xref: /linux/kernel/bpf/verifier.c (revision 26fbb4c8c7c3ee9a4c3b4de555a8587b5a19154e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5  */
6 #include <uapi/linux/btf.h>
7 #include <linux/kernel.h>
8 #include <linux/types.h>
9 #include <linux/slab.h>
10 #include <linux/bpf.h>
11 #include <linux/btf.h>
12 #include <linux/bpf_verifier.h>
13 #include <linux/filter.h>
14 #include <net/netlink.h>
15 #include <linux/file.h>
16 #include <linux/vmalloc.h>
17 #include <linux/stringify.h>
18 #include <linux/bsearch.h>
19 #include <linux/sort.h>
20 #include <linux/perf_event.h>
21 #include <linux/ctype.h>
22 #include <linux/error-injection.h>
23 #include <linux/bpf_lsm.h>
24 #include <linux/btf_ids.h>
25 
26 #include "disasm.h"
27 
28 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
29 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
30 	[_id] = & _name ## _verifier_ops,
31 #define BPF_MAP_TYPE(_id, _ops)
32 #define BPF_LINK_TYPE(_id, _name)
33 #include <linux/bpf_types.h>
34 #undef BPF_PROG_TYPE
35 #undef BPF_MAP_TYPE
36 #undef BPF_LINK_TYPE
37 };
38 
39 /* bpf_check() is a static code analyzer that walks eBPF program
40  * instruction by instruction and updates register/stack state.
41  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
42  *
43  * The first pass is depth-first-search to check that the program is a DAG.
44  * It rejects the following programs:
45  * - larger than BPF_MAXINSNS insns
46  * - if loop is present (detected via back-edge)
47  * - unreachable insns exist (shouldn't be a forest. program = one function)
48  * - out of bounds or malformed jumps
49  * The second pass is all possible path descent from the 1st insn.
50  * Since it's analyzing all pathes through the program, the length of the
51  * analysis is limited to 64k insn, which may be hit even if total number of
52  * insn is less then 4K, but there are too many branches that change stack/regs.
53  * Number of 'branches to be analyzed' is limited to 1k
54  *
55  * On entry to each instruction, each register has a type, and the instruction
56  * changes the types of the registers depending on instruction semantics.
57  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
58  * copied to R1.
59  *
60  * All registers are 64-bit.
61  * R0 - return register
62  * R1-R5 argument passing registers
63  * R6-R9 callee saved registers
64  * R10 - frame pointer read-only
65  *
66  * At the start of BPF program the register R1 contains a pointer to bpf_context
67  * and has type PTR_TO_CTX.
68  *
69  * Verifier tracks arithmetic operations on pointers in case:
70  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
71  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
72  * 1st insn copies R10 (which has FRAME_PTR) type into R1
73  * and 2nd arithmetic instruction is pattern matched to recognize
74  * that it wants to construct a pointer to some element within stack.
75  * So after 2nd insn, the register R1 has type PTR_TO_STACK
76  * (and -20 constant is saved for further stack bounds checking).
77  * Meaning that this reg is a pointer to stack plus known immediate constant.
78  *
79  * Most of the time the registers have SCALAR_VALUE type, which
80  * means the register has some value, but it's not a valid pointer.
81  * (like pointer plus pointer becomes SCALAR_VALUE type)
82  *
83  * When verifier sees load or store instructions the type of base register
84  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
85  * four pointer types recognized by check_mem_access() function.
86  *
87  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
88  * and the range of [ptr, ptr + map's value_size) is accessible.
89  *
90  * registers used to pass values to function calls are checked against
91  * function argument constraints.
92  *
93  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
94  * It means that the register type passed to this function must be
95  * PTR_TO_STACK and it will be used inside the function as
96  * 'pointer to map element key'
97  *
98  * For example the argument constraints for bpf_map_lookup_elem():
99  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
100  *   .arg1_type = ARG_CONST_MAP_PTR,
101  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
102  *
103  * ret_type says that this function returns 'pointer to map elem value or null'
104  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
105  * 2nd argument should be a pointer to stack, which will be used inside
106  * the helper function as a pointer to map element key.
107  *
108  * On the kernel side the helper function looks like:
109  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
110  * {
111  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
112  *    void *key = (void *) (unsigned long) r2;
113  *    void *value;
114  *
115  *    here kernel can access 'key' and 'map' pointers safely, knowing that
116  *    [key, key + map->key_size) bytes are valid and were initialized on
117  *    the stack of eBPF program.
118  * }
119  *
120  * Corresponding eBPF program may look like:
121  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
122  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
123  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
124  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
125  * here verifier looks at prototype of map_lookup_elem() and sees:
126  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
127  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
128  *
129  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
130  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
131  * and were initialized prior to this call.
132  * If it's ok, then verifier allows this BPF_CALL insn and looks at
133  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
134  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
135  * returns ether pointer to map value or NULL.
136  *
137  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
138  * insn, the register holding that pointer in the true branch changes state to
139  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
140  * branch. See check_cond_jmp_op().
141  *
142  * After the call R0 is set to return type of the function and registers R1-R5
143  * are set to NOT_INIT to indicate that they are no longer readable.
144  *
145  * The following reference types represent a potential reference to a kernel
146  * resource which, after first being allocated, must be checked and freed by
147  * the BPF program:
148  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
149  *
150  * When the verifier sees a helper call return a reference type, it allocates a
151  * pointer id for the reference and stores it in the current function state.
152  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
153  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
154  * passes through a NULL-check conditional. For the branch wherein the state is
155  * changed to CONST_IMM, the verifier releases the reference.
156  *
157  * For each helper function that allocates a reference, such as
158  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
159  * bpf_sk_release(). When a reference type passes into the release function,
160  * the verifier also releases the reference. If any unchecked or unreleased
161  * reference remains at the end of the program, the verifier rejects it.
162  */
163 
164 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
165 struct bpf_verifier_stack_elem {
166 	/* verifer state is 'st'
167 	 * before processing instruction 'insn_idx'
168 	 * and after processing instruction 'prev_insn_idx'
169 	 */
170 	struct bpf_verifier_state st;
171 	int insn_idx;
172 	int prev_insn_idx;
173 	struct bpf_verifier_stack_elem *next;
174 	/* length of verifier log at the time this state was pushed on stack */
175 	u32 log_pos;
176 };
177 
178 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ	8192
179 #define BPF_COMPLEXITY_LIMIT_STATES	64
180 
181 #define BPF_MAP_KEY_POISON	(1ULL << 63)
182 #define BPF_MAP_KEY_SEEN	(1ULL << 62)
183 
184 #define BPF_MAP_PTR_UNPRIV	1UL
185 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
186 					  POISON_POINTER_DELTA))
187 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
188 
189 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
190 {
191 	return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
192 }
193 
194 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
195 {
196 	return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
197 }
198 
199 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
200 			      const struct bpf_map *map, bool unpriv)
201 {
202 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
203 	unpriv |= bpf_map_ptr_unpriv(aux);
204 	aux->map_ptr_state = (unsigned long)map |
205 			     (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
206 }
207 
208 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
209 {
210 	return aux->map_key_state & BPF_MAP_KEY_POISON;
211 }
212 
213 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
214 {
215 	return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
216 }
217 
218 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
219 {
220 	return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
221 }
222 
223 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
224 {
225 	bool poisoned = bpf_map_key_poisoned(aux);
226 
227 	aux->map_key_state = state | BPF_MAP_KEY_SEEN |
228 			     (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
229 }
230 
231 struct bpf_call_arg_meta {
232 	struct bpf_map *map_ptr;
233 	bool raw_mode;
234 	bool pkt_access;
235 	int regno;
236 	int access_size;
237 	int mem_size;
238 	u64 msize_max_value;
239 	int ref_obj_id;
240 	int func_id;
241 	struct btf *btf;
242 	u32 btf_id;
243 	struct btf *ret_btf;
244 	u32 ret_btf_id;
245 };
246 
247 struct btf *btf_vmlinux;
248 
249 static DEFINE_MUTEX(bpf_verifier_lock);
250 
251 static const struct bpf_line_info *
252 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
253 {
254 	const struct bpf_line_info *linfo;
255 	const struct bpf_prog *prog;
256 	u32 i, nr_linfo;
257 
258 	prog = env->prog;
259 	nr_linfo = prog->aux->nr_linfo;
260 
261 	if (!nr_linfo || insn_off >= prog->len)
262 		return NULL;
263 
264 	linfo = prog->aux->linfo;
265 	for (i = 1; i < nr_linfo; i++)
266 		if (insn_off < linfo[i].insn_off)
267 			break;
268 
269 	return &linfo[i - 1];
270 }
271 
272 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
273 		       va_list args)
274 {
275 	unsigned int n;
276 
277 	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
278 
279 	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
280 		  "verifier log line truncated - local buffer too short\n");
281 
282 	n = min(log->len_total - log->len_used - 1, n);
283 	log->kbuf[n] = '\0';
284 
285 	if (log->level == BPF_LOG_KERNEL) {
286 		pr_err("BPF:%s\n", log->kbuf);
287 		return;
288 	}
289 	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
290 		log->len_used += n;
291 	else
292 		log->ubuf = NULL;
293 }
294 
295 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
296 {
297 	char zero = 0;
298 
299 	if (!bpf_verifier_log_needed(log))
300 		return;
301 
302 	log->len_used = new_pos;
303 	if (put_user(zero, log->ubuf + new_pos))
304 		log->ubuf = NULL;
305 }
306 
307 /* log_level controls verbosity level of eBPF verifier.
308  * bpf_verifier_log_write() is used to dump the verification trace to the log,
309  * so the user can figure out what's wrong with the program
310  */
311 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
312 					   const char *fmt, ...)
313 {
314 	va_list args;
315 
316 	if (!bpf_verifier_log_needed(&env->log))
317 		return;
318 
319 	va_start(args, fmt);
320 	bpf_verifier_vlog(&env->log, fmt, args);
321 	va_end(args);
322 }
323 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
324 
325 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
326 {
327 	struct bpf_verifier_env *env = private_data;
328 	va_list args;
329 
330 	if (!bpf_verifier_log_needed(&env->log))
331 		return;
332 
333 	va_start(args, fmt);
334 	bpf_verifier_vlog(&env->log, fmt, args);
335 	va_end(args);
336 }
337 
338 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
339 			    const char *fmt, ...)
340 {
341 	va_list args;
342 
343 	if (!bpf_verifier_log_needed(log))
344 		return;
345 
346 	va_start(args, fmt);
347 	bpf_verifier_vlog(log, fmt, args);
348 	va_end(args);
349 }
350 
351 static const char *ltrim(const char *s)
352 {
353 	while (isspace(*s))
354 		s++;
355 
356 	return s;
357 }
358 
359 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
360 					 u32 insn_off,
361 					 const char *prefix_fmt, ...)
362 {
363 	const struct bpf_line_info *linfo;
364 
365 	if (!bpf_verifier_log_needed(&env->log))
366 		return;
367 
368 	linfo = find_linfo(env, insn_off);
369 	if (!linfo || linfo == env->prev_linfo)
370 		return;
371 
372 	if (prefix_fmt) {
373 		va_list args;
374 
375 		va_start(args, prefix_fmt);
376 		bpf_verifier_vlog(&env->log, prefix_fmt, args);
377 		va_end(args);
378 	}
379 
380 	verbose(env, "%s\n",
381 		ltrim(btf_name_by_offset(env->prog->aux->btf,
382 					 linfo->line_off)));
383 
384 	env->prev_linfo = linfo;
385 }
386 
387 static bool type_is_pkt_pointer(enum bpf_reg_type type)
388 {
389 	return type == PTR_TO_PACKET ||
390 	       type == PTR_TO_PACKET_META;
391 }
392 
393 static bool type_is_sk_pointer(enum bpf_reg_type type)
394 {
395 	return type == PTR_TO_SOCKET ||
396 		type == PTR_TO_SOCK_COMMON ||
397 		type == PTR_TO_TCP_SOCK ||
398 		type == PTR_TO_XDP_SOCK;
399 }
400 
401 static bool reg_type_not_null(enum bpf_reg_type type)
402 {
403 	return type == PTR_TO_SOCKET ||
404 		type == PTR_TO_TCP_SOCK ||
405 		type == PTR_TO_MAP_VALUE ||
406 		type == PTR_TO_SOCK_COMMON;
407 }
408 
409 static bool reg_type_may_be_null(enum bpf_reg_type type)
410 {
411 	return type == PTR_TO_MAP_VALUE_OR_NULL ||
412 	       type == PTR_TO_SOCKET_OR_NULL ||
413 	       type == PTR_TO_SOCK_COMMON_OR_NULL ||
414 	       type == PTR_TO_TCP_SOCK_OR_NULL ||
415 	       type == PTR_TO_BTF_ID_OR_NULL ||
416 	       type == PTR_TO_MEM_OR_NULL ||
417 	       type == PTR_TO_RDONLY_BUF_OR_NULL ||
418 	       type == PTR_TO_RDWR_BUF_OR_NULL;
419 }
420 
421 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
422 {
423 	return reg->type == PTR_TO_MAP_VALUE &&
424 		map_value_has_spin_lock(reg->map_ptr);
425 }
426 
427 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
428 {
429 	return type == PTR_TO_SOCKET ||
430 		type == PTR_TO_SOCKET_OR_NULL ||
431 		type == PTR_TO_TCP_SOCK ||
432 		type == PTR_TO_TCP_SOCK_OR_NULL ||
433 		type == PTR_TO_MEM ||
434 		type == PTR_TO_MEM_OR_NULL;
435 }
436 
437 static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
438 {
439 	return type == ARG_PTR_TO_SOCK_COMMON;
440 }
441 
442 static bool arg_type_may_be_null(enum bpf_arg_type type)
443 {
444 	return type == ARG_PTR_TO_MAP_VALUE_OR_NULL ||
445 	       type == ARG_PTR_TO_MEM_OR_NULL ||
446 	       type == ARG_PTR_TO_CTX_OR_NULL ||
447 	       type == ARG_PTR_TO_SOCKET_OR_NULL ||
448 	       type == ARG_PTR_TO_ALLOC_MEM_OR_NULL;
449 }
450 
451 /* Determine whether the function releases some resources allocated by another
452  * function call. The first reference type argument will be assumed to be
453  * released by release_reference().
454  */
455 static bool is_release_function(enum bpf_func_id func_id)
456 {
457 	return func_id == BPF_FUNC_sk_release ||
458 	       func_id == BPF_FUNC_ringbuf_submit ||
459 	       func_id == BPF_FUNC_ringbuf_discard;
460 }
461 
462 static bool may_be_acquire_function(enum bpf_func_id func_id)
463 {
464 	return func_id == BPF_FUNC_sk_lookup_tcp ||
465 		func_id == BPF_FUNC_sk_lookup_udp ||
466 		func_id == BPF_FUNC_skc_lookup_tcp ||
467 		func_id == BPF_FUNC_map_lookup_elem ||
468 	        func_id == BPF_FUNC_ringbuf_reserve;
469 }
470 
471 static bool is_acquire_function(enum bpf_func_id func_id,
472 				const struct bpf_map *map)
473 {
474 	enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
475 
476 	if (func_id == BPF_FUNC_sk_lookup_tcp ||
477 	    func_id == BPF_FUNC_sk_lookup_udp ||
478 	    func_id == BPF_FUNC_skc_lookup_tcp ||
479 	    func_id == BPF_FUNC_ringbuf_reserve)
480 		return true;
481 
482 	if (func_id == BPF_FUNC_map_lookup_elem &&
483 	    (map_type == BPF_MAP_TYPE_SOCKMAP ||
484 	     map_type == BPF_MAP_TYPE_SOCKHASH))
485 		return true;
486 
487 	return false;
488 }
489 
490 static bool is_ptr_cast_function(enum bpf_func_id func_id)
491 {
492 	return func_id == BPF_FUNC_tcp_sock ||
493 		func_id == BPF_FUNC_sk_fullsock ||
494 		func_id == BPF_FUNC_skc_to_tcp_sock ||
495 		func_id == BPF_FUNC_skc_to_tcp6_sock ||
496 		func_id == BPF_FUNC_skc_to_udp6_sock ||
497 		func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
498 		func_id == BPF_FUNC_skc_to_tcp_request_sock;
499 }
500 
501 /* string representation of 'enum bpf_reg_type' */
502 static const char * const reg_type_str[] = {
503 	[NOT_INIT]		= "?",
504 	[SCALAR_VALUE]		= "inv",
505 	[PTR_TO_CTX]		= "ctx",
506 	[CONST_PTR_TO_MAP]	= "map_ptr",
507 	[PTR_TO_MAP_VALUE]	= "map_value",
508 	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
509 	[PTR_TO_STACK]		= "fp",
510 	[PTR_TO_PACKET]		= "pkt",
511 	[PTR_TO_PACKET_META]	= "pkt_meta",
512 	[PTR_TO_PACKET_END]	= "pkt_end",
513 	[PTR_TO_FLOW_KEYS]	= "flow_keys",
514 	[PTR_TO_SOCKET]		= "sock",
515 	[PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
516 	[PTR_TO_SOCK_COMMON]	= "sock_common",
517 	[PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
518 	[PTR_TO_TCP_SOCK]	= "tcp_sock",
519 	[PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
520 	[PTR_TO_TP_BUFFER]	= "tp_buffer",
521 	[PTR_TO_XDP_SOCK]	= "xdp_sock",
522 	[PTR_TO_BTF_ID]		= "ptr_",
523 	[PTR_TO_BTF_ID_OR_NULL]	= "ptr_or_null_",
524 	[PTR_TO_PERCPU_BTF_ID]	= "percpu_ptr_",
525 	[PTR_TO_MEM]		= "mem",
526 	[PTR_TO_MEM_OR_NULL]	= "mem_or_null",
527 	[PTR_TO_RDONLY_BUF]	= "rdonly_buf",
528 	[PTR_TO_RDONLY_BUF_OR_NULL] = "rdonly_buf_or_null",
529 	[PTR_TO_RDWR_BUF]	= "rdwr_buf",
530 	[PTR_TO_RDWR_BUF_OR_NULL] = "rdwr_buf_or_null",
531 };
532 
533 static char slot_type_char[] = {
534 	[STACK_INVALID]	= '?',
535 	[STACK_SPILL]	= 'r',
536 	[STACK_MISC]	= 'm',
537 	[STACK_ZERO]	= '0',
538 };
539 
540 static void print_liveness(struct bpf_verifier_env *env,
541 			   enum bpf_reg_liveness live)
542 {
543 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
544 	    verbose(env, "_");
545 	if (live & REG_LIVE_READ)
546 		verbose(env, "r");
547 	if (live & REG_LIVE_WRITTEN)
548 		verbose(env, "w");
549 	if (live & REG_LIVE_DONE)
550 		verbose(env, "D");
551 }
552 
553 static struct bpf_func_state *func(struct bpf_verifier_env *env,
554 				   const struct bpf_reg_state *reg)
555 {
556 	struct bpf_verifier_state *cur = env->cur_state;
557 
558 	return cur->frame[reg->frameno];
559 }
560 
561 static const char *kernel_type_name(const struct btf* btf, u32 id)
562 {
563 	return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
564 }
565 
566 static void print_verifier_state(struct bpf_verifier_env *env,
567 				 const struct bpf_func_state *state)
568 {
569 	const struct bpf_reg_state *reg;
570 	enum bpf_reg_type t;
571 	int i;
572 
573 	if (state->frameno)
574 		verbose(env, " frame%d:", state->frameno);
575 	for (i = 0; i < MAX_BPF_REG; i++) {
576 		reg = &state->regs[i];
577 		t = reg->type;
578 		if (t == NOT_INIT)
579 			continue;
580 		verbose(env, " R%d", i);
581 		print_liveness(env, reg->live);
582 		verbose(env, "=%s", reg_type_str[t]);
583 		if (t == SCALAR_VALUE && reg->precise)
584 			verbose(env, "P");
585 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
586 		    tnum_is_const(reg->var_off)) {
587 			/* reg->off should be 0 for SCALAR_VALUE */
588 			verbose(env, "%lld", reg->var_off.value + reg->off);
589 		} else {
590 			if (t == PTR_TO_BTF_ID ||
591 			    t == PTR_TO_BTF_ID_OR_NULL ||
592 			    t == PTR_TO_PERCPU_BTF_ID)
593 				verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id));
594 			verbose(env, "(id=%d", reg->id);
595 			if (reg_type_may_be_refcounted_or_null(t))
596 				verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
597 			if (t != SCALAR_VALUE)
598 				verbose(env, ",off=%d", reg->off);
599 			if (type_is_pkt_pointer(t))
600 				verbose(env, ",r=%d", reg->range);
601 			else if (t == CONST_PTR_TO_MAP ||
602 				 t == PTR_TO_MAP_VALUE ||
603 				 t == PTR_TO_MAP_VALUE_OR_NULL)
604 				verbose(env, ",ks=%d,vs=%d",
605 					reg->map_ptr->key_size,
606 					reg->map_ptr->value_size);
607 			if (tnum_is_const(reg->var_off)) {
608 				/* Typically an immediate SCALAR_VALUE, but
609 				 * could be a pointer whose offset is too big
610 				 * for reg->off
611 				 */
612 				verbose(env, ",imm=%llx", reg->var_off.value);
613 			} else {
614 				if (reg->smin_value != reg->umin_value &&
615 				    reg->smin_value != S64_MIN)
616 					verbose(env, ",smin_value=%lld",
617 						(long long)reg->smin_value);
618 				if (reg->smax_value != reg->umax_value &&
619 				    reg->smax_value != S64_MAX)
620 					verbose(env, ",smax_value=%lld",
621 						(long long)reg->smax_value);
622 				if (reg->umin_value != 0)
623 					verbose(env, ",umin_value=%llu",
624 						(unsigned long long)reg->umin_value);
625 				if (reg->umax_value != U64_MAX)
626 					verbose(env, ",umax_value=%llu",
627 						(unsigned long long)reg->umax_value);
628 				if (!tnum_is_unknown(reg->var_off)) {
629 					char tn_buf[48];
630 
631 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
632 					verbose(env, ",var_off=%s", tn_buf);
633 				}
634 				if (reg->s32_min_value != reg->smin_value &&
635 				    reg->s32_min_value != S32_MIN)
636 					verbose(env, ",s32_min_value=%d",
637 						(int)(reg->s32_min_value));
638 				if (reg->s32_max_value != reg->smax_value &&
639 				    reg->s32_max_value != S32_MAX)
640 					verbose(env, ",s32_max_value=%d",
641 						(int)(reg->s32_max_value));
642 				if (reg->u32_min_value != reg->umin_value &&
643 				    reg->u32_min_value != U32_MIN)
644 					verbose(env, ",u32_min_value=%d",
645 						(int)(reg->u32_min_value));
646 				if (reg->u32_max_value != reg->umax_value &&
647 				    reg->u32_max_value != U32_MAX)
648 					verbose(env, ",u32_max_value=%d",
649 						(int)(reg->u32_max_value));
650 			}
651 			verbose(env, ")");
652 		}
653 	}
654 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
655 		char types_buf[BPF_REG_SIZE + 1];
656 		bool valid = false;
657 		int j;
658 
659 		for (j = 0; j < BPF_REG_SIZE; j++) {
660 			if (state->stack[i].slot_type[j] != STACK_INVALID)
661 				valid = true;
662 			types_buf[j] = slot_type_char[
663 					state->stack[i].slot_type[j]];
664 		}
665 		types_buf[BPF_REG_SIZE] = 0;
666 		if (!valid)
667 			continue;
668 		verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
669 		print_liveness(env, state->stack[i].spilled_ptr.live);
670 		if (state->stack[i].slot_type[0] == STACK_SPILL) {
671 			reg = &state->stack[i].spilled_ptr;
672 			t = reg->type;
673 			verbose(env, "=%s", reg_type_str[t]);
674 			if (t == SCALAR_VALUE && reg->precise)
675 				verbose(env, "P");
676 			if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
677 				verbose(env, "%lld", reg->var_off.value + reg->off);
678 		} else {
679 			verbose(env, "=%s", types_buf);
680 		}
681 	}
682 	if (state->acquired_refs && state->refs[0].id) {
683 		verbose(env, " refs=%d", state->refs[0].id);
684 		for (i = 1; i < state->acquired_refs; i++)
685 			if (state->refs[i].id)
686 				verbose(env, ",%d", state->refs[i].id);
687 	}
688 	verbose(env, "\n");
689 }
690 
691 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE)				\
692 static int copy_##NAME##_state(struct bpf_func_state *dst,		\
693 			       const struct bpf_func_state *src)	\
694 {									\
695 	if (!src->FIELD)						\
696 		return 0;						\
697 	if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) {			\
698 		/* internal bug, make state invalid to reject the program */ \
699 		memset(dst, 0, sizeof(*dst));				\
700 		return -EFAULT;						\
701 	}								\
702 	memcpy(dst->FIELD, src->FIELD,					\
703 	       sizeof(*src->FIELD) * (src->COUNT / SIZE));		\
704 	return 0;							\
705 }
706 /* copy_reference_state() */
707 COPY_STATE_FN(reference, acquired_refs, refs, 1)
708 /* copy_stack_state() */
709 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
710 #undef COPY_STATE_FN
711 
712 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE)			\
713 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
714 				  bool copy_old)			\
715 {									\
716 	u32 old_size = state->COUNT;					\
717 	struct bpf_##NAME##_state *new_##FIELD;				\
718 	int slot = size / SIZE;						\
719 									\
720 	if (size <= old_size || !size) {				\
721 		if (copy_old)						\
722 			return 0;					\
723 		state->COUNT = slot * SIZE;				\
724 		if (!size && old_size) {				\
725 			kfree(state->FIELD);				\
726 			state->FIELD = NULL;				\
727 		}							\
728 		return 0;						\
729 	}								\
730 	new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
731 				    GFP_KERNEL);			\
732 	if (!new_##FIELD)						\
733 		return -ENOMEM;						\
734 	if (copy_old) {							\
735 		if (state->FIELD)					\
736 			memcpy(new_##FIELD, state->FIELD,		\
737 			       sizeof(*new_##FIELD) * (old_size / SIZE)); \
738 		memset(new_##FIELD + old_size / SIZE, 0,		\
739 		       sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
740 	}								\
741 	state->COUNT = slot * SIZE;					\
742 	kfree(state->FIELD);						\
743 	state->FIELD = new_##FIELD;					\
744 	return 0;							\
745 }
746 /* realloc_reference_state() */
747 REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
748 /* realloc_stack_state() */
749 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
750 #undef REALLOC_STATE_FN
751 
752 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to
753  * make it consume minimal amount of memory. check_stack_write() access from
754  * the program calls into realloc_func_state() to grow the stack size.
755  * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
756  * which realloc_stack_state() copies over. It points to previous
757  * bpf_verifier_state which is never reallocated.
758  */
759 static int realloc_func_state(struct bpf_func_state *state, int stack_size,
760 			      int refs_size, bool copy_old)
761 {
762 	int err = realloc_reference_state(state, refs_size, copy_old);
763 	if (err)
764 		return err;
765 	return realloc_stack_state(state, stack_size, copy_old);
766 }
767 
768 /* Acquire a pointer id from the env and update the state->refs to include
769  * this new pointer reference.
770  * On success, returns a valid pointer id to associate with the register
771  * On failure, returns a negative errno.
772  */
773 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
774 {
775 	struct bpf_func_state *state = cur_func(env);
776 	int new_ofs = state->acquired_refs;
777 	int id, err;
778 
779 	err = realloc_reference_state(state, state->acquired_refs + 1, true);
780 	if (err)
781 		return err;
782 	id = ++env->id_gen;
783 	state->refs[new_ofs].id = id;
784 	state->refs[new_ofs].insn_idx = insn_idx;
785 
786 	return id;
787 }
788 
789 /* release function corresponding to acquire_reference_state(). Idempotent. */
790 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
791 {
792 	int i, last_idx;
793 
794 	last_idx = state->acquired_refs - 1;
795 	for (i = 0; i < state->acquired_refs; i++) {
796 		if (state->refs[i].id == ptr_id) {
797 			if (last_idx && i != last_idx)
798 				memcpy(&state->refs[i], &state->refs[last_idx],
799 				       sizeof(*state->refs));
800 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
801 			state->acquired_refs--;
802 			return 0;
803 		}
804 	}
805 	return -EINVAL;
806 }
807 
808 static int transfer_reference_state(struct bpf_func_state *dst,
809 				    struct bpf_func_state *src)
810 {
811 	int err = realloc_reference_state(dst, src->acquired_refs, false);
812 	if (err)
813 		return err;
814 	err = copy_reference_state(dst, src);
815 	if (err)
816 		return err;
817 	return 0;
818 }
819 
820 static void free_func_state(struct bpf_func_state *state)
821 {
822 	if (!state)
823 		return;
824 	kfree(state->refs);
825 	kfree(state->stack);
826 	kfree(state);
827 }
828 
829 static void clear_jmp_history(struct bpf_verifier_state *state)
830 {
831 	kfree(state->jmp_history);
832 	state->jmp_history = NULL;
833 	state->jmp_history_cnt = 0;
834 }
835 
836 static void free_verifier_state(struct bpf_verifier_state *state,
837 				bool free_self)
838 {
839 	int i;
840 
841 	for (i = 0; i <= state->curframe; i++) {
842 		free_func_state(state->frame[i]);
843 		state->frame[i] = NULL;
844 	}
845 	clear_jmp_history(state);
846 	if (free_self)
847 		kfree(state);
848 }
849 
850 /* copy verifier state from src to dst growing dst stack space
851  * when necessary to accommodate larger src stack
852  */
853 static int copy_func_state(struct bpf_func_state *dst,
854 			   const struct bpf_func_state *src)
855 {
856 	int err;
857 
858 	err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
859 				 false);
860 	if (err)
861 		return err;
862 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
863 	err = copy_reference_state(dst, src);
864 	if (err)
865 		return err;
866 	return copy_stack_state(dst, src);
867 }
868 
869 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
870 			       const struct bpf_verifier_state *src)
871 {
872 	struct bpf_func_state *dst;
873 	u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt;
874 	int i, err;
875 
876 	if (dst_state->jmp_history_cnt < src->jmp_history_cnt) {
877 		kfree(dst_state->jmp_history);
878 		dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER);
879 		if (!dst_state->jmp_history)
880 			return -ENOMEM;
881 	}
882 	memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz);
883 	dst_state->jmp_history_cnt = src->jmp_history_cnt;
884 
885 	/* if dst has more stack frames then src frame, free them */
886 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
887 		free_func_state(dst_state->frame[i]);
888 		dst_state->frame[i] = NULL;
889 	}
890 	dst_state->speculative = src->speculative;
891 	dst_state->curframe = src->curframe;
892 	dst_state->active_spin_lock = src->active_spin_lock;
893 	dst_state->branches = src->branches;
894 	dst_state->parent = src->parent;
895 	dst_state->first_insn_idx = src->first_insn_idx;
896 	dst_state->last_insn_idx = src->last_insn_idx;
897 	for (i = 0; i <= src->curframe; i++) {
898 		dst = dst_state->frame[i];
899 		if (!dst) {
900 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
901 			if (!dst)
902 				return -ENOMEM;
903 			dst_state->frame[i] = dst;
904 		}
905 		err = copy_func_state(dst, src->frame[i]);
906 		if (err)
907 			return err;
908 	}
909 	return 0;
910 }
911 
912 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
913 {
914 	while (st) {
915 		u32 br = --st->branches;
916 
917 		/* WARN_ON(br > 1) technically makes sense here,
918 		 * but see comment in push_stack(), hence:
919 		 */
920 		WARN_ONCE((int)br < 0,
921 			  "BUG update_branch_counts:branches_to_explore=%d\n",
922 			  br);
923 		if (br)
924 			break;
925 		st = st->parent;
926 	}
927 }
928 
929 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
930 		     int *insn_idx, bool pop_log)
931 {
932 	struct bpf_verifier_state *cur = env->cur_state;
933 	struct bpf_verifier_stack_elem *elem, *head = env->head;
934 	int err;
935 
936 	if (env->head == NULL)
937 		return -ENOENT;
938 
939 	if (cur) {
940 		err = copy_verifier_state(cur, &head->st);
941 		if (err)
942 			return err;
943 	}
944 	if (pop_log)
945 		bpf_vlog_reset(&env->log, head->log_pos);
946 	if (insn_idx)
947 		*insn_idx = head->insn_idx;
948 	if (prev_insn_idx)
949 		*prev_insn_idx = head->prev_insn_idx;
950 	elem = head->next;
951 	free_verifier_state(&head->st, false);
952 	kfree(head);
953 	env->head = elem;
954 	env->stack_size--;
955 	return 0;
956 }
957 
958 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
959 					     int insn_idx, int prev_insn_idx,
960 					     bool speculative)
961 {
962 	struct bpf_verifier_state *cur = env->cur_state;
963 	struct bpf_verifier_stack_elem *elem;
964 	int err;
965 
966 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
967 	if (!elem)
968 		goto err;
969 
970 	elem->insn_idx = insn_idx;
971 	elem->prev_insn_idx = prev_insn_idx;
972 	elem->next = env->head;
973 	elem->log_pos = env->log.len_used;
974 	env->head = elem;
975 	env->stack_size++;
976 	err = copy_verifier_state(&elem->st, cur);
977 	if (err)
978 		goto err;
979 	elem->st.speculative |= speculative;
980 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
981 		verbose(env, "The sequence of %d jumps is too complex.\n",
982 			env->stack_size);
983 		goto err;
984 	}
985 	if (elem->st.parent) {
986 		++elem->st.parent->branches;
987 		/* WARN_ON(branches > 2) technically makes sense here,
988 		 * but
989 		 * 1. speculative states will bump 'branches' for non-branch
990 		 * instructions
991 		 * 2. is_state_visited() heuristics may decide not to create
992 		 * a new state for a sequence of branches and all such current
993 		 * and cloned states will be pointing to a single parent state
994 		 * which might have large 'branches' count.
995 		 */
996 	}
997 	return &elem->st;
998 err:
999 	free_verifier_state(env->cur_state, true);
1000 	env->cur_state = NULL;
1001 	/* pop all elements and return */
1002 	while (!pop_stack(env, NULL, NULL, false));
1003 	return NULL;
1004 }
1005 
1006 #define CALLER_SAVED_REGS 6
1007 static const int caller_saved[CALLER_SAVED_REGS] = {
1008 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1009 };
1010 
1011 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1012 				struct bpf_reg_state *reg);
1013 
1014 /* This helper doesn't clear reg->id */
1015 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1016 {
1017 	reg->var_off = tnum_const(imm);
1018 	reg->smin_value = (s64)imm;
1019 	reg->smax_value = (s64)imm;
1020 	reg->umin_value = imm;
1021 	reg->umax_value = imm;
1022 
1023 	reg->s32_min_value = (s32)imm;
1024 	reg->s32_max_value = (s32)imm;
1025 	reg->u32_min_value = (u32)imm;
1026 	reg->u32_max_value = (u32)imm;
1027 }
1028 
1029 /* Mark the unknown part of a register (variable offset or scalar value) as
1030  * known to have the value @imm.
1031  */
1032 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1033 {
1034 	/* Clear id, off, and union(map_ptr, range) */
1035 	memset(((u8 *)reg) + sizeof(reg->type), 0,
1036 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1037 	___mark_reg_known(reg, imm);
1038 }
1039 
1040 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1041 {
1042 	reg->var_off = tnum_const_subreg(reg->var_off, imm);
1043 	reg->s32_min_value = (s32)imm;
1044 	reg->s32_max_value = (s32)imm;
1045 	reg->u32_min_value = (u32)imm;
1046 	reg->u32_max_value = (u32)imm;
1047 }
1048 
1049 /* Mark the 'variable offset' part of a register as zero.  This should be
1050  * used only on registers holding a pointer type.
1051  */
1052 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
1053 {
1054 	__mark_reg_known(reg, 0);
1055 }
1056 
1057 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1058 {
1059 	__mark_reg_known(reg, 0);
1060 	reg->type = SCALAR_VALUE;
1061 }
1062 
1063 static void mark_reg_known_zero(struct bpf_verifier_env *env,
1064 				struct bpf_reg_state *regs, u32 regno)
1065 {
1066 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1067 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
1068 		/* Something bad happened, let's kill all regs */
1069 		for (regno = 0; regno < MAX_BPF_REG; regno++)
1070 			__mark_reg_not_init(env, regs + regno);
1071 		return;
1072 	}
1073 	__mark_reg_known_zero(regs + regno);
1074 }
1075 
1076 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1077 {
1078 	return type_is_pkt_pointer(reg->type);
1079 }
1080 
1081 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1082 {
1083 	return reg_is_pkt_pointer(reg) ||
1084 	       reg->type == PTR_TO_PACKET_END;
1085 }
1086 
1087 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
1088 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1089 				    enum bpf_reg_type which)
1090 {
1091 	/* The register can already have a range from prior markings.
1092 	 * This is fine as long as it hasn't been advanced from its
1093 	 * origin.
1094 	 */
1095 	return reg->type == which &&
1096 	       reg->id == 0 &&
1097 	       reg->off == 0 &&
1098 	       tnum_equals_const(reg->var_off, 0);
1099 }
1100 
1101 /* Reset the min/max bounds of a register */
1102 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1103 {
1104 	reg->smin_value = S64_MIN;
1105 	reg->smax_value = S64_MAX;
1106 	reg->umin_value = 0;
1107 	reg->umax_value = U64_MAX;
1108 
1109 	reg->s32_min_value = S32_MIN;
1110 	reg->s32_max_value = S32_MAX;
1111 	reg->u32_min_value = 0;
1112 	reg->u32_max_value = U32_MAX;
1113 }
1114 
1115 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1116 {
1117 	reg->smin_value = S64_MIN;
1118 	reg->smax_value = S64_MAX;
1119 	reg->umin_value = 0;
1120 	reg->umax_value = U64_MAX;
1121 }
1122 
1123 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1124 {
1125 	reg->s32_min_value = S32_MIN;
1126 	reg->s32_max_value = S32_MAX;
1127 	reg->u32_min_value = 0;
1128 	reg->u32_max_value = U32_MAX;
1129 }
1130 
1131 static void __update_reg32_bounds(struct bpf_reg_state *reg)
1132 {
1133 	struct tnum var32_off = tnum_subreg(reg->var_off);
1134 
1135 	/* min signed is max(sign bit) | min(other bits) */
1136 	reg->s32_min_value = max_t(s32, reg->s32_min_value,
1137 			var32_off.value | (var32_off.mask & S32_MIN));
1138 	/* max signed is min(sign bit) | max(other bits) */
1139 	reg->s32_max_value = min_t(s32, reg->s32_max_value,
1140 			var32_off.value | (var32_off.mask & S32_MAX));
1141 	reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1142 	reg->u32_max_value = min(reg->u32_max_value,
1143 				 (u32)(var32_off.value | var32_off.mask));
1144 }
1145 
1146 static void __update_reg64_bounds(struct bpf_reg_state *reg)
1147 {
1148 	/* min signed is max(sign bit) | min(other bits) */
1149 	reg->smin_value = max_t(s64, reg->smin_value,
1150 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
1151 	/* max signed is min(sign bit) | max(other bits) */
1152 	reg->smax_value = min_t(s64, reg->smax_value,
1153 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
1154 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
1155 	reg->umax_value = min(reg->umax_value,
1156 			      reg->var_off.value | reg->var_off.mask);
1157 }
1158 
1159 static void __update_reg_bounds(struct bpf_reg_state *reg)
1160 {
1161 	__update_reg32_bounds(reg);
1162 	__update_reg64_bounds(reg);
1163 }
1164 
1165 /* Uses signed min/max values to inform unsigned, and vice-versa */
1166 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1167 {
1168 	/* Learn sign from signed bounds.
1169 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1170 	 * are the same, so combine.  This works even in the negative case, e.g.
1171 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1172 	 */
1173 	if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
1174 		reg->s32_min_value = reg->u32_min_value =
1175 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1176 		reg->s32_max_value = reg->u32_max_value =
1177 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1178 		return;
1179 	}
1180 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1181 	 * boundary, so we must be careful.
1182 	 */
1183 	if ((s32)reg->u32_max_value >= 0) {
1184 		/* Positive.  We can't learn anything from the smin, but smax
1185 		 * is positive, hence safe.
1186 		 */
1187 		reg->s32_min_value = reg->u32_min_value;
1188 		reg->s32_max_value = reg->u32_max_value =
1189 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1190 	} else if ((s32)reg->u32_min_value < 0) {
1191 		/* Negative.  We can't learn anything from the smax, but smin
1192 		 * is negative, hence safe.
1193 		 */
1194 		reg->s32_min_value = reg->u32_min_value =
1195 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1196 		reg->s32_max_value = reg->u32_max_value;
1197 	}
1198 }
1199 
1200 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
1201 {
1202 	/* Learn sign from signed bounds.
1203 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1204 	 * are the same, so combine.  This works even in the negative case, e.g.
1205 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1206 	 */
1207 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
1208 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1209 							  reg->umin_value);
1210 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1211 							  reg->umax_value);
1212 		return;
1213 	}
1214 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1215 	 * boundary, so we must be careful.
1216 	 */
1217 	if ((s64)reg->umax_value >= 0) {
1218 		/* Positive.  We can't learn anything from the smin, but smax
1219 		 * is positive, hence safe.
1220 		 */
1221 		reg->smin_value = reg->umin_value;
1222 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1223 							  reg->umax_value);
1224 	} else if ((s64)reg->umin_value < 0) {
1225 		/* Negative.  We can't learn anything from the smax, but smin
1226 		 * is negative, hence safe.
1227 		 */
1228 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1229 							  reg->umin_value);
1230 		reg->smax_value = reg->umax_value;
1231 	}
1232 }
1233 
1234 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
1235 {
1236 	__reg32_deduce_bounds(reg);
1237 	__reg64_deduce_bounds(reg);
1238 }
1239 
1240 /* Attempts to improve var_off based on unsigned min/max information */
1241 static void __reg_bound_offset(struct bpf_reg_state *reg)
1242 {
1243 	struct tnum var64_off = tnum_intersect(reg->var_off,
1244 					       tnum_range(reg->umin_value,
1245 							  reg->umax_value));
1246 	struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off),
1247 						tnum_range(reg->u32_min_value,
1248 							   reg->u32_max_value));
1249 
1250 	reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
1251 }
1252 
1253 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
1254 {
1255 	reg->umin_value = reg->u32_min_value;
1256 	reg->umax_value = reg->u32_max_value;
1257 	/* Attempt to pull 32-bit signed bounds into 64-bit bounds
1258 	 * but must be positive otherwise set to worse case bounds
1259 	 * and refine later from tnum.
1260 	 */
1261 	if (reg->s32_min_value >= 0 && reg->s32_max_value >= 0)
1262 		reg->smax_value = reg->s32_max_value;
1263 	else
1264 		reg->smax_value = U32_MAX;
1265 	if (reg->s32_min_value >= 0)
1266 		reg->smin_value = reg->s32_min_value;
1267 	else
1268 		reg->smin_value = 0;
1269 }
1270 
1271 static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
1272 {
1273 	/* special case when 64-bit register has upper 32-bit register
1274 	 * zeroed. Typically happens after zext or <<32, >>32 sequence
1275 	 * allowing us to use 32-bit bounds directly,
1276 	 */
1277 	if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
1278 		__reg_assign_32_into_64(reg);
1279 	} else {
1280 		/* Otherwise the best we can do is push lower 32bit known and
1281 		 * unknown bits into register (var_off set from jmp logic)
1282 		 * then learn as much as possible from the 64-bit tnum
1283 		 * known and unknown bits. The previous smin/smax bounds are
1284 		 * invalid here because of jmp32 compare so mark them unknown
1285 		 * so they do not impact tnum bounds calculation.
1286 		 */
1287 		__mark_reg64_unbounded(reg);
1288 		__update_reg_bounds(reg);
1289 	}
1290 
1291 	/* Intersecting with the old var_off might have improved our bounds
1292 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1293 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
1294 	 */
1295 	__reg_deduce_bounds(reg);
1296 	__reg_bound_offset(reg);
1297 	__update_reg_bounds(reg);
1298 }
1299 
1300 static bool __reg64_bound_s32(s64 a)
1301 {
1302 	return a > S32_MIN && a < S32_MAX;
1303 }
1304 
1305 static bool __reg64_bound_u32(u64 a)
1306 {
1307 	if (a > U32_MIN && a < U32_MAX)
1308 		return true;
1309 	return false;
1310 }
1311 
1312 static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
1313 {
1314 	__mark_reg32_unbounded(reg);
1315 
1316 	if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
1317 		reg->s32_min_value = (s32)reg->smin_value;
1318 		reg->s32_max_value = (s32)reg->smax_value;
1319 	}
1320 	if (__reg64_bound_u32(reg->umin_value))
1321 		reg->u32_min_value = (u32)reg->umin_value;
1322 	if (__reg64_bound_u32(reg->umax_value))
1323 		reg->u32_max_value = (u32)reg->umax_value;
1324 
1325 	/* Intersecting with the old var_off might have improved our bounds
1326 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1327 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
1328 	 */
1329 	__reg_deduce_bounds(reg);
1330 	__reg_bound_offset(reg);
1331 	__update_reg_bounds(reg);
1332 }
1333 
1334 /* Mark a register as having a completely unknown (scalar) value. */
1335 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1336 			       struct bpf_reg_state *reg)
1337 {
1338 	/*
1339 	 * Clear type, id, off, and union(map_ptr, range) and
1340 	 * padding between 'type' and union
1341 	 */
1342 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
1343 	reg->type = SCALAR_VALUE;
1344 	reg->var_off = tnum_unknown;
1345 	reg->frameno = 0;
1346 	reg->precise = env->subprog_cnt > 1 || !env->bpf_capable;
1347 	__mark_reg_unbounded(reg);
1348 }
1349 
1350 static void mark_reg_unknown(struct bpf_verifier_env *env,
1351 			     struct bpf_reg_state *regs, u32 regno)
1352 {
1353 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1354 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
1355 		/* Something bad happened, let's kill all regs except FP */
1356 		for (regno = 0; regno < BPF_REG_FP; regno++)
1357 			__mark_reg_not_init(env, regs + regno);
1358 		return;
1359 	}
1360 	__mark_reg_unknown(env, regs + regno);
1361 }
1362 
1363 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1364 				struct bpf_reg_state *reg)
1365 {
1366 	__mark_reg_unknown(env, reg);
1367 	reg->type = NOT_INIT;
1368 }
1369 
1370 static void mark_reg_not_init(struct bpf_verifier_env *env,
1371 			      struct bpf_reg_state *regs, u32 regno)
1372 {
1373 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1374 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
1375 		/* Something bad happened, let's kill all regs except FP */
1376 		for (regno = 0; regno < BPF_REG_FP; regno++)
1377 			__mark_reg_not_init(env, regs + regno);
1378 		return;
1379 	}
1380 	__mark_reg_not_init(env, regs + regno);
1381 }
1382 
1383 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
1384 			    struct bpf_reg_state *regs, u32 regno,
1385 			    enum bpf_reg_type reg_type,
1386 			    struct btf *btf, u32 btf_id)
1387 {
1388 	if (reg_type == SCALAR_VALUE) {
1389 		mark_reg_unknown(env, regs, regno);
1390 		return;
1391 	}
1392 	mark_reg_known_zero(env, regs, regno);
1393 	regs[regno].type = PTR_TO_BTF_ID;
1394 	regs[regno].btf = btf;
1395 	regs[regno].btf_id = btf_id;
1396 }
1397 
1398 #define DEF_NOT_SUBREG	(0)
1399 static void init_reg_state(struct bpf_verifier_env *env,
1400 			   struct bpf_func_state *state)
1401 {
1402 	struct bpf_reg_state *regs = state->regs;
1403 	int i;
1404 
1405 	for (i = 0; i < MAX_BPF_REG; i++) {
1406 		mark_reg_not_init(env, regs, i);
1407 		regs[i].live = REG_LIVE_NONE;
1408 		regs[i].parent = NULL;
1409 		regs[i].subreg_def = DEF_NOT_SUBREG;
1410 	}
1411 
1412 	/* frame pointer */
1413 	regs[BPF_REG_FP].type = PTR_TO_STACK;
1414 	mark_reg_known_zero(env, regs, BPF_REG_FP);
1415 	regs[BPF_REG_FP].frameno = state->frameno;
1416 }
1417 
1418 #define BPF_MAIN_FUNC (-1)
1419 static void init_func_state(struct bpf_verifier_env *env,
1420 			    struct bpf_func_state *state,
1421 			    int callsite, int frameno, int subprogno)
1422 {
1423 	state->callsite = callsite;
1424 	state->frameno = frameno;
1425 	state->subprogno = subprogno;
1426 	init_reg_state(env, state);
1427 }
1428 
1429 enum reg_arg_type {
1430 	SRC_OP,		/* register is used as source operand */
1431 	DST_OP,		/* register is used as destination operand */
1432 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
1433 };
1434 
1435 static int cmp_subprogs(const void *a, const void *b)
1436 {
1437 	return ((struct bpf_subprog_info *)a)->start -
1438 	       ((struct bpf_subprog_info *)b)->start;
1439 }
1440 
1441 static int find_subprog(struct bpf_verifier_env *env, int off)
1442 {
1443 	struct bpf_subprog_info *p;
1444 
1445 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1446 		    sizeof(env->subprog_info[0]), cmp_subprogs);
1447 	if (!p)
1448 		return -ENOENT;
1449 	return p - env->subprog_info;
1450 
1451 }
1452 
1453 static int add_subprog(struct bpf_verifier_env *env, int off)
1454 {
1455 	int insn_cnt = env->prog->len;
1456 	int ret;
1457 
1458 	if (off >= insn_cnt || off < 0) {
1459 		verbose(env, "call to invalid destination\n");
1460 		return -EINVAL;
1461 	}
1462 	ret = find_subprog(env, off);
1463 	if (ret >= 0)
1464 		return 0;
1465 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
1466 		verbose(env, "too many subprograms\n");
1467 		return -E2BIG;
1468 	}
1469 	env->subprog_info[env->subprog_cnt++].start = off;
1470 	sort(env->subprog_info, env->subprog_cnt,
1471 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
1472 	return 0;
1473 }
1474 
1475 static int check_subprogs(struct bpf_verifier_env *env)
1476 {
1477 	int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
1478 	struct bpf_subprog_info *subprog = env->subprog_info;
1479 	struct bpf_insn *insn = env->prog->insnsi;
1480 	int insn_cnt = env->prog->len;
1481 
1482 	/* Add entry function. */
1483 	ret = add_subprog(env, 0);
1484 	if (ret < 0)
1485 		return ret;
1486 
1487 	/* determine subprog starts. The end is one before the next starts */
1488 	for (i = 0; i < insn_cnt; i++) {
1489 		if (insn[i].code != (BPF_JMP | BPF_CALL))
1490 			continue;
1491 		if (insn[i].src_reg != BPF_PSEUDO_CALL)
1492 			continue;
1493 		if (!env->bpf_capable) {
1494 			verbose(env,
1495 				"function calls to other bpf functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
1496 			return -EPERM;
1497 		}
1498 		ret = add_subprog(env, i + insn[i].imm + 1);
1499 		if (ret < 0)
1500 			return ret;
1501 	}
1502 
1503 	/* Add a fake 'exit' subprog which could simplify subprog iteration
1504 	 * logic. 'subprog_cnt' should not be increased.
1505 	 */
1506 	subprog[env->subprog_cnt].start = insn_cnt;
1507 
1508 	if (env->log.level & BPF_LOG_LEVEL2)
1509 		for (i = 0; i < env->subprog_cnt; i++)
1510 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
1511 
1512 	/* now check that all jumps are within the same subprog */
1513 	subprog_start = subprog[cur_subprog].start;
1514 	subprog_end = subprog[cur_subprog + 1].start;
1515 	for (i = 0; i < insn_cnt; i++) {
1516 		u8 code = insn[i].code;
1517 
1518 		if (code == (BPF_JMP | BPF_CALL) &&
1519 		    insn[i].imm == BPF_FUNC_tail_call &&
1520 		    insn[i].src_reg != BPF_PSEUDO_CALL)
1521 			subprog[cur_subprog].has_tail_call = true;
1522 		if (BPF_CLASS(code) == BPF_LD &&
1523 		    (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
1524 			subprog[cur_subprog].has_ld_abs = true;
1525 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
1526 			goto next;
1527 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1528 			goto next;
1529 		off = i + insn[i].off + 1;
1530 		if (off < subprog_start || off >= subprog_end) {
1531 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
1532 			return -EINVAL;
1533 		}
1534 next:
1535 		if (i == subprog_end - 1) {
1536 			/* to avoid fall-through from one subprog into another
1537 			 * the last insn of the subprog should be either exit
1538 			 * or unconditional jump back
1539 			 */
1540 			if (code != (BPF_JMP | BPF_EXIT) &&
1541 			    code != (BPF_JMP | BPF_JA)) {
1542 				verbose(env, "last insn is not an exit or jmp\n");
1543 				return -EINVAL;
1544 			}
1545 			subprog_start = subprog_end;
1546 			cur_subprog++;
1547 			if (cur_subprog < env->subprog_cnt)
1548 				subprog_end = subprog[cur_subprog + 1].start;
1549 		}
1550 	}
1551 	return 0;
1552 }
1553 
1554 /* Parentage chain of this register (or stack slot) should take care of all
1555  * issues like callee-saved registers, stack slot allocation time, etc.
