1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/bpf-cgroup.h> 8 #include <linux/kernel.h> 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/bpf.h> 12 #include <linux/btf.h> 13 #include <linux/bpf_verifier.h> 14 #include <linux/filter.h> 15 #include <net/netlink.h> 16 #include <linux/file.h> 17 #include <linux/vmalloc.h> 18 #include <linux/stringify.h> 19 #include <linux/bsearch.h> 20 #include <linux/sort.h> 21 #include <linux/perf_event.h> 22 #include <linux/ctype.h> 23 #include <linux/error-injection.h> 24 #include <linux/bpf_lsm.h> 25 #include <linux/btf_ids.h> 26 27 #include "disasm.h" 28 29 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 30 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 31 [_id] = & _name ## _verifier_ops, 32 #define BPF_MAP_TYPE(_id, _ops) 33 #define BPF_LINK_TYPE(_id, _name) 34 #include <linux/bpf_types.h> 35 #undef BPF_PROG_TYPE 36 #undef BPF_MAP_TYPE 37 #undef BPF_LINK_TYPE 38 }; 39 40 /* bpf_check() is a static code analyzer that walks eBPF program 41 * instruction by instruction and updates register/stack state. 42 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 43 * 44 * The first pass is depth-first-search to check that the program is a DAG. 45 * It rejects the following programs: 46 * - larger than BPF_MAXINSNS insns 47 * - if loop is present (detected via back-edge) 48 * - unreachable insns exist (shouldn't be a forest. program = one function) 49 * - out of bounds or malformed jumps 50 * The second pass is all possible path descent from the 1st insn. 51 * Since it's analyzing all paths through the program, the length of the 52 * analysis is limited to 64k insn, which may be hit even if total number of 53 * insn is less then 4K, but there are too many branches that change stack/regs. 54 * Number of 'branches to be analyzed' is limited to 1k 55 * 56 * On entry to each instruction, each register has a type, and the instruction 57 * changes the types of the registers depending on instruction semantics. 58 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 59 * copied to R1. 60 * 61 * All registers are 64-bit. 62 * R0 - return register 63 * R1-R5 argument passing registers 64 * R6-R9 callee saved registers 65 * R10 - frame pointer read-only 66 * 67 * At the start of BPF program the register R1 contains a pointer to bpf_context 68 * and has type PTR_TO_CTX. 69 * 70 * Verifier tracks arithmetic operations on pointers in case: 71 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 72 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 73 * 1st insn copies R10 (which has FRAME_PTR) type into R1 74 * and 2nd arithmetic instruction is pattern matched to recognize 75 * that it wants to construct a pointer to some element within stack. 76 * So after 2nd insn, the register R1 has type PTR_TO_STACK 77 * (and -20 constant is saved for further stack bounds checking). 78 * Meaning that this reg is a pointer to stack plus known immediate constant. 79 * 80 * Most of the time the registers have SCALAR_VALUE type, which 81 * means the register has some value, but it's not a valid pointer. 82 * (like pointer plus pointer becomes SCALAR_VALUE type) 83 * 84 * When verifier sees load or store instructions the type of base register 85 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 86 * four pointer types recognized by check_mem_access() function. 87 * 88 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 89 * and the range of [ptr, ptr + map's value_size) is accessible. 90 * 91 * registers used to pass values to function calls are checked against 92 * function argument constraints. 93 * 94 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 95 * It means that the register type passed to this function must be 96 * PTR_TO_STACK and it will be used inside the function as 97 * 'pointer to map element key' 98 * 99 * For example the argument constraints for bpf_map_lookup_elem(): 100 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 101 * .arg1_type = ARG_CONST_MAP_PTR, 102 * .arg2_type = ARG_PTR_TO_MAP_KEY, 103 * 104 * ret_type says that this function returns 'pointer to map elem value or null' 105 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 106 * 2nd argument should be a pointer to stack, which will be used inside 107 * the helper function as a pointer to map element key. 108 * 109 * On the kernel side the helper function looks like: 110 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 111 * { 112 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 113 * void *key = (void *) (unsigned long) r2; 114 * void *value; 115 * 116 * here kernel can access 'key' and 'map' pointers safely, knowing that 117 * [key, key + map->key_size) bytes are valid and were initialized on 118 * the stack of eBPF program. 119 * } 120 * 121 * Corresponding eBPF program may look like: 122 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 123 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 124 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 125 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 126 * here verifier looks at prototype of map_lookup_elem() and sees: 127 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 128 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 129 * 130 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 131 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 132 * and were initialized prior to this call. 133 * If it's ok, then verifier allows this BPF_CALL insn and looks at 134 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 135 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 136 * returns either pointer to map value or NULL. 137 * 138 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 139 * insn, the register holding that pointer in the true branch changes state to 140 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 141 * branch. See check_cond_jmp_op(). 142 * 143 * After the call R0 is set to return type of the function and registers R1-R5 144 * are set to NOT_INIT to indicate that they are no longer readable. 145 * 146 * The following reference types represent a potential reference to a kernel 147 * resource which, after first being allocated, must be checked and freed by 148 * the BPF program: 149 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 150 * 151 * When the verifier sees a helper call return a reference type, it allocates a 152 * pointer id for the reference and stores it in the current function state. 153 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 154 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 155 * passes through a NULL-check conditional. For the branch wherein the state is 156 * changed to CONST_IMM, the verifier releases the reference. 157 * 158 * For each helper function that allocates a reference, such as 159 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 160 * bpf_sk_release(). When a reference type passes into the release function, 161 * the verifier also releases the reference. If any unchecked or unreleased 162 * reference remains at the end of the program, the verifier rejects it. 163 */ 164 165 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 166 struct bpf_verifier_stack_elem { 167 /* verifer state is 'st' 168 * before processing instruction 'insn_idx' 169 * and after processing instruction 'prev_insn_idx' 170 */ 171 struct bpf_verifier_state st; 172 int insn_idx; 173 int prev_insn_idx; 174 struct bpf_verifier_stack_elem *next; 175 /* length of verifier log at the time this state was pushed on stack */ 176 u32 log_pos; 177 }; 178 179 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 180 #define BPF_COMPLEXITY_LIMIT_STATES 64 181 182 #define BPF_MAP_KEY_POISON (1ULL << 63) 183 #define BPF_MAP_KEY_SEEN (1ULL << 62) 184 185 #define BPF_MAP_PTR_UNPRIV 1UL 186 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 187 POISON_POINTER_DELTA)) 188 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 189 190 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx); 191 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id); 192 193 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 194 { 195 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON; 196 } 197 198 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 199 { 200 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV; 201 } 202 203 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 204 const struct bpf_map *map, bool unpriv) 205 { 206 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 207 unpriv |= bpf_map_ptr_unpriv(aux); 208 aux->map_ptr_state = (unsigned long)map | 209 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 210 } 211 212 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 213 { 214 return aux->map_key_state & BPF_MAP_KEY_POISON; 215 } 216 217 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 218 { 219 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 220 } 221 222 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 223 { 224 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 225 } 226 227 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 228 { 229 bool poisoned = bpf_map_key_poisoned(aux); 230 231 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 232 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 233 } 234 235 static bool bpf_pseudo_call(const struct bpf_insn *insn) 236 { 237 return insn->code == (BPF_JMP | BPF_CALL) && 238 insn->src_reg == BPF_PSEUDO_CALL; 239 } 240 241 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn) 242 { 243 return insn->code == (BPF_JMP | BPF_CALL) && 244 insn->src_reg == BPF_PSEUDO_KFUNC_CALL; 245 } 246 247 struct bpf_call_arg_meta { 248 struct bpf_map *map_ptr; 249 bool raw_mode; 250 bool pkt_access; 251 u8 release_regno; 252 int regno; 253 int access_size; 254 int mem_size; 255 u64 msize_max_value; 256 int ref_obj_id; 257 int map_uid; 258 int func_id; 259 struct btf *btf; 260 u32 btf_id; 261 struct btf *ret_btf; 262 u32 ret_btf_id; 263 u32 subprogno; 264 struct bpf_map_value_off_desc *kptr_off_desc; 265 u8 uninit_dynptr_regno; 266 }; 267 268 struct btf *btf_vmlinux; 269 270 static DEFINE_MUTEX(bpf_verifier_lock); 271 272 static const struct bpf_line_info * 273 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 274 { 275 const struct bpf_line_info *linfo; 276 const struct bpf_prog *prog; 277 u32 i, nr_linfo; 278 279 prog = env->prog; 280 nr_linfo = prog->aux->nr_linfo; 281 282 if (!nr_linfo || insn_off >= prog->len) 283 return NULL; 284 285 linfo = prog->aux->linfo; 286 for (i = 1; i < nr_linfo; i++) 287 if (insn_off < linfo[i].insn_off) 288 break; 289 290 return &linfo[i - 1]; 291 } 292 293 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, 294 va_list args) 295 { 296 unsigned int n; 297 298 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 299 300 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 301 "verifier log line truncated - local buffer too short\n"); 302 303 if (log->level == BPF_LOG_KERNEL) { 304 bool newline = n > 0 && log->kbuf[n - 1] == '\n'; 305 306 pr_err("BPF: %s%s", log->kbuf, newline ? "" : "\n"); 307 return; 308 } 309 310 n = min(log->len_total - log->len_used - 1, n); 311 log->kbuf[n] = '\0'; 312 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 313 log->len_used += n; 314 else 315 log->ubuf = NULL; 316 } 317 318 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos) 319 { 320 char zero = 0; 321 322 if (!bpf_verifier_log_needed(log)) 323 return; 324 325 log->len_used = new_pos; 326 if (put_user(zero, log->ubuf + new_pos)) 327 log->ubuf = NULL; 328 } 329 330 /* log_level controls verbosity level of eBPF verifier. 331 * bpf_verifier_log_write() is used to dump the verification trace to the log, 332 * so the user can figure out what's wrong with the program 333 */ 334 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 335 const char *fmt, ...) 336 { 337 va_list args; 338 339 if (!bpf_verifier_log_needed(&env->log)) 340 return; 341 342 va_start(args, fmt); 343 bpf_verifier_vlog(&env->log, fmt, args); 344 va_end(args); 345 } 346 EXPORT_SYMBOL_GPL(bpf_verifier_log_write); 347 348 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 349 { 350 struct bpf_verifier_env *env = private_data; 351 va_list args; 352 353 if (!bpf_verifier_log_needed(&env->log)) 354 return; 355 356 va_start(args, fmt); 357 bpf_verifier_vlog(&env->log, fmt, args); 358 va_end(args); 359 } 360 361 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log, 362 const char *fmt, ...) 363 { 364 va_list args; 365 366 if (!bpf_verifier_log_needed(log)) 367 return; 368 369 va_start(args, fmt); 370 bpf_verifier_vlog(log, fmt, args); 371 va_end(args); 372 } 373 374 static const char *ltrim(const char *s) 375 { 376 while (isspace(*s)) 377 s++; 378 379 return s; 380 } 381 382 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 383 u32 insn_off, 384 const char *prefix_fmt, ...) 385 { 386 const struct bpf_line_info *linfo; 387 388 if (!bpf_verifier_log_needed(&env->log)) 389 return; 390 391 linfo = find_linfo(env, insn_off); 392 if (!linfo || linfo == env->prev_linfo) 393 return; 394 395 if (prefix_fmt) { 396 va_list args; 397 398 va_start(args, prefix_fmt); 399 bpf_verifier_vlog(&env->log, prefix_fmt, args); 400 va_end(args); 401 } 402 403 verbose(env, "%s\n", 404 ltrim(btf_name_by_offset(env->prog->aux->btf, 405 linfo->line_off))); 406 407 env->prev_linfo = linfo; 408 } 409 410 static void verbose_invalid_scalar(struct bpf_verifier_env *env, 411 struct bpf_reg_state *reg, 412 struct tnum *range, const char *ctx, 413 const char *reg_name) 414 { 415 char tn_buf[48]; 416 417 verbose(env, "At %s the register %s ", ctx, reg_name); 418 if (!tnum_is_unknown(reg->var_off)) { 419 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 420 verbose(env, "has value %s", tn_buf); 421 } else { 422 verbose(env, "has unknown scalar value"); 423 } 424 tnum_strn(tn_buf, sizeof(tn_buf), *range); 425 verbose(env, " should have been in %s\n", tn_buf); 426 } 427 428 static bool type_is_pkt_pointer(enum bpf_reg_type type) 429 { 430 type = base_type(type); 431 return type == PTR_TO_PACKET || 432 type == PTR_TO_PACKET_META; 433 } 434 435 static bool type_is_sk_pointer(enum bpf_reg_type type) 436 { 437 return type == PTR_TO_SOCKET || 438 type == PTR_TO_SOCK_COMMON || 439 type == PTR_TO_TCP_SOCK || 440 type == PTR_TO_XDP_SOCK; 441 } 442 443 static bool reg_type_not_null(enum bpf_reg_type type) 444 { 445 return type == PTR_TO_SOCKET || 446 type == PTR_TO_TCP_SOCK || 447 type == PTR_TO_MAP_VALUE || 448 type == PTR_TO_MAP_KEY || 449 type == PTR_TO_SOCK_COMMON; 450 } 451 452 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 453 { 454 return reg->type == PTR_TO_MAP_VALUE && 455 map_value_has_spin_lock(reg->map_ptr); 456 } 457 458 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type) 459 { 460 type = base_type(type); 461 return type == PTR_TO_SOCKET || type == PTR_TO_TCP_SOCK || 462 type == PTR_TO_MEM || type == PTR_TO_BTF_ID; 463 } 464 465 static bool type_is_rdonly_mem(u32 type) 466 { 467 return type & MEM_RDONLY; 468 } 469 470 static bool type_may_be_null(u32 type) 471 { 472 return type & PTR_MAYBE_NULL; 473 } 474 475 static bool is_acquire_function(enum bpf_func_id func_id, 476 const struct bpf_map *map) 477 { 478 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; 479 480 if (func_id == BPF_FUNC_sk_lookup_tcp || 481 func_id == BPF_FUNC_sk_lookup_udp || 482 func_id == BPF_FUNC_skc_lookup_tcp || 483 func_id == BPF_FUNC_ringbuf_reserve || 484 func_id == BPF_FUNC_kptr_xchg) 485 return true; 486 487 if (func_id == BPF_FUNC_map_lookup_elem && 488 (map_type == BPF_MAP_TYPE_SOCKMAP || 489 map_type == BPF_MAP_TYPE_SOCKHASH)) 490 return true; 491 492 return false; 493 } 494 495 static bool is_ptr_cast_function(enum bpf_func_id func_id) 496 { 497 return func_id == BPF_FUNC_tcp_sock || 498 func_id == BPF_FUNC_sk_fullsock || 499 func_id == BPF_FUNC_skc_to_tcp_sock || 500 func_id == BPF_FUNC_skc_to_tcp6_sock || 501 func_id == BPF_FUNC_skc_to_udp6_sock || 502 func_id == BPF_FUNC_skc_to_mptcp_sock || 503 func_id == BPF_FUNC_skc_to_tcp_timewait_sock || 504 func_id == BPF_FUNC_skc_to_tcp_request_sock; 505 } 506 507 static bool is_dynptr_ref_function(enum bpf_func_id func_id) 508 { 509 return func_id == BPF_FUNC_dynptr_data; 510 } 511 512 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id, 513 const struct bpf_map *map) 514 { 515 int ref_obj_uses = 0; 516 517 if (is_ptr_cast_function(func_id)) 518 ref_obj_uses++; 519 if (is_acquire_function(func_id, map)) 520 ref_obj_uses++; 521 if (is_dynptr_ref_function(func_id)) 522 ref_obj_uses++; 523 524 return ref_obj_uses > 1; 525 } 526 527 static bool is_cmpxchg_insn(const struct bpf_insn *insn) 528 { 529 return BPF_CLASS(insn->code) == BPF_STX && 530 BPF_MODE(insn->code) == BPF_ATOMIC && 531 insn->imm == BPF_CMPXCHG; 532 } 533 534 /* string representation of 'enum bpf_reg_type' 535 * 536 * Note that reg_type_str() can not appear more than once in a single verbose() 537 * statement. 538 */ 539 static const char *reg_type_str(struct bpf_verifier_env *env, 540 enum bpf_reg_type type) 541 { 542 char postfix[16] = {0}, prefix[32] = {0}; 543 static const char * const str[] = { 544 [NOT_INIT] = "?", 545 [SCALAR_VALUE] = "scalar", 546 [PTR_TO_CTX] = "ctx", 547 [CONST_PTR_TO_MAP] = "map_ptr", 548 [PTR_TO_MAP_VALUE] = "map_value", 549 [PTR_TO_STACK] = "fp", 550 [PTR_TO_PACKET] = "pkt", 551 [PTR_TO_PACKET_META] = "pkt_meta", 552 [PTR_TO_PACKET_END] = "pkt_end", 553 [PTR_TO_FLOW_KEYS] = "flow_keys", 554 [PTR_TO_SOCKET] = "sock", 555 [PTR_TO_SOCK_COMMON] = "sock_common", 556 [PTR_TO_TCP_SOCK] = "tcp_sock", 557 [PTR_TO_TP_BUFFER] = "tp_buffer", 558 [PTR_TO_XDP_SOCK] = "xdp_sock", 559 [PTR_TO_BTF_ID] = "ptr_", 560 [PTR_TO_MEM] = "mem", 561 [PTR_TO_BUF] = "buf", 562 [PTR_TO_FUNC] = "func", 563 [PTR_TO_MAP_KEY] = "map_key", 564 }; 565 566 if (type & PTR_MAYBE_NULL) { 567 if (base_type(type) == PTR_TO_BTF_ID) 568 strncpy(postfix, "or_null_", 16); 569 else 570 strncpy(postfix, "_or_null", 16); 571 } 572 573 if (type & MEM_RDONLY) 574 strncpy(prefix, "rdonly_", 32); 575 if (type & MEM_ALLOC) 576 strncpy(prefix, "alloc_", 32); 577 if (type & MEM_USER) 578 strncpy(prefix, "user_", 32); 579 if (type & MEM_PERCPU) 580 strncpy(prefix, "percpu_", 32); 581 if (type & PTR_UNTRUSTED) 582 strncpy(prefix, "untrusted_", 32); 583 584 snprintf(env->type_str_buf, TYPE_STR_BUF_LEN, "%s%s%s", 585 prefix, str[base_type(type)], postfix); 586 return env->type_str_buf; 587 } 588 589 static char slot_type_char[] = { 590 [STACK_INVALID] = '?', 591 [STACK_SPILL] = 'r', 592 [STACK_MISC] = 'm', 593 [STACK_ZERO] = '0', 594 [STACK_DYNPTR] = 'd', 595 }; 596 597 static void print_liveness(struct bpf_verifier_env *env, 598 enum bpf_reg_liveness live) 599 { 600 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 601 verbose(env, "_"); 602 if (live & REG_LIVE_READ) 603 verbose(env, "r"); 604 if (live & REG_LIVE_WRITTEN) 605 verbose(env, "w"); 606 if (live & REG_LIVE_DONE) 607 verbose(env, "D"); 608 } 609 610 static int get_spi(s32 off) 611 { 612 return (-off - 1) / BPF_REG_SIZE; 613 } 614 615 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots) 616 { 617 int allocated_slots = state->allocated_stack / BPF_REG_SIZE; 618 619 /* We need to check that slots between [spi - nr_slots + 1, spi] are 620 * within [0, allocated_stack). 621 * 622 * Please note that the spi grows downwards. For example, a dynptr 623 * takes the size of two stack slots; the first slot will be at 624 * spi and the second slot will be at spi - 1. 625 */ 626 return spi - nr_slots + 1 >= 0 && spi < allocated_slots; 627 } 628 629 static struct bpf_func_state *func(struct bpf_verifier_env *env, 630 const struct bpf_reg_state *reg) 631 { 632 struct bpf_verifier_state *cur = env->cur_state; 633 634 return cur->frame[reg->frameno]; 635 } 636 637 static const char *kernel_type_name(const struct btf* btf, u32 id) 638 { 639 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off); 640 } 641 642 static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno) 643 { 644 env->scratched_regs |= 1U << regno; 645 } 646 647 static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi) 648 { 649 env->scratched_stack_slots |= 1ULL << spi; 650 } 651 652 static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno) 653 { 654 return (env->scratched_regs >> regno) & 1; 655 } 656 657 static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno) 658 { 659 return (env->scratched_stack_slots >> regno) & 1; 660 } 661 662 static bool verifier_state_scratched(const struct bpf_verifier_env *env) 663 { 664 return env->scratched_regs || env->scratched_stack_slots; 665 } 666 667 static void mark_verifier_state_clean(struct bpf_verifier_env *env) 668 { 669 env->scratched_regs = 0U; 670 env->scratched_stack_slots = 0ULL; 671 } 672 673 /* Used for printing the entire verifier state. */ 674 static void mark_verifier_state_scratched(struct bpf_verifier_env *env) 675 { 676 env->scratched_regs = ~0U; 677 env->scratched_stack_slots = ~0ULL; 678 } 679 680 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type) 681 { 682 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) { 683 case DYNPTR_TYPE_LOCAL: 684 return BPF_DYNPTR_TYPE_LOCAL; 685 case DYNPTR_TYPE_RINGBUF: 686 return BPF_DYNPTR_TYPE_RINGBUF; 687 default: 688 return BPF_DYNPTR_TYPE_INVALID; 689 } 690 } 691 692 static bool dynptr_type_refcounted(enum bpf_dynptr_type type) 693 { 694 return type == BPF_DYNPTR_TYPE_RINGBUF; 695 } 696 697 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 698 enum bpf_arg_type arg_type, int insn_idx) 699 { 700 struct bpf_func_state *state = func(env, reg); 701 enum bpf_dynptr_type type; 702 int spi, i, id; 703 704 spi = get_spi(reg->off); 705 706 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS)) 707 return -EINVAL; 708 709 for (i = 0; i < BPF_REG_SIZE; i++) { 710 state->stack[spi].slot_type[i] = STACK_DYNPTR; 711 state->stack[spi - 1].slot_type[i] = STACK_DYNPTR; 712 } 713 714 type = arg_to_dynptr_type(arg_type); 715 if (type == BPF_DYNPTR_TYPE_INVALID) 716 return -EINVAL; 717 718 state->stack[spi].spilled_ptr.dynptr.first_slot = true; 719 state->stack[spi].spilled_ptr.dynptr.type = type; 720 state->stack[spi - 1].spilled_ptr.dynptr.type = type; 721 722 if (dynptr_type_refcounted(type)) { 723 /* The id is used to track proper releasing */ 724 id = acquire_reference_state(env, insn_idx); 725 if (id < 0) 726 return id; 727 728 state->stack[spi].spilled_ptr.id = id; 729 state->stack[spi - 1].spilled_ptr.id = id; 730 } 731 732 return 0; 733 } 734 735 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 736 { 737 struct bpf_func_state *state = func(env, reg); 738 int spi, i; 739 740 spi = get_spi(reg->off); 741 742 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS)) 743 return -EINVAL; 744 745 for (i = 0; i < BPF_REG_SIZE; i++) { 746 state->stack[spi].slot_type[i] = STACK_INVALID; 747 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 748 } 749 750 /* Invalidate any slices associated with this dynptr */ 751 if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 752 release_reference(env, state->stack[spi].spilled_ptr.id); 753 state->stack[spi].spilled_ptr.id = 0; 754 state->stack[spi - 1].spilled_ptr.id = 0; 755 } 756 757 state->stack[spi].spilled_ptr.dynptr.first_slot = false; 758 state->stack[spi].spilled_ptr.dynptr.type = 0; 759 state->stack[spi - 1].spilled_ptr.dynptr.type = 0; 760 761 return 0; 762 } 763 764 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 765 { 766 struct bpf_func_state *state = func(env, reg); 767 int spi = get_spi(reg->off); 768 int i; 769 770 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS)) 771 return true; 772 773 for (i = 0; i < BPF_REG_SIZE; i++) { 774 if (state->stack[spi].slot_type[i] == STACK_DYNPTR || 775 state->stack[spi - 1].slot_type[i] == STACK_DYNPTR) 776 return false; 777 } 778 779 return true; 780 } 781 782 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 783 enum bpf_arg_type arg_type) 784 { 785 struct bpf_func_state *state = func(env, reg); 786 int spi = get_spi(reg->off); 787 int i; 788 789 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS) || 790 !state->stack[spi].spilled_ptr.dynptr.first_slot) 791 return false; 792 793 for (i = 0; i < BPF_REG_SIZE; i++) { 794 if (state->stack[spi].slot_type[i] != STACK_DYNPTR || 795 state->stack[spi - 1].slot_type[i] != STACK_DYNPTR) 796 return false; 797 } 798 799 /* ARG_PTR_TO_DYNPTR takes any type of dynptr */ 800 if (arg_type == ARG_PTR_TO_DYNPTR) 801 return true; 802 803 return state->stack[spi].spilled_ptr.dynptr.type == arg_to_dynptr_type(arg_type); 804 } 805 806 /* The reg state of a pointer or a bounded scalar was saved when 807 * it was spilled to the stack. 808 */ 809 static bool is_spilled_reg(const struct bpf_stack_state *stack) 810 { 811 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL; 812 } 813 814 static void scrub_spilled_slot(u8 *stype) 815 { 816 if (*stype != STACK_INVALID) 817 *stype = STACK_MISC; 818 } 819 820 static void print_verifier_state(struct bpf_verifier_env *env, 821 const struct bpf_func_state *state, 822 bool print_all) 823 { 824 const struct bpf_reg_state *reg; 825 enum bpf_reg_type t; 826 int i; 827 828 if (state->frameno) 829 verbose(env, " frame%d:", state->frameno); 830 for (i = 0; i < MAX_BPF_REG; i++) { 831 reg = &state->regs[i]; 832 t = reg->type; 833 if (t == NOT_INIT) 834 continue; 835 if (!print_all && !reg_scratched(env, i)) 836 continue; 837 verbose(env, " R%d", i); 838 print_liveness(env, reg->live); 839 verbose(env, "="); 840 if (t == SCALAR_VALUE && reg->precise) 841 verbose(env, "P"); 842 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 843 tnum_is_const(reg->var_off)) { 844 /* reg->off should be 0 for SCALAR_VALUE */ 845 verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t)); 846 verbose(env, "%lld", reg->var_off.value + reg->off); 847 } else { 848 const char *sep = ""; 849 850 verbose(env, "%s", reg_type_str(env, t)); 851 if (base_type(t) == PTR_TO_BTF_ID) 852 verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id)); 853 verbose(env, "("); 854 /* 855 * _a stands for append, was shortened to avoid multiline statements below. 856 * This macro is used to output a comma separated list of attributes. 857 */ 858 #define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; }) 859 860 if (reg->id) 861 verbose_a("id=%d", reg->id); 862 if (reg_type_may_be_refcounted_or_null(t) && reg->ref_obj_id) 863 verbose_a("ref_obj_id=%d", reg->ref_obj_id); 864 if (t != SCALAR_VALUE) 865 verbose_a("off=%d", reg->off); 866 if (type_is_pkt_pointer(t)) 867 verbose_a("r=%d", reg->range); 868 else if (base_type(t) == CONST_PTR_TO_MAP || 869 base_type(t) == PTR_TO_MAP_KEY || 870 base_type(t) == PTR_TO_MAP_VALUE) 871 verbose_a("ks=%d,vs=%d", 872 reg->map_ptr->key_size, 873 reg->map_ptr->value_size); 874 if (tnum_is_const(reg->var_off)) { 875 /* Typically an immediate SCALAR_VALUE, but 876 * could be a pointer whose offset is too big 877 * for reg->off 878 */ 879 verbose_a("imm=%llx", reg->var_off.value); 880 } else { 881 if (reg->smin_value != reg->umin_value && 882 reg->smin_value != S64_MIN) 883 verbose_a("smin=%lld", (long long)reg->smin_value); 884 if (reg->smax_value != reg->umax_value && 885 reg->smax_value != S64_MAX) 886 verbose_a("smax=%lld", (long long)reg->smax_value); 887 if (reg->umin_value != 0) 888 verbose_a("umin=%llu", (unsigned long long)reg->umin_value); 889 if (reg->umax_value != U64_MAX) 890 verbose_a("umax=%llu", (unsigned long long)reg->umax_value); 891 if (!tnum_is_unknown(reg->var_off)) { 892 char tn_buf[48]; 893 894 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 895 verbose_a("var_off=%s", tn_buf); 896 } 897 if (reg->s32_min_value != reg->smin_value && 898 reg->s32_min_value != S32_MIN) 899 verbose_a("s32_min=%d", (int)(reg->s32_min_value)); 900 if (reg->s32_max_value != reg->smax_value && 901 reg->s32_max_value != S32_MAX) 902 verbose_a("s32_max=%d", (int)(reg->s32_max_value)); 903 if (reg->u32_min_value != reg->umin_value && 904 reg->u32_min_value != U32_MIN) 905 verbose_a("u32_min=%d", (int)(reg->u32_min_value)); 906 if (reg->u32_max_value != reg->umax_value && 907 reg->u32_max_value != U32_MAX) 908 verbose_a("u32_max=%d", (int)(reg->u32_max_value)); 909 } 910 #undef verbose_a 911 912 verbose(env, ")"); 913 } 914 } 915 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 916 char types_buf[BPF_REG_SIZE + 1]; 917 bool valid = false; 918 int j; 919 920 for (j = 0; j < BPF_REG_SIZE; j++) { 921 if (state->stack[i].slot_type[j] != STACK_INVALID) 922 valid = true; 923 types_buf[j] = slot_type_char[ 924 state->stack[i].slot_type[j]]; 925 } 926 types_buf[BPF_REG_SIZE] = 0; 927 if (!valid) 928 continue; 929 if (!print_all && !stack_slot_scratched(env, i)) 930 continue; 931 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 932 print_liveness(env, state->stack[i].spilled_ptr.live); 933 if (is_spilled_reg(&state->stack[i])) { 934 reg = &state->stack[i].spilled_ptr; 935 t = reg->type; 936 verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t)); 937 if (t == SCALAR_VALUE && reg->precise) 938 verbose(env, "P"); 939 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) 940 verbose(env, "%lld", reg->var_off.value + reg->off); 941 } else { 942 verbose(env, "=%s", types_buf); 943 } 944 } 945 if (state->acquired_refs && state->refs[0].id) { 946 verbose(env, " refs=%d", state->refs[0].id); 947 for (i = 1; i < state->acquired_refs; i++) 948 if (state->refs[i].id) 949 verbose(env, ",%d", state->refs[i].id); 950 } 951 if (state->in_callback_fn) 952 verbose(env, " cb"); 953 if (state->in_async_callback_fn) 954 verbose(env, " async_cb"); 955 verbose(env, "\n"); 956 mark_verifier_state_clean(env); 957 } 958 959 static inline u32 vlog_alignment(u32 pos) 960 { 961 return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT), 962 BPF_LOG_MIN_ALIGNMENT) - pos - 1; 963 } 964 965 static void print_insn_state(struct bpf_verifier_env *env, 966 const struct bpf_func_state *state) 967 { 968 if (env->prev_log_len && env->prev_log_len == env->log.len_used) { 969 /* remove new line character */ 970 bpf_vlog_reset(&env->log, env->prev_log_len - 1); 971 verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_len), ' '); 972 } else { 973 verbose(env, "%d:", env->insn_idx); 974 } 975 print_verifier_state(env, state, false); 976 } 977 978 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too 979 * small to hold src. This is different from krealloc since we don't want to preserve 980 * the contents of dst. 981 * 982 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could 983 * not be allocated. 984 */ 985 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags) 986 { 987 size_t bytes; 988 989 if (ZERO_OR_NULL_PTR(src)) 990 goto out; 991 992 if (unlikely(check_mul_overflow(n, size, &bytes))) 993 return NULL; 994 995 if (ksize(dst) < bytes) { 996 kfree(dst); 997 dst = kmalloc_track_caller(bytes, flags); 998 if (!dst) 999 return NULL; 1000 } 1001 1002 memcpy(dst, src, bytes); 1003 out: 1004 return dst ? dst : ZERO_SIZE_PTR; 1005 } 1006 1007 /* resize an array from old_n items to new_n items. the array is reallocated if it's too 1008 * small to hold new_n items. new items are zeroed out if the array grows. 1009 * 1010 * Contrary to krealloc_array, does not free arr if new_n is zero. 1011 */ 1012 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size) 1013 { 1014 if (!new_n || old_n == new_n) 1015 goto out; 1016 1017 arr = krealloc_array(arr, new_n, size, GFP_KERNEL); 1018 if (!arr) 1019 return NULL; 1020 1021 if (new_n > old_n) 1022 memset(arr + old_n * size, 0, (new_n - old_n) * size); 1023 1024 out: 1025 return arr ? arr : ZERO_SIZE_PTR; 1026 } 1027 1028 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1029 { 1030 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs, 1031 sizeof(struct bpf_reference_state), GFP_KERNEL); 1032 if (!dst->refs) 1033 return -ENOMEM; 1034 1035 dst->acquired_refs = src->acquired_refs; 1036 return 0; 1037 } 1038 1039 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1040 { 1041 size_t n = src->allocated_stack / BPF_REG_SIZE; 1042 1043 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state), 1044 GFP_KERNEL); 1045 if (!dst->stack) 1046 return -ENOMEM; 1047 1048 dst->allocated_stack = src->allocated_stack; 1049 return 0; 1050 } 1051 1052 static int resize_reference_state(struct bpf_func_state *state, size_t n) 1053 { 1054 state->refs = realloc_array(state->refs, state->acquired_refs, n, 1055 sizeof(struct bpf_reference_state)); 1056 if (!state->refs) 1057 return -ENOMEM; 1058 1059 state->acquired_refs = n; 1060 return 0; 1061 } 1062 1063 static int grow_stack_state(struct bpf_func_state *state, int size) 1064 { 1065 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE; 1066 1067 if (old_n >= n) 1068 return 0; 1069 1070 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state)); 1071 if (!state->stack) 1072 return -ENOMEM; 1073 1074 state->allocated_stack = size; 1075 return 0; 1076 } 1077 1078 /* Acquire a pointer id from the env and update the state->refs to include 1079 * this new pointer reference. 1080 * On success, returns a valid pointer id to associate with the register 1081 * On failure, returns a negative errno. 1082 */ 1083 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 1084 { 1085 struct bpf_func_state *state = cur_func(env); 1086 int new_ofs = state->acquired_refs; 1087 int id, err; 1088 1089 err = resize_reference_state(state, state->acquired_refs + 1); 1090 if (err) 1091 return err; 1092 id = ++env->id_gen; 1093 state->refs[new_ofs].id = id; 1094 state->refs[new_ofs].insn_idx = insn_idx; 1095 1096 return id; 1097 } 1098 1099 /* release function corresponding to acquire_reference_state(). Idempotent. */ 1100 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 1101 { 1102 int i, last_idx; 1103 1104 last_idx = state->acquired_refs - 1; 1105 for (i = 0; i < state->acquired_refs; i++) { 1106 if (state->refs[i].id == ptr_id) { 1107 if (last_idx && i != last_idx) 1108 memcpy(&state->refs[i], &state->refs[last_idx], 1109 sizeof(*state->refs)); 1110 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 1111 state->acquired_refs--; 1112 return 0; 1113 } 1114 } 1115 return -EINVAL; 1116 } 1117 1118 static void free_func_state(struct bpf_func_state *state) 1119 { 1120 if (!state) 1121 return; 1122 kfree(state->refs); 1123 kfree(state->stack); 1124 kfree(state); 1125 } 1126 1127 static void clear_jmp_history(struct bpf_verifier_state *state) 1128 { 1129 kfree(state->jmp_history); 1130 state->jmp_history = NULL; 1131 state->jmp_history_cnt = 0; 1132 } 1133 1134 static void free_verifier_state(struct bpf_verifier_state *state, 1135 bool free_self) 1136 { 1137 int i; 1138 1139 for (i = 0; i <= state->curframe; i++) { 1140 free_func_state(state->frame[i]); 1141 state->frame[i] = NULL; 1142 } 1143 clear_jmp_history(state); 1144 if (free_self) 1145 kfree(state); 1146 } 1147 1148 /* copy verifier state from src to dst growing dst stack space 1149 * when necessary to accommodate larger src stack 1150 */ 1151 static int copy_func_state(struct bpf_func_state *dst, 1152 const struct bpf_func_state *src) 1153 { 1154 int err; 1155 1156 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 1157 err = copy_reference_state(dst, src); 1158 if (err) 1159 return err; 1160 return copy_stack_state(dst, src); 1161 } 1162 1163 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 1164 const struct bpf_verifier_state *src) 1165 { 1166 struct bpf_func_state *dst; 1167 int i, err; 1168 1169 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history, 1170 src->jmp_history_cnt, sizeof(struct bpf_idx_pair), 1171 GFP_USER); 1172 if (!dst_state->jmp_history) 1173 return -ENOMEM; 1174 dst_state->jmp_history_cnt = src->jmp_history_cnt; 1175 1176 /* if dst has more stack frames then src frame, free them */ 1177 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 1178 free_func_state(dst_state->frame[i]); 1179 dst_state->frame[i] = NULL; 1180 } 1181 dst_state->speculative = src->speculative; 1182 dst_state->curframe = src->curframe; 1183 dst_state->active_spin_lock = src->active_spin_lock; 1184 dst_state->branches = src->branches; 1185 dst_state->parent = src->parent; 1186 dst_state->first_insn_idx = src->first_insn_idx; 1187 dst_state->last_insn_idx = src->last_insn_idx; 1188 for (i = 0; i <= src->curframe; i++) { 1189 dst = dst_state->frame[i]; 1190 if (!dst) { 1191 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 1192 if (!dst) 1193 return -ENOMEM; 1194 dst_state->frame[i] = dst; 1195 } 1196 err = copy_func_state(dst, src->frame[i]); 1197 if (err) 1198 return err; 1199 } 1200 return 0; 1201 } 1202 1203 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 1204 { 1205 while (st) { 1206 u32 br = --st->branches; 1207 1208 /* WARN_ON(br > 1) technically makes sense here, 1209 * but see comment in push_stack(), hence: 1210 */ 1211 WARN_ONCE((int)br < 0, 1212 "BUG update_branch_counts:branches_to_explore=%d\n", 1213 br); 1214 if (br) 1215 break; 1216 st = st->parent; 1217 } 1218 } 1219 1220 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 1221 int *insn_idx, bool pop_log) 1222 { 1223 struct bpf_verifier_state *cur = env->cur_state; 1224 struct bpf_verifier_stack_elem *elem, *head = env->head; 1225 int err; 1226 1227 if (env->head == NULL) 1228 return -ENOENT; 1229 1230 if (cur) { 1231 err = copy_verifier_state(cur, &head->st); 1232 if (err) 1233 return err; 1234 } 1235 if (pop_log) 1236 bpf_vlog_reset(&env->log, head->log_pos); 1237 if (insn_idx) 1238 *insn_idx = head->insn_idx; 1239 if (prev_insn_idx) 1240 *prev_insn_idx = head->prev_insn_idx; 1241 elem = head->next; 1242 free_verifier_state(&head->st, false); 1243 kfree(head); 1244 env->head = elem; 1245 env->stack_size--; 1246 return 0; 1247 } 1248 1249 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 1250 int insn_idx, int prev_insn_idx, 1251 bool speculative) 1252 { 1253 struct bpf_verifier_state *cur = env->cur_state; 1254 struct bpf_verifier_stack_elem *elem; 1255 int err; 1256 1257 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 1258 if (!elem) 1259 goto err; 1260 1261 elem->insn_idx = insn_idx; 1262 elem->prev_insn_idx = prev_insn_idx; 1263 elem->next = env->head; 1264 elem->log_pos = env->log.len_used; 1265 env->head = elem; 1266 env->stack_size++; 1267 err = copy_verifier_state(&elem->st, cur); 1268 if (err) 1269 goto err; 1270 elem->st.speculative |= speculative; 1271 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 1272 verbose(env, "The sequence of %d jumps is too complex.\n", 1273 env->stack_size); 1274 goto err; 1275 } 1276 if (elem->st.parent) { 1277 ++elem->st.parent->branches; 1278 /* WARN_ON(branches > 2) technically makes sense here, 1279 * but 1280 * 1. speculative states will bump 'branches' for non-branch 1281 * instructions 1282 * 2. is_state_visited() heuristics may decide not to create 1283 * a new state for a sequence of branches and all such current 1284 * and cloned states will be pointing to a single parent state 1285 * which might have large 'branches' count. 1286 */ 1287 } 1288 return &elem->st; 1289 err: 1290 free_verifier_state(env->cur_state, true); 1291 env->cur_state = NULL; 1292 /* pop all elements and return */ 1293 while (!pop_stack(env, NULL, NULL, false)); 1294 return NULL; 1295 } 1296 1297 #define CALLER_SAVED_REGS 6 1298 static const int caller_saved[CALLER_SAVED_REGS] = { 1299 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 1300 }; 1301 1302 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 1303 struct bpf_reg_state *reg); 1304 1305 /* This helper doesn't clear reg->id */ 1306 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1307 { 1308 reg->var_off = tnum_const(imm); 1309 reg->smin_value = (s64)imm; 1310 reg->smax_value = (s64)imm; 1311 reg->umin_value = imm; 1312 reg->umax_value = imm; 1313 1314 reg->s32_min_value = (s32)imm; 1315 reg->s32_max_value = (s32)imm; 1316 reg->u32_min_value = (u32)imm; 1317 reg->u32_max_value = (u32)imm; 1318 } 1319 1320 /* Mark the unknown part of a register (variable offset or scalar value) as 1321 * known to have the value @imm. 1322 */ 1323 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1324 { 1325 /* Clear id, off, and union(map_ptr, range) */ 1326 memset(((u8 *)reg) + sizeof(reg->type), 0, 1327 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 1328 ___mark_reg_known(reg, imm); 1329 } 1330 1331 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 1332 { 1333 reg->var_off = tnum_const_subreg(reg->var_off, imm); 1334 reg->s32_min_value = (s32)imm; 1335 reg->s32_max_value = (s32)imm; 1336 reg->u32_min_value = (u32)imm; 1337 reg->u32_max_value = (u32)imm; 1338 } 1339 1340 /* Mark the 'variable offset' part of a register as zero. This should be 1341 * used only on registers holding a pointer type. 1342 */ 1343 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 1344 { 1345 __mark_reg_known(reg, 0); 1346 } 1347 1348 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 1349 { 1350 __mark_reg_known(reg, 0); 1351 reg->type = SCALAR_VALUE; 1352 } 1353 1354 static void mark_reg_known_zero(struct bpf_verifier_env *env, 1355 struct bpf_reg_state *regs, u32 regno) 1356 { 1357 if (WARN_ON(regno >= MAX_BPF_REG)) { 1358 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 1359 /* Something bad happened, let's kill all regs */ 1360 for (regno = 0; regno < MAX_BPF_REG; regno++) 1361 __mark_reg_not_init(env, regs + regno); 1362 return; 1363 } 1364 __mark_reg_known_zero(regs + regno); 1365 } 1366 1367 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg) 1368 { 1369 if (base_type(reg->type) == PTR_TO_MAP_VALUE) { 1370 const struct bpf_map *map = reg->map_ptr; 1371 1372 if (map->inner_map_meta) { 1373 reg->type = CONST_PTR_TO_MAP; 1374 reg->map_ptr = map->inner_map_meta; 1375 /* transfer reg's id which is unique for every map_lookup_elem 1376 * as UID of the inner map. 1377 */ 1378 if (map_value_has_timer(map->inner_map_meta)) 1379 reg->map_uid = reg->id; 1380 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { 1381 reg->type = PTR_TO_XDP_SOCK; 1382 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || 1383 map->map_type == BPF_MAP_TYPE_SOCKHASH) { 1384 reg->type = PTR_TO_SOCKET; 1385 } else { 1386 reg->type = PTR_TO_MAP_VALUE; 1387 } 1388 return; 1389 } 1390 1391 reg->type &= ~PTR_MAYBE_NULL; 1392 } 1393 1394 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 1395 { 1396 return type_is_pkt_pointer(reg->type); 1397 } 1398 1399 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 1400 { 1401 return reg_is_pkt_pointer(reg) || 1402 reg->type == PTR_TO_PACKET_END; 1403 } 1404 1405 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 1406 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 1407 enum bpf_reg_type which) 1408 { 1409 /* The register can already have a range from prior markings. 1410 * This is fine as long as it hasn't been advanced from its 1411 * origin. 1412 */ 1413 return reg->type == which && 1414 reg->id == 0 && 1415 reg->off == 0 && 1416 tnum_equals_const(reg->var_off, 0); 1417 } 1418 1419 /* Reset the min/max bounds of a register */ 1420 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 1421 { 1422 reg->smin_value = S64_MIN; 1423 reg->smax_value = S64_MAX; 1424 reg->umin_value = 0; 1425 reg->umax_value = U64_MAX; 1426 1427 reg->s32_min_value = S32_MIN; 1428 reg->s32_max_value = S32_MAX; 1429 reg->u32_min_value = 0; 1430 reg->u32_max_value = U32_MAX; 1431 } 1432 1433 static void __mark_reg64_unbounded(struct bpf_reg_state *reg) 1434 { 1435 reg->smin_value = S64_MIN; 1436 reg->smax_value = S64_MAX; 1437 reg->umin_value = 0; 1438 reg->umax_value = U64_MAX; 1439 } 1440 1441 static void __mark_reg32_unbounded(struct bpf_reg_state *reg) 1442 { 1443 reg->s32_min_value = S32_MIN; 1444 reg->s32_max_value = S32_MAX; 1445 reg->u32_min_value = 0; 1446 reg->u32_max_value = U32_MAX; 1447 } 1448 1449 static void __update_reg32_bounds(struct bpf_reg_state *reg) 1450 { 1451 struct tnum var32_off = tnum_subreg(reg->var_off); 1452 1453 /* min signed is max(sign bit) | min(other bits) */ 1454 reg->s32_min_value = max_t(s32, reg->s32_min_value, 1455 var32_off.value | (var32_off.mask & S32_MIN)); 1456 /* max signed is min(sign bit) | max(other bits) */ 1457 reg->s32_max_value = min_t(s32, reg->s32_max_value, 1458 var32_off.value | (var32_off.mask & S32_MAX)); 1459 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 1460 reg->u32_max_value = min(reg->u32_max_value, 1461 (u32)(var32_off.value | var32_off.mask)); 1462 } 1463 1464 static void __update_reg64_bounds(struct bpf_reg_state *reg) 1465 { 1466 /* min signed is max(sign bit) | min(other bits) */ 1467 reg->smin_value = max_t(s64, reg->smin_value, 1468 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 1469 /* max signed is min(sign bit) | max(other bits) */ 1470 reg->smax_value = min_t(s64, reg->smax_value, 1471 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 1472 reg->umin_value = max(reg->umin_value, reg->var_off.value); 1473 reg->umax_value = min(reg->umax_value, 1474 reg->var_off.value | reg->var_off.mask); 1475 } 1476 1477 static void __update_reg_bounds(struct bpf_reg_state *reg) 1478 { 1479 __update_reg32_bounds(reg); 1480 __update_reg64_bounds(reg); 1481 } 1482 1483 /* Uses signed min/max values to inform unsigned, and vice-versa */ 1484 static void __reg32_deduce_bounds(struct bpf_reg_state *reg) 1485 { 1486 /* Learn sign from signed bounds. 1487 * If we cannot cross the sign boundary, then signed and unsigned bounds 1488 * are the same, so combine. This works even in the negative case, e.g. 1489 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1490 */ 1491 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) { 1492 reg->s32_min_value = reg->u32_min_value = 1493 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1494 reg->s32_max_value = reg->u32_max_value = 1495 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1496 return; 1497 } 1498 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1499 * boundary, so we must be careful. 1500 */ 1501 if ((s32)reg->u32_max_value >= 0) { 1502 /* Positive. We can't learn anything from the smin, but smax 1503 * is positive, hence safe. 1504 */ 1505 reg->s32_min_value = reg->u32_min_value; 1506 reg->s32_max_value = reg->u32_max_value = 1507 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1508 } else if ((s32)reg->u32_min_value < 0) { 1509 /* Negative. We can't learn anything from the smax, but smin 1510 * is negative, hence safe. 1511 */ 1512 reg->s32_min_value = reg->u32_min_value = 1513 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1514 reg->s32_max_value = reg->u32_max_value; 1515 } 1516 } 1517 1518 static void __reg64_deduce_bounds(struct bpf_reg_state *reg) 1519 { 1520 /* Learn sign from signed bounds. 1521 * If we cannot cross the sign boundary, then signed and unsigned bounds 1522 * are the same, so combine. This works even in the negative case, e.g. 1523 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1524 */ 1525 if (reg->smin_value >= 0 || reg->smax_value < 0) { 1526 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1527 reg->umin_value); 1528 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1529 reg->umax_value); 1530 return; 1531 } 1532 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1533 * boundary, so we must be careful. 1534 */ 1535 if ((s64)reg->umax_value >= 0) { 1536 /* Positive. We can't learn anything from the smin, but smax 1537 * is positive, hence safe. 1538 */ 1539 reg->smin_value = reg->umin_value; 1540 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1541 reg->umax_value); 1542 } else if ((s64)reg->umin_value < 0) { 1543 /* Negative. We can't learn anything from the smax, but smin 1544 * is negative, hence safe. 1545 */ 1546 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1547 reg->umin_value); 1548 reg->smax_value = reg->umax_value; 1549 } 1550 } 1551 1552 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 1553 { 1554 __reg32_deduce_bounds(reg); 1555 __reg64_deduce_bounds(reg); 1556 } 1557 1558 /* Attempts to improve var_off based on unsigned min/max information */ 1559 static void __reg_bound_offset(struct bpf_reg_state *reg) 1560 { 1561 struct tnum var64_off = tnum_intersect(reg->var_off, 1562 tnum_range(reg->umin_value, 1563 reg->umax_value)); 1564 struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off), 1565 tnum_range(reg->u32_min_value, 1566 reg->u32_max_value)); 1567 1568 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 1569 } 1570 1571 static void reg_bounds_sync(struct bpf_reg_state *reg) 1572 { 1573 /* We might have learned new bounds from the var_off. */ 1574 __update_reg_bounds(reg); 1575 /* We might have learned something about the sign bit. */ 1576 __reg_deduce_bounds(reg); 1577 /* We might have learned some bits from the bounds. */ 1578 __reg_bound_offset(reg); 1579 /* Intersecting with the old var_off might have improved our bounds 1580 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 1581 * then new var_off is (0; 0x7f...fc) which improves our umax. 1582 */ 1583 __update_reg_bounds(reg); 1584 } 1585 1586 static bool __reg32_bound_s64(s32 a) 1587 { 1588 return a >= 0 && a <= S32_MAX; 1589 } 1590 1591 static void __reg_assign_32_into_64(struct bpf_reg_state *reg) 1592 { 1593 reg->umin_value = reg->u32_min_value; 1594 reg->umax_value = reg->u32_max_value; 1595 1596 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must 1597 * be positive otherwise set to worse case bounds and refine later 1598 * from tnum. 1599 */ 1600 if (__reg32_bound_s64(reg->s32_min_value) && 1601 __reg32_bound_s64(reg->s32_max_value)) { 1602 reg->smin_value = reg->s32_min_value; 1603 reg->smax_value = reg->s32_max_value; 1604 } else { 1605 reg->smin_value = 0; 1606 reg->smax_value = U32_MAX; 1607 } 1608 } 1609 1610 static void __reg_combine_32_into_64(struct bpf_reg_state *reg) 1611 { 1612 /* special case when 64-bit register has upper 32-bit register 1613 * zeroed. Typically happens after zext or <<32, >>32 sequence 1614 * allowing us to use 32-bit bounds directly, 1615 */ 1616 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) { 1617 __reg_assign_32_into_64(reg); 1618 } else { 1619 /* Otherwise the best we can do is push lower 32bit known and 1620 * unknown bits into register (var_off set from jmp logic) 1621 * then learn as much as possible from the 64-bit tnum 1622 * known and unknown bits. The previous smin/smax bounds are 1623 * invalid here because of jmp32 compare so mark them unknown 1624 * so they do not impact tnum bounds calculation. 1625 */ 1626 __mark_reg64_unbounded(reg); 1627 } 1628 reg_bounds_sync(reg); 1629 } 1630 1631 static bool __reg64_bound_s32(s64 a) 1632 { 1633 return a >= S32_MIN && a <= S32_MAX; 1634 } 1635 1636 static bool __reg64_bound_u32(u64 a) 1637 { 1638 return a >= U32_MIN && a <= U32_MAX; 1639 } 1640 1641 static void __reg_combine_64_into_32(struct bpf_reg_state *reg) 1642 { 1643 __mark_reg32_unbounded(reg); 1644 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) { 1645 reg->s32_min_value = (s32)reg->smin_value; 1646 reg->s32_max_value = (s32)reg->smax_value; 1647 } 1648 if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) { 1649 reg->u32_min_value = (u32)reg->umin_value; 1650 reg->u32_max_value = (u32)reg->umax_value; 1651 } 1652 reg_bounds_sync(reg); 1653 } 1654 1655 /* Mark a register as having a completely unknown (scalar) value. */ 1656 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 1657 struct bpf_reg_state *reg) 1658 { 1659 /* 1660 * Clear type, id, off, and union(map_ptr, range) and 1661 * padding between 'type' and union 1662 */ 1663 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 1664 reg->type = SCALAR_VALUE; 1665 reg->var_off = tnum_unknown; 1666 reg->frameno = 0; 1667 reg->precise = env->subprog_cnt > 1 || !env->bpf_capable; 1668 __mark_reg_unbounded(reg); 1669 } 1670 1671 static void mark_reg_unknown(struct bpf_verifier_env *env, 1672 struct bpf_reg_state *regs, u32 regno) 1673 { 1674 if (WARN_ON(regno >= MAX_BPF_REG)) { 1675 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 1676 /* Something bad happened, let's kill all regs except FP */ 1677 for (regno = 0; regno < BPF_REG_FP; regno++) 1678 __mark_reg_not_init(env, regs + regno); 1679 return; 1680 } 1681 __mark_reg_unknown(env, regs + regno); 1682 } 1683 1684 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 1685 struct bpf_reg_state *reg) 1686 { 1687 __mark_reg_unknown(env, reg); 1688 reg->type = NOT_INIT; 1689 } 1690 1691 static void mark_reg_not_init(struct bpf_verifier_env *env, 1692 struct bpf_reg_state *regs, u32 regno) 1693 { 1694 if (WARN_ON(regno >= MAX_BPF_REG)) { 1695 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 1696 /* Something bad happened, let's kill all regs except FP */ 1697 for (regno = 0; regno < BPF_REG_FP; regno++) 1698 __mark_reg_not_init(env, regs + regno); 1699 return; 1700 } 1701 __mark_reg_not_init(env, regs + regno); 1702 } 1703 1704 static void mark_btf_ld_reg(struct bpf_verifier_env *env, 1705 struct bpf_reg_state *regs, u32 regno, 1706 enum bpf_reg_type reg_type, 1707 struct btf *btf, u32 btf_id, 1708 enum bpf_type_flag flag) 1709 { 1710 if (reg_type == SCALAR_VALUE) { 1711 mark_reg_unknown(env, regs, regno); 1712 return; 1713 } 1714 mark_reg_known_zero(env, regs, regno); 1715 regs[regno].type = PTR_TO_BTF_ID | flag; 1716 regs[regno].btf = btf; 1717 regs[regno].btf_id = btf_id; 1718 } 1719 1720 #define DEF_NOT_SUBREG (0) 1721 static void init_reg_state(struct bpf_verifier_env *env, 1722 struct bpf_func_state *state) 1723 { 1724 struct bpf_reg_state *regs = state->regs; 1725 int i; 1726 1727 for (i = 0; i < MAX_BPF_REG; i++) { 1728 mark_reg_not_init(env, regs, i); 1729 regs[i].live = REG_LIVE_NONE; 1730 regs[i].parent = NULL; 1731 regs[i].subreg_def = DEF_NOT_SUBREG; 1732 } 1733 1734 /* frame pointer */ 1735 regs[BPF_REG_FP].type = PTR_TO_STACK; 1736 mark_reg_known_zero(env, regs, BPF_REG_FP); 1737 regs[BPF_REG_FP].frameno = state->frameno; 1738 } 1739 1740 #define BPF_MAIN_FUNC (-1) 1741 static void init_func_state(struct bpf_verifier_env *env, 1742 struct bpf_func_state *state, 1743 int callsite, int frameno, int subprogno) 1744 { 1745 state->callsite = callsite; 1746 state->frameno = frameno; 1747 state->subprogno = subprogno; 1748 init_reg_state(env, state); 1749 mark_verifier_state_scratched(env); 1750 } 1751 1752 /* Similar to push_stack(), but for async callbacks */ 1753 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env, 1754 int insn_idx, int prev_insn_idx, 1755 int subprog) 1756 { 1757 struct bpf_verifier_stack_elem *elem; 1758 struct bpf_func_state *frame; 1759 1760 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 1761 if (!elem) 1762 goto err; 1763 1764 elem->insn_idx = insn_idx; 1765 elem->prev_insn_idx = prev_insn_idx; 1766 elem->next = env->head; 1767 elem->log_pos = env->log.len_used; 1768 env->head = elem; 1769 env->stack_size++; 1770 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 1771 verbose(env, 1772 "The sequence of %d jumps is too complex for async cb.\n", 1773 env->stack_size); 1774 goto err; 1775 } 1776 /* Unlike push_stack() do not copy_verifier_state(). 1777 * The caller state doesn't matter. 1778 * This is async callback. It starts in a fresh stack. 1779 * Initialize it similar to do_check_common(). 1780 */ 1781 elem->st.branches = 1; 1782 frame = kzalloc(sizeof(*frame), GFP_KERNEL); 1783 if (!frame) 1784 goto err; 1785 init_func_state(env, frame, 1786 BPF_MAIN_FUNC /* callsite */, 1787 0 /* frameno within this callchain */, 1788 subprog /* subprog number within this prog */); 1789 elem->st.frame[0] = frame; 1790 return &elem->st; 1791 err: 1792 free_verifier_state(env->cur_state, true); 1793 env->cur_state = NULL; 1794 /* pop all elements and return */ 1795 while (!pop_stack(env, NULL, NULL, false)); 1796 return NULL; 1797 } 1798 1799 1800 enum reg_arg_type { 1801 SRC_OP, /* register is used as source operand */ 1802 DST_OP, /* register is used as destination operand */ 1803 DST_OP_NO_MARK /* same as above, check only, don't mark */ 1804 }; 1805 1806 static int cmp_subprogs(const void *a, const void *b) 1807 { 1808 return ((struct bpf_subprog_info *)a)->start - 1809 ((struct bpf_subprog_info *)b)->start; 1810 } 1811 1812 static int find_subprog(struct bpf_verifier_env *env, int off) 1813 { 1814 struct bpf_subprog_info *p; 1815 1816 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 1817 sizeof(env->subprog_info[0]), cmp_subprogs); 1818 if (!p) 1819 return -ENOENT; 1820 return p - env->subprog_info; 1821 1822 } 1823 1824 static int add_subprog(struct bpf_verifier_env *env, int off) 1825 { 1826 int insn_cnt = env->prog->len; 1827 int ret; 1828 1829 if (off >= insn_cnt || off < 0) { 1830 verbose(env, "call to invalid destination\n"); 1831 return -EINVAL; 1832 } 1833 ret = find_subprog(env, off); 1834 if (ret >= 0) 1835 return ret; 1836 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 1837 verbose(env, "too many subprograms\n"); 1838 return -E2BIG; 1839 } 1840 /* determine subprog starts. The end is one before the next starts */ 1841 env->subprog_info[env->subprog_cnt++].start = off; 1842 sort(env->subprog_info, env->subprog_cnt, 1843 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 1844 return env->subprog_cnt - 1; 1845 } 1846 1847 #define MAX_KFUNC_DESCS 256 1848 #define MAX_KFUNC_BTFS 256 1849 1850 struct bpf_kfunc_desc { 1851 struct btf_func_model func_model; 1852 u32 func_id; 1853 s32 imm; 1854 u16 offset; 1855 }; 1856 1857 struct bpf_kfunc_btf { 1858 struct btf *btf; 1859 struct module *module; 1860 u16 offset; 1861 }; 1862 1863 struct bpf_kfunc_desc_tab { 1864 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS]; 1865 u32 nr_descs; 1866 }; 1867 1868 struct bpf_kfunc_btf_tab { 1869 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS]; 1870 u32 nr_descs; 1871 }; 1872 1873 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b) 1874 { 1875 const struct bpf_kfunc_desc *d0 = a; 1876 const struct bpf_kfunc_desc *d1 = b; 1877 1878 /* func_id is not greater than BTF_MAX_TYPE */ 1879 return d0->func_id - d1->func_id ?: d0->offset - d1->offset; 1880 } 1881 1882 static int kfunc_btf_cmp_by_off(const void *a, const void *b) 1883 { 1884 const struct bpf_kfunc_btf *d0 = a; 1885 const struct bpf_kfunc_btf *d1 = b; 1886 1887 return d0->offset - d1->offset; 1888 } 1889 1890 static const struct bpf_kfunc_desc * 1891 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset) 1892 { 1893 struct bpf_kfunc_desc desc = { 1894 .func_id = func_id, 1895 .offset = offset, 1896 }; 1897 struct bpf_kfunc_desc_tab *tab; 1898 1899 tab = prog->aux->kfunc_tab; 1900 return bsearch(&desc, tab->descs, tab->nr_descs, 1901 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off); 1902 } 1903 1904 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env, 1905 s16 offset) 1906 { 1907 struct bpf_kfunc_btf kf_btf = { .offset = offset }; 1908 struct bpf_kfunc_btf_tab *tab; 1909 struct bpf_kfunc_btf *b; 1910 struct module *mod; 1911 struct btf *btf; 1912 int btf_fd; 1913 1914 tab = env->prog->aux->kfunc_btf_tab; 1915 b = bsearch(&kf_btf, tab->descs, tab->nr_descs, 1916 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off); 1917 if (!b) { 1918 if (tab->nr_descs == MAX_KFUNC_BTFS) { 1919 verbose(env, "too many different module BTFs\n"); 1920 return ERR_PTR(-E2BIG); 1921 } 1922 1923 if (bpfptr_is_null(env->fd_array)) { 1924 verbose(env, "kfunc offset > 0 without fd_array is invalid\n"); 1925 return ERR_PTR(-EPROTO); 1926 } 1927 1928 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array, 1929 offset * sizeof(btf_fd), 1930 sizeof(btf_fd))) 1931 return ERR_PTR(-EFAULT); 1932 1933 btf = btf_get_by_fd(btf_fd); 1934 if (IS_ERR(btf)) { 1935 verbose(env, "invalid module BTF fd specified\n"); 1936 return btf; 1937 } 1938 1939 if (!btf_is_module(btf)) { 1940 verbose(env, "BTF fd for kfunc is not a module BTF\n"); 1941 btf_put(btf); 1942 return ERR_PTR(-EINVAL); 1943 } 1944 1945 mod = btf_try_get_module(btf); 1946 if (!mod) { 1947 btf_put(btf); 1948 return ERR_PTR(-ENXIO); 1949 } 1950 1951 b = &tab->descs[tab->nr_descs++]; 1952 b->btf = btf; 1953 b->module = mod; 1954 b->offset = offset; 1955 1956 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 1957 kfunc_btf_cmp_by_off, NULL); 1958 } 1959 return b->btf; 1960 } 1961 1962 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab) 1963 { 1964 if (!tab) 1965 return; 1966 1967 while (tab->nr_descs--) { 1968 module_put(tab->descs[tab->nr_descs].module); 1969 btf_put(tab->descs[tab->nr_descs].btf); 1970 } 1971 kfree(tab); 1972 } 1973 1974 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset) 1975 { 1976 if (offset) { 1977 if (offset < 0) { 1978 /* In the future, this can be allowed to increase limit 1979 * of fd index into fd_array, interpreted as u16. 