1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 2 * Copyright (c) 2016 Facebook 3 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of version 2 of the GNU General Public 7 * License as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, but 10 * WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 12 * General Public License for more details. 13 */ 14 #include <uapi/linux/btf.h> 15 #include <linux/kernel.h> 16 #include <linux/types.h> 17 #include <linux/slab.h> 18 #include <linux/bpf.h> 19 #include <linux/btf.h> 20 #include <linux/bpf_verifier.h> 21 #include <linux/filter.h> 22 #include <net/netlink.h> 23 #include <linux/file.h> 24 #include <linux/vmalloc.h> 25 #include <linux/stringify.h> 26 #include <linux/bsearch.h> 27 #include <linux/sort.h> 28 #include <linux/perf_event.h> 29 #include <linux/ctype.h> 30 31 #include "disasm.h" 32 33 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 34 #define BPF_PROG_TYPE(_id, _name) \ 35 [_id] = & _name ## _verifier_ops, 36 #define BPF_MAP_TYPE(_id, _ops) 37 #include <linux/bpf_types.h> 38 #undef BPF_PROG_TYPE 39 #undef BPF_MAP_TYPE 40 }; 41 42 /* bpf_check() is a static code analyzer that walks eBPF program 43 * instruction by instruction and updates register/stack state. 44 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 45 * 46 * The first pass is depth-first-search to check that the program is a DAG. 47 * It rejects the following programs: 48 * - larger than BPF_MAXINSNS insns 49 * - if loop is present (detected via back-edge) 50 * - unreachable insns exist (shouldn't be a forest. program = one function) 51 * - out of bounds or malformed jumps 52 * The second pass is all possible path descent from the 1st insn. 53 * Since it's analyzing all pathes through the program, the length of the 54 * analysis is limited to 64k insn, which may be hit even if total number of 55 * insn is less then 4K, but there are too many branches that change stack/regs. 56 * Number of 'branches to be analyzed' is limited to 1k 57 * 58 * On entry to each instruction, each register has a type, and the instruction 59 * changes the types of the registers depending on instruction semantics. 60 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 61 * copied to R1. 62 * 63 * All registers are 64-bit. 64 * R0 - return register 65 * R1-R5 argument passing registers 66 * R6-R9 callee saved registers 67 * R10 - frame pointer read-only 68 * 69 * At the start of BPF program the register R1 contains a pointer to bpf_context 70 * and has type PTR_TO_CTX. 71 * 72 * Verifier tracks arithmetic operations on pointers in case: 73 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 74 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 75 * 1st insn copies R10 (which has FRAME_PTR) type into R1 76 * and 2nd arithmetic instruction is pattern matched to recognize 77 * that it wants to construct a pointer to some element within stack. 78 * So after 2nd insn, the register R1 has type PTR_TO_STACK 79 * (and -20 constant is saved for further stack bounds checking). 80 * Meaning that this reg is a pointer to stack plus known immediate constant. 81 * 82 * Most of the time the registers have SCALAR_VALUE type, which 83 * means the register has some value, but it's not a valid pointer. 84 * (like pointer plus pointer becomes SCALAR_VALUE type) 85 * 86 * When verifier sees load or store instructions the type of base register 87 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 88 * four pointer types recognized by check_mem_access() function. 89 * 90 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 91 * and the range of [ptr, ptr + map's value_size) is accessible. 92 * 93 * registers used to pass values to function calls are checked against 94 * function argument constraints. 95 * 96 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 97 * It means that the register type passed to this function must be 98 * PTR_TO_STACK and it will be used inside the function as 99 * 'pointer to map element key' 100 * 101 * For example the argument constraints for bpf_map_lookup_elem(): 102 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 103 * .arg1_type = ARG_CONST_MAP_PTR, 104 * .arg2_type = ARG_PTR_TO_MAP_KEY, 105 * 106 * ret_type says that this function returns 'pointer to map elem value or null' 107 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 108 * 2nd argument should be a pointer to stack, which will be used inside 109 * the helper function as a pointer to map element key. 110 * 111 * On the kernel side the helper function looks like: 112 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 113 * { 114 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 115 * void *key = (void *) (unsigned long) r2; 116 * void *value; 117 * 118 * here kernel can access 'key' and 'map' pointers safely, knowing that 119 * [key, key + map->key_size) bytes are valid and were initialized on 120 * the stack of eBPF program. 121 * } 122 * 123 * Corresponding eBPF program may look like: 124 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 125 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 126 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 127 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 128 * here verifier looks at prototype of map_lookup_elem() and sees: 129 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 130 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 131 * 132 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 133 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 134 * and were initialized prior to this call. 135 * If it's ok, then verifier allows this BPF_CALL insn and looks at 136 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 137 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 138 * returns ether pointer to map value or NULL. 139 * 140 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 141 * insn, the register holding that pointer in the true branch changes state to 142 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 143 * branch. See check_cond_jmp_op(). 144 * 145 * After the call R0 is set to return type of the function and registers R1-R5 146 * are set to NOT_INIT to indicate that they are no longer readable. 147 * 148 * The following reference types represent a potential reference to a kernel 149 * resource which, after first being allocated, must be checked and freed by 150 * the BPF program: 151 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 152 * 153 * When the verifier sees a helper call return a reference type, it allocates a 154 * pointer id for the reference and stores it in the current function state. 155 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 156 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 157 * passes through a NULL-check conditional. For the branch wherein the state is 158 * changed to CONST_IMM, the verifier releases the reference. 159 * 160 * For each helper function that allocates a reference, such as 161 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 162 * bpf_sk_release(). When a reference type passes into the release function, 163 * the verifier also releases the reference. If any unchecked or unreleased 164 * reference remains at the end of the program, the verifier rejects it. 165 */ 166 167 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 168 struct bpf_verifier_stack_elem { 169 /* verifer state is 'st' 170 * before processing instruction 'insn_idx' 171 * and after processing instruction 'prev_insn_idx' 172 */ 173 struct bpf_verifier_state st; 174 int insn_idx; 175 int prev_insn_idx; 176 struct bpf_verifier_stack_elem *next; 177 }; 178 179 #define BPF_COMPLEXITY_LIMIT_INSNS 131072 180 #define BPF_COMPLEXITY_LIMIT_STACK 1024 181 #define BPF_COMPLEXITY_LIMIT_STATES 64 182 183 #define BPF_MAP_PTR_UNPRIV 1UL 184 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 185 POISON_POINTER_DELTA)) 186 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 187 188 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 189 { 190 return BPF_MAP_PTR(aux->map_state) == BPF_MAP_PTR_POISON; 191 } 192 193 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 194 { 195 return aux->map_state & BPF_MAP_PTR_UNPRIV; 196 } 197 198 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 199 const struct bpf_map *map, bool unpriv) 200 { 201 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 202 unpriv |= bpf_map_ptr_unpriv(aux); 203 aux->map_state = (unsigned long)map | 204 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 205 } 206 207 struct bpf_call_arg_meta { 208 struct bpf_map *map_ptr; 209 bool raw_mode; 210 bool pkt_access; 211 int regno; 212 int access_size; 213 s64 msize_smax_value; 214 u64 msize_umax_value; 215 int ptr_id; 216 }; 217 218 static DEFINE_MUTEX(bpf_verifier_lock); 219 220 static const struct bpf_line_info * 221 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 222 { 223 const struct bpf_line_info *linfo; 224 const struct bpf_prog *prog; 225 u32 i, nr_linfo; 226 227 prog = env->prog; 228 nr_linfo = prog->aux->nr_linfo; 229 230 if (!nr_linfo || insn_off >= prog->len) 231 return NULL; 232 233 linfo = prog->aux->linfo; 234 for (i = 1; i < nr_linfo; i++) 235 if (insn_off < linfo[i].insn_off) 236 break; 237 238 return &linfo[i - 1]; 239 } 240 241 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, 242 va_list args) 243 { 244 unsigned int n; 245 246 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 247 248 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 249 "verifier log line truncated - local buffer too short\n"); 250 251 n = min(log->len_total - log->len_used - 1, n); 252 log->kbuf[n] = '\0'; 253 254 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 255 log->len_used += n; 256 else 257 log->ubuf = NULL; 258 } 259 260 /* log_level controls verbosity level of eBPF verifier. 261 * bpf_verifier_log_write() is used to dump the verification trace to the log, 262 * so the user can figure out what's wrong with the program 263 */ 264 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 265 const char *fmt, ...) 266 { 267 va_list args; 268 269 if (!bpf_verifier_log_needed(&env->log)) 270 return; 271 272 va_start(args, fmt); 273 bpf_verifier_vlog(&env->log, fmt, args); 274 va_end(args); 275 } 276 EXPORT_SYMBOL_GPL(bpf_verifier_log_write); 277 278 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 279 { 280 struct bpf_verifier_env *env = private_data; 281 va_list args; 282 283 if (!bpf_verifier_log_needed(&env->log)) 284 return; 285 286 va_start(args, fmt); 287 bpf_verifier_vlog(&env->log, fmt, args); 288 va_end(args); 289 } 290 291 static const char *ltrim(const char *s) 292 { 293 while (isspace(*s)) 294 s++; 295 296 return s; 297 } 298 299 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 300 u32 insn_off, 301 const char *prefix_fmt, ...) 302 { 303 const struct bpf_line_info *linfo; 304 305 if (!bpf_verifier_log_needed(&env->log)) 306 return; 307 308 linfo = find_linfo(env, insn_off); 309 if (!linfo || linfo == env->prev_linfo) 310 return; 311 312 if (prefix_fmt) { 313 va_list args; 314 315 va_start(args, prefix_fmt); 316 bpf_verifier_vlog(&env->log, prefix_fmt, args); 317 va_end(args); 318 } 319 320 verbose(env, "%s\n", 321 ltrim(btf_name_by_offset(env->prog->aux->btf, 322 linfo->line_off))); 323 324 env->prev_linfo = linfo; 325 } 326 327 static bool type_is_pkt_pointer(enum bpf_reg_type type) 328 { 329 return type == PTR_TO_PACKET || 330 type == PTR_TO_PACKET_META; 331 } 332 333 static bool reg_type_may_be_null(enum bpf_reg_type type) 334 { 335 return type == PTR_TO_MAP_VALUE_OR_NULL || 336 type == PTR_TO_SOCKET_OR_NULL; 337 } 338 339 static bool type_is_refcounted(enum bpf_reg_type type) 340 { 341 return type == PTR_TO_SOCKET; 342 } 343 344 static bool type_is_refcounted_or_null(enum bpf_reg_type type) 345 { 346 return type == PTR_TO_SOCKET || type == PTR_TO_SOCKET_OR_NULL; 347 } 348 349 static bool reg_is_refcounted(const struct bpf_reg_state *reg) 350 { 351 return type_is_refcounted(reg->type); 352 } 353 354 static bool reg_is_refcounted_or_null(const struct bpf_reg_state *reg) 355 { 356 return type_is_refcounted_or_null(reg->type); 357 } 358 359 static bool arg_type_is_refcounted(enum bpf_arg_type type) 360 { 361 return type == ARG_PTR_TO_SOCKET; 362 } 363 364 /* Determine whether the function releases some resources allocated by another 365 * function call. The first reference type argument will be assumed to be 366 * released by release_reference(). 367 */ 368 static bool is_release_function(enum bpf_func_id func_id) 369 { 370 return func_id == BPF_FUNC_sk_release; 371 } 372 373 /* string representation of 'enum bpf_reg_type' */ 374 static const char * const reg_type_str[] = { 375 [NOT_INIT] = "?", 376 [SCALAR_VALUE] = "inv", 377 [PTR_TO_CTX] = "ctx", 378 [CONST_PTR_TO_MAP] = "map_ptr", 379 [PTR_TO_MAP_VALUE] = "map_value", 380 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null", 381 [PTR_TO_STACK] = "fp", 382 [PTR_TO_PACKET] = "pkt", 383 [PTR_TO_PACKET_META] = "pkt_meta", 384 [PTR_TO_PACKET_END] = "pkt_end", 385 [PTR_TO_FLOW_KEYS] = "flow_keys", 386 [PTR_TO_SOCKET] = "sock", 387 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null", 388 }; 389 390 static char slot_type_char[] = { 391 [STACK_INVALID] = '?', 392 [STACK_SPILL] = 'r', 393 [STACK_MISC] = 'm', 394 [STACK_ZERO] = '0', 395 }; 396 397 static void print_liveness(struct bpf_verifier_env *env, 398 enum bpf_reg_liveness live) 399 { 400 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 401 verbose(env, "_"); 402 if (live & REG_LIVE_READ) 403 verbose(env, "r"); 404 if (live & REG_LIVE_WRITTEN) 405 verbose(env, "w"); 406 if (live & REG_LIVE_DONE) 407 verbose(env, "D"); 408 } 409 410 static struct bpf_func_state *func(struct bpf_verifier_env *env, 411 const struct bpf_reg_state *reg) 412 { 413 struct bpf_verifier_state *cur = env->cur_state; 414 415 return cur->frame[reg->frameno]; 416 } 417 418 static void print_verifier_state(struct bpf_verifier_env *env, 419 const struct bpf_func_state *state) 420 { 421 const struct bpf_reg_state *reg; 422 enum bpf_reg_type t; 423 int i; 424 425 if (state->frameno) 426 verbose(env, " frame%d:", state->frameno); 427 for (i = 0; i < MAX_BPF_REG; i++) { 428 reg = &state->regs[i]; 429 t = reg->type; 430 if (t == NOT_INIT) 431 continue; 432 verbose(env, " R%d", i); 433 print_liveness(env, reg->live); 434 verbose(env, "=%s", reg_type_str[t]); 435 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 436 tnum_is_const(reg->var_off)) { 437 /* reg->off should be 0 for SCALAR_VALUE */ 438 verbose(env, "%lld", reg->var_off.value + reg->off); 439 if (t == PTR_TO_STACK) 440 verbose(env, ",call_%d", func(env, reg)->callsite); 441 } else { 442 verbose(env, "(id=%d", reg->id); 443 if (t != SCALAR_VALUE) 444 verbose(env, ",off=%d", reg->off); 445 if (type_is_pkt_pointer(t)) 446 verbose(env, ",r=%d", reg->range); 447 else if (t == CONST_PTR_TO_MAP || 448 t == PTR_TO_MAP_VALUE || 449 t == PTR_TO_MAP_VALUE_OR_NULL) 450 verbose(env, ",ks=%d,vs=%d", 451 reg->map_ptr->key_size, 452 reg->map_ptr->value_size); 453 if (tnum_is_const(reg->var_off)) { 454 /* Typically an immediate SCALAR_VALUE, but 455 * could be a pointer whose offset is too big 456 * for reg->off 457 */ 458 verbose(env, ",imm=%llx", reg->var_off.value); 459 } else { 460 if (reg->smin_value != reg->umin_value && 461 reg->smin_value != S64_MIN) 462 verbose(env, ",smin_value=%lld", 463 (long long)reg->smin_value); 464 if (reg->smax_value != reg->umax_value && 465 reg->smax_value != S64_MAX) 466 verbose(env, ",smax_value=%lld", 467 (long long)reg->smax_value); 468 if (reg->umin_value != 0) 469 verbose(env, ",umin_value=%llu", 470 (unsigned long long)reg->umin_value); 471 if (reg->umax_value != U64_MAX) 472 verbose(env, ",umax_value=%llu", 473 (unsigned long long)reg->umax_value); 474 if (!tnum_is_unknown(reg->var_off)) { 475 char tn_buf[48]; 476 477 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 478 verbose(env, ",var_off=%s", tn_buf); 479 } 480 } 481 verbose(env, ")"); 482 } 483 } 484 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 485 char types_buf[BPF_REG_SIZE + 1]; 486 bool valid = false; 487 int j; 488 489 for (j = 0; j < BPF_REG_SIZE; j++) { 490 if (state->stack[i].slot_type[j] != STACK_INVALID) 491 valid = true; 492 types_buf[j] = slot_type_char[ 493 state->stack[i].slot_type[j]]; 494 } 495 types_buf[BPF_REG_SIZE] = 0; 496 if (!valid) 497 continue; 498 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 499 print_liveness(env, state->stack[i].spilled_ptr.live); 500 if (state->stack[i].slot_type[0] == STACK_SPILL) 501 verbose(env, "=%s", 502 reg_type_str[state->stack[i].spilled_ptr.type]); 503 else 504 verbose(env, "=%s", types_buf); 505 } 506 if (state->acquired_refs && state->refs[0].id) { 507 verbose(env, " refs=%d", state->refs[0].id); 508 for (i = 1; i < state->acquired_refs; i++) 509 if (state->refs[i].id) 510 verbose(env, ",%d", state->refs[i].id); 511 } 512 verbose(env, "\n"); 513 } 514 515 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 516 static int copy_##NAME##_state(struct bpf_func_state *dst, \ 517 const struct bpf_func_state *src) \ 518 { \ 519 if (!src->FIELD) \ 520 return 0; \ 521 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \ 522 /* internal bug, make state invalid to reject the program */ \ 523 memset(dst, 0, sizeof(*dst)); \ 524 return -EFAULT; \ 525 } \ 526 memcpy(dst->FIELD, src->FIELD, \ 527 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \ 528 return 0; \ 529 } 530 /* copy_reference_state() */ 531 COPY_STATE_FN(reference, acquired_refs, refs, 1) 532 /* copy_stack_state() */ 533 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 534 #undef COPY_STATE_FN 535 536 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 537 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \ 538 bool copy_old) \ 539 { \ 540 u32 old_size = state->COUNT; \ 541 struct bpf_##NAME##_state *new_##FIELD; \ 542 int slot = size / SIZE; \ 543 \ 544 if (size <= old_size || !size) { \ 545 if (copy_old) \ 546 return 0; \ 547 state->COUNT = slot * SIZE; \ 548 if (!size && old_size) { \ 549 kfree(state->FIELD); \ 550 state->FIELD = NULL; \ 551 } \ 552 return 0; \ 553 } \ 554 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \ 555 GFP_KERNEL); \ 556 if (!new_##FIELD) \ 557 return -ENOMEM; \ 558 if (copy_old) { \ 559 if (state->FIELD) \ 560 memcpy(new_##FIELD, state->FIELD, \ 561 sizeof(*new_##FIELD) * (old_size / SIZE)); \ 562 memset(new_##FIELD + old_size / SIZE, 0, \ 563 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \ 564 } \ 565 state->COUNT = slot * SIZE; \ 566 kfree(state->FIELD); \ 567 state->FIELD = new_##FIELD; \ 568 return 0; \ 569 } 570 /* realloc_reference_state() */ 571 REALLOC_STATE_FN(reference, acquired_refs, refs, 1) 572 /* realloc_stack_state() */ 573 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 574 #undef REALLOC_STATE_FN 575 576 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to 577 * make it consume minimal amount of memory. check_stack_write() access from 578 * the program calls into realloc_func_state() to grow the stack size. 579 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state 580 * which realloc_stack_state() copies over. It points to previous 581 * bpf_verifier_state which is never reallocated. 582 */ 583 static int realloc_func_state(struct bpf_func_state *state, int stack_size, 584 int refs_size, bool copy_old) 585 { 586 int err = realloc_reference_state(state, refs_size, copy_old); 587 if (err) 588 return err; 589 return realloc_stack_state(state, stack_size, copy_old); 590 } 591 592 /* Acquire a pointer id from the env and update the state->refs to include 593 * this new pointer reference. 594 * On success, returns a valid pointer id to associate with the register 595 * On failure, returns a negative errno. 596 */ 597 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 598 { 599 struct bpf_func_state *state = cur_func(env); 600 int new_ofs = state->acquired_refs; 601 int id, err; 602 603 err = realloc_reference_state(state, state->acquired_refs + 1, true); 604 if (err) 605 return err; 606 id = ++env->id_gen; 607 state->refs[new_ofs].id = id; 608 state->refs[new_ofs].insn_idx = insn_idx; 609 610 return id; 611 } 612 613 /* release function corresponding to acquire_reference_state(). Idempotent. */ 614 static int __release_reference_state(struct bpf_func_state *state, int ptr_id) 615 { 616 int i, last_idx; 617 618 if (!ptr_id) 619 return -EFAULT; 620 621 last_idx = state->acquired_refs - 1; 622 for (i = 0; i < state->acquired_refs; i++) { 623 if (state->refs[i].id == ptr_id) { 624 if (last_idx && i != last_idx) 625 memcpy(&state->refs[i], &state->refs[last_idx], 626 sizeof(*state->refs)); 627 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 628 state->acquired_refs--; 629 return 0; 630 } 631 } 632 return -EFAULT; 633 } 634 635 /* variation on the above for cases where we expect that there must be an 636 * outstanding reference for the specified ptr_id. 637 */ 638 static int release_reference_state(struct bpf_verifier_env *env, int ptr_id) 639 { 640 struct bpf_func_state *state = cur_func(env); 641 int err; 642 643 err = __release_reference_state(state, ptr_id); 644 if (WARN_ON_ONCE(err != 0)) 645 verbose(env, "verifier internal error: can't release reference\n"); 646 return err; 647 } 648 649 static int transfer_reference_state(struct bpf_func_state *dst, 650 struct bpf_func_state *src) 651 { 652 int err = realloc_reference_state(dst, src->acquired_refs, false); 653 if (err) 654 return err; 655 err = copy_reference_state(dst, src); 656 if (err) 657 return err; 658 return 0; 659 } 660 661 static void free_func_state(struct bpf_func_state *state) 662 { 663 if (!state) 664 return; 665 kfree(state->refs); 666 kfree(state->stack); 667 kfree(state); 668 } 669 670 static void free_verifier_state(struct bpf_verifier_state *state, 671 bool free_self) 672 { 673 int i; 674 675 for (i = 0; i <= state->curframe; i++) { 676 free_func_state(state->frame[i]); 677 state->frame[i] = NULL; 678 } 679 if (free_self) 680 kfree(state); 681 } 682 683 /* copy verifier state from src to dst growing dst stack space 684 * when necessary to accommodate larger src stack 685 */ 686 static int copy_func_state(struct bpf_func_state *dst, 687 const struct bpf_func_state *src) 688 { 689 int err; 690 691 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs, 692 false); 693 if (err) 694 return err; 695 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 696 err = copy_reference_state(dst, src); 697 if (err) 698 return err; 699 return copy_stack_state(dst, src); 700 } 701 702 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 703 const struct bpf_verifier_state *src) 704 { 705 struct bpf_func_state *dst; 706 int i, err; 707 708 /* if dst has more stack frames then src frame, free them */ 709 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 710 free_func_state(dst_state->frame[i]); 711 dst_state->frame[i] = NULL; 712 } 713 dst_state->curframe = src->curframe; 714 for (i = 0; i <= src->curframe; i++) { 715 dst = dst_state->frame[i]; 716 if (!dst) { 717 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 718 if (!dst) 719 return -ENOMEM; 720 dst_state->frame[i] = dst; 721 } 722 err = copy_func_state(dst, src->frame[i]); 723 if (err) 724 return err; 725 } 726 return 0; 727 } 728 729 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 730 int *insn_idx) 731 { 732 struct bpf_verifier_state *cur = env->cur_state; 733 struct bpf_verifier_stack_elem *elem, *head = env->head; 734 int err; 735 736 if (env->head == NULL) 737 return -ENOENT; 738 739 if (cur) { 740 err = copy_verifier_state(cur, &head->st); 741 if (err) 742 return err; 743 } 744 if (insn_idx) 745 *insn_idx = head->insn_idx; 746 if (prev_insn_idx) 747 *prev_insn_idx = head->prev_insn_idx; 748 elem = head->next; 749 free_verifier_state(&head->st, false); 750 kfree(head); 751 env->head = elem; 752 env->stack_size--; 753 return 0; 754 } 755 756 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 757 int insn_idx, int prev_insn_idx) 758 { 759 struct bpf_verifier_state *cur = env->cur_state; 760 struct bpf_verifier_stack_elem *elem; 761 int err; 762 763 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 764 if (!elem) 765 goto err; 766 767 elem->insn_idx = insn_idx; 768 elem->prev_insn_idx = prev_insn_idx; 769 elem->next = env->head; 770 env->head = elem; 771 env->stack_size++; 772 err = copy_verifier_state(&elem->st, cur); 773 if (err) 774 goto err; 775 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) { 776 verbose(env, "BPF program is too complex\n"); 777 goto err; 778 } 779 return &elem->st; 780 err: 781 free_verifier_state(env->cur_state, true); 782 env->cur_state = NULL; 783 /* pop all elements and return */ 784 while (!pop_stack(env, NULL, NULL)); 785 return NULL; 786 } 787 788 #define CALLER_SAVED_REGS 6 789 static const int caller_saved[CALLER_SAVED_REGS] = { 790 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 791 }; 792 793 static void __mark_reg_not_init(struct bpf_reg_state *reg); 794 795 /* Mark the unknown part of a register (variable offset or scalar value) as 796 * known to have the value @imm. 797 */ 798 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 799 { 800 /* Clear id, off, and union(map_ptr, range) */ 801 memset(((u8 *)reg) + sizeof(reg->type), 0, 802 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 803 reg->var_off = tnum_const(imm); 804 reg->smin_value = (s64)imm; 805 reg->smax_value = (s64)imm; 806 reg->umin_value = imm; 807 reg->umax_value = imm; 808 } 809 810 /* Mark the 'variable offset' part of a register as zero. This should be 811 * used only on registers holding a pointer type. 812 */ 813 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 814 { 815 __mark_reg_known(reg, 0); 816 } 817 818 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 819 { 820 __mark_reg_known(reg, 0); 821 reg->type = SCALAR_VALUE; 822 } 823 824 static void mark_reg_known_zero(struct bpf_verifier_env *env, 825 struct bpf_reg_state *regs, u32 regno) 826 { 827 if (WARN_ON(regno >= MAX_BPF_REG)) { 828 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 829 /* Something bad happened, let's kill all regs */ 830 for (regno = 0; regno < MAX_BPF_REG; regno++) 831 __mark_reg_not_init(regs + regno); 832 return; 833 } 834 __mark_reg_known_zero(regs + regno); 835 } 836 837 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 838 { 839 return type_is_pkt_pointer(reg->type); 840 } 841 842 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 843 { 844 return reg_is_pkt_pointer(reg) || 845 reg->type == PTR_TO_PACKET_END; 846 } 847 848 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 849 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 850 enum bpf_reg_type which) 851 { 852 /* The register can already have a range from prior markings. 853 * This is fine as long as it hasn't been advanced from its 854 * origin. 855 */ 856 return reg->type == which && 857 reg->id == 0 && 858 reg->off == 0 && 859 tnum_equals_const(reg->var_off, 0); 860 } 861 862 /* Attempts to improve min/max values based on var_off information */ 863 static void __update_reg_bounds(struct bpf_reg_state *reg) 864 { 865 /* min signed is max(sign bit) | min(other bits) */ 866 reg->smin_value = max_t(s64, reg->smin_value, 867 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 868 /* max signed is min(sign bit) | max(other bits) */ 869 reg->smax_value = min_t(s64, reg->smax_value, 870 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 871 reg->umin_value = max(reg->umin_value, reg->var_off.value); 872 reg->umax_value = min(reg->umax_value, 873 reg->var_off.value | reg->var_off.mask); 874 } 875 876 /* Uses signed min/max values to inform unsigned, and vice-versa */ 877 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 878 { 879 /* Learn sign from signed bounds. 