1556  */
1557 static int mark_reg_read(struct bpf_verifier_env *env,
1558 			 const struct bpf_reg_state *state,
1559 			 struct bpf_reg_state *parent, u8 flag)
1560 {
1561 	bool writes = parent == state->parent; /* Observe write marks */
1562 	int cnt = 0;
1563 
1564 	while (parent) {
1565 		/* if read wasn't screened by an earlier write ... */
1566 		if (writes && state->live & REG_LIVE_WRITTEN)
1567 			break;
1568 		if (parent->live & REG_LIVE_DONE) {
1569 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1570 				reg_type_str[parent->type],
1571 				parent->var_off.value, parent->off);
1572 			return -EFAULT;
1573 		}
1574 		/* The first condition is more likely to be true than the
1575 		 * second, checked it first.
1576 		 */
1577 		if ((parent->live & REG_LIVE_READ) == flag ||
1578 		    parent->live & REG_LIVE_READ64)
1579 			/* The parentage chain never changes and
1580 			 * this parent was already marked as LIVE_READ.
1581 			 * There is no need to keep walking the chain again and
1582 			 * keep re-marking all parents as LIVE_READ.
1583 			 * This case happens when the same register is read
1584 			 * multiple times without writes into it in-between.
1585 			 * Also, if parent has the stronger REG_LIVE_READ64 set,
1586 			 * then no need to set the weak REG_LIVE_READ32.
1587 			 */
1588 			break;
1589 		/* ... then we depend on parent's value */
1590 		parent->live |= flag;
1591 		/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
1592 		if (flag == REG_LIVE_READ64)
1593 			parent->live &= ~REG_LIVE_READ32;
1594 		state = parent;
1595 		parent = state->parent;
1596 		writes = true;
1597 		cnt++;
1598 	}
1599 
1600 	if (env->longest_mark_read_walk < cnt)
1601 		env->longest_mark_read_walk = cnt;
1602 	return 0;
1603 }
1604 
1605 /* This function is supposed to be used by the following 32-bit optimization
1606  * code only. It returns TRUE if the source or destination register operates
1607  * on 64-bit, otherwise return FALSE.
1608  */
1609 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
1610 		     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
1611 {
1612 	u8 code, class, op;
1613 
1614 	code = insn->code;
1615 	class = BPF_CLASS(code);
1616 	op = BPF_OP(code);
1617 	if (class == BPF_JMP) {
1618 		/* BPF_EXIT for "main" will reach here. Return TRUE
1619 		 * conservatively.
1620 		 */
1621 		if (op == BPF_EXIT)
1622 			return true;
1623 		if (op == BPF_CALL) {
1624 			/* BPF to BPF call will reach here because of marking
1625 			 * caller saved clobber with DST_OP_NO_MARK for which we
1626 			 * don't care the register def because they are anyway
1627 			 * marked as NOT_INIT already.
1628 			 */
1629 			if (insn->src_reg == BPF_PSEUDO_CALL)
1630 				return false;
1631 			/* Helper call will reach here because of arg type
1632 			 * check, conservatively return TRUE.
1633 			 */
1634 			if (t == SRC_OP)
1635 				return true;
1636 
1637 			return false;
1638 		}
1639 	}
1640 
1641 	if (class == BPF_ALU64 || class == BPF_JMP ||
1642 	    /* BPF_END always use BPF_ALU class. */
1643 	    (class == BPF_ALU && op == BPF_END && insn->imm == 64))
1644 		return true;
1645 
1646 	if (class == BPF_ALU || class == BPF_JMP32)
1647 		return false;
1648 
1649 	if (class == BPF_LDX) {
1650 		if (t != SRC_OP)
1651 			return BPF_SIZE(code) == BPF_DW;
1652 		/* LDX source must be ptr. */
1653 		return true;
1654 	}
1655 
1656 	if (class == BPF_STX) {
1657 		if (reg->type != SCALAR_VALUE)
1658 			return true;
1659 		return BPF_SIZE(code) == BPF_DW;
1660 	}
1661 
1662 	if (class == BPF_LD) {
1663 		u8 mode = BPF_MODE(code);
1664 
1665 		/* LD_IMM64 */
1666 		if (mode == BPF_IMM)
1667 			return true;
1668 
1669 		/* Both LD_IND and LD_ABS return 32-bit data. */
1670 		if (t != SRC_OP)
1671 			return  false;
1672 
1673 		/* Implicit ctx ptr. */
1674 		if (regno == BPF_REG_6)
1675 			return true;
1676 
1677 		/* Explicit source could be any width. */
1678 		return true;
1679 	}
1680 
1681 	if (class == BPF_ST)
1682 		/* The only source register for BPF_ST is a ptr. */
1683 		return true;
1684 
1685 	/* Conservatively return true at default. */
1686 	return true;
1687 }
1688 
1689 /* Return TRUE if INSN doesn't have explicit value define. */
1690 static bool insn_no_def(struct bpf_insn *insn)
1691 {
1692 	u8 class = BPF_CLASS(insn->code);
1693 
1694 	return (class == BPF_JMP || class == BPF_JMP32 ||
1695 		class == BPF_STX || class == BPF_ST);
1696 }
1697 
1698 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
1699 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
1700 {
1701 	if (insn_no_def(insn))
1702 		return false;
1703 
1704 	return !is_reg64(env, insn, insn->dst_reg, NULL, DST_OP);
1705 }
1706 
1707 static void mark_insn_zext(struct bpf_verifier_env *env,
1708 			   struct bpf_reg_state *reg)
1709 {
1710 	s32 def_idx = reg->subreg_def;
1711 
1712 	if (def_idx == DEF_NOT_SUBREG)
1713 		return;
1714 
1715 	env->insn_aux_data[def_idx - 1].zext_dst = true;
1716 	/* The dst will be zero extended, so won't be sub-register anymore. */
1717 	reg->subreg_def = DEF_NOT_SUBREG;
1718 }
1719 
1720 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
1721 			 enum reg_arg_type t)
1722 {
1723 	struct bpf_verifier_state *vstate = env->cur_state;
1724 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1725 	struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
1726 	struct bpf_reg_state *reg, *regs = state->regs;
1727 	bool rw64;
1728 
1729 	if (regno >= MAX_BPF_REG) {
1730 		verbose(env, "R%d is invalid\n", regno);
1731 		return -EINVAL;
1732 	}
1733 
1734 	reg = &regs[regno];
1735 	rw64 = is_reg64(env, insn, regno, reg, t);
1736 	if (t == SRC_OP) {
1737 		/* check whether register used as source operand can be read */
1738 		if (reg->type == NOT_INIT) {
1739 			verbose(env, "R%d !read_ok\n", regno);
1740 			return -EACCES;
1741 		}
1742 		/* We don't need to worry about FP liveness because it's read-only */
1743 		if (regno == BPF_REG_FP)
1744 			return 0;
1745 
1746 		if (rw64)
1747 			mark_insn_zext(env, reg);
1748 
1749 		return mark_reg_read(env, reg, reg->parent,
1750 				     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
1751 	} else {
1752 		/* check whether register used as dest operand can be written to */
1753 		if (regno == BPF_REG_FP) {
1754 			verbose(env, "frame pointer is read only\n");
1755 			return -EACCES;
1756 		}
1757 		reg->live |= REG_LIVE_WRITTEN;
1758 		reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
1759 		if (t == DST_OP)
1760 			mark_reg_unknown(env, regs, regno);
1761 	}
1762 	return 0;
1763 }
1764 
1765 /* for any branch, call, exit record the history of jmps in the given state */
1766 static int push_jmp_history(struct bpf_verifier_env *env,
1767 			    struct bpf_verifier_state *cur)
1768 {
1769 	u32 cnt = cur->jmp_history_cnt;
1770 	struct bpf_idx_pair *p;
1771 
1772 	cnt++;
1773 	p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
1774 	if (!p)
1775 		return -ENOMEM;
1776 	p[cnt - 1].idx = env->insn_idx;
1777 	p[cnt - 1].prev_idx = env->prev_insn_idx;
1778 	cur->jmp_history = p;
1779 	cur->jmp_history_cnt = cnt;
1780 	return 0;
1781 }
1782 
1783 /* Backtrack one insn at a time. If idx is not at the top of recorded
1784  * history then previous instruction came from straight line execution.
1785  */
1786 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
1787 			     u32 *history)
1788 {
1789 	u32 cnt = *history;
1790 
1791 	if (cnt && st->jmp_history[cnt - 1].idx == i) {
1792 		i = st->jmp_history[cnt - 1].prev_idx;
1793 		(*history)--;
1794 	} else {
1795 		i--;
1796 	}
1797 	return i;
1798 }
1799 
1800 /* For given verifier state backtrack_insn() is called from the last insn to
1801  * the first insn. Its purpose is to compute a bitmask of registers and
1802  * stack slots that needs precision in the parent verifier state.
1803  */
1804 static int backtrack_insn(struct bpf_verifier_env *env, int idx,
1805 			  u32 *reg_mask, u64 *stack_mask)
1806 {
1807 	const struct bpf_insn_cbs cbs = {
1808 		.cb_print	= verbose,
1809 		.private_data	= env,
1810 	};
1811 	struct bpf_insn *insn = env->prog->insnsi + idx;
1812 	u8 class = BPF_CLASS(insn->code);
1813 	u8 opcode = BPF_OP(insn->code);
1814 	u8 mode = BPF_MODE(insn->code);
1815 	u32 dreg = 1u << insn->dst_reg;
1816 	u32 sreg = 1u << insn->src_reg;
1817 	u32 spi;
1818 
1819 	if (insn->code == 0)
1820 		return 0;
1821 	if (env->log.level & BPF_LOG_LEVEL) {
1822 		verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
1823 		verbose(env, "%d: ", idx);
1824 		print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
1825 	}
1826 
1827 	if (class == BPF_ALU || class == BPF_ALU64) {
1828 		if (!(*reg_mask & dreg))
1829 			return 0;
1830 		if (opcode == BPF_MOV) {
1831 			if (BPF_SRC(insn->code) == BPF_X) {
1832 				/* dreg = sreg
1833 				 * dreg needs precision after this insn
1834 				 * sreg needs precision before this insn
1835 				 */
1836 				*reg_mask &= ~dreg;
1837 				*reg_mask |= sreg;
1838 			} else {
1839 				/* dreg = K
1840 				 * dreg needs precision after this insn.
1841 				 * Corresponding register is already marked
1842 				 * as precise=true in this verifier state.
1843 				 * No further markings in parent are necessary
1844 				 */
1845 				*reg_mask &= ~dreg;
1846 			}
1847 		} else {
1848 			if (BPF_SRC(insn->code) == BPF_X) {
1849 				/* dreg += sreg
1850 				 * both dreg and sreg need precision
1851 				 * before this insn
1852 				 */
1853 				*reg_mask |= sreg;
1854 			} /* else dreg += K
1855 			   * dreg still needs precision before this insn
1856 			   */
1857 		}
1858 	} else if (class == BPF_LDX) {
1859 		if (!(*reg_mask & dreg))
1860 			return 0;
1861 		*reg_mask &= ~dreg;
1862 
1863 		/* scalars can only be spilled into stack w/o losing precision.
1864 		 * Load from any other memory can be zero extended.
1865 		 * The desire to keep that precision is already indicated
1866 		 * by 'precise' mark in corresponding register of this state.
1867 		 * No further tracking necessary.
1868 		 */
1869 		if (insn->src_reg != BPF_REG_FP)
1870 			return 0;
1871 		if (BPF_SIZE(insn->code) != BPF_DW)
1872 			return 0;
1873 
1874 		/* dreg = *(u64 *)[fp - off] was a fill from the stack.
1875 		 * that [fp - off] slot contains scalar that needs to be
1876 		 * tracked with precision
1877 		 */
1878 		spi = (-insn->off - 1) / BPF_REG_SIZE;
1879 		if (spi >= 64) {
1880 			verbose(env, "BUG spi %d\n", spi);
1881 			WARN_ONCE(1, "verifier backtracking bug");
1882 			return -EFAULT;
1883 		}
1884 		*stack_mask |= 1ull << spi;
1885 	} else if (class == BPF_STX || class == BPF_ST) {
1886 		if (*reg_mask & dreg)
1887 			/* stx & st shouldn't be using _scalar_ dst_reg
1888 			 * to access memory. It means backtracking
1889 			 * encountered a case of pointer subtraction.
1890 			 */
1891 			return -ENOTSUPP;
1892 		/* scalars can only be spilled into stack */
1893 		if (insn->dst_reg != BPF_REG_FP)
1894 			return 0;
1895 		if (BPF_SIZE(insn->code) != BPF_DW)
1896 			return 0;
1897 		spi = (-insn->off - 1) / BPF_REG_SIZE;
1898 		if (spi >= 64) {
1899 			verbose(env, "BUG spi %d\n", spi);
1900 			WARN_ONCE(1, "verifier backtracking bug");
1901 			return -EFAULT;
1902 		}
1903 		if (!(*stack_mask & (1ull << spi)))
1904 			return 0;
1905 		*stack_mask &= ~(1ull << spi);
1906 		if (class == BPF_STX)
1907 			*reg_mask |= sreg;
1908 	} else if (class == BPF_JMP || class == BPF_JMP32) {
1909 		if (opcode == BPF_CALL) {
1910 			if (insn->src_reg == BPF_PSEUDO_CALL)
1911 				return -ENOTSUPP;
1912 			/* regular helper call sets R0 */
1913 			*reg_mask &= ~1;
1914 			if (*reg_mask & 0x3f) {
1915 				/* if backtracing was looking for registers R1-R5
1916 				 * they should have been found already.
1917 				 */
1918 				verbose(env, "BUG regs %x\n", *reg_mask);
1919 				WARN_ONCE(1, "verifier backtracking bug");
1920 				return -EFAULT;
1921 			}
1922 		} else if (opcode == BPF_EXIT) {
1923 			return -ENOTSUPP;
1924 		}
1925 	} else if (class == BPF_LD) {
1926 		if (!(*reg_mask & dreg))
1927 			return 0;
1928 		*reg_mask &= ~dreg;
1929 		/* It's ld_imm64 or ld_abs or ld_ind.
1930 		 * For ld_imm64 no further tracking of precision
1931 		 * into parent is necessary
1932 		 */
1933 		if (mode == BPF_IND || mode == BPF_ABS)
1934 			/* to be analyzed */
1935 			return -ENOTSUPP;
1936 	}
1937 	return 0;
1938 }
1939 
1940 /* the scalar precision tracking algorithm:
1941  * . at the start all registers have precise=false.
1942  * . scalar ranges are tracked as normal through alu and jmp insns.
1943  * . once precise value of the scalar register is used in:
1944  *   .  ptr + scalar alu
1945  *   . if (scalar cond K|scalar)
1946  *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
1947  *   backtrack through the verifier states and mark all registers and
1948  *   stack slots with spilled constants that these scalar regisers
1949  *   should be precise.
1950  * . during state pruning two registers (or spilled stack slots)
1951  *   are equivalent if both are not precise.
1952  *
1953  * Note the verifier cannot simply walk register parentage chain,
1954  * since many different registers and stack slots could have been
1955  * used to compute single precise scalar.
1956  *
1957  * The approach of starting with precise=true for all registers and then
1958  * backtrack to mark a register as not precise when the verifier detects
1959  * that program doesn't care about specific value (e.g., when helper
1960  * takes register as ARG_ANYTHING parameter) is not safe.
1961  *
1962  * It's ok to walk single parentage chain of the verifier states.
1963  * It's possible that this backtracking will go all the way till 1st insn.
1964  * All other branches will be explored for needing precision later.
1965  *
1966  * The backtracking needs to deal with cases like:
1967  *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
1968  * r9 -= r8
1969  * r5 = r9
1970  * if r5 > 0x79f goto pc+7
1971  *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
1972  * r5 += 1
1973  * ...
1974  * call bpf_perf_event_output#25
1975  *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
1976  *
1977  * and this case:
1978  * r6 = 1
1979  * call foo // uses callee's r6 inside to compute r0
1980  * r0 += r6
1981  * if r0 == 0 goto
1982  *
1983  * to track above reg_mask/stack_mask needs to be independent for each frame.
1984  *
1985  * Also if parent's curframe > frame where backtracking started,
1986  * the verifier need to mark registers in both frames, otherwise callees
1987  * may incorrectly prune callers. This is similar to
1988  * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
1989  *
1990  * For now backtracking falls back into conservative marking.
1991  */
1992 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
1993 				     struct bpf_verifier_state *st)
1994 {
1995 	struct bpf_func_state *func;
1996 	struct bpf_reg_state *reg;
1997 	int i, j;
1998 
1999 	/* big hammer: mark all scalars precise in this path.
2000 	 * pop_stack may still get !precise scalars.
2001 	 */
2002 	for (; st; st = st->parent)
2003 		for (i = 0; i <= st->curframe; i++) {
2004 			func = st->frame[i];
2005 			for (j = 0; j < BPF_REG_FP; j++) {
2006 				reg = &func->regs[j];
2007 				if (reg->type != SCALAR_VALUE)
2008 					continue;
2009 				reg->precise = true;
2010 			}
2011 			for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
2012 				if (func->stack[j].slot_type[0] != STACK_SPILL)
2013 					continue;
2014 				reg = &func->stack[j].spilled_ptr;
2015 				if (reg->type != SCALAR_VALUE)
2016 					continue;
2017 				reg->precise = true;
2018 			}
2019 		}
2020 }
2021 
2022 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno,
2023 				  int spi)
2024 {
2025 	struct bpf_verifier_state *st = env->cur_state;
2026 	int first_idx = st->first_insn_idx;
2027 	int last_idx = env->insn_idx;
2028 	struct bpf_func_state *func;
2029 	struct bpf_reg_state *reg;
2030 	u32 reg_mask = regno >= 0 ? 1u << regno : 0;
2031 	u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
2032 	bool skip_first = true;
2033 	bool new_marks = false;
2034 	int i, err;
2035 
2036 	if (!env->bpf_capable)
2037 		return 0;
2038 
2039 	func = st->frame[st->curframe];
2040 	if (regno >= 0) {
2041 		reg = &func->regs[regno];
2042 		if (reg->type != SCALAR_VALUE) {
2043 			WARN_ONCE(1, "backtracing misuse");
2044 			return -EFAULT;
2045 		}
2046 		if (!reg->precise)
2047 			new_marks = true;
2048 		else
2049 			reg_mask = 0;
2050 		reg->precise = true;
2051 	}
2052 
2053 	while (spi >= 0) {
2054 		if (func->stack[spi].slot_type[0] != STACK_SPILL) {
2055 			stack_mask = 0;
2056 			break;
2057 		}
2058 		reg = &func->stack[spi].spilled_ptr;
2059 		if (reg->type != SCALAR_VALUE) {
2060 			stack_mask = 0;
2061 			break;
2062 		}
2063 		if (!reg->precise)
2064 			new_marks = true;
2065 		else
2066 			stack_mask = 0;
2067 		reg->precise = true;
2068 		break;
2069 	}
2070 
2071 	if (!new_marks)
2072 		return 0;
2073 	if (!reg_mask && !stack_mask)
2074 		return 0;
2075 	for (;;) {
2076 		DECLARE_BITMAP(mask, 64);
2077 		u32 history = st->jmp_history_cnt;
2078 
2079 		if (env->log.level & BPF_LOG_LEVEL)
2080 			verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
2081 		for (i = last_idx;;) {
2082 			if (skip_first) {
2083 				err = 0;
2084 				skip_first = false;
2085 			} else {
2086 				err = backtrack_insn(env, i, &reg_mask, &stack_mask);
2087 			}
2088 			if (err == -ENOTSUPP) {
2089 				mark_all_scalars_precise(env, st);
2090 				return 0;
2091 			} else if (err) {
2092 				return err;
2093 			}
2094 			if (!reg_mask && !stack_mask)
2095 				/* Found assignment(s) into tracked register in this state.
2096 				 * Since this state is already marked, just return.
2097 				 * Nothing to be tracked further in the parent state.
2098 				 */
2099 				return 0;
2100 			if (i == first_idx)
2101 				break;
2102 			i = get_prev_insn_idx(st, i, &history);
2103 			if (i >= env->prog->len) {
2104 				/* This can happen if backtracking reached insn 0
2105 				 * and there are still reg_mask or stack_mask
2106 				 * to backtrack.
2107 				 * It means the backtracking missed the spot where
2108 				 * particular register was initialized with a constant.
2109 				 */
2110 				verbose(env, "BUG backtracking idx %d\n", i);
2111 				WARN_ONCE(1, "verifier backtracking bug");
2112 				return -EFAULT;
2113 			}
2114 		}
2115 		st = st->parent;
2116 		if (!st)
2117 			break;
2118 
2119 		new_marks = false;
2120 		func = st->frame[st->curframe];
2121 		bitmap_from_u64(mask, reg_mask);
2122 		for_each_set_bit(i, mask, 32) {
2123 			reg = &func->regs[i];
2124 			if (reg->type != SCALAR_VALUE) {
2125 				reg_mask &= ~(1u << i);
2126 				continue;
2127 			}
2128 			if (!reg->precise)
2129 				new_marks = true;
2130 			reg->precise = true;
2131 		}
2132 
2133 		bitmap_from_u64(mask, stack_mask);
2134 		for_each_set_bit(i, mask, 64) {
2135 			if (i >= func->allocated_stack / BPF_REG_SIZE) {
2136 				/* the sequence of instructions:
2137 				 * 2: (bf) r3 = r10
2138 				 * 3: (7b) *(u64 *)(r3 -8) = r0
2139 				 * 4: (79) r4 = *(u64 *)(r10 -8)
2140 				 * doesn't contain jmps. It's backtracked
2141 				 * as a single block.
2142 				 * During backtracking insn 3 is not recognized as
2143 				 * stack access, so at the end of backtracking
2144 				 * stack slot fp-8 is still marked in stack_mask.
2145 				 * However the parent state may not have accessed
2146 				 * fp-8 and it's "unallocated" stack space.
2147 				 * In such case fallback to conservative.
2148 				 */
2149 				mark_all_scalars_precise(env, st);
2150 				return 0;
2151 			}
2152 
2153 			if (func->stack[i].slot_type[0] != STACK_SPILL) {
2154 				stack_mask &= ~(1ull << i);
2155 				continue;
2156 			}
2157 			reg = &func->stack[i].spilled_ptr;
2158 			if (reg->type != SCALAR_VALUE) {
2159 				stack_mask &= ~(1ull << i);
2160 				continue;
2161 			}
2162 			if (!reg->precise)
2163 				new_marks = true;
2164 			reg->precise = true;
2165 		}
2166 		if (env->log.level & BPF_LOG_LEVEL) {
2167 			print_verifier_state(env, func);
2168 			verbose(env, "parent %s regs=%x stack=%llx marks\n",
2169 				new_marks ? "didn't have" : "already had",
2170 				reg_mask, stack_mask);
2171 		}
2172 
2173 		if (!reg_mask && !stack_mask)
2174 			break;
2175 		if (!new_marks)
2176 			break;
2177 
2178 		last_idx = st->last_insn_idx;
2179 		first_idx = st->first_insn_idx;
2180 	}
2181 	return 0;
2182 }
2183 
2184 static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
2185 {
2186 	return __mark_chain_precision(env, regno, -1);
2187 }
2188 
2189 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi)
2190 {
2191 	return __mark_chain_precision(env, -1, spi);
2192 }
2193 
2194 static bool is_spillable_regtype(enum bpf_reg_type type)
2195 {
2196 	switch (type) {
2197 	case PTR_TO_MAP_VALUE:
2198 	case PTR_TO_MAP_VALUE_OR_NULL:
2199 	case PTR_TO_STACK:
2200 	case PTR_TO_CTX:
2201 	case PTR_TO_PACKET:
2202 	case PTR_TO_PACKET_META:
2203 	case PTR_TO_PACKET_END:
2204 	case PTR_TO_FLOW_KEYS:
2205 	case CONST_PTR_TO_MAP:
2206 	case PTR_TO_SOCKET:
2207 	case PTR_TO_SOCKET_OR_NULL:
2208 	case PTR_TO_SOCK_COMMON:
2209 	case PTR_TO_SOCK_COMMON_OR_NULL:
2210 	case PTR_TO_TCP_SOCK:
2211 	case PTR_TO_TCP_SOCK_OR_NULL:
2212 	case PTR_TO_XDP_SOCK:
2213 	case PTR_TO_BTF_ID:
2214 	case PTR_TO_BTF_ID_OR_NULL:
2215 	case PTR_TO_RDONLY_BUF:
2216 	case PTR_TO_RDONLY_BUF_OR_NULL:
2217 	case PTR_TO_RDWR_BUF:
2218 	case PTR_TO_RDWR_BUF_OR_NULL:
2219 	case PTR_TO_PERCPU_BTF_ID:
2220 	case PTR_TO_MEM:
2221 	case PTR_TO_MEM_OR_NULL:
2222 		return true;
2223 	default:
2224 		return false;
2225 	}
2226 }
2227 
2228 /* Does this register contain a constant zero? */
2229 static bool register_is_null(struct bpf_reg_state *reg)
2230 {
2231 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
2232 }
2233 
2234 static bool register_is_const(struct bpf_reg_state *reg)
2235 {
2236 	return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
2237 }
2238 
2239 static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
2240 {
2241 	return tnum_is_unknown(reg->var_off) &&
2242 	       reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
2243 	       reg->umin_value == 0 && reg->umax_value == U64_MAX &&
2244 	       reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
2245 	       reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
2246 }
2247 
2248 static bool register_is_bounded(struct bpf_reg_state *reg)
2249 {
2250 	return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
2251 }
2252 
2253 static bool __is_pointer_value(bool allow_ptr_leaks,
2254 			       const struct bpf_reg_state *reg)
2255 {
2256 	if (allow_ptr_leaks)
2257 		return false;
2258 
2259 	return reg->type != SCALAR_VALUE;
2260 }
2261 
2262 static void save_register_state(struct bpf_func_state *state,
2263 				int spi, struct bpf_reg_state *reg)
2264 {
2265 	int i;
2266 
2267 	state->stack[spi].spilled_ptr = *reg;
2268 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2269 
2270 	for (i = 0; i < BPF_REG_SIZE; i++)
2271 		state->stack[spi].slot_type[i] = STACK_SPILL;
2272 }
2273 
2274 /* check_stack_read/write functions track spill/fill of registers,
2275  * stack boundary and alignment are checked in check_mem_access()
2276  */
2277 static int check_stack_write(struct bpf_verifier_env *env,
2278 			     struct bpf_func_state *state, /* func where register points to */
2279 			     int off, int size, int value_regno, int insn_idx)
2280 {
2281 	struct bpf_func_state *cur; /* state of the current function */
2282 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
2283 	u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
2284 	struct bpf_reg_state *reg = NULL;
2285 
2286 	err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
2287 				 state->acquired_refs, true);
2288 	if (err)
2289 		return err;
2290 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
2291 	 * so it's aligned access and [off, off + size) are within stack limits
2292 	 */
2293 	if (!env->allow_ptr_leaks &&
2294 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
2295 	    size != BPF_REG_SIZE) {
2296 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
2297 		return -EACCES;
2298 	}
2299 
2300 	cur = env->cur_state->frame[env->cur_state->curframe];
2301 	if (value_regno >= 0)
2302 		reg = &cur->regs[value_regno];
2303 
2304 	if (reg && size == BPF_REG_SIZE && register_is_bounded(reg) &&
2305 	    !register_is_null(reg) && env->bpf_capable) {
2306 		if (dst_reg != BPF_REG_FP) {
2307 			/* The backtracking logic can only recognize explicit
2308 			 * stack slot address like [fp - 8]. Other spill of
2309 			 * scalar via different register has to be conervative.
2310 			 * Backtrack from here and mark all registers as precise
2311 			 * that contributed into 'reg' being a constant.
2312 			 */
2313 			err = mark_chain_precision(env, value_regno);
2314 			if (err)
2315 				return err;
2316 		}
2317 		save_register_state(state, spi, reg);
2318 	} else if (reg && is_spillable_regtype(reg->type)) {
2319 		/* register containing pointer is being spilled into stack */
2320 		if (size != BPF_REG_SIZE) {
2321 			verbose_linfo(env, insn_idx, "; ");
2322 			verbose(env, "invalid size of register spill\n");
2323 			return -EACCES;
2324 		}
2325 
2326 		if (state != cur && reg->type == PTR_TO_STACK) {
2327 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
2328 			return -EINVAL;
2329 		}
2330 
2331 		if (!env->bypass_spec_v4) {
2332 			bool sanitize = false;
2333 
2334 			if (state->stack[spi].slot_type[0] == STACK_SPILL &&
2335 			    register_is_const(&state->stack[spi].spilled_ptr))
2336 				sanitize = true;
2337 			for (i = 0; i < BPF_REG_SIZE; i++)
2338 				if (state->stack[spi].slot_type[i] == STACK_MISC) {
2339 					sanitize = true;
2340 					break;
2341 				}
2342 			if (sanitize) {
2343 				int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
2344 				int soff = (-spi - 1) * BPF_REG_SIZE;
2345 
2346 				/* detected reuse of integer stack slot with a pointer
2347 				 * which means either llvm is reusing stack slot or
2348 				 * an attacker is trying to exploit CVE-2018-3639
2349 				 * (speculative store bypass)
2350 				 * Have to sanitize that slot with preemptive
2351 				 * store of zero.
2352 				 */
2353 				if (*poff && *poff != soff) {
2354 					/* disallow programs where single insn stores
2355 					 * into two different stack slots, since verifier
2356 					 * cannot sanitize them
2357 					 */
2358 					verbose(env,
2359 						"insn %d cannot access two stack slots fp%d and fp%d",
2360 						insn_idx, *poff, soff);
2361 					return -EINVAL;
2362 				}
2363 				*poff = soff;
2364 			}
2365 		}
2366 		save_register_state(state, spi, reg);
2367 	} else {
2368 		u8 type = STACK_MISC;
2369 
2370 		/* regular write of data into stack destroys any spilled ptr */
2371 		state->stack[spi].spilled_ptr.type = NOT_INIT;
2372 		/* Mark slots as STACK_MISC if they belonged to spilled ptr. */
2373 		if (state->stack[spi].slot_type[0] == STACK_SPILL)
2374 			for (i = 0; i < BPF_REG_SIZE; i++)
2375 				state->stack[spi].slot_type[i] = STACK_MISC;
2376 
2377 		/* only mark the slot as written if all 8 bytes were written
2378 		 * otherwise read propagation may incorrectly stop too soon
2379 		 * when stack slots are partially written.
2380 		 * This heuristic means that read propagation will be
2381 		 * conservative, since it will add reg_live_read marks
2382 		 * to stack slots all the way to first state when programs
2383 		 * writes+reads less than 8 bytes
2384 		 */
2385 		if (size == BPF_REG_SIZE)
2386 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2387 
2388 		/* when we zero initialize stack slots mark them as such */
2389 		if (reg && register_is_null(reg)) {
2390 			/* backtracking doesn't work for STACK_ZERO yet. */
2391 			err = mark_chain_precision(env, value_regno);
2392 			if (err)
2393 				return err;
2394 			type = STACK_ZERO;
2395 		}
2396 
2397 		/* Mark slots affected by this stack write. */
2398 		for (i = 0; i < size; i++)
2399 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
2400 				type;
2401 	}
2402 	return 0;
2403 }
2404 
2405 static int check_stack_read(struct bpf_verifier_env *env,
2406 			    struct bpf_func_state *reg_state /* func where register points to */,
2407 			    int off, int size, int value_regno)
2408 {
2409 	struct bpf_verifier_state *vstate = env->cur_state;
2410 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2411 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
2412 	struct bpf_reg_state *reg;
2413 	u8 *stype;
2414 
2415 	if (reg_state->allocated_stack <= slot) {
2416 		verbose(env, "invalid read from stack off %d+0 size %d\n",
2417 			off, size);
2418 		return -EACCES;
2419 	}
2420 	stype = reg_state->stack[spi].slot_type;
2421 	reg = &reg_state->stack[spi].spilled_ptr;
2422 
2423 	if (stype[0] == STACK_SPILL) {
2424 		if (size != BPF_REG_SIZE) {
2425 			if (reg->type != SCALAR_VALUE) {
2426 				verbose_linfo(env, env->insn_idx, "; ");
2427 				verbose(env, "invalid size of register fill\n");
2428 				return -EACCES;
2429 			}
2430 			if (value_regno >= 0) {
2431 				mark_reg_unknown(env, state->regs, value_regno);
2432 				state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2433 			}
2434 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2435 			return 0;
2436 		}
2437 		for (i = 1; i < BPF_REG_SIZE; i++) {
2438 			if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
2439 				verbose(env, "corrupted spill memory\n");
2440 				return -EACCES;
2441 			}
2442 		}
2443 
2444 		if (value_regno >= 0) {
2445 			/* restore register state from stack */
2446 			state->regs[value_regno] = *reg;
2447 			/* mark reg as written since spilled pointer state likely
2448 			 * has its liveness marks cleared by is_state_visited()
2449 			 * which resets stack/reg liveness for state transitions
2450 			 */
2451 			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2452 		} else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
2453 			/* If value_regno==-1, the caller is asking us whether
2454 			 * it is acceptable to use this value as a SCALAR_VALUE
2455 			 * (e.g. for XADD).
2456 			 * We must not allow unprivileged callers to do that
2457 			 * with spilled pointers.
2458 			 */
2459 			verbose(env, "leaking pointer from stack off %d\n",
2460 				off);
2461 			return -EACCES;
2462 		}
2463 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2464 	} else {
2465 		int zeros = 0;
2466 
2467 		for (i = 0; i < size; i++) {
2468 			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
2469 				continue;
2470 			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
2471 				zeros++;
2472 				continue;
2473 			}
2474 			verbose(env, "invalid read from stack off %d+%d size %d\n",
2475 				off, i, size);
2476 			return -EACCES;
2477 		}
2478 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2479 		if (value_regno >= 0) {
2480 			if (zeros == size) {
2481 				/* any size read into register is zero extended,
2482 				 * so the whole register == const_zero
2483 				 */
2484 				__mark_reg_const_zero(&state->regs[value_regno]);
2485 				/* backtracking doesn't support STACK_ZERO yet,
2486 				 * so mark it precise here, so that later
2487 				 * backtracking can stop here.
2488 				 * Backtracking may not need this if this register
2489 				 * doesn't participate in pointer adjustment.
2490 				 * Forward propagation of precise flag is not
2491 				 * necessary either. This mark is only to stop
2492 				 * backtracking. Any register that contributed
2493 				 * to const 0 was marked precise before spill.
2494 				 */
2495 				state->regs[value_regno].precise = true;
2496 			} else {
2497 				/* have read misc data from the stack */
2498 				mark_reg_unknown(env, state->regs, value_regno);
2499 			}
2500 			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2501 		}
2502 	}
2503 	return 0;
2504 }
2505 
2506 static int check_stack_access(struct bpf_verifier_env *env,
2507 			      const struct bpf_reg_state *reg,
2508 			      int off, int size)
2509 {
2510 	/* Stack accesses must be at a fixed offset, so that we
2511 	 * can determine what type of data were returned. See
2512 	 * check_stack_read().
2513 	 */
2514 	if (!tnum_is_const(reg->var_off)) {
2515 		char tn_buf[48];
2516 
2517 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2518 		verbose(env, "variable stack access var_off=%s off=%d size=%d\n",
2519 			tn_buf, off, size);
2520 		return -EACCES;
2521 	}
2522 
2523 	if (off >= 0 || off < -MAX_BPF_STACK) {
2524 		verbose(env, "invalid stack off=%d size=%d\n", off, size);
2525 		return -EACCES;
2526 	}
2527 
2528 	return 0;
2529 }
2530 
2531 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
2532 				 int off, int size, enum bpf_access_type type)
2533 {
2534 	struct bpf_reg_state *regs = cur_regs(env);
2535 	struct bpf_map *map = regs[regno].map_ptr;
2536 	u32 cap = bpf_map_flags_to_cap(map);
2537 
2538 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
2539 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
2540 			map->value_size, off, size);
2541 		return -EACCES;
2542 	}
2543 
2544 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
2545 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
2546 			map->value_size, off, size);
2547 		return -EACCES;
2548 	}
2549 
2550 	return 0;
2551 }
2552 
2553 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
2554 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
2555 			      int off, int size, u32 mem_size,
2556 			      bool zero_size_allowed)
2557 {
2558 	bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
2559 	struct bpf_reg_state *reg;
2560 
2561 	if (off >= 0 && size_ok && (u64)off + size <= mem_size)
2562 		return 0;
2563 
2564 	reg = &cur_regs(env)[regno];
2565 	switch (reg->type) {
2566 	case PTR_TO_MAP_VALUE:
2567 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
2568 			mem_size, off, size);
2569 		break;
2570 	case PTR_TO_PACKET:
2571 	case PTR_TO_PACKET_META:
2572 	case PTR_TO_PACKET_END:
2573 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
2574 			off, size, regno, reg->id, off, mem_size);
2575 		break;
2576 	case PTR_TO_MEM:
2577 	default:
2578 		verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
2579 			mem_size, off, size);
2580 	}
2581 
2582 	return -EACCES;
2583 }
2584 
2585 /* check read/write into a memory region with possible variable offset */
2586 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
2587 				   int off, int size, u32 mem_size,
2588 				   bool zero_size_allowed)
2589 {
2590 	struct bpf_verifier_state *vstate = env->cur_state;
2591 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2592 	struct bpf_reg_state *reg = &state->regs[regno];
2593 	int err;
2594 
2595 	/* We may have adjusted the register pointing to memory region, so we
2596 	 * need to try adding each of min_value and max_value to off
2597 	 * to make sure our theoretical access will be safe.
2598 	 */
2599 	if (env->log.level & BPF_LOG_LEVEL)
2600 		print_verifier_state(env, state);
2601 
2602 	/* The minimum value is only important with signed
2603 	 * comparisons where we can't assume the floor of a
2604 	 * value is 0.  If we are using signed variables for our
2605 	 * index'es we need to make sure that whatever we use
2606 	 * will have a set floor within our range.
2607 	 */
2608 	if (reg->smin_value < 0 &&
2609 	    (reg->smin_value == S64_MIN ||
2610 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
2611 	      reg->smin_value + off < 0)) {
2612 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2613 			regno);
2614 		return -EACCES;
2615 	}
2616 	err = __check_mem_access(env, regno, reg->smin_value + off, size,
2617 				 mem_size, zero_size_allowed);
2618 	if (err) {
2619 		verbose(env, "R%d min value is outside of the allowed memory range\n",
2620 			regno);
2621 		return err;
2622 	}
2623 
2624 	/* If we haven't set a max value then we need to bail since we can't be
2625 	 * sure we won't do bad things.
2626 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
2627 	 */
2628 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
2629 		verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
2630 			regno);
2631 		return -EACCES;
2632 	}
2633 	err = __check_mem_access(env, regno, reg->umax_value + off, size,
2634 				 mem_size, zero_size_allowed);
2635 	if (err) {
2636 		verbose(env, "R%d max value is outside of the allowed memory range\n",
2637 			regno);
2638 		return err;
2639 	}
2640 
2641 	return 0;
2642 }
2643 
2644 /* check read/write into a map element with possible variable offset */
2645 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
2646 			    int off, int size, bool zero_size_allowed)
2647 {
2648 	struct bpf_verifier_state *vstate = env->cur_state;
2649 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2650 	struct bpf_reg_state *reg = &state->regs[regno];
2651 	struct bpf_map *map = reg->map_ptr;
2652 	int err;
2653 
2654 	err = check_mem_region_access(env, regno, off, size, map->value_size,
2655 				      zero_size_allowed);
2656 	if (err)
2657 		return err;
2658 
2659 	if (map_value_has_spin_lock(map)) {
2660 		u32 lock = map->spin_lock_off;
2661 
2662 		/* if any part of struct bpf_spin_lock can be touched by
2663 		 * load/store reject this program.
2664 		 * To check that [x1, x2) overlaps with [y1, y2)
2665 		 * it is sufficient to check x1 < y2 && y1 < x2.
2666 		 */
2667 		if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
2668 		     lock < reg->umax_value + off + size) {
2669 			verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
2670 			return -EACCES;
2671 		}
2672 	}
2673 	return err;
2674 }
2675 
2676 #define MAX_PACKET_OFF 0xffff
2677 
2678 static enum bpf_prog_type resolve_prog_type(struct bpf_prog *prog)
2679 {
2680 	return prog->aux->dst_prog ? prog->aux->dst_prog->type : prog->type;
2681 }
2682 
2683 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
2684 				       const struct bpf_call_arg_meta *meta,
2685 				       enum bpf_access_type t)
2686 {
2687 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
2688 
2689 	switch (prog_type) {
2690 	/* Program types only with direct read access go here! */
2691 	case BPF_PROG_TYPE_LWT_IN:
2692 	case BPF_PROG_TYPE_LWT_OUT:
2693 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
2694 	case BPF_PROG_TYPE_SK_REUSEPORT:
2695 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
2696 	case BPF_PROG_TYPE_CGROUP_SKB:
2697 		if (t == BPF_WRITE)
2698 			return false;
2699 		fallthrough;
2700 
2701 	/* Program types with direct read + write access go here! */
2702 	case BPF_PROG_TYPE_SCHED_CLS:
2703 	case BPF_PROG_TYPE_SCHED_ACT:
2704 	case BPF_PROG_TYPE_XDP:
2705 	case BPF_PROG_TYPE_LWT_XMIT:
2706 	case BPF_PROG_TYPE_SK_SKB:
2707 	case BPF_PROG_TYPE_SK_MSG:
2708 		if (meta)
2709 			return meta->pkt_access;
2710 
2711 		env->seen_direct_write = true;
2712 		return true;
2713 
2714 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
2715 		if (t == BPF_WRITE)
2716 			env->seen_direct_write = true;
2717 
2718 		return true;
2719 
2720 	default:
2721 		return false;
2722 	}
2723 }
2724 
2725 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
2726 			       int size, bool zero_size_allowed)
2727 {
2728 	struct bpf_reg_state *regs = cur_regs(env);
2729 	struct bpf_reg_state *reg = &regs[regno];
2730 	int err;
2731 
2732 	/* We may have added a variable offset to the packet pointer; but any
2733 	 * reg->range we have comes after that.  We are only checking the fixed
2734 	 * offset.
2735 	 */
2736 
2737 	/* We don't allow negative numbers, because we aren't tracking enough
2738 	 * detail to prove they're safe.
2739 	 */
2740 	if (reg->smin_value < 0) {
2741 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2742 			regno);
2743 		return -EACCES;
2744 	}
2745 
2746 	err = reg->range < 0 ? -EINVAL :
2747 	      __check_mem_access(env, regno, off, size, reg->range,
2748 				 zero_size_allowed);
2749 	if (err) {
2750 		verbose(env, "R%d offset is outside of the packet\n", regno);
2751 		return err;
2752 	}
2753 
2754 	/* __check_mem_access has made sure "off + size - 1" is within u16.
2755 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
2756 	 * otherwise find_good_pkt_pointers would have refused to set range info
2757 	 * that __check_mem_access would have rejected this pkt access.
2758 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
2759 	 */
2760 	env->prog->aux->max_pkt_offset =
2761 		max_t(u32, env->prog->aux->max_pkt_offset,
2762 		      off + reg->umax_value + size - 1);
2763 
2764 	return err;
2765 }
2766 
2767 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
2768 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
2769 			    enum bpf_access_type t, enum bpf_reg_type *reg_type,
2770 			    struct btf **btf, u32 *btf_id)
2771 {
2772 	struct bpf_insn_access_aux info = {
2773 		.reg_type = *reg_type,
2774 		.log = &env->log,
2775 	};
2776 
2777 	if (env->ops->is_valid_access &&
2778 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
2779 		/* A non zero info.ctx_field_size indicates that this field is a
2780 		 * candidate for later verifier transformation to load the whole
2781 		 * field and then apply a mask when accessed with a narrower
2782 		 * access than actual ctx access size. A zero info.ctx_field_size
2783 		 * will only allow for whole field access and rejects any other
2784 		 * type of narrower access.
2785 		 */
2786 		*reg_type = info.reg_type;
2787 
2788 		if (*reg_type == PTR_TO_BTF_ID || *reg_type == PTR_TO_BTF_ID_OR_NULL) {
2789 			*btf = info.btf;
2790 			*btf_id = info.btf_id;
2791 		} else {
2792 			env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
2793 		}
2794 		/* remember the offset of last byte accessed in ctx */
2795 		if (env->prog->aux->max_ctx_offset < off + size)
2796 			env->prog->aux->max_ctx_offset = off + size;
2797 		return 0;
2798 	}
2799 
2800 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
2801 	return -EACCES;
2802 }
2803 
2804 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
2805 				  int size)
2806 {
2807 	if (size < 0 || off < 0 ||
2808 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
2809 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
2810 			off, size);
2811 		return -EACCES;
2812 	}
2813 	return 0;
2814 }
2815 
2816 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
2817 			     u32 regno, int off, int size,
2818 			     enum bpf_access_type t)
2819 {
2820 	struct bpf_reg_state *regs = cur_regs(env);
2821 	struct bpf_reg_state *reg = &regs[regno];
2822 	struct bpf_insn_access_aux info = {};
2823 	bool valid;
2824 
2825 	if (reg->smin_value < 0) {
2826 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2827 			regno);
2828 		return -EACCES;
2829 	}
2830 
2831 	switch (reg->type) {
2832 	case PTR_TO_SOCK_COMMON:
2833 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
2834 		break;
2835 	case PTR_TO_SOCKET:
2836 		valid = bpf_sock_is_valid_access(off, size, t, &info);
2837 		break;
2838 	case PTR_TO_TCP_SOCK:
2839 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
2840 		break;
2841 	case PTR_TO_XDP_SOCK:
2842 		valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
2843 		break;
2844 	default:
2845 		valid = false;
2846 	}
2847 
2848 
2849 	if (valid) {
2850 		env->insn_aux_data[insn_idx].ctx_field_size =
2851 			info.ctx_field_size;
2852 		return 0;
2853 	}
2854 
2855 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
2856 		regno, reg_type_str[reg->type], off, size);
2857 
2858 	return -EACCES;
2859 }
2860 
2861 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
2862 {
2863 	return cur_regs(env) + regno;
2864 }
2865 
2866 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
2867 {
2868 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
2869 }
2870 
2871 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
2872 {
2873 	const struct bpf_reg_state *reg = reg_state(env, regno);
2874 
2875 	return reg->type == PTR_TO_CTX;
2876 }
2877 
2878 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
2879 {
2880 	const struct bpf_reg_state *reg = reg_state(env, regno);
2881 
2882 	return type_is_sk_pointer(reg->type);
2883 }
2884 
2885 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
2886 {
2887 	const struct bpf_reg_state *reg = reg_state(env, regno);
2888 
2889 	return type_is_pkt_pointer(reg->type);
2890 }
2891 
2892 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
2893 {
2894 	const struct bpf_reg_state *reg = reg_state(env, regno);
2895 
2896 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
2897 	return reg->type == PTR_TO_FLOW_KEYS;
2898 }
2899 
2900 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
2901 				   const struct bpf_reg_state *reg,
2902 				   int off, int size, bool strict)
2903 {
2904 	struct tnum reg_off;
2905 	int ip_align;
2906 
2907 	/* Byte size accesses are always allowed. */
2908 	if (!strict || size == 1)
2909 		return 0;
2910 
2911 	/* For platforms that do not have a Kconfig enabling
2912 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
2913 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
2914 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
2915 	 * to this code only in strict mode where we want to emulate
2916 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
2917 	 * unconditional IP align value of '2'.
2918 	 */
2919 	ip_align = 2;
2920 
2921 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
2922 	if (!tnum_is_aligned(reg_off, size)) {
2923 		char tn_buf[48];
2924 
2925 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2926 		verbose(env,
2927 			"misaligned packet access off %d+%s+%d+%d size %d\n",
2928 			ip_align, tn_buf, reg->off, off, size);
2929 		return -EACCES;
2930 	}
2931 
2932 	return 0;
2933 }
2934 
2935 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
2936 				       const struct bpf_reg_state *reg,
2937 				       const char *pointer_desc,
2938 				       int off, int size, bool strict)
2939 {
2940 	struct tnum reg_off;
2941 
2942 	/* Byte size accesses are always allowed. */
2943 	if (!strict || size == 1)
2944 		return 0;
2945 
2946 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
2947 	if (!tnum_is_aligned(reg_off, size)) {
2948 		char tn_buf[48];
2949 
2950 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2951 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
2952 			pointer_desc, tn_buf, reg->off, off, size);
2953 		return -EACCES;
2954 	}
2955 
2956 	return 0;
2957 }
2958 
2959 static int check_ptr_alignment(struct bpf_verifier_env *env,
2960 			       const struct bpf_reg_state *reg, int off,
2961 			       int size, bool strict_alignment_once)
2962 {
2963 	bool strict = env->strict_alignment || strict_alignment_once;
2964 	const char *pointer_desc = "";
2965 
2966 	switch (reg->type) {
2967 	case PTR_TO_PACKET:
2968 	case PTR_TO_PACKET_META:
2969 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
2970 		 * right in front, treat it the very same way.
2971 		 */
2972 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
2973 	case PTR_TO_FLOW_KEYS:
2974 		pointer_desc = "flow keys ";
2975 		break;
2976 	case PTR_TO_MAP_VALUE:
2977 		pointer_desc = "value ";
2978 		break;
2979 	case PTR_TO_CTX:
2980 		pointer_desc = "context ";
2981 		break;
2982 	case PTR_TO_STACK:
2983 		pointer_desc = "stack ";
2984 		/* The stack spill tracking logic in check_stack_write()
2985 		 * and check_stack_read() relies on stack accesses being
2986 		 * aligned.
2987 		 */
2988 		strict = true;
2989 		break;
2990 	case PTR_TO_SOCKET:
2991 		pointer_desc = "sock ";
2992 		break;
2993 	case PTR_TO_SOCK_COMMON:
2994 		pointer_desc = "sock_common ";
2995 		break;
2996 	case PTR_TO_TCP_SOCK:
2997 		pointer_desc = "tcp_sock ";
2998 		break;
2999 	case PTR_TO_XDP_SOCK:
3000 		pointer_desc = "xdp_sock ";
3001 		break;
3002 	default:
3003 		break;
3004 	}
3005 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
3006 					   strict);
3007 }
3008 
3009 static int update_stack_depth(struct bpf_verifier_env *env,
3010 			      const struct bpf_func_state *func,
3011 			      int off)
3012 {
3013 	u16 stack = env->subprog_info[func->subprogno].stack_depth;
3014 
3015 	if (stack >= -off)
3016 		return 0;
3017 
3018 	/* update known max for given subprogram */
3019 	env->subprog_info[func->subprogno].stack_depth = -off;
3020 	return 0;
3021 }
3022 
3023 /* starting from main bpf function walk all instructions of the function
3024  * and recursively walk all callees that given function can call.
3025  * Ignore jump and exit insns.
3026  * Since recursion is prevented by check_cfg() this algorithm
3027  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
3028  */
3029 static int check_max_stack_depth(struct bpf_verifier_env *env)
3030 {
3031 	int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
3032 	struct bpf_subprog_info *subprog = env->subprog_info;
3033 	struct bpf_insn *insn = env->prog->insnsi;
3034 	bool tail_call_reachable = false;
3035 	int ret_insn[MAX_CALL_FRAMES];
3036 	int ret_prog[MAX_CALL_FRAMES];
3037 	int j;
3038 
3039 process_func:
3040 	/* protect against potential stack overflow that might happen when
3041 	 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
3042 	 * depth for such case down to 256 so that the worst case scenario
3043 	 * would result in 8k stack size (32 which is tailcall limit * 256 =
3044 	 * 8k).
3045 	 *
3046 	 * To get the idea what might happen, see an example:
3047 	 * func1 -> sub rsp, 128
3048 	 *  subfunc1 -> sub rsp, 256
3049 	 *  tailcall1 -> add rsp, 256
3050 	 *   func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
3051 	 *   subfunc2 -> sub rsp, 64
3052 	 *   subfunc22 -> sub rsp, 128
3053 	 *   tailcall2 -> add rsp, 128
3054 	 *    func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
3055 	 *
3056 	 * tailcall will unwind the current stack frame but it will not get rid
3057 	 * of caller's stack as shown on the example above.
