xref: /linux/kernel/bpf/verifier.c (revision 2c7b9b936bdc6ff0a7a5f6aed8e55d27ca14807d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5  */
6 #include <uapi/linux/btf.h>
7 #include <linux/bpf-cgroup.h>
8 #include <linux/kernel.h>
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/bpf.h>
12 #include <linux/btf.h>
13 #include <linux/bpf_verifier.h>
14 #include <linux/filter.h>
15 #include <net/netlink.h>
16 #include <linux/file.h>
17 #include <linux/vmalloc.h>
18 #include <linux/stringify.h>
19 #include <linux/bsearch.h>
20 #include <linux/sort.h>
21 #include <linux/perf_event.h>
22 #include <linux/ctype.h>
23 #include <linux/error-injection.h>
24 #include <linux/bpf_lsm.h>
25 #include <linux/btf_ids.h>
26 
27 #include "disasm.h"
28 
29 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
30 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
31 	[_id] = & _name ## _verifier_ops,
32 #define BPF_MAP_TYPE(_id, _ops)
33 #define BPF_LINK_TYPE(_id, _name)
34 #include <linux/bpf_types.h>
35 #undef BPF_PROG_TYPE
36 #undef BPF_MAP_TYPE
37 #undef BPF_LINK_TYPE
38 };
39 
40 /* bpf_check() is a static code analyzer that walks eBPF program
41  * instruction by instruction and updates register/stack state.
42  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
43  *
44  * The first pass is depth-first-search to check that the program is a DAG.
45  * It rejects the following programs:
46  * - larger than BPF_MAXINSNS insns
47  * - if loop is present (detected via back-edge)
48  * - unreachable insns exist (shouldn't be a forest. program = one function)
49  * - out of bounds or malformed jumps
50  * The second pass is all possible path descent from the 1st insn.
51  * Since it's analyzing all paths through the program, the length of the
52  * analysis is limited to 64k insn, which may be hit even if total number of
53  * insn is less then 4K, but there are too many branches that change stack/regs.
54  * Number of 'branches to be analyzed' is limited to 1k
55  *
56  * On entry to each instruction, each register has a type, and the instruction
57  * changes the types of the registers depending on instruction semantics.
58  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
59  * copied to R1.
60  *
61  * All registers are 64-bit.
62  * R0 - return register
63  * R1-R5 argument passing registers
64  * R6-R9 callee saved registers
65  * R10 - frame pointer read-only
66  *
67  * At the start of BPF program the register R1 contains a pointer to bpf_context
68  * and has type PTR_TO_CTX.
69  *
70  * Verifier tracks arithmetic operations on pointers in case:
71  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
72  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
73  * 1st insn copies R10 (which has FRAME_PTR) type into R1
74  * and 2nd arithmetic instruction is pattern matched to recognize
75  * that it wants to construct a pointer to some element within stack.
76  * So after 2nd insn, the register R1 has type PTR_TO_STACK
77  * (and -20 constant is saved for further stack bounds checking).
78  * Meaning that this reg is a pointer to stack plus known immediate constant.
79  *
80  * Most of the time the registers have SCALAR_VALUE type, which
81  * means the register has some value, but it's not a valid pointer.
82  * (like pointer plus pointer becomes SCALAR_VALUE type)
83  *
84  * When verifier sees load or store instructions the type of base register
85  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
86  * four pointer types recognized by check_mem_access() function.
87  *
88  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
89  * and the range of [ptr, ptr + map's value_size) is accessible.
90  *
91  * registers used to pass values to function calls are checked against
92  * function argument constraints.
93  *
94  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
95  * It means that the register type passed to this function must be
96  * PTR_TO_STACK and it will be used inside the function as
97  * 'pointer to map element key'
98  *
99  * For example the argument constraints for bpf_map_lookup_elem():
100  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
101  *   .arg1_type = ARG_CONST_MAP_PTR,
102  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
103  *
104  * ret_type says that this function returns 'pointer to map elem value or null'
105  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
106  * 2nd argument should be a pointer to stack, which will be used inside
107  * the helper function as a pointer to map element key.
108  *
109  * On the kernel side the helper function looks like:
110  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
111  * {
112  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
113  *    void *key = (void *) (unsigned long) r2;
114  *    void *value;
115  *
116  *    here kernel can access 'key' and 'map' pointers safely, knowing that
117  *    [key, key + map->key_size) bytes are valid and were initialized on
118  *    the stack of eBPF program.
119  * }
120  *
121  * Corresponding eBPF program may look like:
122  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
123  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
124  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
125  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
126  * here verifier looks at prototype of map_lookup_elem() and sees:
127  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
128  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
129  *
130  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
131  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
132  * and were initialized prior to this call.
133  * If it's ok, then verifier allows this BPF_CALL insn and looks at
134  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
135  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
136  * returns either pointer to map value or NULL.
137  *
138  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
139  * insn, the register holding that pointer in the true branch changes state to
140  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
141  * branch. See check_cond_jmp_op().
142  *
143  * After the call R0 is set to return type of the function and registers R1-R5
144  * are set to NOT_INIT to indicate that they are no longer readable.
145  *
146  * The following reference types represent a potential reference to a kernel
147  * resource which, after first being allocated, must be checked and freed by
148  * the BPF program:
149  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
150  *
151  * When the verifier sees a helper call return a reference type, it allocates a
152  * pointer id for the reference and stores it in the current function state.
153  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
154  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
155  * passes through a NULL-check conditional. For the branch wherein the state is
156  * changed to CONST_IMM, the verifier releases the reference.
157  *
158  * For each helper function that allocates a reference, such as
159  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
160  * bpf_sk_release(). When a reference type passes into the release function,
161  * the verifier also releases the reference. If any unchecked or unreleased
162  * reference remains at the end of the program, the verifier rejects it.
163  */
164 
165 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
166 struct bpf_verifier_stack_elem {
167 	/* verifer state is 'st'
168 	 * before processing instruction 'insn_idx'
169 	 * and after processing instruction 'prev_insn_idx'
170 	 */
171 	struct bpf_verifier_state st;
172 	int insn_idx;
173 	int prev_insn_idx;
174 	struct bpf_verifier_stack_elem *next;
175 	/* length of verifier log at the time this state was pushed on stack */
176 	u32 log_pos;
177 };
178 
179 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ	8192
180 #define BPF_COMPLEXITY_LIMIT_STATES	64
181 
182 #define BPF_MAP_KEY_POISON	(1ULL << 63)
183 #define BPF_MAP_KEY_SEEN	(1ULL << 62)
184 
185 #define BPF_MAP_PTR_UNPRIV	1UL
186 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
187 					  POISON_POINTER_DELTA))
188 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
189 
190 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx);
191 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id);
192 
193 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
194 {
195 	return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
196 }
197 
198 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
199 {
200 	return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
201 }
202 
203 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
204 			      const struct bpf_map *map, bool unpriv)
205 {
206 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
207 	unpriv |= bpf_map_ptr_unpriv(aux);
208 	aux->map_ptr_state = (unsigned long)map |
209 			     (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
210 }
211 
212 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
213 {
214 	return aux->map_key_state & BPF_MAP_KEY_POISON;
215 }
216 
217 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
218 {
219 	return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
220 }
221 
222 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
223 {
224 	return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
225 }
226 
227 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
228 {
229 	bool poisoned = bpf_map_key_poisoned(aux);
230 
231 	aux->map_key_state = state | BPF_MAP_KEY_SEEN |
232 			     (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
233 }
234 
235 static bool bpf_pseudo_call(const struct bpf_insn *insn)
236 {
237 	return insn->code == (BPF_JMP | BPF_CALL) &&
238 	       insn->src_reg == BPF_PSEUDO_CALL;
239 }
240 
241 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
242 {
243 	return insn->code == (BPF_JMP | BPF_CALL) &&
244 	       insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
245 }
246 
247 struct bpf_call_arg_meta {
248 	struct bpf_map *map_ptr;
249 	bool raw_mode;
250 	bool pkt_access;
251 	u8 release_regno;
252 	int regno;
253 	int access_size;
254 	int mem_size;
255 	u64 msize_max_value;
256 	int ref_obj_id;
257 	int map_uid;
258 	int func_id;
259 	struct btf *btf;
260 	u32 btf_id;
261 	struct btf *ret_btf;
262 	u32 ret_btf_id;
263 	u32 subprogno;
264 	struct bpf_map_value_off_desc *kptr_off_desc;
265 	u8 uninit_dynptr_regno;
266 };
267 
268 struct btf *btf_vmlinux;
269 
270 static DEFINE_MUTEX(bpf_verifier_lock);
271 
272 static const struct bpf_line_info *
273 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
274 {
275 	const struct bpf_line_info *linfo;
276 	const struct bpf_prog *prog;
277 	u32 i, nr_linfo;
278 
279 	prog = env->prog;
280 	nr_linfo = prog->aux->nr_linfo;
281 
282 	if (!nr_linfo || insn_off >= prog->len)
283 		return NULL;
284 
285 	linfo = prog->aux->linfo;
286 	for (i = 1; i < nr_linfo; i++)
287 		if (insn_off < linfo[i].insn_off)
288 			break;
289 
290 	return &linfo[i - 1];
291 }
292 
293 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
294 		       va_list args)
295 {
296 	unsigned int n;
297 
298 	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
299 
300 	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
301 		  "verifier log line truncated - local buffer too short\n");
302 
303 	if (log->level == BPF_LOG_KERNEL) {
304 		bool newline = n > 0 && log->kbuf[n - 1] == '\n';
305 
306 		pr_err("BPF: %s%s", log->kbuf, newline ? "" : "\n");
307 		return;
308 	}
309 
310 	n = min(log->len_total - log->len_used - 1, n);
311 	log->kbuf[n] = '\0';
312 	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
313 		log->len_used += n;
314 	else
315 		log->ubuf = NULL;
316 }
317 
318 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
319 {
320 	char zero = 0;
321 
322 	if (!bpf_verifier_log_needed(log))
323 		return;
324 
325 	log->len_used = new_pos;
326 	if (put_user(zero, log->ubuf + new_pos))
327 		log->ubuf = NULL;
328 }
329 
330 /* log_level controls verbosity level of eBPF verifier.
331  * bpf_verifier_log_write() is used to dump the verification trace to the log,
332  * so the user can figure out what's wrong with the program
333  */
334 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
335 					   const char *fmt, ...)
336 {
337 	va_list args;
338 
339 	if (!bpf_verifier_log_needed(&env->log))
340 		return;
341 
342 	va_start(args, fmt);
343 	bpf_verifier_vlog(&env->log, fmt, args);
344 	va_end(args);
345 }
346 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
347 
348 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
349 {
350 	struct bpf_verifier_env *env = private_data;
351 	va_list args;
352 
353 	if (!bpf_verifier_log_needed(&env->log))
354 		return;
355 
356 	va_start(args, fmt);
357 	bpf_verifier_vlog(&env->log, fmt, args);
358 	va_end(args);
359 }
360 
361 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
362 			    const char *fmt, ...)
363 {
364 	va_list args;
365 
366 	if (!bpf_verifier_log_needed(log))
367 		return;
368 
369 	va_start(args, fmt);
370 	bpf_verifier_vlog(log, fmt, args);
371 	va_end(args);
372 }
373 
374 static const char *ltrim(const char *s)
375 {
376 	while (isspace(*s))
377 		s++;
378 
379 	return s;
380 }
381 
382 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
383 					 u32 insn_off,
384 					 const char *prefix_fmt, ...)
385 {
386 	const struct bpf_line_info *linfo;
387 
388 	if (!bpf_verifier_log_needed(&env->log))
389 		return;
390 
391 	linfo = find_linfo(env, insn_off);
392 	if (!linfo || linfo == env->prev_linfo)
393 		return;
394 
395 	if (prefix_fmt) {
396 		va_list args;
397 
398 		va_start(args, prefix_fmt);
399 		bpf_verifier_vlog(&env->log, prefix_fmt, args);
400 		va_end(args);
401 	}
402 
403 	verbose(env, "%s\n",
404 		ltrim(btf_name_by_offset(env->prog->aux->btf,
405 					 linfo->line_off)));
406 
407 	env->prev_linfo = linfo;
408 }
409 
410 static void verbose_invalid_scalar(struct bpf_verifier_env *env,
411 				   struct bpf_reg_state *reg,
412 				   struct tnum *range, const char *ctx,
413 				   const char *reg_name)
414 {
415 	char tn_buf[48];
416 
417 	verbose(env, "At %s the register %s ", ctx, reg_name);
418 	if (!tnum_is_unknown(reg->var_off)) {
419 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
420 		verbose(env, "has value %s", tn_buf);
421 	} else {
422 		verbose(env, "has unknown scalar value");
423 	}
424 	tnum_strn(tn_buf, sizeof(tn_buf), *range);
425 	verbose(env, " should have been in %s\n", tn_buf);
426 }
427 
428 static bool type_is_pkt_pointer(enum bpf_reg_type type)
429 {
430 	return type == PTR_TO_PACKET ||
431 	       type == PTR_TO_PACKET_META;
432 }
433 
434 static bool type_is_sk_pointer(enum bpf_reg_type type)
435 {
436 	return type == PTR_TO_SOCKET ||
437 		type == PTR_TO_SOCK_COMMON ||
438 		type == PTR_TO_TCP_SOCK ||
439 		type == PTR_TO_XDP_SOCK;
440 }
441 
442 static bool reg_type_not_null(enum bpf_reg_type type)
443 {
444 	return type == PTR_TO_SOCKET ||
445 		type == PTR_TO_TCP_SOCK ||
446 		type == PTR_TO_MAP_VALUE ||
447 		type == PTR_TO_MAP_KEY ||
448 		type == PTR_TO_SOCK_COMMON;
449 }
450 
451 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
452 {
453 	return reg->type == PTR_TO_MAP_VALUE &&
454 		map_value_has_spin_lock(reg->map_ptr);
455 }
456 
457 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
458 {
459 	return base_type(type) == PTR_TO_SOCKET ||
460 		base_type(type) == PTR_TO_TCP_SOCK ||
461 		base_type(type) == PTR_TO_MEM ||
462 		base_type(type) == PTR_TO_BTF_ID;
463 }
464 
465 static bool type_is_rdonly_mem(u32 type)
466 {
467 	return type & MEM_RDONLY;
468 }
469 
470 static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
471 {
472 	return type == ARG_PTR_TO_SOCK_COMMON;
473 }
474 
475 static bool type_may_be_null(u32 type)
476 {
477 	return type & PTR_MAYBE_NULL;
478 }
479 
480 static bool may_be_acquire_function(enum bpf_func_id func_id)
481 {
482 	return func_id == BPF_FUNC_sk_lookup_tcp ||
483 		func_id == BPF_FUNC_sk_lookup_udp ||
484 		func_id == BPF_FUNC_skc_lookup_tcp ||
485 		func_id == BPF_FUNC_map_lookup_elem ||
486 	        func_id == BPF_FUNC_ringbuf_reserve;
487 }
488 
489 static bool is_acquire_function(enum bpf_func_id func_id,
490 				const struct bpf_map *map)
491 {
492 	enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
493 
494 	if (func_id == BPF_FUNC_sk_lookup_tcp ||
495 	    func_id == BPF_FUNC_sk_lookup_udp ||
496 	    func_id == BPF_FUNC_skc_lookup_tcp ||
497 	    func_id == BPF_FUNC_ringbuf_reserve ||
498 	    func_id == BPF_FUNC_kptr_xchg)
499 		return true;
500 
501 	if (func_id == BPF_FUNC_map_lookup_elem &&
502 	    (map_type == BPF_MAP_TYPE_SOCKMAP ||
503 	     map_type == BPF_MAP_TYPE_SOCKHASH))
504 		return true;
505 
506 	return false;
507 }
508 
509 static bool is_ptr_cast_function(enum bpf_func_id func_id)
510 {
511 	return func_id == BPF_FUNC_tcp_sock ||
512 		func_id == BPF_FUNC_sk_fullsock ||
513 		func_id == BPF_FUNC_skc_to_tcp_sock ||
514 		func_id == BPF_FUNC_skc_to_tcp6_sock ||
515 		func_id == BPF_FUNC_skc_to_udp6_sock ||
516 		func_id == BPF_FUNC_skc_to_mptcp_sock ||
517 		func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
518 		func_id == BPF_FUNC_skc_to_tcp_request_sock;
519 }
520 
521 static bool is_cmpxchg_insn(const struct bpf_insn *insn)
522 {
523 	return BPF_CLASS(insn->code) == BPF_STX &&
524 	       BPF_MODE(insn->code) == BPF_ATOMIC &&
525 	       insn->imm == BPF_CMPXCHG;
526 }
527 
528 /* string representation of 'enum bpf_reg_type'
529  *
530  * Note that reg_type_str() can not appear more than once in a single verbose()
531  * statement.
532  */
533 static const char *reg_type_str(struct bpf_verifier_env *env,
534 				enum bpf_reg_type type)
535 {
536 	char postfix[16] = {0}, prefix[32] = {0};
537 	static const char * const str[] = {
538 		[NOT_INIT]		= "?",
539 		[SCALAR_VALUE]		= "scalar",
540 		[PTR_TO_CTX]		= "ctx",
541 		[CONST_PTR_TO_MAP]	= "map_ptr",
542 		[PTR_TO_MAP_VALUE]	= "map_value",
543 		[PTR_TO_STACK]		= "fp",
544 		[PTR_TO_PACKET]		= "pkt",
545 		[PTR_TO_PACKET_META]	= "pkt_meta",
546 		[PTR_TO_PACKET_END]	= "pkt_end",
547 		[PTR_TO_FLOW_KEYS]	= "flow_keys",
548 		[PTR_TO_SOCKET]		= "sock",
549 		[PTR_TO_SOCK_COMMON]	= "sock_common",
550 		[PTR_TO_TCP_SOCK]	= "tcp_sock",
551 		[PTR_TO_TP_BUFFER]	= "tp_buffer",
552 		[PTR_TO_XDP_SOCK]	= "xdp_sock",
553 		[PTR_TO_BTF_ID]		= "ptr_",
554 		[PTR_TO_MEM]		= "mem",
555 		[PTR_TO_BUF]		= "buf",
556 		[PTR_TO_FUNC]		= "func",
557 		[PTR_TO_MAP_KEY]	= "map_key",
558 	};
559 
560 	if (type & PTR_MAYBE_NULL) {
561 		if (base_type(type) == PTR_TO_BTF_ID)
562 			strncpy(postfix, "or_null_", 16);
563 		else
564 			strncpy(postfix, "_or_null", 16);
565 	}
566 
567 	if (type & MEM_RDONLY)
568 		strncpy(prefix, "rdonly_", 32);
569 	if (type & MEM_ALLOC)
570 		strncpy(prefix, "alloc_", 32);
571 	if (type & MEM_USER)
572 		strncpy(prefix, "user_", 32);
573 	if (type & MEM_PERCPU)
574 		strncpy(prefix, "percpu_", 32);
575 	if (type & PTR_UNTRUSTED)
576 		strncpy(prefix, "untrusted_", 32);
577 
578 	snprintf(env->type_str_buf, TYPE_STR_BUF_LEN, "%s%s%s",
579 		 prefix, str[base_type(type)], postfix);
580 	return env->type_str_buf;
581 }
582 
583 static char slot_type_char[] = {
584 	[STACK_INVALID]	= '?',
585 	[STACK_SPILL]	= 'r',
586 	[STACK_MISC]	= 'm',
587 	[STACK_ZERO]	= '0',
588 	[STACK_DYNPTR]	= 'd',
589 };
590 
591 static void print_liveness(struct bpf_verifier_env *env,
592 			   enum bpf_reg_liveness live)
593 {
594 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
595 	    verbose(env, "_");
596 	if (live & REG_LIVE_READ)
597 		verbose(env, "r");
598 	if (live & REG_LIVE_WRITTEN)
599 		verbose(env, "w");
600 	if (live & REG_LIVE_DONE)
601 		verbose(env, "D");
602 }
603 
604 static int get_spi(s32 off)
605 {
606 	return (-off - 1) / BPF_REG_SIZE;
607 }
608 
609 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots)
610 {
611 	int allocated_slots = state->allocated_stack / BPF_REG_SIZE;
612 
613 	/* We need to check that slots between [spi - nr_slots + 1, spi] are
614 	 * within [0, allocated_stack).
615 	 *
616 	 * Please note that the spi grows downwards. For example, a dynptr
617 	 * takes the size of two stack slots; the first slot will be at
618 	 * spi and the second slot will be at spi - 1.
619 	 */
620 	return spi - nr_slots + 1 >= 0 && spi < allocated_slots;
621 }
622 
623 static struct bpf_func_state *func(struct bpf_verifier_env *env,
624 				   const struct bpf_reg_state *reg)
625 {
626 	struct bpf_verifier_state *cur = env->cur_state;
627 
628 	return cur->frame[reg->frameno];
629 }
630 
631 static const char *kernel_type_name(const struct btf* btf, u32 id)
632 {
633 	return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
634 }
635 
636 static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno)
637 {
638 	env->scratched_regs |= 1U << regno;
639 }
640 
641 static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi)
642 {
643 	env->scratched_stack_slots |= 1ULL << spi;
644 }
645 
646 static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno)
647 {
648 	return (env->scratched_regs >> regno) & 1;
649 }
650 
651 static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno)
652 {
653 	return (env->scratched_stack_slots >> regno) & 1;
654 }
655 
656 static bool verifier_state_scratched(const struct bpf_verifier_env *env)
657 {
658 	return env->scratched_regs || env->scratched_stack_slots;
659 }
660 
661 static void mark_verifier_state_clean(struct bpf_verifier_env *env)
662 {
663 	env->scratched_regs = 0U;
664 	env->scratched_stack_slots = 0ULL;
665 }
666 
667 /* Used for printing the entire verifier state. */
668 static void mark_verifier_state_scratched(struct bpf_verifier_env *env)
669 {
670 	env->scratched_regs = ~0U;
671 	env->scratched_stack_slots = ~0ULL;
672 }
673 
674 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type)
675 {
676 	switch (arg_type & DYNPTR_TYPE_FLAG_MASK) {
677 	case DYNPTR_TYPE_LOCAL:
678 		return BPF_DYNPTR_TYPE_LOCAL;
679 	case DYNPTR_TYPE_RINGBUF:
680 		return BPF_DYNPTR_TYPE_RINGBUF;
681 	default:
682 		return BPF_DYNPTR_TYPE_INVALID;
683 	}
684 }
685 
686 static bool dynptr_type_refcounted(enum bpf_dynptr_type type)
687 {
688 	return type == BPF_DYNPTR_TYPE_RINGBUF;
689 }
690 
691 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
692 				   enum bpf_arg_type arg_type, int insn_idx)
693 {
694 	struct bpf_func_state *state = func(env, reg);
695 	enum bpf_dynptr_type type;
696 	int spi, i, id;
697 
698 	spi = get_spi(reg->off);
699 
700 	if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS))
701 		return -EINVAL;
702 
703 	for (i = 0; i < BPF_REG_SIZE; i++) {
704 		state->stack[spi].slot_type[i] = STACK_DYNPTR;
705 		state->stack[spi - 1].slot_type[i] = STACK_DYNPTR;
706 	}
707 
708 	type = arg_to_dynptr_type(arg_type);
709 	if (type == BPF_DYNPTR_TYPE_INVALID)
710 		return -EINVAL;
711 
712 	state->stack[spi].spilled_ptr.dynptr.first_slot = true;
713 	state->stack[spi].spilled_ptr.dynptr.type = type;
714 	state->stack[spi - 1].spilled_ptr.dynptr.type = type;
715 
716 	if (dynptr_type_refcounted(type)) {
717 		/* The id is used to track proper releasing */
718 		id = acquire_reference_state(env, insn_idx);
719 		if (id < 0)
720 			return id;
721 
722 		state->stack[spi].spilled_ptr.id = id;
723 		state->stack[spi - 1].spilled_ptr.id = id;
724 	}
725 
726 	return 0;
727 }
728 
729 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
730 {
731 	struct bpf_func_state *state = func(env, reg);
732 	int spi, i;
733 
734 	spi = get_spi(reg->off);
735 
736 	if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS))
737 		return -EINVAL;
738 
739 	for (i = 0; i < BPF_REG_SIZE; i++) {
740 		state->stack[spi].slot_type[i] = STACK_INVALID;
741 		state->stack[spi - 1].slot_type[i] = STACK_INVALID;
742 	}
743 
744 	/* Invalidate any slices associated with this dynptr */
745 	if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
746 		release_reference(env, state->stack[spi].spilled_ptr.id);
747 		state->stack[spi].spilled_ptr.id = 0;
748 		state->stack[spi - 1].spilled_ptr.id = 0;
749 	}
750 
751 	state->stack[spi].spilled_ptr.dynptr.first_slot = false;
752 	state->stack[spi].spilled_ptr.dynptr.type = 0;
753 	state->stack[spi - 1].spilled_ptr.dynptr.type = 0;
754 
755 	return 0;
756 }
757 
758 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
759 {
760 	struct bpf_func_state *state = func(env, reg);
761 	int spi = get_spi(reg->off);
762 	int i;
763 
764 	if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS))
765 		return true;
766 
767 	for (i = 0; i < BPF_REG_SIZE; i++) {
768 		if (state->stack[spi].slot_type[i] == STACK_DYNPTR ||
769 		    state->stack[spi - 1].slot_type[i] == STACK_DYNPTR)
770 			return false;
771 	}
772 
773 	return true;
774 }
775 
776 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
777 				     enum bpf_arg_type arg_type)
778 {
779 	struct bpf_func_state *state = func(env, reg);
780 	int spi = get_spi(reg->off);
781 	int i;
782 
783 	if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS) ||
784 	    !state->stack[spi].spilled_ptr.dynptr.first_slot)
785 		return false;
786 
787 	for (i = 0; i < BPF_REG_SIZE; i++) {
788 		if (state->stack[spi].slot_type[i] != STACK_DYNPTR ||
789 		    state->stack[spi - 1].slot_type[i] != STACK_DYNPTR)
790 			return false;
791 	}
792 
793 	/* ARG_PTR_TO_DYNPTR takes any type of dynptr */
794 	if (arg_type == ARG_PTR_TO_DYNPTR)
795 		return true;
796 
797 	return state->stack[spi].spilled_ptr.dynptr.type == arg_to_dynptr_type(arg_type);
798 }
799 
800 /* The reg state of a pointer or a bounded scalar was saved when
801  * it was spilled to the stack.
802  */
803 static bool is_spilled_reg(const struct bpf_stack_state *stack)
804 {
805 	return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL;
806 }
807 
808 static void scrub_spilled_slot(u8 *stype)
809 {
810 	if (*stype != STACK_INVALID)
811 		*stype = STACK_MISC;
812 }
813 
814 static void print_verifier_state(struct bpf_verifier_env *env,
815 				 const struct bpf_func_state *state,
816 				 bool print_all)
817 {
818 	const struct bpf_reg_state *reg;
819 	enum bpf_reg_type t;
820 	int i;
821 
822 	if (state->frameno)
823 		verbose(env, " frame%d:", state->frameno);
824 	for (i = 0; i < MAX_BPF_REG; i++) {
825 		reg = &state->regs[i];
826 		t = reg->type;
827 		if (t == NOT_INIT)
828 			continue;
829 		if (!print_all && !reg_scratched(env, i))
830 			continue;
831 		verbose(env, " R%d", i);
832 		print_liveness(env, reg->live);
833 		verbose(env, "=");
834 		if (t == SCALAR_VALUE && reg->precise)
835 			verbose(env, "P");
836 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
837 		    tnum_is_const(reg->var_off)) {
838 			/* reg->off should be 0 for SCALAR_VALUE */
839 			verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
840 			verbose(env, "%lld", reg->var_off.value + reg->off);
841 		} else {
842 			const char *sep = "";
843 
844 			verbose(env, "%s", reg_type_str(env, t));
845 			if (base_type(t) == PTR_TO_BTF_ID)
846 				verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id));
847 			verbose(env, "(");
848 /*
849  * _a stands for append, was shortened to avoid multiline statements below.
850  * This macro is used to output a comma separated list of attributes.
851  */
852 #define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; })
853 
854 			if (reg->id)
855 				verbose_a("id=%d", reg->id);
856 			if (reg_type_may_be_refcounted_or_null(t) && reg->ref_obj_id)
857 				verbose_a("ref_obj_id=%d", reg->ref_obj_id);
858 			if (t != SCALAR_VALUE)
859 				verbose_a("off=%d", reg->off);
860 			if (type_is_pkt_pointer(t))
861 				verbose_a("r=%d", reg->range);
862 			else if (base_type(t) == CONST_PTR_TO_MAP ||
863 				 base_type(t) == PTR_TO_MAP_KEY ||
864 				 base_type(t) == PTR_TO_MAP_VALUE)
865 				verbose_a("ks=%d,vs=%d",
866 					  reg->map_ptr->key_size,
867 					  reg->map_ptr->value_size);
868 			if (tnum_is_const(reg->var_off)) {
869 				/* Typically an immediate SCALAR_VALUE, but
870 				 * could be a pointer whose offset is too big
871 				 * for reg->off
872 				 */
873 				verbose_a("imm=%llx", reg->var_off.value);
874 			} else {
875 				if (reg->smin_value != reg->umin_value &&
876 				    reg->smin_value != S64_MIN)
877 					verbose_a("smin=%lld", (long long)reg->smin_value);
878 				if (reg->smax_value != reg->umax_value &&
879 				    reg->smax_value != S64_MAX)
880 					verbose_a("smax=%lld", (long long)reg->smax_value);
881 				if (reg->umin_value != 0)
882 					verbose_a("umin=%llu", (unsigned long long)reg->umin_value);
883 				if (reg->umax_value != U64_MAX)
884 					verbose_a("umax=%llu", (unsigned long long)reg->umax_value);
885 				if (!tnum_is_unknown(reg->var_off)) {
886 					char tn_buf[48];
887 
888 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
889 					verbose_a("var_off=%s", tn_buf);
890 				}
891 				if (reg->s32_min_value != reg->smin_value &&
892 				    reg->s32_min_value != S32_MIN)
893 					verbose_a("s32_min=%d", (int)(reg->s32_min_value));
894 				if (reg->s32_max_value != reg->smax_value &&
895 				    reg->s32_max_value != S32_MAX)
896 					verbose_a("s32_max=%d", (int)(reg->s32_max_value));
897 				if (reg->u32_min_value != reg->umin_value &&
898 				    reg->u32_min_value != U32_MIN)
899 					verbose_a("u32_min=%d", (int)(reg->u32_min_value));
900 				if (reg->u32_max_value != reg->umax_value &&
901 				    reg->u32_max_value != U32_MAX)
902 					verbose_a("u32_max=%d", (int)(reg->u32_max_value));
903 			}
904 #undef verbose_a
905 
906 			verbose(env, ")");
907 		}
908 	}
909 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
910 		char types_buf[BPF_REG_SIZE + 1];
911 		bool valid = false;
912 		int j;
913 
914 		for (j = 0; j < BPF_REG_SIZE; j++) {
915 			if (state->stack[i].slot_type[j] != STACK_INVALID)
916 				valid = true;
917 			types_buf[j] = slot_type_char[
918 					state->stack[i].slot_type[j]];
919 		}
920 		types_buf[BPF_REG_SIZE] = 0;
921 		if (!valid)
922 			continue;
923 		if (!print_all && !stack_slot_scratched(env, i))
924 			continue;
925 		verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
926 		print_liveness(env, state->stack[i].spilled_ptr.live);
927 		if (is_spilled_reg(&state->stack[i])) {
928 			reg = &state->stack[i].spilled_ptr;
929 			t = reg->type;
930 			verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
931 			if (t == SCALAR_VALUE && reg->precise)
932 				verbose(env, "P");
933 			if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
934 				verbose(env, "%lld", reg->var_off.value + reg->off);
935 		} else {
936 			verbose(env, "=%s", types_buf);
937 		}
938 	}
939 	if (state->acquired_refs && state->refs[0].id) {
940 		verbose(env, " refs=%d", state->refs[0].id);
941 		for (i = 1; i < state->acquired_refs; i++)
942 			if (state->refs[i].id)
943 				verbose(env, ",%d", state->refs[i].id);
944 	}
945 	if (state->in_callback_fn)
946 		verbose(env, " cb");
947 	if (state->in_async_callback_fn)
948 		verbose(env, " async_cb");
949 	verbose(env, "\n");
950 	mark_verifier_state_clean(env);
951 }
952 
953 static inline u32 vlog_alignment(u32 pos)
954 {
955 	return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT),
956 			BPF_LOG_MIN_ALIGNMENT) - pos - 1;
957 }
958 
959 static void print_insn_state(struct bpf_verifier_env *env,
960 			     const struct bpf_func_state *state)
961 {
962 	if (env->prev_log_len && env->prev_log_len == env->log.len_used) {
963 		/* remove new line character */
964 		bpf_vlog_reset(&env->log, env->prev_log_len - 1);
965 		verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_len), ' ');
966 	} else {
967 		verbose(env, "%d:", env->insn_idx);
968 	}
969 	print_verifier_state(env, state, false);
970 }
971 
972 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too
973  * small to hold src. This is different from krealloc since we don't want to preserve
974  * the contents of dst.
975  *
976  * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
977  * not be allocated.
978  */
979 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
980 {
981 	size_t bytes;
982 
983 	if (ZERO_OR_NULL_PTR(src))
984 		goto out;
985 
986 	if (unlikely(check_mul_overflow(n, size, &bytes)))
987 		return NULL;
988 
989 	if (ksize(dst) < bytes) {
990 		kfree(dst);
991 		dst = kmalloc_track_caller(bytes, flags);
992 		if (!dst)
993 			return NULL;
994 	}
995 
996 	memcpy(dst, src, bytes);
997 out:
998 	return dst ? dst : ZERO_SIZE_PTR;
999 }
1000 
1001 /* resize an array from old_n items to new_n items. the array is reallocated if it's too
1002  * small to hold new_n items. new items are zeroed out if the array grows.
1003  *
1004  * Contrary to krealloc_array, does not free arr if new_n is zero.
1005  */
1006 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
1007 {
1008 	if (!new_n || old_n == new_n)
1009 		goto out;
1010 
1011 	arr = krealloc_array(arr, new_n, size, GFP_KERNEL);
1012 	if (!arr)
1013 		return NULL;
1014 
1015 	if (new_n > old_n)
1016 		memset(arr + old_n * size, 0, (new_n - old_n) * size);
1017 
1018 out:
1019 	return arr ? arr : ZERO_SIZE_PTR;
1020 }
1021 
1022 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1023 {
1024 	dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
1025 			       sizeof(struct bpf_reference_state), GFP_KERNEL);
1026 	if (!dst->refs)
1027 		return -ENOMEM;
1028 
1029 	dst->acquired_refs = src->acquired_refs;
1030 	return 0;
1031 }
1032 
1033 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1034 {
1035 	size_t n = src->allocated_stack / BPF_REG_SIZE;
1036 
1037 	dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
1038 				GFP_KERNEL);
1039 	if (!dst->stack)
1040 		return -ENOMEM;
1041 
1042 	dst->allocated_stack = src->allocated_stack;
1043 	return 0;
1044 }
1045 
1046 static int resize_reference_state(struct bpf_func_state *state, size_t n)
1047 {
1048 	state->refs = realloc_array(state->refs, state->acquired_refs, n,
1049 				    sizeof(struct bpf_reference_state));
1050 	if (!state->refs)
1051 		return -ENOMEM;
1052 
1053 	state->acquired_refs = n;
1054 	return 0;
1055 }
1056 
1057 static int grow_stack_state(struct bpf_func_state *state, int size)
1058 {
1059 	size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE;
1060 
1061 	if (old_n >= n)
1062 		return 0;
1063 
1064 	state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
1065 	if (!state->stack)
1066 		return -ENOMEM;
1067 
1068 	state->allocated_stack = size;
1069 	return 0;
1070 }
1071 
1072 /* Acquire a pointer id from the env and update the state->refs to include
1073  * this new pointer reference.
1074  * On success, returns a valid pointer id to associate with the register
1075  * On failure, returns a negative errno.
1076  */
1077 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
1078 {
1079 	struct bpf_func_state *state = cur_func(env);
1080 	int new_ofs = state->acquired_refs;
1081 	int id, err;
1082 
1083 	err = resize_reference_state(state, state->acquired_refs + 1);
1084 	if (err)
1085 		return err;
1086 	id = ++env->id_gen;
1087 	state->refs[new_ofs].id = id;
1088 	state->refs[new_ofs].insn_idx = insn_idx;
1089 
1090 	return id;
1091 }
1092 
1093 /* release function corresponding to acquire_reference_state(). Idempotent. */
1094 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
1095 {
1096 	int i, last_idx;
1097 
1098 	last_idx = state->acquired_refs - 1;
1099 	for (i = 0; i < state->acquired_refs; i++) {
1100 		if (state->refs[i].id == ptr_id) {
1101 			if (last_idx && i != last_idx)
1102 				memcpy(&state->refs[i], &state->refs[last_idx],
1103 				       sizeof(*state->refs));
1104 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
1105 			state->acquired_refs--;
1106 			return 0;
1107 		}
1108 	}
1109 	return -EINVAL;
1110 }
1111 
1112 static void free_func_state(struct bpf_func_state *state)
1113 {
1114 	if (!state)
1115 		return;
1116 	kfree(state->refs);
1117 	kfree(state->stack);
1118 	kfree(state);
1119 }
1120 
1121 static void clear_jmp_history(struct bpf_verifier_state *state)
1122 {
1123 	kfree(state->jmp_history);
1124 	state->jmp_history = NULL;
1125 	state->jmp_history_cnt = 0;
1126 }
1127 
1128 static void free_verifier_state(struct bpf_verifier_state *state,
1129 				bool free_self)
1130 {
1131 	int i;
1132 
1133 	for (i = 0; i <= state->curframe; i++) {
1134 		free_func_state(state->frame[i]);
1135 		state->frame[i] = NULL;
1136 	}
1137 	clear_jmp_history(state);
1138 	if (free_self)
1139 		kfree(state);
1140 }
1141 
1142 /* copy verifier state from src to dst growing dst stack space
1143  * when necessary to accommodate larger src stack
1144  */
1145 static int copy_func_state(struct bpf_func_state *dst,
1146 			   const struct bpf_func_state *src)
1147 {
1148 	int err;
1149 
1150 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
1151 	err = copy_reference_state(dst, src);
1152 	if (err)
1153 		return err;
1154 	return copy_stack_state(dst, src);
1155 }
1156 
1157 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
1158 			       const struct bpf_verifier_state *src)
1159 {
1160 	struct bpf_func_state *dst;
1161 	int i, err;
1162 
1163 	dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
1164 					    src->jmp_history_cnt, sizeof(struct bpf_idx_pair),
1165 					    GFP_USER);
1166 	if (!dst_state->jmp_history)
1167 		return -ENOMEM;
1168 	dst_state->jmp_history_cnt = src->jmp_history_cnt;
1169 
1170 	/* if dst has more stack frames then src frame, free them */
1171 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
1172 		free_func_state(dst_state->frame[i]);
1173 		dst_state->frame[i] = NULL;
1174 	}
1175 	dst_state->speculative = src->speculative;
1176 	dst_state->curframe = src->curframe;
1177 	dst_state->active_spin_lock = src->active_spin_lock;
1178 	dst_state->branches = src->branches;
1179 	dst_state->parent = src->parent;
1180 	dst_state->first_insn_idx = src->first_insn_idx;
1181 	dst_state->last_insn_idx = src->last_insn_idx;
1182 	for (i = 0; i <= src->curframe; i++) {
1183 		dst = dst_state->frame[i];
1184 		if (!dst) {
1185 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
1186 			if (!dst)
1187 				return -ENOMEM;
1188 			dst_state->frame[i] = dst;
1189 		}
1190 		err = copy_func_state(dst, src->frame[i]);
1191 		if (err)
1192 			return err;
1193 	}
1194 	return 0;
1195 }
1196 
1197 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
1198 {
1199 	while (st) {
1200 		u32 br = --st->branches;
1201 
1202 		/* WARN_ON(br > 1) technically makes sense here,
1203 		 * but see comment in push_stack(), hence:
1204 		 */
1205 		WARN_ONCE((int)br < 0,
1206 			  "BUG update_branch_counts:branches_to_explore=%d\n",
1207 			  br);
1208 		if (br)
1209 			break;
1210 		st = st->parent;
1211 	}
1212 }
1213 
1214 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
1215 		     int *insn_idx, bool pop_log)
1216 {
1217 	struct bpf_verifier_state *cur = env->cur_state;
1218 	struct bpf_verifier_stack_elem *elem, *head = env->head;
1219 	int err;
1220 
1221 	if (env->head == NULL)
1222 		return -ENOENT;
1223 
1224 	if (cur) {
1225 		err = copy_verifier_state(cur, &head->st);
1226 		if (err)
1227 			return err;
1228 	}
1229 	if (pop_log)
1230 		bpf_vlog_reset(&env->log, head->log_pos);
1231 	if (insn_idx)
1232 		*insn_idx = head->insn_idx;
1233 	if (prev_insn_idx)
1234 		*prev_insn_idx = head->prev_insn_idx;
1235 	elem = head->next;
1236 	free_verifier_state(&head->st, false);
1237 	kfree(head);
1238 	env->head = elem;
1239 	env->stack_size--;
1240 	return 0;
1241 }
1242 
1243 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
1244 					     int insn_idx, int prev_insn_idx,
1245 					     bool speculative)
1246 {
1247 	struct bpf_verifier_state *cur = env->cur_state;
1248 	struct bpf_verifier_stack_elem *elem;
1249 	int err;
1250 
1251 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1252 	if (!elem)
1253 		goto err;
1254 
1255 	elem->insn_idx = insn_idx;
1256 	elem->prev_insn_idx = prev_insn_idx;
1257 	elem->next = env->head;
1258 	elem->log_pos = env->log.len_used;
1259 	env->head = elem;
1260 	env->stack_size++;
1261 	err = copy_verifier_state(&elem->st, cur);
1262 	if (err)
1263 		goto err;
1264 	elem->st.speculative |= speculative;
1265 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1266 		verbose(env, "The sequence of %d jumps is too complex.\n",
1267 			env->stack_size);
1268 		goto err;
1269 	}
1270 	if (elem->st.parent) {
1271 		++elem->st.parent->branches;
1272 		/* WARN_ON(branches > 2) technically makes sense here,
1273 		 * but
1274 		 * 1. speculative states will bump 'branches' for non-branch
1275 		 * instructions
1276 		 * 2. is_state_visited() heuristics may decide not to create
1277 		 * a new state for a sequence of branches and all such current
1278 		 * and cloned states will be pointing to a single parent state
1279 		 * which might have large 'branches' count.
1280 		 */
1281 	}
1282 	return &elem->st;
1283 err:
1284 	free_verifier_state(env->cur_state, true);
1285 	env->cur_state = NULL;
1286 	/* pop all elements and return */
1287 	while (!pop_stack(env, NULL, NULL, false));
1288 	return NULL;
1289 }
1290 
1291 #define CALLER_SAVED_REGS 6
1292 static const int caller_saved[CALLER_SAVED_REGS] = {
1293 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1294 };
1295 
1296 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1297 				struct bpf_reg_state *reg);
1298 
1299 /* This helper doesn't clear reg->id */
1300 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1301 {
1302 	reg->var_off = tnum_const(imm);
1303 	reg->smin_value = (s64)imm;
1304 	reg->smax_value = (s64)imm;
1305 	reg->umin_value = imm;
1306 	reg->umax_value = imm;
1307 
1308 	reg->s32_min_value = (s32)imm;
1309 	reg->s32_max_value = (s32)imm;
1310 	reg->u32_min_value = (u32)imm;
1311 	reg->u32_max_value = (u32)imm;
1312 }
1313 
1314 /* Mark the unknown part of a register (variable offset or scalar value) as
1315  * known to have the value @imm.
1316  */
1317 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1318 {
1319 	/* Clear id, off, and union(map_ptr, range) */
1320 	memset(((u8 *)reg) + sizeof(reg->type), 0,
1321 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1322 	___mark_reg_known(reg, imm);
1323 }
1324 
1325 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1326 {
1327 	reg->var_off = tnum_const_subreg(reg->var_off, imm);
1328 	reg->s32_min_value = (s32)imm;
1329 	reg->s32_max_value = (s32)imm;
1330 	reg->u32_min_value = (u32)imm;
1331 	reg->u32_max_value = (u32)imm;
1332 }
1333 
1334 /* Mark the 'variable offset' part of a register as zero.  This should be
1335  * used only on registers holding a pointer type.
1336  */
1337 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
1338 {
1339 	__mark_reg_known(reg, 0);
1340 }
1341 
1342 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1343 {
1344 	__mark_reg_known(reg, 0);
1345 	reg->type = SCALAR_VALUE;
1346 }
1347 
1348 static void mark_reg_known_zero(struct bpf_verifier_env *env,
1349 				struct bpf_reg_state *regs, u32 regno)
1350 {
1351 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1352 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
1353 		/* Something bad happened, let's kill all regs */
1354 		for (regno = 0; regno < MAX_BPF_REG; regno++)
1355 			__mark_reg_not_init(env, regs + regno);
1356 		return;
1357 	}
1358 	__mark_reg_known_zero(regs + regno);
1359 }
1360 
1361 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
1362 {
1363 	if (base_type(reg->type) == PTR_TO_MAP_VALUE) {
1364 		const struct bpf_map *map = reg->map_ptr;
1365 
1366 		if (map->inner_map_meta) {
1367 			reg->type = CONST_PTR_TO_MAP;
1368 			reg->map_ptr = map->inner_map_meta;
1369 			/* transfer reg's id which is unique for every map_lookup_elem
1370 			 * as UID of the inner map.
1371 			 */
1372 			if (map_value_has_timer(map->inner_map_meta))
1373 				reg->map_uid = reg->id;
1374 		} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
1375 			reg->type = PTR_TO_XDP_SOCK;
1376 		} else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
1377 			   map->map_type == BPF_MAP_TYPE_SOCKHASH) {
1378 			reg->type = PTR_TO_SOCKET;
1379 		} else {
1380 			reg->type = PTR_TO_MAP_VALUE;
1381 		}
1382 		return;
1383 	}
1384 
1385 	reg->type &= ~PTR_MAYBE_NULL;
1386 }
1387 
1388 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1389 {
1390 	return type_is_pkt_pointer(reg->type);
1391 }
1392 
1393 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1394 {
1395 	return reg_is_pkt_pointer(reg) ||
1396 	       reg->type == PTR_TO_PACKET_END;
1397 }
1398 
1399 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
1400 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1401 				    enum bpf_reg_type which)
1402 {
1403 	/* The register can already have a range from prior markings.
1404 	 * This is fine as long as it hasn't been advanced from its
1405 	 * origin.
1406 	 */
1407 	return reg->type == which &&
1408 	       reg->id == 0 &&
1409 	       reg->off == 0 &&
1410 	       tnum_equals_const(reg->var_off, 0);
1411 }
1412 
1413 /* Reset the min/max bounds of a register */
1414 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1415 {
1416 	reg->smin_value = S64_MIN;
1417 	reg->smax_value = S64_MAX;
1418 	reg->umin_value = 0;
1419 	reg->umax_value = U64_MAX;
1420 
1421 	reg->s32_min_value = S32_MIN;
1422 	reg->s32_max_value = S32_MAX;
1423 	reg->u32_min_value = 0;
1424 	reg->u32_max_value = U32_MAX;
1425 }
1426 
1427 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1428 {
1429 	reg->smin_value = S64_MIN;
1430 	reg->smax_value = S64_MAX;
1431 	reg->umin_value = 0;
1432 	reg->umax_value = U64_MAX;
1433 }
1434 
1435 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1436 {
1437 	reg->s32_min_value = S32_MIN;
1438 	reg->s32_max_value = S32_MAX;
1439 	reg->u32_min_value = 0;
1440 	reg->u32_max_value = U32_MAX;
1441 }
1442 
1443 static void __update_reg32_bounds(struct bpf_reg_state *reg)
1444 {
1445 	struct tnum var32_off = tnum_subreg(reg->var_off);
1446 
1447 	/* min signed is max(sign bit) | min(other bits) */
1448 	reg->s32_min_value = max_t(s32, reg->s32_min_value,
1449 			var32_off.value | (var32_off.mask & S32_MIN));
1450 	/* max signed is min(sign bit) | max(other bits) */
1451 	reg->s32_max_value = min_t(s32, reg->s32_max_value,
1452 			var32_off.value | (var32_off.mask & S32_MAX));
1453 	reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1454 	reg->u32_max_value = min(reg->u32_max_value,
1455 				 (u32)(var32_off.value | var32_off.mask));
1456 }
1457 
1458 static void __update_reg64_bounds(struct bpf_reg_state *reg)
1459 {
1460 	/* min signed is max(sign bit) | min(other bits) */
1461 	reg->smin_value = max_t(s64, reg->smin_value,
1462 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
1463 	/* max signed is min(sign bit) | max(other bits) */
1464 	reg->smax_value = min_t(s64, reg->smax_value,
1465 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
1466 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
1467 	reg->umax_value = min(reg->umax_value,
1468 			      reg->var_off.value | reg->var_off.mask);
1469 }
1470 
1471 static void __update_reg_bounds(struct bpf_reg_state *reg)
1472 {
1473 	__update_reg32_bounds(reg);
1474 	__update_reg64_bounds(reg);
1475 }
1476 
1477 /* Uses signed min/max values to inform unsigned, and vice-versa */
1478 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1479 {
1480 	/* Learn sign from signed bounds.
1481 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1482 	 * are the same, so combine.  This works even in the negative case, e.g.
1483 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1484 	 */
1485 	if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
1486 		reg->s32_min_value = reg->u32_min_value =
1487 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1488 		reg->s32_max_value = reg->u32_max_value =
1489 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1490 		return;
1491 	}
1492 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1493 	 * boundary, so we must be careful.
1494 	 */
1495 	if ((s32)reg->u32_max_value >= 0) {
1496 		/* Positive.  We can't learn anything from the smin, but smax
1497 		 * is positive, hence safe.
1498 		 */
1499 		reg->s32_min_value = reg->u32_min_value;
1500 		reg->s32_max_value = reg->u32_max_value =
1501 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1502 	} else if ((s32)reg->u32_min_value < 0) {
1503 		/* Negative.  We can't learn anything from the smax, but smin
1504 		 * is negative, hence safe.
1505 		 */
1506 		reg->s32_min_value = reg->u32_min_value =
1507 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1508 		reg->s32_max_value = reg->u32_max_value;
1509 	}
1510 }
1511 
1512 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
1513 {
1514 	/* Learn sign from signed bounds.
1515 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1516 	 * are the same, so combine.  This works even in the negative case, e.g.
1517 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1518 	 */
1519 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
1520 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1521 							  reg->umin_value);
1522 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1523 							  reg->umax_value);
1524 		return;
1525 	}
1526 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1527 	 * boundary, so we must be careful.
1528 	 */
1529 	if ((s64)reg->umax_value >= 0) {
1530 		/* Positive.  We can't learn anything from the smin, but smax
1531 		 * is positive, hence safe.
1532 		 */
1533 		reg->smin_value = reg->umin_value;
1534 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1535 							  reg->umax_value);
1536 	} else if ((s64)reg->umin_value < 0) {
1537 		/* Negative.  We can't learn anything from the smax, but smin
1538 		 * is negative, hence safe.
1539 		 */
1540 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1541 							  reg->umin_value);
1542 		reg->smax_value = reg->umax_value;
1543 	}
1544 }
1545 
1546 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
1547 {
1548 	__reg32_deduce_bounds(reg);
1549 	__reg64_deduce_bounds(reg);
1550 }
1551 
1552 /* Attempts to improve var_off based on unsigned min/max information */
1553 static void __reg_bound_offset(struct bpf_reg_state *reg)
1554 {
1555 	struct tnum var64_off = tnum_intersect(reg->var_off,
1556 					       tnum_range(reg->umin_value,
1557 							  reg->umax_value));
1558 	struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off),
1559 						tnum_range(reg->u32_min_value,
1560 							   reg->u32_max_value));
1561 
1562 	reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
1563 }
1564 
1565 static void reg_bounds_sync(struct bpf_reg_state *reg)
1566 {
1567 	/* We might have learned new bounds from the var_off. */
1568 	__update_reg_bounds(reg);
1569 	/* We might have learned something about the sign bit. */
1570 	__reg_deduce_bounds(reg);
1571 	/* We might have learned some bits from the bounds. */
1572 	__reg_bound_offset(reg);
1573 	/* Intersecting with the old var_off might have improved our bounds
1574 	 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1575 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
1576 	 */
1577 	__update_reg_bounds(reg);
1578 }
1579 
1580 static bool __reg32_bound_s64(s32 a)
1581 {
1582 	return a >= 0 && a <= S32_MAX;
1583 }
1584 
1585 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
1586 {
1587 	reg->umin_value = reg->u32_min_value;
1588 	reg->umax_value = reg->u32_max_value;
1589 
1590 	/* Attempt to pull 32-bit signed bounds into 64-bit bounds but must
1591 	 * be positive otherwise set to worse case bounds and refine later
1592 	 * from tnum.
1593 	 */
1594 	if (__reg32_bound_s64(reg->s32_min_value) &&
1595 	    __reg32_bound_s64(reg->s32_max_value)) {
1596 		reg->smin_value = reg->s32_min_value;
1597 		reg->smax_value = reg->s32_max_value;
1598 	} else {
1599 		reg->smin_value = 0;
1600 		reg->smax_value = U32_MAX;
1601 	}
1602 }
1603 
1604 static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
1605 {
1606 	/* special case when 64-bit register has upper 32-bit register
1607 	 * zeroed. Typically happens after zext or <<32, >>32 sequence
1608 	 * allowing us to use 32-bit bounds directly,
1609 	 */
1610 	if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
1611 		__reg_assign_32_into_64(reg);
1612 	} else {
1613 		/* Otherwise the best we can do is push lower 32bit known and
1614 		 * unknown bits into register (var_off set from jmp logic)
1615 		 * then learn as much as possible from the 64-bit tnum
1616 		 * known and unknown bits. The previous smin/smax bounds are
1617 		 * invalid here because of jmp32 compare so mark them unknown
1618 		 * so they do not impact tnum bounds calculation.
1619 		 */
1620 		__mark_reg64_unbounded(reg);
1621 	}
1622 	reg_bounds_sync(reg);
1623 }
1624 
1625 static bool __reg64_bound_s32(s64 a)
1626 {
1627 	return a >= S32_MIN && a <= S32_MAX;
1628 }
1629 
1630 static bool __reg64_bound_u32(u64 a)
1631 {
1632 	return a >= U32_MIN && a <= U32_MAX;
1633 }
1634 
1635 static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
1636 {
1637 	__mark_reg32_unbounded(reg);
1638 	if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
1639 		reg->s32_min_value = (s32)reg->smin_value;
1640 		reg->s32_max_value = (s32)reg->smax_value;
1641 	}
1642 	if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) {
1643 		reg->u32_min_value = (u32)reg->umin_value;
1644 		reg->u32_max_value = (u32)reg->umax_value;
1645 	}
1646 	reg_bounds_sync(reg);
1647 }
1648 
1649 /* Mark a register as having a completely unknown (scalar) value. */
1650 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1651 			       struct bpf_reg_state *reg)
1652 {
1653 	/*
1654 	 * Clear type, id, off, and union(map_ptr, range) and
1655 	 * padding between 'type' and union
1656 	 */
1657 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
1658 	reg->type = SCALAR_VALUE;
1659 	reg->var_off = tnum_unknown;
1660 	reg->frameno = 0;
1661 	reg->precise = env->subprog_cnt > 1 || !env->bpf_capable;
1662 	__mark_reg_unbounded(reg);
1663 }
1664 
1665 static void mark_reg_unknown(struct bpf_verifier_env *env,
1666 			     struct bpf_reg_state *regs, u32 regno)
1667 {
1668 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1669 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
1670 		/* Something bad happened, let's kill all regs except FP */
1671 		for (regno = 0; regno < BPF_REG_FP; regno++)
1672 			__mark_reg_not_init(env, regs + regno);
1673 		return;
1674 	}
1675 	__mark_reg_unknown(env, regs + regno);
1676 }
1677 
1678 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1679 				struct bpf_reg_state *reg)
1680 {
1681 	__mark_reg_unknown(env, reg);
1682 	reg->type = NOT_INIT;
1683 }
1684 
1685 static void mark_reg_not_init(struct bpf_verifier_env *env,
1686 			      struct bpf_reg_state *regs, u32 regno)
1687 {
1688 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1689 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
1690 		/* Something bad happened, let's kill all regs except FP */
1691 		for (regno = 0; regno < BPF_REG_FP; regno++)
1692 			__mark_reg_not_init(env, regs + regno);
1693 		return;
1694 	}
1695 	__mark_reg_not_init(env, regs + regno);
1696 }
1697 
1698 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
1699 			    struct bpf_reg_state *regs, u32 regno,
1700 			    enum bpf_reg_type reg_type,
1701 			    struct btf *btf, u32 btf_id,
1702 			    enum bpf_type_flag flag)
1703 {
1704 	if (reg_type == SCALAR_VALUE) {
1705 		mark_reg_unknown(env, regs, regno);
1706 		return;
1707 	}
1708 	mark_reg_known_zero(env, regs, regno);
1709 	regs[regno].type = PTR_TO_BTF_ID | flag;
1710 	regs[regno].btf = btf;
1711 	regs[regno].btf_id = btf_id;
1712 }
1713 
1714 #define DEF_NOT_SUBREG	(0)
1715 static void init_reg_state(struct bpf_verifier_env *env,
1716 			   struct bpf_func_state *state)
1717 {
1718 	struct bpf_reg_state *regs = state->regs;
1719 	int i;
1720 
1721 	for (i = 0; i < MAX_BPF_REG; i++) {
1722 		mark_reg_not_init(env, regs, i);
1723 		regs[i].live = REG_LIVE_NONE;
1724 		regs[i].parent = NULL;
1725 		regs[i].subreg_def = DEF_NOT_SUBREG;
1726 	}
1727 
1728 	/* frame pointer */
1729 	regs[BPF_REG_FP].type = PTR_TO_STACK;
1730 	mark_reg_known_zero(env, regs, BPF_REG_FP);
1731 	regs[BPF_REG_FP].frameno = state->frameno;
1732 }
1733 
1734 #define BPF_MAIN_FUNC (-1)
1735 static void init_func_state(struct bpf_verifier_env *env,
1736 			    struct bpf_func_state *state,
1737 			    int callsite, int frameno, int subprogno)
1738 {
1739 	state->callsite = callsite;
1740 	state->frameno = frameno;
1741 	state->subprogno = subprogno;
1742 	init_reg_state(env, state);
1743 	mark_verifier_state_scratched(env);
1744 }
1745 
1746 /* Similar to push_stack(), but for async callbacks */
1747 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
1748 						int insn_idx, int prev_insn_idx,
1749 						int subprog)
1750 {
1751 	struct bpf_verifier_stack_elem *elem;
1752 	struct bpf_func_state *frame;
1753 
1754 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1755 	if (!elem)
1756 		goto err;
1757 
1758 	elem->insn_idx = insn_idx;
1759 	elem->prev_insn_idx = prev_insn_idx;
1760 	elem->next = env->head;
1761 	elem->log_pos = env->log.len_used;
1762 	env->head = elem;
1763 	env->stack_size++;
1764 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1765 		verbose(env,
1766 			"The sequence of %d jumps is too complex for async cb.\n",
1767 			env->stack_size);
1768 		goto err;
1769 	}
1770 	/* Unlike push_stack() do not copy_verifier_state().
1771 	 * The caller state doesn't matter.
1772 	 * This is async callback. It starts in a fresh stack.
1773 	 * Initialize it similar to do_check_common().
1774 	 */
1775 	elem->st.branches = 1;
1776 	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
1777 	if (!frame)
1778 		goto err;
1779 	init_func_state(env, frame,
1780 			BPF_MAIN_FUNC /* callsite */,
1781 			0 /* frameno within this callchain */,
1782 			subprog /* subprog number within this prog */);
1783 	elem->st.frame[0] = frame;
1784 	return &elem->st;
1785 err:
1786 	free_verifier_state(env->cur_state, true);
1787 	env->cur_state = NULL;
1788 	/* pop all elements and return */
1789 	while (!pop_stack(env, NULL, NULL, false));
1790 	return NULL;
1791 }
1792 
1793 
1794 enum reg_arg_type {
1795 	SRC_OP,		/* register is used as source operand */
1796 	DST_OP,		/* register is used as destination operand */
1797 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
1798 };
1799 
1800 static int cmp_subprogs(const void *a, const void *b)
1801 {
1802 	return ((struct bpf_subprog_info *)a)->start -
1803 	       ((struct bpf_subprog_info *)b)->start;
1804 }
1805 
1806 static int find_subprog(struct bpf_verifier_env *env, int off)
1807 {
1808 	struct bpf_subprog_info *p;
1809 
1810 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1811 		    sizeof(env->subprog_info[0]), cmp_subprogs);
1812 	if (!p)
1813 		return -ENOENT;
1814 	return p - env->subprog_info;
1815 
1816 }
1817 
1818 static int add_subprog(struct bpf_verifier_env *env, int off)
1819 {
1820 	int insn_cnt = env->prog->len;
1821 	int ret;
1822 
1823 	if (off >= insn_cnt || off < 0) {
1824 		verbose(env, "call to invalid destination\n");
1825 		return -EINVAL;
1826 	}
1827 	ret = find_subprog(env, off);
1828 	if (ret >= 0)
1829 		return ret;
1830 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
1831 		verbose(env, "too many subprograms\n");
1832 		return -E2BIG;
1833 	}
1834 	/* determine subprog starts. The end is one before the next starts */
1835 	env->subprog_info[env->subprog_cnt++].start = off;
1836 	sort(env->subprog_info, env->subprog_cnt,
1837 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
1838 	return env->subprog_cnt - 1;
1839 }
1840 
1841 #define MAX_KFUNC_DESCS 256
1842 #define MAX_KFUNC_BTFS	256
1843 
1844 struct bpf_kfunc_desc {
1845 	struct btf_func_model func_model;
1846 	u32 func_id;
1847 	s32 imm;
1848 	u16 offset;
1849 };
1850 
1851 struct bpf_kfunc_btf {
1852 	struct btf *btf;
1853 	struct module *module;
1854 	u16 offset;
1855 };
1856 
1857 struct bpf_kfunc_desc_tab {
1858 	struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
1859 	u32 nr_descs;
1860 };
1861 
1862 struct bpf_kfunc_btf_tab {
1863 	struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS];
1864 	u32 nr_descs;
1865 };
1866 
1867 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b)
1868 {
1869 	const struct bpf_kfunc_desc *d0 = a;
1870 	const struct bpf_kfunc_desc *d1 = b;
1871 
1872 	/* func_id is not greater than BTF_MAX_TYPE */
1873 	return d0->func_id - d1->func_id ?: d0->offset - d1->offset;
1874 }
1875 
1876 static int kfunc_btf_cmp_by_off(const void *a, const void *b)
1877 {
1878 	const struct bpf_kfunc_btf *d0 = a;
1879 	const struct bpf_kfunc_btf *d1 = b;
1880 
1881 	return d0->offset - d1->offset;
1882 }
1883 
1884 static const struct bpf_kfunc_desc *
1885 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset)
1886 {
1887 	struct bpf_kfunc_desc desc = {
1888 		.func_id = func_id,
1889 		.offset = offset,
1890 	};
1891 	struct bpf_kfunc_desc_tab *tab;
1892 
1893 	tab = prog->aux->kfunc_tab;
1894 	return bsearch(&desc, tab->descs, tab->nr_descs,
1895 		       sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off);
1896 }
1897 
1898 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env,
1899 					 s16 offset)
1900 {
1901 	struct bpf_kfunc_btf kf_btf = { .offset = offset };
1902 	struct bpf_kfunc_btf_tab *tab;
1903 	struct bpf_kfunc_btf *b;
1904 	struct module *mod;
1905 	struct btf *btf;
1906 	int btf_fd;
1907 
1908 	tab = env->prog->aux->kfunc_btf_tab;
1909 	b = bsearch(&kf_btf, tab->descs, tab->nr_descs,
1910 		    sizeof(tab->descs[0]), kfunc_btf_cmp_by_off);
1911 	if (!b) {
1912 		if (tab->nr_descs == MAX_KFUNC_BTFS) {
1913 			verbose(env, "too many different module BTFs\n");
1914 			return ERR_PTR(-E2BIG);
1915 		}
1916 
1917 		if (bpfptr_is_null(env->fd_array)) {
1918 			verbose(env, "kfunc offset > 0 without fd_array is invalid\n");
1919 			return ERR_PTR(-EPROTO);
1920 		}
1921 
1922 		if (copy_from_bpfptr_offset(&btf_fd, env->fd_array,
1923 					    offset * sizeof(btf_fd),
1924 					    sizeof(btf_fd)))
1925 			return ERR_PTR(-EFAULT);
1926 
1927 		btf = btf_get_by_fd(btf_fd);
1928 		if (IS_ERR(btf)) {
1929 			verbose(env, "invalid module BTF fd specified\n");
1930 			return btf;
1931 		}
1932 
1933 		if (!btf_is_module(btf)) {
1934 			verbose(env, "BTF fd for kfunc is not a module BTF\n");
1935 			btf_put(btf);
1936 			return ERR_PTR(-EINVAL);
1937 		}
1938 
1939 		mod = btf_try_get_module(btf);
1940 		if (!mod) {
1941 			btf_put(btf);
1942 			return ERR_PTR(-ENXIO);
1943 		}
1944 
1945 		b = &tab->descs[tab->nr_descs++];
1946 		b->btf = btf;
1947 		b->module = mod;
1948 		b->offset = offset;
1949 
1950 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
1951 		     kfunc_btf_cmp_by_off, NULL);
1952 	}
1953 	return b->btf;
1954 }
1955 
1956 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab)
1957 {
1958 	if (!tab)
1959 		return;
1960 
1961 	while (tab->nr_descs--) {
1962 		module_put(tab->descs[tab->nr_descs].module);
1963 		btf_put(tab->descs[tab->nr_descs].btf);
1964 	}
1965 	kfree(tab);
1966 }
1967 
1968 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset)
1969 {
1970 	if (offset) {
1971 		if (offset < 0) {
1972 			/* In the future, this can be allowed to increase limit
1973 			 * of fd index into fd_array, interpreted as u16.
1974 			 */
1975 			verbose(env, "negative offset disallowed for kernel module function call\n");
1976 			return ERR_PTR(-EINVAL);
1977 		}
1978 
1979 		return __find_kfunc_desc_btf(env, offset);
1980 	}
1981 	return btf_vmlinux ?: ERR_PTR(-ENOENT);
1982 }
1983 
1984 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset)
1985 {
1986 	const struct btf_type *func, *func_proto;
1987 	struct bpf_kfunc_btf_tab *btf_tab;
1988 	struct bpf_kfunc_desc_tab *tab;
1989 	struct bpf_prog_aux *prog_aux;
1990 	struct bpf_kfunc_desc *desc;
1991 	const char *func_name;
1992 	struct btf *desc_btf;
1993 	unsigned long call_imm;
1994 	unsigned long addr;
1995 	int err;
1996 
1997 	prog_aux = env->prog->aux;
1998 	tab = prog_aux->kfunc_tab;
1999 	btf_tab = prog_aux->kfunc_btf_tab;
2000 	if (!tab) {
2001 		if (!btf_vmlinux) {
2002 			verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
2003 			return -ENOTSUPP;
2004 		}
2005 
2006 		if (!env->prog->jit_requested) {
2007 			verbose(env, "JIT is required for calling kernel function\n");
2008 			return -ENOTSUPP;
2009 		}
2010 
2011 		if (!bpf_jit_supports_kfunc_call()) {
2012 			verbose(env, "JIT does not support calling kernel function\n");
2013 			return -ENOTSUPP;
2014 		}
2015 
2016 		if (!env->prog->gpl_compatible) {
2017 			verbose(env, "cannot call kernel function from non-GPL compatible program\n");
2018 			return -EINVAL;
2019 		}
2020 
2021 		tab = kzalloc(sizeof(*tab), GFP_KERNEL);
2022 		if (!tab)
2023 			return -ENOMEM;
2024 		prog_aux->kfunc_tab = tab;
2025 	}
2026 
2027 	/* func_id == 0 is always invalid, but instead of returning an error, be
2028 	 * conservative and wait until the code elimination pass before returning
2029 	 * error, so that invalid calls that get pruned out can be in BPF programs
2030 	 * loaded from userspace.  It is also required that offset be untouched
2031 	 * for such calls.