880 * If we cannot cross the sign boundary, then signed and unsigned bounds 881 * are the same, so combine. This works even in the negative case, e.g. 882 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 883 */ 884 if (reg->smin_value >= 0 || reg->smax_value < 0) { 885 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 886 reg->umin_value); 887 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 888 reg->umax_value); 889 return; 890 } 891 /* Learn sign from unsigned bounds. Signed bounds cross the sign 892 * boundary, so we must be careful. 893 */ 894 if ((s64)reg->umax_value >= 0) { 895 /* Positive. We can't learn anything from the smin, but smax 896 * is positive, hence safe. 897 */ 898 reg->smin_value = reg->umin_value; 899 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 900 reg->umax_value); 901 } else if ((s64)reg->umin_value < 0) { 902 /* Negative. We can't learn anything from the smax, but smin 903 * is negative, hence safe. 904 */ 905 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 906 reg->umin_value); 907 reg->smax_value = reg->umax_value; 908 } 909 } 910 911 /* Attempts to improve var_off based on unsigned min/max information */ 912 static void __reg_bound_offset(struct bpf_reg_state *reg) 913 { 914 reg->var_off = tnum_intersect(reg->var_off, 915 tnum_range(reg->umin_value, 916 reg->umax_value)); 917 } 918 919 /* Reset the min/max bounds of a register */ 920 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 921 { 922 reg->smin_value = S64_MIN; 923 reg->smax_value = S64_MAX; 924 reg->umin_value = 0; 925 reg->umax_value = U64_MAX; 926 } 927 928 /* Mark a register as having a completely unknown (scalar) value. */ 929 static void __mark_reg_unknown(struct bpf_reg_state *reg) 930 { 931 /* 932 * Clear type, id, off, and union(map_ptr, range) and 933 * padding between 'type' and union 934 */ 935 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 936 reg->type = SCALAR_VALUE; 937 reg->var_off = tnum_unknown; 938 reg->frameno = 0; 939 __mark_reg_unbounded(reg); 940 } 941 942 static void mark_reg_unknown(struct bpf_verifier_env *env, 943 struct bpf_reg_state *regs, u32 regno) 944 { 945 if (WARN_ON(regno >= MAX_BPF_REG)) { 946 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 947 /* Something bad happened, let's kill all regs except FP */ 948 for (regno = 0; regno < BPF_REG_FP; regno++) 949 __mark_reg_not_init(regs + regno); 950 return; 951 } 952 __mark_reg_unknown(regs + regno); 953 } 954 955 static void __mark_reg_not_init(struct bpf_reg_state *reg) 956 { 957 __mark_reg_unknown(reg); 958 reg->type = NOT_INIT; 959 } 960 961 static void mark_reg_not_init(struct bpf_verifier_env *env, 962 struct bpf_reg_state *regs, u32 regno) 963 { 964 if (WARN_ON(regno >= MAX_BPF_REG)) { 965 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 966 /* Something bad happened, let's kill all regs except FP */ 967 for (regno = 0; regno < BPF_REG_FP; regno++) 968 __mark_reg_not_init(regs + regno); 969 return; 970 } 971 __mark_reg_not_init(regs + regno); 972 } 973 974 static void init_reg_state(struct bpf_verifier_env *env, 975 struct bpf_func_state *state) 976 { 977 struct bpf_reg_state *regs = state->regs; 978 int i; 979 980 for (i = 0; i < MAX_BPF_REG; i++) { 981 mark_reg_not_init(env, regs, i); 982 regs[i].live = REG_LIVE_NONE; 983 regs[i].parent = NULL; 984 } 985 986 /* frame pointer */ 987 regs[BPF_REG_FP].type = PTR_TO_STACK; 988 mark_reg_known_zero(env, regs, BPF_REG_FP); 989 regs[BPF_REG_FP].frameno = state->frameno; 990 991 /* 1st arg to a function */ 992 regs[BPF_REG_1].type = PTR_TO_CTX; 993 mark_reg_known_zero(env, regs, BPF_REG_1); 994 } 995 996 #define BPF_MAIN_FUNC (-1) 997 static void init_func_state(struct bpf_verifier_env *env, 998 struct bpf_func_state *state, 999 int callsite, int frameno, int subprogno) 1000 { 1001 state->callsite = callsite; 1002 state->frameno = frameno; 1003 state->subprogno = subprogno; 1004 init_reg_state(env, state); 1005 } 1006 1007 enum reg_arg_type { 1008 SRC_OP, /* register is used as source operand */ 1009 DST_OP, /* register is used as destination operand */ 1010 DST_OP_NO_MARK /* same as above, check only, don't mark */ 1011 }; 1012 1013 static int cmp_subprogs(const void *a, const void *b) 1014 { 1015 return ((struct bpf_subprog_info *)a)->start - 1016 ((struct bpf_subprog_info *)b)->start; 1017 } 1018 1019 static int find_subprog(struct bpf_verifier_env *env, int off) 1020 { 1021 struct bpf_subprog_info *p; 1022 1023 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 1024 sizeof(env->subprog_info[0]), cmp_subprogs); 1025 if (!p) 1026 return -ENOENT; 1027 return p - env->subprog_info; 1028 1029 } 1030 1031 static int add_subprog(struct bpf_verifier_env *env, int off) 1032 { 1033 int insn_cnt = env->prog->len; 1034 int ret; 1035 1036 if (off >= insn_cnt || off < 0) { 1037 verbose(env, "call to invalid destination\n"); 1038 return -EINVAL; 1039 } 1040 ret = find_subprog(env, off); 1041 if (ret >= 0) 1042 return 0; 1043 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 1044 verbose(env, "too many subprograms\n"); 1045 return -E2BIG; 1046 } 1047 env->subprog_info[env->subprog_cnt++].start = off; 1048 sort(env->subprog_info, env->subprog_cnt, 1049 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 1050 return 0; 1051 } 1052 1053 static int check_subprogs(struct bpf_verifier_env *env) 1054 { 1055 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0; 1056 struct bpf_subprog_info *subprog = env->subprog_info; 1057 struct bpf_insn *insn = env->prog->insnsi; 1058 int insn_cnt = env->prog->len; 1059 1060 /* Add entry function. */ 1061 ret = add_subprog(env, 0); 1062 if (ret < 0) 1063 return ret; 1064 1065 /* determine subprog starts. The end is one before the next starts */ 1066 for (i = 0; i < insn_cnt; i++) { 1067 if (insn[i].code != (BPF_JMP | BPF_CALL)) 1068 continue; 1069 if (insn[i].src_reg != BPF_PSEUDO_CALL) 1070 continue; 1071 if (!env->allow_ptr_leaks) { 1072 verbose(env, "function calls to other bpf functions are allowed for root only\n"); 1073 return -EPERM; 1074 } 1075 ret = add_subprog(env, i + insn[i].imm + 1); 1076 if (ret < 0) 1077 return ret; 1078 } 1079 1080 /* Add a fake 'exit' subprog which could simplify subprog iteration 1081 * logic. 'subprog_cnt' should not be increased. 1082 */ 1083 subprog[env->subprog_cnt].start = insn_cnt; 1084 1085 if (env->log.level > 1) 1086 for (i = 0; i < env->subprog_cnt; i++) 1087 verbose(env, "func#%d @%d\n", i, subprog[i].start); 1088 1089 /* now check that all jumps are within the same subprog */ 1090 subprog_start = subprog[cur_subprog].start; 1091 subprog_end = subprog[cur_subprog + 1].start; 1092 for (i = 0; i < insn_cnt; i++) { 1093 u8 code = insn[i].code; 1094 1095 if (BPF_CLASS(code) != BPF_JMP) 1096 goto next; 1097 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 1098 goto next; 1099 off = i + insn[i].off + 1; 1100 if (off < subprog_start || off >= subprog_end) { 1101 verbose(env, "jump out of range from insn %d to %d\n", i, off); 1102 return -EINVAL; 1103 } 1104 next: 1105 if (i == subprog_end - 1) { 1106 /* to avoid fall-through from one subprog into another 1107 * the last insn of the subprog should be either exit 1108 * or unconditional jump back 1109 */ 1110 if (code != (BPF_JMP | BPF_EXIT) && 1111 code != (BPF_JMP | BPF_JA)) { 1112 verbose(env, "last insn is not an exit or jmp\n"); 1113 return -EINVAL; 1114 } 1115 subprog_start = subprog_end; 1116 cur_subprog++; 1117 if (cur_subprog < env->subprog_cnt) 1118 subprog_end = subprog[cur_subprog + 1].start; 1119 } 1120 } 1121 return 0; 1122 } 1123 1124 /* Parentage chain of this register (or stack slot) should take care of all 1125 * issues like callee-saved registers, stack slot allocation time, etc. 1126 */ 1127 static int mark_reg_read(struct bpf_verifier_env *env, 1128 const struct bpf_reg_state *state, 1129 struct bpf_reg_state *parent) 1130 { 1131 bool writes = parent == state->parent; /* Observe write marks */ 1132 1133 while (parent) { 1134 /* if read wasn't screened by an earlier write ... */ 1135 if (writes && state->live & REG_LIVE_WRITTEN) 1136 break; 1137 if (parent->live & REG_LIVE_DONE) { 1138 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 1139 reg_type_str[parent->type], 1140 parent->var_off.value, parent->off); 1141 return -EFAULT; 1142 } 1143 /* ... then we depend on parent's value */ 1144 parent->live |= REG_LIVE_READ; 1145 state = parent; 1146 parent = state->parent; 1147 writes = true; 1148 } 1149 return 0; 1150 } 1151 1152 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 1153 enum reg_arg_type t) 1154 { 1155 struct bpf_verifier_state *vstate = env->cur_state; 1156 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1157 struct bpf_reg_state *regs = state->regs; 1158 1159 if (regno >= MAX_BPF_REG) { 1160 verbose(env, "R%d is invalid\n", regno); 1161 return -EINVAL; 1162 } 1163 1164 if (t == SRC_OP) { 1165 /* check whether register used as source operand can be read */ 1166 if (regs[regno].type == NOT_INIT) { 1167 verbose(env, "R%d !read_ok\n", regno); 1168 return -EACCES; 1169 } 1170 /* We don't need to worry about FP liveness because it's read-only */ 1171 if (regno != BPF_REG_FP) 1172 return mark_reg_read(env, ®s[regno], 1173 regs[regno].parent); 1174 } else { 1175 /* check whether register used as dest operand can be written to */ 1176 if (regno == BPF_REG_FP) { 1177 verbose(env, "frame pointer is read only\n"); 1178 return -EACCES; 1179 } 1180 regs[regno].live |= REG_LIVE_WRITTEN; 1181 if (t == DST_OP) 1182 mark_reg_unknown(env, regs, regno); 1183 } 1184 return 0; 1185 } 1186 1187 static bool is_spillable_regtype(enum bpf_reg_type type) 1188 { 1189 switch (type) { 1190 case PTR_TO_MAP_VALUE: 1191 case PTR_TO_MAP_VALUE_OR_NULL: 1192 case PTR_TO_STACK: 1193 case PTR_TO_CTX: 1194 case PTR_TO_PACKET: 1195 case PTR_TO_PACKET_META: 1196 case PTR_TO_PACKET_END: 1197 case PTR_TO_FLOW_KEYS: 1198 case CONST_PTR_TO_MAP: 1199 case PTR_TO_SOCKET: 1200 case PTR_TO_SOCKET_OR_NULL: 1201 return true; 1202 default: 1203 return false; 1204 } 1205 } 1206 1207 /* Does this register contain a constant zero? */ 1208 static bool register_is_null(struct bpf_reg_state *reg) 1209 { 1210 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 1211 } 1212 1213 /* check_stack_read/write functions track spill/fill of registers, 1214 * stack boundary and alignment are checked in check_mem_access() 1215 */ 1216 static int check_stack_write(struct bpf_verifier_env *env, 1217 struct bpf_func_state *state, /* func where register points to */ 1218 int off, int size, int value_regno, int insn_idx) 1219 { 1220 struct bpf_func_state *cur; /* state of the current function */ 1221 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 1222 enum bpf_reg_type type; 1223 1224 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE), 1225 state->acquired_refs, true); 1226 if (err) 1227 return err; 1228 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 1229 * so it's aligned access and [off, off + size) are within stack limits 1230 */ 1231 if (!env->allow_ptr_leaks && 1232 state->stack[spi].slot_type[0] == STACK_SPILL && 1233 size != BPF_REG_SIZE) { 1234 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 1235 return -EACCES; 1236 } 1237 1238 cur = env->cur_state->frame[env->cur_state->curframe]; 1239 if (value_regno >= 0 && 1240 is_spillable_regtype((type = cur->regs[value_regno].type))) { 1241 1242 /* register containing pointer is being spilled into stack */ 1243 if (size != BPF_REG_SIZE) { 1244 verbose(env, "invalid size of register spill\n"); 1245 return -EACCES; 1246 } 1247 1248 if (state != cur && type == PTR_TO_STACK) { 1249 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 1250 return -EINVAL; 1251 } 1252 1253 /* save register state */ 1254 state->stack[spi].spilled_ptr = cur->regs[value_regno]; 1255 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 1256 1257 for (i = 0; i < BPF_REG_SIZE; i++) { 1258 if (state->stack[spi].slot_type[i] == STACK_MISC && 1259 !env->allow_ptr_leaks) { 1260 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off; 1261 int soff = (-spi - 1) * BPF_REG_SIZE; 1262 1263 /* detected reuse of integer stack slot with a pointer 1264 * which means either llvm is reusing stack slot or 1265 * an attacker is trying to exploit CVE-2018-3639 1266 * (speculative store bypass) 1267 * Have to sanitize that slot with preemptive 1268 * store of zero. 1269 */ 1270 if (*poff && *poff != soff) { 1271 /* disallow programs where single insn stores 1272 * into two different stack slots, since verifier 1273 * cannot sanitize them 1274 */ 1275 verbose(env, 1276 "insn %d cannot access two stack slots fp%d and fp%d", 1277 insn_idx, *poff, soff); 1278 return -EINVAL; 1279 } 1280 *poff = soff; 1281 } 1282 state->stack[spi].slot_type[i] = STACK_SPILL; 1283 } 1284 } else { 1285 u8 type = STACK_MISC; 1286 1287 /* regular write of data into stack destroys any spilled ptr */ 1288 state->stack[spi].spilled_ptr.type = NOT_INIT; 1289 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */ 1290 if (state->stack[spi].slot_type[0] == STACK_SPILL) 1291 for (i = 0; i < BPF_REG_SIZE; i++) 1292 state->stack[spi].slot_type[i] = STACK_MISC; 1293 1294 /* only mark the slot as written if all 8 bytes were written 1295 * otherwise read propagation may incorrectly stop too soon 1296 * when stack slots are partially written. 1297 * This heuristic means that read propagation will be 1298 * conservative, since it will add reg_live_read marks 1299 * to stack slots all the way to first state when programs 1300 * writes+reads less than 8 bytes 1301 */ 1302 if (size == BPF_REG_SIZE) 1303 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 1304 1305 /* when we zero initialize stack slots mark them as such */ 1306 if (value_regno >= 0 && 1307 register_is_null(&cur->regs[value_regno])) 1308 type = STACK_ZERO; 1309 1310 /* Mark slots affected by this stack write. */ 1311 for (i = 0; i < size; i++) 1312 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 1313 type; 1314 } 1315 return 0; 1316 } 1317 1318 static int check_stack_read(struct bpf_verifier_env *env, 1319 struct bpf_func_state *reg_state /* func where register points to */, 1320 int off, int size, int value_regno) 1321 { 1322 struct bpf_verifier_state *vstate = env->cur_state; 1323 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1324 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 1325 u8 *stype; 1326 1327 if (reg_state->allocated_stack <= slot) { 1328 verbose(env, "invalid read from stack off %d+0 size %d\n", 1329 off, size); 1330 return -EACCES; 1331 } 1332 stype = reg_state->stack[spi].slot_type; 1333 1334 if (stype[0] == STACK_SPILL) { 1335 if (size != BPF_REG_SIZE) { 1336 verbose(env, "invalid size of register spill\n"); 1337 return -EACCES; 1338 } 1339 for (i = 1; i < BPF_REG_SIZE; i++) { 1340 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) { 1341 verbose(env, "corrupted spill memory\n"); 1342 return -EACCES; 1343 } 1344 } 1345 1346 if (value_regno >= 0) { 1347 /* restore register state from stack */ 1348 state->regs[value_regno] = reg_state->stack[spi].spilled_ptr; 1349 /* mark reg as written since spilled pointer state likely 1350 * has its liveness marks cleared by is_state_visited() 1351 * which resets stack/reg liveness for state transitions 1352 */ 1353 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 1354 } 1355 mark_reg_read(env, ®_state->stack[spi].spilled_ptr, 1356 reg_state->stack[spi].spilled_ptr.parent); 1357 return 0; 1358 } else { 1359 int zeros = 0; 1360 1361 for (i = 0; i < size; i++) { 1362 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC) 1363 continue; 1364 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) { 1365 zeros++; 1366 continue; 1367 } 1368 verbose(env, "invalid read from stack off %d+%d size %d\n", 1369 off, i, size); 1370 return -EACCES; 1371 } 1372 mark_reg_read(env, ®_state->stack[spi].spilled_ptr, 1373 reg_state->stack[spi].spilled_ptr.parent); 1374 if (value_regno >= 0) { 1375 if (zeros == size) { 1376 /* any size read into register is zero extended, 1377 * so the whole register == const_zero 1378 */ 1379 __mark_reg_const_zero(&state->regs[value_regno]); 1380 } else { 1381 /* have read misc data from the stack */ 1382 mark_reg_unknown(env, state->regs, value_regno); 1383 } 1384 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 1385 } 1386 return 0; 1387 } 1388 } 1389 1390 /* check read/write into map element returned by bpf_map_lookup_elem() */ 1391 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off, 1392 int size, bool zero_size_allowed) 1393 { 1394 struct bpf_reg_state *regs = cur_regs(env); 1395 struct bpf_map *map = regs[regno].map_ptr; 1396 1397 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) || 1398 off + size > map->value_size) { 1399 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 1400 map->value_size, off, size); 1401 return -EACCES; 1402 } 1403 return 0; 1404 } 1405 1406 /* check read/write into a map element with possible variable offset */ 1407 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 1408 int off, int size, bool zero_size_allowed) 1409 { 1410 struct bpf_verifier_state *vstate = env->cur_state; 1411 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1412 struct bpf_reg_state *reg = &state->regs[regno]; 1413 int err; 1414 1415 /* We may have adjusted the register to this map value, so we 1416 * need to try adding each of min_value and max_value to off 1417 * to make sure our theoretical access will be safe. 1418 */ 1419 if (env->log.level) 1420 print_verifier_state(env, state); 1421 /* The minimum value is only important with signed 1422 * comparisons where we can't assume the floor of a 1423 * value is 0. If we are using signed variables for our 1424 * index'es we need to make sure that whatever we use 1425 * will have a set floor within our range. 1426 */ 1427 if (reg->smin_value < 0) { 1428 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 1429 regno); 1430 return -EACCES; 1431 } 1432 err = __check_map_access(env, regno, reg->smin_value + off, size, 1433 zero_size_allowed); 1434 if (err) { 1435 verbose(env, "R%d min value is outside of the array range\n", 1436 regno); 1437 return err; 1438 } 1439 1440 /* If we haven't set a max value then we need to bail since we can't be 1441 * sure we won't do bad things. 1442 * If reg->umax_value + off could overflow, treat that as unbounded too. 1443 */ 1444 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 1445 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n", 1446 regno); 1447 return -EACCES; 1448 } 1449 err = __check_map_access(env, regno, reg->umax_value + off, size, 1450 zero_size_allowed); 1451 if (err) 1452 verbose(env, "R%d max value is outside of the array range\n", 1453 regno); 1454 return err; 1455 } 1456 1457 #define MAX_PACKET_OFF 0xffff 1458 1459 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 1460 const struct bpf_call_arg_meta *meta, 1461 enum bpf_access_type t) 1462 { 1463 switch (env->prog->type) { 1464 /* Program types only with direct read access go here! */ 1465 case BPF_PROG_TYPE_LWT_IN: 1466 case BPF_PROG_TYPE_LWT_OUT: 1467 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 1468 case BPF_PROG_TYPE_SK_REUSEPORT: 1469 case BPF_PROG_TYPE_FLOW_DISSECTOR: 1470 case BPF_PROG_TYPE_CGROUP_SKB: 1471 if (t == BPF_WRITE) 1472 return false; 1473 /* fallthrough */ 1474 1475 /* Program types with direct read + write access go here! */ 1476 case BPF_PROG_TYPE_SCHED_CLS: 1477 case BPF_PROG_TYPE_SCHED_ACT: 1478 case BPF_PROG_TYPE_XDP: 1479 case BPF_PROG_TYPE_LWT_XMIT: 1480 case BPF_PROG_TYPE_SK_SKB: 1481 case BPF_PROG_TYPE_SK_MSG: 1482 if (meta) 1483 return meta->pkt_access; 1484 1485 env->seen_direct_write = true; 1486 return true; 1487 default: 1488 return false; 1489 } 1490 } 1491 1492 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno, 1493 int off, int size, bool zero_size_allowed) 1494 { 1495 struct bpf_reg_state *regs = cur_regs(env); 1496 struct bpf_reg_state *reg = ®s[regno]; 1497 1498 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) || 1499 (u64)off + size > reg->range) { 1500 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 1501 off, size, regno, reg->id, reg->off, reg->range); 1502 return -EACCES; 1503 } 1504 return 0; 1505 } 1506 1507 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 1508 int size, bool zero_size_allowed) 1509 { 1510 struct bpf_reg_state *regs = cur_regs(env); 1511 struct bpf_reg_state *reg = ®s[regno]; 1512 int err; 1513 1514 /* We may have added a variable offset to the packet pointer; but any 1515 * reg->range we have comes after that. We are only checking the fixed 1516 * offset. 1517 */ 1518 1519 /* We don't allow negative numbers, because we aren't tracking enough 1520 * detail to prove they're safe. 1521 */ 1522 if (reg->smin_value < 0) { 1523 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 1524 regno); 1525 return -EACCES; 1526 } 1527 err = __check_packet_access(env, regno, off, size, zero_size_allowed); 1528 if (err) { 1529 verbose(env, "R%d offset is outside of the packet\n", regno); 1530 return err; 1531 } 1532 1533 /* __check_packet_access has made sure "off + size - 1" is within u16. 1534 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 1535 * otherwise find_good_pkt_pointers would have refused to set range info 1536 * that __check_packet_access would have rejected this pkt access. 1537 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 1538 */ 1539 env->prog->aux->max_pkt_offset = 1540 max_t(u32, env->prog->aux->max_pkt_offset, 1541 off + reg->umax_value + size - 1); 1542 1543 return err; 1544 } 1545 1546 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 1547 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 1548 enum bpf_access_type t, enum bpf_reg_type *reg_type) 1549 { 1550 struct bpf_insn_access_aux info = { 1551 .reg_type = *reg_type, 1552 }; 1553 1554 if (env->ops->is_valid_access && 1555 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 1556 /* A non zero info.ctx_field_size indicates that this field is a 1557 * candidate for later verifier transformation to load the whole 1558 * field and then apply a mask when accessed with a narrower 1559 * access than actual ctx access size. A zero info.ctx_field_size 1560 * will only allow for whole field access and rejects any other 1561 * type of narrower access. 1562 */ 1563 *reg_type = info.reg_type; 1564 1565 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 1566 /* remember the offset of last byte accessed in ctx */ 1567 if (env->prog->aux->max_ctx_offset < off + size) 1568 env->prog->aux->max_ctx_offset = off + size; 1569 return 0; 1570 } 1571 1572 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 1573 return -EACCES; 1574 } 1575 1576 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 1577 int size) 1578 { 1579 if (size < 0 || off < 0 || 1580 (u64)off + size > sizeof(struct bpf_flow_keys)) { 1581 verbose(env, "invalid access to flow keys off=%d size=%d\n", 1582 off, size); 1583 return -EACCES; 1584 } 1585 return 0; 1586 } 1587 1588 static int check_sock_access(struct bpf_verifier_env *env, u32 regno, int off, 1589 int size, enum bpf_access_type t) 1590 { 1591 struct bpf_reg_state *regs = cur_regs(env); 1592 struct bpf_reg_state *reg = ®s[regno]; 1593 struct bpf_insn_access_aux info; 1594 1595 if (reg->smin_value < 0) { 1596 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 1597 regno); 1598 return -EACCES; 1599 } 1600 1601 if (!bpf_sock_is_valid_access(off, size, t, &info)) { 1602 verbose(env, "invalid bpf_sock access off=%d size=%d\n", 1603 off, size); 1604 return -EACCES; 1605 } 1606 1607 return 0; 1608 } 1609 1610 static bool __is_pointer_value(bool allow_ptr_leaks, 1611 const struct bpf_reg_state *reg) 1612 { 1613 if (allow_ptr_leaks) 1614 return false; 1615 1616 return reg->type != SCALAR_VALUE; 1617 } 1618 1619 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 1620 { 1621 return cur_regs(env) + regno; 1622 } 1623 1624 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 1625 { 1626 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 1627 } 1628 1629 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 1630 { 1631 const struct bpf_reg_state *reg = reg_state(env, regno); 1632 1633 return reg->type == PTR_TO_CTX || 1634 reg->type == PTR_TO_SOCKET; 1635 } 1636 1637 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 1638 { 1639 const struct bpf_reg_state *reg = reg_state(env, regno); 1640 1641 return type_is_pkt_pointer(reg->type); 1642 } 1643 1644 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 1645 { 1646 const struct bpf_reg_state *reg = reg_state(env, regno); 1647 1648 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 1649 return reg->type == PTR_TO_FLOW_KEYS; 1650 } 1651 1652 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 1653 const struct bpf_reg_state *reg, 1654 int off, int size, bool strict) 1655 { 1656 struct tnum reg_off; 1657 int ip_align; 1658 1659 /* Byte size accesses are always allowed. */ 1660 if (!strict || size == 1) 1661 return 0; 1662 1663 /* For platforms that do not have a Kconfig enabling 1664 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 1665 * NET_IP_ALIGN is universally set to '2'. And on platforms 1666 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 1667 * to this code only in strict mode where we want to emulate 1668 * the NET_IP_ALIGN==2 checking. Therefore use an 1669 * unconditional IP align value of '2'. 1670 */ 1671 ip_align = 2; 1672 1673 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 1674 if (!tnum_is_aligned(reg_off, size)) { 1675 char tn_buf[48]; 1676 1677 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1678 verbose(env, 1679 "misaligned packet access off %d+%s+%d+%d size %d\n", 1680 ip_align, tn_buf, reg->off, off, size); 1681 return -EACCES; 1682 } 1683 1684 return 0; 1685 } 1686 1687 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 1688 const struct bpf_reg_state *reg, 1689 const char *pointer_desc, 1690 int off, int size, bool strict) 1691 { 1692 struct tnum reg_off; 1693 1694 /* Byte size accesses are always allowed. */ 1695 if (!strict || size == 1) 1696 return 0; 1697 1698 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 1699 if (!tnum_is_aligned(reg_off, size)) { 1700 char tn_buf[48]; 1701 1702 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1703 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 1704 pointer_desc, tn_buf, reg->off, off, size); 1705 return -EACCES; 1706 } 1707 1708 return 0; 1709 } 1710 1711 static int check_ptr_alignment(struct bpf_verifier_env *env, 1712 const struct bpf_reg_state *reg, int off, 1713 int size, bool strict_alignment_once) 1714 { 1715 bool strict = env->strict_alignment || strict_alignment_once; 1716 const char *pointer_desc = ""; 1717 1718 switch (reg->type) { 1719 case PTR_TO_PACKET: 1720 case PTR_TO_PACKET_META: 1721 /* Special case, because of NET_IP_ALIGN. Given metadata sits 1722 * right in front, treat it the very same way. 1723 */ 1724 return check_pkt_ptr_alignment(env, reg, off, size, strict); 1725 case PTR_TO_FLOW_KEYS: 1726 pointer_desc = "flow keys "; 1727 break; 1728 case PTR_TO_MAP_VALUE: 1729 pointer_desc = "value "; 1730 break; 1731 case PTR_TO_CTX: 1732 pointer_desc = "context "; 1733 break; 1734 case PTR_TO_STACK: 1735 pointer_desc = "stack "; 1736 /* The stack spill tracking logic in check_stack_write() 1737 * and check_stack_read() relies on stack accesses being 1738 * aligned. 