3058 	 */
3059 	if (idx && subprog[idx].has_tail_call && depth >= 256) {
3060 		verbose(env,
3061 			"tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
3062 			depth);
3063 		return -EACCES;
3064 	}
3065 	/* round up to 32-bytes, since this is granularity
3066 	 * of interpreter stack size
3067 	 */
3068 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
3069 	if (depth > MAX_BPF_STACK) {
3070 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
3071 			frame + 1, depth);
3072 		return -EACCES;
3073 	}
3074 continue_func:
3075 	subprog_end = subprog[idx + 1].start;
3076 	for (; i < subprog_end; i++) {
3077 		if (insn[i].code != (BPF_JMP | BPF_CALL))
3078 			continue;
3079 		if (insn[i].src_reg != BPF_PSEUDO_CALL)
3080 			continue;
3081 		/* remember insn and function to return to */
3082 		ret_insn[frame] = i + 1;
3083 		ret_prog[frame] = idx;
3084 
3085 		/* find the callee */
3086 		i = i + insn[i].imm + 1;
3087 		idx = find_subprog(env, i);
3088 		if (idx < 0) {
3089 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3090 				  i);
3091 			return -EFAULT;
3092 		}
3093 
3094 		if (subprog[idx].has_tail_call)
3095 			tail_call_reachable = true;
3096 
3097 		frame++;
3098 		if (frame >= MAX_CALL_FRAMES) {
3099 			verbose(env, "the call stack of %d frames is too deep !\n",
3100 				frame);
3101 			return -E2BIG;
3102 		}
3103 		goto process_func;
3104 	}
3105 	/* if tail call got detected across bpf2bpf calls then mark each of the
3106 	 * currently present subprog frames as tail call reachable subprogs;
3107 	 * this info will be utilized by JIT so that we will be preserving the
3108 	 * tail call counter throughout bpf2bpf calls combined with tailcalls
3109 	 */
3110 	if (tail_call_reachable)
3111 		for (j = 0; j < frame; j++)
3112 			subprog[ret_prog[j]].tail_call_reachable = true;
3113 
3114 	/* end of for() loop means the last insn of the 'subprog'
3115 	 * was reached. Doesn't matter whether it was JA or EXIT
3116 	 */
3117 	if (frame == 0)
3118 		return 0;
3119 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
3120 	frame--;
3121 	i = ret_insn[frame];
3122 	idx = ret_prog[frame];
3123 	goto continue_func;
3124 }
3125 
3126 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
3127 static int get_callee_stack_depth(struct bpf_verifier_env *env,
3128 				  const struct bpf_insn *insn, int idx)
3129 {
3130 	int start = idx + insn->imm + 1, subprog;
3131 
3132 	subprog = find_subprog(env, start);
3133 	if (subprog < 0) {
3134 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3135 			  start);
3136 		return -EFAULT;
3137 	}
3138 	return env->subprog_info[subprog].stack_depth;
3139 }
3140 #endif
3141 
3142 int check_ctx_reg(struct bpf_verifier_env *env,
3143 		  const struct bpf_reg_state *reg, int regno)
3144 {
3145 	/* Access to ctx or passing it to a helper is only allowed in
3146 	 * its original, unmodified form.
3147 	 */
3148 
3149 	if (reg->off) {
3150 		verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
3151 			regno, reg->off);
3152 		return -EACCES;
3153 	}
3154 
3155 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3156 		char tn_buf[48];
3157 
3158 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3159 		verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
3160 		return -EACCES;
3161 	}
3162 
3163 	return 0;
3164 }
3165 
3166 static int __check_buffer_access(struct bpf_verifier_env *env,
3167 				 const char *buf_info,
3168 				 const struct bpf_reg_state *reg,
3169 				 int regno, int off, int size)
3170 {
3171 	if (off < 0) {
3172 		verbose(env,
3173 			"R%d invalid %s buffer access: off=%d, size=%d\n",
3174 			regno, buf_info, off, size);
3175 		return -EACCES;
3176 	}
3177 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3178 		char tn_buf[48];
3179 
3180 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3181 		verbose(env,
3182 			"R%d invalid variable buffer offset: off=%d, var_off=%s\n",
3183 			regno, off, tn_buf);
3184 		return -EACCES;
3185 	}
3186 
3187 	return 0;
3188 }
3189 
3190 static int check_tp_buffer_access(struct bpf_verifier_env *env,
3191 				  const struct bpf_reg_state *reg,
3192 				  int regno, int off, int size)
3193 {
3194 	int err;
3195 
3196 	err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
3197 	if (err)
3198 		return err;
3199 
3200 	if (off + size > env->prog->aux->max_tp_access)
3201 		env->prog->aux->max_tp_access = off + size;
3202 
3203 	return 0;
3204 }
3205 
3206 static int check_buffer_access(struct bpf_verifier_env *env,
3207 			       const struct bpf_reg_state *reg,
3208 			       int regno, int off, int size,
3209 			       bool zero_size_allowed,
3210 			       const char *buf_info,
3211 			       u32 *max_access)
3212 {
3213 	int err;
3214 
3215 	err = __check_buffer_access(env, buf_info, reg, regno, off, size);
3216 	if (err)
3217 		return err;
3218 
3219 	if (off + size > *max_access)
3220 		*max_access = off + size;
3221 
3222 	return 0;
3223 }
3224 
3225 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
3226 static void zext_32_to_64(struct bpf_reg_state *reg)
3227 {
3228 	reg->var_off = tnum_subreg(reg->var_off);
3229 	__reg_assign_32_into_64(reg);
3230 }
3231 
3232 /* truncate register to smaller size (in bytes)
3233  * must be called with size < BPF_REG_SIZE
3234  */
3235 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
3236 {
3237 	u64 mask;
3238 
3239 	/* clear high bits in bit representation */
3240 	reg->var_off = tnum_cast(reg->var_off, size);
3241 
3242 	/* fix arithmetic bounds */
3243 	mask = ((u64)1 << (size * 8)) - 1;
3244 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
3245 		reg->umin_value &= mask;
3246 		reg->umax_value &= mask;
3247 	} else {
3248 		reg->umin_value = 0;
3249 		reg->umax_value = mask;
3250 	}
3251 	reg->smin_value = reg->umin_value;
3252 	reg->smax_value = reg->umax_value;
3253 
3254 	/* If size is smaller than 32bit register the 32bit register
3255 	 * values are also truncated so we push 64-bit bounds into
3256 	 * 32-bit bounds. Above were truncated < 32-bits already.
3257 	 */
3258 	if (size >= 4)
3259 		return;
3260 	__reg_combine_64_into_32(reg);
3261 }
3262 
3263 static bool bpf_map_is_rdonly(const struct bpf_map *map)
3264 {
3265 	return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen;
3266 }
3267 
3268 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
3269 {
3270 	void *ptr;
3271 	u64 addr;
3272 	int err;
3273 
3274 	err = map->ops->map_direct_value_addr(map, &addr, off);
3275 	if (err)
3276 		return err;
3277 	ptr = (void *)(long)addr + off;
3278 
3279 	switch (size) {
3280 	case sizeof(u8):
3281 		*val = (u64)*(u8 *)ptr;
3282 		break;
3283 	case sizeof(u16):
3284 		*val = (u64)*(u16 *)ptr;
3285 		break;
3286 	case sizeof(u32):
3287 		*val = (u64)*(u32 *)ptr;
3288 		break;
3289 	case sizeof(u64):
3290 		*val = *(u64 *)ptr;
3291 		break;
3292 	default:
3293 		return -EINVAL;
3294 	}
3295 	return 0;
3296 }
3297 
3298 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
3299 				   struct bpf_reg_state *regs,
3300 				   int regno, int off, int size,
3301 				   enum bpf_access_type atype,
3302 				   int value_regno)
3303 {
3304 	struct bpf_reg_state *reg = regs + regno;
3305 	const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
3306 	const char *tname = btf_name_by_offset(reg->btf, t->name_off);
3307 	u32 btf_id;
3308 	int ret;
3309 
3310 	if (off < 0) {
3311 		verbose(env,
3312 			"R%d is ptr_%s invalid negative access: off=%d\n",
3313 			regno, tname, off);
3314 		return -EACCES;
3315 	}
3316 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3317 		char tn_buf[48];
3318 
3319 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3320 		verbose(env,
3321 			"R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
3322 			regno, tname, off, tn_buf);
3323 		return -EACCES;
3324 	}
3325 
3326 	if (env->ops->btf_struct_access) {
3327 		ret = env->ops->btf_struct_access(&env->log, reg->btf, t,
3328 						  off, size, atype, &btf_id);
3329 	} else {
3330 		if (atype != BPF_READ) {
3331 			verbose(env, "only read is supported\n");
3332 			return -EACCES;
3333 		}
3334 
3335 		ret = btf_struct_access(&env->log, reg->btf, t, off, size,
3336 					atype, &btf_id);
3337 	}
3338 
3339 	if (ret < 0)
3340 		return ret;
3341 
3342 	if (atype == BPF_READ && value_regno >= 0)
3343 		mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id);
3344 
3345 	return 0;
3346 }
3347 
3348 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
3349 				   struct bpf_reg_state *regs,
3350 				   int regno, int off, int size,
3351 				   enum bpf_access_type atype,
3352 				   int value_regno)
3353 {
3354 	struct bpf_reg_state *reg = regs + regno;
3355 	struct bpf_map *map = reg->map_ptr;
3356 	const struct btf_type *t;
3357 	const char *tname;
3358 	u32 btf_id;
3359 	int ret;
3360 
3361 	if (!btf_vmlinux) {
3362 		verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
3363 		return -ENOTSUPP;
3364 	}
3365 
3366 	if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
3367 		verbose(env, "map_ptr access not supported for map type %d\n",
3368 			map->map_type);
3369 		return -ENOTSUPP;
3370 	}
3371 
3372 	t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
3373 	tname = btf_name_by_offset(btf_vmlinux, t->name_off);
3374 
3375 	if (!env->allow_ptr_to_map_access) {
3376 		verbose(env,
3377 			"%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
3378 			tname);
3379 		return -EPERM;
3380 	}
3381 
3382 	if (off < 0) {
3383 		verbose(env, "R%d is %s invalid negative access: off=%d\n",
3384 			regno, tname, off);
3385 		return -EACCES;
3386 	}
3387 
3388 	if (atype != BPF_READ) {
3389 		verbose(env, "only read from %s is supported\n", tname);
3390 		return -EACCES;
3391 	}
3392 
3393 	ret = btf_struct_access(&env->log, btf_vmlinux, t, off, size, atype, &btf_id);
3394 	if (ret < 0)
3395 		return ret;
3396 
3397 	if (value_regno >= 0)
3398 		mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id);
3399 
3400 	return 0;
3401 }
3402 
3403 
3404 /* check whether memory at (regno + off) is accessible for t = (read | write)
3405  * if t==write, value_regno is a register which value is stored into memory
3406  * if t==read, value_regno is a register which will receive the value from memory
3407  * if t==write && value_regno==-1, some unknown value is stored into memory
3408  * if t==read && value_regno==-1, don't care what we read from memory
3409  */
3410 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
3411 			    int off, int bpf_size, enum bpf_access_type t,
3412 			    int value_regno, bool strict_alignment_once)
3413 {
3414 	struct bpf_reg_state *regs = cur_regs(env);
3415 	struct bpf_reg_state *reg = regs + regno;
3416 	struct bpf_func_state *state;
3417 	int size, err = 0;
3418 
3419 	size = bpf_size_to_bytes(bpf_size);
3420 	if (size < 0)
3421 		return size;
3422 
3423 	/* alignment checks will add in reg->off themselves */
3424 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
3425 	if (err)
3426 		return err;
3427 
3428 	/* for access checks, reg->off is just part of off */
3429 	off += reg->off;
3430 
3431 	if (reg->type == PTR_TO_MAP_VALUE) {
3432 		if (t == BPF_WRITE && value_regno >= 0 &&
3433 		    is_pointer_value(env, value_regno)) {
3434 			verbose(env, "R%d leaks addr into map\n", value_regno);
3435 			return -EACCES;
3436 		}
3437 		err = check_map_access_type(env, regno, off, size, t);
3438 		if (err)
3439 			return err;
3440 		err = check_map_access(env, regno, off, size, false);
3441 		if (!err && t == BPF_READ && value_regno >= 0) {
3442 			struct bpf_map *map = reg->map_ptr;
3443 
3444 			/* if map is read-only, track its contents as scalars */
3445 			if (tnum_is_const(reg->var_off) &&
3446 			    bpf_map_is_rdonly(map) &&
3447 			    map->ops->map_direct_value_addr) {
3448 				int map_off = off + reg->var_off.value;
3449 				u64 val = 0;
3450 
3451 				err = bpf_map_direct_read(map, map_off, size,
3452 							  &val);
3453 				if (err)
3454 					return err;
3455 
3456 				regs[value_regno].type = SCALAR_VALUE;
3457 				__mark_reg_known(&regs[value_regno], val);
3458 			} else {
3459 				mark_reg_unknown(env, regs, value_regno);
3460 			}
3461 		}
3462 	} else if (reg->type == PTR_TO_MEM) {
3463 		if (t == BPF_WRITE && value_regno >= 0 &&
3464 		    is_pointer_value(env, value_regno)) {
3465 			verbose(env, "R%d leaks addr into mem\n", value_regno);
3466 			return -EACCES;
3467 		}
3468 		err = check_mem_region_access(env, regno, off, size,
3469 					      reg->mem_size, false);
3470 		if (!err && t == BPF_READ && value_regno >= 0)
3471 			mark_reg_unknown(env, regs, value_regno);
3472 	} else if (reg->type == PTR_TO_CTX) {
3473 		enum bpf_reg_type reg_type = SCALAR_VALUE;
3474 		struct btf *btf = NULL;
3475 		u32 btf_id = 0;
3476 
3477 		if (t == BPF_WRITE && value_regno >= 0 &&
3478 		    is_pointer_value(env, value_regno)) {
3479 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
3480 			return -EACCES;
3481 		}
3482 
3483 		err = check_ctx_reg(env, reg, regno);
3484 		if (err < 0)
3485 			return err;
3486 
3487 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf, &btf_id);
3488 		if (err)
3489 			verbose_linfo(env, insn_idx, "; ");
3490 		if (!err && t == BPF_READ && value_regno >= 0) {
3491 			/* ctx access returns either a scalar, or a
3492 			 * PTR_TO_PACKET[_META,_END]. In the latter
3493 			 * case, we know the offset is zero.
3494 			 */
3495 			if (reg_type == SCALAR_VALUE) {
3496 				mark_reg_unknown(env, regs, value_regno);
3497 			} else {
3498 				mark_reg_known_zero(env, regs,
3499 						    value_regno);
3500 				if (reg_type_may_be_null(reg_type))
3501 					regs[value_regno].id = ++env->id_gen;
3502 				/* A load of ctx field could have different
3503 				 * actual load size with the one encoded in the
3504 				 * insn. When the dst is PTR, it is for sure not
3505 				 * a sub-register.
3506 				 */
3507 				regs[value_regno].subreg_def = DEF_NOT_SUBREG;
3508 				if (reg_type == PTR_TO_BTF_ID ||
3509 				    reg_type == PTR_TO_BTF_ID_OR_NULL) {
3510 					regs[value_regno].btf = btf;
3511 					regs[value_regno].btf_id = btf_id;
3512 				}
3513 			}
3514 			regs[value_regno].type = reg_type;
3515 		}
3516 
3517 	} else if (reg->type == PTR_TO_STACK) {
3518 		off += reg->var_off.value;
3519 		err = check_stack_access(env, reg, off, size);
3520 		if (err)
3521 			return err;
3522 
3523 		state = func(env, reg);
3524 		err = update_stack_depth(env, state, off);
3525 		if (err)
3526 			return err;
3527 
3528 		if (t == BPF_WRITE)
3529 			err = check_stack_write(env, state, off, size,
3530 						value_regno, insn_idx);
3531 		else
3532 			err = check_stack_read(env, state, off, size,
3533 					       value_regno);
3534 	} else if (reg_is_pkt_pointer(reg)) {
3535 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
3536 			verbose(env, "cannot write into packet\n");
3537 			return -EACCES;
3538 		}
3539 		if (t == BPF_WRITE && value_regno >= 0 &&
3540 		    is_pointer_value(env, value_regno)) {
3541 			verbose(env, "R%d leaks addr into packet\n",
3542 				value_regno);
3543 			return -EACCES;
3544 		}
3545 		err = check_packet_access(env, regno, off, size, false);
3546 		if (!err && t == BPF_READ && value_regno >= 0)
3547 			mark_reg_unknown(env, regs, value_regno);
3548 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
3549 		if (t == BPF_WRITE && value_regno >= 0 &&
3550 		    is_pointer_value(env, value_regno)) {
3551 			verbose(env, "R%d leaks addr into flow keys\n",
3552 				value_regno);
3553 			return -EACCES;
3554 		}
3555 
3556 		err = check_flow_keys_access(env, off, size);
3557 		if (!err && t == BPF_READ && value_regno >= 0)
3558 			mark_reg_unknown(env, regs, value_regno);
3559 	} else if (type_is_sk_pointer(reg->type)) {
3560 		if (t == BPF_WRITE) {
3561 			verbose(env, "R%d cannot write into %s\n",
3562 				regno, reg_type_str[reg->type]);
3563 			return -EACCES;
3564 		}
3565 		err = check_sock_access(env, insn_idx, regno, off, size, t);
3566 		if (!err && value_regno >= 0)
3567 			mark_reg_unknown(env, regs, value_regno);
3568 	} else if (reg->type == PTR_TO_TP_BUFFER) {
3569 		err = check_tp_buffer_access(env, reg, regno, off, size);
3570 		if (!err && t == BPF_READ && value_regno >= 0)
3571 			mark_reg_unknown(env, regs, value_regno);
3572 	} else if (reg->type == PTR_TO_BTF_ID) {
3573 		err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
3574 					      value_regno);
3575 	} else if (reg->type == CONST_PTR_TO_MAP) {
3576 		err = check_ptr_to_map_access(env, regs, regno, off, size, t,
3577 					      value_regno);
3578 	} else if (reg->type == PTR_TO_RDONLY_BUF) {
3579 		if (t == BPF_WRITE) {
3580 			verbose(env, "R%d cannot write into %s\n",
3581 				regno, reg_type_str[reg->type]);
3582 			return -EACCES;
3583 		}
3584 		err = check_buffer_access(env, reg, regno, off, size, false,
3585 					  "rdonly",
3586 					  &env->prog->aux->max_rdonly_access);
3587 		if (!err && value_regno >= 0)
3588 			mark_reg_unknown(env, regs, value_regno);
3589 	} else if (reg->type == PTR_TO_RDWR_BUF) {
3590 		err = check_buffer_access(env, reg, regno, off, size, false,
3591 					  "rdwr",
3592 					  &env->prog->aux->max_rdwr_access);
3593 		if (!err && t == BPF_READ && value_regno >= 0)
3594 			mark_reg_unknown(env, regs, value_regno);
3595 	} else {
3596 		verbose(env, "R%d invalid mem access '%s'\n", regno,
3597 			reg_type_str[reg->type]);
3598 		return -EACCES;
3599 	}
3600 
3601 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
3602 	    regs[value_regno].type == SCALAR_VALUE) {
3603 		/* b/h/w load zero-extends, mark upper bits as known 0 */
3604 		coerce_reg_to_size(&regs[value_regno], size);
3605 	}
3606 	return err;
3607 }
3608 
3609 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
3610 {
3611 	int err;
3612 
3613 	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
3614 	    insn->imm != 0) {
3615 		verbose(env, "BPF_XADD uses reserved fields\n");
3616 		return -EINVAL;
3617 	}
3618 
3619 	/* check src1 operand */
3620 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
3621 	if (err)
3622 		return err;
3623 
3624 	/* check src2 operand */
3625 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3626 	if (err)
3627 		return err;
3628 
3629 	if (is_pointer_value(env, insn->src_reg)) {
3630 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
3631 		return -EACCES;
3632 	}
3633 
3634 	if (is_ctx_reg(env, insn->dst_reg) ||
3635 	    is_pkt_reg(env, insn->dst_reg) ||
3636 	    is_flow_key_reg(env, insn->dst_reg) ||
3637 	    is_sk_reg(env, insn->dst_reg)) {
3638 		verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
3639 			insn->dst_reg,
3640 			reg_type_str[reg_state(env, insn->dst_reg)->type]);
3641 		return -EACCES;
3642 	}
3643 
3644 	/* check whether atomic_add can read the memory */
3645 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3646 			       BPF_SIZE(insn->code), BPF_READ, -1, true);
3647 	if (err)
3648 		return err;
3649 
3650 	/* check whether atomic_add can write into the same memory */
3651 	return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3652 				BPF_SIZE(insn->code), BPF_WRITE, -1, true);
3653 }
3654 
3655 static int __check_stack_boundary(struct bpf_verifier_env *env, u32 regno,
3656 				  int off, int access_size,
3657 				  bool zero_size_allowed)
3658 {
3659 	struct bpf_reg_state *reg = reg_state(env, regno);
3660 
3661 	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
3662 	    access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
3663 		if (tnum_is_const(reg->var_off)) {
3664 			verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
3665 				regno, off, access_size);
3666 		} else {
3667 			char tn_buf[48];
3668 
3669 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3670 			verbose(env, "invalid stack type R%d var_off=%s access_size=%d\n",
3671 				regno, tn_buf, access_size);
3672 		}
3673 		return -EACCES;
3674 	}
3675 	return 0;
3676 }
3677 
3678 /* when register 'regno' is passed into function that will read 'access_size'
3679  * bytes from that pointer, make sure that it's within stack boundary
3680  * and all elements of stack are initialized.
3681  * Unlike most pointer bounds-checking functions, this one doesn't take an
3682  * 'off' argument, so it has to add in reg->off itself.
3683  */
3684 static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
3685 				int access_size, bool zero_size_allowed,
3686 				struct bpf_call_arg_meta *meta)
3687 {
3688 	struct bpf_reg_state *reg = reg_state(env, regno);
3689 	struct bpf_func_state *state = func(env, reg);
3690 	int err, min_off, max_off, i, j, slot, spi;
3691 
3692 	if (tnum_is_const(reg->var_off)) {
3693 		min_off = max_off = reg->var_off.value + reg->off;
3694 		err = __check_stack_boundary(env, regno, min_off, access_size,
3695 					     zero_size_allowed);
3696 		if (err)
3697 			return err;
3698 	} else {
3699 		/* Variable offset is prohibited for unprivileged mode for
3700 		 * simplicity since it requires corresponding support in
3701 		 * Spectre masking for stack ALU.
3702 		 * See also retrieve_ptr_limit().
3703 		 */
3704 		if (!env->bypass_spec_v1) {
3705 			char tn_buf[48];
3706 
3707 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3708 			verbose(env, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n",
3709 				regno, tn_buf);
3710 			return -EACCES;
3711 		}
3712 		/* Only initialized buffer on stack is allowed to be accessed
3713 		 * with variable offset. With uninitialized buffer it's hard to
3714 		 * guarantee that whole memory is marked as initialized on
3715 		 * helper return since specific bounds are unknown what may
3716 		 * cause uninitialized stack leaking.
3717 		 */
3718 		if (meta && meta->raw_mode)
3719 			meta = NULL;
3720 
3721 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
3722 		    reg->smax_value <= -BPF_MAX_VAR_OFF) {
3723 			verbose(env, "R%d unbounded indirect variable offset stack access\n",
3724 				regno);
3725 			return -EACCES;
3726 		}
3727 		min_off = reg->smin_value + reg->off;
3728 		max_off = reg->smax_value + reg->off;
3729 		err = __check_stack_boundary(env, regno, min_off, access_size,
3730 					     zero_size_allowed);
3731 		if (err) {
3732 			verbose(env, "R%d min value is outside of stack bound\n",
3733 				regno);
3734 			return err;
3735 		}
3736 		err = __check_stack_boundary(env, regno, max_off, access_size,
3737 					     zero_size_allowed);
3738 		if (err) {
3739 			verbose(env, "R%d max value is outside of stack bound\n",
3740 				regno);
3741 			return err;
3742 		}
3743 	}
3744 
3745 	if (meta && meta->raw_mode) {
3746 		meta->access_size = access_size;
3747 		meta->regno = regno;
3748 		return 0;
3749 	}
3750 
3751 	for (i = min_off; i < max_off + access_size; i++) {
3752 		u8 *stype;
3753 
3754 		slot = -i - 1;
3755 		spi = slot / BPF_REG_SIZE;
3756 		if (state->allocated_stack <= slot)
3757 			goto err;
3758 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
3759 		if (*stype == STACK_MISC)
3760 			goto mark;
3761 		if (*stype == STACK_ZERO) {
3762 			/* helper can write anything into the stack */
3763 			*stype = STACK_MISC;
3764 			goto mark;
3765 		}
3766 
3767 		if (state->stack[spi].slot_type[0] == STACK_SPILL &&
3768 		    state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID)
3769 			goto mark;
3770 
3771 		if (state->stack[spi].slot_type[0] == STACK_SPILL &&
3772 		    (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
3773 		     env->allow_ptr_leaks)) {
3774 			__mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
3775 			for (j = 0; j < BPF_REG_SIZE; j++)
3776 				state->stack[spi].slot_type[j] = STACK_MISC;
3777 			goto mark;
3778 		}
3779 
3780 err:
3781 		if (tnum_is_const(reg->var_off)) {
3782 			verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
3783 				min_off, i - min_off, access_size);
3784 		} else {
3785 			char tn_buf[48];
3786 
3787 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3788 			verbose(env, "invalid indirect read from stack var_off %s+%d size %d\n",
3789 				tn_buf, i - min_off, access_size);
3790 		}
3791 		return -EACCES;
3792 mark:
3793 		/* reading any byte out of 8-byte 'spill_slot' will cause
3794 		 * the whole slot to be marked as 'read'
3795 		 */
3796 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
3797 			      state->stack[spi].spilled_ptr.parent,
3798 			      REG_LIVE_READ64);
3799 	}
3800 	return update_stack_depth(env, state, min_off);
3801 }
3802 
3803 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
3804 				   int access_size, bool zero_size_allowed,
3805 				   struct bpf_call_arg_meta *meta)
3806 {
3807 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
3808 
3809 	switch (reg->type) {
3810 	case PTR_TO_PACKET:
3811 	case PTR_TO_PACKET_META:
3812 		return check_packet_access(env, regno, reg->off, access_size,
3813 					   zero_size_allowed);
3814 	case PTR_TO_MAP_VALUE:
3815 		if (check_map_access_type(env, regno, reg->off, access_size,
3816 					  meta && meta->raw_mode ? BPF_WRITE :
3817 					  BPF_READ))
3818 			return -EACCES;
3819 		return check_map_access(env, regno, reg->off, access_size,
3820 					zero_size_allowed);
3821 	case PTR_TO_MEM:
3822 		return check_mem_region_access(env, regno, reg->off,
3823 					       access_size, reg->mem_size,
3824 					       zero_size_allowed);
3825 	case PTR_TO_RDONLY_BUF:
3826 		if (meta && meta->raw_mode)
3827 			return -EACCES;
3828 		return check_buffer_access(env, reg, regno, reg->off,
3829 					   access_size, zero_size_allowed,
3830 					   "rdonly",
3831 					   &env->prog->aux->max_rdonly_access);
3832 	case PTR_TO_RDWR_BUF:
3833 		return check_buffer_access(env, reg, regno, reg->off,
3834 					   access_size, zero_size_allowed,
3835 					   "rdwr",
3836 					   &env->prog->aux->max_rdwr_access);
3837 	case PTR_TO_STACK:
3838 		return check_stack_boundary(env, regno, access_size,
3839 					    zero_size_allowed, meta);
3840 	default: /* scalar_value or invalid ptr */
3841 		/* Allow zero-byte read from NULL, regardless of pointer type */
3842 		if (zero_size_allowed && access_size == 0 &&
3843 		    register_is_null(reg))
3844 			return 0;
3845 
3846 		verbose(env, "R%d type=%s expected=%s\n", regno,
3847 			reg_type_str[reg->type],
3848 			reg_type_str[PTR_TO_STACK]);
3849 		return -EACCES;
3850 	}
3851 }
3852 
3853 /* Implementation details:
3854  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
3855  * Two bpf_map_lookups (even with the same key) will have different reg->id.
3856  * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
3857  * value_or_null->value transition, since the verifier only cares about
3858  * the range of access to valid map value pointer and doesn't care about actual
3859  * address of the map element.
3860  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
3861  * reg->id > 0 after value_or_null->value transition. By doing so
3862  * two bpf_map_lookups will be considered two different pointers that
3863  * point to different bpf_spin_locks.
3864  * The verifier allows taking only one bpf_spin_lock at a time to avoid
3865  * dead-locks.
3866  * Since only one bpf_spin_lock is allowed the checks are simpler than
3867  * reg_is_refcounted() logic. The verifier needs to remember only
3868  * one spin_lock instead of array of acquired_refs.
3869  * cur_state->active_spin_lock remembers which map value element got locked
3870  * and clears it after bpf_spin_unlock.
3871  */
3872 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
3873 			     bool is_lock)
3874 {
3875 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
3876 	struct bpf_verifier_state *cur = env->cur_state;
3877 	bool is_const = tnum_is_const(reg->var_off);
3878 	struct bpf_map *map = reg->map_ptr;
3879 	u64 val = reg->var_off.value;
3880 
3881 	if (!is_const) {
3882 		verbose(env,
3883 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
3884 			regno);
3885 		return -EINVAL;
3886 	}
3887 	if (!map->btf) {
3888 		verbose(env,
3889 			"map '%s' has to have BTF in order to use bpf_spin_lock\n",
3890 			map->name);
3891 		return -EINVAL;
3892 	}
3893 	if (!map_value_has_spin_lock(map)) {
3894 		if (map->spin_lock_off == -E2BIG)
3895 			verbose(env,
3896 				"map '%s' has more than one 'struct bpf_spin_lock'\n",
3897 				map->name);
3898 		else if (map->spin_lock_off == -ENOENT)
3899 			verbose(env,
3900 				"map '%s' doesn't have 'struct bpf_spin_lock'\n",
3901 				map->name);
3902 		else
3903 			verbose(env,
3904 				"map '%s' is not a struct type or bpf_spin_lock is mangled\n",
3905 				map->name);
3906 		return -EINVAL;
3907 	}
3908 	if (map->spin_lock_off != val + reg->off) {
3909 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
3910 			val + reg->off);
3911 		return -EINVAL;
3912 	}
3913 	if (is_lock) {
3914 		if (cur->active_spin_lock) {
3915 			verbose(env,
3916 				"Locking two bpf_spin_locks are not allowed\n");
3917 			return -EINVAL;
3918 		}
3919 		cur->active_spin_lock = reg->id;
3920 	} else {
3921 		if (!cur->active_spin_lock) {
3922 			verbose(env, "bpf_spin_unlock without taking a lock\n");
3923 			return -EINVAL;
3924 		}
3925 		if (cur->active_spin_lock != reg->id) {
3926 			verbose(env, "bpf_spin_unlock of different lock\n");
3927 			return -EINVAL;
3928 		}
3929 		cur->active_spin_lock = 0;
3930 	}
3931 	return 0;
3932 }
3933 
3934 static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
3935 {
3936 	return type == ARG_PTR_TO_MEM ||
3937 	       type == ARG_PTR_TO_MEM_OR_NULL ||
3938 	       type == ARG_PTR_TO_UNINIT_MEM;
3939 }
3940 
3941 static bool arg_type_is_mem_size(enum bpf_arg_type type)
3942 {
3943 	return type == ARG_CONST_SIZE ||
3944 	       type == ARG_CONST_SIZE_OR_ZERO;
3945 }
3946 
3947 static bool arg_type_is_alloc_size(enum bpf_arg_type type)
3948 {
3949 	return type == ARG_CONST_ALLOC_SIZE_OR_ZERO;
3950 }
3951 
3952 static bool arg_type_is_int_ptr(enum bpf_arg_type type)
3953 {
3954 	return type == ARG_PTR_TO_INT ||
3955 	       type == ARG_PTR_TO_LONG;
3956 }
3957 
3958 static int int_ptr_type_to_size(enum bpf_arg_type type)
3959 {
3960 	if (type == ARG_PTR_TO_INT)
3961 		return sizeof(u32);
3962 	else if (type == ARG_PTR_TO_LONG)
3963 		return sizeof(u64);
3964 
3965 	return -EINVAL;
3966 }
3967 
3968 static int resolve_map_arg_type(struct bpf_verifier_env *env,
3969 				 const struct bpf_call_arg_meta *meta,
3970 				 enum bpf_arg_type *arg_type)
3971 {
3972 	if (!meta->map_ptr) {
3973 		/* kernel subsystem misconfigured verifier */
3974 		verbose(env, "invalid map_ptr to access map->type\n");
3975 		return -EACCES;
3976 	}
3977 
3978 	switch (meta->map_ptr->map_type) {
3979 	case BPF_MAP_TYPE_SOCKMAP:
3980 	case BPF_MAP_TYPE_SOCKHASH:
3981 		if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
3982 			*arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
3983 		} else {
3984 			verbose(env, "invalid arg_type for sockmap/sockhash\n");
3985 			return -EINVAL;
3986 		}
3987 		break;
3988 
3989 	default:
3990 		break;
3991 	}
3992 	return 0;
3993 }
3994 
3995 struct bpf_reg_types {
3996 	const enum bpf_reg_type types[10];
3997 	u32 *btf_id;
3998 };
3999 
4000 static const struct bpf_reg_types map_key_value_types = {
4001 	.types = {
4002 		PTR_TO_STACK,
4003 		PTR_TO_PACKET,
4004 		PTR_TO_PACKET_META,
4005 		PTR_TO_MAP_VALUE,
4006 	},
4007 };
4008 
4009 static const struct bpf_reg_types sock_types = {
4010 	.types = {
4011 		PTR_TO_SOCK_COMMON,
4012 		PTR_TO_SOCKET,
4013 		PTR_TO_TCP_SOCK,
4014 		PTR_TO_XDP_SOCK,
4015 	},
4016 };
4017 
4018 #ifdef CONFIG_NET
4019 static const struct bpf_reg_types btf_id_sock_common_types = {
4020 	.types = {
4021 		PTR_TO_SOCK_COMMON,
4022 		PTR_TO_SOCKET,
4023 		PTR_TO_TCP_SOCK,
4024 		PTR_TO_XDP_SOCK,
4025 		PTR_TO_BTF_ID,
4026 	},
4027 	.btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
4028 };
4029 #endif
4030 
4031 static const struct bpf_reg_types mem_types = {
4032 	.types = {
4033 		PTR_TO_STACK,
4034 		PTR_TO_PACKET,
4035 		PTR_TO_PACKET_META,
4036 		PTR_TO_MAP_VALUE,
4037 		PTR_TO_MEM,
4038 		PTR_TO_RDONLY_BUF,
4039 		PTR_TO_RDWR_BUF,
4040 	},
4041 };
4042 
4043 static const struct bpf_reg_types int_ptr_types = {
4044 	.types = {
4045 		PTR_TO_STACK,
4046 		PTR_TO_PACKET,
4047 		PTR_TO_PACKET_META,
4048 		PTR_TO_MAP_VALUE,
4049 	},
4050 };
4051 
4052 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
4053 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
4054 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
4055 static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM } };
4056 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
4057 static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } };
4058 static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } };
4059 static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_PERCPU_BTF_ID } };
4060 
4061 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
4062 	[ARG_PTR_TO_MAP_KEY]		= &map_key_value_types,
4063 	[ARG_PTR_TO_MAP_VALUE]		= &map_key_value_types,
4064 	[ARG_PTR_TO_UNINIT_MAP_VALUE]	= &map_key_value_types,
4065 	[ARG_PTR_TO_MAP_VALUE_OR_NULL]	= &map_key_value_types,
4066 	[ARG_CONST_SIZE]		= &scalar_types,
4067 	[ARG_CONST_SIZE_OR_ZERO]	= &scalar_types,
4068 	[ARG_CONST_ALLOC_SIZE_OR_ZERO]	= &scalar_types,
4069 	[ARG_CONST_MAP_PTR]		= &const_map_ptr_types,
4070 	[ARG_PTR_TO_CTX]		= &context_types,
4071 	[ARG_PTR_TO_CTX_OR_NULL]	= &context_types,
4072 	[ARG_PTR_TO_SOCK_COMMON]	= &sock_types,
4073 #ifdef CONFIG_NET
4074 	[ARG_PTR_TO_BTF_ID_SOCK_COMMON]	= &btf_id_sock_common_types,
4075 #endif
4076 	[ARG_PTR_TO_SOCKET]		= &fullsock_types,
4077 	[ARG_PTR_TO_SOCKET_OR_NULL]	= &fullsock_types,
4078 	[ARG_PTR_TO_BTF_ID]		= &btf_ptr_types,
4079 	[ARG_PTR_TO_SPIN_LOCK]		= &spin_lock_types,
4080 	[ARG_PTR_TO_MEM]		= &mem_types,
4081 	[ARG_PTR_TO_MEM_OR_NULL]	= &mem_types,
4082 	[ARG_PTR_TO_UNINIT_MEM]		= &mem_types,
4083 	[ARG_PTR_TO_ALLOC_MEM]		= &alloc_mem_types,
4084 	[ARG_PTR_TO_ALLOC_MEM_OR_NULL]	= &alloc_mem_types,
4085 	[ARG_PTR_TO_INT]		= &int_ptr_types,
4086 	[ARG_PTR_TO_LONG]		= &int_ptr_types,
4087 	[ARG_PTR_TO_PERCPU_BTF_ID]	= &percpu_btf_ptr_types,
4088 };
4089 
4090 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
4091 			  enum bpf_arg_type arg_type,
4092 			  const u32 *arg_btf_id)
4093 {
4094 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4095 	enum bpf_reg_type expected, type = reg->type;
4096 	const struct bpf_reg_types *compatible;
4097 	int i, j;
4098 
4099 	compatible = compatible_reg_types[arg_type];
4100 	if (!compatible) {
4101 		verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
4102 		return -EFAULT;
4103 	}
4104 
4105 	for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
4106 		expected = compatible->types[i];
4107 		if (expected == NOT_INIT)
4108 			break;
4109 
4110 		if (type == expected)
4111 			goto found;
4112 	}
4113 
4114 	verbose(env, "R%d type=%s expected=", regno, reg_type_str[type]);
4115 	for (j = 0; j + 1 < i; j++)
4116 		verbose(env, "%s, ", reg_type_str[compatible->types[j]]);
4117 	verbose(env, "%s\n", reg_type_str[compatible->types[j]]);
4118 	return -EACCES;
4119 
4120 found:
4121 	if (type == PTR_TO_BTF_ID) {
4122 		if (!arg_btf_id) {
4123 			if (!compatible->btf_id) {
4124 				verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
4125 				return -EFAULT;
4126 			}
4127 			arg_btf_id = compatible->btf_id;
4128 		}
4129 
4130 		if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
4131 					  btf_vmlinux, *arg_btf_id)) {
4132 			verbose(env, "R%d is of type %s but %s is expected\n",
4133 				regno, kernel_type_name(reg->btf, reg->btf_id),
4134 				kernel_type_name(btf_vmlinux, *arg_btf_id));
4135 			return -EACCES;
4136 		}
4137 
4138 		if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4139 			verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n",
4140 				regno);
4141 			return -EACCES;
4142 		}
4143 	}
4144 
4145 	return 0;
4146 }
4147 
4148 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
4149 			  struct bpf_call_arg_meta *meta,
4150 			  const struct bpf_func_proto *fn)
4151 {
4152 	u32 regno = BPF_REG_1 + arg;
4153 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4154 	enum bpf_arg_type arg_type = fn->arg_type[arg];
4155 	enum bpf_reg_type type = reg->type;
4156 	int err = 0;
4157 
4158 	if (arg_type == ARG_DONTCARE)
4159 		return 0;
4160 
4161 	err = check_reg_arg(env, regno, SRC_OP);
4162 	if (err)
4163 		return err;
4164 
4165 	if (arg_type == ARG_ANYTHING) {
4166 		if (is_pointer_value(env, regno)) {
4167 			verbose(env, "R%d leaks addr into helper function\n",
4168 				regno);
4169 			return -EACCES;
4170 		}
4171 		return 0;
4172 	}
4173 
4174 	if (type_is_pkt_pointer(type) &&
4175 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
4176 		verbose(env, "helper access to the packet is not allowed\n");
4177 		return -EACCES;
4178 	}
4179 
4180 	if (arg_type == ARG_PTR_TO_MAP_VALUE ||
4181 	    arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE ||
4182 	    arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) {
4183 		err = resolve_map_arg_type(env, meta, &arg_type);
4184 		if (err)
4185 			return err;
4186 	}
4187 
4188 	if (register_is_null(reg) && arg_type_may_be_null(arg_type))
4189 		/* A NULL register has a SCALAR_VALUE type, so skip
4190 		 * type checking.
4191 		 */
4192 		goto skip_type_check;
4193 
4194 	err = check_reg_type(env, regno, arg_type, fn->arg_btf_id[arg]);
4195 	if (err)
4196 		return err;
4197 
4198 	if (type == PTR_TO_CTX) {
4199 		err = check_ctx_reg(env, reg, regno);
4200 		if (err < 0)
4201 			return err;
4202 	}
4203 
4204 skip_type_check:
4205 	if (reg->ref_obj_id) {
4206 		if (meta->ref_obj_id) {
4207 			verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
4208 				regno, reg->ref_obj_id,
4209 				meta->ref_obj_id);
4210 			return -EFAULT;
4211 		}
4212 		meta->ref_obj_id = reg->ref_obj_id;
4213 	}
4214 
4215 	if (arg_type == ARG_CONST_MAP_PTR) {
4216 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
4217 		meta->map_ptr = reg->map_ptr;
4218 	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
4219 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
4220 		 * check that [key, key + map->key_size) are within
4221 		 * stack limits and initialized
4222 		 */
4223 		if (!meta->map_ptr) {
4224 			/* in function declaration map_ptr must come before
4225 			 * map_key, so that it's verified and known before
4226 			 * we have to check map_key here. Otherwise it means
4227 			 * that kernel subsystem misconfigured verifier
4228 			 */
4229 			verbose(env, "invalid map_ptr to access map->key\n");
4230 			return -EACCES;
4231 		}
4232 		err = check_helper_mem_access(env, regno,
4233 					      meta->map_ptr->key_size, false,
4234 					      NULL);
4235 	} else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
4236 		   (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL &&
4237 		    !register_is_null(reg)) ||
4238 		   arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
4239 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
4240 		 * check [value, value + map->value_size) validity
4241 		 */
4242 		if (!meta->map_ptr) {
4243 			/* kernel subsystem misconfigured verifier */
4244 			verbose(env, "invalid map_ptr to access map->value\n");
4245 			return -EACCES;
4246 		}
4247 		meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
4248 		err = check_helper_mem_access(env, regno,
4249 					      meta->map_ptr->value_size, false,
4250 					      meta);
4251 	} else if (arg_type == ARG_PTR_TO_PERCPU_BTF_ID) {
4252 		if (!reg->btf_id) {
4253 			verbose(env, "Helper has invalid btf_id in R%d\n", regno);
4254 			return -EACCES;
4255 		}
4256 		meta->ret_btf = reg->btf;
4257 		meta->ret_btf_id = reg->btf_id;
4258 	} else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
4259 		if (meta->func_id == BPF_FUNC_spin_lock) {
4260 			if (process_spin_lock(env, regno, true))
4261 				return -EACCES;
4262 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
4263 			if (process_spin_lock(env, regno, false))
4264 				return -EACCES;
4265 		} else {
4266 			verbose(env, "verifier internal error\n");
4267 			return -EFAULT;
4268 		}
4269 	} else if (arg_type_is_mem_ptr(arg_type)) {
4270 		/* The access to this pointer is only checked when we hit the
4271 		 * next is_mem_size argument below.
4272 		 */
4273 		meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MEM);
4274 	} else if (arg_type_is_mem_size(arg_type)) {
4275 		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
4276 
4277 		/* This is used to refine r0 return value bounds for helpers
4278 		 * that enforce this value as an upper bound on return values.
4279 		 * See do_refine_retval_range() for helpers that can refine
4280 		 * the return value. C type of helper is u32 so we pull register
4281 		 * bound from umax_value however, if negative verifier errors
4282 		 * out. Only upper bounds can be learned because retval is an
4283 		 * int type and negative retvals are allowed.
4284 		 */
4285 		meta->msize_max_value = reg->umax_value;
4286 
4287 		/* The register is SCALAR_VALUE; the access check
4288 		 * happens using its boundaries.
4289 		 */
4290 		if (!tnum_is_const(reg->var_off))
4291 			/* For unprivileged variable accesses, disable raw
4292 			 * mode so that the program is required to
4293 			 * initialize all the memory that the helper could
4294 			 * just partially fill up.
4295 			 */
4296 			meta = NULL;
4297 
4298 		if (reg->smin_value < 0) {
4299 			verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
4300 				regno);
4301 			return -EACCES;
4302 		}
4303 
4304 		if (reg->umin_value == 0) {
4305 			err = check_helper_mem_access(env, regno - 1, 0,
4306 						      zero_size_allowed,
4307 						      meta);
4308 			if (err)
4309 				return err;
4310 		}
4311 
4312 		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
4313 			verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
4314 				regno);
4315 			return -EACCES;
4316 		}
4317 		err = check_helper_mem_access(env, regno - 1,
4318 					      reg->umax_value,
4319 					      zero_size_allowed, meta);
4320 		if (!err)
4321 			err = mark_chain_precision(env, regno);
4322 	} else if (arg_type_is_alloc_size(arg_type)) {
4323 		if (!tnum_is_const(reg->var_off)) {
4324 			verbose(env, "R%d unbounded size, use 'var &= const' or 'if (var < const)'\n",
4325 				regno);
4326 			return -EACCES;
4327 		}
4328 		meta->mem_size = reg->var_off.value;
4329 	} else if (arg_type_is_int_ptr(arg_type)) {
4330 		int size = int_ptr_type_to_size(arg_type);
4331 
4332 		err = check_helper_mem_access(env, regno, size, false, meta);
4333 		if (err)
4334 			return err;
4335 		err = check_ptr_alignment(env, reg, 0, size, true);
4336 	}
4337 
4338 	return err;
4339 }
4340 
4341 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
4342 {
4343 	enum bpf_attach_type eatype = env->prog->expected_attach_type;
4344 	enum bpf_prog_type type = resolve_prog_type(env->prog);
4345 
4346 	if (func_id != BPF_FUNC_map_update_elem)
4347 		return false;
4348 
4349 	/* It's not possible to get access to a locked struct sock in these
4350 	 * contexts, so updating is safe.
4351 	 */
4352 	switch (type) {
4353 	case BPF_PROG_TYPE_TRACING:
4354 		if (eatype == BPF_TRACE_ITER)
4355 			return true;
4356 		break;
4357 	case BPF_PROG_TYPE_SOCKET_FILTER:
4358 	case BPF_PROG_TYPE_SCHED_CLS:
4359 	case BPF_PROG_TYPE_SCHED_ACT:
4360 	case BPF_PROG_TYPE_XDP:
4361 	case BPF_PROG_TYPE_SK_REUSEPORT:
4362 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
4363 	case BPF_PROG_TYPE_SK_LOOKUP:
4364 		return true;
4365 	default:
4366 		break;
4367 	}
4368 
4369 	verbose(env, "cannot update sockmap in this context\n");
4370 	return false;
4371 }
4372 
4373 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
4374 {
4375 	return env->prog->jit_requested && IS_ENABLED(CONFIG_X86_64);
4376 }
4377 
4378 static int check_map_func_compatibility(struct bpf_verifier_env *env,
4379 					struct bpf_map *map, int func_id)
4380 {
4381 	if (!map)
4382 		return 0;
4383 
4384 	/* We need a two way check, first is from map perspective ... */
4385 	switch (map->map_type) {
4386 	case BPF_MAP_TYPE_PROG_ARRAY:
4387 		if (func_id != BPF_FUNC_tail_call)
4388 			goto error;
4389 		break;
4390 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
4391 		if (func_id != BPF_FUNC_perf_event_read &&
4392 		    func_id != BPF_FUNC_perf_event_output &&
4393 		    func_id != BPF_FUNC_skb_output &&
4394 		    func_id != BPF_FUNC_perf_event_read_value &&
4395 		    func_id != BPF_FUNC_xdp_output)
4396 			goto error;
4397 		break;
4398 	case BPF_MAP_TYPE_RINGBUF:
4399 		if (func_id != BPF_FUNC_ringbuf_output &&
4400 		    func_id != BPF_FUNC_ringbuf_reserve &&
4401 		    func_id != BPF_FUNC_ringbuf_submit &&
4402 		    func_id != BPF_FUNC_ringbuf_discard &&
4403 		    func_id != BPF_FUNC_ringbuf_query)
4404 			goto error;
4405 		break;
4406 	case BPF_MAP_TYPE_STACK_TRACE:
4407 		if (func_id != BPF_FUNC_get_stackid)
4408 			goto error;
4409 		break;
4410 	case BPF_MAP_TYPE_CGROUP_ARRAY:
4411 		if (func_id != BPF_FUNC_skb_under_cgroup &&
4412 		    func_id != BPF_FUNC_current_task_under_cgroup)
4413 			goto error;
4414 		break;
4415 	case BPF_MAP_TYPE_CGROUP_STORAGE:
4416 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
4417 		if (func_id != BPF_FUNC_get_local_storage)
4418 			goto error;
4419 		break;
4420 	case BPF_MAP_TYPE_DEVMAP:
4421 	case BPF_MAP_TYPE_DEVMAP_HASH:
4422 		if (func_id != BPF_FUNC_redirect_map &&
4423 		    func_id != BPF_FUNC_map_lookup_elem)
4424 			goto error;
4425 		break;
4426 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
4427 	 * appear.
4428 	 */
4429 	case BPF_MAP_TYPE_CPUMAP:
4430 		if (func_id != BPF_FUNC_redirect_map)
4431 			goto error;
4432 		break;
4433 	case BPF_MAP_TYPE_XSKMAP:
4434 		if (func_id != BPF_FUNC_redirect_map &&
4435 		    func_id != BPF_FUNC_map_lookup_elem)
4436 			goto error;
4437 		break;
4438 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
4439 	case BPF_MAP_TYPE_HASH_OF_MAPS:
4440 		if (func_id != BPF_FUNC_map_lookup_elem)
4441 			goto error;
4442 		break;
4443 	case BPF_MAP_TYPE_SOCKMAP:
4444 		if (func_id != BPF_FUNC_sk_redirect_map &&
4445 		    func_id != BPF_FUNC_sock_map_update &&
4446 		    func_id != BPF_FUNC_map_delete_elem &&
4447 		    func_id != BPF_FUNC_msg_redirect_map &&
4448 		    func_id != BPF_FUNC_sk_select_reuseport &&
4449 		    func_id != BPF_FUNC_map_lookup_elem &&
4450 		    !may_update_sockmap(env, func_id))
4451 			goto error;
4452 		break;
4453 	case BPF_MAP_TYPE_SOCKHASH:
4454 		if (func_id != BPF_FUNC_sk_redirect_hash &&
4455 		    func_id != BPF_FUNC_sock_hash_update &&
4456 		    func_id != BPF_FUNC_map_delete_elem &&
4457 		    func_id != BPF_FUNC_msg_redirect_hash &&
4458 		    func_id != BPF_FUNC_sk_select_reuseport &&
4459 		    func_id != BPF_FUNC_map_lookup_elem &&
4460 		    !may_update_sockmap(env, func_id))
4461 			goto error;
4462 		break;
4463 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
4464 		if (func_id != BPF_FUNC_sk_select_reuseport)
4465 			goto error;
4466 		break;
4467 	case BPF_MAP_TYPE_QUEUE:
4468 	case BPF_MAP_TYPE_STACK:
4469 		if (func_id != BPF_FUNC_map_peek_elem &&
4470 		    func_id != BPF_FUNC_map_pop_elem &&
4471 		    func_id != BPF_FUNC_map_push_elem)
4472 			goto error;
4473 		break;
4474 	case BPF_MAP_TYPE_SK_STORAGE:
4475 		if (func_id != BPF_FUNC_sk_storage_get &&
4476 		    func_id != BPF_FUNC_sk_storage_delete)
4477 			goto error;
4478 		break;
4479 	case BPF_MAP_TYPE_INODE_STORAGE:
4480 		if (func_id != BPF_FUNC_inode_storage_get &&
4481 		    func_id != BPF_FUNC_inode_storage_delete)
4482 			goto error;
4483 		break;
4484 	case BPF_MAP_TYPE_TASK_STORAGE:
4485 		if (func_id != BPF_FUNC_task_storage_get &&
4486 		    func_id != BPF_FUNC_task_storage_delete)
4487 			goto error;
4488 		break;
4489 	default:
4490 		break;
4491 	}
4492 
4493 	/* ... and second from the function itself. */
4494 	switch (func_id) {
4495 	case BPF_FUNC_tail_call:
4496 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
4497 			goto error;
4498 		if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
4499 			verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
4500 			return -EINVAL;
4501 		}
4502 		break;
4503 	case BPF_FUNC_perf_event_read:
4504 	case BPF_FUNC_perf_event_output:
4505 	case BPF_FUNC_perf_event_read_value:
4506 	case BPF_FUNC_skb_output:
4507 	case BPF_FUNC_xdp_output:
4508 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
4509 			goto error;
4510 		break;
4511 	case BPF_FUNC_get_stackid:
4512 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
4513 			goto error;
4514 		break;
4515 	case BPF_FUNC_current_task_under_cgroup:
4516 	case BPF_FUNC_skb_under_cgroup:
4517 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
4518 			goto error;
4519 		break;
4520 	case BPF_FUNC_redirect_map:
4521 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
4522 		    map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
4523 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
4524 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
4525 			goto error;
4526 		break;
4527 	case BPF_FUNC_sk_redirect_map:
4528 	case BPF_FUNC_msg_redirect_map:
4529 	case BPF_FUNC_sock_map_update:
4530 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
4531 			goto error;
4532 		break;
4533 	case BPF_FUNC_sk_redirect_hash:
4534 	case BPF_FUNC_msg_redirect_hash:
4535 	case BPF_FUNC_sock_hash_update:
4536 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
4537 			goto error;
4538 		break;
4539 	case BPF_FUNC_get_local_storage:
4540 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
4541 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
4542 			goto error;
4543 		break;
4544 	case BPF_FUNC_sk_select_reuseport:
4545 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
4546 		    map->map_type != BPF_MAP_TYPE_SOCKMAP &&
4547 		    map->map_type != BPF_MAP_TYPE_SOCKHASH)
4548 			goto error;
4549 		break;
4550 	case BPF_FUNC_map_peek_elem:
4551 	case BPF_FUNC_map_pop_elem:
4552 	case BPF_FUNC_map_push_elem:
4553 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
4554 		    map->map_type != BPF_MAP_TYPE_STACK)
4555 			goto error;
4556 		break;
4557 	case BPF_FUNC_sk_storage_get:
4558 	case BPF_FUNC_sk_storage_delete:
4559 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
4560 			goto error;
4561 		break;
4562 	case BPF_FUNC_inode_storage_get:
4563 	case BPF_FUNC_inode_storage_delete:
4564 		if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
4565 			goto error;
4566 		break;
4567 	case BPF_FUNC_task_storage_get:
4568 	case BPF_FUNC_task_storage_delete:
4569 		if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
4570 			goto error;
4571 		break;
4572 	default:
4573 		break;
4574 	}
4575 
4576 	return 0;
4577 error:
4578 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
4579 		map->map_type, func_id_name(func_id), func_id);
4580 	return -EINVAL;
4581 }
4582 
4583 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
4584 {
4585 	int count = 0;
4586 
4587 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
4588 		count++;
4589 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
4590 		count++;
4591 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
4592 		count++;
4593 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
4594 		count++;
4595 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
4596 		count++;
4597 
4598 	/* We only support one arg being in raw mode at the moment,
4599 	 * which is sufficient for the helper functions we have
4600 	 * right now.