1980 */ 1981 verbose(env, "negative offset disallowed for kernel module function call\n"); 1982 return ERR_PTR(-EINVAL); 1983 } 1984 1985 return __find_kfunc_desc_btf(env, offset); 1986 } 1987 return btf_vmlinux ?: ERR_PTR(-ENOENT); 1988 } 1989 1990 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset) 1991 { 1992 const struct btf_type *func, *func_proto; 1993 struct bpf_kfunc_btf_tab *btf_tab; 1994 struct bpf_kfunc_desc_tab *tab; 1995 struct bpf_prog_aux *prog_aux; 1996 struct bpf_kfunc_desc *desc; 1997 const char *func_name; 1998 struct btf *desc_btf; 1999 unsigned long call_imm; 2000 unsigned long addr; 2001 int err; 2002 2003 prog_aux = env->prog->aux; 2004 tab = prog_aux->kfunc_tab; 2005 btf_tab = prog_aux->kfunc_btf_tab; 2006 if (!tab) { 2007 if (!btf_vmlinux) { 2008 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n"); 2009 return -ENOTSUPP; 2010 } 2011 2012 if (!env->prog->jit_requested) { 2013 verbose(env, "JIT is required for calling kernel function\n"); 2014 return -ENOTSUPP; 2015 } 2016 2017 if (!bpf_jit_supports_kfunc_call()) { 2018 verbose(env, "JIT does not support calling kernel function\n"); 2019 return -ENOTSUPP; 2020 } 2021 2022 if (!env->prog->gpl_compatible) { 2023 verbose(env, "cannot call kernel function from non-GPL compatible program\n"); 2024 return -EINVAL; 2025 } 2026 2027 tab = kzalloc(sizeof(*tab), GFP_KERNEL); 2028 if (!tab) 2029 return -ENOMEM; 2030 prog_aux->kfunc_tab = tab; 2031 } 2032 2033 /* func_id == 0 is always invalid, but instead of returning an error, be 2034 * conservative and wait until the code elimination pass before returning 2035 * error, so that invalid calls that get pruned out can be in BPF programs 2036 * loaded from userspace. It is also required that offset be untouched 2037 * for such calls. 2038 */ 2039 if (!func_id && !offset) 2040 return 0; 2041 2042 if (!btf_tab && offset) { 2043 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL); 2044 if (!btf_tab) 2045 return -ENOMEM; 2046 prog_aux->kfunc_btf_tab = btf_tab; 2047 } 2048 2049 desc_btf = find_kfunc_desc_btf(env, offset); 2050 if (IS_ERR(desc_btf)) { 2051 verbose(env, "failed to find BTF for kernel function\n"); 2052 return PTR_ERR(desc_btf); 2053 } 2054 2055 if (find_kfunc_desc(env->prog, func_id, offset)) 2056 return 0; 2057 2058 if (tab->nr_descs == MAX_KFUNC_DESCS) { 2059 verbose(env, "too many different kernel function calls\n"); 2060 return -E2BIG; 2061 } 2062 2063 func = btf_type_by_id(desc_btf, func_id); 2064 if (!func || !btf_type_is_func(func)) { 2065 verbose(env, "kernel btf_id %u is not a function\n", 2066 func_id); 2067 return -EINVAL; 2068 } 2069 func_proto = btf_type_by_id(desc_btf, func->type); 2070 if (!func_proto || !btf_type_is_func_proto(func_proto)) { 2071 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n", 2072 func_id); 2073 return -EINVAL; 2074 } 2075 2076 func_name = btf_name_by_offset(desc_btf, func->name_off); 2077 addr = kallsyms_lookup_name(func_name); 2078 if (!addr) { 2079 verbose(env, "cannot find address for kernel function %s\n", 2080 func_name); 2081 return -EINVAL; 2082 } 2083 2084 call_imm = BPF_CALL_IMM(addr); 2085 /* Check whether or not the relative offset overflows desc->imm */ 2086 if ((unsigned long)(s32)call_imm != call_imm) { 2087 verbose(env, "address of kernel function %s is out of range\n", 2088 func_name); 2089 return -EINVAL; 2090 } 2091 2092 desc = &tab->descs[tab->nr_descs++]; 2093 desc->func_id = func_id; 2094 desc->imm = call_imm; 2095 desc->offset = offset; 2096 err = btf_distill_func_proto(&env->log, desc_btf, 2097 func_proto, func_name, 2098 &desc->func_model); 2099 if (!err) 2100 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2101 kfunc_desc_cmp_by_id_off, NULL); 2102 return err; 2103 } 2104 2105 static int kfunc_desc_cmp_by_imm(const void *a, const void *b) 2106 { 2107 const struct bpf_kfunc_desc *d0 = a; 2108 const struct bpf_kfunc_desc *d1 = b; 2109 2110 if (d0->imm > d1->imm) 2111 return 1; 2112 else if (d0->imm < d1->imm) 2113 return -1; 2114 return 0; 2115 } 2116 2117 static void sort_kfunc_descs_by_imm(struct bpf_prog *prog) 2118 { 2119 struct bpf_kfunc_desc_tab *tab; 2120 2121 tab = prog->aux->kfunc_tab; 2122 if (!tab) 2123 return; 2124 2125 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2126 kfunc_desc_cmp_by_imm, NULL); 2127 } 2128 2129 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 2130 { 2131 return !!prog->aux->kfunc_tab; 2132 } 2133 2134 const struct btf_func_model * 2135 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 2136 const struct bpf_insn *insn) 2137 { 2138 const struct bpf_kfunc_desc desc = { 2139 .imm = insn->imm, 2140 }; 2141 const struct bpf_kfunc_desc *res; 2142 struct bpf_kfunc_desc_tab *tab; 2143 2144 tab = prog->aux->kfunc_tab; 2145 res = bsearch(&desc, tab->descs, tab->nr_descs, 2146 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm); 2147 2148 return res ? &res->func_model : NULL; 2149 } 2150 2151 static int add_subprog_and_kfunc(struct bpf_verifier_env *env) 2152 { 2153 struct bpf_subprog_info *subprog = env->subprog_info; 2154 struct bpf_insn *insn = env->prog->insnsi; 2155 int i, ret, insn_cnt = env->prog->len; 2156 2157 /* Add entry function. */ 2158 ret = add_subprog(env, 0); 2159 if (ret) 2160 return ret; 2161 2162 for (i = 0; i < insn_cnt; i++, insn++) { 2163 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) && 2164 !bpf_pseudo_kfunc_call(insn)) 2165 continue; 2166 2167 if (!env->bpf_capable) { 2168 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); 2169 return -EPERM; 2170 } 2171 2172 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn)) 2173 ret = add_subprog(env, i + insn->imm + 1); 2174 else 2175 ret = add_kfunc_call(env, insn->imm, insn->off); 2176 2177 if (ret < 0) 2178 return ret; 2179 } 2180 2181 /* Add a fake 'exit' subprog which could simplify subprog iteration 2182 * logic. 'subprog_cnt' should not be increased. 2183 */ 2184 subprog[env->subprog_cnt].start = insn_cnt; 2185 2186 if (env->log.level & BPF_LOG_LEVEL2) 2187 for (i = 0; i < env->subprog_cnt; i++) 2188 verbose(env, "func#%d @%d\n", i, subprog[i].start); 2189 2190 return 0; 2191 } 2192 2193 static int check_subprogs(struct bpf_verifier_env *env) 2194 { 2195 int i, subprog_start, subprog_end, off, cur_subprog = 0; 2196 struct bpf_subprog_info *subprog = env->subprog_info; 2197 struct bpf_insn *insn = env->prog->insnsi; 2198 int insn_cnt = env->prog->len; 2199 2200 /* now check that all jumps are within the same subprog */ 2201 subprog_start = subprog[cur_subprog].start; 2202 subprog_end = subprog[cur_subprog + 1].start; 2203 for (i = 0; i < insn_cnt; i++) { 2204 u8 code = insn[i].code; 2205 2206 if (code == (BPF_JMP | BPF_CALL) && 2207 insn[i].imm == BPF_FUNC_tail_call && 2208 insn[i].src_reg != BPF_PSEUDO_CALL) 2209 subprog[cur_subprog].has_tail_call = true; 2210 if (BPF_CLASS(code) == BPF_LD && 2211 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND)) 2212 subprog[cur_subprog].has_ld_abs = true; 2213 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 2214 goto next; 2215 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 2216 goto next; 2217 off = i + insn[i].off + 1; 2218 if (off < subprog_start || off >= subprog_end) { 2219 verbose(env, "jump out of range from insn %d to %d\n", i, off); 2220 return -EINVAL; 2221 } 2222 next: 2223 if (i == subprog_end - 1) { 2224 /* to avoid fall-through from one subprog into another 2225 * the last insn of the subprog should be either exit 2226 * or unconditional jump back 2227 */ 2228 if (code != (BPF_JMP | BPF_EXIT) && 2229 code != (BPF_JMP | BPF_JA)) { 2230 verbose(env, "last insn is not an exit or jmp\n"); 2231 return -EINVAL; 2232 } 2233 subprog_start = subprog_end; 2234 cur_subprog++; 2235 if (cur_subprog < env->subprog_cnt) 2236 subprog_end = subprog[cur_subprog + 1].start; 2237 } 2238 } 2239 return 0; 2240 } 2241 2242 /* Parentage chain of this register (or stack slot) should take care of all 2243 * issues like callee-saved registers, stack slot allocation time, etc. 2244 */ 2245 static int mark_reg_read(struct bpf_verifier_env *env, 2246 const struct bpf_reg_state *state, 2247 struct bpf_reg_state *parent, u8 flag) 2248 { 2249 bool writes = parent == state->parent; /* Observe write marks */ 2250 int cnt = 0; 2251 2252 while (parent) { 2253 /* if read wasn't screened by an earlier write ... */ 2254 if (writes && state->live & REG_LIVE_WRITTEN) 2255 break; 2256 if (parent->live & REG_LIVE_DONE) { 2257 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 2258 reg_type_str(env, parent->type), 2259 parent->var_off.value, parent->off); 2260 return -EFAULT; 2261 } 2262 /* The first condition is more likely to be true than the 2263 * second, checked it first. 2264 */ 2265 if ((parent->live & REG_LIVE_READ) == flag || 2266 parent->live & REG_LIVE_READ64) 2267 /* The parentage chain never changes and 2268 * this parent was already marked as LIVE_READ. 2269 * There is no need to keep walking the chain again and 2270 * keep re-marking all parents as LIVE_READ. 2271 * This case happens when the same register is read 2272 * multiple times without writes into it in-between. 2273 * Also, if parent has the stronger REG_LIVE_READ64 set, 2274 * then no need to set the weak REG_LIVE_READ32. 2275 */ 2276 break; 2277 /* ... then we depend on parent's value */ 2278 parent->live |= flag; 2279 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 2280 if (flag == REG_LIVE_READ64) 2281 parent->live &= ~REG_LIVE_READ32; 2282 state = parent; 2283 parent = state->parent; 2284 writes = true; 2285 cnt++; 2286 } 2287 2288 if (env->longest_mark_read_walk < cnt) 2289 env->longest_mark_read_walk = cnt; 2290 return 0; 2291 } 2292 2293 /* This function is supposed to be used by the following 32-bit optimization 2294 * code only. It returns TRUE if the source or destination register operates 2295 * on 64-bit, otherwise return FALSE. 2296 */ 2297 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 2298 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 2299 { 2300 u8 code, class, op; 2301 2302 code = insn->code; 2303 class = BPF_CLASS(code); 2304 op = BPF_OP(code); 2305 if (class == BPF_JMP) { 2306 /* BPF_EXIT for "main" will reach here. Return TRUE 2307 * conservatively. 2308 */ 2309 if (op == BPF_EXIT) 2310 return true; 2311 if (op == BPF_CALL) { 2312 /* BPF to BPF call will reach here because of marking 2313 * caller saved clobber with DST_OP_NO_MARK for which we 2314 * don't care the register def because they are anyway 2315 * marked as NOT_INIT already. 2316 */ 2317 if (insn->src_reg == BPF_PSEUDO_CALL) 2318 return false; 2319 /* Helper call will reach here because of arg type 2320 * check, conservatively return TRUE. 2321 */ 2322 if (t == SRC_OP) 2323 return true; 2324 2325 return false; 2326 } 2327 } 2328 2329 if (class == BPF_ALU64 || class == BPF_JMP || 2330 /* BPF_END always use BPF_ALU class. */ 2331 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 2332 return true; 2333 2334 if (class == BPF_ALU || class == BPF_JMP32) 2335 return false; 2336 2337 if (class == BPF_LDX) { 2338 if (t != SRC_OP) 2339 return BPF_SIZE(code) == BPF_DW; 2340 /* LDX source must be ptr. */ 2341 return true; 2342 } 2343 2344 if (class == BPF_STX) { 2345 /* BPF_STX (including atomic variants) has multiple source 2346 * operands, one of which is a ptr. Check whether the caller is 2347 * asking about it. 2348 */ 2349 if (t == SRC_OP && reg->type != SCALAR_VALUE) 2350 return true; 2351 return BPF_SIZE(code) == BPF_DW; 2352 } 2353 2354 if (class == BPF_LD) { 2355 u8 mode = BPF_MODE(code); 2356 2357 /* LD_IMM64 */ 2358 if (mode == BPF_IMM) 2359 return true; 2360 2361 /* Both LD_IND and LD_ABS return 32-bit data. */ 2362 if (t != SRC_OP) 2363 return false; 2364 2365 /* Implicit ctx ptr. */ 2366 if (regno == BPF_REG_6) 2367 return true; 2368 2369 /* Explicit source could be any width. */ 2370 return true; 2371 } 2372 2373 if (class == BPF_ST) 2374 /* The only source register for BPF_ST is a ptr. */ 2375 return true; 2376 2377 /* Conservatively return true at default. */ 2378 return true; 2379 } 2380 2381 /* Return the regno defined by the insn, or -1. */ 2382 static int insn_def_regno(const struct bpf_insn *insn) 2383 { 2384 switch (BPF_CLASS(insn->code)) { 2385 case BPF_JMP: 2386 case BPF_JMP32: 2387 case BPF_ST: 2388 return -1; 2389 case BPF_STX: 2390 if (BPF_MODE(insn->code) == BPF_ATOMIC && 2391 (insn->imm & BPF_FETCH)) { 2392 if (insn->imm == BPF_CMPXCHG) 2393 return BPF_REG_0; 2394 else 2395 return insn->src_reg; 2396 } else { 2397 return -1; 2398 } 2399 default: 2400 return insn->dst_reg; 2401 } 2402 } 2403 2404 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 2405 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 2406 { 2407 int dst_reg = insn_def_regno(insn); 2408 2409 if (dst_reg == -1) 2410 return false; 2411 2412 return !is_reg64(env, insn, dst_reg, NULL, DST_OP); 2413 } 2414 2415 static void mark_insn_zext(struct bpf_verifier_env *env, 2416 struct bpf_reg_state *reg) 2417 { 2418 s32 def_idx = reg->subreg_def; 2419 2420 if (def_idx == DEF_NOT_SUBREG) 2421 return; 2422 2423 env->insn_aux_data[def_idx - 1].zext_dst = true; 2424 /* The dst will be zero extended, so won't be sub-register anymore. */ 2425 reg->subreg_def = DEF_NOT_SUBREG; 2426 } 2427 2428 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 2429 enum reg_arg_type t) 2430 { 2431 struct bpf_verifier_state *vstate = env->cur_state; 2432 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2433 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 2434 struct bpf_reg_state *reg, *regs = state->regs; 2435 bool rw64; 2436 2437 if (regno >= MAX_BPF_REG) { 2438 verbose(env, "R%d is invalid\n", regno); 2439 return -EINVAL; 2440 } 2441 2442 mark_reg_scratched(env, regno); 2443 2444 reg = ®s[regno]; 2445 rw64 = is_reg64(env, insn, regno, reg, t); 2446 if (t == SRC_OP) { 2447 /* check whether register used as source operand can be read */ 2448 if (reg->type == NOT_INIT) { 2449 verbose(env, "R%d !read_ok\n", regno); 2450 return -EACCES; 2451 } 2452 /* We don't need to worry about FP liveness because it's read-only */ 2453 if (regno == BPF_REG_FP) 2454 return 0; 2455 2456 if (rw64) 2457 mark_insn_zext(env, reg); 2458 2459 return mark_reg_read(env, reg, reg->parent, 2460 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 2461 } else { 2462 /* check whether register used as dest operand can be written to */ 2463 if (regno == BPF_REG_FP) { 2464 verbose(env, "frame pointer is read only\n"); 2465 return -EACCES; 2466 } 2467 reg->live |= REG_LIVE_WRITTEN; 2468 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 2469 if (t == DST_OP) 2470 mark_reg_unknown(env, regs, regno); 2471 } 2472 return 0; 2473 } 2474 2475 /* for any branch, call, exit record the history of jmps in the given state */ 2476 static int push_jmp_history(struct bpf_verifier_env *env, 2477 struct bpf_verifier_state *cur) 2478 { 2479 u32 cnt = cur->jmp_history_cnt; 2480 struct bpf_idx_pair *p; 2481 2482 cnt++; 2483 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER); 2484 if (!p) 2485 return -ENOMEM; 2486 p[cnt - 1].idx = env->insn_idx; 2487 p[cnt - 1].prev_idx = env->prev_insn_idx; 2488 cur->jmp_history = p; 2489 cur->jmp_history_cnt = cnt; 2490 return 0; 2491 } 2492 2493 /* Backtrack one insn at a time. If idx is not at the top of recorded 2494 * history then previous instruction came from straight line execution. 2495 */ 2496 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 2497 u32 *history) 2498 { 2499 u32 cnt = *history; 2500 2501 if (cnt && st->jmp_history[cnt - 1].idx == i) { 2502 i = st->jmp_history[cnt - 1].prev_idx; 2503 (*history)--; 2504 } else { 2505 i--; 2506 } 2507 return i; 2508 } 2509 2510 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn) 2511 { 2512 const struct btf_type *func; 2513 struct btf *desc_btf; 2514 2515 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL) 2516 return NULL; 2517 2518 desc_btf = find_kfunc_desc_btf(data, insn->off); 2519 if (IS_ERR(desc_btf)) 2520 return "<error>"; 2521 2522 func = btf_type_by_id(desc_btf, insn->imm); 2523 return btf_name_by_offset(desc_btf, func->name_off); 2524 } 2525 2526 /* For given verifier state backtrack_insn() is called from the last insn to 2527 * the first insn. Its purpose is to compute a bitmask of registers and 2528 * stack slots that needs precision in the parent verifier state. 2529 */ 2530 static int backtrack_insn(struct bpf_verifier_env *env, int idx, 2531 u32 *reg_mask, u64 *stack_mask) 2532 { 2533 const struct bpf_insn_cbs cbs = { 2534 .cb_call = disasm_kfunc_name, 2535 .cb_print = verbose, 2536 .private_data = env, 2537 }; 2538 struct bpf_insn *insn = env->prog->insnsi + idx; 2539 u8 class = BPF_CLASS(insn->code); 2540 u8 opcode = BPF_OP(insn->code); 2541 u8 mode = BPF_MODE(insn->code); 2542 u32 dreg = 1u << insn->dst_reg; 2543 u32 sreg = 1u << insn->src_reg; 2544 u32 spi; 2545 2546 if (insn->code == 0) 2547 return 0; 2548 if (env->log.level & BPF_LOG_LEVEL2) { 2549 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask); 2550 verbose(env, "%d: ", idx); 2551 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 2552 } 2553 2554 if (class == BPF_ALU || class == BPF_ALU64) { 2555 if (!(*reg_mask & dreg)) 2556 return 0; 2557 if (opcode == BPF_MOV) { 2558 if (BPF_SRC(insn->code) == BPF_X) { 2559 /* dreg = sreg 2560 * dreg needs precision after this insn 2561 * sreg needs precision before this insn 2562 */ 2563 *reg_mask &= ~dreg; 2564 *reg_mask |= sreg; 2565 } else { 2566 /* dreg = K 2567 * dreg needs precision after this insn. 2568 * Corresponding register is already marked 2569 * as precise=true in this verifier state. 2570 * No further markings in parent are necessary 2571 */ 2572 *reg_mask &= ~dreg; 2573 } 2574 } else { 2575 if (BPF_SRC(insn->code) == BPF_X) { 2576 /* dreg += sreg 2577 * both dreg and sreg need precision 2578 * before this insn 2579 */ 2580 *reg_mask |= sreg; 2581 } /* else dreg += K 2582 * dreg still needs precision before this insn 2583 */ 2584 } 2585 } else if (class == BPF_LDX) { 2586 if (!(*reg_mask & dreg)) 2587 return 0; 2588 *reg_mask &= ~dreg; 2589 2590 /* scalars can only be spilled into stack w/o losing precision. 2591 * Load from any other memory can be zero extended. 2592 * The desire to keep that precision is already indicated 2593 * by 'precise' mark in corresponding register of this state. 2594 * No further tracking necessary. 2595 */ 2596 if (insn->src_reg != BPF_REG_FP) 2597 return 0; 2598 2599 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 2600 * that [fp - off] slot contains scalar that needs to be 2601 * tracked with precision 2602 */ 2603 spi = (-insn->off - 1) / BPF_REG_SIZE; 2604 if (spi >= 64) { 2605 verbose(env, "BUG spi %d\n", spi); 2606 WARN_ONCE(1, "verifier backtracking bug"); 2607 return -EFAULT; 2608 } 2609 *stack_mask |= 1ull << spi; 2610 } else if (class == BPF_STX || class == BPF_ST) { 2611 if (*reg_mask & dreg) 2612 /* stx & st shouldn't be using _scalar_ dst_reg 2613 * to access memory. It means backtracking 2614 * encountered a case of pointer subtraction. 2615 */ 2616 return -ENOTSUPP; 2617 /* scalars can only be spilled into stack */ 2618 if (insn->dst_reg != BPF_REG_FP) 2619 return 0; 2620 spi = (-insn->off - 1) / BPF_REG_SIZE; 2621 if (spi >= 64) { 2622 verbose(env, "BUG spi %d\n", spi); 2623 WARN_ONCE(1, "verifier backtracking bug"); 2624 return -EFAULT; 2625 } 2626 if (!(*stack_mask & (1ull << spi))) 2627 return 0; 2628 *stack_mask &= ~(1ull << spi); 2629 if (class == BPF_STX) 2630 *reg_mask |= sreg; 2631 } else if (class == BPF_JMP || class == BPF_JMP32) { 2632 if (opcode == BPF_CALL) { 2633 if (insn->src_reg == BPF_PSEUDO_CALL) 2634 return -ENOTSUPP; 2635 /* regular helper call sets R0 */ 2636 *reg_mask &= ~1; 2637 if (*reg_mask & 0x3f) { 2638 /* if backtracing was looking for registers R1-R5 2639 * they should have been found already. 2640 */ 2641 verbose(env, "BUG regs %x\n", *reg_mask); 2642 WARN_ONCE(1, "verifier backtracking bug"); 2643 return -EFAULT; 2644 } 2645 } else if (opcode == BPF_EXIT) { 2646 return -ENOTSUPP; 2647 } 2648 } else if (class == BPF_LD) { 2649 if (!(*reg_mask & dreg)) 2650 return 0; 2651 *reg_mask &= ~dreg; 2652 /* It's ld_imm64 or ld_abs or ld_ind. 2653 * For ld_imm64 no further tracking of precision 2654 * into parent is necessary 2655 */ 2656 if (mode == BPF_IND || mode == BPF_ABS) 2657 /* to be analyzed */ 2658 return -ENOTSUPP; 2659 } 2660 return 0; 2661 } 2662 2663 /* the scalar precision tracking algorithm: 2664 * . at the start all registers have precise=false. 2665 * . scalar ranges are tracked as normal through alu and jmp insns. 2666 * . once precise value of the scalar register is used in: 2667 * . ptr + scalar alu 2668 * . if (scalar cond K|scalar) 2669 * . helper_call(.., scalar, ...) where ARG_CONST is expected 2670 * backtrack through the verifier states and mark all registers and 2671 * stack slots with spilled constants that these scalar regisers 2672 * should be precise. 2673 * . during state pruning two registers (or spilled stack slots) 2674 * are equivalent if both are not precise. 2675 * 2676 * Note the verifier cannot simply walk register parentage chain, 2677 * since many different registers and stack slots could have been 2678 * used to compute single precise scalar. 2679 * 2680 * The approach of starting with precise=true for all registers and then 2681 * backtrack to mark a register as not precise when the verifier detects 2682 * that program doesn't care about specific value (e.g., when helper 2683 * takes register as ARG_ANYTHING parameter) is not safe. 2684 * 2685 * It's ok to walk single parentage chain of the verifier states. 2686 * It's possible that this backtracking will go all the way till 1st insn. 2687 * All other branches will be explored for needing precision later. 2688 * 2689 * The backtracking needs to deal with cases like: 2690 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 2691 * r9 -= r8 2692 * r5 = r9 2693 * if r5 > 0x79f goto pc+7 2694 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 2695 * r5 += 1 2696 * ... 2697 * call bpf_perf_event_output#25 2698 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 2699 * 2700 * and this case: 2701 * r6 = 1 2702 * call foo // uses callee's r6 inside to compute r0 2703 * r0 += r6 2704 * if r0 == 0 goto 2705 * 2706 * to track above reg_mask/stack_mask needs to be independent for each frame. 2707 * 2708 * Also if parent's curframe > frame where backtracking started, 2709 * the verifier need to mark registers in both frames, otherwise callees 2710 * may incorrectly prune callers. This is similar to 2711 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 2712 * 2713 * For now backtracking falls back into conservative marking. 2714 */ 2715 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 2716 struct bpf_verifier_state *st) 2717 { 2718 struct bpf_func_state *func; 2719 struct bpf_reg_state *reg; 2720 int i, j; 2721 2722 /* big hammer: mark all scalars precise in this path. 2723 * pop_stack may still get !precise scalars. 2724 */ 2725 for (; st; st = st->parent) 2726 for (i = 0; i <= st->curframe; i++) { 2727 func = st->frame[i]; 2728 for (j = 0; j < BPF_REG_FP; j++) { 2729 reg = &func->regs[j]; 2730 if (reg->type != SCALAR_VALUE) 2731 continue; 2732 reg->precise = true; 2733 } 2734 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 2735 if (!is_spilled_reg(&func->stack[j])) 2736 continue; 2737 reg = &func->stack[j].spilled_ptr; 2738 if (reg->type != SCALAR_VALUE) 2739 continue; 2740 reg->precise = true; 2741 } 2742 } 2743 } 2744 2745 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno, 2746 int spi) 2747 { 2748 struct bpf_verifier_state *st = env->cur_state; 2749 int first_idx = st->first_insn_idx; 2750 int last_idx = env->insn_idx; 2751 struct bpf_func_state *func; 2752 struct bpf_reg_state *reg; 2753 u32 reg_mask = regno >= 0 ? 1u << regno : 0; 2754 u64 stack_mask = spi >= 0 ? 1ull << spi : 0; 2755 bool skip_first = true; 2756 bool new_marks = false; 2757 int i, err; 2758 2759 if (!env->bpf_capable) 2760 return 0; 2761 2762 func = st->frame[st->curframe]; 2763 if (regno >= 0) { 2764 reg = &func->regs[regno]; 2765 if (reg->type != SCALAR_VALUE) { 2766 WARN_ONCE(1, "backtracing misuse"); 2767 return -EFAULT; 2768 } 2769 if (!reg->precise) 2770 new_marks = true; 2771 else 2772 reg_mask = 0; 2773 reg->precise = true; 2774 } 2775 2776 while (spi >= 0) { 2777 if (!is_spilled_reg(&func->stack[spi])) { 2778 stack_mask = 0; 2779 break; 2780 } 2781 reg = &func->stack[spi].spilled_ptr; 2782 if (reg->type != SCALAR_VALUE) { 2783 stack_mask = 0; 2784 break; 2785 } 2786 if (!reg->precise) 2787 new_marks = true; 2788 else 2789 stack_mask = 0; 2790 reg->precise = true; 2791 break; 2792 } 2793 2794 if (!new_marks) 2795 return 0; 2796 if (!reg_mask && !stack_mask) 2797 return 0; 2798 for (;;) { 2799 DECLARE_BITMAP(mask, 64); 2800 u32 history = st->jmp_history_cnt; 2801 2802 if (env->log.level & BPF_LOG_LEVEL2) 2803 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx); 2804 for (i = last_idx;;) { 2805 if (skip_first) { 2806 err = 0; 2807 skip_first = false; 2808 } else { 2809 err = backtrack_insn(env, i, ®_mask, &stack_mask); 2810 } 2811 if (err == -ENOTSUPP) { 2812 mark_all_scalars_precise(env, st); 2813 return 0; 2814 } else if (err) { 2815 return err; 2816 } 2817 if (!reg_mask && !stack_mask) 2818 /* Found assignment(s) into tracked register in this state. 2819 * Since this state is already marked, just return. 2820 * Nothing to be tracked further in the parent state. 2821 */ 2822 return 0; 2823 if (i == first_idx) 2824 break; 2825 i = get_prev_insn_idx(st, i, &history); 2826 if (i >= env->prog->len) { 2827 /* This can happen if backtracking reached insn 0 2828 * and there are still reg_mask or stack_mask 2829 * to backtrack. 2830 * It means the backtracking missed the spot where 2831 * particular register was initialized with a constant. 2832 */ 2833 verbose(env, "BUG backtracking idx %d\n", i); 2834 WARN_ONCE(1, "verifier backtracking bug"); 2835 return -EFAULT; 2836 } 2837 } 2838 st = st->parent; 2839 if (!st) 2840 break; 2841 2842 new_marks = false; 2843 func = st->frame[st->curframe]; 2844 bitmap_from_u64(mask, reg_mask); 2845 for_each_set_bit(i, mask, 32) { 2846 reg = &func->regs[i]; 2847 if (reg->type != SCALAR_VALUE) { 2848 reg_mask &= ~(1u << i); 2849 continue; 2850 } 2851 if (!reg->precise) 2852 new_marks = true; 2853 reg->precise = true; 2854 } 2855 2856 bitmap_from_u64(mask, stack_mask); 2857 for_each_set_bit(i, mask, 64) { 2858 if (i >= func->allocated_stack / BPF_REG_SIZE) { 2859 /* the sequence of instructions: 2860 * 2: (bf) r3 = r10 2861 * 3: (7b) *(u64 *)(r3 -8) = r0 2862 * 4: (79) r4 = *(u64 *)(r10 -8) 2863 * doesn't contain jmps. It's backtracked 2864 * as a single block. 2865 * During backtracking insn 3 is not recognized as 2866 * stack access, so at the end of backtracking 2867 * stack slot fp-8 is still marked in stack_mask. 2868 * However the parent state may not have accessed 2869 * fp-8 and it's "unallocated" stack space. 2870 * In such case fallback to conservative. 2871 */ 2872 mark_all_scalars_precise(env, st); 2873 return 0; 2874 } 2875 2876 if (!is_spilled_reg(&func->stack[i])) { 2877 stack_mask &= ~(1ull << i); 2878 continue; 2879 } 2880 reg = &func->stack[i].spilled_ptr; 2881 if (reg->type != SCALAR_VALUE) { 2882 stack_mask &= ~(1ull << i); 2883 continue; 2884 } 2885 if (!reg->precise) 2886 new_marks = true; 2887 reg->precise = true; 2888 } 2889 if (env->log.level & BPF_LOG_LEVEL2) { 2890 verbose(env, "parent %s regs=%x stack=%llx marks:", 2891 new_marks ? "didn't have" : "already had", 2892 reg_mask, stack_mask); 2893 print_verifier_state(env, func, true); 2894 } 2895 2896 if (!reg_mask && !stack_mask) 2897 break; 2898 if (!new_marks) 2899 break; 2900 2901 last_idx = st->last_insn_idx; 2902 first_idx = st->first_insn_idx; 2903 } 2904 return 0; 2905 } 2906 2907 static int mark_chain_precision(struct bpf_verifier_env *env, int regno) 2908 { 2909 return __mark_chain_precision(env, regno, -1); 2910 } 2911 2912 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi) 2913 { 2914 return __mark_chain_precision(env, -1, spi); 2915 } 2916 2917 static bool is_spillable_regtype(enum bpf_reg_type type) 2918 { 2919 switch (base_type(type)) { 2920 case PTR_TO_MAP_VALUE: 2921 case PTR_TO_STACK: 2922 case PTR_TO_CTX: 2923 case PTR_TO_PACKET: 2924 case PTR_TO_PACKET_META: 2925 case PTR_TO_PACKET_END: 2926 case PTR_TO_FLOW_KEYS: 2927 case CONST_PTR_TO_MAP: 2928 case PTR_TO_SOCKET: 2929 case PTR_TO_SOCK_COMMON: 2930 case PTR_TO_TCP_SOCK: 2931 case PTR_TO_XDP_SOCK: 2932 case PTR_TO_BTF_ID: 2933 case PTR_TO_BUF: 2934 case PTR_TO_MEM: 2935 case PTR_TO_FUNC: 2936 case PTR_TO_MAP_KEY: 2937 return true; 2938 default: 2939 return false; 2940 } 2941 } 2942 2943 /* Does this register contain a constant zero? */ 2944 static bool register_is_null(struct bpf_reg_state *reg) 2945 { 2946 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 2947 } 2948 2949 static bool register_is_const(struct bpf_reg_state *reg) 2950 { 2951 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off); 2952 } 2953 2954 static bool __is_scalar_unbounded(struct bpf_reg_state *reg) 2955 { 2956 return tnum_is_unknown(reg->var_off) && 2957 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX && 2958 reg->umin_value == 0 && reg->umax_value == U64_MAX && 2959 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX && 2960 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX; 2961 } 2962 2963 static bool register_is_bounded(struct bpf_reg_state *reg) 2964 { 2965 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg); 2966 } 2967 2968 static bool __is_pointer_value(bool allow_ptr_leaks, 2969 const struct bpf_reg_state *reg) 2970 { 2971 if (allow_ptr_leaks) 2972 return false; 2973 2974 return reg->type != SCALAR_VALUE; 2975 } 2976 2977 static void save_register_state(struct bpf_func_state *state, 2978 int spi, struct bpf_reg_state *reg, 2979 int size) 2980 { 2981 int i; 2982 2983 state->stack[spi].spilled_ptr = *reg; 2984 if (size == BPF_REG_SIZE) 2985 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 2986 2987 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--) 2988 state->stack[spi].slot_type[i - 1] = STACK_SPILL; 2989 2990 /* size < 8 bytes spill */ 2991 for (; i; i--) 2992 scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]); 2993 } 2994 2995 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers, 2996 * stack boundary and alignment are checked in check_mem_access() 2997 */ 2998 static int check_stack_write_fixed_off(struct bpf_verifier_env *env, 2999 /* stack frame we're writing to */ 3000 struct bpf_func_state *state, 3001 int off, int size, int value_regno, 3002 int insn_idx) 3003 { 3004 struct bpf_func_state *cur; /* state of the current function */ 3005 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 3006 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg; 3007 struct bpf_reg_state *reg = NULL; 3008 3009 err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE)); 3010 if (err) 3011 return err; 3012 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 3013 * so it's aligned access and [off, off + size) are within stack limits 3014 */ 3015 if (!env->allow_ptr_leaks && 3016 state->stack[spi].slot_type[0] == STACK_SPILL && 3017 size != BPF_REG_SIZE) { 3018 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 3019 return -EACCES; 3020 } 3021 3022 cur = env->cur_state->frame[env->cur_state->curframe]; 3023 if (value_regno >= 0) 3024 reg = &cur->regs[value_regno]; 3025 if (!env->bypass_spec_v4) { 3026 bool sanitize = reg && is_spillable_regtype(reg->type); 3027 3028 for (i = 0; i < size; i++) { 3029 if (state->stack[spi].slot_type[i] == STACK_INVALID) { 3030 sanitize = true; 3031 break; 3032 } 3033 } 3034 3035 if (sanitize) 3036 env->insn_aux_data[insn_idx].sanitize_stack_spill = true; 3037 } 3038 3039 mark_stack_slot_scratched(env, spi); 3040 if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) && 3041 !register_is_null(reg) && env->bpf_capable) { 3042 if (dst_reg != BPF_REG_FP) { 3043 /* The backtracking logic can only recognize explicit 3044 * stack slot address like [fp - 8]. Other spill of 3045 * scalar via different register has to be conservative. 3046 * Backtrack from here and mark all registers as precise 3047 * that contributed into 'reg' being a constant. 3048 */ 3049 err = mark_chain_precision(env, value_regno); 3050 if (err) 3051 return err; 3052 } 3053 save_register_state(state, spi, reg, size); 3054 } else if (reg && is_spillable_regtype(reg->type)) { 3055 /* register containing pointer is being spilled into stack */ 3056 if (size != BPF_REG_SIZE) { 3057 verbose_linfo(env, insn_idx, "; "); 3058 verbose(env, "invalid size of register spill\n"); 3059 return -EACCES; 3060 } 3061 if (state != cur && reg->type == PTR_TO_STACK) { 3062 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 3063 return -EINVAL; 3064 } 3065 save_register_state(state, spi, reg, size); 3066 } else { 3067 u8 type = STACK_MISC; 3068 3069 /* regular write of data into stack destroys any spilled ptr */ 3070 state->stack[spi].spilled_ptr.type = NOT_INIT; 3071 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */ 3072 if (is_spilled_reg(&state->stack[spi])) 3073 for (i = 0; i < BPF_REG_SIZE; i++) 3074 scrub_spilled_slot(&state->stack[spi].slot_type[i]); 3075 3076 /* only mark the slot as written if all 8 bytes were written 3077 * otherwise read propagation may incorrectly stop too soon 3078 * when stack slots are partially written. 3079 * This heuristic means that read propagation will be 3080 * conservative, since it will add reg_live_read marks 3081 * to stack slots all the way to first state when programs 3082 * writes+reads less than 8 bytes 3083 */ 3084 if (size == BPF_REG_SIZE) 3085 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 3086 3087 /* when we zero initialize stack slots mark them as such */ 3088 if (reg && register_is_null(reg)) { 3089 /* backtracking doesn't work for STACK_ZERO yet. */ 3090 err = mark_chain_precision(env, value_regno); 3091 if (err) 3092 return err; 3093 type = STACK_ZERO; 3094 } 3095 3096 /* Mark slots affected by this stack write. */ 3097 for (i = 0; i < size; i++) 3098 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 3099 type; 3100 } 3101 return 0; 3102 } 3103 3104 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is 3105 * known to contain a variable offset. 3106 * This function checks whether the write is permitted and conservatively 3107 * tracks the effects of the write, considering that each stack slot in the 3108 * dynamic range is potentially written to. 3109 * 3110 * 'off' includes 'regno->off'. 3111 * 'value_regno' can be -1, meaning that an unknown value is being written to 3112 * the stack. 3113 * 3114 * Spilled pointers in range are not marked as written because we don't know 3115 * what's going to be actually written. This means that read propagation for 3116 * future reads cannot be terminated by this write. 3117 * 3118 * For privileged programs, uninitialized stack slots are considered 3119 * initialized by this write (even though we don't know exactly what offsets 3120 * are going to be written to). The idea is that we don't want the verifier to 3121 * reject future reads that access slots written to through variable offsets. 3122 */ 3123 static int check_stack_write_var_off(struct bpf_verifier_env *env, 3124 /* func where register points to */ 3125 struct bpf_func_state *state, 3126 int ptr_regno, int off, int size, 3127 int value_regno, int insn_idx) 3128 { 3129 struct bpf_func_state *cur; /* state of the current function */ 3130 int min_off, max_off; 3131 int i, err; 3132 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL; 3133 bool writing_zero = false; 3134 /* set if the fact that we're writing a zero is used to let any 3135 * stack slots remain STACK_ZERO 3136 */ 3137 bool zero_used = false; 3138 3139 cur = env->cur_state->frame[env->cur_state->curframe]; 3140 ptr_reg = &cur->regs[ptr_regno]; 3141 min_off = ptr_reg->smin_value + off; 3142 max_off = ptr_reg->smax_value + off + size; 3143 if (value_regno >= 0) 3144 value_reg = &cur->regs[value_regno]; 3145 if (value_reg && register_is_null(value_reg)) 3146 writing_zero = true; 3147 3148 err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE)); 3149 if (err) 3150 return err; 3151 3152 3153 /* Variable offset writes destroy any spilled pointers in range. */ 3154 for (i = min_off; i < max_off; i++) { 3155 u8 new_type, *stype; 3156 int slot, spi; 3157 3158 slot = -i - 1; 3159 spi = slot / BPF_REG_SIZE; 3160 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 3161 mark_stack_slot_scratched(env, spi); 3162 3163 if (!env->allow_ptr_leaks 3164 && *stype != NOT_INIT 3165 && *stype != SCALAR_VALUE) { 3166 /* Reject the write if there's are spilled pointers in 3167 * range. If we didn't reject here, the ptr status 3168 * would be erased below (even though not all slots are 3169 * actually overwritten), possibly opening the door to 3170 * leaks. 3171 */ 3172 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d", 3173 insn_idx, i); 3174 return -EINVAL; 3175 } 3176 3177 /* Erase all spilled pointers. */ 3178 state->stack[spi].spilled_ptr.type = NOT_INIT; 3179 3180 /* Update the slot type. */ 3181 new_type = STACK_MISC; 3182 if (writing_zero && *stype == STACK_ZERO) { 3183 new_type = STACK_ZERO; 3184 zero_used = true; 3185 } 3186 /* If the slot is STACK_INVALID, we check whether it's OK to 3187 * pretend that it will be initialized by this write. The slot 3188 * might not actually be written to, and so if we mark it as 3189 * initialized future reads might leak uninitialized memory. 3190 * For privileged programs, we will accept such reads to slots 3191 * that may or may not be written because, if we're reject 3192 * them, the error would be too confusing. 3193 */ 3194 if (*stype == STACK_INVALID && !env->allow_uninit_stack) { 3195 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d", 3196 insn_idx, i); 3197 return -EINVAL; 3198 } 3199 *stype = new_type; 3200 } 3201 if (zero_used) { 3202 /* backtracking doesn't work for STACK_ZERO yet. */ 3203 err = mark_chain_precision(env, value_regno); 3204 if (err) 3205 return err; 3206 } 3207 return 0; 3208 } 3209 3210 /* When register 'dst_regno' is assigned some values from stack[min_off, 3211 * max_off), we set the register's type according to the types of the 3212 * respective stack slots. If all the stack values are known to be zeros, then 3213 * so is the destination reg. Otherwise, the register is considered to be 3214 * SCALAR. This function does not deal with register filling; the caller must 3215 * ensure that all spilled registers in the stack range have been marked as 3216 * read. 3217 */ 3218 static void mark_reg_stack_read(struct bpf_verifier_env *env, 3219 /* func where src register points to */ 3220 struct bpf_func_state *ptr_state, 3221 int min_off, int max_off, int dst_regno) 3222 { 3223 struct bpf_verifier_state *vstate = env->cur_state; 3224 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3225 int i, slot, spi; 3226 u8 *stype; 3227 int zeros = 0; 3228 3229 for (i = min_off; i < max_off; i++) { 3230 slot = -i - 1; 3231 spi = slot / BPF_REG_SIZE; 3232 stype = ptr_state->stack[spi].slot_type; 3233 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO) 3234 break; 3235 zeros++; 3236 } 3237 if (zeros == max_off - min_off) { 3238 /* any access_size read into register is zero extended, 3239 * so the whole register == const_zero 3240 */ 3241 __mark_reg_const_zero(&state->regs[dst_regno]); 3242 /* backtracking doesn't support STACK_ZERO yet, 3243 * so mark it precise here, so that later 3244 * backtracking can stop here. 3245 * Backtracking may not need this if this register 3246 * doesn't participate in pointer adjustment. 3247 * Forward propagation of precise flag is not 3248 * necessary either. This mark is only to stop 3249 * backtracking. Any register that contributed 3250 * to const 0 was marked precise before spill. 3251 */ 3252 state->regs[dst_regno].precise = true; 3253 } else { 3254 /* have read misc data from the stack */ 3255 mark_reg_unknown(env, state->regs, dst_regno); 3256 } 3257 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 3258 } 3259 3260 /* Read the stack at 'off' and put the results into the register indicated by 3261 * 'dst_regno'. It handles reg filling if the addressed stack slot is a 3262 * spilled reg. 3263 * 3264 * 'dst_regno' can be -1, meaning that the read value is not going to a 3265 * register. 3266 * 3267 * The access is assumed to be within the current stack bounds. 3268 */ 3269 static int check_stack_read_fixed_off(struct bpf_verifier_env *env, 3270 /* func where src register points to */ 3271 struct bpf_func_state *reg_state, 3272 int off, int size, int dst_regno) 3273 { 3274 struct bpf_verifier_state *vstate = env->cur_state; 3275 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3276 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 3277 struct bpf_reg_state *reg; 3278 u8 *stype, type; 3279 3280 stype = reg_state->stack[spi].slot_type; 3281 reg = ®_state->stack[spi].spilled_ptr; 3282 3283 if (is_spilled_reg(®_state->stack[spi])) { 3284 u8 spill_size = 1; 3285 3286 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--) 3287 spill_size++; 3288 3289 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) { 3290 if (reg->type != SCALAR_VALUE) { 3291 verbose_linfo(env, env->insn_idx, "; "); 3292 verbose(env, "invalid size of register fill\n"); 3293 return -EACCES; 3294 } 3295 3296 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 3297 if (dst_regno < 0) 3298 return 0; 3299 3300 if (!(off % BPF_REG_SIZE) && size == spill_size) { 3301 /* The earlier check_reg_arg() has decided the 3302 * subreg_def for this insn. Save it first. 3303 */ 3304 s32 subreg_def = state->regs[dst_regno].subreg_def; 3305 3306 state->regs[dst_regno] = *reg; 3307 state->regs[dst_regno].subreg_def = subreg_def; 3308 } else { 3309 for (i = 0; i < size; i++) { 3310 type = stype[(slot - i) % BPF_REG_SIZE]; 3311 if (type == STACK_SPILL) 3312 continue; 3313 if (type == STACK_MISC) 3314 continue; 3315 verbose(env, "invalid read from stack off %d+%d size %d\n", 3316 off, i, size); 3317 return -EACCES; 3318 } 3319 mark_reg_unknown(env, state->regs, dst_regno); 3320 } 3321 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 3322 return 0; 3323 } 3324 3325 if (dst_regno >= 0) { 3326 /* restore register state from stack */ 3327 state->regs[dst_regno] = *reg; 3328 /* mark reg as written since spilled pointer state likely 3329 * has its liveness marks cleared by is_state_visited() 3330 * which resets stack/reg liveness for state transitions 3331 */ 3332 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 3333 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { 3334 /* If dst_regno==-1, the caller is asking us whether 3335 * it is acceptable to use this value as a SCALAR_VALUE 3336 * (e.g. for XADD). 3337 * We must not allow unprivileged callers to do that 3338 * with spilled pointers. 3339 */ 3340 verbose(env, "leaking pointer from stack off %d\n", 3341 off); 3342 return -EACCES; 3343 } 3344 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 3345 } else { 3346 for (i = 0; i < size; i++) { 3347 type = stype[(slot - i) % BPF_REG_SIZE]; 3348 if (type == STACK_MISC) 3349 continue; 3350 if (type == STACK_ZERO) 3351 continue; 3352 verbose(env, "invalid read from stack off %d+%d size %d\n", 3353 off, i, size); 3354 return -EACCES; 3355 } 3356 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 3357 if (dst_regno >= 0) 3358 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno); 3359 } 3360 return 0; 3361 } 3362 3363 enum bpf_access_src { 3364 ACCESS_DIRECT = 1, /* the access is performed by an instruction */ 3365 ACCESS_HELPER = 2, /* the access is performed by a helper */ 3366 }; 3367 3368 static int check_stack_range_initialized(struct bpf_verifier_env *env, 3369 int regno, int off, int access_size, 3370 bool zero_size_allowed, 3371 enum bpf_access_src type, 3372 struct bpf_call_arg_meta *meta); 3373 3374 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 3375 { 3376 return cur_regs(env) + regno; 3377 } 3378 3379 /* Read the stack at 'ptr_regno + off' and put the result into the register 3380 * 'dst_regno'. 3381 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'), 3382 * but not its variable offset. 3383 * 'size' is assumed to be <= reg size and the access is assumed to be aligned. 3384 * 3385 * As opposed to check_stack_read_fixed_off, this function doesn't deal with 3386 * filling registers (i.e. reads of spilled register cannot be detected when 3387 * the offset is not fixed). We conservatively mark 'dst_regno' as containing 3388 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable 3389 * offset; for a fixed offset check_stack_read_fixed_off should be used 3390 * instead. 3391 */ 3392 static int check_stack_read_var_off(struct bpf_verifier_env *env, 3393 int ptr_regno, int off, int size, int dst_regno) 3394 { 3395 /* The state of the source register. */ 3396 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3397 struct bpf_func_state *ptr_state = func(env, reg); 3398 int err; 3399 int min_off, max_off; 3400 3401 /* Note that we pass a NULL meta, so raw access will not be permitted. 3402 */ 3403 err = check_stack_range_initialized(env, ptr_regno, off, size, 3404 false, ACCESS_DIRECT, NULL); 3405 if (err) 3406 return err; 3407 3408 min_off = reg->smin_value + off; 3409 max_off = reg->smax_value + off; 3410 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno); 3411 return 0; 3412 } 3413 3414 /* check_stack_read dispatches to check_stack_read_fixed_off or 3415 * check_stack_read_var_off. 3416 * 3417 * The caller must ensure that the offset falls within the allocated stack 3418 * bounds. 3419 * 3420 * 'dst_regno' is a register which will receive the value from the stack. It 3421 * can be -1, meaning that the read value is not going to a register. 3422 */ 3423 static int check_stack_read(struct bpf_verifier_env *env, 3424 int ptr_regno, int off, int size, 3425 int dst_regno) 3426 { 3427 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3428 struct bpf_func_state *state = func(env, reg); 3429 int err; 3430 /* Some accesses are only permitted with a static offset. */ 3431 bool var_off = !tnum_is_const(reg->var_off); 3432 3433 /* The offset is required to be static when reads don't go to a 3434 * register, in order to not leak pointers (see 3435 * check_stack_read_fixed_off). 3436 */ 3437 if (dst_regno < 0 && var_off) { 3438 char tn_buf[48]; 3439 3440 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3441 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n", 3442 tn_buf, off, size); 3443 return -EACCES; 3444 } 3445 /* Variable offset is prohibited for unprivileged mode for simplicity 3446 * since it requires corresponding support in Spectre masking for stack 3447 * ALU. See also retrieve_ptr_limit(). 3448 */ 3449 if (!env->bypass_spec_v1 && var_off) { 3450 char tn_buf[48]; 3451 3452 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3453 verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n", 3454 ptr_regno, tn_buf); 3455 return -EACCES; 3456 } 3457 3458 if (!var_off) { 3459 off += reg->var_off.value; 3460 err = check_stack_read_fixed_off(env, state, off, size, 3461 dst_regno); 3462 } else { 3463 /* Variable offset stack reads need more conservative handling 3464 * than fixed offset ones. Note that dst_regno >= 0 on this 3465 * branch. 3466 */ 3467 err = check_stack_read_var_off(env, ptr_regno, off, size, 3468 dst_regno); 3469 } 3470 return err; 3471 } 3472 3473 3474 /* check_stack_write dispatches to check_stack_write_fixed_off or 3475 * check_stack_write_var_off. 3476 * 3477 * 'ptr_regno' is the register used as a pointer into the stack. 3478 * 'off' includes 'ptr_regno->off', but not its variable offset (if any). 3479 * 'value_regno' is the register whose value we're writing to the stack. It can 3480 * be -1, meaning that we're not writing from a register. 3481 * 3482 * The caller must ensure that the offset falls within the maximum stack size. 3483 */ 3484 static int check_stack_write(struct bpf_verifier_env *env, 3485 int ptr_regno, int off, int size, 3486 int value_regno, int insn_idx) 3487 { 3488 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3489 struct bpf_func_state *state = func(env, reg); 3490 int err; 3491 3492 if (tnum_is_const(reg->var_off)) { 3493 off += reg->var_off.value; 3494 err = check_stack_write_fixed_off(env, state, off, size, 3495 value_regno, insn_idx); 3496 } else { 3497 /* Variable offset stack reads need more conservative handling 3498 * than fixed offset ones. 3499 */ 3500 err = check_stack_write_var_off(env, state, 3501 ptr_regno, off, size, 3502 value_regno, insn_idx); 3503 } 3504 return err; 3505 } 3506 3507 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 3508 int off, int size, enum bpf_access_type type) 3509 { 3510 struct bpf_reg_state *regs = cur_regs(env); 3511 struct bpf_map *map = regs[regno].map_ptr; 3512 u32 cap = bpf_map_flags_to_cap(map); 3513 3514 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 3515 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 3516 map->value_size, off, size); 3517 return -EACCES; 3518 } 3519 3520 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 3521 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 3522 map->value_size, off, size); 3523 return -EACCES; 3524 } 3525 3526 return 0; 3527 } 3528 3529 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */ 3530 static int __check_mem_access(struct bpf_verifier_env *env, int regno, 3531 int off, int size, u32 mem_size, 3532 bool zero_size_allowed) 3533 { 3534 bool size_ok = size > 0 || (size == 0 && zero_size_allowed); 3535 struct bpf_reg_state *reg; 3536 3537 if (off >= 0 && size_ok && (u64)off + size <= mem_size) 3538 return 0; 3539 3540 reg = &cur_regs(env)[regno]; 3541 switch (reg->type) { 3542 case PTR_TO_MAP_KEY: 3543 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n", 3544 mem_size, off, size); 3545 break; 3546 case PTR_TO_MAP_VALUE: 3547 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 3548 mem_size, off, size); 3549 break; 3550 case PTR_TO_PACKET: 3551 case PTR_TO_PACKET_META: 3552 case PTR_TO_PACKET_END: 3553 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 3554 off, size, regno, reg->id, off, mem_size); 3555 break; 3556 case PTR_TO_MEM: 3557 default: 3558 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n", 3559 mem_size, off, size); 3560 } 3561 3562 return -EACCES; 3563 } 3564 3565 /* check read/write into a memory region with possible variable offset */ 3566 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, 3567 int off, int size, u32 mem_size, 3568 bool zero_size_allowed) 3569 { 3570 struct bpf_verifier_state *vstate = env->cur_state; 3571 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3572 struct bpf_reg_state *reg = &state->regs[regno]; 3573 int err; 3574 3575 /* We may have adjusted the register pointing to memory region, so we 3576 * need to try adding each of min_value and max_value to off 3577 * to make sure our theoretical access will be safe. 3578 * 3579 * The minimum value is only important with signed 3580 * comparisons where we can't assume the floor of a 3581 * value is 0. If we are using signed variables for our 3582 * index'es we need to make sure that whatever we use 3583 * will have a set floor within our range. 3584 */ 3585 if (reg->smin_value < 0 && 3586 (reg->smin_value == S64_MIN || 3587 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 3588 reg->smin_value + off < 0)) { 3589 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 3590 regno); 3591 return -EACCES; 3592 } 3593 err = __check_mem_access(env, regno, reg->smin_value + off, size, 3594 mem_size, zero_size_allowed); 3595 if (err) { 3596 verbose(env, "R%d min value is outside of the allowed memory range\n", 3597 regno); 3598 return err; 3599 } 3600 3601 /* If we haven't set a max value then we need to bail since we can't be 3602 * sure we won't do bad things. 3603 * If reg->umax_value + off could overflow, treat that as unbounded too. 3604 */ 3605 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 3606 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n", 3607 regno); 3608 return -EACCES; 3609 } 3610 err = __check_mem_access(env, regno, reg->umax_value + off, size, 3611 mem_size, zero_size_allowed); 3612 if (err) { 3613 verbose(env, "R%d max value is outside of the allowed memory range\n", 3614 regno); 3615 return err; 3616 } 3617 3618 return 0; 3619 } 3620 3621 static int __check_ptr_off_reg(struct bpf_verifier_env *env, 3622 const struct bpf_reg_state *reg, int regno, 3623 bool fixed_off_ok) 3624 { 3625 /* Access to this pointer-typed register or passing it to a helper 3626 * is only allowed in its original, unmodified form. 3627 */ 3628 3629 if (reg->off < 0) { 3630 verbose(env, "negative offset %s ptr R%d off=%d disallowed\n", 3631 reg_type_str(env, reg->type), regno, reg->off); 3632 return -EACCES; 3633 } 3634 3635 if (!fixed_off_ok && reg->off) { 3636 verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n", 3637 reg_type_str(env, reg->type), regno, reg->off); 3638 return -EACCES; 3639 } 3640 3641 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 3642 char tn_buf[48]; 3643 3644 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3645 verbose(env, "variable %s access var_off=%s disallowed\n", 3646 reg_type_str(env, reg->type), tn_buf); 3647 return -EACCES; 3648 } 3649 3650 return 0; 3651 } 3652 3653 int check_ptr_off_reg(struct bpf_verifier_env *env, 3654 const struct bpf_reg_state *reg, int regno) 3655 { 3656 return __check_ptr_off_reg(env, reg, regno, false); 3657 } 3658 3659 static int map_kptr_match_type(struct bpf_verifier_env *env, 3660 struct bpf_map_value_off_desc *off_desc, 3661 struct bpf_reg_state *reg, u32 regno) 3662 { 3663 const char *targ_name = kernel_type_name(off_desc->kptr.btf, off_desc->kptr.btf_id); 3664 int perm_flags = PTR_MAYBE_NULL; 3665 const char *reg_name = ""; 3666 3667 /* Only unreferenced case accepts untrusted pointers */ 3668 if (off_desc->type == BPF_KPTR_UNREF) 3669 perm_flags |= PTR_UNTRUSTED; 3670 3671 if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags)) 3672 goto bad_type; 3673 3674 if (!btf_is_kernel(reg->btf)) { 3675 verbose(env, "R%d must point to kernel BTF\n", regno); 3676 return -EINVAL; 3677 } 3678 /* We need to verify reg->type and reg->btf, before accessing reg->btf */ 3679 reg_name = kernel_type_name(reg->btf, reg->btf_id); 3680 3681 /* For ref_ptr case, release function check should ensure we get one 3682 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the 3683 * normal store of unreferenced kptr, we must ensure var_off is zero. 3684 * Since ref_ptr cannot be accessed directly by BPF insns, checks for 3685 * reg->off and reg->ref_obj_id are not needed here. 3686 */ 3687 if (__check_ptr_off_reg(env, reg, regno, true)) 3688 return -EACCES; 3689 3690 /* A full type match is needed, as BTF can be vmlinux or module BTF, and 3691 * we also need to take into account the reg->off. 3692 * 3693 * We want to support cases like: 3694 * 3695 * struct foo { 3696 * struct bar br; 3697 * struct baz bz; 3698 * }; 3699 * 3700 * struct foo *v; 3701 * v = func(); // PTR_TO_BTF_ID 3702 * val->foo = v; // reg->off is zero, btf and btf_id match type 3703 * val->bar = &v->br; // reg->off is still zero, but we need to retry with 3704 * // first member type of struct after comparison fails 3705 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked 3706 * // to match type 3707 * 3708 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off 3709 * is zero. We must also ensure that btf_struct_ids_match does not walk 3710 * the struct to match type against first member of struct, i.e. reject 3711 * second case from above. Hence, when type is BPF_KPTR_REF, we set 3712 * strict mode to true for type match. 3713 */ 3714 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 3715 off_desc->kptr.btf, off_desc->kptr.btf_id, 3716 off_desc->type == BPF_KPTR_REF)) 3717 goto bad_type; 3718 return 0; 3719 bad_type: 3720 verbose(env, "invalid kptr access, R%d type=%s%s ", regno, 3721 reg_type_str(env, reg->type), reg_name); 3722 verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name); 3723 if (off_desc->type == BPF_KPTR_UNREF) 3724 verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED), 3725 targ_name); 3726 else 3727 verbose(env, "\n"); 3728 return -EINVAL; 3729 } 3730 3731 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno, 3732 int value_regno, int insn_idx, 3733 struct bpf_map_value_off_desc *off_desc) 3734 { 3735 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 3736 int class = BPF_CLASS(insn->code); 3737 struct bpf_reg_state *val_reg; 3738 3739 /* Things we already checked for in check_map_access and caller: 3740 * - Reject cases where variable offset may touch kptr 3741 * - size of access (must be BPF_DW) 3742 * - tnum_is_const(reg->var_off) 3743 * - off_desc->offset == off + reg->var_off.value 3744 */ 3745 /* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */ 3746 if (BPF_MODE(insn->code) != BPF_MEM) { 3747 verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n"); 3748 return -EACCES; 3749 } 3750 3751 /* We only allow loading referenced kptr, since it will be marked as 3752 * untrusted, similar to unreferenced kptr. 3753 */ 3754 if (class != BPF_LDX && off_desc->type == BPF_KPTR_REF) { 3755 verbose(env, "store to referenced kptr disallowed\n"); 3756 return -EACCES; 3757 } 3758 3759 if (class == BPF_LDX) { 3760 val_reg = reg_state(env, value_regno); 3761 /* We can simply mark the value_regno receiving the pointer 3762 * value from map as PTR_TO_BTF_ID, with the correct type. 3763 */ 3764 mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, off_desc->kptr.btf, 3765 off_desc->kptr.btf_id, PTR_MAYBE_NULL | PTR_UNTRUSTED); 3766 /* For mark_ptr_or_null_reg */ 3767 val_reg->id = ++env->id_gen; 3768 } else if (class == BPF_STX) { 3769 val_reg = reg_state(env, value_regno); 3770 if (!register_is_null(val_reg) && 3771 map_kptr_match_type(env, off_desc, val_reg, value_regno)) 3772 return -EACCES; 3773 } else if (class == BPF_ST) { 3774 if (insn->imm) { 3775 verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n", 3776 off_desc->offset); 3777 return -EACCES; 3778 } 3779 } else { 3780 verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n"); 3781 return -EACCES; 3782 } 3783 return 0; 3784 } 3785 3786 /* check read/write into a map element with possible variable offset */ 3787 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 3788 int off, int size, bool zero_size_allowed, 3789 enum bpf_access_src src) 3790 { 3791 struct bpf_verifier_state *vstate = env->cur_state; 3792 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3793 struct bpf_reg_state *reg = &state->regs[regno]; 3794 struct bpf_map *map = reg->map_ptr; 3795 int err; 3796 3797 err = check_mem_region_access(env, regno, off, size, map->value_size, 3798 zero_size_allowed); 3799 if (err) 3800 return err; 3801 3802 if (map_value_has_spin_lock(map)) { 3803 u32 lock = map->spin_lock_off; 3804 3805 /* if any part of struct bpf_spin_lock can be touched by 3806 * load/store reject this program. 3807 * To check that [x1, x2) overlaps with [y1, y2) 3808 * it is sufficient to check x1 < y2 && y1 < x2. 3809 */ 3810 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) && 3811 lock < reg->umax_value + off + size) { 3812 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n"); 3813 return -EACCES; 3814 } 3815 } 3816 if (map_value_has_timer(map)) { 3817 u32 t = map->timer_off; 3818 3819 if (reg->smin_value + off < t + sizeof(struct bpf_timer) && 3820 t < reg->umax_value + off + size) { 3821 verbose(env, "bpf_timer cannot be accessed directly by load/store\n"); 3822 return -EACCES; 3823 } 3824 } 3825 if (map_value_has_kptrs(map)) { 3826 struct bpf_map_value_off *tab = map->kptr_off_tab; 3827 int i; 3828 3829 for (i = 0; i < tab->nr_off; i++) { 3830 u32 p = tab->off[i].offset; 3831 3832 if (reg->smin_value + off < p + sizeof(u64) && 3833 p < reg->umax_value + off + size) { 3834 if (src != ACCESS_DIRECT) { 3835 verbose(env, "kptr cannot be accessed indirectly by helper\n"); 3836 return -EACCES; 3837 } 3838 if (!tnum_is_const(reg->var_off)) { 3839 verbose(env, "kptr access cannot have variable offset\n"); 3840 return -EACCES; 3841 } 3842 if (p != off + reg->var_off.value) { 3843 verbose(env, "kptr access misaligned expected=%u off=%llu\n", 3844 p, off + reg->var_off.value); 3845 return -EACCES; 3846 } 3847 if (size != bpf_size_to_bytes(BPF_DW)) { 3848 verbose(env, "kptr access size must be BPF_DW\n"); 3849 return -EACCES; 3850 } 3851 break; 3852 } 3853 } 3854 } 3855 return err; 3856 } 3857 3858 #define MAX_PACKET_OFF 0xffff 3859 3860 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 3861 const struct bpf_call_arg_meta *meta, 3862 enum bpf_access_type t) 3863 { 3864 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 3865 3866 switch (prog_type) { 3867 /* Program types only with direct read access go here! */ 3868 case BPF_PROG_TYPE_LWT_IN: 3869 case BPF_PROG_TYPE_LWT_OUT: 3870 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 3871 case BPF_PROG_TYPE_SK_REUSEPORT: 3872 case BPF_PROG_TYPE_FLOW_DISSECTOR: 3873 case BPF_PROG_TYPE_CGROUP_SKB: 3874 if (t == BPF_WRITE) 3875 return false; 3876 fallthrough; 3877 3878 /* Program types with direct read + write access go here! */ 3879 case BPF_PROG_TYPE_SCHED_CLS: 3880 case BPF_PROG_TYPE_SCHED_ACT: 3881 case BPF_PROG_TYPE_XDP: 3882 case BPF_PROG_TYPE_LWT_XMIT: 3883 case BPF_PROG_TYPE_SK_SKB: 3884 case BPF_PROG_TYPE_SK_MSG: 3885 if (meta) 3886 return meta->pkt_access; 3887 3888 env->seen_direct_write = true; 3889 return true; 3890 3891 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 3892 if (t == BPF_WRITE) 3893 env->seen_direct_write = true; 3894 3895 return true; 3896 3897 default: 3898 return false; 3899 } 3900 } 3901 3902 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 3903 int size, bool zero_size_allowed) 3904 { 3905 struct bpf_reg_state *regs = cur_regs(env); 3906 struct bpf_reg_state *reg = ®s[regno]; 3907 int err; 3908 3909 /* We may have added a variable offset to the packet pointer; but any 3910 * reg->range we have comes after that. We are only checking the fixed 3911 * offset. 