1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/kernel.h> 8 #include <linux/types.h> 9 #include <linux/slab.h> 10 #include <linux/bpf.h> 11 #include <linux/btf.h> 12 #include <linux/bpf_verifier.h> 13 #include <linux/filter.h> 14 #include <net/netlink.h> 15 #include <linux/file.h> 16 #include <linux/vmalloc.h> 17 #include <linux/stringify.h> 18 #include <linux/bsearch.h> 19 #include <linux/sort.h> 20 #include <linux/perf_event.h> 21 #include <linux/ctype.h> 22 23 #include "disasm.h" 24 25 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 26 #define BPF_PROG_TYPE(_id, _name) \ 27 [_id] = & _name ## _verifier_ops, 28 #define BPF_MAP_TYPE(_id, _ops) 29 #include <linux/bpf_types.h> 30 #undef BPF_PROG_TYPE 31 #undef BPF_MAP_TYPE 32 }; 33 34 /* bpf_check() is a static code analyzer that walks eBPF program 35 * instruction by instruction and updates register/stack state. 36 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 37 * 38 * The first pass is depth-first-search to check that the program is a DAG. 39 * It rejects the following programs: 40 * - larger than BPF_MAXINSNS insns 41 * - if loop is present (detected via back-edge) 42 * - unreachable insns exist (shouldn't be a forest. program = one function) 43 * - out of bounds or malformed jumps 44 * The second pass is all possible path descent from the 1st insn. 45 * Since it's analyzing all pathes through the program, the length of the 46 * analysis is limited to 64k insn, which may be hit even if total number of 47 * insn is less then 4K, but there are too many branches that change stack/regs. 48 * Number of 'branches to be analyzed' is limited to 1k 49 * 50 * On entry to each instruction, each register has a type, and the instruction 51 * changes the types of the registers depending on instruction semantics. 52 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 53 * copied to R1. 54 * 55 * All registers are 64-bit. 56 * R0 - return register 57 * R1-R5 argument passing registers 58 * R6-R9 callee saved registers 59 * R10 - frame pointer read-only 60 * 61 * At the start of BPF program the register R1 contains a pointer to bpf_context 62 * and has type PTR_TO_CTX. 63 * 64 * Verifier tracks arithmetic operations on pointers in case: 65 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 66 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 67 * 1st insn copies R10 (which has FRAME_PTR) type into R1 68 * and 2nd arithmetic instruction is pattern matched to recognize 69 * that it wants to construct a pointer to some element within stack. 70 * So after 2nd insn, the register R1 has type PTR_TO_STACK 71 * (and -20 constant is saved for further stack bounds checking). 72 * Meaning that this reg is a pointer to stack plus known immediate constant. 73 * 74 * Most of the time the registers have SCALAR_VALUE type, which 75 * means the register has some value, but it's not a valid pointer. 76 * (like pointer plus pointer becomes SCALAR_VALUE type) 77 * 78 * When verifier sees load or store instructions the type of base register 79 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 80 * four pointer types recognized by check_mem_access() function. 81 * 82 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 83 * and the range of [ptr, ptr + map's value_size) is accessible. 84 * 85 * registers used to pass values to function calls are checked against 86 * function argument constraints. 87 * 88 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 89 * It means that the register type passed to this function must be 90 * PTR_TO_STACK and it will be used inside the function as 91 * 'pointer to map element key' 92 * 93 * For example the argument constraints for bpf_map_lookup_elem(): 94 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 95 * .arg1_type = ARG_CONST_MAP_PTR, 96 * .arg2_type = ARG_PTR_TO_MAP_KEY, 97 * 98 * ret_type says that this function returns 'pointer to map elem value or null' 99 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 100 * 2nd argument should be a pointer to stack, which will be used inside 101 * the helper function as a pointer to map element key. 102 * 103 * On the kernel side the helper function looks like: 104 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 105 * { 106 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 107 * void *key = (void *) (unsigned long) r2; 108 * void *value; 109 * 110 * here kernel can access 'key' and 'map' pointers safely, knowing that 111 * [key, key + map->key_size) bytes are valid and were initialized on 112 * the stack of eBPF program. 113 * } 114 * 115 * Corresponding eBPF program may look like: 116 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 117 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 118 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 119 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 120 * here verifier looks at prototype of map_lookup_elem() and sees: 121 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 122 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 123 * 124 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 125 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 126 * and were initialized prior to this call. 127 * If it's ok, then verifier allows this BPF_CALL insn and looks at 128 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 129 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 130 * returns ether pointer to map value or NULL. 131 * 132 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 133 * insn, the register holding that pointer in the true branch changes state to 134 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 135 * branch. See check_cond_jmp_op(). 136 * 137 * After the call R0 is set to return type of the function and registers R1-R5 138 * are set to NOT_INIT to indicate that they are no longer readable. 139 * 140 * The following reference types represent a potential reference to a kernel 141 * resource which, after first being allocated, must be checked and freed by 142 * the BPF program: 143 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 144 * 145 * When the verifier sees a helper call return a reference type, it allocates a 146 * pointer id for the reference and stores it in the current function state. 147 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 148 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 149 * passes through a NULL-check conditional. For the branch wherein the state is 150 * changed to CONST_IMM, the verifier releases the reference. 151 * 152 * For each helper function that allocates a reference, such as 153 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 154 * bpf_sk_release(). When a reference type passes into the release function, 155 * the verifier also releases the reference. If any unchecked or unreleased 156 * reference remains at the end of the program, the verifier rejects it. 157 */ 158 159 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 160 struct bpf_verifier_stack_elem { 161 /* verifer state is 'st' 162 * before processing instruction 'insn_idx' 163 * and after processing instruction 'prev_insn_idx' 164 */ 165 struct bpf_verifier_state st; 166 int insn_idx; 167 int prev_insn_idx; 168 struct bpf_verifier_stack_elem *next; 169 }; 170 171 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 172 #define BPF_COMPLEXITY_LIMIT_STATES 64 173 174 #define BPF_MAP_PTR_UNPRIV 1UL 175 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 176 POISON_POINTER_DELTA)) 177 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 178 179 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 180 { 181 return BPF_MAP_PTR(aux->map_state) == BPF_MAP_PTR_POISON; 182 } 183 184 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 185 { 186 return aux->map_state & BPF_MAP_PTR_UNPRIV; 187 } 188 189 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 190 const struct bpf_map *map, bool unpriv) 191 { 192 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 193 unpriv |= bpf_map_ptr_unpriv(aux); 194 aux->map_state = (unsigned long)map | 195 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 196 } 197 198 struct bpf_call_arg_meta { 199 struct bpf_map *map_ptr; 200 bool raw_mode; 201 bool pkt_access; 202 int regno; 203 int access_size; 204 s64 msize_smax_value; 205 u64 msize_umax_value; 206 int ref_obj_id; 207 int func_id; 208 }; 209 210 static DEFINE_MUTEX(bpf_verifier_lock); 211 212 static const struct bpf_line_info * 213 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 214 { 215 const struct bpf_line_info *linfo; 216 const struct bpf_prog *prog; 217 u32 i, nr_linfo; 218 219 prog = env->prog; 220 nr_linfo = prog->aux->nr_linfo; 221 222 if (!nr_linfo || insn_off >= prog->len) 223 return NULL; 224 225 linfo = prog->aux->linfo; 226 for (i = 1; i < nr_linfo; i++) 227 if (insn_off < linfo[i].insn_off) 228 break; 229 230 return &linfo[i - 1]; 231 } 232 233 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, 234 va_list args) 235 { 236 unsigned int n; 237 238 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 239 240 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 241 "verifier log line truncated - local buffer too short\n"); 242 243 n = min(log->len_total - log->len_used - 1, n); 244 log->kbuf[n] = '\0'; 245 246 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 247 log->len_used += n; 248 else 249 log->ubuf = NULL; 250 } 251 252 /* log_level controls verbosity level of eBPF verifier. 253 * bpf_verifier_log_write() is used to dump the verification trace to the log, 254 * so the user can figure out what's wrong with the program 255 */ 256 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 257 const char *fmt, ...) 258 { 259 va_list args; 260 261 if (!bpf_verifier_log_needed(&env->log)) 262 return; 263 264 va_start(args, fmt); 265 bpf_verifier_vlog(&env->log, fmt, args); 266 va_end(args); 267 } 268 EXPORT_SYMBOL_GPL(bpf_verifier_log_write); 269 270 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 271 { 272 struct bpf_verifier_env *env = private_data; 273 va_list args; 274 275 if (!bpf_verifier_log_needed(&env->log)) 276 return; 277 278 va_start(args, fmt); 279 bpf_verifier_vlog(&env->log, fmt, args); 280 va_end(args); 281 } 282 283 static const char *ltrim(const char *s) 284 { 285 while (isspace(*s)) 286 s++; 287 288 return s; 289 } 290 291 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 292 u32 insn_off, 293 const char *prefix_fmt, ...) 294 { 295 const struct bpf_line_info *linfo; 296 297 if (!bpf_verifier_log_needed(&env->log)) 298 return; 299 300 linfo = find_linfo(env, insn_off); 301 if (!linfo || linfo == env->prev_linfo) 302 return; 303 304 if (prefix_fmt) { 305 va_list args; 306 307 va_start(args, prefix_fmt); 308 bpf_verifier_vlog(&env->log, prefix_fmt, args); 309 va_end(args); 310 } 311 312 verbose(env, "%s\n", 313 ltrim(btf_name_by_offset(env->prog->aux->btf, 314 linfo->line_off))); 315 316 env->prev_linfo = linfo; 317 } 318 319 static bool type_is_pkt_pointer(enum bpf_reg_type type) 320 { 321 return type == PTR_TO_PACKET || 322 type == PTR_TO_PACKET_META; 323 } 324 325 static bool type_is_sk_pointer(enum bpf_reg_type type) 326 { 327 return type == PTR_TO_SOCKET || 328 type == PTR_TO_SOCK_COMMON || 329 type == PTR_TO_TCP_SOCK || 330 type == PTR_TO_XDP_SOCK; 331 } 332 333 static bool reg_type_may_be_null(enum bpf_reg_type type) 334 { 335 return type == PTR_TO_MAP_VALUE_OR_NULL || 336 type == PTR_TO_SOCKET_OR_NULL || 337 type == PTR_TO_SOCK_COMMON_OR_NULL || 338 type == PTR_TO_TCP_SOCK_OR_NULL; 339 } 340 341 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 342 { 343 return reg->type == PTR_TO_MAP_VALUE && 344 map_value_has_spin_lock(reg->map_ptr); 345 } 346 347 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type) 348 { 349 return type == PTR_TO_SOCKET || 350 type == PTR_TO_SOCKET_OR_NULL || 351 type == PTR_TO_TCP_SOCK || 352 type == PTR_TO_TCP_SOCK_OR_NULL; 353 } 354 355 static bool arg_type_may_be_refcounted(enum bpf_arg_type type) 356 { 357 return type == ARG_PTR_TO_SOCK_COMMON; 358 } 359 360 /* Determine whether the function releases some resources allocated by another 361 * function call. The first reference type argument will be assumed to be 362 * released by release_reference(). 363 */ 364 static bool is_release_function(enum bpf_func_id func_id) 365 { 366 return func_id == BPF_FUNC_sk_release; 367 } 368 369 static bool is_acquire_function(enum bpf_func_id func_id) 370 { 371 return func_id == BPF_FUNC_sk_lookup_tcp || 372 func_id == BPF_FUNC_sk_lookup_udp || 373 func_id == BPF_FUNC_skc_lookup_tcp; 374 } 375 376 static bool is_ptr_cast_function(enum bpf_func_id func_id) 377 { 378 return func_id == BPF_FUNC_tcp_sock || 379 func_id == BPF_FUNC_sk_fullsock; 380 } 381 382 /* string representation of 'enum bpf_reg_type' */ 383 static const char * const reg_type_str[] = { 384 [NOT_INIT] = "?", 385 [SCALAR_VALUE] = "inv", 386 [PTR_TO_CTX] = "ctx", 387 [CONST_PTR_TO_MAP] = "map_ptr", 388 [PTR_TO_MAP_VALUE] = "map_value", 389 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null", 390 [PTR_TO_STACK] = "fp", 391 [PTR_TO_PACKET] = "pkt", 392 [PTR_TO_PACKET_META] = "pkt_meta", 393 [PTR_TO_PACKET_END] = "pkt_end", 394 [PTR_TO_FLOW_KEYS] = "flow_keys", 395 [PTR_TO_SOCKET] = "sock", 396 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null", 397 [PTR_TO_SOCK_COMMON] = "sock_common", 398 [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null", 399 [PTR_TO_TCP_SOCK] = "tcp_sock", 400 [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null", 401 [PTR_TO_TP_BUFFER] = "tp_buffer", 402 [PTR_TO_XDP_SOCK] = "xdp_sock", 403 }; 404 405 static char slot_type_char[] = { 406 [STACK_INVALID] = '?', 407 [STACK_SPILL] = 'r', 408 [STACK_MISC] = 'm', 409 [STACK_ZERO] = '0', 410 }; 411 412 static void print_liveness(struct bpf_verifier_env *env, 413 enum bpf_reg_liveness live) 414 { 415 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 416 verbose(env, "_"); 417 if (live & REG_LIVE_READ) 418 verbose(env, "r"); 419 if (live & REG_LIVE_WRITTEN) 420 verbose(env, "w"); 421 if (live & REG_LIVE_DONE) 422 verbose(env, "D"); 423 } 424 425 static struct bpf_func_state *func(struct bpf_verifier_env *env, 426 const struct bpf_reg_state *reg) 427 { 428 struct bpf_verifier_state *cur = env->cur_state; 429 430 return cur->frame[reg->frameno]; 431 } 432 433 static void print_verifier_state(struct bpf_verifier_env *env, 434 const struct bpf_func_state *state) 435 { 436 const struct bpf_reg_state *reg; 437 enum bpf_reg_type t; 438 int i; 439 440 if (state->frameno) 441 verbose(env, " frame%d:", state->frameno); 442 for (i = 0; i < MAX_BPF_REG; i++) { 443 reg = &state->regs[i]; 444 t = reg->type; 445 if (t == NOT_INIT) 446 continue; 447 verbose(env, " R%d", i); 448 print_liveness(env, reg->live); 449 verbose(env, "=%s", reg_type_str[t]); 450 if (t == SCALAR_VALUE && reg->precise) 451 verbose(env, "P"); 452 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 453 tnum_is_const(reg->var_off)) { 454 /* reg->off should be 0 for SCALAR_VALUE */ 455 verbose(env, "%lld", reg->var_off.value + reg->off); 456 } else { 457 verbose(env, "(id=%d", reg->id); 458 if (reg_type_may_be_refcounted_or_null(t)) 459 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id); 460 if (t != SCALAR_VALUE) 461 verbose(env, ",off=%d", reg->off); 462 if (type_is_pkt_pointer(t)) 463 verbose(env, ",r=%d", reg->range); 464 else if (t == CONST_PTR_TO_MAP || 465 t == PTR_TO_MAP_VALUE || 466 t == PTR_TO_MAP_VALUE_OR_NULL) 467 verbose(env, ",ks=%d,vs=%d", 468 reg->map_ptr->key_size, 469 reg->map_ptr->value_size); 470 if (tnum_is_const(reg->var_off)) { 471 /* Typically an immediate SCALAR_VALUE, but 472 * could be a pointer whose offset is too big 473 * for reg->off 474 */ 475 verbose(env, ",imm=%llx", reg->var_off.value); 476 } else { 477 if (reg->smin_value != reg->umin_value && 478 reg->smin_value != S64_MIN) 479 verbose(env, ",smin_value=%lld", 480 (long long)reg->smin_value); 481 if (reg->smax_value != reg->umax_value && 482 reg->smax_value != S64_MAX) 483 verbose(env, ",smax_value=%lld", 484 (long long)reg->smax_value); 485 if (reg->umin_value != 0) 486 verbose(env, ",umin_value=%llu", 487 (unsigned long long)reg->umin_value); 488 if (reg->umax_value != U64_MAX) 489 verbose(env, ",umax_value=%llu", 490 (unsigned long long)reg->umax_value); 491 if (!tnum_is_unknown(reg->var_off)) { 492 char tn_buf[48]; 493 494 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 495 verbose(env, ",var_off=%s", tn_buf); 496 } 497 } 498 verbose(env, ")"); 499 } 500 } 501 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 502 char types_buf[BPF_REG_SIZE + 1]; 503 bool valid = false; 504 int j; 505 506 for (j = 0; j < BPF_REG_SIZE; j++) { 507 if (state->stack[i].slot_type[j] != STACK_INVALID) 508 valid = true; 509 types_buf[j] = slot_type_char[ 510 state->stack[i].slot_type[j]]; 511 } 512 types_buf[BPF_REG_SIZE] = 0; 513 if (!valid) 514 continue; 515 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 516 print_liveness(env, state->stack[i].spilled_ptr.live); 517 if (state->stack[i].slot_type[0] == STACK_SPILL) { 518 reg = &state->stack[i].spilled_ptr; 519 t = reg->type; 520 verbose(env, "=%s", reg_type_str[t]); 521 if (t == SCALAR_VALUE && reg->precise) 522 verbose(env, "P"); 523 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) 524 verbose(env, "%lld", reg->var_off.value + reg->off); 525 } else { 526 verbose(env, "=%s", types_buf); 527 } 528 } 529 if (state->acquired_refs && state->refs[0].id) { 530 verbose(env, " refs=%d", state->refs[0].id); 531 for (i = 1; i < state->acquired_refs; i++) 532 if (state->refs[i].id) 533 verbose(env, ",%d", state->refs[i].id); 534 } 535 verbose(env, "\n"); 536 } 537 538 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 539 static int copy_##NAME##_state(struct bpf_func_state *dst, \ 540 const struct bpf_func_state *src) \ 541 { \ 542 if (!src->FIELD) \ 543 return 0; \ 544 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \ 545 /* internal bug, make state invalid to reject the program */ \ 546 memset(dst, 0, sizeof(*dst)); \ 547 return -EFAULT; \ 548 } \ 549 memcpy(dst->FIELD, src->FIELD, \ 550 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \ 551 return 0; \ 552 } 553 /* copy_reference_state() */ 554 COPY_STATE_FN(reference, acquired_refs, refs, 1) 555 /* copy_stack_state() */ 556 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 557 #undef COPY_STATE_FN 558 559 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 560 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \ 561 bool copy_old) \ 562 { \ 563 u32 old_size = state->COUNT; \ 564 struct bpf_##NAME##_state *new_##FIELD; \ 565 int slot = size / SIZE; \ 566 \ 567 if (size <= old_size || !size) { \ 568 if (copy_old) \ 569 return 0; \ 570 state->COUNT = slot * SIZE; \ 571 if (!size && old_size) { \ 572 kfree(state->FIELD); \ 573 state->FIELD = NULL; \ 574 } \ 575 return 0; \ 576 } \ 577 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \ 578 GFP_KERNEL); \ 579 if (!new_##FIELD) \ 580 return -ENOMEM; \ 581 if (copy_old) { \ 582 if (state->FIELD) \ 583 memcpy(new_##FIELD, state->FIELD, \ 584 sizeof(*new_##FIELD) * (old_size / SIZE)); \ 585 memset(new_##FIELD + old_size / SIZE, 0, \ 586 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \ 587 } \ 588 state->COUNT = slot * SIZE; \ 589 kfree(state->FIELD); \ 590 state->FIELD = new_##FIELD; \ 591 return 0; \ 592 } 593 /* realloc_reference_state() */ 594 REALLOC_STATE_FN(reference, acquired_refs, refs, 1) 595 /* realloc_stack_state() */ 596 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 597 #undef REALLOC_STATE_FN 598 599 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to 600 * make it consume minimal amount of memory. check_stack_write() access from 601 * the program calls into realloc_func_state() to grow the stack size. 602 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state 603 * which realloc_stack_state() copies over. It points to previous 604 * bpf_verifier_state which is never reallocated. 