4601 	 */
4602 	return count <= 1;
4603 }
4604 
4605 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
4606 				    enum bpf_arg_type arg_next)
4607 {
4608 	return (arg_type_is_mem_ptr(arg_curr) &&
4609 	        !arg_type_is_mem_size(arg_next)) ||
4610 	       (!arg_type_is_mem_ptr(arg_curr) &&
4611 		arg_type_is_mem_size(arg_next));
4612 }
4613 
4614 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
4615 {
4616 	/* bpf_xxx(..., buf, len) call will access 'len'
4617 	 * bytes from memory 'buf'. Both arg types need
4618 	 * to be paired, so make sure there's no buggy
4619 	 * helper function specification.
4620 	 */
4621 	if (arg_type_is_mem_size(fn->arg1_type) ||
4622 	    arg_type_is_mem_ptr(fn->arg5_type)  ||
4623 	    check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
4624 	    check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
4625 	    check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
4626 	    check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
4627 		return false;
4628 
4629 	return true;
4630 }
4631 
4632 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
4633 {
4634 	int count = 0;
4635 
4636 	if (arg_type_may_be_refcounted(fn->arg1_type))
4637 		count++;
4638 	if (arg_type_may_be_refcounted(fn->arg2_type))
4639 		count++;
4640 	if (arg_type_may_be_refcounted(fn->arg3_type))
4641 		count++;
4642 	if (arg_type_may_be_refcounted(fn->arg4_type))
4643 		count++;
4644 	if (arg_type_may_be_refcounted(fn->arg5_type))
4645 		count++;
4646 
4647 	/* A reference acquiring function cannot acquire
4648 	 * another refcounted ptr.
4649 	 */
4650 	if (may_be_acquire_function(func_id) && count)
4651 		return false;
4652 
4653 	/* We only support one arg being unreferenced at the moment,
4654 	 * which is sufficient for the helper functions we have right now.
4655 	 */
4656 	return count <= 1;
4657 }
4658 
4659 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
4660 {
4661 	int i;
4662 
4663 	for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
4664 		if (fn->arg_type[i] == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i])
4665 			return false;
4666 
4667 		if (fn->arg_type[i] != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i])
4668 			return false;
4669 	}
4670 
4671 	return true;
4672 }
4673 
4674 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
4675 {
4676 	return check_raw_mode_ok(fn) &&
4677 	       check_arg_pair_ok(fn) &&
4678 	       check_btf_id_ok(fn) &&
4679 	       check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
4680 }
4681 
4682 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
4683  * are now invalid, so turn them into unknown SCALAR_VALUE.
4684  */
4685 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
4686 				     struct bpf_func_state *state)
4687 {
4688 	struct bpf_reg_state *regs = state->regs, *reg;
4689 	int i;
4690 
4691 	for (i = 0; i < MAX_BPF_REG; i++)
4692 		if (reg_is_pkt_pointer_any(&regs[i]))
4693 			mark_reg_unknown(env, regs, i);
4694 
4695 	bpf_for_each_spilled_reg(i, state, reg) {
4696 		if (!reg)
4697 			continue;
4698 		if (reg_is_pkt_pointer_any(reg))
4699 			__mark_reg_unknown(env, reg);
4700 	}
4701 }
4702 
4703 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
4704 {
4705 	struct bpf_verifier_state *vstate = env->cur_state;
4706 	int i;
4707 
4708 	for (i = 0; i <= vstate->curframe; i++)
4709 		__clear_all_pkt_pointers(env, vstate->frame[i]);
4710 }
4711 
4712 enum {
4713 	AT_PKT_END = -1,
4714 	BEYOND_PKT_END = -2,
4715 };
4716 
4717 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
4718 {
4719 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4720 	struct bpf_reg_state *reg = &state->regs[regn];
4721 
4722 	if (reg->type != PTR_TO_PACKET)
4723 		/* PTR_TO_PACKET_META is not supported yet */
4724 		return;
4725 
4726 	/* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
4727 	 * How far beyond pkt_end it goes is unknown.
4728 	 * if (!range_open) it's the case of pkt >= pkt_end
4729 	 * if (range_open) it's the case of pkt > pkt_end
4730 	 * hence this pointer is at least 1 byte bigger than pkt_end
4731 	 */
4732 	if (range_open)
4733 		reg->range = BEYOND_PKT_END;
4734 	else
4735 		reg->range = AT_PKT_END;
4736 }
4737 
4738 static void release_reg_references(struct bpf_verifier_env *env,
4739 				   struct bpf_func_state *state,
4740 				   int ref_obj_id)
4741 {
4742 	struct bpf_reg_state *regs = state->regs, *reg;
4743 	int i;
4744 
4745 	for (i = 0; i < MAX_BPF_REG; i++)
4746 		if (regs[i].ref_obj_id == ref_obj_id)
4747 			mark_reg_unknown(env, regs, i);
4748 
4749 	bpf_for_each_spilled_reg(i, state, reg) {
4750 		if (!reg)
4751 			continue;
4752 		if (reg->ref_obj_id == ref_obj_id)
4753 			__mark_reg_unknown(env, reg);
4754 	}
4755 }
4756 
4757 /* The pointer with the specified id has released its reference to kernel
4758  * resources. Identify all copies of the same pointer and clear the reference.
4759  */
4760 static int release_reference(struct bpf_verifier_env *env,
4761 			     int ref_obj_id)
4762 {
4763 	struct bpf_verifier_state *vstate = env->cur_state;
4764 	int err;
4765 	int i;
4766 
4767 	err = release_reference_state(cur_func(env), ref_obj_id);
4768 	if (err)
4769 		return err;
4770 
4771 	for (i = 0; i <= vstate->curframe; i++)
4772 		release_reg_references(env, vstate->frame[i], ref_obj_id);
4773 
4774 	return 0;
4775 }
4776 
4777 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
4778 				    struct bpf_reg_state *regs)
4779 {
4780 	int i;
4781 
4782 	/* after the call registers r0 - r5 were scratched */
4783 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
4784 		mark_reg_not_init(env, regs, caller_saved[i]);
4785 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
4786 	}
4787 }
4788 
4789 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
4790 			   int *insn_idx)
4791 {
4792 	struct bpf_verifier_state *state = env->cur_state;
4793 	struct bpf_func_info_aux *func_info_aux;
4794 	struct bpf_func_state *caller, *callee;
4795 	int i, err, subprog, target_insn;
4796 	bool is_global = false;
4797 
4798 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
4799 		verbose(env, "the call stack of %d frames is too deep\n",
4800 			state->curframe + 2);
4801 		return -E2BIG;
4802 	}
4803 
4804 	target_insn = *insn_idx + insn->imm;
4805 	subprog = find_subprog(env, target_insn + 1);
4806 	if (subprog < 0) {
4807 		verbose(env, "verifier bug. No program starts at insn %d\n",
4808 			target_insn + 1);
4809 		return -EFAULT;
4810 	}
4811 
4812 	caller = state->frame[state->curframe];
4813 	if (state->frame[state->curframe + 1]) {
4814 		verbose(env, "verifier bug. Frame %d already allocated\n",
4815 			state->curframe + 1);
4816 		return -EFAULT;
4817 	}
4818 
4819 	func_info_aux = env->prog->aux->func_info_aux;
4820 	if (func_info_aux)
4821 		is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
4822 	err = btf_check_func_arg_match(env, subprog, caller->regs);
4823 	if (err == -EFAULT)
4824 		return err;
4825 	if (is_global) {
4826 		if (err) {
4827 			verbose(env, "Caller passes invalid args into func#%d\n",
4828 				subprog);
4829 			return err;
4830 		} else {
4831 			if (env->log.level & BPF_LOG_LEVEL)
4832 				verbose(env,
4833 					"Func#%d is global and valid. Skipping.\n",
4834 					subprog);
4835 			clear_caller_saved_regs(env, caller->regs);
4836 
4837 			/* All global functions return SCALAR_VALUE */
4838 			mark_reg_unknown(env, caller->regs, BPF_REG_0);
4839 
4840 			/* continue with next insn after call */
4841 			return 0;
4842 		}
4843 	}
4844 
4845 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
4846 	if (!callee)
4847 		return -ENOMEM;
4848 	state->frame[state->curframe + 1] = callee;
4849 
4850 	/* callee cannot access r0, r6 - r9 for reading and has to write
4851 	 * into its own stack before reading from it.
4852 	 * callee can read/write into caller's stack
4853 	 */
4854 	init_func_state(env, callee,
4855 			/* remember the callsite, it will be used by bpf_exit */
4856 			*insn_idx /* callsite */,
4857 			state->curframe + 1 /* frameno within this callchain */,
4858 			subprog /* subprog number within this prog */);
4859 
4860 	/* Transfer references to the callee */
4861 	err = transfer_reference_state(callee, caller);
4862 	if (err)
4863 		return err;
4864 
4865 	/* copy r1 - r5 args that callee can access.  The copy includes parent
4866 	 * pointers, which connects us up to the liveness chain
4867 	 */
4868 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
4869 		callee->regs[i] = caller->regs[i];
4870 
4871 	clear_caller_saved_regs(env, caller->regs);
4872 
4873 	/* only increment it after check_reg_arg() finished */
4874 	state->curframe++;
4875 
4876 	/* and go analyze first insn of the callee */
4877 	*insn_idx = target_insn;
4878 
4879 	if (env->log.level & BPF_LOG_LEVEL) {
4880 		verbose(env, "caller:\n");
4881 		print_verifier_state(env, caller);
4882 		verbose(env, "callee:\n");
4883 		print_verifier_state(env, callee);
4884 	}
4885 	return 0;
4886 }
4887 
4888 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
4889 {
4890 	struct bpf_verifier_state *state = env->cur_state;
4891 	struct bpf_func_state *caller, *callee;
4892 	struct bpf_reg_state *r0;
4893 	int err;
4894 
4895 	callee = state->frame[state->curframe];
4896 	r0 = &callee->regs[BPF_REG_0];
4897 	if (r0->type == PTR_TO_STACK) {
4898 		/* technically it's ok to return caller's stack pointer
4899 		 * (or caller's caller's pointer) back to the caller,
4900 		 * since these pointers are valid. Only current stack
4901 		 * pointer will be invalid as soon as function exits,
4902 		 * but let's be conservative
4903 		 */
4904 		verbose(env, "cannot return stack pointer to the caller\n");
4905 		return -EINVAL;
4906 	}
4907 
4908 	state->curframe--;
4909 	caller = state->frame[state->curframe];
4910 	/* return to the caller whatever r0 had in the callee */
4911 	caller->regs[BPF_REG_0] = *r0;
4912 
4913 	/* Transfer references to the caller */
4914 	err = transfer_reference_state(caller, callee);
4915 	if (err)
4916 		return err;
4917 
4918 	*insn_idx = callee->callsite + 1;
4919 	if (env->log.level & BPF_LOG_LEVEL) {
4920 		verbose(env, "returning from callee:\n");
4921 		print_verifier_state(env, callee);
4922 		verbose(env, "to caller at %d:\n", *insn_idx);
4923 		print_verifier_state(env, caller);
4924 	}
4925 	/* clear everything in the callee */
4926 	free_func_state(callee);
4927 	state->frame[state->curframe + 1] = NULL;
4928 	return 0;
4929 }
4930 
4931 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
4932 				   int func_id,
4933 				   struct bpf_call_arg_meta *meta)
4934 {
4935 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
4936 
4937 	if (ret_type != RET_INTEGER ||
4938 	    (func_id != BPF_FUNC_get_stack &&
4939 	     func_id != BPF_FUNC_probe_read_str &&
4940 	     func_id != BPF_FUNC_probe_read_kernel_str &&
4941 	     func_id != BPF_FUNC_probe_read_user_str))
4942 		return;
4943 
4944 	ret_reg->smax_value = meta->msize_max_value;
4945 	ret_reg->s32_max_value = meta->msize_max_value;
4946 	ret_reg->smin_value = -MAX_ERRNO;
4947 	ret_reg->s32_min_value = -MAX_ERRNO;
4948 	__reg_deduce_bounds(ret_reg);
4949 	__reg_bound_offset(ret_reg);
4950 	__update_reg_bounds(ret_reg);
4951 }
4952 
4953 static int
4954 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
4955 		int func_id, int insn_idx)
4956 {
4957 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
4958 	struct bpf_map *map = meta->map_ptr;
4959 
4960 	if (func_id != BPF_FUNC_tail_call &&
4961 	    func_id != BPF_FUNC_map_lookup_elem &&
4962 	    func_id != BPF_FUNC_map_update_elem &&
4963 	    func_id != BPF_FUNC_map_delete_elem &&
4964 	    func_id != BPF_FUNC_map_push_elem &&
4965 	    func_id != BPF_FUNC_map_pop_elem &&
4966 	    func_id != BPF_FUNC_map_peek_elem)
4967 		return 0;
4968 
4969 	if (map == NULL) {
4970 		verbose(env, "kernel subsystem misconfigured verifier\n");
4971 		return -EINVAL;
4972 	}
4973 
4974 	/* In case of read-only, some additional restrictions
4975 	 * need to be applied in order to prevent altering the
4976 	 * state of the map from program side.
4977 	 */
4978 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
4979 	    (func_id == BPF_FUNC_map_delete_elem ||
4980 	     func_id == BPF_FUNC_map_update_elem ||
4981 	     func_id == BPF_FUNC_map_push_elem ||
4982 	     func_id == BPF_FUNC_map_pop_elem)) {
4983 		verbose(env, "write into map forbidden\n");
4984 		return -EACCES;
4985 	}
4986 
4987 	if (!BPF_MAP_PTR(aux->map_ptr_state))
4988 		bpf_map_ptr_store(aux, meta->map_ptr,
4989 				  !meta->map_ptr->bypass_spec_v1);
4990 	else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
4991 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
4992 				  !meta->map_ptr->bypass_spec_v1);
4993 	return 0;
4994 }
4995 
4996 static int
4997 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
4998 		int func_id, int insn_idx)
4999 {
5000 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
5001 	struct bpf_reg_state *regs = cur_regs(env), *reg;
5002 	struct bpf_map *map = meta->map_ptr;
5003 	struct tnum range;
5004 	u64 val;
5005 	int err;
5006 
5007 	if (func_id != BPF_FUNC_tail_call)
5008 		return 0;
5009 	if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
5010 		verbose(env, "kernel subsystem misconfigured verifier\n");
5011 		return -EINVAL;
5012 	}
5013 
5014 	range = tnum_range(0, map->max_entries - 1);
5015 	reg = &regs[BPF_REG_3];
5016 
5017 	if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) {
5018 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
5019 		return 0;
5020 	}
5021 
5022 	err = mark_chain_precision(env, BPF_REG_3);
5023 	if (err)
5024 		return err;
5025 
5026 	val = reg->var_off.value;
5027 	if (bpf_map_key_unseen(aux))
5028 		bpf_map_key_store(aux, val);
5029 	else if (!bpf_map_key_poisoned(aux) &&
5030 		  bpf_map_key_immediate(aux) != val)
5031 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
5032 	return 0;
5033 }
5034 
5035 static int check_reference_leak(struct bpf_verifier_env *env)
5036 {
5037 	struct bpf_func_state *state = cur_func(env);
5038 	int i;
5039 
5040 	for (i = 0; i < state->acquired_refs; i++) {
5041 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
5042 			state->refs[i].id, state->refs[i].insn_idx);
5043 	}
5044 	return state->acquired_refs ? -EINVAL : 0;
5045 }
5046 
5047 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
5048 {
5049 	const struct bpf_func_proto *fn = NULL;
5050 	struct bpf_reg_state *regs;
5051 	struct bpf_call_arg_meta meta;
5052 	bool changes_data;
5053 	int i, err;
5054 
5055 	/* find function prototype */
5056 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
5057 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
5058 			func_id);
5059 		return -EINVAL;
5060 	}
5061 
5062 	if (env->ops->get_func_proto)
5063 		fn = env->ops->get_func_proto(func_id, env->prog);
5064 	if (!fn) {
5065 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
5066 			func_id);
5067 		return -EINVAL;
5068 	}
5069 
5070 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
5071 	if (!env->prog->gpl_compatible && fn->gpl_only) {
5072 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
5073 		return -EINVAL;
5074 	}
5075 
5076 	if (fn->allowed && !fn->allowed(env->prog)) {
5077 		verbose(env, "helper call is not allowed in probe\n");
5078 		return -EINVAL;
5079 	}
5080 
5081 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
5082 	changes_data = bpf_helper_changes_pkt_data(fn->func);
5083 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
5084 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
5085 			func_id_name(func_id), func_id);
5086 		return -EINVAL;
5087 	}
5088 
5089 	memset(&meta, 0, sizeof(meta));
5090 	meta.pkt_access = fn->pkt_access;
5091 
5092 	err = check_func_proto(fn, func_id);
5093 	if (err) {
5094 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
5095 			func_id_name(func_id), func_id);
5096 		return err;
5097 	}
5098 
5099 	meta.func_id = func_id;
5100 	/* check args */
5101 	for (i = 0; i < 5; i++) {
5102 		err = check_func_arg(env, i, &meta, fn);
5103 		if (err)
5104 			return err;
5105 	}
5106 
5107 	err = record_func_map(env, &meta, func_id, insn_idx);
5108 	if (err)
5109 		return err;
5110 
5111 	err = record_func_key(env, &meta, func_id, insn_idx);
5112 	if (err)
5113 		return err;
5114 
5115 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
5116 	 * is inferred from register state.
5117 	 */
5118 	for (i = 0; i < meta.access_size; i++) {
5119 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
5120 				       BPF_WRITE, -1, false);
5121 		if (err)
5122 			return err;
5123 	}
5124 
5125 	if (func_id == BPF_FUNC_tail_call) {
5126 		err = check_reference_leak(env);
5127 		if (err) {
5128 			verbose(env, "tail_call would lead to reference leak\n");
5129 			return err;
5130 		}
5131 	} else if (is_release_function(func_id)) {
5132 		err = release_reference(env, meta.ref_obj_id);
5133 		if (err) {
5134 			verbose(env, "func %s#%d reference has not been acquired before\n",
5135 				func_id_name(func_id), func_id);
5136 			return err;
5137 		}
5138 	}
5139 
5140 	regs = cur_regs(env);
5141 
5142 	/* check that flags argument in get_local_storage(map, flags) is 0,
5143 	 * this is required because get_local_storage() can't return an error.
5144 	 */
5145 	if (func_id == BPF_FUNC_get_local_storage &&
5146 	    !register_is_null(&regs[BPF_REG_2])) {
5147 		verbose(env, "get_local_storage() doesn't support non-zero flags\n");
5148 		return -EINVAL;
5149 	}
5150 
5151 	/* reset caller saved regs */
5152 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
5153 		mark_reg_not_init(env, regs, caller_saved[i]);
5154 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
5155 	}
5156 
5157 	/* helper call returns 64-bit value. */
5158 	regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
5159 
5160 	/* update return register (already marked as written above) */
5161 	if (fn->ret_type == RET_INTEGER) {
5162 		/* sets type to SCALAR_VALUE */
5163 		mark_reg_unknown(env, regs, BPF_REG_0);
5164 	} else if (fn->ret_type == RET_VOID) {
5165 		regs[BPF_REG_0].type = NOT_INIT;
5166 	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
5167 		   fn->ret_type == RET_PTR_TO_MAP_VALUE) {
5168 		/* There is no offset yet applied, variable or fixed */
5169 		mark_reg_known_zero(env, regs, BPF_REG_0);
5170 		/* remember map_ptr, so that check_map_access()
5171 		 * can check 'value_size' boundary of memory access
5172 		 * to map element returned from bpf_map_lookup_elem()
5173 		 */
5174 		if (meta.map_ptr == NULL) {
5175 			verbose(env,
5176 				"kernel subsystem misconfigured verifier\n");
5177 			return -EINVAL;
5178 		}
5179 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
5180 		if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
5181 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
5182 			if (map_value_has_spin_lock(meta.map_ptr))
5183 				regs[BPF_REG_0].id = ++env->id_gen;
5184 		} else {
5185 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
5186 		}
5187 	} else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
5188 		mark_reg_known_zero(env, regs, BPF_REG_0);
5189 		regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
5190 	} else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) {
5191 		mark_reg_known_zero(env, regs, BPF_REG_0);
5192 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL;
5193 	} else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
5194 		mark_reg_known_zero(env, regs, BPF_REG_0);
5195 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
5196 	} else if (fn->ret_type == RET_PTR_TO_ALLOC_MEM_OR_NULL) {
5197 		mark_reg_known_zero(env, regs, BPF_REG_0);
5198 		regs[BPF_REG_0].type = PTR_TO_MEM_OR_NULL;
5199 		regs[BPF_REG_0].mem_size = meta.mem_size;
5200 	} else if (fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID_OR_NULL ||
5201 		   fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID) {
5202 		const struct btf_type *t;
5203 
5204 		mark_reg_known_zero(env, regs, BPF_REG_0);
5205 		t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
5206 		if (!btf_type_is_struct(t)) {
5207 			u32 tsize;
5208 			const struct btf_type *ret;
5209 			const char *tname;
5210 
5211 			/* resolve the type size of ksym. */
5212 			ret = btf_resolve_size(meta.ret_btf, t, &tsize);
5213 			if (IS_ERR(ret)) {
5214 				tname = btf_name_by_offset(meta.ret_btf, t->name_off);
5215 				verbose(env, "unable to resolve the size of type '%s': %ld\n",
5216 					tname, PTR_ERR(ret));
5217 				return -EINVAL;
5218 			}
5219 			regs[BPF_REG_0].type =
5220 				fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ?
5221 				PTR_TO_MEM : PTR_TO_MEM_OR_NULL;
5222 			regs[BPF_REG_0].mem_size = tsize;
5223 		} else {
5224 			regs[BPF_REG_0].type =
5225 				fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ?
5226 				PTR_TO_BTF_ID : PTR_TO_BTF_ID_OR_NULL;
5227 			regs[BPF_REG_0].btf = meta.ret_btf;
5228 			regs[BPF_REG_0].btf_id = meta.ret_btf_id;
5229 		}
5230 	} else if (fn->ret_type == RET_PTR_TO_BTF_ID_OR_NULL ||
5231 		   fn->ret_type == RET_PTR_TO_BTF_ID) {
5232 		int ret_btf_id;
5233 
5234 		mark_reg_known_zero(env, regs, BPF_REG_0);
5235 		regs[BPF_REG_0].type = fn->ret_type == RET_PTR_TO_BTF_ID ?
5236 						     PTR_TO_BTF_ID :
5237 						     PTR_TO_BTF_ID_OR_NULL;
5238 		ret_btf_id = *fn->ret_btf_id;
5239 		if (ret_btf_id == 0) {
5240 			verbose(env, "invalid return type %d of func %s#%d\n",
5241 				fn->ret_type, func_id_name(func_id), func_id);
5242 			return -EINVAL;
5243 		}
5244 		/* current BPF helper definitions are only coming from
5245 		 * built-in code with type IDs from  vmlinux BTF
5246 		 */
5247 		regs[BPF_REG_0].btf = btf_vmlinux;
5248 		regs[BPF_REG_0].btf_id = ret_btf_id;
5249 	} else {
5250 		verbose(env, "unknown return type %d of func %s#%d\n",
5251 			fn->ret_type, func_id_name(func_id), func_id);
5252 		return -EINVAL;
5253 	}
5254 
5255 	if (reg_type_may_be_null(regs[BPF_REG_0].type))
5256 		regs[BPF_REG_0].id = ++env->id_gen;
5257 
5258 	if (is_ptr_cast_function(func_id)) {
5259 		/* For release_reference() */
5260 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
5261 	} else if (is_acquire_function(func_id, meta.map_ptr)) {
5262 		int id = acquire_reference_state(env, insn_idx);
5263 
5264 		if (id < 0)
5265 			return id;
5266 		/* For mark_ptr_or_null_reg() */
5267 		regs[BPF_REG_0].id = id;
5268 		/* For release_reference() */
5269 		regs[BPF_REG_0].ref_obj_id = id;
5270 	}
5271 
5272 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
5273 
5274 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
5275 	if (err)
5276 		return err;
5277 
5278 	if ((func_id == BPF_FUNC_get_stack ||
5279 	     func_id == BPF_FUNC_get_task_stack) &&
5280 	    !env->prog->has_callchain_buf) {
5281 		const char *err_str;
5282 
5283 #ifdef CONFIG_PERF_EVENTS
5284 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
5285 		err_str = "cannot get callchain buffer for func %s#%d\n";
5286 #else
5287 		err = -ENOTSUPP;
5288 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
5289 #endif
5290 		if (err) {
5291 			verbose(env, err_str, func_id_name(func_id), func_id);
5292 			return err;
5293 		}
5294 
5295 		env->prog->has_callchain_buf = true;
5296 	}
5297 
5298 	if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
5299 		env->prog->call_get_stack = true;
5300 
5301 	if (changes_data)
5302 		clear_all_pkt_pointers(env);
5303 	return 0;
5304 }
5305 
5306 static bool signed_add_overflows(s64 a, s64 b)
5307 {
5308 	/* Do the add in u64, where overflow is well-defined */
5309 	s64 res = (s64)((u64)a + (u64)b);
5310 
5311 	if (b < 0)
5312 		return res > a;
5313 	return res < a;
5314 }
5315 
5316 static bool signed_add32_overflows(s32 a, s32 b)
5317 {
5318 	/* Do the add in u32, where overflow is well-defined */
5319 	s32 res = (s32)((u32)a + (u32)b);
5320 
5321 	if (b < 0)
5322 		return res > a;
5323 	return res < a;
5324 }
5325 
5326 static bool signed_sub_overflows(s64 a, s64 b)
5327 {
5328 	/* Do the sub in u64, where overflow is well-defined */
5329 	s64 res = (s64)((u64)a - (u64)b);
5330 
5331 	if (b < 0)
5332 		return res < a;
5333 	return res > a;
5334 }
5335 
5336 static bool signed_sub32_overflows(s32 a, s32 b)
5337 {
5338 	/* Do the sub in u32, where overflow is well-defined */
5339 	s32 res = (s32)((u32)a - (u32)b);
5340 
5341 	if (b < 0)
5342 		return res < a;
5343 	return res > a;
5344 }
5345 
5346 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
5347 				  const struct bpf_reg_state *reg,
5348 				  enum bpf_reg_type type)
5349 {
5350 	bool known = tnum_is_const(reg->var_off);
5351 	s64 val = reg->var_off.value;
5352 	s64 smin = reg->smin_value;
5353 
5354 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
5355 		verbose(env, "math between %s pointer and %lld is not allowed\n",
5356 			reg_type_str[type], val);
5357 		return false;
5358 	}
5359 
5360 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
5361 		verbose(env, "%s pointer offset %d is not allowed\n",
5362 			reg_type_str[type], reg->off);
5363 		return false;
5364 	}
5365 
5366 	if (smin == S64_MIN) {
5367 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
5368 			reg_type_str[type]);
5369 		return false;
5370 	}
5371 
5372 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
5373 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
5374 			smin, reg_type_str[type]);
5375 		return false;
5376 	}
5377 
5378 	return true;
5379 }
5380 
5381 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
5382 {
5383 	return &env->insn_aux_data[env->insn_idx];
5384 }
5385 
5386 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
5387 			      u32 *ptr_limit, u8 opcode, bool off_is_neg)
5388 {
5389 	bool mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
5390 			    (opcode == BPF_SUB && !off_is_neg);
5391 	u32 off;
5392 
5393 	switch (ptr_reg->type) {
5394 	case PTR_TO_STACK:
5395 		/* Indirect variable offset stack access is prohibited in
5396 		 * unprivileged mode so it's not handled here.
5397 		 */
5398 		off = ptr_reg->off + ptr_reg->var_off.value;
5399 		if (mask_to_left)
5400 			*ptr_limit = MAX_BPF_STACK + off;
5401 		else
5402 			*ptr_limit = -off;
5403 		return 0;
5404 	case PTR_TO_MAP_VALUE:
5405 		if (mask_to_left) {
5406 			*ptr_limit = ptr_reg->umax_value + ptr_reg->off;
5407 		} else {
5408 			off = ptr_reg->smin_value + ptr_reg->off;
5409 			*ptr_limit = ptr_reg->map_ptr->value_size - off;
5410 		}
5411 		return 0;
5412 	default:
5413 		return -EINVAL;
5414 	}
5415 }
5416 
5417 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
5418 				    const struct bpf_insn *insn)
5419 {
5420 	return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
5421 }
5422 
5423 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
5424 				       u32 alu_state, u32 alu_limit)
5425 {
5426 	/* If we arrived here from different branches with different
5427 	 * state or limits to sanitize, then this won't work.
5428 	 */
5429 	if (aux->alu_state &&
5430 	    (aux->alu_state != alu_state ||
5431 	     aux->alu_limit != alu_limit))
5432 		return -EACCES;
5433 
5434 	/* Corresponding fixup done in fixup_bpf_calls(). */
5435 	aux->alu_state = alu_state;
5436 	aux->alu_limit = alu_limit;
5437 	return 0;
5438 }
5439 
5440 static int sanitize_val_alu(struct bpf_verifier_env *env,
5441 			    struct bpf_insn *insn)
5442 {
5443 	struct bpf_insn_aux_data *aux = cur_aux(env);
5444 
5445 	if (can_skip_alu_sanitation(env, insn))
5446 		return 0;
5447 
5448 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
5449 }
5450 
5451 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
5452 			    struct bpf_insn *insn,
5453 			    const struct bpf_reg_state *ptr_reg,
5454 			    struct bpf_reg_state *dst_reg,
5455 			    bool off_is_neg)
5456 {
5457 	struct bpf_verifier_state *vstate = env->cur_state;
5458 	struct bpf_insn_aux_data *aux = cur_aux(env);
5459 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
5460 	u8 opcode = BPF_OP(insn->code);
5461 	u32 alu_state, alu_limit;
5462 	struct bpf_reg_state tmp;
5463 	bool ret;
5464 
5465 	if (can_skip_alu_sanitation(env, insn))
5466 		return 0;
5467 
5468 	/* We already marked aux for masking from non-speculative
5469 	 * paths, thus we got here in the first place. We only care
5470 	 * to explore bad access from here.
5471 	 */
5472 	if (vstate->speculative)
5473 		goto do_sim;
5474 
5475 	alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
5476 	alu_state |= ptr_is_dst_reg ?
5477 		     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
5478 
5479 	if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg))
5480 		return 0;
5481 	if (update_alu_sanitation_state(aux, alu_state, alu_limit))
5482 		return -EACCES;
5483 do_sim:
5484 	/* Simulate and find potential out-of-bounds access under
5485 	 * speculative execution from truncation as a result of
5486 	 * masking when off was not within expected range. If off
5487 	 * sits in dst, then we temporarily need to move ptr there
5488 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
5489 	 * for cases where we use K-based arithmetic in one direction
5490 	 * and truncated reg-based in the other in order to explore
5491 	 * bad access.
5492 	 */
5493 	if (!ptr_is_dst_reg) {
5494 		tmp = *dst_reg;
5495 		*dst_reg = *ptr_reg;
5496 	}
5497 	ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true);
5498 	if (!ptr_is_dst_reg && ret)
5499 		*dst_reg = tmp;
5500 	return !ret ? -EFAULT : 0;
5501 }
5502 
5503 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
5504  * Caller should also handle BPF_MOV case separately.
5505  * If we return -EACCES, caller may want to try again treating pointer as a
5506  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
5507  */
5508 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
5509 				   struct bpf_insn *insn,
5510 				   const struct bpf_reg_state *ptr_reg,
5511 				   const struct bpf_reg_state *off_reg)
5512 {
5513 	struct bpf_verifier_state *vstate = env->cur_state;
5514 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5515 	struct bpf_reg_state *regs = state->regs, *dst_reg;
5516 	bool known = tnum_is_const(off_reg->var_off);
5517 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
5518 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
5519 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
5520 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
5521 	u32 dst = insn->dst_reg, src = insn->src_reg;
5522 	u8 opcode = BPF_OP(insn->code);
5523 	int ret;
5524 
5525 	dst_reg = &regs[dst];
5526 
5527 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
5528 	    smin_val > smax_val || umin_val > umax_val) {
5529 		/* Taint dst register if offset had invalid bounds derived from
5530 		 * e.g. dead branches.
5531 		 */
5532 		__mark_reg_unknown(env, dst_reg);
5533 		return 0;
5534 	}
5535 
5536 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
5537 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
5538 		if (opcode == BPF_SUB && env->allow_ptr_leaks) {
5539 			__mark_reg_unknown(env, dst_reg);
5540 			return 0;
5541 		}
5542 
5543 		verbose(env,
5544 			"R%d 32-bit pointer arithmetic prohibited\n",
5545 			dst);
5546 		return -EACCES;
5547 	}
5548 
5549 	switch (ptr_reg->type) {
5550 	case PTR_TO_MAP_VALUE_OR_NULL:
5551 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
5552 			dst, reg_type_str[ptr_reg->type]);
5553 		return -EACCES;
5554 	case CONST_PTR_TO_MAP:
5555 		/* smin_val represents the known value */
5556 		if (known && smin_val == 0 && opcode == BPF_ADD)
5557 			break;
5558 		fallthrough;
5559 	case PTR_TO_PACKET_END:
5560 	case PTR_TO_SOCKET:
5561 	case PTR_TO_SOCKET_OR_NULL:
5562 	case PTR_TO_SOCK_COMMON:
5563 	case PTR_TO_SOCK_COMMON_OR_NULL:
5564 	case PTR_TO_TCP_SOCK:
5565 	case PTR_TO_TCP_SOCK_OR_NULL:
5566 	case PTR_TO_XDP_SOCK:
5567 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
5568 			dst, reg_type_str[ptr_reg->type]);
5569 		return -EACCES;
5570 	case PTR_TO_MAP_VALUE:
5571 		if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) {
5572 			verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n",
5573 				off_reg == dst_reg ? dst : src);
5574 			return -EACCES;
5575 		}
5576 		fallthrough;
5577 	default:
5578 		break;
5579 	}
5580 
5581 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
5582 	 * The id may be overwritten later if we create a new variable offset.
5583 	 */
5584 	dst_reg->type = ptr_reg->type;
5585 	dst_reg->id = ptr_reg->id;
5586 
5587 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
5588 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
5589 		return -EINVAL;
5590 
5591 	/* pointer types do not carry 32-bit bounds at the moment. */
5592 	__mark_reg32_unbounded(dst_reg);
5593 
5594 	switch (opcode) {
5595 	case BPF_ADD:
5596 		ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
5597 		if (ret < 0) {
5598 			verbose(env, "R%d tried to add from different maps or paths\n", dst);
5599 			return ret;
5600 		}
5601 		/* We can take a fixed offset as long as it doesn't overflow
5602 		 * the s32 'off' field
5603 		 */
5604 		if (known && (ptr_reg->off + smin_val ==
5605 			      (s64)(s32)(ptr_reg->off + smin_val))) {
5606 			/* pointer += K.  Accumulate it into fixed offset */
5607 			dst_reg->smin_value = smin_ptr;
5608 			dst_reg->smax_value = smax_ptr;
5609 			dst_reg->umin_value = umin_ptr;
5610 			dst_reg->umax_value = umax_ptr;
5611 			dst_reg->var_off = ptr_reg->var_off;
5612 			dst_reg->off = ptr_reg->off + smin_val;
5613 			dst_reg->raw = ptr_reg->raw;
5614 			break;
5615 		}
5616 		/* A new variable offset is created.  Note that off_reg->off
5617 		 * == 0, since it's a scalar.
5618 		 * dst_reg gets the pointer type and since some positive
5619 		 * integer value was added to the pointer, give it a new 'id'
5620 		 * if it's a PTR_TO_PACKET.
5621 		 * this creates a new 'base' pointer, off_reg (variable) gets
5622 		 * added into the variable offset, and we copy the fixed offset
5623 		 * from ptr_reg.
5624 		 */
5625 		if (signed_add_overflows(smin_ptr, smin_val) ||
5626 		    signed_add_overflows(smax_ptr, smax_val)) {
5627 			dst_reg->smin_value = S64_MIN;
5628 			dst_reg->smax_value = S64_MAX;
5629 		} else {
5630 			dst_reg->smin_value = smin_ptr + smin_val;
5631 			dst_reg->smax_value = smax_ptr + smax_val;
5632 		}
5633 		if (umin_ptr + umin_val < umin_ptr ||
5634 		    umax_ptr + umax_val < umax_ptr) {
5635 			dst_reg->umin_value = 0;
5636 			dst_reg->umax_value = U64_MAX;
5637 		} else {
5638 			dst_reg->umin_value = umin_ptr + umin_val;
5639 			dst_reg->umax_value = umax_ptr + umax_val;
5640 		}
5641 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
5642 		dst_reg->off = ptr_reg->off;
5643 		dst_reg->raw = ptr_reg->raw;
5644 		if (reg_is_pkt_pointer(ptr_reg)) {
5645 			dst_reg->id = ++env->id_gen;
5646 			/* something was added to pkt_ptr, set range to zero */
5647 			memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
5648 		}
5649 		break;
5650 	case BPF_SUB:
5651 		ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
5652 		if (ret < 0) {
5653 			verbose(env, "R%d tried to sub from different maps or paths\n", dst);
5654 			return ret;
5655 		}
5656 		if (dst_reg == off_reg) {
5657 			/* scalar -= pointer.  Creates an unknown scalar */
5658 			verbose(env, "R%d tried to subtract pointer from scalar\n",
5659 				dst);
5660 			return -EACCES;
5661 		}
5662 		/* We don't allow subtraction from FP, because (according to
5663 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
5664 		 * be able to deal with it.
5665 		 */
5666 		if (ptr_reg->type == PTR_TO_STACK) {
5667 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
5668 				dst);
5669 			return -EACCES;
5670 		}
5671 		if (known && (ptr_reg->off - smin_val ==
5672 			      (s64)(s32)(ptr_reg->off - smin_val))) {
5673 			/* pointer -= K.  Subtract it from fixed offset */
5674 			dst_reg->smin_value = smin_ptr;
5675 			dst_reg->smax_value = smax_ptr;
5676 			dst_reg->umin_value = umin_ptr;
5677 			dst_reg->umax_value = umax_ptr;
5678 			dst_reg->var_off = ptr_reg->var_off;
5679 			dst_reg->id = ptr_reg->id;
5680 			dst_reg->off = ptr_reg->off - smin_val;
5681 			dst_reg->raw = ptr_reg->raw;
5682 			break;
5683 		}
5684 		/* A new variable offset is created.  If the subtrahend is known
5685 		 * nonnegative, then any reg->range we had before is still good.
5686 		 */
5687 		if (signed_sub_overflows(smin_ptr, smax_val) ||
5688 		    signed_sub_overflows(smax_ptr, smin_val)) {
5689 			/* Overflow possible, we know nothing */
5690 			dst_reg->smin_value = S64_MIN;
5691 			dst_reg->smax_value = S64_MAX;
5692 		} else {
5693 			dst_reg->smin_value = smin_ptr - smax_val;
5694 			dst_reg->smax_value = smax_ptr - smin_val;
5695 		}
5696 		if (umin_ptr < umax_val) {
5697 			/* Overflow possible, we know nothing */
5698 			dst_reg->umin_value = 0;
5699 			dst_reg->umax_value = U64_MAX;
5700 		} else {
5701 			/* Cannot overflow (as long as bounds are consistent) */
5702 			dst_reg->umin_value = umin_ptr - umax_val;
5703 			dst_reg->umax_value = umax_ptr - umin_val;
5704 		}
5705 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
5706 		dst_reg->off = ptr_reg->off;
5707 		dst_reg->raw = ptr_reg->raw;
5708 		if (reg_is_pkt_pointer(ptr_reg)) {
5709 			dst_reg->id = ++env->id_gen;
5710 			/* something was added to pkt_ptr, set range to zero */
5711 			if (smin_val < 0)
5712 				memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
5713 		}
5714 		break;
5715 	case BPF_AND:
5716 	case BPF_OR:
5717 	case BPF_XOR:
5718 		/* bitwise ops on pointers are troublesome, prohibit. */
5719 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
5720 			dst, bpf_alu_string[opcode >> 4]);
5721 		return -EACCES;
5722 	default:
5723 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
5724 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
5725 			dst, bpf_alu_string[opcode >> 4]);
5726 		return -EACCES;
5727 	}
5728 
5729 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
5730 		return -EINVAL;
5731 
5732 	__update_reg_bounds(dst_reg);
5733 	__reg_deduce_bounds(dst_reg);
5734 	__reg_bound_offset(dst_reg);
5735 
5736 	/* For unprivileged we require that resulting offset must be in bounds
5737 	 * in order to be able to sanitize access later on.
5738 	 */
5739 	if (!env->bypass_spec_v1) {
5740 		if (dst_reg->type == PTR_TO_MAP_VALUE &&
5741 		    check_map_access(env, dst, dst_reg->off, 1, false)) {
5742 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
5743 				"prohibited for !root\n", dst);
5744 			return -EACCES;
5745 		} else if (dst_reg->type == PTR_TO_STACK &&
5746 			   check_stack_access(env, dst_reg, dst_reg->off +
5747 					      dst_reg->var_off.value, 1)) {
5748 			verbose(env, "R%d stack pointer arithmetic goes out of range, "
5749 				"prohibited for !root\n", dst);
5750 			return -EACCES;
5751 		}
5752 	}
5753 
5754 	return 0;
5755 }
5756 
5757 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
5758 				 struct bpf_reg_state *src_reg)
5759 {
5760 	s32 smin_val = src_reg->s32_min_value;
5761 	s32 smax_val = src_reg->s32_max_value;
5762 	u32 umin_val = src_reg->u32_min_value;
5763 	u32 umax_val = src_reg->u32_max_value;
5764 
5765 	if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
5766 	    signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
5767 		dst_reg->s32_min_value = S32_MIN;
5768 		dst_reg->s32_max_value = S32_MAX;
5769 	} else {
5770 		dst_reg->s32_min_value += smin_val;
5771 		dst_reg->s32_max_value += smax_val;
5772 	}
5773 	if (dst_reg->u32_min_value + umin_val < umin_val ||
5774 	    dst_reg->u32_max_value + umax_val < umax_val) {
5775 		dst_reg->u32_min_value = 0;
5776 		dst_reg->u32_max_value = U32_MAX;
5777 	} else {
5778 		dst_reg->u32_min_value += umin_val;
5779 		dst_reg->u32_max_value += umax_val;
5780 	}
5781 }
5782 
5783 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
5784 			       struct bpf_reg_state *src_reg)
5785 {
5786 	s64 smin_val = src_reg->smin_value;
5787 	s64 smax_val = src_reg->smax_value;
5788 	u64 umin_val = src_reg->umin_value;
5789 	u64 umax_val = src_reg->umax_value;
5790 
5791 	if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
5792 	    signed_add_overflows(dst_reg->smax_value, smax_val)) {
5793 		dst_reg->smin_value = S64_MIN;
5794 		dst_reg->smax_value = S64_MAX;
5795 	} else {
5796 		dst_reg->smin_value += smin_val;
5797 		dst_reg->smax_value += smax_val;
5798 	}
5799 	if (dst_reg->umin_value + umin_val < umin_val ||
5800 	    dst_reg->umax_value + umax_val < umax_val) {
5801 		dst_reg->umin_value = 0;
5802 		dst_reg->umax_value = U64_MAX;
5803 	} else {
5804 		dst_reg->umin_value += umin_val;
5805 		dst_reg->umax_value += umax_val;
5806 	}
5807 }
5808 
5809 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
5810 				 struct bpf_reg_state *src_reg)
5811 {
5812 	s32 smin_val = src_reg->s32_min_value;
5813 	s32 smax_val = src_reg->s32_max_value;
5814 	u32 umin_val = src_reg->u32_min_value;
5815 	u32 umax_val = src_reg->u32_max_value;
5816 
5817 	if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
5818 	    signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
5819 		/* Overflow possible, we know nothing */
5820 		dst_reg->s32_min_value = S32_MIN;
5821 		dst_reg->s32_max_value = S32_MAX;
5822 	} else {
5823 		dst_reg->s32_min_value -= smax_val;
5824 		dst_reg->s32_max_value -= smin_val;
5825 	}
5826 	if (dst_reg->u32_min_value < umax_val) {
5827 		/* Overflow possible, we know nothing */
5828 		dst_reg->u32_min_value = 0;
5829 		dst_reg->u32_max_value = U32_MAX;
5830 	} else {
5831 		/* Cannot overflow (as long as bounds are consistent) */
5832 		dst_reg->u32_min_value -= umax_val;
5833 		dst_reg->u32_max_value -= umin_val;
5834 	}
5835 }
5836 
5837 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
5838 			       struct bpf_reg_state *src_reg)
5839 {
5840 	s64 smin_val = src_reg->smin_value;
5841 	s64 smax_val = src_reg->smax_value;
5842 	u64 umin_val = src_reg->umin_value;
5843 	u64 umax_val = src_reg->umax_value;
5844 
5845 	if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
5846 	    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
5847 		/* Overflow possible, we know nothing */
5848 		dst_reg->smin_value = S64_MIN;
5849 		dst_reg->smax_value = S64_MAX;
5850 	} else {
5851 		dst_reg->smin_value -= smax_val;
5852 		dst_reg->smax_value -= smin_val;
5853 	}
5854 	if (dst_reg->umin_value < umax_val) {
5855 		/* Overflow possible, we know nothing */
5856 		dst_reg->umin_value = 0;
5857 		dst_reg->umax_value = U64_MAX;
5858 	} else {
5859 		/* Cannot overflow (as long as bounds are consistent) */
5860 		dst_reg->umin_value -= umax_val;
5861 		dst_reg->umax_value -= umin_val;
5862 	}
5863 }
5864 
5865 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
5866 				 struct bpf_reg_state *src_reg)
5867 {
5868 	s32 smin_val = src_reg->s32_min_value;
5869 	u32 umin_val = src_reg->u32_min_value;
5870 	u32 umax_val = src_reg->u32_max_value;
5871 
5872 	if (smin_val < 0 || dst_reg->s32_min_value < 0) {
5873 		/* Ain't nobody got time to multiply that sign */
5874 		__mark_reg32_unbounded(dst_reg);
5875 		return;
5876 	}
5877 	/* Both values are positive, so we can work with unsigned and
5878 	 * copy the result to signed (unless it exceeds S32_MAX).
5879 	 */
5880 	if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
5881 		/* Potential overflow, we know nothing */
5882 		__mark_reg32_unbounded(dst_reg);
5883 		return;
5884 	}
5885 	dst_reg->u32_min_value *= umin_val;
5886 	dst_reg->u32_max_value *= umax_val;
5887 	if (dst_reg->u32_max_value > S32_MAX) {
5888 		/* Overflow possible, we know nothing */
5889 		dst_reg->s32_min_value = S32_MIN;
5890 		dst_reg->s32_max_value = S32_MAX;
5891 	} else {
5892 		dst_reg->s32_min_value = dst_reg->u32_min_value;
5893 		dst_reg->s32_max_value = dst_reg->u32_max_value;
5894 	}
5895 }
5896 
5897 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
5898 			       struct bpf_reg_state *src_reg)
5899 {
5900 	s64 smin_val = src_reg->smin_value;
5901 	u64 umin_val = src_reg->umin_value;
5902 	u64 umax_val = src_reg->umax_value;
5903 
5904 	if (smin_val < 0 || dst_reg->smin_value < 0) {
5905 		/* Ain't nobody got time to multiply that sign */
5906 		__mark_reg64_unbounded(dst_reg);
5907 		return;
5908 	}
5909 	/* Both values are positive, so we can work with unsigned and
5910 	 * copy the result to signed (unless it exceeds S64_MAX).
5911 	 */
5912 	if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
5913 		/* Potential overflow, we know nothing */
5914 		__mark_reg64_unbounded(dst_reg);
5915 		return;
5916 	}
5917 	dst_reg->umin_value *= umin_val;
5918 	dst_reg->umax_value *= umax_val;
5919 	if (dst_reg->umax_value > S64_MAX) {
5920 		/* Overflow possible, we know nothing */
5921 		dst_reg->smin_value = S64_MIN;
5922 		dst_reg->smax_value = S64_MAX;
5923 	} else {
5924 		dst_reg->smin_value = dst_reg->umin_value;
5925 		dst_reg->smax_value = dst_reg->umax_value;
5926 	}
5927 }
5928 
5929 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
5930 				 struct bpf_reg_state *src_reg)
5931 {
5932 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
5933 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
5934 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
5935 	s32 smin_val = src_reg->s32_min_value;
5936 	u32 umax_val = src_reg->u32_max_value;
5937 
5938 	/* Assuming scalar64_min_max_and will be called so its safe
5939 	 * to skip updating register for known 32-bit case.
5940 	 */
5941 	if (src_known && dst_known)
5942 		return;
5943 
5944 	/* We get our minimum from the var_off, since that's inherently
5945 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
5946 	 */
5947 	dst_reg->u32_min_value = var32_off.value;
5948 	dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
5949 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
5950 		/* Lose signed bounds when ANDing negative numbers,
5951 		 * ain't nobody got time for that.
5952 		 */
5953 		dst_reg->s32_min_value = S32_MIN;
5954 		dst_reg->s32_max_value = S32_MAX;
5955 	} else {
5956 		/* ANDing two positives gives a positive, so safe to
5957 		 * cast result into s64.
5958 		 */
5959 		dst_reg->s32_min_value = dst_reg->u32_min_value;
5960 		dst_reg->s32_max_value = dst_reg->u32_max_value;
5961 	}
5962 
5963 }
5964 
5965 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
5966 			       struct bpf_reg_state *src_reg)
5967 {
5968 	bool src_known = tnum_is_const(src_reg->var_off);
5969 	bool dst_known = tnum_is_const(dst_reg->var_off);
5970 	s64 smin_val = src_reg->smin_value;
5971 	u64 umax_val = src_reg->umax_value;
5972 
5973 	if (src_known && dst_known) {
5974 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
5975 		return;
5976 	}
5977 
5978 	/* We get our minimum from the var_off, since that's inherently
5979 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
5980 	 */
5981 	dst_reg->umin_value = dst_reg->var_off.value;
5982 	dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
5983 	if (dst_reg->smin_value < 0 || smin_val < 0) {
5984 		/* Lose signed bounds when ANDing negative numbers,
5985 		 * ain't nobody got time for that.
5986 		 */
5987 		dst_reg->smin_value = S64_MIN;
5988 		dst_reg->smax_value = S64_MAX;
5989 	} else {
5990 		/* ANDing two positives gives a positive, so safe to
5991 		 * cast result into s64.
5992 		 */
5993 		dst_reg->smin_value = dst_reg->umin_value;
5994 		dst_reg->smax_value = dst_reg->umax_value;
5995 	}
5996 	/* We may learn something more from the var_off */
5997 	__update_reg_bounds(dst_reg);
5998 }
5999 
6000 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
6001 				struct bpf_reg_state *src_reg)
6002 {
6003 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
6004 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
6005 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
6006 	s32 smin_val = src_reg->s32_min_value;
6007 	u32 umin_val = src_reg->u32_min_value;
6008 
6009 	/* Assuming scalar64_min_max_or will be called so it is safe
6010 	 * to skip updating register for known case.
6011 	 */
6012 	if (src_known && dst_known)
6013 		return;
6014 
6015 	/* We get our maximum from the var_off, and our minimum is the
6016 	 * maximum of the operands' minima
6017 	 */
6018 	dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
6019 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
6020 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
6021 		/* Lose signed bounds when ORing negative numbers,
6022 		 * ain't nobody got time for that.
6023 		 */
6024 		dst_reg->s32_min_value = S32_MIN;
6025 		dst_reg->s32_max_value = S32_MAX;
6026 	} else {
6027 		/* ORing two positives gives a positive, so safe to
6028 		 * cast result into s64.
6029 		 */
6030 		dst_reg->s32_min_value = dst_reg->u32_min_value;
6031 		dst_reg->s32_max_value = dst_reg->u32_max_value;
6032 	}
6033 }
6034 
6035 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
6036 			      struct bpf_reg_state *src_reg)
6037 {
6038 	bool src_known = tnum_is_const(src_reg->var_off);
6039 	bool dst_known = tnum_is_const(dst_reg->var_off);
6040 	s64 smin_val = src_reg->smin_value;
6041 	u64 umin_val = src_reg->umin_value;
6042 
6043 	if (src_known && dst_known) {
6044 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
6045 		return;
6046 	}
6047 
6048 	/* We get our maximum from the var_off, and our minimum is the
6049 	 * maximum of the operands' minima
6050 	 */
6051 	dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
6052 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
6053 	if (dst_reg->smin_value < 0 || smin_val < 0) {
6054 		/* Lose signed bounds when ORing negative numbers,
6055 		 * ain't nobody got time for that.
