1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/kernel.h> 8 #include <linux/types.h> 9 #include <linux/slab.h> 10 #include <linux/bpf.h> 11 #include <linux/btf.h> 12 #include <linux/bpf_verifier.h> 13 #include <linux/filter.h> 14 #include <net/netlink.h> 15 #include <linux/file.h> 16 #include <linux/vmalloc.h> 17 #include <linux/stringify.h> 18 #include <linux/bsearch.h> 19 #include <linux/sort.h> 20 #include <linux/perf_event.h> 21 #include <linux/ctype.h> 22 23 #include "disasm.h" 24 25 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 26 #define BPF_PROG_TYPE(_id, _name) \ 27 [_id] = & _name ## _verifier_ops, 28 #define BPF_MAP_TYPE(_id, _ops) 29 #include <linux/bpf_types.h> 30 #undef BPF_PROG_TYPE 31 #undef BPF_MAP_TYPE 32 }; 33 34 /* bpf_check() is a static code analyzer that walks eBPF program 35 * instruction by instruction and updates register/stack state. 36 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 37 * 38 * The first pass is depth-first-search to check that the program is a DAG. 39 * It rejects the following programs: 40 * - larger than BPF_MAXINSNS insns 41 * - if loop is present (detected via back-edge) 42 * - unreachable insns exist (shouldn't be a forest. program = one function) 43 * - out of bounds or malformed jumps 44 * The second pass is all possible path descent from the 1st insn. 45 * Since it's analyzing all pathes through the program, the length of the 46 * analysis is limited to 64k insn, which may be hit even if total number of 47 * insn is less then 4K, but there are too many branches that change stack/regs. 48 * Number of 'branches to be analyzed' is limited to 1k 49 * 50 * On entry to each instruction, each register has a type, and the instruction 51 * changes the types of the registers depending on instruction semantics. 52 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 53 * copied to R1. 54 * 55 * All registers are 64-bit. 56 * R0 - return register 57 * R1-R5 argument passing registers 58 * R6-R9 callee saved registers 59 * R10 - frame pointer read-only 60 * 61 * At the start of BPF program the register R1 contains a pointer to bpf_context 62 * and has type PTR_TO_CTX. 63 * 64 * Verifier tracks arithmetic operations on pointers in case: 65 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 66 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 67 * 1st insn copies R10 (which has FRAME_PTR) type into R1 68 * and 2nd arithmetic instruction is pattern matched to recognize 69 * that it wants to construct a pointer to some element within stack. 70 * So after 2nd insn, the register R1 has type PTR_TO_STACK 71 * (and -20 constant is saved for further stack bounds checking). 72 * Meaning that this reg is a pointer to stack plus known immediate constant. 73 * 74 * Most of the time the registers have SCALAR_VALUE type, which 75 * means the register has some value, but it's not a valid pointer. 76 * (like pointer plus pointer becomes SCALAR_VALUE type) 77 * 78 * When verifier sees load or store instructions the type of base register 79 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 80 * four pointer types recognized by check_mem_access() function. 81 * 82 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 83 * and the range of [ptr, ptr + map's value_size) is accessible. 84 * 85 * registers used to pass values to function calls are checked against 86 * function argument constraints. 87 * 88 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 89 * It means that the register type passed to this function must be 90 * PTR_TO_STACK and it will be used inside the function as 91 * 'pointer to map element key' 92 * 93 * For example the argument constraints for bpf_map_lookup_elem(): 94 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 95 * .arg1_type = ARG_CONST_MAP_PTR, 96 * .arg2_type = ARG_PTR_TO_MAP_KEY, 97 * 98 * ret_type says that this function returns 'pointer to map elem value or null' 99 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 100 * 2nd argument should be a pointer to stack, which will be used inside 101 * the helper function as a pointer to map element key. 102 * 103 * On the kernel side the helper function looks like: 104 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 105 * { 106 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 107 * void *key = (void *) (unsigned long) r2; 108 * void *value; 109 * 110 * here kernel can access 'key' and 'map' pointers safely, knowing that 111 * [key, key + map->key_size) bytes are valid and were initialized on 112 * the stack of eBPF program. 113 * } 114 * 115 * Corresponding eBPF program may look like: 116 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 117 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 118 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 119 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 120 * here verifier looks at prototype of map_lookup_elem() and sees: 121 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 122 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 123 * 124 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 125 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 126 * and were initialized prior to this call. 127 * If it's ok, then verifier allows this BPF_CALL insn and looks at 128 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 129 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 130 * returns ether pointer to map value or NULL. 131 * 132 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 133 * insn, the register holding that pointer in the true branch changes state to 134 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 135 * branch. See check_cond_jmp_op(). 136 * 137 * After the call R0 is set to return type of the function and registers R1-R5 138 * are set to NOT_INIT to indicate that they are no longer readable. 139 * 140 * The following reference types represent a potential reference to a kernel 141 * resource which, after first being allocated, must be checked and freed by 142 * the BPF program: 143 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 144 * 145 * When the verifier sees a helper call return a reference type, it allocates a 146 * pointer id for the reference and stores it in the current function state. 147 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 148 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 149 * passes through a NULL-check conditional. For the branch wherein the state is 150 * changed to CONST_IMM, the verifier releases the reference. 151 * 152 * For each helper function that allocates a reference, such as 153 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 154 * bpf_sk_release(). When a reference type passes into the release function, 155 * the verifier also releases the reference. If any unchecked or unreleased 156 * reference remains at the end of the program, the verifier rejects it. 157 */ 158 159 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 160 struct bpf_verifier_stack_elem { 161 /* verifer state is 'st' 162 * before processing instruction 'insn_idx' 163 * and after processing instruction 'prev_insn_idx' 164 */ 165 struct bpf_verifier_state st; 166 int insn_idx; 167 int prev_insn_idx; 168 struct bpf_verifier_stack_elem *next; 169 }; 170 171 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 172 #define BPF_COMPLEXITY_LIMIT_STATES 64 173 174 #define BPF_MAP_PTR_UNPRIV 1UL 175 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 176 POISON_POINTER_DELTA)) 177 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 178 179 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 180 { 181 return BPF_MAP_PTR(aux->map_state) == BPF_MAP_PTR_POISON; 182 } 183 184 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 185 { 186 return aux->map_state & BPF_MAP_PTR_UNPRIV; 187 } 188 189 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 190 const struct bpf_map *map, bool unpriv) 191 { 192 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 193 unpriv |= bpf_map_ptr_unpriv(aux); 194 aux->map_state = (unsigned long)map | 195 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 196 } 197 198 struct bpf_call_arg_meta { 199 struct bpf_map *map_ptr; 200 bool raw_mode; 201 bool pkt_access; 202 int regno; 203 int access_size; 204 s64 msize_smax_value; 205 u64 msize_umax_value; 206 int ref_obj_id; 207 int func_id; 208 u32 btf_id; 209 }; 210 211 struct btf *btf_vmlinux; 212 213 static DEFINE_MUTEX(bpf_verifier_lock); 214 215 static const struct bpf_line_info * 216 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 217 { 218 const struct bpf_line_info *linfo; 219 const struct bpf_prog *prog; 220 u32 i, nr_linfo; 221 222 prog = env->prog; 223 nr_linfo = prog->aux->nr_linfo; 224 225 if (!nr_linfo || insn_off >= prog->len) 226 return NULL; 227 228 linfo = prog->aux->linfo; 229 for (i = 1; i < nr_linfo; i++) 230 if (insn_off < linfo[i].insn_off) 231 break; 232 233 return &linfo[i - 1]; 234 } 235 236 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, 237 va_list args) 238 { 239 unsigned int n; 240 241 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 242 243 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 244 "verifier log line truncated - local buffer too short\n"); 245 246 n = min(log->len_total - log->len_used - 1, n); 247 log->kbuf[n] = '\0'; 248 249 if (log->level == BPF_LOG_KERNEL) { 250 pr_err("BPF:%s\n", log->kbuf); 251 return; 252 } 253 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 254 log->len_used += n; 255 else 256 log->ubuf = NULL; 257 } 258 259 /* log_level controls verbosity level of eBPF verifier. 260 * bpf_verifier_log_write() is used to dump the verification trace to the log, 261 * so the user can figure out what's wrong with the program 262 */ 263 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 264 const char *fmt, ...) 265 { 266 va_list args; 267 268 if (!bpf_verifier_log_needed(&env->log)) 269 return; 270 271 va_start(args, fmt); 272 bpf_verifier_vlog(&env->log, fmt, args); 273 va_end(args); 274 } 275 EXPORT_SYMBOL_GPL(bpf_verifier_log_write); 276 277 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 278 { 279 struct bpf_verifier_env *env = private_data; 280 va_list args; 281 282 if (!bpf_verifier_log_needed(&env->log)) 283 return; 284 285 va_start(args, fmt); 286 bpf_verifier_vlog(&env->log, fmt, args); 287 va_end(args); 288 } 289 290 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log, 291 const char *fmt, ...) 292 { 293 va_list args; 294 295 if (!bpf_verifier_log_needed(log)) 296 return; 297 298 va_start(args, fmt); 299 bpf_verifier_vlog(log, fmt, args); 300 va_end(args); 301 } 302 303 static const char *ltrim(const char *s) 304 { 305 while (isspace(*s)) 306 s++; 307 308 return s; 309 } 310 311 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 312 u32 insn_off, 313 const char *prefix_fmt, ...) 314 { 315 const struct bpf_line_info *linfo; 316 317 if (!bpf_verifier_log_needed(&env->log)) 318 return; 319 320 linfo = find_linfo(env, insn_off); 321 if (!linfo || linfo == env->prev_linfo) 322 return; 323 324 if (prefix_fmt) { 325 va_list args; 326 327 va_start(args, prefix_fmt); 328 bpf_verifier_vlog(&env->log, prefix_fmt, args); 329 va_end(args); 330 } 331 332 verbose(env, "%s\n", 333 ltrim(btf_name_by_offset(env->prog->aux->btf, 334 linfo->line_off))); 335 336 env->prev_linfo = linfo; 337 } 338 339 static bool type_is_pkt_pointer(enum bpf_reg_type type) 340 { 341 return type == PTR_TO_PACKET || 342 type == PTR_TO_PACKET_META; 343 } 344 345 static bool type_is_sk_pointer(enum bpf_reg_type type) 346 { 347 return type == PTR_TO_SOCKET || 348 type == PTR_TO_SOCK_COMMON || 349 type == PTR_TO_TCP_SOCK || 350 type == PTR_TO_XDP_SOCK; 351 } 352 353 static bool reg_type_may_be_null(enum bpf_reg_type type) 354 { 355 return type == PTR_TO_MAP_VALUE_OR_NULL || 356 type == PTR_TO_SOCKET_OR_NULL || 357 type == PTR_TO_SOCK_COMMON_OR_NULL || 358 type == PTR_TO_TCP_SOCK_OR_NULL; 359 } 360 361 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 362 { 363 return reg->type == PTR_TO_MAP_VALUE && 364 map_value_has_spin_lock(reg->map_ptr); 365 } 366 367 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type) 368 { 369 return type == PTR_TO_SOCKET || 370 type == PTR_TO_SOCKET_OR_NULL || 371 type == PTR_TO_TCP_SOCK || 372 type == PTR_TO_TCP_SOCK_OR_NULL; 373 } 374 375 static bool arg_type_may_be_refcounted(enum bpf_arg_type type) 376 { 377 return type == ARG_PTR_TO_SOCK_COMMON; 378 } 379 380 /* Determine whether the function releases some resources allocated by another 381 * function call. The first reference type argument will be assumed to be 382 * released by release_reference(). 383 */ 384 static bool is_release_function(enum bpf_func_id func_id) 385 { 386 return func_id == BPF_FUNC_sk_release; 387 } 388 389 static bool is_acquire_function(enum bpf_func_id func_id) 390 { 391 return func_id == BPF_FUNC_sk_lookup_tcp || 392 func_id == BPF_FUNC_sk_lookup_udp || 393 func_id == BPF_FUNC_skc_lookup_tcp; 394 } 395 396 static bool is_ptr_cast_function(enum bpf_func_id func_id) 397 { 398 return func_id == BPF_FUNC_tcp_sock || 399 func_id == BPF_FUNC_sk_fullsock; 400 } 401 402 /* string representation of 'enum bpf_reg_type' */ 403 static const char * const reg_type_str[] = { 404 [NOT_INIT] = "?", 405 [SCALAR_VALUE] = "inv", 406 [PTR_TO_CTX] = "ctx", 407 [CONST_PTR_TO_MAP] = "map_ptr", 408 [PTR_TO_MAP_VALUE] = "map_value", 409 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null", 410 [PTR_TO_STACK] = "fp", 411 [PTR_TO_PACKET] = "pkt", 412 [PTR_TO_PACKET_META] = "pkt_meta", 413 [PTR_TO_PACKET_END] = "pkt_end", 414 [PTR_TO_FLOW_KEYS] = "flow_keys", 415 [PTR_TO_SOCKET] = "sock", 416 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null", 417 [PTR_TO_SOCK_COMMON] = "sock_common", 418 [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null", 419 [PTR_TO_TCP_SOCK] = "tcp_sock", 420 [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null", 421 [PTR_TO_TP_BUFFER] = "tp_buffer", 422 [PTR_TO_XDP_SOCK] = "xdp_sock", 423 [PTR_TO_BTF_ID] = "ptr_", 424 }; 425 426 static char slot_type_char[] = { 427 [STACK_INVALID] = '?', 428 [STACK_SPILL] = 'r', 429 [STACK_MISC] = 'm', 430 [STACK_ZERO] = '0', 431 }; 432 433 static void print_liveness(struct bpf_verifier_env *env, 434 enum bpf_reg_liveness live) 435 { 436 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 437 verbose(env, "_"); 438 if (live & REG_LIVE_READ) 439 verbose(env, "r"); 440 if (live & REG_LIVE_WRITTEN) 441 verbose(env, "w"); 442 if (live & REG_LIVE_DONE) 443 verbose(env, "D"); 444 } 445 446 static struct bpf_func_state *func(struct bpf_verifier_env *env, 447 const struct bpf_reg_state *reg) 448 { 449 struct bpf_verifier_state *cur = env->cur_state; 450 451 return cur->frame[reg->frameno]; 452 } 453 454 const char *kernel_type_name(u32 id) 455 { 456 return btf_name_by_offset(btf_vmlinux, 457 btf_type_by_id(btf_vmlinux, id)->name_off); 458 } 459 460 static void print_verifier_state(struct bpf_verifier_env *env, 461 const struct bpf_func_state *state) 462 { 463 const struct bpf_reg_state *reg; 464 enum bpf_reg_type t; 465 int i; 466 467 if (state->frameno) 468 verbose(env, " frame%d:", state->frameno); 469 for (i = 0; i < MAX_BPF_REG; i++) { 470 reg = &state->regs[i]; 471 t = reg->type; 472 if (t == NOT_INIT) 473 continue; 474 verbose(env, " R%d", i); 475 print_liveness(env, reg->live); 476 verbose(env, "=%s", reg_type_str[t]); 477 if (t == SCALAR_VALUE && reg->precise) 478 verbose(env, "P"); 479 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 480 tnum_is_const(reg->var_off)) { 481 /* reg->off should be 0 for SCALAR_VALUE */ 482 verbose(env, "%lld", reg->var_off.value + reg->off); 483 } else { 484 if (t == PTR_TO_BTF_ID) 485 verbose(env, "%s", kernel_type_name(reg->btf_id)); 486 verbose(env, "(id=%d", reg->id); 487 if (reg_type_may_be_refcounted_or_null(t)) 488 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id); 489 if (t != SCALAR_VALUE) 490 verbose(env, ",off=%d", reg->off); 491 if (type_is_pkt_pointer(t)) 492 verbose(env, ",r=%d", reg->range); 493 else if (t == CONST_PTR_TO_MAP || 494 t == PTR_TO_MAP_VALUE || 495 t == PTR_TO_MAP_VALUE_OR_NULL) 496 verbose(env, ",ks=%d,vs=%d", 497 reg->map_ptr->key_size, 498 reg->map_ptr->value_size); 499 if (tnum_is_const(reg->var_off)) { 500 /* Typically an immediate SCALAR_VALUE, but 501 * could be a pointer whose offset is too big 502 * for reg->off 503 */ 504 verbose(env, ",imm=%llx", reg->var_off.value); 505 } else { 506 if (reg->smin_value != reg->umin_value && 507 reg->smin_value != S64_MIN) 508 verbose(env, ",smin_value=%lld", 509 (long long)reg->smin_value); 510 if (reg->smax_value != reg->umax_value && 511 reg->smax_value != S64_MAX) 512 verbose(env, ",smax_value=%lld", 513 (long long)reg->smax_value); 514 if (reg->umin_value != 0) 515 verbose(env, ",umin_value=%llu", 516 (unsigned long long)reg->umin_value); 517 if (reg->umax_value != U64_MAX) 518 verbose(env, ",umax_value=%llu", 519 (unsigned long long)reg->umax_value); 520 if (!tnum_is_unknown(reg->var_off)) { 521 char tn_buf[48]; 522 523 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 524 verbose(env, ",var_off=%s", tn_buf); 525 } 526 } 527 verbose(env, ")"); 528 } 529 } 530 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 531 char types_buf[BPF_REG_SIZE + 1]; 532 bool valid = false; 533 int j; 534 535 for (j = 0; j < BPF_REG_SIZE; j++) { 536 if (state->stack[i].slot_type[j] != STACK_INVALID) 537 valid = true; 538 types_buf[j] = slot_type_char[ 539 state->stack[i].slot_type[j]]; 540 } 541 types_buf[BPF_REG_SIZE] = 0; 542 if (!valid) 543 continue; 544 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 545 print_liveness(env, state->stack[i].spilled_ptr.live); 546 if (state->stack[i].slot_type[0] == STACK_SPILL) { 547 reg = &state->stack[i].spilled_ptr; 548 t = reg->type; 549 verbose(env, "=%s", reg_type_str[t]); 550 if (t == SCALAR_VALUE && reg->precise) 551 verbose(env, "P"); 552 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) 553 verbose(env, "%lld", reg->var_off.value + reg->off); 554 } else { 555 verbose(env, "=%s", types_buf); 556 } 557 } 558 if (state->acquired_refs && state->refs[0].id) { 559 verbose(env, " refs=%d", state->refs[0].id); 560 for (i = 1; i < state->acquired_refs; i++) 561 if (state->refs[i].id) 562 verbose(env, ",%d", state->refs[i].id); 563 } 564 verbose(env, "\n"); 565 } 566 567 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 568 static int copy_##NAME##_state(struct bpf_func_state *dst, \ 569 const struct bpf_func_state *src) \ 570 { \ 571 if (!src->FIELD) \ 572 return 0; \ 573 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \ 574 /* internal bug, make state invalid to reject the program */ \ 575 memset(dst, 0, sizeof(*dst)); \ 576 return -EFAULT; \ 577 } \ 578 memcpy(dst->FIELD, src->FIELD, \ 579 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \ 580 return 0; \ 581 } 582 /* copy_reference_state() */ 583 COPY_STATE_FN(reference, acquired_refs, refs, 1) 584 /* copy_stack_state() */ 585 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 586 #undef COPY_STATE_FN 587 588 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 589 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \ 590 bool copy_old) \ 591 { \ 592 u32 old_size = state->COUNT; \ 593 struct bpf_##NAME##_state *new_##FIELD; \ 594 int slot = size / SIZE; \ 595 \ 596 if (size <= old_size || !size) { \ 597 if (copy_old) \ 598 return 0; \ 599 state->COUNT = slot * SIZE; \ 600 if (!size && old_size) { \ 601 kfree(state->FIELD); \ 602 state->FIELD = NULL; \ 603 } \ 604 return 0; \ 605 } \ 606 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \ 607 GFP_KERNEL); \ 608 if (!new_##FIELD) \ 609 return -ENOMEM; \ 610 if (copy_old) { \ 611 if (state->FIELD) \ 612 memcpy(new_##FIELD, state->FIELD, \ 613 sizeof(*new_##FIELD) * (old_size / SIZE)); \ 614 memset(new_##FIELD + old_size / SIZE, 0, \ 615 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \ 616 } \ 617 state->COUNT = slot * SIZE; \ 618 kfree(state->FIELD); \ 619 state->FIELD = new_##FIELD; \ 620 return 0; \ 621 } 622 /* realloc_reference_state() */ 623 REALLOC_STATE_FN(reference, acquired_refs, refs, 1) 624 /* realloc_stack_state() */ 625 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 626 #undef REALLOC_STATE_FN 627 628 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to 629 * make it consume minimal amount of memory. check_stack_write() access from 630 * the program calls into realloc_func_state() to grow the stack size. 631 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state 632 * which realloc_stack_state() copies over. It points to previous 633 * bpf_verifier_state which is never reallocated. 634 */ 635 static int realloc_func_state(struct bpf_func_state *state, int stack_size, 636 int refs_size, bool copy_old) 637 { 638 int err = realloc_reference_state(state, refs_size, copy_old); 639 if (err) 640 return err; 641 return realloc_stack_state(state, stack_size, copy_old); 642 } 643 644 /* Acquire a pointer id from the env and update the state->refs to include 645 * this new pointer reference. 646 * On success, returns a valid pointer id to associate with the register 647 * On failure, returns a negative errno. 648 */ 649 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 650 { 651 struct bpf_func_state *state = cur_func(env); 652 int new_ofs = state->acquired_refs; 653 int id, err; 654 655 err = realloc_reference_state(state, state->acquired_refs + 1, true); 656 if (err) 657 return err; 658 id = ++env->id_gen; 659 state->refs[new_ofs].id = id; 660 state->refs[new_ofs].insn_idx = insn_idx; 661 662 return id; 663 } 664 665 /* release function corresponding to acquire_reference_state(). Idempotent. */ 666 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 667 { 668 int i, last_idx; 669 670 last_idx = state->acquired_refs - 1; 671 for (i = 0; i < state->acquired_refs; i++) { 672 if (state->refs[i].id == ptr_id) { 673 if (last_idx && i != last_idx) 674 memcpy(&state->refs[i], &state->refs[last_idx], 675 sizeof(*state->refs)); 676 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 677 state->acquired_refs--; 678 return 0; 679 } 680 } 681 return -EINVAL; 682 } 683 684 static int transfer_reference_state(struct bpf_func_state *dst, 685 struct bpf_func_state *src) 686 { 687 int err = realloc_reference_state(dst, src->acquired_refs, false); 688 if (err) 689 return err; 690 err = copy_reference_state(dst, src); 691 if (err) 692 return err; 693 return 0; 694 } 695 696 static void free_func_state(struct bpf_func_state *state) 697 { 698 if (!state) 699 return; 700 kfree(state->refs); 701 kfree(state->stack); 702 kfree(state); 703 } 704 705 static void clear_jmp_history(struct bpf_verifier_state *state) 706 { 707 kfree(state->jmp_history); 708 state->jmp_history = NULL; 709 state->jmp_history_cnt = 0; 710 } 711 712 static void free_verifier_state(struct bpf_verifier_state *state, 713 bool free_self) 714 { 715 int i; 716 717 for (i = 0; i <= state->curframe; i++) { 718 free_func_state(state->frame[i]); 719 state->frame[i] = NULL; 720 } 721 clear_jmp_history(state); 722 if (free_self) 723 kfree(state); 724 } 725 726 /* copy verifier state from src to dst growing dst stack space 727 * when necessary to accommodate larger src stack 728 */ 729 static int copy_func_state(struct bpf_func_state *dst, 730 const struct bpf_func_state *src) 731 { 732 int err; 733 734 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs, 735 false); 736 if (err) 737 return err; 738 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 739 err = copy_reference_state(dst, src); 740 if (err) 741 return err; 742 return copy_stack_state(dst, src); 743 } 744 745 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 746 const struct bpf_verifier_state *src) 747 { 748 struct bpf_func_state *dst; 749 u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt; 750 int i, err; 751 752 if (dst_state->jmp_history_cnt < src->jmp_history_cnt) { 753 kfree(dst_state->jmp_history); 754 dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER); 755 if (!dst_state->jmp_history) 756 return -ENOMEM; 757 } 758 memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz); 759 dst_state->jmp_history_cnt = src->jmp_history_cnt; 760 761 /* if dst has more stack frames then src frame, free them */ 762 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 763 free_func_state(dst_state->frame[i]); 764 dst_state->frame[i] = NULL; 765 } 766 dst_state->speculative = src->speculative; 767 dst_state->curframe = src->curframe; 768 dst_state->active_spin_lock = src->active_spin_lock; 769 dst_state->branches = src->branches; 770 dst_state->parent = src->parent; 771 dst_state->first_insn_idx = src->first_insn_idx; 772 dst_state->last_insn_idx = src->last_insn_idx; 773 for (i = 0; i <= src->curframe; i++) { 774 dst = dst_state->frame[i]; 775 if (!dst) { 776 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 777 if (!dst) 778 return -ENOMEM; 779 dst_state->frame[i] = dst; 780 } 781 err = copy_func_state(dst, src->frame[i]); 782 if (err) 783 return err; 784 } 785 return 0; 786 } 787 788 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 789 { 790 while (st) { 791 u32 br = --st->branches; 792 793 /* WARN_ON(br > 1) technically makes sense here, 794 * but see comment in push_stack(), hence: 795 */ 796 WARN_ONCE((int)br < 0, 797 "BUG update_branch_counts:branches_to_explore=%d\n", 798 br); 799 if (br) 800 break; 801 st = st->parent; 802 } 803 } 804 805 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 806 int *insn_idx) 807 { 808 struct bpf_verifier_state *cur = env->cur_state; 809 struct bpf_verifier_stack_elem *elem, *head = env->head; 810 int err; 811 812 if (env->head == NULL) 813 return -ENOENT; 814 815 if (cur) { 816 err = copy_verifier_state(cur, &head->st); 817 if (err) 818 return err; 819 } 820 if (insn_idx) 821 *insn_idx = head->insn_idx; 822 if (prev_insn_idx) 823 *prev_insn_idx = head->prev_insn_idx; 824 elem = head->next; 825 free_verifier_state(&head->st, false); 826 kfree(head); 827 env->head = elem; 828 env->stack_size--; 829 return 0; 830 } 831 832 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 833 int insn_idx, int prev_insn_idx, 834 bool speculative) 835 { 836 struct bpf_verifier_state *cur = env->cur_state; 837 struct bpf_verifier_stack_elem *elem; 838 int err; 839 840 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 841 if (!elem) 842 goto err; 843 844 elem->insn_idx = insn_idx; 845 elem->prev_insn_idx = prev_insn_idx; 846 elem->next = env->head; 847 env->head = elem; 848 env->stack_size++; 849 err = copy_verifier_state(&elem->st, cur); 850 if (err) 851 goto err; 852 elem->st.speculative |= speculative; 853 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 854 verbose(env, "The sequence of %d jumps is too complex.\n", 855 env->stack_size); 856 goto err; 857 } 858 if (elem->st.parent) { 859 ++elem->st.parent->branches; 860 /* WARN_ON(branches > 2) technically makes sense here, 861 * but 862 * 1. speculative states will bump 'branches' for non-branch 863 * instructions 864 * 2. is_state_visited() heuristics may decide not to create 865 * a new state for a sequence of branches and all such current 866 * and cloned states will be pointing to a single parent state 867 * which might have large 'branches' count. 868 */ 869 } 870 return &elem->st; 871 err: 872 free_verifier_state(env->cur_state, true); 873 env->cur_state = NULL; 874 /* pop all elements and return */ 875 while (!pop_stack(env, NULL, NULL)); 876 return NULL; 877 } 878 879 #define CALLER_SAVED_REGS 6 880 static const int caller_saved[CALLER_SAVED_REGS] = { 881 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 882 }; 883 884 static void __mark_reg_not_init(struct bpf_reg_state *reg); 885 886 /* Mark the unknown part of a register (variable offset or scalar value) as 887 * known to have the value @imm. 888 */ 889 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 890 { 891 /* Clear id, off, and union(map_ptr, range) */ 892 memset(((u8 *)reg) + sizeof(reg->type), 0, 893 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 894 reg->var_off = tnum_const(imm); 895 reg->smin_value = (s64)imm; 896 reg->smax_value = (s64)imm; 897 reg->umin_value = imm; 898 reg->umax_value = imm; 899 } 900 901 /* Mark the 'variable offset' part of a register as zero. This should be 902 * used only on registers holding a pointer type. 903 */ 904 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 905 { 906 __mark_reg_known(reg, 0); 907 } 908 909 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 910 { 911 __mark_reg_known(reg, 0); 912 reg->type = SCALAR_VALUE; 913 } 914 915 static void mark_reg_known_zero(struct bpf_verifier_env *env, 916 struct bpf_reg_state *regs, u32 regno) 917 { 918 if (WARN_ON(regno >= MAX_BPF_REG)) { 919 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 920 /* Something bad happened, let's kill all regs */ 921 for (regno = 0; regno < MAX_BPF_REG; regno++) 922 __mark_reg_not_init(regs + regno); 923 return; 924 } 925 __mark_reg_known_zero(regs + regno); 926 } 927 928 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 929 { 930 return type_is_pkt_pointer(reg->type); 931 } 932 933 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 934 { 935 return reg_is_pkt_pointer(reg) || 936 reg->type == PTR_TO_PACKET_END; 937 } 938 939 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 940 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 941 enum bpf_reg_type which) 942 { 943 /* The register can already have a range from prior markings. 944 * This is fine as long as it hasn't been advanced from its 945 * origin. 946 */ 947 return reg->type == which && 948 reg->id == 0 && 949 reg->off == 0 && 950 tnum_equals_const(reg->var_off, 0); 951 } 952 953 /* Attempts to improve min/max values based on var_off information */ 954 static void __update_reg_bounds(struct bpf_reg_state *reg) 955 { 956 /* min signed is max(sign bit) | min(other bits) */ 957 reg->smin_value = max_t(s64, reg->smin_value, 958 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 959 /* max signed is min(sign bit) | max(other bits) */ 960 reg->smax_value = min_t(s64, reg->smax_value, 961 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 962 reg->umin_value = max(reg->umin_value, reg->var_off.value); 963 reg->umax_value = min(reg->umax_value, 964 reg->var_off.value | reg->var_off.mask); 965 } 966 967 /* Uses signed min/max values to inform unsigned, and vice-versa */ 968 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 969 { 970 /* Learn sign from signed bounds. 971 * If we cannot cross the sign boundary, then signed and unsigned bounds 972 * are the same, so combine. This works even in the negative case, e.g. 973 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 974 */ 975 if (reg->smin_value >= 0 || reg->smax_value < 0) { 976 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 977 reg->umin_value); 978 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 979 reg->umax_value); 980 return; 981 } 982 /* Learn sign from unsigned bounds. Signed bounds cross the sign 983 * boundary, so we must be careful. 984 */ 985 if ((s64)reg->umax_value >= 0) { 986 /* Positive. We can't learn anything from the smin, but smax 987 * is positive, hence safe. 988 */ 989 reg->smin_value = reg->umin_value; 990 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 991 reg->umax_value); 992 } else if ((s64)reg->umin_value < 0) { 993 /* Negative. We can't learn anything from the smax, but smin 994 * is negative, hence safe. 995 */ 996 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 997 reg->umin_value); 998 reg->smax_value = reg->umax_value; 999 } 1000 } 1001 1002 /* Attempts to improve var_off based on unsigned min/max information */ 1003 static void __reg_bound_offset(struct bpf_reg_state *reg) 1004 { 1005 reg->var_off = tnum_intersect(reg->var_off, 1006 tnum_range(reg->umin_value, 1007 reg->umax_value)); 1008 } 1009 1010 /* Reset the min/max bounds of a register */ 1011 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 1012 { 1013 reg->smin_value = S64_MIN; 1014 reg->smax_value = S64_MAX; 1015 reg->umin_value = 0; 1016 reg->umax_value = U64_MAX; 1017 } 1018 1019 /* Mark a register as having a completely unknown (scalar) value. */ 1020 static void __mark_reg_unknown(struct bpf_reg_state *reg) 1021 { 1022 /* 1023 * Clear type, id, off, and union(map_ptr, range) and 1024 * padding between 'type' and union 1025 */ 1026 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 1027 reg->type = SCALAR_VALUE; 1028 reg->var_off = tnum_unknown; 1029 reg->frameno = 0; 1030 __mark_reg_unbounded(reg); 1031 } 1032 1033 static void mark_reg_unknown(struct bpf_verifier_env *env, 1034 struct bpf_reg_state *regs, u32 regno) 1035 { 1036 if (WARN_ON(regno >= MAX_BPF_REG)) { 1037 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 1038 /* Something bad happened, let's kill all regs except FP */ 1039 for (regno = 0; regno < BPF_REG_FP; regno++) 1040 __mark_reg_not_init(regs + regno); 1041 return; 1042 } 1043 regs += regno; 1044 __mark_reg_unknown(regs); 1045 /* constant backtracking is enabled for root without bpf2bpf calls */ 1046 regs->precise = env->subprog_cnt > 1 || !env->allow_ptr_leaks ? 1047 true : false; 1048 } 1049 1050 static void __mark_reg_not_init(struct bpf_reg_state *reg) 1051 { 1052 __mark_reg_unknown(reg); 1053 reg->type = NOT_INIT; 1054 } 1055 1056 static void mark_reg_not_init(struct bpf_verifier_env *env, 1057 struct bpf_reg_state *regs, u32 regno) 1058 { 1059 if (WARN_ON(regno >= MAX_BPF_REG)) { 1060 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 1061 /* Something bad happened, let's kill all regs except FP */ 1062 for (regno = 0; regno < BPF_REG_FP; regno++) 1063 __mark_reg_not_init(regs + regno); 1064 return; 1065 } 1066 __mark_reg_not_init(regs + regno); 1067 } 1068 1069 #define DEF_NOT_SUBREG (0) 1070 static void init_reg_state(struct bpf_verifier_env *env, 1071 struct bpf_func_state *state) 1072 { 1073 struct bpf_reg_state *regs = state->regs; 1074 int i; 1075 1076 for (i = 0; i < MAX_BPF_REG; i++) { 1077 mark_reg_not_init(env, regs, i); 1078 regs[i].live = REG_LIVE_NONE; 1079 regs[i].parent = NULL; 1080 regs[i].subreg_def = DEF_NOT_SUBREG; 1081 } 1082 1083 /* frame pointer */ 1084 regs[BPF_REG_FP].type = PTR_TO_STACK; 1085 mark_reg_known_zero(env, regs, BPF_REG_FP); 1086 regs[BPF_REG_FP].frameno = state->frameno; 1087 1088 /* 1st arg to a function */ 1089 regs[BPF_REG_1].type = PTR_TO_CTX; 1090 mark_reg_known_zero(env, regs, BPF_REG_1); 1091 } 1092 1093 #define BPF_MAIN_FUNC (-1) 1094 static void init_func_state(struct bpf_verifier_env *env, 1095 struct bpf_func_state *state, 1096 int callsite, int frameno, int subprogno) 1097 { 1098 state->callsite = callsite; 1099 state->frameno = frameno; 1100 state->subprogno = subprogno; 1101 init_reg_state(env, state); 1102 } 1103 1104 enum reg_arg_type { 1105 SRC_OP, /* register is used as source operand */ 1106 DST_OP, /* register is used as destination operand */ 1107 DST_OP_NO_MARK /* same as above, check only, don't mark */ 1108 }; 1109 1110 static int cmp_subprogs(const void *a, const void *b) 1111 { 1112 return ((struct bpf_subprog_info *)a)->start - 1113 ((struct bpf_subprog_info *)b)->start; 1114 } 1115 1116 static int find_subprog(struct bpf_verifier_env *env, int off) 1117 { 1118 struct bpf_subprog_info *p; 1119 1120 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 1121 sizeof(env->subprog_info[0]), cmp_subprogs); 1122 if (!p) 1123 return -ENOENT; 1124 return p - env->subprog_info; 1125 1126 } 1127 1128 static int add_subprog(struct bpf_verifier_env *env, int off) 1129 { 1130 int insn_cnt = env->prog->len; 1131 int ret; 1132 1133 if (off >= insn_cnt || off < 0) { 1134 verbose(env, "call to invalid destination\n"); 1135 return -EINVAL; 1136 } 1137 ret = find_subprog(env, off); 1138 if (ret >= 0) 1139 return 0; 1140 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 1141 verbose(env, "too many subprograms\n"); 1142 return -E2BIG; 1143 } 1144 env->subprog_info[env->subprog_cnt++].start = off; 1145 sort(env->subprog_info, env->subprog_cnt, 1146 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 1147 return 0; 1148 } 1149 1150 static int check_subprogs(struct bpf_verifier_env *env) 1151 { 1152 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0; 1153 struct bpf_subprog_info *subprog = env->subprog_info; 1154 struct bpf_insn *insn = env->prog->insnsi; 1155 int insn_cnt = env->prog->len; 1156 1157 /* Add entry function. */ 1158 ret = add_subprog(env, 0); 1159 if (ret < 0) 1160 return ret; 1161 1162 /* determine subprog starts. The end is one before the next starts */ 1163 for (i = 0; i < insn_cnt; i++) { 1164 if (insn[i].code != (BPF_JMP | BPF_CALL)) 1165 continue; 1166 if (insn[i].src_reg != BPF_PSEUDO_CALL) 1167 continue; 1168 if (!env->allow_ptr_leaks) { 1169 verbose(env, "function calls to other bpf functions are allowed for root only\n"); 1170 return -EPERM; 1171 } 1172 ret = add_subprog(env, i + insn[i].imm + 1); 1173 if (ret < 0) 1174 return ret; 1175 } 1176 1177 /* Add a fake 'exit' subprog which could simplify subprog iteration 1178 * logic. 'subprog_cnt' should not be increased. 