1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/bpf-cgroup.h> 8 #include <linux/kernel.h> 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/bpf.h> 12 #include <linux/btf.h> 13 #include <linux/bpf_verifier.h> 14 #include <linux/filter.h> 15 #include <net/netlink.h> 16 #include <linux/file.h> 17 #include <linux/vmalloc.h> 18 #include <linux/stringify.h> 19 #include <linux/bsearch.h> 20 #include <linux/sort.h> 21 #include <linux/perf_event.h> 22 #include <linux/ctype.h> 23 #include <linux/error-injection.h> 24 #include <linux/bpf_lsm.h> 25 #include <linux/btf_ids.h> 26 27 #include "disasm.h" 28 29 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 30 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 31 [_id] = & _name ## _verifier_ops, 32 #define BPF_MAP_TYPE(_id, _ops) 33 #define BPF_LINK_TYPE(_id, _name) 34 #include <linux/bpf_types.h> 35 #undef BPF_PROG_TYPE 36 #undef BPF_MAP_TYPE 37 #undef BPF_LINK_TYPE 38 }; 39 40 /* bpf_check() is a static code analyzer that walks eBPF program 41 * instruction by instruction and updates register/stack state. 42 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 43 * 44 * The first pass is depth-first-search to check that the program is a DAG. 45 * It rejects the following programs: 46 * - larger than BPF_MAXINSNS insns 47 * - if loop is present (detected via back-edge) 48 * - unreachable insns exist (shouldn't be a forest. program = one function) 49 * - out of bounds or malformed jumps 50 * The second pass is all possible path descent from the 1st insn. 51 * Since it's analyzing all paths through the program, the length of the 52 * analysis is limited to 64k insn, which may be hit even if total number of 53 * insn is less then 4K, but there are too many branches that change stack/regs. 54 * Number of 'branches to be analyzed' is limited to 1k 55 * 56 * On entry to each instruction, each register has a type, and the instruction 57 * changes the types of the registers depending on instruction semantics. 58 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 59 * copied to R1. 60 * 61 * All registers are 64-bit. 62 * R0 - return register 63 * R1-R5 argument passing registers 64 * R6-R9 callee saved registers 65 * R10 - frame pointer read-only 66 * 67 * At the start of BPF program the register R1 contains a pointer to bpf_context 68 * and has type PTR_TO_CTX. 69 * 70 * Verifier tracks arithmetic operations on pointers in case: 71 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 72 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 73 * 1st insn copies R10 (which has FRAME_PTR) type into R1 74 * and 2nd arithmetic instruction is pattern matched to recognize 75 * that it wants to construct a pointer to some element within stack. 76 * So after 2nd insn, the register R1 has type PTR_TO_STACK 77 * (and -20 constant is saved for further stack bounds checking). 78 * Meaning that this reg is a pointer to stack plus known immediate constant. 79 * 80 * Most of the time the registers have SCALAR_VALUE type, which 81 * means the register has some value, but it's not a valid pointer. 82 * (like pointer plus pointer becomes SCALAR_VALUE type) 83 * 84 * When verifier sees load or store instructions the type of base register 85 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 86 * four pointer types recognized by check_mem_access() function. 87 * 88 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 89 * and the range of [ptr, ptr + map's value_size) is accessible. 90 * 91 * registers used to pass values to function calls are checked against 92 * function argument constraints. 93 * 94 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 95 * It means that the register type passed to this function must be 96 * PTR_TO_STACK and it will be used inside the function as 97 * 'pointer to map element key' 98 * 99 * For example the argument constraints for bpf_map_lookup_elem(): 100 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 101 * .arg1_type = ARG_CONST_MAP_PTR, 102 * .arg2_type = ARG_PTR_TO_MAP_KEY, 103 * 104 * ret_type says that this function returns 'pointer to map elem value or null' 105 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 106 * 2nd argument should be a pointer to stack, which will be used inside 107 * the helper function as a pointer to map element key. 108 * 109 * On the kernel side the helper function looks like: 110 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 111 * { 112 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 113 * void *key = (void *) (unsigned long) r2; 114 * void *value; 115 * 116 * here kernel can access 'key' and 'map' pointers safely, knowing that 117 * [key, key + map->key_size) bytes are valid and were initialized on 118 * the stack of eBPF program. 119 * } 120 * 121 * Corresponding eBPF program may look like: 122 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 123 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 124 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 125 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 126 * here verifier looks at prototype of map_lookup_elem() and sees: 127 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 128 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 129 * 130 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 131 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 132 * and were initialized prior to this call. 133 * If it's ok, then verifier allows this BPF_CALL insn and looks at 134 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 135 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 136 * returns either pointer to map value or NULL. 137 * 138 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 139 * insn, the register holding that pointer in the true branch changes state to 140 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 141 * branch. See check_cond_jmp_op(). 142 * 143 * After the call R0 is set to return type of the function and registers R1-R5 144 * are set to NOT_INIT to indicate that they are no longer readable. 145 * 146 * The following reference types represent a potential reference to a kernel 147 * resource which, after first being allocated, must be checked and freed by 148 * the BPF program: 149 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 150 * 151 * When the verifier sees a helper call return a reference type, it allocates a 152 * pointer id for the reference and stores it in the current function state. 153 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 154 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 155 * passes through a NULL-check conditional. For the branch wherein the state is 156 * changed to CONST_IMM, the verifier releases the reference. 157 * 158 * For each helper function that allocates a reference, such as 159 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 160 * bpf_sk_release(). When a reference type passes into the release function, 161 * the verifier also releases the reference. If any unchecked or unreleased 162 * reference remains at the end of the program, the verifier rejects it. 163 */ 164 165 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 166 struct bpf_verifier_stack_elem { 167 /* verifer state is 'st' 168 * before processing instruction 'insn_idx' 169 * and after processing instruction 'prev_insn_idx' 170 */ 171 struct bpf_verifier_state st; 172 int insn_idx; 173 int prev_insn_idx; 174 struct bpf_verifier_stack_elem *next; 175 /* length of verifier log at the time this state was pushed on stack */ 176 u32 log_pos; 177 }; 178 179 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 180 #define BPF_COMPLEXITY_LIMIT_STATES 64 181 182 #define BPF_MAP_KEY_POISON (1ULL << 63) 183 #define BPF_MAP_KEY_SEEN (1ULL << 62) 184 185 #define BPF_MAP_PTR_UNPRIV 1UL 186 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 187 POISON_POINTER_DELTA)) 188 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 189 190 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx); 191 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id); 192 193 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 194 { 195 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON; 196 } 197 198 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 199 { 200 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV; 201 } 202 203 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 204 const struct bpf_map *map, bool unpriv) 205 { 206 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 207 unpriv |= bpf_map_ptr_unpriv(aux); 208 aux->map_ptr_state = (unsigned long)map | 209 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 210 } 211 212 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 213 { 214 return aux->map_key_state & BPF_MAP_KEY_POISON; 215 } 216 217 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 218 { 219 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 220 } 221 222 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 223 { 224 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 225 } 226 227 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 228 { 229 bool poisoned = bpf_map_key_poisoned(aux); 230 231 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 232 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 233 } 234 235 static bool bpf_pseudo_call(const struct bpf_insn *insn) 236 { 237 return insn->code == (BPF_JMP | BPF_CALL) && 238 insn->src_reg == BPF_PSEUDO_CALL; 239 } 240 241 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn) 242 { 243 return insn->code == (BPF_JMP | BPF_CALL) && 244 insn->src_reg == BPF_PSEUDO_KFUNC_CALL; 245 } 246 247 struct bpf_call_arg_meta { 248 struct bpf_map *map_ptr; 249 bool raw_mode; 250 bool pkt_access; 251 u8 release_regno; 252 int regno; 253 int access_size; 254 int mem_size; 255 u64 msize_max_value; 256 int ref_obj_id; 257 int map_uid; 258 int func_id; 259 struct btf *btf; 260 u32 btf_id; 261 struct btf *ret_btf; 262 u32 ret_btf_id; 263 u32 subprogno; 264 struct bpf_map_value_off_desc *kptr_off_desc; 265 u8 uninit_dynptr_regno; 266 }; 267 268 struct btf *btf_vmlinux; 269 270 static DEFINE_MUTEX(bpf_verifier_lock); 271 272 static const struct bpf_line_info * 273 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 274 { 275 const struct bpf_line_info *linfo; 276 const struct bpf_prog *prog; 277 u32 i, nr_linfo; 278 279 prog = env->prog; 280 nr_linfo = prog->aux->nr_linfo; 281 282 if (!nr_linfo || insn_off >= prog->len) 283 return NULL; 284 285 linfo = prog->aux->linfo; 286 for (i = 1; i < nr_linfo; i++) 287 if (insn_off < linfo[i].insn_off) 288 break; 289 290 return &linfo[i - 1]; 291 } 292 293 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, 294 va_list args) 295 { 296 unsigned int n; 297 298 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 299 300 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 301 "verifier log line truncated - local buffer too short\n"); 302 303 if (log->level == BPF_LOG_KERNEL) { 304 bool newline = n > 0 && log->kbuf[n - 1] == '\n'; 305 306 pr_err("BPF: %s%s", log->kbuf, newline ? "" : "\n"); 307 return; 308 } 309 310 n = min(log->len_total - log->len_used - 1, n); 311 log->kbuf[n] = '\0'; 312 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 313 log->len_used += n; 314 else 315 log->ubuf = NULL; 316 } 317 318 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos) 319 { 320 char zero = 0; 321 322 if (!bpf_verifier_log_needed(log)) 323 return; 324 325 log->len_used = new_pos; 326 if (put_user(zero, log->ubuf + new_pos)) 327 log->ubuf = NULL; 328 } 329 330 /* log_level controls verbosity level of eBPF verifier. 331 * bpf_verifier_log_write() is used to dump the verification trace to the log, 332 * so the user can figure out what's wrong with the program 333 */ 334 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 335 const char *fmt, ...) 336 { 337 va_list args; 338 339 if (!bpf_verifier_log_needed(&env->log)) 340 return; 341 342 va_start(args, fmt); 343 bpf_verifier_vlog(&env->log, fmt, args); 344 va_end(args); 345 } 346 EXPORT_SYMBOL_GPL(bpf_verifier_log_write); 347 348 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 349 { 350 struct bpf_verifier_env *env = private_data; 351 va_list args; 352 353 if (!bpf_verifier_log_needed(&env->log)) 354 return; 355 356 va_start(args, fmt); 357 bpf_verifier_vlog(&env->log, fmt, args); 358 va_end(args); 359 } 360 361 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log, 362 const char *fmt, ...) 363 { 364 va_list args; 365 366 if (!bpf_verifier_log_needed(log)) 367 return; 368 369 va_start(args, fmt); 370 bpf_verifier_vlog(log, fmt, args); 371 va_end(args); 372 } 373 374 static const char *ltrim(const char *s) 375 { 376 while (isspace(*s)) 377 s++; 378 379 return s; 380 } 381 382 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 383 u32 insn_off, 384 const char *prefix_fmt, ...) 385 { 386 const struct bpf_line_info *linfo; 387 388 if (!bpf_verifier_log_needed(&env->log)) 389 return; 390 391 linfo = find_linfo(env, insn_off); 392 if (!linfo || linfo == env->prev_linfo) 393 return; 394 395 if (prefix_fmt) { 396 va_list args; 397 398 va_start(args, prefix_fmt); 399 bpf_verifier_vlog(&env->log, prefix_fmt, args); 400 va_end(args); 401 } 402 403 verbose(env, "%s\n", 404 ltrim(btf_name_by_offset(env->prog->aux->btf, 405 linfo->line_off))); 406 407 env->prev_linfo = linfo; 408 } 409 410 static void verbose_invalid_scalar(struct bpf_verifier_env *env, 411 struct bpf_reg_state *reg, 412 struct tnum *range, const char *ctx, 413 const char *reg_name) 414 { 415 char tn_buf[48]; 416 417 verbose(env, "At %s the register %s ", ctx, reg_name); 418 if (!tnum_is_unknown(reg->var_off)) { 419 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 420 verbose(env, "has value %s", tn_buf); 421 } else { 422 verbose(env, "has unknown scalar value"); 423 } 424 tnum_strn(tn_buf, sizeof(tn_buf), *range); 425 verbose(env, " should have been in %s\n", tn_buf); 426 } 427 428 static bool type_is_pkt_pointer(enum bpf_reg_type type) 429 { 430 return type == PTR_TO_PACKET || 431 type == PTR_TO_PACKET_META; 432 } 433 434 static bool type_is_sk_pointer(enum bpf_reg_type type) 435 { 436 return type == PTR_TO_SOCKET || 437 type == PTR_TO_SOCK_COMMON || 438 type == PTR_TO_TCP_SOCK || 439 type == PTR_TO_XDP_SOCK; 440 } 441 442 static bool reg_type_not_null(enum bpf_reg_type type) 443 { 444 return type == PTR_TO_SOCKET || 445 type == PTR_TO_TCP_SOCK || 446 type == PTR_TO_MAP_VALUE || 447 type == PTR_TO_MAP_KEY || 448 type == PTR_TO_SOCK_COMMON; 449 } 450 451 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 452 { 453 return reg->type == PTR_TO_MAP_VALUE && 454 map_value_has_spin_lock(reg->map_ptr); 455 } 456 457 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type) 458 { 459 return base_type(type) == PTR_TO_SOCKET || 460 base_type(type) == PTR_TO_TCP_SOCK || 461 base_type(type) == PTR_TO_MEM || 462 base_type(type) == PTR_TO_BTF_ID; 463 } 464 465 static bool type_is_rdonly_mem(u32 type) 466 { 467 return type & MEM_RDONLY; 468 } 469 470 static bool arg_type_may_be_refcounted(enum bpf_arg_type type) 471 { 472 return type == ARG_PTR_TO_SOCK_COMMON; 473 } 474 475 static bool type_may_be_null(u32 type) 476 { 477 return type & PTR_MAYBE_NULL; 478 } 479 480 static bool may_be_acquire_function(enum bpf_func_id func_id) 481 { 482 return func_id == BPF_FUNC_sk_lookup_tcp || 483 func_id == BPF_FUNC_sk_lookup_udp || 484 func_id == BPF_FUNC_skc_lookup_tcp || 485 func_id == BPF_FUNC_map_lookup_elem || 486 func_id == BPF_FUNC_ringbuf_reserve; 487 } 488 489 static bool is_acquire_function(enum bpf_func_id func_id, 490 const struct bpf_map *map) 491 { 492 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; 493 494 if (func_id == BPF_FUNC_sk_lookup_tcp || 495 func_id == BPF_FUNC_sk_lookup_udp || 496 func_id == BPF_FUNC_skc_lookup_tcp || 497 func_id == BPF_FUNC_ringbuf_reserve || 498 func_id == BPF_FUNC_kptr_xchg) 499 return true; 500 501 if (func_id == BPF_FUNC_map_lookup_elem && 502 (map_type == BPF_MAP_TYPE_SOCKMAP || 503 map_type == BPF_MAP_TYPE_SOCKHASH)) 504 return true; 505 506 return false; 507 } 508 509 static bool is_ptr_cast_function(enum bpf_func_id func_id) 510 { 511 return func_id == BPF_FUNC_tcp_sock || 512 func_id == BPF_FUNC_sk_fullsock || 513 func_id == BPF_FUNC_skc_to_tcp_sock || 514 func_id == BPF_FUNC_skc_to_tcp6_sock || 515 func_id == BPF_FUNC_skc_to_udp6_sock || 516 func_id == BPF_FUNC_skc_to_mptcp_sock || 517 func_id == BPF_FUNC_skc_to_tcp_timewait_sock || 518 func_id == BPF_FUNC_skc_to_tcp_request_sock; 519 } 520 521 static bool is_cmpxchg_insn(const struct bpf_insn *insn) 522 { 523 return BPF_CLASS(insn->code) == BPF_STX && 524 BPF_MODE(insn->code) == BPF_ATOMIC && 525 insn->imm == BPF_CMPXCHG; 526 } 527 528 /* string representation of 'enum bpf_reg_type' 529 * 530 * Note that reg_type_str() can not appear more than once in a single verbose() 531 * statement. 532 */ 533 static const char *reg_type_str(struct bpf_verifier_env *env, 534 enum bpf_reg_type type) 535 { 536 char postfix[16] = {0}, prefix[32] = {0}; 537 static const char * const str[] = { 538 [NOT_INIT] = "?", 539 [SCALAR_VALUE] = "scalar", 540 [PTR_TO_CTX] = "ctx", 541 [CONST_PTR_TO_MAP] = "map_ptr", 542 [PTR_TO_MAP_VALUE] = "map_value", 543 [PTR_TO_STACK] = "fp", 544 [PTR_TO_PACKET] = "pkt", 545 [PTR_TO_PACKET_META] = "pkt_meta", 546 [PTR_TO_PACKET_END] = "pkt_end", 547 [PTR_TO_FLOW_KEYS] = "flow_keys", 548 [PTR_TO_SOCKET] = "sock", 549 [PTR_TO_SOCK_COMMON] = "sock_common", 550 [PTR_TO_TCP_SOCK] = "tcp_sock", 551 [PTR_TO_TP_BUFFER] = "tp_buffer", 552 [PTR_TO_XDP_SOCK] = "xdp_sock", 553 [PTR_TO_BTF_ID] = "ptr_", 554 [PTR_TO_MEM] = "mem", 555 [PTR_TO_BUF] = "buf", 556 [PTR_TO_FUNC] = "func", 557 [PTR_TO_MAP_KEY] = "map_key", 558 }; 559 560 if (type & PTR_MAYBE_NULL) { 561 if (base_type(type) == PTR_TO_BTF_ID) 562 strncpy(postfix, "or_null_", 16); 563 else 564 strncpy(postfix, "_or_null", 16); 565 } 566 567 if (type & MEM_RDONLY) 568 strncpy(prefix, "rdonly_", 32); 569 if (type & MEM_ALLOC) 570 strncpy(prefix, "alloc_", 32); 571 if (type & MEM_USER) 572 strncpy(prefix, "user_", 32); 573 if (type & MEM_PERCPU) 574 strncpy(prefix, "percpu_", 32); 575 if (type & PTR_UNTRUSTED) 576 strncpy(prefix, "untrusted_", 32); 577 578 snprintf(env->type_str_buf, TYPE_STR_BUF_LEN, "%s%s%s", 579 prefix, str[base_type(type)], postfix); 580 return env->type_str_buf; 581 } 582 583 static char slot_type_char[] = { 584 [STACK_INVALID] = '?', 585 [STACK_SPILL] = 'r', 586 [STACK_MISC] = 'm', 587 [STACK_ZERO] = '0', 588 [STACK_DYNPTR] = 'd', 589 }; 590 591 static void print_liveness(struct bpf_verifier_env *env, 592 enum bpf_reg_liveness live) 593 { 594 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 595 verbose(env, "_"); 596 if (live & REG_LIVE_READ) 597 verbose(env, "r"); 598 if (live & REG_LIVE_WRITTEN) 599 verbose(env, "w"); 600 if (live & REG_LIVE_DONE) 601 verbose(env, "D"); 602 } 603 604 static int get_spi(s32 off) 605 { 606 return (-off - 1) / BPF_REG_SIZE; 607 } 608 609 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots) 610 { 611 int allocated_slots = state->allocated_stack / BPF_REG_SIZE; 612 613 /* We need to check that slots between [spi - nr_slots + 1, spi] are 614 * within [0, allocated_stack). 615 * 616 * Please note that the spi grows downwards. For example, a dynptr 617 * takes the size of two stack slots; the first slot will be at 618 * spi and the second slot will be at spi - 1. 619 */ 620 return spi - nr_slots + 1 >= 0 && spi < allocated_slots; 621 } 622 623 static struct bpf_func_state *func(struct bpf_verifier_env *env, 624 const struct bpf_reg_state *reg) 625 { 626 struct bpf_verifier_state *cur = env->cur_state; 627 628 return cur->frame[reg->frameno]; 629 } 630 631 static const char *kernel_type_name(const struct btf* btf, u32 id) 632 { 633 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off); 634 } 635 636 static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno) 637 { 638 env->scratched_regs |= 1U << regno; 639 } 640 641 static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi) 642 { 643 env->scratched_stack_slots |= 1ULL << spi; 644 } 645 646 static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno) 647 { 648 return (env->scratched_regs >> regno) & 1; 649 } 650 651 static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno) 652 { 653 return (env->scratched_stack_slots >> regno) & 1; 654 } 655 656 static bool verifier_state_scratched(const struct bpf_verifier_env *env) 657 { 658 return env->scratched_regs || env->scratched_stack_slots; 659 } 660 661 static void mark_verifier_state_clean(struct bpf_verifier_env *env) 662 { 663 env->scratched_regs = 0U; 664 env->scratched_stack_slots = 0ULL; 665 } 666 667 /* Used for printing the entire verifier state. */ 668 static void mark_verifier_state_scratched(struct bpf_verifier_env *env) 669 { 670 env->scratched_regs = ~0U; 671 env->scratched_stack_slots = ~0ULL; 672 } 673 674 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type) 675 { 676 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) { 677 case DYNPTR_TYPE_LOCAL: 678 return BPF_DYNPTR_TYPE_LOCAL; 679 case DYNPTR_TYPE_RINGBUF: 680 return BPF_DYNPTR_TYPE_RINGBUF; 681 default: 682 return BPF_DYNPTR_TYPE_INVALID; 683 } 684 } 685 686 static bool dynptr_type_refcounted(enum bpf_dynptr_type type) 687 { 688 return type == BPF_DYNPTR_TYPE_RINGBUF; 689 } 690 691 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 692 enum bpf_arg_type arg_type, int insn_idx) 693 { 694 struct bpf_func_state *state = func(env, reg); 695 enum bpf_dynptr_type type; 696 int spi, i, id; 697 698 spi = get_spi(reg->off); 699 700 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS)) 701 return -EINVAL; 702 703 for (i = 0; i < BPF_REG_SIZE; i++) { 704 state->stack[spi].slot_type[i] = STACK_DYNPTR; 705 state->stack[spi - 1].slot_type[i] = STACK_DYNPTR; 706 } 707 708 type = arg_to_dynptr_type(arg_type); 709 if (type == BPF_DYNPTR_TYPE_INVALID) 710 return -EINVAL; 711 712 state->stack[spi].spilled_ptr.dynptr.first_slot = true; 713 state->stack[spi].spilled_ptr.dynptr.type = type; 714 state->stack[spi - 1].spilled_ptr.dynptr.type = type; 715 716 if (dynptr_type_refcounted(type)) { 717 /* The id is used to track proper releasing */ 718 id = acquire_reference_state(env, insn_idx); 719 if (id < 0) 720 return id; 721 722 state->stack[spi].spilled_ptr.id = id; 723 state->stack[spi - 1].spilled_ptr.id = id; 724 } 725 726 return 0; 727 } 728 729 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 730 { 731 struct bpf_func_state *state = func(env, reg); 732 int spi, i; 733 734 spi = get_spi(reg->off); 735 736 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS)) 737 return -EINVAL; 738 739 for (i = 0; i < BPF_REG_SIZE; i++) { 740 state->stack[spi].slot_type[i] = STACK_INVALID; 741 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 742 } 743 744 /* Invalidate any slices associated with this dynptr */ 745 if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 746 release_reference(env, state->stack[spi].spilled_ptr.id); 747 state->stack[spi].spilled_ptr.id = 0; 748 state->stack[spi - 1].spilled_ptr.id = 0; 749 } 750 751 state->stack[spi].spilled_ptr.dynptr.first_slot = false; 752 state->stack[spi].spilled_ptr.dynptr.type = 0; 753 state->stack[spi - 1].spilled_ptr.dynptr.type = 0; 754 755 return 0; 756 } 757 758 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 759 { 760 struct bpf_func_state *state = func(env, reg); 761 int spi = get_spi(reg->off); 762 int i; 763 764 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS)) 765 return true; 766 767 for (i = 0; i < BPF_REG_SIZE; i++) { 768 if (state->stack[spi].slot_type[i] == STACK_DYNPTR || 769 state->stack[spi - 1].slot_type[i] == STACK_DYNPTR) 770 return false; 771 } 772 773 return true; 774 } 775 776 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 777 enum bpf_arg_type arg_type) 778 { 779 struct bpf_func_state *state = func(env, reg); 780 int spi = get_spi(reg->off); 781 int i; 782 783 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS) || 784 !state->stack[spi].spilled_ptr.dynptr.first_slot) 785 return false; 786 787 for (i = 0; i < BPF_REG_SIZE; i++) { 788 if (state->stack[spi].slot_type[i] != STACK_DYNPTR || 789 state->stack[spi - 1].slot_type[i] != STACK_DYNPTR) 790 return false; 791 } 792 793 /* ARG_PTR_TO_DYNPTR takes any type of dynptr */ 794 if (arg_type == ARG_PTR_TO_DYNPTR) 795 return true; 796 797 return state->stack[spi].spilled_ptr.dynptr.type == arg_to_dynptr_type(arg_type); 798 } 799 800 /* The reg state of a pointer or a bounded scalar was saved when 801 * it was spilled to the stack. 802 */ 803 static bool is_spilled_reg(const struct bpf_stack_state *stack) 804 { 805 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL; 806 } 807 808 static void scrub_spilled_slot(u8 *stype) 809 { 810 if (*stype != STACK_INVALID) 811 *stype = STACK_MISC; 812 } 813 814 static void print_verifier_state(struct bpf_verifier_env *env, 815 const struct bpf_func_state *state, 816 bool print_all) 817 { 818 const struct bpf_reg_state *reg; 819 enum bpf_reg_type t; 820 int i; 821 822 if (state->frameno) 823 verbose(env, " frame%d:", state->frameno); 824 for (i = 0; i < MAX_BPF_REG; i++) { 825 reg = &state->regs[i]; 826 t = reg->type; 827 if (t == NOT_INIT) 828 continue; 829 if (!print_all && !reg_scratched(env, i)) 830 continue; 831 verbose(env, " R%d", i); 832 print_liveness(env, reg->live); 833 verbose(env, "="); 834 if (t == SCALAR_VALUE && reg->precise) 835 verbose(env, "P"); 836 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 837 tnum_is_const(reg->var_off)) { 838 /* reg->off should be 0 for SCALAR_VALUE */ 839 verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t)); 840 verbose(env, "%lld", reg->var_off.value + reg->off); 841 } else { 842 const char *sep = ""; 843 844 verbose(env, "%s", reg_type_str(env, t)); 845 if (base_type(t) == PTR_TO_BTF_ID) 846 verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id)); 847 verbose(env, "("); 848 /* 849 * _a stands for append, was shortened to avoid multiline statements below. 850 * This macro is used to output a comma separated list of attributes. 851 */ 852 #define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; }) 853 854 if (reg->id) 855 verbose_a("id=%d", reg->id); 856 if (reg_type_may_be_refcounted_or_null(t) && reg->ref_obj_id) 857 verbose_a("ref_obj_id=%d", reg->ref_obj_id); 858 if (t != SCALAR_VALUE) 859 verbose_a("off=%d", reg->off); 860 if (type_is_pkt_pointer(t)) 861 verbose_a("r=%d", reg->range); 862 else if (base_type(t) == CONST_PTR_TO_MAP || 863 base_type(t) == PTR_TO_MAP_KEY || 864 base_type(t) == PTR_TO_MAP_VALUE) 865 verbose_a("ks=%d,vs=%d", 866 reg->map_ptr->key_size, 867 reg->map_ptr->value_size); 868 if (tnum_is_const(reg->var_off)) { 869 /* Typically an immediate SCALAR_VALUE, but 870 * could be a pointer whose offset is too big 871 * for reg->off 872 */ 873 verbose_a("imm=%llx", reg->var_off.value); 874 } else { 875 if (reg->smin_value != reg->umin_value && 876 reg->smin_value != S64_MIN) 877 verbose_a("smin=%lld", (long long)reg->smin_value); 878 if (reg->smax_value != reg->umax_value && 879 reg->smax_value != S64_MAX) 880 verbose_a("smax=%lld", (long long)reg->smax_value); 881 if (reg->umin_value != 0) 882 verbose_a("umin=%llu", (unsigned long long)reg->umin_value); 883 if (reg->umax_value != U64_MAX) 884 verbose_a("umax=%llu", (unsigned long long)reg->umax_value); 885 if (!tnum_is_unknown(reg->var_off)) { 886 char tn_buf[48]; 887 888 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 889 verbose_a("var_off=%s", tn_buf); 890 } 891 if (reg->s32_min_value != reg->smin_value && 892 reg->s32_min_value != S32_MIN) 893 verbose_a("s32_min=%d", (int)(reg->s32_min_value)); 894 if (reg->s32_max_value != reg->smax_value && 895 reg->s32_max_value != S32_MAX) 896 verbose_a("s32_max=%d", (int)(reg->s32_max_value)); 897 if (reg->u32_min_value != reg->umin_value && 898 reg->u32_min_value != U32_MIN) 899 verbose_a("u32_min=%d", (int)(reg->u32_min_value)); 900 if (reg->u32_max_value != reg->umax_value && 901 reg->u32_max_value != U32_MAX) 902 verbose_a("u32_max=%d", (int)(reg->u32_max_value)); 903 } 904 #undef verbose_a 905 906 verbose(env, ")"); 907 } 908 } 909 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 910 char types_buf[BPF_REG_SIZE + 1]; 911 bool valid = false; 912 int j; 913 914 for (j = 0; j < BPF_REG_SIZE; j++) { 915 if (state->stack[i].slot_type[j] != STACK_INVALID) 916 valid = true; 917 types_buf[j] = slot_type_char[ 918 state->stack[i].slot_type[j]]; 919 } 920 types_buf[BPF_REG_SIZE] = 0; 921 if (!valid) 922 continue; 923 if (!print_all && !stack_slot_scratched(env, i)) 924 continue; 925 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 926 print_liveness(env, state->stack[i].spilled_ptr.live); 927 if (is_spilled_reg(&state->stack[i])) { 928 reg = &state->stack[i].spilled_ptr; 929 t = reg->type; 930 verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t)); 931 if (t == SCALAR_VALUE && reg->precise) 932 verbose(env, "P"); 933 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) 934 verbose(env, "%lld", reg->var_off.value + reg->off); 935 } else { 936 verbose(env, "=%s", types_buf); 937 } 938 } 939 if (state->acquired_refs && state->refs[0].id) { 940 verbose(env, " refs=%d", state->refs[0].id); 941 for (i = 1; i < state->acquired_refs; i++) 942 if (state->refs[i].id) 943 verbose(env, ",%d", state->refs[i].id); 944 } 945 if (state->in_callback_fn) 946 verbose(env, " cb"); 947 if (state->in_async_callback_fn) 948 verbose(env, " async_cb"); 949 verbose(env, "\n"); 950 mark_verifier_state_clean(env); 951 } 952 953 static inline u32 vlog_alignment(u32 pos) 954 { 955 return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT), 956 BPF_LOG_MIN_ALIGNMENT) - pos - 1; 957 } 958 959 static void print_insn_state(struct bpf_verifier_env *env, 960 const struct bpf_func_state *state) 961 { 962 if (env->prev_log_len && env->prev_log_len == env->log.len_used) { 963 /* remove new line character */ 964 bpf_vlog_reset(&env->log, env->prev_log_len - 1); 965 verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_len), ' '); 966 } else { 967 verbose(env, "%d:", env->insn_idx); 968 } 969 print_verifier_state(env, state, false); 970 } 971 972 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too 973 * small to hold src. This is different from krealloc since we don't want to preserve 974 * the contents of dst. 975 * 976 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could 977 * not be allocated. 978 */ 979 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags) 980 { 981 size_t bytes; 982 983 if (ZERO_OR_NULL_PTR(src)) 984 goto out; 985 986 if (unlikely(check_mul_overflow(n, size, &bytes))) 987 return NULL; 988 989 if (ksize(dst) < bytes) { 990 kfree(dst); 991 dst = kmalloc_track_caller(bytes, flags); 992 if (!dst) 993 return NULL; 994 } 995 996 memcpy(dst, src, bytes); 997 out: 998 return dst ? dst : ZERO_SIZE_PTR; 999 } 1000 1001 /* resize an array from old_n items to new_n items. the array is reallocated if it's too 1002 * small to hold new_n items. new items are zeroed out if the array grows. 1003 * 1004 * Contrary to krealloc_array, does not free arr if new_n is zero. 1005 */ 1006 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size) 1007 { 1008 if (!new_n || old_n == new_n) 1009 goto out; 1010 1011 arr = krealloc_array(arr, new_n, size, GFP_KERNEL); 1012 if (!arr) 1013 return NULL; 1014 1015 if (new_n > old_n) 1016 memset(arr + old_n * size, 0, (new_n - old_n) * size); 1017 1018 out: 1019 return arr ? arr : ZERO_SIZE_PTR; 1020 } 1021 1022 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1023 { 1024 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs, 1025 sizeof(struct bpf_reference_state), GFP_KERNEL); 1026 if (!dst->refs) 1027 return -ENOMEM; 1028 1029 dst->acquired_refs = src->acquired_refs; 1030 return 0; 1031 } 1032 1033 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1034 { 1035 size_t n = src->allocated_stack / BPF_REG_SIZE; 1036 1037 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state), 1038 GFP_KERNEL); 1039 if (!dst->stack) 1040 return -ENOMEM; 1041 1042 dst->allocated_stack = src->allocated_stack; 1043 return 0; 1044 } 1045 1046 static int resize_reference_state(struct bpf_func_state *state, size_t n) 1047 { 1048 state->refs = realloc_array(state->refs, state->acquired_refs, n, 1049 sizeof(struct bpf_reference_state)); 1050 if (!state->refs) 1051 return -ENOMEM; 1052 1053 state->acquired_refs = n; 1054 return 0; 1055 } 1056 1057 static int grow_stack_state(struct bpf_func_state *state, int size) 1058 { 1059 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE; 1060 1061 if (old_n >= n) 1062 return 0; 1063 1064 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state)); 1065 if (!state->stack) 1066 return -ENOMEM; 1067 1068 state->allocated_stack = size; 1069 return 0; 1070 } 1071 1072 /* Acquire a pointer id from the env and update the state->refs to include 1073 * this new pointer reference. 1074 * On success, returns a valid pointer id to associate with the register 1075 * On failure, returns a negative errno. 1076 */ 1077 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 1078 { 1079 struct bpf_func_state *state = cur_func(env); 1080 int new_ofs = state->acquired_refs; 1081 int id, err; 1082 1083 err = resize_reference_state(state, state->acquired_refs + 1); 1084 if (err) 1085 return err; 1086 id = ++env->id_gen; 1087 state->refs[new_ofs].id = id; 1088 state->refs[new_ofs].insn_idx = insn_idx; 1089 1090 return id; 1091 } 1092 1093 /* release function corresponding to acquire_reference_state(). Idempotent. */ 1094 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 1095 { 1096 int i, last_idx; 1097 1098 last_idx = state->acquired_refs - 1; 1099 for (i = 0; i < state->acquired_refs; i++) { 1100 if (state->refs[i].id == ptr_id) { 1101 if (last_idx && i != last_idx) 1102 memcpy(&state->refs[i], &state->refs[last_idx], 1103 sizeof(*state->refs)); 1104 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 1105 state->acquired_refs--; 1106 return 0; 1107 } 1108 } 1109 return -EINVAL; 1110 } 1111 1112 static void free_func_state(struct bpf_func_state *state) 1113 { 1114 if (!state) 1115 return; 1116 kfree(state->refs); 1117 kfree(state->stack); 1118 kfree(state); 1119 } 1120 1121 static void clear_jmp_history(struct bpf_verifier_state *state) 1122 { 1123 kfree(state->jmp_history); 1124 state->jmp_history = NULL; 1125 state->jmp_history_cnt = 0; 1126 } 1127 1128 static void free_verifier_state(struct bpf_verifier_state *state, 1129 bool free_self) 1130 { 1131 int i; 1132 1133 for (i = 0; i <= state->curframe; i++) { 1134 free_func_state(state->frame[i]); 1135 state->frame[i] = NULL; 1136 } 1137 clear_jmp_history(state); 1138 if (free_self) 1139 kfree(state); 1140 } 1141 1142 /* copy verifier state from src to dst growing dst stack space 1143 * when necessary to accommodate larger src stack 1144 */ 1145 static int copy_func_state(struct bpf_func_state *dst, 1146 const struct bpf_func_state *src) 1147 { 1148 int err; 1149 1150 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 1151 err = copy_reference_state(dst, src); 1152 if (err) 1153 return err; 1154 return copy_stack_state(dst, src); 1155 } 1156 1157 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 1158 const struct bpf_verifier_state *src) 1159 { 1160 struct bpf_func_state *dst; 1161 int i, err; 1162 1163 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history, 1164 src->jmp_history_cnt, sizeof(struct bpf_idx_pair), 1165 GFP_USER); 1166 if (!dst_state->jmp_history) 1167 return -ENOMEM; 1168 dst_state->jmp_history_cnt = src->jmp_history_cnt; 1169 1170 /* if dst has more stack frames then src frame, free them */ 1171 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 1172 free_func_state(dst_state->frame[i]); 1173 dst_state->frame[i] = NULL; 1174 } 1175 dst_state->speculative = src->speculative; 1176 dst_state->curframe = src->curframe; 1177 dst_state->active_spin_lock = src->active_spin_lock; 1178 dst_state->branches = src->branches; 1179 dst_state->parent = src->parent; 1180 dst_state->first_insn_idx = src->first_insn_idx; 1181 dst_state->last_insn_idx = src->last_insn_idx; 1182 for (i = 0; i <= src->curframe; i++) { 1183 dst = dst_state->frame[i]; 1184 if (!dst) { 1185 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 1186 if (!dst) 1187 return -ENOMEM; 1188 dst_state->frame[i] = dst; 1189 } 1190 err = copy_func_state(dst, src->frame[i]); 1191 if (err) 1192 return err; 1193 } 1194 return 0; 1195 } 1196 1197 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 1198 { 1199 while (st) { 1200 u32 br = --st->branches; 1201 1202 /* WARN_ON(br > 1) technically makes sense here, 1203 * but see comment in push_stack(), hence: 1204 */ 1205 WARN_ONCE((int)br < 0, 1206 "BUG update_branch_counts:branches_to_explore=%d\n", 1207 br); 1208 if (br) 1209 break; 1210 st = st->parent; 1211 } 1212 } 1213 1214 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 1215 int *insn_idx, bool pop_log) 1216 { 1217 struct bpf_verifier_state *cur = env->cur_state; 1218 struct bpf_verifier_stack_elem *elem, *head = env->head; 1219 int err; 1220 1221 if (env->head == NULL) 1222 return -ENOENT; 1223 1224 if (cur) { 1225 err = copy_verifier_state(cur, &head->st); 1226 if (err) 1227 return err; 1228 } 1229 if (pop_log) 1230 bpf_vlog_reset(&env->log, head->log_pos); 1231 if (insn_idx) 1232 *insn_idx = head->insn_idx; 1233 if (prev_insn_idx) 1234 *prev_insn_idx = head->prev_insn_idx; 1235 elem = head->next; 1236 free_verifier_state(&head->st, false); 1237 kfree(head); 1238 env->head = elem; 1239 env->stack_size--; 1240 return 0; 1241 } 1242 1243 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 1244 int insn_idx, int prev_insn_idx, 1245 bool speculative) 1246 { 1247 struct bpf_verifier_state *cur = env->cur_state; 1248 struct bpf_verifier_stack_elem *elem; 1249 int err; 1250 1251 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 1252 if (!elem) 1253 goto err; 1254 1255 elem->insn_idx = insn_idx; 1256 elem->prev_insn_idx = prev_insn_idx; 1257 elem->next = env->head; 1258 elem->log_pos = env->log.len_used; 1259 env->head = elem; 1260 env->stack_size++; 1261 err = copy_verifier_state(&elem->st, cur); 1262 if (err) 1263 goto err; 1264 elem->st.speculative |= speculative; 1265 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 1266 verbose(env, "The sequence of %d jumps is too complex.\n", 1267 env->stack_size); 1268 goto err; 1269 } 1270 if (elem->st.parent) { 1271 ++elem->st.parent->branches; 1272 /* WARN_ON(branches > 2) technically makes sense here, 1273 * but 1274 * 1. speculative states will bump 'branches' for non-branch 1275 * instructions 1276 * 2. is_state_visited() heuristics may decide not to create 1277 * a new state for a sequence of branches and all such current 1278 * and cloned states will be pointing to a single parent state 1279 * which might have large 'branches' count. 1280 */ 1281 } 1282 return &elem->st; 1283 err: 1284 free_verifier_state(env->cur_state, true); 1285 env->cur_state = NULL; 1286 /* pop all elements and return */ 1287 while (!pop_stack(env, NULL, NULL, false)); 1288 return NULL; 1289 } 1290 1291 #define CALLER_SAVED_REGS 6 1292 static const int caller_saved[CALLER_SAVED_REGS] = { 1293 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 1294 }; 1295 1296 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 1297 struct bpf_reg_state *reg); 1298 1299 /* This helper doesn't clear reg->id */ 1300 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1301 { 1302 reg->var_off = tnum_const(imm); 1303 reg->smin_value = (s64)imm; 1304 reg->smax_value = (s64)imm; 1305 reg->umin_value = imm; 1306 reg->umax_value = imm; 1307 1308 reg->s32_min_value = (s32)imm; 1309 reg->s32_max_value = (s32)imm; 1310 reg->u32_min_value = (u32)imm; 1311 reg->u32_max_value = (u32)imm; 1312 } 1313 1314 /* Mark the unknown part of a register (variable offset or scalar value) as 1315 * known to have the value @imm. 1316 */ 1317 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1318 { 1319 /* Clear id, off, and union(map_ptr, range) */ 1320 memset(((u8 *)reg) + sizeof(reg->type), 0, 1321 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 1322 ___mark_reg_known(reg, imm); 1323 } 1324 1325 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 1326 { 1327 reg->var_off = tnum_const_subreg(reg->var_off, imm); 1328 reg->s32_min_value = (s32)imm; 1329 reg->s32_max_value = (s32)imm; 1330 reg->u32_min_value = (u32)imm; 1331 reg->u32_max_value = (u32)imm; 1332 } 1333 1334 /* Mark the 'variable offset' part of a register as zero. This should be 1335 * used only on registers holding a pointer type. 1336 */ 1337 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 1338 { 1339 __mark_reg_known(reg, 0); 1340 } 1341 1342 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 1343 { 1344 __mark_reg_known(reg, 0); 1345 reg->type = SCALAR_VALUE; 1346 } 1347 1348 static void mark_reg_known_zero(struct bpf_verifier_env *env, 1349 struct bpf_reg_state *regs, u32 regno) 1350 { 1351 if (WARN_ON(regno >= MAX_BPF_REG)) { 1352 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 1353 /* Something bad happened, let's kill all regs */ 1354 for (regno = 0; regno < MAX_BPF_REG; regno++) 1355 __mark_reg_not_init(env, regs + regno); 1356 return; 1357 } 1358 __mark_reg_known_zero(regs + regno); 1359 } 1360 1361 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg) 1362 { 1363 if (base_type(reg->type) == PTR_TO_MAP_VALUE) { 1364 const struct bpf_map *map = reg->map_ptr; 1365 1366 if (map->inner_map_meta) { 1367 reg->type = CONST_PTR_TO_MAP; 1368 reg->map_ptr = map->inner_map_meta; 1369 /* transfer reg's id which is unique for every map_lookup_elem 1370 * as UID of the inner map. 1371 */ 1372 if (map_value_has_timer(map->inner_map_meta)) 1373 reg->map_uid = reg->id; 1374 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { 1375 reg->type = PTR_TO_XDP_SOCK; 1376 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || 1377 map->map_type == BPF_MAP_TYPE_SOCKHASH) { 1378 reg->type = PTR_TO_SOCKET; 1379 } else { 1380 reg->type = PTR_TO_MAP_VALUE; 1381 } 1382 return; 1383 } 1384 1385 reg->type &= ~PTR_MAYBE_NULL; 1386 } 1387 1388 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 1389 { 1390 return type_is_pkt_pointer(reg->type); 1391 } 1392 1393 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 1394 { 1395 return reg_is_pkt_pointer(reg) || 1396 reg->type == PTR_TO_PACKET_END; 1397 } 1398 1399 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 1400 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 1401 enum bpf_reg_type which) 1402 { 1403 /* The register can already have a range from prior markings. 1404 * This is fine as long as it hasn't been advanced from its 1405 * origin. 1406 */ 1407 return reg->type == which && 1408 reg->id == 0 && 1409 reg->off == 0 && 1410 tnum_equals_const(reg->var_off, 0); 1411 } 1412 1413 /* Reset the min/max bounds of a register */ 1414 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 1415 { 1416 reg->smin_value = S64_MIN; 1417 reg->smax_value = S64_MAX; 1418 reg->umin_value = 0; 1419 reg->umax_value = U64_MAX; 1420 1421 reg->s32_min_value = S32_MIN; 1422 reg->s32_max_value = S32_MAX; 1423 reg->u32_min_value = 0; 1424 reg->u32_max_value = U32_MAX; 1425 } 1426 1427 static void __mark_reg64_unbounded(struct bpf_reg_state *reg) 1428 { 1429 reg->smin_value = S64_MIN; 1430 reg->smax_value = S64_MAX; 1431 reg->umin_value = 0; 1432 reg->umax_value = U64_MAX; 1433 } 1434 1435 static void __mark_reg32_unbounded(struct bpf_reg_state *reg) 1436 { 1437 reg->s32_min_value = S32_MIN; 1438 reg->s32_max_value = S32_MAX; 1439 reg->u32_min_value = 0; 1440 reg->u32_max_value = U32_MAX; 1441 } 1442 1443 static void __update_reg32_bounds(struct bpf_reg_state *reg) 1444 { 1445 struct tnum var32_off = tnum_subreg(reg->var_off); 1446 1447 /* min signed is max(sign bit) | min(other bits) */ 1448 reg->s32_min_value = max_t(s32, reg->s32_min_value, 1449 var32_off.value | (var32_off.mask & S32_MIN)); 1450 /* max signed is min(sign bit) | max(other bits) */ 1451 reg->s32_max_value = min_t(s32, reg->s32_max_value, 1452 var32_off.value | (var32_off.mask & S32_MAX)); 1453 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 1454 reg->u32_max_value = min(reg->u32_max_value, 1455 (u32)(var32_off.value | var32_off.mask)); 1456 } 1457 1458 static void __update_reg64_bounds(struct bpf_reg_state *reg) 1459 { 1460 /* min signed is max(sign bit) | min(other bits) */ 1461 reg->smin_value = max_t(s64, reg->smin_value, 1462 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 1463 /* max signed is min(sign bit) | max(other bits) */ 1464 reg->smax_value = min_t(s64, reg->smax_value, 1465 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 1466 reg->umin_value = max(reg->umin_value, reg->var_off.value); 1467 reg->umax_value = min(reg->umax_value, 1468 reg->var_off.value | reg->var_off.mask); 1469 } 1470 1471 static void __update_reg_bounds(struct bpf_reg_state *reg) 1472 { 1473 __update_reg32_bounds(reg); 1474 __update_reg64_bounds(reg); 1475 } 1476 1477 /* Uses signed min/max values to inform unsigned, and vice-versa */ 1478 static void __reg32_deduce_bounds(struct bpf_reg_state *reg) 1479 { 1480 /* Learn sign from signed bounds. 1481 * If we cannot cross the sign boundary, then signed and unsigned bounds 1482 * are the same, so combine. This works even in the negative case, e.g. 1483 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1484 */ 1485 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) { 1486 reg->s32_min_value = reg->u32_min_value = 1487 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1488 reg->s32_max_value = reg->u32_max_value = 1489 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1490 return; 1491 } 1492 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1493 * boundary, so we must be careful. 1494 */ 1495 if ((s32)reg->u32_max_value >= 0) { 1496 /* Positive. We can't learn anything from the smin, but smax 1497 * is positive, hence safe. 1498 */ 1499 reg->s32_min_value = reg->u32_min_value; 1500 reg->s32_max_value = reg->u32_max_value = 1501 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1502 } else if ((s32)reg->u32_min_value < 0) { 1503 /* Negative. We can't learn anything from the smax, but smin 1504 * is negative, hence safe. 1505 */ 1506 reg->s32_min_value = reg->u32_min_value = 1507 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1508 reg->s32_max_value = reg->u32_max_value; 1509 } 1510 } 1511 1512 static void __reg64_deduce_bounds(struct bpf_reg_state *reg) 1513 { 1514 /* Learn sign from signed bounds. 1515 * If we cannot cross the sign boundary, then signed and unsigned bounds 1516 * are the same, so combine. This works even in the negative case, e.g. 1517 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1518 */ 1519 if (reg->smin_value >= 0 || reg->smax_value < 0) { 1520 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1521 reg->umin_value); 1522 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1523 reg->umax_value); 1524 return; 1525 } 1526 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1527 * boundary, so we must be careful. 1528 */ 1529 if ((s64)reg->umax_value >= 0) { 1530 /* Positive. We can't learn anything from the smin, but smax 1531 * is positive, hence safe. 1532 */ 1533 reg->smin_value = reg->umin_value; 1534 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1535 reg->umax_value); 1536 } else if ((s64)reg->umin_value < 0) { 1537 /* Negative. We can't learn anything from the smax, but smin 1538 * is negative, hence safe. 1539 */ 1540 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1541 reg->umin_value); 1542 reg->smax_value = reg->umax_value; 1543 } 1544 } 1545 1546 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 1547 { 1548 __reg32_deduce_bounds(reg); 1549 __reg64_deduce_bounds(reg); 1550 } 1551 1552 /* Attempts to improve var_off based on unsigned min/max information */ 1553 static void __reg_bound_offset(struct bpf_reg_state *reg) 1554 { 1555 struct tnum var64_off = tnum_intersect(reg->var_off, 1556 tnum_range(reg->umin_value, 1557 reg->umax_value)); 1558 struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off), 1559 tnum_range(reg->u32_min_value, 1560 reg->u32_max_value)); 1561 1562 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 1563 } 1564 1565 static void reg_bounds_sync(struct bpf_reg_state *reg) 1566 { 1567 /* We might have learned new bounds from the var_off. */ 1568 __update_reg_bounds(reg); 1569 /* We might have learned something about the sign bit. */ 1570 __reg_deduce_bounds(reg); 1571 /* We might have learned some bits from the bounds. */ 1572 __reg_bound_offset(reg); 1573 /* Intersecting with the old var_off might have improved our bounds 1574 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 1575 * then new var_off is (0; 0x7f...fc) which improves our umax. 1576 */ 1577 __update_reg_bounds(reg); 1578 } 1579 1580 static bool __reg32_bound_s64(s32 a) 1581 { 1582 return a >= 0 && a <= S32_MAX; 1583 } 1584 1585 static void __reg_assign_32_into_64(struct bpf_reg_state *reg) 1586 { 1587 reg->umin_value = reg->u32_min_value; 1588 reg->umax_value = reg->u32_max_value; 1589 1590 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must 1591 * be positive otherwise set to worse case bounds and refine later 1592 * from tnum. 1593 */ 1594 if (__reg32_bound_s64(reg->s32_min_value) && 1595 __reg32_bound_s64(reg->s32_max_value)) { 1596 reg->smin_value = reg->s32_min_value; 1597 reg->smax_value = reg->s32_max_value; 1598 } else { 1599 reg->smin_value = 0; 1600 reg->smax_value = U32_MAX; 1601 } 1602 } 1603 1604 static void __reg_combine_32_into_64(struct bpf_reg_state *reg) 1605 { 1606 /* special case when 64-bit register has upper 32-bit register 1607 * zeroed. Typically happens after zext or <<32, >>32 sequence 1608 * allowing us to use 32-bit bounds directly, 1609 */ 1610 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) { 1611 __reg_assign_32_into_64(reg); 1612 } else { 1613 /* Otherwise the best we can do is push lower 32bit known and 1614 * unknown bits into register (var_off set from jmp logic) 1615 * then learn as much as possible from the 64-bit tnum 1616 * known and unknown bits. The previous smin/smax bounds are 1617 * invalid here because of jmp32 compare so mark them unknown 1618 * so they do not impact tnum bounds calculation. 1619 */ 1620 __mark_reg64_unbounded(reg); 1621 } 1622 reg_bounds_sync(reg); 1623 } 1624 1625 static bool __reg64_bound_s32(s64 a) 1626 { 1627 return a >= S32_MIN && a <= S32_MAX; 1628 } 1629 1630 static bool __reg64_bound_u32(u64 a) 1631 { 1632 return a >= U32_MIN && a <= U32_MAX; 1633 } 1634 1635 static void __reg_combine_64_into_32(struct bpf_reg_state *reg) 1636 { 1637 __mark_reg32_unbounded(reg); 1638 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) { 1639 reg->s32_min_value = (s32)reg->smin_value; 1640 reg->s32_max_value = (s32)reg->smax_value; 1641 } 1642 if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) { 1643 reg->u32_min_value = (u32)reg->umin_value; 1644 reg->u32_max_value = (u32)reg->umax_value; 1645 } 1646 reg_bounds_sync(reg); 1647 } 1648 1649 /* Mark a register as having a completely unknown (scalar) value. */ 1650 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 1651 struct bpf_reg_state *reg) 1652 { 1653 /* 1654 * Clear type, id, off, and union(map_ptr, range) and 1655 * padding between 'type' and union 1656 */ 1657 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 1658 reg->type = SCALAR_VALUE; 1659 reg->var_off = tnum_unknown; 1660 reg->frameno = 0; 1661 reg->precise = env->subprog_cnt > 1 || !env->bpf_capable; 1662 __mark_reg_unbounded(reg); 1663 } 1664 1665 static void mark_reg_unknown(struct bpf_verifier_env *env, 1666 struct bpf_reg_state *regs, u32 regno) 1667 { 1668 if (WARN_ON(regno >= MAX_BPF_REG)) { 1669 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 1670 /* Something bad happened, let's kill all regs except FP */ 1671 for (regno = 0; regno < BPF_REG_FP; regno++) 1672 __mark_reg_not_init(env, regs + regno); 1673 return; 1674 } 1675 __mark_reg_unknown(env, regs + regno); 1676 } 1677 1678 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 1679 struct bpf_reg_state *reg) 1680 { 1681 __mark_reg_unknown(env, reg); 1682 reg->type = NOT_INIT; 1683 } 1684 1685 static void mark_reg_not_init(struct bpf_verifier_env *env, 1686 struct bpf_reg_state *regs, u32 regno) 1687 { 1688 if (WARN_ON(regno >= MAX_BPF_REG)) { 1689 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 1690 /* Something bad happened, let's kill all regs except FP */ 1691 for (regno = 0; regno < BPF_REG_FP; regno++) 1692 __mark_reg_not_init(env, regs + regno); 1693 return; 1694 } 1695 __mark_reg_not_init(env, regs + regno); 1696 } 1697 1698 static void mark_btf_ld_reg(struct bpf_verifier_env *env, 1699 struct bpf_reg_state *regs, u32 regno, 1700 enum bpf_reg_type reg_type, 1701 struct btf *btf, u32 btf_id, 1702 enum bpf_type_flag flag) 1703 { 1704 if (reg_type == SCALAR_VALUE) { 1705 mark_reg_unknown(env, regs, regno); 1706 return; 1707 } 1708 mark_reg_known_zero(env, regs, regno); 1709 regs[regno].type = PTR_TO_BTF_ID | flag; 1710 regs[regno].btf = btf; 1711 regs[regno].btf_id = btf_id; 1712 } 1713 1714 #define DEF_NOT_SUBREG (0) 1715 static void init_reg_state(struct bpf_verifier_env *env, 1716 struct bpf_func_state *state) 1717 { 1718 struct bpf_reg_state *regs = state->regs; 1719 int i; 1720 1721 for (i = 0; i < MAX_BPF_REG; i++) { 1722 mark_reg_not_init(env, regs, i); 1723 regs[i].live = REG_LIVE_NONE; 1724 regs[i].parent = NULL; 1725 regs[i].subreg_def = DEF_NOT_SUBREG; 1726 } 1727 1728 /* frame pointer */ 1729 regs[BPF_REG_FP].type = PTR_TO_STACK; 1730 mark_reg_known_zero(env, regs, BPF_REG_FP); 1731 regs[BPF_REG_FP].frameno = state->frameno; 1732 } 1733 1734 #define BPF_MAIN_FUNC (-1) 1735 static void init_func_state(struct bpf_verifier_env *env, 1736 struct bpf_func_state *state, 1737 int callsite, int frameno, int subprogno) 1738 { 1739 state->callsite = callsite; 1740 state->frameno = frameno; 1741 state->subprogno = subprogno; 1742 init_reg_state(env, state); 1743 mark_verifier_state_scratched(env); 1744 } 1745 1746 /* Similar to push_stack(), but for async callbacks */ 1747 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env, 1748 int insn_idx, int prev_insn_idx, 1749 int subprog) 1750 { 1751 struct bpf_verifier_stack_elem *elem; 1752 struct bpf_func_state *frame; 1753 1754 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 1755 if (!elem) 1756 goto err; 1757 1758 elem->insn_idx = insn_idx; 1759 elem->prev_insn_idx = prev_insn_idx; 1760 elem->next = env->head; 1761 elem->log_pos = env->log.len_used; 1762 env->head = elem; 1763 env->stack_size++; 1764 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 1765 verbose(env, 1766 "The sequence of %d jumps is too complex for async cb.\n", 1767 env->stack_size); 1768 goto err; 1769 } 1770 /* Unlike push_stack() do not copy_verifier_state(). 1771 * The caller state doesn't matter. 1772 * This is async callback. It starts in a fresh stack. 1773 * Initialize it similar to do_check_common(). 1774 */ 1775 elem->st.branches = 1; 1776 frame = kzalloc(sizeof(*frame), GFP_KERNEL); 1777 if (!frame) 1778 goto err; 1779 init_func_state(env, frame, 1780 BPF_MAIN_FUNC /* callsite */, 1781 0 /* frameno within this callchain */, 1782 subprog /* subprog number within this prog */); 1783 elem->st.frame[0] = frame; 1784 return &elem->st; 1785 err: 1786 free_verifier_state(env->cur_state, true); 1787 env->cur_state = NULL; 1788 /* pop all elements and return */ 1789 while (!pop_stack(env, NULL, NULL, false)); 1790 return NULL; 1791 } 1792 1793 1794 enum reg_arg_type { 1795 SRC_OP, /* register is used as source operand */ 1796 DST_OP, /* register is used as destination operand */ 1797 DST_OP_NO_MARK /* same as above, check only, don't mark */ 1798 }; 1799 1800 static int cmp_subprogs(const void *a, const void *b) 1801 { 1802 return ((struct bpf_subprog_info *)a)->start - 1803 ((struct bpf_subprog_info *)b)->start; 1804 } 1805 1806 static int find_subprog(struct bpf_verifier_env *env, int off) 1807 { 1808 struct bpf_subprog_info *p; 1809 1810 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 1811 sizeof(env->subprog_info[0]), cmp_subprogs); 1812 if (!p) 1813 return -ENOENT; 1814 return p - env->subprog_info; 1815 1816 } 1817 1818 static int add_subprog(struct bpf_verifier_env *env, int off) 1819 { 1820 int insn_cnt = env->prog->len; 1821 int ret; 1822 1823 if (off >= insn_cnt || off < 0) { 1824 verbose(env, "call to invalid destination\n"); 1825 return -EINVAL; 1826 } 1827 ret = find_subprog(env, off); 1828 if (ret >= 0) 1829 return ret; 1830 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 1831 verbose(env, "too many subprograms\n"); 1832 return -E2BIG; 1833 } 1834 /* determine subprog starts. The end is one before the next starts */ 1835 env->subprog_info[env->subprog_cnt++].start = off; 1836 sort(env->subprog_info, env->subprog_cnt, 1837 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 1838 return env->subprog_cnt - 1; 1839 } 1840 1841 #define MAX_KFUNC_DESCS 256 1842 #define MAX_KFUNC_BTFS 256 1843 1844 struct bpf_kfunc_desc { 1845 struct btf_func_model func_model; 1846 u32 func_id; 1847 s32 imm; 1848 u16 offset; 1849 }; 1850 1851 struct bpf_kfunc_btf { 1852 struct btf *btf; 1853 struct module *module; 1854 u16 offset; 1855 }; 1856 1857 struct bpf_kfunc_desc_tab { 1858 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS]; 1859 u32 nr_descs; 1860 }; 1861 1862 struct bpf_kfunc_btf_tab { 1863 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS]; 1864 u32 nr_descs; 1865 }; 1866 1867 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b) 1868 { 1869 const struct bpf_kfunc_desc *d0 = a; 1870 const struct bpf_kfunc_desc *d1 = b; 1871 1872 /* func_id is not greater than BTF_MAX_TYPE */ 1873 return d0->func_id - d1->func_id ?: d0->offset - d1->offset; 1874 } 1875 1876 static int kfunc_btf_cmp_by_off(const void *a, const void *b) 1877 { 1878 const struct bpf_kfunc_btf *d0 = a; 1879 const struct bpf_kfunc_btf *d1 = b; 1880 1881 return d0->offset - d1->offset; 1882 } 1883 1884 static const struct bpf_kfunc_desc * 1885 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset) 1886 { 1887 struct bpf_kfunc_desc desc = { 1888 .func_id = func_id, 1889 .offset = offset, 1890 }; 1891 struct bpf_kfunc_desc_tab *tab; 1892 1893 tab = prog->aux->kfunc_tab; 1894 return bsearch(&desc, tab->descs, tab->nr_descs, 1895 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off); 1896 } 1897 1898 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env, 1899 s16 offset) 1900 { 1901 struct bpf_kfunc_btf kf_btf = { .offset = offset }; 1902 struct bpf_kfunc_btf_tab *tab; 1903 struct bpf_kfunc_btf *b; 1904 struct module *mod; 1905 struct btf *btf; 1906 int btf_fd; 1907 1908 tab = env->prog->aux->kfunc_btf_tab; 1909 b = bsearch(&kf_btf, tab->descs, tab->nr_descs, 1910 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off); 1911 if (!b) { 1912 if (tab->nr_descs == MAX_KFUNC_BTFS) { 1913 verbose(env, "too many different module BTFs\n"); 1914 return ERR_PTR(-E2BIG); 1915 } 1916 1917 if (bpfptr_is_null(env->fd_array)) { 1918 verbose(env, "kfunc offset > 0 without fd_array is invalid\n"); 1919 return ERR_PTR(-EPROTO); 1920 } 1921 1922 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array, 1923 offset * sizeof(btf_fd), 1924 sizeof(btf_fd))) 1925 return ERR_PTR(-EFAULT); 1926 1927 btf = btf_get_by_fd(btf_fd); 1928 if (IS_ERR(btf)) { 1929 verbose(env, "invalid module BTF fd specified\n"); 1930 return btf; 1931 } 1932 1933 if (!btf_is_module(btf)) { 1934 verbose(env, "BTF fd for kfunc is not a module BTF\n"); 1935 btf_put(btf); 1936 return ERR_PTR(-EINVAL); 1937 } 1938 1939 mod = btf_try_get_module(btf); 1940 if (!mod) { 1941 btf_put(btf); 1942 return ERR_PTR(-ENXIO); 1943 } 1944 1945 b = &tab->descs[tab->nr_descs++]; 1946 b->btf = btf; 1947 b->module = mod; 1948 b->offset = offset; 1949 1950 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 1951 kfunc_btf_cmp_by_off, NULL); 1952 } 1953 return b->btf; 1954 } 1955 1956 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab) 1957 { 1958 if (!tab) 1959 return; 1960 1961 while (tab->nr_descs--) { 1962 module_put(tab->descs[tab->nr_descs].module); 1963 btf_put(tab->descs[tab->nr_descs].btf); 1964 } 1965 kfree(tab); 1966 } 1967 1968 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset) 1969 { 1970 if (offset) { 1971 if (offset < 0) { 1972 /* In the future, this can be allowed to increase limit 1973 * of fd index into fd_array, interpreted as u16. 