xref: /linux/kernel/bpf/verifier.c (revision 19f2e267a5d0d26282a64f8f788c482852c95324)
1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
2  * Copyright (c) 2016 Facebook
3  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of version 2 of the GNU General Public
7  * License as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful, but
10  * WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12  * General Public License for more details.
13  */
14 #include <uapi/linux/btf.h>
15 #include <linux/kernel.h>
16 #include <linux/types.h>
17 #include <linux/slab.h>
18 #include <linux/bpf.h>
19 #include <linux/btf.h>
20 #include <linux/bpf_verifier.h>
21 #include <linux/filter.h>
22 #include <net/netlink.h>
23 #include <linux/file.h>
24 #include <linux/vmalloc.h>
25 #include <linux/stringify.h>
26 #include <linux/bsearch.h>
27 #include <linux/sort.h>
28 #include <linux/perf_event.h>
29 #include <linux/ctype.h>
30 
31 #include "disasm.h"
32 
33 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
34 #define BPF_PROG_TYPE(_id, _name) \
35 	[_id] = & _name ## _verifier_ops,
36 #define BPF_MAP_TYPE(_id, _ops)
37 #include <linux/bpf_types.h>
38 #undef BPF_PROG_TYPE
39 #undef BPF_MAP_TYPE
40 };
41 
42 /* bpf_check() is a static code analyzer that walks eBPF program
43  * instruction by instruction and updates register/stack state.
44  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
45  *
46  * The first pass is depth-first-search to check that the program is a DAG.
47  * It rejects the following programs:
48  * - larger than BPF_MAXINSNS insns
49  * - if loop is present (detected via back-edge)
50  * - unreachable insns exist (shouldn't be a forest. program = one function)
51  * - out of bounds or malformed jumps
52  * The second pass is all possible path descent from the 1st insn.
53  * Since it's analyzing all pathes through the program, the length of the
54  * analysis is limited to 64k insn, which may be hit even if total number of
55  * insn is less then 4K, but there are too many branches that change stack/regs.
56  * Number of 'branches to be analyzed' is limited to 1k
57  *
58  * On entry to each instruction, each register has a type, and the instruction
59  * changes the types of the registers depending on instruction semantics.
60  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
61  * copied to R1.
62  *
63  * All registers are 64-bit.
64  * R0 - return register
65  * R1-R5 argument passing registers
66  * R6-R9 callee saved registers
67  * R10 - frame pointer read-only
68  *
69  * At the start of BPF program the register R1 contains a pointer to bpf_context
70  * and has type PTR_TO_CTX.
71  *
72  * Verifier tracks arithmetic operations on pointers in case:
73  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
74  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
75  * 1st insn copies R10 (which has FRAME_PTR) type into R1
76  * and 2nd arithmetic instruction is pattern matched to recognize
77  * that it wants to construct a pointer to some element within stack.
78  * So after 2nd insn, the register R1 has type PTR_TO_STACK
79  * (and -20 constant is saved for further stack bounds checking).
80  * Meaning that this reg is a pointer to stack plus known immediate constant.
81  *
82  * Most of the time the registers have SCALAR_VALUE type, which
83  * means the register has some value, but it's not a valid pointer.
84  * (like pointer plus pointer becomes SCALAR_VALUE type)
85  *
86  * When verifier sees load or store instructions the type of base register
87  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
88  * four pointer types recognized by check_mem_access() function.
89  *
90  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
91  * and the range of [ptr, ptr + map's value_size) is accessible.
92  *
93  * registers used to pass values to function calls are checked against
94  * function argument constraints.
95  *
96  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
97  * It means that the register type passed to this function must be
98  * PTR_TO_STACK and it will be used inside the function as
99  * 'pointer to map element key'
100  *
101  * For example the argument constraints for bpf_map_lookup_elem():
102  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
103  *   .arg1_type = ARG_CONST_MAP_PTR,
104  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
105  *
106  * ret_type says that this function returns 'pointer to map elem value or null'
107  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
108  * 2nd argument should be a pointer to stack, which will be used inside
109  * the helper function as a pointer to map element key.
110  *
111  * On the kernel side the helper function looks like:
112  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
113  * {
114  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
115  *    void *key = (void *) (unsigned long) r2;
116  *    void *value;
117  *
118  *    here kernel can access 'key' and 'map' pointers safely, knowing that
119  *    [key, key + map->key_size) bytes are valid and were initialized on
120  *    the stack of eBPF program.
121  * }
122  *
123  * Corresponding eBPF program may look like:
124  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
125  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
126  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
127  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
128  * here verifier looks at prototype of map_lookup_elem() and sees:
129  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
130  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
131  *
132  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
133  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
134  * and were initialized prior to this call.
135  * If it's ok, then verifier allows this BPF_CALL insn and looks at
136  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
137  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
138  * returns ether pointer to map value or NULL.
139  *
140  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
141  * insn, the register holding that pointer in the true branch changes state to
142  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
143  * branch. See check_cond_jmp_op().
144  *
145  * After the call R0 is set to return type of the function and registers R1-R5
146  * are set to NOT_INIT to indicate that they are no longer readable.
147  *
148  * The following reference types represent a potential reference to a kernel
149  * resource which, after first being allocated, must be checked and freed by
150  * the BPF program:
151  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
152  *
153  * When the verifier sees a helper call return a reference type, it allocates a
154  * pointer id for the reference and stores it in the current function state.
155  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
156  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
157  * passes through a NULL-check conditional. For the branch wherein the state is
158  * changed to CONST_IMM, the verifier releases the reference.
159  *
160  * For each helper function that allocates a reference, such as
161  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
162  * bpf_sk_release(). When a reference type passes into the release function,
163  * the verifier also releases the reference. If any unchecked or unreleased
164  * reference remains at the end of the program, the verifier rejects it.
165  */
166 
167 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
168 struct bpf_verifier_stack_elem {
169 	/* verifer state is 'st'
170 	 * before processing instruction 'insn_idx'
171 	 * and after processing instruction 'prev_insn_idx'
172 	 */
173 	struct bpf_verifier_state st;
174 	int insn_idx;
175 	int prev_insn_idx;
176 	struct bpf_verifier_stack_elem *next;
177 };
178 
179 #define BPF_COMPLEXITY_LIMIT_INSNS	131072
180 #define BPF_COMPLEXITY_LIMIT_STACK	1024
181 #define BPF_COMPLEXITY_LIMIT_STATES	64
182 
183 #define BPF_MAP_PTR_UNPRIV	1UL
184 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
185 					  POISON_POINTER_DELTA))
186 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
187 
188 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
189 {
190 	return BPF_MAP_PTR(aux->map_state) == BPF_MAP_PTR_POISON;
191 }
192 
193 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
194 {
195 	return aux->map_state & BPF_MAP_PTR_UNPRIV;
196 }
197 
198 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
199 			      const struct bpf_map *map, bool unpriv)
200 {
201 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
202 	unpriv |= bpf_map_ptr_unpriv(aux);
203 	aux->map_state = (unsigned long)map |
204 			 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
205 }
206 
207 struct bpf_call_arg_meta {
208 	struct bpf_map *map_ptr;
209 	bool raw_mode;
210 	bool pkt_access;
211 	int regno;
212 	int access_size;
213 	s64 msize_smax_value;
214 	u64 msize_umax_value;
215 	int ptr_id;
216 };
217 
218 static DEFINE_MUTEX(bpf_verifier_lock);
219 
220 static const struct bpf_line_info *
221 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
222 {
223 	const struct bpf_line_info *linfo;
224 	const struct bpf_prog *prog;
225 	u32 i, nr_linfo;
226 
227 	prog = env->prog;
228 	nr_linfo = prog->aux->nr_linfo;
229 
230 	if (!nr_linfo || insn_off >= prog->len)
231 		return NULL;
232 
233 	linfo = prog->aux->linfo;
234 	for (i = 1; i < nr_linfo; i++)
235 		if (insn_off < linfo[i].insn_off)
236 			break;
237 
238 	return &linfo[i - 1];
239 }
240 
241 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
242 		       va_list args)
243 {
244 	unsigned int n;
245 
246 	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
247 
248 	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
249 		  "verifier log line truncated - local buffer too short\n");
250 
251 	n = min(log->len_total - log->len_used - 1, n);
252 	log->kbuf[n] = '\0';
253 
254 	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
255 		log->len_used += n;
256 	else
257 		log->ubuf = NULL;
258 }
259 
260 /* log_level controls verbosity level of eBPF verifier.
261  * bpf_verifier_log_write() is used to dump the verification trace to the log,
262  * so the user can figure out what's wrong with the program
263  */
264 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
265 					   const char *fmt, ...)
266 {
267 	va_list args;
268 
269 	if (!bpf_verifier_log_needed(&env->log))
270 		return;
271 
272 	va_start(args, fmt);
273 	bpf_verifier_vlog(&env->log, fmt, args);
274 	va_end(args);
275 }
276 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
277 
278 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
279 {
280 	struct bpf_verifier_env *env = private_data;
281 	va_list args;
282 
283 	if (!bpf_verifier_log_needed(&env->log))
284 		return;
285 
286 	va_start(args, fmt);
287 	bpf_verifier_vlog(&env->log, fmt, args);
288 	va_end(args);
289 }
290 
291 static const char *ltrim(const char *s)
292 {
293 	while (isspace(*s))
294 		s++;
295 
296 	return s;
297 }
298 
299 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
300 					 u32 insn_off,
301 					 const char *prefix_fmt, ...)
302 {
303 	const struct bpf_line_info *linfo;
304 
305 	if (!bpf_verifier_log_needed(&env->log))
306 		return;
307 
308 	linfo = find_linfo(env, insn_off);
309 	if (!linfo || linfo == env->prev_linfo)
310 		return;
311 
312 	if (prefix_fmt) {
313 		va_list args;
314 
315 		va_start(args, prefix_fmt);
316 		bpf_verifier_vlog(&env->log, prefix_fmt, args);
317 		va_end(args);
318 	}
319 
320 	verbose(env, "%s\n",
321 		ltrim(btf_name_by_offset(env->prog->aux->btf,
322 					 linfo->line_off)));
323 
324 	env->prev_linfo = linfo;
325 }
326 
327 static bool type_is_pkt_pointer(enum bpf_reg_type type)
328 {
329 	return type == PTR_TO_PACKET ||
330 	       type == PTR_TO_PACKET_META;
331 }
332 
333 static bool reg_type_may_be_null(enum bpf_reg_type type)
334 {
335 	return type == PTR_TO_MAP_VALUE_OR_NULL ||
336 	       type == PTR_TO_SOCKET_OR_NULL;
337 }
338 
339 static bool type_is_refcounted(enum bpf_reg_type type)
340 {
341 	return type == PTR_TO_SOCKET;
342 }
343 
344 static bool type_is_refcounted_or_null(enum bpf_reg_type type)
345 {
346 	return type == PTR_TO_SOCKET || type == PTR_TO_SOCKET_OR_NULL;
347 }
348 
349 static bool reg_is_refcounted(const struct bpf_reg_state *reg)
350 {
351 	return type_is_refcounted(reg->type);
352 }
353 
354 static bool reg_is_refcounted_or_null(const struct bpf_reg_state *reg)
355 {
356 	return type_is_refcounted_or_null(reg->type);
357 }
358 
359 static bool arg_type_is_refcounted(enum bpf_arg_type type)
360 {
361 	return type == ARG_PTR_TO_SOCKET;
362 }
363 
364 /* Determine whether the function releases some resources allocated by another
365  * function call. The first reference type argument will be assumed to be
366  * released by release_reference().
367  */
368 static bool is_release_function(enum bpf_func_id func_id)
369 {
370 	return func_id == BPF_FUNC_sk_release;
371 }
372 
373 /* string representation of 'enum bpf_reg_type' */
374 static const char * const reg_type_str[] = {
375 	[NOT_INIT]		= "?",
376 	[SCALAR_VALUE]		= "inv",
377 	[PTR_TO_CTX]		= "ctx",
378 	[CONST_PTR_TO_MAP]	= "map_ptr",
379 	[PTR_TO_MAP_VALUE]	= "map_value",
380 	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
381 	[PTR_TO_STACK]		= "fp",
382 	[PTR_TO_PACKET]		= "pkt",
383 	[PTR_TO_PACKET_META]	= "pkt_meta",
384 	[PTR_TO_PACKET_END]	= "pkt_end",
385 	[PTR_TO_FLOW_KEYS]	= "flow_keys",
386 	[PTR_TO_SOCKET]		= "sock",
387 	[PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
388 };
389 
390 static char slot_type_char[] = {
391 	[STACK_INVALID]	= '?',
392 	[STACK_SPILL]	= 'r',
393 	[STACK_MISC]	= 'm',
394 	[STACK_ZERO]	= '0',
395 };
396 
397 static void print_liveness(struct bpf_verifier_env *env,
398 			   enum bpf_reg_liveness live)
399 {
400 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
401 	    verbose(env, "_");
402 	if (live & REG_LIVE_READ)
403 		verbose(env, "r");
404 	if (live & REG_LIVE_WRITTEN)
405 		verbose(env, "w");
406 	if (live & REG_LIVE_DONE)
407 		verbose(env, "D");
408 }
409 
410 static struct bpf_func_state *func(struct bpf_verifier_env *env,
411 				   const struct bpf_reg_state *reg)
412 {
413 	struct bpf_verifier_state *cur = env->cur_state;
414 
415 	return cur->frame[reg->frameno];
416 }
417 
418 static void print_verifier_state(struct bpf_verifier_env *env,
419 				 const struct bpf_func_state *state)
420 {
421 	const struct bpf_reg_state *reg;
422 	enum bpf_reg_type t;
423 	int i;
424 
425 	if (state->frameno)
426 		verbose(env, " frame%d:", state->frameno);
427 	for (i = 0; i < MAX_BPF_REG; i++) {
428 		reg = &state->regs[i];
429 		t = reg->type;
430 		if (t == NOT_INIT)
431 			continue;
432 		verbose(env, " R%d", i);
433 		print_liveness(env, reg->live);
434 		verbose(env, "=%s", reg_type_str[t]);
435 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
436 		    tnum_is_const(reg->var_off)) {
437 			/* reg->off should be 0 for SCALAR_VALUE */
438 			verbose(env, "%lld", reg->var_off.value + reg->off);
439 			if (t == PTR_TO_STACK)
440 				verbose(env, ",call_%d", func(env, reg)->callsite);
441 		} else {
442 			verbose(env, "(id=%d", reg->id);
443 			if (t != SCALAR_VALUE)
444 				verbose(env, ",off=%d", reg->off);
445 			if (type_is_pkt_pointer(t))
446 				verbose(env, ",r=%d", reg->range);
447 			else if (t == CONST_PTR_TO_MAP ||
448 				 t == PTR_TO_MAP_VALUE ||
449 				 t == PTR_TO_MAP_VALUE_OR_NULL)
450 				verbose(env, ",ks=%d,vs=%d",
451 					reg->map_ptr->key_size,
452 					reg->map_ptr->value_size);
453 			if (tnum_is_const(reg->var_off)) {
454 				/* Typically an immediate SCALAR_VALUE, but
455 				 * could be a pointer whose offset is too big
456 				 * for reg->off
457 				 */
458 				verbose(env, ",imm=%llx", reg->var_off.value);
459 			} else {
460 				if (reg->smin_value != reg->umin_value &&
461 				    reg->smin_value != S64_MIN)
462 					verbose(env, ",smin_value=%lld",
463 						(long long)reg->smin_value);
464 				if (reg->smax_value != reg->umax_value &&
465 				    reg->smax_value != S64_MAX)
466 					verbose(env, ",smax_value=%lld",
467 						(long long)reg->smax_value);
468 				if (reg->umin_value != 0)
469 					verbose(env, ",umin_value=%llu",
470 						(unsigned long long)reg->umin_value);
471 				if (reg->umax_value != U64_MAX)
472 					verbose(env, ",umax_value=%llu",
473 						(unsigned long long)reg->umax_value);
474 				if (!tnum_is_unknown(reg->var_off)) {
475 					char tn_buf[48];
476 
477 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
478 					verbose(env, ",var_off=%s", tn_buf);
479 				}
480 			}
481 			verbose(env, ")");
482 		}
483 	}
484 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
485 		char types_buf[BPF_REG_SIZE + 1];
486 		bool valid = false;
487 		int j;
488 
489 		for (j = 0; j < BPF_REG_SIZE; j++) {
490 			if (state->stack[i].slot_type[j] != STACK_INVALID)
491 				valid = true;
492 			types_buf[j] = slot_type_char[
493 					state->stack[i].slot_type[j]];
494 		}
495 		types_buf[BPF_REG_SIZE] = 0;
496 		if (!valid)
497 			continue;
498 		verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
499 		print_liveness(env, state->stack[i].spilled_ptr.live);
500 		if (state->stack[i].slot_type[0] == STACK_SPILL)
501 			verbose(env, "=%s",
502 				reg_type_str[state->stack[i].spilled_ptr.type]);
503 		else
504 			verbose(env, "=%s", types_buf);
505 	}
506 	if (state->acquired_refs && state->refs[0].id) {
507 		verbose(env, " refs=%d", state->refs[0].id);
508 		for (i = 1; i < state->acquired_refs; i++)
509 			if (state->refs[i].id)
510 				verbose(env, ",%d", state->refs[i].id);
511 	}
512 	verbose(env, "\n");
513 }
514 
515 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE)				\
516 static int copy_##NAME##_state(struct bpf_func_state *dst,		\
517 			       const struct bpf_func_state *src)	\
518 {									\
519 	if (!src->FIELD)						\
520 		return 0;						\
521 	if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) {			\
522 		/* internal bug, make state invalid to reject the program */ \
523 		memset(dst, 0, sizeof(*dst));				\
524 		return -EFAULT;						\
525 	}								\
526 	memcpy(dst->FIELD, src->FIELD,					\
527 	       sizeof(*src->FIELD) * (src->COUNT / SIZE));		\
528 	return 0;							\
529 }
530 /* copy_reference_state() */
531 COPY_STATE_FN(reference, acquired_refs, refs, 1)
532 /* copy_stack_state() */
533 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
534 #undef COPY_STATE_FN
535 
536 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE)			\
537 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
538 				  bool copy_old)			\
539 {									\
540 	u32 old_size = state->COUNT;					\
541 	struct bpf_##NAME##_state *new_##FIELD;				\
542 	int slot = size / SIZE;						\
543 									\
544 	if (size <= old_size || !size) {				\
545 		if (copy_old)						\
546 			return 0;					\
547 		state->COUNT = slot * SIZE;				\
548 		if (!size && old_size) {				\
549 			kfree(state->FIELD);				\
550 			state->FIELD = NULL;				\
551 		}							\
552 		return 0;						\
553 	}								\
554 	new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
555 				    GFP_KERNEL);			\
556 	if (!new_##FIELD)						\
557 		return -ENOMEM;						\
558 	if (copy_old) {							\
559 		if (state->FIELD)					\
560 			memcpy(new_##FIELD, state->FIELD,		\
561 			       sizeof(*new_##FIELD) * (old_size / SIZE)); \
562 		memset(new_##FIELD + old_size / SIZE, 0,		\
563 		       sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
564 	}								\
565 	state->COUNT = slot * SIZE;					\
566 	kfree(state->FIELD);						\
567 	state->FIELD = new_##FIELD;					\
568 	return 0;							\
569 }
570 /* realloc_reference_state() */
571 REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
572 /* realloc_stack_state() */
573 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
574 #undef REALLOC_STATE_FN
575 
576 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to
577  * make it consume minimal amount of memory. check_stack_write() access from
578  * the program calls into realloc_func_state() to grow the stack size.
579  * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
580  * which realloc_stack_state() copies over. It points to previous
581  * bpf_verifier_state which is never reallocated.
582  */
583 static int realloc_func_state(struct bpf_func_state *state, int stack_size,
584 			      int refs_size, bool copy_old)
585 {
586 	int err = realloc_reference_state(state, refs_size, copy_old);
587 	if (err)
588 		return err;
589 	return realloc_stack_state(state, stack_size, copy_old);
590 }
591 
592 /* Acquire a pointer id from the env and update the state->refs to include
593  * this new pointer reference.
594  * On success, returns a valid pointer id to associate with the register
595  * On failure, returns a negative errno.
596  */
597 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
598 {
599 	struct bpf_func_state *state = cur_func(env);
600 	int new_ofs = state->acquired_refs;
601 	int id, err;
602 
603 	err = realloc_reference_state(state, state->acquired_refs + 1, true);
604 	if (err)
605 		return err;
606 	id = ++env->id_gen;
607 	state->refs[new_ofs].id = id;
608 	state->refs[new_ofs].insn_idx = insn_idx;
609 
610 	return id;
611 }
612 
613 /* release function corresponding to acquire_reference_state(). Idempotent. */
614 static int __release_reference_state(struct bpf_func_state *state, int ptr_id)
615 {
616 	int i, last_idx;
617 
618 	if (!ptr_id)
619 		return -EFAULT;
620 
621 	last_idx = state->acquired_refs - 1;
622 	for (i = 0; i < state->acquired_refs; i++) {
623 		if (state->refs[i].id == ptr_id) {
624 			if (last_idx && i != last_idx)
625 				memcpy(&state->refs[i], &state->refs[last_idx],
626 				       sizeof(*state->refs));
627 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
628 			state->acquired_refs--;
629 			return 0;
630 		}
631 	}
632 	return -EFAULT;
633 }
634 
635 /* variation on the above for cases where we expect that there must be an
636  * outstanding reference for the specified ptr_id.
637  */
638 static int release_reference_state(struct bpf_verifier_env *env, int ptr_id)
639 {
640 	struct bpf_func_state *state = cur_func(env);
641 	int err;
642 
643 	err = __release_reference_state(state, ptr_id);
644 	if (WARN_ON_ONCE(err != 0))
645 		verbose(env, "verifier internal error: can't release reference\n");
646 	return err;
647 }
648 
649 static int transfer_reference_state(struct bpf_func_state *dst,
650 				    struct bpf_func_state *src)
651 {
652 	int err = realloc_reference_state(dst, src->acquired_refs, false);
653 	if (err)
654 		return err;
655 	err = copy_reference_state(dst, src);
656 	if (err)
657 		return err;
658 	return 0;
659 }
660 
661 static void free_func_state(struct bpf_func_state *state)
662 {
663 	if (!state)
664 		return;
665 	kfree(state->refs);
666 	kfree(state->stack);
667 	kfree(state);
668 }
669 
670 static void free_verifier_state(struct bpf_verifier_state *state,
671 				bool free_self)
672 {
673 	int i;
674 
675 	for (i = 0; i <= state->curframe; i++) {
676 		free_func_state(state->frame[i]);
677 		state->frame[i] = NULL;
678 	}
679 	if (free_self)
680 		kfree(state);
681 }
682 
683 /* copy verifier state from src to dst growing dst stack space
684  * when necessary to accommodate larger src stack
685  */
686 static int copy_func_state(struct bpf_func_state *dst,
687 			   const struct bpf_func_state *src)
688 {
689 	int err;
690 
691 	err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
692 				 false);
693 	if (err)
694 		return err;
695 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
696 	err = copy_reference_state(dst, src);
697 	if (err)
698 		return err;
699 	return copy_stack_state(dst, src);
700 }
701 
702 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
703 			       const struct bpf_verifier_state *src)
704 {
705 	struct bpf_func_state *dst;
706 	int i, err;
707 
708 	/* if dst has more stack frames then src frame, free them */
709 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
710 		free_func_state(dst_state->frame[i]);
711 		dst_state->frame[i] = NULL;
712 	}
713 	dst_state->curframe = src->curframe;
714 	for (i = 0; i <= src->curframe; i++) {
715 		dst = dst_state->frame[i];
716 		if (!dst) {
717 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
718 			if (!dst)
719 				return -ENOMEM;
720 			dst_state->frame[i] = dst;
721 		}
722 		err = copy_func_state(dst, src->frame[i]);
723 		if (err)
724 			return err;
725 	}
726 	return 0;
727 }
728 
729 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
730 		     int *insn_idx)
731 {
732 	struct bpf_verifier_state *cur = env->cur_state;
733 	struct bpf_verifier_stack_elem *elem, *head = env->head;
734 	int err;
735 
736 	if (env->head == NULL)
737 		return -ENOENT;
738 
739 	if (cur) {
740 		err = copy_verifier_state(cur, &head->st);
741 		if (err)
742 			return err;
743 	}
744 	if (insn_idx)
745 		*insn_idx = head->insn_idx;
746 	if (prev_insn_idx)
747 		*prev_insn_idx = head->prev_insn_idx;
748 	elem = head->next;
749 	free_verifier_state(&head->st, false);
750 	kfree(head);
751 	env->head = elem;
752 	env->stack_size--;
753 	return 0;
754 }
755 
756 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
757 					     int insn_idx, int prev_insn_idx)
758 {
759 	struct bpf_verifier_state *cur = env->cur_state;
760 	struct bpf_verifier_stack_elem *elem;
761 	int err;
762 
763 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
764 	if (!elem)
765 		goto err;
766 
767 	elem->insn_idx = insn_idx;
768 	elem->prev_insn_idx = prev_insn_idx;
769 	elem->next = env->head;
770 	env->head = elem;
771 	env->stack_size++;
772 	err = copy_verifier_state(&elem->st, cur);
773 	if (err)
774 		goto err;
775 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
776 		verbose(env, "BPF program is too complex\n");
777 		goto err;
778 	}
779 	return &elem->st;
780 err:
781 	free_verifier_state(env->cur_state, true);
782 	env->cur_state = NULL;
783 	/* pop all elements and return */
784 	while (!pop_stack(env, NULL, NULL));
785 	return NULL;
786 }
787 
788 #define CALLER_SAVED_REGS 6
789 static const int caller_saved[CALLER_SAVED_REGS] = {
790 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
791 };
792 
793 static void __mark_reg_not_init(struct bpf_reg_state *reg);
794 
795 /* Mark the unknown part of a register (variable offset or scalar value) as
796  * known to have the value @imm.
797  */
798 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
799 {
800 	/* Clear id, off, and union(map_ptr, range) */
801 	memset(((u8 *)reg) + sizeof(reg->type), 0,
802 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
803 	reg->var_off = tnum_const(imm);
804 	reg->smin_value = (s64)imm;
805 	reg->smax_value = (s64)imm;
806 	reg->umin_value = imm;
807 	reg->umax_value = imm;
808 }
809 
810 /* Mark the 'variable offset' part of a register as zero.  This should be
811  * used only on registers holding a pointer type.
812  */
813 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
814 {
815 	__mark_reg_known(reg, 0);
816 }
817 
818 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
819 {
820 	__mark_reg_known(reg, 0);
821 	reg->type = SCALAR_VALUE;
822 }
823 
824 static void mark_reg_known_zero(struct bpf_verifier_env *env,
825 				struct bpf_reg_state *regs, u32 regno)
826 {
827 	if (WARN_ON(regno >= MAX_BPF_REG)) {
828 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
829 		/* Something bad happened, let's kill all regs */
830 		for (regno = 0; regno < MAX_BPF_REG; regno++)
831 			__mark_reg_not_init(regs + regno);
832 		return;
833 	}
834 	__mark_reg_known_zero(regs + regno);
835 }
836 
837 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
838 {
839 	return type_is_pkt_pointer(reg->type);
840 }
841 
842 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
843 {
844 	return reg_is_pkt_pointer(reg) ||
845 	       reg->type == PTR_TO_PACKET_END;
846 }
847 
848 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
849 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
850 				    enum bpf_reg_type which)
851 {
852 	/* The register can already have a range from prior markings.
853 	 * This is fine as long as it hasn't been advanced from its
854 	 * origin.
855 	 */
856 	return reg->type == which &&
857 	       reg->id == 0 &&
858 	       reg->off == 0 &&
859 	       tnum_equals_const(reg->var_off, 0);
860 }
861 
862 /* Attempts to improve min/max values based on var_off information */
863 static void __update_reg_bounds(struct bpf_reg_state *reg)
864 {
865 	/* min signed is max(sign bit) | min(other bits) */
866 	reg->smin_value = max_t(s64, reg->smin_value,
867 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
868 	/* max signed is min(sign bit) | max(other bits) */
869 	reg->smax_value = min_t(s64, reg->smax_value,
870 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
871 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
872 	reg->umax_value = min(reg->umax_value,
873 			      reg->var_off.value | reg->var_off.mask);
874 }
875 
876 /* Uses signed min/max values to inform unsigned, and vice-versa */
877 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
878 {
879 	/* Learn sign from signed bounds.
880 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
881 	 * are the same, so combine.  This works even in the negative case, e.g.
882 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
883 	 */
884 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
885 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
886 							  reg->umin_value);
887 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
888 							  reg->umax_value);
889 		return;
890 	}
891 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
892 	 * boundary, so we must be careful.
893 	 */
894 	if ((s64)reg->umax_value >= 0) {
895 		/* Positive.  We can't learn anything from the smin, but smax
896 		 * is positive, hence safe.
897 		 */
898 		reg->smin_value = reg->umin_value;
899 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
900 							  reg->umax_value);
901 	} else if ((s64)reg->umin_value < 0) {
902 		/* Negative.  We can't learn anything from the smax, but smin
903 		 * is negative, hence safe.