3912 */ 3913 3914 /* We don't allow negative numbers, because we aren't tracking enough 3915 * detail to prove they're safe. 3916 */ 3917 if (reg->smin_value < 0) { 3918 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 3919 regno); 3920 return -EACCES; 3921 } 3922 3923 err = reg->range < 0 ? -EINVAL : 3924 __check_mem_access(env, regno, off, size, reg->range, 3925 zero_size_allowed); 3926 if (err) { 3927 verbose(env, "R%d offset is outside of the packet\n", regno); 3928 return err; 3929 } 3930 3931 /* __check_mem_access has made sure "off + size - 1" is within u16. 3932 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 3933 * otherwise find_good_pkt_pointers would have refused to set range info 3934 * that __check_mem_access would have rejected this pkt access. 3935 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 3936 */ 3937 env->prog->aux->max_pkt_offset = 3938 max_t(u32, env->prog->aux->max_pkt_offset, 3939 off + reg->umax_value + size - 1); 3940 3941 return err; 3942 } 3943 3944 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 3945 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 3946 enum bpf_access_type t, enum bpf_reg_type *reg_type, 3947 struct btf **btf, u32 *btf_id) 3948 { 3949 struct bpf_insn_access_aux info = { 3950 .reg_type = *reg_type, 3951 .log = &env->log, 3952 }; 3953 3954 if (env->ops->is_valid_access && 3955 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 3956 /* A non zero info.ctx_field_size indicates that this field is a 3957 * candidate for later verifier transformation to load the whole 3958 * field and then apply a mask when accessed with a narrower 3959 * access than actual ctx access size. A zero info.ctx_field_size 3960 * will only allow for whole field access and rejects any other 3961 * type of narrower access. 3962 */ 3963 *reg_type = info.reg_type; 3964 3965 if (base_type(*reg_type) == PTR_TO_BTF_ID) { 3966 *btf = info.btf; 3967 *btf_id = info.btf_id; 3968 } else { 3969 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 3970 } 3971 /* remember the offset of last byte accessed in ctx */ 3972 if (env->prog->aux->max_ctx_offset < off + size) 3973 env->prog->aux->max_ctx_offset = off + size; 3974 return 0; 3975 } 3976 3977 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 3978 return -EACCES; 3979 } 3980 3981 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 3982 int size) 3983 { 3984 if (size < 0 || off < 0 || 3985 (u64)off + size > sizeof(struct bpf_flow_keys)) { 3986 verbose(env, "invalid access to flow keys off=%d size=%d\n", 3987 off, size); 3988 return -EACCES; 3989 } 3990 return 0; 3991 } 3992 3993 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 3994 u32 regno, int off, int size, 3995 enum bpf_access_type t) 3996 { 3997 struct bpf_reg_state *regs = cur_regs(env); 3998 struct bpf_reg_state *reg = ®s[regno]; 3999 struct bpf_insn_access_aux info = {}; 4000 bool valid; 4001 4002 if (reg->smin_value < 0) { 4003 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 4004 regno); 4005 return -EACCES; 4006 } 4007 4008 switch (reg->type) { 4009 case PTR_TO_SOCK_COMMON: 4010 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 4011 break; 4012 case PTR_TO_SOCKET: 4013 valid = bpf_sock_is_valid_access(off, size, t, &info); 4014 break; 4015 case PTR_TO_TCP_SOCK: 4016 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 4017 break; 4018 case PTR_TO_XDP_SOCK: 4019 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 4020 break; 4021 default: 4022 valid = false; 4023 } 4024 4025 4026 if (valid) { 4027 env->insn_aux_data[insn_idx].ctx_field_size = 4028 info.ctx_field_size; 4029 return 0; 4030 } 4031 4032 verbose(env, "R%d invalid %s access off=%d size=%d\n", 4033 regno, reg_type_str(env, reg->type), off, size); 4034 4035 return -EACCES; 4036 } 4037 4038 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 4039 { 4040 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 4041 } 4042 4043 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 4044 { 4045 const struct bpf_reg_state *reg = reg_state(env, regno); 4046 4047 return reg->type == PTR_TO_CTX; 4048 } 4049 4050 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 4051 { 4052 const struct bpf_reg_state *reg = reg_state(env, regno); 4053 4054 return type_is_sk_pointer(reg->type); 4055 } 4056 4057 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 4058 { 4059 const struct bpf_reg_state *reg = reg_state(env, regno); 4060 4061 return type_is_pkt_pointer(reg->type); 4062 } 4063 4064 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 4065 { 4066 const struct bpf_reg_state *reg = reg_state(env, regno); 4067 4068 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 4069 return reg->type == PTR_TO_FLOW_KEYS; 4070 } 4071 4072 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 4073 const struct bpf_reg_state *reg, 4074 int off, int size, bool strict) 4075 { 4076 struct tnum reg_off; 4077 int ip_align; 4078 4079 /* Byte size accesses are always allowed. */ 4080 if (!strict || size == 1) 4081 return 0; 4082 4083 /* For platforms that do not have a Kconfig enabling 4084 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 4085 * NET_IP_ALIGN is universally set to '2'. And on platforms 4086 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 4087 * to this code only in strict mode where we want to emulate 4088 * the NET_IP_ALIGN==2 checking. Therefore use an 4089 * unconditional IP align value of '2'. 4090 */ 4091 ip_align = 2; 4092 4093 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 4094 if (!tnum_is_aligned(reg_off, size)) { 4095 char tn_buf[48]; 4096 4097 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4098 verbose(env, 4099 "misaligned packet access off %d+%s+%d+%d size %d\n", 4100 ip_align, tn_buf, reg->off, off, size); 4101 return -EACCES; 4102 } 4103 4104 return 0; 4105 } 4106 4107 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 4108 const struct bpf_reg_state *reg, 4109 const char *pointer_desc, 4110 int off, int size, bool strict) 4111 { 4112 struct tnum reg_off; 4113 4114 /* Byte size accesses are always allowed. */ 4115 if (!strict || size == 1) 4116 return 0; 4117 4118 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 4119 if (!tnum_is_aligned(reg_off, size)) { 4120 char tn_buf[48]; 4121 4122 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4123 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 4124 pointer_desc, tn_buf, reg->off, off, size); 4125 return -EACCES; 4126 } 4127 4128 return 0; 4129 } 4130 4131 static int check_ptr_alignment(struct bpf_verifier_env *env, 4132 const struct bpf_reg_state *reg, int off, 4133 int size, bool strict_alignment_once) 4134 { 4135 bool strict = env->strict_alignment || strict_alignment_once; 4136 const char *pointer_desc = ""; 4137 4138 switch (reg->type) { 4139 case PTR_TO_PACKET: 4140 case PTR_TO_PACKET_META: 4141 /* Special case, because of NET_IP_ALIGN. Given metadata sits 4142 * right in front, treat it the very same way. 4143 */ 4144 return check_pkt_ptr_alignment(env, reg, off, size, strict); 4145 case PTR_TO_FLOW_KEYS: 4146 pointer_desc = "flow keys "; 4147 break; 4148 case PTR_TO_MAP_KEY: 4149 pointer_desc = "key "; 4150 break; 4151 case PTR_TO_MAP_VALUE: 4152 pointer_desc = "value "; 4153 break; 4154 case PTR_TO_CTX: 4155 pointer_desc = "context "; 4156 break; 4157 case PTR_TO_STACK: 4158 pointer_desc = "stack "; 4159 /* The stack spill tracking logic in check_stack_write_fixed_off() 4160 * and check_stack_read_fixed_off() relies on stack accesses being 4161 * aligned. 4162 */ 4163 strict = true; 4164 break; 4165 case PTR_TO_SOCKET: 4166 pointer_desc = "sock "; 4167 break; 4168 case PTR_TO_SOCK_COMMON: 4169 pointer_desc = "sock_common "; 4170 break; 4171 case PTR_TO_TCP_SOCK: 4172 pointer_desc = "tcp_sock "; 4173 break; 4174 case PTR_TO_XDP_SOCK: 4175 pointer_desc = "xdp_sock "; 4176 break; 4177 default: 4178 break; 4179 } 4180 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 4181 strict); 4182 } 4183 4184 static int update_stack_depth(struct bpf_verifier_env *env, 4185 const struct bpf_func_state *func, 4186 int off) 4187 { 4188 u16 stack = env->subprog_info[func->subprogno].stack_depth; 4189 4190 if (stack >= -off) 4191 return 0; 4192 4193 /* update known max for given subprogram */ 4194 env->subprog_info[func->subprogno].stack_depth = -off; 4195 return 0; 4196 } 4197 4198 /* starting from main bpf function walk all instructions of the function 4199 * and recursively walk all callees that given function can call. 4200 * Ignore jump and exit insns. 4201 * Since recursion is prevented by check_cfg() this algorithm 4202 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 4203 */ 4204 static int check_max_stack_depth(struct bpf_verifier_env *env) 4205 { 4206 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; 4207 struct bpf_subprog_info *subprog = env->subprog_info; 4208 struct bpf_insn *insn = env->prog->insnsi; 4209 bool tail_call_reachable = false; 4210 int ret_insn[MAX_CALL_FRAMES]; 4211 int ret_prog[MAX_CALL_FRAMES]; 4212 int j; 4213 4214 process_func: 4215 /* protect against potential stack overflow that might happen when 4216 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack 4217 * depth for such case down to 256 so that the worst case scenario 4218 * would result in 8k stack size (32 which is tailcall limit * 256 = 4219 * 8k). 4220 * 4221 * To get the idea what might happen, see an example: 4222 * func1 -> sub rsp, 128 4223 * subfunc1 -> sub rsp, 256 4224 * tailcall1 -> add rsp, 256 4225 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320) 4226 * subfunc2 -> sub rsp, 64 4227 * subfunc22 -> sub rsp, 128 4228 * tailcall2 -> add rsp, 128 4229 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416) 4230 * 4231 * tailcall will unwind the current stack frame but it will not get rid 4232 * of caller's stack as shown on the example above. 4233 */ 4234 if (idx && subprog[idx].has_tail_call && depth >= 256) { 4235 verbose(env, 4236 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n", 4237 depth); 4238 return -EACCES; 4239 } 4240 /* round up to 32-bytes, since this is granularity 4241 * of interpreter stack size 4242 */ 4243 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 4244 if (depth > MAX_BPF_STACK) { 4245 verbose(env, "combined stack size of %d calls is %d. Too large\n", 4246 frame + 1, depth); 4247 return -EACCES; 4248 } 4249 continue_func: 4250 subprog_end = subprog[idx + 1].start; 4251 for (; i < subprog_end; i++) { 4252 int next_insn; 4253 4254 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i)) 4255 continue; 4256 /* remember insn and function to return to */ 4257 ret_insn[frame] = i + 1; 4258 ret_prog[frame] = idx; 4259 4260 /* find the callee */ 4261 next_insn = i + insn[i].imm + 1; 4262 idx = find_subprog(env, next_insn); 4263 if (idx < 0) { 4264 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 4265 next_insn); 4266 return -EFAULT; 4267 } 4268 if (subprog[idx].is_async_cb) { 4269 if (subprog[idx].has_tail_call) { 4270 verbose(env, "verifier bug. subprog has tail_call and async cb\n"); 4271 return -EFAULT; 4272 } 4273 /* async callbacks don't increase bpf prog stack size */ 4274 continue; 4275 } 4276 i = next_insn; 4277 4278 if (subprog[idx].has_tail_call) 4279 tail_call_reachable = true; 4280 4281 frame++; 4282 if (frame >= MAX_CALL_FRAMES) { 4283 verbose(env, "the call stack of %d frames is too deep !\n", 4284 frame); 4285 return -E2BIG; 4286 } 4287 goto process_func; 4288 } 4289 /* if tail call got detected across bpf2bpf calls then mark each of the 4290 * currently present subprog frames as tail call reachable subprogs; 4291 * this info will be utilized by JIT so that we will be preserving the 4292 * tail call counter throughout bpf2bpf calls combined with tailcalls 4293 */ 4294 if (tail_call_reachable) 4295 for (j = 0; j < frame; j++) 4296 subprog[ret_prog[j]].tail_call_reachable = true; 4297 if (subprog[0].tail_call_reachable) 4298 env->prog->aux->tail_call_reachable = true; 4299 4300 /* end of for() loop means the last insn of the 'subprog' 4301 * was reached. Doesn't matter whether it was JA or EXIT 4302 */ 4303 if (frame == 0) 4304 return 0; 4305 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 4306 frame--; 4307 i = ret_insn[frame]; 4308 idx = ret_prog[frame]; 4309 goto continue_func; 4310 } 4311 4312 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 4313 static int get_callee_stack_depth(struct bpf_verifier_env *env, 4314 const struct bpf_insn *insn, int idx) 4315 { 4316 int start = idx + insn->imm + 1, subprog; 4317 4318 subprog = find_subprog(env, start); 4319 if (subprog < 0) { 4320 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 4321 start); 4322 return -EFAULT; 4323 } 4324 return env->subprog_info[subprog].stack_depth; 4325 } 4326 #endif 4327 4328 static int __check_buffer_access(struct bpf_verifier_env *env, 4329 const char *buf_info, 4330 const struct bpf_reg_state *reg, 4331 int regno, int off, int size) 4332 { 4333 if (off < 0) { 4334 verbose(env, 4335 "R%d invalid %s buffer access: off=%d, size=%d\n", 4336 regno, buf_info, off, size); 4337 return -EACCES; 4338 } 4339 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 4340 char tn_buf[48]; 4341 4342 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4343 verbose(env, 4344 "R%d invalid variable buffer offset: off=%d, var_off=%s\n", 4345 regno, off, tn_buf); 4346 return -EACCES; 4347 } 4348 4349 return 0; 4350 } 4351 4352 static int check_tp_buffer_access(struct bpf_verifier_env *env, 4353 const struct bpf_reg_state *reg, 4354 int regno, int off, int size) 4355 { 4356 int err; 4357 4358 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size); 4359 if (err) 4360 return err; 4361 4362 if (off + size > env->prog->aux->max_tp_access) 4363 env->prog->aux->max_tp_access = off + size; 4364 4365 return 0; 4366 } 4367 4368 static int check_buffer_access(struct bpf_verifier_env *env, 4369 const struct bpf_reg_state *reg, 4370 int regno, int off, int size, 4371 bool zero_size_allowed, 4372 u32 *max_access) 4373 { 4374 const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr"; 4375 int err; 4376 4377 err = __check_buffer_access(env, buf_info, reg, regno, off, size); 4378 if (err) 4379 return err; 4380 4381 if (off + size > *max_access) 4382 *max_access = off + size; 4383 4384 return 0; 4385 } 4386 4387 /* BPF architecture zero extends alu32 ops into 64-bit registesr */ 4388 static void zext_32_to_64(struct bpf_reg_state *reg) 4389 { 4390 reg->var_off = tnum_subreg(reg->var_off); 4391 __reg_assign_32_into_64(reg); 4392 } 4393 4394 /* truncate register to smaller size (in bytes) 4395 * must be called with size < BPF_REG_SIZE 4396 */ 4397 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 4398 { 4399 u64 mask; 4400 4401 /* clear high bits in bit representation */ 4402 reg->var_off = tnum_cast(reg->var_off, size); 4403 4404 /* fix arithmetic bounds */ 4405 mask = ((u64)1 << (size * 8)) - 1; 4406 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 4407 reg->umin_value &= mask; 4408 reg->umax_value &= mask; 4409 } else { 4410 reg->umin_value = 0; 4411 reg->umax_value = mask; 4412 } 4413 reg->smin_value = reg->umin_value; 4414 reg->smax_value = reg->umax_value; 4415 4416 /* If size is smaller than 32bit register the 32bit register 4417 * values are also truncated so we push 64-bit bounds into 4418 * 32-bit bounds. Above were truncated < 32-bits already. 4419 */ 4420 if (size >= 4) 4421 return; 4422 __reg_combine_64_into_32(reg); 4423 } 4424 4425 static bool bpf_map_is_rdonly(const struct bpf_map *map) 4426 { 4427 /* A map is considered read-only if the following condition are true: 4428 * 4429 * 1) BPF program side cannot change any of the map content. The 4430 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map 4431 * and was set at map creation time. 4432 * 2) The map value(s) have been initialized from user space by a 4433 * loader and then "frozen", such that no new map update/delete 4434 * operations from syscall side are possible for the rest of 4435 * the map's lifetime from that point onwards. 4436 * 3) Any parallel/pending map update/delete operations from syscall 4437 * side have been completed. Only after that point, it's safe to 4438 * assume that map value(s) are immutable. 4439 */ 4440 return (map->map_flags & BPF_F_RDONLY_PROG) && 4441 READ_ONCE(map->frozen) && 4442 !bpf_map_write_active(map); 4443 } 4444 4445 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val) 4446 { 4447 void *ptr; 4448 u64 addr; 4449 int err; 4450 4451 err = map->ops->map_direct_value_addr(map, &addr, off); 4452 if (err) 4453 return err; 4454 ptr = (void *)(long)addr + off; 4455 4456 switch (size) { 4457 case sizeof(u8): 4458 *val = (u64)*(u8 *)ptr; 4459 break; 4460 case sizeof(u16): 4461 *val = (u64)*(u16 *)ptr; 4462 break; 4463 case sizeof(u32): 4464 *val = (u64)*(u32 *)ptr; 4465 break; 4466 case sizeof(u64): 4467 *val = *(u64 *)ptr; 4468 break; 4469 default: 4470 return -EINVAL; 4471 } 4472 return 0; 4473 } 4474 4475 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 4476 struct bpf_reg_state *regs, 4477 int regno, int off, int size, 4478 enum bpf_access_type atype, 4479 int value_regno) 4480 { 4481 struct bpf_reg_state *reg = regs + regno; 4482 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id); 4483 const char *tname = btf_name_by_offset(reg->btf, t->name_off); 4484 enum bpf_type_flag flag = 0; 4485 u32 btf_id; 4486 int ret; 4487 4488 if (off < 0) { 4489 verbose(env, 4490 "R%d is ptr_%s invalid negative access: off=%d\n", 4491 regno, tname, off); 4492 return -EACCES; 4493 } 4494 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 4495 char tn_buf[48]; 4496 4497 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4498 verbose(env, 4499 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 4500 regno, tname, off, tn_buf); 4501 return -EACCES; 4502 } 4503 4504 if (reg->type & MEM_USER) { 4505 verbose(env, 4506 "R%d is ptr_%s access user memory: off=%d\n", 4507 regno, tname, off); 4508 return -EACCES; 4509 } 4510 4511 if (reg->type & MEM_PERCPU) { 4512 verbose(env, 4513 "R%d is ptr_%s access percpu memory: off=%d\n", 4514 regno, tname, off); 4515 return -EACCES; 4516 } 4517 4518 if (env->ops->btf_struct_access) { 4519 ret = env->ops->btf_struct_access(&env->log, reg->btf, t, 4520 off, size, atype, &btf_id, &flag); 4521 } else { 4522 if (atype != BPF_READ) { 4523 verbose(env, "only read is supported\n"); 4524 return -EACCES; 4525 } 4526 4527 ret = btf_struct_access(&env->log, reg->btf, t, off, size, 4528 atype, &btf_id, &flag); 4529 } 4530 4531 if (ret < 0) 4532 return ret; 4533 4534 /* If this is an untrusted pointer, all pointers formed by walking it 4535 * also inherit the untrusted flag. 4536 */ 4537 if (type_flag(reg->type) & PTR_UNTRUSTED) 4538 flag |= PTR_UNTRUSTED; 4539 4540 if (atype == BPF_READ && value_regno >= 0) 4541 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag); 4542 4543 return 0; 4544 } 4545 4546 static int check_ptr_to_map_access(struct bpf_verifier_env *env, 4547 struct bpf_reg_state *regs, 4548 int regno, int off, int size, 4549 enum bpf_access_type atype, 4550 int value_regno) 4551 { 4552 struct bpf_reg_state *reg = regs + regno; 4553 struct bpf_map *map = reg->map_ptr; 4554 enum bpf_type_flag flag = 0; 4555 const struct btf_type *t; 4556 const char *tname; 4557 u32 btf_id; 4558 int ret; 4559 4560 if (!btf_vmlinux) { 4561 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n"); 4562 return -ENOTSUPP; 4563 } 4564 4565 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) { 4566 verbose(env, "map_ptr access not supported for map type %d\n", 4567 map->map_type); 4568 return -ENOTSUPP; 4569 } 4570 4571 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id); 4572 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 4573 4574 if (!env->allow_ptr_to_map_access) { 4575 verbose(env, 4576 "%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 4577 tname); 4578 return -EPERM; 4579 } 4580 4581 if (off < 0) { 4582 verbose(env, "R%d is %s invalid negative access: off=%d\n", 4583 regno, tname, off); 4584 return -EACCES; 4585 } 4586 4587 if (atype != BPF_READ) { 4588 verbose(env, "only read from %s is supported\n", tname); 4589 return -EACCES; 4590 } 4591 4592 ret = btf_struct_access(&env->log, btf_vmlinux, t, off, size, atype, &btf_id, &flag); 4593 if (ret < 0) 4594 return ret; 4595 4596 if (value_regno >= 0) 4597 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag); 4598 4599 return 0; 4600 } 4601 4602 /* Check that the stack access at the given offset is within bounds. The 4603 * maximum valid offset is -1. 4604 * 4605 * The minimum valid offset is -MAX_BPF_STACK for writes, and 4606 * -state->allocated_stack for reads. 4607 */ 4608 static int check_stack_slot_within_bounds(int off, 4609 struct bpf_func_state *state, 4610 enum bpf_access_type t) 4611 { 4612 int min_valid_off; 4613 4614 if (t == BPF_WRITE) 4615 min_valid_off = -MAX_BPF_STACK; 4616 else 4617 min_valid_off = -state->allocated_stack; 4618 4619 if (off < min_valid_off || off > -1) 4620 return -EACCES; 4621 return 0; 4622 } 4623 4624 /* Check that the stack access at 'regno + off' falls within the maximum stack 4625 * bounds. 4626 * 4627 * 'off' includes `regno->offset`, but not its dynamic part (if any). 4628 */ 4629 static int check_stack_access_within_bounds( 4630 struct bpf_verifier_env *env, 4631 int regno, int off, int access_size, 4632 enum bpf_access_src src, enum bpf_access_type type) 4633 { 4634 struct bpf_reg_state *regs = cur_regs(env); 4635 struct bpf_reg_state *reg = regs + regno; 4636 struct bpf_func_state *state = func(env, reg); 4637 int min_off, max_off; 4638 int err; 4639 char *err_extra; 4640 4641 if (src == ACCESS_HELPER) 4642 /* We don't know if helpers are reading or writing (or both). */ 4643 err_extra = " indirect access to"; 4644 else if (type == BPF_READ) 4645 err_extra = " read from"; 4646 else 4647 err_extra = " write to"; 4648 4649 if (tnum_is_const(reg->var_off)) { 4650 min_off = reg->var_off.value + off; 4651 if (access_size > 0) 4652 max_off = min_off + access_size - 1; 4653 else 4654 max_off = min_off; 4655 } else { 4656 if (reg->smax_value >= BPF_MAX_VAR_OFF || 4657 reg->smin_value <= -BPF_MAX_VAR_OFF) { 4658 verbose(env, "invalid unbounded variable-offset%s stack R%d\n", 4659 err_extra, regno); 4660 return -EACCES; 4661 } 4662 min_off = reg->smin_value + off; 4663 if (access_size > 0) 4664 max_off = reg->smax_value + off + access_size - 1; 4665 else 4666 max_off = min_off; 4667 } 4668 4669 err = check_stack_slot_within_bounds(min_off, state, type); 4670 if (!err) 4671 err = check_stack_slot_within_bounds(max_off, state, type); 4672 4673 if (err) { 4674 if (tnum_is_const(reg->var_off)) { 4675 verbose(env, "invalid%s stack R%d off=%d size=%d\n", 4676 err_extra, regno, off, access_size); 4677 } else { 4678 char tn_buf[48]; 4679 4680 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4681 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n", 4682 err_extra, regno, tn_buf, access_size); 4683 } 4684 } 4685 return err; 4686 } 4687 4688 /* check whether memory at (regno + off) is accessible for t = (read | write) 4689 * if t==write, value_regno is a register which value is stored into memory 4690 * if t==read, value_regno is a register which will receive the value from memory 4691 * if t==write && value_regno==-1, some unknown value is stored into memory 4692 * if t==read && value_regno==-1, don't care what we read from memory 4693 */ 4694 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 4695 int off, int bpf_size, enum bpf_access_type t, 4696 int value_regno, bool strict_alignment_once) 4697 { 4698 struct bpf_reg_state *regs = cur_regs(env); 4699 struct bpf_reg_state *reg = regs + regno; 4700 struct bpf_func_state *state; 4701 int size, err = 0; 4702 4703 size = bpf_size_to_bytes(bpf_size); 4704 if (size < 0) 4705 return size; 4706 4707 /* alignment checks will add in reg->off themselves */ 4708 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 4709 if (err) 4710 return err; 4711 4712 /* for access checks, reg->off is just part of off */ 4713 off += reg->off; 4714 4715 if (reg->type == PTR_TO_MAP_KEY) { 4716 if (t == BPF_WRITE) { 4717 verbose(env, "write to change key R%d not allowed\n", regno); 4718 return -EACCES; 4719 } 4720 4721 err = check_mem_region_access(env, regno, off, size, 4722 reg->map_ptr->key_size, false); 4723 if (err) 4724 return err; 4725 if (value_regno >= 0) 4726 mark_reg_unknown(env, regs, value_regno); 4727 } else if (reg->type == PTR_TO_MAP_VALUE) { 4728 struct bpf_map_value_off_desc *kptr_off_desc = NULL; 4729 4730 if (t == BPF_WRITE && value_regno >= 0 && 4731 is_pointer_value(env, value_regno)) { 4732 verbose(env, "R%d leaks addr into map\n", value_regno); 4733 return -EACCES; 4734 } 4735 err = check_map_access_type(env, regno, off, size, t); 4736 if (err) 4737 return err; 4738 err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT); 4739 if (err) 4740 return err; 4741 if (tnum_is_const(reg->var_off)) 4742 kptr_off_desc = bpf_map_kptr_off_contains(reg->map_ptr, 4743 off + reg->var_off.value); 4744 if (kptr_off_desc) { 4745 err = check_map_kptr_access(env, regno, value_regno, insn_idx, 4746 kptr_off_desc); 4747 } else if (t == BPF_READ && value_regno >= 0) { 4748 struct bpf_map *map = reg->map_ptr; 4749 4750 /* if map is read-only, track its contents as scalars */ 4751 if (tnum_is_const(reg->var_off) && 4752 bpf_map_is_rdonly(map) && 4753 map->ops->map_direct_value_addr) { 4754 int map_off = off + reg->var_off.value; 4755 u64 val = 0; 4756 4757 err = bpf_map_direct_read(map, map_off, size, 4758 &val); 4759 if (err) 4760 return err; 4761 4762 regs[value_regno].type = SCALAR_VALUE; 4763 __mark_reg_known(®s[value_regno], val); 4764 } else { 4765 mark_reg_unknown(env, regs, value_regno); 4766 } 4767 } 4768 } else if (base_type(reg->type) == PTR_TO_MEM) { 4769 bool rdonly_mem = type_is_rdonly_mem(reg->type); 4770 4771 if (type_may_be_null(reg->type)) { 4772 verbose(env, "R%d invalid mem access '%s'\n", regno, 4773 reg_type_str(env, reg->type)); 4774 return -EACCES; 4775 } 4776 4777 if (t == BPF_WRITE && rdonly_mem) { 4778 verbose(env, "R%d cannot write into %s\n", 4779 regno, reg_type_str(env, reg->type)); 4780 return -EACCES; 4781 } 4782 4783 if (t == BPF_WRITE && value_regno >= 0 && 4784 is_pointer_value(env, value_regno)) { 4785 verbose(env, "R%d leaks addr into mem\n", value_regno); 4786 return -EACCES; 4787 } 4788 4789 err = check_mem_region_access(env, regno, off, size, 4790 reg->mem_size, false); 4791 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem)) 4792 mark_reg_unknown(env, regs, value_regno); 4793 } else if (reg->type == PTR_TO_CTX) { 4794 enum bpf_reg_type reg_type = SCALAR_VALUE; 4795 struct btf *btf = NULL; 4796 u32 btf_id = 0; 4797 4798 if (t == BPF_WRITE && value_regno >= 0 && 4799 is_pointer_value(env, value_regno)) { 4800 verbose(env, "R%d leaks addr into ctx\n", value_regno); 4801 return -EACCES; 4802 } 4803 4804 err = check_ptr_off_reg(env, reg, regno); 4805 if (err < 0) 4806 return err; 4807 4808 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf, 4809 &btf_id); 4810 if (err) 4811 verbose_linfo(env, insn_idx, "; "); 4812 if (!err && t == BPF_READ && value_regno >= 0) { 4813 /* ctx access returns either a scalar, or a 4814 * PTR_TO_PACKET[_META,_END]. In the latter 4815 * case, we know the offset is zero. 4816 */ 4817 if (reg_type == SCALAR_VALUE) { 4818 mark_reg_unknown(env, regs, value_regno); 4819 } else { 4820 mark_reg_known_zero(env, regs, 4821 value_regno); 4822 if (type_may_be_null(reg_type)) 4823 regs[value_regno].id = ++env->id_gen; 4824 /* A load of ctx field could have different 4825 * actual load size with the one encoded in the 4826 * insn. When the dst is PTR, it is for sure not 4827 * a sub-register. 4828 */ 4829 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 4830 if (base_type(reg_type) == PTR_TO_BTF_ID) { 4831 regs[value_regno].btf = btf; 4832 regs[value_regno].btf_id = btf_id; 4833 } 4834 } 4835 regs[value_regno].type = reg_type; 4836 } 4837 4838 } else if (reg->type == PTR_TO_STACK) { 4839 /* Basic bounds checks. */ 4840 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t); 4841 if (err) 4842 return err; 4843 4844 state = func(env, reg); 4845 err = update_stack_depth(env, state, off); 4846 if (err) 4847 return err; 4848 4849 if (t == BPF_READ) 4850 err = check_stack_read(env, regno, off, size, 4851 value_regno); 4852 else 4853 err = check_stack_write(env, regno, off, size, 4854 value_regno, insn_idx); 4855 } else if (reg_is_pkt_pointer(reg)) { 4856 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 4857 verbose(env, "cannot write into packet\n"); 4858 return -EACCES; 4859 } 4860 if (t == BPF_WRITE && value_regno >= 0 && 4861 is_pointer_value(env, value_regno)) { 4862 verbose(env, "R%d leaks addr into packet\n", 4863 value_regno); 4864 return -EACCES; 4865 } 4866 err = check_packet_access(env, regno, off, size, false); 4867 if (!err && t == BPF_READ && value_regno >= 0) 4868 mark_reg_unknown(env, regs, value_regno); 4869 } else if (reg->type == PTR_TO_FLOW_KEYS) { 4870 if (t == BPF_WRITE && value_regno >= 0 && 4871 is_pointer_value(env, value_regno)) { 4872 verbose(env, "R%d leaks addr into flow keys\n", 4873 value_regno); 4874 return -EACCES; 4875 } 4876 4877 err = check_flow_keys_access(env, off, size); 4878 if (!err && t == BPF_READ && value_regno >= 0) 4879 mark_reg_unknown(env, regs, value_regno); 4880 } else if (type_is_sk_pointer(reg->type)) { 4881 if (t == BPF_WRITE) { 4882 verbose(env, "R%d cannot write into %s\n", 4883 regno, reg_type_str(env, reg->type)); 4884 return -EACCES; 4885 } 4886 err = check_sock_access(env, insn_idx, regno, off, size, t); 4887 if (!err && value_regno >= 0) 4888 mark_reg_unknown(env, regs, value_regno); 4889 } else if (reg->type == PTR_TO_TP_BUFFER) { 4890 err = check_tp_buffer_access(env, reg, regno, off, size); 4891 if (!err && t == BPF_READ && value_regno >= 0) 4892 mark_reg_unknown(env, regs, value_regno); 4893 } else if (base_type(reg->type) == PTR_TO_BTF_ID && 4894 !type_may_be_null(reg->type)) { 4895 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 4896 value_regno); 4897 } else if (reg->type == CONST_PTR_TO_MAP) { 4898 err = check_ptr_to_map_access(env, regs, regno, off, size, t, 4899 value_regno); 4900 } else if (base_type(reg->type) == PTR_TO_BUF) { 4901 bool rdonly_mem = type_is_rdonly_mem(reg->type); 4902 u32 *max_access; 4903 4904 if (rdonly_mem) { 4905 if (t == BPF_WRITE) { 4906 verbose(env, "R%d cannot write into %s\n", 4907 regno, reg_type_str(env, reg->type)); 4908 return -EACCES; 4909 } 4910 max_access = &env->prog->aux->max_rdonly_access; 4911 } else { 4912 max_access = &env->prog->aux->max_rdwr_access; 4913 } 4914 4915 err = check_buffer_access(env, reg, regno, off, size, false, 4916 max_access); 4917 4918 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ)) 4919 mark_reg_unknown(env, regs, value_regno); 4920 } else { 4921 verbose(env, "R%d invalid mem access '%s'\n", regno, 4922 reg_type_str(env, reg->type)); 4923 return -EACCES; 4924 } 4925 4926 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 4927 regs[value_regno].type == SCALAR_VALUE) { 4928 /* b/h/w load zero-extends, mark upper bits as known 0 */ 4929 coerce_reg_to_size(®s[value_regno], size); 4930 } 4931 return err; 4932 } 4933 4934 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 4935 { 4936 int load_reg; 4937 int err; 4938 4939 switch (insn->imm) { 4940 case BPF_ADD: 4941 case BPF_ADD | BPF_FETCH: 4942 case BPF_AND: 4943 case BPF_AND | BPF_FETCH: 4944 case BPF_OR: 4945 case BPF_OR | BPF_FETCH: 4946 case BPF_XOR: 4947 case BPF_XOR | BPF_FETCH: 4948 case BPF_XCHG: 4949 case BPF_CMPXCHG: 4950 break; 4951 default: 4952 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm); 4953 return -EINVAL; 4954 } 4955 4956 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) { 4957 verbose(env, "invalid atomic operand size\n"); 4958 return -EINVAL; 4959 } 4960 4961 /* check src1 operand */ 4962 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4963 if (err) 4964 return err; 4965 4966 /* check src2 operand */ 4967 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 4968 if (err) 4969 return err; 4970 4971 if (insn->imm == BPF_CMPXCHG) { 4972 /* Check comparison of R0 with memory location */ 4973 const u32 aux_reg = BPF_REG_0; 4974 4975 err = check_reg_arg(env, aux_reg, SRC_OP); 4976 if (err) 4977 return err; 4978 4979 if (is_pointer_value(env, aux_reg)) { 4980 verbose(env, "R%d leaks addr into mem\n", aux_reg); 4981 return -EACCES; 4982 } 4983 } 4984 4985 if (is_pointer_value(env, insn->src_reg)) { 4986 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 4987 return -EACCES; 4988 } 4989 4990 if (is_ctx_reg(env, insn->dst_reg) || 4991 is_pkt_reg(env, insn->dst_reg) || 4992 is_flow_key_reg(env, insn->dst_reg) || 4993 is_sk_reg(env, insn->dst_reg)) { 4994 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n", 4995 insn->dst_reg, 4996 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 4997 return -EACCES; 4998 } 4999 5000 if (insn->imm & BPF_FETCH) { 5001 if (insn->imm == BPF_CMPXCHG) 5002 load_reg = BPF_REG_0; 5003 else 5004 load_reg = insn->src_reg; 5005 5006 /* check and record load of old value */ 5007 err = check_reg_arg(env, load_reg, DST_OP); 5008 if (err) 5009 return err; 5010 } else { 5011 /* This instruction accesses a memory location but doesn't 5012 * actually load it into a register. 5013 */ 5014 load_reg = -1; 5015 } 5016 5017 /* Check whether we can read the memory, with second call for fetch 5018 * case to simulate the register fill. 5019 */ 5020 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 5021 BPF_SIZE(insn->code), BPF_READ, -1, true); 5022 if (!err && load_reg >= 0) 5023 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 5024 BPF_SIZE(insn->code), BPF_READ, load_reg, 5025 true); 5026 if (err) 5027 return err; 5028 5029 /* Check whether we can write into the same memory. */ 5030 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 5031 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 5032 if (err) 5033 return err; 5034 5035 return 0; 5036 } 5037 5038 /* When register 'regno' is used to read the stack (either directly or through 5039 * a helper function) make sure that it's within stack boundary and, depending 5040 * on the access type, that all elements of the stack are initialized. 5041 * 5042 * 'off' includes 'regno->off', but not its dynamic part (if any). 5043 * 5044 * All registers that have been spilled on the stack in the slots within the 5045 * read offsets are marked as read. 5046 */ 5047 static int check_stack_range_initialized( 5048 struct bpf_verifier_env *env, int regno, int off, 5049 int access_size, bool zero_size_allowed, 5050 enum bpf_access_src type, struct bpf_call_arg_meta *meta) 5051 { 5052 struct bpf_reg_state *reg = reg_state(env, regno); 5053 struct bpf_func_state *state = func(env, reg); 5054 int err, min_off, max_off, i, j, slot, spi; 5055 char *err_extra = type == ACCESS_HELPER ? " indirect" : ""; 5056 enum bpf_access_type bounds_check_type; 5057 /* Some accesses can write anything into the stack, others are 5058 * read-only. 5059 */ 5060 bool clobber = false; 5061 5062 if (access_size == 0 && !zero_size_allowed) { 5063 verbose(env, "invalid zero-sized read\n"); 5064 return -EACCES; 5065 } 5066 5067 if (type == ACCESS_HELPER) { 5068 /* The bounds checks for writes are more permissive than for 5069 * reads. However, if raw_mode is not set, we'll do extra 5070 * checks below. 5071 */ 5072 bounds_check_type = BPF_WRITE; 5073 clobber = true; 5074 } else { 5075 bounds_check_type = BPF_READ; 5076 } 5077 err = check_stack_access_within_bounds(env, regno, off, access_size, 5078 type, bounds_check_type); 5079 if (err) 5080 return err; 5081 5082 5083 if (tnum_is_const(reg->var_off)) { 5084 min_off = max_off = reg->var_off.value + off; 5085 } else { 5086 /* Variable offset is prohibited for unprivileged mode for 5087 * simplicity since it requires corresponding support in 5088 * Spectre masking for stack ALU. 5089 * See also retrieve_ptr_limit(). 5090 */ 5091 if (!env->bypass_spec_v1) { 5092 char tn_buf[48]; 5093 5094 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5095 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n", 5096 regno, err_extra, tn_buf); 5097 return -EACCES; 5098 } 5099 /* Only initialized buffer on stack is allowed to be accessed 5100 * with variable offset. With uninitialized buffer it's hard to 5101 * guarantee that whole memory is marked as initialized on 5102 * helper return since specific bounds are unknown what may 5103 * cause uninitialized stack leaking. 5104 */ 5105 if (meta && meta->raw_mode) 5106 meta = NULL; 5107 5108 min_off = reg->smin_value + off; 5109 max_off = reg->smax_value + off; 5110 } 5111 5112 if (meta && meta->raw_mode) { 5113 meta->access_size = access_size; 5114 meta->regno = regno; 5115 return 0; 5116 } 5117 5118 for (i = min_off; i < max_off + access_size; i++) { 5119 u8 *stype; 5120 5121 slot = -i - 1; 5122 spi = slot / BPF_REG_SIZE; 5123 if (state->allocated_stack <= slot) 5124 goto err; 5125 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 5126 if (*stype == STACK_MISC) 5127 goto mark; 5128 if (*stype == STACK_ZERO) { 5129 if (clobber) { 5130 /* helper can write anything into the stack */ 5131 *stype = STACK_MISC; 5132 } 5133 goto mark; 5134 } 5135 5136 if (is_spilled_reg(&state->stack[spi]) && 5137 base_type(state->stack[spi].spilled_ptr.type) == PTR_TO_BTF_ID) 5138 goto mark; 5139 5140 if (is_spilled_reg(&state->stack[spi]) && 5141 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE || 5142 env->allow_ptr_leaks)) { 5143 if (clobber) { 5144 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 5145 for (j = 0; j < BPF_REG_SIZE; j++) 5146 scrub_spilled_slot(&state->stack[spi].slot_type[j]); 5147 } 5148 goto mark; 5149 } 5150 5151 err: 5152 if (tnum_is_const(reg->var_off)) { 5153 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n", 5154 err_extra, regno, min_off, i - min_off, access_size); 5155 } else { 5156 char tn_buf[48]; 5157 5158 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5159 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n", 5160 err_extra, regno, tn_buf, i - min_off, access_size); 5161 } 5162 return -EACCES; 5163 mark: 5164 /* reading any byte out of 8-byte 'spill_slot' will cause 5165 * the whole slot to be marked as 'read' 5166 */ 5167 mark_reg_read(env, &state->stack[spi].spilled_ptr, 5168 state->stack[spi].spilled_ptr.parent, 5169 REG_LIVE_READ64); 5170 } 5171 return update_stack_depth(env, state, min_off); 5172 } 5173 5174 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 5175 int access_size, bool zero_size_allowed, 5176 struct bpf_call_arg_meta *meta) 5177 { 5178 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5179 u32 *max_access; 5180 5181 switch (base_type(reg->type)) { 5182 case PTR_TO_PACKET: 5183 case PTR_TO_PACKET_META: 5184 return check_packet_access(env, regno, reg->off, access_size, 5185 zero_size_allowed); 5186 case PTR_TO_MAP_KEY: 5187 if (meta && meta->raw_mode) { 5188 verbose(env, "R%d cannot write into %s\n", regno, 5189 reg_type_str(env, reg->type)); 5190 return -EACCES; 5191 } 5192 return check_mem_region_access(env, regno, reg->off, access_size, 5193 reg->map_ptr->key_size, false); 5194 case PTR_TO_MAP_VALUE: 5195 if (check_map_access_type(env, regno, reg->off, access_size, 5196 meta && meta->raw_mode ? BPF_WRITE : 5197 BPF_READ)) 5198 return -EACCES; 5199 return check_map_access(env, regno, reg->off, access_size, 5200 zero_size_allowed, ACCESS_HELPER); 5201 case PTR_TO_MEM: 5202 if (type_is_rdonly_mem(reg->type)) { 5203 if (meta && meta->raw_mode) { 5204 verbose(env, "R%d cannot write into %s\n", regno, 5205 reg_type_str(env, reg->type)); 5206 return -EACCES; 5207 } 5208 } 5209 return check_mem_region_access(env, regno, reg->off, 5210 access_size, reg->mem_size, 5211 zero_size_allowed); 5212 case PTR_TO_BUF: 5213 if (type_is_rdonly_mem(reg->type)) { 5214 if (meta && meta->raw_mode) { 5215 verbose(env, "R%d cannot write into %s\n", regno, 5216 reg_type_str(env, reg->type)); 5217 return -EACCES; 5218 } 5219 5220 max_access = &env->prog->aux->max_rdonly_access; 5221 } else { 5222 max_access = &env->prog->aux->max_rdwr_access; 5223 } 5224 return check_buffer_access(env, reg, regno, reg->off, 5225 access_size, zero_size_allowed, 5226 max_access); 5227 case PTR_TO_STACK: 5228 return check_stack_range_initialized( 5229 env, 5230 regno, reg->off, access_size, 5231 zero_size_allowed, ACCESS_HELPER, meta); 5232 default: /* scalar_value or invalid ptr */ 5233 /* Allow zero-byte read from NULL, regardless of pointer type */ 5234 if (zero_size_allowed && access_size == 0 && 5235 register_is_null(reg)) 5236 return 0; 5237 5238 verbose(env, "R%d type=%s ", regno, 5239 reg_type_str(env, reg->type)); 5240 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK)); 5241 return -EACCES; 5242 } 5243 } 5244 5245 static int check_mem_size_reg(struct bpf_verifier_env *env, 5246 struct bpf_reg_state *reg, u32 regno, 5247 bool zero_size_allowed, 5248 struct bpf_call_arg_meta *meta) 5249 { 5250 int err; 5251 5252 /* This is used to refine r0 return value bounds for helpers 5253 * that enforce this value as an upper bound on return values. 5254 * See do_refine_retval_range() for helpers that can refine 5255 * the return value. C type of helper is u32 so we pull register 5256 * bound from umax_value however, if negative verifier errors 5257 * out. Only upper bounds can be learned because retval is an 5258 * int type and negative retvals are allowed. 5259 */ 5260 meta->msize_max_value = reg->umax_value; 5261 5262 /* The register is SCALAR_VALUE; the access check 5263 * happens using its boundaries. 5264 */ 5265 if (!tnum_is_const(reg->var_off)) 5266 /* For unprivileged variable accesses, disable raw 5267 * mode so that the program is required to 5268 * initialize all the memory that the helper could 5269 * just partially fill up. 5270 */ 5271 meta = NULL; 5272 5273 if (reg->smin_value < 0) { 5274 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 5275 regno); 5276 return -EACCES; 5277 } 5278 5279 if (reg->umin_value == 0) { 5280 err = check_helper_mem_access(env, regno - 1, 0, 5281 zero_size_allowed, 5282 meta); 5283 if (err) 5284 return err; 5285 } 5286 5287 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 5288 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 5289 regno); 5290 return -EACCES; 5291 } 5292 err = check_helper_mem_access(env, regno - 1, 5293 reg->umax_value, 5294 zero_size_allowed, meta); 5295 if (!err) 5296 err = mark_chain_precision(env, regno); 5297 return err; 5298 } 5299 5300 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 5301 u32 regno, u32 mem_size) 5302 { 5303 bool may_be_null = type_may_be_null(reg->type); 5304 struct bpf_reg_state saved_reg; 5305 struct bpf_call_arg_meta meta; 5306 int err; 5307 5308 if (register_is_null(reg)) 5309 return 0; 5310 5311 memset(&meta, 0, sizeof(meta)); 5312 /* Assuming that the register contains a value check if the memory 5313 * access is safe. Temporarily save and restore the register's state as 5314 * the conversion shouldn't be visible to a caller. 5315 */ 5316 if (may_be_null) { 5317 saved_reg = *reg; 5318 mark_ptr_not_null_reg(reg); 5319 } 5320 5321 err = check_helper_mem_access(env, regno, mem_size, true, &meta); 5322 /* Check access for BPF_WRITE */ 5323 meta.raw_mode = true; 5324 err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta); 5325 5326 if (may_be_null) 5327 *reg = saved_reg; 5328 5329 return err; 5330 } 5331 5332 int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 5333 u32 regno) 5334 { 5335 struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1]; 5336 bool may_be_null = type_may_be_null(mem_reg->type); 5337 struct bpf_reg_state saved_reg; 5338 struct bpf_call_arg_meta meta; 5339 int err; 5340 5341 WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5); 5342 5343 memset(&meta, 0, sizeof(meta)); 5344 5345 if (may_be_null) { 5346 saved_reg = *mem_reg; 5347 mark_ptr_not_null_reg(mem_reg); 5348 } 5349 5350 err = check_mem_size_reg(env, reg, regno, true, &meta); 5351 /* Check access for BPF_WRITE */ 5352 meta.raw_mode = true; 5353 err = err ?: check_mem_size_reg(env, reg, regno, true, &meta); 5354 5355 if (may_be_null) 5356 *mem_reg = saved_reg; 5357 return err; 5358 } 5359 5360 /* Implementation details: 5361 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL 5362 * Two bpf_map_lookups (even with the same key) will have different reg->id. 5363 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after 5364 * value_or_null->value transition, since the verifier only cares about 5365 * the range of access to valid map value pointer and doesn't care about actual 5366 * address of the map element. 5367 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 5368 * reg->id > 0 after value_or_null->value transition. By doing so 5369 * two bpf_map_lookups will be considered two different pointers that 5370 * point to different bpf_spin_locks. 5371 * The verifier allows taking only one bpf_spin_lock at a time to avoid 5372 * dead-locks. 5373 * Since only one bpf_spin_lock is allowed the checks are simpler than 5374 * reg_is_refcounted() logic. The verifier needs to remember only 5375 * one spin_lock instead of array of acquired_refs. 5376 * cur_state->active_spin_lock remembers which map value element got locked 5377 * and clears it after bpf_spin_unlock. 5378 */ 5379 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 5380 bool is_lock) 5381 { 5382 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5383 struct bpf_verifier_state *cur = env->cur_state; 5384 bool is_const = tnum_is_const(reg->var_off); 5385 struct bpf_map *map = reg->map_ptr; 5386 u64 val = reg->var_off.value; 5387 5388 if (!is_const) { 5389 verbose(env, 5390 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 5391 regno); 5392 return -EINVAL; 5393 } 5394 if (!map->btf) { 5395 verbose(env, 5396 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 5397 map->name); 5398 return -EINVAL; 5399 } 5400 if (!map_value_has_spin_lock(map)) { 5401 if (map->spin_lock_off == -E2BIG) 5402 verbose(env, 5403 "map '%s' has more than one 'struct bpf_spin_lock'\n", 5404 map->name); 5405 else if (map->spin_lock_off == -ENOENT) 5406 verbose(env, 5407 "map '%s' doesn't have 'struct bpf_spin_lock'\n", 5408 map->name); 5409 else 5410 verbose(env, 5411 "map '%s' is not a struct type or bpf_spin_lock is mangled\n", 5412 map->name); 5413 return -EINVAL; 5414 } 5415 if (map->spin_lock_off != val + reg->off) { 5416 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n", 5417 val + reg->off); 5418 return -EINVAL; 5419 } 5420 if (is_lock) { 5421 if (cur->active_spin_lock) { 5422 verbose(env, 5423 "Locking two bpf_spin_locks are not allowed\n"); 5424 return -EINVAL; 5425 } 5426 cur->active_spin_lock = reg->id; 5427 } else { 5428 if (!cur->active_spin_lock) { 5429 verbose(env, "bpf_spin_unlock without taking a lock\n"); 5430 return -EINVAL; 5431 } 5432 if (cur->active_spin_lock != reg->id) { 5433 verbose(env, "bpf_spin_unlock of different lock\n"); 5434 return -EINVAL; 5435 } 5436 cur->active_spin_lock = 0; 5437 } 5438 return 0; 5439 } 5440 5441 static int process_timer_func(struct bpf_verifier_env *env, int regno, 5442 struct bpf_call_arg_meta *meta) 5443 { 5444 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5445 bool is_const = tnum_is_const(reg->var_off); 5446 struct bpf_map *map = reg->map_ptr; 5447 u64 val = reg->var_off.value; 5448 5449 if (!is_const) { 5450 verbose(env, 5451 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n", 5452 regno); 5453 return -EINVAL; 5454 } 5455 if (!map->btf) { 5456 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n", 5457 map->name); 5458 return -EINVAL; 5459 } 5460 if (!map_value_has_timer(map)) { 5461 if (map->timer_off == -E2BIG) 5462 verbose(env, 5463 "map '%s' has more than one 'struct bpf_timer'\n", 5464 map->name); 5465 else if (map->timer_off == -ENOENT) 5466 verbose(env, 5467 "map '%s' doesn't have 'struct bpf_timer'\n", 5468 map->name); 5469 else 5470 verbose(env, 5471 "map '%s' is not a struct type or bpf_timer is mangled\n", 5472 map->name); 5473 return -EINVAL; 5474 } 5475 if (map->timer_off != val + reg->off) { 5476 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n", 5477 val + reg->off, map->timer_off); 5478 return -EINVAL; 5479 } 5480 if (meta->map_ptr) { 5481 verbose(env, "verifier bug. Two map pointers in a timer helper\n"); 5482 return -EFAULT; 5483 } 5484 meta->map_uid = reg->map_uid; 5485 meta->map_ptr = map; 5486 return 0; 5487 } 5488 5489 static int process_kptr_func(struct bpf_verifier_env *env, int regno, 5490 struct bpf_call_arg_meta *meta) 5491 { 5492 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5493 struct bpf_map_value_off_desc *off_desc; 5494 struct bpf_map *map_ptr = reg->map_ptr; 5495 u32 kptr_off; 5496 int ret; 5497 5498 if (!tnum_is_const(reg->var_off)) { 5499 verbose(env, 5500 "R%d doesn't have constant offset. kptr has to be at the constant offset\n", 5501 regno); 5502 return -EINVAL; 5503 } 5504 if (!map_ptr->btf) { 5505 verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n", 5506 map_ptr->name); 5507 return -EINVAL; 5508 } 5509 if (!map_value_has_kptrs(map_ptr)) { 5510 ret = PTR_ERR_OR_ZERO(map_ptr->kptr_off_tab); 5511 if (ret == -E2BIG) 5512 verbose(env, "map '%s' has more than %d kptr\n", map_ptr->name, 5513 BPF_MAP_VALUE_OFF_MAX); 5514 else if (ret == -EEXIST) 5515 verbose(env, "map '%s' has repeating kptr BTF tags\n", map_ptr->name); 5516 else 5517 verbose(env, "map '%s' has no valid kptr\n", map_ptr->name); 5518 return -EINVAL; 5519 } 5520 5521 meta->map_ptr = map_ptr; 5522 kptr_off = reg->off + reg->var_off.value; 5523 off_desc = bpf_map_kptr_off_contains(map_ptr, kptr_off); 5524 if (!off_desc) { 5525 verbose(env, "off=%d doesn't point to kptr\n", kptr_off); 5526 return -EACCES; 5527 } 5528 if (off_desc->type != BPF_KPTR_REF) { 5529 verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off); 5530 return -EACCES; 5531 } 5532 meta->kptr_off_desc = off_desc; 5533 return 0; 5534 } 5535 5536 static bool arg_type_is_mem_size(enum bpf_arg_type type) 5537 { 5538 return type == ARG_CONST_SIZE || 5539 type == ARG_CONST_SIZE_OR_ZERO; 5540 } 5541 5542 static bool arg_type_is_release(enum bpf_arg_type type) 5543 { 5544 return type & OBJ_RELEASE; 5545 } 5546 5547 static bool arg_type_is_dynptr(enum bpf_arg_type type) 5548 { 5549 return base_type(type) == ARG_PTR_TO_DYNPTR; 5550 } 5551 5552 static int int_ptr_type_to_size(enum bpf_arg_type type) 5553 { 5554 if (type == ARG_PTR_TO_INT) 5555 return sizeof(u32); 5556 else if (type == ARG_PTR_TO_LONG) 5557 return sizeof(u64); 5558 5559 return -EINVAL; 5560 } 5561 5562 static int resolve_map_arg_type(struct bpf_verifier_env *env, 5563 const struct bpf_call_arg_meta *meta, 5564 enum bpf_arg_type *arg_type) 5565 { 5566 if (!meta->map_ptr) { 5567 /* kernel subsystem misconfigured verifier */ 5568 verbose(env, "invalid map_ptr to access map->type\n"); 5569 return -EACCES; 5570 } 5571 5572 switch (meta->map_ptr->map_type) { 5573 case BPF_MAP_TYPE_SOCKMAP: 5574 case BPF_MAP_TYPE_SOCKHASH: 5575 if (*arg_type == ARG_PTR_TO_MAP_VALUE) { 5576 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON; 5577 } else { 5578 verbose(env, "invalid arg_type for sockmap/sockhash\n"); 5579 return -EINVAL; 5580 } 5581 break; 5582 case BPF_MAP_TYPE_BLOOM_FILTER: 5583 if (meta->func_id == BPF_FUNC_map_peek_elem) 5584 *arg_type = ARG_PTR_TO_MAP_VALUE; 5585 break; 5586 default: 5587 break; 5588 } 5589 return 0; 5590 } 5591 5592 struct bpf_reg_types { 5593 const enum bpf_reg_type types[10]; 5594 u32 *btf_id; 5595 }; 5596 5597 static const struct bpf_reg_types map_key_value_types = { 5598 .types = { 5599 PTR_TO_STACK, 5600 PTR_TO_PACKET, 5601 PTR_TO_PACKET_META, 5602 PTR_TO_MAP_KEY, 5603 PTR_TO_MAP_VALUE, 5604 }, 5605 }; 5606 5607 static const struct bpf_reg_types sock_types = { 5608 .types = { 5609 PTR_TO_SOCK_COMMON, 5610 PTR_TO_SOCKET, 5611 PTR_TO_TCP_SOCK, 5612 PTR_TO_XDP_SOCK, 5613 }, 5614 }; 5615 5616 #ifdef CONFIG_NET 5617 static const struct bpf_reg_types btf_id_sock_common_types = { 5618 .types = { 5619 PTR_TO_SOCK_COMMON, 5620 PTR_TO_SOCKET, 5621 PTR_TO_TCP_SOCK, 5622 PTR_TO_XDP_SOCK, 5623 PTR_TO_BTF_ID, 5624 }, 5625 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 5626 }; 5627 #endif 5628 5629 static const struct bpf_reg_types mem_types = { 5630 .types = { 5631 PTR_TO_STACK, 5632 PTR_TO_PACKET, 5633 PTR_TO_PACKET_META, 5634 PTR_TO_MAP_KEY, 5635 PTR_TO_MAP_VALUE, 5636 PTR_TO_MEM, 5637 PTR_TO_MEM | MEM_ALLOC, 5638 PTR_TO_BUF, 5639 }, 5640 }; 5641 5642 static const struct bpf_reg_types int_ptr_types = { 5643 .types = { 5644 PTR_TO_STACK, 5645 PTR_TO_PACKET, 5646 PTR_TO_PACKET_META, 5647 PTR_TO_MAP_KEY, 5648 PTR_TO_MAP_VALUE, 5649 }, 5650 }; 5651 5652 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } }; 5653 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } }; 5654 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } }; 5655 static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM | MEM_ALLOC } }; 5656 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } }; 5657 static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } }; 5658 static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } }; 5659 static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_BTF_ID | MEM_PERCPU } }; 5660 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } }; 5661 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } }; 5662 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } }; 5663 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } }; 5664 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } }; 5665 5666 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = { 5667 [ARG_PTR_TO_MAP_KEY] = &map_key_value_types, 5668 [ARG_PTR_TO_MAP_VALUE] = &map_key_value_types, 5669 [ARG_CONST_SIZE] = &scalar_types, 5670 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types, 5671 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types, 5672 [ARG_CONST_MAP_PTR] = &const_map_ptr_types, 5673 [ARG_PTR_TO_CTX] = &context_types, 5674 [ARG_PTR_TO_SOCK_COMMON] = &sock_types, 5675 #ifdef CONFIG_NET 5676 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types, 5677 #endif 5678 [ARG_PTR_TO_SOCKET] = &fullsock_types, 5679 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types, 5680 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types, 5681 [ARG_PTR_TO_MEM] = &mem_types, 5682 [ARG_PTR_TO_ALLOC_MEM] = &alloc_mem_types, 5683 [ARG_PTR_TO_INT] = &int_ptr_types, 5684 [ARG_PTR_TO_LONG] = &int_ptr_types, 5685 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types, 5686 [ARG_PTR_TO_FUNC] = &func_ptr_types, 5687 [ARG_PTR_TO_STACK] = &stack_ptr_types, 5688 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types, 5689 [ARG_PTR_TO_TIMER] = &timer_types, 5690 [ARG_PTR_TO_KPTR] = &kptr_types, 5691 [ARG_PTR_TO_DYNPTR] = &stack_ptr_types, 5692 }; 5693 5694 static int check_reg_type(struct bpf_verifier_env *env, u32 regno, 5695 enum bpf_arg_type arg_type, 5696 const u32 *arg_btf_id, 5697 struct bpf_call_arg_meta *meta) 5698 { 5699 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5700 enum bpf_reg_type expected, type = reg->type; 5701 const struct bpf_reg_types *compatible; 5702 int i, j; 5703 5704 compatible = compatible_reg_types[base_type(arg_type)]; 5705 if (!compatible) { 5706 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type); 5707 return -EFAULT; 5708 } 5709 5710 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY, 5711 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY 5712 * 5713 * Same for MAYBE_NULL: 5714 * 5715 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL, 5716 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL 5717 * 5718 * Therefore we fold these flags depending on the arg_type before comparison. 5719 */ 5720 if (arg_type & MEM_RDONLY) 5721 type &= ~MEM_RDONLY; 5722 if (arg_type & PTR_MAYBE_NULL) 5723 type &= ~PTR_MAYBE_NULL; 5724 5725 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) { 5726 expected = compatible->types[i]; 5727 if (expected == NOT_INIT) 5728 break; 5729 5730 if (type == expected) 5731 goto found; 5732 } 5733 5734 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type)); 5735 for (j = 0; j + 1 < i; j++) 5736 verbose(env, "%s, ", reg_type_str(env, compatible->types[j])); 5737 verbose(env, "%s\n", reg_type_str(env, compatible->types[j])); 5738 return -EACCES; 5739 5740 found: 5741 if (reg->type == PTR_TO_BTF_ID) { 5742 /* For bpf_sk_release, it needs to match against first member 5743 * 'struct sock_common', hence make an exception for it. This 5744 * allows bpf_sk_release to work for multiple socket types. 5745 */ 5746 bool strict_type_match = arg_type_is_release(arg_type) && 5747 meta->func_id != BPF_FUNC_sk_release; 5748 5749 if (!arg_btf_id) { 5750 if (!compatible->btf_id) { 5751 verbose(env, "verifier internal error: missing arg compatible BTF ID\n"); 5752 return -EFAULT; 5753 } 5754 arg_btf_id = compatible->btf_id; 5755 } 5756 5757 if (meta->func_id == BPF_FUNC_kptr_xchg) { 5758 if (map_kptr_match_type(env, meta->kptr_off_desc, reg, regno)) 5759 return -EACCES; 5760 } else if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 5761 btf_vmlinux, *arg_btf_id, 5762 strict_type_match)) { 5763 verbose(env, "R%d is of type %s but %s is expected\n", 5764 regno, kernel_type_name(reg->btf, reg->btf_id), 5765 kernel_type_name(btf_vmlinux, *arg_btf_id)); 5766 return -EACCES; 5767 } 5768 } 5769 5770 return 0; 5771 } 5772 5773 int check_func_arg_reg_off(struct bpf_verifier_env *env, 5774 const struct bpf_reg_state *reg, int regno, 5775 enum bpf_arg_type arg_type) 5776 { 5777 enum bpf_reg_type type = reg->type; 5778 bool fixed_off_ok = false; 5779 5780 switch ((u32)type) { 5781 /* Pointer types where reg offset is explicitly allowed: */ 5782 case PTR_TO_STACK: 5783 if (arg_type_is_dynptr(arg_type) && reg->off % BPF_REG_SIZE) { 5784 verbose(env, "cannot pass in dynptr at an offset\n"); 5785 return -EINVAL; 5786 } 5787 fallthrough; 5788 case PTR_TO_PACKET: 5789 case PTR_TO_PACKET_META: 5790 case PTR_TO_MAP_KEY: 5791 case PTR_TO_MAP_VALUE: 5792 case PTR_TO_MEM: 5793 case PTR_TO_MEM | MEM_RDONLY: 5794 case PTR_TO_MEM | MEM_ALLOC: 5795 case PTR_TO_BUF: 5796 case PTR_TO_BUF | MEM_RDONLY: 5797 case SCALAR_VALUE: 5798 /* Some of the argument types nevertheless require a 5799 * zero register offset. 5800 */ 5801 if (base_type(arg_type) != ARG_PTR_TO_ALLOC_MEM) 5802 return 0; 5803 break; 5804 /* All the rest must be rejected, except PTR_TO_BTF_ID which allows 5805 * fixed offset. 5806 */ 5807 case PTR_TO_BTF_ID: 5808 /* When referenced PTR_TO_BTF_ID is passed to release function, 5809 * it's fixed offset must be 0. In the other cases, fixed offset 5810 * can be non-zero. 5811 */ 5812 if (arg_type_is_release(arg_type) && reg->off) { 5813 verbose(env, "R%d must have zero offset when passed to release func\n", 5814 regno); 5815 return -EINVAL; 5816 } 5817 /* For arg is release pointer, fixed_off_ok must be false, but 5818 * we already checked and rejected reg->off != 0 above, so set 5819 * to true to allow fixed offset for all other cases. 