1739 */ 1740 strict = true; 1741 break; 1742 case PTR_TO_SOCKET: 1743 pointer_desc = "sock "; 1744 break; 1745 default: 1746 break; 1747 } 1748 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 1749 strict); 1750 } 1751 1752 static int update_stack_depth(struct bpf_verifier_env *env, 1753 const struct bpf_func_state *func, 1754 int off) 1755 { 1756 u16 stack = env->subprog_info[func->subprogno].stack_depth; 1757 1758 if (stack >= -off) 1759 return 0; 1760 1761 /* update known max for given subprogram */ 1762 env->subprog_info[func->subprogno].stack_depth = -off; 1763 return 0; 1764 } 1765 1766 /* starting from main bpf function walk all instructions of the function 1767 * and recursively walk all callees that given function can call. 1768 * Ignore jump and exit insns. 1769 * Since recursion is prevented by check_cfg() this algorithm 1770 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 1771 */ 1772 static int check_max_stack_depth(struct bpf_verifier_env *env) 1773 { 1774 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; 1775 struct bpf_subprog_info *subprog = env->subprog_info; 1776 struct bpf_insn *insn = env->prog->insnsi; 1777 int ret_insn[MAX_CALL_FRAMES]; 1778 int ret_prog[MAX_CALL_FRAMES]; 1779 1780 process_func: 1781 /* round up to 32-bytes, since this is granularity 1782 * of interpreter stack size 1783 */ 1784 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 1785 if (depth > MAX_BPF_STACK) { 1786 verbose(env, "combined stack size of %d calls is %d. Too large\n", 1787 frame + 1, depth); 1788 return -EACCES; 1789 } 1790 continue_func: 1791 subprog_end = subprog[idx + 1].start; 1792 for (; i < subprog_end; i++) { 1793 if (insn[i].code != (BPF_JMP | BPF_CALL)) 1794 continue; 1795 if (insn[i].src_reg != BPF_PSEUDO_CALL) 1796 continue; 1797 /* remember insn and function to return to */ 1798 ret_insn[frame] = i + 1; 1799 ret_prog[frame] = idx; 1800 1801 /* find the callee */ 1802 i = i + insn[i].imm + 1; 1803 idx = find_subprog(env, i); 1804 if (idx < 0) { 1805 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 1806 i); 1807 return -EFAULT; 1808 } 1809 frame++; 1810 if (frame >= MAX_CALL_FRAMES) { 1811 WARN_ONCE(1, "verifier bug. Call stack is too deep\n"); 1812 return -EFAULT; 1813 } 1814 goto process_func; 1815 } 1816 /* end of for() loop means the last insn of the 'subprog' 1817 * was reached. Doesn't matter whether it was JA or EXIT 1818 */ 1819 if (frame == 0) 1820 return 0; 1821 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 1822 frame--; 1823 i = ret_insn[frame]; 1824 idx = ret_prog[frame]; 1825 goto continue_func; 1826 } 1827 1828 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 1829 static int get_callee_stack_depth(struct bpf_verifier_env *env, 1830 const struct bpf_insn *insn, int idx) 1831 { 1832 int start = idx + insn->imm + 1, subprog; 1833 1834 subprog = find_subprog(env, start); 1835 if (subprog < 0) { 1836 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 1837 start); 1838 return -EFAULT; 1839 } 1840 return env->subprog_info[subprog].stack_depth; 1841 } 1842 #endif 1843 1844 static int check_ctx_reg(struct bpf_verifier_env *env, 1845 const struct bpf_reg_state *reg, int regno) 1846 { 1847 /* Access to ctx or passing it to a helper is only allowed in 1848 * its original, unmodified form. 1849 */ 1850 1851 if (reg->off) { 1852 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n", 1853 regno, reg->off); 1854 return -EACCES; 1855 } 1856 1857 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 1858 char tn_buf[48]; 1859 1860 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1861 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf); 1862 return -EACCES; 1863 } 1864 1865 return 0; 1866 } 1867 1868 /* truncate register to smaller size (in bytes) 1869 * must be called with size < BPF_REG_SIZE 1870 */ 1871 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 1872 { 1873 u64 mask; 1874 1875 /* clear high bits in bit representation */ 1876 reg->var_off = tnum_cast(reg->var_off, size); 1877 1878 /* fix arithmetic bounds */ 1879 mask = ((u64)1 << (size * 8)) - 1; 1880 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 1881 reg->umin_value &= mask; 1882 reg->umax_value &= mask; 1883 } else { 1884 reg->umin_value = 0; 1885 reg->umax_value = mask; 1886 } 1887 reg->smin_value = reg->umin_value; 1888 reg->smax_value = reg->umax_value; 1889 } 1890 1891 /* check whether memory at (regno + off) is accessible for t = (read | write) 1892 * if t==write, value_regno is a register which value is stored into memory 1893 * if t==read, value_regno is a register which will receive the value from memory 1894 * if t==write && value_regno==-1, some unknown value is stored into memory 1895 * if t==read && value_regno==-1, don't care what we read from memory 1896 */ 1897 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 1898 int off, int bpf_size, enum bpf_access_type t, 1899 int value_regno, bool strict_alignment_once) 1900 { 1901 struct bpf_reg_state *regs = cur_regs(env); 1902 struct bpf_reg_state *reg = regs + regno; 1903 struct bpf_func_state *state; 1904 int size, err = 0; 1905 1906 size = bpf_size_to_bytes(bpf_size); 1907 if (size < 0) 1908 return size; 1909 1910 /* alignment checks will add in reg->off themselves */ 1911 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 1912 if (err) 1913 return err; 1914 1915 /* for access checks, reg->off is just part of off */ 1916 off += reg->off; 1917 1918 if (reg->type == PTR_TO_MAP_VALUE) { 1919 if (t == BPF_WRITE && value_regno >= 0 && 1920 is_pointer_value(env, value_regno)) { 1921 verbose(env, "R%d leaks addr into map\n", value_regno); 1922 return -EACCES; 1923 } 1924 1925 err = check_map_access(env, regno, off, size, false); 1926 if (!err && t == BPF_READ && value_regno >= 0) 1927 mark_reg_unknown(env, regs, value_regno); 1928 1929 } else if (reg->type == PTR_TO_CTX) { 1930 enum bpf_reg_type reg_type = SCALAR_VALUE; 1931 1932 if (t == BPF_WRITE && value_regno >= 0 && 1933 is_pointer_value(env, value_regno)) { 1934 verbose(env, "R%d leaks addr into ctx\n", value_regno); 1935 return -EACCES; 1936 } 1937 1938 err = check_ctx_reg(env, reg, regno); 1939 if (err < 0) 1940 return err; 1941 1942 err = check_ctx_access(env, insn_idx, off, size, t, ®_type); 1943 if (!err && t == BPF_READ && value_regno >= 0) { 1944 /* ctx access returns either a scalar, or a 1945 * PTR_TO_PACKET[_META,_END]. In the latter 1946 * case, we know the offset is zero. 1947 */ 1948 if (reg_type == SCALAR_VALUE) 1949 mark_reg_unknown(env, regs, value_regno); 1950 else 1951 mark_reg_known_zero(env, regs, 1952 value_regno); 1953 regs[value_regno].type = reg_type; 1954 } 1955 1956 } else if (reg->type == PTR_TO_STACK) { 1957 /* stack accesses must be at a fixed offset, so that we can 1958 * determine what type of data were returned. 1959 * See check_stack_read(). 1960 */ 1961 if (!tnum_is_const(reg->var_off)) { 1962 char tn_buf[48]; 1963 1964 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1965 verbose(env, "variable stack access var_off=%s off=%d size=%d", 1966 tn_buf, off, size); 1967 return -EACCES; 1968 } 1969 off += reg->var_off.value; 1970 if (off >= 0 || off < -MAX_BPF_STACK) { 1971 verbose(env, "invalid stack off=%d size=%d\n", off, 1972 size); 1973 return -EACCES; 1974 } 1975 1976 state = func(env, reg); 1977 err = update_stack_depth(env, state, off); 1978 if (err) 1979 return err; 1980 1981 if (t == BPF_WRITE) 1982 err = check_stack_write(env, state, off, size, 1983 value_regno, insn_idx); 1984 else 1985 err = check_stack_read(env, state, off, size, 1986 value_regno); 1987 } else if (reg_is_pkt_pointer(reg)) { 1988 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 1989 verbose(env, "cannot write into packet\n"); 1990 return -EACCES; 1991 } 1992 if (t == BPF_WRITE && value_regno >= 0 && 1993 is_pointer_value(env, value_regno)) { 1994 verbose(env, "R%d leaks addr into packet\n", 1995 value_regno); 1996 return -EACCES; 1997 } 1998 err = check_packet_access(env, regno, off, size, false); 1999 if (!err && t == BPF_READ && value_regno >= 0) 2000 mark_reg_unknown(env, regs, value_regno); 2001 } else if (reg->type == PTR_TO_FLOW_KEYS) { 2002 if (t == BPF_WRITE && value_regno >= 0 && 2003 is_pointer_value(env, value_regno)) { 2004 verbose(env, "R%d leaks addr into flow keys\n", 2005 value_regno); 2006 return -EACCES; 2007 } 2008 2009 err = check_flow_keys_access(env, off, size); 2010 if (!err && t == BPF_READ && value_regno >= 0) 2011 mark_reg_unknown(env, regs, value_regno); 2012 } else if (reg->type == PTR_TO_SOCKET) { 2013 if (t == BPF_WRITE) { 2014 verbose(env, "cannot write into socket\n"); 2015 return -EACCES; 2016 } 2017 err = check_sock_access(env, regno, off, size, t); 2018 if (!err && value_regno >= 0) 2019 mark_reg_unknown(env, regs, value_regno); 2020 } else { 2021 verbose(env, "R%d invalid mem access '%s'\n", regno, 2022 reg_type_str[reg->type]); 2023 return -EACCES; 2024 } 2025 2026 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 2027 regs[value_regno].type == SCALAR_VALUE) { 2028 /* b/h/w load zero-extends, mark upper bits as known 0 */ 2029 coerce_reg_to_size(®s[value_regno], size); 2030 } 2031 return err; 2032 } 2033 2034 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 2035 { 2036 int err; 2037 2038 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) || 2039 insn->imm != 0) { 2040 verbose(env, "BPF_XADD uses reserved fields\n"); 2041 return -EINVAL; 2042 } 2043 2044 /* check src1 operand */ 2045 err = check_reg_arg(env, insn->src_reg, SRC_OP); 2046 if (err) 2047 return err; 2048 2049 /* check src2 operand */ 2050 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 2051 if (err) 2052 return err; 2053 2054 if (is_pointer_value(env, insn->src_reg)) { 2055 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 2056 return -EACCES; 2057 } 2058 2059 if (is_ctx_reg(env, insn->dst_reg) || 2060 is_pkt_reg(env, insn->dst_reg) || 2061 is_flow_key_reg(env, insn->dst_reg)) { 2062 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n", 2063 insn->dst_reg, 2064 reg_type_str[reg_state(env, insn->dst_reg)->type]); 2065 return -EACCES; 2066 } 2067 2068 /* check whether atomic_add can read the memory */ 2069 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 2070 BPF_SIZE(insn->code), BPF_READ, -1, true); 2071 if (err) 2072 return err; 2073 2074 /* check whether atomic_add can write into the same memory */ 2075 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 2076 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 2077 } 2078 2079 /* when register 'regno' is passed into function that will read 'access_size' 2080 * bytes from that pointer, make sure that it's within stack boundary 2081 * and all elements of stack are initialized. 2082 * Unlike most pointer bounds-checking functions, this one doesn't take an 2083 * 'off' argument, so it has to add in reg->off itself. 2084 */ 2085 static int check_stack_boundary(struct bpf_verifier_env *env, int regno, 2086 int access_size, bool zero_size_allowed, 2087 struct bpf_call_arg_meta *meta) 2088 { 2089 struct bpf_reg_state *reg = reg_state(env, regno); 2090 struct bpf_func_state *state = func(env, reg); 2091 int off, i, slot, spi; 2092 2093 if (reg->type != PTR_TO_STACK) { 2094 /* Allow zero-byte read from NULL, regardless of pointer type */ 2095 if (zero_size_allowed && access_size == 0 && 2096 register_is_null(reg)) 2097 return 0; 2098 2099 verbose(env, "R%d type=%s expected=%s\n", regno, 2100 reg_type_str[reg->type], 2101 reg_type_str[PTR_TO_STACK]); 2102 return -EACCES; 2103 } 2104 2105 /* Only allow fixed-offset stack reads */ 2106 if (!tnum_is_const(reg->var_off)) { 2107 char tn_buf[48]; 2108 2109 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2110 verbose(env, "invalid variable stack read R%d var_off=%s\n", 2111 regno, tn_buf); 2112 return -EACCES; 2113 } 2114 off = reg->off + reg->var_off.value; 2115 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 || 2116 access_size < 0 || (access_size == 0 && !zero_size_allowed)) { 2117 verbose(env, "invalid stack type R%d off=%d access_size=%d\n", 2118 regno, off, access_size); 2119 return -EACCES; 2120 } 2121 2122 if (meta && meta->raw_mode) { 2123 meta->access_size = access_size; 2124 meta->regno = regno; 2125 return 0; 2126 } 2127 2128 for (i = 0; i < access_size; i++) { 2129 u8 *stype; 2130 2131 slot = -(off + i) - 1; 2132 spi = slot / BPF_REG_SIZE; 2133 if (state->allocated_stack <= slot) 2134 goto err; 2135 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 2136 if (*stype == STACK_MISC) 2137 goto mark; 2138 if (*stype == STACK_ZERO) { 2139 /* helper can write anything into the stack */ 2140 *stype = STACK_MISC; 2141 goto mark; 2142 } 2143 err: 2144 verbose(env, "invalid indirect read from stack off %d+%d size %d\n", 2145 off, i, access_size); 2146 return -EACCES; 2147 mark: 2148 /* reading any byte out of 8-byte 'spill_slot' will cause 2149 * the whole slot to be marked as 'read' 2150 */ 2151 mark_reg_read(env, &state->stack[spi].spilled_ptr, 2152 state->stack[spi].spilled_ptr.parent); 2153 } 2154 return update_stack_depth(env, state, off); 2155 } 2156 2157 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 2158 int access_size, bool zero_size_allowed, 2159 struct bpf_call_arg_meta *meta) 2160 { 2161 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 2162 2163 switch (reg->type) { 2164 case PTR_TO_PACKET: 2165 case PTR_TO_PACKET_META: 2166 return check_packet_access(env, regno, reg->off, access_size, 2167 zero_size_allowed); 2168 case PTR_TO_MAP_VALUE: 2169 return check_map_access(env, regno, reg->off, access_size, 2170 zero_size_allowed); 2171 default: /* scalar_value|ptr_to_stack or invalid ptr */ 2172 return check_stack_boundary(env, regno, access_size, 2173 zero_size_allowed, meta); 2174 } 2175 } 2176 2177 static bool arg_type_is_mem_ptr(enum bpf_arg_type type) 2178 { 2179 return type == ARG_PTR_TO_MEM || 2180 type == ARG_PTR_TO_MEM_OR_NULL || 2181 type == ARG_PTR_TO_UNINIT_MEM; 2182 } 2183 2184 static bool arg_type_is_mem_size(enum bpf_arg_type type) 2185 { 2186 return type == ARG_CONST_SIZE || 2187 type == ARG_CONST_SIZE_OR_ZERO; 2188 } 2189 2190 static int check_func_arg(struct bpf_verifier_env *env, u32 regno, 2191 enum bpf_arg_type arg_type, 2192 struct bpf_call_arg_meta *meta) 2193 { 2194 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 2195 enum bpf_reg_type expected_type, type = reg->type; 2196 int err = 0; 2197 2198 if (arg_type == ARG_DONTCARE) 2199 return 0; 2200 2201 err = check_reg_arg(env, regno, SRC_OP); 2202 if (err) 2203 return err; 2204 2205 if (arg_type == ARG_ANYTHING) { 2206 if (is_pointer_value(env, regno)) { 2207 verbose(env, "R%d leaks addr into helper function\n", 2208 regno); 2209 return -EACCES; 2210 } 2211 return 0; 2212 } 2213 2214 if (type_is_pkt_pointer(type) && 2215 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 2216 verbose(env, "helper access to the packet is not allowed\n"); 2217 return -EACCES; 2218 } 2219 2220 if (arg_type == ARG_PTR_TO_MAP_KEY || 2221 arg_type == ARG_PTR_TO_MAP_VALUE || 2222 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) { 2223 expected_type = PTR_TO_STACK; 2224 if (!type_is_pkt_pointer(type) && type != PTR_TO_MAP_VALUE && 2225 type != expected_type) 2226 goto err_type; 2227 } else if (arg_type == ARG_CONST_SIZE || 2228 arg_type == ARG_CONST_SIZE_OR_ZERO) { 2229 expected_type = SCALAR_VALUE; 2230 if (type != expected_type) 2231 goto err_type; 2232 } else if (arg_type == ARG_CONST_MAP_PTR) { 2233 expected_type = CONST_PTR_TO_MAP; 2234 if (type != expected_type) 2235 goto err_type; 2236 } else if (arg_type == ARG_PTR_TO_CTX) { 2237 expected_type = PTR_TO_CTX; 2238 if (type != expected_type) 2239 goto err_type; 2240 err = check_ctx_reg(env, reg, regno); 2241 if (err < 0) 2242 return err; 2243 } else if (arg_type == ARG_PTR_TO_SOCKET) { 2244 expected_type = PTR_TO_SOCKET; 2245 if (type != expected_type) 2246 goto err_type; 2247 if (meta->ptr_id || !reg->id) { 2248 verbose(env, "verifier internal error: mismatched references meta=%d, reg=%d\n", 2249 meta->ptr_id, reg->id); 2250 return -EFAULT; 2251 } 2252 meta->ptr_id = reg->id; 2253 } else if (arg_type_is_mem_ptr(arg_type)) { 2254 expected_type = PTR_TO_STACK; 2255 /* One exception here. In case function allows for NULL to be 2256 * passed in as argument, it's a SCALAR_VALUE type. Final test 2257 * happens during stack boundary checking. 2258 */ 2259 if (register_is_null(reg) && 2260 arg_type == ARG_PTR_TO_MEM_OR_NULL) 2261 /* final test in check_stack_boundary() */; 2262 else if (!type_is_pkt_pointer(type) && 2263 type != PTR_TO_MAP_VALUE && 2264 type != expected_type) 2265 goto err_type; 2266 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM; 2267 } else { 2268 verbose(env, "unsupported arg_type %d\n", arg_type); 2269 return -EFAULT; 2270 } 2271 2272 if (arg_type == ARG_CONST_MAP_PTR) { 2273 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 2274 meta->map_ptr = reg->map_ptr; 2275 } else if (arg_type == ARG_PTR_TO_MAP_KEY) { 2276 /* bpf_map_xxx(..., map_ptr, ..., key) call: 2277 * check that [key, key + map->key_size) are within 2278 * stack limits and initialized 2279 */ 2280 if (!meta->map_ptr) { 2281 /* in function declaration map_ptr must come before 2282 * map_key, so that it's verified and known before 2283 * we have to check map_key here. Otherwise it means 2284 * that kernel subsystem misconfigured verifier 2285 */ 2286 verbose(env, "invalid map_ptr to access map->key\n"); 2287 return -EACCES; 2288 } 2289 err = check_helper_mem_access(env, regno, 2290 meta->map_ptr->key_size, false, 2291 NULL); 2292 } else if (arg_type == ARG_PTR_TO_MAP_VALUE || 2293 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) { 2294 /* bpf_map_xxx(..., map_ptr, ..., value) call: 2295 * check [value, value + map->value_size) validity 2296 */ 2297 if (!meta->map_ptr) { 2298 /* kernel subsystem misconfigured verifier */ 2299 verbose(env, "invalid map_ptr to access map->value\n"); 2300 return -EACCES; 2301 } 2302 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE); 2303 err = check_helper_mem_access(env, regno, 2304 meta->map_ptr->value_size, false, 2305 meta); 2306 } else if (arg_type_is_mem_size(arg_type)) { 2307 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO); 2308 2309 /* remember the mem_size which may be used later 2310 * to refine return values. 2311 */ 2312 meta->msize_smax_value = reg->smax_value; 2313 meta->msize_umax_value = reg->umax_value; 2314 2315 /* The register is SCALAR_VALUE; the access check 2316 * happens using its boundaries. 2317 */ 2318 if (!tnum_is_const(reg->var_off)) 2319 /* For unprivileged variable accesses, disable raw 2320 * mode so that the program is required to 2321 * initialize all the memory that the helper could 2322 * just partially fill up. 2323 */ 2324 meta = NULL; 2325 2326 if (reg->smin_value < 0) { 2327 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 2328 regno); 2329 return -EACCES; 2330 } 2331 2332 if (reg->umin_value == 0) { 2333 err = check_helper_mem_access(env, regno - 1, 0, 2334 zero_size_allowed, 2335 meta); 2336 if (err) 2337 return err; 2338 } 2339 2340 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 2341 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 2342 regno); 2343 return -EACCES; 2344 } 2345 err = check_helper_mem_access(env, regno - 1, 2346 reg->umax_value, 2347 zero_size_allowed, meta); 2348 } 2349 2350 return err; 2351 err_type: 2352 verbose(env, "R%d type=%s expected=%s\n", regno, 2353 reg_type_str[type], reg_type_str[expected_type]); 2354 return -EACCES; 2355 } 2356 2357 static int check_map_func_compatibility(struct bpf_verifier_env *env, 2358 struct bpf_map *map, int func_id) 2359 { 2360 if (!map) 2361 return 0; 2362 2363 /* We need a two way check, first is from map perspective ... */ 2364 switch (map->map_type) { 2365 case BPF_MAP_TYPE_PROG_ARRAY: 2366 if (func_id != BPF_FUNC_tail_call) 2367 goto error; 2368 break; 2369 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 2370 if (func_id != BPF_FUNC_perf_event_read && 2371 func_id != BPF_FUNC_perf_event_output && 2372 func_id != BPF_FUNC_perf_event_read_value) 2373 goto error; 2374 break; 2375 case BPF_MAP_TYPE_STACK_TRACE: 2376 if (func_id != BPF_FUNC_get_stackid) 2377 goto error; 2378 break; 2379 case BPF_MAP_TYPE_CGROUP_ARRAY: 2380 if (func_id != BPF_FUNC_skb_under_cgroup && 2381 func_id != BPF_FUNC_current_task_under_cgroup) 2382 goto error; 2383 break; 2384 case BPF_MAP_TYPE_CGROUP_STORAGE: 2385 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 2386 if (func_id != BPF_FUNC_get_local_storage) 2387 goto error; 2388 break; 2389 /* devmap returns a pointer to a live net_device ifindex that we cannot 2390 * allow to be modified from bpf side. So do not allow lookup elements 2391 * for now. 2392 */ 2393 case BPF_MAP_TYPE_DEVMAP: 2394 if (func_id != BPF_FUNC_redirect_map) 2395 goto error; 2396 break; 2397 /* Restrict bpf side of cpumap and xskmap, open when use-cases 2398 * appear. 2399 */ 2400 case BPF_MAP_TYPE_CPUMAP: 2401 case BPF_MAP_TYPE_XSKMAP: 2402 if (func_id != BPF_FUNC_redirect_map) 2403 goto error; 2404 break; 2405 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 2406 case BPF_MAP_TYPE_HASH_OF_MAPS: 2407 if (func_id != BPF_FUNC_map_lookup_elem) 2408 goto error; 2409 break; 2410 case BPF_MAP_TYPE_SOCKMAP: 2411 if (func_id != BPF_FUNC_sk_redirect_map && 2412 func_id != BPF_FUNC_sock_map_update && 2413 func_id != BPF_FUNC_map_delete_elem && 2414 func_id != BPF_FUNC_msg_redirect_map) 2415 goto error; 2416 break; 2417 case BPF_MAP_TYPE_SOCKHASH: 2418 if (func_id != BPF_FUNC_sk_redirect_hash && 2419 func_id != BPF_FUNC_sock_hash_update && 2420 func_id != BPF_FUNC_map_delete_elem && 2421 func_id != BPF_FUNC_msg_redirect_hash) 2422 goto error; 2423 break; 2424 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 2425 if (func_id != BPF_FUNC_sk_select_reuseport) 2426 goto error; 2427 break; 2428 case BPF_MAP_TYPE_QUEUE: 2429 case BPF_MAP_TYPE_STACK: 2430 if (func_id != BPF_FUNC_map_peek_elem && 2431 func_id != BPF_FUNC_map_pop_elem && 2432 func_id != BPF_FUNC_map_push_elem) 2433 goto error; 2434 break; 2435 default: 2436 break; 2437 } 2438 2439 /* ... and second from the function itself. */ 2440 switch (func_id) { 2441 case BPF_FUNC_tail_call: 2442 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 2443 goto error; 2444 if (env->subprog_cnt > 1) { 2445 verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n"); 2446 return -EINVAL; 2447 } 2448 break; 2449 case BPF_FUNC_perf_event_read: 2450 case BPF_FUNC_perf_event_output: 2451 case BPF_FUNC_perf_event_read_value: 2452 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 2453 goto error; 2454 break; 2455 case BPF_FUNC_get_stackid: 2456 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 2457 goto error; 2458 break; 2459 case BPF_FUNC_current_task_under_cgroup: 2460 case BPF_FUNC_skb_under_cgroup: 2461 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 2462 goto error; 2463 break; 2464 case BPF_FUNC_redirect_map: 2465 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 2466 map->map_type != BPF_MAP_TYPE_CPUMAP && 2467 map->map_type != BPF_MAP_TYPE_XSKMAP) 2468 goto error; 2469 break; 2470 case BPF_FUNC_sk_redirect_map: 2471 case BPF_FUNC_msg_redirect_map: 2472 case BPF_FUNC_sock_map_update: 2473 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 2474 goto error; 2475 break; 2476 case BPF_FUNC_sk_redirect_hash: 2477 case BPF_FUNC_msg_redirect_hash: 2478 case BPF_FUNC_sock_hash_update: 2479 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 2480 goto error; 2481 break; 2482 case BPF_FUNC_get_local_storage: 2483 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 2484 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 2485 goto error; 2486 break; 2487 case BPF_FUNC_sk_select_reuseport: 2488 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY) 2489 goto error; 2490 break; 2491 case BPF_FUNC_map_peek_elem: 2492 case BPF_FUNC_map_pop_elem: 2493 case BPF_FUNC_map_push_elem: 2494 if (map->map_type != BPF_MAP_TYPE_QUEUE && 2495 map->map_type != BPF_MAP_TYPE_STACK) 2496 goto error; 2497 break; 2498 default: 2499 break; 2500 } 2501 2502 return 0; 2503 error: 2504 verbose(env, "cannot pass map_type %d into func %s#%d\n", 2505 map->map_type, func_id_name(func_id), func_id); 2506 return -EINVAL; 2507 } 2508 2509 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 2510 { 2511 int count = 0; 2512 2513 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 2514 count++; 2515 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 2516 count++; 2517 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 2518 count++; 2519 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 2520 count++; 2521 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 2522 count++; 2523 2524 /* We only support one arg being in raw mode at the moment, 2525 * which is sufficient for the helper functions we have 2526 * right now. 2527 */ 2528 return count <= 1; 2529 } 2530 2531 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr, 2532 enum bpf_arg_type arg_next) 2533 { 2534 return (arg_type_is_mem_ptr(arg_curr) && 2535 !arg_type_is_mem_size(arg_next)) || 2536 (!arg_type_is_mem_ptr(arg_curr) && 2537 arg_type_is_mem_size(arg_next)); 2538 } 2539 2540 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 2541 { 2542 /* bpf_xxx(..., buf, len) call will access 'len' 2543 * bytes from memory 'buf'. Both arg types need 2544 * to be paired, so make sure there's no buggy 2545 * helper function specification. 2546 */ 2547 if (arg_type_is_mem_size(fn->arg1_type) || 2548 arg_type_is_mem_ptr(fn->arg5_type) || 2549 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) || 2550 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) || 2551 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) || 2552 check_args_pair_invalid(fn->arg4_type, fn->arg5_type)) 2553 return false; 2554 2555 return true; 2556 } 2557 2558 static bool check_refcount_ok(const struct bpf_func_proto *fn) 2559 { 2560 int count = 0; 2561 2562 if (arg_type_is_refcounted(fn->arg1_type)) 2563 count++; 2564 if (arg_type_is_refcounted(fn->arg2_type)) 2565 count++; 2566 if (arg_type_is_refcounted(fn->arg3_type)) 2567 count++; 2568 if (arg_type_is_refcounted(fn->arg4_type)) 2569 count++; 2570 if (arg_type_is_refcounted(fn->arg5_type)) 2571 count++; 2572 2573 /* We only support one arg being unreferenced at the moment, 2574 * which is sufficient for the helper functions we have right now. 2575 */ 2576 return count <= 1; 2577 } 2578 2579 static int check_func_proto(const struct bpf_func_proto *fn) 2580 { 2581 return check_raw_mode_ok(fn) && 2582 check_arg_pair_ok(fn) && 2583 check_refcount_ok(fn) ? 0 : -EINVAL; 2584 } 2585 2586 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 2587 * are now invalid, so turn them into unknown SCALAR_VALUE. 2588 */ 2589 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env, 2590 struct bpf_func_state *state) 2591 { 2592 struct bpf_reg_state *regs = state->regs, *reg; 2593 int i; 2594 2595 for (i = 0; i < MAX_BPF_REG; i++) 2596 if (reg_is_pkt_pointer_any(®s[i])) 2597 mark_reg_unknown(env, regs, i); 2598 2599 bpf_for_each_spilled_reg(i, state, reg) { 2600 if (!reg) 2601 continue; 2602 if (reg_is_pkt_pointer_any(reg)) 2603 __mark_reg_unknown(reg); 2604 } 2605 } 2606 2607 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 2608 { 2609 struct bpf_verifier_state *vstate = env->cur_state; 2610 int i; 2611 2612 for (i = 0; i <= vstate->curframe; i++) 2613 __clear_all_pkt_pointers(env, vstate->frame[i]); 2614 } 2615 2616 static void release_reg_references(struct bpf_verifier_env *env, 2617 struct bpf_func_state *state, int id) 2618 { 2619 struct bpf_reg_state *regs = state->regs, *reg; 2620 int i; 2621 2622 for (i = 0; i < MAX_BPF_REG; i++) 2623 if (regs[i].id == id) 2624 mark_reg_unknown(env, regs, i); 2625 2626 bpf_for_each_spilled_reg(i, state, reg) { 2627 if (!reg) 2628 continue; 2629 if (reg_is_refcounted(reg) && reg->id == id) 2630 __mark_reg_unknown(reg); 2631 } 2632 } 2633 2634 /* The pointer with the specified id has released its reference to kernel 2635 * resources. Identify all copies of the same pointer and clear the reference. 