1974 */ 1975 verbose(env, "negative offset disallowed for kernel module function call\n"); 1976 return ERR_PTR(-EINVAL); 1977 } 1978 1979 return __find_kfunc_desc_btf(env, offset); 1980 } 1981 return btf_vmlinux ?: ERR_PTR(-ENOENT); 1982 } 1983 1984 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset) 1985 { 1986 const struct btf_type *func, *func_proto; 1987 struct bpf_kfunc_btf_tab *btf_tab; 1988 struct bpf_kfunc_desc_tab *tab; 1989 struct bpf_prog_aux *prog_aux; 1990 struct bpf_kfunc_desc *desc; 1991 const char *func_name; 1992 struct btf *desc_btf; 1993 unsigned long call_imm; 1994 unsigned long addr; 1995 int err; 1996 1997 prog_aux = env->prog->aux; 1998 tab = prog_aux->kfunc_tab; 1999 btf_tab = prog_aux->kfunc_btf_tab; 2000 if (!tab) { 2001 if (!btf_vmlinux) { 2002 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n"); 2003 return -ENOTSUPP; 2004 } 2005 2006 if (!env->prog->jit_requested) { 2007 verbose(env, "JIT is required for calling kernel function\n"); 2008 return -ENOTSUPP; 2009 } 2010 2011 if (!bpf_jit_supports_kfunc_call()) { 2012 verbose(env, "JIT does not support calling kernel function\n"); 2013 return -ENOTSUPP; 2014 } 2015 2016 if (!env->prog->gpl_compatible) { 2017 verbose(env, "cannot call kernel function from non-GPL compatible program\n"); 2018 return -EINVAL; 2019 } 2020 2021 tab = kzalloc(sizeof(*tab), GFP_KERNEL); 2022 if (!tab) 2023 return -ENOMEM; 2024 prog_aux->kfunc_tab = tab; 2025 } 2026 2027 /* func_id == 0 is always invalid, but instead of returning an error, be 2028 * conservative and wait until the code elimination pass before returning 2029 * error, so that invalid calls that get pruned out can be in BPF programs 2030 * loaded from userspace. It is also required that offset be untouched 2031 * for such calls. 2032 */ 2033 if (!func_id && !offset) 2034 return 0; 2035 2036 if (!btf_tab && offset) { 2037 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL); 2038 if (!btf_tab) 2039 return -ENOMEM; 2040 prog_aux->kfunc_btf_tab = btf_tab; 2041 } 2042 2043 desc_btf = find_kfunc_desc_btf(env, offset); 2044 if (IS_ERR(desc_btf)) { 2045 verbose(env, "failed to find BTF for kernel function\n"); 2046 return PTR_ERR(desc_btf); 2047 } 2048 2049 if (find_kfunc_desc(env->prog, func_id, offset)) 2050 return 0; 2051 2052 if (tab->nr_descs == MAX_KFUNC_DESCS) { 2053 verbose(env, "too many different kernel function calls\n"); 2054 return -E2BIG; 2055 } 2056 2057 func = btf_type_by_id(desc_btf, func_id); 2058 if (!func || !btf_type_is_func(func)) { 2059 verbose(env, "kernel btf_id %u is not a function\n", 2060 func_id); 2061 return -EINVAL; 2062 } 2063 func_proto = btf_type_by_id(desc_btf, func->type); 2064 if (!func_proto || !btf_type_is_func_proto(func_proto)) { 2065 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n", 2066 func_id); 2067 return -EINVAL; 2068 } 2069 2070 func_name = btf_name_by_offset(desc_btf, func->name_off); 2071 addr = kallsyms_lookup_name(func_name); 2072 if (!addr) { 2073 verbose(env, "cannot find address for kernel function %s\n", 2074 func_name); 2075 return -EINVAL; 2076 } 2077 2078 call_imm = BPF_CALL_IMM(addr); 2079 /* Check whether or not the relative offset overflows desc->imm */ 2080 if ((unsigned long)(s32)call_imm != call_imm) { 2081 verbose(env, "address of kernel function %s is out of range\n", 2082 func_name); 2083 return -EINVAL; 2084 } 2085 2086 desc = &tab->descs[tab->nr_descs++]; 2087 desc->func_id = func_id; 2088 desc->imm = call_imm; 2089 desc->offset = offset; 2090 err = btf_distill_func_proto(&env->log, desc_btf, 2091 func_proto, func_name, 2092 &desc->func_model); 2093 if (!err) 2094 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2095 kfunc_desc_cmp_by_id_off, NULL); 2096 return err; 2097 } 2098 2099 static int kfunc_desc_cmp_by_imm(const void *a, const void *b) 2100 { 2101 const struct bpf_kfunc_desc *d0 = a; 2102 const struct bpf_kfunc_desc *d1 = b; 2103 2104 if (d0->imm > d1->imm) 2105 return 1; 2106 else if (d0->imm < d1->imm) 2107 return -1; 2108 return 0; 2109 } 2110 2111 static void sort_kfunc_descs_by_imm(struct bpf_prog *prog) 2112 { 2113 struct bpf_kfunc_desc_tab *tab; 2114 2115 tab = prog->aux->kfunc_tab; 2116 if (!tab) 2117 return; 2118 2119 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2120 kfunc_desc_cmp_by_imm, NULL); 2121 } 2122 2123 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 2124 { 2125 return !!prog->aux->kfunc_tab; 2126 } 2127 2128 const struct btf_func_model * 2129 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 2130 const struct bpf_insn *insn) 2131 { 2132 const struct bpf_kfunc_desc desc = { 2133 .imm = insn->imm, 2134 }; 2135 const struct bpf_kfunc_desc *res; 2136 struct bpf_kfunc_desc_tab *tab; 2137 2138 tab = prog->aux->kfunc_tab; 2139 res = bsearch(&desc, tab->descs, tab->nr_descs, 2140 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm); 2141 2142 return res ? &res->func_model : NULL; 2143 } 2144 2145 static int add_subprog_and_kfunc(struct bpf_verifier_env *env) 2146 { 2147 struct bpf_subprog_info *subprog = env->subprog_info; 2148 struct bpf_insn *insn = env->prog->insnsi; 2149 int i, ret, insn_cnt = env->prog->len; 2150 2151 /* Add entry function. */ 2152 ret = add_subprog(env, 0); 2153 if (ret) 2154 return ret; 2155 2156 for (i = 0; i < insn_cnt; i++, insn++) { 2157 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) && 2158 !bpf_pseudo_kfunc_call(insn)) 2159 continue; 2160 2161 if (!env->bpf_capable) { 2162 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); 2163 return -EPERM; 2164 } 2165 2166 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn)) 2167 ret = add_subprog(env, i + insn->imm + 1); 2168 else 2169 ret = add_kfunc_call(env, insn->imm, insn->off); 2170 2171 if (ret < 0) 2172 return ret; 2173 } 2174 2175 /* Add a fake 'exit' subprog which could simplify subprog iteration 2176 * logic. 'subprog_cnt' should not be increased. 2177 */ 2178 subprog[env->subprog_cnt].start = insn_cnt; 2179 2180 if (env->log.level & BPF_LOG_LEVEL2) 2181 for (i = 0; i < env->subprog_cnt; i++) 2182 verbose(env, "func#%d @%d\n", i, subprog[i].start); 2183 2184 return 0; 2185 } 2186 2187 static int check_subprogs(struct bpf_verifier_env *env) 2188 { 2189 int i, subprog_start, subprog_end, off, cur_subprog = 0; 2190 struct bpf_subprog_info *subprog = env->subprog_info; 2191 struct bpf_insn *insn = env->prog->insnsi; 2192 int insn_cnt = env->prog->len; 2193 2194 /* now check that all jumps are within the same subprog */ 2195 subprog_start = subprog[cur_subprog].start; 2196 subprog_end = subprog[cur_subprog + 1].start; 2197 for (i = 0; i < insn_cnt; i++) { 2198 u8 code = insn[i].code; 2199 2200 if (code == (BPF_JMP | BPF_CALL) && 2201 insn[i].imm == BPF_FUNC_tail_call && 2202 insn[i].src_reg != BPF_PSEUDO_CALL) 2203 subprog[cur_subprog].has_tail_call = true; 2204 if (BPF_CLASS(code) == BPF_LD && 2205 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND)) 2206 subprog[cur_subprog].has_ld_abs = true; 2207 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 2208 goto next; 2209 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 2210 goto next; 2211 off = i + insn[i].off + 1; 2212 if (off < subprog_start || off >= subprog_end) { 2213 verbose(env, "jump out of range from insn %d to %d\n", i, off); 2214 return -EINVAL; 2215 } 2216 next: 2217 if (i == subprog_end - 1) { 2218 /* to avoid fall-through from one subprog into another 2219 * the last insn of the subprog should be either exit 2220 * or unconditional jump back 2221 */ 2222 if (code != (BPF_JMP | BPF_EXIT) && 2223 code != (BPF_JMP | BPF_JA)) { 2224 verbose(env, "last insn is not an exit or jmp\n"); 2225 return -EINVAL; 2226 } 2227 subprog_start = subprog_end; 2228 cur_subprog++; 2229 if (cur_subprog < env->subprog_cnt) 2230 subprog_end = subprog[cur_subprog + 1].start; 2231 } 2232 } 2233 return 0; 2234 } 2235 2236 /* Parentage chain of this register (or stack slot) should take care of all 2237 * issues like callee-saved registers, stack slot allocation time, etc. 2238 */ 2239 static int mark_reg_read(struct bpf_verifier_env *env, 2240 const struct bpf_reg_state *state, 2241 struct bpf_reg_state *parent, u8 flag) 2242 { 2243 bool writes = parent == state->parent; /* Observe write marks */ 2244 int cnt = 0; 2245 2246 while (parent) { 2247 /* if read wasn't screened by an earlier write ... */ 2248 if (writes && state->live & REG_LIVE_WRITTEN) 2249 break; 2250 if (parent->live & REG_LIVE_DONE) { 2251 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 2252 reg_type_str(env, parent->type), 2253 parent->var_off.value, parent->off); 2254 return -EFAULT; 2255 } 2256 /* The first condition is more likely to be true than the 2257 * second, checked it first. 2258 */ 2259 if ((parent->live & REG_LIVE_READ) == flag || 2260 parent->live & REG_LIVE_READ64) 2261 /* The parentage chain never changes and 2262 * this parent was already marked as LIVE_READ. 2263 * There is no need to keep walking the chain again and 2264 * keep re-marking all parents as LIVE_READ. 2265 * This case happens when the same register is read 2266 * multiple times without writes into it in-between. 2267 * Also, if parent has the stronger REG_LIVE_READ64 set, 2268 * then no need to set the weak REG_LIVE_READ32. 2269 */ 2270 break; 2271 /* ... then we depend on parent's value */ 2272 parent->live |= flag; 2273 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 2274 if (flag == REG_LIVE_READ64) 2275 parent->live &= ~REG_LIVE_READ32; 2276 state = parent; 2277 parent = state->parent; 2278 writes = true; 2279 cnt++; 2280 } 2281 2282 if (env->longest_mark_read_walk < cnt) 2283 env->longest_mark_read_walk = cnt; 2284 return 0; 2285 } 2286 2287 /* This function is supposed to be used by the following 32-bit optimization 2288 * code only. It returns TRUE if the source or destination register operates 2289 * on 64-bit, otherwise return FALSE. 2290 */ 2291 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 2292 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 2293 { 2294 u8 code, class, op; 2295 2296 code = insn->code; 2297 class = BPF_CLASS(code); 2298 op = BPF_OP(code); 2299 if (class == BPF_JMP) { 2300 /* BPF_EXIT for "main" will reach here. Return TRUE 2301 * conservatively. 2302 */ 2303 if (op == BPF_EXIT) 2304 return true; 2305 if (op == BPF_CALL) { 2306 /* BPF to BPF call will reach here because of marking 2307 * caller saved clobber with DST_OP_NO_MARK for which we 2308 * don't care the register def because they are anyway 2309 * marked as NOT_INIT already. 2310 */ 2311 if (insn->src_reg == BPF_PSEUDO_CALL) 2312 return false; 2313 /* Helper call will reach here because of arg type 2314 * check, conservatively return TRUE. 2315 */ 2316 if (t == SRC_OP) 2317 return true; 2318 2319 return false; 2320 } 2321 } 2322 2323 if (class == BPF_ALU64 || class == BPF_JMP || 2324 /* BPF_END always use BPF_ALU class. */ 2325 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 2326 return true; 2327 2328 if (class == BPF_ALU || class == BPF_JMP32) 2329 return false; 2330 2331 if (class == BPF_LDX) { 2332 if (t != SRC_OP) 2333 return BPF_SIZE(code) == BPF_DW; 2334 /* LDX source must be ptr. */ 2335 return true; 2336 } 2337 2338 if (class == BPF_STX) { 2339 /* BPF_STX (including atomic variants) has multiple source 2340 * operands, one of which is a ptr. Check whether the caller is 2341 * asking about it. 2342 */ 2343 if (t == SRC_OP && reg->type != SCALAR_VALUE) 2344 return true; 2345 return BPF_SIZE(code) == BPF_DW; 2346 } 2347 2348 if (class == BPF_LD) { 2349 u8 mode = BPF_MODE(code); 2350 2351 /* LD_IMM64 */ 2352 if (mode == BPF_IMM) 2353 return true; 2354 2355 /* Both LD_IND and LD_ABS return 32-bit data. */ 2356 if (t != SRC_OP) 2357 return false; 2358 2359 /* Implicit ctx ptr. */ 2360 if (regno == BPF_REG_6) 2361 return true; 2362 2363 /* Explicit source could be any width. */ 2364 return true; 2365 } 2366 2367 if (class == BPF_ST) 2368 /* The only source register for BPF_ST is a ptr. */ 2369 return true; 2370 2371 /* Conservatively return true at default. */ 2372 return true; 2373 } 2374 2375 /* Return the regno defined by the insn, or -1. */ 2376 static int insn_def_regno(const struct bpf_insn *insn) 2377 { 2378 switch (BPF_CLASS(insn->code)) { 2379 case BPF_JMP: 2380 case BPF_JMP32: 2381 case BPF_ST: 2382 return -1; 2383 case BPF_STX: 2384 if (BPF_MODE(insn->code) == BPF_ATOMIC && 2385 (insn->imm & BPF_FETCH)) { 2386 if (insn->imm == BPF_CMPXCHG) 2387 return BPF_REG_0; 2388 else 2389 return insn->src_reg; 2390 } else { 2391 return -1; 2392 } 2393 default: 2394 return insn->dst_reg; 2395 } 2396 } 2397 2398 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 2399 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 2400 { 2401 int dst_reg = insn_def_regno(insn); 2402 2403 if (dst_reg == -1) 2404 return false; 2405 2406 return !is_reg64(env, insn, dst_reg, NULL, DST_OP); 2407 } 2408 2409 static void mark_insn_zext(struct bpf_verifier_env *env, 2410 struct bpf_reg_state *reg) 2411 { 2412 s32 def_idx = reg->subreg_def; 2413 2414 if (def_idx == DEF_NOT_SUBREG) 2415 return; 2416 2417 env->insn_aux_data[def_idx - 1].zext_dst = true; 2418 /* The dst will be zero extended, so won't be sub-register anymore. */ 2419 reg->subreg_def = DEF_NOT_SUBREG; 2420 } 2421 2422 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 2423 enum reg_arg_type t) 2424 { 2425 struct bpf_verifier_state *vstate = env->cur_state; 2426 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2427 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 2428 struct bpf_reg_state *reg, *regs = state->regs; 2429 bool rw64; 2430 2431 if (regno >= MAX_BPF_REG) { 2432 verbose(env, "R%d is invalid\n", regno); 2433 return -EINVAL; 2434 } 2435 2436 mark_reg_scratched(env, regno); 2437 2438 reg = ®s[regno]; 2439 rw64 = is_reg64(env, insn, regno, reg, t); 2440 if (t == SRC_OP) { 2441 /* check whether register used as source operand can be read */ 2442 if (reg->type == NOT_INIT) { 2443 verbose(env, "R%d !read_ok\n", regno); 2444 return -EACCES; 2445 } 2446 /* We don't need to worry about FP liveness because it's read-only */ 2447 if (regno == BPF_REG_FP) 2448 return 0; 2449 2450 if (rw64) 2451 mark_insn_zext(env, reg); 2452 2453 return mark_reg_read(env, reg, reg->parent, 2454 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 2455 } else { 2456 /* check whether register used as dest operand can be written to */ 2457 if (regno == BPF_REG_FP) { 2458 verbose(env, "frame pointer is read only\n"); 2459 return -EACCES; 2460 } 2461 reg->live |= REG_LIVE_WRITTEN; 2462 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 2463 if (t == DST_OP) 2464 mark_reg_unknown(env, regs, regno); 2465 } 2466 return 0; 2467 } 2468 2469 /* for any branch, call, exit record the history of jmps in the given state */ 2470 static int push_jmp_history(struct bpf_verifier_env *env, 2471 struct bpf_verifier_state *cur) 2472 { 2473 u32 cnt = cur->jmp_history_cnt; 2474 struct bpf_idx_pair *p; 2475 2476 cnt++; 2477 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER); 2478 if (!p) 2479 return -ENOMEM; 2480 p[cnt - 1].idx = env->insn_idx; 2481 p[cnt - 1].prev_idx = env->prev_insn_idx; 2482 cur->jmp_history = p; 2483 cur->jmp_history_cnt = cnt; 2484 return 0; 2485 } 2486 2487 /* Backtrack one insn at a time. If idx is not at the top of recorded 2488 * history then previous instruction came from straight line execution. 2489 */ 2490 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 2491 u32 *history) 2492 { 2493 u32 cnt = *history; 2494 2495 if (cnt && st->jmp_history[cnt - 1].idx == i) { 2496 i = st->jmp_history[cnt - 1].prev_idx; 2497 (*history)--; 2498 } else { 2499 i--; 2500 } 2501 return i; 2502 } 2503 2504 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn) 2505 { 2506 const struct btf_type *func; 2507 struct btf *desc_btf; 2508 2509 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL) 2510 return NULL; 2511 2512 desc_btf = find_kfunc_desc_btf(data, insn->off); 2513 if (IS_ERR(desc_btf)) 2514 return "<error>"; 2515 2516 func = btf_type_by_id(desc_btf, insn->imm); 2517 return btf_name_by_offset(desc_btf, func->name_off); 2518 } 2519 2520 /* For given verifier state backtrack_insn() is called from the last insn to 2521 * the first insn. Its purpose is to compute a bitmask of registers and 2522 * stack slots that needs precision in the parent verifier state. 2523 */ 2524 static int backtrack_insn(struct bpf_verifier_env *env, int idx, 2525 u32 *reg_mask, u64 *stack_mask) 2526 { 2527 const struct bpf_insn_cbs cbs = { 2528 .cb_call = disasm_kfunc_name, 2529 .cb_print = verbose, 2530 .private_data = env, 2531 }; 2532 struct bpf_insn *insn = env->prog->insnsi + idx; 2533 u8 class = BPF_CLASS(insn->code); 2534 u8 opcode = BPF_OP(insn->code); 2535 u8 mode = BPF_MODE(insn->code); 2536 u32 dreg = 1u << insn->dst_reg; 2537 u32 sreg = 1u << insn->src_reg; 2538 u32 spi; 2539 2540 if (insn->code == 0) 2541 return 0; 2542 if (env->log.level & BPF_LOG_LEVEL2) { 2543 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask); 2544 verbose(env, "%d: ", idx); 2545 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 2546 } 2547 2548 if (class == BPF_ALU || class == BPF_ALU64) { 2549 if (!(*reg_mask & dreg)) 2550 return 0; 2551 if (opcode == BPF_MOV) { 2552 if (BPF_SRC(insn->code) == BPF_X) { 2553 /* dreg = sreg 2554 * dreg needs precision after this insn 2555 * sreg needs precision before this insn 2556 */ 2557 *reg_mask &= ~dreg; 2558 *reg_mask |= sreg; 2559 } else { 2560 /* dreg = K 2561 * dreg needs precision after this insn. 2562 * Corresponding register is already marked 2563 * as precise=true in this verifier state. 2564 * No further markings in parent are necessary 2565 */ 2566 *reg_mask &= ~dreg; 2567 } 2568 } else { 2569 if (BPF_SRC(insn->code) == BPF_X) { 2570 /* dreg += sreg 2571 * both dreg and sreg need precision 2572 * before this insn 2573 */ 2574 *reg_mask |= sreg; 2575 } /* else dreg += K 2576 * dreg still needs precision before this insn 2577 */ 2578 } 2579 } else if (class == BPF_LDX) { 2580 if (!(*reg_mask & dreg)) 2581 return 0; 2582 *reg_mask &= ~dreg; 2583 2584 /* scalars can only be spilled into stack w/o losing precision. 2585 * Load from any other memory can be zero extended. 2586 * The desire to keep that precision is already indicated 2587 * by 'precise' mark in corresponding register of this state. 2588 * No further tracking necessary. 2589 */ 2590 if (insn->src_reg != BPF_REG_FP) 2591 return 0; 2592 2593 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 2594 * that [fp - off] slot contains scalar that needs to be 2595 * tracked with precision 2596 */ 2597 spi = (-insn->off - 1) / BPF_REG_SIZE; 2598 if (spi >= 64) { 2599 verbose(env, "BUG spi %d\n", spi); 2600 WARN_ONCE(1, "verifier backtracking bug"); 2601 return -EFAULT; 2602 } 2603 *stack_mask |= 1ull << spi; 2604 } else if (class == BPF_STX || class == BPF_ST) { 2605 if (*reg_mask & dreg) 2606 /* stx & st shouldn't be using _scalar_ dst_reg 2607 * to access memory. It means backtracking 2608 * encountered a case of pointer subtraction. 2609 */ 2610 return -ENOTSUPP; 2611 /* scalars can only be spilled into stack */ 2612 if (insn->dst_reg != BPF_REG_FP) 2613 return 0; 2614 spi = (-insn->off - 1) / BPF_REG_SIZE; 2615 if (spi >= 64) { 2616 verbose(env, "BUG spi %d\n", spi); 2617 WARN_ONCE(1, "verifier backtracking bug"); 2618 return -EFAULT; 2619 } 2620 if (!(*stack_mask & (1ull << spi))) 2621 return 0; 2622 *stack_mask &= ~(1ull << spi); 2623 if (class == BPF_STX) 2624 *reg_mask |= sreg; 2625 } else if (class == BPF_JMP || class == BPF_JMP32) { 2626 if (opcode == BPF_CALL) { 2627 if (insn->src_reg == BPF_PSEUDO_CALL) 2628 return -ENOTSUPP; 2629 /* regular helper call sets R0 */ 2630 *reg_mask &= ~1; 2631 if (*reg_mask & 0x3f) { 2632 /* if backtracing was looking for registers R1-R5 2633 * they should have been found already. 2634 */ 2635 verbose(env, "BUG regs %x\n", *reg_mask); 2636 WARN_ONCE(1, "verifier backtracking bug"); 2637 return -EFAULT; 2638 } 2639 } else if (opcode == BPF_EXIT) { 2640 return -ENOTSUPP; 2641 } 2642 } else if (class == BPF_LD) { 2643 if (!(*reg_mask & dreg)) 2644 return 0; 2645 *reg_mask &= ~dreg; 2646 /* It's ld_imm64 or ld_abs or ld_ind. 2647 * For ld_imm64 no further tracking of precision 2648 * into parent is necessary 2649 */ 2650 if (mode == BPF_IND || mode == BPF_ABS) 2651 /* to be analyzed */ 2652 return -ENOTSUPP; 2653 } 2654 return 0; 2655 } 2656 2657 /* the scalar precision tracking algorithm: 2658 * . at the start all registers have precise=false. 2659 * . scalar ranges are tracked as normal through alu and jmp insns. 2660 * . once precise value of the scalar register is used in: 2661 * . ptr + scalar alu 2662 * . if (scalar cond K|scalar) 2663 * . helper_call(.., scalar, ...) where ARG_CONST is expected 2664 * backtrack through the verifier states and mark all registers and 2665 * stack slots with spilled constants that these scalar regisers 2666 * should be precise. 2667 * . during state pruning two registers (or spilled stack slots) 2668 * are equivalent if both are not precise. 2669 * 2670 * Note the verifier cannot simply walk register parentage chain, 2671 * since many different registers and stack slots could have been 2672 * used to compute single precise scalar. 2673 * 2674 * The approach of starting with precise=true for all registers and then 2675 * backtrack to mark a register as not precise when the verifier detects 2676 * that program doesn't care about specific value (e.g., when helper 2677 * takes register as ARG_ANYTHING parameter) is not safe. 2678 * 2679 * It's ok to walk single parentage chain of the verifier states. 2680 * It's possible that this backtracking will go all the way till 1st insn. 2681 * All other branches will be explored for needing precision later. 2682 * 2683 * The backtracking needs to deal with cases like: 2684 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 2685 * r9 -= r8 2686 * r5 = r9 2687 * if r5 > 0x79f goto pc+7 2688 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 2689 * r5 += 1 2690 * ... 2691 * call bpf_perf_event_output#25 2692 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 2693 * 2694 * and this case: 2695 * r6 = 1 2696 * call foo // uses callee's r6 inside to compute r0 2697 * r0 += r6 2698 * if r0 == 0 goto 2699 * 2700 * to track above reg_mask/stack_mask needs to be independent for each frame. 2701 * 2702 * Also if parent's curframe > frame where backtracking started, 2703 * the verifier need to mark registers in both frames, otherwise callees 2704 * may incorrectly prune callers. This is similar to 2705 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 2706 * 2707 * For now backtracking falls back into conservative marking. 2708 */ 2709 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 2710 struct bpf_verifier_state *st) 2711 { 2712 struct bpf_func_state *func; 2713 struct bpf_reg_state *reg; 2714 int i, j; 2715 2716 /* big hammer: mark all scalars precise in this path. 2717 * pop_stack may still get !precise scalars. 2718 */ 2719 for (; st; st = st->parent) 2720 for (i = 0; i <= st->curframe; i++) { 2721 func = st->frame[i]; 2722 for (j = 0; j < BPF_REG_FP; j++) { 2723 reg = &func->regs[j]; 2724 if (reg->type != SCALAR_VALUE) 2725 continue; 2726 reg->precise = true; 2727 } 2728 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 2729 if (!is_spilled_reg(&func->stack[j])) 2730 continue; 2731 reg = &func->stack[j].spilled_ptr; 2732 if (reg->type != SCALAR_VALUE) 2733 continue; 2734 reg->precise = true; 2735 } 2736 } 2737 } 2738 2739 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno, 2740 int spi) 2741 { 2742 struct bpf_verifier_state *st = env->cur_state; 2743 int first_idx = st->first_insn_idx; 2744 int last_idx = env->insn_idx; 2745 struct bpf_func_state *func; 2746 struct bpf_reg_state *reg; 2747 u32 reg_mask = regno >= 0 ? 1u << regno : 0; 2748 u64 stack_mask = spi >= 0 ? 1ull << spi : 0; 2749 bool skip_first = true; 2750 bool new_marks = false; 2751 int i, err; 2752 2753 if (!env->bpf_capable) 2754 return 0; 2755 2756 func = st->frame[st->curframe]; 2757 if (regno >= 0) { 2758 reg = &func->regs[regno]; 2759 if (reg->type != SCALAR_VALUE) { 2760 WARN_ONCE(1, "backtracing misuse"); 2761 return -EFAULT; 2762 } 2763 if (!reg->precise) 2764 new_marks = true; 2765 else 2766 reg_mask = 0; 2767 reg->precise = true; 2768 } 2769 2770 while (spi >= 0) { 2771 if (!is_spilled_reg(&func->stack[spi])) { 2772 stack_mask = 0; 2773 break; 2774 } 2775 reg = &func->stack[spi].spilled_ptr; 2776 if (reg->type != SCALAR_VALUE) { 2777 stack_mask = 0; 2778 break; 2779 } 2780 if (!reg->precise) 2781 new_marks = true; 2782 else 2783 stack_mask = 0; 2784 reg->precise = true; 2785 break; 2786 } 2787 2788 if (!new_marks) 2789 return 0; 2790 if (!reg_mask && !stack_mask) 2791 return 0; 2792 for (;;) { 2793 DECLARE_BITMAP(mask, 64); 2794 u32 history = st->jmp_history_cnt; 2795 2796 if (env->log.level & BPF_LOG_LEVEL2) 2797 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx); 2798 for (i = last_idx;;) { 2799 if (skip_first) { 2800 err = 0; 2801 skip_first = false; 2802 } else { 2803 err = backtrack_insn(env, i, ®_mask, &stack_mask); 2804 } 2805 if (err == -ENOTSUPP) { 2806 mark_all_scalars_precise(env, st); 2807 return 0; 2808 } else if (err) { 2809 return err; 2810 } 2811 if (!reg_mask && !stack_mask) 2812 /* Found assignment(s) into tracked register in this state. 2813 * Since this state is already marked, just return. 2814 * Nothing to be tracked further in the parent state. 2815 */ 2816 return 0; 2817 if (i == first_idx) 2818 break; 2819 i = get_prev_insn_idx(st, i, &history); 2820 if (i >= env->prog->len) { 2821 /* This can happen if backtracking reached insn 0 2822 * and there are still reg_mask or stack_mask 2823 * to backtrack. 2824 * It means the backtracking missed the spot where 2825 * particular register was initialized with a constant. 2826 */ 2827 verbose(env, "BUG backtracking idx %d\n", i); 2828 WARN_ONCE(1, "verifier backtracking bug"); 2829 return -EFAULT; 2830 } 2831 } 2832 st = st->parent; 2833 if (!st) 2834 break; 2835 2836 new_marks = false; 2837 func = st->frame[st->curframe]; 2838 bitmap_from_u64(mask, reg_mask); 2839 for_each_set_bit(i, mask, 32) { 2840 reg = &func->regs[i]; 2841 if (reg->type != SCALAR_VALUE) { 2842 reg_mask &= ~(1u << i); 2843 continue; 2844 } 2845 if (!reg->precise) 2846 new_marks = true; 2847 reg->precise = true; 2848 } 2849 2850 bitmap_from_u64(mask, stack_mask); 2851 for_each_set_bit(i, mask, 64) { 2852 if (i >= func->allocated_stack / BPF_REG_SIZE) { 2853 /* the sequence of instructions: 2854 * 2: (bf) r3 = r10 2855 * 3: (7b) *(u64 *)(r3 -8) = r0 2856 * 4: (79) r4 = *(u64 *)(r10 -8) 2857 * doesn't contain jmps. It's backtracked 2858 * as a single block. 2859 * During backtracking insn 3 is not recognized as 2860 * stack access, so at the end of backtracking 2861 * stack slot fp-8 is still marked in stack_mask. 2862 * However the parent state may not have accessed 2863 * fp-8 and it's "unallocated" stack space. 2864 * In such case fallback to conservative. 2865 */ 2866 mark_all_scalars_precise(env, st); 2867 return 0; 2868 } 2869 2870 if (!is_spilled_reg(&func->stack[i])) { 2871 stack_mask &= ~(1ull << i); 2872 continue; 2873 } 2874 reg = &func->stack[i].spilled_ptr; 2875 if (reg->type != SCALAR_VALUE) { 2876 stack_mask &= ~(1ull << i); 2877 continue; 2878 } 2879 if (!reg->precise) 2880 new_marks = true; 2881 reg->precise = true; 2882 } 2883 if (env->log.level & BPF_LOG_LEVEL2) { 2884 verbose(env, "parent %s regs=%x stack=%llx marks:", 2885 new_marks ? "didn't have" : "already had", 2886 reg_mask, stack_mask); 2887 print_verifier_state(env, func, true); 2888 } 2889 2890 if (!reg_mask && !stack_mask) 2891 break; 2892 if (!new_marks) 2893 break; 2894 2895 last_idx = st->last_insn_idx; 2896 first_idx = st->first_insn_idx; 2897 } 2898 return 0; 2899 } 2900 2901 static int mark_chain_precision(struct bpf_verifier_env *env, int regno) 2902 { 2903 return __mark_chain_precision(env, regno, -1); 2904 } 2905 2906 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi) 2907 { 2908 return __mark_chain_precision(env, -1, spi); 2909 } 2910 2911 static bool is_spillable_regtype(enum bpf_reg_type type) 2912 { 2913 switch (base_type(type)) { 2914 case PTR_TO_MAP_VALUE: 2915 case PTR_TO_STACK: 2916 case PTR_TO_CTX: 2917 case PTR_TO_PACKET: 2918 case PTR_TO_PACKET_META: 2919 case PTR_TO_PACKET_END: 2920 case PTR_TO_FLOW_KEYS: 2921 case CONST_PTR_TO_MAP: 2922 case PTR_TO_SOCKET: 2923 case PTR_TO_SOCK_COMMON: 2924 case PTR_TO_TCP_SOCK: 2925 case PTR_TO_XDP_SOCK: 2926 case PTR_TO_BTF_ID: 2927 case PTR_TO_BUF: 2928 case PTR_TO_MEM: 2929 case PTR_TO_FUNC: 2930 case PTR_TO_MAP_KEY: 2931 return true; 2932 default: 2933 return false; 2934 } 2935 } 2936 2937 /* Does this register contain a constant zero? */ 2938 static bool register_is_null(struct bpf_reg_state *reg) 2939 { 2940 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 2941 } 2942 2943 static bool register_is_const(struct bpf_reg_state *reg) 2944 { 2945 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off); 2946 } 2947 2948 static bool __is_scalar_unbounded(struct bpf_reg_state *reg) 2949 { 2950 return tnum_is_unknown(reg->var_off) && 2951 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX && 2952 reg->umin_value == 0 && reg->umax_value == U64_MAX && 2953 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX && 2954 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX; 2955 } 2956 2957 static bool register_is_bounded(struct bpf_reg_state *reg) 2958 { 2959 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg); 2960 } 2961 2962 static bool __is_pointer_value(bool allow_ptr_leaks, 2963 const struct bpf_reg_state *reg) 2964 { 2965 if (allow_ptr_leaks) 2966 return false; 2967 2968 return reg->type != SCALAR_VALUE; 2969 } 2970 2971 static void save_register_state(struct bpf_func_state *state, 2972 int spi, struct bpf_reg_state *reg, 2973 int size) 2974 { 2975 int i; 2976 2977 state->stack[spi].spilled_ptr = *reg; 2978 if (size == BPF_REG_SIZE) 2979 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 2980 2981 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--) 2982 state->stack[spi].slot_type[i - 1] = STACK_SPILL; 2983 2984 /* size < 8 bytes spill */ 2985 for (; i; i--) 2986 scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]); 2987 } 2988 2989 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers, 2990 * stack boundary and alignment are checked in check_mem_access() 2991 */ 2992 static int check_stack_write_fixed_off(struct bpf_verifier_env *env, 2993 /* stack frame we're writing to */ 2994 struct bpf_func_state *state, 2995 int off, int size, int value_regno, 2996 int insn_idx) 2997 { 2998 struct bpf_func_state *cur; /* state of the current function */ 2999 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 3000 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg; 3001 struct bpf_reg_state *reg = NULL; 3002 3003 err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE)); 3004 if (err) 3005 return err; 3006 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 3007 * so it's aligned access and [off, off + size) are within stack limits 3008 */ 3009 if (!env->allow_ptr_leaks && 3010 state->stack[spi].slot_type[0] == STACK_SPILL && 3011 size != BPF_REG_SIZE) { 3012 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 3013 return -EACCES; 3014 } 3015 3016 cur = env->cur_state->frame[env->cur_state->curframe]; 3017 if (value_regno >= 0) 3018 reg = &cur->regs[value_regno]; 3019 if (!env->bypass_spec_v4) { 3020 bool sanitize = reg && is_spillable_regtype(reg->type); 3021 3022 for (i = 0; i < size; i++) { 3023 if (state->stack[spi].slot_type[i] == STACK_INVALID) { 3024 sanitize = true; 3025 break; 3026 } 3027 } 3028 3029 if (sanitize) 3030 env->insn_aux_data[insn_idx].sanitize_stack_spill = true; 3031 } 3032 3033 mark_stack_slot_scratched(env, spi); 3034 if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) && 3035 !register_is_null(reg) && env->bpf_capable) { 3036 if (dst_reg != BPF_REG_FP) { 3037 /* The backtracking logic can only recognize explicit 3038 * stack slot address like [fp - 8]. Other spill of 3039 * scalar via different register has to be conservative. 3040 * Backtrack from here and mark all registers as precise 3041 * that contributed into 'reg' being a constant. 3042 */ 3043 err = mark_chain_precision(env, value_regno); 3044 if (err) 3045 return err; 3046 } 3047 save_register_state(state, spi, reg, size); 3048 } else if (reg && is_spillable_regtype(reg->type)) { 3049 /* register containing pointer is being spilled into stack */ 3050 if (size != BPF_REG_SIZE) { 3051 verbose_linfo(env, insn_idx, "; "); 3052 verbose(env, "invalid size of register spill\n"); 3053 return -EACCES; 3054 } 3055 if (state != cur && reg->type == PTR_TO_STACK) { 3056 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 3057 return -EINVAL; 3058 } 3059 save_register_state(state, spi, reg, size); 3060 } else { 3061 u8 type = STACK_MISC; 3062 3063 /* regular write of data into stack destroys any spilled ptr */ 3064 state->stack[spi].spilled_ptr.type = NOT_INIT; 3065 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */ 3066 if (is_spilled_reg(&state->stack[spi])) 3067 for (i = 0; i < BPF_REG_SIZE; i++) 3068 scrub_spilled_slot(&state->stack[spi].slot_type[i]); 3069 3070 /* only mark the slot as written if all 8 bytes were written 3071 * otherwise read propagation may incorrectly stop too soon 3072 * when stack slots are partially written. 3073 * This heuristic means that read propagation will be 3074 * conservative, since it will add reg_live_read marks 3075 * to stack slots all the way to first state when programs 3076 * writes+reads less than 8 bytes 3077 */ 3078 if (size == BPF_REG_SIZE) 3079 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 3080 3081 /* when we zero initialize stack slots mark them as such */ 3082 if (reg && register_is_null(reg)) { 3083 /* backtracking doesn't work for STACK_ZERO yet. */ 3084 err = mark_chain_precision(env, value_regno); 3085 if (err) 3086 return err; 3087 type = STACK_ZERO; 3088 } 3089 3090 /* Mark slots affected by this stack write. */ 3091 for (i = 0; i < size; i++) 3092 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 3093 type; 3094 } 3095 return 0; 3096 } 3097 3098 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is 3099 * known to contain a variable offset. 3100 * This function checks whether the write is permitted and conservatively 3101 * tracks the effects of the write, considering that each stack slot in the 3102 * dynamic range is potentially written to. 3103 * 3104 * 'off' includes 'regno->off'. 3105 * 'value_regno' can be -1, meaning that an unknown value is being written to 3106 * the stack. 3107 * 3108 * Spilled pointers in range are not marked as written because we don't know 3109 * what's going to be actually written. This means that read propagation for 3110 * future reads cannot be terminated by this write. 3111 * 3112 * For privileged programs, uninitialized stack slots are considered 3113 * initialized by this write (even though we don't know exactly what offsets 3114 * are going to be written to). The idea is that we don't want the verifier to 3115 * reject future reads that access slots written to through variable offsets. 3116 */ 3117 static int check_stack_write_var_off(struct bpf_verifier_env *env, 3118 /* func where register points to */ 3119 struct bpf_func_state *state, 3120 int ptr_regno, int off, int size, 3121 int value_regno, int insn_idx) 3122 { 3123 struct bpf_func_state *cur; /* state of the current function */ 3124 int min_off, max_off; 3125 int i, err; 3126 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL; 3127 bool writing_zero = false; 3128 /* set if the fact that we're writing a zero is used to let any 3129 * stack slots remain STACK_ZERO 3130 */ 3131 bool zero_used = false; 3132 3133 cur = env->cur_state->frame[env->cur_state->curframe]; 3134 ptr_reg = &cur->regs[ptr_regno]; 3135 min_off = ptr_reg->smin_value + off; 3136 max_off = ptr_reg->smax_value + off + size; 3137 if (value_regno >= 0) 3138 value_reg = &cur->regs[value_regno]; 3139 if (value_reg && register_is_null(value_reg)) 3140 writing_zero = true; 3141 3142 err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE)); 3143 if (err) 3144 return err; 3145 3146 3147 /* Variable offset writes destroy any spilled pointers in range. */ 3148 for (i = min_off; i < max_off; i++) { 3149 u8 new_type, *stype; 3150 int slot, spi; 3151 3152 slot = -i - 1; 3153 spi = slot / BPF_REG_SIZE; 3154 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 3155 mark_stack_slot_scratched(env, spi); 3156 3157 if (!env->allow_ptr_leaks 3158 && *stype != NOT_INIT 3159 && *stype != SCALAR_VALUE) { 3160 /* Reject the write if there's are spilled pointers in 3161 * range. If we didn't reject here, the ptr status 3162 * would be erased below (even though not all slots are 3163 * actually overwritten), possibly opening the door to 3164 * leaks. 3165 */ 3166 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d", 3167 insn_idx, i); 3168 return -EINVAL; 3169 } 3170 3171 /* Erase all spilled pointers. */ 3172 state->stack[spi].spilled_ptr.type = NOT_INIT; 3173 3174 /* Update the slot type. */ 3175 new_type = STACK_MISC; 3176 if (writing_zero && *stype == STACK_ZERO) { 3177 new_type = STACK_ZERO; 3178 zero_used = true; 3179 } 3180 /* If the slot is STACK_INVALID, we check whether it's OK to 3181 * pretend that it will be initialized by this write. The slot 3182 * might not actually be written to, and so if we mark it as 3183 * initialized future reads might leak uninitialized memory. 3184 * For privileged programs, we will accept such reads to slots 3185 * that may or may not be written because, if we're reject 3186 * them, the error would be too confusing. 3187 */ 3188 if (*stype == STACK_INVALID && !env->allow_uninit_stack) { 3189 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d", 3190 insn_idx, i); 3191 return -EINVAL; 3192 } 3193 *stype = new_type; 3194 } 3195 if (zero_used) { 3196 /* backtracking doesn't work for STACK_ZERO yet. */ 3197 err = mark_chain_precision(env, value_regno); 3198 if (err) 3199 return err; 3200 } 3201 return 0; 3202 } 3203 3204 /* When register 'dst_regno' is assigned some values from stack[min_off, 3205 * max_off), we set the register's type according to the types of the 3206 * respective stack slots. If all the stack values are known to be zeros, then 3207 * so is the destination reg. Otherwise, the register is considered to be 3208 * SCALAR. This function does not deal with register filling; the caller must 3209 * ensure that all spilled registers in the stack range have been marked as 3210 * read. 3211 */ 3212 static void mark_reg_stack_read(struct bpf_verifier_env *env, 3213 /* func where src register points to */ 3214 struct bpf_func_state *ptr_state, 3215 int min_off, int max_off, int dst_regno) 3216 { 3217 struct bpf_verifier_state *vstate = env->cur_state; 3218 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3219 int i, slot, spi; 3220 u8 *stype; 3221 int zeros = 0; 3222 3223 for (i = min_off; i < max_off; i++) { 3224 slot = -i - 1; 3225 spi = slot / BPF_REG_SIZE; 3226 stype = ptr_state->stack[spi].slot_type; 3227 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO) 3228 break; 3229 zeros++; 3230 } 3231 if (zeros == max_off - min_off) { 3232 /* any access_size read into register is zero extended, 3233 * so the whole register == const_zero 3234 */ 3235 __mark_reg_const_zero(&state->regs[dst_regno]); 3236 /* backtracking doesn't support STACK_ZERO yet, 3237 * so mark it precise here, so that later 3238 * backtracking can stop here. 3239 * Backtracking may not need this if this register 3240 * doesn't participate in pointer adjustment. 3241 * Forward propagation of precise flag is not 3242 * necessary either. This mark is only to stop 3243 * backtracking. Any register that contributed 3244 * to const 0 was marked precise before spill. 3245 */ 3246 state->regs[dst_regno].precise = true; 3247 } else { 3248 /* have read misc data from the stack */ 3249 mark_reg_unknown(env, state->regs, dst_regno); 3250 } 3251 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 3252 } 3253 3254 /* Read the stack at 'off' and put the results into the register indicated by 3255 * 'dst_regno'. It handles reg filling if the addressed stack slot is a 3256 * spilled reg. 3257 * 3258 * 'dst_regno' can be -1, meaning that the read value is not going to a 3259 * register. 3260 * 3261 * The access is assumed to be within the current stack bounds. 3262 */ 3263 static int check_stack_read_fixed_off(struct bpf_verifier_env *env, 3264 /* func where src register points to */ 3265 struct bpf_func_state *reg_state, 3266 int off, int size, int dst_regno) 3267 { 3268 struct bpf_verifier_state *vstate = env->cur_state; 3269 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3270 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 3271 struct bpf_reg_state *reg; 3272 u8 *stype, type; 3273 3274 stype = reg_state->stack[spi].slot_type; 3275 reg = ®_state->stack[spi].spilled_ptr; 3276 3277 if (is_spilled_reg(®_state->stack[spi])) { 3278 u8 spill_size = 1; 3279 3280 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--) 3281 spill_size++; 3282 3283 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) { 3284 if (reg->type != SCALAR_VALUE) { 3285 verbose_linfo(env, env->insn_idx, "; "); 3286 verbose(env, "invalid size of register fill\n"); 3287 return -EACCES; 3288 } 3289 3290 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 3291 if (dst_regno < 0) 3292 return 0; 3293 3294 if (!(off % BPF_REG_SIZE) && size == spill_size) { 3295 /* The earlier check_reg_arg() has decided the 3296 * subreg_def for this insn. Save it first. 3297 */ 3298 s32 subreg_def = state->regs[dst_regno].subreg_def; 3299 3300 state->regs[dst_regno] = *reg; 3301 state->regs[dst_regno].subreg_def = subreg_def; 3302 } else { 3303 for (i = 0; i < size; i++) { 3304 type = stype[(slot - i) % BPF_REG_SIZE]; 3305 if (type == STACK_SPILL) 3306 continue; 3307 if (type == STACK_MISC) 3308 continue; 3309 verbose(env, "invalid read from stack off %d+%d size %d\n", 3310 off, i, size); 3311 return -EACCES; 3312 } 3313 mark_reg_unknown(env, state->regs, dst_regno); 3314 } 3315 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 3316 return 0; 3317 } 3318 3319 if (dst_regno >= 0) { 3320 /* restore register state from stack */ 3321 state->regs[dst_regno] = *reg; 3322 /* mark reg as written since spilled pointer state likely 3323 * has its liveness marks cleared by is_state_visited() 3324 * which resets stack/reg liveness for state transitions 3325 */ 3326 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 3327 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { 3328 /* If dst_regno==-1, the caller is asking us whether 3329 * it is acceptable to use this value as a SCALAR_VALUE 3330 * (e.g. for XADD). 3331 * We must not allow unprivileged callers to do that 3332 * with spilled pointers. 3333 */ 3334 verbose(env, "leaking pointer from stack off %d\n", 3335 off); 3336 return -EACCES; 3337 } 3338 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 3339 } else { 3340 for (i = 0; i < size; i++) { 3341 type = stype[(slot - i) % BPF_REG_SIZE]; 3342 if (type == STACK_MISC) 3343 continue; 3344 if (type == STACK_ZERO) 3345 continue; 3346 verbose(env, "invalid read from stack off %d+%d size %d\n", 3347 off, i, size); 3348 return -EACCES; 3349 } 3350 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 3351 if (dst_regno >= 0) 3352 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno); 3353 } 3354 return 0; 3355 } 3356 3357 enum bpf_access_src { 3358 ACCESS_DIRECT = 1, /* the access is performed by an instruction */ 3359 ACCESS_HELPER = 2, /* the access is performed by a helper */ 3360 }; 3361 3362 static int check_stack_range_initialized(struct bpf_verifier_env *env, 3363 int regno, int off, int access_size, 3364 bool zero_size_allowed, 3365 enum bpf_access_src type, 3366 struct bpf_call_arg_meta *meta); 3367 3368 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 3369 { 3370 return cur_regs(env) + regno; 3371 } 3372 3373 /* Read the stack at 'ptr_regno + off' and put the result into the register 3374 * 'dst_regno'. 3375 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'), 3376 * but not its variable offset. 3377 * 'size' is assumed to be <= reg size and the access is assumed to be aligned. 3378 * 3379 * As opposed to check_stack_read_fixed_off, this function doesn't deal with 3380 * filling registers (i.e. reads of spilled register cannot be detected when 3381 * the offset is not fixed). We conservatively mark 'dst_regno' as containing 3382 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable 3383 * offset; for a fixed offset check_stack_read_fixed_off should be used 3384 * instead. 3385 */ 3386 static int check_stack_read_var_off(struct bpf_verifier_env *env, 3387 int ptr_regno, int off, int size, int dst_regno) 3388 { 3389 /* The state of the source register. */ 3390 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3391 struct bpf_func_state *ptr_state = func(env, reg); 3392 int err; 3393 int min_off, max_off; 3394 3395 /* Note that we pass a NULL meta, so raw access will not be permitted. 3396 */ 3397 err = check_stack_range_initialized(env, ptr_regno, off, size, 3398 false, ACCESS_DIRECT, NULL); 3399 if (err) 3400 return err; 3401 3402 min_off = reg->smin_value + off; 3403 max_off = reg->smax_value + off; 3404 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno); 3405 return 0; 3406 } 3407 3408 /* check_stack_read dispatches to check_stack_read_fixed_off or 3409 * check_stack_read_var_off. 3410 * 3411 * The caller must ensure that the offset falls within the allocated stack 3412 * bounds. 3413 * 3414 * 'dst_regno' is a register which will receive the value from the stack. It 3415 * can be -1, meaning that the read value is not going to a register. 3416 */ 3417 static int check_stack_read(struct bpf_verifier_env *env, 3418 int ptr_regno, int off, int size, 3419 int dst_regno) 3420 { 3421 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3422 struct bpf_func_state *state = func(env, reg); 3423 int err; 3424 /* Some accesses are only permitted with a static offset. */ 3425 bool var_off = !tnum_is_const(reg->var_off); 3426 3427 /* The offset is required to be static when reads don't go to a 3428 * register, in order to not leak pointers (see 3429 * check_stack_read_fixed_off). 3430 */ 3431 if (dst_regno < 0 && var_off) { 3432 char tn_buf[48]; 3433 3434 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3435 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n", 3436 tn_buf, off, size); 3437 return -EACCES; 3438 } 3439 /* Variable offset is prohibited for unprivileged mode for simplicity 3440 * since it requires corresponding support in Spectre masking for stack 3441 * ALU. See also retrieve_ptr_limit(). 3442 */ 3443 if (!env->bypass_spec_v1 && var_off) { 3444 char tn_buf[48]; 3445 3446 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3447 verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n", 3448 ptr_regno, tn_buf); 3449 return -EACCES; 3450 } 3451 3452 if (!var_off) { 3453 off += reg->var_off.value; 3454 err = check_stack_read_fixed_off(env, state, off, size, 3455 dst_regno); 3456 } else { 3457 /* Variable offset stack reads need more conservative handling 3458 * than fixed offset ones. Note that dst_regno >= 0 on this 3459 * branch. 3460 */ 3461 err = check_stack_read_var_off(env, ptr_regno, off, size, 3462 dst_regno); 3463 } 3464 return err; 3465 } 3466 3467 3468 /* check_stack_write dispatches to check_stack_write_fixed_off or 3469 * check_stack_write_var_off. 3470 * 3471 * 'ptr_regno' is the register used as a pointer into the stack. 3472 * 'off' includes 'ptr_regno->off', but not its variable offset (if any). 3473 * 'value_regno' is the register whose value we're writing to the stack. It can 3474 * be -1, meaning that we're not writing from a register. 3475 * 3476 * The caller must ensure that the offset falls within the maximum stack size. 3477 */ 3478 static int check_stack_write(struct bpf_verifier_env *env, 3479 int ptr_regno, int off, int size, 3480 int value_regno, int insn_idx) 3481 { 3482 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3483 struct bpf_func_state *state = func(env, reg); 3484 int err; 3485 3486 if (tnum_is_const(reg->var_off)) { 3487 off += reg->var_off.value; 3488 err = check_stack_write_fixed_off(env, state, off, size, 3489 value_regno, insn_idx); 3490 } else { 3491 /* Variable offset stack reads need more conservative handling 3492 * than fixed offset ones. 3493 */ 3494 err = check_stack_write_var_off(env, state, 3495 ptr_regno, off, size, 3496 value_regno, insn_idx); 3497 } 3498 return err; 3499 } 3500 3501 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 3502 int off, int size, enum bpf_access_type type) 3503 { 3504 struct bpf_reg_state *regs = cur_regs(env); 3505 struct bpf_map *map = regs[regno].map_ptr; 3506 u32 cap = bpf_map_flags_to_cap(map); 3507 3508 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 3509 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 3510 map->value_size, off, size); 3511 return -EACCES; 3512 } 3513 3514 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 3515 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 3516 map->value_size, off, size); 3517 return -EACCES; 3518 } 3519 3520 return 0; 3521 } 3522 3523 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */ 3524 static int __check_mem_access(struct bpf_verifier_env *env, int regno, 3525 int off, int size, u32 mem_size, 3526 bool zero_size_allowed) 3527 { 3528 bool size_ok = size > 0 || (size == 0 && zero_size_allowed); 3529 struct bpf_reg_state *reg; 3530 3531 if (off >= 0 && size_ok && (u64)off + size <= mem_size) 3532 return 0; 3533 3534 reg = &cur_regs(env)[regno]; 3535 switch (reg->type) { 3536 case PTR_TO_MAP_KEY: 3537 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n", 3538 mem_size, off, size); 3539 break; 3540 case PTR_TO_MAP_VALUE: 3541 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 3542 mem_size, off, size); 3543 break; 3544 case PTR_TO_PACKET: 3545 case PTR_TO_PACKET_META: 3546 case PTR_TO_PACKET_END: 3547 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 3548 off, size, regno, reg->id, off, mem_size); 3549 break; 3550 case PTR_TO_MEM: 3551 default: 3552 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n", 3553 mem_size, off, size); 3554 } 3555 3556 return -EACCES; 3557 } 3558 3559 /* check read/write into a memory region with possible variable offset */ 3560 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, 3561 int off, int size, u32 mem_size, 3562 bool zero_size_allowed) 3563 { 3564 struct bpf_verifier_state *vstate = env->cur_state; 3565 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3566 struct bpf_reg_state *reg = &state->regs[regno]; 3567 int err; 3568 3569 /* We may have adjusted the register pointing to memory region, so we 3570 * need to try adding each of min_value and max_value to off 3571 * to make sure our theoretical access will be safe. 3572 * 3573 * The minimum value is only important with signed 3574 * comparisons where we can't assume the floor of a 3575 * value is 0. If we are using signed variables for our 3576 * index'es we need to make sure that whatever we use 3577 * will have a set floor within our range. 3578 */ 3579 if (reg->smin_value < 0 && 3580 (reg->smin_value == S64_MIN || 3581 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 3582 reg->smin_value + off < 0)) { 3583 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 3584 regno); 3585 return -EACCES; 3586 } 3587 err = __check_mem_access(env, regno, reg->smin_value + off, size, 3588 mem_size, zero_size_allowed); 3589 if (err) { 3590 verbose(env, "R%d min value is outside of the allowed memory range\n", 3591 regno); 3592 return err; 3593 } 3594 3595 /* If we haven't set a max value then we need to bail since we can't be 3596 * sure we won't do bad things. 3597 * If reg->umax_value + off could overflow, treat that as unbounded too. 3598 */ 3599 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 3600 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n", 3601 regno); 3602 return -EACCES; 3603 } 3604 err = __check_mem_access(env, regno, reg->umax_value + off, size, 3605 mem_size, zero_size_allowed); 3606 if (err) { 3607 verbose(env, "R%d max value is outside of the allowed memory range\n", 3608 regno); 3609 return err; 3610 } 3611 3612 return 0; 3613 } 3614 3615 static int __check_ptr_off_reg(struct bpf_verifier_env *env, 3616 const struct bpf_reg_state *reg, int regno, 3617 bool fixed_off_ok) 3618 { 3619 /* Access to this pointer-typed register or passing it to a helper 3620 * is only allowed in its original, unmodified form. 3621 */ 3622 3623 if (reg->off < 0) { 3624 verbose(env, "negative offset %s ptr R%d off=%d disallowed\n", 3625 reg_type_str(env, reg->type), regno, reg->off); 3626 return -EACCES; 3627 } 3628 3629 if (!fixed_off_ok && reg->off) { 3630 verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n", 3631 reg_type_str(env, reg->type), regno, reg->off); 3632 return -EACCES; 3633 } 3634 3635 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 3636 char tn_buf[48]; 3637 3638 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3639 verbose(env, "variable %s access var_off=%s disallowed\n", 3640 reg_type_str(env, reg->type), tn_buf); 3641 return -EACCES; 3642 } 3643 3644 return 0; 3645 } 3646 3647 int check_ptr_off_reg(struct bpf_verifier_env *env, 3648 const struct bpf_reg_state *reg, int regno) 3649 { 3650 return __check_ptr_off_reg(env, reg, regno, false); 3651 } 3652 3653 static int map_kptr_match_type(struct bpf_verifier_env *env, 3654 struct bpf_map_value_off_desc *off_desc, 3655 struct bpf_reg_state *reg, u32 regno) 3656 { 3657 const char *targ_name = kernel_type_name(off_desc->kptr.btf, off_desc->kptr.btf_id); 3658 int perm_flags = PTR_MAYBE_NULL; 3659 const char *reg_name = ""; 3660 3661 /* Only unreferenced case accepts untrusted pointers */ 3662 if (off_desc->type == BPF_KPTR_UNREF) 3663 perm_flags |= PTR_UNTRUSTED; 3664 3665 if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags)) 3666 goto bad_type; 3667 3668 if (!btf_is_kernel(reg->btf)) { 3669 verbose(env, "R%d must point to kernel BTF\n", regno); 3670 return -EINVAL; 3671 } 3672 /* We need to verify reg->type and reg->btf, before accessing reg->btf */ 3673 reg_name = kernel_type_name(reg->btf, reg->btf_id); 3674 3675 /* For ref_ptr case, release function check should ensure we get one 3676 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the 3677 * normal store of unreferenced kptr, we must ensure var_off is zero. 3678 * Since ref_ptr cannot be accessed directly by BPF insns, checks for 3679 * reg->off and reg->ref_obj_id are not needed here. 3680 */ 3681 if (__check_ptr_off_reg(env, reg, regno, true)) 3682 return -EACCES; 3683 3684 /* A full type match is needed, as BTF can be vmlinux or module BTF, and 3685 * we also need to take into account the reg->off. 3686 * 3687 * We want to support cases like: 3688 * 3689 * struct foo { 3690 * struct bar br; 3691 * struct baz bz; 3692 * }; 3693 * 3694 * struct foo *v; 3695 * v = func(); // PTR_TO_BTF_ID 3696 * val->foo = v; // reg->off is zero, btf and btf_id match type 3697 * val->bar = &v->br; // reg->off is still zero, but we need to retry with 3698 * // first member type of struct after comparison fails 3699 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked 3700 * // to match type 3701 * 3702 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off 3703 * is zero. We must also ensure that btf_struct_ids_match does not walk 3704 * the struct to match type against first member of struct, i.e. reject 3705 * second case from above. Hence, when type is BPF_KPTR_REF, we set 3706 * strict mode to true for type match. 3707 */ 3708 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 3709 off_desc->kptr.btf, off_desc->kptr.btf_id, 3710 off_desc->type == BPF_KPTR_REF)) 3711 goto bad_type; 3712 return 0; 3713 bad_type: 3714 verbose(env, "invalid kptr access, R%d type=%s%s ", regno, 3715 reg_type_str(env, reg->type), reg_name); 3716 verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name); 3717 if (off_desc->type == BPF_KPTR_UNREF) 3718 verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED), 3719 targ_name); 3720 else 3721 verbose(env, "\n"); 3722 return -EINVAL; 3723 } 3724 3725 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno, 3726 int value_regno, int insn_idx, 3727 struct bpf_map_value_off_desc *off_desc) 3728 { 3729 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 3730 int class = BPF_CLASS(insn->code); 3731 struct bpf_reg_state *val_reg; 3732 3733 /* Things we already checked for in check_map_access and caller: 3734 * - Reject cases where variable offset may touch kptr 3735 * - size of access (must be BPF_DW) 3736 * - tnum_is_const(reg->var_off) 3737 * - off_desc->offset == off + reg->var_off.value 3738 */ 3739 /* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */ 3740 if (BPF_MODE(insn->code) != BPF_MEM) { 3741 verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n"); 3742 return -EACCES; 3743 } 3744 3745 /* We only allow loading referenced kptr, since it will be marked as 3746 * untrusted, similar to unreferenced kptr. 3747 */ 3748 if (class != BPF_LDX && off_desc->type == BPF_KPTR_REF) { 3749 verbose(env, "store to referenced kptr disallowed\n"); 3750 return -EACCES; 3751 } 3752 3753 if (class == BPF_LDX) { 3754 val_reg = reg_state(env, value_regno); 3755 /* We can simply mark the value_regno receiving the pointer 3756 * value from map as PTR_TO_BTF_ID, with the correct type. 3757 */ 3758 mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, off_desc->kptr.btf, 3759 off_desc->kptr.btf_id, PTR_MAYBE_NULL | PTR_UNTRUSTED); 3760 /* For mark_ptr_or_null_reg */ 3761 val_reg->id = ++env->id_gen; 3762 } else if (class == BPF_STX) { 3763 val_reg = reg_state(env, value_regno); 3764 if (!register_is_null(val_reg) && 3765 map_kptr_match_type(env, off_desc, val_reg, value_regno)) 3766 return -EACCES; 3767 } else if (class == BPF_ST) { 3768 if (insn->imm) { 3769 verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n", 3770 off_desc->offset); 3771 return -EACCES; 3772 } 3773 } else { 3774 verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n"); 3775 return -EACCES; 3776 } 3777 return 0; 3778 } 3779 3780 /* check read/write into a map element with possible variable offset */ 3781 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 3782 int off, int size, bool zero_size_allowed, 3783 enum bpf_access_src src) 3784 { 3785 struct bpf_verifier_state *vstate = env->cur_state; 3786 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3787 struct bpf_reg_state *reg = &state->regs[regno]; 3788 struct bpf_map *map = reg->map_ptr; 3789 int err; 3790 3791 err = check_mem_region_access(env, regno, off, size, map->value_size, 3792 zero_size_allowed); 3793 if (err) 3794 return err; 3795 3796 if (map_value_has_spin_lock(map)) { 3797 u32 lock = map->spin_lock_off; 3798 3799 /* if any part of struct bpf_spin_lock can be touched by 3800 * load/store reject this program. 3801 * To check that [x1, x2) overlaps with [y1, y2) 3802 * it is sufficient to check x1 < y2 && y1 < x2. 3803 */ 3804 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) && 3805 lock < reg->umax_value + off + size) { 3806 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n"); 3807 return -EACCES; 3808 } 3809 } 3810 if (map_value_has_timer(map)) { 3811 u32 t = map->timer_off; 3812 3813 if (reg->smin_value + off < t + sizeof(struct bpf_timer) && 3814 t < reg->umax_value + off + size) { 3815 verbose(env, "bpf_timer cannot be accessed directly by load/store\n"); 3816 return -EACCES; 3817 } 3818 } 3819 if (map_value_has_kptrs(map)) { 3820 struct bpf_map_value_off *tab = map->kptr_off_tab; 3821 int i; 3822 3823 for (i = 0; i < tab->nr_off; i++) { 3824 u32 p = tab->off[i].offset; 3825 3826 if (reg->smin_value + off < p + sizeof(u64) && 3827 p < reg->umax_value + off + size) { 3828 if (src != ACCESS_DIRECT) { 3829 verbose(env, "kptr cannot be accessed indirectly by helper\n"); 3830 return -EACCES; 3831 } 3832 if (!tnum_is_const(reg->var_off)) { 3833 verbose(env, "kptr access cannot have variable offset\n"); 3834 return -EACCES; 3835 } 3836 if (p != off + reg->var_off.value) { 3837 verbose(env, "kptr access misaligned expected=%u off=%llu\n", 3838 p, off + reg->var_off.value); 3839 return -EACCES; 3840 } 3841 if (size != bpf_size_to_bytes(BPF_DW)) { 3842 verbose(env, "kptr access size must be BPF_DW\n"); 3843 return -EACCES; 3844 } 3845 break; 3846 } 3847 } 3848 } 3849 return err; 3850 } 3851 3852 #define MAX_PACKET_OFF 0xffff 3853 3854 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 3855 const struct bpf_call_arg_meta *meta, 3856 enum bpf_access_type t) 3857 { 3858 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 3859 3860 switch (prog_type) { 3861 /* Program types only with direct read access go here! */ 3862 case BPF_PROG_TYPE_LWT_IN: 3863 case BPF_PROG_TYPE_LWT_OUT: 3864 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 3865 case BPF_PROG_TYPE_SK_REUSEPORT: 3866 case BPF_PROG_TYPE_FLOW_DISSECTOR: 3867 case BPF_PROG_TYPE_CGROUP_SKB: 3868 if (t == BPF_WRITE) 3869 return false; 3870 fallthrough; 3871 3872 /* Program types with direct read + write access go here! */ 3873 case BPF_PROG_TYPE_SCHED_CLS: 3874 case BPF_PROG_TYPE_SCHED_ACT: 3875 case BPF_PROG_TYPE_XDP: 3876 case BPF_PROG_TYPE_LWT_XMIT: 3877 case BPF_PROG_TYPE_SK_SKB: 3878 case BPF_PROG_TYPE_SK_MSG: 3879 if (meta) 3880 return meta->pkt_access; 3881 3882 env->seen_direct_write = true; 3883 return true; 3884 3885 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 3886 if (t == BPF_WRITE) 3887 env->seen_direct_write = true; 3888 3889 return true; 3890 3891 default: 3892 return false; 3893 } 3894 } 3895 3896 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 3897 int size, bool zero_size_allowed) 3898 { 3899 struct bpf_reg_state *regs = cur_regs(env); 3900 struct bpf_reg_state *reg = ®s[regno]; 3901 int err; 3902 3903 /* We may have added a variable offset to the packet pointer; but any 3904 * reg->range we have comes after that. We are only checking the fixed 3905 * offset. 