5820 */ 5821 fixed_off_ok = true; 5822 break; 5823 default: 5824 break; 5825 } 5826 return __check_ptr_off_reg(env, reg, regno, fixed_off_ok); 5827 } 5828 5829 static u32 stack_slot_get_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 5830 { 5831 struct bpf_func_state *state = func(env, reg); 5832 int spi = get_spi(reg->off); 5833 5834 return state->stack[spi].spilled_ptr.id; 5835 } 5836 5837 static int check_func_arg(struct bpf_verifier_env *env, u32 arg, 5838 struct bpf_call_arg_meta *meta, 5839 const struct bpf_func_proto *fn) 5840 { 5841 u32 regno = BPF_REG_1 + arg; 5842 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5843 enum bpf_arg_type arg_type = fn->arg_type[arg]; 5844 enum bpf_reg_type type = reg->type; 5845 u32 *arg_btf_id = NULL; 5846 int err = 0; 5847 5848 if (arg_type == ARG_DONTCARE) 5849 return 0; 5850 5851 err = check_reg_arg(env, regno, SRC_OP); 5852 if (err) 5853 return err; 5854 5855 if (arg_type == ARG_ANYTHING) { 5856 if (is_pointer_value(env, regno)) { 5857 verbose(env, "R%d leaks addr into helper function\n", 5858 regno); 5859 return -EACCES; 5860 } 5861 return 0; 5862 } 5863 5864 if (type_is_pkt_pointer(type) && 5865 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 5866 verbose(env, "helper access to the packet is not allowed\n"); 5867 return -EACCES; 5868 } 5869 5870 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) { 5871 err = resolve_map_arg_type(env, meta, &arg_type); 5872 if (err) 5873 return err; 5874 } 5875 5876 if (register_is_null(reg) && type_may_be_null(arg_type)) 5877 /* A NULL register has a SCALAR_VALUE type, so skip 5878 * type checking. 5879 */ 5880 goto skip_type_check; 5881 5882 /* arg_btf_id and arg_size are in a union. */ 5883 if (base_type(arg_type) == ARG_PTR_TO_BTF_ID) 5884 arg_btf_id = fn->arg_btf_id[arg]; 5885 5886 err = check_reg_type(env, regno, arg_type, arg_btf_id, meta); 5887 if (err) 5888 return err; 5889 5890 err = check_func_arg_reg_off(env, reg, regno, arg_type); 5891 if (err) 5892 return err; 5893 5894 skip_type_check: 5895 if (arg_type_is_release(arg_type)) { 5896 if (arg_type_is_dynptr(arg_type)) { 5897 struct bpf_func_state *state = func(env, reg); 5898 int spi = get_spi(reg->off); 5899 5900 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS) || 5901 !state->stack[spi].spilled_ptr.id) { 5902 verbose(env, "arg %d is an unacquired reference\n", regno); 5903 return -EINVAL; 5904 } 5905 } else if (!reg->ref_obj_id && !register_is_null(reg)) { 5906 verbose(env, "R%d must be referenced when passed to release function\n", 5907 regno); 5908 return -EINVAL; 5909 } 5910 if (meta->release_regno) { 5911 verbose(env, "verifier internal error: more than one release argument\n"); 5912 return -EFAULT; 5913 } 5914 meta->release_regno = regno; 5915 } 5916 5917 if (reg->ref_obj_id) { 5918 if (meta->ref_obj_id) { 5919 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 5920 regno, reg->ref_obj_id, 5921 meta->ref_obj_id); 5922 return -EFAULT; 5923 } 5924 meta->ref_obj_id = reg->ref_obj_id; 5925 } 5926 5927 switch (base_type(arg_type)) { 5928 case ARG_CONST_MAP_PTR: 5929 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 5930 if (meta->map_ptr) { 5931 /* Use map_uid (which is unique id of inner map) to reject: 5932 * inner_map1 = bpf_map_lookup_elem(outer_map, key1) 5933 * inner_map2 = bpf_map_lookup_elem(outer_map, key2) 5934 * if (inner_map1 && inner_map2) { 5935 * timer = bpf_map_lookup_elem(inner_map1); 5936 * if (timer) 5937 * // mismatch would have been allowed 5938 * bpf_timer_init(timer, inner_map2); 5939 * } 5940 * 5941 * Comparing map_ptr is enough to distinguish normal and outer maps. 5942 */ 5943 if (meta->map_ptr != reg->map_ptr || 5944 meta->map_uid != reg->map_uid) { 5945 verbose(env, 5946 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", 5947 meta->map_uid, reg->map_uid); 5948 return -EINVAL; 5949 } 5950 } 5951 meta->map_ptr = reg->map_ptr; 5952 meta->map_uid = reg->map_uid; 5953 break; 5954 case ARG_PTR_TO_MAP_KEY: 5955 /* bpf_map_xxx(..., map_ptr, ..., key) call: 5956 * check that [key, key + map->key_size) are within 5957 * stack limits and initialized 5958 */ 5959 if (!meta->map_ptr) { 5960 /* in function declaration map_ptr must come before 5961 * map_key, so that it's verified and known before 5962 * we have to check map_key here. Otherwise it means 5963 * that kernel subsystem misconfigured verifier 5964 */ 5965 verbose(env, "invalid map_ptr to access map->key\n"); 5966 return -EACCES; 5967 } 5968 err = check_helper_mem_access(env, regno, 5969 meta->map_ptr->key_size, false, 5970 NULL); 5971 break; 5972 case ARG_PTR_TO_MAP_VALUE: 5973 if (type_may_be_null(arg_type) && register_is_null(reg)) 5974 return 0; 5975 5976 /* bpf_map_xxx(..., map_ptr, ..., value) call: 5977 * check [value, value + map->value_size) validity 5978 */ 5979 if (!meta->map_ptr) { 5980 /* kernel subsystem misconfigured verifier */ 5981 verbose(env, "invalid map_ptr to access map->value\n"); 5982 return -EACCES; 5983 } 5984 meta->raw_mode = arg_type & MEM_UNINIT; 5985 err = check_helper_mem_access(env, regno, 5986 meta->map_ptr->value_size, false, 5987 meta); 5988 break; 5989 case ARG_PTR_TO_PERCPU_BTF_ID: 5990 if (!reg->btf_id) { 5991 verbose(env, "Helper has invalid btf_id in R%d\n", regno); 5992 return -EACCES; 5993 } 5994 meta->ret_btf = reg->btf; 5995 meta->ret_btf_id = reg->btf_id; 5996 break; 5997 case ARG_PTR_TO_SPIN_LOCK: 5998 if (meta->func_id == BPF_FUNC_spin_lock) { 5999 if (process_spin_lock(env, regno, true)) 6000 return -EACCES; 6001 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 6002 if (process_spin_lock(env, regno, false)) 6003 return -EACCES; 6004 } else { 6005 verbose(env, "verifier internal error\n"); 6006 return -EFAULT; 6007 } 6008 break; 6009 case ARG_PTR_TO_TIMER: 6010 if (process_timer_func(env, regno, meta)) 6011 return -EACCES; 6012 break; 6013 case ARG_PTR_TO_FUNC: 6014 meta->subprogno = reg->subprogno; 6015 break; 6016 case ARG_PTR_TO_MEM: 6017 /* The access to this pointer is only checked when we hit the 6018 * next is_mem_size argument below. 6019 */ 6020 meta->raw_mode = arg_type & MEM_UNINIT; 6021 if (arg_type & MEM_FIXED_SIZE) { 6022 err = check_helper_mem_access(env, regno, 6023 fn->arg_size[arg], false, 6024 meta); 6025 } 6026 break; 6027 case ARG_CONST_SIZE: 6028 err = check_mem_size_reg(env, reg, regno, false, meta); 6029 break; 6030 case ARG_CONST_SIZE_OR_ZERO: 6031 err = check_mem_size_reg(env, reg, regno, true, meta); 6032 break; 6033 case ARG_PTR_TO_DYNPTR: 6034 if (arg_type & MEM_UNINIT) { 6035 if (!is_dynptr_reg_valid_uninit(env, reg)) { 6036 verbose(env, "Dynptr has to be an uninitialized dynptr\n"); 6037 return -EINVAL; 6038 } 6039 6040 /* We only support one dynptr being uninitialized at the moment, 6041 * which is sufficient for the helper functions we have right now. 6042 */ 6043 if (meta->uninit_dynptr_regno) { 6044 verbose(env, "verifier internal error: multiple uninitialized dynptr args\n"); 6045 return -EFAULT; 6046 } 6047 6048 meta->uninit_dynptr_regno = regno; 6049 } else if (!is_dynptr_reg_valid_init(env, reg, arg_type)) { 6050 const char *err_extra = ""; 6051 6052 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) { 6053 case DYNPTR_TYPE_LOCAL: 6054 err_extra = "local "; 6055 break; 6056 case DYNPTR_TYPE_RINGBUF: 6057 err_extra = "ringbuf "; 6058 break; 6059 default: 6060 break; 6061 } 6062 6063 verbose(env, "Expected an initialized %sdynptr as arg #%d\n", 6064 err_extra, arg + 1); 6065 return -EINVAL; 6066 } 6067 break; 6068 case ARG_CONST_ALLOC_SIZE_OR_ZERO: 6069 if (!tnum_is_const(reg->var_off)) { 6070 verbose(env, "R%d is not a known constant'\n", 6071 regno); 6072 return -EACCES; 6073 } 6074 meta->mem_size = reg->var_off.value; 6075 err = mark_chain_precision(env, regno); 6076 if (err) 6077 return err; 6078 break; 6079 case ARG_PTR_TO_INT: 6080 case ARG_PTR_TO_LONG: 6081 { 6082 int size = int_ptr_type_to_size(arg_type); 6083 6084 err = check_helper_mem_access(env, regno, size, false, meta); 6085 if (err) 6086 return err; 6087 err = check_ptr_alignment(env, reg, 0, size, true); 6088 break; 6089 } 6090 case ARG_PTR_TO_CONST_STR: 6091 { 6092 struct bpf_map *map = reg->map_ptr; 6093 int map_off; 6094 u64 map_addr; 6095 char *str_ptr; 6096 6097 if (!bpf_map_is_rdonly(map)) { 6098 verbose(env, "R%d does not point to a readonly map'\n", regno); 6099 return -EACCES; 6100 } 6101 6102 if (!tnum_is_const(reg->var_off)) { 6103 verbose(env, "R%d is not a constant address'\n", regno); 6104 return -EACCES; 6105 } 6106 6107 if (!map->ops->map_direct_value_addr) { 6108 verbose(env, "no direct value access support for this map type\n"); 6109 return -EACCES; 6110 } 6111 6112 err = check_map_access(env, regno, reg->off, 6113 map->value_size - reg->off, false, 6114 ACCESS_HELPER); 6115 if (err) 6116 return err; 6117 6118 map_off = reg->off + reg->var_off.value; 6119 err = map->ops->map_direct_value_addr(map, &map_addr, map_off); 6120 if (err) { 6121 verbose(env, "direct value access on string failed\n"); 6122 return err; 6123 } 6124 6125 str_ptr = (char *)(long)(map_addr); 6126 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) { 6127 verbose(env, "string is not zero-terminated\n"); 6128 return -EINVAL; 6129 } 6130 break; 6131 } 6132 case ARG_PTR_TO_KPTR: 6133 if (process_kptr_func(env, regno, meta)) 6134 return -EACCES; 6135 break; 6136 } 6137 6138 return err; 6139 } 6140 6141 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id) 6142 { 6143 enum bpf_attach_type eatype = env->prog->expected_attach_type; 6144 enum bpf_prog_type type = resolve_prog_type(env->prog); 6145 6146 if (func_id != BPF_FUNC_map_update_elem) 6147 return false; 6148 6149 /* It's not possible to get access to a locked struct sock in these 6150 * contexts, so updating is safe. 6151 */ 6152 switch (type) { 6153 case BPF_PROG_TYPE_TRACING: 6154 if (eatype == BPF_TRACE_ITER) 6155 return true; 6156 break; 6157 case BPF_PROG_TYPE_SOCKET_FILTER: 6158 case BPF_PROG_TYPE_SCHED_CLS: 6159 case BPF_PROG_TYPE_SCHED_ACT: 6160 case BPF_PROG_TYPE_XDP: 6161 case BPF_PROG_TYPE_SK_REUSEPORT: 6162 case BPF_PROG_TYPE_FLOW_DISSECTOR: 6163 case BPF_PROG_TYPE_SK_LOOKUP: 6164 return true; 6165 default: 6166 break; 6167 } 6168 6169 verbose(env, "cannot update sockmap in this context\n"); 6170 return false; 6171 } 6172 6173 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env) 6174 { 6175 return env->prog->jit_requested && 6176 bpf_jit_supports_subprog_tailcalls(); 6177 } 6178 6179 static int check_map_func_compatibility(struct bpf_verifier_env *env, 6180 struct bpf_map *map, int func_id) 6181 { 6182 if (!map) 6183 return 0; 6184 6185 /* We need a two way check, first is from map perspective ... */ 6186 switch (map->map_type) { 6187 case BPF_MAP_TYPE_PROG_ARRAY: 6188 if (func_id != BPF_FUNC_tail_call) 6189 goto error; 6190 break; 6191 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 6192 if (func_id != BPF_FUNC_perf_event_read && 6193 func_id != BPF_FUNC_perf_event_output && 6194 func_id != BPF_FUNC_skb_output && 6195 func_id != BPF_FUNC_perf_event_read_value && 6196 func_id != BPF_FUNC_xdp_output) 6197 goto error; 6198 break; 6199 case BPF_MAP_TYPE_RINGBUF: 6200 if (func_id != BPF_FUNC_ringbuf_output && 6201 func_id != BPF_FUNC_ringbuf_reserve && 6202 func_id != BPF_FUNC_ringbuf_query && 6203 func_id != BPF_FUNC_ringbuf_reserve_dynptr && 6204 func_id != BPF_FUNC_ringbuf_submit_dynptr && 6205 func_id != BPF_FUNC_ringbuf_discard_dynptr) 6206 goto error; 6207 break; 6208 case BPF_MAP_TYPE_STACK_TRACE: 6209 if (func_id != BPF_FUNC_get_stackid) 6210 goto error; 6211 break; 6212 case BPF_MAP_TYPE_CGROUP_ARRAY: 6213 if (func_id != BPF_FUNC_skb_under_cgroup && 6214 func_id != BPF_FUNC_current_task_under_cgroup) 6215 goto error; 6216 break; 6217 case BPF_MAP_TYPE_CGROUP_STORAGE: 6218 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 6219 if (func_id != BPF_FUNC_get_local_storage) 6220 goto error; 6221 break; 6222 case BPF_MAP_TYPE_DEVMAP: 6223 case BPF_MAP_TYPE_DEVMAP_HASH: 6224 if (func_id != BPF_FUNC_redirect_map && 6225 func_id != BPF_FUNC_map_lookup_elem) 6226 goto error; 6227 break; 6228 /* Restrict bpf side of cpumap and xskmap, open when use-cases 6229 * appear. 6230 */ 6231 case BPF_MAP_TYPE_CPUMAP: 6232 if (func_id != BPF_FUNC_redirect_map) 6233 goto error; 6234 break; 6235 case BPF_MAP_TYPE_XSKMAP: 6236 if (func_id != BPF_FUNC_redirect_map && 6237 func_id != BPF_FUNC_map_lookup_elem) 6238 goto error; 6239 break; 6240 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 6241 case BPF_MAP_TYPE_HASH_OF_MAPS: 6242 if (func_id != BPF_FUNC_map_lookup_elem) 6243 goto error; 6244 break; 6245 case BPF_MAP_TYPE_SOCKMAP: 6246 if (func_id != BPF_FUNC_sk_redirect_map && 6247 func_id != BPF_FUNC_sock_map_update && 6248 func_id != BPF_FUNC_map_delete_elem && 6249 func_id != BPF_FUNC_msg_redirect_map && 6250 func_id != BPF_FUNC_sk_select_reuseport && 6251 func_id != BPF_FUNC_map_lookup_elem && 6252 !may_update_sockmap(env, func_id)) 6253 goto error; 6254 break; 6255 case BPF_MAP_TYPE_SOCKHASH: 6256 if (func_id != BPF_FUNC_sk_redirect_hash && 6257 func_id != BPF_FUNC_sock_hash_update && 6258 func_id != BPF_FUNC_map_delete_elem && 6259 func_id != BPF_FUNC_msg_redirect_hash && 6260 func_id != BPF_FUNC_sk_select_reuseport && 6261 func_id != BPF_FUNC_map_lookup_elem && 6262 !may_update_sockmap(env, func_id)) 6263 goto error; 6264 break; 6265 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 6266 if (func_id != BPF_FUNC_sk_select_reuseport) 6267 goto error; 6268 break; 6269 case BPF_MAP_TYPE_QUEUE: 6270 case BPF_MAP_TYPE_STACK: 6271 if (func_id != BPF_FUNC_map_peek_elem && 6272 func_id != BPF_FUNC_map_pop_elem && 6273 func_id != BPF_FUNC_map_push_elem) 6274 goto error; 6275 break; 6276 case BPF_MAP_TYPE_SK_STORAGE: 6277 if (func_id != BPF_FUNC_sk_storage_get && 6278 func_id != BPF_FUNC_sk_storage_delete) 6279 goto error; 6280 break; 6281 case BPF_MAP_TYPE_INODE_STORAGE: 6282 if (func_id != BPF_FUNC_inode_storage_get && 6283 func_id != BPF_FUNC_inode_storage_delete) 6284 goto error; 6285 break; 6286 case BPF_MAP_TYPE_TASK_STORAGE: 6287 if (func_id != BPF_FUNC_task_storage_get && 6288 func_id != BPF_FUNC_task_storage_delete) 6289 goto error; 6290 break; 6291 case BPF_MAP_TYPE_BLOOM_FILTER: 6292 if (func_id != BPF_FUNC_map_peek_elem && 6293 func_id != BPF_FUNC_map_push_elem) 6294 goto error; 6295 break; 6296 default: 6297 break; 6298 } 6299 6300 /* ... and second from the function itself. */ 6301 switch (func_id) { 6302 case BPF_FUNC_tail_call: 6303 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 6304 goto error; 6305 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) { 6306 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 6307 return -EINVAL; 6308 } 6309 break; 6310 case BPF_FUNC_perf_event_read: 6311 case BPF_FUNC_perf_event_output: 6312 case BPF_FUNC_perf_event_read_value: 6313 case BPF_FUNC_skb_output: 6314 case BPF_FUNC_xdp_output: 6315 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 6316 goto error; 6317 break; 6318 case BPF_FUNC_ringbuf_output: 6319 case BPF_FUNC_ringbuf_reserve: 6320 case BPF_FUNC_ringbuf_query: 6321 case BPF_FUNC_ringbuf_reserve_dynptr: 6322 case BPF_FUNC_ringbuf_submit_dynptr: 6323 case BPF_FUNC_ringbuf_discard_dynptr: 6324 if (map->map_type != BPF_MAP_TYPE_RINGBUF) 6325 goto error; 6326 break; 6327 case BPF_FUNC_get_stackid: 6328 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 6329 goto error; 6330 break; 6331 case BPF_FUNC_current_task_under_cgroup: 6332 case BPF_FUNC_skb_under_cgroup: 6333 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 6334 goto error; 6335 break; 6336 case BPF_FUNC_redirect_map: 6337 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 6338 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 6339 map->map_type != BPF_MAP_TYPE_CPUMAP && 6340 map->map_type != BPF_MAP_TYPE_XSKMAP) 6341 goto error; 6342 break; 6343 case BPF_FUNC_sk_redirect_map: 6344 case BPF_FUNC_msg_redirect_map: 6345 case BPF_FUNC_sock_map_update: 6346 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 6347 goto error; 6348 break; 6349 case BPF_FUNC_sk_redirect_hash: 6350 case BPF_FUNC_msg_redirect_hash: 6351 case BPF_FUNC_sock_hash_update: 6352 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 6353 goto error; 6354 break; 6355 case BPF_FUNC_get_local_storage: 6356 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 6357 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 6358 goto error; 6359 break; 6360 case BPF_FUNC_sk_select_reuseport: 6361 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 6362 map->map_type != BPF_MAP_TYPE_SOCKMAP && 6363 map->map_type != BPF_MAP_TYPE_SOCKHASH) 6364 goto error; 6365 break; 6366 case BPF_FUNC_map_pop_elem: 6367 if (map->map_type != BPF_MAP_TYPE_QUEUE && 6368 map->map_type != BPF_MAP_TYPE_STACK) 6369 goto error; 6370 break; 6371 case BPF_FUNC_map_peek_elem: 6372 case BPF_FUNC_map_push_elem: 6373 if (map->map_type != BPF_MAP_TYPE_QUEUE && 6374 map->map_type != BPF_MAP_TYPE_STACK && 6375 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER) 6376 goto error; 6377 break; 6378 case BPF_FUNC_map_lookup_percpu_elem: 6379 if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY && 6380 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 6381 map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH) 6382 goto error; 6383 break; 6384 case BPF_FUNC_sk_storage_get: 6385 case BPF_FUNC_sk_storage_delete: 6386 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 6387 goto error; 6388 break; 6389 case BPF_FUNC_inode_storage_get: 6390 case BPF_FUNC_inode_storage_delete: 6391 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE) 6392 goto error; 6393 break; 6394 case BPF_FUNC_task_storage_get: 6395 case BPF_FUNC_task_storage_delete: 6396 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE) 6397 goto error; 6398 break; 6399 default: 6400 break; 6401 } 6402 6403 return 0; 6404 error: 6405 verbose(env, "cannot pass map_type %d into func %s#%d\n", 6406 map->map_type, func_id_name(func_id), func_id); 6407 return -EINVAL; 6408 } 6409 6410 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 6411 { 6412 int count = 0; 6413 6414 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 6415 count++; 6416 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 6417 count++; 6418 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 6419 count++; 6420 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 6421 count++; 6422 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 6423 count++; 6424 6425 /* We only support one arg being in raw mode at the moment, 6426 * which is sufficient for the helper functions we have 6427 * right now. 6428 */ 6429 return count <= 1; 6430 } 6431 6432 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg) 6433 { 6434 bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE; 6435 bool has_size = fn->arg_size[arg] != 0; 6436 bool is_next_size = false; 6437 6438 if (arg + 1 < ARRAY_SIZE(fn->arg_type)) 6439 is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]); 6440 6441 if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM) 6442 return is_next_size; 6443 6444 return has_size == is_next_size || is_next_size == is_fixed; 6445 } 6446 6447 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 6448 { 6449 /* bpf_xxx(..., buf, len) call will access 'len' 6450 * bytes from memory 'buf'. Both arg types need 6451 * to be paired, so make sure there's no buggy 6452 * helper function specification. 6453 */ 6454 if (arg_type_is_mem_size(fn->arg1_type) || 6455 check_args_pair_invalid(fn, 0) || 6456 check_args_pair_invalid(fn, 1) || 6457 check_args_pair_invalid(fn, 2) || 6458 check_args_pair_invalid(fn, 3) || 6459 check_args_pair_invalid(fn, 4)) 6460 return false; 6461 6462 return true; 6463 } 6464 6465 static bool check_btf_id_ok(const struct bpf_func_proto *fn) 6466 { 6467 int i; 6468 6469 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) { 6470 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i]) 6471 return false; 6472 6473 if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] && 6474 /* arg_btf_id and arg_size are in a union. */ 6475 (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM || 6476 !(fn->arg_type[i] & MEM_FIXED_SIZE))) 6477 return false; 6478 } 6479 6480 return true; 6481 } 6482 6483 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 6484 { 6485 return check_raw_mode_ok(fn) && 6486 check_arg_pair_ok(fn) && 6487 check_btf_id_ok(fn) ? 0 : -EINVAL; 6488 } 6489 6490 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 6491 * are now invalid, so turn them into unknown SCALAR_VALUE. 6492 */ 6493 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env, 6494 struct bpf_func_state *state) 6495 { 6496 struct bpf_reg_state *regs = state->regs, *reg; 6497 int i; 6498 6499 for (i = 0; i < MAX_BPF_REG; i++) 6500 if (reg_is_pkt_pointer_any(®s[i])) 6501 mark_reg_unknown(env, regs, i); 6502 6503 bpf_for_each_spilled_reg(i, state, reg) { 6504 if (!reg) 6505 continue; 6506 if (reg_is_pkt_pointer_any(reg)) 6507 __mark_reg_unknown(env, reg); 6508 } 6509 } 6510 6511 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 6512 { 6513 struct bpf_verifier_state *vstate = env->cur_state; 6514 int i; 6515 6516 for (i = 0; i <= vstate->curframe; i++) 6517 __clear_all_pkt_pointers(env, vstate->frame[i]); 6518 } 6519 6520 enum { 6521 AT_PKT_END = -1, 6522 BEYOND_PKT_END = -2, 6523 }; 6524 6525 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open) 6526 { 6527 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 6528 struct bpf_reg_state *reg = &state->regs[regn]; 6529 6530 if (reg->type != PTR_TO_PACKET) 6531 /* PTR_TO_PACKET_META is not supported yet */ 6532 return; 6533 6534 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end. 6535 * How far beyond pkt_end it goes is unknown. 6536 * if (!range_open) it's the case of pkt >= pkt_end 6537 * if (range_open) it's the case of pkt > pkt_end 6538 * hence this pointer is at least 1 byte bigger than pkt_end 6539 */ 6540 if (range_open) 6541 reg->range = BEYOND_PKT_END; 6542 else 6543 reg->range = AT_PKT_END; 6544 } 6545 6546 static void release_reg_references(struct bpf_verifier_env *env, 6547 struct bpf_func_state *state, 6548 int ref_obj_id) 6549 { 6550 struct bpf_reg_state *regs = state->regs, *reg; 6551 int i; 6552 6553 for (i = 0; i < MAX_BPF_REG; i++) 6554 if (regs[i].ref_obj_id == ref_obj_id) 6555 mark_reg_unknown(env, regs, i); 6556 6557 bpf_for_each_spilled_reg(i, state, reg) { 6558 if (!reg) 6559 continue; 6560 if (reg->ref_obj_id == ref_obj_id) 6561 __mark_reg_unknown(env, reg); 6562 } 6563 } 6564 6565 /* The pointer with the specified id has released its reference to kernel 6566 * resources. Identify all copies of the same pointer and clear the reference. 6567 */ 6568 static int release_reference(struct bpf_verifier_env *env, 6569 int ref_obj_id) 6570 { 6571 struct bpf_verifier_state *vstate = env->cur_state; 6572 int err; 6573 int i; 6574 6575 err = release_reference_state(cur_func(env), ref_obj_id); 6576 if (err) 6577 return err; 6578 6579 for (i = 0; i <= vstate->curframe; i++) 6580 release_reg_references(env, vstate->frame[i], ref_obj_id); 6581 6582 return 0; 6583 } 6584 6585 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 6586 struct bpf_reg_state *regs) 6587 { 6588 int i; 6589 6590 /* after the call registers r0 - r5 were scratched */ 6591 for (i = 0; i < CALLER_SAVED_REGS; i++) { 6592 mark_reg_not_init(env, regs, caller_saved[i]); 6593 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 6594 } 6595 } 6596 6597 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env, 6598 struct bpf_func_state *caller, 6599 struct bpf_func_state *callee, 6600 int insn_idx); 6601 6602 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 6603 int *insn_idx, int subprog, 6604 set_callee_state_fn set_callee_state_cb) 6605 { 6606 struct bpf_verifier_state *state = env->cur_state; 6607 struct bpf_func_info_aux *func_info_aux; 6608 struct bpf_func_state *caller, *callee; 6609 int err; 6610 bool is_global = false; 6611 6612 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 6613 verbose(env, "the call stack of %d frames is too deep\n", 6614 state->curframe + 2); 6615 return -E2BIG; 6616 } 6617 6618 caller = state->frame[state->curframe]; 6619 if (state->frame[state->curframe + 1]) { 6620 verbose(env, "verifier bug. Frame %d already allocated\n", 6621 state->curframe + 1); 6622 return -EFAULT; 6623 } 6624 6625 func_info_aux = env->prog->aux->func_info_aux; 6626 if (func_info_aux) 6627 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL; 6628 err = btf_check_subprog_arg_match(env, subprog, caller->regs); 6629 if (err == -EFAULT) 6630 return err; 6631 if (is_global) { 6632 if (err) { 6633 verbose(env, "Caller passes invalid args into func#%d\n", 6634 subprog); 6635 return err; 6636 } else { 6637 if (env->log.level & BPF_LOG_LEVEL) 6638 verbose(env, 6639 "Func#%d is global and valid. Skipping.\n", 6640 subprog); 6641 clear_caller_saved_regs(env, caller->regs); 6642 6643 /* All global functions return a 64-bit SCALAR_VALUE */ 6644 mark_reg_unknown(env, caller->regs, BPF_REG_0); 6645 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 6646 6647 /* continue with next insn after call */ 6648 return 0; 6649 } 6650 } 6651 6652 if (insn->code == (BPF_JMP | BPF_CALL) && 6653 insn->src_reg == 0 && 6654 insn->imm == BPF_FUNC_timer_set_callback) { 6655 struct bpf_verifier_state *async_cb; 6656 6657 /* there is no real recursion here. timer callbacks are async */ 6658 env->subprog_info[subprog].is_async_cb = true; 6659 async_cb = push_async_cb(env, env->subprog_info[subprog].start, 6660 *insn_idx, subprog); 6661 if (!async_cb) 6662 return -EFAULT; 6663 callee = async_cb->frame[0]; 6664 callee->async_entry_cnt = caller->async_entry_cnt + 1; 6665 6666 /* Convert bpf_timer_set_callback() args into timer callback args */ 6667 err = set_callee_state_cb(env, caller, callee, *insn_idx); 6668 if (err) 6669 return err; 6670 6671 clear_caller_saved_regs(env, caller->regs); 6672 mark_reg_unknown(env, caller->regs, BPF_REG_0); 6673 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 6674 /* continue with next insn after call */ 6675 return 0; 6676 } 6677 6678 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 6679 if (!callee) 6680 return -ENOMEM; 6681 state->frame[state->curframe + 1] = callee; 6682 6683 /* callee cannot access r0, r6 - r9 for reading and has to write 6684 * into its own stack before reading from it. 6685 * callee can read/write into caller's stack 6686 */ 6687 init_func_state(env, callee, 6688 /* remember the callsite, it will be used by bpf_exit */ 6689 *insn_idx /* callsite */, 6690 state->curframe + 1 /* frameno within this callchain */, 6691 subprog /* subprog number within this prog */); 6692 6693 /* Transfer references to the callee */ 6694 err = copy_reference_state(callee, caller); 6695 if (err) 6696 return err; 6697 6698 err = set_callee_state_cb(env, caller, callee, *insn_idx); 6699 if (err) 6700 return err; 6701 6702 clear_caller_saved_regs(env, caller->regs); 6703 6704 /* only increment it after check_reg_arg() finished */ 6705 state->curframe++; 6706 6707 /* and go analyze first insn of the callee */ 6708 *insn_idx = env->subprog_info[subprog].start - 1; 6709 6710 if (env->log.level & BPF_LOG_LEVEL) { 6711 verbose(env, "caller:\n"); 6712 print_verifier_state(env, caller, true); 6713 verbose(env, "callee:\n"); 6714 print_verifier_state(env, callee, true); 6715 } 6716 return 0; 6717 } 6718 6719 int map_set_for_each_callback_args(struct bpf_verifier_env *env, 6720 struct bpf_func_state *caller, 6721 struct bpf_func_state *callee) 6722 { 6723 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn, 6724 * void *callback_ctx, u64 flags); 6725 * callback_fn(struct bpf_map *map, void *key, void *value, 6726 * void *callback_ctx); 6727 */ 6728 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 6729 6730 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 6731 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 6732 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr; 6733 6734 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 6735 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 6736 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr; 6737 6738 /* pointer to stack or null */ 6739 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3]; 6740 6741 /* unused */ 6742 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 6743 return 0; 6744 } 6745 6746 static int set_callee_state(struct bpf_verifier_env *env, 6747 struct bpf_func_state *caller, 6748 struct bpf_func_state *callee, int insn_idx) 6749 { 6750 int i; 6751 6752 /* copy r1 - r5 args that callee can access. The copy includes parent 6753 * pointers, which connects us up to the liveness chain 6754 */ 6755 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 6756 callee->regs[i] = caller->regs[i]; 6757 return 0; 6758 } 6759 6760 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 6761 int *insn_idx) 6762 { 6763 int subprog, target_insn; 6764 6765 target_insn = *insn_idx + insn->imm + 1; 6766 subprog = find_subprog(env, target_insn); 6767 if (subprog < 0) { 6768 verbose(env, "verifier bug. No program starts at insn %d\n", 6769 target_insn); 6770 return -EFAULT; 6771 } 6772 6773 return __check_func_call(env, insn, insn_idx, subprog, set_callee_state); 6774 } 6775 6776 static int set_map_elem_callback_state(struct bpf_verifier_env *env, 6777 struct bpf_func_state *caller, 6778 struct bpf_func_state *callee, 6779 int insn_idx) 6780 { 6781 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx]; 6782 struct bpf_map *map; 6783 int err; 6784 6785 if (bpf_map_ptr_poisoned(insn_aux)) { 6786 verbose(env, "tail_call abusing map_ptr\n"); 6787 return -EINVAL; 6788 } 6789 6790 map = BPF_MAP_PTR(insn_aux->map_ptr_state); 6791 if (!map->ops->map_set_for_each_callback_args || 6792 !map->ops->map_for_each_callback) { 6793 verbose(env, "callback function not allowed for map\n"); 6794 return -ENOTSUPP; 6795 } 6796 6797 err = map->ops->map_set_for_each_callback_args(env, caller, callee); 6798 if (err) 6799 return err; 6800 6801 callee->in_callback_fn = true; 6802 return 0; 6803 } 6804 6805 static int set_loop_callback_state(struct bpf_verifier_env *env, 6806 struct bpf_func_state *caller, 6807 struct bpf_func_state *callee, 6808 int insn_idx) 6809 { 6810 /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx, 6811 * u64 flags); 6812 * callback_fn(u32 index, void *callback_ctx); 6813 */ 6814 callee->regs[BPF_REG_1].type = SCALAR_VALUE; 6815 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 6816 6817 /* unused */ 6818 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 6819 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 6820 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 6821 6822 callee->in_callback_fn = true; 6823 return 0; 6824 } 6825 6826 static int set_timer_callback_state(struct bpf_verifier_env *env, 6827 struct bpf_func_state *caller, 6828 struct bpf_func_state *callee, 6829 int insn_idx) 6830 { 6831 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr; 6832 6833 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn); 6834 * callback_fn(struct bpf_map *map, void *key, void *value); 6835 */ 6836 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP; 6837 __mark_reg_known_zero(&callee->regs[BPF_REG_1]); 6838 callee->regs[BPF_REG_1].map_ptr = map_ptr; 6839 6840 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 6841 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 6842 callee->regs[BPF_REG_2].map_ptr = map_ptr; 6843 6844 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 6845 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 6846 callee->regs[BPF_REG_3].map_ptr = map_ptr; 6847 6848 /* unused */ 6849 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 6850 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 6851 callee->in_async_callback_fn = true; 6852 return 0; 6853 } 6854 6855 static int set_find_vma_callback_state(struct bpf_verifier_env *env, 6856 struct bpf_func_state *caller, 6857 struct bpf_func_state *callee, 6858 int insn_idx) 6859 { 6860 /* bpf_find_vma(struct task_struct *task, u64 addr, 6861 * void *callback_fn, void *callback_ctx, u64 flags) 6862 * (callback_fn)(struct task_struct *task, 6863 * struct vm_area_struct *vma, void *callback_ctx); 6864 */ 6865 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 6866 6867 callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID; 6868 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 6869 callee->regs[BPF_REG_2].btf = btf_vmlinux; 6870 callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA], 6871 6872 /* pointer to stack or null */ 6873 callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4]; 6874 6875 /* unused */ 6876 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 6877 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 6878 callee->in_callback_fn = true; 6879 return 0; 6880 } 6881 6882 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 6883 { 6884 struct bpf_verifier_state *state = env->cur_state; 6885 struct bpf_func_state *caller, *callee; 6886 struct bpf_reg_state *r0; 6887 int err; 6888 6889 callee = state->frame[state->curframe]; 6890 r0 = &callee->regs[BPF_REG_0]; 6891 if (r0->type == PTR_TO_STACK) { 6892 /* technically it's ok to return caller's stack pointer 6893 * (or caller's caller's pointer) back to the caller, 6894 * since these pointers are valid. Only current stack 6895 * pointer will be invalid as soon as function exits, 6896 * but let's be conservative 6897 */ 6898 verbose(env, "cannot return stack pointer to the caller\n"); 6899 return -EINVAL; 6900 } 6901 6902 state->curframe--; 6903 caller = state->frame[state->curframe]; 6904 if (callee->in_callback_fn) { 6905 /* enforce R0 return value range [0, 1]. */ 6906 struct tnum range = tnum_range(0, 1); 6907 6908 if (r0->type != SCALAR_VALUE) { 6909 verbose(env, "R0 not a scalar value\n"); 6910 return -EACCES; 6911 } 6912 if (!tnum_in(range, r0->var_off)) { 6913 verbose_invalid_scalar(env, r0, &range, "callback return", "R0"); 6914 return -EINVAL; 6915 } 6916 } else { 6917 /* return to the caller whatever r0 had in the callee */ 6918 caller->regs[BPF_REG_0] = *r0; 6919 } 6920 6921 /* Transfer references to the caller */ 6922 err = copy_reference_state(caller, callee); 6923 if (err) 6924 return err; 6925 6926 *insn_idx = callee->callsite + 1; 6927 if (env->log.level & BPF_LOG_LEVEL) { 6928 verbose(env, "returning from callee:\n"); 6929 print_verifier_state(env, callee, true); 6930 verbose(env, "to caller at %d:\n", *insn_idx); 6931 print_verifier_state(env, caller, true); 6932 } 6933 /* clear everything in the callee */ 6934 free_func_state(callee); 6935 state->frame[state->curframe + 1] = NULL; 6936 return 0; 6937 } 6938 6939 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 6940 int func_id, 6941 struct bpf_call_arg_meta *meta) 6942 { 6943 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 6944 6945 if (ret_type != RET_INTEGER || 6946 (func_id != BPF_FUNC_get_stack && 6947 func_id != BPF_FUNC_get_task_stack && 6948 func_id != BPF_FUNC_probe_read_str && 6949 func_id != BPF_FUNC_probe_read_kernel_str && 6950 func_id != BPF_FUNC_probe_read_user_str)) 6951 return; 6952 6953 ret_reg->smax_value = meta->msize_max_value; 6954 ret_reg->s32_max_value = meta->msize_max_value; 6955 ret_reg->smin_value = -MAX_ERRNO; 6956 ret_reg->s32_min_value = -MAX_ERRNO; 6957 reg_bounds_sync(ret_reg); 6958 } 6959 6960 static int 6961 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 6962 int func_id, int insn_idx) 6963 { 6964 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 6965 struct bpf_map *map = meta->map_ptr; 6966 6967 if (func_id != BPF_FUNC_tail_call && 6968 func_id != BPF_FUNC_map_lookup_elem && 6969 func_id != BPF_FUNC_map_update_elem && 6970 func_id != BPF_FUNC_map_delete_elem && 6971 func_id != BPF_FUNC_map_push_elem && 6972 func_id != BPF_FUNC_map_pop_elem && 6973 func_id != BPF_FUNC_map_peek_elem && 6974 func_id != BPF_FUNC_for_each_map_elem && 6975 func_id != BPF_FUNC_redirect_map && 6976 func_id != BPF_FUNC_map_lookup_percpu_elem) 6977 return 0; 6978 6979 if (map == NULL) { 6980 verbose(env, "kernel subsystem misconfigured verifier\n"); 6981 return -EINVAL; 6982 } 6983 6984 /* In case of read-only, some additional restrictions 6985 * need to be applied in order to prevent altering the 6986 * state of the map from program side. 6987 */ 6988 if ((map->map_flags & BPF_F_RDONLY_PROG) && 6989 (func_id == BPF_FUNC_map_delete_elem || 6990 func_id == BPF_FUNC_map_update_elem || 6991 func_id == BPF_FUNC_map_push_elem || 6992 func_id == BPF_FUNC_map_pop_elem)) { 6993 verbose(env, "write into map forbidden\n"); 6994 return -EACCES; 6995 } 6996 6997 if (!BPF_MAP_PTR(aux->map_ptr_state)) 6998 bpf_map_ptr_store(aux, meta->map_ptr, 6999 !meta->map_ptr->bypass_spec_v1); 7000 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr) 7001 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 7002 !meta->map_ptr->bypass_spec_v1); 7003 return 0; 7004 } 7005 7006 static int 7007 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 7008 int func_id, int insn_idx) 7009 { 7010 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 7011 struct bpf_reg_state *regs = cur_regs(env), *reg; 7012 struct bpf_map *map = meta->map_ptr; 7013 u64 val, max; 7014 int err; 7015 7016 if (func_id != BPF_FUNC_tail_call) 7017 return 0; 7018 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 7019 verbose(env, "kernel subsystem misconfigured verifier\n"); 7020 return -EINVAL; 7021 } 7022 7023 reg = ®s[BPF_REG_3]; 7024 val = reg->var_off.value; 7025 max = map->max_entries; 7026 7027 if (!(register_is_const(reg) && val < max)) { 7028 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 7029 return 0; 7030 } 7031 7032 err = mark_chain_precision(env, BPF_REG_3); 7033 if (err) 7034 return err; 7035 if (bpf_map_key_unseen(aux)) 7036 bpf_map_key_store(aux, val); 7037 else if (!bpf_map_key_poisoned(aux) && 7038 bpf_map_key_immediate(aux) != val) 7039 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 7040 return 0; 7041 } 7042 7043 static int check_reference_leak(struct bpf_verifier_env *env) 7044 { 7045 struct bpf_func_state *state = cur_func(env); 7046 int i; 7047 7048 for (i = 0; i < state->acquired_refs; i++) { 7049 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 7050 state->refs[i].id, state->refs[i].insn_idx); 7051 } 7052 return state->acquired_refs ? -EINVAL : 0; 7053 } 7054 7055 static int check_bpf_snprintf_call(struct bpf_verifier_env *env, 7056 struct bpf_reg_state *regs) 7057 { 7058 struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3]; 7059 struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5]; 7060 struct bpf_map *fmt_map = fmt_reg->map_ptr; 7061 int err, fmt_map_off, num_args; 7062 u64 fmt_addr; 7063 char *fmt; 7064 7065 /* data must be an array of u64 */ 7066 if (data_len_reg->var_off.value % 8) 7067 return -EINVAL; 7068 num_args = data_len_reg->var_off.value / 8; 7069 7070 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const 7071 * and map_direct_value_addr is set. 7072 */ 7073 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value; 7074 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr, 7075 fmt_map_off); 7076 if (err) { 7077 verbose(env, "verifier bug\n"); 7078 return -EFAULT; 7079 } 7080 fmt = (char *)(long)fmt_addr + fmt_map_off; 7081 7082 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we 7083 * can focus on validating the format specifiers. 7084 */ 7085 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, NULL, num_args); 7086 if (err < 0) 7087 verbose(env, "Invalid format string\n"); 7088 7089 return err; 7090 } 7091 7092 static int check_get_func_ip(struct bpf_verifier_env *env) 7093 { 7094 enum bpf_prog_type type = resolve_prog_type(env->prog); 7095 int func_id = BPF_FUNC_get_func_ip; 7096 7097 if (type == BPF_PROG_TYPE_TRACING) { 7098 if (!bpf_prog_has_trampoline(env->prog)) { 7099 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n", 7100 func_id_name(func_id), func_id); 7101 return -ENOTSUPP; 7102 } 7103 return 0; 7104 } else if (type == BPF_PROG_TYPE_KPROBE) { 7105 return 0; 7106 } 7107 7108 verbose(env, "func %s#%d not supported for program type %d\n", 7109 func_id_name(func_id), func_id, type); 7110 return -ENOTSUPP; 7111 } 7112 7113 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 7114 { 7115 return &env->insn_aux_data[env->insn_idx]; 7116 } 7117 7118 static bool loop_flag_is_zero(struct bpf_verifier_env *env) 7119 { 7120 struct bpf_reg_state *regs = cur_regs(env); 7121 struct bpf_reg_state *reg = ®s[BPF_REG_4]; 7122 bool reg_is_null = register_is_null(reg); 7123 7124 if (reg_is_null) 7125 mark_chain_precision(env, BPF_REG_4); 7126 7127 return reg_is_null; 7128 } 7129 7130 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno) 7131 { 7132 struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state; 7133 7134 if (!state->initialized) { 7135 state->initialized = 1; 7136 state->fit_for_inline = loop_flag_is_zero(env); 7137 state->callback_subprogno = subprogno; 7138 return; 7139 } 7140 7141 if (!state->fit_for_inline) 7142 return; 7143 7144 state->fit_for_inline = (loop_flag_is_zero(env) && 7145 state->callback_subprogno == subprogno); 7146 } 7147 7148 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 7149 int *insn_idx_p) 7150 { 7151 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 7152 const struct bpf_func_proto *fn = NULL; 7153 enum bpf_return_type ret_type; 7154 enum bpf_type_flag ret_flag; 7155 struct bpf_reg_state *regs; 7156 struct bpf_call_arg_meta meta; 7157 int insn_idx = *insn_idx_p; 7158 bool changes_data; 7159 int i, err, func_id; 7160 7161 /* find function prototype */ 7162 func_id = insn->imm; 7163 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 7164 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 7165 func_id); 7166 return -EINVAL; 7167 } 7168 7169 if (env->ops->get_func_proto) 7170 fn = env->ops->get_func_proto(func_id, env->prog); 7171 if (!fn) { 7172 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 7173 func_id); 7174 return -EINVAL; 7175 } 7176 7177 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 7178 if (!env->prog->gpl_compatible && fn->gpl_only) { 7179 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 7180 return -EINVAL; 7181 } 7182 7183 if (fn->allowed && !fn->allowed(env->prog)) { 7184 verbose(env, "helper call is not allowed in probe\n"); 7185 return -EINVAL; 7186 } 7187 7188 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 7189 changes_data = bpf_helper_changes_pkt_data(fn->func); 7190 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 7191 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 7192 func_id_name(func_id), func_id); 7193 return -EINVAL; 7194 } 7195 7196 memset(&meta, 0, sizeof(meta)); 7197 meta.pkt_access = fn->pkt_access; 7198 7199 err = check_func_proto(fn, func_id); 7200 if (err) { 7201 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 7202 func_id_name(func_id), func_id); 7203 return err; 7204 } 7205 7206 meta.func_id = func_id; 7207 /* check args */ 7208 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 7209 err = check_func_arg(env, i, &meta, fn); 7210 if (err) 7211 return err; 7212 } 7213 7214 err = record_func_map(env, &meta, func_id, insn_idx); 7215 if (err) 7216 return err; 7217 7218 err = record_func_key(env, &meta, func_id, insn_idx); 7219 if (err) 7220 return err; 7221 7222 /* Mark slots with STACK_MISC in case of raw mode, stack offset 7223 * is inferred from register state. 7224 */ 7225 for (i = 0; i < meta.access_size; i++) { 7226 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 7227 BPF_WRITE, -1, false); 7228 if (err) 7229 return err; 7230 } 7231 7232 regs = cur_regs(env); 7233 7234 if (meta.uninit_dynptr_regno) { 7235 /* we write BPF_DW bits (8 bytes) at a time */ 7236 for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) { 7237 err = check_mem_access(env, insn_idx, meta.uninit_dynptr_regno, 7238 i, BPF_DW, BPF_WRITE, -1, false); 7239 if (err) 7240 return err; 7241 } 7242 7243 err = mark_stack_slots_dynptr(env, ®s[meta.uninit_dynptr_regno], 7244 fn->arg_type[meta.uninit_dynptr_regno - BPF_REG_1], 7245 insn_idx); 7246 if (err) 7247 return err; 7248 } 7249 7250 if (meta.release_regno) { 7251 err = -EINVAL; 7252 if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) 7253 err = unmark_stack_slots_dynptr(env, ®s[meta.release_regno]); 7254 else if (meta.ref_obj_id) 7255 err = release_reference(env, meta.ref_obj_id); 7256 /* meta.ref_obj_id can only be 0 if register that is meant to be 7257 * released is NULL, which must be > R0. 7258 */ 7259 else if (register_is_null(®s[meta.release_regno])) 7260 err = 0; 7261 if (err) { 7262 verbose(env, "func %s#%d reference has not been acquired before\n", 7263 func_id_name(func_id), func_id); 7264 return err; 7265 } 7266 } 7267 7268 switch (func_id) { 7269 case BPF_FUNC_tail_call: 7270 err = check_reference_leak(env); 7271 if (err) { 7272 verbose(env, "tail_call would lead to reference leak\n"); 7273 return err; 7274 } 7275 break; 7276 case BPF_FUNC_get_local_storage: 7277 /* check that flags argument in get_local_storage(map, flags) is 0, 7278 * this is required because get_local_storage() can't return an error. 7279 */ 7280 if (!register_is_null(®s[BPF_REG_2])) { 7281 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 7282 return -EINVAL; 7283 } 7284 break; 7285 case BPF_FUNC_for_each_map_elem: 7286 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 7287 set_map_elem_callback_state); 7288 break; 7289 case BPF_FUNC_timer_set_callback: 7290 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 7291 set_timer_callback_state); 7292 break; 7293 case BPF_FUNC_find_vma: 7294 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 7295 set_find_vma_callback_state); 7296 break; 7297 case BPF_FUNC_snprintf: 7298 err = check_bpf_snprintf_call(env, regs); 7299 break; 7300 case BPF_FUNC_loop: 7301 update_loop_inline_state(env, meta.subprogno); 7302 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 7303 set_loop_callback_state); 7304 break; 7305 case BPF_FUNC_dynptr_from_mem: 7306 if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) { 7307 verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n", 7308 reg_type_str(env, regs[BPF_REG_1].type)); 7309 return -EACCES; 7310 } 7311 break; 7312 case BPF_FUNC_set_retval: 7313 if (prog_type == BPF_PROG_TYPE_LSM && 7314 env->prog->expected_attach_type == BPF_LSM_CGROUP) { 7315 if (!env->prog->aux->attach_func_proto->type) { 7316 /* Make sure programs that attach to void 7317 * hooks don't try to modify return value. 7318 */ 7319 verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 7320 return -EINVAL; 7321 } 7322 } 7323 break; 7324 case BPF_FUNC_dynptr_data: 7325 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 7326 if (arg_type_is_dynptr(fn->arg_type[i])) { 7327 if (meta.ref_obj_id) { 7328 verbose(env, "verifier internal error: meta.ref_obj_id already set\n"); 7329 return -EFAULT; 7330 } 7331 /* Find the id of the dynptr we're tracking the reference of */ 7332 meta.ref_obj_id = stack_slot_get_id(env, ®s[BPF_REG_1 + i]); 7333 break; 7334 } 7335 } 7336 if (i == MAX_BPF_FUNC_REG_ARGS) { 7337 verbose(env, "verifier internal error: no dynptr in bpf_dynptr_data()\n"); 7338 return -EFAULT; 7339 } 7340 break; 7341 } 7342 7343 if (err) 7344 return err; 7345 7346 /* reset caller saved regs */ 7347 for (i = 0; i < CALLER_SAVED_REGS; i++) { 7348 mark_reg_not_init(env, regs, caller_saved[i]); 7349 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 7350 } 7351 7352 /* helper call returns 64-bit value. */ 7353 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 7354 7355 /* update return register (already marked as written above) */ 7356 ret_type = fn->ret_type; 7357 ret_flag = type_flag(ret_type); 7358 7359 switch (base_type(ret_type)) { 7360 case RET_INTEGER: 7361 /* sets type to SCALAR_VALUE */ 7362 mark_reg_unknown(env, regs, BPF_REG_0); 7363 break; 7364 case RET_VOID: 7365 regs[BPF_REG_0].type = NOT_INIT; 7366 break; 7367 case RET_PTR_TO_MAP_VALUE: 7368 /* There is no offset yet applied, variable or fixed */ 7369 mark_reg_known_zero(env, regs, BPF_REG_0); 7370 /* remember map_ptr, so that check_map_access() 7371 * can check 'value_size' boundary of memory access 7372 * to map element returned from bpf_map_lookup_elem() 7373 */ 7374 if (meta.map_ptr == NULL) { 7375 verbose(env, 7376 "kernel subsystem misconfigured verifier\n"); 7377 return -EINVAL; 7378 } 7379 regs[BPF_REG_0].map_ptr = meta.map_ptr; 7380 regs[BPF_REG_0].map_uid = meta.map_uid; 7381 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag; 7382 if (!type_may_be_null(ret_type) && 7383 map_value_has_spin_lock(meta.map_ptr)) { 7384 regs[BPF_REG_0].id = ++env->id_gen; 7385 } 7386 break; 7387 case RET_PTR_TO_SOCKET: 7388 mark_reg_known_zero(env, regs, BPF_REG_0); 7389 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag; 7390 break; 7391 case RET_PTR_TO_SOCK_COMMON: 7392 mark_reg_known_zero(env, regs, BPF_REG_0); 7393 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag; 7394 break; 7395 case RET_PTR_TO_TCP_SOCK: 7396 mark_reg_known_zero(env, regs, BPF_REG_0); 7397 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag; 7398 break; 7399 case RET_PTR_TO_ALLOC_MEM: 7400 mark_reg_known_zero(env, regs, BPF_REG_0); 7401 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 7402 regs[BPF_REG_0].mem_size = meta.mem_size; 7403 break; 7404 case RET_PTR_TO_MEM_OR_BTF_ID: 7405 { 7406 const struct btf_type *t; 7407 7408 mark_reg_known_zero(env, regs, BPF_REG_0); 7409 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL); 7410 if (!btf_type_is_struct(t)) { 7411 u32 tsize; 7412 const struct btf_type *ret; 7413 const char *tname; 7414 7415 /* resolve the type size of ksym. */ 7416 ret = btf_resolve_size(meta.ret_btf, t, &tsize); 7417 if (IS_ERR(ret)) { 7418 tname = btf_name_by_offset(meta.ret_btf, t->name_off); 7419 verbose(env, "unable to resolve the size of type '%s': %ld\n", 7420 tname, PTR_ERR(ret)); 7421 return -EINVAL; 7422 } 7423 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 7424 regs[BPF_REG_0].mem_size = tsize; 7425 } else { 7426 /* MEM_RDONLY may be carried from ret_flag, but it 7427 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise 7428 * it will confuse the check of PTR_TO_BTF_ID in 7429 * check_mem_access(). 7430 */ 7431 ret_flag &= ~MEM_RDONLY; 7432 7433 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 7434 regs[BPF_REG_0].btf = meta.ret_btf; 7435 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 7436 } 7437 break; 7438 } 7439 case RET_PTR_TO_BTF_ID: 7440 { 7441 struct btf *ret_btf; 7442 int ret_btf_id; 7443 7444 mark_reg_known_zero(env, regs, BPF_REG_0); 7445 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 7446 if (func_id == BPF_FUNC_kptr_xchg) { 7447 ret_btf = meta.kptr_off_desc->kptr.btf; 7448 ret_btf_id = meta.kptr_off_desc->kptr.btf_id; 7449 } else { 7450 ret_btf = btf_vmlinux; 7451 ret_btf_id = *fn->ret_btf_id; 7452 } 7453 if (ret_btf_id == 0) { 7454 verbose(env, "invalid return type %u of func %s#%d\n", 7455 base_type(ret_type), func_id_name(func_id), 7456 func_id); 7457 return -EINVAL; 7458 } 7459 regs[BPF_REG_0].btf = ret_btf; 7460 regs[BPF_REG_0].btf_id = ret_btf_id; 7461 break; 7462 } 7463 default: 7464 verbose(env, "unknown return type %u of func %s#%d\n", 7465 base_type(ret_type), func_id_name(func_id), func_id); 7466 return -EINVAL; 7467 } 7468 7469 if (type_may_be_null(regs[BPF_REG_0].type)) 7470 regs[BPF_REG_0].id = ++env->id_gen; 7471 7472 if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) { 7473 verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n", 7474 func_id_name(func_id), func_id); 7475 return -EFAULT; 7476 } 7477 7478 if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) { 7479 /* For release_reference() */ 7480 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 7481 } else if (is_acquire_function(func_id, meta.map_ptr)) { 7482 int id = acquire_reference_state(env, insn_idx); 7483 7484 if (id < 0) 7485 return id; 7486 /* For mark_ptr_or_null_reg() */ 7487 regs[BPF_REG_0].id = id; 7488 /* For release_reference() */ 7489 regs[BPF_REG_0].ref_obj_id = id; 7490 } 7491 7492 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 7493 7494 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 7495 if (err) 7496 return err; 7497 7498 if ((func_id == BPF_FUNC_get_stack || 7499 func_id == BPF_FUNC_get_task_stack) && 7500 !env->prog->has_callchain_buf) { 7501 const char *err_str; 7502 7503 #ifdef CONFIG_PERF_EVENTS 7504 err = get_callchain_buffers(sysctl_perf_event_max_stack); 7505 err_str = "cannot get callchain buffer for func %s#%d\n"; 7506 #else 7507 err = -ENOTSUPP; 7508 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 7509 #endif 7510 if (err) { 7511 verbose(env, err_str, func_id_name(func_id), func_id); 7512 return err; 7513 } 7514 7515 env->prog->has_callchain_buf = true; 7516 } 7517 7518 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack) 7519 env->prog->call_get_stack = true; 7520 7521 if (func_id == BPF_FUNC_get_func_ip) { 7522 if (check_get_func_ip(env)) 7523 return -ENOTSUPP; 7524 env->prog->call_get_func_ip = true; 7525 } 7526 7527 if (changes_data) 7528 clear_all_pkt_pointers(env); 7529 return 0; 7530 } 7531 7532 /* mark_btf_func_reg_size() is used when the reg size is determined by 7533 * the BTF func_proto's return value size and argument. 7534 */ 7535 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno, 7536 size_t reg_size) 7537 { 7538 struct bpf_reg_state *reg = &cur_regs(env)[regno]; 7539 7540 if (regno == BPF_REG_0) { 7541 /* Function return value */ 7542 reg->live |= REG_LIVE_WRITTEN; 7543 reg->subreg_def = reg_size == sizeof(u64) ? 7544 DEF_NOT_SUBREG : env->insn_idx + 1; 7545 } else { 7546 /* Function argument */ 7547 if (reg_size == sizeof(u64)) { 7548 mark_insn_zext(env, reg); 7549 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 7550 } else { 7551 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32); 7552 } 7553 } 7554 } 7555 7556 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 7557 int *insn_idx_p) 7558 { 7559 const struct btf_type *t, *func, *func_proto, *ptr_type; 7560 struct bpf_reg_state *regs = cur_regs(env); 7561 const char *func_name, *ptr_type_name; 7562 u32 i, nargs, func_id, ptr_type_id; 7563 int err, insn_idx = *insn_idx_p; 7564 const struct btf_param *args; 7565 struct btf *desc_btf; 7566 u32 *kfunc_flags; 7567 bool acq; 7568 7569 /* skip for now, but return error when we find this in fixup_kfunc_call */ 7570 if (!insn->imm) 7571 return 0; 7572 7573 desc_btf = find_kfunc_desc_btf(env, insn->off); 7574 if (IS_ERR(desc_btf)) 7575 return PTR_ERR(desc_btf); 7576 7577 func_id = insn->imm; 7578 func = btf_type_by_id(desc_btf, func_id); 7579 func_name = btf_name_by_offset(desc_btf, func->name_off); 7580 func_proto = btf_type_by_id(desc_btf, func->type); 7581 7582 kfunc_flags = btf_kfunc_id_set_contains(desc_btf, resolve_prog_type(env->prog), func_id); 7583 if (!kfunc_flags) { 7584 verbose(env, "calling kernel function %s is not allowed\n", 7585 func_name); 7586 return -EACCES; 7587 } 7588 if (*kfunc_flags & KF_DESTRUCTIVE && !capable(CAP_SYS_BOOT)) { 7589 verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capabilities\n"); 7590 return -EACCES; 7591 } 7592 7593 acq = *kfunc_flags & KF_ACQUIRE; 7594 7595 /* Check the arguments */ 7596 err = btf_check_kfunc_arg_match(env, desc_btf, func_id, regs, *kfunc_flags); 7597 if (err < 0) 7598 return err; 7599 /* In case of release function, we get register number of refcounted 7600 * PTR_TO_BTF_ID back from btf_check_kfunc_arg_match, do the release now 7601 */ 7602 if (err) { 7603 err = release_reference(env, regs[err].ref_obj_id); 7604 if (err) { 7605 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 7606 func_name, func_id); 7607 return err; 7608 } 7609 } 7610 7611 for (i = 0; i < CALLER_SAVED_REGS; i++) 7612 mark_reg_not_init(env, regs, caller_saved[i]); 7613 7614 /* Check return type */ 7615 t = btf_type_skip_modifiers(desc_btf, func_proto->type, NULL); 7616 7617 if (acq && !btf_type_is_ptr(t)) { 7618 verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n"); 7619 return -EINVAL; 7620 } 7621 7622 if (btf_type_is_scalar(t)) { 7623 mark_reg_unknown(env, regs, BPF_REG_0); 7624 mark_btf_func_reg_size(env, BPF_REG_0, t->size); 7625 } else if (btf_type_is_ptr(t)) { 7626 ptr_type = btf_type_skip_modifiers(desc_btf, t->type, 7627 &ptr_type_id); 7628 if (!btf_type_is_struct(ptr_type)) { 7629 ptr_type_name = btf_name_by_offset(desc_btf, 7630 ptr_type->name_off); 7631 verbose(env, "kernel function %s returns pointer type %s %s is not supported\n", 7632 func_name, btf_type_str(ptr_type), 7633 ptr_type_name); 7634 return -EINVAL; 7635 } 7636 mark_reg_known_zero(env, regs, BPF_REG_0); 7637 regs[BPF_REG_0].btf = desc_btf; 7638 regs[BPF_REG_0].type = PTR_TO_BTF_ID; 7639 regs[BPF_REG_0].btf_id = ptr_type_id; 7640 if (*kfunc_flags & KF_RET_NULL) { 7641 regs[BPF_REG_0].type |= PTR_MAYBE_NULL; 7642 /* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */ 7643 regs[BPF_REG_0].id = ++env->id_gen; 7644 } 7645 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *)); 7646 if (acq) { 7647 int id = acquire_reference_state(env, insn_idx); 7648 7649 if (id < 0) 7650 return id; 7651 regs[BPF_REG_0].id = id; 7652 regs[BPF_REG_0].ref_obj_id = id; 7653 } 7654 } /* else { add_kfunc_call() ensures it is btf_type_is_void(t) } */ 7655 7656 nargs = btf_type_vlen(func_proto); 7657 args = (const struct btf_param *)(func_proto + 1); 7658 for (i = 0; i < nargs; i++) { 7659 u32 regno = i + 1; 7660 7661 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL); 7662 if (btf_type_is_ptr(t)) 7663 mark_btf_func_reg_size(env, regno, sizeof(void *)); 7664 else 7665 /* scalar. ensured by btf_check_kfunc_arg_match() */ 7666 mark_btf_func_reg_size(env, regno, t->size); 7667 } 7668 7669 return 0; 7670 } 7671 7672 static bool signed_add_overflows(s64 a, s64 b) 7673 { 7674 /* Do the add in u64, where overflow is well-defined */ 7675 s64 res = (s64)((u64)a + (u64)b); 7676 7677 if (b < 0) 7678 return res > a; 7679 return res < a; 7680 } 7681 7682 static bool signed_add32_overflows(s32 a, s32 b) 7683 { 7684 /* Do the add in u32, where overflow is well-defined */ 7685 s32 res = (s32)((u32)a + (u32)b); 7686 7687 if (b < 0) 7688 return res > a; 7689 return res < a; 7690 } 7691 7692 static bool signed_sub_overflows(s64 a, s64 b) 7693 { 7694 /* Do the sub in u64, where overflow is well-defined */ 7695 s64 res = (s64)((u64)a - (u64)b); 7696 7697 if (b < 0) 7698 return res < a; 7699 return res > a; 7700 } 7701 7702 static bool signed_sub32_overflows(s32 a, s32 b) 7703 { 7704 /* Do the sub in u32, where overflow is well-defined */ 7705 s32 res = (s32)((u32)a - (u32)b); 7706 7707 if (b < 0) 7708 return res < a; 7709 return res > a; 7710 } 7711 7712 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 7713 const struct bpf_reg_state *reg, 7714 enum bpf_reg_type type) 7715 { 7716 bool known = tnum_is_const(reg->var_off); 7717 s64 val = reg->var_off.value; 7718 s64 smin = reg->smin_value; 7719 7720 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 7721 verbose(env, "math between %s pointer and %lld is not allowed\n", 7722 reg_type_str(env, type), val); 7723 return false; 7724 } 7725 7726 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 7727 verbose(env, "%s pointer offset %d is not allowed\n", 7728 reg_type_str(env, type), reg->off); 7729 return false; 7730 } 7731 7732 if (smin == S64_MIN) { 7733 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 7734 reg_type_str(env, type)); 7735 return false; 7736 } 7737 7738 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 7739 verbose(env, "value %lld makes %s pointer be out of bounds\n", 7740 smin, reg_type_str(env, type)); 7741 return false; 7742 } 7743 7744 return true; 7745 } 7746 7747 enum { 7748 REASON_BOUNDS = -1, 7749 REASON_TYPE = -2, 7750 REASON_PATHS = -3, 7751 REASON_LIMIT = -4, 7752 REASON_STACK = -5, 7753 }; 7754 7755 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 7756 u32 *alu_limit, bool mask_to_left) 7757 { 7758 u32 max = 0, ptr_limit = 0; 7759 7760 switch (ptr_reg->type) { 7761 case PTR_TO_STACK: 7762 /* Offset 0 is out-of-bounds, but acceptable start for the 7763 * left direction, see BPF_REG_FP. Also, unknown scalar 7764 * offset where we would need to deal with min/max bounds is 7765 * currently prohibited for unprivileged. 7766 */ 7767 max = MAX_BPF_STACK + mask_to_left; 7768 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off); 7769 break; 7770 case PTR_TO_MAP_VALUE: 7771 max = ptr_reg->map_ptr->value_size; 7772 ptr_limit = (mask_to_left ? 