2032 	 */
2033 	if (!func_id && !offset)
2034 		return 0;
2035 
2036 	if (!btf_tab && offset) {
2037 		btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL);
2038 		if (!btf_tab)
2039 			return -ENOMEM;
2040 		prog_aux->kfunc_btf_tab = btf_tab;
2041 	}
2042 
2043 	desc_btf = find_kfunc_desc_btf(env, offset);
2044 	if (IS_ERR(desc_btf)) {
2045 		verbose(env, "failed to find BTF for kernel function\n");
2046 		return PTR_ERR(desc_btf);
2047 	}
2048 
2049 	if (find_kfunc_desc(env->prog, func_id, offset))
2050 		return 0;
2051 
2052 	if (tab->nr_descs == MAX_KFUNC_DESCS) {
2053 		verbose(env, "too many different kernel function calls\n");
2054 		return -E2BIG;
2055 	}
2056 
2057 	func = btf_type_by_id(desc_btf, func_id);
2058 	if (!func || !btf_type_is_func(func)) {
2059 		verbose(env, "kernel btf_id %u is not a function\n",
2060 			func_id);
2061 		return -EINVAL;
2062 	}
2063 	func_proto = btf_type_by_id(desc_btf, func->type);
2064 	if (!func_proto || !btf_type_is_func_proto(func_proto)) {
2065 		verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
2066 			func_id);
2067 		return -EINVAL;
2068 	}
2069 
2070 	func_name = btf_name_by_offset(desc_btf, func->name_off);
2071 	addr = kallsyms_lookup_name(func_name);
2072 	if (!addr) {
2073 		verbose(env, "cannot find address for kernel function %s\n",
2074 			func_name);
2075 		return -EINVAL;
2076 	}
2077 
2078 	call_imm = BPF_CALL_IMM(addr);
2079 	/* Check whether or not the relative offset overflows desc->imm */
2080 	if ((unsigned long)(s32)call_imm != call_imm) {
2081 		verbose(env, "address of kernel function %s is out of range\n",
2082 			func_name);
2083 		return -EINVAL;
2084 	}
2085 
2086 	desc = &tab->descs[tab->nr_descs++];
2087 	desc->func_id = func_id;
2088 	desc->imm = call_imm;
2089 	desc->offset = offset;
2090 	err = btf_distill_func_proto(&env->log, desc_btf,
2091 				     func_proto, func_name,
2092 				     &desc->func_model);
2093 	if (!err)
2094 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2095 		     kfunc_desc_cmp_by_id_off, NULL);
2096 	return err;
2097 }
2098 
2099 static int kfunc_desc_cmp_by_imm(const void *a, const void *b)
2100 {
2101 	const struct bpf_kfunc_desc *d0 = a;
2102 	const struct bpf_kfunc_desc *d1 = b;
2103 
2104 	if (d0->imm > d1->imm)
2105 		return 1;
2106 	else if (d0->imm < d1->imm)
2107 		return -1;
2108 	return 0;
2109 }
2110 
2111 static void sort_kfunc_descs_by_imm(struct bpf_prog *prog)
2112 {
2113 	struct bpf_kfunc_desc_tab *tab;
2114 
2115 	tab = prog->aux->kfunc_tab;
2116 	if (!tab)
2117 		return;
2118 
2119 	sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2120 	     kfunc_desc_cmp_by_imm, NULL);
2121 }
2122 
2123 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
2124 {
2125 	return !!prog->aux->kfunc_tab;
2126 }
2127 
2128 const struct btf_func_model *
2129 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2130 			 const struct bpf_insn *insn)
2131 {
2132 	const struct bpf_kfunc_desc desc = {
2133 		.imm = insn->imm,
2134 	};
2135 	const struct bpf_kfunc_desc *res;
2136 	struct bpf_kfunc_desc_tab *tab;
2137 
2138 	tab = prog->aux->kfunc_tab;
2139 	res = bsearch(&desc, tab->descs, tab->nr_descs,
2140 		      sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm);
2141 
2142 	return res ? &res->func_model : NULL;
2143 }
2144 
2145 static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
2146 {
2147 	struct bpf_subprog_info *subprog = env->subprog_info;
2148 	struct bpf_insn *insn = env->prog->insnsi;
2149 	int i, ret, insn_cnt = env->prog->len;
2150 
2151 	/* Add entry function. */
2152 	ret = add_subprog(env, 0);
2153 	if (ret)
2154 		return ret;
2155 
2156 	for (i = 0; i < insn_cnt; i++, insn++) {
2157 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
2158 		    !bpf_pseudo_kfunc_call(insn))
2159 			continue;
2160 
2161 		if (!env->bpf_capable) {
2162 			verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
2163 			return -EPERM;
2164 		}
2165 
2166 		if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn))
2167 			ret = add_subprog(env, i + insn->imm + 1);
2168 		else
2169 			ret = add_kfunc_call(env, insn->imm, insn->off);
2170 
2171 		if (ret < 0)
2172 			return ret;
2173 	}
2174 
2175 	/* Add a fake 'exit' subprog which could simplify subprog iteration
2176 	 * logic. 'subprog_cnt' should not be increased.
2177 	 */
2178 	subprog[env->subprog_cnt].start = insn_cnt;
2179 
2180 	if (env->log.level & BPF_LOG_LEVEL2)
2181 		for (i = 0; i < env->subprog_cnt; i++)
2182 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
2183 
2184 	return 0;
2185 }
2186 
2187 static int check_subprogs(struct bpf_verifier_env *env)
2188 {
2189 	int i, subprog_start, subprog_end, off, cur_subprog = 0;
2190 	struct bpf_subprog_info *subprog = env->subprog_info;
2191 	struct bpf_insn *insn = env->prog->insnsi;
2192 	int insn_cnt = env->prog->len;
2193 
2194 	/* now check that all jumps are within the same subprog */
2195 	subprog_start = subprog[cur_subprog].start;
2196 	subprog_end = subprog[cur_subprog + 1].start;
2197 	for (i = 0; i < insn_cnt; i++) {
2198 		u8 code = insn[i].code;
2199 
2200 		if (code == (BPF_JMP | BPF_CALL) &&
2201 		    insn[i].imm == BPF_FUNC_tail_call &&
2202 		    insn[i].src_reg != BPF_PSEUDO_CALL)
2203 			subprog[cur_subprog].has_tail_call = true;
2204 		if (BPF_CLASS(code) == BPF_LD &&
2205 		    (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
2206 			subprog[cur_subprog].has_ld_abs = true;
2207 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
2208 			goto next;
2209 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
2210 			goto next;
2211 		off = i + insn[i].off + 1;
2212 		if (off < subprog_start || off >= subprog_end) {
2213 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
2214 			return -EINVAL;
2215 		}
2216 next:
2217 		if (i == subprog_end - 1) {
2218 			/* to avoid fall-through from one subprog into another
2219 			 * the last insn of the subprog should be either exit
2220 			 * or unconditional jump back
2221 			 */
2222 			if (code != (BPF_JMP | BPF_EXIT) &&
2223 			    code != (BPF_JMP | BPF_JA)) {
2224 				verbose(env, "last insn is not an exit or jmp\n");
2225 				return -EINVAL;
2226 			}
2227 			subprog_start = subprog_end;
2228 			cur_subprog++;
2229 			if (cur_subprog < env->subprog_cnt)
2230 				subprog_end = subprog[cur_subprog + 1].start;
2231 		}
2232 	}
2233 	return 0;
2234 }
2235 
2236 /* Parentage chain of this register (or stack slot) should take care of all
2237  * issues like callee-saved registers, stack slot allocation time, etc.
2238  */
2239 static int mark_reg_read(struct bpf_verifier_env *env,
2240 			 const struct bpf_reg_state *state,
2241 			 struct bpf_reg_state *parent, u8 flag)
2242 {
2243 	bool writes = parent == state->parent; /* Observe write marks */
2244 	int cnt = 0;
2245 
2246 	while (parent) {
2247 		/* if read wasn't screened by an earlier write ... */
2248 		if (writes && state->live & REG_LIVE_WRITTEN)
2249 			break;
2250 		if (parent->live & REG_LIVE_DONE) {
2251 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
2252 				reg_type_str(env, parent->type),
2253 				parent->var_off.value, parent->off);
2254 			return -EFAULT;
2255 		}
2256 		/* The first condition is more likely to be true than the
2257 		 * second, checked it first.
2258 		 */
2259 		if ((parent->live & REG_LIVE_READ) == flag ||
2260 		    parent->live & REG_LIVE_READ64)
2261 			/* The parentage chain never changes and
2262 			 * this parent was already marked as LIVE_READ.
2263 			 * There is no need to keep walking the chain again and
2264 			 * keep re-marking all parents as LIVE_READ.
2265 			 * This case happens when the same register is read
2266 			 * multiple times without writes into it in-between.
2267 			 * Also, if parent has the stronger REG_LIVE_READ64 set,
2268 			 * then no need to set the weak REG_LIVE_READ32.
2269 			 */
2270 			break;
2271 		/* ... then we depend on parent's value */
2272 		parent->live |= flag;
2273 		/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
2274 		if (flag == REG_LIVE_READ64)
2275 			parent->live &= ~REG_LIVE_READ32;
2276 		state = parent;
2277 		parent = state->parent;
2278 		writes = true;
2279 		cnt++;
2280 	}
2281 
2282 	if (env->longest_mark_read_walk < cnt)
2283 		env->longest_mark_read_walk = cnt;
2284 	return 0;
2285 }
2286 
2287 /* This function is supposed to be used by the following 32-bit optimization
2288  * code only. It returns TRUE if the source or destination register operates
2289  * on 64-bit, otherwise return FALSE.
2290  */
2291 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
2292 		     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
2293 {
2294 	u8 code, class, op;
2295 
2296 	code = insn->code;
2297 	class = BPF_CLASS(code);
2298 	op = BPF_OP(code);
2299 	if (class == BPF_JMP) {
2300 		/* BPF_EXIT for "main" will reach here. Return TRUE
2301 		 * conservatively.
2302 		 */
2303 		if (op == BPF_EXIT)
2304 			return true;
2305 		if (op == BPF_CALL) {
2306 			/* BPF to BPF call will reach here because of marking
2307 			 * caller saved clobber with DST_OP_NO_MARK for which we
2308 			 * don't care the register def because they are anyway
2309 			 * marked as NOT_INIT already.
2310 			 */
2311 			if (insn->src_reg == BPF_PSEUDO_CALL)
2312 				return false;
2313 			/* Helper call will reach here because of arg type
2314 			 * check, conservatively return TRUE.
2315 			 */
2316 			if (t == SRC_OP)
2317 				return true;
2318 
2319 			return false;
2320 		}
2321 	}
2322 
2323 	if (class == BPF_ALU64 || class == BPF_JMP ||
2324 	    /* BPF_END always use BPF_ALU class. */
2325 	    (class == BPF_ALU && op == BPF_END && insn->imm == 64))
2326 		return true;
2327 
2328 	if (class == BPF_ALU || class == BPF_JMP32)
2329 		return false;
2330 
2331 	if (class == BPF_LDX) {
2332 		if (t != SRC_OP)
2333 			return BPF_SIZE(code) == BPF_DW;
2334 		/* LDX source must be ptr. */
2335 		return true;
2336 	}
2337 
2338 	if (class == BPF_STX) {
2339 		/* BPF_STX (including atomic variants) has multiple source
2340 		 * operands, one of which is a ptr. Check whether the caller is
2341 		 * asking about it.
2342 		 */
2343 		if (t == SRC_OP && reg->type != SCALAR_VALUE)
2344 			return true;
2345 		return BPF_SIZE(code) == BPF_DW;
2346 	}
2347 
2348 	if (class == BPF_LD) {
2349 		u8 mode = BPF_MODE(code);
2350 
2351 		/* LD_IMM64 */
2352 		if (mode == BPF_IMM)
2353 			return true;
2354 
2355 		/* Both LD_IND and LD_ABS return 32-bit data. */
2356 		if (t != SRC_OP)
2357 			return  false;
2358 
2359 		/* Implicit ctx ptr. */
2360 		if (regno == BPF_REG_6)
2361 			return true;
2362 
2363 		/* Explicit source could be any width. */
2364 		return true;
2365 	}
2366 
2367 	if (class == BPF_ST)
2368 		/* The only source register for BPF_ST is a ptr. */
2369 		return true;
2370 
2371 	/* Conservatively return true at default. */
2372 	return true;
2373 }
2374 
2375 /* Return the regno defined by the insn, or -1. */
2376 static int insn_def_regno(const struct bpf_insn *insn)
2377 {
2378 	switch (BPF_CLASS(insn->code)) {
2379 	case BPF_JMP:
2380 	case BPF_JMP32:
2381 	case BPF_ST:
2382 		return -1;
2383 	case BPF_STX:
2384 		if (BPF_MODE(insn->code) == BPF_ATOMIC &&
2385 		    (insn->imm & BPF_FETCH)) {
2386 			if (insn->imm == BPF_CMPXCHG)
2387 				return BPF_REG_0;
2388 			else
2389 				return insn->src_reg;
2390 		} else {
2391 			return -1;
2392 		}
2393 	default:
2394 		return insn->dst_reg;
2395 	}
2396 }
2397 
2398 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
2399 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
2400 {
2401 	int dst_reg = insn_def_regno(insn);
2402 
2403 	if (dst_reg == -1)
2404 		return false;
2405 
2406 	return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
2407 }
2408 
2409 static void mark_insn_zext(struct bpf_verifier_env *env,
2410 			   struct bpf_reg_state *reg)
2411 {
2412 	s32 def_idx = reg->subreg_def;
2413 
2414 	if (def_idx == DEF_NOT_SUBREG)
2415 		return;
2416 
2417 	env->insn_aux_data[def_idx - 1].zext_dst = true;
2418 	/* The dst will be zero extended, so won't be sub-register anymore. */
2419 	reg->subreg_def = DEF_NOT_SUBREG;
2420 }
2421 
2422 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
2423 			 enum reg_arg_type t)
2424 {
2425 	struct bpf_verifier_state *vstate = env->cur_state;
2426 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2427 	struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
2428 	struct bpf_reg_state *reg, *regs = state->regs;
2429 	bool rw64;
2430 
2431 	if (regno >= MAX_BPF_REG) {
2432 		verbose(env, "R%d is invalid\n", regno);
2433 		return -EINVAL;
2434 	}
2435 
2436 	mark_reg_scratched(env, regno);
2437 
2438 	reg = &regs[regno];
2439 	rw64 = is_reg64(env, insn, regno, reg, t);
2440 	if (t == SRC_OP) {
2441 		/* check whether register used as source operand can be read */
2442 		if (reg->type == NOT_INIT) {
2443 			verbose(env, "R%d !read_ok\n", regno);
2444 			return -EACCES;
2445 		}
2446 		/* We don't need to worry about FP liveness because it's read-only */
2447 		if (regno == BPF_REG_FP)
2448 			return 0;
2449 
2450 		if (rw64)
2451 			mark_insn_zext(env, reg);
2452 
2453 		return mark_reg_read(env, reg, reg->parent,
2454 				     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
2455 	} else {
2456 		/* check whether register used as dest operand can be written to */
2457 		if (regno == BPF_REG_FP) {
2458 			verbose(env, "frame pointer is read only\n");
2459 			return -EACCES;
2460 		}
2461 		reg->live |= REG_LIVE_WRITTEN;
2462 		reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
2463 		if (t == DST_OP)
2464 			mark_reg_unknown(env, regs, regno);
2465 	}
2466 	return 0;
2467 }
2468 
2469 /* for any branch, call, exit record the history of jmps in the given state */
2470 static int push_jmp_history(struct bpf_verifier_env *env,
2471 			    struct bpf_verifier_state *cur)
2472 {
2473 	u32 cnt = cur->jmp_history_cnt;
2474 	struct bpf_idx_pair *p;
2475 
2476 	cnt++;
2477 	p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
2478 	if (!p)
2479 		return -ENOMEM;
2480 	p[cnt - 1].idx = env->insn_idx;
2481 	p[cnt - 1].prev_idx = env->prev_insn_idx;
2482 	cur->jmp_history = p;
2483 	cur->jmp_history_cnt = cnt;
2484 	return 0;
2485 }
2486 
2487 /* Backtrack one insn at a time. If idx is not at the top of recorded
2488  * history then previous instruction came from straight line execution.
2489  */
2490 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
2491 			     u32 *history)
2492 {
2493 	u32 cnt = *history;
2494 
2495 	if (cnt && st->jmp_history[cnt - 1].idx == i) {
2496 		i = st->jmp_history[cnt - 1].prev_idx;
2497 		(*history)--;
2498 	} else {
2499 		i--;
2500 	}
2501 	return i;
2502 }
2503 
2504 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
2505 {
2506 	const struct btf_type *func;
2507 	struct btf *desc_btf;
2508 
2509 	if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
2510 		return NULL;
2511 
2512 	desc_btf = find_kfunc_desc_btf(data, insn->off);
2513 	if (IS_ERR(desc_btf))
2514 		return "<error>";
2515 
2516 	func = btf_type_by_id(desc_btf, insn->imm);
2517 	return btf_name_by_offset(desc_btf, func->name_off);
2518 }
2519 
2520 /* For given verifier state backtrack_insn() is called from the last insn to
2521  * the first insn. Its purpose is to compute a bitmask of registers and
2522  * stack slots that needs precision in the parent verifier state.
2523  */
2524 static int backtrack_insn(struct bpf_verifier_env *env, int idx,
2525 			  u32 *reg_mask, u64 *stack_mask)
2526 {
2527 	const struct bpf_insn_cbs cbs = {
2528 		.cb_call	= disasm_kfunc_name,
2529 		.cb_print	= verbose,
2530 		.private_data	= env,
2531 	};
2532 	struct bpf_insn *insn = env->prog->insnsi + idx;
2533 	u8 class = BPF_CLASS(insn->code);
2534 	u8 opcode = BPF_OP(insn->code);
2535 	u8 mode = BPF_MODE(insn->code);
2536 	u32 dreg = 1u << insn->dst_reg;
2537 	u32 sreg = 1u << insn->src_reg;
2538 	u32 spi;
2539 
2540 	if (insn->code == 0)
2541 		return 0;
2542 	if (env->log.level & BPF_LOG_LEVEL2) {
2543 		verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
2544 		verbose(env, "%d: ", idx);
2545 		print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
2546 	}
2547 
2548 	if (class == BPF_ALU || class == BPF_ALU64) {
2549 		if (!(*reg_mask & dreg))
2550 			return 0;
2551 		if (opcode == BPF_MOV) {
2552 			if (BPF_SRC(insn->code) == BPF_X) {
2553 				/* dreg = sreg
2554 				 * dreg needs precision after this insn
2555 				 * sreg needs precision before this insn
2556 				 */
2557 				*reg_mask &= ~dreg;
2558 				*reg_mask |= sreg;
2559 			} else {
2560 				/* dreg = K
2561 				 * dreg needs precision after this insn.
2562 				 * Corresponding register is already marked
2563 				 * as precise=true in this verifier state.
2564 				 * No further markings in parent are necessary
2565 				 */
2566 				*reg_mask &= ~dreg;
2567 			}
2568 		} else {
2569 			if (BPF_SRC(insn->code) == BPF_X) {
2570 				/* dreg += sreg
2571 				 * both dreg and sreg need precision
2572 				 * before this insn
2573 				 */
2574 				*reg_mask |= sreg;
2575 			} /* else dreg += K
2576 			   * dreg still needs precision before this insn
2577 			   */
2578 		}
2579 	} else if (class == BPF_LDX) {
2580 		if (!(*reg_mask & dreg))
2581 			return 0;
2582 		*reg_mask &= ~dreg;
2583 
2584 		/* scalars can only be spilled into stack w/o losing precision.
2585 		 * Load from any other memory can be zero extended.
2586 		 * The desire to keep that precision is already indicated
2587 		 * by 'precise' mark in corresponding register of this state.
2588 		 * No further tracking necessary.
2589 		 */
2590 		if (insn->src_reg != BPF_REG_FP)
2591 			return 0;
2592 
2593 		/* dreg = *(u64 *)[fp - off] was a fill from the stack.
2594 		 * that [fp - off] slot contains scalar that needs to be
2595 		 * tracked with precision
2596 		 */
2597 		spi = (-insn->off - 1) / BPF_REG_SIZE;
2598 		if (spi >= 64) {
2599 			verbose(env, "BUG spi %d\n", spi);
2600 			WARN_ONCE(1, "verifier backtracking bug");
2601 			return -EFAULT;
2602 		}
2603 		*stack_mask |= 1ull << spi;
2604 	} else if (class == BPF_STX || class == BPF_ST) {
2605 		if (*reg_mask & dreg)
2606 			/* stx & st shouldn't be using _scalar_ dst_reg
2607 			 * to access memory. It means backtracking
2608 			 * encountered a case of pointer subtraction.
2609 			 */
2610 			return -ENOTSUPP;
2611 		/* scalars can only be spilled into stack */
2612 		if (insn->dst_reg != BPF_REG_FP)
2613 			return 0;
2614 		spi = (-insn->off - 1) / BPF_REG_SIZE;
2615 		if (spi >= 64) {
2616 			verbose(env, "BUG spi %d\n", spi);
2617 			WARN_ONCE(1, "verifier backtracking bug");
2618 			return -EFAULT;
2619 		}
2620 		if (!(*stack_mask & (1ull << spi)))
2621 			return 0;
2622 		*stack_mask &= ~(1ull << spi);
2623 		if (class == BPF_STX)
2624 			*reg_mask |= sreg;
2625 	} else if (class == BPF_JMP || class == BPF_JMP32) {
2626 		if (opcode == BPF_CALL) {
2627 			if (insn->src_reg == BPF_PSEUDO_CALL)
2628 				return -ENOTSUPP;
2629 			/* regular helper call sets R0 */
2630 			*reg_mask &= ~1;
2631 			if (*reg_mask & 0x3f) {
2632 				/* if backtracing was looking for registers R1-R5
2633 				 * they should have been found already.
2634 				 */
2635 				verbose(env, "BUG regs %x\n", *reg_mask);
2636 				WARN_ONCE(1, "verifier backtracking bug");
2637 				return -EFAULT;
2638 			}
2639 		} else if (opcode == BPF_EXIT) {
2640 			return -ENOTSUPP;
2641 		}
2642 	} else if (class == BPF_LD) {
2643 		if (!(*reg_mask & dreg))
2644 			return 0;
2645 		*reg_mask &= ~dreg;
2646 		/* It's ld_imm64 or ld_abs or ld_ind.
2647 		 * For ld_imm64 no further tracking of precision
2648 		 * into parent is necessary
2649 		 */
2650 		if (mode == BPF_IND || mode == BPF_ABS)
2651 			/* to be analyzed */
2652 			return -ENOTSUPP;
2653 	}
2654 	return 0;
2655 }
2656 
2657 /* the scalar precision tracking algorithm:
2658  * . at the start all registers have precise=false.
2659  * . scalar ranges are tracked as normal through alu and jmp insns.
2660  * . once precise value of the scalar register is used in:
2661  *   .  ptr + scalar alu
2662  *   . if (scalar cond K|scalar)
2663  *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
2664  *   backtrack through the verifier states and mark all registers and
2665  *   stack slots with spilled constants that these scalar regisers
2666  *   should be precise.
2667  * . during state pruning two registers (or spilled stack slots)
2668  *   are equivalent if both are not precise.
2669  *
2670  * Note the verifier cannot simply walk register parentage chain,
2671  * since many different registers and stack slots could have been
2672  * used to compute single precise scalar.
2673  *
2674  * The approach of starting with precise=true for all registers and then
2675  * backtrack to mark a register as not precise when the verifier detects
2676  * that program doesn't care about specific value (e.g., when helper
2677  * takes register as ARG_ANYTHING parameter) is not safe.
2678  *
2679  * It's ok to walk single parentage chain of the verifier states.
2680  * It's possible that this backtracking will go all the way till 1st insn.
2681  * All other branches will be explored for needing precision later.
2682  *
2683  * The backtracking needs to deal with cases like:
2684  *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
2685  * r9 -= r8
2686  * r5 = r9
2687  * if r5 > 0x79f goto pc+7
2688  *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
2689  * r5 += 1
2690  * ...
2691  * call bpf_perf_event_output#25
2692  *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
2693  *
2694  * and this case:
2695  * r6 = 1
2696  * call foo // uses callee's r6 inside to compute r0
2697  * r0 += r6
2698  * if r0 == 0 goto
2699  *
2700  * to track above reg_mask/stack_mask needs to be independent for each frame.
2701  *
2702  * Also if parent's curframe > frame where backtracking started,
2703  * the verifier need to mark registers in both frames, otherwise callees
2704  * may incorrectly prune callers. This is similar to
2705  * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
2706  *
2707  * For now backtracking falls back into conservative marking.
2708  */
2709 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
2710 				     struct bpf_verifier_state *st)
2711 {
2712 	struct bpf_func_state *func;
2713 	struct bpf_reg_state *reg;
2714 	int i, j;
2715 
2716 	/* big hammer: mark all scalars precise in this path.
2717 	 * pop_stack may still get !precise scalars.
2718 	 */
2719 	for (; st; st = st->parent)
2720 		for (i = 0; i <= st->curframe; i++) {
2721 			func = st->frame[i];
2722 			for (j = 0; j < BPF_REG_FP; j++) {
2723 				reg = &func->regs[j];
2724 				if (reg->type != SCALAR_VALUE)
2725 					continue;
2726 				reg->precise = true;
2727 			}
2728 			for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
2729 				if (!is_spilled_reg(&func->stack[j]))
2730 					continue;
2731 				reg = &func->stack[j].spilled_ptr;
2732 				if (reg->type != SCALAR_VALUE)
2733 					continue;
2734 				reg->precise = true;
2735 			}
2736 		}
2737 }
2738 
2739 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno,
2740 				  int spi)
2741 {
2742 	struct bpf_verifier_state *st = env->cur_state;
2743 	int first_idx = st->first_insn_idx;
2744 	int last_idx = env->insn_idx;
2745 	struct bpf_func_state *func;
2746 	struct bpf_reg_state *reg;
2747 	u32 reg_mask = regno >= 0 ? 1u << regno : 0;
2748 	u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
2749 	bool skip_first = true;
2750 	bool new_marks = false;
2751 	int i, err;
2752 
2753 	if (!env->bpf_capable)
2754 		return 0;
2755 
2756 	func = st->frame[st->curframe];
2757 	if (regno >= 0) {
2758 		reg = &func->regs[regno];
2759 		if (reg->type != SCALAR_VALUE) {
2760 			WARN_ONCE(1, "backtracing misuse");
2761 			return -EFAULT;
2762 		}
2763 		if (!reg->precise)
2764 			new_marks = true;
2765 		else
2766 			reg_mask = 0;
2767 		reg->precise = true;
2768 	}
2769 
2770 	while (spi >= 0) {
2771 		if (!is_spilled_reg(&func->stack[spi])) {
2772 			stack_mask = 0;
2773 			break;
2774 		}
2775 		reg = &func->stack[spi].spilled_ptr;
2776 		if (reg->type != SCALAR_VALUE) {
2777 			stack_mask = 0;
2778 			break;
2779 		}
2780 		if (!reg->precise)
2781 			new_marks = true;
2782 		else
2783 			stack_mask = 0;
2784 		reg->precise = true;
2785 		break;
2786 	}
2787 
2788 	if (!new_marks)
2789 		return 0;
2790 	if (!reg_mask && !stack_mask)
2791 		return 0;
2792 	for (;;) {
2793 		DECLARE_BITMAP(mask, 64);
2794 		u32 history = st->jmp_history_cnt;
2795 
2796 		if (env->log.level & BPF_LOG_LEVEL2)
2797 			verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
2798 		for (i = last_idx;;) {
2799 			if (skip_first) {
2800 				err = 0;
2801 				skip_first = false;
2802 			} else {
2803 				err = backtrack_insn(env, i, &reg_mask, &stack_mask);
2804 			}
2805 			if (err == -ENOTSUPP) {
2806 				mark_all_scalars_precise(env, st);
2807 				return 0;
2808 			} else if (err) {
2809 				return err;
2810 			}
2811 			if (!reg_mask && !stack_mask)
2812 				/* Found assignment(s) into tracked register in this state.
2813 				 * Since this state is already marked, just return.
2814 				 * Nothing to be tracked further in the parent state.
2815 				 */
2816 				return 0;
2817 			if (i == first_idx)
2818 				break;
2819 			i = get_prev_insn_idx(st, i, &history);
2820 			if (i >= env->prog->len) {
2821 				/* This can happen if backtracking reached insn 0
2822 				 * and there are still reg_mask or stack_mask
2823 				 * to backtrack.
2824 				 * It means the backtracking missed the spot where
2825 				 * particular register was initialized with a constant.
2826 				 */
2827 				verbose(env, "BUG backtracking idx %d\n", i);
2828 				WARN_ONCE(1, "verifier backtracking bug");
2829 				return -EFAULT;
2830 			}
2831 		}
2832 		st = st->parent;
2833 		if (!st)
2834 			break;
2835 
2836 		new_marks = false;
2837 		func = st->frame[st->curframe];
2838 		bitmap_from_u64(mask, reg_mask);
2839 		for_each_set_bit(i, mask, 32) {
2840 			reg = &func->regs[i];
2841 			if (reg->type != SCALAR_VALUE) {
2842 				reg_mask &= ~(1u << i);
2843 				continue;
2844 			}
2845 			if (!reg->precise)
2846 				new_marks = true;
2847 			reg->precise = true;
2848 		}
2849 
2850 		bitmap_from_u64(mask, stack_mask);
2851 		for_each_set_bit(i, mask, 64) {
2852 			if (i >= func->allocated_stack / BPF_REG_SIZE) {
2853 				/* the sequence of instructions:
2854 				 * 2: (bf) r3 = r10
2855 				 * 3: (7b) *(u64 *)(r3 -8) = r0
2856 				 * 4: (79) r4 = *(u64 *)(r10 -8)
2857 				 * doesn't contain jmps. It's backtracked
2858 				 * as a single block.
2859 				 * During backtracking insn 3 is not recognized as
2860 				 * stack access, so at the end of backtracking
2861 				 * stack slot fp-8 is still marked in stack_mask.
2862 				 * However the parent state may not have accessed
2863 				 * fp-8 and it's "unallocated" stack space.
2864 				 * In such case fallback to conservative.
2865 				 */
2866 				mark_all_scalars_precise(env, st);
2867 				return 0;
2868 			}
2869 
2870 			if (!is_spilled_reg(&func->stack[i])) {
2871 				stack_mask &= ~(1ull << i);
2872 				continue;
2873 			}
2874 			reg = &func->stack[i].spilled_ptr;
2875 			if (reg->type != SCALAR_VALUE) {
2876 				stack_mask &= ~(1ull << i);
2877 				continue;
2878 			}
2879 			if (!reg->precise)
2880 				new_marks = true;
2881 			reg->precise = true;
2882 		}
2883 		if (env->log.level & BPF_LOG_LEVEL2) {
2884 			verbose(env, "parent %s regs=%x stack=%llx marks:",
2885 				new_marks ? "didn't have" : "already had",
2886 				reg_mask, stack_mask);
2887 			print_verifier_state(env, func, true);
2888 		}
2889 
2890 		if (!reg_mask && !stack_mask)
2891 			break;
2892 		if (!new_marks)
2893 			break;
2894 
2895 		last_idx = st->last_insn_idx;
2896 		first_idx = st->first_insn_idx;
2897 	}
2898 	return 0;
2899 }
2900 
2901 static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
2902 {
2903 	return __mark_chain_precision(env, regno, -1);
2904 }
2905 
2906 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi)
2907 {
2908 	return __mark_chain_precision(env, -1, spi);
2909 }
2910 
2911 static bool is_spillable_regtype(enum bpf_reg_type type)
2912 {
2913 	switch (base_type(type)) {
2914 	case PTR_TO_MAP_VALUE:
2915 	case PTR_TO_STACK:
2916 	case PTR_TO_CTX:
2917 	case PTR_TO_PACKET:
2918 	case PTR_TO_PACKET_META:
2919 	case PTR_TO_PACKET_END:
2920 	case PTR_TO_FLOW_KEYS:
2921 	case CONST_PTR_TO_MAP:
2922 	case PTR_TO_SOCKET:
2923 	case PTR_TO_SOCK_COMMON:
2924 	case PTR_TO_TCP_SOCK:
2925 	case PTR_TO_XDP_SOCK:
2926 	case PTR_TO_BTF_ID:
2927 	case PTR_TO_BUF:
2928 	case PTR_TO_MEM:
2929 	case PTR_TO_FUNC:
2930 	case PTR_TO_MAP_KEY:
2931 		return true;
2932 	default:
2933 		return false;
2934 	}
2935 }
2936 
2937 /* Does this register contain a constant zero? */
2938 static bool register_is_null(struct bpf_reg_state *reg)
2939 {
2940 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
2941 }
2942 
2943 static bool register_is_const(struct bpf_reg_state *reg)
2944 {
2945 	return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
2946 }
2947 
2948 static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
2949 {
2950 	return tnum_is_unknown(reg->var_off) &&
2951 	       reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
2952 	       reg->umin_value == 0 && reg->umax_value == U64_MAX &&
2953 	       reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
2954 	       reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
2955 }
2956 
2957 static bool register_is_bounded(struct bpf_reg_state *reg)
2958 {
2959 	return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
2960 }
2961 
2962 static bool __is_pointer_value(bool allow_ptr_leaks,
2963 			       const struct bpf_reg_state *reg)
2964 {
2965 	if (allow_ptr_leaks)
2966 		return false;
2967 
2968 	return reg->type != SCALAR_VALUE;
2969 }
2970 
2971 static void save_register_state(struct bpf_func_state *state,
2972 				int spi, struct bpf_reg_state *reg,
2973 				int size)
2974 {
2975 	int i;
2976 
2977 	state->stack[spi].spilled_ptr = *reg;
2978 	if (size == BPF_REG_SIZE)
2979 		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2980 
2981 	for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--)
2982 		state->stack[spi].slot_type[i - 1] = STACK_SPILL;
2983 
2984 	/* size < 8 bytes spill */
2985 	for (; i; i--)
2986 		scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]);
2987 }
2988 
2989 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
2990  * stack boundary and alignment are checked in check_mem_access()
2991  */
2992 static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
2993 				       /* stack frame we're writing to */
2994 				       struct bpf_func_state *state,
2995 				       int off, int size, int value_regno,
2996 				       int insn_idx)
2997 {
2998 	struct bpf_func_state *cur; /* state of the current function */
2999 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
3000 	u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
3001 	struct bpf_reg_state *reg = NULL;
3002 
3003 	err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE));
3004 	if (err)
3005 		return err;
3006 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
3007 	 * so it's aligned access and [off, off + size) are within stack limits
3008 	 */
3009 	if (!env->allow_ptr_leaks &&
3010 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
3011 	    size != BPF_REG_SIZE) {
3012 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
3013 		return -EACCES;
3014 	}
3015 
3016 	cur = env->cur_state->frame[env->cur_state->curframe];
3017 	if (value_regno >= 0)
3018 		reg = &cur->regs[value_regno];
3019 	if (!env->bypass_spec_v4) {
3020 		bool sanitize = reg && is_spillable_regtype(reg->type);
3021 
3022 		for (i = 0; i < size; i++) {
3023 			if (state->stack[spi].slot_type[i] == STACK_INVALID) {
3024 				sanitize = true;
3025 				break;
3026 			}
3027 		}
3028 
3029 		if (sanitize)
3030 			env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
3031 	}
3032 
3033 	mark_stack_slot_scratched(env, spi);
3034 	if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) &&
3035 	    !register_is_null(reg) && env->bpf_capable) {
3036 		if (dst_reg != BPF_REG_FP) {
3037 			/* The backtracking logic can only recognize explicit
3038 			 * stack slot address like [fp - 8]. Other spill of
3039 			 * scalar via different register has to be conservative.
3040 			 * Backtrack from here and mark all registers as precise
3041 			 * that contributed into 'reg' being a constant.
3042 			 */
3043 			err = mark_chain_precision(env, value_regno);
3044 			if (err)
3045 				return err;
3046 		}
3047 		save_register_state(state, spi, reg, size);
3048 	} else if (reg && is_spillable_regtype(reg->type)) {
3049 		/* register containing pointer is being spilled into stack */
3050 		if (size != BPF_REG_SIZE) {
3051 			verbose_linfo(env, insn_idx, "; ");
3052 			verbose(env, "invalid size of register spill\n");
3053 			return -EACCES;
3054 		}
3055 		if (state != cur && reg->type == PTR_TO_STACK) {
3056 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
3057 			return -EINVAL;
3058 		}
3059 		save_register_state(state, spi, reg, size);
3060 	} else {
3061 		u8 type = STACK_MISC;
3062 
3063 		/* regular write of data into stack destroys any spilled ptr */
3064 		state->stack[spi].spilled_ptr.type = NOT_INIT;
3065 		/* Mark slots as STACK_MISC if they belonged to spilled ptr. */
3066 		if (is_spilled_reg(&state->stack[spi]))
3067 			for (i = 0; i < BPF_REG_SIZE; i++)
3068 				scrub_spilled_slot(&state->stack[spi].slot_type[i]);
3069 
3070 		/* only mark the slot as written if all 8 bytes were written
3071 		 * otherwise read propagation may incorrectly stop too soon
3072 		 * when stack slots are partially written.
3073 		 * This heuristic means that read propagation will be
3074 		 * conservative, since it will add reg_live_read marks
3075 		 * to stack slots all the way to first state when programs
3076 		 * writes+reads less than 8 bytes
3077 		 */
3078 		if (size == BPF_REG_SIZE)
3079 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
3080 
3081 		/* when we zero initialize stack slots mark them as such */
3082 		if (reg && register_is_null(reg)) {
3083 			/* backtracking doesn't work for STACK_ZERO yet. */
3084 			err = mark_chain_precision(env, value_regno);
3085 			if (err)
3086 				return err;
3087 			type = STACK_ZERO;
3088 		}
3089 
3090 		/* Mark slots affected by this stack write. */
3091 		for (i = 0; i < size; i++)
3092 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
3093 				type;
3094 	}
3095 	return 0;
3096 }
3097 
3098 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
3099  * known to contain a variable offset.
3100  * This function checks whether the write is permitted and conservatively
3101  * tracks the effects of the write, considering that each stack slot in the
3102  * dynamic range is potentially written to.
3103  *
3104  * 'off' includes 'regno->off'.
3105  * 'value_regno' can be -1, meaning that an unknown value is being written to
3106  * the stack.
3107  *
3108  * Spilled pointers in range are not marked as written because we don't know
3109  * what's going to be actually written. This means that read propagation for
3110  * future reads cannot be terminated by this write.
3111  *
3112  * For privileged programs, uninitialized stack slots are considered
3113  * initialized by this write (even though we don't know exactly what offsets
3114  * are going to be written to). The idea is that we don't want the verifier to
3115  * reject future reads that access slots written to through variable offsets.
3116  */
3117 static int check_stack_write_var_off(struct bpf_verifier_env *env,
3118 				     /* func where register points to */
3119 				     struct bpf_func_state *state,
3120 				     int ptr_regno, int off, int size,
3121 				     int value_regno, int insn_idx)
3122 {
3123 	struct bpf_func_state *cur; /* state of the current function */
3124 	int min_off, max_off;
3125 	int i, err;
3126 	struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
3127 	bool writing_zero = false;
3128 	/* set if the fact that we're writing a zero is used to let any
3129 	 * stack slots remain STACK_ZERO
3130 	 */
3131 	bool zero_used = false;
3132 
3133 	cur = env->cur_state->frame[env->cur_state->curframe];
3134 	ptr_reg = &cur->regs[ptr_regno];
3135 	min_off = ptr_reg->smin_value + off;
3136 	max_off = ptr_reg->smax_value + off + size;
3137 	if (value_regno >= 0)
3138 		value_reg = &cur->regs[value_regno];
3139 	if (value_reg && register_is_null(value_reg))
3140 		writing_zero = true;
3141 
3142 	err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE));
3143 	if (err)
3144 		return err;
3145 
3146 
3147 	/* Variable offset writes destroy any spilled pointers in range. */
3148 	for (i = min_off; i < max_off; i++) {
3149 		u8 new_type, *stype;
3150 		int slot, spi;
3151 
3152 		slot = -i - 1;
3153 		spi = slot / BPF_REG_SIZE;
3154 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
3155 		mark_stack_slot_scratched(env, spi);
3156 
3157 		if (!env->allow_ptr_leaks
3158 				&& *stype != NOT_INIT
3159 				&& *stype != SCALAR_VALUE) {
3160 			/* Reject the write if there's are spilled pointers in
3161 			 * range. If we didn't reject here, the ptr status
3162 			 * would be erased below (even though not all slots are
3163 			 * actually overwritten), possibly opening the door to
3164 			 * leaks.
3165 			 */
3166 			verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
3167 				insn_idx, i);
3168 			return -EINVAL;
3169 		}
3170 
3171 		/* Erase all spilled pointers. */
3172 		state->stack[spi].spilled_ptr.type = NOT_INIT;
3173 
3174 		/* Update the slot type. */
3175 		new_type = STACK_MISC;
3176 		if (writing_zero && *stype == STACK_ZERO) {
3177 			new_type = STACK_ZERO;
3178 			zero_used = true;
3179 		}
3180 		/* If the slot is STACK_INVALID, we check whether it's OK to
3181 		 * pretend that it will be initialized by this write. The slot
3182 		 * might not actually be written to, and so if we mark it as
3183 		 * initialized future reads might leak uninitialized memory.
3184 		 * For privileged programs, we will accept such reads to slots
3185 		 * that may or may not be written because, if we're reject
3186 		 * them, the error would be too confusing.
3187 		 */
3188 		if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
3189 			verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
3190 					insn_idx, i);
3191 			return -EINVAL;
3192 		}
3193 		*stype = new_type;
3194 	}
3195 	if (zero_used) {
3196 		/* backtracking doesn't work for STACK_ZERO yet. */
3197 		err = mark_chain_precision(env, value_regno);
3198 		if (err)
3199 			return err;
3200 	}
3201 	return 0;
3202 }
3203 
3204 /* When register 'dst_regno' is assigned some values from stack[min_off,
3205  * max_off), we set the register's type according to the types of the
3206  * respective stack slots. If all the stack values are known to be zeros, then
3207  * so is the destination reg. Otherwise, the register is considered to be
3208  * SCALAR. This function does not deal with register filling; the caller must
3209  * ensure that all spilled registers in the stack range have been marked as
3210  * read.
3211  */
3212 static void mark_reg_stack_read(struct bpf_verifier_env *env,
3213 				/* func where src register points to */
3214 				struct bpf_func_state *ptr_state,
3215 				int min_off, int max_off, int dst_regno)
3216 {
3217 	struct bpf_verifier_state *vstate = env->cur_state;
3218 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3219 	int i, slot, spi;
3220 	u8 *stype;
3221 	int zeros = 0;
3222 
3223 	for (i = min_off; i < max_off; i++) {
3224 		slot = -i - 1;
3225 		spi = slot / BPF_REG_SIZE;
3226 		stype = ptr_state->stack[spi].slot_type;
3227 		if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
3228 			break;
3229 		zeros++;
3230 	}
3231 	if (zeros == max_off - min_off) {
3232 		/* any access_size read into register is zero extended,
3233 		 * so the whole register == const_zero
3234 		 */
3235 		__mark_reg_const_zero(&state->regs[dst_regno]);
3236 		/* backtracking doesn't support STACK_ZERO yet,
3237 		 * so mark it precise here, so that later
3238 		 * backtracking can stop here.
3239 		 * Backtracking may not need this if this register
3240 		 * doesn't participate in pointer adjustment.
3241 		 * Forward propagation of precise flag is not
3242 		 * necessary either. This mark is only to stop
3243 		 * backtracking. Any register that contributed
3244 		 * to const 0 was marked precise before spill.
3245 		 */
3246 		state->regs[dst_regno].precise = true;
3247 	} else {
3248 		/* have read misc data from the stack */
3249 		mark_reg_unknown(env, state->regs, dst_regno);
3250 	}
3251 	state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
3252 }
3253 
3254 /* Read the stack at 'off' and put the results into the register indicated by
3255  * 'dst_regno'. It handles reg filling if the addressed stack slot is a
3256  * spilled reg.
3257  *
3258  * 'dst_regno' can be -1, meaning that the read value is not going to a
3259  * register.
3260  *
3261  * The access is assumed to be within the current stack bounds.
3262  */
3263 static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
3264 				      /* func where src register points to */
3265 				      struct bpf_func_state *reg_state,
3266 				      int off, int size, int dst_regno)
3267 {
3268 	struct bpf_verifier_state *vstate = env->cur_state;
3269 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3270 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
3271 	struct bpf_reg_state *reg;
3272 	u8 *stype, type;
3273 
3274 	stype = reg_state->stack[spi].slot_type;
3275 	reg = &reg_state->stack[spi].spilled_ptr;
3276 
3277 	if (is_spilled_reg(&reg_state->stack[spi])) {
3278 		u8 spill_size = 1;
3279 
3280 		for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--)
3281 			spill_size++;
3282 
3283 		if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) {
3284 			if (reg->type != SCALAR_VALUE) {
3285 				verbose_linfo(env, env->insn_idx, "; ");
3286 				verbose(env, "invalid size of register fill\n");
3287 				return -EACCES;
3288 			}
3289 
3290 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
3291 			if (dst_regno < 0)
3292 				return 0;
3293 
3294 			if (!(off % BPF_REG_SIZE) && size == spill_size) {
3295 				/* The earlier check_reg_arg() has decided the
3296 				 * subreg_def for this insn.  Save it first.
3297 				 */
3298 				s32 subreg_def = state->regs[dst_regno].subreg_def;
3299 
3300 				state->regs[dst_regno] = *reg;
3301 				state->regs[dst_regno].subreg_def = subreg_def;
3302 			} else {
3303 				for (i = 0; i < size; i++) {
3304 					type = stype[(slot - i) % BPF_REG_SIZE];
3305 					if (type == STACK_SPILL)
3306 						continue;
3307 					if (type == STACK_MISC)
3308 						continue;
3309 					verbose(env, "invalid read from stack off %d+%d size %d\n",
3310 						off, i, size);
3311 					return -EACCES;
3312 				}
3313 				mark_reg_unknown(env, state->regs, dst_regno);
3314 			}
3315 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
3316 			return 0;
3317 		}
3318 
3319 		if (dst_regno >= 0) {
3320 			/* restore register state from stack */
3321 			state->regs[dst_regno] = *reg;
3322 			/* mark reg as written since spilled pointer state likely
3323 			 * has its liveness marks cleared by is_state_visited()
3324 			 * which resets stack/reg liveness for state transitions
3325 			 */
3326 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
3327 		} else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
3328 			/* If dst_regno==-1, the caller is asking us whether
3329 			 * it is acceptable to use this value as a SCALAR_VALUE
3330 			 * (e.g. for XADD).
3331 			 * We must not allow unprivileged callers to do that
3332 			 * with spilled pointers.
3333 			 */
3334 			verbose(env, "leaking pointer from stack off %d\n",
3335 				off);
3336 			return -EACCES;
3337 		}
3338 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
3339 	} else {
3340 		for (i = 0; i < size; i++) {
3341 			type = stype[(slot - i) % BPF_REG_SIZE];
3342 			if (type == STACK_MISC)
3343 				continue;
3344 			if (type == STACK_ZERO)
3345 				continue;
3346 			verbose(env, "invalid read from stack off %d+%d size %d\n",
3347 				off, i, size);
3348 			return -EACCES;
3349 		}
3350 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
3351 		if (dst_regno >= 0)
3352 			mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
3353 	}
3354 	return 0;
3355 }
3356 
3357 enum bpf_access_src {
3358 	ACCESS_DIRECT = 1,  /* the access is performed by an instruction */
3359 	ACCESS_HELPER = 2,  /* the access is performed by a helper */
3360 };
3361 
3362 static int check_stack_range_initialized(struct bpf_verifier_env *env,
3363 					 int regno, int off, int access_size,
3364 					 bool zero_size_allowed,
3365 					 enum bpf_access_src type,
3366 					 struct bpf_call_arg_meta *meta);
3367 
3368 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
3369 {
3370 	return cur_regs(env) + regno;
3371 }
3372 
3373 /* Read the stack at 'ptr_regno + off' and put the result into the register
3374  * 'dst_regno'.
3375  * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
3376  * but not its variable offset.
3377  * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
3378  *
3379  * As opposed to check_stack_read_fixed_off, this function doesn't deal with
3380  * filling registers (i.e. reads of spilled register cannot be detected when
3381  * the offset is not fixed). We conservatively mark 'dst_regno' as containing
3382  * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
3383  * offset; for a fixed offset check_stack_read_fixed_off should be used
3384  * instead.
3385  */
3386 static int check_stack_read_var_off(struct bpf_verifier_env *env,
3387 				    int ptr_regno, int off, int size, int dst_regno)
3388 {
3389 	/* The state of the source register. */
3390 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3391 	struct bpf_func_state *ptr_state = func(env, reg);
3392 	int err;
3393 	int min_off, max_off;
3394 
3395 	/* Note that we pass a NULL meta, so raw access will not be permitted.
3396 	 */
3397 	err = check_stack_range_initialized(env, ptr_regno, off, size,
3398 					    false, ACCESS_DIRECT, NULL);
3399 	if (err)
3400 		return err;
3401 
3402 	min_off = reg->smin_value + off;
3403 	max_off = reg->smax_value + off;
3404 	mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
3405 	return 0;
3406 }
3407 
3408 /* check_stack_read dispatches to check_stack_read_fixed_off or
3409  * check_stack_read_var_off.
3410  *
3411  * The caller must ensure that the offset falls within the allocated stack
3412  * bounds.
3413  *
3414  * 'dst_regno' is a register which will receive the value from the stack. It
3415  * can be -1, meaning that the read value is not going to a register.
3416  */
3417 static int check_stack_read(struct bpf_verifier_env *env,
3418 			    int ptr_regno, int off, int size,
3419 			    int dst_regno)
3420 {
3421 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3422 	struct bpf_func_state *state = func(env, reg);
3423 	int err;
3424 	/* Some accesses are only permitted with a static offset. */
3425 	bool var_off = !tnum_is_const(reg->var_off);
3426 
3427 	/* The offset is required to be static when reads don't go to a
3428 	 * register, in order to not leak pointers (see
3429 	 * check_stack_read_fixed_off).
3430 	 */
3431 	if (dst_regno < 0 && var_off) {
3432 		char tn_buf[48];
3433 
3434 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3435 		verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
3436 			tn_buf, off, size);
3437 		return -EACCES;
3438 	}
3439 	/* Variable offset is prohibited for unprivileged mode for simplicity
3440 	 * since it requires corresponding support in Spectre masking for stack
3441 	 * ALU. See also retrieve_ptr_limit().
3442 	 */
3443 	if (!env->bypass_spec_v1 && var_off) {
3444 		char tn_buf[48];
3445 
3446 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3447 		verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n",
3448 				ptr_regno, tn_buf);
3449 		return -EACCES;
3450 	}
3451 
3452 	if (!var_off) {
3453 		off += reg->var_off.value;
3454 		err = check_stack_read_fixed_off(env, state, off, size,
3455 						 dst_regno);
3456 	} else {
3457 		/* Variable offset stack reads need more conservative handling
3458 		 * than fixed offset ones. Note that dst_regno >= 0 on this
3459 		 * branch.
3460 		 */
3461 		err = check_stack_read_var_off(env, ptr_regno, off, size,
3462 					       dst_regno);
3463 	}
3464 	return err;
3465 }
3466 
3467 
3468 /* check_stack_write dispatches to check_stack_write_fixed_off or
3469  * check_stack_write_var_off.
3470  *
3471  * 'ptr_regno' is the register used as a pointer into the stack.
3472  * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
3473  * 'value_regno' is the register whose value we're writing to the stack. It can
3474  * be -1, meaning that we're not writing from a register.
3475  *
3476  * The caller must ensure that the offset falls within the maximum stack size.
3477  */
3478 static int check_stack_write(struct bpf_verifier_env *env,
3479 			     int ptr_regno, int off, int size,
3480 			     int value_regno, int insn_idx)
3481 {
3482 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3483 	struct bpf_func_state *state = func(env, reg);
3484 	int err;
3485 
3486 	if (tnum_is_const(reg->var_off)) {
3487 		off += reg->var_off.value;
3488 		err = check_stack_write_fixed_off(env, state, off, size,
3489 						  value_regno, insn_idx);
3490 	} else {
3491 		/* Variable offset stack reads need more conservative handling
3492 		 * than fixed offset ones.
3493 		 */
3494 		err = check_stack_write_var_off(env, state,
3495 						ptr_regno, off, size,
3496 						value_regno, insn_idx);
3497 	}
3498 	return err;
3499 }
3500 
3501 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
3502 				 int off, int size, enum bpf_access_type type)
3503 {
3504 	struct bpf_reg_state *regs = cur_regs(env);
3505 	struct bpf_map *map = regs[regno].map_ptr;
3506 	u32 cap = bpf_map_flags_to_cap(map);
3507 
3508 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
3509 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
3510 			map->value_size, off, size);
3511 		return -EACCES;
3512 	}
3513 
3514 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
3515 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
3516 			map->value_size, off, size);
3517 		return -EACCES;
3518 	}
3519 
3520 	return 0;
3521 }
3522 
3523 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
3524 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
3525 			      int off, int size, u32 mem_size,
3526 			      bool zero_size_allowed)
3527 {
3528 	bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
3529 	struct bpf_reg_state *reg;
3530 
3531 	if (off >= 0 && size_ok && (u64)off + size <= mem_size)
3532 		return 0;
3533 
3534 	reg = &cur_regs(env)[regno];
3535 	switch (reg->type) {
3536 	case PTR_TO_MAP_KEY:
3537 		verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
3538 			mem_size, off, size);
3539 		break;
3540 	case PTR_TO_MAP_VALUE:
3541 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
3542 			mem_size, off, size);
3543 		break;
3544 	case PTR_TO_PACKET:
3545 	case PTR_TO_PACKET_META:
3546 	case PTR_TO_PACKET_END:
3547 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
3548 			off, size, regno, reg->id, off, mem_size);
3549 		break;
3550 	case PTR_TO_MEM:
3551 	default:
3552 		verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
3553 			mem_size, off, size);
3554 	}
3555 
3556 	return -EACCES;
3557 }
3558 
3559 /* check read/write into a memory region with possible variable offset */
3560 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
3561 				   int off, int size, u32 mem_size,
3562 				   bool zero_size_allowed)
3563 {
3564 	struct bpf_verifier_state *vstate = env->cur_state;
3565 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3566 	struct bpf_reg_state *reg = &state->regs[regno];
3567 	int err;
3568 
3569 	/* We may have adjusted the register pointing to memory region, so we
3570 	 * need to try adding each of min_value and max_value to off
3571 	 * to make sure our theoretical access will be safe.
3572 	 *
3573 	 * The minimum value is only important with signed
3574 	 * comparisons where we can't assume the floor of a
3575 	 * value is 0.  If we are using signed variables for our
3576 	 * index'es we need to make sure that whatever we use
3577 	 * will have a set floor within our range.
3578 	 */
3579 	if (reg->smin_value < 0 &&
3580 	    (reg->smin_value == S64_MIN ||
3581 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
3582 	      reg->smin_value + off < 0)) {
3583 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3584 			regno);
3585 		return -EACCES;
3586 	}
3587 	err = __check_mem_access(env, regno, reg->smin_value + off, size,
3588 				 mem_size, zero_size_allowed);
3589 	if (err) {
3590 		verbose(env, "R%d min value is outside of the allowed memory range\n",
3591 			regno);
3592 		return err;
3593 	}
3594 
3595 	/* If we haven't set a max value then we need to bail since we can't be
3596 	 * sure we won't do bad things.
3597 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
3598 	 */
3599 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
3600 		verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
3601 			regno);
3602 		return -EACCES;
3603 	}
3604 	err = __check_mem_access(env, regno, reg->umax_value + off, size,
3605 				 mem_size, zero_size_allowed);
3606 	if (err) {
3607 		verbose(env, "R%d max value is outside of the allowed memory range\n",
3608 			regno);
3609 		return err;
3610 	}
3611 
3612 	return 0;
3613 }
3614 
3615 static int __check_ptr_off_reg(struct bpf_verifier_env *env,
3616 			       const struct bpf_reg_state *reg, int regno,
3617 			       bool fixed_off_ok)
3618 {
3619 	/* Access to this pointer-typed register or passing it to a helper
3620 	 * is only allowed in its original, unmodified form.
3621 	 */
3622 
3623 	if (reg->off < 0) {
3624 		verbose(env, "negative offset %s ptr R%d off=%d disallowed\n",
3625 			reg_type_str(env, reg->type), regno, reg->off);
3626 		return -EACCES;
3627 	}
3628 
3629 	if (!fixed_off_ok && reg->off) {
3630 		verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n",
3631 			reg_type_str(env, reg->type), regno, reg->off);
3632 		return -EACCES;
3633 	}
3634 
3635 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3636 		char tn_buf[48];
3637 
3638 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3639 		verbose(env, "variable %s access var_off=%s disallowed\n",
3640 			reg_type_str(env, reg->type), tn_buf);
3641 		return -EACCES;
3642 	}
3643 
3644 	return 0;
3645 }
3646 
3647 int check_ptr_off_reg(struct bpf_verifier_env *env,
3648 		      const struct bpf_reg_state *reg, int regno)
3649 {
3650 	return __check_ptr_off_reg(env, reg, regno, false);
3651 }
3652 
3653 static int map_kptr_match_type(struct bpf_verifier_env *env,
3654 			       struct bpf_map_value_off_desc *off_desc,
3655 			       struct bpf_reg_state *reg, u32 regno)
3656 {
3657 	const char *targ_name = kernel_type_name(off_desc->kptr.btf, off_desc->kptr.btf_id);
3658 	int perm_flags = PTR_MAYBE_NULL;
3659 	const char *reg_name = "";
3660 
3661 	/* Only unreferenced case accepts untrusted pointers */
3662 	if (off_desc->type == BPF_KPTR_UNREF)
3663 		perm_flags |= PTR_UNTRUSTED;
3664 
3665 	if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags))
3666 		goto bad_type;
3667 
3668 	if (!btf_is_kernel(reg->btf)) {
3669 		verbose(env, "R%d must point to kernel BTF\n", regno);
3670 		return -EINVAL;
3671 	}
3672 	/* We need to verify reg->type and reg->btf, before accessing reg->btf */
3673 	reg_name = kernel_type_name(reg->btf, reg->btf_id);
3674 
3675 	/* For ref_ptr case, release function check should ensure we get one
3676 	 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the
3677 	 * normal store of unreferenced kptr, we must ensure var_off is zero.
3678 	 * Since ref_ptr cannot be accessed directly by BPF insns, checks for
3679 	 * reg->off and reg->ref_obj_id are not needed here.
3680 	 */
3681 	if (__check_ptr_off_reg(env, reg, regno, true))
3682 		return -EACCES;
3683 
3684 	/* A full type match is needed, as BTF can be vmlinux or module BTF, and
3685 	 * we also need to take into account the reg->off.
3686 	 *
3687 	 * We want to support cases like:
3688 	 *
3689 	 * struct foo {
3690 	 *         struct bar br;
3691 	 *         struct baz bz;
3692 	 * };
3693 	 *
3694 	 * struct foo *v;
3695 	 * v = func();	      // PTR_TO_BTF_ID
3696 	 * val->foo = v;      // reg->off is zero, btf and btf_id match type
3697 	 * val->bar = &v->br; // reg->off is still zero, but we need to retry with
3698 	 *                    // first member type of struct after comparison fails
3699 	 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked
3700 	 *                    // to match type
3701 	 *
3702 	 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off
3703 	 * is zero. We must also ensure that btf_struct_ids_match does not walk
3704 	 * the struct to match type against first member of struct, i.e. reject
3705 	 * second case from above. Hence, when type is BPF_KPTR_REF, we set
3706 	 * strict mode to true for type match.
3707 	 */
3708 	if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
3709 				  off_desc->kptr.btf, off_desc->kptr.btf_id,
3710 				  off_desc->type == BPF_KPTR_REF))
3711 		goto bad_type;
3712 	return 0;
3713 bad_type:
3714 	verbose(env, "invalid kptr access, R%d type=%s%s ", regno,
3715 		reg_type_str(env, reg->type), reg_name);
3716 	verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name);
3717 	if (off_desc->type == BPF_KPTR_UNREF)
3718 		verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED),
3719 			targ_name);
3720 	else
3721 		verbose(env, "\n");
3722 	return -EINVAL;
3723 }
3724 
3725 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno,
3726 				 int value_regno, int insn_idx,
3727 				 struct bpf_map_value_off_desc *off_desc)
3728 {
3729 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
3730 	int class = BPF_CLASS(insn->code);
3731 	struct bpf_reg_state *val_reg;
3732 
3733 	/* Things we already checked for in check_map_access and caller:
3734 	 *  - Reject cases where variable offset may touch kptr
3735 	 *  - size of access (must be BPF_DW)
3736 	 *  - tnum_is_const(reg->var_off)
3737 	 *  - off_desc->offset == off + reg->var_off.value
3738 	 */
3739 	/* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */
3740 	if (BPF_MODE(insn->code) != BPF_MEM) {
3741 		verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n");
3742 		return -EACCES;
3743 	}
3744 
3745 	/* We only allow loading referenced kptr, since it will be marked as
3746 	 * untrusted, similar to unreferenced kptr.
3747 	 */
3748 	if (class != BPF_LDX && off_desc->type == BPF_KPTR_REF) {
3749 		verbose(env, "store to referenced kptr disallowed\n");
3750 		return -EACCES;
3751 	}
3752 
3753 	if (class == BPF_LDX) {
3754 		val_reg = reg_state(env, value_regno);
3755 		/* We can simply mark the value_regno receiving the pointer
3756 		 * value from map as PTR_TO_BTF_ID, with the correct type.
3757 		 */
3758 		mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, off_desc->kptr.btf,
3759 				off_desc->kptr.btf_id, PTR_MAYBE_NULL | PTR_UNTRUSTED);
3760 		/* For mark_ptr_or_null_reg */
3761 		val_reg->id = ++env->id_gen;
3762 	} else if (class == BPF_STX) {
3763 		val_reg = reg_state(env, value_regno);
3764 		if (!register_is_null(val_reg) &&
3765 		    map_kptr_match_type(env, off_desc, val_reg, value_regno))
3766 			return -EACCES;
3767 	} else if (class == BPF_ST) {
3768 		if (insn->imm) {
3769 			verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n",
3770 				off_desc->offset);
3771 			return -EACCES;
3772 		}
3773 	} else {
3774 		verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n");
3775 		return -EACCES;
3776 	}
3777 	return 0;
3778 }
3779 
3780 /* check read/write into a map element with possible variable offset */
3781 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
3782 			    int off, int size, bool zero_size_allowed,
3783 			    enum bpf_access_src src)
3784 {
3785 	struct bpf_verifier_state *vstate = env->cur_state;
3786 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3787 	struct bpf_reg_state *reg = &state->regs[regno];
3788 	struct bpf_map *map = reg->map_ptr;
3789 	int err;
3790 
3791 	err = check_mem_region_access(env, regno, off, size, map->value_size,
3792 				      zero_size_allowed);
3793 	if (err)
3794 		return err;
3795 
3796 	if (map_value_has_spin_lock(map)) {
3797 		u32 lock = map->spin_lock_off;
3798 
3799 		/* if any part of struct bpf_spin_lock can be touched by
3800 		 * load/store reject this program.
3801 		 * To check that [x1, x2) overlaps with [y1, y2)
3802 		 * it is sufficient to check x1 < y2 && y1 < x2.
3803 		 */
3804 		if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
3805 		     lock < reg->umax_value + off + size) {
3806 			verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
3807 			return -EACCES;
3808 		}
3809 	}
3810 	if (map_value_has_timer(map)) {
3811 		u32 t = map->timer_off;
3812 
3813 		if (reg->smin_value + off < t + sizeof(struct bpf_timer) &&
3814 		     t < reg->umax_value + off + size) {
3815 			verbose(env, "bpf_timer cannot be accessed directly by load/store\n");
3816 			return -EACCES;
3817 		}
3818 	}
3819 	if (map_value_has_kptrs(map)) {
3820 		struct bpf_map_value_off *tab = map->kptr_off_tab;
3821 		int i;
3822 
3823 		for (i = 0; i < tab->nr_off; i++) {
3824 			u32 p = tab->off[i].offset;
3825 
3826 			if (reg->smin_value + off < p + sizeof(u64) &&
3827 			    p < reg->umax_value + off + size) {
3828 				if (src != ACCESS_DIRECT) {
3829 					verbose(env, "kptr cannot be accessed indirectly by helper\n");
3830 					return -EACCES;
3831 				}
3832 				if (!tnum_is_const(reg->var_off)) {
3833 					verbose(env, "kptr access cannot have variable offset\n");
3834 					return -EACCES;
3835 				}
3836 				if (p != off + reg->var_off.value) {
3837 					verbose(env, "kptr access misaligned expected=%u off=%llu\n",
3838 						p, off + reg->var_off.value);
3839 					return -EACCES;
3840 				}
3841 				if (size != bpf_size_to_bytes(BPF_DW)) {
3842 					verbose(env, "kptr access size must be BPF_DW\n");
3843 					return -EACCES;
3844 				}
3845 				break;
3846 			}
3847 		}
3848 	}
3849 	return err;
3850 }
3851 
3852 #define MAX_PACKET_OFF 0xffff
3853 
3854 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3855 				       const struct bpf_call_arg_meta *meta,
3856 				       enum bpf_access_type t)
3857 {
3858 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
3859 
3860 	switch (prog_type) {
3861 	/* Program types only with direct read access go here! */
3862 	case BPF_PROG_TYPE_LWT_IN:
3863 	case BPF_PROG_TYPE_LWT_OUT:
3864 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
3865 	case BPF_PROG_TYPE_SK_REUSEPORT:
3866 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
3867 	case BPF_PROG_TYPE_CGROUP_SKB:
3868 		if (t == BPF_WRITE)
3869 			return false;
3870 		fallthrough;
3871 
3872 	/* Program types with direct read + write access go here! */
3873 	case BPF_PROG_TYPE_SCHED_CLS:
3874 	case BPF_PROG_TYPE_SCHED_ACT:
3875 	case BPF_PROG_TYPE_XDP:
3876 	case BPF_PROG_TYPE_LWT_XMIT:
3877 	case BPF_PROG_TYPE_SK_SKB:
3878 	case BPF_PROG_TYPE_SK_MSG:
3879 		if (meta)
3880 			return meta->pkt_access;
3881 
3882 		env->seen_direct_write = true;
3883 		return true;
3884 
3885 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
3886 		if (t == BPF_WRITE)
3887 			env->seen_direct_write = true;
3888 
3889 		return true;
3890 
3891 	default:
3892 		return false;
3893 	}
3894 }
3895 
3896 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
3897 			       int size, bool zero_size_allowed)
3898 {
3899 	struct bpf_reg_state *regs = cur_regs(env);
3900 	struct bpf_reg_state *reg = &regs[regno];
3901 	int err;
3902 
3903 	/* We may have added a variable offset to the packet pointer; but any
3904 	 * reg->range we have comes after that.  We are only checking the fixed
3905 	 * offset.
