xref: /linux/kernel/bpf/verifier.c (revision 28efb0046512e8a13ed9f9bdf0d68d10bbfbe9cf)
1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
2  * Copyright (c) 2016 Facebook
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  */
13 #include <linux/kernel.h>
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/bpf.h>
17 #include <linux/bpf_verifier.h>
18 #include <linux/filter.h>
19 #include <net/netlink.h>
20 #include <linux/file.h>
21 #include <linux/vmalloc.h>
22 #include <linux/stringify.h>
23 
24 /* bpf_check() is a static code analyzer that walks eBPF program
25  * instruction by instruction and updates register/stack state.
26  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
27  *
28  * The first pass is depth-first-search to check that the program is a DAG.
29  * It rejects the following programs:
30  * - larger than BPF_MAXINSNS insns
31  * - if loop is present (detected via back-edge)
32  * - unreachable insns exist (shouldn't be a forest. program = one function)
33  * - out of bounds or malformed jumps
34  * The second pass is all possible path descent from the 1st insn.
35  * Since it's analyzing all pathes through the program, the length of the
36  * analysis is limited to 64k insn, which may be hit even if total number of
37  * insn is less then 4K, but there are too many branches that change stack/regs.
38  * Number of 'branches to be analyzed' is limited to 1k
39  *
40  * On entry to each instruction, each register has a type, and the instruction
41  * changes the types of the registers depending on instruction semantics.
42  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
43  * copied to R1.
44  *
45  * All registers are 64-bit.
46  * R0 - return register
47  * R1-R5 argument passing registers
48  * R6-R9 callee saved registers
49  * R10 - frame pointer read-only
50  *
51  * At the start of BPF program the register R1 contains a pointer to bpf_context
52  * and has type PTR_TO_CTX.
53  *
54  * Verifier tracks arithmetic operations on pointers in case:
55  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
56  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
57  * 1st insn copies R10 (which has FRAME_PTR) type into R1
58  * and 2nd arithmetic instruction is pattern matched to recognize
59  * that it wants to construct a pointer to some element within stack.
60  * So after 2nd insn, the register R1 has type PTR_TO_STACK
61  * (and -20 constant is saved for further stack bounds checking).
62  * Meaning that this reg is a pointer to stack plus known immediate constant.
63  *
64  * Most of the time the registers have SCALAR_VALUE type, which
65  * means the register has some value, but it's not a valid pointer.
66  * (like pointer plus pointer becomes SCALAR_VALUE type)
67  *
68  * When verifier sees load or store instructions the type of base register
69  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer
70  * types recognized by check_mem_access() function.
71  *
72  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
73  * and the range of [ptr, ptr + map's value_size) is accessible.
74  *
75  * registers used to pass values to function calls are checked against
76  * function argument constraints.
77  *
78  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
79  * It means that the register type passed to this function must be
80  * PTR_TO_STACK and it will be used inside the function as
81  * 'pointer to map element key'
82  *
83  * For example the argument constraints for bpf_map_lookup_elem():
84  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
85  *   .arg1_type = ARG_CONST_MAP_PTR,
86  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
87  *
88  * ret_type says that this function returns 'pointer to map elem value or null'
89  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
90  * 2nd argument should be a pointer to stack, which will be used inside
91  * the helper function as a pointer to map element key.
92  *
93  * On the kernel side the helper function looks like:
94  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
95  * {
96  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
97  *    void *key = (void *) (unsigned long) r2;
98  *    void *value;
99  *
100  *    here kernel can access 'key' and 'map' pointers safely, knowing that
101  *    [key, key + map->key_size) bytes are valid and were initialized on
102  *    the stack of eBPF program.
103  * }
104  *
105  * Corresponding eBPF program may look like:
106  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
107  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
108  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
109  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
110  * here verifier looks at prototype of map_lookup_elem() and sees:
111  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
112  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
113  *
114  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
115  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
116  * and were initialized prior to this call.
117  * If it's ok, then verifier allows this BPF_CALL insn and looks at
118  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
119  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
120  * returns ether pointer to map value or NULL.
121  *
122  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
123  * insn, the register holding that pointer in the true branch changes state to
124  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
125  * branch. See check_cond_jmp_op().
126  *
127  * After the call R0 is set to return type of the function and registers R1-R5
128  * are set to NOT_INIT to indicate that they are no longer readable.
129  */
130 
131 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
132 struct bpf_verifier_stack_elem {
133 	/* verifer state is 'st'
134 	 * before processing instruction 'insn_idx'
135 	 * and after processing instruction 'prev_insn_idx'
136 	 */
137 	struct bpf_verifier_state st;
138 	int insn_idx;
139 	int prev_insn_idx;
140 	struct bpf_verifier_stack_elem *next;
141 };
142 
143 #define BPF_COMPLEXITY_LIMIT_INSNS	131072
144 #define BPF_COMPLEXITY_LIMIT_STACK	1024
145 
146 #define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA)
147 
148 struct bpf_call_arg_meta {
149 	struct bpf_map *map_ptr;
150 	bool raw_mode;
151 	bool pkt_access;
152 	int regno;
153 	int access_size;
154 };
155 
156 /* verbose verifier prints what it's seeing
157  * bpf_check() is called under lock, so no race to access these global vars
158  */
159 static u32 log_level, log_size, log_len;
160 static char *log_buf;
161 
162 static DEFINE_MUTEX(bpf_verifier_lock);
163 
164 /* log_level controls verbosity level of eBPF verifier.
165  * verbose() is used to dump the verification trace to the log, so the user
166  * can figure out what's wrong with the program
167  */
168 static __printf(1, 2) void verbose(const char *fmt, ...)
169 {
170 	va_list args;
171 
172 	if (log_level == 0 || log_len >= log_size - 1)
173 		return;
174 
175 	va_start(args, fmt);
176 	log_len += vscnprintf(log_buf + log_len, log_size - log_len, fmt, args);
177 	va_end(args);
178 }
179 
180 static bool type_is_pkt_pointer(enum bpf_reg_type type)
181 {
182 	return type == PTR_TO_PACKET ||
183 	       type == PTR_TO_PACKET_META;
184 }
185 
186 /* string representation of 'enum bpf_reg_type' */
187 static const char * const reg_type_str[] = {
188 	[NOT_INIT]		= "?",
189 	[SCALAR_VALUE]		= "inv",
190 	[PTR_TO_CTX]		= "ctx",
191 	[CONST_PTR_TO_MAP]	= "map_ptr",
192 	[PTR_TO_MAP_VALUE]	= "map_value",
193 	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
194 	[PTR_TO_STACK]		= "fp",
195 	[PTR_TO_PACKET]		= "pkt",
196 	[PTR_TO_PACKET_META]	= "pkt_meta",
197 	[PTR_TO_PACKET_END]	= "pkt_end",
198 };
199 
200 #define __BPF_FUNC_STR_FN(x) [BPF_FUNC_ ## x] = __stringify(bpf_ ## x)
201 static const char * const func_id_str[] = {
202 	__BPF_FUNC_MAPPER(__BPF_FUNC_STR_FN)
203 };
204 #undef __BPF_FUNC_STR_FN
205 
206 static const char *func_id_name(int id)
207 {
208 	BUILD_BUG_ON(ARRAY_SIZE(func_id_str) != __BPF_FUNC_MAX_ID);
209 
210 	if (id >= 0 && id < __BPF_FUNC_MAX_ID && func_id_str[id])
211 		return func_id_str[id];
212 	else
213 		return "unknown";
214 }
215 
216 static void print_verifier_state(struct bpf_verifier_state *state)
217 {
218 	struct bpf_reg_state *reg;
219 	enum bpf_reg_type t;
220 	int i;
221 
222 	for (i = 0; i < MAX_BPF_REG; i++) {
223 		reg = &state->regs[i];
224 		t = reg->type;
225 		if (t == NOT_INIT)
226 			continue;
227 		verbose(" R%d=%s", i, reg_type_str[t]);
228 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
229 		    tnum_is_const(reg->var_off)) {
230 			/* reg->off should be 0 for SCALAR_VALUE */
231 			verbose("%lld", reg->var_off.value + reg->off);
232 		} else {
233 			verbose("(id=%d", reg->id);
234 			if (t != SCALAR_VALUE)
235 				verbose(",off=%d", reg->off);
236 			if (type_is_pkt_pointer(t))
237 				verbose(",r=%d", reg->range);
238 			else if (t == CONST_PTR_TO_MAP ||
239 				 t == PTR_TO_MAP_VALUE ||
240 				 t == PTR_TO_MAP_VALUE_OR_NULL)
241 				verbose(",ks=%d,vs=%d",
242 					reg->map_ptr->key_size,
243 					reg->map_ptr->value_size);
244 			if (tnum_is_const(reg->var_off)) {
245 				/* Typically an immediate SCALAR_VALUE, but
246 				 * could be a pointer whose offset is too big
247 				 * for reg->off
248 				 */
249 				verbose(",imm=%llx", reg->var_off.value);
250 			} else {
251 				if (reg->smin_value != reg->umin_value &&
252 				    reg->smin_value != S64_MIN)
253 					verbose(",smin_value=%lld",
254 						(long long)reg->smin_value);
255 				if (reg->smax_value != reg->umax_value &&
256 				    reg->smax_value != S64_MAX)
257 					verbose(",smax_value=%lld",
258 						(long long)reg->smax_value);
259 				if (reg->umin_value != 0)
260 					verbose(",umin_value=%llu",
261 						(unsigned long long)reg->umin_value);
262 				if (reg->umax_value != U64_MAX)
263 					verbose(",umax_value=%llu",
264 						(unsigned long long)reg->umax_value);
265 				if (!tnum_is_unknown(reg->var_off)) {
266 					char tn_buf[48];
267 
268 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
269 					verbose(",var_off=%s", tn_buf);
270 				}
271 			}
272 			verbose(")");
273 		}
274 	}
275 	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
276 		if (state->stack_slot_type[i] == STACK_SPILL)
277 			verbose(" fp%d=%s", -MAX_BPF_STACK + i,
278 				reg_type_str[state->spilled_regs[i / BPF_REG_SIZE].type]);
279 	}
280 	verbose("\n");
281 }
282 
283 static const char *const bpf_class_string[] = {
284 	[BPF_LD]    = "ld",
285 	[BPF_LDX]   = "ldx",
286 	[BPF_ST]    = "st",
287 	[BPF_STX]   = "stx",
288 	[BPF_ALU]   = "alu",
289 	[BPF_JMP]   = "jmp",
290 	[BPF_RET]   = "BUG",
291 	[BPF_ALU64] = "alu64",
292 };
293 
294 static const char *const bpf_alu_string[16] = {
295 	[BPF_ADD >> 4]  = "+=",
296 	[BPF_SUB >> 4]  = "-=",
297 	[BPF_MUL >> 4]  = "*=",
298 	[BPF_DIV >> 4]  = "/=",
299 	[BPF_OR  >> 4]  = "|=",
300 	[BPF_AND >> 4]  = "&=",
301 	[BPF_LSH >> 4]  = "<<=",
302 	[BPF_RSH >> 4]  = ">>=",
303 	[BPF_NEG >> 4]  = "neg",
304 	[BPF_MOD >> 4]  = "%=",
305 	[BPF_XOR >> 4]  = "^=",
306 	[BPF_MOV >> 4]  = "=",
307 	[BPF_ARSH >> 4] = "s>>=",
308 	[BPF_END >> 4]  = "endian",
309 };
310 
311 static const char *const bpf_ldst_string[] = {
312 	[BPF_W >> 3]  = "u32",
313 	[BPF_H >> 3]  = "u16",
314 	[BPF_B >> 3]  = "u8",
315 	[BPF_DW >> 3] = "u64",
316 };
317 
318 static const char *const bpf_jmp_string[16] = {
319 	[BPF_JA >> 4]   = "jmp",
320 	[BPF_JEQ >> 4]  = "==",
321 	[BPF_JGT >> 4]  = ">",
322 	[BPF_JLT >> 4]  = "<",
323 	[BPF_JGE >> 4]  = ">=",
324 	[BPF_JLE >> 4]  = "<=",
325 	[BPF_JSET >> 4] = "&",
326 	[BPF_JNE >> 4]  = "!=",
327 	[BPF_JSGT >> 4] = "s>",
328 	[BPF_JSLT >> 4] = "s<",
329 	[BPF_JSGE >> 4] = "s>=",
330 	[BPF_JSLE >> 4] = "s<=",
331 	[BPF_CALL >> 4] = "call",
332 	[BPF_EXIT >> 4] = "exit",
333 };
334 
335 static void print_bpf_end_insn(const struct bpf_verifier_env *env,
336 			       const struct bpf_insn *insn)
337 {
338 	verbose("(%02x) r%d = %s%d r%d\n", insn->code, insn->dst_reg,
339 		BPF_SRC(insn->code) == BPF_TO_BE ? "be" : "le",
340 		insn->imm, insn->dst_reg);
341 }
342 
343 static void print_bpf_insn(const struct bpf_verifier_env *env,
344 			   const struct bpf_insn *insn)
345 {
346 	u8 class = BPF_CLASS(insn->code);
347 
348 	if (class == BPF_ALU || class == BPF_ALU64) {
349 		if (BPF_OP(insn->code) == BPF_END) {
350 			if (class == BPF_ALU64)
351 				verbose("BUG_alu64_%02x\n", insn->code);
352 			else
353 				print_bpf_end_insn(env, insn);
354 		} else if (BPF_OP(insn->code) == BPF_NEG) {
355 			verbose("(%02x) r%d = %s-r%d\n",
356 				insn->code, insn->dst_reg,
357 				class == BPF_ALU ? "(u32) " : "",
358 				insn->dst_reg);
359 		} else if (BPF_SRC(insn->code) == BPF_X) {
360 			verbose("(%02x) %sr%d %s %sr%d\n",
361 				insn->code, class == BPF_ALU ? "(u32) " : "",
362 				insn->dst_reg,
363 				bpf_alu_string[BPF_OP(insn->code) >> 4],
364 				class == BPF_ALU ? "(u32) " : "",
365 				insn->src_reg);
366 		} else {
367 			verbose("(%02x) %sr%d %s %s%d\n",
368 				insn->code, class == BPF_ALU ? "(u32) " : "",
369 				insn->dst_reg,
370 				bpf_alu_string[BPF_OP(insn->code) >> 4],
371 				class == BPF_ALU ? "(u32) " : "",
372 				insn->imm);
373 		}
374 	} else if (class == BPF_STX) {
375 		if (BPF_MODE(insn->code) == BPF_MEM)
376 			verbose("(%02x) *(%s *)(r%d %+d) = r%d\n",
377 				insn->code,
378 				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
379 				insn->dst_reg,
380 				insn->off, insn->src_reg);
381 		else if (BPF_MODE(insn->code) == BPF_XADD)
382 			verbose("(%02x) lock *(%s *)(r%d %+d) += r%d\n",
383 				insn->code,
384 				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
385 				insn->dst_reg, insn->off,
386 				insn->src_reg);
387 		else
388 			verbose("BUG_%02x\n", insn->code);
389 	} else if (class == BPF_ST) {
390 		if (BPF_MODE(insn->code) != BPF_MEM) {
391 			verbose("BUG_st_%02x\n", insn->code);
392 			return;
393 		}
394 		verbose("(%02x) *(%s *)(r%d %+d) = %d\n",
395 			insn->code,
396 			bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
397 			insn->dst_reg,
398 			insn->off, insn->imm);
399 	} else if (class == BPF_LDX) {
400 		if (BPF_MODE(insn->code) != BPF_MEM) {
401 			verbose("BUG_ldx_%02x\n", insn->code);
402 			return;
403 		}
404 		verbose("(%02x) r%d = *(%s *)(r%d %+d)\n",
405 			insn->code, insn->dst_reg,
406 			bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
407 			insn->src_reg, insn->off);
408 	} else if (class == BPF_LD) {
409 		if (BPF_MODE(insn->code) == BPF_ABS) {
410 			verbose("(%02x) r0 = *(%s *)skb[%d]\n",
411 				insn->code,
412 				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
413 				insn->imm);
414 		} else if (BPF_MODE(insn->code) == BPF_IND) {
415 			verbose("(%02x) r0 = *(%s *)skb[r%d + %d]\n",
416 				insn->code,
417 				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
418 				insn->src_reg, insn->imm);
419 		} else if (BPF_MODE(insn->code) == BPF_IMM &&
420 			   BPF_SIZE(insn->code) == BPF_DW) {
421 			/* At this point, we already made sure that the second
422 			 * part of the ldimm64 insn is accessible.
423 			 */
424 			u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
425 			bool map_ptr = insn->src_reg == BPF_PSEUDO_MAP_FD;
426 
427 			if (map_ptr && !env->allow_ptr_leaks)
428 				imm = 0;
429 
430 			verbose("(%02x) r%d = 0x%llx\n", insn->code,
431 				insn->dst_reg, (unsigned long long)imm);
432 		} else {
433 			verbose("BUG_ld_%02x\n", insn->code);
434 			return;
435 		}
436 	} else if (class == BPF_JMP) {
437 		u8 opcode = BPF_OP(insn->code);
438 
439 		if (opcode == BPF_CALL) {
440 			verbose("(%02x) call %s#%d\n", insn->code,
441 				func_id_name(insn->imm), insn->imm);
442 		} else if (insn->code == (BPF_JMP | BPF_JA)) {
443 			verbose("(%02x) goto pc%+d\n",
444 				insn->code, insn->off);
445 		} else if (insn->code == (BPF_JMP | BPF_EXIT)) {
446 			verbose("(%02x) exit\n", insn->code);
447 		} else if (BPF_SRC(insn->code) == BPF_X) {
448 			verbose("(%02x) if r%d %s r%d goto pc%+d\n",
449 				insn->code, insn->dst_reg,
450 				bpf_jmp_string[BPF_OP(insn->code) >> 4],
451 				insn->src_reg, insn->off);
452 		} else {
453 			verbose("(%02x) if r%d %s 0x%x goto pc%+d\n",
454 				insn->code, insn->dst_reg,
455 				bpf_jmp_string[BPF_OP(insn->code) >> 4],
456 				insn->imm, insn->off);
457 		}
458 	} else {
459 		verbose("(%02x) %s\n", insn->code, bpf_class_string[class]);
460 	}
461 }
462 
463 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx)
464 {
465 	struct bpf_verifier_stack_elem *elem;
466 	int insn_idx;
467 
468 	if (env->head == NULL)
469 		return -1;
470 
471 	memcpy(&env->cur_state, &env->head->st, sizeof(env->cur_state));
472 	insn_idx = env->head->insn_idx;
473 	if (prev_insn_idx)
474 		*prev_insn_idx = env->head->prev_insn_idx;
475 	elem = env->head->next;
476 	kfree(env->head);
477 	env->head = elem;
478 	env->stack_size--;
479 	return insn_idx;
480 }
481 
482 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
483 					     int insn_idx, int prev_insn_idx)
484 {
485 	struct bpf_verifier_stack_elem *elem;
486 
487 	elem = kmalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
488 	if (!elem)
489 		goto err;
490 
491 	memcpy(&elem->st, &env->cur_state, sizeof(env->cur_state));
492 	elem->insn_idx = insn_idx;
493 	elem->prev_insn_idx = prev_insn_idx;
494 	elem->next = env->head;
495 	env->head = elem;
496 	env->stack_size++;
497 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
498 		verbose("BPF program is too complex\n");
499 		goto err;
500 	}
501 	return &elem->st;
502 err:
503 	/* pop all elements and return */
504 	while (pop_stack(env, NULL) >= 0);
505 	return NULL;
506 }
507 
508 #define CALLER_SAVED_REGS 6
509 static const int caller_saved[CALLER_SAVED_REGS] = {
510 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
511 };
512 
513 static void __mark_reg_not_init(struct bpf_reg_state *reg);
514 
515 /* Mark the unknown part of a register (variable offset or scalar value) as
516  * known to have the value @imm.
517  */
518 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
519 {
520 	reg->id = 0;
521 	reg->var_off = tnum_const(imm);
522 	reg->smin_value = (s64)imm;
523 	reg->smax_value = (s64)imm;
524 	reg->umin_value = imm;
525 	reg->umax_value = imm;
526 }
527 
528 /* Mark the 'variable offset' part of a register as zero.  This should be
529  * used only on registers holding a pointer type.