1179 */ 1180 subprog[env->subprog_cnt].start = insn_cnt; 1181 1182 if (env->log.level & BPF_LOG_LEVEL2) 1183 for (i = 0; i < env->subprog_cnt; i++) 1184 verbose(env, "func#%d @%d\n", i, subprog[i].start); 1185 1186 /* now check that all jumps are within the same subprog */ 1187 subprog_start = subprog[cur_subprog].start; 1188 subprog_end = subprog[cur_subprog + 1].start; 1189 for (i = 0; i < insn_cnt; i++) { 1190 u8 code = insn[i].code; 1191 1192 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 1193 goto next; 1194 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 1195 goto next; 1196 off = i + insn[i].off + 1; 1197 if (off < subprog_start || off >= subprog_end) { 1198 verbose(env, "jump out of range from insn %d to %d\n", i, off); 1199 return -EINVAL; 1200 } 1201 next: 1202 if (i == subprog_end - 1) { 1203 /* to avoid fall-through from one subprog into another 1204 * the last insn of the subprog should be either exit 1205 * or unconditional jump back 1206 */ 1207 if (code != (BPF_JMP | BPF_EXIT) && 1208 code != (BPF_JMP | BPF_JA)) { 1209 verbose(env, "last insn is not an exit or jmp\n"); 1210 return -EINVAL; 1211 } 1212 subprog_start = subprog_end; 1213 cur_subprog++; 1214 if (cur_subprog < env->subprog_cnt) 1215 subprog_end = subprog[cur_subprog + 1].start; 1216 } 1217 } 1218 return 0; 1219 } 1220 1221 /* Parentage chain of this register (or stack slot) should take care of all 1222 * issues like callee-saved registers, stack slot allocation time, etc. 1223 */ 1224 static int mark_reg_read(struct bpf_verifier_env *env, 1225 const struct bpf_reg_state *state, 1226 struct bpf_reg_state *parent, u8 flag) 1227 { 1228 bool writes = parent == state->parent; /* Observe write marks */ 1229 int cnt = 0; 1230 1231 while (parent) { 1232 /* if read wasn't screened by an earlier write ... */ 1233 if (writes && state->live & REG_LIVE_WRITTEN) 1234 break; 1235 if (parent->live & REG_LIVE_DONE) { 1236 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 1237 reg_type_str[parent->type], 1238 parent->var_off.value, parent->off); 1239 return -EFAULT; 1240 } 1241 /* The first condition is more likely to be true than the 1242 * second, checked it first. 1243 */ 1244 if ((parent->live & REG_LIVE_READ) == flag || 1245 parent->live & REG_LIVE_READ64) 1246 /* The parentage chain never changes and 1247 * this parent was already marked as LIVE_READ. 1248 * There is no need to keep walking the chain again and 1249 * keep re-marking all parents as LIVE_READ. 1250 * This case happens when the same register is read 1251 * multiple times without writes into it in-between. 1252 * Also, if parent has the stronger REG_LIVE_READ64 set, 1253 * then no need to set the weak REG_LIVE_READ32. 1254 */ 1255 break; 1256 /* ... then we depend on parent's value */ 1257 parent->live |= flag; 1258 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 1259 if (flag == REG_LIVE_READ64) 1260 parent->live &= ~REG_LIVE_READ32; 1261 state = parent; 1262 parent = state->parent; 1263 writes = true; 1264 cnt++; 1265 } 1266 1267 if (env->longest_mark_read_walk < cnt) 1268 env->longest_mark_read_walk = cnt; 1269 return 0; 1270 } 1271 1272 /* This function is supposed to be used by the following 32-bit optimization 1273 * code only. It returns TRUE if the source or destination register operates 1274 * on 64-bit, otherwise return FALSE. 1275 */ 1276 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 1277 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 1278 { 1279 u8 code, class, op; 1280 1281 code = insn->code; 1282 class = BPF_CLASS(code); 1283 op = BPF_OP(code); 1284 if (class == BPF_JMP) { 1285 /* BPF_EXIT for "main" will reach here. Return TRUE 1286 * conservatively. 1287 */ 1288 if (op == BPF_EXIT) 1289 return true; 1290 if (op == BPF_CALL) { 1291 /* BPF to BPF call will reach here because of marking 1292 * caller saved clobber with DST_OP_NO_MARK for which we 1293 * don't care the register def because they are anyway 1294 * marked as NOT_INIT already. 1295 */ 1296 if (insn->src_reg == BPF_PSEUDO_CALL) 1297 return false; 1298 /* Helper call will reach here because of arg type 1299 * check, conservatively return TRUE. 1300 */ 1301 if (t == SRC_OP) 1302 return true; 1303 1304 return false; 1305 } 1306 } 1307 1308 if (class == BPF_ALU64 || class == BPF_JMP || 1309 /* BPF_END always use BPF_ALU class. */ 1310 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 1311 return true; 1312 1313 if (class == BPF_ALU || class == BPF_JMP32) 1314 return false; 1315 1316 if (class == BPF_LDX) { 1317 if (t != SRC_OP) 1318 return BPF_SIZE(code) == BPF_DW; 1319 /* LDX source must be ptr. */ 1320 return true; 1321 } 1322 1323 if (class == BPF_STX) { 1324 if (reg->type != SCALAR_VALUE) 1325 return true; 1326 return BPF_SIZE(code) == BPF_DW; 1327 } 1328 1329 if (class == BPF_LD) { 1330 u8 mode = BPF_MODE(code); 1331 1332 /* LD_IMM64 */ 1333 if (mode == BPF_IMM) 1334 return true; 1335 1336 /* Both LD_IND and LD_ABS return 32-bit data. */ 1337 if (t != SRC_OP) 1338 return false; 1339 1340 /* Implicit ctx ptr. */ 1341 if (regno == BPF_REG_6) 1342 return true; 1343 1344 /* Explicit source could be any width. */ 1345 return true; 1346 } 1347 1348 if (class == BPF_ST) 1349 /* The only source register for BPF_ST is a ptr. */ 1350 return true; 1351 1352 /* Conservatively return true at default. */ 1353 return true; 1354 } 1355 1356 /* Return TRUE if INSN doesn't have explicit value define. */ 1357 static bool insn_no_def(struct bpf_insn *insn) 1358 { 1359 u8 class = BPF_CLASS(insn->code); 1360 1361 return (class == BPF_JMP || class == BPF_JMP32 || 1362 class == BPF_STX || class == BPF_ST); 1363 } 1364 1365 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 1366 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 1367 { 1368 if (insn_no_def(insn)) 1369 return false; 1370 1371 return !is_reg64(env, insn, insn->dst_reg, NULL, DST_OP); 1372 } 1373 1374 static void mark_insn_zext(struct bpf_verifier_env *env, 1375 struct bpf_reg_state *reg) 1376 { 1377 s32 def_idx = reg->subreg_def; 1378 1379 if (def_idx == DEF_NOT_SUBREG) 1380 return; 1381 1382 env->insn_aux_data[def_idx - 1].zext_dst = true; 1383 /* The dst will be zero extended, so won't be sub-register anymore. */ 1384 reg->subreg_def = DEF_NOT_SUBREG; 1385 } 1386 1387 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 1388 enum reg_arg_type t) 1389 { 1390 struct bpf_verifier_state *vstate = env->cur_state; 1391 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1392 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 1393 struct bpf_reg_state *reg, *regs = state->regs; 1394 bool rw64; 1395 1396 if (regno >= MAX_BPF_REG) { 1397 verbose(env, "R%d is invalid\n", regno); 1398 return -EINVAL; 1399 } 1400 1401 reg = ®s[regno]; 1402 rw64 = is_reg64(env, insn, regno, reg, t); 1403 if (t == SRC_OP) { 1404 /* check whether register used as source operand can be read */ 1405 if (reg->type == NOT_INIT) { 1406 verbose(env, "R%d !read_ok\n", regno); 1407 return -EACCES; 1408 } 1409 /* We don't need to worry about FP liveness because it's read-only */ 1410 if (regno == BPF_REG_FP) 1411 return 0; 1412 1413 if (rw64) 1414 mark_insn_zext(env, reg); 1415 1416 return mark_reg_read(env, reg, reg->parent, 1417 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 1418 } else { 1419 /* check whether register used as dest operand can be written to */ 1420 if (regno == BPF_REG_FP) { 1421 verbose(env, "frame pointer is read only\n"); 1422 return -EACCES; 1423 } 1424 reg->live |= REG_LIVE_WRITTEN; 1425 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 1426 if (t == DST_OP) 1427 mark_reg_unknown(env, regs, regno); 1428 } 1429 return 0; 1430 } 1431 1432 /* for any branch, call, exit record the history of jmps in the given state */ 1433 static int push_jmp_history(struct bpf_verifier_env *env, 1434 struct bpf_verifier_state *cur) 1435 { 1436 u32 cnt = cur->jmp_history_cnt; 1437 struct bpf_idx_pair *p; 1438 1439 cnt++; 1440 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER); 1441 if (!p) 1442 return -ENOMEM; 1443 p[cnt - 1].idx = env->insn_idx; 1444 p[cnt - 1].prev_idx = env->prev_insn_idx; 1445 cur->jmp_history = p; 1446 cur->jmp_history_cnt = cnt; 1447 return 0; 1448 } 1449 1450 /* Backtrack one insn at a time. If idx is not at the top of recorded 1451 * history then previous instruction came from straight line execution. 1452 */ 1453 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 1454 u32 *history) 1455 { 1456 u32 cnt = *history; 1457 1458 if (cnt && st->jmp_history[cnt - 1].idx == i) { 1459 i = st->jmp_history[cnt - 1].prev_idx; 1460 (*history)--; 1461 } else { 1462 i--; 1463 } 1464 return i; 1465 } 1466 1467 /* For given verifier state backtrack_insn() is called from the last insn to 1468 * the first insn. Its purpose is to compute a bitmask of registers and 1469 * stack slots that needs precision in the parent verifier state. 1470 */ 1471 static int backtrack_insn(struct bpf_verifier_env *env, int idx, 1472 u32 *reg_mask, u64 *stack_mask) 1473 { 1474 const struct bpf_insn_cbs cbs = { 1475 .cb_print = verbose, 1476 .private_data = env, 1477 }; 1478 struct bpf_insn *insn = env->prog->insnsi + idx; 1479 u8 class = BPF_CLASS(insn->code); 1480 u8 opcode = BPF_OP(insn->code); 1481 u8 mode = BPF_MODE(insn->code); 1482 u32 dreg = 1u << insn->dst_reg; 1483 u32 sreg = 1u << insn->src_reg; 1484 u32 spi; 1485 1486 if (insn->code == 0) 1487 return 0; 1488 if (env->log.level & BPF_LOG_LEVEL) { 1489 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask); 1490 verbose(env, "%d: ", idx); 1491 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 1492 } 1493 1494 if (class == BPF_ALU || class == BPF_ALU64) { 1495 if (!(*reg_mask & dreg)) 1496 return 0; 1497 if (opcode == BPF_MOV) { 1498 if (BPF_SRC(insn->code) == BPF_X) { 1499 /* dreg = sreg 1500 * dreg needs precision after this insn 1501 * sreg needs precision before this insn 1502 */ 1503 *reg_mask &= ~dreg; 1504 *reg_mask |= sreg; 1505 } else { 1506 /* dreg = K 1507 * dreg needs precision after this insn. 1508 * Corresponding register is already marked 1509 * as precise=true in this verifier state. 1510 * No further markings in parent are necessary 1511 */ 1512 *reg_mask &= ~dreg; 1513 } 1514 } else { 1515 if (BPF_SRC(insn->code) == BPF_X) { 1516 /* dreg += sreg 1517 * both dreg and sreg need precision 1518 * before this insn 1519 */ 1520 *reg_mask |= sreg; 1521 } /* else dreg += K 1522 * dreg still needs precision before this insn 1523 */ 1524 } 1525 } else if (class == BPF_LDX) { 1526 if (!(*reg_mask & dreg)) 1527 return 0; 1528 *reg_mask &= ~dreg; 1529 1530 /* scalars can only be spilled into stack w/o losing precision. 1531 * Load from any other memory can be zero extended. 1532 * The desire to keep that precision is already indicated 1533 * by 'precise' mark in corresponding register of this state. 1534 * No further tracking necessary. 1535 */ 1536 if (insn->src_reg != BPF_REG_FP) 1537 return 0; 1538 if (BPF_SIZE(insn->code) != BPF_DW) 1539 return 0; 1540 1541 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 1542 * that [fp - off] slot contains scalar that needs to be 1543 * tracked with precision 1544 */ 1545 spi = (-insn->off - 1) / BPF_REG_SIZE; 1546 if (spi >= 64) { 1547 verbose(env, "BUG spi %d\n", spi); 1548 WARN_ONCE(1, "verifier backtracking bug"); 1549 return -EFAULT; 1550 } 1551 *stack_mask |= 1ull << spi; 1552 } else if (class == BPF_STX || class == BPF_ST) { 1553 if (*reg_mask & dreg) 1554 /* stx & st shouldn't be using _scalar_ dst_reg 1555 * to access memory. It means backtracking 1556 * encountered a case of pointer subtraction. 1557 */ 1558 return -ENOTSUPP; 1559 /* scalars can only be spilled into stack */ 1560 if (insn->dst_reg != BPF_REG_FP) 1561 return 0; 1562 if (BPF_SIZE(insn->code) != BPF_DW) 1563 return 0; 1564 spi = (-insn->off - 1) / BPF_REG_SIZE; 1565 if (spi >= 64) { 1566 verbose(env, "BUG spi %d\n", spi); 1567 WARN_ONCE(1, "verifier backtracking bug"); 1568 return -EFAULT; 1569 } 1570 if (!(*stack_mask & (1ull << spi))) 1571 return 0; 1572 *stack_mask &= ~(1ull << spi); 1573 if (class == BPF_STX) 1574 *reg_mask |= sreg; 1575 } else if (class == BPF_JMP || class == BPF_JMP32) { 1576 if (opcode == BPF_CALL) { 1577 if (insn->src_reg == BPF_PSEUDO_CALL) 1578 return -ENOTSUPP; 1579 /* regular helper call sets R0 */ 1580 *reg_mask &= ~1; 1581 if (*reg_mask & 0x3f) { 1582 /* if backtracing was looking for registers R1-R5 1583 * they should have been found already. 1584 */ 1585 verbose(env, "BUG regs %x\n", *reg_mask); 1586 WARN_ONCE(1, "verifier backtracking bug"); 1587 return -EFAULT; 1588 } 1589 } else if (opcode == BPF_EXIT) { 1590 return -ENOTSUPP; 1591 } 1592 } else if (class == BPF_LD) { 1593 if (!(*reg_mask & dreg)) 1594 return 0; 1595 *reg_mask &= ~dreg; 1596 /* It's ld_imm64 or ld_abs or ld_ind. 1597 * For ld_imm64 no further tracking of precision 1598 * into parent is necessary 1599 */ 1600 if (mode == BPF_IND || mode == BPF_ABS) 1601 /* to be analyzed */ 1602 return -ENOTSUPP; 1603 } 1604 return 0; 1605 } 1606 1607 /* the scalar precision tracking algorithm: 1608 * . at the start all registers have precise=false. 1609 * . scalar ranges are tracked as normal through alu and jmp insns. 1610 * . once precise value of the scalar register is used in: 1611 * . ptr + scalar alu 1612 * . if (scalar cond K|scalar) 1613 * . helper_call(.., scalar, ...) where ARG_CONST is expected 1614 * backtrack through the verifier states and mark all registers and 1615 * stack slots with spilled constants that these scalar regisers 1616 * should be precise. 1617 * . during state pruning two registers (or spilled stack slots) 1618 * are equivalent if both are not precise. 1619 * 1620 * Note the verifier cannot simply walk register parentage chain, 1621 * since many different registers and stack slots could have been 1622 * used to compute single precise scalar. 1623 * 1624 * The approach of starting with precise=true for all registers and then 1625 * backtrack to mark a register as not precise when the verifier detects 1626 * that program doesn't care about specific value (e.g., when helper 1627 * takes register as ARG_ANYTHING parameter) is not safe. 1628 * 1629 * It's ok to walk single parentage chain of the verifier states. 1630 * It's possible that this backtracking will go all the way till 1st insn. 1631 * All other branches will be explored for needing precision later. 1632 * 1633 * The backtracking needs to deal with cases like: 1634 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 1635 * r9 -= r8 1636 * r5 = r9 1637 * if r5 > 0x79f goto pc+7 1638 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 1639 * r5 += 1 1640 * ... 1641 * call bpf_perf_event_output#25 1642 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 1643 * 1644 * and this case: 1645 * r6 = 1 1646 * call foo // uses callee's r6 inside to compute r0 1647 * r0 += r6 1648 * if r0 == 0 goto 1649 * 1650 * to track above reg_mask/stack_mask needs to be independent for each frame. 1651 * 1652 * Also if parent's curframe > frame where backtracking started, 1653 * the verifier need to mark registers in both frames, otherwise callees 1654 * may incorrectly prune callers. This is similar to 1655 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 1656 * 1657 * For now backtracking falls back into conservative marking. 1658 */ 1659 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 1660 struct bpf_verifier_state *st) 1661 { 1662 struct bpf_func_state *func; 1663 struct bpf_reg_state *reg; 1664 int i, j; 1665 1666 /* big hammer: mark all scalars precise in this path. 1667 * pop_stack may still get !precise scalars. 1668 */ 1669 for (; st; st = st->parent) 1670 for (i = 0; i <= st->curframe; i++) { 1671 func = st->frame[i]; 1672 for (j = 0; j < BPF_REG_FP; j++) { 1673 reg = &func->regs[j]; 1674 if (reg->type != SCALAR_VALUE) 1675 continue; 1676 reg->precise = true; 1677 } 1678 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 1679 if (func->stack[j].slot_type[0] != STACK_SPILL) 1680 continue; 1681 reg = &func->stack[j].spilled_ptr; 1682 if (reg->type != SCALAR_VALUE) 1683 continue; 1684 reg->precise = true; 1685 } 1686 } 1687 } 1688 1689 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno, 1690 int spi) 1691 { 1692 struct bpf_verifier_state *st = env->cur_state; 1693 int first_idx = st->first_insn_idx; 1694 int last_idx = env->insn_idx; 1695 struct bpf_func_state *func; 1696 struct bpf_reg_state *reg; 1697 u32 reg_mask = regno >= 0 ? 1u << regno : 0; 1698 u64 stack_mask = spi >= 0 ? 1ull << spi : 0; 1699 bool skip_first = true; 1700 bool new_marks = false; 1701 int i, err; 1702 1703 if (!env->allow_ptr_leaks) 1704 /* backtracking is root only for now */ 1705 return 0; 1706 1707 func = st->frame[st->curframe]; 1708 if (regno >= 0) { 1709 reg = &func->regs[regno]; 1710 if (reg->type != SCALAR_VALUE) { 1711 WARN_ONCE(1, "backtracing misuse"); 1712 return -EFAULT; 1713 } 1714 if (!reg->precise) 1715 new_marks = true; 1716 else 1717 reg_mask = 0; 1718 reg->precise = true; 1719 } 1720 1721 while (spi >= 0) { 1722 if (func->stack[spi].slot_type[0] != STACK_SPILL) { 1723 stack_mask = 0; 1724 break; 1725 } 1726 reg = &func->stack[spi].spilled_ptr; 1727 if (reg->type != SCALAR_VALUE) { 1728 stack_mask = 0; 1729 break; 1730 } 1731 if (!reg->precise) 1732 new_marks = true; 1733 else 1734 stack_mask = 0; 1735 reg->precise = true; 1736 break; 1737 } 1738 1739 if (!new_marks) 1740 return 0; 1741 if (!reg_mask && !stack_mask) 1742 return 0; 1743 for (;;) { 1744 DECLARE_BITMAP(mask, 64); 1745 u32 history = st->jmp_history_cnt; 1746 1747 if (env->log.level & BPF_LOG_LEVEL) 1748 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx); 1749 for (i = last_idx;;) { 1750 if (skip_first) { 1751 err = 0; 1752 skip_first = false; 1753 } else { 1754 err = backtrack_insn(env, i, ®_mask, &stack_mask); 1755 } 1756 if (err == -ENOTSUPP) { 1757 mark_all_scalars_precise(env, st); 1758 return 0; 1759 } else if (err) { 1760 return err; 1761 } 1762 if (!reg_mask && !stack_mask) 1763 /* Found assignment(s) into tracked register in this state. 1764 * Since this state is already marked, just return. 1765 * Nothing to be tracked further in the parent state. 1766 */ 1767 return 0; 1768 if (i == first_idx) 1769 break; 1770 i = get_prev_insn_idx(st, i, &history); 1771 if (i >= env->prog->len) { 1772 /* This can happen if backtracking reached insn 0 1773 * and there are still reg_mask or stack_mask 1774 * to backtrack. 1775 * It means the backtracking missed the spot where 1776 * particular register was initialized with a constant. 1777 */ 1778 verbose(env, "BUG backtracking idx %d\n", i); 1779 WARN_ONCE(1, "verifier backtracking bug"); 1780 return -EFAULT; 1781 } 1782 } 1783 st = st->parent; 1784 if (!st) 1785 break; 1786 1787 new_marks = false; 1788 func = st->frame[st->curframe]; 1789 bitmap_from_u64(mask, reg_mask); 1790 for_each_set_bit(i, mask, 32) { 1791 reg = &func->regs[i]; 1792 if (reg->type != SCALAR_VALUE) { 1793 reg_mask &= ~(1u << i); 1794 continue; 1795 } 1796 if (!reg->precise) 1797 new_marks = true; 1798 reg->precise = true; 1799 } 1800 1801 bitmap_from_u64(mask, stack_mask); 1802 for_each_set_bit(i, mask, 64) { 1803 if (i >= func->allocated_stack / BPF_REG_SIZE) { 1804 /* the sequence of instructions: 1805 * 2: (bf) r3 = r10 1806 * 3: (7b) *(u64 *)(r3 -8) = r0 1807 * 4: (79) r4 = *(u64 *)(r10 -8) 1808 * doesn't contain jmps. It's backtracked 1809 * as a single block. 1810 * During backtracking insn 3 is not recognized as 1811 * stack access, so at the end of backtracking 1812 * stack slot fp-8 is still marked in stack_mask. 1813 * However the parent state may not have accessed 1814 * fp-8 and it's "unallocated" stack space. 1815 * In such case fallback to conservative. 1816 */ 1817 mark_all_scalars_precise(env, st); 1818 return 0; 1819 } 1820 1821 if (func->stack[i].slot_type[0] != STACK_SPILL) { 1822 stack_mask &= ~(1ull << i); 1823 continue; 1824 } 1825 reg = &func->stack[i].spilled_ptr; 1826 if (reg->type != SCALAR_VALUE) { 1827 stack_mask &= ~(1ull << i); 1828 continue; 1829 } 1830 if (!reg->precise) 1831 new_marks = true; 1832 reg->precise = true; 1833 } 1834 if (env->log.level & BPF_LOG_LEVEL) { 1835 print_verifier_state(env, func); 1836 verbose(env, "parent %s regs=%x stack=%llx marks\n", 1837 new_marks ? "didn't have" : "already had", 1838 reg_mask, stack_mask); 1839 } 1840 1841 if (!reg_mask && !stack_mask) 1842 break; 1843 if (!new_marks) 1844 break; 1845 1846 last_idx = st->last_insn_idx; 1847 first_idx = st->first_insn_idx; 1848 } 1849 return 0; 1850 } 1851 1852 static int mark_chain_precision(struct bpf_verifier_env *env, int regno) 1853 { 1854 return __mark_chain_precision(env, regno, -1); 1855 } 1856 1857 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi) 1858 { 1859 return __mark_chain_precision(env, -1, spi); 1860 } 1861 1862 static bool is_spillable_regtype(enum bpf_reg_type type) 1863 { 1864 switch (type) { 1865 case PTR_TO_MAP_VALUE: 1866 case PTR_TO_MAP_VALUE_OR_NULL: 1867 case PTR_TO_STACK: 1868 case PTR_TO_CTX: 1869 case PTR_TO_PACKET: 1870 case PTR_TO_PACKET_META: 1871 case PTR_TO_PACKET_END: 1872 case PTR_TO_FLOW_KEYS: 1873 case CONST_PTR_TO_MAP: 1874 case PTR_TO_SOCKET: 1875 case PTR_TO_SOCKET_OR_NULL: 1876 case PTR_TO_SOCK_COMMON: 1877 case PTR_TO_SOCK_COMMON_OR_NULL: 1878 case PTR_TO_TCP_SOCK: 1879 case PTR_TO_TCP_SOCK_OR_NULL: 1880 case PTR_TO_XDP_SOCK: 1881 return true; 1882 default: 1883 return false; 1884 } 1885 } 1886 1887 /* Does this register contain a constant zero? */ 1888 static bool register_is_null(struct bpf_reg_state *reg) 1889 { 1890 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 1891 } 1892 1893 static bool register_is_const(struct bpf_reg_state *reg) 1894 { 1895 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off); 1896 } 1897 1898 static void save_register_state(struct bpf_func_state *state, 1899 int spi, struct bpf_reg_state *reg) 1900 { 1901 int i; 1902 1903 state->stack[spi].spilled_ptr = *reg; 1904 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 1905 1906 for (i = 0; i < BPF_REG_SIZE; i++) 1907 state->stack[spi].slot_type[i] = STACK_SPILL; 1908 } 1909 1910 /* check_stack_read/write functions track spill/fill of registers, 1911 * stack boundary and alignment are checked in check_mem_access() 1912 */ 1913 static int check_stack_write(struct bpf_verifier_env *env, 1914 struct bpf_func_state *state, /* func where register points to */ 1915 int off, int size, int value_regno, int insn_idx) 1916 { 1917 struct bpf_func_state *cur; /* state of the current function */ 1918 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 1919 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg; 1920 struct bpf_reg_state *reg = NULL; 1921 1922 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE), 1923 state->acquired_refs, true); 1924 if (err) 1925 return err; 1926 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 1927 * so it's aligned access and [off, off + size) are within stack limits 1928 */ 1929 if (!env->allow_ptr_leaks && 1930 state->stack[spi].slot_type[0] == STACK_SPILL && 1931 size != BPF_REG_SIZE) { 1932 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 1933 return -EACCES; 1934 } 1935 1936 cur = env->cur_state->frame[env->cur_state->curframe]; 1937 if (value_regno >= 0) 1938 reg = &cur->regs[value_regno]; 1939 1940 if (reg && size == BPF_REG_SIZE && register_is_const(reg) && 1941 !register_is_null(reg) && env->allow_ptr_leaks) { 1942 if (dst_reg != BPF_REG_FP) { 1943 /* The backtracking logic can only recognize explicit 1944 * stack slot address like [fp - 8]. Other spill of 1945 * scalar via different register has to be conervative. 1946 * Backtrack from here and mark all registers as precise 1947 * that contributed into 'reg' being a constant. 1948 */ 1949 err = mark_chain_precision(env, value_regno); 1950 if (err) 1951 return err; 1952 } 1953 save_register_state(state, spi, reg); 1954 } else if (reg && is_spillable_regtype(reg->type)) { 1955 /* register containing pointer is being spilled into stack */ 1956 if (size != BPF_REG_SIZE) { 1957 verbose_linfo(env, insn_idx, "; "); 1958 verbose(env, "invalid size of register spill\n"); 1959 return -EACCES; 1960 } 1961 1962 if (state != cur && reg->type == PTR_TO_STACK) { 1963 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 1964 return -EINVAL; 1965 } 1966 1967 if (!env->allow_ptr_leaks) { 1968 bool sanitize = false; 1969 1970 if (state->stack[spi].slot_type[0] == STACK_SPILL && 1971 register_is_const(&state->stack[spi].spilled_ptr)) 1972 sanitize = true; 1973 for (i = 0; i < BPF_REG_SIZE; i++) 1974 if (state->stack[spi].slot_type[i] == STACK_MISC) { 1975 sanitize = true; 1976 break; 1977 } 1978 if (sanitize) { 1979 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off; 1980 int soff = (-spi - 1) * BPF_REG_SIZE; 1981 1982 /* detected reuse of integer stack slot with a pointer 1983 * which means either llvm is reusing stack slot or 1984 * an attacker is trying to exploit CVE-2018-3639 1985 * (speculative store bypass) 1986 * Have to sanitize that slot with preemptive 1987 * store of zero. 1988 */ 1989 if (*poff && *poff != soff) { 1990 /* disallow programs where single insn stores 1991 * into two different stack slots, since verifier 1992 * cannot sanitize them 1993 */ 1994 verbose(env, 1995 "insn %d cannot access two stack slots fp%d and fp%d", 1996 insn_idx, *poff, soff); 1997 return -EINVAL; 1998 } 1999 *poff = soff; 2000 } 2001 } 2002 save_register_state(state, spi, reg); 2003 } else { 2004 u8 type = STACK_MISC; 2005 2006 /* regular write of data into stack destroys any spilled ptr */ 2007 state->stack[spi].spilled_ptr.type = NOT_INIT; 2008 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */ 2009 if (state->stack[spi].slot_type[0] == STACK_SPILL) 2010 for (i = 0; i < BPF_REG_SIZE; i++) 2011 state->stack[spi].slot_type[i] = STACK_MISC; 2012 2013 /* only mark the slot as written if all 8 bytes were written 2014 * otherwise read propagation may incorrectly stop too soon 2015 * when stack slots are partially written. 2016 * This heuristic means that read propagation will be 2017 * conservative, since it will add reg_live_read marks 2018 * to stack slots all the way to first state when programs 2019 * writes+reads less than 8 bytes 2020 */ 2021 if (size == BPF_REG_SIZE) 2022 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 2023 2024 /* when we zero initialize stack slots mark them as such */ 2025 if (reg && register_is_null(reg)) { 2026 /* backtracking doesn't work for STACK_ZERO yet. */ 2027 err = mark_chain_precision(env, value_regno); 2028 if (err) 2029 return err; 2030 type = STACK_ZERO; 2031 } 2032 2033 /* Mark slots affected by this stack write. */ 2034 for (i = 0; i < size; i++) 2035 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 2036 type; 2037 } 2038 return 0; 2039 } 2040 2041 static int check_stack_read(struct bpf_verifier_env *env, 2042 struct bpf_func_state *reg_state /* func where register points to */, 2043 int off, int size, int value_regno) 2044 { 2045 struct bpf_verifier_state *vstate = env->cur_state; 2046 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2047 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 2048 struct bpf_reg_state *reg; 2049 u8 *stype; 2050 2051 if (reg_state->allocated_stack <= slot) { 2052 verbose(env, "invalid read from stack off %d+0 size %d\n", 2053 off, size); 2054 return -EACCES; 2055 } 2056 stype = reg_state->stack[spi].slot_type; 2057 reg = ®_state->stack[spi].spilled_ptr; 2058 2059 if (stype[0] == STACK_SPILL) { 2060 if (size != BPF_REG_SIZE) { 2061 if (reg->type != SCALAR_VALUE) { 2062 verbose_linfo(env, env->insn_idx, "; "); 2063 verbose(env, "invalid size of register fill\n"); 2064 return -EACCES; 2065 } 2066 if (value_regno >= 0) { 2067 mark_reg_unknown(env, state->regs, value_regno); 2068 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 2069 } 2070 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2071 return 0; 2072 } 2073 for (i = 1; i < BPF_REG_SIZE; i++) { 2074 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) { 2075 verbose(env, "corrupted spill memory\n"); 2076 return -EACCES; 2077 } 2078 } 2079 2080 if (value_regno >= 0) { 2081 /* restore register state from stack */ 2082 state->regs[value_regno] = *reg; 2083 /* mark reg as written since spilled pointer state likely 2084 * has its liveness marks cleared by is_state_visited() 2085 * which resets stack/reg liveness for state transitions 2086 */ 2087 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 2088 } 2089 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2090 } else { 2091 int zeros = 0; 2092 2093 for (i = 0; i < size; i++) { 2094 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC) 2095 continue; 2096 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) { 2097 zeros++; 2098 continue; 2099 } 2100 verbose(env, "invalid read from stack off %d+%d size %d\n", 2101 off, i, size); 2102 return -EACCES; 2103 } 2104 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2105 if (value_regno >= 0) { 2106 if (zeros == size) { 2107 /* any size read into register is zero extended, 2108 * so the whole register == const_zero 2109 */ 2110 __mark_reg_const_zero(&state->regs[value_regno]); 2111 /* backtracking doesn't support STACK_ZERO yet, 2112 * so mark it precise here, so that later 2113 * backtracking can stop here. 2114 * Backtracking may not need this if this register 2115 * doesn't participate in pointer adjustment. 2116 * Forward propagation of precise flag is not 2117 * necessary either. This mark is only to stop 2118 * backtracking. Any register that contributed 2119 * to const 0 was marked precise before spill. 2120 */ 2121 state->regs[value_regno].precise = true; 2122 } else { 2123 /* have read misc data from the stack */ 2124 mark_reg_unknown(env, state->regs, value_regno); 2125 } 2126 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 2127 } 2128 } 2129 return 0; 2130 } 2131 2132 static int check_stack_access(struct bpf_verifier_env *env, 2133 const struct bpf_reg_state *reg, 2134 int off, int size) 2135 { 2136 /* Stack accesses must be at a fixed offset, so that we 2137 * can determine what type of data were returned. See 2138 * check_stack_read(). 2139 */ 2140 if (!tnum_is_const(reg->var_off)) { 2141 char tn_buf[48]; 2142 2143 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2144 verbose(env, "variable stack access var_off=%s off=%d size=%d\n", 2145 tn_buf, off, size); 2146 return -EACCES; 2147 } 2148 2149 if (off >= 0 || off < -MAX_BPF_STACK) { 2150 verbose(env, "invalid stack off=%d size=%d\n", off, size); 2151 return -EACCES; 2152 } 2153 2154 return 0; 2155 } 2156 2157 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 2158 int off, int size, enum bpf_access_type type) 2159 { 2160 struct bpf_reg_state *regs = cur_regs(env); 2161 struct bpf_map *map = regs[regno].map_ptr; 2162 u32 cap = bpf_map_flags_to_cap(map); 2163 2164 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 2165 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 2166 map->value_size, off, size); 2167 return -EACCES; 2168 } 2169 2170 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 2171 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 2172 map->value_size, off, size); 2173 return -EACCES; 2174 } 2175 2176 return 0; 2177 } 2178 2179 /* check read/write into map element returned by bpf_map_lookup_elem() */ 2180 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off, 2181 int size, bool zero_size_allowed) 2182 { 2183 struct bpf_reg_state *regs = cur_regs(env); 2184 struct bpf_map *map = regs[regno].map_ptr; 2185 2186 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) || 2187 off + size > map->value_size) { 2188 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 2189 map->value_size, off, size); 2190 return -EACCES; 2191 } 2192 return 0; 2193 } 2194 2195 /* check read/write into a map element with possible variable offset */ 2196 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 2197 int off, int size, bool zero_size_allowed) 2198 { 2199 struct bpf_verifier_state *vstate = env->cur_state; 2200 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2201 struct bpf_reg_state *reg = &state->regs[regno]; 2202 int err; 2203 2204 /* We may have adjusted the register to this map value, so we 2205 * need to try adding each of min_value and max_value to off 2206 * to make sure our theoretical access will be safe. 2207 */ 2208 if (env->log.level & BPF_LOG_LEVEL) 2209 print_verifier_state(env, state); 2210 2211 /* The minimum value is only important with signed 2212 * comparisons where we can't assume the floor of a 2213 * value is 0. If we are using signed variables for our 2214 * index'es we need to make sure that whatever we use 2215 * will have a set floor within our range. 2216 */ 2217 if (reg->smin_value < 0 && 2218 (reg->smin_value == S64_MIN || 2219 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 2220 reg->smin_value + off < 0)) { 2221 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 2222 regno); 2223 return -EACCES; 2224 } 2225 err = __check_map_access(env, regno, reg->smin_value + off, size, 2226 zero_size_allowed); 2227 if (err) { 2228 verbose(env, "R%d min value is outside of the array range\n", 2229 regno); 2230 return err; 2231 } 2232 2233 /* If we haven't set a max value then we need to bail since we can't be 2234 * sure we won't do bad things. 2235 * If reg->umax_value + off could overflow, treat that as unbounded too. 2236 */ 2237 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 2238 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n", 2239 regno); 2240 return -EACCES; 2241 } 2242 err = __check_map_access(env, regno, reg->umax_value + off, size, 2243 zero_size_allowed); 2244 if (err) 2245 verbose(env, "R%d max value is outside of the array range\n", 2246 regno); 2247 2248 if (map_value_has_spin_lock(reg->map_ptr)) { 2249 u32 lock = reg->map_ptr->spin_lock_off; 2250 2251 /* if any part of struct bpf_spin_lock can be touched by 2252 * load/store reject this program. 2253 * To check that [x1, x2) overlaps with [y1, y2) 2254 * it is sufficient to check x1 < y2 && y1 < x2. 2255 */ 2256 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) && 2257 lock < reg->umax_value + off + size) { 2258 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n"); 2259 return -EACCES; 2260 } 2261 } 2262 return err; 2263 } 2264 2265 #define MAX_PACKET_OFF 0xffff 2266 2267 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 2268 const struct bpf_call_arg_meta *meta, 2269 enum bpf_access_type t) 2270 { 2271 switch (env->prog->type) { 2272 /* Program types only with direct read access go here! */ 2273 case BPF_PROG_TYPE_LWT_IN: 2274 case BPF_PROG_TYPE_LWT_OUT: 2275 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 2276 case BPF_PROG_TYPE_SK_REUSEPORT: 2277 case BPF_PROG_TYPE_FLOW_DISSECTOR: 2278 case BPF_PROG_TYPE_CGROUP_SKB: 2279 if (t == BPF_WRITE) 2280 return false; 2281 /* fallthrough */ 2282 2283 /* Program types with direct read + write access go here! */ 2284 case BPF_PROG_TYPE_SCHED_CLS: 2285 case BPF_PROG_TYPE_SCHED_ACT: 2286 case BPF_PROG_TYPE_XDP: 2287 case BPF_PROG_TYPE_LWT_XMIT: 2288 case BPF_PROG_TYPE_SK_SKB: 2289 case BPF_PROG_TYPE_SK_MSG: 2290 if (meta) 2291 return meta->pkt_access; 2292 2293 env->seen_direct_write = true; 2294 return true; 2295 2296 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 2297 if (t == BPF_WRITE) 2298 env->seen_direct_write = true; 2299 2300 return true; 2301 2302 default: 2303 return false; 2304 } 2305 } 2306 2307 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno, 2308 int off, int size, bool zero_size_allowed) 2309 { 2310 struct bpf_reg_state *regs = cur_regs(env); 2311 struct bpf_reg_state *reg = ®s[regno]; 2312 2313 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) || 2314 (u64)off + size > reg->range) { 2315 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 2316 off, size, regno, reg->id, reg->off, reg->range); 2317 return -EACCES; 2318 } 2319 return 0; 2320 } 2321 2322 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 2323 int size, bool zero_size_allowed) 2324 { 2325 struct bpf_reg_state *regs = cur_regs(env); 2326 struct bpf_reg_state *reg = ®s[regno]; 2327 int err; 2328 2329 /* We may have added a variable offset to the packet pointer; but any 2330 * reg->range we have comes after that. We are only checking the fixed 2331 * offset. 2332 */ 2333 2334 /* We don't allow negative numbers, because we aren't tracking enough 2335 * detail to prove they're safe. 2336 */ 2337 if (reg->smin_value < 0) { 2338 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 2339 regno); 2340 return -EACCES; 2341 } 2342 err = __check_packet_access(env, regno, off, size, zero_size_allowed); 2343 if (err) { 2344 verbose(env, "R%d offset is outside of the packet\n", regno); 2345 return err; 2346 } 2347 2348 /* __check_packet_access has made sure "off + size - 1" is within u16. 2349 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 2350 * otherwise find_good_pkt_pointers would have refused to set range info 2351 * that __check_packet_access would have rejected this pkt access. 2352 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 2353 */ 2354 env->prog->aux->max_pkt_offset = 2355 max_t(u32, env->prog->aux->max_pkt_offset, 2356 off + reg->umax_value + size - 1); 2357 2358 return err; 2359 } 2360 2361 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 2362 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 2363 enum bpf_access_type t, enum bpf_reg_type *reg_type, 2364 u32 *btf_id) 2365 { 2366 struct bpf_insn_access_aux info = { 2367 .reg_type = *reg_type, 2368 .log = &env->log, 2369 }; 2370 2371 if (env->ops->is_valid_access && 2372 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 2373 /* A non zero info.ctx_field_size indicates that this field is a 2374 * candidate for later verifier transformation to load the whole 2375 * field and then apply a mask when accessed with a narrower 2376 * access than actual ctx access size. A zero info.ctx_field_size 2377 * will only allow for whole field access and rejects any other 2378 * type of narrower access. 