904 		 */
905 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
906 							  reg->umin_value);
907 		reg->smax_value = reg->umax_value;
908 	}
909 }
910 
911 /* Attempts to improve var_off based on unsigned min/max information */
912 static void __reg_bound_offset(struct bpf_reg_state *reg)
913 {
914 	reg->var_off = tnum_intersect(reg->var_off,
915 				      tnum_range(reg->umin_value,
916 						 reg->umax_value));
917 }
918 
919 /* Reset the min/max bounds of a register */
920 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
921 {
922 	reg->smin_value = S64_MIN;
923 	reg->smax_value = S64_MAX;
924 	reg->umin_value = 0;
925 	reg->umax_value = U64_MAX;
926 }
927 
928 /* Mark a register as having a completely unknown (scalar) value. */
929 static void __mark_reg_unknown(struct bpf_reg_state *reg)
930 {
931 	/*
932 	 * Clear type, id, off, and union(map_ptr, range) and
933 	 * padding between 'type' and union
934 	 */
935 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
936 	reg->type = SCALAR_VALUE;
937 	reg->var_off = tnum_unknown;
938 	reg->frameno = 0;
939 	__mark_reg_unbounded(reg);
940 }
941 
942 static void mark_reg_unknown(struct bpf_verifier_env *env,
943 			     struct bpf_reg_state *regs, u32 regno)
944 {
945 	if (WARN_ON(regno >= MAX_BPF_REG)) {
946 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
947 		/* Something bad happened, let's kill all regs except FP */
948 		for (regno = 0; regno < BPF_REG_FP; regno++)
949 			__mark_reg_not_init(regs + regno);
950 		return;
951 	}
952 	__mark_reg_unknown(regs + regno);
953 }
954 
955 static void __mark_reg_not_init(struct bpf_reg_state *reg)
956 {
957 	__mark_reg_unknown(reg);
958 	reg->type = NOT_INIT;
959 }
960 
961 static void mark_reg_not_init(struct bpf_verifier_env *env,
962 			      struct bpf_reg_state *regs, u32 regno)
963 {
964 	if (WARN_ON(regno >= MAX_BPF_REG)) {
965 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
966 		/* Something bad happened, let's kill all regs except FP */
967 		for (regno = 0; regno < BPF_REG_FP; regno++)
968 			__mark_reg_not_init(regs + regno);
969 		return;
970 	}
971 	__mark_reg_not_init(regs + regno);
972 }
973 
974 static void init_reg_state(struct bpf_verifier_env *env,
975 			   struct bpf_func_state *state)
976 {
977 	struct bpf_reg_state *regs = state->regs;
978 	int i;
979 
980 	for (i = 0; i < MAX_BPF_REG; i++) {
981 		mark_reg_not_init(env, regs, i);
982 		regs[i].live = REG_LIVE_NONE;
983 		regs[i].parent = NULL;
984 	}
985 
986 	/* frame pointer */
987 	regs[BPF_REG_FP].type = PTR_TO_STACK;
988 	mark_reg_known_zero(env, regs, BPF_REG_FP);
989 	regs[BPF_REG_FP].frameno = state->frameno;
990 
991 	/* 1st arg to a function */
992 	regs[BPF_REG_1].type = PTR_TO_CTX;
993 	mark_reg_known_zero(env, regs, BPF_REG_1);
994 }
995 
996 #define BPF_MAIN_FUNC (-1)
997 static void init_func_state(struct bpf_verifier_env *env,
998 			    struct bpf_func_state *state,
999 			    int callsite, int frameno, int subprogno)
1000 {
1001 	state->callsite = callsite;
1002 	state->frameno = frameno;
1003 	state->subprogno = subprogno;
1004 	init_reg_state(env, state);
1005 }
1006 
1007 enum reg_arg_type {
1008 	SRC_OP,		/* register is used as source operand */
1009 	DST_OP,		/* register is used as destination operand */
1010 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
1011 };
1012 
1013 static int cmp_subprogs(const void *a, const void *b)
1014 {
1015 	return ((struct bpf_subprog_info *)a)->start -
1016 	       ((struct bpf_subprog_info *)b)->start;
1017 }
1018 
1019 static int find_subprog(struct bpf_verifier_env *env, int off)
1020 {
1021 	struct bpf_subprog_info *p;
1022 
1023 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1024 		    sizeof(env->subprog_info[0]), cmp_subprogs);
1025 	if (!p)
1026 		return -ENOENT;
1027 	return p - env->subprog_info;
1028 
1029 }
1030 
1031 static int add_subprog(struct bpf_verifier_env *env, int off)
1032 {
1033 	int insn_cnt = env->prog->len;
1034 	int ret;
1035 
1036 	if (off >= insn_cnt || off < 0) {
1037 		verbose(env, "call to invalid destination\n");
1038 		return -EINVAL;
1039 	}
1040 	ret = find_subprog(env, off);
1041 	if (ret >= 0)
1042 		return 0;
1043 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
1044 		verbose(env, "too many subprograms\n");
1045 		return -E2BIG;
1046 	}
1047 	env->subprog_info[env->subprog_cnt++].start = off;
1048 	sort(env->subprog_info, env->subprog_cnt,
1049 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
1050 	return 0;
1051 }
1052 
1053 static int check_subprogs(struct bpf_verifier_env *env)
1054 {
1055 	int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
1056 	struct bpf_subprog_info *subprog = env->subprog_info;
1057 	struct bpf_insn *insn = env->prog->insnsi;
1058 	int insn_cnt = env->prog->len;
1059 
1060 	/* Add entry function. */
1061 	ret = add_subprog(env, 0);
1062 	if (ret < 0)
1063 		return ret;
1064 
1065 	/* determine subprog starts. The end is one before the next starts */
1066 	for (i = 0; i < insn_cnt; i++) {
1067 		if (insn[i].code != (BPF_JMP | BPF_CALL))
1068 			continue;
1069 		if (insn[i].src_reg != BPF_PSEUDO_CALL)
1070 			continue;
1071 		if (!env->allow_ptr_leaks) {
1072 			verbose(env, "function calls to other bpf functions are allowed for root only\n");
1073 			return -EPERM;
1074 		}
1075 		ret = add_subprog(env, i + insn[i].imm + 1);
1076 		if (ret < 0)
1077 			return ret;
1078 	}
1079 
1080 	/* Add a fake 'exit' subprog which could simplify subprog iteration
1081 	 * logic. 'subprog_cnt' should not be increased.
1082 	 */
1083 	subprog[env->subprog_cnt].start = insn_cnt;
1084 
1085 	if (env->log.level > 1)
1086 		for (i = 0; i < env->subprog_cnt; i++)
1087 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
1088 
1089 	/* now check that all jumps are within the same subprog */
1090 	subprog_start = subprog[cur_subprog].start;
1091 	subprog_end = subprog[cur_subprog + 1].start;
1092 	for (i = 0; i < insn_cnt; i++) {
1093 		u8 code = insn[i].code;
1094 
1095 		if (BPF_CLASS(code) != BPF_JMP)
1096 			goto next;
1097 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1098 			goto next;
1099 		off = i + insn[i].off + 1;
1100 		if (off < subprog_start || off >= subprog_end) {
1101 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
1102 			return -EINVAL;
1103 		}
1104 next:
1105 		if (i == subprog_end - 1) {
1106 			/* to avoid fall-through from one subprog into another
1107 			 * the last insn of the subprog should be either exit
1108 			 * or unconditional jump back
1109 			 */
1110 			if (code != (BPF_JMP | BPF_EXIT) &&
1111 			    code != (BPF_JMP | BPF_JA)) {
1112 				verbose(env, "last insn is not an exit or jmp\n");
1113 				return -EINVAL;
1114 			}
1115 			subprog_start = subprog_end;
1116 			cur_subprog++;
1117 			if (cur_subprog < env->subprog_cnt)
1118 				subprog_end = subprog[cur_subprog + 1].start;
1119 		}
1120 	}
1121 	return 0;
1122 }
1123 
1124 /* Parentage chain of this register (or stack slot) should take care of all
1125  * issues like callee-saved registers, stack slot allocation time, etc.
1126  */
1127 static int mark_reg_read(struct bpf_verifier_env *env,
1128 			 const struct bpf_reg_state *state,
1129 			 struct bpf_reg_state *parent)
1130 {
1131 	bool writes = parent == state->parent; /* Observe write marks */
1132 
1133 	while (parent) {
1134 		/* if read wasn't screened by an earlier write ... */
1135 		if (writes && state->live & REG_LIVE_WRITTEN)
1136 			break;
1137 		if (parent->live & REG_LIVE_DONE) {
1138 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1139 				reg_type_str[parent->type],
1140 				parent->var_off.value, parent->off);
1141 			return -EFAULT;
1142 		}
1143 		/* ... then we depend on parent's value */
1144 		parent->live |= REG_LIVE_READ;
1145 		state = parent;
1146 		parent = state->parent;
1147 		writes = true;
1148 	}
1149 	return 0;
1150 }
1151 
1152 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
1153 			 enum reg_arg_type t)
1154 {
1155 	struct bpf_verifier_state *vstate = env->cur_state;
1156 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1157 	struct bpf_reg_state *regs = state->regs;
1158 
1159 	if (regno >= MAX_BPF_REG) {
1160 		verbose(env, "R%d is invalid\n", regno);
1161 		return -EINVAL;
1162 	}
1163 
1164 	if (t == SRC_OP) {
1165 		/* check whether register used as source operand can be read */
1166 		if (regs[regno].type == NOT_INIT) {
1167 			verbose(env, "R%d !read_ok\n", regno);
1168 			return -EACCES;
1169 		}
1170 		/* We don't need to worry about FP liveness because it's read-only */
1171 		if (regno != BPF_REG_FP)
1172 			return mark_reg_read(env, &regs[regno],
1173 					     regs[regno].parent);
1174 	} else {
1175 		/* check whether register used as dest operand can be written to */
1176 		if (regno == BPF_REG_FP) {
1177 			verbose(env, "frame pointer is read only\n");
1178 			return -EACCES;
1179 		}
1180 		regs[regno].live |= REG_LIVE_WRITTEN;
1181 		if (t == DST_OP)
1182 			mark_reg_unknown(env, regs, regno);
1183 	}
1184 	return 0;
1185 }
1186 
1187 static bool is_spillable_regtype(enum bpf_reg_type type)
1188 {
1189 	switch (type) {
1190 	case PTR_TO_MAP_VALUE:
1191 	case PTR_TO_MAP_VALUE_OR_NULL:
1192 	case PTR_TO_STACK:
1193 	case PTR_TO_CTX:
1194 	case PTR_TO_PACKET:
1195 	case PTR_TO_PACKET_META:
1196 	case PTR_TO_PACKET_END:
1197 	case PTR_TO_FLOW_KEYS:
1198 	case CONST_PTR_TO_MAP:
1199 	case PTR_TO_SOCKET:
1200 	case PTR_TO_SOCKET_OR_NULL:
1201 		return true;
1202 	default:
1203 		return false;
1204 	}
1205 }
1206 
1207 /* Does this register contain a constant zero? */
1208 static bool register_is_null(struct bpf_reg_state *reg)
1209 {
1210 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
1211 }
1212 
1213 /* check_stack_read/write functions track spill/fill of registers,
1214  * stack boundary and alignment are checked in check_mem_access()
1215  */
1216 static int check_stack_write(struct bpf_verifier_env *env,
1217 			     struct bpf_func_state *state, /* func where register points to */
1218 			     int off, int size, int value_regno, int insn_idx)
1219 {
1220 	struct bpf_func_state *cur; /* state of the current function */
1221 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
1222 	enum bpf_reg_type type;
1223 
1224 	err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
1225 				 state->acquired_refs, true);
1226 	if (err)
1227 		return err;
1228 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
1229 	 * so it's aligned access and [off, off + size) are within stack limits
1230 	 */
1231 	if (!env->allow_ptr_leaks &&
1232 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
1233 	    size != BPF_REG_SIZE) {
1234 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
1235 		return -EACCES;
1236 	}
1237 
1238 	cur = env->cur_state->frame[env->cur_state->curframe];
1239 	if (value_regno >= 0 &&
1240 	    is_spillable_regtype((type = cur->regs[value_regno].type))) {
1241 
1242 		/* register containing pointer is being spilled into stack */
1243 		if (size != BPF_REG_SIZE) {
1244 			verbose(env, "invalid size of register spill\n");
1245 			return -EACCES;
1246 		}
1247 
1248 		if (state != cur && type == PTR_TO_STACK) {
1249 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
1250 			return -EINVAL;
1251 		}
1252 
1253 		/* save register state */
1254 		state->stack[spi].spilled_ptr = cur->regs[value_regno];
1255 		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1256 
1257 		for (i = 0; i < BPF_REG_SIZE; i++) {
1258 			if (state->stack[spi].slot_type[i] == STACK_MISC &&
1259 			    !env->allow_ptr_leaks) {
1260 				int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
1261 				int soff = (-spi - 1) * BPF_REG_SIZE;
1262 
1263 				/* detected reuse of integer stack slot with a pointer
1264 				 * which means either llvm is reusing stack slot or
1265 				 * an attacker is trying to exploit CVE-2018-3639
1266 				 * (speculative store bypass)
1267 				 * Have to sanitize that slot with preemptive
1268 				 * store of zero.
1269 				 */
1270 				if (*poff && *poff != soff) {
1271 					/* disallow programs where single insn stores
1272 					 * into two different stack slots, since verifier
1273 					 * cannot sanitize them
1274 					 */
1275 					verbose(env,
1276 						"insn %d cannot access two stack slots fp%d and fp%d",
1277 						insn_idx, *poff, soff);
1278 					return -EINVAL;
1279 				}
1280 				*poff = soff;
1281 			}
1282 			state->stack[spi].slot_type[i] = STACK_SPILL;
1283 		}
1284 	} else {
1285 		u8 type = STACK_MISC;
1286 
1287 		/* regular write of data into stack destroys any spilled ptr */
1288 		state->stack[spi].spilled_ptr.type = NOT_INIT;
1289 		/* Mark slots as STACK_MISC if they belonged to spilled ptr. */
1290 		if (state->stack[spi].slot_type[0] == STACK_SPILL)
1291 			for (i = 0; i < BPF_REG_SIZE; i++)
1292 				state->stack[spi].slot_type[i] = STACK_MISC;
1293 
1294 		/* only mark the slot as written if all 8 bytes were written
1295 		 * otherwise read propagation may incorrectly stop too soon
1296 		 * when stack slots are partially written.
1297 		 * This heuristic means that read propagation will be
1298 		 * conservative, since it will add reg_live_read marks
1299 		 * to stack slots all the way to first state when programs
1300 		 * writes+reads less than 8 bytes
1301 		 */
1302 		if (size == BPF_REG_SIZE)
1303 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1304 
1305 		/* when we zero initialize stack slots mark them as such */
1306 		if (value_regno >= 0 &&
1307 		    register_is_null(&cur->regs[value_regno]))
1308 			type = STACK_ZERO;
1309 
1310 		/* Mark slots affected by this stack write. */
1311 		for (i = 0; i < size; i++)
1312 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
1313 				type;
1314 	}
1315 	return 0;
1316 }
1317 
1318 static int check_stack_read(struct bpf_verifier_env *env,
1319 			    struct bpf_func_state *reg_state /* func where register points to */,
1320 			    int off, int size, int value_regno)
1321 {
1322 	struct bpf_verifier_state *vstate = env->cur_state;
1323 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1324 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
1325 	u8 *stype;
1326 
1327 	if (reg_state->allocated_stack <= slot) {
1328 		verbose(env, "invalid read from stack off %d+0 size %d\n",
1329 			off, size);
1330 		return -EACCES;
1331 	}
1332 	stype = reg_state->stack[spi].slot_type;
1333 
1334 	if (stype[0] == STACK_SPILL) {
1335 		if (size != BPF_REG_SIZE) {
1336 			verbose(env, "invalid size of register spill\n");
1337 			return -EACCES;
1338 		}
1339 		for (i = 1; i < BPF_REG_SIZE; i++) {
1340 			if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
1341 				verbose(env, "corrupted spill memory\n");
1342 				return -EACCES;
1343 			}
1344 		}
1345 
1346 		if (value_regno >= 0) {
1347 			/* restore register state from stack */
1348 			state->regs[value_regno] = reg_state->stack[spi].spilled_ptr;
1349 			/* mark reg as written since spilled pointer state likely
1350 			 * has its liveness marks cleared by is_state_visited()
1351 			 * which resets stack/reg liveness for state transitions
1352 			 */
1353 			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
1354 		}
1355 		mark_reg_read(env, &reg_state->stack[spi].spilled_ptr,
1356 			      reg_state->stack[spi].spilled_ptr.parent);
1357 		return 0;
1358 	} else {
1359 		int zeros = 0;
1360 
1361 		for (i = 0; i < size; i++) {
1362 			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
1363 				continue;
1364 			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
1365 				zeros++;
1366 				continue;
1367 			}
1368 			verbose(env, "invalid read from stack off %d+%d size %d\n",
1369 				off, i, size);
1370 			return -EACCES;
1371 		}
1372 		mark_reg_read(env, &reg_state->stack[spi].spilled_ptr,
1373 			      reg_state->stack[spi].spilled_ptr.parent);
1374 		if (value_regno >= 0) {
1375 			if (zeros == size) {
1376 				/* any size read into register is zero extended,
1377 				 * so the whole register == const_zero
1378 				 */
1379 				__mark_reg_const_zero(&state->regs[value_regno]);
1380 			} else {
1381 				/* have read misc data from the stack */
1382 				mark_reg_unknown(env, state->regs, value_regno);
1383 			}
1384 			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
1385 		}
1386 		return 0;
1387 	}
1388 }
1389 
1390 /* check read/write into map element returned by bpf_map_lookup_elem() */
1391 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
1392 			      int size, bool zero_size_allowed)
1393 {
1394 	struct bpf_reg_state *regs = cur_regs(env);
1395 	struct bpf_map *map = regs[regno].map_ptr;
1396 
1397 	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1398 	    off + size > map->value_size) {
1399 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
1400 			map->value_size, off, size);
1401 		return -EACCES;
1402 	}
1403 	return 0;
1404 }
1405 
1406 /* check read/write into a map element with possible variable offset */
1407 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
1408 			    int off, int size, bool zero_size_allowed)
1409 {
1410 	struct bpf_verifier_state *vstate = env->cur_state;
1411 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1412 	struct bpf_reg_state *reg = &state->regs[regno];
1413 	int err;
1414 
1415 	/* We may have adjusted the register to this map value, so we
1416 	 * need to try adding each of min_value and max_value to off
1417 	 * to make sure our theoretical access will be safe.
1418 	 */
1419 	if (env->log.level)
1420 		print_verifier_state(env, state);
1421 	/* The minimum value is only important with signed
1422 	 * comparisons where we can't assume the floor of a
1423 	 * value is 0.  If we are using signed variables for our
1424 	 * index'es we need to make sure that whatever we use
1425 	 * will have a set floor within our range.
1426 	 */
1427 	if (reg->smin_value < 0) {
1428 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1429 			regno);
1430 		return -EACCES;
1431 	}
1432 	err = __check_map_access(env, regno, reg->smin_value + off, size,
1433 				 zero_size_allowed);
1434 	if (err) {
1435 		verbose(env, "R%d min value is outside of the array range\n",
1436 			regno);
1437 		return err;
1438 	}
1439 
1440 	/* If we haven't set a max value then we need to bail since we can't be
1441 	 * sure we won't do bad things.
1442 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
1443 	 */
1444 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
1445 		verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
1446 			regno);
1447 		return -EACCES;
1448 	}
1449 	err = __check_map_access(env, regno, reg->umax_value + off, size,
1450 				 zero_size_allowed);
1451 	if (err)
1452 		verbose(env, "R%d max value is outside of the array range\n",
1453 			regno);
1454 	return err;
1455 }
1456 
1457 #define MAX_PACKET_OFF 0xffff
1458 
1459 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
1460 				       const struct bpf_call_arg_meta *meta,
1461 				       enum bpf_access_type t)
1462 {
1463 	switch (env->prog->type) {
1464 	/* Program types only with direct read access go here! */
1465 	case BPF_PROG_TYPE_LWT_IN:
1466 	case BPF_PROG_TYPE_LWT_OUT:
1467 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
1468 	case BPF_PROG_TYPE_SK_REUSEPORT:
1469 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
1470 	case BPF_PROG_TYPE_CGROUP_SKB:
1471 		if (t == BPF_WRITE)
1472 			return false;
1473 		/* fallthrough */
1474 
1475 	/* Program types with direct read + write access go here! */
1476 	case BPF_PROG_TYPE_SCHED_CLS:
1477 	case BPF_PROG_TYPE_SCHED_ACT:
1478 	case BPF_PROG_TYPE_XDP:
1479 	case BPF_PROG_TYPE_LWT_XMIT:
1480 	case BPF_PROG_TYPE_SK_SKB:
1481 	case BPF_PROG_TYPE_SK_MSG:
1482 		if (meta)
1483 			return meta->pkt_access;
1484 
1485 		env->seen_direct_write = true;
1486 		return true;
1487 	default:
1488 		return false;
1489 	}
1490 }
1491 
1492 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
1493 				 int off, int size, bool zero_size_allowed)
1494 {
1495 	struct bpf_reg_state *regs = cur_regs(env);
1496 	struct bpf_reg_state *reg = &regs[regno];
1497 
1498 	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1499 	    (u64)off + size > reg->range) {
1500 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
1501 			off, size, regno, reg->id, reg->off, reg->range);
1502 		return -EACCES;
1503 	}
1504 	return 0;
1505 }
1506 
1507 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
1508 			       int size, bool zero_size_allowed)
1509 {
1510 	struct bpf_reg_state *regs = cur_regs(env);
1511 	struct bpf_reg_state *reg = &regs[regno];
1512 	int err;
1513 
1514 	/* We may have added a variable offset to the packet pointer; but any
1515 	 * reg->range we have comes after that.  We are only checking the fixed
1516 	 * offset.
1517 	 */
1518 
1519 	/* We don't allow negative numbers, because we aren't tracking enough
1520 	 * detail to prove they're safe.
1521 	 */
1522 	if (reg->smin_value < 0) {
1523 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1524 			regno);
1525 		return -EACCES;
1526 	}
1527 	err = __check_packet_access(env, regno, off, size, zero_size_allowed);
1528 	if (err) {
1529 		verbose(env, "R%d offset is outside of the packet\n", regno);
1530 		return err;
1531 	}
1532 
1533 	/* __check_packet_access has made sure "off + size - 1" is within u16.
1534 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
1535 	 * otherwise find_good_pkt_pointers would have refused to set range info
1536 	 * that __check_packet_access would have rejected this pkt access.
1537 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
1538 	 */
1539 	env->prog->aux->max_pkt_offset =
1540 		max_t(u32, env->prog->aux->max_pkt_offset,
1541 		      off + reg->umax_value + size - 1);
1542 
1543 	return err;
1544 }
1545 
1546 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
1547 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
1548 			    enum bpf_access_type t, enum bpf_reg_type *reg_type)
1549 {
1550 	struct bpf_insn_access_aux info = {
1551 		.reg_type = *reg_type,
1552 	};
1553 
1554 	if (env->ops->is_valid_access &&
1555 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
1556 		/* A non zero info.ctx_field_size indicates that this field is a
1557 		 * candidate for later verifier transformation to load the whole
1558 		 * field and then apply a mask when accessed with a narrower
1559 		 * access than actual ctx access size. A zero info.ctx_field_size
1560 		 * will only allow for whole field access and rejects any other
1561 		 * type of narrower access.
1562 		 */
1563 		*reg_type = info.reg_type;
1564 
1565 		env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
1566 		/* remember the offset of last byte accessed in ctx */
1567 		if (env->prog->aux->max_ctx_offset < off + size)
1568 			env->prog->aux->max_ctx_offset = off + size;
1569 		return 0;
1570 	}
1571 
1572 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
1573 	return -EACCES;
1574 }
1575 
1576 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
1577 				  int size)
1578 {
1579 	if (size < 0 || off < 0 ||
1580 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
1581 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
1582 			off, size);
1583 		return -EACCES;
1584 	}
1585 	return 0;
1586 }
1587 
1588 static int check_sock_access(struct bpf_verifier_env *env, u32 regno, int off,
1589 			     int size, enum bpf_access_type t)
1590 {
1591 	struct bpf_reg_state *regs = cur_regs(env);
1592 	struct bpf_reg_state *reg = &regs[regno];
1593 	struct bpf_insn_access_aux info;
1594 
1595 	if (reg->smin_value < 0) {
1596 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1597 			regno);
1598 		return -EACCES;
1599 	}
1600 
1601 	if (!bpf_sock_is_valid_access(off, size, t, &info)) {
1602 		verbose(env, "invalid bpf_sock access off=%d size=%d\n",
1603 			off, size);
1604 		return -EACCES;
1605 	}
1606 
1607 	return 0;
1608 }
1609 
1610 static bool __is_pointer_value(bool allow_ptr_leaks,
1611 			       const struct bpf_reg_state *reg)
1612 {
1613 	if (allow_ptr_leaks)
1614 		return false;
1615 
1616 	return reg->type != SCALAR_VALUE;
1617 }
1618 
1619 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
1620 {
1621 	return cur_regs(env) + regno;
1622 }
1623 
1624 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
1625 {
1626 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
1627 }
1628 
1629 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
1630 {
1631 	const struct bpf_reg_state *reg = reg_state(env, regno);
1632 
1633 	return reg->type == PTR_TO_CTX ||
1634 	       reg->type == PTR_TO_SOCKET;
1635 }
1636 
1637 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
1638 {
1639 	const struct bpf_reg_state *reg = reg_state(env, regno);
1640 
1641 	return type_is_pkt_pointer(reg->type);
1642 }
1643 
1644 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
1645 {
1646 	const struct bpf_reg_state *reg = reg_state(env, regno);
1647 
1648 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
1649 	return reg->type == PTR_TO_FLOW_KEYS;
1650 }
1651 
1652 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
1653 				   const struct bpf_reg_state *reg,
1654 				   int off, int size, bool strict)
1655 {
1656 	struct tnum reg_off;
1657 	int ip_align;
1658 
1659 	/* Byte size accesses are always allowed. */
1660 	if (!strict || size == 1)
1661 		return 0;
1662 
1663 	/* For platforms that do not have a Kconfig enabling
1664 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
1665 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
1666 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
1667 	 * to this code only in strict mode where we want to emulate
1668 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
1669 	 * unconditional IP align value of '2'.
1670 	 */
1671 	ip_align = 2;
1672 
1673 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
1674 	if (!tnum_is_aligned(reg_off, size)) {
1675 		char tn_buf[48];
1676 
1677 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1678 		verbose(env,
1679 			"misaligned packet access off %d+%s+%d+%d size %d\n",
1680 			ip_align, tn_buf, reg->off, off, size);
1681 		return -EACCES;
1682 	}
1683 
1684 	return 0;
1685 }
1686 
1687 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
1688 				       const struct bpf_reg_state *reg,
1689 				       const char *pointer_desc,
1690 				       int off, int size, bool strict)
1691 {
1692 	struct tnum reg_off;
1693 
1694 	/* Byte size accesses are always allowed. */
1695 	if (!strict || size == 1)
1696 		return 0;
1697 
1698 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
1699 	if (!tnum_is_aligned(reg_off, size)) {
1700 		char tn_buf[48];
1701 
1702 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1703 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
1704 			pointer_desc, tn_buf, reg->off, off, size);
1705 		return -EACCES;
1706 	}
1707 
1708 	return 0;
1709 }
1710 
1711 static int check_ptr_alignment(struct bpf_verifier_env *env,
1712 			       const struct bpf_reg_state *reg, int off,
1713 			       int size, bool strict_alignment_once)
1714 {
1715 	bool strict = env->strict_alignment || strict_alignment_once;
1716 	const char *pointer_desc = "";
1717 
1718 	switch (reg->type) {
1719 	case PTR_TO_PACKET:
1720 	case PTR_TO_PACKET_META:
1721 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
1722 		 * right in front, treat it the very same way.
1723 		 */
1724 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
1725 	case PTR_TO_FLOW_KEYS:
1726 		pointer_desc = "flow keys ";
1727 		break;
1728 	case PTR_TO_MAP_VALUE:
1729 		pointer_desc = "value ";
1730 		break;
1731 	case PTR_TO_CTX:
1732 		pointer_desc = "context ";
1733 		break;
1734 	case PTR_TO_STACK:
1735 		pointer_desc = "stack ";
1736 		/* The stack spill tracking logic in check_stack_write()
1737 		 * and check_stack_read() relies on stack accesses being
1738 		 * aligned.
1739 		 */
1740 		strict = true;
1741 		break;
1742 	case PTR_TO_SOCKET:
1743 		pointer_desc = "sock ";
1744 		break;
1745 	default:
1746 		break;
1747 	}
1748 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
1749 					   strict);
1750 }
1751 
1752 static int update_stack_depth(struct bpf_verifier_env *env,
1753 			      const struct bpf_func_state *func,
1754 			      int off)
1755 {
1756 	u16 stack = env->subprog_info[func->subprogno].stack_depth;
1757 
1758 	if (stack >= -off)
1759 		return 0;
1760 
1761 	/* update known max for given subprogram */
1762 	env->subprog_info[func->subprogno].stack_depth = -off;
1763 	return 0;
1764 }
1765 
1766 /* starting from main bpf function walk all instructions of the function
1767  * and recursively walk all callees that given function can call.
1768  * Ignore jump and exit insns.
1769  * Since recursion is prevented by check_cfg() this algorithm
1770  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
1771  */
1772 static int check_max_stack_depth(struct bpf_verifier_env *env)
1773 {
1774 	int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
1775 	struct bpf_subprog_info *subprog = env->subprog_info;
1776 	struct bpf_insn *insn = env->prog->insnsi;
1777 	int ret_insn[MAX_CALL_FRAMES];
1778 	int ret_prog[MAX_CALL_FRAMES];
1779 
1780 process_func:
1781 	/* round up to 32-bytes, since this is granularity
1782 	 * of interpreter stack size
1783 	 */
1784 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
1785 	if (depth > MAX_BPF_STACK) {
1786 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
1787 			frame + 1, depth);
1788 		return -EACCES;
1789 	}
1790 continue_func:
1791 	subprog_end = subprog[idx + 1].start;
1792 	for (; i < subprog_end; i++) {
1793 		if (insn[i].code != (BPF_JMP | BPF_CALL))
1794 			continue;
1795 		if (insn[i].src_reg != BPF_PSEUDO_CALL)
1796 			continue;
1797 		/* remember insn and function to return to */
1798 		ret_insn[frame] = i + 1;
1799 		ret_prog[frame] = idx;
1800 
1801 		/* find the callee */
1802 		i = i + insn[i].imm + 1;
1803 		idx = find_subprog(env, i);
1804 		if (idx < 0) {
1805 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1806 				  i);
1807 			return -EFAULT;
1808 		}
1809 		frame++;
1810 		if (frame >= MAX_CALL_FRAMES) {
1811 			WARN_ONCE(1, "verifier bug. Call stack is too deep\n");
1812 			return -EFAULT;
1813 		}
1814 		goto process_func;
1815 	}
1816 	/* end of for() loop means the last insn of the 'subprog'
1817 	 * was reached. Doesn't matter whether it was JA or EXIT
1818 	 */
1819 	if (frame == 0)
1820 		return 0;
1821 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
1822 	frame--;
1823 	i = ret_insn[frame];
1824 	idx = ret_prog[frame];
1825 	goto continue_func;
1826 }
1827 
1828 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1829 static int get_callee_stack_depth(struct bpf_verifier_env *env,
1830 				  const struct bpf_insn *insn, int idx)
1831 {
1832 	int start = idx + insn->imm + 1, subprog;
1833 
1834 	subprog = find_subprog(env, start);
1835 	if (subprog < 0) {
1836 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1837 			  start);
1838 		return -EFAULT;
1839 	}
1840 	return env->subprog_info[subprog].stack_depth;
1841 }
1842 #endif
1843 
1844 static int check_ctx_reg(struct bpf_verifier_env *env,
1845 			 const struct bpf_reg_state *reg, int regno)
1846 {
1847 	/* Access to ctx or passing it to a helper is only allowed in
1848 	 * its original, unmodified form.