3906 	 */
3907 
3908 	/* We don't allow negative numbers, because we aren't tracking enough
3909 	 * detail to prove they're safe.
3910 	 */
3911 	if (reg->smin_value < 0) {
3912 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3913 			regno);
3914 		return -EACCES;
3915 	}
3916 
3917 	err = reg->range < 0 ? -EINVAL :
3918 	      __check_mem_access(env, regno, off, size, reg->range,
3919 				 zero_size_allowed);
3920 	if (err) {
3921 		verbose(env, "R%d offset is outside of the packet\n", regno);
3922 		return err;
3923 	}
3924 
3925 	/* __check_mem_access has made sure "off + size - 1" is within u16.
3926 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
3927 	 * otherwise find_good_pkt_pointers would have refused to set range info
3928 	 * that __check_mem_access would have rejected this pkt access.
3929 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
3930 	 */
3931 	env->prog->aux->max_pkt_offset =
3932 		max_t(u32, env->prog->aux->max_pkt_offset,
3933 		      off + reg->umax_value + size - 1);
3934 
3935 	return err;
3936 }
3937 
3938 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
3939 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
3940 			    enum bpf_access_type t, enum bpf_reg_type *reg_type,
3941 			    struct btf **btf, u32 *btf_id)
3942 {
3943 	struct bpf_insn_access_aux info = {
3944 		.reg_type = *reg_type,
3945 		.log = &env->log,
3946 	};
3947 
3948 	if (env->ops->is_valid_access &&
3949 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
3950 		/* A non zero info.ctx_field_size indicates that this field is a
3951 		 * candidate for later verifier transformation to load the whole
3952 		 * field and then apply a mask when accessed with a narrower
3953 		 * access than actual ctx access size. A zero info.ctx_field_size
3954 		 * will only allow for whole field access and rejects any other
3955 		 * type of narrower access.
3956 		 */
3957 		*reg_type = info.reg_type;
3958 
3959 		if (base_type(*reg_type) == PTR_TO_BTF_ID) {
3960 			*btf = info.btf;
3961 			*btf_id = info.btf_id;
3962 		} else {
3963 			env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
3964 		}
3965 		/* remember the offset of last byte accessed in ctx */
3966 		if (env->prog->aux->max_ctx_offset < off + size)
3967 			env->prog->aux->max_ctx_offset = off + size;
3968 		return 0;
3969 	}
3970 
3971 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
3972 	return -EACCES;
3973 }
3974 
3975 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
3976 				  int size)
3977 {
3978 	if (size < 0 || off < 0 ||
3979 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
3980 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
3981 			off, size);
3982 		return -EACCES;
3983 	}
3984 	return 0;
3985 }
3986 
3987 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
3988 			     u32 regno, int off, int size,
3989 			     enum bpf_access_type t)
3990 {
3991 	struct bpf_reg_state *regs = cur_regs(env);
3992 	struct bpf_reg_state *reg = &regs[regno];
3993 	struct bpf_insn_access_aux info = {};
3994 	bool valid;
3995 
3996 	if (reg->smin_value < 0) {
3997 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3998 			regno);
3999 		return -EACCES;
4000 	}
4001 
4002 	switch (reg->type) {
4003 	case PTR_TO_SOCK_COMMON:
4004 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
4005 		break;
4006 	case PTR_TO_SOCKET:
4007 		valid = bpf_sock_is_valid_access(off, size, t, &info);
4008 		break;
4009 	case PTR_TO_TCP_SOCK:
4010 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
4011 		break;
4012 	case PTR_TO_XDP_SOCK:
4013 		valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
4014 		break;
4015 	default:
4016 		valid = false;
4017 	}
4018 
4019 
4020 	if (valid) {
4021 		env->insn_aux_data[insn_idx].ctx_field_size =
4022 			info.ctx_field_size;
4023 		return 0;
4024 	}
4025 
4026 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
4027 		regno, reg_type_str(env, reg->type), off, size);
4028 
4029 	return -EACCES;
4030 }
4031 
4032 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
4033 {
4034 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
4035 }
4036 
4037 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
4038 {
4039 	const struct bpf_reg_state *reg = reg_state(env, regno);
4040 
4041 	return reg->type == PTR_TO_CTX;
4042 }
4043 
4044 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
4045 {
4046 	const struct bpf_reg_state *reg = reg_state(env, regno);
4047 
4048 	return type_is_sk_pointer(reg->type);
4049 }
4050 
4051 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
4052 {
4053 	const struct bpf_reg_state *reg = reg_state(env, regno);
4054 
4055 	return type_is_pkt_pointer(reg->type);
4056 }
4057 
4058 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
4059 {
4060 	const struct bpf_reg_state *reg = reg_state(env, regno);
4061 
4062 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
4063 	return reg->type == PTR_TO_FLOW_KEYS;
4064 }
4065 
4066 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
4067 				   const struct bpf_reg_state *reg,
4068 				   int off, int size, bool strict)
4069 {
4070 	struct tnum reg_off;
4071 	int ip_align;
4072 
4073 	/* Byte size accesses are always allowed. */
4074 	if (!strict || size == 1)
4075 		return 0;
4076 
4077 	/* For platforms that do not have a Kconfig enabling
4078 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
4079 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
4080 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
4081 	 * to this code only in strict mode where we want to emulate
4082 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
4083 	 * unconditional IP align value of '2'.
4084 	 */
4085 	ip_align = 2;
4086 
4087 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
4088 	if (!tnum_is_aligned(reg_off, size)) {
4089 		char tn_buf[48];
4090 
4091 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4092 		verbose(env,
4093 			"misaligned packet access off %d+%s+%d+%d size %d\n",
4094 			ip_align, tn_buf, reg->off, off, size);
4095 		return -EACCES;
4096 	}
4097 
4098 	return 0;
4099 }
4100 
4101 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
4102 				       const struct bpf_reg_state *reg,
4103 				       const char *pointer_desc,
4104 				       int off, int size, bool strict)
4105 {
4106 	struct tnum reg_off;
4107 
4108 	/* Byte size accesses are always allowed. */
4109 	if (!strict || size == 1)
4110 		return 0;
4111 
4112 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
4113 	if (!tnum_is_aligned(reg_off, size)) {
4114 		char tn_buf[48];
4115 
4116 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4117 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
4118 			pointer_desc, tn_buf, reg->off, off, size);
4119 		return -EACCES;
4120 	}
4121 
4122 	return 0;
4123 }
4124 
4125 static int check_ptr_alignment(struct bpf_verifier_env *env,
4126 			       const struct bpf_reg_state *reg, int off,
4127 			       int size, bool strict_alignment_once)
4128 {
4129 	bool strict = env->strict_alignment || strict_alignment_once;
4130 	const char *pointer_desc = "";
4131 
4132 	switch (reg->type) {
4133 	case PTR_TO_PACKET:
4134 	case PTR_TO_PACKET_META:
4135 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
4136 		 * right in front, treat it the very same way.
4137 		 */
4138 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
4139 	case PTR_TO_FLOW_KEYS:
4140 		pointer_desc = "flow keys ";
4141 		break;
4142 	case PTR_TO_MAP_KEY:
4143 		pointer_desc = "key ";
4144 		break;
4145 	case PTR_TO_MAP_VALUE:
4146 		pointer_desc = "value ";
4147 		break;
4148 	case PTR_TO_CTX:
4149 		pointer_desc = "context ";
4150 		break;
4151 	case PTR_TO_STACK:
4152 		pointer_desc = "stack ";
4153 		/* The stack spill tracking logic in check_stack_write_fixed_off()
4154 		 * and check_stack_read_fixed_off() relies on stack accesses being
4155 		 * aligned.
4156 		 */
4157 		strict = true;
4158 		break;
4159 	case PTR_TO_SOCKET:
4160 		pointer_desc = "sock ";
4161 		break;
4162 	case PTR_TO_SOCK_COMMON:
4163 		pointer_desc = "sock_common ";
4164 		break;
4165 	case PTR_TO_TCP_SOCK:
4166 		pointer_desc = "tcp_sock ";
4167 		break;
4168 	case PTR_TO_XDP_SOCK:
4169 		pointer_desc = "xdp_sock ";
4170 		break;
4171 	default:
4172 		break;
4173 	}
4174 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
4175 					   strict);
4176 }
4177 
4178 static int update_stack_depth(struct bpf_verifier_env *env,
4179 			      const struct bpf_func_state *func,
4180 			      int off)
4181 {
4182 	u16 stack = env->subprog_info[func->subprogno].stack_depth;
4183 
4184 	if (stack >= -off)
4185 		return 0;
4186 
4187 	/* update known max for given subprogram */
4188 	env->subprog_info[func->subprogno].stack_depth = -off;
4189 	return 0;
4190 }
4191 
4192 /* starting from main bpf function walk all instructions of the function
4193  * and recursively walk all callees that given function can call.
4194  * Ignore jump and exit insns.
4195  * Since recursion is prevented by check_cfg() this algorithm
4196  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
4197  */
4198 static int check_max_stack_depth(struct bpf_verifier_env *env)
4199 {
4200 	int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
4201 	struct bpf_subprog_info *subprog = env->subprog_info;
4202 	struct bpf_insn *insn = env->prog->insnsi;
4203 	bool tail_call_reachable = false;
4204 	int ret_insn[MAX_CALL_FRAMES];
4205 	int ret_prog[MAX_CALL_FRAMES];
4206 	int j;
4207 
4208 process_func:
4209 	/* protect against potential stack overflow that might happen when
4210 	 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
4211 	 * depth for such case down to 256 so that the worst case scenario
4212 	 * would result in 8k stack size (32 which is tailcall limit * 256 =
4213 	 * 8k).
4214 	 *
4215 	 * To get the idea what might happen, see an example:
4216 	 * func1 -> sub rsp, 128
4217 	 *  subfunc1 -> sub rsp, 256
4218 	 *  tailcall1 -> add rsp, 256
4219 	 *   func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
4220 	 *   subfunc2 -> sub rsp, 64
4221 	 *   subfunc22 -> sub rsp, 128
4222 	 *   tailcall2 -> add rsp, 128
4223 	 *    func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
4224 	 *
4225 	 * tailcall will unwind the current stack frame but it will not get rid
4226 	 * of caller's stack as shown on the example above.
4227 	 */
4228 	if (idx && subprog[idx].has_tail_call && depth >= 256) {
4229 		verbose(env,
4230 			"tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
4231 			depth);
4232 		return -EACCES;
4233 	}
4234 	/* round up to 32-bytes, since this is granularity
4235 	 * of interpreter stack size
4236 	 */
4237 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
4238 	if (depth > MAX_BPF_STACK) {
4239 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
4240 			frame + 1, depth);
4241 		return -EACCES;
4242 	}
4243 continue_func:
4244 	subprog_end = subprog[idx + 1].start;
4245 	for (; i < subprog_end; i++) {
4246 		int next_insn;
4247 
4248 		if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
4249 			continue;
4250 		/* remember insn and function to return to */
4251 		ret_insn[frame] = i + 1;
4252 		ret_prog[frame] = idx;
4253 
4254 		/* find the callee */
4255 		next_insn = i + insn[i].imm + 1;
4256 		idx = find_subprog(env, next_insn);
4257 		if (idx < 0) {
4258 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
4259 				  next_insn);
4260 			return -EFAULT;
4261 		}
4262 		if (subprog[idx].is_async_cb) {
4263 			if (subprog[idx].has_tail_call) {
4264 				verbose(env, "verifier bug. subprog has tail_call and async cb\n");
4265 				return -EFAULT;
4266 			}
4267 			 /* async callbacks don't increase bpf prog stack size */
4268 			continue;
4269 		}
4270 		i = next_insn;
4271 
4272 		if (subprog[idx].has_tail_call)
4273 			tail_call_reachable = true;
4274 
4275 		frame++;
4276 		if (frame >= MAX_CALL_FRAMES) {
4277 			verbose(env, "the call stack of %d frames is too deep !\n",
4278 				frame);
4279 			return -E2BIG;
4280 		}
4281 		goto process_func;
4282 	}
4283 	/* if tail call got detected across bpf2bpf calls then mark each of the
4284 	 * currently present subprog frames as tail call reachable subprogs;
4285 	 * this info will be utilized by JIT so that we will be preserving the
4286 	 * tail call counter throughout bpf2bpf calls combined with tailcalls
4287 	 */
4288 	if (tail_call_reachable)
4289 		for (j = 0; j < frame; j++)
4290 			subprog[ret_prog[j]].tail_call_reachable = true;
4291 	if (subprog[0].tail_call_reachable)
4292 		env->prog->aux->tail_call_reachable = true;
4293 
4294 	/* end of for() loop means the last insn of the 'subprog'
4295 	 * was reached. Doesn't matter whether it was JA or EXIT
4296 	 */
4297 	if (frame == 0)
4298 		return 0;
4299 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
4300 	frame--;
4301 	i = ret_insn[frame];
4302 	idx = ret_prog[frame];
4303 	goto continue_func;
4304 }
4305 
4306 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
4307 static int get_callee_stack_depth(struct bpf_verifier_env *env,
4308 				  const struct bpf_insn *insn, int idx)
4309 {
4310 	int start = idx + insn->imm + 1, subprog;
4311 
4312 	subprog = find_subprog(env, start);
4313 	if (subprog < 0) {
4314 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
4315 			  start);
4316 		return -EFAULT;
4317 	}
4318 	return env->subprog_info[subprog].stack_depth;
4319 }
4320 #endif
4321 
4322 static int __check_buffer_access(struct bpf_verifier_env *env,
4323 				 const char *buf_info,
4324 				 const struct bpf_reg_state *reg,
4325 				 int regno, int off, int size)
4326 {
4327 	if (off < 0) {
4328 		verbose(env,
4329 			"R%d invalid %s buffer access: off=%d, size=%d\n",
4330 			regno, buf_info, off, size);
4331 		return -EACCES;
4332 	}
4333 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4334 		char tn_buf[48];
4335 
4336 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4337 		verbose(env,
4338 			"R%d invalid variable buffer offset: off=%d, var_off=%s\n",
4339 			regno, off, tn_buf);
4340 		return -EACCES;
4341 	}
4342 
4343 	return 0;
4344 }
4345 
4346 static int check_tp_buffer_access(struct bpf_verifier_env *env,
4347 				  const struct bpf_reg_state *reg,
4348 				  int regno, int off, int size)
4349 {
4350 	int err;
4351 
4352 	err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
4353 	if (err)
4354 		return err;
4355 
4356 	if (off + size > env->prog->aux->max_tp_access)
4357 		env->prog->aux->max_tp_access = off + size;
4358 
4359 	return 0;
4360 }
4361 
4362 static int check_buffer_access(struct bpf_verifier_env *env,
4363 			       const struct bpf_reg_state *reg,
4364 			       int regno, int off, int size,
4365 			       bool zero_size_allowed,
4366 			       u32 *max_access)
4367 {
4368 	const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr";
4369 	int err;
4370 
4371 	err = __check_buffer_access(env, buf_info, reg, regno, off, size);
4372 	if (err)
4373 		return err;
4374 
4375 	if (off + size > *max_access)
4376 		*max_access = off + size;
4377 
4378 	return 0;
4379 }
4380 
4381 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
4382 static void zext_32_to_64(struct bpf_reg_state *reg)
4383 {
4384 	reg->var_off = tnum_subreg(reg->var_off);
4385 	__reg_assign_32_into_64(reg);
4386 }
4387 
4388 /* truncate register to smaller size (in bytes)
4389  * must be called with size < BPF_REG_SIZE
4390  */
4391 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
4392 {
4393 	u64 mask;
4394 
4395 	/* clear high bits in bit representation */
4396 	reg->var_off = tnum_cast(reg->var_off, size);
4397 
4398 	/* fix arithmetic bounds */
4399 	mask = ((u64)1 << (size * 8)) - 1;
4400 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
4401 		reg->umin_value &= mask;
4402 		reg->umax_value &= mask;
4403 	} else {
4404 		reg->umin_value = 0;
4405 		reg->umax_value = mask;
4406 	}
4407 	reg->smin_value = reg->umin_value;
4408 	reg->smax_value = reg->umax_value;
4409 
4410 	/* If size is smaller than 32bit register the 32bit register
4411 	 * values are also truncated so we push 64-bit bounds into
4412 	 * 32-bit bounds. Above were truncated < 32-bits already.
4413 	 */
4414 	if (size >= 4)
4415 		return;
4416 	__reg_combine_64_into_32(reg);
4417 }
4418 
4419 static bool bpf_map_is_rdonly(const struct bpf_map *map)
4420 {
4421 	/* A map is considered read-only if the following condition are true:
4422 	 *
4423 	 * 1) BPF program side cannot change any of the map content. The
4424 	 *    BPF_F_RDONLY_PROG flag is throughout the lifetime of a map
4425 	 *    and was set at map creation time.
4426 	 * 2) The map value(s) have been initialized from user space by a
4427 	 *    loader and then "frozen", such that no new map update/delete
4428 	 *    operations from syscall side are possible for the rest of
4429 	 *    the map's lifetime from that point onwards.
4430 	 * 3) Any parallel/pending map update/delete operations from syscall
4431 	 *    side have been completed. Only after that point, it's safe to
4432 	 *    assume that map value(s) are immutable.
4433 	 */
4434 	return (map->map_flags & BPF_F_RDONLY_PROG) &&
4435 	       READ_ONCE(map->frozen) &&
4436 	       !bpf_map_write_active(map);
4437 }
4438 
4439 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
4440 {
4441 	void *ptr;
4442 	u64 addr;
4443 	int err;
4444 
4445 	err = map->ops->map_direct_value_addr(map, &addr, off);
4446 	if (err)
4447 		return err;
4448 	ptr = (void *)(long)addr + off;
4449 
4450 	switch (size) {
4451 	case sizeof(u8):
4452 		*val = (u64)*(u8 *)ptr;
4453 		break;
4454 	case sizeof(u16):
4455 		*val = (u64)*(u16 *)ptr;
4456 		break;
4457 	case sizeof(u32):
4458 		*val = (u64)*(u32 *)ptr;
4459 		break;
4460 	case sizeof(u64):
4461 		*val = *(u64 *)ptr;
4462 		break;
4463 	default:
4464 		return -EINVAL;
4465 	}
4466 	return 0;
4467 }
4468 
4469 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
4470 				   struct bpf_reg_state *regs,
4471 				   int regno, int off, int size,
4472 				   enum bpf_access_type atype,
4473 				   int value_regno)
4474 {
4475 	struct bpf_reg_state *reg = regs + regno;
4476 	const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
4477 	const char *tname = btf_name_by_offset(reg->btf, t->name_off);
4478 	enum bpf_type_flag flag = 0;
4479 	u32 btf_id;
4480 	int ret;
4481 
4482 	if (off < 0) {
4483 		verbose(env,
4484 			"R%d is ptr_%s invalid negative access: off=%d\n",
4485 			regno, tname, off);
4486 		return -EACCES;
4487 	}
4488 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4489 		char tn_buf[48];
4490 
4491 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4492 		verbose(env,
4493 			"R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
4494 			regno, tname, off, tn_buf);
4495 		return -EACCES;
4496 	}
4497 
4498 	if (reg->type & MEM_USER) {
4499 		verbose(env,
4500 			"R%d is ptr_%s access user memory: off=%d\n",
4501 			regno, tname, off);
4502 		return -EACCES;
4503 	}
4504 
4505 	if (reg->type & MEM_PERCPU) {
4506 		verbose(env,
4507 			"R%d is ptr_%s access percpu memory: off=%d\n",
4508 			regno, tname, off);
4509 		return -EACCES;
4510 	}
4511 
4512 	if (env->ops->btf_struct_access) {
4513 		ret = env->ops->btf_struct_access(&env->log, reg->btf, t,
4514 						  off, size, atype, &btf_id, &flag);
4515 	} else {
4516 		if (atype != BPF_READ) {
4517 			verbose(env, "only read is supported\n");
4518 			return -EACCES;
4519 		}
4520 
4521 		ret = btf_struct_access(&env->log, reg->btf, t, off, size,
4522 					atype, &btf_id, &flag);
4523 	}
4524 
4525 	if (ret < 0)
4526 		return ret;
4527 
4528 	/* If this is an untrusted pointer, all pointers formed by walking it
4529 	 * also inherit the untrusted flag.
4530 	 */
4531 	if (type_flag(reg->type) & PTR_UNTRUSTED)
4532 		flag |= PTR_UNTRUSTED;
4533 
4534 	if (atype == BPF_READ && value_regno >= 0)
4535 		mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag);
4536 
4537 	return 0;
4538 }
4539 
4540 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
4541 				   struct bpf_reg_state *regs,
4542 				   int regno, int off, int size,
4543 				   enum bpf_access_type atype,
4544 				   int value_regno)
4545 {
4546 	struct bpf_reg_state *reg = regs + regno;
4547 	struct bpf_map *map = reg->map_ptr;
4548 	enum bpf_type_flag flag = 0;
4549 	const struct btf_type *t;
4550 	const char *tname;
4551 	u32 btf_id;
4552 	int ret;
4553 
4554 	if (!btf_vmlinux) {
4555 		verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
4556 		return -ENOTSUPP;
4557 	}
4558 
4559 	if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
4560 		verbose(env, "map_ptr access not supported for map type %d\n",
4561 			map->map_type);
4562 		return -ENOTSUPP;
4563 	}
4564 
4565 	t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
4566 	tname = btf_name_by_offset(btf_vmlinux, t->name_off);
4567 
4568 	if (!env->allow_ptr_to_map_access) {
4569 		verbose(env,
4570 			"%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
4571 			tname);
4572 		return -EPERM;
4573 	}
4574 
4575 	if (off < 0) {
4576 		verbose(env, "R%d is %s invalid negative access: off=%d\n",
4577 			regno, tname, off);
4578 		return -EACCES;
4579 	}
4580 
4581 	if (atype != BPF_READ) {
4582 		verbose(env, "only read from %s is supported\n", tname);
4583 		return -EACCES;
4584 	}
4585 
4586 	ret = btf_struct_access(&env->log, btf_vmlinux, t, off, size, atype, &btf_id, &flag);
4587 	if (ret < 0)
4588 		return ret;
4589 
4590 	if (value_regno >= 0)
4591 		mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag);
4592 
4593 	return 0;
4594 }
4595 
4596 /* Check that the stack access at the given offset is within bounds. The
4597  * maximum valid offset is -1.
4598  *
4599  * The minimum valid offset is -MAX_BPF_STACK for writes, and
4600  * -state->allocated_stack for reads.
4601  */
4602 static int check_stack_slot_within_bounds(int off,
4603 					  struct bpf_func_state *state,
4604 					  enum bpf_access_type t)
4605 {
4606 	int min_valid_off;
4607 
4608 	if (t == BPF_WRITE)
4609 		min_valid_off = -MAX_BPF_STACK;
4610 	else
4611 		min_valid_off = -state->allocated_stack;
4612 
4613 	if (off < min_valid_off || off > -1)
4614 		return -EACCES;
4615 	return 0;
4616 }
4617 
4618 /* Check that the stack access at 'regno + off' falls within the maximum stack
4619  * bounds.
4620  *
4621  * 'off' includes `regno->offset`, but not its dynamic part (if any).
4622  */
4623 static int check_stack_access_within_bounds(
4624 		struct bpf_verifier_env *env,
4625 		int regno, int off, int access_size,
4626 		enum bpf_access_src src, enum bpf_access_type type)
4627 {
4628 	struct bpf_reg_state *regs = cur_regs(env);
4629 	struct bpf_reg_state *reg = regs + regno;
4630 	struct bpf_func_state *state = func(env, reg);
4631 	int min_off, max_off;
4632 	int err;
4633 	char *err_extra;
4634 
4635 	if (src == ACCESS_HELPER)
4636 		/* We don't know if helpers are reading or writing (or both). */
4637 		err_extra = " indirect access to";
4638 	else if (type == BPF_READ)
4639 		err_extra = " read from";
4640 	else
4641 		err_extra = " write to";
4642 
4643 	if (tnum_is_const(reg->var_off)) {
4644 		min_off = reg->var_off.value + off;
4645 		if (access_size > 0)
4646 			max_off = min_off + access_size - 1;
4647 		else
4648 			max_off = min_off;
4649 	} else {
4650 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
4651 		    reg->smin_value <= -BPF_MAX_VAR_OFF) {
4652 			verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
4653 				err_extra, regno);
4654 			return -EACCES;
4655 		}
4656 		min_off = reg->smin_value + off;
4657 		if (access_size > 0)
4658 			max_off = reg->smax_value + off + access_size - 1;
4659 		else
4660 			max_off = min_off;
4661 	}
4662 
4663 	err = check_stack_slot_within_bounds(min_off, state, type);
4664 	if (!err)
4665 		err = check_stack_slot_within_bounds(max_off, state, type);
4666 
4667 	if (err) {
4668 		if (tnum_is_const(reg->var_off)) {
4669 			verbose(env, "invalid%s stack R%d off=%d size=%d\n",
4670 				err_extra, regno, off, access_size);
4671 		} else {
4672 			char tn_buf[48];
4673 
4674 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4675 			verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
4676 				err_extra, regno, tn_buf, access_size);
4677 		}
4678 	}
4679 	return err;
4680 }
4681 
4682 /* check whether memory at (regno + off) is accessible for t = (read | write)
4683  * if t==write, value_regno is a register which value is stored into memory
4684  * if t==read, value_regno is a register which will receive the value from memory
4685  * if t==write && value_regno==-1, some unknown value is stored into memory
4686  * if t==read && value_regno==-1, don't care what we read from memory
4687  */
4688 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
4689 			    int off, int bpf_size, enum bpf_access_type t,
4690 			    int value_regno, bool strict_alignment_once)
4691 {
4692 	struct bpf_reg_state *regs = cur_regs(env);
4693 	struct bpf_reg_state *reg = regs + regno;
4694 	struct bpf_func_state *state;
4695 	int size, err = 0;
4696 
4697 	size = bpf_size_to_bytes(bpf_size);
4698 	if (size < 0)
4699 		return size;
4700 
4701 	/* alignment checks will add in reg->off themselves */
4702 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
4703 	if (err)
4704 		return err;
4705 
4706 	/* for access checks, reg->off is just part of off */
4707 	off += reg->off;
4708 
4709 	if (reg->type == PTR_TO_MAP_KEY) {
4710 		if (t == BPF_WRITE) {
4711 			verbose(env, "write to change key R%d not allowed\n", regno);
4712 			return -EACCES;
4713 		}
4714 
4715 		err = check_mem_region_access(env, regno, off, size,
4716 					      reg->map_ptr->key_size, false);
4717 		if (err)
4718 			return err;
4719 		if (value_regno >= 0)
4720 			mark_reg_unknown(env, regs, value_regno);
4721 	} else if (reg->type == PTR_TO_MAP_VALUE) {
4722 		struct bpf_map_value_off_desc *kptr_off_desc = NULL;
4723 
4724 		if (t == BPF_WRITE && value_regno >= 0 &&
4725 		    is_pointer_value(env, value_regno)) {
4726 			verbose(env, "R%d leaks addr into map\n", value_regno);
4727 			return -EACCES;
4728 		}
4729 		err = check_map_access_type(env, regno, off, size, t);
4730 		if (err)
4731 			return err;
4732 		err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT);
4733 		if (err)
4734 			return err;
4735 		if (tnum_is_const(reg->var_off))
4736 			kptr_off_desc = bpf_map_kptr_off_contains(reg->map_ptr,
4737 								  off + reg->var_off.value);
4738 		if (kptr_off_desc) {
4739 			err = check_map_kptr_access(env, regno, value_regno, insn_idx,
4740 						    kptr_off_desc);
4741 		} else if (t == BPF_READ && value_regno >= 0) {
4742 			struct bpf_map *map = reg->map_ptr;
4743 
4744 			/* if map is read-only, track its contents as scalars */
4745 			if (tnum_is_const(reg->var_off) &&
4746 			    bpf_map_is_rdonly(map) &&
4747 			    map->ops->map_direct_value_addr) {
4748 				int map_off = off + reg->var_off.value;
4749 				u64 val = 0;
4750 
4751 				err = bpf_map_direct_read(map, map_off, size,
4752 							  &val);
4753 				if (err)
4754 					return err;
4755 
4756 				regs[value_regno].type = SCALAR_VALUE;
4757 				__mark_reg_known(&regs[value_regno], val);
4758 			} else {
4759 				mark_reg_unknown(env, regs, value_regno);
4760 			}
4761 		}
4762 	} else if (base_type(reg->type) == PTR_TO_MEM) {
4763 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
4764 
4765 		if (type_may_be_null(reg->type)) {
4766 			verbose(env, "R%d invalid mem access '%s'\n", regno,
4767 				reg_type_str(env, reg->type));
4768 			return -EACCES;
4769 		}
4770 
4771 		if (t == BPF_WRITE && rdonly_mem) {
4772 			verbose(env, "R%d cannot write into %s\n",
4773 				regno, reg_type_str(env, reg->type));
4774 			return -EACCES;
4775 		}
4776 
4777 		if (t == BPF_WRITE && value_regno >= 0 &&
4778 		    is_pointer_value(env, value_regno)) {
4779 			verbose(env, "R%d leaks addr into mem\n", value_regno);
4780 			return -EACCES;
4781 		}
4782 
4783 		err = check_mem_region_access(env, regno, off, size,
4784 					      reg->mem_size, false);
4785 		if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem))
4786 			mark_reg_unknown(env, regs, value_regno);
4787 	} else if (reg->type == PTR_TO_CTX) {
4788 		enum bpf_reg_type reg_type = SCALAR_VALUE;
4789 		struct btf *btf = NULL;
4790 		u32 btf_id = 0;
4791 
4792 		if (t == BPF_WRITE && value_regno >= 0 &&
4793 		    is_pointer_value(env, value_regno)) {
4794 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
4795 			return -EACCES;
4796 		}
4797 
4798 		err = check_ptr_off_reg(env, reg, regno);
4799 		if (err < 0)
4800 			return err;
4801 
4802 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf,
4803 				       &btf_id);
4804 		if (err)
4805 			verbose_linfo(env, insn_idx, "; ");
4806 		if (!err && t == BPF_READ && value_regno >= 0) {
4807 			/* ctx access returns either a scalar, or a
4808 			 * PTR_TO_PACKET[_META,_END]. In the latter
4809 			 * case, we know the offset is zero.
4810 			 */
4811 			if (reg_type == SCALAR_VALUE) {
4812 				mark_reg_unknown(env, regs, value_regno);
4813 			} else {
4814 				mark_reg_known_zero(env, regs,
4815 						    value_regno);
4816 				if (type_may_be_null(reg_type))
4817 					regs[value_regno].id = ++env->id_gen;
4818 				/* A load of ctx field could have different
4819 				 * actual load size with the one encoded in the
4820 				 * insn. When the dst is PTR, it is for sure not
4821 				 * a sub-register.
4822 				 */
4823 				regs[value_regno].subreg_def = DEF_NOT_SUBREG;
4824 				if (base_type(reg_type) == PTR_TO_BTF_ID) {
4825 					regs[value_regno].btf = btf;
4826 					regs[value_regno].btf_id = btf_id;
4827 				}
4828 			}
4829 			regs[value_regno].type = reg_type;
4830 		}
4831 
4832 	} else if (reg->type == PTR_TO_STACK) {
4833 		/* Basic bounds checks. */
4834 		err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
4835 		if (err)
4836 			return err;
4837 
4838 		state = func(env, reg);
4839 		err = update_stack_depth(env, state, off);
4840 		if (err)
4841 			return err;
4842 
4843 		if (t == BPF_READ)
4844 			err = check_stack_read(env, regno, off, size,
4845 					       value_regno);
4846 		else
4847 			err = check_stack_write(env, regno, off, size,
4848 						value_regno, insn_idx);
4849 	} else if (reg_is_pkt_pointer(reg)) {
4850 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
4851 			verbose(env, "cannot write into packet\n");
4852 			return -EACCES;
4853 		}
4854 		if (t == BPF_WRITE && value_regno >= 0 &&
4855 		    is_pointer_value(env, value_regno)) {
4856 			verbose(env, "R%d leaks addr into packet\n",
4857 				value_regno);
4858 			return -EACCES;
4859 		}
4860 		err = check_packet_access(env, regno, off, size, false);
4861 		if (!err && t == BPF_READ && value_regno >= 0)
4862 			mark_reg_unknown(env, regs, value_regno);
4863 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
4864 		if (t == BPF_WRITE && value_regno >= 0 &&
4865 		    is_pointer_value(env, value_regno)) {
4866 			verbose(env, "R%d leaks addr into flow keys\n",
4867 				value_regno);
4868 			return -EACCES;
4869 		}
4870 
4871 		err = check_flow_keys_access(env, off, size);
4872 		if (!err && t == BPF_READ && value_regno >= 0)
4873 			mark_reg_unknown(env, regs, value_regno);
4874 	} else if (type_is_sk_pointer(reg->type)) {
4875 		if (t == BPF_WRITE) {
4876 			verbose(env, "R%d cannot write into %s\n",
4877 				regno, reg_type_str(env, reg->type));
4878 			return -EACCES;
4879 		}
4880 		err = check_sock_access(env, insn_idx, regno, off, size, t);
4881 		if (!err && value_regno >= 0)
4882 			mark_reg_unknown(env, regs, value_regno);
4883 	} else if (reg->type == PTR_TO_TP_BUFFER) {
4884 		err = check_tp_buffer_access(env, reg, regno, off, size);
4885 		if (!err && t == BPF_READ && value_regno >= 0)
4886 			mark_reg_unknown(env, regs, value_regno);
4887 	} else if (base_type(reg->type) == PTR_TO_BTF_ID &&
4888 		   !type_may_be_null(reg->type)) {
4889 		err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
4890 					      value_regno);
4891 	} else if (reg->type == CONST_PTR_TO_MAP) {
4892 		err = check_ptr_to_map_access(env, regs, regno, off, size, t,
4893 					      value_regno);
4894 	} else if (base_type(reg->type) == PTR_TO_BUF) {
4895 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
4896 		u32 *max_access;
4897 
4898 		if (rdonly_mem) {
4899 			if (t == BPF_WRITE) {
4900 				verbose(env, "R%d cannot write into %s\n",
4901 					regno, reg_type_str(env, reg->type));
4902 				return -EACCES;
4903 			}
4904 			max_access = &env->prog->aux->max_rdonly_access;
4905 		} else {
4906 			max_access = &env->prog->aux->max_rdwr_access;
4907 		}
4908 
4909 		err = check_buffer_access(env, reg, regno, off, size, false,
4910 					  max_access);
4911 
4912 		if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ))
4913 			mark_reg_unknown(env, regs, value_regno);
4914 	} else {
4915 		verbose(env, "R%d invalid mem access '%s'\n", regno,
4916 			reg_type_str(env, reg->type));
4917 		return -EACCES;
4918 	}
4919 
4920 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
4921 	    regs[value_regno].type == SCALAR_VALUE) {
4922 		/* b/h/w load zero-extends, mark upper bits as known 0 */
4923 		coerce_reg_to_size(&regs[value_regno], size);
4924 	}
4925 	return err;
4926 }
4927 
4928 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
4929 {
4930 	int load_reg;
4931 	int err;
4932 
4933 	switch (insn->imm) {
4934 	case BPF_ADD:
4935 	case BPF_ADD | BPF_FETCH:
4936 	case BPF_AND:
4937 	case BPF_AND | BPF_FETCH:
4938 	case BPF_OR:
4939 	case BPF_OR | BPF_FETCH:
4940 	case BPF_XOR:
4941 	case BPF_XOR | BPF_FETCH:
4942 	case BPF_XCHG:
4943 	case BPF_CMPXCHG:
4944 		break;
4945 	default:
4946 		verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
4947 		return -EINVAL;
4948 	}
4949 
4950 	if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
4951 		verbose(env, "invalid atomic operand size\n");
4952 		return -EINVAL;
4953 	}
4954 
4955 	/* check src1 operand */
4956 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
4957 	if (err)
4958 		return err;
4959 
4960 	/* check src2 operand */
4961 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4962 	if (err)
4963 		return err;
4964 
4965 	if (insn->imm == BPF_CMPXCHG) {
4966 		/* Check comparison of R0 with memory location */
4967 		const u32 aux_reg = BPF_REG_0;
4968 
4969 		err = check_reg_arg(env, aux_reg, SRC_OP);
4970 		if (err)
4971 			return err;
4972 
4973 		if (is_pointer_value(env, aux_reg)) {
4974 			verbose(env, "R%d leaks addr into mem\n", aux_reg);
4975 			return -EACCES;
4976 		}
4977 	}
4978 
4979 	if (is_pointer_value(env, insn->src_reg)) {
4980 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
4981 		return -EACCES;
4982 	}
4983 
4984 	if (is_ctx_reg(env, insn->dst_reg) ||
4985 	    is_pkt_reg(env, insn->dst_reg) ||
4986 	    is_flow_key_reg(env, insn->dst_reg) ||
4987 	    is_sk_reg(env, insn->dst_reg)) {
4988 		verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
4989 			insn->dst_reg,
4990 			reg_type_str(env, reg_state(env, insn->dst_reg)->type));
4991 		return -EACCES;
4992 	}
4993 
4994 	if (insn->imm & BPF_FETCH) {
4995 		if (insn->imm == BPF_CMPXCHG)
4996 			load_reg = BPF_REG_0;
4997 		else
4998 			load_reg = insn->src_reg;
4999 
5000 		/* check and record load of old value */
5001 		err = check_reg_arg(env, load_reg, DST_OP);
5002 		if (err)
5003 			return err;
5004 	} else {
5005 		/* This instruction accesses a memory location but doesn't
5006 		 * actually load it into a register.
5007 		 */
5008 		load_reg = -1;
5009 	}
5010 
5011 	/* Check whether we can read the memory, with second call for fetch
5012 	 * case to simulate the register fill.
5013 	 */
5014 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
5015 			       BPF_SIZE(insn->code), BPF_READ, -1, true);
5016 	if (!err && load_reg >= 0)
5017 		err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
5018 				       BPF_SIZE(insn->code), BPF_READ, load_reg,
5019 				       true);
5020 	if (err)
5021 		return err;
5022 
5023 	/* Check whether we can write into the same memory. */
5024 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
5025 			       BPF_SIZE(insn->code), BPF_WRITE, -1, true);
5026 	if (err)
5027 		return err;
5028 
5029 	return 0;
5030 }
5031 
5032 /* When register 'regno' is used to read the stack (either directly or through
5033  * a helper function) make sure that it's within stack boundary and, depending
5034  * on the access type, that all elements of the stack are initialized.
5035  *
5036  * 'off' includes 'regno->off', but not its dynamic part (if any).
5037  *
5038  * All registers that have been spilled on the stack in the slots within the
5039  * read offsets are marked as read.
5040  */
5041 static int check_stack_range_initialized(
5042 		struct bpf_verifier_env *env, int regno, int off,
5043 		int access_size, bool zero_size_allowed,
5044 		enum bpf_access_src type, struct bpf_call_arg_meta *meta)
5045 {
5046 	struct bpf_reg_state *reg = reg_state(env, regno);
5047 	struct bpf_func_state *state = func(env, reg);
5048 	int err, min_off, max_off, i, j, slot, spi;
5049 	char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
5050 	enum bpf_access_type bounds_check_type;
5051 	/* Some accesses can write anything into the stack, others are
5052 	 * read-only.
5053 	 */
5054 	bool clobber = false;
5055 
5056 	if (access_size == 0 && !zero_size_allowed) {
5057 		verbose(env, "invalid zero-sized read\n");
5058 		return -EACCES;
5059 	}
5060 
5061 	if (type == ACCESS_HELPER) {
5062 		/* The bounds checks for writes are more permissive than for
5063 		 * reads. However, if raw_mode is not set, we'll do extra
5064 		 * checks below.
5065 		 */
5066 		bounds_check_type = BPF_WRITE;
5067 		clobber = true;
5068 	} else {
5069 		bounds_check_type = BPF_READ;
5070 	}
5071 	err = check_stack_access_within_bounds(env, regno, off, access_size,
5072 					       type, bounds_check_type);
5073 	if (err)
5074 		return err;
5075 
5076 
5077 	if (tnum_is_const(reg->var_off)) {
5078 		min_off = max_off = reg->var_off.value + off;
5079 	} else {
5080 		/* Variable offset is prohibited for unprivileged mode for
5081 		 * simplicity since it requires corresponding support in
5082 		 * Spectre masking for stack ALU.
5083 		 * See also retrieve_ptr_limit().
5084 		 */
5085 		if (!env->bypass_spec_v1) {
5086 			char tn_buf[48];
5087 
5088 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5089 			verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
5090 				regno, err_extra, tn_buf);
5091 			return -EACCES;
5092 		}
5093 		/* Only initialized buffer on stack is allowed to be accessed
5094 		 * with variable offset. With uninitialized buffer it's hard to
5095 		 * guarantee that whole memory is marked as initialized on
5096 		 * helper return since specific bounds are unknown what may
5097 		 * cause uninitialized stack leaking.
5098 		 */
5099 		if (meta && meta->raw_mode)
5100 			meta = NULL;
5101 
5102 		min_off = reg->smin_value + off;
5103 		max_off = reg->smax_value + off;
5104 	}
5105 
5106 	if (meta && meta->raw_mode) {
5107 		meta->access_size = access_size;
5108 		meta->regno = regno;
5109 		return 0;
5110 	}
5111 
5112 	for (i = min_off; i < max_off + access_size; i++) {
5113 		u8 *stype;
5114 
5115 		slot = -i - 1;
5116 		spi = slot / BPF_REG_SIZE;
5117 		if (state->allocated_stack <= slot)
5118 			goto err;
5119 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
5120 		if (*stype == STACK_MISC)
5121 			goto mark;
5122 		if (*stype == STACK_ZERO) {
5123 			if (clobber) {
5124 				/* helper can write anything into the stack */
5125 				*stype = STACK_MISC;
5126 			}
5127 			goto mark;
5128 		}
5129 
5130 		if (is_spilled_reg(&state->stack[spi]) &&
5131 		    base_type(state->stack[spi].spilled_ptr.type) == PTR_TO_BTF_ID)
5132 			goto mark;
5133 
5134 		if (is_spilled_reg(&state->stack[spi]) &&
5135 		    (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
5136 		     env->allow_ptr_leaks)) {
5137 			if (clobber) {
5138 				__mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
5139 				for (j = 0; j < BPF_REG_SIZE; j++)
5140 					scrub_spilled_slot(&state->stack[spi].slot_type[j]);
5141 			}
5142 			goto mark;
5143 		}
5144 
5145 err:
5146 		if (tnum_is_const(reg->var_off)) {
5147 			verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
5148 				err_extra, regno, min_off, i - min_off, access_size);
5149 		} else {
5150 			char tn_buf[48];
5151 
5152 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5153 			verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
5154 				err_extra, regno, tn_buf, i - min_off, access_size);
5155 		}
5156 		return -EACCES;
5157 mark:
5158 		/* reading any byte out of 8-byte 'spill_slot' will cause
5159 		 * the whole slot to be marked as 'read'
5160 		 */
5161 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
5162 			      state->stack[spi].spilled_ptr.parent,
5163 			      REG_LIVE_READ64);
5164 	}
5165 	return update_stack_depth(env, state, min_off);
5166 }
5167 
5168 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
5169 				   int access_size, bool zero_size_allowed,
5170 				   struct bpf_call_arg_meta *meta)
5171 {
5172 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
5173 	u32 *max_access;
5174 
5175 	switch (base_type(reg->type)) {
5176 	case PTR_TO_PACKET:
5177 	case PTR_TO_PACKET_META:
5178 		return check_packet_access(env, regno, reg->off, access_size,
5179 					   zero_size_allowed);
5180 	case PTR_TO_MAP_KEY:
5181 		if (meta && meta->raw_mode) {
5182 			verbose(env, "R%d cannot write into %s\n", regno,
5183 				reg_type_str(env, reg->type));
5184 			return -EACCES;
5185 		}
5186 		return check_mem_region_access(env, regno, reg->off, access_size,
5187 					       reg->map_ptr->key_size, false);
5188 	case PTR_TO_MAP_VALUE:
5189 		if (check_map_access_type(env, regno, reg->off, access_size,
5190 					  meta && meta->raw_mode ? BPF_WRITE :
5191 					  BPF_READ))
5192 			return -EACCES;
5193 		return check_map_access(env, regno, reg->off, access_size,
5194 					zero_size_allowed, ACCESS_HELPER);
5195 	case PTR_TO_MEM:
5196 		if (type_is_rdonly_mem(reg->type)) {
5197 			if (meta && meta->raw_mode) {
5198 				verbose(env, "R%d cannot write into %s\n", regno,
5199 					reg_type_str(env, reg->type));
5200 				return -EACCES;
5201 			}
5202 		}
5203 		return check_mem_region_access(env, regno, reg->off,
5204 					       access_size, reg->mem_size,
5205 					       zero_size_allowed);
5206 	case PTR_TO_BUF:
5207 		if (type_is_rdonly_mem(reg->type)) {
5208 			if (meta && meta->raw_mode) {
5209 				verbose(env, "R%d cannot write into %s\n", regno,
5210 					reg_type_str(env, reg->type));
5211 				return -EACCES;
5212 			}
5213 
5214 			max_access = &env->prog->aux->max_rdonly_access;
5215 		} else {
5216 			max_access = &env->prog->aux->max_rdwr_access;
5217 		}
5218 		return check_buffer_access(env, reg, regno, reg->off,
5219 					   access_size, zero_size_allowed,
5220 					   max_access);
5221 	case PTR_TO_STACK:
5222 		return check_stack_range_initialized(
5223 				env,
5224 				regno, reg->off, access_size,
5225 				zero_size_allowed, ACCESS_HELPER, meta);
5226 	default: /* scalar_value or invalid ptr */
5227 		/* Allow zero-byte read from NULL, regardless of pointer type */
5228 		if (zero_size_allowed && access_size == 0 &&
5229 		    register_is_null(reg))
5230 			return 0;
5231 
5232 		verbose(env, "R%d type=%s ", regno,
5233 			reg_type_str(env, reg->type));
5234 		verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK));
5235 		return -EACCES;
5236 	}
5237 }
5238 
5239 static int check_mem_size_reg(struct bpf_verifier_env *env,
5240 			      struct bpf_reg_state *reg, u32 regno,
5241 			      bool zero_size_allowed,
5242 			      struct bpf_call_arg_meta *meta)
5243 {
5244 	int err;
5245 
5246 	/* This is used to refine r0 return value bounds for helpers
5247 	 * that enforce this value as an upper bound on return values.
5248 	 * See do_refine_retval_range() for helpers that can refine
5249 	 * the return value. C type of helper is u32 so we pull register
5250 	 * bound from umax_value however, if negative verifier errors
5251 	 * out. Only upper bounds can be learned because retval is an
5252 	 * int type and negative retvals are allowed.
5253 	 */
5254 	meta->msize_max_value = reg->umax_value;
5255 
5256 	/* The register is SCALAR_VALUE; the access check
5257 	 * happens using its boundaries.
5258 	 */
5259 	if (!tnum_is_const(reg->var_off))
5260 		/* For unprivileged variable accesses, disable raw
5261 		 * mode so that the program is required to
5262 		 * initialize all the memory that the helper could
5263 		 * just partially fill up.
5264 		 */
5265 		meta = NULL;
5266 
5267 	if (reg->smin_value < 0) {
5268 		verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
5269 			regno);
5270 		return -EACCES;
5271 	}
5272 
5273 	if (reg->umin_value == 0) {
5274 		err = check_helper_mem_access(env, regno - 1, 0,
5275 					      zero_size_allowed,
5276 					      meta);
5277 		if (err)
5278 			return err;
5279 	}
5280 
5281 	if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
5282 		verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
5283 			regno);
5284 		return -EACCES;
5285 	}
5286 	err = check_helper_mem_access(env, regno - 1,
5287 				      reg->umax_value,
5288 				      zero_size_allowed, meta);
5289 	if (!err)
5290 		err = mark_chain_precision(env, regno);
5291 	return err;
5292 }
5293 
5294 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
5295 		   u32 regno, u32 mem_size)
5296 {
5297 	bool may_be_null = type_may_be_null(reg->type);
5298 	struct bpf_reg_state saved_reg;
5299 	struct bpf_call_arg_meta meta;
5300 	int err;
5301 
5302 	if (register_is_null(reg))
5303 		return 0;
5304 
5305 	memset(&meta, 0, sizeof(meta));
5306 	/* Assuming that the register contains a value check if the memory
5307 	 * access is safe. Temporarily save and restore the register's state as
5308 	 * the conversion shouldn't be visible to a caller.
5309 	 */
5310 	if (may_be_null) {
5311 		saved_reg = *reg;
5312 		mark_ptr_not_null_reg(reg);
5313 	}
5314 
5315 	err = check_helper_mem_access(env, regno, mem_size, true, &meta);
5316 	/* Check access for BPF_WRITE */
5317 	meta.raw_mode = true;
5318 	err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta);
5319 
5320 	if (may_be_null)
5321 		*reg = saved_reg;
5322 
5323 	return err;
5324 }
5325 
5326 int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
5327 			     u32 regno)
5328 {
5329 	struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1];
5330 	bool may_be_null = type_may_be_null(mem_reg->type);
5331 	struct bpf_reg_state saved_reg;
5332 	struct bpf_call_arg_meta meta;
5333 	int err;
5334 
5335 	WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5);
5336 
5337 	memset(&meta, 0, sizeof(meta));
5338 
5339 	if (may_be_null) {
5340 		saved_reg = *mem_reg;
5341 		mark_ptr_not_null_reg(mem_reg);
5342 	}
5343 
5344 	err = check_mem_size_reg(env, reg, regno, true, &meta);
5345 	/* Check access for BPF_WRITE */
5346 	meta.raw_mode = true;
5347 	err = err ?: check_mem_size_reg(env, reg, regno, true, &meta);
5348 
5349 	if (may_be_null)
5350 		*mem_reg = saved_reg;
5351 	return err;
5352 }
5353 
5354 /* Implementation details:
5355  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
5356  * Two bpf_map_lookups (even with the same key) will have different reg->id.
5357  * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
5358  * value_or_null->value transition, since the verifier only cares about
5359  * the range of access to valid map value pointer and doesn't care about actual
5360  * address of the map element.
5361  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
5362  * reg->id > 0 after value_or_null->value transition. By doing so
5363  * two bpf_map_lookups will be considered two different pointers that
5364  * point to different bpf_spin_locks.
5365  * The verifier allows taking only one bpf_spin_lock at a time to avoid
5366  * dead-locks.
5367  * Since only one bpf_spin_lock is allowed the checks are simpler than
5368  * reg_is_refcounted() logic. The verifier needs to remember only
5369  * one spin_lock instead of array of acquired_refs.
5370  * cur_state->active_spin_lock remembers which map value element got locked
5371  * and clears it after bpf_spin_unlock.
5372  */
5373 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
5374 			     bool is_lock)
5375 {
5376 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
5377 	struct bpf_verifier_state *cur = env->cur_state;
5378 	bool is_const = tnum_is_const(reg->var_off);
5379 	struct bpf_map *map = reg->map_ptr;
5380 	u64 val = reg->var_off.value;
5381 
5382 	if (!is_const) {
5383 		verbose(env,
5384 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
5385 			regno);
5386 		return -EINVAL;
5387 	}
5388 	if (!map->btf) {
5389 		verbose(env,
5390 			"map '%s' has to have BTF in order to use bpf_spin_lock\n",
5391 			map->name);
5392 		return -EINVAL;
5393 	}
5394 	if (!map_value_has_spin_lock(map)) {
5395 		if (map->spin_lock_off == -E2BIG)
5396 			verbose(env,
5397 				"map '%s' has more than one 'struct bpf_spin_lock'\n",
5398 				map->name);
5399 		else if (map->spin_lock_off == -ENOENT)
5400 			verbose(env,
5401 				"map '%s' doesn't have 'struct bpf_spin_lock'\n",
5402 				map->name);
5403 		else
5404 			verbose(env,
5405 				"map '%s' is not a struct type or bpf_spin_lock is mangled\n",
5406 				map->name);
5407 		return -EINVAL;
5408 	}
5409 	if (map->spin_lock_off != val + reg->off) {
5410 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
5411 			val + reg->off);
5412 		return -EINVAL;
5413 	}
5414 	if (is_lock) {
5415 		if (cur->active_spin_lock) {
5416 			verbose(env,
5417 				"Locking two bpf_spin_locks are not allowed\n");
5418 			return -EINVAL;
5419 		}
5420 		cur->active_spin_lock = reg->id;
5421 	} else {
5422 		if (!cur->active_spin_lock) {
5423 			verbose(env, "bpf_spin_unlock without taking a lock\n");
5424 			return -EINVAL;
5425 		}
5426 		if (cur->active_spin_lock != reg->id) {
5427 			verbose(env, "bpf_spin_unlock of different lock\n");
5428 			return -EINVAL;
5429 		}
5430 		cur->active_spin_lock = 0;
5431 	}
5432 	return 0;
5433 }
5434 
5435 static int process_timer_func(struct bpf_verifier_env *env, int regno,
5436 			      struct bpf_call_arg_meta *meta)
5437 {
5438 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
5439 	bool is_const = tnum_is_const(reg->var_off);
5440 	struct bpf_map *map = reg->map_ptr;
5441 	u64 val = reg->var_off.value;
5442 
5443 	if (!is_const) {
5444 		verbose(env,
5445 			"R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n",
5446 			regno);
5447 		return -EINVAL;
5448 	}
5449 	if (!map->btf) {
5450 		verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n",
5451 			map->name);
5452 		return -EINVAL;
5453 	}
5454 	if (!map_value_has_timer(map)) {
5455 		if (map->timer_off == -E2BIG)
5456 			verbose(env,
5457 				"map '%s' has more than one 'struct bpf_timer'\n",
5458 				map->name);
5459 		else if (map->timer_off == -ENOENT)
5460 			verbose(env,
5461 				"map '%s' doesn't have 'struct bpf_timer'\n",
5462 				map->name);
5463 		else
5464 			verbose(env,
5465 				"map '%s' is not a struct type or bpf_timer is mangled\n",
5466 				map->name);
5467 		return -EINVAL;
5468 	}
5469 	if (map->timer_off != val + reg->off) {
5470 		verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n",
5471 			val + reg->off, map->timer_off);
5472 		return -EINVAL;
5473 	}
5474 	if (meta->map_ptr) {
5475 		verbose(env, "verifier bug. Two map pointers in a timer helper\n");
5476 		return -EFAULT;
5477 	}
5478 	meta->map_uid = reg->map_uid;
5479 	meta->map_ptr = map;
5480 	return 0;
5481 }
5482 
5483 static int process_kptr_func(struct bpf_verifier_env *env, int regno,
5484 			     struct bpf_call_arg_meta *meta)
5485 {
5486 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
5487 	struct bpf_map_value_off_desc *off_desc;
5488 	struct bpf_map *map_ptr = reg->map_ptr;
5489 	u32 kptr_off;
5490 	int ret;
5491 
5492 	if (!tnum_is_const(reg->var_off)) {
5493 		verbose(env,
5494 			"R%d doesn't have constant offset. kptr has to be at the constant offset\n",
5495 			regno);
5496 		return -EINVAL;
5497 	}
5498 	if (!map_ptr->btf) {
5499 		verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n",
5500 			map_ptr->name);
5501 		return -EINVAL;
5502 	}
5503 	if (!map_value_has_kptrs(map_ptr)) {
5504 		ret = PTR_ERR_OR_ZERO(map_ptr->kptr_off_tab);
5505 		if (ret == -E2BIG)
5506 			verbose(env, "map '%s' has more than %d kptr\n", map_ptr->name,
5507 				BPF_MAP_VALUE_OFF_MAX);
5508 		else if (ret == -EEXIST)
5509 			verbose(env, "map '%s' has repeating kptr BTF tags\n", map_ptr->name);
5510 		else
5511 			verbose(env, "map '%s' has no valid kptr\n", map_ptr->name);
5512 		return -EINVAL;
5513 	}
5514 
5515 	meta->map_ptr = map_ptr;
5516 	kptr_off = reg->off + reg->var_off.value;
5517 	off_desc = bpf_map_kptr_off_contains(map_ptr, kptr_off);
5518 	if (!off_desc) {
5519 		verbose(env, "off=%d doesn't point to kptr\n", kptr_off);
5520 		return -EACCES;
5521 	}
5522 	if (off_desc->type != BPF_KPTR_REF) {
5523 		verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off);
5524 		return -EACCES;
5525 	}
5526 	meta->kptr_off_desc = off_desc;
5527 	return 0;
5528 }
5529 
5530 static bool arg_type_is_mem_size(enum bpf_arg_type type)
5531 {
5532 	return type == ARG_CONST_SIZE ||
5533 	       type == ARG_CONST_SIZE_OR_ZERO;
5534 }
5535 
5536 static bool arg_type_is_alloc_size(enum bpf_arg_type type)
5537 {
5538 	return type == ARG_CONST_ALLOC_SIZE_OR_ZERO;
5539 }
5540 
5541 static bool arg_type_is_int_ptr(enum bpf_arg_type type)
5542 {
5543 	return type == ARG_PTR_TO_INT ||
5544 	       type == ARG_PTR_TO_LONG;
5545 }
5546 
5547 static bool arg_type_is_release(enum bpf_arg_type type)
5548 {
5549 	return type & OBJ_RELEASE;
5550 }
5551 
5552 static bool arg_type_is_dynptr(enum bpf_arg_type type)
5553 {
5554 	return base_type(type) == ARG_PTR_TO_DYNPTR;
5555 }
5556 
5557 static int int_ptr_type_to_size(enum bpf_arg_type type)
5558 {
5559 	if (type == ARG_PTR_TO_INT)
5560 		return sizeof(u32);
5561 	else if (type == ARG_PTR_TO_LONG)
5562 		return sizeof(u64);
5563 
5564 	return -EINVAL;
5565 }
5566 
5567 static int resolve_map_arg_type(struct bpf_verifier_env *env,
5568 				 const struct bpf_call_arg_meta *meta,
5569 				 enum bpf_arg_type *arg_type)
5570 {
5571 	if (!meta->map_ptr) {
5572 		/* kernel subsystem misconfigured verifier */
5573 		verbose(env, "invalid map_ptr to access map->type\n");
5574 		return -EACCES;
5575 	}
5576 
5577 	switch (meta->map_ptr->map_type) {
5578 	case BPF_MAP_TYPE_SOCKMAP:
5579 	case BPF_MAP_TYPE_SOCKHASH:
5580 		if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
5581 			*arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
5582 		} else {
5583 			verbose(env, "invalid arg_type for sockmap/sockhash\n");
5584 			return -EINVAL;
5585 		}
5586 		break;
5587 	case BPF_MAP_TYPE_BLOOM_FILTER:
5588 		if (meta->func_id == BPF_FUNC_map_peek_elem)
5589 			*arg_type = ARG_PTR_TO_MAP_VALUE;
5590 		break;
5591 	default:
5592 		break;
5593 	}
5594 	return 0;
5595 }
5596 
5597 struct bpf_reg_types {
5598 	const enum bpf_reg_type types[10];
5599 	u32 *btf_id;
5600 };
5601 
5602 static const struct bpf_reg_types map_key_value_types = {
5603 	.types = {
5604 		PTR_TO_STACK,
5605 		PTR_TO_PACKET,
5606 		PTR_TO_PACKET_META,
5607 		PTR_TO_MAP_KEY,
5608 		PTR_TO_MAP_VALUE,
5609 	},
5610 };
5611 
5612 static const struct bpf_reg_types sock_types = {
5613 	.types = {
5614 		PTR_TO_SOCK_COMMON,
5615 		PTR_TO_SOCKET,
5616 		PTR_TO_TCP_SOCK,
5617 		PTR_TO_XDP_SOCK,
5618 	},
5619 };
5620 
5621 #ifdef CONFIG_NET
5622 static const struct bpf_reg_types btf_id_sock_common_types = {
5623 	.types = {
5624 		PTR_TO_SOCK_COMMON,
5625 		PTR_TO_SOCKET,
5626 		PTR_TO_TCP_SOCK,
5627 		PTR_TO_XDP_SOCK,
5628 		PTR_TO_BTF_ID,
5629 	},
5630 	.btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
5631 };
5632 #endif
5633 
5634 static const struct bpf_reg_types mem_types = {
5635 	.types = {
5636 		PTR_TO_STACK,
5637 		PTR_TO_PACKET,
5638 		PTR_TO_PACKET_META,
5639 		PTR_TO_MAP_KEY,
5640 		PTR_TO_MAP_VALUE,
5641 		PTR_TO_MEM,
5642 		PTR_TO_MEM | MEM_ALLOC,
5643 		PTR_TO_BUF,
5644 	},
5645 };
5646 
5647 static const struct bpf_reg_types int_ptr_types = {
5648 	.types = {
5649 		PTR_TO_STACK,
5650 		PTR_TO_PACKET,
5651 		PTR_TO_PACKET_META,
5652 		PTR_TO_MAP_KEY,
5653 		PTR_TO_MAP_VALUE,
5654 	},
5655 };
5656 
5657 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
5658 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
5659 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
5660 static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM | MEM_ALLOC } };
5661 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
5662 static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } };
5663 static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } };
5664 static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_BTF_ID | MEM_PERCPU } };
5665 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
5666 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
5667 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
5668 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } };
5669 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } };
5670 
5671 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
5672 	[ARG_PTR_TO_MAP_KEY]		= &map_key_value_types,
5673 	[ARG_PTR_TO_MAP_VALUE]		= &map_key_value_types,
5674 	[ARG_CONST_SIZE]		= &scalar_types,
5675 	[ARG_CONST_SIZE_OR_ZERO]	= &scalar_types,
5676 	[ARG_CONST_ALLOC_SIZE_OR_ZERO]	= &scalar_types,
5677 	[ARG_CONST_MAP_PTR]		= &const_map_ptr_types,
5678 	[ARG_PTR_TO_CTX]		= &context_types,
5679 	[ARG_PTR_TO_SOCK_COMMON]	= &sock_types,
5680 #ifdef CONFIG_NET
5681 	[ARG_PTR_TO_BTF_ID_SOCK_COMMON]	= &btf_id_sock_common_types,
5682 #endif
5683 	[ARG_PTR_TO_SOCKET]		= &fullsock_types,
5684 	[ARG_PTR_TO_BTF_ID]		= &btf_ptr_types,
5685 	[ARG_PTR_TO_SPIN_LOCK]		= &spin_lock_types,
5686 	[ARG_PTR_TO_MEM]		= &mem_types,
5687 	[ARG_PTR_TO_ALLOC_MEM]		= &alloc_mem_types,
5688 	[ARG_PTR_TO_INT]		= &int_ptr_types,
5689 	[ARG_PTR_TO_LONG]		= &int_ptr_types,
5690 	[ARG_PTR_TO_PERCPU_BTF_ID]	= &percpu_btf_ptr_types,
5691 	[ARG_PTR_TO_FUNC]		= &func_ptr_types,
5692 	[ARG_PTR_TO_STACK]		= &stack_ptr_types,
5693 	[ARG_PTR_TO_CONST_STR]		= &const_str_ptr_types,
5694 	[ARG_PTR_TO_TIMER]		= &timer_types,
5695 	[ARG_PTR_TO_KPTR]		= &kptr_types,
5696 	[ARG_PTR_TO_DYNPTR]		= &stack_ptr_types,
5697 };
5698 
5699 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
5700 			  enum bpf_arg_type arg_type,
5701 			  const u32 *arg_btf_id,
5702 			  struct bpf_call_arg_meta *meta)
5703 {
5704 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
5705 	enum bpf_reg_type expected, type = reg->type;
5706 	const struct bpf_reg_types *compatible;
5707 	int i, j;
5708 
5709 	compatible = compatible_reg_types[base_type(arg_type)];
5710 	if (!compatible) {
5711 		verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
5712 		return -EFAULT;
5713 	}
5714 
5715 	/* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY,
5716 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY
5717 	 *
5718 	 * Same for MAYBE_NULL:
5719 	 *
5720 	 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL,
5721 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL
5722 	 *
5723 	 * Therefore we fold these flags depending on the arg_type before comparison.
5724 	 */
5725 	if (arg_type & MEM_RDONLY)
5726 		type &= ~MEM_RDONLY;
5727 	if (arg_type & PTR_MAYBE_NULL)
5728 		type &= ~PTR_MAYBE_NULL;
5729 
5730 	for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
5731 		expected = compatible->types[i];
5732 		if (expected == NOT_INIT)
5733 			break;
5734 
5735 		if (type == expected)
5736 			goto found;
5737 	}
5738 
5739 	verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type));
5740 	for (j = 0; j + 1 < i; j++)
5741 		verbose(env, "%s, ", reg_type_str(env, compatible->types[j]));
5742 	verbose(env, "%s\n", reg_type_str(env, compatible->types[j]));
5743 	return -EACCES;
5744 
5745 found:
5746 	if (reg->type == PTR_TO_BTF_ID) {
5747 		/* For bpf_sk_release, it needs to match against first member
5748 		 * 'struct sock_common', hence make an exception for it. This
5749 		 * allows bpf_sk_release to work for multiple socket types.
5750 		 */
5751 		bool strict_type_match = arg_type_is_release(arg_type) &&
5752 					 meta->func_id != BPF_FUNC_sk_release;
5753 
5754 		if (!arg_btf_id) {
5755 			if (!compatible->btf_id) {
5756 				verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
5757 				return -EFAULT;
5758 			}
5759 			arg_btf_id = compatible->btf_id;
5760 		}
5761 
5762 		if (meta->func_id == BPF_FUNC_kptr_xchg) {
5763 			if (map_kptr_match_type(env, meta->kptr_off_desc, reg, regno))
5764 				return -EACCES;
5765 		} else if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
5766 						 btf_vmlinux, *arg_btf_id,
5767 						 strict_type_match)) {
5768 			verbose(env, "R%d is of type %s but %s is expected\n",
5769 				regno, kernel_type_name(reg->btf, reg->btf_id),
5770 				kernel_type_name(btf_vmlinux, *arg_btf_id));
5771 			return -EACCES;
5772 		}
5773 	}
5774 
5775 	return 0;
5776 }
5777 
5778 int check_func_arg_reg_off(struct bpf_verifier_env *env,
5779 			   const struct bpf_reg_state *reg, int regno,
5780 			   enum bpf_arg_type arg_type)
5781 {
5782 	enum bpf_reg_type type = reg->type;
5783 	bool fixed_off_ok = false;
5784 
5785 	switch ((u32)type) {
5786 	/* Pointer types where reg offset is explicitly allowed: */
5787 	case PTR_TO_STACK:
5788 		if (arg_type_is_dynptr(arg_type) && reg->off % BPF_REG_SIZE) {
5789 			verbose(env, "cannot pass in dynptr at an offset\n");
5790 			return -EINVAL;
5791 		}
5792 		fallthrough;
5793 	case PTR_TO_PACKET:
5794 	case PTR_TO_PACKET_META:
5795 	case PTR_TO_MAP_KEY:
5796 	case PTR_TO_MAP_VALUE:
5797 	case PTR_TO_MEM:
5798 	case PTR_TO_MEM | MEM_RDONLY:
5799 	case PTR_TO_MEM | MEM_ALLOC:
5800 	case PTR_TO_BUF:
5801 	case PTR_TO_BUF | MEM_RDONLY:
5802 	case SCALAR_VALUE:
5803 		/* Some of the argument types nevertheless require a
5804 		 * zero register offset.
5805 		 */
5806 		if (base_type(arg_type) != ARG_PTR_TO_ALLOC_MEM)
5807 			return 0;
5808 		break;
5809 	/* All the rest must be rejected, except PTR_TO_BTF_ID which allows
5810 	 * fixed offset.