3906 */ 3907 3908 /* We don't allow negative numbers, because we aren't tracking enough 3909 * detail to prove they're safe. 3910 */ 3911 if (reg->smin_value < 0) { 3912 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 3913 regno); 3914 return -EACCES; 3915 } 3916 3917 err = reg->range < 0 ? -EINVAL : 3918 __check_mem_access(env, regno, off, size, reg->range, 3919 zero_size_allowed); 3920 if (err) { 3921 verbose(env, "R%d offset is outside of the packet\n", regno); 3922 return err; 3923 } 3924 3925 /* __check_mem_access has made sure "off + size - 1" is within u16. 3926 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 3927 * otherwise find_good_pkt_pointers would have refused to set range info 3928 * that __check_mem_access would have rejected this pkt access. 3929 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 3930 */ 3931 env->prog->aux->max_pkt_offset = 3932 max_t(u32, env->prog->aux->max_pkt_offset, 3933 off + reg->umax_value + size - 1); 3934 3935 return err; 3936 } 3937 3938 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 3939 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 3940 enum bpf_access_type t, enum bpf_reg_type *reg_type, 3941 struct btf **btf, u32 *btf_id) 3942 { 3943 struct bpf_insn_access_aux info = { 3944 .reg_type = *reg_type, 3945 .log = &env->log, 3946 }; 3947 3948 if (env->ops->is_valid_access && 3949 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 3950 /* A non zero info.ctx_field_size indicates that this field is a 3951 * candidate for later verifier transformation to load the whole 3952 * field and then apply a mask when accessed with a narrower 3953 * access than actual ctx access size. A zero info.ctx_field_size 3954 * will only allow for whole field access and rejects any other 3955 * type of narrower access. 3956 */ 3957 *reg_type = info.reg_type; 3958 3959 if (base_type(*reg_type) == PTR_TO_BTF_ID) { 3960 *btf = info.btf; 3961 *btf_id = info.btf_id; 3962 } else { 3963 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 3964 } 3965 /* remember the offset of last byte accessed in ctx */ 3966 if (env->prog->aux->max_ctx_offset < off + size) 3967 env->prog->aux->max_ctx_offset = off + size; 3968 return 0; 3969 } 3970 3971 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 3972 return -EACCES; 3973 } 3974 3975 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 3976 int size) 3977 { 3978 if (size < 0 || off < 0 || 3979 (u64)off + size > sizeof(struct bpf_flow_keys)) { 3980 verbose(env, "invalid access to flow keys off=%d size=%d\n", 3981 off, size); 3982 return -EACCES; 3983 } 3984 return 0; 3985 } 3986 3987 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 3988 u32 regno, int off, int size, 3989 enum bpf_access_type t) 3990 { 3991 struct bpf_reg_state *regs = cur_regs(env); 3992 struct bpf_reg_state *reg = ®s[regno]; 3993 struct bpf_insn_access_aux info = {}; 3994 bool valid; 3995 3996 if (reg->smin_value < 0) { 3997 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 3998 regno); 3999 return -EACCES; 4000 } 4001 4002 switch (reg->type) { 4003 case PTR_TO_SOCK_COMMON: 4004 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 4005 break; 4006 case PTR_TO_SOCKET: 4007 valid = bpf_sock_is_valid_access(off, size, t, &info); 4008 break; 4009 case PTR_TO_TCP_SOCK: 4010 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 4011 break; 4012 case PTR_TO_XDP_SOCK: 4013 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 4014 break; 4015 default: 4016 valid = false; 4017 } 4018 4019 4020 if (valid) { 4021 env->insn_aux_data[insn_idx].ctx_field_size = 4022 info.ctx_field_size; 4023 return 0; 4024 } 4025 4026 verbose(env, "R%d invalid %s access off=%d size=%d\n", 4027 regno, reg_type_str(env, reg->type), off, size); 4028 4029 return -EACCES; 4030 } 4031 4032 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 4033 { 4034 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 4035 } 4036 4037 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 4038 { 4039 const struct bpf_reg_state *reg = reg_state(env, regno); 4040 4041 return reg->type == PTR_TO_CTX; 4042 } 4043 4044 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 4045 { 4046 const struct bpf_reg_state *reg = reg_state(env, regno); 4047 4048 return type_is_sk_pointer(reg->type); 4049 } 4050 4051 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 4052 { 4053 const struct bpf_reg_state *reg = reg_state(env, regno); 4054 4055 return type_is_pkt_pointer(reg->type); 4056 } 4057 4058 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 4059 { 4060 const struct bpf_reg_state *reg = reg_state(env, regno); 4061 4062 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 4063 return reg->type == PTR_TO_FLOW_KEYS; 4064 } 4065 4066 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 4067 const struct bpf_reg_state *reg, 4068 int off, int size, bool strict) 4069 { 4070 struct tnum reg_off; 4071 int ip_align; 4072 4073 /* Byte size accesses are always allowed. */ 4074 if (!strict || size == 1) 4075 return 0; 4076 4077 /* For platforms that do not have a Kconfig enabling 4078 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 4079 * NET_IP_ALIGN is universally set to '2'. And on platforms 4080 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 4081 * to this code only in strict mode where we want to emulate 4082 * the NET_IP_ALIGN==2 checking. Therefore use an 4083 * unconditional IP align value of '2'. 4084 */ 4085 ip_align = 2; 4086 4087 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 4088 if (!tnum_is_aligned(reg_off, size)) { 4089 char tn_buf[48]; 4090 4091 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4092 verbose(env, 4093 "misaligned packet access off %d+%s+%d+%d size %d\n", 4094 ip_align, tn_buf, reg->off, off, size); 4095 return -EACCES; 4096 } 4097 4098 return 0; 4099 } 4100 4101 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 4102 const struct bpf_reg_state *reg, 4103 const char *pointer_desc, 4104 int off, int size, bool strict) 4105 { 4106 struct tnum reg_off; 4107 4108 /* Byte size accesses are always allowed. */ 4109 if (!strict || size == 1) 4110 return 0; 4111 4112 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 4113 if (!tnum_is_aligned(reg_off, size)) { 4114 char tn_buf[48]; 4115 4116 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4117 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 4118 pointer_desc, tn_buf, reg->off, off, size); 4119 return -EACCES; 4120 } 4121 4122 return 0; 4123 } 4124 4125 static int check_ptr_alignment(struct bpf_verifier_env *env, 4126 const struct bpf_reg_state *reg, int off, 4127 int size, bool strict_alignment_once) 4128 { 4129 bool strict = env->strict_alignment || strict_alignment_once; 4130 const char *pointer_desc = ""; 4131 4132 switch (reg->type) { 4133 case PTR_TO_PACKET: 4134 case PTR_TO_PACKET_META: 4135 /* Special case, because of NET_IP_ALIGN. Given metadata sits 4136 * right in front, treat it the very same way. 4137 */ 4138 return check_pkt_ptr_alignment(env, reg, off, size, strict); 4139 case PTR_TO_FLOW_KEYS: 4140 pointer_desc = "flow keys "; 4141 break; 4142 case PTR_TO_MAP_KEY: 4143 pointer_desc = "key "; 4144 break; 4145 case PTR_TO_MAP_VALUE: 4146 pointer_desc = "value "; 4147 break; 4148 case PTR_TO_CTX: 4149 pointer_desc = "context "; 4150 break; 4151 case PTR_TO_STACK: 4152 pointer_desc = "stack "; 4153 /* The stack spill tracking logic in check_stack_write_fixed_off() 4154 * and check_stack_read_fixed_off() relies on stack accesses being 4155 * aligned. 4156 */ 4157 strict = true; 4158 break; 4159 case PTR_TO_SOCKET: 4160 pointer_desc = "sock "; 4161 break; 4162 case PTR_TO_SOCK_COMMON: 4163 pointer_desc = "sock_common "; 4164 break; 4165 case PTR_TO_TCP_SOCK: 4166 pointer_desc = "tcp_sock "; 4167 break; 4168 case PTR_TO_XDP_SOCK: 4169 pointer_desc = "xdp_sock "; 4170 break; 4171 default: 4172 break; 4173 } 4174 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 4175 strict); 4176 } 4177 4178 static int update_stack_depth(struct bpf_verifier_env *env, 4179 const struct bpf_func_state *func, 4180 int off) 4181 { 4182 u16 stack = env->subprog_info[func->subprogno].stack_depth; 4183 4184 if (stack >= -off) 4185 return 0; 4186 4187 /* update known max for given subprogram */ 4188 env->subprog_info[func->subprogno].stack_depth = -off; 4189 return 0; 4190 } 4191 4192 /* starting from main bpf function walk all instructions of the function 4193 * and recursively walk all callees that given function can call. 4194 * Ignore jump and exit insns. 4195 * Since recursion is prevented by check_cfg() this algorithm 4196 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 4197 */ 4198 static int check_max_stack_depth(struct bpf_verifier_env *env) 4199 { 4200 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; 4201 struct bpf_subprog_info *subprog = env->subprog_info; 4202 struct bpf_insn *insn = env->prog->insnsi; 4203 bool tail_call_reachable = false; 4204 int ret_insn[MAX_CALL_FRAMES]; 4205 int ret_prog[MAX_CALL_FRAMES]; 4206 int j; 4207 4208 process_func: 4209 /* protect against potential stack overflow that might happen when 4210 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack 4211 * depth for such case down to 256 so that the worst case scenario 4212 * would result in 8k stack size (32 which is tailcall limit * 256 = 4213 * 8k). 4214 * 4215 * To get the idea what might happen, see an example: 4216 * func1 -> sub rsp, 128 4217 * subfunc1 -> sub rsp, 256 4218 * tailcall1 -> add rsp, 256 4219 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320) 4220 * subfunc2 -> sub rsp, 64 4221 * subfunc22 -> sub rsp, 128 4222 * tailcall2 -> add rsp, 128 4223 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416) 4224 * 4225 * tailcall will unwind the current stack frame but it will not get rid 4226 * of caller's stack as shown on the example above. 4227 */ 4228 if (idx && subprog[idx].has_tail_call && depth >= 256) { 4229 verbose(env, 4230 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n", 4231 depth); 4232 return -EACCES; 4233 } 4234 /* round up to 32-bytes, since this is granularity 4235 * of interpreter stack size 4236 */ 4237 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 4238 if (depth > MAX_BPF_STACK) { 4239 verbose(env, "combined stack size of %d calls is %d. Too large\n", 4240 frame + 1, depth); 4241 return -EACCES; 4242 } 4243 continue_func: 4244 subprog_end = subprog[idx + 1].start; 4245 for (; i < subprog_end; i++) { 4246 int next_insn; 4247 4248 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i)) 4249 continue; 4250 /* remember insn and function to return to */ 4251 ret_insn[frame] = i + 1; 4252 ret_prog[frame] = idx; 4253 4254 /* find the callee */ 4255 next_insn = i + insn[i].imm + 1; 4256 idx = find_subprog(env, next_insn); 4257 if (idx < 0) { 4258 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 4259 next_insn); 4260 return -EFAULT; 4261 } 4262 if (subprog[idx].is_async_cb) { 4263 if (subprog[idx].has_tail_call) { 4264 verbose(env, "verifier bug. subprog has tail_call and async cb\n"); 4265 return -EFAULT; 4266 } 4267 /* async callbacks don't increase bpf prog stack size */ 4268 continue; 4269 } 4270 i = next_insn; 4271 4272 if (subprog[idx].has_tail_call) 4273 tail_call_reachable = true; 4274 4275 frame++; 4276 if (frame >= MAX_CALL_FRAMES) { 4277 verbose(env, "the call stack of %d frames is too deep !\n", 4278 frame); 4279 return -E2BIG; 4280 } 4281 goto process_func; 4282 } 4283 /* if tail call got detected across bpf2bpf calls then mark each of the 4284 * currently present subprog frames as tail call reachable subprogs; 4285 * this info will be utilized by JIT so that we will be preserving the 4286 * tail call counter throughout bpf2bpf calls combined with tailcalls 4287 */ 4288 if (tail_call_reachable) 4289 for (j = 0; j < frame; j++) 4290 subprog[ret_prog[j]].tail_call_reachable = true; 4291 if (subprog[0].tail_call_reachable) 4292 env->prog->aux->tail_call_reachable = true; 4293 4294 /* end of for() loop means the last insn of the 'subprog' 4295 * was reached. Doesn't matter whether it was JA or EXIT 4296 */ 4297 if (frame == 0) 4298 return 0; 4299 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 4300 frame--; 4301 i = ret_insn[frame]; 4302 idx = ret_prog[frame]; 4303 goto continue_func; 4304 } 4305 4306 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 4307 static int get_callee_stack_depth(struct bpf_verifier_env *env, 4308 const struct bpf_insn *insn, int idx) 4309 { 4310 int start = idx + insn->imm + 1, subprog; 4311 4312 subprog = find_subprog(env, start); 4313 if (subprog < 0) { 4314 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 4315 start); 4316 return -EFAULT; 4317 } 4318 return env->subprog_info[subprog].stack_depth; 4319 } 4320 #endif 4321 4322 static int __check_buffer_access(struct bpf_verifier_env *env, 4323 const char *buf_info, 4324 const struct bpf_reg_state *reg, 4325 int regno, int off, int size) 4326 { 4327 if (off < 0) { 4328 verbose(env, 4329 "R%d invalid %s buffer access: off=%d, size=%d\n", 4330 regno, buf_info, off, size); 4331 return -EACCES; 4332 } 4333 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 4334 char tn_buf[48]; 4335 4336 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4337 verbose(env, 4338 "R%d invalid variable buffer offset: off=%d, var_off=%s\n", 4339 regno, off, tn_buf); 4340 return -EACCES; 4341 } 4342 4343 return 0; 4344 } 4345 4346 static int check_tp_buffer_access(struct bpf_verifier_env *env, 4347 const struct bpf_reg_state *reg, 4348 int regno, int off, int size) 4349 { 4350 int err; 4351 4352 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size); 4353 if (err) 4354 return err; 4355 4356 if (off + size > env->prog->aux->max_tp_access) 4357 env->prog->aux->max_tp_access = off + size; 4358 4359 return 0; 4360 } 4361 4362 static int check_buffer_access(struct bpf_verifier_env *env, 4363 const struct bpf_reg_state *reg, 4364 int regno, int off, int size, 4365 bool zero_size_allowed, 4366 u32 *max_access) 4367 { 4368 const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr"; 4369 int err; 4370 4371 err = __check_buffer_access(env, buf_info, reg, regno, off, size); 4372 if (err) 4373 return err; 4374 4375 if (off + size > *max_access) 4376 *max_access = off + size; 4377 4378 return 0; 4379 } 4380 4381 /* BPF architecture zero extends alu32 ops into 64-bit registesr */ 4382 static void zext_32_to_64(struct bpf_reg_state *reg) 4383 { 4384 reg->var_off = tnum_subreg(reg->var_off); 4385 __reg_assign_32_into_64(reg); 4386 } 4387 4388 /* truncate register to smaller size (in bytes) 4389 * must be called with size < BPF_REG_SIZE 4390 */ 4391 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 4392 { 4393 u64 mask; 4394 4395 /* clear high bits in bit representation */ 4396 reg->var_off = tnum_cast(reg->var_off, size); 4397 4398 /* fix arithmetic bounds */ 4399 mask = ((u64)1 << (size * 8)) - 1; 4400 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 4401 reg->umin_value &= mask; 4402 reg->umax_value &= mask; 4403 } else { 4404 reg->umin_value = 0; 4405 reg->umax_value = mask; 4406 } 4407 reg->smin_value = reg->umin_value; 4408 reg->smax_value = reg->umax_value; 4409 4410 /* If size is smaller than 32bit register the 32bit register 4411 * values are also truncated so we push 64-bit bounds into 4412 * 32-bit bounds. Above were truncated < 32-bits already. 4413 */ 4414 if (size >= 4) 4415 return; 4416 __reg_combine_64_into_32(reg); 4417 } 4418 4419 static bool bpf_map_is_rdonly(const struct bpf_map *map) 4420 { 4421 /* A map is considered read-only if the following condition are true: 4422 * 4423 * 1) BPF program side cannot change any of the map content. The 4424 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map 4425 * and was set at map creation time. 4426 * 2) The map value(s) have been initialized from user space by a 4427 * loader and then "frozen", such that no new map update/delete 4428 * operations from syscall side are possible for the rest of 4429 * the map's lifetime from that point onwards. 4430 * 3) Any parallel/pending map update/delete operations from syscall 4431 * side have been completed. Only after that point, it's safe to 4432 * assume that map value(s) are immutable. 4433 */ 4434 return (map->map_flags & BPF_F_RDONLY_PROG) && 4435 READ_ONCE(map->frozen) && 4436 !bpf_map_write_active(map); 4437 } 4438 4439 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val) 4440 { 4441 void *ptr; 4442 u64 addr; 4443 int err; 4444 4445 err = map->ops->map_direct_value_addr(map, &addr, off); 4446 if (err) 4447 return err; 4448 ptr = (void *)(long)addr + off; 4449 4450 switch (size) { 4451 case sizeof(u8): 4452 *val = (u64)*(u8 *)ptr; 4453 break; 4454 case sizeof(u16): 4455 *val = (u64)*(u16 *)ptr; 4456 break; 4457 case sizeof(u32): 4458 *val = (u64)*(u32 *)ptr; 4459 break; 4460 case sizeof(u64): 4461 *val = *(u64 *)ptr; 4462 break; 4463 default: 4464 return -EINVAL; 4465 } 4466 return 0; 4467 } 4468 4469 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 4470 struct bpf_reg_state *regs, 4471 int regno, int off, int size, 4472 enum bpf_access_type atype, 4473 int value_regno) 4474 { 4475 struct bpf_reg_state *reg = regs + regno; 4476 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id); 4477 const char *tname = btf_name_by_offset(reg->btf, t->name_off); 4478 enum bpf_type_flag flag = 0; 4479 u32 btf_id; 4480 int ret; 4481 4482 if (off < 0) { 4483 verbose(env, 4484 "R%d is ptr_%s invalid negative access: off=%d\n", 4485 regno, tname, off); 4486 return -EACCES; 4487 } 4488 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 4489 char tn_buf[48]; 4490 4491 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4492 verbose(env, 4493 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 4494 regno, tname, off, tn_buf); 4495 return -EACCES; 4496 } 4497 4498 if (reg->type & MEM_USER) { 4499 verbose(env, 4500 "R%d is ptr_%s access user memory: off=%d\n", 4501 regno, tname, off); 4502 return -EACCES; 4503 } 4504 4505 if (reg->type & MEM_PERCPU) { 4506 verbose(env, 4507 "R%d is ptr_%s access percpu memory: off=%d\n", 4508 regno, tname, off); 4509 return -EACCES; 4510 } 4511 4512 if (env->ops->btf_struct_access) { 4513 ret = env->ops->btf_struct_access(&env->log, reg->btf, t, 4514 off, size, atype, &btf_id, &flag); 4515 } else { 4516 if (atype != BPF_READ) { 4517 verbose(env, "only read is supported\n"); 4518 return -EACCES; 4519 } 4520 4521 ret = btf_struct_access(&env->log, reg->btf, t, off, size, 4522 atype, &btf_id, &flag); 4523 } 4524 4525 if (ret < 0) 4526 return ret; 4527 4528 /* If this is an untrusted pointer, all pointers formed by walking it 4529 * also inherit the untrusted flag. 4530 */ 4531 if (type_flag(reg->type) & PTR_UNTRUSTED) 4532 flag |= PTR_UNTRUSTED; 4533 4534 if (atype == BPF_READ && value_regno >= 0) 4535 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag); 4536 4537 return 0; 4538 } 4539 4540 static int check_ptr_to_map_access(struct bpf_verifier_env *env, 4541 struct bpf_reg_state *regs, 4542 int regno, int off, int size, 4543 enum bpf_access_type atype, 4544 int value_regno) 4545 { 4546 struct bpf_reg_state *reg = regs + regno; 4547 struct bpf_map *map = reg->map_ptr; 4548 enum bpf_type_flag flag = 0; 4549 const struct btf_type *t; 4550 const char *tname; 4551 u32 btf_id; 4552 int ret; 4553 4554 if (!btf_vmlinux) { 4555 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n"); 4556 return -ENOTSUPP; 4557 } 4558 4559 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) { 4560 verbose(env, "map_ptr access not supported for map type %d\n", 4561 map->map_type); 4562 return -ENOTSUPP; 4563 } 4564 4565 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id); 4566 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 4567 4568 if (!env->allow_ptr_to_map_access) { 4569 verbose(env, 4570 "%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 4571 tname); 4572 return -EPERM; 4573 } 4574 4575 if (off < 0) { 4576 verbose(env, "R%d is %s invalid negative access: off=%d\n", 4577 regno, tname, off); 4578 return -EACCES; 4579 } 4580 4581 if (atype != BPF_READ) { 4582 verbose(env, "only read from %s is supported\n", tname); 4583 return -EACCES; 4584 } 4585 4586 ret = btf_struct_access(&env->log, btf_vmlinux, t, off, size, atype, &btf_id, &flag); 4587 if (ret < 0) 4588 return ret; 4589 4590 if (value_regno >= 0) 4591 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag); 4592 4593 return 0; 4594 } 4595 4596 /* Check that the stack access at the given offset is within bounds. The 4597 * maximum valid offset is -1. 4598 * 4599 * The minimum valid offset is -MAX_BPF_STACK for writes, and 4600 * -state->allocated_stack for reads. 4601 */ 4602 static int check_stack_slot_within_bounds(int off, 4603 struct bpf_func_state *state, 4604 enum bpf_access_type t) 4605 { 4606 int min_valid_off; 4607 4608 if (t == BPF_WRITE) 4609 min_valid_off = -MAX_BPF_STACK; 4610 else 4611 min_valid_off = -state->allocated_stack; 4612 4613 if (off < min_valid_off || off > -1) 4614 return -EACCES; 4615 return 0; 4616 } 4617 4618 /* Check that the stack access at 'regno + off' falls within the maximum stack 4619 * bounds. 4620 * 4621 * 'off' includes `regno->offset`, but not its dynamic part (if any). 4622 */ 4623 static int check_stack_access_within_bounds( 4624 struct bpf_verifier_env *env, 4625 int regno, int off, int access_size, 4626 enum bpf_access_src src, enum bpf_access_type type) 4627 { 4628 struct bpf_reg_state *regs = cur_regs(env); 4629 struct bpf_reg_state *reg = regs + regno; 4630 struct bpf_func_state *state = func(env, reg); 4631 int min_off, max_off; 4632 int err; 4633 char *err_extra; 4634 4635 if (src == ACCESS_HELPER) 4636 /* We don't know if helpers are reading or writing (or both). */ 4637 err_extra = " indirect access to"; 4638 else if (type == BPF_READ) 4639 err_extra = " read from"; 4640 else 4641 err_extra = " write to"; 4642 4643 if (tnum_is_const(reg->var_off)) { 4644 min_off = reg->var_off.value + off; 4645 if (access_size > 0) 4646 max_off = min_off + access_size - 1; 4647 else 4648 max_off = min_off; 4649 } else { 4650 if (reg->smax_value >= BPF_MAX_VAR_OFF || 4651 reg->smin_value <= -BPF_MAX_VAR_OFF) { 4652 verbose(env, "invalid unbounded variable-offset%s stack R%d\n", 4653 err_extra, regno); 4654 return -EACCES; 4655 } 4656 min_off = reg->smin_value + off; 4657 if (access_size > 0) 4658 max_off = reg->smax_value + off + access_size - 1; 4659 else 4660 max_off = min_off; 4661 } 4662 4663 err = check_stack_slot_within_bounds(min_off, state, type); 4664 if (!err) 4665 err = check_stack_slot_within_bounds(max_off, state, type); 4666 4667 if (err) { 4668 if (tnum_is_const(reg->var_off)) { 4669 verbose(env, "invalid%s stack R%d off=%d size=%d\n", 4670 err_extra, regno, off, access_size); 4671 } else { 4672 char tn_buf[48]; 4673 4674 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4675 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n", 4676 err_extra, regno, tn_buf, access_size); 4677 } 4678 } 4679 return err; 4680 } 4681 4682 /* check whether memory at (regno + off) is accessible for t = (read | write) 4683 * if t==write, value_regno is a register which value is stored into memory 4684 * if t==read, value_regno is a register which will receive the value from memory 4685 * if t==write && value_regno==-1, some unknown value is stored into memory 4686 * if t==read && value_regno==-1, don't care what we read from memory 4687 */ 4688 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 4689 int off, int bpf_size, enum bpf_access_type t, 4690 int value_regno, bool strict_alignment_once) 4691 { 4692 struct bpf_reg_state *regs = cur_regs(env); 4693 struct bpf_reg_state *reg = regs + regno; 4694 struct bpf_func_state *state; 4695 int size, err = 0; 4696 4697 size = bpf_size_to_bytes(bpf_size); 4698 if (size < 0) 4699 return size; 4700 4701 /* alignment checks will add in reg->off themselves */ 4702 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 4703 if (err) 4704 return err; 4705 4706 /* for access checks, reg->off is just part of off */ 4707 off += reg->off; 4708 4709 if (reg->type == PTR_TO_MAP_KEY) { 4710 if (t == BPF_WRITE) { 4711 verbose(env, "write to change key R%d not allowed\n", regno); 4712 return -EACCES; 4713 } 4714 4715 err = check_mem_region_access(env, regno, off, size, 4716 reg->map_ptr->key_size, false); 4717 if (err) 4718 return err; 4719 if (value_regno >= 0) 4720 mark_reg_unknown(env, regs, value_regno); 4721 } else if (reg->type == PTR_TO_MAP_VALUE) { 4722 struct bpf_map_value_off_desc *kptr_off_desc = NULL; 4723 4724 if (t == BPF_WRITE && value_regno >= 0 && 4725 is_pointer_value(env, value_regno)) { 4726 verbose(env, "R%d leaks addr into map\n", value_regno); 4727 return -EACCES; 4728 } 4729 err = check_map_access_type(env, regno, off, size, t); 4730 if (err) 4731 return err; 4732 err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT); 4733 if (err) 4734 return err; 4735 if (tnum_is_const(reg->var_off)) 4736 kptr_off_desc = bpf_map_kptr_off_contains(reg->map_ptr, 4737 off + reg->var_off.value); 4738 if (kptr_off_desc) { 4739 err = check_map_kptr_access(env, regno, value_regno, insn_idx, 4740 kptr_off_desc); 4741 } else if (t == BPF_READ && value_regno >= 0) { 4742 struct bpf_map *map = reg->map_ptr; 4743 4744 /* if map is read-only, track its contents as scalars */ 4745 if (tnum_is_const(reg->var_off) && 4746 bpf_map_is_rdonly(map) && 4747 map->ops->map_direct_value_addr) { 4748 int map_off = off + reg->var_off.value; 4749 u64 val = 0; 4750 4751 err = bpf_map_direct_read(map, map_off, size, 4752 &val); 4753 if (err) 4754 return err; 4755 4756 regs[value_regno].type = SCALAR_VALUE; 4757 __mark_reg_known(®s[value_regno], val); 4758 } else { 4759 mark_reg_unknown(env, regs, value_regno); 4760 } 4761 } 4762 } else if (base_type(reg->type) == PTR_TO_MEM) { 4763 bool rdonly_mem = type_is_rdonly_mem(reg->type); 4764 4765 if (type_may_be_null(reg->type)) { 4766 verbose(env, "R%d invalid mem access '%s'\n", regno, 4767 reg_type_str(env, reg->type)); 4768 return -EACCES; 4769 } 4770 4771 if (t == BPF_WRITE && rdonly_mem) { 4772 verbose(env, "R%d cannot write into %s\n", 4773 regno, reg_type_str(env, reg->type)); 4774 return -EACCES; 4775 } 4776 4777 if (t == BPF_WRITE && value_regno >= 0 && 4778 is_pointer_value(env, value_regno)) { 4779 verbose(env, "R%d leaks addr into mem\n", value_regno); 4780 return -EACCES; 4781 } 4782 4783 err = check_mem_region_access(env, regno, off, size, 4784 reg->mem_size, false); 4785 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem)) 4786 mark_reg_unknown(env, regs, value_regno); 4787 } else if (reg->type == PTR_TO_CTX) { 4788 enum bpf_reg_type reg_type = SCALAR_VALUE; 4789 struct btf *btf = NULL; 4790 u32 btf_id = 0; 4791 4792 if (t == BPF_WRITE && value_regno >= 0 && 4793 is_pointer_value(env, value_regno)) { 4794 verbose(env, "R%d leaks addr into ctx\n", value_regno); 4795 return -EACCES; 4796 } 4797 4798 err = check_ptr_off_reg(env, reg, regno); 4799 if (err < 0) 4800 return err; 4801 4802 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf, 4803 &btf_id); 4804 if (err) 4805 verbose_linfo(env, insn_idx, "; "); 4806 if (!err && t == BPF_READ && value_regno >= 0) { 4807 /* ctx access returns either a scalar, or a 4808 * PTR_TO_PACKET[_META,_END]. In the latter 4809 * case, we know the offset is zero. 4810 */ 4811 if (reg_type == SCALAR_VALUE) { 4812 mark_reg_unknown(env, regs, value_regno); 4813 } else { 4814 mark_reg_known_zero(env, regs, 4815 value_regno); 4816 if (type_may_be_null(reg_type)) 4817 regs[value_regno].id = ++env->id_gen; 4818 /* A load of ctx field could have different 4819 * actual load size with the one encoded in the 4820 * insn. When the dst is PTR, it is for sure not 4821 * a sub-register. 4822 */ 4823 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 4824 if (base_type(reg_type) == PTR_TO_BTF_ID) { 4825 regs[value_regno].btf = btf; 4826 regs[value_regno].btf_id = btf_id; 4827 } 4828 } 4829 regs[value_regno].type = reg_type; 4830 } 4831 4832 } else if (reg->type == PTR_TO_STACK) { 4833 /* Basic bounds checks. */ 4834 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t); 4835 if (err) 4836 return err; 4837 4838 state = func(env, reg); 4839 err = update_stack_depth(env, state, off); 4840 if (err) 4841 return err; 4842 4843 if (t == BPF_READ) 4844 err = check_stack_read(env, regno, off, size, 4845 value_regno); 4846 else 4847 err = check_stack_write(env, regno, off, size, 4848 value_regno, insn_idx); 4849 } else if (reg_is_pkt_pointer(reg)) { 4850 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 4851 verbose(env, "cannot write into packet\n"); 4852 return -EACCES; 4853 } 4854 if (t == BPF_WRITE && value_regno >= 0 && 4855 is_pointer_value(env, value_regno)) { 4856 verbose(env, "R%d leaks addr into packet\n", 4857 value_regno); 4858 return -EACCES; 4859 } 4860 err = check_packet_access(env, regno, off, size, false); 4861 if (!err && t == BPF_READ && value_regno >= 0) 4862 mark_reg_unknown(env, regs, value_regno); 4863 } else if (reg->type == PTR_TO_FLOW_KEYS) { 4864 if (t == BPF_WRITE && value_regno >= 0 && 4865 is_pointer_value(env, value_regno)) { 4866 verbose(env, "R%d leaks addr into flow keys\n", 4867 value_regno); 4868 return -EACCES; 4869 } 4870 4871 err = check_flow_keys_access(env, off, size); 4872 if (!err && t == BPF_READ && value_regno >= 0) 4873 mark_reg_unknown(env, regs, value_regno); 4874 } else if (type_is_sk_pointer(reg->type)) { 4875 if (t == BPF_WRITE) { 4876 verbose(env, "R%d cannot write into %s\n", 4877 regno, reg_type_str(env, reg->type)); 4878 return -EACCES; 4879 } 4880 err = check_sock_access(env, insn_idx, regno, off, size, t); 4881 if (!err && value_regno >= 0) 4882 mark_reg_unknown(env, regs, value_regno); 4883 } else if (reg->type == PTR_TO_TP_BUFFER) { 4884 err = check_tp_buffer_access(env, reg, regno, off, size); 4885 if (!err && t == BPF_READ && value_regno >= 0) 4886 mark_reg_unknown(env, regs, value_regno); 4887 } else if (base_type(reg->type) == PTR_TO_BTF_ID && 4888 !type_may_be_null(reg->type)) { 4889 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 4890 value_regno); 4891 } else if (reg->type == CONST_PTR_TO_MAP) { 4892 err = check_ptr_to_map_access(env, regs, regno, off, size, t, 4893 value_regno); 4894 } else if (base_type(reg->type) == PTR_TO_BUF) { 4895 bool rdonly_mem = type_is_rdonly_mem(reg->type); 4896 u32 *max_access; 4897 4898 if (rdonly_mem) { 4899 if (t == BPF_WRITE) { 4900 verbose(env, "R%d cannot write into %s\n", 4901 regno, reg_type_str(env, reg->type)); 4902 return -EACCES; 4903 } 4904 max_access = &env->prog->aux->max_rdonly_access; 4905 } else { 4906 max_access = &env->prog->aux->max_rdwr_access; 4907 } 4908 4909 err = check_buffer_access(env, reg, regno, off, size, false, 4910 max_access); 4911 4912 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ)) 4913 mark_reg_unknown(env, regs, value_regno); 4914 } else { 4915 verbose(env, "R%d invalid mem access '%s'\n", regno, 4916 reg_type_str(env, reg->type)); 4917 return -EACCES; 4918 } 4919 4920 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 4921 regs[value_regno].type == SCALAR_VALUE) { 4922 /* b/h/w load zero-extends, mark upper bits as known 0 */ 4923 coerce_reg_to_size(®s[value_regno], size); 4924 } 4925 return err; 4926 } 4927 4928 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 4929 { 4930 int load_reg; 4931 int err; 4932 4933 switch (insn->imm) { 4934 case BPF_ADD: 4935 case BPF_ADD | BPF_FETCH: 4936 case BPF_AND: 4937 case BPF_AND | BPF_FETCH: 4938 case BPF_OR: 4939 case BPF_OR | BPF_FETCH: 4940 case BPF_XOR: 4941 case BPF_XOR | BPF_FETCH: 4942 case BPF_XCHG: 4943 case BPF_CMPXCHG: 4944 break; 4945 default: 4946 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm); 4947 return -EINVAL; 4948 } 4949 4950 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) { 4951 verbose(env, "invalid atomic operand size\n"); 4952 return -EINVAL; 4953 } 4954 4955 /* check src1 operand */ 4956 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4957 if (err) 4958 return err; 4959 4960 /* check src2 operand */ 4961 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 4962 if (err) 4963 return err; 4964 4965 if (insn->imm == BPF_CMPXCHG) { 4966 /* Check comparison of R0 with memory location */ 4967 const u32 aux_reg = BPF_REG_0; 4968 4969 err = check_reg_arg(env, aux_reg, SRC_OP); 4970 if (err) 4971 return err; 4972 4973 if (is_pointer_value(env, aux_reg)) { 4974 verbose(env, "R%d leaks addr into mem\n", aux_reg); 4975 return -EACCES; 4976 } 4977 } 4978 4979 if (is_pointer_value(env, insn->src_reg)) { 4980 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 4981 return -EACCES; 4982 } 4983 4984 if (is_ctx_reg(env, insn->dst_reg) || 4985 is_pkt_reg(env, insn->dst_reg) || 4986 is_flow_key_reg(env, insn->dst_reg) || 4987 is_sk_reg(env, insn->dst_reg)) { 4988 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n", 4989 insn->dst_reg, 4990 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 4991 return -EACCES; 4992 } 4993 4994 if (insn->imm & BPF_FETCH) { 4995 if (insn->imm == BPF_CMPXCHG) 4996 load_reg = BPF_REG_0; 4997 else 4998 load_reg = insn->src_reg; 4999 5000 /* check and record load of old value */ 5001 err = check_reg_arg(env, load_reg, DST_OP); 5002 if (err) 5003 return err; 5004 } else { 5005 /* This instruction accesses a memory location but doesn't 5006 * actually load it into a register. 5007 */ 5008 load_reg = -1; 5009 } 5010 5011 /* Check whether we can read the memory, with second call for fetch 5012 * case to simulate the register fill. 5013 */ 5014 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 5015 BPF_SIZE(insn->code), BPF_READ, -1, true); 5016 if (!err && load_reg >= 0) 5017 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 5018 BPF_SIZE(insn->code), BPF_READ, load_reg, 5019 true); 5020 if (err) 5021 return err; 5022 5023 /* Check whether we can write into the same memory. */ 5024 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 5025 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 5026 if (err) 5027 return err; 5028 5029 return 0; 5030 } 5031 5032 /* When register 'regno' is used to read the stack (either directly or through 5033 * a helper function) make sure that it's within stack boundary and, depending 5034 * on the access type, that all elements of the stack are initialized. 5035 * 5036 * 'off' includes 'regno->off', but not its dynamic part (if any). 5037 * 5038 * All registers that have been spilled on the stack in the slots within the 5039 * read offsets are marked as read. 5040 */ 5041 static int check_stack_range_initialized( 5042 struct bpf_verifier_env *env, int regno, int off, 5043 int access_size, bool zero_size_allowed, 5044 enum bpf_access_src type, struct bpf_call_arg_meta *meta) 5045 { 5046 struct bpf_reg_state *reg = reg_state(env, regno); 5047 struct bpf_func_state *state = func(env, reg); 5048 int err, min_off, max_off, i, j, slot, spi; 5049 char *err_extra = type == ACCESS_HELPER ? " indirect" : ""; 5050 enum bpf_access_type bounds_check_type; 5051 /* Some accesses can write anything into the stack, others are 5052 * read-only. 5053 */ 5054 bool clobber = false; 5055 5056 if (access_size == 0 && !zero_size_allowed) { 5057 verbose(env, "invalid zero-sized read\n"); 5058 return -EACCES; 5059 } 5060 5061 if (type == ACCESS_HELPER) { 5062 /* The bounds checks for writes are more permissive than for 5063 * reads. However, if raw_mode is not set, we'll do extra 5064 * checks below. 5065 */ 5066 bounds_check_type = BPF_WRITE; 5067 clobber = true; 5068 } else { 5069 bounds_check_type = BPF_READ; 5070 } 5071 err = check_stack_access_within_bounds(env, regno, off, access_size, 5072 type, bounds_check_type); 5073 if (err) 5074 return err; 5075 5076 5077 if (tnum_is_const(reg->var_off)) { 5078 min_off = max_off = reg->var_off.value + off; 5079 } else { 5080 /* Variable offset is prohibited for unprivileged mode for 5081 * simplicity since it requires corresponding support in 5082 * Spectre masking for stack ALU. 5083 * See also retrieve_ptr_limit(). 5084 */ 5085 if (!env->bypass_spec_v1) { 5086 char tn_buf[48]; 5087 5088 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5089 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n", 5090 regno, err_extra, tn_buf); 5091 return -EACCES; 5092 } 5093 /* Only initialized buffer on stack is allowed to be accessed 5094 * with variable offset. With uninitialized buffer it's hard to 5095 * guarantee that whole memory is marked as initialized on 5096 * helper return since specific bounds are unknown what may 5097 * cause uninitialized stack leaking. 5098 */ 5099 if (meta && meta->raw_mode) 5100 meta = NULL; 5101 5102 min_off = reg->smin_value + off; 5103 max_off = reg->smax_value + off; 5104 } 5105 5106 if (meta && meta->raw_mode) { 5107 meta->access_size = access_size; 5108 meta->regno = regno; 5109 return 0; 5110 } 5111 5112 for (i = min_off; i < max_off + access_size; i++) { 5113 u8 *stype; 5114 5115 slot = -i - 1; 5116 spi = slot / BPF_REG_SIZE; 5117 if (state->allocated_stack <= slot) 5118 goto err; 5119 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 5120 if (*stype == STACK_MISC) 5121 goto mark; 5122 if (*stype == STACK_ZERO) { 5123 if (clobber) { 5124 /* helper can write anything into the stack */ 5125 *stype = STACK_MISC; 5126 } 5127 goto mark; 5128 } 5129 5130 if (is_spilled_reg(&state->stack[spi]) && 5131 base_type(state->stack[spi].spilled_ptr.type) == PTR_TO_BTF_ID) 5132 goto mark; 5133 5134 if (is_spilled_reg(&state->stack[spi]) && 5135 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE || 5136 env->allow_ptr_leaks)) { 5137 if (clobber) { 5138 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 5139 for (j = 0; j < BPF_REG_SIZE; j++) 5140 scrub_spilled_slot(&state->stack[spi].slot_type[j]); 5141 } 5142 goto mark; 5143 } 5144 5145 err: 5146 if (tnum_is_const(reg->var_off)) { 5147 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n", 5148 err_extra, regno, min_off, i - min_off, access_size); 5149 } else { 5150 char tn_buf[48]; 5151 5152 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5153 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n", 5154 err_extra, regno, tn_buf, i - min_off, access_size); 5155 } 5156 return -EACCES; 5157 mark: 5158 /* reading any byte out of 8-byte 'spill_slot' will cause 5159 * the whole slot to be marked as 'read' 5160 */ 5161 mark_reg_read(env, &state->stack[spi].spilled_ptr, 5162 state->stack[spi].spilled_ptr.parent, 5163 REG_LIVE_READ64); 5164 } 5165 return update_stack_depth(env, state, min_off); 5166 } 5167 5168 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 5169 int access_size, bool zero_size_allowed, 5170 struct bpf_call_arg_meta *meta) 5171 { 5172 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5173 u32 *max_access; 5174 5175 switch (base_type(reg->type)) { 5176 case PTR_TO_PACKET: 5177 case PTR_TO_PACKET_META: 5178 return check_packet_access(env, regno, reg->off, access_size, 5179 zero_size_allowed); 5180 case PTR_TO_MAP_KEY: 5181 if (meta && meta->raw_mode) { 5182 verbose(env, "R%d cannot write into %s\n", regno, 5183 reg_type_str(env, reg->type)); 5184 return -EACCES; 5185 } 5186 return check_mem_region_access(env, regno, reg->off, access_size, 5187 reg->map_ptr->key_size, false); 5188 case PTR_TO_MAP_VALUE: 5189 if (check_map_access_type(env, regno, reg->off, access_size, 5190 meta && meta->raw_mode ? BPF_WRITE : 5191 BPF_READ)) 5192 return -EACCES; 5193 return check_map_access(env, regno, reg->off, access_size, 5194 zero_size_allowed, ACCESS_HELPER); 5195 case PTR_TO_MEM: 5196 if (type_is_rdonly_mem(reg->type)) { 5197 if (meta && meta->raw_mode) { 5198 verbose(env, "R%d cannot write into %s\n", regno, 5199 reg_type_str(env, reg->type)); 5200 return -EACCES; 5201 } 5202 } 5203 return check_mem_region_access(env, regno, reg->off, 5204 access_size, reg->mem_size, 5205 zero_size_allowed); 5206 case PTR_TO_BUF: 5207 if (type_is_rdonly_mem(reg->type)) { 5208 if (meta && meta->raw_mode) { 5209 verbose(env, "R%d cannot write into %s\n", regno, 5210 reg_type_str(env, reg->type)); 5211 return -EACCES; 5212 } 5213 5214 max_access = &env->prog->aux->max_rdonly_access; 5215 } else { 5216 max_access = &env->prog->aux->max_rdwr_access; 5217 } 5218 return check_buffer_access(env, reg, regno, reg->off, 5219 access_size, zero_size_allowed, 5220 max_access); 5221 case PTR_TO_STACK: 5222 return check_stack_range_initialized( 5223 env, 5224 regno, reg->off, access_size, 5225 zero_size_allowed, ACCESS_HELPER, meta); 5226 default: /* scalar_value or invalid ptr */ 5227 /* Allow zero-byte read from NULL, regardless of pointer type */ 5228 if (zero_size_allowed && access_size == 0 && 5229 register_is_null(reg)) 5230 return 0; 5231 5232 verbose(env, "R%d type=%s ", regno, 5233 reg_type_str(env, reg->type)); 5234 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK)); 5235 return -EACCES; 5236 } 5237 } 5238 5239 static int check_mem_size_reg(struct bpf_verifier_env *env, 5240 struct bpf_reg_state *reg, u32 regno, 5241 bool zero_size_allowed, 5242 struct bpf_call_arg_meta *meta) 5243 { 5244 int err; 5245 5246 /* This is used to refine r0 return value bounds for helpers 5247 * that enforce this value as an upper bound on return values. 5248 * See do_refine_retval_range() for helpers that can refine 5249 * the return value. C type of helper is u32 so we pull register 5250 * bound from umax_value however, if negative verifier errors 5251 * out. Only upper bounds can be learned because retval is an 5252 * int type and negative retvals are allowed. 5253 */ 5254 meta->msize_max_value = reg->umax_value; 5255 5256 /* The register is SCALAR_VALUE; the access check 5257 * happens using its boundaries. 5258 */ 5259 if (!tnum_is_const(reg->var_off)) 5260 /* For unprivileged variable accesses, disable raw 5261 * mode so that the program is required to 5262 * initialize all the memory that the helper could 5263 * just partially fill up. 5264 */ 5265 meta = NULL; 5266 5267 if (reg->smin_value < 0) { 5268 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 5269 regno); 5270 return -EACCES; 5271 } 5272 5273 if (reg->umin_value == 0) { 5274 err = check_helper_mem_access(env, regno - 1, 0, 5275 zero_size_allowed, 5276 meta); 5277 if (err) 5278 return err; 5279 } 5280 5281 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 5282 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 5283 regno); 5284 return -EACCES; 5285 } 5286 err = check_helper_mem_access(env, regno - 1, 5287 reg->umax_value, 5288 zero_size_allowed, meta); 5289 if (!err) 5290 err = mark_chain_precision(env, regno); 5291 return err; 5292 } 5293 5294 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 5295 u32 regno, u32 mem_size) 5296 { 5297 bool may_be_null = type_may_be_null(reg->type); 5298 struct bpf_reg_state saved_reg; 5299 struct bpf_call_arg_meta meta; 5300 int err; 5301 5302 if (register_is_null(reg)) 5303 return 0; 5304 5305 memset(&meta, 0, sizeof(meta)); 5306 /* Assuming that the register contains a value check if the memory 5307 * access is safe. Temporarily save and restore the register's state as 5308 * the conversion shouldn't be visible to a caller. 5309 */ 5310 if (may_be_null) { 5311 saved_reg = *reg; 5312 mark_ptr_not_null_reg(reg); 5313 } 5314 5315 err = check_helper_mem_access(env, regno, mem_size, true, &meta); 5316 /* Check access for BPF_WRITE */ 5317 meta.raw_mode = true; 5318 err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta); 5319 5320 if (may_be_null) 5321 *reg = saved_reg; 5322 5323 return err; 5324 } 5325 5326 int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 5327 u32 regno) 5328 { 5329 struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1]; 5330 bool may_be_null = type_may_be_null(mem_reg->type); 5331 struct bpf_reg_state saved_reg; 5332 struct bpf_call_arg_meta meta; 5333 int err; 5334 5335 WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5); 5336 5337 memset(&meta, 0, sizeof(meta)); 5338 5339 if (may_be_null) { 5340 saved_reg = *mem_reg; 5341 mark_ptr_not_null_reg(mem_reg); 5342 } 5343 5344 err = check_mem_size_reg(env, reg, regno, true, &meta); 5345 /* Check access for BPF_WRITE */ 5346 meta.raw_mode = true; 5347 err = err ?: check_mem_size_reg(env, reg, regno, true, &meta); 5348 5349 if (may_be_null) 5350 *mem_reg = saved_reg; 5351 return err; 5352 } 5353 5354 /* Implementation details: 5355 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL 5356 * Two bpf_map_lookups (even with the same key) will have different reg->id. 5357 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after 5358 * value_or_null->value transition, since the verifier only cares about 5359 * the range of access to valid map value pointer and doesn't care about actual 5360 * address of the map element. 5361 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 5362 * reg->id > 0 after value_or_null->value transition. By doing so 5363 * two bpf_map_lookups will be considered two different pointers that 5364 * point to different bpf_spin_locks. 5365 * The verifier allows taking only one bpf_spin_lock at a time to avoid 5366 * dead-locks. 5367 * Since only one bpf_spin_lock is allowed the checks are simpler than 5368 * reg_is_refcounted() logic. The verifier needs to remember only 5369 * one spin_lock instead of array of acquired_refs. 5370 * cur_state->active_spin_lock remembers which map value element got locked 5371 * and clears it after bpf_spin_unlock. 5372 */ 5373 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 5374 bool is_lock) 5375 { 5376 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5377 struct bpf_verifier_state *cur = env->cur_state; 5378 bool is_const = tnum_is_const(reg->var_off); 5379 struct bpf_map *map = reg->map_ptr; 5380 u64 val = reg->var_off.value; 5381 5382 if (!is_const) { 5383 verbose(env, 5384 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 5385 regno); 5386 return -EINVAL; 5387 } 5388 if (!map->btf) { 5389 verbose(env, 5390 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 5391 map->name); 5392 return -EINVAL; 5393 } 5394 if (!map_value_has_spin_lock(map)) { 5395 if (map->spin_lock_off == -E2BIG) 5396 verbose(env, 5397 "map '%s' has more than one 'struct bpf_spin_lock'\n", 5398 map->name); 5399 else if (map->spin_lock_off == -ENOENT) 5400 verbose(env, 5401 "map '%s' doesn't have 'struct bpf_spin_lock'\n", 5402 map->name); 5403 else 5404 verbose(env, 5405 "map '%s' is not a struct type or bpf_spin_lock is mangled\n", 5406 map->name); 5407 return -EINVAL; 5408 } 5409 if (map->spin_lock_off != val + reg->off) { 5410 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n", 5411 val + reg->off); 5412 return -EINVAL; 5413 } 5414 if (is_lock) { 5415 if (cur->active_spin_lock) { 5416 verbose(env, 5417 "Locking two bpf_spin_locks are not allowed\n"); 5418 return -EINVAL; 5419 } 5420 cur->active_spin_lock = reg->id; 5421 } else { 5422 if (!cur->active_spin_lock) { 5423 verbose(env, "bpf_spin_unlock without taking a lock\n"); 5424 return -EINVAL; 5425 } 5426 if (cur->active_spin_lock != reg->id) { 5427 verbose(env, "bpf_spin_unlock of different lock\n"); 5428 return -EINVAL; 5429 } 5430 cur->active_spin_lock = 0; 5431 } 5432 return 0; 5433 } 5434 5435 static int process_timer_func(struct bpf_verifier_env *env, int regno, 5436 struct bpf_call_arg_meta *meta) 5437 { 5438 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5439 bool is_const = tnum_is_const(reg->var_off); 5440 struct bpf_map *map = reg->map_ptr; 5441 u64 val = reg->var_off.value; 5442 5443 if (!is_const) { 5444 verbose(env, 5445 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n", 5446 regno); 5447 return -EINVAL; 5448 } 5449 if (!map->btf) { 5450 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n", 5451 map->name); 5452 return -EINVAL; 5453 } 5454 if (!map_value_has_timer(map)) { 5455 if (map->timer_off == -E2BIG) 5456 verbose(env, 5457 "map '%s' has more than one 'struct bpf_timer'\n", 5458 map->name); 5459 else if (map->timer_off == -ENOENT) 5460 verbose(env, 5461 "map '%s' doesn't have 'struct bpf_timer'\n", 5462 map->name); 5463 else 5464 verbose(env, 5465 "map '%s' is not a struct type or bpf_timer is mangled\n", 5466 map->name); 5467 return -EINVAL; 5468 } 5469 if (map->timer_off != val + reg->off) { 5470 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n", 5471 val + reg->off, map->timer_off); 5472 return -EINVAL; 5473 } 5474 if (meta->map_ptr) { 5475 verbose(env, "verifier bug. Two map pointers in a timer helper\n"); 5476 return -EFAULT; 5477 } 5478 meta->map_uid = reg->map_uid; 5479 meta->map_ptr = map; 5480 return 0; 5481 } 5482 5483 static int process_kptr_func(struct bpf_verifier_env *env, int regno, 5484 struct bpf_call_arg_meta *meta) 5485 { 5486 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5487 struct bpf_map_value_off_desc *off_desc; 5488 struct bpf_map *map_ptr = reg->map_ptr; 5489 u32 kptr_off; 5490 int ret; 5491 5492 if (!tnum_is_const(reg->var_off)) { 5493 verbose(env, 5494 "R%d doesn't have constant offset. kptr has to be at the constant offset\n", 5495 regno); 5496 return -EINVAL; 5497 } 5498 if (!map_ptr->btf) { 5499 verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n", 5500 map_ptr->name); 5501 return -EINVAL; 5502 } 5503 if (!map_value_has_kptrs(map_ptr)) { 5504 ret = PTR_ERR_OR_ZERO(map_ptr->kptr_off_tab); 5505 if (ret == -E2BIG) 5506 verbose(env, "map '%s' has more than %d kptr\n", map_ptr->name, 5507 BPF_MAP_VALUE_OFF_MAX); 5508 else if (ret == -EEXIST) 5509 verbose(env, "map '%s' has repeating kptr BTF tags\n", map_ptr->name); 5510 else 5511 verbose(env, "map '%s' has no valid kptr\n", map_ptr->name); 5512 return -EINVAL; 5513 } 5514 5515 meta->map_ptr = map_ptr; 5516 kptr_off = reg->off + reg->var_off.value; 5517 off_desc = bpf_map_kptr_off_contains(map_ptr, kptr_off); 5518 if (!off_desc) { 5519 verbose(env, "off=%d doesn't point to kptr\n", kptr_off); 5520 return -EACCES; 5521 } 5522 if (off_desc->type != BPF_KPTR_REF) { 5523 verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off); 5524 return -EACCES; 5525 } 5526 meta->kptr_off_desc = off_desc; 5527 return 0; 5528 } 5529 5530 static bool arg_type_is_mem_size(enum bpf_arg_type type) 5531 { 5532 return type == ARG_CONST_SIZE || 5533 type == ARG_CONST_SIZE_OR_ZERO; 5534 } 5535 5536 static bool arg_type_is_alloc_size(enum bpf_arg_type type) 5537 { 5538 return type == ARG_CONST_ALLOC_SIZE_OR_ZERO; 5539 } 5540 5541 static bool arg_type_is_int_ptr(enum bpf_arg_type type) 5542 { 5543 return type == ARG_PTR_TO_INT || 5544 type == ARG_PTR_TO_LONG; 5545 } 5546 5547 static bool arg_type_is_release(enum bpf_arg_type type) 5548 { 5549 return type & OBJ_RELEASE; 5550 } 5551 5552 static bool arg_type_is_dynptr(enum bpf_arg_type type) 5553 { 5554 return base_type(type) == ARG_PTR_TO_DYNPTR; 5555 } 5556 5557 static int int_ptr_type_to_size(enum bpf_arg_type type) 5558 { 5559 if (type == ARG_PTR_TO_INT) 5560 return sizeof(u32); 5561 else if (type == ARG_PTR_TO_LONG) 5562 return sizeof(u64); 5563 5564 return -EINVAL; 5565 } 5566 5567 static int resolve_map_arg_type(struct bpf_verifier_env *env, 5568 const struct bpf_call_arg_meta *meta, 5569 enum bpf_arg_type *arg_type) 5570 { 5571 if (!meta->map_ptr) { 5572 /* kernel subsystem misconfigured verifier */ 5573 verbose(env, "invalid map_ptr to access map->type\n"); 5574 return -EACCES; 5575 } 5576 5577 switch (meta->map_ptr->map_type) { 5578 case BPF_MAP_TYPE_SOCKMAP: 5579 case BPF_MAP_TYPE_SOCKHASH: 5580 if (*arg_type == ARG_PTR_TO_MAP_VALUE) { 5581 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON; 5582 } else { 5583 verbose(env, "invalid arg_type for sockmap/sockhash\n"); 5584 return -EINVAL; 5585 } 5586 break; 5587 case BPF_MAP_TYPE_BLOOM_FILTER: 5588 if (meta->func_id == BPF_FUNC_map_peek_elem) 5589 *arg_type = ARG_PTR_TO_MAP_VALUE; 5590 break; 5591 default: 5592 break; 5593 } 5594 return 0; 5595 } 5596 5597 struct bpf_reg_types { 5598 const enum bpf_reg_type types[10]; 5599 u32 *btf_id; 5600 }; 5601 5602 static const struct bpf_reg_types map_key_value_types = { 5603 .types = { 5604 PTR_TO_STACK, 5605 PTR_TO_PACKET, 5606 PTR_TO_PACKET_META, 5607 PTR_TO_MAP_KEY, 5608 PTR_TO_MAP_VALUE, 5609 }, 5610 }; 5611 5612 static const struct bpf_reg_types sock_types = { 5613 .types = { 5614 PTR_TO_SOCK_COMMON, 5615 PTR_TO_SOCKET, 5616 PTR_TO_TCP_SOCK, 5617 PTR_TO_XDP_SOCK, 5618 }, 5619 }; 5620 5621 #ifdef CONFIG_NET 5622 static const struct bpf_reg_types btf_id_sock_common_types = { 5623 .types = { 5624 PTR_TO_SOCK_COMMON, 5625 PTR_TO_SOCKET, 5626 PTR_TO_TCP_SOCK, 5627 PTR_TO_XDP_SOCK, 5628 PTR_TO_BTF_ID, 5629 }, 5630 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 5631 }; 5632 #endif 5633 5634 static const struct bpf_reg_types mem_types = { 5635 .types = { 5636 PTR_TO_STACK, 5637 PTR_TO_PACKET, 5638 PTR_TO_PACKET_META, 5639 PTR_TO_MAP_KEY, 5640 PTR_TO_MAP_VALUE, 5641 PTR_TO_MEM, 5642 PTR_TO_MEM | MEM_ALLOC, 5643 PTR_TO_BUF, 5644 }, 5645 }; 5646 5647 static const struct bpf_reg_types int_ptr_types = { 5648 .types = { 5649 PTR_TO_STACK, 5650 PTR_TO_PACKET, 5651 PTR_TO_PACKET_META, 5652 PTR_TO_MAP_KEY, 5653 PTR_TO_MAP_VALUE, 5654 }, 5655 }; 5656 5657 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } }; 5658 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } }; 5659 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } }; 5660 static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM | MEM_ALLOC } }; 5661 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } }; 5662 static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } }; 5663 static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } }; 5664 static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_BTF_ID | MEM_PERCPU } }; 5665 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } }; 5666 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } }; 5667 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } }; 5668 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } }; 5669 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } }; 5670 5671 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = { 5672 [ARG_PTR_TO_MAP_KEY] = &map_key_value_types, 5673 [ARG_PTR_TO_MAP_VALUE] = &map_key_value_types, 5674 [ARG_CONST_SIZE] = &scalar_types, 5675 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types, 5676 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types, 5677 [ARG_CONST_MAP_PTR] = &const_map_ptr_types, 5678 [ARG_PTR_TO_CTX] = &context_types, 5679 [ARG_PTR_TO_SOCK_COMMON] = &sock_types, 5680 #ifdef CONFIG_NET 5681 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types, 5682 #endif 5683 [ARG_PTR_TO_SOCKET] = &fullsock_types, 5684 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types, 5685 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types, 5686 [ARG_PTR_TO_MEM] = &mem_types, 5687 [ARG_PTR_TO_ALLOC_MEM] = &alloc_mem_types, 5688 [ARG_PTR_TO_INT] = &int_ptr_types, 5689 [ARG_PTR_TO_LONG] = &int_ptr_types, 5690 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types, 5691 [ARG_PTR_TO_FUNC] = &func_ptr_types, 5692 [ARG_PTR_TO_STACK] = &stack_ptr_types, 5693 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types, 5694 [ARG_PTR_TO_TIMER] = &timer_types, 5695 [ARG_PTR_TO_KPTR] = &kptr_types, 5696 [ARG_PTR_TO_DYNPTR] = &stack_ptr_types, 5697 }; 5698 5699 static int check_reg_type(struct bpf_verifier_env *env, u32 regno, 5700 enum bpf_arg_type arg_type, 5701 const u32 *arg_btf_id, 5702 struct bpf_call_arg_meta *meta) 5703 { 5704 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5705 enum bpf_reg_type expected, type = reg->type; 5706 const struct bpf_reg_types *compatible; 5707 int i, j; 5708 5709 compatible = compatible_reg_types[base_type(arg_type)]; 5710 if (!compatible) { 5711 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type); 5712 return -EFAULT; 5713 } 5714 5715 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY, 5716 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY 5717 * 5718 * Same for MAYBE_NULL: 5719 * 5720 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL, 5721 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL 5722 * 5723 * Therefore we fold these flags depending on the arg_type before comparison. 5724 */ 5725 if (arg_type & MEM_RDONLY) 5726 type &= ~MEM_RDONLY; 5727 if (arg_type & PTR_MAYBE_NULL) 5728 type &= ~PTR_MAYBE_NULL; 5729 5730 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) { 5731 expected = compatible->types[i]; 5732 if (expected == NOT_INIT) 5733 break; 5734 5735 if (type == expected) 5736 goto found; 5737 } 5738 5739 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type)); 5740 for (j = 0; j + 1 < i; j++) 5741 verbose(env, "%s, ", reg_type_str(env, compatible->types[j])); 5742 verbose(env, "%s\n", reg_type_str(env, compatible->types[j])); 5743 return -EACCES; 5744 5745 found: 5746 if (reg->type == PTR_TO_BTF_ID) { 5747 /* For bpf_sk_release, it needs to match against first member 5748 * 'struct sock_common', hence make an exception for it. This 5749 * allows bpf_sk_release to work for multiple socket types. 5750 */ 5751 bool strict_type_match = arg_type_is_release(arg_type) && 5752 meta->func_id != BPF_FUNC_sk_release; 5753 5754 if (!arg_btf_id) { 5755 if (!compatible->btf_id) { 5756 verbose(env, "verifier internal error: missing arg compatible BTF ID\n"); 5757 return -EFAULT; 5758 } 5759 arg_btf_id = compatible->btf_id; 5760 } 5761 5762 if (meta->func_id == BPF_FUNC_kptr_xchg) { 5763 if (map_kptr_match_type(env, meta->kptr_off_desc, reg, regno)) 5764 return -EACCES; 5765 } else if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 5766 btf_vmlinux, *arg_btf_id, 5767 strict_type_match)) { 5768 verbose(env, "R%d is of type %s but %s is expected\n", 5769 regno, kernel_type_name(reg->btf, reg->btf_id), 5770 kernel_type_name(btf_vmlinux, *arg_btf_id)); 5771 return -EACCES; 5772 } 5773 } 5774 5775 return 0; 5776 } 5777 5778 int check_func_arg_reg_off(struct bpf_verifier_env *env, 5779 const struct bpf_reg_state *reg, int regno, 5780 enum bpf_arg_type arg_type) 5781 { 5782 enum bpf_reg_type type = reg->type; 5783 bool fixed_off_ok = false; 5784 5785 switch ((u32)type) { 5786 /* Pointer types where reg offset is explicitly allowed: */ 5787 case PTR_TO_STACK: 5788 if (arg_type_is_dynptr(arg_type) && reg->off % BPF_REG_SIZE) { 5789 verbose(env, "cannot pass in dynptr at an offset\n"); 5790 return -EINVAL; 5791 } 5792 fallthrough; 5793 case PTR_TO_PACKET: 5794 case PTR_TO_PACKET_META: 5795 case PTR_TO_MAP_KEY: 5796 case PTR_TO_MAP_VALUE: 5797 case PTR_TO_MEM: 5798 case PTR_TO_MEM | MEM_RDONLY: 5799 case PTR_TO_MEM | MEM_ALLOC: 5800 case PTR_TO_BUF: 5801 case PTR_TO_BUF | MEM_RDONLY: 5802 case SCALAR_VALUE: 5803 /* Some of the argument types nevertheless require a 5804 * zero register offset. 5805 */ 5806 if (base_type(arg_type) != ARG_PTR_TO_ALLOC_MEM) 5807 return 0; 5808 break; 5809 /* All the rest must be rejected, except PTR_TO_BTF_ID which allows 5810 * fixed offset. 5811 */ 5812 case PTR_TO_BTF_ID: 5813 /* When referenced PTR_TO_BTF_ID is passed to release function, 5814 * it's fixed offset must be 0. In the other cases, fixed offset 5815 * can be non-zero. 5816 */ 5817 if (arg_type_is_release(arg_type) && reg->off) { 5818 verbose(env, "R%d must have zero offset when passed to release func\n", 5819 regno); 5820 return -EINVAL; 5821 } 5822 /* For arg is release pointer, fixed_off_ok must be false, but 5823 * we already checked and rejected reg->off != 0 above, so set 5824 * to true to allow fixed offset for all other cases. 