1849 	 */
1850 
1851 	if (reg->off) {
1852 		verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
1853 			regno, reg->off);
1854 		return -EACCES;
1855 	}
1856 
1857 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
1858 		char tn_buf[48];
1859 
1860 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1861 		verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
1862 		return -EACCES;
1863 	}
1864 
1865 	return 0;
1866 }
1867 
1868 /* truncate register to smaller size (in bytes)
1869  * must be called with size < BPF_REG_SIZE
1870  */
1871 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
1872 {
1873 	u64 mask;
1874 
1875 	/* clear high bits in bit representation */
1876 	reg->var_off = tnum_cast(reg->var_off, size);
1877 
1878 	/* fix arithmetic bounds */
1879 	mask = ((u64)1 << (size * 8)) - 1;
1880 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
1881 		reg->umin_value &= mask;
1882 		reg->umax_value &= mask;
1883 	} else {
1884 		reg->umin_value = 0;
1885 		reg->umax_value = mask;
1886 	}
1887 	reg->smin_value = reg->umin_value;
1888 	reg->smax_value = reg->umax_value;
1889 }
1890 
1891 /* check whether memory at (regno + off) is accessible for t = (read | write)
1892  * if t==write, value_regno is a register which value is stored into memory
1893  * if t==read, value_regno is a register which will receive the value from memory
1894  * if t==write && value_regno==-1, some unknown value is stored into memory
1895  * if t==read && value_regno==-1, don't care what we read from memory
1896  */
1897 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
1898 			    int off, int bpf_size, enum bpf_access_type t,
1899 			    int value_regno, bool strict_alignment_once)
1900 {
1901 	struct bpf_reg_state *regs = cur_regs(env);
1902 	struct bpf_reg_state *reg = regs + regno;
1903 	struct bpf_func_state *state;
1904 	int size, err = 0;
1905 
1906 	size = bpf_size_to_bytes(bpf_size);
1907 	if (size < 0)
1908 		return size;
1909 
1910 	/* alignment checks will add in reg->off themselves */
1911 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
1912 	if (err)
1913 		return err;
1914 
1915 	/* for access checks, reg->off is just part of off */
1916 	off += reg->off;
1917 
1918 	if (reg->type == PTR_TO_MAP_VALUE) {
1919 		if (t == BPF_WRITE && value_regno >= 0 &&
1920 		    is_pointer_value(env, value_regno)) {
1921 			verbose(env, "R%d leaks addr into map\n", value_regno);
1922 			return -EACCES;
1923 		}
1924 
1925 		err = check_map_access(env, regno, off, size, false);
1926 		if (!err && t == BPF_READ && value_regno >= 0)
1927 			mark_reg_unknown(env, regs, value_regno);
1928 
1929 	} else if (reg->type == PTR_TO_CTX) {
1930 		enum bpf_reg_type reg_type = SCALAR_VALUE;
1931 
1932 		if (t == BPF_WRITE && value_regno >= 0 &&
1933 		    is_pointer_value(env, value_regno)) {
1934 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
1935 			return -EACCES;
1936 		}
1937 
1938 		err = check_ctx_reg(env, reg, regno);
1939 		if (err < 0)
1940 			return err;
1941 
1942 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
1943 		if (!err && t == BPF_READ && value_regno >= 0) {
1944 			/* ctx access returns either a scalar, or a
1945 			 * PTR_TO_PACKET[_META,_END]. In the latter
1946 			 * case, we know the offset is zero.
1947 			 */
1948 			if (reg_type == SCALAR_VALUE)
1949 				mark_reg_unknown(env, regs, value_regno);
1950 			else
1951 				mark_reg_known_zero(env, regs,
1952 						    value_regno);
1953 			regs[value_regno].type = reg_type;
1954 		}
1955 
1956 	} else if (reg->type == PTR_TO_STACK) {
1957 		/* stack accesses must be at a fixed offset, so that we can
1958 		 * determine what type of data were returned.
1959 		 * See check_stack_read().
1960 		 */
1961 		if (!tnum_is_const(reg->var_off)) {
1962 			char tn_buf[48];
1963 
1964 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1965 			verbose(env, "variable stack access var_off=%s off=%d size=%d",
1966 				tn_buf, off, size);
1967 			return -EACCES;
1968 		}
1969 		off += reg->var_off.value;
1970 		if (off >= 0 || off < -MAX_BPF_STACK) {
1971 			verbose(env, "invalid stack off=%d size=%d\n", off,
1972 				size);
1973 			return -EACCES;
1974 		}
1975 
1976 		state = func(env, reg);
1977 		err = update_stack_depth(env, state, off);
1978 		if (err)
1979 			return err;
1980 
1981 		if (t == BPF_WRITE)
1982 			err = check_stack_write(env, state, off, size,
1983 						value_regno, insn_idx);
1984 		else
1985 			err = check_stack_read(env, state, off, size,
1986 					       value_regno);
1987 	} else if (reg_is_pkt_pointer(reg)) {
1988 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
1989 			verbose(env, "cannot write into packet\n");
1990 			return -EACCES;
1991 		}
1992 		if (t == BPF_WRITE && value_regno >= 0 &&
1993 		    is_pointer_value(env, value_regno)) {
1994 			verbose(env, "R%d leaks addr into packet\n",
1995 				value_regno);
1996 			return -EACCES;
1997 		}
1998 		err = check_packet_access(env, regno, off, size, false);
1999 		if (!err && t == BPF_READ && value_regno >= 0)
2000 			mark_reg_unknown(env, regs, value_regno);
2001 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
2002 		if (t == BPF_WRITE && value_regno >= 0 &&
2003 		    is_pointer_value(env, value_regno)) {
2004 			verbose(env, "R%d leaks addr into flow keys\n",
2005 				value_regno);
2006 			return -EACCES;
2007 		}
2008 
2009 		err = check_flow_keys_access(env, off, size);
2010 		if (!err && t == BPF_READ && value_regno >= 0)
2011 			mark_reg_unknown(env, regs, value_regno);
2012 	} else if (reg->type == PTR_TO_SOCKET) {
2013 		if (t == BPF_WRITE) {
2014 			verbose(env, "cannot write into socket\n");
2015 			return -EACCES;
2016 		}
2017 		err = check_sock_access(env, regno, off, size, t);
2018 		if (!err && value_regno >= 0)
2019 			mark_reg_unknown(env, regs, value_regno);
2020 	} else {
2021 		verbose(env, "R%d invalid mem access '%s'\n", regno,
2022 			reg_type_str[reg->type]);
2023 		return -EACCES;
2024 	}
2025 
2026 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
2027 	    regs[value_regno].type == SCALAR_VALUE) {
2028 		/* b/h/w load zero-extends, mark upper bits as known 0 */
2029 		coerce_reg_to_size(&regs[value_regno], size);
2030 	}
2031 	return err;
2032 }
2033 
2034 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
2035 {
2036 	int err;
2037 
2038 	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
2039 	    insn->imm != 0) {
2040 		verbose(env, "BPF_XADD uses reserved fields\n");
2041 		return -EINVAL;
2042 	}
2043 
2044 	/* check src1 operand */
2045 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
2046 	if (err)
2047 		return err;
2048 
2049 	/* check src2 operand */
2050 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2051 	if (err)
2052 		return err;
2053 
2054 	if (is_pointer_value(env, insn->src_reg)) {
2055 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
2056 		return -EACCES;
2057 	}
2058 
2059 	if (is_ctx_reg(env, insn->dst_reg) ||
2060 	    is_pkt_reg(env, insn->dst_reg) ||
2061 	    is_flow_key_reg(env, insn->dst_reg)) {
2062 		verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
2063 			insn->dst_reg,
2064 			reg_type_str[reg_state(env, insn->dst_reg)->type]);
2065 		return -EACCES;
2066 	}
2067 
2068 	/* check whether atomic_add can read the memory */
2069 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
2070 			       BPF_SIZE(insn->code), BPF_READ, -1, true);
2071 	if (err)
2072 		return err;
2073 
2074 	/* check whether atomic_add can write into the same memory */
2075 	return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
2076 				BPF_SIZE(insn->code), BPF_WRITE, -1, true);
2077 }
2078 
2079 /* when register 'regno' is passed into function that will read 'access_size'
2080  * bytes from that pointer, make sure that it's within stack boundary
2081  * and all elements of stack are initialized.
2082  * Unlike most pointer bounds-checking functions, this one doesn't take an
2083  * 'off' argument, so it has to add in reg->off itself.
2084  */
2085 static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
2086 				int access_size, bool zero_size_allowed,
2087 				struct bpf_call_arg_meta *meta)
2088 {
2089 	struct bpf_reg_state *reg = reg_state(env, regno);
2090 	struct bpf_func_state *state = func(env, reg);
2091 	int off, i, slot, spi;
2092 
2093 	if (reg->type != PTR_TO_STACK) {
2094 		/* Allow zero-byte read from NULL, regardless of pointer type */
2095 		if (zero_size_allowed && access_size == 0 &&
2096 		    register_is_null(reg))
2097 			return 0;
2098 
2099 		verbose(env, "R%d type=%s expected=%s\n", regno,
2100 			reg_type_str[reg->type],
2101 			reg_type_str[PTR_TO_STACK]);
2102 		return -EACCES;
2103 	}
2104 
2105 	/* Only allow fixed-offset stack reads */
2106 	if (!tnum_is_const(reg->var_off)) {
2107 		char tn_buf[48];
2108 
2109 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2110 		verbose(env, "invalid variable stack read R%d var_off=%s\n",
2111 			regno, tn_buf);
2112 		return -EACCES;
2113 	}
2114 	off = reg->off + reg->var_off.value;
2115 	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
2116 	    access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
2117 		verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
2118 			regno, off, access_size);
2119 		return -EACCES;
2120 	}
2121 
2122 	if (meta && meta->raw_mode) {
2123 		meta->access_size = access_size;
2124 		meta->regno = regno;
2125 		return 0;
2126 	}
2127 
2128 	for (i = 0; i < access_size; i++) {
2129 		u8 *stype;
2130 
2131 		slot = -(off + i) - 1;
2132 		spi = slot / BPF_REG_SIZE;
2133 		if (state->allocated_stack <= slot)
2134 			goto err;
2135 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
2136 		if (*stype == STACK_MISC)
2137 			goto mark;
2138 		if (*stype == STACK_ZERO) {
2139 			/* helper can write anything into the stack */
2140 			*stype = STACK_MISC;
2141 			goto mark;
2142 		}
2143 err:
2144 		verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
2145 			off, i, access_size);
2146 		return -EACCES;
2147 mark:
2148 		/* reading any byte out of 8-byte 'spill_slot' will cause
2149 		 * the whole slot to be marked as 'read'
2150 		 */
2151 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
2152 			      state->stack[spi].spilled_ptr.parent);
2153 	}
2154 	return update_stack_depth(env, state, off);
2155 }
2156 
2157 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
2158 				   int access_size, bool zero_size_allowed,
2159 				   struct bpf_call_arg_meta *meta)
2160 {
2161 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
2162 
2163 	switch (reg->type) {
2164 	case PTR_TO_PACKET:
2165 	case PTR_TO_PACKET_META:
2166 		return check_packet_access(env, regno, reg->off, access_size,
2167 					   zero_size_allowed);
2168 	case PTR_TO_MAP_VALUE:
2169 		return check_map_access(env, regno, reg->off, access_size,
2170 					zero_size_allowed);
2171 	default: /* scalar_value|ptr_to_stack or invalid ptr */
2172 		return check_stack_boundary(env, regno, access_size,
2173 					    zero_size_allowed, meta);
2174 	}
2175 }
2176 
2177 static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
2178 {
2179 	return type == ARG_PTR_TO_MEM ||
2180 	       type == ARG_PTR_TO_MEM_OR_NULL ||
2181 	       type == ARG_PTR_TO_UNINIT_MEM;
2182 }
2183 
2184 static bool arg_type_is_mem_size(enum bpf_arg_type type)
2185 {
2186 	return type == ARG_CONST_SIZE ||
2187 	       type == ARG_CONST_SIZE_OR_ZERO;
2188 }
2189 
2190 static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
2191 			  enum bpf_arg_type arg_type,
2192 			  struct bpf_call_arg_meta *meta)
2193 {
2194 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
2195 	enum bpf_reg_type expected_type, type = reg->type;
2196 	int err = 0;
2197 
2198 	if (arg_type == ARG_DONTCARE)
2199 		return 0;
2200 
2201 	err = check_reg_arg(env, regno, SRC_OP);
2202 	if (err)
2203 		return err;
2204 
2205 	if (arg_type == ARG_ANYTHING) {
2206 		if (is_pointer_value(env, regno)) {
2207 			verbose(env, "R%d leaks addr into helper function\n",
2208 				regno);
2209 			return -EACCES;
2210 		}
2211 		return 0;
2212 	}
2213 
2214 	if (type_is_pkt_pointer(type) &&
2215 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
2216 		verbose(env, "helper access to the packet is not allowed\n");
2217 		return -EACCES;
2218 	}
2219 
2220 	if (arg_type == ARG_PTR_TO_MAP_KEY ||
2221 	    arg_type == ARG_PTR_TO_MAP_VALUE ||
2222 	    arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
2223 		expected_type = PTR_TO_STACK;
2224 		if (!type_is_pkt_pointer(type) && type != PTR_TO_MAP_VALUE &&
2225 		    type != expected_type)
2226 			goto err_type;
2227 	} else if (arg_type == ARG_CONST_SIZE ||
2228 		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
2229 		expected_type = SCALAR_VALUE;
2230 		if (type != expected_type)
2231 			goto err_type;
2232 	} else if (arg_type == ARG_CONST_MAP_PTR) {
2233 		expected_type = CONST_PTR_TO_MAP;
2234 		if (type != expected_type)
2235 			goto err_type;
2236 	} else if (arg_type == ARG_PTR_TO_CTX) {
2237 		expected_type = PTR_TO_CTX;
2238 		if (type != expected_type)
2239 			goto err_type;
2240 		err = check_ctx_reg(env, reg, regno);
2241 		if (err < 0)
2242 			return err;
2243 	} else if (arg_type == ARG_PTR_TO_SOCKET) {
2244 		expected_type = PTR_TO_SOCKET;
2245 		if (type != expected_type)
2246 			goto err_type;
2247 		if (meta->ptr_id || !reg->id) {
2248 			verbose(env, "verifier internal error: mismatched references meta=%d, reg=%d\n",
2249 				meta->ptr_id, reg->id);
2250 			return -EFAULT;
2251 		}
2252 		meta->ptr_id = reg->id;
2253 	} else if (arg_type_is_mem_ptr(arg_type)) {
2254 		expected_type = PTR_TO_STACK;
2255 		/* One exception here. In case function allows for NULL to be
2256 		 * passed in as argument, it's a SCALAR_VALUE type. Final test
2257 		 * happens during stack boundary checking.
2258 		 */
2259 		if (register_is_null(reg) &&
2260 		    arg_type == ARG_PTR_TO_MEM_OR_NULL)
2261 			/* final test in check_stack_boundary() */;
2262 		else if (!type_is_pkt_pointer(type) &&
2263 			 type != PTR_TO_MAP_VALUE &&
2264 			 type != expected_type)
2265 			goto err_type;
2266 		meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
2267 	} else {
2268 		verbose(env, "unsupported arg_type %d\n", arg_type);
2269 		return -EFAULT;
2270 	}
2271 
2272 	if (arg_type == ARG_CONST_MAP_PTR) {
2273 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
2274 		meta->map_ptr = reg->map_ptr;
2275 	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
2276 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
2277 		 * check that [key, key + map->key_size) are within
2278 		 * stack limits and initialized
2279 		 */
2280 		if (!meta->map_ptr) {
2281 			/* in function declaration map_ptr must come before
2282 			 * map_key, so that it's verified and known before
2283 			 * we have to check map_key here. Otherwise it means
2284 			 * that kernel subsystem misconfigured verifier
2285 			 */
2286 			verbose(env, "invalid map_ptr to access map->key\n");
2287 			return -EACCES;
2288 		}
2289 		err = check_helper_mem_access(env, regno,
2290 					      meta->map_ptr->key_size, false,
2291 					      NULL);
2292 	} else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
2293 		   arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
2294 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
2295 		 * check [value, value + map->value_size) validity
2296 		 */
2297 		if (!meta->map_ptr) {
2298 			/* kernel subsystem misconfigured verifier */
2299 			verbose(env, "invalid map_ptr to access map->value\n");
2300 			return -EACCES;
2301 		}
2302 		meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
2303 		err = check_helper_mem_access(env, regno,
2304 					      meta->map_ptr->value_size, false,
2305 					      meta);
2306 	} else if (arg_type_is_mem_size(arg_type)) {
2307 		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
2308 
2309 		/* remember the mem_size which may be used later
2310 		 * to refine return values.
2311 		 */
2312 		meta->msize_smax_value = reg->smax_value;
2313 		meta->msize_umax_value = reg->umax_value;
2314 
2315 		/* The register is SCALAR_VALUE; the access check
2316 		 * happens using its boundaries.
2317 		 */
2318 		if (!tnum_is_const(reg->var_off))
2319 			/* For unprivileged variable accesses, disable raw
2320 			 * mode so that the program is required to
2321 			 * initialize all the memory that the helper could
2322 			 * just partially fill up.
2323 			 */
2324 			meta = NULL;
2325 
2326 		if (reg->smin_value < 0) {
2327 			verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
2328 				regno);
2329 			return -EACCES;
2330 		}
2331 
2332 		if (reg->umin_value == 0) {
2333 			err = check_helper_mem_access(env, regno - 1, 0,
2334 						      zero_size_allowed,
2335 						      meta);
2336 			if (err)
2337 				return err;
2338 		}
2339 
2340 		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
2341 			verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
2342 				regno);
2343 			return -EACCES;
2344 		}
2345 		err = check_helper_mem_access(env, regno - 1,
2346 					      reg->umax_value,
2347 					      zero_size_allowed, meta);
2348 	}
2349 
2350 	return err;
2351 err_type:
2352 	verbose(env, "R%d type=%s expected=%s\n", regno,
2353 		reg_type_str[type], reg_type_str[expected_type]);
2354 	return -EACCES;
2355 }
2356 
2357 static int check_map_func_compatibility(struct bpf_verifier_env *env,
2358 					struct bpf_map *map, int func_id)
2359 {
2360 	if (!map)
2361 		return 0;
2362 
2363 	/* We need a two way check, first is from map perspective ... */
2364 	switch (map->map_type) {
2365 	case BPF_MAP_TYPE_PROG_ARRAY:
2366 		if (func_id != BPF_FUNC_tail_call)
2367 			goto error;
2368 		break;
2369 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
2370 		if (func_id != BPF_FUNC_perf_event_read &&
2371 		    func_id != BPF_FUNC_perf_event_output &&
2372 		    func_id != BPF_FUNC_perf_event_read_value)
2373 			goto error;
2374 		break;
2375 	case BPF_MAP_TYPE_STACK_TRACE:
2376 		if (func_id != BPF_FUNC_get_stackid)
2377 			goto error;
2378 		break;
2379 	case BPF_MAP_TYPE_CGROUP_ARRAY:
2380 		if (func_id != BPF_FUNC_skb_under_cgroup &&
2381 		    func_id != BPF_FUNC_current_task_under_cgroup)
2382 			goto error;
2383 		break;
2384 	case BPF_MAP_TYPE_CGROUP_STORAGE:
2385 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
2386 		if (func_id != BPF_FUNC_get_local_storage)
2387 			goto error;
2388 		break;
2389 	/* devmap returns a pointer to a live net_device ifindex that we cannot
2390 	 * allow to be modified from bpf side. So do not allow lookup elements
2391 	 * for now.
2392 	 */
2393 	case BPF_MAP_TYPE_DEVMAP:
2394 		if (func_id != BPF_FUNC_redirect_map)
2395 			goto error;
2396 		break;
2397 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
2398 	 * appear.
2399 	 */
2400 	case BPF_MAP_TYPE_CPUMAP:
2401 	case BPF_MAP_TYPE_XSKMAP:
2402 		if (func_id != BPF_FUNC_redirect_map)
2403 			goto error;
2404 		break;
2405 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
2406 	case BPF_MAP_TYPE_HASH_OF_MAPS:
2407 		if (func_id != BPF_FUNC_map_lookup_elem)
2408 			goto error;
2409 		break;
2410 	case BPF_MAP_TYPE_SOCKMAP:
2411 		if (func_id != BPF_FUNC_sk_redirect_map &&
2412 		    func_id != BPF_FUNC_sock_map_update &&
2413 		    func_id != BPF_FUNC_map_delete_elem &&
2414 		    func_id != BPF_FUNC_msg_redirect_map)
2415 			goto error;
2416 		break;
2417 	case BPF_MAP_TYPE_SOCKHASH:
2418 		if (func_id != BPF_FUNC_sk_redirect_hash &&
2419 		    func_id != BPF_FUNC_sock_hash_update &&
2420 		    func_id != BPF_FUNC_map_delete_elem &&
2421 		    func_id != BPF_FUNC_msg_redirect_hash)
2422 			goto error;
2423 		break;
2424 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
2425 		if (func_id != BPF_FUNC_sk_select_reuseport)
2426 			goto error;
2427 		break;
2428 	case BPF_MAP_TYPE_QUEUE:
2429 	case BPF_MAP_TYPE_STACK:
2430 		if (func_id != BPF_FUNC_map_peek_elem &&
2431 		    func_id != BPF_FUNC_map_pop_elem &&
2432 		    func_id != BPF_FUNC_map_push_elem)
2433 			goto error;
2434 		break;
2435 	default:
2436 		break;
2437 	}
2438 
2439 	/* ... and second from the function itself. */
2440 	switch (func_id) {
2441 	case BPF_FUNC_tail_call:
2442 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
2443 			goto error;
2444 		if (env->subprog_cnt > 1) {
2445 			verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
2446 			return -EINVAL;
2447 		}
2448 		break;
2449 	case BPF_FUNC_perf_event_read:
2450 	case BPF_FUNC_perf_event_output:
2451 	case BPF_FUNC_perf_event_read_value:
2452 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
2453 			goto error;
2454 		break;
2455 	case BPF_FUNC_get_stackid:
2456 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
2457 			goto error;
2458 		break;
2459 	case BPF_FUNC_current_task_under_cgroup:
2460 	case BPF_FUNC_skb_under_cgroup:
2461 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
2462 			goto error;
2463 		break;
2464 	case BPF_FUNC_redirect_map:
2465 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
2466 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
2467 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
2468 			goto error;
2469 		break;
2470 	case BPF_FUNC_sk_redirect_map:
2471 	case BPF_FUNC_msg_redirect_map:
2472 	case BPF_FUNC_sock_map_update:
2473 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
2474 			goto error;
2475 		break;
2476 	case BPF_FUNC_sk_redirect_hash:
2477 	case BPF_FUNC_msg_redirect_hash:
2478 	case BPF_FUNC_sock_hash_update:
2479 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
2480 			goto error;
2481 		break;
2482 	case BPF_FUNC_get_local_storage:
2483 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
2484 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
2485 			goto error;
2486 		break;
2487 	case BPF_FUNC_sk_select_reuseport:
2488 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY)
2489 			goto error;
2490 		break;
2491 	case BPF_FUNC_map_peek_elem:
2492 	case BPF_FUNC_map_pop_elem:
2493 	case BPF_FUNC_map_push_elem:
2494 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
2495 		    map->map_type != BPF_MAP_TYPE_STACK)
2496 			goto error;
2497 		break;
2498 	default:
2499 		break;
2500 	}
2501 
2502 	return 0;
2503 error:
2504 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
2505 		map->map_type, func_id_name(func_id), func_id);
2506 	return -EINVAL;
2507 }
2508 
2509 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
2510 {
2511 	int count = 0;
2512 
2513 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
2514 		count++;
2515 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
2516 		count++;
2517 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
2518 		count++;
2519 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
2520 		count++;
2521 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
2522 		count++;
2523 
2524 	/* We only support one arg being in raw mode at the moment,
2525 	 * which is sufficient for the helper functions we have
2526 	 * right now.
2527 	 */
2528 	return count <= 1;
2529 }
2530 
2531 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
2532 				    enum bpf_arg_type arg_next)
2533 {
2534 	return (arg_type_is_mem_ptr(arg_curr) &&
2535 	        !arg_type_is_mem_size(arg_next)) ||
2536 	       (!arg_type_is_mem_ptr(arg_curr) &&
2537 		arg_type_is_mem_size(arg_next));
2538 }
2539 
2540 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
2541 {
2542 	/* bpf_xxx(..., buf, len) call will access 'len'
2543 	 * bytes from memory 'buf'. Both arg types need
2544 	 * to be paired, so make sure there's no buggy
2545 	 * helper function specification.
2546 	 */
2547 	if (arg_type_is_mem_size(fn->arg1_type) ||
2548 	    arg_type_is_mem_ptr(fn->arg5_type)  ||
2549 	    check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
2550 	    check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
2551 	    check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
2552 	    check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
2553 		return false;
2554 
2555 	return true;
2556 }
2557 
2558 static bool check_refcount_ok(const struct bpf_func_proto *fn)
2559 {
2560 	int count = 0;
2561 
2562 	if (arg_type_is_refcounted(fn->arg1_type))
2563 		count++;
2564 	if (arg_type_is_refcounted(fn->arg2_type))
2565 		count++;
2566 	if (arg_type_is_refcounted(fn->arg3_type))
2567 		count++;
2568 	if (arg_type_is_refcounted(fn->arg4_type))
2569 		count++;
2570 	if (arg_type_is_refcounted(fn->arg5_type))
2571 		count++;
2572 
2573 	/* We only support one arg being unreferenced at the moment,
2574 	 * which is sufficient for the helper functions we have right now.
2575 	 */
2576 	return count <= 1;
2577 }
2578 
2579 static int check_func_proto(const struct bpf_func_proto *fn)
2580 {
2581 	return check_raw_mode_ok(fn) &&
2582 	       check_arg_pair_ok(fn) &&
2583 	       check_refcount_ok(fn) ? 0 : -EINVAL;
2584 }
2585 
2586 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
2587  * are now invalid, so turn them into unknown SCALAR_VALUE.
2588  */
2589 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
2590 				     struct bpf_func_state *state)
2591 {
2592 	struct bpf_reg_state *regs = state->regs, *reg;
2593 	int i;
2594 
2595 	for (i = 0; i < MAX_BPF_REG; i++)
2596 		if (reg_is_pkt_pointer_any(&regs[i]))
2597 			mark_reg_unknown(env, regs, i);
2598 
2599 	bpf_for_each_spilled_reg(i, state, reg) {
2600 		if (!reg)
2601 			continue;
2602 		if (reg_is_pkt_pointer_any(reg))
2603 			__mark_reg_unknown(reg);
2604 	}
2605 }
2606 
2607 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
2608 {
2609 	struct bpf_verifier_state *vstate = env->cur_state;
2610 	int i;
2611 
2612 	for (i = 0; i <= vstate->curframe; i++)
2613 		__clear_all_pkt_pointers(env, vstate->frame[i]);
2614 }
2615 
2616 static void release_reg_references(struct bpf_verifier_env *env,
2617 				   struct bpf_func_state *state, int id)
2618 {
2619 	struct bpf_reg_state *regs = state->regs, *reg;
2620 	int i;
2621 
2622 	for (i = 0; i < MAX_BPF_REG; i++)
2623 		if (regs[i].id == id)
2624 			mark_reg_unknown(env, regs, i);
2625 
2626 	bpf_for_each_spilled_reg(i, state, reg) {
2627 		if (!reg)
2628 			continue;
2629 		if (reg_is_refcounted(reg) && reg->id == id)
2630 			__mark_reg_unknown(reg);
2631 	}
2632 }
2633 
2634 /* The pointer with the specified id has released its reference to kernel
2635  * resources. Identify all copies of the same pointer and clear the reference.
2636  */
2637 static int release_reference(struct bpf_verifier_env *env,
2638 			     struct bpf_call_arg_meta *meta)
2639 {
2640 	struct bpf_verifier_state *vstate = env->cur_state;
2641 	int i;
2642 
2643 	for (i = 0; i <= vstate->curframe; i++)
2644 		release_reg_references(env, vstate->frame[i], meta->ptr_id);
2645 
2646 	return release_reference_state(env, meta->ptr_id);
2647 }
2648 
2649 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
2650 			   int *insn_idx)
2651 {
2652 	struct bpf_verifier_state *state = env->cur_state;
2653 	struct bpf_func_state *caller, *callee;
2654 	int i, err, subprog, target_insn;
2655 
2656 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
2657 		verbose(env, "the call stack of %d frames is too deep\n",
2658 			state->curframe + 2);
2659 		return -E2BIG;
2660 	}
2661 
2662 	target_insn = *insn_idx + insn->imm;
2663 	subprog = find_subprog(env, target_insn + 1);
2664 	if (subprog < 0) {
2665 		verbose(env, "verifier bug. No program starts at insn %d\n",
2666 			target_insn + 1);
2667 		return -EFAULT;
2668 	}
2669 
2670 	caller = state->frame[state->curframe];
2671 	if (state->frame[state->curframe + 1]) {
2672 		verbose(env, "verifier bug. Frame %d already allocated\n",
2673 			state->curframe + 1);
2674 		return -EFAULT;
2675 	}
2676 
2677 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
2678 	if (!callee)
2679 		return -ENOMEM;
2680 	state->frame[state->curframe + 1] = callee;
2681 
2682 	/* callee cannot access r0, r6 - r9 for reading and has to write
2683 	 * into its own stack before reading from it.