5811 	 */
5812 	case PTR_TO_BTF_ID:
5813 		/* When referenced PTR_TO_BTF_ID is passed to release function,
5814 		 * it's fixed offset must be 0.	In the other cases, fixed offset
5815 		 * can be non-zero.
5816 		 */
5817 		if (arg_type_is_release(arg_type) && reg->off) {
5818 			verbose(env, "R%d must have zero offset when passed to release func\n",
5819 				regno);
5820 			return -EINVAL;
5821 		}
5822 		/* For arg is release pointer, fixed_off_ok must be false, but
5823 		 * we already checked and rejected reg->off != 0 above, so set
5824 		 * to true to allow fixed offset for all other cases.
5825 		 */
5826 		fixed_off_ok = true;
5827 		break;
5828 	default:
5829 		break;
5830 	}
5831 	return __check_ptr_off_reg(env, reg, regno, fixed_off_ok);
5832 }
5833 
5834 static u32 stack_slot_get_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
5835 {
5836 	struct bpf_func_state *state = func(env, reg);
5837 	int spi = get_spi(reg->off);
5838 
5839 	return state->stack[spi].spilled_ptr.id;
5840 }
5841 
5842 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
5843 			  struct bpf_call_arg_meta *meta,
5844 			  const struct bpf_func_proto *fn)
5845 {
5846 	u32 regno = BPF_REG_1 + arg;
5847 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
5848 	enum bpf_arg_type arg_type = fn->arg_type[arg];
5849 	enum bpf_reg_type type = reg->type;
5850 	u32 *arg_btf_id = NULL;
5851 	int err = 0;
5852 
5853 	if (arg_type == ARG_DONTCARE)
5854 		return 0;
5855 
5856 	err = check_reg_arg(env, regno, SRC_OP);
5857 	if (err)
5858 		return err;
5859 
5860 	if (arg_type == ARG_ANYTHING) {
5861 		if (is_pointer_value(env, regno)) {
5862 			verbose(env, "R%d leaks addr into helper function\n",
5863 				regno);
5864 			return -EACCES;
5865 		}
5866 		return 0;
5867 	}
5868 
5869 	if (type_is_pkt_pointer(type) &&
5870 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
5871 		verbose(env, "helper access to the packet is not allowed\n");
5872 		return -EACCES;
5873 	}
5874 
5875 	if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) {
5876 		err = resolve_map_arg_type(env, meta, &arg_type);
5877 		if (err)
5878 			return err;
5879 	}
5880 
5881 	if (register_is_null(reg) && type_may_be_null(arg_type))
5882 		/* A NULL register has a SCALAR_VALUE type, so skip
5883 		 * type checking.
5884 		 */
5885 		goto skip_type_check;
5886 
5887 	/* arg_btf_id and arg_size are in a union. */
5888 	if (base_type(arg_type) == ARG_PTR_TO_BTF_ID)
5889 		arg_btf_id = fn->arg_btf_id[arg];
5890 
5891 	err = check_reg_type(env, regno, arg_type, arg_btf_id, meta);
5892 	if (err)
5893 		return err;
5894 
5895 	err = check_func_arg_reg_off(env, reg, regno, arg_type);
5896 	if (err)
5897 		return err;
5898 
5899 skip_type_check:
5900 	if (arg_type_is_release(arg_type)) {
5901 		if (arg_type_is_dynptr(arg_type)) {
5902 			struct bpf_func_state *state = func(env, reg);
5903 			int spi = get_spi(reg->off);
5904 
5905 			if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS) ||
5906 			    !state->stack[spi].spilled_ptr.id) {
5907 				verbose(env, "arg %d is an unacquired reference\n", regno);
5908 				return -EINVAL;
5909 			}
5910 		} else if (!reg->ref_obj_id && !register_is_null(reg)) {
5911 			verbose(env, "R%d must be referenced when passed to release function\n",
5912 				regno);
5913 			return -EINVAL;
5914 		}
5915 		if (meta->release_regno) {
5916 			verbose(env, "verifier internal error: more than one release argument\n");
5917 			return -EFAULT;
5918 		}
5919 		meta->release_regno = regno;
5920 	}
5921 
5922 	if (reg->ref_obj_id) {
5923 		if (meta->ref_obj_id) {
5924 			verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
5925 				regno, reg->ref_obj_id,
5926 				meta->ref_obj_id);
5927 			return -EFAULT;
5928 		}
5929 		meta->ref_obj_id = reg->ref_obj_id;
5930 	}
5931 
5932 	if (arg_type == ARG_CONST_MAP_PTR) {
5933 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
5934 		if (meta->map_ptr) {
5935 			/* Use map_uid (which is unique id of inner map) to reject:
5936 			 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
5937 			 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
5938 			 * if (inner_map1 && inner_map2) {
5939 			 *     timer = bpf_map_lookup_elem(inner_map1);
5940 			 *     if (timer)
5941 			 *         // mismatch would have been allowed
5942 			 *         bpf_timer_init(timer, inner_map2);
5943 			 * }
5944 			 *
5945 			 * Comparing map_ptr is enough to distinguish normal and outer maps.
5946 			 */
5947 			if (meta->map_ptr != reg->map_ptr ||
5948 			    meta->map_uid != reg->map_uid) {
5949 				verbose(env,
5950 					"timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
5951 					meta->map_uid, reg->map_uid);
5952 				return -EINVAL;
5953 			}
5954 		}
5955 		meta->map_ptr = reg->map_ptr;
5956 		meta->map_uid = reg->map_uid;
5957 	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
5958 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
5959 		 * check that [key, key + map->key_size) are within
5960 		 * stack limits and initialized
5961 		 */
5962 		if (!meta->map_ptr) {
5963 			/* in function declaration map_ptr must come before
5964 			 * map_key, so that it's verified and known before
5965 			 * we have to check map_key here. Otherwise it means
5966 			 * that kernel subsystem misconfigured verifier
5967 			 */
5968 			verbose(env, "invalid map_ptr to access map->key\n");
5969 			return -EACCES;
5970 		}
5971 		err = check_helper_mem_access(env, regno,
5972 					      meta->map_ptr->key_size, false,
5973 					      NULL);
5974 	} else if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) {
5975 		if (type_may_be_null(arg_type) && register_is_null(reg))
5976 			return 0;
5977 
5978 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
5979 		 * check [value, value + map->value_size) validity
5980 		 */
5981 		if (!meta->map_ptr) {
5982 			/* kernel subsystem misconfigured verifier */
5983 			verbose(env, "invalid map_ptr to access map->value\n");
5984 			return -EACCES;
5985 		}
5986 		meta->raw_mode = arg_type & MEM_UNINIT;
5987 		err = check_helper_mem_access(env, regno,
5988 					      meta->map_ptr->value_size, false,
5989 					      meta);
5990 	} else if (arg_type == ARG_PTR_TO_PERCPU_BTF_ID) {
5991 		if (!reg->btf_id) {
5992 			verbose(env, "Helper has invalid btf_id in R%d\n", regno);
5993 			return -EACCES;
5994 		}
5995 		meta->ret_btf = reg->btf;
5996 		meta->ret_btf_id = reg->btf_id;
5997 	} else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
5998 		if (meta->func_id == BPF_FUNC_spin_lock) {
5999 			if (process_spin_lock(env, regno, true))
6000 				return -EACCES;
6001 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
6002 			if (process_spin_lock(env, regno, false))
6003 				return -EACCES;
6004 		} else {
6005 			verbose(env, "verifier internal error\n");
6006 			return -EFAULT;
6007 		}
6008 	} else if (arg_type == ARG_PTR_TO_TIMER) {
6009 		if (process_timer_func(env, regno, meta))
6010 			return -EACCES;
6011 	} else if (arg_type == ARG_PTR_TO_FUNC) {
6012 		meta->subprogno = reg->subprogno;
6013 	} else if (base_type(arg_type) == ARG_PTR_TO_MEM) {
6014 		/* The access to this pointer is only checked when we hit the
6015 		 * next is_mem_size argument below.
6016 		 */
6017 		meta->raw_mode = arg_type & MEM_UNINIT;
6018 		if (arg_type & MEM_FIXED_SIZE) {
6019 			err = check_helper_mem_access(env, regno,
6020 						      fn->arg_size[arg], false,
6021 						      meta);
6022 		}
6023 	} else if (arg_type_is_mem_size(arg_type)) {
6024 		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
6025 
6026 		err = check_mem_size_reg(env, reg, regno, zero_size_allowed, meta);
6027 	} else if (arg_type_is_dynptr(arg_type)) {
6028 		if (arg_type & MEM_UNINIT) {
6029 			if (!is_dynptr_reg_valid_uninit(env, reg)) {
6030 				verbose(env, "Dynptr has to be an uninitialized dynptr\n");
6031 				return -EINVAL;
6032 			}
6033 
6034 			/* We only support one dynptr being uninitialized at the moment,
6035 			 * which is sufficient for the helper functions we have right now.
6036 			 */
6037 			if (meta->uninit_dynptr_regno) {
6038 				verbose(env, "verifier internal error: multiple uninitialized dynptr args\n");
6039 				return -EFAULT;
6040 			}
6041 
6042 			meta->uninit_dynptr_regno = regno;
6043 		} else if (!is_dynptr_reg_valid_init(env, reg, arg_type)) {
6044 			const char *err_extra = "";
6045 
6046 			switch (arg_type & DYNPTR_TYPE_FLAG_MASK) {
6047 			case DYNPTR_TYPE_LOCAL:
6048 				err_extra = "local ";
6049 				break;
6050 			case DYNPTR_TYPE_RINGBUF:
6051 				err_extra = "ringbuf ";
6052 				break;
6053 			default:
6054 				break;
6055 			}
6056 
6057 			verbose(env, "Expected an initialized %sdynptr as arg #%d\n",
6058 				err_extra, arg + 1);
6059 			return -EINVAL;
6060 		}
6061 	} else if (arg_type_is_alloc_size(arg_type)) {
6062 		if (!tnum_is_const(reg->var_off)) {
6063 			verbose(env, "R%d is not a known constant'\n",
6064 				regno);
6065 			return -EACCES;
6066 		}
6067 		meta->mem_size = reg->var_off.value;
6068 	} else if (arg_type_is_int_ptr(arg_type)) {
6069 		int size = int_ptr_type_to_size(arg_type);
6070 
6071 		err = check_helper_mem_access(env, regno, size, false, meta);
6072 		if (err)
6073 			return err;
6074 		err = check_ptr_alignment(env, reg, 0, size, true);
6075 	} else if (arg_type == ARG_PTR_TO_CONST_STR) {
6076 		struct bpf_map *map = reg->map_ptr;
6077 		int map_off;
6078 		u64 map_addr;
6079 		char *str_ptr;
6080 
6081 		if (!bpf_map_is_rdonly(map)) {
6082 			verbose(env, "R%d does not point to a readonly map'\n", regno);
6083 			return -EACCES;
6084 		}
6085 
6086 		if (!tnum_is_const(reg->var_off)) {
6087 			verbose(env, "R%d is not a constant address'\n", regno);
6088 			return -EACCES;
6089 		}
6090 
6091 		if (!map->ops->map_direct_value_addr) {
6092 			verbose(env, "no direct value access support for this map type\n");
6093 			return -EACCES;
6094 		}
6095 
6096 		err = check_map_access(env, regno, reg->off,
6097 				       map->value_size - reg->off, false,
6098 				       ACCESS_HELPER);
6099 		if (err)
6100 			return err;
6101 
6102 		map_off = reg->off + reg->var_off.value;
6103 		err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
6104 		if (err) {
6105 			verbose(env, "direct value access on string failed\n");
6106 			return err;
6107 		}
6108 
6109 		str_ptr = (char *)(long)(map_addr);
6110 		if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
6111 			verbose(env, "string is not zero-terminated\n");
6112 			return -EINVAL;
6113 		}
6114 	} else if (arg_type == ARG_PTR_TO_KPTR) {
6115 		if (process_kptr_func(env, regno, meta))
6116 			return -EACCES;
6117 	}
6118 
6119 	return err;
6120 }
6121 
6122 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
6123 {
6124 	enum bpf_attach_type eatype = env->prog->expected_attach_type;
6125 	enum bpf_prog_type type = resolve_prog_type(env->prog);
6126 
6127 	if (func_id != BPF_FUNC_map_update_elem)
6128 		return false;
6129 
6130 	/* It's not possible to get access to a locked struct sock in these
6131 	 * contexts, so updating is safe.
6132 	 */
6133 	switch (type) {
6134 	case BPF_PROG_TYPE_TRACING:
6135 		if (eatype == BPF_TRACE_ITER)
6136 			return true;
6137 		break;
6138 	case BPF_PROG_TYPE_SOCKET_FILTER:
6139 	case BPF_PROG_TYPE_SCHED_CLS:
6140 	case BPF_PROG_TYPE_SCHED_ACT:
6141 	case BPF_PROG_TYPE_XDP:
6142 	case BPF_PROG_TYPE_SK_REUSEPORT:
6143 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
6144 	case BPF_PROG_TYPE_SK_LOOKUP:
6145 		return true;
6146 	default:
6147 		break;
6148 	}
6149 
6150 	verbose(env, "cannot update sockmap in this context\n");
6151 	return false;
6152 }
6153 
6154 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
6155 {
6156 	return env->prog->jit_requested &&
6157 	       bpf_jit_supports_subprog_tailcalls();
6158 }
6159 
6160 static int check_map_func_compatibility(struct bpf_verifier_env *env,
6161 					struct bpf_map *map, int func_id)
6162 {
6163 	if (!map)
6164 		return 0;
6165 
6166 	/* We need a two way check, first is from map perspective ... */
6167 	switch (map->map_type) {
6168 	case BPF_MAP_TYPE_PROG_ARRAY:
6169 		if (func_id != BPF_FUNC_tail_call)
6170 			goto error;
6171 		break;
6172 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
6173 		if (func_id != BPF_FUNC_perf_event_read &&
6174 		    func_id != BPF_FUNC_perf_event_output &&
6175 		    func_id != BPF_FUNC_skb_output &&
6176 		    func_id != BPF_FUNC_perf_event_read_value &&
6177 		    func_id != BPF_FUNC_xdp_output)
6178 			goto error;
6179 		break;
6180 	case BPF_MAP_TYPE_RINGBUF:
6181 		if (func_id != BPF_FUNC_ringbuf_output &&
6182 		    func_id != BPF_FUNC_ringbuf_reserve &&
6183 		    func_id != BPF_FUNC_ringbuf_query &&
6184 		    func_id != BPF_FUNC_ringbuf_reserve_dynptr &&
6185 		    func_id != BPF_FUNC_ringbuf_submit_dynptr &&
6186 		    func_id != BPF_FUNC_ringbuf_discard_dynptr)
6187 			goto error;
6188 		break;
6189 	case BPF_MAP_TYPE_STACK_TRACE:
6190 		if (func_id != BPF_FUNC_get_stackid)
6191 			goto error;
6192 		break;
6193 	case BPF_MAP_TYPE_CGROUP_ARRAY:
6194 		if (func_id != BPF_FUNC_skb_under_cgroup &&
6195 		    func_id != BPF_FUNC_current_task_under_cgroup)
6196 			goto error;
6197 		break;
6198 	case BPF_MAP_TYPE_CGROUP_STORAGE:
6199 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
6200 		if (func_id != BPF_FUNC_get_local_storage)
6201 			goto error;
6202 		break;
6203 	case BPF_MAP_TYPE_DEVMAP:
6204 	case BPF_MAP_TYPE_DEVMAP_HASH:
6205 		if (func_id != BPF_FUNC_redirect_map &&
6206 		    func_id != BPF_FUNC_map_lookup_elem)
6207 			goto error;
6208 		break;
6209 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
6210 	 * appear.
6211 	 */
6212 	case BPF_MAP_TYPE_CPUMAP:
6213 		if (func_id != BPF_FUNC_redirect_map)
6214 			goto error;
6215 		break;
6216 	case BPF_MAP_TYPE_XSKMAP:
6217 		if (func_id != BPF_FUNC_redirect_map &&
6218 		    func_id != BPF_FUNC_map_lookup_elem)
6219 			goto error;
6220 		break;
6221 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
6222 	case BPF_MAP_TYPE_HASH_OF_MAPS:
6223 		if (func_id != BPF_FUNC_map_lookup_elem)
6224 			goto error;
6225 		break;
6226 	case BPF_MAP_TYPE_SOCKMAP:
6227 		if (func_id != BPF_FUNC_sk_redirect_map &&
6228 		    func_id != BPF_FUNC_sock_map_update &&
6229 		    func_id != BPF_FUNC_map_delete_elem &&
6230 		    func_id != BPF_FUNC_msg_redirect_map &&
6231 		    func_id != BPF_FUNC_sk_select_reuseport &&
6232 		    func_id != BPF_FUNC_map_lookup_elem &&
6233 		    !may_update_sockmap(env, func_id))
6234 			goto error;
6235 		break;
6236 	case BPF_MAP_TYPE_SOCKHASH:
6237 		if (func_id != BPF_FUNC_sk_redirect_hash &&
6238 		    func_id != BPF_FUNC_sock_hash_update &&
6239 		    func_id != BPF_FUNC_map_delete_elem &&
6240 		    func_id != BPF_FUNC_msg_redirect_hash &&
6241 		    func_id != BPF_FUNC_sk_select_reuseport &&
6242 		    func_id != BPF_FUNC_map_lookup_elem &&
6243 		    !may_update_sockmap(env, func_id))
6244 			goto error;
6245 		break;
6246 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
6247 		if (func_id != BPF_FUNC_sk_select_reuseport)
6248 			goto error;
6249 		break;
6250 	case BPF_MAP_TYPE_QUEUE:
6251 	case BPF_MAP_TYPE_STACK:
6252 		if (func_id != BPF_FUNC_map_peek_elem &&
6253 		    func_id != BPF_FUNC_map_pop_elem &&
6254 		    func_id != BPF_FUNC_map_push_elem)
6255 			goto error;
6256 		break;
6257 	case BPF_MAP_TYPE_SK_STORAGE:
6258 		if (func_id != BPF_FUNC_sk_storage_get &&
6259 		    func_id != BPF_FUNC_sk_storage_delete)
6260 			goto error;
6261 		break;
6262 	case BPF_MAP_TYPE_INODE_STORAGE:
6263 		if (func_id != BPF_FUNC_inode_storage_get &&
6264 		    func_id != BPF_FUNC_inode_storage_delete)
6265 			goto error;
6266 		break;
6267 	case BPF_MAP_TYPE_TASK_STORAGE:
6268 		if (func_id != BPF_FUNC_task_storage_get &&
6269 		    func_id != BPF_FUNC_task_storage_delete)
6270 			goto error;
6271 		break;
6272 	case BPF_MAP_TYPE_BLOOM_FILTER:
6273 		if (func_id != BPF_FUNC_map_peek_elem &&
6274 		    func_id != BPF_FUNC_map_push_elem)
6275 			goto error;
6276 		break;
6277 	default:
6278 		break;
6279 	}
6280 
6281 	/* ... and second from the function itself. */
6282 	switch (func_id) {
6283 	case BPF_FUNC_tail_call:
6284 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
6285 			goto error;
6286 		if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
6287 			verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
6288 			return -EINVAL;
6289 		}
6290 		break;
6291 	case BPF_FUNC_perf_event_read:
6292 	case BPF_FUNC_perf_event_output:
6293 	case BPF_FUNC_perf_event_read_value:
6294 	case BPF_FUNC_skb_output:
6295 	case BPF_FUNC_xdp_output:
6296 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
6297 			goto error;
6298 		break;
6299 	case BPF_FUNC_ringbuf_output:
6300 	case BPF_FUNC_ringbuf_reserve:
6301 	case BPF_FUNC_ringbuf_query:
6302 	case BPF_FUNC_ringbuf_reserve_dynptr:
6303 	case BPF_FUNC_ringbuf_submit_dynptr:
6304 	case BPF_FUNC_ringbuf_discard_dynptr:
6305 		if (map->map_type != BPF_MAP_TYPE_RINGBUF)
6306 			goto error;
6307 		break;
6308 	case BPF_FUNC_get_stackid:
6309 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
6310 			goto error;
6311 		break;
6312 	case BPF_FUNC_current_task_under_cgroup:
6313 	case BPF_FUNC_skb_under_cgroup:
6314 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
6315 			goto error;
6316 		break;
6317 	case BPF_FUNC_redirect_map:
6318 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
6319 		    map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
6320 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
6321 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
6322 			goto error;
6323 		break;
6324 	case BPF_FUNC_sk_redirect_map:
6325 	case BPF_FUNC_msg_redirect_map:
6326 	case BPF_FUNC_sock_map_update:
6327 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
6328 			goto error;
6329 		break;
6330 	case BPF_FUNC_sk_redirect_hash:
6331 	case BPF_FUNC_msg_redirect_hash:
6332 	case BPF_FUNC_sock_hash_update:
6333 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
6334 			goto error;
6335 		break;
6336 	case BPF_FUNC_get_local_storage:
6337 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
6338 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
6339 			goto error;
6340 		break;
6341 	case BPF_FUNC_sk_select_reuseport:
6342 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
6343 		    map->map_type != BPF_MAP_TYPE_SOCKMAP &&
6344 		    map->map_type != BPF_MAP_TYPE_SOCKHASH)
6345 			goto error;
6346 		break;
6347 	case BPF_FUNC_map_pop_elem:
6348 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
6349 		    map->map_type != BPF_MAP_TYPE_STACK)
6350 			goto error;
6351 		break;
6352 	case BPF_FUNC_map_peek_elem:
6353 	case BPF_FUNC_map_push_elem:
6354 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
6355 		    map->map_type != BPF_MAP_TYPE_STACK &&
6356 		    map->map_type != BPF_MAP_TYPE_BLOOM_FILTER)
6357 			goto error;
6358 		break;
6359 	case BPF_FUNC_map_lookup_percpu_elem:
6360 		if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY &&
6361 		    map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
6362 		    map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH)
6363 			goto error;
6364 		break;
6365 	case BPF_FUNC_sk_storage_get:
6366 	case BPF_FUNC_sk_storage_delete:
6367 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
6368 			goto error;
6369 		break;
6370 	case BPF_FUNC_inode_storage_get:
6371 	case BPF_FUNC_inode_storage_delete:
6372 		if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
6373 			goto error;
6374 		break;
6375 	case BPF_FUNC_task_storage_get:
6376 	case BPF_FUNC_task_storage_delete:
6377 		if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
6378 			goto error;
6379 		break;
6380 	default:
6381 		break;
6382 	}
6383 
6384 	return 0;
6385 error:
6386 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
6387 		map->map_type, func_id_name(func_id), func_id);
6388 	return -EINVAL;
6389 }
6390 
6391 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
6392 {
6393 	int count = 0;
6394 
6395 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
6396 		count++;
6397 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
6398 		count++;
6399 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
6400 		count++;
6401 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
6402 		count++;
6403 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
6404 		count++;
6405 
6406 	/* We only support one arg being in raw mode at the moment,
6407 	 * which is sufficient for the helper functions we have
6408 	 * right now.
6409 	 */
6410 	return count <= 1;
6411 }
6412 
6413 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg)
6414 {
6415 	bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE;
6416 	bool has_size = fn->arg_size[arg] != 0;
6417 	bool is_next_size = false;
6418 
6419 	if (arg + 1 < ARRAY_SIZE(fn->arg_type))
6420 		is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]);
6421 
6422 	if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM)
6423 		return is_next_size;
6424 
6425 	return has_size == is_next_size || is_next_size == is_fixed;
6426 }
6427 
6428 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
6429 {
6430 	/* bpf_xxx(..., buf, len) call will access 'len'
6431 	 * bytes from memory 'buf'. Both arg types need
6432 	 * to be paired, so make sure there's no buggy
6433 	 * helper function specification.
6434 	 */
6435 	if (arg_type_is_mem_size(fn->arg1_type) ||
6436 	    check_args_pair_invalid(fn, 0) ||
6437 	    check_args_pair_invalid(fn, 1) ||
6438 	    check_args_pair_invalid(fn, 2) ||
6439 	    check_args_pair_invalid(fn, 3) ||
6440 	    check_args_pair_invalid(fn, 4))
6441 		return false;
6442 
6443 	return true;
6444 }
6445 
6446 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
6447 {
6448 	int count = 0;
6449 
6450 	if (arg_type_may_be_refcounted(fn->arg1_type))
6451 		count++;
6452 	if (arg_type_may_be_refcounted(fn->arg2_type))
6453 		count++;
6454 	if (arg_type_may_be_refcounted(fn->arg3_type))
6455 		count++;
6456 	if (arg_type_may_be_refcounted(fn->arg4_type))
6457 		count++;
6458 	if (arg_type_may_be_refcounted(fn->arg5_type))
6459 		count++;
6460 
6461 	/* A reference acquiring function cannot acquire
6462 	 * another refcounted ptr.
6463 	 */
6464 	if (may_be_acquire_function(func_id) && count)
6465 		return false;
6466 
6467 	/* We only support one arg being unreferenced at the moment,
6468 	 * which is sufficient for the helper functions we have right now.
6469 	 */
6470 	return count <= 1;
6471 }
6472 
6473 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
6474 {
6475 	int i;
6476 
6477 	for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
6478 		if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i])
6479 			return false;
6480 
6481 		if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] &&
6482 		    /* arg_btf_id and arg_size are in a union. */
6483 		    (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM ||
6484 		     !(fn->arg_type[i] & MEM_FIXED_SIZE)))
6485 			return false;
6486 	}
6487 
6488 	return true;
6489 }
6490 
6491 static int check_func_proto(const struct bpf_func_proto *fn, int func_id,
6492 			    struct bpf_call_arg_meta *meta)
6493 {
6494 	return check_raw_mode_ok(fn) &&
6495 	       check_arg_pair_ok(fn) &&
6496 	       check_btf_id_ok(fn) &&
6497 	       check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
6498 }
6499 
6500 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
6501  * are now invalid, so turn them into unknown SCALAR_VALUE.
6502  */
6503 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
6504 				     struct bpf_func_state *state)
6505 {
6506 	struct bpf_reg_state *regs = state->regs, *reg;
6507 	int i;
6508 
6509 	for (i = 0; i < MAX_BPF_REG; i++)
6510 		if (reg_is_pkt_pointer_any(&regs[i]))
6511 			mark_reg_unknown(env, regs, i);
6512 
6513 	bpf_for_each_spilled_reg(i, state, reg) {
6514 		if (!reg)
6515 			continue;
6516 		if (reg_is_pkt_pointer_any(reg))
6517 			__mark_reg_unknown(env, reg);
6518 	}
6519 }
6520 
6521 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
6522 {
6523 	struct bpf_verifier_state *vstate = env->cur_state;
6524 	int i;
6525 
6526 	for (i = 0; i <= vstate->curframe; i++)
6527 		__clear_all_pkt_pointers(env, vstate->frame[i]);
6528 }
6529 
6530 enum {
6531 	AT_PKT_END = -1,
6532 	BEYOND_PKT_END = -2,
6533 };
6534 
6535 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
6536 {
6537 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
6538 	struct bpf_reg_state *reg = &state->regs[regn];
6539 
6540 	if (reg->type != PTR_TO_PACKET)
6541 		/* PTR_TO_PACKET_META is not supported yet */
6542 		return;
6543 
6544 	/* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
6545 	 * How far beyond pkt_end it goes is unknown.
6546 	 * if (!range_open) it's the case of pkt >= pkt_end
6547 	 * if (range_open) it's the case of pkt > pkt_end
6548 	 * hence this pointer is at least 1 byte bigger than pkt_end
6549 	 */
6550 	if (range_open)
6551 		reg->range = BEYOND_PKT_END;
6552 	else
6553 		reg->range = AT_PKT_END;
6554 }
6555 
6556 static void release_reg_references(struct bpf_verifier_env *env,
6557 				   struct bpf_func_state *state,
6558 				   int ref_obj_id)
6559 {
6560 	struct bpf_reg_state *regs = state->regs, *reg;
6561 	int i;
6562 
6563 	for (i = 0; i < MAX_BPF_REG; i++)
6564 		if (regs[i].ref_obj_id == ref_obj_id)
6565 			mark_reg_unknown(env, regs, i);
6566 
6567 	bpf_for_each_spilled_reg(i, state, reg) {
6568 		if (!reg)
6569 			continue;
6570 		if (reg->ref_obj_id == ref_obj_id)
6571 			__mark_reg_unknown(env, reg);
6572 	}
6573 }
6574 
6575 /* The pointer with the specified id has released its reference to kernel
6576  * resources. Identify all copies of the same pointer and clear the reference.
6577  */
6578 static int release_reference(struct bpf_verifier_env *env,
6579 			     int ref_obj_id)
6580 {
6581 	struct bpf_verifier_state *vstate = env->cur_state;
6582 	int err;
6583 	int i;
6584 
6585 	err = release_reference_state(cur_func(env), ref_obj_id);
6586 	if (err)
6587 		return err;
6588 
6589 	for (i = 0; i <= vstate->curframe; i++)
6590 		release_reg_references(env, vstate->frame[i], ref_obj_id);
6591 
6592 	return 0;
6593 }
6594 
6595 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
6596 				    struct bpf_reg_state *regs)
6597 {
6598 	int i;
6599 
6600 	/* after the call registers r0 - r5 were scratched */
6601 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
6602 		mark_reg_not_init(env, regs, caller_saved[i]);
6603 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
6604 	}
6605 }
6606 
6607 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
6608 				   struct bpf_func_state *caller,
6609 				   struct bpf_func_state *callee,
6610 				   int insn_idx);
6611 
6612 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
6613 			     int *insn_idx, int subprog,
6614 			     set_callee_state_fn set_callee_state_cb)
6615 {
6616 	struct bpf_verifier_state *state = env->cur_state;
6617 	struct bpf_func_info_aux *func_info_aux;
6618 	struct bpf_func_state *caller, *callee;
6619 	int err;
6620 	bool is_global = false;
6621 
6622 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
6623 		verbose(env, "the call stack of %d frames is too deep\n",
6624 			state->curframe + 2);
6625 		return -E2BIG;
6626 	}
6627 
6628 	caller = state->frame[state->curframe];
6629 	if (state->frame[state->curframe + 1]) {
6630 		verbose(env, "verifier bug. Frame %d already allocated\n",
6631 			state->curframe + 1);
6632 		return -EFAULT;
6633 	}
6634 
6635 	func_info_aux = env->prog->aux->func_info_aux;
6636 	if (func_info_aux)
6637 		is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
6638 	err = btf_check_subprog_arg_match(env, subprog, caller->regs);
6639 	if (err == -EFAULT)
6640 		return err;
6641 	if (is_global) {
6642 		if (err) {
6643 			verbose(env, "Caller passes invalid args into func#%d\n",
6644 				subprog);
6645 			return err;
6646 		} else {
6647 			if (env->log.level & BPF_LOG_LEVEL)
6648 				verbose(env,
6649 					"Func#%d is global and valid. Skipping.\n",
6650 					subprog);
6651 			clear_caller_saved_regs(env, caller->regs);
6652 
6653 			/* All global functions return a 64-bit SCALAR_VALUE */
6654 			mark_reg_unknown(env, caller->regs, BPF_REG_0);
6655 			caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
6656 
6657 			/* continue with next insn after call */
6658 			return 0;
6659 		}
6660 	}
6661 
6662 	if (insn->code == (BPF_JMP | BPF_CALL) &&
6663 	    insn->src_reg == 0 &&
6664 	    insn->imm == BPF_FUNC_timer_set_callback) {
6665 		struct bpf_verifier_state *async_cb;
6666 
6667 		/* there is no real recursion here. timer callbacks are async */
6668 		env->subprog_info[subprog].is_async_cb = true;
6669 		async_cb = push_async_cb(env, env->subprog_info[subprog].start,
6670 					 *insn_idx, subprog);
6671 		if (!async_cb)
6672 			return -EFAULT;
6673 		callee = async_cb->frame[0];
6674 		callee->async_entry_cnt = caller->async_entry_cnt + 1;
6675 
6676 		/* Convert bpf_timer_set_callback() args into timer callback args */
6677 		err = set_callee_state_cb(env, caller, callee, *insn_idx);
6678 		if (err)
6679 			return err;
6680 
6681 		clear_caller_saved_regs(env, caller->regs);
6682 		mark_reg_unknown(env, caller->regs, BPF_REG_0);
6683 		caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
6684 		/* continue with next insn after call */
6685 		return 0;
6686 	}
6687 
6688 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
6689 	if (!callee)
6690 		return -ENOMEM;
6691 	state->frame[state->curframe + 1] = callee;
6692 
6693 	/* callee cannot access r0, r6 - r9 for reading and has to write
6694 	 * into its own stack before reading from it.
6695 	 * callee can read/write into caller's stack
6696 	 */
6697 	init_func_state(env, callee,
6698 			/* remember the callsite, it will be used by bpf_exit */
6699 			*insn_idx /* callsite */,
6700 			state->curframe + 1 /* frameno within this callchain */,
6701 			subprog /* subprog number within this prog */);
6702 
6703 	/* Transfer references to the callee */
6704 	err = copy_reference_state(callee, caller);
6705 	if (err)
6706 		return err;
6707 
6708 	err = set_callee_state_cb(env, caller, callee, *insn_idx);
6709 	if (err)
6710 		return err;
6711 
6712 	clear_caller_saved_regs(env, caller->regs);
6713 
6714 	/* only increment it after check_reg_arg() finished */
6715 	state->curframe++;
6716 
6717 	/* and go analyze first insn of the callee */
6718 	*insn_idx = env->subprog_info[subprog].start - 1;
6719 
6720 	if (env->log.level & BPF_LOG_LEVEL) {
6721 		verbose(env, "caller:\n");
6722 		print_verifier_state(env, caller, true);
6723 		verbose(env, "callee:\n");
6724 		print_verifier_state(env, callee, true);
6725 	}
6726 	return 0;
6727 }
6728 
6729 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
6730 				   struct bpf_func_state *caller,
6731 				   struct bpf_func_state *callee)
6732 {
6733 	/* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
6734 	 *      void *callback_ctx, u64 flags);
6735 	 * callback_fn(struct bpf_map *map, void *key, void *value,
6736 	 *      void *callback_ctx);
6737 	 */
6738 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
6739 
6740 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
6741 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
6742 	callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
6743 
6744 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
6745 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
6746 	callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
6747 
6748 	/* pointer to stack or null */
6749 	callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
6750 
6751 	/* unused */
6752 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
6753 	return 0;
6754 }
6755 
6756 static int set_callee_state(struct bpf_verifier_env *env,
6757 			    struct bpf_func_state *caller,
6758 			    struct bpf_func_state *callee, int insn_idx)
6759 {
6760 	int i;
6761 
6762 	/* copy r1 - r5 args that callee can access.  The copy includes parent
6763 	 * pointers, which connects us up to the liveness chain
6764 	 */
6765 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
6766 		callee->regs[i] = caller->regs[i];
6767 	return 0;
6768 }
6769 
6770 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
6771 			   int *insn_idx)
6772 {
6773 	int subprog, target_insn;
6774 
6775 	target_insn = *insn_idx + insn->imm + 1;
6776 	subprog = find_subprog(env, target_insn);
6777 	if (subprog < 0) {
6778 		verbose(env, "verifier bug. No program starts at insn %d\n",
6779 			target_insn);
6780 		return -EFAULT;
6781 	}
6782 
6783 	return __check_func_call(env, insn, insn_idx, subprog, set_callee_state);
6784 }
6785 
6786 static int set_map_elem_callback_state(struct bpf_verifier_env *env,
6787 				       struct bpf_func_state *caller,
6788 				       struct bpf_func_state *callee,
6789 				       int insn_idx)
6790 {
6791 	struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
6792 	struct bpf_map *map;
6793 	int err;
6794 
6795 	if (bpf_map_ptr_poisoned(insn_aux)) {
6796 		verbose(env, "tail_call abusing map_ptr\n");
6797 		return -EINVAL;
6798 	}
6799 
6800 	map = BPF_MAP_PTR(insn_aux->map_ptr_state);
6801 	if (!map->ops->map_set_for_each_callback_args ||
6802 	    !map->ops->map_for_each_callback) {
6803 		verbose(env, "callback function not allowed for map\n");
6804 		return -ENOTSUPP;
6805 	}
6806 
6807 	err = map->ops->map_set_for_each_callback_args(env, caller, callee);
6808 	if (err)
6809 		return err;
6810 
6811 	callee->in_callback_fn = true;
6812 	return 0;
6813 }
6814 
6815 static int set_loop_callback_state(struct bpf_verifier_env *env,
6816 				   struct bpf_func_state *caller,
6817 				   struct bpf_func_state *callee,
6818 				   int insn_idx)
6819 {
6820 	/* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx,
6821 	 *	    u64 flags);
6822 	 * callback_fn(u32 index, void *callback_ctx);
6823 	 */
6824 	callee->regs[BPF_REG_1].type = SCALAR_VALUE;
6825 	callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
6826 
6827 	/* unused */
6828 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
6829 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
6830 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
6831 
6832 	callee->in_callback_fn = true;
6833 	return 0;
6834 }
6835 
6836 static int set_timer_callback_state(struct bpf_verifier_env *env,
6837 				    struct bpf_func_state *caller,
6838 				    struct bpf_func_state *callee,
6839 				    int insn_idx)
6840 {
6841 	struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr;
6842 
6843 	/* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
6844 	 * callback_fn(struct bpf_map *map, void *key, void *value);
6845 	 */
6846 	callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP;
6847 	__mark_reg_known_zero(&callee->regs[BPF_REG_1]);
6848 	callee->regs[BPF_REG_1].map_ptr = map_ptr;
6849 
6850 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
6851 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
6852 	callee->regs[BPF_REG_2].map_ptr = map_ptr;
6853 
6854 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
6855 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
6856 	callee->regs[BPF_REG_3].map_ptr = map_ptr;
6857 
6858 	/* unused */
6859 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
6860 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
6861 	callee->in_async_callback_fn = true;
6862 	return 0;
6863 }
6864 
6865 static int set_find_vma_callback_state(struct bpf_verifier_env *env,
6866 				       struct bpf_func_state *caller,
6867 				       struct bpf_func_state *callee,
6868 				       int insn_idx)
6869 {
6870 	/* bpf_find_vma(struct task_struct *task, u64 addr,
6871 	 *               void *callback_fn, void *callback_ctx, u64 flags)
6872 	 * (callback_fn)(struct task_struct *task,
6873 	 *               struct vm_area_struct *vma, void *callback_ctx);
6874 	 */
6875 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
6876 
6877 	callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID;
6878 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
6879 	callee->regs[BPF_REG_2].btf =  btf_vmlinux;
6880 	callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA],
6881 
6882 	/* pointer to stack or null */
6883 	callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4];
6884 
6885 	/* unused */
6886 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
6887 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
6888 	callee->in_callback_fn = true;
6889 	return 0;
6890 }
6891 
6892 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
6893 {
6894 	struct bpf_verifier_state *state = env->cur_state;
6895 	struct bpf_func_state *caller, *callee;
6896 	struct bpf_reg_state *r0;
6897 	int err;
6898 
6899 	callee = state->frame[state->curframe];
6900 	r0 = &callee->regs[BPF_REG_0];
6901 	if (r0->type == PTR_TO_STACK) {
6902 		/* technically it's ok to return caller's stack pointer
6903 		 * (or caller's caller's pointer) back to the caller,
6904 		 * since these pointers are valid. Only current stack
6905 		 * pointer will be invalid as soon as function exits,
6906 		 * but let's be conservative
6907 		 */
6908 		verbose(env, "cannot return stack pointer to the caller\n");
6909 		return -EINVAL;
6910 	}
6911 
6912 	state->curframe--;
6913 	caller = state->frame[state->curframe];
6914 	if (callee->in_callback_fn) {
6915 		/* enforce R0 return value range [0, 1]. */
6916 		struct tnum range = tnum_range(0, 1);
6917 
6918 		if (r0->type != SCALAR_VALUE) {
6919 			verbose(env, "R0 not a scalar value\n");
6920 			return -EACCES;
6921 		}
6922 		if (!tnum_in(range, r0->var_off)) {
6923 			verbose_invalid_scalar(env, r0, &range, "callback return", "R0");
6924 			return -EINVAL;
6925 		}
6926 	} else {
6927 		/* return to the caller whatever r0 had in the callee */
6928 		caller->regs[BPF_REG_0] = *r0;
6929 	}
6930 
6931 	/* Transfer references to the caller */
6932 	err = copy_reference_state(caller, callee);
6933 	if (err)
6934 		return err;
6935 
6936 	*insn_idx = callee->callsite + 1;
6937 	if (env->log.level & BPF_LOG_LEVEL) {
6938 		verbose(env, "returning from callee:\n");
6939 		print_verifier_state(env, callee, true);
6940 		verbose(env, "to caller at %d:\n", *insn_idx);
6941 		print_verifier_state(env, caller, true);
6942 	}
6943 	/* clear everything in the callee */
6944 	free_func_state(callee);
6945 	state->frame[state->curframe + 1] = NULL;
6946 	return 0;
6947 }
6948 
6949 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
6950 				   int func_id,
6951 				   struct bpf_call_arg_meta *meta)
6952 {
6953 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
6954 
6955 	if (ret_type != RET_INTEGER ||
6956 	    (func_id != BPF_FUNC_get_stack &&
6957 	     func_id != BPF_FUNC_get_task_stack &&
6958 	     func_id != BPF_FUNC_probe_read_str &&
6959 	     func_id != BPF_FUNC_probe_read_kernel_str &&
6960 	     func_id != BPF_FUNC_probe_read_user_str))
6961 		return;
6962 
6963 	ret_reg->smax_value = meta->msize_max_value;
6964 	ret_reg->s32_max_value = meta->msize_max_value;
6965 	ret_reg->smin_value = -MAX_ERRNO;
6966 	ret_reg->s32_min_value = -MAX_ERRNO;
6967 	reg_bounds_sync(ret_reg);
6968 }
6969 
6970 static int
6971 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
6972 		int func_id, int insn_idx)
6973 {
6974 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
6975 	struct bpf_map *map = meta->map_ptr;
6976 
6977 	if (func_id != BPF_FUNC_tail_call &&
6978 	    func_id != BPF_FUNC_map_lookup_elem &&
6979 	    func_id != BPF_FUNC_map_update_elem &&
6980 	    func_id != BPF_FUNC_map_delete_elem &&
6981 	    func_id != BPF_FUNC_map_push_elem &&
6982 	    func_id != BPF_FUNC_map_pop_elem &&
6983 	    func_id != BPF_FUNC_map_peek_elem &&
6984 	    func_id != BPF_FUNC_for_each_map_elem &&
6985 	    func_id != BPF_FUNC_redirect_map &&
6986 	    func_id != BPF_FUNC_map_lookup_percpu_elem)
6987 		return 0;
6988 
6989 	if (map == NULL) {
6990 		verbose(env, "kernel subsystem misconfigured verifier\n");
6991 		return -EINVAL;
6992 	}
6993 
6994 	/* In case of read-only, some additional restrictions
6995 	 * need to be applied in order to prevent altering the
6996 	 * state of the map from program side.
6997 	 */
6998 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
6999 	    (func_id == BPF_FUNC_map_delete_elem ||
7000 	     func_id == BPF_FUNC_map_update_elem ||
7001 	     func_id == BPF_FUNC_map_push_elem ||
7002 	     func_id == BPF_FUNC_map_pop_elem)) {
7003 		verbose(env, "write into map forbidden\n");
7004 		return -EACCES;
7005 	}
7006 
7007 	if (!BPF_MAP_PTR(aux->map_ptr_state))
7008 		bpf_map_ptr_store(aux, meta->map_ptr,
7009 				  !meta->map_ptr->bypass_spec_v1);
7010 	else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
7011 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
7012 				  !meta->map_ptr->bypass_spec_v1);
7013 	return 0;
7014 }
7015 
7016 static int
7017 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
7018 		int func_id, int insn_idx)
7019 {
7020 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
7021 	struct bpf_reg_state *regs = cur_regs(env), *reg;
7022 	struct bpf_map *map = meta->map_ptr;
7023 	struct tnum range;
7024 	u64 val;
7025 	int err;
7026 
7027 	if (func_id != BPF_FUNC_tail_call)
7028 		return 0;
7029 	if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
7030 		verbose(env, "kernel subsystem misconfigured verifier\n");
7031 		return -EINVAL;
7032 	}
7033 
7034 	range = tnum_range(0, map->max_entries - 1);
7035 	reg = &regs[BPF_REG_3];
7036 
7037 	if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) {
7038 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
7039 		return 0;
7040 	}
7041 
7042 	err = mark_chain_precision(env, BPF_REG_3);
7043 	if (err)
7044 		return err;
7045 
7046 	val = reg->var_off.value;
7047 	if (bpf_map_key_unseen(aux))
7048 		bpf_map_key_store(aux, val);
7049 	else if (!bpf_map_key_poisoned(aux) &&
7050 		  bpf_map_key_immediate(aux) != val)
7051 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
7052 	return 0;
7053 }
7054 
7055 static int check_reference_leak(struct bpf_verifier_env *env)
7056 {
7057 	struct bpf_func_state *state = cur_func(env);
7058 	int i;
7059 
7060 	for (i = 0; i < state->acquired_refs; i++) {
7061 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
7062 			state->refs[i].id, state->refs[i].insn_idx);
7063 	}
7064 	return state->acquired_refs ? -EINVAL : 0;
7065 }
7066 
7067 static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
7068 				   struct bpf_reg_state *regs)
7069 {
7070 	struct bpf_reg_state *fmt_reg = &regs[BPF_REG_3];
7071 	struct bpf_reg_state *data_len_reg = &regs[BPF_REG_5];
7072 	struct bpf_map *fmt_map = fmt_reg->map_ptr;
7073 	int err, fmt_map_off, num_args;
7074 	u64 fmt_addr;
7075 	char *fmt;
7076 
7077 	/* data must be an array of u64 */
7078 	if (data_len_reg->var_off.value % 8)
7079 		return -EINVAL;
7080 	num_args = data_len_reg->var_off.value / 8;
7081 
7082 	/* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
7083 	 * and map_direct_value_addr is set.
7084 	 */
7085 	fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
7086 	err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
7087 						  fmt_map_off);
7088 	if (err) {
7089 		verbose(env, "verifier bug\n");
7090 		return -EFAULT;
7091 	}
7092 	fmt = (char *)(long)fmt_addr + fmt_map_off;
7093 
7094 	/* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
7095 	 * can focus on validating the format specifiers.
7096 	 */
7097 	err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, NULL, num_args);
7098 	if (err < 0)
7099 		verbose(env, "Invalid format string\n");
7100 
7101 	return err;
7102 }
7103 
7104 static int check_get_func_ip(struct bpf_verifier_env *env)
7105 {
7106 	enum bpf_prog_type type = resolve_prog_type(env->prog);
7107 	int func_id = BPF_FUNC_get_func_ip;
7108 
7109 	if (type == BPF_PROG_TYPE_TRACING) {
7110 		if (!bpf_prog_has_trampoline(env->prog)) {
7111 			verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n",
7112 				func_id_name(func_id), func_id);
7113 			return -ENOTSUPP;
7114 		}
7115 		return 0;
7116 	} else if (type == BPF_PROG_TYPE_KPROBE) {
7117 		return 0;
7118 	}
7119 
7120 	verbose(env, "func %s#%d not supported for program type %d\n",
7121 		func_id_name(func_id), func_id, type);
7122 	return -ENOTSUPP;
7123 }
7124 
7125 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
7126 {
7127 	return &env->insn_aux_data[env->insn_idx];
7128 }
7129 
7130 static bool loop_flag_is_zero(struct bpf_verifier_env *env)
7131 {
7132 	struct bpf_reg_state *regs = cur_regs(env);
7133 	struct bpf_reg_state *reg = &regs[BPF_REG_4];
7134 	bool reg_is_null = register_is_null(reg);
7135 
7136 	if (reg_is_null)
7137 		mark_chain_precision(env, BPF_REG_4);
7138 
7139 	return reg_is_null;
7140 }
7141 
7142 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno)
7143 {
7144 	struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state;
7145 
7146 	if (!state->initialized) {
7147 		state->initialized = 1;
7148 		state->fit_for_inline = loop_flag_is_zero(env);
7149 		state->callback_subprogno = subprogno;
7150 		return;
7151 	}
7152 
7153 	if (!state->fit_for_inline)
7154 		return;
7155 
7156 	state->fit_for_inline = (loop_flag_is_zero(env) &&
7157 				 state->callback_subprogno == subprogno);
7158 }
7159 
7160 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
7161 			     int *insn_idx_p)
7162 {
7163 	const struct bpf_func_proto *fn = NULL;
7164 	enum bpf_return_type ret_type;
7165 	enum bpf_type_flag ret_flag;
7166 	struct bpf_reg_state *regs;
7167 	struct bpf_call_arg_meta meta;
7168 	int insn_idx = *insn_idx_p;
7169 	bool changes_data;
7170 	int i, err, func_id;
7171 
7172 	/* find function prototype */
7173 	func_id = insn->imm;
7174 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
7175 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
7176 			func_id);
7177 		return -EINVAL;
7178 	}
7179 
7180 	if (env->ops->get_func_proto)
7181 		fn = env->ops->get_func_proto(func_id, env->prog);
7182 	if (!fn) {
7183 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
7184 			func_id);
7185 		return -EINVAL;
7186 	}
7187 
7188 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
7189 	if (!env->prog->gpl_compatible && fn->gpl_only) {
7190 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
7191 		return -EINVAL;
7192 	}
7193 
7194 	if (fn->allowed && !fn->allowed(env->prog)) {
7195 		verbose(env, "helper call is not allowed in probe\n");
7196 		return -EINVAL;
7197 	}
7198 
7199 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
7200 	changes_data = bpf_helper_changes_pkt_data(fn->func);
7201 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
7202 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
7203 			func_id_name(func_id), func_id);
7204 		return -EINVAL;
7205 	}
7206 
7207 	memset(&meta, 0, sizeof(meta));
7208 	meta.pkt_access = fn->pkt_access;
7209 
7210 	err = check_func_proto(fn, func_id, &meta);
7211 	if (err) {
7212 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
7213 			func_id_name(func_id), func_id);
7214 		return err;
7215 	}
7216 
7217 	meta.func_id = func_id;
7218 	/* check args */
7219 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
7220 		err = check_func_arg(env, i, &meta, fn);
7221 		if (err)
7222 			return err;
7223 	}
7224 
7225 	err = record_func_map(env, &meta, func_id, insn_idx);
7226 	if (err)
7227 		return err;
7228 
7229 	err = record_func_key(env, &meta, func_id, insn_idx);
7230 	if (err)
7231 		return err;
7232 
7233 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
7234 	 * is inferred from register state.
7235 	 */
7236 	for (i = 0; i < meta.access_size; i++) {
7237 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
7238 				       BPF_WRITE, -1, false);
7239 		if (err)
7240 			return err;
7241 	}
7242 
7243 	regs = cur_regs(env);
7244 
7245 	if (meta.uninit_dynptr_regno) {
7246 		/* we write BPF_DW bits (8 bytes) at a time */
7247 		for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) {
7248 			err = check_mem_access(env, insn_idx, meta.uninit_dynptr_regno,
7249 					       i, BPF_DW, BPF_WRITE, -1, false);
7250 			if (err)
7251 				return err;
7252 		}
7253 
7254 		err = mark_stack_slots_dynptr(env, &regs[meta.uninit_dynptr_regno],
7255 					      fn->arg_type[meta.uninit_dynptr_regno - BPF_REG_1],
7256 					      insn_idx);
7257 		if (err)
7258 			return err;
7259 	}
7260 
7261 	if (meta.release_regno) {
7262 		err = -EINVAL;
7263 		if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1]))
7264 			err = unmark_stack_slots_dynptr(env, &regs[meta.release_regno]);
7265 		else if (meta.ref_obj_id)
7266 			err = release_reference(env, meta.ref_obj_id);
7267 		/* meta.ref_obj_id can only be 0 if register that is meant to be
7268 		 * released is NULL, which must be > R0.
7269 		 */
7270 		else if (register_is_null(&regs[meta.release_regno]))
7271 			err = 0;
7272 		if (err) {
7273 			verbose(env, "func %s#%d reference has not been acquired before\n",
7274 				func_id_name(func_id), func_id);
7275 			return err;
7276 		}
7277 	}
7278 
7279 	switch (func_id) {
7280 	case BPF_FUNC_tail_call:
7281 		err = check_reference_leak(env);
7282 		if (err) {
7283 			verbose(env, "tail_call would lead to reference leak\n");
7284 			return err;
7285 		}
7286 		break;
7287 	case BPF_FUNC_get_local_storage:
7288 		/* check that flags argument in get_local_storage(map, flags) is 0,
7289 		 * this is required because get_local_storage() can't return an error.
7290 		 */
7291 		if (!register_is_null(&regs[BPF_REG_2])) {
7292 			verbose(env, "get_local_storage() doesn't support non-zero flags\n");
7293 			return -EINVAL;
7294 		}
7295 		break;
7296 	case BPF_FUNC_for_each_map_elem:
7297 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
7298 					set_map_elem_callback_state);
7299 		break;
7300 	case BPF_FUNC_timer_set_callback:
7301 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
7302 					set_timer_callback_state);
7303 		break;
7304 	case BPF_FUNC_find_vma:
7305 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
7306 					set_find_vma_callback_state);
7307 		break;
7308 	case BPF_FUNC_snprintf:
7309 		err = check_bpf_snprintf_call(env, regs);
7310 		break;
7311 	case BPF_FUNC_loop:
7312 		update_loop_inline_state(env, meta.subprogno);
7313 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
7314 					set_loop_callback_state);
7315 		break;
7316 	case BPF_FUNC_dynptr_from_mem:
7317 		if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) {
7318 			verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n",
7319 				reg_type_str(env, regs[BPF_REG_1].type));
7320 			return -EACCES;
7321 		}
7322 		break;
7323 	case BPF_FUNC_set_retval:
7324 		if (env->prog->expected_attach_type == BPF_LSM_CGROUP) {
7325 			if (!env->prog->aux->attach_func_proto->type) {
7326 				/* Make sure programs that attach to void
7327 				 * hooks don't try to modify return value.
7328 				 */
7329 				verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
7330 				return -EINVAL;
7331 			}
7332 		}
7333 		break;
7334 	}
7335 
7336 	if (err)
7337 		return err;
7338 
7339 	/* reset caller saved regs */
7340 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
7341 		mark_reg_not_init(env, regs, caller_saved[i]);
7342 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
7343 	}
7344 
7345 	/* helper call returns 64-bit value. */
7346 	regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
7347 
7348 	/* update return register (already marked as written above) */
7349 	ret_type = fn->ret_type;
7350 	ret_flag = type_flag(fn->ret_type);
7351 	if (ret_type == RET_INTEGER) {
7352 		/* sets type to SCALAR_VALUE */
7353 		mark_reg_unknown(env, regs, BPF_REG_0);
7354 	} else if (ret_type == RET_VOID) {
7355 		regs[BPF_REG_0].type = NOT_INIT;
7356 	} else if (base_type(ret_type) == RET_PTR_TO_MAP_VALUE) {
7357 		/* There is no offset yet applied, variable or fixed */
7358 		mark_reg_known_zero(env, regs, BPF_REG_0);
7359 		/* remember map_ptr, so that check_map_access()
7360 		 * can check 'value_size' boundary of memory access
7361 		 * to map element returned from bpf_map_lookup_elem()
7362 		 */
7363 		if (meta.map_ptr == NULL) {
7364 			verbose(env,
7365 				"kernel subsystem misconfigured verifier\n");
7366 			return -EINVAL;
7367 		}
7368 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
7369 		regs[BPF_REG_0].map_uid = meta.map_uid;
7370 		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag;
7371 		if (!type_may_be_null(ret_type) &&
7372 		    map_value_has_spin_lock(meta.map_ptr)) {
7373 			regs[BPF_REG_0].id = ++env->id_gen;
7374 		}
7375 	} else if (base_type(ret_type) == RET_PTR_TO_SOCKET) {
7376 		mark_reg_known_zero(env, regs, BPF_REG_0);
7377 		regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag;
7378 	} else if (base_type(ret_type) == RET_PTR_TO_SOCK_COMMON) {
7379 		mark_reg_known_zero(env, regs, BPF_REG_0);
7380 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag;
7381 	} else if (base_type(ret_type) == RET_PTR_TO_TCP_SOCK) {
7382 		mark_reg_known_zero(env, regs, BPF_REG_0);
7383 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag;
7384 	} else if (base_type(ret_type) == RET_PTR_TO_ALLOC_MEM) {
7385 		mark_reg_known_zero(env, regs, BPF_REG_0);
7386 		regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
7387 		regs[BPF_REG_0].mem_size = meta.mem_size;
7388 	} else if (base_type(ret_type) == RET_PTR_TO_MEM_OR_BTF_ID) {
7389 		const struct btf_type *t;
7390 
7391 		mark_reg_known_zero(env, regs, BPF_REG_0);
7392 		t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
7393 		if (!btf_type_is_struct(t)) {
7394 			u32 tsize;
7395 			const struct btf_type *ret;
7396 			const char *tname;
7397 
7398 			/* resolve the type size of ksym. */
7399 			ret = btf_resolve_size(meta.ret_btf, t, &tsize);
7400 			if (IS_ERR(ret)) {
7401 				tname = btf_name_by_offset(meta.ret_btf, t->name_off);
7402 				verbose(env, "unable to resolve the size of type '%s': %ld\n",
7403 					tname, PTR_ERR(ret));
7404 				return -EINVAL;
7405 			}
7406 			regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
7407 			regs[BPF_REG_0].mem_size = tsize;
7408 		} else {
7409 			/* MEM_RDONLY may be carried from ret_flag, but it
7410 			 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise
7411 			 * it will confuse the check of PTR_TO_BTF_ID in
7412 			 * check_mem_access().
7413 			 */
7414 			ret_flag &= ~MEM_RDONLY;
7415 
7416 			regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
7417 			regs[BPF_REG_0].btf = meta.ret_btf;
7418 			regs[BPF_REG_0].btf_id = meta.ret_btf_id;
7419 		}
7420 	} else if (base_type(ret_type) == RET_PTR_TO_BTF_ID) {
7421 		struct btf *ret_btf;
7422 		int ret_btf_id;
7423 
7424 		mark_reg_known_zero(env, regs, BPF_REG_0);
7425 		regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
7426 		if (func_id == BPF_FUNC_kptr_xchg) {
7427 			ret_btf = meta.kptr_off_desc->kptr.btf;
7428 			ret_btf_id = meta.kptr_off_desc->kptr.btf_id;
7429 		} else {
7430 			ret_btf = btf_vmlinux;
7431 			ret_btf_id = *fn->ret_btf_id;
7432 		}
7433 		if (ret_btf_id == 0) {
7434 			verbose(env, "invalid return type %u of func %s#%d\n",
7435 				base_type(ret_type), func_id_name(func_id),
7436 				func_id);
7437 			return -EINVAL;
7438 		}
7439 		regs[BPF_REG_0].btf = ret_btf;
7440 		regs[BPF_REG_0].btf_id = ret_btf_id;
7441 	} else {
7442 		verbose(env, "unknown return type %u of func %s#%d\n",
7443 			base_type(ret_type), func_id_name(func_id), func_id);
7444 		return -EINVAL;
7445 	}
7446 
7447 	if (type_may_be_null(regs[BPF_REG_0].type))
7448 		regs[BPF_REG_0].id = ++env->id_gen;
7449 
7450 	if (is_ptr_cast_function(func_id)) {
7451 		/* For release_reference() */
7452 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
7453 	} else if (is_acquire_function(func_id, meta.map_ptr)) {
7454 		int id = acquire_reference_state(env, insn_idx);
7455 
7456 		if (id < 0)
7457 			return id;
7458 		/* For mark_ptr_or_null_reg() */
7459 		regs[BPF_REG_0].id = id;
7460 		/* For release_reference() */
7461 		regs[BPF_REG_0].ref_obj_id = id;
7462 	} else if (func_id == BPF_FUNC_dynptr_data) {
7463 		int dynptr_id = 0, i;
7464 
7465 		/* Find the id of the dynptr we're acquiring a reference to */
7466 		for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
7467 			if (arg_type_is_dynptr(fn->arg_type[i])) {
7468 				if (dynptr_id) {
7469 					verbose(env, "verifier internal error: multiple dynptr args in func\n");
7470 					return -EFAULT;
7471 				}
7472 				dynptr_id = stack_slot_get_id(env, &regs[BPF_REG_1 + i]);
7473 			}
7474 		}
7475 		/* For release_reference() */
7476 		regs[BPF_REG_0].ref_obj_id = dynptr_id;
7477 	}
7478 
7479 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
7480 
7481 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
7482 	if (err)
7483 		return err;
7484 
7485 	if ((func_id == BPF_FUNC_get_stack ||
7486 	     func_id == BPF_FUNC_get_task_stack) &&
7487 	    !env->prog->has_callchain_buf) {
7488 		const char *err_str;
7489 
7490 #ifdef CONFIG_PERF_EVENTS
7491 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
7492 		err_str = "cannot get callchain buffer for func %s#%d\n";
7493 #else
7494 		err = -ENOTSUPP;
7495 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
7496 #endif
7497 		if (err) {
7498 			verbose(env, err_str, func_id_name(func_id), func_id);
7499 			return err;
7500 		}
7501 
7502 		env->prog->has_callchain_buf = true;
7503 	}
7504 
7505 	if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
7506 		env->prog->call_get_stack = true;
7507 
7508 	if (func_id == BPF_FUNC_get_func_ip) {
7509 		if (check_get_func_ip(env))
7510 			return -ENOTSUPP;
7511 		env->prog->call_get_func_ip = true;
7512 	}
7513 
7514 	if (changes_data)
7515 		clear_all_pkt_pointers(env);
7516 	return 0;
7517 }
7518 
7519 /* mark_btf_func_reg_size() is used when the reg size is determined by
7520  * the BTF func_proto's return value size and argument.
7521  */
7522 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
7523 				   size_t reg_size)
7524 {
7525 	struct bpf_reg_state *reg = &cur_regs(env)[regno];
7526 
7527 	if (regno == BPF_REG_0) {
7528 		/* Function return value */
7529 		reg->live |= REG_LIVE_WRITTEN;
7530 		reg->subreg_def = reg_size == sizeof(u64) ?
7531 			DEF_NOT_SUBREG : env->insn_idx + 1;
7532 	} else {
7533 		/* Function argument */
7534 		if (reg_size == sizeof(u64)) {
7535 			mark_insn_zext(env, reg);
7536 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
7537 		} else {
7538 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
7539 		}
7540 	}
7541 }
7542 
7543 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
7544 			    int *insn_idx_p)
7545 {
7546 	const struct btf_type *t, *func, *func_proto, *ptr_type;
7547 	struct bpf_reg_state *regs = cur_regs(env);
7548 	const char *func_name, *ptr_type_name;
7549 	u32 i, nargs, func_id, ptr_type_id;
7550 	int err, insn_idx = *insn_idx_p;
7551 	const struct btf_param *args;
7552 	struct btf *desc_btf;
7553 	bool acq;
7554 
7555 	/* skip for now, but return error when we find this in fixup_kfunc_call */
7556 	if (!insn->imm)
7557 		return 0;
7558 
7559 	desc_btf = find_kfunc_desc_btf(env, insn->off);
7560 	if (IS_ERR(desc_btf))
7561 		return PTR_ERR(desc_btf);
7562 
7563 	func_id = insn->imm;
7564 	func = btf_type_by_id(desc_btf, func_id);
7565 	func_name = btf_name_by_offset(desc_btf, func->name_off);
7566 	func_proto = btf_type_by_id(desc_btf, func->type);
7567 
7568 	if (!btf_kfunc_id_set_contains(desc_btf, resolve_prog_type(env->prog),
7569 				      BTF_KFUNC_TYPE_CHECK, func_id)) {
7570 		verbose(env, "calling kernel function %s is not allowed\n",
7571 			func_name);
7572 		return -EACCES;
7573 	}
7574 
7575 	acq = btf_kfunc_id_set_contains(desc_btf, resolve_prog_type(env->prog),
7576 					BTF_KFUNC_TYPE_ACQUIRE, func_id);
7577 
7578 	/* Check the arguments */
7579 	err = btf_check_kfunc_arg_match(env, desc_btf, func_id, regs);
7580 	if (err < 0)
7581 		return err;
7582 	/* In case of release function, we get register number of refcounted
7583 	 * PTR_TO_BTF_ID back from btf_check_kfunc_arg_match, do the release now
7584 	 */
7585 	if (err) {
7586 		err = release_reference(env, regs[err].ref_obj_id);
7587 		if (err) {
7588 			verbose(env, "kfunc %s#%d reference has not been acquired before\n",
7589 				func_name, func_id);
7590 			return err;
7591 		}
7592 	}
7593 
7594 	for (i = 0; i < CALLER_SAVED_REGS; i++)
7595 		mark_reg_not_init(env, regs, caller_saved[i]);
7596 
7597 	/* Check return type */
7598 	t = btf_type_skip_modifiers(desc_btf, func_proto->type, NULL);
7599 
7600 	if (acq && !btf_type_is_ptr(t)) {
7601 		verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n");
7602 		return -EINVAL;
7603 	}
7604 
7605 	if (btf_type_is_scalar(t)) {
7606 		mark_reg_unknown(env, regs, BPF_REG_0);
7607 		mark_btf_func_reg_size(env, BPF_REG_0, t->size);
7608 	} else if (btf_type_is_ptr(t)) {
7609 		ptr_type = btf_type_skip_modifiers(desc_btf, t->type,
7610 						   &ptr_type_id);
7611 		if (!btf_type_is_struct(ptr_type)) {
7612 			ptr_type_name = btf_name_by_offset(desc_btf,
7613 							   ptr_type->name_off);
7614 			verbose(env, "kernel function %s returns pointer type %s %s is not supported\n",
7615 				func_name, btf_type_str(ptr_type),
7616 				ptr_type_name);
7617 			return -EINVAL;
7618 		}
7619 		mark_reg_known_zero(env, regs, BPF_REG_0);
7620 		regs[BPF_REG_0].btf = desc_btf;
7621 		regs[BPF_REG_0].type = PTR_TO_BTF_ID;
7622 		regs[BPF_REG_0].btf_id = ptr_type_id;
7623 		if (btf_kfunc_id_set_contains(desc_btf, resolve_prog_type(env->prog),
7624 					      BTF_KFUNC_TYPE_RET_NULL, func_id)) {
7625 			regs[BPF_REG_0].type |= PTR_MAYBE_NULL;
7626 			/* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */
7627 			regs[BPF_REG_0].id = ++env->id_gen;
7628 		}
7629 		mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
7630 		if (acq) {
7631 			int id = acquire_reference_state(env, insn_idx);
7632 
7633 			if (id < 0)
7634 				return id;
7635 			regs[BPF_REG_0].id = id;
7636 			regs[BPF_REG_0].ref_obj_id = id;
7637 		}
7638 	} /* else { add_kfunc_call() ensures it is btf_type_is_void(t) } */
7639 
7640 	nargs = btf_type_vlen(func_proto);
7641 	args = (const struct btf_param *)(func_proto + 1);
7642 	for (i = 0; i < nargs; i++) {
7643 		u32 regno = i + 1;
7644 
7645 		t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL);
7646 		if (btf_type_is_ptr(t))
7647 			mark_btf_func_reg_size(env, regno, sizeof(void *));
7648 		else
7649 			/* scalar. ensured by btf_check_kfunc_arg_match() */
7650 			mark_btf_func_reg_size(env, regno, t->size);
7651 	}
7652 
7653 	return 0;
7654 }
7655 
7656 static bool signed_add_overflows(s64 a, s64 b)
7657 {
7658 	/* Do the add in u64, where overflow is well-defined */
7659 	s64 res = (s64)((u64)a + (u64)b);
7660 
7661 	if (b < 0)
7662 		return res > a;
7663 	return res < a;
7664 }
7665 
7666 static bool signed_add32_overflows(s32 a, s32 b)
7667 {
7668 	/* Do the add in u32, where overflow is well-defined */
7669 	s32 res = (s32)((u32)a + (u32)b);
7670 
7671 	if (b < 0)
7672 		return res > a;
7673 	return res < a;
7674 }
7675 
7676 static bool signed_sub_overflows(s64 a, s64 b)
7677 {
7678 	/* Do the sub in u64, where overflow is well-defined */
7679 	s64 res = (s64)((u64)a - (u64)b);
7680 
7681 	if (b < 0)
7682 		return res < a;
7683 	return res > a;
7684 }
7685 
7686 static bool signed_sub32_overflows(s32 a, s32 b)
7687 {
7688 	/* Do the sub in u32, where overflow is well-defined */
7689 	s32 res = (s32)((u32)a - (u32)b);
7690 
7691 	if (b < 0)
7692 		return res < a;
7693 	return res > a;
7694 }
7695 
7696 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
7697 				  const struct bpf_reg_state *reg,
7698 				  enum bpf_reg_type type)
7699 {
7700 	bool known = tnum_is_const(reg->var_off);
7701 	s64 val = reg->var_off.value;
7702 	s64 smin = reg->smin_value;
7703 
7704 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
7705 		verbose(env, "math between %s pointer and %lld is not allowed\n",
7706 			reg_type_str(env, type), val);
7707 		return false;
7708 	}
7709 
7710 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
7711 		verbose(env, "%s pointer offset %d is not allowed\n",
7712 			reg_type_str(env, type), reg->off);
7713 		return false;
7714 	}
7715 
7716 	if (smin == S64_MIN) {
7717 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
7718 			reg_type_str(env, type));
7719 		return false;
7720 	}
7721 
7722 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
7723 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
7724 			smin, reg_type_str(env, type));
7725 		return false;
7726 	}
7727 
7728 	return true;
7729 }
7730 
7731 enum {
7732 	REASON_BOUNDS	= -1,
7733 	REASON_TYPE	= -2,
7734 	REASON_PATHS	= -3,
7735 	REASON_LIMIT	= -4,
7736 	REASON_STACK	= -5,
7737 };
7738 
7739 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
7740 			      u32 *alu_limit, bool mask_to_left)
7741 {
7742 	u32 max = 0, ptr_limit = 0;
7743 
7744 	switch (ptr_reg->type) {
7745 	case PTR_TO_STACK:
7746 		/* Offset 0 is out-of-bounds, but acceptable start for the
7747 		 * left direction, see BPF_REG_FP. Also, unknown scalar
7748 		 * offset where we would need to deal with min/max bounds is
7749 		 * currently prohibited for unprivileged.