2636 */ 2637 static int release_reference(struct bpf_verifier_env *env, 2638 struct bpf_call_arg_meta *meta) 2639 { 2640 struct bpf_verifier_state *vstate = env->cur_state; 2641 int i; 2642 2643 for (i = 0; i <= vstate->curframe; i++) 2644 release_reg_references(env, vstate->frame[i], meta->ptr_id); 2645 2646 return release_reference_state(env, meta->ptr_id); 2647 } 2648 2649 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 2650 int *insn_idx) 2651 { 2652 struct bpf_verifier_state *state = env->cur_state; 2653 struct bpf_func_state *caller, *callee; 2654 int i, err, subprog, target_insn; 2655 2656 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 2657 verbose(env, "the call stack of %d frames is too deep\n", 2658 state->curframe + 2); 2659 return -E2BIG; 2660 } 2661 2662 target_insn = *insn_idx + insn->imm; 2663 subprog = find_subprog(env, target_insn + 1); 2664 if (subprog < 0) { 2665 verbose(env, "verifier bug. No program starts at insn %d\n", 2666 target_insn + 1); 2667 return -EFAULT; 2668 } 2669 2670 caller = state->frame[state->curframe]; 2671 if (state->frame[state->curframe + 1]) { 2672 verbose(env, "verifier bug. Frame %d already allocated\n", 2673 state->curframe + 1); 2674 return -EFAULT; 2675 } 2676 2677 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 2678 if (!callee) 2679 return -ENOMEM; 2680 state->frame[state->curframe + 1] = callee; 2681 2682 /* callee cannot access r0, r6 - r9 for reading and has to write 2683 * into its own stack before reading from it. 2684 * callee can read/write into caller's stack 2685 */ 2686 init_func_state(env, callee, 2687 /* remember the callsite, it will be used by bpf_exit */ 2688 *insn_idx /* callsite */, 2689 state->curframe + 1 /* frameno within this callchain */, 2690 subprog /* subprog number within this prog */); 2691 2692 /* Transfer references to the callee */ 2693 err = transfer_reference_state(callee, caller); 2694 if (err) 2695 return err; 2696 2697 /* copy r1 - r5 args that callee can access. The copy includes parent 2698 * pointers, which connects us up to the liveness chain 2699 */ 2700 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 2701 callee->regs[i] = caller->regs[i]; 2702 2703 /* after the call registers r0 - r5 were scratched */ 2704 for (i = 0; i < CALLER_SAVED_REGS; i++) { 2705 mark_reg_not_init(env, caller->regs, caller_saved[i]); 2706 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 2707 } 2708 2709 /* only increment it after check_reg_arg() finished */ 2710 state->curframe++; 2711 2712 /* and go analyze first insn of the callee */ 2713 *insn_idx = target_insn; 2714 2715 if (env->log.level) { 2716 verbose(env, "caller:\n"); 2717 print_verifier_state(env, caller); 2718 verbose(env, "callee:\n"); 2719 print_verifier_state(env, callee); 2720 } 2721 return 0; 2722 } 2723 2724 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 2725 { 2726 struct bpf_verifier_state *state = env->cur_state; 2727 struct bpf_func_state *caller, *callee; 2728 struct bpf_reg_state *r0; 2729 int err; 2730 2731 callee = state->frame[state->curframe]; 2732 r0 = &callee->regs[BPF_REG_0]; 2733 if (r0->type == PTR_TO_STACK) { 2734 /* technically it's ok to return caller's stack pointer 2735 * (or caller's caller's pointer) back to the caller, 2736 * since these pointers are valid. Only current stack 2737 * pointer will be invalid as soon as function exits, 2738 * but let's be conservative 2739 */ 2740 verbose(env, "cannot return stack pointer to the caller\n"); 2741 return -EINVAL; 2742 } 2743 2744 state->curframe--; 2745 caller = state->frame[state->curframe]; 2746 /* return to the caller whatever r0 had in the callee */ 2747 caller->regs[BPF_REG_0] = *r0; 2748 2749 /* Transfer references to the caller */ 2750 err = transfer_reference_state(caller, callee); 2751 if (err) 2752 return err; 2753 2754 *insn_idx = callee->callsite + 1; 2755 if (env->log.level) { 2756 verbose(env, "returning from callee:\n"); 2757 print_verifier_state(env, callee); 2758 verbose(env, "to caller at %d:\n", *insn_idx); 2759 print_verifier_state(env, caller); 2760 } 2761 /* clear everything in the callee */ 2762 free_func_state(callee); 2763 state->frame[state->curframe + 1] = NULL; 2764 return 0; 2765 } 2766 2767 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 2768 int func_id, 2769 struct bpf_call_arg_meta *meta) 2770 { 2771 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 2772 2773 if (ret_type != RET_INTEGER || 2774 (func_id != BPF_FUNC_get_stack && 2775 func_id != BPF_FUNC_probe_read_str)) 2776 return; 2777 2778 ret_reg->smax_value = meta->msize_smax_value; 2779 ret_reg->umax_value = meta->msize_umax_value; 2780 __reg_deduce_bounds(ret_reg); 2781 __reg_bound_offset(ret_reg); 2782 } 2783 2784 static int 2785 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 2786 int func_id, int insn_idx) 2787 { 2788 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 2789 2790 if (func_id != BPF_FUNC_tail_call && 2791 func_id != BPF_FUNC_map_lookup_elem && 2792 func_id != BPF_FUNC_map_update_elem && 2793 func_id != BPF_FUNC_map_delete_elem && 2794 func_id != BPF_FUNC_map_push_elem && 2795 func_id != BPF_FUNC_map_pop_elem && 2796 func_id != BPF_FUNC_map_peek_elem) 2797 return 0; 2798 2799 if (meta->map_ptr == NULL) { 2800 verbose(env, "kernel subsystem misconfigured verifier\n"); 2801 return -EINVAL; 2802 } 2803 2804 if (!BPF_MAP_PTR(aux->map_state)) 2805 bpf_map_ptr_store(aux, meta->map_ptr, 2806 meta->map_ptr->unpriv_array); 2807 else if (BPF_MAP_PTR(aux->map_state) != meta->map_ptr) 2808 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 2809 meta->map_ptr->unpriv_array); 2810 return 0; 2811 } 2812 2813 static int check_reference_leak(struct bpf_verifier_env *env) 2814 { 2815 struct bpf_func_state *state = cur_func(env); 2816 int i; 2817 2818 for (i = 0; i < state->acquired_refs; i++) { 2819 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 2820 state->refs[i].id, state->refs[i].insn_idx); 2821 } 2822 return state->acquired_refs ? -EINVAL : 0; 2823 } 2824 2825 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx) 2826 { 2827 const struct bpf_func_proto *fn = NULL; 2828 struct bpf_reg_state *regs; 2829 struct bpf_call_arg_meta meta; 2830 bool changes_data; 2831 int i, err; 2832 2833 /* find function prototype */ 2834 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 2835 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 2836 func_id); 2837 return -EINVAL; 2838 } 2839 2840 if (env->ops->get_func_proto) 2841 fn = env->ops->get_func_proto(func_id, env->prog); 2842 if (!fn) { 2843 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 2844 func_id); 2845 return -EINVAL; 2846 } 2847 2848 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 2849 if (!env->prog->gpl_compatible && fn->gpl_only) { 2850 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 2851 return -EINVAL; 2852 } 2853 2854 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 2855 changes_data = bpf_helper_changes_pkt_data(fn->func); 2856 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 2857 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 2858 func_id_name(func_id), func_id); 2859 return -EINVAL; 2860 } 2861 2862 memset(&meta, 0, sizeof(meta)); 2863 meta.pkt_access = fn->pkt_access; 2864 2865 err = check_func_proto(fn); 2866 if (err) { 2867 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 2868 func_id_name(func_id), func_id); 2869 return err; 2870 } 2871 2872 /* check args */ 2873 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta); 2874 if (err) 2875 return err; 2876 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta); 2877 if (err) 2878 return err; 2879 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta); 2880 if (err) 2881 return err; 2882 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta); 2883 if (err) 2884 return err; 2885 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta); 2886 if (err) 2887 return err; 2888 2889 err = record_func_map(env, &meta, func_id, insn_idx); 2890 if (err) 2891 return err; 2892 2893 /* Mark slots with STACK_MISC in case of raw mode, stack offset 2894 * is inferred from register state. 2895 */ 2896 for (i = 0; i < meta.access_size; i++) { 2897 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 2898 BPF_WRITE, -1, false); 2899 if (err) 2900 return err; 2901 } 2902 2903 if (func_id == BPF_FUNC_tail_call) { 2904 err = check_reference_leak(env); 2905 if (err) { 2906 verbose(env, "tail_call would lead to reference leak\n"); 2907 return err; 2908 } 2909 } else if (is_release_function(func_id)) { 2910 err = release_reference(env, &meta); 2911 if (err) 2912 return err; 2913 } 2914 2915 regs = cur_regs(env); 2916 2917 /* check that flags argument in get_local_storage(map, flags) is 0, 2918 * this is required because get_local_storage() can't return an error. 2919 */ 2920 if (func_id == BPF_FUNC_get_local_storage && 2921 !register_is_null(®s[BPF_REG_2])) { 2922 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 2923 return -EINVAL; 2924 } 2925 2926 /* reset caller saved regs */ 2927 for (i = 0; i < CALLER_SAVED_REGS; i++) { 2928 mark_reg_not_init(env, regs, caller_saved[i]); 2929 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 2930 } 2931 2932 /* update return register (already marked as written above) */ 2933 if (fn->ret_type == RET_INTEGER) { 2934 /* sets type to SCALAR_VALUE */ 2935 mark_reg_unknown(env, regs, BPF_REG_0); 2936 } else if (fn->ret_type == RET_VOID) { 2937 regs[BPF_REG_0].type = NOT_INIT; 2938 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL || 2939 fn->ret_type == RET_PTR_TO_MAP_VALUE) { 2940 /* There is no offset yet applied, variable or fixed */ 2941 mark_reg_known_zero(env, regs, BPF_REG_0); 2942 /* remember map_ptr, so that check_map_access() 2943 * can check 'value_size' boundary of memory access 2944 * to map element returned from bpf_map_lookup_elem() 2945 */ 2946 if (meta.map_ptr == NULL) { 2947 verbose(env, 2948 "kernel subsystem misconfigured verifier\n"); 2949 return -EINVAL; 2950 } 2951 regs[BPF_REG_0].map_ptr = meta.map_ptr; 2952 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) { 2953 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE; 2954 } else { 2955 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL; 2956 regs[BPF_REG_0].id = ++env->id_gen; 2957 } 2958 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) { 2959 int id = acquire_reference_state(env, insn_idx); 2960 if (id < 0) 2961 return id; 2962 mark_reg_known_zero(env, regs, BPF_REG_0); 2963 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL; 2964 regs[BPF_REG_0].id = id; 2965 } else { 2966 verbose(env, "unknown return type %d of func %s#%d\n", 2967 fn->ret_type, func_id_name(func_id), func_id); 2968 return -EINVAL; 2969 } 2970 2971 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 2972 2973 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 2974 if (err) 2975 return err; 2976 2977 if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) { 2978 const char *err_str; 2979 2980 #ifdef CONFIG_PERF_EVENTS 2981 err = get_callchain_buffers(sysctl_perf_event_max_stack); 2982 err_str = "cannot get callchain buffer for func %s#%d\n"; 2983 #else 2984 err = -ENOTSUPP; 2985 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 2986 #endif 2987 if (err) { 2988 verbose(env, err_str, func_id_name(func_id), func_id); 2989 return err; 2990 } 2991 2992 env->prog->has_callchain_buf = true; 2993 } 2994 2995 if (changes_data) 2996 clear_all_pkt_pointers(env); 2997 return 0; 2998 } 2999 3000 static bool signed_add_overflows(s64 a, s64 b) 3001 { 3002 /* Do the add in u64, where overflow is well-defined */ 3003 s64 res = (s64)((u64)a + (u64)b); 3004 3005 if (b < 0) 3006 return res > a; 3007 return res < a; 3008 } 3009 3010 static bool signed_sub_overflows(s64 a, s64 b) 3011 { 3012 /* Do the sub in u64, where overflow is well-defined */ 3013 s64 res = (s64)((u64)a - (u64)b); 3014 3015 if (b < 0) 3016 return res < a; 3017 return res > a; 3018 } 3019 3020 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 3021 const struct bpf_reg_state *reg, 3022 enum bpf_reg_type type) 3023 { 3024 bool known = tnum_is_const(reg->var_off); 3025 s64 val = reg->var_off.value; 3026 s64 smin = reg->smin_value; 3027 3028 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 3029 verbose(env, "math between %s pointer and %lld is not allowed\n", 3030 reg_type_str[type], val); 3031 return false; 3032 } 3033 3034 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 3035 verbose(env, "%s pointer offset %d is not allowed\n", 3036 reg_type_str[type], reg->off); 3037 return false; 3038 } 3039 3040 if (smin == S64_MIN) { 3041 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 3042 reg_type_str[type]); 3043 return false; 3044 } 3045 3046 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 3047 verbose(env, "value %lld makes %s pointer be out of bounds\n", 3048 smin, reg_type_str[type]); 3049 return false; 3050 } 3051 3052 return true; 3053 } 3054 3055 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 3056 * Caller should also handle BPF_MOV case separately. 3057 * If we return -EACCES, caller may want to try again treating pointer as a 3058 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 3059 */ 3060 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 3061 struct bpf_insn *insn, 3062 const struct bpf_reg_state *ptr_reg, 3063 const struct bpf_reg_state *off_reg) 3064 { 3065 struct bpf_verifier_state *vstate = env->cur_state; 3066 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3067 struct bpf_reg_state *regs = state->regs, *dst_reg; 3068 bool known = tnum_is_const(off_reg->var_off); 3069 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 3070 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 3071 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 3072 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 3073 u8 opcode = BPF_OP(insn->code); 3074 u32 dst = insn->dst_reg; 3075 3076 dst_reg = ®s[dst]; 3077 3078 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 3079 smin_val > smax_val || umin_val > umax_val) { 3080 /* Taint dst register if offset had invalid bounds derived from 3081 * e.g. dead branches. 3082 */ 3083 __mark_reg_unknown(dst_reg); 3084 return 0; 3085 } 3086 3087 if (BPF_CLASS(insn->code) != BPF_ALU64) { 3088 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 3089 verbose(env, 3090 "R%d 32-bit pointer arithmetic prohibited\n", 3091 dst); 3092 return -EACCES; 3093 } 3094 3095 switch (ptr_reg->type) { 3096 case PTR_TO_MAP_VALUE_OR_NULL: 3097 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 3098 dst, reg_type_str[ptr_reg->type]); 3099 return -EACCES; 3100 case CONST_PTR_TO_MAP: 3101 case PTR_TO_PACKET_END: 3102 case PTR_TO_SOCKET: 3103 case PTR_TO_SOCKET_OR_NULL: 3104 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 3105 dst, reg_type_str[ptr_reg->type]); 3106 return -EACCES; 3107 default: 3108 break; 3109 } 3110 3111 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 3112 * The id may be overwritten later if we create a new variable offset. 3113 */ 3114 dst_reg->type = ptr_reg->type; 3115 dst_reg->id = ptr_reg->id; 3116 3117 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 3118 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 3119 return -EINVAL; 3120 3121 switch (opcode) { 3122 case BPF_ADD: 3123 /* We can take a fixed offset as long as it doesn't overflow 3124 * the s32 'off' field 3125 */ 3126 if (known && (ptr_reg->off + smin_val == 3127 (s64)(s32)(ptr_reg->off + smin_val))) { 3128 /* pointer += K. Accumulate it into fixed offset */ 3129 dst_reg->smin_value = smin_ptr; 3130 dst_reg->smax_value = smax_ptr; 3131 dst_reg->umin_value = umin_ptr; 3132 dst_reg->umax_value = umax_ptr; 3133 dst_reg->var_off = ptr_reg->var_off; 3134 dst_reg->off = ptr_reg->off + smin_val; 3135 dst_reg->raw = ptr_reg->raw; 3136 break; 3137 } 3138 /* A new variable offset is created. Note that off_reg->off 3139 * == 0, since it's a scalar. 3140 * dst_reg gets the pointer type and since some positive 3141 * integer value was added to the pointer, give it a new 'id' 3142 * if it's a PTR_TO_PACKET. 3143 * this creates a new 'base' pointer, off_reg (variable) gets 3144 * added into the variable offset, and we copy the fixed offset 3145 * from ptr_reg. 3146 */ 3147 if (signed_add_overflows(smin_ptr, smin_val) || 3148 signed_add_overflows(smax_ptr, smax_val)) { 3149 dst_reg->smin_value = S64_MIN; 3150 dst_reg->smax_value = S64_MAX; 3151 } else { 3152 dst_reg->smin_value = smin_ptr + smin_val; 3153 dst_reg->smax_value = smax_ptr + smax_val; 3154 } 3155 if (umin_ptr + umin_val < umin_ptr || 3156 umax_ptr + umax_val < umax_ptr) { 3157 dst_reg->umin_value = 0; 3158 dst_reg->umax_value = U64_MAX; 3159 } else { 3160 dst_reg->umin_value = umin_ptr + umin_val; 3161 dst_reg->umax_value = umax_ptr + umax_val; 3162 } 3163 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 3164 dst_reg->off = ptr_reg->off; 3165 dst_reg->raw = ptr_reg->raw; 3166 if (reg_is_pkt_pointer(ptr_reg)) { 3167 dst_reg->id = ++env->id_gen; 3168 /* something was added to pkt_ptr, set range to zero */ 3169 dst_reg->raw = 0; 3170 } 3171 break; 3172 case BPF_SUB: 3173 if (dst_reg == off_reg) { 3174 /* scalar -= pointer. Creates an unknown scalar */ 3175 verbose(env, "R%d tried to subtract pointer from scalar\n", 3176 dst); 3177 return -EACCES; 3178 } 3179 /* We don't allow subtraction from FP, because (according to 3180 * test_verifier.c test "invalid fp arithmetic", JITs might not 3181 * be able to deal with it. 3182 */ 3183 if (ptr_reg->type == PTR_TO_STACK) { 3184 verbose(env, "R%d subtraction from stack pointer prohibited\n", 3185 dst); 3186 return -EACCES; 3187 } 3188 if (known && (ptr_reg->off - smin_val == 3189 (s64)(s32)(ptr_reg->off - smin_val))) { 3190 /* pointer -= K. Subtract it from fixed offset */ 3191 dst_reg->smin_value = smin_ptr; 3192 dst_reg->smax_value = smax_ptr; 3193 dst_reg->umin_value = umin_ptr; 3194 dst_reg->umax_value = umax_ptr; 3195 dst_reg->var_off = ptr_reg->var_off; 3196 dst_reg->id = ptr_reg->id; 3197 dst_reg->off = ptr_reg->off - smin_val; 3198 dst_reg->raw = ptr_reg->raw; 3199 break; 3200 } 3201 /* A new variable offset is created. If the subtrahend is known 3202 * nonnegative, then any reg->range we had before is still good. 3203 */ 3204 if (signed_sub_overflows(smin_ptr, smax_val) || 3205 signed_sub_overflows(smax_ptr, smin_val)) { 3206 /* Overflow possible, we know nothing */ 3207 dst_reg->smin_value = S64_MIN; 3208 dst_reg->smax_value = S64_MAX; 3209 } else { 3210 dst_reg->smin_value = smin_ptr - smax_val; 3211 dst_reg->smax_value = smax_ptr - smin_val; 3212 } 3213 if (umin_ptr < umax_val) { 3214 /* Overflow possible, we know nothing */ 3215 dst_reg->umin_value = 0; 3216 dst_reg->umax_value = U64_MAX; 3217 } else { 3218 /* Cannot overflow (as long as bounds are consistent) */ 3219 dst_reg->umin_value = umin_ptr - umax_val; 3220 dst_reg->umax_value = umax_ptr - umin_val; 3221 } 3222 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 3223 dst_reg->off = ptr_reg->off; 3224 dst_reg->raw = ptr_reg->raw; 3225 if (reg_is_pkt_pointer(ptr_reg)) { 3226 dst_reg->id = ++env->id_gen; 3227 /* something was added to pkt_ptr, set range to zero */ 3228 if (smin_val < 0) 3229 dst_reg->raw = 0; 3230 } 3231 break; 3232 case BPF_AND: 3233 case BPF_OR: 3234 case BPF_XOR: 3235 /* bitwise ops on pointers are troublesome, prohibit. */ 3236 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 3237 dst, bpf_alu_string[opcode >> 4]); 3238 return -EACCES; 3239 default: 3240 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 3241 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 3242 dst, bpf_alu_string[opcode >> 4]); 3243 return -EACCES; 3244 } 3245 3246 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 3247 return -EINVAL; 3248 3249 __update_reg_bounds(dst_reg); 3250 __reg_deduce_bounds(dst_reg); 3251 __reg_bound_offset(dst_reg); 3252 return 0; 3253 } 3254 3255 /* WARNING: This function does calculations on 64-bit values, but the actual 3256 * execution may occur on 32-bit values. Therefore, things like bitshifts 3257 * need extra checks in the 32-bit case. 3258 */ 3259 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 3260 struct bpf_insn *insn, 3261 struct bpf_reg_state *dst_reg, 3262 struct bpf_reg_state src_reg) 3263 { 3264 struct bpf_reg_state *regs = cur_regs(env); 3265 u8 opcode = BPF_OP(insn->code); 3266 bool src_known, dst_known; 3267 s64 smin_val, smax_val; 3268 u64 umin_val, umax_val; 3269 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 3270 3271 if (insn_bitness == 32) { 3272 /* Relevant for 32-bit RSH: Information can propagate towards 3273 * LSB, so it isn't sufficient to only truncate the output to 3274 * 32 bits. 3275 */ 3276 coerce_reg_to_size(dst_reg, 4); 3277 coerce_reg_to_size(&src_reg, 4); 3278 } 3279 3280 smin_val = src_reg.smin_value; 3281 smax_val = src_reg.smax_value; 3282 umin_val = src_reg.umin_value; 3283 umax_val = src_reg.umax_value; 3284 src_known = tnum_is_const(src_reg.var_off); 3285 dst_known = tnum_is_const(dst_reg->var_off); 3286 3287 if ((src_known && (smin_val != smax_val || umin_val != umax_val)) || 3288 smin_val > smax_val || umin_val > umax_val) { 3289 /* Taint dst register if offset had invalid bounds derived from 3290 * e.g. dead branches. 3291 */ 3292 __mark_reg_unknown(dst_reg); 3293 return 0; 3294 } 3295 3296 if (!src_known && 3297 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 3298 __mark_reg_unknown(dst_reg); 3299 return 0; 3300 } 3301 3302 switch (opcode) { 3303 case BPF_ADD: 3304 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 3305 signed_add_overflows(dst_reg->smax_value, smax_val)) { 3306 dst_reg->smin_value = S64_MIN; 3307 dst_reg->smax_value = S64_MAX; 3308 } else { 3309 dst_reg->smin_value += smin_val; 3310 dst_reg->smax_value += smax_val; 3311 } 3312 if (dst_reg->umin_value + umin_val < umin_val || 3313 dst_reg->umax_value + umax_val < umax_val) { 3314 dst_reg->umin_value = 0; 3315 dst_reg->umax_value = U64_MAX; 3316 } else { 3317 dst_reg->umin_value += umin_val; 3318 dst_reg->umax_value += umax_val; 3319 } 3320 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 3321 break; 3322 case BPF_SUB: 3323 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 3324 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 3325 /* Overflow possible, we know nothing */ 3326 dst_reg->smin_value = S64_MIN; 3327 dst_reg->smax_value = S64_MAX; 3328 } else { 3329 dst_reg->smin_value -= smax_val; 3330 dst_reg->smax_value -= smin_val; 3331 } 3332 if (dst_reg->umin_value < umax_val) { 3333 /* Overflow possible, we know nothing */ 3334 dst_reg->umin_value = 0; 3335 dst_reg->umax_value = U64_MAX; 3336 } else { 3337 /* Cannot overflow (as long as bounds are consistent) */ 3338 dst_reg->umin_value -= umax_val; 3339 dst_reg->umax_value -= umin_val; 3340 } 3341 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 3342 break; 3343 case BPF_MUL: 3344 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 3345 if (smin_val < 0 || dst_reg->smin_value < 0) { 3346 /* Ain't nobody got time to multiply that sign */ 3347 __mark_reg_unbounded(dst_reg); 3348 __update_reg_bounds(dst_reg); 3349 break; 3350 } 3351 /* Both values are positive, so we can work with unsigned and 3352 * copy the result to signed (unless it exceeds S64_MAX). 3353 */ 3354 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 3355 /* Potential overflow, we know nothing */ 3356 __mark_reg_unbounded(dst_reg); 3357 /* (except what we can learn from the var_off) */ 3358 __update_reg_bounds(dst_reg); 3359 break; 3360 } 3361 dst_reg->umin_value *= umin_val; 3362 dst_reg->umax_value *= umax_val; 3363 if (dst_reg->umax_value > S64_MAX) { 3364 /* Overflow possible, we know nothing */ 3365 dst_reg->smin_value = S64_MIN; 3366 dst_reg->smax_value = S64_MAX; 3367 } else { 3368 dst_reg->smin_value = dst_reg->umin_value; 3369 dst_reg->smax_value = dst_reg->umax_value; 3370 } 3371 break; 3372 case BPF_AND: 3373 if (src_known && dst_known) { 3374 __mark_reg_known(dst_reg, dst_reg->var_off.value & 3375 src_reg.var_off.value); 3376 break; 3377 } 3378 /* We get our minimum from the var_off, since that's inherently 3379 * bitwise. Our maximum is the minimum of the operands' maxima. 3380 */ 3381 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 3382 dst_reg->umin_value = dst_reg->var_off.value; 3383 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 3384 if (dst_reg->smin_value < 0 || smin_val < 0) { 3385 /* Lose signed bounds when ANDing negative numbers, 3386 * ain't nobody got time for that. 3387 */ 3388 dst_reg->smin_value = S64_MIN; 3389 dst_reg->smax_value = S64_MAX; 3390 } else { 3391 /* ANDing two positives gives a positive, so safe to 3392 * cast result into s64. 3393 */ 3394 dst_reg->smin_value = dst_reg->umin_value; 3395 dst_reg->smax_value = dst_reg->umax_value; 3396 } 3397 /* We may learn something more from the var_off */ 3398 __update_reg_bounds(dst_reg); 3399 break; 3400 case BPF_OR: 3401 if (src_known && dst_known) { 3402 __mark_reg_known(dst_reg, dst_reg->var_off.value | 3403 src_reg.var_off.value); 3404 break; 3405 } 3406 /* We get our maximum from the var_off, and our minimum is the 3407 * maximum of the operands' minima 3408 */ 3409 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 3410 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 3411 dst_reg->umax_value = dst_reg->var_off.value | 3412 dst_reg->var_off.mask; 3413 if (dst_reg->smin_value < 0 || smin_val < 0) { 3414 /* Lose signed bounds when ORing negative numbers, 3415 * ain't nobody got time for that. 3416 */ 3417 dst_reg->smin_value = S64_MIN; 3418 dst_reg->smax_value = S64_MAX; 3419 } else { 3420 /* ORing two positives gives a positive, so safe to 3421 * cast result into s64. 3422 */ 3423 dst_reg->smin_value = dst_reg->umin_value; 3424 dst_reg->smax_value = dst_reg->umax_value; 3425 } 3426 /* We may learn something more from the var_off */ 3427 __update_reg_bounds(dst_reg); 3428 break; 3429 case BPF_LSH: 3430 if (umax_val >= insn_bitness) { 3431 /* Shifts greater than 31 or 63 are undefined. 3432 * This includes shifts by a negative number. 3433 */ 3434 mark_reg_unknown(env, regs, insn->dst_reg); 3435 break; 3436 } 3437 /* We lose all sign bit information (except what we can pick 3438 * up from var_off) 3439 */ 3440 dst_reg->smin_value = S64_MIN; 3441 dst_reg->smax_value = S64_MAX; 3442 /* If we might shift our top bit out, then we know nothing */ 3443 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 3444 dst_reg->umin_value = 0; 3445 dst_reg->umax_value = U64_MAX; 3446 } else { 3447 dst_reg->umin_value <<= umin_val; 3448 dst_reg->umax_value <<= umax_val; 3449 } 3450 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 3451 /* We may learn something more from the var_off */ 3452 __update_reg_bounds(dst_reg); 3453 break; 3454 case BPF_RSH: 3455 if (umax_val >= insn_bitness) { 3456 /* Shifts greater than 31 or 63 are undefined. 3457 * This includes shifts by a negative number. 3458 */ 3459 mark_reg_unknown(env, regs, insn->dst_reg); 3460 break; 3461 } 3462 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 3463 * be negative, then either: 3464 * 1) src_reg might be zero, so the sign bit of the result is 3465 * unknown, so we lose our signed bounds 3466 * 2) it's known negative, thus the unsigned bounds capture the 3467 * signed bounds 3468 * 3) the signed bounds cross zero, so they tell us nothing 3469 * about the result 3470 * If the value in dst_reg is known nonnegative, then again the 3471 * unsigned bounts capture the signed bounds. 