2684 	 * callee can read/write into caller's stack
2685 	 */
2686 	init_func_state(env, callee,
2687 			/* remember the callsite, it will be used by bpf_exit */
2688 			*insn_idx /* callsite */,
2689 			state->curframe + 1 /* frameno within this callchain */,
2690 			subprog /* subprog number within this prog */);
2691 
2692 	/* Transfer references to the callee */
2693 	err = transfer_reference_state(callee, caller);
2694 	if (err)
2695 		return err;
2696 
2697 	/* copy r1 - r5 args that callee can access.  The copy includes parent
2698 	 * pointers, which connects us up to the liveness chain
2699 	 */
2700 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
2701 		callee->regs[i] = caller->regs[i];
2702 
2703 	/* after the call registers r0 - r5 were scratched */
2704 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
2705 		mark_reg_not_init(env, caller->regs, caller_saved[i]);
2706 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
2707 	}
2708 
2709 	/* only increment it after check_reg_arg() finished */
2710 	state->curframe++;
2711 
2712 	/* and go analyze first insn of the callee */
2713 	*insn_idx = target_insn;
2714 
2715 	if (env->log.level) {
2716 		verbose(env, "caller:\n");
2717 		print_verifier_state(env, caller);
2718 		verbose(env, "callee:\n");
2719 		print_verifier_state(env, callee);
2720 	}
2721 	return 0;
2722 }
2723 
2724 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
2725 {
2726 	struct bpf_verifier_state *state = env->cur_state;
2727 	struct bpf_func_state *caller, *callee;
2728 	struct bpf_reg_state *r0;
2729 	int err;
2730 
2731 	callee = state->frame[state->curframe];
2732 	r0 = &callee->regs[BPF_REG_0];
2733 	if (r0->type == PTR_TO_STACK) {
2734 		/* technically it's ok to return caller's stack pointer
2735 		 * (or caller's caller's pointer) back to the caller,
2736 		 * since these pointers are valid. Only current stack
2737 		 * pointer will be invalid as soon as function exits,
2738 		 * but let's be conservative
2739 		 */
2740 		verbose(env, "cannot return stack pointer to the caller\n");
2741 		return -EINVAL;
2742 	}
2743 
2744 	state->curframe--;
2745 	caller = state->frame[state->curframe];
2746 	/* return to the caller whatever r0 had in the callee */
2747 	caller->regs[BPF_REG_0] = *r0;
2748 
2749 	/* Transfer references to the caller */
2750 	err = transfer_reference_state(caller, callee);
2751 	if (err)
2752 		return err;
2753 
2754 	*insn_idx = callee->callsite + 1;
2755 	if (env->log.level) {
2756 		verbose(env, "returning from callee:\n");
2757 		print_verifier_state(env, callee);
2758 		verbose(env, "to caller at %d:\n", *insn_idx);
2759 		print_verifier_state(env, caller);
2760 	}
2761 	/* clear everything in the callee */
2762 	free_func_state(callee);
2763 	state->frame[state->curframe + 1] = NULL;
2764 	return 0;
2765 }
2766 
2767 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
2768 				   int func_id,
2769 				   struct bpf_call_arg_meta *meta)
2770 {
2771 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
2772 
2773 	if (ret_type != RET_INTEGER ||
2774 	    (func_id != BPF_FUNC_get_stack &&
2775 	     func_id != BPF_FUNC_probe_read_str))
2776 		return;
2777 
2778 	ret_reg->smax_value = meta->msize_smax_value;
2779 	ret_reg->umax_value = meta->msize_umax_value;
2780 	__reg_deduce_bounds(ret_reg);
2781 	__reg_bound_offset(ret_reg);
2782 }
2783 
2784 static int
2785 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
2786 		int func_id, int insn_idx)
2787 {
2788 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
2789 
2790 	if (func_id != BPF_FUNC_tail_call &&
2791 	    func_id != BPF_FUNC_map_lookup_elem &&
2792 	    func_id != BPF_FUNC_map_update_elem &&
2793 	    func_id != BPF_FUNC_map_delete_elem &&
2794 	    func_id != BPF_FUNC_map_push_elem &&
2795 	    func_id != BPF_FUNC_map_pop_elem &&
2796 	    func_id != BPF_FUNC_map_peek_elem)
2797 		return 0;
2798 
2799 	if (meta->map_ptr == NULL) {
2800 		verbose(env, "kernel subsystem misconfigured verifier\n");
2801 		return -EINVAL;
2802 	}
2803 
2804 	if (!BPF_MAP_PTR(aux->map_state))
2805 		bpf_map_ptr_store(aux, meta->map_ptr,
2806 				  meta->map_ptr->unpriv_array);
2807 	else if (BPF_MAP_PTR(aux->map_state) != meta->map_ptr)
2808 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
2809 				  meta->map_ptr->unpriv_array);
2810 	return 0;
2811 }
2812 
2813 static int check_reference_leak(struct bpf_verifier_env *env)
2814 {
2815 	struct bpf_func_state *state = cur_func(env);
2816 	int i;
2817 
2818 	for (i = 0; i < state->acquired_refs; i++) {
2819 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
2820 			state->refs[i].id, state->refs[i].insn_idx);
2821 	}
2822 	return state->acquired_refs ? -EINVAL : 0;
2823 }
2824 
2825 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
2826 {
2827 	const struct bpf_func_proto *fn = NULL;
2828 	struct bpf_reg_state *regs;
2829 	struct bpf_call_arg_meta meta;
2830 	bool changes_data;
2831 	int i, err;
2832 
2833 	/* find function prototype */
2834 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
2835 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
2836 			func_id);
2837 		return -EINVAL;
2838 	}
2839 
2840 	if (env->ops->get_func_proto)
2841 		fn = env->ops->get_func_proto(func_id, env->prog);
2842 	if (!fn) {
2843 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
2844 			func_id);
2845 		return -EINVAL;
2846 	}
2847 
2848 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
2849 	if (!env->prog->gpl_compatible && fn->gpl_only) {
2850 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
2851 		return -EINVAL;
2852 	}
2853 
2854 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
2855 	changes_data = bpf_helper_changes_pkt_data(fn->func);
2856 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
2857 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
2858 			func_id_name(func_id), func_id);
2859 		return -EINVAL;
2860 	}
2861 
2862 	memset(&meta, 0, sizeof(meta));
2863 	meta.pkt_access = fn->pkt_access;
2864 
2865 	err = check_func_proto(fn);
2866 	if (err) {
2867 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
2868 			func_id_name(func_id), func_id);
2869 		return err;
2870 	}
2871 
2872 	/* check args */
2873 	err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
2874 	if (err)
2875 		return err;
2876 	err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
2877 	if (err)
2878 		return err;
2879 	err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
2880 	if (err)
2881 		return err;
2882 	err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
2883 	if (err)
2884 		return err;
2885 	err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
2886 	if (err)
2887 		return err;
2888 
2889 	err = record_func_map(env, &meta, func_id, insn_idx);
2890 	if (err)
2891 		return err;
2892 
2893 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
2894 	 * is inferred from register state.
2895 	 */
2896 	for (i = 0; i < meta.access_size; i++) {
2897 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
2898 				       BPF_WRITE, -1, false);
2899 		if (err)
2900 			return err;
2901 	}
2902 
2903 	if (func_id == BPF_FUNC_tail_call) {
2904 		err = check_reference_leak(env);
2905 		if (err) {
2906 			verbose(env, "tail_call would lead to reference leak\n");
2907 			return err;
2908 		}
2909 	} else if (is_release_function(func_id)) {
2910 		err = release_reference(env, &meta);
2911 		if (err)
2912 			return err;
2913 	}
2914 
2915 	regs = cur_regs(env);
2916 
2917 	/* check that flags argument in get_local_storage(map, flags) is 0,
2918 	 * this is required because get_local_storage() can't return an error.
2919 	 */
2920 	if (func_id == BPF_FUNC_get_local_storage &&
2921 	    !register_is_null(&regs[BPF_REG_2])) {
2922 		verbose(env, "get_local_storage() doesn't support non-zero flags\n");
2923 		return -EINVAL;
2924 	}
2925 
2926 	/* reset caller saved regs */
2927 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
2928 		mark_reg_not_init(env, regs, caller_saved[i]);
2929 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
2930 	}
2931 
2932 	/* update return register (already marked as written above) */
2933 	if (fn->ret_type == RET_INTEGER) {
2934 		/* sets type to SCALAR_VALUE */
2935 		mark_reg_unknown(env, regs, BPF_REG_0);
2936 	} else if (fn->ret_type == RET_VOID) {
2937 		regs[BPF_REG_0].type = NOT_INIT;
2938 	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
2939 		   fn->ret_type == RET_PTR_TO_MAP_VALUE) {
2940 		/* There is no offset yet applied, variable or fixed */
2941 		mark_reg_known_zero(env, regs, BPF_REG_0);
2942 		/* remember map_ptr, so that check_map_access()
2943 		 * can check 'value_size' boundary of memory access
2944 		 * to map element returned from bpf_map_lookup_elem()
2945 		 */
2946 		if (meta.map_ptr == NULL) {
2947 			verbose(env,
2948 				"kernel subsystem misconfigured verifier\n");
2949 			return -EINVAL;
2950 		}
2951 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
2952 		if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
2953 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
2954 		} else {
2955 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
2956 			regs[BPF_REG_0].id = ++env->id_gen;
2957 		}
2958 	} else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
2959 		int id = acquire_reference_state(env, insn_idx);
2960 		if (id < 0)
2961 			return id;
2962 		mark_reg_known_zero(env, regs, BPF_REG_0);
2963 		regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
2964 		regs[BPF_REG_0].id = id;
2965 	} else {
2966 		verbose(env, "unknown return type %d of func %s#%d\n",
2967 			fn->ret_type, func_id_name(func_id), func_id);
2968 		return -EINVAL;
2969 	}
2970 
2971 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
2972 
2973 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
2974 	if (err)
2975 		return err;
2976 
2977 	if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) {
2978 		const char *err_str;
2979 
2980 #ifdef CONFIG_PERF_EVENTS
2981 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
2982 		err_str = "cannot get callchain buffer for func %s#%d\n";
2983 #else
2984 		err = -ENOTSUPP;
2985 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
2986 #endif
2987 		if (err) {
2988 			verbose(env, err_str, func_id_name(func_id), func_id);
2989 			return err;
2990 		}
2991 
2992 		env->prog->has_callchain_buf = true;
2993 	}
2994 
2995 	if (changes_data)
2996 		clear_all_pkt_pointers(env);
2997 	return 0;
2998 }
2999 
3000 static bool signed_add_overflows(s64 a, s64 b)
3001 {
3002 	/* Do the add in u64, where overflow is well-defined */
3003 	s64 res = (s64)((u64)a + (u64)b);
3004 
3005 	if (b < 0)
3006 		return res > a;
3007 	return res < a;
3008 }
3009 
3010 static bool signed_sub_overflows(s64 a, s64 b)
3011 {
3012 	/* Do the sub in u64, where overflow is well-defined */
3013 	s64 res = (s64)((u64)a - (u64)b);
3014 
3015 	if (b < 0)
3016 		return res < a;
3017 	return res > a;
3018 }
3019 
3020 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
3021 				  const struct bpf_reg_state *reg,
3022 				  enum bpf_reg_type type)
3023 {
3024 	bool known = tnum_is_const(reg->var_off);
3025 	s64 val = reg->var_off.value;
3026 	s64 smin = reg->smin_value;
3027 
3028 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
3029 		verbose(env, "math between %s pointer and %lld is not allowed\n",
3030 			reg_type_str[type], val);
3031 		return false;
3032 	}
3033 
3034 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
3035 		verbose(env, "%s pointer offset %d is not allowed\n",
3036 			reg_type_str[type], reg->off);
3037 		return false;
3038 	}
3039 
3040 	if (smin == S64_MIN) {
3041 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
3042 			reg_type_str[type]);
3043 		return false;
3044 	}
3045 
3046 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
3047 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
3048 			smin, reg_type_str[type]);
3049 		return false;
3050 	}
3051 
3052 	return true;
3053 }
3054 
3055 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
3056  * Caller should also handle BPF_MOV case separately.
3057  * If we return -EACCES, caller may want to try again treating pointer as a
3058  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
3059  */
3060 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
3061 				   struct bpf_insn *insn,
3062 				   const struct bpf_reg_state *ptr_reg,
3063 				   const struct bpf_reg_state *off_reg)
3064 {
3065 	struct bpf_verifier_state *vstate = env->cur_state;
3066 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3067 	struct bpf_reg_state *regs = state->regs, *dst_reg;
3068 	bool known = tnum_is_const(off_reg->var_off);
3069 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
3070 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
3071 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
3072 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
3073 	u8 opcode = BPF_OP(insn->code);
3074 	u32 dst = insn->dst_reg;
3075 
3076 	dst_reg = &regs[dst];
3077 
3078 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
3079 	    smin_val > smax_val || umin_val > umax_val) {
3080 		/* Taint dst register if offset had invalid bounds derived from
3081 		 * e.g. dead branches.
3082 		 */
3083 		__mark_reg_unknown(dst_reg);
3084 		return 0;
3085 	}
3086 
3087 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
3088 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
3089 		verbose(env,
3090 			"R%d 32-bit pointer arithmetic prohibited\n",
3091 			dst);
3092 		return -EACCES;
3093 	}
3094 
3095 	switch (ptr_reg->type) {
3096 	case PTR_TO_MAP_VALUE_OR_NULL:
3097 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
3098 			dst, reg_type_str[ptr_reg->type]);
3099 		return -EACCES;
3100 	case CONST_PTR_TO_MAP:
3101 	case PTR_TO_PACKET_END:
3102 	case PTR_TO_SOCKET:
3103 	case PTR_TO_SOCKET_OR_NULL:
3104 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
3105 			dst, reg_type_str[ptr_reg->type]);
3106 		return -EACCES;
3107 	default:
3108 		break;
3109 	}
3110 
3111 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
3112 	 * The id may be overwritten later if we create a new variable offset.
3113 	 */
3114 	dst_reg->type = ptr_reg->type;
3115 	dst_reg->id = ptr_reg->id;
3116 
3117 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
3118 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
3119 		return -EINVAL;
3120 
3121 	switch (opcode) {
3122 	case BPF_ADD:
3123 		/* We can take a fixed offset as long as it doesn't overflow
3124 		 * the s32 'off' field
3125 		 */
3126 		if (known && (ptr_reg->off + smin_val ==
3127 			      (s64)(s32)(ptr_reg->off + smin_val))) {
3128 			/* pointer += K.  Accumulate it into fixed offset */
3129 			dst_reg->smin_value = smin_ptr;
3130 			dst_reg->smax_value = smax_ptr;
3131 			dst_reg->umin_value = umin_ptr;
3132 			dst_reg->umax_value = umax_ptr;
3133 			dst_reg->var_off = ptr_reg->var_off;
3134 			dst_reg->off = ptr_reg->off + smin_val;
3135 			dst_reg->raw = ptr_reg->raw;
3136 			break;
3137 		}
3138 		/* A new variable offset is created.  Note that off_reg->off
3139 		 * == 0, since it's a scalar.
3140 		 * dst_reg gets the pointer type and since some positive
3141 		 * integer value was added to the pointer, give it a new 'id'
3142 		 * if it's a PTR_TO_PACKET.
3143 		 * this creates a new 'base' pointer, off_reg (variable) gets
3144 		 * added into the variable offset, and we copy the fixed offset
3145 		 * from ptr_reg.
3146 		 */
3147 		if (signed_add_overflows(smin_ptr, smin_val) ||
3148 		    signed_add_overflows(smax_ptr, smax_val)) {
3149 			dst_reg->smin_value = S64_MIN;
3150 			dst_reg->smax_value = S64_MAX;
3151 		} else {
3152 			dst_reg->smin_value = smin_ptr + smin_val;
3153 			dst_reg->smax_value = smax_ptr + smax_val;
3154 		}
3155 		if (umin_ptr + umin_val < umin_ptr ||
3156 		    umax_ptr + umax_val < umax_ptr) {
3157 			dst_reg->umin_value = 0;
3158 			dst_reg->umax_value = U64_MAX;
3159 		} else {
3160 			dst_reg->umin_value = umin_ptr + umin_val;
3161 			dst_reg->umax_value = umax_ptr + umax_val;
3162 		}
3163 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
3164 		dst_reg->off = ptr_reg->off;
3165 		dst_reg->raw = ptr_reg->raw;
3166 		if (reg_is_pkt_pointer(ptr_reg)) {
3167 			dst_reg->id = ++env->id_gen;
3168 			/* something was added to pkt_ptr, set range to zero */
3169 			dst_reg->raw = 0;
3170 		}
3171 		break;
3172 	case BPF_SUB:
3173 		if (dst_reg == off_reg) {
3174 			/* scalar -= pointer.  Creates an unknown scalar */
3175 			verbose(env, "R%d tried to subtract pointer from scalar\n",
3176 				dst);
3177 			return -EACCES;
3178 		}
3179 		/* We don't allow subtraction from FP, because (according to
3180 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
3181 		 * be able to deal with it.
3182 		 */
3183 		if (ptr_reg->type == PTR_TO_STACK) {
3184 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
3185 				dst);
3186 			return -EACCES;
3187 		}
3188 		if (known && (ptr_reg->off - smin_val ==
3189 			      (s64)(s32)(ptr_reg->off - smin_val))) {
3190 			/* pointer -= K.  Subtract it from fixed offset */
3191 			dst_reg->smin_value = smin_ptr;
3192 			dst_reg->smax_value = smax_ptr;
3193 			dst_reg->umin_value = umin_ptr;
3194 			dst_reg->umax_value = umax_ptr;
3195 			dst_reg->var_off = ptr_reg->var_off;
3196 			dst_reg->id = ptr_reg->id;
3197 			dst_reg->off = ptr_reg->off - smin_val;
3198 			dst_reg->raw = ptr_reg->raw;
3199 			break;
3200 		}
3201 		/* A new variable offset is created.  If the subtrahend is known
3202 		 * nonnegative, then any reg->range we had before is still good.
3203 		 */
3204 		if (signed_sub_overflows(smin_ptr, smax_val) ||
3205 		    signed_sub_overflows(smax_ptr, smin_val)) {
3206 			/* Overflow possible, we know nothing */
3207 			dst_reg->smin_value = S64_MIN;
3208 			dst_reg->smax_value = S64_MAX;
3209 		} else {
3210 			dst_reg->smin_value = smin_ptr - smax_val;
3211 			dst_reg->smax_value = smax_ptr - smin_val;
3212 		}
3213 		if (umin_ptr < umax_val) {
3214 			/* Overflow possible, we know nothing */
3215 			dst_reg->umin_value = 0;
3216 			dst_reg->umax_value = U64_MAX;
3217 		} else {
3218 			/* Cannot overflow (as long as bounds are consistent) */
3219 			dst_reg->umin_value = umin_ptr - umax_val;
3220 			dst_reg->umax_value = umax_ptr - umin_val;
3221 		}
3222 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
3223 		dst_reg->off = ptr_reg->off;
3224 		dst_reg->raw = ptr_reg->raw;
3225 		if (reg_is_pkt_pointer(ptr_reg)) {
3226 			dst_reg->id = ++env->id_gen;
3227 			/* something was added to pkt_ptr, set range to zero */
3228 			if (smin_val < 0)
3229 				dst_reg->raw = 0;
3230 		}
3231 		break;
3232 	case BPF_AND:
3233 	case BPF_OR:
3234 	case BPF_XOR:
3235 		/* bitwise ops on pointers are troublesome, prohibit. */
3236 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
3237 			dst, bpf_alu_string[opcode >> 4]);
3238 		return -EACCES;
3239 	default:
3240 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
3241 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
3242 			dst, bpf_alu_string[opcode >> 4]);
3243 		return -EACCES;
3244 	}
3245 
3246 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
3247 		return -EINVAL;
3248 
3249 	__update_reg_bounds(dst_reg);
3250 	__reg_deduce_bounds(dst_reg);
3251 	__reg_bound_offset(dst_reg);
3252 	return 0;
3253 }
3254 
3255 /* WARNING: This function does calculations on 64-bit values, but the actual
3256  * execution may occur on 32-bit values. Therefore, things like bitshifts
3257  * need extra checks in the 32-bit case.
3258  */
3259 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
3260 				      struct bpf_insn *insn,
3261 				      struct bpf_reg_state *dst_reg,
3262 				      struct bpf_reg_state src_reg)
3263 {
3264 	struct bpf_reg_state *regs = cur_regs(env);
3265 	u8 opcode = BPF_OP(insn->code);
3266 	bool src_known, dst_known;
3267 	s64 smin_val, smax_val;
3268 	u64 umin_val, umax_val;
3269 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
3270 
3271 	if (insn_bitness == 32) {
3272 		/* Relevant for 32-bit RSH: Information can propagate towards
3273 		 * LSB, so it isn't sufficient to only truncate the output to
3274 		 * 32 bits.
3275 		 */
3276 		coerce_reg_to_size(dst_reg, 4);
3277 		coerce_reg_to_size(&src_reg, 4);
3278 	}
3279 
3280 	smin_val = src_reg.smin_value;
3281 	smax_val = src_reg.smax_value;
3282 	umin_val = src_reg.umin_value;
3283 	umax_val = src_reg.umax_value;
3284 	src_known = tnum_is_const(src_reg.var_off);
3285 	dst_known = tnum_is_const(dst_reg->var_off);
3286 
3287 	if ((src_known && (smin_val != smax_val || umin_val != umax_val)) ||
3288 	    smin_val > smax_val || umin_val > umax_val) {
3289 		/* Taint dst register if offset had invalid bounds derived from
3290 		 * e.g. dead branches.
3291 		 */
3292 		__mark_reg_unknown(dst_reg);
3293 		return 0;
3294 	}
3295 
3296 	if (!src_known &&
3297 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
3298 		__mark_reg_unknown(dst_reg);
3299 		return 0;
3300 	}
3301 
3302 	switch (opcode) {
3303 	case BPF_ADD:
3304 		if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
3305 		    signed_add_overflows(dst_reg->smax_value, smax_val)) {
3306 			dst_reg->smin_value = S64_MIN;
3307 			dst_reg->smax_value = S64_MAX;
3308 		} else {
3309 			dst_reg->smin_value += smin_val;
3310 			dst_reg->smax_value += smax_val;
3311 		}
3312 		if (dst_reg->umin_value + umin_val < umin_val ||
3313 		    dst_reg->umax_value + umax_val < umax_val) {
3314 			dst_reg->umin_value = 0;
3315 			dst_reg->umax_value = U64_MAX;
3316 		} else {
3317 			dst_reg->umin_value += umin_val;
3318 			dst_reg->umax_value += umax_val;
3319 		}
3320 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
3321 		break;
3322 	case BPF_SUB:
3323 		if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
3324 		    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
3325 			/* Overflow possible, we know nothing */
3326 			dst_reg->smin_value = S64_MIN;
3327 			dst_reg->smax_value = S64_MAX;
3328 		} else {
3329 			dst_reg->smin_value -= smax_val;
3330 			dst_reg->smax_value -= smin_val;
3331 		}
3332 		if (dst_reg->umin_value < umax_val) {
3333 			/* Overflow possible, we know nothing */
3334 			dst_reg->umin_value = 0;
3335 			dst_reg->umax_value = U64_MAX;
3336 		} else {
3337 			/* Cannot overflow (as long as bounds are consistent) */
3338 			dst_reg->umin_value -= umax_val;
3339 			dst_reg->umax_value -= umin_val;
3340 		}
3341 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
3342 		break;
3343 	case BPF_MUL:
3344 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
3345 		if (smin_val < 0 || dst_reg->smin_value < 0) {
3346 			/* Ain't nobody got time to multiply that sign */
3347 			__mark_reg_unbounded(dst_reg);
3348 			__update_reg_bounds(dst_reg);
3349 			break;
3350 		}
3351 		/* Both values are positive, so we can work with unsigned and
3352 		 * copy the result to signed (unless it exceeds S64_MAX).
3353 		 */
3354 		if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
3355 			/* Potential overflow, we know nothing */
3356 			__mark_reg_unbounded(dst_reg);
3357 			/* (except what we can learn from the var_off) */
3358 			__update_reg_bounds(dst_reg);
3359 			break;
3360 		}
3361 		dst_reg->umin_value *= umin_val;
3362 		dst_reg->umax_value *= umax_val;
3363 		if (dst_reg->umax_value > S64_MAX) {
3364 			/* Overflow possible, we know nothing */
3365 			dst_reg->smin_value = S64_MIN;
3366 			dst_reg->smax_value = S64_MAX;
3367 		} else {
3368 			dst_reg->smin_value = dst_reg->umin_value;
3369 			dst_reg->smax_value = dst_reg->umax_value;
3370 		}
3371 		break;
3372 	case BPF_AND:
3373 		if (src_known && dst_known) {
3374 			__mark_reg_known(dst_reg, dst_reg->var_off.value &
3375 						  src_reg.var_off.value);
3376 			break;
3377 		}
3378 		/* We get our minimum from the var_off, since that's inherently
3379 		 * bitwise.  Our maximum is the minimum of the operands' maxima.
3380 		 */
3381 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
3382 		dst_reg->umin_value = dst_reg->var_off.value;
3383 		dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
3384 		if (dst_reg->smin_value < 0 || smin_val < 0) {
3385 			/* Lose signed bounds when ANDing negative numbers,
3386 			 * ain't nobody got time for that.
3387 			 */
3388 			dst_reg->smin_value = S64_MIN;
3389 			dst_reg->smax_value = S64_MAX;
3390 		} else {
3391 			/* ANDing two positives gives a positive, so safe to
3392 			 * cast result into s64.
3393 			 */
3394 			dst_reg->smin_value = dst_reg->umin_value;
3395 			dst_reg->smax_value = dst_reg->umax_value;
3396 		}
3397 		/* We may learn something more from the var_off */
3398 		__update_reg_bounds(dst_reg);
3399 		break;
3400 	case BPF_OR:
3401 		if (src_known && dst_known) {
3402 			__mark_reg_known(dst_reg, dst_reg->var_off.value |
3403 						  src_reg.var_off.value);
3404 			break;
3405 		}
3406 		/* We get our maximum from the var_off, and our minimum is the
3407 		 * maximum of the operands' minima
3408 		 */
3409 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
3410 		dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
3411 		dst_reg->umax_value = dst_reg->var_off.value |
3412 				      dst_reg->var_off.mask;
3413 		if (dst_reg->smin_value < 0 || smin_val < 0) {
3414 			/* Lose signed bounds when ORing negative numbers,
3415 			 * ain't nobody got time for that.
3416 			 */
3417 			dst_reg->smin_value = S64_MIN;
3418 			dst_reg->smax_value = S64_MAX;
3419 		} else {
3420 			/* ORing two positives gives a positive, so safe to
3421 			 * cast result into s64.
3422 			 */
3423 			dst_reg->smin_value = dst_reg->umin_value;
3424 			dst_reg->smax_value = dst_reg->umax_value;
3425 		}
3426 		/* We may learn something more from the var_off */
3427 		__update_reg_bounds(dst_reg);
3428 		break;
3429 	case BPF_LSH:
3430 		if (umax_val >= insn_bitness) {
3431 			/* Shifts greater than 31 or 63 are undefined.
3432 			 * This includes shifts by a negative number.
3433 			 */
3434 			mark_reg_unknown(env, regs, insn->dst_reg);
3435 			break;
3436 		}
3437 		/* We lose all sign bit information (except what we can pick
3438 		 * up from var_off)
3439 		 */
3440 		dst_reg->smin_value = S64_MIN;
3441 		dst_reg->smax_value = S64_MAX;
3442 		/* If we might shift our top bit out, then we know nothing */
3443 		if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
3444 			dst_reg->umin_value = 0;
3445 			dst_reg->umax_value = U64_MAX;
3446 		} else {
3447 			dst_reg->umin_value <<= umin_val;
3448 			dst_reg->umax_value <<= umax_val;
3449 		}
3450 		dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
3451 		/* We may learn something more from the var_off */
3452 		__update_reg_bounds(dst_reg);
3453 		break;
3454 	case BPF_RSH:
3455 		if (umax_val >= insn_bitness) {
3456 			/* Shifts greater than 31 or 63 are undefined.
3457 			 * This includes shifts by a negative number.
3458 			 */
3459 			mark_reg_unknown(env, regs, insn->dst_reg);
3460 			break;
3461 		}
3462 		/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
3463 		 * be negative, then either:
3464 		 * 1) src_reg might be zero, so the sign bit of the result is
3465 		 *    unknown, so we lose our signed bounds
3466 		 * 2) it's known negative, thus the unsigned bounds capture the
3467 		 *    signed bounds
3468 		 * 3) the signed bounds cross zero, so they tell us nothing
3469 		 *    about the result
3470 		 * If the value in dst_reg is known nonnegative, then again the
3471 		 * unsigned bounts capture the signed bounds.
3472 		 * Thus, in all cases it suffices to blow away our signed bounds
3473 		 * and rely on inferring new ones from the unsigned bounds and
3474 		 * var_off of the result.
3475 		 */
3476 		dst_reg->smin_value = S64_MIN;
3477 		dst_reg->smax_value = S64_MAX;
3478 		dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
3479 		dst_reg->umin_value >>= umax_val;
3480 		dst_reg->umax_value >>= umin_val;
3481 		/* We may learn something more from the var_off */
3482 		__update_reg_bounds(dst_reg);
3483 		break;
3484 	case BPF_ARSH:
3485 		if (umax_val >= insn_bitness) {
3486 			/* Shifts greater than 31 or 63 are undefined.
3487 			 * This includes shifts by a negative number.
3488 			 */
3489 			mark_reg_unknown(env, regs, insn->dst_reg);
3490 			break;
3491 		}
3492 
3493 		/* Upon reaching here, src_known is true and
3494 		 * umax_val is equal to umin_val.
3495 		 */
3496 		dst_reg->smin_value >>= umin_val;
3497 		dst_reg->smax_value >>= umin_val;
3498 		dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val);
3499 
3500 		/* blow away the dst_reg umin_value/umax_value and rely on
3501 		 * dst_reg var_off to refine the result.
3502 		 */
3503 		dst_reg->umin_value = 0;
3504 		dst_reg->umax_value = U64_MAX;
3505 		__update_reg_bounds(dst_reg);
3506 		break;
3507 	default:
3508 		mark_reg_unknown(env, regs, insn->dst_reg);
3509 		break;
3510 	}
3511 
3512 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
3513 		/* 32-bit ALU ops are (32,32)->32 */
3514 		coerce_reg_to_size(dst_reg, 4);
3515 	}
3516 
3517 	__reg_deduce_bounds(dst_reg);
3518 	__reg_bound_offset(dst_reg);
3519 	return 0;
3520 }
3521 
3522 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
3523  * and var_off.