5825 */ 5826 fixed_off_ok = true; 5827 break; 5828 default: 5829 break; 5830 } 5831 return __check_ptr_off_reg(env, reg, regno, fixed_off_ok); 5832 } 5833 5834 static u32 stack_slot_get_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 5835 { 5836 struct bpf_func_state *state = func(env, reg); 5837 int spi = get_spi(reg->off); 5838 5839 return state->stack[spi].spilled_ptr.id; 5840 } 5841 5842 static int check_func_arg(struct bpf_verifier_env *env, u32 arg, 5843 struct bpf_call_arg_meta *meta, 5844 const struct bpf_func_proto *fn) 5845 { 5846 u32 regno = BPF_REG_1 + arg; 5847 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5848 enum bpf_arg_type arg_type = fn->arg_type[arg]; 5849 enum bpf_reg_type type = reg->type; 5850 u32 *arg_btf_id = NULL; 5851 int err = 0; 5852 5853 if (arg_type == ARG_DONTCARE) 5854 return 0; 5855 5856 err = check_reg_arg(env, regno, SRC_OP); 5857 if (err) 5858 return err; 5859 5860 if (arg_type == ARG_ANYTHING) { 5861 if (is_pointer_value(env, regno)) { 5862 verbose(env, "R%d leaks addr into helper function\n", 5863 regno); 5864 return -EACCES; 5865 } 5866 return 0; 5867 } 5868 5869 if (type_is_pkt_pointer(type) && 5870 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 5871 verbose(env, "helper access to the packet is not allowed\n"); 5872 return -EACCES; 5873 } 5874 5875 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) { 5876 err = resolve_map_arg_type(env, meta, &arg_type); 5877 if (err) 5878 return err; 5879 } 5880 5881 if (register_is_null(reg) && type_may_be_null(arg_type)) 5882 /* A NULL register has a SCALAR_VALUE type, so skip 5883 * type checking. 5884 */ 5885 goto skip_type_check; 5886 5887 /* arg_btf_id and arg_size are in a union. */ 5888 if (base_type(arg_type) == ARG_PTR_TO_BTF_ID) 5889 arg_btf_id = fn->arg_btf_id[arg]; 5890 5891 err = check_reg_type(env, regno, arg_type, arg_btf_id, meta); 5892 if (err) 5893 return err; 5894 5895 err = check_func_arg_reg_off(env, reg, regno, arg_type); 5896 if (err) 5897 return err; 5898 5899 skip_type_check: 5900 if (arg_type_is_release(arg_type)) { 5901 if (arg_type_is_dynptr(arg_type)) { 5902 struct bpf_func_state *state = func(env, reg); 5903 int spi = get_spi(reg->off); 5904 5905 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS) || 5906 !state->stack[spi].spilled_ptr.id) { 5907 verbose(env, "arg %d is an unacquired reference\n", regno); 5908 return -EINVAL; 5909 } 5910 } else if (!reg->ref_obj_id && !register_is_null(reg)) { 5911 verbose(env, "R%d must be referenced when passed to release function\n", 5912 regno); 5913 return -EINVAL; 5914 } 5915 if (meta->release_regno) { 5916 verbose(env, "verifier internal error: more than one release argument\n"); 5917 return -EFAULT; 5918 } 5919 meta->release_regno = regno; 5920 } 5921 5922 if (reg->ref_obj_id) { 5923 if (meta->ref_obj_id) { 5924 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 5925 regno, reg->ref_obj_id, 5926 meta->ref_obj_id); 5927 return -EFAULT; 5928 } 5929 meta->ref_obj_id = reg->ref_obj_id; 5930 } 5931 5932 if (arg_type == ARG_CONST_MAP_PTR) { 5933 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 5934 if (meta->map_ptr) { 5935 /* Use map_uid (which is unique id of inner map) to reject: 5936 * inner_map1 = bpf_map_lookup_elem(outer_map, key1) 5937 * inner_map2 = bpf_map_lookup_elem(outer_map, key2) 5938 * if (inner_map1 && inner_map2) { 5939 * timer = bpf_map_lookup_elem(inner_map1); 5940 * if (timer) 5941 * // mismatch would have been allowed 5942 * bpf_timer_init(timer, inner_map2); 5943 * } 5944 * 5945 * Comparing map_ptr is enough to distinguish normal and outer maps. 5946 */ 5947 if (meta->map_ptr != reg->map_ptr || 5948 meta->map_uid != reg->map_uid) { 5949 verbose(env, 5950 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", 5951 meta->map_uid, reg->map_uid); 5952 return -EINVAL; 5953 } 5954 } 5955 meta->map_ptr = reg->map_ptr; 5956 meta->map_uid = reg->map_uid; 5957 } else if (arg_type == ARG_PTR_TO_MAP_KEY) { 5958 /* bpf_map_xxx(..., map_ptr, ..., key) call: 5959 * check that [key, key + map->key_size) are within 5960 * stack limits and initialized 5961 */ 5962 if (!meta->map_ptr) { 5963 /* in function declaration map_ptr must come before 5964 * map_key, so that it's verified and known before 5965 * we have to check map_key here. Otherwise it means 5966 * that kernel subsystem misconfigured verifier 5967 */ 5968 verbose(env, "invalid map_ptr to access map->key\n"); 5969 return -EACCES; 5970 } 5971 err = check_helper_mem_access(env, regno, 5972 meta->map_ptr->key_size, false, 5973 NULL); 5974 } else if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) { 5975 if (type_may_be_null(arg_type) && register_is_null(reg)) 5976 return 0; 5977 5978 /* bpf_map_xxx(..., map_ptr, ..., value) call: 5979 * check [value, value + map->value_size) validity 5980 */ 5981 if (!meta->map_ptr) { 5982 /* kernel subsystem misconfigured verifier */ 5983 verbose(env, "invalid map_ptr to access map->value\n"); 5984 return -EACCES; 5985 } 5986 meta->raw_mode = arg_type & MEM_UNINIT; 5987 err = check_helper_mem_access(env, regno, 5988 meta->map_ptr->value_size, false, 5989 meta); 5990 } else if (arg_type == ARG_PTR_TO_PERCPU_BTF_ID) { 5991 if (!reg->btf_id) { 5992 verbose(env, "Helper has invalid btf_id in R%d\n", regno); 5993 return -EACCES; 5994 } 5995 meta->ret_btf = reg->btf; 5996 meta->ret_btf_id = reg->btf_id; 5997 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) { 5998 if (meta->func_id == BPF_FUNC_spin_lock) { 5999 if (process_spin_lock(env, regno, true)) 6000 return -EACCES; 6001 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 6002 if (process_spin_lock(env, regno, false)) 6003 return -EACCES; 6004 } else { 6005 verbose(env, "verifier internal error\n"); 6006 return -EFAULT; 6007 } 6008 } else if (arg_type == ARG_PTR_TO_TIMER) { 6009 if (process_timer_func(env, regno, meta)) 6010 return -EACCES; 6011 } else if (arg_type == ARG_PTR_TO_FUNC) { 6012 meta->subprogno = reg->subprogno; 6013 } else if (base_type(arg_type) == ARG_PTR_TO_MEM) { 6014 /* The access to this pointer is only checked when we hit the 6015 * next is_mem_size argument below. 6016 */ 6017 meta->raw_mode = arg_type & MEM_UNINIT; 6018 if (arg_type & MEM_FIXED_SIZE) { 6019 err = check_helper_mem_access(env, regno, 6020 fn->arg_size[arg], false, 6021 meta); 6022 } 6023 } else if (arg_type_is_mem_size(arg_type)) { 6024 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO); 6025 6026 err = check_mem_size_reg(env, reg, regno, zero_size_allowed, meta); 6027 } else if (arg_type_is_dynptr(arg_type)) { 6028 if (arg_type & MEM_UNINIT) { 6029 if (!is_dynptr_reg_valid_uninit(env, reg)) { 6030 verbose(env, "Dynptr has to be an uninitialized dynptr\n"); 6031 return -EINVAL; 6032 } 6033 6034 /* We only support one dynptr being uninitialized at the moment, 6035 * which is sufficient for the helper functions we have right now. 6036 */ 6037 if (meta->uninit_dynptr_regno) { 6038 verbose(env, "verifier internal error: multiple uninitialized dynptr args\n"); 6039 return -EFAULT; 6040 } 6041 6042 meta->uninit_dynptr_regno = regno; 6043 } else if (!is_dynptr_reg_valid_init(env, reg, arg_type)) { 6044 const char *err_extra = ""; 6045 6046 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) { 6047 case DYNPTR_TYPE_LOCAL: 6048 err_extra = "local "; 6049 break; 6050 case DYNPTR_TYPE_RINGBUF: 6051 err_extra = "ringbuf "; 6052 break; 6053 default: 6054 break; 6055 } 6056 6057 verbose(env, "Expected an initialized %sdynptr as arg #%d\n", 6058 err_extra, arg + 1); 6059 return -EINVAL; 6060 } 6061 } else if (arg_type_is_alloc_size(arg_type)) { 6062 if (!tnum_is_const(reg->var_off)) { 6063 verbose(env, "R%d is not a known constant'\n", 6064 regno); 6065 return -EACCES; 6066 } 6067 meta->mem_size = reg->var_off.value; 6068 } else if (arg_type_is_int_ptr(arg_type)) { 6069 int size = int_ptr_type_to_size(arg_type); 6070 6071 err = check_helper_mem_access(env, regno, size, false, meta); 6072 if (err) 6073 return err; 6074 err = check_ptr_alignment(env, reg, 0, size, true); 6075 } else if (arg_type == ARG_PTR_TO_CONST_STR) { 6076 struct bpf_map *map = reg->map_ptr; 6077 int map_off; 6078 u64 map_addr; 6079 char *str_ptr; 6080 6081 if (!bpf_map_is_rdonly(map)) { 6082 verbose(env, "R%d does not point to a readonly map'\n", regno); 6083 return -EACCES; 6084 } 6085 6086 if (!tnum_is_const(reg->var_off)) { 6087 verbose(env, "R%d is not a constant address'\n", regno); 6088 return -EACCES; 6089 } 6090 6091 if (!map->ops->map_direct_value_addr) { 6092 verbose(env, "no direct value access support for this map type\n"); 6093 return -EACCES; 6094 } 6095 6096 err = check_map_access(env, regno, reg->off, 6097 map->value_size - reg->off, false, 6098 ACCESS_HELPER); 6099 if (err) 6100 return err; 6101 6102 map_off = reg->off + reg->var_off.value; 6103 err = map->ops->map_direct_value_addr(map, &map_addr, map_off); 6104 if (err) { 6105 verbose(env, "direct value access on string failed\n"); 6106 return err; 6107 } 6108 6109 str_ptr = (char *)(long)(map_addr); 6110 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) { 6111 verbose(env, "string is not zero-terminated\n"); 6112 return -EINVAL; 6113 } 6114 } else if (arg_type == ARG_PTR_TO_KPTR) { 6115 if (process_kptr_func(env, regno, meta)) 6116 return -EACCES; 6117 } 6118 6119 return err; 6120 } 6121 6122 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id) 6123 { 6124 enum bpf_attach_type eatype = env->prog->expected_attach_type; 6125 enum bpf_prog_type type = resolve_prog_type(env->prog); 6126 6127 if (func_id != BPF_FUNC_map_update_elem) 6128 return false; 6129 6130 /* It's not possible to get access to a locked struct sock in these 6131 * contexts, so updating is safe. 6132 */ 6133 switch (type) { 6134 case BPF_PROG_TYPE_TRACING: 6135 if (eatype == BPF_TRACE_ITER) 6136 return true; 6137 break; 6138 case BPF_PROG_TYPE_SOCKET_FILTER: 6139 case BPF_PROG_TYPE_SCHED_CLS: 6140 case BPF_PROG_TYPE_SCHED_ACT: 6141 case BPF_PROG_TYPE_XDP: 6142 case BPF_PROG_TYPE_SK_REUSEPORT: 6143 case BPF_PROG_TYPE_FLOW_DISSECTOR: 6144 case BPF_PROG_TYPE_SK_LOOKUP: 6145 return true; 6146 default: 6147 break; 6148 } 6149 6150 verbose(env, "cannot update sockmap in this context\n"); 6151 return false; 6152 } 6153 6154 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env) 6155 { 6156 return env->prog->jit_requested && 6157 bpf_jit_supports_subprog_tailcalls(); 6158 } 6159 6160 static int check_map_func_compatibility(struct bpf_verifier_env *env, 6161 struct bpf_map *map, int func_id) 6162 { 6163 if (!map) 6164 return 0; 6165 6166 /* We need a two way check, first is from map perspective ... */ 6167 switch (map->map_type) { 6168 case BPF_MAP_TYPE_PROG_ARRAY: 6169 if (func_id != BPF_FUNC_tail_call) 6170 goto error; 6171 break; 6172 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 6173 if (func_id != BPF_FUNC_perf_event_read && 6174 func_id != BPF_FUNC_perf_event_output && 6175 func_id != BPF_FUNC_skb_output && 6176 func_id != BPF_FUNC_perf_event_read_value && 6177 func_id != BPF_FUNC_xdp_output) 6178 goto error; 6179 break; 6180 case BPF_MAP_TYPE_RINGBUF: 6181 if (func_id != BPF_FUNC_ringbuf_output && 6182 func_id != BPF_FUNC_ringbuf_reserve && 6183 func_id != BPF_FUNC_ringbuf_query && 6184 func_id != BPF_FUNC_ringbuf_reserve_dynptr && 6185 func_id != BPF_FUNC_ringbuf_submit_dynptr && 6186 func_id != BPF_FUNC_ringbuf_discard_dynptr) 6187 goto error; 6188 break; 6189 case BPF_MAP_TYPE_STACK_TRACE: 6190 if (func_id != BPF_FUNC_get_stackid) 6191 goto error; 6192 break; 6193 case BPF_MAP_TYPE_CGROUP_ARRAY: 6194 if (func_id != BPF_FUNC_skb_under_cgroup && 6195 func_id != BPF_FUNC_current_task_under_cgroup) 6196 goto error; 6197 break; 6198 case BPF_MAP_TYPE_CGROUP_STORAGE: 6199 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 6200 if (func_id != BPF_FUNC_get_local_storage) 6201 goto error; 6202 break; 6203 case BPF_MAP_TYPE_DEVMAP: 6204 case BPF_MAP_TYPE_DEVMAP_HASH: 6205 if (func_id != BPF_FUNC_redirect_map && 6206 func_id != BPF_FUNC_map_lookup_elem) 6207 goto error; 6208 break; 6209 /* Restrict bpf side of cpumap and xskmap, open when use-cases 6210 * appear. 6211 */ 6212 case BPF_MAP_TYPE_CPUMAP: 6213 if (func_id != BPF_FUNC_redirect_map) 6214 goto error; 6215 break; 6216 case BPF_MAP_TYPE_XSKMAP: 6217 if (func_id != BPF_FUNC_redirect_map && 6218 func_id != BPF_FUNC_map_lookup_elem) 6219 goto error; 6220 break; 6221 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 6222 case BPF_MAP_TYPE_HASH_OF_MAPS: 6223 if (func_id != BPF_FUNC_map_lookup_elem) 6224 goto error; 6225 break; 6226 case BPF_MAP_TYPE_SOCKMAP: 6227 if (func_id != BPF_FUNC_sk_redirect_map && 6228 func_id != BPF_FUNC_sock_map_update && 6229 func_id != BPF_FUNC_map_delete_elem && 6230 func_id != BPF_FUNC_msg_redirect_map && 6231 func_id != BPF_FUNC_sk_select_reuseport && 6232 func_id != BPF_FUNC_map_lookup_elem && 6233 !may_update_sockmap(env, func_id)) 6234 goto error; 6235 break; 6236 case BPF_MAP_TYPE_SOCKHASH: 6237 if (func_id != BPF_FUNC_sk_redirect_hash && 6238 func_id != BPF_FUNC_sock_hash_update && 6239 func_id != BPF_FUNC_map_delete_elem && 6240 func_id != BPF_FUNC_msg_redirect_hash && 6241 func_id != BPF_FUNC_sk_select_reuseport && 6242 func_id != BPF_FUNC_map_lookup_elem && 6243 !may_update_sockmap(env, func_id)) 6244 goto error; 6245 break; 6246 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 6247 if (func_id != BPF_FUNC_sk_select_reuseport) 6248 goto error; 6249 break; 6250 case BPF_MAP_TYPE_QUEUE: 6251 case BPF_MAP_TYPE_STACK: 6252 if (func_id != BPF_FUNC_map_peek_elem && 6253 func_id != BPF_FUNC_map_pop_elem && 6254 func_id != BPF_FUNC_map_push_elem) 6255 goto error; 6256 break; 6257 case BPF_MAP_TYPE_SK_STORAGE: 6258 if (func_id != BPF_FUNC_sk_storage_get && 6259 func_id != BPF_FUNC_sk_storage_delete) 6260 goto error; 6261 break; 6262 case BPF_MAP_TYPE_INODE_STORAGE: 6263 if (func_id != BPF_FUNC_inode_storage_get && 6264 func_id != BPF_FUNC_inode_storage_delete) 6265 goto error; 6266 break; 6267 case BPF_MAP_TYPE_TASK_STORAGE: 6268 if (func_id != BPF_FUNC_task_storage_get && 6269 func_id != BPF_FUNC_task_storage_delete) 6270 goto error; 6271 break; 6272 case BPF_MAP_TYPE_BLOOM_FILTER: 6273 if (func_id != BPF_FUNC_map_peek_elem && 6274 func_id != BPF_FUNC_map_push_elem) 6275 goto error; 6276 break; 6277 default: 6278 break; 6279 } 6280 6281 /* ... and second from the function itself. */ 6282 switch (func_id) { 6283 case BPF_FUNC_tail_call: 6284 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 6285 goto error; 6286 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) { 6287 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 6288 return -EINVAL; 6289 } 6290 break; 6291 case BPF_FUNC_perf_event_read: 6292 case BPF_FUNC_perf_event_output: 6293 case BPF_FUNC_perf_event_read_value: 6294 case BPF_FUNC_skb_output: 6295 case BPF_FUNC_xdp_output: 6296 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 6297 goto error; 6298 break; 6299 case BPF_FUNC_ringbuf_output: 6300 case BPF_FUNC_ringbuf_reserve: 6301 case BPF_FUNC_ringbuf_query: 6302 case BPF_FUNC_ringbuf_reserve_dynptr: 6303 case BPF_FUNC_ringbuf_submit_dynptr: 6304 case BPF_FUNC_ringbuf_discard_dynptr: 6305 if (map->map_type != BPF_MAP_TYPE_RINGBUF) 6306 goto error; 6307 break; 6308 case BPF_FUNC_get_stackid: 6309 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 6310 goto error; 6311 break; 6312 case BPF_FUNC_current_task_under_cgroup: 6313 case BPF_FUNC_skb_under_cgroup: 6314 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 6315 goto error; 6316 break; 6317 case BPF_FUNC_redirect_map: 6318 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 6319 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 6320 map->map_type != BPF_MAP_TYPE_CPUMAP && 6321 map->map_type != BPF_MAP_TYPE_XSKMAP) 6322 goto error; 6323 break; 6324 case BPF_FUNC_sk_redirect_map: 6325 case BPF_FUNC_msg_redirect_map: 6326 case BPF_FUNC_sock_map_update: 6327 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 6328 goto error; 6329 break; 6330 case BPF_FUNC_sk_redirect_hash: 6331 case BPF_FUNC_msg_redirect_hash: 6332 case BPF_FUNC_sock_hash_update: 6333 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 6334 goto error; 6335 break; 6336 case BPF_FUNC_get_local_storage: 6337 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 6338 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 6339 goto error; 6340 break; 6341 case BPF_FUNC_sk_select_reuseport: 6342 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 6343 map->map_type != BPF_MAP_TYPE_SOCKMAP && 6344 map->map_type != BPF_MAP_TYPE_SOCKHASH) 6345 goto error; 6346 break; 6347 case BPF_FUNC_map_pop_elem: 6348 if (map->map_type != BPF_MAP_TYPE_QUEUE && 6349 map->map_type != BPF_MAP_TYPE_STACK) 6350 goto error; 6351 break; 6352 case BPF_FUNC_map_peek_elem: 6353 case BPF_FUNC_map_push_elem: 6354 if (map->map_type != BPF_MAP_TYPE_QUEUE && 6355 map->map_type != BPF_MAP_TYPE_STACK && 6356 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER) 6357 goto error; 6358 break; 6359 case BPF_FUNC_map_lookup_percpu_elem: 6360 if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY && 6361 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 6362 map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH) 6363 goto error; 6364 break; 6365 case BPF_FUNC_sk_storage_get: 6366 case BPF_FUNC_sk_storage_delete: 6367 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 6368 goto error; 6369 break; 6370 case BPF_FUNC_inode_storage_get: 6371 case BPF_FUNC_inode_storage_delete: 6372 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE) 6373 goto error; 6374 break; 6375 case BPF_FUNC_task_storage_get: 6376 case BPF_FUNC_task_storage_delete: 6377 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE) 6378 goto error; 6379 break; 6380 default: 6381 break; 6382 } 6383 6384 return 0; 6385 error: 6386 verbose(env, "cannot pass map_type %d into func %s#%d\n", 6387 map->map_type, func_id_name(func_id), func_id); 6388 return -EINVAL; 6389 } 6390 6391 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 6392 { 6393 int count = 0; 6394 6395 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 6396 count++; 6397 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 6398 count++; 6399 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 6400 count++; 6401 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 6402 count++; 6403 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 6404 count++; 6405 6406 /* We only support one arg being in raw mode at the moment, 6407 * which is sufficient for the helper functions we have 6408 * right now. 6409 */ 6410 return count <= 1; 6411 } 6412 6413 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg) 6414 { 6415 bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE; 6416 bool has_size = fn->arg_size[arg] != 0; 6417 bool is_next_size = false; 6418 6419 if (arg + 1 < ARRAY_SIZE(fn->arg_type)) 6420 is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]); 6421 6422 if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM) 6423 return is_next_size; 6424 6425 return has_size == is_next_size || is_next_size == is_fixed; 6426 } 6427 6428 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 6429 { 6430 /* bpf_xxx(..., buf, len) call will access 'len' 6431 * bytes from memory 'buf'. Both arg types need 6432 * to be paired, so make sure there's no buggy 6433 * helper function specification. 6434 */ 6435 if (arg_type_is_mem_size(fn->arg1_type) || 6436 check_args_pair_invalid(fn, 0) || 6437 check_args_pair_invalid(fn, 1) || 6438 check_args_pair_invalid(fn, 2) || 6439 check_args_pair_invalid(fn, 3) || 6440 check_args_pair_invalid(fn, 4)) 6441 return false; 6442 6443 return true; 6444 } 6445 6446 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id) 6447 { 6448 int count = 0; 6449 6450 if (arg_type_may_be_refcounted(fn->arg1_type)) 6451 count++; 6452 if (arg_type_may_be_refcounted(fn->arg2_type)) 6453 count++; 6454 if (arg_type_may_be_refcounted(fn->arg3_type)) 6455 count++; 6456 if (arg_type_may_be_refcounted(fn->arg4_type)) 6457 count++; 6458 if (arg_type_may_be_refcounted(fn->arg5_type)) 6459 count++; 6460 6461 /* A reference acquiring function cannot acquire 6462 * another refcounted ptr. 6463 */ 6464 if (may_be_acquire_function(func_id) && count) 6465 return false; 6466 6467 /* We only support one arg being unreferenced at the moment, 6468 * which is sufficient for the helper functions we have right now. 6469 */ 6470 return count <= 1; 6471 } 6472 6473 static bool check_btf_id_ok(const struct bpf_func_proto *fn) 6474 { 6475 int i; 6476 6477 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) { 6478 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i]) 6479 return false; 6480 6481 if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] && 6482 /* arg_btf_id and arg_size are in a union. */ 6483 (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM || 6484 !(fn->arg_type[i] & MEM_FIXED_SIZE))) 6485 return false; 6486 } 6487 6488 return true; 6489 } 6490 6491 static int check_func_proto(const struct bpf_func_proto *fn, int func_id, 6492 struct bpf_call_arg_meta *meta) 6493 { 6494 return check_raw_mode_ok(fn) && 6495 check_arg_pair_ok(fn) && 6496 check_btf_id_ok(fn) && 6497 check_refcount_ok(fn, func_id) ? 0 : -EINVAL; 6498 } 6499 6500 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 6501 * are now invalid, so turn them into unknown SCALAR_VALUE. 6502 */ 6503 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env, 6504 struct bpf_func_state *state) 6505 { 6506 struct bpf_reg_state *regs = state->regs, *reg; 6507 int i; 6508 6509 for (i = 0; i < MAX_BPF_REG; i++) 6510 if (reg_is_pkt_pointer_any(®s[i])) 6511 mark_reg_unknown(env, regs, i); 6512 6513 bpf_for_each_spilled_reg(i, state, reg) { 6514 if (!reg) 6515 continue; 6516 if (reg_is_pkt_pointer_any(reg)) 6517 __mark_reg_unknown(env, reg); 6518 } 6519 } 6520 6521 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 6522 { 6523 struct bpf_verifier_state *vstate = env->cur_state; 6524 int i; 6525 6526 for (i = 0; i <= vstate->curframe; i++) 6527 __clear_all_pkt_pointers(env, vstate->frame[i]); 6528 } 6529 6530 enum { 6531 AT_PKT_END = -1, 6532 BEYOND_PKT_END = -2, 6533 }; 6534 6535 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open) 6536 { 6537 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 6538 struct bpf_reg_state *reg = &state->regs[regn]; 6539 6540 if (reg->type != PTR_TO_PACKET) 6541 /* PTR_TO_PACKET_META is not supported yet */ 6542 return; 6543 6544 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end. 6545 * How far beyond pkt_end it goes is unknown. 6546 * if (!range_open) it's the case of pkt >= pkt_end 6547 * if (range_open) it's the case of pkt > pkt_end 6548 * hence this pointer is at least 1 byte bigger than pkt_end 6549 */ 6550 if (range_open) 6551 reg->range = BEYOND_PKT_END; 6552 else 6553 reg->range = AT_PKT_END; 6554 } 6555 6556 static void release_reg_references(struct bpf_verifier_env *env, 6557 struct bpf_func_state *state, 6558 int ref_obj_id) 6559 { 6560 struct bpf_reg_state *regs = state->regs, *reg; 6561 int i; 6562 6563 for (i = 0; i < MAX_BPF_REG; i++) 6564 if (regs[i].ref_obj_id == ref_obj_id) 6565 mark_reg_unknown(env, regs, i); 6566 6567 bpf_for_each_spilled_reg(i, state, reg) { 6568 if (!reg) 6569 continue; 6570 if (reg->ref_obj_id == ref_obj_id) 6571 __mark_reg_unknown(env, reg); 6572 } 6573 } 6574 6575 /* The pointer with the specified id has released its reference to kernel 6576 * resources. Identify all copies of the same pointer and clear the reference. 6577 */ 6578 static int release_reference(struct bpf_verifier_env *env, 6579 int ref_obj_id) 6580 { 6581 struct bpf_verifier_state *vstate = env->cur_state; 6582 int err; 6583 int i; 6584 6585 err = release_reference_state(cur_func(env), ref_obj_id); 6586 if (err) 6587 return err; 6588 6589 for (i = 0; i <= vstate->curframe; i++) 6590 release_reg_references(env, vstate->frame[i], ref_obj_id); 6591 6592 return 0; 6593 } 6594 6595 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 6596 struct bpf_reg_state *regs) 6597 { 6598 int i; 6599 6600 /* after the call registers r0 - r5 were scratched */ 6601 for (i = 0; i < CALLER_SAVED_REGS; i++) { 6602 mark_reg_not_init(env, regs, caller_saved[i]); 6603 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 6604 } 6605 } 6606 6607 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env, 6608 struct bpf_func_state *caller, 6609 struct bpf_func_state *callee, 6610 int insn_idx); 6611 6612 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 6613 int *insn_idx, int subprog, 6614 set_callee_state_fn set_callee_state_cb) 6615 { 6616 struct bpf_verifier_state *state = env->cur_state; 6617 struct bpf_func_info_aux *func_info_aux; 6618 struct bpf_func_state *caller, *callee; 6619 int err; 6620 bool is_global = false; 6621 6622 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 6623 verbose(env, "the call stack of %d frames is too deep\n", 6624 state->curframe + 2); 6625 return -E2BIG; 6626 } 6627 6628 caller = state->frame[state->curframe]; 6629 if (state->frame[state->curframe + 1]) { 6630 verbose(env, "verifier bug. Frame %d already allocated\n", 6631 state->curframe + 1); 6632 return -EFAULT; 6633 } 6634 6635 func_info_aux = env->prog->aux->func_info_aux; 6636 if (func_info_aux) 6637 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL; 6638 err = btf_check_subprog_arg_match(env, subprog, caller->regs); 6639 if (err == -EFAULT) 6640 return err; 6641 if (is_global) { 6642 if (err) { 6643 verbose(env, "Caller passes invalid args into func#%d\n", 6644 subprog); 6645 return err; 6646 } else { 6647 if (env->log.level & BPF_LOG_LEVEL) 6648 verbose(env, 6649 "Func#%d is global and valid. Skipping.\n", 6650 subprog); 6651 clear_caller_saved_regs(env, caller->regs); 6652 6653 /* All global functions return a 64-bit SCALAR_VALUE */ 6654 mark_reg_unknown(env, caller->regs, BPF_REG_0); 6655 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 6656 6657 /* continue with next insn after call */ 6658 return 0; 6659 } 6660 } 6661 6662 if (insn->code == (BPF_JMP | BPF_CALL) && 6663 insn->src_reg == 0 && 6664 insn->imm == BPF_FUNC_timer_set_callback) { 6665 struct bpf_verifier_state *async_cb; 6666 6667 /* there is no real recursion here. timer callbacks are async */ 6668 env->subprog_info[subprog].is_async_cb = true; 6669 async_cb = push_async_cb(env, env->subprog_info[subprog].start, 6670 *insn_idx, subprog); 6671 if (!async_cb) 6672 return -EFAULT; 6673 callee = async_cb->frame[0]; 6674 callee->async_entry_cnt = caller->async_entry_cnt + 1; 6675 6676 /* Convert bpf_timer_set_callback() args into timer callback args */ 6677 err = set_callee_state_cb(env, caller, callee, *insn_idx); 6678 if (err) 6679 return err; 6680 6681 clear_caller_saved_regs(env, caller->regs); 6682 mark_reg_unknown(env, caller->regs, BPF_REG_0); 6683 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 6684 /* continue with next insn after call */ 6685 return 0; 6686 } 6687 6688 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 6689 if (!callee) 6690 return -ENOMEM; 6691 state->frame[state->curframe + 1] = callee; 6692 6693 /* callee cannot access r0, r6 - r9 for reading and has to write 6694 * into its own stack before reading from it. 6695 * callee can read/write into caller's stack 6696 */ 6697 init_func_state(env, callee, 6698 /* remember the callsite, it will be used by bpf_exit */ 6699 *insn_idx /* callsite */, 6700 state->curframe + 1 /* frameno within this callchain */, 6701 subprog /* subprog number within this prog */); 6702 6703 /* Transfer references to the callee */ 6704 err = copy_reference_state(callee, caller); 6705 if (err) 6706 return err; 6707 6708 err = set_callee_state_cb(env, caller, callee, *insn_idx); 6709 if (err) 6710 return err; 6711 6712 clear_caller_saved_regs(env, caller->regs); 6713 6714 /* only increment it after check_reg_arg() finished */ 6715 state->curframe++; 6716 6717 /* and go analyze first insn of the callee */ 6718 *insn_idx = env->subprog_info[subprog].start - 1; 6719 6720 if (env->log.level & BPF_LOG_LEVEL) { 6721 verbose(env, "caller:\n"); 6722 print_verifier_state(env, caller, true); 6723 verbose(env, "callee:\n"); 6724 print_verifier_state(env, callee, true); 6725 } 6726 return 0; 6727 } 6728 6729 int map_set_for_each_callback_args(struct bpf_verifier_env *env, 6730 struct bpf_func_state *caller, 6731 struct bpf_func_state *callee) 6732 { 6733 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn, 6734 * void *callback_ctx, u64 flags); 6735 * callback_fn(struct bpf_map *map, void *key, void *value, 6736 * void *callback_ctx); 6737 */ 6738 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 6739 6740 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 6741 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 6742 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr; 6743 6744 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 6745 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 6746 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr; 6747 6748 /* pointer to stack or null */ 6749 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3]; 6750 6751 /* unused */ 6752 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 6753 return 0; 6754 } 6755 6756 static int set_callee_state(struct bpf_verifier_env *env, 6757 struct bpf_func_state *caller, 6758 struct bpf_func_state *callee, int insn_idx) 6759 { 6760 int i; 6761 6762 /* copy r1 - r5 args that callee can access. The copy includes parent 6763 * pointers, which connects us up to the liveness chain 6764 */ 6765 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 6766 callee->regs[i] = caller->regs[i]; 6767 return 0; 6768 } 6769 6770 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 6771 int *insn_idx) 6772 { 6773 int subprog, target_insn; 6774 6775 target_insn = *insn_idx + insn->imm + 1; 6776 subprog = find_subprog(env, target_insn); 6777 if (subprog < 0) { 6778 verbose(env, "verifier bug. No program starts at insn %d\n", 6779 target_insn); 6780 return -EFAULT; 6781 } 6782 6783 return __check_func_call(env, insn, insn_idx, subprog, set_callee_state); 6784 } 6785 6786 static int set_map_elem_callback_state(struct bpf_verifier_env *env, 6787 struct bpf_func_state *caller, 6788 struct bpf_func_state *callee, 6789 int insn_idx) 6790 { 6791 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx]; 6792 struct bpf_map *map; 6793 int err; 6794 6795 if (bpf_map_ptr_poisoned(insn_aux)) { 6796 verbose(env, "tail_call abusing map_ptr\n"); 6797 return -EINVAL; 6798 } 6799 6800 map = BPF_MAP_PTR(insn_aux->map_ptr_state); 6801 if (!map->ops->map_set_for_each_callback_args || 6802 !map->ops->map_for_each_callback) { 6803 verbose(env, "callback function not allowed for map\n"); 6804 return -ENOTSUPP; 6805 } 6806 6807 err = map->ops->map_set_for_each_callback_args(env, caller, callee); 6808 if (err) 6809 return err; 6810 6811 callee->in_callback_fn = true; 6812 return 0; 6813 } 6814 6815 static int set_loop_callback_state(struct bpf_verifier_env *env, 6816 struct bpf_func_state *caller, 6817 struct bpf_func_state *callee, 6818 int insn_idx) 6819 { 6820 /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx, 6821 * u64 flags); 6822 * callback_fn(u32 index, void *callback_ctx); 6823 */ 6824 callee->regs[BPF_REG_1].type = SCALAR_VALUE; 6825 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 6826 6827 /* unused */ 6828 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 6829 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 6830 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 6831 6832 callee->in_callback_fn = true; 6833 return 0; 6834 } 6835 6836 static int set_timer_callback_state(struct bpf_verifier_env *env, 6837 struct bpf_func_state *caller, 6838 struct bpf_func_state *callee, 6839 int insn_idx) 6840 { 6841 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr; 6842 6843 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn); 6844 * callback_fn(struct bpf_map *map, void *key, void *value); 6845 */ 6846 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP; 6847 __mark_reg_known_zero(&callee->regs[BPF_REG_1]); 6848 callee->regs[BPF_REG_1].map_ptr = map_ptr; 6849 6850 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 6851 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 6852 callee->regs[BPF_REG_2].map_ptr = map_ptr; 6853 6854 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 6855 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 6856 callee->regs[BPF_REG_3].map_ptr = map_ptr; 6857 6858 /* unused */ 6859 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 6860 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 6861 callee->in_async_callback_fn = true; 6862 return 0; 6863 } 6864 6865 static int set_find_vma_callback_state(struct bpf_verifier_env *env, 6866 struct bpf_func_state *caller, 6867 struct bpf_func_state *callee, 6868 int insn_idx) 6869 { 6870 /* bpf_find_vma(struct task_struct *task, u64 addr, 6871 * void *callback_fn, void *callback_ctx, u64 flags) 6872 * (callback_fn)(struct task_struct *task, 6873 * struct vm_area_struct *vma, void *callback_ctx); 6874 */ 6875 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 6876 6877 callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID; 6878 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 6879 callee->regs[BPF_REG_2].btf = btf_vmlinux; 6880 callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA], 6881 6882 /* pointer to stack or null */ 6883 callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4]; 6884 6885 /* unused */ 6886 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 6887 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 6888 callee->in_callback_fn = true; 6889 return 0; 6890 } 6891 6892 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 6893 { 6894 struct bpf_verifier_state *state = env->cur_state; 6895 struct bpf_func_state *caller, *callee; 6896 struct bpf_reg_state *r0; 6897 int err; 6898 6899 callee = state->frame[state->curframe]; 6900 r0 = &callee->regs[BPF_REG_0]; 6901 if (r0->type == PTR_TO_STACK) { 6902 /* technically it's ok to return caller's stack pointer 6903 * (or caller's caller's pointer) back to the caller, 6904 * since these pointers are valid. Only current stack 6905 * pointer will be invalid as soon as function exits, 6906 * but let's be conservative 6907 */ 6908 verbose(env, "cannot return stack pointer to the caller\n"); 6909 return -EINVAL; 6910 } 6911 6912 state->curframe--; 6913 caller = state->frame[state->curframe]; 6914 if (callee->in_callback_fn) { 6915 /* enforce R0 return value range [0, 1]. */ 6916 struct tnum range = tnum_range(0, 1); 6917 6918 if (r0->type != SCALAR_VALUE) { 6919 verbose(env, "R0 not a scalar value\n"); 6920 return -EACCES; 6921 } 6922 if (!tnum_in(range, r0->var_off)) { 6923 verbose_invalid_scalar(env, r0, &range, "callback return", "R0"); 6924 return -EINVAL; 6925 } 6926 } else { 6927 /* return to the caller whatever r0 had in the callee */ 6928 caller->regs[BPF_REG_0] = *r0; 6929 } 6930 6931 /* Transfer references to the caller */ 6932 err = copy_reference_state(caller, callee); 6933 if (err) 6934 return err; 6935 6936 *insn_idx = callee->callsite + 1; 6937 if (env->log.level & BPF_LOG_LEVEL) { 6938 verbose(env, "returning from callee:\n"); 6939 print_verifier_state(env, callee, true); 6940 verbose(env, "to caller at %d:\n", *insn_idx); 6941 print_verifier_state(env, caller, true); 6942 } 6943 /* clear everything in the callee */ 6944 free_func_state(callee); 6945 state->frame[state->curframe + 1] = NULL; 6946 return 0; 6947 } 6948 6949 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 6950 int func_id, 6951 struct bpf_call_arg_meta *meta) 6952 { 6953 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 6954 6955 if (ret_type != RET_INTEGER || 6956 (func_id != BPF_FUNC_get_stack && 6957 func_id != BPF_FUNC_get_task_stack && 6958 func_id != BPF_FUNC_probe_read_str && 6959 func_id != BPF_FUNC_probe_read_kernel_str && 6960 func_id != BPF_FUNC_probe_read_user_str)) 6961 return; 6962 6963 ret_reg->smax_value = meta->msize_max_value; 6964 ret_reg->s32_max_value = meta->msize_max_value; 6965 ret_reg->smin_value = -MAX_ERRNO; 6966 ret_reg->s32_min_value = -MAX_ERRNO; 6967 reg_bounds_sync(ret_reg); 6968 } 6969 6970 static int 6971 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 6972 int func_id, int insn_idx) 6973 { 6974 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 6975 struct bpf_map *map = meta->map_ptr; 6976 6977 if (func_id != BPF_FUNC_tail_call && 6978 func_id != BPF_FUNC_map_lookup_elem && 6979 func_id != BPF_FUNC_map_update_elem && 6980 func_id != BPF_FUNC_map_delete_elem && 6981 func_id != BPF_FUNC_map_push_elem && 6982 func_id != BPF_FUNC_map_pop_elem && 6983 func_id != BPF_FUNC_map_peek_elem && 6984 func_id != BPF_FUNC_for_each_map_elem && 6985 func_id != BPF_FUNC_redirect_map && 6986 func_id != BPF_FUNC_map_lookup_percpu_elem) 6987 return 0; 6988 6989 if (map == NULL) { 6990 verbose(env, "kernel subsystem misconfigured verifier\n"); 6991 return -EINVAL; 6992 } 6993 6994 /* In case of read-only, some additional restrictions 6995 * need to be applied in order to prevent altering the 6996 * state of the map from program side. 6997 */ 6998 if ((map->map_flags & BPF_F_RDONLY_PROG) && 6999 (func_id == BPF_FUNC_map_delete_elem || 7000 func_id == BPF_FUNC_map_update_elem || 7001 func_id == BPF_FUNC_map_push_elem || 7002 func_id == BPF_FUNC_map_pop_elem)) { 7003 verbose(env, "write into map forbidden\n"); 7004 return -EACCES; 7005 } 7006 7007 if (!BPF_MAP_PTR(aux->map_ptr_state)) 7008 bpf_map_ptr_store(aux, meta->map_ptr, 7009 !meta->map_ptr->bypass_spec_v1); 7010 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr) 7011 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 7012 !meta->map_ptr->bypass_spec_v1); 7013 return 0; 7014 } 7015 7016 static int 7017 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 7018 int func_id, int insn_idx) 7019 { 7020 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 7021 struct bpf_reg_state *regs = cur_regs(env), *reg; 7022 struct bpf_map *map = meta->map_ptr; 7023 struct tnum range; 7024 u64 val; 7025 int err; 7026 7027 if (func_id != BPF_FUNC_tail_call) 7028 return 0; 7029 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 7030 verbose(env, "kernel subsystem misconfigured verifier\n"); 7031 return -EINVAL; 7032 } 7033 7034 range = tnum_range(0, map->max_entries - 1); 7035 reg = ®s[BPF_REG_3]; 7036 7037 if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) { 7038 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 7039 return 0; 7040 } 7041 7042 err = mark_chain_precision(env, BPF_REG_3); 7043 if (err) 7044 return err; 7045 7046 val = reg->var_off.value; 7047 if (bpf_map_key_unseen(aux)) 7048 bpf_map_key_store(aux, val); 7049 else if (!bpf_map_key_poisoned(aux) && 7050 bpf_map_key_immediate(aux) != val) 7051 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 7052 return 0; 7053 } 7054 7055 static int check_reference_leak(struct bpf_verifier_env *env) 7056 { 7057 struct bpf_func_state *state = cur_func(env); 7058 int i; 7059 7060 for (i = 0; i < state->acquired_refs; i++) { 7061 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 7062 state->refs[i].id, state->refs[i].insn_idx); 7063 } 7064 return state->acquired_refs ? -EINVAL : 0; 7065 } 7066 7067 static int check_bpf_snprintf_call(struct bpf_verifier_env *env, 7068 struct bpf_reg_state *regs) 7069 { 7070 struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3]; 7071 struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5]; 7072 struct bpf_map *fmt_map = fmt_reg->map_ptr; 7073 int err, fmt_map_off, num_args; 7074 u64 fmt_addr; 7075 char *fmt; 7076 7077 /* data must be an array of u64 */ 7078 if (data_len_reg->var_off.value % 8) 7079 return -EINVAL; 7080 num_args = data_len_reg->var_off.value / 8; 7081 7082 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const 7083 * and map_direct_value_addr is set. 7084 */ 7085 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value; 7086 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr, 7087 fmt_map_off); 7088 if (err) { 7089 verbose(env, "verifier bug\n"); 7090 return -EFAULT; 7091 } 7092 fmt = (char *)(long)fmt_addr + fmt_map_off; 7093 7094 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we 7095 * can focus on validating the format specifiers. 7096 */ 7097 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, NULL, num_args); 7098 if (err < 0) 7099 verbose(env, "Invalid format string\n"); 7100 7101 return err; 7102 } 7103 7104 static int check_get_func_ip(struct bpf_verifier_env *env) 7105 { 7106 enum bpf_prog_type type = resolve_prog_type(env->prog); 7107 int func_id = BPF_FUNC_get_func_ip; 7108 7109 if (type == BPF_PROG_TYPE_TRACING) { 7110 if (!bpf_prog_has_trampoline(env->prog)) { 7111 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n", 7112 func_id_name(func_id), func_id); 7113 return -ENOTSUPP; 7114 } 7115 return 0; 7116 } else if (type == BPF_PROG_TYPE_KPROBE) { 7117 return 0; 7118 } 7119 7120 verbose(env, "func %s#%d not supported for program type %d\n", 7121 func_id_name(func_id), func_id, type); 7122 return -ENOTSUPP; 7123 } 7124 7125 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 7126 { 7127 return &env->insn_aux_data[env->insn_idx]; 7128 } 7129 7130 static bool loop_flag_is_zero(struct bpf_verifier_env *env) 7131 { 7132 struct bpf_reg_state *regs = cur_regs(env); 7133 struct bpf_reg_state *reg = ®s[BPF_REG_4]; 7134 bool reg_is_null = register_is_null(reg); 7135 7136 if (reg_is_null) 7137 mark_chain_precision(env, BPF_REG_4); 7138 7139 return reg_is_null; 7140 } 7141 7142 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno) 7143 { 7144 struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state; 7145 7146 if (!state->initialized) { 7147 state->initialized = 1; 7148 state->fit_for_inline = loop_flag_is_zero(env); 7149 state->callback_subprogno = subprogno; 7150 return; 7151 } 7152 7153 if (!state->fit_for_inline) 7154 return; 7155 7156 state->fit_for_inline = (loop_flag_is_zero(env) && 7157 state->callback_subprogno == subprogno); 7158 } 7159 7160 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 7161 int *insn_idx_p) 7162 { 7163 const struct bpf_func_proto *fn = NULL; 7164 enum bpf_return_type ret_type; 7165 enum bpf_type_flag ret_flag; 7166 struct bpf_reg_state *regs; 7167 struct bpf_call_arg_meta meta; 7168 int insn_idx = *insn_idx_p; 7169 bool changes_data; 7170 int i, err, func_id; 7171 7172 /* find function prototype */ 7173 func_id = insn->imm; 7174 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 7175 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 7176 func_id); 7177 return -EINVAL; 7178 } 7179 7180 if (env->ops->get_func_proto) 7181 fn = env->ops->get_func_proto(func_id, env->prog); 7182 if (!fn) { 7183 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 7184 func_id); 7185 return -EINVAL; 7186 } 7187 7188 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 7189 if (!env->prog->gpl_compatible && fn->gpl_only) { 7190 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 7191 return -EINVAL; 7192 } 7193 7194 if (fn->allowed && !fn->allowed(env->prog)) { 7195 verbose(env, "helper call is not allowed in probe\n"); 7196 return -EINVAL; 7197 } 7198 7199 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 7200 changes_data = bpf_helper_changes_pkt_data(fn->func); 7201 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 7202 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 7203 func_id_name(func_id), func_id); 7204 return -EINVAL; 7205 } 7206 7207 memset(&meta, 0, sizeof(meta)); 7208 meta.pkt_access = fn->pkt_access; 7209 7210 err = check_func_proto(fn, func_id, &meta); 7211 if (err) { 7212 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 7213 func_id_name(func_id), func_id); 7214 return err; 7215 } 7216 7217 meta.func_id = func_id; 7218 /* check args */ 7219 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 7220 err = check_func_arg(env, i, &meta, fn); 7221 if (err) 7222 return err; 7223 } 7224 7225 err = record_func_map(env, &meta, func_id, insn_idx); 7226 if (err) 7227 return err; 7228 7229 err = record_func_key(env, &meta, func_id, insn_idx); 7230 if (err) 7231 return err; 7232 7233 /* Mark slots with STACK_MISC in case of raw mode, stack offset 7234 * is inferred from register state. 7235 */ 7236 for (i = 0; i < meta.access_size; i++) { 7237 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 7238 BPF_WRITE, -1, false); 7239 if (err) 7240 return err; 7241 } 7242 7243 regs = cur_regs(env); 7244 7245 if (meta.uninit_dynptr_regno) { 7246 /* we write BPF_DW bits (8 bytes) at a time */ 7247 for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) { 7248 err = check_mem_access(env, insn_idx, meta.uninit_dynptr_regno, 7249 i, BPF_DW, BPF_WRITE, -1, false); 7250 if (err) 7251 return err; 7252 } 7253 7254 err = mark_stack_slots_dynptr(env, ®s[meta.uninit_dynptr_regno], 7255 fn->arg_type[meta.uninit_dynptr_regno - BPF_REG_1], 7256 insn_idx); 7257 if (err) 7258 return err; 7259 } 7260 7261 if (meta.release_regno) { 7262 err = -EINVAL; 7263 if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) 7264 err = unmark_stack_slots_dynptr(env, ®s[meta.release_regno]); 7265 else if (meta.ref_obj_id) 7266 err = release_reference(env, meta.ref_obj_id); 7267 /* meta.ref_obj_id can only be 0 if register that is meant to be 7268 * released is NULL, which must be > R0. 7269 */ 7270 else if (register_is_null(®s[meta.release_regno])) 7271 err = 0; 7272 if (err) { 7273 verbose(env, "func %s#%d reference has not been acquired before\n", 7274 func_id_name(func_id), func_id); 7275 return err; 7276 } 7277 } 7278 7279 switch (func_id) { 7280 case BPF_FUNC_tail_call: 7281 err = check_reference_leak(env); 7282 if (err) { 7283 verbose(env, "tail_call would lead to reference leak\n"); 7284 return err; 7285 } 7286 break; 7287 case BPF_FUNC_get_local_storage: 7288 /* check that flags argument in get_local_storage(map, flags) is 0, 7289 * this is required because get_local_storage() can't return an error. 7290 */ 7291 if (!register_is_null(®s[BPF_REG_2])) { 7292 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 7293 return -EINVAL; 7294 } 7295 break; 7296 case BPF_FUNC_for_each_map_elem: 7297 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 7298 set_map_elem_callback_state); 7299 break; 7300 case BPF_FUNC_timer_set_callback: 7301 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 7302 set_timer_callback_state); 7303 break; 7304 case BPF_FUNC_find_vma: 7305 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 7306 set_find_vma_callback_state); 7307 break; 7308 case BPF_FUNC_snprintf: 7309 err = check_bpf_snprintf_call(env, regs); 7310 break; 7311 case BPF_FUNC_loop: 7312 update_loop_inline_state(env, meta.subprogno); 7313 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 7314 set_loop_callback_state); 7315 break; 7316 case BPF_FUNC_dynptr_from_mem: 7317 if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) { 7318 verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n", 7319 reg_type_str(env, regs[BPF_REG_1].type)); 7320 return -EACCES; 7321 } 7322 break; 7323 case BPF_FUNC_set_retval: 7324 if (env->prog->expected_attach_type == BPF_LSM_CGROUP) { 7325 if (!env->prog->aux->attach_func_proto->type) { 7326 /* Make sure programs that attach to void 7327 * hooks don't try to modify return value. 7328 */ 7329 verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 7330 return -EINVAL; 7331 } 7332 } 7333 break; 7334 } 7335 7336 if (err) 7337 return err; 7338 7339 /* reset caller saved regs */ 7340 for (i = 0; i < CALLER_SAVED_REGS; i++) { 7341 mark_reg_not_init(env, regs, caller_saved[i]); 7342 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 7343 } 7344 7345 /* helper call returns 64-bit value. */ 7346 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 7347 7348 /* update return register (already marked as written above) */ 7349 ret_type = fn->ret_type; 7350 ret_flag = type_flag(fn->ret_type); 7351 if (ret_type == RET_INTEGER) { 7352 /* sets type to SCALAR_VALUE */ 7353 mark_reg_unknown(env, regs, BPF_REG_0); 7354 } else if (ret_type == RET_VOID) { 7355 regs[BPF_REG_0].type = NOT_INIT; 7356 } else if (base_type(ret_type) == RET_PTR_TO_MAP_VALUE) { 7357 /* There is no offset yet applied, variable or fixed */ 7358 mark_reg_known_zero(env, regs, BPF_REG_0); 7359 /* remember map_ptr, so that check_map_access() 7360 * can check 'value_size' boundary of memory access 7361 * to map element returned from bpf_map_lookup_elem() 7362 */ 7363 if (meta.map_ptr == NULL) { 7364 verbose(env, 7365 "kernel subsystem misconfigured verifier\n"); 7366 return -EINVAL; 7367 } 7368 regs[BPF_REG_0].map_ptr = meta.map_ptr; 7369 regs[BPF_REG_0].map_uid = meta.map_uid; 7370 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag; 7371 if (!type_may_be_null(ret_type) && 7372 map_value_has_spin_lock(meta.map_ptr)) { 7373 regs[BPF_REG_0].id = ++env->id_gen; 7374 } 7375 } else if (base_type(ret_type) == RET_PTR_TO_SOCKET) { 7376 mark_reg_known_zero(env, regs, BPF_REG_0); 7377 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag; 7378 } else if (base_type(ret_type) == RET_PTR_TO_SOCK_COMMON) { 7379 mark_reg_known_zero(env, regs, BPF_REG_0); 7380 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag; 7381 } else if (base_type(ret_type) == RET_PTR_TO_TCP_SOCK) { 7382 mark_reg_known_zero(env, regs, BPF_REG_0); 7383 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag; 7384 } else if (base_type(ret_type) == RET_PTR_TO_ALLOC_MEM) { 7385 mark_reg_known_zero(env, regs, BPF_REG_0); 7386 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 7387 regs[BPF_REG_0].mem_size = meta.mem_size; 7388 } else if (base_type(ret_type) == RET_PTR_TO_MEM_OR_BTF_ID) { 7389 const struct btf_type *t; 7390 7391 mark_reg_known_zero(env, regs, BPF_REG_0); 7392 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL); 7393 if (!btf_type_is_struct(t)) { 7394 u32 tsize; 7395 const struct btf_type *ret; 7396 const char *tname; 7397 7398 /* resolve the type size of ksym. */ 7399 ret = btf_resolve_size(meta.ret_btf, t, &tsize); 7400 if (IS_ERR(ret)) { 7401 tname = btf_name_by_offset(meta.ret_btf, t->name_off); 7402 verbose(env, "unable to resolve the size of type '%s': %ld\n", 7403 tname, PTR_ERR(ret)); 7404 return -EINVAL; 7405 } 7406 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 7407 regs[BPF_REG_0].mem_size = tsize; 7408 } else { 7409 /* MEM_RDONLY may be carried from ret_flag, but it 7410 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise 7411 * it will confuse the check of PTR_TO_BTF_ID in 7412 * check_mem_access(). 7413 */ 7414 ret_flag &= ~MEM_RDONLY; 7415 7416 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 7417 regs[BPF_REG_0].btf = meta.ret_btf; 7418 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 7419 } 7420 } else if (base_type(ret_type) == RET_PTR_TO_BTF_ID) { 7421 struct btf *ret_btf; 7422 int ret_btf_id; 7423 7424 mark_reg_known_zero(env, regs, BPF_REG_0); 7425 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 7426 if (func_id == BPF_FUNC_kptr_xchg) { 7427 ret_btf = meta.kptr_off_desc->kptr.btf; 7428 ret_btf_id = meta.kptr_off_desc->kptr.btf_id; 7429 } else { 7430 ret_btf = btf_vmlinux; 7431 ret_btf_id = *fn->ret_btf_id; 7432 } 7433 if (ret_btf_id == 0) { 7434 verbose(env, "invalid return type %u of func %s#%d\n", 7435 base_type(ret_type), func_id_name(func_id), 7436 func_id); 7437 return -EINVAL; 7438 } 7439 regs[BPF_REG_0].btf = ret_btf; 7440 regs[BPF_REG_0].btf_id = ret_btf_id; 7441 } else { 7442 verbose(env, "unknown return type %u of func %s#%d\n", 7443 base_type(ret_type), func_id_name(func_id), func_id); 7444 return -EINVAL; 7445 } 7446 7447 if (type_may_be_null(regs[BPF_REG_0].type)) 7448 regs[BPF_REG_0].id = ++env->id_gen; 7449 7450 if (is_ptr_cast_function(func_id)) { 7451 /* For release_reference() */ 7452 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 7453 } else if (is_acquire_function(func_id, meta.map_ptr)) { 7454 int id = acquire_reference_state(env, insn_idx); 7455 7456 if (id < 0) 7457 return id; 7458 /* For mark_ptr_or_null_reg() */ 7459 regs[BPF_REG_0].id = id; 7460 /* For release_reference() */ 7461 regs[BPF_REG_0].ref_obj_id = id; 7462 } else if (func_id == BPF_FUNC_dynptr_data) { 7463 int dynptr_id = 0, i; 7464 7465 /* Find the id of the dynptr we're acquiring a reference to */ 7466 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 7467 if (arg_type_is_dynptr(fn->arg_type[i])) { 7468 if (dynptr_id) { 7469 verbose(env, "verifier internal error: multiple dynptr args in func\n"); 7470 return -EFAULT; 7471 } 7472 dynptr_id = stack_slot_get_id(env, ®s[BPF_REG_1 + i]); 7473 } 7474 } 7475 /* For release_reference() */ 7476 regs[BPF_REG_0].ref_obj_id = dynptr_id; 7477 } 7478 7479 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 7480 7481 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 7482 if (err) 7483 return err; 7484 7485 if ((func_id == BPF_FUNC_get_stack || 7486 func_id == BPF_FUNC_get_task_stack) && 7487 !env->prog->has_callchain_buf) { 7488 const char *err_str; 7489 7490 #ifdef CONFIG_PERF_EVENTS 7491 err = get_callchain_buffers(sysctl_perf_event_max_stack); 7492 err_str = "cannot get callchain buffer for func %s#%d\n"; 7493 #else 7494 err = -ENOTSUPP; 7495 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 7496 #endif 7497 if (err) { 7498 verbose(env, err_str, func_id_name(func_id), func_id); 7499 return err; 7500 } 7501 7502 env->prog->has_callchain_buf = true; 7503 } 7504 7505 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack) 7506 env->prog->call_get_stack = true; 7507 7508 if (func_id == BPF_FUNC_get_func_ip) { 7509 if (check_get_func_ip(env)) 7510 return -ENOTSUPP; 7511 env->prog->call_get_func_ip = true; 7512 } 7513 7514 if (changes_data) 7515 clear_all_pkt_pointers(env); 7516 return 0; 7517 } 7518 7519 /* mark_btf_func_reg_size() is used when the reg size is determined by 7520 * the BTF func_proto's return value size and argument. 7521 */ 7522 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno, 7523 size_t reg_size) 7524 { 7525 struct bpf_reg_state *reg = &cur_regs(env)[regno]; 7526 7527 if (regno == BPF_REG_0) { 7528 /* Function return value */ 7529 reg->live |= REG_LIVE_WRITTEN; 7530 reg->subreg_def = reg_size == sizeof(u64) ? 7531 DEF_NOT_SUBREG : env->insn_idx + 1; 7532 } else { 7533 /* Function argument */ 7534 if (reg_size == sizeof(u64)) { 7535 mark_insn_zext(env, reg); 7536 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 7537 } else { 7538 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32); 7539 } 7540 } 7541 } 7542 7543 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 7544 int *insn_idx_p) 7545 { 7546 const struct btf_type *t, *func, *func_proto, *ptr_type; 7547 struct bpf_reg_state *regs = cur_regs(env); 7548 const char *func_name, *ptr_type_name; 7549 u32 i, nargs, func_id, ptr_type_id; 7550 int err, insn_idx = *insn_idx_p; 7551 const struct btf_param *args; 7552 struct btf *desc_btf; 7553 bool acq; 7554 7555 /* skip for now, but return error when we find this in fixup_kfunc_call */ 7556 if (!insn->imm) 7557 return 0; 7558 7559 desc_btf = find_kfunc_desc_btf(env, insn->off); 7560 if (IS_ERR(desc_btf)) 7561 return PTR_ERR(desc_btf); 7562 7563 func_id = insn->imm; 7564 func = btf_type_by_id(desc_btf, func_id); 7565 func_name = btf_name_by_offset(desc_btf, func->name_off); 7566 func_proto = btf_type_by_id(desc_btf, func->type); 7567 7568 if (!btf_kfunc_id_set_contains(desc_btf, resolve_prog_type(env->prog), 7569 BTF_KFUNC_TYPE_CHECK, func_id)) { 7570 verbose(env, "calling kernel function %s is not allowed\n", 7571 func_name); 7572 return -EACCES; 7573 } 7574 7575 acq = btf_kfunc_id_set_contains(desc_btf, resolve_prog_type(env->prog), 7576 BTF_KFUNC_TYPE_ACQUIRE, func_id); 7577 7578 /* Check the arguments */ 7579 err = btf_check_kfunc_arg_match(env, desc_btf, func_id, regs); 7580 if (err < 0) 7581 return err; 7582 /* In case of release function, we get register number of refcounted 7583 * PTR_TO_BTF_ID back from btf_check_kfunc_arg_match, do the release now 7584 */ 7585 if (err) { 7586 err = release_reference(env, regs[err].ref_obj_id); 7587 if (err) { 7588 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 7589 func_name, func_id); 7590 return err; 7591 } 7592 } 7593 7594 for (i = 0; i < CALLER_SAVED_REGS; i++) 7595 mark_reg_not_init(env, regs, caller_saved[i]); 7596 7597 /* Check return type */ 7598 t = btf_type_skip_modifiers(desc_btf, func_proto->type, NULL); 7599 7600 if (acq && !btf_type_is_ptr(t)) { 7601 verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n"); 7602 return -EINVAL; 7603 } 7604 7605 if (btf_type_is_scalar(t)) { 7606 mark_reg_unknown(env, regs, BPF_REG_0); 7607 mark_btf_func_reg_size(env, BPF_REG_0, t->size); 7608 } else if (btf_type_is_ptr(t)) { 7609 ptr_type = btf_type_skip_modifiers(desc_btf, t->type, 7610 &ptr_type_id); 7611 if (!btf_type_is_struct(ptr_type)) { 7612 ptr_type_name = btf_name_by_offset(desc_btf, 7613 ptr_type->name_off); 7614 verbose(env, "kernel function %s returns pointer type %s %s is not supported\n", 7615 func_name, btf_type_str(ptr_type), 7616 ptr_type_name); 7617 return -EINVAL; 7618 } 7619 mark_reg_known_zero(env, regs, BPF_REG_0); 7620 regs[BPF_REG_0].btf = desc_btf; 7621 regs[BPF_REG_0].type = PTR_TO_BTF_ID; 7622 regs[BPF_REG_0].btf_id = ptr_type_id; 7623 if (btf_kfunc_id_set_contains(desc_btf, resolve_prog_type(env->prog), 7624 BTF_KFUNC_TYPE_RET_NULL, func_id)) { 7625 regs[BPF_REG_0].type |= PTR_MAYBE_NULL; 7626 /* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */ 7627 regs[BPF_REG_0].id = ++env->id_gen; 7628 } 7629 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *)); 7630 if (acq) { 7631 int id = acquire_reference_state(env, insn_idx); 7632 7633 if (id < 0) 7634 return id; 7635 regs[BPF_REG_0].id = id; 7636 regs[BPF_REG_0].ref_obj_id = id; 7637 } 7638 } /* else { add_kfunc_call() ensures it is btf_type_is_void(t) } */ 7639 7640 nargs = btf_type_vlen(func_proto); 7641 args = (const struct btf_param *)(func_proto + 1); 7642 for (i = 0; i < nargs; i++) { 7643 u32 regno = i + 1; 7644 7645 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL); 7646 if (btf_type_is_ptr(t)) 7647 mark_btf_func_reg_size(env, regno, sizeof(void *)); 7648 else 7649 /* scalar. ensured by btf_check_kfunc_arg_match() */ 7650 mark_btf_func_reg_size(env, regno, t->size); 7651 } 7652 7653 return 0; 7654 } 7655 7656 static bool signed_add_overflows(s64 a, s64 b) 7657 { 7658 /* Do the add in u64, where overflow is well-defined */ 7659 s64 res = (s64)((u64)a + (u64)b); 7660 7661 if (b < 0) 7662 return res > a; 7663 return res < a; 7664 } 7665 7666 static bool signed_add32_overflows(s32 a, s32 b) 7667 { 7668 /* Do the add in u32, where overflow is well-defined */ 7669 s32 res = (s32)((u32)a + (u32)b); 7670 7671 if (b < 0) 7672 return res > a; 7673 return res < a; 7674 } 7675 7676 static bool signed_sub_overflows(s64 a, s64 b) 7677 { 7678 /* Do the sub in u64, where overflow is well-defined */ 7679 s64 res = (s64)((u64)a - (u64)b); 7680 7681 if (b < 0) 7682 return res < a; 7683 return res > a; 7684 } 7685 7686 static bool signed_sub32_overflows(s32 a, s32 b) 7687 { 7688 /* Do the sub in u32, where overflow is well-defined */ 7689 s32 res = (s32)((u32)a - (u32)b); 7690 7691 if (b < 0) 7692 return res < a; 7693 return res > a; 7694 } 7695 7696 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 7697 const struct bpf_reg_state *reg, 7698 enum bpf_reg_type type) 7699 { 7700 bool known = tnum_is_const(reg->var_off); 7701 s64 val = reg->var_off.value; 7702 s64 smin = reg->smin_value; 7703 7704 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 7705 verbose(env, "math between %s pointer and %lld is not allowed\n", 7706 reg_type_str(env, type), val); 7707 return false; 7708 } 7709 7710 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 7711 verbose(env, "%s pointer offset %d is not allowed\n", 7712 reg_type_str(env, type), reg->off); 7713 return false; 7714 } 7715 7716 if (smin == S64_MIN) { 7717 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 7718 reg_type_str(env, type)); 7719 return false; 7720 } 7721 7722 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 7723 verbose(env, "value %lld makes %s pointer be out of bounds\n", 7724 smin, reg_type_str(env, type)); 7725 return false; 7726 } 7727 7728 return true; 7729 } 7730 7731 enum { 7732 REASON_BOUNDS = -1, 7733 REASON_TYPE = -2, 7734 REASON_PATHS = -3, 7735 REASON_LIMIT = -4, 7736 REASON_STACK = -5, 7737 }; 7738 7739 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 7740 u32 *alu_limit, bool mask_to_left) 7741 { 7742 u32 max = 0, ptr_limit = 0; 7743 7744 switch (ptr_reg->type) { 7745 case PTR_TO_STACK: 7746 /* Offset 0 is out-of-bounds, but acceptable start for the 7747 * left direction, see BPF_REG_FP. Also, unknown scalar 7748 * offset where we would need to deal with min/max bounds is 7749 * currently prohibited for unprivileged. 7750 */ 7751 max = MAX_BPF_STACK + mask_to_left; 7752 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off); 7753 break; 7754 case PTR_TO_MAP_VALUE: 7755 max = ptr_reg->map_ptr->value_size; 7756 ptr_limit = (mask_to_left ? 