605 */ 606 static int realloc_func_state(struct bpf_func_state *state, int stack_size, 607 int refs_size, bool copy_old) 608 { 609 int err = realloc_reference_state(state, refs_size, copy_old); 610 if (err) 611 return err; 612 return realloc_stack_state(state, stack_size, copy_old); 613 } 614 615 /* Acquire a pointer id from the env and update the state->refs to include 616 * this new pointer reference. 617 * On success, returns a valid pointer id to associate with the register 618 * On failure, returns a negative errno. 619 */ 620 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 621 { 622 struct bpf_func_state *state = cur_func(env); 623 int new_ofs = state->acquired_refs; 624 int id, err; 625 626 err = realloc_reference_state(state, state->acquired_refs + 1, true); 627 if (err) 628 return err; 629 id = ++env->id_gen; 630 state->refs[new_ofs].id = id; 631 state->refs[new_ofs].insn_idx = insn_idx; 632 633 return id; 634 } 635 636 /* release function corresponding to acquire_reference_state(). Idempotent. */ 637 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 638 { 639 int i, last_idx; 640 641 last_idx = state->acquired_refs - 1; 642 for (i = 0; i < state->acquired_refs; i++) { 643 if (state->refs[i].id == ptr_id) { 644 if (last_idx && i != last_idx) 645 memcpy(&state->refs[i], &state->refs[last_idx], 646 sizeof(*state->refs)); 647 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 648 state->acquired_refs--; 649 return 0; 650 } 651 } 652 return -EINVAL; 653 } 654 655 static int transfer_reference_state(struct bpf_func_state *dst, 656 struct bpf_func_state *src) 657 { 658 int err = realloc_reference_state(dst, src->acquired_refs, false); 659 if (err) 660 return err; 661 err = copy_reference_state(dst, src); 662 if (err) 663 return err; 664 return 0; 665 } 666 667 static void free_func_state(struct bpf_func_state *state) 668 { 669 if (!state) 670 return; 671 kfree(state->refs); 672 kfree(state->stack); 673 kfree(state); 674 } 675 676 static void clear_jmp_history(struct bpf_verifier_state *state) 677 { 678 kfree(state->jmp_history); 679 state->jmp_history = NULL; 680 state->jmp_history_cnt = 0; 681 } 682 683 static void free_verifier_state(struct bpf_verifier_state *state, 684 bool free_self) 685 { 686 int i; 687 688 for (i = 0; i <= state->curframe; i++) { 689 free_func_state(state->frame[i]); 690 state->frame[i] = NULL; 691 } 692 clear_jmp_history(state); 693 if (free_self) 694 kfree(state); 695 } 696 697 /* copy verifier state from src to dst growing dst stack space 698 * when necessary to accommodate larger src stack 699 */ 700 static int copy_func_state(struct bpf_func_state *dst, 701 const struct bpf_func_state *src) 702 { 703 int err; 704 705 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs, 706 false); 707 if (err) 708 return err; 709 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 710 err = copy_reference_state(dst, src); 711 if (err) 712 return err; 713 return copy_stack_state(dst, src); 714 } 715 716 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 717 const struct bpf_verifier_state *src) 718 { 719 struct bpf_func_state *dst; 720 u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt; 721 int i, err; 722 723 if (dst_state->jmp_history_cnt < src->jmp_history_cnt) { 724 kfree(dst_state->jmp_history); 725 dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER); 726 if (!dst_state->jmp_history) 727 return -ENOMEM; 728 } 729 memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz); 730 dst_state->jmp_history_cnt = src->jmp_history_cnt; 731 732 /* if dst has more stack frames then src frame, free them */ 733 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 734 free_func_state(dst_state->frame[i]); 735 dst_state->frame[i] = NULL; 736 } 737 dst_state->speculative = src->speculative; 738 dst_state->curframe = src->curframe; 739 dst_state->active_spin_lock = src->active_spin_lock; 740 dst_state->branches = src->branches; 741 dst_state->parent = src->parent; 742 dst_state->first_insn_idx = src->first_insn_idx; 743 dst_state->last_insn_idx = src->last_insn_idx; 744 for (i = 0; i <= src->curframe; i++) { 745 dst = dst_state->frame[i]; 746 if (!dst) { 747 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 748 if (!dst) 749 return -ENOMEM; 750 dst_state->frame[i] = dst; 751 } 752 err = copy_func_state(dst, src->frame[i]); 753 if (err) 754 return err; 755 } 756 return 0; 757 } 758 759 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 760 { 761 while (st) { 762 u32 br = --st->branches; 763 764 /* WARN_ON(br > 1) technically makes sense here, 765 * but see comment in push_stack(), hence: 766 */ 767 WARN_ONCE((int)br < 0, 768 "BUG update_branch_counts:branches_to_explore=%d\n", 769 br); 770 if (br) 771 break; 772 st = st->parent; 773 } 774 } 775 776 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 777 int *insn_idx) 778 { 779 struct bpf_verifier_state *cur = env->cur_state; 780 struct bpf_verifier_stack_elem *elem, *head = env->head; 781 int err; 782 783 if (env->head == NULL) 784 return -ENOENT; 785 786 if (cur) { 787 err = copy_verifier_state(cur, &head->st); 788 if (err) 789 return err; 790 } 791 if (insn_idx) 792 *insn_idx = head->insn_idx; 793 if (prev_insn_idx) 794 *prev_insn_idx = head->prev_insn_idx; 795 elem = head->next; 796 free_verifier_state(&head->st, false); 797 kfree(head); 798 env->head = elem; 799 env->stack_size--; 800 return 0; 801 } 802 803 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 804 int insn_idx, int prev_insn_idx, 805 bool speculative) 806 { 807 struct bpf_verifier_state *cur = env->cur_state; 808 struct bpf_verifier_stack_elem *elem; 809 int err; 810 811 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 812 if (!elem) 813 goto err; 814 815 elem->insn_idx = insn_idx; 816 elem->prev_insn_idx = prev_insn_idx; 817 elem->next = env->head; 818 env->head = elem; 819 env->stack_size++; 820 err = copy_verifier_state(&elem->st, cur); 821 if (err) 822 goto err; 823 elem->st.speculative |= speculative; 824 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 825 verbose(env, "The sequence of %d jumps is too complex.\n", 826 env->stack_size); 827 goto err; 828 } 829 if (elem->st.parent) { 830 ++elem->st.parent->branches; 831 /* WARN_ON(branches > 2) technically makes sense here, 832 * but 833 * 1. speculative states will bump 'branches' for non-branch 834 * instructions 835 * 2. is_state_visited() heuristics may decide not to create 836 * a new state for a sequence of branches and all such current 837 * and cloned states will be pointing to a single parent state 838 * which might have large 'branches' count. 839 */ 840 } 841 return &elem->st; 842 err: 843 free_verifier_state(env->cur_state, true); 844 env->cur_state = NULL; 845 /* pop all elements and return */ 846 while (!pop_stack(env, NULL, NULL)); 847 return NULL; 848 } 849 850 #define CALLER_SAVED_REGS 6 851 static const int caller_saved[CALLER_SAVED_REGS] = { 852 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 853 }; 854 855 static void __mark_reg_not_init(struct bpf_reg_state *reg); 856 857 /* Mark the unknown part of a register (variable offset or scalar value) as 858 * known to have the value @imm. 859 */ 860 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 861 { 862 /* Clear id, off, and union(map_ptr, range) */ 863 memset(((u8 *)reg) + sizeof(reg->type), 0, 864 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 865 reg->var_off = tnum_const(imm); 866 reg->smin_value = (s64)imm; 867 reg->smax_value = (s64)imm; 868 reg->umin_value = imm; 869 reg->umax_value = imm; 870 } 871 872 /* Mark the 'variable offset' part of a register as zero. This should be 873 * used only on registers holding a pointer type. 874 */ 875 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 876 { 877 __mark_reg_known(reg, 0); 878 } 879 880 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 881 { 882 __mark_reg_known(reg, 0); 883 reg->type = SCALAR_VALUE; 884 } 885 886 static void mark_reg_known_zero(struct bpf_verifier_env *env, 887 struct bpf_reg_state *regs, u32 regno) 888 { 889 if (WARN_ON(regno >= MAX_BPF_REG)) { 890 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 891 /* Something bad happened, let's kill all regs */ 892 for (regno = 0; regno < MAX_BPF_REG; regno++) 893 __mark_reg_not_init(regs + regno); 894 return; 895 } 896 __mark_reg_known_zero(regs + regno); 897 } 898 899 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 900 { 901 return type_is_pkt_pointer(reg->type); 902 } 903 904 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 905 { 906 return reg_is_pkt_pointer(reg) || 907 reg->type == PTR_TO_PACKET_END; 908 } 909 910 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 911 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 912 enum bpf_reg_type which) 913 { 914 /* The register can already have a range from prior markings. 915 * This is fine as long as it hasn't been advanced from its 916 * origin. 917 */ 918 return reg->type == which && 919 reg->id == 0 && 920 reg->off == 0 && 921 tnum_equals_const(reg->var_off, 0); 922 } 923 924 /* Attempts to improve min/max values based on var_off information */ 925 static void __update_reg_bounds(struct bpf_reg_state *reg) 926 { 927 /* min signed is max(sign bit) | min(other bits) */ 928 reg->smin_value = max_t(s64, reg->smin_value, 929 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 930 /* max signed is min(sign bit) | max(other bits) */ 931 reg->smax_value = min_t(s64, reg->smax_value, 932 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 933 reg->umin_value = max(reg->umin_value, reg->var_off.value); 934 reg->umax_value = min(reg->umax_value, 935 reg->var_off.value | reg->var_off.mask); 936 } 937 938 /* Uses signed min/max values to inform unsigned, and vice-versa */ 939 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 940 { 941 /* Learn sign from signed bounds. 942 * If we cannot cross the sign boundary, then signed and unsigned bounds 943 * are the same, so combine. This works even in the negative case, e.g. 944 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 945 */ 946 if (reg->smin_value >= 0 || reg->smax_value < 0) { 947 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 948 reg->umin_value); 949 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 950 reg->umax_value); 951 return; 952 } 953 /* Learn sign from unsigned bounds. Signed bounds cross the sign 954 * boundary, so we must be careful. 955 */ 956 if ((s64)reg->umax_value >= 0) { 957 /* Positive. We can't learn anything from the smin, but smax 958 * is positive, hence safe. 959 */ 960 reg->smin_value = reg->umin_value; 961 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 962 reg->umax_value); 963 } else if ((s64)reg->umin_value < 0) { 964 /* Negative. We can't learn anything from the smax, but smin 965 * is negative, hence safe. 966 */ 967 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 968 reg->umin_value); 969 reg->smax_value = reg->umax_value; 970 } 971 } 972 973 /* Attempts to improve var_off based on unsigned min/max information */ 974 static void __reg_bound_offset(struct bpf_reg_state *reg) 975 { 976 reg->var_off = tnum_intersect(reg->var_off, 977 tnum_range(reg->umin_value, 978 reg->umax_value)); 979 } 980 981 /* Reset the min/max bounds of a register */ 982 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 983 { 984 reg->smin_value = S64_MIN; 985 reg->smax_value = S64_MAX; 986 reg->umin_value = 0; 987 reg->umax_value = U64_MAX; 988 } 989 990 /* Mark a register as having a completely unknown (scalar) value. */ 991 static void __mark_reg_unknown(struct bpf_reg_state *reg) 992 { 993 /* 994 * Clear type, id, off, and union(map_ptr, range) and 995 * padding between 'type' and union 996 */ 997 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 998 reg->type = SCALAR_VALUE; 999 reg->var_off = tnum_unknown; 1000 reg->frameno = 0; 1001 __mark_reg_unbounded(reg); 1002 } 1003 1004 static void mark_reg_unknown(struct bpf_verifier_env *env, 1005 struct bpf_reg_state *regs, u32 regno) 1006 { 1007 if (WARN_ON(regno >= MAX_BPF_REG)) { 1008 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 1009 /* Something bad happened, let's kill all regs except FP */ 1010 for (regno = 0; regno < BPF_REG_FP; regno++) 1011 __mark_reg_not_init(regs + regno); 1012 return; 1013 } 1014 regs += regno; 1015 __mark_reg_unknown(regs); 1016 /* constant backtracking is enabled for root without bpf2bpf calls */ 1017 regs->precise = env->subprog_cnt > 1 || !env->allow_ptr_leaks ? 1018 true : false; 1019 } 1020 1021 static void __mark_reg_not_init(struct bpf_reg_state *reg) 1022 { 1023 __mark_reg_unknown(reg); 1024 reg->type = NOT_INIT; 1025 } 1026 1027 static void mark_reg_not_init(struct bpf_verifier_env *env, 1028 struct bpf_reg_state *regs, u32 regno) 1029 { 1030 if (WARN_ON(regno >= MAX_BPF_REG)) { 1031 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 1032 /* Something bad happened, let's kill all regs except FP */ 1033 for (regno = 0; regno < BPF_REG_FP; regno++) 1034 __mark_reg_not_init(regs + regno); 1035 return; 1036 } 1037 __mark_reg_not_init(regs + regno); 1038 } 1039 1040 #define DEF_NOT_SUBREG (0) 1041 static void init_reg_state(struct bpf_verifier_env *env, 1042 struct bpf_func_state *state) 1043 { 1044 struct bpf_reg_state *regs = state->regs; 1045 int i; 1046 1047 for (i = 0; i < MAX_BPF_REG; i++) { 1048 mark_reg_not_init(env, regs, i); 1049 regs[i].live = REG_LIVE_NONE; 1050 regs[i].parent = NULL; 1051 regs[i].subreg_def = DEF_NOT_SUBREG; 1052 } 1053 1054 /* frame pointer */ 1055 regs[BPF_REG_FP].type = PTR_TO_STACK; 1056 mark_reg_known_zero(env, regs, BPF_REG_FP); 1057 regs[BPF_REG_FP].frameno = state->frameno; 1058 1059 /* 1st arg to a function */ 1060 regs[BPF_REG_1].type = PTR_TO_CTX; 1061 mark_reg_known_zero(env, regs, BPF_REG_1); 1062 } 1063 1064 #define BPF_MAIN_FUNC (-1) 1065 static void init_func_state(struct bpf_verifier_env *env, 1066 struct bpf_func_state *state, 1067 int callsite, int frameno, int subprogno) 1068 { 1069 state->callsite = callsite; 1070 state->frameno = frameno; 1071 state->subprogno = subprogno; 1072 init_reg_state(env, state); 1073 } 1074 1075 enum reg_arg_type { 1076 SRC_OP, /* register is used as source operand */ 1077 DST_OP, /* register is used as destination operand */ 1078 DST_OP_NO_MARK /* same as above, check only, don't mark */ 1079 }; 1080 1081 static int cmp_subprogs(const void *a, const void *b) 1082 { 1083 return ((struct bpf_subprog_info *)a)->start - 1084 ((struct bpf_subprog_info *)b)->start; 1085 } 1086 1087 static int find_subprog(struct bpf_verifier_env *env, int off) 1088 { 1089 struct bpf_subprog_info *p; 1090 1091 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 1092 sizeof(env->subprog_info[0]), cmp_subprogs); 1093 if (!p) 1094 return -ENOENT; 1095 return p - env->subprog_info; 1096 1097 } 1098 1099 static int add_subprog(struct bpf_verifier_env *env, int off) 1100 { 1101 int insn_cnt = env->prog->len; 1102 int ret; 1103 1104 if (off >= insn_cnt || off < 0) { 1105 verbose(env, "call to invalid destination\n"); 1106 return -EINVAL; 1107 } 1108 ret = find_subprog(env, off); 1109 if (ret >= 0) 1110 return 0; 1111 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 1112 verbose(env, "too many subprograms\n"); 1113 return -E2BIG; 1114 } 1115 env->subprog_info[env->subprog_cnt++].start = off; 1116 sort(env->subprog_info, env->subprog_cnt, 1117 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 1118 return 0; 1119 } 1120 1121 static int check_subprogs(struct bpf_verifier_env *env) 1122 { 1123 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0; 1124 struct bpf_subprog_info *subprog = env->subprog_info; 1125 struct bpf_insn *insn = env->prog->insnsi; 1126 int insn_cnt = env->prog->len; 1127 1128 /* Add entry function. */ 1129 ret = add_subprog(env, 0); 1130 if (ret < 0) 1131 return ret; 1132 1133 /* determine subprog starts. The end is one before the next starts */ 1134 for (i = 0; i < insn_cnt; i++) { 1135 if (insn[i].code != (BPF_JMP | BPF_CALL)) 1136 continue; 1137 if (insn[i].src_reg != BPF_PSEUDO_CALL) 1138 continue; 1139 if (!env->allow_ptr_leaks) { 1140 verbose(env, "function calls to other bpf functions are allowed for root only\n"); 1141 return -EPERM; 1142 } 1143 ret = add_subprog(env, i + insn[i].imm + 1); 1144 if (ret < 0) 1145 return ret; 1146 } 1147 1148 /* Add a fake 'exit' subprog which could simplify subprog iteration 1149 * logic. 'subprog_cnt' should not be increased. 