530  */
531 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
532 {
533 	__mark_reg_known(reg, 0);
534 }
535 
536 static void mark_reg_known_zero(struct bpf_reg_state *regs, u32 regno)
537 {
538 	if (WARN_ON(regno >= MAX_BPF_REG)) {
539 		verbose("mark_reg_known_zero(regs, %u)\n", regno);
540 		/* Something bad happened, let's kill all regs */
541 		for (regno = 0; regno < MAX_BPF_REG; regno++)
542 			__mark_reg_not_init(regs + regno);
543 		return;
544 	}
545 	__mark_reg_known_zero(regs + regno);
546 }
547 
548 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
549 {
550 	return type_is_pkt_pointer(reg->type);
551 }
552 
553 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
554 {
555 	return reg_is_pkt_pointer(reg) ||
556 	       reg->type == PTR_TO_PACKET_END;
557 }
558 
559 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
560 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
561 				    enum bpf_reg_type which)
562 {
563 	/* The register can already have a range from prior markings.
564 	 * This is fine as long as it hasn't been advanced from its
565 	 * origin.
566 	 */
567 	return reg->type == which &&
568 	       reg->id == 0 &&
569 	       reg->off == 0 &&
570 	       tnum_equals_const(reg->var_off, 0);
571 }
572 
573 /* Attempts to improve min/max values based on var_off information */
574 static void __update_reg_bounds(struct bpf_reg_state *reg)
575 {
576 	/* min signed is max(sign bit) | min(other bits) */
577 	reg->smin_value = max_t(s64, reg->smin_value,
578 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
579 	/* max signed is min(sign bit) | max(other bits) */
580 	reg->smax_value = min_t(s64, reg->smax_value,
581 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
582 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
583 	reg->umax_value = min(reg->umax_value,
584 			      reg->var_off.value | reg->var_off.mask);
585 }
586 
587 /* Uses signed min/max values to inform unsigned, and vice-versa */
588 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
589 {
590 	/* Learn sign from signed bounds.
591 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
592 	 * are the same, so combine.  This works even in the negative case, e.g.
593 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
594 	 */
595 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
596 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
597 							  reg->umin_value);
598 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
599 							  reg->umax_value);
600 		return;
601 	}
602 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
603 	 * boundary, so we must be careful.
604 	 */
605 	if ((s64)reg->umax_value >= 0) {
606 		/* Positive.  We can't learn anything from the smin, but smax
607 		 * is positive, hence safe.
608 		 */
609 		reg->smin_value = reg->umin_value;
610 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
611 							  reg->umax_value);
612 	} else if ((s64)reg->umin_value < 0) {
613 		/* Negative.  We can't learn anything from the smax, but smin
614 		 * is negative, hence safe.
615 		 */
616 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
617 							  reg->umin_value);
618 		reg->smax_value = reg->umax_value;
619 	}
620 }
621 
622 /* Attempts to improve var_off based on unsigned min/max information */
623 static void __reg_bound_offset(struct bpf_reg_state *reg)
624 {
625 	reg->var_off = tnum_intersect(reg->var_off,
626 				      tnum_range(reg->umin_value,
627 						 reg->umax_value));
628 }
629 
630 /* Reset the min/max bounds of a register */
631 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
632 {
633 	reg->smin_value = S64_MIN;
634 	reg->smax_value = S64_MAX;
635 	reg->umin_value = 0;
636 	reg->umax_value = U64_MAX;
637 }
638 
639 /* Mark a register as having a completely unknown (scalar) value. */
640 static void __mark_reg_unknown(struct bpf_reg_state *reg)
641 {
642 	reg->type = SCALAR_VALUE;
643 	reg->id = 0;
644 	reg->off = 0;
645 	reg->var_off = tnum_unknown;
646 	__mark_reg_unbounded(reg);
647 }
648 
649 static void mark_reg_unknown(struct bpf_reg_state *regs, u32 regno)
650 {
651 	if (WARN_ON(regno >= MAX_BPF_REG)) {
652 		verbose("mark_reg_unknown(regs, %u)\n", regno);
653 		/* Something bad happened, let's kill all regs */
654 		for (regno = 0; regno < MAX_BPF_REG; regno++)
655 			__mark_reg_not_init(regs + regno);
656 		return;
657 	}
658 	__mark_reg_unknown(regs + regno);
659 }
660 
661 static void __mark_reg_not_init(struct bpf_reg_state *reg)
662 {
663 	__mark_reg_unknown(reg);
664 	reg->type = NOT_INIT;
665 }
666 
667 static void mark_reg_not_init(struct bpf_reg_state *regs, u32 regno)
668 {
669 	if (WARN_ON(regno >= MAX_BPF_REG)) {
670 		verbose("mark_reg_not_init(regs, %u)\n", regno);
671 		/* Something bad happened, let's kill all regs */
672 		for (regno = 0; regno < MAX_BPF_REG; regno++)
673 			__mark_reg_not_init(regs + regno);
674 		return;
675 	}
676 	__mark_reg_not_init(regs + regno);
677 }
678 
679 static void init_reg_state(struct bpf_reg_state *regs)
680 {
681 	int i;
682 
683 	for (i = 0; i < MAX_BPF_REG; i++) {
684 		mark_reg_not_init(regs, i);
685 		regs[i].live = REG_LIVE_NONE;
686 	}
687 
688 	/* frame pointer */
689 	regs[BPF_REG_FP].type = PTR_TO_STACK;
690 	mark_reg_known_zero(regs, BPF_REG_FP);
691 
692 	/* 1st arg to a function */
693 	regs[BPF_REG_1].type = PTR_TO_CTX;
694 	mark_reg_known_zero(regs, BPF_REG_1);
695 }
696 
697 enum reg_arg_type {
698 	SRC_OP,		/* register is used as source operand */
699 	DST_OP,		/* register is used as destination operand */
700 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
701 };
702 
703 static void mark_reg_read(const struct bpf_verifier_state *state, u32 regno)
704 {
705 	struct bpf_verifier_state *parent = state->parent;
706 
707 	while (parent) {
708 		/* if read wasn't screened by an earlier write ... */
709 		if (state->regs[regno].live & REG_LIVE_WRITTEN)
710 			break;
711 		/* ... then we depend on parent's value */
712 		parent->regs[regno].live |= REG_LIVE_READ;
713 		state = parent;
714 		parent = state->parent;
715 	}
716 }
717 
718 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
719 			 enum reg_arg_type t)
720 {
721 	struct bpf_reg_state *regs = env->cur_state.regs;
722 
723 	if (regno >= MAX_BPF_REG) {
724 		verbose("R%d is invalid\n", regno);
725 		return -EINVAL;
726 	}
727 
728 	if (t == SRC_OP) {
729 		/* check whether register used as source operand can be read */
730 		if (regs[regno].type == NOT_INIT) {
731 			verbose("R%d !read_ok\n", regno);
732 			return -EACCES;
733 		}
734 		mark_reg_read(&env->cur_state, regno);
735 	} else {
736 		/* check whether register used as dest operand can be written to */
737 		if (regno == BPF_REG_FP) {
738 			verbose("frame pointer is read only\n");
739 			return -EACCES;
740 		}
741 		regs[regno].live |= REG_LIVE_WRITTEN;
742 		if (t == DST_OP)
743 			mark_reg_unknown(regs, regno);
744 	}
745 	return 0;
746 }
747 
748 static bool is_spillable_regtype(enum bpf_reg_type type)
749 {
750 	switch (type) {
751 	case PTR_TO_MAP_VALUE:
752 	case PTR_TO_MAP_VALUE_OR_NULL:
753 	case PTR_TO_STACK:
754 	case PTR_TO_CTX:
755 	case PTR_TO_PACKET:
756 	case PTR_TO_PACKET_META:
757 	case PTR_TO_PACKET_END:
758 	case CONST_PTR_TO_MAP:
759 		return true;
760 	default:
761 		return false;
762 	}
763 }
764 
765 /* check_stack_read/write functions track spill/fill of registers,
766  * stack boundary and alignment are checked in check_mem_access()
767  */
768 static int check_stack_write(struct bpf_verifier_state *state, int off,
769 			     int size, int value_regno)
770 {
771 	int i, spi = (MAX_BPF_STACK + off) / BPF_REG_SIZE;
772 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
773 	 * so it's aligned access and [off, off + size) are within stack limits
774 	 */
775 
776 	if (value_regno >= 0 &&
777 	    is_spillable_regtype(state->regs[value_regno].type)) {
778 
779 		/* register containing pointer is being spilled into stack */
780 		if (size != BPF_REG_SIZE) {
781 			verbose("invalid size of register spill\n");
782 			return -EACCES;
783 		}
784 
785 		/* save register state */
786 		state->spilled_regs[spi] = state->regs[value_regno];
787 		state->spilled_regs[spi].live |= REG_LIVE_WRITTEN;
788 
789 		for (i = 0; i < BPF_REG_SIZE; i++)
790 			state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_SPILL;
791 	} else {
792 		/* regular write of data into stack */
793 		state->spilled_regs[spi] = (struct bpf_reg_state) {};
794 
795 		for (i = 0; i < size; i++)
796 			state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_MISC;
797 	}
798 	return 0;
799 }
800 
801 static void mark_stack_slot_read(const struct bpf_verifier_state *state, int slot)
802 {
803 	struct bpf_verifier_state *parent = state->parent;
804 
805 	while (parent) {
806 		/* if read wasn't screened by an earlier write ... */
807 		if (state->spilled_regs[slot].live & REG_LIVE_WRITTEN)
808 			break;
809 		/* ... then we depend on parent's value */
810 		parent->spilled_regs[slot].live |= REG_LIVE_READ;
811 		state = parent;
812 		parent = state->parent;
813 	}
814 }
815 
816 static int check_stack_read(struct bpf_verifier_state *state, int off, int size,
817 			    int value_regno)
818 {
819 	u8 *slot_type;
820 	int i, spi;
821 
822 	slot_type = &state->stack_slot_type[MAX_BPF_STACK + off];
823 
824 	if (slot_type[0] == STACK_SPILL) {
825 		if (size != BPF_REG_SIZE) {
826 			verbose("invalid size of register spill\n");
827 			return -EACCES;
828 		}
829 		for (i = 1; i < BPF_REG_SIZE; i++) {
830 			if (slot_type[i] != STACK_SPILL) {
831 				verbose("corrupted spill memory\n");
832 				return -EACCES;
833 			}
834 		}
835 
836 		spi = (MAX_BPF_STACK + off) / BPF_REG_SIZE;
837 
838 		if (value_regno >= 0) {
839 			/* restore register state from stack */
840 			state->regs[value_regno] = state->spilled_regs[spi];
841 			mark_stack_slot_read(state, spi);
842 		}
843 		return 0;
844 	} else {
845 		for (i = 0; i < size; i++) {
846 			if (slot_type[i] != STACK_MISC) {
847 				verbose("invalid read from stack off %d+%d size %d\n",
848 					off, i, size);
849 				return -EACCES;
850 			}
851 		}
852 		if (value_regno >= 0)
853 			/* have read misc data from the stack */
854 			mark_reg_unknown(state->regs, value_regno);
855 		return 0;
856 	}
857 }
858 
859 /* check read/write into map element returned by bpf_map_lookup_elem() */
860 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
861 			    int size)
862 {
863 	struct bpf_map *map = env->cur_state.regs[regno].map_ptr;
864 
865 	if (off < 0 || size <= 0 || off + size > map->value_size) {
866 		verbose("invalid access to map value, value_size=%d off=%d size=%d\n",
867 			map->value_size, off, size);
868 		return -EACCES;
869 	}
870 	return 0;
871 }
872 
873 /* check read/write into a map element with possible variable offset */
874 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
875 				int off, int size)
876 {
877 	struct bpf_verifier_state *state = &env->cur_state;
878 	struct bpf_reg_state *reg = &state->regs[regno];
879 	int err;
880 
881 	/* We may have adjusted the register to this map value, so we
882 	 * need to try adding each of min_value and max_value to off
883 	 * to make sure our theoretical access will be safe.
884 	 */
885 	if (log_level)
886 		print_verifier_state(state);
887 	/* The minimum value is only important with signed
888 	 * comparisons where we can't assume the floor of a
889 	 * value is 0.  If we are using signed variables for our
890 	 * index'es we need to make sure that whatever we use
891 	 * will have a set floor within our range.
892 	 */
893 	if (reg->smin_value < 0) {
894 		verbose("R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
895 			regno);
896 		return -EACCES;
897 	}
898 	err = __check_map_access(env, regno, reg->smin_value + off, size);
899 	if (err) {
900 		verbose("R%d min value is outside of the array range\n", regno);
901 		return err;
902 	}
903 
904 	/* If we haven't set a max value then we need to bail since we can't be
905 	 * sure we won't do bad things.
906 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
907 	 */
908 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
909 		verbose("R%d unbounded memory access, make sure to bounds check any array access into a map\n",
910 			regno);
911 		return -EACCES;
912 	}
913 	err = __check_map_access(env, regno, reg->umax_value + off, size);
914 	if (err)
915 		verbose("R%d max value is outside of the array range\n", regno);
916 	return err;
917 }
918 
919 #define MAX_PACKET_OFF 0xffff
920 
921 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
922 				       const struct bpf_call_arg_meta *meta,
923 				       enum bpf_access_type t)
924 {
925 	switch (env->prog->type) {
926 	case BPF_PROG_TYPE_LWT_IN:
927 	case BPF_PROG_TYPE_LWT_OUT:
928 		/* dst_input() and dst_output() can't write for now */
929 		if (t == BPF_WRITE)
930 			return false;
931 		/* fallthrough */
932 	case BPF_PROG_TYPE_SCHED_CLS:
933 	case BPF_PROG_TYPE_SCHED_ACT:
934 	case BPF_PROG_TYPE_XDP:
935 	case BPF_PROG_TYPE_LWT_XMIT:
936 	case BPF_PROG_TYPE_SK_SKB:
937 		if (meta)
938 			return meta->pkt_access;
939 
940 		env->seen_direct_write = true;
941 		return true;
942 	default:
943 		return false;
944 	}
945 }
946 
947 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
948 				 int off, int size)
949 {
950 	struct bpf_reg_state *regs = env->cur_state.regs;
951 	struct bpf_reg_state *reg = &regs[regno];
952 
953 	if (off < 0 || size <= 0 || (u64)off + size > reg->range) {
954 		verbose("invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
955 			off, size, regno, reg->id, reg->off, reg->range);
956 		return -EACCES;
957 	}
958 	return 0;
959 }
960 
961 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
962 			       int size)
963 {
964 	struct bpf_reg_state *regs = env->cur_state.regs;
965 	struct bpf_reg_state *reg = &regs[regno];
966 	int err;
967 
968 	/* We may have added a variable offset to the packet pointer; but any
969 	 * reg->range we have comes after that.  We are only checking the fixed
970 	 * offset.
971 	 */
972 
973 	/* We don't allow negative numbers, because we aren't tracking enough
974 	 * detail to prove they're safe.
975 	 */
976 	if (reg->smin_value < 0) {
977 		verbose("R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
978 			regno);
979 		return -EACCES;
980 	}
981 	err = __check_packet_access(env, regno, off, size);
982 	if (err) {
983 		verbose("R%d offset is outside of the packet\n", regno);
984 		return err;
985 	}
986 	return err;
987 }
988 
989 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
990 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
991 			    enum bpf_access_type t, enum bpf_reg_type *reg_type)
992 {
993 	struct bpf_insn_access_aux info = {
994 		.reg_type = *reg_type,
995 	};
996 
997 	/* for analyzer ctx accesses are already validated and converted */
998 	if (env->analyzer_ops)
999 		return 0;
1000 
1001 	if (env->prog->aux->ops->is_valid_access &&
1002 	    env->prog->aux->ops->is_valid_access(off, size, t, &info)) {
1003 		/* A non zero info.ctx_field_size indicates that this field is a
1004 		 * candidate for later verifier transformation to load the whole
1005 		 * field and then apply a mask when accessed with a narrower
1006 		 * access than actual ctx access size. A zero info.ctx_field_size
1007 		 * will only allow for whole field access and rejects any other
1008 		 * type of narrower access.
1009 		 */
1010 		env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
1011 		*reg_type = info.reg_type;
1012 
1013 		/* remember the offset of last byte accessed in ctx */
1014 		if (env->prog->aux->max_ctx_offset < off + size)
1015 			env->prog->aux->max_ctx_offset = off + size;
1016 		return 0;
1017 	}
1018 
1019 	verbose("invalid bpf_context access off=%d size=%d\n", off, size);
1020 	return -EACCES;
1021 }
1022 
1023 static bool __is_pointer_value(bool allow_ptr_leaks,
1024 			       const struct bpf_reg_state *reg)
1025 {
1026 	if (allow_ptr_leaks)
1027 		return false;
1028 
1029 	return reg->type != SCALAR_VALUE;
1030 }
1031 
1032 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
1033 {
1034 	return __is_pointer_value(env->allow_ptr_leaks, &env->cur_state.regs[regno]);
1035 }
1036 
1037 static int check_pkt_ptr_alignment(const struct bpf_reg_state *reg,
1038 				   int off, int size, bool strict)
1039 {
1040 	struct tnum reg_off;
1041 	int ip_align;
1042 
1043 	/* Byte size accesses are always allowed. */
1044 	if (!strict || size == 1)
1045 		return 0;
1046 
1047 	/* For platforms that do not have a Kconfig enabling
1048 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
1049 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
1050 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
1051 	 * to this code only in strict mode where we want to emulate
1052 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
1053 	 * unconditional IP align value of '2'.
1054 	 */
1055 	ip_align = 2;
1056 
1057 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
1058 	if (!tnum_is_aligned(reg_off, size)) {
1059 		char tn_buf[48];
1060 
1061 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1062 		verbose("misaligned packet access off %d+%s+%d+%d size %d\n",
1063 			ip_align, tn_buf, reg->off, off, size);
1064 		return -EACCES;
1065 	}
1066 
1067 	return 0;
1068 }
1069 
1070 static int check_generic_ptr_alignment(const struct bpf_reg_state *reg,
1071 				       const char *pointer_desc,
1072 				       int off, int size, bool strict)
1073 {
1074 	struct tnum reg_off;
1075 
1076 	/* Byte size accesses are always allowed. */
1077 	if (!strict || size == 1)
1078 		return 0;
1079 
1080 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
1081 	if (!tnum_is_aligned(reg_off, size)) {
1082 		char tn_buf[48];
1083 
1084 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1085 		verbose("misaligned %saccess off %s+%d+%d size %d\n",
1086 			pointer_desc, tn_buf, reg->off, off, size);
1087 		return -EACCES;
1088 	}
1089 
1090 	return 0;
1091 }
1092 
1093 static int check_ptr_alignment(struct bpf_verifier_env *env,
1094 			       const struct bpf_reg_state *reg,
1095 			       int off, int size)
1096 {
1097 	bool strict = env->strict_alignment;
1098 	const char *pointer_desc = "";
1099 
1100 	switch (reg->type) {
1101 	case PTR_TO_PACKET:
1102 	case PTR_TO_PACKET_META:
1103 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
1104 		 * right in front, treat it the very same way.
1105 		 */
1106 		return check_pkt_ptr_alignment(reg, off, size, strict);
1107 	case PTR_TO_MAP_VALUE:
1108 		pointer_desc = "value ";
1109 		break;
1110 	case PTR_TO_CTX:
1111 		pointer_desc = "context ";
1112 		break;
1113 	case PTR_TO_STACK:
1114 		pointer_desc = "stack ";
1115 		break;
1116 	default:
1117 		break;
1118 	}
1119 	return check_generic_ptr_alignment(reg, pointer_desc, off, size, strict);
1120 }
1121 
1122 /* check whether memory at (regno + off) is accessible for t = (read | write)
1123  * if t==write, value_regno is a register which value is stored into memory
1124  * if t==read, value_regno is a register which will receive the value from memory
1125  * if t==write && value_regno==-1, some unknown value is stored into memory
1126  * if t==read && value_regno==-1, don't care what we read from memory
1127  */
1128 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, int off,
1129 			    int bpf_size, enum bpf_access_type t,
1130 			    int value_regno)
1131 {
1132 	struct bpf_verifier_state *state = &env->cur_state;
1133 	struct bpf_reg_state *reg = &state->regs[regno];
1134 	int size, err = 0;
1135 
1136 	size = bpf_size_to_bytes(bpf_size);
1137 	if (size < 0)
1138 		return size;
1139 
1140 	/* alignment checks will add in reg->off themselves */
1141 	err = check_ptr_alignment(env, reg, off, size);
1142 	if (err)
1143 		return err;
1144 
1145 	/* for access checks, reg->off is just part of off */
1146 	off += reg->off;
1147 
1148 	if (reg->type == PTR_TO_MAP_VALUE) {
1149 		if (t == BPF_WRITE && value_regno >= 0 &&
1150 		    is_pointer_value(env, value_regno)) {
1151 			verbose("R%d leaks addr into map\n", value_regno);
1152 			return -EACCES;
1153 		}
1154 
1155 		err = check_map_access(env, regno, off, size);
1156 		if (!err && t == BPF_READ && value_regno >= 0)
1157 			mark_reg_unknown(state->regs, value_regno);
1158 
1159 	} else if (reg->type == PTR_TO_CTX) {
1160 		enum bpf_reg_type reg_type = SCALAR_VALUE;
1161 
1162 		if (t == BPF_WRITE && value_regno >= 0 &&
1163 		    is_pointer_value(env, value_regno)) {
1164 			verbose("R%d leaks addr into ctx\n", value_regno);
1165 			return -EACCES;
1166 		}
1167 		/* ctx accesses must be at a fixed offset, so that we can
1168 		 * determine what type of data were returned.