7750 		 */
7751 		max = MAX_BPF_STACK + mask_to_left;
7752 		ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
7753 		break;
7754 	case PTR_TO_MAP_VALUE:
7755 		max = ptr_reg->map_ptr->value_size;
7756 		ptr_limit = (mask_to_left ?
7757 			     ptr_reg->smin_value :
7758 			     ptr_reg->umax_value) + ptr_reg->off;
7759 		break;
7760 	default:
7761 		return REASON_TYPE;
7762 	}
7763 
7764 	if (ptr_limit >= max)
7765 		return REASON_LIMIT;
7766 	*alu_limit = ptr_limit;
7767 	return 0;
7768 }
7769 
7770 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
7771 				    const struct bpf_insn *insn)
7772 {
7773 	return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
7774 }
7775 
7776 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
7777 				       u32 alu_state, u32 alu_limit)
7778 {
7779 	/* If we arrived here from different branches with different
7780 	 * state or limits to sanitize, then this won't work.
7781 	 */
7782 	if (aux->alu_state &&
7783 	    (aux->alu_state != alu_state ||
7784 	     aux->alu_limit != alu_limit))
7785 		return REASON_PATHS;
7786 
7787 	/* Corresponding fixup done in do_misc_fixups(). */
7788 	aux->alu_state = alu_state;
7789 	aux->alu_limit = alu_limit;
7790 	return 0;
7791 }
7792 
7793 static int sanitize_val_alu(struct bpf_verifier_env *env,
7794 			    struct bpf_insn *insn)
7795 {
7796 	struct bpf_insn_aux_data *aux = cur_aux(env);
7797 
7798 	if (can_skip_alu_sanitation(env, insn))
7799 		return 0;
7800 
7801 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
7802 }
7803 
7804 static bool sanitize_needed(u8 opcode)
7805 {
7806 	return opcode == BPF_ADD || opcode == BPF_SUB;
7807 }
7808 
7809 struct bpf_sanitize_info {
7810 	struct bpf_insn_aux_data aux;
7811 	bool mask_to_left;
7812 };
7813 
7814 static struct bpf_verifier_state *
7815 sanitize_speculative_path(struct bpf_verifier_env *env,
7816 			  const struct bpf_insn *insn,
7817 			  u32 next_idx, u32 curr_idx)
7818 {
7819 	struct bpf_verifier_state *branch;
7820 	struct bpf_reg_state *regs;
7821 
7822 	branch = push_stack(env, next_idx, curr_idx, true);
7823 	if (branch && insn) {
7824 		regs = branch->frame[branch->curframe]->regs;
7825 		if (BPF_SRC(insn->code) == BPF_K) {
7826 			mark_reg_unknown(env, regs, insn->dst_reg);
7827 		} else if (BPF_SRC(insn->code) == BPF_X) {
7828 			mark_reg_unknown(env, regs, insn->dst_reg);
7829 			mark_reg_unknown(env, regs, insn->src_reg);
7830 		}
7831 	}
7832 	return branch;
7833 }
7834 
7835 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
7836 			    struct bpf_insn *insn,
7837 			    const struct bpf_reg_state *ptr_reg,
7838 			    const struct bpf_reg_state *off_reg,
7839 			    struct bpf_reg_state *dst_reg,
7840 			    struct bpf_sanitize_info *info,
7841 			    const bool commit_window)
7842 {
7843 	struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
7844 	struct bpf_verifier_state *vstate = env->cur_state;
7845 	bool off_is_imm = tnum_is_const(off_reg->var_off);
7846 	bool off_is_neg = off_reg->smin_value < 0;
7847 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
7848 	u8 opcode = BPF_OP(insn->code);
7849 	u32 alu_state, alu_limit;
7850 	struct bpf_reg_state tmp;
7851 	bool ret;
7852 	int err;
7853 
7854 	if (can_skip_alu_sanitation(env, insn))
7855 		return 0;
7856 
7857 	/* We already marked aux for masking from non-speculative
7858 	 * paths, thus we got here in the first place. We only care
7859 	 * to explore bad access from here.
7860 	 */
7861 	if (vstate->speculative)
7862 		goto do_sim;
7863 
7864 	if (!commit_window) {
7865 		if (!tnum_is_const(off_reg->var_off) &&
7866 		    (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
7867 			return REASON_BOUNDS;
7868 
7869 		info->mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
7870 				     (opcode == BPF_SUB && !off_is_neg);
7871 	}
7872 
7873 	err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
7874 	if (err < 0)
7875 		return err;
7876 
7877 	if (commit_window) {
7878 		/* In commit phase we narrow the masking window based on
7879 		 * the observed pointer move after the simulated operation.
7880 		 */
7881 		alu_state = info->aux.alu_state;
7882 		alu_limit = abs(info->aux.alu_limit - alu_limit);
7883 	} else {
7884 		alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
7885 		alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
7886 		alu_state |= ptr_is_dst_reg ?
7887 			     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
7888 
7889 		/* Limit pruning on unknown scalars to enable deep search for
7890 		 * potential masking differences from other program paths.
7891 		 */
7892 		if (!off_is_imm)
7893 			env->explore_alu_limits = true;
7894 	}
7895 
7896 	err = update_alu_sanitation_state(aux, alu_state, alu_limit);
7897 	if (err < 0)
7898 		return err;
7899 do_sim:
7900 	/* If we're in commit phase, we're done here given we already
7901 	 * pushed the truncated dst_reg into the speculative verification
7902 	 * stack.
7903 	 *
7904 	 * Also, when register is a known constant, we rewrite register-based
7905 	 * operation to immediate-based, and thus do not need masking (and as
7906 	 * a consequence, do not need to simulate the zero-truncation either).
7907 	 */
7908 	if (commit_window || off_is_imm)
7909 		return 0;
7910 
7911 	/* Simulate and find potential out-of-bounds access under
7912 	 * speculative execution from truncation as a result of
7913 	 * masking when off was not within expected range. If off
7914 	 * sits in dst, then we temporarily need to move ptr there
7915 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
7916 	 * for cases where we use K-based arithmetic in one direction
7917 	 * and truncated reg-based in the other in order to explore
7918 	 * bad access.
7919 	 */
7920 	if (!ptr_is_dst_reg) {
7921 		tmp = *dst_reg;
7922 		*dst_reg = *ptr_reg;
7923 	}
7924 	ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
7925 					env->insn_idx);
7926 	if (!ptr_is_dst_reg && ret)
7927 		*dst_reg = tmp;
7928 	return !ret ? REASON_STACK : 0;
7929 }
7930 
7931 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
7932 {
7933 	struct bpf_verifier_state *vstate = env->cur_state;
7934 
7935 	/* If we simulate paths under speculation, we don't update the
7936 	 * insn as 'seen' such that when we verify unreachable paths in
7937 	 * the non-speculative domain, sanitize_dead_code() can still
7938 	 * rewrite/sanitize them.
7939 	 */
7940 	if (!vstate->speculative)
7941 		env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
7942 }
7943 
7944 static int sanitize_err(struct bpf_verifier_env *env,
7945 			const struct bpf_insn *insn, int reason,
7946 			const struct bpf_reg_state *off_reg,
7947 			const struct bpf_reg_state *dst_reg)
7948 {
7949 	static const char *err = "pointer arithmetic with it prohibited for !root";
7950 	const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
7951 	u32 dst = insn->dst_reg, src = insn->src_reg;
7952 
7953 	switch (reason) {
7954 	case REASON_BOUNDS:
7955 		verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
7956 			off_reg == dst_reg ? dst : src, err);
7957 		break;
7958 	case REASON_TYPE:
7959 		verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
7960 			off_reg == dst_reg ? src : dst, err);
7961 		break;
7962 	case REASON_PATHS:
7963 		verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
7964 			dst, op, err);
7965 		break;
7966 	case REASON_LIMIT:
7967 		verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
7968 			dst, op, err);
7969 		break;
7970 	case REASON_STACK:
7971 		verbose(env, "R%d could not be pushed for speculative verification, %s\n",
7972 			dst, err);
7973 		break;
7974 	default:
7975 		verbose(env, "verifier internal error: unknown reason (%d)\n",
7976 			reason);
7977 		break;
7978 	}
7979 
7980 	return -EACCES;
7981 }
7982 
7983 /* check that stack access falls within stack limits and that 'reg' doesn't
7984  * have a variable offset.
7985  *
7986  * Variable offset is prohibited for unprivileged mode for simplicity since it
7987  * requires corresponding support in Spectre masking for stack ALU.  See also
7988  * retrieve_ptr_limit().
7989  *
7990  *
7991  * 'off' includes 'reg->off'.
7992  */
7993 static int check_stack_access_for_ptr_arithmetic(
7994 				struct bpf_verifier_env *env,
7995 				int regno,
7996 				const struct bpf_reg_state *reg,
7997 				int off)
7998 {
7999 	if (!tnum_is_const(reg->var_off)) {
8000 		char tn_buf[48];
8001 
8002 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
8003 		verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
8004 			regno, tn_buf, off);
8005 		return -EACCES;
8006 	}
8007 
8008 	if (off >= 0 || off < -MAX_BPF_STACK) {
8009 		verbose(env, "R%d stack pointer arithmetic goes out of range, "
8010 			"prohibited for !root; off=%d\n", regno, off);
8011 		return -EACCES;
8012 	}
8013 
8014 	return 0;
8015 }
8016 
8017 static int sanitize_check_bounds(struct bpf_verifier_env *env,
8018 				 const struct bpf_insn *insn,
8019 				 const struct bpf_reg_state *dst_reg)
8020 {
8021 	u32 dst = insn->dst_reg;
8022 
8023 	/* For unprivileged we require that resulting offset must be in bounds
8024 	 * in order to be able to sanitize access later on.
8025 	 */
8026 	if (env->bypass_spec_v1)
8027 		return 0;
8028 
8029 	switch (dst_reg->type) {
8030 	case PTR_TO_STACK:
8031 		if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
8032 					dst_reg->off + dst_reg->var_off.value))
8033 			return -EACCES;
8034 		break;
8035 	case PTR_TO_MAP_VALUE:
8036 		if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) {
8037 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
8038 				"prohibited for !root\n", dst);
8039 			return -EACCES;
8040 		}
8041 		break;
8042 	default:
8043 		break;
8044 	}
8045 
8046 	return 0;
8047 }
8048 
8049 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
8050  * Caller should also handle BPF_MOV case separately.
8051  * If we return -EACCES, caller may want to try again treating pointer as a
8052  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
8053  */
8054 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
8055 				   struct bpf_insn *insn,
8056 				   const struct bpf_reg_state *ptr_reg,
8057 				   const struct bpf_reg_state *off_reg)
8058 {
8059 	struct bpf_verifier_state *vstate = env->cur_state;
8060 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
8061 	struct bpf_reg_state *regs = state->regs, *dst_reg;
8062 	bool known = tnum_is_const(off_reg->var_off);
8063 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
8064 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
8065 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
8066 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
8067 	struct bpf_sanitize_info info = {};
8068 	u8 opcode = BPF_OP(insn->code);
8069 	u32 dst = insn->dst_reg;
8070 	int ret;
8071 
8072 	dst_reg = &regs[dst];
8073 
8074 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
8075 	    smin_val > smax_val || umin_val > umax_val) {
8076 		/* Taint dst register if offset had invalid bounds derived from
8077 		 * e.g. dead branches.
8078 		 */
8079 		__mark_reg_unknown(env, dst_reg);
8080 		return 0;
8081 	}
8082 
8083 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
8084 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
8085 		if (opcode == BPF_SUB && env->allow_ptr_leaks) {
8086 			__mark_reg_unknown(env, dst_reg);
8087 			return 0;
8088 		}
8089 
8090 		verbose(env,
8091 			"R%d 32-bit pointer arithmetic prohibited\n",
8092 			dst);
8093 		return -EACCES;
8094 	}
8095 
8096 	if (ptr_reg->type & PTR_MAYBE_NULL) {
8097 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
8098 			dst, reg_type_str(env, ptr_reg->type));
8099 		return -EACCES;
8100 	}
8101 
8102 	switch (base_type(ptr_reg->type)) {
8103 	case CONST_PTR_TO_MAP:
8104 		/* smin_val represents the known value */
8105 		if (known && smin_val == 0 && opcode == BPF_ADD)
8106 			break;
8107 		fallthrough;
8108 	case PTR_TO_PACKET_END:
8109 	case PTR_TO_SOCKET:
8110 	case PTR_TO_SOCK_COMMON:
8111 	case PTR_TO_TCP_SOCK:
8112 	case PTR_TO_XDP_SOCK:
8113 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
8114 			dst, reg_type_str(env, ptr_reg->type));
8115 		return -EACCES;
8116 	default:
8117 		break;
8118 	}
8119 
8120 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
8121 	 * The id may be overwritten later if we create a new variable offset.
8122 	 */
8123 	dst_reg->type = ptr_reg->type;
8124 	dst_reg->id = ptr_reg->id;
8125 
8126 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
8127 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
8128 		return -EINVAL;
8129 
8130 	/* pointer types do not carry 32-bit bounds at the moment. */
8131 	__mark_reg32_unbounded(dst_reg);
8132 
8133 	if (sanitize_needed(opcode)) {
8134 		ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
8135 				       &info, false);
8136 		if (ret < 0)
8137 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
8138 	}
8139 
8140 	switch (opcode) {
8141 	case BPF_ADD:
8142 		/* We can take a fixed offset as long as it doesn't overflow
8143 		 * the s32 'off' field
8144 		 */
8145 		if (known && (ptr_reg->off + smin_val ==
8146 			      (s64)(s32)(ptr_reg->off + smin_val))) {
8147 			/* pointer += K.  Accumulate it into fixed offset */
8148 			dst_reg->smin_value = smin_ptr;
8149 			dst_reg->smax_value = smax_ptr;
8150 			dst_reg->umin_value = umin_ptr;
8151 			dst_reg->umax_value = umax_ptr;
8152 			dst_reg->var_off = ptr_reg->var_off;
8153 			dst_reg->off = ptr_reg->off + smin_val;
8154 			dst_reg->raw = ptr_reg->raw;
8155 			break;
8156 		}
8157 		/* A new variable offset is created.  Note that off_reg->off
8158 		 * == 0, since it's a scalar.
8159 		 * dst_reg gets the pointer type and since some positive
8160 		 * integer value was added to the pointer, give it a new 'id'
8161 		 * if it's a PTR_TO_PACKET.
8162 		 * this creates a new 'base' pointer, off_reg (variable) gets
8163 		 * added into the variable offset, and we copy the fixed offset
8164 		 * from ptr_reg.
8165 		 */
8166 		if (signed_add_overflows(smin_ptr, smin_val) ||
8167 		    signed_add_overflows(smax_ptr, smax_val)) {
8168 			dst_reg->smin_value = S64_MIN;
8169 			dst_reg->smax_value = S64_MAX;
8170 		} else {
8171 			dst_reg->smin_value = smin_ptr + smin_val;
8172 			dst_reg->smax_value = smax_ptr + smax_val;
8173 		}
8174 		if (umin_ptr + umin_val < umin_ptr ||
8175 		    umax_ptr + umax_val < umax_ptr) {
8176 			dst_reg->umin_value = 0;
8177 			dst_reg->umax_value = U64_MAX;
8178 		} else {
8179 			dst_reg->umin_value = umin_ptr + umin_val;
8180 			dst_reg->umax_value = umax_ptr + umax_val;
8181 		}
8182 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
8183 		dst_reg->off = ptr_reg->off;
8184 		dst_reg->raw = ptr_reg->raw;
8185 		if (reg_is_pkt_pointer(ptr_reg)) {
8186 			dst_reg->id = ++env->id_gen;
8187 			/* something was added to pkt_ptr, set range to zero */
8188 			memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
8189 		}
8190 		break;
8191 	case BPF_SUB:
8192 		if (dst_reg == off_reg) {
8193 			/* scalar -= pointer.  Creates an unknown scalar */
8194 			verbose(env, "R%d tried to subtract pointer from scalar\n",
8195 				dst);
8196 			return -EACCES;
8197 		}
8198 		/* We don't allow subtraction from FP, because (according to
8199 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
8200 		 * be able to deal with it.
8201 		 */
8202 		if (ptr_reg->type == PTR_TO_STACK) {
8203 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
8204 				dst);
8205 			return -EACCES;
8206 		}
8207 		if (known && (ptr_reg->off - smin_val ==
8208 			      (s64)(s32)(ptr_reg->off - smin_val))) {
8209 			/* pointer -= K.  Subtract it from fixed offset */
8210 			dst_reg->smin_value = smin_ptr;
8211 			dst_reg->smax_value = smax_ptr;
8212 			dst_reg->umin_value = umin_ptr;
8213 			dst_reg->umax_value = umax_ptr;
8214 			dst_reg->var_off = ptr_reg->var_off;
8215 			dst_reg->id = ptr_reg->id;
8216 			dst_reg->off = ptr_reg->off - smin_val;
8217 			dst_reg->raw = ptr_reg->raw;
8218 			break;
8219 		}
8220 		/* A new variable offset is created.  If the subtrahend is known
8221 		 * nonnegative, then any reg->range we had before is still good.
8222 		 */
8223 		if (signed_sub_overflows(smin_ptr, smax_val) ||
8224 		    signed_sub_overflows(smax_ptr, smin_val)) {
8225 			/* Overflow possible, we know nothing */
8226 			dst_reg->smin_value = S64_MIN;
8227 			dst_reg->smax_value = S64_MAX;
8228 		} else {
8229 			dst_reg->smin_value = smin_ptr - smax_val;
8230 			dst_reg->smax_value = smax_ptr - smin_val;
8231 		}
8232 		if (umin_ptr < umax_val) {
8233 			/* Overflow possible, we know nothing */
8234 			dst_reg->umin_value = 0;
8235 			dst_reg->umax_value = U64_MAX;
8236 		} else {
8237 			/* Cannot overflow (as long as bounds are consistent) */
8238 			dst_reg->umin_value = umin_ptr - umax_val;
8239 			dst_reg->umax_value = umax_ptr - umin_val;
8240 		}
8241 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
8242 		dst_reg->off = ptr_reg->off;
8243 		dst_reg->raw = ptr_reg->raw;
8244 		if (reg_is_pkt_pointer(ptr_reg)) {
8245 			dst_reg->id = ++env->id_gen;
8246 			/* something was added to pkt_ptr, set range to zero */
8247 			if (smin_val < 0)
8248 				memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
8249 		}
8250 		break;
8251 	case BPF_AND:
8252 	case BPF_OR:
8253 	case BPF_XOR:
8254 		/* bitwise ops on pointers are troublesome, prohibit. */
8255 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
8256 			dst, bpf_alu_string[opcode >> 4]);
8257 		return -EACCES;
8258 	default:
8259 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
8260 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
8261 			dst, bpf_alu_string[opcode >> 4]);
8262 		return -EACCES;
8263 	}
8264 
8265 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
8266 		return -EINVAL;
8267 	reg_bounds_sync(dst_reg);
8268 	if (sanitize_check_bounds(env, insn, dst_reg) < 0)
8269 		return -EACCES;
8270 	if (sanitize_needed(opcode)) {
8271 		ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
8272 				       &info, true);
8273 		if (ret < 0)
8274 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
8275 	}
8276 
8277 	return 0;
8278 }
8279 
8280 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
8281 				 struct bpf_reg_state *src_reg)
8282 {
8283 	s32 smin_val = src_reg->s32_min_value;
8284 	s32 smax_val = src_reg->s32_max_value;
8285 	u32 umin_val = src_reg->u32_min_value;
8286 	u32 umax_val = src_reg->u32_max_value;
8287 
8288 	if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
8289 	    signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
8290 		dst_reg->s32_min_value = S32_MIN;
8291 		dst_reg->s32_max_value = S32_MAX;
8292 	} else {
8293 		dst_reg->s32_min_value += smin_val;
8294 		dst_reg->s32_max_value += smax_val;
8295 	}
8296 	if (dst_reg->u32_min_value + umin_val < umin_val ||
8297 	    dst_reg->u32_max_value + umax_val < umax_val) {
8298 		dst_reg->u32_min_value = 0;
8299 		dst_reg->u32_max_value = U32_MAX;
8300 	} else {
8301 		dst_reg->u32_min_value += umin_val;
8302 		dst_reg->u32_max_value += umax_val;
8303 	}
8304 }
8305 
8306 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
8307 			       struct bpf_reg_state *src_reg)
8308 {
8309 	s64 smin_val = src_reg->smin_value;
8310 	s64 smax_val = src_reg->smax_value;
8311 	u64 umin_val = src_reg->umin_value;
8312 	u64 umax_val = src_reg->umax_value;
8313 
8314 	if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
8315 	    signed_add_overflows(dst_reg->smax_value, smax_val)) {
8316 		dst_reg->smin_value = S64_MIN;
8317 		dst_reg->smax_value = S64_MAX;
8318 	} else {
8319 		dst_reg->smin_value += smin_val;
8320 		dst_reg->smax_value += smax_val;
8321 	}
8322 	if (dst_reg->umin_value + umin_val < umin_val ||
8323 	    dst_reg->umax_value + umax_val < umax_val) {
8324 		dst_reg->umin_value = 0;
8325 		dst_reg->umax_value = U64_MAX;
8326 	} else {
8327 		dst_reg->umin_value += umin_val;
8328 		dst_reg->umax_value += umax_val;
8329 	}
8330 }
8331 
8332 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
8333 				 struct bpf_reg_state *src_reg)
8334 {
8335 	s32 smin_val = src_reg->s32_min_value;
8336 	s32 smax_val = src_reg->s32_max_value;
8337 	u32 umin_val = src_reg->u32_min_value;
8338 	u32 umax_val = src_reg->u32_max_value;
8339 
8340 	if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
8341 	    signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
8342 		/* Overflow possible, we know nothing */
8343 		dst_reg->s32_min_value = S32_MIN;
8344 		dst_reg->s32_max_value = S32_MAX;
8345 	} else {
8346 		dst_reg->s32_min_value -= smax_val;
8347 		dst_reg->s32_max_value -= smin_val;
8348 	}
8349 	if (dst_reg->u32_min_value < umax_val) {
8350 		/* Overflow possible, we know nothing */
8351 		dst_reg->u32_min_value = 0;
8352 		dst_reg->u32_max_value = U32_MAX;
8353 	} else {
8354 		/* Cannot overflow (as long as bounds are consistent) */
8355 		dst_reg->u32_min_value -= umax_val;
8356 		dst_reg->u32_max_value -= umin_val;
8357 	}
8358 }
8359 
8360 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
8361 			       struct bpf_reg_state *src_reg)
8362 {
8363 	s64 smin_val = src_reg->smin_value;
8364 	s64 smax_val = src_reg->smax_value;
8365 	u64 umin_val = src_reg->umin_value;
8366 	u64 umax_val = src_reg->umax_value;
8367 
8368 	if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
8369 	    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
8370 		/* Overflow possible, we know nothing */
8371 		dst_reg->smin_value = S64_MIN;
8372 		dst_reg->smax_value = S64_MAX;
8373 	} else {
8374 		dst_reg->smin_value -= smax_val;
8375 		dst_reg->smax_value -= smin_val;
8376 	}
8377 	if (dst_reg->umin_value < umax_val) {
8378 		/* Overflow possible, we know nothing */
8379 		dst_reg->umin_value = 0;
8380 		dst_reg->umax_value = U64_MAX;
8381 	} else {
8382 		/* Cannot overflow (as long as bounds are consistent) */
8383 		dst_reg->umin_value -= umax_val;
8384 		dst_reg->umax_value -= umin_val;
8385 	}
8386 }
8387 
8388 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
8389 				 struct bpf_reg_state *src_reg)
8390 {
8391 	s32 smin_val = src_reg->s32_min_value;
8392 	u32 umin_val = src_reg->u32_min_value;
8393 	u32 umax_val = src_reg->u32_max_value;
8394 
8395 	if (smin_val < 0 || dst_reg->s32_min_value < 0) {
8396 		/* Ain't nobody got time to multiply that sign */
8397 		__mark_reg32_unbounded(dst_reg);
8398 		return;
8399 	}
8400 	/* Both values are positive, so we can work with unsigned and
8401 	 * copy the result to signed (unless it exceeds S32_MAX).
8402 	 */
8403 	if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
8404 		/* Potential overflow, we know nothing */
8405 		__mark_reg32_unbounded(dst_reg);
8406 		return;
8407 	}
8408 	dst_reg->u32_min_value *= umin_val;
8409 	dst_reg->u32_max_value *= umax_val;
8410 	if (dst_reg->u32_max_value > S32_MAX) {
8411 		/* Overflow possible, we know nothing */
8412 		dst_reg->s32_min_value = S32_MIN;
8413 		dst_reg->s32_max_value = S32_MAX;
8414 	} else {
8415 		dst_reg->s32_min_value = dst_reg->u32_min_value;
8416 		dst_reg->s32_max_value = dst_reg->u32_max_value;
8417 	}
8418 }
8419 
8420 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
8421 			       struct bpf_reg_state *src_reg)
8422 {
8423 	s64 smin_val = src_reg->smin_value;
8424 	u64 umin_val = src_reg->umin_value;
8425 	u64 umax_val = src_reg->umax_value;
8426 
8427 	if (smin_val < 0 || dst_reg->smin_value < 0) {
8428 		/* Ain't nobody got time to multiply that sign */
8429 		__mark_reg64_unbounded(dst_reg);
8430 		return;
8431 	}
8432 	/* Both values are positive, so we can work with unsigned and
8433 	 * copy the result to signed (unless it exceeds S64_MAX).
8434 	 */
8435 	if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
8436 		/* Potential overflow, we know nothing */
8437 		__mark_reg64_unbounded(dst_reg);
8438 		return;
8439 	}
8440 	dst_reg->umin_value *= umin_val;
8441 	dst_reg->umax_value *= umax_val;
8442 	if (dst_reg->umax_value > S64_MAX) {
8443 		/* Overflow possible, we know nothing */
8444 		dst_reg->smin_value = S64_MIN;
8445 		dst_reg->smax_value = S64_MAX;
8446 	} else {
8447 		dst_reg->smin_value = dst_reg->umin_value;
8448 		dst_reg->smax_value = dst_reg->umax_value;
8449 	}
8450 }
8451 
8452 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
8453 				 struct bpf_reg_state *src_reg)
8454 {
8455 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
8456 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
8457 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
8458 	s32 smin_val = src_reg->s32_min_value;
8459 	u32 umax_val = src_reg->u32_max_value;
8460 
8461 	if (src_known && dst_known) {
8462 		__mark_reg32_known(dst_reg, var32_off.value);
8463 		return;
8464 	}
8465 
8466 	/* We get our minimum from the var_off, since that's inherently
8467 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
8468 	 */
8469 	dst_reg->u32_min_value = var32_off.value;
8470 	dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
8471 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
8472 		/* Lose signed bounds when ANDing negative numbers,
8473 		 * ain't nobody got time for that.
8474 		 */
8475 		dst_reg->s32_min_value = S32_MIN;
8476 		dst_reg->s32_max_value = S32_MAX;
8477 	} else {
8478 		/* ANDing two positives gives a positive, so safe to
8479 		 * cast result into s64.
8480 		 */
8481 		dst_reg->s32_min_value = dst_reg->u32_min_value;
8482 		dst_reg->s32_max_value = dst_reg->u32_max_value;
8483 	}
8484 }
8485 
8486 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
8487 			       struct bpf_reg_state *src_reg)
8488 {
8489 	bool src_known = tnum_is_const(src_reg->var_off);
8490 	bool dst_known = tnum_is_const(dst_reg->var_off);
8491 	s64 smin_val = src_reg->smin_value;
8492 	u64 umax_val = src_reg->umax_value;
8493 
8494 	if (src_known && dst_known) {
8495 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
8496 		return;
8497 	}
8498 
8499 	/* We get our minimum from the var_off, since that's inherently
8500 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
8501 	 */
8502 	dst_reg->umin_value = dst_reg->var_off.value;
8503 	dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
8504 	if (dst_reg->smin_value < 0 || smin_val < 0) {
8505 		/* Lose signed bounds when ANDing negative numbers,
8506 		 * ain't nobody got time for that.
8507 		 */
8508 		dst_reg->smin_value = S64_MIN;
8509 		dst_reg->smax_value = S64_MAX;
8510 	} else {
8511 		/* ANDing two positives gives a positive, so safe to
8512 		 * cast result into s64.
8513 		 */
8514 		dst_reg->smin_value = dst_reg->umin_value;
8515 		dst_reg->smax_value = dst_reg->umax_value;
8516 	}
8517 	/* We may learn something more from the var_off */
8518 	__update_reg_bounds(dst_reg);
8519 }
8520 
8521 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
8522 				struct bpf_reg_state *src_reg)
8523 {
8524 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
8525 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
8526 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
8527 	s32 smin_val = src_reg->s32_min_value;
8528 	u32 umin_val = src_reg->u32_min_value;
8529 
8530 	if (src_known && dst_known) {
8531 		__mark_reg32_known(dst_reg, var32_off.value);
8532 		return;
8533 	}
8534 
8535 	/* We get our maximum from the var_off, and our minimum is the
8536 	 * maximum of the operands' minima
8537 	 */
8538 	dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
8539 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
8540 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
8541 		/* Lose signed bounds when ORing negative numbers,
8542 		 * ain't nobody got time for that.
8543 		 */
8544 		dst_reg->s32_min_value = S32_MIN;
8545 		dst_reg->s32_max_value = S32_MAX;
8546 	} else {
8547 		/* ORing two positives gives a positive, so safe to
8548 		 * cast result into s64.
8549 		 */
8550 		dst_reg->s32_min_value = dst_reg->u32_min_value;
8551 		dst_reg->s32_max_value = dst_reg->u32_max_value;
8552 	}
8553 }
8554 
8555 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
8556 			      struct bpf_reg_state *src_reg)
8557 {
8558 	bool src_known = tnum_is_const(src_reg->var_off);
8559 	bool dst_known = tnum_is_const(dst_reg->var_off);
8560 	s64 smin_val = src_reg->smin_value;
8561 	u64 umin_val = src_reg->umin_value;
8562 
8563 	if (src_known && dst_known) {
8564 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
8565 		return;
8566 	}
8567 
8568 	/* We get our maximum from the var_off, and our minimum is the
8569 	 * maximum of the operands' minima
8570 	 */
8571 	dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
8572 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
8573 	if (dst_reg->smin_value < 0 || smin_val < 0) {
8574 		/* Lose signed bounds when ORing negative numbers,
8575 		 * ain't nobody got time for that.
8576 		 */
8577 		dst_reg->smin_value = S64_MIN;
8578 		dst_reg->smax_value = S64_MAX;
8579 	} else {
8580 		/* ORing two positives gives a positive, so safe to
8581 		 * cast result into s64.
8582 		 */
8583 		dst_reg->smin_value = dst_reg->umin_value;
8584 		dst_reg->smax_value = dst_reg->umax_value;
8585 	}
8586 	/* We may learn something more from the var_off */
8587 	__update_reg_bounds(dst_reg);
8588 }
8589 
8590 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
8591 				 struct bpf_reg_state *src_reg)
8592 {
8593 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
8594 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
8595 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
8596 	s32 smin_val = src_reg->s32_min_value;
8597 
8598 	if (src_known && dst_known) {
8599 		__mark_reg32_known(dst_reg, var32_off.value);
8600 		return;
8601 	}
8602 
8603 	/* We get both minimum and maximum from the var32_off. */
8604 	dst_reg->u32_min_value = var32_off.value;
8605 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
8606 
8607 	if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
8608 		/* XORing two positive sign numbers gives a positive,
8609 		 * so safe to cast u32 result into s32.
8610 		 */
8611 		dst_reg->s32_min_value = dst_reg->u32_min_value;
8612 		dst_reg->s32_max_value = dst_reg->u32_max_value;
8613 	} else {
8614 		dst_reg->s32_min_value = S32_MIN;
8615 		dst_reg->s32_max_value = S32_MAX;
8616 	}
8617 }
8618 
8619 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
8620 			       struct bpf_reg_state *src_reg)
8621 {
8622 	bool src_known = tnum_is_const(src_reg->var_off);
8623 	bool dst_known = tnum_is_const(dst_reg->var_off);
8624 	s64 smin_val = src_reg->smin_value;
8625 
8626 	if (src_known && dst_known) {
8627 		/* dst_reg->var_off.value has been updated earlier */
8628 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
8629 		return;
8630 	}
8631 
8632 	/* We get both minimum and maximum from the var_off. */
8633 	dst_reg->umin_value = dst_reg->var_off.value;
8634 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
8635 
8636 	if (dst_reg->smin_value >= 0 && smin_val >= 0) {
8637 		/* XORing two positive sign numbers gives a positive,
8638 		 * so safe to cast u64 result into s64.
8639 		 */
8640 		dst_reg->smin_value = dst_reg->umin_value;
8641 		dst_reg->smax_value = dst_reg->umax_value;
8642 	} else {
8643 		dst_reg->smin_value = S64_MIN;
8644 		dst_reg->smax_value = S64_MAX;
8645 	}
8646 
8647 	__update_reg_bounds(dst_reg);
8648 }
8649 
8650 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
8651 				   u64 umin_val, u64 umax_val)
8652 {
8653 	/* We lose all sign bit information (except what we can pick
8654 	 * up from var_off)
8655 	 */
8656 	dst_reg->s32_min_value = S32_MIN;
8657 	dst_reg->s32_max_value = S32_MAX;
8658 	/* If we might shift our top bit out, then we know nothing */
8659 	if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
8660 		dst_reg->u32_min_value = 0;
8661 		dst_reg->u32_max_value = U32_MAX;
8662 	} else {
8663 		dst_reg->u32_min_value <<= umin_val;
8664 		dst_reg->u32_max_value <<= umax_val;
8665 	}
8666 }
8667 
8668 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
8669 				 struct bpf_reg_state *src_reg)
8670 {
8671 	u32 umax_val = src_reg->u32_max_value;
8672 	u32 umin_val = src_reg->u32_min_value;
8673 	/* u32 alu operation will zext upper bits */
8674 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
8675 
8676 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
8677 	dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
8678 	/* Not required but being careful mark reg64 bounds as unknown so
8679 	 * that we are forced to pick them up from tnum and zext later and
8680 	 * if some path skips this step we are still safe.
8681 	 */
8682 	__mark_reg64_unbounded(dst_reg);
8683 	__update_reg32_bounds(dst_reg);
8684 }
8685 
8686 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
8687 				   u64 umin_val, u64 umax_val)
8688 {
8689 	/* Special case <<32 because it is a common compiler pattern to sign
8690 	 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
8691 	 * positive we know this shift will also be positive so we can track
8692 	 * bounds correctly. Otherwise we lose all sign bit information except
8693 	 * what we can pick up from var_off. Perhaps we can generalize this
8694 	 * later to shifts of any length.
8695 	 */
8696 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
8697 		dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
8698 	else
8699 		dst_reg->smax_value = S64_MAX;
8700 
8701 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
8702 		dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
8703 	else
8704 		dst_reg->smin_value = S64_MIN;
8705 
8706 	/* If we might shift our top bit out, then we know nothing */
8707 	if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
8708 		dst_reg->umin_value = 0;
8709 		dst_reg->umax_value = U64_MAX;
8710 	} else {
8711 		dst_reg->umin_value <<= umin_val;
8712 		dst_reg->umax_value <<= umax_val;
8713 	}
8714 }
8715 
8716 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
8717 			       struct bpf_reg_state *src_reg)
8718 {
8719 	u64 umax_val = src_reg->umax_value;
8720 	u64 umin_val = src_reg->umin_value;
8721 
8722 	/* scalar64 calc uses 32bit unshifted bounds so must be called first */
8723 	__scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
8724 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
8725 
8726 	dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
8727 	/* We may learn something more from the var_off */
8728 	__update_reg_bounds(dst_reg);
8729 }
8730 
8731 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
8732 				 struct bpf_reg_state *src_reg)
8733 {
8734 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
8735 	u32 umax_val = src_reg->u32_max_value;
8736 	u32 umin_val = src_reg->u32_min_value;
8737 
8738 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
8739 	 * be negative, then either:
8740 	 * 1) src_reg might be zero, so the sign bit of the result is
8741 	 *    unknown, so we lose our signed bounds
8742 	 * 2) it's known negative, thus the unsigned bounds capture the
8743 	 *    signed bounds
8744 	 * 3) the signed bounds cross zero, so they tell us nothing
8745 	 *    about the result
8746 	 * If the value in dst_reg is known nonnegative, then again the
8747 	 * unsigned bounds capture the signed bounds.
8748 	 * Thus, in all cases it suffices to blow away our signed bounds
8749 	 * and rely on inferring new ones from the unsigned bounds and
8750 	 * var_off of the result.
8751 	 */
8752 	dst_reg->s32_min_value = S32_MIN;
8753 	dst_reg->s32_max_value = S32_MAX;
8754 
8755 	dst_reg->var_off = tnum_rshift(subreg, umin_val);
8756 	dst_reg->u32_min_value >>= umax_val;
8757 	dst_reg->u32_max_value >>= umin_val;
8758 
8759 	__mark_reg64_unbounded(dst_reg);
8760 	__update_reg32_bounds(dst_reg);
8761 }
8762 
8763 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
8764 			       struct bpf_reg_state *src_reg)
8765 {
8766 	u64 umax_val = src_reg->umax_value;
8767 	u64 umin_val = src_reg->umin_value;
8768 
8769 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
8770 	 * be negative, then either:
8771 	 * 1) src_reg might be zero, so the sign bit of the result is
8772 	 *    unknown, so we lose our signed bounds
8773 	 * 2) it's known negative, thus the unsigned bounds capture the
8774 	 *    signed bounds
8775 	 * 3) the signed bounds cross zero, so they tell us nothing
8776 	 *    about the result
8777 	 * If the value in dst_reg is known nonnegative, then again the
8778 	 * unsigned bounds capture the signed bounds.
8779 	 * Thus, in all cases it suffices to blow away our signed bounds
8780 	 * and rely on inferring new ones from the unsigned bounds and
8781 	 * var_off of the result.
8782 	 */
8783 	dst_reg->smin_value = S64_MIN;
8784 	dst_reg->smax_value = S64_MAX;
8785 	dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
8786 	dst_reg->umin_value >>= umax_val;
8787 	dst_reg->umax_value >>= umin_val;
8788 
8789 	/* Its not easy to operate on alu32 bounds here because it depends
8790 	 * on bits being shifted in. Take easy way out and mark unbounded
8791 	 * so we can recalculate later from tnum.
8792 	 */
8793 	__mark_reg32_unbounded(dst_reg);
8794 	__update_reg_bounds(dst_reg);
8795 }
8796 
8797 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
8798 				  struct bpf_reg_state *src_reg)
8799 {
8800 	u64 umin_val = src_reg->u32_min_value;
8801 
8802 	/* Upon reaching here, src_known is true and
8803 	 * umax_val is equal to umin_val.
8804 	 */
8805 	dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
8806 	dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
8807 
8808 	dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
8809 
8810 	/* blow away the dst_reg umin_value/umax_value and rely on
8811 	 * dst_reg var_off to refine the result.
8812 	 */
8813 	dst_reg->u32_min_value = 0;
8814 	dst_reg->u32_max_value = U32_MAX;
8815 
8816 	__mark_reg64_unbounded(dst_reg);
8817 	__update_reg32_bounds(dst_reg);
8818 }
8819 
8820 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
8821 				struct bpf_reg_state *src_reg)
8822 {
8823 	u64 umin_val = src_reg->umin_value;
8824 
8825 	/* Upon reaching here, src_known is true and umax_val is equal
8826 	 * to umin_val.
8827 	 */
8828 	dst_reg->smin_value >>= umin_val;
8829 	dst_reg->smax_value >>= umin_val;
8830 
8831 	dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
8832 
8833 	/* blow away the dst_reg umin_value/umax_value and rely on
8834 	 * dst_reg var_off to refine the result.
8835 	 */
8836 	dst_reg->umin_value = 0;
8837 	dst_reg->umax_value = U64_MAX;
8838 
8839 	/* Its not easy to operate on alu32 bounds here because it depends
8840 	 * on bits being shifted in from upper 32-bits. Take easy way out
8841 	 * and mark unbounded so we can recalculate later from tnum.
8842 	 */
8843 	__mark_reg32_unbounded(dst_reg);
8844 	__update_reg_bounds(dst_reg);
8845 }
8846 
8847 /* WARNING: This function does calculations on 64-bit values, but the actual
8848  * execution may occur on 32-bit values. Therefore, things like bitshifts
8849  * need extra checks in the 32-bit case.
8850  */
8851 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
8852 				      struct bpf_insn *insn,
8853 				      struct bpf_reg_state *dst_reg,
8854 				      struct bpf_reg_state src_reg)
8855 {
8856 	struct bpf_reg_state *regs = cur_regs(env);
8857 	u8 opcode = BPF_OP(insn->code);
8858 	bool src_known;
8859 	s64 smin_val, smax_val;
8860 	u64 umin_val, umax_val;
8861 	s32 s32_min_val, s32_max_val;
8862 	u32 u32_min_val, u32_max_val;
8863 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
8864 	bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
8865 	int ret;
8866 
8867 	smin_val = src_reg.smin_value;
8868 	smax_val = src_reg.smax_value;
8869 	umin_val = src_reg.umin_value;
8870 	umax_val = src_reg.umax_value;
8871 
8872 	s32_min_val = src_reg.s32_min_value;
8873 	s32_max_val = src_reg.s32_max_value;
8874 	u32_min_val = src_reg.u32_min_value;
8875 	u32_max_val = src_reg.u32_max_value;
8876 
8877 	if (alu32) {
8878 		src_known = tnum_subreg_is_const(src_reg.var_off);
8879 		if ((src_known &&
8880 		     (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
8881 		    s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
8882 			/* Taint dst register if offset had invalid bounds
8883 			 * derived from e.g. dead branches.
8884 			 */
8885 			__mark_reg_unknown(env, dst_reg);
8886 			return 0;
8887 		}
8888 	} else {
8889 		src_known = tnum_is_const(src_reg.var_off);
8890 		if ((src_known &&
8891 		     (smin_val != smax_val || umin_val != umax_val)) ||
8892 		    smin_val > smax_val || umin_val > umax_val) {
8893 			/* Taint dst register if offset had invalid bounds
8894 			 * derived from e.g. dead branches.
8895 			 */
8896 			__mark_reg_unknown(env, dst_reg);
8897 			return 0;
8898 		}
8899 	}
8900 
8901 	if (!src_known &&
8902 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
8903 		__mark_reg_unknown(env, dst_reg);
8904 		return 0;
8905 	}
8906 
8907 	if (sanitize_needed(opcode)) {
8908 		ret = sanitize_val_alu(env, insn);
8909 		if (ret < 0)
8910 			return sanitize_err(env, insn, ret, NULL, NULL);
8911 	}
8912 
8913 	/* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
8914 	 * There are two classes of instructions: The first class we track both
8915 	 * alu32 and alu64 sign/unsigned bounds independently this provides the
8916 	 * greatest amount of precision when alu operations are mixed with jmp32
8917 	 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
8918 	 * and BPF_OR. This is possible because these ops have fairly easy to
8919 	 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
8920 	 * See alu32 verifier tests for examples. The second class of
8921 	 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
8922 	 * with regards to tracking sign/unsigned bounds because the bits may
8923 	 * cross subreg boundaries in the alu64 case. When this happens we mark
8924 	 * the reg unbounded in the subreg bound space and use the resulting
8925 	 * tnum to calculate an approximation of the sign/unsigned bounds.
8926 	 */
8927 	switch (opcode) {
8928 	case BPF_ADD:
8929 		scalar32_min_max_add(dst_reg, &src_reg);
8930 		scalar_min_max_add(dst_reg, &src_reg);
8931 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
8932 		break;
8933 	case BPF_SUB:
8934 		scalar32_min_max_sub(dst_reg, &src_reg);
8935 		scalar_min_max_sub(dst_reg, &src_reg);
8936 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
8937 		break;
8938 	case BPF_MUL:
8939 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
8940 		scalar32_min_max_mul(dst_reg, &src_reg);
8941 		scalar_min_max_mul(dst_reg, &src_reg);
8942 		break;
8943 	case BPF_AND:
8944 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
8945 		scalar32_min_max_and(dst_reg, &src_reg);
8946 		scalar_min_max_and(dst_reg, &src_reg);
8947 		break;
8948 	case BPF_OR:
8949 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
8950 		scalar32_min_max_or(dst_reg, &src_reg);
8951 		scalar_min_max_or(dst_reg, &src_reg);
8952 		break;
8953 	case BPF_XOR:
8954 		dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
8955 		scalar32_min_max_xor(dst_reg, &src_reg);
8956 		scalar_min_max_xor(dst_reg, &src_reg);
8957 		break;
8958 	case BPF_LSH:
8959 		if (umax_val >= insn_bitness) {
8960 			/* Shifts greater than 31 or 63 are undefined.
8961 			 * This includes shifts by a negative number.
8962 			 */
8963 			mark_reg_unknown(env, regs, insn->dst_reg);
8964 			break;
8965 		}
8966 		if (alu32)
8967 			scalar32_min_max_lsh(dst_reg, &src_reg);
8968 		else
8969 			scalar_min_max_lsh(dst_reg, &src_reg);
8970 		break;
8971 	case BPF_RSH:
8972 		if (umax_val >= insn_bitness) {
8973 			/* Shifts greater than 31 or 63 are undefined.
8974 			 * This includes shifts by a negative number.
8975 			 */
8976 			mark_reg_unknown(env, regs, insn->dst_reg);
8977 			break;
8978 		}
8979 		if (alu32)
8980 			scalar32_min_max_rsh(dst_reg, &src_reg);
8981 		else
8982 			scalar_min_max_rsh(dst_reg, &src_reg);
8983 		break;
8984 	case BPF_ARSH:
8985 		if (umax_val >= insn_bitness) {
8986 			/* Shifts greater than 31 or 63 are undefined.
8987 			 * This includes shifts by a negative number.
8988 			 */
8989 			mark_reg_unknown(env, regs, insn->dst_reg);
8990 			break;
8991 		}
8992 		if (alu32)
8993 			scalar32_min_max_arsh(dst_reg, &src_reg);
8994 		else
8995 			scalar_min_max_arsh(dst_reg, &src_reg);
8996 		break;
8997 	default:
8998 		mark_reg_unknown(env, regs, insn->dst_reg);
8999 		break;
9000 	}
9001 
9002 	/* ALU32 ops are zero extended into 64bit register */
9003 	if (alu32)
9004 		zext_32_to_64(dst_reg);
9005 	reg_bounds_sync(dst_reg);
9006 	return 0;
9007 }
9008 
9009 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
9010  * and var_off.
9011  */
9012 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
9013 				   struct bpf_insn *insn)
9014 {
9015 	struct bpf_verifier_state *vstate = env->cur_state;
9016 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
9017 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
9018 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
9019 	u8 opcode = BPF_OP(insn->code);
9020 	int err;
9021 
9022 	dst_reg = &regs[insn->dst_reg];
9023 	src_reg = NULL;
9024 	if (dst_reg->type != SCALAR_VALUE)
9025 		ptr_reg = dst_reg;
9026 	else
9027 		/* Make sure ID is cleared otherwise dst_reg min/max could be
9028 		 * incorrectly propagated into other registers by find_equal_scalars()
9029 		 */
9030 		dst_reg->id = 0;
9031 	if (BPF_SRC(insn->code) == BPF_X) {
9032 		src_reg = &regs[insn->src_reg];
9033 		if (src_reg->type != SCALAR_VALUE) {
9034 			if (dst_reg->type != SCALAR_VALUE) {
9035 				/* Combining two pointers by any ALU op yields
9036 				 * an arbitrary scalar. Disallow all math except
9037 				 * pointer subtraction
9038 				 */
9039 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
9040 					mark_reg_unknown(env, regs, insn->dst_reg);
9041 					return 0;
9042 				}
9043 				verbose(env, "R%d pointer %s pointer prohibited\n",
9044 					insn->dst_reg,
9045 					bpf_alu_string[opcode >> 4]);
9046 				return -EACCES;
9047 			} else {
9048 				/* scalar += pointer
9049 				 * This is legal, but we have to reverse our
9050 				 * src/dest handling in computing the range
9051 				 */
9052 				err = mark_chain_precision(env, insn->dst_reg);
9053 				if (err)
9054 					return err;
9055 				return adjust_ptr_min_max_vals(env, insn,
9056 							       src_reg, dst_reg);
9057 			}
9058 		} else if (ptr_reg) {
9059 			/* pointer += scalar */
9060 			err = mark_chain_precision(env, insn->src_reg);
9061 			if (err)
9062 				return err;
9063 			return adjust_ptr_min_max_vals(env, insn,
9064 						       dst_reg, src_reg);
9065 		}
9066 	} else {
9067 		/* Pretend the src is a reg with a known value, since we only
9068 		 * need to be able to read from this state.
9069 		 */
9070 		off_reg.type = SCALAR_VALUE;
9071 		__mark_reg_known(&off_reg, insn->imm);
9072 		src_reg = &off_reg;
9073 		if (ptr_reg) /* pointer += K */
9074 			return adjust_ptr_min_max_vals(env, insn,
9075 						       ptr_reg, src_reg);
9076 	}
9077 
9078 	/* Got here implies adding two SCALAR_VALUEs */
9079 	if (WARN_ON_ONCE(ptr_reg)) {
9080 		print_verifier_state(env, state, true);
9081 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
9082 		return -EINVAL;
9083 	}
9084 	if (WARN_ON(!src_reg)) {
9085 		print_verifier_state(env, state, true);
9086 		verbose(env, "verifier internal error: no src_reg\n");
9087 		return -EINVAL;
9088 	}
9089 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
9090 }
9091 
9092 /* check validity of 32-bit and 64-bit arithmetic operations */
9093 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
9094 {
9095 	struct bpf_reg_state *regs = cur_regs(env);
9096 	u8 opcode = BPF_OP(insn->code);
9097 	int err;
9098 
9099 	if (opcode == BPF_END || opcode == BPF_NEG) {
9100 		if (opcode == BPF_NEG) {
9101 			if (BPF_SRC(insn->code) != BPF_K ||
9102 			    insn->src_reg != BPF_REG_0 ||
9103 			    insn->off != 0 || insn->imm != 0) {
9104 				verbose(env, "BPF_NEG uses reserved fields\n");
9105 				return -EINVAL;
9106 			}
9107 		} else {
9108 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
9109 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
9110 			    BPF_CLASS(insn->code) == BPF_ALU64) {
9111 				verbose(env, "BPF_END uses reserved fields\n");
9112 				return -EINVAL;
9113 			}
9114 		}
9115 
9116 		/* check src operand */
9117 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
9118 		if (err)
9119 			return err;
9120 
9121 		if (is_pointer_value(env, insn->dst_reg)) {
9122 			verbose(env, "R%d pointer arithmetic prohibited\n",
9123 				insn->dst_reg);
9124 			return -EACCES;
9125 		}
9126 
9127 		/* check dest operand */
9128 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
9129 		if (err)
9130 			return err;
9131 
9132 	} else if (opcode == BPF_MOV) {
9133 
9134 		if (BPF_SRC(insn->code) == BPF_X) {
9135 			if (insn->imm != 0 || insn->off != 0) {
9136 				verbose(env, "BPF_MOV uses reserved fields\n");
9137 				return -EINVAL;
9138 			}
9139 
9140 			/* check src operand */
9141 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
9142 			if (err)
9143 				return err;
9144 		} else {
9145 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
9146 				verbose(env, "BPF_MOV uses reserved fields\n");
9147 				return -EINVAL;
9148 			}
9149 		}
9150 
9151 		/* check dest operand, mark as required later */
9152 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
9153 		if (err)
9154 			return err;
9155 
9156 		if (BPF_SRC(insn->code) == BPF_X) {
9157 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
9158 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
9159 
9160 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
9161 				/* case: R1 = R2
9162 				 * copy register state to dest reg
9163 				 */
9164 				if (src_reg->type == SCALAR_VALUE && !src_reg->id)
9165 					/* Assign src and dst registers the same ID
9166 					 * that will be used by find_equal_scalars()
9167 					 * to propagate min/max range.
9168 					 */
9169 					src_reg->id = ++env->id_gen;
9170 				*dst_reg = *src_reg;
9171 				dst_reg->live |= REG_LIVE_WRITTEN;
9172 				dst_reg->subreg_def = DEF_NOT_SUBREG;
9173 			} else {
9174 				/* R1 = (u32) R2 */
9175 				if (is_pointer_value(env, insn->src_reg)) {
9176 					verbose(env,
9177 						"R%d partial copy of pointer\n",
9178 						insn->src_reg);
9179 					return -EACCES;
9180 				} else if (src_reg->type == SCALAR_VALUE) {
9181 					*dst_reg = *src_reg;
9182 					/* Make sure ID is cleared otherwise
9183 					 * dst_reg min/max could be incorrectly
9184 					 * propagated into src_reg by find_equal_scalars()
9185 					 */
9186 					dst_reg->id = 0;
9187 					dst_reg->live |= REG_LIVE_WRITTEN;
9188 					dst_reg->subreg_def = env->insn_idx + 1;
9189 				} else {
9190 					mark_reg_unknown(env, regs,
9191 							 insn->dst_reg);
9192 				}
9193 				zext_32_to_64(dst_reg);
9194 				reg_bounds_sync(dst_reg);
9195 			}
9196 		} else {
9197 			/* case: R = imm
9198 			 * remember the value we stored into this reg
9199 			 */
9200 			/* clear any state __mark_reg_known doesn't set */
9201 			mark_reg_unknown(env, regs, insn->dst_reg);
9202 			regs[insn->dst_reg].type = SCALAR_VALUE;
9203 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
9204 				__mark_reg_known(regs + insn->dst_reg,
9205 						 insn->imm);
9206 			} else {
9207 				__mark_reg_known(regs + insn->dst_reg,
9208 						 (u32)insn->imm);
9209 			}
9210 		}
9211 
9212 	} else if (opcode > BPF_END) {
9213 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
9214 		return -EINVAL;
9215 
9216 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
9217 
9218 		if (BPF_SRC(insn->code) == BPF_X) {
9219 			if (insn->imm != 0 || insn->off != 0) {
9220 				verbose(env, "BPF_ALU uses reserved fields\n");
9221 				return -EINVAL;
9222 			}
9223 			/* check src1 operand */
9224 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
9225 			if (err)
9226 				return err;
9227 		} else {
9228 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
9229 				verbose(env, "BPF_ALU uses reserved fields\n");
9230 				return -EINVAL;
9231 			}
9232 		}
9233 
9234 		/* check src2 operand */
9235 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
9236 		if (err)
9237 			return err;
9238 
9239 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
9240 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
9241 			verbose(env, "div by zero\n");
9242 			return -EINVAL;
9243 		}
9244 
9245 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
9246 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
9247 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
9248 
9249 			if (insn->imm < 0 || insn->imm >= size) {
9250 				verbose(env, "invalid shift %d\n", insn->imm);
9251 				return -EINVAL;
9252 			}
9253 		}
9254 
9255 		/* check dest operand */
9256 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
9257 		if (err)
9258 			return err;
9259 
9260 		return adjust_reg_min_max_vals(env, insn);
9261 	}
9262 
9263 	return 0;
9264 }
9265 
9266 static void __find_good_pkt_pointers(struct bpf_func_state *state,
9267 				     struct bpf_reg_state *dst_reg,
9268 				     enum bpf_reg_type type, int new_range)
9269 {
9270 	struct bpf_reg_state *reg;
9271 	int i;
9272 
9273 	for (i = 0; i < MAX_BPF_REG; i++) {
9274 		reg = &state->regs[i];
9275 		if (reg->type == type && reg->id == dst_reg->id)
9276 			/* keep the maximum range already checked */
9277 			reg->range = max(reg->range, new_range);
9278 	}
9279 
9280 	bpf_for_each_spilled_reg(i, state, reg) {
9281 		if (!reg)
9282 			continue;
9283 		if (reg->type == type && reg->id == dst_reg->id)
9284 			reg->range = max(reg->range, new_range);
9285 	}
9286 }
9287 
9288 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
9289 				   struct bpf_reg_state *dst_reg,
9290 				   enum bpf_reg_type type,
9291 				   bool range_right_open)
9292 {
9293 	int new_range, i;
9294 
9295 	if (dst_reg->off < 0 ||
9296 	    (dst_reg->off == 0 && range_right_open))
9297 		/* This doesn't give us any range */
9298 		return;
9299 
9300 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
9301 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
9302 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
9303 		 * than pkt_end, but that's because it's also less than pkt.
9304 		 */
9305 		return;
9306 
9307 	new_range = dst_reg->off;
9308 	if (range_right_open)
9309 		new_range++;
9310 
9311 	/* Examples for register markings:
9312 	 *
9313 	 * pkt_data in dst register:
9314 	 *
9315 	 *   r2 = r3;
9316 	 *   r2 += 8;
9317 	 *   if (r2 > pkt_end) goto <handle exception>
9318 	 *   <access okay>
9319 	 *
9320 	 *   r2 = r3;
9321 	 *   r2 += 8;
9322 	 *   if (r2 < pkt_end) goto <access okay>
9323 	 *   <handle exception>
9324 	 *
9325 	 *   Where:
9326 	 *     r2 == dst_reg, pkt_end == src_reg
9327 	 *     r2=pkt(id=n,off=8,r=0)
9328 	 *     r3=pkt(id=n,off=0,r=0)
9329 	 *
9330 	 * pkt_data in src register:
9331 	 *
9332 	 *   r2 = r3;
9333 	 *   r2 += 8;
9334 	 *   if (pkt_end >= r2) goto <access okay>
9335 	 *   <handle exception>
9336 	 *
9337 	 *   r2 = r3;
9338 	 *   r2 += 8;
9339 	 *   if (pkt_end <= r2) goto <handle exception>
9340 	 *   <access okay>
9341 	 *
9342 	 *   Where:
9343 	 *     pkt_end == dst_reg, r2 == src_reg
9344 	 *     r2=pkt(id=n,off=8,r=0)
9345 	 *     r3=pkt(id=n,off=0,r=0)
9346 	 *
9347 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
9348 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
9349 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
9350 	 * the check.
9351 	 */
9352 
9353 	/* If our ids match, then we must have the same max_value.  And we
9354 	 * don't care about the other reg's fixed offset, since if it's too big
9355 	 * the range won't allow anything.
9356 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
9357 	 */
9358 	for (i = 0; i <= vstate->curframe; i++)
9359 		__find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
9360 					 new_range);
9361 }
9362 
9363 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
9364 {
9365 	struct tnum subreg = tnum_subreg(reg->var_off);
9366 	s32 sval = (s32)val;
9367 
9368 	switch (opcode) {
9369 	case BPF_JEQ:
9370 		if (tnum_is_const(subreg))
9371 			return !!tnum_equals_const(subreg, val);
9372 		break;
9373 	case BPF_JNE:
9374 		if (tnum_is_const(subreg))
9375 			return !tnum_equals_const(subreg, val);
9376 		break;
9377 	case BPF_JSET:
9378 		if ((~subreg.mask & subreg.value) & val)
9379 			return 1;
9380 		if (!((subreg.mask | subreg.value) & val))
9381 			return 0;
9382 		break;
9383 	case BPF_JGT:
9384 		if (reg->u32_min_value > val)
9385 			return 1;
9386 		else if (reg->u32_max_value <= val)
9387 			return 0;
9388 		break;
9389 	case BPF_JSGT:
9390 		if (reg->s32_min_value > sval)
9391 			return 1;
9392 		else if (reg->s32_max_value <= sval)
9393 			return 0;
9394 		break;
9395 	case BPF_JLT:
9396 		if (reg->u32_max_value < val)
9397 			return 1;
9398 		else if (reg->u32_min_value >= val)
9399 			return 0;
9400 		break;
9401 	case BPF_JSLT:
9402 		if (reg->s32_max_value < sval)
9403 			return 1;
9404 		else if (reg->s32_min_value >= sval)
9405 			return 0;
9406 		break;
9407 	case BPF_JGE:
9408 		if (reg->u32_min_value >= val)
9409 			return 1;
9410 		else if (reg->u32_max_value < val)
9411 			return 0;
9412 		break;
9413 	case BPF_JSGE:
9414 		if (reg->s32_min_value >= sval)
9415 			return 1;
9416 		else if (reg->s32_max_value < sval)
9417 			return 0;
9418 		break;
9419 	case BPF_JLE:
9420 		if (reg->u32_max_value <= val)
9421 			return 1;
9422 		else if (reg->u32_min_value > val)
9423 			return 0;
9424 		break;
9425 	case BPF_JSLE:
9426 		if (reg->s32_max_value <= sval)
9427 			return 1;
9428 		else if (reg->s32_min_value > sval)
9429 			return 0;
9430 		break;
9431 	}
9432 
9433 	return -1;
9434 }
9435 
9436 
9437 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
9438 {
9439 	s64 sval = (s64)val;
9440 
9441 	switch (opcode) {
9442 	case BPF_JEQ:
9443 		if (tnum_is_const(reg->var_off))
9444 			return !!tnum_equals_const(reg->var_off, val);
9445 		break;
9446 	case BPF_JNE:
9447 		if (tnum_is_const(reg->var_off))
9448 			return !tnum_equals_const(reg->var_off, val);
9449 		break;
9450 	case BPF_JSET:
9451 		if ((~reg->var_off.mask & reg->var_off.value) & val)
9452 			return 1;
9453 		if (!((reg->var_off.mask | reg->var_off.value) & val))
9454 			return 0;
9455 		break;
9456 	case BPF_JGT:
9457 		if (reg->umin_value > val)
9458 			return 1;
9459 		else if (reg->umax_value <= val)
9460 			return 0;
9461 		break;
9462 	case BPF_JSGT:
9463 		if (reg->smin_value > sval)
9464 			return 1;
9465 		else if (reg->smax_value <= sval)
9466 			return 0;
9467 		break;
9468 	case BPF_JLT:
9469 		if (reg->umax_value < val)
9470 			return 1;
9471 		else if (reg->umin_value >= val)
9472 			return 0;
9473 		break;
9474 	case BPF_JSLT:
9475 		if (reg->smax_value < sval)
9476 			return 1;
9477 		else if (reg->smin_value >= sval)
9478 			return 0;
9479 		break;
9480 	case BPF_JGE:
9481 		if (reg->umin_value >= val)
9482 			return 1;
9483 		else if (reg->umax_value < val)
9484 			return 0;
9485 		break;
9486 	case BPF_JSGE:
9487 		if (reg->smin_value >= sval)
9488 			return 1;
9489 		else if (reg->smax_value < sval)
9490 			return 0;
9491 		break;
9492 	case BPF_JLE:
9493 		if (reg->umax_value <= val)
9494 			return 1;
9495 		else if (reg->umin_value > val)
9496 			return 0;
9497 		break;
9498 	case BPF_JSLE:
9499 		if (reg->smax_value <= sval)
9500 			return 1;
9501 		else if (reg->smin_value > sval)
9502 			return 0;
9503 		break;
9504 	}
9505 
9506 	return -1;
9507 }
9508 
9509 /* compute branch direction of the expression "if (reg opcode val) goto target;"
9510  * and return:
9511  *  1 - branch will be taken and "goto target" will be executed
9512  *  0 - branch will not be taken and fall-through to next insn
9513  * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
9514  *      range [0,10]
9515  */
9516 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
9517 			   bool is_jmp32)
9518 {
9519 	if (__is_pointer_value(false, reg)) {
9520 		if (!reg_type_not_null(reg->type))
9521 			return -1;
9522 
9523 		/* If pointer is valid tests against zero will fail so we can
9524 		 * use this to direct branch taken.
9525 		 */
9526 		if (val != 0)
9527 			return -1;
9528 
9529 		switch (opcode) {
9530 		case BPF_JEQ:
9531 			return 0;
9532 		case BPF_JNE:
9533 			return 1;
9534 		default:
9535 			return -1;
9536 		}
9537 	}
9538 
9539 	if (is_jmp32)
9540 		return is_branch32_taken(reg, val, opcode);
9541 	return is_branch64_taken(reg, val, opcode);
9542 }
9543 
9544 static int flip_opcode(u32 opcode)
9545 {
9546 	/* How can we transform "a <op> b" into "b <op> a"? */
9547 	static const u8 opcode_flip[16] = {
9548 		/* these stay the same */
9549 		[BPF_JEQ  >> 4] = BPF_JEQ,
9550 		[BPF_JNE  >> 4] = BPF_JNE,
9551 		[BPF_JSET >> 4] = BPF_JSET,
9552 		/* these swap "lesser" and "greater" (L and G in the opcodes) */
9553 		[BPF_JGE  >> 4] = BPF_JLE,
9554 		[BPF_JGT  >> 4] = BPF_JLT,
9555 		[BPF_JLE  >> 4] = BPF_JGE,
9556 		[BPF_JLT  >> 4] = BPF_JGT,
9557 		[BPF_JSGE >> 4] = BPF_JSLE,
9558 		[BPF_JSGT >> 4] = BPF_JSLT,
9559 		[BPF_JSLE >> 4] = BPF_JSGE,
9560 		[BPF_JSLT >> 4] = BPF_JSGT
9561 	};
9562 	return opcode_flip[opcode >> 4];
9563 }
9564 
9565 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
9566 				   struct bpf_reg_state *src_reg,
9567 				   u8 opcode)
9568 {
9569 	struct bpf_reg_state *pkt;
9570 
9571 	if (src_reg->type == PTR_TO_PACKET_END) {
9572 		pkt = dst_reg;
9573 	} else if (dst_reg->type == PTR_TO_PACKET_END) {
9574 		pkt = src_reg;
9575 		opcode = flip_opcode(opcode);
9576 	} else {
9577 		return -1;
9578 	}
9579 
9580 	if (pkt->range >= 0)
9581 		return -1;
9582 
9583 	switch (opcode) {
9584 	case BPF_JLE:
9585 		/* pkt <= pkt_end */
9586 		fallthrough;
9587 	case BPF_JGT:
9588 		/* pkt > pkt_end */
9589 		if (pkt->range == BEYOND_PKT_END)
9590 			/* pkt has at last one extra byte beyond pkt_end */
9591 			return opcode == BPF_JGT;
9592 		break;
9593 	case BPF_JLT:
9594 		/* pkt < pkt_end */
9595 		fallthrough;
9596 	case BPF_JGE:
9597 		/* pkt >= pkt_end */
9598 		if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
9599 			return opcode == BPF_JGE;
9600 		break;
9601 	}
9602 	return -1;
9603 }
9604 
9605 /* Adjusts the register min/max values in the case that the dst_reg is the
9606  * variable register that we are working on, and src_reg is a constant or we're
9607  * simply doing a BPF_K check.