1150 */ 1151 subprog[env->subprog_cnt].start = insn_cnt; 1152 1153 if (env->log.level & BPF_LOG_LEVEL2) 1154 for (i = 0; i < env->subprog_cnt; i++) 1155 verbose(env, "func#%d @%d\n", i, subprog[i].start); 1156 1157 /* now check that all jumps are within the same subprog */ 1158 subprog_start = subprog[cur_subprog].start; 1159 subprog_end = subprog[cur_subprog + 1].start; 1160 for (i = 0; i < insn_cnt; i++) { 1161 u8 code = insn[i].code; 1162 1163 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 1164 goto next; 1165 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 1166 goto next; 1167 off = i + insn[i].off + 1; 1168 if (off < subprog_start || off >= subprog_end) { 1169 verbose(env, "jump out of range from insn %d to %d\n", i, off); 1170 return -EINVAL; 1171 } 1172 next: 1173 if (i == subprog_end - 1) { 1174 /* to avoid fall-through from one subprog into another 1175 * the last insn of the subprog should be either exit 1176 * or unconditional jump back 1177 */ 1178 if (code != (BPF_JMP | BPF_EXIT) && 1179 code != (BPF_JMP | BPF_JA)) { 1180 verbose(env, "last insn is not an exit or jmp\n"); 1181 return -EINVAL; 1182 } 1183 subprog_start = subprog_end; 1184 cur_subprog++; 1185 if (cur_subprog < env->subprog_cnt) 1186 subprog_end = subprog[cur_subprog + 1].start; 1187 } 1188 } 1189 return 0; 1190 } 1191 1192 /* Parentage chain of this register (or stack slot) should take care of all 1193 * issues like callee-saved registers, stack slot allocation time, etc. 1194 */ 1195 static int mark_reg_read(struct bpf_verifier_env *env, 1196 const struct bpf_reg_state *state, 1197 struct bpf_reg_state *parent, u8 flag) 1198 { 1199 bool writes = parent == state->parent; /* Observe write marks */ 1200 int cnt = 0; 1201 1202 while (parent) { 1203 /* if read wasn't screened by an earlier write ... */ 1204 if (writes && state->live & REG_LIVE_WRITTEN) 1205 break; 1206 if (parent->live & REG_LIVE_DONE) { 1207 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 1208 reg_type_str[parent->type], 1209 parent->var_off.value, parent->off); 1210 return -EFAULT; 1211 } 1212 /* The first condition is more likely to be true than the 1213 * second, checked it first. 1214 */ 1215 if ((parent->live & REG_LIVE_READ) == flag || 1216 parent->live & REG_LIVE_READ64) 1217 /* The parentage chain never changes and 1218 * this parent was already marked as LIVE_READ. 1219 * There is no need to keep walking the chain again and 1220 * keep re-marking all parents as LIVE_READ. 1221 * This case happens when the same register is read 1222 * multiple times without writes into it in-between. 1223 * Also, if parent has the stronger REG_LIVE_READ64 set, 1224 * then no need to set the weak REG_LIVE_READ32. 1225 */ 1226 break; 1227 /* ... then we depend on parent's value */ 1228 parent->live |= flag; 1229 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 1230 if (flag == REG_LIVE_READ64) 1231 parent->live &= ~REG_LIVE_READ32; 1232 state = parent; 1233 parent = state->parent; 1234 writes = true; 1235 cnt++; 1236 } 1237 1238 if (env->longest_mark_read_walk < cnt) 1239 env->longest_mark_read_walk = cnt; 1240 return 0; 1241 } 1242 1243 /* This function is supposed to be used by the following 32-bit optimization 1244 * code only. It returns TRUE if the source or destination register operates 1245 * on 64-bit, otherwise return FALSE. 1246 */ 1247 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 1248 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 1249 { 1250 u8 code, class, op; 1251 1252 code = insn->code; 1253 class = BPF_CLASS(code); 1254 op = BPF_OP(code); 1255 if (class == BPF_JMP) { 1256 /* BPF_EXIT for "main" will reach here. Return TRUE 1257 * conservatively. 1258 */ 1259 if (op == BPF_EXIT) 1260 return true; 1261 if (op == BPF_CALL) { 1262 /* BPF to BPF call will reach here because of marking 1263 * caller saved clobber with DST_OP_NO_MARK for which we 1264 * don't care the register def because they are anyway 1265 * marked as NOT_INIT already. 1266 */ 1267 if (insn->src_reg == BPF_PSEUDO_CALL) 1268 return false; 1269 /* Helper call will reach here because of arg type 1270 * check, conservatively return TRUE. 1271 */ 1272 if (t == SRC_OP) 1273 return true; 1274 1275 return false; 1276 } 1277 } 1278 1279 if (class == BPF_ALU64 || class == BPF_JMP || 1280 /* BPF_END always use BPF_ALU class. */ 1281 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 1282 return true; 1283 1284 if (class == BPF_ALU || class == BPF_JMP32) 1285 return false; 1286 1287 if (class == BPF_LDX) { 1288 if (t != SRC_OP) 1289 return BPF_SIZE(code) == BPF_DW; 1290 /* LDX source must be ptr. */ 1291 return true; 1292 } 1293 1294 if (class == BPF_STX) { 1295 if (reg->type != SCALAR_VALUE) 1296 return true; 1297 return BPF_SIZE(code) == BPF_DW; 1298 } 1299 1300 if (class == BPF_LD) { 1301 u8 mode = BPF_MODE(code); 1302 1303 /* LD_IMM64 */ 1304 if (mode == BPF_IMM) 1305 return true; 1306 1307 /* Both LD_IND and LD_ABS return 32-bit data. */ 1308 if (t != SRC_OP) 1309 return false; 1310 1311 /* Implicit ctx ptr. */ 1312 if (regno == BPF_REG_6) 1313 return true; 1314 1315 /* Explicit source could be any width. */ 1316 return true; 1317 } 1318 1319 if (class == BPF_ST) 1320 /* The only source register for BPF_ST is a ptr. */ 1321 return true; 1322 1323 /* Conservatively return true at default. */ 1324 return true; 1325 } 1326 1327 /* Return TRUE if INSN doesn't have explicit value define. */ 1328 static bool insn_no_def(struct bpf_insn *insn) 1329 { 1330 u8 class = BPF_CLASS(insn->code); 1331 1332 return (class == BPF_JMP || class == BPF_JMP32 || 1333 class == BPF_STX || class == BPF_ST); 1334 } 1335 1336 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 1337 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 1338 { 1339 if (insn_no_def(insn)) 1340 return false; 1341 1342 return !is_reg64(env, insn, insn->dst_reg, NULL, DST_OP); 1343 } 1344 1345 static void mark_insn_zext(struct bpf_verifier_env *env, 1346 struct bpf_reg_state *reg) 1347 { 1348 s32 def_idx = reg->subreg_def; 1349 1350 if (def_idx == DEF_NOT_SUBREG) 1351 return; 1352 1353 env->insn_aux_data[def_idx - 1].zext_dst = true; 1354 /* The dst will be zero extended, so won't be sub-register anymore. */ 1355 reg->subreg_def = DEF_NOT_SUBREG; 1356 } 1357 1358 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 1359 enum reg_arg_type t) 1360 { 1361 struct bpf_verifier_state *vstate = env->cur_state; 1362 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1363 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 1364 struct bpf_reg_state *reg, *regs = state->regs; 1365 bool rw64; 1366 1367 if (regno >= MAX_BPF_REG) { 1368 verbose(env, "R%d is invalid\n", regno); 1369 return -EINVAL; 1370 } 1371 1372 reg = ®s[regno]; 1373 rw64 = is_reg64(env, insn, regno, reg, t); 1374 if (t == SRC_OP) { 1375 /* check whether register used as source operand can be read */ 1376 if (reg->type == NOT_INIT) { 1377 verbose(env, "R%d !read_ok\n", regno); 1378 return -EACCES; 1379 } 1380 /* We don't need to worry about FP liveness because it's read-only */ 1381 if (regno == BPF_REG_FP) 1382 return 0; 1383 1384 if (rw64) 1385 mark_insn_zext(env, reg); 1386 1387 return mark_reg_read(env, reg, reg->parent, 1388 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 1389 } else { 1390 /* check whether register used as dest operand can be written to */ 1391 if (regno == BPF_REG_FP) { 1392 verbose(env, "frame pointer is read only\n"); 1393 return -EACCES; 1394 } 1395 reg->live |= REG_LIVE_WRITTEN; 1396 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 1397 if (t == DST_OP) 1398 mark_reg_unknown(env, regs, regno); 1399 } 1400 return 0; 1401 } 1402 1403 /* for any branch, call, exit record the history of jmps in the given state */ 1404 static int push_jmp_history(struct bpf_verifier_env *env, 1405 struct bpf_verifier_state *cur) 1406 { 1407 u32 cnt = cur->jmp_history_cnt; 1408 struct bpf_idx_pair *p; 1409 1410 cnt++; 1411 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER); 1412 if (!p) 1413 return -ENOMEM; 1414 p[cnt - 1].idx = env->insn_idx; 1415 p[cnt - 1].prev_idx = env->prev_insn_idx; 1416 cur->jmp_history = p; 1417 cur->jmp_history_cnt = cnt; 1418 return 0; 1419 } 1420 1421 /* Backtrack one insn at a time. If idx is not at the top of recorded 1422 * history then previous instruction came from straight line execution. 1423 */ 1424 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 1425 u32 *history) 1426 { 1427 u32 cnt = *history; 1428 1429 if (cnt && st->jmp_history[cnt - 1].idx == i) { 1430 i = st->jmp_history[cnt - 1].prev_idx; 1431 (*history)--; 1432 } else { 1433 i--; 1434 } 1435 return i; 1436 } 1437 1438 /* For given verifier state backtrack_insn() is called from the last insn to 1439 * the first insn. Its purpose is to compute a bitmask of registers and 1440 * stack slots that needs precision in the parent verifier state. 1441 */ 1442 static int backtrack_insn(struct bpf_verifier_env *env, int idx, 1443 u32 *reg_mask, u64 *stack_mask) 1444 { 1445 const struct bpf_insn_cbs cbs = { 1446 .cb_print = verbose, 1447 .private_data = env, 1448 }; 1449 struct bpf_insn *insn = env->prog->insnsi + idx; 1450 u8 class = BPF_CLASS(insn->code); 1451 u8 opcode = BPF_OP(insn->code); 1452 u8 mode = BPF_MODE(insn->code); 1453 u32 dreg = 1u << insn->dst_reg; 1454 u32 sreg = 1u << insn->src_reg; 1455 u32 spi; 1456 1457 if (insn->code == 0) 1458 return 0; 1459 if (env->log.level & BPF_LOG_LEVEL) { 1460 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask); 1461 verbose(env, "%d: ", idx); 1462 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 1463 } 1464 1465 if (class == BPF_ALU || class == BPF_ALU64) { 1466 if (!(*reg_mask & dreg)) 1467 return 0; 1468 if (opcode == BPF_MOV) { 1469 if (BPF_SRC(insn->code) == BPF_X) { 1470 /* dreg = sreg 1471 * dreg needs precision after this insn 1472 * sreg needs precision before this insn 1473 */ 1474 *reg_mask &= ~dreg; 1475 *reg_mask |= sreg; 1476 } else { 1477 /* dreg = K 1478 * dreg needs precision after this insn. 1479 * Corresponding register is already marked 1480 * as precise=true in this verifier state. 1481 * No further markings in parent are necessary 1482 */ 1483 *reg_mask &= ~dreg; 1484 } 1485 } else { 1486 if (BPF_SRC(insn->code) == BPF_X) { 1487 /* dreg += sreg 1488 * both dreg and sreg need precision 1489 * before this insn 1490 */ 1491 *reg_mask |= sreg; 1492 } /* else dreg += K 1493 * dreg still needs precision before this insn 1494 */ 1495 } 1496 } else if (class == BPF_LDX) { 1497 if (!(*reg_mask & dreg)) 1498 return 0; 1499 *reg_mask &= ~dreg; 1500 1501 /* scalars can only be spilled into stack w/o losing precision. 1502 * Load from any other memory can be zero extended. 1503 * The desire to keep that precision is already indicated 1504 * by 'precise' mark in corresponding register of this state. 1505 * No further tracking necessary. 1506 */ 1507 if (insn->src_reg != BPF_REG_FP) 1508 return 0; 1509 if (BPF_SIZE(insn->code) != BPF_DW) 1510 return 0; 1511 1512 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 1513 * that [fp - off] slot contains scalar that needs to be 1514 * tracked with precision 1515 */ 1516 spi = (-insn->off - 1) / BPF_REG_SIZE; 1517 if (spi >= 64) { 1518 verbose(env, "BUG spi %d\n", spi); 1519 WARN_ONCE(1, "verifier backtracking bug"); 1520 return -EFAULT; 1521 } 1522 *stack_mask |= 1ull << spi; 1523 } else if (class == BPF_STX || class == BPF_ST) { 1524 if (*reg_mask & dreg) 1525 /* stx & st shouldn't be using _scalar_ dst_reg 1526 * to access memory. It means backtracking 1527 * encountered a case of pointer subtraction. 1528 */ 1529 return -ENOTSUPP; 1530 /* scalars can only be spilled into stack */ 1531 if (insn->dst_reg != BPF_REG_FP) 1532 return 0; 1533 if (BPF_SIZE(insn->code) != BPF_DW) 1534 return 0; 1535 spi = (-insn->off - 1) / BPF_REG_SIZE; 1536 if (spi >= 64) { 1537 verbose(env, "BUG spi %d\n", spi); 1538 WARN_ONCE(1, "verifier backtracking bug"); 1539 return -EFAULT; 1540 } 1541 if (!(*stack_mask & (1ull << spi))) 1542 return 0; 1543 *stack_mask &= ~(1ull << spi); 1544 if (class == BPF_STX) 1545 *reg_mask |= sreg; 1546 } else if (class == BPF_JMP || class == BPF_JMP32) { 1547 if (opcode == BPF_CALL) { 1548 if (insn->src_reg == BPF_PSEUDO_CALL) 1549 return -ENOTSUPP; 1550 /* regular helper call sets R0 */ 1551 *reg_mask &= ~1; 1552 if (*reg_mask & 0x3f) { 1553 /* if backtracing was looking for registers R1-R5 1554 * they should have been found already. 1555 */ 1556 verbose(env, "BUG regs %x\n", *reg_mask); 1557 WARN_ONCE(1, "verifier backtracking bug"); 1558 return -EFAULT; 1559 } 1560 } else if (opcode == BPF_EXIT) { 1561 return -ENOTSUPP; 1562 } 1563 } else if (class == BPF_LD) { 1564 if (!(*reg_mask & dreg)) 1565 return 0; 1566 *reg_mask &= ~dreg; 1567 /* It's ld_imm64 or ld_abs or ld_ind. 1568 * For ld_imm64 no further tracking of precision 1569 * into parent is necessary 1570 */ 1571 if (mode == BPF_IND || mode == BPF_ABS) 1572 /* to be analyzed */ 1573 return -ENOTSUPP; 1574 } 1575 return 0; 1576 } 1577 1578 /* the scalar precision tracking algorithm: 1579 * . at the start all registers have precise=false. 1580 * . scalar ranges are tracked as normal through alu and jmp insns. 1581 * . once precise value of the scalar register is used in: 1582 * . ptr + scalar alu 1583 * . if (scalar cond K|scalar) 1584 * . helper_call(.., scalar, ...) where ARG_CONST is expected 1585 * backtrack through the verifier states and mark all registers and 1586 * stack slots with spilled constants that these scalar regisers 1587 * should be precise. 1588 * . during state pruning two registers (or spilled stack slots) 1589 * are equivalent if both are not precise. 1590 * 1591 * Note the verifier cannot simply walk register parentage chain, 1592 * since many different registers and stack slots could have been 1593 * used to compute single precise scalar. 1594 * 1595 * The approach of starting with precise=true for all registers and then 1596 * backtrack to mark a register as not precise when the verifier detects 1597 * that program doesn't care about specific value (e.g., when helper 1598 * takes register as ARG_ANYTHING parameter) is not safe. 1599 * 1600 * It's ok to walk single parentage chain of the verifier states. 1601 * It's possible that this backtracking will go all the way till 1st insn. 1602 * All other branches will be explored for needing precision later. 1603 * 1604 * The backtracking needs to deal with cases like: 1605 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 1606 * r9 -= r8 1607 * r5 = r9 1608 * if r5 > 0x79f goto pc+7 1609 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 1610 * r5 += 1 1611 * ... 1612 * call bpf_perf_event_output#25 1613 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 1614 * 1615 * and this case: 1616 * r6 = 1 1617 * call foo // uses callee's r6 inside to compute r0 1618 * r0 += r6 1619 * if r0 == 0 goto 1620 * 1621 * to track above reg_mask/stack_mask needs to be independent for each frame. 1622 * 1623 * Also if parent's curframe > frame where backtracking started, 1624 * the verifier need to mark registers in both frames, otherwise callees 1625 * may incorrectly prune callers. This is similar to 1626 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 1627 * 1628 * For now backtracking falls back into conservative marking. 1629 */ 1630 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 1631 struct bpf_verifier_state *st) 1632 { 1633 struct bpf_func_state *func; 1634 struct bpf_reg_state *reg; 1635 int i, j; 1636 1637 /* big hammer: mark all scalars precise in this path. 1638 * pop_stack may still get !precise scalars. 1639 */ 1640 for (; st; st = st->parent) 1641 for (i = 0; i <= st->curframe; i++) { 1642 func = st->frame[i]; 1643 for (j = 0; j < BPF_REG_FP; j++) { 1644 reg = &func->regs[j]; 1645 if (reg->type != SCALAR_VALUE) 1646 continue; 1647 reg->precise = true; 1648 } 1649 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 1650 if (func->stack[j].slot_type[0] != STACK_SPILL) 1651 continue; 1652 reg = &func->stack[j].spilled_ptr; 1653 if (reg->type != SCALAR_VALUE) 1654 continue; 1655 reg->precise = true; 1656 } 1657 } 1658 } 1659 1660 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno, 1661 int spi) 1662 { 1663 struct bpf_verifier_state *st = env->cur_state; 1664 int first_idx = st->first_insn_idx; 1665 int last_idx = env->insn_idx; 1666 struct bpf_func_state *func; 1667 struct bpf_reg_state *reg; 1668 u32 reg_mask = regno >= 0 ? 1u << regno : 0; 1669 u64 stack_mask = spi >= 0 ? 1ull << spi : 0; 1670 bool skip_first = true; 1671 bool new_marks = false; 1672 int i, err; 1673 1674 if (!env->allow_ptr_leaks) 1675 /* backtracking is root only for now */ 1676 return 0; 1677 1678 func = st->frame[st->curframe]; 1679 if (regno >= 0) { 1680 reg = &func->regs[regno]; 1681 if (reg->type != SCALAR_VALUE) { 1682 WARN_ONCE(1, "backtracing misuse"); 1683 return -EFAULT; 1684 } 1685 if (!reg->precise) 1686 new_marks = true; 1687 else 1688 reg_mask = 0; 1689 reg->precise = true; 1690 } 1691 1692 while (spi >= 0) { 1693 if (func->stack[spi].slot_type[0] != STACK_SPILL) { 1694 stack_mask = 0; 1695 break; 1696 } 1697 reg = &func->stack[spi].spilled_ptr; 1698 if (reg->type != SCALAR_VALUE) { 1699 stack_mask = 0; 1700 break; 1701 } 1702 if (!reg->precise) 1703 new_marks = true; 1704 else 1705 stack_mask = 0; 1706 reg->precise = true; 1707 break; 1708 } 1709 1710 if (!new_marks) 1711 return 0; 1712 if (!reg_mask && !stack_mask) 1713 return 0; 1714 for (;;) { 1715 DECLARE_BITMAP(mask, 64); 1716 u32 history = st->jmp_history_cnt; 1717 1718 if (env->log.level & BPF_LOG_LEVEL) 1719 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx); 1720 for (i = last_idx;;) { 1721 if (skip_first) { 1722 err = 0; 1723 skip_first = false; 1724 } else { 1725 err = backtrack_insn(env, i, ®_mask, &stack_mask); 1726 } 1727 if (err == -ENOTSUPP) { 1728 mark_all_scalars_precise(env, st); 1729 return 0; 1730 } else if (err) { 1731 return err; 1732 } 1733 if (!reg_mask && !stack_mask) 1734 /* Found assignment(s) into tracked register in this state. 1735 * Since this state is already marked, just return. 1736 * Nothing to be tracked further in the parent state. 1737 */ 1738 return 0; 1739 if (i == first_idx) 1740 break; 1741 i = get_prev_insn_idx(st, i, &history); 1742 if (i >= env->prog->len) { 1743 /* This can happen if backtracking reached insn 0 1744 * and there are still reg_mask or stack_mask 1745 * to backtrack. 1746 * It means the backtracking missed the spot where 1747 * particular register was initialized with a constant. 