1169 		 */
1170 		if (!tnum_is_const(reg->var_off)) {
1171 			char tn_buf[48];
1172 
1173 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1174 			verbose("variable ctx access var_off=%s off=%d size=%d",
1175 				tn_buf, off, size);
1176 			return -EACCES;
1177 		}
1178 		off += reg->var_off.value;
1179 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
1180 		if (!err && t == BPF_READ && value_regno >= 0) {
1181 			/* ctx access returns either a scalar, or a
1182 			 * PTR_TO_PACKET[_META,_END]. In the latter
1183 			 * case, we know the offset is zero.
1184 			 */
1185 			if (reg_type == SCALAR_VALUE)
1186 				mark_reg_unknown(state->regs, value_regno);
1187 			else
1188 				mark_reg_known_zero(state->regs, value_regno);
1189 			state->regs[value_regno].id = 0;
1190 			state->regs[value_regno].off = 0;
1191 			state->regs[value_regno].range = 0;
1192 			state->regs[value_regno].type = reg_type;
1193 		}
1194 
1195 	} else if (reg->type == PTR_TO_STACK) {
1196 		/* stack accesses must be at a fixed offset, so that we can
1197 		 * determine what type of data were returned.
1198 		 * See check_stack_read().
1199 		 */
1200 		if (!tnum_is_const(reg->var_off)) {
1201 			char tn_buf[48];
1202 
1203 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1204 			verbose("variable stack access var_off=%s off=%d size=%d",
1205 				tn_buf, off, size);
1206 			return -EACCES;
1207 		}
1208 		off += reg->var_off.value;
1209 		if (off >= 0 || off < -MAX_BPF_STACK) {
1210 			verbose("invalid stack off=%d size=%d\n", off, size);
1211 			return -EACCES;
1212 		}
1213 
1214 		if (env->prog->aux->stack_depth < -off)
1215 			env->prog->aux->stack_depth = -off;
1216 
1217 		if (t == BPF_WRITE) {
1218 			if (!env->allow_ptr_leaks &&
1219 			    state->stack_slot_type[MAX_BPF_STACK + off] == STACK_SPILL &&
1220 			    size != BPF_REG_SIZE) {
1221 				verbose("attempt to corrupt spilled pointer on stack\n");
1222 				return -EACCES;
1223 			}
1224 			err = check_stack_write(state, off, size, value_regno);
1225 		} else {
1226 			err = check_stack_read(state, off, size, value_regno);
1227 		}
1228 	} else if (reg_is_pkt_pointer(reg)) {
1229 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
1230 			verbose("cannot write into packet\n");
1231 			return -EACCES;
1232 		}
1233 		if (t == BPF_WRITE && value_regno >= 0 &&
1234 		    is_pointer_value(env, value_regno)) {
1235 			verbose("R%d leaks addr into packet\n", value_regno);
1236 			return -EACCES;
1237 		}
1238 		err = check_packet_access(env, regno, off, size);
1239 		if (!err && t == BPF_READ && value_regno >= 0)
1240 			mark_reg_unknown(state->regs, value_regno);
1241 	} else {
1242 		verbose("R%d invalid mem access '%s'\n",
1243 			regno, reg_type_str[reg->type]);
1244 		return -EACCES;
1245 	}
1246 
1247 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
1248 	    state->regs[value_regno].type == SCALAR_VALUE) {
1249 		/* b/h/w load zero-extends, mark upper bits as known 0 */
1250 		state->regs[value_regno].var_off = tnum_cast(
1251 					state->regs[value_regno].var_off, size);
1252 		__update_reg_bounds(&state->regs[value_regno]);
1253 	}
1254 	return err;
1255 }
1256 
1257 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
1258 {
1259 	int err;
1260 
1261 	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
1262 	    insn->imm != 0) {
1263 		verbose("BPF_XADD uses reserved fields\n");
1264 		return -EINVAL;
1265 	}
1266 
1267 	/* check src1 operand */
1268 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
1269 	if (err)
1270 		return err;
1271 
1272 	/* check src2 operand */
1273 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
1274 	if (err)
1275 		return err;
1276 
1277 	if (is_pointer_value(env, insn->src_reg)) {
1278 		verbose("R%d leaks addr into mem\n", insn->src_reg);
1279 		return -EACCES;
1280 	}
1281 
1282 	/* check whether atomic_add can read the memory */
1283 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1284 			       BPF_SIZE(insn->code), BPF_READ, -1);
1285 	if (err)
1286 		return err;
1287 
1288 	/* check whether atomic_add can write into the same memory */
1289 	return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1290 				BPF_SIZE(insn->code), BPF_WRITE, -1);
1291 }
1292 
1293 /* Does this register contain a constant zero? */
1294 static bool register_is_null(struct bpf_reg_state reg)
1295 {
1296 	return reg.type == SCALAR_VALUE && tnum_equals_const(reg.var_off, 0);
1297 }
1298 
1299 /* when register 'regno' is passed into function that will read 'access_size'
1300  * bytes from that pointer, make sure that it's within stack boundary
1301  * and all elements of stack are initialized.
1302  * Unlike most pointer bounds-checking functions, this one doesn't take an
1303  * 'off' argument, so it has to add in reg->off itself.
1304  */
1305 static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
1306 				int access_size, bool zero_size_allowed,
1307 				struct bpf_call_arg_meta *meta)
1308 {
1309 	struct bpf_verifier_state *state = &env->cur_state;
1310 	struct bpf_reg_state *regs = state->regs;
1311 	int off, i;
1312 
1313 	if (regs[regno].type != PTR_TO_STACK) {
1314 		/* Allow zero-byte read from NULL, regardless of pointer type */
1315 		if (zero_size_allowed && access_size == 0 &&
1316 		    register_is_null(regs[regno]))
1317 			return 0;
1318 
1319 		verbose("R%d type=%s expected=%s\n", regno,
1320 			reg_type_str[regs[regno].type],
1321 			reg_type_str[PTR_TO_STACK]);
1322 		return -EACCES;
1323 	}
1324 
1325 	/* Only allow fixed-offset stack reads */
1326 	if (!tnum_is_const(regs[regno].var_off)) {
1327 		char tn_buf[48];
1328 
1329 		tnum_strn(tn_buf, sizeof(tn_buf), regs[regno].var_off);
1330 		verbose("invalid variable stack read R%d var_off=%s\n",
1331 			regno, tn_buf);
1332 	}
1333 	off = regs[regno].off + regs[regno].var_off.value;
1334 	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
1335 	    access_size <= 0) {
1336 		verbose("invalid stack type R%d off=%d access_size=%d\n",
1337 			regno, off, access_size);
1338 		return -EACCES;
1339 	}
1340 
1341 	if (env->prog->aux->stack_depth < -off)
1342 		env->prog->aux->stack_depth = -off;
1343 
1344 	if (meta && meta->raw_mode) {
1345 		meta->access_size = access_size;
1346 		meta->regno = regno;
1347 		return 0;
1348 	}
1349 
1350 	for (i = 0; i < access_size; i++) {
1351 		if (state->stack_slot_type[MAX_BPF_STACK + off + i] != STACK_MISC) {
1352 			verbose("invalid indirect read from stack off %d+%d size %d\n",
1353 				off, i, access_size);
1354 			return -EACCES;
1355 		}
1356 	}
1357 	return 0;
1358 }
1359 
1360 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
1361 				   int access_size, bool zero_size_allowed,
1362 				   struct bpf_call_arg_meta *meta)
1363 {
1364 	struct bpf_reg_state *regs = env->cur_state.regs, *reg = &regs[regno];
1365 
1366 	switch (reg->type) {
1367 	case PTR_TO_PACKET:
1368 	case PTR_TO_PACKET_META:
1369 		return check_packet_access(env, regno, reg->off, access_size);
1370 	case PTR_TO_MAP_VALUE:
1371 		return check_map_access(env, regno, reg->off, access_size);
1372 	default: /* scalar_value|ptr_to_stack or invalid ptr */
1373 		return check_stack_boundary(env, regno, access_size,
1374 					    zero_size_allowed, meta);
1375 	}
1376 }
1377 
1378 static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
1379 			  enum bpf_arg_type arg_type,
1380 			  struct bpf_call_arg_meta *meta)
1381 {
1382 	struct bpf_reg_state *regs = env->cur_state.regs, *reg = &regs[regno];
1383 	enum bpf_reg_type expected_type, type = reg->type;
1384 	int err = 0;
1385 
1386 	if (arg_type == ARG_DONTCARE)
1387 		return 0;
1388 
1389 	err = check_reg_arg(env, regno, SRC_OP);
1390 	if (err)
1391 		return err;
1392 
1393 	if (arg_type == ARG_ANYTHING) {
1394 		if (is_pointer_value(env, regno)) {
1395 			verbose("R%d leaks addr into helper function\n", regno);
1396 			return -EACCES;
1397 		}
1398 		return 0;
1399 	}
1400 
1401 	if (type_is_pkt_pointer(type) &&
1402 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
1403 		verbose("helper access to the packet is not allowed\n");
1404 		return -EACCES;
1405 	}
1406 
1407 	if (arg_type == ARG_PTR_TO_MAP_KEY ||
1408 	    arg_type == ARG_PTR_TO_MAP_VALUE) {
1409 		expected_type = PTR_TO_STACK;
1410 		if (!type_is_pkt_pointer(type) &&
1411 		    type != expected_type)
1412 			goto err_type;
1413 	} else if (arg_type == ARG_CONST_SIZE ||
1414 		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
1415 		expected_type = SCALAR_VALUE;
1416 		if (type != expected_type)
1417 			goto err_type;
1418 	} else if (arg_type == ARG_CONST_MAP_PTR) {
1419 		expected_type = CONST_PTR_TO_MAP;
1420 		if (type != expected_type)
1421 			goto err_type;
1422 	} else if (arg_type == ARG_PTR_TO_CTX) {
1423 		expected_type = PTR_TO_CTX;
1424 		if (type != expected_type)
1425 			goto err_type;
1426 	} else if (arg_type == ARG_PTR_TO_MEM ||
1427 		   arg_type == ARG_PTR_TO_UNINIT_MEM) {
1428 		expected_type = PTR_TO_STACK;
1429 		/* One exception here. In case function allows for NULL to be
1430 		 * passed in as argument, it's a SCALAR_VALUE type. Final test
1431 		 * happens during stack boundary checking.
1432 		 */
1433 		if (register_is_null(*reg))
1434 			/* final test in check_stack_boundary() */;
1435 		else if (!type_is_pkt_pointer(type) &&
1436 			 type != PTR_TO_MAP_VALUE &&
1437 			 type != expected_type)
1438 			goto err_type;
1439 		meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
1440 	} else {
1441 		verbose("unsupported arg_type %d\n", arg_type);
1442 		return -EFAULT;
1443 	}
1444 
1445 	if (arg_type == ARG_CONST_MAP_PTR) {
1446 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
1447 		meta->map_ptr = reg->map_ptr;
1448 	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
1449 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
1450 		 * check that [key, key + map->key_size) are within
1451 		 * stack limits and initialized
1452 		 */
1453 		if (!meta->map_ptr) {
1454 			/* in function declaration map_ptr must come before
1455 			 * map_key, so that it's verified and known before
1456 			 * we have to check map_key here. Otherwise it means
1457 			 * that kernel subsystem misconfigured verifier
1458 			 */
1459 			verbose("invalid map_ptr to access map->key\n");
1460 			return -EACCES;
1461 		}
1462 		if (type_is_pkt_pointer(type))
1463 			err = check_packet_access(env, regno, reg->off,
1464 						  meta->map_ptr->key_size);
1465 		else
1466 			err = check_stack_boundary(env, regno,
1467 						   meta->map_ptr->key_size,
1468 						   false, NULL);
1469 	} else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
1470 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
1471 		 * check [value, value + map->value_size) validity
1472 		 */
1473 		if (!meta->map_ptr) {
1474 			/* kernel subsystem misconfigured verifier */
1475 			verbose("invalid map_ptr to access map->value\n");
1476 			return -EACCES;
1477 		}
1478 		if (type_is_pkt_pointer(type))
1479 			err = check_packet_access(env, regno, reg->off,
1480 						  meta->map_ptr->value_size);
1481 		else
1482 			err = check_stack_boundary(env, regno,
1483 						   meta->map_ptr->value_size,
1484 						   false, NULL);
1485 	} else if (arg_type == ARG_CONST_SIZE ||
1486 		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
1487 		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
1488 
1489 		/* bpf_xxx(..., buf, len) call will access 'len' bytes
1490 		 * from stack pointer 'buf'. Check it
1491 		 * note: regno == len, regno - 1 == buf
1492 		 */
1493 		if (regno == 0) {
1494 			/* kernel subsystem misconfigured verifier */
1495 			verbose("ARG_CONST_SIZE cannot be first argument\n");
1496 			return -EACCES;
1497 		}
1498 
1499 		/* The register is SCALAR_VALUE; the access check
1500 		 * happens using its boundaries.
1501 		 */
1502 
1503 		if (!tnum_is_const(reg->var_off))
1504 			/* For unprivileged variable accesses, disable raw
1505 			 * mode so that the program is required to
1506 			 * initialize all the memory that the helper could
1507 			 * just partially fill up.
1508 			 */
1509 			meta = NULL;
1510 
1511 		if (reg->smin_value < 0) {
1512 			verbose("R%d min value is negative, either use unsigned or 'var &= const'\n",
1513 				regno);
1514 			return -EACCES;
1515 		}
1516 
1517 		if (reg->umin_value == 0) {
1518 			err = check_helper_mem_access(env, regno - 1, 0,
1519 						      zero_size_allowed,
1520 						      meta);
1521 			if (err)
1522 				return err;
1523 		}
1524 
1525 		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
1526 			verbose("R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
1527 				regno);
1528 			return -EACCES;
1529 		}
1530 		err = check_helper_mem_access(env, regno - 1,
1531 					      reg->umax_value,
1532 					      zero_size_allowed, meta);
1533 	}
1534 
1535 	return err;
1536 err_type:
1537 	verbose("R%d type=%s expected=%s\n", regno,
1538 		reg_type_str[type], reg_type_str[expected_type]);
1539 	return -EACCES;
1540 }
1541 
1542 static int check_map_func_compatibility(struct bpf_map *map, int func_id)
1543 {
1544 	if (!map)
1545 		return 0;
1546 
1547 	/* We need a two way check, first is from map perspective ... */
1548 	switch (map->map_type) {
1549 	case BPF_MAP_TYPE_PROG_ARRAY:
1550 		if (func_id != BPF_FUNC_tail_call)
1551 			goto error;
1552 		break;
1553 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
1554 		if (func_id != BPF_FUNC_perf_event_read &&
1555 		    func_id != BPF_FUNC_perf_event_output)
1556 			goto error;
1557 		break;
1558 	case BPF_MAP_TYPE_STACK_TRACE:
1559 		if (func_id != BPF_FUNC_get_stackid)
1560 			goto error;
1561 		break;
1562 	case BPF_MAP_TYPE_CGROUP_ARRAY:
1563 		if (func_id != BPF_FUNC_skb_under_cgroup &&
1564 		    func_id != BPF_FUNC_current_task_under_cgroup)
1565 			goto error;
1566 		break;
1567 	/* devmap returns a pointer to a live net_device ifindex that we cannot
1568 	 * allow to be modified from bpf side. So do not allow lookup elements
1569 	 * for now.
1570 	 */
1571 	case BPF_MAP_TYPE_DEVMAP:
1572 		if (func_id != BPF_FUNC_redirect_map)
1573 			goto error;
1574 		break;
1575 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
1576 	case BPF_MAP_TYPE_HASH_OF_MAPS:
1577 		if (func_id != BPF_FUNC_map_lookup_elem)
1578 			goto error;
1579 		break;
1580 	case BPF_MAP_TYPE_SOCKMAP:
1581 		if (func_id != BPF_FUNC_sk_redirect_map &&
1582 		    func_id != BPF_FUNC_sock_map_update &&
1583 		    func_id != BPF_FUNC_map_delete_elem)
1584 			goto error;
1585 		break;
1586 	default:
1587 		break;
1588 	}
1589 
1590 	/* ... and second from the function itself. */
1591 	switch (func_id) {
1592 	case BPF_FUNC_tail_call:
1593 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1594 			goto error;
1595 		break;
1596 	case BPF_FUNC_perf_event_read:
1597 	case BPF_FUNC_perf_event_output:
1598 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
1599 			goto error;
1600 		break;
1601 	case BPF_FUNC_get_stackid:
1602 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
1603 			goto error;
1604 		break;
1605 	case BPF_FUNC_current_task_under_cgroup:
1606 	case BPF_FUNC_skb_under_cgroup:
1607 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
1608 			goto error;
1609 		break;
1610 	case BPF_FUNC_redirect_map:
1611 		if (map->map_type != BPF_MAP_TYPE_DEVMAP)
1612 			goto error;
1613 		break;
1614 	case BPF_FUNC_sk_redirect_map:
1615 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
1616 			goto error;
1617 		break;
1618 	case BPF_FUNC_sock_map_update:
1619 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
1620 			goto error;
1621 		break;
1622 	default:
1623 		break;
1624 	}
1625 
1626 	return 0;
1627 error:
1628 	verbose("cannot pass map_type %d into func %s#%d\n",
1629 		map->map_type, func_id_name(func_id), func_id);
1630 	return -EINVAL;
1631 }
1632 
1633 static int check_raw_mode(const struct bpf_func_proto *fn)
1634 {
1635 	int count = 0;
1636 
1637 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
1638 		count++;
1639 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
1640 		count++;
1641 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
1642 		count++;
1643 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
1644 		count++;
1645 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
1646 		count++;
1647 
1648 	return count > 1 ? -EINVAL : 0;
1649 }
1650 
1651 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
1652  * are now invalid, so turn them into unknown SCALAR_VALUE.
1653  */
1654 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
1655 {
1656 	struct bpf_verifier_state *state = &env->cur_state;
1657 	struct bpf_reg_state *regs = state->regs, *reg;
1658 	int i;
1659 
1660 	for (i = 0; i < MAX_BPF_REG; i++)
1661 		if (reg_is_pkt_pointer_any(&regs[i]))
1662 			mark_reg_unknown(regs, i);
1663 
1664 	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
1665 		if (state->stack_slot_type[i] != STACK_SPILL)
1666 			continue;
1667 		reg = &state->spilled_regs[i / BPF_REG_SIZE];
1668 		if (reg_is_pkt_pointer_any(reg))
1669 			__mark_reg_unknown(reg);
1670 	}
1671 }
1672 
1673 static int check_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
1674 {
1675 	struct bpf_verifier_state *state = &env->cur_state;
1676 	const struct bpf_func_proto *fn = NULL;
1677 	struct bpf_reg_state *regs = state->regs;
1678 	struct bpf_call_arg_meta meta;
1679 	bool changes_data;
1680 	int i, err;
1681 
1682 	/* find function prototype */
1683 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
1684 		verbose("invalid func %s#%d\n", func_id_name(func_id), func_id);
1685 		return -EINVAL;
1686 	}
1687 
1688 	if (env->prog->aux->ops->get_func_proto)
1689 		fn = env->prog->aux->ops->get_func_proto(func_id);
1690 
1691 	if (!fn) {
1692 		verbose("unknown func %s#%d\n", func_id_name(func_id), func_id);
1693 		return -EINVAL;
1694 	}
1695 
1696 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
1697 	if (!env->prog->gpl_compatible && fn->gpl_only) {
1698 		verbose("cannot call GPL only function from proprietary program\n");
1699 		return -EINVAL;
1700 	}
1701 
1702 	changes_data = bpf_helper_changes_pkt_data(fn->func);
1703 
1704 	memset(&meta, 0, sizeof(meta));
1705 	meta.pkt_access = fn->pkt_access;
1706 
1707 	/* We only support one arg being in raw mode at the moment, which
1708 	 * is sufficient for the helper functions we have right now.