7773 ptr_reg->smin_value : 7774 ptr_reg->umax_value) + ptr_reg->off; 7775 break; 7776 default: 7777 return REASON_TYPE; 7778 } 7779 7780 if (ptr_limit >= max) 7781 return REASON_LIMIT; 7782 *alu_limit = ptr_limit; 7783 return 0; 7784 } 7785 7786 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 7787 const struct bpf_insn *insn) 7788 { 7789 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K; 7790 } 7791 7792 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 7793 u32 alu_state, u32 alu_limit) 7794 { 7795 /* If we arrived here from different branches with different 7796 * state or limits to sanitize, then this won't work. 7797 */ 7798 if (aux->alu_state && 7799 (aux->alu_state != alu_state || 7800 aux->alu_limit != alu_limit)) 7801 return REASON_PATHS; 7802 7803 /* Corresponding fixup done in do_misc_fixups(). */ 7804 aux->alu_state = alu_state; 7805 aux->alu_limit = alu_limit; 7806 return 0; 7807 } 7808 7809 static int sanitize_val_alu(struct bpf_verifier_env *env, 7810 struct bpf_insn *insn) 7811 { 7812 struct bpf_insn_aux_data *aux = cur_aux(env); 7813 7814 if (can_skip_alu_sanitation(env, insn)) 7815 return 0; 7816 7817 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 7818 } 7819 7820 static bool sanitize_needed(u8 opcode) 7821 { 7822 return opcode == BPF_ADD || opcode == BPF_SUB; 7823 } 7824 7825 struct bpf_sanitize_info { 7826 struct bpf_insn_aux_data aux; 7827 bool mask_to_left; 7828 }; 7829 7830 static struct bpf_verifier_state * 7831 sanitize_speculative_path(struct bpf_verifier_env *env, 7832 const struct bpf_insn *insn, 7833 u32 next_idx, u32 curr_idx) 7834 { 7835 struct bpf_verifier_state *branch; 7836 struct bpf_reg_state *regs; 7837 7838 branch = push_stack(env, next_idx, curr_idx, true); 7839 if (branch && insn) { 7840 regs = branch->frame[branch->curframe]->regs; 7841 if (BPF_SRC(insn->code) == BPF_K) { 7842 mark_reg_unknown(env, regs, insn->dst_reg); 7843 } else if (BPF_SRC(insn->code) == BPF_X) { 7844 mark_reg_unknown(env, regs, insn->dst_reg); 7845 mark_reg_unknown(env, regs, insn->src_reg); 7846 } 7847 } 7848 return branch; 7849 } 7850 7851 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 7852 struct bpf_insn *insn, 7853 const struct bpf_reg_state *ptr_reg, 7854 const struct bpf_reg_state *off_reg, 7855 struct bpf_reg_state *dst_reg, 7856 struct bpf_sanitize_info *info, 7857 const bool commit_window) 7858 { 7859 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux; 7860 struct bpf_verifier_state *vstate = env->cur_state; 7861 bool off_is_imm = tnum_is_const(off_reg->var_off); 7862 bool off_is_neg = off_reg->smin_value < 0; 7863 bool ptr_is_dst_reg = ptr_reg == dst_reg; 7864 u8 opcode = BPF_OP(insn->code); 7865 u32 alu_state, alu_limit; 7866 struct bpf_reg_state tmp; 7867 bool ret; 7868 int err; 7869 7870 if (can_skip_alu_sanitation(env, insn)) 7871 return 0; 7872 7873 /* We already marked aux for masking from non-speculative 7874 * paths, thus we got here in the first place. We only care 7875 * to explore bad access from here. 7876 */ 7877 if (vstate->speculative) 7878 goto do_sim; 7879 7880 if (!commit_window) { 7881 if (!tnum_is_const(off_reg->var_off) && 7882 (off_reg->smin_value < 0) != (off_reg->smax_value < 0)) 7883 return REASON_BOUNDS; 7884 7885 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) || 7886 (opcode == BPF_SUB && !off_is_neg); 7887 } 7888 7889 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left); 7890 if (err < 0) 7891 return err; 7892 7893 if (commit_window) { 7894 /* In commit phase we narrow the masking window based on 7895 * the observed pointer move after the simulated operation. 7896 */ 7897 alu_state = info->aux.alu_state; 7898 alu_limit = abs(info->aux.alu_limit - alu_limit); 7899 } else { 7900 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 7901 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0; 7902 alu_state |= ptr_is_dst_reg ? 7903 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 7904 7905 /* Limit pruning on unknown scalars to enable deep search for 7906 * potential masking differences from other program paths. 7907 */ 7908 if (!off_is_imm) 7909 env->explore_alu_limits = true; 7910 } 7911 7912 err = update_alu_sanitation_state(aux, alu_state, alu_limit); 7913 if (err < 0) 7914 return err; 7915 do_sim: 7916 /* If we're in commit phase, we're done here given we already 7917 * pushed the truncated dst_reg into the speculative verification 7918 * stack. 7919 * 7920 * Also, when register is a known constant, we rewrite register-based 7921 * operation to immediate-based, and thus do not need masking (and as 7922 * a consequence, do not need to simulate the zero-truncation either). 7923 */ 7924 if (commit_window || off_is_imm) 7925 return 0; 7926 7927 /* Simulate and find potential out-of-bounds access under 7928 * speculative execution from truncation as a result of 7929 * masking when off was not within expected range. If off 7930 * sits in dst, then we temporarily need to move ptr there 7931 * to simulate dst (== 0) +/-= ptr. Needed, for example, 7932 * for cases where we use K-based arithmetic in one direction 7933 * and truncated reg-based in the other in order to explore 7934 * bad access. 7935 */ 7936 if (!ptr_is_dst_reg) { 7937 tmp = *dst_reg; 7938 *dst_reg = *ptr_reg; 7939 } 7940 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1, 7941 env->insn_idx); 7942 if (!ptr_is_dst_reg && ret) 7943 *dst_reg = tmp; 7944 return !ret ? REASON_STACK : 0; 7945 } 7946 7947 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env) 7948 { 7949 struct bpf_verifier_state *vstate = env->cur_state; 7950 7951 /* If we simulate paths under speculation, we don't update the 7952 * insn as 'seen' such that when we verify unreachable paths in 7953 * the non-speculative domain, sanitize_dead_code() can still 7954 * rewrite/sanitize them. 7955 */ 7956 if (!vstate->speculative) 7957 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 7958 } 7959 7960 static int sanitize_err(struct bpf_verifier_env *env, 7961 const struct bpf_insn *insn, int reason, 7962 const struct bpf_reg_state *off_reg, 7963 const struct bpf_reg_state *dst_reg) 7964 { 7965 static const char *err = "pointer arithmetic with it prohibited for !root"; 7966 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub"; 7967 u32 dst = insn->dst_reg, src = insn->src_reg; 7968 7969 switch (reason) { 7970 case REASON_BOUNDS: 7971 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n", 7972 off_reg == dst_reg ? dst : src, err); 7973 break; 7974 case REASON_TYPE: 7975 verbose(env, "R%d has pointer with unsupported alu operation, %s\n", 7976 off_reg == dst_reg ? src : dst, err); 7977 break; 7978 case REASON_PATHS: 7979 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n", 7980 dst, op, err); 7981 break; 7982 case REASON_LIMIT: 7983 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n", 7984 dst, op, err); 7985 break; 7986 case REASON_STACK: 7987 verbose(env, "R%d could not be pushed for speculative verification, %s\n", 7988 dst, err); 7989 break; 7990 default: 7991 verbose(env, "verifier internal error: unknown reason (%d)\n", 7992 reason); 7993 break; 7994 } 7995 7996 return -EACCES; 7997 } 7998 7999 /* check that stack access falls within stack limits and that 'reg' doesn't 8000 * have a variable offset. 8001 * 8002 * Variable offset is prohibited for unprivileged mode for simplicity since it 8003 * requires corresponding support in Spectre masking for stack ALU. See also 8004 * retrieve_ptr_limit(). 8005 * 8006 * 8007 * 'off' includes 'reg->off'. 8008 */ 8009 static int check_stack_access_for_ptr_arithmetic( 8010 struct bpf_verifier_env *env, 8011 int regno, 8012 const struct bpf_reg_state *reg, 8013 int off) 8014 { 8015 if (!tnum_is_const(reg->var_off)) { 8016 char tn_buf[48]; 8017 8018 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 8019 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n", 8020 regno, tn_buf, off); 8021 return -EACCES; 8022 } 8023 8024 if (off >= 0 || off < -MAX_BPF_STACK) { 8025 verbose(env, "R%d stack pointer arithmetic goes out of range, " 8026 "prohibited for !root; off=%d\n", regno, off); 8027 return -EACCES; 8028 } 8029 8030 return 0; 8031 } 8032 8033 static int sanitize_check_bounds(struct bpf_verifier_env *env, 8034 const struct bpf_insn *insn, 8035 const struct bpf_reg_state *dst_reg) 8036 { 8037 u32 dst = insn->dst_reg; 8038 8039 /* For unprivileged we require that resulting offset must be in bounds 8040 * in order to be able to sanitize access later on. 8041 */ 8042 if (env->bypass_spec_v1) 8043 return 0; 8044 8045 switch (dst_reg->type) { 8046 case PTR_TO_STACK: 8047 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg, 8048 dst_reg->off + dst_reg->var_off.value)) 8049 return -EACCES; 8050 break; 8051 case PTR_TO_MAP_VALUE: 8052 if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) { 8053 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 8054 "prohibited for !root\n", dst); 8055 return -EACCES; 8056 } 8057 break; 8058 default: 8059 break; 8060 } 8061 8062 return 0; 8063 } 8064 8065 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 8066 * Caller should also handle BPF_MOV case separately. 8067 * If we return -EACCES, caller may want to try again treating pointer as a 8068 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 8069 */ 8070 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 8071 struct bpf_insn *insn, 8072 const struct bpf_reg_state *ptr_reg, 8073 const struct bpf_reg_state *off_reg) 8074 { 8075 struct bpf_verifier_state *vstate = env->cur_state; 8076 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 8077 struct bpf_reg_state *regs = state->regs, *dst_reg; 8078 bool known = tnum_is_const(off_reg->var_off); 8079 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 8080 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 8081 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 8082 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 8083 struct bpf_sanitize_info info = {}; 8084 u8 opcode = BPF_OP(insn->code); 8085 u32 dst = insn->dst_reg; 8086 int ret; 8087 8088 dst_reg = ®s[dst]; 8089 8090 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 8091 smin_val > smax_val || umin_val > umax_val) { 8092 /* Taint dst register if offset had invalid bounds derived from 8093 * e.g. dead branches. 8094 */ 8095 __mark_reg_unknown(env, dst_reg); 8096 return 0; 8097 } 8098 8099 if (BPF_CLASS(insn->code) != BPF_ALU64) { 8100 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 8101 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 8102 __mark_reg_unknown(env, dst_reg); 8103 return 0; 8104 } 8105 8106 verbose(env, 8107 "R%d 32-bit pointer arithmetic prohibited\n", 8108 dst); 8109 return -EACCES; 8110 } 8111 8112 if (ptr_reg->type & PTR_MAYBE_NULL) { 8113 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 8114 dst, reg_type_str(env, ptr_reg->type)); 8115 return -EACCES; 8116 } 8117 8118 switch (base_type(ptr_reg->type)) { 8119 case CONST_PTR_TO_MAP: 8120 /* smin_val represents the known value */ 8121 if (known && smin_val == 0 && opcode == BPF_ADD) 8122 break; 8123 fallthrough; 8124 case PTR_TO_PACKET_END: 8125 case PTR_TO_SOCKET: 8126 case PTR_TO_SOCK_COMMON: 8127 case PTR_TO_TCP_SOCK: 8128 case PTR_TO_XDP_SOCK: 8129 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 8130 dst, reg_type_str(env, ptr_reg->type)); 8131 return -EACCES; 8132 default: 8133 break; 8134 } 8135 8136 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 8137 * The id may be overwritten later if we create a new variable offset. 8138 */ 8139 dst_reg->type = ptr_reg->type; 8140 dst_reg->id = ptr_reg->id; 8141 8142 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 8143 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 8144 return -EINVAL; 8145 8146 /* pointer types do not carry 32-bit bounds at the moment. */ 8147 __mark_reg32_unbounded(dst_reg); 8148 8149 if (sanitize_needed(opcode)) { 8150 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg, 8151 &info, false); 8152 if (ret < 0) 8153 return sanitize_err(env, insn, ret, off_reg, dst_reg); 8154 } 8155 8156 switch (opcode) { 8157 case BPF_ADD: 8158 /* We can take a fixed offset as long as it doesn't overflow 8159 * the s32 'off' field 8160 */ 8161 if (known && (ptr_reg->off + smin_val == 8162 (s64)(s32)(ptr_reg->off + smin_val))) { 8163 /* pointer += K. Accumulate it into fixed offset */ 8164 dst_reg->smin_value = smin_ptr; 8165 dst_reg->smax_value = smax_ptr; 8166 dst_reg->umin_value = umin_ptr; 8167 dst_reg->umax_value = umax_ptr; 8168 dst_reg->var_off = ptr_reg->var_off; 8169 dst_reg->off = ptr_reg->off + smin_val; 8170 dst_reg->raw = ptr_reg->raw; 8171 break; 8172 } 8173 /* A new variable offset is created. Note that off_reg->off 8174 * == 0, since it's a scalar. 8175 * dst_reg gets the pointer type and since some positive 8176 * integer value was added to the pointer, give it a new 'id' 8177 * if it's a PTR_TO_PACKET. 8178 * this creates a new 'base' pointer, off_reg (variable) gets 8179 * added into the variable offset, and we copy the fixed offset 8180 * from ptr_reg. 8181 */ 8182 if (signed_add_overflows(smin_ptr, smin_val) || 8183 signed_add_overflows(smax_ptr, smax_val)) { 8184 dst_reg->smin_value = S64_MIN; 8185 dst_reg->smax_value = S64_MAX; 8186 } else { 8187 dst_reg->smin_value = smin_ptr + smin_val; 8188 dst_reg->smax_value = smax_ptr + smax_val; 8189 } 8190 if (umin_ptr + umin_val < umin_ptr || 8191 umax_ptr + umax_val < umax_ptr) { 8192 dst_reg->umin_value = 0; 8193 dst_reg->umax_value = U64_MAX; 8194 } else { 8195 dst_reg->umin_value = umin_ptr + umin_val; 8196 dst_reg->umax_value = umax_ptr + umax_val; 8197 } 8198 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 8199 dst_reg->off = ptr_reg->off; 8200 dst_reg->raw = ptr_reg->raw; 8201 if (reg_is_pkt_pointer(ptr_reg)) { 8202 dst_reg->id = ++env->id_gen; 8203 /* something was added to pkt_ptr, set range to zero */ 8204 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 8205 } 8206 break; 8207 case BPF_SUB: 8208 if (dst_reg == off_reg) { 8209 /* scalar -= pointer. Creates an unknown scalar */ 8210 verbose(env, "R%d tried to subtract pointer from scalar\n", 8211 dst); 8212 return -EACCES; 8213 } 8214 /* We don't allow subtraction from FP, because (according to 8215 * test_verifier.c test "invalid fp arithmetic", JITs might not 8216 * be able to deal with it. 8217 */ 8218 if (ptr_reg->type == PTR_TO_STACK) { 8219 verbose(env, "R%d subtraction from stack pointer prohibited\n", 8220 dst); 8221 return -EACCES; 8222 } 8223 if (known && (ptr_reg->off - smin_val == 8224 (s64)(s32)(ptr_reg->off - smin_val))) { 8225 /* pointer -= K. Subtract it from fixed offset */ 8226 dst_reg->smin_value = smin_ptr; 8227 dst_reg->smax_value = smax_ptr; 8228 dst_reg->umin_value = umin_ptr; 8229 dst_reg->umax_value = umax_ptr; 8230 dst_reg->var_off = ptr_reg->var_off; 8231 dst_reg->id = ptr_reg->id; 8232 dst_reg->off = ptr_reg->off - smin_val; 8233 dst_reg->raw = ptr_reg->raw; 8234 break; 8235 } 8236 /* A new variable offset is created. If the subtrahend is known 8237 * nonnegative, then any reg->range we had before is still good. 8238 */ 8239 if (signed_sub_overflows(smin_ptr, smax_val) || 8240 signed_sub_overflows(smax_ptr, smin_val)) { 8241 /* Overflow possible, we know nothing */ 8242 dst_reg->smin_value = S64_MIN; 8243 dst_reg->smax_value = S64_MAX; 8244 } else { 8245 dst_reg->smin_value = smin_ptr - smax_val; 8246 dst_reg->smax_value = smax_ptr - smin_val; 8247 } 8248 if (umin_ptr < umax_val) { 8249 /* Overflow possible, we know nothing */ 8250 dst_reg->umin_value = 0; 8251 dst_reg->umax_value = U64_MAX; 8252 } else { 8253 /* Cannot overflow (as long as bounds are consistent) */ 8254 dst_reg->umin_value = umin_ptr - umax_val; 8255 dst_reg->umax_value = umax_ptr - umin_val; 8256 } 8257 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 8258 dst_reg->off = ptr_reg->off; 8259 dst_reg->raw = ptr_reg->raw; 8260 if (reg_is_pkt_pointer(ptr_reg)) { 8261 dst_reg->id = ++env->id_gen; 8262 /* something was added to pkt_ptr, set range to zero */ 8263 if (smin_val < 0) 8264 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 8265 } 8266 break; 8267 case BPF_AND: 8268 case BPF_OR: 8269 case BPF_XOR: 8270 /* bitwise ops on pointers are troublesome, prohibit. */ 8271 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 8272 dst, bpf_alu_string[opcode >> 4]); 8273 return -EACCES; 8274 default: 8275 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 8276 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 8277 dst, bpf_alu_string[opcode >> 4]); 8278 return -EACCES; 8279 } 8280 8281 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 8282 return -EINVAL; 8283 reg_bounds_sync(dst_reg); 8284 if (sanitize_check_bounds(env, insn, dst_reg) < 0) 8285 return -EACCES; 8286 if (sanitize_needed(opcode)) { 8287 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg, 8288 &info, true); 8289 if (ret < 0) 8290 return sanitize_err(env, insn, ret, off_reg, dst_reg); 8291 } 8292 8293 return 0; 8294 } 8295 8296 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, 8297 struct bpf_reg_state *src_reg) 8298 { 8299 s32 smin_val = src_reg->s32_min_value; 8300 s32 smax_val = src_reg->s32_max_value; 8301 u32 umin_val = src_reg->u32_min_value; 8302 u32 umax_val = src_reg->u32_max_value; 8303 8304 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) || 8305 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) { 8306 dst_reg->s32_min_value = S32_MIN; 8307 dst_reg->s32_max_value = S32_MAX; 8308 } else { 8309 dst_reg->s32_min_value += smin_val; 8310 dst_reg->s32_max_value += smax_val; 8311 } 8312 if (dst_reg->u32_min_value + umin_val < umin_val || 8313 dst_reg->u32_max_value + umax_val < umax_val) { 8314 dst_reg->u32_min_value = 0; 8315 dst_reg->u32_max_value = U32_MAX; 8316 } else { 8317 dst_reg->u32_min_value += umin_val; 8318 dst_reg->u32_max_value += umax_val; 8319 } 8320 } 8321 8322 static void scalar_min_max_add(struct bpf_reg_state *dst_reg, 8323 struct bpf_reg_state *src_reg) 8324 { 8325 s64 smin_val = src_reg->smin_value; 8326 s64 smax_val = src_reg->smax_value; 8327 u64 umin_val = src_reg->umin_value; 8328 u64 umax_val = src_reg->umax_value; 8329 8330 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 8331 signed_add_overflows(dst_reg->smax_value, smax_val)) { 8332 dst_reg->smin_value = S64_MIN; 8333 dst_reg->smax_value = S64_MAX; 8334 } else { 8335 dst_reg->smin_value += smin_val; 8336 dst_reg->smax_value += smax_val; 8337 } 8338 if (dst_reg->umin_value + umin_val < umin_val || 8339 dst_reg->umax_value + umax_val < umax_val) { 8340 dst_reg->umin_value = 0; 8341 dst_reg->umax_value = U64_MAX; 8342 } else { 8343 dst_reg->umin_value += umin_val; 8344 dst_reg->umax_value += umax_val; 8345 } 8346 } 8347 8348 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, 8349 struct bpf_reg_state *src_reg) 8350 { 8351 s32 smin_val = src_reg->s32_min_value; 8352 s32 smax_val = src_reg->s32_max_value; 8353 u32 umin_val = src_reg->u32_min_value; 8354 u32 umax_val = src_reg->u32_max_value; 8355 8356 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) || 8357 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) { 8358 /* Overflow possible, we know nothing */ 8359 dst_reg->s32_min_value = S32_MIN; 8360 dst_reg->s32_max_value = S32_MAX; 8361 } else { 8362 dst_reg->s32_min_value -= smax_val; 8363 dst_reg->s32_max_value -= smin_val; 8364 } 8365 if (dst_reg->u32_min_value < umax_val) { 8366 /* Overflow possible, we know nothing */ 8367 dst_reg->u32_min_value = 0; 8368 dst_reg->u32_max_value = U32_MAX; 8369 } else { 8370 /* Cannot overflow (as long as bounds are consistent) */ 8371 dst_reg->u32_min_value -= umax_val; 8372 dst_reg->u32_max_value -= umin_val; 8373 } 8374 } 8375 8376 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, 8377 struct bpf_reg_state *src_reg) 8378 { 8379 s64 smin_val = src_reg->smin_value; 8380 s64 smax_val = src_reg->smax_value; 8381 u64 umin_val = src_reg->umin_value; 8382 u64 umax_val = src_reg->umax_value; 8383 8384 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 8385 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 8386 /* Overflow possible, we know nothing */ 8387 dst_reg->smin_value = S64_MIN; 8388 dst_reg->smax_value = S64_MAX; 8389 } else { 8390 dst_reg->smin_value -= smax_val; 8391 dst_reg->smax_value -= smin_val; 8392 } 8393 if (dst_reg->umin_value < umax_val) { 8394 /* Overflow possible, we know nothing */ 8395 dst_reg->umin_value = 0; 8396 dst_reg->umax_value = U64_MAX; 8397 } else { 8398 /* Cannot overflow (as long as bounds are consistent) */ 8399 dst_reg->umin_value -= umax_val; 8400 dst_reg->umax_value -= umin_val; 8401 } 8402 } 8403 8404 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, 8405 struct bpf_reg_state *src_reg) 8406 { 8407 s32 smin_val = src_reg->s32_min_value; 8408 u32 umin_val = src_reg->u32_min_value; 8409 u32 umax_val = src_reg->u32_max_value; 8410 8411 if (smin_val < 0 || dst_reg->s32_min_value < 0) { 8412 /* Ain't nobody got time to multiply that sign */ 8413 __mark_reg32_unbounded(dst_reg); 8414 return; 8415 } 8416 /* Both values are positive, so we can work with unsigned and 8417 * copy the result to signed (unless it exceeds S32_MAX). 8418 */ 8419 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) { 8420 /* Potential overflow, we know nothing */ 8421 __mark_reg32_unbounded(dst_reg); 8422 return; 8423 } 8424 dst_reg->u32_min_value *= umin_val; 8425 dst_reg->u32_max_value *= umax_val; 8426 if (dst_reg->u32_max_value > S32_MAX) { 8427 /* Overflow possible, we know nothing */ 8428 dst_reg->s32_min_value = S32_MIN; 8429 dst_reg->s32_max_value = S32_MAX; 8430 } else { 8431 dst_reg->s32_min_value = dst_reg->u32_min_value; 8432 dst_reg->s32_max_value = dst_reg->u32_max_value; 8433 } 8434 } 8435 8436 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, 8437 struct bpf_reg_state *src_reg) 8438 { 8439 s64 smin_val = src_reg->smin_value; 8440 u64 umin_val = src_reg->umin_value; 8441 u64 umax_val = src_reg->umax_value; 8442 8443 if (smin_val < 0 || dst_reg->smin_value < 0) { 8444 /* Ain't nobody got time to multiply that sign */ 8445 __mark_reg64_unbounded(dst_reg); 8446 return; 8447 } 8448 /* Both values are positive, so we can work with unsigned and 8449 * copy the result to signed (unless it exceeds S64_MAX). 8450 */ 8451 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 8452 /* Potential overflow, we know nothing */ 8453 __mark_reg64_unbounded(dst_reg); 8454 return; 8455 } 8456 dst_reg->umin_value *= umin_val; 8457 dst_reg->umax_value *= umax_val; 8458 if (dst_reg->umax_value > S64_MAX) { 8459 /* Overflow possible, we know nothing */ 8460 dst_reg->smin_value = S64_MIN; 8461 dst_reg->smax_value = S64_MAX; 8462 } else { 8463 dst_reg->smin_value = dst_reg->umin_value; 8464 dst_reg->smax_value = dst_reg->umax_value; 8465 } 8466 } 8467 8468 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, 8469 struct bpf_reg_state *src_reg) 8470 { 8471 bool src_known = tnum_subreg_is_const(src_reg->var_off); 8472 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 8473 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 8474 s32 smin_val = src_reg->s32_min_value; 8475 u32 umax_val = src_reg->u32_max_value; 8476 8477 if (src_known && dst_known) { 8478 __mark_reg32_known(dst_reg, var32_off.value); 8479 return; 8480 } 8481 8482 /* We get our minimum from the var_off, since that's inherently 8483 * bitwise. Our maximum is the minimum of the operands' maxima. 8484 */ 8485 dst_reg->u32_min_value = var32_off.value; 8486 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 8487 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 8488 /* Lose signed bounds when ANDing negative numbers, 8489 * ain't nobody got time for that. 8490 */ 8491 dst_reg->s32_min_value = S32_MIN; 8492 dst_reg->s32_max_value = S32_MAX; 8493 } else { 8494 /* ANDing two positives gives a positive, so safe to 8495 * cast result into s64. 8496 */ 8497 dst_reg->s32_min_value = dst_reg->u32_min_value; 8498 dst_reg->s32_max_value = dst_reg->u32_max_value; 8499 } 8500 } 8501 8502 static void scalar_min_max_and(struct bpf_reg_state *dst_reg, 8503 struct bpf_reg_state *src_reg) 8504 { 8505 bool src_known = tnum_is_const(src_reg->var_off); 8506 bool dst_known = tnum_is_const(dst_reg->var_off); 8507 s64 smin_val = src_reg->smin_value; 8508 u64 umax_val = src_reg->umax_value; 8509 8510 if (src_known && dst_known) { 8511 __mark_reg_known(dst_reg, dst_reg->var_off.value); 8512 return; 8513 } 8514 8515 /* We get our minimum from the var_off, since that's inherently 8516 * bitwise. Our maximum is the minimum of the operands' maxima. 8517 */ 8518 dst_reg->umin_value = dst_reg->var_off.value; 8519 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 8520 if (dst_reg->smin_value < 0 || smin_val < 0) { 8521 /* Lose signed bounds when ANDing negative numbers, 8522 * ain't nobody got time for that. 8523 */ 8524 dst_reg->smin_value = S64_MIN; 8525 dst_reg->smax_value = S64_MAX; 8526 } else { 8527 /* ANDing two positives gives a positive, so safe to 8528 * cast result into s64. 8529 */ 8530 dst_reg->smin_value = dst_reg->umin_value; 8531 dst_reg->smax_value = dst_reg->umax_value; 8532 } 8533 /* We may learn something more from the var_off */ 8534 __update_reg_bounds(dst_reg); 8535 } 8536 8537 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, 8538 struct bpf_reg_state *src_reg) 8539 { 8540 bool src_known = tnum_subreg_is_const(src_reg->var_off); 8541 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 8542 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 8543 s32 smin_val = src_reg->s32_min_value; 8544 u32 umin_val = src_reg->u32_min_value; 8545 8546 if (src_known && dst_known) { 8547 __mark_reg32_known(dst_reg, var32_off.value); 8548 return; 8549 } 8550 8551 /* We get our maximum from the var_off, and our minimum is the 8552 * maximum of the operands' minima 8553 */ 8554 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 8555 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 8556 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 8557 /* Lose signed bounds when ORing negative numbers, 8558 * ain't nobody got time for that. 8559 */ 8560 dst_reg->s32_min_value = S32_MIN; 8561 dst_reg->s32_max_value = S32_MAX; 8562 } else { 8563 /* ORing two positives gives a positive, so safe to 8564 * cast result into s64. 8565 */ 8566 dst_reg->s32_min_value = dst_reg->u32_min_value; 8567 dst_reg->s32_max_value = dst_reg->u32_max_value; 8568 } 8569 } 8570 8571 static void scalar_min_max_or(struct bpf_reg_state *dst_reg, 8572 struct bpf_reg_state *src_reg) 8573 { 8574 bool src_known = tnum_is_const(src_reg->var_off); 8575 bool dst_known = tnum_is_const(dst_reg->var_off); 8576 s64 smin_val = src_reg->smin_value; 8577 u64 umin_val = src_reg->umin_value; 8578 8579 if (src_known && dst_known) { 8580 __mark_reg_known(dst_reg, dst_reg->var_off.value); 8581 return; 8582 } 8583 8584 /* We get our maximum from the var_off, and our minimum is the 8585 * maximum of the operands' minima 8586 */ 8587 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 8588 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 8589 if (dst_reg->smin_value < 0 || smin_val < 0) { 8590 /* Lose signed bounds when ORing negative numbers, 8591 * ain't nobody got time for that. 8592 */ 8593 dst_reg->smin_value = S64_MIN; 8594 dst_reg->smax_value = S64_MAX; 8595 } else { 8596 /* ORing two positives gives a positive, so safe to 8597 * cast result into s64. 8598 */ 8599 dst_reg->smin_value = dst_reg->umin_value; 8600 dst_reg->smax_value = dst_reg->umax_value; 8601 } 8602 /* We may learn something more from the var_off */ 8603 __update_reg_bounds(dst_reg); 8604 } 8605 8606 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg, 8607 struct bpf_reg_state *src_reg) 8608 { 8609 bool src_known = tnum_subreg_is_const(src_reg->var_off); 8610 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 8611 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 8612 s32 smin_val = src_reg->s32_min_value; 8613 8614 if (src_known && dst_known) { 8615 __mark_reg32_known(dst_reg, var32_off.value); 8616 return; 8617 } 8618 8619 /* We get both minimum and maximum from the var32_off. */ 8620 dst_reg->u32_min_value = var32_off.value; 8621 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 8622 8623 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) { 8624 /* XORing two positive sign numbers gives a positive, 8625 * so safe to cast u32 result into s32. 8626 */ 8627 dst_reg->s32_min_value = dst_reg->u32_min_value; 8628 dst_reg->s32_max_value = dst_reg->u32_max_value; 8629 } else { 8630 dst_reg->s32_min_value = S32_MIN; 8631 dst_reg->s32_max_value = S32_MAX; 8632 } 8633 } 8634 8635 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg, 8636 struct bpf_reg_state *src_reg) 8637 { 8638 bool src_known = tnum_is_const(src_reg->var_off); 8639 bool dst_known = tnum_is_const(dst_reg->var_off); 8640 s64 smin_val = src_reg->smin_value; 8641 8642 if (src_known && dst_known) { 8643 /* dst_reg->var_off.value has been updated earlier */ 8644 __mark_reg_known(dst_reg, dst_reg->var_off.value); 8645 return; 8646 } 8647 8648 /* We get both minimum and maximum from the var_off. */ 8649 dst_reg->umin_value = dst_reg->var_off.value; 8650 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 8651 8652 if (dst_reg->smin_value >= 0 && smin_val >= 0) { 8653 /* XORing two positive sign numbers gives a positive, 8654 * so safe to cast u64 result into s64. 8655 */ 8656 dst_reg->smin_value = dst_reg->umin_value; 8657 dst_reg->smax_value = dst_reg->umax_value; 8658 } else { 8659 dst_reg->smin_value = S64_MIN; 8660 dst_reg->smax_value = S64_MAX; 8661 } 8662 8663 __update_reg_bounds(dst_reg); 8664 } 8665 8666 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 8667 u64 umin_val, u64 umax_val) 8668 { 8669 /* We lose all sign bit information (except what we can pick 8670 * up from var_off) 8671 */ 8672 dst_reg->s32_min_value = S32_MIN; 8673 dst_reg->s32_max_value = S32_MAX; 8674 /* If we might shift our top bit out, then we know nothing */ 8675 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { 8676 dst_reg->u32_min_value = 0; 8677 dst_reg->u32_max_value = U32_MAX; 8678 } else { 8679 dst_reg->u32_min_value <<= umin_val; 8680 dst_reg->u32_max_value <<= umax_val; 8681 } 8682 } 8683 8684 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 8685 struct bpf_reg_state *src_reg) 8686 { 8687 u32 umax_val = src_reg->u32_max_value; 8688 u32 umin_val = src_reg->u32_min_value; 8689 /* u32 alu operation will zext upper bits */ 8690 struct tnum subreg = tnum_subreg(dst_reg->var_off); 8691 8692 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 8693 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 8694 /* Not required but being careful mark reg64 bounds as unknown so 8695 * that we are forced to pick them up from tnum and zext later and 8696 * if some path skips this step we are still safe. 8697 */ 8698 __mark_reg64_unbounded(dst_reg); 8699 __update_reg32_bounds(dst_reg); 8700 } 8701 8702 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, 8703 u64 umin_val, u64 umax_val) 8704 { 8705 /* Special case <<32 because it is a common compiler pattern to sign 8706 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are 8707 * positive we know this shift will also be positive so we can track 8708 * bounds correctly. Otherwise we lose all sign bit information except 8709 * what we can pick up from var_off. Perhaps we can generalize this 8710 * later to shifts of any length. 8711 */ 8712 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) 8713 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; 8714 else 8715 dst_reg->smax_value = S64_MAX; 8716 8717 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) 8718 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; 8719 else 8720 dst_reg->smin_value = S64_MIN; 8721 8722 /* If we might shift our top bit out, then we know nothing */ 8723 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 8724 dst_reg->umin_value = 0; 8725 dst_reg->umax_value = U64_MAX; 8726 } else { 8727 dst_reg->umin_value <<= umin_val; 8728 dst_reg->umax_value <<= umax_val; 8729 } 8730 } 8731 8732 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, 8733 struct bpf_reg_state *src_reg) 8734 { 8735 u64 umax_val = src_reg->umax_value; 8736 u64 umin_val = src_reg->umin_value; 8737 8738 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 8739 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 8740 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 8741 8742 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 8743 /* We may learn something more from the var_off */ 8744 __update_reg_bounds(dst_reg); 8745 } 8746 8747 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, 8748 struct bpf_reg_state *src_reg) 8749 { 8750 struct tnum subreg = tnum_subreg(dst_reg->var_off); 8751 u32 umax_val = src_reg->u32_max_value; 8752 u32 umin_val = src_reg->u32_min_value; 8753 8754 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 8755 * be negative, then either: 8756 * 1) src_reg might be zero, so the sign bit of the result is 8757 * unknown, so we lose our signed bounds 8758 * 2) it's known negative, thus the unsigned bounds capture the 8759 * signed bounds 8760 * 3) the signed bounds cross zero, so they tell us nothing 8761 * about the result 8762 * If the value in dst_reg is known nonnegative, then again the 8763 * unsigned bounds capture the signed bounds. 8764 * Thus, in all cases it suffices to blow away our signed bounds 8765 * and rely on inferring new ones from the unsigned bounds and 8766 * var_off of the result. 8767 */ 8768 dst_reg->s32_min_value = S32_MIN; 8769 dst_reg->s32_max_value = S32_MAX; 8770 8771 dst_reg->var_off = tnum_rshift(subreg, umin_val); 8772 dst_reg->u32_min_value >>= umax_val; 8773 dst_reg->u32_max_value >>= umin_val; 8774 8775 __mark_reg64_unbounded(dst_reg); 8776 __update_reg32_bounds(dst_reg); 8777 } 8778 8779 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, 8780 struct bpf_reg_state *src_reg) 8781 { 8782 u64 umax_val = src_reg->umax_value; 8783 u64 umin_val = src_reg->umin_value; 8784 8785 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 8786 * be negative, then either: 8787 * 1) src_reg might be zero, so the sign bit of the result is 8788 * unknown, so we lose our signed bounds 8789 * 2) it's known negative, thus the unsigned bounds capture the 8790 * signed bounds 8791 * 3) the signed bounds cross zero, so they tell us nothing 8792 * about the result 8793 * If the value in dst_reg is known nonnegative, then again the 8794 * unsigned bounds capture the signed bounds. 8795 * Thus, in all cases it suffices to blow away our signed bounds 8796 * and rely on inferring new ones from the unsigned bounds and 8797 * var_off of the result. 8798 */ 8799 dst_reg->smin_value = S64_MIN; 8800 dst_reg->smax_value = S64_MAX; 8801 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 8802 dst_reg->umin_value >>= umax_val; 8803 dst_reg->umax_value >>= umin_val; 8804 8805 /* Its not easy to operate on alu32 bounds here because it depends 8806 * on bits being shifted in. Take easy way out and mark unbounded 8807 * so we can recalculate later from tnum. 8808 */ 8809 __mark_reg32_unbounded(dst_reg); 8810 __update_reg_bounds(dst_reg); 8811 } 8812 8813 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, 8814 struct bpf_reg_state *src_reg) 8815 { 8816 u64 umin_val = src_reg->u32_min_value; 8817 8818 /* Upon reaching here, src_known is true and 8819 * umax_val is equal to umin_val. 8820 */ 8821 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 8822 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 8823 8824 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); 8825 8826 /* blow away the dst_reg umin_value/umax_value and rely on 8827 * dst_reg var_off to refine the result. 8828 */ 8829 dst_reg->u32_min_value = 0; 8830 dst_reg->u32_max_value = U32_MAX; 8831 8832 __mark_reg64_unbounded(dst_reg); 8833 __update_reg32_bounds(dst_reg); 8834 } 8835 8836 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, 8837 struct bpf_reg_state *src_reg) 8838 { 8839 u64 umin_val = src_reg->umin_value; 8840 8841 /* Upon reaching here, src_known is true and umax_val is equal 8842 * to umin_val. 8843 */ 8844 dst_reg->smin_value >>= umin_val; 8845 dst_reg->smax_value >>= umin_val; 8846 8847 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); 8848 8849 /* blow away the dst_reg umin_value/umax_value and rely on 8850 * dst_reg var_off to refine the result. 8851 */ 8852 dst_reg->umin_value = 0; 8853 dst_reg->umax_value = U64_MAX; 8854 8855 /* Its not easy to operate on alu32 bounds here because it depends 8856 * on bits being shifted in from upper 32-bits. Take easy way out 8857 * and mark unbounded so we can recalculate later from tnum. 8858 */ 8859 __mark_reg32_unbounded(dst_reg); 8860 __update_reg_bounds(dst_reg); 8861 } 8862 8863 /* WARNING: This function does calculations on 64-bit values, but the actual 8864 * execution may occur on 32-bit values. Therefore, things like bitshifts 8865 * need extra checks in the 32-bit case. 8866 */ 8867 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 8868 struct bpf_insn *insn, 8869 struct bpf_reg_state *dst_reg, 8870 struct bpf_reg_state src_reg) 8871 { 8872 struct bpf_reg_state *regs = cur_regs(env); 8873 u8 opcode = BPF_OP(insn->code); 8874 bool src_known; 8875 s64 smin_val, smax_val; 8876 u64 umin_val, umax_val; 8877 s32 s32_min_val, s32_max_val; 8878 u32 u32_min_val, u32_max_val; 8879 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 8880 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 8881 int ret; 8882 8883 smin_val = src_reg.smin_value; 8884 smax_val = src_reg.smax_value; 8885 umin_val = src_reg.umin_value; 8886 umax_val = src_reg.umax_value; 8887 8888 s32_min_val = src_reg.s32_min_value; 8889 s32_max_val = src_reg.s32_max_value; 8890 u32_min_val = src_reg.u32_min_value; 8891 u32_max_val = src_reg.u32_max_value; 8892 8893 if (alu32) { 8894 src_known = tnum_subreg_is_const(src_reg.var_off); 8895 if ((src_known && 8896 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) || 8897 s32_min_val > s32_max_val || u32_min_val > u32_max_val) { 8898 /* Taint dst register if offset had invalid bounds 8899 * derived from e.g. dead branches. 8900 */ 8901 __mark_reg_unknown(env, dst_reg); 8902 return 0; 8903 } 8904 } else { 8905 src_known = tnum_is_const(src_reg.var_off); 8906 if ((src_known && 8907 (smin_val != smax_val || umin_val != umax_val)) || 8908 smin_val > smax_val || umin_val > umax_val) { 8909 /* Taint dst register if offset had invalid bounds 8910 * derived from e.g. dead branches. 8911 */ 8912 __mark_reg_unknown(env, dst_reg); 8913 return 0; 8914 } 8915 } 8916 8917 if (!src_known && 8918 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 8919 __mark_reg_unknown(env, dst_reg); 8920 return 0; 8921 } 8922 8923 if (sanitize_needed(opcode)) { 8924 ret = sanitize_val_alu(env, insn); 8925 if (ret < 0) 8926 return sanitize_err(env, insn, ret, NULL, NULL); 8927 } 8928 8929 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 8930 * There are two classes of instructions: The first class we track both 8931 * alu32 and alu64 sign/unsigned bounds independently this provides the 8932 * greatest amount of precision when alu operations are mixed with jmp32 8933 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 8934 * and BPF_OR. This is possible because these ops have fairly easy to 8935 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 8936 * See alu32 verifier tests for examples. The second class of 8937 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 8938 * with regards to tracking sign/unsigned bounds because the bits may 8939 * cross subreg boundaries in the alu64 case. When this happens we mark 8940 * the reg unbounded in the subreg bound space and use the resulting 8941 * tnum to calculate an approximation of the sign/unsigned bounds. 8942 */ 8943 switch (opcode) { 8944 case BPF_ADD: 8945 scalar32_min_max_add(dst_reg, &src_reg); 8946 scalar_min_max_add(dst_reg, &src_reg); 8947 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 8948 break; 8949 case BPF_SUB: 8950 scalar32_min_max_sub(dst_reg, &src_reg); 8951 scalar_min_max_sub(dst_reg, &src_reg); 8952 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 8953 break; 8954 case BPF_MUL: 8955 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 8956 scalar32_min_max_mul(dst_reg, &src_reg); 8957 scalar_min_max_mul(dst_reg, &src_reg); 8958 break; 8959 case BPF_AND: 8960 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 8961 scalar32_min_max_and(dst_reg, &src_reg); 8962 scalar_min_max_and(dst_reg, &src_reg); 8963 break; 8964 case BPF_OR: 8965 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 8966 scalar32_min_max_or(dst_reg, &src_reg); 8967 scalar_min_max_or(dst_reg, &src_reg); 8968 break; 8969 case BPF_XOR: 8970 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off); 8971 scalar32_min_max_xor(dst_reg, &src_reg); 8972 scalar_min_max_xor(dst_reg, &src_reg); 8973 break; 8974 case BPF_LSH: 8975 if (umax_val >= insn_bitness) { 8976 /* Shifts greater than 31 or 63 are undefined. 8977 * This includes shifts by a negative number. 8978 */ 8979 mark_reg_unknown(env, regs, insn->dst_reg); 8980 break; 8981 } 8982 if (alu32) 8983 scalar32_min_max_lsh(dst_reg, &src_reg); 8984 else 8985 scalar_min_max_lsh(dst_reg, &src_reg); 8986 break; 8987 case BPF_RSH: 8988 if (umax_val >= insn_bitness) { 8989 /* Shifts greater than 31 or 63 are undefined. 8990 * This includes shifts by a negative number. 8991 */ 8992 mark_reg_unknown(env, regs, insn->dst_reg); 8993 break; 8994 } 8995 if (alu32) 8996 scalar32_min_max_rsh(dst_reg, &src_reg); 8997 else 8998 scalar_min_max_rsh(dst_reg, &src_reg); 8999 break; 9000 case BPF_ARSH: 9001 if (umax_val >= insn_bitness) { 9002 /* Shifts greater than 31 or 63 are undefined. 9003 * This includes shifts by a negative number. 9004 */ 9005 mark_reg_unknown(env, regs, insn->dst_reg); 9006 break; 9007 } 9008 if (alu32) 9009 scalar32_min_max_arsh(dst_reg, &src_reg); 9010 else 9011 scalar_min_max_arsh(dst_reg, &src_reg); 9012 break; 9013 default: 9014 mark_reg_unknown(env, regs, insn->dst_reg); 9015 break; 9016 } 9017 9018 /* ALU32 ops are zero extended into 64bit register */ 9019 if (alu32) 9020 zext_32_to_64(dst_reg); 9021 reg_bounds_sync(dst_reg); 9022 return 0; 9023 } 9024 9025 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 9026 * and var_off. 9027 */ 9028 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 9029 struct bpf_insn *insn) 9030 { 9031 struct bpf_verifier_state *vstate = env->cur_state; 9032 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 9033 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 9034 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 9035 u8 opcode = BPF_OP(insn->code); 9036 int err; 9037 9038 dst_reg = ®s[insn->dst_reg]; 9039 src_reg = NULL; 9040 if (dst_reg->type != SCALAR_VALUE) 9041 ptr_reg = dst_reg; 9042 else 9043 /* Make sure ID is cleared otherwise dst_reg min/max could be 9044 * incorrectly propagated into other registers by find_equal_scalars() 9045 */ 9046 dst_reg->id = 0; 9047 if (BPF_SRC(insn->code) == BPF_X) { 9048 src_reg = ®s[insn->src_reg]; 9049 if (src_reg->type != SCALAR_VALUE) { 9050 if (dst_reg->type != SCALAR_VALUE) { 9051 /* Combining two pointers by any ALU op yields 9052 * an arbitrary scalar. Disallow all math except 9053 * pointer subtraction 9054 */ 9055 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 9056 mark_reg_unknown(env, regs, insn->dst_reg); 9057 return 0; 9058 } 9059 verbose(env, "R%d pointer %s pointer prohibited\n", 9060 insn->dst_reg, 9061 bpf_alu_string[opcode >> 4]); 9062 return -EACCES; 9063 } else { 9064 /* scalar += pointer 9065 * This is legal, but we have to reverse our 9066 * src/dest handling in computing the range 9067 */ 9068 err = mark_chain_precision(env, insn->dst_reg); 9069 if (err) 9070 return err; 9071 return adjust_ptr_min_max_vals(env, insn, 9072 src_reg, dst_reg); 9073 } 9074 } else if (ptr_reg) { 9075 /* pointer += scalar */ 9076 err = mark_chain_precision(env, insn->src_reg); 9077 if (err) 9078 return err; 9079 return adjust_ptr_min_max_vals(env, insn, 9080 dst_reg, src_reg); 9081 } 9082 } else { 9083 /* Pretend the src is a reg with a known value, since we only 9084 * need to be able to read from this state. 9085 */ 9086 off_reg.type = SCALAR_VALUE; 9087 __mark_reg_known(&off_reg, insn->imm); 9088 src_reg = &off_reg; 9089 if (ptr_reg) /* pointer += K */ 9090 return adjust_ptr_min_max_vals(env, insn, 9091 ptr_reg, src_reg); 9092 } 9093 9094 /* Got here implies adding two SCALAR_VALUEs */ 9095 if (WARN_ON_ONCE(ptr_reg)) { 9096 print_verifier_state(env, state, true); 9097 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 9098 return -EINVAL; 9099 } 9100 if (WARN_ON(!src_reg)) { 9101 print_verifier_state(env, state, true); 9102 verbose(env, "verifier internal error: no src_reg\n"); 9103 return -EINVAL; 9104 } 9105 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 9106 } 9107 9108 /* check validity of 32-bit and 64-bit arithmetic operations */ 9109 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 9110 { 9111 struct bpf_reg_state *regs = cur_regs(env); 9112 u8 opcode = BPF_OP(insn->code); 9113 int err; 9114 9115 if (opcode == BPF_END || opcode == BPF_NEG) { 9116 if (opcode == BPF_NEG) { 9117 if (BPF_SRC(insn->code) != BPF_K || 9118 insn->src_reg != BPF_REG_0 || 9119 insn->off != 0 || insn->imm != 0) { 9120 verbose(env, "BPF_NEG uses reserved fields\n"); 9121 return -EINVAL; 9122 } 9123 } else { 9124 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 9125 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 9126 BPF_CLASS(insn->code) == BPF_ALU64) { 9127 verbose(env, "BPF_END uses reserved fields\n"); 9128 return -EINVAL; 9129 } 9130 } 9131 9132 /* check src operand */ 9133 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 9134 if (err) 9135 return err; 9136 9137 if (is_pointer_value(env, insn->dst_reg)) { 9138 verbose(env, "R%d pointer arithmetic prohibited\n", 9139 insn->dst_reg); 9140 return -EACCES; 9141 } 9142 9143 /* check dest operand */ 9144 err = check_reg_arg(env, insn->dst_reg, DST_OP); 9145 if (err) 9146 return err; 9147 9148 } else if (opcode == BPF_MOV) { 9149 9150 if (BPF_SRC(insn->code) == BPF_X) { 9151 if (insn->imm != 0 || insn->off != 0) { 9152 verbose(env, "BPF_MOV uses reserved fields\n"); 9153 return -EINVAL; 9154 } 9155 9156 /* check src operand */ 9157 err = check_reg_arg(env, insn->src_reg, SRC_OP); 9158 if (err) 9159 return err; 9160 } else { 9161 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 9162 verbose(env, "BPF_MOV uses reserved fields\n"); 9163 return -EINVAL; 9164 } 9165 } 9166 9167 /* check dest operand, mark as required later */ 9168 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 9169 if (err) 9170 return err; 9171 9172 if (BPF_SRC(insn->code) == BPF_X) { 9173 struct bpf_reg_state *src_reg = regs + insn->src_reg; 9174 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 9175 9176 if (BPF_CLASS(insn->code) == BPF_ALU64) { 9177 /* case: R1 = R2 9178 * copy register state to dest reg 9179 */ 9180 if (src_reg->type == SCALAR_VALUE && !src_reg->id) 9181 /* Assign src and dst registers the same ID 9182 * that will be used by find_equal_scalars() 9183 * to propagate min/max range. 9184 */ 9185 src_reg->id = ++env->id_gen; 9186 *dst_reg = *src_reg; 9187 dst_reg->live |= REG_LIVE_WRITTEN; 9188 dst_reg->subreg_def = DEF_NOT_SUBREG; 9189 } else { 9190 /* R1 = (u32) R2 */ 9191 if (is_pointer_value(env, insn->src_reg)) { 9192 verbose(env, 9193 "R%d partial copy of pointer\n", 9194 insn->src_reg); 9195 return -EACCES; 9196 } else if (src_reg->type == SCALAR_VALUE) { 9197 *dst_reg = *src_reg; 9198 /* Make sure ID is cleared otherwise 9199 * dst_reg min/max could be incorrectly 9200 * propagated into src_reg by find_equal_scalars() 9201 */ 9202 dst_reg->id = 0; 9203 dst_reg->live |= REG_LIVE_WRITTEN; 9204 dst_reg->subreg_def = env->insn_idx + 1; 9205 } else { 9206 mark_reg_unknown(env, regs, 9207 insn->dst_reg); 9208 } 9209 zext_32_to_64(dst_reg); 9210 reg_bounds_sync(dst_reg); 9211 } 9212 } else { 9213 /* case: R = imm 9214 * remember the value we stored into this reg 9215 */ 9216 /* clear any state __mark_reg_known doesn't set */ 9217 mark_reg_unknown(env, regs, insn->dst_reg); 9218 regs[insn->dst_reg].type = SCALAR_VALUE; 9219 if (BPF_CLASS(insn->code) == BPF_ALU64) { 9220 __mark_reg_known(regs + insn->dst_reg, 9221 insn->imm); 9222 } else { 9223 __mark_reg_known(regs + insn->dst_reg, 9224 (u32)insn->imm); 9225 } 9226 } 9227 9228 } else if (opcode > BPF_END) { 9229 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 9230 return -EINVAL; 9231 9232 } else { /* all other ALU ops: and, sub, xor, add, ... */ 9233 9234 if (BPF_SRC(insn->code) == BPF_X) { 9235 if (insn->imm != 0 || insn->off != 0) { 9236 verbose(env, "BPF_ALU uses reserved fields\n"); 9237 return -EINVAL; 9238 } 9239 /* check src1 operand */ 9240 err = check_reg_arg(env, insn->src_reg, SRC_OP); 9241 if (err) 9242 return err; 9243 } else { 9244 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 9245 verbose(env, "BPF_ALU uses reserved fields\n"); 9246 return -EINVAL; 9247 } 9248 } 9249 9250 /* check src2 operand */ 9251 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 9252 if (err) 9253 return err; 9254 9255 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 9256 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 9257 verbose(env, "div by zero\n"); 9258 return -EINVAL; 9259 } 9260 9261 if ((opcode == BPF_LSH || opcode == BPF_RSH || 9262 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 9263 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 9264 9265 if (insn->imm < 0 || insn->imm >= size) { 9266 verbose(env, "invalid shift %d\n", insn->imm); 9267 return -EINVAL; 9268 } 9269 } 9270 9271 /* check dest operand */ 9272 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 9273 if (err) 9274 return err; 9275 9276 return adjust_reg_min_max_vals(env, insn); 9277 } 9278 9279 return 0; 9280 } 9281 9282 static void __find_good_pkt_pointers(struct bpf_func_state *state, 9283 struct bpf_reg_state *dst_reg, 9284 enum bpf_reg_type type, int new_range) 9285 { 9286 struct bpf_reg_state *reg; 9287 int i; 9288 9289 for (i = 0; i < MAX_BPF_REG; i++) { 9290 reg = &state->regs[i]; 9291 if (reg->type == type && reg->id == dst_reg->id) 9292 /* keep the maximum range already checked */ 9293 reg->range = max(reg->range, new_range); 9294 } 9295 9296 bpf_for_each_spilled_reg(i, state, reg) { 9297 if (!reg) 9298 continue; 9299 if (reg->type == type && reg->id == dst_reg->id) 9300 reg->range = max(reg->range, new_range); 9301 } 9302 } 9303 9304 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 9305 struct bpf_reg_state *dst_reg, 9306 enum bpf_reg_type type, 9307 bool range_right_open) 9308 { 9309 int new_range, i; 9310 9311 if (dst_reg->off < 0 || 9312 (dst_reg->off == 0 && range_right_open)) 9313 /* This doesn't give us any range */ 9314 return; 9315 9316 if (dst_reg->umax_value > MAX_PACKET_OFF || 9317 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 9318 /* Risk of overflow. For instance, ptr + (1<<63) may be less 9319 * than pkt_end, but that's because it's also less than pkt. 9320 */ 9321 return; 9322 9323 new_range = dst_reg->off; 9324 if (range_right_open) 9325 new_range++; 9326 9327 /* Examples for register markings: 9328 * 9329 * pkt_data in dst register: 9330 * 9331 * r2 = r3; 9332 * r2 += 8; 9333 * if (r2 > pkt_end) goto <handle exception> 9334 * <access okay> 9335 * 9336 * r2 = r3; 9337 * r2 += 8; 9338 * if (r2 < pkt_end) goto <access okay> 9339 * <handle exception> 9340 * 9341 * Where: 9342 * r2 == dst_reg, pkt_end == src_reg 9343 * r2=pkt(id=n,off=8,r=0) 9344 * r3=pkt(id=n,off=0,r=0) 9345 * 9346 * pkt_data in src register: 9347 * 9348 * r2 = r3; 9349 * r2 += 8; 9350 * if (pkt_end >= r2) goto <access okay> 9351 * <handle exception> 9352 * 9353 * r2 = r3; 9354 * r2 += 8; 9355 * if (pkt_end <= r2) goto <handle exception> 9356 * <access okay> 9357 * 9358 * Where: 9359 * pkt_end == dst_reg, r2 == src_reg 9360 * r2=pkt(id=n,off=8,r=0) 9361 * r3=pkt(id=n,off=0,r=0) 9362 * 9363 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 9364 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 9365 * and [r3, r3 + 8-1) respectively is safe to access depending on 9366 * the check. 9367 */ 9368 9369 /* If our ids match, then we must have the same max_value. And we 9370 * don't care about the other reg's fixed offset, since if it's too big 9371 * the range won't allow anything. 9372 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 9373 */ 9374 for (i = 0; i <= vstate->curframe; i++) 9375 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type, 9376 new_range); 9377 } 9378 9379 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode) 9380 { 9381 struct tnum subreg = tnum_subreg(reg->var_off); 9382 s32 sval = (s32)val; 9383 9384 switch (opcode) { 9385 case BPF_JEQ: 9386 if (tnum_is_const(subreg)) 9387 return !!tnum_equals_const(subreg, val); 9388 break; 9389 case BPF_JNE: 9390 if (tnum_is_const(subreg)) 9391 return !tnum_equals_const(subreg, val); 9392 break; 9393 case BPF_JSET: 9394 if ((~subreg.mask & subreg.value) & val) 9395 return 1; 9396 if (!((subreg.mask | subreg.value) & val)) 9397 return 0; 9398 break; 9399 case BPF_JGT: 9400 if (reg->u32_min_value > val) 9401 return 1; 9402 else if (reg->u32_max_value <= val) 9403 return 0; 9404 break; 9405 case BPF_JSGT: 9406 if (reg->s32_min_value > sval) 9407 return 1; 9408 else if (reg->s32_max_value <= sval) 9409 return 0; 9410 break; 9411 case BPF_JLT: 9412 if (reg->u32_max_value < val) 9413 return 1; 9414 else if (reg->u32_min_value >= val) 9415 return 0; 9416 break; 9417 case BPF_JSLT: 9418 if (reg->s32_max_value < sval) 9419 return 1; 9420 else if (reg->s32_min_value >= sval) 9421 return 0; 9422 break; 9423 case BPF_JGE: 9424 if (reg->u32_min_value >= val) 9425 return 1; 9426 else if (reg->u32_max_value < val) 9427 return 0; 9428 break; 9429 case BPF_JSGE: 9430 if (reg->s32_min_value >= sval) 9431 return 1; 9432 else if (reg->s32_max_value < sval) 9433 return 0; 9434 break; 9435 case BPF_JLE: 9436 if (reg->u32_max_value <= val) 9437 return 1; 9438 else if (reg->u32_min_value > val) 9439 return 0; 9440 break; 9441 case BPF_JSLE: 9442 if (reg->s32_max_value <= sval) 9443 return 1; 9444 else if (reg->s32_min_value > sval) 9445 return 0; 9446 break; 9447 } 9448 9449 return -1; 9450 } 9451 9452 9453 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode) 9454 { 9455 s64 sval = (s64)val; 9456 9457 switch (opcode) { 9458 case BPF_JEQ: 9459 if (tnum_is_const(reg->var_off)) 9460 return !!tnum_equals_const(reg->var_off, val); 9461 break; 9462 case BPF_JNE: 9463 if (tnum_is_const(reg->var_off)) 9464 return !tnum_equals_const(reg->var_off, val); 9465 break; 9466 case BPF_JSET: 9467 if ((~reg->var_off.mask & reg->var_off.value) & val) 9468 return 1; 9469 if (!((reg->var_off.mask | reg->var_off.value) & val)) 9470 return 0; 9471 break; 9472 case BPF_JGT: 9473 if (reg->umin_value > val) 9474 return 1; 9475 else if (reg->umax_value <= val) 9476 return 0; 9477 break; 9478 case BPF_JSGT: 9479 if (reg->smin_value > sval) 9480 return 1; 9481 else if (reg->smax_value <= sval) 9482 return 0; 9483 break; 9484 case BPF_JLT: 9485 if (reg->umax_value < val) 9486 return 1; 9487 else if (reg->umin_value >= val) 9488 return 0; 9489 break; 9490 case BPF_JSLT: 9491 if (reg->smax_value < sval) 9492 return 1; 9493 else if (reg->smin_value >= sval) 9494 return 0; 9495 break; 9496 case BPF_JGE: 9497 if (reg->umin_value >= val) 9498 return 1; 9499 else if (reg->umax_value < val) 9500 return 0; 9501 break; 9502 case BPF_JSGE: 9503 if (reg->smin_value >= sval) 9504 return 1; 9505 else if (reg->smax_value < sval) 9506 return 0; 9507 break; 9508 case BPF_JLE: 9509 if (reg->umax_value <= val) 9510 return 1; 9511 else if (reg->umin_value > val) 9512 return 0; 9513 break; 9514 case BPF_JSLE: 9515 if (reg->smax_value <= sval) 9516 return 1; 9517 else if (reg->smin_value > sval) 9518 return 0; 9519 break; 9520 } 9521 9522 return -1; 9523 } 9524 9525 /* compute branch direction of the expression "if (reg opcode val) goto target;" 9526 * and return: 9527 * 1 - branch will be taken and "goto target" will be executed 9528 * 0 - branch will not be taken and fall-through to next insn 9529 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value 9530 * range [0,10] 9531 */ 9532 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, 9533 bool is_jmp32) 9534 { 9535 if (__is_pointer_value(false, reg)) { 9536 if (!reg_type_not_null(reg->type)) 9537 return -1; 9538 9539 /* If pointer is valid tests against zero will fail so we can 9540 * use this to direct branch taken. 9541 */ 9542 if (val != 0) 9543 return -1; 9544 9545 switch (opcode) { 9546 case BPF_JEQ: 9547 return 0; 9548 case BPF_JNE: 9549 return 1; 9550 default: 9551 return -1; 9552 } 9553 } 9554 9555 if (is_jmp32) 9556 return is_branch32_taken(reg, val, opcode); 9557 return is_branch64_taken(reg, val, opcode); 9558 } 9559 9560 static int flip_opcode(u32 opcode) 9561 { 9562 /* How can we transform "a <op> b" into "b <op> a"? */ 9563 static const u8 opcode_flip[16] = { 9564 /* these stay the same */ 9565 [BPF_JEQ >> 4] = BPF_JEQ, 9566 [BPF_JNE >> 4] = BPF_JNE, 9567 [BPF_JSET >> 4] = BPF_JSET, 9568 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 9569 [BPF_JGE >> 4] = BPF_JLE, 9570 [BPF_JGT >> 4] = BPF_JLT, 9571 [BPF_JLE >> 4] = BPF_JGE, 9572 [BPF_JLT >> 4] = BPF_JGT, 9573 [BPF_JSGE >> 4] = BPF_JSLE, 9574 [BPF_JSGT >> 4] = BPF_JSLT, 9575 [BPF_JSLE >> 4] = BPF_JSGE, 9576 [BPF_JSLT >> 4] = BPF_JSGT 9577 }; 9578 return opcode_flip[opcode >> 4]; 9579 } 9580 9581 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg, 9582 struct bpf_reg_state *src_reg, 9583 u8 opcode) 9584 { 9585 struct bpf_reg_state *pkt; 9586 9587 if (src_reg->type == PTR_TO_PACKET_END) { 9588 pkt = dst_reg; 9589 } else if (dst_reg->type == PTR_TO_PACKET_END) { 9590 pkt = src_reg; 9591 opcode = flip_opcode(opcode); 9592 } else { 9593 return -1; 9594 } 9595 9596 if (pkt->range >= 0) 9597 return -1; 9598 9599 switch (opcode) { 9600 case BPF_JLE: 9601 /* pkt <= pkt_end */ 9602 fallthrough; 9603 case BPF_JGT: 9604 /* pkt > pkt_end */ 9605 if (pkt->range == BEYOND_PKT_END) 9606 /* pkt has at last one extra byte beyond pkt_end */ 9607 return opcode == BPF_JGT; 9608 break; 9609 case BPF_JLT: 9610 /* pkt < pkt_end */ 9611 fallthrough; 9612 case BPF_JGE: 9613 /* pkt >= pkt_end */ 9614 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END) 9615 return opcode == BPF_JGE; 9616 break; 9617 } 9618 return -1; 9619 } 9620 9621 /* Adjusts the register min/max values in the case that the dst_reg is the 9622 * variable register that we are working on, and src_reg is a constant or we're 9623 * simply doing a BPF_K check. 9624 * In JEQ/JNE cases we also adjust the var_off values. 9625 */ 9626 static void reg_set_min_max(struct bpf_reg_state *true_reg, 9627 struct bpf_reg_state *false_reg, 9628 u64 val, u32 val32, 9629 u8 opcode, bool is_jmp32) 9630 { 9631 struct tnum false_32off = tnum_subreg(false_reg->var_off); 9632 struct tnum false_64off = false_reg->var_off; 9633 struct tnum true_32off = tnum_subreg(true_reg->var_off); 9634 struct tnum true_64off = true_reg->var_off; 9635 s64 sval = (s64)val; 9636 s32 sval32 = (s32)val32; 9637 9638 /* If the dst_reg is a pointer, we can't learn anything about its 9639 * variable offset from the compare (unless src_reg were a pointer into 9640 * the same object, but we don't bother with that. 9641 * Since false_reg and true_reg have the same type by construction, we 9642 * only need to check one of them for pointerness. 9643 */ 9644 if (__is_pointer_value(false, false_reg)) 9645 return; 9646 9647 switch (opcode) { 9648 /* JEQ/JNE comparison doesn't change the register equivalence. 9649 * 9650 * r1 = r2; 9651 * if (r1 == 42) goto label; 9652 * ... 9653 * label: // here both r1 and r2 are known to be 42. 