6056 		 */
6057 		dst_reg->smin_value = S64_MIN;
6058 		dst_reg->smax_value = S64_MAX;
6059 	} else {
6060 		/* ORing two positives gives a positive, so safe to
6061 		 * cast result into s64.
6062 		 */
6063 		dst_reg->smin_value = dst_reg->umin_value;
6064 		dst_reg->smax_value = dst_reg->umax_value;
6065 	}
6066 	/* We may learn something more from the var_off */
6067 	__update_reg_bounds(dst_reg);
6068 }
6069 
6070 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
6071 				 struct bpf_reg_state *src_reg)
6072 {
6073 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
6074 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
6075 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
6076 	s32 smin_val = src_reg->s32_min_value;
6077 
6078 	/* Assuming scalar64_min_max_xor will be called so it is safe
6079 	 * to skip updating register for known case.
6080 	 */
6081 	if (src_known && dst_known)
6082 		return;
6083 
6084 	/* We get both minimum and maximum from the var32_off. */
6085 	dst_reg->u32_min_value = var32_off.value;
6086 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
6087 
6088 	if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
6089 		/* XORing two positive sign numbers gives a positive,
6090 		 * so safe to cast u32 result into s32.
6091 		 */
6092 		dst_reg->s32_min_value = dst_reg->u32_min_value;
6093 		dst_reg->s32_max_value = dst_reg->u32_max_value;
6094 	} else {
6095 		dst_reg->s32_min_value = S32_MIN;
6096 		dst_reg->s32_max_value = S32_MAX;
6097 	}
6098 }
6099 
6100 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
6101 			       struct bpf_reg_state *src_reg)
6102 {
6103 	bool src_known = tnum_is_const(src_reg->var_off);
6104 	bool dst_known = tnum_is_const(dst_reg->var_off);
6105 	s64 smin_val = src_reg->smin_value;
6106 
6107 	if (src_known && dst_known) {
6108 		/* dst_reg->var_off.value has been updated earlier */
6109 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
6110 		return;
6111 	}
6112 
6113 	/* We get both minimum and maximum from the var_off. */
6114 	dst_reg->umin_value = dst_reg->var_off.value;
6115 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
6116 
6117 	if (dst_reg->smin_value >= 0 && smin_val >= 0) {
6118 		/* XORing two positive sign numbers gives a positive,
6119 		 * so safe to cast u64 result into s64.
6120 		 */
6121 		dst_reg->smin_value = dst_reg->umin_value;
6122 		dst_reg->smax_value = dst_reg->umax_value;
6123 	} else {
6124 		dst_reg->smin_value = S64_MIN;
6125 		dst_reg->smax_value = S64_MAX;
6126 	}
6127 
6128 	__update_reg_bounds(dst_reg);
6129 }
6130 
6131 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
6132 				   u64 umin_val, u64 umax_val)
6133 {
6134 	/* We lose all sign bit information (except what we can pick
6135 	 * up from var_off)
6136 	 */
6137 	dst_reg->s32_min_value = S32_MIN;
6138 	dst_reg->s32_max_value = S32_MAX;
6139 	/* If we might shift our top bit out, then we know nothing */
6140 	if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
6141 		dst_reg->u32_min_value = 0;
6142 		dst_reg->u32_max_value = U32_MAX;
6143 	} else {
6144 		dst_reg->u32_min_value <<= umin_val;
6145 		dst_reg->u32_max_value <<= umax_val;
6146 	}
6147 }
6148 
6149 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
6150 				 struct bpf_reg_state *src_reg)
6151 {
6152 	u32 umax_val = src_reg->u32_max_value;
6153 	u32 umin_val = src_reg->u32_min_value;
6154 	/* u32 alu operation will zext upper bits */
6155 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
6156 
6157 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
6158 	dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
6159 	/* Not required but being careful mark reg64 bounds as unknown so
6160 	 * that we are forced to pick them up from tnum and zext later and
6161 	 * if some path skips this step we are still safe.
6162 	 */
6163 	__mark_reg64_unbounded(dst_reg);
6164 	__update_reg32_bounds(dst_reg);
6165 }
6166 
6167 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
6168 				   u64 umin_val, u64 umax_val)
6169 {
6170 	/* Special case <<32 because it is a common compiler pattern to sign
6171 	 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
6172 	 * positive we know this shift will also be positive so we can track
6173 	 * bounds correctly. Otherwise we lose all sign bit information except
6174 	 * what we can pick up from var_off. Perhaps we can generalize this
6175 	 * later to shifts of any length.
6176 	 */
6177 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
6178 		dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
6179 	else
6180 		dst_reg->smax_value = S64_MAX;
6181 
6182 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
6183 		dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
6184 	else
6185 		dst_reg->smin_value = S64_MIN;
6186 
6187 	/* If we might shift our top bit out, then we know nothing */
6188 	if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
6189 		dst_reg->umin_value = 0;
6190 		dst_reg->umax_value = U64_MAX;
6191 	} else {
6192 		dst_reg->umin_value <<= umin_val;
6193 		dst_reg->umax_value <<= umax_val;
6194 	}
6195 }
6196 
6197 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
6198 			       struct bpf_reg_state *src_reg)
6199 {
6200 	u64 umax_val = src_reg->umax_value;
6201 	u64 umin_val = src_reg->umin_value;
6202 
6203 	/* scalar64 calc uses 32bit unshifted bounds so must be called first */
6204 	__scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
6205 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
6206 
6207 	dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
6208 	/* We may learn something more from the var_off */
6209 	__update_reg_bounds(dst_reg);
6210 }
6211 
6212 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
6213 				 struct bpf_reg_state *src_reg)
6214 {
6215 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
6216 	u32 umax_val = src_reg->u32_max_value;
6217 	u32 umin_val = src_reg->u32_min_value;
6218 
6219 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
6220 	 * be negative, then either:
6221 	 * 1) src_reg might be zero, so the sign bit of the result is
6222 	 *    unknown, so we lose our signed bounds
6223 	 * 2) it's known negative, thus the unsigned bounds capture the
6224 	 *    signed bounds
6225 	 * 3) the signed bounds cross zero, so they tell us nothing
6226 	 *    about the result
6227 	 * If the value in dst_reg is known nonnegative, then again the
6228 	 * unsigned bounts capture the signed bounds.
6229 	 * Thus, in all cases it suffices to blow away our signed bounds
6230 	 * and rely on inferring new ones from the unsigned bounds and
6231 	 * var_off of the result.
6232 	 */
6233 	dst_reg->s32_min_value = S32_MIN;
6234 	dst_reg->s32_max_value = S32_MAX;
6235 
6236 	dst_reg->var_off = tnum_rshift(subreg, umin_val);
6237 	dst_reg->u32_min_value >>= umax_val;
6238 	dst_reg->u32_max_value >>= umin_val;
6239 
6240 	__mark_reg64_unbounded(dst_reg);
6241 	__update_reg32_bounds(dst_reg);
6242 }
6243 
6244 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
6245 			       struct bpf_reg_state *src_reg)
6246 {
6247 	u64 umax_val = src_reg->umax_value;
6248 	u64 umin_val = src_reg->umin_value;
6249 
6250 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
6251 	 * be negative, then either:
6252 	 * 1) src_reg might be zero, so the sign bit of the result is
6253 	 *    unknown, so we lose our signed bounds
6254 	 * 2) it's known negative, thus the unsigned bounds capture the
6255 	 *    signed bounds
6256 	 * 3) the signed bounds cross zero, so they tell us nothing
6257 	 *    about the result
6258 	 * If the value in dst_reg is known nonnegative, then again the
6259 	 * unsigned bounts capture the signed bounds.
6260 	 * Thus, in all cases it suffices to blow away our signed bounds
6261 	 * and rely on inferring new ones from the unsigned bounds and
6262 	 * var_off of the result.
6263 	 */
6264 	dst_reg->smin_value = S64_MIN;
6265 	dst_reg->smax_value = S64_MAX;
6266 	dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
6267 	dst_reg->umin_value >>= umax_val;
6268 	dst_reg->umax_value >>= umin_val;
6269 
6270 	/* Its not easy to operate on alu32 bounds here because it depends
6271 	 * on bits being shifted in. Take easy way out and mark unbounded
6272 	 * so we can recalculate later from tnum.
6273 	 */
6274 	__mark_reg32_unbounded(dst_reg);
6275 	__update_reg_bounds(dst_reg);
6276 }
6277 
6278 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
6279 				  struct bpf_reg_state *src_reg)
6280 {
6281 	u64 umin_val = src_reg->u32_min_value;
6282 
6283 	/* Upon reaching here, src_known is true and
6284 	 * umax_val is equal to umin_val.
6285 	 */
6286 	dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
6287 	dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
6288 
6289 	dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
6290 
6291 	/* blow away the dst_reg umin_value/umax_value and rely on
6292 	 * dst_reg var_off to refine the result.
6293 	 */
6294 	dst_reg->u32_min_value = 0;
6295 	dst_reg->u32_max_value = U32_MAX;
6296 
6297 	__mark_reg64_unbounded(dst_reg);
6298 	__update_reg32_bounds(dst_reg);
6299 }
6300 
6301 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
6302 				struct bpf_reg_state *src_reg)
6303 {
6304 	u64 umin_val = src_reg->umin_value;
6305 
6306 	/* Upon reaching here, src_known is true and umax_val is equal
6307 	 * to umin_val.
6308 	 */
6309 	dst_reg->smin_value >>= umin_val;
6310 	dst_reg->smax_value >>= umin_val;
6311 
6312 	dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
6313 
6314 	/* blow away the dst_reg umin_value/umax_value and rely on
6315 	 * dst_reg var_off to refine the result.
6316 	 */
6317 	dst_reg->umin_value = 0;
6318 	dst_reg->umax_value = U64_MAX;
6319 
6320 	/* Its not easy to operate on alu32 bounds here because it depends
6321 	 * on bits being shifted in from upper 32-bits. Take easy way out
6322 	 * and mark unbounded so we can recalculate later from tnum.
6323 	 */
6324 	__mark_reg32_unbounded(dst_reg);
6325 	__update_reg_bounds(dst_reg);
6326 }
6327 
6328 /* WARNING: This function does calculations on 64-bit values, but the actual
6329  * execution may occur on 32-bit values. Therefore, things like bitshifts
6330  * need extra checks in the 32-bit case.
6331  */
6332 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
6333 				      struct bpf_insn *insn,
6334 				      struct bpf_reg_state *dst_reg,
6335 				      struct bpf_reg_state src_reg)
6336 {
6337 	struct bpf_reg_state *regs = cur_regs(env);
6338 	u8 opcode = BPF_OP(insn->code);
6339 	bool src_known;
6340 	s64 smin_val, smax_val;
6341 	u64 umin_val, umax_val;
6342 	s32 s32_min_val, s32_max_val;
6343 	u32 u32_min_val, u32_max_val;
6344 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
6345 	u32 dst = insn->dst_reg;
6346 	int ret;
6347 	bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
6348 
6349 	smin_val = src_reg.smin_value;
6350 	smax_val = src_reg.smax_value;
6351 	umin_val = src_reg.umin_value;
6352 	umax_val = src_reg.umax_value;
6353 
6354 	s32_min_val = src_reg.s32_min_value;
6355 	s32_max_val = src_reg.s32_max_value;
6356 	u32_min_val = src_reg.u32_min_value;
6357 	u32_max_val = src_reg.u32_max_value;
6358 
6359 	if (alu32) {
6360 		src_known = tnum_subreg_is_const(src_reg.var_off);
6361 		if ((src_known &&
6362 		     (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
6363 		    s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
6364 			/* Taint dst register if offset had invalid bounds
6365 			 * derived from e.g. dead branches.
6366 			 */
6367 			__mark_reg_unknown(env, dst_reg);
6368 			return 0;
6369 		}
6370 	} else {
6371 		src_known = tnum_is_const(src_reg.var_off);
6372 		if ((src_known &&
6373 		     (smin_val != smax_val || umin_val != umax_val)) ||
6374 		    smin_val > smax_val || umin_val > umax_val) {
6375 			/* Taint dst register if offset had invalid bounds
6376 			 * derived from e.g. dead branches.
6377 			 */
6378 			__mark_reg_unknown(env, dst_reg);
6379 			return 0;
6380 		}
6381 	}
6382 
6383 	if (!src_known &&
6384 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
6385 		__mark_reg_unknown(env, dst_reg);
6386 		return 0;
6387 	}
6388 
6389 	/* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
6390 	 * There are two classes of instructions: The first class we track both
6391 	 * alu32 and alu64 sign/unsigned bounds independently this provides the
6392 	 * greatest amount of precision when alu operations are mixed with jmp32
6393 	 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
6394 	 * and BPF_OR. This is possible because these ops have fairly easy to
6395 	 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
6396 	 * See alu32 verifier tests for examples. The second class of
6397 	 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
6398 	 * with regards to tracking sign/unsigned bounds because the bits may
6399 	 * cross subreg boundaries in the alu64 case. When this happens we mark
6400 	 * the reg unbounded in the subreg bound space and use the resulting
6401 	 * tnum to calculate an approximation of the sign/unsigned bounds.
6402 	 */
6403 	switch (opcode) {
6404 	case BPF_ADD:
6405 		ret = sanitize_val_alu(env, insn);
6406 		if (ret < 0) {
6407 			verbose(env, "R%d tried to add from different pointers or scalars\n", dst);
6408 			return ret;
6409 		}
6410 		scalar32_min_max_add(dst_reg, &src_reg);
6411 		scalar_min_max_add(dst_reg, &src_reg);
6412 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
6413 		break;
6414 	case BPF_SUB:
6415 		ret = sanitize_val_alu(env, insn);
6416 		if (ret < 0) {
6417 			verbose(env, "R%d tried to sub from different pointers or scalars\n", dst);
6418 			return ret;
6419 		}
6420 		scalar32_min_max_sub(dst_reg, &src_reg);
6421 		scalar_min_max_sub(dst_reg, &src_reg);
6422 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
6423 		break;
6424 	case BPF_MUL:
6425 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
6426 		scalar32_min_max_mul(dst_reg, &src_reg);
6427 		scalar_min_max_mul(dst_reg, &src_reg);
6428 		break;
6429 	case BPF_AND:
6430 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
6431 		scalar32_min_max_and(dst_reg, &src_reg);
6432 		scalar_min_max_and(dst_reg, &src_reg);
6433 		break;
6434 	case BPF_OR:
6435 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
6436 		scalar32_min_max_or(dst_reg, &src_reg);
6437 		scalar_min_max_or(dst_reg, &src_reg);
6438 		break;
6439 	case BPF_XOR:
6440 		dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
6441 		scalar32_min_max_xor(dst_reg, &src_reg);
6442 		scalar_min_max_xor(dst_reg, &src_reg);
6443 		break;
6444 	case BPF_LSH:
6445 		if (umax_val >= insn_bitness) {
6446 			/* Shifts greater than 31 or 63 are undefined.
6447 			 * This includes shifts by a negative number.
6448 			 */
6449 			mark_reg_unknown(env, regs, insn->dst_reg);
6450 			break;
6451 		}
6452 		if (alu32)
6453 			scalar32_min_max_lsh(dst_reg, &src_reg);
6454 		else
6455 			scalar_min_max_lsh(dst_reg, &src_reg);
6456 		break;
6457 	case BPF_RSH:
6458 		if (umax_val >= insn_bitness) {
6459 			/* Shifts greater than 31 or 63 are undefined.
6460 			 * This includes shifts by a negative number.
6461 			 */
6462 			mark_reg_unknown(env, regs, insn->dst_reg);
6463 			break;
6464 		}
6465 		if (alu32)
6466 			scalar32_min_max_rsh(dst_reg, &src_reg);
6467 		else
6468 			scalar_min_max_rsh(dst_reg, &src_reg);
6469 		break;
6470 	case BPF_ARSH:
6471 		if (umax_val >= insn_bitness) {
6472 			/* Shifts greater than 31 or 63 are undefined.
6473 			 * This includes shifts by a negative number.
6474 			 */
6475 			mark_reg_unknown(env, regs, insn->dst_reg);
6476 			break;
6477 		}
6478 		if (alu32)
6479 			scalar32_min_max_arsh(dst_reg, &src_reg);
6480 		else
6481 			scalar_min_max_arsh(dst_reg, &src_reg);
6482 		break;
6483 	default:
6484 		mark_reg_unknown(env, regs, insn->dst_reg);
6485 		break;
6486 	}
6487 
6488 	/* ALU32 ops are zero extended into 64bit register */
6489 	if (alu32)
6490 		zext_32_to_64(dst_reg);
6491 
6492 	__update_reg_bounds(dst_reg);
6493 	__reg_deduce_bounds(dst_reg);
6494 	__reg_bound_offset(dst_reg);
6495 	return 0;
6496 }
6497 
6498 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
6499  * and var_off.
6500  */
6501 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
6502 				   struct bpf_insn *insn)
6503 {
6504 	struct bpf_verifier_state *vstate = env->cur_state;
6505 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
6506 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
6507 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
6508 	u8 opcode = BPF_OP(insn->code);
6509 	int err;
6510 
6511 	dst_reg = &regs[insn->dst_reg];
6512 	src_reg = NULL;
6513 	if (dst_reg->type != SCALAR_VALUE)
6514 		ptr_reg = dst_reg;
6515 	else
6516 		/* Make sure ID is cleared otherwise dst_reg min/max could be
6517 		 * incorrectly propagated into other registers by find_equal_scalars()
6518 		 */
6519 		dst_reg->id = 0;
6520 	if (BPF_SRC(insn->code) == BPF_X) {
6521 		src_reg = &regs[insn->src_reg];
6522 		if (src_reg->type != SCALAR_VALUE) {
6523 			if (dst_reg->type != SCALAR_VALUE) {
6524 				/* Combining two pointers by any ALU op yields
6525 				 * an arbitrary scalar. Disallow all math except
6526 				 * pointer subtraction
6527 				 */
6528 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
6529 					mark_reg_unknown(env, regs, insn->dst_reg);
6530 					return 0;
6531 				}
6532 				verbose(env, "R%d pointer %s pointer prohibited\n",
6533 					insn->dst_reg,
6534 					bpf_alu_string[opcode >> 4]);
6535 				return -EACCES;
6536 			} else {
6537 				/* scalar += pointer
6538 				 * This is legal, but we have to reverse our
6539 				 * src/dest handling in computing the range
6540 				 */
6541 				err = mark_chain_precision(env, insn->dst_reg);
6542 				if (err)
6543 					return err;
6544 				return adjust_ptr_min_max_vals(env, insn,
6545 							       src_reg, dst_reg);
6546 			}
6547 		} else if (ptr_reg) {
6548 			/* pointer += scalar */
6549 			err = mark_chain_precision(env, insn->src_reg);
6550 			if (err)
6551 				return err;
6552 			return adjust_ptr_min_max_vals(env, insn,
6553 						       dst_reg, src_reg);
6554 		}
6555 	} else {
6556 		/* Pretend the src is a reg with a known value, since we only
6557 		 * need to be able to read from this state.
6558 		 */
6559 		off_reg.type = SCALAR_VALUE;
6560 		__mark_reg_known(&off_reg, insn->imm);
6561 		src_reg = &off_reg;
6562 		if (ptr_reg) /* pointer += K */
6563 			return adjust_ptr_min_max_vals(env, insn,
6564 						       ptr_reg, src_reg);
6565 	}
6566 
6567 	/* Got here implies adding two SCALAR_VALUEs */
6568 	if (WARN_ON_ONCE(ptr_reg)) {
6569 		print_verifier_state(env, state);
6570 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
6571 		return -EINVAL;
6572 	}
6573 	if (WARN_ON(!src_reg)) {
6574 		print_verifier_state(env, state);
6575 		verbose(env, "verifier internal error: no src_reg\n");
6576 		return -EINVAL;
6577 	}
6578 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
6579 }
6580 
6581 /* check validity of 32-bit and 64-bit arithmetic operations */
6582 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
6583 {
6584 	struct bpf_reg_state *regs = cur_regs(env);
6585 	u8 opcode = BPF_OP(insn->code);
6586 	int err;
6587 
6588 	if (opcode == BPF_END || opcode == BPF_NEG) {
6589 		if (opcode == BPF_NEG) {
6590 			if (BPF_SRC(insn->code) != 0 ||
6591 			    insn->src_reg != BPF_REG_0 ||
6592 			    insn->off != 0 || insn->imm != 0) {
6593 				verbose(env, "BPF_NEG uses reserved fields\n");
6594 				return -EINVAL;
6595 			}
6596 		} else {
6597 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
6598 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
6599 			    BPF_CLASS(insn->code) == BPF_ALU64) {
6600 				verbose(env, "BPF_END uses reserved fields\n");
6601 				return -EINVAL;
6602 			}
6603 		}
6604 
6605 		/* check src operand */
6606 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
6607 		if (err)
6608 			return err;
6609 
6610 		if (is_pointer_value(env, insn->dst_reg)) {
6611 			verbose(env, "R%d pointer arithmetic prohibited\n",
6612 				insn->dst_reg);
6613 			return -EACCES;
6614 		}
6615 
6616 		/* check dest operand */
6617 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
6618 		if (err)
6619 			return err;
6620 
6621 	} else if (opcode == BPF_MOV) {
6622 
6623 		if (BPF_SRC(insn->code) == BPF_X) {
6624 			if (insn->imm != 0 || insn->off != 0) {
6625 				verbose(env, "BPF_MOV uses reserved fields\n");
6626 				return -EINVAL;
6627 			}
6628 
6629 			/* check src operand */
6630 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
6631 			if (err)
6632 				return err;
6633 		} else {
6634 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
6635 				verbose(env, "BPF_MOV uses reserved fields\n");
6636 				return -EINVAL;
6637 			}
6638 		}
6639 
6640 		/* check dest operand, mark as required later */
6641 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
6642 		if (err)
6643 			return err;
6644 
6645 		if (BPF_SRC(insn->code) == BPF_X) {
6646 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
6647 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
6648 
6649 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
6650 				/* case: R1 = R2
6651 				 * copy register state to dest reg
6652 				 */
6653 				if (src_reg->type == SCALAR_VALUE && !src_reg->id)
6654 					/* Assign src and dst registers the same ID
6655 					 * that will be used by find_equal_scalars()
6656 					 * to propagate min/max range.
6657 					 */
6658 					src_reg->id = ++env->id_gen;
6659 				*dst_reg = *src_reg;
6660 				dst_reg->live |= REG_LIVE_WRITTEN;
6661 				dst_reg->subreg_def = DEF_NOT_SUBREG;
6662 			} else {
6663 				/* R1 = (u32) R2 */
6664 				if (is_pointer_value(env, insn->src_reg)) {
6665 					verbose(env,
6666 						"R%d partial copy of pointer\n",
6667 						insn->src_reg);
6668 					return -EACCES;
6669 				} else if (src_reg->type == SCALAR_VALUE) {
6670 					*dst_reg = *src_reg;
6671 					/* Make sure ID is cleared otherwise
6672 					 * dst_reg min/max could be incorrectly
6673 					 * propagated into src_reg by find_equal_scalars()
6674 					 */
6675 					dst_reg->id = 0;
6676 					dst_reg->live |= REG_LIVE_WRITTEN;
6677 					dst_reg->subreg_def = env->insn_idx + 1;
6678 				} else {
6679 					mark_reg_unknown(env, regs,
6680 							 insn->dst_reg);
6681 				}
6682 				zext_32_to_64(dst_reg);
6683 			}
6684 		} else {
6685 			/* case: R = imm
6686 			 * remember the value we stored into this reg
6687 			 */
6688 			/* clear any state __mark_reg_known doesn't set */
6689 			mark_reg_unknown(env, regs, insn->dst_reg);
6690 			regs[insn->dst_reg].type = SCALAR_VALUE;
6691 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
6692 				__mark_reg_known(regs + insn->dst_reg,
6693 						 insn->imm);
6694 			} else {
6695 				__mark_reg_known(regs + insn->dst_reg,
6696 						 (u32)insn->imm);
6697 			}
6698 		}
6699 
6700 	} else if (opcode > BPF_END) {
6701 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
6702 		return -EINVAL;
6703 
6704 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
6705 
6706 		if (BPF_SRC(insn->code) == BPF_X) {
6707 			if (insn->imm != 0 || insn->off != 0) {
6708 				verbose(env, "BPF_ALU uses reserved fields\n");
6709 				return -EINVAL;
6710 			}
6711 			/* check src1 operand */
6712 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
6713 			if (err)
6714 				return err;
6715 		} else {
6716 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
6717 				verbose(env, "BPF_ALU uses reserved fields\n");
6718 				return -EINVAL;
6719 			}
6720 		}
6721 
6722 		/* check src2 operand */
6723 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
6724 		if (err)
6725 			return err;
6726 
6727 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
6728 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
6729 			verbose(env, "div by zero\n");
6730 			return -EINVAL;
6731 		}
6732 
6733 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
6734 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
6735 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
6736 
6737 			if (insn->imm < 0 || insn->imm >= size) {
6738 				verbose(env, "invalid shift %d\n", insn->imm);
6739 				return -EINVAL;
6740 			}
6741 		}
6742 
6743 		/* check dest operand */
6744 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
6745 		if (err)
6746 			return err;
6747 
6748 		return adjust_reg_min_max_vals(env, insn);
6749 	}
6750 
6751 	return 0;
6752 }
6753 
6754 static void __find_good_pkt_pointers(struct bpf_func_state *state,
6755 				     struct bpf_reg_state *dst_reg,
6756 				     enum bpf_reg_type type, int new_range)
6757 {
6758 	struct bpf_reg_state *reg;
6759 	int i;
6760 
6761 	for (i = 0; i < MAX_BPF_REG; i++) {
6762 		reg = &state->regs[i];
6763 		if (reg->type == type && reg->id == dst_reg->id)
6764 			/* keep the maximum range already checked */
6765 			reg->range = max(reg->range, new_range);
6766 	}
6767 
6768 	bpf_for_each_spilled_reg(i, state, reg) {
6769 		if (!reg)
6770 			continue;
6771 		if (reg->type == type && reg->id == dst_reg->id)
6772 			reg->range = max(reg->range, new_range);
6773 	}
6774 }
6775 
6776 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
6777 				   struct bpf_reg_state *dst_reg,
6778 				   enum bpf_reg_type type,
6779 				   bool range_right_open)
6780 {
6781 	int new_range, i;
6782 
6783 	if (dst_reg->off < 0 ||
6784 	    (dst_reg->off == 0 && range_right_open))
6785 		/* This doesn't give us any range */
6786 		return;
6787 
6788 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
6789 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
6790 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
6791 		 * than pkt_end, but that's because it's also less than pkt.
6792 		 */
6793 		return;
6794 
6795 	new_range = dst_reg->off;
6796 	if (range_right_open)
6797 		new_range--;
6798 
6799 	/* Examples for register markings:
6800 	 *
6801 	 * pkt_data in dst register:
6802 	 *
6803 	 *   r2 = r3;
6804 	 *   r2 += 8;
6805 	 *   if (r2 > pkt_end) goto <handle exception>
6806 	 *   <access okay>
6807 	 *
6808 	 *   r2 = r3;
6809 	 *   r2 += 8;
6810 	 *   if (r2 < pkt_end) goto <access okay>
6811 	 *   <handle exception>
6812 	 *
6813 	 *   Where:
6814 	 *     r2 == dst_reg, pkt_end == src_reg
6815 	 *     r2=pkt(id=n,off=8,r=0)
6816 	 *     r3=pkt(id=n,off=0,r=0)
6817 	 *
6818 	 * pkt_data in src register:
6819 	 *
6820 	 *   r2 = r3;
6821 	 *   r2 += 8;
6822 	 *   if (pkt_end >= r2) goto <access okay>
6823 	 *   <handle exception>
6824 	 *
6825 	 *   r2 = r3;
6826 	 *   r2 += 8;
6827 	 *   if (pkt_end <= r2) goto <handle exception>
6828 	 *   <access okay>
6829 	 *
6830 	 *   Where:
6831 	 *     pkt_end == dst_reg, r2 == src_reg
6832 	 *     r2=pkt(id=n,off=8,r=0)
6833 	 *     r3=pkt(id=n,off=0,r=0)
6834 	 *
6835 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
6836 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
6837 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
6838 	 * the check.
6839 	 */
6840 
6841 	/* If our ids match, then we must have the same max_value.  And we
6842 	 * don't care about the other reg's fixed offset, since if it's too big
6843 	 * the range won't allow anything.
6844 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
6845 	 */
6846 	for (i = 0; i <= vstate->curframe; i++)
6847 		__find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
6848 					 new_range);
6849 }
6850 
6851 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
6852 {
6853 	struct tnum subreg = tnum_subreg(reg->var_off);
6854 	s32 sval = (s32)val;
6855 
6856 	switch (opcode) {
6857 	case BPF_JEQ:
6858 		if (tnum_is_const(subreg))
6859 			return !!tnum_equals_const(subreg, val);
6860 		break;
6861 	case BPF_JNE:
6862 		if (tnum_is_const(subreg))
6863 			return !tnum_equals_const(subreg, val);
6864 		break;
6865 	case BPF_JSET:
6866 		if ((~subreg.mask & subreg.value) & val)
6867 			return 1;
6868 		if (!((subreg.mask | subreg.value) & val))
6869 			return 0;
6870 		break;
6871 	case BPF_JGT:
6872 		if (reg->u32_min_value > val)
6873 			return 1;
6874 		else if (reg->u32_max_value <= val)
6875 			return 0;
6876 		break;
6877 	case BPF_JSGT:
6878 		if (reg->s32_min_value > sval)
6879 			return 1;
6880 		else if (reg->s32_max_value < sval)
6881 			return 0;
6882 		break;
6883 	case BPF_JLT:
6884 		if (reg->u32_max_value < val)
6885 			return 1;
6886 		else if (reg->u32_min_value >= val)
6887 			return 0;
6888 		break;
6889 	case BPF_JSLT:
6890 		if (reg->s32_max_value < sval)
6891 			return 1;
6892 		else if (reg->s32_min_value >= sval)
6893 			return 0;
6894 		break;
6895 	case BPF_JGE:
6896 		if (reg->u32_min_value >= val)
6897 			return 1;
6898 		else if (reg->u32_max_value < val)
6899 			return 0;
6900 		break;
6901 	case BPF_JSGE:
6902 		if (reg->s32_min_value >= sval)
6903 			return 1;
6904 		else if (reg->s32_max_value < sval)
6905 			return 0;
6906 		break;
6907 	case BPF_JLE:
6908 		if (reg->u32_max_value <= val)
6909 			return 1;
6910 		else if (reg->u32_min_value > val)
6911 			return 0;
6912 		break;
6913 	case BPF_JSLE:
6914 		if (reg->s32_max_value <= sval)
6915 			return 1;
6916 		else if (reg->s32_min_value > sval)
6917 			return 0;
6918 		break;
6919 	}
6920 
6921 	return -1;
6922 }
6923 
6924 
6925 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
6926 {
6927 	s64 sval = (s64)val;
6928 
6929 	switch (opcode) {
6930 	case BPF_JEQ:
6931 		if (tnum_is_const(reg->var_off))
6932 			return !!tnum_equals_const(reg->var_off, val);
6933 		break;
6934 	case BPF_JNE:
6935 		if (tnum_is_const(reg->var_off))
6936 			return !tnum_equals_const(reg->var_off, val);
6937 		break;
6938 	case BPF_JSET:
6939 		if ((~reg->var_off.mask & reg->var_off.value) & val)
6940 			return 1;
6941 		if (!((reg->var_off.mask | reg->var_off.value) & val))
6942 			return 0;
6943 		break;
6944 	case BPF_JGT:
6945 		if (reg->umin_value > val)
6946 			return 1;
6947 		else if (reg->umax_value <= val)
6948 			return 0;
6949 		break;
6950 	case BPF_JSGT:
6951 		if (reg->smin_value > sval)
6952 			return 1;
6953 		else if (reg->smax_value < sval)
6954 			return 0;
6955 		break;
6956 	case BPF_JLT:
6957 		if (reg->umax_value < val)
6958 			return 1;
6959 		else if (reg->umin_value >= val)
6960 			return 0;
6961 		break;
6962 	case BPF_JSLT:
6963 		if (reg->smax_value < sval)
6964 			return 1;
6965 		else if (reg->smin_value >= sval)
6966 			return 0;
6967 		break;
6968 	case BPF_JGE:
6969 		if (reg->umin_value >= val)
6970 			return 1;
6971 		else if (reg->umax_value < val)
6972 			return 0;
6973 		break;
6974 	case BPF_JSGE:
6975 		if (reg->smin_value >= sval)
6976 			return 1;
6977 		else if (reg->smax_value < sval)
6978 			return 0;
6979 		break;
6980 	case BPF_JLE:
6981 		if (reg->umax_value <= val)
6982 			return 1;
6983 		else if (reg->umin_value > val)
6984 			return 0;
6985 		break;
6986 	case BPF_JSLE:
6987 		if (reg->smax_value <= sval)
6988 			return 1;
6989 		else if (reg->smin_value > sval)
6990 			return 0;
6991 		break;
6992 	}
6993 
6994 	return -1;
6995 }
6996 
6997 /* compute branch direction of the expression "if (reg opcode val) goto target;"
6998  * and return:
6999  *  1 - branch will be taken and "goto target" will be executed
7000  *  0 - branch will not be taken and fall-through to next insn
7001  * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
7002  *      range [0,10]
7003  */
7004 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
7005 			   bool is_jmp32)
7006 {
7007 	if (__is_pointer_value(false, reg)) {
7008 		if (!reg_type_not_null(reg->type))
7009 			return -1;
7010 
7011 		/* If pointer is valid tests against zero will fail so we can
7012 		 * use this to direct branch taken.
7013 		 */
7014 		if (val != 0)
7015 			return -1;
7016 
7017 		switch (opcode) {
7018 		case BPF_JEQ:
7019 			return 0;
7020 		case BPF_JNE:
7021 			return 1;
7022 		default:
7023 			return -1;
7024 		}
7025 	}
7026 
7027 	if (is_jmp32)
7028 		return is_branch32_taken(reg, val, opcode);
7029 	return is_branch64_taken(reg, val, opcode);
7030 }
7031 
7032 static int flip_opcode(u32 opcode)
7033 {
7034 	/* How can we transform "a <op> b" into "b <op> a"? */
7035 	static const u8 opcode_flip[16] = {
7036 		/* these stay the same */
7037 		[BPF_JEQ  >> 4] = BPF_JEQ,
7038 		[BPF_JNE  >> 4] = BPF_JNE,
7039 		[BPF_JSET >> 4] = BPF_JSET,
7040 		/* these swap "lesser" and "greater" (L and G in the opcodes) */
7041 		[BPF_JGE  >> 4] = BPF_JLE,
7042 		[BPF_JGT  >> 4] = BPF_JLT,
7043 		[BPF_JLE  >> 4] = BPF_JGE,
7044 		[BPF_JLT  >> 4] = BPF_JGT,
7045 		[BPF_JSGE >> 4] = BPF_JSLE,
7046 		[BPF_JSGT >> 4] = BPF_JSLT,
7047 		[BPF_JSLE >> 4] = BPF_JSGE,
7048 		[BPF_JSLT >> 4] = BPF_JSGT
7049 	};
7050 	return opcode_flip[opcode >> 4];
7051 }
7052 
7053 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
7054 				   struct bpf_reg_state *src_reg,
7055 				   u8 opcode)
7056 {
7057 	struct bpf_reg_state *pkt;
7058 
7059 	if (src_reg->type == PTR_TO_PACKET_END) {
7060 		pkt = dst_reg;
7061 	} else if (dst_reg->type == PTR_TO_PACKET_END) {
7062 		pkt = src_reg;
7063 		opcode = flip_opcode(opcode);
7064 	} else {
7065 		return -1;
7066 	}
7067 
7068 	if (pkt->range >= 0)
7069 		return -1;
7070 
7071 	switch (opcode) {
7072 	case BPF_JLE:
7073 		/* pkt <= pkt_end */
7074 		fallthrough;
7075 	case BPF_JGT:
7076 		/* pkt > pkt_end */
7077 		if (pkt->range == BEYOND_PKT_END)
7078 			/* pkt has at last one extra byte beyond pkt_end */
7079 			return opcode == BPF_JGT;
7080 		break;
7081 	case BPF_JLT:
7082 		/* pkt < pkt_end */
7083 		fallthrough;
7084 	case BPF_JGE:
7085 		/* pkt >= pkt_end */
7086 		if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
7087 			return opcode == BPF_JGE;
7088 		break;
7089 	}
7090 	return -1;
7091 }
7092 
7093 /* Adjusts the register min/max values in the case that the dst_reg is the
7094  * variable register that we are working on, and src_reg is a constant or we're
7095  * simply doing a BPF_K check.
7096  * In JEQ/JNE cases we also adjust the var_off values.
7097  */
7098 static void reg_set_min_max(struct bpf_reg_state *true_reg,
7099 			    struct bpf_reg_state *false_reg,
7100 			    u64 val, u32 val32,
7101 			    u8 opcode, bool is_jmp32)
7102 {
7103 	struct tnum false_32off = tnum_subreg(false_reg->var_off);
7104 	struct tnum false_64off = false_reg->var_off;
7105 	struct tnum true_32off = tnum_subreg(true_reg->var_off);
7106 	struct tnum true_64off = true_reg->var_off;
7107 	s64 sval = (s64)val;
7108 	s32 sval32 = (s32)val32;
7109 
7110 	/* If the dst_reg is a pointer, we can't learn anything about its
7111 	 * variable offset from the compare (unless src_reg were a pointer into
7112 	 * the same object, but we don't bother with that.
7113 	 * Since false_reg and true_reg have the same type by construction, we
7114 	 * only need to check one of them for pointerness.
7115 	 */
7116 	if (__is_pointer_value(false, false_reg))
7117 		return;
7118 
7119 	switch (opcode) {
7120 	case BPF_JEQ:
7121 	case BPF_JNE:
7122 	{
7123 		struct bpf_reg_state *reg =
7124 			opcode == BPF_JEQ ? true_reg : false_reg;
7125 
7126 		/* JEQ/JNE comparison doesn't change the register equivalence.
7127 		 * r1 = r2;
7128 		 * if (r1 == 42) goto label;
7129 		 * ...
7130 		 * label: // here both r1 and r2 are known to be 42.
7131 		 *
7132 		 * Hence when marking register as known preserve it's ID.
7133 		 */
7134 		if (is_jmp32)
7135 			__mark_reg32_known(reg, val32);
7136 		else
7137 			___mark_reg_known(reg, val);
7138 		break;
7139 	}
7140 	case BPF_JSET:
7141 		if (is_jmp32) {
7142 			false_32off = tnum_and(false_32off, tnum_const(~val32));
7143 			if (is_power_of_2(val32))
7144 				true_32off = tnum_or(true_32off,
7145 						     tnum_const(val32));
7146 		} else {
7147 			false_64off = tnum_and(false_64off, tnum_const(~val));
7148 			if (is_power_of_2(val))
7149 				true_64off = tnum_or(true_64off,
7150 						     tnum_const(val));
7151 		}
7152 		break;
7153 	case BPF_JGE:
7154 	case BPF_JGT:
7155 	{
7156 		if (is_jmp32) {
7157 			u32 false_umax = opcode == BPF_JGT ? val32  : val32 - 1;
7158 			u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
7159 
7160 			false_reg->u32_max_value = min(false_reg->u32_max_value,
7161 						       false_umax);
7162 			true_reg->u32_min_value = max(true_reg->u32_min_value,
7163 						      true_umin);
7164 		} else {
7165 			u64 false_umax = opcode == BPF_JGT ? val    : val - 1;
7166 			u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
7167 
7168 			false_reg->umax_value = min(false_reg->umax_value, false_umax);
7169 			true_reg->umin_value = max(true_reg->umin_value, true_umin);
7170 		}
7171 		break;
7172 	}
7173 	case BPF_JSGE:
7174 	case BPF_JSGT:
7175 	{
7176 		if (is_jmp32) {
7177 			s32 false_smax = opcode == BPF_JSGT ? sval32    : sval32 - 1;
7178 			s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
7179 
7180 			false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
7181 			true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
7182 		} else {
7183 			s64 false_smax = opcode == BPF_JSGT ? sval    : sval - 1;
7184 			s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
7185 
7186 			false_reg->smax_value = min(false_reg->smax_value, false_smax);
7187 			true_reg->smin_value = max(true_reg->smin_value, true_smin);
7188 		}
7189 		break;
7190 	}
7191 	case BPF_JLE:
7192 	case BPF_JLT:
7193 	{
7194 		if (is_jmp32) {
7195 			u32 false_umin = opcode == BPF_JLT ? val32  : val32 + 1;
7196 			u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
7197 
7198 			false_reg->u32_min_value = max(false_reg->u32_min_value,
7199 						       false_umin);
7200 			true_reg->u32_max_value = min(true_reg->u32_max_value,
7201 						      true_umax);
7202 		} else {
7203 			u64 false_umin = opcode == BPF_JLT ? val    : val + 1;
7204 			u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
7205 
7206 			false_reg->umin_value = max(false_reg->umin_value, false_umin);
7207 			true_reg->umax_value = min(true_reg->umax_value, true_umax);
7208 		}
7209 		break;
7210 	}
7211 	case BPF_JSLE:
7212 	case BPF_JSLT:
7213 	{
7214 		if (is_jmp32) {
7215 			s32 false_smin = opcode == BPF_JSLT ? sval32    : sval32 + 1;
7216 			s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
7217 
7218 			false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
7219 			true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
7220 		} else {
7221 			s64 false_smin = opcode == BPF_JSLT ? sval    : sval + 1;
7222 			s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
7223 
7224 			false_reg->smin_value = max(false_reg->smin_value, false_smin);
7225 			true_reg->smax_value = min(true_reg->smax_value, true_smax);
7226 		}
7227 		break;
7228 	}
7229 	default:
7230 		return;
7231 	}
7232 
7233 	if (is_jmp32) {
7234 		false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
7235 					     tnum_subreg(false_32off));
7236 		true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
7237 					    tnum_subreg(true_32off));
7238 		__reg_combine_32_into_64(false_reg);
7239 		__reg_combine_32_into_64(true_reg);
7240 	} else {
7241 		false_reg->var_off = false_64off;
7242 		true_reg->var_off = true_64off;
7243 		__reg_combine_64_into_32(false_reg);
7244 		__reg_combine_64_into_32(true_reg);
7245 	}
7246 }
7247 
7248 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
7249  * the variable reg.
7250  */
7251 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
7252 				struct bpf_reg_state *false_reg,
7253 				u64 val, u32 val32,
7254 				u8 opcode, bool is_jmp32)
7255 {
7256 	opcode = flip_opcode(opcode);
7257 	/* This uses zero as "not present in table"; luckily the zero opcode,
7258 	 * BPF_JA, can't get here.
7259 	 */
7260 	if (opcode)
7261 		reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
7262 }
7263 
7264 /* Regs are known to be equal, so intersect their min/max/var_off */
7265 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
7266 				  struct bpf_reg_state *dst_reg)
7267 {
7268 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
7269 							dst_reg->umin_value);
7270 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
7271 							dst_reg->umax_value);
7272 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
7273 							dst_reg->smin_value);
7274 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
7275 							dst_reg->smax_value);
7276 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
7277 							     dst_reg->var_off);
7278 	/* We might have learned new bounds from the var_off. */
7279 	__update_reg_bounds(src_reg);
7280 	__update_reg_bounds(dst_reg);
7281 	/* We might have learned something about the sign bit. */
7282 	__reg_deduce_bounds(src_reg);
7283 	__reg_deduce_bounds(dst_reg);
7284 	/* We might have learned some bits from the bounds. */
7285 	__reg_bound_offset(src_reg);
7286 	__reg_bound_offset(dst_reg);
7287 	/* Intersecting with the old var_off might have improved our bounds
7288 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
7289 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
7290 	 */
7291 	__update_reg_bounds(src_reg);
7292 	__update_reg_bounds(dst_reg);
7293 }
7294 
7295 static void reg_combine_min_max(struct bpf_reg_state *true_src,
7296 				struct bpf_reg_state *true_dst,
7297 				struct bpf_reg_state *false_src,
7298 				struct bpf_reg_state *false_dst,
7299 				u8 opcode)
7300 {
7301 	switch (opcode) {
7302 	case BPF_JEQ:
7303 		__reg_combine_min_max(true_src, true_dst);
7304 		break;
7305 	case BPF_JNE:
7306 		__reg_combine_min_max(false_src, false_dst);
7307 		break;
7308 	}
7309 }
7310 
7311 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
7312 				 struct bpf_reg_state *reg, u32 id,
7313 				 bool is_null)
7314 {
7315 	if (reg_type_may_be_null(reg->type) && reg->id == id &&
7316 	    !WARN_ON_ONCE(!reg->id)) {
7317 		/* Old offset (both fixed and variable parts) should
7318 		 * have been known-zero, because we don't allow pointer
7319 		 * arithmetic on pointers that might be NULL.
7320 		 */
7321 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
7322 				 !tnum_equals_const(reg->var_off, 0) ||
7323 				 reg->off)) {
7324 			__mark_reg_known_zero(reg);
7325 			reg->off = 0;
7326 		}
7327 		if (is_null) {
7328 			reg->type = SCALAR_VALUE;
7329 		} else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
7330 			const struct bpf_map *map = reg->map_ptr;
7331 
7332 			if (map->inner_map_meta) {
7333 				reg->type = CONST_PTR_TO_MAP;
7334 				reg->map_ptr = map->inner_map_meta;
7335 			} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
7336 				reg->type = PTR_TO_XDP_SOCK;
7337 			} else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
7338 				   map->map_type == BPF_MAP_TYPE_SOCKHASH) {
7339 				reg->type = PTR_TO_SOCKET;
7340 			} else {
7341 				reg->type = PTR_TO_MAP_VALUE;
7342 			}
7343 		} else if (reg->type == PTR_TO_SOCKET_OR_NULL) {
7344 			reg->type = PTR_TO_SOCKET;
7345 		} else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) {
7346 			reg->type = PTR_TO_SOCK_COMMON;
7347 		} else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) {
7348 			reg->type = PTR_TO_TCP_SOCK;
7349 		} else if (reg->type == PTR_TO_BTF_ID_OR_NULL) {
7350 			reg->type = PTR_TO_BTF_ID;
7351 		} else if (reg->type == PTR_TO_MEM_OR_NULL) {
7352 			reg->type = PTR_TO_MEM;
7353 		} else if (reg->type == PTR_TO_RDONLY_BUF_OR_NULL) {
7354 			reg->type = PTR_TO_RDONLY_BUF;
7355 		} else if (reg->type == PTR_TO_RDWR_BUF_OR_NULL) {
7356 			reg->type = PTR_TO_RDWR_BUF;
7357 		}
7358 		if (is_null) {
7359 			/* We don't need id and ref_obj_id from this point
7360 			 * onwards anymore, thus we should better reset it,
7361 			 * so that state pruning has chances to take effect.
7362 			 */
7363 			reg->id = 0;
7364 			reg->ref_obj_id = 0;
7365 		} else if (!reg_may_point_to_spin_lock(reg)) {
7366 			/* For not-NULL ptr, reg->ref_obj_id will be reset
7367 			 * in release_reg_references().
7368 			 *
7369 			 * reg->id is still used by spin_lock ptr. Other
7370 			 * than spin_lock ptr type, reg->id can be reset.
7371 			 */
7372 			reg->id = 0;
7373 		}
7374 	}
7375 }
7376 
7377 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
7378 				    bool is_null)
7379 {
7380 	struct bpf_reg_state *reg;
7381 	int i;
7382 
7383 	for (i = 0; i < MAX_BPF_REG; i++)
7384 		mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
7385 
7386 	bpf_for_each_spilled_reg(i, state, reg) {
7387 		if (!reg)
7388 			continue;
7389 		mark_ptr_or_null_reg(state, reg, id, is_null);
7390 	}
7391 }
7392 
7393 /* The logic is similar to find_good_pkt_pointers(), both could eventually
7394  * be folded together at some point.
7395  */
7396 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
7397 				  bool is_null)
7398 {
7399 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
7400 	struct bpf_reg_state *regs = state->regs;
7401 	u32 ref_obj_id = regs[regno].ref_obj_id;
7402 	u32 id = regs[regno].id;
7403 	int i;
7404 
7405 	if (ref_obj_id && ref_obj_id == id && is_null)
7406 		/* regs[regno] is in the " == NULL" branch.
7407 		 * No one could have freed the reference state before
7408 		 * doing the NULL check.
7409 		 */
7410 		WARN_ON_ONCE(release_reference_state(state, id));
7411 
7412 	for (i = 0; i <= vstate->curframe; i++)
7413 		__mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
7414 }
7415 
7416 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
7417 				   struct bpf_reg_state *dst_reg,
7418 				   struct bpf_reg_state *src_reg,
7419 				   struct bpf_verifier_state *this_branch,
7420 				   struct bpf_verifier_state *other_branch)
7421 {
7422 	if (BPF_SRC(insn->code) != BPF_X)
7423 		return false;
7424 
7425 	/* Pointers are always 64-bit. */
7426 	if (BPF_CLASS(insn->code) == BPF_JMP32)
7427 		return false;
7428 
7429 	switch (BPF_OP(insn->code)) {
7430 	case BPF_JGT:
7431 		if ((dst_reg->type == PTR_TO_PACKET &&
7432 		     src_reg->type == PTR_TO_PACKET_END) ||
7433 		    (dst_reg->type == PTR_TO_PACKET_META &&
7434 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7435 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
7436 			find_good_pkt_pointers(this_branch, dst_reg,
7437 					       dst_reg->type, false);
7438 			mark_pkt_end(other_branch, insn->dst_reg, true);
7439 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
7440 			    src_reg->type == PTR_TO_PACKET) ||
7441 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7442 			    src_reg->type == PTR_TO_PACKET_META)) {
7443 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
7444 			find_good_pkt_pointers(other_branch, src_reg,
7445 					       src_reg->type, true);
7446 			mark_pkt_end(this_branch, insn->src_reg, false);
7447 		} else {
7448 			return false;
7449 		}
7450 		break;
7451 	case BPF_JLT:
7452 		if ((dst_reg->type == PTR_TO_PACKET &&
7453 		     src_reg->type == PTR_TO_PACKET_END) ||
7454 		    (dst_reg->type == PTR_TO_PACKET_META &&
7455 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7456 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
7457 			find_good_pkt_pointers(other_branch, dst_reg,
7458 					       dst_reg->type, true);
7459 			mark_pkt_end(this_branch, insn->dst_reg, false);
7460 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
7461 			    src_reg->type == PTR_TO_PACKET) ||
7462 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7463 			    src_reg->type == PTR_TO_PACKET_META)) {
7464 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
7465 			find_good_pkt_pointers(this_branch, src_reg,
7466 					       src_reg->type, false);
7467 			mark_pkt_end(other_branch, insn->src_reg, true);
7468 		} else {
7469 			return false;
7470 		}
7471 		break;
7472 	case BPF_JGE:
7473 		if ((dst_reg->type == PTR_TO_PACKET &&
7474 		     src_reg->type == PTR_TO_PACKET_END) ||
7475 		    (dst_reg->type == PTR_TO_PACKET_META &&
7476 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7477 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
7478 			find_good_pkt_pointers(this_branch, dst_reg,
7479 					       dst_reg->type, true);
7480 			mark_pkt_end(other_branch, insn->dst_reg, false);
7481 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
7482 			    src_reg->type == PTR_TO_PACKET) ||
7483 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7484 			    src_reg->type == PTR_TO_PACKET_META)) {
7485 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
7486 			find_good_pkt_pointers(other_branch, src_reg,
7487 					       src_reg->type, false);
7488 			mark_pkt_end(this_branch, insn->src_reg, true);
7489 		} else {
7490 			return false;
7491 		}
7492 		break;
7493 	case BPF_JLE:
7494 		if ((dst_reg->type == PTR_TO_PACKET &&
7495 		     src_reg->type == PTR_TO_PACKET_END) ||
7496 		    (dst_reg->type == PTR_TO_PACKET_META &&
7497 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7498 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
7499 			find_good_pkt_pointers(other_branch, dst_reg,
7500 					       dst_reg->type, false);
7501 			mark_pkt_end(this_branch, insn->dst_reg, true);
7502 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
7503 			    src_reg->type == PTR_TO_PACKET) ||
7504 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7505 			    src_reg->type == PTR_TO_PACKET_META)) {
7506 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
7507 			find_good_pkt_pointers(this_branch, src_reg,
7508 					       src_reg->type, true);
7509 			mark_pkt_end(other_branch, insn->src_reg, false);
7510 		} else {
7511 			return false;
7512 		}
7513 		break;
7514 	default:
7515 		return false;
7516 	}
7517 
7518 	return true;
7519 }
7520 
7521 static void find_equal_scalars(struct bpf_verifier_state *vstate,
7522 			       struct bpf_reg_state *known_reg)
7523 {
7524 	struct bpf_func_state *state;
7525 	struct bpf_reg_state *reg;
7526 	int i, j;
7527 
7528 	for (i = 0; i <= vstate->curframe; i++) {
7529 		state = vstate->frame[i];
7530 		for (j = 0; j < MAX_BPF_REG; j++) {
7531 			reg = &state->regs[j];
7532 			if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
7533 				*reg = *known_reg;
7534 		}
7535 
7536 		bpf_for_each_spilled_reg(j, state, reg) {
7537 			if (!reg)
7538 				continue;
7539 			if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
7540 				*reg = *known_reg;
7541 		}
7542 	}
7543 }
7544 
7545 static int check_cond_jmp_op(struct bpf_verifier_env *env,
7546 			     struct bpf_insn *insn, int *insn_idx)
7547 {
7548 	struct bpf_verifier_state *this_branch = env->cur_state;
7549 	struct bpf_verifier_state *other_branch;
7550 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
7551 	struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
7552 	u8 opcode = BPF_OP(insn->code);
7553 	bool is_jmp32;
7554 	int pred = -1;
7555 	int err;
7556 
7557 	/* Only conditional jumps are expected to reach here. */
7558 	if (opcode == BPF_JA || opcode > BPF_JSLE) {
7559 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
7560 		return -EINVAL;
7561 	}
7562 
7563 	if (BPF_SRC(insn->code) == BPF_X) {
7564 		if (insn->imm != 0) {
7565 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
7566 			return -EINVAL;
7567 		}
7568 
7569 		/* check src1 operand */
7570 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
7571 		if (err)
7572 			return err;
7573 
7574 		if (is_pointer_value(env, insn->src_reg)) {
7575 			verbose(env, "R%d pointer comparison prohibited\n",
7576 				insn->src_reg);
7577 			return -EACCES;
7578 		}
7579 		src_reg = &regs[insn->src_reg];
7580 	} else {
7581 		if (insn->src_reg != BPF_REG_0) {
7582 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
7583 			return -EINVAL;
7584 		}
7585 	}
7586 
7587 	/* check src2 operand */
7588 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7589 	if (err)
7590 		return err;
7591 
7592 	dst_reg = &regs[insn->dst_reg];
7593 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
7594 
7595 	if (BPF_SRC(insn->code) == BPF_K) {
7596 		pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
7597 	} else if (src_reg->type == SCALAR_VALUE &&
7598 		   is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
7599 		pred = is_branch_taken(dst_reg,
7600 				       tnum_subreg(src_reg->var_off).value,
7601 				       opcode,
7602 				       is_jmp32);
7603 	} else if (src_reg->type == SCALAR_VALUE &&
7604 		   !is_jmp32 && tnum_is_const(src_reg->var_off)) {
7605 		pred = is_branch_taken(dst_reg,
7606 				       src_reg->var_off.value,
7607 				       opcode,
7608 				       is_jmp32);
7609 	} else if (reg_is_pkt_pointer_any(dst_reg) &&
7610 		   reg_is_pkt_pointer_any(src_reg) &&
7611 		   !is_jmp32) {
7612 		pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
7613 	}
7614 
7615 	if (pred >= 0) {
7616 		/* If we get here with a dst_reg pointer type it is because
7617 		 * above is_branch_taken() special cased the 0 comparison.