3524  */
3525 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
3526 				   struct bpf_insn *insn)
3527 {
3528 	struct bpf_verifier_state *vstate = env->cur_state;
3529 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3530 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
3531 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
3532 	u8 opcode = BPF_OP(insn->code);
3533 
3534 	dst_reg = &regs[insn->dst_reg];
3535 	src_reg = NULL;
3536 	if (dst_reg->type != SCALAR_VALUE)
3537 		ptr_reg = dst_reg;
3538 	if (BPF_SRC(insn->code) == BPF_X) {
3539 		src_reg = &regs[insn->src_reg];
3540 		if (src_reg->type != SCALAR_VALUE) {
3541 			if (dst_reg->type != SCALAR_VALUE) {
3542 				/* Combining two pointers by any ALU op yields
3543 				 * an arbitrary scalar. Disallow all math except
3544 				 * pointer subtraction
3545 				 */
3546 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
3547 					mark_reg_unknown(env, regs, insn->dst_reg);
3548 					return 0;
3549 				}
3550 				verbose(env, "R%d pointer %s pointer prohibited\n",
3551 					insn->dst_reg,
3552 					bpf_alu_string[opcode >> 4]);
3553 				return -EACCES;
3554 			} else {
3555 				/* scalar += pointer
3556 				 * This is legal, but we have to reverse our
3557 				 * src/dest handling in computing the range
3558 				 */
3559 				return adjust_ptr_min_max_vals(env, insn,
3560 							       src_reg, dst_reg);
3561 			}
3562 		} else if (ptr_reg) {
3563 			/* pointer += scalar */
3564 			return adjust_ptr_min_max_vals(env, insn,
3565 						       dst_reg, src_reg);
3566 		}
3567 	} else {
3568 		/* Pretend the src is a reg with a known value, since we only
3569 		 * need to be able to read from this state.
3570 		 */
3571 		off_reg.type = SCALAR_VALUE;
3572 		__mark_reg_known(&off_reg, insn->imm);
3573 		src_reg = &off_reg;
3574 		if (ptr_reg) /* pointer += K */
3575 			return adjust_ptr_min_max_vals(env, insn,
3576 						       ptr_reg, src_reg);
3577 	}
3578 
3579 	/* Got here implies adding two SCALAR_VALUEs */
3580 	if (WARN_ON_ONCE(ptr_reg)) {
3581 		print_verifier_state(env, state);
3582 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
3583 		return -EINVAL;
3584 	}
3585 	if (WARN_ON(!src_reg)) {
3586 		print_verifier_state(env, state);
3587 		verbose(env, "verifier internal error: no src_reg\n");
3588 		return -EINVAL;
3589 	}
3590 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
3591 }
3592 
3593 /* check validity of 32-bit and 64-bit arithmetic operations */
3594 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
3595 {
3596 	struct bpf_reg_state *regs = cur_regs(env);
3597 	u8 opcode = BPF_OP(insn->code);
3598 	int err;
3599 
3600 	if (opcode == BPF_END || opcode == BPF_NEG) {
3601 		if (opcode == BPF_NEG) {
3602 			if (BPF_SRC(insn->code) != 0 ||
3603 			    insn->src_reg != BPF_REG_0 ||
3604 			    insn->off != 0 || insn->imm != 0) {
3605 				verbose(env, "BPF_NEG uses reserved fields\n");
3606 				return -EINVAL;
3607 			}
3608 		} else {
3609 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
3610 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
3611 			    BPF_CLASS(insn->code) == BPF_ALU64) {
3612 				verbose(env, "BPF_END uses reserved fields\n");
3613 				return -EINVAL;
3614 			}
3615 		}
3616 
3617 		/* check src operand */
3618 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3619 		if (err)
3620 			return err;
3621 
3622 		if (is_pointer_value(env, insn->dst_reg)) {
3623 			verbose(env, "R%d pointer arithmetic prohibited\n",
3624 				insn->dst_reg);
3625 			return -EACCES;
3626 		}
3627 
3628 		/* check dest operand */
3629 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
3630 		if (err)
3631 			return err;
3632 
3633 	} else if (opcode == BPF_MOV) {
3634 
3635 		if (BPF_SRC(insn->code) == BPF_X) {
3636 			if (insn->imm != 0 || insn->off != 0) {
3637 				verbose(env, "BPF_MOV uses reserved fields\n");
3638 				return -EINVAL;
3639 			}
3640 
3641 			/* check src operand */
3642 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
3643 			if (err)
3644 				return err;
3645 		} else {
3646 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
3647 				verbose(env, "BPF_MOV uses reserved fields\n");
3648 				return -EINVAL;
3649 			}
3650 		}
3651 
3652 		/* check dest operand, mark as required later */
3653 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
3654 		if (err)
3655 			return err;
3656 
3657 		if (BPF_SRC(insn->code) == BPF_X) {
3658 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
3659 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
3660 
3661 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
3662 				/* case: R1 = R2
3663 				 * copy register state to dest reg
3664 				 */
3665 				*dst_reg = *src_reg;
3666 				dst_reg->live |= REG_LIVE_WRITTEN;
3667 			} else {
3668 				/* R1 = (u32) R2 */
3669 				if (is_pointer_value(env, insn->src_reg)) {
3670 					verbose(env,
3671 						"R%d partial copy of pointer\n",
3672 						insn->src_reg);
3673 					return -EACCES;
3674 				} else if (src_reg->type == SCALAR_VALUE) {
3675 					*dst_reg = *src_reg;
3676 					dst_reg->live |= REG_LIVE_WRITTEN;
3677 				} else {
3678 					mark_reg_unknown(env, regs,
3679 							 insn->dst_reg);
3680 				}
3681 				coerce_reg_to_size(dst_reg, 4);
3682 			}
3683 		} else {
3684 			/* case: R = imm
3685 			 * remember the value we stored into this reg
3686 			 */
3687 			/* clear any state __mark_reg_known doesn't set */
3688 			mark_reg_unknown(env, regs, insn->dst_reg);
3689 			regs[insn->dst_reg].type = SCALAR_VALUE;
3690 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
3691 				__mark_reg_known(regs + insn->dst_reg,
3692 						 insn->imm);
3693 			} else {
3694 				__mark_reg_known(regs + insn->dst_reg,
3695 						 (u32)insn->imm);
3696 			}
3697 		}
3698 
3699 	} else if (opcode > BPF_END) {
3700 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
3701 		return -EINVAL;
3702 
3703 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
3704 
3705 		if (BPF_SRC(insn->code) == BPF_X) {
3706 			if (insn->imm != 0 || insn->off != 0) {
3707 				verbose(env, "BPF_ALU uses reserved fields\n");
3708 				return -EINVAL;
3709 			}
3710 			/* check src1 operand */
3711 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
3712 			if (err)
3713 				return err;
3714 		} else {
3715 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
3716 				verbose(env, "BPF_ALU uses reserved fields\n");
3717 				return -EINVAL;
3718 			}
3719 		}
3720 
3721 		/* check src2 operand */
3722 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3723 		if (err)
3724 			return err;
3725 
3726 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
3727 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
3728 			verbose(env, "div by zero\n");
3729 			return -EINVAL;
3730 		}
3731 
3732 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
3733 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
3734 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
3735 
3736 			if (insn->imm < 0 || insn->imm >= size) {
3737 				verbose(env, "invalid shift %d\n", insn->imm);
3738 				return -EINVAL;
3739 			}
3740 		}
3741 
3742 		/* check dest operand */
3743 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
3744 		if (err)
3745 			return err;
3746 
3747 		return adjust_reg_min_max_vals(env, insn);
3748 	}
3749 
3750 	return 0;
3751 }
3752 
3753 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
3754 				   struct bpf_reg_state *dst_reg,
3755 				   enum bpf_reg_type type,
3756 				   bool range_right_open)
3757 {
3758 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3759 	struct bpf_reg_state *regs = state->regs, *reg;
3760 	u16 new_range;
3761 	int i, j;
3762 
3763 	if (dst_reg->off < 0 ||
3764 	    (dst_reg->off == 0 && range_right_open))
3765 		/* This doesn't give us any range */
3766 		return;
3767 
3768 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
3769 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
3770 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
3771 		 * than pkt_end, but that's because it's also less than pkt.
3772 		 */
3773 		return;
3774 
3775 	new_range = dst_reg->off;
3776 	if (range_right_open)
3777 		new_range--;
3778 
3779 	/* Examples for register markings:
3780 	 *
3781 	 * pkt_data in dst register:
3782 	 *
3783 	 *   r2 = r3;
3784 	 *   r2 += 8;
3785 	 *   if (r2 > pkt_end) goto <handle exception>
3786 	 *   <access okay>
3787 	 *
3788 	 *   r2 = r3;
3789 	 *   r2 += 8;
3790 	 *   if (r2 < pkt_end) goto <access okay>
3791 	 *   <handle exception>
3792 	 *
3793 	 *   Where:
3794 	 *     r2 == dst_reg, pkt_end == src_reg
3795 	 *     r2=pkt(id=n,off=8,r=0)
3796 	 *     r3=pkt(id=n,off=0,r=0)
3797 	 *
3798 	 * pkt_data in src register:
3799 	 *
3800 	 *   r2 = r3;
3801 	 *   r2 += 8;
3802 	 *   if (pkt_end >= r2) goto <access okay>
3803 	 *   <handle exception>
3804 	 *
3805 	 *   r2 = r3;
3806 	 *   r2 += 8;
3807 	 *   if (pkt_end <= r2) goto <handle exception>
3808 	 *   <access okay>
3809 	 *
3810 	 *   Where:
3811 	 *     pkt_end == dst_reg, r2 == src_reg
3812 	 *     r2=pkt(id=n,off=8,r=0)
3813 	 *     r3=pkt(id=n,off=0,r=0)
3814 	 *
3815 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
3816 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
3817 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
3818 	 * the check.
3819 	 */
3820 
3821 	/* If our ids match, then we must have the same max_value.  And we
3822 	 * don't care about the other reg's fixed offset, since if it's too big
3823 	 * the range won't allow anything.
3824 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
3825 	 */
3826 	for (i = 0; i < MAX_BPF_REG; i++)
3827 		if (regs[i].type == type && regs[i].id == dst_reg->id)
3828 			/* keep the maximum range already checked */
3829 			regs[i].range = max(regs[i].range, new_range);
3830 
3831 	for (j = 0; j <= vstate->curframe; j++) {
3832 		state = vstate->frame[j];
3833 		bpf_for_each_spilled_reg(i, state, reg) {
3834 			if (!reg)
3835 				continue;
3836 			if (reg->type == type && reg->id == dst_reg->id)
3837 				reg->range = max(reg->range, new_range);
3838 		}
3839 	}
3840 }
3841 
3842 /* compute branch direction of the expression "if (reg opcode val) goto target;"
3843  * and return:
3844  *  1 - branch will be taken and "goto target" will be executed
3845  *  0 - branch will not be taken and fall-through to next insn
3846  * -1 - unknown. Example: "if (reg < 5)" is unknown when register value range [0,10]
3847  */
3848 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
3849 {
3850 	if (__is_pointer_value(false, reg))
3851 		return -1;
3852 
3853 	switch (opcode) {
3854 	case BPF_JEQ:
3855 		if (tnum_is_const(reg->var_off))
3856 			return !!tnum_equals_const(reg->var_off, val);
3857 		break;
3858 	case BPF_JNE:
3859 		if (tnum_is_const(reg->var_off))
3860 			return !tnum_equals_const(reg->var_off, val);
3861 		break;
3862 	case BPF_JSET:
3863 		if ((~reg->var_off.mask & reg->var_off.value) & val)
3864 			return 1;
3865 		if (!((reg->var_off.mask | reg->var_off.value) & val))
3866 			return 0;
3867 		break;
3868 	case BPF_JGT:
3869 		if (reg->umin_value > val)
3870 			return 1;
3871 		else if (reg->umax_value <= val)
3872 			return 0;
3873 		break;
3874 	case BPF_JSGT:
3875 		if (reg->smin_value > (s64)val)
3876 			return 1;
3877 		else if (reg->smax_value < (s64)val)
3878 			return 0;
3879 		break;
3880 	case BPF_JLT:
3881 		if (reg->umax_value < val)
3882 			return 1;
3883 		else if (reg->umin_value >= val)
3884 			return 0;
3885 		break;
3886 	case BPF_JSLT:
3887 		if (reg->smax_value < (s64)val)
3888 			return 1;
3889 		else if (reg->smin_value >= (s64)val)
3890 			return 0;
3891 		break;
3892 	case BPF_JGE:
3893 		if (reg->umin_value >= val)
3894 			return 1;
3895 		else if (reg->umax_value < val)
3896 			return 0;
3897 		break;
3898 	case BPF_JSGE:
3899 		if (reg->smin_value >= (s64)val)
3900 			return 1;
3901 		else if (reg->smax_value < (s64)val)
3902 			return 0;
3903 		break;
3904 	case BPF_JLE:
3905 		if (reg->umax_value <= val)
3906 			return 1;
3907 		else if (reg->umin_value > val)
3908 			return 0;
3909 		break;
3910 	case BPF_JSLE:
3911 		if (reg->smax_value <= (s64)val)
3912 			return 1;
3913 		else if (reg->smin_value > (s64)val)
3914 			return 0;
3915 		break;
3916 	}
3917 
3918 	return -1;
3919 }
3920 
3921 /* Adjusts the register min/max values in the case that the dst_reg is the
3922  * variable register that we are working on, and src_reg is a constant or we're
3923  * simply doing a BPF_K check.
3924  * In JEQ/JNE cases we also adjust the var_off values.
3925  */
3926 static void reg_set_min_max(struct bpf_reg_state *true_reg,
3927 			    struct bpf_reg_state *false_reg, u64 val,
3928 			    u8 opcode)
3929 {
3930 	/* If the dst_reg is a pointer, we can't learn anything about its
3931 	 * variable offset from the compare (unless src_reg were a pointer into
3932 	 * the same object, but we don't bother with that.
3933 	 * Since false_reg and true_reg have the same type by construction, we
3934 	 * only need to check one of them for pointerness.
3935 	 */
3936 	if (__is_pointer_value(false, false_reg))
3937 		return;
3938 
3939 	switch (opcode) {
3940 	case BPF_JEQ:
3941 		/* If this is false then we know nothing Jon Snow, but if it is
3942 		 * true then we know for sure.
3943 		 */
3944 		__mark_reg_known(true_reg, val);
3945 		break;
3946 	case BPF_JNE:
3947 		/* If this is true we know nothing Jon Snow, but if it is false
3948 		 * we know the value for sure;
3949 		 */
3950 		__mark_reg_known(false_reg, val);
3951 		break;
3952 	case BPF_JSET:
3953 		false_reg->var_off = tnum_and(false_reg->var_off,
3954 					      tnum_const(~val));
3955 		if (is_power_of_2(val))
3956 			true_reg->var_off = tnum_or(true_reg->var_off,
3957 						    tnum_const(val));
3958 		break;
3959 	case BPF_JGT:
3960 		false_reg->umax_value = min(false_reg->umax_value, val);
3961 		true_reg->umin_value = max(true_reg->umin_value, val + 1);
3962 		break;
3963 	case BPF_JSGT:
3964 		false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
3965 		true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
3966 		break;
3967 	case BPF_JLT:
3968 		false_reg->umin_value = max(false_reg->umin_value, val);
3969 		true_reg->umax_value = min(true_reg->umax_value, val - 1);
3970 		break;
3971 	case BPF_JSLT:
3972 		false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
3973 		true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
3974 		break;
3975 	case BPF_JGE:
3976 		false_reg->umax_value = min(false_reg->umax_value, val - 1);
3977 		true_reg->umin_value = max(true_reg->umin_value, val);
3978 		break;
3979 	case BPF_JSGE:
3980 		false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
3981 		true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
3982 		break;
3983 	case BPF_JLE:
3984 		false_reg->umin_value = max(false_reg->umin_value, val + 1);
3985 		true_reg->umax_value = min(true_reg->umax_value, val);
3986 		break;
3987 	case BPF_JSLE:
3988 		false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
3989 		true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
3990 		break;
3991 	default:
3992 		break;
3993 	}
3994 
3995 	__reg_deduce_bounds(false_reg);
3996 	__reg_deduce_bounds(true_reg);
3997 	/* We might have learned some bits from the bounds. */
3998 	__reg_bound_offset(false_reg);
3999 	__reg_bound_offset(true_reg);
4000 	/* Intersecting with the old var_off might have improved our bounds
4001 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
4002 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
4003 	 */
4004 	__update_reg_bounds(false_reg);
4005 	__update_reg_bounds(true_reg);
4006 }
4007 
4008 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
4009  * the variable reg.
4010  */
4011 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
4012 				struct bpf_reg_state *false_reg, u64 val,
4013 				u8 opcode)
4014 {
4015 	if (__is_pointer_value(false, false_reg))
4016 		return;
4017 
4018 	switch (opcode) {
4019 	case BPF_JEQ:
4020 		/* If this is false then we know nothing Jon Snow, but if it is
4021 		 * true then we know for sure.
4022 		 */
4023 		__mark_reg_known(true_reg, val);
4024 		break;
4025 	case BPF_JNE:
4026 		/* If this is true we know nothing Jon Snow, but if it is false
4027 		 * we know the value for sure;
4028 		 */
4029 		__mark_reg_known(false_reg, val);
4030 		break;
4031 	case BPF_JSET:
4032 		false_reg->var_off = tnum_and(false_reg->var_off,
4033 					      tnum_const(~val));
4034 		if (is_power_of_2(val))
4035 			true_reg->var_off = tnum_or(true_reg->var_off,
4036 						    tnum_const(val));
4037 		break;
4038 	case BPF_JGT:
4039 		true_reg->umax_value = min(true_reg->umax_value, val - 1);
4040 		false_reg->umin_value = max(false_reg->umin_value, val);
4041 		break;
4042 	case BPF_JSGT:
4043 		true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
4044 		false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
4045 		break;
4046 	case BPF_JLT:
4047 		true_reg->umin_value = max(true_reg->umin_value, val + 1);
4048 		false_reg->umax_value = min(false_reg->umax_value, val);
4049 		break;
4050 	case BPF_JSLT:
4051 		true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
4052 		false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
4053 		break;
4054 	case BPF_JGE:
4055 		true_reg->umax_value = min(true_reg->umax_value, val);
4056 		false_reg->umin_value = max(false_reg->umin_value, val + 1);
4057 		break;
4058 	case BPF_JSGE:
4059 		true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
4060 		false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
4061 		break;
4062 	case BPF_JLE:
4063 		true_reg->umin_value = max(true_reg->umin_value, val);
4064 		false_reg->umax_value = min(false_reg->umax_value, val - 1);
4065 		break;
4066 	case BPF_JSLE:
4067 		true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
4068 		false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
4069 		break;
4070 	default:
4071 		break;
4072 	}
4073 
4074 	__reg_deduce_bounds(false_reg);
4075 	__reg_deduce_bounds(true_reg);
4076 	/* We might have learned some bits from the bounds. */
4077 	__reg_bound_offset(false_reg);
4078 	__reg_bound_offset(true_reg);
4079 	/* Intersecting with the old var_off might have improved our bounds
4080 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
4081 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
4082 	 */
4083 	__update_reg_bounds(false_reg);
4084 	__update_reg_bounds(true_reg);
4085 }
4086 
4087 /* Regs are known to be equal, so intersect their min/max/var_off */
4088 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
4089 				  struct bpf_reg_state *dst_reg)
4090 {
4091 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
4092 							dst_reg->umin_value);
4093 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
4094 							dst_reg->umax_value);
4095 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
4096 							dst_reg->smin_value);
4097 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
4098 							dst_reg->smax_value);
4099 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
4100 							     dst_reg->var_off);
4101 	/* We might have learned new bounds from the var_off. */
4102 	__update_reg_bounds(src_reg);
4103 	__update_reg_bounds(dst_reg);
4104 	/* We might have learned something about the sign bit. */
4105 	__reg_deduce_bounds(src_reg);
4106 	__reg_deduce_bounds(dst_reg);
4107 	/* We might have learned some bits from the bounds. */
4108 	__reg_bound_offset(src_reg);
4109 	__reg_bound_offset(dst_reg);
4110 	/* Intersecting with the old var_off might have improved our bounds
4111 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
4112 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
4113 	 */
4114 	__update_reg_bounds(src_reg);
4115 	__update_reg_bounds(dst_reg);
4116 }
4117 
4118 static void reg_combine_min_max(struct bpf_reg_state *true_src,
4119 				struct bpf_reg_state *true_dst,
4120 				struct bpf_reg_state *false_src,
4121 				struct bpf_reg_state *false_dst,
4122 				u8 opcode)
4123 {
4124 	switch (opcode) {
4125 	case BPF_JEQ:
4126 		__reg_combine_min_max(true_src, true_dst);
4127 		break;
4128 	case BPF_JNE:
4129 		__reg_combine_min_max(false_src, false_dst);
4130 		break;
4131 	}
4132 }
4133 
4134 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
4135 				 struct bpf_reg_state *reg, u32 id,
4136 				 bool is_null)
4137 {
4138 	if (reg_type_may_be_null(reg->type) && reg->id == id) {
4139 		/* Old offset (both fixed and variable parts) should
4140 		 * have been known-zero, because we don't allow pointer
4141 		 * arithmetic on pointers that might be NULL.
4142 		 */
4143 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
4144 				 !tnum_equals_const(reg->var_off, 0) ||
4145 				 reg->off)) {
4146 			__mark_reg_known_zero(reg);
4147 			reg->off = 0;
4148 		}
4149 		if (is_null) {
4150 			reg->type = SCALAR_VALUE;
4151 		} else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
4152 			if (reg->map_ptr->inner_map_meta) {
4153 				reg->type = CONST_PTR_TO_MAP;
4154 				reg->map_ptr = reg->map_ptr->inner_map_meta;
4155 			} else {
4156 				reg->type = PTR_TO_MAP_VALUE;
4157 			}
4158 		} else if (reg->type == PTR_TO_SOCKET_OR_NULL) {
4159 			reg->type = PTR_TO_SOCKET;
4160 		}
4161 		if (is_null || !reg_is_refcounted(reg)) {
4162 			/* We don't need id from this point onwards anymore,
4163 			 * thus we should better reset it, so that state
4164 			 * pruning has chances to take effect.
4165 			 */
4166 			reg->id = 0;
4167 		}
4168 	}
4169 }
4170 
4171 /* The logic is similar to find_good_pkt_pointers(), both could eventually
4172  * be folded together at some point.
4173  */
4174 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
4175 				  bool is_null)
4176 {
4177 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4178 	struct bpf_reg_state *reg, *regs = state->regs;
4179 	u32 id = regs[regno].id;
4180 	int i, j;
4181 
4182 	if (reg_is_refcounted_or_null(&regs[regno]) && is_null)
4183 		__release_reference_state(state, id);
4184 
4185 	for (i = 0; i < MAX_BPF_REG; i++)
4186 		mark_ptr_or_null_reg(state, &regs[i], id, is_null);
4187 
4188 	for (j = 0; j <= vstate->curframe; j++) {
4189 		state = vstate->frame[j];
4190 		bpf_for_each_spilled_reg(i, state, reg) {
4191 			if (!reg)
4192 				continue;
4193 			mark_ptr_or_null_reg(state, reg, id, is_null);
4194 		}
4195 	}
4196 }
4197 
4198 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
4199 				   struct bpf_reg_state *dst_reg,
4200 				   struct bpf_reg_state *src_reg,
4201 				   struct bpf_verifier_state *this_branch,
4202 				   struct bpf_verifier_state *other_branch)
4203 {
4204 	if (BPF_SRC(insn->code) != BPF_X)
4205 		return false;
4206 
4207 	switch (BPF_OP(insn->code)) {
4208 	case BPF_JGT:
4209 		if ((dst_reg->type == PTR_TO_PACKET &&
4210 		     src_reg->type == PTR_TO_PACKET_END) ||
4211 		    (dst_reg->type == PTR_TO_PACKET_META &&
4212 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4213 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
4214 			find_good_pkt_pointers(this_branch, dst_reg,
4215 					       dst_reg->type, false);
4216 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
4217 			    src_reg->type == PTR_TO_PACKET) ||
4218 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4219 			    src_reg->type == PTR_TO_PACKET_META)) {
4220 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
4221 			find_good_pkt_pointers(other_branch, src_reg,
4222 					       src_reg->type, true);
4223 		} else {
4224 			return false;
4225 		}
4226 		break;
4227 	case BPF_JLT:
4228 		if ((dst_reg->type == PTR_TO_PACKET &&
4229 		     src_reg->type == PTR_TO_PACKET_END) ||
4230 		    (dst_reg->type == PTR_TO_PACKET_META &&
4231 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4232 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
4233 			find_good_pkt_pointers(other_branch, dst_reg,
4234 					       dst_reg->type, true);
4235 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
4236 			    src_reg->type == PTR_TO_PACKET) ||
4237 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4238 			    src_reg->type == PTR_TO_PACKET_META)) {
4239 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
4240 			find_good_pkt_pointers(this_branch, src_reg,
4241 					       src_reg->type, false);
4242 		} else {
4243 			return false;
4244 		}
4245 		break;
4246 	case BPF_JGE:
4247 		if ((dst_reg->type == PTR_TO_PACKET &&
4248 		     src_reg->type == PTR_TO_PACKET_END) ||
4249 		    (dst_reg->type == PTR_TO_PACKET_META &&
4250 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4251 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
4252 			find_good_pkt_pointers(this_branch, dst_reg,
4253 					       dst_reg->type, true);
4254 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
4255 			    src_reg->type == PTR_TO_PACKET) ||
4256 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4257 			    src_reg->type == PTR_TO_PACKET_META)) {
4258 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
4259 			find_good_pkt_pointers(other_branch, src_reg,
4260 					       src_reg->type, false);
4261 		} else {
4262 			return false;
4263 		}
4264 		break;
4265 	case BPF_JLE:
4266 		if ((dst_reg->type == PTR_TO_PACKET &&
4267 		     src_reg->type == PTR_TO_PACKET_END) ||
4268 		    (dst_reg->type == PTR_TO_PACKET_META &&
4269 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4270 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
4271 			find_good_pkt_pointers(other_branch, dst_reg,
4272 					       dst_reg->type, false);
4273 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
4274 			    src_reg->type == PTR_TO_PACKET) ||
4275 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4276 			    src_reg->type == PTR_TO_PACKET_META)) {
4277 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
4278 			find_good_pkt_pointers(this_branch, src_reg,
4279 					       src_reg->type, true);
4280 		} else {
4281 			return false;
4282 		}
4283 		break;
4284 	default:
4285 		return false;
4286 	}
4287 
4288 	return true;
4289 }
4290 
4291 static int check_cond_jmp_op(struct bpf_verifier_env *env,
4292 			     struct bpf_insn *insn, int *insn_idx)
4293 {
4294 	struct bpf_verifier_state *this_branch = env->cur_state;
4295 	struct bpf_verifier_state *other_branch;
4296 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
4297 	struct bpf_reg_state *dst_reg, *other_branch_regs;
4298 	u8 opcode = BPF_OP(insn->code);
4299 	int err;
4300 
4301 	if (opcode > BPF_JSLE) {
4302 		verbose(env, "invalid BPF_JMP opcode %x\n", opcode);
4303 		return -EINVAL;
4304 	}
4305 
4306 	if (BPF_SRC(insn->code) == BPF_X) {
4307 		if (insn->imm != 0) {
4308 			verbose(env, "BPF_JMP uses reserved fields\n");
4309 			return -EINVAL;
4310 		}
4311 
4312 		/* check src1 operand */
4313 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
4314 		if (err)
4315 			return err;
4316 
4317 		if (is_pointer_value(env, insn->src_reg)) {
4318 			verbose(env, "R%d pointer comparison prohibited\n",
4319 				insn->src_reg);
4320 			return -EACCES;
4321 		}
4322 	} else {
4323 		if (insn->src_reg != BPF_REG_0) {
4324 			verbose(env, "BPF_JMP uses reserved fields\n");
4325 			return -EINVAL;
4326 		}
4327 	}
4328 
4329 	/* check src2 operand */
4330 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4331 	if (err)
4332 		return err;
4333 
4334 	dst_reg = &regs[insn->dst_reg];
4335 
4336 	if (BPF_SRC(insn->code) == BPF_K) {
4337 		int pred = is_branch_taken(dst_reg, insn->imm, opcode);
4338 
4339 		if (pred == 1) {
4340 			 /* only follow the goto, ignore fall-through */
4341 			*insn_idx += insn->off;
4342 			return 0;
4343 		} else if (pred == 0) {
4344 			/* only follow fall-through branch, since
4345 			 * that's where the program will go
4346 			 */
4347 			return 0;
4348 		}
4349 	}
4350 
4351 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
4352 	if (!other_branch)
4353 		return -EFAULT;
4354 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
4355 
4356 	/* detect if we are comparing against a constant value so we can adjust
4357 	 * our min/max values for our dst register.
4358 	 * this is only legit if both are scalars (or pointers to the same
4359 	 * object, I suppose, but we don't support that right now), because
4360 	 * otherwise the different base pointers mean the offsets aren't
4361 	 * comparable.
4362 	 */
4363 	if (BPF_SRC(insn->code) == BPF_X) {
4364 		if (dst_reg->type == SCALAR_VALUE &&
4365 		    regs[insn->src_reg].type == SCALAR_VALUE) {
4366 			if (tnum_is_const(regs[insn->src_reg].var_off))
4367 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
4368 						dst_reg, regs[insn->src_reg].var_off.value,
4369 						opcode);
4370 			else if (tnum_is_const(dst_reg->var_off))
4371 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
4372 						    &regs[insn->src_reg],
4373 						    dst_reg->var_off.value, opcode);
4374 			else if (opcode == BPF_JEQ || opcode == BPF_JNE)
4375 				/* Comparing for equality, we can combine knowledge */
4376 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
4377 						    &other_branch_regs[insn->dst_reg],
4378 						    &regs[insn->src_reg],
4379 						    &regs[insn->dst_reg], opcode);
4380 		}
4381 	} else if (dst_reg->type == SCALAR_VALUE) {
4382 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
4383 					dst_reg, insn->imm, opcode);
4384 	}
4385 
4386 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
4387 	if (BPF_SRC(insn->code) == BPF_K &&
4388 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
4389 	    reg_type_may_be_null(dst_reg->type)) {
4390 		/* Mark all identical registers in each branch as either
4391 		 * safe or unknown depending R == 0 or R != 0 conditional.