2379 */ 2380 *reg_type = info.reg_type; 2381 2382 if (*reg_type == PTR_TO_BTF_ID) 2383 *btf_id = info.btf_id; 2384 else 2385 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 2386 /* remember the offset of last byte accessed in ctx */ 2387 if (env->prog->aux->max_ctx_offset < off + size) 2388 env->prog->aux->max_ctx_offset = off + size; 2389 return 0; 2390 } 2391 2392 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 2393 return -EACCES; 2394 } 2395 2396 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 2397 int size) 2398 { 2399 if (size < 0 || off < 0 || 2400 (u64)off + size > sizeof(struct bpf_flow_keys)) { 2401 verbose(env, "invalid access to flow keys off=%d size=%d\n", 2402 off, size); 2403 return -EACCES; 2404 } 2405 return 0; 2406 } 2407 2408 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 2409 u32 regno, int off, int size, 2410 enum bpf_access_type t) 2411 { 2412 struct bpf_reg_state *regs = cur_regs(env); 2413 struct bpf_reg_state *reg = ®s[regno]; 2414 struct bpf_insn_access_aux info = {}; 2415 bool valid; 2416 2417 if (reg->smin_value < 0) { 2418 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 2419 regno); 2420 return -EACCES; 2421 } 2422 2423 switch (reg->type) { 2424 case PTR_TO_SOCK_COMMON: 2425 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 2426 break; 2427 case PTR_TO_SOCKET: 2428 valid = bpf_sock_is_valid_access(off, size, t, &info); 2429 break; 2430 case PTR_TO_TCP_SOCK: 2431 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 2432 break; 2433 case PTR_TO_XDP_SOCK: 2434 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 2435 break; 2436 default: 2437 valid = false; 2438 } 2439 2440 2441 if (valid) { 2442 env->insn_aux_data[insn_idx].ctx_field_size = 2443 info.ctx_field_size; 2444 return 0; 2445 } 2446 2447 verbose(env, "R%d invalid %s access off=%d size=%d\n", 2448 regno, reg_type_str[reg->type], off, size); 2449 2450 return -EACCES; 2451 } 2452 2453 static bool __is_pointer_value(bool allow_ptr_leaks, 2454 const struct bpf_reg_state *reg) 2455 { 2456 if (allow_ptr_leaks) 2457 return false; 2458 2459 return reg->type != SCALAR_VALUE; 2460 } 2461 2462 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 2463 { 2464 return cur_regs(env) + regno; 2465 } 2466 2467 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 2468 { 2469 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 2470 } 2471 2472 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 2473 { 2474 const struct bpf_reg_state *reg = reg_state(env, regno); 2475 2476 return reg->type == PTR_TO_CTX; 2477 } 2478 2479 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 2480 { 2481 const struct bpf_reg_state *reg = reg_state(env, regno); 2482 2483 return type_is_sk_pointer(reg->type); 2484 } 2485 2486 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 2487 { 2488 const struct bpf_reg_state *reg = reg_state(env, regno); 2489 2490 return type_is_pkt_pointer(reg->type); 2491 } 2492 2493 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 2494 { 2495 const struct bpf_reg_state *reg = reg_state(env, regno); 2496 2497 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 2498 return reg->type == PTR_TO_FLOW_KEYS; 2499 } 2500 2501 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 2502 const struct bpf_reg_state *reg, 2503 int off, int size, bool strict) 2504 { 2505 struct tnum reg_off; 2506 int ip_align; 2507 2508 /* Byte size accesses are always allowed. */ 2509 if (!strict || size == 1) 2510 return 0; 2511 2512 /* For platforms that do not have a Kconfig enabling 2513 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 2514 * NET_IP_ALIGN is universally set to '2'. And on platforms 2515 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 2516 * to this code only in strict mode where we want to emulate 2517 * the NET_IP_ALIGN==2 checking. Therefore use an 2518 * unconditional IP align value of '2'. 2519 */ 2520 ip_align = 2; 2521 2522 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 2523 if (!tnum_is_aligned(reg_off, size)) { 2524 char tn_buf[48]; 2525 2526 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2527 verbose(env, 2528 "misaligned packet access off %d+%s+%d+%d size %d\n", 2529 ip_align, tn_buf, reg->off, off, size); 2530 return -EACCES; 2531 } 2532 2533 return 0; 2534 } 2535 2536 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 2537 const struct bpf_reg_state *reg, 2538 const char *pointer_desc, 2539 int off, int size, bool strict) 2540 { 2541 struct tnum reg_off; 2542 2543 /* Byte size accesses are always allowed. */ 2544 if (!strict || size == 1) 2545 return 0; 2546 2547 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 2548 if (!tnum_is_aligned(reg_off, size)) { 2549 char tn_buf[48]; 2550 2551 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2552 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 2553 pointer_desc, tn_buf, reg->off, off, size); 2554 return -EACCES; 2555 } 2556 2557 return 0; 2558 } 2559 2560 static int check_ptr_alignment(struct bpf_verifier_env *env, 2561 const struct bpf_reg_state *reg, int off, 2562 int size, bool strict_alignment_once) 2563 { 2564 bool strict = env->strict_alignment || strict_alignment_once; 2565 const char *pointer_desc = ""; 2566 2567 switch (reg->type) { 2568 case PTR_TO_PACKET: 2569 case PTR_TO_PACKET_META: 2570 /* Special case, because of NET_IP_ALIGN. Given metadata sits 2571 * right in front, treat it the very same way. 2572 */ 2573 return check_pkt_ptr_alignment(env, reg, off, size, strict); 2574 case PTR_TO_FLOW_KEYS: 2575 pointer_desc = "flow keys "; 2576 break; 2577 case PTR_TO_MAP_VALUE: 2578 pointer_desc = "value "; 2579 break; 2580 case PTR_TO_CTX: 2581 pointer_desc = "context "; 2582 break; 2583 case PTR_TO_STACK: 2584 pointer_desc = "stack "; 2585 /* The stack spill tracking logic in check_stack_write() 2586 * and check_stack_read() relies on stack accesses being 2587 * aligned. 2588 */ 2589 strict = true; 2590 break; 2591 case PTR_TO_SOCKET: 2592 pointer_desc = "sock "; 2593 break; 2594 case PTR_TO_SOCK_COMMON: 2595 pointer_desc = "sock_common "; 2596 break; 2597 case PTR_TO_TCP_SOCK: 2598 pointer_desc = "tcp_sock "; 2599 break; 2600 case PTR_TO_XDP_SOCK: 2601 pointer_desc = "xdp_sock "; 2602 break; 2603 default: 2604 break; 2605 } 2606 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 2607 strict); 2608 } 2609 2610 static int update_stack_depth(struct bpf_verifier_env *env, 2611 const struct bpf_func_state *func, 2612 int off) 2613 { 2614 u16 stack = env->subprog_info[func->subprogno].stack_depth; 2615 2616 if (stack >= -off) 2617 return 0; 2618 2619 /* update known max for given subprogram */ 2620 env->subprog_info[func->subprogno].stack_depth = -off; 2621 return 0; 2622 } 2623 2624 /* starting from main bpf function walk all instructions of the function 2625 * and recursively walk all callees that given function can call. 2626 * Ignore jump and exit insns. 2627 * Since recursion is prevented by check_cfg() this algorithm 2628 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 2629 */ 2630 static int check_max_stack_depth(struct bpf_verifier_env *env) 2631 { 2632 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; 2633 struct bpf_subprog_info *subprog = env->subprog_info; 2634 struct bpf_insn *insn = env->prog->insnsi; 2635 int ret_insn[MAX_CALL_FRAMES]; 2636 int ret_prog[MAX_CALL_FRAMES]; 2637 2638 process_func: 2639 /* round up to 32-bytes, since this is granularity 2640 * of interpreter stack size 2641 */ 2642 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 2643 if (depth > MAX_BPF_STACK) { 2644 verbose(env, "combined stack size of %d calls is %d. Too large\n", 2645 frame + 1, depth); 2646 return -EACCES; 2647 } 2648 continue_func: 2649 subprog_end = subprog[idx + 1].start; 2650 for (; i < subprog_end; i++) { 2651 if (insn[i].code != (BPF_JMP | BPF_CALL)) 2652 continue; 2653 if (insn[i].src_reg != BPF_PSEUDO_CALL) 2654 continue; 2655 /* remember insn and function to return to */ 2656 ret_insn[frame] = i + 1; 2657 ret_prog[frame] = idx; 2658 2659 /* find the callee */ 2660 i = i + insn[i].imm + 1; 2661 idx = find_subprog(env, i); 2662 if (idx < 0) { 2663 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 2664 i); 2665 return -EFAULT; 2666 } 2667 frame++; 2668 if (frame >= MAX_CALL_FRAMES) { 2669 verbose(env, "the call stack of %d frames is too deep !\n", 2670 frame); 2671 return -E2BIG; 2672 } 2673 goto process_func; 2674 } 2675 /* end of for() loop means the last insn of the 'subprog' 2676 * was reached. Doesn't matter whether it was JA or EXIT 2677 */ 2678 if (frame == 0) 2679 return 0; 2680 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 2681 frame--; 2682 i = ret_insn[frame]; 2683 idx = ret_prog[frame]; 2684 goto continue_func; 2685 } 2686 2687 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 2688 static int get_callee_stack_depth(struct bpf_verifier_env *env, 2689 const struct bpf_insn *insn, int idx) 2690 { 2691 int start = idx + insn->imm + 1, subprog; 2692 2693 subprog = find_subprog(env, start); 2694 if (subprog < 0) { 2695 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 2696 start); 2697 return -EFAULT; 2698 } 2699 return env->subprog_info[subprog].stack_depth; 2700 } 2701 #endif 2702 2703 static int check_ctx_reg(struct bpf_verifier_env *env, 2704 const struct bpf_reg_state *reg, int regno) 2705 { 2706 /* Access to ctx or passing it to a helper is only allowed in 2707 * its original, unmodified form. 2708 */ 2709 2710 if (reg->off) { 2711 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n", 2712 regno, reg->off); 2713 return -EACCES; 2714 } 2715 2716 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 2717 char tn_buf[48]; 2718 2719 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2720 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf); 2721 return -EACCES; 2722 } 2723 2724 return 0; 2725 } 2726 2727 static int check_tp_buffer_access(struct bpf_verifier_env *env, 2728 const struct bpf_reg_state *reg, 2729 int regno, int off, int size) 2730 { 2731 if (off < 0) { 2732 verbose(env, 2733 "R%d invalid tracepoint buffer access: off=%d, size=%d", 2734 regno, off, size); 2735 return -EACCES; 2736 } 2737 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 2738 char tn_buf[48]; 2739 2740 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2741 verbose(env, 2742 "R%d invalid variable buffer offset: off=%d, var_off=%s", 2743 regno, off, tn_buf); 2744 return -EACCES; 2745 } 2746 if (off + size > env->prog->aux->max_tp_access) 2747 env->prog->aux->max_tp_access = off + size; 2748 2749 return 0; 2750 } 2751 2752 2753 /* truncate register to smaller size (in bytes) 2754 * must be called with size < BPF_REG_SIZE 2755 */ 2756 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 2757 { 2758 u64 mask; 2759 2760 /* clear high bits in bit representation */ 2761 reg->var_off = tnum_cast(reg->var_off, size); 2762 2763 /* fix arithmetic bounds */ 2764 mask = ((u64)1 << (size * 8)) - 1; 2765 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 2766 reg->umin_value &= mask; 2767 reg->umax_value &= mask; 2768 } else { 2769 reg->umin_value = 0; 2770 reg->umax_value = mask; 2771 } 2772 reg->smin_value = reg->umin_value; 2773 reg->smax_value = reg->umax_value; 2774 } 2775 2776 static bool bpf_map_is_rdonly(const struct bpf_map *map) 2777 { 2778 return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen; 2779 } 2780 2781 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val) 2782 { 2783 void *ptr; 2784 u64 addr; 2785 int err; 2786 2787 err = map->ops->map_direct_value_addr(map, &addr, off); 2788 if (err) 2789 return err; 2790 ptr = (void *)(long)addr + off; 2791 2792 switch (size) { 2793 case sizeof(u8): 2794 *val = (u64)*(u8 *)ptr; 2795 break; 2796 case sizeof(u16): 2797 *val = (u64)*(u16 *)ptr; 2798 break; 2799 case sizeof(u32): 2800 *val = (u64)*(u32 *)ptr; 2801 break; 2802 case sizeof(u64): 2803 *val = *(u64 *)ptr; 2804 break; 2805 default: 2806 return -EINVAL; 2807 } 2808 return 0; 2809 } 2810 2811 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 2812 struct bpf_reg_state *regs, 2813 int regno, int off, int size, 2814 enum bpf_access_type atype, 2815 int value_regno) 2816 { 2817 struct bpf_reg_state *reg = regs + regno; 2818 const struct btf_type *t = btf_type_by_id(btf_vmlinux, reg->btf_id); 2819 const char *tname = btf_name_by_offset(btf_vmlinux, t->name_off); 2820 u32 btf_id; 2821 int ret; 2822 2823 if (atype != BPF_READ) { 2824 verbose(env, "only read is supported\n"); 2825 return -EACCES; 2826 } 2827 2828 if (off < 0) { 2829 verbose(env, 2830 "R%d is ptr_%s invalid negative access: off=%d\n", 2831 regno, tname, off); 2832 return -EACCES; 2833 } 2834 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 2835 char tn_buf[48]; 2836 2837 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2838 verbose(env, 2839 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 2840 regno, tname, off, tn_buf); 2841 return -EACCES; 2842 } 2843 2844 ret = btf_struct_access(&env->log, t, off, size, atype, &btf_id); 2845 if (ret < 0) 2846 return ret; 2847 2848 if (ret == SCALAR_VALUE) { 2849 mark_reg_unknown(env, regs, value_regno); 2850 return 0; 2851 } 2852 mark_reg_known_zero(env, regs, value_regno); 2853 regs[value_regno].type = PTR_TO_BTF_ID; 2854 regs[value_regno].btf_id = btf_id; 2855 return 0; 2856 } 2857 2858 /* check whether memory at (regno + off) is accessible for t = (read | write) 2859 * if t==write, value_regno is a register which value is stored into memory 2860 * if t==read, value_regno is a register which will receive the value from memory 2861 * if t==write && value_regno==-1, some unknown value is stored into memory 2862 * if t==read && value_regno==-1, don't care what we read from memory 2863 */ 2864 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 2865 int off, int bpf_size, enum bpf_access_type t, 2866 int value_regno, bool strict_alignment_once) 2867 { 2868 struct bpf_reg_state *regs = cur_regs(env); 2869 struct bpf_reg_state *reg = regs + regno; 2870 struct bpf_func_state *state; 2871 int size, err = 0; 2872 2873 size = bpf_size_to_bytes(bpf_size); 2874 if (size < 0) 2875 return size; 2876 2877 /* alignment checks will add in reg->off themselves */ 2878 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 2879 if (err) 2880 return err; 2881 2882 /* for access checks, reg->off is just part of off */ 2883 off += reg->off; 2884 2885 if (reg->type == PTR_TO_MAP_VALUE) { 2886 if (t == BPF_WRITE && value_regno >= 0 && 2887 is_pointer_value(env, value_regno)) { 2888 verbose(env, "R%d leaks addr into map\n", value_regno); 2889 return -EACCES; 2890 } 2891 err = check_map_access_type(env, regno, off, size, t); 2892 if (err) 2893 return err; 2894 err = check_map_access(env, regno, off, size, false); 2895 if (!err && t == BPF_READ && value_regno >= 0) { 2896 struct bpf_map *map = reg->map_ptr; 2897 2898 /* if map is read-only, track its contents as scalars */ 2899 if (tnum_is_const(reg->var_off) && 2900 bpf_map_is_rdonly(map) && 2901 map->ops->map_direct_value_addr) { 2902 int map_off = off + reg->var_off.value; 2903 u64 val = 0; 2904 2905 err = bpf_map_direct_read(map, map_off, size, 2906 &val); 2907 if (err) 2908 return err; 2909 2910 regs[value_regno].type = SCALAR_VALUE; 2911 __mark_reg_known(®s[value_regno], val); 2912 } else { 2913 mark_reg_unknown(env, regs, value_regno); 2914 } 2915 } 2916 } else if (reg->type == PTR_TO_CTX) { 2917 enum bpf_reg_type reg_type = SCALAR_VALUE; 2918 u32 btf_id = 0; 2919 2920 if (t == BPF_WRITE && value_regno >= 0 && 2921 is_pointer_value(env, value_regno)) { 2922 verbose(env, "R%d leaks addr into ctx\n", value_regno); 2923 return -EACCES; 2924 } 2925 2926 err = check_ctx_reg(env, reg, regno); 2927 if (err < 0) 2928 return err; 2929 2930 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf_id); 2931 if (err) 2932 verbose_linfo(env, insn_idx, "; "); 2933 if (!err && t == BPF_READ && value_regno >= 0) { 2934 /* ctx access returns either a scalar, or a 2935 * PTR_TO_PACKET[_META,_END]. In the latter 2936 * case, we know the offset is zero. 2937 */ 2938 if (reg_type == SCALAR_VALUE) { 2939 mark_reg_unknown(env, regs, value_regno); 2940 } else { 2941 mark_reg_known_zero(env, regs, 2942 value_regno); 2943 if (reg_type_may_be_null(reg_type)) 2944 regs[value_regno].id = ++env->id_gen; 2945 /* A load of ctx field could have different 2946 * actual load size with the one encoded in the 2947 * insn. When the dst is PTR, it is for sure not 2948 * a sub-register. 2949 */ 2950 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 2951 if (reg_type == PTR_TO_BTF_ID) 2952 regs[value_regno].btf_id = btf_id; 2953 } 2954 regs[value_regno].type = reg_type; 2955 } 2956 2957 } else if (reg->type == PTR_TO_STACK) { 2958 off += reg->var_off.value; 2959 err = check_stack_access(env, reg, off, size); 2960 if (err) 2961 return err; 2962 2963 state = func(env, reg); 2964 err = update_stack_depth(env, state, off); 2965 if (err) 2966 return err; 2967 2968 if (t == BPF_WRITE) 2969 err = check_stack_write(env, state, off, size, 2970 value_regno, insn_idx); 2971 else 2972 err = check_stack_read(env, state, off, size, 2973 value_regno); 2974 } else if (reg_is_pkt_pointer(reg)) { 2975 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 2976 verbose(env, "cannot write into packet\n"); 2977 return -EACCES; 2978 } 2979 if (t == BPF_WRITE && value_regno >= 0 && 2980 is_pointer_value(env, value_regno)) { 2981 verbose(env, "R%d leaks addr into packet\n", 2982 value_regno); 2983 return -EACCES; 2984 } 2985 err = check_packet_access(env, regno, off, size, false); 2986 if (!err && t == BPF_READ && value_regno >= 0) 2987 mark_reg_unknown(env, regs, value_regno); 2988 } else if (reg->type == PTR_TO_FLOW_KEYS) { 2989 if (t == BPF_WRITE && value_regno >= 0 && 2990 is_pointer_value(env, value_regno)) { 2991 verbose(env, "R%d leaks addr into flow keys\n", 2992 value_regno); 2993 return -EACCES; 2994 } 2995 2996 err = check_flow_keys_access(env, off, size); 2997 if (!err && t == BPF_READ && value_regno >= 0) 2998 mark_reg_unknown(env, regs, value_regno); 2999 } else if (type_is_sk_pointer(reg->type)) { 3000 if (t == BPF_WRITE) { 3001 verbose(env, "R%d cannot write into %s\n", 3002 regno, reg_type_str[reg->type]); 3003 return -EACCES; 3004 } 3005 err = check_sock_access(env, insn_idx, regno, off, size, t); 3006 if (!err && value_regno >= 0) 3007 mark_reg_unknown(env, regs, value_regno); 3008 } else if (reg->type == PTR_TO_TP_BUFFER) { 3009 err = check_tp_buffer_access(env, reg, regno, off, size); 3010 if (!err && t == BPF_READ && value_regno >= 0) 3011 mark_reg_unknown(env, regs, value_regno); 3012 } else if (reg->type == PTR_TO_BTF_ID) { 3013 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 3014 value_regno); 3015 } else { 3016 verbose(env, "R%d invalid mem access '%s'\n", regno, 3017 reg_type_str[reg->type]); 3018 return -EACCES; 3019 } 3020 3021 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 3022 regs[value_regno].type == SCALAR_VALUE) { 3023 /* b/h/w load zero-extends, mark upper bits as known 0 */ 3024 coerce_reg_to_size(®s[value_regno], size); 3025 } 3026 return err; 3027 } 3028 3029 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 3030 { 3031 int err; 3032 3033 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) || 3034 insn->imm != 0) { 3035 verbose(env, "BPF_XADD uses reserved fields\n"); 3036 return -EINVAL; 3037 } 3038 3039 /* check src1 operand */ 3040 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3041 if (err) 3042 return err; 3043 3044 /* check src2 operand */ 3045 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 3046 if (err) 3047 return err; 3048 3049 if (is_pointer_value(env, insn->src_reg)) { 3050 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 3051 return -EACCES; 3052 } 3053 3054 if (is_ctx_reg(env, insn->dst_reg) || 3055 is_pkt_reg(env, insn->dst_reg) || 3056 is_flow_key_reg(env, insn->dst_reg) || 3057 is_sk_reg(env, insn->dst_reg)) { 3058 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n", 3059 insn->dst_reg, 3060 reg_type_str[reg_state(env, insn->dst_reg)->type]); 3061 return -EACCES; 3062 } 3063 3064 /* check whether atomic_add can read the memory */ 3065 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 3066 BPF_SIZE(insn->code), BPF_READ, -1, true); 3067 if (err) 3068 return err; 3069 3070 /* check whether atomic_add can write into the same memory */ 3071 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 3072 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 3073 } 3074 3075 static int __check_stack_boundary(struct bpf_verifier_env *env, u32 regno, 3076 int off, int access_size, 3077 bool zero_size_allowed) 3078 { 3079 struct bpf_reg_state *reg = reg_state(env, regno); 3080 3081 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 || 3082 access_size < 0 || (access_size == 0 && !zero_size_allowed)) { 3083 if (tnum_is_const(reg->var_off)) { 3084 verbose(env, "invalid stack type R%d off=%d access_size=%d\n", 3085 regno, off, access_size); 3086 } else { 3087 char tn_buf[48]; 3088 3089 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3090 verbose(env, "invalid stack type R%d var_off=%s access_size=%d\n", 3091 regno, tn_buf, access_size); 3092 } 3093 return -EACCES; 3094 } 3095 return 0; 3096 } 3097 3098 /* when register 'regno' is passed into function that will read 'access_size' 3099 * bytes from that pointer, make sure that it's within stack boundary 3100 * and all elements of stack are initialized. 3101 * Unlike most pointer bounds-checking functions, this one doesn't take an 3102 * 'off' argument, so it has to add in reg->off itself. 3103 */ 3104 static int check_stack_boundary(struct bpf_verifier_env *env, int regno, 3105 int access_size, bool zero_size_allowed, 3106 struct bpf_call_arg_meta *meta) 3107 { 3108 struct bpf_reg_state *reg = reg_state(env, regno); 3109 struct bpf_func_state *state = func(env, reg); 3110 int err, min_off, max_off, i, j, slot, spi; 3111 3112 if (reg->type != PTR_TO_STACK) { 3113 /* Allow zero-byte read from NULL, regardless of pointer type */ 3114 if (zero_size_allowed && access_size == 0 && 3115 register_is_null(reg)) 3116 return 0; 3117 3118 verbose(env, "R%d type=%s expected=%s\n", regno, 3119 reg_type_str[reg->type], 3120 reg_type_str[PTR_TO_STACK]); 3121 return -EACCES; 3122 } 3123 3124 if (tnum_is_const(reg->var_off)) { 3125 min_off = max_off = reg->var_off.value + reg->off; 3126 err = __check_stack_boundary(env, regno, min_off, access_size, 3127 zero_size_allowed); 3128 if (err) 3129 return err; 3130 } else { 3131 /* Variable offset is prohibited for unprivileged mode for 3132 * simplicity since it requires corresponding support in 3133 * Spectre masking for stack ALU. 3134 * See also retrieve_ptr_limit(). 3135 */ 3136 if (!env->allow_ptr_leaks) { 3137 char tn_buf[48]; 3138 3139 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3140 verbose(env, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n", 3141 regno, tn_buf); 3142 return -EACCES; 3143 } 3144 /* Only initialized buffer on stack is allowed to be accessed 3145 * with variable offset. With uninitialized buffer it's hard to 3146 * guarantee that whole memory is marked as initialized on 3147 * helper return since specific bounds are unknown what may 3148 * cause uninitialized stack leaking. 3149 */ 3150 if (meta && meta->raw_mode) 3151 meta = NULL; 3152 3153 if (reg->smax_value >= BPF_MAX_VAR_OFF || 3154 reg->smax_value <= -BPF_MAX_VAR_OFF) { 3155 verbose(env, "R%d unbounded indirect variable offset stack access\n", 3156 regno); 3157 return -EACCES; 3158 } 3159 min_off = reg->smin_value + reg->off; 3160 max_off = reg->smax_value + reg->off; 3161 err = __check_stack_boundary(env, regno, min_off, access_size, 3162 zero_size_allowed); 3163 if (err) { 3164 verbose(env, "R%d min value is outside of stack bound\n", 3165 regno); 3166 return err; 3167 } 3168 err = __check_stack_boundary(env, regno, max_off, access_size, 3169 zero_size_allowed); 3170 if (err) { 3171 verbose(env, "R%d max value is outside of stack bound\n", 3172 regno); 3173 return err; 3174 } 3175 } 3176 3177 if (meta && meta->raw_mode) { 3178 meta->access_size = access_size; 3179 meta->regno = regno; 3180 return 0; 3181 } 3182 3183 for (i = min_off; i < max_off + access_size; i++) { 3184 u8 *stype; 3185 3186 slot = -i - 1; 3187 spi = slot / BPF_REG_SIZE; 3188 if (state->allocated_stack <= slot) 3189 goto err; 3190 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 3191 if (*stype == STACK_MISC) 3192 goto mark; 3193 if (*stype == STACK_ZERO) { 3194 /* helper can write anything into the stack */ 3195 *stype = STACK_MISC; 3196 goto mark; 3197 } 3198 if (state->stack[spi].slot_type[0] == STACK_SPILL && 3199 state->stack[spi].spilled_ptr.type == SCALAR_VALUE) { 3200 __mark_reg_unknown(&state->stack[spi].spilled_ptr); 3201 for (j = 0; j < BPF_REG_SIZE; j++) 3202 state->stack[spi].slot_type[j] = STACK_MISC; 3203 goto mark; 3204 } 3205 3206 err: 3207 if (tnum_is_const(reg->var_off)) { 3208 verbose(env, "invalid indirect read from stack off %d+%d size %d\n", 3209 min_off, i - min_off, access_size); 3210 } else { 3211 char tn_buf[48]; 3212 3213 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3214 verbose(env, "invalid indirect read from stack var_off %s+%d size %d\n", 3215 tn_buf, i - min_off, access_size); 3216 } 3217 return -EACCES; 3218 mark: 3219 /* reading any byte out of 8-byte 'spill_slot' will cause 3220 * the whole slot to be marked as 'read' 3221 */ 3222 mark_reg_read(env, &state->stack[spi].spilled_ptr, 3223 state->stack[spi].spilled_ptr.parent, 3224 REG_LIVE_READ64); 3225 } 3226 return update_stack_depth(env, state, min_off); 3227 } 3228 3229 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 3230 int access_size, bool zero_size_allowed, 3231 struct bpf_call_arg_meta *meta) 3232 { 3233 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 3234 3235 switch (reg->type) { 3236 case PTR_TO_PACKET: 3237 case PTR_TO_PACKET_META: 3238 return check_packet_access(env, regno, reg->off, access_size, 3239 zero_size_allowed); 3240 case PTR_TO_MAP_VALUE: 3241 if (check_map_access_type(env, regno, reg->off, access_size, 3242 meta && meta->raw_mode ? BPF_WRITE : 3243 BPF_READ)) 3244 return -EACCES; 3245 return check_map_access(env, regno, reg->off, access_size, 3246 zero_size_allowed); 3247 default: /* scalar_value|ptr_to_stack or invalid ptr */ 3248 return check_stack_boundary(env, regno, access_size, 3249 zero_size_allowed, meta); 3250 } 3251 } 3252 3253 /* Implementation details: 3254 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL 3255 * Two bpf_map_lookups (even with the same key) will have different reg->id. 3256 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after 3257 * value_or_null->value transition, since the verifier only cares about 3258 * the range of access to valid map value pointer and doesn't care about actual 3259 * address of the map element. 3260 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 3261 * reg->id > 0 after value_or_null->value transition. By doing so 3262 * two bpf_map_lookups will be considered two different pointers that 3263 * point to different bpf_spin_locks. 3264 * The verifier allows taking only one bpf_spin_lock at a time to avoid 3265 * dead-locks. 3266 * Since only one bpf_spin_lock is allowed the checks are simpler than 3267 * reg_is_refcounted() logic. The verifier needs to remember only 3268 * one spin_lock instead of array of acquired_refs. 3269 * cur_state->active_spin_lock remembers which map value element got locked 3270 * and clears it after bpf_spin_unlock. 3271 */ 3272 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 3273 bool is_lock) 3274 { 3275 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 3276 struct bpf_verifier_state *cur = env->cur_state; 3277 bool is_const = tnum_is_const(reg->var_off); 3278 struct bpf_map *map = reg->map_ptr; 3279 u64 val = reg->var_off.value; 3280 3281 if (reg->type != PTR_TO_MAP_VALUE) { 3282 verbose(env, "R%d is not a pointer to map_value\n", regno); 3283 return -EINVAL; 3284 } 3285 if (!is_const) { 3286 verbose(env, 3287 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 3288 regno); 3289 return -EINVAL; 3290 } 3291 if (!map->btf) { 3292 verbose(env, 3293 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 3294 map->name); 3295 return -EINVAL; 3296 } 3297 if (!map_value_has_spin_lock(map)) { 3298 if (map->spin_lock_off == -E2BIG) 3299 verbose(env, 3300 "map '%s' has more than one 'struct bpf_spin_lock'\n", 3301 map->name); 3302 else if (map->spin_lock_off == -ENOENT) 3303 verbose(env, 3304 "map '%s' doesn't have 'struct bpf_spin_lock'\n", 3305 map->name); 3306 else 3307 verbose(env, 3308 "map '%s' is not a struct type or bpf_spin_lock is mangled\n", 3309 map->name); 3310 return -EINVAL; 3311 } 3312 if (map->spin_lock_off != val + reg->off) { 3313 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n", 3314 val + reg->off); 3315 return -EINVAL; 3316 } 3317 if (is_lock) { 3318 if (cur->active_spin_lock) { 3319 verbose(env, 3320 "Locking two bpf_spin_locks are not allowed\n"); 3321 return -EINVAL; 3322 } 3323 cur->active_spin_lock = reg->id; 3324 } else { 3325 if (!cur->active_spin_lock) { 3326 verbose(env, "bpf_spin_unlock without taking a lock\n"); 3327 return -EINVAL; 3328 } 3329 if (cur->active_spin_lock != reg->id) { 3330 verbose(env, "bpf_spin_unlock of different lock\n"); 3331 return -EINVAL; 3332 } 3333 cur->active_spin_lock = 0; 3334 } 3335 return 0; 3336 } 3337 3338 static bool arg_type_is_mem_ptr(enum bpf_arg_type type) 3339 { 3340 return type == ARG_PTR_TO_MEM || 3341 type == ARG_PTR_TO_MEM_OR_NULL || 3342 type == ARG_PTR_TO_UNINIT_MEM; 3343 } 3344 3345 static bool arg_type_is_mem_size(enum bpf_arg_type type) 3346 { 3347 return type == ARG_CONST_SIZE || 3348 type == ARG_CONST_SIZE_OR_ZERO; 3349 } 3350 3351 static bool arg_type_is_int_ptr(enum bpf_arg_type type) 3352 { 3353 return type == ARG_PTR_TO_INT || 3354 type == ARG_PTR_TO_LONG; 3355 } 3356 3357 static int int_ptr_type_to_size(enum bpf_arg_type type) 3358 { 3359 if (type == ARG_PTR_TO_INT) 3360 return sizeof(u32); 3361 else if (type == ARG_PTR_TO_LONG) 3362 return sizeof(u64); 3363 3364 return -EINVAL; 3365 } 3366 3367 static int check_func_arg(struct bpf_verifier_env *env, u32 regno, 3368 enum bpf_arg_type arg_type, 3369 struct bpf_call_arg_meta *meta) 3370 { 3371 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 3372 enum bpf_reg_type expected_type, type = reg->type; 3373 int err = 0; 3374 3375 if (arg_type == ARG_DONTCARE) 3376 return 0; 3377 3378 err = check_reg_arg(env, regno, SRC_OP); 3379 if (err) 3380 return err; 3381 3382 if (arg_type == ARG_ANYTHING) { 3383 if (is_pointer_value(env, regno)) { 3384 verbose(env, "R%d leaks addr into helper function\n", 3385 regno); 3386 return -EACCES; 3387 } 3388 return 0; 3389 } 3390 3391 if (type_is_pkt_pointer(type) && 3392 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 3393 verbose(env, "helper access to the packet is not allowed\n"); 3394 return -EACCES; 3395 } 3396 3397 if (arg_type == ARG_PTR_TO_MAP_KEY || 3398 arg_type == ARG_PTR_TO_MAP_VALUE || 3399 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE || 3400 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) { 3401 expected_type = PTR_TO_STACK; 3402 if (register_is_null(reg) && 3403 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) 3404 /* final test in check_stack_boundary() */; 3405 else if (!type_is_pkt_pointer(type) && 3406 type != PTR_TO_MAP_VALUE && 3407 type != expected_type) 3408 goto err_type; 3409 } else if (arg_type == ARG_CONST_SIZE || 3410 arg_type == ARG_CONST_SIZE_OR_ZERO) { 3411 expected_type = SCALAR_VALUE; 3412 if (type != expected_type) 3413 goto err_type; 3414 } else if (arg_type == ARG_CONST_MAP_PTR) { 3415 expected_type = CONST_PTR_TO_MAP; 3416 if (type != expected_type) 3417 goto err_type; 3418 } else if (arg_type == ARG_PTR_TO_CTX) { 3419 expected_type = PTR_TO_CTX; 3420 if (type != expected_type) 3421 goto err_type; 3422 err = check_ctx_reg(env, reg, regno); 3423 if (err < 0) 3424 return err; 3425 } else if (arg_type == ARG_PTR_TO_SOCK_COMMON) { 3426 expected_type = PTR_TO_SOCK_COMMON; 3427 /* Any sk pointer can be ARG_PTR_TO_SOCK_COMMON */ 3428 if (!type_is_sk_pointer(type)) 3429 goto err_type; 3430 if (reg->ref_obj_id) { 3431 if (meta->ref_obj_id) { 3432 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 3433 regno, reg->ref_obj_id, 3434 meta->ref_obj_id); 3435 return -EFAULT; 3436 } 3437 meta->ref_obj_id = reg->ref_obj_id; 3438 } 3439 } else if (arg_type == ARG_PTR_TO_SOCKET) { 3440 expected_type = PTR_TO_SOCKET; 3441 if (type != expected_type) 3442 goto err_type; 3443 } else if (arg_type == ARG_PTR_TO_BTF_ID) { 3444 expected_type = PTR_TO_BTF_ID; 3445 if (type != expected_type) 3446 goto err_type; 3447 if (reg->btf_id != meta->btf_id) { 3448 verbose(env, "Helper has type %s got %s in R%d\n", 3449 kernel_type_name(meta->btf_id), 3450 kernel_type_name(reg->btf_id), regno); 3451 3452 return -EACCES; 3453 } 3454 if (!tnum_is_const(reg->var_off) || reg->var_off.value || reg->off) { 3455 verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n", 3456 regno); 3457 return -EACCES; 3458 } 3459 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) { 3460 if (meta->func_id == BPF_FUNC_spin_lock) { 3461 if (process_spin_lock(env, regno, true)) 3462 return -EACCES; 3463 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 3464 if (process_spin_lock(env, regno, false)) 3465 return -EACCES; 3466 } else { 3467 verbose(env, "verifier internal error\n"); 3468 return -EFAULT; 3469 } 3470 } else if (arg_type_is_mem_ptr(arg_type)) { 3471 expected_type = PTR_TO_STACK; 3472 /* One exception here. In case function allows for NULL to be 3473 * passed in as argument, it's a SCALAR_VALUE type. Final test 3474 * happens during stack boundary checking. 3475 */ 3476 if (register_is_null(reg) && 3477 arg_type == ARG_PTR_TO_MEM_OR_NULL) 3478 /* final test in check_stack_boundary() */; 3479 else if (!type_is_pkt_pointer(type) && 3480 type != PTR_TO_MAP_VALUE && 3481 type != expected_type) 3482 goto err_type; 3483 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM; 3484 } else if (arg_type_is_int_ptr(arg_type)) { 3485 expected_type = PTR_TO_STACK; 3486 if (!type_is_pkt_pointer(type) && 3487 type != PTR_TO_MAP_VALUE && 3488 type != expected_type) 3489 goto err_type; 3490 } else { 3491 verbose(env, "unsupported arg_type %d\n", arg_type); 3492 return -EFAULT; 3493 } 3494 3495 if (arg_type == ARG_CONST_MAP_PTR) { 3496 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 3497 meta->map_ptr = reg->map_ptr; 3498 } else if (arg_type == ARG_PTR_TO_MAP_KEY) { 3499 /* bpf_map_xxx(..., map_ptr, ..., key) call: 3500 * check that [key, key + map->key_size) are within 3501 * stack limits and initialized 3502 */ 3503 if (!meta->map_ptr) { 3504 /* in function declaration map_ptr must come before 3505 * map_key, so that it's verified and known before 3506 * we have to check map_key here. Otherwise it means 3507 * that kernel subsystem misconfigured verifier 3508 */ 3509 verbose(env, "invalid map_ptr to access map->key\n"); 3510 return -EACCES; 3511 } 3512 err = check_helper_mem_access(env, regno, 3513 meta->map_ptr->key_size, false, 3514 NULL); 3515 } else if (arg_type == ARG_PTR_TO_MAP_VALUE || 3516 (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL && 3517 !register_is_null(reg)) || 3518 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) { 3519 /* bpf_map_xxx(..., map_ptr, ..., value) call: 3520 * check [value, value + map->value_size) validity 3521 */ 3522 if (!meta->map_ptr) { 3523 /* kernel subsystem misconfigured verifier */ 3524 verbose(env, "invalid map_ptr to access map->value\n"); 3525 return -EACCES; 3526 } 3527 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE); 3528 err = check_helper_mem_access(env, regno, 3529 meta->map_ptr->value_size, false, 3530 meta); 3531 } else if (arg_type_is_mem_size(arg_type)) { 3532 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO); 3533 3534 /* remember the mem_size which may be used later 3535 * to refine return values. 3536 */ 3537 meta->msize_smax_value = reg->smax_value; 3538 meta->msize_umax_value = reg->umax_value; 3539 3540 /* The register is SCALAR_VALUE; the access check 3541 * happens using its boundaries. 3542 */ 3543 if (!tnum_is_const(reg->var_off)) 3544 /* For unprivileged variable accesses, disable raw 3545 * mode so that the program is required to 3546 * initialize all the memory that the helper could 3547 * just partially fill up. 3548 */ 3549 meta = NULL; 3550 3551 if (reg->smin_value < 0) { 3552 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 3553 regno); 3554 return -EACCES; 3555 } 3556 3557 if (reg->umin_value == 0) { 3558 err = check_helper_mem_access(env, regno - 1, 0, 3559 zero_size_allowed, 3560 meta); 3561 if (err) 3562 return err; 3563 } 3564 3565 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 3566 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 3567 regno); 3568 return -EACCES; 3569 } 3570 err = check_helper_mem_access(env, regno - 1, 3571 reg->umax_value, 3572 zero_size_allowed, meta); 3573 if (!err) 3574 err = mark_chain_precision(env, regno); 3575 } else if (arg_type_is_int_ptr(arg_type)) { 3576 int size = int_ptr_type_to_size(arg_type); 3577 3578 err = check_helper_mem_access(env, regno, size, false, meta); 3579 if (err) 3580 return err; 3581 err = check_ptr_alignment(env, reg, 0, size, true); 3582 } 3583 3584 return err; 3585 err_type: 3586 verbose(env, "R%d type=%s expected=%s\n", regno, 3587 reg_type_str[type], reg_type_str[expected_type]); 3588 return -EACCES; 3589 } 3590 3591 static int check_map_func_compatibility(struct bpf_verifier_env *env, 3592 struct bpf_map *map, int func_id) 3593 { 3594 if (!map) 3595 return 0; 3596 3597 /* We need a two way check, first is from map perspective ... */ 3598 switch (map->map_type) { 3599 case BPF_MAP_TYPE_PROG_ARRAY: 3600 if (func_id != BPF_FUNC_tail_call) 3601 goto error; 3602 break; 3603 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 3604 if (func_id != BPF_FUNC_perf_event_read && 3605 func_id != BPF_FUNC_perf_event_output && 3606 func_id != BPF_FUNC_skb_output && 3607 func_id != BPF_FUNC_perf_event_read_value) 3608 goto error; 3609 break; 3610 case BPF_MAP_TYPE_STACK_TRACE: 3611 if (func_id != BPF_FUNC_get_stackid) 3612 goto error; 3613 break; 3614 case BPF_MAP_TYPE_CGROUP_ARRAY: 3615 if (func_id != BPF_FUNC_skb_under_cgroup && 3616 func_id != BPF_FUNC_current_task_under_cgroup) 3617 goto error; 3618 break; 3619 case BPF_MAP_TYPE_CGROUP_STORAGE: 3620 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 3621 if (func_id != BPF_FUNC_get_local_storage) 3622 goto error; 3623 break; 3624 case BPF_MAP_TYPE_DEVMAP: 3625 case BPF_MAP_TYPE_DEVMAP_HASH: 3626 if (func_id != BPF_FUNC_redirect_map && 3627 func_id != BPF_FUNC_map_lookup_elem) 3628 goto error; 3629 break; 3630 /* Restrict bpf side of cpumap and xskmap, open when use-cases 3631 * appear. 