9608  * In JEQ/JNE cases we also adjust the var_off values.
9609  */
9610 static void reg_set_min_max(struct bpf_reg_state *true_reg,
9611 			    struct bpf_reg_state *false_reg,
9612 			    u64 val, u32 val32,
9613 			    u8 opcode, bool is_jmp32)
9614 {
9615 	struct tnum false_32off = tnum_subreg(false_reg->var_off);
9616 	struct tnum false_64off = false_reg->var_off;
9617 	struct tnum true_32off = tnum_subreg(true_reg->var_off);
9618 	struct tnum true_64off = true_reg->var_off;
9619 	s64 sval = (s64)val;
9620 	s32 sval32 = (s32)val32;
9621 
9622 	/* If the dst_reg is a pointer, we can't learn anything about its
9623 	 * variable offset from the compare (unless src_reg were a pointer into
9624 	 * the same object, but we don't bother with that.
9625 	 * Since false_reg and true_reg have the same type by construction, we
9626 	 * only need to check one of them for pointerness.
9627 	 */
9628 	if (__is_pointer_value(false, false_reg))
9629 		return;
9630 
9631 	switch (opcode) {
9632 	/* JEQ/JNE comparison doesn't change the register equivalence.
9633 	 *
9634 	 * r1 = r2;
9635 	 * if (r1 == 42) goto label;
9636 	 * ...
9637 	 * label: // here both r1 and r2 are known to be 42.
9638 	 *
9639 	 * Hence when marking register as known preserve it's ID.
9640 	 */
9641 	case BPF_JEQ:
9642 		if (is_jmp32) {
9643 			__mark_reg32_known(true_reg, val32);
9644 			true_32off = tnum_subreg(true_reg->var_off);
9645 		} else {
9646 			___mark_reg_known(true_reg, val);
9647 			true_64off = true_reg->var_off;
9648 		}
9649 		break;
9650 	case BPF_JNE:
9651 		if (is_jmp32) {
9652 			__mark_reg32_known(false_reg, val32);
9653 			false_32off = tnum_subreg(false_reg->var_off);
9654 		} else {
9655 			___mark_reg_known(false_reg, val);
9656 			false_64off = false_reg->var_off;
9657 		}
9658 		break;
9659 	case BPF_JSET:
9660 		if (is_jmp32) {
9661 			false_32off = tnum_and(false_32off, tnum_const(~val32));
9662 			if (is_power_of_2(val32))
9663 				true_32off = tnum_or(true_32off,
9664 						     tnum_const(val32));
9665 		} else {
9666 			false_64off = tnum_and(false_64off, tnum_const(~val));
9667 			if (is_power_of_2(val))
9668 				true_64off = tnum_or(true_64off,
9669 						     tnum_const(val));
9670 		}
9671 		break;
9672 	case BPF_JGE:
9673 	case BPF_JGT:
9674 	{
9675 		if (is_jmp32) {
9676 			u32 false_umax = opcode == BPF_JGT ? val32  : val32 - 1;
9677 			u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
9678 
9679 			false_reg->u32_max_value = min(false_reg->u32_max_value,
9680 						       false_umax);
9681 			true_reg->u32_min_value = max(true_reg->u32_min_value,
9682 						      true_umin);
9683 		} else {
9684 			u64 false_umax = opcode == BPF_JGT ? val    : val - 1;
9685 			u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
9686 
9687 			false_reg->umax_value = min(false_reg->umax_value, false_umax);
9688 			true_reg->umin_value = max(true_reg->umin_value, true_umin);
9689 		}
9690 		break;
9691 	}
9692 	case BPF_JSGE:
9693 	case BPF_JSGT:
9694 	{
9695 		if (is_jmp32) {
9696 			s32 false_smax = opcode == BPF_JSGT ? sval32    : sval32 - 1;
9697 			s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
9698 
9699 			false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
9700 			true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
9701 		} else {
9702 			s64 false_smax = opcode == BPF_JSGT ? sval    : sval - 1;
9703 			s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
9704 
9705 			false_reg->smax_value = min(false_reg->smax_value, false_smax);
9706 			true_reg->smin_value = max(true_reg->smin_value, true_smin);
9707 		}
9708 		break;
9709 	}
9710 	case BPF_JLE:
9711 	case BPF_JLT:
9712 	{
9713 		if (is_jmp32) {
9714 			u32 false_umin = opcode == BPF_JLT ? val32  : val32 + 1;
9715 			u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
9716 
9717 			false_reg->u32_min_value = max(false_reg->u32_min_value,
9718 						       false_umin);
9719 			true_reg->u32_max_value = min(true_reg->u32_max_value,
9720 						      true_umax);
9721 		} else {
9722 			u64 false_umin = opcode == BPF_JLT ? val    : val + 1;
9723 			u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
9724 
9725 			false_reg->umin_value = max(false_reg->umin_value, false_umin);
9726 			true_reg->umax_value = min(true_reg->umax_value, true_umax);
9727 		}
9728 		break;
9729 	}
9730 	case BPF_JSLE:
9731 	case BPF_JSLT:
9732 	{
9733 		if (is_jmp32) {
9734 			s32 false_smin = opcode == BPF_JSLT ? sval32    : sval32 + 1;
9735 			s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
9736 
9737 			false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
9738 			true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
9739 		} else {
9740 			s64 false_smin = opcode == BPF_JSLT ? sval    : sval + 1;
9741 			s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
9742 
9743 			false_reg->smin_value = max(false_reg->smin_value, false_smin);
9744 			true_reg->smax_value = min(true_reg->smax_value, true_smax);
9745 		}
9746 		break;
9747 	}
9748 	default:
9749 		return;
9750 	}
9751 
9752 	if (is_jmp32) {
9753 		false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
9754 					     tnum_subreg(false_32off));
9755 		true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
9756 					    tnum_subreg(true_32off));
9757 		__reg_combine_32_into_64(false_reg);
9758 		__reg_combine_32_into_64(true_reg);
9759 	} else {
9760 		false_reg->var_off = false_64off;
9761 		true_reg->var_off = true_64off;
9762 		__reg_combine_64_into_32(false_reg);
9763 		__reg_combine_64_into_32(true_reg);
9764 	}
9765 }
9766 
9767 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
9768  * the variable reg.
9769  */
9770 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
9771 				struct bpf_reg_state *false_reg,
9772 				u64 val, u32 val32,
9773 				u8 opcode, bool is_jmp32)
9774 {
9775 	opcode = flip_opcode(opcode);
9776 	/* This uses zero as "not present in table"; luckily the zero opcode,
9777 	 * BPF_JA, can't get here.
9778 	 */
9779 	if (opcode)
9780 		reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
9781 }
9782 
9783 /* Regs are known to be equal, so intersect their min/max/var_off */
9784 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
9785 				  struct bpf_reg_state *dst_reg)
9786 {
9787 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
9788 							dst_reg->umin_value);
9789 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
9790 							dst_reg->umax_value);
9791 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
9792 							dst_reg->smin_value);
9793 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
9794 							dst_reg->smax_value);
9795 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
9796 							     dst_reg->var_off);
9797 	reg_bounds_sync(src_reg);
9798 	reg_bounds_sync(dst_reg);
9799 }
9800 
9801 static void reg_combine_min_max(struct bpf_reg_state *true_src,
9802 				struct bpf_reg_state *true_dst,
9803 				struct bpf_reg_state *false_src,
9804 				struct bpf_reg_state *false_dst,
9805 				u8 opcode)
9806 {
9807 	switch (opcode) {
9808 	case BPF_JEQ:
9809 		__reg_combine_min_max(true_src, true_dst);
9810 		break;
9811 	case BPF_JNE:
9812 		__reg_combine_min_max(false_src, false_dst);
9813 		break;
9814 	}
9815 }
9816 
9817 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
9818 				 struct bpf_reg_state *reg, u32 id,
9819 				 bool is_null)
9820 {
9821 	if (type_may_be_null(reg->type) && reg->id == id &&
9822 	    !WARN_ON_ONCE(!reg->id)) {
9823 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
9824 				 !tnum_equals_const(reg->var_off, 0) ||
9825 				 reg->off)) {
9826 			/* Old offset (both fixed and variable parts) should
9827 			 * have been known-zero, because we don't allow pointer
9828 			 * arithmetic on pointers that might be NULL. If we
9829 			 * see this happening, don't convert the register.
9830 			 */
9831 			return;
9832 		}
9833 		if (is_null) {
9834 			reg->type = SCALAR_VALUE;
9835 			/* We don't need id and ref_obj_id from this point
9836 			 * onwards anymore, thus we should better reset it,
9837 			 * so that state pruning has chances to take effect.
9838 			 */
9839 			reg->id = 0;
9840 			reg->ref_obj_id = 0;
9841 
9842 			return;
9843 		}
9844 
9845 		mark_ptr_not_null_reg(reg);
9846 
9847 		if (!reg_may_point_to_spin_lock(reg)) {
9848 			/* For not-NULL ptr, reg->ref_obj_id will be reset
9849 			 * in release_reg_references().
9850 			 *
9851 			 * reg->id is still used by spin_lock ptr. Other
9852 			 * than spin_lock ptr type, reg->id can be reset.
9853 			 */
9854 			reg->id = 0;
9855 		}
9856 	}
9857 }
9858 
9859 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
9860 				    bool is_null)
9861 {
9862 	struct bpf_reg_state *reg;
9863 	int i;
9864 
9865 	for (i = 0; i < MAX_BPF_REG; i++)
9866 		mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
9867 
9868 	bpf_for_each_spilled_reg(i, state, reg) {
9869 		if (!reg)
9870 			continue;
9871 		mark_ptr_or_null_reg(state, reg, id, is_null);
9872 	}
9873 }
9874 
9875 /* The logic is similar to find_good_pkt_pointers(), both could eventually
9876  * be folded together at some point.
9877  */
9878 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
9879 				  bool is_null)
9880 {
9881 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
9882 	struct bpf_reg_state *regs = state->regs;
9883 	u32 ref_obj_id = regs[regno].ref_obj_id;
9884 	u32 id = regs[regno].id;
9885 	int i;
9886 
9887 	if (ref_obj_id && ref_obj_id == id && is_null)
9888 		/* regs[regno] is in the " == NULL" branch.
9889 		 * No one could have freed the reference state before
9890 		 * doing the NULL check.
9891 		 */
9892 		WARN_ON_ONCE(release_reference_state(state, id));
9893 
9894 	for (i = 0; i <= vstate->curframe; i++)
9895 		__mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
9896 }
9897 
9898 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
9899 				   struct bpf_reg_state *dst_reg,
9900 				   struct bpf_reg_state *src_reg,
9901 				   struct bpf_verifier_state *this_branch,
9902 				   struct bpf_verifier_state *other_branch)
9903 {
9904 	if (BPF_SRC(insn->code) != BPF_X)
9905 		return false;
9906 
9907 	/* Pointers are always 64-bit. */
9908 	if (BPF_CLASS(insn->code) == BPF_JMP32)
9909 		return false;
9910 
9911 	switch (BPF_OP(insn->code)) {
9912 	case BPF_JGT:
9913 		if ((dst_reg->type == PTR_TO_PACKET &&
9914 		     src_reg->type == PTR_TO_PACKET_END) ||
9915 		    (dst_reg->type == PTR_TO_PACKET_META &&
9916 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
9917 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
9918 			find_good_pkt_pointers(this_branch, dst_reg,
9919 					       dst_reg->type, false);
9920 			mark_pkt_end(other_branch, insn->dst_reg, true);
9921 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
9922 			    src_reg->type == PTR_TO_PACKET) ||
9923 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
9924 			    src_reg->type == PTR_TO_PACKET_META)) {
9925 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
9926 			find_good_pkt_pointers(other_branch, src_reg,
9927 					       src_reg->type, true);
9928 			mark_pkt_end(this_branch, insn->src_reg, false);
9929 		} else {
9930 			return false;
9931 		}
9932 		break;
9933 	case BPF_JLT:
9934 		if ((dst_reg->type == PTR_TO_PACKET &&
9935 		     src_reg->type == PTR_TO_PACKET_END) ||
9936 		    (dst_reg->type == PTR_TO_PACKET_META &&
9937 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
9938 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
9939 			find_good_pkt_pointers(other_branch, dst_reg,
9940 					       dst_reg->type, true);
9941 			mark_pkt_end(this_branch, insn->dst_reg, false);
9942 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
9943 			    src_reg->type == PTR_TO_PACKET) ||
9944 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
9945 			    src_reg->type == PTR_TO_PACKET_META)) {
9946 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
9947 			find_good_pkt_pointers(this_branch, src_reg,
9948 					       src_reg->type, false);
9949 			mark_pkt_end(other_branch, insn->src_reg, true);
9950 		} else {
9951 			return false;
9952 		}
9953 		break;
9954 	case BPF_JGE:
9955 		if ((dst_reg->type == PTR_TO_PACKET &&
9956 		     src_reg->type == PTR_TO_PACKET_END) ||
9957 		    (dst_reg->type == PTR_TO_PACKET_META &&
9958 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
9959 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
9960 			find_good_pkt_pointers(this_branch, dst_reg,
9961 					       dst_reg->type, true);
9962 			mark_pkt_end(other_branch, insn->dst_reg, false);
9963 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
9964 			    src_reg->type == PTR_TO_PACKET) ||
9965 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
9966 			    src_reg->type == PTR_TO_PACKET_META)) {
9967 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
9968 			find_good_pkt_pointers(other_branch, src_reg,
9969 					       src_reg->type, false);
9970 			mark_pkt_end(this_branch, insn->src_reg, true);
9971 		} else {
9972 			return false;
9973 		}
9974 		break;
9975 	case BPF_JLE:
9976 		if ((dst_reg->type == PTR_TO_PACKET &&
9977 		     src_reg->type == PTR_TO_PACKET_END) ||
9978 		    (dst_reg->type == PTR_TO_PACKET_META &&
9979 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
9980 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
9981 			find_good_pkt_pointers(other_branch, dst_reg,
9982 					       dst_reg->type, false);
9983 			mark_pkt_end(this_branch, insn->dst_reg, true);
9984 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
9985 			    src_reg->type == PTR_TO_PACKET) ||
9986 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
9987 			    src_reg->type == PTR_TO_PACKET_META)) {
9988 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
9989 			find_good_pkt_pointers(this_branch, src_reg,
9990 					       src_reg->type, true);
9991 			mark_pkt_end(other_branch, insn->src_reg, false);
9992 		} else {
9993 			return false;
9994 		}
9995 		break;
9996 	default:
9997 		return false;
9998 	}
9999 
10000 	return true;
10001 }
10002 
10003 static void find_equal_scalars(struct bpf_verifier_state *vstate,
10004 			       struct bpf_reg_state *known_reg)
10005 {
10006 	struct bpf_func_state *state;
10007 	struct bpf_reg_state *reg;
10008 	int i, j;
10009 
10010 	for (i = 0; i <= vstate->curframe; i++) {
10011 		state = vstate->frame[i];
10012 		for (j = 0; j < MAX_BPF_REG; j++) {
10013 			reg = &state->regs[j];
10014 			if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
10015 				*reg = *known_reg;
10016 		}
10017 
10018 		bpf_for_each_spilled_reg(j, state, reg) {
10019 			if (!reg)
10020 				continue;
10021 			if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
10022 				*reg = *known_reg;
10023 		}
10024 	}
10025 }
10026 
10027 static int check_cond_jmp_op(struct bpf_verifier_env *env,
10028 			     struct bpf_insn *insn, int *insn_idx)
10029 {
10030 	struct bpf_verifier_state *this_branch = env->cur_state;
10031 	struct bpf_verifier_state *other_branch;
10032 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
10033 	struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
10034 	u8 opcode = BPF_OP(insn->code);
10035 	bool is_jmp32;
10036 	int pred = -1;
10037 	int err;
10038 
10039 	/* Only conditional jumps are expected to reach here. */
10040 	if (opcode == BPF_JA || opcode > BPF_JSLE) {
10041 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
10042 		return -EINVAL;
10043 	}
10044 
10045 	if (BPF_SRC(insn->code) == BPF_X) {
10046 		if (insn->imm != 0) {
10047 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
10048 			return -EINVAL;
10049 		}
10050 
10051 		/* check src1 operand */
10052 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
10053 		if (err)
10054 			return err;
10055 
10056 		if (is_pointer_value(env, insn->src_reg)) {
10057 			verbose(env, "R%d pointer comparison prohibited\n",
10058 				insn->src_reg);
10059 			return -EACCES;
10060 		}
10061 		src_reg = &regs[insn->src_reg];
10062 	} else {
10063 		if (insn->src_reg != BPF_REG_0) {
10064 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
10065 			return -EINVAL;
10066 		}
10067 	}
10068 
10069 	/* check src2 operand */
10070 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
10071 	if (err)
10072 		return err;
10073 
10074 	dst_reg = &regs[insn->dst_reg];
10075 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
10076 
10077 	if (BPF_SRC(insn->code) == BPF_K) {
10078 		pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
10079 	} else if (src_reg->type == SCALAR_VALUE &&
10080 		   is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
10081 		pred = is_branch_taken(dst_reg,
10082 				       tnum_subreg(src_reg->var_off).value,
10083 				       opcode,
10084 				       is_jmp32);
10085 	} else if (src_reg->type == SCALAR_VALUE &&
10086 		   !is_jmp32 && tnum_is_const(src_reg->var_off)) {
10087 		pred = is_branch_taken(dst_reg,
10088 				       src_reg->var_off.value,
10089 				       opcode,
10090 				       is_jmp32);
10091 	} else if (reg_is_pkt_pointer_any(dst_reg) &&
10092 		   reg_is_pkt_pointer_any(src_reg) &&
10093 		   !is_jmp32) {
10094 		pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
10095 	}
10096 
10097 	if (pred >= 0) {
10098 		/* If we get here with a dst_reg pointer type it is because
10099 		 * above is_branch_taken() special cased the 0 comparison.
10100 		 */
10101 		if (!__is_pointer_value(false, dst_reg))
10102 			err = mark_chain_precision(env, insn->dst_reg);
10103 		if (BPF_SRC(insn->code) == BPF_X && !err &&
10104 		    !__is_pointer_value(false, src_reg))
10105 			err = mark_chain_precision(env, insn->src_reg);
10106 		if (err)
10107 			return err;
10108 	}
10109 
10110 	if (pred == 1) {
10111 		/* Only follow the goto, ignore fall-through. If needed, push
10112 		 * the fall-through branch for simulation under speculative
10113 		 * execution.
10114 		 */
10115 		if (!env->bypass_spec_v1 &&
10116 		    !sanitize_speculative_path(env, insn, *insn_idx + 1,
10117 					       *insn_idx))
10118 			return -EFAULT;
10119 		*insn_idx += insn->off;
10120 		return 0;
10121 	} else if (pred == 0) {
10122 		/* Only follow the fall-through branch, since that's where the
10123 		 * program will go. If needed, push the goto branch for
10124 		 * simulation under speculative execution.
10125 		 */
10126 		if (!env->bypass_spec_v1 &&
10127 		    !sanitize_speculative_path(env, insn,
10128 					       *insn_idx + insn->off + 1,
10129 					       *insn_idx))
10130 			return -EFAULT;
10131 		return 0;
10132 	}
10133 
10134 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
10135 				  false);
10136 	if (!other_branch)
10137 		return -EFAULT;
10138 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
10139 
10140 	/* detect if we are comparing against a constant value so we can adjust
10141 	 * our min/max values for our dst register.
10142 	 * this is only legit if both are scalars (or pointers to the same
10143 	 * object, I suppose, but we don't support that right now), because
10144 	 * otherwise the different base pointers mean the offsets aren't
10145 	 * comparable.
10146 	 */
10147 	if (BPF_SRC(insn->code) == BPF_X) {
10148 		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
10149 
10150 		if (dst_reg->type == SCALAR_VALUE &&
10151 		    src_reg->type == SCALAR_VALUE) {
10152 			if (tnum_is_const(src_reg->var_off) ||
10153 			    (is_jmp32 &&
10154 			     tnum_is_const(tnum_subreg(src_reg->var_off))))
10155 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
10156 						dst_reg,
10157 						src_reg->var_off.value,
10158 						tnum_subreg(src_reg->var_off).value,
10159 						opcode, is_jmp32);
10160 			else if (tnum_is_const(dst_reg->var_off) ||
10161 				 (is_jmp32 &&
10162 				  tnum_is_const(tnum_subreg(dst_reg->var_off))))
10163 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
10164 						    src_reg,
10165 						    dst_reg->var_off.value,
10166 						    tnum_subreg(dst_reg->var_off).value,
10167 						    opcode, is_jmp32);
10168 			else if (!is_jmp32 &&
10169 				 (opcode == BPF_JEQ || opcode == BPF_JNE))
10170 				/* Comparing for equality, we can combine knowledge */
10171 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
10172 						    &other_branch_regs[insn->dst_reg],
10173 						    src_reg, dst_reg, opcode);
10174 			if (src_reg->id &&
10175 			    !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
10176 				find_equal_scalars(this_branch, src_reg);
10177 				find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
10178 			}
10179 
10180 		}
10181 	} else if (dst_reg->type == SCALAR_VALUE) {
10182 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
10183 					dst_reg, insn->imm, (u32)insn->imm,
10184 					opcode, is_jmp32);
10185 	}
10186 
10187 	if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
10188 	    !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
10189 		find_equal_scalars(this_branch, dst_reg);
10190 		find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
10191 	}
10192 
10193 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
10194 	 * NOTE: these optimizations below are related with pointer comparison
10195 	 *       which will never be JMP32.
10196 	 */
10197 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
10198 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
10199 	    type_may_be_null(dst_reg->type)) {
10200 		/* Mark all identical registers in each branch as either
10201 		 * safe or unknown depending R == 0 or R != 0 conditional.
10202 		 */
10203 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
10204 				      opcode == BPF_JNE);
10205 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
10206 				      opcode == BPF_JEQ);
10207 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
10208 					   this_branch, other_branch) &&
10209 		   is_pointer_value(env, insn->dst_reg)) {
10210 		verbose(env, "R%d pointer comparison prohibited\n",
10211 			insn->dst_reg);
10212 		return -EACCES;
10213 	}
10214 	if (env->log.level & BPF_LOG_LEVEL)
10215 		print_insn_state(env, this_branch->frame[this_branch->curframe]);
10216 	return 0;
10217 }
10218 
10219 /* verify BPF_LD_IMM64 instruction */
10220 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
10221 {
10222 	struct bpf_insn_aux_data *aux = cur_aux(env);
10223 	struct bpf_reg_state *regs = cur_regs(env);
10224 	struct bpf_reg_state *dst_reg;
10225 	struct bpf_map *map;
10226 	int err;
10227 
10228 	if (BPF_SIZE(insn->code) != BPF_DW) {
10229 		verbose(env, "invalid BPF_LD_IMM insn\n");
10230 		return -EINVAL;
10231 	}
10232 	if (insn->off != 0) {
10233 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
10234 		return -EINVAL;
10235 	}
10236 
10237 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
10238 	if (err)
10239 		return err;
10240 
10241 	dst_reg = &regs[insn->dst_reg];
10242 	if (insn->src_reg == 0) {
10243 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
10244 
10245 		dst_reg->type = SCALAR_VALUE;
10246 		__mark_reg_known(&regs[insn->dst_reg], imm);
10247 		return 0;
10248 	}
10249 
10250 	/* All special src_reg cases are listed below. From this point onwards
10251 	 * we either succeed and assign a corresponding dst_reg->type after
10252 	 * zeroing the offset, or fail and reject the program.
10253 	 */
10254 	mark_reg_known_zero(env, regs, insn->dst_reg);
10255 
10256 	if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
10257 		dst_reg->type = aux->btf_var.reg_type;
10258 		switch (base_type(dst_reg->type)) {
10259 		case PTR_TO_MEM:
10260 			dst_reg->mem_size = aux->btf_var.mem_size;
10261 			break;
10262 		case PTR_TO_BTF_ID:
10263 			dst_reg->btf = aux->btf_var.btf;
10264 			dst_reg->btf_id = aux->btf_var.btf_id;
10265 			break;
10266 		default:
10267 			verbose(env, "bpf verifier is misconfigured\n");
10268 			return -EFAULT;
10269 		}
10270 		return 0;
10271 	}
10272 
10273 	if (insn->src_reg == BPF_PSEUDO_FUNC) {
10274 		struct bpf_prog_aux *aux = env->prog->aux;
10275 		u32 subprogno = find_subprog(env,
10276 					     env->insn_idx + insn->imm + 1);
10277 
10278 		if (!aux->func_info) {
10279 			verbose(env, "missing btf func_info\n");
10280 			return -EINVAL;
10281 		}
10282 		if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
10283 			verbose(env, "callback function not static\n");
10284 			return -EINVAL;
10285 		}
10286 
10287 		dst_reg->type = PTR_TO_FUNC;
10288 		dst_reg->subprogno = subprogno;
10289 		return 0;
10290 	}
10291 
10292 	map = env->used_maps[aux->map_index];
10293 	dst_reg->map_ptr = map;
10294 
10295 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
10296 	    insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
10297 		dst_reg->type = PTR_TO_MAP_VALUE;
10298 		dst_reg->off = aux->map_off;
10299 		if (map_value_has_spin_lock(map))
10300 			dst_reg->id = ++env->id_gen;
10301 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
10302 		   insn->src_reg == BPF_PSEUDO_MAP_IDX) {
10303 		dst_reg->type = CONST_PTR_TO_MAP;
10304 	} else {
10305 		verbose(env, "bpf verifier is misconfigured\n");
10306 		return -EINVAL;
10307 	}
10308 
10309 	return 0;
10310 }
10311 
10312 static bool may_access_skb(enum bpf_prog_type type)
10313 {
10314 	switch (type) {
10315 	case BPF_PROG_TYPE_SOCKET_FILTER:
10316 	case BPF_PROG_TYPE_SCHED_CLS:
10317 	case BPF_PROG_TYPE_SCHED_ACT:
10318 		return true;
10319 	default:
10320 		return false;
10321 	}
10322 }
10323 
10324 /* verify safety of LD_ABS|LD_IND instructions:
10325  * - they can only appear in the programs where ctx == skb
10326  * - since they are wrappers of function calls, they scratch R1-R5 registers,
10327  *   preserve R6-R9, and store return value into R0
10328  *
10329  * Implicit input:
10330  *   ctx == skb == R6 == CTX
10331  *
10332  * Explicit input:
10333  *   SRC == any register
10334  *   IMM == 32-bit immediate
10335  *
10336  * Output:
10337  *   R0 - 8/16/32-bit skb data converted to cpu endianness
10338  */
10339 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
10340 {
10341 	struct bpf_reg_state *regs = cur_regs(env);
10342 	static const int ctx_reg = BPF_REG_6;
10343 	u8 mode = BPF_MODE(insn->code);
10344 	int i, err;
10345 
10346 	if (!may_access_skb(resolve_prog_type(env->prog))) {
10347 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
10348 		return -EINVAL;
10349 	}
10350 
10351 	if (!env->ops->gen_ld_abs) {
10352 		verbose(env, "bpf verifier is misconfigured\n");
10353 		return -EINVAL;
10354 	}
10355 
10356 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
10357 	    BPF_SIZE(insn->code) == BPF_DW ||
10358 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
10359 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
10360 		return -EINVAL;
10361 	}
10362 
10363 	/* check whether implicit source operand (register R6) is readable */
10364 	err = check_reg_arg(env, ctx_reg, SRC_OP);
10365 	if (err)
10366 		return err;
10367 
10368 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
10369 	 * gen_ld_abs() may terminate the program at runtime, leading to
10370 	 * reference leak.
10371 	 */
10372 	err = check_reference_leak(env);
10373 	if (err) {
10374 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
10375 		return err;
10376 	}
10377 
10378 	if (env->cur_state->active_spin_lock) {
10379 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
10380 		return -EINVAL;
10381 	}
10382 
10383 	if (regs[ctx_reg].type != PTR_TO_CTX) {
10384 		verbose(env,
10385 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
10386 		return -EINVAL;
10387 	}
10388 
10389 	if (mode == BPF_IND) {
10390 		/* check explicit source operand */
10391 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
10392 		if (err)
10393 			return err;
10394 	}
10395 
10396 	err = check_ptr_off_reg(env, &regs[ctx_reg], ctx_reg);
10397 	if (err < 0)
10398 		return err;
10399 
10400 	/* reset caller saved regs to unreadable */
10401 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
10402 		mark_reg_not_init(env, regs, caller_saved[i]);
10403 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
10404 	}
10405 
10406 	/* mark destination R0 register as readable, since it contains
10407 	 * the value fetched from the packet.
10408 	 * Already marked as written above.
10409 	 */
10410 	mark_reg_unknown(env, regs, BPF_REG_0);
10411 	/* ld_abs load up to 32-bit skb data. */
10412 	regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
10413 	return 0;
10414 }
10415 
10416 static int check_return_code(struct bpf_verifier_env *env)
10417 {
10418 	struct tnum enforce_attach_type_range = tnum_unknown;
10419 	const struct bpf_prog *prog = env->prog;
10420 	struct bpf_reg_state *reg;
10421 	struct tnum range = tnum_range(0, 1);
10422 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
10423 	int err;
10424 	struct bpf_func_state *frame = env->cur_state->frame[0];
10425 	const bool is_subprog = frame->subprogno;
10426 
10427 	/* LSM and struct_ops func-ptr's return type could be "void" */
10428 	if (!is_subprog) {
10429 		switch (prog_type) {
10430 		case BPF_PROG_TYPE_LSM:
10431 			if (prog->expected_attach_type == BPF_LSM_CGROUP)
10432 				/* See below, can be 0 or 0-1 depending on hook. */
10433 				break;
10434 			fallthrough;
10435 		case BPF_PROG_TYPE_STRUCT_OPS:
10436 			if (!prog->aux->attach_func_proto->type)
10437 				return 0;
10438 			break;
10439 		default:
10440 			break;
10441 		}
10442 	}
10443 
10444 	/* eBPF calling convention is such that R0 is used
10445 	 * to return the value from eBPF program.
10446 	 * Make sure that it's readable at this time
10447 	 * of bpf_exit, which means that program wrote
10448 	 * something into it earlier
10449 	 */
10450 	err = check_reg_arg(env, BPF_REG_0, SRC_OP);
10451 	if (err)
10452 		return err;
10453 
10454 	if (is_pointer_value(env, BPF_REG_0)) {
10455 		verbose(env, "R0 leaks addr as return value\n");
10456 		return -EACCES;
10457 	}
10458 
10459 	reg = cur_regs(env) + BPF_REG_0;
10460 
10461 	if (frame->in_async_callback_fn) {
10462 		/* enforce return zero from async callbacks like timer */
10463 		if (reg->type != SCALAR_VALUE) {
10464 			verbose(env, "In async callback the register R0 is not a known value (%s)\n",
10465 				reg_type_str(env, reg->type));
10466 			return -EINVAL;
10467 		}
10468 
10469 		if (!tnum_in(tnum_const(0), reg->var_off)) {
10470 			verbose_invalid_scalar(env, reg, &range, "async callback", "R0");
10471 			return -EINVAL;
10472 		}
10473 		return 0;
10474 	}
10475 
10476 	if (is_subprog) {
10477 		if (reg->type != SCALAR_VALUE) {
10478 			verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
10479 				reg_type_str(env, reg->type));
10480 			return -EINVAL;
10481 		}
10482 		return 0;
10483 	}
10484 
10485 	switch (prog_type) {
10486 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
10487 		if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
10488 		    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
10489 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
10490 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
10491 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
10492 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
10493 			range = tnum_range(1, 1);
10494 		if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
10495 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
10496 			range = tnum_range(0, 3);
10497 		break;
10498 	case BPF_PROG_TYPE_CGROUP_SKB:
10499 		if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
10500 			range = tnum_range(0, 3);
10501 			enforce_attach_type_range = tnum_range(2, 3);
10502 		}
10503 		break;
10504 	case BPF_PROG_TYPE_CGROUP_SOCK:
10505 	case BPF_PROG_TYPE_SOCK_OPS:
10506 	case BPF_PROG_TYPE_CGROUP_DEVICE:
10507 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
10508 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
10509 		break;
10510 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
10511 		if (!env->prog->aux->attach_btf_id)
10512 			return 0;
10513 		range = tnum_const(0);
10514 		break;
10515 	case BPF_PROG_TYPE_TRACING:
10516 		switch (env->prog->expected_attach_type) {
10517 		case BPF_TRACE_FENTRY:
10518 		case BPF_TRACE_FEXIT:
10519 			range = tnum_const(0);
10520 			break;
10521 		case BPF_TRACE_RAW_TP:
10522 		case BPF_MODIFY_RETURN:
10523 			return 0;
10524 		case BPF_TRACE_ITER:
10525 			break;
10526 		default:
10527 			return -ENOTSUPP;
10528 		}
10529 		break;
10530 	case BPF_PROG_TYPE_SK_LOOKUP:
10531 		range = tnum_range(SK_DROP, SK_PASS);
10532 		break;
10533 
10534 	case BPF_PROG_TYPE_LSM:
10535 		if (env->prog->expected_attach_type != BPF_LSM_CGROUP) {
10536 			/* Regular BPF_PROG_TYPE_LSM programs can return
10537 			 * any value.
10538 			 */
10539 			return 0;
10540 		}
10541 		if (!env->prog->aux->attach_func_proto->type) {
10542 			/* Make sure programs that attach to void
10543 			 * hooks don't try to modify return value.
10544 			 */
10545 			range = tnum_range(1, 1);
10546 		}
10547 		break;
10548 
10549 	case BPF_PROG_TYPE_EXT:
10550 		/* freplace program can return anything as its return value
10551 		 * depends on the to-be-replaced kernel func or bpf program.
10552 		 */
10553 	default:
10554 		return 0;
10555 	}
10556 
10557 	if (reg->type != SCALAR_VALUE) {
10558 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
10559 			reg_type_str(env, reg->type));
10560 		return -EINVAL;
10561 	}
10562 
10563 	if (!tnum_in(range, reg->var_off)) {
10564 		verbose_invalid_scalar(env, reg, &range, "program exit", "R0");
10565 		if (prog->expected_attach_type == BPF_LSM_CGROUP &&
10566 		    prog_type == BPF_PROG_TYPE_LSM &&
10567 		    !prog->aux->attach_func_proto->type)
10568 			verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
10569 		return -EINVAL;
10570 	}
10571 
10572 	if (!tnum_is_unknown(enforce_attach_type_range) &&
10573 	    tnum_in(enforce_attach_type_range, reg->var_off))
10574 		env->prog->enforce_expected_attach_type = 1;
10575 	return 0;
10576 }
10577 
10578 /* non-recursive DFS pseudo code
10579  * 1  procedure DFS-iterative(G,v):
10580  * 2      label v as discovered
10581  * 3      let S be a stack
10582  * 4      S.push(v)
10583  * 5      while S is not empty
10584  * 6            t <- S.pop()
10585  * 7            if t is what we're looking for:
10586  * 8                return t
10587  * 9            for all edges e in G.adjacentEdges(t) do
10588  * 10               if edge e is already labelled
10589  * 11                   continue with the next edge
10590  * 12               w <- G.adjacentVertex(t,e)
10591  * 13               if vertex w is not discovered and not explored
10592  * 14                   label e as tree-edge
10593  * 15                   label w as discovered
10594  * 16                   S.push(w)
10595  * 17                   continue at 5
10596  * 18               else if vertex w is discovered
10597  * 19                   label e as back-edge
10598  * 20               else
10599  * 21                   // vertex w is explored
10600  * 22                   label e as forward- or cross-edge
10601  * 23           label t as explored
10602  * 24           S.pop()
10603  *
10604  * convention:
10605  * 0x10 - discovered
10606  * 0x11 - discovered and fall-through edge labelled
10607  * 0x12 - discovered and fall-through and branch edges labelled
10608  * 0x20 - explored
10609  */
10610 
10611 enum {
10612 	DISCOVERED = 0x10,
10613 	EXPLORED = 0x20,
10614 	FALLTHROUGH = 1,
10615 	BRANCH = 2,
10616 };
10617 
10618 static u32 state_htab_size(struct bpf_verifier_env *env)
10619 {
10620 	return env->prog->len;
10621 }
10622 
10623 static struct bpf_verifier_state_list **explored_state(
10624 					struct bpf_verifier_env *env,
10625 					int idx)
10626 {
10627 	struct bpf_verifier_state *cur = env->cur_state;
10628 	struct bpf_func_state *state = cur->frame[cur->curframe];
10629 
10630 	return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
10631 }
10632 
10633 static void init_explored_state(struct bpf_verifier_env *env, int idx)
10634 {
10635 	env->insn_aux_data[idx].prune_point = true;
10636 }
10637 
10638 enum {
10639 	DONE_EXPLORING = 0,
10640 	KEEP_EXPLORING = 1,
10641 };
10642 
10643 /* t, w, e - match pseudo-code above:
10644  * t - index of current instruction
10645  * w - next instruction
10646  * e - edge
10647  */
10648 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
10649 		     bool loop_ok)
10650 {
10651 	int *insn_stack = env->cfg.insn_stack;
10652 	int *insn_state = env->cfg.insn_state;
10653 
10654 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
10655 		return DONE_EXPLORING;
10656 
10657 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
10658 		return DONE_EXPLORING;
10659 
10660 	if (w < 0 || w >= env->prog->len) {
10661 		verbose_linfo(env, t, "%d: ", t);
10662 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
10663 		return -EINVAL;
10664 	}
10665 
10666 	if (e == BRANCH)
10667 		/* mark branch target for state pruning */
10668 		init_explored_state(env, w);
10669 
10670 	if (insn_state[w] == 0) {
10671 		/* tree-edge */
10672 		insn_state[t] = DISCOVERED | e;
10673 		insn_state[w] = DISCOVERED;
10674 		if (env->cfg.cur_stack >= env->prog->len)
10675 			return -E2BIG;
10676 		insn_stack[env->cfg.cur_stack++] = w;
10677 		return KEEP_EXPLORING;
10678 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
10679 		if (loop_ok && env->bpf_capable)
10680 			return DONE_EXPLORING;
10681 		verbose_linfo(env, t, "%d: ", t);
10682 		verbose_linfo(env, w, "%d: ", w);
10683 		verbose(env, "back-edge from insn %d to %d\n", t, w);
10684 		return -EINVAL;
10685 	} else if (insn_state[w] == EXPLORED) {
10686 		/* forward- or cross-edge */
10687 		insn_state[t] = DISCOVERED | e;
10688 	} else {
10689 		verbose(env, "insn state internal bug\n");
10690 		return -EFAULT;
10691 	}
10692 	return DONE_EXPLORING;
10693 }
10694 
10695 static int visit_func_call_insn(int t, int insn_cnt,
10696 				struct bpf_insn *insns,
10697 				struct bpf_verifier_env *env,
10698 				bool visit_callee)
10699 {
10700 	int ret;
10701 
10702 	ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
10703 	if (ret)
10704 		return ret;
10705 
10706 	if (t + 1 < insn_cnt)
10707 		init_explored_state(env, t + 1);
10708 	if (visit_callee) {
10709 		init_explored_state(env, t);
10710 		ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env,
10711 				/* It's ok to allow recursion from CFG point of
10712 				 * view. __check_func_call() will do the actual
10713 				 * check.
10714 				 */
10715 				bpf_pseudo_func(insns + t));
10716 	}
10717 	return ret;
10718 }
10719 
10720 /* Visits the instruction at index t and returns one of the following:
10721  *  < 0 - an error occurred
10722  *  DONE_EXPLORING - the instruction was fully explored
10723  *  KEEP_EXPLORING - there is still work to be done before it is fully explored
10724  */
10725 static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env)
10726 {
10727 	struct bpf_insn *insns = env->prog->insnsi;
10728 	int ret;
10729 
10730 	if (bpf_pseudo_func(insns + t))
10731 		return visit_func_call_insn(t, insn_cnt, insns, env, true);
10732 
10733 	/* All non-branch instructions have a single fall-through edge. */
10734 	if (BPF_CLASS(insns[t].code) != BPF_JMP &&
10735 	    BPF_CLASS(insns[t].code) != BPF_JMP32)
10736 		return push_insn(t, t + 1, FALLTHROUGH, env, false);
10737 
10738 	switch (BPF_OP(insns[t].code)) {
10739 	case BPF_EXIT:
10740 		return DONE_EXPLORING;
10741 
10742 	case BPF_CALL:
10743 		if (insns[t].imm == BPF_FUNC_timer_set_callback)
10744 			/* Mark this call insn to trigger is_state_visited() check
10745 			 * before call itself is processed by __check_func_call().
10746 			 * Otherwise new async state will be pushed for further
10747 			 * exploration.
10748 			 */
10749 			init_explored_state(env, t);
10750 		return visit_func_call_insn(t, insn_cnt, insns, env,
10751 					    insns[t].src_reg == BPF_PSEUDO_CALL);
10752 
10753 	case BPF_JA:
10754 		if (BPF_SRC(insns[t].code) != BPF_K)
10755 			return -EINVAL;
10756 
10757 		/* unconditional jump with single edge */
10758 		ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env,
10759 				true);
10760 		if (ret)
10761 			return ret;
10762 
10763 		/* unconditional jmp is not a good pruning point,
10764 		 * but it's marked, since backtracking needs
10765 		 * to record jmp history in is_state_visited().
10766 		 */
10767 		init_explored_state(env, t + insns[t].off + 1);
10768 		/* tell verifier to check for equivalent states
10769 		 * after every call and jump
10770 		 */
10771 		if (t + 1 < insn_cnt)
10772 			init_explored_state(env, t + 1);
10773 
10774 		return ret;
10775 
10776 	default:
10777 		/* conditional jump with two edges */
10778 		init_explored_state(env, t);
10779 		ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
10780 		if (ret)
10781 			return ret;
10782 
10783 		return push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
10784 	}
10785 }
10786 
10787 /* non-recursive depth-first-search to detect loops in BPF program
10788  * loop == back-edge in directed graph
10789  */
10790 static int check_cfg(struct bpf_verifier_env *env)
10791 {
10792 	int insn_cnt = env->prog->len;
10793 	int *insn_stack, *insn_state;
10794 	int ret = 0;
10795 	int i;
10796 
10797 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
10798 	if (!insn_state)
10799 		return -ENOMEM;
10800 
10801 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
10802 	if (!insn_stack) {
10803 		kvfree(insn_state);
10804 		return -ENOMEM;
10805 	}
10806 
10807 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
10808 	insn_stack[0] = 0; /* 0 is the first instruction */
10809 	env->cfg.cur_stack = 1;
10810 
10811 	while (env->cfg.cur_stack > 0) {
10812 		int t = insn_stack[env->cfg.cur_stack - 1];
10813 
10814 		ret = visit_insn(t, insn_cnt, env);
10815 		switch (ret) {
10816 		case DONE_EXPLORING:
10817 			insn_state[t] = EXPLORED;
10818 			env->cfg.cur_stack--;
10819 			break;
10820 		case KEEP_EXPLORING:
10821 			break;
10822 		default:
10823 			if (ret > 0) {
10824 				verbose(env, "visit_insn internal bug\n");
10825 				ret = -EFAULT;
10826 			}
10827 			goto err_free;
10828 		}
10829 	}
10830 
10831 	if (env->cfg.cur_stack < 0) {
10832 		verbose(env, "pop stack internal bug\n");
10833 		ret = -EFAULT;
10834 		goto err_free;
10835 	}
10836 
10837 	for (i = 0; i < insn_cnt; i++) {
10838 		if (insn_state[i] != EXPLORED) {
10839 			verbose(env, "unreachable insn %d\n", i);
10840 			ret = -EINVAL;
10841 			goto err_free;
10842 		}
10843 	}
10844 	ret = 0; /* cfg looks good */
10845 
10846 err_free:
10847 	kvfree(insn_state);
10848 	kvfree(insn_stack);
10849 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
10850 	return ret;
10851 }
10852 
10853 static int check_abnormal_return(struct bpf_verifier_env *env)
10854 {
10855 	int i;
10856 
10857 	for (i = 1; i < env->subprog_cnt; i++) {
10858 		if (env->subprog_info[i].has_ld_abs) {
10859 			verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
10860 			return -EINVAL;
10861 		}
10862 		if (env->subprog_info[i].has_tail_call) {
10863 			verbose(env, "tail_call is not allowed in subprogs without BTF\n");
10864 			return -EINVAL;
10865 		}
10866 	}
10867 	return 0;
10868 }
10869 
10870 /* The minimum supported BTF func info size */
10871 #define MIN_BPF_FUNCINFO_SIZE	8
10872 #define MAX_FUNCINFO_REC_SIZE	252
10873 
10874 static int check_btf_func(struct bpf_verifier_env *env,
10875 			  const union bpf_attr *attr,
10876 			  bpfptr_t uattr)
10877 {
10878 	const struct btf_type *type, *func_proto, *ret_type;
10879 	u32 i, nfuncs, urec_size, min_size;
10880 	u32 krec_size = sizeof(struct bpf_func_info);
10881 	struct bpf_func_info *krecord;
10882 	struct bpf_func_info_aux *info_aux = NULL;
10883 	struct bpf_prog *prog;
10884 	const struct btf *btf;
10885 	bpfptr_t urecord;
10886 	u32 prev_offset = 0;
10887 	bool scalar_return;
10888 	int ret = -ENOMEM;
10889 
10890 	nfuncs = attr->func_info_cnt;
10891 	if (!nfuncs) {
10892 		if (check_abnormal_return(env))
10893 			return -EINVAL;
10894 		return 0;
10895 	}
10896 
10897 	if (nfuncs != env->subprog_cnt) {
10898 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
10899 		return -EINVAL;
10900 	}
10901 
10902 	urec_size = attr->func_info_rec_size;
10903 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
10904 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
10905 	    urec_size % sizeof(u32)) {
10906 		verbose(env, "invalid func info rec size %u\n", urec_size);
10907 		return -EINVAL;
10908 	}
10909 
10910 	prog = env->prog;
10911 	btf = prog->aux->btf;
10912 
10913 	urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
10914 	min_size = min_t(u32, krec_size, urec_size);
10915 
10916 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
10917 	if (!krecord)
10918 		return -ENOMEM;
10919 	info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
10920 	if (!info_aux)
10921 		goto err_free;
10922 
10923 	for (i = 0; i < nfuncs; i++) {
10924 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
10925 		if (ret) {
10926 			if (ret == -E2BIG) {
10927 				verbose(env, "nonzero tailing record in func info");
10928 				/* set the size kernel expects so loader can zero
10929 				 * out the rest of the record.
10930 				 */
10931 				if (copy_to_bpfptr_offset(uattr,
10932 							  offsetof(union bpf_attr, func_info_rec_size),
10933 							  &min_size, sizeof(min_size)))
10934 					ret = -EFAULT;
10935 			}
10936 			goto err_free;
10937 		}
10938 
10939 		if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
10940 			ret = -EFAULT;
10941 			goto err_free;
10942 		}
10943 
10944 		/* check insn_off */
10945 		ret = -EINVAL;
10946 		if (i == 0) {
10947 			if (krecord[i].insn_off) {
10948 				verbose(env,
10949 					"nonzero insn_off %u for the first func info record",
10950 					krecord[i].insn_off);
10951 				goto err_free;
10952 			}
10953 		} else if (krecord[i].insn_off <= prev_offset) {
10954 			verbose(env,
10955 				"same or smaller insn offset (%u) than previous func info record (%u)",
10956 				krecord[i].insn_off, prev_offset);
10957 			goto err_free;
10958 		}
10959 
10960 		if (env->subprog_info[i].start != krecord[i].insn_off) {
10961 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
10962 			goto err_free;
10963 		}
10964 
10965 		/* check type_id */
10966 		type = btf_type_by_id(btf, krecord[i].type_id);
10967 		if (!type || !btf_type_is_func(type)) {
10968 			verbose(env, "invalid type id %d in func info",
10969 				krecord[i].type_id);
10970 			goto err_free;
10971 		}
10972 		info_aux[i].linkage = BTF_INFO_VLEN(type->info);
10973 
10974 		func_proto = btf_type_by_id(btf, type->type);
10975 		if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
10976 			/* btf_func_check() already verified it during BTF load */
10977 			goto err_free;
10978 		ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
10979 		scalar_return =
10980 			btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type);
10981 		if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
10982 			verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
10983 			goto err_free;
10984 		}
10985 		if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
10986 			verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
10987 			goto err_free;
10988 		}
10989 
10990 		prev_offset = krecord[i].insn_off;
10991 		bpfptr_add(&urecord, urec_size);
10992 	}
10993 
10994 	prog->aux->func_info = krecord;
10995 	prog->aux->func_info_cnt = nfuncs;
10996 	prog->aux->func_info_aux = info_aux;
10997 	return 0;
10998 
10999 err_free:
11000 	kvfree(krecord);
11001 	kfree(info_aux);
11002 	return ret;
11003 }
11004 
11005 static void adjust_btf_func(struct bpf_verifier_env *env)
11006 {
11007 	struct bpf_prog_aux *aux = env->prog->aux;
11008 	int i;
11009 
11010 	if (!aux->func_info)
11011 		return;
11012 
11013 	for (i = 0; i < env->subprog_cnt; i++)
11014 		aux->func_info[i].insn_off = env->subprog_info[i].start;
11015 }
11016 
11017 #define MIN_BPF_LINEINFO_SIZE	offsetofend(struct bpf_line_info, line_col)
11018 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
11019 
11020 static int check_btf_line(struct bpf_verifier_env *env,
11021 			  const union bpf_attr *attr,
11022 			  bpfptr_t uattr)
11023 {
11024 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
11025 	struct bpf_subprog_info *sub;
11026 	struct bpf_line_info *linfo;
11027 	struct bpf_prog *prog;
11028 	const struct btf *btf;
11029 	bpfptr_t ulinfo;
11030 	int err;
11031 
11032 	nr_linfo = attr->line_info_cnt;
11033 	if (!nr_linfo)
11034 		return 0;
11035 	if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
11036 		return -EINVAL;
11037 
11038 	rec_size = attr->line_info_rec_size;
11039 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
11040 	    rec_size > MAX_LINEINFO_REC_SIZE ||
11041 	    rec_size & (sizeof(u32) - 1))
11042 		return -EINVAL;
11043 
11044 	/* Need to zero it in case the userspace may
11045 	 * pass in a smaller bpf_line_info object.
11046 	 */
11047 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
11048 			 GFP_KERNEL | __GFP_NOWARN);
11049 	if (!linfo)
11050 		return -ENOMEM;
11051 
11052 	prog = env->prog;
11053 	btf = prog->aux->btf;
11054 
11055 	s = 0;
11056 	sub = env->subprog_info;
11057 	ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
11058 	expected_size = sizeof(struct bpf_line_info);
11059 	ncopy = min_t(u32, expected_size, rec_size);
11060 	for (i = 0; i < nr_linfo; i++) {
11061 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
11062 		if (err) {
11063 			if (err == -E2BIG) {
11064 				verbose(env, "nonzero tailing record in line_info");
11065 				if (copy_to_bpfptr_offset(uattr,
11066 							  offsetof(union bpf_attr, line_info_rec_size),
11067 							  &expected_size, sizeof(expected_size)))
11068 					err = -EFAULT;
11069 			}
11070 			goto err_free;
11071 		}
11072 
11073 		if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
11074 			err = -EFAULT;
11075 			goto err_free;
11076 		}
11077 
11078 		/*
11079 		 * Check insn_off to ensure
11080 		 * 1) strictly increasing AND
11081 		 * 2) bounded by prog->len
11082 		 *
11083 		 * The linfo[0].insn_off == 0 check logically falls into
11084 		 * the later "missing bpf_line_info for func..." case
11085 		 * because the first linfo[0].insn_off must be the
11086 		 * first sub also and the first sub must have
11087 		 * subprog_info[0].start == 0.
11088 		 */
11089 		if ((i && linfo[i].insn_off <= prev_offset) ||
11090 		    linfo[i].insn_off >= prog->len) {
11091 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
11092 				i, linfo[i].insn_off, prev_offset,
11093 				prog->len);
11094 			err = -EINVAL;
11095 			goto err_free;
11096 		}
11097 
11098 		if (!prog->insnsi[linfo[i].insn_off].code) {
11099 			verbose(env,
11100 				"Invalid insn code at line_info[%u].insn_off\n",
11101 				i);
11102 			err = -EINVAL;
11103 			goto err_free;
11104 		}
11105 
11106 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
11107 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
11108 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
11109 			err = -EINVAL;
11110 			goto err_free;
11111 		}
11112 
11113 		if (s != env->subprog_cnt) {
11114 			if (linfo[i].insn_off == sub[s].start) {
11115 				sub[s].linfo_idx = i;
11116 				s++;
11117 			} else if (sub[s].start < linfo[i].insn_off) {
11118 				verbose(env, "missing bpf_line_info for func#%u\n", s);
11119 				err = -EINVAL;
11120 				goto err_free;
11121 			}
11122 		}
11123 
11124 		prev_offset = linfo[i].insn_off;
11125 		bpfptr_add(&ulinfo, rec_size);
11126 	}
11127 
11128 	if (s != env->subprog_cnt) {
11129 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
11130 			env->subprog_cnt - s, s);
11131 		err = -EINVAL;
11132 		goto err_free;
11133 	}
11134 
11135 	prog->aux->linfo = linfo;
11136 	prog->aux->nr_linfo = nr_linfo;
11137 
11138 	return 0;
11139 
11140 err_free:
11141 	kvfree(linfo);
11142 	return err;
11143 }
11144 
11145 #define MIN_CORE_RELO_SIZE	sizeof(struct bpf_core_relo)
11146 #define MAX_CORE_RELO_SIZE	MAX_FUNCINFO_REC_SIZE
11147 
11148 static int check_core_relo(struct bpf_verifier_env *env,
11149 			   const union bpf_attr *attr,
11150 			   bpfptr_t uattr)
11151 {
11152 	u32 i, nr_core_relo, ncopy, expected_size, rec_size;
11153 	struct bpf_core_relo core_relo = {};
11154 	struct bpf_prog *prog = env->prog;
11155 	const struct btf *btf = prog->aux->btf;
11156 	struct bpf_core_ctx ctx = {
11157 		.log = &env->log,
11158 		.btf = btf,
11159 	};
11160 	bpfptr_t u_core_relo;
11161 	int err;
11162 
11163 	nr_core_relo = attr->core_relo_cnt;
11164 	if (!nr_core_relo)
11165 		return 0;
11166 	if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo))
11167 		return -EINVAL;
11168 
11169 	rec_size = attr->core_relo_rec_size;
11170 	if (rec_size < MIN_CORE_RELO_SIZE ||
11171 	    rec_size > MAX_CORE_RELO_SIZE ||
11172 	    rec_size % sizeof(u32))
11173 		return -EINVAL;
11174 
11175 	u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel);
11176 	expected_size = sizeof(struct bpf_core_relo);
11177 	ncopy = min_t(u32, expected_size, rec_size);
11178 
11179 	/* Unlike func_info and line_info, copy and apply each CO-RE
11180 	 * relocation record one at a time.
11181 	 */
11182 	for (i = 0; i < nr_core_relo; i++) {
11183 		/* future proofing when sizeof(bpf_core_relo) changes */
11184 		err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size);
11185 		if (err) {
11186 			if (err == -E2BIG) {
11187 				verbose(env, "nonzero tailing record in core_relo");
11188 				if (copy_to_bpfptr_offset(uattr,
11189 							  offsetof(union bpf_attr, core_relo_rec_size),
11190 							  &expected_size, sizeof(expected_size)))
11191 					err = -EFAULT;
11192 			}
11193 			break;
11194 		}
11195 
11196 		if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) {
11197 			err = -EFAULT;
11198 			break;
11199 		}
11200 
11201 		if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) {
11202 			verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n",
11203 				i, core_relo.insn_off, prog->len);
11204 			err = -EINVAL;
11205 			break;
11206 		}
11207 
11208 		err = bpf_core_apply(&ctx, &core_relo, i,
11209 				     &prog->insnsi[core_relo.insn_off / 8]);
11210 		if (err)
11211 			break;
11212 		bpfptr_add(&u_core_relo, rec_size);
11213 	}
11214 	return err;
11215 }
11216 
11217 static int check_btf_info(struct bpf_verifier_env *env,
11218 			  const union bpf_attr *attr,
11219 			  bpfptr_t uattr)
11220 {
11221 	struct btf *btf;
11222 	int err;
11223 
11224 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
11225 		if (check_abnormal_return(env))
11226 			return -EINVAL;
11227 		return 0;
11228 	}
11229 
11230 	btf = btf_get_by_fd(attr->prog_btf_fd);
11231 	if (IS_ERR(btf))
11232 		return PTR_ERR(btf);
11233 	if (btf_is_kernel(btf)) {
11234 		btf_put(btf);
11235 		return -EACCES;
11236 	}
11237 	env->prog->aux->btf = btf;
11238 
11239 	err = check_btf_func(env, attr, uattr);
11240 	if (err)
11241 		return err;
11242 
11243 	err = check_btf_line(env, attr, uattr);
11244 	if (err)
11245 		return err;
11246 
11247 	err = check_core_relo(env, attr, uattr);
11248 	if (err)
11249 		return err;
11250 
11251 	return 0;
11252 }
11253 
11254 /* check %cur's range satisfies %old's */
11255 static bool range_within(struct bpf_reg_state *old,
11256 			 struct bpf_reg_state *cur)
11257 {
11258 	return old->umin_value <= cur->umin_value &&
11259 	       old->umax_value >= cur->umax_value &&
11260 	       old->smin_value <= cur->smin_value &&
11261 	       old->smax_value >= cur->smax_value &&
11262 	       old->u32_min_value <= cur->u32_min_value &&
11263 	       old->u32_max_value >= cur->u32_max_value &&
11264 	       old->s32_min_value <= cur->s32_min_value &&
11265 	       old->s32_max_value >= cur->s32_max_value;
11266 }
11267 
11268 /* If in the old state two registers had the same id, then they need to have
11269  * the same id in the new state as well.  But that id could be different from
11270  * the old state, so we need to track the mapping from old to new ids.
11271  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
11272  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
11273  * regs with a different old id could still have new id 9, we don't care about
11274  * that.
11275  * So we look through our idmap to see if this old id has been seen before.  If
11276  * so, we require the new id to match; otherwise, we add the id pair to the map.
11277  */
11278 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap)
11279 {
11280 	unsigned int i;
11281 
11282 	for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
11283 		if (!idmap[i].old) {
11284 			/* Reached an empty slot; haven't seen this id before */
11285 			idmap[i].old = old_id;
11286 			idmap[i].cur = cur_id;
11287 			return true;
11288 		}
11289 		if (idmap[i].old == old_id)
11290 			return idmap[i].cur == cur_id;
11291 	}
11292 	/* We ran out of idmap slots, which should be impossible */
11293 	WARN_ON_ONCE(1);
11294 	return false;
11295 }
11296 
11297 static void clean_func_state(struct bpf_verifier_env *env,
11298 			     struct bpf_func_state *st)
11299 {
11300 	enum bpf_reg_liveness live;
11301 	int i, j;
11302 
11303 	for (i = 0; i < BPF_REG_FP; i++) {
11304 		live = st->regs[i].live;
11305 		/* liveness must not touch this register anymore */
11306 		st->regs[i].live |= REG_LIVE_DONE;
11307 		if (!(live & REG_LIVE_READ))
11308 			/* since the register is unused, clear its state
11309 			 * to make further comparison simpler
11310 			 */
11311 			__mark_reg_not_init(env, &st->regs[i]);
11312 	}
11313 
11314 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
11315 		live = st->stack[i].spilled_ptr.live;
11316 		/* liveness must not touch this stack slot anymore */
11317 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
11318 		if (!(live & REG_LIVE_READ)) {
11319 			__mark_reg_not_init(env, &st->stack[i].spilled_ptr);
11320 			for (j = 0; j < BPF_REG_SIZE; j++)
11321 				st->stack[i].slot_type[j] = STACK_INVALID;
11322 		}
11323 	}
11324 }
11325 
11326 static void clean_verifier_state(struct bpf_verifier_env *env,
11327 				 struct bpf_verifier_state *st)
11328 {
11329 	int i;
11330 
11331 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
11332 		/* all regs in this state in all frames were already marked */
11333 		return;
11334 
11335 	for (i = 0; i <= st->curframe; i++)
11336 		clean_func_state(env, st->frame[i]);
11337 }
11338 
11339 /* the parentage chains form a tree.
11340  * the verifier states are added to state lists at given insn and
11341  * pushed into state stack for future exploration.
11342  * when the verifier reaches bpf_exit insn some of the verifer states
11343  * stored in the state lists have their final liveness state already,
11344  * but a lot of states will get revised from liveness point of view when
11345  * the verifier explores other branches.
11346  * Example:
11347  * 1: r0 = 1
11348  * 2: if r1 == 100 goto pc+1
11349  * 3: r0 = 2
11350  * 4: exit
11351  * when the verifier reaches exit insn the register r0 in the state list of
11352  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
11353  * of insn 2 and goes exploring further. At the insn 4 it will walk the
11354  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
11355  *
11356  * Since the verifier pushes the branch states as it sees them while exploring
11357  * the program the condition of walking the branch instruction for the second
11358  * time means that all states below this branch were already explored and
11359  * their final liveness marks are already propagated.
11360  * Hence when the verifier completes the search of state list in is_state_visited()
11361  * we can call this clean_live_states() function to mark all liveness states
11362  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
11363  * will not be used.
11364  * This function also clears the registers and stack for states that !READ
11365  * to simplify state merging.
11366  *
11367  * Important note here that walking the same branch instruction in the callee
11368  * doesn't meant that the states are DONE. The verifier has to compare
11369  * the callsites
11370  */
11371 static void clean_live_states(struct bpf_verifier_env *env, int insn,
11372 			      struct bpf_verifier_state *cur)
11373 {
11374 	struct bpf_verifier_state_list *sl;
11375 	int i;
11376 
11377 	sl = *explored_state(env, insn);
11378 	while (sl) {
11379 		if (sl->state.branches)
11380 			goto next;
11381 		if (sl->state.insn_idx != insn ||
11382 		    sl->state.curframe != cur->curframe)
11383 			goto next;
11384 		for (i = 0; i <= cur->curframe; i++)
11385 			if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
11386 				goto next;
11387 		clean_verifier_state(env, &sl->state);
11388 next:
11389 		sl = sl->next;
11390 	}
11391 }
11392 
11393 /* Returns true if (rold safe implies rcur safe) */
11394 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
11395 		    struct bpf_reg_state *rcur, struct bpf_id_pair *idmap)
11396 {
11397 	bool equal;
11398 
11399 	if (!(rold->live & REG_LIVE_READ))
11400 		/* explored state didn't use this */
11401 		return true;
11402 
11403 	equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
11404 
11405 	if (rold->type == PTR_TO_STACK)
11406 		/* two stack pointers are equal only if they're pointing to
11407 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
11408 		 */
11409 		return equal && rold->frameno == rcur->frameno;
11410 
11411 	if (equal)
11412 		return true;
11413 
11414 	if (rold->type == NOT_INIT)
11415 		/* explored state can't have used this */
11416 		return true;
11417 	if (rcur->type == NOT_INIT)
11418 		return false;
11419 	switch (base_type(rold->type)) {
11420 	case SCALAR_VALUE:
11421 		if (env->explore_alu_limits)
11422 			return false;
11423 		if (rcur->type == SCALAR_VALUE) {
11424 			if (!rold->precise && !rcur->precise)
11425 				return true;
11426 			/* new val must satisfy old val knowledge */
11427 			return range_within(rold, rcur) &&
11428 			       tnum_in(rold->var_off, rcur->var_off);
11429 		} else {
11430 			/* We're trying to use a pointer in place of a scalar.
11431 			 * Even if the scalar was unbounded, this could lead to
11432 			 * pointer leaks because scalars are allowed to leak
11433 			 * while pointers are not. We could make this safe in
11434 			 * special cases if root is calling us, but it's
11435 			 * probably not worth the hassle.
11436 			 */
11437 			return false;
11438 		}
11439 	case PTR_TO_MAP_KEY:
11440 	case PTR_TO_MAP_VALUE:
11441 		/* a PTR_TO_MAP_VALUE could be safe to use as a
11442 		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
11443 		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
11444 		 * checked, doing so could have affected others with the same
11445 		 * id, and we can't check for that because we lost the id when
11446 		 * we converted to a PTR_TO_MAP_VALUE.
11447 		 */
11448 		if (type_may_be_null(rold->type)) {
11449 			if (!type_may_be_null(rcur->type))
11450 				return false;
11451 			if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
11452 				return false;
11453 			/* Check our ids match any regs they're supposed to */
11454 			return check_ids(rold->id, rcur->id, idmap);
11455 		}
11456 
11457 		/* If the new min/max/var_off satisfy the old ones and
11458 		 * everything else matches, we are OK.
11459 		 * 'id' is not compared, since it's only used for maps with
11460 		 * bpf_spin_lock inside map element and in such cases if
11461 		 * the rest of the prog is valid for one map element then
11462 		 * it's valid for all map elements regardless of the key
11463 		 * used in bpf_map_lookup()
11464 		 */
11465 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
11466 		       range_within(rold, rcur) &&
11467 		       tnum_in(rold->var_off, rcur->var_off);
11468 	case PTR_TO_PACKET_META:
11469 	case PTR_TO_PACKET:
11470 		if (rcur->type != rold->type)
11471 			return false;
11472 		/* We must have at least as much range as the old ptr
11473 		 * did, so that any accesses which were safe before are
11474 		 * still safe.  This is true even if old range < old off,
11475 		 * since someone could have accessed through (ptr - k), or
11476 		 * even done ptr -= k in a register, to get a safe access.
11477 		 */
11478 		if (rold->range > rcur->range)
11479 			return false;
11480 		/* If the offsets don't match, we can't trust our alignment;
11481 		 * nor can we be sure that we won't fall out of range.