1748 */ 1749 verbose(env, "BUG backtracking idx %d\n", i); 1750 WARN_ONCE(1, "verifier backtracking bug"); 1751 return -EFAULT; 1752 } 1753 } 1754 st = st->parent; 1755 if (!st) 1756 break; 1757 1758 new_marks = false; 1759 func = st->frame[st->curframe]; 1760 bitmap_from_u64(mask, reg_mask); 1761 for_each_set_bit(i, mask, 32) { 1762 reg = &func->regs[i]; 1763 if (reg->type != SCALAR_VALUE) { 1764 reg_mask &= ~(1u << i); 1765 continue; 1766 } 1767 if (!reg->precise) 1768 new_marks = true; 1769 reg->precise = true; 1770 } 1771 1772 bitmap_from_u64(mask, stack_mask); 1773 for_each_set_bit(i, mask, 64) { 1774 if (i >= func->allocated_stack / BPF_REG_SIZE) { 1775 /* the sequence of instructions: 1776 * 2: (bf) r3 = r10 1777 * 3: (7b) *(u64 *)(r3 -8) = r0 1778 * 4: (79) r4 = *(u64 *)(r10 -8) 1779 * doesn't contain jmps. It's backtracked 1780 * as a single block. 1781 * During backtracking insn 3 is not recognized as 1782 * stack access, so at the end of backtracking 1783 * stack slot fp-8 is still marked in stack_mask. 1784 * However the parent state may not have accessed 1785 * fp-8 and it's "unallocated" stack space. 1786 * In such case fallback to conservative. 1787 */ 1788 mark_all_scalars_precise(env, st); 1789 return 0; 1790 } 1791 1792 if (func->stack[i].slot_type[0] != STACK_SPILL) { 1793 stack_mask &= ~(1ull << i); 1794 continue; 1795 } 1796 reg = &func->stack[i].spilled_ptr; 1797 if (reg->type != SCALAR_VALUE) { 1798 stack_mask &= ~(1ull << i); 1799 continue; 1800 } 1801 if (!reg->precise) 1802 new_marks = true; 1803 reg->precise = true; 1804 } 1805 if (env->log.level & BPF_LOG_LEVEL) { 1806 print_verifier_state(env, func); 1807 verbose(env, "parent %s regs=%x stack=%llx marks\n", 1808 new_marks ? "didn't have" : "already had", 1809 reg_mask, stack_mask); 1810 } 1811 1812 if (!reg_mask && !stack_mask) 1813 break; 1814 if (!new_marks) 1815 break; 1816 1817 last_idx = st->last_insn_idx; 1818 first_idx = st->first_insn_idx; 1819 } 1820 return 0; 1821 } 1822 1823 static int mark_chain_precision(struct bpf_verifier_env *env, int regno) 1824 { 1825 return __mark_chain_precision(env, regno, -1); 1826 } 1827 1828 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi) 1829 { 1830 return __mark_chain_precision(env, -1, spi); 1831 } 1832 1833 static bool is_spillable_regtype(enum bpf_reg_type type) 1834 { 1835 switch (type) { 1836 case PTR_TO_MAP_VALUE: 1837 case PTR_TO_MAP_VALUE_OR_NULL: 1838 case PTR_TO_STACK: 1839 case PTR_TO_CTX: 1840 case PTR_TO_PACKET: 1841 case PTR_TO_PACKET_META: 1842 case PTR_TO_PACKET_END: 1843 case PTR_TO_FLOW_KEYS: 1844 case CONST_PTR_TO_MAP: 1845 case PTR_TO_SOCKET: 1846 case PTR_TO_SOCKET_OR_NULL: 1847 case PTR_TO_SOCK_COMMON: 1848 case PTR_TO_SOCK_COMMON_OR_NULL: 1849 case PTR_TO_TCP_SOCK: 1850 case PTR_TO_TCP_SOCK_OR_NULL: 1851 case PTR_TO_XDP_SOCK: 1852 return true; 1853 default: 1854 return false; 1855 } 1856 } 1857 1858 /* Does this register contain a constant zero? */ 1859 static bool register_is_null(struct bpf_reg_state *reg) 1860 { 1861 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 1862 } 1863 1864 static bool register_is_const(struct bpf_reg_state *reg) 1865 { 1866 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off); 1867 } 1868 1869 static void save_register_state(struct bpf_func_state *state, 1870 int spi, struct bpf_reg_state *reg) 1871 { 1872 int i; 1873 1874 state->stack[spi].spilled_ptr = *reg; 1875 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 1876 1877 for (i = 0; i < BPF_REG_SIZE; i++) 1878 state->stack[spi].slot_type[i] = STACK_SPILL; 1879 } 1880 1881 /* check_stack_read/write functions track spill/fill of registers, 1882 * stack boundary and alignment are checked in check_mem_access() 1883 */ 1884 static int check_stack_write(struct bpf_verifier_env *env, 1885 struct bpf_func_state *state, /* func where register points to */ 1886 int off, int size, int value_regno, int insn_idx) 1887 { 1888 struct bpf_func_state *cur; /* state of the current function */ 1889 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 1890 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg; 1891 struct bpf_reg_state *reg = NULL; 1892 1893 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE), 1894 state->acquired_refs, true); 1895 if (err) 1896 return err; 1897 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 1898 * so it's aligned access and [off, off + size) are within stack limits 1899 */ 1900 if (!env->allow_ptr_leaks && 1901 state->stack[spi].slot_type[0] == STACK_SPILL && 1902 size != BPF_REG_SIZE) { 1903 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 1904 return -EACCES; 1905 } 1906 1907 cur = env->cur_state->frame[env->cur_state->curframe]; 1908 if (value_regno >= 0) 1909 reg = &cur->regs[value_regno]; 1910 1911 if (reg && size == BPF_REG_SIZE && register_is_const(reg) && 1912 !register_is_null(reg) && env->allow_ptr_leaks) { 1913 if (dst_reg != BPF_REG_FP) { 1914 /* The backtracking logic can only recognize explicit 1915 * stack slot address like [fp - 8]. Other spill of 1916 * scalar via different register has to be conervative. 1917 * Backtrack from here and mark all registers as precise 1918 * that contributed into 'reg' being a constant. 1919 */ 1920 err = mark_chain_precision(env, value_regno); 1921 if (err) 1922 return err; 1923 } 1924 save_register_state(state, spi, reg); 1925 } else if (reg && is_spillable_regtype(reg->type)) { 1926 /* register containing pointer is being spilled into stack */ 1927 if (size != BPF_REG_SIZE) { 1928 verbose_linfo(env, insn_idx, "; "); 1929 verbose(env, "invalid size of register spill\n"); 1930 return -EACCES; 1931 } 1932 1933 if (state != cur && reg->type == PTR_TO_STACK) { 1934 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 1935 return -EINVAL; 1936 } 1937 1938 if (!env->allow_ptr_leaks) { 1939 bool sanitize = false; 1940 1941 if (state->stack[spi].slot_type[0] == STACK_SPILL && 1942 register_is_const(&state->stack[spi].spilled_ptr)) 1943 sanitize = true; 1944 for (i = 0; i < BPF_REG_SIZE; i++) 1945 if (state->stack[spi].slot_type[i] == STACK_MISC) { 1946 sanitize = true; 1947 break; 1948 } 1949 if (sanitize) { 1950 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off; 1951 int soff = (-spi - 1) * BPF_REG_SIZE; 1952 1953 /* detected reuse of integer stack slot with a pointer 1954 * which means either llvm is reusing stack slot or 1955 * an attacker is trying to exploit CVE-2018-3639 1956 * (speculative store bypass) 1957 * Have to sanitize that slot with preemptive 1958 * store of zero. 1959 */ 1960 if (*poff && *poff != soff) { 1961 /* disallow programs where single insn stores 1962 * into two different stack slots, since verifier 1963 * cannot sanitize them 1964 */ 1965 verbose(env, 1966 "insn %d cannot access two stack slots fp%d and fp%d", 1967 insn_idx, *poff, soff); 1968 return -EINVAL; 1969 } 1970 *poff = soff; 1971 } 1972 } 1973 save_register_state(state, spi, reg); 1974 } else { 1975 u8 type = STACK_MISC; 1976 1977 /* regular write of data into stack destroys any spilled ptr */ 1978 state->stack[spi].spilled_ptr.type = NOT_INIT; 1979 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */ 1980 if (state->stack[spi].slot_type[0] == STACK_SPILL) 1981 for (i = 0; i < BPF_REG_SIZE; i++) 1982 state->stack[spi].slot_type[i] = STACK_MISC; 1983 1984 /* only mark the slot as written if all 8 bytes were written 1985 * otherwise read propagation may incorrectly stop too soon 1986 * when stack slots are partially written. 1987 * This heuristic means that read propagation will be 1988 * conservative, since it will add reg_live_read marks 1989 * to stack slots all the way to first state when programs 1990 * writes+reads less than 8 bytes 1991 */ 1992 if (size == BPF_REG_SIZE) 1993 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 1994 1995 /* when we zero initialize stack slots mark them as such */ 1996 if (reg && register_is_null(reg)) { 1997 /* backtracking doesn't work for STACK_ZERO yet. */ 1998 err = mark_chain_precision(env, value_regno); 1999 if (err) 2000 return err; 2001 type = STACK_ZERO; 2002 } 2003 2004 /* Mark slots affected by this stack write. */ 2005 for (i = 0; i < size; i++) 2006 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 2007 type; 2008 } 2009 return 0; 2010 } 2011 2012 static int check_stack_read(struct bpf_verifier_env *env, 2013 struct bpf_func_state *reg_state /* func where register points to */, 2014 int off, int size, int value_regno) 2015 { 2016 struct bpf_verifier_state *vstate = env->cur_state; 2017 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2018 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 2019 struct bpf_reg_state *reg; 2020 u8 *stype; 2021 2022 if (reg_state->allocated_stack <= slot) { 2023 verbose(env, "invalid read from stack off %d+0 size %d\n", 2024 off, size); 2025 return -EACCES; 2026 } 2027 stype = reg_state->stack[spi].slot_type; 2028 reg = ®_state->stack[spi].spilled_ptr; 2029 2030 if (stype[0] == STACK_SPILL) { 2031 if (size != BPF_REG_SIZE) { 2032 if (reg->type != SCALAR_VALUE) { 2033 verbose_linfo(env, env->insn_idx, "; "); 2034 verbose(env, "invalid size of register fill\n"); 2035 return -EACCES; 2036 } 2037 if (value_regno >= 0) { 2038 mark_reg_unknown(env, state->regs, value_regno); 2039 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 2040 } 2041 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2042 return 0; 2043 } 2044 for (i = 1; i < BPF_REG_SIZE; i++) { 2045 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) { 2046 verbose(env, "corrupted spill memory\n"); 2047 return -EACCES; 2048 } 2049 } 2050 2051 if (value_regno >= 0) { 2052 /* restore register state from stack */ 2053 state->regs[value_regno] = *reg; 2054 /* mark reg as written since spilled pointer state likely 2055 * has its liveness marks cleared by is_state_visited() 2056 * which resets stack/reg liveness for state transitions 2057 */ 2058 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 2059 } 2060 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2061 } else { 2062 int zeros = 0; 2063 2064 for (i = 0; i < size; i++) { 2065 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC) 2066 continue; 2067 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) { 2068 zeros++; 2069 continue; 2070 } 2071 verbose(env, "invalid read from stack off %d+%d size %d\n", 2072 off, i, size); 2073 return -EACCES; 2074 } 2075 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2076 if (value_regno >= 0) { 2077 if (zeros == size) { 2078 /* any size read into register is zero extended, 2079 * so the whole register == const_zero 2080 */ 2081 __mark_reg_const_zero(&state->regs[value_regno]); 2082 /* backtracking doesn't support STACK_ZERO yet, 2083 * so mark it precise here, so that later 2084 * backtracking can stop here. 2085 * Backtracking may not need this if this register 2086 * doesn't participate in pointer adjustment. 2087 * Forward propagation of precise flag is not 2088 * necessary either. This mark is only to stop 2089 * backtracking. Any register that contributed 2090 * to const 0 was marked precise before spill. 2091 */ 2092 state->regs[value_regno].precise = true; 2093 } else { 2094 /* have read misc data from the stack */ 2095 mark_reg_unknown(env, state->regs, value_regno); 2096 } 2097 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 2098 } 2099 } 2100 return 0; 2101 } 2102 2103 static int check_stack_access(struct bpf_verifier_env *env, 2104 const struct bpf_reg_state *reg, 2105 int off, int size) 2106 { 2107 /* Stack accesses must be at a fixed offset, so that we 2108 * can determine what type of data were returned. See 2109 * check_stack_read(). 2110 */ 2111 if (!tnum_is_const(reg->var_off)) { 2112 char tn_buf[48]; 2113 2114 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2115 verbose(env, "variable stack access var_off=%s off=%d size=%d\n", 2116 tn_buf, off, size); 2117 return -EACCES; 2118 } 2119 2120 if (off >= 0 || off < -MAX_BPF_STACK) { 2121 verbose(env, "invalid stack off=%d size=%d\n", off, size); 2122 return -EACCES; 2123 } 2124 2125 return 0; 2126 } 2127 2128 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 2129 int off, int size, enum bpf_access_type type) 2130 { 2131 struct bpf_reg_state *regs = cur_regs(env); 2132 struct bpf_map *map = regs[regno].map_ptr; 2133 u32 cap = bpf_map_flags_to_cap(map); 2134 2135 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 2136 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 2137 map->value_size, off, size); 2138 return -EACCES; 2139 } 2140 2141 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 2142 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 2143 map->value_size, off, size); 2144 return -EACCES; 2145 } 2146 2147 return 0; 2148 } 2149 2150 /* check read/write into map element returned by bpf_map_lookup_elem() */ 2151 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off, 2152 int size, bool zero_size_allowed) 2153 { 2154 struct bpf_reg_state *regs = cur_regs(env); 2155 struct bpf_map *map = regs[regno].map_ptr; 2156 2157 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) || 2158 off + size > map->value_size) { 2159 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 2160 map->value_size, off, size); 2161 return -EACCES; 2162 } 2163 return 0; 2164 } 2165 2166 /* check read/write into a map element with possible variable offset */ 2167 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 2168 int off, int size, bool zero_size_allowed) 2169 { 2170 struct bpf_verifier_state *vstate = env->cur_state; 2171 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2172 struct bpf_reg_state *reg = &state->regs[regno]; 2173 int err; 2174 2175 /* We may have adjusted the register to this map value, so we 2176 * need to try adding each of min_value and max_value to off 2177 * to make sure our theoretical access will be safe. 2178 */ 2179 if (env->log.level & BPF_LOG_LEVEL) 2180 print_verifier_state(env, state); 2181 2182 /* The minimum value is only important with signed 2183 * comparisons where we can't assume the floor of a 2184 * value is 0. If we are using signed variables for our 2185 * index'es we need to make sure that whatever we use 2186 * will have a set floor within our range. 2187 */ 2188 if (reg->smin_value < 0 && 2189 (reg->smin_value == S64_MIN || 2190 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 2191 reg->smin_value + off < 0)) { 2192 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 2193 regno); 2194 return -EACCES; 2195 } 2196 err = __check_map_access(env, regno, reg->smin_value + off, size, 2197 zero_size_allowed); 2198 if (err) { 2199 verbose(env, "R%d min value is outside of the array range\n", 2200 regno); 2201 return err; 2202 } 2203 2204 /* If we haven't set a max value then we need to bail since we can't be 2205 * sure we won't do bad things. 2206 * If reg->umax_value + off could overflow, treat that as unbounded too. 2207 */ 2208 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 2209 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n", 2210 regno); 2211 return -EACCES; 2212 } 2213 err = __check_map_access(env, regno, reg->umax_value + off, size, 2214 zero_size_allowed); 2215 if (err) 2216 verbose(env, "R%d max value is outside of the array range\n", 2217 regno); 2218 2219 if (map_value_has_spin_lock(reg->map_ptr)) { 2220 u32 lock = reg->map_ptr->spin_lock_off; 2221 2222 /* if any part of struct bpf_spin_lock can be touched by 2223 * load/store reject this program. 2224 * To check that [x1, x2) overlaps with [y1, y2) 2225 * it is sufficient to check x1 < y2 && y1 < x2. 2226 */ 2227 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) && 2228 lock < reg->umax_value + off + size) { 2229 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n"); 2230 return -EACCES; 2231 } 2232 } 2233 return err; 2234 } 2235 2236 #define MAX_PACKET_OFF 0xffff 2237 2238 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 2239 const struct bpf_call_arg_meta *meta, 2240 enum bpf_access_type t) 2241 { 2242 switch (env->prog->type) { 2243 /* Program types only with direct read access go here! */ 2244 case BPF_PROG_TYPE_LWT_IN: 2245 case BPF_PROG_TYPE_LWT_OUT: 2246 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 2247 case BPF_PROG_TYPE_SK_REUSEPORT: 2248 case BPF_PROG_TYPE_FLOW_DISSECTOR: 2249 case BPF_PROG_TYPE_CGROUP_SKB: 2250 if (t == BPF_WRITE) 2251 return false; 2252 /* fallthrough */ 2253 2254 /* Program types with direct read + write access go here! */ 2255 case BPF_PROG_TYPE_SCHED_CLS: 2256 case BPF_PROG_TYPE_SCHED_ACT: 2257 case BPF_PROG_TYPE_XDP: 2258 case BPF_PROG_TYPE_LWT_XMIT: 2259 case BPF_PROG_TYPE_SK_SKB: 2260 case BPF_PROG_TYPE_SK_MSG: 2261 if (meta) 2262 return meta->pkt_access; 2263 2264 env->seen_direct_write = true; 2265 return true; 2266 2267 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 2268 if (t == BPF_WRITE) 2269 env->seen_direct_write = true; 2270 2271 return true; 2272 2273 default: 2274 return false; 2275 } 2276 } 2277 2278 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno, 2279 int off, int size, bool zero_size_allowed) 2280 { 2281 struct bpf_reg_state *regs = cur_regs(env); 2282 struct bpf_reg_state *reg = ®s[regno]; 2283 2284 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) || 2285 (u64)off + size > reg->range) { 2286 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 2287 off, size, regno, reg->id, reg->off, reg->range); 2288 return -EACCES; 2289 } 2290 return 0; 2291 } 2292 2293 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 2294 int size, bool zero_size_allowed) 2295 { 2296 struct bpf_reg_state *regs = cur_regs(env); 2297 struct bpf_reg_state *reg = ®s[regno]; 2298 int err; 2299 2300 /* We may have added a variable offset to the packet pointer; but any 2301 * reg->range we have comes after that. We are only checking the fixed 2302 * offset. 2303 */ 2304 2305 /* We don't allow negative numbers, because we aren't tracking enough 2306 * detail to prove they're safe. 2307 */ 2308 if (reg->smin_value < 0) { 2309 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 2310 regno); 2311 return -EACCES; 2312 } 2313 err = __check_packet_access(env, regno, off, size, zero_size_allowed); 2314 if (err) { 2315 verbose(env, "R%d offset is outside of the packet\n", regno); 2316 return err; 2317 } 2318 2319 /* __check_packet_access has made sure "off + size - 1" is within u16. 2320 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 2321 * otherwise find_good_pkt_pointers would have refused to set range info 2322 * that __check_packet_access would have rejected this pkt access. 