4392 		 */
4393 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
4394 				      opcode == BPF_JNE);
4395 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
4396 				      opcode == BPF_JEQ);
4397 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
4398 					   this_branch, other_branch) &&
4399 		   is_pointer_value(env, insn->dst_reg)) {
4400 		verbose(env, "R%d pointer comparison prohibited\n",
4401 			insn->dst_reg);
4402 		return -EACCES;
4403 	}
4404 	if (env->log.level)
4405 		print_verifier_state(env, this_branch->frame[this_branch->curframe]);
4406 	return 0;
4407 }
4408 
4409 /* return the map pointer stored inside BPF_LD_IMM64 instruction */
4410 static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
4411 {
4412 	u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
4413 
4414 	return (struct bpf_map *) (unsigned long) imm64;
4415 }
4416 
4417 /* verify BPF_LD_IMM64 instruction */
4418 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
4419 {
4420 	struct bpf_reg_state *regs = cur_regs(env);
4421 	int err;
4422 
4423 	if (BPF_SIZE(insn->code) != BPF_DW) {
4424 		verbose(env, "invalid BPF_LD_IMM insn\n");
4425 		return -EINVAL;
4426 	}
4427 	if (insn->off != 0) {
4428 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
4429 		return -EINVAL;
4430 	}
4431 
4432 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
4433 	if (err)
4434 		return err;
4435 
4436 	if (insn->src_reg == 0) {
4437 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
4438 
4439 		regs[insn->dst_reg].type = SCALAR_VALUE;
4440 		__mark_reg_known(&regs[insn->dst_reg], imm);
4441 		return 0;
4442 	}
4443 
4444 	/* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
4445 	BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
4446 
4447 	regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
4448 	regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
4449 	return 0;
4450 }
4451 
4452 static bool may_access_skb(enum bpf_prog_type type)
4453 {
4454 	switch (type) {
4455 	case BPF_PROG_TYPE_SOCKET_FILTER:
4456 	case BPF_PROG_TYPE_SCHED_CLS:
4457 	case BPF_PROG_TYPE_SCHED_ACT:
4458 		return true;
4459 	default:
4460 		return false;
4461 	}
4462 }
4463 
4464 /* verify safety of LD_ABS|LD_IND instructions:
4465  * - they can only appear in the programs where ctx == skb
4466  * - since they are wrappers of function calls, they scratch R1-R5 registers,
4467  *   preserve R6-R9, and store return value into R0
4468  *
4469  * Implicit input:
4470  *   ctx == skb == R6 == CTX
4471  *
4472  * Explicit input:
4473  *   SRC == any register
4474  *   IMM == 32-bit immediate
4475  *
4476  * Output:
4477  *   R0 - 8/16/32-bit skb data converted to cpu endianness
4478  */
4479 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
4480 {
4481 	struct bpf_reg_state *regs = cur_regs(env);
4482 	u8 mode = BPF_MODE(insn->code);
4483 	int i, err;
4484 
4485 	if (!may_access_skb(env->prog->type)) {
4486 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
4487 		return -EINVAL;
4488 	}
4489 
4490 	if (!env->ops->gen_ld_abs) {
4491 		verbose(env, "bpf verifier is misconfigured\n");
4492 		return -EINVAL;
4493 	}
4494 
4495 	if (env->subprog_cnt > 1) {
4496 		/* when program has LD_ABS insn JITs and interpreter assume
4497 		 * that r1 == ctx == skb which is not the case for callees
4498 		 * that can have arbitrary arguments. It's problematic
4499 		 * for main prog as well since JITs would need to analyze
4500 		 * all functions in order to make proper register save/restore
4501 		 * decisions in the main prog. Hence disallow LD_ABS with calls
4502 		 */
4503 		verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
4504 		return -EINVAL;
4505 	}
4506 
4507 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
4508 	    BPF_SIZE(insn->code) == BPF_DW ||
4509 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
4510 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
4511 		return -EINVAL;
4512 	}
4513 
4514 	/* check whether implicit source operand (register R6) is readable */
4515 	err = check_reg_arg(env, BPF_REG_6, SRC_OP);
4516 	if (err)
4517 		return err;
4518 
4519 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
4520 	 * gen_ld_abs() may terminate the program at runtime, leading to
4521 	 * reference leak.
4522 	 */
4523 	err = check_reference_leak(env);
4524 	if (err) {
4525 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
4526 		return err;
4527 	}
4528 
4529 	if (regs[BPF_REG_6].type != PTR_TO_CTX) {
4530 		verbose(env,
4531 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
4532 		return -EINVAL;
4533 	}
4534 
4535 	if (mode == BPF_IND) {
4536 		/* check explicit source operand */
4537 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
4538 		if (err)
4539 			return err;
4540 	}
4541 
4542 	/* reset caller saved regs to unreadable */
4543 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
4544 		mark_reg_not_init(env, regs, caller_saved[i]);
4545 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
4546 	}
4547 
4548 	/* mark destination R0 register as readable, since it contains
4549 	 * the value fetched from the packet.
4550 	 * Already marked as written above.
4551 	 */
4552 	mark_reg_unknown(env, regs, BPF_REG_0);
4553 	return 0;
4554 }
4555 
4556 static int check_return_code(struct bpf_verifier_env *env)
4557 {
4558 	struct bpf_reg_state *reg;
4559 	struct tnum range = tnum_range(0, 1);
4560 
4561 	switch (env->prog->type) {
4562 	case BPF_PROG_TYPE_CGROUP_SKB:
4563 	case BPF_PROG_TYPE_CGROUP_SOCK:
4564 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
4565 	case BPF_PROG_TYPE_SOCK_OPS:
4566 	case BPF_PROG_TYPE_CGROUP_DEVICE:
4567 		break;
4568 	default:
4569 		return 0;
4570 	}
4571 
4572 	reg = cur_regs(env) + BPF_REG_0;
4573 	if (reg->type != SCALAR_VALUE) {
4574 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
4575 			reg_type_str[reg->type]);
4576 		return -EINVAL;
4577 	}
4578 
4579 	if (!tnum_in(range, reg->var_off)) {
4580 		verbose(env, "At program exit the register R0 ");
4581 		if (!tnum_is_unknown(reg->var_off)) {
4582 			char tn_buf[48];
4583 
4584 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4585 			verbose(env, "has value %s", tn_buf);
4586 		} else {
4587 			verbose(env, "has unknown scalar value");
4588 		}
4589 		verbose(env, " should have been 0 or 1\n");
4590 		return -EINVAL;
4591 	}
4592 	return 0;
4593 }
4594 
4595 /* non-recursive DFS pseudo code
4596  * 1  procedure DFS-iterative(G,v):
4597  * 2      label v as discovered
4598  * 3      let S be a stack
4599  * 4      S.push(v)
4600  * 5      while S is not empty
4601  * 6            t <- S.pop()
4602  * 7            if t is what we're looking for:
4603  * 8                return t
4604  * 9            for all edges e in G.adjacentEdges(t) do
4605  * 10               if edge e is already labelled
4606  * 11                   continue with the next edge
4607  * 12               w <- G.adjacentVertex(t,e)
4608  * 13               if vertex w is not discovered and not explored
4609  * 14                   label e as tree-edge
4610  * 15                   label w as discovered
4611  * 16                   S.push(w)
4612  * 17                   continue at 5
4613  * 18               else if vertex w is discovered
4614  * 19                   label e as back-edge
4615  * 20               else
4616  * 21                   // vertex w is explored
4617  * 22                   label e as forward- or cross-edge
4618  * 23           label t as explored
4619  * 24           S.pop()
4620  *
4621  * convention:
4622  * 0x10 - discovered
4623  * 0x11 - discovered and fall-through edge labelled
4624  * 0x12 - discovered and fall-through and branch edges labelled
4625  * 0x20 - explored
4626  */
4627 
4628 enum {
4629 	DISCOVERED = 0x10,
4630 	EXPLORED = 0x20,
4631 	FALLTHROUGH = 1,
4632 	BRANCH = 2,
4633 };
4634 
4635 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
4636 
4637 static int *insn_stack;	/* stack of insns to process */
4638 static int cur_stack;	/* current stack index */
4639 static int *insn_state;
4640 
4641 /* t, w, e - match pseudo-code above:
4642  * t - index of current instruction
4643  * w - next instruction
4644  * e - edge
4645  */
4646 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
4647 {
4648 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
4649 		return 0;
4650 
4651 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
4652 		return 0;
4653 
4654 	if (w < 0 || w >= env->prog->len) {
4655 		verbose_linfo(env, t, "%d: ", t);
4656 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
4657 		return -EINVAL;
4658 	}
4659 
4660 	if (e == BRANCH)
4661 		/* mark branch target for state pruning */
4662 		env->explored_states[w] = STATE_LIST_MARK;
4663 
4664 	if (insn_state[w] == 0) {
4665 		/* tree-edge */
4666 		insn_state[t] = DISCOVERED | e;
4667 		insn_state[w] = DISCOVERED;
4668 		if (cur_stack >= env->prog->len)
4669 			return -E2BIG;
4670 		insn_stack[cur_stack++] = w;
4671 		return 1;
4672 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
4673 		verbose_linfo(env, t, "%d: ", t);
4674 		verbose_linfo(env, w, "%d: ", w);
4675 		verbose(env, "back-edge from insn %d to %d\n", t, w);
4676 		return -EINVAL;
4677 	} else if (insn_state[w] == EXPLORED) {
4678 		/* forward- or cross-edge */
4679 		insn_state[t] = DISCOVERED | e;
4680 	} else {
4681 		verbose(env, "insn state internal bug\n");
4682 		return -EFAULT;
4683 	}
4684 	return 0;
4685 }
4686 
4687 /* non-recursive depth-first-search to detect loops in BPF program
4688  * loop == back-edge in directed graph
4689  */
4690 static int check_cfg(struct bpf_verifier_env *env)
4691 {
4692 	struct bpf_insn *insns = env->prog->insnsi;
4693 	int insn_cnt = env->prog->len;
4694 	int ret = 0;
4695 	int i, t;
4696 
4697 	insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
4698 	if (!insn_state)
4699 		return -ENOMEM;
4700 
4701 	insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
4702 	if (!insn_stack) {
4703 		kfree(insn_state);
4704 		return -ENOMEM;
4705 	}
4706 
4707 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
4708 	insn_stack[0] = 0; /* 0 is the first instruction */
4709 	cur_stack = 1;
4710 
4711 peek_stack:
4712 	if (cur_stack == 0)
4713 		goto check_state;
4714 	t = insn_stack[cur_stack - 1];
4715 
4716 	if (BPF_CLASS(insns[t].code) == BPF_JMP) {
4717 		u8 opcode = BPF_OP(insns[t].code);
4718 
4719 		if (opcode == BPF_EXIT) {
4720 			goto mark_explored;
4721 		} else if (opcode == BPF_CALL) {
4722 			ret = push_insn(t, t + 1, FALLTHROUGH, env);
4723 			if (ret == 1)
4724 				goto peek_stack;
4725 			else if (ret < 0)
4726 				goto err_free;
4727 			if (t + 1 < insn_cnt)
4728 				env->explored_states[t + 1] = STATE_LIST_MARK;
4729 			if (insns[t].src_reg == BPF_PSEUDO_CALL) {
4730 				env->explored_states[t] = STATE_LIST_MARK;
4731 				ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env);
4732 				if (ret == 1)
4733 					goto peek_stack;
4734 				else if (ret < 0)
4735 					goto err_free;
4736 			}
4737 		} else if (opcode == BPF_JA) {
4738 			if (BPF_SRC(insns[t].code) != BPF_K) {
4739 				ret = -EINVAL;
4740 				goto err_free;
4741 			}
4742 			/* unconditional jump with single edge */
4743 			ret = push_insn(t, t + insns[t].off + 1,
4744 					FALLTHROUGH, env);
4745 			if (ret == 1)
4746 				goto peek_stack;
4747 			else if (ret < 0)
4748 				goto err_free;
4749 			/* tell verifier to check for equivalent states
4750 			 * after every call and jump
4751 			 */
4752 			if (t + 1 < insn_cnt)
4753 				env->explored_states[t + 1] = STATE_LIST_MARK;
4754 		} else {
4755 			/* conditional jump with two edges */
4756 			env->explored_states[t] = STATE_LIST_MARK;
4757 			ret = push_insn(t, t + 1, FALLTHROUGH, env);
4758 			if (ret == 1)
4759 				goto peek_stack;
4760 			else if (ret < 0)
4761 				goto err_free;
4762 
4763 			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
4764 			if (ret == 1)
4765 				goto peek_stack;
4766 			else if (ret < 0)
4767 				goto err_free;
4768 		}
4769 	} else {
4770 		/* all other non-branch instructions with single
4771 		 * fall-through edge
4772 		 */
4773 		ret = push_insn(t, t + 1, FALLTHROUGH, env);
4774 		if (ret == 1)
4775 			goto peek_stack;
4776 		else if (ret < 0)
4777 			goto err_free;
4778 	}
4779 
4780 mark_explored:
4781 	insn_state[t] = EXPLORED;
4782 	if (cur_stack-- <= 0) {
4783 		verbose(env, "pop stack internal bug\n");
4784 		ret = -EFAULT;
4785 		goto err_free;
4786 	}
4787 	goto peek_stack;
4788 
4789 check_state:
4790 	for (i = 0; i < insn_cnt; i++) {
4791 		if (insn_state[i] != EXPLORED) {
4792 			verbose(env, "unreachable insn %d\n", i);
4793 			ret = -EINVAL;
4794 			goto err_free;
4795 		}
4796 	}
4797 	ret = 0; /* cfg looks good */
4798 
4799 err_free:
4800 	kfree(insn_state);
4801 	kfree(insn_stack);
4802 	return ret;
4803 }
4804 
4805 /* The minimum supported BTF func info size */
4806 #define MIN_BPF_FUNCINFO_SIZE	8
4807 #define MAX_FUNCINFO_REC_SIZE	252
4808 
4809 static int check_btf_func(struct bpf_verifier_env *env,
4810 			  const union bpf_attr *attr,
4811 			  union bpf_attr __user *uattr)
4812 {
4813 	u32 i, nfuncs, urec_size, min_size, prev_offset;
4814 	u32 krec_size = sizeof(struct bpf_func_info);
4815 	struct bpf_func_info *krecord;
4816 	const struct btf_type *type;
4817 	struct bpf_prog *prog;
4818 	const struct btf *btf;
4819 	void __user *urecord;
4820 	int ret = 0;
4821 
4822 	nfuncs = attr->func_info_cnt;
4823 	if (!nfuncs)
4824 		return 0;
4825 
4826 	if (nfuncs != env->subprog_cnt) {
4827 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
4828 		return -EINVAL;
4829 	}
4830 
4831 	urec_size = attr->func_info_rec_size;
4832 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
4833 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
4834 	    urec_size % sizeof(u32)) {
4835 		verbose(env, "invalid func info rec size %u\n", urec_size);
4836 		return -EINVAL;
4837 	}
4838 
4839 	prog = env->prog;
4840 	btf = prog->aux->btf;
4841 
4842 	urecord = u64_to_user_ptr(attr->func_info);
4843 	min_size = min_t(u32, krec_size, urec_size);
4844 
4845 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
4846 	if (!krecord)
4847 		return -ENOMEM;
4848 
4849 	for (i = 0; i < nfuncs; i++) {
4850 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
4851 		if (ret) {
4852 			if (ret == -E2BIG) {
4853 				verbose(env, "nonzero tailing record in func info");
4854 				/* set the size kernel expects so loader can zero
4855 				 * out the rest of the record.
4856 				 */
4857 				if (put_user(min_size, &uattr->func_info_rec_size))
4858 					ret = -EFAULT;
4859 			}
4860 			goto err_free;
4861 		}
4862 
4863 		if (copy_from_user(&krecord[i], urecord, min_size)) {
4864 			ret = -EFAULT;
4865 			goto err_free;
4866 		}
4867 
4868 		/* check insn_off */
4869 		if (i == 0) {
4870 			if (krecord[i].insn_off) {
4871 				verbose(env,
4872 					"nonzero insn_off %u for the first func info record",
4873 					krecord[i].insn_off);
4874 				ret = -EINVAL;
4875 				goto err_free;
4876 			}
4877 		} else if (krecord[i].insn_off <= prev_offset) {
4878 			verbose(env,
4879 				"same or smaller insn offset (%u) than previous func info record (%u)",
4880 				krecord[i].insn_off, prev_offset);
4881 			ret = -EINVAL;
4882 			goto err_free;
4883 		}
4884 
4885 		if (env->subprog_info[i].start != krecord[i].insn_off) {
4886 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
4887 			ret = -EINVAL;
4888 			goto err_free;
4889 		}
4890 
4891 		/* check type_id */
4892 		type = btf_type_by_id(btf, krecord[i].type_id);
4893 		if (!type || BTF_INFO_KIND(type->info) != BTF_KIND_FUNC) {
4894 			verbose(env, "invalid type id %d in func info",
4895 				krecord[i].type_id);
4896 			ret = -EINVAL;
4897 			goto err_free;
4898 		}
4899 
4900 		prev_offset = krecord[i].insn_off;
4901 		urecord += urec_size;
4902 	}
4903 
4904 	prog->aux->func_info = krecord;
4905 	prog->aux->func_info_cnt = nfuncs;
4906 	return 0;
4907 
4908 err_free:
4909 	kvfree(krecord);
4910 	return ret;
4911 }
4912 
4913 static void adjust_btf_func(struct bpf_verifier_env *env)
4914 {
4915 	int i;
4916 
4917 	if (!env->prog->aux->func_info)
4918 		return;
4919 
4920 	for (i = 0; i < env->subprog_cnt; i++)
4921 		env->prog->aux->func_info[i].insn_off = env->subprog_info[i].start;
4922 }
4923 
4924 #define MIN_BPF_LINEINFO_SIZE	(offsetof(struct bpf_line_info, line_col) + \
4925 		sizeof(((struct bpf_line_info *)(0))->line_col))
4926 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
4927 
4928 static int check_btf_line(struct bpf_verifier_env *env,
4929 			  const union bpf_attr *attr,
4930 			  union bpf_attr __user *uattr)
4931 {
4932 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
4933 	struct bpf_subprog_info *sub;
4934 	struct bpf_line_info *linfo;
4935 	struct bpf_prog *prog;
4936 	const struct btf *btf;
4937 	void __user *ulinfo;
4938 	int err;
4939 
4940 	nr_linfo = attr->line_info_cnt;
4941 	if (!nr_linfo)
4942 		return 0;
4943 
4944 	rec_size = attr->line_info_rec_size;
4945 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
4946 	    rec_size > MAX_LINEINFO_REC_SIZE ||
4947 	    rec_size & (sizeof(u32) - 1))
4948 		return -EINVAL;
4949 
4950 	/* Need to zero it in case the userspace may
4951 	 * pass in a smaller bpf_line_info object.
4952 	 */
4953 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
4954 			 GFP_KERNEL | __GFP_NOWARN);
4955 	if (!linfo)
4956 		return -ENOMEM;
4957 
4958 	prog = env->prog;
4959 	btf = prog->aux->btf;
4960 
4961 	s = 0;
4962 	sub = env->subprog_info;
4963 	ulinfo = u64_to_user_ptr(attr->line_info);
4964 	expected_size = sizeof(struct bpf_line_info);
4965 	ncopy = min_t(u32, expected_size, rec_size);
4966 	for (i = 0; i < nr_linfo; i++) {
4967 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
4968 		if (err) {
4969 			if (err == -E2BIG) {
4970 				verbose(env, "nonzero tailing record in line_info");
4971 				if (put_user(expected_size,
4972 					     &uattr->line_info_rec_size))
4973 					err = -EFAULT;
4974 			}
4975 			goto err_free;
4976 		}
4977 
4978 		if (copy_from_user(&linfo[i], ulinfo, ncopy)) {
4979 			err = -EFAULT;
4980 			goto err_free;
4981 		}
4982 
4983 		/*
4984 		 * Check insn_off to ensure
4985 		 * 1) strictly increasing AND
4986 		 * 2) bounded by prog->len
4987 		 *
4988 		 * The linfo[0].insn_off == 0 check logically falls into
4989 		 * the later "missing bpf_line_info for func..." case
4990 		 * because the first linfo[0].insn_off must be the
4991 		 * first sub also and the first sub must have
4992 		 * subprog_info[0].start == 0.
4993 		 */
4994 		if ((i && linfo[i].insn_off <= prev_offset) ||
4995 		    linfo[i].insn_off >= prog->len) {
4996 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
4997 				i, linfo[i].insn_off, prev_offset,
4998 				prog->len);
4999 			err = -EINVAL;
5000 			goto err_free;
5001 		}
5002 
5003 		if (!prog->insnsi[linfo[i].insn_off].code) {
5004 			verbose(env,
5005 				"Invalid insn code at line_info[%u].insn_off\n",
5006 				i);
5007 			err = -EINVAL;
5008 			goto err_free;
5009 		}
5010 
5011 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
5012 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
5013 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
5014 			err = -EINVAL;
5015 			goto err_free;
5016 		}
5017 
5018 		if (s != env->subprog_cnt) {
5019 			if (linfo[i].insn_off == sub[s].start) {
5020 				sub[s].linfo_idx = i;
5021 				s++;
5022 			} else if (sub[s].start < linfo[i].insn_off) {
5023 				verbose(env, "missing bpf_line_info for func#%u\n", s);
5024 				err = -EINVAL;
5025 				goto err_free;
5026 			}
5027 		}
5028 
5029 		prev_offset = linfo[i].insn_off;
5030 		ulinfo += rec_size;
5031 	}
5032 
5033 	if (s != env->subprog_cnt) {
5034 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
5035 			env->subprog_cnt - s, s);
5036 		err = -EINVAL;
5037 		goto err_free;
5038 	}
5039 
5040 	prog->aux->linfo = linfo;
5041 	prog->aux->nr_linfo = nr_linfo;
5042 
5043 	return 0;
5044 
5045 err_free:
5046 	kvfree(linfo);
5047 	return err;
5048 }
5049 
5050 static int check_btf_info(struct bpf_verifier_env *env,
5051 			  const union bpf_attr *attr,
5052 			  union bpf_attr __user *uattr)
5053 {
5054 	struct btf *btf;
5055 	int err;
5056 
5057 	if (!attr->func_info_cnt && !attr->line_info_cnt)
5058 		return 0;
5059 
5060 	btf = btf_get_by_fd(attr->prog_btf_fd);
5061 	if (IS_ERR(btf))
5062 		return PTR_ERR(btf);
5063 	env->prog->aux->btf = btf;
5064 
5065 	err = check_btf_func(env, attr, uattr);
5066 	if (err)
5067 		return err;
5068 
5069 	err = check_btf_line(env, attr, uattr);
5070 	if (err)
5071 		return err;
5072 
5073 	return 0;
5074 }
5075 
5076 /* check %cur's range satisfies %old's */
5077 static bool range_within(struct bpf_reg_state *old,
5078 			 struct bpf_reg_state *cur)
5079 {
5080 	return old->umin_value <= cur->umin_value &&
5081 	       old->umax_value >= cur->umax_value &&
5082 	       old->smin_value <= cur->smin_value &&
5083 	       old->smax_value >= cur->smax_value;
5084 }
5085 
5086 /* Maximum number of register states that can exist at once */
5087 #define ID_MAP_SIZE	(MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
5088 struct idpair {
5089 	u32 old;
5090 	u32 cur;
5091 };
5092 
5093 /* If in the old state two registers had the same id, then they need to have
5094  * the same id in the new state as well.  But that id could be different from
5095  * the old state, so we need to track the mapping from old to new ids.
5096  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
5097  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
5098  * regs with a different old id could still have new id 9, we don't care about
5099  * that.
5100  * So we look through our idmap to see if this old id has been seen before.  If
5101  * so, we require the new id to match; otherwise, we add the id pair to the map.
5102  */
5103 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
5104 {
5105 	unsigned int i;
5106 
5107 	for (i = 0; i < ID_MAP_SIZE; i++) {
5108 		if (!idmap[i].old) {
5109 			/* Reached an empty slot; haven't seen this id before */
5110 			idmap[i].old = old_id;
5111 			idmap[i].cur = cur_id;
5112 			return true;
5113 		}
5114 		if (idmap[i].old == old_id)
5115 			return idmap[i].cur == cur_id;
5116 	}
5117 	/* We ran out of idmap slots, which should be impossible */
5118 	WARN_ON_ONCE(1);
5119 	return false;
5120 }
5121 
5122 static void clean_func_state(struct bpf_verifier_env *env,
5123 			     struct bpf_func_state *st)
5124 {
5125 	enum bpf_reg_liveness live;
5126 	int i, j;
5127 
5128 	for (i = 0; i < BPF_REG_FP; i++) {
5129 		live = st->regs[i].live;
5130 		/* liveness must not touch this register anymore */
5131 		st->regs[i].live |= REG_LIVE_DONE;
5132 		if (!(live & REG_LIVE_READ))
5133 			/* since the register is unused, clear its state
5134 			 * to make further comparison simpler
5135 			 */
5136 			__mark_reg_not_init(&st->regs[i]);
5137 	}
5138 
5139 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
5140 		live = st->stack[i].spilled_ptr.live;
5141 		/* liveness must not touch this stack slot anymore */
5142 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
5143 		if (!(live & REG_LIVE_READ)) {
5144 			__mark_reg_not_init(&st->stack[i].spilled_ptr);
5145 			for (j = 0; j < BPF_REG_SIZE; j++)
5146 				st->stack[i].slot_type[j] = STACK_INVALID;
5147 		}
5148 	}
5149 }
5150 
5151 static void clean_verifier_state(struct bpf_verifier_env *env,
5152 				 struct bpf_verifier_state *st)
5153 {
5154 	int i;
5155 
5156 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
5157 		/* all regs in this state in all frames were already marked */
5158 		return;
5159 
5160 	for (i = 0; i <= st->curframe; i++)
5161 		clean_func_state(env, st->frame[i]);
5162 }
5163 
5164 /* the parentage chains form a tree.
5165  * the verifier states are added to state lists at given insn and
5166  * pushed into state stack for future exploration.
5167  * when the verifier reaches bpf_exit insn some of the verifer states
5168  * stored in the state lists have their final liveness state already,
5169  * but a lot of states will get revised from liveness point of view when
5170  * the verifier explores other branches.
5171  * Example:
5172  * 1: r0 = 1
5173  * 2: if r1 == 100 goto pc+1
5174  * 3: r0 = 2
5175  * 4: exit
5176  * when the verifier reaches exit insn the register r0 in the state list of
5177  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
5178  * of insn 2 and goes exploring further. At the insn 4 it will walk the
5179  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
5180  *
5181  * Since the verifier pushes the branch states as it sees them while exploring
5182  * the program the condition of walking the branch instruction for the second
5183  * time means that all states below this branch were already explored and
5184  * their final liveness markes are already propagated.
5185  * Hence when the verifier completes the search of state list in is_state_visited()
5186  * we can call this clean_live_states() function to mark all liveness states
5187  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
5188  * will not be used.
5189  * This function also clears the registers and stack for states that !READ
5190  * to simplify state merging.
5191  *
5192  * Important note here that walking the same branch instruction in the callee
5193  * doesn't meant that the states are DONE. The verifier has to compare
5194  * the callsites
5195  */
5196 static void clean_live_states(struct bpf_verifier_env *env, int insn,
5197 			      struct bpf_verifier_state *cur)
5198 {
5199 	struct bpf_verifier_state_list *sl;
5200 	int i;
5201 
5202 	sl = env->explored_states[insn];
5203 	if (!sl)
5204 		return;
5205 
5206 	while (sl != STATE_LIST_MARK) {
5207 		if (sl->state.curframe != cur->curframe)
5208 			goto next;
5209 		for (i = 0; i <= cur->curframe; i++)
5210 			if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
5211 				goto next;
5212 		clean_verifier_state(env, &sl->state);
5213 next:
5214 		sl = sl->next;
5215 	}
5216 }
5217 
5218 /* Returns true if (rold safe implies rcur safe) */
5219 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
5220 		    struct idpair *idmap)
5221 {
5222 	bool equal;
5223 
5224 	if (!(rold->live & REG_LIVE_READ))
5225 		/* explored state didn't use this */
5226 		return true;
5227 
5228 	equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
5229 
5230 	if (rold->type == PTR_TO_STACK)
5231 		/* two stack pointers are equal only if they're pointing to
5232 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
5233 		 */
5234 		return equal && rold->frameno == rcur->frameno;
5235 
5236 	if (equal)
5237 		return true;
5238 
5239 	if (rold->type == NOT_INIT)
5240 		/* explored state can't have used this */
5241 		return true;
5242 	if (rcur->type == NOT_INIT)
5243 		return false;
5244 	switch (rold->type) {
5245 	case SCALAR_VALUE:
5246 		if (rcur->type == SCALAR_VALUE) {
5247 			/* new val must satisfy old val knowledge */
5248 			return range_within(rold, rcur) &&
5249 			       tnum_in(rold->var_off, rcur->var_off);
5250 		} else {
5251 			/* We're trying to use a pointer in place of a scalar.
5252 			 * Even if the scalar was unbounded, this could lead to
5253 			 * pointer leaks because scalars are allowed to leak
5254 			 * while pointers are not. We could make this safe in
5255 			 * special cases if root is calling us, but it's
5256 			 * probably not worth the hassle.
5257 			 */
5258 			return false;
5259 		}
5260 	case PTR_TO_MAP_VALUE:
5261 		/* If the new min/max/var_off satisfy the old ones and
5262 		 * everything else matches, we are OK.
5263 		 * We don't care about the 'id' value, because nothing
5264 		 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
5265 		 */
5266 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
5267 		       range_within(rold, rcur) &&
5268 		       tnum_in(rold->var_off, rcur->var_off);
5269 	case PTR_TO_MAP_VALUE_OR_NULL:
5270 		/* a PTR_TO_MAP_VALUE could be safe to use as a
5271 		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
5272 		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
5273 		 * checked, doing so could have affected others with the same
5274 		 * id, and we can't check for that because we lost the id when
5275 		 * we converted to a PTR_TO_MAP_VALUE.
5276 		 */
5277 		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
5278 			return false;
5279 		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
5280 			return false;
5281 		/* Check our ids match any regs they're supposed to */
5282 		return check_ids(rold->id, rcur->id, idmap);
5283 	case PTR_TO_PACKET_META:
5284 	case PTR_TO_PACKET:
5285 		if (rcur->type != rold->type)
5286 			return false;
5287 		/* We must have at least as much range as the old ptr
5288 		 * did, so that any accesses which were safe before are
5289 		 * still safe.  This is true even if old range < old off,
5290 		 * since someone could have accessed through (ptr - k), or
5291 		 * even done ptr -= k in a register, to get a safe access.