3632 */ 3633 case BPF_MAP_TYPE_CPUMAP: 3634 if (func_id != BPF_FUNC_redirect_map) 3635 goto error; 3636 break; 3637 case BPF_MAP_TYPE_XSKMAP: 3638 if (func_id != BPF_FUNC_redirect_map && 3639 func_id != BPF_FUNC_map_lookup_elem) 3640 goto error; 3641 break; 3642 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 3643 case BPF_MAP_TYPE_HASH_OF_MAPS: 3644 if (func_id != BPF_FUNC_map_lookup_elem) 3645 goto error; 3646 break; 3647 case BPF_MAP_TYPE_SOCKMAP: 3648 if (func_id != BPF_FUNC_sk_redirect_map && 3649 func_id != BPF_FUNC_sock_map_update && 3650 func_id != BPF_FUNC_map_delete_elem && 3651 func_id != BPF_FUNC_msg_redirect_map) 3652 goto error; 3653 break; 3654 case BPF_MAP_TYPE_SOCKHASH: 3655 if (func_id != BPF_FUNC_sk_redirect_hash && 3656 func_id != BPF_FUNC_sock_hash_update && 3657 func_id != BPF_FUNC_map_delete_elem && 3658 func_id != BPF_FUNC_msg_redirect_hash) 3659 goto error; 3660 break; 3661 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 3662 if (func_id != BPF_FUNC_sk_select_reuseport) 3663 goto error; 3664 break; 3665 case BPF_MAP_TYPE_QUEUE: 3666 case BPF_MAP_TYPE_STACK: 3667 if (func_id != BPF_FUNC_map_peek_elem && 3668 func_id != BPF_FUNC_map_pop_elem && 3669 func_id != BPF_FUNC_map_push_elem) 3670 goto error; 3671 break; 3672 case BPF_MAP_TYPE_SK_STORAGE: 3673 if (func_id != BPF_FUNC_sk_storage_get && 3674 func_id != BPF_FUNC_sk_storage_delete) 3675 goto error; 3676 break; 3677 default: 3678 break; 3679 } 3680 3681 /* ... and second from the function itself. */ 3682 switch (func_id) { 3683 case BPF_FUNC_tail_call: 3684 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 3685 goto error; 3686 if (env->subprog_cnt > 1) { 3687 verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n"); 3688 return -EINVAL; 3689 } 3690 break; 3691 case BPF_FUNC_perf_event_read: 3692 case BPF_FUNC_perf_event_output: 3693 case BPF_FUNC_perf_event_read_value: 3694 case BPF_FUNC_skb_output: 3695 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 3696 goto error; 3697 break; 3698 case BPF_FUNC_get_stackid: 3699 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 3700 goto error; 3701 break; 3702 case BPF_FUNC_current_task_under_cgroup: 3703 case BPF_FUNC_skb_under_cgroup: 3704 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 3705 goto error; 3706 break; 3707 case BPF_FUNC_redirect_map: 3708 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 3709 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 3710 map->map_type != BPF_MAP_TYPE_CPUMAP && 3711 map->map_type != BPF_MAP_TYPE_XSKMAP) 3712 goto error; 3713 break; 3714 case BPF_FUNC_sk_redirect_map: 3715 case BPF_FUNC_msg_redirect_map: 3716 case BPF_FUNC_sock_map_update: 3717 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 3718 goto error; 3719 break; 3720 case BPF_FUNC_sk_redirect_hash: 3721 case BPF_FUNC_msg_redirect_hash: 3722 case BPF_FUNC_sock_hash_update: 3723 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 3724 goto error; 3725 break; 3726 case BPF_FUNC_get_local_storage: 3727 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 3728 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 3729 goto error; 3730 break; 3731 case BPF_FUNC_sk_select_reuseport: 3732 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY) 3733 goto error; 3734 break; 3735 case BPF_FUNC_map_peek_elem: 3736 case BPF_FUNC_map_pop_elem: 3737 case BPF_FUNC_map_push_elem: 3738 if (map->map_type != BPF_MAP_TYPE_QUEUE && 3739 map->map_type != BPF_MAP_TYPE_STACK) 3740 goto error; 3741 break; 3742 case BPF_FUNC_sk_storage_get: 3743 case BPF_FUNC_sk_storage_delete: 3744 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 3745 goto error; 3746 break; 3747 default: 3748 break; 3749 } 3750 3751 return 0; 3752 error: 3753 verbose(env, "cannot pass map_type %d into func %s#%d\n", 3754 map->map_type, func_id_name(func_id), func_id); 3755 return -EINVAL; 3756 } 3757 3758 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 3759 { 3760 int count = 0; 3761 3762 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 3763 count++; 3764 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 3765 count++; 3766 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 3767 count++; 3768 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 3769 count++; 3770 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 3771 count++; 3772 3773 /* We only support one arg being in raw mode at the moment, 3774 * which is sufficient for the helper functions we have 3775 * right now. 3776 */ 3777 return count <= 1; 3778 } 3779 3780 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr, 3781 enum bpf_arg_type arg_next) 3782 { 3783 return (arg_type_is_mem_ptr(arg_curr) && 3784 !arg_type_is_mem_size(arg_next)) || 3785 (!arg_type_is_mem_ptr(arg_curr) && 3786 arg_type_is_mem_size(arg_next)); 3787 } 3788 3789 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 3790 { 3791 /* bpf_xxx(..., buf, len) call will access 'len' 3792 * bytes from memory 'buf'. Both arg types need 3793 * to be paired, so make sure there's no buggy 3794 * helper function specification. 3795 */ 3796 if (arg_type_is_mem_size(fn->arg1_type) || 3797 arg_type_is_mem_ptr(fn->arg5_type) || 3798 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) || 3799 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) || 3800 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) || 3801 check_args_pair_invalid(fn->arg4_type, fn->arg5_type)) 3802 return false; 3803 3804 return true; 3805 } 3806 3807 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id) 3808 { 3809 int count = 0; 3810 3811 if (arg_type_may_be_refcounted(fn->arg1_type)) 3812 count++; 3813 if (arg_type_may_be_refcounted(fn->arg2_type)) 3814 count++; 3815 if (arg_type_may_be_refcounted(fn->arg3_type)) 3816 count++; 3817 if (arg_type_may_be_refcounted(fn->arg4_type)) 3818 count++; 3819 if (arg_type_may_be_refcounted(fn->arg5_type)) 3820 count++; 3821 3822 /* A reference acquiring function cannot acquire 3823 * another refcounted ptr. 3824 */ 3825 if (is_acquire_function(func_id) && count) 3826 return false; 3827 3828 /* We only support one arg being unreferenced at the moment, 3829 * which is sufficient for the helper functions we have right now. 3830 */ 3831 return count <= 1; 3832 } 3833 3834 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 3835 { 3836 return check_raw_mode_ok(fn) && 3837 check_arg_pair_ok(fn) && 3838 check_refcount_ok(fn, func_id) ? 0 : -EINVAL; 3839 } 3840 3841 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 3842 * are now invalid, so turn them into unknown SCALAR_VALUE. 3843 */ 3844 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env, 3845 struct bpf_func_state *state) 3846 { 3847 struct bpf_reg_state *regs = state->regs, *reg; 3848 int i; 3849 3850 for (i = 0; i < MAX_BPF_REG; i++) 3851 if (reg_is_pkt_pointer_any(®s[i])) 3852 mark_reg_unknown(env, regs, i); 3853 3854 bpf_for_each_spilled_reg(i, state, reg) { 3855 if (!reg) 3856 continue; 3857 if (reg_is_pkt_pointer_any(reg)) 3858 __mark_reg_unknown(reg); 3859 } 3860 } 3861 3862 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 3863 { 3864 struct bpf_verifier_state *vstate = env->cur_state; 3865 int i; 3866 3867 for (i = 0; i <= vstate->curframe; i++) 3868 __clear_all_pkt_pointers(env, vstate->frame[i]); 3869 } 3870 3871 static void release_reg_references(struct bpf_verifier_env *env, 3872 struct bpf_func_state *state, 3873 int ref_obj_id) 3874 { 3875 struct bpf_reg_state *regs = state->regs, *reg; 3876 int i; 3877 3878 for (i = 0; i < MAX_BPF_REG; i++) 3879 if (regs[i].ref_obj_id == ref_obj_id) 3880 mark_reg_unknown(env, regs, i); 3881 3882 bpf_for_each_spilled_reg(i, state, reg) { 3883 if (!reg) 3884 continue; 3885 if (reg->ref_obj_id == ref_obj_id) 3886 __mark_reg_unknown(reg); 3887 } 3888 } 3889 3890 /* The pointer with the specified id has released its reference to kernel 3891 * resources. Identify all copies of the same pointer and clear the reference. 3892 */ 3893 static int release_reference(struct bpf_verifier_env *env, 3894 int ref_obj_id) 3895 { 3896 struct bpf_verifier_state *vstate = env->cur_state; 3897 int err; 3898 int i; 3899 3900 err = release_reference_state(cur_func(env), ref_obj_id); 3901 if (err) 3902 return err; 3903 3904 for (i = 0; i <= vstate->curframe; i++) 3905 release_reg_references(env, vstate->frame[i], ref_obj_id); 3906 3907 return 0; 3908 } 3909 3910 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 3911 int *insn_idx) 3912 { 3913 struct bpf_verifier_state *state = env->cur_state; 3914 struct bpf_func_state *caller, *callee; 3915 int i, err, subprog, target_insn; 3916 3917 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 3918 verbose(env, "the call stack of %d frames is too deep\n", 3919 state->curframe + 2); 3920 return -E2BIG; 3921 } 3922 3923 target_insn = *insn_idx + insn->imm; 3924 subprog = find_subprog(env, target_insn + 1); 3925 if (subprog < 0) { 3926 verbose(env, "verifier bug. No program starts at insn %d\n", 3927 target_insn + 1); 3928 return -EFAULT; 3929 } 3930 3931 caller = state->frame[state->curframe]; 3932 if (state->frame[state->curframe + 1]) { 3933 verbose(env, "verifier bug. Frame %d already allocated\n", 3934 state->curframe + 1); 3935 return -EFAULT; 3936 } 3937 3938 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 3939 if (!callee) 3940 return -ENOMEM; 3941 state->frame[state->curframe + 1] = callee; 3942 3943 /* callee cannot access r0, r6 - r9 for reading and has to write 3944 * into its own stack before reading from it. 3945 * callee can read/write into caller's stack 3946 */ 3947 init_func_state(env, callee, 3948 /* remember the callsite, it will be used by bpf_exit */ 3949 *insn_idx /* callsite */, 3950 state->curframe + 1 /* frameno within this callchain */, 3951 subprog /* subprog number within this prog */); 3952 3953 /* Transfer references to the callee */ 3954 err = transfer_reference_state(callee, caller); 3955 if (err) 3956 return err; 3957 3958 /* copy r1 - r5 args that callee can access. The copy includes parent 3959 * pointers, which connects us up to the liveness chain 3960 */ 3961 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 3962 callee->regs[i] = caller->regs[i]; 3963 3964 /* after the call registers r0 - r5 were scratched */ 3965 for (i = 0; i < CALLER_SAVED_REGS; i++) { 3966 mark_reg_not_init(env, caller->regs, caller_saved[i]); 3967 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 3968 } 3969 3970 /* only increment it after check_reg_arg() finished */ 3971 state->curframe++; 3972 3973 /* and go analyze first insn of the callee */ 3974 *insn_idx = target_insn; 3975 3976 if (env->log.level & BPF_LOG_LEVEL) { 3977 verbose(env, "caller:\n"); 3978 print_verifier_state(env, caller); 3979 verbose(env, "callee:\n"); 3980 print_verifier_state(env, callee); 3981 } 3982 return 0; 3983 } 3984 3985 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 3986 { 3987 struct bpf_verifier_state *state = env->cur_state; 3988 struct bpf_func_state *caller, *callee; 3989 struct bpf_reg_state *r0; 3990 int err; 3991 3992 callee = state->frame[state->curframe]; 3993 r0 = &callee->regs[BPF_REG_0]; 3994 if (r0->type == PTR_TO_STACK) { 3995 /* technically it's ok to return caller's stack pointer 3996 * (or caller's caller's pointer) back to the caller, 3997 * since these pointers are valid. Only current stack 3998 * pointer will be invalid as soon as function exits, 3999 * but let's be conservative 4000 */ 4001 verbose(env, "cannot return stack pointer to the caller\n"); 4002 return -EINVAL; 4003 } 4004 4005 state->curframe--; 4006 caller = state->frame[state->curframe]; 4007 /* return to the caller whatever r0 had in the callee */ 4008 caller->regs[BPF_REG_0] = *r0; 4009 4010 /* Transfer references to the caller */ 4011 err = transfer_reference_state(caller, callee); 4012 if (err) 4013 return err; 4014 4015 *insn_idx = callee->callsite + 1; 4016 if (env->log.level & BPF_LOG_LEVEL) { 4017 verbose(env, "returning from callee:\n"); 4018 print_verifier_state(env, callee); 4019 verbose(env, "to caller at %d:\n", *insn_idx); 4020 print_verifier_state(env, caller); 4021 } 4022 /* clear everything in the callee */ 4023 free_func_state(callee); 4024 state->frame[state->curframe + 1] = NULL; 4025 return 0; 4026 } 4027 4028 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 4029 int func_id, 4030 struct bpf_call_arg_meta *meta) 4031 { 4032 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 4033 4034 if (ret_type != RET_INTEGER || 4035 (func_id != BPF_FUNC_get_stack && 4036 func_id != BPF_FUNC_probe_read_str)) 4037 return; 4038 4039 ret_reg->smax_value = meta->msize_smax_value; 4040 ret_reg->umax_value = meta->msize_umax_value; 4041 __reg_deduce_bounds(ret_reg); 4042 __reg_bound_offset(ret_reg); 4043 } 4044 4045 static int 4046 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 4047 int func_id, int insn_idx) 4048 { 4049 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 4050 struct bpf_map *map = meta->map_ptr; 4051 4052 if (func_id != BPF_FUNC_tail_call && 4053 func_id != BPF_FUNC_map_lookup_elem && 4054 func_id != BPF_FUNC_map_update_elem && 4055 func_id != BPF_FUNC_map_delete_elem && 4056 func_id != BPF_FUNC_map_push_elem && 4057 func_id != BPF_FUNC_map_pop_elem && 4058 func_id != BPF_FUNC_map_peek_elem) 4059 return 0; 4060 4061 if (map == NULL) { 4062 verbose(env, "kernel subsystem misconfigured verifier\n"); 4063 return -EINVAL; 4064 } 4065 4066 /* In case of read-only, some additional restrictions 4067 * need to be applied in order to prevent altering the 4068 * state of the map from program side. 4069 */ 4070 if ((map->map_flags & BPF_F_RDONLY_PROG) && 4071 (func_id == BPF_FUNC_map_delete_elem || 4072 func_id == BPF_FUNC_map_update_elem || 4073 func_id == BPF_FUNC_map_push_elem || 4074 func_id == BPF_FUNC_map_pop_elem)) { 4075 verbose(env, "write into map forbidden\n"); 4076 return -EACCES; 4077 } 4078 4079 if (!BPF_MAP_PTR(aux->map_state)) 4080 bpf_map_ptr_store(aux, meta->map_ptr, 4081 meta->map_ptr->unpriv_array); 4082 else if (BPF_MAP_PTR(aux->map_state) != meta->map_ptr) 4083 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 4084 meta->map_ptr->unpriv_array); 4085 return 0; 4086 } 4087 4088 static int check_reference_leak(struct bpf_verifier_env *env) 4089 { 4090 struct bpf_func_state *state = cur_func(env); 4091 int i; 4092 4093 for (i = 0; i < state->acquired_refs; i++) { 4094 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 4095 state->refs[i].id, state->refs[i].insn_idx); 4096 } 4097 return state->acquired_refs ? -EINVAL : 0; 4098 } 4099 4100 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx) 4101 { 4102 const struct bpf_func_proto *fn = NULL; 4103 struct bpf_reg_state *regs; 4104 struct bpf_call_arg_meta meta; 4105 bool changes_data; 4106 int i, err; 4107 4108 /* find function prototype */ 4109 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 4110 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 4111 func_id); 4112 return -EINVAL; 4113 } 4114 4115 if (env->ops->get_func_proto) 4116 fn = env->ops->get_func_proto(func_id, env->prog); 4117 if (!fn) { 4118 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 4119 func_id); 4120 return -EINVAL; 4121 } 4122 4123 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 4124 if (!env->prog->gpl_compatible && fn->gpl_only) { 4125 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 4126 return -EINVAL; 4127 } 4128 4129 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 4130 changes_data = bpf_helper_changes_pkt_data(fn->func); 4131 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 4132 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 4133 func_id_name(func_id), func_id); 4134 return -EINVAL; 4135 } 4136 4137 memset(&meta, 0, sizeof(meta)); 4138 meta.pkt_access = fn->pkt_access; 4139 4140 err = check_func_proto(fn, func_id); 4141 if (err) { 4142 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 4143 func_id_name(func_id), func_id); 4144 return err; 4145 } 4146 4147 meta.func_id = func_id; 4148 /* check args */ 4149 for (i = 0; i < 5; i++) { 4150 if (fn->arg_type[i] == ARG_PTR_TO_BTF_ID) { 4151 if (!fn->btf_id[i]) 4152 fn->btf_id[i] = btf_resolve_helper_id(&env->log, fn->func, i); 4153 meta.btf_id = fn->btf_id[i]; 4154 } 4155 err = check_func_arg(env, BPF_REG_1 + i, fn->arg_type[i], &meta); 4156 if (err) 4157 return err; 4158 } 4159 4160 err = record_func_map(env, &meta, func_id, insn_idx); 4161 if (err) 4162 return err; 4163 4164 /* Mark slots with STACK_MISC in case of raw mode, stack offset 4165 * is inferred from register state. 4166 */ 4167 for (i = 0; i < meta.access_size; i++) { 4168 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 4169 BPF_WRITE, -1, false); 4170 if (err) 4171 return err; 4172 } 4173 4174 if (func_id == BPF_FUNC_tail_call) { 4175 err = check_reference_leak(env); 4176 if (err) { 4177 verbose(env, "tail_call would lead to reference leak\n"); 4178 return err; 4179 } 4180 } else if (is_release_function(func_id)) { 4181 err = release_reference(env, meta.ref_obj_id); 4182 if (err) { 4183 verbose(env, "func %s#%d reference has not been acquired before\n", 4184 func_id_name(func_id), func_id); 4185 return err; 4186 } 4187 } 4188 4189 regs = cur_regs(env); 4190 4191 /* check that flags argument in get_local_storage(map, flags) is 0, 4192 * this is required because get_local_storage() can't return an error. 4193 */ 4194 if (func_id == BPF_FUNC_get_local_storage && 4195 !register_is_null(®s[BPF_REG_2])) { 4196 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 4197 return -EINVAL; 4198 } 4199 4200 /* reset caller saved regs */ 4201 for (i = 0; i < CALLER_SAVED_REGS; i++) { 4202 mark_reg_not_init(env, regs, caller_saved[i]); 4203 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 4204 } 4205 4206 /* helper call returns 64-bit value. */ 4207 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 4208 4209 /* update return register (already marked as written above) */ 4210 if (fn->ret_type == RET_INTEGER) { 4211 /* sets type to SCALAR_VALUE */ 4212 mark_reg_unknown(env, regs, BPF_REG_0); 4213 } else if (fn->ret_type == RET_VOID) { 4214 regs[BPF_REG_0].type = NOT_INIT; 4215 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL || 4216 fn->ret_type == RET_PTR_TO_MAP_VALUE) { 4217 /* There is no offset yet applied, variable or fixed */ 4218 mark_reg_known_zero(env, regs, BPF_REG_0); 4219 /* remember map_ptr, so that check_map_access() 4220 * can check 'value_size' boundary of memory access 4221 * to map element returned from bpf_map_lookup_elem() 4222 */ 4223 if (meta.map_ptr == NULL) { 4224 verbose(env, 4225 "kernel subsystem misconfigured verifier\n"); 4226 return -EINVAL; 4227 } 4228 regs[BPF_REG_0].map_ptr = meta.map_ptr; 4229 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) { 4230 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE; 4231 if (map_value_has_spin_lock(meta.map_ptr)) 4232 regs[BPF_REG_0].id = ++env->id_gen; 4233 } else { 4234 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL; 4235 regs[BPF_REG_0].id = ++env->id_gen; 4236 } 4237 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) { 4238 mark_reg_known_zero(env, regs, BPF_REG_0); 4239 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL; 4240 regs[BPF_REG_0].id = ++env->id_gen; 4241 } else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) { 4242 mark_reg_known_zero(env, regs, BPF_REG_0); 4243 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL; 4244 regs[BPF_REG_0].id = ++env->id_gen; 4245 } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) { 4246 mark_reg_known_zero(env, regs, BPF_REG_0); 4247 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL; 4248 regs[BPF_REG_0].id = ++env->id_gen; 4249 } else { 4250 verbose(env, "unknown return type %d of func %s#%d\n", 4251 fn->ret_type, func_id_name(func_id), func_id); 4252 return -EINVAL; 4253 } 4254 4255 if (is_ptr_cast_function(func_id)) { 4256 /* For release_reference() */ 4257 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 4258 } else if (is_acquire_function(func_id)) { 4259 int id = acquire_reference_state(env, insn_idx); 4260 4261 if (id < 0) 4262 return id; 4263 /* For mark_ptr_or_null_reg() */ 4264 regs[BPF_REG_0].id = id; 4265 /* For release_reference() */ 4266 regs[BPF_REG_0].ref_obj_id = id; 4267 } 4268 4269 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 4270 4271 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 4272 if (err) 4273 return err; 4274 4275 if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) { 4276 const char *err_str; 4277 4278 #ifdef CONFIG_PERF_EVENTS 4279 err = get_callchain_buffers(sysctl_perf_event_max_stack); 4280 err_str = "cannot get callchain buffer for func %s#%d\n"; 4281 #else 4282 err = -ENOTSUPP; 4283 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 4284 #endif 4285 if (err) { 4286 verbose(env, err_str, func_id_name(func_id), func_id); 4287 return err; 4288 } 4289 4290 env->prog->has_callchain_buf = true; 4291 } 4292 4293 if (changes_data) 4294 clear_all_pkt_pointers(env); 4295 return 0; 4296 } 4297 4298 static bool signed_add_overflows(s64 a, s64 b) 4299 { 4300 /* Do the add in u64, where overflow is well-defined */ 4301 s64 res = (s64)((u64)a + (u64)b); 4302 4303 if (b < 0) 4304 return res > a; 4305 return res < a; 4306 } 4307 4308 static bool signed_sub_overflows(s64 a, s64 b) 4309 { 4310 /* Do the sub in u64, where overflow is well-defined */ 4311 s64 res = (s64)((u64)a - (u64)b); 4312 4313 if (b < 0) 4314 return res < a; 4315 return res > a; 4316 } 4317 4318 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 4319 const struct bpf_reg_state *reg, 4320 enum bpf_reg_type type) 4321 { 4322 bool known = tnum_is_const(reg->var_off); 4323 s64 val = reg->var_off.value; 4324 s64 smin = reg->smin_value; 4325 4326 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 4327 verbose(env, "math between %s pointer and %lld is not allowed\n", 4328 reg_type_str[type], val); 4329 return false; 4330 } 4331 4332 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 4333 verbose(env, "%s pointer offset %d is not allowed\n", 4334 reg_type_str[type], reg->off); 4335 return false; 4336 } 4337 4338 if (smin == S64_MIN) { 4339 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 4340 reg_type_str[type]); 4341 return false; 4342 } 4343 4344 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 4345 verbose(env, "value %lld makes %s pointer be out of bounds\n", 4346 smin, reg_type_str[type]); 4347 return false; 4348 } 4349 4350 return true; 4351 } 4352 4353 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 4354 { 4355 return &env->insn_aux_data[env->insn_idx]; 4356 } 4357 4358 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 4359 u32 *ptr_limit, u8 opcode, bool off_is_neg) 4360 { 4361 bool mask_to_left = (opcode == BPF_ADD && off_is_neg) || 4362 (opcode == BPF_SUB && !off_is_neg); 4363 u32 off; 4364 4365 switch (ptr_reg->type) { 4366 case PTR_TO_STACK: 4367 /* Indirect variable offset stack access is prohibited in 4368 * unprivileged mode so it's not handled here. 4369 */ 4370 off = ptr_reg->off + ptr_reg->var_off.value; 4371 if (mask_to_left) 4372 *ptr_limit = MAX_BPF_STACK + off; 4373 else 4374 *ptr_limit = -off; 4375 return 0; 4376 case PTR_TO_MAP_VALUE: 4377 if (mask_to_left) { 4378 *ptr_limit = ptr_reg->umax_value + ptr_reg->off; 4379 } else { 4380 off = ptr_reg->smin_value + ptr_reg->off; 4381 *ptr_limit = ptr_reg->map_ptr->value_size - off; 4382 } 4383 return 0; 4384 default: 4385 return -EINVAL; 4386 } 4387 } 4388 4389 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 4390 const struct bpf_insn *insn) 4391 { 4392 return env->allow_ptr_leaks || BPF_SRC(insn->code) == BPF_K; 4393 } 4394 4395 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 4396 u32 alu_state, u32 alu_limit) 4397 { 4398 /* If we arrived here from different branches with different 4399 * state or limits to sanitize, then this won't work. 4400 */ 4401 if (aux->alu_state && 4402 (aux->alu_state != alu_state || 4403 aux->alu_limit != alu_limit)) 4404 return -EACCES; 4405 4406 /* Corresponding fixup done in fixup_bpf_calls(). */ 4407 aux->alu_state = alu_state; 4408 aux->alu_limit = alu_limit; 4409 return 0; 4410 } 4411 4412 static int sanitize_val_alu(struct bpf_verifier_env *env, 4413 struct bpf_insn *insn) 4414 { 4415 struct bpf_insn_aux_data *aux = cur_aux(env); 4416 4417 if (can_skip_alu_sanitation(env, insn)) 4418 return 0; 4419 4420 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 4421 } 4422 4423 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 4424 struct bpf_insn *insn, 4425 const struct bpf_reg_state *ptr_reg, 4426 struct bpf_reg_state *dst_reg, 4427 bool off_is_neg) 4428 { 4429 struct bpf_verifier_state *vstate = env->cur_state; 4430 struct bpf_insn_aux_data *aux = cur_aux(env); 4431 bool ptr_is_dst_reg = ptr_reg == dst_reg; 4432 u8 opcode = BPF_OP(insn->code); 4433 u32 alu_state, alu_limit; 4434 struct bpf_reg_state tmp; 4435 bool ret; 4436 4437 if (can_skip_alu_sanitation(env, insn)) 4438 return 0; 4439 4440 /* We already marked aux for masking from non-speculative 4441 * paths, thus we got here in the first place. We only care 4442 * to explore bad access from here. 4443 */ 4444 if (vstate->speculative) 4445 goto do_sim; 4446 4447 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 4448 alu_state |= ptr_is_dst_reg ? 4449 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 4450 4451 if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg)) 4452 return 0; 4453 if (update_alu_sanitation_state(aux, alu_state, alu_limit)) 4454 return -EACCES; 4455 do_sim: 4456 /* Simulate and find potential out-of-bounds access under 4457 * speculative execution from truncation as a result of 4458 * masking when off was not within expected range. If off 4459 * sits in dst, then we temporarily need to move ptr there 4460 * to simulate dst (== 0) +/-= ptr. Needed, for example, 4461 * for cases where we use K-based arithmetic in one direction 4462 * and truncated reg-based in the other in order to explore 4463 * bad access. 4464 */ 4465 if (!ptr_is_dst_reg) { 4466 tmp = *dst_reg; 4467 *dst_reg = *ptr_reg; 4468 } 4469 ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true); 4470 if (!ptr_is_dst_reg && ret) 4471 *dst_reg = tmp; 4472 return !ret ? -EFAULT : 0; 4473 } 4474 4475 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 4476 * Caller should also handle BPF_MOV case separately. 4477 * If we return -EACCES, caller may want to try again treating pointer as a 4478 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 4479 */ 4480 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 4481 struct bpf_insn *insn, 4482 const struct bpf_reg_state *ptr_reg, 4483 const struct bpf_reg_state *off_reg) 4484 { 4485 struct bpf_verifier_state *vstate = env->cur_state; 4486 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4487 struct bpf_reg_state *regs = state->regs, *dst_reg; 4488 bool known = tnum_is_const(off_reg->var_off); 4489 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 4490 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 4491 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 4492 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 4493 u32 dst = insn->dst_reg, src = insn->src_reg; 4494 u8 opcode = BPF_OP(insn->code); 4495 int ret; 4496 4497 dst_reg = ®s[dst]; 4498 4499 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 4500 smin_val > smax_val || umin_val > umax_val) { 4501 /* Taint dst register if offset had invalid bounds derived from 4502 * e.g. dead branches. 4503 */ 4504 __mark_reg_unknown(dst_reg); 4505 return 0; 4506 } 4507 4508 if (BPF_CLASS(insn->code) != BPF_ALU64) { 4509 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 4510 verbose(env, 4511 "R%d 32-bit pointer arithmetic prohibited\n", 4512 dst); 4513 return -EACCES; 4514 } 4515 4516 switch (ptr_reg->type) { 4517 case PTR_TO_MAP_VALUE_OR_NULL: 4518 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 4519 dst, reg_type_str[ptr_reg->type]); 4520 return -EACCES; 4521 case CONST_PTR_TO_MAP: 4522 case PTR_TO_PACKET_END: 4523 case PTR_TO_SOCKET: 4524 case PTR_TO_SOCKET_OR_NULL: 4525 case PTR_TO_SOCK_COMMON: 4526 case PTR_TO_SOCK_COMMON_OR_NULL: 4527 case PTR_TO_TCP_SOCK: 4528 case PTR_TO_TCP_SOCK_OR_NULL: 4529 case PTR_TO_XDP_SOCK: 4530 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 4531 dst, reg_type_str[ptr_reg->type]); 4532 return -EACCES; 4533 case PTR_TO_MAP_VALUE: 4534 if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) { 4535 verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n", 4536 off_reg == dst_reg ? dst : src); 4537 return -EACCES; 4538 } 4539 /* fall-through */ 4540 default: 4541 break; 4542 } 4543 4544 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 4545 * The id may be overwritten later if we create a new variable offset. 4546 */ 4547 dst_reg->type = ptr_reg->type; 4548 dst_reg->id = ptr_reg->id; 4549 4550 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 4551 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 4552 return -EINVAL; 4553 4554 switch (opcode) { 4555 case BPF_ADD: 4556 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0); 4557 if (ret < 0) { 4558 verbose(env, "R%d tried to add from different maps or paths\n", dst); 4559 return ret; 4560 } 4561 /* We can take a fixed offset as long as it doesn't overflow 4562 * the s32 'off' field 4563 */ 4564 if (known && (ptr_reg->off + smin_val == 4565 (s64)(s32)(ptr_reg->off + smin_val))) { 4566 /* pointer += K. Accumulate it into fixed offset */ 4567 dst_reg->smin_value = smin_ptr; 4568 dst_reg->smax_value = smax_ptr; 4569 dst_reg->umin_value = umin_ptr; 4570 dst_reg->umax_value = umax_ptr; 4571 dst_reg->var_off = ptr_reg->var_off; 4572 dst_reg->off = ptr_reg->off + smin_val; 4573 dst_reg->raw = ptr_reg->raw; 4574 break; 4575 } 4576 /* A new variable offset is created. Note that off_reg->off 4577 * == 0, since it's a scalar. 4578 * dst_reg gets the pointer type and since some positive 4579 * integer value was added to the pointer, give it a new 'id' 4580 * if it's a PTR_TO_PACKET. 4581 * this creates a new 'base' pointer, off_reg (variable) gets 4582 * added into the variable offset, and we copy the fixed offset 4583 * from ptr_reg. 4584 */ 4585 if (signed_add_overflows(smin_ptr, smin_val) || 4586 signed_add_overflows(smax_ptr, smax_val)) { 4587 dst_reg->smin_value = S64_MIN; 4588 dst_reg->smax_value = S64_MAX; 4589 } else { 4590 dst_reg->smin_value = smin_ptr + smin_val; 4591 dst_reg->smax_value = smax_ptr + smax_val; 4592 } 4593 if (umin_ptr + umin_val < umin_ptr || 4594 umax_ptr + umax_val < umax_ptr) { 4595 dst_reg->umin_value = 0; 4596 dst_reg->umax_value = U64_MAX; 4597 } else { 4598 dst_reg->umin_value = umin_ptr + umin_val; 4599 dst_reg->umax_value = umax_ptr + umax_val; 4600 } 4601 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 4602 dst_reg->off = ptr_reg->off; 4603 dst_reg->raw = ptr_reg->raw; 4604 if (reg_is_pkt_pointer(ptr_reg)) { 4605 dst_reg->id = ++env->id_gen; 4606 /* something was added to pkt_ptr, set range to zero */ 4607 dst_reg->raw = 0; 4608 } 4609 break; 4610 case BPF_SUB: 4611 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0); 4612 if (ret < 0) { 4613 verbose(env, "R%d tried to sub from different maps or paths\n", dst); 4614 return ret; 4615 } 4616 if (dst_reg == off_reg) { 4617 /* scalar -= pointer. Creates an unknown scalar */ 4618 verbose(env, "R%d tried to subtract pointer from scalar\n", 4619 dst); 4620 return -EACCES; 4621 } 4622 /* We don't allow subtraction from FP, because (according to 4623 * test_verifier.c test "invalid fp arithmetic", JITs might not 4624 * be able to deal with it. 4625 */ 4626 if (ptr_reg->type == PTR_TO_STACK) { 4627 verbose(env, "R%d subtraction from stack pointer prohibited\n", 4628 dst); 4629 return -EACCES; 4630 } 4631 if (known && (ptr_reg->off - smin_val == 4632 (s64)(s32)(ptr_reg->off - smin_val))) { 4633 /* pointer -= K. Subtract it from fixed offset */ 4634 dst_reg->smin_value = smin_ptr; 4635 dst_reg->smax_value = smax_ptr; 4636 dst_reg->umin_value = umin_ptr; 4637 dst_reg->umax_value = umax_ptr; 4638 dst_reg->var_off = ptr_reg->var_off; 4639 dst_reg->id = ptr_reg->id; 4640 dst_reg->off = ptr_reg->off - smin_val; 4641 dst_reg->raw = ptr_reg->raw; 4642 break; 4643 } 4644 /* A new variable offset is created. If the subtrahend is known 4645 * nonnegative, then any reg->range we had before is still good. 4646 */ 4647 if (signed_sub_overflows(smin_ptr, smax_val) || 4648 signed_sub_overflows(smax_ptr, smin_val)) { 4649 /* Overflow possible, we know nothing */ 4650 dst_reg->smin_value = S64_MIN; 4651 dst_reg->smax_value = S64_MAX; 4652 } else { 4653 dst_reg->smin_value = smin_ptr - smax_val; 4654 dst_reg->smax_value = smax_ptr - smin_val; 4655 } 4656 if (umin_ptr < umax_val) { 4657 /* Overflow possible, we know nothing */ 4658 dst_reg->umin_value = 0; 4659 dst_reg->umax_value = U64_MAX; 4660 } else { 4661 /* Cannot overflow (as long as bounds are consistent) */ 4662 dst_reg->umin_value = umin_ptr - umax_val; 4663 dst_reg->umax_value = umax_ptr - umin_val; 4664 } 4665 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 4666 dst_reg->off = ptr_reg->off; 4667 dst_reg->raw = ptr_reg->raw; 4668 if (reg_is_pkt_pointer(ptr_reg)) { 4669 dst_reg->id = ++env->id_gen; 4670 /* something was added to pkt_ptr, set range to zero */ 4671 if (smin_val < 0) 4672 dst_reg->raw = 0; 4673 } 4674 break; 4675 case BPF_AND: 4676 case BPF_OR: 4677 case BPF_XOR: 4678 /* bitwise ops on pointers are troublesome, prohibit. */ 4679 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 4680 dst, bpf_alu_string[opcode >> 4]); 4681 return -EACCES; 4682 default: 4683 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 4684 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 4685 dst, bpf_alu_string[opcode >> 4]); 4686 return -EACCES; 4687 } 4688 4689 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 4690 return -EINVAL; 4691 4692 __update_reg_bounds(dst_reg); 4693 __reg_deduce_bounds(dst_reg); 4694 __reg_bound_offset(dst_reg); 4695 4696 /* For unprivileged we require that resulting offset must be in bounds 4697 * in order to be able to sanitize access later on. 4698 */ 4699 if (!env->allow_ptr_leaks) { 4700 if (dst_reg->type == PTR_TO_MAP_VALUE && 4701 check_map_access(env, dst, dst_reg->off, 1, false)) { 4702 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 4703 "prohibited for !root\n", dst); 4704 return -EACCES; 4705 } else if (dst_reg->type == PTR_TO_STACK && 4706 check_stack_access(env, dst_reg, dst_reg->off + 4707 dst_reg->var_off.value, 1)) { 4708 verbose(env, "R%d stack pointer arithmetic goes out of range, " 4709 "prohibited for !root\n", dst); 4710 return -EACCES; 4711 } 4712 } 4713 4714 return 0; 4715 } 4716 4717 /* WARNING: This function does calculations on 64-bit values, but the actual 4718 * execution may occur on 32-bit values. Therefore, things like bitshifts 4719 * need extra checks in the 32-bit case. 4720 */ 4721 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 4722 struct bpf_insn *insn, 4723 struct bpf_reg_state *dst_reg, 4724 struct bpf_reg_state src_reg) 4725 { 4726 struct bpf_reg_state *regs = cur_regs(env); 4727 u8 opcode = BPF_OP(insn->code); 4728 bool src_known, dst_known; 4729 s64 smin_val, smax_val; 4730 u64 umin_val, umax_val; 4731 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 4732 u32 dst = insn->dst_reg; 4733 int ret; 4734 4735 if (insn_bitness == 32) { 4736 /* Relevant for 32-bit RSH: Information can propagate towards 4737 * LSB, so it isn't sufficient to only truncate the output to 4738 * 32 bits. 4739 */ 4740 coerce_reg_to_size(dst_reg, 4); 4741 coerce_reg_to_size(&src_reg, 4); 4742 } 4743 4744 smin_val = src_reg.smin_value; 4745 smax_val = src_reg.smax_value; 4746 umin_val = src_reg.umin_value; 4747 umax_val = src_reg.umax_value; 4748 src_known = tnum_is_const(src_reg.var_off); 4749 dst_known = tnum_is_const(dst_reg->var_off); 4750 4751 if ((src_known && (smin_val != smax_val || umin_val != umax_val)) || 4752 smin_val > smax_val || umin_val > umax_val) { 4753 /* Taint dst register if offset had invalid bounds derived from 4754 * e.g. dead branches. 