11482 		 */
11483 		if (rold->off != rcur->off)
11484 			return false;
11485 		/* id relations must be preserved */
11486 		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
11487 			return false;
11488 		/* new val must satisfy old val knowledge */
11489 		return range_within(rold, rcur) &&
11490 		       tnum_in(rold->var_off, rcur->var_off);
11491 	case PTR_TO_CTX:
11492 	case CONST_PTR_TO_MAP:
11493 	case PTR_TO_PACKET_END:
11494 	case PTR_TO_FLOW_KEYS:
11495 	case PTR_TO_SOCKET:
11496 	case PTR_TO_SOCK_COMMON:
11497 	case PTR_TO_TCP_SOCK:
11498 	case PTR_TO_XDP_SOCK:
11499 		/* Only valid matches are exact, which memcmp() above
11500 		 * would have accepted
11501 		 */
11502 	default:
11503 		/* Don't know what's going on, just say it's not safe */
11504 		return false;
11505 	}
11506 
11507 	/* Shouldn't get here; if we do, say it's not safe */
11508 	WARN_ON_ONCE(1);
11509 	return false;
11510 }
11511 
11512 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
11513 		      struct bpf_func_state *cur, struct bpf_id_pair *idmap)
11514 {
11515 	int i, spi;
11516 
11517 	/* walk slots of the explored stack and ignore any additional
11518 	 * slots in the current stack, since explored(safe) state
11519 	 * didn't use them
11520 	 */
11521 	for (i = 0; i < old->allocated_stack; i++) {
11522 		spi = i / BPF_REG_SIZE;
11523 
11524 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
11525 			i += BPF_REG_SIZE - 1;
11526 			/* explored state didn't use this */
11527 			continue;
11528 		}
11529 
11530 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
11531 			continue;
11532 
11533 		/* explored stack has more populated slots than current stack
11534 		 * and these slots were used
11535 		 */
11536 		if (i >= cur->allocated_stack)
11537 			return false;
11538 
11539 		/* if old state was safe with misc data in the stack
11540 		 * it will be safe with zero-initialized stack.
11541 		 * The opposite is not true
11542 		 */
11543 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
11544 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
11545 			continue;
11546 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
11547 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
11548 			/* Ex: old explored (safe) state has STACK_SPILL in
11549 			 * this stack slot, but current has STACK_MISC ->
11550 			 * this verifier states are not equivalent,
11551 			 * return false to continue verification of this path
11552 			 */
11553 			return false;
11554 		if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1)
11555 			continue;
11556 		if (!is_spilled_reg(&old->stack[spi]))
11557 			continue;
11558 		if (!regsafe(env, &old->stack[spi].spilled_ptr,
11559 			     &cur->stack[spi].spilled_ptr, idmap))
11560 			/* when explored and current stack slot are both storing
11561 			 * spilled registers, check that stored pointers types
11562 			 * are the same as well.
11563 			 * Ex: explored safe path could have stored
11564 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
11565 			 * but current path has stored:
11566 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
11567 			 * such verifier states are not equivalent.
11568 			 * return false to continue verification of this path
11569 			 */
11570 			return false;
11571 	}
11572 	return true;
11573 }
11574 
11575 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
11576 {
11577 	if (old->acquired_refs != cur->acquired_refs)
11578 		return false;
11579 	return !memcmp(old->refs, cur->refs,
11580 		       sizeof(*old->refs) * old->acquired_refs);
11581 }
11582 
11583 /* compare two verifier states
11584  *
11585  * all states stored in state_list are known to be valid, since
11586  * verifier reached 'bpf_exit' instruction through them
11587  *
11588  * this function is called when verifier exploring different branches of
11589  * execution popped from the state stack. If it sees an old state that has
11590  * more strict register state and more strict stack state then this execution
11591  * branch doesn't need to be explored further, since verifier already
11592  * concluded that more strict state leads to valid finish.
11593  *
11594  * Therefore two states are equivalent if register state is more conservative
11595  * and explored stack state is more conservative than the current one.
11596  * Example:
11597  *       explored                   current
11598  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
11599  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
11600  *
11601  * In other words if current stack state (one being explored) has more
11602  * valid slots than old one that already passed validation, it means
11603  * the verifier can stop exploring and conclude that current state is valid too
11604  *
11605  * Similarly with registers. If explored state has register type as invalid
11606  * whereas register type in current state is meaningful, it means that
11607  * the current state will reach 'bpf_exit' instruction safely
11608  */
11609 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
11610 			      struct bpf_func_state *cur)
11611 {
11612 	int i;
11613 
11614 	memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch));
11615 	for (i = 0; i < MAX_BPF_REG; i++)
11616 		if (!regsafe(env, &old->regs[i], &cur->regs[i],
11617 			     env->idmap_scratch))
11618 			return false;
11619 
11620 	if (!stacksafe(env, old, cur, env->idmap_scratch))
11621 		return false;
11622 
11623 	if (!refsafe(old, cur))
11624 		return false;
11625 
11626 	return true;
11627 }
11628 
11629 static bool states_equal(struct bpf_verifier_env *env,
11630 			 struct bpf_verifier_state *old,
11631 			 struct bpf_verifier_state *cur)
11632 {
11633 	int i;
11634 
11635 	if (old->curframe != cur->curframe)
11636 		return false;
11637 
11638 	/* Verification state from speculative execution simulation
11639 	 * must never prune a non-speculative execution one.
11640 	 */
11641 	if (old->speculative && !cur->speculative)
11642 		return false;
11643 
11644 	if (old->active_spin_lock != cur->active_spin_lock)
11645 		return false;
11646 
11647 	/* for states to be equal callsites have to be the same
11648 	 * and all frame states need to be equivalent
11649 	 */
11650 	for (i = 0; i <= old->curframe; i++) {
11651 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
11652 			return false;
11653 		if (!func_states_equal(env, old->frame[i], cur->frame[i]))
11654 			return false;
11655 	}
11656 	return true;
11657 }
11658 
11659 /* Return 0 if no propagation happened. Return negative error code if error
11660  * happened. Otherwise, return the propagated bit.
11661  */
11662 static int propagate_liveness_reg(struct bpf_verifier_env *env,
11663 				  struct bpf_reg_state *reg,
11664 				  struct bpf_reg_state *parent_reg)
11665 {
11666 	u8 parent_flag = parent_reg->live & REG_LIVE_READ;
11667 	u8 flag = reg->live & REG_LIVE_READ;
11668 	int err;
11669 
11670 	/* When comes here, read flags of PARENT_REG or REG could be any of
11671 	 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
11672 	 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
11673 	 */
11674 	if (parent_flag == REG_LIVE_READ64 ||
11675 	    /* Or if there is no read flag from REG. */
11676 	    !flag ||
11677 	    /* Or if the read flag from REG is the same as PARENT_REG. */
11678 	    parent_flag == flag)
11679 		return 0;
11680 
11681 	err = mark_reg_read(env, reg, parent_reg, flag);
11682 	if (err)
11683 		return err;
11684 
11685 	return flag;
11686 }
11687 
11688 /* A write screens off any subsequent reads; but write marks come from the
11689  * straight-line code between a state and its parent.  When we arrive at an
11690  * equivalent state (jump target or such) we didn't arrive by the straight-line
11691  * code, so read marks in the state must propagate to the parent regardless
11692  * of the state's write marks. That's what 'parent == state->parent' comparison
11693  * in mark_reg_read() is for.
11694  */
11695 static int propagate_liveness(struct bpf_verifier_env *env,
11696 			      const struct bpf_verifier_state *vstate,
11697 			      struct bpf_verifier_state *vparent)
11698 {
11699 	struct bpf_reg_state *state_reg, *parent_reg;
11700 	struct bpf_func_state *state, *parent;
11701 	int i, frame, err = 0;
11702 
11703 	if (vparent->curframe != vstate->curframe) {
11704 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
11705 		     vparent->curframe, vstate->curframe);
11706 		return -EFAULT;
11707 	}
11708 	/* Propagate read liveness of registers... */
11709 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
11710 	for (frame = 0; frame <= vstate->curframe; frame++) {
11711 		parent = vparent->frame[frame];
11712 		state = vstate->frame[frame];
11713 		parent_reg = parent->regs;
11714 		state_reg = state->regs;
11715 		/* We don't need to worry about FP liveness, it's read-only */
11716 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
11717 			err = propagate_liveness_reg(env, &state_reg[i],
11718 						     &parent_reg[i]);
11719 			if (err < 0)
11720 				return err;
11721 			if (err == REG_LIVE_READ64)
11722 				mark_insn_zext(env, &parent_reg[i]);
11723 		}
11724 
11725 		/* Propagate stack slots. */
11726 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
11727 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
11728 			parent_reg = &parent->stack[i].spilled_ptr;
11729 			state_reg = &state->stack[i].spilled_ptr;
11730 			err = propagate_liveness_reg(env, state_reg,
11731 						     parent_reg);
11732 			if (err < 0)
11733 				return err;
11734 		}
11735 	}
11736 	return 0;
11737 }
11738 
11739 /* find precise scalars in the previous equivalent state and
11740  * propagate them into the current state
11741  */
11742 static int propagate_precision(struct bpf_verifier_env *env,
11743 			       const struct bpf_verifier_state *old)
11744 {
11745 	struct bpf_reg_state *state_reg;
11746 	struct bpf_func_state *state;
11747 	int i, err = 0;
11748 
11749 	state = old->frame[old->curframe];
11750 	state_reg = state->regs;
11751 	for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
11752 		if (state_reg->type != SCALAR_VALUE ||
11753 		    !state_reg->precise)
11754 			continue;
11755 		if (env->log.level & BPF_LOG_LEVEL2)
11756 			verbose(env, "propagating r%d\n", i);
11757 		err = mark_chain_precision(env, i);
11758 		if (err < 0)
11759 			return err;
11760 	}
11761 
11762 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
11763 		if (!is_spilled_reg(&state->stack[i]))
11764 			continue;
11765 		state_reg = &state->stack[i].spilled_ptr;
11766 		if (state_reg->type != SCALAR_VALUE ||
11767 		    !state_reg->precise)
11768 			continue;
11769 		if (env->log.level & BPF_LOG_LEVEL2)
11770 			verbose(env, "propagating fp%d\n",
11771 				(-i - 1) * BPF_REG_SIZE);
11772 		err = mark_chain_precision_stack(env, i);
11773 		if (err < 0)
11774 			return err;
11775 	}
11776 	return 0;
11777 }
11778 
11779 static bool states_maybe_looping(struct bpf_verifier_state *old,
11780 				 struct bpf_verifier_state *cur)
11781 {
11782 	struct bpf_func_state *fold, *fcur;
11783 	int i, fr = cur->curframe;
11784 
11785 	if (old->curframe != fr)
11786 		return false;
11787 
11788 	fold = old->frame[fr];
11789 	fcur = cur->frame[fr];
11790 	for (i = 0; i < MAX_BPF_REG; i++)
11791 		if (memcmp(&fold->regs[i], &fcur->regs[i],
11792 			   offsetof(struct bpf_reg_state, parent)))
11793 			return false;
11794 	return true;
11795 }
11796 
11797 
11798 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
11799 {
11800 	struct bpf_verifier_state_list *new_sl;
11801 	struct bpf_verifier_state_list *sl, **pprev;
11802 	struct bpf_verifier_state *cur = env->cur_state, *new;
11803 	int i, j, err, states_cnt = 0;
11804 	bool add_new_state = env->test_state_freq ? true : false;
11805 
11806 	cur->last_insn_idx = env->prev_insn_idx;
11807 	if (!env->insn_aux_data[insn_idx].prune_point)
11808 		/* this 'insn_idx' instruction wasn't marked, so we will not
11809 		 * be doing state search here
11810 		 */
11811 		return 0;
11812 
11813 	/* bpf progs typically have pruning point every 4 instructions
11814 	 * http://vger.kernel.org/bpfconf2019.html#session-1
11815 	 * Do not add new state for future pruning if the verifier hasn't seen
11816 	 * at least 2 jumps and at least 8 instructions.
11817 	 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
11818 	 * In tests that amounts to up to 50% reduction into total verifier
11819 	 * memory consumption and 20% verifier time speedup.
11820 	 */
11821 	if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
11822 	    env->insn_processed - env->prev_insn_processed >= 8)
11823 		add_new_state = true;
11824 
11825 	pprev = explored_state(env, insn_idx);
11826 	sl = *pprev;
11827 
11828 	clean_live_states(env, insn_idx, cur);
11829 
11830 	while (sl) {
11831 		states_cnt++;
11832 		if (sl->state.insn_idx != insn_idx)
11833 			goto next;
11834 
11835 		if (sl->state.branches) {
11836 			struct bpf_func_state *frame = sl->state.frame[sl->state.curframe];
11837 
11838 			if (frame->in_async_callback_fn &&
11839 			    frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) {
11840 				/* Different async_entry_cnt means that the verifier is
11841 				 * processing another entry into async callback.
11842 				 * Seeing the same state is not an indication of infinite
11843 				 * loop or infinite recursion.
11844 				 * But finding the same state doesn't mean that it's safe
11845 				 * to stop processing the current state. The previous state
11846 				 * hasn't yet reached bpf_exit, since state.branches > 0.
11847 				 * Checking in_async_callback_fn alone is not enough either.
11848 				 * Since the verifier still needs to catch infinite loops
11849 				 * inside async callbacks.
11850 				 */
11851 			} else if (states_maybe_looping(&sl->state, cur) &&
11852 				   states_equal(env, &sl->state, cur)) {
11853 				verbose_linfo(env, insn_idx, "; ");
11854 				verbose(env, "infinite loop detected at insn %d\n", insn_idx);
11855 				return -EINVAL;
11856 			}
11857 			/* if the verifier is processing a loop, avoid adding new state
11858 			 * too often, since different loop iterations have distinct
11859 			 * states and may not help future pruning.
11860 			 * This threshold shouldn't be too low to make sure that
11861 			 * a loop with large bound will be rejected quickly.
11862 			 * The most abusive loop will be:
11863 			 * r1 += 1
11864 			 * if r1 < 1000000 goto pc-2
11865 			 * 1M insn_procssed limit / 100 == 10k peak states.
11866 			 * This threshold shouldn't be too high either, since states
11867 			 * at the end of the loop are likely to be useful in pruning.
11868 			 */
11869 			if (env->jmps_processed - env->prev_jmps_processed < 20 &&
11870 			    env->insn_processed - env->prev_insn_processed < 100)
11871 				add_new_state = false;
11872 			goto miss;
11873 		}
11874 		if (states_equal(env, &sl->state, cur)) {
11875 			sl->hit_cnt++;
11876 			/* reached equivalent register/stack state,
11877 			 * prune the search.
11878 			 * Registers read by the continuation are read by us.
11879 			 * If we have any write marks in env->cur_state, they
11880 			 * will prevent corresponding reads in the continuation
11881 			 * from reaching our parent (an explored_state).  Our
11882 			 * own state will get the read marks recorded, but
11883 			 * they'll be immediately forgotten as we're pruning
11884 			 * this state and will pop a new one.
11885 			 */
11886 			err = propagate_liveness(env, &sl->state, cur);
11887 
11888 			/* if previous state reached the exit with precision and
11889 			 * current state is equivalent to it (except precsion marks)
11890 			 * the precision needs to be propagated back in
11891 			 * the current state.
11892 			 */
11893 			err = err ? : push_jmp_history(env, cur);
11894 			err = err ? : propagate_precision(env, &sl->state);
11895 			if (err)
11896 				return err;
11897 			return 1;
11898 		}
11899 miss:
11900 		/* when new state is not going to be added do not increase miss count.
11901 		 * Otherwise several loop iterations will remove the state
11902 		 * recorded earlier. The goal of these heuristics is to have
11903 		 * states from some iterations of the loop (some in the beginning
11904 		 * and some at the end) to help pruning.
11905 		 */
11906 		if (add_new_state)
11907 			sl->miss_cnt++;
11908 		/* heuristic to determine whether this state is beneficial
11909 		 * to keep checking from state equivalence point of view.
11910 		 * Higher numbers increase max_states_per_insn and verification time,
11911 		 * but do not meaningfully decrease insn_processed.
11912 		 */
11913 		if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
11914 			/* the state is unlikely to be useful. Remove it to
11915 			 * speed up verification
11916 			 */
11917 			*pprev = sl->next;
11918 			if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
11919 				u32 br = sl->state.branches;
11920 
11921 				WARN_ONCE(br,
11922 					  "BUG live_done but branches_to_explore %d\n",
11923 					  br);
11924 				free_verifier_state(&sl->state, false);
11925 				kfree(sl);
11926 				env->peak_states--;
11927 			} else {
11928 				/* cannot free this state, since parentage chain may
11929 				 * walk it later. Add it for free_list instead to
11930 				 * be freed at the end of verification
11931 				 */
11932 				sl->next = env->free_list;
11933 				env->free_list = sl;
11934 			}
11935 			sl = *pprev;
11936 			continue;
11937 		}
11938 next:
11939 		pprev = &sl->next;
11940 		sl = *pprev;
11941 	}
11942 
11943 	if (env->max_states_per_insn < states_cnt)
11944 		env->max_states_per_insn = states_cnt;
11945 
11946 	if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
11947 		return push_jmp_history(env, cur);
11948 
11949 	if (!add_new_state)
11950 		return push_jmp_history(env, cur);
11951 
11952 	/* There were no equivalent states, remember the current one.
11953 	 * Technically the current state is not proven to be safe yet,
11954 	 * but it will either reach outer most bpf_exit (which means it's safe)
11955 	 * or it will be rejected. When there are no loops the verifier won't be
11956 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
11957 	 * again on the way to bpf_exit.
11958 	 * When looping the sl->state.branches will be > 0 and this state
11959 	 * will not be considered for equivalence until branches == 0.
11960 	 */
11961 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
11962 	if (!new_sl)
11963 		return -ENOMEM;
11964 	env->total_states++;
11965 	env->peak_states++;
11966 	env->prev_jmps_processed = env->jmps_processed;
11967 	env->prev_insn_processed = env->insn_processed;
11968 
11969 	/* add new state to the head of linked list */
11970 	new = &new_sl->state;
11971 	err = copy_verifier_state(new, cur);
11972 	if (err) {
11973 		free_verifier_state(new, false);
11974 		kfree(new_sl);
11975 		return err;
11976 	}
11977 	new->insn_idx = insn_idx;
11978 	WARN_ONCE(new->branches != 1,
11979 		  "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
11980 
11981 	cur->parent = new;
11982 	cur->first_insn_idx = insn_idx;
11983 	clear_jmp_history(cur);
11984 	new_sl->next = *explored_state(env, insn_idx);
11985 	*explored_state(env, insn_idx) = new_sl;
11986 	/* connect new state to parentage chain. Current frame needs all
11987 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
11988 	 * to the stack implicitly by JITs) so in callers' frames connect just
11989 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
11990 	 * the state of the call instruction (with WRITTEN set), and r0 comes
11991 	 * from callee with its full parentage chain, anyway.
11992 	 */
11993 	/* clear write marks in current state: the writes we did are not writes
11994 	 * our child did, so they don't screen off its reads from us.
11995 	 * (There are no read marks in current state, because reads always mark
11996 	 * their parent and current state never has children yet.  Only
11997 	 * explored_states can get read marks.)
11998 	 */
11999 	for (j = 0; j <= cur->curframe; j++) {
12000 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
12001 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
12002 		for (i = 0; i < BPF_REG_FP; i++)
12003 			cur->frame[j]->regs[i].live = REG_LIVE_NONE;
12004 	}
12005 
12006 	/* all stack frames are accessible from callee, clear them all */
12007 	for (j = 0; j <= cur->curframe; j++) {
12008 		struct bpf_func_state *frame = cur->frame[j];
12009 		struct bpf_func_state *newframe = new->frame[j];
12010 
12011 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
12012 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
12013 			frame->stack[i].spilled_ptr.parent =
12014 						&newframe->stack[i].spilled_ptr;
12015 		}
12016 	}
12017 	return 0;
12018 }
12019 
12020 /* Return true if it's OK to have the same insn return a different type. */
12021 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
12022 {
12023 	switch (base_type(type)) {
12024 	case PTR_TO_CTX:
12025 	case PTR_TO_SOCKET:
12026 	case PTR_TO_SOCK_COMMON:
12027 	case PTR_TO_TCP_SOCK:
12028 	case PTR_TO_XDP_SOCK:
12029 	case PTR_TO_BTF_ID:
12030 		return false;
12031 	default:
12032 		return true;
12033 	}
12034 }
12035 
12036 /* If an instruction was previously used with particular pointer types, then we
12037  * need to be careful to avoid cases such as the below, where it may be ok
12038  * for one branch accessing the pointer, but not ok for the other branch:
12039  *
12040  * R1 = sock_ptr
12041  * goto X;
12042  * ...
12043  * R1 = some_other_valid_ptr;
12044  * goto X;
12045  * ...
12046  * R2 = *(u32 *)(R1 + 0);
12047  */
12048 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
12049 {
12050 	return src != prev && (!reg_type_mismatch_ok(src) ||
12051 			       !reg_type_mismatch_ok(prev));
12052 }
12053 
12054 static int do_check(struct bpf_verifier_env *env)
12055 {
12056 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
12057 	struct bpf_verifier_state *state = env->cur_state;
12058 	struct bpf_insn *insns = env->prog->insnsi;
12059 	struct bpf_reg_state *regs;
12060 	int insn_cnt = env->prog->len;
12061 	bool do_print_state = false;
12062 	int prev_insn_idx = -1;
12063 
12064 	for (;;) {
12065 		struct bpf_insn *insn;
12066 		u8 class;
12067 		int err;
12068 
12069 		env->prev_insn_idx = prev_insn_idx;
12070 		if (env->insn_idx >= insn_cnt) {
12071 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
12072 				env->insn_idx, insn_cnt);
12073 			return -EFAULT;
12074 		}
12075 
12076 		insn = &insns[env->insn_idx];
12077 		class = BPF_CLASS(insn->code);
12078 
12079 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
12080 			verbose(env,
12081 				"BPF program is too large. Processed %d insn\n",
12082 				env->insn_processed);
12083 			return -E2BIG;
12084 		}
12085 
12086 		err = is_state_visited(env, env->insn_idx);
12087 		if (err < 0)
12088 			return err;
12089 		if (err == 1) {
12090 			/* found equivalent state, can prune the search */
12091 			if (env->log.level & BPF_LOG_LEVEL) {
12092 				if (do_print_state)
12093 					verbose(env, "\nfrom %d to %d%s: safe\n",
12094 						env->prev_insn_idx, env->insn_idx,
12095 						env->cur_state->speculative ?
12096 						" (speculative execution)" : "");
12097 				else
12098 					verbose(env, "%d: safe\n", env->insn_idx);
12099 			}
12100 			goto process_bpf_exit;
12101 		}
12102 
12103 		if (signal_pending(current))
12104 			return -EAGAIN;
12105 
12106 		if (need_resched())
12107 			cond_resched();
12108 
12109 		if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) {
12110 			verbose(env, "\nfrom %d to %d%s:",
12111 				env->prev_insn_idx, env->insn_idx,
12112 				env->cur_state->speculative ?
12113 				" (speculative execution)" : "");
12114 			print_verifier_state(env, state->frame[state->curframe], true);
12115 			do_print_state = false;
12116 		}
12117 
12118 		if (env->log.level & BPF_LOG_LEVEL) {
12119 			const struct bpf_insn_cbs cbs = {
12120 				.cb_call	= disasm_kfunc_name,
12121 				.cb_print	= verbose,
12122 				.private_data	= env,
12123 			};
12124 
12125 			if (verifier_state_scratched(env))
12126 				print_insn_state(env, state->frame[state->curframe]);
12127 
12128 			verbose_linfo(env, env->insn_idx, "; ");
12129 			env->prev_log_len = env->log.len_used;
12130 			verbose(env, "%d: ", env->insn_idx);
12131 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
12132 			env->prev_insn_print_len = env->log.len_used - env->prev_log_len;
12133 			env->prev_log_len = env->log.len_used;
12134 		}
12135 
12136 		if (bpf_prog_is_dev_bound(env->prog->aux)) {
12137 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
12138 							   env->prev_insn_idx);
12139 			if (err)
12140 				return err;
12141 		}
12142 
12143 		regs = cur_regs(env);
12144 		sanitize_mark_insn_seen(env);
12145 		prev_insn_idx = env->insn_idx;
12146 
12147 		if (class == BPF_ALU || class == BPF_ALU64) {
12148 			err = check_alu_op(env, insn);
12149 			if (err)
12150 				return err;
12151 
12152 		} else if (class == BPF_LDX) {
12153 			enum bpf_reg_type *prev_src_type, src_reg_type;
12154 
12155 			/* check for reserved fields is already done */
12156 
12157 			/* check src operand */
12158 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
12159 			if (err)
12160 				return err;
12161 
12162 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
12163 			if (err)
12164 				return err;
12165 
12166 			src_reg_type = regs[insn->src_reg].type;
12167 
12168 			/* check that memory (src_reg + off) is readable,
12169 			 * the state of dst_reg will be updated by this func
12170 			 */
12171 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
12172 					       insn->off, BPF_SIZE(insn->code),
12173 					       BPF_READ, insn->dst_reg, false);
12174 			if (err)
12175 				return err;
12176 
12177 			prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
12178 
12179 			if (*prev_src_type == NOT_INIT) {
12180 				/* saw a valid insn
12181 				 * dst_reg = *(u32 *)(src_reg + off)
12182 				 * save type to validate intersecting paths
12183 				 */
12184 				*prev_src_type = src_reg_type;
12185 
12186 			} else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
12187 				/* ABuser program is trying to use the same insn
12188 				 * dst_reg = *(u32*) (src_reg + off)
12189 				 * with different pointer types:
12190 				 * src_reg == ctx in one branch and
12191 				 * src_reg == stack|map in some other branch.
12192 				 * Reject it.
12193 				 */
12194 				verbose(env, "same insn cannot be used with different pointers\n");
12195 				return -EINVAL;
12196 			}
12197 
12198 		} else if (class == BPF_STX) {
12199 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
12200 
12201 			if (BPF_MODE(insn->code) == BPF_ATOMIC) {
12202 				err = check_atomic(env, env->insn_idx, insn);
12203 				if (err)
12204 					return err;
12205 				env->insn_idx++;
12206 				continue;
12207 			}
12208 
12209 			if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
12210 				verbose(env, "BPF_STX uses reserved fields\n");
12211 				return -EINVAL;
12212 			}
12213 
12214 			/* check src1 operand */
12215 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
12216 			if (err)
12217 				return err;
12218 			/* check src2 operand */
12219 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
12220 			if (err)
12221 				return err;
12222 
12223 			dst_reg_type = regs[insn->dst_reg].type;
12224 
12225 			/* check that memory (dst_reg + off) is writeable */
12226 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
12227 					       insn->off, BPF_SIZE(insn->code),
12228 					       BPF_WRITE, insn->src_reg, false);
12229 			if (err)
12230 				return err;
12231 
12232 			prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
12233 
12234 			if (*prev_dst_type == NOT_INIT) {
12235 				*prev_dst_type = dst_reg_type;
12236 			} else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
12237 				verbose(env, "same insn cannot be used with different pointers\n");
12238 				return -EINVAL;
12239 			}
12240 
12241 		} else if (class == BPF_ST) {
12242 			if (BPF_MODE(insn->code) != BPF_MEM ||
12243 			    insn->src_reg != BPF_REG_0) {
12244 				verbose(env, "BPF_ST uses reserved fields\n");
12245 				return -EINVAL;
12246 			}
12247 			/* check src operand */
12248 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
12249 			if (err)
12250 				return err;
12251 
12252 			if (is_ctx_reg(env, insn->dst_reg)) {
12253 				verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
12254 					insn->dst_reg,
12255 					reg_type_str(env, reg_state(env, insn->dst_reg)->type));
12256 				return -EACCES;
12257 			}
12258 
12259 			/* check that memory (dst_reg + off) is writeable */
12260 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
12261 					       insn->off, BPF_SIZE(insn->code),
12262 					       BPF_WRITE, -1, false);
12263 			if (err)
12264 				return err;
12265 
12266 		} else if (class == BPF_JMP || class == BPF_JMP32) {
12267 			u8 opcode = BPF_OP(insn->code);
12268 
12269 			env->jmps_processed++;
12270 			if (opcode == BPF_CALL) {
12271 				if (BPF_SRC(insn->code) != BPF_K ||
12272 				    (insn->src_reg != BPF_PSEUDO_KFUNC_CALL
12273 				     && insn->off != 0) ||
12274 				    (insn->src_reg != BPF_REG_0 &&
12275 				     insn->src_reg != BPF_PSEUDO_CALL &&
12276 				     insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
12277 				    insn->dst_reg != BPF_REG_0 ||
12278 				    class == BPF_JMP32) {
12279 					verbose(env, "BPF_CALL uses reserved fields\n");
12280 					return -EINVAL;
12281 				}
12282 
12283 				if (env->cur_state->active_spin_lock &&
12284 				    (insn->src_reg == BPF_PSEUDO_CALL ||
12285 				     insn->imm != BPF_FUNC_spin_unlock)) {
12286 					verbose(env, "function calls are not allowed while holding a lock\n");
12287 					return -EINVAL;
12288 				}
12289 				if (insn->src_reg == BPF_PSEUDO_CALL)
12290 					err = check_func_call(env, insn, &env->insn_idx);
12291 				else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL)
12292 					err = check_kfunc_call(env, insn, &env->insn_idx);
12293 				else
12294 					err = check_helper_call(env, insn, &env->insn_idx);
12295 				if (err)
12296 					return err;
12297 			} else if (opcode == BPF_JA) {
12298 				if (BPF_SRC(insn->code) != BPF_K ||
12299 				    insn->imm != 0 ||
12300 				    insn->src_reg != BPF_REG_0 ||
12301 				    insn->dst_reg != BPF_REG_0 ||
12302 				    class == BPF_JMP32) {
12303 					verbose(env, "BPF_JA uses reserved fields\n");
12304 					return -EINVAL;
12305 				}
12306 
12307 				env->insn_idx += insn->off + 1;
12308 				continue;
12309 
12310 			} else if (opcode == BPF_EXIT) {
12311 				if (BPF_SRC(insn->code) != BPF_K ||
12312 				    insn->imm != 0 ||
12313 				    insn->src_reg != BPF_REG_0 ||
12314 				    insn->dst_reg != BPF_REG_0 ||
12315 				    class == BPF_JMP32) {
12316 					verbose(env, "BPF_EXIT uses reserved fields\n");
12317 					return -EINVAL;
12318 				}
12319 
12320 				if (env->cur_state->active_spin_lock) {
12321 					verbose(env, "bpf_spin_unlock is missing\n");
12322 					return -EINVAL;
12323 				}
12324 
12325 				if (state->curframe) {
12326 					/* exit from nested function */
12327 					err = prepare_func_exit(env, &env->insn_idx);
12328 					if (err)
12329 						return err;
12330 					do_print_state = true;
12331 					continue;
12332 				}
12333 
12334 				err = check_reference_leak(env);
12335 				if (err)
12336 					return err;
12337 
12338 				err = check_return_code(env);
12339 				if (err)
12340 					return err;
12341 process_bpf_exit:
12342 				mark_verifier_state_scratched(env);
12343 				update_branch_counts(env, env->cur_state);
12344 				err = pop_stack(env, &prev_insn_idx,
12345 						&env->insn_idx, pop_log);
12346 				if (err < 0) {
12347 					if (err != -ENOENT)
12348 						return err;
12349 					break;
12350 				} else {
12351 					do_print_state = true;
12352 					continue;
12353 				}
12354 			} else {
12355 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
12356 				if (err)
12357 					return err;
12358 			}
12359 		} else if (class == BPF_LD) {
12360 			u8 mode = BPF_MODE(insn->code);
12361 
12362 			if (mode == BPF_ABS || mode == BPF_IND) {
12363 				err = check_ld_abs(env, insn);
12364 				if (err)
12365 					return err;
12366 
12367 			} else if (mode == BPF_IMM) {
12368 				err = check_ld_imm(env, insn);
12369 				if (err)
12370 					return err;
12371 
12372 				env->insn_idx++;
12373 				sanitize_mark_insn_seen(env);
12374 			} else {
12375 				verbose(env, "invalid BPF_LD mode\n");
12376 				return -EINVAL;
12377 			}
12378 		} else {
12379 			verbose(env, "unknown insn class %d\n", class);
12380 			return -EINVAL;
12381 		}
12382 
12383 		env->insn_idx++;
12384 	}
12385 
12386 	return 0;
12387 }
12388 
12389 static int find_btf_percpu_datasec(struct btf *btf)
12390 {
12391 	const struct btf_type *t;
12392 	const char *tname;
12393 	int i, n;
12394 
12395 	/*
12396 	 * Both vmlinux and module each have their own ".data..percpu"
12397 	 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
12398 	 * types to look at only module's own BTF types.
12399 	 */
12400 	n = btf_nr_types(btf);
12401 	if (btf_is_module(btf))
12402 		i = btf_nr_types(btf_vmlinux);
12403 	else
12404 		i = 1;
12405 
12406 	for(; i < n; i++) {
12407 		t = btf_type_by_id(btf, i);
12408 		if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
12409 			continue;
12410 
12411 		tname = btf_name_by_offset(btf, t->name_off);
12412 		if (!strcmp(tname, ".data..percpu"))
12413 			return i;
12414 	}
12415 
12416 	return -ENOENT;
12417 }
12418 
12419 /* replace pseudo btf_id with kernel symbol address */
12420 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
12421 			       struct bpf_insn *insn,
12422 			       struct bpf_insn_aux_data *aux)
12423 {
12424 	const struct btf_var_secinfo *vsi;
12425 	const struct btf_type *datasec;
12426 	struct btf_mod_pair *btf_mod;
12427 	const struct btf_type *t;
12428 	const char *sym_name;
12429 	bool percpu = false;
12430 	u32 type, id = insn->imm;
12431 	struct btf *btf;
12432 	s32 datasec_id;
12433 	u64 addr;
12434 	int i, btf_fd, err;
12435 
12436 	btf_fd = insn[1].imm;
12437 	if (btf_fd) {
12438 		btf = btf_get_by_fd(btf_fd);
12439 		if (IS_ERR(btf)) {
12440 			verbose(env, "invalid module BTF object FD specified.\n");
12441 			return -EINVAL;
12442 		}
12443 	} else {
12444 		if (!btf_vmlinux) {
12445 			verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
12446 			return -EINVAL;
12447 		}
12448 		btf = btf_vmlinux;
12449 		btf_get(btf);
12450 	}
12451 
12452 	t = btf_type_by_id(btf, id);
12453 	if (!t) {
12454 		verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
12455 		err = -ENOENT;
12456 		goto err_put;
12457 	}
12458 
12459 	if (!btf_type_is_var(t)) {
12460 		verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id);
12461 		err = -EINVAL;
12462 		goto err_put;
12463 	}
12464 
12465 	sym_name = btf_name_by_offset(btf, t->name_off);
12466 	addr = kallsyms_lookup_name(sym_name);
12467 	if (!addr) {
12468 		verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
12469 			sym_name);
12470 		err = -ENOENT;
12471 		goto err_put;
12472 	}
12473 
12474 	datasec_id = find_btf_percpu_datasec(btf);
12475 	if (datasec_id > 0) {
12476 		datasec = btf_type_by_id(btf, datasec_id);
12477 		for_each_vsi(i, datasec, vsi) {
12478 			if (vsi->type == id) {
12479 				percpu = true;
12480 				break;
12481 			}
12482 		}
12483 	}
12484 
12485 	insn[0].imm = (u32)addr;
12486 	insn[1].imm = addr >> 32;
12487 
12488 	type = t->type;
12489 	t = btf_type_skip_modifiers(btf, type, NULL);
12490 	if (percpu) {
12491 		aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU;
12492 		aux->btf_var.btf = btf;
12493 		aux->btf_var.btf_id = type;
12494 	} else if (!btf_type_is_struct(t)) {
12495 		const struct btf_type *ret;
12496 		const char *tname;
12497 		u32 tsize;
12498 
12499 		/* resolve the type size of ksym. */
12500 		ret = btf_resolve_size(btf, t, &tsize);
12501 		if (IS_ERR(ret)) {
12502 			tname = btf_name_by_offset(btf, t->name_off);
12503 			verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
12504 				tname, PTR_ERR(ret));
12505 			err = -EINVAL;
12506 			goto err_put;
12507 		}
12508 		aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
12509 		aux->btf_var.mem_size = tsize;
12510 	} else {
12511 		aux->btf_var.reg_type = PTR_TO_BTF_ID;
12512 		aux->btf_var.btf = btf;
12513 		aux->btf_var.btf_id = type;
12514 	}
12515 
12516 	/* check whether we recorded this BTF (and maybe module) already */
12517 	for (i = 0; i < env->used_btf_cnt; i++) {
12518 		if (env->used_btfs[i].btf == btf) {
12519 			btf_put(btf);
12520 			return 0;
12521 		}
12522 	}
12523 
12524 	if (env->used_btf_cnt >= MAX_USED_BTFS) {
12525 		err = -E2BIG;
12526 		goto err_put;
12527 	}
12528 
12529 	btf_mod = &env->used_btfs[env->used_btf_cnt];
12530 	btf_mod->btf = btf;
12531 	btf_mod->module = NULL;
12532 
12533 	/* if we reference variables from kernel module, bump its refcount */
12534 	if (btf_is_module(btf)) {
12535 		btf_mod->module = btf_try_get_module(btf);
12536 		if (!btf_mod->module) {
12537 			err = -ENXIO;
12538 			goto err_put;
12539 		}
12540 	}
12541 
12542 	env->used_btf_cnt++;
12543 
12544 	return 0;
12545 err_put:
12546 	btf_put(btf);
12547 	return err;
12548 }
12549 
12550 static int check_map_prealloc(struct bpf_map *map)
12551 {
12552 	return (map->map_type != BPF_MAP_TYPE_HASH &&
12553 		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
12554 		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
12555 		!(map->map_flags & BPF_F_NO_PREALLOC);
12556 }
12557 
12558 static bool is_tracing_prog_type(enum bpf_prog_type type)
12559 {
12560 	switch (type) {
12561 	case BPF_PROG_TYPE_KPROBE:
12562 	case BPF_PROG_TYPE_TRACEPOINT:
12563 	case BPF_PROG_TYPE_PERF_EVENT:
12564 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
12565 		return true;
12566 	default:
12567 		return false;
12568 	}
12569 }
12570 
12571 static bool is_preallocated_map(struct bpf_map *map)
12572 {
12573 	if (!check_map_prealloc(map))
12574 		return false;
12575 	if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta))
12576 		return false;
12577 	return true;
12578 }
12579 
12580 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
12581 					struct bpf_map *map,
12582 					struct bpf_prog *prog)
12583 
12584 {
12585 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
12586 	/*
12587 	 * Validate that trace type programs use preallocated hash maps.
12588 	 *
12589 	 * For programs attached to PERF events this is mandatory as the
12590 	 * perf NMI can hit any arbitrary code sequence.
12591 	 *
12592 	 * All other trace types using preallocated hash maps are unsafe as
12593 	 * well because tracepoint or kprobes can be inside locked regions
12594 	 * of the memory allocator or at a place where a recursion into the
12595 	 * memory allocator would see inconsistent state.
12596 	 *
12597 	 * On RT enabled kernels run-time allocation of all trace type
12598 	 * programs is strictly prohibited due to lock type constraints. On
12599 	 * !RT kernels it is allowed for backwards compatibility reasons for
12600 	 * now, but warnings are emitted so developers are made aware of
12601 	 * the unsafety and can fix their programs before this is enforced.
12602 	 */
12603 	if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) {
12604 		if (prog_type == BPF_PROG_TYPE_PERF_EVENT) {
12605 			verbose(env, "perf_event programs can only use preallocated hash map\n");
12606 			return -EINVAL;
12607 		}
12608 		if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
12609 			verbose(env, "trace type programs can only use preallocated hash map\n");
12610 			return -EINVAL;
12611 		}
12612 		WARN_ONCE(1, "trace type BPF program uses run-time allocation\n");
12613 		verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n");
12614 	}
12615 
12616 	if (map_value_has_spin_lock(map)) {
12617 		if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
12618 			verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
12619 			return -EINVAL;
12620 		}
12621 
12622 		if (is_tracing_prog_type(prog_type)) {
12623 			verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
12624 			return -EINVAL;
12625 		}
12626 
12627 		if (prog->aux->sleepable) {
12628 			verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n");
12629 			return -EINVAL;
12630 		}
12631 	}
12632 
12633 	if (map_value_has_timer(map)) {
12634 		if (is_tracing_prog_type(prog_type)) {
12635 			verbose(env, "tracing progs cannot use bpf_timer yet\n");
12636 			return -EINVAL;
12637 		}
12638 	}
12639 
12640 	if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
12641 	    !bpf_offload_prog_map_match(prog, map)) {
12642 		verbose(env, "offload device mismatch between prog and map\n");
12643 		return -EINVAL;
12644 	}
12645 
12646 	if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
12647 		verbose(env, "bpf_struct_ops map cannot be used in prog\n");
12648 		return -EINVAL;
12649 	}
12650 
12651 	if (prog->aux->sleepable)
12652 		switch (map->map_type) {
12653 		case BPF_MAP_TYPE_HASH:
12654 		case BPF_MAP_TYPE_LRU_HASH:
12655 		case BPF_MAP_TYPE_ARRAY:
12656 		case BPF_MAP_TYPE_PERCPU_HASH:
12657 		case BPF_MAP_TYPE_PERCPU_ARRAY:
12658 		case BPF_MAP_TYPE_LRU_PERCPU_HASH:
12659 		case BPF_MAP_TYPE_ARRAY_OF_MAPS:
12660 		case BPF_MAP_TYPE_HASH_OF_MAPS:
12661 			if (!is_preallocated_map(map)) {
12662 				verbose(env,
12663 					"Sleepable programs can only use preallocated maps\n");
12664 				return -EINVAL;
12665 			}
12666 			break;
12667 		case BPF_MAP_TYPE_RINGBUF:
12668 		case BPF_MAP_TYPE_INODE_STORAGE:
12669 		case BPF_MAP_TYPE_SK_STORAGE:
12670 		case BPF_MAP_TYPE_TASK_STORAGE:
12671 			break;
12672 		default:
12673 			verbose(env,
12674 				"Sleepable programs can only use array, hash, and ringbuf maps\n");
12675 			return -EINVAL;
12676 		}
12677 
12678 	return 0;
12679 }
12680 
12681 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
12682 {
12683 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
12684 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
12685 }
12686 
12687 /* find and rewrite pseudo imm in ld_imm64 instructions:
12688  *
12689  * 1. if it accesses map FD, replace it with actual map pointer.
12690  * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
12691  *
12692  * NOTE: btf_vmlinux is required for converting pseudo btf_id.
12693  */
12694 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
12695 {
12696 	struct bpf_insn *insn = env->prog->insnsi;
12697 	int insn_cnt = env->prog->len;
12698 	int i, j, err;
12699 
12700 	err = bpf_prog_calc_tag(env->prog);
12701 	if (err)
12702 		return err;
12703 
12704 	for (i = 0; i < insn_cnt; i++, insn++) {
12705 		if (BPF_CLASS(insn->code) == BPF_LDX &&
12706 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
12707 			verbose(env, "BPF_LDX uses reserved fields\n");
12708 			return -EINVAL;
12709 		}
12710 
12711 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
12712 			struct bpf_insn_aux_data *aux;
12713 			struct bpf_map *map;
12714 			struct fd f;
12715 			u64 addr;
12716 			u32 fd;
12717 
12718 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
12719 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
12720 			    insn[1].off != 0) {
12721 				verbose(env, "invalid bpf_ld_imm64 insn\n");
12722 				return -EINVAL;
12723 			}
12724 
12725 			if (insn[0].src_reg == 0)
12726 				/* valid generic load 64-bit imm */
12727 				goto next_insn;
12728 
12729 			if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
12730 				aux = &env->insn_aux_data[i];
12731 				err = check_pseudo_btf_id(env, insn, aux);
12732 				if (err)
12733 					return err;
12734 				goto next_insn;
12735 			}
12736 
12737 			if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
12738 				aux = &env->insn_aux_data[i];
12739 				aux->ptr_type = PTR_TO_FUNC;
12740 				goto next_insn;
12741 			}
12742 
12743 			/* In final convert_pseudo_ld_imm64() step, this is
12744 			 * converted into regular 64-bit imm load insn.
12745 			 */
12746 			switch (insn[0].src_reg) {
12747 			case BPF_PSEUDO_MAP_VALUE:
12748 			case BPF_PSEUDO_MAP_IDX_VALUE:
12749 				break;
12750 			case BPF_PSEUDO_MAP_FD:
12751 			case BPF_PSEUDO_MAP_IDX:
12752 				if (insn[1].imm == 0)
12753 					break;
12754 				fallthrough;
12755 			default:
12756 				verbose(env, "unrecognized bpf_ld_imm64 insn\n");
12757 				return -EINVAL;
12758 			}
12759 
12760 			switch (insn[0].src_reg) {
12761 			case BPF_PSEUDO_MAP_IDX_VALUE:
12762 			case BPF_PSEUDO_MAP_IDX:
12763 				if (bpfptr_is_null(env->fd_array)) {
12764 					verbose(env, "fd_idx without fd_array is invalid\n");
12765 					return -EPROTO;
12766 				}
12767 				if (copy_from_bpfptr_offset(&fd, env->fd_array,
12768 							    insn[0].imm * sizeof(fd),
12769 							    sizeof(fd)))
12770 					return -EFAULT;
12771 				break;
12772 			default:
12773 				fd = insn[0].imm;
12774 				break;
12775 			}
12776 
12777 			f = fdget(fd);
12778 			map = __bpf_map_get(f);
12779 			if (IS_ERR(map)) {
12780 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
12781 					insn[0].imm);
12782 				return PTR_ERR(map);
12783 			}
12784 
12785 			err = check_map_prog_compatibility(env, map, env->prog);
12786 			if (err) {
12787 				fdput(f);
12788 				return err;
12789 			}
12790 
12791 			aux = &env->insn_aux_data[i];
12792 			if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
12793 			    insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
12794 				addr = (unsigned long)map;
12795 			} else {
12796 				u32 off = insn[1].imm;
12797 
12798 				if (off >= BPF_MAX_VAR_OFF) {
12799 					verbose(env, "direct value offset of %u is not allowed\n", off);
12800 					fdput(f);
12801 					return -EINVAL;
12802 				}
12803 
12804 				if (!map->ops->map_direct_value_addr) {
12805 					verbose(env, "no direct value access support for this map type\n");
12806 					fdput(f);
12807 					return -EINVAL;
12808 				}
12809 
12810 				err = map->ops->map_direct_value_addr(map, &addr, off);
12811 				if (err) {
12812 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
12813 						map->value_size, off);
12814 					fdput(f);
12815 					return err;
12816 				}
12817 
12818 				aux->map_off = off;
12819 				addr += off;
12820 			}
12821 
12822 			insn[0].imm = (u32)addr;
12823 			insn[1].imm = addr >> 32;
12824 
12825 			/* check whether we recorded this map already */
12826 			for (j = 0; j < env->used_map_cnt; j++) {
12827 				if (env->used_maps[j] == map) {
12828 					aux->map_index = j;
12829 					fdput(f);
12830 					goto next_insn;
12831 				}
12832 			}
12833 
12834 			if (env->used_map_cnt >= MAX_USED_MAPS) {
12835 				fdput(f);
12836 				return -E2BIG;
12837 			}
12838 
12839 			/* hold the map. If the program is rejected by verifier,
12840 			 * the map will be released by release_maps() or it
12841 			 * will be used by the valid program until it's unloaded
12842 			 * and all maps are released in free_used_maps()
12843 			 */
12844 			bpf_map_inc(map);
12845 
12846 			aux->map_index = env->used_map_cnt;
12847 			env->used_maps[env->used_map_cnt++] = map;
12848 
12849 			if (bpf_map_is_cgroup_storage(map) &&
12850 			    bpf_cgroup_storage_assign(env->prog->aux, map)) {
12851 				verbose(env, "only one cgroup storage of each type is allowed\n");
12852 				fdput(f);
12853 				return -EBUSY;
12854 			}
12855 
12856 			fdput(f);
12857 next_insn:
12858 			insn++;
12859 			i++;
12860 			continue;
12861 		}
12862 
12863 		/* Basic sanity check before we invest more work here. */
12864 		if (!bpf_opcode_in_insntable(insn->code)) {
12865 			verbose(env, "unknown opcode %02x\n", insn->code);
12866 			return -EINVAL;
12867 		}
12868 	}
12869 
12870 	/* now all pseudo BPF_LD_IMM64 instructions load valid
12871 	 * 'struct bpf_map *' into a register instead of user map_fd.
12872 	 * These pointers will be used later by verifier to validate map access.
12873 	 */
12874 	return 0;
12875 }
12876 
12877 /* drop refcnt of maps used by the rejected program */
12878 static void release_maps(struct bpf_verifier_env *env)
12879 {
12880 	__bpf_free_used_maps(env->prog->aux, env->used_maps,
12881 			     env->used_map_cnt);
12882 }
12883 
12884 /* drop refcnt of maps used by the rejected program */
12885 static void release_btfs(struct bpf_verifier_env *env)
12886 {
12887 	__bpf_free_used_btfs(env->prog->aux, env->used_btfs,
12888 			     env->used_btf_cnt);
12889 }
12890 
12891 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
12892 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
12893 {
12894 	struct bpf_insn *insn = env->prog->insnsi;
12895 	int insn_cnt = env->prog->len;
12896 	int i;
12897 
12898 	for (i = 0; i < insn_cnt; i++, insn++) {
12899 		if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
12900 			continue;
12901 		if (insn->src_reg == BPF_PSEUDO_FUNC)
12902 			continue;
12903 		insn->src_reg = 0;
12904 	}
12905 }
12906 
12907 /* single env->prog->insni[off] instruction was replaced with the range
12908  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
12909  * [0, off) and [off, end) to new locations, so the patched range stays zero
12910  */
12911 static void adjust_insn_aux_data(struct bpf_verifier_env *env,
12912 				 struct bpf_insn_aux_data *new_data,
12913 				 struct bpf_prog *new_prog, u32 off, u32 cnt)
12914 {
12915 	struct bpf_insn_aux_data *old_data = env->insn_aux_data;
12916 	struct bpf_insn *insn = new_prog->insnsi;
12917 	u32 old_seen = old_data[off].seen;
12918 	u32 prog_len;
12919 	int i;
12920 
12921 	/* aux info at OFF always needs adjustment, no matter fast path
12922 	 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
12923 	 * original insn at old prog.
12924 	 */
12925 	old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
12926 
12927 	if (cnt == 1)
12928 		return;
12929 	prog_len = new_prog->len;
12930 
12931 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
12932 	memcpy(new_data + off + cnt - 1, old_data + off,
12933 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
12934 	for (i = off; i < off + cnt - 1; i++) {
12935 		/* Expand insni[off]'s seen count to the patched range. */
12936 		new_data[i].seen = old_seen;
12937 		new_data[i].zext_dst = insn_has_def32(env, insn + i);
12938 	}
12939 	env->insn_aux_data = new_data;
12940 	vfree(old_data);
12941 }
12942 
12943 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
12944 {
12945 	int i;
12946 
12947 	if (len == 1)
12948 		return;
12949 	/* NOTE: fake 'exit' subprog should be updated as well. */
12950 	for (i = 0; i <= env->subprog_cnt; i++) {
12951 		if (env->subprog_info[i].start <= off)
12952 			continue;
12953 		env->subprog_info[i].start += len - 1;
12954 	}
12955 }
12956 
12957 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
12958 {
12959 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
12960 	int i, sz = prog->aux->size_poke_tab;
12961 	struct bpf_jit_poke_descriptor *desc;
12962 
12963 	for (i = 0; i < sz; i++) {
12964 		desc = &tab[i];
12965 		if (desc->insn_idx <= off)
12966 			continue;
12967 		desc->insn_idx += len - 1;
12968 	}
12969 }
12970 
12971 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
12972 					    const struct bpf_insn *patch, u32 len)
12973 {
12974 	struct bpf_prog *new_prog;
12975 	struct bpf_insn_aux_data *new_data = NULL;
12976 
12977 	if (len > 1) {
12978 		new_data = vzalloc(array_size(env->prog->len + len - 1,
12979 					      sizeof(struct bpf_insn_aux_data)));
12980 		if (!new_data)
12981 			return NULL;
12982 	}
12983 
12984 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
12985 	if (IS_ERR(new_prog)) {
12986 		if (PTR_ERR(new_prog) == -ERANGE)
12987 			verbose(env,
12988 				"insn %d cannot be patched due to 16-bit range\n",
12989 				env->insn_aux_data[off].orig_idx);
12990 		vfree(new_data);
12991 		return NULL;
12992 	}
12993 	adjust_insn_aux_data(env, new_data, new_prog, off, len);
12994 	adjust_subprog_starts(env, off, len);
12995 	adjust_poke_descs(new_prog, off, len);
12996 	return new_prog;
12997 }
12998 
12999 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
13000 					      u32 off, u32 cnt)
13001 {
13002 	int i, j;
13003 
13004 	/* find first prog starting at or after off (first to remove) */
13005 	for (i = 0; i < env->subprog_cnt; i++)
13006 		if (env->subprog_info[i].start >= off)
13007 			break;
13008 	/* find first prog starting at or after off + cnt (first to stay) */
13009 	for (j = i; j < env->subprog_cnt; j++)
13010 		if (env->subprog_info[j].start >= off + cnt)
13011 			break;
13012 	/* if j doesn't start exactly at off + cnt, we are just removing
13013 	 * the front of previous prog
13014 	 */
13015 	if (env->subprog_info[j].start != off + cnt)
13016 		j--;
13017 
13018 	if (j > i) {
13019 		struct bpf_prog_aux *aux = env->prog->aux;
13020 		int move;
13021 
13022 		/* move fake 'exit' subprog as well */
13023 		move = env->subprog_cnt + 1 - j;
13024 
13025 		memmove(env->subprog_info + i,
13026 			env->subprog_info + j,
13027 			sizeof(*env->subprog_info) * move);
13028 		env->subprog_cnt -= j - i;
13029 
13030 		/* remove func_info */
13031 		if (aux->func_info) {
13032 			move = aux->func_info_cnt - j;
13033 
13034 			memmove(aux->func_info + i,
13035 				aux->func_info + j,
13036 				sizeof(*aux->func_info) * move);
13037 			aux->func_info_cnt -= j - i;
13038 			/* func_info->insn_off is set after all code rewrites,
13039 			 * in adjust_btf_func() - no need to adjust
13040 			 */
13041 		}
13042 	} else {
13043 		/* convert i from "first prog to remove" to "first to adjust" */
13044 		if (env->subprog_info[i].start == off)
13045 			i++;
13046 	}
13047 
13048 	/* update fake 'exit' subprog as well */
13049 	for (; i <= env->subprog_cnt; i++)
13050 		env->subprog_info[i].start -= cnt;
13051 
13052 	return 0;
13053 }
13054 
13055 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
13056 				      u32 cnt)
13057 {
13058 	struct bpf_prog *prog = env->prog;
13059 	u32 i, l_off, l_cnt, nr_linfo;
13060 	struct bpf_line_info *linfo;
13061 
13062 	nr_linfo = prog->aux->nr_linfo;
13063 	if (!nr_linfo)
13064 		return 0;
13065 
13066 	linfo = prog->aux->linfo;
13067 
13068 	/* find first line info to remove, count lines to be removed */
13069 	for (i = 0; i < nr_linfo; i++)
13070 		if (linfo[i].insn_off >= off)
13071 			break;
13072 
13073 	l_off = i;
13074 	l_cnt = 0;
13075 	for (; i < nr_linfo; i++)
13076 		if (linfo[i].insn_off < off + cnt)
13077 			l_cnt++;
13078 		else
13079 			break;
13080 
13081 	/* First live insn doesn't match first live linfo, it needs to "inherit"
13082 	 * last removed linfo.  prog is already modified, so prog->len == off
13083 	 * means no live instructions after (tail of the program was removed).
13084 	 */
13085 	if (prog->len != off && l_cnt &&
13086 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
13087 		l_cnt--;
13088 		linfo[--i].insn_off = off + cnt;
13089 	}
13090 
13091 	/* remove the line info which refer to the removed instructions */
13092 	if (l_cnt) {
13093 		memmove(linfo + l_off, linfo + i,
13094 			sizeof(*linfo) * (nr_linfo - i));
13095 
13096 		prog->aux->nr_linfo -= l_cnt;
13097 		nr_linfo = prog->aux->nr_linfo;
13098 	}
13099 
13100 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
13101 	for (i = l_off; i < nr_linfo; i++)
13102 		linfo[i].insn_off -= cnt;
13103 
13104 	/* fix up all subprogs (incl. 'exit') which start >= off */
13105 	for (i = 0; i <= env->subprog_cnt; i++)
13106 		if (env->subprog_info[i].linfo_idx > l_off) {
13107 			/* program may have started in the removed region but
13108 			 * may not be fully removed
13109 			 */
13110 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
13111 				env->subprog_info[i].linfo_idx -= l_cnt;
13112 			else
13113 				env->subprog_info[i].linfo_idx = l_off;
13114 		}
13115 
13116 	return 0;
13117 }
13118 
13119 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
13120 {
13121 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
13122 	unsigned int orig_prog_len = env->prog->len;
13123 	int err;
13124 
13125 	if (bpf_prog_is_dev_bound(env->prog->aux))
13126 		bpf_prog_offload_remove_insns(env, off, cnt);
13127 
13128 	err = bpf_remove_insns(env->prog, off, cnt);
13129 	if (err)
13130 		return err;
13131 
13132 	err = adjust_subprog_starts_after_remove(env, off, cnt);
13133 	if (err)
13134 		return err;
13135 
13136 	err = bpf_adj_linfo_after_remove(env, off, cnt);
13137 	if (err)
13138 		return err;
13139 
13140 	memmove(aux_data + off,	aux_data + off + cnt,
13141 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
13142 
13143 	return 0;
13144 }
13145 
13146 /* The verifier does more data flow analysis than llvm and will not
13147  * explore branches that are dead at run time. Malicious programs can
13148  * have dead code too. Therefore replace all dead at-run-time code
13149  * with 'ja -1'.
13150  *
13151  * Just nops are not optimal, e.g. if they would sit at the end of the
13152  * program and through another bug we would manage to jump there, then
13153  * we'd execute beyond program memory otherwise. Returning exception
13154  * code also wouldn't work since we can have subprogs where the dead
13155  * code could be located.
13156  */
13157 static void sanitize_dead_code(struct bpf_verifier_env *env)
13158 {
13159 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
13160 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
13161 	struct bpf_insn *insn = env->prog->insnsi;
13162 	const int insn_cnt = env->prog->len;
13163 	int i;
13164 
13165 	for (i = 0; i < insn_cnt; i++) {
13166 		if (aux_data[i].seen)
13167 			continue;
13168 		memcpy(insn + i, &trap, sizeof(trap));
13169 		aux_data[i].zext_dst = false;
13170 	}
13171 }
13172 
13173 static bool insn_is_cond_jump(u8 code)
13174 {
13175 	u8 op;
13176 
13177 	if (BPF_CLASS(code) == BPF_JMP32)
13178 		return true;
13179 
13180 	if (BPF_CLASS(code) != BPF_JMP)
13181 		return false;
13182 
13183 	op = BPF_OP(code);
13184 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
13185 }
13186 
13187 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
13188 {
13189 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
13190 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
13191 	struct bpf_insn *insn = env->prog->insnsi;
13192 	const int insn_cnt = env->prog->len;
13193 	int i;
13194 
13195 	for (i = 0; i < insn_cnt; i++, insn++) {
13196 		if (!insn_is_cond_jump(insn->code))
13197 			continue;
13198 
13199 		if (!aux_data[i + 1].seen)
13200 			ja.off = insn->off;
13201 		else if (!aux_data[i + 1 + insn->off].seen)
13202 			ja.off = 0;
13203 		else
13204 			continue;
13205 
13206 		if (bpf_prog_is_dev_bound(env->prog->aux))
13207 			bpf_prog_offload_replace_insn(env, i, &ja);
13208 
13209 		memcpy(insn, &ja, sizeof(ja));
13210 	}
13211 }
13212 
13213 static int opt_remove_dead_code(struct bpf_verifier_env *env)
13214 {
13215 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
13216 	int insn_cnt = env->prog->len;
13217 	int i, err;
13218 
13219 	for (i = 0; i < insn_cnt; i++) {
13220 		int j;
13221 
13222 		j = 0;
13223 		while (i + j < insn_cnt && !aux_data[i + j].seen)
13224 			j++;
13225 		if (!j)
13226 			continue;
13227 
13228 		err = verifier_remove_insns(env, i, j);
13229 		if (err)
13230 			return err;
13231 		insn_cnt = env->prog->len;
13232 	}
13233 
13234 	return 0;
13235 }
13236 
13237 static int opt_remove_nops(struct bpf_verifier_env *env)
13238 {
13239 	const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
13240 	struct bpf_insn *insn = env->prog->insnsi;
13241 	int insn_cnt = env->prog->len;
13242 	int i, err;
13243 
13244 	for (i = 0; i < insn_cnt; i++) {
13245 		if (memcmp(&insn[i], &ja, sizeof(ja)))
13246 			continue;
13247 
13248 		err = verifier_remove_insns(env, i, 1);
13249 		if (err)
13250 			return err;
13251 		insn_cnt--;
13252 		i--;
13253 	}
13254 
13255 	return 0;
13256 }
13257 
13258 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
13259 					 const union bpf_attr *attr)
13260 {
13261 	struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
13262 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
13263 	int i, patch_len, delta = 0, len = env->prog->len;
13264 	struct bpf_insn *insns = env->prog->insnsi;
13265 	struct bpf_prog *new_prog;
13266 	bool rnd_hi32;
13267 
13268 	rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
13269 	zext_patch[1] = BPF_ZEXT_REG(0);
13270 	rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
13271 	rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
13272 	rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
13273 	for (i = 0; i < len; i++) {
13274 		int adj_idx = i + delta;
13275 		struct bpf_insn insn;
13276 		int load_reg;
13277 
13278 		insn = insns[adj_idx];
13279 		load_reg = insn_def_regno(&insn);
13280 		if (!aux[adj_idx].zext_dst) {
13281 			u8 code, class;
13282 			u32 imm_rnd;
13283 
13284 			if (!rnd_hi32)
13285 				continue;
13286 
13287 			code = insn.code;
13288 			class = BPF_CLASS(code);
13289 			if (load_reg == -1)
13290 				continue;
13291 
13292 			/* NOTE: arg "reg" (the fourth one) is only used for
13293 			 *       BPF_STX + SRC_OP, so it is safe to pass NULL
13294 			 *       here.
13295 			 */
13296 			if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
13297 				if (class == BPF_LD &&
13298 				    BPF_MODE(code) == BPF_IMM)
13299 					i++;
13300 				continue;
13301 			}
13302 
13303 			/* ctx load could be transformed into wider load. */
13304 			if (class == BPF_LDX &&
13305 			    aux[adj_idx].ptr_type == PTR_TO_CTX)
13306 				continue;
13307 
13308 			imm_rnd = get_random_int();
13309 			rnd_hi32_patch[0] = insn;
13310 			rnd_hi32_patch[1].imm = imm_rnd;
13311 			rnd_hi32_patch[3].dst_reg = load_reg;
13312 			patch = rnd_hi32_patch;
13313 			patch_len = 4;
13314 			goto apply_patch_buffer;
13315 		}
13316 
13317 		/* Add in an zero-extend instruction if a) the JIT has requested
13318 		 * it or b) it's a CMPXCHG.
13319 		 *
13320 		 * The latter is because: BPF_CMPXCHG always loads a value into
13321 		 * R0, therefore always zero-extends. However some archs'
13322 		 * equivalent instruction only does this load when the
13323 		 * comparison is successful. This detail of CMPXCHG is
13324 		 * orthogonal to the general zero-extension behaviour of the
13325 		 * CPU, so it's treated independently of bpf_jit_needs_zext.
13326 		 */
13327 		if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
13328 			continue;
13329 
13330 		if (WARN_ON(load_reg == -1)) {
13331 			verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
13332 			return -EFAULT;
13333 		}
13334 
13335 		zext_patch[0] = insn;
13336 		zext_patch[1].dst_reg = load_reg;
13337 		zext_patch[1].src_reg = load_reg;
13338 		patch = zext_patch;
13339 		patch_len = 2;
13340 apply_patch_buffer:
13341 		new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
13342 		if (!new_prog)
13343 			return -ENOMEM;
13344 		env->prog = new_prog;
13345 		insns = new_prog->insnsi;
13346 		aux = env->insn_aux_data;
13347 		delta += patch_len - 1;
13348 	}
13349 
13350 	return 0;
13351 }
13352 
13353 /* convert load instructions that access fields of a context type into a
13354  * sequence of instructions that access fields of the underlying structure:
13355  *     struct __sk_buff    -> struct sk_buff
13356  *     struct bpf_sock_ops -> struct sock
13357  */
13358 static int convert_ctx_accesses(struct bpf_verifier_env *env)
13359 {
13360 	const struct bpf_verifier_ops *ops = env->ops;
13361 	int i, cnt, size, ctx_field_size, delta = 0;
13362 	const int insn_cnt = env->prog->len;
13363 	struct bpf_insn insn_buf[16], *insn;
13364 	u32 target_size, size_default, off;
13365 	struct bpf_prog *new_prog;
13366 	enum bpf_access_type type;
13367 	bool is_narrower_load;
13368 
13369 	if (ops->gen_prologue || env->seen_direct_write) {
13370 		if (!ops->gen_prologue) {
13371 			verbose(env, "bpf verifier is misconfigured\n");
13372 			return -EINVAL;
13373 		}
13374 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
13375 					env->prog);
13376 		if (cnt >= ARRAY_SIZE(insn_buf)) {
13377 			verbose(env, "bpf verifier is misconfigured\n");
13378 			return -EINVAL;
13379 		} else if (cnt) {
13380 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
13381 			if (!new_prog)
13382 				return -ENOMEM;
13383 
13384 			env->prog = new_prog;
13385 			delta += cnt - 1;
13386 		}
13387 	}
13388 
13389 	if (bpf_prog_is_dev_bound(env->prog->aux))
13390 		return 0;
13391 
13392 	insn = env->prog->insnsi + delta;
13393 
13394 	for (i = 0; i < insn_cnt; i++, insn++) {
13395 		bpf_convert_ctx_access_t convert_ctx_access;
13396 		bool ctx_access;
13397 
13398 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
13399 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
13400 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
13401 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) {
13402 			type = BPF_READ;
13403 			ctx_access = true;
13404 		} else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
13405 			   insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
13406 			   insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
13407 			   insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
13408 			   insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
13409 			   insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
13410 			   insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
13411 			   insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
13412 			type = BPF_WRITE;
13413 			ctx_access = BPF_CLASS(insn->code) == BPF_STX;
13414 		} else {
13415 			continue;
13416 		}
13417 
13418 		if (type == BPF_WRITE &&
13419 		    env->insn_aux_data[i + delta].sanitize_stack_spill) {
13420 			struct bpf_insn patch[] = {
13421 				*insn,
13422 				BPF_ST_NOSPEC(),
13423 			};
13424 
13425 			cnt = ARRAY_SIZE(patch);
13426 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
13427 			if (!new_prog)
13428 				return -ENOMEM;
13429 
13430 			delta    += cnt - 1;
13431 			env->prog = new_prog;
13432 			insn      = new_prog->insnsi + i + delta;
13433 			continue;
13434 		}
13435 
13436 		if (!ctx_access)
13437 			continue;
13438 
13439 		switch ((int)env->insn_aux_data[i + delta].ptr_type) {
13440 		case PTR_TO_CTX:
13441 			if (!ops->convert_ctx_access)
13442 				continue;
13443 			convert_ctx_access = ops->convert_ctx_access;
13444 			break;
13445 		case PTR_TO_SOCKET:
13446 		case PTR_TO_SOCK_COMMON:
13447 			convert_ctx_access = bpf_sock_convert_ctx_access;
13448 			break;
13449 		case PTR_TO_TCP_SOCK:
13450 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
13451 			break;
13452 		case PTR_TO_XDP_SOCK:
13453 			convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
13454 			break;
13455 		case PTR_TO_BTF_ID:
13456 		case PTR_TO_BTF_ID | PTR_UNTRUSTED:
13457 			if (type == BPF_READ) {
13458 				insn->code = BPF_LDX | BPF_PROBE_MEM |
13459 					BPF_SIZE((insn)->code);
13460 				env->prog->aux->num_exentries++;
13461 			} else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) {
13462 				verbose(env, "Writes through BTF pointers are not allowed\n");
13463 				return -EINVAL;
13464 			}
13465 			continue;
13466 		default:
13467 			continue;
13468 		}
13469 
13470 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
13471 		size = BPF_LDST_BYTES(insn);
13472 
13473 		/* If the read access is a narrower load of the field,
13474 		 * convert to a 4/8-byte load, to minimum program type specific
13475 		 * convert_ctx_access changes. If conversion is successful,
13476 		 * we will apply proper mask to the result.