1709 	 */
1710 	err = check_raw_mode(fn);
1711 	if (err) {
1712 		verbose("kernel subsystem misconfigured func %s#%d\n",
1713 			func_id_name(func_id), func_id);
1714 		return err;
1715 	}
1716 
1717 	/* check args */
1718 	err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
1719 	if (err)
1720 		return err;
1721 	err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
1722 	if (err)
1723 		return err;
1724 	err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
1725 	if (err)
1726 		return err;
1727 	err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
1728 	if (err)
1729 		return err;
1730 	err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
1731 	if (err)
1732 		return err;
1733 
1734 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
1735 	 * is inferred from register state.
1736 	 */
1737 	for (i = 0; i < meta.access_size; i++) {
1738 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, BPF_WRITE, -1);
1739 		if (err)
1740 			return err;
1741 	}
1742 
1743 	/* reset caller saved regs */
1744 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
1745 		mark_reg_not_init(regs, caller_saved[i]);
1746 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
1747 	}
1748 
1749 	/* update return register (already marked as written above) */
1750 	if (fn->ret_type == RET_INTEGER) {
1751 		/* sets type to SCALAR_VALUE */
1752 		mark_reg_unknown(regs, BPF_REG_0);
1753 	} else if (fn->ret_type == RET_VOID) {
1754 		regs[BPF_REG_0].type = NOT_INIT;
1755 	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
1756 		struct bpf_insn_aux_data *insn_aux;
1757 
1758 		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
1759 		/* There is no offset yet applied, variable or fixed */
1760 		mark_reg_known_zero(regs, BPF_REG_0);
1761 		regs[BPF_REG_0].off = 0;
1762 		/* remember map_ptr, so that check_map_access()
1763 		 * can check 'value_size' boundary of memory access
1764 		 * to map element returned from bpf_map_lookup_elem()
1765 		 */
1766 		if (meta.map_ptr == NULL) {
1767 			verbose("kernel subsystem misconfigured verifier\n");
1768 			return -EINVAL;
1769 		}
1770 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
1771 		regs[BPF_REG_0].id = ++env->id_gen;
1772 		insn_aux = &env->insn_aux_data[insn_idx];
1773 		if (!insn_aux->map_ptr)
1774 			insn_aux->map_ptr = meta.map_ptr;
1775 		else if (insn_aux->map_ptr != meta.map_ptr)
1776 			insn_aux->map_ptr = BPF_MAP_PTR_POISON;
1777 	} else {
1778 		verbose("unknown return type %d of func %s#%d\n",
1779 			fn->ret_type, func_id_name(func_id), func_id);
1780 		return -EINVAL;
1781 	}
1782 
1783 	err = check_map_func_compatibility(meta.map_ptr, func_id);
1784 	if (err)
1785 		return err;
1786 
1787 	if (changes_data)
1788 		clear_all_pkt_pointers(env);
1789 	return 0;
1790 }
1791 
1792 static void coerce_reg_to_32(struct bpf_reg_state *reg)
1793 {
1794 	/* clear high 32 bits */
1795 	reg->var_off = tnum_cast(reg->var_off, 4);
1796 	/* Update bounds */
1797 	__update_reg_bounds(reg);
1798 }
1799 
1800 static bool signed_add_overflows(s64 a, s64 b)
1801 {
1802 	/* Do the add in u64, where overflow is well-defined */
1803 	s64 res = (s64)((u64)a + (u64)b);
1804 
1805 	if (b < 0)
1806 		return res > a;
1807 	return res < a;
1808 }
1809 
1810 static bool signed_sub_overflows(s64 a, s64 b)
1811 {
1812 	/* Do the sub in u64, where overflow is well-defined */
1813 	s64 res = (s64)((u64)a - (u64)b);
1814 
1815 	if (b < 0)
1816 		return res < a;
1817 	return res > a;
1818 }
1819 
1820 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
1821  * Caller should also handle BPF_MOV case separately.
1822  * If we return -EACCES, caller may want to try again treating pointer as a
1823  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
1824  */
1825 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
1826 				   struct bpf_insn *insn,
1827 				   const struct bpf_reg_state *ptr_reg,
1828 				   const struct bpf_reg_state *off_reg)
1829 {
1830 	struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg;
1831 	bool known = tnum_is_const(off_reg->var_off);
1832 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
1833 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
1834 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
1835 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
1836 	u8 opcode = BPF_OP(insn->code);
1837 	u32 dst = insn->dst_reg;
1838 
1839 	dst_reg = &regs[dst];
1840 
1841 	if (WARN_ON_ONCE(known && (smin_val != smax_val))) {
1842 		print_verifier_state(&env->cur_state);
1843 		verbose("verifier internal error: known but bad sbounds\n");
1844 		return -EINVAL;
1845 	}
1846 	if (WARN_ON_ONCE(known && (umin_val != umax_val))) {
1847 		print_verifier_state(&env->cur_state);
1848 		verbose("verifier internal error: known but bad ubounds\n");
1849 		return -EINVAL;
1850 	}
1851 
1852 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
1853 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
1854 		if (!env->allow_ptr_leaks)
1855 			verbose("R%d 32-bit pointer arithmetic prohibited\n",
1856 				dst);
1857 		return -EACCES;
1858 	}
1859 
1860 	if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
1861 		if (!env->allow_ptr_leaks)
1862 			verbose("R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n",
1863 				dst);
1864 		return -EACCES;
1865 	}
1866 	if (ptr_reg->type == CONST_PTR_TO_MAP) {
1867 		if (!env->allow_ptr_leaks)
1868 			verbose("R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n",
1869 				dst);
1870 		return -EACCES;
1871 	}
1872 	if (ptr_reg->type == PTR_TO_PACKET_END) {
1873 		if (!env->allow_ptr_leaks)
1874 			verbose("R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n",
1875 				dst);
1876 		return -EACCES;
1877 	}
1878 
1879 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
1880 	 * The id may be overwritten later if we create a new variable offset.
1881 	 */
1882 	dst_reg->type = ptr_reg->type;
1883 	dst_reg->id = ptr_reg->id;
1884 
1885 	switch (opcode) {
1886 	case BPF_ADD:
1887 		/* We can take a fixed offset as long as it doesn't overflow
1888 		 * the s32 'off' field
1889 		 */
1890 		if (known && (ptr_reg->off + smin_val ==
1891 			      (s64)(s32)(ptr_reg->off + smin_val))) {
1892 			/* pointer += K.  Accumulate it into fixed offset */
1893 			dst_reg->smin_value = smin_ptr;
1894 			dst_reg->smax_value = smax_ptr;
1895 			dst_reg->umin_value = umin_ptr;
1896 			dst_reg->umax_value = umax_ptr;
1897 			dst_reg->var_off = ptr_reg->var_off;
1898 			dst_reg->off = ptr_reg->off + smin_val;
1899 			dst_reg->range = ptr_reg->range;
1900 			break;
1901 		}
1902 		/* A new variable offset is created.  Note that off_reg->off
1903 		 * == 0, since it's a scalar.
1904 		 * dst_reg gets the pointer type and since some positive
1905 		 * integer value was added to the pointer, give it a new 'id'
1906 		 * if it's a PTR_TO_PACKET.
1907 		 * this creates a new 'base' pointer, off_reg (variable) gets
1908 		 * added into the variable offset, and we copy the fixed offset
1909 		 * from ptr_reg.
1910 		 */
1911 		if (signed_add_overflows(smin_ptr, smin_val) ||
1912 		    signed_add_overflows(smax_ptr, smax_val)) {
1913 			dst_reg->smin_value = S64_MIN;
1914 			dst_reg->smax_value = S64_MAX;
1915 		} else {
1916 			dst_reg->smin_value = smin_ptr + smin_val;
1917 			dst_reg->smax_value = smax_ptr + smax_val;
1918 		}
1919 		if (umin_ptr + umin_val < umin_ptr ||
1920 		    umax_ptr + umax_val < umax_ptr) {
1921 			dst_reg->umin_value = 0;
1922 			dst_reg->umax_value = U64_MAX;
1923 		} else {
1924 			dst_reg->umin_value = umin_ptr + umin_val;
1925 			dst_reg->umax_value = umax_ptr + umax_val;
1926 		}
1927 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
1928 		dst_reg->off = ptr_reg->off;
1929 		if (reg_is_pkt_pointer(ptr_reg)) {
1930 			dst_reg->id = ++env->id_gen;
1931 			/* something was added to pkt_ptr, set range to zero */
1932 			dst_reg->range = 0;
1933 		}
1934 		break;
1935 	case BPF_SUB:
1936 		if (dst_reg == off_reg) {
1937 			/* scalar -= pointer.  Creates an unknown scalar */
1938 			if (!env->allow_ptr_leaks)
1939 				verbose("R%d tried to subtract pointer from scalar\n",
1940 					dst);
1941 			return -EACCES;
1942 		}
1943 		/* We don't allow subtraction from FP, because (according to
1944 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
1945 		 * be able to deal with it.
1946 		 */
1947 		if (ptr_reg->type == PTR_TO_STACK) {
1948 			if (!env->allow_ptr_leaks)
1949 				verbose("R%d subtraction from stack pointer prohibited\n",
1950 					dst);
1951 			return -EACCES;
1952 		}
1953 		if (known && (ptr_reg->off - smin_val ==
1954 			      (s64)(s32)(ptr_reg->off - smin_val))) {
1955 			/* pointer -= K.  Subtract it from fixed offset */
1956 			dst_reg->smin_value = smin_ptr;
1957 			dst_reg->smax_value = smax_ptr;
1958 			dst_reg->umin_value = umin_ptr;
1959 			dst_reg->umax_value = umax_ptr;
1960 			dst_reg->var_off = ptr_reg->var_off;
1961 			dst_reg->id = ptr_reg->id;
1962 			dst_reg->off = ptr_reg->off - smin_val;
1963 			dst_reg->range = ptr_reg->range;
1964 			break;
1965 		}
1966 		/* A new variable offset is created.  If the subtrahend is known
1967 		 * nonnegative, then any reg->range we had before is still good.
1968 		 */
1969 		if (signed_sub_overflows(smin_ptr, smax_val) ||
1970 		    signed_sub_overflows(smax_ptr, smin_val)) {
1971 			/* Overflow possible, we know nothing */
1972 			dst_reg->smin_value = S64_MIN;
1973 			dst_reg->smax_value = S64_MAX;
1974 		} else {
1975 			dst_reg->smin_value = smin_ptr - smax_val;
1976 			dst_reg->smax_value = smax_ptr - smin_val;
1977 		}
1978 		if (umin_ptr < umax_val) {
1979 			/* Overflow possible, we know nothing */
1980 			dst_reg->umin_value = 0;
1981 			dst_reg->umax_value = U64_MAX;
1982 		} else {
1983 			/* Cannot overflow (as long as bounds are consistent) */
1984 			dst_reg->umin_value = umin_ptr - umax_val;
1985 			dst_reg->umax_value = umax_ptr - umin_val;
1986 		}
1987 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
1988 		dst_reg->off = ptr_reg->off;
1989 		if (reg_is_pkt_pointer(ptr_reg)) {
1990 			dst_reg->id = ++env->id_gen;
1991 			/* something was added to pkt_ptr, set range to zero */
1992 			if (smin_val < 0)
1993 				dst_reg->range = 0;
1994 		}
1995 		break;
1996 	case BPF_AND:
1997 	case BPF_OR:
1998 	case BPF_XOR:
1999 		/* bitwise ops on pointers are troublesome, prohibit for now.
2000 		 * (However, in principle we could allow some cases, e.g.
2001 		 * ptr &= ~3 which would reduce min_value by 3.)
2002 		 */
2003 		if (!env->allow_ptr_leaks)
2004 			verbose("R%d bitwise operator %s on pointer prohibited\n",
2005 				dst, bpf_alu_string[opcode >> 4]);
2006 		return -EACCES;
2007 	default:
2008 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
2009 		if (!env->allow_ptr_leaks)
2010 			verbose("R%d pointer arithmetic with %s operator prohibited\n",
2011 				dst, bpf_alu_string[opcode >> 4]);
2012 		return -EACCES;
2013 	}
2014 
2015 	__update_reg_bounds(dst_reg);
2016 	__reg_deduce_bounds(dst_reg);
2017 	__reg_bound_offset(dst_reg);
2018 	return 0;
2019 }
2020 
2021 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
2022 				      struct bpf_insn *insn,
2023 				      struct bpf_reg_state *dst_reg,
2024 				      struct bpf_reg_state src_reg)
2025 {
2026 	struct bpf_reg_state *regs = env->cur_state.regs;
2027 	u8 opcode = BPF_OP(insn->code);
2028 	bool src_known, dst_known;
2029 	s64 smin_val, smax_val;
2030 	u64 umin_val, umax_val;
2031 
2032 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
2033 		/* 32-bit ALU ops are (32,32)->64 */
2034 		coerce_reg_to_32(dst_reg);
2035 		coerce_reg_to_32(&src_reg);
2036 	}
2037 	smin_val = src_reg.smin_value;
2038 	smax_val = src_reg.smax_value;
2039 	umin_val = src_reg.umin_value;
2040 	umax_val = src_reg.umax_value;
2041 	src_known = tnum_is_const(src_reg.var_off);
2042 	dst_known = tnum_is_const(dst_reg->var_off);
2043 
2044 	switch (opcode) {
2045 	case BPF_ADD:
2046 		if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
2047 		    signed_add_overflows(dst_reg->smax_value, smax_val)) {
2048 			dst_reg->smin_value = S64_MIN;
2049 			dst_reg->smax_value = S64_MAX;
2050 		} else {
2051 			dst_reg->smin_value += smin_val;
2052 			dst_reg->smax_value += smax_val;
2053 		}
2054 		if (dst_reg->umin_value + umin_val < umin_val ||
2055 		    dst_reg->umax_value + umax_val < umax_val) {
2056 			dst_reg->umin_value = 0;
2057 			dst_reg->umax_value = U64_MAX;
2058 		} else {
2059 			dst_reg->umin_value += umin_val;
2060 			dst_reg->umax_value += umax_val;
2061 		}
2062 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
2063 		break;
2064 	case BPF_SUB:
2065 		if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
2066 		    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
2067 			/* Overflow possible, we know nothing */
2068 			dst_reg->smin_value = S64_MIN;
2069 			dst_reg->smax_value = S64_MAX;
2070 		} else {
2071 			dst_reg->smin_value -= smax_val;
2072 			dst_reg->smax_value -= smin_val;
2073 		}
2074 		if (dst_reg->umin_value < umax_val) {
2075 			/* Overflow possible, we know nothing */
2076 			dst_reg->umin_value = 0;
2077 			dst_reg->umax_value = U64_MAX;
2078 		} else {
2079 			/* Cannot overflow (as long as bounds are consistent) */
2080 			dst_reg->umin_value -= umax_val;
2081 			dst_reg->umax_value -= umin_val;
2082 		}
2083 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
2084 		break;
2085 	case BPF_MUL:
2086 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
2087 		if (smin_val < 0 || dst_reg->smin_value < 0) {
2088 			/* Ain't nobody got time to multiply that sign */
2089 			__mark_reg_unbounded(dst_reg);
2090 			__update_reg_bounds(dst_reg);
2091 			break;
2092 		}
2093 		/* Both values are positive, so we can work with unsigned and
2094 		 * copy the result to signed (unless it exceeds S64_MAX).
2095 		 */
2096 		if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
2097 			/* Potential overflow, we know nothing */
2098 			__mark_reg_unbounded(dst_reg);
2099 			/* (except what we can learn from the var_off) */
2100 			__update_reg_bounds(dst_reg);
2101 			break;
2102 		}
2103 		dst_reg->umin_value *= umin_val;
2104 		dst_reg->umax_value *= umax_val;
2105 		if (dst_reg->umax_value > S64_MAX) {
2106 			/* Overflow possible, we know nothing */
2107 			dst_reg->smin_value = S64_MIN;
2108 			dst_reg->smax_value = S64_MAX;
2109 		} else {
2110 			dst_reg->smin_value = dst_reg->umin_value;
2111 			dst_reg->smax_value = dst_reg->umax_value;
2112 		}
2113 		break;
2114 	case BPF_AND:
2115 		if (src_known && dst_known) {
2116 			__mark_reg_known(dst_reg, dst_reg->var_off.value &
2117 						  src_reg.var_off.value);
2118 			break;
2119 		}
2120 		/* We get our minimum from the var_off, since that's inherently
2121 		 * bitwise.  Our maximum is the minimum of the operands' maxima.
2122 		 */
2123 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
2124 		dst_reg->umin_value = dst_reg->var_off.value;
2125 		dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
2126 		if (dst_reg->smin_value < 0 || smin_val < 0) {
2127 			/* Lose signed bounds when ANDing negative numbers,
2128 			 * ain't nobody got time for that.
2129 			 */
2130 			dst_reg->smin_value = S64_MIN;
2131 			dst_reg->smax_value = S64_MAX;
2132 		} else {
2133 			/* ANDing two positives gives a positive, so safe to
2134 			 * cast result into s64.
2135 			 */
2136 			dst_reg->smin_value = dst_reg->umin_value;
2137 			dst_reg->smax_value = dst_reg->umax_value;
2138 		}
2139 		/* We may learn something more from the var_off */
2140 		__update_reg_bounds(dst_reg);
2141 		break;
2142 	case BPF_OR:
2143 		if (src_known && dst_known) {
2144 			__mark_reg_known(dst_reg, dst_reg->var_off.value |
2145 						  src_reg.var_off.value);
2146 			break;
2147 		}
2148 		/* We get our maximum from the var_off, and our minimum is the
2149 		 * maximum of the operands' minima
2150 		 */
2151 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
2152 		dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
2153 		dst_reg->umax_value = dst_reg->var_off.value |
2154 				      dst_reg->var_off.mask;
2155 		if (dst_reg->smin_value < 0 || smin_val < 0) {
2156 			/* Lose signed bounds when ORing negative numbers,
2157 			 * ain't nobody got time for that.
2158 			 */
2159 			dst_reg->smin_value = S64_MIN;
2160 			dst_reg->smax_value = S64_MAX;
2161 		} else {
2162 			/* ORing two positives gives a positive, so safe to
2163 			 * cast result into s64.
2164 			 */
2165 			dst_reg->smin_value = dst_reg->umin_value;
2166 			dst_reg->smax_value = dst_reg->umax_value;
2167 		}
2168 		/* We may learn something more from the var_off */
2169 		__update_reg_bounds(dst_reg);
2170 		break;
2171 	case BPF_LSH:
2172 		if (umax_val > 63) {
2173 			/* Shifts greater than 63 are undefined.  This includes
2174 			 * shifts by a negative number.
2175 			 */
2176 			mark_reg_unknown(regs, insn->dst_reg);
2177 			break;
2178 		}
2179 		/* We lose all sign bit information (except what we can pick
2180 		 * up from var_off)
2181 		 */
2182 		dst_reg->smin_value = S64_MIN;
2183 		dst_reg->smax_value = S64_MAX;
2184 		/* If we might shift our top bit out, then we know nothing */
2185 		if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
2186 			dst_reg->umin_value = 0;
2187 			dst_reg->umax_value = U64_MAX;
2188 		} else {
2189 			dst_reg->umin_value <<= umin_val;
2190 			dst_reg->umax_value <<= umax_val;
2191 		}
2192 		if (src_known)
2193 			dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
2194 		else
2195 			dst_reg->var_off = tnum_lshift(tnum_unknown, umin_val);
2196 		/* We may learn something more from the var_off */
2197 		__update_reg_bounds(dst_reg);
2198 		break;
2199 	case BPF_RSH:
2200 		if (umax_val > 63) {
2201 			/* Shifts greater than 63 are undefined.  This includes
2202 			 * shifts by a negative number.
2203 			 */
2204 			mark_reg_unknown(regs, insn->dst_reg);
2205 			break;
2206 		}
2207 		/* BPF_RSH is an unsigned shift, so make the appropriate casts */
2208 		if (dst_reg->smin_value < 0) {
2209 			if (umin_val) {
2210 				/* Sign bit will be cleared */
2211 				dst_reg->smin_value = 0;
2212 			} else {
2213 				/* Lost sign bit information */
2214 				dst_reg->smin_value = S64_MIN;
2215 				dst_reg->smax_value = S64_MAX;
2216 			}
2217 		} else {
2218 			dst_reg->smin_value =
2219 				(u64)(dst_reg->smin_value) >> umax_val;
2220 		}
2221 		if (src_known)
2222 			dst_reg->var_off = tnum_rshift(dst_reg->var_off,
2223 						       umin_val);
2224 		else
2225 			dst_reg->var_off = tnum_rshift(tnum_unknown, umin_val);
2226 		dst_reg->umin_value >>= umax_val;
2227 		dst_reg->umax_value >>= umin_val;
2228 		/* We may learn something more from the var_off */
2229 		__update_reg_bounds(dst_reg);
2230 		break;
2231 	default:
2232 		mark_reg_unknown(regs, insn->dst_reg);
2233 		break;
2234 	}
2235 
2236 	__reg_deduce_bounds(dst_reg);
2237 	__reg_bound_offset(dst_reg);
2238 	return 0;
2239 }
2240 
2241 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
2242  * and var_off.