5292 		 */
5293 		if (rold->range > rcur->range)
5294 			return false;
5295 		/* If the offsets don't match, we can't trust our alignment;
5296 		 * nor can we be sure that we won't fall out of range.
5297 		 */
5298 		if (rold->off != rcur->off)
5299 			return false;
5300 		/* id relations must be preserved */
5301 		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
5302 			return false;
5303 		/* new val must satisfy old val knowledge */
5304 		return range_within(rold, rcur) &&
5305 		       tnum_in(rold->var_off, rcur->var_off);
5306 	case PTR_TO_CTX:
5307 	case CONST_PTR_TO_MAP:
5308 	case PTR_TO_PACKET_END:
5309 	case PTR_TO_FLOW_KEYS:
5310 	case PTR_TO_SOCKET:
5311 	case PTR_TO_SOCKET_OR_NULL:
5312 		/* Only valid matches are exact, which memcmp() above
5313 		 * would have accepted
5314 		 */
5315 	default:
5316 		/* Don't know what's going on, just say it's not safe */
5317 		return false;
5318 	}
5319 
5320 	/* Shouldn't get here; if we do, say it's not safe */
5321 	WARN_ON_ONCE(1);
5322 	return false;
5323 }
5324 
5325 static bool stacksafe(struct bpf_func_state *old,
5326 		      struct bpf_func_state *cur,
5327 		      struct idpair *idmap)
5328 {
5329 	int i, spi;
5330 
5331 	/* walk slots of the explored stack and ignore any additional
5332 	 * slots in the current stack, since explored(safe) state
5333 	 * didn't use them
5334 	 */
5335 	for (i = 0; i < old->allocated_stack; i++) {
5336 		spi = i / BPF_REG_SIZE;
5337 
5338 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
5339 			i += BPF_REG_SIZE - 1;
5340 			/* explored state didn't use this */
5341 			continue;
5342 		}
5343 
5344 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
5345 			continue;
5346 
5347 		/* explored stack has more populated slots than current stack
5348 		 * and these slots were used
5349 		 */
5350 		if (i >= cur->allocated_stack)
5351 			return false;
5352 
5353 		/* if old state was safe with misc data in the stack
5354 		 * it will be safe with zero-initialized stack.
5355 		 * The opposite is not true
5356 		 */
5357 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
5358 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
5359 			continue;
5360 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
5361 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
5362 			/* Ex: old explored (safe) state has STACK_SPILL in
5363 			 * this stack slot, but current has has STACK_MISC ->
5364 			 * this verifier states are not equivalent,
5365 			 * return false to continue verification of this path
5366 			 */
5367 			return false;
5368 		if (i % BPF_REG_SIZE)
5369 			continue;
5370 		if (old->stack[spi].slot_type[0] != STACK_SPILL)
5371 			continue;
5372 		if (!regsafe(&old->stack[spi].spilled_ptr,
5373 			     &cur->stack[spi].spilled_ptr,
5374 			     idmap))
5375 			/* when explored and current stack slot are both storing
5376 			 * spilled registers, check that stored pointers types
5377 			 * are the same as well.
5378 			 * Ex: explored safe path could have stored
5379 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
5380 			 * but current path has stored:
5381 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
5382 			 * such verifier states are not equivalent.
5383 			 * return false to continue verification of this path
5384 			 */
5385 			return false;
5386 	}
5387 	return true;
5388 }
5389 
5390 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
5391 {
5392 	if (old->acquired_refs != cur->acquired_refs)
5393 		return false;
5394 	return !memcmp(old->refs, cur->refs,
5395 		       sizeof(*old->refs) * old->acquired_refs);
5396 }
5397 
5398 /* compare two verifier states
5399  *
5400  * all states stored in state_list are known to be valid, since
5401  * verifier reached 'bpf_exit' instruction through them
5402  *
5403  * this function is called when verifier exploring different branches of
5404  * execution popped from the state stack. If it sees an old state that has
5405  * more strict register state and more strict stack state then this execution
5406  * branch doesn't need to be explored further, since verifier already
5407  * concluded that more strict state leads to valid finish.
5408  *
5409  * Therefore two states are equivalent if register state is more conservative
5410  * and explored stack state is more conservative than the current one.
5411  * Example:
5412  *       explored                   current
5413  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
5414  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
5415  *
5416  * In other words if current stack state (one being explored) has more
5417  * valid slots than old one that already passed validation, it means
5418  * the verifier can stop exploring and conclude that current state is valid too
5419  *
5420  * Similarly with registers. If explored state has register type as invalid
5421  * whereas register type in current state is meaningful, it means that
5422  * the current state will reach 'bpf_exit' instruction safely
5423  */
5424 static bool func_states_equal(struct bpf_func_state *old,
5425 			      struct bpf_func_state *cur)
5426 {
5427 	struct idpair *idmap;
5428 	bool ret = false;
5429 	int i;
5430 
5431 	idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
5432 	/* If we failed to allocate the idmap, just say it's not safe */
5433 	if (!idmap)
5434 		return false;
5435 
5436 	for (i = 0; i < MAX_BPF_REG; i++) {
5437 		if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
5438 			goto out_free;
5439 	}
5440 
5441 	if (!stacksafe(old, cur, idmap))
5442 		goto out_free;
5443 
5444 	if (!refsafe(old, cur))
5445 		goto out_free;
5446 	ret = true;
5447 out_free:
5448 	kfree(idmap);
5449 	return ret;
5450 }
5451 
5452 static bool states_equal(struct bpf_verifier_env *env,
5453 			 struct bpf_verifier_state *old,
5454 			 struct bpf_verifier_state *cur)
5455 {
5456 	int i;
5457 
5458 	if (old->curframe != cur->curframe)
5459 		return false;
5460 
5461 	/* for states to be equal callsites have to be the same
5462 	 * and all frame states need to be equivalent
5463 	 */
5464 	for (i = 0; i <= old->curframe; i++) {
5465 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
5466 			return false;
5467 		if (!func_states_equal(old->frame[i], cur->frame[i]))
5468 			return false;
5469 	}
5470 	return true;
5471 }
5472 
5473 /* A write screens off any subsequent reads; but write marks come from the
5474  * straight-line code between a state and its parent.  When we arrive at an
5475  * equivalent state (jump target or such) we didn't arrive by the straight-line
5476  * code, so read marks in the state must propagate to the parent regardless
5477  * of the state's write marks. That's what 'parent == state->parent' comparison
5478  * in mark_reg_read() is for.
5479  */
5480 static int propagate_liveness(struct bpf_verifier_env *env,
5481 			      const struct bpf_verifier_state *vstate,
5482 			      struct bpf_verifier_state *vparent)
5483 {
5484 	int i, frame, err = 0;
5485 	struct bpf_func_state *state, *parent;
5486 
5487 	if (vparent->curframe != vstate->curframe) {
5488 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
5489 		     vparent->curframe, vstate->curframe);
5490 		return -EFAULT;
5491 	}
5492 	/* Propagate read liveness of registers... */
5493 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
5494 	/* We don't need to worry about FP liveness because it's read-only */
5495 	for (i = 0; i < BPF_REG_FP; i++) {
5496 		if (vparent->frame[vparent->curframe]->regs[i].live & REG_LIVE_READ)
5497 			continue;
5498 		if (vstate->frame[vstate->curframe]->regs[i].live & REG_LIVE_READ) {
5499 			err = mark_reg_read(env, &vstate->frame[vstate->curframe]->regs[i],
5500 					    &vparent->frame[vstate->curframe]->regs[i]);
5501 			if (err)
5502 				return err;
5503 		}
5504 	}
5505 
5506 	/* ... and stack slots */
5507 	for (frame = 0; frame <= vstate->curframe; frame++) {
5508 		state = vstate->frame[frame];
5509 		parent = vparent->frame[frame];
5510 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
5511 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
5512 			if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ)
5513 				continue;
5514 			if (state->stack[i].spilled_ptr.live & REG_LIVE_READ)
5515 				mark_reg_read(env, &state->stack[i].spilled_ptr,
5516 					      &parent->stack[i].spilled_ptr);
5517 		}
5518 	}
5519 	return err;
5520 }
5521 
5522 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
5523 {
5524 	struct bpf_verifier_state_list *new_sl;
5525 	struct bpf_verifier_state_list *sl;
5526 	struct bpf_verifier_state *cur = env->cur_state, *new;
5527 	int i, j, err, states_cnt = 0;
5528 
5529 	sl = env->explored_states[insn_idx];
5530 	if (!sl)
5531 		/* this 'insn_idx' instruction wasn't marked, so we will not
5532 		 * be doing state search here
5533 		 */
5534 		return 0;
5535 
5536 	clean_live_states(env, insn_idx, cur);
5537 
5538 	while (sl != STATE_LIST_MARK) {
5539 		if (states_equal(env, &sl->state, cur)) {
5540 			/* reached equivalent register/stack state,
5541 			 * prune the search.
5542 			 * Registers read by the continuation are read by us.
5543 			 * If we have any write marks in env->cur_state, they
5544 			 * will prevent corresponding reads in the continuation
5545 			 * from reaching our parent (an explored_state).  Our
5546 			 * own state will get the read marks recorded, but
5547 			 * they'll be immediately forgotten as we're pruning
5548 			 * this state and will pop a new one.
5549 			 */
5550 			err = propagate_liveness(env, &sl->state, cur);
5551 			if (err)
5552 				return err;
5553 			return 1;
5554 		}
5555 		sl = sl->next;
5556 		states_cnt++;
5557 	}
5558 
5559 	if (!env->allow_ptr_leaks && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
5560 		return 0;
5561 
5562 	/* there were no equivalent states, remember current one.
5563 	 * technically the current state is not proven to be safe yet,
5564 	 * but it will either reach outer most bpf_exit (which means it's safe)
5565 	 * or it will be rejected. Since there are no loops, we won't be
5566 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
5567 	 * again on the way to bpf_exit
5568 	 */
5569 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
5570 	if (!new_sl)
5571 		return -ENOMEM;
5572 
5573 	/* add new state to the head of linked list */
5574 	new = &new_sl->state;
5575 	err = copy_verifier_state(new, cur);
5576 	if (err) {
5577 		free_verifier_state(new, false);
5578 		kfree(new_sl);
5579 		return err;
5580 	}
5581 	new_sl->next = env->explored_states[insn_idx];
5582 	env->explored_states[insn_idx] = new_sl;
5583 	/* connect new state to parentage chain. Current frame needs all
5584 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
5585 	 * to the stack implicitly by JITs) so in callers' frames connect just
5586 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
5587 	 * the state of the call instruction (with WRITTEN set), and r0 comes
5588 	 * from callee with its full parentage chain, anyway.
5589 	 */
5590 	for (j = 0; j <= cur->curframe; j++)
5591 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
5592 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
5593 	/* clear write marks in current state: the writes we did are not writes
5594 	 * our child did, so they don't screen off its reads from us.
5595 	 * (There are no read marks in current state, because reads always mark
5596 	 * their parent and current state never has children yet.  Only
5597 	 * explored_states can get read marks.)
5598 	 */
5599 	for (i = 0; i < BPF_REG_FP; i++)
5600 		cur->frame[cur->curframe]->regs[i].live = REG_LIVE_NONE;
5601 
5602 	/* all stack frames are accessible from callee, clear them all */
5603 	for (j = 0; j <= cur->curframe; j++) {
5604 		struct bpf_func_state *frame = cur->frame[j];
5605 		struct bpf_func_state *newframe = new->frame[j];
5606 
5607 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
5608 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
5609 			frame->stack[i].spilled_ptr.parent =
5610 						&newframe->stack[i].spilled_ptr;
5611 		}
5612 	}
5613 	return 0;
5614 }
5615 
5616 /* Return true if it's OK to have the same insn return a different type. */
5617 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
5618 {
5619 	switch (type) {
5620 	case PTR_TO_CTX:
5621 	case PTR_TO_SOCKET:
5622 	case PTR_TO_SOCKET_OR_NULL:
5623 		return false;
5624 	default:
5625 		return true;
5626 	}
5627 }
5628 
5629 /* If an instruction was previously used with particular pointer types, then we
5630  * need to be careful to avoid cases such as the below, where it may be ok
5631  * for one branch accessing the pointer, but not ok for the other branch:
5632  *
5633  * R1 = sock_ptr
5634  * goto X;
5635  * ...
5636  * R1 = some_other_valid_ptr;
5637  * goto X;
5638  * ...
5639  * R2 = *(u32 *)(R1 + 0);
5640  */
5641 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
5642 {
5643 	return src != prev && (!reg_type_mismatch_ok(src) ||
5644 			       !reg_type_mismatch_ok(prev));
5645 }
5646 
5647 static int do_check(struct bpf_verifier_env *env)
5648 {
5649 	struct bpf_verifier_state *state;
5650 	struct bpf_insn *insns = env->prog->insnsi;
5651 	struct bpf_reg_state *regs;
5652 	int insn_cnt = env->prog->len, i;
5653 	int insn_idx, prev_insn_idx = 0;
5654 	int insn_processed = 0;
5655 	bool do_print_state = false;
5656 
5657 	env->prev_linfo = NULL;
5658 
5659 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
5660 	if (!state)
5661 		return -ENOMEM;
5662 	state->curframe = 0;
5663 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
5664 	if (!state->frame[0]) {
5665 		kfree(state);
5666 		return -ENOMEM;
5667 	}
5668 	env->cur_state = state;
5669 	init_func_state(env, state->frame[0],
5670 			BPF_MAIN_FUNC /* callsite */,
5671 			0 /* frameno */,
5672 			0 /* subprogno, zero == main subprog */);
5673 	insn_idx = 0;
5674 	for (;;) {
5675 		struct bpf_insn *insn;
5676 		u8 class;
5677 		int err;
5678 
5679 		if (insn_idx >= insn_cnt) {
5680 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
5681 				insn_idx, insn_cnt);
5682 			return -EFAULT;
5683 		}
5684 
5685 		insn = &insns[insn_idx];
5686 		class = BPF_CLASS(insn->code);
5687 
5688 		if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
5689 			verbose(env,
5690 				"BPF program is too large. Processed %d insn\n",
5691 				insn_processed);
5692 			return -E2BIG;
5693 		}
5694 
5695 		err = is_state_visited(env, insn_idx);
5696 		if (err < 0)
5697 			return err;
5698 		if (err == 1) {
5699 			/* found equivalent state, can prune the search */
5700 			if (env->log.level) {
5701 				if (do_print_state)
5702 					verbose(env, "\nfrom %d to %d: safe\n",
5703 						prev_insn_idx, insn_idx);
5704 				else
5705 					verbose(env, "%d: safe\n", insn_idx);
5706 			}
5707 			goto process_bpf_exit;
5708 		}
5709 
5710 		if (signal_pending(current))
5711 			return -EAGAIN;
5712 
5713 		if (need_resched())
5714 			cond_resched();
5715 
5716 		if (env->log.level > 1 || (env->log.level && do_print_state)) {
5717 			if (env->log.level > 1)
5718 				verbose(env, "%d:", insn_idx);
5719 			else
5720 				verbose(env, "\nfrom %d to %d:",
5721 					prev_insn_idx, insn_idx);
5722 			print_verifier_state(env, state->frame[state->curframe]);
5723 			do_print_state = false;
5724 		}
5725 
5726 		if (env->log.level) {
5727 			const struct bpf_insn_cbs cbs = {
5728 				.cb_print	= verbose,
5729 				.private_data	= env,
5730 			};
5731 
5732 			verbose_linfo(env, insn_idx, "; ");
5733 			verbose(env, "%d: ", insn_idx);
5734 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
5735 		}
5736 
5737 		if (bpf_prog_is_dev_bound(env->prog->aux)) {
5738 			err = bpf_prog_offload_verify_insn(env, insn_idx,
5739 							   prev_insn_idx);
5740 			if (err)
5741 				return err;
5742 		}
5743 
5744 		regs = cur_regs(env);
5745 		env->insn_aux_data[insn_idx].seen = true;
5746 
5747 		if (class == BPF_ALU || class == BPF_ALU64) {
5748 			err = check_alu_op(env, insn);
5749 			if (err)
5750 				return err;
5751 
5752 		} else if (class == BPF_LDX) {
5753 			enum bpf_reg_type *prev_src_type, src_reg_type;
5754 
5755 			/* check for reserved fields is already done */
5756 
5757 			/* check src operand */
5758 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
5759 			if (err)
5760 				return err;
5761 
5762 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
5763 			if (err)
5764 				return err;
5765 
5766 			src_reg_type = regs[insn->src_reg].type;
5767 
5768 			/* check that memory (src_reg + off) is readable,
5769 			 * the state of dst_reg will be updated by this func
5770 			 */
5771 			err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
5772 					       BPF_SIZE(insn->code), BPF_READ,
5773 					       insn->dst_reg, false);
5774 			if (err)
5775 				return err;
5776 
5777 			prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
5778 
5779 			if (*prev_src_type == NOT_INIT) {
5780 				/* saw a valid insn
5781 				 * dst_reg = *(u32 *)(src_reg + off)
5782 				 * save type to validate intersecting paths
5783 				 */
5784 				*prev_src_type = src_reg_type;
5785 
5786 			} else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
5787 				/* ABuser program is trying to use the same insn
5788 				 * dst_reg = *(u32*) (src_reg + off)
5789 				 * with different pointer types:
5790 				 * src_reg == ctx in one branch and
5791 				 * src_reg == stack|map in some other branch.
5792 				 * Reject it.
5793 				 */
5794 				verbose(env, "same insn cannot be used with different pointers\n");
5795 				return -EINVAL;
5796 			}
5797 
5798 		} else if (class == BPF_STX) {
5799 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
5800 
5801 			if (BPF_MODE(insn->code) == BPF_XADD) {
5802 				err = check_xadd(env, insn_idx, insn);
5803 				if (err)
5804 					return err;
5805 				insn_idx++;
5806 				continue;
5807 			}
5808 
5809 			/* check src1 operand */
5810 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
5811 			if (err)
5812 				return err;
5813 			/* check src2 operand */
5814 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
5815 			if (err)
5816 				return err;
5817 
5818 			dst_reg_type = regs[insn->dst_reg].type;
5819 
5820 			/* check that memory (dst_reg + off) is writeable */
5821 			err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
5822 					       BPF_SIZE(insn->code), BPF_WRITE,
5823 					       insn->src_reg, false);
5824 			if (err)
5825 				return err;
5826 
5827 			prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
5828 
5829 			if (*prev_dst_type == NOT_INIT) {
5830 				*prev_dst_type = dst_reg_type;
5831 			} else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
5832 				verbose(env, "same insn cannot be used with different pointers\n");
5833 				return -EINVAL;
5834 			}
5835 
5836 		} else if (class == BPF_ST) {
5837 			if (BPF_MODE(insn->code) != BPF_MEM ||
5838 			    insn->src_reg != BPF_REG_0) {
5839 				verbose(env, "BPF_ST uses reserved fields\n");
5840 				return -EINVAL;
5841 			}
5842 			/* check src operand */
5843 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
5844 			if (err)
5845 				return err;
5846 
5847 			if (is_ctx_reg(env, insn->dst_reg)) {
5848 				verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
5849 					insn->dst_reg,
5850 					reg_type_str[reg_state(env, insn->dst_reg)->type]);
5851 				return -EACCES;
5852 			}
5853 
5854 			/* check that memory (dst_reg + off) is writeable */
5855 			err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
5856 					       BPF_SIZE(insn->code), BPF_WRITE,
5857 					       -1, false);
5858 			if (err)
5859 				return err;
5860 
5861 		} else if (class == BPF_JMP) {
5862 			u8 opcode = BPF_OP(insn->code);
5863 
5864 			if (opcode == BPF_CALL) {
5865 				if (BPF_SRC(insn->code) != BPF_K ||
5866 				    insn->off != 0 ||
5867 				    (insn->src_reg != BPF_REG_0 &&
5868 				     insn->src_reg != BPF_PSEUDO_CALL) ||
5869 				    insn->dst_reg != BPF_REG_0) {
5870 					verbose(env, "BPF_CALL uses reserved fields\n");
5871 					return -EINVAL;
5872 				}
5873 
5874 				if (insn->src_reg == BPF_PSEUDO_CALL)
5875 					err = check_func_call(env, insn, &insn_idx);
5876 				else
5877 					err = check_helper_call(env, insn->imm, insn_idx);
5878 				if (err)
5879 					return err;
5880 
5881 			} else if (opcode == BPF_JA) {
5882 				if (BPF_SRC(insn->code) != BPF_K ||
5883 				    insn->imm != 0 ||
5884 				    insn->src_reg != BPF_REG_0 ||
5885 				    insn->dst_reg != BPF_REG_0) {
5886 					verbose(env, "BPF_JA uses reserved fields\n");
5887 					return -EINVAL;
5888 				}
5889 
5890 				insn_idx += insn->off + 1;
5891 				continue;
5892 
5893 			} else if (opcode == BPF_EXIT) {
5894 				if (BPF_SRC(insn->code) != BPF_K ||
5895 				    insn->imm != 0 ||
5896 				    insn->src_reg != BPF_REG_0 ||
5897 				    insn->dst_reg != BPF_REG_0) {
5898 					verbose(env, "BPF_EXIT uses reserved fields\n");
5899 					return -EINVAL;
5900 				}
5901 
5902 				if (state->curframe) {
5903 					/* exit from nested function */
5904 					prev_insn_idx = insn_idx;
5905 					err = prepare_func_exit(env, &insn_idx);
5906 					if (err)
5907 						return err;
5908 					do_print_state = true;
5909 					continue;
5910 				}
5911 
5912 				err = check_reference_leak(env);
5913 				if (err)
5914 					return err;
5915 
5916 				/* eBPF calling convetion is such that R0 is used
5917 				 * to return the value from eBPF program.
5918 				 * Make sure that it's readable at this time
5919 				 * of bpf_exit, which means that program wrote
5920 				 * something into it earlier
5921 				 */
5922 				err = check_reg_arg(env, BPF_REG_0, SRC_OP);
5923 				if (err)
5924 					return err;
5925 
5926 				if (is_pointer_value(env, BPF_REG_0)) {
5927 					verbose(env, "R0 leaks addr as return value\n");
5928 					return -EACCES;
5929 				}
5930 
5931 				err = check_return_code(env);
5932 				if (err)
5933 					return err;
5934 process_bpf_exit:
5935 				err = pop_stack(env, &prev_insn_idx, &insn_idx);
5936 				if (err < 0) {
5937 					if (err != -ENOENT)
5938 						return err;
5939 					break;
5940 				} else {
5941 					do_print_state = true;
5942 					continue;
5943 				}
5944 			} else {
5945 				err = check_cond_jmp_op(env, insn, &insn_idx);
5946 				if (err)
5947 					return err;
5948 			}
5949 		} else if (class == BPF_LD) {
5950 			u8 mode = BPF_MODE(insn->code);
5951 
5952 			if (mode == BPF_ABS || mode == BPF_IND) {
5953 				err = check_ld_abs(env, insn);
5954 				if (err)
5955 					return err;
5956 
5957 			} else if (mode == BPF_IMM) {
5958 				err = check_ld_imm(env, insn);
5959 				if (err)
5960 					return err;
5961 
5962 				insn_idx++;
5963 				env->insn_aux_data[insn_idx].seen = true;
5964 			} else {
5965 				verbose(env, "invalid BPF_LD mode\n");
5966 				return -EINVAL;
5967 			}
5968 		} else {
5969 			verbose(env, "unknown insn class %d\n", class);
5970 			return -EINVAL;
5971 		}
5972 
5973 		insn_idx++;
5974 	}
5975 
5976 	verbose(env, "processed %d insns (limit %d), stack depth ",
5977 		insn_processed, BPF_COMPLEXITY_LIMIT_INSNS);
5978 	for (i = 0; i < env->subprog_cnt; i++) {
5979 		u32 depth = env->subprog_info[i].stack_depth;
5980 
5981 		verbose(env, "%d", depth);
5982 		if (i + 1 < env->subprog_cnt)
5983 			verbose(env, "+");
5984 	}
5985 	verbose(env, "\n");
5986 	env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
5987 	return 0;
5988 }
5989 
5990 static int check_map_prealloc(struct bpf_map *map)
5991 {
5992 	return (map->map_type != BPF_MAP_TYPE_HASH &&
5993 		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
5994 		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
5995 		!(map->map_flags & BPF_F_NO_PREALLOC);
5996 }
5997 
5998 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
5999 					struct bpf_map *map,
6000 					struct bpf_prog *prog)
6001 
6002 {
6003 	/* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
6004 	 * preallocated hash maps, since doing memory allocation
6005 	 * in overflow_handler can crash depending on where nmi got
6006 	 * triggered.
6007 	 */
6008 	if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
6009 		if (!check_map_prealloc(map)) {
6010 			verbose(env, "perf_event programs can only use preallocated hash map\n");
6011 			return -EINVAL;
6012 		}
6013 		if (map->inner_map_meta &&
6014 		    !check_map_prealloc(map->inner_map_meta)) {
6015 			verbose(env, "perf_event programs can only use preallocated inner hash map\n");
6016 			return -EINVAL;
6017 		}
6018 	}
6019 
6020 	if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
6021 	    !bpf_offload_prog_map_match(prog, map)) {
6022 		verbose(env, "offload device mismatch between prog and map\n");
6023 		return -EINVAL;
6024 	}
6025 
6026 	return 0;
6027 }
6028 
6029 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
6030 {
6031 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
6032 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
6033 }
6034 
6035 /* look for pseudo eBPF instructions that access map FDs and
6036  * replace them with actual map pointers
6037  */
6038 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
6039 {
6040 	struct bpf_insn *insn = env->prog->insnsi;
6041 	int insn_cnt = env->prog->len;
6042 	int i, j, err;
6043 
6044 	err = bpf_prog_calc_tag(env->prog);
6045 	if (err)
6046 		return err;
6047 
6048 	for (i = 0; i < insn_cnt; i++, insn++) {
6049 		if (BPF_CLASS(insn->code) == BPF_LDX &&
6050 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
6051 			verbose(env, "BPF_LDX uses reserved fields\n");
6052 			return -EINVAL;
6053 		}
6054 
6055 		if (BPF_CLASS(insn->code) == BPF_STX &&
6056 		    ((BPF_MODE(insn->code) != BPF_MEM &&
6057 		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
6058 			verbose(env, "BPF_STX uses reserved fields\n");
6059 			return -EINVAL;
6060 		}
6061 
6062 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
6063 			struct bpf_map *map;
6064 			struct fd f;
6065 
6066 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
6067 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
6068 			    insn[1].off != 0) {
6069 				verbose(env, "invalid bpf_ld_imm64 insn\n");
6070 				return -EINVAL;
6071 			}
6072 
6073 			if (insn->src_reg == 0)
6074 				/* valid generic load 64-bit imm */
6075 				goto next_insn;
6076 
6077 			if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
6078 				verbose(env,
6079 					"unrecognized bpf_ld_imm64 insn\n");
6080 				return -EINVAL;
6081 			}
6082 
6083 			f = fdget(insn->imm);
6084 			map = __bpf_map_get(f);
6085 			if (IS_ERR(map)) {
6086 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
6087 					insn->imm);
6088 				return PTR_ERR(map);
6089 			}
6090 
6091 			err = check_map_prog_compatibility(env, map, env->prog);
6092 			if (err) {
6093 				fdput(f);
6094 				return err;
6095 			}
6096 
6097 			/* store map pointer inside BPF_LD_IMM64 instruction */
6098 			insn[0].imm = (u32) (unsigned long) map;
6099 			insn[1].imm = ((u64) (unsigned long) map) >> 32;
6100 
6101 			/* check whether we recorded this map already */
6102 			for (j = 0; j < env->used_map_cnt; j++)
6103 				if (env->used_maps[j] == map) {
6104 					fdput(f);
6105 					goto next_insn;
6106 				}
6107 
6108 			if (env->used_map_cnt >= MAX_USED_MAPS) {
6109 				fdput(f);
6110 				return -E2BIG;
6111 			}
6112 
6113 			/* hold the map. If the program is rejected by verifier,
6114 			 * the map will be released by release_maps() or it
6115 			 * will be used by the valid program until it's unloaded
6116 			 * and all maps are released in free_used_maps()
6117 			 */
6118 			map = bpf_map_inc(map, false);
6119 			if (IS_ERR(map)) {
6120 				fdput(f);
6121 				return PTR_ERR(map);
6122 			}
6123 			env->used_maps[env->used_map_cnt++] = map;
6124 
6125 			if (bpf_map_is_cgroup_storage(map) &&
6126 			    bpf_cgroup_storage_assign(env->prog, map)) {
6127 				verbose(env, "only one cgroup storage of each type is allowed\n");
6128 				fdput(f);
6129 				return -EBUSY;
6130 			}
6131 
6132 			fdput(f);
6133 next_insn:
6134 			insn++;
6135 			i++;
6136 			continue;
6137 		}
6138 
6139 		/* Basic sanity check before we invest more work here. */
6140 		if (!bpf_opcode_in_insntable(insn->code)) {
6141 			verbose(env, "unknown opcode %02x\n", insn->code);
6142 			return -EINVAL;
6143 		}
6144 	}
6145 
6146 	/* now all pseudo BPF_LD_IMM64 instructions load valid
6147 	 * 'struct bpf_map *' into a register instead of user map_fd.
6148 	 * These pointers will be used later by verifier to validate map access.