7618 		 */
7619 		if (!__is_pointer_value(false, dst_reg))
7620 			err = mark_chain_precision(env, insn->dst_reg);
7621 		if (BPF_SRC(insn->code) == BPF_X && !err &&
7622 		    !__is_pointer_value(false, src_reg))
7623 			err = mark_chain_precision(env, insn->src_reg);
7624 		if (err)
7625 			return err;
7626 	}
7627 	if (pred == 1) {
7628 		/* only follow the goto, ignore fall-through */
7629 		*insn_idx += insn->off;
7630 		return 0;
7631 	} else if (pred == 0) {
7632 		/* only follow fall-through branch, since
7633 		 * that's where the program will go
7634 		 */
7635 		return 0;
7636 	}
7637 
7638 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
7639 				  false);
7640 	if (!other_branch)
7641 		return -EFAULT;
7642 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
7643 
7644 	/* detect if we are comparing against a constant value so we can adjust
7645 	 * our min/max values for our dst register.
7646 	 * this is only legit if both are scalars (or pointers to the same
7647 	 * object, I suppose, but we don't support that right now), because
7648 	 * otherwise the different base pointers mean the offsets aren't
7649 	 * comparable.
7650 	 */
7651 	if (BPF_SRC(insn->code) == BPF_X) {
7652 		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
7653 
7654 		if (dst_reg->type == SCALAR_VALUE &&
7655 		    src_reg->type == SCALAR_VALUE) {
7656 			if (tnum_is_const(src_reg->var_off) ||
7657 			    (is_jmp32 &&
7658 			     tnum_is_const(tnum_subreg(src_reg->var_off))))
7659 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
7660 						dst_reg,
7661 						src_reg->var_off.value,
7662 						tnum_subreg(src_reg->var_off).value,
7663 						opcode, is_jmp32);
7664 			else if (tnum_is_const(dst_reg->var_off) ||
7665 				 (is_jmp32 &&
7666 				  tnum_is_const(tnum_subreg(dst_reg->var_off))))
7667 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
7668 						    src_reg,
7669 						    dst_reg->var_off.value,
7670 						    tnum_subreg(dst_reg->var_off).value,
7671 						    opcode, is_jmp32);
7672 			else if (!is_jmp32 &&
7673 				 (opcode == BPF_JEQ || opcode == BPF_JNE))
7674 				/* Comparing for equality, we can combine knowledge */
7675 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
7676 						    &other_branch_regs[insn->dst_reg],
7677 						    src_reg, dst_reg, opcode);
7678 			if (src_reg->id &&
7679 			    !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
7680 				find_equal_scalars(this_branch, src_reg);
7681 				find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
7682 			}
7683 
7684 		}
7685 	} else if (dst_reg->type == SCALAR_VALUE) {
7686 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
7687 					dst_reg, insn->imm, (u32)insn->imm,
7688 					opcode, is_jmp32);
7689 	}
7690 
7691 	if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
7692 	    !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
7693 		find_equal_scalars(this_branch, dst_reg);
7694 		find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
7695 	}
7696 
7697 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
7698 	 * NOTE: these optimizations below are related with pointer comparison
7699 	 *       which will never be JMP32.
7700 	 */
7701 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
7702 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
7703 	    reg_type_may_be_null(dst_reg->type)) {
7704 		/* Mark all identical registers in each branch as either
7705 		 * safe or unknown depending R == 0 or R != 0 conditional.
7706 		 */
7707 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
7708 				      opcode == BPF_JNE);
7709 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
7710 				      opcode == BPF_JEQ);
7711 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
7712 					   this_branch, other_branch) &&
7713 		   is_pointer_value(env, insn->dst_reg)) {
7714 		verbose(env, "R%d pointer comparison prohibited\n",
7715 			insn->dst_reg);
7716 		return -EACCES;
7717 	}
7718 	if (env->log.level & BPF_LOG_LEVEL)
7719 		print_verifier_state(env, this_branch->frame[this_branch->curframe]);
7720 	return 0;
7721 }
7722 
7723 /* verify BPF_LD_IMM64 instruction */
7724 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
7725 {
7726 	struct bpf_insn_aux_data *aux = cur_aux(env);
7727 	struct bpf_reg_state *regs = cur_regs(env);
7728 	struct bpf_reg_state *dst_reg;
7729 	struct bpf_map *map;
7730 	int err;
7731 
7732 	if (BPF_SIZE(insn->code) != BPF_DW) {
7733 		verbose(env, "invalid BPF_LD_IMM insn\n");
7734 		return -EINVAL;
7735 	}
7736 	if (insn->off != 0) {
7737 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
7738 		return -EINVAL;
7739 	}
7740 
7741 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
7742 	if (err)
7743 		return err;
7744 
7745 	dst_reg = &regs[insn->dst_reg];
7746 	if (insn->src_reg == 0) {
7747 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
7748 
7749 		dst_reg->type = SCALAR_VALUE;
7750 		__mark_reg_known(&regs[insn->dst_reg], imm);
7751 		return 0;
7752 	}
7753 
7754 	if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
7755 		mark_reg_known_zero(env, regs, insn->dst_reg);
7756 
7757 		dst_reg->type = aux->btf_var.reg_type;
7758 		switch (dst_reg->type) {
7759 		case PTR_TO_MEM:
7760 			dst_reg->mem_size = aux->btf_var.mem_size;
7761 			break;
7762 		case PTR_TO_BTF_ID:
7763 		case PTR_TO_PERCPU_BTF_ID:
7764 			dst_reg->btf = aux->btf_var.btf;
7765 			dst_reg->btf_id = aux->btf_var.btf_id;
7766 			break;
7767 		default:
7768 			verbose(env, "bpf verifier is misconfigured\n");
7769 			return -EFAULT;
7770 		}
7771 		return 0;
7772 	}
7773 
7774 	map = env->used_maps[aux->map_index];
7775 	mark_reg_known_zero(env, regs, insn->dst_reg);
7776 	dst_reg->map_ptr = map;
7777 
7778 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) {
7779 		dst_reg->type = PTR_TO_MAP_VALUE;
7780 		dst_reg->off = aux->map_off;
7781 		if (map_value_has_spin_lock(map))
7782 			dst_reg->id = ++env->id_gen;
7783 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
7784 		dst_reg->type = CONST_PTR_TO_MAP;
7785 	} else {
7786 		verbose(env, "bpf verifier is misconfigured\n");
7787 		return -EINVAL;
7788 	}
7789 
7790 	return 0;
7791 }
7792 
7793 static bool may_access_skb(enum bpf_prog_type type)
7794 {
7795 	switch (type) {
7796 	case BPF_PROG_TYPE_SOCKET_FILTER:
7797 	case BPF_PROG_TYPE_SCHED_CLS:
7798 	case BPF_PROG_TYPE_SCHED_ACT:
7799 		return true;
7800 	default:
7801 		return false;
7802 	}
7803 }
7804 
7805 /* verify safety of LD_ABS|LD_IND instructions:
7806  * - they can only appear in the programs where ctx == skb
7807  * - since they are wrappers of function calls, they scratch R1-R5 registers,
7808  *   preserve R6-R9, and store return value into R0
7809  *
7810  * Implicit input:
7811  *   ctx == skb == R6 == CTX
7812  *
7813  * Explicit input:
7814  *   SRC == any register
7815  *   IMM == 32-bit immediate
7816  *
7817  * Output:
7818  *   R0 - 8/16/32-bit skb data converted to cpu endianness
7819  */
7820 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
7821 {
7822 	struct bpf_reg_state *regs = cur_regs(env);
7823 	static const int ctx_reg = BPF_REG_6;
7824 	u8 mode = BPF_MODE(insn->code);
7825 	int i, err;
7826 
7827 	if (!may_access_skb(resolve_prog_type(env->prog))) {
7828 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
7829 		return -EINVAL;
7830 	}
7831 
7832 	if (!env->ops->gen_ld_abs) {
7833 		verbose(env, "bpf verifier is misconfigured\n");
7834 		return -EINVAL;
7835 	}
7836 
7837 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
7838 	    BPF_SIZE(insn->code) == BPF_DW ||
7839 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
7840 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
7841 		return -EINVAL;
7842 	}
7843 
7844 	/* check whether implicit source operand (register R6) is readable */
7845 	err = check_reg_arg(env, ctx_reg, SRC_OP);
7846 	if (err)
7847 		return err;
7848 
7849 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
7850 	 * gen_ld_abs() may terminate the program at runtime, leading to
7851 	 * reference leak.
7852 	 */
7853 	err = check_reference_leak(env);
7854 	if (err) {
7855 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
7856 		return err;
7857 	}
7858 
7859 	if (env->cur_state->active_spin_lock) {
7860 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
7861 		return -EINVAL;
7862 	}
7863 
7864 	if (regs[ctx_reg].type != PTR_TO_CTX) {
7865 		verbose(env,
7866 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
7867 		return -EINVAL;
7868 	}
7869 
7870 	if (mode == BPF_IND) {
7871 		/* check explicit source operand */
7872 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
7873 		if (err)
7874 			return err;
7875 	}
7876 
7877 	err = check_ctx_reg(env, &regs[ctx_reg], ctx_reg);
7878 	if (err < 0)
7879 		return err;
7880 
7881 	/* reset caller saved regs to unreadable */
7882 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
7883 		mark_reg_not_init(env, regs, caller_saved[i]);
7884 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
7885 	}
7886 
7887 	/* mark destination R0 register as readable, since it contains
7888 	 * the value fetched from the packet.
7889 	 * Already marked as written above.
7890 	 */
7891 	mark_reg_unknown(env, regs, BPF_REG_0);
7892 	/* ld_abs load up to 32-bit skb data. */
7893 	regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
7894 	return 0;
7895 }
7896 
7897 static int check_return_code(struct bpf_verifier_env *env)
7898 {
7899 	struct tnum enforce_attach_type_range = tnum_unknown;
7900 	const struct bpf_prog *prog = env->prog;
7901 	struct bpf_reg_state *reg;
7902 	struct tnum range = tnum_range(0, 1);
7903 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
7904 	int err;
7905 	const bool is_subprog = env->cur_state->frame[0]->subprogno;
7906 
7907 	/* LSM and struct_ops func-ptr's return type could be "void" */
7908 	if (!is_subprog &&
7909 	    (prog_type == BPF_PROG_TYPE_STRUCT_OPS ||
7910 	     prog_type == BPF_PROG_TYPE_LSM) &&
7911 	    !prog->aux->attach_func_proto->type)
7912 		return 0;
7913 
7914 	/* eBPF calling convetion is such that R0 is used
7915 	 * to return the value from eBPF program.
7916 	 * Make sure that it's readable at this time
7917 	 * of bpf_exit, which means that program wrote
7918 	 * something into it earlier
7919 	 */
7920 	err = check_reg_arg(env, BPF_REG_0, SRC_OP);
7921 	if (err)
7922 		return err;
7923 
7924 	if (is_pointer_value(env, BPF_REG_0)) {
7925 		verbose(env, "R0 leaks addr as return value\n");
7926 		return -EACCES;
7927 	}
7928 
7929 	reg = cur_regs(env) + BPF_REG_0;
7930 	if (is_subprog) {
7931 		if (reg->type != SCALAR_VALUE) {
7932 			verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
7933 				reg_type_str[reg->type]);
7934 			return -EINVAL;
7935 		}
7936 		return 0;
7937 	}
7938 
7939 	switch (prog_type) {
7940 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
7941 		if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
7942 		    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
7943 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
7944 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
7945 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
7946 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
7947 			range = tnum_range(1, 1);
7948 		break;
7949 	case BPF_PROG_TYPE_CGROUP_SKB:
7950 		if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
7951 			range = tnum_range(0, 3);
7952 			enforce_attach_type_range = tnum_range(2, 3);
7953 		}
7954 		break;
7955 	case BPF_PROG_TYPE_CGROUP_SOCK:
7956 	case BPF_PROG_TYPE_SOCK_OPS:
7957 	case BPF_PROG_TYPE_CGROUP_DEVICE:
7958 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
7959 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
7960 		break;
7961 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
7962 		if (!env->prog->aux->attach_btf_id)
7963 			return 0;
7964 		range = tnum_const(0);
7965 		break;
7966 	case BPF_PROG_TYPE_TRACING:
7967 		switch (env->prog->expected_attach_type) {
7968 		case BPF_TRACE_FENTRY:
7969 		case BPF_TRACE_FEXIT:
7970 			range = tnum_const(0);
7971 			break;
7972 		case BPF_TRACE_RAW_TP:
7973 		case BPF_MODIFY_RETURN:
7974 			return 0;
7975 		case BPF_TRACE_ITER:
7976 			break;
7977 		default:
7978 			return -ENOTSUPP;
7979 		}
7980 		break;
7981 	case BPF_PROG_TYPE_SK_LOOKUP:
7982 		range = tnum_range(SK_DROP, SK_PASS);
7983 		break;
7984 	case BPF_PROG_TYPE_EXT:
7985 		/* freplace program can return anything as its return value
7986 		 * depends on the to-be-replaced kernel func or bpf program.
7987 		 */
7988 	default:
7989 		return 0;
7990 	}
7991 
7992 	if (reg->type != SCALAR_VALUE) {
7993 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
7994 			reg_type_str[reg->type]);
7995 		return -EINVAL;
7996 	}
7997 
7998 	if (!tnum_in(range, reg->var_off)) {
7999 		char tn_buf[48];
8000 
8001 		verbose(env, "At program exit the register R0 ");
8002 		if (!tnum_is_unknown(reg->var_off)) {
8003 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
8004 			verbose(env, "has value %s", tn_buf);
8005 		} else {
8006 			verbose(env, "has unknown scalar value");
8007 		}
8008 		tnum_strn(tn_buf, sizeof(tn_buf), range);
8009 		verbose(env, " should have been in %s\n", tn_buf);
8010 		return -EINVAL;
8011 	}
8012 
8013 	if (!tnum_is_unknown(enforce_attach_type_range) &&
8014 	    tnum_in(enforce_attach_type_range, reg->var_off))
8015 		env->prog->enforce_expected_attach_type = 1;
8016 	return 0;
8017 }
8018 
8019 /* non-recursive DFS pseudo code
8020  * 1  procedure DFS-iterative(G,v):
8021  * 2      label v as discovered
8022  * 3      let S be a stack
8023  * 4      S.push(v)
8024  * 5      while S is not empty
8025  * 6            t <- S.pop()
8026  * 7            if t is what we're looking for:
8027  * 8                return t
8028  * 9            for all edges e in G.adjacentEdges(t) do
8029  * 10               if edge e is already labelled
8030  * 11                   continue with the next edge
8031  * 12               w <- G.adjacentVertex(t,e)
8032  * 13               if vertex w is not discovered and not explored
8033  * 14                   label e as tree-edge
8034  * 15                   label w as discovered
8035  * 16                   S.push(w)
8036  * 17                   continue at 5
8037  * 18               else if vertex w is discovered
8038  * 19                   label e as back-edge
8039  * 20               else
8040  * 21                   // vertex w is explored
8041  * 22                   label e as forward- or cross-edge
8042  * 23           label t as explored
8043  * 24           S.pop()
8044  *
8045  * convention:
8046  * 0x10 - discovered
8047  * 0x11 - discovered and fall-through edge labelled
8048  * 0x12 - discovered and fall-through and branch edges labelled
8049  * 0x20 - explored
8050  */
8051 
8052 enum {
8053 	DISCOVERED = 0x10,
8054 	EXPLORED = 0x20,
8055 	FALLTHROUGH = 1,
8056 	BRANCH = 2,
8057 };
8058 
8059 static u32 state_htab_size(struct bpf_verifier_env *env)
8060 {
8061 	return env->prog->len;
8062 }
8063 
8064 static struct bpf_verifier_state_list **explored_state(
8065 					struct bpf_verifier_env *env,
8066 					int idx)
8067 {
8068 	struct bpf_verifier_state *cur = env->cur_state;
8069 	struct bpf_func_state *state = cur->frame[cur->curframe];
8070 
8071 	return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
8072 }
8073 
8074 static void init_explored_state(struct bpf_verifier_env *env, int idx)
8075 {
8076 	env->insn_aux_data[idx].prune_point = true;
8077 }
8078 
8079 enum {
8080 	DONE_EXPLORING = 0,
8081 	KEEP_EXPLORING = 1,
8082 };
8083 
8084 /* t, w, e - match pseudo-code above:
8085  * t - index of current instruction
8086  * w - next instruction
8087  * e - edge
8088  */
8089 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
8090 		     bool loop_ok)
8091 {
8092 	int *insn_stack = env->cfg.insn_stack;
8093 	int *insn_state = env->cfg.insn_state;
8094 
8095 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
8096 		return DONE_EXPLORING;
8097 
8098 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
8099 		return DONE_EXPLORING;
8100 
8101 	if (w < 0 || w >= env->prog->len) {
8102 		verbose_linfo(env, t, "%d: ", t);
8103 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
8104 		return -EINVAL;
8105 	}
8106 
8107 	if (e == BRANCH)
8108 		/* mark branch target for state pruning */
8109 		init_explored_state(env, w);
8110 
8111 	if (insn_state[w] == 0) {
8112 		/* tree-edge */
8113 		insn_state[t] = DISCOVERED | e;
8114 		insn_state[w] = DISCOVERED;
8115 		if (env->cfg.cur_stack >= env->prog->len)
8116 			return -E2BIG;
8117 		insn_stack[env->cfg.cur_stack++] = w;
8118 		return KEEP_EXPLORING;
8119 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
8120 		if (loop_ok && env->bpf_capable)
8121 			return DONE_EXPLORING;
8122 		verbose_linfo(env, t, "%d: ", t);
8123 		verbose_linfo(env, w, "%d: ", w);
8124 		verbose(env, "back-edge from insn %d to %d\n", t, w);
8125 		return -EINVAL;
8126 	} else if (insn_state[w] == EXPLORED) {
8127 		/* forward- or cross-edge */
8128 		insn_state[t] = DISCOVERED | e;
8129 	} else {
8130 		verbose(env, "insn state internal bug\n");
8131 		return -EFAULT;
8132 	}
8133 	return DONE_EXPLORING;
8134 }
8135 
8136 /* Visits the instruction at index t and returns one of the following:
8137  *  < 0 - an error occurred
8138  *  DONE_EXPLORING - the instruction was fully explored
8139  *  KEEP_EXPLORING - there is still work to be done before it is fully explored
8140  */
8141 static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env)
8142 {
8143 	struct bpf_insn *insns = env->prog->insnsi;
8144 	int ret;
8145 
8146 	/* All non-branch instructions have a single fall-through edge. */
8147 	if (BPF_CLASS(insns[t].code) != BPF_JMP &&
8148 	    BPF_CLASS(insns[t].code) != BPF_JMP32)
8149 		return push_insn(t, t + 1, FALLTHROUGH, env, false);
8150 
8151 	switch (BPF_OP(insns[t].code)) {
8152 	case BPF_EXIT:
8153 		return DONE_EXPLORING;
8154 
8155 	case BPF_CALL:
8156 		ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
8157 		if (ret)
8158 			return ret;
8159 
8160 		if (t + 1 < insn_cnt)
8161 			init_explored_state(env, t + 1);
8162 		if (insns[t].src_reg == BPF_PSEUDO_CALL) {
8163 			init_explored_state(env, t);
8164 			ret = push_insn(t, t + insns[t].imm + 1, BRANCH,
8165 					env, false);
8166 		}
8167 		return ret;
8168 
8169 	case BPF_JA:
8170 		if (BPF_SRC(insns[t].code) != BPF_K)
8171 			return -EINVAL;
8172 
8173 		/* unconditional jump with single edge */
8174 		ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env,
8175 				true);
8176 		if (ret)
8177 			return ret;
8178 
8179 		/* unconditional jmp is not a good pruning point,
8180 		 * but it's marked, since backtracking needs
8181 		 * to record jmp history in is_state_visited().
8182 		 */
8183 		init_explored_state(env, t + insns[t].off + 1);
8184 		/* tell verifier to check for equivalent states
8185 		 * after every call and jump
8186 		 */
8187 		if (t + 1 < insn_cnt)
8188 			init_explored_state(env, t + 1);
8189 
8190 		return ret;
8191 
8192 	default:
8193 		/* conditional jump with two edges */
8194 		init_explored_state(env, t);
8195 		ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
8196 		if (ret)
8197 			return ret;
8198 
8199 		return push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
8200 	}
8201 }
8202 
8203 /* non-recursive depth-first-search to detect loops in BPF program
8204  * loop == back-edge in directed graph
8205  */
8206 static int check_cfg(struct bpf_verifier_env *env)
8207 {
8208 	int insn_cnt = env->prog->len;
8209 	int *insn_stack, *insn_state;
8210 	int ret = 0;
8211 	int i;
8212 
8213 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
8214 	if (!insn_state)
8215 		return -ENOMEM;
8216 
8217 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
8218 	if (!insn_stack) {
8219 		kvfree(insn_state);
8220 		return -ENOMEM;
8221 	}
8222 
8223 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
8224 	insn_stack[0] = 0; /* 0 is the first instruction */
8225 	env->cfg.cur_stack = 1;
8226 
8227 	while (env->cfg.cur_stack > 0) {
8228 		int t = insn_stack[env->cfg.cur_stack - 1];
8229 
8230 		ret = visit_insn(t, insn_cnt, env);
8231 		switch (ret) {
8232 		case DONE_EXPLORING:
8233 			insn_state[t] = EXPLORED;
8234 			env->cfg.cur_stack--;
8235 			break;
8236 		case KEEP_EXPLORING:
8237 			break;
8238 		default:
8239 			if (ret > 0) {
8240 				verbose(env, "visit_insn internal bug\n");
8241 				ret = -EFAULT;
8242 			}
8243 			goto err_free;
8244 		}
8245 	}
8246 
8247 	if (env->cfg.cur_stack < 0) {
8248 		verbose(env, "pop stack internal bug\n");
8249 		ret = -EFAULT;
8250 		goto err_free;
8251 	}
8252 
8253 	for (i = 0; i < insn_cnt; i++) {
8254 		if (insn_state[i] != EXPLORED) {
8255 			verbose(env, "unreachable insn %d\n", i);
8256 			ret = -EINVAL;
8257 			goto err_free;
8258 		}
8259 	}
8260 	ret = 0; /* cfg looks good */
8261 
8262 err_free:
8263 	kvfree(insn_state);
8264 	kvfree(insn_stack);
8265 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
8266 	return ret;
8267 }
8268 
8269 static int check_abnormal_return(struct bpf_verifier_env *env)
8270 {
8271 	int i;
8272 
8273 	for (i = 1; i < env->subprog_cnt; i++) {
8274 		if (env->subprog_info[i].has_ld_abs) {
8275 			verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
8276 			return -EINVAL;
8277 		}
8278 		if (env->subprog_info[i].has_tail_call) {
8279 			verbose(env, "tail_call is not allowed in subprogs without BTF\n");
8280 			return -EINVAL;
8281 		}
8282 	}
8283 	return 0;
8284 }
8285 
8286 /* The minimum supported BTF func info size */
8287 #define MIN_BPF_FUNCINFO_SIZE	8
8288 #define MAX_FUNCINFO_REC_SIZE	252
8289 
8290 static int check_btf_func(struct bpf_verifier_env *env,
8291 			  const union bpf_attr *attr,
8292 			  union bpf_attr __user *uattr)
8293 {
8294 	const struct btf_type *type, *func_proto, *ret_type;
8295 	u32 i, nfuncs, urec_size, min_size;
8296 	u32 krec_size = sizeof(struct bpf_func_info);
8297 	struct bpf_func_info *krecord;
8298 	struct bpf_func_info_aux *info_aux = NULL;
8299 	struct bpf_prog *prog;
8300 	const struct btf *btf;
8301 	void __user *urecord;
8302 	u32 prev_offset = 0;
8303 	bool scalar_return;
8304 	int ret = -ENOMEM;
8305 
8306 	nfuncs = attr->func_info_cnt;
8307 	if (!nfuncs) {
8308 		if (check_abnormal_return(env))
8309 			return -EINVAL;
8310 		return 0;
8311 	}
8312 
8313 	if (nfuncs != env->subprog_cnt) {
8314 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
8315 		return -EINVAL;
8316 	}
8317 
8318 	urec_size = attr->func_info_rec_size;
8319 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
8320 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
8321 	    urec_size % sizeof(u32)) {
8322 		verbose(env, "invalid func info rec size %u\n", urec_size);
8323 		return -EINVAL;
8324 	}
8325 
8326 	prog = env->prog;
8327 	btf = prog->aux->btf;
8328 
8329 	urecord = u64_to_user_ptr(attr->func_info);
8330 	min_size = min_t(u32, krec_size, urec_size);
8331 
8332 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
8333 	if (!krecord)
8334 		return -ENOMEM;
8335 	info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
8336 	if (!info_aux)
8337 		goto err_free;
8338 
8339 	for (i = 0; i < nfuncs; i++) {
8340 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
8341 		if (ret) {
8342 			if (ret == -E2BIG) {
8343 				verbose(env, "nonzero tailing record in func info");
8344 				/* set the size kernel expects so loader can zero
8345 				 * out the rest of the record.
8346 				 */
8347 				if (put_user(min_size, &uattr->func_info_rec_size))
8348 					ret = -EFAULT;
8349 			}
8350 			goto err_free;
8351 		}
8352 
8353 		if (copy_from_user(&krecord[i], urecord, min_size)) {
8354 			ret = -EFAULT;
8355 			goto err_free;
8356 		}
8357 
8358 		/* check insn_off */
8359 		ret = -EINVAL;
8360 		if (i == 0) {
8361 			if (krecord[i].insn_off) {
8362 				verbose(env,
8363 					"nonzero insn_off %u for the first func info record",
8364 					krecord[i].insn_off);
8365 				goto err_free;
8366 			}
8367 		} else if (krecord[i].insn_off <= prev_offset) {
8368 			verbose(env,
8369 				"same or smaller insn offset (%u) than previous func info record (%u)",
8370 				krecord[i].insn_off, prev_offset);
8371 			goto err_free;
8372 		}
8373 
8374 		if (env->subprog_info[i].start != krecord[i].insn_off) {
8375 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
8376 			goto err_free;
8377 		}
8378 
8379 		/* check type_id */
8380 		type = btf_type_by_id(btf, krecord[i].type_id);
8381 		if (!type || !btf_type_is_func(type)) {
8382 			verbose(env, "invalid type id %d in func info",
8383 				krecord[i].type_id);
8384 			goto err_free;
8385 		}
8386 		info_aux[i].linkage = BTF_INFO_VLEN(type->info);
8387 
8388 		func_proto = btf_type_by_id(btf, type->type);
8389 		if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
8390 			/* btf_func_check() already verified it during BTF load */
8391 			goto err_free;
8392 		ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
8393 		scalar_return =
8394 			btf_type_is_small_int(ret_type) || btf_type_is_enum(ret_type);
8395 		if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
8396 			verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
8397 			goto err_free;
8398 		}
8399 		if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
8400 			verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
8401 			goto err_free;
8402 		}
8403 
8404 		prev_offset = krecord[i].insn_off;
8405 		urecord += urec_size;
8406 	}
8407 
8408 	prog->aux->func_info = krecord;
8409 	prog->aux->func_info_cnt = nfuncs;
8410 	prog->aux->func_info_aux = info_aux;
8411 	return 0;
8412 
8413 err_free:
8414 	kvfree(krecord);
8415 	kfree(info_aux);
8416 	return ret;
8417 }
8418 
8419 static void adjust_btf_func(struct bpf_verifier_env *env)
8420 {
8421 	struct bpf_prog_aux *aux = env->prog->aux;
8422 	int i;
8423 
8424 	if (!aux->func_info)
8425 		return;
8426 
8427 	for (i = 0; i < env->subprog_cnt; i++)
8428 		aux->func_info[i].insn_off = env->subprog_info[i].start;
8429 }
8430 
8431 #define MIN_BPF_LINEINFO_SIZE	(offsetof(struct bpf_line_info, line_col) + \
8432 		sizeof(((struct bpf_line_info *)(0))->line_col))
8433 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
8434 
8435 static int check_btf_line(struct bpf_verifier_env *env,
8436 			  const union bpf_attr *attr,
8437 			  union bpf_attr __user *uattr)
8438 {
8439 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
8440 	struct bpf_subprog_info *sub;
8441 	struct bpf_line_info *linfo;
8442 	struct bpf_prog *prog;
8443 	const struct btf *btf;
8444 	void __user *ulinfo;
8445 	int err;
8446 
8447 	nr_linfo = attr->line_info_cnt;
8448 	if (!nr_linfo)
8449 		return 0;
8450 
8451 	rec_size = attr->line_info_rec_size;
8452 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
8453 	    rec_size > MAX_LINEINFO_REC_SIZE ||
8454 	    rec_size & (sizeof(u32) - 1))
8455 		return -EINVAL;
8456 
8457 	/* Need to zero it in case the userspace may
8458 	 * pass in a smaller bpf_line_info object.
8459 	 */
8460 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
8461 			 GFP_KERNEL | __GFP_NOWARN);
8462 	if (!linfo)
8463 		return -ENOMEM;
8464 
8465 	prog = env->prog;
8466 	btf = prog->aux->btf;
8467 
8468 	s = 0;
8469 	sub = env->subprog_info;
8470 	ulinfo = u64_to_user_ptr(attr->line_info);
8471 	expected_size = sizeof(struct bpf_line_info);
8472 	ncopy = min_t(u32, expected_size, rec_size);
8473 	for (i = 0; i < nr_linfo; i++) {
8474 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
8475 		if (err) {
8476 			if (err == -E2BIG) {
8477 				verbose(env, "nonzero tailing record in line_info");
8478 				if (put_user(expected_size,
8479 					     &uattr->line_info_rec_size))
8480 					err = -EFAULT;
8481 			}
8482 			goto err_free;
8483 		}
8484 
8485 		if (copy_from_user(&linfo[i], ulinfo, ncopy)) {
8486 			err = -EFAULT;
8487 			goto err_free;
8488 		}
8489 
8490 		/*
8491 		 * Check insn_off to ensure
8492 		 * 1) strictly increasing AND
8493 		 * 2) bounded by prog->len
8494 		 *
8495 		 * The linfo[0].insn_off == 0 check logically falls into
8496 		 * the later "missing bpf_line_info for func..." case
8497 		 * because the first linfo[0].insn_off must be the
8498 		 * first sub also and the first sub must have
8499 		 * subprog_info[0].start == 0.
8500 		 */
8501 		if ((i && linfo[i].insn_off <= prev_offset) ||
8502 		    linfo[i].insn_off >= prog->len) {
8503 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
8504 				i, linfo[i].insn_off, prev_offset,
8505 				prog->len);
8506 			err = -EINVAL;
8507 			goto err_free;
8508 		}
8509 
8510 		if (!prog->insnsi[linfo[i].insn_off].code) {
8511 			verbose(env,
8512 				"Invalid insn code at line_info[%u].insn_off\n",
8513 				i);
8514 			err = -EINVAL;
8515 			goto err_free;
8516 		}
8517 
8518 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
8519 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
8520 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
8521 			err = -EINVAL;
8522 			goto err_free;
8523 		}
8524 
8525 		if (s != env->subprog_cnt) {
8526 			if (linfo[i].insn_off == sub[s].start) {
8527 				sub[s].linfo_idx = i;
8528 				s++;
8529 			} else if (sub[s].start < linfo[i].insn_off) {
8530 				verbose(env, "missing bpf_line_info for func#%u\n", s);
8531 				err = -EINVAL;
8532 				goto err_free;
8533 			}
8534 		}
8535 
8536 		prev_offset = linfo[i].insn_off;
8537 		ulinfo += rec_size;
8538 	}
8539 
8540 	if (s != env->subprog_cnt) {
8541 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
8542 			env->subprog_cnt - s, s);
8543 		err = -EINVAL;
8544 		goto err_free;
8545 	}
8546 
8547 	prog->aux->linfo = linfo;
8548 	prog->aux->nr_linfo = nr_linfo;
8549 
8550 	return 0;
8551 
8552 err_free:
8553 	kvfree(linfo);
8554 	return err;
8555 }
8556 
8557 static int check_btf_info(struct bpf_verifier_env *env,
8558 			  const union bpf_attr *attr,
8559 			  union bpf_attr __user *uattr)
8560 {
8561 	struct btf *btf;
8562 	int err;
8563 
8564 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
8565 		if (check_abnormal_return(env))
8566 			return -EINVAL;
8567 		return 0;
8568 	}
8569 
8570 	btf = btf_get_by_fd(attr->prog_btf_fd);
8571 	if (IS_ERR(btf))
8572 		return PTR_ERR(btf);
8573 	env->prog->aux->btf = btf;
8574 
8575 	err = check_btf_func(env, attr, uattr);
8576 	if (err)
8577 		return err;
8578 
8579 	err = check_btf_line(env, attr, uattr);
8580 	if (err)
8581 		return err;
8582 
8583 	return 0;
8584 }
8585 
8586 /* check %cur's range satisfies %old's */
8587 static bool range_within(struct bpf_reg_state *old,
8588 			 struct bpf_reg_state *cur)
8589 {
8590 	return old->umin_value <= cur->umin_value &&
8591 	       old->umax_value >= cur->umax_value &&
8592 	       old->smin_value <= cur->smin_value &&
8593 	       old->smax_value >= cur->smax_value;
8594 }
8595 
8596 /* Maximum number of register states that can exist at once */
8597 #define ID_MAP_SIZE	(MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
8598 struct idpair {
8599 	u32 old;
8600 	u32 cur;
8601 };
8602 
8603 /* If in the old state two registers had the same id, then they need to have
8604  * the same id in the new state as well.  But that id could be different from
8605  * the old state, so we need to track the mapping from old to new ids.
8606  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
8607  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
8608  * regs with a different old id could still have new id 9, we don't care about
8609  * that.
8610  * So we look through our idmap to see if this old id has been seen before.  If
8611  * so, we require the new id to match; otherwise, we add the id pair to the map.
8612  */
8613 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
8614 {
8615 	unsigned int i;
8616 
8617 	for (i = 0; i < ID_MAP_SIZE; i++) {
8618 		if (!idmap[i].old) {
8619 			/* Reached an empty slot; haven't seen this id before */
8620 			idmap[i].old = old_id;
8621 			idmap[i].cur = cur_id;
8622 			return true;
8623 		}
8624 		if (idmap[i].old == old_id)
8625 			return idmap[i].cur == cur_id;
8626 	}
8627 	/* We ran out of idmap slots, which should be impossible */
8628 	WARN_ON_ONCE(1);
8629 	return false;
8630 }
8631 
8632 static void clean_func_state(struct bpf_verifier_env *env,
8633 			     struct bpf_func_state *st)
8634 {
8635 	enum bpf_reg_liveness live;
8636 	int i, j;
8637 
8638 	for (i = 0; i < BPF_REG_FP; i++) {
8639 		live = st->regs[i].live;
8640 		/* liveness must not touch this register anymore */
8641 		st->regs[i].live |= REG_LIVE_DONE;
8642 		if (!(live & REG_LIVE_READ))
8643 			/* since the register is unused, clear its state
8644 			 * to make further comparison simpler
8645 			 */
8646 			__mark_reg_not_init(env, &st->regs[i]);
8647 	}
8648 
8649 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
8650 		live = st->stack[i].spilled_ptr.live;
8651 		/* liveness must not touch this stack slot anymore */
8652 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
8653 		if (!(live & REG_LIVE_READ)) {
8654 			__mark_reg_not_init(env, &st->stack[i].spilled_ptr);
8655 			for (j = 0; j < BPF_REG_SIZE; j++)
8656 				st->stack[i].slot_type[j] = STACK_INVALID;
8657 		}
8658 	}
8659 }
8660 
8661 static void clean_verifier_state(struct bpf_verifier_env *env,
8662 				 struct bpf_verifier_state *st)
8663 {
8664 	int i;
8665 
8666 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
8667 		/* all regs in this state in all frames were already marked */
8668 		return;
8669 
8670 	for (i = 0; i <= st->curframe; i++)
8671 		clean_func_state(env, st->frame[i]);
8672 }
8673 
8674 /* the parentage chains form a tree.
8675  * the verifier states are added to state lists at given insn and
8676  * pushed into state stack for future exploration.
8677  * when the verifier reaches bpf_exit insn some of the verifer states
8678  * stored in the state lists have their final liveness state already,
8679  * but a lot of states will get revised from liveness point of view when
8680  * the verifier explores other branches.
8681  * Example:
8682  * 1: r0 = 1
8683  * 2: if r1 == 100 goto pc+1
8684  * 3: r0 = 2
8685  * 4: exit
8686  * when the verifier reaches exit insn the register r0 in the state list of
8687  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
8688  * of insn 2 and goes exploring further. At the insn 4 it will walk the
8689  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
8690  *
8691  * Since the verifier pushes the branch states as it sees them while exploring
8692  * the program the condition of walking the branch instruction for the second
8693  * time means that all states below this branch were already explored and
8694  * their final liveness markes are already propagated.
8695  * Hence when the verifier completes the search of state list in is_state_visited()
8696  * we can call this clean_live_states() function to mark all liveness states
8697  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
8698  * will not be used.
8699  * This function also clears the registers and stack for states that !READ
8700  * to simplify state merging.
8701  *
8702  * Important note here that walking the same branch instruction in the callee
8703  * doesn't meant that the states are DONE. The verifier has to compare
8704  * the callsites
8705  */
8706 static void clean_live_states(struct bpf_verifier_env *env, int insn,
8707 			      struct bpf_verifier_state *cur)
8708 {
8709 	struct bpf_verifier_state_list *sl;
8710 	int i;
8711 
8712 	sl = *explored_state(env, insn);
8713 	while (sl) {
8714 		if (sl->state.branches)
8715 			goto next;
8716 		if (sl->state.insn_idx != insn ||
8717 		    sl->state.curframe != cur->curframe)
8718 			goto next;
8719 		for (i = 0; i <= cur->curframe; i++)
8720 			if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
8721 				goto next;
8722 		clean_verifier_state(env, &sl->state);
8723 next:
8724 		sl = sl->next;
8725 	}
8726 }
8727 
8728 /* Returns true if (rold safe implies rcur safe) */
8729 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
8730 		    struct idpair *idmap)
8731 {
8732 	bool equal;
8733 
8734 	if (!(rold->live & REG_LIVE_READ))
8735 		/* explored state didn't use this */
8736 		return true;
8737 
8738 	equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
8739 
8740 	if (rold->type == PTR_TO_STACK)
8741 		/* two stack pointers are equal only if they're pointing to
8742 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
8743 		 */
8744 		return equal && rold->frameno == rcur->frameno;
8745 
8746 	if (equal)
8747 		return true;
8748 
8749 	if (rold->type == NOT_INIT)
8750 		/* explored state can't have used this */
8751 		return true;
8752 	if (rcur->type == NOT_INIT)
8753 		return false;
8754 	switch (rold->type) {
8755 	case SCALAR_VALUE:
8756 		if (rcur->type == SCALAR_VALUE) {
8757 			if (!rold->precise && !rcur->precise)
8758 				return true;
8759 			/* new val must satisfy old val knowledge */
8760 			return range_within(rold, rcur) &&
8761 			       tnum_in(rold->var_off, rcur->var_off);
8762 		} else {
8763 			/* We're trying to use a pointer in place of a scalar.
8764 			 * Even if the scalar was unbounded, this could lead to
8765 			 * pointer leaks because scalars are allowed to leak
8766 			 * while pointers are not. We could make this safe in
8767 			 * special cases if root is calling us, but it's
8768 			 * probably not worth the hassle.
8769 			 */
8770 			return false;
8771 		}
8772 	case PTR_TO_MAP_VALUE:
8773 		/* If the new min/max/var_off satisfy the old ones and
8774 		 * everything else matches, we are OK.
8775 		 * 'id' is not compared, since it's only used for maps with
8776 		 * bpf_spin_lock inside map element and in such cases if
8777 		 * the rest of the prog is valid for one map element then
8778 		 * it's valid for all map elements regardless of the key
8779 		 * used in bpf_map_lookup()
8780 		 */
8781 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
8782 		       range_within(rold, rcur) &&
8783 		       tnum_in(rold->var_off, rcur->var_off);
8784 	case PTR_TO_MAP_VALUE_OR_NULL:
8785 		/* a PTR_TO_MAP_VALUE could be safe to use as a
8786 		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
8787 		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
8788 		 * checked, doing so could have affected others with the same
8789 		 * id, and we can't check for that because we lost the id when
8790 		 * we converted to a PTR_TO_MAP_VALUE.
8791 		 */
8792 		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
8793 			return false;
8794 		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
8795 			return false;
8796 		/* Check our ids match any regs they're supposed to */
8797 		return check_ids(rold->id, rcur->id, idmap);
8798 	case PTR_TO_PACKET_META:
8799 	case PTR_TO_PACKET:
8800 		if (rcur->type != rold->type)
8801 			return false;
8802 		/* We must have at least as much range as the old ptr
8803 		 * did, so that any accesses which were safe before are
8804 		 * still safe.  This is true even if old range < old off,
8805 		 * since someone could have accessed through (ptr - k), or
8806 		 * even done ptr -= k in a register, to get a safe access.
8807 		 */
8808 		if (rold->range > rcur->range)
8809 			return false;
8810 		/* If the offsets don't match, we can't trust our alignment;
8811 		 * nor can we be sure that we won't fall out of range.
8812 		 */
8813 		if (rold->off != rcur->off)
8814 			return false;
8815 		/* id relations must be preserved */
8816 		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
8817 			return false;
8818 		/* new val must satisfy old val knowledge */
8819 		return range_within(rold, rcur) &&
8820 		       tnum_in(rold->var_off, rcur->var_off);
8821 	case PTR_TO_CTX:
8822 	case CONST_PTR_TO_MAP:
8823 	case PTR_TO_PACKET_END:
8824 	case PTR_TO_FLOW_KEYS:
8825 	case PTR_TO_SOCKET:
8826 	case PTR_TO_SOCKET_OR_NULL:
8827 	case PTR_TO_SOCK_COMMON:
8828 	case PTR_TO_SOCK_COMMON_OR_NULL:
8829 	case PTR_TO_TCP_SOCK:
8830 	case PTR_TO_TCP_SOCK_OR_NULL:
8831 	case PTR_TO_XDP_SOCK:
8832 		/* Only valid matches are exact, which memcmp() above
8833 		 * would have accepted
8834 		 */
8835 	default:
8836 		/* Don't know what's going on, just say it's not safe */
8837 		return false;
8838 	}
8839 
8840 	/* Shouldn't get here; if we do, say it's not safe */
8841 	WARN_ON_ONCE(1);
8842 	return false;
8843 }
8844 
8845 static bool stacksafe(struct bpf_func_state *old,
8846 		      struct bpf_func_state *cur,
8847 		      struct idpair *idmap)
8848 {
8849 	int i, spi;
8850 
8851 	/* walk slots of the explored stack and ignore any additional
8852 	 * slots in the current stack, since explored(safe) state
8853 	 * didn't use them
8854 	 */
8855 	for (i = 0; i < old->allocated_stack; i++) {
8856 		spi = i / BPF_REG_SIZE;
8857 
8858 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
8859 			i += BPF_REG_SIZE - 1;
8860 			/* explored state didn't use this */
8861 			continue;
8862 		}
8863 
8864 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
8865 			continue;
8866 
8867 		/* explored stack has more populated slots than current stack
8868 		 * and these slots were used
8869 		 */
8870 		if (i >= cur->allocated_stack)
8871 			return false;
8872 
8873 		/* if old state was safe with misc data in the stack
8874 		 * it will be safe with zero-initialized stack.
8875 		 * The opposite is not true
8876 		 */
8877 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
8878 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
8879 			continue;
8880 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
8881 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
8882 			/* Ex: old explored (safe) state has STACK_SPILL in
8883 			 * this stack slot, but current has STACK_MISC ->
8884 			 * this verifier states are not equivalent,
8885 			 * return false to continue verification of this path
8886 			 */
8887 			return false;
8888 		if (i % BPF_REG_SIZE)
8889 			continue;
8890 		if (old->stack[spi].slot_type[0] != STACK_SPILL)
8891 			continue;
8892 		if (!regsafe(&old->stack[spi].spilled_ptr,
8893 			     &cur->stack[spi].spilled_ptr,
8894 			     idmap))
8895 			/* when explored and current stack slot are both storing
8896 			 * spilled registers, check that stored pointers types
8897 			 * are the same as well.
8898 			 * Ex: explored safe path could have stored
8899 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
8900 			 * but current path has stored:
8901 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
8902 			 * such verifier states are not equivalent.
8903 			 * return false to continue verification of this path
8904 			 */
8905 			return false;
8906 	}
8907 	return true;
8908 }
8909 
8910 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
8911 {
8912 	if (old->acquired_refs != cur->acquired_refs)
8913 		return false;
8914 	return !memcmp(old->refs, cur->refs,
8915 		       sizeof(*old->refs) * old->acquired_refs);
8916 }
8917 
8918 /* compare two verifier states
8919  *
8920  * all states stored in state_list are known to be valid, since
8921  * verifier reached 'bpf_exit' instruction through them
8922  *
8923  * this function is called when verifier exploring different branches of
8924  * execution popped from the state stack. If it sees an old state that has
8925  * more strict register state and more strict stack state then this execution
8926  * branch doesn't need to be explored further, since verifier already
8927  * concluded that more strict state leads to valid finish.
8928  *
8929  * Therefore two states are equivalent if register state is more conservative
8930  * and explored stack state is more conservative than the current one.
8931  * Example:
8932  *       explored                   current
8933  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
8934  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
8935  *
8936  * In other words if current stack state (one being explored) has more
8937  * valid slots than old one that already passed validation, it means
8938  * the verifier can stop exploring and conclude that current state is valid too
8939  *
8940  * Similarly with registers. If explored state has register type as invalid
8941  * whereas register type in current state is meaningful, it means that
8942  * the current state will reach 'bpf_exit' instruction safely
8943  */
8944 static bool func_states_equal(struct bpf_func_state *old,
8945 			      struct bpf_func_state *cur)
8946 {
8947 	struct idpair *idmap;
8948 	bool ret = false;
8949 	int i;
8950 
8951 	idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
8952 	/* If we failed to allocate the idmap, just say it's not safe */
8953 	if (!idmap)
8954 		return false;
8955 
8956 	for (i = 0; i < MAX_BPF_REG; i++) {
8957 		if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
8958 			goto out_free;
8959 	}
8960 
8961 	if (!stacksafe(old, cur, idmap))
8962 		goto out_free;
8963 
8964 	if (!refsafe(old, cur))
8965 		goto out_free;
8966 	ret = true;
8967 out_free:
8968 	kfree(idmap);
8969 	return ret;
8970 }
8971 
8972 static bool states_equal(struct bpf_verifier_env *env,
8973 			 struct bpf_verifier_state *old,
8974 			 struct bpf_verifier_state *cur)
8975 {
8976 	int i;
8977 
8978 	if (old->curframe != cur->curframe)
8979 		return false;
8980 
8981 	/* Verification state from speculative execution simulation
8982 	 * must never prune a non-speculative execution one.
8983 	 */
8984 	if (old->speculative && !cur->speculative)
8985 		return false;
8986 
8987 	if (old->active_spin_lock != cur->active_spin_lock)
8988 		return false;
8989 
8990 	/* for states to be equal callsites have to be the same
8991 	 * and all frame states need to be equivalent
8992 	 */
8993 	for (i = 0; i <= old->curframe; i++) {
8994 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
8995 			return false;
8996 		if (!func_states_equal(old->frame[i], cur->frame[i]))
8997 			return false;
8998 	}
8999 	return true;
9000 }
9001 
9002 /* Return 0 if no propagation happened. Return negative error code if error
9003  * happened. Otherwise, return the propagated bit.
9004  */
9005 static int propagate_liveness_reg(struct bpf_verifier_env *env,
9006 				  struct bpf_reg_state *reg,
9007 				  struct bpf_reg_state *parent_reg)
9008 {
9009 	u8 parent_flag = parent_reg->live & REG_LIVE_READ;
9010 	u8 flag = reg->live & REG_LIVE_READ;
9011 	int err;
9012 
9013 	/* When comes here, read flags of PARENT_REG or REG could be any of
9014 	 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
9015 	 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
9016 	 */
9017 	if (parent_flag == REG_LIVE_READ64 ||
9018 	    /* Or if there is no read flag from REG. */
9019 	    !flag ||
9020 	    /* Or if the read flag from REG is the same as PARENT_REG. */
9021 	    parent_flag == flag)
9022 		return 0;
9023 
9024 	err = mark_reg_read(env, reg, parent_reg, flag);
9025 	if (err)
9026 		return err;
9027 
9028 	return flag;
9029 }
9030 
9031 /* A write screens off any subsequent reads; but write marks come from the
9032  * straight-line code between a state and its parent.  When we arrive at an
9033  * equivalent state (jump target or such) we didn't arrive by the straight-line
9034  * code, so read marks in the state must propagate to the parent regardless
9035  * of the state's write marks. That's what 'parent == state->parent' comparison
9036  * in mark_reg_read() is for.