9654 * 9655 * Hence when marking register as known preserve it's ID. 9656 */ 9657 case BPF_JEQ: 9658 if (is_jmp32) { 9659 __mark_reg32_known(true_reg, val32); 9660 true_32off = tnum_subreg(true_reg->var_off); 9661 } else { 9662 ___mark_reg_known(true_reg, val); 9663 true_64off = true_reg->var_off; 9664 } 9665 break; 9666 case BPF_JNE: 9667 if (is_jmp32) { 9668 __mark_reg32_known(false_reg, val32); 9669 false_32off = tnum_subreg(false_reg->var_off); 9670 } else { 9671 ___mark_reg_known(false_reg, val); 9672 false_64off = false_reg->var_off; 9673 } 9674 break; 9675 case BPF_JSET: 9676 if (is_jmp32) { 9677 false_32off = tnum_and(false_32off, tnum_const(~val32)); 9678 if (is_power_of_2(val32)) 9679 true_32off = tnum_or(true_32off, 9680 tnum_const(val32)); 9681 } else { 9682 false_64off = tnum_and(false_64off, tnum_const(~val)); 9683 if (is_power_of_2(val)) 9684 true_64off = tnum_or(true_64off, 9685 tnum_const(val)); 9686 } 9687 break; 9688 case BPF_JGE: 9689 case BPF_JGT: 9690 { 9691 if (is_jmp32) { 9692 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1; 9693 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32; 9694 9695 false_reg->u32_max_value = min(false_reg->u32_max_value, 9696 false_umax); 9697 true_reg->u32_min_value = max(true_reg->u32_min_value, 9698 true_umin); 9699 } else { 9700 u64 false_umax = opcode == BPF_JGT ? val : val - 1; 9701 u64 true_umin = opcode == BPF_JGT ? val + 1 : val; 9702 9703 false_reg->umax_value = min(false_reg->umax_value, false_umax); 9704 true_reg->umin_value = max(true_reg->umin_value, true_umin); 9705 } 9706 break; 9707 } 9708 case BPF_JSGE: 9709 case BPF_JSGT: 9710 { 9711 if (is_jmp32) { 9712 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1; 9713 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32; 9714 9715 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax); 9716 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin); 9717 } else { 9718 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; 9719 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; 9720 9721 false_reg->smax_value = min(false_reg->smax_value, false_smax); 9722 true_reg->smin_value = max(true_reg->smin_value, true_smin); 9723 } 9724 break; 9725 } 9726 case BPF_JLE: 9727 case BPF_JLT: 9728 { 9729 if (is_jmp32) { 9730 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1; 9731 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32; 9732 9733 false_reg->u32_min_value = max(false_reg->u32_min_value, 9734 false_umin); 9735 true_reg->u32_max_value = min(true_reg->u32_max_value, 9736 true_umax); 9737 } else { 9738 u64 false_umin = opcode == BPF_JLT ? val : val + 1; 9739 u64 true_umax = opcode == BPF_JLT ? val - 1 : val; 9740 9741 false_reg->umin_value = max(false_reg->umin_value, false_umin); 9742 true_reg->umax_value = min(true_reg->umax_value, true_umax); 9743 } 9744 break; 9745 } 9746 case BPF_JSLE: 9747 case BPF_JSLT: 9748 { 9749 if (is_jmp32) { 9750 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1; 9751 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32; 9752 9753 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin); 9754 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax); 9755 } else { 9756 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; 9757 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; 9758 9759 false_reg->smin_value = max(false_reg->smin_value, false_smin); 9760 true_reg->smax_value = min(true_reg->smax_value, true_smax); 9761 } 9762 break; 9763 } 9764 default: 9765 return; 9766 } 9767 9768 if (is_jmp32) { 9769 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off), 9770 tnum_subreg(false_32off)); 9771 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off), 9772 tnum_subreg(true_32off)); 9773 __reg_combine_32_into_64(false_reg); 9774 __reg_combine_32_into_64(true_reg); 9775 } else { 9776 false_reg->var_off = false_64off; 9777 true_reg->var_off = true_64off; 9778 __reg_combine_64_into_32(false_reg); 9779 __reg_combine_64_into_32(true_reg); 9780 } 9781 } 9782 9783 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 9784 * the variable reg. 9785 */ 9786 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 9787 struct bpf_reg_state *false_reg, 9788 u64 val, u32 val32, 9789 u8 opcode, bool is_jmp32) 9790 { 9791 opcode = flip_opcode(opcode); 9792 /* This uses zero as "not present in table"; luckily the zero opcode, 9793 * BPF_JA, can't get here. 9794 */ 9795 if (opcode) 9796 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32); 9797 } 9798 9799 /* Regs are known to be equal, so intersect their min/max/var_off */ 9800 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 9801 struct bpf_reg_state *dst_reg) 9802 { 9803 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 9804 dst_reg->umin_value); 9805 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 9806 dst_reg->umax_value); 9807 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 9808 dst_reg->smin_value); 9809 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 9810 dst_reg->smax_value); 9811 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 9812 dst_reg->var_off); 9813 reg_bounds_sync(src_reg); 9814 reg_bounds_sync(dst_reg); 9815 } 9816 9817 static void reg_combine_min_max(struct bpf_reg_state *true_src, 9818 struct bpf_reg_state *true_dst, 9819 struct bpf_reg_state *false_src, 9820 struct bpf_reg_state *false_dst, 9821 u8 opcode) 9822 { 9823 switch (opcode) { 9824 case BPF_JEQ: 9825 __reg_combine_min_max(true_src, true_dst); 9826 break; 9827 case BPF_JNE: 9828 __reg_combine_min_max(false_src, false_dst); 9829 break; 9830 } 9831 } 9832 9833 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 9834 struct bpf_reg_state *reg, u32 id, 9835 bool is_null) 9836 { 9837 if (type_may_be_null(reg->type) && reg->id == id && 9838 !WARN_ON_ONCE(!reg->id)) { 9839 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || 9840 !tnum_equals_const(reg->var_off, 0) || 9841 reg->off)) { 9842 /* Old offset (both fixed and variable parts) should 9843 * have been known-zero, because we don't allow pointer 9844 * arithmetic on pointers that might be NULL. If we 9845 * see this happening, don't convert the register. 9846 */ 9847 return; 9848 } 9849 if (is_null) { 9850 reg->type = SCALAR_VALUE; 9851 /* We don't need id and ref_obj_id from this point 9852 * onwards anymore, thus we should better reset it, 9853 * so that state pruning has chances to take effect. 9854 */ 9855 reg->id = 0; 9856 reg->ref_obj_id = 0; 9857 9858 return; 9859 } 9860 9861 mark_ptr_not_null_reg(reg); 9862 9863 if (!reg_may_point_to_spin_lock(reg)) { 9864 /* For not-NULL ptr, reg->ref_obj_id will be reset 9865 * in release_reg_references(). 9866 * 9867 * reg->id is still used by spin_lock ptr. Other 9868 * than spin_lock ptr type, reg->id can be reset. 9869 */ 9870 reg->id = 0; 9871 } 9872 } 9873 } 9874 9875 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id, 9876 bool is_null) 9877 { 9878 struct bpf_reg_state *reg; 9879 int i; 9880 9881 for (i = 0; i < MAX_BPF_REG; i++) 9882 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null); 9883 9884 bpf_for_each_spilled_reg(i, state, reg) { 9885 if (!reg) 9886 continue; 9887 mark_ptr_or_null_reg(state, reg, id, is_null); 9888 } 9889 } 9890 9891 /* The logic is similar to find_good_pkt_pointers(), both could eventually 9892 * be folded together at some point. 9893 */ 9894 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 9895 bool is_null) 9896 { 9897 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 9898 struct bpf_reg_state *regs = state->regs; 9899 u32 ref_obj_id = regs[regno].ref_obj_id; 9900 u32 id = regs[regno].id; 9901 int i; 9902 9903 if (ref_obj_id && ref_obj_id == id && is_null) 9904 /* regs[regno] is in the " == NULL" branch. 9905 * No one could have freed the reference state before 9906 * doing the NULL check. 9907 */ 9908 WARN_ON_ONCE(release_reference_state(state, id)); 9909 9910 for (i = 0; i <= vstate->curframe; i++) 9911 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null); 9912 } 9913 9914 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 9915 struct bpf_reg_state *dst_reg, 9916 struct bpf_reg_state *src_reg, 9917 struct bpf_verifier_state *this_branch, 9918 struct bpf_verifier_state *other_branch) 9919 { 9920 if (BPF_SRC(insn->code) != BPF_X) 9921 return false; 9922 9923 /* Pointers are always 64-bit. */ 9924 if (BPF_CLASS(insn->code) == BPF_JMP32) 9925 return false; 9926 9927 switch (BPF_OP(insn->code)) { 9928 case BPF_JGT: 9929 if ((dst_reg->type == PTR_TO_PACKET && 9930 src_reg->type == PTR_TO_PACKET_END) || 9931 (dst_reg->type == PTR_TO_PACKET_META && 9932 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 9933 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 9934 find_good_pkt_pointers(this_branch, dst_reg, 9935 dst_reg->type, false); 9936 mark_pkt_end(other_branch, insn->dst_reg, true); 9937 } else if ((dst_reg->type == PTR_TO_PACKET_END && 9938 src_reg->type == PTR_TO_PACKET) || 9939 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 9940 src_reg->type == PTR_TO_PACKET_META)) { 9941 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 9942 find_good_pkt_pointers(other_branch, src_reg, 9943 src_reg->type, true); 9944 mark_pkt_end(this_branch, insn->src_reg, false); 9945 } else { 9946 return false; 9947 } 9948 break; 9949 case BPF_JLT: 9950 if ((dst_reg->type == PTR_TO_PACKET && 9951 src_reg->type == PTR_TO_PACKET_END) || 9952 (dst_reg->type == PTR_TO_PACKET_META && 9953 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 9954 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 9955 find_good_pkt_pointers(other_branch, dst_reg, 9956 dst_reg->type, true); 9957 mark_pkt_end(this_branch, insn->dst_reg, false); 9958 } else if ((dst_reg->type == PTR_TO_PACKET_END && 9959 src_reg->type == PTR_TO_PACKET) || 9960 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 9961 src_reg->type == PTR_TO_PACKET_META)) { 9962 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 9963 find_good_pkt_pointers(this_branch, src_reg, 9964 src_reg->type, false); 9965 mark_pkt_end(other_branch, insn->src_reg, true); 9966 } else { 9967 return false; 9968 } 9969 break; 9970 case BPF_JGE: 9971 if ((dst_reg->type == PTR_TO_PACKET && 9972 src_reg->type == PTR_TO_PACKET_END) || 9973 (dst_reg->type == PTR_TO_PACKET_META && 9974 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 9975 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 9976 find_good_pkt_pointers(this_branch, dst_reg, 9977 dst_reg->type, true); 9978 mark_pkt_end(other_branch, insn->dst_reg, false); 9979 } else if ((dst_reg->type == PTR_TO_PACKET_END && 9980 src_reg->type == PTR_TO_PACKET) || 9981 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 9982 src_reg->type == PTR_TO_PACKET_META)) { 9983 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 9984 find_good_pkt_pointers(other_branch, src_reg, 9985 src_reg->type, false); 9986 mark_pkt_end(this_branch, insn->src_reg, true); 9987 } else { 9988 return false; 9989 } 9990 break; 9991 case BPF_JLE: 9992 if ((dst_reg->type == PTR_TO_PACKET && 9993 src_reg->type == PTR_TO_PACKET_END) || 9994 (dst_reg->type == PTR_TO_PACKET_META && 9995 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 9996 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 9997 find_good_pkt_pointers(other_branch, dst_reg, 9998 dst_reg->type, false); 9999 mark_pkt_end(this_branch, insn->dst_reg, true); 10000 } else if ((dst_reg->type == PTR_TO_PACKET_END && 10001 src_reg->type == PTR_TO_PACKET) || 10002 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 10003 src_reg->type == PTR_TO_PACKET_META)) { 10004 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 10005 find_good_pkt_pointers(this_branch, src_reg, 10006 src_reg->type, true); 10007 mark_pkt_end(other_branch, insn->src_reg, false); 10008 } else { 10009 return false; 10010 } 10011 break; 10012 default: 10013 return false; 10014 } 10015 10016 return true; 10017 } 10018 10019 static void find_equal_scalars(struct bpf_verifier_state *vstate, 10020 struct bpf_reg_state *known_reg) 10021 { 10022 struct bpf_func_state *state; 10023 struct bpf_reg_state *reg; 10024 int i, j; 10025 10026 for (i = 0; i <= vstate->curframe; i++) { 10027 state = vstate->frame[i]; 10028 for (j = 0; j < MAX_BPF_REG; j++) { 10029 reg = &state->regs[j]; 10030 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 10031 *reg = *known_reg; 10032 } 10033 10034 bpf_for_each_spilled_reg(j, state, reg) { 10035 if (!reg) 10036 continue; 10037 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 10038 *reg = *known_reg; 10039 } 10040 } 10041 } 10042 10043 static int check_cond_jmp_op(struct bpf_verifier_env *env, 10044 struct bpf_insn *insn, int *insn_idx) 10045 { 10046 struct bpf_verifier_state *this_branch = env->cur_state; 10047 struct bpf_verifier_state *other_branch; 10048 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 10049 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 10050 u8 opcode = BPF_OP(insn->code); 10051 bool is_jmp32; 10052 int pred = -1; 10053 int err; 10054 10055 /* Only conditional jumps are expected to reach here. */ 10056 if (opcode == BPF_JA || opcode > BPF_JSLE) { 10057 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 10058 return -EINVAL; 10059 } 10060 10061 if (BPF_SRC(insn->code) == BPF_X) { 10062 if (insn->imm != 0) { 10063 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 10064 return -EINVAL; 10065 } 10066 10067 /* check src1 operand */ 10068 err = check_reg_arg(env, insn->src_reg, SRC_OP); 10069 if (err) 10070 return err; 10071 10072 if (is_pointer_value(env, insn->src_reg)) { 10073 verbose(env, "R%d pointer comparison prohibited\n", 10074 insn->src_reg); 10075 return -EACCES; 10076 } 10077 src_reg = ®s[insn->src_reg]; 10078 } else { 10079 if (insn->src_reg != BPF_REG_0) { 10080 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 10081 return -EINVAL; 10082 } 10083 } 10084 10085 /* check src2 operand */ 10086 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 10087 if (err) 10088 return err; 10089 10090 dst_reg = ®s[insn->dst_reg]; 10091 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 10092 10093 if (BPF_SRC(insn->code) == BPF_K) { 10094 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32); 10095 } else if (src_reg->type == SCALAR_VALUE && 10096 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) { 10097 pred = is_branch_taken(dst_reg, 10098 tnum_subreg(src_reg->var_off).value, 10099 opcode, 10100 is_jmp32); 10101 } else if (src_reg->type == SCALAR_VALUE && 10102 !is_jmp32 && tnum_is_const(src_reg->var_off)) { 10103 pred = is_branch_taken(dst_reg, 10104 src_reg->var_off.value, 10105 opcode, 10106 is_jmp32); 10107 } else if (reg_is_pkt_pointer_any(dst_reg) && 10108 reg_is_pkt_pointer_any(src_reg) && 10109 !is_jmp32) { 10110 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode); 10111 } 10112 10113 if (pred >= 0) { 10114 /* If we get here with a dst_reg pointer type it is because 10115 * above is_branch_taken() special cased the 0 comparison. 10116 */ 10117 if (!__is_pointer_value(false, dst_reg)) 10118 err = mark_chain_precision(env, insn->dst_reg); 10119 if (BPF_SRC(insn->code) == BPF_X && !err && 10120 !__is_pointer_value(false, src_reg)) 10121 err = mark_chain_precision(env, insn->src_reg); 10122 if (err) 10123 return err; 10124 } 10125 10126 if (pred == 1) { 10127 /* Only follow the goto, ignore fall-through. If needed, push 10128 * the fall-through branch for simulation under speculative 10129 * execution. 10130 */ 10131 if (!env->bypass_spec_v1 && 10132 !sanitize_speculative_path(env, insn, *insn_idx + 1, 10133 *insn_idx)) 10134 return -EFAULT; 10135 *insn_idx += insn->off; 10136 return 0; 10137 } else if (pred == 0) { 10138 /* Only follow the fall-through branch, since that's where the 10139 * program will go. If needed, push the goto branch for 10140 * simulation under speculative execution. 10141 */ 10142 if (!env->bypass_spec_v1 && 10143 !sanitize_speculative_path(env, insn, 10144 *insn_idx + insn->off + 1, 10145 *insn_idx)) 10146 return -EFAULT; 10147 return 0; 10148 } 10149 10150 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 10151 false); 10152 if (!other_branch) 10153 return -EFAULT; 10154 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 10155 10156 /* detect if we are comparing against a constant value so we can adjust 10157 * our min/max values for our dst register. 10158 * this is only legit if both are scalars (or pointers to the same 10159 * object, I suppose, but we don't support that right now), because 10160 * otherwise the different base pointers mean the offsets aren't 10161 * comparable. 10162 */ 10163 if (BPF_SRC(insn->code) == BPF_X) { 10164 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 10165 10166 if (dst_reg->type == SCALAR_VALUE && 10167 src_reg->type == SCALAR_VALUE) { 10168 if (tnum_is_const(src_reg->var_off) || 10169 (is_jmp32 && 10170 tnum_is_const(tnum_subreg(src_reg->var_off)))) 10171 reg_set_min_max(&other_branch_regs[insn->dst_reg], 10172 dst_reg, 10173 src_reg->var_off.value, 10174 tnum_subreg(src_reg->var_off).value, 10175 opcode, is_jmp32); 10176 else if (tnum_is_const(dst_reg->var_off) || 10177 (is_jmp32 && 10178 tnum_is_const(tnum_subreg(dst_reg->var_off)))) 10179 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 10180 src_reg, 10181 dst_reg->var_off.value, 10182 tnum_subreg(dst_reg->var_off).value, 10183 opcode, is_jmp32); 10184 else if (!is_jmp32 && 10185 (opcode == BPF_JEQ || opcode == BPF_JNE)) 10186 /* Comparing for equality, we can combine knowledge */ 10187 reg_combine_min_max(&other_branch_regs[insn->src_reg], 10188 &other_branch_regs[insn->dst_reg], 10189 src_reg, dst_reg, opcode); 10190 if (src_reg->id && 10191 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) { 10192 find_equal_scalars(this_branch, src_reg); 10193 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]); 10194 } 10195 10196 } 10197 } else if (dst_reg->type == SCALAR_VALUE) { 10198 reg_set_min_max(&other_branch_regs[insn->dst_reg], 10199 dst_reg, insn->imm, (u32)insn->imm, 10200 opcode, is_jmp32); 10201 } 10202 10203 if (dst_reg->type == SCALAR_VALUE && dst_reg->id && 10204 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) { 10205 find_equal_scalars(this_branch, dst_reg); 10206 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]); 10207 } 10208 10209 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 10210 * NOTE: these optimizations below are related with pointer comparison 10211 * which will never be JMP32. 10212 */ 10213 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 10214 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 10215 type_may_be_null(dst_reg->type)) { 10216 /* Mark all identical registers in each branch as either 10217 * safe or unknown depending R == 0 or R != 0 conditional. 10218 */ 10219 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 10220 opcode == BPF_JNE); 10221 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 10222 opcode == BPF_JEQ); 10223 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 10224 this_branch, other_branch) && 10225 is_pointer_value(env, insn->dst_reg)) { 10226 verbose(env, "R%d pointer comparison prohibited\n", 10227 insn->dst_reg); 10228 return -EACCES; 10229 } 10230 if (env->log.level & BPF_LOG_LEVEL) 10231 print_insn_state(env, this_branch->frame[this_branch->curframe]); 10232 return 0; 10233 } 10234 10235 /* verify BPF_LD_IMM64 instruction */ 10236 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 10237 { 10238 struct bpf_insn_aux_data *aux = cur_aux(env); 10239 struct bpf_reg_state *regs = cur_regs(env); 10240 struct bpf_reg_state *dst_reg; 10241 struct bpf_map *map; 10242 int err; 10243 10244 if (BPF_SIZE(insn->code) != BPF_DW) { 10245 verbose(env, "invalid BPF_LD_IMM insn\n"); 10246 return -EINVAL; 10247 } 10248 if (insn->off != 0) { 10249 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 10250 return -EINVAL; 10251 } 10252 10253 err = check_reg_arg(env, insn->dst_reg, DST_OP); 10254 if (err) 10255 return err; 10256 10257 dst_reg = ®s[insn->dst_reg]; 10258 if (insn->src_reg == 0) { 10259 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 10260 10261 dst_reg->type = SCALAR_VALUE; 10262 __mark_reg_known(®s[insn->dst_reg], imm); 10263 return 0; 10264 } 10265 10266 /* All special src_reg cases are listed below. From this point onwards 10267 * we either succeed and assign a corresponding dst_reg->type after 10268 * zeroing the offset, or fail and reject the program. 10269 */ 10270 mark_reg_known_zero(env, regs, insn->dst_reg); 10271 10272 if (insn->src_reg == BPF_PSEUDO_BTF_ID) { 10273 dst_reg->type = aux->btf_var.reg_type; 10274 switch (base_type(dst_reg->type)) { 10275 case PTR_TO_MEM: 10276 dst_reg->mem_size = aux->btf_var.mem_size; 10277 break; 10278 case PTR_TO_BTF_ID: 10279 dst_reg->btf = aux->btf_var.btf; 10280 dst_reg->btf_id = aux->btf_var.btf_id; 10281 break; 10282 default: 10283 verbose(env, "bpf verifier is misconfigured\n"); 10284 return -EFAULT; 10285 } 10286 return 0; 10287 } 10288 10289 if (insn->src_reg == BPF_PSEUDO_FUNC) { 10290 struct bpf_prog_aux *aux = env->prog->aux; 10291 u32 subprogno = find_subprog(env, 10292 env->insn_idx + insn->imm + 1); 10293 10294 if (!aux->func_info) { 10295 verbose(env, "missing btf func_info\n"); 10296 return -EINVAL; 10297 } 10298 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) { 10299 verbose(env, "callback function not static\n"); 10300 return -EINVAL; 10301 } 10302 10303 dst_reg->type = PTR_TO_FUNC; 10304 dst_reg->subprogno = subprogno; 10305 return 0; 10306 } 10307 10308 map = env->used_maps[aux->map_index]; 10309 dst_reg->map_ptr = map; 10310 10311 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE || 10312 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) { 10313 dst_reg->type = PTR_TO_MAP_VALUE; 10314 dst_reg->off = aux->map_off; 10315 if (map_value_has_spin_lock(map)) 10316 dst_reg->id = ++env->id_gen; 10317 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD || 10318 insn->src_reg == BPF_PSEUDO_MAP_IDX) { 10319 dst_reg->type = CONST_PTR_TO_MAP; 10320 } else { 10321 verbose(env, "bpf verifier is misconfigured\n"); 10322 return -EINVAL; 10323 } 10324 10325 return 0; 10326 } 10327 10328 static bool may_access_skb(enum bpf_prog_type type) 10329 { 10330 switch (type) { 10331 case BPF_PROG_TYPE_SOCKET_FILTER: 10332 case BPF_PROG_TYPE_SCHED_CLS: 10333 case BPF_PROG_TYPE_SCHED_ACT: 10334 return true; 10335 default: 10336 return false; 10337 } 10338 } 10339 10340 /* verify safety of LD_ABS|LD_IND instructions: 10341 * - they can only appear in the programs where ctx == skb 10342 * - since they are wrappers of function calls, they scratch R1-R5 registers, 10343 * preserve R6-R9, and store return value into R0 10344 * 10345 * Implicit input: 10346 * ctx == skb == R6 == CTX 10347 * 10348 * Explicit input: 10349 * SRC == any register 10350 * IMM == 32-bit immediate 10351 * 10352 * Output: 10353 * R0 - 8/16/32-bit skb data converted to cpu endianness 10354 */ 10355 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 10356 { 10357 struct bpf_reg_state *regs = cur_regs(env); 10358 static const int ctx_reg = BPF_REG_6; 10359 u8 mode = BPF_MODE(insn->code); 10360 int i, err; 10361 10362 if (!may_access_skb(resolve_prog_type(env->prog))) { 10363 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 10364 return -EINVAL; 10365 } 10366 10367 if (!env->ops->gen_ld_abs) { 10368 verbose(env, "bpf verifier is misconfigured\n"); 10369 return -EINVAL; 10370 } 10371 10372 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 10373 BPF_SIZE(insn->code) == BPF_DW || 10374 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 10375 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 10376 return -EINVAL; 10377 } 10378 10379 /* check whether implicit source operand (register R6) is readable */ 10380 err = check_reg_arg(env, ctx_reg, SRC_OP); 10381 if (err) 10382 return err; 10383 10384 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 10385 * gen_ld_abs() may terminate the program at runtime, leading to 10386 * reference leak. 10387 */ 10388 err = check_reference_leak(env); 10389 if (err) { 10390 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 10391 return err; 10392 } 10393 10394 if (env->cur_state->active_spin_lock) { 10395 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 10396 return -EINVAL; 10397 } 10398 10399 if (regs[ctx_reg].type != PTR_TO_CTX) { 10400 verbose(env, 10401 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 10402 return -EINVAL; 10403 } 10404 10405 if (mode == BPF_IND) { 10406 /* check explicit source operand */ 10407 err = check_reg_arg(env, insn->src_reg, SRC_OP); 10408 if (err) 10409 return err; 10410 } 10411 10412 err = check_ptr_off_reg(env, ®s[ctx_reg], ctx_reg); 10413 if (err < 0) 10414 return err; 10415 10416 /* reset caller saved regs to unreadable */ 10417 for (i = 0; i < CALLER_SAVED_REGS; i++) { 10418 mark_reg_not_init(env, regs, caller_saved[i]); 10419 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 10420 } 10421 10422 /* mark destination R0 register as readable, since it contains 10423 * the value fetched from the packet. 10424 * Already marked as written above. 10425 */ 10426 mark_reg_unknown(env, regs, BPF_REG_0); 10427 /* ld_abs load up to 32-bit skb data. */ 10428 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 10429 return 0; 10430 } 10431 10432 static int check_return_code(struct bpf_verifier_env *env) 10433 { 10434 struct tnum enforce_attach_type_range = tnum_unknown; 10435 const struct bpf_prog *prog = env->prog; 10436 struct bpf_reg_state *reg; 10437 struct tnum range = tnum_range(0, 1); 10438 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 10439 int err; 10440 struct bpf_func_state *frame = env->cur_state->frame[0]; 10441 const bool is_subprog = frame->subprogno; 10442 10443 /* LSM and struct_ops func-ptr's return type could be "void" */ 10444 if (!is_subprog) { 10445 switch (prog_type) { 10446 case BPF_PROG_TYPE_LSM: 10447 if (prog->expected_attach_type == BPF_LSM_CGROUP) 10448 /* See below, can be 0 or 0-1 depending on hook. */ 10449 break; 10450 fallthrough; 10451 case BPF_PROG_TYPE_STRUCT_OPS: 10452 if (!prog->aux->attach_func_proto->type) 10453 return 0; 10454 break; 10455 default: 10456 break; 10457 } 10458 } 10459 10460 /* eBPF calling convention is such that R0 is used 10461 * to return the value from eBPF program. 10462 * Make sure that it's readable at this time 10463 * of bpf_exit, which means that program wrote 10464 * something into it earlier 10465 */ 10466 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 10467 if (err) 10468 return err; 10469 10470 if (is_pointer_value(env, BPF_REG_0)) { 10471 verbose(env, "R0 leaks addr as return value\n"); 10472 return -EACCES; 10473 } 10474 10475 reg = cur_regs(env) + BPF_REG_0; 10476 10477 if (frame->in_async_callback_fn) { 10478 /* enforce return zero from async callbacks like timer */ 10479 if (reg->type != SCALAR_VALUE) { 10480 verbose(env, "In async callback the register R0 is not a known value (%s)\n", 10481 reg_type_str(env, reg->type)); 10482 return -EINVAL; 10483 } 10484 10485 if (!tnum_in(tnum_const(0), reg->var_off)) { 10486 verbose_invalid_scalar(env, reg, &range, "async callback", "R0"); 10487 return -EINVAL; 10488 } 10489 return 0; 10490 } 10491 10492 if (is_subprog) { 10493 if (reg->type != SCALAR_VALUE) { 10494 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n", 10495 reg_type_str(env, reg->type)); 10496 return -EINVAL; 10497 } 10498 return 0; 10499 } 10500 10501 switch (prog_type) { 10502 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 10503 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 10504 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || 10505 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || 10506 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || 10507 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || 10508 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME) 10509 range = tnum_range(1, 1); 10510 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND || 10511 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND) 10512 range = tnum_range(0, 3); 10513 break; 10514 case BPF_PROG_TYPE_CGROUP_SKB: 10515 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 10516 range = tnum_range(0, 3); 10517 enforce_attach_type_range = tnum_range(2, 3); 10518 } 10519 break; 10520 case BPF_PROG_TYPE_CGROUP_SOCK: 10521 case BPF_PROG_TYPE_SOCK_OPS: 10522 case BPF_PROG_TYPE_CGROUP_DEVICE: 10523 case BPF_PROG_TYPE_CGROUP_SYSCTL: 10524 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 10525 break; 10526 case BPF_PROG_TYPE_RAW_TRACEPOINT: 10527 if (!env->prog->aux->attach_btf_id) 10528 return 0; 10529 range = tnum_const(0); 10530 break; 10531 case BPF_PROG_TYPE_TRACING: 10532 switch (env->prog->expected_attach_type) { 10533 case BPF_TRACE_FENTRY: 10534 case BPF_TRACE_FEXIT: 10535 range = tnum_const(0); 10536 break; 10537 case BPF_TRACE_RAW_TP: 10538 case BPF_MODIFY_RETURN: 10539 return 0; 10540 case BPF_TRACE_ITER: 10541 break; 10542 default: 10543 return -ENOTSUPP; 10544 } 10545 break; 10546 case BPF_PROG_TYPE_SK_LOOKUP: 10547 range = tnum_range(SK_DROP, SK_PASS); 10548 break; 10549 10550 case BPF_PROG_TYPE_LSM: 10551 if (env->prog->expected_attach_type != BPF_LSM_CGROUP) { 10552 /* Regular BPF_PROG_TYPE_LSM programs can return 10553 * any value. 10554 */ 10555 return 0; 10556 } 10557 if (!env->prog->aux->attach_func_proto->type) { 10558 /* Make sure programs that attach to void 10559 * hooks don't try to modify return value. 10560 */ 10561 range = tnum_range(1, 1); 10562 } 10563 break; 10564 10565 case BPF_PROG_TYPE_EXT: 10566 /* freplace program can return anything as its return value 10567 * depends on the to-be-replaced kernel func or bpf program. 10568 */ 10569 default: 10570 return 0; 10571 } 10572 10573 if (reg->type != SCALAR_VALUE) { 10574 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 10575 reg_type_str(env, reg->type)); 10576 return -EINVAL; 10577 } 10578 10579 if (!tnum_in(range, reg->var_off)) { 10580 verbose_invalid_scalar(env, reg, &range, "program exit", "R0"); 10581 if (prog->expected_attach_type == BPF_LSM_CGROUP && 10582 prog_type == BPF_PROG_TYPE_LSM && 10583 !prog->aux->attach_func_proto->type) 10584 verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 10585 return -EINVAL; 10586 } 10587 10588 if (!tnum_is_unknown(enforce_attach_type_range) && 10589 tnum_in(enforce_attach_type_range, reg->var_off)) 10590 env->prog->enforce_expected_attach_type = 1; 10591 return 0; 10592 } 10593 10594 /* non-recursive DFS pseudo code 10595 * 1 procedure DFS-iterative(G,v): 10596 * 2 label v as discovered 10597 * 3 let S be a stack 10598 * 4 S.push(v) 10599 * 5 while S is not empty 10600 * 6 t <- S.pop() 10601 * 7 if t is what we're looking for: 10602 * 8 return t 10603 * 9 for all edges e in G.adjacentEdges(t) do 10604 * 10 if edge e is already labelled 10605 * 11 continue with the next edge 10606 * 12 w <- G.adjacentVertex(t,e) 10607 * 13 if vertex w is not discovered and not explored 10608 * 14 label e as tree-edge 10609 * 15 label w as discovered 10610 * 16 S.push(w) 10611 * 17 continue at 5 10612 * 18 else if vertex w is discovered 10613 * 19 label e as back-edge 10614 * 20 else 10615 * 21 // vertex w is explored 10616 * 22 label e as forward- or cross-edge 10617 * 23 label t as explored 10618 * 24 S.pop() 10619 * 10620 * convention: 10621 * 0x10 - discovered 10622 * 0x11 - discovered and fall-through edge labelled 10623 * 0x12 - discovered and fall-through and branch edges labelled 10624 * 0x20 - explored 10625 */ 10626 10627 enum { 10628 DISCOVERED = 0x10, 10629 EXPLORED = 0x20, 10630 FALLTHROUGH = 1, 10631 BRANCH = 2, 10632 }; 10633 10634 static u32 state_htab_size(struct bpf_verifier_env *env) 10635 { 10636 return env->prog->len; 10637 } 10638 10639 static struct bpf_verifier_state_list **explored_state( 10640 struct bpf_verifier_env *env, 10641 int idx) 10642 { 10643 struct bpf_verifier_state *cur = env->cur_state; 10644 struct bpf_func_state *state = cur->frame[cur->curframe]; 10645 10646 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 10647 } 10648 10649 static void init_explored_state(struct bpf_verifier_env *env, int idx) 10650 { 10651 env->insn_aux_data[idx].prune_point = true; 10652 } 10653 10654 enum { 10655 DONE_EXPLORING = 0, 10656 KEEP_EXPLORING = 1, 10657 }; 10658 10659 /* t, w, e - match pseudo-code above: 10660 * t - index of current instruction 10661 * w - next instruction 10662 * e - edge 10663 */ 10664 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env, 10665 bool loop_ok) 10666 { 10667 int *insn_stack = env->cfg.insn_stack; 10668 int *insn_state = env->cfg.insn_state; 10669 10670 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 10671 return DONE_EXPLORING; 10672 10673 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 10674 return DONE_EXPLORING; 10675 10676 if (w < 0 || w >= env->prog->len) { 10677 verbose_linfo(env, t, "%d: ", t); 10678 verbose(env, "jump out of range from insn %d to %d\n", t, w); 10679 return -EINVAL; 10680 } 10681 10682 if (e == BRANCH) 10683 /* mark branch target for state pruning */ 10684 init_explored_state(env, w); 10685 10686 if (insn_state[w] == 0) { 10687 /* tree-edge */ 10688 insn_state[t] = DISCOVERED | e; 10689 insn_state[w] = DISCOVERED; 10690 if (env->cfg.cur_stack >= env->prog->len) 10691 return -E2BIG; 10692 insn_stack[env->cfg.cur_stack++] = w; 10693 return KEEP_EXPLORING; 10694 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 10695 if (loop_ok && env->bpf_capable) 10696 return DONE_EXPLORING; 10697 verbose_linfo(env, t, "%d: ", t); 10698 verbose_linfo(env, w, "%d: ", w); 10699 verbose(env, "back-edge from insn %d to %d\n", t, w); 10700 return -EINVAL; 10701 } else if (insn_state[w] == EXPLORED) { 10702 /* forward- or cross-edge */ 10703 insn_state[t] = DISCOVERED | e; 10704 } else { 10705 verbose(env, "insn state internal bug\n"); 10706 return -EFAULT; 10707 } 10708 return DONE_EXPLORING; 10709 } 10710 10711 static int visit_func_call_insn(int t, int insn_cnt, 10712 struct bpf_insn *insns, 10713 struct bpf_verifier_env *env, 10714 bool visit_callee) 10715 { 10716 int ret; 10717 10718 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 10719 if (ret) 10720 return ret; 10721 10722 if (t + 1 < insn_cnt) 10723 init_explored_state(env, t + 1); 10724 if (visit_callee) { 10725 init_explored_state(env, t); 10726 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env, 10727 /* It's ok to allow recursion from CFG point of 10728 * view. __check_func_call() will do the actual 10729 * check. 10730 */ 10731 bpf_pseudo_func(insns + t)); 10732 } 10733 return ret; 10734 } 10735 10736 /* Visits the instruction at index t and returns one of the following: 10737 * < 0 - an error occurred 10738 * DONE_EXPLORING - the instruction was fully explored 10739 * KEEP_EXPLORING - there is still work to be done before it is fully explored 10740 */ 10741 static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env) 10742 { 10743 struct bpf_insn *insns = env->prog->insnsi; 10744 int ret; 10745 10746 if (bpf_pseudo_func(insns + t)) 10747 return visit_func_call_insn(t, insn_cnt, insns, env, true); 10748 10749 /* All non-branch instructions have a single fall-through edge. */ 10750 if (BPF_CLASS(insns[t].code) != BPF_JMP && 10751 BPF_CLASS(insns[t].code) != BPF_JMP32) 10752 return push_insn(t, t + 1, FALLTHROUGH, env, false); 10753 10754 switch (BPF_OP(insns[t].code)) { 10755 case BPF_EXIT: 10756 return DONE_EXPLORING; 10757 10758 case BPF_CALL: 10759 if (insns[t].imm == BPF_FUNC_timer_set_callback) 10760 /* Mark this call insn to trigger is_state_visited() check 10761 * before call itself is processed by __check_func_call(). 10762 * Otherwise new async state will be pushed for further 10763 * exploration. 10764 */ 10765 init_explored_state(env, t); 10766 return visit_func_call_insn(t, insn_cnt, insns, env, 10767 insns[t].src_reg == BPF_PSEUDO_CALL); 10768 10769 case BPF_JA: 10770 if (BPF_SRC(insns[t].code) != BPF_K) 10771 return -EINVAL; 10772 10773 /* unconditional jump with single edge */ 10774 ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env, 10775 true); 10776 if (ret) 10777 return ret; 10778 10779 /* unconditional jmp is not a good pruning point, 10780 * but it's marked, since backtracking needs 10781 * to record jmp history in is_state_visited(). 10782 */ 10783 init_explored_state(env, t + insns[t].off + 1); 10784 /* tell verifier to check for equivalent states 10785 * after every call and jump 10786 */ 10787 if (t + 1 < insn_cnt) 10788 init_explored_state(env, t + 1); 10789 10790 return ret; 10791 10792 default: 10793 /* conditional jump with two edges */ 10794 init_explored_state(env, t); 10795 ret = push_insn(t, t + 1, FALLTHROUGH, env, true); 10796 if (ret) 10797 return ret; 10798 10799 return push_insn(t, t + insns[t].off + 1, BRANCH, env, true); 10800 } 10801 } 10802 10803 /* non-recursive depth-first-search to detect loops in BPF program 10804 * loop == back-edge in directed graph 10805 */ 10806 static int check_cfg(struct bpf_verifier_env *env) 10807 { 10808 int insn_cnt = env->prog->len; 10809 int *insn_stack, *insn_state; 10810 int ret = 0; 10811 int i; 10812 10813 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 10814 if (!insn_state) 10815 return -ENOMEM; 10816 10817 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 10818 if (!insn_stack) { 10819 kvfree(insn_state); 10820 return -ENOMEM; 10821 } 10822 10823 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 10824 insn_stack[0] = 0; /* 0 is the first instruction */ 10825 env->cfg.cur_stack = 1; 10826 10827 while (env->cfg.cur_stack > 0) { 10828 int t = insn_stack[env->cfg.cur_stack - 1]; 10829 10830 ret = visit_insn(t, insn_cnt, env); 10831 switch (ret) { 10832 case DONE_EXPLORING: 10833 insn_state[t] = EXPLORED; 10834 env->cfg.cur_stack--; 10835 break; 10836 case KEEP_EXPLORING: 10837 break; 10838 default: 10839 if (ret > 0) { 10840 verbose(env, "visit_insn internal bug\n"); 10841 ret = -EFAULT; 10842 } 10843 goto err_free; 10844 } 10845 } 10846 10847 if (env->cfg.cur_stack < 0) { 10848 verbose(env, "pop stack internal bug\n"); 10849 ret = -EFAULT; 10850 goto err_free; 10851 } 10852 10853 for (i = 0; i < insn_cnt; i++) { 10854 if (insn_state[i] != EXPLORED) { 10855 verbose(env, "unreachable insn %d\n", i); 10856 ret = -EINVAL; 10857 goto err_free; 10858 } 10859 } 10860 ret = 0; /* cfg looks good */ 10861 10862 err_free: 10863 kvfree(insn_state); 10864 kvfree(insn_stack); 10865 env->cfg.insn_state = env->cfg.insn_stack = NULL; 10866 return ret; 10867 } 10868 10869 static int check_abnormal_return(struct bpf_verifier_env *env) 10870 { 10871 int i; 10872 10873 for (i = 1; i < env->subprog_cnt; i++) { 10874 if (env->subprog_info[i].has_ld_abs) { 10875 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n"); 10876 return -EINVAL; 10877 } 10878 if (env->subprog_info[i].has_tail_call) { 10879 verbose(env, "tail_call is not allowed in subprogs without BTF\n"); 10880 return -EINVAL; 10881 } 10882 } 10883 return 0; 10884 } 10885 10886 /* The minimum supported BTF func info size */ 10887 #define MIN_BPF_FUNCINFO_SIZE 8 10888 #define MAX_FUNCINFO_REC_SIZE 252 10889 10890 static int check_btf_func(struct bpf_verifier_env *env, 10891 const union bpf_attr *attr, 10892 bpfptr_t uattr) 10893 { 10894 const struct btf_type *type, *func_proto, *ret_type; 10895 u32 i, nfuncs, urec_size, min_size; 10896 u32 krec_size = sizeof(struct bpf_func_info); 10897 struct bpf_func_info *krecord; 10898 struct bpf_func_info_aux *info_aux = NULL; 10899 struct bpf_prog *prog; 10900 const struct btf *btf; 10901 bpfptr_t urecord; 10902 u32 prev_offset = 0; 10903 bool scalar_return; 10904 int ret = -ENOMEM; 10905 10906 nfuncs = attr->func_info_cnt; 10907 if (!nfuncs) { 10908 if (check_abnormal_return(env)) 10909 return -EINVAL; 10910 return 0; 10911 } 10912 10913 if (nfuncs != env->subprog_cnt) { 10914 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 10915 return -EINVAL; 10916 } 10917 10918 urec_size = attr->func_info_rec_size; 10919 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 10920 urec_size > MAX_FUNCINFO_REC_SIZE || 10921 urec_size % sizeof(u32)) { 10922 verbose(env, "invalid func info rec size %u\n", urec_size); 10923 return -EINVAL; 10924 } 10925 10926 prog = env->prog; 10927 btf = prog->aux->btf; 10928 10929 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 10930 min_size = min_t(u32, krec_size, urec_size); 10931 10932 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 10933 if (!krecord) 10934 return -ENOMEM; 10935 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); 10936 if (!info_aux) 10937 goto err_free; 10938 10939 for (i = 0; i < nfuncs; i++) { 10940 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 10941 if (ret) { 10942 if (ret == -E2BIG) { 10943 verbose(env, "nonzero tailing record in func info"); 10944 /* set the size kernel expects so loader can zero 10945 * out the rest of the record. 10946 */ 10947 if (copy_to_bpfptr_offset(uattr, 10948 offsetof(union bpf_attr, func_info_rec_size), 10949 &min_size, sizeof(min_size))) 10950 ret = -EFAULT; 10951 } 10952 goto err_free; 10953 } 10954 10955 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) { 10956 ret = -EFAULT; 10957 goto err_free; 10958 } 10959 10960 /* check insn_off */ 10961 ret = -EINVAL; 10962 if (i == 0) { 10963 if (krecord[i].insn_off) { 10964 verbose(env, 10965 "nonzero insn_off %u for the first func info record", 10966 krecord[i].insn_off); 10967 goto err_free; 10968 } 10969 } else if (krecord[i].insn_off <= prev_offset) { 10970 verbose(env, 10971 "same or smaller insn offset (%u) than previous func info record (%u)", 10972 krecord[i].insn_off, prev_offset); 10973 goto err_free; 10974 } 10975 10976 if (env->subprog_info[i].start != krecord[i].insn_off) { 10977 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 10978 goto err_free; 10979 } 10980 10981 /* check type_id */ 10982 type = btf_type_by_id(btf, krecord[i].type_id); 10983 if (!type || !btf_type_is_func(type)) { 10984 verbose(env, "invalid type id %d in func info", 10985 krecord[i].type_id); 10986 goto err_free; 10987 } 10988 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 10989 10990 func_proto = btf_type_by_id(btf, type->type); 10991 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto))) 10992 /* btf_func_check() already verified it during BTF load */ 10993 goto err_free; 10994 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL); 10995 scalar_return = 10996 btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type); 10997 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) { 10998 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n"); 10999 goto err_free; 11000 } 11001 if (i && !scalar_return && env->subprog_info[i].has_tail_call) { 11002 verbose(env, "tail_call is only allowed in functions that return 'int'.\n"); 11003 goto err_free; 11004 } 11005 11006 prev_offset = krecord[i].insn_off; 11007 bpfptr_add(&urecord, urec_size); 11008 } 11009 11010 prog->aux->func_info = krecord; 11011 prog->aux->func_info_cnt = nfuncs; 11012 prog->aux->func_info_aux = info_aux; 11013 return 0; 11014 11015 err_free: 11016 kvfree(krecord); 11017 kfree(info_aux); 11018 return ret; 11019 } 11020 11021 static void adjust_btf_func(struct bpf_verifier_env *env) 11022 { 11023 struct bpf_prog_aux *aux = env->prog->aux; 11024 int i; 11025 11026 if (!aux->func_info) 11027 return; 11028 11029 for (i = 0; i < env->subprog_cnt; i++) 11030 aux->func_info[i].insn_off = env->subprog_info[i].start; 11031 } 11032 11033 #define MIN_BPF_LINEINFO_SIZE offsetofend(struct bpf_line_info, line_col) 11034 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 11035 11036 static int check_btf_line(struct bpf_verifier_env *env, 11037 const union bpf_attr *attr, 11038 bpfptr_t uattr) 11039 { 11040 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 11041 struct bpf_subprog_info *sub; 11042 struct bpf_line_info *linfo; 11043 struct bpf_prog *prog; 11044 const struct btf *btf; 11045 bpfptr_t ulinfo; 11046 int err; 11047 11048 nr_linfo = attr->line_info_cnt; 11049 if (!nr_linfo) 11050 return 0; 11051 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info)) 11052 return -EINVAL; 11053 11054 rec_size = attr->line_info_rec_size; 11055 if (rec_size < MIN_BPF_LINEINFO_SIZE || 11056 rec_size > MAX_LINEINFO_REC_SIZE || 11057 rec_size & (sizeof(u32) - 1)) 11058 return -EINVAL; 11059 11060 /* Need to zero it in case the userspace may 11061 * pass in a smaller bpf_line_info object. 11062 */ 11063 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 11064 GFP_KERNEL | __GFP_NOWARN); 11065 if (!linfo) 11066 return -ENOMEM; 11067 11068 prog = env->prog; 11069 btf = prog->aux->btf; 11070 11071 s = 0; 11072 sub = env->subprog_info; 11073 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel); 11074 expected_size = sizeof(struct bpf_line_info); 11075 ncopy = min_t(u32, expected_size, rec_size); 11076 for (i = 0; i < nr_linfo; i++) { 11077 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 11078 if (err) { 11079 if (err == -E2BIG) { 11080 verbose(env, "nonzero tailing record in line_info"); 11081 if (copy_to_bpfptr_offset(uattr, 11082 offsetof(union bpf_attr, line_info_rec_size), 11083 &expected_size, sizeof(expected_size))) 11084 err = -EFAULT; 11085 } 11086 goto err_free; 11087 } 11088 11089 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) { 11090 err = -EFAULT; 11091 goto err_free; 11092 } 11093 11094 /* 11095 * Check insn_off to ensure 11096 * 1) strictly increasing AND 11097 * 2) bounded by prog->len 11098 * 11099 * The linfo[0].insn_off == 0 check logically falls into 11100 * the later "missing bpf_line_info for func..." case 11101 * because the first linfo[0].insn_off must be the 11102 * first sub also and the first sub must have 11103 * subprog_info[0].start == 0. 11104 */ 11105 if ((i && linfo[i].insn_off <= prev_offset) || 11106 linfo[i].insn_off >= prog->len) { 11107 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 11108 i, linfo[i].insn_off, prev_offset, 11109 prog->len); 11110 err = -EINVAL; 11111 goto err_free; 11112 } 11113 11114 if (!prog->insnsi[linfo[i].insn_off].code) { 11115 verbose(env, 11116 "Invalid insn code at line_info[%u].insn_off\n", 11117 i); 11118 err = -EINVAL; 11119 goto err_free; 11120 } 11121 11122 if (!btf_name_by_offset(btf, linfo[i].line_off) || 11123 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 11124 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 11125 err = -EINVAL; 11126 goto err_free; 11127 } 11128 11129 if (s != env->subprog_cnt) { 11130 if (linfo[i].insn_off == sub[s].start) { 11131 sub[s].linfo_idx = i; 11132 s++; 11133 } else if (sub[s].start < linfo[i].insn_off) { 11134 verbose(env, "missing bpf_line_info for func#%u\n", s); 11135 err = -EINVAL; 11136 goto err_free; 11137 } 11138 } 11139 11140 prev_offset = linfo[i].insn_off; 11141 bpfptr_add(&ulinfo, rec_size); 11142 } 11143 11144 if (s != env->subprog_cnt) { 11145 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 11146 env->subprog_cnt - s, s); 11147 err = -EINVAL; 11148 goto err_free; 11149 } 11150 11151 prog->aux->linfo = linfo; 11152 prog->aux->nr_linfo = nr_linfo; 11153 11154 return 0; 11155 11156 err_free: 11157 kvfree(linfo); 11158 return err; 11159 } 11160 11161 #define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo) 11162 #define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE 11163 11164 static int check_core_relo(struct bpf_verifier_env *env, 11165 const union bpf_attr *attr, 11166 bpfptr_t uattr) 11167 { 11168 u32 i, nr_core_relo, ncopy, expected_size, rec_size; 11169 struct bpf_core_relo core_relo = {}; 11170 struct bpf_prog *prog = env->prog; 11171 const struct btf *btf = prog->aux->btf; 11172 struct bpf_core_ctx ctx = { 11173 .log = &env->log, 11174 .btf = btf, 11175 }; 11176 bpfptr_t u_core_relo; 11177 int err; 11178 11179 nr_core_relo = attr->core_relo_cnt; 11180 if (!nr_core_relo) 11181 return 0; 11182 if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo)) 11183 return -EINVAL; 11184 11185 rec_size = attr->core_relo_rec_size; 11186 if (rec_size < MIN_CORE_RELO_SIZE || 11187 rec_size > MAX_CORE_RELO_SIZE || 11188 rec_size % sizeof(u32)) 11189 return -EINVAL; 11190 11191 u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel); 11192 expected_size = sizeof(struct bpf_core_relo); 11193 ncopy = min_t(u32, expected_size, rec_size); 11194 11195 /* Unlike func_info and line_info, copy and apply each CO-RE 11196 * relocation record one at a time. 11197 */ 11198 for (i = 0; i < nr_core_relo; i++) { 11199 /* future proofing when sizeof(bpf_core_relo) changes */ 11200 err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size); 11201 if (err) { 11202 if (err == -E2BIG) { 11203 verbose(env, "nonzero tailing record in core_relo"); 11204 if (copy_to_bpfptr_offset(uattr, 11205 offsetof(union bpf_attr, core_relo_rec_size), 11206 &expected_size, sizeof(expected_size))) 11207 err = -EFAULT; 11208 } 11209 break; 11210 } 11211 11212 if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) { 11213 err = -EFAULT; 11214 break; 11215 } 11216 11217 if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) { 11218 verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n", 11219 i, core_relo.insn_off, prog->len); 11220 err = -EINVAL; 11221 break; 11222 } 11223 11224 err = bpf_core_apply(&ctx, &core_relo, i, 11225 &prog->insnsi[core_relo.insn_off / 8]); 11226 if (err) 11227 break; 11228 bpfptr_add(&u_core_relo, rec_size); 11229 } 11230 return err; 11231 } 11232 11233 static int check_btf_info(struct bpf_verifier_env *env, 11234 const union bpf_attr *attr, 11235 bpfptr_t uattr) 11236 { 11237 struct btf *btf; 11238 int err; 11239 11240 if (!attr->func_info_cnt && !attr->line_info_cnt) { 11241 if (check_abnormal_return(env)) 11242 return -EINVAL; 11243 return 0; 11244 } 11245 11246 btf = btf_get_by_fd(attr->prog_btf_fd); 11247 if (IS_ERR(btf)) 11248 return PTR_ERR(btf); 11249 if (btf_is_kernel(btf)) { 11250 btf_put(btf); 11251 return -EACCES; 11252 } 11253 env->prog->aux->btf = btf; 11254 11255 err = check_btf_func(env, attr, uattr); 11256 if (err) 11257 return err; 11258 11259 err = check_btf_line(env, attr, uattr); 11260 if (err) 11261 return err; 11262 11263 err = check_core_relo(env, attr, uattr); 11264 if (err) 11265 return err; 11266 11267 return 0; 11268 } 11269 11270 /* check %cur's range satisfies %old's */ 11271 static bool range_within(struct bpf_reg_state *old, 11272 struct bpf_reg_state *cur) 11273 { 11274 return old->umin_value <= cur->umin_value && 11275 old->umax_value >= cur->umax_value && 11276 old->smin_value <= cur->smin_value && 11277 old->smax_value >= cur->smax_value && 11278 old->u32_min_value <= cur->u32_min_value && 11279 old->u32_max_value >= cur->u32_max_value && 11280 old->s32_min_value <= cur->s32_min_value && 11281 old->s32_max_value >= cur->s32_max_value; 11282 } 11283 11284 /* If in the old state two registers had the same id, then they need to have 11285 * the same id in the new state as well. But that id could be different from 11286 * the old state, so we need to track the mapping from old to new ids. 11287 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 11288 * regs with old id 5 must also have new id 9 for the new state to be safe. But 11289 * regs with a different old id could still have new id 9, we don't care about 11290 * that. 11291 * So we look through our idmap to see if this old id has been seen before. If 11292 * so, we require the new id to match; otherwise, we add the id pair to the map. 11293 */ 11294 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap) 11295 { 11296 unsigned int i; 11297 11298 for (i = 0; i < BPF_ID_MAP_SIZE; i++) { 11299 if (!idmap[i].old) { 11300 /* Reached an empty slot; haven't seen this id before */ 11301 idmap[i].old = old_id; 11302 idmap[i].cur = cur_id; 11303 return true; 11304 } 11305 if (idmap[i].old == old_id) 11306 return idmap[i].cur == cur_id; 11307 } 11308 /* We ran out of idmap slots, which should be impossible */ 11309 WARN_ON_ONCE(1); 11310 return false; 11311 } 11312 11313 static void clean_func_state(struct bpf_verifier_env *env, 11314 struct bpf_func_state *st) 11315 { 11316 enum bpf_reg_liveness live; 11317 int i, j; 11318 11319 for (i = 0; i < BPF_REG_FP; i++) { 11320 live = st->regs[i].live; 11321 /* liveness must not touch this register anymore */ 11322 st->regs[i].live |= REG_LIVE_DONE; 11323 if (!(live & REG_LIVE_READ)) 11324 /* since the register is unused, clear its state 11325 * to make further comparison simpler 11326 */ 11327 __mark_reg_not_init(env, &st->regs[i]); 11328 } 11329 11330 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 11331 live = st->stack[i].spilled_ptr.live; 11332 /* liveness must not touch this stack slot anymore */ 11333 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 11334 if (!(live & REG_LIVE_READ)) { 11335 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 11336 for (j = 0; j < BPF_REG_SIZE; j++) 11337 st->stack[i].slot_type[j] = STACK_INVALID; 11338 } 11339 } 11340 } 11341 11342 static void clean_verifier_state(struct bpf_verifier_env *env, 11343 struct bpf_verifier_state *st) 11344 { 11345 int i; 11346 11347 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 11348 /* all regs in this state in all frames were already marked */ 11349 return; 11350 11351 for (i = 0; i <= st->curframe; i++) 11352 clean_func_state(env, st->frame[i]); 11353 } 11354 11355 /* the parentage chains form a tree. 11356 * the verifier states are added to state lists at given insn and 11357 * pushed into state stack for future exploration. 11358 * when the verifier reaches bpf_exit insn some of the verifer states 11359 * stored in the state lists have their final liveness state already, 11360 * but a lot of states will get revised from liveness point of view when 11361 * the verifier explores other branches. 11362 * Example: 11363 * 1: r0 = 1 11364 * 2: if r1 == 100 goto pc+1 11365 * 3: r0 = 2 11366 * 4: exit 11367 * when the verifier reaches exit insn the register r0 in the state list of 11368 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 11369 * of insn 2 and goes exploring further. At the insn 4 it will walk the 11370 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 11371 * 11372 * Since the verifier pushes the branch states as it sees them while exploring 11373 * the program the condition of walking the branch instruction for the second 11374 * time means that all states below this branch were already explored and 11375 * their final liveness marks are already propagated. 11376 * Hence when the verifier completes the search of state list in is_state_visited() 11377 * we can call this clean_live_states() function to mark all liveness states 11378 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 11379 * will not be used. 11380 * This function also clears the registers and stack for states that !READ 11381 * to simplify state merging. 11382 * 11383 * Important note here that walking the same branch instruction in the callee 11384 * doesn't meant that the states are DONE. The verifier has to compare 11385 * the callsites 11386 */ 11387 static void clean_live_states(struct bpf_verifier_env *env, int insn, 11388 struct bpf_verifier_state *cur) 11389 { 11390 struct bpf_verifier_state_list *sl; 11391 int i; 11392 11393 sl = *explored_state(env, insn); 11394 while (sl) { 11395 if (sl->state.branches) 11396 goto next; 11397 if (sl->state.insn_idx != insn || 11398 sl->state.curframe != cur->curframe) 11399 goto next; 11400 for (i = 0; i <= cur->curframe; i++) 11401 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite) 11402 goto next; 11403 clean_verifier_state(env, &sl->state); 11404 next: 11405 sl = sl->next; 11406 } 11407 } 11408 11409 /* Returns true if (rold safe implies rcur safe) */ 11410 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold, 11411 struct bpf_reg_state *rcur, struct bpf_id_pair *idmap) 11412 { 11413 bool equal; 11414 11415 if (!(rold->live & REG_LIVE_READ)) 11416 /* explored state didn't use this */ 11417 return true; 11418 11419 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0; 11420 11421 if (rold->type == PTR_TO_STACK) 11422 /* two stack pointers are equal only if they're pointing to 11423 * the same stack frame, since fp-8 in foo != fp-8 in bar 11424 */ 11425 return equal && rold->frameno == rcur->frameno; 11426 11427 if (equal) 11428 return true; 11429 11430 if (rold->type == NOT_INIT) 11431 /* explored state can't have used this */ 11432 return true; 11433 if (rcur->type == NOT_INIT) 11434 return false; 11435 switch (base_type(rold->type)) { 11436 case SCALAR_VALUE: 11437 if (env->explore_alu_limits) 11438 return false; 11439 if (rcur->type == SCALAR_VALUE) { 11440 if (!rold->precise && !rcur->precise) 11441 return true; 11442 /* new val must satisfy old val knowledge */ 11443 return range_within(rold, rcur) && 11444 tnum_in(rold->var_off, rcur->var_off); 11445 } else { 11446 /* We're trying to use a pointer in place of a scalar. 11447 * Even if the scalar was unbounded, this could lead to 11448 * pointer leaks because scalars are allowed to leak 11449 * while pointers are not. We could make this safe in 11450 * special cases if root is calling us, but it's 11451 * probably not worth the hassle. 11452 */ 11453 return false; 11454 } 11455 case PTR_TO_MAP_KEY: 11456 case PTR_TO_MAP_VALUE: 11457 /* a PTR_TO_MAP_VALUE could be safe to use as a 11458 * PTR_TO_MAP_VALUE_OR_NULL into the same map. 11459 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- 11460 * checked, doing so could have affected others with the same 11461 * id, and we can't check for that because we lost the id when 11462 * we converted to a PTR_TO_MAP_VALUE. 11463 */ 11464 if (type_may_be_null(rold->type)) { 11465 if (!type_may_be_null(rcur->type)) 11466 return false; 11467 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) 11468 return false; 11469 /* Check our ids match any regs they're supposed to */ 11470 return check_ids(rold->id, rcur->id, idmap); 11471 } 11472 11473 /* If the new min/max/var_off satisfy the old ones and 11474 * everything else matches, we are OK. 11475 * 'id' is not compared, since it's only used for maps with 11476 * bpf_spin_lock inside map element and in such cases if 11477 * the rest of the prog is valid for one map element then 11478 * it's valid for all map elements regardless of the key 11479 * used in bpf_map_lookup() 11480 */ 11481 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 11482 range_within(rold, rcur) && 11483 tnum_in(rold->var_off, rcur->var_off); 11484 case PTR_TO_PACKET_META: 11485 case PTR_TO_PACKET: 11486 if (rcur->type != rold->type) 11487 return false; 11488 /* We must have at least as much range as the old ptr 11489 * did, so that any accesses which were safe before are 11490 * still safe. This is true even if old range < old off, 11491 * since someone could have accessed through (ptr - k), or 11492 * even done ptr -= k in a register, to get a safe access. 11493 */ 11494 if (rold->range > rcur->range) 11495 return false; 11496 /* If the offsets don't match, we can't trust our alignment; 11497 * nor can we be sure that we won't fall out of range. 11498 */ 11499 if (rold->off != rcur->off) 11500 return false; 11501 /* id relations must be preserved */ 11502 if (rold->id && !check_ids(rold->id, rcur->id, idmap)) 11503 return false; 11504 /* new val must satisfy old val knowledge */ 11505 return range_within(rold, rcur) && 11506 tnum_in(rold->var_off, rcur->var_off); 11507 case PTR_TO_CTX: 11508 case CONST_PTR_TO_MAP: 11509 case PTR_TO_PACKET_END: 11510 case PTR_TO_FLOW_KEYS: 11511 case PTR_TO_SOCKET: 11512 case PTR_TO_SOCK_COMMON: 11513 case PTR_TO_TCP_SOCK: 11514 case PTR_TO_XDP_SOCK: 11515 /* Only valid matches are exact, which memcmp() above 11516 * would have accepted 11517 */ 11518 default: 11519 /* Don't know what's going on, just say it's not safe */ 11520 return false; 11521 } 11522 11523 /* Shouldn't get here; if we do, say it's not safe */ 11524 WARN_ON_ONCE(1); 11525 return false; 11526 } 11527 11528 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old, 11529 struct bpf_func_state *cur, struct bpf_id_pair *idmap) 11530 { 11531 int i, spi; 11532 11533 /* walk slots of the explored stack and ignore any additional 11534 * slots in the current stack, since explored(safe) state 11535 * didn't use them 11536 */ 11537 for (i = 0; i < old->allocated_stack; i++) { 11538 spi = i / BPF_REG_SIZE; 11539 11540 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) { 11541 i += BPF_REG_SIZE - 1; 11542 /* explored state didn't use this */ 11543 continue; 11544 } 11545 11546 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 11547 continue; 11548 11549 /* explored stack has more populated slots than current stack 11550 * and these slots were used 11551 */ 11552 if (i >= cur->allocated_stack) 11553 return false; 11554 11555 /* if old state was safe with misc data in the stack 11556 * it will be safe with zero-initialized stack. 11557 * The opposite is not true 11558 */ 11559 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 11560 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 11561 continue; 11562 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 11563 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 11564 /* Ex: old explored (safe) state has STACK_SPILL in 11565 * this stack slot, but current has STACK_MISC -> 11566 * this verifier states are not equivalent, 11567 * return false to continue verification of this path 11568 */ 11569 return false; 11570 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1) 11571 continue; 11572 if (!is_spilled_reg(&old->stack[spi])) 11573 continue; 11574 if (!regsafe(env, &old->stack[spi].spilled_ptr, 11575 &cur->stack[spi].spilled_ptr, idmap)) 11576 /* when explored and current stack slot are both storing 11577 * spilled registers, check that stored pointers types 11578 * are the same as well. 11579 * Ex: explored safe path could have stored 11580 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 11581 * but current path has stored: 11582 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 11583 * such verifier states are not equivalent. 