2243  */
2244 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
2245 				   struct bpf_insn *insn)
2246 {
2247 	struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg, *src_reg;
2248 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
2249 	u8 opcode = BPF_OP(insn->code);
2250 	int rc;
2251 
2252 	dst_reg = &regs[insn->dst_reg];
2253 	src_reg = NULL;
2254 	if (dst_reg->type != SCALAR_VALUE)
2255 		ptr_reg = dst_reg;
2256 	if (BPF_SRC(insn->code) == BPF_X) {
2257 		src_reg = &regs[insn->src_reg];
2258 		if (src_reg->type != SCALAR_VALUE) {
2259 			if (dst_reg->type != SCALAR_VALUE) {
2260 				/* Combining two pointers by any ALU op yields
2261 				 * an arbitrary scalar.
2262 				 */
2263 				if (!env->allow_ptr_leaks) {
2264 					verbose("R%d pointer %s pointer prohibited\n",
2265 						insn->dst_reg,
2266 						bpf_alu_string[opcode >> 4]);
2267 					return -EACCES;
2268 				}
2269 				mark_reg_unknown(regs, insn->dst_reg);
2270 				return 0;
2271 			} else {
2272 				/* scalar += pointer
2273 				 * This is legal, but we have to reverse our
2274 				 * src/dest handling in computing the range
2275 				 */
2276 				rc = adjust_ptr_min_max_vals(env, insn,
2277 							     src_reg, dst_reg);
2278 				if (rc == -EACCES && env->allow_ptr_leaks) {
2279 					/* scalar += unknown scalar */
2280 					__mark_reg_unknown(&off_reg);
2281 					return adjust_scalar_min_max_vals(
2282 							env, insn,
2283 							dst_reg, off_reg);
2284 				}
2285 				return rc;
2286 			}
2287 		} else if (ptr_reg) {
2288 			/* pointer += scalar */
2289 			rc = adjust_ptr_min_max_vals(env, insn,
2290 						     dst_reg, src_reg);
2291 			if (rc == -EACCES && env->allow_ptr_leaks) {
2292 				/* unknown scalar += scalar */
2293 				__mark_reg_unknown(dst_reg);
2294 				return adjust_scalar_min_max_vals(
2295 						env, insn, dst_reg, *src_reg);
2296 			}
2297 			return rc;
2298 		}
2299 	} else {
2300 		/* Pretend the src is a reg with a known value, since we only
2301 		 * need to be able to read from this state.
2302 		 */
2303 		off_reg.type = SCALAR_VALUE;
2304 		__mark_reg_known(&off_reg, insn->imm);
2305 		src_reg = &off_reg;
2306 		if (ptr_reg) { /* pointer += K */
2307 			rc = adjust_ptr_min_max_vals(env, insn,
2308 						     ptr_reg, src_reg);
2309 			if (rc == -EACCES && env->allow_ptr_leaks) {
2310 				/* unknown scalar += K */
2311 				__mark_reg_unknown(dst_reg);
2312 				return adjust_scalar_min_max_vals(
2313 						env, insn, dst_reg, off_reg);
2314 			}
2315 			return rc;
2316 		}
2317 	}
2318 
2319 	/* Got here implies adding two SCALAR_VALUEs */
2320 	if (WARN_ON_ONCE(ptr_reg)) {
2321 		print_verifier_state(&env->cur_state);
2322 		verbose("verifier internal error: unexpected ptr_reg\n");
2323 		return -EINVAL;
2324 	}
2325 	if (WARN_ON(!src_reg)) {
2326 		print_verifier_state(&env->cur_state);
2327 		verbose("verifier internal error: no src_reg\n");
2328 		return -EINVAL;
2329 	}
2330 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
2331 }
2332 
2333 /* check validity of 32-bit and 64-bit arithmetic operations */
2334 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
2335 {
2336 	struct bpf_reg_state *regs = env->cur_state.regs;
2337 	u8 opcode = BPF_OP(insn->code);
2338 	int err;
2339 
2340 	if (opcode == BPF_END || opcode == BPF_NEG) {
2341 		if (opcode == BPF_NEG) {
2342 			if (BPF_SRC(insn->code) != 0 ||
2343 			    insn->src_reg != BPF_REG_0 ||
2344 			    insn->off != 0 || insn->imm != 0) {
2345 				verbose("BPF_NEG uses reserved fields\n");
2346 				return -EINVAL;
2347 			}
2348 		} else {
2349 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
2350 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
2351 			    BPF_CLASS(insn->code) == BPF_ALU64) {
2352 				verbose("BPF_END uses reserved fields\n");
2353 				return -EINVAL;
2354 			}
2355 		}
2356 
2357 		/* check src operand */
2358 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2359 		if (err)
2360 			return err;
2361 
2362 		if (is_pointer_value(env, insn->dst_reg)) {
2363 			verbose("R%d pointer arithmetic prohibited\n",
2364 				insn->dst_reg);
2365 			return -EACCES;
2366 		}
2367 
2368 		/* check dest operand */
2369 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
2370 		if (err)
2371 			return err;
2372 
2373 	} else if (opcode == BPF_MOV) {
2374 
2375 		if (BPF_SRC(insn->code) == BPF_X) {
2376 			if (insn->imm != 0 || insn->off != 0) {
2377 				verbose("BPF_MOV uses reserved fields\n");
2378 				return -EINVAL;
2379 			}
2380 
2381 			/* check src operand */
2382 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
2383 			if (err)
2384 				return err;
2385 		} else {
2386 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
2387 				verbose("BPF_MOV uses reserved fields\n");
2388 				return -EINVAL;
2389 			}
2390 		}
2391 
2392 		/* check dest operand */
2393 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
2394 		if (err)
2395 			return err;
2396 
2397 		if (BPF_SRC(insn->code) == BPF_X) {
2398 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
2399 				/* case: R1 = R2
2400 				 * copy register state to dest reg
2401 				 */
2402 				regs[insn->dst_reg] = regs[insn->src_reg];
2403 			} else {
2404 				/* R1 = (u32) R2 */
2405 				if (is_pointer_value(env, insn->src_reg)) {
2406 					verbose("R%d partial copy of pointer\n",
2407 						insn->src_reg);
2408 					return -EACCES;
2409 				}
2410 				mark_reg_unknown(regs, insn->dst_reg);
2411 				/* high 32 bits are known zero. */
2412 				regs[insn->dst_reg].var_off = tnum_cast(
2413 						regs[insn->dst_reg].var_off, 4);
2414 				__update_reg_bounds(&regs[insn->dst_reg]);
2415 			}
2416 		} else {
2417 			/* case: R = imm
2418 			 * remember the value we stored into this reg
2419 			 */
2420 			regs[insn->dst_reg].type = SCALAR_VALUE;
2421 			__mark_reg_known(regs + insn->dst_reg, insn->imm);
2422 		}
2423 
2424 	} else if (opcode > BPF_END) {
2425 		verbose("invalid BPF_ALU opcode %x\n", opcode);
2426 		return -EINVAL;
2427 
2428 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
2429 
2430 		if (BPF_SRC(insn->code) == BPF_X) {
2431 			if (insn->imm != 0 || insn->off != 0) {
2432 				verbose("BPF_ALU uses reserved fields\n");
2433 				return -EINVAL;
2434 			}
2435 			/* check src1 operand */
2436 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
2437 			if (err)
2438 				return err;
2439 		} else {
2440 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
2441 				verbose("BPF_ALU uses reserved fields\n");
2442 				return -EINVAL;
2443 			}
2444 		}
2445 
2446 		/* check src2 operand */
2447 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2448 		if (err)
2449 			return err;
2450 
2451 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
2452 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
2453 			verbose("div by zero\n");
2454 			return -EINVAL;
2455 		}
2456 
2457 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
2458 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
2459 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
2460 
2461 			if (insn->imm < 0 || insn->imm >= size) {
2462 				verbose("invalid shift %d\n", insn->imm);
2463 				return -EINVAL;
2464 			}
2465 		}
2466 
2467 		/* check dest operand */
2468 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
2469 		if (err)
2470 			return err;
2471 
2472 		return adjust_reg_min_max_vals(env, insn);
2473 	}
2474 
2475 	return 0;
2476 }
2477 
2478 static void find_good_pkt_pointers(struct bpf_verifier_state *state,
2479 				   struct bpf_reg_state *dst_reg,
2480 				   enum bpf_reg_type type)
2481 {
2482 	struct bpf_reg_state *regs = state->regs, *reg;
2483 	int i;
2484 
2485 	if (dst_reg->off < 0)
2486 		/* This doesn't give us any range */
2487 		return;
2488 
2489 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
2490 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
2491 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
2492 		 * than pkt_end, but that's because it's also less than pkt.
2493 		 */
2494 		return;
2495 
2496 	/* LLVM can generate four kind of checks:
2497 	 *
2498 	 * Type 1/2:
2499 	 *
2500 	 *   r2 = r3;
2501 	 *   r2 += 8;
2502 	 *   if (r2 > pkt_end) goto <handle exception>
2503 	 *   <access okay>
2504 	 *
2505 	 *   r2 = r3;
2506 	 *   r2 += 8;
2507 	 *   if (r2 < pkt_end) goto <access okay>
2508 	 *   <handle exception>
2509 	 *
2510 	 *   Where:
2511 	 *     r2 == dst_reg, pkt_end == src_reg
2512 	 *     r2=pkt(id=n,off=8,r=0)
2513 	 *     r3=pkt(id=n,off=0,r=0)
2514 	 *
2515 	 * Type 3/4:
2516 	 *
2517 	 *   r2 = r3;
2518 	 *   r2 += 8;
2519 	 *   if (pkt_end >= r2) goto <access okay>
2520 	 *   <handle exception>
2521 	 *
2522 	 *   r2 = r3;
2523 	 *   r2 += 8;
2524 	 *   if (pkt_end <= r2) goto <handle exception>
2525 	 *   <access okay>
2526 	 *
2527 	 *   Where:
2528 	 *     pkt_end == dst_reg, r2 == src_reg
2529 	 *     r2=pkt(id=n,off=8,r=0)
2530 	 *     r3=pkt(id=n,off=0,r=0)
2531 	 *
2532 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
2533 	 * so that range of bytes [r3, r3 + 8) is safe to access.
2534 	 */
2535 
2536 	/* If our ids match, then we must have the same max_value.  And we
2537 	 * don't care about the other reg's fixed offset, since if it's too big
2538 	 * the range won't allow anything.
2539 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
2540 	 */
2541 	for (i = 0; i < MAX_BPF_REG; i++)
2542 		if (regs[i].type == type && regs[i].id == dst_reg->id)
2543 			/* keep the maximum range already checked */
2544 			regs[i].range = max_t(u16, regs[i].range, dst_reg->off);
2545 
2546 	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
2547 		if (state->stack_slot_type[i] != STACK_SPILL)
2548 			continue;
2549 		reg = &state->spilled_regs[i / BPF_REG_SIZE];
2550 		if (reg->type == type && reg->id == dst_reg->id)
2551 			reg->range = max_t(u16, reg->range, dst_reg->off);
2552 	}
2553 }
2554 
2555 /* Adjusts the register min/max values in the case that the dst_reg is the
2556  * variable register that we are working on, and src_reg is a constant or we're
2557  * simply doing a BPF_K check.
2558  * In JEQ/JNE cases we also adjust the var_off values.
2559  */
2560 static void reg_set_min_max(struct bpf_reg_state *true_reg,
2561 			    struct bpf_reg_state *false_reg, u64 val,
2562 			    u8 opcode)
2563 {
2564 	/* If the dst_reg is a pointer, we can't learn anything about its
2565 	 * variable offset from the compare (unless src_reg were a pointer into
2566 	 * the same object, but we don't bother with that.
2567 	 * Since false_reg and true_reg have the same type by construction, we
2568 	 * only need to check one of them for pointerness.
2569 	 */
2570 	if (__is_pointer_value(false, false_reg))
2571 		return;
2572 
2573 	switch (opcode) {
2574 	case BPF_JEQ:
2575 		/* If this is false then we know nothing Jon Snow, but if it is
2576 		 * true then we know for sure.
2577 		 */
2578 		__mark_reg_known(true_reg, val);
2579 		break;
2580 	case BPF_JNE:
2581 		/* If this is true we know nothing Jon Snow, but if it is false
2582 		 * we know the value for sure;
2583 		 */
2584 		__mark_reg_known(false_reg, val);
2585 		break;
2586 	case BPF_JGT:
2587 		false_reg->umax_value = min(false_reg->umax_value, val);
2588 		true_reg->umin_value = max(true_reg->umin_value, val + 1);
2589 		break;
2590 	case BPF_JSGT:
2591 		false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
2592 		true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
2593 		break;
2594 	case BPF_JLT:
2595 		false_reg->umin_value = max(false_reg->umin_value, val);
2596 		true_reg->umax_value = min(true_reg->umax_value, val - 1);
2597 		break;
2598 	case BPF_JSLT:
2599 		false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
2600 		true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
2601 		break;
2602 	case BPF_JGE:
2603 		false_reg->umax_value = min(false_reg->umax_value, val - 1);
2604 		true_reg->umin_value = max(true_reg->umin_value, val);
2605 		break;
2606 	case BPF_JSGE:
2607 		false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
2608 		true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
2609 		break;
2610 	case BPF_JLE:
2611 		false_reg->umin_value = max(false_reg->umin_value, val + 1);
2612 		true_reg->umax_value = min(true_reg->umax_value, val);
2613 		break;
2614 	case BPF_JSLE:
2615 		false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
2616 		true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
2617 		break;
2618 	default:
2619 		break;
2620 	}
2621 
2622 	__reg_deduce_bounds(false_reg);
2623 	__reg_deduce_bounds(true_reg);
2624 	/* We might have learned some bits from the bounds. */
2625 	__reg_bound_offset(false_reg);
2626 	__reg_bound_offset(true_reg);
2627 	/* Intersecting with the old var_off might have improved our bounds
2628 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2629 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
2630 	 */
2631 	__update_reg_bounds(false_reg);
2632 	__update_reg_bounds(true_reg);
2633 }
2634 
2635 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
2636  * the variable reg.
2637  */
2638 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
2639 				struct bpf_reg_state *false_reg, u64 val,
2640 				u8 opcode)
2641 {
2642 	if (__is_pointer_value(false, false_reg))
2643 		return;
2644 
2645 	switch (opcode) {
2646 	case BPF_JEQ:
2647 		/* If this is false then we know nothing Jon Snow, but if it is
2648 		 * true then we know for sure.
2649 		 */
2650 		__mark_reg_known(true_reg, val);
2651 		break;
2652 	case BPF_JNE:
2653 		/* If this is true we know nothing Jon Snow, but if it is false
2654 		 * we know the value for sure;
2655 		 */
2656 		__mark_reg_known(false_reg, val);
2657 		break;
2658 	case BPF_JGT:
2659 		true_reg->umax_value = min(true_reg->umax_value, val - 1);
2660 		false_reg->umin_value = max(false_reg->umin_value, val);
2661 		break;
2662 	case BPF_JSGT:
2663 		true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
2664 		false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
2665 		break;
2666 	case BPF_JLT:
2667 		true_reg->umin_value = max(true_reg->umin_value, val + 1);
2668 		false_reg->umax_value = min(false_reg->umax_value, val);
2669 		break;
2670 	case BPF_JSLT:
2671 		true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
2672 		false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
2673 		break;
2674 	case BPF_JGE:
2675 		true_reg->umax_value = min(true_reg->umax_value, val);
2676 		false_reg->umin_value = max(false_reg->umin_value, val + 1);
2677 		break;
2678 	case BPF_JSGE:
2679 		true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
2680 		false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
2681 		break;
2682 	case BPF_JLE:
2683 		true_reg->umin_value = max(true_reg->umin_value, val);
2684 		false_reg->umax_value = min(false_reg->umax_value, val - 1);
2685 		break;
2686 	case BPF_JSLE:
2687 		true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
2688 		false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
2689 		break;
2690 	default:
2691 		break;
2692 	}
2693 
2694 	__reg_deduce_bounds(false_reg);
2695 	__reg_deduce_bounds(true_reg);
2696 	/* We might have learned some bits from the bounds. */
2697 	__reg_bound_offset(false_reg);
2698 	__reg_bound_offset(true_reg);
2699 	/* Intersecting with the old var_off might have improved our bounds
2700 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2701 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
2702 	 */
2703 	__update_reg_bounds(false_reg);
2704 	__update_reg_bounds(true_reg);
2705 }
2706 
2707 /* Regs are known to be equal, so intersect their min/max/var_off */
2708 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
2709 				  struct bpf_reg_state *dst_reg)
2710 {
2711 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
2712 							dst_reg->umin_value);
2713 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
2714 							dst_reg->umax_value);
2715 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
2716 							dst_reg->smin_value);
2717 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
2718 							dst_reg->smax_value);
2719 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
2720 							     dst_reg->var_off);
2721 	/* We might have learned new bounds from the var_off. */
2722 	__update_reg_bounds(src_reg);
2723 	__update_reg_bounds(dst_reg);
2724 	/* We might have learned something about the sign bit. */
2725 	__reg_deduce_bounds(src_reg);
2726 	__reg_deduce_bounds(dst_reg);
2727 	/* We might have learned some bits from the bounds. */
2728 	__reg_bound_offset(src_reg);
2729 	__reg_bound_offset(dst_reg);
2730 	/* Intersecting with the old var_off might have improved our bounds
2731 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2732 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
2733 	 */
2734 	__update_reg_bounds(src_reg);
2735 	__update_reg_bounds(dst_reg);
2736 }
2737 
2738 static void reg_combine_min_max(struct bpf_reg_state *true_src,
2739 				struct bpf_reg_state *true_dst,
2740 				struct bpf_reg_state *false_src,
2741 				struct bpf_reg_state *false_dst,
2742 				u8 opcode)
2743 {
2744 	switch (opcode) {
2745 	case BPF_JEQ:
2746 		__reg_combine_min_max(true_src, true_dst);
2747 		break;
2748 	case BPF_JNE:
2749 		__reg_combine_min_max(false_src, false_dst);
2750 		break;
2751 	}
2752 }
2753 
2754 static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
2755 			 bool is_null)
2756 {
2757 	struct bpf_reg_state *reg = &regs[regno];
2758 
2759 	if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
2760 		/* Old offset (both fixed and variable parts) should
2761 		 * have been known-zero, because we don't allow pointer
2762 		 * arithmetic on pointers that might be NULL.
2763 		 */
2764 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
2765 				 !tnum_equals_const(reg->var_off, 0) ||
2766 				 reg->off)) {
2767 			__mark_reg_known_zero(reg);
2768 			reg->off = 0;
2769 		}
2770 		if (is_null) {
2771 			reg->type = SCALAR_VALUE;
2772 		} else if (reg->map_ptr->inner_map_meta) {
2773 			reg->type = CONST_PTR_TO_MAP;
2774 			reg->map_ptr = reg->map_ptr->inner_map_meta;
2775 		} else {
2776 			reg->type = PTR_TO_MAP_VALUE;
2777 		}
2778 		/* We don't need id from this point onwards anymore, thus we
2779 		 * should better reset it, so that state pruning has chances
2780 		 * to take effect.
2781 		 */
2782 		reg->id = 0;
2783 	}
2784 }
2785 
2786 /* The logic is similar to find_good_pkt_pointers(), both could eventually
2787  * be folded together at some point.