3472 * Thus, in all cases it suffices to blow away our signed bounds 3473 * and rely on inferring new ones from the unsigned bounds and 3474 * var_off of the result. 3475 */ 3476 dst_reg->smin_value = S64_MIN; 3477 dst_reg->smax_value = S64_MAX; 3478 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 3479 dst_reg->umin_value >>= umax_val; 3480 dst_reg->umax_value >>= umin_val; 3481 /* We may learn something more from the var_off */ 3482 __update_reg_bounds(dst_reg); 3483 break; 3484 case BPF_ARSH: 3485 if (umax_val >= insn_bitness) { 3486 /* Shifts greater than 31 or 63 are undefined. 3487 * This includes shifts by a negative number. 3488 */ 3489 mark_reg_unknown(env, regs, insn->dst_reg); 3490 break; 3491 } 3492 3493 /* Upon reaching here, src_known is true and 3494 * umax_val is equal to umin_val. 3495 */ 3496 dst_reg->smin_value >>= umin_val; 3497 dst_reg->smax_value >>= umin_val; 3498 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val); 3499 3500 /* blow away the dst_reg umin_value/umax_value and rely on 3501 * dst_reg var_off to refine the result. 3502 */ 3503 dst_reg->umin_value = 0; 3504 dst_reg->umax_value = U64_MAX; 3505 __update_reg_bounds(dst_reg); 3506 break; 3507 default: 3508 mark_reg_unknown(env, regs, insn->dst_reg); 3509 break; 3510 } 3511 3512 if (BPF_CLASS(insn->code) != BPF_ALU64) { 3513 /* 32-bit ALU ops are (32,32)->32 */ 3514 coerce_reg_to_size(dst_reg, 4); 3515 } 3516 3517 __reg_deduce_bounds(dst_reg); 3518 __reg_bound_offset(dst_reg); 3519 return 0; 3520 } 3521 3522 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 3523 * and var_off. 3524 */ 3525 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 3526 struct bpf_insn *insn) 3527 { 3528 struct bpf_verifier_state *vstate = env->cur_state; 3529 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3530 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 3531 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 3532 u8 opcode = BPF_OP(insn->code); 3533 3534 dst_reg = ®s[insn->dst_reg]; 3535 src_reg = NULL; 3536 if (dst_reg->type != SCALAR_VALUE) 3537 ptr_reg = dst_reg; 3538 if (BPF_SRC(insn->code) == BPF_X) { 3539 src_reg = ®s[insn->src_reg]; 3540 if (src_reg->type != SCALAR_VALUE) { 3541 if (dst_reg->type != SCALAR_VALUE) { 3542 /* Combining two pointers by any ALU op yields 3543 * an arbitrary scalar. Disallow all math except 3544 * pointer subtraction 3545 */ 3546 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 3547 mark_reg_unknown(env, regs, insn->dst_reg); 3548 return 0; 3549 } 3550 verbose(env, "R%d pointer %s pointer prohibited\n", 3551 insn->dst_reg, 3552 bpf_alu_string[opcode >> 4]); 3553 return -EACCES; 3554 } else { 3555 /* scalar += pointer 3556 * This is legal, but we have to reverse our 3557 * src/dest handling in computing the range 3558 */ 3559 return adjust_ptr_min_max_vals(env, insn, 3560 src_reg, dst_reg); 3561 } 3562 } else if (ptr_reg) { 3563 /* pointer += scalar */ 3564 return adjust_ptr_min_max_vals(env, insn, 3565 dst_reg, src_reg); 3566 } 3567 } else { 3568 /* Pretend the src is a reg with a known value, since we only 3569 * need to be able to read from this state. 3570 */ 3571 off_reg.type = SCALAR_VALUE; 3572 __mark_reg_known(&off_reg, insn->imm); 3573 src_reg = &off_reg; 3574 if (ptr_reg) /* pointer += K */ 3575 return adjust_ptr_min_max_vals(env, insn, 3576 ptr_reg, src_reg); 3577 } 3578 3579 /* Got here implies adding two SCALAR_VALUEs */ 3580 if (WARN_ON_ONCE(ptr_reg)) { 3581 print_verifier_state(env, state); 3582 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 3583 return -EINVAL; 3584 } 3585 if (WARN_ON(!src_reg)) { 3586 print_verifier_state(env, state); 3587 verbose(env, "verifier internal error: no src_reg\n"); 3588 return -EINVAL; 3589 } 3590 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 3591 } 3592 3593 /* check validity of 32-bit and 64-bit arithmetic operations */ 3594 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 3595 { 3596 struct bpf_reg_state *regs = cur_regs(env); 3597 u8 opcode = BPF_OP(insn->code); 3598 int err; 3599 3600 if (opcode == BPF_END || opcode == BPF_NEG) { 3601 if (opcode == BPF_NEG) { 3602 if (BPF_SRC(insn->code) != 0 || 3603 insn->src_reg != BPF_REG_0 || 3604 insn->off != 0 || insn->imm != 0) { 3605 verbose(env, "BPF_NEG uses reserved fields\n"); 3606 return -EINVAL; 3607 } 3608 } else { 3609 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 3610 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 3611 BPF_CLASS(insn->code) == BPF_ALU64) { 3612 verbose(env, "BPF_END uses reserved fields\n"); 3613 return -EINVAL; 3614 } 3615 } 3616 3617 /* check src operand */ 3618 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 3619 if (err) 3620 return err; 3621 3622 if (is_pointer_value(env, insn->dst_reg)) { 3623 verbose(env, "R%d pointer arithmetic prohibited\n", 3624 insn->dst_reg); 3625 return -EACCES; 3626 } 3627 3628 /* check dest operand */ 3629 err = check_reg_arg(env, insn->dst_reg, DST_OP); 3630 if (err) 3631 return err; 3632 3633 } else if (opcode == BPF_MOV) { 3634 3635 if (BPF_SRC(insn->code) == BPF_X) { 3636 if (insn->imm != 0 || insn->off != 0) { 3637 verbose(env, "BPF_MOV uses reserved fields\n"); 3638 return -EINVAL; 3639 } 3640 3641 /* check src operand */ 3642 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3643 if (err) 3644 return err; 3645 } else { 3646 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 3647 verbose(env, "BPF_MOV uses reserved fields\n"); 3648 return -EINVAL; 3649 } 3650 } 3651 3652 /* check dest operand, mark as required later */ 3653 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 3654 if (err) 3655 return err; 3656 3657 if (BPF_SRC(insn->code) == BPF_X) { 3658 struct bpf_reg_state *src_reg = regs + insn->src_reg; 3659 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 3660 3661 if (BPF_CLASS(insn->code) == BPF_ALU64) { 3662 /* case: R1 = R2 3663 * copy register state to dest reg 3664 */ 3665 *dst_reg = *src_reg; 3666 dst_reg->live |= REG_LIVE_WRITTEN; 3667 } else { 3668 /* R1 = (u32) R2 */ 3669 if (is_pointer_value(env, insn->src_reg)) { 3670 verbose(env, 3671 "R%d partial copy of pointer\n", 3672 insn->src_reg); 3673 return -EACCES; 3674 } else if (src_reg->type == SCALAR_VALUE) { 3675 *dst_reg = *src_reg; 3676 dst_reg->live |= REG_LIVE_WRITTEN; 3677 } else { 3678 mark_reg_unknown(env, regs, 3679 insn->dst_reg); 3680 } 3681 coerce_reg_to_size(dst_reg, 4); 3682 } 3683 } else { 3684 /* case: R = imm 3685 * remember the value we stored into this reg 3686 */ 3687 /* clear any state __mark_reg_known doesn't set */ 3688 mark_reg_unknown(env, regs, insn->dst_reg); 3689 regs[insn->dst_reg].type = SCALAR_VALUE; 3690 if (BPF_CLASS(insn->code) == BPF_ALU64) { 3691 __mark_reg_known(regs + insn->dst_reg, 3692 insn->imm); 3693 } else { 3694 __mark_reg_known(regs + insn->dst_reg, 3695 (u32)insn->imm); 3696 } 3697 } 3698 3699 } else if (opcode > BPF_END) { 3700 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 3701 return -EINVAL; 3702 3703 } else { /* all other ALU ops: and, sub, xor, add, ... */ 3704 3705 if (BPF_SRC(insn->code) == BPF_X) { 3706 if (insn->imm != 0 || insn->off != 0) { 3707 verbose(env, "BPF_ALU uses reserved fields\n"); 3708 return -EINVAL; 3709 } 3710 /* check src1 operand */ 3711 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3712 if (err) 3713 return err; 3714 } else { 3715 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 3716 verbose(env, "BPF_ALU uses reserved fields\n"); 3717 return -EINVAL; 3718 } 3719 } 3720 3721 /* check src2 operand */ 3722 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 3723 if (err) 3724 return err; 3725 3726 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 3727 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 3728 verbose(env, "div by zero\n"); 3729 return -EINVAL; 3730 } 3731 3732 if ((opcode == BPF_LSH || opcode == BPF_RSH || 3733 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 3734 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 3735 3736 if (insn->imm < 0 || insn->imm >= size) { 3737 verbose(env, "invalid shift %d\n", insn->imm); 3738 return -EINVAL; 3739 } 3740 } 3741 3742 /* check dest operand */ 3743 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 3744 if (err) 3745 return err; 3746 3747 return adjust_reg_min_max_vals(env, insn); 3748 } 3749 3750 return 0; 3751 } 3752 3753 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 3754 struct bpf_reg_state *dst_reg, 3755 enum bpf_reg_type type, 3756 bool range_right_open) 3757 { 3758 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3759 struct bpf_reg_state *regs = state->regs, *reg; 3760 u16 new_range; 3761 int i, j; 3762 3763 if (dst_reg->off < 0 || 3764 (dst_reg->off == 0 && range_right_open)) 3765 /* This doesn't give us any range */ 3766 return; 3767 3768 if (dst_reg->umax_value > MAX_PACKET_OFF || 3769 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 3770 /* Risk of overflow. For instance, ptr + (1<<63) may be less 3771 * than pkt_end, but that's because it's also less than pkt. 3772 */ 3773 return; 3774 3775 new_range = dst_reg->off; 3776 if (range_right_open) 3777 new_range--; 3778 3779 /* Examples for register markings: 3780 * 3781 * pkt_data in dst register: 3782 * 3783 * r2 = r3; 3784 * r2 += 8; 3785 * if (r2 > pkt_end) goto <handle exception> 3786 * <access okay> 3787 * 3788 * r2 = r3; 3789 * r2 += 8; 3790 * if (r2 < pkt_end) goto <access okay> 3791 * <handle exception> 3792 * 3793 * Where: 3794 * r2 == dst_reg, pkt_end == src_reg 3795 * r2=pkt(id=n,off=8,r=0) 3796 * r3=pkt(id=n,off=0,r=0) 3797 * 3798 * pkt_data in src register: 3799 * 3800 * r2 = r3; 3801 * r2 += 8; 3802 * if (pkt_end >= r2) goto <access okay> 3803 * <handle exception> 3804 * 3805 * r2 = r3; 3806 * r2 += 8; 3807 * if (pkt_end <= r2) goto <handle exception> 3808 * <access okay> 3809 * 3810 * Where: 3811 * pkt_end == dst_reg, r2 == src_reg 3812 * r2=pkt(id=n,off=8,r=0) 3813 * r3=pkt(id=n,off=0,r=0) 3814 * 3815 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 3816 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 3817 * and [r3, r3 + 8-1) respectively is safe to access depending on 3818 * the check. 3819 */ 3820 3821 /* If our ids match, then we must have the same max_value. And we 3822 * don't care about the other reg's fixed offset, since if it's too big 3823 * the range won't allow anything. 3824 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 3825 */ 3826 for (i = 0; i < MAX_BPF_REG; i++) 3827 if (regs[i].type == type && regs[i].id == dst_reg->id) 3828 /* keep the maximum range already checked */ 3829 regs[i].range = max(regs[i].range, new_range); 3830 3831 for (j = 0; j <= vstate->curframe; j++) { 3832 state = vstate->frame[j]; 3833 bpf_for_each_spilled_reg(i, state, reg) { 3834 if (!reg) 3835 continue; 3836 if (reg->type == type && reg->id == dst_reg->id) 3837 reg->range = max(reg->range, new_range); 3838 } 3839 } 3840 } 3841 3842 /* compute branch direction of the expression "if (reg opcode val) goto target;" 3843 * and return: 3844 * 1 - branch will be taken and "goto target" will be executed 3845 * 0 - branch will not be taken and fall-through to next insn 3846 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value range [0,10] 3847 */ 3848 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode) 3849 { 3850 if (__is_pointer_value(false, reg)) 3851 return -1; 3852 3853 switch (opcode) { 3854 case BPF_JEQ: 3855 if (tnum_is_const(reg->var_off)) 3856 return !!tnum_equals_const(reg->var_off, val); 3857 break; 3858 case BPF_JNE: 3859 if (tnum_is_const(reg->var_off)) 3860 return !tnum_equals_const(reg->var_off, val); 3861 break; 3862 case BPF_JSET: 3863 if ((~reg->var_off.mask & reg->var_off.value) & val) 3864 return 1; 3865 if (!((reg->var_off.mask | reg->var_off.value) & val)) 3866 return 0; 3867 break; 3868 case BPF_JGT: 3869 if (reg->umin_value > val) 3870 return 1; 3871 else if (reg->umax_value <= val) 3872 return 0; 3873 break; 3874 case BPF_JSGT: 3875 if (reg->smin_value > (s64)val) 3876 return 1; 3877 else if (reg->smax_value < (s64)val) 3878 return 0; 3879 break; 3880 case BPF_JLT: 3881 if (reg->umax_value < val) 3882 return 1; 3883 else if (reg->umin_value >= val) 3884 return 0; 3885 break; 3886 case BPF_JSLT: 3887 if (reg->smax_value < (s64)val) 3888 return 1; 3889 else if (reg->smin_value >= (s64)val) 3890 return 0; 3891 break; 3892 case BPF_JGE: 3893 if (reg->umin_value >= val) 3894 return 1; 3895 else if (reg->umax_value < val) 3896 return 0; 3897 break; 3898 case BPF_JSGE: 3899 if (reg->smin_value >= (s64)val) 3900 return 1; 3901 else if (reg->smax_value < (s64)val) 3902 return 0; 3903 break; 3904 case BPF_JLE: 3905 if (reg->umax_value <= val) 3906 return 1; 3907 else if (reg->umin_value > val) 3908 return 0; 3909 break; 3910 case BPF_JSLE: 3911 if (reg->smax_value <= (s64)val) 3912 return 1; 3913 else if (reg->smin_value > (s64)val) 3914 return 0; 3915 break; 3916 } 3917 3918 return -1; 3919 } 3920 3921 /* Adjusts the register min/max values in the case that the dst_reg is the 3922 * variable register that we are working on, and src_reg is a constant or we're 3923 * simply doing a BPF_K check. 3924 * In JEQ/JNE cases we also adjust the var_off values. 3925 */ 3926 static void reg_set_min_max(struct bpf_reg_state *true_reg, 3927 struct bpf_reg_state *false_reg, u64 val, 3928 u8 opcode) 3929 { 3930 /* If the dst_reg is a pointer, we can't learn anything about its 3931 * variable offset from the compare (unless src_reg were a pointer into 3932 * the same object, but we don't bother with that. 3933 * Since false_reg and true_reg have the same type by construction, we 3934 * only need to check one of them for pointerness. 3935 */ 3936 if (__is_pointer_value(false, false_reg)) 3937 return; 3938 3939 switch (opcode) { 3940 case BPF_JEQ: 3941 /* If this is false then we know nothing Jon Snow, but if it is 3942 * true then we know for sure. 3943 */ 3944 __mark_reg_known(true_reg, val); 3945 break; 3946 case BPF_JNE: 3947 /* If this is true we know nothing Jon Snow, but if it is false 3948 * we know the value for sure; 3949 */ 3950 __mark_reg_known(false_reg, val); 3951 break; 3952 case BPF_JSET: 3953 false_reg->var_off = tnum_and(false_reg->var_off, 3954 tnum_const(~val)); 3955 if (is_power_of_2(val)) 3956 true_reg->var_off = tnum_or(true_reg->var_off, 3957 tnum_const(val)); 3958 break; 3959 case BPF_JGT: 3960 false_reg->umax_value = min(false_reg->umax_value, val); 3961 true_reg->umin_value = max(true_reg->umin_value, val + 1); 3962 break; 3963 case BPF_JSGT: 3964 false_reg->smax_value = min_t(s64, false_reg->smax_value, val); 3965 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1); 3966 break; 3967 case BPF_JLT: 3968 false_reg->umin_value = max(false_reg->umin_value, val); 3969 true_reg->umax_value = min(true_reg->umax_value, val - 1); 3970 break; 3971 case BPF_JSLT: 3972 false_reg->smin_value = max_t(s64, false_reg->smin_value, val); 3973 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1); 3974 break; 3975 case BPF_JGE: 3976 false_reg->umax_value = min(false_reg->umax_value, val - 1); 3977 true_reg->umin_value = max(true_reg->umin_value, val); 3978 break; 3979 case BPF_JSGE: 3980 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1); 3981 true_reg->smin_value = max_t(s64, true_reg->smin_value, val); 3982 break; 3983 case BPF_JLE: 3984 false_reg->umin_value = max(false_reg->umin_value, val + 1); 3985 true_reg->umax_value = min(true_reg->umax_value, val); 3986 break; 3987 case BPF_JSLE: 3988 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1); 3989 true_reg->smax_value = min_t(s64, true_reg->smax_value, val); 3990 break; 3991 default: 3992 break; 3993 } 3994 3995 __reg_deduce_bounds(false_reg); 3996 __reg_deduce_bounds(true_reg); 3997 /* We might have learned some bits from the bounds. */ 3998 __reg_bound_offset(false_reg); 3999 __reg_bound_offset(true_reg); 4000 /* Intersecting with the old var_off might have improved our bounds 4001 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 4002 * then new var_off is (0; 0x7f...fc) which improves our umax. 4003 */ 4004 __update_reg_bounds(false_reg); 4005 __update_reg_bounds(true_reg); 4006 } 4007 4008 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 4009 * the variable reg. 4010 */ 4011 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 4012 struct bpf_reg_state *false_reg, u64 val, 4013 u8 opcode) 4014 { 4015 if (__is_pointer_value(false, false_reg)) 4016 return; 4017 4018 switch (opcode) { 4019 case BPF_JEQ: 4020 /* If this is false then we know nothing Jon Snow, but if it is 4021 * true then we know for sure. 4022 */ 4023 __mark_reg_known(true_reg, val); 4024 break; 4025 case BPF_JNE: 4026 /* If this is true we know nothing Jon Snow, but if it is false 4027 * we know the value for sure; 4028 */ 4029 __mark_reg_known(false_reg, val); 4030 break; 4031 case BPF_JSET: 4032 false_reg->var_off = tnum_and(false_reg->var_off, 4033 tnum_const(~val)); 4034 if (is_power_of_2(val)) 4035 true_reg->var_off = tnum_or(true_reg->var_off, 4036 tnum_const(val)); 4037 break; 4038 case BPF_JGT: 4039 true_reg->umax_value = min(true_reg->umax_value, val - 1); 4040 false_reg->umin_value = max(false_reg->umin_value, val); 4041 break; 4042 case BPF_JSGT: 4043 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1); 4044 false_reg->smin_value = max_t(s64, false_reg->smin_value, val); 4045 break; 4046 case BPF_JLT: 4047 true_reg->umin_value = max(true_reg->umin_value, val + 1); 4048 false_reg->umax_value = min(false_reg->umax_value, val); 4049 break; 4050 case BPF_JSLT: 4051 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1); 4052 false_reg->smax_value = min_t(s64, false_reg->smax_value, val); 4053 break; 4054 case BPF_JGE: 4055 true_reg->umax_value = min(true_reg->umax_value, val); 4056 false_reg->umin_value = max(false_reg->umin_value, val + 1); 4057 break; 4058 case BPF_JSGE: 4059 true_reg->smax_value = min_t(s64, true_reg->smax_value, val); 4060 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1); 4061 break; 4062 case BPF_JLE: 4063 true_reg->umin_value = max(true_reg->umin_value, val); 4064 false_reg->umax_value = min(false_reg->umax_value, val - 1); 4065 break; 4066 case BPF_JSLE: 4067 true_reg->smin_value = max_t(s64, true_reg->smin_value, val); 4068 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1); 4069 break; 4070 default: 4071 break; 4072 } 4073 4074 __reg_deduce_bounds(false_reg); 4075 __reg_deduce_bounds(true_reg); 4076 /* We might have learned some bits from the bounds. */ 4077 __reg_bound_offset(false_reg); 4078 __reg_bound_offset(true_reg); 4079 /* Intersecting with the old var_off might have improved our bounds 4080 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 4081 * then new var_off is (0; 0x7f...fc) which improves our umax. 4082 */ 4083 __update_reg_bounds(false_reg); 4084 __update_reg_bounds(true_reg); 4085 } 4086 4087 /* Regs are known to be equal, so intersect their min/max/var_off */ 4088 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 4089 struct bpf_reg_state *dst_reg) 4090 { 4091 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 4092 dst_reg->umin_value); 4093 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 4094 dst_reg->umax_value); 4095 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 4096 dst_reg->smin_value); 4097 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 4098 dst_reg->smax_value); 4099 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 4100 dst_reg->var_off); 4101 /* We might have learned new bounds from the var_off. */ 4102 __update_reg_bounds(src_reg); 4103 __update_reg_bounds(dst_reg); 4104 /* We might have learned something about the sign bit. */ 4105 __reg_deduce_bounds(src_reg); 4106 __reg_deduce_bounds(dst_reg); 4107 /* We might have learned some bits from the bounds. */ 4108 __reg_bound_offset(src_reg); 4109 __reg_bound_offset(dst_reg); 4110 /* Intersecting with the old var_off might have improved our bounds 4111 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 4112 * then new var_off is (0; 0x7f...fc) which improves our umax. 4113 */ 4114 __update_reg_bounds(src_reg); 4115 __update_reg_bounds(dst_reg); 4116 } 4117 4118 static void reg_combine_min_max(struct bpf_reg_state *true_src, 4119 struct bpf_reg_state *true_dst, 4120 struct bpf_reg_state *false_src, 4121 struct bpf_reg_state *false_dst, 4122 u8 opcode) 4123 { 4124 switch (opcode) { 4125 case BPF_JEQ: 4126 __reg_combine_min_max(true_src, true_dst); 4127 break; 4128 case BPF_JNE: 4129 __reg_combine_min_max(false_src, false_dst); 4130 break; 4131 } 4132 } 4133 4134 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 4135 struct bpf_reg_state *reg, u32 id, 4136 bool is_null) 4137 { 4138 if (reg_type_may_be_null(reg->type) && reg->id == id) { 4139 /* Old offset (both fixed and variable parts) should 4140 * have been known-zero, because we don't allow pointer 4141 * arithmetic on pointers that might be NULL. 4142 */ 4143 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || 4144 !tnum_equals_const(reg->var_off, 0) || 4145 reg->off)) { 4146 __mark_reg_known_zero(reg); 4147 reg->off = 0; 4148 } 4149 if (is_null) { 4150 reg->type = SCALAR_VALUE; 4151 } else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) { 4152 if (reg->map_ptr->inner_map_meta) { 4153 reg->type = CONST_PTR_TO_MAP; 4154 reg->map_ptr = reg->map_ptr->inner_map_meta; 4155 } else { 4156 reg->type = PTR_TO_MAP_VALUE; 4157 } 4158 } else if (reg->type == PTR_TO_SOCKET_OR_NULL) { 4159 reg->type = PTR_TO_SOCKET; 4160 } 4161 if (is_null || !reg_is_refcounted(reg)) { 4162 /* We don't need id from this point onwards anymore, 4163 * thus we should better reset it, so that state 4164 * pruning has chances to take effect. 4165 */ 4166 reg->id = 0; 4167 } 4168 } 4169 } 4170 4171 /* The logic is similar to find_good_pkt_pointers(), both could eventually 4172 * be folded together at some point. 4173 */ 4174 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 4175 bool is_null) 4176 { 4177 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4178 struct bpf_reg_state *reg, *regs = state->regs; 4179 u32 id = regs[regno].id; 4180 int i, j; 4181 4182 if (reg_is_refcounted_or_null(®s[regno]) && is_null) 4183 __release_reference_state(state, id); 4184 4185 for (i = 0; i < MAX_BPF_REG; i++) 4186 mark_ptr_or_null_reg(state, ®s[i], id, is_null); 4187 4188 for (j = 0; j <= vstate->curframe; j++) { 4189 state = vstate->frame[j]; 4190 bpf_for_each_spilled_reg(i, state, reg) { 4191 if (!reg) 4192 continue; 4193 mark_ptr_or_null_reg(state, reg, id, is_null); 4194 } 4195 } 4196 } 4197 4198 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 4199 struct bpf_reg_state *dst_reg, 4200 struct bpf_reg_state *src_reg, 4201 struct bpf_verifier_state *this_branch, 4202 struct bpf_verifier_state *other_branch) 4203 { 4204 if (BPF_SRC(insn->code) != BPF_X) 4205 return false; 4206 4207 switch (BPF_OP(insn->code)) { 4208 case BPF_JGT: 4209 if ((dst_reg->type == PTR_TO_PACKET && 4210 src_reg->type == PTR_TO_PACKET_END) || 4211 (dst_reg->type == PTR_TO_PACKET_META && 4212 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 4213 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 4214 find_good_pkt_pointers(this_branch, dst_reg, 4215 dst_reg->type, false); 4216 } else if ((dst_reg->type == PTR_TO_PACKET_END && 4217 src_reg->type == PTR_TO_PACKET) || 4218 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 4219 src_reg->type == PTR_TO_PACKET_META)) { 4220 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 4221 find_good_pkt_pointers(other_branch, src_reg, 4222 src_reg->type, true); 4223 } else { 4224 return false; 4225 } 4226 break; 4227 case BPF_JLT: 4228 if ((dst_reg->type == PTR_TO_PACKET && 4229 src_reg->type == PTR_TO_PACKET_END) || 4230 (dst_reg->type == PTR_TO_PACKET_META && 4231 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 4232 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 4233 find_good_pkt_pointers(other_branch, dst_reg, 4234 dst_reg->type, true); 4235 } else if ((dst_reg->type == PTR_TO_PACKET_END && 4236 src_reg->type == PTR_TO_PACKET) || 4237 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 4238 src_reg->type == PTR_TO_PACKET_META)) { 4239 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 4240 find_good_pkt_pointers(this_branch, src_reg, 4241 src_reg->type, false); 4242 } else { 4243 return false; 4244 } 4245 break; 4246 case BPF_JGE: 4247 if ((dst_reg->type == PTR_TO_PACKET && 4248 src_reg->type == PTR_TO_PACKET_END) || 4249 (dst_reg->type == PTR_TO_PACKET_META && 4250 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 4251 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 4252 find_good_pkt_pointers(this_branch, dst_reg, 4253 dst_reg->type, true); 4254 } else if ((dst_reg->type == PTR_TO_PACKET_END && 4255 src_reg->type == PTR_TO_PACKET) || 4256 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 4257 src_reg->type == PTR_TO_PACKET_META)) { 4258 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 4259 find_good_pkt_pointers(other_branch, src_reg, 4260 src_reg->type, false); 4261 } else { 4262 return false; 4263 } 4264 break; 4265 case BPF_JLE: 4266 if ((dst_reg->type == PTR_TO_PACKET && 4267 src_reg->type == PTR_TO_PACKET_END) || 4268 (dst_reg->type == PTR_TO_PACKET_META && 4269 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 4270 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 4271 find_good_pkt_pointers(other_branch, dst_reg, 4272 dst_reg->type, false); 4273 } else if ((dst_reg->type == PTR_TO_PACKET_END && 4274 src_reg->type == PTR_TO_PACKET) || 4275 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 4276 src_reg->type == PTR_TO_PACKET_META)) { 4277 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 4278 find_good_pkt_pointers(this_branch, src_reg, 4279 src_reg->type, true); 4280 } else { 4281 return false; 4282 } 4283 break; 4284 default: 4285 return false; 4286 } 4287 4288 return true; 4289 } 4290 4291 static int check_cond_jmp_op(struct bpf_verifier_env *env, 4292 struct bpf_insn *insn, int *insn_idx) 4293 { 4294 struct bpf_verifier_state *this_branch = env->cur_state; 4295 struct bpf_verifier_state *other_branch; 4296 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 4297 struct bpf_reg_state *dst_reg, *other_branch_regs; 4298 u8 opcode = BPF_OP(insn->code); 4299 int err; 4300 4301 if (opcode > BPF_JSLE) { 4302 verbose(env, "invalid BPF_JMP opcode %x\n", opcode); 4303 return -EINVAL; 4304 } 4305 4306 if (BPF_SRC(insn->code) == BPF_X) { 4307 if (insn->imm != 0) { 4308 verbose(env, "BPF_JMP uses reserved fields\n"); 4309 return -EINVAL; 4310 } 4311 4312 /* check src1 operand */ 4313 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4314 if (err) 4315 return err; 4316 4317 if (is_pointer_value(env, insn->src_reg)) { 4318 verbose(env, "R%d pointer comparison prohibited\n", 4319 insn->src_reg); 4320 return -EACCES; 4321 } 4322 } else { 4323 if (insn->src_reg != BPF_REG_0) { 4324 verbose(env, "BPF_JMP uses reserved fields\n"); 4325 return -EINVAL; 4326 } 4327 } 4328 4329 /* check src2 operand */ 4330 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 4331 if (err) 4332 return err; 4333 4334 dst_reg = ®s[insn->dst_reg]; 4335 4336 if (BPF_SRC(insn->code) == BPF_K) { 4337 int pred = is_branch_taken(dst_reg, insn->imm, opcode); 4338 4339 if (pred == 1) { 4340 /* only follow the goto, ignore fall-through */ 4341 *insn_idx += insn->off; 4342 return 0; 4343 } else if (pred == 0) { 4344 /* only follow fall-through branch, since 4345 * that's where the program will go 4346 */ 4347 return 0; 4348 } 4349 } 4350 4351 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx); 4352 if (!other_branch) 4353 return -EFAULT; 4354 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 4355 4356 /* detect if we are comparing against a constant value so we can adjust 4357 * our min/max values for our dst register. 