2323 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 2324 */ 2325 env->prog->aux->max_pkt_offset = 2326 max_t(u32, env->prog->aux->max_pkt_offset, 2327 off + reg->umax_value + size - 1); 2328 2329 return err; 2330 } 2331 2332 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 2333 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 2334 enum bpf_access_type t, enum bpf_reg_type *reg_type) 2335 { 2336 struct bpf_insn_access_aux info = { 2337 .reg_type = *reg_type, 2338 }; 2339 2340 if (env->ops->is_valid_access && 2341 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 2342 /* A non zero info.ctx_field_size indicates that this field is a 2343 * candidate for later verifier transformation to load the whole 2344 * field and then apply a mask when accessed with a narrower 2345 * access than actual ctx access size. A zero info.ctx_field_size 2346 * will only allow for whole field access and rejects any other 2347 * type of narrower access. 2348 */ 2349 *reg_type = info.reg_type; 2350 2351 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 2352 /* remember the offset of last byte accessed in ctx */ 2353 if (env->prog->aux->max_ctx_offset < off + size) 2354 env->prog->aux->max_ctx_offset = off + size; 2355 return 0; 2356 } 2357 2358 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 2359 return -EACCES; 2360 } 2361 2362 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 2363 int size) 2364 { 2365 if (size < 0 || off < 0 || 2366 (u64)off + size > sizeof(struct bpf_flow_keys)) { 2367 verbose(env, "invalid access to flow keys off=%d size=%d\n", 2368 off, size); 2369 return -EACCES; 2370 } 2371 return 0; 2372 } 2373 2374 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 2375 u32 regno, int off, int size, 2376 enum bpf_access_type t) 2377 { 2378 struct bpf_reg_state *regs = cur_regs(env); 2379 struct bpf_reg_state *reg = ®s[regno]; 2380 struct bpf_insn_access_aux info = {}; 2381 bool valid; 2382 2383 if (reg->smin_value < 0) { 2384 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 2385 regno); 2386 return -EACCES; 2387 } 2388 2389 switch (reg->type) { 2390 case PTR_TO_SOCK_COMMON: 2391 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 2392 break; 2393 case PTR_TO_SOCKET: 2394 valid = bpf_sock_is_valid_access(off, size, t, &info); 2395 break; 2396 case PTR_TO_TCP_SOCK: 2397 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 2398 break; 2399 case PTR_TO_XDP_SOCK: 2400 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 2401 break; 2402 default: 2403 valid = false; 2404 } 2405 2406 2407 if (valid) { 2408 env->insn_aux_data[insn_idx].ctx_field_size = 2409 info.ctx_field_size; 2410 return 0; 2411 } 2412 2413 verbose(env, "R%d invalid %s access off=%d size=%d\n", 2414 regno, reg_type_str[reg->type], off, size); 2415 2416 return -EACCES; 2417 } 2418 2419 static bool __is_pointer_value(bool allow_ptr_leaks, 2420 const struct bpf_reg_state *reg) 2421 { 2422 if (allow_ptr_leaks) 2423 return false; 2424 2425 return reg->type != SCALAR_VALUE; 2426 } 2427 2428 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 2429 { 2430 return cur_regs(env) + regno; 2431 } 2432 2433 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 2434 { 2435 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 2436 } 2437 2438 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 2439 { 2440 const struct bpf_reg_state *reg = reg_state(env, regno); 2441 2442 return reg->type == PTR_TO_CTX; 2443 } 2444 2445 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 2446 { 2447 const struct bpf_reg_state *reg = reg_state(env, regno); 2448 2449 return type_is_sk_pointer(reg->type); 2450 } 2451 2452 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 2453 { 2454 const struct bpf_reg_state *reg = reg_state(env, regno); 2455 2456 return type_is_pkt_pointer(reg->type); 2457 } 2458 2459 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 2460 { 2461 const struct bpf_reg_state *reg = reg_state(env, regno); 2462 2463 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 2464 return reg->type == PTR_TO_FLOW_KEYS; 2465 } 2466 2467 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 2468 const struct bpf_reg_state *reg, 2469 int off, int size, bool strict) 2470 { 2471 struct tnum reg_off; 2472 int ip_align; 2473 2474 /* Byte size accesses are always allowed. */ 2475 if (!strict || size == 1) 2476 return 0; 2477 2478 /* For platforms that do not have a Kconfig enabling 2479 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 2480 * NET_IP_ALIGN is universally set to '2'. And on platforms 2481 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 2482 * to this code only in strict mode where we want to emulate 2483 * the NET_IP_ALIGN==2 checking. Therefore use an 2484 * unconditional IP align value of '2'. 2485 */ 2486 ip_align = 2; 2487 2488 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 2489 if (!tnum_is_aligned(reg_off, size)) { 2490 char tn_buf[48]; 2491 2492 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2493 verbose(env, 2494 "misaligned packet access off %d+%s+%d+%d size %d\n", 2495 ip_align, tn_buf, reg->off, off, size); 2496 return -EACCES; 2497 } 2498 2499 return 0; 2500 } 2501 2502 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 2503 const struct bpf_reg_state *reg, 2504 const char *pointer_desc, 2505 int off, int size, bool strict) 2506 { 2507 struct tnum reg_off; 2508 2509 /* Byte size accesses are always allowed. */ 2510 if (!strict || size == 1) 2511 return 0; 2512 2513 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 2514 if (!tnum_is_aligned(reg_off, size)) { 2515 char tn_buf[48]; 2516 2517 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2518 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 2519 pointer_desc, tn_buf, reg->off, off, size); 2520 return -EACCES; 2521 } 2522 2523 return 0; 2524 } 2525 2526 static int check_ptr_alignment(struct bpf_verifier_env *env, 2527 const struct bpf_reg_state *reg, int off, 2528 int size, bool strict_alignment_once) 2529 { 2530 bool strict = env->strict_alignment || strict_alignment_once; 2531 const char *pointer_desc = ""; 2532 2533 switch (reg->type) { 2534 case PTR_TO_PACKET: 2535 case PTR_TO_PACKET_META: 2536 /* Special case, because of NET_IP_ALIGN. Given metadata sits 2537 * right in front, treat it the very same way. 2538 */ 2539 return check_pkt_ptr_alignment(env, reg, off, size, strict); 2540 case PTR_TO_FLOW_KEYS: 2541 pointer_desc = "flow keys "; 2542 break; 2543 case PTR_TO_MAP_VALUE: 2544 pointer_desc = "value "; 2545 break; 2546 case PTR_TO_CTX: 2547 pointer_desc = "context "; 2548 break; 2549 case PTR_TO_STACK: 2550 pointer_desc = "stack "; 2551 /* The stack spill tracking logic in check_stack_write() 2552 * and check_stack_read() relies on stack accesses being 2553 * aligned. 2554 */ 2555 strict = true; 2556 break; 2557 case PTR_TO_SOCKET: 2558 pointer_desc = "sock "; 2559 break; 2560 case PTR_TO_SOCK_COMMON: 2561 pointer_desc = "sock_common "; 2562 break; 2563 case PTR_TO_TCP_SOCK: 2564 pointer_desc = "tcp_sock "; 2565 break; 2566 case PTR_TO_XDP_SOCK: 2567 pointer_desc = "xdp_sock "; 2568 break; 2569 default: 2570 break; 2571 } 2572 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 2573 strict); 2574 } 2575 2576 static int update_stack_depth(struct bpf_verifier_env *env, 2577 const struct bpf_func_state *func, 2578 int off) 2579 { 2580 u16 stack = env->subprog_info[func->subprogno].stack_depth; 2581 2582 if (stack >= -off) 2583 return 0; 2584 2585 /* update known max for given subprogram */ 2586 env->subprog_info[func->subprogno].stack_depth = -off; 2587 return 0; 2588 } 2589 2590 /* starting from main bpf function walk all instructions of the function 2591 * and recursively walk all callees that given function can call. 2592 * Ignore jump and exit insns. 2593 * Since recursion is prevented by check_cfg() this algorithm 2594 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 2595 */ 2596 static int check_max_stack_depth(struct bpf_verifier_env *env) 2597 { 2598 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; 2599 struct bpf_subprog_info *subprog = env->subprog_info; 2600 struct bpf_insn *insn = env->prog->insnsi; 2601 int ret_insn[MAX_CALL_FRAMES]; 2602 int ret_prog[MAX_CALL_FRAMES]; 2603 2604 process_func: 2605 /* round up to 32-bytes, since this is granularity 2606 * of interpreter stack size 2607 */ 2608 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 2609 if (depth > MAX_BPF_STACK) { 2610 verbose(env, "combined stack size of %d calls is %d. Too large\n", 2611 frame + 1, depth); 2612 return -EACCES; 2613 } 2614 continue_func: 2615 subprog_end = subprog[idx + 1].start; 2616 for (; i < subprog_end; i++) { 2617 if (insn[i].code != (BPF_JMP | BPF_CALL)) 2618 continue; 2619 if (insn[i].src_reg != BPF_PSEUDO_CALL) 2620 continue; 2621 /* remember insn and function to return to */ 2622 ret_insn[frame] = i + 1; 2623 ret_prog[frame] = idx; 2624 2625 /* find the callee */ 2626 i = i + insn[i].imm + 1; 2627 idx = find_subprog(env, i); 2628 if (idx < 0) { 2629 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 2630 i); 2631 return -EFAULT; 2632 } 2633 frame++; 2634 if (frame >= MAX_CALL_FRAMES) { 2635 verbose(env, "the call stack of %d frames is too deep !\n", 2636 frame); 2637 return -E2BIG; 2638 } 2639 goto process_func; 2640 } 2641 /* end of for() loop means the last insn of the 'subprog' 2642 * was reached. Doesn't matter whether it was JA or EXIT 2643 */ 2644 if (frame == 0) 2645 return 0; 2646 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 2647 frame--; 2648 i = ret_insn[frame]; 2649 idx = ret_prog[frame]; 2650 goto continue_func; 2651 } 2652 2653 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 2654 static int get_callee_stack_depth(struct bpf_verifier_env *env, 2655 const struct bpf_insn *insn, int idx) 2656 { 2657 int start = idx + insn->imm + 1, subprog; 2658 2659 subprog = find_subprog(env, start); 2660 if (subprog < 0) { 2661 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 2662 start); 2663 return -EFAULT; 2664 } 2665 return env->subprog_info[subprog].stack_depth; 2666 } 2667 #endif 2668 2669 static int check_ctx_reg(struct bpf_verifier_env *env, 2670 const struct bpf_reg_state *reg, int regno) 2671 { 2672 /* Access to ctx or passing it to a helper is only allowed in 2673 * its original, unmodified form. 2674 */ 2675 2676 if (reg->off) { 2677 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n", 2678 regno, reg->off); 2679 return -EACCES; 2680 } 2681 2682 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 2683 char tn_buf[48]; 2684 2685 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2686 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf); 2687 return -EACCES; 2688 } 2689 2690 return 0; 2691 } 2692 2693 static int check_tp_buffer_access(struct bpf_verifier_env *env, 2694 const struct bpf_reg_state *reg, 2695 int regno, int off, int size) 2696 { 2697 if (off < 0) { 2698 verbose(env, 2699 "R%d invalid tracepoint buffer access: off=%d, size=%d", 2700 regno, off, size); 2701 return -EACCES; 2702 } 2703 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 2704 char tn_buf[48]; 2705 2706 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2707 verbose(env, 2708 "R%d invalid variable buffer offset: off=%d, var_off=%s", 2709 regno, off, tn_buf); 2710 return -EACCES; 2711 } 2712 if (off + size > env->prog->aux->max_tp_access) 2713 env->prog->aux->max_tp_access = off + size; 2714 2715 return 0; 2716 } 2717 2718 2719 /* truncate register to smaller size (in bytes) 2720 * must be called with size < BPF_REG_SIZE 2721 */ 2722 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 2723 { 2724 u64 mask; 2725 2726 /* clear high bits in bit representation */ 2727 reg->var_off = tnum_cast(reg->var_off, size); 2728 2729 /* fix arithmetic bounds */ 2730 mask = ((u64)1 << (size * 8)) - 1; 2731 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 2732 reg->umin_value &= mask; 2733 reg->umax_value &= mask; 2734 } else { 2735 reg->umin_value = 0; 2736 reg->umax_value = mask; 2737 } 2738 reg->smin_value = reg->umin_value; 2739 reg->smax_value = reg->umax_value; 2740 } 2741 2742 /* check whether memory at (regno + off) is accessible for t = (read | write) 2743 * if t==write, value_regno is a register which value is stored into memory 2744 * if t==read, value_regno is a register which will receive the value from memory 2745 * if t==write && value_regno==-1, some unknown value is stored into memory 2746 * if t==read && value_regno==-1, don't care what we read from memory 2747 */ 2748 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 2749 int off, int bpf_size, enum bpf_access_type t, 2750 int value_regno, bool strict_alignment_once) 2751 { 2752 struct bpf_reg_state *regs = cur_regs(env); 2753 struct bpf_reg_state *reg = regs + regno; 2754 struct bpf_func_state *state; 2755 int size, err = 0; 2756 2757 size = bpf_size_to_bytes(bpf_size); 2758 if (size < 0) 2759 return size; 2760 2761 /* alignment checks will add in reg->off themselves */ 2762 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 2763 if (err) 2764 return err; 2765 2766 /* for access checks, reg->off is just part of off */ 2767 off += reg->off; 2768 2769 if (reg->type == PTR_TO_MAP_VALUE) { 2770 if (t == BPF_WRITE && value_regno >= 0 && 2771 is_pointer_value(env, value_regno)) { 2772 verbose(env, "R%d leaks addr into map\n", value_regno); 2773 return -EACCES; 2774 } 2775 err = check_map_access_type(env, regno, off, size, t); 2776 if (err) 2777 return err; 2778 err = check_map_access(env, regno, off, size, false); 2779 if (!err && t == BPF_READ && value_regno >= 0) 2780 mark_reg_unknown(env, regs, value_regno); 2781 2782 } else if (reg->type == PTR_TO_CTX) { 2783 enum bpf_reg_type reg_type = SCALAR_VALUE; 2784 2785 if (t == BPF_WRITE && value_regno >= 0 && 2786 is_pointer_value(env, value_regno)) { 2787 verbose(env, "R%d leaks addr into ctx\n", value_regno); 2788 return -EACCES; 2789 } 2790 2791 err = check_ctx_reg(env, reg, regno); 2792 if (err < 0) 2793 return err; 2794 2795 err = check_ctx_access(env, insn_idx, off, size, t, ®_type); 2796 if (!err && t == BPF_READ && value_regno >= 0) { 2797 /* ctx access returns either a scalar, or a 2798 * PTR_TO_PACKET[_META,_END]. In the latter 2799 * case, we know the offset is zero. 2800 */ 2801 if (reg_type == SCALAR_VALUE) { 2802 mark_reg_unknown(env, regs, value_regno); 2803 } else { 2804 mark_reg_known_zero(env, regs, 2805 value_regno); 2806 if (reg_type_may_be_null(reg_type)) 2807 regs[value_regno].id = ++env->id_gen; 2808 /* A load of ctx field could have different 2809 * actual load size with the one encoded in the 2810 * insn. When the dst is PTR, it is for sure not 2811 * a sub-register. 2812 */ 2813 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 2814 } 2815 regs[value_regno].type = reg_type; 2816 } 2817 2818 } else if (reg->type == PTR_TO_STACK) { 2819 off += reg->var_off.value; 2820 err = check_stack_access(env, reg, off, size); 2821 if (err) 2822 return err; 2823 2824 state = func(env, reg); 2825 err = update_stack_depth(env, state, off); 2826 if (err) 2827 return err; 2828 2829 if (t == BPF_WRITE) 2830 err = check_stack_write(env, state, off, size, 2831 value_regno, insn_idx); 2832 else 2833 err = check_stack_read(env, state, off, size, 2834 value_regno); 2835 } else if (reg_is_pkt_pointer(reg)) { 2836 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 2837 verbose(env, "cannot write into packet\n"); 2838 return -EACCES; 2839 } 2840 if (t == BPF_WRITE && value_regno >= 0 && 2841 is_pointer_value(env, value_regno)) { 2842 verbose(env, "R%d leaks addr into packet\n", 2843 value_regno); 2844 return -EACCES; 2845 } 2846 err = check_packet_access(env, regno, off, size, false); 2847 if (!err && t == BPF_READ && value_regno >= 0) 2848 mark_reg_unknown(env, regs, value_regno); 2849 } else if (reg->type == PTR_TO_FLOW_KEYS) { 2850 if (t == BPF_WRITE && value_regno >= 0 && 2851 is_pointer_value(env, value_regno)) { 2852 verbose(env, "R%d leaks addr into flow keys\n", 2853 value_regno); 2854 return -EACCES; 2855 } 2856 2857 err = check_flow_keys_access(env, off, size); 2858 if (!err && t == BPF_READ && value_regno >= 0) 2859 mark_reg_unknown(env, regs, value_regno); 2860 } else if (type_is_sk_pointer(reg->type)) { 2861 if (t == BPF_WRITE) { 2862 verbose(env, "R%d cannot write into %s\n", 2863 regno, reg_type_str[reg->type]); 2864 return -EACCES; 2865 } 2866 err = check_sock_access(env, insn_idx, regno, off, size, t); 2867 if (!err && value_regno >= 0) 2868 mark_reg_unknown(env, regs, value_regno); 2869 } else if (reg->type == PTR_TO_TP_BUFFER) { 2870 err = check_tp_buffer_access(env, reg, regno, off, size); 2871 if (!err && t == BPF_READ && value_regno >= 0) 2872 mark_reg_unknown(env, regs, value_regno); 2873 } else { 2874 verbose(env, "R%d invalid mem access '%s'\n", regno, 2875 reg_type_str[reg->type]); 2876 return -EACCES; 2877 } 2878 2879 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 2880 regs[value_regno].type == SCALAR_VALUE) { 2881 /* b/h/w load zero-extends, mark upper bits as known 0 */ 2882 coerce_reg_to_size(®s[value_regno], size); 2883 } 2884 return err; 2885 } 2886 2887 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 2888 { 2889 int err; 2890 2891 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) || 2892 insn->imm != 0) { 2893 verbose(env, "BPF_XADD uses reserved fields\n"); 2894 return -EINVAL; 2895 } 2896 2897 /* check src1 operand */ 2898 err = check_reg_arg(env, insn->src_reg, SRC_OP); 2899 if (err) 2900 return err; 2901 2902 /* check src2 operand */ 2903 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 2904 if (err) 2905 return err; 2906 2907 if (is_pointer_value(env, insn->src_reg)) { 2908 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 2909 return -EACCES; 2910 } 2911 2912 if (is_ctx_reg(env, insn->dst_reg) || 2913 is_pkt_reg(env, insn->dst_reg) || 2914 is_flow_key_reg(env, insn->dst_reg) || 2915 is_sk_reg(env, insn->dst_reg)) { 2916 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n", 2917 insn->dst_reg, 2918 reg_type_str[reg_state(env, insn->dst_reg)->type]); 2919 return -EACCES; 2920 } 2921 2922 /* check whether atomic_add can read the memory */ 2923 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 2924 BPF_SIZE(insn->code), BPF_READ, -1, true); 2925 if (err) 2926 return err; 2927 2928 /* check whether atomic_add can write into the same memory */ 2929 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 2930 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 2931 } 2932 2933 static int __check_stack_boundary(struct bpf_verifier_env *env, u32 regno, 2934 int off, int access_size, 2935 bool zero_size_allowed) 2936 { 2937 struct bpf_reg_state *reg = reg_state(env, regno); 2938 2939 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 || 2940 access_size < 0 || (access_size == 0 && !zero_size_allowed)) { 2941 if (tnum_is_const(reg->var_off)) { 2942 verbose(env, "invalid stack type R%d off=%d access_size=%d\n", 2943 regno, off, access_size); 2944 } else { 2945 char tn_buf[48]; 2946 2947 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2948 verbose(env, "invalid stack type R%d var_off=%s access_size=%d\n", 2949 regno, tn_buf, access_size); 2950 } 2951 return -EACCES; 2952 } 2953 return 0; 2954 } 2955 2956 /* when register 'regno' is passed into function that will read 'access_size' 2957 * bytes from that pointer, make sure that it's within stack boundary 2958 * and all elements of stack are initialized. 