6149 	 */
6150 	return 0;
6151 }
6152 
6153 /* drop refcnt of maps used by the rejected program */
6154 static void release_maps(struct bpf_verifier_env *env)
6155 {
6156 	enum bpf_cgroup_storage_type stype;
6157 	int i;
6158 
6159 	for_each_cgroup_storage_type(stype) {
6160 		if (!env->prog->aux->cgroup_storage[stype])
6161 			continue;
6162 		bpf_cgroup_storage_release(env->prog,
6163 			env->prog->aux->cgroup_storage[stype]);
6164 	}
6165 
6166 	for (i = 0; i < env->used_map_cnt; i++)
6167 		bpf_map_put(env->used_maps[i]);
6168 }
6169 
6170 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
6171 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
6172 {
6173 	struct bpf_insn *insn = env->prog->insnsi;
6174 	int insn_cnt = env->prog->len;
6175 	int i;
6176 
6177 	for (i = 0; i < insn_cnt; i++, insn++)
6178 		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
6179 			insn->src_reg = 0;
6180 }
6181 
6182 /* single env->prog->insni[off] instruction was replaced with the range
6183  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
6184  * [0, off) and [off, end) to new locations, so the patched range stays zero
6185  */
6186 static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
6187 				u32 off, u32 cnt)
6188 {
6189 	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
6190 	int i;
6191 
6192 	if (cnt == 1)
6193 		return 0;
6194 	new_data = vzalloc(array_size(prog_len,
6195 				      sizeof(struct bpf_insn_aux_data)));
6196 	if (!new_data)
6197 		return -ENOMEM;
6198 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
6199 	memcpy(new_data + off + cnt - 1, old_data + off,
6200 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
6201 	for (i = off; i < off + cnt - 1; i++)
6202 		new_data[i].seen = true;
6203 	env->insn_aux_data = new_data;
6204 	vfree(old_data);
6205 	return 0;
6206 }
6207 
6208 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
6209 {
6210 	int i;
6211 
6212 	if (len == 1)
6213 		return;
6214 	/* NOTE: fake 'exit' subprog should be updated as well. */
6215 	for (i = 0; i <= env->subprog_cnt; i++) {
6216 		if (env->subprog_info[i].start <= off)
6217 			continue;
6218 		env->subprog_info[i].start += len - 1;
6219 	}
6220 }
6221 
6222 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
6223 					    const struct bpf_insn *patch, u32 len)
6224 {
6225 	struct bpf_prog *new_prog;
6226 
6227 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
6228 	if (!new_prog)
6229 		return NULL;
6230 	if (adjust_insn_aux_data(env, new_prog->len, off, len))
6231 		return NULL;
6232 	adjust_subprog_starts(env, off, len);
6233 	return new_prog;
6234 }
6235 
6236 /* The verifier does more data flow analysis than llvm and will not
6237  * explore branches that are dead at run time. Malicious programs can
6238  * have dead code too. Therefore replace all dead at-run-time code
6239  * with 'ja -1'.
6240  *
6241  * Just nops are not optimal, e.g. if they would sit at the end of the
6242  * program and through another bug we would manage to jump there, then
6243  * we'd execute beyond program memory otherwise. Returning exception
6244  * code also wouldn't work since we can have subprogs where the dead
6245  * code could be located.
6246  */
6247 static void sanitize_dead_code(struct bpf_verifier_env *env)
6248 {
6249 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
6250 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
6251 	struct bpf_insn *insn = env->prog->insnsi;
6252 	const int insn_cnt = env->prog->len;
6253 	int i;
6254 
6255 	for (i = 0; i < insn_cnt; i++) {
6256 		if (aux_data[i].seen)
6257 			continue;
6258 		memcpy(insn + i, &trap, sizeof(trap));
6259 	}
6260 }
6261 
6262 /* convert load instructions that access fields of a context type into a
6263  * sequence of instructions that access fields of the underlying structure:
6264  *     struct __sk_buff    -> struct sk_buff
6265  *     struct bpf_sock_ops -> struct sock
6266  */
6267 static int convert_ctx_accesses(struct bpf_verifier_env *env)
6268 {
6269 	const struct bpf_verifier_ops *ops = env->ops;
6270 	int i, cnt, size, ctx_field_size, delta = 0;
6271 	const int insn_cnt = env->prog->len;
6272 	struct bpf_insn insn_buf[16], *insn;
6273 	u32 target_size, size_default, off;
6274 	struct bpf_prog *new_prog;
6275 	enum bpf_access_type type;
6276 	bool is_narrower_load;
6277 
6278 	if (ops->gen_prologue || env->seen_direct_write) {
6279 		if (!ops->gen_prologue) {
6280 			verbose(env, "bpf verifier is misconfigured\n");
6281 			return -EINVAL;
6282 		}
6283 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
6284 					env->prog);
6285 		if (cnt >= ARRAY_SIZE(insn_buf)) {
6286 			verbose(env, "bpf verifier is misconfigured\n");
6287 			return -EINVAL;
6288 		} else if (cnt) {
6289 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
6290 			if (!new_prog)
6291 				return -ENOMEM;
6292 
6293 			env->prog = new_prog;
6294 			delta += cnt - 1;
6295 		}
6296 	}
6297 
6298 	if (bpf_prog_is_dev_bound(env->prog->aux))
6299 		return 0;
6300 
6301 	insn = env->prog->insnsi + delta;
6302 
6303 	for (i = 0; i < insn_cnt; i++, insn++) {
6304 		bpf_convert_ctx_access_t convert_ctx_access;
6305 
6306 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
6307 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
6308 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
6309 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
6310 			type = BPF_READ;
6311 		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
6312 			 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
6313 			 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
6314 			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
6315 			type = BPF_WRITE;
6316 		else
6317 			continue;
6318 
6319 		if (type == BPF_WRITE &&
6320 		    env->insn_aux_data[i + delta].sanitize_stack_off) {
6321 			struct bpf_insn patch[] = {
6322 				/* Sanitize suspicious stack slot with zero.
6323 				 * There are no memory dependencies for this store,
6324 				 * since it's only using frame pointer and immediate
6325 				 * constant of zero
6326 				 */
6327 				BPF_ST_MEM(BPF_DW, BPF_REG_FP,
6328 					   env->insn_aux_data[i + delta].sanitize_stack_off,
6329 					   0),
6330 				/* the original STX instruction will immediately
6331 				 * overwrite the same stack slot with appropriate value
6332 				 */
6333 				*insn,
6334 			};
6335 
6336 			cnt = ARRAY_SIZE(patch);
6337 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
6338 			if (!new_prog)
6339 				return -ENOMEM;
6340 
6341 			delta    += cnt - 1;
6342 			env->prog = new_prog;
6343 			insn      = new_prog->insnsi + i + delta;
6344 			continue;
6345 		}
6346 
6347 		switch (env->insn_aux_data[i + delta].ptr_type) {
6348 		case PTR_TO_CTX:
6349 			if (!ops->convert_ctx_access)
6350 				continue;
6351 			convert_ctx_access = ops->convert_ctx_access;
6352 			break;
6353 		case PTR_TO_SOCKET:
6354 			convert_ctx_access = bpf_sock_convert_ctx_access;
6355 			break;
6356 		default:
6357 			continue;
6358 		}
6359 
6360 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
6361 		size = BPF_LDST_BYTES(insn);
6362 
6363 		/* If the read access is a narrower load of the field,
6364 		 * convert to a 4/8-byte load, to minimum program type specific
6365 		 * convert_ctx_access changes. If conversion is successful,
6366 		 * we will apply proper mask to the result.
6367 		 */
6368 		is_narrower_load = size < ctx_field_size;
6369 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
6370 		off = insn->off;
6371 		if (is_narrower_load) {
6372 			u8 size_code;
6373 
6374 			if (type == BPF_WRITE) {
6375 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
6376 				return -EINVAL;
6377 			}
6378 
6379 			size_code = BPF_H;
6380 			if (ctx_field_size == 4)
6381 				size_code = BPF_W;
6382 			else if (ctx_field_size == 8)
6383 				size_code = BPF_DW;
6384 
6385 			insn->off = off & ~(size_default - 1);
6386 			insn->code = BPF_LDX | BPF_MEM | size_code;
6387 		}
6388 
6389 		target_size = 0;
6390 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
6391 					 &target_size);
6392 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
6393 		    (ctx_field_size && !target_size)) {
6394 			verbose(env, "bpf verifier is misconfigured\n");
6395 			return -EINVAL;
6396 		}
6397 
6398 		if (is_narrower_load && size < target_size) {
6399 			u8 shift = (off & (size_default - 1)) * 8;
6400 
6401 			if (ctx_field_size <= 4) {
6402 				if (shift)
6403 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
6404 									insn->dst_reg,
6405 									shift);
6406 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
6407 								(1 << size * 8) - 1);
6408 			} else {
6409 				if (shift)
6410 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
6411 									insn->dst_reg,
6412 									shift);
6413 				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
6414 								(1 << size * 8) - 1);
6415 			}
6416 		}
6417 
6418 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
6419 		if (!new_prog)
6420 			return -ENOMEM;
6421 
6422 		delta += cnt - 1;
6423 
6424 		/* keep walking new program and skip insns we just inserted */
6425 		env->prog = new_prog;
6426 		insn      = new_prog->insnsi + i + delta;
6427 	}
6428 
6429 	return 0;
6430 }
6431 
6432 static int jit_subprogs(struct bpf_verifier_env *env)
6433 {
6434 	struct bpf_prog *prog = env->prog, **func, *tmp;
6435 	int i, j, subprog_start, subprog_end = 0, len, subprog;
6436 	struct bpf_insn *insn;
6437 	void *old_bpf_func;
6438 	int err;
6439 
6440 	if (env->subprog_cnt <= 1)
6441 		return 0;
6442 
6443 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
6444 		if (insn->code != (BPF_JMP | BPF_CALL) ||
6445 		    insn->src_reg != BPF_PSEUDO_CALL)
6446 			continue;
6447 		/* Upon error here we cannot fall back to interpreter but
6448 		 * need a hard reject of the program. Thus -EFAULT is
6449 		 * propagated in any case.
6450 		 */
6451 		subprog = find_subprog(env, i + insn->imm + 1);
6452 		if (subprog < 0) {
6453 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
6454 				  i + insn->imm + 1);
6455 			return -EFAULT;
6456 		}
6457 		/* temporarily remember subprog id inside insn instead of
6458 		 * aux_data, since next loop will split up all insns into funcs
6459 		 */
6460 		insn->off = subprog;
6461 		/* remember original imm in case JIT fails and fallback
6462 		 * to interpreter will be needed
6463 		 */
6464 		env->insn_aux_data[i].call_imm = insn->imm;
6465 		/* point imm to __bpf_call_base+1 from JITs point of view */
6466 		insn->imm = 1;
6467 	}
6468 
6469 	err = bpf_prog_alloc_jited_linfo(prog);
6470 	if (err)
6471 		goto out_undo_insn;
6472 
6473 	err = -ENOMEM;
6474 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
6475 	if (!func)
6476 		goto out_undo_insn;
6477 
6478 	for (i = 0; i < env->subprog_cnt; i++) {
6479 		subprog_start = subprog_end;
6480 		subprog_end = env->subprog_info[i + 1].start;
6481 
6482 		len = subprog_end - subprog_start;
6483 		func[i] = bpf_prog_alloc(bpf_prog_size(len), GFP_USER);
6484 		if (!func[i])
6485 			goto out_free;
6486 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
6487 		       len * sizeof(struct bpf_insn));
6488 		func[i]->type = prog->type;
6489 		func[i]->len = len;
6490 		if (bpf_prog_calc_tag(func[i]))
6491 			goto out_free;
6492 		func[i]->is_func = 1;
6493 		func[i]->aux->func_idx = i;
6494 		/* the btf and func_info will be freed only at prog->aux */
6495 		func[i]->aux->btf = prog->aux->btf;
6496 		func[i]->aux->func_info = prog->aux->func_info;
6497 
6498 		/* Use bpf_prog_F_tag to indicate functions in stack traces.
6499 		 * Long term would need debug info to populate names
6500 		 */
6501 		func[i]->aux->name[0] = 'F';
6502 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
6503 		func[i]->jit_requested = 1;
6504 		func[i]->aux->linfo = prog->aux->linfo;
6505 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
6506 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
6507 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
6508 		func[i] = bpf_int_jit_compile(func[i]);
6509 		if (!func[i]->jited) {
6510 			err = -ENOTSUPP;
6511 			goto out_free;
6512 		}
6513 		cond_resched();
6514 	}
6515 	/* at this point all bpf functions were successfully JITed
6516 	 * now populate all bpf_calls with correct addresses and
6517 	 * run last pass of JIT
6518 	 */
6519 	for (i = 0; i < env->subprog_cnt; i++) {
6520 		insn = func[i]->insnsi;
6521 		for (j = 0; j < func[i]->len; j++, insn++) {
6522 			if (insn->code != (BPF_JMP | BPF_CALL) ||
6523 			    insn->src_reg != BPF_PSEUDO_CALL)
6524 				continue;
6525 			subprog = insn->off;
6526 			insn->imm = (u64 (*)(u64, u64, u64, u64, u64))
6527 				func[subprog]->bpf_func -
6528 				__bpf_call_base;
6529 		}
6530 
6531 		/* we use the aux data to keep a list of the start addresses
6532 		 * of the JITed images for each function in the program
6533 		 *
6534 		 * for some architectures, such as powerpc64, the imm field
6535 		 * might not be large enough to hold the offset of the start
6536 		 * address of the callee's JITed image from __bpf_call_base
6537 		 *
6538 		 * in such cases, we can lookup the start address of a callee
6539 		 * by using its subprog id, available from the off field of
6540 		 * the call instruction, as an index for this list
6541 		 */
6542 		func[i]->aux->func = func;
6543 		func[i]->aux->func_cnt = env->subprog_cnt;
6544 	}
6545 	for (i = 0; i < env->subprog_cnt; i++) {
6546 		old_bpf_func = func[i]->bpf_func;
6547 		tmp = bpf_int_jit_compile(func[i]);
6548 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
6549 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
6550 			err = -ENOTSUPP;
6551 			goto out_free;
6552 		}
6553 		cond_resched();
6554 	}
6555 
6556 	/* finally lock prog and jit images for all functions and
6557 	 * populate kallsysm
6558 	 */
6559 	for (i = 0; i < env->subprog_cnt; i++) {
6560 		bpf_prog_lock_ro(func[i]);
6561 		bpf_prog_kallsyms_add(func[i]);
6562 	}
6563 
6564 	/* Last step: make now unused interpreter insns from main
6565 	 * prog consistent for later dump requests, so they can
6566 	 * later look the same as if they were interpreted only.
6567 	 */
6568 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
6569 		if (insn->code != (BPF_JMP | BPF_CALL) ||
6570 		    insn->src_reg != BPF_PSEUDO_CALL)
6571 			continue;
6572 		insn->off = env->insn_aux_data[i].call_imm;
6573 		subprog = find_subprog(env, i + insn->off + 1);
6574 		insn->imm = subprog;
6575 	}
6576 
6577 	prog->jited = 1;
6578 	prog->bpf_func = func[0]->bpf_func;
6579 	prog->aux->func = func;
6580 	prog->aux->func_cnt = env->subprog_cnt;
6581 	bpf_prog_free_unused_jited_linfo(prog);
6582 	return 0;
6583 out_free:
6584 	for (i = 0; i < env->subprog_cnt; i++)
6585 		if (func[i])
6586 			bpf_jit_free(func[i]);
6587 	kfree(func);
6588 out_undo_insn:
6589 	/* cleanup main prog to be interpreted */
6590 	prog->jit_requested = 0;
6591 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
6592 		if (insn->code != (BPF_JMP | BPF_CALL) ||
6593 		    insn->src_reg != BPF_PSEUDO_CALL)
6594 			continue;
6595 		insn->off = 0;
6596 		insn->imm = env->insn_aux_data[i].call_imm;
6597 	}
6598 	bpf_prog_free_jited_linfo(prog);
6599 	return err;
6600 }
6601 
6602 static int fixup_call_args(struct bpf_verifier_env *env)
6603 {
6604 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
6605 	struct bpf_prog *prog = env->prog;
6606 	struct bpf_insn *insn = prog->insnsi;
6607 	int i, depth;
6608 #endif
6609 	int err = 0;
6610 
6611 	if (env->prog->jit_requested &&
6612 	    !bpf_prog_is_dev_bound(env->prog->aux)) {
6613 		err = jit_subprogs(env);
6614 		if (err == 0)
6615 			return 0;
6616 		if (err == -EFAULT)
6617 			return err;
6618 	}
6619 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
6620 	for (i = 0; i < prog->len; i++, insn++) {
6621 		if (insn->code != (BPF_JMP | BPF_CALL) ||
6622 		    insn->src_reg != BPF_PSEUDO_CALL)
6623 			continue;
6624 		depth = get_callee_stack_depth(env, insn, i);
6625 		if (depth < 0)
6626 			return depth;
6627 		bpf_patch_call_args(insn, depth);
6628 	}
6629 	err = 0;
6630 #endif
6631 	return err;
6632 }
6633 
6634 /* fixup insn->imm field of bpf_call instructions
6635  * and inline eligible helpers as explicit sequence of BPF instructions
6636  *
6637  * this function is called after eBPF program passed verification
6638  */
6639 static int fixup_bpf_calls(struct bpf_verifier_env *env)
6640 {
6641 	struct bpf_prog *prog = env->prog;
6642 	struct bpf_insn *insn = prog->insnsi;
6643 	const struct bpf_func_proto *fn;
6644 	const int insn_cnt = prog->len;
6645 	const struct bpf_map_ops *ops;
6646 	struct bpf_insn_aux_data *aux;
6647 	struct bpf_insn insn_buf[16];
6648 	struct bpf_prog *new_prog;
6649 	struct bpf_map *map_ptr;
6650 	int i, cnt, delta = 0;
6651 
6652 	for (i = 0; i < insn_cnt; i++, insn++) {
6653 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
6654 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
6655 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
6656 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
6657 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
6658 			struct bpf_insn mask_and_div[] = {
6659 				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
6660 				/* Rx div 0 -> 0 */
6661 				BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
6662 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
6663 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
6664 				*insn,
6665 			};
6666 			struct bpf_insn mask_and_mod[] = {
6667 				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
6668 				/* Rx mod 0 -> Rx */
6669 				BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
6670 				*insn,
6671 			};
6672 			struct bpf_insn *patchlet;
6673 
6674 			if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
6675 			    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
6676 				patchlet = mask_and_div + (is64 ? 1 : 0);
6677 				cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
6678 			} else {
6679 				patchlet = mask_and_mod + (is64 ? 1 : 0);
6680 				cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
6681 			}
6682 
6683 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
6684 			if (!new_prog)
6685 				return -ENOMEM;
6686 
6687 			delta    += cnt - 1;
6688 			env->prog = prog = new_prog;
6689 			insn      = new_prog->insnsi + i + delta;
6690 			continue;
6691 		}
6692 
6693 		if (BPF_CLASS(insn->code) == BPF_LD &&
6694 		    (BPF_MODE(insn->code) == BPF_ABS ||
6695 		     BPF_MODE(insn->code) == BPF_IND)) {
6696 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
6697 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
6698 				verbose(env, "bpf verifier is misconfigured\n");
6699 				return -EINVAL;
6700 			}
6701 
6702 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
6703 			if (!new_prog)
6704 				return -ENOMEM;
6705 
6706 			delta    += cnt - 1;
6707 			env->prog = prog = new_prog;
6708 			insn      = new_prog->insnsi + i + delta;
6709 			continue;
6710 		}
6711 
6712 		if (insn->code != (BPF_JMP | BPF_CALL))
6713 			continue;
6714 		if (insn->src_reg == BPF_PSEUDO_CALL)
6715 			continue;
6716 
6717 		if (insn->imm == BPF_FUNC_get_route_realm)
6718 			prog->dst_needed = 1;
6719 		if (insn->imm == BPF_FUNC_get_prandom_u32)
6720 			bpf_user_rnd_init_once();
6721 		if (insn->imm == BPF_FUNC_override_return)
6722 			prog->kprobe_override = 1;
6723 		if (insn->imm == BPF_FUNC_tail_call) {
6724 			/* If we tail call into other programs, we
6725 			 * cannot make any assumptions since they can
6726 			 * be replaced dynamically during runtime in
6727 			 * the program array.
6728 			 */
6729 			prog->cb_access = 1;
6730 			env->prog->aux->stack_depth = MAX_BPF_STACK;
6731 			env->prog->aux->max_pkt_offset = MAX_PACKET_OFF;
6732 
6733 			/* mark bpf_tail_call as different opcode to avoid
6734 			 * conditional branch in the interpeter for every normal
6735 			 * call and to prevent accidental JITing by JIT compiler
6736 			 * that doesn't support bpf_tail_call yet
6737 			 */
6738 			insn->imm = 0;
6739 			insn->code = BPF_JMP | BPF_TAIL_CALL;
6740 
6741 			aux = &env->insn_aux_data[i + delta];
6742 			if (!bpf_map_ptr_unpriv(aux))
6743 				continue;
6744 
6745 			/* instead of changing every JIT dealing with tail_call
6746 			 * emit two extra insns:
6747 			 * if (index >= max_entries) goto out;
6748 			 * index &= array->index_mask;
6749 			 * to avoid out-of-bounds cpu speculation
6750 			 */
6751 			if (bpf_map_ptr_poisoned(aux)) {
6752 				verbose(env, "tail_call abusing map_ptr\n");
6753 				return -EINVAL;
6754 			}
6755 
6756 			map_ptr = BPF_MAP_PTR(aux->map_state);
6757 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
6758 						  map_ptr->max_entries, 2);
6759 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
6760 						    container_of(map_ptr,
6761 								 struct bpf_array,
6762 								 map)->index_mask);
6763 			insn_buf[2] = *insn;
6764 			cnt = 3;
6765 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
6766 			if (!new_prog)
6767 				return -ENOMEM;
6768 
6769 			delta    += cnt - 1;
6770 			env->prog = prog = new_prog;
6771 			insn      = new_prog->insnsi + i + delta;
6772 			continue;
6773 		}
6774 
6775 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
6776 		 * and other inlining handlers are currently limited to 64 bit
6777 		 * only.
6778 		 */
6779 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
6780 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
6781 		     insn->imm == BPF_FUNC_map_update_elem ||
6782 		     insn->imm == BPF_FUNC_map_delete_elem ||
6783 		     insn->imm == BPF_FUNC_map_push_elem   ||
6784 		     insn->imm == BPF_FUNC_map_pop_elem    ||
6785 		     insn->imm == BPF_FUNC_map_peek_elem)) {
6786 			aux = &env->insn_aux_data[i + delta];
6787 			if (bpf_map_ptr_poisoned(aux))
6788 				goto patch_call_imm;
6789 
6790 			map_ptr = BPF_MAP_PTR(aux->map_state);
6791 			ops = map_ptr->ops;
6792 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
6793 			    ops->map_gen_lookup) {
6794 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
6795 				if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
6796 					verbose(env, "bpf verifier is misconfigured\n");
6797 					return -EINVAL;
6798 				}
6799 
6800 				new_prog = bpf_patch_insn_data(env, i + delta,
6801 							       insn_buf, cnt);
6802 				if (!new_prog)
6803 					return -ENOMEM;
6804 
6805 				delta    += cnt - 1;
6806 				env->prog = prog = new_prog;
6807 				insn      = new_prog->insnsi + i + delta;
6808 				continue;
6809 			}
6810 
6811 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
6812 				     (void *(*)(struct bpf_map *map, void *key))NULL));
6813 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
6814 				     (int (*)(struct bpf_map *map, void *key))NULL));
6815 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
6816 				     (int (*)(struct bpf_map *map, void *key, void *value,
6817 					      u64 flags))NULL));
6818 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
6819 				     (int (*)(struct bpf_map *map, void *value,
6820 					      u64 flags))NULL));
6821 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
6822 				     (int (*)(struct bpf_map *map, void *value))NULL));
6823 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
6824 				     (int (*)(struct bpf_map *map, void *value))NULL));
6825 
6826 			switch (insn->imm) {
6827 			case BPF_FUNC_map_lookup_elem:
6828 				insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
6829 					    __bpf_call_base;
6830 				continue;
6831 			case BPF_FUNC_map_update_elem:
6832 				insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
6833 					    __bpf_call_base;
6834 				continue;
6835 			case BPF_FUNC_map_delete_elem:
6836 				insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
6837 					    __bpf_call_base;
6838 				continue;
6839 			case BPF_FUNC_map_push_elem:
6840 				insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
6841 					    __bpf_call_base;
6842 				continue;
6843 			case BPF_FUNC_map_pop_elem:
6844 				insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
6845 					    __bpf_call_base;
6846 				continue;
6847 			case BPF_FUNC_map_peek_elem:
6848 				insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
6849 					    __bpf_call_base;
6850 				continue;
6851 			}
6852 
6853 			goto patch_call_imm;
6854 		}
6855 
6856 patch_call_imm:
6857 		fn = env->ops->get_func_proto(insn->imm, env->prog);
6858 		/* all functions that have prototype and verifier allowed
6859 		 * programs to call them, must be real in-kernel functions
6860 		 */
6861 		if (!fn->func) {
6862 			verbose(env,
6863 				"kernel subsystem misconfigured func %s#%d\n",
6864 				func_id_name(insn->imm), insn->imm);
6865 			return -EFAULT;
6866 		}
6867 		insn->imm = fn->func - __bpf_call_base;
6868 	}
6869 
6870 	return 0;
6871 }
6872 
6873 static void free_states(struct bpf_verifier_env *env)
6874 {
6875 	struct bpf_verifier_state_list *sl, *sln;
6876 	int i;
6877 
6878 	if (!env->explored_states)
6879 		return;
6880 
6881 	for (i = 0; i < env->prog->len; i++) {
6882 		sl = env->explored_states[i];
6883 
6884 		if (sl)
6885 			while (sl != STATE_LIST_MARK) {
6886 				sln = sl->next;
6887 				free_verifier_state(&sl->state, false);
6888 				kfree(sl);
6889 				sl = sln;
6890 			}
6891 	}
6892 
6893 	kfree(env->explored_states);
6894 }
6895 
6896 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr,
6897 	      union bpf_attr __user *uattr)
6898 {
6899 	struct bpf_verifier_env *env;
6900 	struct bpf_verifier_log *log;
6901 	int ret = -EINVAL;
6902 
6903 	/* no program is valid */
6904 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
6905 		return -EINVAL;
6906 
6907 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
6908 	 * allocate/free it every time bpf_check() is called
6909 	 */
6910 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
6911 	if (!env)
6912 		return -ENOMEM;
6913 	log = &env->log;
6914 
6915 	env->insn_aux_data =
6916 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data),
6917 				   (*prog)->len));
6918 	ret = -ENOMEM;
6919 	if (!env->insn_aux_data)
6920 		goto err_free_env;
6921 	env->prog = *prog;
6922 	env->ops = bpf_verifier_ops[env->prog->type];
6923 
6924 	/* grab the mutex to protect few globals used by verifier */
6925 	mutex_lock(&bpf_verifier_lock);
6926 
6927 	if (attr->log_level || attr->log_buf || attr->log_size) {
6928 		/* user requested verbose verifier output
6929 		 * and supplied buffer to store the verification trace
6930 		 */
6931 		log->level = attr->log_level;
6932 		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
6933 		log->len_total = attr->log_size;
6934 
6935 		ret = -EINVAL;
6936 		/* log attributes have to be sane */
6937 		if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
6938 		    !log->level || !log->ubuf)
6939 			goto err_unlock;
6940 	}
6941 
6942 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
6943 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
6944 		env->strict_alignment = true;
6945 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
6946 		env->strict_alignment = false;
6947 
6948 	ret = replace_map_fd_with_map_ptr(env);
6949 	if (ret < 0)
6950 		goto skip_full_check;
6951 
6952 	if (bpf_prog_is_dev_bound(env->prog->aux)) {
6953 		ret = bpf_prog_offload_verifier_prep(env->prog);
6954 		if (ret)
6955 			goto skip_full_check;
6956 	}
6957 
6958 	env->explored_states = kcalloc(env->prog->len,
6959 				       sizeof(struct bpf_verifier_state_list *),
6960 				       GFP_USER);
6961 	ret = -ENOMEM;
6962 	if (!env->explored_states)
6963 		goto skip_full_check;
6964 
6965 	env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
6966 
6967 	ret = check_subprogs(env);
6968 	if (ret < 0)
6969 		goto skip_full_check;
6970 
6971 	ret = check_btf_info(env, attr, uattr);
6972 	if (ret < 0)
6973 		goto skip_full_check;
6974 
6975 	ret = check_cfg(env);
6976 	if (ret < 0)
6977 		goto skip_full_check;
6978 
6979 	ret = do_check(env);
6980 	if (env->cur_state) {
6981 		free_verifier_state(env->cur_state, true);
6982 		env->cur_state = NULL;
6983 	}
6984 
6985 	if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
6986 		ret = bpf_prog_offload_finalize(env);
6987 
6988 skip_full_check:
6989 	while (!pop_stack(env, NULL, NULL));
6990 	free_states(env);
6991 
6992 	if (ret == 0)
6993 		ret = check_max_stack_depth(env);
6994 
6995 	/* instruction rewrites happen after this point */
6996 	if (ret == 0)
6997 		sanitize_dead_code(env);
6998 
6999 	if (ret == 0)
7000 		/* program is valid, convert *(u32*)(ctx + off) accesses */
7001 		ret = convert_ctx_accesses(env);
7002 
7003 	if (ret == 0)
7004 		ret = fixup_bpf_calls(env);
7005 
7006 	if (ret == 0)
7007 		ret = fixup_call_args(env);
7008 
7009 	if (log->level && bpf_verifier_log_full(log))
7010 		ret = -ENOSPC;
7011 	if (log->level && !log->ubuf) {
7012 		ret = -EFAULT;
7013 		goto err_release_maps;
7014 	}
7015 
7016 	if (ret == 0 && env->used_map_cnt) {
7017 		/* if program passed verifier, update used_maps in bpf_prog_info */
7018 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
7019 							  sizeof(env->used_maps[0]),
7020 							  GFP_KERNEL);
7021 
7022 		if (!env->prog->aux->used_maps) {
7023 			ret = -ENOMEM;
7024 			goto err_release_maps;
7025 		}
7026 
7027 		memcpy(env->prog->aux->used_maps, env->used_maps,
7028 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
7029 		env->prog->aux->used_map_cnt = env->used_map_cnt;
7030 
7031 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
7032 		 * bpf_ld_imm64 instructions
7033 		 */
7034 		convert_pseudo_ld_imm64(env);
7035 	}
7036 
7037 	if (ret == 0)
7038 		adjust_btf_func(env);
7039 
7040 err_release_maps:
7041 	if (!env->prog->aux->used_maps)
7042 		/* if we didn't copy map pointers into bpf_prog_info, release
7043 		 * them now. Otherwise free_used_maps() will release them.
7044 		 */
7045 		release_maps(env);
7046 	*prog = env->prog;
7047 err_unlock:
7048 	mutex_unlock(&bpf_verifier_lock);
7049 	vfree(env->insn_aux_data);
7050 err_free_env:
7051 	kfree(env);
7052 	return ret;
7053 }
7054