4358 * this is only legit if both are scalars (or pointers to the same 4359 * object, I suppose, but we don't support that right now), because 4360 * otherwise the different base pointers mean the offsets aren't 4361 * comparable. 4362 */ 4363 if (BPF_SRC(insn->code) == BPF_X) { 4364 if (dst_reg->type == SCALAR_VALUE && 4365 regs[insn->src_reg].type == SCALAR_VALUE) { 4366 if (tnum_is_const(regs[insn->src_reg].var_off)) 4367 reg_set_min_max(&other_branch_regs[insn->dst_reg], 4368 dst_reg, regs[insn->src_reg].var_off.value, 4369 opcode); 4370 else if (tnum_is_const(dst_reg->var_off)) 4371 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 4372 ®s[insn->src_reg], 4373 dst_reg->var_off.value, opcode); 4374 else if (opcode == BPF_JEQ || opcode == BPF_JNE) 4375 /* Comparing for equality, we can combine knowledge */ 4376 reg_combine_min_max(&other_branch_regs[insn->src_reg], 4377 &other_branch_regs[insn->dst_reg], 4378 ®s[insn->src_reg], 4379 ®s[insn->dst_reg], opcode); 4380 } 4381 } else if (dst_reg->type == SCALAR_VALUE) { 4382 reg_set_min_max(&other_branch_regs[insn->dst_reg], 4383 dst_reg, insn->imm, opcode); 4384 } 4385 4386 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */ 4387 if (BPF_SRC(insn->code) == BPF_K && 4388 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 4389 reg_type_may_be_null(dst_reg->type)) { 4390 /* Mark all identical registers in each branch as either 4391 * safe or unknown depending R == 0 or R != 0 conditional. 4392 */ 4393 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 4394 opcode == BPF_JNE); 4395 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 4396 opcode == BPF_JEQ); 4397 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 4398 this_branch, other_branch) && 4399 is_pointer_value(env, insn->dst_reg)) { 4400 verbose(env, "R%d pointer comparison prohibited\n", 4401 insn->dst_reg); 4402 return -EACCES; 4403 } 4404 if (env->log.level) 4405 print_verifier_state(env, this_branch->frame[this_branch->curframe]); 4406 return 0; 4407 } 4408 4409 /* return the map pointer stored inside BPF_LD_IMM64 instruction */ 4410 static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn) 4411 { 4412 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32; 4413 4414 return (struct bpf_map *) (unsigned long) imm64; 4415 } 4416 4417 /* verify BPF_LD_IMM64 instruction */ 4418 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 4419 { 4420 struct bpf_reg_state *regs = cur_regs(env); 4421 int err; 4422 4423 if (BPF_SIZE(insn->code) != BPF_DW) { 4424 verbose(env, "invalid BPF_LD_IMM insn\n"); 4425 return -EINVAL; 4426 } 4427 if (insn->off != 0) { 4428 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 4429 return -EINVAL; 4430 } 4431 4432 err = check_reg_arg(env, insn->dst_reg, DST_OP); 4433 if (err) 4434 return err; 4435 4436 if (insn->src_reg == 0) { 4437 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 4438 4439 regs[insn->dst_reg].type = SCALAR_VALUE; 4440 __mark_reg_known(®s[insn->dst_reg], imm); 4441 return 0; 4442 } 4443 4444 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */ 4445 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD); 4446 4447 regs[insn->dst_reg].type = CONST_PTR_TO_MAP; 4448 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn); 4449 return 0; 4450 } 4451 4452 static bool may_access_skb(enum bpf_prog_type type) 4453 { 4454 switch (type) { 4455 case BPF_PROG_TYPE_SOCKET_FILTER: 4456 case BPF_PROG_TYPE_SCHED_CLS: 4457 case BPF_PROG_TYPE_SCHED_ACT: 4458 return true; 4459 default: 4460 return false; 4461 } 4462 } 4463 4464 /* verify safety of LD_ABS|LD_IND instructions: 4465 * - they can only appear in the programs where ctx == skb 4466 * - since they are wrappers of function calls, they scratch R1-R5 registers, 4467 * preserve R6-R9, and store return value into R0 4468 * 4469 * Implicit input: 4470 * ctx == skb == R6 == CTX 4471 * 4472 * Explicit input: 4473 * SRC == any register 4474 * IMM == 32-bit immediate 4475 * 4476 * Output: 4477 * R0 - 8/16/32-bit skb data converted to cpu endianness 4478 */ 4479 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 4480 { 4481 struct bpf_reg_state *regs = cur_regs(env); 4482 u8 mode = BPF_MODE(insn->code); 4483 int i, err; 4484 4485 if (!may_access_skb(env->prog->type)) { 4486 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 4487 return -EINVAL; 4488 } 4489 4490 if (!env->ops->gen_ld_abs) { 4491 verbose(env, "bpf verifier is misconfigured\n"); 4492 return -EINVAL; 4493 } 4494 4495 if (env->subprog_cnt > 1) { 4496 /* when program has LD_ABS insn JITs and interpreter assume 4497 * that r1 == ctx == skb which is not the case for callees 4498 * that can have arbitrary arguments. It's problematic 4499 * for main prog as well since JITs would need to analyze 4500 * all functions in order to make proper register save/restore 4501 * decisions in the main prog. Hence disallow LD_ABS with calls 4502 */ 4503 verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n"); 4504 return -EINVAL; 4505 } 4506 4507 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 4508 BPF_SIZE(insn->code) == BPF_DW || 4509 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 4510 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 4511 return -EINVAL; 4512 } 4513 4514 /* check whether implicit source operand (register R6) is readable */ 4515 err = check_reg_arg(env, BPF_REG_6, SRC_OP); 4516 if (err) 4517 return err; 4518 4519 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 4520 * gen_ld_abs() may terminate the program at runtime, leading to 4521 * reference leak. 4522 */ 4523 err = check_reference_leak(env); 4524 if (err) { 4525 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 4526 return err; 4527 } 4528 4529 if (regs[BPF_REG_6].type != PTR_TO_CTX) { 4530 verbose(env, 4531 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 4532 return -EINVAL; 4533 } 4534 4535 if (mode == BPF_IND) { 4536 /* check explicit source operand */ 4537 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4538 if (err) 4539 return err; 4540 } 4541 4542 /* reset caller saved regs to unreadable */ 4543 for (i = 0; i < CALLER_SAVED_REGS; i++) { 4544 mark_reg_not_init(env, regs, caller_saved[i]); 4545 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 4546 } 4547 4548 /* mark destination R0 register as readable, since it contains 4549 * the value fetched from the packet. 4550 * Already marked as written above. 4551 */ 4552 mark_reg_unknown(env, regs, BPF_REG_0); 4553 return 0; 4554 } 4555 4556 static int check_return_code(struct bpf_verifier_env *env) 4557 { 4558 struct bpf_reg_state *reg; 4559 struct tnum range = tnum_range(0, 1); 4560 4561 switch (env->prog->type) { 4562 case BPF_PROG_TYPE_CGROUP_SKB: 4563 case BPF_PROG_TYPE_CGROUP_SOCK: 4564 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 4565 case BPF_PROG_TYPE_SOCK_OPS: 4566 case BPF_PROG_TYPE_CGROUP_DEVICE: 4567 break; 4568 default: 4569 return 0; 4570 } 4571 4572 reg = cur_regs(env) + BPF_REG_0; 4573 if (reg->type != SCALAR_VALUE) { 4574 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 4575 reg_type_str[reg->type]); 4576 return -EINVAL; 4577 } 4578 4579 if (!tnum_in(range, reg->var_off)) { 4580 verbose(env, "At program exit the register R0 "); 4581 if (!tnum_is_unknown(reg->var_off)) { 4582 char tn_buf[48]; 4583 4584 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4585 verbose(env, "has value %s", tn_buf); 4586 } else { 4587 verbose(env, "has unknown scalar value"); 4588 } 4589 verbose(env, " should have been 0 or 1\n"); 4590 return -EINVAL; 4591 } 4592 return 0; 4593 } 4594 4595 /* non-recursive DFS pseudo code 4596 * 1 procedure DFS-iterative(G,v): 4597 * 2 label v as discovered 4598 * 3 let S be a stack 4599 * 4 S.push(v) 4600 * 5 while S is not empty 4601 * 6 t <- S.pop() 4602 * 7 if t is what we're looking for: 4603 * 8 return t 4604 * 9 for all edges e in G.adjacentEdges(t) do 4605 * 10 if edge e is already labelled 4606 * 11 continue with the next edge 4607 * 12 w <- G.adjacentVertex(t,e) 4608 * 13 if vertex w is not discovered and not explored 4609 * 14 label e as tree-edge 4610 * 15 label w as discovered 4611 * 16 S.push(w) 4612 * 17 continue at 5 4613 * 18 else if vertex w is discovered 4614 * 19 label e as back-edge 4615 * 20 else 4616 * 21 // vertex w is explored 4617 * 22 label e as forward- or cross-edge 4618 * 23 label t as explored 4619 * 24 S.pop() 4620 * 4621 * convention: 4622 * 0x10 - discovered 4623 * 0x11 - discovered and fall-through edge labelled 4624 * 0x12 - discovered and fall-through and branch edges labelled 4625 * 0x20 - explored 4626 */ 4627 4628 enum { 4629 DISCOVERED = 0x10, 4630 EXPLORED = 0x20, 4631 FALLTHROUGH = 1, 4632 BRANCH = 2, 4633 }; 4634 4635 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L) 4636 4637 static int *insn_stack; /* stack of insns to process */ 4638 static int cur_stack; /* current stack index */ 4639 static int *insn_state; 4640 4641 /* t, w, e - match pseudo-code above: 4642 * t - index of current instruction 4643 * w - next instruction 4644 * e - edge 4645 */ 4646 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env) 4647 { 4648 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 4649 return 0; 4650 4651 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 4652 return 0; 4653 4654 if (w < 0 || w >= env->prog->len) { 4655 verbose_linfo(env, t, "%d: ", t); 4656 verbose(env, "jump out of range from insn %d to %d\n", t, w); 4657 return -EINVAL; 4658 } 4659 4660 if (e == BRANCH) 4661 /* mark branch target for state pruning */ 4662 env->explored_states[w] = STATE_LIST_MARK; 4663 4664 if (insn_state[w] == 0) { 4665 /* tree-edge */ 4666 insn_state[t] = DISCOVERED | e; 4667 insn_state[w] = DISCOVERED; 4668 if (cur_stack >= env->prog->len) 4669 return -E2BIG; 4670 insn_stack[cur_stack++] = w; 4671 return 1; 4672 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 4673 verbose_linfo(env, t, "%d: ", t); 4674 verbose_linfo(env, w, "%d: ", w); 4675 verbose(env, "back-edge from insn %d to %d\n", t, w); 4676 return -EINVAL; 4677 } else if (insn_state[w] == EXPLORED) { 4678 /* forward- or cross-edge */ 4679 insn_state[t] = DISCOVERED | e; 4680 } else { 4681 verbose(env, "insn state internal bug\n"); 4682 return -EFAULT; 4683 } 4684 return 0; 4685 } 4686 4687 /* non-recursive depth-first-search to detect loops in BPF program 4688 * loop == back-edge in directed graph 4689 */ 4690 static int check_cfg(struct bpf_verifier_env *env) 4691 { 4692 struct bpf_insn *insns = env->prog->insnsi; 4693 int insn_cnt = env->prog->len; 4694 int ret = 0; 4695 int i, t; 4696 4697 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 4698 if (!insn_state) 4699 return -ENOMEM; 4700 4701 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 4702 if (!insn_stack) { 4703 kfree(insn_state); 4704 return -ENOMEM; 4705 } 4706 4707 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 4708 insn_stack[0] = 0; /* 0 is the first instruction */ 4709 cur_stack = 1; 4710 4711 peek_stack: 4712 if (cur_stack == 0) 4713 goto check_state; 4714 t = insn_stack[cur_stack - 1]; 4715 4716 if (BPF_CLASS(insns[t].code) == BPF_JMP) { 4717 u8 opcode = BPF_OP(insns[t].code); 4718 4719 if (opcode == BPF_EXIT) { 4720 goto mark_explored; 4721 } else if (opcode == BPF_CALL) { 4722 ret = push_insn(t, t + 1, FALLTHROUGH, env); 4723 if (ret == 1) 4724 goto peek_stack; 4725 else if (ret < 0) 4726 goto err_free; 4727 if (t + 1 < insn_cnt) 4728 env->explored_states[t + 1] = STATE_LIST_MARK; 4729 if (insns[t].src_reg == BPF_PSEUDO_CALL) { 4730 env->explored_states[t] = STATE_LIST_MARK; 4731 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env); 4732 if (ret == 1) 4733 goto peek_stack; 4734 else if (ret < 0) 4735 goto err_free; 4736 } 4737 } else if (opcode == BPF_JA) { 4738 if (BPF_SRC(insns[t].code) != BPF_K) { 4739 ret = -EINVAL; 4740 goto err_free; 4741 } 4742 /* unconditional jump with single edge */ 4743 ret = push_insn(t, t + insns[t].off + 1, 4744 FALLTHROUGH, env); 4745 if (ret == 1) 4746 goto peek_stack; 4747 else if (ret < 0) 4748 goto err_free; 4749 /* tell verifier to check for equivalent states 4750 * after every call and jump 4751 */ 4752 if (t + 1 < insn_cnt) 4753 env->explored_states[t + 1] = STATE_LIST_MARK; 4754 } else { 4755 /* conditional jump with two edges */ 4756 env->explored_states[t] = STATE_LIST_MARK; 4757 ret = push_insn(t, t + 1, FALLTHROUGH, env); 4758 if (ret == 1) 4759 goto peek_stack; 4760 else if (ret < 0) 4761 goto err_free; 4762 4763 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env); 4764 if (ret == 1) 4765 goto peek_stack; 4766 else if (ret < 0) 4767 goto err_free; 4768 } 4769 } else { 4770 /* all other non-branch instructions with single 4771 * fall-through edge 4772 */ 4773 ret = push_insn(t, t + 1, FALLTHROUGH, env); 4774 if (ret == 1) 4775 goto peek_stack; 4776 else if (ret < 0) 4777 goto err_free; 4778 } 4779 4780 mark_explored: 4781 insn_state[t] = EXPLORED; 4782 if (cur_stack-- <= 0) { 4783 verbose(env, "pop stack internal bug\n"); 4784 ret = -EFAULT; 4785 goto err_free; 4786 } 4787 goto peek_stack; 4788 4789 check_state: 4790 for (i = 0; i < insn_cnt; i++) { 4791 if (insn_state[i] != EXPLORED) { 4792 verbose(env, "unreachable insn %d\n", i); 4793 ret = -EINVAL; 4794 goto err_free; 4795 } 4796 } 4797 ret = 0; /* cfg looks good */ 4798 4799 err_free: 4800 kfree(insn_state); 4801 kfree(insn_stack); 4802 return ret; 4803 } 4804 4805 /* The minimum supported BTF func info size */ 4806 #define MIN_BPF_FUNCINFO_SIZE 8 4807 #define MAX_FUNCINFO_REC_SIZE 252 4808 4809 static int check_btf_func(struct bpf_verifier_env *env, 4810 const union bpf_attr *attr, 4811 union bpf_attr __user *uattr) 4812 { 4813 u32 i, nfuncs, urec_size, min_size, prev_offset; 4814 u32 krec_size = sizeof(struct bpf_func_info); 4815 struct bpf_func_info *krecord; 4816 const struct btf_type *type; 4817 struct bpf_prog *prog; 4818 const struct btf *btf; 4819 void __user *urecord; 4820 int ret = 0; 4821 4822 nfuncs = attr->func_info_cnt; 4823 if (!nfuncs) 4824 return 0; 4825 4826 if (nfuncs != env->subprog_cnt) { 4827 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 4828 return -EINVAL; 4829 } 4830 4831 urec_size = attr->func_info_rec_size; 4832 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 4833 urec_size > MAX_FUNCINFO_REC_SIZE || 4834 urec_size % sizeof(u32)) { 4835 verbose(env, "invalid func info rec size %u\n", urec_size); 4836 return -EINVAL; 4837 } 4838 4839 prog = env->prog; 4840 btf = prog->aux->btf; 4841 4842 urecord = u64_to_user_ptr(attr->func_info); 4843 min_size = min_t(u32, krec_size, urec_size); 4844 4845 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 4846 if (!krecord) 4847 return -ENOMEM; 4848 4849 for (i = 0; i < nfuncs; i++) { 4850 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 4851 if (ret) { 4852 if (ret == -E2BIG) { 4853 verbose(env, "nonzero tailing record in func info"); 4854 /* set the size kernel expects so loader can zero 4855 * out the rest of the record. 4856 */ 4857 if (put_user(min_size, &uattr->func_info_rec_size)) 4858 ret = -EFAULT; 4859 } 4860 goto err_free; 4861 } 4862 4863 if (copy_from_user(&krecord[i], urecord, min_size)) { 4864 ret = -EFAULT; 4865 goto err_free; 4866 } 4867 4868 /* check insn_off */ 4869 if (i == 0) { 4870 if (krecord[i].insn_off) { 4871 verbose(env, 4872 "nonzero insn_off %u for the first func info record", 4873 krecord[i].insn_off); 4874 ret = -EINVAL; 4875 goto err_free; 4876 } 4877 } else if (krecord[i].insn_off <= prev_offset) { 4878 verbose(env, 4879 "same or smaller insn offset (%u) than previous func info record (%u)", 4880 krecord[i].insn_off, prev_offset); 4881 ret = -EINVAL; 4882 goto err_free; 4883 } 4884 4885 if (env->subprog_info[i].start != krecord[i].insn_off) { 4886 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 4887 ret = -EINVAL; 4888 goto err_free; 4889 } 4890 4891 /* check type_id */ 4892 type = btf_type_by_id(btf, krecord[i].type_id); 4893 if (!type || BTF_INFO_KIND(type->info) != BTF_KIND_FUNC) { 4894 verbose(env, "invalid type id %d in func info", 4895 krecord[i].type_id); 4896 ret = -EINVAL; 4897 goto err_free; 4898 } 4899 4900 prev_offset = krecord[i].insn_off; 4901 urecord += urec_size; 4902 } 4903 4904 prog->aux->func_info = krecord; 4905 prog->aux->func_info_cnt = nfuncs; 4906 return 0; 4907 4908 err_free: 4909 kvfree(krecord); 4910 return ret; 4911 } 4912 4913 static void adjust_btf_func(struct bpf_verifier_env *env) 4914 { 4915 int i; 4916 4917 if (!env->prog->aux->func_info) 4918 return; 4919 4920 for (i = 0; i < env->subprog_cnt; i++) 4921 env->prog->aux->func_info[i].insn_off = env->subprog_info[i].start; 4922 } 4923 4924 #define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \ 4925 sizeof(((struct bpf_line_info *)(0))->line_col)) 4926 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 4927 4928 static int check_btf_line(struct bpf_verifier_env *env, 4929 const union bpf_attr *attr, 4930 union bpf_attr __user *uattr) 4931 { 4932 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 4933 struct bpf_subprog_info *sub; 4934 struct bpf_line_info *linfo; 4935 struct bpf_prog *prog; 4936 const struct btf *btf; 4937 void __user *ulinfo; 4938 int err; 4939 4940 nr_linfo = attr->line_info_cnt; 4941 if (!nr_linfo) 4942 return 0; 4943 4944 rec_size = attr->line_info_rec_size; 4945 if (rec_size < MIN_BPF_LINEINFO_SIZE || 4946 rec_size > MAX_LINEINFO_REC_SIZE || 4947 rec_size & (sizeof(u32) - 1)) 4948 return -EINVAL; 4949 4950 /* Need to zero it in case the userspace may 4951 * pass in a smaller bpf_line_info object. 4952 */ 4953 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 4954 GFP_KERNEL | __GFP_NOWARN); 4955 if (!linfo) 4956 return -ENOMEM; 4957 4958 prog = env->prog; 4959 btf = prog->aux->btf; 4960 4961 s = 0; 4962 sub = env->subprog_info; 4963 ulinfo = u64_to_user_ptr(attr->line_info); 4964 expected_size = sizeof(struct bpf_line_info); 4965 ncopy = min_t(u32, expected_size, rec_size); 4966 for (i = 0; i < nr_linfo; i++) { 4967 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 4968 if (err) { 4969 if (err == -E2BIG) { 4970 verbose(env, "nonzero tailing record in line_info"); 4971 if (put_user(expected_size, 4972 &uattr->line_info_rec_size)) 4973 err = -EFAULT; 4974 } 4975 goto err_free; 4976 } 4977 4978 if (copy_from_user(&linfo[i], ulinfo, ncopy)) { 4979 err = -EFAULT; 4980 goto err_free; 4981 } 4982 4983 /* 4984 * Check insn_off to ensure 4985 * 1) strictly increasing AND 4986 * 2) bounded by prog->len 4987 * 4988 * The linfo[0].insn_off == 0 check logically falls into 4989 * the later "missing bpf_line_info for func..." case 4990 * because the first linfo[0].insn_off must be the 4991 * first sub also and the first sub must have 4992 * subprog_info[0].start == 0. 4993 */ 4994 if ((i && linfo[i].insn_off <= prev_offset) || 4995 linfo[i].insn_off >= prog->len) { 4996 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 4997 i, linfo[i].insn_off, prev_offset, 4998 prog->len); 4999 err = -EINVAL; 5000 goto err_free; 5001 } 5002 5003 if (!prog->insnsi[linfo[i].insn_off].code) { 5004 verbose(env, 5005 "Invalid insn code at line_info[%u].insn_off\n", 5006 i); 5007 err = -EINVAL; 5008 goto err_free; 5009 } 5010 5011 if (!btf_name_by_offset(btf, linfo[i].line_off) || 5012 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 5013 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 5014 err = -EINVAL; 5015 goto err_free; 5016 } 5017 5018 if (s != env->subprog_cnt) { 5019 if (linfo[i].insn_off == sub[s].start) { 5020 sub[s].linfo_idx = i; 5021 s++; 5022 } else if (sub[s].start < linfo[i].insn_off) { 5023 verbose(env, "missing bpf_line_info for func#%u\n", s); 5024 err = -EINVAL; 5025 goto err_free; 5026 } 5027 } 5028 5029 prev_offset = linfo[i].insn_off; 5030 ulinfo += rec_size; 5031 } 5032 5033 if (s != env->subprog_cnt) { 5034 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 5035 env->subprog_cnt - s, s); 5036 err = -EINVAL; 5037 goto err_free; 5038 } 5039 5040 prog->aux->linfo = linfo; 5041 prog->aux->nr_linfo = nr_linfo; 5042 5043 return 0; 5044 5045 err_free: 5046 kvfree(linfo); 5047 return err; 5048 } 5049 5050 static int check_btf_info(struct bpf_verifier_env *env, 5051 const union bpf_attr *attr, 5052 union bpf_attr __user *uattr) 5053 { 5054 struct btf *btf; 5055 int err; 5056 5057 if (!attr->func_info_cnt && !attr->line_info_cnt) 5058 return 0; 5059 5060 btf = btf_get_by_fd(attr->prog_btf_fd); 5061 if (IS_ERR(btf)) 5062 return PTR_ERR(btf); 5063 env->prog->aux->btf = btf; 5064 5065 err = check_btf_func(env, attr, uattr); 5066 if (err) 5067 return err; 5068 5069 err = check_btf_line(env, attr, uattr); 5070 if (err) 5071 return err; 5072 5073 return 0; 5074 } 5075 5076 /* check %cur's range satisfies %old's */ 5077 static bool range_within(struct bpf_reg_state *old, 5078 struct bpf_reg_state *cur) 5079 { 5080 return old->umin_value <= cur->umin_value && 5081 old->umax_value >= cur->umax_value && 5082 old->smin_value <= cur->smin_value && 5083 old->smax_value >= cur->smax_value; 5084 } 5085 5086 /* Maximum number of register states that can exist at once */ 5087 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE) 5088 struct idpair { 5089 u32 old; 5090 u32 cur; 5091 }; 5092 5093 /* If in the old state two registers had the same id, then they need to have 5094 * the same id in the new state as well. But that id could be different from 5095 * the old state, so we need to track the mapping from old to new ids. 5096 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 5097 * regs with old id 5 must also have new id 9 for the new state to be safe. But 5098 * regs with a different old id could still have new id 9, we don't care about 5099 * that. 5100 * So we look through our idmap to see if this old id has been seen before. If 5101 * so, we require the new id to match; otherwise, we add the id pair to the map. 5102 */ 5103 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap) 5104 { 5105 unsigned int i; 5106 5107 for (i = 0; i < ID_MAP_SIZE; i++) { 5108 if (!idmap[i].old) { 5109 /* Reached an empty slot; haven't seen this id before */ 5110 idmap[i].old = old_id; 5111 idmap[i].cur = cur_id; 5112 return true; 5113 } 5114 if (idmap[i].old == old_id) 5115 return idmap[i].cur == cur_id; 5116 } 5117 /* We ran out of idmap slots, which should be impossible */ 5118 WARN_ON_ONCE(1); 5119 return false; 5120 } 5121 5122 static void clean_func_state(struct bpf_verifier_env *env, 5123 struct bpf_func_state *st) 5124 { 5125 enum bpf_reg_liveness live; 5126 int i, j; 5127 5128 for (i = 0; i < BPF_REG_FP; i++) { 5129 live = st->regs[i].live; 5130 /* liveness must not touch this register anymore */ 5131 st->regs[i].live |= REG_LIVE_DONE; 5132 if (!(live & REG_LIVE_READ)) 5133 /* since the register is unused, clear its state 5134 * to make further comparison simpler 5135 */ 5136 __mark_reg_not_init(&st->regs[i]); 5137 } 5138 5139 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 5140 live = st->stack[i].spilled_ptr.live; 5141 /* liveness must not touch this stack slot anymore */ 5142 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 5143 if (!(live & REG_LIVE_READ)) { 5144 __mark_reg_not_init(&st->stack[i].spilled_ptr); 5145 for (j = 0; j < BPF_REG_SIZE; j++) 5146 st->stack[i].slot_type[j] = STACK_INVALID; 5147 } 5148 } 5149 } 5150 5151 static void clean_verifier_state(struct bpf_verifier_env *env, 5152 struct bpf_verifier_state *st) 5153 { 5154 int i; 5155 5156 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 5157 /* all regs in this state in all frames were already marked */ 5158 return; 5159 5160 for (i = 0; i <= st->curframe; i++) 5161 clean_func_state(env, st->frame[i]); 5162 } 5163 5164 /* the parentage chains form a tree. 5165 * the verifier states are added to state lists at given insn and 5166 * pushed into state stack for future exploration. 5167 * when the verifier reaches bpf_exit insn some of the verifer states 5168 * stored in the state lists have their final liveness state already, 5169 * but a lot of states will get revised from liveness point of view when 5170 * the verifier explores other branches. 5171 * Example: 5172 * 1: r0 = 1 5173 * 2: if r1 == 100 goto pc+1 5174 * 3: r0 = 2 5175 * 4: exit 5176 * when the verifier reaches exit insn the register r0 in the state list of 5177 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 5178 * of insn 2 and goes exploring further. At the insn 4 it will walk the 5179 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 5180 * 5181 * Since the verifier pushes the branch states as it sees them while exploring 5182 * the program the condition of walking the branch instruction for the second 5183 * time means that all states below this branch were already explored and 5184 * their final liveness markes are already propagated. 5185 * Hence when the verifier completes the search of state list in is_state_visited() 5186 * we can call this clean_live_states() function to mark all liveness states 5187 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 5188 * will not be used. 5189 * This function also clears the registers and stack for states that !READ 5190 * to simplify state merging. 5191 * 5192 * Important note here that walking the same branch instruction in the callee 5193 * doesn't meant that the states are DONE. The verifier has to compare 5194 * the callsites 5195 */ 5196 static void clean_live_states(struct bpf_verifier_env *env, int insn, 5197 struct bpf_verifier_state *cur) 5198 { 5199 struct bpf_verifier_state_list *sl; 5200 int i; 5201 5202 sl = env->explored_states[insn]; 5203 if (!sl) 5204 return; 5205 5206 while (sl != STATE_LIST_MARK) { 5207 if (sl->state.curframe != cur->curframe) 5208 goto next; 5209 for (i = 0; i <= cur->curframe; i++) 5210 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite) 5211 goto next; 5212 clean_verifier_state(env, &sl->state); 5213 next: 5214 sl = sl->next; 5215 } 5216 } 5217 5218 /* Returns true if (rold safe implies rcur safe) */ 5219 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur, 5220 struct idpair *idmap) 5221 { 5222 bool equal; 5223 5224 if (!(rold->live & REG_LIVE_READ)) 5225 /* explored state didn't use this */ 5226 return true; 5227 5228 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0; 5229 5230 if (rold->type == PTR_TO_STACK) 5231 /* two stack pointers are equal only if they're pointing to 5232 * the same stack frame, since fp-8 in foo != fp-8 in bar 5233 */ 5234 return equal && rold->frameno == rcur->frameno; 5235 5236 if (equal) 5237 return true; 5238 5239 if (rold->type == NOT_INIT) 5240 /* explored state can't have used this */ 5241 return true; 5242 if (rcur->type == NOT_INIT) 5243 return false; 5244 switch (rold->type) { 5245 case SCALAR_VALUE: 5246 if (rcur->type == SCALAR_VALUE) { 5247 /* new val must satisfy old val knowledge */ 5248 return range_within(rold, rcur) && 5249 tnum_in(rold->var_off, rcur->var_off); 5250 } else { 5251 /* We're trying to use a pointer in place of a scalar. 5252 * Even if the scalar was unbounded, this could lead to 5253 * pointer leaks because scalars are allowed to leak 5254 * while pointers are not. We could make this safe in 5255 * special cases if root is calling us, but it's 5256 * probably not worth the hassle. 5257 */ 5258 return false; 5259 } 5260 case PTR_TO_MAP_VALUE: 5261 /* If the new min/max/var_off satisfy the old ones and 5262 * everything else matches, we are OK. 5263 * We don't care about the 'id' value, because nothing 5264 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL) 5265 */ 5266 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 5267 range_within(rold, rcur) && 5268 tnum_in(rold->var_off, rcur->var_off); 5269 case PTR_TO_MAP_VALUE_OR_NULL: 5270 /* a PTR_TO_MAP_VALUE could be safe to use as a 5271 * PTR_TO_MAP_VALUE_OR_NULL into the same map. 5272 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- 5273 * checked, doing so could have affected others with the same 5274 * id, and we can't check for that because we lost the id when 5275 * we converted to a PTR_TO_MAP_VALUE. 