7757 ptr_reg->smin_value : 7758 ptr_reg->umax_value) + ptr_reg->off; 7759 break; 7760 default: 7761 return REASON_TYPE; 7762 } 7763 7764 if (ptr_limit >= max) 7765 return REASON_LIMIT; 7766 *alu_limit = ptr_limit; 7767 return 0; 7768 } 7769 7770 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 7771 const struct bpf_insn *insn) 7772 { 7773 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K; 7774 } 7775 7776 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 7777 u32 alu_state, u32 alu_limit) 7778 { 7779 /* If we arrived here from different branches with different 7780 * state or limits to sanitize, then this won't work. 7781 */ 7782 if (aux->alu_state && 7783 (aux->alu_state != alu_state || 7784 aux->alu_limit != alu_limit)) 7785 return REASON_PATHS; 7786 7787 /* Corresponding fixup done in do_misc_fixups(). */ 7788 aux->alu_state = alu_state; 7789 aux->alu_limit = alu_limit; 7790 return 0; 7791 } 7792 7793 static int sanitize_val_alu(struct bpf_verifier_env *env, 7794 struct bpf_insn *insn) 7795 { 7796 struct bpf_insn_aux_data *aux = cur_aux(env); 7797 7798 if (can_skip_alu_sanitation(env, insn)) 7799 return 0; 7800 7801 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 7802 } 7803 7804 static bool sanitize_needed(u8 opcode) 7805 { 7806 return opcode == BPF_ADD || opcode == BPF_SUB; 7807 } 7808 7809 struct bpf_sanitize_info { 7810 struct bpf_insn_aux_data aux; 7811 bool mask_to_left; 7812 }; 7813 7814 static struct bpf_verifier_state * 7815 sanitize_speculative_path(struct bpf_verifier_env *env, 7816 const struct bpf_insn *insn, 7817 u32 next_idx, u32 curr_idx) 7818 { 7819 struct bpf_verifier_state *branch; 7820 struct bpf_reg_state *regs; 7821 7822 branch = push_stack(env, next_idx, curr_idx, true); 7823 if (branch && insn) { 7824 regs = branch->frame[branch->curframe]->regs; 7825 if (BPF_SRC(insn->code) == BPF_K) { 7826 mark_reg_unknown(env, regs, insn->dst_reg); 7827 } else if (BPF_SRC(insn->code) == BPF_X) { 7828 mark_reg_unknown(env, regs, insn->dst_reg); 7829 mark_reg_unknown(env, regs, insn->src_reg); 7830 } 7831 } 7832 return branch; 7833 } 7834 7835 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 7836 struct bpf_insn *insn, 7837 const struct bpf_reg_state *ptr_reg, 7838 const struct bpf_reg_state *off_reg, 7839 struct bpf_reg_state *dst_reg, 7840 struct bpf_sanitize_info *info, 7841 const bool commit_window) 7842 { 7843 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux; 7844 struct bpf_verifier_state *vstate = env->cur_state; 7845 bool off_is_imm = tnum_is_const(off_reg->var_off); 7846 bool off_is_neg = off_reg->smin_value < 0; 7847 bool ptr_is_dst_reg = ptr_reg == dst_reg; 7848 u8 opcode = BPF_OP(insn->code); 7849 u32 alu_state, alu_limit; 7850 struct bpf_reg_state tmp; 7851 bool ret; 7852 int err; 7853 7854 if (can_skip_alu_sanitation(env, insn)) 7855 return 0; 7856 7857 /* We already marked aux for masking from non-speculative 7858 * paths, thus we got here in the first place. We only care 7859 * to explore bad access from here. 7860 */ 7861 if (vstate->speculative) 7862 goto do_sim; 7863 7864 if (!commit_window) { 7865 if (!tnum_is_const(off_reg->var_off) && 7866 (off_reg->smin_value < 0) != (off_reg->smax_value < 0)) 7867 return REASON_BOUNDS; 7868 7869 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) || 7870 (opcode == BPF_SUB && !off_is_neg); 7871 } 7872 7873 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left); 7874 if (err < 0) 7875 return err; 7876 7877 if (commit_window) { 7878 /* In commit phase we narrow the masking window based on 7879 * the observed pointer move after the simulated operation. 7880 */ 7881 alu_state = info->aux.alu_state; 7882 alu_limit = abs(info->aux.alu_limit - alu_limit); 7883 } else { 7884 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 7885 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0; 7886 alu_state |= ptr_is_dst_reg ? 7887 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 7888 7889 /* Limit pruning on unknown scalars to enable deep search for 7890 * potential masking differences from other program paths. 7891 */ 7892 if (!off_is_imm) 7893 env->explore_alu_limits = true; 7894 } 7895 7896 err = update_alu_sanitation_state(aux, alu_state, alu_limit); 7897 if (err < 0) 7898 return err; 7899 do_sim: 7900 /* If we're in commit phase, we're done here given we already 7901 * pushed the truncated dst_reg into the speculative verification 7902 * stack. 7903 * 7904 * Also, when register is a known constant, we rewrite register-based 7905 * operation to immediate-based, and thus do not need masking (and as 7906 * a consequence, do not need to simulate the zero-truncation either). 7907 */ 7908 if (commit_window || off_is_imm) 7909 return 0; 7910 7911 /* Simulate and find potential out-of-bounds access under 7912 * speculative execution from truncation as a result of 7913 * masking when off was not within expected range. If off 7914 * sits in dst, then we temporarily need to move ptr there 7915 * to simulate dst (== 0) +/-= ptr. Needed, for example, 7916 * for cases where we use K-based arithmetic in one direction 7917 * and truncated reg-based in the other in order to explore 7918 * bad access. 7919 */ 7920 if (!ptr_is_dst_reg) { 7921 tmp = *dst_reg; 7922 *dst_reg = *ptr_reg; 7923 } 7924 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1, 7925 env->insn_idx); 7926 if (!ptr_is_dst_reg && ret) 7927 *dst_reg = tmp; 7928 return !ret ? REASON_STACK : 0; 7929 } 7930 7931 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env) 7932 { 7933 struct bpf_verifier_state *vstate = env->cur_state; 7934 7935 /* If we simulate paths under speculation, we don't update the 7936 * insn as 'seen' such that when we verify unreachable paths in 7937 * the non-speculative domain, sanitize_dead_code() can still 7938 * rewrite/sanitize them. 7939 */ 7940 if (!vstate->speculative) 7941 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 7942 } 7943 7944 static int sanitize_err(struct bpf_verifier_env *env, 7945 const struct bpf_insn *insn, int reason, 7946 const struct bpf_reg_state *off_reg, 7947 const struct bpf_reg_state *dst_reg) 7948 { 7949 static const char *err = "pointer arithmetic with it prohibited for !root"; 7950 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub"; 7951 u32 dst = insn->dst_reg, src = insn->src_reg; 7952 7953 switch (reason) { 7954 case REASON_BOUNDS: 7955 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n", 7956 off_reg == dst_reg ? dst : src, err); 7957 break; 7958 case REASON_TYPE: 7959 verbose(env, "R%d has pointer with unsupported alu operation, %s\n", 7960 off_reg == dst_reg ? src : dst, err); 7961 break; 7962 case REASON_PATHS: 7963 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n", 7964 dst, op, err); 7965 break; 7966 case REASON_LIMIT: 7967 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n", 7968 dst, op, err); 7969 break; 7970 case REASON_STACK: 7971 verbose(env, "R%d could not be pushed for speculative verification, %s\n", 7972 dst, err); 7973 break; 7974 default: 7975 verbose(env, "verifier internal error: unknown reason (%d)\n", 7976 reason); 7977 break; 7978 } 7979 7980 return -EACCES; 7981 } 7982 7983 /* check that stack access falls within stack limits and that 'reg' doesn't 7984 * have a variable offset. 7985 * 7986 * Variable offset is prohibited for unprivileged mode for simplicity since it 7987 * requires corresponding support in Spectre masking for stack ALU. See also 7988 * retrieve_ptr_limit(). 7989 * 7990 * 7991 * 'off' includes 'reg->off'. 7992 */ 7993 static int check_stack_access_for_ptr_arithmetic( 7994 struct bpf_verifier_env *env, 7995 int regno, 7996 const struct bpf_reg_state *reg, 7997 int off) 7998 { 7999 if (!tnum_is_const(reg->var_off)) { 8000 char tn_buf[48]; 8001 8002 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 8003 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n", 8004 regno, tn_buf, off); 8005 return -EACCES; 8006 } 8007 8008 if (off >= 0 || off < -MAX_BPF_STACK) { 8009 verbose(env, "R%d stack pointer arithmetic goes out of range, " 8010 "prohibited for !root; off=%d\n", regno, off); 8011 return -EACCES; 8012 } 8013 8014 return 0; 8015 } 8016 8017 static int sanitize_check_bounds(struct bpf_verifier_env *env, 8018 const struct bpf_insn *insn, 8019 const struct bpf_reg_state *dst_reg) 8020 { 8021 u32 dst = insn->dst_reg; 8022 8023 /* For unprivileged we require that resulting offset must be in bounds 8024 * in order to be able to sanitize access later on. 8025 */ 8026 if (env->bypass_spec_v1) 8027 return 0; 8028 8029 switch (dst_reg->type) { 8030 case PTR_TO_STACK: 8031 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg, 8032 dst_reg->off + dst_reg->var_off.value)) 8033 return -EACCES; 8034 break; 8035 case PTR_TO_MAP_VALUE: 8036 if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) { 8037 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 8038 "prohibited for !root\n", dst); 8039 return -EACCES; 8040 } 8041 break; 8042 default: 8043 break; 8044 } 8045 8046 return 0; 8047 } 8048 8049 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 8050 * Caller should also handle BPF_MOV case separately. 8051 * If we return -EACCES, caller may want to try again treating pointer as a 8052 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 8053 */ 8054 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 8055 struct bpf_insn *insn, 8056 const struct bpf_reg_state *ptr_reg, 8057 const struct bpf_reg_state *off_reg) 8058 { 8059 struct bpf_verifier_state *vstate = env->cur_state; 8060 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 8061 struct bpf_reg_state *regs = state->regs, *dst_reg; 8062 bool known = tnum_is_const(off_reg->var_off); 8063 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 8064 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 8065 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 8066 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 8067 struct bpf_sanitize_info info = {}; 8068 u8 opcode = BPF_OP(insn->code); 8069 u32 dst = insn->dst_reg; 8070 int ret; 8071 8072 dst_reg = ®s[dst]; 8073 8074 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 8075 smin_val > smax_val || umin_val > umax_val) { 8076 /* Taint dst register if offset had invalid bounds derived from 8077 * e.g. dead branches. 8078 */ 8079 __mark_reg_unknown(env, dst_reg); 8080 return 0; 8081 } 8082 8083 if (BPF_CLASS(insn->code) != BPF_ALU64) { 8084 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 8085 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 8086 __mark_reg_unknown(env, dst_reg); 8087 return 0; 8088 } 8089 8090 verbose(env, 8091 "R%d 32-bit pointer arithmetic prohibited\n", 8092 dst); 8093 return -EACCES; 8094 } 8095 8096 if (ptr_reg->type & PTR_MAYBE_NULL) { 8097 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 8098 dst, reg_type_str(env, ptr_reg->type)); 8099 return -EACCES; 8100 } 8101 8102 switch (base_type(ptr_reg->type)) { 8103 case CONST_PTR_TO_MAP: 8104 /* smin_val represents the known value */ 8105 if (known && smin_val == 0 && opcode == BPF_ADD) 8106 break; 8107 fallthrough; 8108 case PTR_TO_PACKET_END: 8109 case PTR_TO_SOCKET: 8110 case PTR_TO_SOCK_COMMON: 8111 case PTR_TO_TCP_SOCK: 8112 case PTR_TO_XDP_SOCK: 8113 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 8114 dst, reg_type_str(env, ptr_reg->type)); 8115 return -EACCES; 8116 default: 8117 break; 8118 } 8119 8120 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 8121 * The id may be overwritten later if we create a new variable offset. 8122 */ 8123 dst_reg->type = ptr_reg->type; 8124 dst_reg->id = ptr_reg->id; 8125 8126 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 8127 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 8128 return -EINVAL; 8129 8130 /* pointer types do not carry 32-bit bounds at the moment. */ 8131 __mark_reg32_unbounded(dst_reg); 8132 8133 if (sanitize_needed(opcode)) { 8134 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg, 8135 &info, false); 8136 if (ret < 0) 8137 return sanitize_err(env, insn, ret, off_reg, dst_reg); 8138 } 8139 8140 switch (opcode) { 8141 case BPF_ADD: 8142 /* We can take a fixed offset as long as it doesn't overflow 8143 * the s32 'off' field 8144 */ 8145 if (known && (ptr_reg->off + smin_val == 8146 (s64)(s32)(ptr_reg->off + smin_val))) { 8147 /* pointer += K. Accumulate it into fixed offset */ 8148 dst_reg->smin_value = smin_ptr; 8149 dst_reg->smax_value = smax_ptr; 8150 dst_reg->umin_value = umin_ptr; 8151 dst_reg->umax_value = umax_ptr; 8152 dst_reg->var_off = ptr_reg->var_off; 8153 dst_reg->off = ptr_reg->off + smin_val; 8154 dst_reg->raw = ptr_reg->raw; 8155 break; 8156 } 8157 /* A new variable offset is created. Note that off_reg->off 8158 * == 0, since it's a scalar. 8159 * dst_reg gets the pointer type and since some positive 8160 * integer value was added to the pointer, give it a new 'id' 8161 * if it's a PTR_TO_PACKET. 8162 * this creates a new 'base' pointer, off_reg (variable) gets 8163 * added into the variable offset, and we copy the fixed offset 8164 * from ptr_reg. 8165 */ 8166 if (signed_add_overflows(smin_ptr, smin_val) || 8167 signed_add_overflows(smax_ptr, smax_val)) { 8168 dst_reg->smin_value = S64_MIN; 8169 dst_reg->smax_value = S64_MAX; 8170 } else { 8171 dst_reg->smin_value = smin_ptr + smin_val; 8172 dst_reg->smax_value = smax_ptr + smax_val; 8173 } 8174 if (umin_ptr + umin_val < umin_ptr || 8175 umax_ptr + umax_val < umax_ptr) { 8176 dst_reg->umin_value = 0; 8177 dst_reg->umax_value = U64_MAX; 8178 } else { 8179 dst_reg->umin_value = umin_ptr + umin_val; 8180 dst_reg->umax_value = umax_ptr + umax_val; 8181 } 8182 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 8183 dst_reg->off = ptr_reg->off; 8184 dst_reg->raw = ptr_reg->raw; 8185 if (reg_is_pkt_pointer(ptr_reg)) { 8186 dst_reg->id = ++env->id_gen; 8187 /* something was added to pkt_ptr, set range to zero */ 8188 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 8189 } 8190 break; 8191 case BPF_SUB: 8192 if (dst_reg == off_reg) { 8193 /* scalar -= pointer. Creates an unknown scalar */ 8194 verbose(env, "R%d tried to subtract pointer from scalar\n", 8195 dst); 8196 return -EACCES; 8197 } 8198 /* We don't allow subtraction from FP, because (according to 8199 * test_verifier.c test "invalid fp arithmetic", JITs might not 8200 * be able to deal with it. 8201 */ 8202 if (ptr_reg->type == PTR_TO_STACK) { 8203 verbose(env, "R%d subtraction from stack pointer prohibited\n", 8204 dst); 8205 return -EACCES; 8206 } 8207 if (known && (ptr_reg->off - smin_val == 8208 (s64)(s32)(ptr_reg->off - smin_val))) { 8209 /* pointer -= K. Subtract it from fixed offset */ 8210 dst_reg->smin_value = smin_ptr; 8211 dst_reg->smax_value = smax_ptr; 8212 dst_reg->umin_value = umin_ptr; 8213 dst_reg->umax_value = umax_ptr; 8214 dst_reg->var_off = ptr_reg->var_off; 8215 dst_reg->id = ptr_reg->id; 8216 dst_reg->off = ptr_reg->off - smin_val; 8217 dst_reg->raw = ptr_reg->raw; 8218 break; 8219 } 8220 /* A new variable offset is created. If the subtrahend is known 8221 * nonnegative, then any reg->range we had before is still good. 8222 */ 8223 if (signed_sub_overflows(smin_ptr, smax_val) || 8224 signed_sub_overflows(smax_ptr, smin_val)) { 8225 /* Overflow possible, we know nothing */ 8226 dst_reg->smin_value = S64_MIN; 8227 dst_reg->smax_value = S64_MAX; 8228 } else { 8229 dst_reg->smin_value = smin_ptr - smax_val; 8230 dst_reg->smax_value = smax_ptr - smin_val; 8231 } 8232 if (umin_ptr < umax_val) { 8233 /* Overflow possible, we know nothing */ 8234 dst_reg->umin_value = 0; 8235 dst_reg->umax_value = U64_MAX; 8236 } else { 8237 /* Cannot overflow (as long as bounds are consistent) */ 8238 dst_reg->umin_value = umin_ptr - umax_val; 8239 dst_reg->umax_value = umax_ptr - umin_val; 8240 } 8241 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 8242 dst_reg->off = ptr_reg->off; 8243 dst_reg->raw = ptr_reg->raw; 8244 if (reg_is_pkt_pointer(ptr_reg)) { 8245 dst_reg->id = ++env->id_gen; 8246 /* something was added to pkt_ptr, set range to zero */ 8247 if (smin_val < 0) 8248 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 8249 } 8250 break; 8251 case BPF_AND: 8252 case BPF_OR: 8253 case BPF_XOR: 8254 /* bitwise ops on pointers are troublesome, prohibit. */ 8255 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 8256 dst, bpf_alu_string[opcode >> 4]); 8257 return -EACCES; 8258 default: 8259 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 8260 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 8261 dst, bpf_alu_string[opcode >> 4]); 8262 return -EACCES; 8263 } 8264 8265 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 8266 return -EINVAL; 8267 reg_bounds_sync(dst_reg); 8268 if (sanitize_check_bounds(env, insn, dst_reg) < 0) 8269 return -EACCES; 8270 if (sanitize_needed(opcode)) { 8271 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg, 8272 &info, true); 8273 if (ret < 0) 8274 return sanitize_err(env, insn, ret, off_reg, dst_reg); 8275 } 8276 8277 return 0; 8278 } 8279 8280 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, 8281 struct bpf_reg_state *src_reg) 8282 { 8283 s32 smin_val = src_reg->s32_min_value; 8284 s32 smax_val = src_reg->s32_max_value; 8285 u32 umin_val = src_reg->u32_min_value; 8286 u32 umax_val = src_reg->u32_max_value; 8287 8288 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) || 8289 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) { 8290 dst_reg->s32_min_value = S32_MIN; 8291 dst_reg->s32_max_value = S32_MAX; 8292 } else { 8293 dst_reg->s32_min_value += smin_val; 8294 dst_reg->s32_max_value += smax_val; 8295 } 8296 if (dst_reg->u32_min_value + umin_val < umin_val || 8297 dst_reg->u32_max_value + umax_val < umax_val) { 8298 dst_reg->u32_min_value = 0; 8299 dst_reg->u32_max_value = U32_MAX; 8300 } else { 8301 dst_reg->u32_min_value += umin_val; 8302 dst_reg->u32_max_value += umax_val; 8303 } 8304 } 8305 8306 static void scalar_min_max_add(struct bpf_reg_state *dst_reg, 8307 struct bpf_reg_state *src_reg) 8308 { 8309 s64 smin_val = src_reg->smin_value; 8310 s64 smax_val = src_reg->smax_value; 8311 u64 umin_val = src_reg->umin_value; 8312 u64 umax_val = src_reg->umax_value; 8313 8314 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 8315 signed_add_overflows(dst_reg->smax_value, smax_val)) { 8316 dst_reg->smin_value = S64_MIN; 8317 dst_reg->smax_value = S64_MAX; 8318 } else { 8319 dst_reg->smin_value += smin_val; 8320 dst_reg->smax_value += smax_val; 8321 } 8322 if (dst_reg->umin_value + umin_val < umin_val || 8323 dst_reg->umax_value + umax_val < umax_val) { 8324 dst_reg->umin_value = 0; 8325 dst_reg->umax_value = U64_MAX; 8326 } else { 8327 dst_reg->umin_value += umin_val; 8328 dst_reg->umax_value += umax_val; 8329 } 8330 } 8331 8332 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, 8333 struct bpf_reg_state *src_reg) 8334 { 8335 s32 smin_val = src_reg->s32_min_value; 8336 s32 smax_val = src_reg->s32_max_value; 8337 u32 umin_val = src_reg->u32_min_value; 8338 u32 umax_val = src_reg->u32_max_value; 8339 8340 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) || 8341 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) { 8342 /* Overflow possible, we know nothing */ 8343 dst_reg->s32_min_value = S32_MIN; 8344 dst_reg->s32_max_value = S32_MAX; 8345 } else { 8346 dst_reg->s32_min_value -= smax_val; 8347 dst_reg->s32_max_value -= smin_val; 8348 } 8349 if (dst_reg->u32_min_value < umax_val) { 8350 /* Overflow possible, we know nothing */ 8351 dst_reg->u32_min_value = 0; 8352 dst_reg->u32_max_value = U32_MAX; 8353 } else { 8354 /* Cannot overflow (as long as bounds are consistent) */ 8355 dst_reg->u32_min_value -= umax_val; 8356 dst_reg->u32_max_value -= umin_val; 8357 } 8358 } 8359 8360 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, 8361 struct bpf_reg_state *src_reg) 8362 { 8363 s64 smin_val = src_reg->smin_value; 8364 s64 smax_val = src_reg->smax_value; 8365 u64 umin_val = src_reg->umin_value; 8366 u64 umax_val = src_reg->umax_value; 8367 8368 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 8369 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 8370 /* Overflow possible, we know nothing */ 8371 dst_reg->smin_value = S64_MIN; 8372 dst_reg->smax_value = S64_MAX; 8373 } else { 8374 dst_reg->smin_value -= smax_val; 8375 dst_reg->smax_value -= smin_val; 8376 } 8377 if (dst_reg->umin_value < umax_val) { 8378 /* Overflow possible, we know nothing */ 8379 dst_reg->umin_value = 0; 8380 dst_reg->umax_value = U64_MAX; 8381 } else { 8382 /* Cannot overflow (as long as bounds are consistent) */ 8383 dst_reg->umin_value -= umax_val; 8384 dst_reg->umax_value -= umin_val; 8385 } 8386 } 8387 8388 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, 8389 struct bpf_reg_state *src_reg) 8390 { 8391 s32 smin_val = src_reg->s32_min_value; 8392 u32 umin_val = src_reg->u32_min_value; 8393 u32 umax_val = src_reg->u32_max_value; 8394 8395 if (smin_val < 0 || dst_reg->s32_min_value < 0) { 8396 /* Ain't nobody got time to multiply that sign */ 8397 __mark_reg32_unbounded(dst_reg); 8398 return; 8399 } 8400 /* Both values are positive, so we can work with unsigned and 8401 * copy the result to signed (unless it exceeds S32_MAX). 8402 */ 8403 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) { 8404 /* Potential overflow, we know nothing */ 8405 __mark_reg32_unbounded(dst_reg); 8406 return; 8407 } 8408 dst_reg->u32_min_value *= umin_val; 8409 dst_reg->u32_max_value *= umax_val; 8410 if (dst_reg->u32_max_value > S32_MAX) { 8411 /* Overflow possible, we know nothing */ 8412 dst_reg->s32_min_value = S32_MIN; 8413 dst_reg->s32_max_value = S32_MAX; 8414 } else { 8415 dst_reg->s32_min_value = dst_reg->u32_min_value; 8416 dst_reg->s32_max_value = dst_reg->u32_max_value; 8417 } 8418 } 8419 8420 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, 8421 struct bpf_reg_state *src_reg) 8422 { 8423 s64 smin_val = src_reg->smin_value; 8424 u64 umin_val = src_reg->umin_value; 8425 u64 umax_val = src_reg->umax_value; 8426 8427 if (smin_val < 0 || dst_reg->smin_value < 0) { 8428 /* Ain't nobody got time to multiply that sign */ 8429 __mark_reg64_unbounded(dst_reg); 8430 return; 8431 } 8432 /* Both values are positive, so we can work with unsigned and 8433 * copy the result to signed (unless it exceeds S64_MAX). 8434 */ 8435 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 8436 /* Potential overflow, we know nothing */ 8437 __mark_reg64_unbounded(dst_reg); 8438 return; 8439 } 8440 dst_reg->umin_value *= umin_val; 8441 dst_reg->umax_value *= umax_val; 8442 if (dst_reg->umax_value > S64_MAX) { 8443 /* Overflow possible, we know nothing */ 8444 dst_reg->smin_value = S64_MIN; 8445 dst_reg->smax_value = S64_MAX; 8446 } else { 8447 dst_reg->smin_value = dst_reg->umin_value; 8448 dst_reg->smax_value = dst_reg->umax_value; 8449 } 8450 } 8451 8452 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, 8453 struct bpf_reg_state *src_reg) 8454 { 8455 bool src_known = tnum_subreg_is_const(src_reg->var_off); 8456 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 8457 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 8458 s32 smin_val = src_reg->s32_min_value; 8459 u32 umax_val = src_reg->u32_max_value; 8460 8461 if (src_known && dst_known) { 8462 __mark_reg32_known(dst_reg, var32_off.value); 8463 return; 8464 } 8465 8466 /* We get our minimum from the var_off, since that's inherently 8467 * bitwise. Our maximum is the minimum of the operands' maxima. 8468 */ 8469 dst_reg->u32_min_value = var32_off.value; 8470 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 8471 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 8472 /* Lose signed bounds when ANDing negative numbers, 8473 * ain't nobody got time for that. 8474 */ 8475 dst_reg->s32_min_value = S32_MIN; 8476 dst_reg->s32_max_value = S32_MAX; 8477 } else { 8478 /* ANDing two positives gives a positive, so safe to 8479 * cast result into s64. 8480 */ 8481 dst_reg->s32_min_value = dst_reg->u32_min_value; 8482 dst_reg->s32_max_value = dst_reg->u32_max_value; 8483 } 8484 } 8485 8486 static void scalar_min_max_and(struct bpf_reg_state *dst_reg, 8487 struct bpf_reg_state *src_reg) 8488 { 8489 bool src_known = tnum_is_const(src_reg->var_off); 8490 bool dst_known = tnum_is_const(dst_reg->var_off); 8491 s64 smin_val = src_reg->smin_value; 8492 u64 umax_val = src_reg->umax_value; 8493 8494 if (src_known && dst_known) { 8495 __mark_reg_known(dst_reg, dst_reg->var_off.value); 8496 return; 8497 } 8498 8499 /* We get our minimum from the var_off, since that's inherently 8500 * bitwise. Our maximum is the minimum of the operands' maxima. 8501 */ 8502 dst_reg->umin_value = dst_reg->var_off.value; 8503 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 8504 if (dst_reg->smin_value < 0 || smin_val < 0) { 8505 /* Lose signed bounds when ANDing negative numbers, 8506 * ain't nobody got time for that. 8507 */ 8508 dst_reg->smin_value = S64_MIN; 8509 dst_reg->smax_value = S64_MAX; 8510 } else { 8511 /* ANDing two positives gives a positive, so safe to 8512 * cast result into s64. 8513 */ 8514 dst_reg->smin_value = dst_reg->umin_value; 8515 dst_reg->smax_value = dst_reg->umax_value; 8516 } 8517 /* We may learn something more from the var_off */ 8518 __update_reg_bounds(dst_reg); 8519 } 8520 8521 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, 8522 struct bpf_reg_state *src_reg) 8523 { 8524 bool src_known = tnum_subreg_is_const(src_reg->var_off); 8525 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 8526 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 8527 s32 smin_val = src_reg->s32_min_value; 8528 u32 umin_val = src_reg->u32_min_value; 8529 8530 if (src_known && dst_known) { 8531 __mark_reg32_known(dst_reg, var32_off.value); 8532 return; 8533 } 8534 8535 /* We get our maximum from the var_off, and our minimum is the 8536 * maximum of the operands' minima 8537 */ 8538 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 8539 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 8540 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 8541 /* Lose signed bounds when ORing negative numbers, 8542 * ain't nobody got time for that. 8543 */ 8544 dst_reg->s32_min_value = S32_MIN; 8545 dst_reg->s32_max_value = S32_MAX; 8546 } else { 8547 /* ORing two positives gives a positive, so safe to 8548 * cast result into s64. 8549 */ 8550 dst_reg->s32_min_value = dst_reg->u32_min_value; 8551 dst_reg->s32_max_value = dst_reg->u32_max_value; 8552 } 8553 } 8554 8555 static void scalar_min_max_or(struct bpf_reg_state *dst_reg, 8556 struct bpf_reg_state *src_reg) 8557 { 8558 bool src_known = tnum_is_const(src_reg->var_off); 8559 bool dst_known = tnum_is_const(dst_reg->var_off); 8560 s64 smin_val = src_reg->smin_value; 8561 u64 umin_val = src_reg->umin_value; 8562 8563 if (src_known && dst_known) { 8564 __mark_reg_known(dst_reg, dst_reg->var_off.value); 8565 return; 8566 } 8567 8568 /* We get our maximum from the var_off, and our minimum is the 8569 * maximum of the operands' minima 8570 */ 8571 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 8572 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 8573 if (dst_reg->smin_value < 0 || smin_val < 0) { 8574 /* Lose signed bounds when ORing negative numbers, 8575 * ain't nobody got time for that. 8576 */ 8577 dst_reg->smin_value = S64_MIN; 8578 dst_reg->smax_value = S64_MAX; 8579 } else { 8580 /* ORing two positives gives a positive, so safe to 8581 * cast result into s64. 8582 */ 8583 dst_reg->smin_value = dst_reg->umin_value; 8584 dst_reg->smax_value = dst_reg->umax_value; 8585 } 8586 /* We may learn something more from the var_off */ 8587 __update_reg_bounds(dst_reg); 8588 } 8589 8590 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg, 8591 struct bpf_reg_state *src_reg) 8592 { 8593 bool src_known = tnum_subreg_is_const(src_reg->var_off); 8594 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 8595 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 8596 s32 smin_val = src_reg->s32_min_value; 8597 8598 if (src_known && dst_known) { 8599 __mark_reg32_known(dst_reg, var32_off.value); 8600 return; 8601 } 8602 8603 /* We get both minimum and maximum from the var32_off. */ 8604 dst_reg->u32_min_value = var32_off.value; 8605 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 8606 8607 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) { 8608 /* XORing two positive sign numbers gives a positive, 8609 * so safe to cast u32 result into s32. 8610 */ 8611 dst_reg->s32_min_value = dst_reg->u32_min_value; 8612 dst_reg->s32_max_value = dst_reg->u32_max_value; 8613 } else { 8614 dst_reg->s32_min_value = S32_MIN; 8615 dst_reg->s32_max_value = S32_MAX; 8616 } 8617 } 8618 8619 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg, 8620 struct bpf_reg_state *src_reg) 8621 { 8622 bool src_known = tnum_is_const(src_reg->var_off); 8623 bool dst_known = tnum_is_const(dst_reg->var_off); 8624 s64 smin_val = src_reg->smin_value; 8625 8626 if (src_known && dst_known) { 8627 /* dst_reg->var_off.value has been updated earlier */ 8628 __mark_reg_known(dst_reg, dst_reg->var_off.value); 8629 return; 8630 } 8631 8632 /* We get both minimum and maximum from the var_off. */ 8633 dst_reg->umin_value = dst_reg->var_off.value; 8634 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 8635 8636 if (dst_reg->smin_value >= 0 && smin_val >= 0) { 8637 /* XORing two positive sign numbers gives a positive, 8638 * so safe to cast u64 result into s64. 8639 */ 8640 dst_reg->smin_value = dst_reg->umin_value; 8641 dst_reg->smax_value = dst_reg->umax_value; 8642 } else { 8643 dst_reg->smin_value = S64_MIN; 8644 dst_reg->smax_value = S64_MAX; 8645 } 8646 8647 __update_reg_bounds(dst_reg); 8648 } 8649 8650 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 8651 u64 umin_val, u64 umax_val) 8652 { 8653 /* We lose all sign bit information (except what we can pick 8654 * up from var_off) 8655 */ 8656 dst_reg->s32_min_value = S32_MIN; 8657 dst_reg->s32_max_value = S32_MAX; 8658 /* If we might shift our top bit out, then we know nothing */ 8659 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { 8660 dst_reg->u32_min_value = 0; 8661 dst_reg->u32_max_value = U32_MAX; 8662 } else { 8663 dst_reg->u32_min_value <<= umin_val; 8664 dst_reg->u32_max_value <<= umax_val; 8665 } 8666 } 8667 8668 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 8669 struct bpf_reg_state *src_reg) 8670 { 8671 u32 umax_val = src_reg->u32_max_value; 8672 u32 umin_val = src_reg->u32_min_value; 8673 /* u32 alu operation will zext upper bits */ 8674 struct tnum subreg = tnum_subreg(dst_reg->var_off); 8675 8676 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 8677 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 8678 /* Not required but being careful mark reg64 bounds as unknown so 8679 * that we are forced to pick them up from tnum and zext later and 8680 * if some path skips this step we are still safe. 8681 */ 8682 __mark_reg64_unbounded(dst_reg); 8683 __update_reg32_bounds(dst_reg); 8684 } 8685 8686 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, 8687 u64 umin_val, u64 umax_val) 8688 { 8689 /* Special case <<32 because it is a common compiler pattern to sign 8690 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are 8691 * positive we know this shift will also be positive so we can track 8692 * bounds correctly. Otherwise we lose all sign bit information except 8693 * what we can pick up from var_off. Perhaps we can generalize this 8694 * later to shifts of any length. 8695 */ 8696 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) 8697 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; 8698 else 8699 dst_reg->smax_value = S64_MAX; 8700 8701 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) 8702 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; 8703 else 8704 dst_reg->smin_value = S64_MIN; 8705 8706 /* If we might shift our top bit out, then we know nothing */ 8707 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 8708 dst_reg->umin_value = 0; 8709 dst_reg->umax_value = U64_MAX; 8710 } else { 8711 dst_reg->umin_value <<= umin_val; 8712 dst_reg->umax_value <<= umax_val; 8713 } 8714 } 8715 8716 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, 8717 struct bpf_reg_state *src_reg) 8718 { 8719 u64 umax_val = src_reg->umax_value; 8720 u64 umin_val = src_reg->umin_value; 8721 8722 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 8723 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 8724 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 8725 8726 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 8727 /* We may learn something more from the var_off */ 8728 __update_reg_bounds(dst_reg); 8729 } 8730 8731 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, 8732 struct bpf_reg_state *src_reg) 8733 { 8734 struct tnum subreg = tnum_subreg(dst_reg->var_off); 8735 u32 umax_val = src_reg->u32_max_value; 8736 u32 umin_val = src_reg->u32_min_value; 8737 8738 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 8739 * be negative, then either: 8740 * 1) src_reg might be zero, so the sign bit of the result is 8741 * unknown, so we lose our signed bounds 8742 * 2) it's known negative, thus the unsigned bounds capture the 8743 * signed bounds 8744 * 3) the signed bounds cross zero, so they tell us nothing 8745 * about the result 8746 * If the value in dst_reg is known nonnegative, then again the 8747 * unsigned bounds capture the signed bounds. 8748 * Thus, in all cases it suffices to blow away our signed bounds 8749 * and rely on inferring new ones from the unsigned bounds and 8750 * var_off of the result. 8751 */ 8752 dst_reg->s32_min_value = S32_MIN; 8753 dst_reg->s32_max_value = S32_MAX; 8754 8755 dst_reg->var_off = tnum_rshift(subreg, umin_val); 8756 dst_reg->u32_min_value >>= umax_val; 8757 dst_reg->u32_max_value >>= umin_val; 8758 8759 __mark_reg64_unbounded(dst_reg); 8760 __update_reg32_bounds(dst_reg); 8761 } 8762 8763 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, 8764 struct bpf_reg_state *src_reg) 8765 { 8766 u64 umax_val = src_reg->umax_value; 8767 u64 umin_val = src_reg->umin_value; 8768 8769 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 8770 * be negative, then either: 8771 * 1) src_reg might be zero, so the sign bit of the result is 8772 * unknown, so we lose our signed bounds 8773 * 2) it's known negative, thus the unsigned bounds capture the 8774 * signed bounds 8775 * 3) the signed bounds cross zero, so they tell us nothing 8776 * about the result 8777 * If the value in dst_reg is known nonnegative, then again the 8778 * unsigned bounds capture the signed bounds. 8779 * Thus, in all cases it suffices to blow away our signed bounds 8780 * and rely on inferring new ones from the unsigned bounds and 8781 * var_off of the result. 8782 */ 8783 dst_reg->smin_value = S64_MIN; 8784 dst_reg->smax_value = S64_MAX; 8785 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 8786 dst_reg->umin_value >>= umax_val; 8787 dst_reg->umax_value >>= umin_val; 8788 8789 /* Its not easy to operate on alu32 bounds here because it depends 8790 * on bits being shifted in. Take easy way out and mark unbounded 8791 * so we can recalculate later from tnum. 8792 */ 8793 __mark_reg32_unbounded(dst_reg); 8794 __update_reg_bounds(dst_reg); 8795 } 8796 8797 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, 8798 struct bpf_reg_state *src_reg) 8799 { 8800 u64 umin_val = src_reg->u32_min_value; 8801 8802 /* Upon reaching here, src_known is true and 8803 * umax_val is equal to umin_val. 8804 */ 8805 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 8806 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 8807 8808 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); 8809 8810 /* blow away the dst_reg umin_value/umax_value and rely on 8811 * dst_reg var_off to refine the result. 8812 */ 8813 dst_reg->u32_min_value = 0; 8814 dst_reg->u32_max_value = U32_MAX; 8815 8816 __mark_reg64_unbounded(dst_reg); 8817 __update_reg32_bounds(dst_reg); 8818 } 8819 8820 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, 8821 struct bpf_reg_state *src_reg) 8822 { 8823 u64 umin_val = src_reg->umin_value; 8824 8825 /* Upon reaching here, src_known is true and umax_val is equal 8826 * to umin_val. 8827 */ 8828 dst_reg->smin_value >>= umin_val; 8829 dst_reg->smax_value >>= umin_val; 8830 8831 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); 8832 8833 /* blow away the dst_reg umin_value/umax_value and rely on 8834 * dst_reg var_off to refine the result. 8835 */ 8836 dst_reg->umin_value = 0; 8837 dst_reg->umax_value = U64_MAX; 8838 8839 /* Its not easy to operate on alu32 bounds here because it depends 8840 * on bits being shifted in from upper 32-bits. Take easy way out 8841 * and mark unbounded so we can recalculate later from tnum. 8842 */ 8843 __mark_reg32_unbounded(dst_reg); 8844 __update_reg_bounds(dst_reg); 8845 } 8846 8847 /* WARNING: This function does calculations on 64-bit values, but the actual 8848 * execution may occur on 32-bit values. Therefore, things like bitshifts 8849 * need extra checks in the 32-bit case. 8850 */ 8851 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 8852 struct bpf_insn *insn, 8853 struct bpf_reg_state *dst_reg, 8854 struct bpf_reg_state src_reg) 8855 { 8856 struct bpf_reg_state *regs = cur_regs(env); 8857 u8 opcode = BPF_OP(insn->code); 8858 bool src_known; 8859 s64 smin_val, smax_val; 8860 u64 umin_val, umax_val; 8861 s32 s32_min_val, s32_max_val; 8862 u32 u32_min_val, u32_max_val; 8863 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 8864 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 8865 int ret; 8866 8867 smin_val = src_reg.smin_value; 8868 smax_val = src_reg.smax_value; 8869 umin_val = src_reg.umin_value; 8870 umax_val = src_reg.umax_value; 8871 8872 s32_min_val = src_reg.s32_min_value; 8873 s32_max_val = src_reg.s32_max_value; 8874 u32_min_val = src_reg.u32_min_value; 8875 u32_max_val = src_reg.u32_max_value; 8876 8877 if (alu32) { 8878 src_known = tnum_subreg_is_const(src_reg.var_off); 8879 if ((src_known && 8880 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) || 8881 s32_min_val > s32_max_val || u32_min_val > u32_max_val) { 8882 /* Taint dst register if offset had invalid bounds 8883 * derived from e.g. dead branches. 8884 */ 8885 __mark_reg_unknown(env, dst_reg); 8886 return 0; 8887 } 8888 } else { 8889 src_known = tnum_is_const(src_reg.var_off); 8890 if ((src_known && 8891 (smin_val != smax_val || umin_val != umax_val)) || 8892 smin_val > smax_val || umin_val > umax_val) { 8893 /* Taint dst register if offset had invalid bounds 8894 * derived from e.g. dead branches. 8895 */ 8896 __mark_reg_unknown(env, dst_reg); 8897 return 0; 8898 } 8899 } 8900 8901 if (!src_known && 8902 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 8903 __mark_reg_unknown(env, dst_reg); 8904 return 0; 8905 } 8906 8907 if (sanitize_needed(opcode)) { 8908 ret = sanitize_val_alu(env, insn); 8909 if (ret < 0) 8910 return sanitize_err(env, insn, ret, NULL, NULL); 8911 } 8912 8913 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 8914 * There are two classes of instructions: The first class we track both 8915 * alu32 and alu64 sign/unsigned bounds independently this provides the 8916 * greatest amount of precision when alu operations are mixed with jmp32 8917 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 8918 * and BPF_OR. This is possible because these ops have fairly easy to 8919 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 8920 * See alu32 verifier tests for examples. The second class of 8921 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 8922 * with regards to tracking sign/unsigned bounds because the bits may 8923 * cross subreg boundaries in the alu64 case. When this happens we mark 8924 * the reg unbounded in the subreg bound space and use the resulting 8925 * tnum to calculate an approximation of the sign/unsigned bounds. 8926 */ 8927 switch (opcode) { 8928 case BPF_ADD: 8929 scalar32_min_max_add(dst_reg, &src_reg); 8930 scalar_min_max_add(dst_reg, &src_reg); 8931 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 8932 break; 8933 case BPF_SUB: 8934 scalar32_min_max_sub(dst_reg, &src_reg); 8935 scalar_min_max_sub(dst_reg, &src_reg); 8936 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 8937 break; 8938 case BPF_MUL: 8939 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 8940 scalar32_min_max_mul(dst_reg, &src_reg); 8941 scalar_min_max_mul(dst_reg, &src_reg); 8942 break; 8943 case BPF_AND: 8944 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 8945 scalar32_min_max_and(dst_reg, &src_reg); 8946 scalar_min_max_and(dst_reg, &src_reg); 8947 break; 8948 case BPF_OR: 8949 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 8950 scalar32_min_max_or(dst_reg, &src_reg); 8951 scalar_min_max_or(dst_reg, &src_reg); 8952 break; 8953 case BPF_XOR: 8954 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off); 8955 scalar32_min_max_xor(dst_reg, &src_reg); 8956 scalar_min_max_xor(dst_reg, &src_reg); 8957 break; 8958 case BPF_LSH: 8959 if (umax_val >= insn_bitness) { 8960 /* Shifts greater than 31 or 63 are undefined. 8961 * This includes shifts by a negative number. 8962 */ 8963 mark_reg_unknown(env, regs, insn->dst_reg); 8964 break; 8965 } 8966 if (alu32) 8967 scalar32_min_max_lsh(dst_reg, &src_reg); 8968 else 8969 scalar_min_max_lsh(dst_reg, &src_reg); 8970 break; 8971 case BPF_RSH: 8972 if (umax_val >= insn_bitness) { 8973 /* Shifts greater than 31 or 63 are undefined. 8974 * This includes shifts by a negative number. 8975 */ 8976 mark_reg_unknown(env, regs, insn->dst_reg); 8977 break; 8978 } 8979 if (alu32) 8980 scalar32_min_max_rsh(dst_reg, &src_reg); 8981 else 8982 scalar_min_max_rsh(dst_reg, &src_reg); 8983 break; 8984 case BPF_ARSH: 8985 if (umax_val >= insn_bitness) { 8986 /* Shifts greater than 31 or 63 are undefined. 8987 * This includes shifts by a negative number. 8988 */ 8989 mark_reg_unknown(env, regs, insn->dst_reg); 8990 break; 8991 } 8992 if (alu32) 8993 scalar32_min_max_arsh(dst_reg, &src_reg); 8994 else 8995 scalar_min_max_arsh(dst_reg, &src_reg); 8996 break; 8997 default: 8998 mark_reg_unknown(env, regs, insn->dst_reg); 8999 break; 9000 } 9001 9002 /* ALU32 ops are zero extended into 64bit register */ 9003 if (alu32) 9004 zext_32_to_64(dst_reg); 9005 reg_bounds_sync(dst_reg); 9006 return 0; 9007 } 9008 9009 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 9010 * and var_off. 9011 */ 9012 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 9013 struct bpf_insn *insn) 9014 { 9015 struct bpf_verifier_state *vstate = env->cur_state; 9016 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 9017 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 9018 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 9019 u8 opcode = BPF_OP(insn->code); 9020 int err; 9021 9022 dst_reg = ®s[insn->dst_reg]; 9023 src_reg = NULL; 9024 if (dst_reg->type != SCALAR_VALUE) 9025 ptr_reg = dst_reg; 9026 else 9027 /* Make sure ID is cleared otherwise dst_reg min/max could be 9028 * incorrectly propagated into other registers by find_equal_scalars() 9029 */ 9030 dst_reg->id = 0; 9031 if (BPF_SRC(insn->code) == BPF_X) { 9032 src_reg = ®s[insn->src_reg]; 9033 if (src_reg->type != SCALAR_VALUE) { 9034 if (dst_reg->type != SCALAR_VALUE) { 9035 /* Combining two pointers by any ALU op yields 9036 * an arbitrary scalar. Disallow all math except 9037 * pointer subtraction 9038 */ 9039 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 9040 mark_reg_unknown(env, regs, insn->dst_reg); 9041 return 0; 9042 } 9043 verbose(env, "R%d pointer %s pointer prohibited\n", 9044 insn->dst_reg, 9045 bpf_alu_string[opcode >> 4]); 9046 return -EACCES; 9047 } else { 9048 /* scalar += pointer 9049 * This is legal, but we have to reverse our 9050 * src/dest handling in computing the range 9051 */ 9052 err = mark_chain_precision(env, insn->dst_reg); 9053 if (err) 9054 return err; 9055 return adjust_ptr_min_max_vals(env, insn, 9056 src_reg, dst_reg); 9057 } 9058 } else if (ptr_reg) { 9059 /* pointer += scalar */ 9060 err = mark_chain_precision(env, insn->src_reg); 9061 if (err) 9062 return err; 9063 return adjust_ptr_min_max_vals(env, insn, 9064 dst_reg, src_reg); 9065 } 9066 } else { 9067 /* Pretend the src is a reg with a known value, since we only 9068 * need to be able to read from this state. 9069 */ 9070 off_reg.type = SCALAR_VALUE; 9071 __mark_reg_known(&off_reg, insn->imm); 9072 src_reg = &off_reg; 9073 if (ptr_reg) /* pointer += K */ 9074 return adjust_ptr_min_max_vals(env, insn, 9075 ptr_reg, src_reg); 9076 } 9077 9078 /* Got here implies adding two SCALAR_VALUEs */ 9079 if (WARN_ON_ONCE(ptr_reg)) { 9080 print_verifier_state(env, state, true); 9081 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 9082 return -EINVAL; 9083 } 9084 if (WARN_ON(!src_reg)) { 9085 print_verifier_state(env, state, true); 9086 verbose(env, "verifier internal error: no src_reg\n"); 9087 return -EINVAL; 9088 } 9089 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 9090 } 9091 9092 /* check validity of 32-bit and 64-bit arithmetic operations */ 9093 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 9094 { 9095 struct bpf_reg_state *regs = cur_regs(env); 9096 u8 opcode = BPF_OP(insn->code); 9097 int err; 9098 9099 if (opcode == BPF_END || opcode == BPF_NEG) { 9100 if (opcode == BPF_NEG) { 9101 if (BPF_SRC(insn->code) != BPF_K || 9102 insn->src_reg != BPF_REG_0 || 9103 insn->off != 0 || insn->imm != 0) { 9104 verbose(env, "BPF_NEG uses reserved fields\n"); 9105 return -EINVAL; 9106 } 9107 } else { 9108 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 9109 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 9110 BPF_CLASS(insn->code) == BPF_ALU64) { 9111 verbose(env, "BPF_END uses reserved fields\n"); 9112 return -EINVAL; 9113 } 9114 } 9115 9116 /* check src operand */ 9117 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 9118 if (err) 9119 return err; 9120 9121 if (is_pointer_value(env, insn->dst_reg)) { 9122 verbose(env, "R%d pointer arithmetic prohibited\n", 9123 insn->dst_reg); 9124 return -EACCES; 9125 } 9126 9127 /* check dest operand */ 9128 err = check_reg_arg(env, insn->dst_reg, DST_OP); 9129 if (err) 9130 return err; 9131 9132 } else if (opcode == BPF_MOV) { 9133 9134 if (BPF_SRC(insn->code) == BPF_X) { 9135 if (insn->imm != 0 || insn->off != 0) { 9136 verbose(env, "BPF_MOV uses reserved fields\n"); 9137 return -EINVAL; 9138 } 9139 9140 /* check src operand */ 9141 err = check_reg_arg(env, insn->src_reg, SRC_OP); 9142 if (err) 9143 return err; 9144 } else { 9145 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 9146 verbose(env, "BPF_MOV uses reserved fields\n"); 9147 return -EINVAL; 9148 } 9149 } 9150 9151 /* check dest operand, mark as required later */ 9152 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 9153 if (err) 9154 return err; 9155 9156 if (BPF_SRC(insn->code) == BPF_X) { 9157 struct bpf_reg_state *src_reg = regs + insn->src_reg; 9158 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 9159 9160 if (BPF_CLASS(insn->code) == BPF_ALU64) { 9161 /* case: R1 = R2 9162 * copy register state to dest reg 9163 */ 9164 if (src_reg->type == SCALAR_VALUE && !src_reg->id) 9165 /* Assign src and dst registers the same ID 9166 * that will be used by find_equal_scalars() 9167 * to propagate min/max range. 9168 */ 9169 src_reg->id = ++env->id_gen; 9170 *dst_reg = *src_reg; 9171 dst_reg->live |= REG_LIVE_WRITTEN; 9172 dst_reg->subreg_def = DEF_NOT_SUBREG; 9173 } else { 9174 /* R1 = (u32) R2 */ 9175 if (is_pointer_value(env, insn->src_reg)) { 9176 verbose(env, 9177 "R%d partial copy of pointer\n", 9178 insn->src_reg); 9179 return -EACCES; 9180 } else if (src_reg->type == SCALAR_VALUE) { 9181 *dst_reg = *src_reg; 9182 /* Make sure ID is cleared otherwise 9183 * dst_reg min/max could be incorrectly 9184 * propagated into src_reg by find_equal_scalars() 9185 */ 9186 dst_reg->id = 0; 9187 dst_reg->live |= REG_LIVE_WRITTEN; 9188 dst_reg->subreg_def = env->insn_idx + 1; 9189 } else { 9190 mark_reg_unknown(env, regs, 9191 insn->dst_reg); 9192 } 9193 zext_32_to_64(dst_reg); 9194 reg_bounds_sync(dst_reg); 9195 } 9196 } else { 9197 /* case: R = imm 9198 * remember the value we stored into this reg 9199 */ 9200 /* clear any state __mark_reg_known doesn't set */ 9201 mark_reg_unknown(env, regs, insn->dst_reg); 9202 regs[insn->dst_reg].type = SCALAR_VALUE; 9203 if (BPF_CLASS(insn->code) == BPF_ALU64) { 9204 __mark_reg_known(regs + insn->dst_reg, 9205 insn->imm); 9206 } else { 9207 __mark_reg_known(regs + insn->dst_reg, 9208 (u32)insn->imm); 9209 } 9210 } 9211 9212 } else if (opcode > BPF_END) { 9213 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 9214 return -EINVAL; 9215 9216 } else { /* all other ALU ops: and, sub, xor, add, ... */ 9217 9218 if (BPF_SRC(insn->code) == BPF_X) { 9219 if (insn->imm != 0 || insn->off != 0) { 9220 verbose(env, "BPF_ALU uses reserved fields\n"); 9221 return -EINVAL; 9222 } 9223 /* check src1 operand */ 9224 err = check_reg_arg(env, insn->src_reg, SRC_OP); 9225 if (err) 9226 return err; 9227 } else { 9228 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 9229 verbose(env, "BPF_ALU uses reserved fields\n"); 9230 return -EINVAL; 9231 } 9232 } 9233 9234 /* check src2 operand */ 9235 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 9236 if (err) 9237 return err; 9238 9239 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 9240 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 9241 verbose(env, "div by zero\n"); 9242 return -EINVAL; 9243 } 9244 9245 if ((opcode == BPF_LSH || opcode == BPF_RSH || 9246 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 9247 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 9248 9249 if (insn->imm < 0 || insn->imm >= size) { 9250 verbose(env, "invalid shift %d\n", insn->imm); 9251 return -EINVAL; 9252 } 9253 } 9254 9255 /* check dest operand */ 9256 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 9257 if (err) 9258 return err; 9259 9260 return adjust_reg_min_max_vals(env, insn); 9261 } 9262 9263 return 0; 9264 } 9265 9266 static void __find_good_pkt_pointers(struct bpf_func_state *state, 9267 struct bpf_reg_state *dst_reg, 9268 enum bpf_reg_type type, int new_range) 9269 { 9270 struct bpf_reg_state *reg; 9271 int i; 9272 9273 for (i = 0; i < MAX_BPF_REG; i++) { 9274 reg = &state->regs[i]; 9275 if (reg->type == type && reg->id == dst_reg->id) 9276 /* keep the maximum range already checked */ 9277 reg->range = max(reg->range, new_range); 9278 } 9279 9280 bpf_for_each_spilled_reg(i, state, reg) { 9281 if (!reg) 9282 continue; 9283 if (reg->type == type && reg->id == dst_reg->id) 9284 reg->range = max(reg->range, new_range); 9285 } 9286 } 9287 9288 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 9289 struct bpf_reg_state *dst_reg, 9290 enum bpf_reg_type type, 9291 bool range_right_open) 9292 { 9293 int new_range, i; 9294 9295 if (dst_reg->off < 0 || 9296 (dst_reg->off == 0 && range_right_open)) 9297 /* This doesn't give us any range */ 9298 return; 9299 9300 if (dst_reg->umax_value > MAX_PACKET_OFF || 9301 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 9302 /* Risk of overflow. For instance, ptr + (1<<63) may be less 9303 * than pkt_end, but that's because it's also less than pkt. 9304 */ 9305 return; 9306 9307 new_range = dst_reg->off; 9308 if (range_right_open) 9309 new_range++; 9310 9311 /* Examples for register markings: 9312 * 9313 * pkt_data in dst register: 9314 * 9315 * r2 = r3; 9316 * r2 += 8; 9317 * if (r2 > pkt_end) goto <handle exception> 9318 * <access okay> 9319 * 9320 * r2 = r3; 9321 * r2 += 8; 9322 * if (r2 < pkt_end) goto <access okay> 9323 * <handle exception> 9324 * 9325 * Where: 9326 * r2 == dst_reg, pkt_end == src_reg 9327 * r2=pkt(id=n,off=8,r=0) 9328 * r3=pkt(id=n,off=0,r=0) 9329 * 9330 * pkt_data in src register: 9331 * 9332 * r2 = r3; 9333 * r2 += 8; 9334 * if (pkt_end >= r2) goto <access okay> 9335 * <handle exception> 9336 * 9337 * r2 = r3; 9338 * r2 += 8; 9339 * if (pkt_end <= r2) goto <handle exception> 9340 * <access okay> 9341 * 9342 * Where: 9343 * pkt_end == dst_reg, r2 == src_reg 9344 * r2=pkt(id=n,off=8,r=0) 9345 * r3=pkt(id=n,off=0,r=0) 9346 * 9347 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 9348 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 9349 * and [r3, r3 + 8-1) respectively is safe to access depending on 9350 * the check. 9351 */ 9352 9353 /* If our ids match, then we must have the same max_value. And we 9354 * don't care about the other reg's fixed offset, since if it's too big 9355 * the range won't allow anything. 9356 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 9357 */ 9358 for (i = 0; i <= vstate->curframe; i++) 9359 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type, 9360 new_range); 9361 } 9362 9363 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode) 9364 { 9365 struct tnum subreg = tnum_subreg(reg->var_off); 9366 s32 sval = (s32)val; 9367 9368 switch (opcode) { 9369 case BPF_JEQ: 9370 if (tnum_is_const(subreg)) 9371 return !!tnum_equals_const(subreg, val); 9372 break; 9373 case BPF_JNE: 9374 if (tnum_is_const(subreg)) 9375 return !tnum_equals_const(subreg, val); 9376 break; 9377 case BPF_JSET: 9378 if ((~subreg.mask & subreg.value) & val) 9379 return 1; 9380 if (!((subreg.mask | subreg.value) & val)) 9381 return 0; 9382 break; 9383 case BPF_JGT: 9384 if (reg->u32_min_value > val) 9385 return 1; 9386 else if (reg->u32_max_value <= val) 9387 return 0; 9388 break; 9389 case BPF_JSGT: 9390 if (reg->s32_min_value > sval) 9391 return 1; 9392 else if (reg->s32_max_value <= sval) 9393 return 0; 9394 break; 9395 case BPF_JLT: 9396 if (reg->u32_max_value < val) 9397 return 1; 9398 else if (reg->u32_min_value >= val) 9399 return 0; 9400 break; 9401 case BPF_JSLT: 9402 if (reg->s32_max_value < sval) 9403 return 1; 9404 else if (reg->s32_min_value >= sval) 9405 return 0; 9406 break; 9407 case BPF_JGE: 9408 if (reg->u32_min_value >= val) 9409 return 1; 9410 else if (reg->u32_max_value < val) 9411 return 0; 9412 break; 9413 case BPF_JSGE: 9414 if (reg->s32_min_value >= sval) 9415 return 1; 9416 else if (reg->s32_max_value < sval) 9417 return 0; 9418 break; 9419 case BPF_JLE: 9420 if (reg->u32_max_value <= val) 9421 return 1; 9422 else if (reg->u32_min_value > val) 9423 return 0; 9424 break; 9425 case BPF_JSLE: 9426 if (reg->s32_max_value <= sval) 9427 return 1; 9428 else if (reg->s32_min_value > sval) 9429 return 0; 9430 break; 9431 } 9432 9433 return -1; 9434 } 9435 9436 9437 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode) 9438 { 9439 s64 sval = (s64)val; 9440 9441 switch (opcode) { 9442 case BPF_JEQ: 9443 if (tnum_is_const(reg->var_off)) 9444 return !!tnum_equals_const(reg->var_off, val); 9445 break; 9446 case BPF_JNE: 9447 if (tnum_is_const(reg->var_off)) 9448 return !tnum_equals_const(reg->var_off, val); 9449 break; 9450 case BPF_JSET: 9451 if ((~reg->var_off.mask & reg->var_off.value) & val) 9452 return 1; 9453 if (!((reg->var_off.mask | reg->var_off.value) & val)) 9454 return 0; 9455 break; 9456 case BPF_JGT: 9457 if (reg->umin_value > val) 9458 return 1; 9459 else if (reg->umax_value <= val) 9460 return 0; 9461 break; 9462 case BPF_JSGT: 9463 if (reg->smin_value > sval) 9464 return 1; 9465 else if (reg->smax_value <= sval) 9466 return 0; 9467 break; 9468 case BPF_JLT: 9469 if (reg->umax_value < val) 9470 return 1; 9471 else if (reg->umin_value >= val) 9472 return 0; 9473 break; 9474 case BPF_JSLT: 9475 if (reg->smax_value < sval) 9476 return 1; 9477 else if (reg->smin_value >= sval) 9478 return 0; 9479 break; 9480 case BPF_JGE: 9481 if (reg->umin_value >= val) 9482 return 1; 9483 else if (reg->umax_value < val) 9484 return 0; 9485 break; 9486 case BPF_JSGE: 9487 if (reg->smin_value >= sval) 9488 return 1; 9489 else if (reg->smax_value < sval) 9490 return 0; 9491 break; 9492 case BPF_JLE: 9493 if (reg->umax_value <= val) 9494 return 1; 9495 else if (reg->umin_value > val) 9496 return 0; 9497 break; 9498 case BPF_JSLE: 9499 if (reg->smax_value <= sval) 9500 return 1; 9501 else if (reg->smin_value > sval) 9502 return 0; 9503 break; 9504 } 9505 9506 return -1; 9507 } 9508 9509 /* compute branch direction of the expression "if (reg opcode val) goto target;" 9510 * and return: 9511 * 1 - branch will be taken and "goto target" will be executed 9512 * 0 - branch will not be taken and fall-through to next insn 9513 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value 9514 * range [0,10] 9515 */ 9516 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, 9517 bool is_jmp32) 9518 { 9519 if (__is_pointer_value(false, reg)) { 9520 if (!reg_type_not_null(reg->type)) 9521 return -1; 9522 9523 /* If pointer is valid tests against zero will fail so we can 9524 * use this to direct branch taken. 9525 */ 9526 if (val != 0) 9527 return -1; 9528 9529 switch (opcode) { 9530 case BPF_JEQ: 9531 return 0; 9532 case BPF_JNE: 9533 return 1; 9534 default: 9535 return -1; 9536 } 9537 } 9538 9539 if (is_jmp32) 9540 return is_branch32_taken(reg, val, opcode); 9541 return is_branch64_taken(reg, val, opcode); 9542 } 9543 9544 static int flip_opcode(u32 opcode) 9545 { 9546 /* How can we transform "a <op> b" into "b <op> a"? */ 9547 static const u8 opcode_flip[16] = { 9548 /* these stay the same */ 9549 [BPF_JEQ >> 4] = BPF_JEQ, 9550 [BPF_JNE >> 4] = BPF_JNE, 9551 [BPF_JSET >> 4] = BPF_JSET, 9552 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 9553 [BPF_JGE >> 4] = BPF_JLE, 9554 [BPF_JGT >> 4] = BPF_JLT, 9555 [BPF_JLE >> 4] = BPF_JGE, 9556 [BPF_JLT >> 4] = BPF_JGT, 9557 [BPF_JSGE >> 4] = BPF_JSLE, 9558 [BPF_JSGT >> 4] = BPF_JSLT, 9559 [BPF_JSLE >> 4] = BPF_JSGE, 9560 [BPF_JSLT >> 4] = BPF_JSGT 9561 }; 9562 return opcode_flip[opcode >> 4]; 9563 } 9564 9565 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg, 9566 struct bpf_reg_state *src_reg, 9567 u8 opcode) 9568 { 9569 struct bpf_reg_state *pkt; 9570 9571 if (src_reg->type == PTR_TO_PACKET_END) { 9572 pkt = dst_reg; 9573 } else if (dst_reg->type == PTR_TO_PACKET_END) { 9574 pkt = src_reg; 9575 opcode = flip_opcode(opcode); 9576 } else { 9577 return -1; 9578 } 9579 9580 if (pkt->range >= 0) 9581 return -1; 9582 9583 switch (opcode) { 9584 case BPF_JLE: 9585 /* pkt <= pkt_end */ 9586 fallthrough; 9587 case BPF_JGT: 9588 /* pkt > pkt_end */ 9589 if (pkt->range == BEYOND_PKT_END) 9590 /* pkt has at last one extra byte beyond pkt_end */ 9591 return opcode == BPF_JGT; 9592 break; 9593 case BPF_JLT: 9594 /* pkt < pkt_end */ 9595 fallthrough; 9596 case BPF_JGE: 9597 /* pkt >= pkt_end */ 9598 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END) 9599 return opcode == BPF_JGE; 9600 break; 9601 } 9602 return -1; 9603 } 9604 9605 /* Adjusts the register min/max values in the case that the dst_reg is the 9606 * variable register that we are working on, and src_reg is a constant or we're 9607 * simply doing a BPF_K check. 9608 * In JEQ/JNE cases we also adjust the var_off values. 9609 */ 9610 static void reg_set_min_max(struct bpf_reg_state *true_reg, 9611 struct bpf_reg_state *false_reg, 9612 u64 val, u32 val32, 9613 u8 opcode, bool is_jmp32) 9614 { 9615 struct tnum false_32off = tnum_subreg(false_reg->var_off); 9616 struct tnum false_64off = false_reg->var_off; 9617 struct tnum true_32off = tnum_subreg(true_reg->var_off); 9618 struct tnum true_64off = true_reg->var_off; 9619 s64 sval = (s64)val; 9620 s32 sval32 = (s32)val32; 9621 9622 /* If the dst_reg is a pointer, we can't learn anything about its 9623 * variable offset from the compare (unless src_reg were a pointer into 9624 * the same object, but we don't bother with that. 9625 * Since false_reg and true_reg have the same type by construction, we 9626 * only need to check one of them for pointerness. 9627 */ 9628 if (__is_pointer_value(false, false_reg)) 9629 return; 9630 9631 switch (opcode) { 9632 /* JEQ/JNE comparison doesn't change the register equivalence. 9633 * 9634 * r1 = r2; 9635 * if (r1 == 42) goto label; 9636 * ... 9637 * label: // here both r1 and r2 are known to be 42. 