11584 * return false to continue verification of this path 11585 */ 11586 return false; 11587 } 11588 return true; 11589 } 11590 11591 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur) 11592 { 11593 if (old->acquired_refs != cur->acquired_refs) 11594 return false; 11595 return !memcmp(old->refs, cur->refs, 11596 sizeof(*old->refs) * old->acquired_refs); 11597 } 11598 11599 /* compare two verifier states 11600 * 11601 * all states stored in state_list are known to be valid, since 11602 * verifier reached 'bpf_exit' instruction through them 11603 * 11604 * this function is called when verifier exploring different branches of 11605 * execution popped from the state stack. If it sees an old state that has 11606 * more strict register state and more strict stack state then this execution 11607 * branch doesn't need to be explored further, since verifier already 11608 * concluded that more strict state leads to valid finish. 11609 * 11610 * Therefore two states are equivalent if register state is more conservative 11611 * and explored stack state is more conservative than the current one. 11612 * Example: 11613 * explored current 11614 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 11615 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 11616 * 11617 * In other words if current stack state (one being explored) has more 11618 * valid slots than old one that already passed validation, it means 11619 * the verifier can stop exploring and conclude that current state is valid too 11620 * 11621 * Similarly with registers. If explored state has register type as invalid 11622 * whereas register type in current state is meaningful, it means that 11623 * the current state will reach 'bpf_exit' instruction safely 11624 */ 11625 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old, 11626 struct bpf_func_state *cur) 11627 { 11628 int i; 11629 11630 memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch)); 11631 for (i = 0; i < MAX_BPF_REG; i++) 11632 if (!regsafe(env, &old->regs[i], &cur->regs[i], 11633 env->idmap_scratch)) 11634 return false; 11635 11636 if (!stacksafe(env, old, cur, env->idmap_scratch)) 11637 return false; 11638 11639 if (!refsafe(old, cur)) 11640 return false; 11641 11642 return true; 11643 } 11644 11645 static bool states_equal(struct bpf_verifier_env *env, 11646 struct bpf_verifier_state *old, 11647 struct bpf_verifier_state *cur) 11648 { 11649 int i; 11650 11651 if (old->curframe != cur->curframe) 11652 return false; 11653 11654 /* Verification state from speculative execution simulation 11655 * must never prune a non-speculative execution one. 11656 */ 11657 if (old->speculative && !cur->speculative) 11658 return false; 11659 11660 if (old->active_spin_lock != cur->active_spin_lock) 11661 return false; 11662 11663 /* for states to be equal callsites have to be the same 11664 * and all frame states need to be equivalent 11665 */ 11666 for (i = 0; i <= old->curframe; i++) { 11667 if (old->frame[i]->callsite != cur->frame[i]->callsite) 11668 return false; 11669 if (!func_states_equal(env, old->frame[i], cur->frame[i])) 11670 return false; 11671 } 11672 return true; 11673 } 11674 11675 /* Return 0 if no propagation happened. Return negative error code if error 11676 * happened. Otherwise, return the propagated bit. 11677 */ 11678 static int propagate_liveness_reg(struct bpf_verifier_env *env, 11679 struct bpf_reg_state *reg, 11680 struct bpf_reg_state *parent_reg) 11681 { 11682 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 11683 u8 flag = reg->live & REG_LIVE_READ; 11684 int err; 11685 11686 /* When comes here, read flags of PARENT_REG or REG could be any of 11687 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 11688 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 11689 */ 11690 if (parent_flag == REG_LIVE_READ64 || 11691 /* Or if there is no read flag from REG. */ 11692 !flag || 11693 /* Or if the read flag from REG is the same as PARENT_REG. */ 11694 parent_flag == flag) 11695 return 0; 11696 11697 err = mark_reg_read(env, reg, parent_reg, flag); 11698 if (err) 11699 return err; 11700 11701 return flag; 11702 } 11703 11704 /* A write screens off any subsequent reads; but write marks come from the 11705 * straight-line code between a state and its parent. When we arrive at an 11706 * equivalent state (jump target or such) we didn't arrive by the straight-line 11707 * code, so read marks in the state must propagate to the parent regardless 11708 * of the state's write marks. That's what 'parent == state->parent' comparison 11709 * in mark_reg_read() is for. 11710 */ 11711 static int propagate_liveness(struct bpf_verifier_env *env, 11712 const struct bpf_verifier_state *vstate, 11713 struct bpf_verifier_state *vparent) 11714 { 11715 struct bpf_reg_state *state_reg, *parent_reg; 11716 struct bpf_func_state *state, *parent; 11717 int i, frame, err = 0; 11718 11719 if (vparent->curframe != vstate->curframe) { 11720 WARN(1, "propagate_live: parent frame %d current frame %d\n", 11721 vparent->curframe, vstate->curframe); 11722 return -EFAULT; 11723 } 11724 /* Propagate read liveness of registers... */ 11725 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 11726 for (frame = 0; frame <= vstate->curframe; frame++) { 11727 parent = vparent->frame[frame]; 11728 state = vstate->frame[frame]; 11729 parent_reg = parent->regs; 11730 state_reg = state->regs; 11731 /* We don't need to worry about FP liveness, it's read-only */ 11732 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 11733 err = propagate_liveness_reg(env, &state_reg[i], 11734 &parent_reg[i]); 11735 if (err < 0) 11736 return err; 11737 if (err == REG_LIVE_READ64) 11738 mark_insn_zext(env, &parent_reg[i]); 11739 } 11740 11741 /* Propagate stack slots. */ 11742 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 11743 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 11744 parent_reg = &parent->stack[i].spilled_ptr; 11745 state_reg = &state->stack[i].spilled_ptr; 11746 err = propagate_liveness_reg(env, state_reg, 11747 parent_reg); 11748 if (err < 0) 11749 return err; 11750 } 11751 } 11752 return 0; 11753 } 11754 11755 /* find precise scalars in the previous equivalent state and 11756 * propagate them into the current state 11757 */ 11758 static int propagate_precision(struct bpf_verifier_env *env, 11759 const struct bpf_verifier_state *old) 11760 { 11761 struct bpf_reg_state *state_reg; 11762 struct bpf_func_state *state; 11763 int i, err = 0; 11764 11765 state = old->frame[old->curframe]; 11766 state_reg = state->regs; 11767 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 11768 if (state_reg->type != SCALAR_VALUE || 11769 !state_reg->precise) 11770 continue; 11771 if (env->log.level & BPF_LOG_LEVEL2) 11772 verbose(env, "propagating r%d\n", i); 11773 err = mark_chain_precision(env, i); 11774 if (err < 0) 11775 return err; 11776 } 11777 11778 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 11779 if (!is_spilled_reg(&state->stack[i])) 11780 continue; 11781 state_reg = &state->stack[i].spilled_ptr; 11782 if (state_reg->type != SCALAR_VALUE || 11783 !state_reg->precise) 11784 continue; 11785 if (env->log.level & BPF_LOG_LEVEL2) 11786 verbose(env, "propagating fp%d\n", 11787 (-i - 1) * BPF_REG_SIZE); 11788 err = mark_chain_precision_stack(env, i); 11789 if (err < 0) 11790 return err; 11791 } 11792 return 0; 11793 } 11794 11795 static bool states_maybe_looping(struct bpf_verifier_state *old, 11796 struct bpf_verifier_state *cur) 11797 { 11798 struct bpf_func_state *fold, *fcur; 11799 int i, fr = cur->curframe; 11800 11801 if (old->curframe != fr) 11802 return false; 11803 11804 fold = old->frame[fr]; 11805 fcur = cur->frame[fr]; 11806 for (i = 0; i < MAX_BPF_REG; i++) 11807 if (memcmp(&fold->regs[i], &fcur->regs[i], 11808 offsetof(struct bpf_reg_state, parent))) 11809 return false; 11810 return true; 11811 } 11812 11813 11814 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 11815 { 11816 struct bpf_verifier_state_list *new_sl; 11817 struct bpf_verifier_state_list *sl, **pprev; 11818 struct bpf_verifier_state *cur = env->cur_state, *new; 11819 int i, j, err, states_cnt = 0; 11820 bool add_new_state = env->test_state_freq ? true : false; 11821 11822 cur->last_insn_idx = env->prev_insn_idx; 11823 if (!env->insn_aux_data[insn_idx].prune_point) 11824 /* this 'insn_idx' instruction wasn't marked, so we will not 11825 * be doing state search here 11826 */ 11827 return 0; 11828 11829 /* bpf progs typically have pruning point every 4 instructions 11830 * http://vger.kernel.org/bpfconf2019.html#session-1 11831 * Do not add new state for future pruning if the verifier hasn't seen 11832 * at least 2 jumps and at least 8 instructions. 11833 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 11834 * In tests that amounts to up to 50% reduction into total verifier 11835 * memory consumption and 20% verifier time speedup. 11836 */ 11837 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 11838 env->insn_processed - env->prev_insn_processed >= 8) 11839 add_new_state = true; 11840 11841 pprev = explored_state(env, insn_idx); 11842 sl = *pprev; 11843 11844 clean_live_states(env, insn_idx, cur); 11845 11846 while (sl) { 11847 states_cnt++; 11848 if (sl->state.insn_idx != insn_idx) 11849 goto next; 11850 11851 if (sl->state.branches) { 11852 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe]; 11853 11854 if (frame->in_async_callback_fn && 11855 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) { 11856 /* Different async_entry_cnt means that the verifier is 11857 * processing another entry into async callback. 11858 * Seeing the same state is not an indication of infinite 11859 * loop or infinite recursion. 11860 * But finding the same state doesn't mean that it's safe 11861 * to stop processing the current state. The previous state 11862 * hasn't yet reached bpf_exit, since state.branches > 0. 11863 * Checking in_async_callback_fn alone is not enough either. 11864 * Since the verifier still needs to catch infinite loops 11865 * inside async callbacks. 11866 */ 11867 } else if (states_maybe_looping(&sl->state, cur) && 11868 states_equal(env, &sl->state, cur)) { 11869 verbose_linfo(env, insn_idx, "; "); 11870 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 11871 return -EINVAL; 11872 } 11873 /* if the verifier is processing a loop, avoid adding new state 11874 * too often, since different loop iterations have distinct 11875 * states and may not help future pruning. 11876 * This threshold shouldn't be too low to make sure that 11877 * a loop with large bound will be rejected quickly. 11878 * The most abusive loop will be: 11879 * r1 += 1 11880 * if r1 < 1000000 goto pc-2 11881 * 1M insn_procssed limit / 100 == 10k peak states. 11882 * This threshold shouldn't be too high either, since states 11883 * at the end of the loop are likely to be useful in pruning. 11884 */ 11885 if (env->jmps_processed - env->prev_jmps_processed < 20 && 11886 env->insn_processed - env->prev_insn_processed < 100) 11887 add_new_state = false; 11888 goto miss; 11889 } 11890 if (states_equal(env, &sl->state, cur)) { 11891 sl->hit_cnt++; 11892 /* reached equivalent register/stack state, 11893 * prune the search. 11894 * Registers read by the continuation are read by us. 11895 * If we have any write marks in env->cur_state, they 11896 * will prevent corresponding reads in the continuation 11897 * from reaching our parent (an explored_state). Our 11898 * own state will get the read marks recorded, but 11899 * they'll be immediately forgotten as we're pruning 11900 * this state and will pop a new one. 11901 */ 11902 err = propagate_liveness(env, &sl->state, cur); 11903 11904 /* if previous state reached the exit with precision and 11905 * current state is equivalent to it (except precsion marks) 11906 * the precision needs to be propagated back in 11907 * the current state. 11908 */ 11909 err = err ? : push_jmp_history(env, cur); 11910 err = err ? : propagate_precision(env, &sl->state); 11911 if (err) 11912 return err; 11913 return 1; 11914 } 11915 miss: 11916 /* when new state is not going to be added do not increase miss count. 11917 * Otherwise several loop iterations will remove the state 11918 * recorded earlier. The goal of these heuristics is to have 11919 * states from some iterations of the loop (some in the beginning 11920 * and some at the end) to help pruning. 11921 */ 11922 if (add_new_state) 11923 sl->miss_cnt++; 11924 /* heuristic to determine whether this state is beneficial 11925 * to keep checking from state equivalence point of view. 11926 * Higher numbers increase max_states_per_insn and verification time, 11927 * but do not meaningfully decrease insn_processed. 11928 */ 11929 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) { 11930 /* the state is unlikely to be useful. Remove it to 11931 * speed up verification 11932 */ 11933 *pprev = sl->next; 11934 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) { 11935 u32 br = sl->state.branches; 11936 11937 WARN_ONCE(br, 11938 "BUG live_done but branches_to_explore %d\n", 11939 br); 11940 free_verifier_state(&sl->state, false); 11941 kfree(sl); 11942 env->peak_states--; 11943 } else { 11944 /* cannot free this state, since parentage chain may 11945 * walk it later. Add it for free_list instead to 11946 * be freed at the end of verification 11947 */ 11948 sl->next = env->free_list; 11949 env->free_list = sl; 11950 } 11951 sl = *pprev; 11952 continue; 11953 } 11954 next: 11955 pprev = &sl->next; 11956 sl = *pprev; 11957 } 11958 11959 if (env->max_states_per_insn < states_cnt) 11960 env->max_states_per_insn = states_cnt; 11961 11962 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 11963 return push_jmp_history(env, cur); 11964 11965 if (!add_new_state) 11966 return push_jmp_history(env, cur); 11967 11968 /* There were no equivalent states, remember the current one. 11969 * Technically the current state is not proven to be safe yet, 11970 * but it will either reach outer most bpf_exit (which means it's safe) 11971 * or it will be rejected. When there are no loops the verifier won't be 11972 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 11973 * again on the way to bpf_exit. 11974 * When looping the sl->state.branches will be > 0 and this state 11975 * will not be considered for equivalence until branches == 0. 11976 */ 11977 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 11978 if (!new_sl) 11979 return -ENOMEM; 11980 env->total_states++; 11981 env->peak_states++; 11982 env->prev_jmps_processed = env->jmps_processed; 11983 env->prev_insn_processed = env->insn_processed; 11984 11985 /* add new state to the head of linked list */ 11986 new = &new_sl->state; 11987 err = copy_verifier_state(new, cur); 11988 if (err) { 11989 free_verifier_state(new, false); 11990 kfree(new_sl); 11991 return err; 11992 } 11993 new->insn_idx = insn_idx; 11994 WARN_ONCE(new->branches != 1, 11995 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 11996 11997 cur->parent = new; 11998 cur->first_insn_idx = insn_idx; 11999 clear_jmp_history(cur); 12000 new_sl->next = *explored_state(env, insn_idx); 12001 *explored_state(env, insn_idx) = new_sl; 12002 /* connect new state to parentage chain. Current frame needs all 12003 * registers connected. Only r6 - r9 of the callers are alive (pushed 12004 * to the stack implicitly by JITs) so in callers' frames connect just 12005 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 12006 * the state of the call instruction (with WRITTEN set), and r0 comes 12007 * from callee with its full parentage chain, anyway. 12008 */ 12009 /* clear write marks in current state: the writes we did are not writes 12010 * our child did, so they don't screen off its reads from us. 12011 * (There are no read marks in current state, because reads always mark 12012 * their parent and current state never has children yet. Only 12013 * explored_states can get read marks.) 12014 */ 12015 for (j = 0; j <= cur->curframe; j++) { 12016 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 12017 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 12018 for (i = 0; i < BPF_REG_FP; i++) 12019 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 12020 } 12021 12022 /* all stack frames are accessible from callee, clear them all */ 12023 for (j = 0; j <= cur->curframe; j++) { 12024 struct bpf_func_state *frame = cur->frame[j]; 12025 struct bpf_func_state *newframe = new->frame[j]; 12026 12027 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 12028 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 12029 frame->stack[i].spilled_ptr.parent = 12030 &newframe->stack[i].spilled_ptr; 12031 } 12032 } 12033 return 0; 12034 } 12035 12036 /* Return true if it's OK to have the same insn return a different type. */ 12037 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 12038 { 12039 switch (base_type(type)) { 12040 case PTR_TO_CTX: 12041 case PTR_TO_SOCKET: 12042 case PTR_TO_SOCK_COMMON: 12043 case PTR_TO_TCP_SOCK: 12044 case PTR_TO_XDP_SOCK: 12045 case PTR_TO_BTF_ID: 12046 return false; 12047 default: 12048 return true; 12049 } 12050 } 12051 12052 /* If an instruction was previously used with particular pointer types, then we 12053 * need to be careful to avoid cases such as the below, where it may be ok 12054 * for one branch accessing the pointer, but not ok for the other branch: 12055 * 12056 * R1 = sock_ptr 12057 * goto X; 12058 * ... 12059 * R1 = some_other_valid_ptr; 12060 * goto X; 12061 * ... 12062 * R2 = *(u32 *)(R1 + 0); 12063 */ 12064 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 12065 { 12066 return src != prev && (!reg_type_mismatch_ok(src) || 12067 !reg_type_mismatch_ok(prev)); 12068 } 12069 12070 static int do_check(struct bpf_verifier_env *env) 12071 { 12072 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 12073 struct bpf_verifier_state *state = env->cur_state; 12074 struct bpf_insn *insns = env->prog->insnsi; 12075 struct bpf_reg_state *regs; 12076 int insn_cnt = env->prog->len; 12077 bool do_print_state = false; 12078 int prev_insn_idx = -1; 12079 12080 for (;;) { 12081 struct bpf_insn *insn; 12082 u8 class; 12083 int err; 12084 12085 env->prev_insn_idx = prev_insn_idx; 12086 if (env->insn_idx >= insn_cnt) { 12087 verbose(env, "invalid insn idx %d insn_cnt %d\n", 12088 env->insn_idx, insn_cnt); 12089 return -EFAULT; 12090 } 12091 12092 insn = &insns[env->insn_idx]; 12093 class = BPF_CLASS(insn->code); 12094 12095 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 12096 verbose(env, 12097 "BPF program is too large. Processed %d insn\n", 12098 env->insn_processed); 12099 return -E2BIG; 12100 } 12101 12102 err = is_state_visited(env, env->insn_idx); 12103 if (err < 0) 12104 return err; 12105 if (err == 1) { 12106 /* found equivalent state, can prune the search */ 12107 if (env->log.level & BPF_LOG_LEVEL) { 12108 if (do_print_state) 12109 verbose(env, "\nfrom %d to %d%s: safe\n", 12110 env->prev_insn_idx, env->insn_idx, 12111 env->cur_state->speculative ? 12112 " (speculative execution)" : ""); 12113 else 12114 verbose(env, "%d: safe\n", env->insn_idx); 12115 } 12116 goto process_bpf_exit; 12117 } 12118 12119 if (signal_pending(current)) 12120 return -EAGAIN; 12121 12122 if (need_resched()) 12123 cond_resched(); 12124 12125 if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) { 12126 verbose(env, "\nfrom %d to %d%s:", 12127 env->prev_insn_idx, env->insn_idx, 12128 env->cur_state->speculative ? 12129 " (speculative execution)" : ""); 12130 print_verifier_state(env, state->frame[state->curframe], true); 12131 do_print_state = false; 12132 } 12133 12134 if (env->log.level & BPF_LOG_LEVEL) { 12135 const struct bpf_insn_cbs cbs = { 12136 .cb_call = disasm_kfunc_name, 12137 .cb_print = verbose, 12138 .private_data = env, 12139 }; 12140 12141 if (verifier_state_scratched(env)) 12142 print_insn_state(env, state->frame[state->curframe]); 12143 12144 verbose_linfo(env, env->insn_idx, "; "); 12145 env->prev_log_len = env->log.len_used; 12146 verbose(env, "%d: ", env->insn_idx); 12147 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 12148 env->prev_insn_print_len = env->log.len_used - env->prev_log_len; 12149 env->prev_log_len = env->log.len_used; 12150 } 12151 12152 if (bpf_prog_is_dev_bound(env->prog->aux)) { 12153 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 12154 env->prev_insn_idx); 12155 if (err) 12156 return err; 12157 } 12158 12159 regs = cur_regs(env); 12160 sanitize_mark_insn_seen(env); 12161 prev_insn_idx = env->insn_idx; 12162 12163 if (class == BPF_ALU || class == BPF_ALU64) { 12164 err = check_alu_op(env, insn); 12165 if (err) 12166 return err; 12167 12168 } else if (class == BPF_LDX) { 12169 enum bpf_reg_type *prev_src_type, src_reg_type; 12170 12171 /* check for reserved fields is already done */ 12172 12173 /* check src operand */ 12174 err = check_reg_arg(env, insn->src_reg, SRC_OP); 12175 if (err) 12176 return err; 12177 12178 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 12179 if (err) 12180 return err; 12181 12182 src_reg_type = regs[insn->src_reg].type; 12183 12184 /* check that memory (src_reg + off) is readable, 12185 * the state of dst_reg will be updated by this func 12186 */ 12187 err = check_mem_access(env, env->insn_idx, insn->src_reg, 12188 insn->off, BPF_SIZE(insn->code), 12189 BPF_READ, insn->dst_reg, false); 12190 if (err) 12191 return err; 12192 12193 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type; 12194 12195 if (*prev_src_type == NOT_INIT) { 12196 /* saw a valid insn 12197 * dst_reg = *(u32 *)(src_reg + off) 12198 * save type to validate intersecting paths 12199 */ 12200 *prev_src_type = src_reg_type; 12201 12202 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) { 12203 /* ABuser program is trying to use the same insn 12204 * dst_reg = *(u32*) (src_reg + off) 12205 * with different pointer types: 12206 * src_reg == ctx in one branch and 12207 * src_reg == stack|map in some other branch. 12208 * Reject it. 12209 */ 12210 verbose(env, "same insn cannot be used with different pointers\n"); 12211 return -EINVAL; 12212 } 12213 12214 } else if (class == BPF_STX) { 12215 enum bpf_reg_type *prev_dst_type, dst_reg_type; 12216 12217 if (BPF_MODE(insn->code) == BPF_ATOMIC) { 12218 err = check_atomic(env, env->insn_idx, insn); 12219 if (err) 12220 return err; 12221 env->insn_idx++; 12222 continue; 12223 } 12224 12225 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) { 12226 verbose(env, "BPF_STX uses reserved fields\n"); 12227 return -EINVAL; 12228 } 12229 12230 /* check src1 operand */ 12231 err = check_reg_arg(env, insn->src_reg, SRC_OP); 12232 if (err) 12233 return err; 12234 /* check src2 operand */ 12235 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 12236 if (err) 12237 return err; 12238 12239 dst_reg_type = regs[insn->dst_reg].type; 12240 12241 /* check that memory (dst_reg + off) is writeable */ 12242 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 12243 insn->off, BPF_SIZE(insn->code), 12244 BPF_WRITE, insn->src_reg, false); 12245 if (err) 12246 return err; 12247 12248 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type; 12249 12250 if (*prev_dst_type == NOT_INIT) { 12251 *prev_dst_type = dst_reg_type; 12252 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) { 12253 verbose(env, "same insn cannot be used with different pointers\n"); 12254 return -EINVAL; 12255 } 12256 12257 } else if (class == BPF_ST) { 12258 if (BPF_MODE(insn->code) != BPF_MEM || 12259 insn->src_reg != BPF_REG_0) { 12260 verbose(env, "BPF_ST uses reserved fields\n"); 12261 return -EINVAL; 12262 } 12263 /* check src operand */ 12264 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 12265 if (err) 12266 return err; 12267 12268 if (is_ctx_reg(env, insn->dst_reg)) { 12269 verbose(env, "BPF_ST stores into R%d %s is not allowed\n", 12270 insn->dst_reg, 12271 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 12272 return -EACCES; 12273 } 12274 12275 /* check that memory (dst_reg + off) is writeable */ 12276 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 12277 insn->off, BPF_SIZE(insn->code), 12278 BPF_WRITE, -1, false); 12279 if (err) 12280 return err; 12281 12282 } else if (class == BPF_JMP || class == BPF_JMP32) { 12283 u8 opcode = BPF_OP(insn->code); 12284 12285 env->jmps_processed++; 12286 if (opcode == BPF_CALL) { 12287 if (BPF_SRC(insn->code) != BPF_K || 12288 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL 12289 && insn->off != 0) || 12290 (insn->src_reg != BPF_REG_0 && 12291 insn->src_reg != BPF_PSEUDO_CALL && 12292 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) || 12293 insn->dst_reg != BPF_REG_0 || 12294 class == BPF_JMP32) { 12295 verbose(env, "BPF_CALL uses reserved fields\n"); 12296 return -EINVAL; 12297 } 12298 12299 if (env->cur_state->active_spin_lock && 12300 (insn->src_reg == BPF_PSEUDO_CALL || 12301 insn->imm != BPF_FUNC_spin_unlock)) { 12302 verbose(env, "function calls are not allowed while holding a lock\n"); 12303 return -EINVAL; 12304 } 12305 if (insn->src_reg == BPF_PSEUDO_CALL) 12306 err = check_func_call(env, insn, &env->insn_idx); 12307 else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) 12308 err = check_kfunc_call(env, insn, &env->insn_idx); 12309 else 12310 err = check_helper_call(env, insn, &env->insn_idx); 12311 if (err) 12312 return err; 12313 } else if (opcode == BPF_JA) { 12314 if (BPF_SRC(insn->code) != BPF_K || 12315 insn->imm != 0 || 12316 insn->src_reg != BPF_REG_0 || 12317 insn->dst_reg != BPF_REG_0 || 12318 class == BPF_JMP32) { 12319 verbose(env, "BPF_JA uses reserved fields\n"); 12320 return -EINVAL; 12321 } 12322 12323 env->insn_idx += insn->off + 1; 12324 continue; 12325 12326 } else if (opcode == BPF_EXIT) { 12327 if (BPF_SRC(insn->code) != BPF_K || 12328 insn->imm != 0 || 12329 insn->src_reg != BPF_REG_0 || 12330 insn->dst_reg != BPF_REG_0 || 12331 class == BPF_JMP32) { 12332 verbose(env, "BPF_EXIT uses reserved fields\n"); 12333 return -EINVAL; 12334 } 12335 12336 if (env->cur_state->active_spin_lock) { 12337 verbose(env, "bpf_spin_unlock is missing\n"); 12338 return -EINVAL; 12339 } 12340 12341 if (state->curframe) { 12342 /* exit from nested function */ 12343 err = prepare_func_exit(env, &env->insn_idx); 12344 if (err) 12345 return err; 12346 do_print_state = true; 12347 continue; 12348 } 12349 12350 err = check_reference_leak(env); 12351 if (err) 12352 return err; 12353 12354 err = check_return_code(env); 12355 if (err) 12356 return err; 12357 process_bpf_exit: 12358 mark_verifier_state_scratched(env); 12359 update_branch_counts(env, env->cur_state); 12360 err = pop_stack(env, &prev_insn_idx, 12361 &env->insn_idx, pop_log); 12362 if (err < 0) { 12363 if (err != -ENOENT) 12364 return err; 12365 break; 12366 } else { 12367 do_print_state = true; 12368 continue; 12369 } 12370 } else { 12371 err = check_cond_jmp_op(env, insn, &env->insn_idx); 12372 if (err) 12373 return err; 12374 } 12375 } else if (class == BPF_LD) { 12376 u8 mode = BPF_MODE(insn->code); 12377 12378 if (mode == BPF_ABS || mode == BPF_IND) { 12379 err = check_ld_abs(env, insn); 12380 if (err) 12381 return err; 12382 12383 } else if (mode == BPF_IMM) { 12384 err = check_ld_imm(env, insn); 12385 if (err) 12386 return err; 12387 12388 env->insn_idx++; 12389 sanitize_mark_insn_seen(env); 12390 } else { 12391 verbose(env, "invalid BPF_LD mode\n"); 12392 return -EINVAL; 12393 } 12394 } else { 12395 verbose(env, "unknown insn class %d\n", class); 12396 return -EINVAL; 12397 } 12398 12399 env->insn_idx++; 12400 } 12401 12402 return 0; 12403 } 12404 12405 static int find_btf_percpu_datasec(struct btf *btf) 12406 { 12407 const struct btf_type *t; 12408 const char *tname; 12409 int i, n; 12410 12411 /* 12412 * Both vmlinux and module each have their own ".data..percpu" 12413 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF 12414 * types to look at only module's own BTF types. 12415 */ 12416 n = btf_nr_types(btf); 12417 if (btf_is_module(btf)) 12418 i = btf_nr_types(btf_vmlinux); 12419 else 12420 i = 1; 12421 12422 for(; i < n; i++) { 12423 t = btf_type_by_id(btf, i); 12424 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC) 12425 continue; 12426 12427 tname = btf_name_by_offset(btf, t->name_off); 12428 if (!strcmp(tname, ".data..percpu")) 12429 return i; 12430 } 12431 12432 return -ENOENT; 12433 } 12434 12435 /* replace pseudo btf_id with kernel symbol address */ 12436 static int check_pseudo_btf_id(struct bpf_verifier_env *env, 12437 struct bpf_insn *insn, 12438 struct bpf_insn_aux_data *aux) 12439 { 12440 const struct btf_var_secinfo *vsi; 12441 const struct btf_type *datasec; 12442 struct btf_mod_pair *btf_mod; 12443 const struct btf_type *t; 12444 const char *sym_name; 12445 bool percpu = false; 12446 u32 type, id = insn->imm; 12447 struct btf *btf; 12448 s32 datasec_id; 12449 u64 addr; 12450 int i, btf_fd, err; 12451 12452 btf_fd = insn[1].imm; 12453 if (btf_fd) { 12454 btf = btf_get_by_fd(btf_fd); 12455 if (IS_ERR(btf)) { 12456 verbose(env, "invalid module BTF object FD specified.\n"); 12457 return -EINVAL; 12458 } 12459 } else { 12460 if (!btf_vmlinux) { 12461 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n"); 12462 return -EINVAL; 12463 } 12464 btf = btf_vmlinux; 12465 btf_get(btf); 12466 } 12467 12468 t = btf_type_by_id(btf, id); 12469 if (!t) { 12470 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id); 12471 err = -ENOENT; 12472 goto err_put; 12473 } 12474 12475 if (!btf_type_is_var(t)) { 12476 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id); 12477 err = -EINVAL; 12478 goto err_put; 12479 } 12480 12481 sym_name = btf_name_by_offset(btf, t->name_off); 12482 addr = kallsyms_lookup_name(sym_name); 12483 if (!addr) { 12484 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n", 12485 sym_name); 12486 err = -ENOENT; 12487 goto err_put; 12488 } 12489 12490 datasec_id = find_btf_percpu_datasec(btf); 12491 if (datasec_id > 0) { 12492 datasec = btf_type_by_id(btf, datasec_id); 12493 for_each_vsi(i, datasec, vsi) { 12494 if (vsi->type == id) { 12495 percpu = true; 12496 break; 12497 } 12498 } 12499 } 12500 12501 insn[0].imm = (u32)addr; 12502 insn[1].imm = addr >> 32; 12503 12504 type = t->type; 12505 t = btf_type_skip_modifiers(btf, type, NULL); 12506 if (percpu) { 12507 aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU; 12508 aux->btf_var.btf = btf; 12509 aux->btf_var.btf_id = type; 12510 } else if (!btf_type_is_struct(t)) { 12511 const struct btf_type *ret; 12512 const char *tname; 12513 u32 tsize; 12514 12515 /* resolve the type size of ksym. */ 12516 ret = btf_resolve_size(btf, t, &tsize); 12517 if (IS_ERR(ret)) { 12518 tname = btf_name_by_offset(btf, t->name_off); 12519 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n", 12520 tname, PTR_ERR(ret)); 12521 err = -EINVAL; 12522 goto err_put; 12523 } 12524 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 12525 aux->btf_var.mem_size = tsize; 12526 } else { 12527 aux->btf_var.reg_type = PTR_TO_BTF_ID; 12528 aux->btf_var.btf = btf; 12529 aux->btf_var.btf_id = type; 12530 } 12531 12532 /* check whether we recorded this BTF (and maybe module) already */ 12533 for (i = 0; i < env->used_btf_cnt; i++) { 12534 if (env->used_btfs[i].btf == btf) { 12535 btf_put(btf); 12536 return 0; 12537 } 12538 } 12539 12540 if (env->used_btf_cnt >= MAX_USED_BTFS) { 12541 err = -E2BIG; 12542 goto err_put; 12543 } 12544 12545 btf_mod = &env->used_btfs[env->used_btf_cnt]; 12546 btf_mod->btf = btf; 12547 btf_mod->module = NULL; 12548 12549 /* if we reference variables from kernel module, bump its refcount */ 12550 if (btf_is_module(btf)) { 12551 btf_mod->module = btf_try_get_module(btf); 12552 if (!btf_mod->module) { 12553 err = -ENXIO; 12554 goto err_put; 12555 } 12556 } 12557 12558 env->used_btf_cnt++; 12559 12560 return 0; 12561 err_put: 12562 btf_put(btf); 12563 return err; 12564 } 12565 12566 static int check_map_prealloc(struct bpf_map *map) 12567 { 12568 return (map->map_type != BPF_MAP_TYPE_HASH && 12569 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 12570 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) || 12571 !(map->map_flags & BPF_F_NO_PREALLOC); 12572 } 12573 12574 static bool is_tracing_prog_type(enum bpf_prog_type type) 12575 { 12576 switch (type) { 12577 case BPF_PROG_TYPE_KPROBE: 12578 case BPF_PROG_TYPE_TRACEPOINT: 12579 case BPF_PROG_TYPE_PERF_EVENT: 12580 case BPF_PROG_TYPE_RAW_TRACEPOINT: 12581 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: 12582 return true; 12583 default: 12584 return false; 12585 } 12586 } 12587 12588 static bool is_preallocated_map(struct bpf_map *map) 12589 { 12590 if (!check_map_prealloc(map)) 12591 return false; 12592 if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta)) 12593 return false; 12594 return true; 12595 } 12596 12597 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 12598 struct bpf_map *map, 12599 struct bpf_prog *prog) 12600 12601 { 12602 enum bpf_prog_type prog_type = resolve_prog_type(prog); 12603 /* 12604 * Validate that trace type programs use preallocated hash maps. 12605 * 12606 * For programs attached to PERF events this is mandatory as the 12607 * perf NMI can hit any arbitrary code sequence. 12608 * 12609 * All other trace types using preallocated hash maps are unsafe as 12610 * well because tracepoint or kprobes can be inside locked regions 12611 * of the memory allocator or at a place where a recursion into the 12612 * memory allocator would see inconsistent state. 12613 * 12614 * On RT enabled kernels run-time allocation of all trace type 12615 * programs is strictly prohibited due to lock type constraints. On 12616 * !RT kernels it is allowed for backwards compatibility reasons for 12617 * now, but warnings are emitted so developers are made aware of 12618 * the unsafety and can fix their programs before this is enforced. 12619 */ 12620 if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) { 12621 if (prog_type == BPF_PROG_TYPE_PERF_EVENT) { 12622 verbose(env, "perf_event programs can only use preallocated hash map\n"); 12623 return -EINVAL; 12624 } 12625 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 12626 verbose(env, "trace type programs can only use preallocated hash map\n"); 12627 return -EINVAL; 12628 } 12629 WARN_ONCE(1, "trace type BPF program uses run-time allocation\n"); 12630 verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n"); 12631 } 12632 12633 if (map_value_has_spin_lock(map)) { 12634 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) { 12635 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n"); 12636 return -EINVAL; 12637 } 12638 12639 if (is_tracing_prog_type(prog_type)) { 12640 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 12641 return -EINVAL; 12642 } 12643 12644 if (prog->aux->sleepable) { 12645 verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n"); 12646 return -EINVAL; 12647 } 12648 } 12649 12650 if (map_value_has_timer(map)) { 12651 if (is_tracing_prog_type(prog_type)) { 12652 verbose(env, "tracing progs cannot use bpf_timer yet\n"); 12653 return -EINVAL; 12654 } 12655 } 12656 12657 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) && 12658 !bpf_offload_prog_map_match(prog, map)) { 12659 verbose(env, "offload device mismatch between prog and map\n"); 12660 return -EINVAL; 12661 } 12662 12663 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 12664 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 12665 return -EINVAL; 12666 } 12667 12668 if (prog->aux->sleepable) 12669 switch (map->map_type) { 12670 case BPF_MAP_TYPE_HASH: 12671 case BPF_MAP_TYPE_LRU_HASH: 12672 case BPF_MAP_TYPE_ARRAY: 12673 case BPF_MAP_TYPE_PERCPU_HASH: 12674 case BPF_MAP_TYPE_PERCPU_ARRAY: 12675 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 12676 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 12677 case BPF_MAP_TYPE_HASH_OF_MAPS: 12678 if (!is_preallocated_map(map)) { 12679 verbose(env, 12680 "Sleepable programs can only use preallocated maps\n"); 12681 return -EINVAL; 12682 } 12683 break; 12684 case BPF_MAP_TYPE_RINGBUF: 12685 case BPF_MAP_TYPE_INODE_STORAGE: 12686 case BPF_MAP_TYPE_SK_STORAGE: 12687 case BPF_MAP_TYPE_TASK_STORAGE: 12688 break; 12689 default: 12690 verbose(env, 12691 "Sleepable programs can only use array, hash, and ringbuf maps\n"); 12692 return -EINVAL; 12693 } 12694 12695 return 0; 12696 } 12697 12698 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 12699 { 12700 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 12701 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 12702 } 12703 12704 /* find and rewrite pseudo imm in ld_imm64 instructions: 12705 * 12706 * 1. if it accesses map FD, replace it with actual map pointer. 12707 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var. 12708 * 12709 * NOTE: btf_vmlinux is required for converting pseudo btf_id. 12710 */ 12711 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env) 12712 { 12713 struct bpf_insn *insn = env->prog->insnsi; 12714 int insn_cnt = env->prog->len; 12715 int i, j, err; 12716 12717 err = bpf_prog_calc_tag(env->prog); 12718 if (err) 12719 return err; 12720 12721 for (i = 0; i < insn_cnt; i++, insn++) { 12722 if (BPF_CLASS(insn->code) == BPF_LDX && 12723 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 12724 verbose(env, "BPF_LDX uses reserved fields\n"); 12725 return -EINVAL; 12726 } 12727 12728 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 12729 struct bpf_insn_aux_data *aux; 12730 struct bpf_map *map; 12731 struct fd f; 12732 u64 addr; 12733 u32 fd; 12734 12735 if (i == insn_cnt - 1 || insn[1].code != 0 || 12736 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 12737 insn[1].off != 0) { 12738 verbose(env, "invalid bpf_ld_imm64 insn\n"); 12739 return -EINVAL; 12740 } 12741 12742 if (insn[0].src_reg == 0) 12743 /* valid generic load 64-bit imm */ 12744 goto next_insn; 12745 12746 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) { 12747 aux = &env->insn_aux_data[i]; 12748 err = check_pseudo_btf_id(env, insn, aux); 12749 if (err) 12750 return err; 12751 goto next_insn; 12752 } 12753 12754 if (insn[0].src_reg == BPF_PSEUDO_FUNC) { 12755 aux = &env->insn_aux_data[i]; 12756 aux->ptr_type = PTR_TO_FUNC; 12757 goto next_insn; 12758 } 12759 12760 /* In final convert_pseudo_ld_imm64() step, this is 12761 * converted into regular 64-bit imm load insn. 12762 */ 12763 switch (insn[0].src_reg) { 12764 case BPF_PSEUDO_MAP_VALUE: 12765 case BPF_PSEUDO_MAP_IDX_VALUE: 12766 break; 12767 case BPF_PSEUDO_MAP_FD: 12768 case BPF_PSEUDO_MAP_IDX: 12769 if (insn[1].imm == 0) 12770 break; 12771 fallthrough; 12772 default: 12773 verbose(env, "unrecognized bpf_ld_imm64 insn\n"); 12774 return -EINVAL; 12775 } 12776 12777 switch (insn[0].src_reg) { 12778 case BPF_PSEUDO_MAP_IDX_VALUE: 12779 case BPF_PSEUDO_MAP_IDX: 12780 if (bpfptr_is_null(env->fd_array)) { 12781 verbose(env, "fd_idx without fd_array is invalid\n"); 12782 return -EPROTO; 12783 } 12784 if (copy_from_bpfptr_offset(&fd, env->fd_array, 12785 insn[0].imm * sizeof(fd), 12786 sizeof(fd))) 12787 return -EFAULT; 12788 break; 12789 default: 12790 fd = insn[0].imm; 12791 break; 12792 } 12793 12794 f = fdget(fd); 12795 map = __bpf_map_get(f); 12796 if (IS_ERR(map)) { 12797 verbose(env, "fd %d is not pointing to valid bpf_map\n", 12798 insn[0].imm); 12799 return PTR_ERR(map); 12800 } 12801 12802 err = check_map_prog_compatibility(env, map, env->prog); 12803 if (err) { 12804 fdput(f); 12805 return err; 12806 } 12807 12808 aux = &env->insn_aux_data[i]; 12809 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD || 12810 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) { 12811 addr = (unsigned long)map; 12812 } else { 12813 u32 off = insn[1].imm; 12814 12815 if (off >= BPF_MAX_VAR_OFF) { 12816 verbose(env, "direct value offset of %u is not allowed\n", off); 12817 fdput(f); 12818 return -EINVAL; 12819 } 12820 12821 if (!map->ops->map_direct_value_addr) { 12822 verbose(env, "no direct value access support for this map type\n"); 12823 fdput(f); 12824 return -EINVAL; 12825 } 12826 12827 err = map->ops->map_direct_value_addr(map, &addr, off); 12828 if (err) { 12829 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 12830 map->value_size, off); 12831 fdput(f); 12832 return err; 12833 } 12834 12835 aux->map_off = off; 12836 addr += off; 12837 } 12838 12839 insn[0].imm = (u32)addr; 12840 insn[1].imm = addr >> 32; 12841 12842 /* check whether we recorded this map already */ 12843 for (j = 0; j < env->used_map_cnt; j++) { 12844 if (env->used_maps[j] == map) { 12845 aux->map_index = j; 12846 fdput(f); 12847 goto next_insn; 12848 } 12849 } 12850 12851 if (env->used_map_cnt >= MAX_USED_MAPS) { 12852 fdput(f); 12853 return -E2BIG; 12854 } 12855 12856 /* hold the map. If the program is rejected by verifier, 12857 * the map will be released by release_maps() or it 12858 * will be used by the valid program until it's unloaded 12859 * and all maps are released in free_used_maps() 12860 */ 12861 bpf_map_inc(map); 12862 12863 aux->map_index = env->used_map_cnt; 12864 env->used_maps[env->used_map_cnt++] = map; 12865 12866 if (bpf_map_is_cgroup_storage(map) && 12867 bpf_cgroup_storage_assign(env->prog->aux, map)) { 12868 verbose(env, "only one cgroup storage of each type is allowed\n"); 12869 fdput(f); 12870 return -EBUSY; 12871 } 12872 12873 fdput(f); 12874 next_insn: 12875 insn++; 12876 i++; 12877 continue; 12878 } 12879 12880 /* Basic sanity check before we invest more work here. */ 12881 if (!bpf_opcode_in_insntable(insn->code)) { 12882 verbose(env, "unknown opcode %02x\n", insn->code); 12883 return -EINVAL; 12884 } 12885 } 12886 12887 /* now all pseudo BPF_LD_IMM64 instructions load valid 12888 * 'struct bpf_map *' into a register instead of user map_fd. 12889 * These pointers will be used later by verifier to validate map access. 12890 */ 12891 return 0; 12892 } 12893 12894 /* drop refcnt of maps used by the rejected program */ 12895 static void release_maps(struct bpf_verifier_env *env) 12896 { 12897 __bpf_free_used_maps(env->prog->aux, env->used_maps, 12898 env->used_map_cnt); 12899 } 12900 12901 /* drop refcnt of maps used by the rejected program */ 12902 static void release_btfs(struct bpf_verifier_env *env) 12903 { 12904 __bpf_free_used_btfs(env->prog->aux, env->used_btfs, 12905 env->used_btf_cnt); 12906 } 12907 12908 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 12909 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 12910 { 12911 struct bpf_insn *insn = env->prog->insnsi; 12912 int insn_cnt = env->prog->len; 12913 int i; 12914 12915 for (i = 0; i < insn_cnt; i++, insn++) { 12916 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) 12917 continue; 12918 if (insn->src_reg == BPF_PSEUDO_FUNC) 12919 continue; 12920 insn->src_reg = 0; 12921 } 12922 } 12923 12924 /* single env->prog->insni[off] instruction was replaced with the range 12925 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 12926 * [0, off) and [off, end) to new locations, so the patched range stays zero 12927 */ 12928 static void adjust_insn_aux_data(struct bpf_verifier_env *env, 12929 struct bpf_insn_aux_data *new_data, 12930 struct bpf_prog *new_prog, u32 off, u32 cnt) 12931 { 12932 struct bpf_insn_aux_data *old_data = env->insn_aux_data; 12933 struct bpf_insn *insn = new_prog->insnsi; 12934 u32 old_seen = old_data[off].seen; 12935 u32 prog_len; 12936 int i; 12937 12938 /* aux info at OFF always needs adjustment, no matter fast path 12939 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 12940 * original insn at old prog. 12941 */ 12942 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 12943 12944 if (cnt == 1) 12945 return; 12946 prog_len = new_prog->len; 12947 12948 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 12949 memcpy(new_data + off + cnt - 1, old_data + off, 12950 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 12951 for (i = off; i < off + cnt - 1; i++) { 12952 /* Expand insni[off]'s seen count to the patched range. */ 12953 new_data[i].seen = old_seen; 12954 new_data[i].zext_dst = insn_has_def32(env, insn + i); 12955 } 12956 env->insn_aux_data = new_data; 12957 vfree(old_data); 12958 } 12959 12960 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 12961 { 12962 int i; 12963 12964 if (len == 1) 12965 return; 12966 /* NOTE: fake 'exit' subprog should be updated as well. */ 12967 for (i = 0; i <= env->subprog_cnt; i++) { 12968 if (env->subprog_info[i].start <= off) 12969 continue; 12970 env->subprog_info[i].start += len - 1; 12971 } 12972 } 12973 12974 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len) 12975 { 12976 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; 12977 int i, sz = prog->aux->size_poke_tab; 12978 struct bpf_jit_poke_descriptor *desc; 12979 12980 for (i = 0; i < sz; i++) { 12981 desc = &tab[i]; 12982 if (desc->insn_idx <= off) 12983 continue; 12984 desc->insn_idx += len - 1; 12985 } 12986 } 12987 12988 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 12989 const struct bpf_insn *patch, u32 len) 12990 { 12991 struct bpf_prog *new_prog; 12992 struct bpf_insn_aux_data *new_data = NULL; 12993 12994 if (len > 1) { 12995 new_data = vzalloc(array_size(env->prog->len + len - 1, 12996 sizeof(struct bpf_insn_aux_data))); 12997 if (!new_data) 12998 return NULL; 12999 } 13000 13001 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 13002 if (IS_ERR(new_prog)) { 13003 if (PTR_ERR(new_prog) == -ERANGE) 13004 verbose(env, 13005 "insn %d cannot be patched due to 16-bit range\n", 13006 env->insn_aux_data[off].orig_idx); 13007 vfree(new_data); 13008 return NULL; 13009 } 13010 adjust_insn_aux_data(env, new_data, new_prog, off, len); 13011 adjust_subprog_starts(env, off, len); 13012 adjust_poke_descs(new_prog, off, len); 13013 return new_prog; 13014 } 13015 13016 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 13017 u32 off, u32 cnt) 13018 { 13019 int i, j; 13020 13021 /* find first prog starting at or after off (first to remove) */ 13022 for (i = 0; i < env->subprog_cnt; i++) 13023 if (env->subprog_info[i].start >= off) 13024 break; 13025 /* find first prog starting at or after off + cnt (first to stay) */ 13026 for (j = i; j < env->subprog_cnt; j++) 13027 if (env->subprog_info[j].start >= off + cnt) 13028 break; 13029 /* if j doesn't start exactly at off + cnt, we are just removing 13030 * the front of previous prog 13031 */ 13032 if (env->subprog_info[j].start != off + cnt) 13033 j--; 13034 13035 if (j > i) { 13036 struct bpf_prog_aux *aux = env->prog->aux; 13037 int move; 13038 13039 /* move fake 'exit' subprog as well */ 13040 move = env->subprog_cnt + 1 - j; 13041 13042 memmove(env->subprog_info + i, 13043 env->subprog_info + j, 13044 sizeof(*env->subprog_info) * move); 13045 env->subprog_cnt -= j - i; 13046 13047 /* remove func_info */ 13048 if (aux->func_info) { 13049 move = aux->func_info_cnt - j; 13050 13051 memmove(aux->func_info + i, 13052 aux->func_info + j, 13053 sizeof(*aux->func_info) * move); 13054 aux->func_info_cnt -= j - i; 13055 /* func_info->insn_off is set after all code rewrites, 13056 * in adjust_btf_func() - no need to adjust 13057 */ 13058 } 13059 } else { 13060 /* convert i from "first prog to remove" to "first to adjust" */ 13061 if (env->subprog_info[i].start == off) 13062 i++; 13063 } 13064 13065 /* update fake 'exit' subprog as well */ 13066 for (; i <= env->subprog_cnt; i++) 13067 env->subprog_info[i].start -= cnt; 13068 13069 return 0; 13070 } 13071 13072 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 13073 u32 cnt) 13074 { 13075 struct bpf_prog *prog = env->prog; 13076 u32 i, l_off, l_cnt, nr_linfo; 13077 struct bpf_line_info *linfo; 13078 13079 nr_linfo = prog->aux->nr_linfo; 13080 if (!nr_linfo) 13081 return 0; 13082 13083 linfo = prog->aux->linfo; 13084 13085 /* find first line info to remove, count lines to be removed */ 13086 for (i = 0; i < nr_linfo; i++) 13087 if (linfo[i].insn_off >= off) 13088 break; 13089 13090 l_off = i; 13091 l_cnt = 0; 13092 for (; i < nr_linfo; i++) 13093 if (linfo[i].insn_off < off + cnt) 13094 l_cnt++; 13095 else 13096 break; 13097 13098 /* First live insn doesn't match first live linfo, it needs to "inherit" 13099 * last removed linfo. prog is already modified, so prog->len == off 13100 * means no live instructions after (tail of the program was removed). 13101 */ 13102 if (prog->len != off && l_cnt && 13103 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 13104 l_cnt--; 13105 linfo[--i].insn_off = off + cnt; 13106 } 13107 13108 /* remove the line info which refer to the removed instructions */ 13109 if (l_cnt) { 13110 memmove(linfo + l_off, linfo + i, 13111 sizeof(*linfo) * (nr_linfo - i)); 13112 13113 prog->aux->nr_linfo -= l_cnt; 13114 nr_linfo = prog->aux->nr_linfo; 13115 } 13116 13117 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 13118 for (i = l_off; i < nr_linfo; i++) 13119 linfo[i].insn_off -= cnt; 13120 13121 /* fix up all subprogs (incl. 'exit') which start >= off */ 13122 for (i = 0; i <= env->subprog_cnt; i++) 13123 if (env->subprog_info[i].linfo_idx > l_off) { 13124 /* program may have started in the removed region but 13125 * may not be fully removed 13126 */ 13127 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 13128 env->subprog_info[i].linfo_idx -= l_cnt; 13129 else 13130 env->subprog_info[i].linfo_idx = l_off; 13131 } 13132 13133 return 0; 13134 } 13135 13136 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 13137 { 13138 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 13139 unsigned int orig_prog_len = env->prog->len; 13140 int err; 13141 13142 if (bpf_prog_is_dev_bound(env->prog->aux)) 13143 bpf_prog_offload_remove_insns(env, off, cnt); 13144 13145 err = bpf_remove_insns(env->prog, off, cnt); 13146 if (err) 13147 return err; 13148 13149 err = adjust_subprog_starts_after_remove(env, off, cnt); 13150 if (err) 13151 return err; 13152 13153 err = bpf_adj_linfo_after_remove(env, off, cnt); 13154 if (err) 13155 return err; 13156 13157 memmove(aux_data + off, aux_data + off + cnt, 13158 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 13159 13160 return 0; 13161 } 13162 13163 /* The verifier does more data flow analysis than llvm and will not 13164 * explore branches that are dead at run time. Malicious programs can 13165 * have dead code too. Therefore replace all dead at-run-time code 13166 * with 'ja -1'. 13167 * 13168 * Just nops are not optimal, e.g. if they would sit at the end of the 13169 * program and through another bug we would manage to jump there, then 13170 * we'd execute beyond program memory otherwise. Returning exception 13171 * code also wouldn't work since we can have subprogs where the dead 13172 * code could be located. 13173 */ 13174 static void sanitize_dead_code(struct bpf_verifier_env *env) 13175 { 13176 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 13177 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 13178 struct bpf_insn *insn = env->prog->insnsi; 13179 const int insn_cnt = env->prog->len; 13180 int i; 13181 13182 for (i = 0; i < insn_cnt; i++) { 13183 if (aux_data[i].seen) 13184 continue; 13185 memcpy(insn + i, &trap, sizeof(trap)); 13186 aux_data[i].zext_dst = false; 13187 } 13188 } 13189 13190 static bool insn_is_cond_jump(u8 code) 13191 { 13192 u8 op; 13193 13194 if (BPF_CLASS(code) == BPF_JMP32) 13195 return true; 13196 13197 if (BPF_CLASS(code) != BPF_JMP) 13198 return false; 13199 13200 op = BPF_OP(code); 13201 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 13202 } 13203 13204 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 13205 { 13206 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 13207 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 13208 struct bpf_insn *insn = env->prog->insnsi; 13209 const int insn_cnt = env->prog->len; 13210 int i; 13211 13212 for (i = 0; i < insn_cnt; i++, insn++) { 13213 if (!insn_is_cond_jump(insn->code)) 13214 continue; 13215 13216 if (!aux_data[i + 1].seen) 13217 ja.off = insn->off; 13218 else if (!aux_data[i + 1 + insn->off].seen) 13219 ja.off = 0; 13220 else 13221 continue; 13222 13223 if (bpf_prog_is_dev_bound(env->prog->aux)) 13224 bpf_prog_offload_replace_insn(env, i, &ja); 13225 13226 memcpy(insn, &ja, sizeof(ja)); 13227 } 13228 } 13229 13230 static int opt_remove_dead_code(struct bpf_verifier_env *env) 13231 { 13232 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 13233 int insn_cnt = env->prog->len; 13234 int i, err; 13235 13236 for (i = 0; i < insn_cnt; i++) { 13237 int j; 13238 13239 j = 0; 13240 while (i + j < insn_cnt && !aux_data[i + j].seen) 13241 j++; 13242 if (!j) 13243 continue; 13244 13245 err = verifier_remove_insns(env, i, j); 13246 if (err) 13247 return err; 13248 insn_cnt = env->prog->len; 13249 } 13250 13251 return 0; 13252 } 13253 13254 static int opt_remove_nops(struct bpf_verifier_env *env) 13255 { 13256 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 13257 struct bpf_insn *insn = env->prog->insnsi; 13258 int insn_cnt = env->prog->len; 13259 int i, err; 13260 13261 for (i = 0; i < insn_cnt; i++) { 13262 if (memcmp(&insn[i], &ja, sizeof(ja))) 13263 continue; 13264 13265 err = verifier_remove_insns(env, i, 1); 13266 if (err) 13267 return err; 13268 insn_cnt--; 13269 i--; 13270 } 13271 13272 return 0; 13273 } 13274 13275 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 13276 const union bpf_attr *attr) 13277 { 13278 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 13279 struct bpf_insn_aux_data *aux = env->insn_aux_data; 13280 int i, patch_len, delta = 0, len = env->prog->len; 13281 struct bpf_insn *insns = env->prog->insnsi; 13282 struct bpf_prog *new_prog; 13283 bool rnd_hi32; 13284 13285 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 13286 zext_patch[1] = BPF_ZEXT_REG(0); 13287 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 13288 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 13289 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 13290 for (i = 0; i < len; i++) { 13291 int adj_idx = i + delta; 13292 struct bpf_insn insn; 13293 int load_reg; 13294 13295 insn = insns[adj_idx]; 13296 load_reg = insn_def_regno(&insn); 13297 if (!aux[adj_idx].zext_dst) { 13298 u8 code, class; 13299 u32 imm_rnd; 13300 13301 if (!rnd_hi32) 13302 continue; 13303 13304 code = insn.code; 13305 class = BPF_CLASS(code); 13306 if (load_reg == -1) 13307 continue; 13308 13309 /* NOTE: arg "reg" (the fourth one) is only used for 13310 * BPF_STX + SRC_OP, so it is safe to pass NULL 13311 * here. 13312 */ 13313 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) { 13314 if (class == BPF_LD && 13315 BPF_MODE(code) == BPF_IMM) 13316 i++; 13317 continue; 13318 } 13319 13320 /* ctx load could be transformed into wider load. */ 13321 if (class == BPF_LDX && 13322 aux[adj_idx].ptr_type == PTR_TO_CTX) 13323 continue; 13324 13325 imm_rnd = get_random_int(); 13326 rnd_hi32_patch[0] = insn; 13327 rnd_hi32_patch[1].imm = imm_rnd; 13328 rnd_hi32_patch[3].dst_reg = load_reg; 13329 patch = rnd_hi32_patch; 13330 patch_len = 4; 13331 goto apply_patch_buffer; 13332 } 13333 13334 /* Add in an zero-extend instruction if a) the JIT has requested 13335 * it or b) it's a CMPXCHG. 13336 * 13337 * The latter is because: BPF_CMPXCHG always loads a value into 13338 * R0, therefore always zero-extends. However some archs' 13339 * equivalent instruction only does this load when the 13340 * comparison is successful. This detail of CMPXCHG is 13341 * orthogonal to the general zero-extension behaviour of the 13342 * CPU, so it's treated independently of bpf_jit_needs_zext. 13343 */ 13344 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn)) 13345 continue; 13346 13347 if (WARN_ON(load_reg == -1)) { 13348 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n"); 13349 return -EFAULT; 13350 } 13351 13352 zext_patch[0] = insn; 13353 zext_patch[1].dst_reg = load_reg; 13354 zext_patch[1].src_reg = load_reg; 13355 patch = zext_patch; 13356 patch_len = 2; 13357 apply_patch_buffer: 13358 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 13359 if (!new_prog) 13360 return -ENOMEM; 13361 env->prog = new_prog; 13362 insns = new_prog->insnsi; 13363 aux = env->insn_aux_data; 13364 delta += patch_len - 1; 13365 } 13366 13367 return 0; 13368 } 13369 13370 /* convert load instructions that access fields of a context type into a 13371 * sequence of instructions that access fields of the underlying structure: 13372 * struct __sk_buff -> struct sk_buff 13373 * struct bpf_sock_ops -> struct sock 13374 */ 13375 static int convert_ctx_accesses(struct bpf_verifier_env *env) 13376 { 13377 const struct bpf_verifier_ops *ops = env->ops; 13378 int i, cnt, size, ctx_field_size, delta = 0; 13379 const int insn_cnt = env->prog->len; 13380 struct bpf_insn insn_buf[16], *insn; 13381 u32 target_size, size_default, off; 13382 struct bpf_prog *new_prog; 13383 enum bpf_access_type type; 13384 bool is_narrower_load; 13385 13386 if (ops->gen_prologue || env->seen_direct_write) { 13387 if (!ops->gen_prologue) { 13388 verbose(env, "bpf verifier is misconfigured\n"); 13389 return -EINVAL; 13390 } 13391 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 13392 env->prog); 13393 if (cnt >= ARRAY_SIZE(insn_buf)) { 13394 verbose(env, "bpf verifier is misconfigured\n"); 13395 return -EINVAL; 13396 } else if (cnt) { 13397 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 13398 if (!new_prog) 13399 return -ENOMEM; 13400 13401 env->prog = new_prog; 13402 delta += cnt - 1; 13403 } 13404 } 13405 13406 if (bpf_prog_is_dev_bound(env->prog->aux)) 13407 return 0; 13408 13409 insn = env->prog->insnsi + delta; 13410 13411 for (i = 0; i < insn_cnt; i++, insn++) { 13412 bpf_convert_ctx_access_t convert_ctx_access; 13413 bool ctx_access; 13414 13415 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 13416 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 13417 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 13418 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) { 13419 type = BPF_READ; 13420 ctx_access = true; 13421 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 13422 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 13423 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 13424 insn->code == (BPF_STX | BPF_MEM | BPF_DW) || 13425 insn->code == (BPF_ST | BPF_MEM | BPF_B) || 13426 insn->code == (BPF_ST | BPF_MEM | BPF_H) || 13427 insn->code == (BPF_ST | BPF_MEM | BPF_W) || 13428 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) { 13429 type = BPF_WRITE; 13430 ctx_access = BPF_CLASS(insn->code) == BPF_STX; 13431 } else { 13432 continue; 13433 } 13434 13435 if (type == BPF_WRITE && 13436 env->insn_aux_data[i + delta].sanitize_stack_spill) { 13437 struct bpf_insn patch[] = { 13438 *insn, 13439 BPF_ST_NOSPEC(), 13440 }; 13441 13442 cnt = ARRAY_SIZE(patch); 13443 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 13444 if (!new_prog) 13445 return -ENOMEM; 13446 13447 delta += cnt - 1; 13448 env->prog = new_prog; 13449 insn = new_prog->insnsi + i + delta; 13450 continue; 13451 } 13452 13453 if (!ctx_access) 13454 continue; 13455 13456 switch ((int)env->insn_aux_data[i + delta].ptr_type) { 13457 case PTR_TO_CTX: 13458 if (!ops->convert_ctx_access) 13459 continue; 13460 convert_ctx_access = ops->convert_ctx_access; 13461 break; 13462 case PTR_TO_SOCKET: 13463 case PTR_TO_SOCK_COMMON: 13464 convert_ctx_access = bpf_sock_convert_ctx_access; 13465 break; 13466 case PTR_TO_TCP_SOCK: 13467 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 13468 break; 13469 case PTR_TO_XDP_SOCK: 13470 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 13471 break; 13472 case PTR_TO_BTF_ID: 13473 case PTR_TO_BTF_ID | PTR_UNTRUSTED: 13474 if (type == BPF_READ) { 13475 insn->code = BPF_LDX | BPF_PROBE_MEM | 13476 BPF_SIZE((insn)->code); 13477 env->prog->aux->num_exentries++; 13478 } else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) { 13479 verbose(env, "Writes through BTF pointers are not allowed\n"); 13480 return -EINVAL; 13481 } 13482 continue; 13483 default: 13484 continue; 13485 } 13486 13487 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 13488 size = BPF_LDST_BYTES(insn); 13489 13490 /* If the read access is a narrower load of the field, 13491 * convert to a 4/8-byte load, to minimum program type specific 13492 * convert_ctx_access changes. If conversion is successful, 13493 * we will apply proper mask to the result. 