5276 */ 5277 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL) 5278 return false; 5279 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) 5280 return false; 5281 /* Check our ids match any regs they're supposed to */ 5282 return check_ids(rold->id, rcur->id, idmap); 5283 case PTR_TO_PACKET_META: 5284 case PTR_TO_PACKET: 5285 if (rcur->type != rold->type) 5286 return false; 5287 /* We must have at least as much range as the old ptr 5288 * did, so that any accesses which were safe before are 5289 * still safe. This is true even if old range < old off, 5290 * since someone could have accessed through (ptr - k), or 5291 * even done ptr -= k in a register, to get a safe access. 5292 */ 5293 if (rold->range > rcur->range) 5294 return false; 5295 /* If the offsets don't match, we can't trust our alignment; 5296 * nor can we be sure that we won't fall out of range. 5297 */ 5298 if (rold->off != rcur->off) 5299 return false; 5300 /* id relations must be preserved */ 5301 if (rold->id && !check_ids(rold->id, rcur->id, idmap)) 5302 return false; 5303 /* new val must satisfy old val knowledge */ 5304 return range_within(rold, rcur) && 5305 tnum_in(rold->var_off, rcur->var_off); 5306 case PTR_TO_CTX: 5307 case CONST_PTR_TO_MAP: 5308 case PTR_TO_PACKET_END: 5309 case PTR_TO_FLOW_KEYS: 5310 case PTR_TO_SOCKET: 5311 case PTR_TO_SOCKET_OR_NULL: 5312 /* Only valid matches are exact, which memcmp() above 5313 * would have accepted 5314 */ 5315 default: 5316 /* Don't know what's going on, just say it's not safe */ 5317 return false; 5318 } 5319 5320 /* Shouldn't get here; if we do, say it's not safe */ 5321 WARN_ON_ONCE(1); 5322 return false; 5323 } 5324 5325 static bool stacksafe(struct bpf_func_state *old, 5326 struct bpf_func_state *cur, 5327 struct idpair *idmap) 5328 { 5329 int i, spi; 5330 5331 /* walk slots of the explored stack and ignore any additional 5332 * slots in the current stack, since explored(safe) state 5333 * didn't use them 5334 */ 5335 for (i = 0; i < old->allocated_stack; i++) { 5336 spi = i / BPF_REG_SIZE; 5337 5338 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) { 5339 i += BPF_REG_SIZE - 1; 5340 /* explored state didn't use this */ 5341 continue; 5342 } 5343 5344 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 5345 continue; 5346 5347 /* explored stack has more populated slots than current stack 5348 * and these slots were used 5349 */ 5350 if (i >= cur->allocated_stack) 5351 return false; 5352 5353 /* if old state was safe with misc data in the stack 5354 * it will be safe with zero-initialized stack. 5355 * The opposite is not true 5356 */ 5357 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 5358 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 5359 continue; 5360 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 5361 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 5362 /* Ex: old explored (safe) state has STACK_SPILL in 5363 * this stack slot, but current has has STACK_MISC -> 5364 * this verifier states are not equivalent, 5365 * return false to continue verification of this path 5366 */ 5367 return false; 5368 if (i % BPF_REG_SIZE) 5369 continue; 5370 if (old->stack[spi].slot_type[0] != STACK_SPILL) 5371 continue; 5372 if (!regsafe(&old->stack[spi].spilled_ptr, 5373 &cur->stack[spi].spilled_ptr, 5374 idmap)) 5375 /* when explored and current stack slot are both storing 5376 * spilled registers, check that stored pointers types 5377 * are the same as well. 5378 * Ex: explored safe path could have stored 5379 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 5380 * but current path has stored: 5381 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 5382 * such verifier states are not equivalent. 5383 * return false to continue verification of this path 5384 */ 5385 return false; 5386 } 5387 return true; 5388 } 5389 5390 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur) 5391 { 5392 if (old->acquired_refs != cur->acquired_refs) 5393 return false; 5394 return !memcmp(old->refs, cur->refs, 5395 sizeof(*old->refs) * old->acquired_refs); 5396 } 5397 5398 /* compare two verifier states 5399 * 5400 * all states stored in state_list are known to be valid, since 5401 * verifier reached 'bpf_exit' instruction through them 5402 * 5403 * this function is called when verifier exploring different branches of 5404 * execution popped from the state stack. If it sees an old state that has 5405 * more strict register state and more strict stack state then this execution 5406 * branch doesn't need to be explored further, since verifier already 5407 * concluded that more strict state leads to valid finish. 5408 * 5409 * Therefore two states are equivalent if register state is more conservative 5410 * and explored stack state is more conservative than the current one. 5411 * Example: 5412 * explored current 5413 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 5414 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 5415 * 5416 * In other words if current stack state (one being explored) has more 5417 * valid slots than old one that already passed validation, it means 5418 * the verifier can stop exploring and conclude that current state is valid too 5419 * 5420 * Similarly with registers. If explored state has register type as invalid 5421 * whereas register type in current state is meaningful, it means that 5422 * the current state will reach 'bpf_exit' instruction safely 5423 */ 5424 static bool func_states_equal(struct bpf_func_state *old, 5425 struct bpf_func_state *cur) 5426 { 5427 struct idpair *idmap; 5428 bool ret = false; 5429 int i; 5430 5431 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL); 5432 /* If we failed to allocate the idmap, just say it's not safe */ 5433 if (!idmap) 5434 return false; 5435 5436 for (i = 0; i < MAX_BPF_REG; i++) { 5437 if (!regsafe(&old->regs[i], &cur->regs[i], idmap)) 5438 goto out_free; 5439 } 5440 5441 if (!stacksafe(old, cur, idmap)) 5442 goto out_free; 5443 5444 if (!refsafe(old, cur)) 5445 goto out_free; 5446 ret = true; 5447 out_free: 5448 kfree(idmap); 5449 return ret; 5450 } 5451 5452 static bool states_equal(struct bpf_verifier_env *env, 5453 struct bpf_verifier_state *old, 5454 struct bpf_verifier_state *cur) 5455 { 5456 int i; 5457 5458 if (old->curframe != cur->curframe) 5459 return false; 5460 5461 /* for states to be equal callsites have to be the same 5462 * and all frame states need to be equivalent 5463 */ 5464 for (i = 0; i <= old->curframe; i++) { 5465 if (old->frame[i]->callsite != cur->frame[i]->callsite) 5466 return false; 5467 if (!func_states_equal(old->frame[i], cur->frame[i])) 5468 return false; 5469 } 5470 return true; 5471 } 5472 5473 /* A write screens off any subsequent reads; but write marks come from the 5474 * straight-line code between a state and its parent. When we arrive at an 5475 * equivalent state (jump target or such) we didn't arrive by the straight-line 5476 * code, so read marks in the state must propagate to the parent regardless 5477 * of the state's write marks. That's what 'parent == state->parent' comparison 5478 * in mark_reg_read() is for. 5479 */ 5480 static int propagate_liveness(struct bpf_verifier_env *env, 5481 const struct bpf_verifier_state *vstate, 5482 struct bpf_verifier_state *vparent) 5483 { 5484 int i, frame, err = 0; 5485 struct bpf_func_state *state, *parent; 5486 5487 if (vparent->curframe != vstate->curframe) { 5488 WARN(1, "propagate_live: parent frame %d current frame %d\n", 5489 vparent->curframe, vstate->curframe); 5490 return -EFAULT; 5491 } 5492 /* Propagate read liveness of registers... */ 5493 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 5494 /* We don't need to worry about FP liveness because it's read-only */ 5495 for (i = 0; i < BPF_REG_FP; i++) { 5496 if (vparent->frame[vparent->curframe]->regs[i].live & REG_LIVE_READ) 5497 continue; 5498 if (vstate->frame[vstate->curframe]->regs[i].live & REG_LIVE_READ) { 5499 err = mark_reg_read(env, &vstate->frame[vstate->curframe]->regs[i], 5500 &vparent->frame[vstate->curframe]->regs[i]); 5501 if (err) 5502 return err; 5503 } 5504 } 5505 5506 /* ... and stack slots */ 5507 for (frame = 0; frame <= vstate->curframe; frame++) { 5508 state = vstate->frame[frame]; 5509 parent = vparent->frame[frame]; 5510 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 5511 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 5512 if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ) 5513 continue; 5514 if (state->stack[i].spilled_ptr.live & REG_LIVE_READ) 5515 mark_reg_read(env, &state->stack[i].spilled_ptr, 5516 &parent->stack[i].spilled_ptr); 5517 } 5518 } 5519 return err; 5520 } 5521 5522 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 5523 { 5524 struct bpf_verifier_state_list *new_sl; 5525 struct bpf_verifier_state_list *sl; 5526 struct bpf_verifier_state *cur = env->cur_state, *new; 5527 int i, j, err, states_cnt = 0; 5528 5529 sl = env->explored_states[insn_idx]; 5530 if (!sl) 5531 /* this 'insn_idx' instruction wasn't marked, so we will not 5532 * be doing state search here 5533 */ 5534 return 0; 5535 5536 clean_live_states(env, insn_idx, cur); 5537 5538 while (sl != STATE_LIST_MARK) { 5539 if (states_equal(env, &sl->state, cur)) { 5540 /* reached equivalent register/stack state, 5541 * prune the search. 5542 * Registers read by the continuation are read by us. 5543 * If we have any write marks in env->cur_state, they 5544 * will prevent corresponding reads in the continuation 5545 * from reaching our parent (an explored_state). Our 5546 * own state will get the read marks recorded, but 5547 * they'll be immediately forgotten as we're pruning 5548 * this state and will pop a new one. 5549 */ 5550 err = propagate_liveness(env, &sl->state, cur); 5551 if (err) 5552 return err; 5553 return 1; 5554 } 5555 sl = sl->next; 5556 states_cnt++; 5557 } 5558 5559 if (!env->allow_ptr_leaks && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 5560 return 0; 5561 5562 /* there were no equivalent states, remember current one. 5563 * technically the current state is not proven to be safe yet, 5564 * but it will either reach outer most bpf_exit (which means it's safe) 5565 * or it will be rejected. Since there are no loops, we won't be 5566 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 5567 * again on the way to bpf_exit 5568 */ 5569 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 5570 if (!new_sl) 5571 return -ENOMEM; 5572 5573 /* add new state to the head of linked list */ 5574 new = &new_sl->state; 5575 err = copy_verifier_state(new, cur); 5576 if (err) { 5577 free_verifier_state(new, false); 5578 kfree(new_sl); 5579 return err; 5580 } 5581 new_sl->next = env->explored_states[insn_idx]; 5582 env->explored_states[insn_idx] = new_sl; 5583 /* connect new state to parentage chain. Current frame needs all 5584 * registers connected. Only r6 - r9 of the callers are alive (pushed 5585 * to the stack implicitly by JITs) so in callers' frames connect just 5586 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 5587 * the state of the call instruction (with WRITTEN set), and r0 comes 5588 * from callee with its full parentage chain, anyway. 5589 */ 5590 for (j = 0; j <= cur->curframe; j++) 5591 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 5592 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 5593 /* clear write marks in current state: the writes we did are not writes 5594 * our child did, so they don't screen off its reads from us. 5595 * (There are no read marks in current state, because reads always mark 5596 * their parent and current state never has children yet. Only 5597 * explored_states can get read marks.) 5598 */ 5599 for (i = 0; i < BPF_REG_FP; i++) 5600 cur->frame[cur->curframe]->regs[i].live = REG_LIVE_NONE; 5601 5602 /* all stack frames are accessible from callee, clear them all */ 5603 for (j = 0; j <= cur->curframe; j++) { 5604 struct bpf_func_state *frame = cur->frame[j]; 5605 struct bpf_func_state *newframe = new->frame[j]; 5606 5607 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 5608 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 5609 frame->stack[i].spilled_ptr.parent = 5610 &newframe->stack[i].spilled_ptr; 5611 } 5612 } 5613 return 0; 5614 } 5615 5616 /* Return true if it's OK to have the same insn return a different type. */ 5617 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 5618 { 5619 switch (type) { 5620 case PTR_TO_CTX: 5621 case PTR_TO_SOCKET: 5622 case PTR_TO_SOCKET_OR_NULL: 5623 return false; 5624 default: 5625 return true; 5626 } 5627 } 5628 5629 /* If an instruction was previously used with particular pointer types, then we 5630 * need to be careful to avoid cases such as the below, where it may be ok 5631 * for one branch accessing the pointer, but not ok for the other branch: 5632 * 5633 * R1 = sock_ptr 5634 * goto X; 5635 * ... 5636 * R1 = some_other_valid_ptr; 5637 * goto X; 5638 * ... 5639 * R2 = *(u32 *)(R1 + 0); 5640 */ 5641 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 5642 { 5643 return src != prev && (!reg_type_mismatch_ok(src) || 5644 !reg_type_mismatch_ok(prev)); 5645 } 5646 5647 static int do_check(struct bpf_verifier_env *env) 5648 { 5649 struct bpf_verifier_state *state; 5650 struct bpf_insn *insns = env->prog->insnsi; 5651 struct bpf_reg_state *regs; 5652 int insn_cnt = env->prog->len, i; 5653 int insn_idx, prev_insn_idx = 0; 5654 int insn_processed = 0; 5655 bool do_print_state = false; 5656 5657 env->prev_linfo = NULL; 5658 5659 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 5660 if (!state) 5661 return -ENOMEM; 5662 state->curframe = 0; 5663 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 5664 if (!state->frame[0]) { 5665 kfree(state); 5666 return -ENOMEM; 5667 } 5668 env->cur_state = state; 5669 init_func_state(env, state->frame[0], 5670 BPF_MAIN_FUNC /* callsite */, 5671 0 /* frameno */, 5672 0 /* subprogno, zero == main subprog */); 5673 insn_idx = 0; 5674 for (;;) { 5675 struct bpf_insn *insn; 5676 u8 class; 5677 int err; 5678 5679 if (insn_idx >= insn_cnt) { 5680 verbose(env, "invalid insn idx %d insn_cnt %d\n", 5681 insn_idx, insn_cnt); 5682 return -EFAULT; 5683 } 5684 5685 insn = &insns[insn_idx]; 5686 class = BPF_CLASS(insn->code); 5687 5688 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 5689 verbose(env, 5690 "BPF program is too large. Processed %d insn\n", 5691 insn_processed); 5692 return -E2BIG; 5693 } 5694 5695 err = is_state_visited(env, insn_idx); 5696 if (err < 0) 5697 return err; 5698 if (err == 1) { 5699 /* found equivalent state, can prune the search */ 5700 if (env->log.level) { 5701 if (do_print_state) 5702 verbose(env, "\nfrom %d to %d: safe\n", 5703 prev_insn_idx, insn_idx); 5704 else 5705 verbose(env, "%d: safe\n", insn_idx); 5706 } 5707 goto process_bpf_exit; 5708 } 5709 5710 if (signal_pending(current)) 5711 return -EAGAIN; 5712 5713 if (need_resched()) 5714 cond_resched(); 5715 5716 if (env->log.level > 1 || (env->log.level && do_print_state)) { 5717 if (env->log.level > 1) 5718 verbose(env, "%d:", insn_idx); 5719 else 5720 verbose(env, "\nfrom %d to %d:", 5721 prev_insn_idx, insn_idx); 5722 print_verifier_state(env, state->frame[state->curframe]); 5723 do_print_state = false; 5724 } 5725 5726 if (env->log.level) { 5727 const struct bpf_insn_cbs cbs = { 5728 .cb_print = verbose, 5729 .private_data = env, 5730 }; 5731 5732 verbose_linfo(env, insn_idx, "; "); 5733 verbose(env, "%d: ", insn_idx); 5734 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 5735 } 5736 5737 if (bpf_prog_is_dev_bound(env->prog->aux)) { 5738 err = bpf_prog_offload_verify_insn(env, insn_idx, 5739 prev_insn_idx); 5740 if (err) 5741 return err; 5742 } 5743 5744 regs = cur_regs(env); 5745 env->insn_aux_data[insn_idx].seen = true; 5746 5747 if (class == BPF_ALU || class == BPF_ALU64) { 5748 err = check_alu_op(env, insn); 5749 if (err) 5750 return err; 5751 5752 } else if (class == BPF_LDX) { 5753 enum bpf_reg_type *prev_src_type, src_reg_type; 5754 5755 /* check for reserved fields is already done */ 5756 5757 /* check src operand */ 5758 err = check_reg_arg(env, insn->src_reg, SRC_OP); 5759 if (err) 5760 return err; 5761 5762 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 5763 if (err) 5764 return err; 5765 5766 src_reg_type = regs[insn->src_reg].type; 5767 5768 /* check that memory (src_reg + off) is readable, 5769 * the state of dst_reg will be updated by this func 5770 */ 5771 err = check_mem_access(env, insn_idx, insn->src_reg, insn->off, 5772 BPF_SIZE(insn->code), BPF_READ, 5773 insn->dst_reg, false); 5774 if (err) 5775 return err; 5776 5777 prev_src_type = &env->insn_aux_data[insn_idx].ptr_type; 5778 5779 if (*prev_src_type == NOT_INIT) { 5780 /* saw a valid insn 5781 * dst_reg = *(u32 *)(src_reg + off) 5782 * save type to validate intersecting paths 5783 */ 5784 *prev_src_type = src_reg_type; 5785 5786 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) { 5787 /* ABuser program is trying to use the same insn 5788 * dst_reg = *(u32*) (src_reg + off) 5789 * with different pointer types: 5790 * src_reg == ctx in one branch and 5791 * src_reg == stack|map in some other branch. 5792 * Reject it. 5793 */ 5794 verbose(env, "same insn cannot be used with different pointers\n"); 5795 return -EINVAL; 5796 } 5797 5798 } else if (class == BPF_STX) { 5799 enum bpf_reg_type *prev_dst_type, dst_reg_type; 5800 5801 if (BPF_MODE(insn->code) == BPF_XADD) { 5802 err = check_xadd(env, insn_idx, insn); 5803 if (err) 5804 return err; 5805 insn_idx++; 5806 continue; 5807 } 5808 5809 /* check src1 operand */ 5810 err = check_reg_arg(env, insn->src_reg, SRC_OP); 5811 if (err) 5812 return err; 5813 /* check src2 operand */ 5814 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 5815 if (err) 5816 return err; 5817 5818 dst_reg_type = regs[insn->dst_reg].type; 5819 5820 /* check that memory (dst_reg + off) is writeable */ 5821 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 5822 BPF_SIZE(insn->code), BPF_WRITE, 5823 insn->src_reg, false); 5824 if (err) 5825 return err; 5826 5827 prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type; 5828 5829 if (*prev_dst_type == NOT_INIT) { 5830 *prev_dst_type = dst_reg_type; 5831 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) { 5832 verbose(env, "same insn cannot be used with different pointers\n"); 5833 return -EINVAL; 5834 } 5835 5836 } else if (class == BPF_ST) { 5837 if (BPF_MODE(insn->code) != BPF_MEM || 5838 insn->src_reg != BPF_REG_0) { 5839 verbose(env, "BPF_ST uses reserved fields\n"); 5840 return -EINVAL; 5841 } 5842 /* check src operand */ 5843 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 5844 if (err) 5845 return err; 5846 5847 if (is_ctx_reg(env, insn->dst_reg)) { 5848 verbose(env, "BPF_ST stores into R%d %s is not allowed\n", 5849 insn->dst_reg, 5850 reg_type_str[reg_state(env, insn->dst_reg)->type]); 5851 return -EACCES; 5852 } 5853 5854 /* check that memory (dst_reg + off) is writeable */ 5855 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 5856 BPF_SIZE(insn->code), BPF_WRITE, 5857 -1, false); 5858 if (err) 5859 return err; 5860 5861 } else if (class == BPF_JMP) { 5862 u8 opcode = BPF_OP(insn->code); 5863 5864 if (opcode == BPF_CALL) { 5865 if (BPF_SRC(insn->code) != BPF_K || 5866 insn->off != 0 || 5867 (insn->src_reg != BPF_REG_0 && 5868 insn->src_reg != BPF_PSEUDO_CALL) || 5869 insn->dst_reg != BPF_REG_0) { 5870 verbose(env, "BPF_CALL uses reserved fields\n"); 5871 return -EINVAL; 5872 } 5873 5874 if (insn->src_reg == BPF_PSEUDO_CALL) 5875 err = check_func_call(env, insn, &insn_idx); 5876 else 5877 err = check_helper_call(env, insn->imm, insn_idx); 5878 if (err) 5879 return err; 5880 5881 } else if (opcode == BPF_JA) { 5882 if (BPF_SRC(insn->code) != BPF_K || 5883 insn->imm != 0 || 5884 insn->src_reg != BPF_REG_0 || 5885 insn->dst_reg != BPF_REG_0) { 5886 verbose(env, "BPF_JA uses reserved fields\n"); 5887 return -EINVAL; 5888 } 5889 5890 insn_idx += insn->off + 1; 5891 continue; 5892 5893 } else if (opcode == BPF_EXIT) { 5894 if (BPF_SRC(insn->code) != BPF_K || 5895 insn->imm != 0 || 5896 insn->src_reg != BPF_REG_0 || 5897 insn->dst_reg != BPF_REG_0) { 5898 verbose(env, "BPF_EXIT uses reserved fields\n"); 5899 return -EINVAL; 5900 } 5901 5902 if (state->curframe) { 5903 /* exit from nested function */ 5904 prev_insn_idx = insn_idx; 5905 err = prepare_func_exit(env, &insn_idx); 5906 if (err) 5907 return err; 5908 do_print_state = true; 5909 continue; 5910 } 5911 5912 err = check_reference_leak(env); 5913 if (err) 5914 return err; 5915 5916 /* eBPF calling convetion is such that R0 is used 5917 * to return the value from eBPF program. 5918 * Make sure that it's readable at this time 5919 * of bpf_exit, which means that program wrote 5920 * something into it earlier 5921 */ 5922 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 5923 if (err) 5924 return err; 5925 5926 if (is_pointer_value(env, BPF_REG_0)) { 5927 verbose(env, "R0 leaks addr as return value\n"); 5928 return -EACCES; 5929 } 5930 5931 err = check_return_code(env); 5932 if (err) 5933 return err; 5934 process_bpf_exit: 5935 err = pop_stack(env, &prev_insn_idx, &insn_idx); 5936 if (err < 0) { 5937 if (err != -ENOENT) 5938 return err; 5939 break; 5940 } else { 5941 do_print_state = true; 5942 continue; 5943 } 5944 } else { 5945 err = check_cond_jmp_op(env, insn, &insn_idx); 5946 if (err) 5947 return err; 5948 } 5949 } else if (class == BPF_LD) { 5950 u8 mode = BPF_MODE(insn->code); 5951 5952 if (mode == BPF_ABS || mode == BPF_IND) { 5953 err = check_ld_abs(env, insn); 5954 if (err) 5955 return err; 5956 5957 } else if (mode == BPF_IMM) { 5958 err = check_ld_imm(env, insn); 5959 if (err) 5960 return err; 5961 5962 insn_idx++; 5963 env->insn_aux_data[insn_idx].seen = true; 5964 } else { 5965 verbose(env, "invalid BPF_LD mode\n"); 5966 return -EINVAL; 5967 } 5968 } else { 5969 verbose(env, "unknown insn class %d\n", class); 5970 return -EINVAL; 5971 } 5972 5973 insn_idx++; 5974 } 5975 5976 verbose(env, "processed %d insns (limit %d), stack depth ", 5977 insn_processed, BPF_COMPLEXITY_LIMIT_INSNS); 5978 for (i = 0; i < env->subprog_cnt; i++) { 5979 u32 depth = env->subprog_info[i].stack_depth; 5980 5981 verbose(env, "%d", depth); 5982 if (i + 1 < env->subprog_cnt) 5983 verbose(env, "+"); 5984 } 5985 verbose(env, "\n"); 5986 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 5987 return 0; 5988 } 5989 5990 static int check_map_prealloc(struct bpf_map *map) 5991 { 5992 return (map->map_type != BPF_MAP_TYPE_HASH && 5993 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 5994 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) || 5995 !(map->map_flags & BPF_F_NO_PREALLOC); 5996 } 5997 5998 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 5999 struct bpf_map *map, 6000 struct bpf_prog *prog) 6001 6002 { 6003 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use 6004 * preallocated hash maps, since doing memory allocation 6005 * in overflow_handler can crash depending on where nmi got 6006 * triggered. 6007 */ 6008 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) { 6009 if (!check_map_prealloc(map)) { 6010 verbose(env, "perf_event programs can only use preallocated hash map\n"); 6011 return -EINVAL; 6012 } 6013 if (map->inner_map_meta && 6014 !check_map_prealloc(map->inner_map_meta)) { 6015 verbose(env, "perf_event programs can only use preallocated inner hash map\n"); 6016 return -EINVAL; 6017 } 6018 } 6019 6020 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) && 6021 !bpf_offload_prog_map_match(prog, map)) { 6022 verbose(env, "offload device mismatch between prog and map\n"); 6023 return -EINVAL; 6024 } 6025 6026 return 0; 6027 } 6028 6029 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 6030 { 6031 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 6032 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 6033 } 6034 6035 /* look for pseudo eBPF instructions that access map FDs and 6036 * replace them with actual map pointers 6037 */ 6038 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env) 6039 { 6040 struct bpf_insn *insn = env->prog->insnsi; 6041 int insn_cnt = env->prog->len; 6042 int i, j, err; 6043 6044 err = bpf_prog_calc_tag(env->prog); 6045 if (err) 6046 return err; 6047 6048 for (i = 0; i < insn_cnt; i++, insn++) { 6049 if (BPF_CLASS(insn->code) == BPF_LDX && 6050 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 6051 verbose(env, "BPF_LDX uses reserved fields\n"); 6052 return -EINVAL; 6053 } 6054 6055 if (BPF_CLASS(insn->code) == BPF_STX && 6056 ((BPF_MODE(insn->code) != BPF_MEM && 6057 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) { 6058 verbose(env, "BPF_STX uses reserved fields\n"); 6059 return -EINVAL; 6060 } 6061 6062 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 6063 struct bpf_map *map; 6064 struct fd f; 6065 6066 if (i == insn_cnt - 1 || insn[1].code != 0 || 6067 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 6068 insn[1].off != 0) { 6069 verbose(env, "invalid bpf_ld_imm64 insn\n"); 6070 return -EINVAL; 6071 } 6072 6073 if (insn->src_reg == 0) 6074 /* valid generic load 64-bit imm */ 6075 goto next_insn; 6076 6077 if (insn->src_reg != BPF_PSEUDO_MAP_FD) { 6078 verbose(env, 6079 "unrecognized bpf_ld_imm64 insn\n"); 6080 return -EINVAL; 6081 } 6082 6083 f = fdget(insn->imm); 6084 map = __bpf_map_get(f); 6085 if (IS_ERR(map)) { 6086 verbose(env, "fd %d is not pointing to valid bpf_map\n", 6087 insn->imm); 6088 return PTR_ERR(map); 6089 } 6090 6091 err = check_map_prog_compatibility(env, map, env->prog); 6092 if (err) { 6093 fdput(f); 6094 return err; 6095 } 6096 6097 /* store map pointer inside BPF_LD_IMM64 instruction */ 6098 insn[0].imm = (u32) (unsigned long) map; 6099 insn[1].imm = ((u64) (unsigned long) map) >> 32; 6100 6101 /* check whether we recorded this map already */ 6102 for (j = 0; j < env->used_map_cnt; j++) 6103 if (env->used_maps[j] == map) { 6104 fdput(f); 6105 goto next_insn; 6106 } 6107 6108 if (env->used_map_cnt >= MAX_USED_MAPS) { 6109 fdput(f); 6110 return -E2BIG; 6111 } 6112 6113 /* hold the map. If the program is rejected by verifier, 6114 * the map will be released by release_maps() or it 6115 * will be used by the valid program until it's unloaded 6116 * and all maps are released in free_used_maps() 6117 */ 6118 map = bpf_map_inc(map, false); 6119 if (IS_ERR(map)) { 6120 fdput(f); 6121 return PTR_ERR(map); 6122 } 6123 env->used_maps[env->used_map_cnt++] = map; 6124 6125 if (bpf_map_is_cgroup_storage(map) && 6126 bpf_cgroup_storage_assign(env->prog, map)) { 6127 verbose(env, "only one cgroup storage of each type is allowed\n"); 6128 fdput(f); 6129 return -EBUSY; 6130 } 6131 6132 fdput(f); 6133 next_insn: 6134 insn++; 6135 i++; 6136 continue; 6137 } 6138 6139 /* Basic sanity check before we invest more work here. */ 6140 if (!bpf_opcode_in_insntable(insn->code)) { 6141 verbose(env, "unknown opcode %02x\n", insn->code); 6142 return -EINVAL; 6143 } 6144 } 6145 6146 /* now all pseudo BPF_LD_IMM64 instructions load valid 6147 * 'struct bpf_map *' into a register instead of user map_fd. 6148 * These pointers will be used later by verifier to validate map access. 