9638 * 9639 * Hence when marking register as known preserve it's ID. 9640 */ 9641 case BPF_JEQ: 9642 if (is_jmp32) { 9643 __mark_reg32_known(true_reg, val32); 9644 true_32off = tnum_subreg(true_reg->var_off); 9645 } else { 9646 ___mark_reg_known(true_reg, val); 9647 true_64off = true_reg->var_off; 9648 } 9649 break; 9650 case BPF_JNE: 9651 if (is_jmp32) { 9652 __mark_reg32_known(false_reg, val32); 9653 false_32off = tnum_subreg(false_reg->var_off); 9654 } else { 9655 ___mark_reg_known(false_reg, val); 9656 false_64off = false_reg->var_off; 9657 } 9658 break; 9659 case BPF_JSET: 9660 if (is_jmp32) { 9661 false_32off = tnum_and(false_32off, tnum_const(~val32)); 9662 if (is_power_of_2(val32)) 9663 true_32off = tnum_or(true_32off, 9664 tnum_const(val32)); 9665 } else { 9666 false_64off = tnum_and(false_64off, tnum_const(~val)); 9667 if (is_power_of_2(val)) 9668 true_64off = tnum_or(true_64off, 9669 tnum_const(val)); 9670 } 9671 break; 9672 case BPF_JGE: 9673 case BPF_JGT: 9674 { 9675 if (is_jmp32) { 9676 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1; 9677 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32; 9678 9679 false_reg->u32_max_value = min(false_reg->u32_max_value, 9680 false_umax); 9681 true_reg->u32_min_value = max(true_reg->u32_min_value, 9682 true_umin); 9683 } else { 9684 u64 false_umax = opcode == BPF_JGT ? val : val - 1; 9685 u64 true_umin = opcode == BPF_JGT ? val + 1 : val; 9686 9687 false_reg->umax_value = min(false_reg->umax_value, false_umax); 9688 true_reg->umin_value = max(true_reg->umin_value, true_umin); 9689 } 9690 break; 9691 } 9692 case BPF_JSGE: 9693 case BPF_JSGT: 9694 { 9695 if (is_jmp32) { 9696 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1; 9697 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32; 9698 9699 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax); 9700 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin); 9701 } else { 9702 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; 9703 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; 9704 9705 false_reg->smax_value = min(false_reg->smax_value, false_smax); 9706 true_reg->smin_value = max(true_reg->smin_value, true_smin); 9707 } 9708 break; 9709 } 9710 case BPF_JLE: 9711 case BPF_JLT: 9712 { 9713 if (is_jmp32) { 9714 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1; 9715 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32; 9716 9717 false_reg->u32_min_value = max(false_reg->u32_min_value, 9718 false_umin); 9719 true_reg->u32_max_value = min(true_reg->u32_max_value, 9720 true_umax); 9721 } else { 9722 u64 false_umin = opcode == BPF_JLT ? val : val + 1; 9723 u64 true_umax = opcode == BPF_JLT ? val - 1 : val; 9724 9725 false_reg->umin_value = max(false_reg->umin_value, false_umin); 9726 true_reg->umax_value = min(true_reg->umax_value, true_umax); 9727 } 9728 break; 9729 } 9730 case BPF_JSLE: 9731 case BPF_JSLT: 9732 { 9733 if (is_jmp32) { 9734 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1; 9735 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32; 9736 9737 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin); 9738 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax); 9739 } else { 9740 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; 9741 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; 9742 9743 false_reg->smin_value = max(false_reg->smin_value, false_smin); 9744 true_reg->smax_value = min(true_reg->smax_value, true_smax); 9745 } 9746 break; 9747 } 9748 default: 9749 return; 9750 } 9751 9752 if (is_jmp32) { 9753 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off), 9754 tnum_subreg(false_32off)); 9755 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off), 9756 tnum_subreg(true_32off)); 9757 __reg_combine_32_into_64(false_reg); 9758 __reg_combine_32_into_64(true_reg); 9759 } else { 9760 false_reg->var_off = false_64off; 9761 true_reg->var_off = true_64off; 9762 __reg_combine_64_into_32(false_reg); 9763 __reg_combine_64_into_32(true_reg); 9764 } 9765 } 9766 9767 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 9768 * the variable reg. 9769 */ 9770 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 9771 struct bpf_reg_state *false_reg, 9772 u64 val, u32 val32, 9773 u8 opcode, bool is_jmp32) 9774 { 9775 opcode = flip_opcode(opcode); 9776 /* This uses zero as "not present in table"; luckily the zero opcode, 9777 * BPF_JA, can't get here. 9778 */ 9779 if (opcode) 9780 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32); 9781 } 9782 9783 /* Regs are known to be equal, so intersect their min/max/var_off */ 9784 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 9785 struct bpf_reg_state *dst_reg) 9786 { 9787 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 9788 dst_reg->umin_value); 9789 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 9790 dst_reg->umax_value); 9791 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 9792 dst_reg->smin_value); 9793 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 9794 dst_reg->smax_value); 9795 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 9796 dst_reg->var_off); 9797 reg_bounds_sync(src_reg); 9798 reg_bounds_sync(dst_reg); 9799 } 9800 9801 static void reg_combine_min_max(struct bpf_reg_state *true_src, 9802 struct bpf_reg_state *true_dst, 9803 struct bpf_reg_state *false_src, 9804 struct bpf_reg_state *false_dst, 9805 u8 opcode) 9806 { 9807 switch (opcode) { 9808 case BPF_JEQ: 9809 __reg_combine_min_max(true_src, true_dst); 9810 break; 9811 case BPF_JNE: 9812 __reg_combine_min_max(false_src, false_dst); 9813 break; 9814 } 9815 } 9816 9817 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 9818 struct bpf_reg_state *reg, u32 id, 9819 bool is_null) 9820 { 9821 if (type_may_be_null(reg->type) && reg->id == id && 9822 !WARN_ON_ONCE(!reg->id)) { 9823 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || 9824 !tnum_equals_const(reg->var_off, 0) || 9825 reg->off)) { 9826 /* Old offset (both fixed and variable parts) should 9827 * have been known-zero, because we don't allow pointer 9828 * arithmetic on pointers that might be NULL. If we 9829 * see this happening, don't convert the register. 9830 */ 9831 return; 9832 } 9833 if (is_null) { 9834 reg->type = SCALAR_VALUE; 9835 /* We don't need id and ref_obj_id from this point 9836 * onwards anymore, thus we should better reset it, 9837 * so that state pruning has chances to take effect. 9838 */ 9839 reg->id = 0; 9840 reg->ref_obj_id = 0; 9841 9842 return; 9843 } 9844 9845 mark_ptr_not_null_reg(reg); 9846 9847 if (!reg_may_point_to_spin_lock(reg)) { 9848 /* For not-NULL ptr, reg->ref_obj_id will be reset 9849 * in release_reg_references(). 9850 * 9851 * reg->id is still used by spin_lock ptr. Other 9852 * than spin_lock ptr type, reg->id can be reset. 9853 */ 9854 reg->id = 0; 9855 } 9856 } 9857 } 9858 9859 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id, 9860 bool is_null) 9861 { 9862 struct bpf_reg_state *reg; 9863 int i; 9864 9865 for (i = 0; i < MAX_BPF_REG; i++) 9866 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null); 9867 9868 bpf_for_each_spilled_reg(i, state, reg) { 9869 if (!reg) 9870 continue; 9871 mark_ptr_or_null_reg(state, reg, id, is_null); 9872 } 9873 } 9874 9875 /* The logic is similar to find_good_pkt_pointers(), both could eventually 9876 * be folded together at some point. 9877 */ 9878 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 9879 bool is_null) 9880 { 9881 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 9882 struct bpf_reg_state *regs = state->regs; 9883 u32 ref_obj_id = regs[regno].ref_obj_id; 9884 u32 id = regs[regno].id; 9885 int i; 9886 9887 if (ref_obj_id && ref_obj_id == id && is_null) 9888 /* regs[regno] is in the " == NULL" branch. 9889 * No one could have freed the reference state before 9890 * doing the NULL check. 9891 */ 9892 WARN_ON_ONCE(release_reference_state(state, id)); 9893 9894 for (i = 0; i <= vstate->curframe; i++) 9895 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null); 9896 } 9897 9898 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 9899 struct bpf_reg_state *dst_reg, 9900 struct bpf_reg_state *src_reg, 9901 struct bpf_verifier_state *this_branch, 9902 struct bpf_verifier_state *other_branch) 9903 { 9904 if (BPF_SRC(insn->code) != BPF_X) 9905 return false; 9906 9907 /* Pointers are always 64-bit. */ 9908 if (BPF_CLASS(insn->code) == BPF_JMP32) 9909 return false; 9910 9911 switch (BPF_OP(insn->code)) { 9912 case BPF_JGT: 9913 if ((dst_reg->type == PTR_TO_PACKET && 9914 src_reg->type == PTR_TO_PACKET_END) || 9915 (dst_reg->type == PTR_TO_PACKET_META && 9916 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 9917 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 9918 find_good_pkt_pointers(this_branch, dst_reg, 9919 dst_reg->type, false); 9920 mark_pkt_end(other_branch, insn->dst_reg, true); 9921 } else if ((dst_reg->type == PTR_TO_PACKET_END && 9922 src_reg->type == PTR_TO_PACKET) || 9923 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 9924 src_reg->type == PTR_TO_PACKET_META)) { 9925 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 9926 find_good_pkt_pointers(other_branch, src_reg, 9927 src_reg->type, true); 9928 mark_pkt_end(this_branch, insn->src_reg, false); 9929 } else { 9930 return false; 9931 } 9932 break; 9933 case BPF_JLT: 9934 if ((dst_reg->type == PTR_TO_PACKET && 9935 src_reg->type == PTR_TO_PACKET_END) || 9936 (dst_reg->type == PTR_TO_PACKET_META && 9937 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 9938 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 9939 find_good_pkt_pointers(other_branch, dst_reg, 9940 dst_reg->type, true); 9941 mark_pkt_end(this_branch, insn->dst_reg, false); 9942 } else if ((dst_reg->type == PTR_TO_PACKET_END && 9943 src_reg->type == PTR_TO_PACKET) || 9944 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 9945 src_reg->type == PTR_TO_PACKET_META)) { 9946 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 9947 find_good_pkt_pointers(this_branch, src_reg, 9948 src_reg->type, false); 9949 mark_pkt_end(other_branch, insn->src_reg, true); 9950 } else { 9951 return false; 9952 } 9953 break; 9954 case BPF_JGE: 9955 if ((dst_reg->type == PTR_TO_PACKET && 9956 src_reg->type == PTR_TO_PACKET_END) || 9957 (dst_reg->type == PTR_TO_PACKET_META && 9958 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 9959 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 9960 find_good_pkt_pointers(this_branch, dst_reg, 9961 dst_reg->type, true); 9962 mark_pkt_end(other_branch, insn->dst_reg, false); 9963 } else if ((dst_reg->type == PTR_TO_PACKET_END && 9964 src_reg->type == PTR_TO_PACKET) || 9965 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 9966 src_reg->type == PTR_TO_PACKET_META)) { 9967 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 9968 find_good_pkt_pointers(other_branch, src_reg, 9969 src_reg->type, false); 9970 mark_pkt_end(this_branch, insn->src_reg, true); 9971 } else { 9972 return false; 9973 } 9974 break; 9975 case BPF_JLE: 9976 if ((dst_reg->type == PTR_TO_PACKET && 9977 src_reg->type == PTR_TO_PACKET_END) || 9978 (dst_reg->type == PTR_TO_PACKET_META && 9979 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 9980 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 9981 find_good_pkt_pointers(other_branch, dst_reg, 9982 dst_reg->type, false); 9983 mark_pkt_end(this_branch, insn->dst_reg, true); 9984 } else if ((dst_reg->type == PTR_TO_PACKET_END && 9985 src_reg->type == PTR_TO_PACKET) || 9986 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 9987 src_reg->type == PTR_TO_PACKET_META)) { 9988 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 9989 find_good_pkt_pointers(this_branch, src_reg, 9990 src_reg->type, true); 9991 mark_pkt_end(other_branch, insn->src_reg, false); 9992 } else { 9993 return false; 9994 } 9995 break; 9996 default: 9997 return false; 9998 } 9999 10000 return true; 10001 } 10002 10003 static void find_equal_scalars(struct bpf_verifier_state *vstate, 10004 struct bpf_reg_state *known_reg) 10005 { 10006 struct bpf_func_state *state; 10007 struct bpf_reg_state *reg; 10008 int i, j; 10009 10010 for (i = 0; i <= vstate->curframe; i++) { 10011 state = vstate->frame[i]; 10012 for (j = 0; j < MAX_BPF_REG; j++) { 10013 reg = &state->regs[j]; 10014 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 10015 *reg = *known_reg; 10016 } 10017 10018 bpf_for_each_spilled_reg(j, state, reg) { 10019 if (!reg) 10020 continue; 10021 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 10022 *reg = *known_reg; 10023 } 10024 } 10025 } 10026 10027 static int check_cond_jmp_op(struct bpf_verifier_env *env, 10028 struct bpf_insn *insn, int *insn_idx) 10029 { 10030 struct bpf_verifier_state *this_branch = env->cur_state; 10031 struct bpf_verifier_state *other_branch; 10032 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 10033 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 10034 u8 opcode = BPF_OP(insn->code); 10035 bool is_jmp32; 10036 int pred = -1; 10037 int err; 10038 10039 /* Only conditional jumps are expected to reach here. */ 10040 if (opcode == BPF_JA || opcode > BPF_JSLE) { 10041 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 10042 return -EINVAL; 10043 } 10044 10045 if (BPF_SRC(insn->code) == BPF_X) { 10046 if (insn->imm != 0) { 10047 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 10048 return -EINVAL; 10049 } 10050 10051 /* check src1 operand */ 10052 err = check_reg_arg(env, insn->src_reg, SRC_OP); 10053 if (err) 10054 return err; 10055 10056 if (is_pointer_value(env, insn->src_reg)) { 10057 verbose(env, "R%d pointer comparison prohibited\n", 10058 insn->src_reg); 10059 return -EACCES; 10060 } 10061 src_reg = ®s[insn->src_reg]; 10062 } else { 10063 if (insn->src_reg != BPF_REG_0) { 10064 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 10065 return -EINVAL; 10066 } 10067 } 10068 10069 /* check src2 operand */ 10070 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 10071 if (err) 10072 return err; 10073 10074 dst_reg = ®s[insn->dst_reg]; 10075 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 10076 10077 if (BPF_SRC(insn->code) == BPF_K) { 10078 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32); 10079 } else if (src_reg->type == SCALAR_VALUE && 10080 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) { 10081 pred = is_branch_taken(dst_reg, 10082 tnum_subreg(src_reg->var_off).value, 10083 opcode, 10084 is_jmp32); 10085 } else if (src_reg->type == SCALAR_VALUE && 10086 !is_jmp32 && tnum_is_const(src_reg->var_off)) { 10087 pred = is_branch_taken(dst_reg, 10088 src_reg->var_off.value, 10089 opcode, 10090 is_jmp32); 10091 } else if (reg_is_pkt_pointer_any(dst_reg) && 10092 reg_is_pkt_pointer_any(src_reg) && 10093 !is_jmp32) { 10094 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode); 10095 } 10096 10097 if (pred >= 0) { 10098 /* If we get here with a dst_reg pointer type it is because 10099 * above is_branch_taken() special cased the 0 comparison. 10100 */ 10101 if (!__is_pointer_value(false, dst_reg)) 10102 err = mark_chain_precision(env, insn->dst_reg); 10103 if (BPF_SRC(insn->code) == BPF_X && !err && 10104 !__is_pointer_value(false, src_reg)) 10105 err = mark_chain_precision(env, insn->src_reg); 10106 if (err) 10107 return err; 10108 } 10109 10110 if (pred == 1) { 10111 /* Only follow the goto, ignore fall-through. If needed, push 10112 * the fall-through branch for simulation under speculative 10113 * execution. 10114 */ 10115 if (!env->bypass_spec_v1 && 10116 !sanitize_speculative_path(env, insn, *insn_idx + 1, 10117 *insn_idx)) 10118 return -EFAULT; 10119 *insn_idx += insn->off; 10120 return 0; 10121 } else if (pred == 0) { 10122 /* Only follow the fall-through branch, since that's where the 10123 * program will go. If needed, push the goto branch for 10124 * simulation under speculative execution. 10125 */ 10126 if (!env->bypass_spec_v1 && 10127 !sanitize_speculative_path(env, insn, 10128 *insn_idx + insn->off + 1, 10129 *insn_idx)) 10130 return -EFAULT; 10131 return 0; 10132 } 10133 10134 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 10135 false); 10136 if (!other_branch) 10137 return -EFAULT; 10138 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 10139 10140 /* detect if we are comparing against a constant value so we can adjust 10141 * our min/max values for our dst register. 10142 * this is only legit if both are scalars (or pointers to the same 10143 * object, I suppose, but we don't support that right now), because 10144 * otherwise the different base pointers mean the offsets aren't 10145 * comparable. 10146 */ 10147 if (BPF_SRC(insn->code) == BPF_X) { 10148 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 10149 10150 if (dst_reg->type == SCALAR_VALUE && 10151 src_reg->type == SCALAR_VALUE) { 10152 if (tnum_is_const(src_reg->var_off) || 10153 (is_jmp32 && 10154 tnum_is_const(tnum_subreg(src_reg->var_off)))) 10155 reg_set_min_max(&other_branch_regs[insn->dst_reg], 10156 dst_reg, 10157 src_reg->var_off.value, 10158 tnum_subreg(src_reg->var_off).value, 10159 opcode, is_jmp32); 10160 else if (tnum_is_const(dst_reg->var_off) || 10161 (is_jmp32 && 10162 tnum_is_const(tnum_subreg(dst_reg->var_off)))) 10163 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 10164 src_reg, 10165 dst_reg->var_off.value, 10166 tnum_subreg(dst_reg->var_off).value, 10167 opcode, is_jmp32); 10168 else if (!is_jmp32 && 10169 (opcode == BPF_JEQ || opcode == BPF_JNE)) 10170 /* Comparing for equality, we can combine knowledge */ 10171 reg_combine_min_max(&other_branch_regs[insn->src_reg], 10172 &other_branch_regs[insn->dst_reg], 10173 src_reg, dst_reg, opcode); 10174 if (src_reg->id && 10175 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) { 10176 find_equal_scalars(this_branch, src_reg); 10177 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]); 10178 } 10179 10180 } 10181 } else if (dst_reg->type == SCALAR_VALUE) { 10182 reg_set_min_max(&other_branch_regs[insn->dst_reg], 10183 dst_reg, insn->imm, (u32)insn->imm, 10184 opcode, is_jmp32); 10185 } 10186 10187 if (dst_reg->type == SCALAR_VALUE && dst_reg->id && 10188 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) { 10189 find_equal_scalars(this_branch, dst_reg); 10190 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]); 10191 } 10192 10193 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 10194 * NOTE: these optimizations below are related with pointer comparison 10195 * which will never be JMP32. 10196 */ 10197 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 10198 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 10199 type_may_be_null(dst_reg->type)) { 10200 /* Mark all identical registers in each branch as either 10201 * safe or unknown depending R == 0 or R != 0 conditional. 10202 */ 10203 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 10204 opcode == BPF_JNE); 10205 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 10206 opcode == BPF_JEQ); 10207 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 10208 this_branch, other_branch) && 10209 is_pointer_value(env, insn->dst_reg)) { 10210 verbose(env, "R%d pointer comparison prohibited\n", 10211 insn->dst_reg); 10212 return -EACCES; 10213 } 10214 if (env->log.level & BPF_LOG_LEVEL) 10215 print_insn_state(env, this_branch->frame[this_branch->curframe]); 10216 return 0; 10217 } 10218 10219 /* verify BPF_LD_IMM64 instruction */ 10220 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 10221 { 10222 struct bpf_insn_aux_data *aux = cur_aux(env); 10223 struct bpf_reg_state *regs = cur_regs(env); 10224 struct bpf_reg_state *dst_reg; 10225 struct bpf_map *map; 10226 int err; 10227 10228 if (BPF_SIZE(insn->code) != BPF_DW) { 10229 verbose(env, "invalid BPF_LD_IMM insn\n"); 10230 return -EINVAL; 10231 } 10232 if (insn->off != 0) { 10233 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 10234 return -EINVAL; 10235 } 10236 10237 err = check_reg_arg(env, insn->dst_reg, DST_OP); 10238 if (err) 10239 return err; 10240 10241 dst_reg = ®s[insn->dst_reg]; 10242 if (insn->src_reg == 0) { 10243 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 10244 10245 dst_reg->type = SCALAR_VALUE; 10246 __mark_reg_known(®s[insn->dst_reg], imm); 10247 return 0; 10248 } 10249 10250 /* All special src_reg cases are listed below. From this point onwards 10251 * we either succeed and assign a corresponding dst_reg->type after 10252 * zeroing the offset, or fail and reject the program. 10253 */ 10254 mark_reg_known_zero(env, regs, insn->dst_reg); 10255 10256 if (insn->src_reg == BPF_PSEUDO_BTF_ID) { 10257 dst_reg->type = aux->btf_var.reg_type; 10258 switch (base_type(dst_reg->type)) { 10259 case PTR_TO_MEM: 10260 dst_reg->mem_size = aux->btf_var.mem_size; 10261 break; 10262 case PTR_TO_BTF_ID: 10263 dst_reg->btf = aux->btf_var.btf; 10264 dst_reg->btf_id = aux->btf_var.btf_id; 10265 break; 10266 default: 10267 verbose(env, "bpf verifier is misconfigured\n"); 10268 return -EFAULT; 10269 } 10270 return 0; 10271 } 10272 10273 if (insn->src_reg == BPF_PSEUDO_FUNC) { 10274 struct bpf_prog_aux *aux = env->prog->aux; 10275 u32 subprogno = find_subprog(env, 10276 env->insn_idx + insn->imm + 1); 10277 10278 if (!aux->func_info) { 10279 verbose(env, "missing btf func_info\n"); 10280 return -EINVAL; 10281 } 10282 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) { 10283 verbose(env, "callback function not static\n"); 10284 return -EINVAL; 10285 } 10286 10287 dst_reg->type = PTR_TO_FUNC; 10288 dst_reg->subprogno = subprogno; 10289 return 0; 10290 } 10291 10292 map = env->used_maps[aux->map_index]; 10293 dst_reg->map_ptr = map; 10294 10295 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE || 10296 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) { 10297 dst_reg->type = PTR_TO_MAP_VALUE; 10298 dst_reg->off = aux->map_off; 10299 if (map_value_has_spin_lock(map)) 10300 dst_reg->id = ++env->id_gen; 10301 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD || 10302 insn->src_reg == BPF_PSEUDO_MAP_IDX) { 10303 dst_reg->type = CONST_PTR_TO_MAP; 10304 } else { 10305 verbose(env, "bpf verifier is misconfigured\n"); 10306 return -EINVAL; 10307 } 10308 10309 return 0; 10310 } 10311 10312 static bool may_access_skb(enum bpf_prog_type type) 10313 { 10314 switch (type) { 10315 case BPF_PROG_TYPE_SOCKET_FILTER: 10316 case BPF_PROG_TYPE_SCHED_CLS: 10317 case BPF_PROG_TYPE_SCHED_ACT: 10318 return true; 10319 default: 10320 return false; 10321 } 10322 } 10323 10324 /* verify safety of LD_ABS|LD_IND instructions: 10325 * - they can only appear in the programs where ctx == skb 10326 * - since they are wrappers of function calls, they scratch R1-R5 registers, 10327 * preserve R6-R9, and store return value into R0 10328 * 10329 * Implicit input: 10330 * ctx == skb == R6 == CTX 10331 * 10332 * Explicit input: 10333 * SRC == any register 10334 * IMM == 32-bit immediate 10335 * 10336 * Output: 10337 * R0 - 8/16/32-bit skb data converted to cpu endianness 10338 */ 10339 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 10340 { 10341 struct bpf_reg_state *regs = cur_regs(env); 10342 static const int ctx_reg = BPF_REG_6; 10343 u8 mode = BPF_MODE(insn->code); 10344 int i, err; 10345 10346 if (!may_access_skb(resolve_prog_type(env->prog))) { 10347 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 10348 return -EINVAL; 10349 } 10350 10351 if (!env->ops->gen_ld_abs) { 10352 verbose(env, "bpf verifier is misconfigured\n"); 10353 return -EINVAL; 10354 } 10355 10356 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 10357 BPF_SIZE(insn->code) == BPF_DW || 10358 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 10359 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 10360 return -EINVAL; 10361 } 10362 10363 /* check whether implicit source operand (register R6) is readable */ 10364 err = check_reg_arg(env, ctx_reg, SRC_OP); 10365 if (err) 10366 return err; 10367 10368 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 10369 * gen_ld_abs() may terminate the program at runtime, leading to 10370 * reference leak. 10371 */ 10372 err = check_reference_leak(env); 10373 if (err) { 10374 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 10375 return err; 10376 } 10377 10378 if (env->cur_state->active_spin_lock) { 10379 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 10380 return -EINVAL; 10381 } 10382 10383 if (regs[ctx_reg].type != PTR_TO_CTX) { 10384 verbose(env, 10385 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 10386 return -EINVAL; 10387 } 10388 10389 if (mode == BPF_IND) { 10390 /* check explicit source operand */ 10391 err = check_reg_arg(env, insn->src_reg, SRC_OP); 10392 if (err) 10393 return err; 10394 } 10395 10396 err = check_ptr_off_reg(env, ®s[ctx_reg], ctx_reg); 10397 if (err < 0) 10398 return err; 10399 10400 /* reset caller saved regs to unreadable */ 10401 for (i = 0; i < CALLER_SAVED_REGS; i++) { 10402 mark_reg_not_init(env, regs, caller_saved[i]); 10403 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 10404 } 10405 10406 /* mark destination R0 register as readable, since it contains 10407 * the value fetched from the packet. 10408 * Already marked as written above. 10409 */ 10410 mark_reg_unknown(env, regs, BPF_REG_0); 10411 /* ld_abs load up to 32-bit skb data. */ 10412 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 10413 return 0; 10414 } 10415 10416 static int check_return_code(struct bpf_verifier_env *env) 10417 { 10418 struct tnum enforce_attach_type_range = tnum_unknown; 10419 const struct bpf_prog *prog = env->prog; 10420 struct bpf_reg_state *reg; 10421 struct tnum range = tnum_range(0, 1); 10422 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 10423 int err; 10424 struct bpf_func_state *frame = env->cur_state->frame[0]; 10425 const bool is_subprog = frame->subprogno; 10426 10427 /* LSM and struct_ops func-ptr's return type could be "void" */ 10428 if (!is_subprog) { 10429 switch (prog_type) { 10430 case BPF_PROG_TYPE_LSM: 10431 if (prog->expected_attach_type == BPF_LSM_CGROUP) 10432 /* See below, can be 0 or 0-1 depending on hook. */ 10433 break; 10434 fallthrough; 10435 case BPF_PROG_TYPE_STRUCT_OPS: 10436 if (!prog->aux->attach_func_proto->type) 10437 return 0; 10438 break; 10439 default: 10440 break; 10441 } 10442 } 10443 10444 /* eBPF calling convention is such that R0 is used 10445 * to return the value from eBPF program. 10446 * Make sure that it's readable at this time 10447 * of bpf_exit, which means that program wrote 10448 * something into it earlier 10449 */ 10450 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 10451 if (err) 10452 return err; 10453 10454 if (is_pointer_value(env, BPF_REG_0)) { 10455 verbose(env, "R0 leaks addr as return value\n"); 10456 return -EACCES; 10457 } 10458 10459 reg = cur_regs(env) + BPF_REG_0; 10460 10461 if (frame->in_async_callback_fn) { 10462 /* enforce return zero from async callbacks like timer */ 10463 if (reg->type != SCALAR_VALUE) { 10464 verbose(env, "In async callback the register R0 is not a known value (%s)\n", 10465 reg_type_str(env, reg->type)); 10466 return -EINVAL; 10467 } 10468 10469 if (!tnum_in(tnum_const(0), reg->var_off)) { 10470 verbose_invalid_scalar(env, reg, &range, "async callback", "R0"); 10471 return -EINVAL; 10472 } 10473 return 0; 10474 } 10475 10476 if (is_subprog) { 10477 if (reg->type != SCALAR_VALUE) { 10478 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n", 10479 reg_type_str(env, reg->type)); 10480 return -EINVAL; 10481 } 10482 return 0; 10483 } 10484 10485 switch (prog_type) { 10486 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 10487 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 10488 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || 10489 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || 10490 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || 10491 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || 10492 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME) 10493 range = tnum_range(1, 1); 10494 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND || 10495 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND) 10496 range = tnum_range(0, 3); 10497 break; 10498 case BPF_PROG_TYPE_CGROUP_SKB: 10499 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 10500 range = tnum_range(0, 3); 10501 enforce_attach_type_range = tnum_range(2, 3); 10502 } 10503 break; 10504 case BPF_PROG_TYPE_CGROUP_SOCK: 10505 case BPF_PROG_TYPE_SOCK_OPS: 10506 case BPF_PROG_TYPE_CGROUP_DEVICE: 10507 case BPF_PROG_TYPE_CGROUP_SYSCTL: 10508 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 10509 break; 10510 case BPF_PROG_TYPE_RAW_TRACEPOINT: 10511 if (!env->prog->aux->attach_btf_id) 10512 return 0; 10513 range = tnum_const(0); 10514 break; 10515 case BPF_PROG_TYPE_TRACING: 10516 switch (env->prog->expected_attach_type) { 10517 case BPF_TRACE_FENTRY: 10518 case BPF_TRACE_FEXIT: 10519 range = tnum_const(0); 10520 break; 10521 case BPF_TRACE_RAW_TP: 10522 case BPF_MODIFY_RETURN: 10523 return 0; 10524 case BPF_TRACE_ITER: 10525 break; 10526 default: 10527 return -ENOTSUPP; 10528 } 10529 break; 10530 case BPF_PROG_TYPE_SK_LOOKUP: 10531 range = tnum_range(SK_DROP, SK_PASS); 10532 break; 10533 10534 case BPF_PROG_TYPE_LSM: 10535 if (env->prog->expected_attach_type != BPF_LSM_CGROUP) { 10536 /* Regular BPF_PROG_TYPE_LSM programs can return 10537 * any value. 10538 */ 10539 return 0; 10540 } 10541 if (!env->prog->aux->attach_func_proto->type) { 10542 /* Make sure programs that attach to void 10543 * hooks don't try to modify return value. 10544 */ 10545 range = tnum_range(1, 1); 10546 } 10547 break; 10548 10549 case BPF_PROG_TYPE_EXT: 10550 /* freplace program can return anything as its return value 10551 * depends on the to-be-replaced kernel func or bpf program. 10552 */ 10553 default: 10554 return 0; 10555 } 10556 10557 if (reg->type != SCALAR_VALUE) { 10558 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 10559 reg_type_str(env, reg->type)); 10560 return -EINVAL; 10561 } 10562 10563 if (!tnum_in(range, reg->var_off)) { 10564 verbose_invalid_scalar(env, reg, &range, "program exit", "R0"); 10565 if (prog->expected_attach_type == BPF_LSM_CGROUP && 10566 prog_type == BPF_PROG_TYPE_LSM && 10567 !prog->aux->attach_func_proto->type) 10568 verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 10569 return -EINVAL; 10570 } 10571 10572 if (!tnum_is_unknown(enforce_attach_type_range) && 10573 tnum_in(enforce_attach_type_range, reg->var_off)) 10574 env->prog->enforce_expected_attach_type = 1; 10575 return 0; 10576 } 10577 10578 /* non-recursive DFS pseudo code 10579 * 1 procedure DFS-iterative(G,v): 10580 * 2 label v as discovered 10581 * 3 let S be a stack 10582 * 4 S.push(v) 10583 * 5 while S is not empty 10584 * 6 t <- S.pop() 10585 * 7 if t is what we're looking for: 10586 * 8 return t 10587 * 9 for all edges e in G.adjacentEdges(t) do 10588 * 10 if edge e is already labelled 10589 * 11 continue with the next edge 10590 * 12 w <- G.adjacentVertex(t,e) 10591 * 13 if vertex w is not discovered and not explored 10592 * 14 label e as tree-edge 10593 * 15 label w as discovered 10594 * 16 S.push(w) 10595 * 17 continue at 5 10596 * 18 else if vertex w is discovered 10597 * 19 label e as back-edge 10598 * 20 else 10599 * 21 // vertex w is explored 10600 * 22 label e as forward- or cross-edge 10601 * 23 label t as explored 10602 * 24 S.pop() 10603 * 10604 * convention: 10605 * 0x10 - discovered 10606 * 0x11 - discovered and fall-through edge labelled 10607 * 0x12 - discovered and fall-through and branch edges labelled 10608 * 0x20 - explored 10609 */ 10610 10611 enum { 10612 DISCOVERED = 0x10, 10613 EXPLORED = 0x20, 10614 FALLTHROUGH = 1, 10615 BRANCH = 2, 10616 }; 10617 10618 static u32 state_htab_size(struct bpf_verifier_env *env) 10619 { 10620 return env->prog->len; 10621 } 10622 10623 static struct bpf_verifier_state_list **explored_state( 10624 struct bpf_verifier_env *env, 10625 int idx) 10626 { 10627 struct bpf_verifier_state *cur = env->cur_state; 10628 struct bpf_func_state *state = cur->frame[cur->curframe]; 10629 10630 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 10631 } 10632 10633 static void init_explored_state(struct bpf_verifier_env *env, int idx) 10634 { 10635 env->insn_aux_data[idx].prune_point = true; 10636 } 10637 10638 enum { 10639 DONE_EXPLORING = 0, 10640 KEEP_EXPLORING = 1, 10641 }; 10642 10643 /* t, w, e - match pseudo-code above: 10644 * t - index of current instruction 10645 * w - next instruction 10646 * e - edge 10647 */ 10648 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env, 10649 bool loop_ok) 10650 { 10651 int *insn_stack = env->cfg.insn_stack; 10652 int *insn_state = env->cfg.insn_state; 10653 10654 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 10655 return DONE_EXPLORING; 10656 10657 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 10658 return DONE_EXPLORING; 10659 10660 if (w < 0 || w >= env->prog->len) { 10661 verbose_linfo(env, t, "%d: ", t); 10662 verbose(env, "jump out of range from insn %d to %d\n", t, w); 10663 return -EINVAL; 10664 } 10665 10666 if (e == BRANCH) 10667 /* mark branch target for state pruning */ 10668 init_explored_state(env, w); 10669 10670 if (insn_state[w] == 0) { 10671 /* tree-edge */ 10672 insn_state[t] = DISCOVERED | e; 10673 insn_state[w] = DISCOVERED; 10674 if (env->cfg.cur_stack >= env->prog->len) 10675 return -E2BIG; 10676 insn_stack[env->cfg.cur_stack++] = w; 10677 return KEEP_EXPLORING; 10678 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 10679 if (loop_ok && env->bpf_capable) 10680 return DONE_EXPLORING; 10681 verbose_linfo(env, t, "%d: ", t); 10682 verbose_linfo(env, w, "%d: ", w); 10683 verbose(env, "back-edge from insn %d to %d\n", t, w); 10684 return -EINVAL; 10685 } else if (insn_state[w] == EXPLORED) { 10686 /* forward- or cross-edge */ 10687 insn_state[t] = DISCOVERED | e; 10688 } else { 10689 verbose(env, "insn state internal bug\n"); 10690 return -EFAULT; 10691 } 10692 return DONE_EXPLORING; 10693 } 10694 10695 static int visit_func_call_insn(int t, int insn_cnt, 10696 struct bpf_insn *insns, 10697 struct bpf_verifier_env *env, 10698 bool visit_callee) 10699 { 10700 int ret; 10701 10702 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 10703 if (ret) 10704 return ret; 10705 10706 if (t + 1 < insn_cnt) 10707 init_explored_state(env, t + 1); 10708 if (visit_callee) { 10709 init_explored_state(env, t); 10710 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env, 10711 /* It's ok to allow recursion from CFG point of 10712 * view. __check_func_call() will do the actual 10713 * check. 10714 */ 10715 bpf_pseudo_func(insns + t)); 10716 } 10717 return ret; 10718 } 10719 10720 /* Visits the instruction at index t and returns one of the following: 10721 * < 0 - an error occurred 10722 * DONE_EXPLORING - the instruction was fully explored 10723 * KEEP_EXPLORING - there is still work to be done before it is fully explored 10724 */ 10725 static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env) 10726 { 10727 struct bpf_insn *insns = env->prog->insnsi; 10728 int ret; 10729 10730 if (bpf_pseudo_func(insns + t)) 10731 return visit_func_call_insn(t, insn_cnt, insns, env, true); 10732 10733 /* All non-branch instructions have a single fall-through edge. */ 10734 if (BPF_CLASS(insns[t].code) != BPF_JMP && 10735 BPF_CLASS(insns[t].code) != BPF_JMP32) 10736 return push_insn(t, t + 1, FALLTHROUGH, env, false); 10737 10738 switch (BPF_OP(insns[t].code)) { 10739 case BPF_EXIT: 10740 return DONE_EXPLORING; 10741 10742 case BPF_CALL: 10743 if (insns[t].imm == BPF_FUNC_timer_set_callback) 10744 /* Mark this call insn to trigger is_state_visited() check 10745 * before call itself is processed by __check_func_call(). 10746 * Otherwise new async state will be pushed for further 10747 * exploration. 10748 */ 10749 init_explored_state(env, t); 10750 return visit_func_call_insn(t, insn_cnt, insns, env, 10751 insns[t].src_reg == BPF_PSEUDO_CALL); 10752 10753 case BPF_JA: 10754 if (BPF_SRC(insns[t].code) != BPF_K) 10755 return -EINVAL; 10756 10757 /* unconditional jump with single edge */ 10758 ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env, 10759 true); 10760 if (ret) 10761 return ret; 10762 10763 /* unconditional jmp is not a good pruning point, 10764 * but it's marked, since backtracking needs 10765 * to record jmp history in is_state_visited(). 10766 */ 10767 init_explored_state(env, t + insns[t].off + 1); 10768 /* tell verifier to check for equivalent states 10769 * after every call and jump 10770 */ 10771 if (t + 1 < insn_cnt) 10772 init_explored_state(env, t + 1); 10773 10774 return ret; 10775 10776 default: 10777 /* conditional jump with two edges */ 10778 init_explored_state(env, t); 10779 ret = push_insn(t, t + 1, FALLTHROUGH, env, true); 10780 if (ret) 10781 return ret; 10782 10783 return push_insn(t, t + insns[t].off + 1, BRANCH, env, true); 10784 } 10785 } 10786 10787 /* non-recursive depth-first-search to detect loops in BPF program 10788 * loop == back-edge in directed graph 10789 */ 10790 static int check_cfg(struct bpf_verifier_env *env) 10791 { 10792 int insn_cnt = env->prog->len; 10793 int *insn_stack, *insn_state; 10794 int ret = 0; 10795 int i; 10796 10797 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 10798 if (!insn_state) 10799 return -ENOMEM; 10800 10801 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 10802 if (!insn_stack) { 10803 kvfree(insn_state); 10804 return -ENOMEM; 10805 } 10806 10807 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 10808 insn_stack[0] = 0; /* 0 is the first instruction */ 10809 env->cfg.cur_stack = 1; 10810 10811 while (env->cfg.cur_stack > 0) { 10812 int t = insn_stack[env->cfg.cur_stack - 1]; 10813 10814 ret = visit_insn(t, insn_cnt, env); 10815 switch (ret) { 10816 case DONE_EXPLORING: 10817 insn_state[t] = EXPLORED; 10818 env->cfg.cur_stack--; 10819 break; 10820 case KEEP_EXPLORING: 10821 break; 10822 default: 10823 if (ret > 0) { 10824 verbose(env, "visit_insn internal bug\n"); 10825 ret = -EFAULT; 10826 } 10827 goto err_free; 10828 } 10829 } 10830 10831 if (env->cfg.cur_stack < 0) { 10832 verbose(env, "pop stack internal bug\n"); 10833 ret = -EFAULT; 10834 goto err_free; 10835 } 10836 10837 for (i = 0; i < insn_cnt; i++) { 10838 if (insn_state[i] != EXPLORED) { 10839 verbose(env, "unreachable insn %d\n", i); 10840 ret = -EINVAL; 10841 goto err_free; 10842 } 10843 } 10844 ret = 0; /* cfg looks good */ 10845 10846 err_free: 10847 kvfree(insn_state); 10848 kvfree(insn_stack); 10849 env->cfg.insn_state = env->cfg.insn_stack = NULL; 10850 return ret; 10851 } 10852 10853 static int check_abnormal_return(struct bpf_verifier_env *env) 10854 { 10855 int i; 10856 10857 for (i = 1; i < env->subprog_cnt; i++) { 10858 if (env->subprog_info[i].has_ld_abs) { 10859 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n"); 10860 return -EINVAL; 10861 } 10862 if (env->subprog_info[i].has_tail_call) { 10863 verbose(env, "tail_call is not allowed in subprogs without BTF\n"); 10864 return -EINVAL; 10865 } 10866 } 10867 return 0; 10868 } 10869 10870 /* The minimum supported BTF func info size */ 10871 #define MIN_BPF_FUNCINFO_SIZE 8 10872 #define MAX_FUNCINFO_REC_SIZE 252 10873 10874 static int check_btf_func(struct bpf_verifier_env *env, 10875 const union bpf_attr *attr, 10876 bpfptr_t uattr) 10877 { 10878 const struct btf_type *type, *func_proto, *ret_type; 10879 u32 i, nfuncs, urec_size, min_size; 10880 u32 krec_size = sizeof(struct bpf_func_info); 10881 struct bpf_func_info *krecord; 10882 struct bpf_func_info_aux *info_aux = NULL; 10883 struct bpf_prog *prog; 10884 const struct btf *btf; 10885 bpfptr_t urecord; 10886 u32 prev_offset = 0; 10887 bool scalar_return; 10888 int ret = -ENOMEM; 10889 10890 nfuncs = attr->func_info_cnt; 10891 if (!nfuncs) { 10892 if (check_abnormal_return(env)) 10893 return -EINVAL; 10894 return 0; 10895 } 10896 10897 if (nfuncs != env->subprog_cnt) { 10898 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 10899 return -EINVAL; 10900 } 10901 10902 urec_size = attr->func_info_rec_size; 10903 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 10904 urec_size > MAX_FUNCINFO_REC_SIZE || 10905 urec_size % sizeof(u32)) { 10906 verbose(env, "invalid func info rec size %u\n", urec_size); 10907 return -EINVAL; 10908 } 10909 10910 prog = env->prog; 10911 btf = prog->aux->btf; 10912 10913 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 10914 min_size = min_t(u32, krec_size, urec_size); 10915 10916 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 10917 if (!krecord) 10918 return -ENOMEM; 10919 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); 10920 if (!info_aux) 10921 goto err_free; 10922 10923 for (i = 0; i < nfuncs; i++) { 10924 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 10925 if (ret) { 10926 if (ret == -E2BIG) { 10927 verbose(env, "nonzero tailing record in func info"); 10928 /* set the size kernel expects so loader can zero 10929 * out the rest of the record. 10930 */ 10931 if (copy_to_bpfptr_offset(uattr, 10932 offsetof(union bpf_attr, func_info_rec_size), 10933 &min_size, sizeof(min_size))) 10934 ret = -EFAULT; 10935 } 10936 goto err_free; 10937 } 10938 10939 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) { 10940 ret = -EFAULT; 10941 goto err_free; 10942 } 10943 10944 /* check insn_off */ 10945 ret = -EINVAL; 10946 if (i == 0) { 10947 if (krecord[i].insn_off) { 10948 verbose(env, 10949 "nonzero insn_off %u for the first func info record", 10950 krecord[i].insn_off); 10951 goto err_free; 10952 } 10953 } else if (krecord[i].insn_off <= prev_offset) { 10954 verbose(env, 10955 "same or smaller insn offset (%u) than previous func info record (%u)", 10956 krecord[i].insn_off, prev_offset); 10957 goto err_free; 10958 } 10959 10960 if (env->subprog_info[i].start != krecord[i].insn_off) { 10961 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 10962 goto err_free; 10963 } 10964 10965 /* check type_id */ 10966 type = btf_type_by_id(btf, krecord[i].type_id); 10967 if (!type || !btf_type_is_func(type)) { 10968 verbose(env, "invalid type id %d in func info", 10969 krecord[i].type_id); 10970 goto err_free; 10971 } 10972 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 10973 10974 func_proto = btf_type_by_id(btf, type->type); 10975 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto))) 10976 /* btf_func_check() already verified it during BTF load */ 10977 goto err_free; 10978 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL); 10979 scalar_return = 10980 btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type); 10981 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) { 10982 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n"); 10983 goto err_free; 10984 } 10985 if (i && !scalar_return && env->subprog_info[i].has_tail_call) { 10986 verbose(env, "tail_call is only allowed in functions that return 'int'.\n"); 10987 goto err_free; 10988 } 10989 10990 prev_offset = krecord[i].insn_off; 10991 bpfptr_add(&urecord, urec_size); 10992 } 10993 10994 prog->aux->func_info = krecord; 10995 prog->aux->func_info_cnt = nfuncs; 10996 prog->aux->func_info_aux = info_aux; 10997 return 0; 10998 10999 err_free: 11000 kvfree(krecord); 11001 kfree(info_aux); 11002 return ret; 11003 } 11004 11005 static void adjust_btf_func(struct bpf_verifier_env *env) 11006 { 11007 struct bpf_prog_aux *aux = env->prog->aux; 11008 int i; 11009 11010 if (!aux->func_info) 11011 return; 11012 11013 for (i = 0; i < env->subprog_cnt; i++) 11014 aux->func_info[i].insn_off = env->subprog_info[i].start; 11015 } 11016 11017 #define MIN_BPF_LINEINFO_SIZE offsetofend(struct bpf_line_info, line_col) 11018 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 11019 11020 static int check_btf_line(struct bpf_verifier_env *env, 11021 const union bpf_attr *attr, 11022 bpfptr_t uattr) 11023 { 11024 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 11025 struct bpf_subprog_info *sub; 11026 struct bpf_line_info *linfo; 11027 struct bpf_prog *prog; 11028 const struct btf *btf; 11029 bpfptr_t ulinfo; 11030 int err; 11031 11032 nr_linfo = attr->line_info_cnt; 11033 if (!nr_linfo) 11034 return 0; 11035 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info)) 11036 return -EINVAL; 11037 11038 rec_size = attr->line_info_rec_size; 11039 if (rec_size < MIN_BPF_LINEINFO_SIZE || 11040 rec_size > MAX_LINEINFO_REC_SIZE || 11041 rec_size & (sizeof(u32) - 1)) 11042 return -EINVAL; 11043 11044 /* Need to zero it in case the userspace may 11045 * pass in a smaller bpf_line_info object. 11046 */ 11047 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 11048 GFP_KERNEL | __GFP_NOWARN); 11049 if (!linfo) 11050 return -ENOMEM; 11051 11052 prog = env->prog; 11053 btf = prog->aux->btf; 11054 11055 s = 0; 11056 sub = env->subprog_info; 11057 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel); 11058 expected_size = sizeof(struct bpf_line_info); 11059 ncopy = min_t(u32, expected_size, rec_size); 11060 for (i = 0; i < nr_linfo; i++) { 11061 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 11062 if (err) { 11063 if (err == -E2BIG) { 11064 verbose(env, "nonzero tailing record in line_info"); 11065 if (copy_to_bpfptr_offset(uattr, 11066 offsetof(union bpf_attr, line_info_rec_size), 11067 &expected_size, sizeof(expected_size))) 11068 err = -EFAULT; 11069 } 11070 goto err_free; 11071 } 11072 11073 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) { 11074 err = -EFAULT; 11075 goto err_free; 11076 } 11077 11078 /* 11079 * Check insn_off to ensure 11080 * 1) strictly increasing AND 11081 * 2) bounded by prog->len 11082 * 11083 * The linfo[0].insn_off == 0 check logically falls into 11084 * the later "missing bpf_line_info for func..." case 11085 * because the first linfo[0].insn_off must be the 11086 * first sub also and the first sub must have 11087 * subprog_info[0].start == 0. 11088 */ 11089 if ((i && linfo[i].insn_off <= prev_offset) || 11090 linfo[i].insn_off >= prog->len) { 11091 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 11092 i, linfo[i].insn_off, prev_offset, 11093 prog->len); 11094 err = -EINVAL; 11095 goto err_free; 11096 } 11097 11098 if (!prog->insnsi[linfo[i].insn_off].code) { 11099 verbose(env, 11100 "Invalid insn code at line_info[%u].insn_off\n", 11101 i); 11102 err = -EINVAL; 11103 goto err_free; 11104 } 11105 11106 if (!btf_name_by_offset(btf, linfo[i].line_off) || 11107 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 11108 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 11109 err = -EINVAL; 11110 goto err_free; 11111 } 11112 11113 if (s != env->subprog_cnt) { 11114 if (linfo[i].insn_off == sub[s].start) { 11115 sub[s].linfo_idx = i; 11116 s++; 11117 } else if (sub[s].start < linfo[i].insn_off) { 11118 verbose(env, "missing bpf_line_info for func#%u\n", s); 11119 err = -EINVAL; 11120 goto err_free; 11121 } 11122 } 11123 11124 prev_offset = linfo[i].insn_off; 11125 bpfptr_add(&ulinfo, rec_size); 11126 } 11127 11128 if (s != env->subprog_cnt) { 11129 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 11130 env->subprog_cnt - s, s); 11131 err = -EINVAL; 11132 goto err_free; 11133 } 11134 11135 prog->aux->linfo = linfo; 11136 prog->aux->nr_linfo = nr_linfo; 11137 11138 return 0; 11139 11140 err_free: 11141 kvfree(linfo); 11142 return err; 11143 } 11144 11145 #define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo) 11146 #define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE 11147 11148 static int check_core_relo(struct bpf_verifier_env *env, 11149 const union bpf_attr *attr, 11150 bpfptr_t uattr) 11151 { 11152 u32 i, nr_core_relo, ncopy, expected_size, rec_size; 11153 struct bpf_core_relo core_relo = {}; 11154 struct bpf_prog *prog = env->prog; 11155 const struct btf *btf = prog->aux->btf; 11156 struct bpf_core_ctx ctx = { 11157 .log = &env->log, 11158 .btf = btf, 11159 }; 11160 bpfptr_t u_core_relo; 11161 int err; 11162 11163 nr_core_relo = attr->core_relo_cnt; 11164 if (!nr_core_relo) 11165 return 0; 11166 if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo)) 11167 return -EINVAL; 11168 11169 rec_size = attr->core_relo_rec_size; 11170 if (rec_size < MIN_CORE_RELO_SIZE || 11171 rec_size > MAX_CORE_RELO_SIZE || 11172 rec_size % sizeof(u32)) 11173 return -EINVAL; 11174 11175 u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel); 11176 expected_size = sizeof(struct bpf_core_relo); 11177 ncopy = min_t(u32, expected_size, rec_size); 11178 11179 /* Unlike func_info and line_info, copy and apply each CO-RE 11180 * relocation record one at a time. 11181 */ 11182 for (i = 0; i < nr_core_relo; i++) { 11183 /* future proofing when sizeof(bpf_core_relo) changes */ 11184 err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size); 11185 if (err) { 11186 if (err == -E2BIG) { 11187 verbose(env, "nonzero tailing record in core_relo"); 11188 if (copy_to_bpfptr_offset(uattr, 11189 offsetof(union bpf_attr, core_relo_rec_size), 11190 &expected_size, sizeof(expected_size))) 11191 err = -EFAULT; 11192 } 11193 break; 11194 } 11195 11196 if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) { 11197 err = -EFAULT; 11198 break; 11199 } 11200 11201 if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) { 11202 verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n", 11203 i, core_relo.insn_off, prog->len); 11204 err = -EINVAL; 11205 break; 11206 } 11207 11208 err = bpf_core_apply(&ctx, &core_relo, i, 11209 &prog->insnsi[core_relo.insn_off / 8]); 11210 if (err) 11211 break; 11212 bpfptr_add(&u_core_relo, rec_size); 11213 } 11214 return err; 11215 } 11216 11217 static int check_btf_info(struct bpf_verifier_env *env, 11218 const union bpf_attr *attr, 11219 bpfptr_t uattr) 11220 { 11221 struct btf *btf; 11222 int err; 11223 11224 if (!attr->func_info_cnt && !attr->line_info_cnt) { 11225 if (check_abnormal_return(env)) 11226 return -EINVAL; 11227 return 0; 11228 } 11229 11230 btf = btf_get_by_fd(attr->prog_btf_fd); 11231 if (IS_ERR(btf)) 11232 return PTR_ERR(btf); 11233 if (btf_is_kernel(btf)) { 11234 btf_put(btf); 11235 return -EACCES; 11236 } 11237 env->prog->aux->btf = btf; 11238 11239 err = check_btf_func(env, attr, uattr); 11240 if (err) 11241 return err; 11242 11243 err = check_btf_line(env, attr, uattr); 11244 if (err) 11245 return err; 11246 11247 err = check_core_relo(env, attr, uattr); 11248 if (err) 11249 return err; 11250 11251 return 0; 11252 } 11253 11254 /* check %cur's range satisfies %old's */ 11255 static bool range_within(struct bpf_reg_state *old, 11256 struct bpf_reg_state *cur) 11257 { 11258 return old->umin_value <= cur->umin_value && 11259 old->umax_value >= cur->umax_value && 11260 old->smin_value <= cur->smin_value && 11261 old->smax_value >= cur->smax_value && 11262 old->u32_min_value <= cur->u32_min_value && 11263 old->u32_max_value >= cur->u32_max_value && 11264 old->s32_min_value <= cur->s32_min_value && 11265 old->s32_max_value >= cur->s32_max_value; 11266 } 11267 11268 /* If in the old state two registers had the same id, then they need to have 11269 * the same id in the new state as well. But that id could be different from 11270 * the old state, so we need to track the mapping from old to new ids. 11271 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 11272 * regs with old id 5 must also have new id 9 for the new state to be safe. But 11273 * regs with a different old id could still have new id 9, we don't care about 11274 * that. 11275 * So we look through our idmap to see if this old id has been seen before. If 11276 * so, we require the new id to match; otherwise, we add the id pair to the map. 11277 */ 11278 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap) 11279 { 11280 unsigned int i; 11281 11282 for (i = 0; i < BPF_ID_MAP_SIZE; i++) { 11283 if (!idmap[i].old) { 11284 /* Reached an empty slot; haven't seen this id before */ 11285 idmap[i].old = old_id; 11286 idmap[i].cur = cur_id; 11287 return true; 11288 } 11289 if (idmap[i].old == old_id) 11290 return idmap[i].cur == cur_id; 11291 } 11292 /* We ran out of idmap slots, which should be impossible */ 11293 WARN_ON_ONCE(1); 11294 return false; 11295 } 11296 11297 static void clean_func_state(struct bpf_verifier_env *env, 11298 struct bpf_func_state *st) 11299 { 11300 enum bpf_reg_liveness live; 11301 int i, j; 11302 11303 for (i = 0; i < BPF_REG_FP; i++) { 11304 live = st->regs[i].live; 11305 /* liveness must not touch this register anymore */ 11306 st->regs[i].live |= REG_LIVE_DONE; 11307 if (!(live & REG_LIVE_READ)) 11308 /* since the register is unused, clear its state 11309 * to make further comparison simpler 11310 */ 11311 __mark_reg_not_init(env, &st->regs[i]); 11312 } 11313 11314 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 11315 live = st->stack[i].spilled_ptr.live; 11316 /* liveness must not touch this stack slot anymore */ 11317 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 11318 if (!(live & REG_LIVE_READ)) { 11319 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 11320 for (j = 0; j < BPF_REG_SIZE; j++) 11321 st->stack[i].slot_type[j] = STACK_INVALID; 11322 } 11323 } 11324 } 11325 11326 static void clean_verifier_state(struct bpf_verifier_env *env, 11327 struct bpf_verifier_state *st) 11328 { 11329 int i; 11330 11331 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 11332 /* all regs in this state in all frames were already marked */ 11333 return; 11334 11335 for (i = 0; i <= st->curframe; i++) 11336 clean_func_state(env, st->frame[i]); 11337 } 11338 11339 /* the parentage chains form a tree. 11340 * the verifier states are added to state lists at given insn and 11341 * pushed into state stack for future exploration. 11342 * when the verifier reaches bpf_exit insn some of the verifer states 11343 * stored in the state lists have their final liveness state already, 11344 * but a lot of states will get revised from liveness point of view when 11345 * the verifier explores other branches. 11346 * Example: 11347 * 1: r0 = 1 11348 * 2: if r1 == 100 goto pc+1 11349 * 3: r0 = 2 11350 * 4: exit 11351 * when the verifier reaches exit insn the register r0 in the state list of 11352 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 11353 * of insn 2 and goes exploring further. At the insn 4 it will walk the 11354 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 11355 * 11356 * Since the verifier pushes the branch states as it sees them while exploring 11357 * the program the condition of walking the branch instruction for the second 11358 * time means that all states below this branch were already explored and 11359 * their final liveness marks are already propagated. 11360 * Hence when the verifier completes the search of state list in is_state_visited() 11361 * we can call this clean_live_states() function to mark all liveness states 11362 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 11363 * will not be used. 11364 * This function also clears the registers and stack for states that !READ 11365 * to simplify state merging. 11366 * 11367 * Important note here that walking the same branch instruction in the callee 11368 * doesn't meant that the states are DONE. The verifier has to compare 11369 * the callsites 11370 */ 11371 static void clean_live_states(struct bpf_verifier_env *env, int insn, 11372 struct bpf_verifier_state *cur) 11373 { 11374 struct bpf_verifier_state_list *sl; 11375 int i; 11376 11377 sl = *explored_state(env, insn); 11378 while (sl) { 11379 if (sl->state.branches) 11380 goto next; 11381 if (sl->state.insn_idx != insn || 11382 sl->state.curframe != cur->curframe) 11383 goto next; 11384 for (i = 0; i <= cur->curframe; i++) 11385 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite) 11386 goto next; 11387 clean_verifier_state(env, &sl->state); 11388 next: 11389 sl = sl->next; 11390 } 11391 } 11392 11393 /* Returns true if (rold safe implies rcur safe) */ 11394 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold, 11395 struct bpf_reg_state *rcur, struct bpf_id_pair *idmap) 11396 { 11397 bool equal; 11398 11399 if (!(rold->live & REG_LIVE_READ)) 11400 /* explored state didn't use this */ 11401 return true; 11402 11403 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0; 11404 11405 if (rold->type == PTR_TO_STACK) 11406 /* two stack pointers are equal only if they're pointing to 11407 * the same stack frame, since fp-8 in foo != fp-8 in bar 11408 */ 11409 return equal && rold->frameno == rcur->frameno; 11410 11411 if (equal) 11412 return true; 11413 11414 if (rold->type == NOT_INIT) 11415 /* explored state can't have used this */ 11416 return true; 11417 if (rcur->type == NOT_INIT) 11418 return false; 11419 switch (base_type(rold->type)) { 11420 case SCALAR_VALUE: 11421 if (env->explore_alu_limits) 11422 return false; 11423 if (rcur->type == SCALAR_VALUE) { 11424 if (!rold->precise && !rcur->precise) 11425 return true; 11426 /* new val must satisfy old val knowledge */ 11427 return range_within(rold, rcur) && 11428 tnum_in(rold->var_off, rcur->var_off); 11429 } else { 11430 /* We're trying to use a pointer in place of a scalar. 11431 * Even if the scalar was unbounded, this could lead to 11432 * pointer leaks because scalars are allowed to leak 11433 * while pointers are not. We could make this safe in 11434 * special cases if root is calling us, but it's 11435 * probably not worth the hassle. 11436 */ 11437 return false; 11438 } 11439 case PTR_TO_MAP_KEY: 11440 case PTR_TO_MAP_VALUE: 11441 /* a PTR_TO_MAP_VALUE could be safe to use as a 11442 * PTR_TO_MAP_VALUE_OR_NULL into the same map. 11443 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- 11444 * checked, doing so could have affected others with the same 11445 * id, and we can't check for that because we lost the id when 11446 * we converted to a PTR_TO_MAP_VALUE. 11447 */ 11448 if (type_may_be_null(rold->type)) { 11449 if (!type_may_be_null(rcur->type)) 11450 return false; 11451 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) 11452 return false; 11453 /* Check our ids match any regs they're supposed to */ 11454 return check_ids(rold->id, rcur->id, idmap); 11455 } 11456 11457 /* If the new min/max/var_off satisfy the old ones and 11458 * everything else matches, we are OK. 11459 * 'id' is not compared, since it's only used for maps with 11460 * bpf_spin_lock inside map element and in such cases if 11461 * the rest of the prog is valid for one map element then 11462 * it's valid for all map elements regardless of the key 11463 * used in bpf_map_lookup() 11464 */ 11465 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 11466 range_within(rold, rcur) && 11467 tnum_in(rold->var_off, rcur->var_off); 11468 case PTR_TO_PACKET_META: 11469 case PTR_TO_PACKET: 11470 if (rcur->type != rold->type) 11471 return false; 11472 /* We must have at least as much range as the old ptr 11473 * did, so that any accesses which were safe before are 11474 * still safe. This is true even if old range < old off, 11475 * since someone could have accessed through (ptr - k), or 11476 * even done ptr -= k in a register, to get a safe access. 11477 */ 11478 if (rold->range > rcur->range) 11479 return false; 11480 /* If the offsets don't match, we can't trust our alignment; 11481 * nor can we be sure that we won't fall out of range. 11482 */ 11483 if (rold->off != rcur->off) 11484 return false; 11485 /* id relations must be preserved */ 11486 if (rold->id && !check_ids(rold->id, rcur->id, idmap)) 11487 return false; 11488 /* new val must satisfy old val knowledge */ 11489 return range_within(rold, rcur) && 11490 tnum_in(rold->var_off, rcur->var_off); 11491 case PTR_TO_CTX: 11492 case CONST_PTR_TO_MAP: 11493 case PTR_TO_PACKET_END: 11494 case PTR_TO_FLOW_KEYS: 11495 case PTR_TO_SOCKET: 11496 case PTR_TO_SOCK_COMMON: 11497 case PTR_TO_TCP_SOCK: 11498 case PTR_TO_XDP_SOCK: 11499 /* Only valid matches are exact, which memcmp() above 11500 * would have accepted 11501 */ 11502 default: 11503 /* Don't know what's going on, just say it's not safe */ 11504 return false; 11505 } 11506 11507 /* Shouldn't get here; if we do, say it's not safe */ 11508 WARN_ON_ONCE(1); 11509 return false; 11510 } 11511 11512 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old, 11513 struct bpf_func_state *cur, struct bpf_id_pair *idmap) 11514 { 11515 int i, spi; 11516 11517 /* walk slots of the explored stack and ignore any additional 11518 * slots in the current stack, since explored(safe) state 11519 * didn't use them 11520 */ 11521 for (i = 0; i < old->allocated_stack; i++) { 11522 spi = i / BPF_REG_SIZE; 11523 11524 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) { 11525 i += BPF_REG_SIZE - 1; 11526 /* explored state didn't use this */ 11527 continue; 11528 } 11529 11530 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 11531 continue; 11532 11533 /* explored stack has more populated slots than current stack 11534 * and these slots were used 11535 */ 11536 if (i >= cur->allocated_stack) 11537 return false; 11538 11539 /* if old state was safe with misc data in the stack 11540 * it will be safe with zero-initialized stack. 11541 * The opposite is not true 11542 */ 11543 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 11544 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 11545 continue; 11546 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 11547 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 11548 /* Ex: old explored (safe) state has STACK_SPILL in 11549 * this stack slot, but current has STACK_MISC -> 11550 * this verifier states are not equivalent, 11551 * return false to continue verification of this path 11552 */ 11553 return false; 11554 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1) 11555 continue; 11556 if (!is_spilled_reg(&old->stack[spi])) 11557 continue; 11558 if (!regsafe(env, &old->stack[spi].spilled_ptr, 11559 &cur->stack[spi].spilled_ptr, idmap)) 11560 /* when explored and current stack slot are both storing 11561 * spilled registers, check that stored pointers types 11562 * are the same as well. 11563 * Ex: explored safe path could have stored 11564 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 11565 * but current path has stored: 11566 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 11567 * such verifier states are not equivalent. 