13494 */ 13495 is_narrower_load = size < ctx_field_size; 13496 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 13497 off = insn->off; 13498 if (is_narrower_load) { 13499 u8 size_code; 13500 13501 if (type == BPF_WRITE) { 13502 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 13503 return -EINVAL; 13504 } 13505 13506 size_code = BPF_H; 13507 if (ctx_field_size == 4) 13508 size_code = BPF_W; 13509 else if (ctx_field_size == 8) 13510 size_code = BPF_DW; 13511 13512 insn->off = off & ~(size_default - 1); 13513 insn->code = BPF_LDX | BPF_MEM | size_code; 13514 } 13515 13516 target_size = 0; 13517 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 13518 &target_size); 13519 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 13520 (ctx_field_size && !target_size)) { 13521 verbose(env, "bpf verifier is misconfigured\n"); 13522 return -EINVAL; 13523 } 13524 13525 if (is_narrower_load && size < target_size) { 13526 u8 shift = bpf_ctx_narrow_access_offset( 13527 off, size, size_default) * 8; 13528 if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) { 13529 verbose(env, "bpf verifier narrow ctx load misconfigured\n"); 13530 return -EINVAL; 13531 } 13532 if (ctx_field_size <= 4) { 13533 if (shift) 13534 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 13535 insn->dst_reg, 13536 shift); 13537 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 13538 (1 << size * 8) - 1); 13539 } else { 13540 if (shift) 13541 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 13542 insn->dst_reg, 13543 shift); 13544 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 13545 (1ULL << size * 8) - 1); 13546 } 13547 } 13548 13549 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 13550 if (!new_prog) 13551 return -ENOMEM; 13552 13553 delta += cnt - 1; 13554 13555 /* keep walking new program and skip insns we just inserted */ 13556 env->prog = new_prog; 13557 insn = new_prog->insnsi + i + delta; 13558 } 13559 13560 return 0; 13561 } 13562 13563 static int jit_subprogs(struct bpf_verifier_env *env) 13564 { 13565 struct bpf_prog *prog = env->prog, **func, *tmp; 13566 int i, j, subprog_start, subprog_end = 0, len, subprog; 13567 struct bpf_map *map_ptr; 13568 struct bpf_insn *insn; 13569 void *old_bpf_func; 13570 int err, num_exentries; 13571 13572 if (env->subprog_cnt <= 1) 13573 return 0; 13574 13575 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 13576 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn)) 13577 continue; 13578 13579 /* Upon error here we cannot fall back to interpreter but 13580 * need a hard reject of the program. Thus -EFAULT is 13581 * propagated in any case. 13582 */ 13583 subprog = find_subprog(env, i + insn->imm + 1); 13584 if (subprog < 0) { 13585 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 13586 i + insn->imm + 1); 13587 return -EFAULT; 13588 } 13589 /* temporarily remember subprog id inside insn instead of 13590 * aux_data, since next loop will split up all insns into funcs 13591 */ 13592 insn->off = subprog; 13593 /* remember original imm in case JIT fails and fallback 13594 * to interpreter will be needed 13595 */ 13596 env->insn_aux_data[i].call_imm = insn->imm; 13597 /* point imm to __bpf_call_base+1 from JITs point of view */ 13598 insn->imm = 1; 13599 if (bpf_pseudo_func(insn)) 13600 /* jit (e.g. x86_64) may emit fewer instructions 13601 * if it learns a u32 imm is the same as a u64 imm. 13602 * Force a non zero here. 13603 */ 13604 insn[1].imm = 1; 13605 } 13606 13607 err = bpf_prog_alloc_jited_linfo(prog); 13608 if (err) 13609 goto out_undo_insn; 13610 13611 err = -ENOMEM; 13612 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 13613 if (!func) 13614 goto out_undo_insn; 13615 13616 for (i = 0; i < env->subprog_cnt; i++) { 13617 subprog_start = subprog_end; 13618 subprog_end = env->subprog_info[i + 1].start; 13619 13620 len = subprog_end - subprog_start; 13621 /* bpf_prog_run() doesn't call subprogs directly, 13622 * hence main prog stats include the runtime of subprogs. 13623 * subprogs don't have IDs and not reachable via prog_get_next_id 13624 * func[i]->stats will never be accessed and stays NULL 13625 */ 13626 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 13627 if (!func[i]) 13628 goto out_free; 13629 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 13630 len * sizeof(struct bpf_insn)); 13631 func[i]->type = prog->type; 13632 func[i]->len = len; 13633 if (bpf_prog_calc_tag(func[i])) 13634 goto out_free; 13635 func[i]->is_func = 1; 13636 func[i]->aux->func_idx = i; 13637 /* Below members will be freed only at prog->aux */ 13638 func[i]->aux->btf = prog->aux->btf; 13639 func[i]->aux->func_info = prog->aux->func_info; 13640 func[i]->aux->func_info_cnt = prog->aux->func_info_cnt; 13641 func[i]->aux->poke_tab = prog->aux->poke_tab; 13642 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab; 13643 13644 for (j = 0; j < prog->aux->size_poke_tab; j++) { 13645 struct bpf_jit_poke_descriptor *poke; 13646 13647 poke = &prog->aux->poke_tab[j]; 13648 if (poke->insn_idx < subprog_end && 13649 poke->insn_idx >= subprog_start) 13650 poke->aux = func[i]->aux; 13651 } 13652 13653 func[i]->aux->name[0] = 'F'; 13654 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 13655 func[i]->jit_requested = 1; 13656 func[i]->blinding_requested = prog->blinding_requested; 13657 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab; 13658 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab; 13659 func[i]->aux->linfo = prog->aux->linfo; 13660 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 13661 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 13662 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 13663 num_exentries = 0; 13664 insn = func[i]->insnsi; 13665 for (j = 0; j < func[i]->len; j++, insn++) { 13666 if (BPF_CLASS(insn->code) == BPF_LDX && 13667 BPF_MODE(insn->code) == BPF_PROBE_MEM) 13668 num_exentries++; 13669 } 13670 func[i]->aux->num_exentries = num_exentries; 13671 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable; 13672 func[i] = bpf_int_jit_compile(func[i]); 13673 if (!func[i]->jited) { 13674 err = -ENOTSUPP; 13675 goto out_free; 13676 } 13677 cond_resched(); 13678 } 13679 13680 /* at this point all bpf functions were successfully JITed 13681 * now populate all bpf_calls with correct addresses and 13682 * run last pass of JIT 13683 */ 13684 for (i = 0; i < env->subprog_cnt; i++) { 13685 insn = func[i]->insnsi; 13686 for (j = 0; j < func[i]->len; j++, insn++) { 13687 if (bpf_pseudo_func(insn)) { 13688 subprog = insn->off; 13689 insn[0].imm = (u32)(long)func[subprog]->bpf_func; 13690 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32; 13691 continue; 13692 } 13693 if (!bpf_pseudo_call(insn)) 13694 continue; 13695 subprog = insn->off; 13696 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func); 13697 } 13698 13699 /* we use the aux data to keep a list of the start addresses 13700 * of the JITed images for each function in the program 13701 * 13702 * for some architectures, such as powerpc64, the imm field 13703 * might not be large enough to hold the offset of the start 13704 * address of the callee's JITed image from __bpf_call_base 13705 * 13706 * in such cases, we can lookup the start address of a callee 13707 * by using its subprog id, available from the off field of 13708 * the call instruction, as an index for this list 13709 */ 13710 func[i]->aux->func = func; 13711 func[i]->aux->func_cnt = env->subprog_cnt; 13712 } 13713 for (i = 0; i < env->subprog_cnt; i++) { 13714 old_bpf_func = func[i]->bpf_func; 13715 tmp = bpf_int_jit_compile(func[i]); 13716 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 13717 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 13718 err = -ENOTSUPP; 13719 goto out_free; 13720 } 13721 cond_resched(); 13722 } 13723 13724 /* finally lock prog and jit images for all functions and 13725 * populate kallsysm 13726 */ 13727 for (i = 0; i < env->subprog_cnt; i++) { 13728 bpf_prog_lock_ro(func[i]); 13729 bpf_prog_kallsyms_add(func[i]); 13730 } 13731 13732 /* Last step: make now unused interpreter insns from main 13733 * prog consistent for later dump requests, so they can 13734 * later look the same as if they were interpreted only. 13735 */ 13736 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 13737 if (bpf_pseudo_func(insn)) { 13738 insn[0].imm = env->insn_aux_data[i].call_imm; 13739 insn[1].imm = insn->off; 13740 insn->off = 0; 13741 continue; 13742 } 13743 if (!bpf_pseudo_call(insn)) 13744 continue; 13745 insn->off = env->insn_aux_data[i].call_imm; 13746 subprog = find_subprog(env, i + insn->off + 1); 13747 insn->imm = subprog; 13748 } 13749 13750 prog->jited = 1; 13751 prog->bpf_func = func[0]->bpf_func; 13752 prog->jited_len = func[0]->jited_len; 13753 prog->aux->func = func; 13754 prog->aux->func_cnt = env->subprog_cnt; 13755 bpf_prog_jit_attempt_done(prog); 13756 return 0; 13757 out_free: 13758 /* We failed JIT'ing, so at this point we need to unregister poke 13759 * descriptors from subprogs, so that kernel is not attempting to 13760 * patch it anymore as we're freeing the subprog JIT memory. 13761 */ 13762 for (i = 0; i < prog->aux->size_poke_tab; i++) { 13763 map_ptr = prog->aux->poke_tab[i].tail_call.map; 13764 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux); 13765 } 13766 /* At this point we're guaranteed that poke descriptors are not 13767 * live anymore. We can just unlink its descriptor table as it's 13768 * released with the main prog. 13769 */ 13770 for (i = 0; i < env->subprog_cnt; i++) { 13771 if (!func[i]) 13772 continue; 13773 func[i]->aux->poke_tab = NULL; 13774 bpf_jit_free(func[i]); 13775 } 13776 kfree(func); 13777 out_undo_insn: 13778 /* cleanup main prog to be interpreted */ 13779 prog->jit_requested = 0; 13780 prog->blinding_requested = 0; 13781 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 13782 if (!bpf_pseudo_call(insn)) 13783 continue; 13784 insn->off = 0; 13785 insn->imm = env->insn_aux_data[i].call_imm; 13786 } 13787 bpf_prog_jit_attempt_done(prog); 13788 return err; 13789 } 13790 13791 static int fixup_call_args(struct bpf_verifier_env *env) 13792 { 13793 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 13794 struct bpf_prog *prog = env->prog; 13795 struct bpf_insn *insn = prog->insnsi; 13796 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog); 13797 int i, depth; 13798 #endif 13799 int err = 0; 13800 13801 if (env->prog->jit_requested && 13802 !bpf_prog_is_dev_bound(env->prog->aux)) { 13803 err = jit_subprogs(env); 13804 if (err == 0) 13805 return 0; 13806 if (err == -EFAULT) 13807 return err; 13808 } 13809 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 13810 if (has_kfunc_call) { 13811 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n"); 13812 return -EINVAL; 13813 } 13814 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) { 13815 /* When JIT fails the progs with bpf2bpf calls and tail_calls 13816 * have to be rejected, since interpreter doesn't support them yet. 13817 */ 13818 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 13819 return -EINVAL; 13820 } 13821 for (i = 0; i < prog->len; i++, insn++) { 13822 if (bpf_pseudo_func(insn)) { 13823 /* When JIT fails the progs with callback calls 13824 * have to be rejected, since interpreter doesn't support them yet. 13825 */ 13826 verbose(env, "callbacks are not allowed in non-JITed programs\n"); 13827 return -EINVAL; 13828 } 13829 13830 if (!bpf_pseudo_call(insn)) 13831 continue; 13832 depth = get_callee_stack_depth(env, insn, i); 13833 if (depth < 0) 13834 return depth; 13835 bpf_patch_call_args(insn, depth); 13836 } 13837 err = 0; 13838 #endif 13839 return err; 13840 } 13841 13842 static int fixup_kfunc_call(struct bpf_verifier_env *env, 13843 struct bpf_insn *insn) 13844 { 13845 const struct bpf_kfunc_desc *desc; 13846 13847 if (!insn->imm) { 13848 verbose(env, "invalid kernel function call not eliminated in verifier pass\n"); 13849 return -EINVAL; 13850 } 13851 13852 /* insn->imm has the btf func_id. Replace it with 13853 * an address (relative to __bpf_base_call). 13854 */ 13855 desc = find_kfunc_desc(env->prog, insn->imm, insn->off); 13856 if (!desc) { 13857 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n", 13858 insn->imm); 13859 return -EFAULT; 13860 } 13861 13862 insn->imm = desc->imm; 13863 13864 return 0; 13865 } 13866 13867 /* Do various post-verification rewrites in a single program pass. 13868 * These rewrites simplify JIT and interpreter implementations. 13869 */ 13870 static int do_misc_fixups(struct bpf_verifier_env *env) 13871 { 13872 struct bpf_prog *prog = env->prog; 13873 enum bpf_attach_type eatype = prog->expected_attach_type; 13874 enum bpf_prog_type prog_type = resolve_prog_type(prog); 13875 struct bpf_insn *insn = prog->insnsi; 13876 const struct bpf_func_proto *fn; 13877 const int insn_cnt = prog->len; 13878 const struct bpf_map_ops *ops; 13879 struct bpf_insn_aux_data *aux; 13880 struct bpf_insn insn_buf[16]; 13881 struct bpf_prog *new_prog; 13882 struct bpf_map *map_ptr; 13883 int i, ret, cnt, delta = 0; 13884 13885 for (i = 0; i < insn_cnt; i++, insn++) { 13886 /* Make divide-by-zero exceptions impossible. */ 13887 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 13888 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 13889 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 13890 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 13891 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 13892 bool isdiv = BPF_OP(insn->code) == BPF_DIV; 13893 struct bpf_insn *patchlet; 13894 struct bpf_insn chk_and_div[] = { 13895 /* [R,W]x div 0 -> 0 */ 13896 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 13897 BPF_JNE | BPF_K, insn->src_reg, 13898 0, 2, 0), 13899 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 13900 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 13901 *insn, 13902 }; 13903 struct bpf_insn chk_and_mod[] = { 13904 /* [R,W]x mod 0 -> [R,W]x */ 13905 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 13906 BPF_JEQ | BPF_K, insn->src_reg, 13907 0, 1 + (is64 ? 0 : 1), 0), 13908 *insn, 13909 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 13910 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg), 13911 }; 13912 13913 patchlet = isdiv ? chk_and_div : chk_and_mod; 13914 cnt = isdiv ? ARRAY_SIZE(chk_and_div) : 13915 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0); 13916 13917 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 13918 if (!new_prog) 13919 return -ENOMEM; 13920 13921 delta += cnt - 1; 13922 env->prog = prog = new_prog; 13923 insn = new_prog->insnsi + i + delta; 13924 continue; 13925 } 13926 13927 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */ 13928 if (BPF_CLASS(insn->code) == BPF_LD && 13929 (BPF_MODE(insn->code) == BPF_ABS || 13930 BPF_MODE(insn->code) == BPF_IND)) { 13931 cnt = env->ops->gen_ld_abs(insn, insn_buf); 13932 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 13933 verbose(env, "bpf verifier is misconfigured\n"); 13934 return -EINVAL; 13935 } 13936 13937 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 13938 if (!new_prog) 13939 return -ENOMEM; 13940 13941 delta += cnt - 1; 13942 env->prog = prog = new_prog; 13943 insn = new_prog->insnsi + i + delta; 13944 continue; 13945 } 13946 13947 /* Rewrite pointer arithmetic to mitigate speculation attacks. */ 13948 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 13949 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 13950 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 13951 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 13952 struct bpf_insn *patch = &insn_buf[0]; 13953 bool issrc, isneg, isimm; 13954 u32 off_reg; 13955 13956 aux = &env->insn_aux_data[i + delta]; 13957 if (!aux->alu_state || 13958 aux->alu_state == BPF_ALU_NON_POINTER) 13959 continue; 13960 13961 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 13962 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 13963 BPF_ALU_SANITIZE_SRC; 13964 isimm = aux->alu_state & BPF_ALU_IMMEDIATE; 13965 13966 off_reg = issrc ? insn->src_reg : insn->dst_reg; 13967 if (isimm) { 13968 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 13969 } else { 13970 if (isneg) 13971 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 13972 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 13973 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 13974 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 13975 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 13976 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 13977 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg); 13978 } 13979 if (!issrc) 13980 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg); 13981 insn->src_reg = BPF_REG_AX; 13982 if (isneg) 13983 insn->code = insn->code == code_add ? 13984 code_sub : code_add; 13985 *patch++ = *insn; 13986 if (issrc && isneg && !isimm) 13987 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 13988 cnt = patch - insn_buf; 13989 13990 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 13991 if (!new_prog) 13992 return -ENOMEM; 13993 13994 delta += cnt - 1; 13995 env->prog = prog = new_prog; 13996 insn = new_prog->insnsi + i + delta; 13997 continue; 13998 } 13999 14000 if (insn->code != (BPF_JMP | BPF_CALL)) 14001 continue; 14002 if (insn->src_reg == BPF_PSEUDO_CALL) 14003 continue; 14004 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 14005 ret = fixup_kfunc_call(env, insn); 14006 if (ret) 14007 return ret; 14008 continue; 14009 } 14010 14011 if (insn->imm == BPF_FUNC_get_route_realm) 14012 prog->dst_needed = 1; 14013 if (insn->imm == BPF_FUNC_get_prandom_u32) 14014 bpf_user_rnd_init_once(); 14015 if (insn->imm == BPF_FUNC_override_return) 14016 prog->kprobe_override = 1; 14017 if (insn->imm == BPF_FUNC_tail_call) { 14018 /* If we tail call into other programs, we 14019 * cannot make any assumptions since they can 14020 * be replaced dynamically during runtime in 14021 * the program array. 14022 */ 14023 prog->cb_access = 1; 14024 if (!allow_tail_call_in_subprogs(env)) 14025 prog->aux->stack_depth = MAX_BPF_STACK; 14026 prog->aux->max_pkt_offset = MAX_PACKET_OFF; 14027 14028 /* mark bpf_tail_call as different opcode to avoid 14029 * conditional branch in the interpreter for every normal 14030 * call and to prevent accidental JITing by JIT compiler 14031 * that doesn't support bpf_tail_call yet 14032 */ 14033 insn->imm = 0; 14034 insn->code = BPF_JMP | BPF_TAIL_CALL; 14035 14036 aux = &env->insn_aux_data[i + delta]; 14037 if (env->bpf_capable && !prog->blinding_requested && 14038 prog->jit_requested && 14039 !bpf_map_key_poisoned(aux) && 14040 !bpf_map_ptr_poisoned(aux) && 14041 !bpf_map_ptr_unpriv(aux)) { 14042 struct bpf_jit_poke_descriptor desc = { 14043 .reason = BPF_POKE_REASON_TAIL_CALL, 14044 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state), 14045 .tail_call.key = bpf_map_key_immediate(aux), 14046 .insn_idx = i + delta, 14047 }; 14048 14049 ret = bpf_jit_add_poke_descriptor(prog, &desc); 14050 if (ret < 0) { 14051 verbose(env, "adding tail call poke descriptor failed\n"); 14052 return ret; 14053 } 14054 14055 insn->imm = ret + 1; 14056 continue; 14057 } 14058 14059 if (!bpf_map_ptr_unpriv(aux)) 14060 continue; 14061 14062 /* instead of changing every JIT dealing with tail_call 14063 * emit two extra insns: 14064 * if (index >= max_entries) goto out; 14065 * index &= array->index_mask; 14066 * to avoid out-of-bounds cpu speculation 14067 */ 14068 if (bpf_map_ptr_poisoned(aux)) { 14069 verbose(env, "tail_call abusing map_ptr\n"); 14070 return -EINVAL; 14071 } 14072 14073 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 14074 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 14075 map_ptr->max_entries, 2); 14076 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 14077 container_of(map_ptr, 14078 struct bpf_array, 14079 map)->index_mask); 14080 insn_buf[2] = *insn; 14081 cnt = 3; 14082 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 14083 if (!new_prog) 14084 return -ENOMEM; 14085 14086 delta += cnt - 1; 14087 env->prog = prog = new_prog; 14088 insn = new_prog->insnsi + i + delta; 14089 continue; 14090 } 14091 14092 if (insn->imm == BPF_FUNC_timer_set_callback) { 14093 /* The verifier will process callback_fn as many times as necessary 14094 * with different maps and the register states prepared by 14095 * set_timer_callback_state will be accurate. 14096 * 14097 * The following use case is valid: 14098 * map1 is shared by prog1, prog2, prog3. 14099 * prog1 calls bpf_timer_init for some map1 elements 14100 * prog2 calls bpf_timer_set_callback for some map1 elements. 14101 * Those that were not bpf_timer_init-ed will return -EINVAL. 14102 * prog3 calls bpf_timer_start for some map1 elements. 14103 * Those that were not both bpf_timer_init-ed and 14104 * bpf_timer_set_callback-ed will return -EINVAL. 14105 */ 14106 struct bpf_insn ld_addrs[2] = { 14107 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux), 14108 }; 14109 14110 insn_buf[0] = ld_addrs[0]; 14111 insn_buf[1] = ld_addrs[1]; 14112 insn_buf[2] = *insn; 14113 cnt = 3; 14114 14115 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 14116 if (!new_prog) 14117 return -ENOMEM; 14118 14119 delta += cnt - 1; 14120 env->prog = prog = new_prog; 14121 insn = new_prog->insnsi + i + delta; 14122 goto patch_call_imm; 14123 } 14124 14125 if (insn->imm == BPF_FUNC_task_storage_get || 14126 insn->imm == BPF_FUNC_sk_storage_get || 14127 insn->imm == BPF_FUNC_inode_storage_get) { 14128 if (env->prog->aux->sleepable) 14129 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL); 14130 else 14131 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC); 14132 insn_buf[1] = *insn; 14133 cnt = 2; 14134 14135 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 14136 if (!new_prog) 14137 return -ENOMEM; 14138 14139 delta += cnt - 1; 14140 env->prog = prog = new_prog; 14141 insn = new_prog->insnsi + i + delta; 14142 goto patch_call_imm; 14143 } 14144 14145 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 14146 * and other inlining handlers are currently limited to 64 bit 14147 * only. 14148 */ 14149 if (prog->jit_requested && BITS_PER_LONG == 64 && 14150 (insn->imm == BPF_FUNC_map_lookup_elem || 14151 insn->imm == BPF_FUNC_map_update_elem || 14152 insn->imm == BPF_FUNC_map_delete_elem || 14153 insn->imm == BPF_FUNC_map_push_elem || 14154 insn->imm == BPF_FUNC_map_pop_elem || 14155 insn->imm == BPF_FUNC_map_peek_elem || 14156 insn->imm == BPF_FUNC_redirect_map || 14157 insn->imm == BPF_FUNC_for_each_map_elem || 14158 insn->imm == BPF_FUNC_map_lookup_percpu_elem)) { 14159 aux = &env->insn_aux_data[i + delta]; 14160 if (bpf_map_ptr_poisoned(aux)) 14161 goto patch_call_imm; 14162 14163 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 14164 ops = map_ptr->ops; 14165 if (insn->imm == BPF_FUNC_map_lookup_elem && 14166 ops->map_gen_lookup) { 14167 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 14168 if (cnt == -EOPNOTSUPP) 14169 goto patch_map_ops_generic; 14170 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) { 14171 verbose(env, "bpf verifier is misconfigured\n"); 14172 return -EINVAL; 14173 } 14174 14175 new_prog = bpf_patch_insn_data(env, i + delta, 14176 insn_buf, cnt); 14177 if (!new_prog) 14178 return -ENOMEM; 14179 14180 delta += cnt - 1; 14181 env->prog = prog = new_prog; 14182 insn = new_prog->insnsi + i + delta; 14183 continue; 14184 } 14185 14186 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 14187 (void *(*)(struct bpf_map *map, void *key))NULL)); 14188 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 14189 (int (*)(struct bpf_map *map, void *key))NULL)); 14190 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 14191 (int (*)(struct bpf_map *map, void *key, void *value, 14192 u64 flags))NULL)); 14193 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 14194 (int (*)(struct bpf_map *map, void *value, 14195 u64 flags))NULL)); 14196 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 14197 (int (*)(struct bpf_map *map, void *value))NULL)); 14198 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 14199 (int (*)(struct bpf_map *map, void *value))NULL)); 14200 BUILD_BUG_ON(!__same_type(ops->map_redirect, 14201 (int (*)(struct bpf_map *map, u32 ifindex, u64 flags))NULL)); 14202 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback, 14203 (int (*)(struct bpf_map *map, 14204 bpf_callback_t callback_fn, 14205 void *callback_ctx, 14206 u64 flags))NULL)); 14207 BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem, 14208 (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL)); 14209 14210 patch_map_ops_generic: 14211 switch (insn->imm) { 14212 case BPF_FUNC_map_lookup_elem: 14213 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem); 14214 continue; 14215 case BPF_FUNC_map_update_elem: 14216 insn->imm = BPF_CALL_IMM(ops->map_update_elem); 14217 continue; 14218 case BPF_FUNC_map_delete_elem: 14219 insn->imm = BPF_CALL_IMM(ops->map_delete_elem); 14220 continue; 14221 case BPF_FUNC_map_push_elem: 14222 insn->imm = BPF_CALL_IMM(ops->map_push_elem); 14223 continue; 14224 case BPF_FUNC_map_pop_elem: 14225 insn->imm = BPF_CALL_IMM(ops->map_pop_elem); 14226 continue; 14227 case BPF_FUNC_map_peek_elem: 14228 insn->imm = BPF_CALL_IMM(ops->map_peek_elem); 14229 continue; 14230 case BPF_FUNC_redirect_map: 14231 insn->imm = BPF_CALL_IMM(ops->map_redirect); 14232 continue; 14233 case BPF_FUNC_for_each_map_elem: 14234 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback); 14235 continue; 14236 case BPF_FUNC_map_lookup_percpu_elem: 14237 insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem); 14238 continue; 14239 } 14240 14241 goto patch_call_imm; 14242 } 14243 14244 /* Implement bpf_jiffies64 inline. */ 14245 if (prog->jit_requested && BITS_PER_LONG == 64 && 14246 insn->imm == BPF_FUNC_jiffies64) { 14247 struct bpf_insn ld_jiffies_addr[2] = { 14248 BPF_LD_IMM64(BPF_REG_0, 14249 (unsigned long)&jiffies), 14250 }; 14251 14252 insn_buf[0] = ld_jiffies_addr[0]; 14253 insn_buf[1] = ld_jiffies_addr[1]; 14254 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 14255 BPF_REG_0, 0); 14256 cnt = 3; 14257 14258 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 14259 cnt); 14260 if (!new_prog) 14261 return -ENOMEM; 14262 14263 delta += cnt - 1; 14264 env->prog = prog = new_prog; 14265 insn = new_prog->insnsi + i + delta; 14266 continue; 14267 } 14268 14269 /* Implement bpf_get_func_arg inline. */ 14270 if (prog_type == BPF_PROG_TYPE_TRACING && 14271 insn->imm == BPF_FUNC_get_func_arg) { 14272 /* Load nr_args from ctx - 8 */ 14273 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 14274 insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6); 14275 insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3); 14276 insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1); 14277 insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0); 14278 insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 14279 insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0); 14280 insn_buf[7] = BPF_JMP_A(1); 14281 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL); 14282 cnt = 9; 14283 14284 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 14285 if (!new_prog) 14286 return -ENOMEM; 14287 14288 delta += cnt - 1; 14289 env->prog = prog = new_prog; 14290 insn = new_prog->insnsi + i + delta; 14291 continue; 14292 } 14293 14294 /* Implement bpf_get_func_ret inline. */ 14295 if (prog_type == BPF_PROG_TYPE_TRACING && 14296 insn->imm == BPF_FUNC_get_func_ret) { 14297 if (eatype == BPF_TRACE_FEXIT || 14298 eatype == BPF_MODIFY_RETURN) { 14299 /* Load nr_args from ctx - 8 */ 14300 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 14301 insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3); 14302 insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1); 14303 insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 14304 insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0); 14305 insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0); 14306 cnt = 6; 14307 } else { 14308 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP); 14309 cnt = 1; 14310 } 14311 14312 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 14313 if (!new_prog) 14314 return -ENOMEM; 14315 14316 delta += cnt - 1; 14317 env->prog = prog = new_prog; 14318 insn = new_prog->insnsi + i + delta; 14319 continue; 14320 } 14321 14322 /* Implement get_func_arg_cnt inline. */ 14323 if (prog_type == BPF_PROG_TYPE_TRACING && 14324 insn->imm == BPF_FUNC_get_func_arg_cnt) { 14325 /* Load nr_args from ctx - 8 */ 14326 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 14327 14328 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 14329 if (!new_prog) 14330 return -ENOMEM; 14331 14332 env->prog = prog = new_prog; 14333 insn = new_prog->insnsi + i + delta; 14334 continue; 14335 } 14336 14337 /* Implement bpf_get_func_ip inline. */ 14338 if (prog_type == BPF_PROG_TYPE_TRACING && 14339 insn->imm == BPF_FUNC_get_func_ip) { 14340 /* Load IP address from ctx - 16 */ 14341 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16); 14342 14343 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 14344 if (!new_prog) 14345 return -ENOMEM; 14346 14347 env->prog = prog = new_prog; 14348 insn = new_prog->insnsi + i + delta; 14349 continue; 14350 } 14351 14352 patch_call_imm: 14353 fn = env->ops->get_func_proto(insn->imm, env->prog); 14354 /* all functions that have prototype and verifier allowed 14355 * programs to call them, must be real in-kernel functions 14356 */ 14357 if (!fn->func) { 14358 verbose(env, 14359 "kernel subsystem misconfigured func %s#%d\n", 14360 func_id_name(insn->imm), insn->imm); 14361 return -EFAULT; 14362 } 14363 insn->imm = fn->func - __bpf_call_base; 14364 } 14365 14366 /* Since poke tab is now finalized, publish aux to tracker. */ 14367 for (i = 0; i < prog->aux->size_poke_tab; i++) { 14368 map_ptr = prog->aux->poke_tab[i].tail_call.map; 14369 if (!map_ptr->ops->map_poke_track || 14370 !map_ptr->ops->map_poke_untrack || 14371 !map_ptr->ops->map_poke_run) { 14372 verbose(env, "bpf verifier is misconfigured\n"); 14373 return -EINVAL; 14374 } 14375 14376 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 14377 if (ret < 0) { 14378 verbose(env, "tracking tail call prog failed\n"); 14379 return ret; 14380 } 14381 } 14382 14383 sort_kfunc_descs_by_imm(env->prog); 14384 14385 return 0; 14386 } 14387 14388 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env, 14389 int position, 14390 s32 stack_base, 14391 u32 callback_subprogno, 14392 u32 *cnt) 14393 { 14394 s32 r6_offset = stack_base + 0 * BPF_REG_SIZE; 14395 s32 r7_offset = stack_base + 1 * BPF_REG_SIZE; 14396 s32 r8_offset = stack_base + 2 * BPF_REG_SIZE; 14397 int reg_loop_max = BPF_REG_6; 14398 int reg_loop_cnt = BPF_REG_7; 14399 int reg_loop_ctx = BPF_REG_8; 14400 14401 struct bpf_prog *new_prog; 14402 u32 callback_start; 14403 u32 call_insn_offset; 14404 s32 callback_offset; 14405 14406 /* This represents an inlined version of bpf_iter.c:bpf_loop, 14407 * be careful to modify this code in sync. 14408 */ 14409 struct bpf_insn insn_buf[] = { 14410 /* Return error and jump to the end of the patch if 14411 * expected number of iterations is too big. 14412 */ 14413 BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2), 14414 BPF_MOV32_IMM(BPF_REG_0, -E2BIG), 14415 BPF_JMP_IMM(BPF_JA, 0, 0, 16), 14416 /* spill R6, R7, R8 to use these as loop vars */ 14417 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset), 14418 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset), 14419 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset), 14420 /* initialize loop vars */ 14421 BPF_MOV64_REG(reg_loop_max, BPF_REG_1), 14422 BPF_MOV32_IMM(reg_loop_cnt, 0), 14423 BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3), 14424 /* loop header, 14425 * if reg_loop_cnt >= reg_loop_max skip the loop body 14426 */ 14427 BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5), 14428 /* callback call, 14429 * correct callback offset would be set after patching 14430 */ 14431 BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt), 14432 BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx), 14433 BPF_CALL_REL(0), 14434 /* increment loop counter */ 14435 BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1), 14436 /* jump to loop header if callback returned 0 */ 14437 BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6), 14438 /* return value of bpf_loop, 14439 * set R0 to the number of iterations 14440 */ 14441 BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt), 14442 /* restore original values of R6, R7, R8 */ 14443 BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset), 14444 BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset), 14445 BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset), 14446 }; 14447 14448 *cnt = ARRAY_SIZE(insn_buf); 14449 new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt); 14450 if (!new_prog) 14451 return new_prog; 14452 14453 /* callback start is known only after patching */ 14454 callback_start = env->subprog_info[callback_subprogno].start; 14455 /* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */ 14456 call_insn_offset = position + 12; 14457 callback_offset = callback_start - call_insn_offset - 1; 14458 new_prog->insnsi[call_insn_offset].imm = callback_offset; 14459 14460 return new_prog; 14461 } 14462 14463 static bool is_bpf_loop_call(struct bpf_insn *insn) 14464 { 14465 return insn->code == (BPF_JMP | BPF_CALL) && 14466 insn->src_reg == 0 && 14467 insn->imm == BPF_FUNC_loop; 14468 } 14469 14470 /* For all sub-programs in the program (including main) check 14471 * insn_aux_data to see if there are bpf_loop calls that require 14472 * inlining. If such calls are found the calls are replaced with a 14473 * sequence of instructions produced by `inline_bpf_loop` function and 14474 * subprog stack_depth is increased by the size of 3 registers. 14475 * This stack space is used to spill values of the R6, R7, R8. These 14476 * registers are used to store the loop bound, counter and context 14477 * variables. 14478 */ 14479 static int optimize_bpf_loop(struct bpf_verifier_env *env) 14480 { 14481 struct bpf_subprog_info *subprogs = env->subprog_info; 14482 int i, cur_subprog = 0, cnt, delta = 0; 14483 struct bpf_insn *insn = env->prog->insnsi; 14484 int insn_cnt = env->prog->len; 14485 u16 stack_depth = subprogs[cur_subprog].stack_depth; 14486 u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 14487 u16 stack_depth_extra = 0; 14488 14489 for (i = 0; i < insn_cnt; i++, insn++) { 14490 struct bpf_loop_inline_state *inline_state = 14491 &env->insn_aux_data[i + delta].loop_inline_state; 14492 14493 if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) { 14494 struct bpf_prog *new_prog; 14495 14496 stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup; 14497 new_prog = inline_bpf_loop(env, 14498 i + delta, 14499 -(stack_depth + stack_depth_extra), 14500 inline_state->callback_subprogno, 14501 &cnt); 14502 if (!new_prog) 14503 return -ENOMEM; 14504 14505 delta += cnt - 1; 14506 env->prog = new_prog; 14507 insn = new_prog->insnsi + i + delta; 14508 } 14509 14510 if (subprogs[cur_subprog + 1].start == i + delta + 1) { 14511 subprogs[cur_subprog].stack_depth += stack_depth_extra; 14512 cur_subprog++; 14513 stack_depth = subprogs[cur_subprog].stack_depth; 14514 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 14515 stack_depth_extra = 0; 14516 } 14517 } 14518 14519 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 14520 14521 return 0; 14522 } 14523 14524 static void free_states(struct bpf_verifier_env *env) 14525 { 14526 struct bpf_verifier_state_list *sl, *sln; 14527 int i; 14528 14529 sl = env->free_list; 14530 while (sl) { 14531 sln = sl->next; 14532 free_verifier_state(&sl->state, false); 14533 kfree(sl); 14534 sl = sln; 14535 } 14536 env->free_list = NULL; 14537 14538 if (!env->explored_states) 14539 return; 14540 14541 for (i = 0; i < state_htab_size(env); i++) { 14542 sl = env->explored_states[i]; 14543 14544 while (sl) { 14545 sln = sl->next; 14546 free_verifier_state(&sl->state, false); 14547 kfree(sl); 14548 sl = sln; 14549 } 14550 env->explored_states[i] = NULL; 14551 } 14552 } 14553 14554 static int do_check_common(struct bpf_verifier_env *env, int subprog) 14555 { 14556 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 14557 struct bpf_verifier_state *state; 14558 struct bpf_reg_state *regs; 14559 int ret, i; 14560 14561 env->prev_linfo = NULL; 14562 env->pass_cnt++; 14563 14564 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 14565 if (!state) 14566 return -ENOMEM; 14567 state->curframe = 0; 14568 state->speculative = false; 14569 state->branches = 1; 14570 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 14571 if (!state->frame[0]) { 14572 kfree(state); 14573 return -ENOMEM; 14574 } 14575 env->cur_state = state; 14576 init_func_state(env, state->frame[0], 14577 BPF_MAIN_FUNC /* callsite */, 14578 0 /* frameno */, 14579 subprog); 14580 14581 regs = state->frame[state->curframe]->regs; 14582 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 14583 ret = btf_prepare_func_args(env, subprog, regs); 14584 if (ret) 14585 goto out; 14586 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 14587 if (regs[i].type == PTR_TO_CTX) 14588 mark_reg_known_zero(env, regs, i); 14589 else if (regs[i].type == SCALAR_VALUE) 14590 mark_reg_unknown(env, regs, i); 14591 else if (base_type(regs[i].type) == PTR_TO_MEM) { 14592 const u32 mem_size = regs[i].mem_size; 14593 14594 mark_reg_known_zero(env, regs, i); 14595 regs[i].mem_size = mem_size; 14596 regs[i].id = ++env->id_gen; 14597 } 14598 } 14599 } else { 14600 /* 1st arg to a function */ 14601 regs[BPF_REG_1].type = PTR_TO_CTX; 14602 mark_reg_known_zero(env, regs, BPF_REG_1); 14603 ret = btf_check_subprog_arg_match(env, subprog, regs); 14604 if (ret == -EFAULT) 14605 /* unlikely verifier bug. abort. 14606 * ret == 0 and ret < 0 are sadly acceptable for 14607 * main() function due to backward compatibility. 14608 * Like socket filter program may be written as: 14609 * int bpf_prog(struct pt_regs *ctx) 14610 * and never dereference that ctx in the program. 14611 * 'struct pt_regs' is a type mismatch for socket 14612 * filter that should be using 'struct __sk_buff'. 14613 */ 14614 goto out; 14615 } 14616 14617 ret = do_check(env); 14618 out: 14619 /* check for NULL is necessary, since cur_state can be freed inside 14620 * do_check() under memory pressure. 14621 */ 14622 if (env->cur_state) { 14623 free_verifier_state(env->cur_state, true); 14624 env->cur_state = NULL; 14625 } 14626 while (!pop_stack(env, NULL, NULL, false)); 14627 if (!ret && pop_log) 14628 bpf_vlog_reset(&env->log, 0); 14629 free_states(env); 14630 return ret; 14631 } 14632 14633 /* Verify all global functions in a BPF program one by one based on their BTF. 14634 * All global functions must pass verification. Otherwise the whole program is rejected. 14635 * Consider: 14636 * int bar(int); 14637 * int foo(int f) 14638 * { 14639 * return bar(f); 14640 * } 14641 * int bar(int b) 14642 * { 14643 * ... 14644 * } 14645 * foo() will be verified first for R1=any_scalar_value. During verification it 14646 * will be assumed that bar() already verified successfully and call to bar() 14647 * from foo() will be checked for type match only. Later bar() will be verified 14648 * independently to check that it's safe for R1=any_scalar_value. 14649 */ 14650 static int do_check_subprogs(struct bpf_verifier_env *env) 14651 { 14652 struct bpf_prog_aux *aux = env->prog->aux; 14653 int i, ret; 14654 14655 if (!aux->func_info) 14656 return 0; 14657 14658 for (i = 1; i < env->subprog_cnt; i++) { 14659 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL) 14660 continue; 14661 env->insn_idx = env->subprog_info[i].start; 14662 WARN_ON_ONCE(env->insn_idx == 0); 14663 ret = do_check_common(env, i); 14664 if (ret) { 14665 return ret; 14666 } else if (env->log.level & BPF_LOG_LEVEL) { 14667 verbose(env, 14668 "Func#%d is safe for any args that match its prototype\n", 14669 i); 14670 } 14671 } 14672 return 0; 14673 } 14674 14675 static int do_check_main(struct bpf_verifier_env *env) 14676 { 14677 int ret; 14678 14679 env->insn_idx = 0; 14680 ret = do_check_common(env, 0); 14681 if (!ret) 14682 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 14683 return ret; 14684 } 14685 14686 14687 static void print_verification_stats(struct bpf_verifier_env *env) 14688 { 14689 int i; 14690 14691 if (env->log.level & BPF_LOG_STATS) { 14692 verbose(env, "verification time %lld usec\n", 14693 div_u64(env->verification_time, 1000)); 14694 verbose(env, "stack depth "); 14695 for (i = 0; i < env->subprog_cnt; i++) { 14696 u32 depth = env->subprog_info[i].stack_depth; 14697 14698 verbose(env, "%d", depth); 14699 if (i + 1 < env->subprog_cnt) 14700 verbose(env, "+"); 14701 } 14702 verbose(env, "\n"); 14703 } 14704 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 14705 "total_states %d peak_states %d mark_read %d\n", 14706 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 14707 env->max_states_per_insn, env->total_states, 14708 env->peak_states, env->longest_mark_read_walk); 14709 } 14710 14711 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 14712 { 14713 const struct btf_type *t, *func_proto; 14714 const struct bpf_struct_ops *st_ops; 14715 const struct btf_member *member; 14716 struct bpf_prog *prog = env->prog; 14717 u32 btf_id, member_idx; 14718 const char *mname; 14719 14720 if (!prog->gpl_compatible) { 14721 verbose(env, "struct ops programs must have a GPL compatible license\n"); 14722 return -EINVAL; 14723 } 14724 14725 btf_id = prog->aux->attach_btf_id; 14726 st_ops = bpf_struct_ops_find(btf_id); 14727 if (!st_ops) { 14728 verbose(env, "attach_btf_id %u is not a supported struct\n", 14729 btf_id); 14730 return -ENOTSUPP; 14731 } 14732 14733 t = st_ops->type; 14734 member_idx = prog->expected_attach_type; 14735 if (member_idx >= btf_type_vlen(t)) { 14736 verbose(env, "attach to invalid member idx %u of struct %s\n", 14737 member_idx, st_ops->name); 14738 return -EINVAL; 14739 } 14740 14741 member = &btf_type_member(t)[member_idx]; 14742 mname = btf_name_by_offset(btf_vmlinux, member->name_off); 14743 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type, 14744 NULL); 14745 if (!func_proto) { 14746 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 14747 mname, member_idx, st_ops->name); 14748 return -EINVAL; 14749 } 14750 14751 if (st_ops->check_member) { 14752 int err = st_ops->check_member(t, member); 14753 14754 if (err) { 14755 verbose(env, "attach to unsupported member %s of struct %s\n", 14756 mname, st_ops->name); 14757 return err; 14758 } 14759 } 14760 14761 prog->aux->attach_func_proto = func_proto; 14762 prog->aux->attach_func_name = mname; 14763 env->ops = st_ops->verifier_ops; 14764 14765 return 0; 14766 } 14767 #define SECURITY_PREFIX "security_" 14768 14769 static int check_attach_modify_return(unsigned long addr, const char *func_name) 14770 { 14771 if (within_error_injection_list(addr) || 14772 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1)) 14773 return 0; 14774 14775 return -EINVAL; 14776 } 14777 14778 /* list of non-sleepable functions that are otherwise on 14779 * ALLOW_ERROR_INJECTION list 14780 */ 14781 BTF_SET_START(btf_non_sleepable_error_inject) 14782 /* Three functions below can be called from sleepable and non-sleepable context. 14783 * Assume non-sleepable from bpf safety point of view. 14784 */ 14785 BTF_ID(func, __filemap_add_folio) 14786 BTF_ID(func, should_fail_alloc_page) 14787 BTF_ID(func, should_failslab) 14788 BTF_SET_END(btf_non_sleepable_error_inject) 14789 14790 static int check_non_sleepable_error_inject(u32 btf_id) 14791 { 14792 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id); 14793 } 14794 14795 int bpf_check_attach_target(struct bpf_verifier_log *log, 14796 const struct bpf_prog *prog, 14797 const struct bpf_prog *tgt_prog, 14798 u32 btf_id, 14799 struct bpf_attach_target_info *tgt_info) 14800 { 14801 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 14802 const char prefix[] = "btf_trace_"; 14803 int ret = 0, subprog = -1, i; 14804 const struct btf_type *t; 14805 bool conservative = true; 14806 const char *tname; 14807 struct btf *btf; 14808 long addr = 0; 14809 14810 if (!btf_id) { 14811 bpf_log(log, "Tracing programs must provide btf_id\n"); 14812 return -EINVAL; 14813 } 14814 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf; 14815 if (!btf) { 14816 bpf_log(log, 14817 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 14818 return -EINVAL; 14819 } 14820 t = btf_type_by_id(btf, btf_id); 14821 if (!t) { 14822 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id); 14823 return -EINVAL; 14824 } 14825 tname = btf_name_by_offset(btf, t->name_off); 14826 if (!tname) { 14827 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id); 14828 return -EINVAL; 14829 } 14830 if (tgt_prog) { 14831 struct bpf_prog_aux *aux = tgt_prog->aux; 14832 14833 for (i = 0; i < aux->func_info_cnt; i++) 14834 if (aux->func_info[i].type_id == btf_id) { 14835 subprog = i; 14836 break; 14837 } 14838 if (subprog == -1) { 14839 bpf_log(log, "Subprog %s doesn't exist\n", tname); 14840 return -EINVAL; 14841 } 14842 conservative = aux->func_info_aux[subprog].unreliable; 14843 if (prog_extension) { 14844 if (conservative) { 14845 bpf_log(log, 14846 "Cannot replace static functions\n"); 14847 return -EINVAL; 14848 } 14849 if (!prog->jit_requested) { 14850 bpf_log(log, 14851 "Extension programs should be JITed\n"); 14852 return -EINVAL; 14853 } 14854 } 14855 if (!tgt_prog->jited) { 14856 bpf_log(log, "Can attach to only JITed progs\n"); 14857 return -EINVAL; 14858 } 14859 if (tgt_prog->type == prog->type) { 14860 /* Cannot fentry/fexit another fentry/fexit program. 14861 * Cannot attach program extension to another extension. 14862 * It's ok to attach fentry/fexit to extension program. 14863 */ 14864 bpf_log(log, "Cannot recursively attach\n"); 14865 return -EINVAL; 14866 } 14867 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 14868 prog_extension && 14869 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 14870 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 14871 /* Program extensions can extend all program types 14872 * except fentry/fexit. The reason is the following. 14873 * The fentry/fexit programs are used for performance 14874 * analysis, stats and can be attached to any program 14875 * type except themselves. When extension program is 14876 * replacing XDP function it is necessary to allow 14877 * performance analysis of all functions. Both original 14878 * XDP program and its program extension. Hence 14879 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is 14880 * allowed. If extending of fentry/fexit was allowed it 14881 * would be possible to create long call chain 14882 * fentry->extension->fentry->extension beyond 14883 * reasonable stack size. Hence extending fentry is not 14884 * allowed. 14885 */ 14886 bpf_log(log, "Cannot extend fentry/fexit\n"); 14887 return -EINVAL; 14888 } 14889 } else { 14890 if (prog_extension) { 14891 bpf_log(log, "Cannot replace kernel functions\n"); 14892 return -EINVAL; 14893 } 14894 } 14895 14896 switch (prog->expected_attach_type) { 14897 case BPF_TRACE_RAW_TP: 14898 if (tgt_prog) { 14899 bpf_log(log, 14900 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 14901 return -EINVAL; 14902 } 14903 if (!btf_type_is_typedef(t)) { 14904 bpf_log(log, "attach_btf_id %u is not a typedef\n", 14905 btf_id); 14906 return -EINVAL; 14907 } 14908 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 14909 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n", 14910 btf_id, tname); 14911 return -EINVAL; 14912 } 14913 tname += sizeof(prefix) - 1; 14914 t = btf_type_by_id(btf, t->type); 14915 if (!btf_type_is_ptr(t)) 14916 /* should never happen in valid vmlinux build */ 14917 return -EINVAL; 14918 t = btf_type_by_id(btf, t->type); 14919 if (!btf_type_is_func_proto(t)) 14920 /* should never happen in valid vmlinux build */ 14921 return -EINVAL; 14922 14923 break; 14924 case BPF_TRACE_ITER: 14925 if (!btf_type_is_func(t)) { 14926 bpf_log(log, "attach_btf_id %u is not a function\n", 14927 btf_id); 14928 return -EINVAL; 14929 } 14930 t = btf_type_by_id(btf, t->type); 14931 if (!btf_type_is_func_proto(t)) 14932 return -EINVAL; 14933 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 14934 if (ret) 14935 return ret; 14936 break; 14937 default: 14938 if (!prog_extension) 14939 return -EINVAL; 14940 fallthrough; 14941 case BPF_MODIFY_RETURN: 14942 case BPF_LSM_MAC: 14943 case BPF_LSM_CGROUP: 14944 case BPF_TRACE_FENTRY: 14945 case BPF_TRACE_FEXIT: 14946 if (!btf_type_is_func(t)) { 14947 bpf_log(log, "attach_btf_id %u is not a function\n", 14948 btf_id); 14949 return -EINVAL; 14950 } 14951 if (prog_extension && 14952 btf_check_type_match(log, prog, btf, t)) 14953 return -EINVAL; 14954 t = btf_type_by_id(btf, t->type); 14955 if (!btf_type_is_func_proto(t)) 14956 return -EINVAL; 14957 14958 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) && 14959 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type || 14960 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type)) 14961 return -EINVAL; 14962 14963 if (tgt_prog && conservative) 14964 t = NULL; 14965 14966 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 14967 if (ret < 0) 14968 return ret; 14969 14970 if (tgt_prog) { 14971 if (subprog == 0) 14972 addr = (long) tgt_prog->bpf_func; 14973 else 14974 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 14975 } else { 14976 addr = kallsyms_lookup_name(tname); 14977 if (!addr) { 14978 bpf_log(log, 14979 "The address of function %s cannot be found\n", 14980 tname); 14981 return -ENOENT; 14982 } 14983 } 14984 14985 if (prog->aux->sleepable) { 14986 ret = -EINVAL; 14987 switch (prog->type) { 14988 case BPF_PROG_TYPE_TRACING: 14989 /* fentry/fexit/fmod_ret progs can be sleepable only if they are 14990 * attached to ALLOW_ERROR_INJECTION and are not in denylist. 14991 */ 14992 if (!check_non_sleepable_error_inject(btf_id) && 14993 within_error_injection_list(addr)) 14994 ret = 0; 14995 break; 14996 case BPF_PROG_TYPE_LSM: 14997 /* LSM progs check that they are attached to bpf_lsm_*() funcs. 14998 * Only some of them are sleepable. 14999 */ 15000 if (bpf_lsm_is_sleepable_hook(btf_id)) 15001 ret = 0; 15002 break; 15003 default: 15004 break; 15005 } 15006 if (ret) { 15007 bpf_log(log, "%s is not sleepable\n", tname); 15008 return ret; 15009 } 15010 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) { 15011 if (tgt_prog) { 15012 bpf_log(log, "can't modify return codes of BPF programs\n"); 15013 return -EINVAL; 15014 } 15015 ret = check_attach_modify_return(addr, tname); 15016 if (ret) { 15017 bpf_log(log, "%s() is not modifiable\n", tname); 15018 return ret; 15019 } 15020 } 15021 15022 break; 15023 } 15024 tgt_info->tgt_addr = addr; 15025 tgt_info->tgt_name = tname; 15026 tgt_info->tgt_type = t; 15027 return 0; 15028 } 15029 15030 BTF_SET_START(btf_id_deny) 15031 BTF_ID_UNUSED 15032 #ifdef CONFIG_SMP 15033 BTF_ID(func, migrate_disable) 15034 BTF_ID(func, migrate_enable) 15035 #endif 15036 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU 15037 BTF_ID(func, rcu_read_unlock_strict) 15038 #endif 15039 BTF_SET_END(btf_id_deny) 15040 15041 static int check_attach_btf_id(struct bpf_verifier_env *env) 15042 { 15043 struct bpf_prog *prog = env->prog; 15044 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 15045 struct bpf_attach_target_info tgt_info = {}; 15046 u32 btf_id = prog->aux->attach_btf_id; 15047 struct bpf_trampoline *tr; 15048 int ret; 15049 u64 key; 15050 15051 if (prog->type == BPF_PROG_TYPE_SYSCALL) { 15052 if (prog->aux->sleepable) 15053 /* attach_btf_id checked to be zero already */ 15054 return 0; 15055 verbose(env, "Syscall programs can only be sleepable\n"); 15056 return -EINVAL; 15057 } 15058 15059 if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING && 15060 prog->type != BPF_PROG_TYPE_LSM && prog->type != BPF_PROG_TYPE_KPROBE) { 15061 verbose(env, "Only fentry/fexit/fmod_ret, lsm, and kprobe/uprobe programs can be sleepable\n"); 15062 return -EINVAL; 15063 } 15064 15065 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 15066 return check_struct_ops_btf_id(env); 15067 15068 if (prog->type != BPF_PROG_TYPE_TRACING && 15069 prog->type != BPF_PROG_TYPE_LSM && 15070 prog->type != BPF_PROG_TYPE_EXT) 15071 return 0; 15072 15073 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info); 15074 if (ret) 15075 return ret; 15076 15077 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) { 15078 /* to make freplace equivalent to their targets, they need to 15079 * inherit env->ops and expected_attach_type for the rest of the 15080 * verification 15081 */ 15082 env->ops = bpf_verifier_ops[tgt_prog->type]; 15083 prog->expected_attach_type = tgt_prog->expected_attach_type; 15084 } 15085 15086 /* store info about the attachment target that will be used later */ 15087 prog->aux->attach_func_proto = tgt_info.tgt_type; 15088 prog->aux->attach_func_name = tgt_info.tgt_name; 15089 15090 if (tgt_prog) { 15091 prog->aux->saved_dst_prog_type = tgt_prog->type; 15092 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type; 15093 } 15094 15095 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { 15096 prog->aux->attach_btf_trace = true; 15097 return 0; 15098 } else if (prog->expected_attach_type == BPF_TRACE_ITER) { 15099 if (!bpf_iter_prog_supported(prog)) 15100 return -EINVAL; 15101 return 0; 15102 } 15103 15104 if (prog->type == BPF_PROG_TYPE_LSM) { 15105 ret = bpf_lsm_verify_prog(&env->log, prog); 15106 if (ret < 0) 15107 return ret; 15108 } else if (prog->type == BPF_PROG_TYPE_TRACING && 15109 btf_id_set_contains(&btf_id_deny, btf_id)) { 15110 return -EINVAL; 15111 } 15112 15113 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id); 15114 tr = bpf_trampoline_get(key, &tgt_info); 15115 if (!tr) 15116 return -ENOMEM; 15117 15118 prog->aux->dst_trampoline = tr; 15119 return 0; 15120 } 15121 15122 struct btf *bpf_get_btf_vmlinux(void) 15123 { 15124 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 15125 mutex_lock(&bpf_verifier_lock); 15126 if (!btf_vmlinux) 15127 btf_vmlinux = btf_parse_vmlinux(); 15128 mutex_unlock(&bpf_verifier_lock); 15129 } 15130 return btf_vmlinux; 15131 } 15132 15133 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr) 15134 { 15135 u64 start_time = ktime_get_ns(); 15136 struct bpf_verifier_env *env; 15137 struct bpf_verifier_log *log; 15138 int i, len, ret = -EINVAL; 15139 bool is_priv; 15140 15141 /* no program is valid */ 15142 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 15143 return -EINVAL; 15144 15145 /* 'struct bpf_verifier_env' can be global, but since it's not small, 15146 * allocate/free it every time bpf_check() is called 15147 */ 15148 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 15149 if (!env) 15150 return -ENOMEM; 15151 log = &env->log; 15152 15153 len = (*prog)->len; 15154 env->insn_aux_data = 15155 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 15156 ret = -ENOMEM; 15157 if (!env->insn_aux_data) 15158 goto err_free_env; 15159 for (i = 0; i < len; i++) 15160 env->insn_aux_data[i].orig_idx = i; 15161 env->prog = *prog; 15162 env->ops = bpf_verifier_ops[env->prog->type]; 15163 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel); 15164 is_priv = bpf_capable(); 15165 15166 bpf_get_btf_vmlinux(); 15167 15168 /* grab the mutex to protect few globals used by verifier */ 15169 if (!is_priv) 15170 mutex_lock(&bpf_verifier_lock); 15171 15172 if (attr->log_level || attr->log_buf || attr->log_size) { 15173 /* user requested verbose verifier output 15174 * and supplied buffer to store the verification trace 15175 */ 15176 log->level = attr->log_level; 15177 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 15178 log->len_total = attr->log_size; 15179 15180 /* log attributes have to be sane */ 15181 if (!bpf_verifier_log_attr_valid(log)) { 15182 ret = -EINVAL; 15183 goto err_unlock; 15184 } 15185 } 15186 15187 mark_verifier_state_clean(env); 15188 15189 if (IS_ERR(btf_vmlinux)) { 15190 /* Either gcc or pahole or kernel are broken. */ 15191 verbose(env, "in-kernel BTF is malformed\n"); 15192 ret = PTR_ERR(btf_vmlinux); 15193 goto skip_full_check; 15194 } 15195 15196 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 15197 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 15198 env->strict_alignment = true; 15199 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 15200 env->strict_alignment = false; 15201 15202 env->allow_ptr_leaks = bpf_allow_ptr_leaks(); 15203 env->allow_uninit_stack = bpf_allow_uninit_stack(); 15204 env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access(); 15205 env->bypass_spec_v1 = bpf_bypass_spec_v1(); 15206 env->bypass_spec_v4 = bpf_bypass_spec_v4(); 15207 env->bpf_capable = bpf_capable(); 15208 15209 if (is_priv) 15210 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 15211 15212 env->explored_states = kvcalloc(state_htab_size(env), 15213 sizeof(struct bpf_verifier_state_list *), 15214 GFP_USER); 15215 ret = -ENOMEM; 15216 if (!env->explored_states) 15217 goto skip_full_check; 15218 15219 ret = add_subprog_and_kfunc(env); 15220 if (ret < 0) 15221 goto skip_full_check; 15222 15223 ret = check_subprogs(env); 15224 if (ret < 0) 15225 goto skip_full_check; 15226 15227 ret = check_btf_info(env, attr, uattr); 15228 if (ret < 0) 15229 goto skip_full_check; 15230 15231 ret = check_attach_btf_id(env); 15232 if (ret) 15233 goto skip_full_check; 15234 15235 ret = resolve_pseudo_ldimm64(env); 15236 if (ret < 0) 15237 goto skip_full_check; 15238 15239 if (bpf_prog_is_dev_bound(env->prog->aux)) { 15240 ret = bpf_prog_offload_verifier_prep(env->prog); 15241 if (ret) 15242 goto skip_full_check; 15243 } 15244 15245 ret = check_cfg(env); 15246 if (ret < 0) 15247 goto skip_full_check; 15248 15249 ret = do_check_subprogs(env); 15250 ret = ret ?: do_check_main(env); 15251 15252 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux)) 15253 ret = bpf_prog_offload_finalize(env); 15254 15255 skip_full_check: 15256 kvfree(env->explored_states); 15257 15258 if (ret == 0) 15259 ret = check_max_stack_depth(env); 15260 15261 /* instruction rewrites happen after this point */ 15262 if (ret == 0) 15263 ret = optimize_bpf_loop(env); 15264 15265 if (is_priv) { 15266 if (ret == 0) 15267 opt_hard_wire_dead_code_branches(env); 15268 if (ret == 0) 15269 ret = opt_remove_dead_code(env); 15270 if (ret == 0) 15271 ret = opt_remove_nops(env); 15272 } else { 15273 if (ret == 0) 15274 sanitize_dead_code(env); 15275 } 15276 15277 if (ret == 0) 15278 /* program is valid, convert *(u32*)(ctx + off) accesses */ 15279 ret = convert_ctx_accesses(env); 15280 15281 if (ret == 0) 15282 ret = do_misc_fixups(env); 15283 15284 /* do 32-bit optimization after insn patching has done so those patched 15285 * insns could be handled correctly. 15286 */ 15287 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) { 15288 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 15289 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 15290 : false; 15291 } 15292 15293 if (ret == 0) 15294 ret = fixup_call_args(env); 15295 15296 env->verification_time = ktime_get_ns() - start_time; 15297 print_verification_stats(env); 15298 env->prog->aux->verified_insns = env->insn_processed; 15299 15300 if (log->level && bpf_verifier_log_full(log)) 15301 ret = -ENOSPC; 15302 if (log->level && !log->ubuf) { 15303 ret = -EFAULT; 15304 goto err_release_maps; 15305 } 15306 15307 if (ret) 15308 goto err_release_maps; 15309 15310 if (env->used_map_cnt) { 15311 /* if program passed verifier, update used_maps in bpf_prog_info */ 15312 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 15313 sizeof(env->used_maps[0]), 15314 GFP_KERNEL); 15315 15316 if (!env->prog->aux->used_maps) { 15317 ret = -ENOMEM; 15318 goto err_release_maps; 15319 } 15320 15321 memcpy(env->prog->aux->used_maps, env->used_maps, 15322 sizeof(env->used_maps[0]) * env->used_map_cnt); 15323 env->prog->aux->used_map_cnt = env->used_map_cnt; 15324 } 15325 if (env->used_btf_cnt) { 15326 /* if program passed verifier, update used_btfs in bpf_prog_aux */ 15327 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt, 15328 sizeof(env->used_btfs[0]), 15329 GFP_KERNEL); 15330 if (!env->prog->aux->used_btfs) { 15331 ret = -ENOMEM; 15332 goto err_release_maps; 15333 } 15334 15335 memcpy(env->prog->aux->used_btfs, env->used_btfs, 15336 sizeof(env->used_btfs[0]) * env->used_btf_cnt); 15337 env->prog->aux->used_btf_cnt = env->used_btf_cnt; 15338 } 15339 if (env->used_map_cnt || env->used_btf_cnt) { 15340 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 15341 * bpf_ld_imm64 instructions 15342 */ 15343 convert_pseudo_ld_imm64(env); 15344 } 15345 15346 adjust_btf_func(env); 15347 15348 err_release_maps: 15349 if (!env->prog->aux->used_maps) 15350 /* if we didn't copy map pointers into bpf_prog_info, release 15351 * them now. Otherwise free_used_maps() will release them. 15352 */ 15353 release_maps(env); 15354 if (!env->prog->aux->used_btfs) 15355 release_btfs(env); 15356 15357 /* extension progs temporarily inherit the attach_type of their targets 15358 for verification purposes, so set it back to zero before returning 15359 */ 15360 if (env->prog->type == BPF_PROG_TYPE_EXT) 15361 env->prog->expected_attach_type = 0; 15362 15363 *prog = env->prog; 15364 err_unlock: 15365 if (!is_priv) 15366 mutex_unlock(&bpf_verifier_lock); 15367 vfree(env->insn_aux_data); 15368 err_free_env: 15369 kfree(env); 15370 return ret; 15371 } 15372