4755 */ 4756 __mark_reg_unknown(dst_reg); 4757 return 0; 4758 } 4759 4760 if (!src_known && 4761 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 4762 __mark_reg_unknown(dst_reg); 4763 return 0; 4764 } 4765 4766 switch (opcode) { 4767 case BPF_ADD: 4768 ret = sanitize_val_alu(env, insn); 4769 if (ret < 0) { 4770 verbose(env, "R%d tried to add from different pointers or scalars\n", dst); 4771 return ret; 4772 } 4773 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 4774 signed_add_overflows(dst_reg->smax_value, smax_val)) { 4775 dst_reg->smin_value = S64_MIN; 4776 dst_reg->smax_value = S64_MAX; 4777 } else { 4778 dst_reg->smin_value += smin_val; 4779 dst_reg->smax_value += smax_val; 4780 } 4781 if (dst_reg->umin_value + umin_val < umin_val || 4782 dst_reg->umax_value + umax_val < umax_val) { 4783 dst_reg->umin_value = 0; 4784 dst_reg->umax_value = U64_MAX; 4785 } else { 4786 dst_reg->umin_value += umin_val; 4787 dst_reg->umax_value += umax_val; 4788 } 4789 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 4790 break; 4791 case BPF_SUB: 4792 ret = sanitize_val_alu(env, insn); 4793 if (ret < 0) { 4794 verbose(env, "R%d tried to sub from different pointers or scalars\n", dst); 4795 return ret; 4796 } 4797 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 4798 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 4799 /* Overflow possible, we know nothing */ 4800 dst_reg->smin_value = S64_MIN; 4801 dst_reg->smax_value = S64_MAX; 4802 } else { 4803 dst_reg->smin_value -= smax_val; 4804 dst_reg->smax_value -= smin_val; 4805 } 4806 if (dst_reg->umin_value < umax_val) { 4807 /* Overflow possible, we know nothing */ 4808 dst_reg->umin_value = 0; 4809 dst_reg->umax_value = U64_MAX; 4810 } else { 4811 /* Cannot overflow (as long as bounds are consistent) */ 4812 dst_reg->umin_value -= umax_val; 4813 dst_reg->umax_value -= umin_val; 4814 } 4815 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 4816 break; 4817 case BPF_MUL: 4818 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 4819 if (smin_val < 0 || dst_reg->smin_value < 0) { 4820 /* Ain't nobody got time to multiply that sign */ 4821 __mark_reg_unbounded(dst_reg); 4822 __update_reg_bounds(dst_reg); 4823 break; 4824 } 4825 /* Both values are positive, so we can work with unsigned and 4826 * copy the result to signed (unless it exceeds S64_MAX). 4827 */ 4828 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 4829 /* Potential overflow, we know nothing */ 4830 __mark_reg_unbounded(dst_reg); 4831 /* (except what we can learn from the var_off) */ 4832 __update_reg_bounds(dst_reg); 4833 break; 4834 } 4835 dst_reg->umin_value *= umin_val; 4836 dst_reg->umax_value *= umax_val; 4837 if (dst_reg->umax_value > S64_MAX) { 4838 /* Overflow possible, we know nothing */ 4839 dst_reg->smin_value = S64_MIN; 4840 dst_reg->smax_value = S64_MAX; 4841 } else { 4842 dst_reg->smin_value = dst_reg->umin_value; 4843 dst_reg->smax_value = dst_reg->umax_value; 4844 } 4845 break; 4846 case BPF_AND: 4847 if (src_known && dst_known) { 4848 __mark_reg_known(dst_reg, dst_reg->var_off.value & 4849 src_reg.var_off.value); 4850 break; 4851 } 4852 /* We get our minimum from the var_off, since that's inherently 4853 * bitwise. Our maximum is the minimum of the operands' maxima. 4854 */ 4855 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 4856 dst_reg->umin_value = dst_reg->var_off.value; 4857 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 4858 if (dst_reg->smin_value < 0 || smin_val < 0) { 4859 /* Lose signed bounds when ANDing negative numbers, 4860 * ain't nobody got time for that. 4861 */ 4862 dst_reg->smin_value = S64_MIN; 4863 dst_reg->smax_value = S64_MAX; 4864 } else { 4865 /* ANDing two positives gives a positive, so safe to 4866 * cast result into s64. 4867 */ 4868 dst_reg->smin_value = dst_reg->umin_value; 4869 dst_reg->smax_value = dst_reg->umax_value; 4870 } 4871 /* We may learn something more from the var_off */ 4872 __update_reg_bounds(dst_reg); 4873 break; 4874 case BPF_OR: 4875 if (src_known && dst_known) { 4876 __mark_reg_known(dst_reg, dst_reg->var_off.value | 4877 src_reg.var_off.value); 4878 break; 4879 } 4880 /* We get our maximum from the var_off, and our minimum is the 4881 * maximum of the operands' minima 4882 */ 4883 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 4884 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 4885 dst_reg->umax_value = dst_reg->var_off.value | 4886 dst_reg->var_off.mask; 4887 if (dst_reg->smin_value < 0 || smin_val < 0) { 4888 /* Lose signed bounds when ORing negative numbers, 4889 * ain't nobody got time for that. 4890 */ 4891 dst_reg->smin_value = S64_MIN; 4892 dst_reg->smax_value = S64_MAX; 4893 } else { 4894 /* ORing two positives gives a positive, so safe to 4895 * cast result into s64. 4896 */ 4897 dst_reg->smin_value = dst_reg->umin_value; 4898 dst_reg->smax_value = dst_reg->umax_value; 4899 } 4900 /* We may learn something more from the var_off */ 4901 __update_reg_bounds(dst_reg); 4902 break; 4903 case BPF_LSH: 4904 if (umax_val >= insn_bitness) { 4905 /* Shifts greater than 31 or 63 are undefined. 4906 * This includes shifts by a negative number. 4907 */ 4908 mark_reg_unknown(env, regs, insn->dst_reg); 4909 break; 4910 } 4911 /* We lose all sign bit information (except what we can pick 4912 * up from var_off) 4913 */ 4914 dst_reg->smin_value = S64_MIN; 4915 dst_reg->smax_value = S64_MAX; 4916 /* If we might shift our top bit out, then we know nothing */ 4917 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 4918 dst_reg->umin_value = 0; 4919 dst_reg->umax_value = U64_MAX; 4920 } else { 4921 dst_reg->umin_value <<= umin_val; 4922 dst_reg->umax_value <<= umax_val; 4923 } 4924 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 4925 /* We may learn something more from the var_off */ 4926 __update_reg_bounds(dst_reg); 4927 break; 4928 case BPF_RSH: 4929 if (umax_val >= insn_bitness) { 4930 /* Shifts greater than 31 or 63 are undefined. 4931 * This includes shifts by a negative number. 4932 */ 4933 mark_reg_unknown(env, regs, insn->dst_reg); 4934 break; 4935 } 4936 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 4937 * be negative, then either: 4938 * 1) src_reg might be zero, so the sign bit of the result is 4939 * unknown, so we lose our signed bounds 4940 * 2) it's known negative, thus the unsigned bounds capture the 4941 * signed bounds 4942 * 3) the signed bounds cross zero, so they tell us nothing 4943 * about the result 4944 * If the value in dst_reg is known nonnegative, then again the 4945 * unsigned bounts capture the signed bounds. 4946 * Thus, in all cases it suffices to blow away our signed bounds 4947 * and rely on inferring new ones from the unsigned bounds and 4948 * var_off of the result. 4949 */ 4950 dst_reg->smin_value = S64_MIN; 4951 dst_reg->smax_value = S64_MAX; 4952 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 4953 dst_reg->umin_value >>= umax_val; 4954 dst_reg->umax_value >>= umin_val; 4955 /* We may learn something more from the var_off */ 4956 __update_reg_bounds(dst_reg); 4957 break; 4958 case BPF_ARSH: 4959 if (umax_val >= insn_bitness) { 4960 /* Shifts greater than 31 or 63 are undefined. 4961 * This includes shifts by a negative number. 4962 */ 4963 mark_reg_unknown(env, regs, insn->dst_reg); 4964 break; 4965 } 4966 4967 /* Upon reaching here, src_known is true and 4968 * umax_val is equal to umin_val. 4969 */ 4970 dst_reg->smin_value >>= umin_val; 4971 dst_reg->smax_value >>= umin_val; 4972 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val); 4973 4974 /* blow away the dst_reg umin_value/umax_value and rely on 4975 * dst_reg var_off to refine the result. 4976 */ 4977 dst_reg->umin_value = 0; 4978 dst_reg->umax_value = U64_MAX; 4979 __update_reg_bounds(dst_reg); 4980 break; 4981 default: 4982 mark_reg_unknown(env, regs, insn->dst_reg); 4983 break; 4984 } 4985 4986 if (BPF_CLASS(insn->code) != BPF_ALU64) { 4987 /* 32-bit ALU ops are (32,32)->32 */ 4988 coerce_reg_to_size(dst_reg, 4); 4989 } 4990 4991 __reg_deduce_bounds(dst_reg); 4992 __reg_bound_offset(dst_reg); 4993 return 0; 4994 } 4995 4996 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 4997 * and var_off. 4998 */ 4999 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 5000 struct bpf_insn *insn) 5001 { 5002 struct bpf_verifier_state *vstate = env->cur_state; 5003 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5004 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 5005 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 5006 u8 opcode = BPF_OP(insn->code); 5007 int err; 5008 5009 dst_reg = ®s[insn->dst_reg]; 5010 src_reg = NULL; 5011 if (dst_reg->type != SCALAR_VALUE) 5012 ptr_reg = dst_reg; 5013 if (BPF_SRC(insn->code) == BPF_X) { 5014 src_reg = ®s[insn->src_reg]; 5015 if (src_reg->type != SCALAR_VALUE) { 5016 if (dst_reg->type != SCALAR_VALUE) { 5017 /* Combining two pointers by any ALU op yields 5018 * an arbitrary scalar. Disallow all math except 5019 * pointer subtraction 5020 */ 5021 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 5022 mark_reg_unknown(env, regs, insn->dst_reg); 5023 return 0; 5024 } 5025 verbose(env, "R%d pointer %s pointer prohibited\n", 5026 insn->dst_reg, 5027 bpf_alu_string[opcode >> 4]); 5028 return -EACCES; 5029 } else { 5030 /* scalar += pointer 5031 * This is legal, but we have to reverse our 5032 * src/dest handling in computing the range 5033 */ 5034 err = mark_chain_precision(env, insn->dst_reg); 5035 if (err) 5036 return err; 5037 return adjust_ptr_min_max_vals(env, insn, 5038 src_reg, dst_reg); 5039 } 5040 } else if (ptr_reg) { 5041 /* pointer += scalar */ 5042 err = mark_chain_precision(env, insn->src_reg); 5043 if (err) 5044 return err; 5045 return adjust_ptr_min_max_vals(env, insn, 5046 dst_reg, src_reg); 5047 } 5048 } else { 5049 /* Pretend the src is a reg with a known value, since we only 5050 * need to be able to read from this state. 5051 */ 5052 off_reg.type = SCALAR_VALUE; 5053 __mark_reg_known(&off_reg, insn->imm); 5054 src_reg = &off_reg; 5055 if (ptr_reg) /* pointer += K */ 5056 return adjust_ptr_min_max_vals(env, insn, 5057 ptr_reg, src_reg); 5058 } 5059 5060 /* Got here implies adding two SCALAR_VALUEs */ 5061 if (WARN_ON_ONCE(ptr_reg)) { 5062 print_verifier_state(env, state); 5063 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 5064 return -EINVAL; 5065 } 5066 if (WARN_ON(!src_reg)) { 5067 print_verifier_state(env, state); 5068 verbose(env, "verifier internal error: no src_reg\n"); 5069 return -EINVAL; 5070 } 5071 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 5072 } 5073 5074 /* check validity of 32-bit and 64-bit arithmetic operations */ 5075 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 5076 { 5077 struct bpf_reg_state *regs = cur_regs(env); 5078 u8 opcode = BPF_OP(insn->code); 5079 int err; 5080 5081 if (opcode == BPF_END || opcode == BPF_NEG) { 5082 if (opcode == BPF_NEG) { 5083 if (BPF_SRC(insn->code) != 0 || 5084 insn->src_reg != BPF_REG_0 || 5085 insn->off != 0 || insn->imm != 0) { 5086 verbose(env, "BPF_NEG uses reserved fields\n"); 5087 return -EINVAL; 5088 } 5089 } else { 5090 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 5091 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 5092 BPF_CLASS(insn->code) == BPF_ALU64) { 5093 verbose(env, "BPF_END uses reserved fields\n"); 5094 return -EINVAL; 5095 } 5096 } 5097 5098 /* check src operand */ 5099 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 5100 if (err) 5101 return err; 5102 5103 if (is_pointer_value(env, insn->dst_reg)) { 5104 verbose(env, "R%d pointer arithmetic prohibited\n", 5105 insn->dst_reg); 5106 return -EACCES; 5107 } 5108 5109 /* check dest operand */ 5110 err = check_reg_arg(env, insn->dst_reg, DST_OP); 5111 if (err) 5112 return err; 5113 5114 } else if (opcode == BPF_MOV) { 5115 5116 if (BPF_SRC(insn->code) == BPF_X) { 5117 if (insn->imm != 0 || insn->off != 0) { 5118 verbose(env, "BPF_MOV uses reserved fields\n"); 5119 return -EINVAL; 5120 } 5121 5122 /* check src operand */ 5123 err = check_reg_arg(env, insn->src_reg, SRC_OP); 5124 if (err) 5125 return err; 5126 } else { 5127 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 5128 verbose(env, "BPF_MOV uses reserved fields\n"); 5129 return -EINVAL; 5130 } 5131 } 5132 5133 /* check dest operand, mark as required later */ 5134 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 5135 if (err) 5136 return err; 5137 5138 if (BPF_SRC(insn->code) == BPF_X) { 5139 struct bpf_reg_state *src_reg = regs + insn->src_reg; 5140 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 5141 5142 if (BPF_CLASS(insn->code) == BPF_ALU64) { 5143 /* case: R1 = R2 5144 * copy register state to dest reg 5145 */ 5146 *dst_reg = *src_reg; 5147 dst_reg->live |= REG_LIVE_WRITTEN; 5148 dst_reg->subreg_def = DEF_NOT_SUBREG; 5149 } else { 5150 /* R1 = (u32) R2 */ 5151 if (is_pointer_value(env, insn->src_reg)) { 5152 verbose(env, 5153 "R%d partial copy of pointer\n", 5154 insn->src_reg); 5155 return -EACCES; 5156 } else if (src_reg->type == SCALAR_VALUE) { 5157 *dst_reg = *src_reg; 5158 dst_reg->live |= REG_LIVE_WRITTEN; 5159 dst_reg->subreg_def = env->insn_idx + 1; 5160 } else { 5161 mark_reg_unknown(env, regs, 5162 insn->dst_reg); 5163 } 5164 coerce_reg_to_size(dst_reg, 4); 5165 } 5166 } else { 5167 /* case: R = imm 5168 * remember the value we stored into this reg 5169 */ 5170 /* clear any state __mark_reg_known doesn't set */ 5171 mark_reg_unknown(env, regs, insn->dst_reg); 5172 regs[insn->dst_reg].type = SCALAR_VALUE; 5173 if (BPF_CLASS(insn->code) == BPF_ALU64) { 5174 __mark_reg_known(regs + insn->dst_reg, 5175 insn->imm); 5176 } else { 5177 __mark_reg_known(regs + insn->dst_reg, 5178 (u32)insn->imm); 5179 } 5180 } 5181 5182 } else if (opcode > BPF_END) { 5183 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 5184 return -EINVAL; 5185 5186 } else { /* all other ALU ops: and, sub, xor, add, ... */ 5187 5188 if (BPF_SRC(insn->code) == BPF_X) { 5189 if (insn->imm != 0 || insn->off != 0) { 5190 verbose(env, "BPF_ALU uses reserved fields\n"); 5191 return -EINVAL; 5192 } 5193 /* check src1 operand */ 5194 err = check_reg_arg(env, insn->src_reg, SRC_OP); 5195 if (err) 5196 return err; 5197 } else { 5198 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 5199 verbose(env, "BPF_ALU uses reserved fields\n"); 5200 return -EINVAL; 5201 } 5202 } 5203 5204 /* check src2 operand */ 5205 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 5206 if (err) 5207 return err; 5208 5209 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 5210 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 5211 verbose(env, "div by zero\n"); 5212 return -EINVAL; 5213 } 5214 5215 if ((opcode == BPF_LSH || opcode == BPF_RSH || 5216 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 5217 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 5218 5219 if (insn->imm < 0 || insn->imm >= size) { 5220 verbose(env, "invalid shift %d\n", insn->imm); 5221 return -EINVAL; 5222 } 5223 } 5224 5225 /* check dest operand */ 5226 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 5227 if (err) 5228 return err; 5229 5230 return adjust_reg_min_max_vals(env, insn); 5231 } 5232 5233 return 0; 5234 } 5235 5236 static void __find_good_pkt_pointers(struct bpf_func_state *state, 5237 struct bpf_reg_state *dst_reg, 5238 enum bpf_reg_type type, u16 new_range) 5239 { 5240 struct bpf_reg_state *reg; 5241 int i; 5242 5243 for (i = 0; i < MAX_BPF_REG; i++) { 5244 reg = &state->regs[i]; 5245 if (reg->type == type && reg->id == dst_reg->id) 5246 /* keep the maximum range already checked */ 5247 reg->range = max(reg->range, new_range); 5248 } 5249 5250 bpf_for_each_spilled_reg(i, state, reg) { 5251 if (!reg) 5252 continue; 5253 if (reg->type == type && reg->id == dst_reg->id) 5254 reg->range = max(reg->range, new_range); 5255 } 5256 } 5257 5258 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 5259 struct bpf_reg_state *dst_reg, 5260 enum bpf_reg_type type, 5261 bool range_right_open) 5262 { 5263 u16 new_range; 5264 int i; 5265 5266 if (dst_reg->off < 0 || 5267 (dst_reg->off == 0 && range_right_open)) 5268 /* This doesn't give us any range */ 5269 return; 5270 5271 if (dst_reg->umax_value > MAX_PACKET_OFF || 5272 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 5273 /* Risk of overflow. For instance, ptr + (1<<63) may be less 5274 * than pkt_end, but that's because it's also less than pkt. 5275 */ 5276 return; 5277 5278 new_range = dst_reg->off; 5279 if (range_right_open) 5280 new_range--; 5281 5282 /* Examples for register markings: 5283 * 5284 * pkt_data in dst register: 5285 * 5286 * r2 = r3; 5287 * r2 += 8; 5288 * if (r2 > pkt_end) goto <handle exception> 5289 * <access okay> 5290 * 5291 * r2 = r3; 5292 * r2 += 8; 5293 * if (r2 < pkt_end) goto <access okay> 5294 * <handle exception> 5295 * 5296 * Where: 5297 * r2 == dst_reg, pkt_end == src_reg 5298 * r2=pkt(id=n,off=8,r=0) 5299 * r3=pkt(id=n,off=0,r=0) 5300 * 5301 * pkt_data in src register: 5302 * 5303 * r2 = r3; 5304 * r2 += 8; 5305 * if (pkt_end >= r2) goto <access okay> 5306 * <handle exception> 5307 * 5308 * r2 = r3; 5309 * r2 += 8; 5310 * if (pkt_end <= r2) goto <handle exception> 5311 * <access okay> 5312 * 5313 * Where: 5314 * pkt_end == dst_reg, r2 == src_reg 5315 * r2=pkt(id=n,off=8,r=0) 5316 * r3=pkt(id=n,off=0,r=0) 5317 * 5318 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 5319 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 5320 * and [r3, r3 + 8-1) respectively is safe to access depending on 5321 * the check. 5322 */ 5323 5324 /* If our ids match, then we must have the same max_value. And we 5325 * don't care about the other reg's fixed offset, since if it's too big 5326 * the range won't allow anything. 5327 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 5328 */ 5329 for (i = 0; i <= vstate->curframe; i++) 5330 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type, 5331 new_range); 5332 } 5333 5334 /* compute branch direction of the expression "if (reg opcode val) goto target;" 5335 * and return: 5336 * 1 - branch will be taken and "goto target" will be executed 5337 * 0 - branch will not be taken and fall-through to next insn 5338 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value range [0,10] 5339 */ 5340 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, 5341 bool is_jmp32) 5342 { 5343 struct bpf_reg_state reg_lo; 5344 s64 sval; 5345 5346 if (__is_pointer_value(false, reg)) 5347 return -1; 5348 5349 if (is_jmp32) { 5350 reg_lo = *reg; 5351 reg = ®_lo; 5352 /* For JMP32, only low 32 bits are compared, coerce_reg_to_size 5353 * could truncate high bits and update umin/umax according to 5354 * information of low bits. 5355 */ 5356 coerce_reg_to_size(reg, 4); 5357 /* smin/smax need special handling. For example, after coerce, 5358 * if smin_value is 0x00000000ffffffffLL, the value is -1 when 5359 * used as operand to JMP32. It is a negative number from s32's 5360 * point of view, while it is a positive number when seen as 5361 * s64. The smin/smax are kept as s64, therefore, when used with 5362 * JMP32, they need to be transformed into s32, then sign 5363 * extended back to s64. 5364 * 5365 * Also, smin/smax were copied from umin/umax. If umin/umax has 5366 * different sign bit, then min/max relationship doesn't 5367 * maintain after casting into s32, for this case, set smin/smax 5368 * to safest range. 5369 */ 5370 if ((reg->umax_value ^ reg->umin_value) & 5371 (1ULL << 31)) { 5372 reg->smin_value = S32_MIN; 5373 reg->smax_value = S32_MAX; 5374 } 5375 reg->smin_value = (s64)(s32)reg->smin_value; 5376 reg->smax_value = (s64)(s32)reg->smax_value; 5377 5378 val = (u32)val; 5379 sval = (s64)(s32)val; 5380 } else { 5381 sval = (s64)val; 5382 } 5383 5384 switch (opcode) { 5385 case BPF_JEQ: 5386 if (tnum_is_const(reg->var_off)) 5387 return !!tnum_equals_const(reg->var_off, val); 5388 break; 5389 case BPF_JNE: 5390 if (tnum_is_const(reg->var_off)) 5391 return !tnum_equals_const(reg->var_off, val); 5392 break; 5393 case BPF_JSET: 5394 if ((~reg->var_off.mask & reg->var_off.value) & val) 5395 return 1; 5396 if (!((reg->var_off.mask | reg->var_off.value) & val)) 5397 return 0; 5398 break; 5399 case BPF_JGT: 5400 if (reg->umin_value > val) 5401 return 1; 5402 else if (reg->umax_value <= val) 5403 return 0; 5404 break; 5405 case BPF_JSGT: 5406 if (reg->smin_value > sval) 5407 return 1; 5408 else if (reg->smax_value < sval) 5409 return 0; 5410 break; 5411 case BPF_JLT: 5412 if (reg->umax_value < val) 5413 return 1; 5414 else if (reg->umin_value >= val) 5415 return 0; 5416 break; 5417 case BPF_JSLT: 5418 if (reg->smax_value < sval) 5419 return 1; 5420 else if (reg->smin_value >= sval) 5421 return 0; 5422 break; 5423 case BPF_JGE: 5424 if (reg->umin_value >= val) 5425 return 1; 5426 else if (reg->umax_value < val) 5427 return 0; 5428 break; 5429 case BPF_JSGE: 5430 if (reg->smin_value >= sval) 5431 return 1; 5432 else if (reg->smax_value < sval) 5433 return 0; 5434 break; 5435 case BPF_JLE: 5436 if (reg->umax_value <= val) 5437 return 1; 5438 else if (reg->umin_value > val) 5439 return 0; 5440 break; 5441 case BPF_JSLE: 5442 if (reg->smax_value <= sval) 5443 return 1; 5444 else if (reg->smin_value > sval) 5445 return 0; 5446 break; 5447 } 5448 5449 return -1; 5450 } 5451 5452 /* Generate min value of the high 32-bit from TNUM info. */ 5453 static u64 gen_hi_min(struct tnum var) 5454 { 5455 return var.value & ~0xffffffffULL; 5456 } 5457 5458 /* Generate max value of the high 32-bit from TNUM info. */ 5459 static u64 gen_hi_max(struct tnum var) 5460 { 5461 return (var.value | var.mask) & ~0xffffffffULL; 5462 } 5463 5464 /* Return true if VAL is compared with a s64 sign extended from s32, and they 5465 * are with the same signedness. 5466 */ 5467 static bool cmp_val_with_extended_s64(s64 sval, struct bpf_reg_state *reg) 5468 { 5469 return ((s32)sval >= 0 && 5470 reg->smin_value >= 0 && reg->smax_value <= S32_MAX) || 5471 ((s32)sval < 0 && 5472 reg->smax_value <= 0 && reg->smin_value >= S32_MIN); 5473 } 5474 5475 /* Adjusts the register min/max values in the case that the dst_reg is the 5476 * variable register that we are working on, and src_reg is a constant or we're 5477 * simply doing a BPF_K check. 5478 * In JEQ/JNE cases we also adjust the var_off values. 5479 */ 5480 static void reg_set_min_max(struct bpf_reg_state *true_reg, 5481 struct bpf_reg_state *false_reg, u64 val, 5482 u8 opcode, bool is_jmp32) 5483 { 5484 s64 sval; 5485 5486 /* If the dst_reg is a pointer, we can't learn anything about its 5487 * variable offset from the compare (unless src_reg were a pointer into 5488 * the same object, but we don't bother with that. 5489 * Since false_reg and true_reg have the same type by construction, we 5490 * only need to check one of them for pointerness. 5491 */ 5492 if (__is_pointer_value(false, false_reg)) 5493 return; 5494 5495 val = is_jmp32 ? (u32)val : val; 5496 sval = is_jmp32 ? (s64)(s32)val : (s64)val; 5497 5498 switch (opcode) { 5499 case BPF_JEQ: 5500 case BPF_JNE: 5501 { 5502 struct bpf_reg_state *reg = 5503 opcode == BPF_JEQ ? true_reg : false_reg; 5504 5505 /* For BPF_JEQ, if this is false we know nothing Jon Snow, but 5506 * if it is true we know the value for sure. Likewise for 5507 * BPF_JNE. 5508 */ 5509 if (is_jmp32) { 5510 u64 old_v = reg->var_off.value; 5511 u64 hi_mask = ~0xffffffffULL; 5512 5513 reg->var_off.value = (old_v & hi_mask) | val; 5514 reg->var_off.mask &= hi_mask; 5515 } else { 5516 __mark_reg_known(reg, val); 5517 } 5518 break; 5519 } 5520 case BPF_JSET: 5521 false_reg->var_off = tnum_and(false_reg->var_off, 5522 tnum_const(~val)); 5523 if (is_power_of_2(val)) 5524 true_reg->var_off = tnum_or(true_reg->var_off, 5525 tnum_const(val)); 5526 break; 5527 case BPF_JGE: 5528 case BPF_JGT: 5529 { 5530 u64 false_umax = opcode == BPF_JGT ? val : val - 1; 5531 u64 true_umin = opcode == BPF_JGT ? val + 1 : val; 5532 5533 if (is_jmp32) { 5534 false_umax += gen_hi_max(false_reg->var_off); 5535 true_umin += gen_hi_min(true_reg->var_off); 5536 } 5537 false_reg->umax_value = min(false_reg->umax_value, false_umax); 5538 true_reg->umin_value = max(true_reg->umin_value, true_umin); 5539 break; 5540 } 5541 case BPF_JSGE: 5542 case BPF_JSGT: 5543 { 5544 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; 5545 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; 5546 5547 /* If the full s64 was not sign-extended from s32 then don't 5548 * deduct further info. 5549 */ 5550 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg)) 5551 break; 5552 false_reg->smax_value = min(false_reg->smax_value, false_smax); 5553 true_reg->smin_value = max(true_reg->smin_value, true_smin); 5554 break; 5555 } 5556 case BPF_JLE: 5557 case BPF_JLT: 5558 { 5559 u64 false_umin = opcode == BPF_JLT ? val : val + 1; 5560 u64 true_umax = opcode == BPF_JLT ? val - 1 : val; 5561 5562 if (is_jmp32) { 5563 false_umin += gen_hi_min(false_reg->var_off); 5564 true_umax += gen_hi_max(true_reg->var_off); 5565 } 5566 false_reg->umin_value = max(false_reg->umin_value, false_umin); 5567 true_reg->umax_value = min(true_reg->umax_value, true_umax); 5568 break; 5569 } 5570 case BPF_JSLE: 5571 case BPF_JSLT: 5572 { 5573 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; 5574 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; 5575 5576 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg)) 5577 break; 5578 false_reg->smin_value = max(false_reg->smin_value, false_smin); 5579 true_reg->smax_value = min(true_reg->smax_value, true_smax); 5580 break; 5581 } 5582 default: 5583 break; 5584 } 5585 5586 __reg_deduce_bounds(false_reg); 5587 __reg_deduce_bounds(true_reg); 5588 /* We might have learned some bits from the bounds. */ 5589 __reg_bound_offset(false_reg); 5590 __reg_bound_offset(true_reg); 5591 /* Intersecting with the old var_off might have improved our bounds 5592 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 5593 * then new var_off is (0; 0x7f...fc) which improves our umax. 5594 */ 5595 __update_reg_bounds(false_reg); 5596 __update_reg_bounds(true_reg); 5597 } 5598 5599 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 5600 * the variable reg. 5601 */ 5602 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 5603 struct bpf_reg_state *false_reg, u64 val, 5604 u8 opcode, bool is_jmp32) 5605 { 5606 s64 sval; 5607 5608 if (__is_pointer_value(false, false_reg)) 5609 return; 5610 5611 val = is_jmp32 ? (u32)val : val; 5612 sval = is_jmp32 ? (s64)(s32)val : (s64)val; 5613 5614 switch (opcode) { 5615 case BPF_JEQ: 5616 case BPF_JNE: 5617 { 5618 struct bpf_reg_state *reg = 5619 opcode == BPF_JEQ ? true_reg : false_reg; 5620 5621 if (is_jmp32) { 5622 u64 old_v = reg->var_off.value; 5623 u64 hi_mask = ~0xffffffffULL; 5624 5625 reg->var_off.value = (old_v & hi_mask) | val; 5626 reg->var_off.mask &= hi_mask; 5627 } else { 5628 __mark_reg_known(reg, val); 5629 } 5630 break; 5631 } 5632 case BPF_JSET: 5633 false_reg->var_off = tnum_and(false_reg->var_off, 5634 tnum_const(~val)); 5635 if (is_power_of_2(val)) 5636 true_reg->var_off = tnum_or(true_reg->var_off, 5637 tnum_const(val)); 5638 break; 5639 case BPF_JGE: 5640 case BPF_JGT: 5641 { 5642 u64 false_umin = opcode == BPF_JGT ? val : val + 1; 5643 u64 true_umax = opcode == BPF_JGT ? val - 1 : val; 5644 5645 if (is_jmp32) { 5646 false_umin += gen_hi_min(false_reg->var_off); 5647 true_umax += gen_hi_max(true_reg->var_off); 5648 } 5649 false_reg->umin_value = max(false_reg->umin_value, false_umin); 5650 true_reg->umax_value = min(true_reg->umax_value, true_umax); 5651 break; 5652 } 5653 case BPF_JSGE: 5654 case BPF_JSGT: 5655 { 5656 s64 false_smin = opcode == BPF_JSGT ? sval : sval + 1; 5657 s64 true_smax = opcode == BPF_JSGT ? sval - 1 : sval; 5658 5659 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg)) 5660 break; 5661 false_reg->smin_value = max(false_reg->smin_value, false_smin); 5662 true_reg->smax_value = min(true_reg->smax_value, true_smax); 5663 break; 5664 } 5665 case BPF_JLE: 5666 case BPF_JLT: 5667 { 5668 u64 false_umax = opcode == BPF_JLT ? val : val - 1; 5669 u64 true_umin = opcode == BPF_JLT ? val + 1 : val; 5670 5671 if (is_jmp32) { 5672 false_umax += gen_hi_max(false_reg->var_off); 5673 true_umin += gen_hi_min(true_reg->var_off); 5674 } 5675 false_reg->umax_value = min(false_reg->umax_value, false_umax); 5676 true_reg->umin_value = max(true_reg->umin_value, true_umin); 5677 break; 5678 } 5679 case BPF_JSLE: 5680 case BPF_JSLT: 5681 { 5682 s64 false_smax = opcode == BPF_JSLT ? sval : sval - 1; 5683 s64 true_smin = opcode == BPF_JSLT ? sval + 1 : sval; 5684 5685 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg)) 5686 break; 5687 false_reg->smax_value = min(false_reg->smax_value, false_smax); 5688 true_reg->smin_value = max(true_reg->smin_value, true_smin); 5689 break; 5690 } 5691 default: 5692 break; 5693 } 5694 5695 __reg_deduce_bounds(false_reg); 5696 __reg_deduce_bounds(true_reg); 5697 /* We might have learned some bits from the bounds. */ 5698 __reg_bound_offset(false_reg); 5699 __reg_bound_offset(true_reg); 5700 /* Intersecting with the old var_off might have improved our bounds 5701 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 5702 * then new var_off is (0; 0x7f...fc) which improves our umax. 5703 */ 5704 __update_reg_bounds(false_reg); 5705 __update_reg_bounds(true_reg); 5706 } 5707 5708 /* Regs are known to be equal, so intersect their min/max/var_off */ 5709 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 5710 struct bpf_reg_state *dst_reg) 5711 { 5712 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 5713 dst_reg->umin_value); 5714 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 5715 dst_reg->umax_value); 5716 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 5717 dst_reg->smin_value); 5718 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 5719 dst_reg->smax_value); 5720 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 5721 dst_reg->var_off); 5722 /* We might have learned new bounds from the var_off. */ 5723 __update_reg_bounds(src_reg); 5724 __update_reg_bounds(dst_reg); 5725 /* We might have learned something about the sign bit. */ 5726 __reg_deduce_bounds(src_reg); 5727 __reg_deduce_bounds(dst_reg); 5728 /* We might have learned some bits from the bounds. */ 5729 __reg_bound_offset(src_reg); 5730 __reg_bound_offset(dst_reg); 5731 /* Intersecting with the old var_off might have improved our bounds 5732 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 5733 * then new var_off is (0; 0x7f...fc) which improves our umax. 5734 */ 5735 __update_reg_bounds(src_reg); 5736 __update_reg_bounds(dst_reg); 5737 } 5738 5739 static void reg_combine_min_max(struct bpf_reg_state *true_src, 5740 struct bpf_reg_state *true_dst, 5741 struct bpf_reg_state *false_src, 5742 struct bpf_reg_state *false_dst, 5743 u8 opcode) 5744 { 5745 switch (opcode) { 5746 case BPF_JEQ: 5747 __reg_combine_min_max(true_src, true_dst); 5748 break; 5749 case BPF_JNE: 5750 __reg_combine_min_max(false_src, false_dst); 5751 break; 5752 } 5753 } 5754 5755 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 5756 struct bpf_reg_state *reg, u32 id, 5757 bool is_null) 5758 { 5759 if (reg_type_may_be_null(reg->type) && reg->id == id) { 5760 /* Old offset (both fixed and variable parts) should 5761 * have been known-zero, because we don't allow pointer 5762 * arithmetic on pointers that might be NULL. 5763 */ 5764 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || 5765 !tnum_equals_const(reg->var_off, 0) || 5766 reg->off)) { 5767 __mark_reg_known_zero(reg); 5768 reg->off = 0; 5769 } 5770 if (is_null) { 5771 reg->type = SCALAR_VALUE; 5772 } else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) { 5773 if (reg->map_ptr->inner_map_meta) { 5774 reg->type = CONST_PTR_TO_MAP; 5775 reg->map_ptr = reg->map_ptr->inner_map_meta; 5776 } else if (reg->map_ptr->map_type == 5777 BPF_MAP_TYPE_XSKMAP) { 5778 reg->type = PTR_TO_XDP_SOCK; 5779 } else { 5780 reg->type = PTR_TO_MAP_VALUE; 5781 } 5782 } else if (reg->type == PTR_TO_SOCKET_OR_NULL) { 5783 reg->type = PTR_TO_SOCKET; 5784 } else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) { 5785 reg->type = PTR_TO_SOCK_COMMON; 5786 } else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) { 5787 reg->type = PTR_TO_TCP_SOCK; 5788 } 5789 if (is_null) { 5790 /* We don't need id and ref_obj_id from this point 5791 * onwards anymore, thus we should better reset it, 5792 * so that state pruning has chances to take effect. 5793 */ 5794 reg->id = 0; 5795 reg->ref_obj_id = 0; 5796 } else if (!reg_may_point_to_spin_lock(reg)) { 5797 /* For not-NULL ptr, reg->ref_obj_id will be reset 5798 * in release_reg_references(). 5799 * 5800 * reg->id is still used by spin_lock ptr. Other 5801 * than spin_lock ptr type, reg->id can be reset. 5802 */ 5803 reg->id = 0; 5804 } 5805 } 5806 } 5807 5808 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id, 5809 bool is_null) 5810 { 5811 struct bpf_reg_state *reg; 5812 int i; 5813 5814 for (i = 0; i < MAX_BPF_REG; i++) 5815 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null); 5816 5817 bpf_for_each_spilled_reg(i, state, reg) { 5818 if (!reg) 5819 continue; 5820 mark_ptr_or_null_reg(state, reg, id, is_null); 5821 } 5822 } 5823 5824 /* The logic is similar to find_good_pkt_pointers(), both could eventually 5825 * be folded together at some point. 5826 */ 5827 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 5828 bool is_null) 5829 { 5830 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5831 struct bpf_reg_state *regs = state->regs; 5832 u32 ref_obj_id = regs[regno].ref_obj_id; 5833 u32 id = regs[regno].id; 5834 int i; 5835 5836 if (ref_obj_id && ref_obj_id == id && is_null) 5837 /* regs[regno] is in the " == NULL" branch. 5838 * No one could have freed the reference state before 5839 * doing the NULL check. 5840 */ 5841 WARN_ON_ONCE(release_reference_state(state, id)); 5842 5843 for (i = 0; i <= vstate->curframe; i++) 5844 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null); 5845 } 5846 5847 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 5848 struct bpf_reg_state *dst_reg, 5849 struct bpf_reg_state *src_reg, 5850 struct bpf_verifier_state *this_branch, 5851 struct bpf_verifier_state *other_branch) 5852 { 5853 if (BPF_SRC(insn->code) != BPF_X) 5854 return false; 5855 5856 /* Pointers are always 64-bit. */ 5857 if (BPF_CLASS(insn->code) == BPF_JMP32) 5858 return false; 5859 5860 switch (BPF_OP(insn->code)) { 5861 case BPF_JGT: 5862 if ((dst_reg->type == PTR_TO_PACKET && 5863 src_reg->type == PTR_TO_PACKET_END) || 5864 (dst_reg->type == PTR_TO_PACKET_META && 5865 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 5866 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 5867 find_good_pkt_pointers(this_branch, dst_reg, 5868 dst_reg->type, false); 5869 } else if ((dst_reg->type == PTR_TO_PACKET_END && 5870 src_reg->type == PTR_TO_PACKET) || 5871 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 5872 src_reg->type == PTR_TO_PACKET_META)) { 5873 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 5874 find_good_pkt_pointers(other_branch, src_reg, 5875 src_reg->type, true); 5876 } else { 5877 return false; 5878 } 5879 break; 5880 case BPF_JLT: 5881 if ((dst_reg->type == PTR_TO_PACKET && 5882 src_reg->type == PTR_TO_PACKET_END) || 5883 (dst_reg->type == PTR_TO_PACKET_META && 5884 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 5885 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 5886 find_good_pkt_pointers(other_branch, dst_reg, 5887 dst_reg->type, true); 5888 } else if ((dst_reg->type == PTR_TO_PACKET_END && 5889 src_reg->type == PTR_TO_PACKET) || 5890 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 5891 src_reg->type == PTR_TO_PACKET_META)) { 5892 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 5893 find_good_pkt_pointers(this_branch, src_reg, 5894 src_reg->type, false); 5895 } else { 5896 return false; 5897 } 5898 break; 5899 case BPF_JGE: 5900 if ((dst_reg->type == PTR_TO_PACKET && 5901 src_reg->type == PTR_TO_PACKET_END) || 5902 (dst_reg->type == PTR_TO_PACKET_META && 5903 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 5904 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 5905 find_good_pkt_pointers(this_branch, dst_reg, 5906 dst_reg->type, true); 5907 } else if ((dst_reg->type == PTR_TO_PACKET_END && 5908 src_reg->type == PTR_TO_PACKET) || 5909 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 5910 src_reg->type == PTR_TO_PACKET_META)) { 5911 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 5912 find_good_pkt_pointers(other_branch, src_reg, 5913 src_reg->type, false); 5914 } else { 5915 return false; 5916 } 5917 break; 5918 case BPF_JLE: 5919 if ((dst_reg->type == PTR_TO_PACKET && 5920 src_reg->type == PTR_TO_PACKET_END) || 5921 (dst_reg->type == PTR_TO_PACKET_META && 5922 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 5923 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 5924 find_good_pkt_pointers(other_branch, dst_reg, 5925 dst_reg->type, false); 5926 } else if ((dst_reg->type == PTR_TO_PACKET_END && 5927 src_reg->type == PTR_TO_PACKET) || 5928 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 5929 src_reg->type == PTR_TO_PACKET_META)) { 5930 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 5931 find_good_pkt_pointers(this_branch, src_reg, 5932 src_reg->type, true); 5933 } else { 5934 return false; 5935 } 5936 break; 5937 default: 5938 return false; 5939 } 5940 5941 return true; 5942 } 5943 5944 static int check_cond_jmp_op(struct bpf_verifier_env *env, 5945 struct bpf_insn *insn, int *insn_idx) 5946 { 5947 struct bpf_verifier_state *this_branch = env->cur_state; 5948 struct bpf_verifier_state *other_branch; 5949 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 5950 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 5951 u8 opcode = BPF_OP(insn->code); 5952 bool is_jmp32; 5953 int pred = -1; 5954 int err; 5955 5956 /* Only conditional jumps are expected to reach here. */ 5957 if (opcode == BPF_JA || opcode > BPF_JSLE) { 5958 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 5959 return -EINVAL; 5960 } 5961 5962 if (BPF_SRC(insn->code) == BPF_X) { 5963 if (insn->imm != 0) { 5964 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 5965 return -EINVAL; 5966 } 5967 5968 /* check src1 operand */ 5969 err = check_reg_arg(env, insn->src_reg, SRC_OP); 5970 if (err) 5971 return err; 5972 5973 if (is_pointer_value(env, insn->src_reg)) { 5974 verbose(env, "R%d pointer comparison prohibited\n", 5975 insn->src_reg); 5976 return -EACCES; 5977 } 5978 src_reg = ®s[insn->src_reg]; 5979 } else { 5980 if (insn->src_reg != BPF_REG_0) { 5981 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 5982 return -EINVAL; 5983 } 5984 } 5985 5986 /* check src2 operand */ 5987 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 5988 if (err) 5989 return err; 5990 5991 dst_reg = ®s[insn->dst_reg]; 5992 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 5993 5994 if (BPF_SRC(insn->code) == BPF_K) 5995 pred = is_branch_taken(dst_reg, insn->imm, 5996 opcode, is_jmp32); 5997 else if (src_reg->type == SCALAR_VALUE && 5998 tnum_is_const(src_reg->var_off)) 5999 pred = is_branch_taken(dst_reg, src_reg->var_off.value, 6000 opcode, is_jmp32); 6001 if (pred >= 0) { 6002 err = mark_chain_precision(env, insn->dst_reg); 6003 if (BPF_SRC(insn->code) == BPF_X && !err) 6004 err = mark_chain_precision(env, insn->src_reg); 6005 if (err) 6006 return err; 6007 } 6008 if (pred == 1) { 6009 /* only follow the goto, ignore fall-through */ 6010 *insn_idx += insn->off; 6011 return 0; 6012 } else if (pred == 0) { 6013 /* only follow fall-through branch, since 6014 * that's where the program will go 6015 */ 6016 return 0; 6017 } 6018 6019 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 6020 false); 6021 if (!other_branch) 6022 return -EFAULT; 6023 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 6024 6025 /* detect if we are comparing against a constant value so we can adjust 6026 * our min/max values for our dst register. 