2788  */
2789 static void mark_map_regs(struct bpf_verifier_state *state, u32 regno,
2790 			  bool is_null)
2791 {
2792 	struct bpf_reg_state *regs = state->regs;
2793 	u32 id = regs[regno].id;
2794 	int i;
2795 
2796 	for (i = 0; i < MAX_BPF_REG; i++)
2797 		mark_map_reg(regs, i, id, is_null);
2798 
2799 	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
2800 		if (state->stack_slot_type[i] != STACK_SPILL)
2801 			continue;
2802 		mark_map_reg(state->spilled_regs, i / BPF_REG_SIZE, id, is_null);
2803 	}
2804 }
2805 
2806 static int check_cond_jmp_op(struct bpf_verifier_env *env,
2807 			     struct bpf_insn *insn, int *insn_idx)
2808 {
2809 	struct bpf_verifier_state *other_branch, *this_branch = &env->cur_state;
2810 	struct bpf_reg_state *regs = this_branch->regs, *dst_reg;
2811 	u8 opcode = BPF_OP(insn->code);
2812 	int err;
2813 
2814 	if (opcode > BPF_JSLE) {
2815 		verbose("invalid BPF_JMP opcode %x\n", opcode);
2816 		return -EINVAL;
2817 	}
2818 
2819 	if (BPF_SRC(insn->code) == BPF_X) {
2820 		if (insn->imm != 0) {
2821 			verbose("BPF_JMP uses reserved fields\n");
2822 			return -EINVAL;
2823 		}
2824 
2825 		/* check src1 operand */
2826 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
2827 		if (err)
2828 			return err;
2829 
2830 		if (is_pointer_value(env, insn->src_reg)) {
2831 			verbose("R%d pointer comparison prohibited\n",
2832 				insn->src_reg);
2833 			return -EACCES;
2834 		}
2835 	} else {
2836 		if (insn->src_reg != BPF_REG_0) {
2837 			verbose("BPF_JMP uses reserved fields\n");
2838 			return -EINVAL;
2839 		}
2840 	}
2841 
2842 	/* check src2 operand */
2843 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2844 	if (err)
2845 		return err;
2846 
2847 	dst_reg = &regs[insn->dst_reg];
2848 
2849 	/* detect if R == 0 where R was initialized to zero earlier */
2850 	if (BPF_SRC(insn->code) == BPF_K &&
2851 	    (opcode == BPF_JEQ || opcode == BPF_JNE) &&
2852 	    dst_reg->type == SCALAR_VALUE &&
2853 	    tnum_equals_const(dst_reg->var_off, insn->imm)) {
2854 		if (opcode == BPF_JEQ) {
2855 			/* if (imm == imm) goto pc+off;
2856 			 * only follow the goto, ignore fall-through
2857 			 */
2858 			*insn_idx += insn->off;
2859 			return 0;
2860 		} else {
2861 			/* if (imm != imm) goto pc+off;
2862 			 * only follow fall-through branch, since
2863 			 * that's where the program will go
2864 			 */
2865 			return 0;
2866 		}
2867 	}
2868 
2869 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
2870 	if (!other_branch)
2871 		return -EFAULT;
2872 
2873 	/* detect if we are comparing against a constant value so we can adjust
2874 	 * our min/max values for our dst register.
2875 	 * this is only legit if both are scalars (or pointers to the same
2876 	 * object, I suppose, but we don't support that right now), because
2877 	 * otherwise the different base pointers mean the offsets aren't
2878 	 * comparable.
2879 	 */
2880 	if (BPF_SRC(insn->code) == BPF_X) {
2881 		if (dst_reg->type == SCALAR_VALUE &&
2882 		    regs[insn->src_reg].type == SCALAR_VALUE) {
2883 			if (tnum_is_const(regs[insn->src_reg].var_off))
2884 				reg_set_min_max(&other_branch->regs[insn->dst_reg],
2885 						dst_reg, regs[insn->src_reg].var_off.value,
2886 						opcode);
2887 			else if (tnum_is_const(dst_reg->var_off))
2888 				reg_set_min_max_inv(&other_branch->regs[insn->src_reg],
2889 						    &regs[insn->src_reg],
2890 						    dst_reg->var_off.value, opcode);
2891 			else if (opcode == BPF_JEQ || opcode == BPF_JNE)
2892 				/* Comparing for equality, we can combine knowledge */
2893 				reg_combine_min_max(&other_branch->regs[insn->src_reg],
2894 						    &other_branch->regs[insn->dst_reg],
2895 						    &regs[insn->src_reg],
2896 						    &regs[insn->dst_reg], opcode);
2897 		}
2898 	} else if (dst_reg->type == SCALAR_VALUE) {
2899 		reg_set_min_max(&other_branch->regs[insn->dst_reg],
2900 					dst_reg, insn->imm, opcode);
2901 	}
2902 
2903 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
2904 	if (BPF_SRC(insn->code) == BPF_K &&
2905 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
2906 	    dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
2907 		/* Mark all identical map registers in each branch as either
2908 		 * safe or unknown depending R == 0 or R != 0 conditional.
2909 		 */
2910 		mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE);
2911 		mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ);
2912 	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT &&
2913 		   dst_reg->type == PTR_TO_PACKET &&
2914 		   regs[insn->src_reg].type == PTR_TO_PACKET_END) {
2915 		find_good_pkt_pointers(this_branch, dst_reg, PTR_TO_PACKET);
2916 	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLT &&
2917 		   dst_reg->type == PTR_TO_PACKET &&
2918 		   regs[insn->src_reg].type == PTR_TO_PACKET_END) {
2919 		find_good_pkt_pointers(other_branch, dst_reg, PTR_TO_PACKET);
2920 	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE &&
2921 		   dst_reg->type == PTR_TO_PACKET_END &&
2922 		   regs[insn->src_reg].type == PTR_TO_PACKET) {
2923 		find_good_pkt_pointers(other_branch, &regs[insn->src_reg],
2924 				       PTR_TO_PACKET);
2925 	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLE &&
2926 		   dst_reg->type == PTR_TO_PACKET_END &&
2927 		   regs[insn->src_reg].type == PTR_TO_PACKET) {
2928 		find_good_pkt_pointers(this_branch, &regs[insn->src_reg],
2929 				       PTR_TO_PACKET);
2930 	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT &&
2931 		   dst_reg->type == PTR_TO_PACKET_META &&
2932 		   reg_is_init_pkt_pointer(&regs[insn->src_reg], PTR_TO_PACKET)) {
2933 		find_good_pkt_pointers(this_branch, dst_reg, PTR_TO_PACKET_META);
2934 	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLT &&
2935 		   dst_reg->type == PTR_TO_PACKET_META &&
2936 		   reg_is_init_pkt_pointer(&regs[insn->src_reg], PTR_TO_PACKET)) {
2937 		find_good_pkt_pointers(other_branch, dst_reg, PTR_TO_PACKET_META);
2938 	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE &&
2939 		   reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2940 		   regs[insn->src_reg].type == PTR_TO_PACKET_META) {
2941 		find_good_pkt_pointers(other_branch, &regs[insn->src_reg],
2942 				       PTR_TO_PACKET_META);
2943 	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLE &&
2944 		   reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2945 		   regs[insn->src_reg].type == PTR_TO_PACKET_META) {
2946 		find_good_pkt_pointers(this_branch, &regs[insn->src_reg],
2947 				       PTR_TO_PACKET_META);
2948 	} else if (is_pointer_value(env, insn->dst_reg)) {
2949 		verbose("R%d pointer comparison prohibited\n", insn->dst_reg);
2950 		return -EACCES;
2951 	}
2952 	if (log_level)
2953 		print_verifier_state(this_branch);
2954 	return 0;
2955 }
2956 
2957 /* return the map pointer stored inside BPF_LD_IMM64 instruction */
2958 static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
2959 {
2960 	u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
2961 
2962 	return (struct bpf_map *) (unsigned long) imm64;
2963 }
2964 
2965 /* verify BPF_LD_IMM64 instruction */
2966 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
2967 {
2968 	struct bpf_reg_state *regs = env->cur_state.regs;
2969 	int err;
2970 
2971 	if (BPF_SIZE(insn->code) != BPF_DW) {
2972 		verbose("invalid BPF_LD_IMM insn\n");
2973 		return -EINVAL;
2974 	}
2975 	if (insn->off != 0) {
2976 		verbose("BPF_LD_IMM64 uses reserved fields\n");
2977 		return -EINVAL;
2978 	}
2979 
2980 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
2981 	if (err)
2982 		return err;
2983 
2984 	if (insn->src_reg == 0) {
2985 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
2986 
2987 		regs[insn->dst_reg].type = SCALAR_VALUE;
2988 		__mark_reg_known(&regs[insn->dst_reg], imm);
2989 		return 0;
2990 	}
2991 
2992 	/* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
2993 	BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
2994 
2995 	regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
2996 	regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
2997 	return 0;
2998 }
2999 
3000 static bool may_access_skb(enum bpf_prog_type type)
3001 {
3002 	switch (type) {
3003 	case BPF_PROG_TYPE_SOCKET_FILTER:
3004 	case BPF_PROG_TYPE_SCHED_CLS:
3005 	case BPF_PROG_TYPE_SCHED_ACT:
3006 		return true;
3007 	default:
3008 		return false;
3009 	}
3010 }
3011 
3012 /* verify safety of LD_ABS|LD_IND instructions:
3013  * - they can only appear in the programs where ctx == skb
3014  * - since they are wrappers of function calls, they scratch R1-R5 registers,
3015  *   preserve R6-R9, and store return value into R0
3016  *
3017  * Implicit input:
3018  *   ctx == skb == R6 == CTX
3019  *
3020  * Explicit input:
3021  *   SRC == any register
3022  *   IMM == 32-bit immediate
3023  *
3024  * Output:
3025  *   R0 - 8/16/32-bit skb data converted to cpu endianness
3026  */
3027 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
3028 {
3029 	struct bpf_reg_state *regs = env->cur_state.regs;
3030 	u8 mode = BPF_MODE(insn->code);
3031 	int i, err;
3032 
3033 	if (!may_access_skb(env->prog->type)) {
3034 		verbose("BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
3035 		return -EINVAL;
3036 	}
3037 
3038 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
3039 	    BPF_SIZE(insn->code) == BPF_DW ||
3040 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
3041 		verbose("BPF_LD_[ABS|IND] uses reserved fields\n");
3042 		return -EINVAL;
3043 	}
3044 
3045 	/* check whether implicit source operand (register R6) is readable */
3046 	err = check_reg_arg(env, BPF_REG_6, SRC_OP);
3047 	if (err)
3048 		return err;
3049 
3050 	if (regs[BPF_REG_6].type != PTR_TO_CTX) {
3051 		verbose("at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
3052 		return -EINVAL;
3053 	}
3054 
3055 	if (mode == BPF_IND) {
3056 		/* check explicit source operand */
3057 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
3058 		if (err)
3059 			return err;
3060 	}
3061 
3062 	/* reset caller saved regs to unreadable */
3063 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
3064 		mark_reg_not_init(regs, caller_saved[i]);
3065 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
3066 	}
3067 
3068 	/* mark destination R0 register as readable, since it contains
3069 	 * the value fetched from the packet.
3070 	 * Already marked as written above.
3071 	 */
3072 	mark_reg_unknown(regs, BPF_REG_0);
3073 	return 0;
3074 }
3075 
3076 /* non-recursive DFS pseudo code
3077  * 1  procedure DFS-iterative(G,v):
3078  * 2      label v as discovered
3079  * 3      let S be a stack
3080  * 4      S.push(v)
3081  * 5      while S is not empty
3082  * 6            t <- S.pop()
3083  * 7            if t is what we're looking for:
3084  * 8                return t
3085  * 9            for all edges e in G.adjacentEdges(t) do
3086  * 10               if edge e is already labelled
3087  * 11                   continue with the next edge
3088  * 12               w <- G.adjacentVertex(t,e)
3089  * 13               if vertex w is not discovered and not explored
3090  * 14                   label e as tree-edge
3091  * 15                   label w as discovered
3092  * 16                   S.push(w)
3093  * 17                   continue at 5
3094  * 18               else if vertex w is discovered
3095  * 19                   label e as back-edge
3096  * 20               else
3097  * 21                   // vertex w is explored
3098  * 22                   label e as forward- or cross-edge
3099  * 23           label t as explored
3100  * 24           S.pop()
3101  *
3102  * convention:
3103  * 0x10 - discovered
3104  * 0x11 - discovered and fall-through edge labelled
3105  * 0x12 - discovered and fall-through and branch edges labelled
3106  * 0x20 - explored
3107  */
3108 
3109 enum {
3110 	DISCOVERED = 0x10,
3111 	EXPLORED = 0x20,
3112 	FALLTHROUGH = 1,
3113 	BRANCH = 2,
3114 };
3115 
3116 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
3117 
3118 static int *insn_stack;	/* stack of insns to process */
3119 static int cur_stack;	/* current stack index */
3120 static int *insn_state;
3121 
3122 /* t, w, e - match pseudo-code above:
3123  * t - index of current instruction
3124  * w - next instruction
3125  * e - edge
3126  */
3127 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
3128 {
3129 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
3130 		return 0;
3131 
3132 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
3133 		return 0;
3134 
3135 	if (w < 0 || w >= env->prog->len) {
3136 		verbose("jump out of range from insn %d to %d\n", t, w);
3137 		return -EINVAL;
3138 	}
3139 
3140 	if (e == BRANCH)
3141 		/* mark branch target for state pruning */
3142 		env->explored_states[w] = STATE_LIST_MARK;
3143 
3144 	if (insn_state[w] == 0) {
3145 		/* tree-edge */
3146 		insn_state[t] = DISCOVERED | e;
3147 		insn_state[w] = DISCOVERED;
3148 		if (cur_stack >= env->prog->len)
3149 			return -E2BIG;
3150 		insn_stack[cur_stack++] = w;
3151 		return 1;
3152 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
3153 		verbose("back-edge from insn %d to %d\n", t, w);
3154 		return -EINVAL;
3155 	} else if (insn_state[w] == EXPLORED) {
3156 		/* forward- or cross-edge */
3157 		insn_state[t] = DISCOVERED | e;
3158 	} else {
3159 		verbose("insn state internal bug\n");
3160 		return -EFAULT;
3161 	}
3162 	return 0;
3163 }
3164 
3165 /* non-recursive depth-first-search to detect loops in BPF program
3166  * loop == back-edge in directed graph
3167  */
3168 static int check_cfg(struct bpf_verifier_env *env)
3169 {
3170 	struct bpf_insn *insns = env->prog->insnsi;
3171 	int insn_cnt = env->prog->len;
3172 	int ret = 0;
3173 	int i, t;
3174 
3175 	insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
3176 	if (!insn_state)
3177 		return -ENOMEM;
3178 
3179 	insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
3180 	if (!insn_stack) {
3181 		kfree(insn_state);
3182 		return -ENOMEM;
3183 	}
3184 
3185 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
3186 	insn_stack[0] = 0; /* 0 is the first instruction */
3187 	cur_stack = 1;
3188 
3189 peek_stack:
3190 	if (cur_stack == 0)
3191 		goto check_state;
3192 	t = insn_stack[cur_stack - 1];
3193 
3194 	if (BPF_CLASS(insns[t].code) == BPF_JMP) {
3195 		u8 opcode = BPF_OP(insns[t].code);
3196 
3197 		if (opcode == BPF_EXIT) {
3198 			goto mark_explored;
3199 		} else if (opcode == BPF_CALL) {
3200 			ret = push_insn(t, t + 1, FALLTHROUGH, env);
3201 			if (ret == 1)
3202 				goto peek_stack;
3203 			else if (ret < 0)
3204 				goto err_free;
3205 			if (t + 1 < insn_cnt)
3206 				env->explored_states[t + 1] = STATE_LIST_MARK;
3207 		} else if (opcode == BPF_JA) {
3208 			if (BPF_SRC(insns[t].code) != BPF_K) {
3209 				ret = -EINVAL;
3210 				goto err_free;
3211 			}
3212 			/* unconditional jump with single edge */
3213 			ret = push_insn(t, t + insns[t].off + 1,
3214 					FALLTHROUGH, env);
3215 			if (ret == 1)
3216 				goto peek_stack;
3217 			else if (ret < 0)
3218 				goto err_free;
3219 			/* tell verifier to check for equivalent states
3220 			 * after every call and jump
3221 			 */
3222 			if (t + 1 < insn_cnt)
3223 				env->explored_states[t + 1] = STATE_LIST_MARK;
3224 		} else {
3225 			/* conditional jump with two edges */
3226 			env->explored_states[t] = STATE_LIST_MARK;
3227 			ret = push_insn(t, t + 1, FALLTHROUGH, env);
3228 			if (ret == 1)
3229 				goto peek_stack;
3230 			else if (ret < 0)
3231 				goto err_free;
3232 
3233 			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
3234 			if (ret == 1)
3235 				goto peek_stack;
3236 			else if (ret < 0)
3237 				goto err_free;
3238 		}
3239 	} else {
3240 		/* all other non-branch instructions with single
3241 		 * fall-through edge
3242 		 */
3243 		ret = push_insn(t, t + 1, FALLTHROUGH, env);
3244 		if (ret == 1)
3245 			goto peek_stack;
3246 		else if (ret < 0)
3247 			goto err_free;
3248 	}
3249 
3250 mark_explored:
3251 	insn_state[t] = EXPLORED;
3252 	if (cur_stack-- <= 0) {
3253 		verbose("pop stack internal bug\n");
3254 		ret = -EFAULT;
3255 		goto err_free;
3256 	}
3257 	goto peek_stack;
3258 
3259 check_state:
3260 	for (i = 0; i < insn_cnt; i++) {
3261 		if (insn_state[i] != EXPLORED) {
3262 			verbose("unreachable insn %d\n", i);
3263 			ret = -EINVAL;
3264 			goto err_free;
3265 		}
3266 	}
3267 	ret = 0; /* cfg looks good */
3268 
3269 err_free:
3270 	kfree(insn_state);
3271 	kfree(insn_stack);
3272 	return ret;
3273 }
3274 
3275 /* check %cur's range satisfies %old's */
3276 static bool range_within(struct bpf_reg_state *old,
3277 			 struct bpf_reg_state *cur)
3278 {
3279 	return old->umin_value <= cur->umin_value &&
3280 	       old->umax_value >= cur->umax_value &&
3281 	       old->smin_value <= cur->smin_value &&
3282 	       old->smax_value >= cur->smax_value;
3283 }
3284 
3285 /* Maximum number of register states that can exist at once */
3286 #define ID_MAP_SIZE	(MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
3287 struct idpair {
3288 	u32 old;
3289 	u32 cur;
3290 };
3291 
3292 /* If in the old state two registers had the same id, then they need to have
3293  * the same id in the new state as well.  But that id could be different from
3294  * the old state, so we need to track the mapping from old to new ids.
3295  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
3296  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
3297  * regs with a different old id could still have new id 9, we don't care about
3298  * that.
3299  * So we look through our idmap to see if this old id has been seen before.  If
3300  * so, we require the new id to match; otherwise, we add the id pair to the map.
3301  */
3302 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
3303 {
3304 	unsigned int i;
3305 
3306 	for (i = 0; i < ID_MAP_SIZE; i++) {
3307 		if (!idmap[i].old) {
3308 			/* Reached an empty slot; haven't seen this id before */
3309 			idmap[i].old = old_id;
3310 			idmap[i].cur = cur_id;
3311 			return true;
3312 		}
3313 		if (idmap[i].old == old_id)
3314 			return idmap[i].cur == cur_id;
3315 	}
3316 	/* We ran out of idmap slots, which should be impossible */
3317 	WARN_ON_ONCE(1);
3318 	return false;
3319 }
3320 
3321 /* Returns true if (rold safe implies rcur safe) */
3322 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
3323 		    struct idpair *idmap)
3324 {
3325 	if (!(rold->live & REG_LIVE_READ))
3326 		/* explored state didn't use this */
3327 		return true;
3328 
3329 	if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, live)) == 0)
3330 		return true;
3331 
3332 	if (rold->type == NOT_INIT)
3333 		/* explored state can't have used this */
3334 		return true;
3335 	if (rcur->type == NOT_INIT)
3336 		return false;
3337 	switch (rold->type) {
3338 	case SCALAR_VALUE:
3339 		if (rcur->type == SCALAR_VALUE) {
3340 			/* new val must satisfy old val knowledge */
3341 			return range_within(rold, rcur) &&
3342 			       tnum_in(rold->var_off, rcur->var_off);
3343 		} else {
3344 			/* if we knew anything about the old value, we're not
3345 			 * equal, because we can't know anything about the
3346 			 * scalar value of the pointer in the new value.
3347 			 */
3348 			return rold->umin_value == 0 &&
3349 			       rold->umax_value == U64_MAX &&
3350 			       rold->smin_value == S64_MIN &&
3351 			       rold->smax_value == S64_MAX &&
3352 			       tnum_is_unknown(rold->var_off);
3353 		}
3354 	case PTR_TO_MAP_VALUE:
3355 		/* If the new min/max/var_off satisfy the old ones and
3356 		 * everything else matches, we are OK.
3357 		 * We don't care about the 'id' value, because nothing
3358 		 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
3359 		 */
3360 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
3361 		       range_within(rold, rcur) &&
3362 		       tnum_in(rold->var_off, rcur->var_off);
3363 	case PTR_TO_MAP_VALUE_OR_NULL:
3364 		/* a PTR_TO_MAP_VALUE could be safe to use as a
3365 		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
3366 		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
3367 		 * checked, doing so could have affected others with the same
3368 		 * id, and we can't check for that because we lost the id when
3369 		 * we converted to a PTR_TO_MAP_VALUE.