11568 * return false to continue verification of this path 11569 */ 11570 return false; 11571 } 11572 return true; 11573 } 11574 11575 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur) 11576 { 11577 if (old->acquired_refs != cur->acquired_refs) 11578 return false; 11579 return !memcmp(old->refs, cur->refs, 11580 sizeof(*old->refs) * old->acquired_refs); 11581 } 11582 11583 /* compare two verifier states 11584 * 11585 * all states stored in state_list are known to be valid, since 11586 * verifier reached 'bpf_exit' instruction through them 11587 * 11588 * this function is called when verifier exploring different branches of 11589 * execution popped from the state stack. If it sees an old state that has 11590 * more strict register state and more strict stack state then this execution 11591 * branch doesn't need to be explored further, since verifier already 11592 * concluded that more strict state leads to valid finish. 11593 * 11594 * Therefore two states are equivalent if register state is more conservative 11595 * and explored stack state is more conservative than the current one. 11596 * Example: 11597 * explored current 11598 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 11599 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 11600 * 11601 * In other words if current stack state (one being explored) has more 11602 * valid slots than old one that already passed validation, it means 11603 * the verifier can stop exploring and conclude that current state is valid too 11604 * 11605 * Similarly with registers. If explored state has register type as invalid 11606 * whereas register type in current state is meaningful, it means that 11607 * the current state will reach 'bpf_exit' instruction safely 11608 */ 11609 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old, 11610 struct bpf_func_state *cur) 11611 { 11612 int i; 11613 11614 memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch)); 11615 for (i = 0; i < MAX_BPF_REG; i++) 11616 if (!regsafe(env, &old->regs[i], &cur->regs[i], 11617 env->idmap_scratch)) 11618 return false; 11619 11620 if (!stacksafe(env, old, cur, env->idmap_scratch)) 11621 return false; 11622 11623 if (!refsafe(old, cur)) 11624 return false; 11625 11626 return true; 11627 } 11628 11629 static bool states_equal(struct bpf_verifier_env *env, 11630 struct bpf_verifier_state *old, 11631 struct bpf_verifier_state *cur) 11632 { 11633 int i; 11634 11635 if (old->curframe != cur->curframe) 11636 return false; 11637 11638 /* Verification state from speculative execution simulation 11639 * must never prune a non-speculative execution one. 11640 */ 11641 if (old->speculative && !cur->speculative) 11642 return false; 11643 11644 if (old->active_spin_lock != cur->active_spin_lock) 11645 return false; 11646 11647 /* for states to be equal callsites have to be the same 11648 * and all frame states need to be equivalent 11649 */ 11650 for (i = 0; i <= old->curframe; i++) { 11651 if (old->frame[i]->callsite != cur->frame[i]->callsite) 11652 return false; 11653 if (!func_states_equal(env, old->frame[i], cur->frame[i])) 11654 return false; 11655 } 11656 return true; 11657 } 11658 11659 /* Return 0 if no propagation happened. Return negative error code if error 11660 * happened. Otherwise, return the propagated bit. 11661 */ 11662 static int propagate_liveness_reg(struct bpf_verifier_env *env, 11663 struct bpf_reg_state *reg, 11664 struct bpf_reg_state *parent_reg) 11665 { 11666 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 11667 u8 flag = reg->live & REG_LIVE_READ; 11668 int err; 11669 11670 /* When comes here, read flags of PARENT_REG or REG could be any of 11671 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 11672 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 11673 */ 11674 if (parent_flag == REG_LIVE_READ64 || 11675 /* Or if there is no read flag from REG. */ 11676 !flag || 11677 /* Or if the read flag from REG is the same as PARENT_REG. */ 11678 parent_flag == flag) 11679 return 0; 11680 11681 err = mark_reg_read(env, reg, parent_reg, flag); 11682 if (err) 11683 return err; 11684 11685 return flag; 11686 } 11687 11688 /* A write screens off any subsequent reads; but write marks come from the 11689 * straight-line code between a state and its parent. When we arrive at an 11690 * equivalent state (jump target or such) we didn't arrive by the straight-line 11691 * code, so read marks in the state must propagate to the parent regardless 11692 * of the state's write marks. That's what 'parent == state->parent' comparison 11693 * in mark_reg_read() is for. 11694 */ 11695 static int propagate_liveness(struct bpf_verifier_env *env, 11696 const struct bpf_verifier_state *vstate, 11697 struct bpf_verifier_state *vparent) 11698 { 11699 struct bpf_reg_state *state_reg, *parent_reg; 11700 struct bpf_func_state *state, *parent; 11701 int i, frame, err = 0; 11702 11703 if (vparent->curframe != vstate->curframe) { 11704 WARN(1, "propagate_live: parent frame %d current frame %d\n", 11705 vparent->curframe, vstate->curframe); 11706 return -EFAULT; 11707 } 11708 /* Propagate read liveness of registers... */ 11709 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 11710 for (frame = 0; frame <= vstate->curframe; frame++) { 11711 parent = vparent->frame[frame]; 11712 state = vstate->frame[frame]; 11713 parent_reg = parent->regs; 11714 state_reg = state->regs; 11715 /* We don't need to worry about FP liveness, it's read-only */ 11716 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 11717 err = propagate_liveness_reg(env, &state_reg[i], 11718 &parent_reg[i]); 11719 if (err < 0) 11720 return err; 11721 if (err == REG_LIVE_READ64) 11722 mark_insn_zext(env, &parent_reg[i]); 11723 } 11724 11725 /* Propagate stack slots. */ 11726 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 11727 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 11728 parent_reg = &parent->stack[i].spilled_ptr; 11729 state_reg = &state->stack[i].spilled_ptr; 11730 err = propagate_liveness_reg(env, state_reg, 11731 parent_reg); 11732 if (err < 0) 11733 return err; 11734 } 11735 } 11736 return 0; 11737 } 11738 11739 /* find precise scalars in the previous equivalent state and 11740 * propagate them into the current state 11741 */ 11742 static int propagate_precision(struct bpf_verifier_env *env, 11743 const struct bpf_verifier_state *old) 11744 { 11745 struct bpf_reg_state *state_reg; 11746 struct bpf_func_state *state; 11747 int i, err = 0; 11748 11749 state = old->frame[old->curframe]; 11750 state_reg = state->regs; 11751 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 11752 if (state_reg->type != SCALAR_VALUE || 11753 !state_reg->precise) 11754 continue; 11755 if (env->log.level & BPF_LOG_LEVEL2) 11756 verbose(env, "propagating r%d\n", i); 11757 err = mark_chain_precision(env, i); 11758 if (err < 0) 11759 return err; 11760 } 11761 11762 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 11763 if (!is_spilled_reg(&state->stack[i])) 11764 continue; 11765 state_reg = &state->stack[i].spilled_ptr; 11766 if (state_reg->type != SCALAR_VALUE || 11767 !state_reg->precise) 11768 continue; 11769 if (env->log.level & BPF_LOG_LEVEL2) 11770 verbose(env, "propagating fp%d\n", 11771 (-i - 1) * BPF_REG_SIZE); 11772 err = mark_chain_precision_stack(env, i); 11773 if (err < 0) 11774 return err; 11775 } 11776 return 0; 11777 } 11778 11779 static bool states_maybe_looping(struct bpf_verifier_state *old, 11780 struct bpf_verifier_state *cur) 11781 { 11782 struct bpf_func_state *fold, *fcur; 11783 int i, fr = cur->curframe; 11784 11785 if (old->curframe != fr) 11786 return false; 11787 11788 fold = old->frame[fr]; 11789 fcur = cur->frame[fr]; 11790 for (i = 0; i < MAX_BPF_REG; i++) 11791 if (memcmp(&fold->regs[i], &fcur->regs[i], 11792 offsetof(struct bpf_reg_state, parent))) 11793 return false; 11794 return true; 11795 } 11796 11797 11798 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 11799 { 11800 struct bpf_verifier_state_list *new_sl; 11801 struct bpf_verifier_state_list *sl, **pprev; 11802 struct bpf_verifier_state *cur = env->cur_state, *new; 11803 int i, j, err, states_cnt = 0; 11804 bool add_new_state = env->test_state_freq ? true : false; 11805 11806 cur->last_insn_idx = env->prev_insn_idx; 11807 if (!env->insn_aux_data[insn_idx].prune_point) 11808 /* this 'insn_idx' instruction wasn't marked, so we will not 11809 * be doing state search here 11810 */ 11811 return 0; 11812 11813 /* bpf progs typically have pruning point every 4 instructions 11814 * http://vger.kernel.org/bpfconf2019.html#session-1 11815 * Do not add new state for future pruning if the verifier hasn't seen 11816 * at least 2 jumps and at least 8 instructions. 11817 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 11818 * In tests that amounts to up to 50% reduction into total verifier 11819 * memory consumption and 20% verifier time speedup. 11820 */ 11821 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 11822 env->insn_processed - env->prev_insn_processed >= 8) 11823 add_new_state = true; 11824 11825 pprev = explored_state(env, insn_idx); 11826 sl = *pprev; 11827 11828 clean_live_states(env, insn_idx, cur); 11829 11830 while (sl) { 11831 states_cnt++; 11832 if (sl->state.insn_idx != insn_idx) 11833 goto next; 11834 11835 if (sl->state.branches) { 11836 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe]; 11837 11838 if (frame->in_async_callback_fn && 11839 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) { 11840 /* Different async_entry_cnt means that the verifier is 11841 * processing another entry into async callback. 11842 * Seeing the same state is not an indication of infinite 11843 * loop or infinite recursion. 11844 * But finding the same state doesn't mean that it's safe 11845 * to stop processing the current state. The previous state 11846 * hasn't yet reached bpf_exit, since state.branches > 0. 11847 * Checking in_async_callback_fn alone is not enough either. 11848 * Since the verifier still needs to catch infinite loops 11849 * inside async callbacks. 11850 */ 11851 } else if (states_maybe_looping(&sl->state, cur) && 11852 states_equal(env, &sl->state, cur)) { 11853 verbose_linfo(env, insn_idx, "; "); 11854 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 11855 return -EINVAL; 11856 } 11857 /* if the verifier is processing a loop, avoid adding new state 11858 * too often, since different loop iterations have distinct 11859 * states and may not help future pruning. 11860 * This threshold shouldn't be too low to make sure that 11861 * a loop with large bound will be rejected quickly. 11862 * The most abusive loop will be: 11863 * r1 += 1 11864 * if r1 < 1000000 goto pc-2 11865 * 1M insn_procssed limit / 100 == 10k peak states. 11866 * This threshold shouldn't be too high either, since states 11867 * at the end of the loop are likely to be useful in pruning. 11868 */ 11869 if (env->jmps_processed - env->prev_jmps_processed < 20 && 11870 env->insn_processed - env->prev_insn_processed < 100) 11871 add_new_state = false; 11872 goto miss; 11873 } 11874 if (states_equal(env, &sl->state, cur)) { 11875 sl->hit_cnt++; 11876 /* reached equivalent register/stack state, 11877 * prune the search. 11878 * Registers read by the continuation are read by us. 11879 * If we have any write marks in env->cur_state, they 11880 * will prevent corresponding reads in the continuation 11881 * from reaching our parent (an explored_state). Our 11882 * own state will get the read marks recorded, but 11883 * they'll be immediately forgotten as we're pruning 11884 * this state and will pop a new one. 11885 */ 11886 err = propagate_liveness(env, &sl->state, cur); 11887 11888 /* if previous state reached the exit with precision and 11889 * current state is equivalent to it (except precsion marks) 11890 * the precision needs to be propagated back in 11891 * the current state. 11892 */ 11893 err = err ? : push_jmp_history(env, cur); 11894 err = err ? : propagate_precision(env, &sl->state); 11895 if (err) 11896 return err; 11897 return 1; 11898 } 11899 miss: 11900 /* when new state is not going to be added do not increase miss count. 11901 * Otherwise several loop iterations will remove the state 11902 * recorded earlier. The goal of these heuristics is to have 11903 * states from some iterations of the loop (some in the beginning 11904 * and some at the end) to help pruning. 11905 */ 11906 if (add_new_state) 11907 sl->miss_cnt++; 11908 /* heuristic to determine whether this state is beneficial 11909 * to keep checking from state equivalence point of view. 11910 * Higher numbers increase max_states_per_insn and verification time, 11911 * but do not meaningfully decrease insn_processed. 11912 */ 11913 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) { 11914 /* the state is unlikely to be useful. Remove it to 11915 * speed up verification 11916 */ 11917 *pprev = sl->next; 11918 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) { 11919 u32 br = sl->state.branches; 11920 11921 WARN_ONCE(br, 11922 "BUG live_done but branches_to_explore %d\n", 11923 br); 11924 free_verifier_state(&sl->state, false); 11925 kfree(sl); 11926 env->peak_states--; 11927 } else { 11928 /* cannot free this state, since parentage chain may 11929 * walk it later. Add it for free_list instead to 11930 * be freed at the end of verification 11931 */ 11932 sl->next = env->free_list; 11933 env->free_list = sl; 11934 } 11935 sl = *pprev; 11936 continue; 11937 } 11938 next: 11939 pprev = &sl->next; 11940 sl = *pprev; 11941 } 11942 11943 if (env->max_states_per_insn < states_cnt) 11944 env->max_states_per_insn = states_cnt; 11945 11946 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 11947 return push_jmp_history(env, cur); 11948 11949 if (!add_new_state) 11950 return push_jmp_history(env, cur); 11951 11952 /* There were no equivalent states, remember the current one. 11953 * Technically the current state is not proven to be safe yet, 11954 * but it will either reach outer most bpf_exit (which means it's safe) 11955 * or it will be rejected. When there are no loops the verifier won't be 11956 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 11957 * again on the way to bpf_exit. 11958 * When looping the sl->state.branches will be > 0 and this state 11959 * will not be considered for equivalence until branches == 0. 11960 */ 11961 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 11962 if (!new_sl) 11963 return -ENOMEM; 11964 env->total_states++; 11965 env->peak_states++; 11966 env->prev_jmps_processed = env->jmps_processed; 11967 env->prev_insn_processed = env->insn_processed; 11968 11969 /* add new state to the head of linked list */ 11970 new = &new_sl->state; 11971 err = copy_verifier_state(new, cur); 11972 if (err) { 11973 free_verifier_state(new, false); 11974 kfree(new_sl); 11975 return err; 11976 } 11977 new->insn_idx = insn_idx; 11978 WARN_ONCE(new->branches != 1, 11979 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 11980 11981 cur->parent = new; 11982 cur->first_insn_idx = insn_idx; 11983 clear_jmp_history(cur); 11984 new_sl->next = *explored_state(env, insn_idx); 11985 *explored_state(env, insn_idx) = new_sl; 11986 /* connect new state to parentage chain. Current frame needs all 11987 * registers connected. Only r6 - r9 of the callers are alive (pushed 11988 * to the stack implicitly by JITs) so in callers' frames connect just 11989 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 11990 * the state of the call instruction (with WRITTEN set), and r0 comes 11991 * from callee with its full parentage chain, anyway. 11992 */ 11993 /* clear write marks in current state: the writes we did are not writes 11994 * our child did, so they don't screen off its reads from us. 11995 * (There are no read marks in current state, because reads always mark 11996 * their parent and current state never has children yet. Only 11997 * explored_states can get read marks.) 11998 */ 11999 for (j = 0; j <= cur->curframe; j++) { 12000 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 12001 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 12002 for (i = 0; i < BPF_REG_FP; i++) 12003 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 12004 } 12005 12006 /* all stack frames are accessible from callee, clear them all */ 12007 for (j = 0; j <= cur->curframe; j++) { 12008 struct bpf_func_state *frame = cur->frame[j]; 12009 struct bpf_func_state *newframe = new->frame[j]; 12010 12011 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 12012 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 12013 frame->stack[i].spilled_ptr.parent = 12014 &newframe->stack[i].spilled_ptr; 12015 } 12016 } 12017 return 0; 12018 } 12019 12020 /* Return true if it's OK to have the same insn return a different type. */ 12021 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 12022 { 12023 switch (base_type(type)) { 12024 case PTR_TO_CTX: 12025 case PTR_TO_SOCKET: 12026 case PTR_TO_SOCK_COMMON: 12027 case PTR_TO_TCP_SOCK: 12028 case PTR_TO_XDP_SOCK: 12029 case PTR_TO_BTF_ID: 12030 return false; 12031 default: 12032 return true; 12033 } 12034 } 12035 12036 /* If an instruction was previously used with particular pointer types, then we 12037 * need to be careful to avoid cases such as the below, where it may be ok 12038 * for one branch accessing the pointer, but not ok for the other branch: 12039 * 12040 * R1 = sock_ptr 12041 * goto X; 12042 * ... 12043 * R1 = some_other_valid_ptr; 12044 * goto X; 12045 * ... 12046 * R2 = *(u32 *)(R1 + 0); 12047 */ 12048 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 12049 { 12050 return src != prev && (!reg_type_mismatch_ok(src) || 12051 !reg_type_mismatch_ok(prev)); 12052 } 12053 12054 static int do_check(struct bpf_verifier_env *env) 12055 { 12056 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 12057 struct bpf_verifier_state *state = env->cur_state; 12058 struct bpf_insn *insns = env->prog->insnsi; 12059 struct bpf_reg_state *regs; 12060 int insn_cnt = env->prog->len; 12061 bool do_print_state = false; 12062 int prev_insn_idx = -1; 12063 12064 for (;;) { 12065 struct bpf_insn *insn; 12066 u8 class; 12067 int err; 12068 12069 env->prev_insn_idx = prev_insn_idx; 12070 if (env->insn_idx >= insn_cnt) { 12071 verbose(env, "invalid insn idx %d insn_cnt %d\n", 12072 env->insn_idx, insn_cnt); 12073 return -EFAULT; 12074 } 12075 12076 insn = &insns[env->insn_idx]; 12077 class = BPF_CLASS(insn->code); 12078 12079 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 12080 verbose(env, 12081 "BPF program is too large. Processed %d insn\n", 12082 env->insn_processed); 12083 return -E2BIG; 12084 } 12085 12086 err = is_state_visited(env, env->insn_idx); 12087 if (err < 0) 12088 return err; 12089 if (err == 1) { 12090 /* found equivalent state, can prune the search */ 12091 if (env->log.level & BPF_LOG_LEVEL) { 12092 if (do_print_state) 12093 verbose(env, "\nfrom %d to %d%s: safe\n", 12094 env->prev_insn_idx, env->insn_idx, 12095 env->cur_state->speculative ? 12096 " (speculative execution)" : ""); 12097 else 12098 verbose(env, "%d: safe\n", env->insn_idx); 12099 } 12100 goto process_bpf_exit; 12101 } 12102 12103 if (signal_pending(current)) 12104 return -EAGAIN; 12105 12106 if (need_resched()) 12107 cond_resched(); 12108 12109 if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) { 12110 verbose(env, "\nfrom %d to %d%s:", 12111 env->prev_insn_idx, env->insn_idx, 12112 env->cur_state->speculative ? 12113 " (speculative execution)" : ""); 12114 print_verifier_state(env, state->frame[state->curframe], true); 12115 do_print_state = false; 12116 } 12117 12118 if (env->log.level & BPF_LOG_LEVEL) { 12119 const struct bpf_insn_cbs cbs = { 12120 .cb_call = disasm_kfunc_name, 12121 .cb_print = verbose, 12122 .private_data = env, 12123 }; 12124 12125 if (verifier_state_scratched(env)) 12126 print_insn_state(env, state->frame[state->curframe]); 12127 12128 verbose_linfo(env, env->insn_idx, "; "); 12129 env->prev_log_len = env->log.len_used; 12130 verbose(env, "%d: ", env->insn_idx); 12131 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 12132 env->prev_insn_print_len = env->log.len_used - env->prev_log_len; 12133 env->prev_log_len = env->log.len_used; 12134 } 12135 12136 if (bpf_prog_is_dev_bound(env->prog->aux)) { 12137 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 12138 env->prev_insn_idx); 12139 if (err) 12140 return err; 12141 } 12142 12143 regs = cur_regs(env); 12144 sanitize_mark_insn_seen(env); 12145 prev_insn_idx = env->insn_idx; 12146 12147 if (class == BPF_ALU || class == BPF_ALU64) { 12148 err = check_alu_op(env, insn); 12149 if (err) 12150 return err; 12151 12152 } else if (class == BPF_LDX) { 12153 enum bpf_reg_type *prev_src_type, src_reg_type; 12154 12155 /* check for reserved fields is already done */ 12156 12157 /* check src operand */ 12158 err = check_reg_arg(env, insn->src_reg, SRC_OP); 12159 if (err) 12160 return err; 12161 12162 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 12163 if (err) 12164 return err; 12165 12166 src_reg_type = regs[insn->src_reg].type; 12167 12168 /* check that memory (src_reg + off) is readable, 12169 * the state of dst_reg will be updated by this func 12170 */ 12171 err = check_mem_access(env, env->insn_idx, insn->src_reg, 12172 insn->off, BPF_SIZE(insn->code), 12173 BPF_READ, insn->dst_reg, false); 12174 if (err) 12175 return err; 12176 12177 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type; 12178 12179 if (*prev_src_type == NOT_INIT) { 12180 /* saw a valid insn 12181 * dst_reg = *(u32 *)(src_reg + off) 12182 * save type to validate intersecting paths 12183 */ 12184 *prev_src_type = src_reg_type; 12185 12186 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) { 12187 /* ABuser program is trying to use the same insn 12188 * dst_reg = *(u32*) (src_reg + off) 12189 * with different pointer types: 12190 * src_reg == ctx in one branch and 12191 * src_reg == stack|map in some other branch. 12192 * Reject it. 12193 */ 12194 verbose(env, "same insn cannot be used with different pointers\n"); 12195 return -EINVAL; 12196 } 12197 12198 } else if (class == BPF_STX) { 12199 enum bpf_reg_type *prev_dst_type, dst_reg_type; 12200 12201 if (BPF_MODE(insn->code) == BPF_ATOMIC) { 12202 err = check_atomic(env, env->insn_idx, insn); 12203 if (err) 12204 return err; 12205 env->insn_idx++; 12206 continue; 12207 } 12208 12209 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) { 12210 verbose(env, "BPF_STX uses reserved fields\n"); 12211 return -EINVAL; 12212 } 12213 12214 /* check src1 operand */ 12215 err = check_reg_arg(env, insn->src_reg, SRC_OP); 12216 if (err) 12217 return err; 12218 /* check src2 operand */ 12219 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 12220 if (err) 12221 return err; 12222 12223 dst_reg_type = regs[insn->dst_reg].type; 12224 12225 /* check that memory (dst_reg + off) is writeable */ 12226 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 12227 insn->off, BPF_SIZE(insn->code), 12228 BPF_WRITE, insn->src_reg, false); 12229 if (err) 12230 return err; 12231 12232 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type; 12233 12234 if (*prev_dst_type == NOT_INIT) { 12235 *prev_dst_type = dst_reg_type; 12236 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) { 12237 verbose(env, "same insn cannot be used with different pointers\n"); 12238 return -EINVAL; 12239 } 12240 12241 } else if (class == BPF_ST) { 12242 if (BPF_MODE(insn->code) != BPF_MEM || 12243 insn->src_reg != BPF_REG_0) { 12244 verbose(env, "BPF_ST uses reserved fields\n"); 12245 return -EINVAL; 12246 } 12247 /* check src operand */ 12248 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 12249 if (err) 12250 return err; 12251 12252 if (is_ctx_reg(env, insn->dst_reg)) { 12253 verbose(env, "BPF_ST stores into R%d %s is not allowed\n", 12254 insn->dst_reg, 12255 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 12256 return -EACCES; 12257 } 12258 12259 /* check that memory (dst_reg + off) is writeable */ 12260 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 12261 insn->off, BPF_SIZE(insn->code), 12262 BPF_WRITE, -1, false); 12263 if (err) 12264 return err; 12265 12266 } else if (class == BPF_JMP || class == BPF_JMP32) { 12267 u8 opcode = BPF_OP(insn->code); 12268 12269 env->jmps_processed++; 12270 if (opcode == BPF_CALL) { 12271 if (BPF_SRC(insn->code) != BPF_K || 12272 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL 12273 && insn->off != 0) || 12274 (insn->src_reg != BPF_REG_0 && 12275 insn->src_reg != BPF_PSEUDO_CALL && 12276 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) || 12277 insn->dst_reg != BPF_REG_0 || 12278 class == BPF_JMP32) { 12279 verbose(env, "BPF_CALL uses reserved fields\n"); 12280 return -EINVAL; 12281 } 12282 12283 if (env->cur_state->active_spin_lock && 12284 (insn->src_reg == BPF_PSEUDO_CALL || 12285 insn->imm != BPF_FUNC_spin_unlock)) { 12286 verbose(env, "function calls are not allowed while holding a lock\n"); 12287 return -EINVAL; 12288 } 12289 if (insn->src_reg == BPF_PSEUDO_CALL) 12290 err = check_func_call(env, insn, &env->insn_idx); 12291 else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) 12292 err = check_kfunc_call(env, insn, &env->insn_idx); 12293 else 12294 err = check_helper_call(env, insn, &env->insn_idx); 12295 if (err) 12296 return err; 12297 } else if (opcode == BPF_JA) { 12298 if (BPF_SRC(insn->code) != BPF_K || 12299 insn->imm != 0 || 12300 insn->src_reg != BPF_REG_0 || 12301 insn->dst_reg != BPF_REG_0 || 12302 class == BPF_JMP32) { 12303 verbose(env, "BPF_JA uses reserved fields\n"); 12304 return -EINVAL; 12305 } 12306 12307 env->insn_idx += insn->off + 1; 12308 continue; 12309 12310 } else if (opcode == BPF_EXIT) { 12311 if (BPF_SRC(insn->code) != BPF_K || 12312 insn->imm != 0 || 12313 insn->src_reg != BPF_REG_0 || 12314 insn->dst_reg != BPF_REG_0 || 12315 class == BPF_JMP32) { 12316 verbose(env, "BPF_EXIT uses reserved fields\n"); 12317 return -EINVAL; 12318 } 12319 12320 if (env->cur_state->active_spin_lock) { 12321 verbose(env, "bpf_spin_unlock is missing\n"); 12322 return -EINVAL; 12323 } 12324 12325 if (state->curframe) { 12326 /* exit from nested function */ 12327 err = prepare_func_exit(env, &env->insn_idx); 12328 if (err) 12329 return err; 12330 do_print_state = true; 12331 continue; 12332 } 12333 12334 err = check_reference_leak(env); 12335 if (err) 12336 return err; 12337 12338 err = check_return_code(env); 12339 if (err) 12340 return err; 12341 process_bpf_exit: 12342 mark_verifier_state_scratched(env); 12343 update_branch_counts(env, env->cur_state); 12344 err = pop_stack(env, &prev_insn_idx, 12345 &env->insn_idx, pop_log); 12346 if (err < 0) { 12347 if (err != -ENOENT) 12348 return err; 12349 break; 12350 } else { 12351 do_print_state = true; 12352 continue; 12353 } 12354 } else { 12355 err = check_cond_jmp_op(env, insn, &env->insn_idx); 12356 if (err) 12357 return err; 12358 } 12359 } else if (class == BPF_LD) { 12360 u8 mode = BPF_MODE(insn->code); 12361 12362 if (mode == BPF_ABS || mode == BPF_IND) { 12363 err = check_ld_abs(env, insn); 12364 if (err) 12365 return err; 12366 12367 } else if (mode == BPF_IMM) { 12368 err = check_ld_imm(env, insn); 12369 if (err) 12370 return err; 12371 12372 env->insn_idx++; 12373 sanitize_mark_insn_seen(env); 12374 } else { 12375 verbose(env, "invalid BPF_LD mode\n"); 12376 return -EINVAL; 12377 } 12378 } else { 12379 verbose(env, "unknown insn class %d\n", class); 12380 return -EINVAL; 12381 } 12382 12383 env->insn_idx++; 12384 } 12385 12386 return 0; 12387 } 12388 12389 static int find_btf_percpu_datasec(struct btf *btf) 12390 { 12391 const struct btf_type *t; 12392 const char *tname; 12393 int i, n; 12394 12395 /* 12396 * Both vmlinux and module each have their own ".data..percpu" 12397 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF 12398 * types to look at only module's own BTF types. 12399 */ 12400 n = btf_nr_types(btf); 12401 if (btf_is_module(btf)) 12402 i = btf_nr_types(btf_vmlinux); 12403 else 12404 i = 1; 12405 12406 for(; i < n; i++) { 12407 t = btf_type_by_id(btf, i); 12408 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC) 12409 continue; 12410 12411 tname = btf_name_by_offset(btf, t->name_off); 12412 if (!strcmp(tname, ".data..percpu")) 12413 return i; 12414 } 12415 12416 return -ENOENT; 12417 } 12418 12419 /* replace pseudo btf_id with kernel symbol address */ 12420 static int check_pseudo_btf_id(struct bpf_verifier_env *env, 12421 struct bpf_insn *insn, 12422 struct bpf_insn_aux_data *aux) 12423 { 12424 const struct btf_var_secinfo *vsi; 12425 const struct btf_type *datasec; 12426 struct btf_mod_pair *btf_mod; 12427 const struct btf_type *t; 12428 const char *sym_name; 12429 bool percpu = false; 12430 u32 type, id = insn->imm; 12431 struct btf *btf; 12432 s32 datasec_id; 12433 u64 addr; 12434 int i, btf_fd, err; 12435 12436 btf_fd = insn[1].imm; 12437 if (btf_fd) { 12438 btf = btf_get_by_fd(btf_fd); 12439 if (IS_ERR(btf)) { 12440 verbose(env, "invalid module BTF object FD specified.\n"); 12441 return -EINVAL; 12442 } 12443 } else { 12444 if (!btf_vmlinux) { 12445 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n"); 12446 return -EINVAL; 12447 } 12448 btf = btf_vmlinux; 12449 btf_get(btf); 12450 } 12451 12452 t = btf_type_by_id(btf, id); 12453 if (!t) { 12454 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id); 12455 err = -ENOENT; 12456 goto err_put; 12457 } 12458 12459 if (!btf_type_is_var(t)) { 12460 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id); 12461 err = -EINVAL; 12462 goto err_put; 12463 } 12464 12465 sym_name = btf_name_by_offset(btf, t->name_off); 12466 addr = kallsyms_lookup_name(sym_name); 12467 if (!addr) { 12468 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n", 12469 sym_name); 12470 err = -ENOENT; 12471 goto err_put; 12472 } 12473 12474 datasec_id = find_btf_percpu_datasec(btf); 12475 if (datasec_id > 0) { 12476 datasec = btf_type_by_id(btf, datasec_id); 12477 for_each_vsi(i, datasec, vsi) { 12478 if (vsi->type == id) { 12479 percpu = true; 12480 break; 12481 } 12482 } 12483 } 12484 12485 insn[0].imm = (u32)addr; 12486 insn[1].imm = addr >> 32; 12487 12488 type = t->type; 12489 t = btf_type_skip_modifiers(btf, type, NULL); 12490 if (percpu) { 12491 aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU; 12492 aux->btf_var.btf = btf; 12493 aux->btf_var.btf_id = type; 12494 } else if (!btf_type_is_struct(t)) { 12495 const struct btf_type *ret; 12496 const char *tname; 12497 u32 tsize; 12498 12499 /* resolve the type size of ksym. */ 12500 ret = btf_resolve_size(btf, t, &tsize); 12501 if (IS_ERR(ret)) { 12502 tname = btf_name_by_offset(btf, t->name_off); 12503 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n", 12504 tname, PTR_ERR(ret)); 12505 err = -EINVAL; 12506 goto err_put; 12507 } 12508 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 12509 aux->btf_var.mem_size = tsize; 12510 } else { 12511 aux->btf_var.reg_type = PTR_TO_BTF_ID; 12512 aux->btf_var.btf = btf; 12513 aux->btf_var.btf_id = type; 12514 } 12515 12516 /* check whether we recorded this BTF (and maybe module) already */ 12517 for (i = 0; i < env->used_btf_cnt; i++) { 12518 if (env->used_btfs[i].btf == btf) { 12519 btf_put(btf); 12520 return 0; 12521 } 12522 } 12523 12524 if (env->used_btf_cnt >= MAX_USED_BTFS) { 12525 err = -E2BIG; 12526 goto err_put; 12527 } 12528 12529 btf_mod = &env->used_btfs[env->used_btf_cnt]; 12530 btf_mod->btf = btf; 12531 btf_mod->module = NULL; 12532 12533 /* if we reference variables from kernel module, bump its refcount */ 12534 if (btf_is_module(btf)) { 12535 btf_mod->module = btf_try_get_module(btf); 12536 if (!btf_mod->module) { 12537 err = -ENXIO; 12538 goto err_put; 12539 } 12540 } 12541 12542 env->used_btf_cnt++; 12543 12544 return 0; 12545 err_put: 12546 btf_put(btf); 12547 return err; 12548 } 12549 12550 static int check_map_prealloc(struct bpf_map *map) 12551 { 12552 return (map->map_type != BPF_MAP_TYPE_HASH && 12553 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 12554 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) || 12555 !(map->map_flags & BPF_F_NO_PREALLOC); 12556 } 12557 12558 static bool is_tracing_prog_type(enum bpf_prog_type type) 12559 { 12560 switch (type) { 12561 case BPF_PROG_TYPE_KPROBE: 12562 case BPF_PROG_TYPE_TRACEPOINT: 12563 case BPF_PROG_TYPE_PERF_EVENT: 12564 case BPF_PROG_TYPE_RAW_TRACEPOINT: 12565 return true; 12566 default: 12567 return false; 12568 } 12569 } 12570 12571 static bool is_preallocated_map(struct bpf_map *map) 12572 { 12573 if (!check_map_prealloc(map)) 12574 return false; 12575 if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta)) 12576 return false; 12577 return true; 12578 } 12579 12580 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 12581 struct bpf_map *map, 12582 struct bpf_prog *prog) 12583 12584 { 12585 enum bpf_prog_type prog_type = resolve_prog_type(prog); 12586 /* 12587 * Validate that trace type programs use preallocated hash maps. 12588 * 12589 * For programs attached to PERF events this is mandatory as the 12590 * perf NMI can hit any arbitrary code sequence. 12591 * 12592 * All other trace types using preallocated hash maps are unsafe as 12593 * well because tracepoint or kprobes can be inside locked regions 12594 * of the memory allocator or at a place where a recursion into the 12595 * memory allocator would see inconsistent state. 12596 * 12597 * On RT enabled kernels run-time allocation of all trace type 12598 * programs is strictly prohibited due to lock type constraints. On 12599 * !RT kernels it is allowed for backwards compatibility reasons for 12600 * now, but warnings are emitted so developers are made aware of 12601 * the unsafety and can fix their programs before this is enforced. 12602 */ 12603 if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) { 12604 if (prog_type == BPF_PROG_TYPE_PERF_EVENT) { 12605 verbose(env, "perf_event programs can only use preallocated hash map\n"); 12606 return -EINVAL; 12607 } 12608 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 12609 verbose(env, "trace type programs can only use preallocated hash map\n"); 12610 return -EINVAL; 12611 } 12612 WARN_ONCE(1, "trace type BPF program uses run-time allocation\n"); 12613 verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n"); 12614 } 12615 12616 if (map_value_has_spin_lock(map)) { 12617 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) { 12618 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n"); 12619 return -EINVAL; 12620 } 12621 12622 if (is_tracing_prog_type(prog_type)) { 12623 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 12624 return -EINVAL; 12625 } 12626 12627 if (prog->aux->sleepable) { 12628 verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n"); 12629 return -EINVAL; 12630 } 12631 } 12632 12633 if (map_value_has_timer(map)) { 12634 if (is_tracing_prog_type(prog_type)) { 12635 verbose(env, "tracing progs cannot use bpf_timer yet\n"); 12636 return -EINVAL; 12637 } 12638 } 12639 12640 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) && 12641 !bpf_offload_prog_map_match(prog, map)) { 12642 verbose(env, "offload device mismatch between prog and map\n"); 12643 return -EINVAL; 12644 } 12645 12646 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 12647 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 12648 return -EINVAL; 12649 } 12650 12651 if (prog->aux->sleepable) 12652 switch (map->map_type) { 12653 case BPF_MAP_TYPE_HASH: 12654 case BPF_MAP_TYPE_LRU_HASH: 12655 case BPF_MAP_TYPE_ARRAY: 12656 case BPF_MAP_TYPE_PERCPU_HASH: 12657 case BPF_MAP_TYPE_PERCPU_ARRAY: 12658 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 12659 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 12660 case BPF_MAP_TYPE_HASH_OF_MAPS: 12661 if (!is_preallocated_map(map)) { 12662 verbose(env, 12663 "Sleepable programs can only use preallocated maps\n"); 12664 return -EINVAL; 12665 } 12666 break; 12667 case BPF_MAP_TYPE_RINGBUF: 12668 case BPF_MAP_TYPE_INODE_STORAGE: 12669 case BPF_MAP_TYPE_SK_STORAGE: 12670 case BPF_MAP_TYPE_TASK_STORAGE: 12671 break; 12672 default: 12673 verbose(env, 12674 "Sleepable programs can only use array, hash, and ringbuf maps\n"); 12675 return -EINVAL; 12676 } 12677 12678 return 0; 12679 } 12680 12681 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 12682 { 12683 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 12684 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 12685 } 12686 12687 /* find and rewrite pseudo imm in ld_imm64 instructions: 12688 * 12689 * 1. if it accesses map FD, replace it with actual map pointer. 12690 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var. 12691 * 12692 * NOTE: btf_vmlinux is required for converting pseudo btf_id. 12693 */ 12694 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env) 12695 { 12696 struct bpf_insn *insn = env->prog->insnsi; 12697 int insn_cnt = env->prog->len; 12698 int i, j, err; 12699 12700 err = bpf_prog_calc_tag(env->prog); 12701 if (err) 12702 return err; 12703 12704 for (i = 0; i < insn_cnt; i++, insn++) { 12705 if (BPF_CLASS(insn->code) == BPF_LDX && 12706 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 12707 verbose(env, "BPF_LDX uses reserved fields\n"); 12708 return -EINVAL; 12709 } 12710 12711 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 12712 struct bpf_insn_aux_data *aux; 12713 struct bpf_map *map; 12714 struct fd f; 12715 u64 addr; 12716 u32 fd; 12717 12718 if (i == insn_cnt - 1 || insn[1].code != 0 || 12719 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 12720 insn[1].off != 0) { 12721 verbose(env, "invalid bpf_ld_imm64 insn\n"); 12722 return -EINVAL; 12723 } 12724 12725 if (insn[0].src_reg == 0) 12726 /* valid generic load 64-bit imm */ 12727 goto next_insn; 12728 12729 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) { 12730 aux = &env->insn_aux_data[i]; 12731 err = check_pseudo_btf_id(env, insn, aux); 12732 if (err) 12733 return err; 12734 goto next_insn; 12735 } 12736 12737 if (insn[0].src_reg == BPF_PSEUDO_FUNC) { 12738 aux = &env->insn_aux_data[i]; 12739 aux->ptr_type = PTR_TO_FUNC; 12740 goto next_insn; 12741 } 12742 12743 /* In final convert_pseudo_ld_imm64() step, this is 12744 * converted into regular 64-bit imm load insn. 12745 */ 12746 switch (insn[0].src_reg) { 12747 case BPF_PSEUDO_MAP_VALUE: 12748 case BPF_PSEUDO_MAP_IDX_VALUE: 12749 break; 12750 case BPF_PSEUDO_MAP_FD: 12751 case BPF_PSEUDO_MAP_IDX: 12752 if (insn[1].imm == 0) 12753 break; 12754 fallthrough; 12755 default: 12756 verbose(env, "unrecognized bpf_ld_imm64 insn\n"); 12757 return -EINVAL; 12758 } 12759 12760 switch (insn[0].src_reg) { 12761 case BPF_PSEUDO_MAP_IDX_VALUE: 12762 case BPF_PSEUDO_MAP_IDX: 12763 if (bpfptr_is_null(env->fd_array)) { 12764 verbose(env, "fd_idx without fd_array is invalid\n"); 12765 return -EPROTO; 12766 } 12767 if (copy_from_bpfptr_offset(&fd, env->fd_array, 12768 insn[0].imm * sizeof(fd), 12769 sizeof(fd))) 12770 return -EFAULT; 12771 break; 12772 default: 12773 fd = insn[0].imm; 12774 break; 12775 } 12776 12777 f = fdget(fd); 12778 map = __bpf_map_get(f); 12779 if (IS_ERR(map)) { 12780 verbose(env, "fd %d is not pointing to valid bpf_map\n", 12781 insn[0].imm); 12782 return PTR_ERR(map); 12783 } 12784 12785 err = check_map_prog_compatibility(env, map, env->prog); 12786 if (err) { 12787 fdput(f); 12788 return err; 12789 } 12790 12791 aux = &env->insn_aux_data[i]; 12792 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD || 12793 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) { 12794 addr = (unsigned long)map; 12795 } else { 12796 u32 off = insn[1].imm; 12797 12798 if (off >= BPF_MAX_VAR_OFF) { 12799 verbose(env, "direct value offset of %u is not allowed\n", off); 12800 fdput(f); 12801 return -EINVAL; 12802 } 12803 12804 if (!map->ops->map_direct_value_addr) { 12805 verbose(env, "no direct value access support for this map type\n"); 12806 fdput(f); 12807 return -EINVAL; 12808 } 12809 12810 err = map->ops->map_direct_value_addr(map, &addr, off); 12811 if (err) { 12812 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 12813 map->value_size, off); 12814 fdput(f); 12815 return err; 12816 } 12817 12818 aux->map_off = off; 12819 addr += off; 12820 } 12821 12822 insn[0].imm = (u32)addr; 12823 insn[1].imm = addr >> 32; 12824 12825 /* check whether we recorded this map already */ 12826 for (j = 0; j < env->used_map_cnt; j++) { 12827 if (env->used_maps[j] == map) { 12828 aux->map_index = j; 12829 fdput(f); 12830 goto next_insn; 12831 } 12832 } 12833 12834 if (env->used_map_cnt >= MAX_USED_MAPS) { 12835 fdput(f); 12836 return -E2BIG; 12837 } 12838 12839 /* hold the map. If the program is rejected by verifier, 12840 * the map will be released by release_maps() or it 12841 * will be used by the valid program until it's unloaded 12842 * and all maps are released in free_used_maps() 12843 */ 12844 bpf_map_inc(map); 12845 12846 aux->map_index = env->used_map_cnt; 12847 env->used_maps[env->used_map_cnt++] = map; 12848 12849 if (bpf_map_is_cgroup_storage(map) && 12850 bpf_cgroup_storage_assign(env->prog->aux, map)) { 12851 verbose(env, "only one cgroup storage of each type is allowed\n"); 12852 fdput(f); 12853 return -EBUSY; 12854 } 12855 12856 fdput(f); 12857 next_insn: 12858 insn++; 12859 i++; 12860 continue; 12861 } 12862 12863 /* Basic sanity check before we invest more work here. */ 12864 if (!bpf_opcode_in_insntable(insn->code)) { 12865 verbose(env, "unknown opcode %02x\n", insn->code); 12866 return -EINVAL; 12867 } 12868 } 12869 12870 /* now all pseudo BPF_LD_IMM64 instructions load valid 12871 * 'struct bpf_map *' into a register instead of user map_fd. 12872 * These pointers will be used later by verifier to validate map access. 12873 */ 12874 return 0; 12875 } 12876 12877 /* drop refcnt of maps used by the rejected program */ 12878 static void release_maps(struct bpf_verifier_env *env) 12879 { 12880 __bpf_free_used_maps(env->prog->aux, env->used_maps, 12881 env->used_map_cnt); 12882 } 12883 12884 /* drop refcnt of maps used by the rejected program */ 12885 static void release_btfs(struct bpf_verifier_env *env) 12886 { 12887 __bpf_free_used_btfs(env->prog->aux, env->used_btfs, 12888 env->used_btf_cnt); 12889 } 12890 12891 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 12892 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 12893 { 12894 struct bpf_insn *insn = env->prog->insnsi; 12895 int insn_cnt = env->prog->len; 12896 int i; 12897 12898 for (i = 0; i < insn_cnt; i++, insn++) { 12899 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) 12900 continue; 12901 if (insn->src_reg == BPF_PSEUDO_FUNC) 12902 continue; 12903 insn->src_reg = 0; 12904 } 12905 } 12906 12907 /* single env->prog->insni[off] instruction was replaced with the range 12908 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 12909 * [0, off) and [off, end) to new locations, so the patched range stays zero 12910 */ 12911 static void adjust_insn_aux_data(struct bpf_verifier_env *env, 12912 struct bpf_insn_aux_data *new_data, 12913 struct bpf_prog *new_prog, u32 off, u32 cnt) 12914 { 12915 struct bpf_insn_aux_data *old_data = env->insn_aux_data; 12916 struct bpf_insn *insn = new_prog->insnsi; 12917 u32 old_seen = old_data[off].seen; 12918 u32 prog_len; 12919 int i; 12920 12921 /* aux info at OFF always needs adjustment, no matter fast path 12922 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 12923 * original insn at old prog. 12924 */ 12925 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 12926 12927 if (cnt == 1) 12928 return; 12929 prog_len = new_prog->len; 12930 12931 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 12932 memcpy(new_data + off + cnt - 1, old_data + off, 12933 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 12934 for (i = off; i < off + cnt - 1; i++) { 12935 /* Expand insni[off]'s seen count to the patched range. */ 12936 new_data[i].seen = old_seen; 12937 new_data[i].zext_dst = insn_has_def32(env, insn + i); 12938 } 12939 env->insn_aux_data = new_data; 12940 vfree(old_data); 12941 } 12942 12943 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 12944 { 12945 int i; 12946 12947 if (len == 1) 12948 return; 12949 /* NOTE: fake 'exit' subprog should be updated as well. */ 12950 for (i = 0; i <= env->subprog_cnt; i++) { 12951 if (env->subprog_info[i].start <= off) 12952 continue; 12953 env->subprog_info[i].start += len - 1; 12954 } 12955 } 12956 12957 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len) 12958 { 12959 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; 12960 int i, sz = prog->aux->size_poke_tab; 12961 struct bpf_jit_poke_descriptor *desc; 12962 12963 for (i = 0; i < sz; i++) { 12964 desc = &tab[i]; 12965 if (desc->insn_idx <= off) 12966 continue; 12967 desc->insn_idx += len - 1; 12968 } 12969 } 12970 12971 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 12972 const struct bpf_insn *patch, u32 len) 12973 { 12974 struct bpf_prog *new_prog; 12975 struct bpf_insn_aux_data *new_data = NULL; 12976 12977 if (len > 1) { 12978 new_data = vzalloc(array_size(env->prog->len + len - 1, 12979 sizeof(struct bpf_insn_aux_data))); 12980 if (!new_data) 12981 return NULL; 12982 } 12983 12984 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 12985 if (IS_ERR(new_prog)) { 12986 if (PTR_ERR(new_prog) == -ERANGE) 12987 verbose(env, 12988 "insn %d cannot be patched due to 16-bit range\n", 12989 env->insn_aux_data[off].orig_idx); 12990 vfree(new_data); 12991 return NULL; 12992 } 12993 adjust_insn_aux_data(env, new_data, new_prog, off, len); 12994 adjust_subprog_starts(env, off, len); 12995 adjust_poke_descs(new_prog, off, len); 12996 return new_prog; 12997 } 12998 12999 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 13000 u32 off, u32 cnt) 13001 { 13002 int i, j; 13003 13004 /* find first prog starting at or after off (first to remove) */ 13005 for (i = 0; i < env->subprog_cnt; i++) 13006 if (env->subprog_info[i].start >= off) 13007 break; 13008 /* find first prog starting at or after off + cnt (first to stay) */ 13009 for (j = i; j < env->subprog_cnt; j++) 13010 if (env->subprog_info[j].start >= off + cnt) 13011 break; 13012 /* if j doesn't start exactly at off + cnt, we are just removing 13013 * the front of previous prog 13014 */ 13015 if (env->subprog_info[j].start != off + cnt) 13016 j--; 13017 13018 if (j > i) { 13019 struct bpf_prog_aux *aux = env->prog->aux; 13020 int move; 13021 13022 /* move fake 'exit' subprog as well */ 13023 move = env->subprog_cnt + 1 - j; 13024 13025 memmove(env->subprog_info + i, 13026 env->subprog_info + j, 13027 sizeof(*env->subprog_info) * move); 13028 env->subprog_cnt -= j - i; 13029 13030 /* remove func_info */ 13031 if (aux->func_info) { 13032 move = aux->func_info_cnt - j; 13033 13034 memmove(aux->func_info + i, 13035 aux->func_info + j, 13036 sizeof(*aux->func_info) * move); 13037 aux->func_info_cnt -= j - i; 13038 /* func_info->insn_off is set after all code rewrites, 13039 * in adjust_btf_func() - no need to adjust 13040 */ 13041 } 13042 } else { 13043 /* convert i from "first prog to remove" to "first to adjust" */ 13044 if (env->subprog_info[i].start == off) 13045 i++; 13046 } 13047 13048 /* update fake 'exit' subprog as well */ 13049 for (; i <= env->subprog_cnt; i++) 13050 env->subprog_info[i].start -= cnt; 13051 13052 return 0; 13053 } 13054 13055 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 13056 u32 cnt) 13057 { 13058 struct bpf_prog *prog = env->prog; 13059 u32 i, l_off, l_cnt, nr_linfo; 13060 struct bpf_line_info *linfo; 13061 13062 nr_linfo = prog->aux->nr_linfo; 13063 if (!nr_linfo) 13064 return 0; 13065 13066 linfo = prog->aux->linfo; 13067 13068 /* find first line info to remove, count lines to be removed */ 13069 for (i = 0; i < nr_linfo; i++) 13070 if (linfo[i].insn_off >= off) 13071 break; 13072 13073 l_off = i; 13074 l_cnt = 0; 13075 for (; i < nr_linfo; i++) 13076 if (linfo[i].insn_off < off + cnt) 13077 l_cnt++; 13078 else 13079 break; 13080 13081 /* First live insn doesn't match first live linfo, it needs to "inherit" 13082 * last removed linfo. prog is already modified, so prog->len == off 13083 * means no live instructions after (tail of the program was removed). 13084 */ 13085 if (prog->len != off && l_cnt && 13086 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 13087 l_cnt--; 13088 linfo[--i].insn_off = off + cnt; 13089 } 13090 13091 /* remove the line info which refer to the removed instructions */ 13092 if (l_cnt) { 13093 memmove(linfo + l_off, linfo + i, 13094 sizeof(*linfo) * (nr_linfo - i)); 13095 13096 prog->aux->nr_linfo -= l_cnt; 13097 nr_linfo = prog->aux->nr_linfo; 13098 } 13099 13100 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 13101 for (i = l_off; i < nr_linfo; i++) 13102 linfo[i].insn_off -= cnt; 13103 13104 /* fix up all subprogs (incl. 'exit') which start >= off */ 13105 for (i = 0; i <= env->subprog_cnt; i++) 13106 if (env->subprog_info[i].linfo_idx > l_off) { 13107 /* program may have started in the removed region but 13108 * may not be fully removed 13109 */ 13110 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 13111 env->subprog_info[i].linfo_idx -= l_cnt; 13112 else 13113 env->subprog_info[i].linfo_idx = l_off; 13114 } 13115 13116 return 0; 13117 } 13118 13119 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 13120 { 13121 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 13122 unsigned int orig_prog_len = env->prog->len; 13123 int err; 13124 13125 if (bpf_prog_is_dev_bound(env->prog->aux)) 13126 bpf_prog_offload_remove_insns(env, off, cnt); 13127 13128 err = bpf_remove_insns(env->prog, off, cnt); 13129 if (err) 13130 return err; 13131 13132 err = adjust_subprog_starts_after_remove(env, off, cnt); 13133 if (err) 13134 return err; 13135 13136 err = bpf_adj_linfo_after_remove(env, off, cnt); 13137 if (err) 13138 return err; 13139 13140 memmove(aux_data + off, aux_data + off + cnt, 13141 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 13142 13143 return 0; 13144 } 13145 13146 /* The verifier does more data flow analysis than llvm and will not 13147 * explore branches that are dead at run time. Malicious programs can 13148 * have dead code too. Therefore replace all dead at-run-time code 13149 * with 'ja -1'. 13150 * 13151 * Just nops are not optimal, e.g. if they would sit at the end of the 13152 * program and through another bug we would manage to jump there, then 13153 * we'd execute beyond program memory otherwise. Returning exception 13154 * code also wouldn't work since we can have subprogs where the dead 13155 * code could be located. 13156 */ 13157 static void sanitize_dead_code(struct bpf_verifier_env *env) 13158 { 13159 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 13160 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 13161 struct bpf_insn *insn = env->prog->insnsi; 13162 const int insn_cnt = env->prog->len; 13163 int i; 13164 13165 for (i = 0; i < insn_cnt; i++) { 13166 if (aux_data[i].seen) 13167 continue; 13168 memcpy(insn + i, &trap, sizeof(trap)); 13169 aux_data[i].zext_dst = false; 13170 } 13171 } 13172 13173 static bool insn_is_cond_jump(u8 code) 13174 { 13175 u8 op; 13176 13177 if (BPF_CLASS(code) == BPF_JMP32) 13178 return true; 13179 13180 if (BPF_CLASS(code) != BPF_JMP) 13181 return false; 13182 13183 op = BPF_OP(code); 13184 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 13185 } 13186 13187 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 13188 { 13189 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 13190 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 13191 struct bpf_insn *insn = env->prog->insnsi; 13192 const int insn_cnt = env->prog->len; 13193 int i; 13194 13195 for (i = 0; i < insn_cnt; i++, insn++) { 13196 if (!insn_is_cond_jump(insn->code)) 13197 continue; 13198 13199 if (!aux_data[i + 1].seen) 13200 ja.off = insn->off; 13201 else if (!aux_data[i + 1 + insn->off].seen) 13202 ja.off = 0; 13203 else 13204 continue; 13205 13206 if (bpf_prog_is_dev_bound(env->prog->aux)) 13207 bpf_prog_offload_replace_insn(env, i, &ja); 13208 13209 memcpy(insn, &ja, sizeof(ja)); 13210 } 13211 } 13212 13213 static int opt_remove_dead_code(struct bpf_verifier_env *env) 13214 { 13215 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 13216 int insn_cnt = env->prog->len; 13217 int i, err; 13218 13219 for (i = 0; i < insn_cnt; i++) { 13220 int j; 13221 13222 j = 0; 13223 while (i + j < insn_cnt && !aux_data[i + j].seen) 13224 j++; 13225 if (!j) 13226 continue; 13227 13228 err = verifier_remove_insns(env, i, j); 13229 if (err) 13230 return err; 13231 insn_cnt = env->prog->len; 13232 } 13233 13234 return 0; 13235 } 13236 13237 static int opt_remove_nops(struct bpf_verifier_env *env) 13238 { 13239 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 13240 struct bpf_insn *insn = env->prog->insnsi; 13241 int insn_cnt = env->prog->len; 13242 int i, err; 13243 13244 for (i = 0; i < insn_cnt; i++) { 13245 if (memcmp(&insn[i], &ja, sizeof(ja))) 13246 continue; 13247 13248 err = verifier_remove_insns(env, i, 1); 13249 if (err) 13250 return err; 13251 insn_cnt--; 13252 i--; 13253 } 13254 13255 return 0; 13256 } 13257 13258 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 13259 const union bpf_attr *attr) 13260 { 13261 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 13262 struct bpf_insn_aux_data *aux = env->insn_aux_data; 13263 int i, patch_len, delta = 0, len = env->prog->len; 13264 struct bpf_insn *insns = env->prog->insnsi; 13265 struct bpf_prog *new_prog; 13266 bool rnd_hi32; 13267 13268 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 13269 zext_patch[1] = BPF_ZEXT_REG(0); 13270 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 13271 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 13272 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 13273 for (i = 0; i < len; i++) { 13274 int adj_idx = i + delta; 13275 struct bpf_insn insn; 13276 int load_reg; 13277 13278 insn = insns[adj_idx]; 13279 load_reg = insn_def_regno(&insn); 13280 if (!aux[adj_idx].zext_dst) { 13281 u8 code, class; 13282 u32 imm_rnd; 13283 13284 if (!rnd_hi32) 13285 continue; 13286 13287 code = insn.code; 13288 class = BPF_CLASS(code); 13289 if (load_reg == -1) 13290 continue; 13291 13292 /* NOTE: arg "reg" (the fourth one) is only used for 13293 * BPF_STX + SRC_OP, so it is safe to pass NULL 13294 * here. 13295 */ 13296 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) { 13297 if (class == BPF_LD && 13298 BPF_MODE(code) == BPF_IMM) 13299 i++; 13300 continue; 13301 } 13302 13303 /* ctx load could be transformed into wider load. */ 13304 if (class == BPF_LDX && 13305 aux[adj_idx].ptr_type == PTR_TO_CTX) 13306 continue; 13307 13308 imm_rnd = get_random_int(); 13309 rnd_hi32_patch[0] = insn; 13310 rnd_hi32_patch[1].imm = imm_rnd; 13311 rnd_hi32_patch[3].dst_reg = load_reg; 13312 patch = rnd_hi32_patch; 13313 patch_len = 4; 13314 goto apply_patch_buffer; 13315 } 13316 13317 /* Add in an zero-extend instruction if a) the JIT has requested 13318 * it or b) it's a CMPXCHG. 13319 * 13320 * The latter is because: BPF_CMPXCHG always loads a value into 13321 * R0, therefore always zero-extends. However some archs' 13322 * equivalent instruction only does this load when the 13323 * comparison is successful. This detail of CMPXCHG is 13324 * orthogonal to the general zero-extension behaviour of the 13325 * CPU, so it's treated independently of bpf_jit_needs_zext. 13326 */ 13327 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn)) 13328 continue; 13329 13330 if (WARN_ON(load_reg == -1)) { 13331 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n"); 13332 return -EFAULT; 13333 } 13334 13335 zext_patch[0] = insn; 13336 zext_patch[1].dst_reg = load_reg; 13337 zext_patch[1].src_reg = load_reg; 13338 patch = zext_patch; 13339 patch_len = 2; 13340 apply_patch_buffer: 13341 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 13342 if (!new_prog) 13343 return -ENOMEM; 13344 env->prog = new_prog; 13345 insns = new_prog->insnsi; 13346 aux = env->insn_aux_data; 13347 delta += patch_len - 1; 13348 } 13349 13350 return 0; 13351 } 13352 13353 /* convert load instructions that access fields of a context type into a 13354 * sequence of instructions that access fields of the underlying structure: 13355 * struct __sk_buff -> struct sk_buff 13356 * struct bpf_sock_ops -> struct sock 13357 */ 13358 static int convert_ctx_accesses(struct bpf_verifier_env *env) 13359 { 13360 const struct bpf_verifier_ops *ops = env->ops; 13361 int i, cnt, size, ctx_field_size, delta = 0; 13362 const int insn_cnt = env->prog->len; 13363 struct bpf_insn insn_buf[16], *insn; 13364 u32 target_size, size_default, off; 13365 struct bpf_prog *new_prog; 13366 enum bpf_access_type type; 13367 bool is_narrower_load; 13368 13369 if (ops->gen_prologue || env->seen_direct_write) { 13370 if (!ops->gen_prologue) { 13371 verbose(env, "bpf verifier is misconfigured\n"); 13372 return -EINVAL; 13373 } 13374 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 13375 env->prog); 13376 if (cnt >= ARRAY_SIZE(insn_buf)) { 13377 verbose(env, "bpf verifier is misconfigured\n"); 13378 return -EINVAL; 13379 } else if (cnt) { 13380 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 13381 if (!new_prog) 13382 return -ENOMEM; 13383 13384 env->prog = new_prog; 13385 delta += cnt - 1; 13386 } 13387 } 13388 13389 if (bpf_prog_is_dev_bound(env->prog->aux)) 13390 return 0; 13391 13392 insn = env->prog->insnsi + delta; 13393 13394 for (i = 0; i < insn_cnt; i++, insn++) { 13395 bpf_convert_ctx_access_t convert_ctx_access; 13396 bool ctx_access; 13397 13398 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 13399 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 13400 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 13401 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) { 13402 type = BPF_READ; 13403 ctx_access = true; 13404 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 13405 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 13406 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 13407 insn->code == (BPF_STX | BPF_MEM | BPF_DW) || 13408 insn->code == (BPF_ST | BPF_MEM | BPF_B) || 13409 insn->code == (BPF_ST | BPF_MEM | BPF_H) || 13410 insn->code == (BPF_ST | BPF_MEM | BPF_W) || 13411 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) { 13412 type = BPF_WRITE; 13413 ctx_access = BPF_CLASS(insn->code) == BPF_STX; 13414 } else { 13415 continue; 13416 } 13417 13418 if (type == BPF_WRITE && 13419 env->insn_aux_data[i + delta].sanitize_stack_spill) { 13420 struct bpf_insn patch[] = { 13421 *insn, 13422 BPF_ST_NOSPEC(), 13423 }; 13424 13425 cnt = ARRAY_SIZE(patch); 13426 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 13427 if (!new_prog) 13428 return -ENOMEM; 13429 13430 delta += cnt - 1; 13431 env->prog = new_prog; 13432 insn = new_prog->insnsi + i + delta; 13433 continue; 13434 } 13435 13436 if (!ctx_access) 13437 continue; 13438 13439 switch ((int)env->insn_aux_data[i + delta].ptr_type) { 13440 case PTR_TO_CTX: 13441 if (!ops->convert_ctx_access) 13442 continue; 13443 convert_ctx_access = ops->convert_ctx_access; 13444 break; 13445 case PTR_TO_SOCKET: 13446 case PTR_TO_SOCK_COMMON: 13447 convert_ctx_access = bpf_sock_convert_ctx_access; 13448 break; 13449 case PTR_TO_TCP_SOCK: 13450 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 13451 break; 13452 case PTR_TO_XDP_SOCK: 13453 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 13454 break; 13455 case PTR_TO_BTF_ID: 13456 case PTR_TO_BTF_ID | PTR_UNTRUSTED: 13457 if (type == BPF_READ) { 13458 insn->code = BPF_LDX | BPF_PROBE_MEM | 13459 BPF_SIZE((insn)->code); 13460 env->prog->aux->num_exentries++; 13461 } else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) { 13462 verbose(env, "Writes through BTF pointers are not allowed\n"); 13463 return -EINVAL; 13464 } 13465 continue; 13466 default: 13467 continue; 13468 } 13469 13470 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 13471 size = BPF_LDST_BYTES(insn); 13472 13473 /* If the read access is a narrower load of the field, 13474 * convert to a 4/8-byte load, to minimum program type specific 13475 * convert_ctx_access changes. If conversion is successful, 13476 * we will apply proper mask to the result. 