6027 * this is only legit if both are scalars (or pointers to the same 6028 * object, I suppose, but we don't support that right now), because 6029 * otherwise the different base pointers mean the offsets aren't 6030 * comparable. 6031 */ 6032 if (BPF_SRC(insn->code) == BPF_X) { 6033 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 6034 struct bpf_reg_state lo_reg0 = *dst_reg; 6035 struct bpf_reg_state lo_reg1 = *src_reg; 6036 struct bpf_reg_state *src_lo, *dst_lo; 6037 6038 dst_lo = &lo_reg0; 6039 src_lo = &lo_reg1; 6040 coerce_reg_to_size(dst_lo, 4); 6041 coerce_reg_to_size(src_lo, 4); 6042 6043 if (dst_reg->type == SCALAR_VALUE && 6044 src_reg->type == SCALAR_VALUE) { 6045 if (tnum_is_const(src_reg->var_off) || 6046 (is_jmp32 && tnum_is_const(src_lo->var_off))) 6047 reg_set_min_max(&other_branch_regs[insn->dst_reg], 6048 dst_reg, 6049 is_jmp32 6050 ? src_lo->var_off.value 6051 : src_reg->var_off.value, 6052 opcode, is_jmp32); 6053 else if (tnum_is_const(dst_reg->var_off) || 6054 (is_jmp32 && tnum_is_const(dst_lo->var_off))) 6055 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 6056 src_reg, 6057 is_jmp32 6058 ? dst_lo->var_off.value 6059 : dst_reg->var_off.value, 6060 opcode, is_jmp32); 6061 else if (!is_jmp32 && 6062 (opcode == BPF_JEQ || opcode == BPF_JNE)) 6063 /* Comparing for equality, we can combine knowledge */ 6064 reg_combine_min_max(&other_branch_regs[insn->src_reg], 6065 &other_branch_regs[insn->dst_reg], 6066 src_reg, dst_reg, opcode); 6067 } 6068 } else if (dst_reg->type == SCALAR_VALUE) { 6069 reg_set_min_max(&other_branch_regs[insn->dst_reg], 6070 dst_reg, insn->imm, opcode, is_jmp32); 6071 } 6072 6073 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 6074 * NOTE: these optimizations below are related with pointer comparison 6075 * which will never be JMP32. 6076 */ 6077 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 6078 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 6079 reg_type_may_be_null(dst_reg->type)) { 6080 /* Mark all identical registers in each branch as either 6081 * safe or unknown depending R == 0 or R != 0 conditional. 6082 */ 6083 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 6084 opcode == BPF_JNE); 6085 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 6086 opcode == BPF_JEQ); 6087 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 6088 this_branch, other_branch) && 6089 is_pointer_value(env, insn->dst_reg)) { 6090 verbose(env, "R%d pointer comparison prohibited\n", 6091 insn->dst_reg); 6092 return -EACCES; 6093 } 6094 if (env->log.level & BPF_LOG_LEVEL) 6095 print_verifier_state(env, this_branch->frame[this_branch->curframe]); 6096 return 0; 6097 } 6098 6099 /* verify BPF_LD_IMM64 instruction */ 6100 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 6101 { 6102 struct bpf_insn_aux_data *aux = cur_aux(env); 6103 struct bpf_reg_state *regs = cur_regs(env); 6104 struct bpf_map *map; 6105 int err; 6106 6107 if (BPF_SIZE(insn->code) != BPF_DW) { 6108 verbose(env, "invalid BPF_LD_IMM insn\n"); 6109 return -EINVAL; 6110 } 6111 if (insn->off != 0) { 6112 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 6113 return -EINVAL; 6114 } 6115 6116 err = check_reg_arg(env, insn->dst_reg, DST_OP); 6117 if (err) 6118 return err; 6119 6120 if (insn->src_reg == 0) { 6121 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 6122 6123 regs[insn->dst_reg].type = SCALAR_VALUE; 6124 __mark_reg_known(®s[insn->dst_reg], imm); 6125 return 0; 6126 } 6127 6128 map = env->used_maps[aux->map_index]; 6129 mark_reg_known_zero(env, regs, insn->dst_reg); 6130 regs[insn->dst_reg].map_ptr = map; 6131 6132 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) { 6133 regs[insn->dst_reg].type = PTR_TO_MAP_VALUE; 6134 regs[insn->dst_reg].off = aux->map_off; 6135 if (map_value_has_spin_lock(map)) 6136 regs[insn->dst_reg].id = ++env->id_gen; 6137 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD) { 6138 regs[insn->dst_reg].type = CONST_PTR_TO_MAP; 6139 } else { 6140 verbose(env, "bpf verifier is misconfigured\n"); 6141 return -EINVAL; 6142 } 6143 6144 return 0; 6145 } 6146 6147 static bool may_access_skb(enum bpf_prog_type type) 6148 { 6149 switch (type) { 6150 case BPF_PROG_TYPE_SOCKET_FILTER: 6151 case BPF_PROG_TYPE_SCHED_CLS: 6152 case BPF_PROG_TYPE_SCHED_ACT: 6153 return true; 6154 default: 6155 return false; 6156 } 6157 } 6158 6159 /* verify safety of LD_ABS|LD_IND instructions: 6160 * - they can only appear in the programs where ctx == skb 6161 * - since they are wrappers of function calls, they scratch R1-R5 registers, 6162 * preserve R6-R9, and store return value into R0 6163 * 6164 * Implicit input: 6165 * ctx == skb == R6 == CTX 6166 * 6167 * Explicit input: 6168 * SRC == any register 6169 * IMM == 32-bit immediate 6170 * 6171 * Output: 6172 * R0 - 8/16/32-bit skb data converted to cpu endianness 6173 */ 6174 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 6175 { 6176 struct bpf_reg_state *regs = cur_regs(env); 6177 u8 mode = BPF_MODE(insn->code); 6178 int i, err; 6179 6180 if (!may_access_skb(env->prog->type)) { 6181 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 6182 return -EINVAL; 6183 } 6184 6185 if (!env->ops->gen_ld_abs) { 6186 verbose(env, "bpf verifier is misconfigured\n"); 6187 return -EINVAL; 6188 } 6189 6190 if (env->subprog_cnt > 1) { 6191 /* when program has LD_ABS insn JITs and interpreter assume 6192 * that r1 == ctx == skb which is not the case for callees 6193 * that can have arbitrary arguments. It's problematic 6194 * for main prog as well since JITs would need to analyze 6195 * all functions in order to make proper register save/restore 6196 * decisions in the main prog. Hence disallow LD_ABS with calls 6197 */ 6198 verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n"); 6199 return -EINVAL; 6200 } 6201 6202 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 6203 BPF_SIZE(insn->code) == BPF_DW || 6204 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 6205 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 6206 return -EINVAL; 6207 } 6208 6209 /* check whether implicit source operand (register R6) is readable */ 6210 err = check_reg_arg(env, BPF_REG_6, SRC_OP); 6211 if (err) 6212 return err; 6213 6214 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 6215 * gen_ld_abs() may terminate the program at runtime, leading to 6216 * reference leak. 6217 */ 6218 err = check_reference_leak(env); 6219 if (err) { 6220 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 6221 return err; 6222 } 6223 6224 if (env->cur_state->active_spin_lock) { 6225 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 6226 return -EINVAL; 6227 } 6228 6229 if (regs[BPF_REG_6].type != PTR_TO_CTX) { 6230 verbose(env, 6231 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 6232 return -EINVAL; 6233 } 6234 6235 if (mode == BPF_IND) { 6236 /* check explicit source operand */ 6237 err = check_reg_arg(env, insn->src_reg, SRC_OP); 6238 if (err) 6239 return err; 6240 } 6241 6242 /* reset caller saved regs to unreadable */ 6243 for (i = 0; i < CALLER_SAVED_REGS; i++) { 6244 mark_reg_not_init(env, regs, caller_saved[i]); 6245 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 6246 } 6247 6248 /* mark destination R0 register as readable, since it contains 6249 * the value fetched from the packet. 6250 * Already marked as written above. 6251 */ 6252 mark_reg_unknown(env, regs, BPF_REG_0); 6253 /* ld_abs load up to 32-bit skb data. */ 6254 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 6255 return 0; 6256 } 6257 6258 static int check_return_code(struct bpf_verifier_env *env) 6259 { 6260 struct tnum enforce_attach_type_range = tnum_unknown; 6261 struct bpf_reg_state *reg; 6262 struct tnum range = tnum_range(0, 1); 6263 6264 switch (env->prog->type) { 6265 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 6266 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 6267 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG) 6268 range = tnum_range(1, 1); 6269 break; 6270 case BPF_PROG_TYPE_CGROUP_SKB: 6271 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 6272 range = tnum_range(0, 3); 6273 enforce_attach_type_range = tnum_range(2, 3); 6274 } 6275 break; 6276 case BPF_PROG_TYPE_CGROUP_SOCK: 6277 case BPF_PROG_TYPE_SOCK_OPS: 6278 case BPF_PROG_TYPE_CGROUP_DEVICE: 6279 case BPF_PROG_TYPE_CGROUP_SYSCTL: 6280 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 6281 break; 6282 case BPF_PROG_TYPE_RAW_TRACEPOINT: 6283 if (!env->prog->aux->attach_btf_id) 6284 return 0; 6285 range = tnum_const(0); 6286 break; 6287 default: 6288 return 0; 6289 } 6290 6291 reg = cur_regs(env) + BPF_REG_0; 6292 if (reg->type != SCALAR_VALUE) { 6293 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 6294 reg_type_str[reg->type]); 6295 return -EINVAL; 6296 } 6297 6298 if (!tnum_in(range, reg->var_off)) { 6299 char tn_buf[48]; 6300 6301 verbose(env, "At program exit the register R0 "); 6302 if (!tnum_is_unknown(reg->var_off)) { 6303 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6304 verbose(env, "has value %s", tn_buf); 6305 } else { 6306 verbose(env, "has unknown scalar value"); 6307 } 6308 tnum_strn(tn_buf, sizeof(tn_buf), range); 6309 verbose(env, " should have been in %s\n", tn_buf); 6310 return -EINVAL; 6311 } 6312 6313 if (!tnum_is_unknown(enforce_attach_type_range) && 6314 tnum_in(enforce_attach_type_range, reg->var_off)) 6315 env->prog->enforce_expected_attach_type = 1; 6316 return 0; 6317 } 6318 6319 /* non-recursive DFS pseudo code 6320 * 1 procedure DFS-iterative(G,v): 6321 * 2 label v as discovered 6322 * 3 let S be a stack 6323 * 4 S.push(v) 6324 * 5 while S is not empty 6325 * 6 t <- S.pop() 6326 * 7 if t is what we're looking for: 6327 * 8 return t 6328 * 9 for all edges e in G.adjacentEdges(t) do 6329 * 10 if edge e is already labelled 6330 * 11 continue with the next edge 6331 * 12 w <- G.adjacentVertex(t,e) 6332 * 13 if vertex w is not discovered and not explored 6333 * 14 label e as tree-edge 6334 * 15 label w as discovered 6335 * 16 S.push(w) 6336 * 17 continue at 5 6337 * 18 else if vertex w is discovered 6338 * 19 label e as back-edge 6339 * 20 else 6340 * 21 // vertex w is explored 6341 * 22 label e as forward- or cross-edge 6342 * 23 label t as explored 6343 * 24 S.pop() 6344 * 6345 * convention: 6346 * 0x10 - discovered 6347 * 0x11 - discovered and fall-through edge labelled 6348 * 0x12 - discovered and fall-through and branch edges labelled 6349 * 0x20 - explored 6350 */ 6351 6352 enum { 6353 DISCOVERED = 0x10, 6354 EXPLORED = 0x20, 6355 FALLTHROUGH = 1, 6356 BRANCH = 2, 6357 }; 6358 6359 static u32 state_htab_size(struct bpf_verifier_env *env) 6360 { 6361 return env->prog->len; 6362 } 6363 6364 static struct bpf_verifier_state_list **explored_state( 6365 struct bpf_verifier_env *env, 6366 int idx) 6367 { 6368 struct bpf_verifier_state *cur = env->cur_state; 6369 struct bpf_func_state *state = cur->frame[cur->curframe]; 6370 6371 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 6372 } 6373 6374 static void init_explored_state(struct bpf_verifier_env *env, int idx) 6375 { 6376 env->insn_aux_data[idx].prune_point = true; 6377 } 6378 6379 /* t, w, e - match pseudo-code above: 6380 * t - index of current instruction 6381 * w - next instruction 6382 * e - edge 6383 */ 6384 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env, 6385 bool loop_ok) 6386 { 6387 int *insn_stack = env->cfg.insn_stack; 6388 int *insn_state = env->cfg.insn_state; 6389 6390 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 6391 return 0; 6392 6393 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 6394 return 0; 6395 6396 if (w < 0 || w >= env->prog->len) { 6397 verbose_linfo(env, t, "%d: ", t); 6398 verbose(env, "jump out of range from insn %d to %d\n", t, w); 6399 return -EINVAL; 6400 } 6401 6402 if (e == BRANCH) 6403 /* mark branch target for state pruning */ 6404 init_explored_state(env, w); 6405 6406 if (insn_state[w] == 0) { 6407 /* tree-edge */ 6408 insn_state[t] = DISCOVERED | e; 6409 insn_state[w] = DISCOVERED; 6410 if (env->cfg.cur_stack >= env->prog->len) 6411 return -E2BIG; 6412 insn_stack[env->cfg.cur_stack++] = w; 6413 return 1; 6414 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 6415 if (loop_ok && env->allow_ptr_leaks) 6416 return 0; 6417 verbose_linfo(env, t, "%d: ", t); 6418 verbose_linfo(env, w, "%d: ", w); 6419 verbose(env, "back-edge from insn %d to %d\n", t, w); 6420 return -EINVAL; 6421 } else if (insn_state[w] == EXPLORED) { 6422 /* forward- or cross-edge */ 6423 insn_state[t] = DISCOVERED | e; 6424 } else { 6425 verbose(env, "insn state internal bug\n"); 6426 return -EFAULT; 6427 } 6428 return 0; 6429 } 6430 6431 /* non-recursive depth-first-search to detect loops in BPF program 6432 * loop == back-edge in directed graph 6433 */ 6434 static int check_cfg(struct bpf_verifier_env *env) 6435 { 6436 struct bpf_insn *insns = env->prog->insnsi; 6437 int insn_cnt = env->prog->len; 6438 int *insn_stack, *insn_state; 6439 int ret = 0; 6440 int i, t; 6441 6442 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 6443 if (!insn_state) 6444 return -ENOMEM; 6445 6446 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 6447 if (!insn_stack) { 6448 kvfree(insn_state); 6449 return -ENOMEM; 6450 } 6451 6452 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 6453 insn_stack[0] = 0; /* 0 is the first instruction */ 6454 env->cfg.cur_stack = 1; 6455 6456 peek_stack: 6457 if (env->cfg.cur_stack == 0) 6458 goto check_state; 6459 t = insn_stack[env->cfg.cur_stack - 1]; 6460 6461 if (BPF_CLASS(insns[t].code) == BPF_JMP || 6462 BPF_CLASS(insns[t].code) == BPF_JMP32) { 6463 u8 opcode = BPF_OP(insns[t].code); 6464 6465 if (opcode == BPF_EXIT) { 6466 goto mark_explored; 6467 } else if (opcode == BPF_CALL) { 6468 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 6469 if (ret == 1) 6470 goto peek_stack; 6471 else if (ret < 0) 6472 goto err_free; 6473 if (t + 1 < insn_cnt) 6474 init_explored_state(env, t + 1); 6475 if (insns[t].src_reg == BPF_PSEUDO_CALL) { 6476 init_explored_state(env, t); 6477 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, 6478 env, false); 6479 if (ret == 1) 6480 goto peek_stack; 6481 else if (ret < 0) 6482 goto err_free; 6483 } 6484 } else if (opcode == BPF_JA) { 6485 if (BPF_SRC(insns[t].code) != BPF_K) { 6486 ret = -EINVAL; 6487 goto err_free; 6488 } 6489 /* unconditional jump with single edge */ 6490 ret = push_insn(t, t + insns[t].off + 1, 6491 FALLTHROUGH, env, true); 6492 if (ret == 1) 6493 goto peek_stack; 6494 else if (ret < 0) 6495 goto err_free; 6496 /* unconditional jmp is not a good pruning point, 6497 * but it's marked, since backtracking needs 6498 * to record jmp history in is_state_visited(). 6499 */ 6500 init_explored_state(env, t + insns[t].off + 1); 6501 /* tell verifier to check for equivalent states 6502 * after every call and jump 6503 */ 6504 if (t + 1 < insn_cnt) 6505 init_explored_state(env, t + 1); 6506 } else { 6507 /* conditional jump with two edges */ 6508 init_explored_state(env, t); 6509 ret = push_insn(t, t + 1, FALLTHROUGH, env, true); 6510 if (ret == 1) 6511 goto peek_stack; 6512 else if (ret < 0) 6513 goto err_free; 6514 6515 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env, true); 6516 if (ret == 1) 6517 goto peek_stack; 6518 else if (ret < 0) 6519 goto err_free; 6520 } 6521 } else { 6522 /* all other non-branch instructions with single 6523 * fall-through edge 6524 */ 6525 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 6526 if (ret == 1) 6527 goto peek_stack; 6528 else if (ret < 0) 6529 goto err_free; 6530 } 6531 6532 mark_explored: 6533 insn_state[t] = EXPLORED; 6534 if (env->cfg.cur_stack-- <= 0) { 6535 verbose(env, "pop stack internal bug\n"); 6536 ret = -EFAULT; 6537 goto err_free; 6538 } 6539 goto peek_stack; 6540 6541 check_state: 6542 for (i = 0; i < insn_cnt; i++) { 6543 if (insn_state[i] != EXPLORED) { 6544 verbose(env, "unreachable insn %d\n", i); 6545 ret = -EINVAL; 6546 goto err_free; 6547 } 6548 } 6549 ret = 0; /* cfg looks good */ 6550 6551 err_free: 6552 kvfree(insn_state); 6553 kvfree(insn_stack); 6554 env->cfg.insn_state = env->cfg.insn_stack = NULL; 6555 return ret; 6556 } 6557 6558 /* The minimum supported BTF func info size */ 6559 #define MIN_BPF_FUNCINFO_SIZE 8 6560 #define MAX_FUNCINFO_REC_SIZE 252 6561 6562 static int check_btf_func(struct bpf_verifier_env *env, 6563 const union bpf_attr *attr, 6564 union bpf_attr __user *uattr) 6565 { 6566 u32 i, nfuncs, urec_size, min_size; 6567 u32 krec_size = sizeof(struct bpf_func_info); 6568 struct bpf_func_info *krecord; 6569 const struct btf_type *type; 6570 struct bpf_prog *prog; 6571 const struct btf *btf; 6572 void __user *urecord; 6573 u32 prev_offset = 0; 6574 int ret = 0; 6575 6576 nfuncs = attr->func_info_cnt; 6577 if (!nfuncs) 6578 return 0; 6579 6580 if (nfuncs != env->subprog_cnt) { 6581 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 6582 return -EINVAL; 6583 } 6584 6585 urec_size = attr->func_info_rec_size; 6586 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 6587 urec_size > MAX_FUNCINFO_REC_SIZE || 6588 urec_size % sizeof(u32)) { 6589 verbose(env, "invalid func info rec size %u\n", urec_size); 6590 return -EINVAL; 6591 } 6592 6593 prog = env->prog; 6594 btf = prog->aux->btf; 6595 6596 urecord = u64_to_user_ptr(attr->func_info); 6597 min_size = min_t(u32, krec_size, urec_size); 6598 6599 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 6600 if (!krecord) 6601 return -ENOMEM; 6602 6603 for (i = 0; i < nfuncs; i++) { 6604 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 6605 if (ret) { 6606 if (ret == -E2BIG) { 6607 verbose(env, "nonzero tailing record in func info"); 6608 /* set the size kernel expects so loader can zero 6609 * out the rest of the record. 6610 */ 6611 if (put_user(min_size, &uattr->func_info_rec_size)) 6612 ret = -EFAULT; 6613 } 6614 goto err_free; 6615 } 6616 6617 if (copy_from_user(&krecord[i], urecord, min_size)) { 6618 ret = -EFAULT; 6619 goto err_free; 6620 } 6621 6622 /* check insn_off */ 6623 if (i == 0) { 6624 if (krecord[i].insn_off) { 6625 verbose(env, 6626 "nonzero insn_off %u for the first func info record", 6627 krecord[i].insn_off); 6628 ret = -EINVAL; 6629 goto err_free; 6630 } 6631 } else if (krecord[i].insn_off <= prev_offset) { 6632 verbose(env, 6633 "same or smaller insn offset (%u) than previous func info record (%u)", 6634 krecord[i].insn_off, prev_offset); 6635 ret = -EINVAL; 6636 goto err_free; 6637 } 6638 6639 if (env->subprog_info[i].start != krecord[i].insn_off) { 6640 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 6641 ret = -EINVAL; 6642 goto err_free; 6643 } 6644 6645 /* check type_id */ 6646 type = btf_type_by_id(btf, krecord[i].type_id); 6647 if (!type || BTF_INFO_KIND(type->info) != BTF_KIND_FUNC) { 6648 verbose(env, "invalid type id %d in func info", 6649 krecord[i].type_id); 6650 ret = -EINVAL; 6651 goto err_free; 6652 } 6653 6654 prev_offset = krecord[i].insn_off; 6655 urecord += urec_size; 6656 } 6657 6658 prog->aux->func_info = krecord; 6659 prog->aux->func_info_cnt = nfuncs; 6660 return 0; 6661 6662 err_free: 6663 kvfree(krecord); 6664 return ret; 6665 } 6666 6667 static void adjust_btf_func(struct bpf_verifier_env *env) 6668 { 6669 int i; 6670 6671 if (!env->prog->aux->func_info) 6672 return; 6673 6674 for (i = 0; i < env->subprog_cnt; i++) 6675 env->prog->aux->func_info[i].insn_off = env->subprog_info[i].start; 6676 } 6677 6678 #define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \ 6679 sizeof(((struct bpf_line_info *)(0))->line_col)) 6680 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 6681 6682 static int check_btf_line(struct bpf_verifier_env *env, 6683 const union bpf_attr *attr, 6684 union bpf_attr __user *uattr) 6685 { 6686 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 6687 struct bpf_subprog_info *sub; 6688 struct bpf_line_info *linfo; 6689 struct bpf_prog *prog; 6690 const struct btf *btf; 6691 void __user *ulinfo; 6692 int err; 6693 6694 nr_linfo = attr->line_info_cnt; 6695 if (!nr_linfo) 6696 return 0; 6697 6698 rec_size = attr->line_info_rec_size; 6699 if (rec_size < MIN_BPF_LINEINFO_SIZE || 6700 rec_size > MAX_LINEINFO_REC_SIZE || 6701 rec_size & (sizeof(u32) - 1)) 6702 return -EINVAL; 6703 6704 /* Need to zero it in case the userspace may 6705 * pass in a smaller bpf_line_info object. 6706 */ 6707 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 6708 GFP_KERNEL | __GFP_NOWARN); 6709 if (!linfo) 6710 return -ENOMEM; 6711 6712 prog = env->prog; 6713 btf = prog->aux->btf; 6714 6715 s = 0; 6716 sub = env->subprog_info; 6717 ulinfo = u64_to_user_ptr(attr->line_info); 6718 expected_size = sizeof(struct bpf_line_info); 6719 ncopy = min_t(u32, expected_size, rec_size); 6720 for (i = 0; i < nr_linfo; i++) { 6721 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 6722 if (err) { 6723 if (err == -E2BIG) { 6724 verbose(env, "nonzero tailing record in line_info"); 6725 if (put_user(expected_size, 6726 &uattr->line_info_rec_size)) 6727 err = -EFAULT; 6728 } 6729 goto err_free; 6730 } 6731 6732 if (copy_from_user(&linfo[i], ulinfo, ncopy)) { 6733 err = -EFAULT; 6734 goto err_free; 6735 } 6736 6737 /* 6738 * Check insn_off to ensure 6739 * 1) strictly increasing AND 6740 * 2) bounded by prog->len 6741 * 6742 * The linfo[0].insn_off == 0 check logically falls into 6743 * the later "missing bpf_line_info for func..." case 6744 * because the first linfo[0].insn_off must be the 6745 * first sub also and the first sub must have 6746 * subprog_info[0].start == 0. 6747 */ 6748 if ((i && linfo[i].insn_off <= prev_offset) || 6749 linfo[i].insn_off >= prog->len) { 6750 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 6751 i, linfo[i].insn_off, prev_offset, 6752 prog->len); 6753 err = -EINVAL; 6754 goto err_free; 6755 } 6756 6757 if (!prog->insnsi[linfo[i].insn_off].code) { 6758 verbose(env, 6759 "Invalid insn code at line_info[%u].insn_off\n", 6760 i); 6761 err = -EINVAL; 6762 goto err_free; 6763 } 6764 6765 if (!btf_name_by_offset(btf, linfo[i].line_off) || 6766 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 6767 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 6768 err = -EINVAL; 6769 goto err_free; 6770 } 6771 6772 if (s != env->subprog_cnt) { 6773 if (linfo[i].insn_off == sub[s].start) { 6774 sub[s].linfo_idx = i; 6775 s++; 6776 } else if (sub[s].start < linfo[i].insn_off) { 6777 verbose(env, "missing bpf_line_info for func#%u\n", s); 6778 err = -EINVAL; 6779 goto err_free; 6780 } 6781 } 6782 6783 prev_offset = linfo[i].insn_off; 6784 ulinfo += rec_size; 6785 } 6786 6787 if (s != env->subprog_cnt) { 6788 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 6789 env->subprog_cnt - s, s); 6790 err = -EINVAL; 6791 goto err_free; 6792 } 6793 6794 prog->aux->linfo = linfo; 6795 prog->aux->nr_linfo = nr_linfo; 6796 6797 return 0; 6798 6799 err_free: 6800 kvfree(linfo); 6801 return err; 6802 } 6803 6804 static int check_btf_info(struct bpf_verifier_env *env, 6805 const union bpf_attr *attr, 6806 union bpf_attr __user *uattr) 6807 { 6808 struct btf *btf; 6809 int err; 6810 6811 if (!attr->func_info_cnt && !attr->line_info_cnt) 6812 return 0; 6813 6814 btf = btf_get_by_fd(attr->prog_btf_fd); 6815 if (IS_ERR(btf)) 6816 return PTR_ERR(btf); 6817 env->prog->aux->btf = btf; 6818 6819 err = check_btf_func(env, attr, uattr); 6820 if (err) 6821 return err; 6822 6823 err = check_btf_line(env, attr, uattr); 6824 if (err) 6825 return err; 6826 6827 return 0; 6828 } 6829 6830 /* check %cur's range satisfies %old's */ 6831 static bool range_within(struct bpf_reg_state *old, 6832 struct bpf_reg_state *cur) 6833 { 6834 return old->umin_value <= cur->umin_value && 6835 old->umax_value >= cur->umax_value && 6836 old->smin_value <= cur->smin_value && 6837 old->smax_value >= cur->smax_value; 6838 } 6839 6840 /* Maximum number of register states that can exist at once */ 6841 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE) 6842 struct idpair { 6843 u32 old; 6844 u32 cur; 6845 }; 6846 6847 /* If in the old state two registers had the same id, then they need to have 6848 * the same id in the new state as well. But that id could be different from 6849 * the old state, so we need to track the mapping from old to new ids. 6850 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 6851 * regs with old id 5 must also have new id 9 for the new state to be safe. But 6852 * regs with a different old id could still have new id 9, we don't care about 6853 * that. 6854 * So we look through our idmap to see if this old id has been seen before. If 6855 * so, we require the new id to match; otherwise, we add the id pair to the map. 6856 */ 6857 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap) 6858 { 6859 unsigned int i; 6860 6861 for (i = 0; i < ID_MAP_SIZE; i++) { 6862 if (!idmap[i].old) { 6863 /* Reached an empty slot; haven't seen this id before */ 6864 idmap[i].old = old_id; 6865 idmap[i].cur = cur_id; 6866 return true; 6867 } 6868 if (idmap[i].old == old_id) 6869 return idmap[i].cur == cur_id; 6870 } 6871 /* We ran out of idmap slots, which should be impossible */ 6872 WARN_ON_ONCE(1); 6873 return false; 6874 } 6875 6876 static void clean_func_state(struct bpf_verifier_env *env, 6877 struct bpf_func_state *st) 6878 { 6879 enum bpf_reg_liveness live; 6880 int i, j; 6881 6882 for (i = 0; i < BPF_REG_FP; i++) { 6883 live = st->regs[i].live; 6884 /* liveness must not touch this register anymore */ 6885 st->regs[i].live |= REG_LIVE_DONE; 6886 if (!(live & REG_LIVE_READ)) 6887 /* since the register is unused, clear its state 6888 * to make further comparison simpler 6889 */ 6890 __mark_reg_not_init(&st->regs[i]); 6891 } 6892 6893 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 6894 live = st->stack[i].spilled_ptr.live; 6895 /* liveness must not touch this stack slot anymore */ 6896 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 6897 if (!(live & REG_LIVE_READ)) { 6898 __mark_reg_not_init(&st->stack[i].spilled_ptr); 6899 for (j = 0; j < BPF_REG_SIZE; j++) 6900 st->stack[i].slot_type[j] = STACK_INVALID; 6901 } 6902 } 6903 } 6904 6905 static void clean_verifier_state(struct bpf_verifier_env *env, 6906 struct bpf_verifier_state *st) 6907 { 6908 int i; 6909 6910 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 6911 /* all regs in this state in all frames were already marked */ 6912 return; 6913 6914 for (i = 0; i <= st->curframe; i++) 6915 clean_func_state(env, st->frame[i]); 6916 } 6917 6918 /* the parentage chains form a tree. 6919 * the verifier states are added to state lists at given insn and 6920 * pushed into state stack for future exploration. 6921 * when the verifier reaches bpf_exit insn some of the verifer states 6922 * stored in the state lists have their final liveness state already, 6923 * but a lot of states will get revised from liveness point of view when 6924 * the verifier explores other branches. 6925 * Example: 6926 * 1: r0 = 1 6927 * 2: if r1 == 100 goto pc+1 6928 * 3: r0 = 2 6929 * 4: exit 6930 * when the verifier reaches exit insn the register r0 in the state list of 6931 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 6932 * of insn 2 and goes exploring further. At the insn 4 it will walk the 6933 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 6934 * 6935 * Since the verifier pushes the branch states as it sees them while exploring 6936 * the program the condition of walking the branch instruction for the second 6937 * time means that all states below this branch were already explored and 6938 * their final liveness markes are already propagated. 6939 * Hence when the verifier completes the search of state list in is_state_visited() 6940 * we can call this clean_live_states() function to mark all liveness states 6941 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 6942 * will not be used. 6943 * This function also clears the registers and stack for states that !READ 6944 * to simplify state merging. 6945 * 6946 * Important note here that walking the same branch instruction in the callee 6947 * doesn't meant that the states are DONE. The verifier has to compare 6948 * the callsites 6949 */ 6950 static void clean_live_states(struct bpf_verifier_env *env, int insn, 6951 struct bpf_verifier_state *cur) 6952 { 6953 struct bpf_verifier_state_list *sl; 6954 int i; 6955 6956 sl = *explored_state(env, insn); 6957 while (sl) { 6958 if (sl->state.branches) 6959 goto next; 6960 if (sl->state.insn_idx != insn || 6961 sl->state.curframe != cur->curframe) 6962 goto next; 6963 for (i = 0; i <= cur->curframe; i++) 6964 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite) 6965 goto next; 6966 clean_verifier_state(env, &sl->state); 6967 next: 6968 sl = sl->next; 6969 } 6970 } 6971 6972 /* Returns true if (rold safe implies rcur safe) */ 6973 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur, 6974 struct idpair *idmap) 6975 { 6976 bool equal; 6977 6978 if (!(rold->live & REG_LIVE_READ)) 6979 /* explored state didn't use this */ 6980 return true; 6981 6982 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0; 6983 6984 if (rold->type == PTR_TO_STACK) 6985 /* two stack pointers are equal only if they're pointing to 6986 * the same stack frame, since fp-8 in foo != fp-8 in bar 6987 */ 6988 return equal && rold->frameno == rcur->frameno; 6989 6990 if (equal) 6991 return true; 6992 6993 if (rold->type == NOT_INIT) 6994 /* explored state can't have used this */ 6995 return true; 6996 if (rcur->type == NOT_INIT) 6997 return false; 6998 switch (rold->type) { 6999 case SCALAR_VALUE: 7000 if (rcur->type == SCALAR_VALUE) { 7001 if (!rold->precise && !rcur->precise) 7002 return true; 7003 /* new val must satisfy old val knowledge */ 7004 return range_within(rold, rcur) && 7005 tnum_in(rold->var_off, rcur->var_off); 7006 } else { 7007 /* We're trying to use a pointer in place of a scalar. 7008 * Even if the scalar was unbounded, this could lead to 7009 * pointer leaks because scalars are allowed to leak 7010 * while pointers are not. We could make this safe in 7011 * special cases if root is calling us, but it's 7012 * probably not worth the hassle. 7013 */ 7014 return false; 7015 } 7016 case PTR_TO_MAP_VALUE: 7017 /* If the new min/max/var_off satisfy the old ones and 7018 * everything else matches, we are OK. 7019 * 'id' is not compared, since it's only used for maps with 7020 * bpf_spin_lock inside map element and in such cases if 7021 * the rest of the prog is valid for one map element then 7022 * it's valid for all map elements regardless of the key 7023 * used in bpf_map_lookup() 7024 */ 7025 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 7026 range_within(rold, rcur) && 7027 tnum_in(rold->var_off, rcur->var_off); 7028 case PTR_TO_MAP_VALUE_OR_NULL: 7029 /* a PTR_TO_MAP_VALUE could be safe to use as a 7030 * PTR_TO_MAP_VALUE_OR_NULL into the same map. 7031 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- 7032 * checked, doing so could have affected others with the same 7033 * id, and we can't check for that because we lost the id when 7034 * we converted to a PTR_TO_MAP_VALUE. 7035 */ 7036 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL) 7037 return false; 7038 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) 7039 return false; 7040 /* Check our ids match any regs they're supposed to */ 7041 return check_ids(rold->id, rcur->id, idmap); 7042 case PTR_TO_PACKET_META: 7043 case PTR_TO_PACKET: 7044 if (rcur->type != rold->type) 7045 return false; 7046 /* We must have at least as much range as the old ptr 7047 * did, so that any accesses which were safe before are 7048 * still safe. This is true even if old range < old off, 7049 * since someone could have accessed through (ptr - k), or 7050 * even done ptr -= k in a register, to get a safe access. 7051 */ 7052 if (rold->range > rcur->range) 7053 return false; 7054 /* If the offsets don't match, we can't trust our alignment; 7055 * nor can we be sure that we won't fall out of range. 7056 */ 7057 if (rold->off != rcur->off) 7058 return false; 7059 /* id relations must be preserved */ 7060 if (rold->id && !check_ids(rold->id, rcur->id, idmap)) 7061 return false; 7062 /* new val must satisfy old val knowledge */ 7063 return range_within(rold, rcur) && 7064 tnum_in(rold->var_off, rcur->var_off); 7065 case PTR_TO_CTX: 7066 case CONST_PTR_TO_MAP: 7067 case PTR_TO_PACKET_END: 7068 case PTR_TO_FLOW_KEYS: 7069 case PTR_TO_SOCKET: 7070 case PTR_TO_SOCKET_OR_NULL: 7071 case PTR_TO_SOCK_COMMON: 7072 case PTR_TO_SOCK_COMMON_OR_NULL: 7073 case PTR_TO_TCP_SOCK: 7074 case PTR_TO_TCP_SOCK_OR_NULL: 7075 case PTR_TO_XDP_SOCK: 7076 /* Only valid matches are exact, which memcmp() above 7077 * would have accepted 7078 */ 7079 default: 7080 /* Don't know what's going on, just say it's not safe */ 7081 return false; 7082 } 7083 7084 /* Shouldn't get here; if we do, say it's not safe */ 7085 WARN_ON_ONCE(1); 7086 return false; 7087 } 7088 7089 static bool stacksafe(struct bpf_func_state *old, 7090 struct bpf_func_state *cur, 7091 struct idpair *idmap) 7092 { 7093 int i, spi; 7094 7095 /* walk slots of the explored stack and ignore any additional 7096 * slots in the current stack, since explored(safe) state 7097 * didn't use them 7098 */ 7099 for (i = 0; i < old->allocated_stack; i++) { 7100 spi = i / BPF_REG_SIZE; 7101 7102 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) { 7103 i += BPF_REG_SIZE - 1; 7104 /* explored state didn't use this */ 7105 continue; 7106 } 7107 7108 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 7109 continue; 7110 7111 /* explored stack has more populated slots than current stack 7112 * and these slots were used 7113 */ 7114 if (i >= cur->allocated_stack) 7115 return false; 7116 7117 /* if old state was safe with misc data in the stack 7118 * it will be safe with zero-initialized stack. 7119 * The opposite is not true 7120 */ 7121 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 7122 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 7123 continue; 7124 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 7125 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 7126 /* Ex: old explored (safe) state has STACK_SPILL in 7127 * this stack slot, but current has has STACK_MISC -> 7128 * this verifier states are not equivalent, 7129 * return false to continue verification of this path 7130 */ 7131 return false; 7132 if (i % BPF_REG_SIZE) 7133 continue; 7134 if (old->stack[spi].slot_type[0] != STACK_SPILL) 7135 continue; 7136 if (!regsafe(&old->stack[spi].spilled_ptr, 7137 &cur->stack[spi].spilled_ptr, 7138 idmap)) 7139 /* when explored and current stack slot are both storing 7140 * spilled registers, check that stored pointers types 7141 * are the same as well. 7142 * Ex: explored safe path could have stored 7143 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 7144 * but current path has stored: 7145 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 7146 * such verifier states are not equivalent. 7147 * return false to continue verification of this path 7148 */ 7149 return false; 7150 } 7151 return true; 7152 } 7153 7154 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur) 7155 { 7156 if (old->acquired_refs != cur->acquired_refs) 7157 return false; 7158 return !memcmp(old->refs, cur->refs, 7159 sizeof(*old->refs) * old->acquired_refs); 7160 } 7161 7162 /* compare two verifier states 7163 * 7164 * all states stored in state_list are known to be valid, since 7165 * verifier reached 'bpf_exit' instruction through them 7166 * 7167 * this function is called when verifier exploring different branches of 7168 * execution popped from the state stack. If it sees an old state that has 7169 * more strict register state and more strict stack state then this execution 7170 * branch doesn't need to be explored further, since verifier already 7171 * concluded that more strict state leads to valid finish. 