3370 		 */
3371 		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
3372 			return false;
3373 		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
3374 			return false;
3375 		/* Check our ids match any regs they're supposed to */
3376 		return check_ids(rold->id, rcur->id, idmap);
3377 	case PTR_TO_PACKET_META:
3378 	case PTR_TO_PACKET:
3379 		if (rcur->type != rold->type)
3380 			return false;
3381 		/* We must have at least as much range as the old ptr
3382 		 * did, so that any accesses which were safe before are
3383 		 * still safe.  This is true even if old range < old off,
3384 		 * since someone could have accessed through (ptr - k), or
3385 		 * even done ptr -= k in a register, to get a safe access.
3386 		 */
3387 		if (rold->range > rcur->range)
3388 			return false;
3389 		/* If the offsets don't match, we can't trust our alignment;
3390 		 * nor can we be sure that we won't fall out of range.
3391 		 */
3392 		if (rold->off != rcur->off)
3393 			return false;
3394 		/* id relations must be preserved */
3395 		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
3396 			return false;
3397 		/* new val must satisfy old val knowledge */
3398 		return range_within(rold, rcur) &&
3399 		       tnum_in(rold->var_off, rcur->var_off);
3400 	case PTR_TO_CTX:
3401 	case CONST_PTR_TO_MAP:
3402 	case PTR_TO_STACK:
3403 	case PTR_TO_PACKET_END:
3404 		/* Only valid matches are exact, which memcmp() above
3405 		 * would have accepted
3406 		 */
3407 	default:
3408 		/* Don't know what's going on, just say it's not safe */
3409 		return false;
3410 	}
3411 
3412 	/* Shouldn't get here; if we do, say it's not safe */
3413 	WARN_ON_ONCE(1);
3414 	return false;
3415 }
3416 
3417 /* compare two verifier states
3418  *
3419  * all states stored in state_list are known to be valid, since
3420  * verifier reached 'bpf_exit' instruction through them
3421  *
3422  * this function is called when verifier exploring different branches of
3423  * execution popped from the state stack. If it sees an old state that has
3424  * more strict register state and more strict stack state then this execution
3425  * branch doesn't need to be explored further, since verifier already
3426  * concluded that more strict state leads to valid finish.
3427  *
3428  * Therefore two states are equivalent if register state is more conservative
3429  * and explored stack state is more conservative than the current one.
3430  * Example:
3431  *       explored                   current
3432  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
3433  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
3434  *
3435  * In other words if current stack state (one being explored) has more
3436  * valid slots than old one that already passed validation, it means
3437  * the verifier can stop exploring and conclude that current state is valid too
3438  *
3439  * Similarly with registers. If explored state has register type as invalid
3440  * whereas register type in current state is meaningful, it means that
3441  * the current state will reach 'bpf_exit' instruction safely
3442  */
3443 static bool states_equal(struct bpf_verifier_env *env,
3444 			 struct bpf_verifier_state *old,
3445 			 struct bpf_verifier_state *cur)
3446 {
3447 	struct idpair *idmap;
3448 	bool ret = false;
3449 	int i;
3450 
3451 	idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
3452 	/* If we failed to allocate the idmap, just say it's not safe */
3453 	if (!idmap)
3454 		return false;
3455 
3456 	for (i = 0; i < MAX_BPF_REG; i++) {
3457 		if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
3458 			goto out_free;
3459 	}
3460 
3461 	for (i = 0; i < MAX_BPF_STACK; i++) {
3462 		if (old->stack_slot_type[i] == STACK_INVALID)
3463 			continue;
3464 		if (old->stack_slot_type[i] != cur->stack_slot_type[i])
3465 			/* Ex: old explored (safe) state has STACK_SPILL in
3466 			 * this stack slot, but current has has STACK_MISC ->
3467 			 * this verifier states are not equivalent,
3468 			 * return false to continue verification of this path
3469 			 */
3470 			goto out_free;
3471 		if (i % BPF_REG_SIZE)
3472 			continue;
3473 		if (old->stack_slot_type[i] != STACK_SPILL)
3474 			continue;
3475 		if (!regsafe(&old->spilled_regs[i / BPF_REG_SIZE],
3476 			     &cur->spilled_regs[i / BPF_REG_SIZE],
3477 			     idmap))
3478 			/* when explored and current stack slot are both storing
3479 			 * spilled registers, check that stored pointers types
3480 			 * are the same as well.
3481 			 * Ex: explored safe path could have stored
3482 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
3483 			 * but current path has stored:
3484 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
3485 			 * such verifier states are not equivalent.
3486 			 * return false to continue verification of this path
3487 			 */
3488 			goto out_free;
3489 		else
3490 			continue;
3491 	}
3492 	ret = true;
3493 out_free:
3494 	kfree(idmap);
3495 	return ret;
3496 }
3497 
3498 /* A write screens off any subsequent reads; but write marks come from the
3499  * straight-line code between a state and its parent.  When we arrive at a
3500  * jump target (in the first iteration of the propagate_liveness() loop),
3501  * we didn't arrive by the straight-line code, so read marks in state must
3502  * propagate to parent regardless of state's write marks.
3503  */
3504 static bool do_propagate_liveness(const struct bpf_verifier_state *state,
3505 				  struct bpf_verifier_state *parent)
3506 {
3507 	bool writes = parent == state->parent; /* Observe write marks */
3508 	bool touched = false; /* any changes made? */
3509 	int i;
3510 
3511 	if (!parent)
3512 		return touched;
3513 	/* Propagate read liveness of registers... */
3514 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
3515 	/* We don't need to worry about FP liveness because it's read-only */
3516 	for (i = 0; i < BPF_REG_FP; i++) {
3517 		if (parent->regs[i].live & REG_LIVE_READ)
3518 			continue;
3519 		if (writes && (state->regs[i].live & REG_LIVE_WRITTEN))
3520 			continue;
3521 		if (state->regs[i].live & REG_LIVE_READ) {
3522 			parent->regs[i].live |= REG_LIVE_READ;
3523 			touched = true;
3524 		}
3525 	}
3526 	/* ... and stack slots */
3527 	for (i = 0; i < MAX_BPF_STACK / BPF_REG_SIZE; i++) {
3528 		if (parent->stack_slot_type[i * BPF_REG_SIZE] != STACK_SPILL)
3529 			continue;
3530 		if (state->stack_slot_type[i * BPF_REG_SIZE] != STACK_SPILL)
3531 			continue;
3532 		if (parent->spilled_regs[i].live & REG_LIVE_READ)
3533 			continue;
3534 		if (writes && (state->spilled_regs[i].live & REG_LIVE_WRITTEN))
3535 			continue;
3536 		if (state->spilled_regs[i].live & REG_LIVE_READ) {
3537 			parent->spilled_regs[i].live |= REG_LIVE_READ;
3538 			touched = true;
3539 		}
3540 	}
3541 	return touched;
3542 }
3543 
3544 /* "parent" is "a state from which we reach the current state", but initially
3545  * it is not the state->parent (i.e. "the state whose straight-line code leads
3546  * to the current state"), instead it is the state that happened to arrive at
3547  * a (prunable) equivalent of the current state.  See comment above
3548  * do_propagate_liveness() for consequences of this.
3549  * This function is just a more efficient way of calling mark_reg_read() or
3550  * mark_stack_slot_read() on each reg in "parent" that is read in "state",
3551  * though it requires that parent != state->parent in the call arguments.
3552  */
3553 static void propagate_liveness(const struct bpf_verifier_state *state,
3554 			       struct bpf_verifier_state *parent)
3555 {
3556 	while (do_propagate_liveness(state, parent)) {
3557 		/* Something changed, so we need to feed those changes onward */
3558 		state = parent;
3559 		parent = state->parent;
3560 	}
3561 }
3562 
3563 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
3564 {
3565 	struct bpf_verifier_state_list *new_sl;
3566 	struct bpf_verifier_state_list *sl;
3567 	int i;
3568 
3569 	sl = env->explored_states[insn_idx];
3570 	if (!sl)
3571 		/* this 'insn_idx' instruction wasn't marked, so we will not
3572 		 * be doing state search here
3573 		 */
3574 		return 0;
3575 
3576 	while (sl != STATE_LIST_MARK) {
3577 		if (states_equal(env, &sl->state, &env->cur_state)) {
3578 			/* reached equivalent register/stack state,
3579 			 * prune the search.
3580 			 * Registers read by the continuation are read by us.
3581 			 * If we have any write marks in env->cur_state, they
3582 			 * will prevent corresponding reads in the continuation
3583 			 * from reaching our parent (an explored_state).  Our
3584 			 * own state will get the read marks recorded, but
3585 			 * they'll be immediately forgotten as we're pruning
3586 			 * this state and will pop a new one.
3587 			 */
3588 			propagate_liveness(&sl->state, &env->cur_state);
3589 			return 1;
3590 		}
3591 		sl = sl->next;
3592 	}
3593 
3594 	/* there were no equivalent states, remember current one.
3595 	 * technically the current state is not proven to be safe yet,
3596 	 * but it will either reach bpf_exit (which means it's safe) or
3597 	 * it will be rejected. Since there are no loops, we won't be
3598 	 * seeing this 'insn_idx' instruction again on the way to bpf_exit
3599 	 */
3600 	new_sl = kmalloc(sizeof(struct bpf_verifier_state_list), GFP_USER);
3601 	if (!new_sl)
3602 		return -ENOMEM;
3603 
3604 	/* add new state to the head of linked list */
3605 	memcpy(&new_sl->state, &env->cur_state, sizeof(env->cur_state));
3606 	new_sl->next = env->explored_states[insn_idx];
3607 	env->explored_states[insn_idx] = new_sl;
3608 	/* connect new state to parentage chain */
3609 	env->cur_state.parent = &new_sl->state;
3610 	/* clear write marks in current state: the writes we did are not writes
3611 	 * our child did, so they don't screen off its reads from us.
3612 	 * (There are no read marks in current state, because reads always mark
3613 	 * their parent and current state never has children yet.  Only
3614 	 * explored_states can get read marks.)
3615 	 */
3616 	for (i = 0; i < BPF_REG_FP; i++)
3617 		env->cur_state.regs[i].live = REG_LIVE_NONE;
3618 	for (i = 0; i < MAX_BPF_STACK / BPF_REG_SIZE; i++)
3619 		if (env->cur_state.stack_slot_type[i * BPF_REG_SIZE] == STACK_SPILL)
3620 			env->cur_state.spilled_regs[i].live = REG_LIVE_NONE;
3621 	return 0;
3622 }
3623 
3624 static int ext_analyzer_insn_hook(struct bpf_verifier_env *env,
3625 				  int insn_idx, int prev_insn_idx)
3626 {
3627 	if (!env->analyzer_ops || !env->analyzer_ops->insn_hook)
3628 		return 0;
3629 
3630 	return env->analyzer_ops->insn_hook(env, insn_idx, prev_insn_idx);
3631 }
3632 
3633 static int do_check(struct bpf_verifier_env *env)
3634 {
3635 	struct bpf_verifier_state *state = &env->cur_state;
3636 	struct bpf_insn *insns = env->prog->insnsi;
3637 	struct bpf_reg_state *regs = state->regs;
3638 	int insn_cnt = env->prog->len;
3639 	int insn_idx, prev_insn_idx = 0;
3640 	int insn_processed = 0;
3641 	bool do_print_state = false;
3642 
3643 	init_reg_state(regs);
3644 	state->parent = NULL;
3645 	insn_idx = 0;
3646 	for (;;) {
3647 		struct bpf_insn *insn;
3648 		u8 class;
3649 		int err;
3650 
3651 		if (insn_idx >= insn_cnt) {
3652 			verbose("invalid insn idx %d insn_cnt %d\n",
3653 				insn_idx, insn_cnt);
3654 			return -EFAULT;
3655 		}
3656 
3657 		insn = &insns[insn_idx];
3658 		class = BPF_CLASS(insn->code);
3659 
3660 		if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
3661 			verbose("BPF program is too large. Processed %d insn\n",
3662 				insn_processed);
3663 			return -E2BIG;
3664 		}
3665 
3666 		err = is_state_visited(env, insn_idx);
3667 		if (err < 0)
3668 			return err;
3669 		if (err == 1) {
3670 			/* found equivalent state, can prune the search */
3671 			if (log_level) {
3672 				if (do_print_state)
3673 					verbose("\nfrom %d to %d: safe\n",
3674 						prev_insn_idx, insn_idx);
3675 				else
3676 					verbose("%d: safe\n", insn_idx);
3677 			}
3678 			goto process_bpf_exit;
3679 		}
3680 
3681 		if (need_resched())
3682 			cond_resched();
3683 
3684 		if (log_level > 1 || (log_level && do_print_state)) {
3685 			if (log_level > 1)
3686 				verbose("%d:", insn_idx);
3687 			else
3688 				verbose("\nfrom %d to %d:",
3689 					prev_insn_idx, insn_idx);
3690 			print_verifier_state(&env->cur_state);
3691 			do_print_state = false;
3692 		}
3693 
3694 		if (log_level) {
3695 			verbose("%d: ", insn_idx);
3696 			print_bpf_insn(env, insn);
3697 		}
3698 
3699 		err = ext_analyzer_insn_hook(env, insn_idx, prev_insn_idx);
3700 		if (err)
3701 			return err;
3702 
3703 		if (class == BPF_ALU || class == BPF_ALU64) {
3704 			err = check_alu_op(env, insn);
3705 			if (err)
3706 				return err;
3707 
3708 		} else if (class == BPF_LDX) {
3709 			enum bpf_reg_type *prev_src_type, src_reg_type;
3710 
3711 			/* check for reserved fields is already done */
3712 
3713 			/* check src operand */
3714 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
3715 			if (err)
3716 				return err;
3717 
3718 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
3719 			if (err)
3720 				return err;
3721 
3722 			src_reg_type = regs[insn->src_reg].type;
3723 
3724 			/* check that memory (src_reg + off) is readable,
3725 			 * the state of dst_reg will be updated by this func
3726 			 */
3727 			err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
3728 					       BPF_SIZE(insn->code), BPF_READ,
3729 					       insn->dst_reg);
3730 			if (err)
3731 				return err;
3732 
3733 			prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
3734 
3735 			if (*prev_src_type == NOT_INIT) {
3736 				/* saw a valid insn
3737 				 * dst_reg = *(u32 *)(src_reg + off)
3738 				 * save type to validate intersecting paths
3739 				 */
3740 				*prev_src_type = src_reg_type;
3741 
3742 			} else if (src_reg_type != *prev_src_type &&
3743 				   (src_reg_type == PTR_TO_CTX ||
3744 				    *prev_src_type == PTR_TO_CTX)) {
3745 				/* ABuser program is trying to use the same insn
3746 				 * dst_reg = *(u32*) (src_reg + off)
3747 				 * with different pointer types:
3748 				 * src_reg == ctx in one branch and
3749 				 * src_reg == stack|map in some other branch.
3750 				 * Reject it.
3751 				 */
3752 				verbose("same insn cannot be used with different pointers\n");
3753 				return -EINVAL;
3754 			}
3755 
3756 		} else if (class == BPF_STX) {
3757 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
3758 
3759 			if (BPF_MODE(insn->code) == BPF_XADD) {
3760 				err = check_xadd(env, insn_idx, insn);
3761 				if (err)
3762 					return err;
3763 				insn_idx++;
3764 				continue;
3765 			}
3766 
3767 			/* check src1 operand */
3768 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
3769 			if (err)
3770 				return err;
3771 			/* check src2 operand */
3772 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3773 			if (err)
3774 				return err;
3775 
3776 			dst_reg_type = regs[insn->dst_reg].type;
3777 
3778 			/* check that memory (dst_reg + off) is writeable */
3779 			err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3780 					       BPF_SIZE(insn->code), BPF_WRITE,
3781 					       insn->src_reg);
3782 			if (err)
3783 				return err;
3784 
3785 			prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
3786 
3787 			if (*prev_dst_type == NOT_INIT) {
3788 				*prev_dst_type = dst_reg_type;
3789 			} else if (dst_reg_type != *prev_dst_type &&
3790 				   (dst_reg_type == PTR_TO_CTX ||
3791 				    *prev_dst_type == PTR_TO_CTX)) {
3792 				verbose("same insn cannot be used with different pointers\n");
3793 				return -EINVAL;
3794 			}
3795 
3796 		} else if (class == BPF_ST) {
3797 			if (BPF_MODE(insn->code) != BPF_MEM ||
3798 			    insn->src_reg != BPF_REG_0) {
3799 				verbose("BPF_ST uses reserved fields\n");
3800 				return -EINVAL;
3801 			}
3802 			/* check src operand */
3803 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3804 			if (err)
3805 				return err;
3806 
3807 			/* check that memory (dst_reg + off) is writeable */
3808 			err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3809 					       BPF_SIZE(insn->code), BPF_WRITE,
3810 					       -1);
3811 			if (err)
3812 				return err;
3813 
3814 		} else if (class == BPF_JMP) {
3815 			u8 opcode = BPF_OP(insn->code);
3816 
3817 			if (opcode == BPF_CALL) {
3818 				if (BPF_SRC(insn->code) != BPF_K ||
3819 				    insn->off != 0 ||
3820 				    insn->src_reg != BPF_REG_0 ||
3821 				    insn->dst_reg != BPF_REG_0) {
3822 					verbose("BPF_CALL uses reserved fields\n");
3823 					return -EINVAL;
3824 				}
3825 
3826 				err = check_call(env, insn->imm, insn_idx);
3827 				if (err)
3828 					return err;
3829 
3830 			} else if (opcode == BPF_JA) {
3831 				if (BPF_SRC(insn->code) != BPF_K ||
3832 				    insn->imm != 0 ||
3833 				    insn->src_reg != BPF_REG_0 ||
3834 				    insn->dst_reg != BPF_REG_0) {
3835 					verbose("BPF_JA uses reserved fields\n");
3836 					return -EINVAL;
3837 				}
3838 
3839 				insn_idx += insn->off + 1;
3840 				continue;
3841 
3842 			} else if (opcode == BPF_EXIT) {
3843 				if (BPF_SRC(insn->code) != BPF_K ||
3844 				    insn->imm != 0 ||
3845 				    insn->src_reg != BPF_REG_0 ||
3846 				    insn->dst_reg != BPF_REG_0) {
3847 					verbose("BPF_EXIT uses reserved fields\n");
3848 					return -EINVAL;
3849 				}
3850 
3851 				/* eBPF calling convetion is such that R0 is used
3852 				 * to return the value from eBPF program.
3853 				 * Make sure that it's readable at this time
3854 				 * of bpf_exit, which means that program wrote
3855 				 * something into it earlier
3856 				 */
3857 				err = check_reg_arg(env, BPF_REG_0, SRC_OP);
3858 				if (err)
3859 					return err;
3860 
3861 				if (is_pointer_value(env, BPF_REG_0)) {
3862 					verbose("R0 leaks addr as return value\n");
3863 					return -EACCES;
3864 				}
3865 
3866 process_bpf_exit:
3867 				insn_idx = pop_stack(env, &prev_insn_idx);
3868 				if (insn_idx < 0) {
3869 					break;
3870 				} else {
3871 					do_print_state = true;
3872 					continue;
3873 				}
3874 			} else {
3875 				err = check_cond_jmp_op(env, insn, &insn_idx);
3876 				if (err)
3877 					return err;
3878 			}
3879 		} else if (class == BPF_LD) {
3880 			u8 mode = BPF_MODE(insn->code);
3881 
3882 			if (mode == BPF_ABS || mode == BPF_IND) {
3883 				err = check_ld_abs(env, insn);
3884 				if (err)
3885 					return err;
3886 
3887 			} else if (mode == BPF_IMM) {
3888 				err = check_ld_imm(env, insn);
3889 				if (err)
3890 					return err;
3891 
3892 				insn_idx++;
3893 			} else {
3894 				verbose("invalid BPF_LD mode\n");
3895 				return -EINVAL;
3896 			}
3897 		} else {
3898 			verbose("unknown insn class %d\n", class);
3899 			return -EINVAL;
3900 		}
3901 
3902 		insn_idx++;
3903 	}
3904 
3905 	verbose("processed %d insns, stack depth %d\n",
3906 		insn_processed, env->prog->aux->stack_depth);
3907 	return 0;
3908 }
3909 
3910 static int check_map_prealloc(struct bpf_map *map)
3911 {
3912 	return (map->map_type != BPF_MAP_TYPE_HASH &&
3913 		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
3914 		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
3915 		!(map->map_flags & BPF_F_NO_PREALLOC);
3916 }
3917 
3918 static int check_map_prog_compatibility(struct bpf_map *map,
3919 					struct bpf_prog *prog)
3920 
3921 {
3922 	/* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
3923 	 * preallocated hash maps, since doing memory allocation
3924 	 * in overflow_handler can crash depending on where nmi got
3925 	 * triggered.