2959 * Unlike most pointer bounds-checking functions, this one doesn't take an 2960 * 'off' argument, so it has to add in reg->off itself. 2961 */ 2962 static int check_stack_boundary(struct bpf_verifier_env *env, int regno, 2963 int access_size, bool zero_size_allowed, 2964 struct bpf_call_arg_meta *meta) 2965 { 2966 struct bpf_reg_state *reg = reg_state(env, regno); 2967 struct bpf_func_state *state = func(env, reg); 2968 int err, min_off, max_off, i, j, slot, spi; 2969 2970 if (reg->type != PTR_TO_STACK) { 2971 /* Allow zero-byte read from NULL, regardless of pointer type */ 2972 if (zero_size_allowed && access_size == 0 && 2973 register_is_null(reg)) 2974 return 0; 2975 2976 verbose(env, "R%d type=%s expected=%s\n", regno, 2977 reg_type_str[reg->type], 2978 reg_type_str[PTR_TO_STACK]); 2979 return -EACCES; 2980 } 2981 2982 if (tnum_is_const(reg->var_off)) { 2983 min_off = max_off = reg->var_off.value + reg->off; 2984 err = __check_stack_boundary(env, regno, min_off, access_size, 2985 zero_size_allowed); 2986 if (err) 2987 return err; 2988 } else { 2989 /* Variable offset is prohibited for unprivileged mode for 2990 * simplicity since it requires corresponding support in 2991 * Spectre masking for stack ALU. 2992 * See also retrieve_ptr_limit(). 2993 */ 2994 if (!env->allow_ptr_leaks) { 2995 char tn_buf[48]; 2996 2997 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2998 verbose(env, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n", 2999 regno, tn_buf); 3000 return -EACCES; 3001 } 3002 /* Only initialized buffer on stack is allowed to be accessed 3003 * with variable offset. With uninitialized buffer it's hard to 3004 * guarantee that whole memory is marked as initialized on 3005 * helper return since specific bounds are unknown what may 3006 * cause uninitialized stack leaking. 3007 */ 3008 if (meta && meta->raw_mode) 3009 meta = NULL; 3010 3011 if (reg->smax_value >= BPF_MAX_VAR_OFF || 3012 reg->smax_value <= -BPF_MAX_VAR_OFF) { 3013 verbose(env, "R%d unbounded indirect variable offset stack access\n", 3014 regno); 3015 return -EACCES; 3016 } 3017 min_off = reg->smin_value + reg->off; 3018 max_off = reg->smax_value + reg->off; 3019 err = __check_stack_boundary(env, regno, min_off, access_size, 3020 zero_size_allowed); 3021 if (err) { 3022 verbose(env, "R%d min value is outside of stack bound\n", 3023 regno); 3024 return err; 3025 } 3026 err = __check_stack_boundary(env, regno, max_off, access_size, 3027 zero_size_allowed); 3028 if (err) { 3029 verbose(env, "R%d max value is outside of stack bound\n", 3030 regno); 3031 return err; 3032 } 3033 } 3034 3035 if (meta && meta->raw_mode) { 3036 meta->access_size = access_size; 3037 meta->regno = regno; 3038 return 0; 3039 } 3040 3041 for (i = min_off; i < max_off + access_size; i++) { 3042 u8 *stype; 3043 3044 slot = -i - 1; 3045 spi = slot / BPF_REG_SIZE; 3046 if (state->allocated_stack <= slot) 3047 goto err; 3048 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 3049 if (*stype == STACK_MISC) 3050 goto mark; 3051 if (*stype == STACK_ZERO) { 3052 /* helper can write anything into the stack */ 3053 *stype = STACK_MISC; 3054 goto mark; 3055 } 3056 if (state->stack[spi].slot_type[0] == STACK_SPILL && 3057 state->stack[spi].spilled_ptr.type == SCALAR_VALUE) { 3058 __mark_reg_unknown(&state->stack[spi].spilled_ptr); 3059 for (j = 0; j < BPF_REG_SIZE; j++) 3060 state->stack[spi].slot_type[j] = STACK_MISC; 3061 goto mark; 3062 } 3063 3064 err: 3065 if (tnum_is_const(reg->var_off)) { 3066 verbose(env, "invalid indirect read from stack off %d+%d size %d\n", 3067 min_off, i - min_off, access_size); 3068 } else { 3069 char tn_buf[48]; 3070 3071 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3072 verbose(env, "invalid indirect read from stack var_off %s+%d size %d\n", 3073 tn_buf, i - min_off, access_size); 3074 } 3075 return -EACCES; 3076 mark: 3077 /* reading any byte out of 8-byte 'spill_slot' will cause 3078 * the whole slot to be marked as 'read' 3079 */ 3080 mark_reg_read(env, &state->stack[spi].spilled_ptr, 3081 state->stack[spi].spilled_ptr.parent, 3082 REG_LIVE_READ64); 3083 } 3084 return update_stack_depth(env, state, min_off); 3085 } 3086 3087 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 3088 int access_size, bool zero_size_allowed, 3089 struct bpf_call_arg_meta *meta) 3090 { 3091 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 3092 3093 switch (reg->type) { 3094 case PTR_TO_PACKET: 3095 case PTR_TO_PACKET_META: 3096 return check_packet_access(env, regno, reg->off, access_size, 3097 zero_size_allowed); 3098 case PTR_TO_MAP_VALUE: 3099 if (check_map_access_type(env, regno, reg->off, access_size, 3100 meta && meta->raw_mode ? BPF_WRITE : 3101 BPF_READ)) 3102 return -EACCES; 3103 return check_map_access(env, regno, reg->off, access_size, 3104 zero_size_allowed); 3105 default: /* scalar_value|ptr_to_stack or invalid ptr */ 3106 return check_stack_boundary(env, regno, access_size, 3107 zero_size_allowed, meta); 3108 } 3109 } 3110 3111 /* Implementation details: 3112 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL 3113 * Two bpf_map_lookups (even with the same key) will have different reg->id. 3114 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after 3115 * value_or_null->value transition, since the verifier only cares about 3116 * the range of access to valid map value pointer and doesn't care about actual 3117 * address of the map element. 3118 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 3119 * reg->id > 0 after value_or_null->value transition. By doing so 3120 * two bpf_map_lookups will be considered two different pointers that 3121 * point to different bpf_spin_locks. 3122 * The verifier allows taking only one bpf_spin_lock at a time to avoid 3123 * dead-locks. 3124 * Since only one bpf_spin_lock is allowed the checks are simpler than 3125 * reg_is_refcounted() logic. The verifier needs to remember only 3126 * one spin_lock instead of array of acquired_refs. 3127 * cur_state->active_spin_lock remembers which map value element got locked 3128 * and clears it after bpf_spin_unlock. 3129 */ 3130 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 3131 bool is_lock) 3132 { 3133 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 3134 struct bpf_verifier_state *cur = env->cur_state; 3135 bool is_const = tnum_is_const(reg->var_off); 3136 struct bpf_map *map = reg->map_ptr; 3137 u64 val = reg->var_off.value; 3138 3139 if (reg->type != PTR_TO_MAP_VALUE) { 3140 verbose(env, "R%d is not a pointer to map_value\n", regno); 3141 return -EINVAL; 3142 } 3143 if (!is_const) { 3144 verbose(env, 3145 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 3146 regno); 3147 return -EINVAL; 3148 } 3149 if (!map->btf) { 3150 verbose(env, 3151 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 3152 map->name); 3153 return -EINVAL; 3154 } 3155 if (!map_value_has_spin_lock(map)) { 3156 if (map->spin_lock_off == -E2BIG) 3157 verbose(env, 3158 "map '%s' has more than one 'struct bpf_spin_lock'\n", 3159 map->name); 3160 else if (map->spin_lock_off == -ENOENT) 3161 verbose(env, 3162 "map '%s' doesn't have 'struct bpf_spin_lock'\n", 3163 map->name); 3164 else 3165 verbose(env, 3166 "map '%s' is not a struct type or bpf_spin_lock is mangled\n", 3167 map->name); 3168 return -EINVAL; 3169 } 3170 if (map->spin_lock_off != val + reg->off) { 3171 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n", 3172 val + reg->off); 3173 return -EINVAL; 3174 } 3175 if (is_lock) { 3176 if (cur->active_spin_lock) { 3177 verbose(env, 3178 "Locking two bpf_spin_locks are not allowed\n"); 3179 return -EINVAL; 3180 } 3181 cur->active_spin_lock = reg->id; 3182 } else { 3183 if (!cur->active_spin_lock) { 3184 verbose(env, "bpf_spin_unlock without taking a lock\n"); 3185 return -EINVAL; 3186 } 3187 if (cur->active_spin_lock != reg->id) { 3188 verbose(env, "bpf_spin_unlock of different lock\n"); 3189 return -EINVAL; 3190 } 3191 cur->active_spin_lock = 0; 3192 } 3193 return 0; 3194 } 3195 3196 static bool arg_type_is_mem_ptr(enum bpf_arg_type type) 3197 { 3198 return type == ARG_PTR_TO_MEM || 3199 type == ARG_PTR_TO_MEM_OR_NULL || 3200 type == ARG_PTR_TO_UNINIT_MEM; 3201 } 3202 3203 static bool arg_type_is_mem_size(enum bpf_arg_type type) 3204 { 3205 return type == ARG_CONST_SIZE || 3206 type == ARG_CONST_SIZE_OR_ZERO; 3207 } 3208 3209 static bool arg_type_is_int_ptr(enum bpf_arg_type type) 3210 { 3211 return type == ARG_PTR_TO_INT || 3212 type == ARG_PTR_TO_LONG; 3213 } 3214 3215 static int int_ptr_type_to_size(enum bpf_arg_type type) 3216 { 3217 if (type == ARG_PTR_TO_INT) 3218 return sizeof(u32); 3219 else if (type == ARG_PTR_TO_LONG) 3220 return sizeof(u64); 3221 3222 return -EINVAL; 3223 } 3224 3225 static int check_func_arg(struct bpf_verifier_env *env, u32 regno, 3226 enum bpf_arg_type arg_type, 3227 struct bpf_call_arg_meta *meta) 3228 { 3229 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 3230 enum bpf_reg_type expected_type, type = reg->type; 3231 int err = 0; 3232 3233 if (arg_type == ARG_DONTCARE) 3234 return 0; 3235 3236 err = check_reg_arg(env, regno, SRC_OP); 3237 if (err) 3238 return err; 3239 3240 if (arg_type == ARG_ANYTHING) { 3241 if (is_pointer_value(env, regno)) { 3242 verbose(env, "R%d leaks addr into helper function\n", 3243 regno); 3244 return -EACCES; 3245 } 3246 return 0; 3247 } 3248 3249 if (type_is_pkt_pointer(type) && 3250 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 3251 verbose(env, "helper access to the packet is not allowed\n"); 3252 return -EACCES; 3253 } 3254 3255 if (arg_type == ARG_PTR_TO_MAP_KEY || 3256 arg_type == ARG_PTR_TO_MAP_VALUE || 3257 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE || 3258 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) { 3259 expected_type = PTR_TO_STACK; 3260 if (register_is_null(reg) && 3261 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) 3262 /* final test in check_stack_boundary() */; 3263 else if (!type_is_pkt_pointer(type) && 3264 type != PTR_TO_MAP_VALUE && 3265 type != expected_type) 3266 goto err_type; 3267 } else if (arg_type == ARG_CONST_SIZE || 3268 arg_type == ARG_CONST_SIZE_OR_ZERO) { 3269 expected_type = SCALAR_VALUE; 3270 if (type != expected_type) 3271 goto err_type; 3272 } else if (arg_type == ARG_CONST_MAP_PTR) { 3273 expected_type = CONST_PTR_TO_MAP; 3274 if (type != expected_type) 3275 goto err_type; 3276 } else if (arg_type == ARG_PTR_TO_CTX) { 3277 expected_type = PTR_TO_CTX; 3278 if (type != expected_type) 3279 goto err_type; 3280 err = check_ctx_reg(env, reg, regno); 3281 if (err < 0) 3282 return err; 3283 } else if (arg_type == ARG_PTR_TO_SOCK_COMMON) { 3284 expected_type = PTR_TO_SOCK_COMMON; 3285 /* Any sk pointer can be ARG_PTR_TO_SOCK_COMMON */ 3286 if (!type_is_sk_pointer(type)) 3287 goto err_type; 3288 if (reg->ref_obj_id) { 3289 if (meta->ref_obj_id) { 3290 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 3291 regno, reg->ref_obj_id, 3292 meta->ref_obj_id); 3293 return -EFAULT; 3294 } 3295 meta->ref_obj_id = reg->ref_obj_id; 3296 } 3297 } else if (arg_type == ARG_PTR_TO_SOCKET) { 3298 expected_type = PTR_TO_SOCKET; 3299 if (type != expected_type) 3300 goto err_type; 3301 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) { 3302 if (meta->func_id == BPF_FUNC_spin_lock) { 3303 if (process_spin_lock(env, regno, true)) 3304 return -EACCES; 3305 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 3306 if (process_spin_lock(env, regno, false)) 3307 return -EACCES; 3308 } else { 3309 verbose(env, "verifier internal error\n"); 3310 return -EFAULT; 3311 } 3312 } else if (arg_type_is_mem_ptr(arg_type)) { 3313 expected_type = PTR_TO_STACK; 3314 /* One exception here. In case function allows for NULL to be 3315 * passed in as argument, it's a SCALAR_VALUE type. Final test 3316 * happens during stack boundary checking. 3317 */ 3318 if (register_is_null(reg) && 3319 arg_type == ARG_PTR_TO_MEM_OR_NULL) 3320 /* final test in check_stack_boundary() */; 3321 else if (!type_is_pkt_pointer(type) && 3322 type != PTR_TO_MAP_VALUE && 3323 type != expected_type) 3324 goto err_type; 3325 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM; 3326 } else if (arg_type_is_int_ptr(arg_type)) { 3327 expected_type = PTR_TO_STACK; 3328 if (!type_is_pkt_pointer(type) && 3329 type != PTR_TO_MAP_VALUE && 3330 type != expected_type) 3331 goto err_type; 3332 } else { 3333 verbose(env, "unsupported arg_type %d\n", arg_type); 3334 return -EFAULT; 3335 } 3336 3337 if (arg_type == ARG_CONST_MAP_PTR) { 3338 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 3339 meta->map_ptr = reg->map_ptr; 3340 } else if (arg_type == ARG_PTR_TO_MAP_KEY) { 3341 /* bpf_map_xxx(..., map_ptr, ..., key) call: 3342 * check that [key, key + map->key_size) are within 3343 * stack limits and initialized 3344 */ 3345 if (!meta->map_ptr) { 3346 /* in function declaration map_ptr must come before 3347 * map_key, so that it's verified and known before 3348 * we have to check map_key here. Otherwise it means 3349 * that kernel subsystem misconfigured verifier 3350 */ 3351 verbose(env, "invalid map_ptr to access map->key\n"); 3352 return -EACCES; 3353 } 3354 err = check_helper_mem_access(env, regno, 3355 meta->map_ptr->key_size, false, 3356 NULL); 3357 } else if (arg_type == ARG_PTR_TO_MAP_VALUE || 3358 (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL && 3359 !register_is_null(reg)) || 3360 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) { 3361 /* bpf_map_xxx(..., map_ptr, ..., value) call: 3362 * check [value, value + map->value_size) validity 3363 */ 3364 if (!meta->map_ptr) { 3365 /* kernel subsystem misconfigured verifier */ 3366 verbose(env, "invalid map_ptr to access map->value\n"); 3367 return -EACCES; 3368 } 3369 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE); 3370 err = check_helper_mem_access(env, regno, 3371 meta->map_ptr->value_size, false, 3372 meta); 3373 } else if (arg_type_is_mem_size(arg_type)) { 3374 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO); 3375 3376 /* remember the mem_size which may be used later 3377 * to refine return values. 3378 */ 3379 meta->msize_smax_value = reg->smax_value; 3380 meta->msize_umax_value = reg->umax_value; 3381 3382 /* The register is SCALAR_VALUE; the access check 3383 * happens using its boundaries. 3384 */ 3385 if (!tnum_is_const(reg->var_off)) 3386 /* For unprivileged variable accesses, disable raw 3387 * mode so that the program is required to 3388 * initialize all the memory that the helper could 3389 * just partially fill up. 3390 */ 3391 meta = NULL; 3392 3393 if (reg->smin_value < 0) { 3394 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 3395 regno); 3396 return -EACCES; 3397 } 3398 3399 if (reg->umin_value == 0) { 3400 err = check_helper_mem_access(env, regno - 1, 0, 3401 zero_size_allowed, 3402 meta); 3403 if (err) 3404 return err; 3405 } 3406 3407 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 3408 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 3409 regno); 3410 return -EACCES; 3411 } 3412 err = check_helper_mem_access(env, regno - 1, 3413 reg->umax_value, 3414 zero_size_allowed, meta); 3415 if (!err) 3416 err = mark_chain_precision(env, regno); 3417 } else if (arg_type_is_int_ptr(arg_type)) { 3418 int size = int_ptr_type_to_size(arg_type); 3419 3420 err = check_helper_mem_access(env, regno, size, false, meta); 3421 if (err) 3422 return err; 3423 err = check_ptr_alignment(env, reg, 0, size, true); 3424 } 3425 3426 return err; 3427 err_type: 3428 verbose(env, "R%d type=%s expected=%s\n", regno, 3429 reg_type_str[type], reg_type_str[expected_type]); 3430 return -EACCES; 3431 } 3432 3433 static int check_map_func_compatibility(struct bpf_verifier_env *env, 3434 struct bpf_map *map, int func_id) 3435 { 3436 if (!map) 3437 return 0; 3438 3439 /* We need a two way check, first is from map perspective ... */ 3440 switch (map->map_type) { 3441 case BPF_MAP_TYPE_PROG_ARRAY: 3442 if (func_id != BPF_FUNC_tail_call) 3443 goto error; 3444 break; 3445 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 3446 if (func_id != BPF_FUNC_perf_event_read && 3447 func_id != BPF_FUNC_perf_event_output && 3448 func_id != BPF_FUNC_perf_event_read_value) 3449 goto error; 3450 break; 3451 case BPF_MAP_TYPE_STACK_TRACE: 3452 if (func_id != BPF_FUNC_get_stackid) 3453 goto error; 3454 break; 3455 case BPF_MAP_TYPE_CGROUP_ARRAY: 3456 if (func_id != BPF_FUNC_skb_under_cgroup && 3457 func_id != BPF_FUNC_current_task_under_cgroup) 3458 goto error; 3459 break; 3460 case BPF_MAP_TYPE_CGROUP_STORAGE: 3461 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 3462 if (func_id != BPF_FUNC_get_local_storage) 3463 goto error; 3464 break; 3465 case BPF_MAP_TYPE_DEVMAP: 3466 if (func_id != BPF_FUNC_redirect_map && 3467 func_id != BPF_FUNC_map_lookup_elem) 3468 goto error; 3469 break; 3470 /* Restrict bpf side of cpumap and xskmap, open when use-cases 3471 * appear. 