7172 * 7173 * Therefore two states are equivalent if register state is more conservative 7174 * and explored stack state is more conservative than the current one. 7175 * Example: 7176 * explored current 7177 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 7178 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 7179 * 7180 * In other words if current stack state (one being explored) has more 7181 * valid slots than old one that already passed validation, it means 7182 * the verifier can stop exploring and conclude that current state is valid too 7183 * 7184 * Similarly with registers. If explored state has register type as invalid 7185 * whereas register type in current state is meaningful, it means that 7186 * the current state will reach 'bpf_exit' instruction safely 7187 */ 7188 static bool func_states_equal(struct bpf_func_state *old, 7189 struct bpf_func_state *cur) 7190 { 7191 struct idpair *idmap; 7192 bool ret = false; 7193 int i; 7194 7195 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL); 7196 /* If we failed to allocate the idmap, just say it's not safe */ 7197 if (!idmap) 7198 return false; 7199 7200 for (i = 0; i < MAX_BPF_REG; i++) { 7201 if (!regsafe(&old->regs[i], &cur->regs[i], idmap)) 7202 goto out_free; 7203 } 7204 7205 if (!stacksafe(old, cur, idmap)) 7206 goto out_free; 7207 7208 if (!refsafe(old, cur)) 7209 goto out_free; 7210 ret = true; 7211 out_free: 7212 kfree(idmap); 7213 return ret; 7214 } 7215 7216 static bool states_equal(struct bpf_verifier_env *env, 7217 struct bpf_verifier_state *old, 7218 struct bpf_verifier_state *cur) 7219 { 7220 int i; 7221 7222 if (old->curframe != cur->curframe) 7223 return false; 7224 7225 /* Verification state from speculative execution simulation 7226 * must never prune a non-speculative execution one. 7227 */ 7228 if (old->speculative && !cur->speculative) 7229 return false; 7230 7231 if (old->active_spin_lock != cur->active_spin_lock) 7232 return false; 7233 7234 /* for states to be equal callsites have to be the same 7235 * and all frame states need to be equivalent 7236 */ 7237 for (i = 0; i <= old->curframe; i++) { 7238 if (old->frame[i]->callsite != cur->frame[i]->callsite) 7239 return false; 7240 if (!func_states_equal(old->frame[i], cur->frame[i])) 7241 return false; 7242 } 7243 return true; 7244 } 7245 7246 /* Return 0 if no propagation happened. Return negative error code if error 7247 * happened. Otherwise, return the propagated bit. 7248 */ 7249 static int propagate_liveness_reg(struct bpf_verifier_env *env, 7250 struct bpf_reg_state *reg, 7251 struct bpf_reg_state *parent_reg) 7252 { 7253 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 7254 u8 flag = reg->live & REG_LIVE_READ; 7255 int err; 7256 7257 /* When comes here, read flags of PARENT_REG or REG could be any of 7258 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 7259 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 7260 */ 7261 if (parent_flag == REG_LIVE_READ64 || 7262 /* Or if there is no read flag from REG. */ 7263 !flag || 7264 /* Or if the read flag from REG is the same as PARENT_REG. */ 7265 parent_flag == flag) 7266 return 0; 7267 7268 err = mark_reg_read(env, reg, parent_reg, flag); 7269 if (err) 7270 return err; 7271 7272 return flag; 7273 } 7274 7275 /* A write screens off any subsequent reads; but write marks come from the 7276 * straight-line code between a state and its parent. When we arrive at an 7277 * equivalent state (jump target or such) we didn't arrive by the straight-line 7278 * code, so read marks in the state must propagate to the parent regardless 7279 * of the state's write marks. That's what 'parent == state->parent' comparison 7280 * in mark_reg_read() is for. 7281 */ 7282 static int propagate_liveness(struct bpf_verifier_env *env, 7283 const struct bpf_verifier_state *vstate, 7284 struct bpf_verifier_state *vparent) 7285 { 7286 struct bpf_reg_state *state_reg, *parent_reg; 7287 struct bpf_func_state *state, *parent; 7288 int i, frame, err = 0; 7289 7290 if (vparent->curframe != vstate->curframe) { 7291 WARN(1, "propagate_live: parent frame %d current frame %d\n", 7292 vparent->curframe, vstate->curframe); 7293 return -EFAULT; 7294 } 7295 /* Propagate read liveness of registers... */ 7296 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 7297 for (frame = 0; frame <= vstate->curframe; frame++) { 7298 parent = vparent->frame[frame]; 7299 state = vstate->frame[frame]; 7300 parent_reg = parent->regs; 7301 state_reg = state->regs; 7302 /* We don't need to worry about FP liveness, it's read-only */ 7303 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 7304 err = propagate_liveness_reg(env, &state_reg[i], 7305 &parent_reg[i]); 7306 if (err < 0) 7307 return err; 7308 if (err == REG_LIVE_READ64) 7309 mark_insn_zext(env, &parent_reg[i]); 7310 } 7311 7312 /* Propagate stack slots. */ 7313 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 7314 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 7315 parent_reg = &parent->stack[i].spilled_ptr; 7316 state_reg = &state->stack[i].spilled_ptr; 7317 err = propagate_liveness_reg(env, state_reg, 7318 parent_reg); 7319 if (err < 0) 7320 return err; 7321 } 7322 } 7323 return 0; 7324 } 7325 7326 /* find precise scalars in the previous equivalent state and 7327 * propagate them into the current state 7328 */ 7329 static int propagate_precision(struct bpf_verifier_env *env, 7330 const struct bpf_verifier_state *old) 7331 { 7332 struct bpf_reg_state *state_reg; 7333 struct bpf_func_state *state; 7334 int i, err = 0; 7335 7336 state = old->frame[old->curframe]; 7337 state_reg = state->regs; 7338 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 7339 if (state_reg->type != SCALAR_VALUE || 7340 !state_reg->precise) 7341 continue; 7342 if (env->log.level & BPF_LOG_LEVEL2) 7343 verbose(env, "propagating r%d\n", i); 7344 err = mark_chain_precision(env, i); 7345 if (err < 0) 7346 return err; 7347 } 7348 7349 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 7350 if (state->stack[i].slot_type[0] != STACK_SPILL) 7351 continue; 7352 state_reg = &state->stack[i].spilled_ptr; 7353 if (state_reg->type != SCALAR_VALUE || 7354 !state_reg->precise) 7355 continue; 7356 if (env->log.level & BPF_LOG_LEVEL2) 7357 verbose(env, "propagating fp%d\n", 7358 (-i - 1) * BPF_REG_SIZE); 7359 err = mark_chain_precision_stack(env, i); 7360 if (err < 0) 7361 return err; 7362 } 7363 return 0; 7364 } 7365 7366 static bool states_maybe_looping(struct bpf_verifier_state *old, 7367 struct bpf_verifier_state *cur) 7368 { 7369 struct bpf_func_state *fold, *fcur; 7370 int i, fr = cur->curframe; 7371 7372 if (old->curframe != fr) 7373 return false; 7374 7375 fold = old->frame[fr]; 7376 fcur = cur->frame[fr]; 7377 for (i = 0; i < MAX_BPF_REG; i++) 7378 if (memcmp(&fold->regs[i], &fcur->regs[i], 7379 offsetof(struct bpf_reg_state, parent))) 7380 return false; 7381 return true; 7382 } 7383 7384 7385 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 7386 { 7387 struct bpf_verifier_state_list *new_sl; 7388 struct bpf_verifier_state_list *sl, **pprev; 7389 struct bpf_verifier_state *cur = env->cur_state, *new; 7390 int i, j, err, states_cnt = 0; 7391 bool add_new_state = env->test_state_freq ? true : false; 7392 7393 cur->last_insn_idx = env->prev_insn_idx; 7394 if (!env->insn_aux_data[insn_idx].prune_point) 7395 /* this 'insn_idx' instruction wasn't marked, so we will not 7396 * be doing state search here 7397 */ 7398 return 0; 7399 7400 /* bpf progs typically have pruning point every 4 instructions 7401 * http://vger.kernel.org/bpfconf2019.html#session-1 7402 * Do not add new state for future pruning if the verifier hasn't seen 7403 * at least 2 jumps and at least 8 instructions. 7404 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 7405 * In tests that amounts to up to 50% reduction into total verifier 7406 * memory consumption and 20% verifier time speedup. 7407 */ 7408 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 7409 env->insn_processed - env->prev_insn_processed >= 8) 7410 add_new_state = true; 7411 7412 pprev = explored_state(env, insn_idx); 7413 sl = *pprev; 7414 7415 clean_live_states(env, insn_idx, cur); 7416 7417 while (sl) { 7418 states_cnt++; 7419 if (sl->state.insn_idx != insn_idx) 7420 goto next; 7421 if (sl->state.branches) { 7422 if (states_maybe_looping(&sl->state, cur) && 7423 states_equal(env, &sl->state, cur)) { 7424 verbose_linfo(env, insn_idx, "; "); 7425 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 7426 return -EINVAL; 7427 } 7428 /* if the verifier is processing a loop, avoid adding new state 7429 * too often, since different loop iterations have distinct 7430 * states and may not help future pruning. 7431 * This threshold shouldn't be too low to make sure that 7432 * a loop with large bound will be rejected quickly. 7433 * The most abusive loop will be: 7434 * r1 += 1 7435 * if r1 < 1000000 goto pc-2 7436 * 1M insn_procssed limit / 100 == 10k peak states. 7437 * This threshold shouldn't be too high either, since states 7438 * at the end of the loop are likely to be useful in pruning. 7439 */ 7440 if (env->jmps_processed - env->prev_jmps_processed < 20 && 7441 env->insn_processed - env->prev_insn_processed < 100) 7442 add_new_state = false; 7443 goto miss; 7444 } 7445 if (states_equal(env, &sl->state, cur)) { 7446 sl->hit_cnt++; 7447 /* reached equivalent register/stack state, 7448 * prune the search. 7449 * Registers read by the continuation are read by us. 7450 * If we have any write marks in env->cur_state, they 7451 * will prevent corresponding reads in the continuation 7452 * from reaching our parent (an explored_state). Our 7453 * own state will get the read marks recorded, but 7454 * they'll be immediately forgotten as we're pruning 7455 * this state and will pop a new one. 7456 */ 7457 err = propagate_liveness(env, &sl->state, cur); 7458 7459 /* if previous state reached the exit with precision and 7460 * current state is equivalent to it (except precsion marks) 7461 * the precision needs to be propagated back in 7462 * the current state. 7463 */ 7464 err = err ? : push_jmp_history(env, cur); 7465 err = err ? : propagate_precision(env, &sl->state); 7466 if (err) 7467 return err; 7468 return 1; 7469 } 7470 miss: 7471 /* when new state is not going to be added do not increase miss count. 7472 * Otherwise several loop iterations will remove the state 7473 * recorded earlier. The goal of these heuristics is to have 7474 * states from some iterations of the loop (some in the beginning 7475 * and some at the end) to help pruning. 7476 */ 7477 if (add_new_state) 7478 sl->miss_cnt++; 7479 /* heuristic to determine whether this state is beneficial 7480 * to keep checking from state equivalence point of view. 7481 * Higher numbers increase max_states_per_insn and verification time, 7482 * but do not meaningfully decrease insn_processed. 7483 */ 7484 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) { 7485 /* the state is unlikely to be useful. Remove it to 7486 * speed up verification 7487 */ 7488 *pprev = sl->next; 7489 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) { 7490 u32 br = sl->state.branches; 7491 7492 WARN_ONCE(br, 7493 "BUG live_done but branches_to_explore %d\n", 7494 br); 7495 free_verifier_state(&sl->state, false); 7496 kfree(sl); 7497 env->peak_states--; 7498 } else { 7499 /* cannot free this state, since parentage chain may 7500 * walk it later. Add it for free_list instead to 7501 * be freed at the end of verification 7502 */ 7503 sl->next = env->free_list; 7504 env->free_list = sl; 7505 } 7506 sl = *pprev; 7507 continue; 7508 } 7509 next: 7510 pprev = &sl->next; 7511 sl = *pprev; 7512 } 7513 7514 if (env->max_states_per_insn < states_cnt) 7515 env->max_states_per_insn = states_cnt; 7516 7517 if (!env->allow_ptr_leaks && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 7518 return push_jmp_history(env, cur); 7519 7520 if (!add_new_state) 7521 return push_jmp_history(env, cur); 7522 7523 /* There were no equivalent states, remember the current one. 7524 * Technically the current state is not proven to be safe yet, 7525 * but it will either reach outer most bpf_exit (which means it's safe) 7526 * or it will be rejected. When there are no loops the verifier won't be 7527 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 7528 * again on the way to bpf_exit. 7529 * When looping the sl->state.branches will be > 0 and this state 7530 * will not be considered for equivalence until branches == 0. 7531 */ 7532 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 7533 if (!new_sl) 7534 return -ENOMEM; 7535 env->total_states++; 7536 env->peak_states++; 7537 env->prev_jmps_processed = env->jmps_processed; 7538 env->prev_insn_processed = env->insn_processed; 7539 7540 /* add new state to the head of linked list */ 7541 new = &new_sl->state; 7542 err = copy_verifier_state(new, cur); 7543 if (err) { 7544 free_verifier_state(new, false); 7545 kfree(new_sl); 7546 return err; 7547 } 7548 new->insn_idx = insn_idx; 7549 WARN_ONCE(new->branches != 1, 7550 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 7551 7552 cur->parent = new; 7553 cur->first_insn_idx = insn_idx; 7554 clear_jmp_history(cur); 7555 new_sl->next = *explored_state(env, insn_idx); 7556 *explored_state(env, insn_idx) = new_sl; 7557 /* connect new state to parentage chain. Current frame needs all 7558 * registers connected. Only r6 - r9 of the callers are alive (pushed 7559 * to the stack implicitly by JITs) so in callers' frames connect just 7560 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 7561 * the state of the call instruction (with WRITTEN set), and r0 comes 7562 * from callee with its full parentage chain, anyway. 7563 */ 7564 /* clear write marks in current state: the writes we did are not writes 7565 * our child did, so they don't screen off its reads from us. 7566 * (There are no read marks in current state, because reads always mark 7567 * their parent and current state never has children yet. Only 7568 * explored_states can get read marks.) 7569 */ 7570 for (j = 0; j <= cur->curframe; j++) { 7571 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 7572 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 7573 for (i = 0; i < BPF_REG_FP; i++) 7574 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 7575 } 7576 7577 /* all stack frames are accessible from callee, clear them all */ 7578 for (j = 0; j <= cur->curframe; j++) { 7579 struct bpf_func_state *frame = cur->frame[j]; 7580 struct bpf_func_state *newframe = new->frame[j]; 7581 7582 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 7583 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 7584 frame->stack[i].spilled_ptr.parent = 7585 &newframe->stack[i].spilled_ptr; 7586 } 7587 } 7588 return 0; 7589 } 7590 7591 /* Return true if it's OK to have the same insn return a different type. */ 7592 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 7593 { 7594 switch (type) { 7595 case PTR_TO_CTX: 7596 case PTR_TO_SOCKET: 7597 case PTR_TO_SOCKET_OR_NULL: 7598 case PTR_TO_SOCK_COMMON: 7599 case PTR_TO_SOCK_COMMON_OR_NULL: 7600 case PTR_TO_TCP_SOCK: 7601 case PTR_TO_TCP_SOCK_OR_NULL: 7602 case PTR_TO_XDP_SOCK: 7603 case PTR_TO_BTF_ID: 7604 return false; 7605 default: 7606 return true; 7607 } 7608 } 7609 7610 /* If an instruction was previously used with particular pointer types, then we 7611 * need to be careful to avoid cases such as the below, where it may be ok 7612 * for one branch accessing the pointer, but not ok for the other branch: 7613 * 7614 * R1 = sock_ptr 7615 * goto X; 7616 * ... 7617 * R1 = some_other_valid_ptr; 7618 * goto X; 7619 * ... 7620 * R2 = *(u32 *)(R1 + 0); 7621 */ 7622 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 7623 { 7624 return src != prev && (!reg_type_mismatch_ok(src) || 7625 !reg_type_mismatch_ok(prev)); 7626 } 7627 7628 static int do_check(struct bpf_verifier_env *env) 7629 { 7630 struct bpf_verifier_state *state; 7631 struct bpf_insn *insns = env->prog->insnsi; 7632 struct bpf_reg_state *regs; 7633 int insn_cnt = env->prog->len; 7634 bool do_print_state = false; 7635 int prev_insn_idx = -1; 7636 7637 env->prev_linfo = NULL; 7638 7639 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 7640 if (!state) 7641 return -ENOMEM; 7642 state->curframe = 0; 7643 state->speculative = false; 7644 state->branches = 1; 7645 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 7646 if (!state->frame[0]) { 7647 kfree(state); 7648 return -ENOMEM; 7649 } 7650 env->cur_state = state; 7651 init_func_state(env, state->frame[0], 7652 BPF_MAIN_FUNC /* callsite */, 7653 0 /* frameno */, 7654 0 /* subprogno, zero == main subprog */); 7655 7656 for (;;) { 7657 struct bpf_insn *insn; 7658 u8 class; 7659 int err; 7660 7661 env->prev_insn_idx = prev_insn_idx; 7662 if (env->insn_idx >= insn_cnt) { 7663 verbose(env, "invalid insn idx %d insn_cnt %d\n", 7664 env->insn_idx, insn_cnt); 7665 return -EFAULT; 7666 } 7667 7668 insn = &insns[env->insn_idx]; 7669 class = BPF_CLASS(insn->code); 7670 7671 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 7672 verbose(env, 7673 "BPF program is too large. Processed %d insn\n", 7674 env->insn_processed); 7675 return -E2BIG; 7676 } 7677 7678 err = is_state_visited(env, env->insn_idx); 7679 if (err < 0) 7680 return err; 7681 if (err == 1) { 7682 /* found equivalent state, can prune the search */ 7683 if (env->log.level & BPF_LOG_LEVEL) { 7684 if (do_print_state) 7685 verbose(env, "\nfrom %d to %d%s: safe\n", 7686 env->prev_insn_idx, env->insn_idx, 7687 env->cur_state->speculative ? 7688 " (speculative execution)" : ""); 7689 else 7690 verbose(env, "%d: safe\n", env->insn_idx); 7691 } 7692 goto process_bpf_exit; 7693 } 7694 7695 if (signal_pending(current)) 7696 return -EAGAIN; 7697 7698 if (need_resched()) 7699 cond_resched(); 7700 7701 if (env->log.level & BPF_LOG_LEVEL2 || 7702 (env->log.level & BPF_LOG_LEVEL && do_print_state)) { 7703 if (env->log.level & BPF_LOG_LEVEL2) 7704 verbose(env, "%d:", env->insn_idx); 7705 else 7706 verbose(env, "\nfrom %d to %d%s:", 7707 env->prev_insn_idx, env->insn_idx, 7708 env->cur_state->speculative ? 7709 " (speculative execution)" : ""); 7710 print_verifier_state(env, state->frame[state->curframe]); 7711 do_print_state = false; 7712 } 7713 7714 if (env->log.level & BPF_LOG_LEVEL) { 7715 const struct bpf_insn_cbs cbs = { 7716 .cb_print = verbose, 7717 .private_data = env, 7718 }; 7719 7720 verbose_linfo(env, env->insn_idx, "; "); 7721 verbose(env, "%d: ", env->insn_idx); 7722 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 7723 } 7724 7725 if (bpf_prog_is_dev_bound(env->prog->aux)) { 7726 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 7727 env->prev_insn_idx); 7728 if (err) 7729 return err; 7730 } 7731 7732 regs = cur_regs(env); 7733 env->insn_aux_data[env->insn_idx].seen = true; 7734 prev_insn_idx = env->insn_idx; 7735 7736 if (class == BPF_ALU || class == BPF_ALU64) { 7737 err = check_alu_op(env, insn); 7738 if (err) 7739 return err; 7740 7741 } else if (class == BPF_LDX) { 7742 enum bpf_reg_type *prev_src_type, src_reg_type; 7743 7744 /* check for reserved fields is already done */ 7745 7746 /* check src operand */ 7747 err = check_reg_arg(env, insn->src_reg, SRC_OP); 7748 if (err) 7749 return err; 7750 7751 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 7752 if (err) 7753 return err; 7754 7755 src_reg_type = regs[insn->src_reg].type; 7756 7757 /* check that memory (src_reg + off) is readable, 7758 * the state of dst_reg will be updated by this func 7759 */ 7760 err = check_mem_access(env, env->insn_idx, insn->src_reg, 7761 insn->off, BPF_SIZE(insn->code), 7762 BPF_READ, insn->dst_reg, false); 7763 if (err) 7764 return err; 7765 7766 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type; 7767 7768 if (*prev_src_type == NOT_INIT) { 7769 /* saw a valid insn 7770 * dst_reg = *(u32 *)(src_reg + off) 7771 * save type to validate intersecting paths 7772 */ 7773 *prev_src_type = src_reg_type; 7774 7775 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) { 7776 /* ABuser program is trying to use the same insn 7777 * dst_reg = *(u32*) (src_reg + off) 7778 * with different pointer types: 7779 * src_reg == ctx in one branch and 7780 * src_reg == stack|map in some other branch. 7781 * Reject it. 7782 */ 7783 verbose(env, "same insn cannot be used with different pointers\n"); 7784 return -EINVAL; 7785 } 7786 7787 } else if (class == BPF_STX) { 7788 enum bpf_reg_type *prev_dst_type, dst_reg_type; 7789 7790 if (BPF_MODE(insn->code) == BPF_XADD) { 7791 err = check_xadd(env, env->insn_idx, insn); 7792 if (err) 7793 return err; 7794 env->insn_idx++; 7795 continue; 7796 } 7797 7798 /* check src1 operand */ 7799 err = check_reg_arg(env, insn->src_reg, SRC_OP); 7800 if (err) 7801 return err; 7802 /* check src2 operand */ 7803 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 7804 if (err) 7805 return err; 7806 7807 dst_reg_type = regs[insn->dst_reg].type; 7808 7809 /* check that memory (dst_reg + off) is writeable */ 7810 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 7811 insn->off, BPF_SIZE(insn->code), 7812 BPF_WRITE, insn->src_reg, false); 7813 if (err) 7814 return err; 7815 7816 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type; 7817 7818 if (*prev_dst_type == NOT_INIT) { 7819 *prev_dst_type = dst_reg_type; 7820 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) { 7821 verbose(env, "same insn cannot be used with different pointers\n"); 7822 return -EINVAL; 7823 } 7824 7825 } else if (class == BPF_ST) { 7826 if (BPF_MODE(insn->code) != BPF_MEM || 7827 insn->src_reg != BPF_REG_0) { 7828 verbose(env, "BPF_ST uses reserved fields\n"); 7829 return -EINVAL; 7830 } 7831 /* check src operand */ 7832 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 7833 if (err) 7834 return err; 7835 7836 if (is_ctx_reg(env, insn->dst_reg)) { 7837 verbose(env, "BPF_ST stores into R%d %s is not allowed\n", 7838 insn->dst_reg, 7839 reg_type_str[reg_state(env, insn->dst_reg)->type]); 7840 return -EACCES; 7841 } 7842 7843 /* check that memory (dst_reg + off) is writeable */ 7844 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 7845 insn->off, BPF_SIZE(insn->code), 7846 BPF_WRITE, -1, false); 7847 if (err) 7848 return err; 7849 7850 } else if (class == BPF_JMP || class == BPF_JMP32) { 7851 u8 opcode = BPF_OP(insn->code); 7852 7853 env->jmps_processed++; 7854 if (opcode == BPF_CALL) { 7855 if (BPF_SRC(insn->code) != BPF_K || 7856 insn->off != 0 || 7857 (insn->src_reg != BPF_REG_0 && 7858 insn->src_reg != BPF_PSEUDO_CALL) || 7859 insn->dst_reg != BPF_REG_0 || 7860 class == BPF_JMP32) { 7861 verbose(env, "BPF_CALL uses reserved fields\n"); 7862 return -EINVAL; 7863 } 7864 7865 if (env->cur_state->active_spin_lock && 7866 (insn->src_reg == BPF_PSEUDO_CALL || 7867 insn->imm != BPF_FUNC_spin_unlock)) { 7868 verbose(env, "function calls are not allowed while holding a lock\n"); 7869 return -EINVAL; 7870 } 7871 if (insn->src_reg == BPF_PSEUDO_CALL) 7872 err = check_func_call(env, insn, &env->insn_idx); 7873 else 7874 err = check_helper_call(env, insn->imm, env->insn_idx); 7875 if (err) 7876 return err; 7877 7878 } else if (opcode == BPF_JA) { 7879 if (BPF_SRC(insn->code) != BPF_K || 7880 insn->imm != 0 || 7881 insn->src_reg != BPF_REG_0 || 7882 insn->dst_reg != BPF_REG_0 || 7883 class == BPF_JMP32) { 7884 verbose(env, "BPF_JA uses reserved fields\n"); 7885 return -EINVAL; 7886 } 7887 7888 env->insn_idx += insn->off + 1; 7889 continue; 7890 7891 } else if (opcode == BPF_EXIT) { 7892 if (BPF_SRC(insn->code) != BPF_K || 7893 insn->imm != 0 || 7894 insn->src_reg != BPF_REG_0 || 7895 insn->dst_reg != BPF_REG_0 || 7896 class == BPF_JMP32) { 7897 verbose(env, "BPF_EXIT uses reserved fields\n"); 7898 return -EINVAL; 7899 } 7900 7901 if (env->cur_state->active_spin_lock) { 7902 verbose(env, "bpf_spin_unlock is missing\n"); 7903 return -EINVAL; 7904 } 7905 7906 if (state->curframe) { 7907 /* exit from nested function */ 7908 err = prepare_func_exit(env, &env->insn_idx); 7909 if (err) 7910 return err; 7911 do_print_state = true; 7912 continue; 7913 } 7914 7915 err = check_reference_leak(env); 7916 if (err) 7917 return err; 7918 7919 /* eBPF calling convetion is such that R0 is used 7920 * to return the value from eBPF program. 7921 * Make sure that it's readable at this time 7922 * of bpf_exit, which means that program wrote 7923 * something into it earlier 7924 */ 7925 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 7926 if (err) 7927 return err; 7928 7929 if (is_pointer_value(env, BPF_REG_0)) { 7930 verbose(env, "R0 leaks addr as return value\n"); 7931 return -EACCES; 7932 } 7933 7934 err = check_return_code(env); 7935 if (err) 7936 return err; 7937 process_bpf_exit: 7938 update_branch_counts(env, env->cur_state); 7939 err = pop_stack(env, &prev_insn_idx, 7940 &env->insn_idx); 7941 if (err < 0) { 7942 if (err != -ENOENT) 7943 return err; 7944 break; 7945 } else { 7946 do_print_state = true; 7947 continue; 7948 } 7949 } else { 7950 err = check_cond_jmp_op(env, insn, &env->insn_idx); 7951 if (err) 7952 return err; 7953 } 7954 } else if (class == BPF_LD) { 7955 u8 mode = BPF_MODE(insn->code); 7956 7957 if (mode == BPF_ABS || mode == BPF_IND) { 7958 err = check_ld_abs(env, insn); 7959 if (err) 7960 return err; 7961 7962 } else if (mode == BPF_IMM) { 7963 err = check_ld_imm(env, insn); 7964 if (err) 7965 return err; 7966 7967 env->insn_idx++; 7968 env->insn_aux_data[env->insn_idx].seen = true; 7969 } else { 7970 verbose(env, "invalid BPF_LD mode\n"); 7971 return -EINVAL; 7972 } 7973 } else { 7974 verbose(env, "unknown insn class %d\n", class); 7975 return -EINVAL; 7976 } 7977 7978 env->insn_idx++; 7979 } 7980 7981 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 7982 return 0; 7983 } 7984 7985 static int check_map_prealloc(struct bpf_map *map) 7986 { 7987 return (map->map_type != BPF_MAP_TYPE_HASH && 7988 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 7989 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) || 7990 !(map->map_flags & BPF_F_NO_PREALLOC); 7991 } 7992 7993 static bool is_tracing_prog_type(enum bpf_prog_type type) 7994 { 7995 switch (type) { 7996 case BPF_PROG_TYPE_KPROBE: 7997 case BPF_PROG_TYPE_TRACEPOINT: 7998 case BPF_PROG_TYPE_PERF_EVENT: 7999 case BPF_PROG_TYPE_RAW_TRACEPOINT: 8000 return true; 8001 default: 8002 return false; 8003 } 8004 } 8005 8006 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 8007 struct bpf_map *map, 8008 struct bpf_prog *prog) 8009 8010 { 8011 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use 8012 * preallocated hash maps, since doing memory allocation 8013 * in overflow_handler can crash depending on where nmi got 8014 * triggered. 8015 */ 8016 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) { 8017 if (!check_map_prealloc(map)) { 8018 verbose(env, "perf_event programs can only use preallocated hash map\n"); 8019 return -EINVAL; 8020 } 8021 if (map->inner_map_meta && 8022 !check_map_prealloc(map->inner_map_meta)) { 8023 verbose(env, "perf_event programs can only use preallocated inner hash map\n"); 8024 return -EINVAL; 8025 } 8026 } 8027 8028 if ((is_tracing_prog_type(prog->type) || 8029 prog->type == BPF_PROG_TYPE_SOCKET_FILTER) && 8030 map_value_has_spin_lock(map)) { 8031 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 8032 return -EINVAL; 8033 } 8034 8035 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) && 8036 !bpf_offload_prog_map_match(prog, map)) { 8037 verbose(env, "offload device mismatch between prog and map\n"); 8038 return -EINVAL; 8039 } 8040 8041 return 0; 8042 } 8043 8044 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 8045 { 8046 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 8047 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 8048 } 8049 8050 /* look for pseudo eBPF instructions that access map FDs and 8051 * replace them with actual map pointers 8052 */ 8053 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env) 8054 { 8055 struct bpf_insn *insn = env->prog->insnsi; 8056 int insn_cnt = env->prog->len; 8057 int i, j, err; 8058 8059 err = bpf_prog_calc_tag(env->prog); 8060 if (err) 8061 return err; 8062 8063 for (i = 0; i < insn_cnt; i++, insn++) { 8064 if (BPF_CLASS(insn->code) == BPF_LDX && 8065 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 8066 verbose(env, "BPF_LDX uses reserved fields\n"); 8067 return -EINVAL; 8068 } 8069 8070 if (BPF_CLASS(insn->code) == BPF_STX && 8071 ((BPF_MODE(insn->code) != BPF_MEM && 8072 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) { 8073 verbose(env, "BPF_STX uses reserved fields\n"); 8074 return -EINVAL; 8075 } 8076 8077 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 8078 struct bpf_insn_aux_data *aux; 8079 struct bpf_map *map; 8080 struct fd f; 8081 u64 addr; 8082 8083 if (i == insn_cnt - 1 || insn[1].code != 0 || 8084 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 8085 insn[1].off != 0) { 8086 verbose(env, "invalid bpf_ld_imm64 insn\n"); 8087 return -EINVAL; 8088 } 8089 8090 if (insn[0].src_reg == 0) 8091 /* valid generic load 64-bit imm */ 8092 goto next_insn; 8093 8094 /* In final convert_pseudo_ld_imm64() step, this is 8095 * converted into regular 64-bit imm load insn. 8096 */ 8097 if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD && 8098 insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) || 8099 (insn[0].src_reg == BPF_PSEUDO_MAP_FD && 8100 insn[1].imm != 0)) { 8101 verbose(env, 8102 "unrecognized bpf_ld_imm64 insn\n"); 8103 return -EINVAL; 8104 } 8105 8106 f = fdget(insn[0].imm); 8107 map = __bpf_map_get(f); 8108 if (IS_ERR(map)) { 8109 verbose(env, "fd %d is not pointing to valid bpf_map\n", 8110 insn[0].imm); 8111 return PTR_ERR(map); 8112 } 8113 8114 err = check_map_prog_compatibility(env, map, env->prog); 8115 if (err) { 8116 fdput(f); 8117 return err; 8118 } 8119 8120 aux = &env->insn_aux_data[i]; 8121 if (insn->src_reg == BPF_PSEUDO_MAP_FD) { 8122 addr = (unsigned long)map; 8123 } else { 8124 u32 off = insn[1].imm; 8125 8126 if (off >= BPF_MAX_VAR_OFF) { 8127 verbose(env, "direct value offset of %u is not allowed\n", off); 8128 fdput(f); 8129 return -EINVAL; 8130 } 8131 8132 if (!map->ops->map_direct_value_addr) { 8133 verbose(env, "no direct value access support for this map type\n"); 8134 fdput(f); 8135 return -EINVAL; 8136 } 8137 8138 err = map->ops->map_direct_value_addr(map, &addr, off); 8139 if (err) { 8140 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 8141 map->value_size, off); 8142 fdput(f); 8143 return err; 8144 } 8145 8146 aux->map_off = off; 8147 addr += off; 8148 } 8149 8150 insn[0].imm = (u32)addr; 8151 insn[1].imm = addr >> 32; 8152 8153 /* check whether we recorded this map already */ 8154 for (j = 0; j < env->used_map_cnt; j++) { 8155 if (env->used_maps[j] == map) { 8156 aux->map_index = j; 8157 fdput(f); 8158 goto next_insn; 8159 } 8160 } 8161 8162 if (env->used_map_cnt >= MAX_USED_MAPS) { 8163 fdput(f); 8164 return -E2BIG; 8165 } 8166 8167 /* hold the map. If the program is rejected by verifier, 8168 * the map will be released by release_maps() or it 8169 * will be used by the valid program until it's unloaded 8170 * and all maps are released in free_used_maps() 8171 */ 8172 map = bpf_map_inc(map, false); 8173 if (IS_ERR(map)) { 8174 fdput(f); 8175 return PTR_ERR(map); 8176 } 8177 8178 aux->map_index = env->used_map_cnt; 8179 env->used_maps[env->used_map_cnt++] = map; 8180 8181 if (bpf_map_is_cgroup_storage(map) && 8182 bpf_cgroup_storage_assign(env->prog, map)) { 8183 verbose(env, "only one cgroup storage of each type is allowed\n"); 8184 fdput(f); 8185 return -EBUSY; 8186 } 8187 8188 fdput(f); 8189 next_insn: 8190 insn++; 8191 i++; 8192 continue; 8193 } 8194 8195 /* Basic sanity check before we invest more work here. */ 8196 if (!bpf_opcode_in_insntable(insn->code)) { 8197 verbose(env, "unknown opcode %02x\n", insn->code); 8198 return -EINVAL; 8199 } 8200 } 8201 8202 /* now all pseudo BPF_LD_IMM64 instructions load valid 8203 * 'struct bpf_map *' into a register instead of user map_fd. 8204 * These pointers will be used later by verifier to validate map access. 8205 */ 8206 return 0; 8207 } 8208 8209 /* drop refcnt of maps used by the rejected program */ 8210 static void release_maps(struct bpf_verifier_env *env) 8211 { 8212 enum bpf_cgroup_storage_type stype; 8213 int i; 8214 8215 for_each_cgroup_storage_type(stype) { 8216 if (!env->prog->aux->cgroup_storage[stype]) 8217 continue; 8218 bpf_cgroup_storage_release(env->prog, 8219 env->prog->aux->cgroup_storage[stype]); 8220 } 8221 8222 for (i = 0; i < env->used_map_cnt; i++) 8223 bpf_map_put(env->used_maps[i]); 8224 } 8225 8226 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 8227 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 8228 { 8229 struct bpf_insn *insn = env->prog->insnsi; 8230 int insn_cnt = env->prog->len; 8231 int i; 8232 8233 for (i = 0; i < insn_cnt; i++, insn++) 8234 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW)) 8235 insn->src_reg = 0; 8236 } 8237 8238 /* single env->prog->insni[off] instruction was replaced with the range 8239 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 8240 * [0, off) and [off, end) to new locations, so the patched range stays zero 8241 */ 8242 static int adjust_insn_aux_data(struct bpf_verifier_env *env, 8243 struct bpf_prog *new_prog, u32 off, u32 cnt) 8244 { 8245 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data; 8246 struct bpf_insn *insn = new_prog->insnsi; 8247 u32 prog_len; 8248 int i; 8249 8250 /* aux info at OFF always needs adjustment, no matter fast path 8251 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 8252 * original insn at old prog. 8253 */ 8254 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 8255 8256 if (cnt == 1) 8257 return 0; 8258 prog_len = new_prog->len; 8259 new_data = vzalloc(array_size(prog_len, 8260 sizeof(struct bpf_insn_aux_data))); 8261 if (!new_data) 8262 return -ENOMEM; 8263 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 8264 memcpy(new_data + off + cnt - 1, old_data + off, 8265 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 8266 for (i = off; i < off + cnt - 1; i++) { 8267 new_data[i].seen = true; 8268 new_data[i].zext_dst = insn_has_def32(env, insn + i); 8269 } 8270 env->insn_aux_data = new_data; 8271 vfree(old_data); 8272 return 0; 8273 } 8274 8275 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 8276 { 8277 int i; 8278 8279 if (len == 1) 8280 return; 8281 /* NOTE: fake 'exit' subprog should be updated as well. */ 8282 for (i = 0; i <= env->subprog_cnt; i++) { 8283 if (env->subprog_info[i].start <= off) 8284 continue; 8285 env->subprog_info[i].start += len - 1; 8286 } 8287 } 8288 8289 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 8290 const struct bpf_insn *patch, u32 len) 8291 { 8292 struct bpf_prog *new_prog; 8293 8294 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 8295 if (IS_ERR(new_prog)) { 8296 if (PTR_ERR(new_prog) == -ERANGE) 8297 verbose(env, 8298 "insn %d cannot be patched due to 16-bit range\n", 8299 env->insn_aux_data[off].orig_idx); 8300 return NULL; 8301 } 8302 if (adjust_insn_aux_data(env, new_prog, off, len)) 8303 return NULL; 8304 adjust_subprog_starts(env, off, len); 8305 return new_prog; 8306 } 8307 8308 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 8309 u32 off, u32 cnt) 8310 { 8311 int i, j; 8312 8313 /* find first prog starting at or after off (first to remove) */ 8314 for (i = 0; i < env->subprog_cnt; i++) 8315 if (env->subprog_info[i].start >= off) 8316 break; 8317 /* find first prog starting at or after off + cnt (first to stay) */ 8318 for (j = i; j < env->subprog_cnt; j++) 8319 if (env->subprog_info[j].start >= off + cnt) 8320 break; 8321 /* if j doesn't start exactly at off + cnt, we are just removing 8322 * the front of previous prog 8323 */ 8324 if (env->subprog_info[j].start != off + cnt) 8325 j--; 8326 8327 if (j > i) { 8328 struct bpf_prog_aux *aux = env->prog->aux; 8329 int move; 8330 8331 /* move fake 'exit' subprog as well */ 8332 move = env->subprog_cnt + 1 - j; 8333 8334 memmove(env->subprog_info + i, 8335 env->subprog_info + j, 8336 sizeof(*env->subprog_info) * move); 8337 env->subprog_cnt -= j - i; 8338 8339 /* remove func_info */ 8340 if (aux->func_info) { 8341 move = aux->func_info_cnt - j; 8342 8343 memmove(aux->func_info + i, 8344 aux->func_info + j, 8345 sizeof(*aux->func_info) * move); 8346 aux->func_info_cnt -= j - i; 8347 /* func_info->insn_off is set after all code rewrites, 8348 * in adjust_btf_func() - no need to adjust 8349 */ 8350 } 8351 } else { 8352 /* convert i from "first prog to remove" to "first to adjust" */ 8353 if (env->subprog_info[i].start == off) 8354 i++; 8355 } 8356 8357 /* update fake 'exit' subprog as well */ 8358 for (; i <= env->subprog_cnt; i++) 8359 env->subprog_info[i].start -= cnt; 8360 8361 return 0; 8362 } 8363 8364 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 8365 u32 cnt) 8366 { 8367 struct bpf_prog *prog = env->prog; 8368 u32 i, l_off, l_cnt, nr_linfo; 8369 struct bpf_line_info *linfo; 8370 8371 nr_linfo = prog->aux->nr_linfo; 8372 if (!nr_linfo) 8373 return 0; 8374 8375 linfo = prog->aux->linfo; 8376 8377 /* find first line info to remove, count lines to be removed */ 8378 for (i = 0; i < nr_linfo; i++) 8379 if (linfo[i].insn_off >= off) 8380 break; 8381 8382 l_off = i; 8383 l_cnt = 0; 8384 for (; i < nr_linfo; i++) 8385 if (linfo[i].insn_off < off + cnt) 8386 l_cnt++; 8387 else 8388 break; 8389 8390 /* First live insn doesn't match first live linfo, it needs to "inherit" 8391 * last removed linfo. prog is already modified, so prog->len == off 8392 * means no live instructions after (tail of the program was removed). 8393 */ 8394 if (prog->len != off && l_cnt && 8395 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 8396 l_cnt--; 8397 linfo[--i].insn_off = off + cnt; 8398 } 8399 8400 /* remove the line info which refer to the removed instructions */ 8401 if (l_cnt) { 8402 memmove(linfo + l_off, linfo + i, 8403 sizeof(*linfo) * (nr_linfo - i)); 8404 8405 prog->aux->nr_linfo -= l_cnt; 8406 nr_linfo = prog->aux->nr_linfo; 8407 } 8408 8409 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 8410 for (i = l_off; i < nr_linfo; i++) 8411 linfo[i].insn_off -= cnt; 8412 8413 /* fix up all subprogs (incl. 