13477 		 */
13478 		is_narrower_load = size < ctx_field_size;
13479 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
13480 		off = insn->off;
13481 		if (is_narrower_load) {
13482 			u8 size_code;
13483 
13484 			if (type == BPF_WRITE) {
13485 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
13486 				return -EINVAL;
13487 			}
13488 
13489 			size_code = BPF_H;
13490 			if (ctx_field_size == 4)
13491 				size_code = BPF_W;
13492 			else if (ctx_field_size == 8)
13493 				size_code = BPF_DW;
13494 
13495 			insn->off = off & ~(size_default - 1);
13496 			insn->code = BPF_LDX | BPF_MEM | size_code;
13497 		}
13498 
13499 		target_size = 0;
13500 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
13501 					 &target_size);
13502 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
13503 		    (ctx_field_size && !target_size)) {
13504 			verbose(env, "bpf verifier is misconfigured\n");
13505 			return -EINVAL;
13506 		}
13507 
13508 		if (is_narrower_load && size < target_size) {
13509 			u8 shift = bpf_ctx_narrow_access_offset(
13510 				off, size, size_default) * 8;
13511 			if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) {
13512 				verbose(env, "bpf verifier narrow ctx load misconfigured\n");
13513 				return -EINVAL;
13514 			}
13515 			if (ctx_field_size <= 4) {
13516 				if (shift)
13517 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
13518 									insn->dst_reg,
13519 									shift);
13520 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
13521 								(1 << size * 8) - 1);
13522 			} else {
13523 				if (shift)
13524 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
13525 									insn->dst_reg,
13526 									shift);
13527 				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
13528 								(1ULL << size * 8) - 1);
13529 			}
13530 		}
13531 
13532 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
13533 		if (!new_prog)
13534 			return -ENOMEM;
13535 
13536 		delta += cnt - 1;
13537 
13538 		/* keep walking new program and skip insns we just inserted */
13539 		env->prog = new_prog;
13540 		insn      = new_prog->insnsi + i + delta;
13541 	}
13542 
13543 	return 0;
13544 }
13545 
13546 static int jit_subprogs(struct bpf_verifier_env *env)
13547 {
13548 	struct bpf_prog *prog = env->prog, **func, *tmp;
13549 	int i, j, subprog_start, subprog_end = 0, len, subprog;
13550 	struct bpf_map *map_ptr;
13551 	struct bpf_insn *insn;
13552 	void *old_bpf_func;
13553 	int err, num_exentries;
13554 
13555 	if (env->subprog_cnt <= 1)
13556 		return 0;
13557 
13558 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
13559 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn))
13560 			continue;
13561 
13562 		/* Upon error here we cannot fall back to interpreter but
13563 		 * need a hard reject of the program. Thus -EFAULT is
13564 		 * propagated in any case.
13565 		 */
13566 		subprog = find_subprog(env, i + insn->imm + 1);
13567 		if (subprog < 0) {
13568 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
13569 				  i + insn->imm + 1);
13570 			return -EFAULT;
13571 		}
13572 		/* temporarily remember subprog id inside insn instead of
13573 		 * aux_data, since next loop will split up all insns into funcs
13574 		 */
13575 		insn->off = subprog;
13576 		/* remember original imm in case JIT fails and fallback
13577 		 * to interpreter will be needed
13578 		 */
13579 		env->insn_aux_data[i].call_imm = insn->imm;
13580 		/* point imm to __bpf_call_base+1 from JITs point of view */
13581 		insn->imm = 1;
13582 		if (bpf_pseudo_func(insn))
13583 			/* jit (e.g. x86_64) may emit fewer instructions
13584 			 * if it learns a u32 imm is the same as a u64 imm.
13585 			 * Force a non zero here.
13586 			 */
13587 			insn[1].imm = 1;
13588 	}
13589 
13590 	err = bpf_prog_alloc_jited_linfo(prog);
13591 	if (err)
13592 		goto out_undo_insn;
13593 
13594 	err = -ENOMEM;
13595 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
13596 	if (!func)
13597 		goto out_undo_insn;
13598 
13599 	for (i = 0; i < env->subprog_cnt; i++) {
13600 		subprog_start = subprog_end;
13601 		subprog_end = env->subprog_info[i + 1].start;
13602 
13603 		len = subprog_end - subprog_start;
13604 		/* bpf_prog_run() doesn't call subprogs directly,
13605 		 * hence main prog stats include the runtime of subprogs.
13606 		 * subprogs don't have IDs and not reachable via prog_get_next_id
13607 		 * func[i]->stats will never be accessed and stays NULL
13608 		 */
13609 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
13610 		if (!func[i])
13611 			goto out_free;
13612 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
13613 		       len * sizeof(struct bpf_insn));
13614 		func[i]->type = prog->type;
13615 		func[i]->len = len;
13616 		if (bpf_prog_calc_tag(func[i]))
13617 			goto out_free;
13618 		func[i]->is_func = 1;
13619 		func[i]->aux->func_idx = i;
13620 		/* Below members will be freed only at prog->aux */
13621 		func[i]->aux->btf = prog->aux->btf;
13622 		func[i]->aux->func_info = prog->aux->func_info;
13623 		func[i]->aux->poke_tab = prog->aux->poke_tab;
13624 		func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
13625 
13626 		for (j = 0; j < prog->aux->size_poke_tab; j++) {
13627 			struct bpf_jit_poke_descriptor *poke;
13628 
13629 			poke = &prog->aux->poke_tab[j];
13630 			if (poke->insn_idx < subprog_end &&
13631 			    poke->insn_idx >= subprog_start)
13632 				poke->aux = func[i]->aux;
13633 		}
13634 
13635 		/* Use bpf_prog_F_tag to indicate functions in stack traces.
13636 		 * Long term would need debug info to populate names
13637 		 */
13638 		func[i]->aux->name[0] = 'F';
13639 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
13640 		func[i]->jit_requested = 1;
13641 		func[i]->blinding_requested = prog->blinding_requested;
13642 		func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
13643 		func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab;
13644 		func[i]->aux->linfo = prog->aux->linfo;
13645 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
13646 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
13647 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
13648 		num_exentries = 0;
13649 		insn = func[i]->insnsi;
13650 		for (j = 0; j < func[i]->len; j++, insn++) {
13651 			if (BPF_CLASS(insn->code) == BPF_LDX &&
13652 			    BPF_MODE(insn->code) == BPF_PROBE_MEM)
13653 				num_exentries++;
13654 		}
13655 		func[i]->aux->num_exentries = num_exentries;
13656 		func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
13657 		func[i] = bpf_int_jit_compile(func[i]);
13658 		if (!func[i]->jited) {
13659 			err = -ENOTSUPP;
13660 			goto out_free;
13661 		}
13662 		cond_resched();
13663 	}
13664 
13665 	/* at this point all bpf functions were successfully JITed
13666 	 * now populate all bpf_calls with correct addresses and
13667 	 * run last pass of JIT
13668 	 */
13669 	for (i = 0; i < env->subprog_cnt; i++) {
13670 		insn = func[i]->insnsi;
13671 		for (j = 0; j < func[i]->len; j++, insn++) {
13672 			if (bpf_pseudo_func(insn)) {
13673 				subprog = insn->off;
13674 				insn[0].imm = (u32)(long)func[subprog]->bpf_func;
13675 				insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
13676 				continue;
13677 			}
13678 			if (!bpf_pseudo_call(insn))
13679 				continue;
13680 			subprog = insn->off;
13681 			insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func);
13682 		}
13683 
13684 		/* we use the aux data to keep a list of the start addresses
13685 		 * of the JITed images for each function in the program
13686 		 *
13687 		 * for some architectures, such as powerpc64, the imm field
13688 		 * might not be large enough to hold the offset of the start
13689 		 * address of the callee's JITed image from __bpf_call_base
13690 		 *
13691 		 * in such cases, we can lookup the start address of a callee
13692 		 * by using its subprog id, available from the off field of
13693 		 * the call instruction, as an index for this list
13694 		 */
13695 		func[i]->aux->func = func;
13696 		func[i]->aux->func_cnt = env->subprog_cnt;
13697 	}
13698 	for (i = 0; i < env->subprog_cnt; i++) {
13699 		old_bpf_func = func[i]->bpf_func;
13700 		tmp = bpf_int_jit_compile(func[i]);
13701 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
13702 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
13703 			err = -ENOTSUPP;
13704 			goto out_free;
13705 		}
13706 		cond_resched();
13707 	}
13708 
13709 	/* finally lock prog and jit images for all functions and
13710 	 * populate kallsysm
13711 	 */
13712 	for (i = 0; i < env->subprog_cnt; i++) {
13713 		bpf_prog_lock_ro(func[i]);
13714 		bpf_prog_kallsyms_add(func[i]);
13715 	}
13716 
13717 	/* Last step: make now unused interpreter insns from main
13718 	 * prog consistent for later dump requests, so they can
13719 	 * later look the same as if they were interpreted only.
13720 	 */
13721 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
13722 		if (bpf_pseudo_func(insn)) {
13723 			insn[0].imm = env->insn_aux_data[i].call_imm;
13724 			insn[1].imm = insn->off;
13725 			insn->off = 0;
13726 			continue;
13727 		}
13728 		if (!bpf_pseudo_call(insn))
13729 			continue;
13730 		insn->off = env->insn_aux_data[i].call_imm;
13731 		subprog = find_subprog(env, i + insn->off + 1);
13732 		insn->imm = subprog;
13733 	}
13734 
13735 	prog->jited = 1;
13736 	prog->bpf_func = func[0]->bpf_func;
13737 	prog->jited_len = func[0]->jited_len;
13738 	prog->aux->func = func;
13739 	prog->aux->func_cnt = env->subprog_cnt;
13740 	bpf_prog_jit_attempt_done(prog);
13741 	return 0;
13742 out_free:
13743 	/* We failed JIT'ing, so at this point we need to unregister poke
13744 	 * descriptors from subprogs, so that kernel is not attempting to
13745 	 * patch it anymore as we're freeing the subprog JIT memory.
13746 	 */
13747 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
13748 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
13749 		map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
13750 	}
13751 	/* At this point we're guaranteed that poke descriptors are not
13752 	 * live anymore. We can just unlink its descriptor table as it's
13753 	 * released with the main prog.
13754 	 */
13755 	for (i = 0; i < env->subprog_cnt; i++) {
13756 		if (!func[i])
13757 			continue;
13758 		func[i]->aux->poke_tab = NULL;
13759 		bpf_jit_free(func[i]);
13760 	}
13761 	kfree(func);
13762 out_undo_insn:
13763 	/* cleanup main prog to be interpreted */
13764 	prog->jit_requested = 0;
13765 	prog->blinding_requested = 0;
13766 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
13767 		if (!bpf_pseudo_call(insn))
13768 			continue;
13769 		insn->off = 0;
13770 		insn->imm = env->insn_aux_data[i].call_imm;
13771 	}
13772 	bpf_prog_jit_attempt_done(prog);
13773 	return err;
13774 }
13775 
13776 static int fixup_call_args(struct bpf_verifier_env *env)
13777 {
13778 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
13779 	struct bpf_prog *prog = env->prog;
13780 	struct bpf_insn *insn = prog->insnsi;
13781 	bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
13782 	int i, depth;
13783 #endif
13784 	int err = 0;
13785 
13786 	if (env->prog->jit_requested &&
13787 	    !bpf_prog_is_dev_bound(env->prog->aux)) {
13788 		err = jit_subprogs(env);
13789 		if (err == 0)
13790 			return 0;
13791 		if (err == -EFAULT)
13792 			return err;
13793 	}
13794 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
13795 	if (has_kfunc_call) {
13796 		verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
13797 		return -EINVAL;
13798 	}
13799 	if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
13800 		/* When JIT fails the progs with bpf2bpf calls and tail_calls
13801 		 * have to be rejected, since interpreter doesn't support them yet.
13802 		 */
13803 		verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
13804 		return -EINVAL;
13805 	}
13806 	for (i = 0; i < prog->len; i++, insn++) {
13807 		if (bpf_pseudo_func(insn)) {
13808 			/* When JIT fails the progs with callback calls
13809 			 * have to be rejected, since interpreter doesn't support them yet.
13810 			 */
13811 			verbose(env, "callbacks are not allowed in non-JITed programs\n");
13812 			return -EINVAL;
13813 		}
13814 
13815 		if (!bpf_pseudo_call(insn))
13816 			continue;
13817 		depth = get_callee_stack_depth(env, insn, i);
13818 		if (depth < 0)
13819 			return depth;
13820 		bpf_patch_call_args(insn, depth);
13821 	}
13822 	err = 0;
13823 #endif
13824 	return err;
13825 }
13826 
13827 static int fixup_kfunc_call(struct bpf_verifier_env *env,
13828 			    struct bpf_insn *insn)
13829 {
13830 	const struct bpf_kfunc_desc *desc;
13831 
13832 	if (!insn->imm) {
13833 		verbose(env, "invalid kernel function call not eliminated in verifier pass\n");
13834 		return -EINVAL;
13835 	}
13836 
13837 	/* insn->imm has the btf func_id. Replace it with
13838 	 * an address (relative to __bpf_base_call).
13839 	 */
13840 	desc = find_kfunc_desc(env->prog, insn->imm, insn->off);
13841 	if (!desc) {
13842 		verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
13843 			insn->imm);
13844 		return -EFAULT;
13845 	}
13846 
13847 	insn->imm = desc->imm;
13848 
13849 	return 0;
13850 }
13851 
13852 /* Do various post-verification rewrites in a single program pass.
13853  * These rewrites simplify JIT and interpreter implementations.
13854  */
13855 static int do_misc_fixups(struct bpf_verifier_env *env)
13856 {
13857 	struct bpf_prog *prog = env->prog;
13858 	enum bpf_attach_type eatype = prog->expected_attach_type;
13859 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
13860 	struct bpf_insn *insn = prog->insnsi;
13861 	const struct bpf_func_proto *fn;
13862 	const int insn_cnt = prog->len;
13863 	const struct bpf_map_ops *ops;
13864 	struct bpf_insn_aux_data *aux;
13865 	struct bpf_insn insn_buf[16];
13866 	struct bpf_prog *new_prog;
13867 	struct bpf_map *map_ptr;
13868 	int i, ret, cnt, delta = 0;
13869 
13870 	for (i = 0; i < insn_cnt; i++, insn++) {
13871 		/* Make divide-by-zero exceptions impossible. */
13872 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
13873 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
13874 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
13875 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
13876 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
13877 			bool isdiv = BPF_OP(insn->code) == BPF_DIV;
13878 			struct bpf_insn *patchlet;
13879 			struct bpf_insn chk_and_div[] = {
13880 				/* [R,W]x div 0 -> 0 */
13881 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
13882 					     BPF_JNE | BPF_K, insn->src_reg,
13883 					     0, 2, 0),
13884 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
13885 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
13886 				*insn,
13887 			};
13888 			struct bpf_insn chk_and_mod[] = {
13889 				/* [R,W]x mod 0 -> [R,W]x */
13890 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
13891 					     BPF_JEQ | BPF_K, insn->src_reg,
13892 					     0, 1 + (is64 ? 0 : 1), 0),
13893 				*insn,
13894 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
13895 				BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
13896 			};
13897 
13898 			patchlet = isdiv ? chk_and_div : chk_and_mod;
13899 			cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
13900 				      ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
13901 
13902 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
13903 			if (!new_prog)
13904 				return -ENOMEM;
13905 
13906 			delta    += cnt - 1;
13907 			env->prog = prog = new_prog;
13908 			insn      = new_prog->insnsi + i + delta;
13909 			continue;
13910 		}
13911 
13912 		/* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
13913 		if (BPF_CLASS(insn->code) == BPF_LD &&
13914 		    (BPF_MODE(insn->code) == BPF_ABS ||
13915 		     BPF_MODE(insn->code) == BPF_IND)) {
13916 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
13917 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
13918 				verbose(env, "bpf verifier is misconfigured\n");
13919 				return -EINVAL;
13920 			}
13921 
13922 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
13923 			if (!new_prog)
13924 				return -ENOMEM;
13925 
13926 			delta    += cnt - 1;
13927 			env->prog = prog = new_prog;
13928 			insn      = new_prog->insnsi + i + delta;
13929 			continue;
13930 		}
13931 
13932 		/* Rewrite pointer arithmetic to mitigate speculation attacks. */
13933 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
13934 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
13935 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
13936 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
13937 			struct bpf_insn *patch = &insn_buf[0];
13938 			bool issrc, isneg, isimm;
13939 			u32 off_reg;
13940 
13941 			aux = &env->insn_aux_data[i + delta];
13942 			if (!aux->alu_state ||
13943 			    aux->alu_state == BPF_ALU_NON_POINTER)
13944 				continue;
13945 
13946 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
13947 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
13948 				BPF_ALU_SANITIZE_SRC;
13949 			isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
13950 
13951 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
13952 			if (isimm) {
13953 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
13954 			} else {
13955 				if (isneg)
13956 					*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
13957 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
13958 				*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
13959 				*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
13960 				*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
13961 				*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
13962 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
13963 			}
13964 			if (!issrc)
13965 				*patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
13966 			insn->src_reg = BPF_REG_AX;
13967 			if (isneg)
13968 				insn->code = insn->code == code_add ?
13969 					     code_sub : code_add;
13970 			*patch++ = *insn;
13971 			if (issrc && isneg && !isimm)
13972 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
13973 			cnt = patch - insn_buf;
13974 
13975 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
13976 			if (!new_prog)
13977 				return -ENOMEM;
13978 
13979 			delta    += cnt - 1;
13980 			env->prog = prog = new_prog;
13981 			insn      = new_prog->insnsi + i + delta;
13982 			continue;
13983 		}
13984 
13985 		if (insn->code != (BPF_JMP | BPF_CALL))
13986 			continue;
13987 		if (insn->src_reg == BPF_PSEUDO_CALL)
13988 			continue;
13989 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
13990 			ret = fixup_kfunc_call(env, insn);
13991 			if (ret)
13992 				return ret;
13993 			continue;
13994 		}
13995 
13996 		if (insn->imm == BPF_FUNC_get_route_realm)
13997 			prog->dst_needed = 1;
13998 		if (insn->imm == BPF_FUNC_get_prandom_u32)
13999 			bpf_user_rnd_init_once();
14000 		if (insn->imm == BPF_FUNC_override_return)
14001 			prog->kprobe_override = 1;
14002 		if (insn->imm == BPF_FUNC_tail_call) {
14003 			/* If we tail call into other programs, we
14004 			 * cannot make any assumptions since they can
14005 			 * be replaced dynamically during runtime in
14006 			 * the program array.
14007 			 */
14008 			prog->cb_access = 1;
14009 			if (!allow_tail_call_in_subprogs(env))
14010 				prog->aux->stack_depth = MAX_BPF_STACK;
14011 			prog->aux->max_pkt_offset = MAX_PACKET_OFF;
14012 
14013 			/* mark bpf_tail_call as different opcode to avoid
14014 			 * conditional branch in the interpreter for every normal
14015 			 * call and to prevent accidental JITing by JIT compiler
14016 			 * that doesn't support bpf_tail_call yet
14017 			 */
14018 			insn->imm = 0;
14019 			insn->code = BPF_JMP | BPF_TAIL_CALL;
14020 
14021 			aux = &env->insn_aux_data[i + delta];
14022 			if (env->bpf_capable && !prog->blinding_requested &&
14023 			    prog->jit_requested &&
14024 			    !bpf_map_key_poisoned(aux) &&
14025 			    !bpf_map_ptr_poisoned(aux) &&
14026 			    !bpf_map_ptr_unpriv(aux)) {
14027 				struct bpf_jit_poke_descriptor desc = {
14028 					.reason = BPF_POKE_REASON_TAIL_CALL,
14029 					.tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
14030 					.tail_call.key = bpf_map_key_immediate(aux),
14031 					.insn_idx = i + delta,
14032 				};
14033 
14034 				ret = bpf_jit_add_poke_descriptor(prog, &desc);
14035 				if (ret < 0) {
14036 					verbose(env, "adding tail call poke descriptor failed\n");
14037 					return ret;
14038 				}
14039 
14040 				insn->imm = ret + 1;
14041 				continue;
14042 			}
14043 
14044 			if (!bpf_map_ptr_unpriv(aux))
14045 				continue;
14046 
14047 			/* instead of changing every JIT dealing with tail_call
14048 			 * emit two extra insns:
14049 			 * if (index >= max_entries) goto out;
14050 			 * index &= array->index_mask;
14051 			 * to avoid out-of-bounds cpu speculation
14052 			 */
14053 			if (bpf_map_ptr_poisoned(aux)) {
14054 				verbose(env, "tail_call abusing map_ptr\n");
14055 				return -EINVAL;
14056 			}
14057 
14058 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
14059 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
14060 						  map_ptr->max_entries, 2);
14061 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
14062 						    container_of(map_ptr,
14063 								 struct bpf_array,
14064 								 map)->index_mask);
14065 			insn_buf[2] = *insn;
14066 			cnt = 3;
14067 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
14068 			if (!new_prog)
14069 				return -ENOMEM;
14070 
14071 			delta    += cnt - 1;
14072 			env->prog = prog = new_prog;
14073 			insn      = new_prog->insnsi + i + delta;
14074 			continue;
14075 		}
14076 
14077 		if (insn->imm == BPF_FUNC_timer_set_callback) {
14078 			/* The verifier will process callback_fn as many times as necessary
14079 			 * with different maps and the register states prepared by
14080 			 * set_timer_callback_state will be accurate.
14081 			 *
14082 			 * The following use case is valid:
14083 			 *   map1 is shared by prog1, prog2, prog3.
14084 			 *   prog1 calls bpf_timer_init for some map1 elements
14085 			 *   prog2 calls bpf_timer_set_callback for some map1 elements.
14086 			 *     Those that were not bpf_timer_init-ed will return -EINVAL.
14087 			 *   prog3 calls bpf_timer_start for some map1 elements.
14088 			 *     Those that were not both bpf_timer_init-ed and
14089 			 *     bpf_timer_set_callback-ed will return -EINVAL.
14090 			 */
14091 			struct bpf_insn ld_addrs[2] = {
14092 				BPF_LD_IMM64(BPF_REG_3, (long)prog->aux),
14093 			};
14094 
14095 			insn_buf[0] = ld_addrs[0];
14096 			insn_buf[1] = ld_addrs[1];
14097 			insn_buf[2] = *insn;
14098 			cnt = 3;
14099 
14100 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
14101 			if (!new_prog)
14102 				return -ENOMEM;
14103 
14104 			delta    += cnt - 1;
14105 			env->prog = prog = new_prog;
14106 			insn      = new_prog->insnsi + i + delta;
14107 			goto patch_call_imm;
14108 		}
14109 
14110 		if (insn->imm == BPF_FUNC_task_storage_get ||
14111 		    insn->imm == BPF_FUNC_sk_storage_get ||
14112 		    insn->imm == BPF_FUNC_inode_storage_get) {
14113 			if (env->prog->aux->sleepable)
14114 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL);
14115 			else
14116 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC);
14117 			insn_buf[1] = *insn;
14118 			cnt = 2;
14119 
14120 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
14121 			if (!new_prog)
14122 				return -ENOMEM;
14123 
14124 			delta += cnt - 1;
14125 			env->prog = prog = new_prog;
14126 			insn = new_prog->insnsi + i + delta;
14127 			goto patch_call_imm;
14128 		}
14129 
14130 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
14131 		 * and other inlining handlers are currently limited to 64 bit
14132 		 * only.
14133 		 */
14134 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
14135 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
14136 		     insn->imm == BPF_FUNC_map_update_elem ||
14137 		     insn->imm == BPF_FUNC_map_delete_elem ||
14138 		     insn->imm == BPF_FUNC_map_push_elem   ||
14139 		     insn->imm == BPF_FUNC_map_pop_elem    ||
14140 		     insn->imm == BPF_FUNC_map_peek_elem   ||
14141 		     insn->imm == BPF_FUNC_redirect_map    ||
14142 		     insn->imm == BPF_FUNC_for_each_map_elem ||
14143 		     insn->imm == BPF_FUNC_map_lookup_percpu_elem)) {
14144 			aux = &env->insn_aux_data[i + delta];
14145 			if (bpf_map_ptr_poisoned(aux))
14146 				goto patch_call_imm;
14147 
14148 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
14149 			ops = map_ptr->ops;
14150 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
14151 			    ops->map_gen_lookup) {
14152 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
14153 				if (cnt == -EOPNOTSUPP)
14154 					goto patch_map_ops_generic;
14155 				if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
14156 					verbose(env, "bpf verifier is misconfigured\n");
14157 					return -EINVAL;
14158 				}
14159 
14160 				new_prog = bpf_patch_insn_data(env, i + delta,
14161 							       insn_buf, cnt);
14162 				if (!new_prog)
14163 					return -ENOMEM;
14164 
14165 				delta    += cnt - 1;
14166 				env->prog = prog = new_prog;
14167 				insn      = new_prog->insnsi + i + delta;
14168 				continue;
14169 			}
14170 
14171 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
14172 				     (void *(*)(struct bpf_map *map, void *key))NULL));
14173 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
14174 				     (int (*)(struct bpf_map *map, void *key))NULL));
14175 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
14176 				     (int (*)(struct bpf_map *map, void *key, void *value,
14177 					      u64 flags))NULL));
14178 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
14179 				     (int (*)(struct bpf_map *map, void *value,
14180 					      u64 flags))NULL));
14181 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
14182 				     (int (*)(struct bpf_map *map, void *value))NULL));
14183 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
14184 				     (int (*)(struct bpf_map *map, void *value))NULL));
14185 			BUILD_BUG_ON(!__same_type(ops->map_redirect,
14186 				     (int (*)(struct bpf_map *map, u32 ifindex, u64 flags))NULL));
14187 			BUILD_BUG_ON(!__same_type(ops->map_for_each_callback,
14188 				     (int (*)(struct bpf_map *map,
14189 					      bpf_callback_t callback_fn,
14190 					      void *callback_ctx,
14191 					      u64 flags))NULL));
14192 			BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem,
14193 				     (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL));
14194 
14195 patch_map_ops_generic:
14196 			switch (insn->imm) {
14197 			case BPF_FUNC_map_lookup_elem:
14198 				insn->imm = BPF_CALL_IMM(ops->map_lookup_elem);
14199 				continue;
14200 			case BPF_FUNC_map_update_elem:
14201 				insn->imm = BPF_CALL_IMM(ops->map_update_elem);
14202 				continue;
14203 			case BPF_FUNC_map_delete_elem:
14204 				insn->imm = BPF_CALL_IMM(ops->map_delete_elem);
14205 				continue;
14206 			case BPF_FUNC_map_push_elem:
14207 				insn->imm = BPF_CALL_IMM(ops->map_push_elem);
14208 				continue;
14209 			case BPF_FUNC_map_pop_elem:
14210 				insn->imm = BPF_CALL_IMM(ops->map_pop_elem);
14211 				continue;
14212 			case BPF_FUNC_map_peek_elem:
14213 				insn->imm = BPF_CALL_IMM(ops->map_peek_elem);
14214 				continue;
14215 			case BPF_FUNC_redirect_map:
14216 				insn->imm = BPF_CALL_IMM(ops->map_redirect);
14217 				continue;
14218 			case BPF_FUNC_for_each_map_elem:
14219 				insn->imm = BPF_CALL_IMM(ops->map_for_each_callback);
14220 				continue;
14221 			case BPF_FUNC_map_lookup_percpu_elem:
14222 				insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem);
14223 				continue;
14224 			}
14225 
14226 			goto patch_call_imm;
14227 		}
14228 
14229 		/* Implement bpf_jiffies64 inline. */
14230 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
14231 		    insn->imm == BPF_FUNC_jiffies64) {
14232 			struct bpf_insn ld_jiffies_addr[2] = {
14233 				BPF_LD_IMM64(BPF_REG_0,
14234 					     (unsigned long)&jiffies),
14235 			};
14236 
14237 			insn_buf[0] = ld_jiffies_addr[0];
14238 			insn_buf[1] = ld_jiffies_addr[1];
14239 			insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
14240 						  BPF_REG_0, 0);
14241 			cnt = 3;
14242 
14243 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
14244 						       cnt);
14245 			if (!new_prog)
14246 				return -ENOMEM;
14247 
14248 			delta    += cnt - 1;
14249 			env->prog = prog = new_prog;
14250 			insn      = new_prog->insnsi + i + delta;
14251 			continue;
14252 		}
14253 
14254 		/* Implement bpf_get_func_arg inline. */
14255 		if (prog_type == BPF_PROG_TYPE_TRACING &&
14256 		    insn->imm == BPF_FUNC_get_func_arg) {
14257 			/* Load nr_args from ctx - 8 */
14258 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
14259 			insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6);
14260 			insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3);
14261 			insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1);
14262 			insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0);
14263 			insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
14264 			insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0);
14265 			insn_buf[7] = BPF_JMP_A(1);
14266 			insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL);
14267 			cnt = 9;
14268 
14269 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
14270 			if (!new_prog)
14271 				return -ENOMEM;
14272 
14273 			delta    += cnt - 1;
14274 			env->prog = prog = new_prog;
14275 			insn      = new_prog->insnsi + i + delta;
14276 			continue;
14277 		}
14278 
14279 		/* Implement bpf_get_func_ret inline. */
14280 		if (prog_type == BPF_PROG_TYPE_TRACING &&
14281 		    insn->imm == BPF_FUNC_get_func_ret) {
14282 			if (eatype == BPF_TRACE_FEXIT ||
14283 			    eatype == BPF_MODIFY_RETURN) {
14284 				/* Load nr_args from ctx - 8 */
14285 				insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
14286 				insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3);
14287 				insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1);
14288 				insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
14289 				insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0);
14290 				insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0);
14291 				cnt = 6;
14292 			} else {
14293 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP);
14294 				cnt = 1;
14295 			}
14296 
14297 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
14298 			if (!new_prog)
14299 				return -ENOMEM;
14300 
14301 			delta    += cnt - 1;
14302 			env->prog = prog = new_prog;
14303 			insn      = new_prog->insnsi + i + delta;
14304 			continue;
14305 		}
14306 
14307 		/* Implement get_func_arg_cnt inline. */
14308 		if (prog_type == BPF_PROG_TYPE_TRACING &&
14309 		    insn->imm == BPF_FUNC_get_func_arg_cnt) {
14310 			/* Load nr_args from ctx - 8 */
14311 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
14312 
14313 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
14314 			if (!new_prog)
14315 				return -ENOMEM;
14316 
14317 			env->prog = prog = new_prog;
14318 			insn      = new_prog->insnsi + i + delta;
14319 			continue;
14320 		}
14321 
14322 		/* Implement bpf_get_func_ip inline. */
14323 		if (prog_type == BPF_PROG_TYPE_TRACING &&
14324 		    insn->imm == BPF_FUNC_get_func_ip) {
14325 			/* Load IP address from ctx - 16 */
14326 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16);
14327 
14328 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
14329 			if (!new_prog)
14330 				return -ENOMEM;
14331 
14332 			env->prog = prog = new_prog;
14333 			insn      = new_prog->insnsi + i + delta;
14334 			continue;
14335 		}
14336 
14337 patch_call_imm:
14338 		fn = env->ops->get_func_proto(insn->imm, env->prog);
14339 		/* all functions that have prototype and verifier allowed
14340 		 * programs to call them, must be real in-kernel functions
14341 		 */
14342 		if (!fn->func) {
14343 			verbose(env,
14344 				"kernel subsystem misconfigured func %s#%d\n",
14345 				func_id_name(insn->imm), insn->imm);
14346 			return -EFAULT;
14347 		}
14348 		insn->imm = fn->func - __bpf_call_base;
14349 	}
14350 
14351 	/* Since poke tab is now finalized, publish aux to tracker. */
14352 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
14353 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
14354 		if (!map_ptr->ops->map_poke_track ||
14355 		    !map_ptr->ops->map_poke_untrack ||
14356 		    !map_ptr->ops->map_poke_run) {
14357 			verbose(env, "bpf verifier is misconfigured\n");
14358 			return -EINVAL;
14359 		}
14360 
14361 		ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
14362 		if (ret < 0) {
14363 			verbose(env, "tracking tail call prog failed\n");
14364 			return ret;
14365 		}
14366 	}
14367 
14368 	sort_kfunc_descs_by_imm(env->prog);
14369 
14370 	return 0;
14371 }
14372 
14373 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env,
14374 					int position,
14375 					s32 stack_base,
14376 					u32 callback_subprogno,
14377 					u32 *cnt)
14378 {
14379 	s32 r6_offset = stack_base + 0 * BPF_REG_SIZE;
14380 	s32 r7_offset = stack_base + 1 * BPF_REG_SIZE;
14381 	s32 r8_offset = stack_base + 2 * BPF_REG_SIZE;
14382 	int reg_loop_max = BPF_REG_6;
14383 	int reg_loop_cnt = BPF_REG_7;
14384 	int reg_loop_ctx = BPF_REG_8;
14385 
14386 	struct bpf_prog *new_prog;
14387 	u32 callback_start;
14388 	u32 call_insn_offset;
14389 	s32 callback_offset;
14390 
14391 	/* This represents an inlined version of bpf_iter.c:bpf_loop,
14392 	 * be careful to modify this code in sync.
14393 	 */
14394 	struct bpf_insn insn_buf[] = {
14395 		/* Return error and jump to the end of the patch if
14396 		 * expected number of iterations is too big.
14397 		 */
14398 		BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2),
14399 		BPF_MOV32_IMM(BPF_REG_0, -E2BIG),
14400 		BPF_JMP_IMM(BPF_JA, 0, 0, 16),
14401 		/* spill R6, R7, R8 to use these as loop vars */
14402 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset),
14403 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset),
14404 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset),
14405 		/* initialize loop vars */
14406 		BPF_MOV64_REG(reg_loop_max, BPF_REG_1),
14407 		BPF_MOV32_IMM(reg_loop_cnt, 0),
14408 		BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3),
14409 		/* loop header,
14410 		 * if reg_loop_cnt >= reg_loop_max skip the loop body
14411 		 */
14412 		BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5),
14413 		/* callback call,
14414 		 * correct callback offset would be set after patching
14415 		 */
14416 		BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt),
14417 		BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx),
14418 		BPF_CALL_REL(0),
14419 		/* increment loop counter */
14420 		BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1),
14421 		/* jump to loop header if callback returned 0 */
14422 		BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6),
14423 		/* return value of bpf_loop,
14424 		 * set R0 to the number of iterations
14425 		 */
14426 		BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt),
14427 		/* restore original values of R6, R7, R8 */
14428 		BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset),
14429 		BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset),
14430 		BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset),
14431 	};
14432 
14433 	*cnt = ARRAY_SIZE(insn_buf);
14434 	new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt);
14435 	if (!new_prog)
14436 		return new_prog;
14437 
14438 	/* callback start is known only after patching */
14439 	callback_start = env->subprog_info[callback_subprogno].start;
14440 	/* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */
14441 	call_insn_offset = position + 12;
14442 	callback_offset = callback_start - call_insn_offset - 1;
14443 	new_prog->insnsi[call_insn_offset].imm = callback_offset;
14444 
14445 	return new_prog;
14446 }
14447 
14448 static bool is_bpf_loop_call(struct bpf_insn *insn)
14449 {
14450 	return insn->code == (BPF_JMP | BPF_CALL) &&
14451 		insn->src_reg == 0 &&
14452 		insn->imm == BPF_FUNC_loop;
14453 }
14454 
14455 /* For all sub-programs in the program (including main) check
14456  * insn_aux_data to see if there are bpf_loop calls that require
14457  * inlining. If such calls are found the calls are replaced with a
14458  * sequence of instructions produced by `inline_bpf_loop` function and
14459  * subprog stack_depth is increased by the size of 3 registers.
14460  * This stack space is used to spill values of the R6, R7, R8.  These
14461  * registers are used to store the loop bound, counter and context
14462  * variables.
14463  */
14464 static int optimize_bpf_loop(struct bpf_verifier_env *env)
14465 {
14466 	struct bpf_subprog_info *subprogs = env->subprog_info;
14467 	int i, cur_subprog = 0, cnt, delta = 0;
14468 	struct bpf_insn *insn = env->prog->insnsi;
14469 	int insn_cnt = env->prog->len;
14470 	u16 stack_depth = subprogs[cur_subprog].stack_depth;
14471 	u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
14472 	u16 stack_depth_extra = 0;
14473 
14474 	for (i = 0; i < insn_cnt; i++, insn++) {
14475 		struct bpf_loop_inline_state *inline_state =
14476 			&env->insn_aux_data[i + delta].loop_inline_state;
14477 
14478 		if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) {
14479 			struct bpf_prog *new_prog;
14480 
14481 			stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup;
14482 			new_prog = inline_bpf_loop(env,
14483 						   i + delta,
14484 						   -(stack_depth + stack_depth_extra),
14485 						   inline_state->callback_subprogno,
14486 						   &cnt);
14487 			if (!new_prog)
14488 				return -ENOMEM;
14489 
14490 			delta     += cnt - 1;
14491 			env->prog  = new_prog;
14492 			insn       = new_prog->insnsi + i + delta;
14493 		}
14494 
14495 		if (subprogs[cur_subprog + 1].start == i + delta + 1) {
14496 			subprogs[cur_subprog].stack_depth += stack_depth_extra;
14497 			cur_subprog++;
14498 			stack_depth = subprogs[cur_subprog].stack_depth;
14499 			stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
14500 			stack_depth_extra = 0;
14501 		}
14502 	}
14503 
14504 	env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
14505 
14506 	return 0;
14507 }
14508 
14509 static void free_states(struct bpf_verifier_env *env)
14510 {
14511 	struct bpf_verifier_state_list *sl, *sln;
14512 	int i;
14513 
14514 	sl = env->free_list;
14515 	while (sl) {
14516 		sln = sl->next;
14517 		free_verifier_state(&sl->state, false);
14518 		kfree(sl);
14519 		sl = sln;
14520 	}
14521 	env->free_list = NULL;
14522 
14523 	if (!env->explored_states)
14524 		return;
14525 
14526 	for (i = 0; i < state_htab_size(env); i++) {
14527 		sl = env->explored_states[i];
14528 
14529 		while (sl) {
14530 			sln = sl->next;
14531 			free_verifier_state(&sl->state, false);
14532 			kfree(sl);
14533 			sl = sln;
14534 		}
14535 		env->explored_states[i] = NULL;
14536 	}
14537 }
14538 
14539 static int do_check_common(struct bpf_verifier_env *env, int subprog)
14540 {
14541 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
14542 	struct bpf_verifier_state *state;
14543 	struct bpf_reg_state *regs;
14544 	int ret, i;
14545 
14546 	env->prev_linfo = NULL;
14547 	env->pass_cnt++;
14548 
14549 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
14550 	if (!state)
14551 		return -ENOMEM;
14552 	state->curframe = 0;
14553 	state->speculative = false;
14554 	state->branches = 1;
14555 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
14556 	if (!state->frame[0]) {
14557 		kfree(state);
14558 		return -ENOMEM;
14559 	}
14560 	env->cur_state = state;
14561 	init_func_state(env, state->frame[0],
14562 			BPF_MAIN_FUNC /* callsite */,
14563 			0 /* frameno */,
14564 			subprog);
14565 
14566 	regs = state->frame[state->curframe]->regs;
14567 	if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
14568 		ret = btf_prepare_func_args(env, subprog, regs);
14569 		if (ret)
14570 			goto out;
14571 		for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
14572 			if (regs[i].type == PTR_TO_CTX)
14573 				mark_reg_known_zero(env, regs, i);
14574 			else if (regs[i].type == SCALAR_VALUE)
14575 				mark_reg_unknown(env, regs, i);
14576 			else if (base_type(regs[i].type) == PTR_TO_MEM) {
14577 				const u32 mem_size = regs[i].mem_size;
14578 
14579 				mark_reg_known_zero(env, regs, i);
14580 				regs[i].mem_size = mem_size;
14581 				regs[i].id = ++env->id_gen;
14582 			}
14583 		}
14584 	} else {
14585 		/* 1st arg to a function */
14586 		regs[BPF_REG_1].type = PTR_TO_CTX;
14587 		mark_reg_known_zero(env, regs, BPF_REG_1);
14588 		ret = btf_check_subprog_arg_match(env, subprog, regs);
14589 		if (ret == -EFAULT)
14590 			/* unlikely verifier bug. abort.
14591 			 * ret == 0 and ret < 0 are sadly acceptable for
14592 			 * main() function due to backward compatibility.
14593 			 * Like socket filter program may be written as:
14594 			 * int bpf_prog(struct pt_regs *ctx)
14595 			 * and never dereference that ctx in the program.
14596 			 * 'struct pt_regs' is a type mismatch for socket
14597 			 * filter that should be using 'struct __sk_buff'.
14598 			 */
14599 			goto out;
14600 	}
14601 
14602 	ret = do_check(env);
14603 out:
14604 	/* check for NULL is necessary, since cur_state can be freed inside
14605 	 * do_check() under memory pressure.
14606 	 */
14607 	if (env->cur_state) {
14608 		free_verifier_state(env->cur_state, true);
14609 		env->cur_state = NULL;
14610 	}
14611 	while (!pop_stack(env, NULL, NULL, false));
14612 	if (!ret && pop_log)
14613 		bpf_vlog_reset(&env->log, 0);
14614 	free_states(env);
14615 	return ret;
14616 }
14617 
14618 /* Verify all global functions in a BPF program one by one based on their BTF.
14619  * All global functions must pass verification. Otherwise the whole program is rejected.
14620  * Consider:
14621  * int bar(int);
14622  * int foo(int f)
14623  * {
14624  *    return bar(f);
14625  * }
14626  * int bar(int b)
14627  * {
14628  *    ...
14629  * }
14630  * foo() will be verified first for R1=any_scalar_value. During verification it
14631  * will be assumed that bar() already verified successfully and call to bar()
14632  * from foo() will be checked for type match only. Later bar() will be verified
14633  * independently to check that it's safe for R1=any_scalar_value.
14634  */
14635 static int do_check_subprogs(struct bpf_verifier_env *env)
14636 {
14637 	struct bpf_prog_aux *aux = env->prog->aux;
14638 	int i, ret;
14639 
14640 	if (!aux->func_info)
14641 		return 0;
14642 
14643 	for (i = 1; i < env->subprog_cnt; i++) {
14644 		if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
14645 			continue;
14646 		env->insn_idx = env->subprog_info[i].start;
14647 		WARN_ON_ONCE(env->insn_idx == 0);
14648 		ret = do_check_common(env, i);
14649 		if (ret) {
14650 			return ret;
14651 		} else if (env->log.level & BPF_LOG_LEVEL) {
14652 			verbose(env,
14653 				"Func#%d is safe for any args that match its prototype\n",
14654 				i);
14655 		}
14656 	}
14657 	return 0;
14658 }
14659 
14660 static int do_check_main(struct bpf_verifier_env *env)
14661 {
14662 	int ret;
14663 
14664 	env->insn_idx = 0;
14665 	ret = do_check_common(env, 0);
14666 	if (!ret)
14667 		env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
14668 	return ret;
14669 }
14670 
14671 
14672 static void print_verification_stats(struct bpf_verifier_env *env)
14673 {
14674 	int i;
14675 
14676 	if (env->log.level & BPF_LOG_STATS) {
14677 		verbose(env, "verification time %lld usec\n",
14678 			div_u64(env->verification_time, 1000));
14679 		verbose(env, "stack depth ");
14680 		for (i = 0; i < env->subprog_cnt; i++) {
14681 			u32 depth = env->subprog_info[i].stack_depth;
14682 
14683 			verbose(env, "%d", depth);
14684 			if (i + 1 < env->subprog_cnt)
14685 				verbose(env, "+");
14686 		}
14687 		verbose(env, "\n");
14688 	}
14689 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
14690 		"total_states %d peak_states %d mark_read %d\n",
14691 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
14692 		env->max_states_per_insn, env->total_states,
14693 		env->peak_states, env->longest_mark_read_walk);
14694 }
14695 
14696 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
14697 {
14698 	const struct btf_type *t, *func_proto;
14699 	const struct bpf_struct_ops *st_ops;
14700 	const struct btf_member *member;
14701 	struct bpf_prog *prog = env->prog;
14702 	u32 btf_id, member_idx;
14703 	const char *mname;
14704 
14705 	if (!prog->gpl_compatible) {
14706 		verbose(env, "struct ops programs must have a GPL compatible license\n");
14707 		return -EINVAL;
14708 	}
14709 
14710 	btf_id = prog->aux->attach_btf_id;
14711 	st_ops = bpf_struct_ops_find(btf_id);
14712 	if (!st_ops) {
14713 		verbose(env, "attach_btf_id %u is not a supported struct\n",
14714 			btf_id);
14715 		return -ENOTSUPP;
14716 	}
14717 
14718 	t = st_ops->type;
14719 	member_idx = prog->expected_attach_type;
14720 	if (member_idx >= btf_type_vlen(t)) {
14721 		verbose(env, "attach to invalid member idx %u of struct %s\n",
14722 			member_idx, st_ops->name);
14723 		return -EINVAL;
14724 	}
14725 
14726 	member = &btf_type_member(t)[member_idx];
14727 	mname = btf_name_by_offset(btf_vmlinux, member->name_off);
14728 	func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
14729 					       NULL);
14730 	if (!func_proto) {
14731 		verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
14732 			mname, member_idx, st_ops->name);
14733 		return -EINVAL;
14734 	}
14735 
14736 	if (st_ops->check_member) {
14737 		int err = st_ops->check_member(t, member);
14738 
14739 		if (err) {
14740 			verbose(env, "attach to unsupported member %s of struct %s\n",
14741 				mname, st_ops->name);
14742 			return err;
14743 		}
14744 	}
14745 
14746 	prog->aux->attach_func_proto = func_proto;
14747 	prog->aux->attach_func_name = mname;
14748 	env->ops = st_ops->verifier_ops;
14749 
14750 	return 0;
14751 }
14752 #define SECURITY_PREFIX "security_"
14753 
14754 static int check_attach_modify_return(unsigned long addr, const char *func_name)
14755 {
14756 	if (within_error_injection_list(addr) ||
14757 	    !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
14758 		return 0;
14759 
14760 	return -EINVAL;
14761 }
14762 
14763 /* list of non-sleepable functions that are otherwise on
14764  * ALLOW_ERROR_INJECTION list
14765  */
14766 BTF_SET_START(btf_non_sleepable_error_inject)
14767 /* Three functions below can be called from sleepable and non-sleepable context.
14768  * Assume non-sleepable from bpf safety point of view.
14769  */
14770 BTF_ID(func, __filemap_add_folio)
14771 BTF_ID(func, should_fail_alloc_page)
14772 BTF_ID(func, should_failslab)
14773 BTF_SET_END(btf_non_sleepable_error_inject)
14774 
14775 static int check_non_sleepable_error_inject(u32 btf_id)
14776 {
14777 	return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
14778 }
14779 
14780 int bpf_check_attach_target(struct bpf_verifier_log *log,
14781 			    const struct bpf_prog *prog,
14782 			    const struct bpf_prog *tgt_prog,
14783 			    u32 btf_id,
14784 			    struct bpf_attach_target_info *tgt_info)
14785 {
14786 	bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
14787 	const char prefix[] = "btf_trace_";
14788 	int ret = 0, subprog = -1, i;
14789 	const struct btf_type *t;
14790 	bool conservative = true;
14791 	const char *tname;
14792 	struct btf *btf;
14793 	long addr = 0;
14794 
14795 	if (!btf_id) {
14796 		bpf_log(log, "Tracing programs must provide btf_id\n");
14797 		return -EINVAL;
14798 	}
14799 	btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
14800 	if (!btf) {
14801 		bpf_log(log,
14802 			"FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
14803 		return -EINVAL;
14804 	}
14805 	t = btf_type_by_id(btf, btf_id);
14806 	if (!t) {
14807 		bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
14808 		return -EINVAL;
14809 	}
14810 	tname = btf_name_by_offset(btf, t->name_off);
14811 	if (!tname) {
14812 		bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
14813 		return -EINVAL;
14814 	}
14815 	if (tgt_prog) {
14816 		struct bpf_prog_aux *aux = tgt_prog->aux;
14817 
14818 		for (i = 0; i < aux->func_info_cnt; i++)
14819 			if (aux->func_info[i].type_id == btf_id) {
14820 				subprog = i;
14821 				break;
14822 			}
14823 		if (subprog == -1) {
14824 			bpf_log(log, "Subprog %s doesn't exist\n", tname);
14825 			return -EINVAL;
14826 		}
14827 		conservative = aux->func_info_aux[subprog].unreliable;
14828 		if (prog_extension) {
14829 			if (conservative) {
14830 				bpf_log(log,
14831 					"Cannot replace static functions\n");
14832 				return -EINVAL;
14833 			}
14834 			if (!prog->jit_requested) {
14835 				bpf_log(log,
14836 					"Extension programs should be JITed\n");
14837 				return -EINVAL;
14838 			}
14839 		}
14840 		if (!tgt_prog->jited) {
14841 			bpf_log(log, "Can attach to only JITed progs\n");
14842 			return -EINVAL;
14843 		}
14844 		if (tgt_prog->type == prog->type) {
14845 			/* Cannot fentry/fexit another fentry/fexit program.
14846 			 * Cannot attach program extension to another extension.
14847 			 * It's ok to attach fentry/fexit to extension program.
14848 			 */
14849 			bpf_log(log, "Cannot recursively attach\n");
14850 			return -EINVAL;
14851 		}
14852 		if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
14853 		    prog_extension &&
14854 		    (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
14855 		     tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
14856 			/* Program extensions can extend all program types
14857 			 * except fentry/fexit. The reason is the following.
14858 			 * The fentry/fexit programs are used for performance
14859 			 * analysis, stats and can be attached to any program
14860 			 * type except themselves. When extension program is
14861 			 * replacing XDP function it is necessary to allow
14862 			 * performance analysis of all functions. Both original
14863 			 * XDP program and its program extension. Hence
14864 			 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
14865 			 * allowed. If extending of fentry/fexit was allowed it
14866 			 * would be possible to create long call chain
14867 			 * fentry->extension->fentry->extension beyond
14868 			 * reasonable stack size. Hence extending fentry is not
14869 			 * allowed.
14870 			 */
14871 			bpf_log(log, "Cannot extend fentry/fexit\n");
14872 			return -EINVAL;
14873 		}
14874 	} else {
14875 		if (prog_extension) {
14876 			bpf_log(log, "Cannot replace kernel functions\n");
14877 			return -EINVAL;
14878 		}
14879 	}
14880 
14881 	switch (prog->expected_attach_type) {
14882 	case BPF_TRACE_RAW_TP:
14883 		if (tgt_prog) {
14884 			bpf_log(log,
14885 				"Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
14886 			return -EINVAL;
14887 		}
14888 		if (!btf_type_is_typedef(t)) {
14889 			bpf_log(log, "attach_btf_id %u is not a typedef\n",
14890 				btf_id);
14891 			return -EINVAL;
14892 		}
14893 		if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
14894 			bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
14895 				btf_id, tname);
14896 			return -EINVAL;
14897 		}
14898 		tname += sizeof(prefix) - 1;
14899 		t = btf_type_by_id(btf, t->type);
14900 		if (!btf_type_is_ptr(t))
14901 			/* should never happen in valid vmlinux build */
14902 			return -EINVAL;
14903 		t = btf_type_by_id(btf, t->type);
14904 		if (!btf_type_is_func_proto(t))
14905 			/* should never happen in valid vmlinux build */
14906 			return -EINVAL;
14907 
14908 		break;
14909 	case BPF_TRACE_ITER:
14910 		if (!btf_type_is_func(t)) {
14911 			bpf_log(log, "attach_btf_id %u is not a function\n",
14912 				btf_id);
14913 			return -EINVAL;
14914 		}
14915 		t = btf_type_by_id(btf, t->type);
14916 		if (!btf_type_is_func_proto(t))
14917 			return -EINVAL;
14918 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
14919 		if (ret)
14920 			return ret;
14921 		break;
14922 	default:
14923 		if (!prog_extension)
14924 			return -EINVAL;
14925 		fallthrough;
14926 	case BPF_MODIFY_RETURN:
14927 	case BPF_LSM_MAC:
14928 	case BPF_LSM_CGROUP:
14929 	case BPF_TRACE_FENTRY:
14930 	case BPF_TRACE_FEXIT:
14931 		if (!btf_type_is_func(t)) {
14932 			bpf_log(log, "attach_btf_id %u is not a function\n",
14933 				btf_id);
14934 			return -EINVAL;
14935 		}
14936 		if (prog_extension &&
14937 		    btf_check_type_match(log, prog, btf, t))
14938 			return -EINVAL;
14939 		t = btf_type_by_id(btf, t->type);
14940 		if (!btf_type_is_func_proto(t))
14941 			return -EINVAL;
14942 
14943 		if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
14944 		    (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
14945 		     prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
14946 			return -EINVAL;
14947 
14948 		if (tgt_prog && conservative)
14949 			t = NULL;
14950 
14951 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
14952 		if (ret < 0)
14953 			return ret;
14954 
14955 		if (tgt_prog) {
14956 			if (subprog == 0)
14957 				addr = (long) tgt_prog->bpf_func;
14958 			else
14959 				addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
14960 		} else {
14961 			addr = kallsyms_lookup_name(tname);
14962 			if (!addr) {
14963 				bpf_log(log,
14964 					"The address of function %s cannot be found\n",
14965 					tname);
14966 				return -ENOENT;
14967 			}
14968 		}
14969 
14970 		if (prog->aux->sleepable) {
14971 			ret = -EINVAL;
14972 			switch (prog->type) {
14973 			case BPF_PROG_TYPE_TRACING:
14974 				/* fentry/fexit/fmod_ret progs can be sleepable only if they are
14975 				 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
14976 				 */
14977 				if (!check_non_sleepable_error_inject(btf_id) &&
14978 				    within_error_injection_list(addr))
14979 					ret = 0;
14980 				break;
14981 			case BPF_PROG_TYPE_LSM:
14982 				/* LSM progs check that they are attached to bpf_lsm_*() funcs.
14983 				 * Only some of them are sleepable.
14984 				 */
14985 				if (bpf_lsm_is_sleepable_hook(btf_id))
14986 					ret = 0;
14987 				break;
14988 			default:
14989 				break;
14990 			}
14991 			if (ret) {
14992 				bpf_log(log, "%s is not sleepable\n", tname);
14993 				return ret;
14994 			}
14995 		} else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
14996 			if (tgt_prog) {
14997 				bpf_log(log, "can't modify return codes of BPF programs\n");
14998 				return -EINVAL;
14999 			}
15000 			ret = check_attach_modify_return(addr, tname);
15001 			if (ret) {
15002 				bpf_log(log, "%s() is not modifiable\n", tname);
15003 				return ret;
15004 			}
15005 		}
15006 
15007 		break;
15008 	}
15009 	tgt_info->tgt_addr = addr;
15010 	tgt_info->tgt_name = tname;
15011 	tgt_info->tgt_type = t;
15012 	return 0;
15013 }
15014 
15015 BTF_SET_START(btf_id_deny)
15016 BTF_ID_UNUSED
15017 #ifdef CONFIG_SMP
15018 BTF_ID(func, migrate_disable)
15019 BTF_ID(func, migrate_enable)
15020 #endif
15021 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
15022 BTF_ID(func, rcu_read_unlock_strict)
15023 #endif
15024 BTF_SET_END(btf_id_deny)
15025 
15026 static int check_attach_btf_id(struct bpf_verifier_env *env)
15027 {
15028 	struct bpf_prog *prog = env->prog;
15029 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
15030 	struct bpf_attach_target_info tgt_info = {};
15031 	u32 btf_id = prog->aux->attach_btf_id;
15032 	struct bpf_trampoline *tr;
15033 	int ret;
15034 	u64 key;
15035 
15036 	if (prog->type == BPF_PROG_TYPE_SYSCALL) {
15037 		if (prog->aux->sleepable)
15038 			/* attach_btf_id checked to be zero already */
15039 			return 0;
15040 		verbose(env, "Syscall programs can only be sleepable\n");
15041 		return -EINVAL;
15042 	}
15043 
15044 	if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING &&
15045 	    prog->type != BPF_PROG_TYPE_LSM && prog->type != BPF_PROG_TYPE_KPROBE) {
15046 		verbose(env, "Only fentry/fexit/fmod_ret, lsm, and kprobe/uprobe programs can be sleepable\n");
15047 		return -EINVAL;
15048 	}
15049 
15050 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
15051 		return check_struct_ops_btf_id(env);
15052 
15053 	if (prog->type != BPF_PROG_TYPE_TRACING &&
15054 	    prog->type != BPF_PROG_TYPE_LSM &&
15055 	    prog->type != BPF_PROG_TYPE_EXT)
15056 		return 0;
15057 
15058 	ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
15059 	if (ret)
15060 		return ret;
15061 
15062 	if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
15063 		/* to make freplace equivalent to their targets, they need to
15064 		 * inherit env->ops and expected_attach_type for the rest of the
15065 		 * verification
15066 		 */
15067 		env->ops = bpf_verifier_ops[tgt_prog->type];
15068 		prog->expected_attach_type = tgt_prog->expected_attach_type;
15069 	}
15070 
15071 	/* store info about the attachment target that will be used later */
15072 	prog->aux->attach_func_proto = tgt_info.tgt_type;
15073 	prog->aux->attach_func_name = tgt_info.tgt_name;
15074 
15075 	if (tgt_prog) {
15076 		prog->aux->saved_dst_prog_type = tgt_prog->type;
15077 		prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
15078 	}
15079 
15080 	if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
15081 		prog->aux->attach_btf_trace = true;
15082 		return 0;
15083 	} else if (prog->expected_attach_type == BPF_TRACE_ITER) {
15084 		if (!bpf_iter_prog_supported(prog))
15085 			return -EINVAL;
15086 		return 0;
15087 	}
15088 
15089 	if (prog->type == BPF_PROG_TYPE_LSM) {
15090 		ret = bpf_lsm_verify_prog(&env->log, prog);
15091 		if (ret < 0)
15092 			return ret;
15093 	} else if (prog->type == BPF_PROG_TYPE_TRACING &&
15094 		   btf_id_set_contains(&btf_id_deny, btf_id)) {
15095 		return -EINVAL;
15096 	}
15097 
15098 	key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
15099 	tr = bpf_trampoline_get(key, &tgt_info);
15100 	if (!tr)
15101 		return -ENOMEM;
15102 
15103 	prog->aux->dst_trampoline = tr;
15104 	return 0;
15105 }
15106 
15107 struct btf *bpf_get_btf_vmlinux(void)
15108 {
15109 	if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
15110 		mutex_lock(&bpf_verifier_lock);
15111 		if (!btf_vmlinux)
15112 			btf_vmlinux = btf_parse_vmlinux();
15113 		mutex_unlock(&bpf_verifier_lock);
15114 	}
15115 	return btf_vmlinux;
15116 }
15117 
15118 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr)
15119 {
15120 	u64 start_time = ktime_get_ns();
15121 	struct bpf_verifier_env *env;
15122 	struct bpf_verifier_log *log;
15123 	int i, len, ret = -EINVAL;
15124 	bool is_priv;
15125 
15126 	/* no program is valid */
15127 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
15128 		return -EINVAL;
15129 
15130 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
15131 	 * allocate/free it every time bpf_check() is called
15132 	 */
15133 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
15134 	if (!env)
15135 		return -ENOMEM;
15136 	log = &env->log;
15137 
15138 	len = (*prog)->len;
15139 	env->insn_aux_data =
15140 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
15141 	ret = -ENOMEM;
15142 	if (!env->insn_aux_data)
15143 		goto err_free_env;
15144 	for (i = 0; i < len; i++)
15145 		env->insn_aux_data[i].orig_idx = i;
15146 	env->prog = *prog;
15147 	env->ops = bpf_verifier_ops[env->prog->type];
15148 	env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
15149 	is_priv = bpf_capable();
15150 
15151 	bpf_get_btf_vmlinux();
15152 
15153 	/* grab the mutex to protect few globals used by verifier */
15154 	if (!is_priv)
15155 		mutex_lock(&bpf_verifier_lock);
15156 
15157 	if (attr->log_level || attr->log_buf || attr->log_size) {
15158 		/* user requested verbose verifier output
15159 		 * and supplied buffer to store the verification trace
15160 		 */
15161 		log->level = attr->log_level;
15162 		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
15163 		log->len_total = attr->log_size;
15164 
15165 		/* log attributes have to be sane */
15166 		if (!bpf_verifier_log_attr_valid(log)) {
15167 			ret = -EINVAL;
15168 			goto err_unlock;
15169 		}
15170 	}
15171 
15172 	mark_verifier_state_clean(env);
15173 
15174 	if (IS_ERR(btf_vmlinux)) {
15175 		/* Either gcc or pahole or kernel are broken. */
15176 		verbose(env, "in-kernel BTF is malformed\n");
15177 		ret = PTR_ERR(btf_vmlinux);
15178 		goto skip_full_check;
15179 	}
15180 
15181 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
15182 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
15183 		env->strict_alignment = true;
15184 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
15185 		env->strict_alignment = false;
15186 
15187 	env->allow_ptr_leaks = bpf_allow_ptr_leaks();
15188 	env->allow_uninit_stack = bpf_allow_uninit_stack();
15189 	env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access();
15190 	env->bypass_spec_v1 = bpf_bypass_spec_v1();
15191 	env->bypass_spec_v4 = bpf_bypass_spec_v4();
15192 	env->bpf_capable = bpf_capable();
15193 
15194 	if (is_priv)
15195 		env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
15196 
15197 	env->explored_states = kvcalloc(state_htab_size(env),
15198 				       sizeof(struct bpf_verifier_state_list *),
15199 				       GFP_USER);
15200 	ret = -ENOMEM;
15201 	if (!env->explored_states)
15202 		goto skip_full_check;
15203 
15204 	ret = add_subprog_and_kfunc(env);
15205 	if (ret < 0)
15206 		goto skip_full_check;
15207 
15208 	ret = check_subprogs(env);
15209 	if (ret < 0)
15210 		goto skip_full_check;
15211 
15212 	ret = check_btf_info(env, attr, uattr);
15213 	if (ret < 0)
15214 		goto skip_full_check;
15215 
15216 	ret = check_attach_btf_id(env);
15217 	if (ret)
15218 		goto skip_full_check;
15219 
15220 	ret = resolve_pseudo_ldimm64(env);
15221 	if (ret < 0)
15222 		goto skip_full_check;
15223 
15224 	if (bpf_prog_is_dev_bound(env->prog->aux)) {
15225 		ret = bpf_prog_offload_verifier_prep(env->prog);
15226 		if (ret)
15227 			goto skip_full_check;
15228 	}
15229 
15230 	ret = check_cfg(env);
15231 	if (ret < 0)
15232 		goto skip_full_check;
15233 
15234 	ret = do_check_subprogs(env);
15235 	ret = ret ?: do_check_main(env);
15236 
15237 	if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
15238 		ret = bpf_prog_offload_finalize(env);
15239 
15240 skip_full_check:
15241 	kvfree(env->explored_states);
15242 
15243 	if (ret == 0)
15244 		ret = check_max_stack_depth(env);
15245 
15246 	/* instruction rewrites happen after this point */
15247 	if (ret == 0)
15248 		ret = optimize_bpf_loop(env);
15249 
15250 	if (is_priv) {
15251 		if (ret == 0)
15252 			opt_hard_wire_dead_code_branches(env);
15253 		if (ret == 0)
15254 			ret = opt_remove_dead_code(env);
15255 		if (ret == 0)
15256 			ret = opt_remove_nops(env);
15257 	} else {
15258 		if (ret == 0)
15259 			sanitize_dead_code(env);
15260 	}
15261 
15262 	if (ret == 0)
15263 		/* program is valid, convert *(u32*)(ctx + off) accesses */
15264 		ret = convert_ctx_accesses(env);
15265 
15266 	if (ret == 0)
15267 		ret = do_misc_fixups(env);
15268 
15269 	/* do 32-bit optimization after insn patching has done so those patched
15270 	 * insns could be handled correctly.
15271 	 */
15272 	if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
15273 		ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
15274 		env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
15275 								     : false;
15276 	}
15277 
15278 	if (ret == 0)
15279 		ret = fixup_call_args(env);
15280 
15281 	env->verification_time = ktime_get_ns() - start_time;
15282 	print_verification_stats(env);
15283 	env->prog->aux->verified_insns = env->insn_processed;
15284 
15285 	if (log->level && bpf_verifier_log_full(log))
15286 		ret = -ENOSPC;
15287 	if (log->level && !log->ubuf) {
15288 		ret = -EFAULT;
15289 		goto err_release_maps;
15290 	}
15291 
15292 	if (ret)
15293 		goto err_release_maps;
15294 
15295 	if (env->used_map_cnt) {
15296 		/* if program passed verifier, update used_maps in bpf_prog_info */
15297 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
15298 							  sizeof(env->used_maps[0]),
15299 							  GFP_KERNEL);
15300 
15301 		if (!env->prog->aux->used_maps) {
15302 			ret = -ENOMEM;
15303 			goto err_release_maps;
15304 		}
15305 
15306 		memcpy(env->prog->aux->used_maps, env->used_maps,
15307 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
15308 		env->prog->aux->used_map_cnt = env->used_map_cnt;
15309 	}
15310 	if (env->used_btf_cnt) {
15311 		/* if program passed verifier, update used_btfs in bpf_prog_aux */
15312 		env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
15313 							  sizeof(env->used_btfs[0]),
15314 							  GFP_KERNEL);
15315 		if (!env->prog->aux->used_btfs) {
15316 			ret = -ENOMEM;
15317 			goto err_release_maps;
15318 		}
15319 
15320 		memcpy(env->prog->aux->used_btfs, env->used_btfs,
15321 		       sizeof(env->used_btfs[0]) * env->used_btf_cnt);
15322 		env->prog->aux->used_btf_cnt = env->used_btf_cnt;
15323 	}
15324 	if (env->used_map_cnt || env->used_btf_cnt) {
15325 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
15326 		 * bpf_ld_imm64 instructions
15327 		 */
15328 		convert_pseudo_ld_imm64(env);
15329 	}
15330 
15331 	adjust_btf_func(env);
15332 
15333 err_release_maps:
15334 	if (!env->prog->aux->used_maps)
15335 		/* if we didn't copy map pointers into bpf_prog_info, release
15336 		 * them now. Otherwise free_used_maps() will release them.
15337 		 */
15338 		release_maps(env);
15339 	if (!env->prog->aux->used_btfs)
15340 		release_btfs(env);
15341 
15342 	/* extension progs temporarily inherit the attach_type of their targets
15343 	   for verification purposes, so set it back to zero before returning
15344 	 */
15345 	if (env->prog->type == BPF_PROG_TYPE_EXT)
15346 		env->prog->expected_attach_type = 0;
15347 
15348 	*prog = env->prog;
15349 err_unlock:
15350 	if (!is_priv)
15351 		mutex_unlock(&bpf_verifier_lock);
15352 	vfree(env->insn_aux_data);
15353 err_free_env:
15354 	kfree(env);
15355 	return ret;
15356 }
15357