3926 	 */
3927 	if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
3928 		if (!check_map_prealloc(map)) {
3929 			verbose("perf_event programs can only use preallocated hash map\n");
3930 			return -EINVAL;
3931 		}
3932 		if (map->inner_map_meta &&
3933 		    !check_map_prealloc(map->inner_map_meta)) {
3934 			verbose("perf_event programs can only use preallocated inner hash map\n");
3935 			return -EINVAL;
3936 		}
3937 	}
3938 	return 0;
3939 }
3940 
3941 /* look for pseudo eBPF instructions that access map FDs and
3942  * replace them with actual map pointers
3943  */
3944 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
3945 {
3946 	struct bpf_insn *insn = env->prog->insnsi;
3947 	int insn_cnt = env->prog->len;
3948 	int i, j, err;
3949 
3950 	err = bpf_prog_calc_tag(env->prog);
3951 	if (err)
3952 		return err;
3953 
3954 	for (i = 0; i < insn_cnt; i++, insn++) {
3955 		if (BPF_CLASS(insn->code) == BPF_LDX &&
3956 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
3957 			verbose("BPF_LDX uses reserved fields\n");
3958 			return -EINVAL;
3959 		}
3960 
3961 		if (BPF_CLASS(insn->code) == BPF_STX &&
3962 		    ((BPF_MODE(insn->code) != BPF_MEM &&
3963 		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
3964 			verbose("BPF_STX uses reserved fields\n");
3965 			return -EINVAL;
3966 		}
3967 
3968 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
3969 			struct bpf_map *map;
3970 			struct fd f;
3971 
3972 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
3973 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
3974 			    insn[1].off != 0) {
3975 				verbose("invalid bpf_ld_imm64 insn\n");
3976 				return -EINVAL;
3977 			}
3978 
3979 			if (insn->src_reg == 0)
3980 				/* valid generic load 64-bit imm */
3981 				goto next_insn;
3982 
3983 			if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
3984 				verbose("unrecognized bpf_ld_imm64 insn\n");
3985 				return -EINVAL;
3986 			}
3987 
3988 			f = fdget(insn->imm);
3989 			map = __bpf_map_get(f);
3990 			if (IS_ERR(map)) {
3991 				verbose("fd %d is not pointing to valid bpf_map\n",
3992 					insn->imm);
3993 				return PTR_ERR(map);
3994 			}
3995 
3996 			err = check_map_prog_compatibility(map, env->prog);
3997 			if (err) {
3998 				fdput(f);
3999 				return err;
4000 			}
4001 
4002 			/* store map pointer inside BPF_LD_IMM64 instruction */
4003 			insn[0].imm = (u32) (unsigned long) map;
4004 			insn[1].imm = ((u64) (unsigned long) map) >> 32;
4005 
4006 			/* check whether we recorded this map already */
4007 			for (j = 0; j < env->used_map_cnt; j++)
4008 				if (env->used_maps[j] == map) {
4009 					fdput(f);
4010 					goto next_insn;
4011 				}
4012 
4013 			if (env->used_map_cnt >= MAX_USED_MAPS) {
4014 				fdput(f);
4015 				return -E2BIG;
4016 			}
4017 
4018 			/* hold the map. If the program is rejected by verifier,
4019 			 * the map will be released by release_maps() or it
4020 			 * will be used by the valid program until it's unloaded
4021 			 * and all maps are released in free_bpf_prog_info()
4022 			 */
4023 			map = bpf_map_inc(map, false);
4024 			if (IS_ERR(map)) {
4025 				fdput(f);
4026 				return PTR_ERR(map);
4027 			}
4028 			env->used_maps[env->used_map_cnt++] = map;
4029 
4030 			fdput(f);
4031 next_insn:
4032 			insn++;
4033 			i++;
4034 		}
4035 	}
4036 
4037 	/* now all pseudo BPF_LD_IMM64 instructions load valid
4038 	 * 'struct bpf_map *' into a register instead of user map_fd.
4039 	 * These pointers will be used later by verifier to validate map access.
4040 	 */
4041 	return 0;
4042 }
4043 
4044 /* drop refcnt of maps used by the rejected program */
4045 static void release_maps(struct bpf_verifier_env *env)
4046 {
4047 	int i;
4048 
4049 	for (i = 0; i < env->used_map_cnt; i++)
4050 		bpf_map_put(env->used_maps[i]);
4051 }
4052 
4053 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
4054 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
4055 {
4056 	struct bpf_insn *insn = env->prog->insnsi;
4057 	int insn_cnt = env->prog->len;
4058 	int i;
4059 
4060 	for (i = 0; i < insn_cnt; i++, insn++)
4061 		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
4062 			insn->src_reg = 0;
4063 }
4064 
4065 /* single env->prog->insni[off] instruction was replaced with the range
4066  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
4067  * [0, off) and [off, end) to new locations, so the patched range stays zero
4068  */
4069 static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
4070 				u32 off, u32 cnt)
4071 {
4072 	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
4073 
4074 	if (cnt == 1)
4075 		return 0;
4076 	new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
4077 	if (!new_data)
4078 		return -ENOMEM;
4079 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
4080 	memcpy(new_data + off + cnt - 1, old_data + off,
4081 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
4082 	env->insn_aux_data = new_data;
4083 	vfree(old_data);
4084 	return 0;
4085 }
4086 
4087 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
4088 					    const struct bpf_insn *patch, u32 len)
4089 {
4090 	struct bpf_prog *new_prog;
4091 
4092 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
4093 	if (!new_prog)
4094 		return NULL;
4095 	if (adjust_insn_aux_data(env, new_prog->len, off, len))
4096 		return NULL;
4097 	return new_prog;
4098 }
4099 
4100 /* convert load instructions that access fields of 'struct __sk_buff'
4101  * into sequence of instructions that access fields of 'struct sk_buff'
4102  */
4103 static int convert_ctx_accesses(struct bpf_verifier_env *env)
4104 {
4105 	const struct bpf_verifier_ops *ops = env->prog->aux->ops;
4106 	int i, cnt, size, ctx_field_size, delta = 0;
4107 	const int insn_cnt = env->prog->len;
4108 	struct bpf_insn insn_buf[16], *insn;
4109 	struct bpf_prog *new_prog;
4110 	enum bpf_access_type type;
4111 	bool is_narrower_load;
4112 	u32 target_size;
4113 
4114 	if (ops->gen_prologue) {
4115 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
4116 					env->prog);
4117 		if (cnt >= ARRAY_SIZE(insn_buf)) {
4118 			verbose("bpf verifier is misconfigured\n");
4119 			return -EINVAL;
4120 		} else if (cnt) {
4121 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
4122 			if (!new_prog)
4123 				return -ENOMEM;
4124 
4125 			env->prog = new_prog;
4126 			delta += cnt - 1;
4127 		}
4128 	}
4129 
4130 	if (!ops->convert_ctx_access)
4131 		return 0;
4132 
4133 	insn = env->prog->insnsi + delta;
4134 
4135 	for (i = 0; i < insn_cnt; i++, insn++) {
4136 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
4137 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
4138 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
4139 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
4140 			type = BPF_READ;
4141 		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
4142 			 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
4143 			 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
4144 			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
4145 			type = BPF_WRITE;
4146 		else
4147 			continue;
4148 
4149 		if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
4150 			continue;
4151 
4152 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
4153 		size = BPF_LDST_BYTES(insn);
4154 
4155 		/* If the read access is a narrower load of the field,
4156 		 * convert to a 4/8-byte load, to minimum program type specific
4157 		 * convert_ctx_access changes. If conversion is successful,
4158 		 * we will apply proper mask to the result.
4159 		 */
4160 		is_narrower_load = size < ctx_field_size;
4161 		if (is_narrower_load) {
4162 			u32 off = insn->off;
4163 			u8 size_code;
4164 
4165 			if (type == BPF_WRITE) {
4166 				verbose("bpf verifier narrow ctx access misconfigured\n");
4167 				return -EINVAL;
4168 			}
4169 
4170 			size_code = BPF_H;
4171 			if (ctx_field_size == 4)
4172 				size_code = BPF_W;
4173 			else if (ctx_field_size == 8)
4174 				size_code = BPF_DW;
4175 
4176 			insn->off = off & ~(ctx_field_size - 1);
4177 			insn->code = BPF_LDX | BPF_MEM | size_code;
4178 		}
4179 
4180 		target_size = 0;
4181 		cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog,
4182 					      &target_size);
4183 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
4184 		    (ctx_field_size && !target_size)) {
4185 			verbose("bpf verifier is misconfigured\n");
4186 			return -EINVAL;
4187 		}
4188 
4189 		if (is_narrower_load && size < target_size) {
4190 			if (ctx_field_size <= 4)
4191 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
4192 								(1 << size * 8) - 1);
4193 			else
4194 				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
4195 								(1 << size * 8) - 1);
4196 		}
4197 
4198 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
4199 		if (!new_prog)
4200 			return -ENOMEM;
4201 
4202 		delta += cnt - 1;
4203 
4204 		/* keep walking new program and skip insns we just inserted */
4205 		env->prog = new_prog;
4206 		insn      = new_prog->insnsi + i + delta;
4207 	}
4208 
4209 	return 0;
4210 }
4211 
4212 /* fixup insn->imm field of bpf_call instructions
4213  * and inline eligible helpers as explicit sequence of BPF instructions
4214  *
4215  * this function is called after eBPF program passed verification
4216  */
4217 static int fixup_bpf_calls(struct bpf_verifier_env *env)
4218 {
4219 	struct bpf_prog *prog = env->prog;
4220 	struct bpf_insn *insn = prog->insnsi;
4221 	const struct bpf_func_proto *fn;
4222 	const int insn_cnt = prog->len;
4223 	struct bpf_insn insn_buf[16];
4224 	struct bpf_prog *new_prog;
4225 	struct bpf_map *map_ptr;
4226 	int i, cnt, delta = 0;
4227 
4228 	for (i = 0; i < insn_cnt; i++, insn++) {
4229 		if (insn->code != (BPF_JMP | BPF_CALL))
4230 			continue;
4231 
4232 		if (insn->imm == BPF_FUNC_get_route_realm)
4233 			prog->dst_needed = 1;
4234 		if (insn->imm == BPF_FUNC_get_prandom_u32)
4235 			bpf_user_rnd_init_once();
4236 		if (insn->imm == BPF_FUNC_tail_call) {
4237 			/* If we tail call into other programs, we
4238 			 * cannot make any assumptions since they can
4239 			 * be replaced dynamically during runtime in
4240 			 * the program array.
4241 			 */
4242 			prog->cb_access = 1;
4243 			env->prog->aux->stack_depth = MAX_BPF_STACK;
4244 
4245 			/* mark bpf_tail_call as different opcode to avoid
4246 			 * conditional branch in the interpeter for every normal
4247 			 * call and to prevent accidental JITing by JIT compiler
4248 			 * that doesn't support bpf_tail_call yet
4249 			 */
4250 			insn->imm = 0;
4251 			insn->code = BPF_JMP | BPF_TAIL_CALL;
4252 			continue;
4253 		}
4254 
4255 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
4256 		 * handlers are currently limited to 64 bit only.
4257 		 */
4258 		if (ebpf_jit_enabled() && BITS_PER_LONG == 64 &&
4259 		    insn->imm == BPF_FUNC_map_lookup_elem) {
4260 			map_ptr = env->insn_aux_data[i + delta].map_ptr;
4261 			if (map_ptr == BPF_MAP_PTR_POISON ||
4262 			    !map_ptr->ops->map_gen_lookup)
4263 				goto patch_call_imm;
4264 
4265 			cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf);
4266 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
4267 				verbose("bpf verifier is misconfigured\n");
4268 				return -EINVAL;
4269 			}
4270 
4271 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
4272 						       cnt);
4273 			if (!new_prog)
4274 				return -ENOMEM;
4275 
4276 			delta += cnt - 1;
4277 
4278 			/* keep walking new program and skip insns we just inserted */
4279 			env->prog = prog = new_prog;
4280 			insn      = new_prog->insnsi + i + delta;
4281 			continue;
4282 		}
4283 
4284 		if (insn->imm == BPF_FUNC_redirect_map) {
4285 			/* Note, we cannot use prog directly as imm as subsequent
4286 			 * rewrites would still change the prog pointer. The only
4287 			 * stable address we can use is aux, which also works with
4288 			 * prog clones during blinding.
4289 			 */
4290 			u64 addr = (unsigned long)prog->aux;
4291 			struct bpf_insn r4_ld[] = {
4292 				BPF_LD_IMM64(BPF_REG_4, addr),
4293 				*insn,
4294 			};
4295 			cnt = ARRAY_SIZE(r4_ld);
4296 
4297 			new_prog = bpf_patch_insn_data(env, i + delta, r4_ld, cnt);
4298 			if (!new_prog)
4299 				return -ENOMEM;
4300 
4301 			delta    += cnt - 1;
4302 			env->prog = prog = new_prog;
4303 			insn      = new_prog->insnsi + i + delta;
4304 		}
4305 patch_call_imm:
4306 		fn = prog->aux->ops->get_func_proto(insn->imm);
4307 		/* all functions that have prototype and verifier allowed
4308 		 * programs to call them, must be real in-kernel functions
4309 		 */
4310 		if (!fn->func) {
4311 			verbose("kernel subsystem misconfigured func %s#%d\n",
4312 				func_id_name(insn->imm), insn->imm);
4313 			return -EFAULT;
4314 		}
4315 		insn->imm = fn->func - __bpf_call_base;
4316 	}
4317 
4318 	return 0;
4319 }
4320 
4321 static void free_states(struct bpf_verifier_env *env)
4322 {
4323 	struct bpf_verifier_state_list *sl, *sln;
4324 	int i;
4325 
4326 	if (!env->explored_states)
4327 		return;
4328 
4329 	for (i = 0; i < env->prog->len; i++) {
4330 		sl = env->explored_states[i];
4331 
4332 		if (sl)
4333 			while (sl != STATE_LIST_MARK) {
4334 				sln = sl->next;
4335 				kfree(sl);
4336 				sl = sln;
4337 			}
4338 	}
4339 
4340 	kfree(env->explored_states);
4341 }
4342 
4343 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
4344 {
4345 	char __user *log_ubuf = NULL;
4346 	struct bpf_verifier_env *env;
4347 	int ret = -EINVAL;
4348 
4349 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
4350 	 * allocate/free it every time bpf_check() is called
4351 	 */
4352 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
4353 	if (!env)
4354 		return -ENOMEM;
4355 
4356 	env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
4357 				     (*prog)->len);
4358 	ret = -ENOMEM;
4359 	if (!env->insn_aux_data)
4360 		goto err_free_env;
4361 	env->prog = *prog;
4362 
4363 	/* grab the mutex to protect few globals used by verifier */
4364 	mutex_lock(&bpf_verifier_lock);
4365 
4366 	if (attr->log_level || attr->log_buf || attr->log_size) {
4367 		/* user requested verbose verifier output
4368 		 * and supplied buffer to store the verification trace
4369 		 */
4370 		log_level = attr->log_level;
4371 		log_ubuf = (char __user *) (unsigned long) attr->log_buf;
4372 		log_size = attr->log_size;
4373 		log_len = 0;
4374 
4375 		ret = -EINVAL;
4376 		/* log_* values have to be sane */
4377 		if (log_size < 128 || log_size > UINT_MAX >> 8 ||
4378 		    log_level == 0 || log_ubuf == NULL)
4379 			goto err_unlock;
4380 
4381 		ret = -ENOMEM;
4382 		log_buf = vmalloc(log_size);
4383 		if (!log_buf)
4384 			goto err_unlock;
4385 	} else {
4386 		log_level = 0;
4387 	}
4388 
4389 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
4390 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
4391 		env->strict_alignment = true;
4392 
4393 	ret = replace_map_fd_with_map_ptr(env);
4394 	if (ret < 0)
4395 		goto skip_full_check;
4396 
4397 	env->explored_states = kcalloc(env->prog->len,
4398 				       sizeof(struct bpf_verifier_state_list *),
4399 				       GFP_USER);
4400 	ret = -ENOMEM;
4401 	if (!env->explored_states)
4402 		goto skip_full_check;
4403 
4404 	ret = check_cfg(env);
4405 	if (ret < 0)
4406 		goto skip_full_check;
4407 
4408 	env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
4409 
4410 	ret = do_check(env);
4411 
4412 skip_full_check:
4413 	while (pop_stack(env, NULL) >= 0);
4414 	free_states(env);
4415 
4416 	if (ret == 0)
4417 		/* program is valid, convert *(u32*)(ctx + off) accesses */
4418 		ret = convert_ctx_accesses(env);
4419 
4420 	if (ret == 0)
4421 		ret = fixup_bpf_calls(env);
4422 
4423 	if (log_level && log_len >= log_size - 1) {
4424 		BUG_ON(log_len >= log_size);
4425 		/* verifier log exceeded user supplied buffer */
4426 		ret = -ENOSPC;
4427 		/* fall through to return what was recorded */
4428 	}
4429 
4430 	/* copy verifier log back to user space including trailing zero */
4431 	if (log_level && copy_to_user(log_ubuf, log_buf, log_len + 1) != 0) {
4432 		ret = -EFAULT;
4433 		goto free_log_buf;
4434 	}
4435 
4436 	if (ret == 0 && env->used_map_cnt) {
4437 		/* if program passed verifier, update used_maps in bpf_prog_info */
4438 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
4439 							  sizeof(env->used_maps[0]),
4440 							  GFP_KERNEL);
4441 
4442 		if (!env->prog->aux->used_maps) {
4443 			ret = -ENOMEM;
4444 			goto free_log_buf;
4445 		}
4446 
4447 		memcpy(env->prog->aux->used_maps, env->used_maps,
4448 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
4449 		env->prog->aux->used_map_cnt = env->used_map_cnt;
4450 
4451 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
4452 		 * bpf_ld_imm64 instructions
4453 		 */
4454 		convert_pseudo_ld_imm64(env);
4455 	}
4456 
4457 free_log_buf:
4458 	if (log_level)
4459 		vfree(log_buf);
4460 	if (!env->prog->aux->used_maps)
4461 		/* if we didn't copy map pointers into bpf_prog_info, release
4462 		 * them now. Otherwise free_bpf_prog_info() will release them.
4463 		 */
4464 		release_maps(env);
4465 	*prog = env->prog;
4466 err_unlock:
4467 	mutex_unlock(&bpf_verifier_lock);
4468 	vfree(env->insn_aux_data);
4469 err_free_env:
4470 	kfree(env);
4471 	return ret;
4472 }
4473 
4474 int bpf_analyzer(struct bpf_prog *prog, const struct bpf_ext_analyzer_ops *ops,
4475 		 void *priv)
4476 {
4477 	struct bpf_verifier_env *env;
4478 	int ret;
4479 
4480 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
4481 	if (!env)
4482 		return -ENOMEM;
4483 
4484 	env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
4485 				     prog->len);
4486 	ret = -ENOMEM;
4487 	if (!env->insn_aux_data)
4488 		goto err_free_env;
4489 	env->prog = prog;
4490 	env->analyzer_ops = ops;
4491 	env->analyzer_priv = priv;
4492 
4493 	/* grab the mutex to protect few globals used by verifier */
4494 	mutex_lock(&bpf_verifier_lock);
4495 
4496 	log_level = 0;
4497 
4498 	env->strict_alignment = false;
4499 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
4500 		env->strict_alignment = true;
4501 
4502 	env->explored_states = kcalloc(env->prog->len,
4503 				       sizeof(struct bpf_verifier_state_list *),
4504 				       GFP_KERNEL);
4505 	ret = -ENOMEM;
4506 	if (!env->explored_states)
4507 		goto skip_full_check;
4508 
4509 	ret = check_cfg(env);
4510 	if (ret < 0)
4511 		goto skip_full_check;
4512 
4513 	env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
4514 
4515 	ret = do_check(env);
4516 
4517 skip_full_check:
4518 	while (pop_stack(env, NULL) >= 0);
4519 	free_states(env);
4520 
4521 	mutex_unlock(&bpf_verifier_lock);
4522 	vfree(env->insn_aux_data);
4523 err_free_env:
4524 	kfree(env);
4525 	return ret;
4526 }
4527 EXPORT_SYMBOL_GPL(bpf_analyzer);
4528