9037  */
9038 static int propagate_liveness(struct bpf_verifier_env *env,
9039 			      const struct bpf_verifier_state *vstate,
9040 			      struct bpf_verifier_state *vparent)
9041 {
9042 	struct bpf_reg_state *state_reg, *parent_reg;
9043 	struct bpf_func_state *state, *parent;
9044 	int i, frame, err = 0;
9045 
9046 	if (vparent->curframe != vstate->curframe) {
9047 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
9048 		     vparent->curframe, vstate->curframe);
9049 		return -EFAULT;
9050 	}
9051 	/* Propagate read liveness of registers... */
9052 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
9053 	for (frame = 0; frame <= vstate->curframe; frame++) {
9054 		parent = vparent->frame[frame];
9055 		state = vstate->frame[frame];
9056 		parent_reg = parent->regs;
9057 		state_reg = state->regs;
9058 		/* We don't need to worry about FP liveness, it's read-only */
9059 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
9060 			err = propagate_liveness_reg(env, &state_reg[i],
9061 						     &parent_reg[i]);
9062 			if (err < 0)
9063 				return err;
9064 			if (err == REG_LIVE_READ64)
9065 				mark_insn_zext(env, &parent_reg[i]);
9066 		}
9067 
9068 		/* Propagate stack slots. */
9069 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
9070 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
9071 			parent_reg = &parent->stack[i].spilled_ptr;
9072 			state_reg = &state->stack[i].spilled_ptr;
9073 			err = propagate_liveness_reg(env, state_reg,
9074 						     parent_reg);
9075 			if (err < 0)
9076 				return err;
9077 		}
9078 	}
9079 	return 0;
9080 }
9081 
9082 /* find precise scalars in the previous equivalent state and
9083  * propagate them into the current state
9084  */
9085 static int propagate_precision(struct bpf_verifier_env *env,
9086 			       const struct bpf_verifier_state *old)
9087 {
9088 	struct bpf_reg_state *state_reg;
9089 	struct bpf_func_state *state;
9090 	int i, err = 0;
9091 
9092 	state = old->frame[old->curframe];
9093 	state_reg = state->regs;
9094 	for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
9095 		if (state_reg->type != SCALAR_VALUE ||
9096 		    !state_reg->precise)
9097 			continue;
9098 		if (env->log.level & BPF_LOG_LEVEL2)
9099 			verbose(env, "propagating r%d\n", i);
9100 		err = mark_chain_precision(env, i);
9101 		if (err < 0)
9102 			return err;
9103 	}
9104 
9105 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
9106 		if (state->stack[i].slot_type[0] != STACK_SPILL)
9107 			continue;
9108 		state_reg = &state->stack[i].spilled_ptr;
9109 		if (state_reg->type != SCALAR_VALUE ||
9110 		    !state_reg->precise)
9111 			continue;
9112 		if (env->log.level & BPF_LOG_LEVEL2)
9113 			verbose(env, "propagating fp%d\n",
9114 				(-i - 1) * BPF_REG_SIZE);
9115 		err = mark_chain_precision_stack(env, i);
9116 		if (err < 0)
9117 			return err;
9118 	}
9119 	return 0;
9120 }
9121 
9122 static bool states_maybe_looping(struct bpf_verifier_state *old,
9123 				 struct bpf_verifier_state *cur)
9124 {
9125 	struct bpf_func_state *fold, *fcur;
9126 	int i, fr = cur->curframe;
9127 
9128 	if (old->curframe != fr)
9129 		return false;
9130 
9131 	fold = old->frame[fr];
9132 	fcur = cur->frame[fr];
9133 	for (i = 0; i < MAX_BPF_REG; i++)
9134 		if (memcmp(&fold->regs[i], &fcur->regs[i],
9135 			   offsetof(struct bpf_reg_state, parent)))
9136 			return false;
9137 	return true;
9138 }
9139 
9140 
9141 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
9142 {
9143 	struct bpf_verifier_state_list *new_sl;
9144 	struct bpf_verifier_state_list *sl, **pprev;
9145 	struct bpf_verifier_state *cur = env->cur_state, *new;
9146 	int i, j, err, states_cnt = 0;
9147 	bool add_new_state = env->test_state_freq ? true : false;
9148 
9149 	cur->last_insn_idx = env->prev_insn_idx;
9150 	if (!env->insn_aux_data[insn_idx].prune_point)
9151 		/* this 'insn_idx' instruction wasn't marked, so we will not
9152 		 * be doing state search here
9153 		 */
9154 		return 0;
9155 
9156 	/* bpf progs typically have pruning point every 4 instructions
9157 	 * http://vger.kernel.org/bpfconf2019.html#session-1
9158 	 * Do not add new state for future pruning if the verifier hasn't seen
9159 	 * at least 2 jumps and at least 8 instructions.
9160 	 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
9161 	 * In tests that amounts to up to 50% reduction into total verifier
9162 	 * memory consumption and 20% verifier time speedup.
9163 	 */
9164 	if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
9165 	    env->insn_processed - env->prev_insn_processed >= 8)
9166 		add_new_state = true;
9167 
9168 	pprev = explored_state(env, insn_idx);
9169 	sl = *pprev;
9170 
9171 	clean_live_states(env, insn_idx, cur);
9172 
9173 	while (sl) {
9174 		states_cnt++;
9175 		if (sl->state.insn_idx != insn_idx)
9176 			goto next;
9177 		if (sl->state.branches) {
9178 			if (states_maybe_looping(&sl->state, cur) &&
9179 			    states_equal(env, &sl->state, cur)) {
9180 				verbose_linfo(env, insn_idx, "; ");
9181 				verbose(env, "infinite loop detected at insn %d\n", insn_idx);
9182 				return -EINVAL;
9183 			}
9184 			/* if the verifier is processing a loop, avoid adding new state
9185 			 * too often, since different loop iterations have distinct
9186 			 * states and may not help future pruning.
9187 			 * This threshold shouldn't be too low to make sure that
9188 			 * a loop with large bound will be rejected quickly.
9189 			 * The most abusive loop will be:
9190 			 * r1 += 1
9191 			 * if r1 < 1000000 goto pc-2
9192 			 * 1M insn_procssed limit / 100 == 10k peak states.
9193 			 * This threshold shouldn't be too high either, since states
9194 			 * at the end of the loop are likely to be useful in pruning.
9195 			 */
9196 			if (env->jmps_processed - env->prev_jmps_processed < 20 &&
9197 			    env->insn_processed - env->prev_insn_processed < 100)
9198 				add_new_state = false;
9199 			goto miss;
9200 		}
9201 		if (states_equal(env, &sl->state, cur)) {
9202 			sl->hit_cnt++;
9203 			/* reached equivalent register/stack state,
9204 			 * prune the search.
9205 			 * Registers read by the continuation are read by us.
9206 			 * If we have any write marks in env->cur_state, they
9207 			 * will prevent corresponding reads in the continuation
9208 			 * from reaching our parent (an explored_state).  Our
9209 			 * own state will get the read marks recorded, but
9210 			 * they'll be immediately forgotten as we're pruning
9211 			 * this state and will pop a new one.
9212 			 */
9213 			err = propagate_liveness(env, &sl->state, cur);
9214 
9215 			/* if previous state reached the exit with precision and
9216 			 * current state is equivalent to it (except precsion marks)
9217 			 * the precision needs to be propagated back in
9218 			 * the current state.
9219 			 */
9220 			err = err ? : push_jmp_history(env, cur);
9221 			err = err ? : propagate_precision(env, &sl->state);
9222 			if (err)
9223 				return err;
9224 			return 1;
9225 		}
9226 miss:
9227 		/* when new state is not going to be added do not increase miss count.
9228 		 * Otherwise several loop iterations will remove the state
9229 		 * recorded earlier. The goal of these heuristics is to have
9230 		 * states from some iterations of the loop (some in the beginning
9231 		 * and some at the end) to help pruning.
9232 		 */
9233 		if (add_new_state)
9234 			sl->miss_cnt++;
9235 		/* heuristic to determine whether this state is beneficial
9236 		 * to keep checking from state equivalence point of view.
9237 		 * Higher numbers increase max_states_per_insn and verification time,
9238 		 * but do not meaningfully decrease insn_processed.
9239 		 */
9240 		if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
9241 			/* the state is unlikely to be useful. Remove it to
9242 			 * speed up verification
9243 			 */
9244 			*pprev = sl->next;
9245 			if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
9246 				u32 br = sl->state.branches;
9247 
9248 				WARN_ONCE(br,
9249 					  "BUG live_done but branches_to_explore %d\n",
9250 					  br);
9251 				free_verifier_state(&sl->state, false);
9252 				kfree(sl);
9253 				env->peak_states--;
9254 			} else {
9255 				/* cannot free this state, since parentage chain may
9256 				 * walk it later. Add it for free_list instead to
9257 				 * be freed at the end of verification
9258 				 */
9259 				sl->next = env->free_list;
9260 				env->free_list = sl;
9261 			}
9262 			sl = *pprev;
9263 			continue;
9264 		}
9265 next:
9266 		pprev = &sl->next;
9267 		sl = *pprev;
9268 	}
9269 
9270 	if (env->max_states_per_insn < states_cnt)
9271 		env->max_states_per_insn = states_cnt;
9272 
9273 	if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
9274 		return push_jmp_history(env, cur);
9275 
9276 	if (!add_new_state)
9277 		return push_jmp_history(env, cur);
9278 
9279 	/* There were no equivalent states, remember the current one.
9280 	 * Technically the current state is not proven to be safe yet,
9281 	 * but it will either reach outer most bpf_exit (which means it's safe)
9282 	 * or it will be rejected. When there are no loops the verifier won't be
9283 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
9284 	 * again on the way to bpf_exit.
9285 	 * When looping the sl->state.branches will be > 0 and this state
9286 	 * will not be considered for equivalence until branches == 0.
9287 	 */
9288 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
9289 	if (!new_sl)
9290 		return -ENOMEM;
9291 	env->total_states++;
9292 	env->peak_states++;
9293 	env->prev_jmps_processed = env->jmps_processed;
9294 	env->prev_insn_processed = env->insn_processed;
9295 
9296 	/* add new state to the head of linked list */
9297 	new = &new_sl->state;
9298 	err = copy_verifier_state(new, cur);
9299 	if (err) {
9300 		free_verifier_state(new, false);
9301 		kfree(new_sl);
9302 		return err;
9303 	}
9304 	new->insn_idx = insn_idx;
9305 	WARN_ONCE(new->branches != 1,
9306 		  "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
9307 
9308 	cur->parent = new;
9309 	cur->first_insn_idx = insn_idx;
9310 	clear_jmp_history(cur);
9311 	new_sl->next = *explored_state(env, insn_idx);
9312 	*explored_state(env, insn_idx) = new_sl;
9313 	/* connect new state to parentage chain. Current frame needs all
9314 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
9315 	 * to the stack implicitly by JITs) so in callers' frames connect just
9316 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
9317 	 * the state of the call instruction (with WRITTEN set), and r0 comes
9318 	 * from callee with its full parentage chain, anyway.
9319 	 */
9320 	/* clear write marks in current state: the writes we did are not writes
9321 	 * our child did, so they don't screen off its reads from us.
9322 	 * (There are no read marks in current state, because reads always mark
9323 	 * their parent and current state never has children yet.  Only
9324 	 * explored_states can get read marks.)
9325 	 */
9326 	for (j = 0; j <= cur->curframe; j++) {
9327 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
9328 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
9329 		for (i = 0; i < BPF_REG_FP; i++)
9330 			cur->frame[j]->regs[i].live = REG_LIVE_NONE;
9331 	}
9332 
9333 	/* all stack frames are accessible from callee, clear them all */
9334 	for (j = 0; j <= cur->curframe; j++) {
9335 		struct bpf_func_state *frame = cur->frame[j];
9336 		struct bpf_func_state *newframe = new->frame[j];
9337 
9338 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
9339 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
9340 			frame->stack[i].spilled_ptr.parent =
9341 						&newframe->stack[i].spilled_ptr;
9342 		}
9343 	}
9344 	return 0;
9345 }
9346 
9347 /* Return true if it's OK to have the same insn return a different type. */
9348 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
9349 {
9350 	switch (type) {
9351 	case PTR_TO_CTX:
9352 	case PTR_TO_SOCKET:
9353 	case PTR_TO_SOCKET_OR_NULL:
9354 	case PTR_TO_SOCK_COMMON:
9355 	case PTR_TO_SOCK_COMMON_OR_NULL:
9356 	case PTR_TO_TCP_SOCK:
9357 	case PTR_TO_TCP_SOCK_OR_NULL:
9358 	case PTR_TO_XDP_SOCK:
9359 	case PTR_TO_BTF_ID:
9360 	case PTR_TO_BTF_ID_OR_NULL:
9361 		return false;
9362 	default:
9363 		return true;
9364 	}
9365 }
9366 
9367 /* If an instruction was previously used with particular pointer types, then we
9368  * need to be careful to avoid cases such as the below, where it may be ok
9369  * for one branch accessing the pointer, but not ok for the other branch:
9370  *
9371  * R1 = sock_ptr
9372  * goto X;
9373  * ...
9374  * R1 = some_other_valid_ptr;
9375  * goto X;
9376  * ...
9377  * R2 = *(u32 *)(R1 + 0);
9378  */
9379 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
9380 {
9381 	return src != prev && (!reg_type_mismatch_ok(src) ||
9382 			       !reg_type_mismatch_ok(prev));
9383 }
9384 
9385 static int do_check(struct bpf_verifier_env *env)
9386 {
9387 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
9388 	struct bpf_verifier_state *state = env->cur_state;
9389 	struct bpf_insn *insns = env->prog->insnsi;
9390 	struct bpf_reg_state *regs;
9391 	int insn_cnt = env->prog->len;
9392 	bool do_print_state = false;
9393 	int prev_insn_idx = -1;
9394 
9395 	for (;;) {
9396 		struct bpf_insn *insn;
9397 		u8 class;
9398 		int err;
9399 
9400 		env->prev_insn_idx = prev_insn_idx;
9401 		if (env->insn_idx >= insn_cnt) {
9402 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
9403 				env->insn_idx, insn_cnt);
9404 			return -EFAULT;
9405 		}
9406 
9407 		insn = &insns[env->insn_idx];
9408 		class = BPF_CLASS(insn->code);
9409 
9410 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
9411 			verbose(env,
9412 				"BPF program is too large. Processed %d insn\n",
9413 				env->insn_processed);
9414 			return -E2BIG;
9415 		}
9416 
9417 		err = is_state_visited(env, env->insn_idx);
9418 		if (err < 0)
9419 			return err;
9420 		if (err == 1) {
9421 			/* found equivalent state, can prune the search */
9422 			if (env->log.level & BPF_LOG_LEVEL) {
9423 				if (do_print_state)
9424 					verbose(env, "\nfrom %d to %d%s: safe\n",
9425 						env->prev_insn_idx, env->insn_idx,
9426 						env->cur_state->speculative ?
9427 						" (speculative execution)" : "");
9428 				else
9429 					verbose(env, "%d: safe\n", env->insn_idx);
9430 			}
9431 			goto process_bpf_exit;
9432 		}
9433 
9434 		if (signal_pending(current))
9435 			return -EAGAIN;
9436 
9437 		if (need_resched())
9438 			cond_resched();
9439 
9440 		if (env->log.level & BPF_LOG_LEVEL2 ||
9441 		    (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
9442 			if (env->log.level & BPF_LOG_LEVEL2)
9443 				verbose(env, "%d:", env->insn_idx);
9444 			else
9445 				verbose(env, "\nfrom %d to %d%s:",
9446 					env->prev_insn_idx, env->insn_idx,
9447 					env->cur_state->speculative ?
9448 					" (speculative execution)" : "");
9449 			print_verifier_state(env, state->frame[state->curframe]);
9450 			do_print_state = false;
9451 		}
9452 
9453 		if (env->log.level & BPF_LOG_LEVEL) {
9454 			const struct bpf_insn_cbs cbs = {
9455 				.cb_print	= verbose,
9456 				.private_data	= env,
9457 			};
9458 
9459 			verbose_linfo(env, env->insn_idx, "; ");
9460 			verbose(env, "%d: ", env->insn_idx);
9461 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
9462 		}
9463 
9464 		if (bpf_prog_is_dev_bound(env->prog->aux)) {
9465 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
9466 							   env->prev_insn_idx);
9467 			if (err)
9468 				return err;
9469 		}
9470 
9471 		regs = cur_regs(env);
9472 		env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
9473 		prev_insn_idx = env->insn_idx;
9474 
9475 		if (class == BPF_ALU || class == BPF_ALU64) {
9476 			err = check_alu_op(env, insn);
9477 			if (err)
9478 				return err;
9479 
9480 		} else if (class == BPF_LDX) {
9481 			enum bpf_reg_type *prev_src_type, src_reg_type;
9482 
9483 			/* check for reserved fields is already done */
9484 
9485 			/* check src operand */
9486 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
9487 			if (err)
9488 				return err;
9489 
9490 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
9491 			if (err)
9492 				return err;
9493 
9494 			src_reg_type = regs[insn->src_reg].type;
9495 
9496 			/* check that memory (src_reg + off) is readable,
9497 			 * the state of dst_reg will be updated by this func
9498 			 */
9499 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
9500 					       insn->off, BPF_SIZE(insn->code),
9501 					       BPF_READ, insn->dst_reg, false);
9502 			if (err)
9503 				return err;
9504 
9505 			prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
9506 
9507 			if (*prev_src_type == NOT_INIT) {
9508 				/* saw a valid insn
9509 				 * dst_reg = *(u32 *)(src_reg + off)
9510 				 * save type to validate intersecting paths
9511 				 */
9512 				*prev_src_type = src_reg_type;
9513 
9514 			} else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
9515 				/* ABuser program is trying to use the same insn
9516 				 * dst_reg = *(u32*) (src_reg + off)
9517 				 * with different pointer types:
9518 				 * src_reg == ctx in one branch and
9519 				 * src_reg == stack|map in some other branch.
9520 				 * Reject it.
9521 				 */
9522 				verbose(env, "same insn cannot be used with different pointers\n");
9523 				return -EINVAL;
9524 			}
9525 
9526 		} else if (class == BPF_STX) {
9527 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
9528 
9529 			if (BPF_MODE(insn->code) == BPF_XADD) {
9530 				err = check_xadd(env, env->insn_idx, insn);
9531 				if (err)
9532 					return err;
9533 				env->insn_idx++;
9534 				continue;
9535 			}
9536 
9537 			/* check src1 operand */
9538 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
9539 			if (err)
9540 				return err;
9541 			/* check src2 operand */
9542 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
9543 			if (err)
9544 				return err;
9545 
9546 			dst_reg_type = regs[insn->dst_reg].type;
9547 
9548 			/* check that memory (dst_reg + off) is writeable */
9549 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
9550 					       insn->off, BPF_SIZE(insn->code),
9551 					       BPF_WRITE, insn->src_reg, false);
9552 			if (err)
9553 				return err;
9554 
9555 			prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
9556 
9557 			if (*prev_dst_type == NOT_INIT) {
9558 				*prev_dst_type = dst_reg_type;
9559 			} else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
9560 				verbose(env, "same insn cannot be used with different pointers\n");
9561 				return -EINVAL;
9562 			}
9563 
9564 		} else if (class == BPF_ST) {
9565 			if (BPF_MODE(insn->code) != BPF_MEM ||
9566 			    insn->src_reg != BPF_REG_0) {
9567 				verbose(env, "BPF_ST uses reserved fields\n");
9568 				return -EINVAL;
9569 			}
9570 			/* check src operand */
9571 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
9572 			if (err)
9573 				return err;
9574 
9575 			if (is_ctx_reg(env, insn->dst_reg)) {
9576 				verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
9577 					insn->dst_reg,
9578 					reg_type_str[reg_state(env, insn->dst_reg)->type]);
9579 				return -EACCES;
9580 			}
9581 
9582 			/* check that memory (dst_reg + off) is writeable */
9583 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
9584 					       insn->off, BPF_SIZE(insn->code),
9585 					       BPF_WRITE, -1, false);
9586 			if (err)
9587 				return err;
9588 
9589 		} else if (class == BPF_JMP || class == BPF_JMP32) {
9590 			u8 opcode = BPF_OP(insn->code);
9591 
9592 			env->jmps_processed++;
9593 			if (opcode == BPF_CALL) {
9594 				if (BPF_SRC(insn->code) != BPF_K ||
9595 				    insn->off != 0 ||
9596 				    (insn->src_reg != BPF_REG_0 &&
9597 				     insn->src_reg != BPF_PSEUDO_CALL) ||
9598 				    insn->dst_reg != BPF_REG_0 ||
9599 				    class == BPF_JMP32) {
9600 					verbose(env, "BPF_CALL uses reserved fields\n");
9601 					return -EINVAL;
9602 				}
9603 
9604 				if (env->cur_state->active_spin_lock &&
9605 				    (insn->src_reg == BPF_PSEUDO_CALL ||
9606 				     insn->imm != BPF_FUNC_spin_unlock)) {
9607 					verbose(env, "function calls are not allowed while holding a lock\n");
9608 					return -EINVAL;
9609 				}
9610 				if (insn->src_reg == BPF_PSEUDO_CALL)
9611 					err = check_func_call(env, insn, &env->insn_idx);
9612 				else
9613 					err = check_helper_call(env, insn->imm, env->insn_idx);
9614 				if (err)
9615 					return err;
9616 
9617 			} else if (opcode == BPF_JA) {
9618 				if (BPF_SRC(insn->code) != BPF_K ||
9619 				    insn->imm != 0 ||
9620 				    insn->src_reg != BPF_REG_0 ||
9621 				    insn->dst_reg != BPF_REG_0 ||
9622 				    class == BPF_JMP32) {
9623 					verbose(env, "BPF_JA uses reserved fields\n");
9624 					return -EINVAL;
9625 				}
9626 
9627 				env->insn_idx += insn->off + 1;
9628 				continue;
9629 
9630 			} else if (opcode == BPF_EXIT) {
9631 				if (BPF_SRC(insn->code) != BPF_K ||
9632 				    insn->imm != 0 ||
9633 				    insn->src_reg != BPF_REG_0 ||
9634 				    insn->dst_reg != BPF_REG_0 ||
9635 				    class == BPF_JMP32) {
9636 					verbose(env, "BPF_EXIT uses reserved fields\n");
9637 					return -EINVAL;
9638 				}
9639 
9640 				if (env->cur_state->active_spin_lock) {
9641 					verbose(env, "bpf_spin_unlock is missing\n");
9642 					return -EINVAL;
9643 				}
9644 
9645 				if (state->curframe) {
9646 					/* exit from nested function */
9647 					err = prepare_func_exit(env, &env->insn_idx);
9648 					if (err)
9649 						return err;
9650 					do_print_state = true;
9651 					continue;
9652 				}
9653 
9654 				err = check_reference_leak(env);
9655 				if (err)
9656 					return err;
9657 
9658 				err = check_return_code(env);
9659 				if (err)
9660 					return err;
9661 process_bpf_exit:
9662 				update_branch_counts(env, env->cur_state);
9663 				err = pop_stack(env, &prev_insn_idx,
9664 						&env->insn_idx, pop_log);
9665 				if (err < 0) {
9666 					if (err != -ENOENT)
9667 						return err;
9668 					break;
9669 				} else {
9670 					do_print_state = true;
9671 					continue;
9672 				}
9673 			} else {
9674 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
9675 				if (err)
9676 					return err;
9677 			}
9678 		} else if (class == BPF_LD) {
9679 			u8 mode = BPF_MODE(insn->code);
9680 
9681 			if (mode == BPF_ABS || mode == BPF_IND) {
9682 				err = check_ld_abs(env, insn);
9683 				if (err)
9684 					return err;
9685 
9686 			} else if (mode == BPF_IMM) {
9687 				err = check_ld_imm(env, insn);
9688 				if (err)
9689 					return err;
9690 
9691 				env->insn_idx++;
9692 				env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
9693 			} else {
9694 				verbose(env, "invalid BPF_LD mode\n");
9695 				return -EINVAL;
9696 			}
9697 		} else {
9698 			verbose(env, "unknown insn class %d\n", class);
9699 			return -EINVAL;
9700 		}
9701 
9702 		env->insn_idx++;
9703 	}
9704 
9705 	return 0;
9706 }
9707 
9708 /* replace pseudo btf_id with kernel symbol address */
9709 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
9710 			       struct bpf_insn *insn,
9711 			       struct bpf_insn_aux_data *aux)
9712 {
9713 	const struct btf_var_secinfo *vsi;
9714 	const struct btf_type *datasec;
9715 	const struct btf_type *t;
9716 	const char *sym_name;
9717 	bool percpu = false;
9718 	u32 type, id = insn->imm;
9719 	s32 datasec_id;
9720 	u64 addr;
9721 	int i;
9722 
9723 	if (!btf_vmlinux) {
9724 		verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
9725 		return -EINVAL;
9726 	}
9727 
9728 	if (insn[1].imm != 0) {
9729 		verbose(env, "reserved field (insn[1].imm) is used in pseudo_btf_id ldimm64 insn.\n");
9730 		return -EINVAL;
9731 	}
9732 
9733 	t = btf_type_by_id(btf_vmlinux, id);
9734 	if (!t) {
9735 		verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
9736 		return -ENOENT;
9737 	}
9738 
9739 	if (!btf_type_is_var(t)) {
9740 		verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n",
9741 			id);
9742 		return -EINVAL;
9743 	}
9744 
9745 	sym_name = btf_name_by_offset(btf_vmlinux, t->name_off);
9746 	addr = kallsyms_lookup_name(sym_name);
9747 	if (!addr) {
9748 		verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
9749 			sym_name);
9750 		return -ENOENT;
9751 	}
9752 
9753 	datasec_id = btf_find_by_name_kind(btf_vmlinux, ".data..percpu",
9754 					   BTF_KIND_DATASEC);
9755 	if (datasec_id > 0) {
9756 		datasec = btf_type_by_id(btf_vmlinux, datasec_id);
9757 		for_each_vsi(i, datasec, vsi) {
9758 			if (vsi->type == id) {
9759 				percpu = true;
9760 				break;
9761 			}
9762 		}
9763 	}
9764 
9765 	insn[0].imm = (u32)addr;
9766 	insn[1].imm = addr >> 32;
9767 
9768 	type = t->type;
9769 	t = btf_type_skip_modifiers(btf_vmlinux, type, NULL);
9770 	if (percpu) {
9771 		aux->btf_var.reg_type = PTR_TO_PERCPU_BTF_ID;
9772 		aux->btf_var.btf = btf_vmlinux;
9773 		aux->btf_var.btf_id = type;
9774 	} else if (!btf_type_is_struct(t)) {
9775 		const struct btf_type *ret;
9776 		const char *tname;
9777 		u32 tsize;
9778 
9779 		/* resolve the type size of ksym. */
9780 		ret = btf_resolve_size(btf_vmlinux, t, &tsize);
9781 		if (IS_ERR(ret)) {
9782 			tname = btf_name_by_offset(btf_vmlinux, t->name_off);
9783 			verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
9784 				tname, PTR_ERR(ret));
9785 			return -EINVAL;
9786 		}
9787 		aux->btf_var.reg_type = PTR_TO_MEM;
9788 		aux->btf_var.mem_size = tsize;
9789 	} else {
9790 		aux->btf_var.reg_type = PTR_TO_BTF_ID;
9791 		aux->btf_var.btf = btf_vmlinux;
9792 		aux->btf_var.btf_id = type;
9793 	}
9794 	return 0;
9795 }
9796 
9797 static int check_map_prealloc(struct bpf_map *map)
9798 {
9799 	return (map->map_type != BPF_MAP_TYPE_HASH &&
9800 		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
9801 		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
9802 		!(map->map_flags & BPF_F_NO_PREALLOC);
9803 }
9804 
9805 static bool is_tracing_prog_type(enum bpf_prog_type type)
9806 {
9807 	switch (type) {
9808 	case BPF_PROG_TYPE_KPROBE:
9809 	case BPF_PROG_TYPE_TRACEPOINT:
9810 	case BPF_PROG_TYPE_PERF_EVENT:
9811 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
9812 		return true;
9813 	default:
9814 		return false;
9815 	}
9816 }
9817 
9818 static bool is_preallocated_map(struct bpf_map *map)
9819 {
9820 	if (!check_map_prealloc(map))
9821 		return false;
9822 	if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta))
9823 		return false;
9824 	return true;
9825 }
9826 
9827 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
9828 					struct bpf_map *map,
9829 					struct bpf_prog *prog)
9830 
9831 {
9832 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
9833 	/*
9834 	 * Validate that trace type programs use preallocated hash maps.
9835 	 *
9836 	 * For programs attached to PERF events this is mandatory as the
9837 	 * perf NMI can hit any arbitrary code sequence.
9838 	 *
9839 	 * All other trace types using preallocated hash maps are unsafe as
9840 	 * well because tracepoint or kprobes can be inside locked regions
9841 	 * of the memory allocator or at a place where a recursion into the
9842 	 * memory allocator would see inconsistent state.
9843 	 *
9844 	 * On RT enabled kernels run-time allocation of all trace type
9845 	 * programs is strictly prohibited due to lock type constraints. On
9846 	 * !RT kernels it is allowed for backwards compatibility reasons for
9847 	 * now, but warnings are emitted so developers are made aware of
9848 	 * the unsafety and can fix their programs before this is enforced.
9849 	 */
9850 	if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) {
9851 		if (prog_type == BPF_PROG_TYPE_PERF_EVENT) {
9852 			verbose(env, "perf_event programs can only use preallocated hash map\n");
9853 			return -EINVAL;
9854 		}
9855 		if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
9856 			verbose(env, "trace type programs can only use preallocated hash map\n");
9857 			return -EINVAL;
9858 		}
9859 		WARN_ONCE(1, "trace type BPF program uses run-time allocation\n");
9860 		verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n");
9861 	}
9862 
9863 	if (map_value_has_spin_lock(map)) {
9864 		if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
9865 			verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
9866 			return -EINVAL;
9867 		}
9868 
9869 		if (is_tracing_prog_type(prog_type)) {
9870 			verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
9871 			return -EINVAL;
9872 		}
9873 
9874 		if (prog->aux->sleepable) {
9875 			verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n");
9876 			return -EINVAL;
9877 		}
9878 	}
9879 
9880 	if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
9881 	    !bpf_offload_prog_map_match(prog, map)) {
9882 		verbose(env, "offload device mismatch between prog and map\n");
9883 		return -EINVAL;
9884 	}
9885 
9886 	if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
9887 		verbose(env, "bpf_struct_ops map cannot be used in prog\n");
9888 		return -EINVAL;
9889 	}
9890 
9891 	if (prog->aux->sleepable)
9892 		switch (map->map_type) {
9893 		case BPF_MAP_TYPE_HASH:
9894 		case BPF_MAP_TYPE_LRU_HASH:
9895 		case BPF_MAP_TYPE_ARRAY:
9896 			if (!is_preallocated_map(map)) {
9897 				verbose(env,
9898 					"Sleepable programs can only use preallocated hash maps\n");
9899 				return -EINVAL;
9900 			}
9901 			break;
9902 		default:
9903 			verbose(env,
9904 				"Sleepable programs can only use array and hash maps\n");
9905 			return -EINVAL;
9906 		}
9907 
9908 	return 0;
9909 }
9910 
9911 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
9912 {
9913 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
9914 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
9915 }
9916 
9917 /* find and rewrite pseudo imm in ld_imm64 instructions:
9918  *
9919  * 1. if it accesses map FD, replace it with actual map pointer.
9920  * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
9921  *
9922  * NOTE: btf_vmlinux is required for converting pseudo btf_id.
9923  */
9924 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
9925 {
9926 	struct bpf_insn *insn = env->prog->insnsi;
9927 	int insn_cnt = env->prog->len;
9928 	int i, j, err;
9929 
9930 	err = bpf_prog_calc_tag(env->prog);
9931 	if (err)
9932 		return err;
9933 
9934 	for (i = 0; i < insn_cnt; i++, insn++) {
9935 		if (BPF_CLASS(insn->code) == BPF_LDX &&
9936 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
9937 			verbose(env, "BPF_LDX uses reserved fields\n");
9938 			return -EINVAL;
9939 		}
9940 
9941 		if (BPF_CLASS(insn->code) == BPF_STX &&
9942 		    ((BPF_MODE(insn->code) != BPF_MEM &&
9943 		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
9944 			verbose(env, "BPF_STX uses reserved fields\n");
9945 			return -EINVAL;
9946 		}
9947 
9948 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
9949 			struct bpf_insn_aux_data *aux;
9950 			struct bpf_map *map;
9951 			struct fd f;
9952 			u64 addr;
9953 
9954 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
9955 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
9956 			    insn[1].off != 0) {
9957 				verbose(env, "invalid bpf_ld_imm64 insn\n");
9958 				return -EINVAL;
9959 			}
9960 
9961 			if (insn[0].src_reg == 0)
9962 				/* valid generic load 64-bit imm */
9963 				goto next_insn;
9964 
9965 			if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
9966 				aux = &env->insn_aux_data[i];
9967 				err = check_pseudo_btf_id(env, insn, aux);
9968 				if (err)
9969 					return err;
9970 				goto next_insn;
9971 			}
9972 
9973 			/* In final convert_pseudo_ld_imm64() step, this is
9974 			 * converted into regular 64-bit imm load insn.
9975 			 */
9976 			if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD &&
9977 			     insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) ||
9978 			    (insn[0].src_reg == BPF_PSEUDO_MAP_FD &&
9979 			     insn[1].imm != 0)) {
9980 				verbose(env,
9981 					"unrecognized bpf_ld_imm64 insn\n");
9982 				return -EINVAL;
9983 			}
9984 
9985 			f = fdget(insn[0].imm);
9986 			map = __bpf_map_get(f);
9987 			if (IS_ERR(map)) {
9988 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
9989 					insn[0].imm);
9990 				return PTR_ERR(map);
9991 			}
9992 
9993 			err = check_map_prog_compatibility(env, map, env->prog);
9994 			if (err) {
9995 				fdput(f);
9996 				return err;
9997 			}
9998 
9999 			aux = &env->insn_aux_data[i];
10000 			if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
10001 				addr = (unsigned long)map;
10002 			} else {
10003 				u32 off = insn[1].imm;
10004 
10005 				if (off >= BPF_MAX_VAR_OFF) {
10006 					verbose(env, "direct value offset of %u is not allowed\n", off);
10007 					fdput(f);
10008 					return -EINVAL;
10009 				}
10010 
10011 				if (!map->ops->map_direct_value_addr) {
10012 					verbose(env, "no direct value access support for this map type\n");
10013 					fdput(f);
10014 					return -EINVAL;
10015 				}
10016 
10017 				err = map->ops->map_direct_value_addr(map, &addr, off);
10018 				if (err) {
10019 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
10020 						map->value_size, off);
10021 					fdput(f);
10022 					return err;
10023 				}
10024 
10025 				aux->map_off = off;
10026 				addr += off;
10027 			}
10028 
10029 			insn[0].imm = (u32)addr;
10030 			insn[1].imm = addr >> 32;
10031 
10032 			/* check whether we recorded this map already */
10033 			for (j = 0; j < env->used_map_cnt; j++) {
10034 				if (env->used_maps[j] == map) {
10035 					aux->map_index = j;
10036 					fdput(f);
10037 					goto next_insn;
10038 				}
10039 			}
10040 
10041 			if (env->used_map_cnt >= MAX_USED_MAPS) {
10042 				fdput(f);
10043 				return -E2BIG;
10044 			}
10045 
10046 			/* hold the map. If the program is rejected by verifier,
10047 			 * the map will be released by release_maps() or it
10048 			 * will be used by the valid program until it's unloaded
10049 			 * and all maps are released in free_used_maps()
10050 			 */
10051 			bpf_map_inc(map);
10052 
10053 			aux->map_index = env->used_map_cnt;
10054 			env->used_maps[env->used_map_cnt++] = map;
10055 
10056 			if (bpf_map_is_cgroup_storage(map) &&
10057 			    bpf_cgroup_storage_assign(env->prog->aux, map)) {
10058 				verbose(env, "only one cgroup storage of each type is allowed\n");
10059 				fdput(f);
10060 				return -EBUSY;
10061 			}
10062 
10063 			fdput(f);
10064 next_insn:
10065 			insn++;
10066 			i++;
10067 			continue;
10068 		}
10069 
10070 		/* Basic sanity check before we invest more work here. */
10071 		if (!bpf_opcode_in_insntable(insn->code)) {
10072 			verbose(env, "unknown opcode %02x\n", insn->code);
10073 			return -EINVAL;
10074 		}
10075 	}
10076 
10077 	/* now all pseudo BPF_LD_IMM64 instructions load valid
10078 	 * 'struct bpf_map *' into a register instead of user map_fd.
10079 	 * These pointers will be used later by verifier to validate map access.
10080 	 */
10081 	return 0;
10082 }
10083 
10084 /* drop refcnt of maps used by the rejected program */
10085 static void release_maps(struct bpf_verifier_env *env)
10086 {
10087 	__bpf_free_used_maps(env->prog->aux, env->used_maps,
10088 			     env->used_map_cnt);
10089 }
10090 
10091 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
10092 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
10093 {
10094 	struct bpf_insn *insn = env->prog->insnsi;
10095 	int insn_cnt = env->prog->len;
10096 	int i;
10097 
10098 	for (i = 0; i < insn_cnt; i++, insn++)
10099 		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
10100 			insn->src_reg = 0;
10101 }
10102 
10103 /* single env->prog->insni[off] instruction was replaced with the range
10104  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
10105  * [0, off) and [off, end) to new locations, so the patched range stays zero
10106  */
10107 static int adjust_insn_aux_data(struct bpf_verifier_env *env,
10108 				struct bpf_prog *new_prog, u32 off, u32 cnt)
10109 {
10110 	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
10111 	struct bpf_insn *insn = new_prog->insnsi;
10112 	u32 prog_len;
10113 	int i;
10114 
10115 	/* aux info at OFF always needs adjustment, no matter fast path
10116 	 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
10117 	 * original insn at old prog.
10118 	 */
10119 	old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
10120 
10121 	if (cnt == 1)
10122 		return 0;
10123 	prog_len = new_prog->len;
10124 	new_data = vzalloc(array_size(prog_len,
10125 				      sizeof(struct bpf_insn_aux_data)));
10126 	if (!new_data)
10127 		return -ENOMEM;
10128 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
10129 	memcpy(new_data + off + cnt - 1, old_data + off,
10130 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
10131 	for (i = off; i < off + cnt - 1; i++) {
10132 		new_data[i].seen = env->pass_cnt;
10133 		new_data[i].zext_dst = insn_has_def32(env, insn + i);
10134 	}
10135 	env->insn_aux_data = new_data;
10136 	vfree(old_data);
10137 	return 0;
10138 }
10139 
10140 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
10141 {
10142 	int i;
10143 
10144 	if (len == 1)
10145 		return;
10146 	/* NOTE: fake 'exit' subprog should be updated as well. */
10147 	for (i = 0; i <= env->subprog_cnt; i++) {
10148 		if (env->subprog_info[i].start <= off)
10149 			continue;
10150 		env->subprog_info[i].start += len - 1;
10151 	}
10152 }
10153 
10154 static void adjust_poke_descs(struct bpf_prog *prog, u32 len)
10155 {
10156 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
10157 	int i, sz = prog->aux->size_poke_tab;
10158 	struct bpf_jit_poke_descriptor *desc;
10159 
10160 	for (i = 0; i < sz; i++) {
10161 		desc = &tab[i];
10162 		desc->insn_idx += len - 1;
10163 	}
10164 }
10165 
10166 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
10167 					    const struct bpf_insn *patch, u32 len)
10168 {
10169 	struct bpf_prog *new_prog;
10170 
10171 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
10172 	if (IS_ERR(new_prog)) {
10173 		if (PTR_ERR(new_prog) == -ERANGE)
10174 			verbose(env,
10175 				"insn %d cannot be patched due to 16-bit range\n",
10176 				env->insn_aux_data[off].orig_idx);
10177 		return NULL;
10178 	}
10179 	if (adjust_insn_aux_data(env, new_prog, off, len))
10180 		return NULL;
10181 	adjust_subprog_starts(env, off, len);
10182 	adjust_poke_descs(new_prog, len);
10183 	return new_prog;
10184 }
10185 
10186 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
10187 					      u32 off, u32 cnt)
10188 {
10189 	int i, j;
10190 
10191 	/* find first prog starting at or after off (first to remove) */
10192 	for (i = 0; i < env->subprog_cnt; i++)
10193 		if (env->subprog_info[i].start >= off)
10194 			break;
10195 	/* find first prog starting at or after off + cnt (first to stay) */
10196 	for (j = i; j < env->subprog_cnt; j++)
10197 		if (env->subprog_info[j].start >= off + cnt)
10198 			break;
10199 	/* if j doesn't start exactly at off + cnt, we are just removing
10200 	 * the front of previous prog
10201 	 */
10202 	if (env->subprog_info[j].start != off + cnt)
10203 		j--;
10204 
10205 	if (j > i) {
10206 		struct bpf_prog_aux *aux = env->prog->aux;
10207 		int move;
10208 
10209 		/* move fake 'exit' subprog as well */
10210 		move = env->subprog_cnt + 1 - j;
10211 
10212 		memmove(env->subprog_info + i,
10213 			env->subprog_info + j,
10214 			sizeof(*env->subprog_info) * move);
10215 		env->subprog_cnt -= j - i;
10216 
10217 		/* remove func_info */
10218 		if (aux->func_info) {
10219 			move = aux->func_info_cnt - j;
10220 
10221 			memmove(aux->func_info + i,
10222 				aux->func_info + j,
10223 				sizeof(*aux->func_info) * move);
10224 			aux->func_info_cnt -= j - i;
10225 			/* func_info->insn_off is set after all code rewrites,
10226 			 * in adjust_btf_func() - no need to adjust
10227 			 */
10228 		}
10229 	} else {
10230 		/* convert i from "first prog to remove" to "first to adjust" */
10231 		if (env->subprog_info[i].start == off)
10232 			i++;
10233 	}
10234 
10235 	/* update fake 'exit' subprog as well */
10236 	for (; i <= env->subprog_cnt; i++)
10237 		env->subprog_info[i].start -= cnt;
10238 
10239 	return 0;
10240 }
10241 
10242 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
10243 				      u32 cnt)
10244 {
10245 	struct bpf_prog *prog = env->prog;
10246 	u32 i, l_off, l_cnt, nr_linfo;
10247 	struct bpf_line_info *linfo;
10248 
10249 	nr_linfo = prog->aux->nr_linfo;
10250 	if (!nr_linfo)
10251 		return 0;
10252 
10253 	linfo = prog->aux->linfo;
10254 
10255 	/* find first line info to remove, count lines to be removed */
10256 	for (i = 0; i < nr_linfo; i++)
10257 		if (linfo[i].insn_off >= off)
10258 			break;
10259 
10260 	l_off = i;
10261 	l_cnt = 0;
10262 	for (; i < nr_linfo; i++)
10263 		if (linfo[i].insn_off < off + cnt)
10264 			l_cnt++;
10265 		else
10266 			break;
10267 
10268 	/* First live insn doesn't match first live linfo, it needs to "inherit"
10269 	 * last removed linfo.  prog is already modified, so prog->len == off
10270 	 * means no live instructions after (tail of the program was removed).
10271 	 */
10272 	if (prog->len != off && l_cnt &&
10273 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
10274 		l_cnt--;
10275 		linfo[--i].insn_off = off + cnt;
10276 	}
10277 
10278 	/* remove the line info which refer to the removed instructions */
10279 	if (l_cnt) {
10280 		memmove(linfo + l_off, linfo + i,
10281 			sizeof(*linfo) * (nr_linfo - i));
10282 
10283 		prog->aux->nr_linfo -= l_cnt;
10284 		nr_linfo = prog->aux->nr_linfo;
10285 	}
10286 
10287 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
10288 	for (i = l_off; i < nr_linfo; i++)
10289 		linfo[i].insn_off -= cnt;
10290 
10291 	/* fix up all subprogs (incl. 'exit') which start >= off */
10292 	for (i = 0; i <= env->subprog_cnt; i++)
10293 		if (env->subprog_info[i].linfo_idx > l_off) {
10294 			/* program may have started in the removed region but
10295 			 * may not be fully removed
10296 			 */
10297 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
10298 				env->subprog_info[i].linfo_idx -= l_cnt;
10299 			else
10300 				env->subprog_info[i].linfo_idx = l_off;
10301 		}
10302 
10303 	return 0;
10304 }
10305 
10306 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
10307 {
10308 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
10309 	unsigned int orig_prog_len = env->prog->len;
10310 	int err;
10311 
10312 	if (bpf_prog_is_dev_bound(env->prog->aux))
10313 		bpf_prog_offload_remove_insns(env, off, cnt);
10314 
10315 	err = bpf_remove_insns(env->prog, off, cnt);
10316 	if (err)
10317 		return err;
10318 
10319 	err = adjust_subprog_starts_after_remove(env, off, cnt);
10320 	if (err)
10321 		return err;
10322 
10323 	err = bpf_adj_linfo_after_remove(env, off, cnt);
10324 	if (err)
10325 		return err;
10326 
10327 	memmove(aux_data + off,	aux_data + off + cnt,
10328 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
10329 
10330 	return 0;
10331 }
10332 
10333 /* The verifier does more data flow analysis than llvm and will not
10334  * explore branches that are dead at run time. Malicious programs can
10335  * have dead code too. Therefore replace all dead at-run-time code
10336  * with 'ja -1'.
10337  *
10338  * Just nops are not optimal, e.g. if they would sit at the end of the
10339  * program and through another bug we would manage to jump there, then
10340  * we'd execute beyond program memory otherwise. Returning exception
10341  * code also wouldn't work since we can have subprogs where the dead
10342  * code could be located.
10343  */
10344 static void sanitize_dead_code(struct bpf_verifier_env *env)
10345 {
10346 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
10347 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
10348 	struct bpf_insn *insn = env->prog->insnsi;
10349 	const int insn_cnt = env->prog->len;
10350 	int i;
10351 
10352 	for (i = 0; i < insn_cnt; i++) {
10353 		if (aux_data[i].seen)
10354 			continue;
10355 		memcpy(insn + i, &trap, sizeof(trap));
10356 	}
10357 }
10358 
10359 static bool insn_is_cond_jump(u8 code)
10360 {
10361 	u8 op;
10362 
10363 	if (BPF_CLASS(code) == BPF_JMP32)
10364 		return true;
10365 
10366 	if (BPF_CLASS(code) != BPF_JMP)
10367 		return false;
10368 
10369 	op = BPF_OP(code);
10370 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
10371 }
10372 
10373 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
10374 {
10375 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
10376 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
10377 	struct bpf_insn *insn = env->prog->insnsi;
10378 	const int insn_cnt = env->prog->len;
10379 	int i;
10380 
10381 	for (i = 0; i < insn_cnt; i++, insn++) {
10382 		if (!insn_is_cond_jump(insn->code))
10383 			continue;
10384 
10385 		if (!aux_data[i + 1].seen)
10386 			ja.off = insn->off;
10387 		else if (!aux_data[i + 1 + insn->off].seen)
10388 			ja.off = 0;
10389 		else
10390 			continue;
10391 
10392 		if (bpf_prog_is_dev_bound(env->prog->aux))
10393 			bpf_prog_offload_replace_insn(env, i, &ja);
10394 
10395 		memcpy(insn, &ja, sizeof(ja));
10396 	}
10397 }
10398 
10399 static int opt_remove_dead_code(struct bpf_verifier_env *env)
10400 {
10401 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
10402 	int insn_cnt = env->prog->len;
10403 	int i, err;
10404 
10405 	for (i = 0; i < insn_cnt; i++) {
10406 		int j;
10407 
10408 		j = 0;
10409 		while (i + j < insn_cnt && !aux_data[i + j].seen)
10410 			j++;
10411 		if (!j)
10412 			continue;
10413 
10414 		err = verifier_remove_insns(env, i, j);
10415 		if (err)
10416 			return err;
10417 		insn_cnt = env->prog->len;
10418 	}
10419 
10420 	return 0;
10421 }
10422 
10423 static int opt_remove_nops(struct bpf_verifier_env *env)
10424 {
10425 	const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
10426 	struct bpf_insn *insn = env->prog->insnsi;
10427 	int insn_cnt = env->prog->len;
10428 	int i, err;
10429 
10430 	for (i = 0; i < insn_cnt; i++) {
10431 		if (memcmp(&insn[i], &ja, sizeof(ja)))
10432 			continue;
10433 
10434 		err = verifier_remove_insns(env, i, 1);
10435 		if (err)
10436 			return err;
10437 		insn_cnt--;
10438 		i--;
10439 	}
10440 
10441 	return 0;
10442 }
10443 
10444 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
10445 					 const union bpf_attr *attr)
10446 {
10447 	struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
10448 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
10449 	int i, patch_len, delta = 0, len = env->prog->len;
10450 	struct bpf_insn *insns = env->prog->insnsi;
10451 	struct bpf_prog *new_prog;
10452 	bool rnd_hi32;
10453 
10454 	rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
10455 	zext_patch[1] = BPF_ZEXT_REG(0);
10456 	rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
10457 	rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
10458 	rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
10459 	for (i = 0; i < len; i++) {
10460 		int adj_idx = i + delta;
10461 		struct bpf_insn insn;
10462 
10463 		insn = insns[adj_idx];
10464 		if (!aux[adj_idx].zext_dst) {
10465 			u8 code, class;
10466 			u32 imm_rnd;
10467 
10468 			if (!rnd_hi32)
10469 				continue;
10470 
10471 			code = insn.code;
10472 			class = BPF_CLASS(code);
10473 			if (insn_no_def(&insn))
10474 				continue;
10475 
10476 			/* NOTE: arg "reg" (the fourth one) is only used for
10477 			 *       BPF_STX which has been ruled out in above
10478 			 *       check, it is safe to pass NULL here.
10479 			 */
10480 			if (is_reg64(env, &insn, insn.dst_reg, NULL, DST_OP)) {
10481 				if (class == BPF_LD &&
10482 				    BPF_MODE(code) == BPF_IMM)
10483 					i++;
10484 				continue;
10485 			}
10486 
10487 			/* ctx load could be transformed into wider load. */
10488 			if (class == BPF_LDX &&
10489 			    aux[adj_idx].ptr_type == PTR_TO_CTX)
10490 				continue;
10491 
10492 			imm_rnd = get_random_int();
10493 			rnd_hi32_patch[0] = insn;
10494 			rnd_hi32_patch[1].imm = imm_rnd;
10495 			rnd_hi32_patch[3].dst_reg = insn.dst_reg;
10496 			patch = rnd_hi32_patch;
10497 			patch_len = 4;
10498 			goto apply_patch_buffer;
10499 		}
10500 
10501 		if (!bpf_jit_needs_zext())
10502 			continue;
10503 
10504 		zext_patch[0] = insn;
10505 		zext_patch[1].dst_reg = insn.dst_reg;
10506 		zext_patch[1].src_reg = insn.dst_reg;
10507 		patch = zext_patch;
10508 		patch_len = 2;
10509 apply_patch_buffer:
10510 		new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
10511 		if (!new_prog)
10512 			return -ENOMEM;
10513 		env->prog = new_prog;
10514 		insns = new_prog->insnsi;
10515 		aux = env->insn_aux_data;
10516 		delta += patch_len - 1;
10517 	}
10518 
10519 	return 0;
10520 }
10521 
10522 /* convert load instructions that access fields of a context type into a
10523  * sequence of instructions that access fields of the underlying structure:
10524  *     struct __sk_buff    -> struct sk_buff
10525  *     struct bpf_sock_ops -> struct sock
10526  */
10527 static int convert_ctx_accesses(struct bpf_verifier_env *env)
10528 {
10529 	const struct bpf_verifier_ops *ops = env->ops;
10530 	int i, cnt, size, ctx_field_size, delta = 0;
10531 	const int insn_cnt = env->prog->len;
10532 	struct bpf_insn insn_buf[16], *insn;
10533 	u32 target_size, size_default, off;
10534 	struct bpf_prog *new_prog;
10535 	enum bpf_access_type type;
10536 	bool is_narrower_load;
10537 
10538 	if (ops->gen_prologue || env->seen_direct_write) {
10539 		if (!ops->gen_prologue) {
10540 			verbose(env, "bpf verifier is misconfigured\n");
10541 			return -EINVAL;
10542 		}
10543 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
10544 					env->prog);
10545 		if (cnt >= ARRAY_SIZE(insn_buf)) {
10546 			verbose(env, "bpf verifier is misconfigured\n");
10547 			return -EINVAL;
10548 		} else if (cnt) {
10549 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
10550 			if (!new_prog)
10551 				return -ENOMEM;
10552 
10553 			env->prog = new_prog;
10554 			delta += cnt - 1;
10555 		}
10556 	}
10557 
10558 	if (bpf_prog_is_dev_bound(env->prog->aux))
10559 		return 0;
10560 
10561 	insn = env->prog->insnsi + delta;
10562 
10563 	for (i = 0; i < insn_cnt; i++, insn++) {
10564 		bpf_convert_ctx_access_t convert_ctx_access;
10565 
10566 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
10567 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
10568 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
10569 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
10570 			type = BPF_READ;
10571 		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
10572 			 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
10573 			 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
10574 			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
10575 			type = BPF_WRITE;
10576 		else
10577 			continue;
10578 
10579 		if (type == BPF_WRITE &&
10580 		    env->insn_aux_data[i + delta].sanitize_stack_off) {
10581 			struct bpf_insn patch[] = {
10582 				/* Sanitize suspicious stack slot with zero.
10583 				 * There are no memory dependencies for this store,
10584 				 * since it's only using frame pointer and immediate
10585 				 * constant of zero
10586 				 */
10587 				BPF_ST_MEM(BPF_DW, BPF_REG_FP,
10588 					   env->insn_aux_data[i + delta].sanitize_stack_off,
10589 					   0),
10590 				/* the original STX instruction will immediately
10591 				 * overwrite the same stack slot with appropriate value
10592 				 */
10593 				*insn,
10594 			};
10595 
10596 			cnt = ARRAY_SIZE(patch);
10597 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
10598 			if (!new_prog)
10599 				return -ENOMEM;
10600 
10601 			delta    += cnt - 1;
10602 			env->prog = new_prog;
10603 			insn      = new_prog->insnsi + i + delta;
10604 			continue;
10605 		}
10606 
10607 		switch (env->insn_aux_data[i + delta].ptr_type) {
10608 		case PTR_TO_CTX:
10609 			if (!ops->convert_ctx_access)
10610 				continue;
10611 			convert_ctx_access = ops->convert_ctx_access;
10612 			break;
10613 		case PTR_TO_SOCKET:
10614 		case PTR_TO_SOCK_COMMON:
10615 			convert_ctx_access = bpf_sock_convert_ctx_access;
10616 			break;
10617 		case PTR_TO_TCP_SOCK:
10618 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
10619 			break;
10620 		case PTR_TO_XDP_SOCK:
10621 			convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
10622 			break;
10623 		case PTR_TO_BTF_ID:
10624 			if (type == BPF_READ) {
10625 				insn->code = BPF_LDX | BPF_PROBE_MEM |
10626 					BPF_SIZE((insn)->code);
10627 				env->prog->aux->num_exentries++;
10628 			} else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) {
10629 				verbose(env, "Writes through BTF pointers are not allowed\n");
10630 				return -EINVAL;
10631 			}
10632 			continue;
10633 		default:
10634 			continue;
10635 		}
10636 
10637 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
10638 		size = BPF_LDST_BYTES(insn);
10639 
10640 		/* If the read access is a narrower load of the field,
10641 		 * convert to a 4/8-byte load, to minimum program type specific
10642 		 * convert_ctx_access changes. If conversion is successful,
10643 		 * we will apply proper mask to the result.