13477 */ 13478 is_narrower_load = size < ctx_field_size; 13479 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 13480 off = insn->off; 13481 if (is_narrower_load) { 13482 u8 size_code; 13483 13484 if (type == BPF_WRITE) { 13485 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 13486 return -EINVAL; 13487 } 13488 13489 size_code = BPF_H; 13490 if (ctx_field_size == 4) 13491 size_code = BPF_W; 13492 else if (ctx_field_size == 8) 13493 size_code = BPF_DW; 13494 13495 insn->off = off & ~(size_default - 1); 13496 insn->code = BPF_LDX | BPF_MEM | size_code; 13497 } 13498 13499 target_size = 0; 13500 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 13501 &target_size); 13502 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 13503 (ctx_field_size && !target_size)) { 13504 verbose(env, "bpf verifier is misconfigured\n"); 13505 return -EINVAL; 13506 } 13507 13508 if (is_narrower_load && size < target_size) { 13509 u8 shift = bpf_ctx_narrow_access_offset( 13510 off, size, size_default) * 8; 13511 if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) { 13512 verbose(env, "bpf verifier narrow ctx load misconfigured\n"); 13513 return -EINVAL; 13514 } 13515 if (ctx_field_size <= 4) { 13516 if (shift) 13517 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 13518 insn->dst_reg, 13519 shift); 13520 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 13521 (1 << size * 8) - 1); 13522 } else { 13523 if (shift) 13524 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 13525 insn->dst_reg, 13526 shift); 13527 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 13528 (1ULL << size * 8) - 1); 13529 } 13530 } 13531 13532 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 13533 if (!new_prog) 13534 return -ENOMEM; 13535 13536 delta += cnt - 1; 13537 13538 /* keep walking new program and skip insns we just inserted */ 13539 env->prog = new_prog; 13540 insn = new_prog->insnsi + i + delta; 13541 } 13542 13543 return 0; 13544 } 13545 13546 static int jit_subprogs(struct bpf_verifier_env *env) 13547 { 13548 struct bpf_prog *prog = env->prog, **func, *tmp; 13549 int i, j, subprog_start, subprog_end = 0, len, subprog; 13550 struct bpf_map *map_ptr; 13551 struct bpf_insn *insn; 13552 void *old_bpf_func; 13553 int err, num_exentries; 13554 13555 if (env->subprog_cnt <= 1) 13556 return 0; 13557 13558 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 13559 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn)) 13560 continue; 13561 13562 /* Upon error here we cannot fall back to interpreter but 13563 * need a hard reject of the program. Thus -EFAULT is 13564 * propagated in any case. 13565 */ 13566 subprog = find_subprog(env, i + insn->imm + 1); 13567 if (subprog < 0) { 13568 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 13569 i + insn->imm + 1); 13570 return -EFAULT; 13571 } 13572 /* temporarily remember subprog id inside insn instead of 13573 * aux_data, since next loop will split up all insns into funcs 13574 */ 13575 insn->off = subprog; 13576 /* remember original imm in case JIT fails and fallback 13577 * to interpreter will be needed 13578 */ 13579 env->insn_aux_data[i].call_imm = insn->imm; 13580 /* point imm to __bpf_call_base+1 from JITs point of view */ 13581 insn->imm = 1; 13582 if (bpf_pseudo_func(insn)) 13583 /* jit (e.g. x86_64) may emit fewer instructions 13584 * if it learns a u32 imm is the same as a u64 imm. 13585 * Force a non zero here. 13586 */ 13587 insn[1].imm = 1; 13588 } 13589 13590 err = bpf_prog_alloc_jited_linfo(prog); 13591 if (err) 13592 goto out_undo_insn; 13593 13594 err = -ENOMEM; 13595 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 13596 if (!func) 13597 goto out_undo_insn; 13598 13599 for (i = 0; i < env->subprog_cnt; i++) { 13600 subprog_start = subprog_end; 13601 subprog_end = env->subprog_info[i + 1].start; 13602 13603 len = subprog_end - subprog_start; 13604 /* bpf_prog_run() doesn't call subprogs directly, 13605 * hence main prog stats include the runtime of subprogs. 13606 * subprogs don't have IDs and not reachable via prog_get_next_id 13607 * func[i]->stats will never be accessed and stays NULL 13608 */ 13609 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 13610 if (!func[i]) 13611 goto out_free; 13612 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 13613 len * sizeof(struct bpf_insn)); 13614 func[i]->type = prog->type; 13615 func[i]->len = len; 13616 if (bpf_prog_calc_tag(func[i])) 13617 goto out_free; 13618 func[i]->is_func = 1; 13619 func[i]->aux->func_idx = i; 13620 /* Below members will be freed only at prog->aux */ 13621 func[i]->aux->btf = prog->aux->btf; 13622 func[i]->aux->func_info = prog->aux->func_info; 13623 func[i]->aux->poke_tab = prog->aux->poke_tab; 13624 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab; 13625 13626 for (j = 0; j < prog->aux->size_poke_tab; j++) { 13627 struct bpf_jit_poke_descriptor *poke; 13628 13629 poke = &prog->aux->poke_tab[j]; 13630 if (poke->insn_idx < subprog_end && 13631 poke->insn_idx >= subprog_start) 13632 poke->aux = func[i]->aux; 13633 } 13634 13635 /* Use bpf_prog_F_tag to indicate functions in stack traces. 13636 * Long term would need debug info to populate names 13637 */ 13638 func[i]->aux->name[0] = 'F'; 13639 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 13640 func[i]->jit_requested = 1; 13641 func[i]->blinding_requested = prog->blinding_requested; 13642 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab; 13643 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab; 13644 func[i]->aux->linfo = prog->aux->linfo; 13645 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 13646 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 13647 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 13648 num_exentries = 0; 13649 insn = func[i]->insnsi; 13650 for (j = 0; j < func[i]->len; j++, insn++) { 13651 if (BPF_CLASS(insn->code) == BPF_LDX && 13652 BPF_MODE(insn->code) == BPF_PROBE_MEM) 13653 num_exentries++; 13654 } 13655 func[i]->aux->num_exentries = num_exentries; 13656 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable; 13657 func[i] = bpf_int_jit_compile(func[i]); 13658 if (!func[i]->jited) { 13659 err = -ENOTSUPP; 13660 goto out_free; 13661 } 13662 cond_resched(); 13663 } 13664 13665 /* at this point all bpf functions were successfully JITed 13666 * now populate all bpf_calls with correct addresses and 13667 * run last pass of JIT 13668 */ 13669 for (i = 0; i < env->subprog_cnt; i++) { 13670 insn = func[i]->insnsi; 13671 for (j = 0; j < func[i]->len; j++, insn++) { 13672 if (bpf_pseudo_func(insn)) { 13673 subprog = insn->off; 13674 insn[0].imm = (u32)(long)func[subprog]->bpf_func; 13675 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32; 13676 continue; 13677 } 13678 if (!bpf_pseudo_call(insn)) 13679 continue; 13680 subprog = insn->off; 13681 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func); 13682 } 13683 13684 /* we use the aux data to keep a list of the start addresses 13685 * of the JITed images for each function in the program 13686 * 13687 * for some architectures, such as powerpc64, the imm field 13688 * might not be large enough to hold the offset of the start 13689 * address of the callee's JITed image from __bpf_call_base 13690 * 13691 * in such cases, we can lookup the start address of a callee 13692 * by using its subprog id, available from the off field of 13693 * the call instruction, as an index for this list 13694 */ 13695 func[i]->aux->func = func; 13696 func[i]->aux->func_cnt = env->subprog_cnt; 13697 } 13698 for (i = 0; i < env->subprog_cnt; i++) { 13699 old_bpf_func = func[i]->bpf_func; 13700 tmp = bpf_int_jit_compile(func[i]); 13701 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 13702 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 13703 err = -ENOTSUPP; 13704 goto out_free; 13705 } 13706 cond_resched(); 13707 } 13708 13709 /* finally lock prog and jit images for all functions and 13710 * populate kallsysm 13711 */ 13712 for (i = 0; i < env->subprog_cnt; i++) { 13713 bpf_prog_lock_ro(func[i]); 13714 bpf_prog_kallsyms_add(func[i]); 13715 } 13716 13717 /* Last step: make now unused interpreter insns from main 13718 * prog consistent for later dump requests, so they can 13719 * later look the same as if they were interpreted only. 13720 */ 13721 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 13722 if (bpf_pseudo_func(insn)) { 13723 insn[0].imm = env->insn_aux_data[i].call_imm; 13724 insn[1].imm = insn->off; 13725 insn->off = 0; 13726 continue; 13727 } 13728 if (!bpf_pseudo_call(insn)) 13729 continue; 13730 insn->off = env->insn_aux_data[i].call_imm; 13731 subprog = find_subprog(env, i + insn->off + 1); 13732 insn->imm = subprog; 13733 } 13734 13735 prog->jited = 1; 13736 prog->bpf_func = func[0]->bpf_func; 13737 prog->jited_len = func[0]->jited_len; 13738 prog->aux->func = func; 13739 prog->aux->func_cnt = env->subprog_cnt; 13740 bpf_prog_jit_attempt_done(prog); 13741 return 0; 13742 out_free: 13743 /* We failed JIT'ing, so at this point we need to unregister poke 13744 * descriptors from subprogs, so that kernel is not attempting to 13745 * patch it anymore as we're freeing the subprog JIT memory. 13746 */ 13747 for (i = 0; i < prog->aux->size_poke_tab; i++) { 13748 map_ptr = prog->aux->poke_tab[i].tail_call.map; 13749 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux); 13750 } 13751 /* At this point we're guaranteed that poke descriptors are not 13752 * live anymore. We can just unlink its descriptor table as it's 13753 * released with the main prog. 13754 */ 13755 for (i = 0; i < env->subprog_cnt; i++) { 13756 if (!func[i]) 13757 continue; 13758 func[i]->aux->poke_tab = NULL; 13759 bpf_jit_free(func[i]); 13760 } 13761 kfree(func); 13762 out_undo_insn: 13763 /* cleanup main prog to be interpreted */ 13764 prog->jit_requested = 0; 13765 prog->blinding_requested = 0; 13766 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 13767 if (!bpf_pseudo_call(insn)) 13768 continue; 13769 insn->off = 0; 13770 insn->imm = env->insn_aux_data[i].call_imm; 13771 } 13772 bpf_prog_jit_attempt_done(prog); 13773 return err; 13774 } 13775 13776 static int fixup_call_args(struct bpf_verifier_env *env) 13777 { 13778 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 13779 struct bpf_prog *prog = env->prog; 13780 struct bpf_insn *insn = prog->insnsi; 13781 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog); 13782 int i, depth; 13783 #endif 13784 int err = 0; 13785 13786 if (env->prog->jit_requested && 13787 !bpf_prog_is_dev_bound(env->prog->aux)) { 13788 err = jit_subprogs(env); 13789 if (err == 0) 13790 return 0; 13791 if (err == -EFAULT) 13792 return err; 13793 } 13794 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 13795 if (has_kfunc_call) { 13796 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n"); 13797 return -EINVAL; 13798 } 13799 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) { 13800 /* When JIT fails the progs with bpf2bpf calls and tail_calls 13801 * have to be rejected, since interpreter doesn't support them yet. 13802 */ 13803 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 13804 return -EINVAL; 13805 } 13806 for (i = 0; i < prog->len; i++, insn++) { 13807 if (bpf_pseudo_func(insn)) { 13808 /* When JIT fails the progs with callback calls 13809 * have to be rejected, since interpreter doesn't support them yet. 13810 */ 13811 verbose(env, "callbacks are not allowed in non-JITed programs\n"); 13812 return -EINVAL; 13813 } 13814 13815 if (!bpf_pseudo_call(insn)) 13816 continue; 13817 depth = get_callee_stack_depth(env, insn, i); 13818 if (depth < 0) 13819 return depth; 13820 bpf_patch_call_args(insn, depth); 13821 } 13822 err = 0; 13823 #endif 13824 return err; 13825 } 13826 13827 static int fixup_kfunc_call(struct bpf_verifier_env *env, 13828 struct bpf_insn *insn) 13829 { 13830 const struct bpf_kfunc_desc *desc; 13831 13832 if (!insn->imm) { 13833 verbose(env, "invalid kernel function call not eliminated in verifier pass\n"); 13834 return -EINVAL; 13835 } 13836 13837 /* insn->imm has the btf func_id. Replace it with 13838 * an address (relative to __bpf_base_call). 13839 */ 13840 desc = find_kfunc_desc(env->prog, insn->imm, insn->off); 13841 if (!desc) { 13842 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n", 13843 insn->imm); 13844 return -EFAULT; 13845 } 13846 13847 insn->imm = desc->imm; 13848 13849 return 0; 13850 } 13851 13852 /* Do various post-verification rewrites in a single program pass. 13853 * These rewrites simplify JIT and interpreter implementations. 13854 */ 13855 static int do_misc_fixups(struct bpf_verifier_env *env) 13856 { 13857 struct bpf_prog *prog = env->prog; 13858 enum bpf_attach_type eatype = prog->expected_attach_type; 13859 enum bpf_prog_type prog_type = resolve_prog_type(prog); 13860 struct bpf_insn *insn = prog->insnsi; 13861 const struct bpf_func_proto *fn; 13862 const int insn_cnt = prog->len; 13863 const struct bpf_map_ops *ops; 13864 struct bpf_insn_aux_data *aux; 13865 struct bpf_insn insn_buf[16]; 13866 struct bpf_prog *new_prog; 13867 struct bpf_map *map_ptr; 13868 int i, ret, cnt, delta = 0; 13869 13870 for (i = 0; i < insn_cnt; i++, insn++) { 13871 /* Make divide-by-zero exceptions impossible. */ 13872 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 13873 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 13874 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 13875 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 13876 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 13877 bool isdiv = BPF_OP(insn->code) == BPF_DIV; 13878 struct bpf_insn *patchlet; 13879 struct bpf_insn chk_and_div[] = { 13880 /* [R,W]x div 0 -> 0 */ 13881 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 13882 BPF_JNE | BPF_K, insn->src_reg, 13883 0, 2, 0), 13884 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 13885 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 13886 *insn, 13887 }; 13888 struct bpf_insn chk_and_mod[] = { 13889 /* [R,W]x mod 0 -> [R,W]x */ 13890 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 13891 BPF_JEQ | BPF_K, insn->src_reg, 13892 0, 1 + (is64 ? 0 : 1), 0), 13893 *insn, 13894 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 13895 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg), 13896 }; 13897 13898 patchlet = isdiv ? chk_and_div : chk_and_mod; 13899 cnt = isdiv ? ARRAY_SIZE(chk_and_div) : 13900 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0); 13901 13902 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 13903 if (!new_prog) 13904 return -ENOMEM; 13905 13906 delta += cnt - 1; 13907 env->prog = prog = new_prog; 13908 insn = new_prog->insnsi + i + delta; 13909 continue; 13910 } 13911 13912 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */ 13913 if (BPF_CLASS(insn->code) == BPF_LD && 13914 (BPF_MODE(insn->code) == BPF_ABS || 13915 BPF_MODE(insn->code) == BPF_IND)) { 13916 cnt = env->ops->gen_ld_abs(insn, insn_buf); 13917 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 13918 verbose(env, "bpf verifier is misconfigured\n"); 13919 return -EINVAL; 13920 } 13921 13922 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 13923 if (!new_prog) 13924 return -ENOMEM; 13925 13926 delta += cnt - 1; 13927 env->prog = prog = new_prog; 13928 insn = new_prog->insnsi + i + delta; 13929 continue; 13930 } 13931 13932 /* Rewrite pointer arithmetic to mitigate speculation attacks. */ 13933 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 13934 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 13935 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 13936 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 13937 struct bpf_insn *patch = &insn_buf[0]; 13938 bool issrc, isneg, isimm; 13939 u32 off_reg; 13940 13941 aux = &env->insn_aux_data[i + delta]; 13942 if (!aux->alu_state || 13943 aux->alu_state == BPF_ALU_NON_POINTER) 13944 continue; 13945 13946 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 13947 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 13948 BPF_ALU_SANITIZE_SRC; 13949 isimm = aux->alu_state & BPF_ALU_IMMEDIATE; 13950 13951 off_reg = issrc ? insn->src_reg : insn->dst_reg; 13952 if (isimm) { 13953 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 13954 } else { 13955 if (isneg) 13956 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 13957 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 13958 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 13959 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 13960 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 13961 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 13962 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg); 13963 } 13964 if (!issrc) 13965 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg); 13966 insn->src_reg = BPF_REG_AX; 13967 if (isneg) 13968 insn->code = insn->code == code_add ? 13969 code_sub : code_add; 13970 *patch++ = *insn; 13971 if (issrc && isneg && !isimm) 13972 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 13973 cnt = patch - insn_buf; 13974 13975 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 13976 if (!new_prog) 13977 return -ENOMEM; 13978 13979 delta += cnt - 1; 13980 env->prog = prog = new_prog; 13981 insn = new_prog->insnsi + i + delta; 13982 continue; 13983 } 13984 13985 if (insn->code != (BPF_JMP | BPF_CALL)) 13986 continue; 13987 if (insn->src_reg == BPF_PSEUDO_CALL) 13988 continue; 13989 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 13990 ret = fixup_kfunc_call(env, insn); 13991 if (ret) 13992 return ret; 13993 continue; 13994 } 13995 13996 if (insn->imm == BPF_FUNC_get_route_realm) 13997 prog->dst_needed = 1; 13998 if (insn->imm == BPF_FUNC_get_prandom_u32) 13999 bpf_user_rnd_init_once(); 14000 if (insn->imm == BPF_FUNC_override_return) 14001 prog->kprobe_override = 1; 14002 if (insn->imm == BPF_FUNC_tail_call) { 14003 /* If we tail call into other programs, we 14004 * cannot make any assumptions since they can 14005 * be replaced dynamically during runtime in 14006 * the program array. 14007 */ 14008 prog->cb_access = 1; 14009 if (!allow_tail_call_in_subprogs(env)) 14010 prog->aux->stack_depth = MAX_BPF_STACK; 14011 prog->aux->max_pkt_offset = MAX_PACKET_OFF; 14012 14013 /* mark bpf_tail_call as different opcode to avoid 14014 * conditional branch in the interpreter for every normal 14015 * call and to prevent accidental JITing by JIT compiler 14016 * that doesn't support bpf_tail_call yet 14017 */ 14018 insn->imm = 0; 14019 insn->code = BPF_JMP | BPF_TAIL_CALL; 14020 14021 aux = &env->insn_aux_data[i + delta]; 14022 if (env->bpf_capable && !prog->blinding_requested && 14023 prog->jit_requested && 14024 !bpf_map_key_poisoned(aux) && 14025 !bpf_map_ptr_poisoned(aux) && 14026 !bpf_map_ptr_unpriv(aux)) { 14027 struct bpf_jit_poke_descriptor desc = { 14028 .reason = BPF_POKE_REASON_TAIL_CALL, 14029 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state), 14030 .tail_call.key = bpf_map_key_immediate(aux), 14031 .insn_idx = i + delta, 14032 }; 14033 14034 ret = bpf_jit_add_poke_descriptor(prog, &desc); 14035 if (ret < 0) { 14036 verbose(env, "adding tail call poke descriptor failed\n"); 14037 return ret; 14038 } 14039 14040 insn->imm = ret + 1; 14041 continue; 14042 } 14043 14044 if (!bpf_map_ptr_unpriv(aux)) 14045 continue; 14046 14047 /* instead of changing every JIT dealing with tail_call 14048 * emit two extra insns: 14049 * if (index >= max_entries) goto out; 14050 * index &= array->index_mask; 14051 * to avoid out-of-bounds cpu speculation 14052 */ 14053 if (bpf_map_ptr_poisoned(aux)) { 14054 verbose(env, "tail_call abusing map_ptr\n"); 14055 return -EINVAL; 14056 } 14057 14058 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 14059 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 14060 map_ptr->max_entries, 2); 14061 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 14062 container_of(map_ptr, 14063 struct bpf_array, 14064 map)->index_mask); 14065 insn_buf[2] = *insn; 14066 cnt = 3; 14067 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 14068 if (!new_prog) 14069 return -ENOMEM; 14070 14071 delta += cnt - 1; 14072 env->prog = prog = new_prog; 14073 insn = new_prog->insnsi + i + delta; 14074 continue; 14075 } 14076 14077 if (insn->imm == BPF_FUNC_timer_set_callback) { 14078 /* The verifier will process callback_fn as many times as necessary 14079 * with different maps and the register states prepared by 14080 * set_timer_callback_state will be accurate. 14081 * 14082 * The following use case is valid: 14083 * map1 is shared by prog1, prog2, prog3. 14084 * prog1 calls bpf_timer_init for some map1 elements 14085 * prog2 calls bpf_timer_set_callback for some map1 elements. 14086 * Those that were not bpf_timer_init-ed will return -EINVAL. 14087 * prog3 calls bpf_timer_start for some map1 elements. 14088 * Those that were not both bpf_timer_init-ed and 14089 * bpf_timer_set_callback-ed will return -EINVAL. 14090 */ 14091 struct bpf_insn ld_addrs[2] = { 14092 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux), 14093 }; 14094 14095 insn_buf[0] = ld_addrs[0]; 14096 insn_buf[1] = ld_addrs[1]; 14097 insn_buf[2] = *insn; 14098 cnt = 3; 14099 14100 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 14101 if (!new_prog) 14102 return -ENOMEM; 14103 14104 delta += cnt - 1; 14105 env->prog = prog = new_prog; 14106 insn = new_prog->insnsi + i + delta; 14107 goto patch_call_imm; 14108 } 14109 14110 if (insn->imm == BPF_FUNC_task_storage_get || 14111 insn->imm == BPF_FUNC_sk_storage_get || 14112 insn->imm == BPF_FUNC_inode_storage_get) { 14113 if (env->prog->aux->sleepable) 14114 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL); 14115 else 14116 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC); 14117 insn_buf[1] = *insn; 14118 cnt = 2; 14119 14120 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 14121 if (!new_prog) 14122 return -ENOMEM; 14123 14124 delta += cnt - 1; 14125 env->prog = prog = new_prog; 14126 insn = new_prog->insnsi + i + delta; 14127 goto patch_call_imm; 14128 } 14129 14130 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 14131 * and other inlining handlers are currently limited to 64 bit 14132 * only. 14133 */ 14134 if (prog->jit_requested && BITS_PER_LONG == 64 && 14135 (insn->imm == BPF_FUNC_map_lookup_elem || 14136 insn->imm == BPF_FUNC_map_update_elem || 14137 insn->imm == BPF_FUNC_map_delete_elem || 14138 insn->imm == BPF_FUNC_map_push_elem || 14139 insn->imm == BPF_FUNC_map_pop_elem || 14140 insn->imm == BPF_FUNC_map_peek_elem || 14141 insn->imm == BPF_FUNC_redirect_map || 14142 insn->imm == BPF_FUNC_for_each_map_elem || 14143 insn->imm == BPF_FUNC_map_lookup_percpu_elem)) { 14144 aux = &env->insn_aux_data[i + delta]; 14145 if (bpf_map_ptr_poisoned(aux)) 14146 goto patch_call_imm; 14147 14148 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 14149 ops = map_ptr->ops; 14150 if (insn->imm == BPF_FUNC_map_lookup_elem && 14151 ops->map_gen_lookup) { 14152 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 14153 if (cnt == -EOPNOTSUPP) 14154 goto patch_map_ops_generic; 14155 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) { 14156 verbose(env, "bpf verifier is misconfigured\n"); 14157 return -EINVAL; 14158 } 14159 14160 new_prog = bpf_patch_insn_data(env, i + delta, 14161 insn_buf, cnt); 14162 if (!new_prog) 14163 return -ENOMEM; 14164 14165 delta += cnt - 1; 14166 env->prog = prog = new_prog; 14167 insn = new_prog->insnsi + i + delta; 14168 continue; 14169 } 14170 14171 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 14172 (void *(*)(struct bpf_map *map, void *key))NULL)); 14173 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 14174 (int (*)(struct bpf_map *map, void *key))NULL)); 14175 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 14176 (int (*)(struct bpf_map *map, void *key, void *value, 14177 u64 flags))NULL)); 14178 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 14179 (int (*)(struct bpf_map *map, void *value, 14180 u64 flags))NULL)); 14181 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 14182 (int (*)(struct bpf_map *map, void *value))NULL)); 14183 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 14184 (int (*)(struct bpf_map *map, void *value))NULL)); 14185 BUILD_BUG_ON(!__same_type(ops->map_redirect, 14186 (int (*)(struct bpf_map *map, u32 ifindex, u64 flags))NULL)); 14187 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback, 14188 (int (*)(struct bpf_map *map, 14189 bpf_callback_t callback_fn, 14190 void *callback_ctx, 14191 u64 flags))NULL)); 14192 BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem, 14193 (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL)); 14194 14195 patch_map_ops_generic: 14196 switch (insn->imm) { 14197 case BPF_FUNC_map_lookup_elem: 14198 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem); 14199 continue; 14200 case BPF_FUNC_map_update_elem: 14201 insn->imm = BPF_CALL_IMM(ops->map_update_elem); 14202 continue; 14203 case BPF_FUNC_map_delete_elem: 14204 insn->imm = BPF_CALL_IMM(ops->map_delete_elem); 14205 continue; 14206 case BPF_FUNC_map_push_elem: 14207 insn->imm = BPF_CALL_IMM(ops->map_push_elem); 14208 continue; 14209 case BPF_FUNC_map_pop_elem: 14210 insn->imm = BPF_CALL_IMM(ops->map_pop_elem); 14211 continue; 14212 case BPF_FUNC_map_peek_elem: 14213 insn->imm = BPF_CALL_IMM(ops->map_peek_elem); 14214 continue; 14215 case BPF_FUNC_redirect_map: 14216 insn->imm = BPF_CALL_IMM(ops->map_redirect); 14217 continue; 14218 case BPF_FUNC_for_each_map_elem: 14219 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback); 14220 continue; 14221 case BPF_FUNC_map_lookup_percpu_elem: 14222 insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem); 14223 continue; 14224 } 14225 14226 goto patch_call_imm; 14227 } 14228 14229 /* Implement bpf_jiffies64 inline. */ 14230 if (prog->jit_requested && BITS_PER_LONG == 64 && 14231 insn->imm == BPF_FUNC_jiffies64) { 14232 struct bpf_insn ld_jiffies_addr[2] = { 14233 BPF_LD_IMM64(BPF_REG_0, 14234 (unsigned long)&jiffies), 14235 }; 14236 14237 insn_buf[0] = ld_jiffies_addr[0]; 14238 insn_buf[1] = ld_jiffies_addr[1]; 14239 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 14240 BPF_REG_0, 0); 14241 cnt = 3; 14242 14243 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 14244 cnt); 14245 if (!new_prog) 14246 return -ENOMEM; 14247 14248 delta += cnt - 1; 14249 env->prog = prog = new_prog; 14250 insn = new_prog->insnsi + i + delta; 14251 continue; 14252 } 14253 14254 /* Implement bpf_get_func_arg inline. */ 14255 if (prog_type == BPF_PROG_TYPE_TRACING && 14256 insn->imm == BPF_FUNC_get_func_arg) { 14257 /* Load nr_args from ctx - 8 */ 14258 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 14259 insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6); 14260 insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3); 14261 insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1); 14262 insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0); 14263 insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 14264 insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0); 14265 insn_buf[7] = BPF_JMP_A(1); 14266 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL); 14267 cnt = 9; 14268 14269 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 14270 if (!new_prog) 14271 return -ENOMEM; 14272 14273 delta += cnt - 1; 14274 env->prog = prog = new_prog; 14275 insn = new_prog->insnsi + i + delta; 14276 continue; 14277 } 14278 14279 /* Implement bpf_get_func_ret inline. */ 14280 if (prog_type == BPF_PROG_TYPE_TRACING && 14281 insn->imm == BPF_FUNC_get_func_ret) { 14282 if (eatype == BPF_TRACE_FEXIT || 14283 eatype == BPF_MODIFY_RETURN) { 14284 /* Load nr_args from ctx - 8 */ 14285 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 14286 insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3); 14287 insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1); 14288 insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 14289 insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0); 14290 insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0); 14291 cnt = 6; 14292 } else { 14293 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP); 14294 cnt = 1; 14295 } 14296 14297 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 14298 if (!new_prog) 14299 return -ENOMEM; 14300 14301 delta += cnt - 1; 14302 env->prog = prog = new_prog; 14303 insn = new_prog->insnsi + i + delta; 14304 continue; 14305 } 14306 14307 /* Implement get_func_arg_cnt inline. */ 14308 if (prog_type == BPF_PROG_TYPE_TRACING && 14309 insn->imm == BPF_FUNC_get_func_arg_cnt) { 14310 /* Load nr_args from ctx - 8 */ 14311 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 14312 14313 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 14314 if (!new_prog) 14315 return -ENOMEM; 14316 14317 env->prog = prog = new_prog; 14318 insn = new_prog->insnsi + i + delta; 14319 continue; 14320 } 14321 14322 /* Implement bpf_get_func_ip inline. */ 14323 if (prog_type == BPF_PROG_TYPE_TRACING && 14324 insn->imm == BPF_FUNC_get_func_ip) { 14325 /* Load IP address from ctx - 16 */ 14326 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16); 14327 14328 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 14329 if (!new_prog) 14330 return -ENOMEM; 14331 14332 env->prog = prog = new_prog; 14333 insn = new_prog->insnsi + i + delta; 14334 continue; 14335 } 14336 14337 patch_call_imm: 14338 fn = env->ops->get_func_proto(insn->imm, env->prog); 14339 /* all functions that have prototype and verifier allowed 14340 * programs to call them, must be real in-kernel functions 14341 */ 14342 if (!fn->func) { 14343 verbose(env, 14344 "kernel subsystem misconfigured func %s#%d\n", 14345 func_id_name(insn->imm), insn->imm); 14346 return -EFAULT; 14347 } 14348 insn->imm = fn->func - __bpf_call_base; 14349 } 14350 14351 /* Since poke tab is now finalized, publish aux to tracker. */ 14352 for (i = 0; i < prog->aux->size_poke_tab; i++) { 14353 map_ptr = prog->aux->poke_tab[i].tail_call.map; 14354 if (!map_ptr->ops->map_poke_track || 14355 !map_ptr->ops->map_poke_untrack || 14356 !map_ptr->ops->map_poke_run) { 14357 verbose(env, "bpf verifier is misconfigured\n"); 14358 return -EINVAL; 14359 } 14360 14361 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 14362 if (ret < 0) { 14363 verbose(env, "tracking tail call prog failed\n"); 14364 return ret; 14365 } 14366 } 14367 14368 sort_kfunc_descs_by_imm(env->prog); 14369 14370 return 0; 14371 } 14372 14373 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env, 14374 int position, 14375 s32 stack_base, 14376 u32 callback_subprogno, 14377 u32 *cnt) 14378 { 14379 s32 r6_offset = stack_base + 0 * BPF_REG_SIZE; 14380 s32 r7_offset = stack_base + 1 * BPF_REG_SIZE; 14381 s32 r8_offset = stack_base + 2 * BPF_REG_SIZE; 14382 int reg_loop_max = BPF_REG_6; 14383 int reg_loop_cnt = BPF_REG_7; 14384 int reg_loop_ctx = BPF_REG_8; 14385 14386 struct bpf_prog *new_prog; 14387 u32 callback_start; 14388 u32 call_insn_offset; 14389 s32 callback_offset; 14390 14391 /* This represents an inlined version of bpf_iter.c:bpf_loop, 14392 * be careful to modify this code in sync. 14393 */ 14394 struct bpf_insn insn_buf[] = { 14395 /* Return error and jump to the end of the patch if 14396 * expected number of iterations is too big. 14397 */ 14398 BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2), 14399 BPF_MOV32_IMM(BPF_REG_0, -E2BIG), 14400 BPF_JMP_IMM(BPF_JA, 0, 0, 16), 14401 /* spill R6, R7, R8 to use these as loop vars */ 14402 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset), 14403 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset), 14404 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset), 14405 /* initialize loop vars */ 14406 BPF_MOV64_REG(reg_loop_max, BPF_REG_1), 14407 BPF_MOV32_IMM(reg_loop_cnt, 0), 14408 BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3), 14409 /* loop header, 14410 * if reg_loop_cnt >= reg_loop_max skip the loop body 14411 */ 14412 BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5), 14413 /* callback call, 14414 * correct callback offset would be set after patching 14415 */ 14416 BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt), 14417 BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx), 14418 BPF_CALL_REL(0), 14419 /* increment loop counter */ 14420 BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1), 14421 /* jump to loop header if callback returned 0 */ 14422 BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6), 14423 /* return value of bpf_loop, 14424 * set R0 to the number of iterations 14425 */ 14426 BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt), 14427 /* restore original values of R6, R7, R8 */ 14428 BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset), 14429 BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset), 14430 BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset), 14431 }; 14432 14433 *cnt = ARRAY_SIZE(insn_buf); 14434 new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt); 14435 if (!new_prog) 14436 return new_prog; 14437 14438 /* callback start is known only after patching */ 14439 callback_start = env->subprog_info[callback_subprogno].start; 14440 /* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */ 14441 call_insn_offset = position + 12; 14442 callback_offset = callback_start - call_insn_offset - 1; 14443 new_prog->insnsi[call_insn_offset].imm = callback_offset; 14444 14445 return new_prog; 14446 } 14447 14448 static bool is_bpf_loop_call(struct bpf_insn *insn) 14449 { 14450 return insn->code == (BPF_JMP | BPF_CALL) && 14451 insn->src_reg == 0 && 14452 insn->imm == BPF_FUNC_loop; 14453 } 14454 14455 /* For all sub-programs in the program (including main) check 14456 * insn_aux_data to see if there are bpf_loop calls that require 14457 * inlining. If such calls are found the calls are replaced with a 14458 * sequence of instructions produced by `inline_bpf_loop` function and 14459 * subprog stack_depth is increased by the size of 3 registers. 14460 * This stack space is used to spill values of the R6, R7, R8. These 14461 * registers are used to store the loop bound, counter and context 14462 * variables. 14463 */ 14464 static int optimize_bpf_loop(struct bpf_verifier_env *env) 14465 { 14466 struct bpf_subprog_info *subprogs = env->subprog_info; 14467 int i, cur_subprog = 0, cnt, delta = 0; 14468 struct bpf_insn *insn = env->prog->insnsi; 14469 int insn_cnt = env->prog->len; 14470 u16 stack_depth = subprogs[cur_subprog].stack_depth; 14471 u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 14472 u16 stack_depth_extra = 0; 14473 14474 for (i = 0; i < insn_cnt; i++, insn++) { 14475 struct bpf_loop_inline_state *inline_state = 14476 &env->insn_aux_data[i + delta].loop_inline_state; 14477 14478 if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) { 14479 struct bpf_prog *new_prog; 14480 14481 stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup; 14482 new_prog = inline_bpf_loop(env, 14483 i + delta, 14484 -(stack_depth + stack_depth_extra), 14485 inline_state->callback_subprogno, 14486 &cnt); 14487 if (!new_prog) 14488 return -ENOMEM; 14489 14490 delta += cnt - 1; 14491 env->prog = new_prog; 14492 insn = new_prog->insnsi + i + delta; 14493 } 14494 14495 if (subprogs[cur_subprog + 1].start == i + delta + 1) { 14496 subprogs[cur_subprog].stack_depth += stack_depth_extra; 14497 cur_subprog++; 14498 stack_depth = subprogs[cur_subprog].stack_depth; 14499 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 14500 stack_depth_extra = 0; 14501 } 14502 } 14503 14504 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 14505 14506 return 0; 14507 } 14508 14509 static void free_states(struct bpf_verifier_env *env) 14510 { 14511 struct bpf_verifier_state_list *sl, *sln; 14512 int i; 14513 14514 sl = env->free_list; 14515 while (sl) { 14516 sln = sl->next; 14517 free_verifier_state(&sl->state, false); 14518 kfree(sl); 14519 sl = sln; 14520 } 14521 env->free_list = NULL; 14522 14523 if (!env->explored_states) 14524 return; 14525 14526 for (i = 0; i < state_htab_size(env); i++) { 14527 sl = env->explored_states[i]; 14528 14529 while (sl) { 14530 sln = sl->next; 14531 free_verifier_state(&sl->state, false); 14532 kfree(sl); 14533 sl = sln; 14534 } 14535 env->explored_states[i] = NULL; 14536 } 14537 } 14538 14539 static int do_check_common(struct bpf_verifier_env *env, int subprog) 14540 { 14541 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 14542 struct bpf_verifier_state *state; 14543 struct bpf_reg_state *regs; 14544 int ret, i; 14545 14546 env->prev_linfo = NULL; 14547 env->pass_cnt++; 14548 14549 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 14550 if (!state) 14551 return -ENOMEM; 14552 state->curframe = 0; 14553 state->speculative = false; 14554 state->branches = 1; 14555 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 14556 if (!state->frame[0]) { 14557 kfree(state); 14558 return -ENOMEM; 14559 } 14560 env->cur_state = state; 14561 init_func_state(env, state->frame[0], 14562 BPF_MAIN_FUNC /* callsite */, 14563 0 /* frameno */, 14564 subprog); 14565 14566 regs = state->frame[state->curframe]->regs; 14567 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 14568 ret = btf_prepare_func_args(env, subprog, regs); 14569 if (ret) 14570 goto out; 14571 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 14572 if (regs[i].type == PTR_TO_CTX) 14573 mark_reg_known_zero(env, regs, i); 14574 else if (regs[i].type == SCALAR_VALUE) 14575 mark_reg_unknown(env, regs, i); 14576 else if (base_type(regs[i].type) == PTR_TO_MEM) { 14577 const u32 mem_size = regs[i].mem_size; 14578 14579 mark_reg_known_zero(env, regs, i); 14580 regs[i].mem_size = mem_size; 14581 regs[i].id = ++env->id_gen; 14582 } 14583 } 14584 } else { 14585 /* 1st arg to a function */ 14586 regs[BPF_REG_1].type = PTR_TO_CTX; 14587 mark_reg_known_zero(env, regs, BPF_REG_1); 14588 ret = btf_check_subprog_arg_match(env, subprog, regs); 14589 if (ret == -EFAULT) 14590 /* unlikely verifier bug. abort. 14591 * ret == 0 and ret < 0 are sadly acceptable for 14592 * main() function due to backward compatibility. 14593 * Like socket filter program may be written as: 14594 * int bpf_prog(struct pt_regs *ctx) 14595 * and never dereference that ctx in the program. 14596 * 'struct pt_regs' is a type mismatch for socket 14597 * filter that should be using 'struct __sk_buff'. 14598 */ 14599 goto out; 14600 } 14601 14602 ret = do_check(env); 14603 out: 14604 /* check for NULL is necessary, since cur_state can be freed inside 14605 * do_check() under memory pressure. 14606 */ 14607 if (env->cur_state) { 14608 free_verifier_state(env->cur_state, true); 14609 env->cur_state = NULL; 14610 } 14611 while (!pop_stack(env, NULL, NULL, false)); 14612 if (!ret && pop_log) 14613 bpf_vlog_reset(&env->log, 0); 14614 free_states(env); 14615 return ret; 14616 } 14617 14618 /* Verify all global functions in a BPF program one by one based on their BTF. 14619 * All global functions must pass verification. Otherwise the whole program is rejected. 14620 * Consider: 14621 * int bar(int); 14622 * int foo(int f) 14623 * { 14624 * return bar(f); 14625 * } 14626 * int bar(int b) 14627 * { 14628 * ... 14629 * } 14630 * foo() will be verified first for R1=any_scalar_value. During verification it 14631 * will be assumed that bar() already verified successfully and call to bar() 14632 * from foo() will be checked for type match only. Later bar() will be verified 14633 * independently to check that it's safe for R1=any_scalar_value. 14634 */ 14635 static int do_check_subprogs(struct bpf_verifier_env *env) 14636 { 14637 struct bpf_prog_aux *aux = env->prog->aux; 14638 int i, ret; 14639 14640 if (!aux->func_info) 14641 return 0; 14642 14643 for (i = 1; i < env->subprog_cnt; i++) { 14644 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL) 14645 continue; 14646 env->insn_idx = env->subprog_info[i].start; 14647 WARN_ON_ONCE(env->insn_idx == 0); 14648 ret = do_check_common(env, i); 14649 if (ret) { 14650 return ret; 14651 } else if (env->log.level & BPF_LOG_LEVEL) { 14652 verbose(env, 14653 "Func#%d is safe for any args that match its prototype\n", 14654 i); 14655 } 14656 } 14657 return 0; 14658 } 14659 14660 static int do_check_main(struct bpf_verifier_env *env) 14661 { 14662 int ret; 14663 14664 env->insn_idx = 0; 14665 ret = do_check_common(env, 0); 14666 if (!ret) 14667 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 14668 return ret; 14669 } 14670 14671 14672 static void print_verification_stats(struct bpf_verifier_env *env) 14673 { 14674 int i; 14675 14676 if (env->log.level & BPF_LOG_STATS) { 14677 verbose(env, "verification time %lld usec\n", 14678 div_u64(env->verification_time, 1000)); 14679 verbose(env, "stack depth "); 14680 for (i = 0; i < env->subprog_cnt; i++) { 14681 u32 depth = env->subprog_info[i].stack_depth; 14682 14683 verbose(env, "%d", depth); 14684 if (i + 1 < env->subprog_cnt) 14685 verbose(env, "+"); 14686 } 14687 verbose(env, "\n"); 14688 } 14689 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 14690 "total_states %d peak_states %d mark_read %d\n", 14691 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 14692 env->max_states_per_insn, env->total_states, 14693 env->peak_states, env->longest_mark_read_walk); 14694 } 14695 14696 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 14697 { 14698 const struct btf_type *t, *func_proto; 14699 const struct bpf_struct_ops *st_ops; 14700 const struct btf_member *member; 14701 struct bpf_prog *prog = env->prog; 14702 u32 btf_id, member_idx; 14703 const char *mname; 14704 14705 if (!prog->gpl_compatible) { 14706 verbose(env, "struct ops programs must have a GPL compatible license\n"); 14707 return -EINVAL; 14708 } 14709 14710 btf_id = prog->aux->attach_btf_id; 14711 st_ops = bpf_struct_ops_find(btf_id); 14712 if (!st_ops) { 14713 verbose(env, "attach_btf_id %u is not a supported struct\n", 14714 btf_id); 14715 return -ENOTSUPP; 14716 } 14717 14718 t = st_ops->type; 14719 member_idx = prog->expected_attach_type; 14720 if (member_idx >= btf_type_vlen(t)) { 14721 verbose(env, "attach to invalid member idx %u of struct %s\n", 14722 member_idx, st_ops->name); 14723 return -EINVAL; 14724 } 14725 14726 member = &btf_type_member(t)[member_idx]; 14727 mname = btf_name_by_offset(btf_vmlinux, member->name_off); 14728 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type, 14729 NULL); 14730 if (!func_proto) { 14731 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 14732 mname, member_idx, st_ops->name); 14733 return -EINVAL; 14734 } 14735 14736 if (st_ops->check_member) { 14737 int err = st_ops->check_member(t, member); 14738 14739 if (err) { 14740 verbose(env, "attach to unsupported member %s of struct %s\n", 14741 mname, st_ops->name); 14742 return err; 14743 } 14744 } 14745 14746 prog->aux->attach_func_proto = func_proto; 14747 prog->aux->attach_func_name = mname; 14748 env->ops = st_ops->verifier_ops; 14749 14750 return 0; 14751 } 14752 #define SECURITY_PREFIX "security_" 14753 14754 static int check_attach_modify_return(unsigned long addr, const char *func_name) 14755 { 14756 if (within_error_injection_list(addr) || 14757 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1)) 14758 return 0; 14759 14760 return -EINVAL; 14761 } 14762 14763 /* list of non-sleepable functions that are otherwise on 14764 * ALLOW_ERROR_INJECTION list 14765 */ 14766 BTF_SET_START(btf_non_sleepable_error_inject) 14767 /* Three functions below can be called from sleepable and non-sleepable context. 14768 * Assume non-sleepable from bpf safety point of view. 14769 */ 14770 BTF_ID(func, __filemap_add_folio) 14771 BTF_ID(func, should_fail_alloc_page) 14772 BTF_ID(func, should_failslab) 14773 BTF_SET_END(btf_non_sleepable_error_inject) 14774 14775 static int check_non_sleepable_error_inject(u32 btf_id) 14776 { 14777 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id); 14778 } 14779 14780 int bpf_check_attach_target(struct bpf_verifier_log *log, 14781 const struct bpf_prog *prog, 14782 const struct bpf_prog *tgt_prog, 14783 u32 btf_id, 14784 struct bpf_attach_target_info *tgt_info) 14785 { 14786 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 14787 const char prefix[] = "btf_trace_"; 14788 int ret = 0, subprog = -1, i; 14789 const struct btf_type *t; 14790 bool conservative = true; 14791 const char *tname; 14792 struct btf *btf; 14793 long addr = 0; 14794 14795 if (!btf_id) { 14796 bpf_log(log, "Tracing programs must provide btf_id\n"); 14797 return -EINVAL; 14798 } 14799 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf; 14800 if (!btf) { 14801 bpf_log(log, 14802 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 14803 return -EINVAL; 14804 } 14805 t = btf_type_by_id(btf, btf_id); 14806 if (!t) { 14807 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id); 14808 return -EINVAL; 14809 } 14810 tname = btf_name_by_offset(btf, t->name_off); 14811 if (!tname) { 14812 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id); 14813 return -EINVAL; 14814 } 14815 if (tgt_prog) { 14816 struct bpf_prog_aux *aux = tgt_prog->aux; 14817 14818 for (i = 0; i < aux->func_info_cnt; i++) 14819 if (aux->func_info[i].type_id == btf_id) { 14820 subprog = i; 14821 break; 14822 } 14823 if (subprog == -1) { 14824 bpf_log(log, "Subprog %s doesn't exist\n", tname); 14825 return -EINVAL; 14826 } 14827 conservative = aux->func_info_aux[subprog].unreliable; 14828 if (prog_extension) { 14829 if (conservative) { 14830 bpf_log(log, 14831 "Cannot replace static functions\n"); 14832 return -EINVAL; 14833 } 14834 if (!prog->jit_requested) { 14835 bpf_log(log, 14836 "Extension programs should be JITed\n"); 14837 return -EINVAL; 14838 } 14839 } 14840 if (!tgt_prog->jited) { 14841 bpf_log(log, "Can attach to only JITed progs\n"); 14842 return -EINVAL; 14843 } 14844 if (tgt_prog->type == prog->type) { 14845 /* Cannot fentry/fexit another fentry/fexit program. 14846 * Cannot attach program extension to another extension. 14847 * It's ok to attach fentry/fexit to extension program. 14848 */ 14849 bpf_log(log, "Cannot recursively attach\n"); 14850 return -EINVAL; 14851 } 14852 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 14853 prog_extension && 14854 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 14855 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 14856 /* Program extensions can extend all program types 14857 * except fentry/fexit. The reason is the following. 14858 * The fentry/fexit programs are used for performance 14859 * analysis, stats and can be attached to any program 14860 * type except themselves. When extension program is 14861 * replacing XDP function it is necessary to allow 14862 * performance analysis of all functions. Both original 14863 * XDP program and its program extension. Hence 14864 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is 14865 * allowed. If extending of fentry/fexit was allowed it 14866 * would be possible to create long call chain 14867 * fentry->extension->fentry->extension beyond 14868 * reasonable stack size. Hence extending fentry is not 14869 * allowed. 14870 */ 14871 bpf_log(log, "Cannot extend fentry/fexit\n"); 14872 return -EINVAL; 14873 } 14874 } else { 14875 if (prog_extension) { 14876 bpf_log(log, "Cannot replace kernel functions\n"); 14877 return -EINVAL; 14878 } 14879 } 14880 14881 switch (prog->expected_attach_type) { 14882 case BPF_TRACE_RAW_TP: 14883 if (tgt_prog) { 14884 bpf_log(log, 14885 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 14886 return -EINVAL; 14887 } 14888 if (!btf_type_is_typedef(t)) { 14889 bpf_log(log, "attach_btf_id %u is not a typedef\n", 14890 btf_id); 14891 return -EINVAL; 14892 } 14893 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 14894 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n", 14895 btf_id, tname); 14896 return -EINVAL; 14897 } 14898 tname += sizeof(prefix) - 1; 14899 t = btf_type_by_id(btf, t->type); 14900 if (!btf_type_is_ptr(t)) 14901 /* should never happen in valid vmlinux build */ 14902 return -EINVAL; 14903 t = btf_type_by_id(btf, t->type); 14904 if (!btf_type_is_func_proto(t)) 14905 /* should never happen in valid vmlinux build */ 14906 return -EINVAL; 14907 14908 break; 14909 case BPF_TRACE_ITER: 14910 if (!btf_type_is_func(t)) { 14911 bpf_log(log, "attach_btf_id %u is not a function\n", 14912 btf_id); 14913 return -EINVAL; 14914 } 14915 t = btf_type_by_id(btf, t->type); 14916 if (!btf_type_is_func_proto(t)) 14917 return -EINVAL; 14918 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 14919 if (ret) 14920 return ret; 14921 break; 14922 default: 14923 if (!prog_extension) 14924 return -EINVAL; 14925 fallthrough; 14926 case BPF_MODIFY_RETURN: 14927 case BPF_LSM_MAC: 14928 case BPF_LSM_CGROUP: 14929 case BPF_TRACE_FENTRY: 14930 case BPF_TRACE_FEXIT: 14931 if (!btf_type_is_func(t)) { 14932 bpf_log(log, "attach_btf_id %u is not a function\n", 14933 btf_id); 14934 return -EINVAL; 14935 } 14936 if (prog_extension && 14937 btf_check_type_match(log, prog, btf, t)) 14938 return -EINVAL; 14939 t = btf_type_by_id(btf, t->type); 14940 if (!btf_type_is_func_proto(t)) 14941 return -EINVAL; 14942 14943 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) && 14944 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type || 14945 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type)) 14946 return -EINVAL; 14947 14948 if (tgt_prog && conservative) 14949 t = NULL; 14950 14951 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 14952 if (ret < 0) 14953 return ret; 14954 14955 if (tgt_prog) { 14956 if (subprog == 0) 14957 addr = (long) tgt_prog->bpf_func; 14958 else 14959 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 14960 } else { 14961 addr = kallsyms_lookup_name(tname); 14962 if (!addr) { 14963 bpf_log(log, 14964 "The address of function %s cannot be found\n", 14965 tname); 14966 return -ENOENT; 14967 } 14968 } 14969 14970 if (prog->aux->sleepable) { 14971 ret = -EINVAL; 14972 switch (prog->type) { 14973 case BPF_PROG_TYPE_TRACING: 14974 /* fentry/fexit/fmod_ret progs can be sleepable only if they are 14975 * attached to ALLOW_ERROR_INJECTION and are not in denylist. 14976 */ 14977 if (!check_non_sleepable_error_inject(btf_id) && 14978 within_error_injection_list(addr)) 14979 ret = 0; 14980 break; 14981 case BPF_PROG_TYPE_LSM: 14982 /* LSM progs check that they are attached to bpf_lsm_*() funcs. 14983 * Only some of them are sleepable. 14984 */ 14985 if (bpf_lsm_is_sleepable_hook(btf_id)) 14986 ret = 0; 14987 break; 14988 default: 14989 break; 14990 } 14991 if (ret) { 14992 bpf_log(log, "%s is not sleepable\n", tname); 14993 return ret; 14994 } 14995 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) { 14996 if (tgt_prog) { 14997 bpf_log(log, "can't modify return codes of BPF programs\n"); 14998 return -EINVAL; 14999 } 15000 ret = check_attach_modify_return(addr, tname); 15001 if (ret) { 15002 bpf_log(log, "%s() is not modifiable\n", tname); 15003 return ret; 15004 } 15005 } 15006 15007 break; 15008 } 15009 tgt_info->tgt_addr = addr; 15010 tgt_info->tgt_name = tname; 15011 tgt_info->tgt_type = t; 15012 return 0; 15013 } 15014 15015 BTF_SET_START(btf_id_deny) 15016 BTF_ID_UNUSED 15017 #ifdef CONFIG_SMP 15018 BTF_ID(func, migrate_disable) 15019 BTF_ID(func, migrate_enable) 15020 #endif 15021 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU 15022 BTF_ID(func, rcu_read_unlock_strict) 15023 #endif 15024 BTF_SET_END(btf_id_deny) 15025 15026 static int check_attach_btf_id(struct bpf_verifier_env *env) 15027 { 15028 struct bpf_prog *prog = env->prog; 15029 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 15030 struct bpf_attach_target_info tgt_info = {}; 15031 u32 btf_id = prog->aux->attach_btf_id; 15032 struct bpf_trampoline *tr; 15033 int ret; 15034 u64 key; 15035 15036 if (prog->type == BPF_PROG_TYPE_SYSCALL) { 15037 if (prog->aux->sleepable) 15038 /* attach_btf_id checked to be zero already */ 15039 return 0; 15040 verbose(env, "Syscall programs can only be sleepable\n"); 15041 return -EINVAL; 15042 } 15043 15044 if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING && 15045 prog->type != BPF_PROG_TYPE_LSM && prog->type != BPF_PROG_TYPE_KPROBE) { 15046 verbose(env, "Only fentry/fexit/fmod_ret, lsm, and kprobe/uprobe programs can be sleepable\n"); 15047 return -EINVAL; 15048 } 15049 15050 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 15051 return check_struct_ops_btf_id(env); 15052 15053 if (prog->type != BPF_PROG_TYPE_TRACING && 15054 prog->type != BPF_PROG_TYPE_LSM && 15055 prog->type != BPF_PROG_TYPE_EXT) 15056 return 0; 15057 15058 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info); 15059 if (ret) 15060 return ret; 15061 15062 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) { 15063 /* to make freplace equivalent to their targets, they need to 15064 * inherit env->ops and expected_attach_type for the rest of the 15065 * verification 15066 */ 15067 env->ops = bpf_verifier_ops[tgt_prog->type]; 15068 prog->expected_attach_type = tgt_prog->expected_attach_type; 15069 } 15070 15071 /* store info about the attachment target that will be used later */ 15072 prog->aux->attach_func_proto = tgt_info.tgt_type; 15073 prog->aux->attach_func_name = tgt_info.tgt_name; 15074 15075 if (tgt_prog) { 15076 prog->aux->saved_dst_prog_type = tgt_prog->type; 15077 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type; 15078 } 15079 15080 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { 15081 prog->aux->attach_btf_trace = true; 15082 return 0; 15083 } else if (prog->expected_attach_type == BPF_TRACE_ITER) { 15084 if (!bpf_iter_prog_supported(prog)) 15085 return -EINVAL; 15086 return 0; 15087 } 15088 15089 if (prog->type == BPF_PROG_TYPE_LSM) { 15090 ret = bpf_lsm_verify_prog(&env->log, prog); 15091 if (ret < 0) 15092 return ret; 15093 } else if (prog->type == BPF_PROG_TYPE_TRACING && 15094 btf_id_set_contains(&btf_id_deny, btf_id)) { 15095 return -EINVAL; 15096 } 15097 15098 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id); 15099 tr = bpf_trampoline_get(key, &tgt_info); 15100 if (!tr) 15101 return -ENOMEM; 15102 15103 prog->aux->dst_trampoline = tr; 15104 return 0; 15105 } 15106 15107 struct btf *bpf_get_btf_vmlinux(void) 15108 { 15109 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 15110 mutex_lock(&bpf_verifier_lock); 15111 if (!btf_vmlinux) 15112 btf_vmlinux = btf_parse_vmlinux(); 15113 mutex_unlock(&bpf_verifier_lock); 15114 } 15115 return btf_vmlinux; 15116 } 15117 15118 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr) 15119 { 15120 u64 start_time = ktime_get_ns(); 15121 struct bpf_verifier_env *env; 15122 struct bpf_verifier_log *log; 15123 int i, len, ret = -EINVAL; 15124 bool is_priv; 15125 15126 /* no program is valid */ 15127 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 15128 return -EINVAL; 15129 15130 /* 'struct bpf_verifier_env' can be global, but since it's not small, 15131 * allocate/free it every time bpf_check() is called 15132 */ 15133 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 15134 if (!env) 15135 return -ENOMEM; 15136 log = &env->log; 15137 15138 len = (*prog)->len; 15139 env->insn_aux_data = 15140 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 15141 ret = -ENOMEM; 15142 if (!env->insn_aux_data) 15143 goto err_free_env; 15144 for (i = 0; i < len; i++) 15145 env->insn_aux_data[i].orig_idx = i; 15146 env->prog = *prog; 15147 env->ops = bpf_verifier_ops[env->prog->type]; 15148 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel); 15149 is_priv = bpf_capable(); 15150 15151 bpf_get_btf_vmlinux(); 15152 15153 /* grab the mutex to protect few globals used by verifier */ 15154 if (!is_priv) 15155 mutex_lock(&bpf_verifier_lock); 15156 15157 if (attr->log_level || attr->log_buf || attr->log_size) { 15158 /* user requested verbose verifier output 15159 * and supplied buffer to store the verification trace 15160 */ 15161 log->level = attr->log_level; 15162 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 15163 log->len_total = attr->log_size; 15164 15165 /* log attributes have to be sane */ 15166 if (!bpf_verifier_log_attr_valid(log)) { 15167 ret = -EINVAL; 15168 goto err_unlock; 15169 } 15170 } 15171 15172 mark_verifier_state_clean(env); 15173 15174 if (IS_ERR(btf_vmlinux)) { 15175 /* Either gcc or pahole or kernel are broken. */ 15176 verbose(env, "in-kernel BTF is malformed\n"); 15177 ret = PTR_ERR(btf_vmlinux); 15178 goto skip_full_check; 15179 } 15180 15181 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 15182 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 15183 env->strict_alignment = true; 15184 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 15185 env->strict_alignment = false; 15186 15187 env->allow_ptr_leaks = bpf_allow_ptr_leaks(); 15188 env->allow_uninit_stack = bpf_allow_uninit_stack(); 15189 env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access(); 15190 env->bypass_spec_v1 = bpf_bypass_spec_v1(); 15191 env->bypass_spec_v4 = bpf_bypass_spec_v4(); 15192 env->bpf_capable = bpf_capable(); 15193 15194 if (is_priv) 15195 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 15196 15197 env->explored_states = kvcalloc(state_htab_size(env), 15198 sizeof(struct bpf_verifier_state_list *), 15199 GFP_USER); 15200 ret = -ENOMEM; 15201 if (!env->explored_states) 15202 goto skip_full_check; 15203 15204 ret = add_subprog_and_kfunc(env); 15205 if (ret < 0) 15206 goto skip_full_check; 15207 15208 ret = check_subprogs(env); 15209 if (ret < 0) 15210 goto skip_full_check; 15211 15212 ret = check_btf_info(env, attr, uattr); 15213 if (ret < 0) 15214 goto skip_full_check; 15215 15216 ret = check_attach_btf_id(env); 15217 if (ret) 15218 goto skip_full_check; 15219 15220 ret = resolve_pseudo_ldimm64(env); 15221 if (ret < 0) 15222 goto skip_full_check; 15223 15224 if (bpf_prog_is_dev_bound(env->prog->aux)) { 15225 ret = bpf_prog_offload_verifier_prep(env->prog); 15226 if (ret) 15227 goto skip_full_check; 15228 } 15229 15230 ret = check_cfg(env); 15231 if (ret < 0) 15232 goto skip_full_check; 15233 15234 ret = do_check_subprogs(env); 15235 ret = ret ?: do_check_main(env); 15236 15237 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux)) 15238 ret = bpf_prog_offload_finalize(env); 15239 15240 skip_full_check: 15241 kvfree(env->explored_states); 15242 15243 if (ret == 0) 15244 ret = check_max_stack_depth(env); 15245 15246 /* instruction rewrites happen after this point */ 15247 if (ret == 0) 15248 ret = optimize_bpf_loop(env); 15249 15250 if (is_priv) { 15251 if (ret == 0) 15252 opt_hard_wire_dead_code_branches(env); 15253 if (ret == 0) 15254 ret = opt_remove_dead_code(env); 15255 if (ret == 0) 15256 ret = opt_remove_nops(env); 15257 } else { 15258 if (ret == 0) 15259 sanitize_dead_code(env); 15260 } 15261 15262 if (ret == 0) 15263 /* program is valid, convert *(u32*)(ctx + off) accesses */ 15264 ret = convert_ctx_accesses(env); 15265 15266 if (ret == 0) 15267 ret = do_misc_fixups(env); 15268 15269 /* do 32-bit optimization after insn patching has done so those patched 15270 * insns could be handled correctly. 15271 */ 15272 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) { 15273 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 15274 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 15275 : false; 15276 } 15277 15278 if (ret == 0) 15279 ret = fixup_call_args(env); 15280 15281 env->verification_time = ktime_get_ns() - start_time; 15282 print_verification_stats(env); 15283 env->prog->aux->verified_insns = env->insn_processed; 15284 15285 if (log->level && bpf_verifier_log_full(log)) 15286 ret = -ENOSPC; 15287 if (log->level && !log->ubuf) { 15288 ret = -EFAULT; 15289 goto err_release_maps; 15290 } 15291 15292 if (ret) 15293 goto err_release_maps; 15294 15295 if (env->used_map_cnt) { 15296 /* if program passed verifier, update used_maps in bpf_prog_info */ 15297 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 15298 sizeof(env->used_maps[0]), 15299 GFP_KERNEL); 15300 15301 if (!env->prog->aux->used_maps) { 15302 ret = -ENOMEM; 15303 goto err_release_maps; 15304 } 15305 15306 memcpy(env->prog->aux->used_maps, env->used_maps, 15307 sizeof(env->used_maps[0]) * env->used_map_cnt); 15308 env->prog->aux->used_map_cnt = env->used_map_cnt; 15309 } 15310 if (env->used_btf_cnt) { 15311 /* if program passed verifier, update used_btfs in bpf_prog_aux */ 15312 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt, 15313 sizeof(env->used_btfs[0]), 15314 GFP_KERNEL); 15315 if (!env->prog->aux->used_btfs) { 15316 ret = -ENOMEM; 15317 goto err_release_maps; 15318 } 15319 15320 memcpy(env->prog->aux->used_btfs, env->used_btfs, 15321 sizeof(env->used_btfs[0]) * env->used_btf_cnt); 15322 env->prog->aux->used_btf_cnt = env->used_btf_cnt; 15323 } 15324 if (env->used_map_cnt || env->used_btf_cnt) { 15325 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 15326 * bpf_ld_imm64 instructions 15327 */ 15328 convert_pseudo_ld_imm64(env); 15329 } 15330 15331 adjust_btf_func(env); 15332 15333 err_release_maps: 15334 if (!env->prog->aux->used_maps) 15335 /* if we didn't copy map pointers into bpf_prog_info, release 15336 * them now. Otherwise free_used_maps() will release them. 15337 */ 15338 release_maps(env); 15339 if (!env->prog->aux->used_btfs) 15340 release_btfs(env); 15341 15342 /* extension progs temporarily inherit the attach_type of their targets 15343 for verification purposes, so set it back to zero before returning 15344 */ 15345 if (env->prog->type == BPF_PROG_TYPE_EXT) 15346 env->prog->expected_attach_type = 0; 15347 15348 *prog = env->prog; 15349 err_unlock: 15350 if (!is_priv) 15351 mutex_unlock(&bpf_verifier_lock); 15352 vfree(env->insn_aux_data); 15353 err_free_env: 15354 kfree(env); 15355 return ret; 15356 } 15357