3472 */ 3473 case BPF_MAP_TYPE_CPUMAP: 3474 if (func_id != BPF_FUNC_redirect_map) 3475 goto error; 3476 break; 3477 case BPF_MAP_TYPE_XSKMAP: 3478 if (func_id != BPF_FUNC_redirect_map && 3479 func_id != BPF_FUNC_map_lookup_elem) 3480 goto error; 3481 break; 3482 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 3483 case BPF_MAP_TYPE_HASH_OF_MAPS: 3484 if (func_id != BPF_FUNC_map_lookup_elem) 3485 goto error; 3486 break; 3487 case BPF_MAP_TYPE_SOCKMAP: 3488 if (func_id != BPF_FUNC_sk_redirect_map && 3489 func_id != BPF_FUNC_sock_map_update && 3490 func_id != BPF_FUNC_map_delete_elem && 3491 func_id != BPF_FUNC_msg_redirect_map) 3492 goto error; 3493 break; 3494 case BPF_MAP_TYPE_SOCKHASH: 3495 if (func_id != BPF_FUNC_sk_redirect_hash && 3496 func_id != BPF_FUNC_sock_hash_update && 3497 func_id != BPF_FUNC_map_delete_elem && 3498 func_id != BPF_FUNC_msg_redirect_hash) 3499 goto error; 3500 break; 3501 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 3502 if (func_id != BPF_FUNC_sk_select_reuseport) 3503 goto error; 3504 break; 3505 case BPF_MAP_TYPE_QUEUE: 3506 case BPF_MAP_TYPE_STACK: 3507 if (func_id != BPF_FUNC_map_peek_elem && 3508 func_id != BPF_FUNC_map_pop_elem && 3509 func_id != BPF_FUNC_map_push_elem) 3510 goto error; 3511 break; 3512 case BPF_MAP_TYPE_SK_STORAGE: 3513 if (func_id != BPF_FUNC_sk_storage_get && 3514 func_id != BPF_FUNC_sk_storage_delete) 3515 goto error; 3516 break; 3517 default: 3518 break; 3519 } 3520 3521 /* ... and second from the function itself. */ 3522 switch (func_id) { 3523 case BPF_FUNC_tail_call: 3524 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 3525 goto error; 3526 if (env->subprog_cnt > 1) { 3527 verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n"); 3528 return -EINVAL; 3529 } 3530 break; 3531 case BPF_FUNC_perf_event_read: 3532 case BPF_FUNC_perf_event_output: 3533 case BPF_FUNC_perf_event_read_value: 3534 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 3535 goto error; 3536 break; 3537 case BPF_FUNC_get_stackid: 3538 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 3539 goto error; 3540 break; 3541 case BPF_FUNC_current_task_under_cgroup: 3542 case BPF_FUNC_skb_under_cgroup: 3543 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 3544 goto error; 3545 break; 3546 case BPF_FUNC_redirect_map: 3547 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 3548 map->map_type != BPF_MAP_TYPE_CPUMAP && 3549 map->map_type != BPF_MAP_TYPE_XSKMAP) 3550 goto error; 3551 break; 3552 case BPF_FUNC_sk_redirect_map: 3553 case BPF_FUNC_msg_redirect_map: 3554 case BPF_FUNC_sock_map_update: 3555 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 3556 goto error; 3557 break; 3558 case BPF_FUNC_sk_redirect_hash: 3559 case BPF_FUNC_msg_redirect_hash: 3560 case BPF_FUNC_sock_hash_update: 3561 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 3562 goto error; 3563 break; 3564 case BPF_FUNC_get_local_storage: 3565 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 3566 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 3567 goto error; 3568 break; 3569 case BPF_FUNC_sk_select_reuseport: 3570 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY) 3571 goto error; 3572 break; 3573 case BPF_FUNC_map_peek_elem: 3574 case BPF_FUNC_map_pop_elem: 3575 case BPF_FUNC_map_push_elem: 3576 if (map->map_type != BPF_MAP_TYPE_QUEUE && 3577 map->map_type != BPF_MAP_TYPE_STACK) 3578 goto error; 3579 break; 3580 case BPF_FUNC_sk_storage_get: 3581 case BPF_FUNC_sk_storage_delete: 3582 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 3583 goto error; 3584 break; 3585 default: 3586 break; 3587 } 3588 3589 return 0; 3590 error: 3591 verbose(env, "cannot pass map_type %d into func %s#%d\n", 3592 map->map_type, func_id_name(func_id), func_id); 3593 return -EINVAL; 3594 } 3595 3596 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 3597 { 3598 int count = 0; 3599 3600 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 3601 count++; 3602 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 3603 count++; 3604 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 3605 count++; 3606 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 3607 count++; 3608 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 3609 count++; 3610 3611 /* We only support one arg being in raw mode at the moment, 3612 * which is sufficient for the helper functions we have 3613 * right now. 3614 */ 3615 return count <= 1; 3616 } 3617 3618 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr, 3619 enum bpf_arg_type arg_next) 3620 { 3621 return (arg_type_is_mem_ptr(arg_curr) && 3622 !arg_type_is_mem_size(arg_next)) || 3623 (!arg_type_is_mem_ptr(arg_curr) && 3624 arg_type_is_mem_size(arg_next)); 3625 } 3626 3627 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 3628 { 3629 /* bpf_xxx(..., buf, len) call will access 'len' 3630 * bytes from memory 'buf'. Both arg types need 3631 * to be paired, so make sure there's no buggy 3632 * helper function specification. 3633 */ 3634 if (arg_type_is_mem_size(fn->arg1_type) || 3635 arg_type_is_mem_ptr(fn->arg5_type) || 3636 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) || 3637 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) || 3638 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) || 3639 check_args_pair_invalid(fn->arg4_type, fn->arg5_type)) 3640 return false; 3641 3642 return true; 3643 } 3644 3645 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id) 3646 { 3647 int count = 0; 3648 3649 if (arg_type_may_be_refcounted(fn->arg1_type)) 3650 count++; 3651 if (arg_type_may_be_refcounted(fn->arg2_type)) 3652 count++; 3653 if (arg_type_may_be_refcounted(fn->arg3_type)) 3654 count++; 3655 if (arg_type_may_be_refcounted(fn->arg4_type)) 3656 count++; 3657 if (arg_type_may_be_refcounted(fn->arg5_type)) 3658 count++; 3659 3660 /* A reference acquiring function cannot acquire 3661 * another refcounted ptr. 3662 */ 3663 if (is_acquire_function(func_id) && count) 3664 return false; 3665 3666 /* We only support one arg being unreferenced at the moment, 3667 * which is sufficient for the helper functions we have right now. 3668 */ 3669 return count <= 1; 3670 } 3671 3672 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 3673 { 3674 return check_raw_mode_ok(fn) && 3675 check_arg_pair_ok(fn) && 3676 check_refcount_ok(fn, func_id) ? 0 : -EINVAL; 3677 } 3678 3679 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 3680 * are now invalid, so turn them into unknown SCALAR_VALUE. 3681 */ 3682 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env, 3683 struct bpf_func_state *state) 3684 { 3685 struct bpf_reg_state *regs = state->regs, *reg; 3686 int i; 3687 3688 for (i = 0; i < MAX_BPF_REG; i++) 3689 if (reg_is_pkt_pointer_any(®s[i])) 3690 mark_reg_unknown(env, regs, i); 3691 3692 bpf_for_each_spilled_reg(i, state, reg) { 3693 if (!reg) 3694 continue; 3695 if (reg_is_pkt_pointer_any(reg)) 3696 __mark_reg_unknown(reg); 3697 } 3698 } 3699 3700 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 3701 { 3702 struct bpf_verifier_state *vstate = env->cur_state; 3703 int i; 3704 3705 for (i = 0; i <= vstate->curframe; i++) 3706 __clear_all_pkt_pointers(env, vstate->frame[i]); 3707 } 3708 3709 static void release_reg_references(struct bpf_verifier_env *env, 3710 struct bpf_func_state *state, 3711 int ref_obj_id) 3712 { 3713 struct bpf_reg_state *regs = state->regs, *reg; 3714 int i; 3715 3716 for (i = 0; i < MAX_BPF_REG; i++) 3717 if (regs[i].ref_obj_id == ref_obj_id) 3718 mark_reg_unknown(env, regs, i); 3719 3720 bpf_for_each_spilled_reg(i, state, reg) { 3721 if (!reg) 3722 continue; 3723 if (reg->ref_obj_id == ref_obj_id) 3724 __mark_reg_unknown(reg); 3725 } 3726 } 3727 3728 /* The pointer with the specified id has released its reference to kernel 3729 * resources. Identify all copies of the same pointer and clear the reference. 3730 */ 3731 static int release_reference(struct bpf_verifier_env *env, 3732 int ref_obj_id) 3733 { 3734 struct bpf_verifier_state *vstate = env->cur_state; 3735 int err; 3736 int i; 3737 3738 err = release_reference_state(cur_func(env), ref_obj_id); 3739 if (err) 3740 return err; 3741 3742 for (i = 0; i <= vstate->curframe; i++) 3743 release_reg_references(env, vstate->frame[i], ref_obj_id); 3744 3745 return 0; 3746 } 3747 3748 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 3749 int *insn_idx) 3750 { 3751 struct bpf_verifier_state *state = env->cur_state; 3752 struct bpf_func_state *caller, *callee; 3753 int i, err, subprog, target_insn; 3754 3755 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 3756 verbose(env, "the call stack of %d frames is too deep\n", 3757 state->curframe + 2); 3758 return -E2BIG; 3759 } 3760 3761 target_insn = *insn_idx + insn->imm; 3762 subprog = find_subprog(env, target_insn + 1); 3763 if (subprog < 0) { 3764 verbose(env, "verifier bug. No program starts at insn %d\n", 3765 target_insn + 1); 3766 return -EFAULT; 3767 } 3768 3769 caller = state->frame[state->curframe]; 3770 if (state->frame[state->curframe + 1]) { 3771 verbose(env, "verifier bug. Frame %d already allocated\n", 3772 state->curframe + 1); 3773 return -EFAULT; 3774 } 3775 3776 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 3777 if (!callee) 3778 return -ENOMEM; 3779 state->frame[state->curframe + 1] = callee; 3780 3781 /* callee cannot access r0, r6 - r9 for reading and has to write 3782 * into its own stack before reading from it. 3783 * callee can read/write into caller's stack 3784 */ 3785 init_func_state(env, callee, 3786 /* remember the callsite, it will be used by bpf_exit */ 3787 *insn_idx /* callsite */, 3788 state->curframe + 1 /* frameno within this callchain */, 3789 subprog /* subprog number within this prog */); 3790 3791 /* Transfer references to the callee */ 3792 err = transfer_reference_state(callee, caller); 3793 if (err) 3794 return err; 3795 3796 /* copy r1 - r5 args that callee can access. The copy includes parent 3797 * pointers, which connects us up to the liveness chain 3798 */ 3799 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 3800 callee->regs[i] = caller->regs[i]; 3801 3802 /* after the call registers r0 - r5 were scratched */ 3803 for (i = 0; i < CALLER_SAVED_REGS; i++) { 3804 mark_reg_not_init(env, caller->regs, caller_saved[i]); 3805 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 3806 } 3807 3808 /* only increment it after check_reg_arg() finished */ 3809 state->curframe++; 3810 3811 /* and go analyze first insn of the callee */ 3812 *insn_idx = target_insn; 3813 3814 if (env->log.level & BPF_LOG_LEVEL) { 3815 verbose(env, "caller:\n"); 3816 print_verifier_state(env, caller); 3817 verbose(env, "callee:\n"); 3818 print_verifier_state(env, callee); 3819 } 3820 return 0; 3821 } 3822 3823 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 3824 { 3825 struct bpf_verifier_state *state = env->cur_state; 3826 struct bpf_func_state *caller, *callee; 3827 struct bpf_reg_state *r0; 3828 int err; 3829 3830 callee = state->frame[state->curframe]; 3831 r0 = &callee->regs[BPF_REG_0]; 3832 if (r0->type == PTR_TO_STACK) { 3833 /* technically it's ok to return caller's stack pointer 3834 * (or caller's caller's pointer) back to the caller, 3835 * since these pointers are valid. Only current stack 3836 * pointer will be invalid as soon as function exits, 3837 * but let's be conservative 3838 */ 3839 verbose(env, "cannot return stack pointer to the caller\n"); 3840 return -EINVAL; 3841 } 3842 3843 state->curframe--; 3844 caller = state->frame[state->curframe]; 3845 /* return to the caller whatever r0 had in the callee */ 3846 caller->regs[BPF_REG_0] = *r0; 3847 3848 /* Transfer references to the caller */ 3849 err = transfer_reference_state(caller, callee); 3850 if (err) 3851 return err; 3852 3853 *insn_idx = callee->callsite + 1; 3854 if (env->log.level & BPF_LOG_LEVEL) { 3855 verbose(env, "returning from callee:\n"); 3856 print_verifier_state(env, callee); 3857 verbose(env, "to caller at %d:\n", *insn_idx); 3858 print_verifier_state(env, caller); 3859 } 3860 /* clear everything in the callee */ 3861 free_func_state(callee); 3862 state->frame[state->curframe + 1] = NULL; 3863 return 0; 3864 } 3865 3866 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 3867 int func_id, 3868 struct bpf_call_arg_meta *meta) 3869 { 3870 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 3871 3872 if (ret_type != RET_INTEGER || 3873 (func_id != BPF_FUNC_get_stack && 3874 func_id != BPF_FUNC_probe_read_str)) 3875 return; 3876 3877 ret_reg->smax_value = meta->msize_smax_value; 3878 ret_reg->umax_value = meta->msize_umax_value; 3879 __reg_deduce_bounds(ret_reg); 3880 __reg_bound_offset(ret_reg); 3881 } 3882 3883 static int 3884 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 3885 int func_id, int insn_idx) 3886 { 3887 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 3888 struct bpf_map *map = meta->map_ptr; 3889 3890 if (func_id != BPF_FUNC_tail_call && 3891 func_id != BPF_FUNC_map_lookup_elem && 3892 func_id != BPF_FUNC_map_update_elem && 3893 func_id != BPF_FUNC_map_delete_elem && 3894 func_id != BPF_FUNC_map_push_elem && 3895 func_id != BPF_FUNC_map_pop_elem && 3896 func_id != BPF_FUNC_map_peek_elem) 3897 return 0; 3898 3899 if (map == NULL) { 3900 verbose(env, "kernel subsystem misconfigured verifier\n"); 3901 return -EINVAL; 3902 } 3903 3904 /* In case of read-only, some additional restrictions 3905 * need to be applied in order to prevent altering the 3906 * state of the map from program side. 3907 */ 3908 if ((map->map_flags & BPF_F_RDONLY_PROG) && 3909 (func_id == BPF_FUNC_map_delete_elem || 3910 func_id == BPF_FUNC_map_update_elem || 3911 func_id == BPF_FUNC_map_push_elem || 3912 func_id == BPF_FUNC_map_pop_elem)) { 3913 verbose(env, "write into map forbidden\n"); 3914 return -EACCES; 3915 } 3916 3917 if (!BPF_MAP_PTR(aux->map_state)) 3918 bpf_map_ptr_store(aux, meta->map_ptr, 3919 meta->map_ptr->unpriv_array); 3920 else if (BPF_MAP_PTR(aux->map_state) != meta->map_ptr) 3921 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 3922 meta->map_ptr->unpriv_array); 3923 return 0; 3924 } 3925 3926 static int check_reference_leak(struct bpf_verifier_env *env) 3927 { 3928 struct bpf_func_state *state = cur_func(env); 3929 int i; 3930 3931 for (i = 0; i < state->acquired_refs; i++) { 3932 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 3933 state->refs[i].id, state->refs[i].insn_idx); 3934 } 3935 return state->acquired_refs ? -EINVAL : 0; 3936 } 3937 3938 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx) 3939 { 3940 const struct bpf_func_proto *fn = NULL; 3941 struct bpf_reg_state *regs; 3942 struct bpf_call_arg_meta meta; 3943 bool changes_data; 3944 int i, err; 3945 3946 /* find function prototype */ 3947 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 3948 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 3949 func_id); 3950 return -EINVAL; 3951 } 3952 3953 if (env->ops->get_func_proto) 3954 fn = env->ops->get_func_proto(func_id, env->prog); 3955 if (!fn) { 3956 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 3957 func_id); 3958 return -EINVAL; 3959 } 3960 3961 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 3962 if (!env->prog->gpl_compatible && fn->gpl_only) { 3963 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 3964 return -EINVAL; 3965 } 3966 3967 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 3968 changes_data = bpf_helper_changes_pkt_data(fn->func); 3969 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 3970 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 3971 func_id_name(func_id), func_id); 3972 return -EINVAL; 3973 } 3974 3975 memset(&meta, 0, sizeof(meta)); 3976 meta.pkt_access = fn->pkt_access; 3977 3978 err = check_func_proto(fn, func_id); 3979 if (err) { 3980 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 3981 func_id_name(func_id), func_id); 3982 return err; 3983 } 3984 3985 meta.func_id = func_id; 3986 /* check args */ 3987 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta); 3988 if (err) 3989 return err; 3990 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta); 3991 if (err) 3992 return err; 3993 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta); 3994 if (err) 3995 return err; 3996 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta); 3997 if (err) 3998 return err; 3999 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta); 4000 if (err) 4001 return err; 4002 4003 err = record_func_map(env, &meta, func_id, insn_idx); 4004 if (err) 4005 return err; 4006 4007 /* Mark slots with STACK_MISC in case of raw mode, stack offset 4008 * is inferred from register state. 4009 */ 4010 for (i = 0; i < meta.access_size; i++) { 4011 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 4012 BPF_WRITE, -1, false); 4013 if (err) 4014 return err; 4015 } 4016 4017 if (func_id == BPF_FUNC_tail_call) { 4018 err = check_reference_leak(env); 4019 if (err) { 4020 verbose(env, "tail_call would lead to reference leak\n"); 4021 return err; 4022 } 4023 } else if (is_release_function(func_id)) { 4024 err = release_reference(env, meta.ref_obj_id); 4025 if (err) { 4026 verbose(env, "func %s#%d reference has not been acquired before\n", 4027 func_id_name(func_id), func_id); 4028 return err; 4029 } 4030 } 4031 4032 regs = cur_regs(env); 4033 4034 /* check that flags argument in get_local_storage(map, flags) is 0, 4035 * this is required because get_local_storage() can't return an error. 