6149 */ 6150 return 0; 6151 } 6152 6153 /* drop refcnt of maps used by the rejected program */ 6154 static void release_maps(struct bpf_verifier_env *env) 6155 { 6156 enum bpf_cgroup_storage_type stype; 6157 int i; 6158 6159 for_each_cgroup_storage_type(stype) { 6160 if (!env->prog->aux->cgroup_storage[stype]) 6161 continue; 6162 bpf_cgroup_storage_release(env->prog, 6163 env->prog->aux->cgroup_storage[stype]); 6164 } 6165 6166 for (i = 0; i < env->used_map_cnt; i++) 6167 bpf_map_put(env->used_maps[i]); 6168 } 6169 6170 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 6171 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 6172 { 6173 struct bpf_insn *insn = env->prog->insnsi; 6174 int insn_cnt = env->prog->len; 6175 int i; 6176 6177 for (i = 0; i < insn_cnt; i++, insn++) 6178 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW)) 6179 insn->src_reg = 0; 6180 } 6181 6182 /* single env->prog->insni[off] instruction was replaced with the range 6183 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 6184 * [0, off) and [off, end) to new locations, so the patched range stays zero 6185 */ 6186 static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len, 6187 u32 off, u32 cnt) 6188 { 6189 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data; 6190 int i; 6191 6192 if (cnt == 1) 6193 return 0; 6194 new_data = vzalloc(array_size(prog_len, 6195 sizeof(struct bpf_insn_aux_data))); 6196 if (!new_data) 6197 return -ENOMEM; 6198 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 6199 memcpy(new_data + off + cnt - 1, old_data + off, 6200 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 6201 for (i = off; i < off + cnt - 1; i++) 6202 new_data[i].seen = true; 6203 env->insn_aux_data = new_data; 6204 vfree(old_data); 6205 return 0; 6206 } 6207 6208 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 6209 { 6210 int i; 6211 6212 if (len == 1) 6213 return; 6214 /* NOTE: fake 'exit' subprog should be updated as well. */ 6215 for (i = 0; i <= env->subprog_cnt; i++) { 6216 if (env->subprog_info[i].start <= off) 6217 continue; 6218 env->subprog_info[i].start += len - 1; 6219 } 6220 } 6221 6222 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 6223 const struct bpf_insn *patch, u32 len) 6224 { 6225 struct bpf_prog *new_prog; 6226 6227 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 6228 if (!new_prog) 6229 return NULL; 6230 if (adjust_insn_aux_data(env, new_prog->len, off, len)) 6231 return NULL; 6232 adjust_subprog_starts(env, off, len); 6233 return new_prog; 6234 } 6235 6236 /* The verifier does more data flow analysis than llvm and will not 6237 * explore branches that are dead at run time. Malicious programs can 6238 * have dead code too. Therefore replace all dead at-run-time code 6239 * with 'ja -1'. 6240 * 6241 * Just nops are not optimal, e.g. if they would sit at the end of the 6242 * program and through another bug we would manage to jump there, then 6243 * we'd execute beyond program memory otherwise. Returning exception 6244 * code also wouldn't work since we can have subprogs where the dead 6245 * code could be located. 6246 */ 6247 static void sanitize_dead_code(struct bpf_verifier_env *env) 6248 { 6249 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 6250 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 6251 struct bpf_insn *insn = env->prog->insnsi; 6252 const int insn_cnt = env->prog->len; 6253 int i; 6254 6255 for (i = 0; i < insn_cnt; i++) { 6256 if (aux_data[i].seen) 6257 continue; 6258 memcpy(insn + i, &trap, sizeof(trap)); 6259 } 6260 } 6261 6262 /* convert load instructions that access fields of a context type into a 6263 * sequence of instructions that access fields of the underlying structure: 6264 * struct __sk_buff -> struct sk_buff 6265 * struct bpf_sock_ops -> struct sock 6266 */ 6267 static int convert_ctx_accesses(struct bpf_verifier_env *env) 6268 { 6269 const struct bpf_verifier_ops *ops = env->ops; 6270 int i, cnt, size, ctx_field_size, delta = 0; 6271 const int insn_cnt = env->prog->len; 6272 struct bpf_insn insn_buf[16], *insn; 6273 u32 target_size, size_default, off; 6274 struct bpf_prog *new_prog; 6275 enum bpf_access_type type; 6276 bool is_narrower_load; 6277 6278 if (ops->gen_prologue || env->seen_direct_write) { 6279 if (!ops->gen_prologue) { 6280 verbose(env, "bpf verifier is misconfigured\n"); 6281 return -EINVAL; 6282 } 6283 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 6284 env->prog); 6285 if (cnt >= ARRAY_SIZE(insn_buf)) { 6286 verbose(env, "bpf verifier is misconfigured\n"); 6287 return -EINVAL; 6288 } else if (cnt) { 6289 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 6290 if (!new_prog) 6291 return -ENOMEM; 6292 6293 env->prog = new_prog; 6294 delta += cnt - 1; 6295 } 6296 } 6297 6298 if (bpf_prog_is_dev_bound(env->prog->aux)) 6299 return 0; 6300 6301 insn = env->prog->insnsi + delta; 6302 6303 for (i = 0; i < insn_cnt; i++, insn++) { 6304 bpf_convert_ctx_access_t convert_ctx_access; 6305 6306 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 6307 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 6308 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 6309 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) 6310 type = BPF_READ; 6311 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 6312 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 6313 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 6314 insn->code == (BPF_STX | BPF_MEM | BPF_DW)) 6315 type = BPF_WRITE; 6316 else 6317 continue; 6318 6319 if (type == BPF_WRITE && 6320 env->insn_aux_data[i + delta].sanitize_stack_off) { 6321 struct bpf_insn patch[] = { 6322 /* Sanitize suspicious stack slot with zero. 6323 * There are no memory dependencies for this store, 6324 * since it's only using frame pointer and immediate 6325 * constant of zero 6326 */ 6327 BPF_ST_MEM(BPF_DW, BPF_REG_FP, 6328 env->insn_aux_data[i + delta].sanitize_stack_off, 6329 0), 6330 /* the original STX instruction will immediately 6331 * overwrite the same stack slot with appropriate value 6332 */ 6333 *insn, 6334 }; 6335 6336 cnt = ARRAY_SIZE(patch); 6337 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 6338 if (!new_prog) 6339 return -ENOMEM; 6340 6341 delta += cnt - 1; 6342 env->prog = new_prog; 6343 insn = new_prog->insnsi + i + delta; 6344 continue; 6345 } 6346 6347 switch (env->insn_aux_data[i + delta].ptr_type) { 6348 case PTR_TO_CTX: 6349 if (!ops->convert_ctx_access) 6350 continue; 6351 convert_ctx_access = ops->convert_ctx_access; 6352 break; 6353 case PTR_TO_SOCKET: 6354 convert_ctx_access = bpf_sock_convert_ctx_access; 6355 break; 6356 default: 6357 continue; 6358 } 6359 6360 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 6361 size = BPF_LDST_BYTES(insn); 6362 6363 /* If the read access is a narrower load of the field, 6364 * convert to a 4/8-byte load, to minimum program type specific 6365 * convert_ctx_access changes. If conversion is successful, 6366 * we will apply proper mask to the result. 6367 */ 6368 is_narrower_load = size < ctx_field_size; 6369 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 6370 off = insn->off; 6371 if (is_narrower_load) { 6372 u8 size_code; 6373 6374 if (type == BPF_WRITE) { 6375 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 6376 return -EINVAL; 6377 } 6378 6379 size_code = BPF_H; 6380 if (ctx_field_size == 4) 6381 size_code = BPF_W; 6382 else if (ctx_field_size == 8) 6383 size_code = BPF_DW; 6384 6385 insn->off = off & ~(size_default - 1); 6386 insn->code = BPF_LDX | BPF_MEM | size_code; 6387 } 6388 6389 target_size = 0; 6390 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 6391 &target_size); 6392 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 6393 (ctx_field_size && !target_size)) { 6394 verbose(env, "bpf verifier is misconfigured\n"); 6395 return -EINVAL; 6396 } 6397 6398 if (is_narrower_load && size < target_size) { 6399 u8 shift = (off & (size_default - 1)) * 8; 6400 6401 if (ctx_field_size <= 4) { 6402 if (shift) 6403 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 6404 insn->dst_reg, 6405 shift); 6406 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 6407 (1 << size * 8) - 1); 6408 } else { 6409 if (shift) 6410 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 6411 insn->dst_reg, 6412 shift); 6413 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 6414 (1 << size * 8) - 1); 6415 } 6416 } 6417 6418 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 6419 if (!new_prog) 6420 return -ENOMEM; 6421 6422 delta += cnt - 1; 6423 6424 /* keep walking new program and skip insns we just inserted */ 6425 env->prog = new_prog; 6426 insn = new_prog->insnsi + i + delta; 6427 } 6428 6429 return 0; 6430 } 6431 6432 static int jit_subprogs(struct bpf_verifier_env *env) 6433 { 6434 struct bpf_prog *prog = env->prog, **func, *tmp; 6435 int i, j, subprog_start, subprog_end = 0, len, subprog; 6436 struct bpf_insn *insn; 6437 void *old_bpf_func; 6438 int err; 6439 6440 if (env->subprog_cnt <= 1) 6441 return 0; 6442 6443 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 6444 if (insn->code != (BPF_JMP | BPF_CALL) || 6445 insn->src_reg != BPF_PSEUDO_CALL) 6446 continue; 6447 /* Upon error here we cannot fall back to interpreter but 6448 * need a hard reject of the program. Thus -EFAULT is 6449 * propagated in any case. 6450 */ 6451 subprog = find_subprog(env, i + insn->imm + 1); 6452 if (subprog < 0) { 6453 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 6454 i + insn->imm + 1); 6455 return -EFAULT; 6456 } 6457 /* temporarily remember subprog id inside insn instead of 6458 * aux_data, since next loop will split up all insns into funcs 6459 */ 6460 insn->off = subprog; 6461 /* remember original imm in case JIT fails and fallback 6462 * to interpreter will be needed 6463 */ 6464 env->insn_aux_data[i].call_imm = insn->imm; 6465 /* point imm to __bpf_call_base+1 from JITs point of view */ 6466 insn->imm = 1; 6467 } 6468 6469 err = bpf_prog_alloc_jited_linfo(prog); 6470 if (err) 6471 goto out_undo_insn; 6472 6473 err = -ENOMEM; 6474 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 6475 if (!func) 6476 goto out_undo_insn; 6477 6478 for (i = 0; i < env->subprog_cnt; i++) { 6479 subprog_start = subprog_end; 6480 subprog_end = env->subprog_info[i + 1].start; 6481 6482 len = subprog_end - subprog_start; 6483 func[i] = bpf_prog_alloc(bpf_prog_size(len), GFP_USER); 6484 if (!func[i]) 6485 goto out_free; 6486 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 6487 len * sizeof(struct bpf_insn)); 6488 func[i]->type = prog->type; 6489 func[i]->len = len; 6490 if (bpf_prog_calc_tag(func[i])) 6491 goto out_free; 6492 func[i]->is_func = 1; 6493 func[i]->aux->func_idx = i; 6494 /* the btf and func_info will be freed only at prog->aux */ 6495 func[i]->aux->btf = prog->aux->btf; 6496 func[i]->aux->func_info = prog->aux->func_info; 6497 6498 /* Use bpf_prog_F_tag to indicate functions in stack traces. 6499 * Long term would need debug info to populate names 6500 */ 6501 func[i]->aux->name[0] = 'F'; 6502 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 6503 func[i]->jit_requested = 1; 6504 func[i]->aux->linfo = prog->aux->linfo; 6505 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 6506 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 6507 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 6508 func[i] = bpf_int_jit_compile(func[i]); 6509 if (!func[i]->jited) { 6510 err = -ENOTSUPP; 6511 goto out_free; 6512 } 6513 cond_resched(); 6514 } 6515 /* at this point all bpf functions were successfully JITed 6516 * now populate all bpf_calls with correct addresses and 6517 * run last pass of JIT 6518 */ 6519 for (i = 0; i < env->subprog_cnt; i++) { 6520 insn = func[i]->insnsi; 6521 for (j = 0; j < func[i]->len; j++, insn++) { 6522 if (insn->code != (BPF_JMP | BPF_CALL) || 6523 insn->src_reg != BPF_PSEUDO_CALL) 6524 continue; 6525 subprog = insn->off; 6526 insn->imm = (u64 (*)(u64, u64, u64, u64, u64)) 6527 func[subprog]->bpf_func - 6528 __bpf_call_base; 6529 } 6530 6531 /* we use the aux data to keep a list of the start addresses 6532 * of the JITed images for each function in the program 6533 * 6534 * for some architectures, such as powerpc64, the imm field 6535 * might not be large enough to hold the offset of the start 6536 * address of the callee's JITed image from __bpf_call_base 6537 * 6538 * in such cases, we can lookup the start address of a callee 6539 * by using its subprog id, available from the off field of 6540 * the call instruction, as an index for this list 6541 */ 6542 func[i]->aux->func = func; 6543 func[i]->aux->func_cnt = env->subprog_cnt; 6544 } 6545 for (i = 0; i < env->subprog_cnt; i++) { 6546 old_bpf_func = func[i]->bpf_func; 6547 tmp = bpf_int_jit_compile(func[i]); 6548 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 6549 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 6550 err = -ENOTSUPP; 6551 goto out_free; 6552 } 6553 cond_resched(); 6554 } 6555 6556 /* finally lock prog and jit images for all functions and 6557 * populate kallsysm 6558 */ 6559 for (i = 0; i < env->subprog_cnt; i++) { 6560 bpf_prog_lock_ro(func[i]); 6561 bpf_prog_kallsyms_add(func[i]); 6562 } 6563 6564 /* Last step: make now unused interpreter insns from main 6565 * prog consistent for later dump requests, so they can 6566 * later look the same as if they were interpreted only. 6567 */ 6568 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 6569 if (insn->code != (BPF_JMP | BPF_CALL) || 6570 insn->src_reg != BPF_PSEUDO_CALL) 6571 continue; 6572 insn->off = env->insn_aux_data[i].call_imm; 6573 subprog = find_subprog(env, i + insn->off + 1); 6574 insn->imm = subprog; 6575 } 6576 6577 prog->jited = 1; 6578 prog->bpf_func = func[0]->bpf_func; 6579 prog->aux->func = func; 6580 prog->aux->func_cnt = env->subprog_cnt; 6581 bpf_prog_free_unused_jited_linfo(prog); 6582 return 0; 6583 out_free: 6584 for (i = 0; i < env->subprog_cnt; i++) 6585 if (func[i]) 6586 bpf_jit_free(func[i]); 6587 kfree(func); 6588 out_undo_insn: 6589 /* cleanup main prog to be interpreted */ 6590 prog->jit_requested = 0; 6591 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 6592 if (insn->code != (BPF_JMP | BPF_CALL) || 6593 insn->src_reg != BPF_PSEUDO_CALL) 6594 continue; 6595 insn->off = 0; 6596 insn->imm = env->insn_aux_data[i].call_imm; 6597 } 6598 bpf_prog_free_jited_linfo(prog); 6599 return err; 6600 } 6601 6602 static int fixup_call_args(struct bpf_verifier_env *env) 6603 { 6604 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 6605 struct bpf_prog *prog = env->prog; 6606 struct bpf_insn *insn = prog->insnsi; 6607 int i, depth; 6608 #endif 6609 int err = 0; 6610 6611 if (env->prog->jit_requested && 6612 !bpf_prog_is_dev_bound(env->prog->aux)) { 6613 err = jit_subprogs(env); 6614 if (err == 0) 6615 return 0; 6616 if (err == -EFAULT) 6617 return err; 6618 } 6619 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 6620 for (i = 0; i < prog->len; i++, insn++) { 6621 if (insn->code != (BPF_JMP | BPF_CALL) || 6622 insn->src_reg != BPF_PSEUDO_CALL) 6623 continue; 6624 depth = get_callee_stack_depth(env, insn, i); 6625 if (depth < 0) 6626 return depth; 6627 bpf_patch_call_args(insn, depth); 6628 } 6629 err = 0; 6630 #endif 6631 return err; 6632 } 6633 6634 /* fixup insn->imm field of bpf_call instructions 6635 * and inline eligible helpers as explicit sequence of BPF instructions 6636 * 6637 * this function is called after eBPF program passed verification 6638 */ 6639 static int fixup_bpf_calls(struct bpf_verifier_env *env) 6640 { 6641 struct bpf_prog *prog = env->prog; 6642 struct bpf_insn *insn = prog->insnsi; 6643 const struct bpf_func_proto *fn; 6644 const int insn_cnt = prog->len; 6645 const struct bpf_map_ops *ops; 6646 struct bpf_insn_aux_data *aux; 6647 struct bpf_insn insn_buf[16]; 6648 struct bpf_prog *new_prog; 6649 struct bpf_map *map_ptr; 6650 int i, cnt, delta = 0; 6651 6652 for (i = 0; i < insn_cnt; i++, insn++) { 6653 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 6654 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 6655 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 6656 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 6657 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 6658 struct bpf_insn mask_and_div[] = { 6659 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 6660 /* Rx div 0 -> 0 */ 6661 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2), 6662 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 6663 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 6664 *insn, 6665 }; 6666 struct bpf_insn mask_and_mod[] = { 6667 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 6668 /* Rx mod 0 -> Rx */ 6669 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1), 6670 *insn, 6671 }; 6672 struct bpf_insn *patchlet; 6673 6674 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 6675 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 6676 patchlet = mask_and_div + (is64 ? 1 : 0); 6677 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0); 6678 } else { 6679 patchlet = mask_and_mod + (is64 ? 1 : 0); 6680 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0); 6681 } 6682 6683 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 6684 if (!new_prog) 6685 return -ENOMEM; 6686 6687 delta += cnt - 1; 6688 env->prog = prog = new_prog; 6689 insn = new_prog->insnsi + i + delta; 6690 continue; 6691 } 6692 6693 if (BPF_CLASS(insn->code) == BPF_LD && 6694 (BPF_MODE(insn->code) == BPF_ABS || 6695 BPF_MODE(insn->code) == BPF_IND)) { 6696 cnt = env->ops->gen_ld_abs(insn, insn_buf); 6697 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 6698 verbose(env, "bpf verifier is misconfigured\n"); 6699 return -EINVAL; 6700 } 6701 6702 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 6703 if (!new_prog) 6704 return -ENOMEM; 6705 6706 delta += cnt - 1; 6707 env->prog = prog = new_prog; 6708 insn = new_prog->insnsi + i + delta; 6709 continue; 6710 } 6711 6712 if (insn->code != (BPF_JMP | BPF_CALL)) 6713 continue; 6714 if (insn->src_reg == BPF_PSEUDO_CALL) 6715 continue; 6716 6717 if (insn->imm == BPF_FUNC_get_route_realm) 6718 prog->dst_needed = 1; 6719 if (insn->imm == BPF_FUNC_get_prandom_u32) 6720 bpf_user_rnd_init_once(); 6721 if (insn->imm == BPF_FUNC_override_return) 6722 prog->kprobe_override = 1; 6723 if (insn->imm == BPF_FUNC_tail_call) { 6724 /* If we tail call into other programs, we 6725 * cannot make any assumptions since they can 6726 * be replaced dynamically during runtime in 6727 * the program array. 6728 */ 6729 prog->cb_access = 1; 6730 env->prog->aux->stack_depth = MAX_BPF_STACK; 6731 env->prog->aux->max_pkt_offset = MAX_PACKET_OFF; 6732 6733 /* mark bpf_tail_call as different opcode to avoid 6734 * conditional branch in the interpeter for every normal 6735 * call and to prevent accidental JITing by JIT compiler 6736 * that doesn't support bpf_tail_call yet 6737 */ 6738 insn->imm = 0; 6739 insn->code = BPF_JMP | BPF_TAIL_CALL; 6740 6741 aux = &env->insn_aux_data[i + delta]; 6742 if (!bpf_map_ptr_unpriv(aux)) 6743 continue; 6744 6745 /* instead of changing every JIT dealing with tail_call 6746 * emit two extra insns: 6747 * if (index >= max_entries) goto out; 6748 * index &= array->index_mask; 6749 * to avoid out-of-bounds cpu speculation 6750 */ 6751 if (bpf_map_ptr_poisoned(aux)) { 6752 verbose(env, "tail_call abusing map_ptr\n"); 6753 return -EINVAL; 6754 } 6755 6756 map_ptr = BPF_MAP_PTR(aux->map_state); 6757 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 6758 map_ptr->max_entries, 2); 6759 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 6760 container_of(map_ptr, 6761 struct bpf_array, 6762 map)->index_mask); 6763 insn_buf[2] = *insn; 6764 cnt = 3; 6765 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 6766 if (!new_prog) 6767 return -ENOMEM; 6768 6769 delta += cnt - 1; 6770 env->prog = prog = new_prog; 6771 insn = new_prog->insnsi + i + delta; 6772 continue; 6773 } 6774 6775 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 6776 * and other inlining handlers are currently limited to 64 bit 6777 * only. 6778 */ 6779 if (prog->jit_requested && BITS_PER_LONG == 64 && 6780 (insn->imm == BPF_FUNC_map_lookup_elem || 6781 insn->imm == BPF_FUNC_map_update_elem || 6782 insn->imm == BPF_FUNC_map_delete_elem || 6783 insn->imm == BPF_FUNC_map_push_elem || 6784 insn->imm == BPF_FUNC_map_pop_elem || 6785 insn->imm == BPF_FUNC_map_peek_elem)) { 6786 aux = &env->insn_aux_data[i + delta]; 6787 if (bpf_map_ptr_poisoned(aux)) 6788 goto patch_call_imm; 6789 6790 map_ptr = BPF_MAP_PTR(aux->map_state); 6791 ops = map_ptr->ops; 6792 if (insn->imm == BPF_FUNC_map_lookup_elem && 6793 ops->map_gen_lookup) { 6794 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 6795 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 6796 verbose(env, "bpf verifier is misconfigured\n"); 6797 return -EINVAL; 6798 } 6799 6800 new_prog = bpf_patch_insn_data(env, i + delta, 6801 insn_buf, cnt); 6802 if (!new_prog) 6803 return -ENOMEM; 6804 6805 delta += cnt - 1; 6806 env->prog = prog = new_prog; 6807 insn = new_prog->insnsi + i + delta; 6808 continue; 6809 } 6810 6811 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 6812 (void *(*)(struct bpf_map *map, void *key))NULL)); 6813 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 6814 (int (*)(struct bpf_map *map, void *key))NULL)); 6815 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 6816 (int (*)(struct bpf_map *map, void *key, void *value, 6817 u64 flags))NULL)); 6818 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 6819 (int (*)(struct bpf_map *map, void *value, 6820 u64 flags))NULL)); 6821 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 6822 (int (*)(struct bpf_map *map, void *value))NULL)); 6823 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 6824 (int (*)(struct bpf_map *map, void *value))NULL)); 6825 6826 switch (insn->imm) { 6827 case BPF_FUNC_map_lookup_elem: 6828 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) - 6829 __bpf_call_base; 6830 continue; 6831 case BPF_FUNC_map_update_elem: 6832 insn->imm = BPF_CAST_CALL(ops->map_update_elem) - 6833 __bpf_call_base; 6834 continue; 6835 case BPF_FUNC_map_delete_elem: 6836 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) - 6837 __bpf_call_base; 6838 continue; 6839 case BPF_FUNC_map_push_elem: 6840 insn->imm = BPF_CAST_CALL(ops->map_push_elem) - 6841 __bpf_call_base; 6842 continue; 6843 case BPF_FUNC_map_pop_elem: 6844 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) - 6845 __bpf_call_base; 6846 continue; 6847 case BPF_FUNC_map_peek_elem: 6848 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) - 6849 __bpf_call_base; 6850 continue; 6851 } 6852 6853 goto patch_call_imm; 6854 } 6855 6856 patch_call_imm: 6857 fn = env->ops->get_func_proto(insn->imm, env->prog); 6858 /* all functions that have prototype and verifier allowed 6859 * programs to call them, must be real in-kernel functions 6860 */ 6861 if (!fn->func) { 6862 verbose(env, 6863 "kernel subsystem misconfigured func %s#%d\n", 6864 func_id_name(insn->imm), insn->imm); 6865 return -EFAULT; 6866 } 6867 insn->imm = fn->func - __bpf_call_base; 6868 } 6869 6870 return 0; 6871 } 6872 6873 static void free_states(struct bpf_verifier_env *env) 6874 { 6875 struct bpf_verifier_state_list *sl, *sln; 6876 int i; 6877 6878 if (!env->explored_states) 6879 return; 6880 6881 for (i = 0; i < env->prog->len; i++) { 6882 sl = env->explored_states[i]; 6883 6884 if (sl) 6885 while (sl != STATE_LIST_MARK) { 6886 sln = sl->next; 6887 free_verifier_state(&sl->state, false); 6888 kfree(sl); 6889 sl = sln; 6890 } 6891 } 6892 6893 kfree(env->explored_states); 6894 } 6895 6896 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, 6897 union bpf_attr __user *uattr) 6898 { 6899 struct bpf_verifier_env *env; 6900 struct bpf_verifier_log *log; 6901 int ret = -EINVAL; 6902 6903 /* no program is valid */ 6904 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 6905 return -EINVAL; 6906 6907 /* 'struct bpf_verifier_env' can be global, but since it's not small, 6908 * allocate/free it every time bpf_check() is called 6909 */ 6910 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 6911 if (!env) 6912 return -ENOMEM; 6913 log = &env->log; 6914 6915 env->insn_aux_data = 6916 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), 6917 (*prog)->len)); 6918 ret = -ENOMEM; 6919 if (!env->insn_aux_data) 6920 goto err_free_env; 6921 env->prog = *prog; 6922 env->ops = bpf_verifier_ops[env->prog->type]; 6923 6924 /* grab the mutex to protect few globals used by verifier */ 6925 mutex_lock(&bpf_verifier_lock); 6926 6927 if (attr->log_level || attr->log_buf || attr->log_size) { 6928 /* user requested verbose verifier output 6929 * and supplied buffer to store the verification trace 6930 */ 6931 log->level = attr->log_level; 6932 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 6933 log->len_total = attr->log_size; 6934 6935 ret = -EINVAL; 6936 /* log attributes have to be sane */ 6937 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 || 6938 !log->level || !log->ubuf) 6939 goto err_unlock; 6940 } 6941 6942 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 6943 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 6944 env->strict_alignment = true; 6945 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 6946 env->strict_alignment = false; 6947 6948 ret = replace_map_fd_with_map_ptr(env); 6949 if (ret < 0) 6950 goto skip_full_check; 6951 6952 if (bpf_prog_is_dev_bound(env->prog->aux)) { 6953 ret = bpf_prog_offload_verifier_prep(env->prog); 6954 if (ret) 6955 goto skip_full_check; 6956 } 6957 6958 env->explored_states = kcalloc(env->prog->len, 6959 sizeof(struct bpf_verifier_state_list *), 6960 GFP_USER); 6961 ret = -ENOMEM; 6962 if (!env->explored_states) 6963 goto skip_full_check; 6964 6965 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN); 6966 6967 ret = check_subprogs(env); 6968 if (ret < 0) 6969 goto skip_full_check; 6970 6971 ret = check_btf_info(env, attr, uattr); 6972 if (ret < 0) 6973 goto skip_full_check; 6974 6975 ret = check_cfg(env); 6976 if (ret < 0) 6977 goto skip_full_check; 6978 6979 ret = do_check(env); 6980 if (env->cur_state) { 6981 free_verifier_state(env->cur_state, true); 6982 env->cur_state = NULL; 6983 } 6984 6985 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux)) 6986 ret = bpf_prog_offload_finalize(env); 6987 6988 skip_full_check: 6989 while (!pop_stack(env, NULL, NULL)); 6990 free_states(env); 6991 6992 if (ret == 0) 6993 ret = check_max_stack_depth(env); 6994 6995 /* instruction rewrites happen after this point */ 6996 if (ret == 0) 6997 sanitize_dead_code(env); 6998 6999 if (ret == 0) 7000 /* program is valid, convert *(u32*)(ctx + off) accesses */ 7001 ret = convert_ctx_accesses(env); 7002 7003 if (ret == 0) 7004 ret = fixup_bpf_calls(env); 7005 7006 if (ret == 0) 7007 ret = fixup_call_args(env); 7008 7009 if (log->level && bpf_verifier_log_full(log)) 7010 ret = -ENOSPC; 7011 if (log->level && !log->ubuf) { 7012 ret = -EFAULT; 7013 goto err_release_maps; 7014 } 7015 7016 if (ret == 0 && env->used_map_cnt) { 7017 /* if program passed verifier, update used_maps in bpf_prog_info */ 7018 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 7019 sizeof(env->used_maps[0]), 7020 GFP_KERNEL); 7021 7022 if (!env->prog->aux->used_maps) { 7023 ret = -ENOMEM; 7024 goto err_release_maps; 7025 } 7026 7027 memcpy(env->prog->aux->used_maps, env->used_maps, 7028 sizeof(env->used_maps[0]) * env->used_map_cnt); 7029 env->prog->aux->used_map_cnt = env->used_map_cnt; 7030 7031 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 7032 * bpf_ld_imm64 instructions 7033 */ 7034 convert_pseudo_ld_imm64(env); 7035 } 7036 7037 if (ret == 0) 7038 adjust_btf_func(env); 7039 7040 err_release_maps: 7041 if (!env->prog->aux->used_maps) 7042 /* if we didn't copy map pointers into bpf_prog_info, release 7043 * them now. Otherwise free_used_maps() will release them. 7044 */ 7045 release_maps(env); 7046 *prog = env->prog; 7047 err_unlock: 7048 mutex_unlock(&bpf_verifier_lock); 7049 vfree(env->insn_aux_data); 7050 err_free_env: 7051 kfree(env); 7052 return ret; 7053 } 7054