'exit') which start >= off */ 8414 for (i = 0; i <= env->subprog_cnt; i++) 8415 if (env->subprog_info[i].linfo_idx > l_off) { 8416 /* program may have started in the removed region but 8417 * may not be fully removed 8418 */ 8419 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 8420 env->subprog_info[i].linfo_idx -= l_cnt; 8421 else 8422 env->subprog_info[i].linfo_idx = l_off; 8423 } 8424 8425 return 0; 8426 } 8427 8428 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 8429 { 8430 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 8431 unsigned int orig_prog_len = env->prog->len; 8432 int err; 8433 8434 if (bpf_prog_is_dev_bound(env->prog->aux)) 8435 bpf_prog_offload_remove_insns(env, off, cnt); 8436 8437 err = bpf_remove_insns(env->prog, off, cnt); 8438 if (err) 8439 return err; 8440 8441 err = adjust_subprog_starts_after_remove(env, off, cnt); 8442 if (err) 8443 return err; 8444 8445 err = bpf_adj_linfo_after_remove(env, off, cnt); 8446 if (err) 8447 return err; 8448 8449 memmove(aux_data + off, aux_data + off + cnt, 8450 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 8451 8452 return 0; 8453 } 8454 8455 /* The verifier does more data flow analysis than llvm and will not 8456 * explore branches that are dead at run time. Malicious programs can 8457 * have dead code too. Therefore replace all dead at-run-time code 8458 * with 'ja -1'. 8459 * 8460 * Just nops are not optimal, e.g. if they would sit at the end of the 8461 * program and through another bug we would manage to jump there, then 8462 * we'd execute beyond program memory otherwise. Returning exception 8463 * code also wouldn't work since we can have subprogs where the dead 8464 * code could be located. 8465 */ 8466 static void sanitize_dead_code(struct bpf_verifier_env *env) 8467 { 8468 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 8469 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 8470 struct bpf_insn *insn = env->prog->insnsi; 8471 const int insn_cnt = env->prog->len; 8472 int i; 8473 8474 for (i = 0; i < insn_cnt; i++) { 8475 if (aux_data[i].seen) 8476 continue; 8477 memcpy(insn + i, &trap, sizeof(trap)); 8478 } 8479 } 8480 8481 static bool insn_is_cond_jump(u8 code) 8482 { 8483 u8 op; 8484 8485 if (BPF_CLASS(code) == BPF_JMP32) 8486 return true; 8487 8488 if (BPF_CLASS(code) != BPF_JMP) 8489 return false; 8490 8491 op = BPF_OP(code); 8492 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 8493 } 8494 8495 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 8496 { 8497 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 8498 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 8499 struct bpf_insn *insn = env->prog->insnsi; 8500 const int insn_cnt = env->prog->len; 8501 int i; 8502 8503 for (i = 0; i < insn_cnt; i++, insn++) { 8504 if (!insn_is_cond_jump(insn->code)) 8505 continue; 8506 8507 if (!aux_data[i + 1].seen) 8508 ja.off = insn->off; 8509 else if (!aux_data[i + 1 + insn->off].seen) 8510 ja.off = 0; 8511 else 8512 continue; 8513 8514 if (bpf_prog_is_dev_bound(env->prog->aux)) 8515 bpf_prog_offload_replace_insn(env, i, &ja); 8516 8517 memcpy(insn, &ja, sizeof(ja)); 8518 } 8519 } 8520 8521 static int opt_remove_dead_code(struct bpf_verifier_env *env) 8522 { 8523 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 8524 int insn_cnt = env->prog->len; 8525 int i, err; 8526 8527 for (i = 0; i < insn_cnt; i++) { 8528 int j; 8529 8530 j = 0; 8531 while (i + j < insn_cnt && !aux_data[i + j].seen) 8532 j++; 8533 if (!j) 8534 continue; 8535 8536 err = verifier_remove_insns(env, i, j); 8537 if (err) 8538 return err; 8539 insn_cnt = env->prog->len; 8540 } 8541 8542 return 0; 8543 } 8544 8545 static int opt_remove_nops(struct bpf_verifier_env *env) 8546 { 8547 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 8548 struct bpf_insn *insn = env->prog->insnsi; 8549 int insn_cnt = env->prog->len; 8550 int i, err; 8551 8552 for (i = 0; i < insn_cnt; i++) { 8553 if (memcmp(&insn[i], &ja, sizeof(ja))) 8554 continue; 8555 8556 err = verifier_remove_insns(env, i, 1); 8557 if (err) 8558 return err; 8559 insn_cnt--; 8560 i--; 8561 } 8562 8563 return 0; 8564 } 8565 8566 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 8567 const union bpf_attr *attr) 8568 { 8569 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 8570 struct bpf_insn_aux_data *aux = env->insn_aux_data; 8571 int i, patch_len, delta = 0, len = env->prog->len; 8572 struct bpf_insn *insns = env->prog->insnsi; 8573 struct bpf_prog *new_prog; 8574 bool rnd_hi32; 8575 8576 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 8577 zext_patch[1] = BPF_ZEXT_REG(0); 8578 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 8579 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 8580 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 8581 for (i = 0; i < len; i++) { 8582 int adj_idx = i + delta; 8583 struct bpf_insn insn; 8584 8585 insn = insns[adj_idx]; 8586 if (!aux[adj_idx].zext_dst) { 8587 u8 code, class; 8588 u32 imm_rnd; 8589 8590 if (!rnd_hi32) 8591 continue; 8592 8593 code = insn.code; 8594 class = BPF_CLASS(code); 8595 if (insn_no_def(&insn)) 8596 continue; 8597 8598 /* NOTE: arg "reg" (the fourth one) is only used for 8599 * BPF_STX which has been ruled out in above 8600 * check, it is safe to pass NULL here. 8601 */ 8602 if (is_reg64(env, &insn, insn.dst_reg, NULL, DST_OP)) { 8603 if (class == BPF_LD && 8604 BPF_MODE(code) == BPF_IMM) 8605 i++; 8606 continue; 8607 } 8608 8609 /* ctx load could be transformed into wider load. */ 8610 if (class == BPF_LDX && 8611 aux[adj_idx].ptr_type == PTR_TO_CTX) 8612 continue; 8613 8614 imm_rnd = get_random_int(); 8615 rnd_hi32_patch[0] = insn; 8616 rnd_hi32_patch[1].imm = imm_rnd; 8617 rnd_hi32_patch[3].dst_reg = insn.dst_reg; 8618 patch = rnd_hi32_patch; 8619 patch_len = 4; 8620 goto apply_patch_buffer; 8621 } 8622 8623 if (!bpf_jit_needs_zext()) 8624 continue; 8625 8626 zext_patch[0] = insn; 8627 zext_patch[1].dst_reg = insn.dst_reg; 8628 zext_patch[1].src_reg = insn.dst_reg; 8629 patch = zext_patch; 8630 patch_len = 2; 8631 apply_patch_buffer: 8632 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 8633 if (!new_prog) 8634 return -ENOMEM; 8635 env->prog = new_prog; 8636 insns = new_prog->insnsi; 8637 aux = env->insn_aux_data; 8638 delta += patch_len - 1; 8639 } 8640 8641 return 0; 8642 } 8643 8644 /* convert load instructions that access fields of a context type into a 8645 * sequence of instructions that access fields of the underlying structure: 8646 * struct __sk_buff -> struct sk_buff 8647 * struct bpf_sock_ops -> struct sock 8648 */ 8649 static int convert_ctx_accesses(struct bpf_verifier_env *env) 8650 { 8651 const struct bpf_verifier_ops *ops = env->ops; 8652 int i, cnt, size, ctx_field_size, delta = 0; 8653 const int insn_cnt = env->prog->len; 8654 struct bpf_insn insn_buf[16], *insn; 8655 u32 target_size, size_default, off; 8656 struct bpf_prog *new_prog; 8657 enum bpf_access_type type; 8658 bool is_narrower_load; 8659 8660 if (ops->gen_prologue || env->seen_direct_write) { 8661 if (!ops->gen_prologue) { 8662 verbose(env, "bpf verifier is misconfigured\n"); 8663 return -EINVAL; 8664 } 8665 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 8666 env->prog); 8667 if (cnt >= ARRAY_SIZE(insn_buf)) { 8668 verbose(env, "bpf verifier is misconfigured\n"); 8669 return -EINVAL; 8670 } else if (cnt) { 8671 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 8672 if (!new_prog) 8673 return -ENOMEM; 8674 8675 env->prog = new_prog; 8676 delta += cnt - 1; 8677 } 8678 } 8679 8680 if (bpf_prog_is_dev_bound(env->prog->aux)) 8681 return 0; 8682 8683 insn = env->prog->insnsi + delta; 8684 8685 for (i = 0; i < insn_cnt; i++, insn++) { 8686 bpf_convert_ctx_access_t convert_ctx_access; 8687 8688 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 8689 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 8690 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 8691 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) 8692 type = BPF_READ; 8693 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 8694 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 8695 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 8696 insn->code == (BPF_STX | BPF_MEM | BPF_DW)) 8697 type = BPF_WRITE; 8698 else 8699 continue; 8700 8701 if (type == BPF_WRITE && 8702 env->insn_aux_data[i + delta].sanitize_stack_off) { 8703 struct bpf_insn patch[] = { 8704 /* Sanitize suspicious stack slot with zero. 8705 * There are no memory dependencies for this store, 8706 * since it's only using frame pointer and immediate 8707 * constant of zero 8708 */ 8709 BPF_ST_MEM(BPF_DW, BPF_REG_FP, 8710 env->insn_aux_data[i + delta].sanitize_stack_off, 8711 0), 8712 /* the original STX instruction will immediately 8713 * overwrite the same stack slot with appropriate value 8714 */ 8715 *insn, 8716 }; 8717 8718 cnt = ARRAY_SIZE(patch); 8719 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 8720 if (!new_prog) 8721 return -ENOMEM; 8722 8723 delta += cnt - 1; 8724 env->prog = new_prog; 8725 insn = new_prog->insnsi + i + delta; 8726 continue; 8727 } 8728 8729 switch (env->insn_aux_data[i + delta].ptr_type) { 8730 case PTR_TO_CTX: 8731 if (!ops->convert_ctx_access) 8732 continue; 8733 convert_ctx_access = ops->convert_ctx_access; 8734 break; 8735 case PTR_TO_SOCKET: 8736 case PTR_TO_SOCK_COMMON: 8737 convert_ctx_access = bpf_sock_convert_ctx_access; 8738 break; 8739 case PTR_TO_TCP_SOCK: 8740 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 8741 break; 8742 case PTR_TO_XDP_SOCK: 8743 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 8744 break; 8745 case PTR_TO_BTF_ID: 8746 if (type == BPF_WRITE) { 8747 verbose(env, "Writes through BTF pointers are not allowed\n"); 8748 return -EINVAL; 8749 } 8750 insn->code = BPF_LDX | BPF_PROBE_MEM | BPF_SIZE((insn)->code); 8751 env->prog->aux->num_exentries++; 8752 continue; 8753 default: 8754 continue; 8755 } 8756 8757 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 8758 size = BPF_LDST_BYTES(insn); 8759 8760 /* If the read access is a narrower load of the field, 8761 * convert to a 4/8-byte load, to minimum program type specific 8762 * convert_ctx_access changes. If conversion is successful, 8763 * we will apply proper mask to the result. 8764 */ 8765 is_narrower_load = size < ctx_field_size; 8766 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 8767 off = insn->off; 8768 if (is_narrower_load) { 8769 u8 size_code; 8770 8771 if (type == BPF_WRITE) { 8772 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 8773 return -EINVAL; 8774 } 8775 8776 size_code = BPF_H; 8777 if (ctx_field_size == 4) 8778 size_code = BPF_W; 8779 else if (ctx_field_size == 8) 8780 size_code = BPF_DW; 8781 8782 insn->off = off & ~(size_default - 1); 8783 insn->code = BPF_LDX | BPF_MEM | size_code; 8784 } 8785 8786 target_size = 0; 8787 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 8788 &target_size); 8789 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 8790 (ctx_field_size && !target_size)) { 8791 verbose(env, "bpf verifier is misconfigured\n"); 8792 return -EINVAL; 8793 } 8794 8795 if (is_narrower_load && size < target_size) { 8796 u8 shift = bpf_ctx_narrow_access_offset( 8797 off, size, size_default) * 8; 8798 if (ctx_field_size <= 4) { 8799 if (shift) 8800 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 8801 insn->dst_reg, 8802 shift); 8803 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 8804 (1 << size * 8) - 1); 8805 } else { 8806 if (shift) 8807 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 8808 insn->dst_reg, 8809 shift); 8810 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 8811 (1ULL << size * 8) - 1); 8812 } 8813 } 8814 8815 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 8816 if (!new_prog) 8817 return -ENOMEM; 8818 8819 delta += cnt - 1; 8820 8821 /* keep walking new program and skip insns we just inserted */ 8822 env->prog = new_prog; 8823 insn = new_prog->insnsi + i + delta; 8824 } 8825 8826 return 0; 8827 } 8828 8829 static int jit_subprogs(struct bpf_verifier_env *env) 8830 { 8831 struct bpf_prog *prog = env->prog, **func, *tmp; 8832 int i, j, subprog_start, subprog_end = 0, len, subprog; 8833 struct bpf_insn *insn; 8834 void *old_bpf_func; 8835 int err; 8836 8837 if (env->subprog_cnt <= 1) 8838 return 0; 8839 8840 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 8841 if (insn->code != (BPF_JMP | BPF_CALL) || 8842 insn->src_reg != BPF_PSEUDO_CALL) 8843 continue; 8844 /* Upon error here we cannot fall back to interpreter but 8845 * need a hard reject of the program. Thus -EFAULT is 8846 * propagated in any case. 8847 */ 8848 subprog = find_subprog(env, i + insn->imm + 1); 8849 if (subprog < 0) { 8850 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 8851 i + insn->imm + 1); 8852 return -EFAULT; 8853 } 8854 /* temporarily remember subprog id inside insn instead of 8855 * aux_data, since next loop will split up all insns into funcs 8856 */ 8857 insn->off = subprog; 8858 /* remember original imm in case JIT fails and fallback 8859 * to interpreter will be needed 8860 */ 8861 env->insn_aux_data[i].call_imm = insn->imm; 8862 /* point imm to __bpf_call_base+1 from JITs point of view */ 8863 insn->imm = 1; 8864 } 8865 8866 err = bpf_prog_alloc_jited_linfo(prog); 8867 if (err) 8868 goto out_undo_insn; 8869 8870 err = -ENOMEM; 8871 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 8872 if (!func) 8873 goto out_undo_insn; 8874 8875 for (i = 0; i < env->subprog_cnt; i++) { 8876 subprog_start = subprog_end; 8877 subprog_end = env->subprog_info[i + 1].start; 8878 8879 len = subprog_end - subprog_start; 8880 /* BPF_PROG_RUN doesn't call subprogs directly, 8881 * hence main prog stats include the runtime of subprogs. 8882 * subprogs don't have IDs and not reachable via prog_get_next_id 8883 * func[i]->aux->stats will never be accessed and stays NULL 8884 */ 8885 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 8886 if (!func[i]) 8887 goto out_free; 8888 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 8889 len * sizeof(struct bpf_insn)); 8890 func[i]->type = prog->type; 8891 func[i]->len = len; 8892 if (bpf_prog_calc_tag(func[i])) 8893 goto out_free; 8894 func[i]->is_func = 1; 8895 func[i]->aux->func_idx = i; 8896 /* the btf and func_info will be freed only at prog->aux */ 8897 func[i]->aux->btf = prog->aux->btf; 8898 func[i]->aux->func_info = prog->aux->func_info; 8899 8900 /* Use bpf_prog_F_tag to indicate functions in stack traces. 8901 * Long term would need debug info to populate names 8902 */ 8903 func[i]->aux->name[0] = 'F'; 8904 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 8905 func[i]->jit_requested = 1; 8906 func[i]->aux->linfo = prog->aux->linfo; 8907 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 8908 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 8909 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 8910 func[i] = bpf_int_jit_compile(func[i]); 8911 if (!func[i]->jited) { 8912 err = -ENOTSUPP; 8913 goto out_free; 8914 } 8915 cond_resched(); 8916 } 8917 /* at this point all bpf functions were successfully JITed 8918 * now populate all bpf_calls with correct addresses and 8919 * run last pass of JIT 8920 */ 8921 for (i = 0; i < env->subprog_cnt; i++) { 8922 insn = func[i]->insnsi; 8923 for (j = 0; j < func[i]->len; j++, insn++) { 8924 if (insn->code != (BPF_JMP | BPF_CALL) || 8925 insn->src_reg != BPF_PSEUDO_CALL) 8926 continue; 8927 subprog = insn->off; 8928 insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) - 8929 __bpf_call_base; 8930 } 8931 8932 /* we use the aux data to keep a list of the start addresses 8933 * of the JITed images for each function in the program 8934 * 8935 * for some architectures, such as powerpc64, the imm field 8936 * might not be large enough to hold the offset of the start 8937 * address of the callee's JITed image from __bpf_call_base 8938 * 8939 * in such cases, we can lookup the start address of a callee 8940 * by using its subprog id, available from the off field of 8941 * the call instruction, as an index for this list 8942 */ 8943 func[i]->aux->func = func; 8944 func[i]->aux->func_cnt = env->subprog_cnt; 8945 } 8946 for (i = 0; i < env->subprog_cnt; i++) { 8947 old_bpf_func = func[i]->bpf_func; 8948 tmp = bpf_int_jit_compile(func[i]); 8949 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 8950 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 8951 err = -ENOTSUPP; 8952 goto out_free; 8953 } 8954 cond_resched(); 8955 } 8956 8957 /* finally lock prog and jit images for all functions and 8958 * populate kallsysm 8959 */ 8960 for (i = 0; i < env->subprog_cnt; i++) { 8961 bpf_prog_lock_ro(func[i]); 8962 bpf_prog_kallsyms_add(func[i]); 8963 } 8964 8965 /* Last step: make now unused interpreter insns from main 8966 * prog consistent for later dump requests, so they can 8967 * later look the same as if they were interpreted only. 8968 */ 8969 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 8970 if (insn->code != (BPF_JMP | BPF_CALL) || 8971 insn->src_reg != BPF_PSEUDO_CALL) 8972 continue; 8973 insn->off = env->insn_aux_data[i].call_imm; 8974 subprog = find_subprog(env, i + insn->off + 1); 8975 insn->imm = subprog; 8976 } 8977 8978 prog->jited = 1; 8979 prog->bpf_func = func[0]->bpf_func; 8980 prog->aux->func = func; 8981 prog->aux->func_cnt = env->subprog_cnt; 8982 bpf_prog_free_unused_jited_linfo(prog); 8983 return 0; 8984 out_free: 8985 for (i = 0; i < env->subprog_cnt; i++) 8986 if (func[i]) 8987 bpf_jit_free(func[i]); 8988 kfree(func); 8989 out_undo_insn: 8990 /* cleanup main prog to be interpreted */ 8991 prog->jit_requested = 0; 8992 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 8993 if (insn->code != (BPF_JMP | BPF_CALL) || 8994 insn->src_reg != BPF_PSEUDO_CALL) 8995 continue; 8996 insn->off = 0; 8997 insn->imm = env->insn_aux_data[i].call_imm; 8998 } 8999 bpf_prog_free_jited_linfo(prog); 9000 return err; 9001 } 9002 9003 static int fixup_call_args(struct bpf_verifier_env *env) 9004 { 9005 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 9006 struct bpf_prog *prog = env->prog; 9007 struct bpf_insn *insn = prog->insnsi; 9008 int i, depth; 9009 #endif 9010 int err = 0; 9011 9012 if (env->prog->jit_requested && 9013 !bpf_prog_is_dev_bound(env->prog->aux)) { 9014 err = jit_subprogs(env); 9015 if (err == 0) 9016 return 0; 9017 if (err == -EFAULT) 9018 return err; 9019 } 9020 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 9021 for (i = 0; i < prog->len; i++, insn++) { 9022 if (insn->code != (BPF_JMP | BPF_CALL) || 9023 insn->src_reg != BPF_PSEUDO_CALL) 9024 continue; 9025 depth = get_callee_stack_depth(env, insn, i); 9026 if (depth < 0) 9027 return depth; 9028 bpf_patch_call_args(insn, depth); 9029 } 9030 err = 0; 9031 #endif 9032 return err; 9033 } 9034 9035 /* fixup insn->imm field of bpf_call instructions 9036 * and inline eligible helpers as explicit sequence of BPF instructions 9037 * 9038 * this function is called after eBPF program passed verification 9039 */ 9040 static int fixup_bpf_calls(struct bpf_verifier_env *env) 9041 { 9042 struct bpf_prog *prog = env->prog; 9043 struct bpf_insn *insn = prog->insnsi; 9044 const struct bpf_func_proto *fn; 9045 const int insn_cnt = prog->len; 9046 const struct bpf_map_ops *ops; 9047 struct bpf_insn_aux_data *aux; 9048 struct bpf_insn insn_buf[16]; 9049 struct bpf_prog *new_prog; 9050 struct bpf_map *map_ptr; 9051 int i, cnt, delta = 0; 9052 9053 for (i = 0; i < insn_cnt; i++, insn++) { 9054 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 9055 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 9056 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 9057 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 9058 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 9059 struct bpf_insn mask_and_div[] = { 9060 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 9061 /* Rx div 0 -> 0 */ 9062 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2), 9063 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 9064 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 9065 *insn, 9066 }; 9067 struct bpf_insn mask_and_mod[] = { 9068 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 9069 /* Rx mod 0 -> Rx */ 9070 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1), 9071 *insn, 9072 }; 9073 struct bpf_insn *patchlet; 9074 9075 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 9076 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 9077 patchlet = mask_and_div + (is64 ? 1 : 0); 9078 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0); 9079 } else { 9080 patchlet = mask_and_mod + (is64 ? 1 : 0); 9081 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0); 9082 } 9083 9084 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 9085 if (!new_prog) 9086 return -ENOMEM; 9087 9088 delta += cnt - 1; 9089 env->prog = prog = new_prog; 9090 insn = new_prog->insnsi + i + delta; 9091 continue; 9092 } 9093 9094 if (BPF_CLASS(insn->code) == BPF_LD && 9095 (BPF_MODE(insn->code) == BPF_ABS || 9096 BPF_MODE(insn->code) == BPF_IND)) { 9097 cnt = env->ops->gen_ld_abs(insn, insn_buf); 9098 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 9099 verbose(env, "bpf verifier is misconfigured\n"); 9100 return -EINVAL; 9101 } 9102 9103 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 9104 if (!new_prog) 9105 return -ENOMEM; 9106 9107 delta += cnt - 1; 9108 env->prog = prog = new_prog; 9109 insn = new_prog->insnsi + i + delta; 9110 continue; 9111 } 9112 9113 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 9114 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 9115 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 9116 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 9117 struct bpf_insn insn_buf[16]; 9118 struct bpf_insn *patch = &insn_buf[0]; 9119 bool issrc, isneg; 9120 u32 off_reg; 9121 9122 aux = &env->insn_aux_data[i + delta]; 9123 if (!aux->alu_state || 9124 aux->alu_state == BPF_ALU_NON_POINTER) 9125 continue; 9126 9127 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 9128 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 9129 BPF_ALU_SANITIZE_SRC; 9130 9131 off_reg = issrc ? insn->src_reg : insn->dst_reg; 9132 if (isneg) 9133 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 9134 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1); 9135 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 9136 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 9137 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 9138 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 9139 if (issrc) { 9140 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, 9141 off_reg); 9142 insn->src_reg = BPF_REG_AX; 9143 } else { 9144 *patch++ = BPF_ALU64_REG(BPF_AND, off_reg, 9145 BPF_REG_AX); 9146 } 9147 if (isneg) 9148 insn->code = insn->code == code_add ? 9149 code_sub : code_add; 9150 *patch++ = *insn; 9151 if (issrc && isneg) 9152 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 9153 cnt = patch - insn_buf; 9154 9155 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 9156 if (!new_prog) 9157 return -ENOMEM; 9158 9159 delta += cnt - 1; 9160 env->prog = prog = new_prog; 9161 insn = new_prog->insnsi + i + delta; 9162 continue; 9163 } 9164 9165 if (insn->code != (BPF_JMP | BPF_CALL)) 9166 continue; 9167 if (insn->src_reg == BPF_PSEUDO_CALL) 9168 continue; 9169 9170 if (insn->imm == BPF_FUNC_get_route_realm) 9171 prog->dst_needed = 1; 9172 if (insn->imm == BPF_FUNC_get_prandom_u32) 9173 bpf_user_rnd_init_once(); 9174 if (insn->imm == BPF_FUNC_override_return) 9175 prog->kprobe_override = 1; 9176 if (insn->imm == BPF_FUNC_tail_call) { 9177 /* If we tail call into other programs, we 9178 * cannot make any assumptions since they can 9179 * be replaced dynamically during runtime in 9180 * the program array. 9181 */ 9182 prog->cb_access = 1; 9183 env->prog->aux->stack_depth = MAX_BPF_STACK; 9184 env->prog->aux->max_pkt_offset = MAX_PACKET_OFF; 9185 9186 /* mark bpf_tail_call as different opcode to avoid 9187 * conditional branch in the interpeter for every normal 9188 * call and to prevent accidental JITing by JIT compiler 9189 * that doesn't support bpf_tail_call yet 9190 */ 9191 insn->imm = 0; 9192 insn->code = BPF_JMP | BPF_TAIL_CALL; 9193 9194 aux = &env->insn_aux_data[i + delta]; 9195 if (!bpf_map_ptr_unpriv(aux)) 9196 continue; 9197 9198 /* instead of changing every JIT dealing with tail_call 9199 * emit two extra insns: 9200 * if (index >= max_entries) goto out; 9201 * index &= array->index_mask; 9202 * to avoid out-of-bounds cpu speculation 9203 */ 9204 if (bpf_map_ptr_poisoned(aux)) { 9205 verbose(env, "tail_call abusing map_ptr\n"); 9206 return -EINVAL; 9207 } 9208 9209 map_ptr = BPF_MAP_PTR(aux->map_state); 9210 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 9211 map_ptr->max_entries, 2); 9212 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 9213 container_of(map_ptr, 9214 struct bpf_array, 9215 map)->index_mask); 9216 insn_buf[2] = *insn; 9217 cnt = 3; 9218 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 9219 if (!new_prog) 9220 return -ENOMEM; 9221 9222 delta += cnt - 1; 9223 env->prog = prog = new_prog; 9224 insn = new_prog->insnsi + i + delta; 9225 continue; 9226 } 9227 9228 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 9229 * and other inlining handlers are currently limited to 64 bit 9230 * only. 9231 */ 9232 if (prog->jit_requested && BITS_PER_LONG == 64 && 9233 (insn->imm == BPF_FUNC_map_lookup_elem || 9234 insn->imm == BPF_FUNC_map_update_elem || 9235 insn->imm == BPF_FUNC_map_delete_elem || 9236 insn->imm == BPF_FUNC_map_push_elem || 9237 insn->imm == BPF_FUNC_map_pop_elem || 9238 insn->imm == BPF_FUNC_map_peek_elem)) { 9239 aux = &env->insn_aux_data[i + delta]; 9240 if (bpf_map_ptr_poisoned(aux)) 9241 goto patch_call_imm; 9242 9243 map_ptr = BPF_MAP_PTR(aux->map_state); 9244 ops = map_ptr->ops; 9245 if (insn->imm == BPF_FUNC_map_lookup_elem && 9246 ops->map_gen_lookup) { 9247 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 9248 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 9249 verbose(env, "bpf verifier is misconfigured\n"); 9250 return -EINVAL; 9251 } 9252 9253 new_prog = bpf_patch_insn_data(env, i + delta, 9254 insn_buf, cnt); 9255 if (!new_prog) 9256 return -ENOMEM; 9257 9258 delta += cnt - 1; 9259 env->prog = prog = new_prog; 9260 insn = new_prog->insnsi + i + delta; 9261 continue; 9262 } 9263 9264 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 9265 (void *(*)(struct bpf_map *map, void *key))NULL)); 9266 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 9267 (int (*)(struct bpf_map *map, void *key))NULL)); 9268 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 9269 (int (*)(struct bpf_map *map, void *key, void *value, 9270 u64 flags))NULL)); 9271 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 9272 (int (*)(struct bpf_map *map, void *value, 9273 u64 flags))NULL)); 9274 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 9275 (int (*)(struct bpf_map *map, void *value))NULL)); 9276 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 9277 (int (*)(struct bpf_map *map, void *value))NULL)); 9278 9279 switch (insn->imm) { 9280 case BPF_FUNC_map_lookup_elem: 9281 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) - 9282 __bpf_call_base; 9283 continue; 9284 case BPF_FUNC_map_update_elem: 9285 insn->imm = BPF_CAST_CALL(ops->map_update_elem) - 9286 __bpf_call_base; 9287 continue; 9288 case BPF_FUNC_map_delete_elem: 9289 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) - 9290 __bpf_call_base; 9291 continue; 9292 case BPF_FUNC_map_push_elem: 9293 insn->imm = BPF_CAST_CALL(ops->map_push_elem) - 9294 __bpf_call_base; 9295 continue; 9296 case BPF_FUNC_map_pop_elem: 9297 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) - 9298 __bpf_call_base; 9299 continue; 9300 case BPF_FUNC_map_peek_elem: 9301 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) - 9302 __bpf_call_base; 9303 continue; 9304 } 9305 9306 goto patch_call_imm; 9307 } 9308 9309 patch_call_imm: 9310 fn = env->ops->get_func_proto(insn->imm, env->prog); 9311 /* all functions that have prototype and verifier allowed 9312 * programs to call them, must be real in-kernel functions 9313 */ 9314 if (!fn->func) { 9315 verbose(env, 9316 "kernel subsystem misconfigured func %s#%d\n", 9317 func_id_name(insn->imm), insn->imm); 9318 return -EFAULT; 9319 } 9320 insn->imm = fn->func - __bpf_call_base; 9321 } 9322 9323 return 0; 9324 } 9325 9326 static void free_states(struct bpf_verifier_env *env) 9327 { 9328 struct bpf_verifier_state_list *sl, *sln; 9329 int i; 9330 9331 sl = env->free_list; 9332 while (sl) { 9333 sln = sl->next; 9334 free_verifier_state(&sl->state, false); 9335 kfree(sl); 9336 sl = sln; 9337 } 9338 9339 if (!env->explored_states) 9340 return; 9341 9342 for (i = 0; i < state_htab_size(env); i++) { 9343 sl = env->explored_states[i]; 9344 9345 while (sl) { 9346 sln = sl->next; 9347 free_verifier_state(&sl->state, false); 9348 kfree(sl); 9349 sl = sln; 9350 } 9351 } 9352 9353 kvfree(env->explored_states); 9354 } 9355 9356 static void print_verification_stats(struct bpf_verifier_env *env) 9357 { 9358 int i; 9359 9360 if (env->log.level & BPF_LOG_STATS) { 9361 verbose(env, "verification time %lld usec\n", 9362 div_u64(env->verification_time, 1000)); 9363 verbose(env, "stack depth "); 9364 for (i = 0; i < env->subprog_cnt; i++) { 9365 u32 depth = env->subprog_info[i].stack_depth; 9366 9367 verbose(env, "%d", depth); 9368 if (i + 1 < env->subprog_cnt) 9369 verbose(env, "+"); 9370 } 9371 verbose(env, "\n"); 9372 } 9373 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 9374 "total_states %d peak_states %d mark_read %d\n", 9375 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 9376 env->max_states_per_insn, env->total_states, 9377 env->peak_states, env->longest_mark_read_walk); 9378 } 9379 9380 static int check_attach_btf_id(struct bpf_verifier_env *env) 9381 { 9382 struct bpf_prog *prog = env->prog; 9383 u32 btf_id = prog->aux->attach_btf_id; 9384 const char prefix[] = "btf_trace_"; 9385 const struct btf_type *t; 9386 const char *tname; 9387 9388 if (prog->type != BPF_PROG_TYPE_TRACING) 9389 return 0; 9390 9391 if (!btf_id) { 9392 verbose(env, "Tracing programs must provide btf_id\n"); 9393 return -EINVAL; 9394 } 9395 t = btf_type_by_id(btf_vmlinux, btf_id); 9396 if (!t) { 9397 verbose(env, "attach_btf_id %u is invalid\n", btf_id); 9398 return -EINVAL; 9399 } 9400 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 9401 if (!tname) { 9402 verbose(env, "attach_btf_id %u doesn't have a name\n", btf_id); 9403 return -EINVAL; 9404 } 9405 9406 switch (prog->expected_attach_type) { 9407 case BPF_TRACE_RAW_TP: 9408 if (!btf_type_is_typedef(t)) { 9409 verbose(env, "attach_btf_id %u is not a typedef\n", 9410 btf_id); 9411 return -EINVAL; 9412 } 9413 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 9414 verbose(env, "attach_btf_id %u points to wrong type name %s\n", 9415 btf_id, tname); 9416 return -EINVAL; 9417 } 9418 tname += sizeof(prefix) - 1; 9419 t = btf_type_by_id(btf_vmlinux, t->type); 9420 if (!btf_type_is_ptr(t)) 9421 /* should never happen in valid vmlinux build */ 9422 return -EINVAL; 9423 t = btf_type_by_id(btf_vmlinux, t->type); 9424 if (!btf_type_is_func_proto(t)) 9425 /* should never happen in valid vmlinux build */ 9426 return -EINVAL; 9427 9428 /* remember two read only pointers that are valid for 9429 * the life time of the kernel 9430 */ 9431 prog->aux->attach_func_name = tname; 9432 prog->aux->attach_func_proto = t; 9433 prog->aux->attach_btf_trace = true; 9434 return 0; 9435 default: 9436 return -EINVAL; 9437 } 9438 } 9439 9440 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, 9441 union bpf_attr __user *uattr) 9442 { 9443 u64 start_time = ktime_get_ns(); 9444 struct bpf_verifier_env *env; 9445 struct bpf_verifier_log *log; 9446 int i, len, ret = -EINVAL; 9447 bool is_priv; 9448 9449 /* no program is valid */ 9450 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 9451 return -EINVAL; 9452 9453 /* 'struct bpf_verifier_env' can be global, but since it's not small, 9454 * allocate/free it every time bpf_check() is called 9455 */ 9456 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 9457 if (!env) 9458 return -ENOMEM; 9459 log = &env->log; 9460 9461 len = (*prog)->len; 9462 env->insn_aux_data = 9463 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 9464 ret = -ENOMEM; 9465 if (!env->insn_aux_data) 9466 goto err_free_env; 9467 for (i = 0; i < len; i++) 9468 env->insn_aux_data[i].orig_idx = i; 9469 env->prog = *prog; 9470 env->ops = bpf_verifier_ops[env->prog->type]; 9471 is_priv = capable(CAP_SYS_ADMIN); 9472 9473 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 9474 mutex_lock(&bpf_verifier_lock); 9475 if (!btf_vmlinux) 9476 btf_vmlinux = btf_parse_vmlinux(); 9477 mutex_unlock(&bpf_verifier_lock); 9478 } 9479 9480 /* grab the mutex to protect few globals used by verifier */ 9481 if (!is_priv) 9482 mutex_lock(&bpf_verifier_lock); 9483 9484 if (attr->log_level || attr->log_buf || attr->log_size) { 9485 /* user requested verbose verifier output 9486 * and supplied buffer to store the verification trace 9487 */ 9488 log->level = attr->log_level; 9489 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 9490 log->len_total = attr->log_size; 9491 9492 ret = -EINVAL; 9493 /* log attributes have to be sane */ 9494 if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 || 9495 !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK) 9496 goto err_unlock; 9497 } 9498 9499 if (IS_ERR(btf_vmlinux)) { 9500 /* Either gcc or pahole or kernel are broken. */ 9501 verbose(env, "in-kernel BTF is malformed\n"); 9502 ret = PTR_ERR(btf_vmlinux); 9503 goto skip_full_check; 9504 } 9505 9506 ret = check_attach_btf_id(env); 9507 if (ret) 9508 goto skip_full_check; 9509 9510 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 9511 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 9512 env->strict_alignment = true; 9513 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 9514 env->strict_alignment = false; 9515 9516 env->allow_ptr_leaks = is_priv; 9517 9518 if (is_priv) 9519 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 9520 9521 ret = replace_map_fd_with_map_ptr(env); 9522 if (ret < 0) 9523 goto skip_full_check; 9524 9525 if (bpf_prog_is_dev_bound(env->prog->aux)) { 9526 ret = bpf_prog_offload_verifier_prep(env->prog); 9527 if (ret) 9528 goto skip_full_check; 9529 } 9530 9531 env->explored_states = kvcalloc(state_htab_size(env), 9532 sizeof(struct bpf_verifier_state_list *), 9533 GFP_USER); 9534 ret = -ENOMEM; 9535 if (!env->explored_states) 9536 goto skip_full_check; 9537 9538 ret = check_subprogs(env); 9539 if (ret < 0) 9540 goto skip_full_check; 9541 9542 ret = check_btf_info(env, attr, uattr); 9543 if (ret < 0) 9544 goto skip_full_check; 9545 9546 ret = check_cfg(env); 9547 if (ret < 0) 9548 goto skip_full_check; 9549 9550 ret = do_check(env); 9551 if (env->cur_state) { 9552 free_verifier_state(env->cur_state, true); 9553 env->cur_state = NULL; 9554 } 9555 9556 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux)) 9557 ret = bpf_prog_offload_finalize(env); 9558 9559 skip_full_check: 9560 while (!pop_stack(env, NULL, NULL)); 9561 free_states(env); 9562 9563 if (ret == 0) 9564 ret = check_max_stack_depth(env); 9565 9566 /* instruction rewrites happen after this point */ 9567 if (is_priv) { 9568 if (ret == 0) 9569 opt_hard_wire_dead_code_branches(env); 9570 if (ret == 0) 9571 ret = opt_remove_dead_code(env); 9572 if (ret == 0) 9573 ret = opt_remove_nops(env); 9574 } else { 9575 if (ret == 0) 9576 sanitize_dead_code(env); 9577 } 9578 9579 if (ret == 0) 9580 /* program is valid, convert *(u32*)(ctx + off) accesses */ 9581 ret = convert_ctx_accesses(env); 9582 9583 if (ret == 0) 9584 ret = fixup_bpf_calls(env); 9585 9586 /* do 32-bit optimization after insn patching has done so those patched 9587 * insns could be handled correctly. 9588 */ 9589 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) { 9590 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 9591 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 9592 : false; 9593 } 9594 9595 if (ret == 0) 9596 ret = fixup_call_args(env); 9597 9598 env->verification_time = ktime_get_ns() - start_time; 9599 print_verification_stats(env); 9600 9601 if (log->level && bpf_verifier_log_full(log)) 9602 ret = -ENOSPC; 9603 if (log->level && !log->ubuf) { 9604 ret = -EFAULT; 9605 goto err_release_maps; 9606 } 9607 9608 if (ret == 0 && env->used_map_cnt) { 9609 /* if program passed verifier, update used_maps in bpf_prog_info */ 9610 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 9611 sizeof(env->used_maps[0]), 9612 GFP_KERNEL); 9613 9614 if (!env->prog->aux->used_maps) { 9615 ret = -ENOMEM; 9616 goto err_release_maps; 9617 } 9618 9619 memcpy(env->prog->aux->used_maps, env->used_maps, 9620 sizeof(env->used_maps[0]) * env->used_map_cnt); 9621 env->prog->aux->used_map_cnt = env->used_map_cnt; 9622 9623 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 9624 * bpf_ld_imm64 instructions 9625 */ 9626 convert_pseudo_ld_imm64(env); 9627 } 9628 9629 if (ret == 0) 9630 adjust_btf_func(env); 9631 9632 err_release_maps: 9633 if (!env->prog->aux->used_maps) 9634 /* if we didn't copy map pointers into bpf_prog_info, release 9635 * them now. Otherwise free_used_maps() will release them. 9636 */ 9637 release_maps(env); 9638 *prog = env->prog; 9639 err_unlock: 9640 if (!is_priv) 9641 mutex_unlock(&bpf_verifier_lock); 9642 vfree(env->insn_aux_data); 9643 err_free_env: 9644 kfree(env); 9645 return ret; 9646 } 9647