111 /* if program passed verifier, update used_btfs in bpf_prog_aux */ 14112 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt, 14113 sizeof(env->used_btfs[0]), 14114 GFP_KERNEL); 14115 if (!env->prog->aux->used_btfs) { 14116 ret = -ENOMEM; 14117 goto err_release_maps; 14118 } 14119 14120 memcpy(env->prog->aux->used_btfs, env->used_btfs, 14121 sizeof(env->used_btfs[0]) * env->used_btf_cnt); 14122 env->prog->aux->used_btf_cnt = env->used_btf_cnt; 14123 } 14124 if (env->used_map_cnt || env->used_btf_cnt) { 14125 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 14126 * bpf_ld_imm64 instructions 14127 */ 14128 convert_pseudo_ld_imm64(env); 14129 } 14130 14131 adjust_btf_func(env); 14132 14133 err_release_maps: 14134 if (!env->prog->aux->used_maps) 14135 /* if we didn't copy map pointers into bpf_prog_info, release 14136 * them now. Otherwise free_used_maps() will release them. 14137 */ 14138 release_maps(env); 14139 if (!env->prog->aux->used_btfs) 14140 release_btfs(env); 14141 14142 /* extension progs temporarily inherit the attach_type of their targets 14143 for verification purposes, so set it back to zero before returning 14144 */ 14145 if (env->prog->type == BPF_PROG_TYPE_EXT) 14146 env->prog->expected_attach_type = 0; 14147 14148 *prog = env->prog; 14149 err_unlock: 14150 if (!is_priv) 14151 mutex_unlock(&bpf_verifier_lock); 14152 vfree(env->insn_aux_data); 14153 err_free_env: 14154 kfree(env); 14155 return ret; 14156 } 14157