10644 		 */
10645 		is_narrower_load = size < ctx_field_size;
10646 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
10647 		off = insn->off;
10648 		if (is_narrower_load) {
10649 			u8 size_code;
10650 
10651 			if (type == BPF_WRITE) {
10652 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
10653 				return -EINVAL;
10654 			}
10655 
10656 			size_code = BPF_H;
10657 			if (ctx_field_size == 4)
10658 				size_code = BPF_W;
10659 			else if (ctx_field_size == 8)
10660 				size_code = BPF_DW;
10661 
10662 			insn->off = off & ~(size_default - 1);
10663 			insn->code = BPF_LDX | BPF_MEM | size_code;
10664 		}
10665 
10666 		target_size = 0;
10667 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
10668 					 &target_size);
10669 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
10670 		    (ctx_field_size && !target_size)) {
10671 			verbose(env, "bpf verifier is misconfigured\n");
10672 			return -EINVAL;
10673 		}
10674 
10675 		if (is_narrower_load && size < target_size) {
10676 			u8 shift = bpf_ctx_narrow_access_offset(
10677 				off, size, size_default) * 8;
10678 			if (ctx_field_size <= 4) {
10679 				if (shift)
10680 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
10681 									insn->dst_reg,
10682 									shift);
10683 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
10684 								(1 << size * 8) - 1);
10685 			} else {
10686 				if (shift)
10687 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
10688 									insn->dst_reg,
10689 									shift);
10690 				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
10691 								(1ULL << size * 8) - 1);
10692 			}
10693 		}
10694 
10695 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
10696 		if (!new_prog)
10697 			return -ENOMEM;
10698 
10699 		delta += cnt - 1;
10700 
10701 		/* keep walking new program and skip insns we just inserted */
10702 		env->prog = new_prog;
10703 		insn      = new_prog->insnsi + i + delta;
10704 	}
10705 
10706 	return 0;
10707 }
10708 
10709 static int jit_subprogs(struct bpf_verifier_env *env)
10710 {
10711 	struct bpf_prog *prog = env->prog, **func, *tmp;
10712 	int i, j, subprog_start, subprog_end = 0, len, subprog;
10713 	struct bpf_map *map_ptr;
10714 	struct bpf_insn *insn;
10715 	void *old_bpf_func;
10716 	int err, num_exentries;
10717 
10718 	if (env->subprog_cnt <= 1)
10719 		return 0;
10720 
10721 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
10722 		if (insn->code != (BPF_JMP | BPF_CALL) ||
10723 		    insn->src_reg != BPF_PSEUDO_CALL)
10724 			continue;
10725 		/* Upon error here we cannot fall back to interpreter but
10726 		 * need a hard reject of the program. Thus -EFAULT is
10727 		 * propagated in any case.
10728 		 */
10729 		subprog = find_subprog(env, i + insn->imm + 1);
10730 		if (subprog < 0) {
10731 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
10732 				  i + insn->imm + 1);
10733 			return -EFAULT;
10734 		}
10735 		/* temporarily remember subprog id inside insn instead of
10736 		 * aux_data, since next loop will split up all insns into funcs
10737 		 */
10738 		insn->off = subprog;
10739 		/* remember original imm in case JIT fails and fallback
10740 		 * to interpreter will be needed
10741 		 */
10742 		env->insn_aux_data[i].call_imm = insn->imm;
10743 		/* point imm to __bpf_call_base+1 from JITs point of view */
10744 		insn->imm = 1;
10745 	}
10746 
10747 	err = bpf_prog_alloc_jited_linfo(prog);
10748 	if (err)
10749 		goto out_undo_insn;
10750 
10751 	err = -ENOMEM;
10752 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
10753 	if (!func)
10754 		goto out_undo_insn;
10755 
10756 	for (i = 0; i < env->subprog_cnt; i++) {
10757 		subprog_start = subprog_end;
10758 		subprog_end = env->subprog_info[i + 1].start;
10759 
10760 		len = subprog_end - subprog_start;
10761 		/* BPF_PROG_RUN doesn't call subprogs directly,
10762 		 * hence main prog stats include the runtime of subprogs.
10763 		 * subprogs don't have IDs and not reachable via prog_get_next_id
10764 		 * func[i]->aux->stats will never be accessed and stays NULL
10765 		 */
10766 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
10767 		if (!func[i])
10768 			goto out_free;
10769 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
10770 		       len * sizeof(struct bpf_insn));
10771 		func[i]->type = prog->type;
10772 		func[i]->len = len;
10773 		if (bpf_prog_calc_tag(func[i]))
10774 			goto out_free;
10775 		func[i]->is_func = 1;
10776 		func[i]->aux->func_idx = i;
10777 		/* the btf and func_info will be freed only at prog->aux */
10778 		func[i]->aux->btf = prog->aux->btf;
10779 		func[i]->aux->func_info = prog->aux->func_info;
10780 
10781 		for (j = 0; j < prog->aux->size_poke_tab; j++) {
10782 			u32 insn_idx = prog->aux->poke_tab[j].insn_idx;
10783 			int ret;
10784 
10785 			if (!(insn_idx >= subprog_start &&
10786 			      insn_idx <= subprog_end))
10787 				continue;
10788 
10789 			ret = bpf_jit_add_poke_descriptor(func[i],
10790 							  &prog->aux->poke_tab[j]);
10791 			if (ret < 0) {
10792 				verbose(env, "adding tail call poke descriptor failed\n");
10793 				goto out_free;
10794 			}
10795 
10796 			func[i]->insnsi[insn_idx - subprog_start].imm = ret + 1;
10797 
10798 			map_ptr = func[i]->aux->poke_tab[ret].tail_call.map;
10799 			ret = map_ptr->ops->map_poke_track(map_ptr, func[i]->aux);
10800 			if (ret < 0) {
10801 				verbose(env, "tracking tail call prog failed\n");
10802 				goto out_free;
10803 			}
10804 		}
10805 
10806 		/* Use bpf_prog_F_tag to indicate functions in stack traces.
10807 		 * Long term would need debug info to populate names
10808 		 */
10809 		func[i]->aux->name[0] = 'F';
10810 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
10811 		func[i]->jit_requested = 1;
10812 		func[i]->aux->linfo = prog->aux->linfo;
10813 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
10814 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
10815 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
10816 		num_exentries = 0;
10817 		insn = func[i]->insnsi;
10818 		for (j = 0; j < func[i]->len; j++, insn++) {
10819 			if (BPF_CLASS(insn->code) == BPF_LDX &&
10820 			    BPF_MODE(insn->code) == BPF_PROBE_MEM)
10821 				num_exentries++;
10822 		}
10823 		func[i]->aux->num_exentries = num_exentries;
10824 		func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
10825 		func[i] = bpf_int_jit_compile(func[i]);
10826 		if (!func[i]->jited) {
10827 			err = -ENOTSUPP;
10828 			goto out_free;
10829 		}
10830 		cond_resched();
10831 	}
10832 
10833 	/* Untrack main program's aux structs so that during map_poke_run()
10834 	 * we will not stumble upon the unfilled poke descriptors; each
10835 	 * of the main program's poke descs got distributed across subprogs
10836 	 * and got tracked onto map, so we are sure that none of them will
10837 	 * be missed after the operation below
10838 	 */
10839 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
10840 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
10841 
10842 		map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
10843 	}
10844 
10845 	/* at this point all bpf functions were successfully JITed
10846 	 * now populate all bpf_calls with correct addresses and
10847 	 * run last pass of JIT
10848 	 */
10849 	for (i = 0; i < env->subprog_cnt; i++) {
10850 		insn = func[i]->insnsi;
10851 		for (j = 0; j < func[i]->len; j++, insn++) {
10852 			if (insn->code != (BPF_JMP | BPF_CALL) ||
10853 			    insn->src_reg != BPF_PSEUDO_CALL)
10854 				continue;
10855 			subprog = insn->off;
10856 			insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) -
10857 				    __bpf_call_base;
10858 		}
10859 
10860 		/* we use the aux data to keep a list of the start addresses
10861 		 * of the JITed images for each function in the program
10862 		 *
10863 		 * for some architectures, such as powerpc64, the imm field
10864 		 * might not be large enough to hold the offset of the start
10865 		 * address of the callee's JITed image from __bpf_call_base
10866 		 *
10867 		 * in such cases, we can lookup the start address of a callee
10868 		 * by using its subprog id, available from the off field of
10869 		 * the call instruction, as an index for this list
10870 		 */
10871 		func[i]->aux->func = func;
10872 		func[i]->aux->func_cnt = env->subprog_cnt;
10873 	}
10874 	for (i = 0; i < env->subprog_cnt; i++) {
10875 		old_bpf_func = func[i]->bpf_func;
10876 		tmp = bpf_int_jit_compile(func[i]);
10877 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
10878 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
10879 			err = -ENOTSUPP;
10880 			goto out_free;
10881 		}
10882 		cond_resched();
10883 	}
10884 
10885 	/* finally lock prog and jit images for all functions and
10886 	 * populate kallsysm
10887 	 */
10888 	for (i = 0; i < env->subprog_cnt; i++) {
10889 		bpf_prog_lock_ro(func[i]);
10890 		bpf_prog_kallsyms_add(func[i]);
10891 	}
10892 
10893 	/* Last step: make now unused interpreter insns from main
10894 	 * prog consistent for later dump requests, so they can
10895 	 * later look the same as if they were interpreted only.
10896 	 */
10897 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
10898 		if (insn->code != (BPF_JMP | BPF_CALL) ||
10899 		    insn->src_reg != BPF_PSEUDO_CALL)
10900 			continue;
10901 		insn->off = env->insn_aux_data[i].call_imm;
10902 		subprog = find_subprog(env, i + insn->off + 1);
10903 		insn->imm = subprog;
10904 	}
10905 
10906 	prog->jited = 1;
10907 	prog->bpf_func = func[0]->bpf_func;
10908 	prog->aux->func = func;
10909 	prog->aux->func_cnt = env->subprog_cnt;
10910 	bpf_prog_free_unused_jited_linfo(prog);
10911 	return 0;
10912 out_free:
10913 	for (i = 0; i < env->subprog_cnt; i++) {
10914 		if (!func[i])
10915 			continue;
10916 
10917 		for (j = 0; j < func[i]->aux->size_poke_tab; j++) {
10918 			map_ptr = func[i]->aux->poke_tab[j].tail_call.map;
10919 			map_ptr->ops->map_poke_untrack(map_ptr, func[i]->aux);
10920 		}
10921 		bpf_jit_free(func[i]);
10922 	}
10923 	kfree(func);
10924 out_undo_insn:
10925 	/* cleanup main prog to be interpreted */
10926 	prog->jit_requested = 0;
10927 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
10928 		if (insn->code != (BPF_JMP | BPF_CALL) ||
10929 		    insn->src_reg != BPF_PSEUDO_CALL)
10930 			continue;
10931 		insn->off = 0;
10932 		insn->imm = env->insn_aux_data[i].call_imm;
10933 	}
10934 	bpf_prog_free_jited_linfo(prog);
10935 	return err;
10936 }
10937 
10938 static int fixup_call_args(struct bpf_verifier_env *env)
10939 {
10940 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
10941 	struct bpf_prog *prog = env->prog;
10942 	struct bpf_insn *insn = prog->insnsi;
10943 	int i, depth;
10944 #endif
10945 	int err = 0;
10946 
10947 	if (env->prog->jit_requested &&
10948 	    !bpf_prog_is_dev_bound(env->prog->aux)) {
10949 		err = jit_subprogs(env);
10950 		if (err == 0)
10951 			return 0;
10952 		if (err == -EFAULT)
10953 			return err;
10954 	}
10955 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
10956 	if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
10957 		/* When JIT fails the progs with bpf2bpf calls and tail_calls
10958 		 * have to be rejected, since interpreter doesn't support them yet.
10959 		 */
10960 		verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
10961 		return -EINVAL;
10962 	}
10963 	for (i = 0; i < prog->len; i++, insn++) {
10964 		if (insn->code != (BPF_JMP | BPF_CALL) ||
10965 		    insn->src_reg != BPF_PSEUDO_CALL)
10966 			continue;
10967 		depth = get_callee_stack_depth(env, insn, i);
10968 		if (depth < 0)
10969 			return depth;
10970 		bpf_patch_call_args(insn, depth);
10971 	}
10972 	err = 0;
10973 #endif
10974 	return err;
10975 }
10976 
10977 /* fixup insn->imm field of bpf_call instructions
10978  * and inline eligible helpers as explicit sequence of BPF instructions
10979  *
10980  * this function is called after eBPF program passed verification
10981  */
10982 static int fixup_bpf_calls(struct bpf_verifier_env *env)
10983 {
10984 	struct bpf_prog *prog = env->prog;
10985 	bool expect_blinding = bpf_jit_blinding_enabled(prog);
10986 	struct bpf_insn *insn = prog->insnsi;
10987 	const struct bpf_func_proto *fn;
10988 	const int insn_cnt = prog->len;
10989 	const struct bpf_map_ops *ops;
10990 	struct bpf_insn_aux_data *aux;
10991 	struct bpf_insn insn_buf[16];
10992 	struct bpf_prog *new_prog;
10993 	struct bpf_map *map_ptr;
10994 	int i, ret, cnt, delta = 0;
10995 
10996 	for (i = 0; i < insn_cnt; i++, insn++) {
10997 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
10998 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
10999 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
11000 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
11001 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
11002 			struct bpf_insn mask_and_div[] = {
11003 				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
11004 				/* Rx div 0 -> 0 */
11005 				BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
11006 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
11007 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
11008 				*insn,
11009 			};
11010 			struct bpf_insn mask_and_mod[] = {
11011 				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
11012 				/* Rx mod 0 -> Rx */
11013 				BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
11014 				*insn,
11015 			};
11016 			struct bpf_insn *patchlet;
11017 
11018 			if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
11019 			    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
11020 				patchlet = mask_and_div + (is64 ? 1 : 0);
11021 				cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
11022 			} else {
11023 				patchlet = mask_and_mod + (is64 ? 1 : 0);
11024 				cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
11025 			}
11026 
11027 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
11028 			if (!new_prog)
11029 				return -ENOMEM;
11030 
11031 			delta    += cnt - 1;
11032 			env->prog = prog = new_prog;
11033 			insn      = new_prog->insnsi + i + delta;
11034 			continue;
11035 		}
11036 
11037 		if (BPF_CLASS(insn->code) == BPF_LD &&
11038 		    (BPF_MODE(insn->code) == BPF_ABS ||
11039 		     BPF_MODE(insn->code) == BPF_IND)) {
11040 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
11041 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
11042 				verbose(env, "bpf verifier is misconfigured\n");
11043 				return -EINVAL;
11044 			}
11045 
11046 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
11047 			if (!new_prog)
11048 				return -ENOMEM;
11049 
11050 			delta    += cnt - 1;
11051 			env->prog = prog = new_prog;
11052 			insn      = new_prog->insnsi + i + delta;
11053 			continue;
11054 		}
11055 
11056 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
11057 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
11058 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
11059 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
11060 			struct bpf_insn insn_buf[16];
11061 			struct bpf_insn *patch = &insn_buf[0];
11062 			bool issrc, isneg;
11063 			u32 off_reg;
11064 
11065 			aux = &env->insn_aux_data[i + delta];
11066 			if (!aux->alu_state ||
11067 			    aux->alu_state == BPF_ALU_NON_POINTER)
11068 				continue;
11069 
11070 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
11071 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
11072 				BPF_ALU_SANITIZE_SRC;
11073 
11074 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
11075 			if (isneg)
11076 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
11077 			*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1);
11078 			*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
11079 			*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
11080 			*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
11081 			*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
11082 			if (issrc) {
11083 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX,
11084 							 off_reg);
11085 				insn->src_reg = BPF_REG_AX;
11086 			} else {
11087 				*patch++ = BPF_ALU64_REG(BPF_AND, off_reg,
11088 							 BPF_REG_AX);
11089 			}
11090 			if (isneg)
11091 				insn->code = insn->code == code_add ?
11092 					     code_sub : code_add;
11093 			*patch++ = *insn;
11094 			if (issrc && isneg)
11095 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
11096 			cnt = patch - insn_buf;
11097 
11098 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
11099 			if (!new_prog)
11100 				return -ENOMEM;
11101 
11102 			delta    += cnt - 1;
11103 			env->prog = prog = new_prog;
11104 			insn      = new_prog->insnsi + i + delta;
11105 			continue;
11106 		}
11107 
11108 		if (insn->code != (BPF_JMP | BPF_CALL))
11109 			continue;
11110 		if (insn->src_reg == BPF_PSEUDO_CALL)
11111 			continue;
11112 
11113 		if (insn->imm == BPF_FUNC_get_route_realm)
11114 			prog->dst_needed = 1;
11115 		if (insn->imm == BPF_FUNC_get_prandom_u32)
11116 			bpf_user_rnd_init_once();
11117 		if (insn->imm == BPF_FUNC_override_return)
11118 			prog->kprobe_override = 1;
11119 		if (insn->imm == BPF_FUNC_tail_call) {
11120 			/* If we tail call into other programs, we
11121 			 * cannot make any assumptions since they can
11122 			 * be replaced dynamically during runtime in
11123 			 * the program array.
11124 			 */
11125 			prog->cb_access = 1;
11126 			if (!allow_tail_call_in_subprogs(env))
11127 				prog->aux->stack_depth = MAX_BPF_STACK;
11128 			prog->aux->max_pkt_offset = MAX_PACKET_OFF;
11129 
11130 			/* mark bpf_tail_call as different opcode to avoid
11131 			 * conditional branch in the interpeter for every normal
11132 			 * call and to prevent accidental JITing by JIT compiler
11133 			 * that doesn't support bpf_tail_call yet
11134 			 */
11135 			insn->imm = 0;
11136 			insn->code = BPF_JMP | BPF_TAIL_CALL;
11137 
11138 			aux = &env->insn_aux_data[i + delta];
11139 			if (env->bpf_capable && !expect_blinding &&
11140 			    prog->jit_requested &&
11141 			    !bpf_map_key_poisoned(aux) &&
11142 			    !bpf_map_ptr_poisoned(aux) &&
11143 			    !bpf_map_ptr_unpriv(aux)) {
11144 				struct bpf_jit_poke_descriptor desc = {
11145 					.reason = BPF_POKE_REASON_TAIL_CALL,
11146 					.tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
11147 					.tail_call.key = bpf_map_key_immediate(aux),
11148 					.insn_idx = i + delta,
11149 				};
11150 
11151 				ret = bpf_jit_add_poke_descriptor(prog, &desc);
11152 				if (ret < 0) {
11153 					verbose(env, "adding tail call poke descriptor failed\n");
11154 					return ret;
11155 				}
11156 
11157 				insn->imm = ret + 1;
11158 				continue;
11159 			}
11160 
11161 			if (!bpf_map_ptr_unpriv(aux))
11162 				continue;
11163 
11164 			/* instead of changing every JIT dealing with tail_call
11165 			 * emit two extra insns:
11166 			 * if (index >= max_entries) goto out;
11167 			 * index &= array->index_mask;
11168 			 * to avoid out-of-bounds cpu speculation
11169 			 */
11170 			if (bpf_map_ptr_poisoned(aux)) {
11171 				verbose(env, "tail_call abusing map_ptr\n");
11172 				return -EINVAL;
11173 			}
11174 
11175 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
11176 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
11177 						  map_ptr->max_entries, 2);
11178 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
11179 						    container_of(map_ptr,
11180 								 struct bpf_array,
11181 								 map)->index_mask);
11182 			insn_buf[2] = *insn;
11183 			cnt = 3;
11184 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
11185 			if (!new_prog)
11186 				return -ENOMEM;
11187 
11188 			delta    += cnt - 1;
11189 			env->prog = prog = new_prog;
11190 			insn      = new_prog->insnsi + i + delta;
11191 			continue;
11192 		}
11193 
11194 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
11195 		 * and other inlining handlers are currently limited to 64 bit
11196 		 * only.
11197 		 */
11198 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
11199 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
11200 		     insn->imm == BPF_FUNC_map_update_elem ||
11201 		     insn->imm == BPF_FUNC_map_delete_elem ||
11202 		     insn->imm == BPF_FUNC_map_push_elem   ||
11203 		     insn->imm == BPF_FUNC_map_pop_elem    ||
11204 		     insn->imm == BPF_FUNC_map_peek_elem)) {
11205 			aux = &env->insn_aux_data[i + delta];
11206 			if (bpf_map_ptr_poisoned(aux))
11207 				goto patch_call_imm;
11208 
11209 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
11210 			ops = map_ptr->ops;
11211 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
11212 			    ops->map_gen_lookup) {
11213 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
11214 				if (cnt == -EOPNOTSUPP)
11215 					goto patch_map_ops_generic;
11216 				if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
11217 					verbose(env, "bpf verifier is misconfigured\n");
11218 					return -EINVAL;
11219 				}
11220 
11221 				new_prog = bpf_patch_insn_data(env, i + delta,
11222 							       insn_buf, cnt);
11223 				if (!new_prog)
11224 					return -ENOMEM;
11225 
11226 				delta    += cnt - 1;
11227 				env->prog = prog = new_prog;
11228 				insn      = new_prog->insnsi + i + delta;
11229 				continue;
11230 			}
11231 
11232 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
11233 				     (void *(*)(struct bpf_map *map, void *key))NULL));
11234 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
11235 				     (int (*)(struct bpf_map *map, void *key))NULL));
11236 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
11237 				     (int (*)(struct bpf_map *map, void *key, void *value,
11238 					      u64 flags))NULL));
11239 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
11240 				     (int (*)(struct bpf_map *map, void *value,
11241 					      u64 flags))NULL));
11242 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
11243 				     (int (*)(struct bpf_map *map, void *value))NULL));
11244 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
11245 				     (int (*)(struct bpf_map *map, void *value))NULL));
11246 patch_map_ops_generic:
11247 			switch (insn->imm) {
11248 			case BPF_FUNC_map_lookup_elem:
11249 				insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
11250 					    __bpf_call_base;
11251 				continue;
11252 			case BPF_FUNC_map_update_elem:
11253 				insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
11254 					    __bpf_call_base;
11255 				continue;
11256 			case BPF_FUNC_map_delete_elem:
11257 				insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
11258 					    __bpf_call_base;
11259 				continue;
11260 			case BPF_FUNC_map_push_elem:
11261 				insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
11262 					    __bpf_call_base;
11263 				continue;
11264 			case BPF_FUNC_map_pop_elem:
11265 				insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
11266 					    __bpf_call_base;
11267 				continue;
11268 			case BPF_FUNC_map_peek_elem:
11269 				insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
11270 					    __bpf_call_base;
11271 				continue;
11272 			}
11273 
11274 			goto patch_call_imm;
11275 		}
11276 
11277 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
11278 		    insn->imm == BPF_FUNC_jiffies64) {
11279 			struct bpf_insn ld_jiffies_addr[2] = {
11280 				BPF_LD_IMM64(BPF_REG_0,
11281 					     (unsigned long)&jiffies),
11282 			};
11283 
11284 			insn_buf[0] = ld_jiffies_addr[0];
11285 			insn_buf[1] = ld_jiffies_addr[1];
11286 			insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
11287 						  BPF_REG_0, 0);
11288 			cnt = 3;
11289 
11290 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
11291 						       cnt);
11292 			if (!new_prog)
11293 				return -ENOMEM;
11294 
11295 			delta    += cnt - 1;
11296 			env->prog = prog = new_prog;
11297 			insn      = new_prog->insnsi + i + delta;
11298 			continue;
11299 		}
11300 
11301 patch_call_imm:
11302 		fn = env->ops->get_func_proto(insn->imm, env->prog);
11303 		/* all functions that have prototype and verifier allowed
11304 		 * programs to call them, must be real in-kernel functions
11305 		 */
11306 		if (!fn->func) {
11307 			verbose(env,
11308 				"kernel subsystem misconfigured func %s#%d\n",
11309 				func_id_name(insn->imm), insn->imm);
11310 			return -EFAULT;
11311 		}
11312 		insn->imm = fn->func - __bpf_call_base;
11313 	}
11314 
11315 	/* Since poke tab is now finalized, publish aux to tracker. */
11316 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
11317 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
11318 		if (!map_ptr->ops->map_poke_track ||
11319 		    !map_ptr->ops->map_poke_untrack ||
11320 		    !map_ptr->ops->map_poke_run) {
11321 			verbose(env, "bpf verifier is misconfigured\n");
11322 			return -EINVAL;
11323 		}
11324 
11325 		ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
11326 		if (ret < 0) {
11327 			verbose(env, "tracking tail call prog failed\n");
11328 			return ret;
11329 		}
11330 	}
11331 
11332 	return 0;
11333 }
11334 
11335 static void free_states(struct bpf_verifier_env *env)
11336 {
11337 	struct bpf_verifier_state_list *sl, *sln;
11338 	int i;
11339 
11340 	sl = env->free_list;
11341 	while (sl) {
11342 		sln = sl->next;
11343 		free_verifier_state(&sl->state, false);
11344 		kfree(sl);
11345 		sl = sln;
11346 	}
11347 	env->free_list = NULL;
11348 
11349 	if (!env->explored_states)
11350 		return;
11351 
11352 	for (i = 0; i < state_htab_size(env); i++) {
11353 		sl = env->explored_states[i];
11354 
11355 		while (sl) {
11356 			sln = sl->next;
11357 			free_verifier_state(&sl->state, false);
11358 			kfree(sl);
11359 			sl = sln;
11360 		}
11361 		env->explored_states[i] = NULL;
11362 	}
11363 }
11364 
11365 /* The verifier is using insn_aux_data[] to store temporary data during
11366  * verification and to store information for passes that run after the
11367  * verification like dead code sanitization. do_check_common() for subprogram N
11368  * may analyze many other subprograms. sanitize_insn_aux_data() clears all
11369  * temporary data after do_check_common() finds that subprogram N cannot be
11370  * verified independently. pass_cnt counts the number of times
11371  * do_check_common() was run and insn->aux->seen tells the pass number
11372  * insn_aux_data was touched. These variables are compared to clear temporary
11373  * data from failed pass. For testing and experiments do_check_common() can be
11374  * run multiple times even when prior attempt to verify is unsuccessful.
11375  */
11376 static void sanitize_insn_aux_data(struct bpf_verifier_env *env)
11377 {
11378 	struct bpf_insn *insn = env->prog->insnsi;
11379 	struct bpf_insn_aux_data *aux;
11380 	int i, class;
11381 
11382 	for (i = 0; i < env->prog->len; i++) {
11383 		class = BPF_CLASS(insn[i].code);
11384 		if (class != BPF_LDX && class != BPF_STX)
11385 			continue;
11386 		aux = &env->insn_aux_data[i];
11387 		if (aux->seen != env->pass_cnt)
11388 			continue;
11389 		memset(aux, 0, offsetof(typeof(*aux), orig_idx));
11390 	}
11391 }
11392 
11393 static int do_check_common(struct bpf_verifier_env *env, int subprog)
11394 {
11395 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
11396 	struct bpf_verifier_state *state;
11397 	struct bpf_reg_state *regs;
11398 	int ret, i;
11399 
11400 	env->prev_linfo = NULL;
11401 	env->pass_cnt++;
11402 
11403 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
11404 	if (!state)
11405 		return -ENOMEM;
11406 	state->curframe = 0;
11407 	state->speculative = false;
11408 	state->branches = 1;
11409 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
11410 	if (!state->frame[0]) {
11411 		kfree(state);
11412 		return -ENOMEM;
11413 	}
11414 	env->cur_state = state;
11415 	init_func_state(env, state->frame[0],
11416 			BPF_MAIN_FUNC /* callsite */,
11417 			0 /* frameno */,
11418 			subprog);
11419 
11420 	regs = state->frame[state->curframe]->regs;
11421 	if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
11422 		ret = btf_prepare_func_args(env, subprog, regs);
11423 		if (ret)
11424 			goto out;
11425 		for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
11426 			if (regs[i].type == PTR_TO_CTX)
11427 				mark_reg_known_zero(env, regs, i);
11428 			else if (regs[i].type == SCALAR_VALUE)
11429 				mark_reg_unknown(env, regs, i);
11430 		}
11431 	} else {
11432 		/* 1st arg to a function */
11433 		regs[BPF_REG_1].type = PTR_TO_CTX;
11434 		mark_reg_known_zero(env, regs, BPF_REG_1);
11435 		ret = btf_check_func_arg_match(env, subprog, regs);
11436 		if (ret == -EFAULT)
11437 			/* unlikely verifier bug. abort.
11438 			 * ret == 0 and ret < 0 are sadly acceptable for
11439 			 * main() function due to backward compatibility.
11440 			 * Like socket filter program may be written as:
11441 			 * int bpf_prog(struct pt_regs *ctx)
11442 			 * and never dereference that ctx in the program.
11443 			 * 'struct pt_regs' is a type mismatch for socket
11444 			 * filter that should be using 'struct __sk_buff'.
11445 			 */
11446 			goto out;
11447 	}
11448 
11449 	ret = do_check(env);
11450 out:
11451 	/* check for NULL is necessary, since cur_state can be freed inside
11452 	 * do_check() under memory pressure.
11453 	 */
11454 	if (env->cur_state) {
11455 		free_verifier_state(env->cur_state, true);
11456 		env->cur_state = NULL;
11457 	}
11458 	while (!pop_stack(env, NULL, NULL, false));
11459 	if (!ret && pop_log)
11460 		bpf_vlog_reset(&env->log, 0);
11461 	free_states(env);
11462 	if (ret)
11463 		/* clean aux data in case subprog was rejected */
11464 		sanitize_insn_aux_data(env);
11465 	return ret;
11466 }
11467 
11468 /* Verify all global functions in a BPF program one by one based on their BTF.
11469  * All global functions must pass verification. Otherwise the whole program is rejected.
11470  * Consider:
11471  * int bar(int);
11472  * int foo(int f)
11473  * {
11474  *    return bar(f);
11475  * }
11476  * int bar(int b)
11477  * {
11478  *    ...
11479  * }
11480  * foo() will be verified first for R1=any_scalar_value. During verification it
11481  * will be assumed that bar() already verified successfully and call to bar()
11482  * from foo() will be checked for type match only. Later bar() will be verified
11483  * independently to check that it's safe for R1=any_scalar_value.
11484  */
11485 static int do_check_subprogs(struct bpf_verifier_env *env)
11486 {
11487 	struct bpf_prog_aux *aux = env->prog->aux;
11488 	int i, ret;
11489 
11490 	if (!aux->func_info)
11491 		return 0;
11492 
11493 	for (i = 1; i < env->subprog_cnt; i++) {
11494 		if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
11495 			continue;
11496 		env->insn_idx = env->subprog_info[i].start;
11497 		WARN_ON_ONCE(env->insn_idx == 0);
11498 		ret = do_check_common(env, i);
11499 		if (ret) {
11500 			return ret;
11501 		} else if (env->log.level & BPF_LOG_LEVEL) {
11502 			verbose(env,
11503 				"Func#%d is safe for any args that match its prototype\n",
11504 				i);
11505 		}
11506 	}
11507 	return 0;
11508 }
11509 
11510 static int do_check_main(struct bpf_verifier_env *env)
11511 {
11512 	int ret;
11513 
11514 	env->insn_idx = 0;
11515 	ret = do_check_common(env, 0);
11516 	if (!ret)
11517 		env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
11518 	return ret;
11519 }
11520 
11521 
11522 static void print_verification_stats(struct bpf_verifier_env *env)
11523 {
11524 	int i;
11525 
11526 	if (env->log.level & BPF_LOG_STATS) {
11527 		verbose(env, "verification time %lld usec\n",
11528 			div_u64(env->verification_time, 1000));
11529 		verbose(env, "stack depth ");
11530 		for (i = 0; i < env->subprog_cnt; i++) {
11531 			u32 depth = env->subprog_info[i].stack_depth;
11532 
11533 			verbose(env, "%d", depth);
11534 			if (i + 1 < env->subprog_cnt)
11535 				verbose(env, "+");
11536 		}
11537 		verbose(env, "\n");
11538 	}
11539 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
11540 		"total_states %d peak_states %d mark_read %d\n",
11541 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
11542 		env->max_states_per_insn, env->total_states,
11543 		env->peak_states, env->longest_mark_read_walk);
11544 }
11545 
11546 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
11547 {
11548 	const struct btf_type *t, *func_proto;
11549 	const struct bpf_struct_ops *st_ops;
11550 	const struct btf_member *member;
11551 	struct bpf_prog *prog = env->prog;
11552 	u32 btf_id, member_idx;
11553 	const char *mname;
11554 
11555 	btf_id = prog->aux->attach_btf_id;
11556 	st_ops = bpf_struct_ops_find(btf_id);
11557 	if (!st_ops) {
11558 		verbose(env, "attach_btf_id %u is not a supported struct\n",
11559 			btf_id);
11560 		return -ENOTSUPP;
11561 	}
11562 
11563 	t = st_ops->type;
11564 	member_idx = prog->expected_attach_type;
11565 	if (member_idx >= btf_type_vlen(t)) {
11566 		verbose(env, "attach to invalid member idx %u of struct %s\n",
11567 			member_idx, st_ops->name);
11568 		return -EINVAL;
11569 	}
11570 
11571 	member = &btf_type_member(t)[member_idx];
11572 	mname = btf_name_by_offset(btf_vmlinux, member->name_off);
11573 	func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
11574 					       NULL);
11575 	if (!func_proto) {
11576 		verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
11577 			mname, member_idx, st_ops->name);
11578 		return -EINVAL;
11579 	}
11580 
11581 	if (st_ops->check_member) {
11582 		int err = st_ops->check_member(t, member);
11583 
11584 		if (err) {
11585 			verbose(env, "attach to unsupported member %s of struct %s\n",
11586 				mname, st_ops->name);
11587 			return err;
11588 		}
11589 	}
11590 
11591 	prog->aux->attach_func_proto = func_proto;
11592 	prog->aux->attach_func_name = mname;
11593 	env->ops = st_ops->verifier_ops;
11594 
11595 	return 0;
11596 }
11597 #define SECURITY_PREFIX "security_"
11598 
11599 static int check_attach_modify_return(unsigned long addr, const char *func_name)
11600 {
11601 	if (within_error_injection_list(addr) ||
11602 	    !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
11603 		return 0;
11604 
11605 	return -EINVAL;
11606 }
11607 
11608 /* list of non-sleepable functions that are otherwise on
11609  * ALLOW_ERROR_INJECTION list
11610  */
11611 BTF_SET_START(btf_non_sleepable_error_inject)
11612 /* Three functions below can be called from sleepable and non-sleepable context.
11613  * Assume non-sleepable from bpf safety point of view.
11614  */
11615 BTF_ID(func, __add_to_page_cache_locked)
11616 BTF_ID(func, should_fail_alloc_page)
11617 BTF_ID(func, should_failslab)
11618 BTF_SET_END(btf_non_sleepable_error_inject)
11619 
11620 static int check_non_sleepable_error_inject(u32 btf_id)
11621 {
11622 	return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
11623 }
11624 
11625 int bpf_check_attach_target(struct bpf_verifier_log *log,
11626 			    const struct bpf_prog *prog,
11627 			    const struct bpf_prog *tgt_prog,
11628 			    u32 btf_id,
11629 			    struct bpf_attach_target_info *tgt_info)
11630 {
11631 	bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
11632 	const char prefix[] = "btf_trace_";
11633 	int ret = 0, subprog = -1, i;
11634 	const struct btf_type *t;
11635 	bool conservative = true;
11636 	const char *tname;
11637 	struct btf *btf;
11638 	long addr = 0;
11639 
11640 	if (!btf_id) {
11641 		bpf_log(log, "Tracing programs must provide btf_id\n");
11642 		return -EINVAL;
11643 	}
11644 	btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
11645 	if (!btf) {
11646 		bpf_log(log,
11647 			"FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
11648 		return -EINVAL;
11649 	}
11650 	t = btf_type_by_id(btf, btf_id);
11651 	if (!t) {
11652 		bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
11653 		return -EINVAL;
11654 	}
11655 	tname = btf_name_by_offset(btf, t->name_off);
11656 	if (!tname) {
11657 		bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
11658 		return -EINVAL;
11659 	}
11660 	if (tgt_prog) {
11661 		struct bpf_prog_aux *aux = tgt_prog->aux;
11662 
11663 		for (i = 0; i < aux->func_info_cnt; i++)
11664 			if (aux->func_info[i].type_id == btf_id) {
11665 				subprog = i;
11666 				break;
11667 			}
11668 		if (subprog == -1) {
11669 			bpf_log(log, "Subprog %s doesn't exist\n", tname);
11670 			return -EINVAL;
11671 		}
11672 		conservative = aux->func_info_aux[subprog].unreliable;
11673 		if (prog_extension) {
11674 			if (conservative) {
11675 				bpf_log(log,
11676 					"Cannot replace static functions\n");
11677 				return -EINVAL;
11678 			}
11679 			if (!prog->jit_requested) {
11680 				bpf_log(log,
11681 					"Extension programs should be JITed\n");
11682 				return -EINVAL;
11683 			}
11684 		}
11685 		if (!tgt_prog->jited) {
11686 			bpf_log(log, "Can attach to only JITed progs\n");
11687 			return -EINVAL;
11688 		}
11689 		if (tgt_prog->type == prog->type) {
11690 			/* Cannot fentry/fexit another fentry/fexit program.
11691 			 * Cannot attach program extension to another extension.
11692 			 * It's ok to attach fentry/fexit to extension program.
11693 			 */
11694 			bpf_log(log, "Cannot recursively attach\n");
11695 			return -EINVAL;
11696 		}
11697 		if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
11698 		    prog_extension &&
11699 		    (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
11700 		     tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
11701 			/* Program extensions can extend all program types
11702 			 * except fentry/fexit. The reason is the following.
11703 			 * The fentry/fexit programs are used for performance
11704 			 * analysis, stats and can be attached to any program
11705 			 * type except themselves. When extension program is
11706 			 * replacing XDP function it is necessary to allow
11707 			 * performance analysis of all functions. Both original
11708 			 * XDP program and its program extension. Hence
11709 			 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
11710 			 * allowed. If extending of fentry/fexit was allowed it
11711 			 * would be possible to create long call chain
11712 			 * fentry->extension->fentry->extension beyond
11713 			 * reasonable stack size. Hence extending fentry is not
11714 			 * allowed.
11715 			 */
11716 			bpf_log(log, "Cannot extend fentry/fexit\n");
11717 			return -EINVAL;
11718 		}
11719 	} else {
11720 		if (prog_extension) {
11721 			bpf_log(log, "Cannot replace kernel functions\n");
11722 			return -EINVAL;
11723 		}
11724 	}
11725 
11726 	switch (prog->expected_attach_type) {
11727 	case BPF_TRACE_RAW_TP:
11728 		if (tgt_prog) {
11729 			bpf_log(log,
11730 				"Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
11731 			return -EINVAL;
11732 		}
11733 		if (!btf_type_is_typedef(t)) {
11734 			bpf_log(log, "attach_btf_id %u is not a typedef\n",
11735 				btf_id);
11736 			return -EINVAL;
11737 		}
11738 		if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
11739 			bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
11740 				btf_id, tname);
11741 			return -EINVAL;
11742 		}
11743 		tname += sizeof(prefix) - 1;
11744 		t = btf_type_by_id(btf, t->type);
11745 		if (!btf_type_is_ptr(t))
11746 			/* should never happen in valid vmlinux build */
11747 			return -EINVAL;
11748 		t = btf_type_by_id(btf, t->type);
11749 		if (!btf_type_is_func_proto(t))
11750 			/* should never happen in valid vmlinux build */
11751 			return -EINVAL;
11752 
11753 		break;
11754 	case BPF_TRACE_ITER:
11755 		if (!btf_type_is_func(t)) {
11756 			bpf_log(log, "attach_btf_id %u is not a function\n",
11757 				btf_id);
11758 			return -EINVAL;
11759 		}
11760 		t = btf_type_by_id(btf, t->type);
11761 		if (!btf_type_is_func_proto(t))
11762 			return -EINVAL;
11763 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
11764 		if (ret)
11765 			return ret;
11766 		break;
11767 	default:
11768 		if (!prog_extension)
11769 			return -EINVAL;
11770 		fallthrough;
11771 	case BPF_MODIFY_RETURN:
11772 	case BPF_LSM_MAC:
11773 	case BPF_TRACE_FENTRY:
11774 	case BPF_TRACE_FEXIT:
11775 		if (!btf_type_is_func(t)) {
11776 			bpf_log(log, "attach_btf_id %u is not a function\n",
11777 				btf_id);
11778 			return -EINVAL;
11779 		}
11780 		if (prog_extension &&
11781 		    btf_check_type_match(log, prog, btf, t))
11782 			return -EINVAL;
11783 		t = btf_type_by_id(btf, t->type);
11784 		if (!btf_type_is_func_proto(t))
11785 			return -EINVAL;
11786 
11787 		if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
11788 		    (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
11789 		     prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
11790 			return -EINVAL;
11791 
11792 		if (tgt_prog && conservative)
11793 			t = NULL;
11794 
11795 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
11796 		if (ret < 0)
11797 			return ret;
11798 
11799 		if (tgt_prog) {
11800 			if (subprog == 0)
11801 				addr = (long) tgt_prog->bpf_func;
11802 			else
11803 				addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
11804 		} else {
11805 			addr = kallsyms_lookup_name(tname);
11806 			if (!addr) {
11807 				bpf_log(log,
11808 					"The address of function %s cannot be found\n",
11809 					tname);
11810 				return -ENOENT;
11811 			}
11812 		}
11813 
11814 		if (prog->aux->sleepable) {
11815 			ret = -EINVAL;
11816 			switch (prog->type) {
11817 			case BPF_PROG_TYPE_TRACING:
11818 				/* fentry/fexit/fmod_ret progs can be sleepable only if they are
11819 				 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
11820 				 */
11821 				if (!check_non_sleepable_error_inject(btf_id) &&
11822 				    within_error_injection_list(addr))
11823 					ret = 0;
11824 				break;
11825 			case BPF_PROG_TYPE_LSM:
11826 				/* LSM progs check that they are attached to bpf_lsm_*() funcs.
11827 				 * Only some of them are sleepable.
11828 				 */
11829 				if (bpf_lsm_is_sleepable_hook(btf_id))
11830 					ret = 0;
11831 				break;
11832 			default:
11833 				break;
11834 			}
11835 			if (ret) {
11836 				bpf_log(log, "%s is not sleepable\n", tname);
11837 				return ret;
11838 			}
11839 		} else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
11840 			if (tgt_prog) {
11841 				bpf_log(log, "can't modify return codes of BPF programs\n");
11842 				return -EINVAL;
11843 			}
11844 			ret = check_attach_modify_return(addr, tname);
11845 			if (ret) {
11846 				bpf_log(log, "%s() is not modifiable\n", tname);
11847 				return ret;
11848 			}
11849 		}
11850 
11851 		break;
11852 	}
11853 	tgt_info->tgt_addr = addr;
11854 	tgt_info->tgt_name = tname;
11855 	tgt_info->tgt_type = t;
11856 	return 0;
11857 }
11858 
11859 static int check_attach_btf_id(struct bpf_verifier_env *env)
11860 {
11861 	struct bpf_prog *prog = env->prog;
11862 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
11863 	struct bpf_attach_target_info tgt_info = {};
11864 	u32 btf_id = prog->aux->attach_btf_id;
11865 	struct bpf_trampoline *tr;
11866 	int ret;
11867 	u64 key;
11868 
11869 	if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING &&
11870 	    prog->type != BPF_PROG_TYPE_LSM) {
11871 		verbose(env, "Only fentry/fexit/fmod_ret and lsm programs can be sleepable\n");
11872 		return -EINVAL;
11873 	}
11874 
11875 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
11876 		return check_struct_ops_btf_id(env);
11877 
11878 	if (prog->type != BPF_PROG_TYPE_TRACING &&
11879 	    prog->type != BPF_PROG_TYPE_LSM &&
11880 	    prog->type != BPF_PROG_TYPE_EXT)
11881 		return 0;
11882 
11883 	ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
11884 	if (ret)
11885 		return ret;
11886 
11887 	if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
11888 		/* to make freplace equivalent to their targets, they need to
11889 		 * inherit env->ops and expected_attach_type for the rest of the
11890 		 * verification
11891 		 */
11892 		env->ops = bpf_verifier_ops[tgt_prog->type];
11893 		prog->expected_attach_type = tgt_prog->expected_attach_type;
11894 	}
11895 
11896 	/* store info about the attachment target that will be used later */
11897 	prog->aux->attach_func_proto = tgt_info.tgt_type;
11898 	prog->aux->attach_func_name = tgt_info.tgt_name;
11899 
11900 	if (tgt_prog) {
11901 		prog->aux->saved_dst_prog_type = tgt_prog->type;
11902 		prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
11903 	}
11904 
11905 	if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
11906 		prog->aux->attach_btf_trace = true;
11907 		return 0;
11908 	} else if (prog->expected_attach_type == BPF_TRACE_ITER) {
11909 		if (!bpf_iter_prog_supported(prog))
11910 			return -EINVAL;
11911 		return 0;
11912 	}
11913 
11914 	if (prog->type == BPF_PROG_TYPE_LSM) {
11915 		ret = bpf_lsm_verify_prog(&env->log, prog);
11916 		if (ret < 0)
11917 			return ret;
11918 	}
11919 
11920 	key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
11921 	tr = bpf_trampoline_get(key, &tgt_info);
11922 	if (!tr)
11923 		return -ENOMEM;
11924 
11925 	prog->aux->dst_trampoline = tr;
11926 	return 0;
11927 }
11928 
11929 struct btf *bpf_get_btf_vmlinux(void)
11930 {
11931 	if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
11932 		mutex_lock(&bpf_verifier_lock);
11933 		if (!btf_vmlinux)
11934 			btf_vmlinux = btf_parse_vmlinux();
11935 		mutex_unlock(&bpf_verifier_lock);
11936 	}
11937 	return btf_vmlinux;
11938 }
11939 
11940 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr,
11941 	      union bpf_attr __user *uattr)
11942 {
11943 	u64 start_time = ktime_get_ns();
11944 	struct bpf_verifier_env *env;
11945 	struct bpf_verifier_log *log;
11946 	int i, len, ret = -EINVAL;
11947 	bool is_priv;
11948 
11949 	/* no program is valid */
11950 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
11951 		return -EINVAL;
11952 
11953 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
11954 	 * allocate/free it every time bpf_check() is called
11955 	 */
11956 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
11957 	if (!env)
11958 		return -ENOMEM;
11959 	log = &env->log;
11960 
11961 	len = (*prog)->len;
11962 	env->insn_aux_data =
11963 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
11964 	ret = -ENOMEM;
11965 	if (!env->insn_aux_data)
11966 		goto err_free_env;
11967 	for (i = 0; i < len; i++)
11968 		env->insn_aux_data[i].orig_idx = i;
11969 	env->prog = *prog;
11970 	env->ops = bpf_verifier_ops[env->prog->type];
11971 	is_priv = bpf_capable();
11972 
11973 	bpf_get_btf_vmlinux();
11974 
11975 	/* grab the mutex to protect few globals used by verifier */
11976 	if (!is_priv)
11977 		mutex_lock(&bpf_verifier_lock);
11978 
11979 	if (attr->log_level || attr->log_buf || attr->log_size) {
11980 		/* user requested verbose verifier output
11981 		 * and supplied buffer to store the verification trace
11982 		 */
11983 		log->level = attr->log_level;
11984 		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
11985 		log->len_total = attr->log_size;
11986 
11987 		ret = -EINVAL;
11988 		/* log attributes have to be sane */
11989 		if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 ||
11990 		    !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK)
11991 			goto err_unlock;
11992 	}
11993 
11994 	if (IS_ERR(btf_vmlinux)) {
11995 		/* Either gcc or pahole or kernel are broken. */
11996 		verbose(env, "in-kernel BTF is malformed\n");
11997 		ret = PTR_ERR(btf_vmlinux);
11998 		goto skip_full_check;
11999 	}
12000 
12001 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
12002 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
12003 		env->strict_alignment = true;
12004 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
12005 		env->strict_alignment = false;
12006 
12007 	env->allow_ptr_leaks = bpf_allow_ptr_leaks();
12008 	env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access();
12009 	env->bypass_spec_v1 = bpf_bypass_spec_v1();
12010 	env->bypass_spec_v4 = bpf_bypass_spec_v4();
12011 	env->bpf_capable = bpf_capable();
12012 
12013 	if (is_priv)
12014 		env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
12015 
12016 	if (bpf_prog_is_dev_bound(env->prog->aux)) {
12017 		ret = bpf_prog_offload_verifier_prep(env->prog);
12018 		if (ret)
12019 			goto skip_full_check;
12020 	}
12021 
12022 	env->explored_states = kvcalloc(state_htab_size(env),
12023 				       sizeof(struct bpf_verifier_state_list *),
12024 				       GFP_USER);
12025 	ret = -ENOMEM;
12026 	if (!env->explored_states)
12027 		goto skip_full_check;
12028 
12029 	ret = check_subprogs(env);
12030 	if (ret < 0)
12031 		goto skip_full_check;
12032 
12033 	ret = check_btf_info(env, attr, uattr);
12034 	if (ret < 0)
12035 		goto skip_full_check;
12036 
12037 	ret = check_attach_btf_id(env);
12038 	if (ret)
12039 		goto skip_full_check;
12040 
12041 	ret = resolve_pseudo_ldimm64(env);
12042 	if (ret < 0)
12043 		goto skip_full_check;
12044 
12045 	ret = check_cfg(env);
12046 	if (ret < 0)
12047 		goto skip_full_check;
12048 
12049 	ret = do_check_subprogs(env);
12050 	ret = ret ?: do_check_main(env);
12051 
12052 	if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
12053 		ret = bpf_prog_offload_finalize(env);
12054 
12055 skip_full_check:
12056 	kvfree(env->explored_states);
12057 
12058 	if (ret == 0)
12059 		ret = check_max_stack_depth(env);
12060 
12061 	/* instruction rewrites happen after this point */
12062 	if (is_priv) {
12063 		if (ret == 0)
12064 			opt_hard_wire_dead_code_branches(env);
12065 		if (ret == 0)
12066 			ret = opt_remove_dead_code(env);
12067 		if (ret == 0)
12068 			ret = opt_remove_nops(env);
12069 	} else {
12070 		if (ret == 0)
12071 			sanitize_dead_code(env);
12072 	}
12073 
12074 	if (ret == 0)
12075 		/* program is valid, convert *(u32*)(ctx + off) accesses */
12076 		ret = convert_ctx_accesses(env);
12077 
12078 	if (ret == 0)
12079 		ret = fixup_bpf_calls(env);
12080 
12081 	/* do 32-bit optimization after insn patching has done so those patched
12082 	 * insns could be handled correctly.
12083 	 */
12084 	if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
12085 		ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
12086 		env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
12087 								     : false;
12088 	}
12089 
12090 	if (ret == 0)
12091 		ret = fixup_call_args(env);
12092 
12093 	env->verification_time = ktime_get_ns() - start_time;
12094 	print_verification_stats(env);
12095 
12096 	if (log->level && bpf_verifier_log_full(log))
12097 		ret = -ENOSPC;
12098 	if (log->level && !log->ubuf) {
12099 		ret = -EFAULT;
12100 		goto err_release_maps;
12101 	}
12102 
12103 	if (ret == 0 && env->used_map_cnt) {
12104 		/* if program passed verifier, update used_maps in bpf_prog_info */
12105 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
12106 							  sizeof(env->used_maps[0]),
12107 							  GFP_KERNEL);
12108 
12109 		if (!env->prog->aux->used_maps) {
12110 			ret = -ENOMEM;
12111 			goto err_release_maps;
12112 		}
12113 
12114 		memcpy(env->prog->aux->used_maps, env->used_maps,
12115 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
12116 		env->prog->aux->used_map_cnt = env->used_map_cnt;
12117 
12118 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
12119 		 * bpf_ld_imm64 instructions
12120 		 */
12121 		convert_pseudo_ld_imm64(env);
12122 	}
12123 
12124 	if (ret == 0)
12125 		adjust_btf_func(env);
12126 
12127 err_release_maps:
12128 	if (!env->prog->aux->used_maps)
12129 		/* if we didn't copy map pointers into bpf_prog_info, release
12130 		 * them now. Otherwise free_used_maps() will release them.
12131 		 */
12132 		release_maps(env);
12133 
12134 	/* extension progs temporarily inherit the attach_type of their targets
12135 	   for verification purposes, so set it back to zero before returning
12136 	 */
12137 	if (env->prog->type == BPF_PROG_TYPE_EXT)
12138 		env->prog->expected_attach_type = 0;
12139 
12140 	*prog = env->prog;
12141 err_unlock:
12142 	if (!is_priv)
12143 		mutex_unlock(&bpf_verifier_lock);
12144 	vfree(env->insn_aux_data);
12145 err_free_env:
12146 	kfree(env);
12147 	return ret;
12148 }
12149