4036 */ 4037 if (func_id == BPF_FUNC_get_local_storage && 4038 !register_is_null(®s[BPF_REG_2])) { 4039 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 4040 return -EINVAL; 4041 } 4042 4043 /* reset caller saved regs */ 4044 for (i = 0; i < CALLER_SAVED_REGS; i++) { 4045 mark_reg_not_init(env, regs, caller_saved[i]); 4046 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 4047 } 4048 4049 /* helper call returns 64-bit value. */ 4050 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 4051 4052 /* update return register (already marked as written above) */ 4053 if (fn->ret_type == RET_INTEGER) { 4054 /* sets type to SCALAR_VALUE */ 4055 mark_reg_unknown(env, regs, BPF_REG_0); 4056 } else if (fn->ret_type == RET_VOID) { 4057 regs[BPF_REG_0].type = NOT_INIT; 4058 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL || 4059 fn->ret_type == RET_PTR_TO_MAP_VALUE) { 4060 /* There is no offset yet applied, variable or fixed */ 4061 mark_reg_known_zero(env, regs, BPF_REG_0); 4062 /* remember map_ptr, so that check_map_access() 4063 * can check 'value_size' boundary of memory access 4064 * to map element returned from bpf_map_lookup_elem() 4065 */ 4066 if (meta.map_ptr == NULL) { 4067 verbose(env, 4068 "kernel subsystem misconfigured verifier\n"); 4069 return -EINVAL; 4070 } 4071 regs[BPF_REG_0].map_ptr = meta.map_ptr; 4072 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) { 4073 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE; 4074 if (map_value_has_spin_lock(meta.map_ptr)) 4075 regs[BPF_REG_0].id = ++env->id_gen; 4076 } else { 4077 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL; 4078 regs[BPF_REG_0].id = ++env->id_gen; 4079 } 4080 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) { 4081 mark_reg_known_zero(env, regs, BPF_REG_0); 4082 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL; 4083 regs[BPF_REG_0].id = ++env->id_gen; 4084 } else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) { 4085 mark_reg_known_zero(env, regs, BPF_REG_0); 4086 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL; 4087 regs[BPF_REG_0].id = ++env->id_gen; 4088 } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) { 4089 mark_reg_known_zero(env, regs, BPF_REG_0); 4090 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL; 4091 regs[BPF_REG_0].id = ++env->id_gen; 4092 } else { 4093 verbose(env, "unknown return type %d of func %s#%d\n", 4094 fn->ret_type, func_id_name(func_id), func_id); 4095 return -EINVAL; 4096 } 4097 4098 if (is_ptr_cast_function(func_id)) { 4099 /* For release_reference() */ 4100 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 4101 } else if (is_acquire_function(func_id)) { 4102 int id = acquire_reference_state(env, insn_idx); 4103 4104 if (id < 0) 4105 return id; 4106 /* For mark_ptr_or_null_reg() */ 4107 regs[BPF_REG_0].id = id; 4108 /* For release_reference() */ 4109 regs[BPF_REG_0].ref_obj_id = id; 4110 } 4111 4112 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 4113 4114 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 4115 if (err) 4116 return err; 4117 4118 if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) { 4119 const char *err_str; 4120 4121 #ifdef CONFIG_PERF_EVENTS 4122 err = get_callchain_buffers(sysctl_perf_event_max_stack); 4123 err_str = "cannot get callchain buffer for func %s#%d\n"; 4124 #else 4125 err = -ENOTSUPP; 4126 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 4127 #endif 4128 if (err) { 4129 verbose(env, err_str, func_id_name(func_id), func_id); 4130 return err; 4131 } 4132 4133 env->prog->has_callchain_buf = true; 4134 } 4135 4136 if (changes_data) 4137 clear_all_pkt_pointers(env); 4138 return 0; 4139 } 4140 4141 static bool signed_add_overflows(s64 a, s64 b) 4142 { 4143 /* Do the add in u64, where overflow is well-defined */ 4144 s64 res = (s64)((u64)a + (u64)b); 4145 4146 if (b < 0) 4147 return res > a; 4148 return res < a; 4149 } 4150 4151 static bool signed_sub_overflows(s64 a, s64 b) 4152 { 4153 /* Do the sub in u64, where overflow is well-defined */ 4154 s64 res = (s64)((u64)a - (u64)b); 4155 4156 if (b < 0) 4157 return res < a; 4158 return res > a; 4159 } 4160 4161 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 4162 const struct bpf_reg_state *reg, 4163 enum bpf_reg_type type) 4164 { 4165 bool known = tnum_is_const(reg->var_off); 4166 s64 val = reg->var_off.value; 4167 s64 smin = reg->smin_value; 4168 4169 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 4170 verbose(env, "math between %s pointer and %lld is not allowed\n", 4171 reg_type_str[type], val); 4172 return false; 4173 } 4174 4175 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 4176 verbose(env, "%s pointer offset %d is not allowed\n", 4177 reg_type_str[type], reg->off); 4178 return false; 4179 } 4180 4181 if (smin == S64_MIN) { 4182 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 4183 reg_type_str[type]); 4184 return false; 4185 } 4186 4187 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 4188 verbose(env, "value %lld makes %s pointer be out of bounds\n", 4189 smin, reg_type_str[type]); 4190 return false; 4191 } 4192 4193 return true; 4194 } 4195 4196 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 4197 { 4198 return &env->insn_aux_data[env->insn_idx]; 4199 } 4200 4201 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 4202 u32 *ptr_limit, u8 opcode, bool off_is_neg) 4203 { 4204 bool mask_to_left = (opcode == BPF_ADD && off_is_neg) || 4205 (opcode == BPF_SUB && !off_is_neg); 4206 u32 off; 4207 4208 switch (ptr_reg->type) { 4209 case PTR_TO_STACK: 4210 /* Indirect variable offset stack access is prohibited in 4211 * unprivileged mode so it's not handled here. 4212 */ 4213 off = ptr_reg->off + ptr_reg->var_off.value; 4214 if (mask_to_left) 4215 *ptr_limit = MAX_BPF_STACK + off; 4216 else 4217 *ptr_limit = -off; 4218 return 0; 4219 case PTR_TO_MAP_VALUE: 4220 if (mask_to_left) { 4221 *ptr_limit = ptr_reg->umax_value + ptr_reg->off; 4222 } else { 4223 off = ptr_reg->smin_value + ptr_reg->off; 4224 *ptr_limit = ptr_reg->map_ptr->value_size - off; 4225 } 4226 return 0; 4227 default: 4228 return -EINVAL; 4229 } 4230 } 4231 4232 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 4233 const struct bpf_insn *insn) 4234 { 4235 return env->allow_ptr_leaks || BPF_SRC(insn->code) == BPF_K; 4236 } 4237 4238 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 4239 u32 alu_state, u32 alu_limit) 4240 { 4241 /* If we arrived here from different branches with different 4242 * state or limits to sanitize, then this won't work. 4243 */ 4244 if (aux->alu_state && 4245 (aux->alu_state != alu_state || 4246 aux->alu_limit != alu_limit)) 4247 return -EACCES; 4248 4249 /* Corresponding fixup done in fixup_bpf_calls(). */ 4250 aux->alu_state = alu_state; 4251 aux->alu_limit = alu_limit; 4252 return 0; 4253 } 4254 4255 static int sanitize_val_alu(struct bpf_verifier_env *env, 4256 struct bpf_insn *insn) 4257 { 4258 struct bpf_insn_aux_data *aux = cur_aux(env); 4259 4260 if (can_skip_alu_sanitation(env, insn)) 4261 return 0; 4262 4263 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 4264 } 4265 4266 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 4267 struct bpf_insn *insn, 4268 const struct bpf_reg_state *ptr_reg, 4269 struct bpf_reg_state *dst_reg, 4270 bool off_is_neg) 4271 { 4272 struct bpf_verifier_state *vstate = env->cur_state; 4273 struct bpf_insn_aux_data *aux = cur_aux(env); 4274 bool ptr_is_dst_reg = ptr_reg == dst_reg; 4275 u8 opcode = BPF_OP(insn->code); 4276 u32 alu_state, alu_limit; 4277 struct bpf_reg_state tmp; 4278 bool ret; 4279 4280 if (can_skip_alu_sanitation(env, insn)) 4281 return 0; 4282 4283 /* We already marked aux for masking from non-speculative 4284 * paths, thus we got here in the first place. We only care 4285 * to explore bad access from here. 4286 */ 4287 if (vstate->speculative) 4288 goto do_sim; 4289 4290 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 4291 alu_state |= ptr_is_dst_reg ? 4292 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 4293 4294 if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg)) 4295 return 0; 4296 if (update_alu_sanitation_state(aux, alu_state, alu_limit)) 4297 return -EACCES; 4298 do_sim: 4299 /* Simulate and find potential out-of-bounds access under 4300 * speculative execution from truncation as a result of 4301 * masking when off was not within expected range. If off 4302 * sits in dst, then we temporarily need to move ptr there 4303 * to simulate dst (== 0) +/-= ptr. Needed, for example, 4304 * for cases where we use K-based arithmetic in one direction 4305 * and truncated reg-based in the other in order to explore 4306 * bad access. 4307 */ 4308 if (!ptr_is_dst_reg) { 4309 tmp = *dst_reg; 4310 *dst_reg = *ptr_reg; 4311 } 4312 ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true); 4313 if (!ptr_is_dst_reg && ret) 4314 *dst_reg = tmp; 4315 return !ret ? -EFAULT : 0; 4316 } 4317 4318 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 4319 * Caller should also handle BPF_MOV case separately. 4320 * If we return -EACCES, caller may want to try again treating pointer as a 4321 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 4322 */ 4323 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 4324 struct bpf_insn *insn, 4325 const struct bpf_reg_state *ptr_reg, 4326 const struct bpf_reg_state *off_reg) 4327 { 4328 struct bpf_verifier_state *vstate = env->cur_state; 4329 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4330 struct bpf_reg_state *regs = state->regs, *dst_reg; 4331 bool known = tnum_is_const(off_reg->var_off); 4332 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 4333 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 4334 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 4335 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 4336 u32 dst = insn->dst_reg, src = insn->src_reg; 4337 u8 opcode = BPF_OP(insn->code); 4338 int ret; 4339 4340 dst_reg = ®s[dst]; 4341 4342 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 4343 smin_val > smax_val || umin_val > umax_val) { 4344 /* Taint dst register if offset had invalid bounds derived from 4345 * e.g. dead branches. 4346 */ 4347 __mark_reg_unknown(dst_reg); 4348 return 0; 4349 } 4350 4351 if (BPF_CLASS(insn->code) != BPF_ALU64) { 4352 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 4353 verbose(env, 4354 "R%d 32-bit pointer arithmetic prohibited\n", 4355 dst); 4356 return -EACCES; 4357 } 4358 4359 switch (ptr_reg->type) { 4360 case PTR_TO_MAP_VALUE_OR_NULL: 4361 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 4362 dst, reg_type_str[ptr_reg->type]); 4363 return -EACCES; 4364 case CONST_PTR_TO_MAP: 4365 case PTR_TO_PACKET_END: 4366 case PTR_TO_SOCKET: 4367 case PTR_TO_SOCKET_OR_NULL: 4368 case PTR_TO_SOCK_COMMON: 4369 case PTR_TO_SOCK_COMMON_OR_NULL: 4370 case PTR_TO_TCP_SOCK: 4371 case PTR_TO_TCP_SOCK_OR_NULL: 4372 case PTR_TO_XDP_SOCK: 4373 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 4374 dst, reg_type_str[ptr_reg->type]); 4375 return -EACCES; 4376 case PTR_TO_MAP_VALUE: 4377 if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) { 4378 verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n", 4379 off_reg == dst_reg ? dst : src); 4380 return -EACCES; 4381 } 4382 /* fall-through */ 4383 default: 4384 break; 4385 } 4386 4387 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 4388 * The id may be overwritten later if we create a new variable offset. 4389 */ 4390 dst_reg->type = ptr_reg->type; 4391 dst_reg->id = ptr_reg->id; 4392 4393 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 4394 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 4395 return -EINVAL; 4396 4397 switch (opcode) { 4398 case BPF_ADD: 4399 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0); 4400 if (ret < 0) { 4401 verbose(env, "R%d tried to add from different maps or paths\n", dst); 4402 return ret; 4403 } 4404 /* We can take a fixed offset as long as it doesn't overflow 4405 * the s32 'off' field 4406 */ 4407 if (known && (ptr_reg->off + smin_val == 4408 (s64)(s32)(ptr_reg->off + smin_val))) { 4409 /* pointer += K. Accumulate it into fixed offset */ 4410 dst_reg->smin_value = smin_ptr; 4411 dst_reg->smax_value = smax_ptr; 4412 dst_reg->umin_value = umin_ptr; 4413 dst_reg->umax_value = umax_ptr; 4414 dst_reg->var_off = ptr_reg->var_off; 4415 dst_reg->off = ptr_reg->off + smin_val; 4416 dst_reg->raw = ptr_reg->raw; 4417 break; 4418 } 4419 /* A new variable offset is created. Note that off_reg->off 4420 * == 0, since it's a scalar. 4421 * dst_reg gets the pointer type and since some positive 4422 * integer value was added to the pointer, give it a new 'id' 4423 * if it's a PTR_TO_PACKET. 4424 * this creates a new 'base' pointer, off_reg (variable) gets 4425 * added into the variable offset, and we copy the fixed offset 4426 * from ptr_reg. 4427 */ 4428 if (signed_add_overflows(smin_ptr, smin_val) || 4429 signed_add_overflows(smax_ptr, smax_val)) { 4430 dst_reg->smin_value = S64_MIN; 4431 dst_reg->smax_value = S64_MAX; 4432 } else { 4433 dst_reg->smin_value = smin_ptr + smin_val; 4434 dst_reg->smax_value = smax_ptr + smax_val; 4435 } 4436 if (umin_ptr + umin_val < umin_ptr || 4437 umax_ptr + umax_val < umax_ptr) { 4438 dst_reg->umin_value = 0; 4439 dst_reg->umax_value = U64_MAX; 4440 } else { 4441 dst_reg->umin_value = umin_ptr + umin_val; 4442 dst_reg->umax_value = umax_ptr + umax_val; 4443 } 4444 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 4445 dst_reg->off = ptr_reg->off; 4446 dst_reg->raw = ptr_reg->raw; 4447 if (reg_is_pkt_pointer(ptr_reg)) { 4448 dst_reg->id = ++env->id_gen; 4449 /* something was added to pkt_ptr, set range to zero */ 4450 dst_reg->raw = 0; 4451 } 4452 break; 4453 case BPF_SUB: 4454 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0); 4455 if (ret < 0) { 4456 verbose(env, "R%d tried to sub from different maps or paths\n", dst); 4457 return ret; 4458 } 4459 if (dst_reg == off_reg) { 4460 /* scalar -= pointer. Creates an unknown scalar */ 4461 verbose(env, "R%d tried to subtract pointer from scalar\n", 4462 dst); 4463 return -EACCES; 4464 } 4465 /* We don't allow subtraction from FP, because (according to 4466 * test_verifier.c test "invalid fp arithmetic", JITs might not 4467 * be able to deal with it. 4468 */ 4469 if (ptr_reg->type == PTR_TO_STACK) { 4470 verbose(env, "R%d subtraction from stack pointer prohibited\n", 4471 dst); 4472 return -EACCES; 4473 } 4474 if (known && (ptr_reg->off - smin_val == 4475 (s64)(s32)(ptr_reg->off - smin_val))) { 4476 /* pointer -= K. Subtract it from fixed offset */ 4477 dst_reg->smin_value = smin_ptr; 4478 dst_reg->smax_value = smax_ptr; 4479 dst_reg->umin_value = umin_ptr; 4480 dst_reg->umax_value = umax_ptr; 4481 dst_reg->var_off = ptr_reg->var_off; 4482 dst_reg->id = ptr_reg->id; 4483 dst_reg->off = ptr_reg->off - smin_val; 4484 dst_reg->raw = ptr_reg->raw; 4485 break; 4486 } 4487 /* A new variable offset is created. If the subtrahend is known 4488 * nonnegative, then any reg->range we had before is still good. 4489 */ 4490 if (signed_sub_overflows(smin_ptr, smax_val) || 4491 signed_sub_overflows(smax_ptr, smin_val)) { 4492 /* Overflow possible, we know nothing */ 4493 dst_reg->smin_value = S64_MIN; 4494 dst_reg->smax_value = S64_MAX; 4495 } else { 4496 dst_reg->smin_value = smin_ptr - smax_val; 4497 dst_reg->smax_value = smax_ptr - smin_val; 4498 } 4499 if (umin_ptr < umax_val) { 4500 /* Overflow possible, we know nothing */ 4501 dst_reg->umin_value = 0; 4502 dst_reg->umax_value = U64_MAX; 4503 } else { 4504 /* Cannot overflow (as long as bounds are consistent) */ 4505 dst_reg->umin_value = umin_ptr - umax_val; 4506 dst_reg->umax_value = umax_ptr - umin_val; 4507 } 4508 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 4509 dst_reg->off = ptr_reg->off; 4510 dst_reg->raw = ptr_reg->raw; 4511 if (reg_is_pkt_pointer(ptr_reg)) { 4512 dst_reg->id = ++env->id_gen; 4513 /* something was added to pkt_ptr, set range to zero */ 4514 if (smin_val < 0) 4515 dst_reg->raw = 0; 4516 } 4517 break; 4518 case BPF_AND: 4519 case BPF_OR: 4520 case BPF_XOR: 4521 /* bitwise ops on pointers are troublesome, prohibit. */ 4522 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 4523 dst, bpf_alu_string[opcode >> 4]); 4524 return -EACCES; 4525 default: 4526 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 4527 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 4528 dst, bpf_alu_string[opcode >> 4]); 4529 return -EACCES; 4530 } 4531 4532 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 4533 return -EINVAL; 4534 4535 __update_reg_bounds(dst_reg); 4536 __reg_deduce_bounds(dst_reg); 4537 __reg_bound_offset(dst_reg); 4538 4539 /* For unprivileged we require that resulting offset must be in bounds 4540 * in order to be able to sanitize access later on. 4541 */ 4542 if (!env->allow_ptr_leaks) { 4543 if (dst_reg->type == PTR_TO_MAP_VALUE && 4544 check_map_access(env, dst, dst_reg->off, 1, false)) { 4545 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 4546 "prohibited for !root\n", dst); 4547 return -EACCES; 4548 } else if (dst_reg->type == PTR_TO_STACK && 4549 check_stack_access(env, dst_reg, dst_reg->off + 4550 dst_reg->var_off.value, 1)) { 4551 verbose(env, "R%d stack pointer arithmetic goes out of range, " 4552 "prohibited for !root\n", dst); 4553 return -EACCES; 4554 } 4555 } 4556 4557 return 0; 4558 } 4559 4560 /* WARNING: This function does calculations on 64-bit values, but the actual 4561 * execution may occur on 32-bit values. Therefore, things like bitshifts 4562 * need extra checks in the 32-bit case. 4563 */ 4564 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 4565 struct bpf_insn *insn, 4566 struct bpf_reg_state *dst_reg, 4567 struct bpf_reg_state src_reg) 4568 { 4569 struct bpf_reg_state *regs = cur_regs(env); 4570 u8 opcode = BPF_OP(insn->code); 4571 bool src_known, dst_known; 4572 s64 smin_val, smax_val; 4573 u64 umin_val, umax_val; 4574 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 4575 u32 dst = insn->dst_reg; 4576 int ret; 4577 4578 if (insn_bitness == 32) { 4579 /* Relevant for 32-bit RSH: Information can propagate towards 4580 * LSB, so it isn't sufficient to only truncate the output to 4581 * 32 bits. 4582 */ 4583 coerce_reg_to_size(dst_reg, 4); 4584 coerce_reg_to_size(&src_reg, 4); 4585 } 4586 4587 smin_val = src_reg.smin_value; 4588 smax_val = src_reg.smax_value; 4589 umin_val = src_reg.umin_value; 4590 umax_val = src_reg.umax_value; 4591 src_known = tnum_is_const(src_reg.var_off); 4592 dst_known = tnum_is_const(dst_reg->var_off); 4593 4594 if ((src_known && (smin_val != smax_val || umin_val != umax_val)) || 4595 smin_val > smax_val || umin_val > umax_val) { 4596 /* Taint dst register if offset had invalid bounds derived from 4597 * e.g. dead branches. 4598 */ 4599 __mark_reg_unknown(dst_reg); 4600 return 0; 4601 } 4602 4603 if (!src_known && 4604 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 4605 __mark_reg_unknown(dst_reg); 4606 return 0; 4607 } 4608 4609 switch (opcode) { 4610 case BPF_ADD: 4611 ret = sanitize_val_alu(env, insn); 4612 if (ret < 0) { 4613 verbose(env, "R%d tried to add from different pointers or scalars\n", dst); 4614 return ret; 4615 } 4616 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 4617 signed_add_overflows(dst_reg->smax_value, smax_val)) { 4618 dst_reg->smin_value = S64_MIN; 4619 dst_reg->smax_value = S64_MAX; 4620 } else { 4621 dst_reg->smin_value += smin_val; 4622 dst_reg->smax_value += smax_val; 4623 } 4624 if (dst_reg->umin_value + umin_val < umin_val || 4625 dst_reg->umax_value + umax_val < umax_val) { 4626 dst_reg->umin_value = 0; 4627 dst_reg->umax_value = U64_MAX; 4628 } else { 4629 dst_reg->umin_value += umin_val; 4630 dst_reg->umax_value += umax_val; 4631 } 4632 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 4633 break; 4634 case BPF_SUB: 4635 ret = sanitize_val_alu(env, insn); 4636 if (ret < 0) { 4637 verbose(env, "R%d tried to sub from different pointers or scalars\n", dst); 4638 return ret; 4639 } 4640 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 4641 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 4642 /* Overflow possible, we know nothing */ 4643 dst_reg->smin_value = S64_MIN; 4644 dst_reg->smax_value = S64_MAX; 4645 } else { 4646 dst_reg->smin_value -= smax_val; 4647 dst_reg->smax_value -= smin_val; 4648 } 4649 if (dst_reg->umin_value < umax_val) { 4650 /* Overflow possible, we know nothing */ 4651 dst_reg->umin_value = 0; 4652 dst_reg->umax_value = U64_MAX; 4653 } else { 4654 /* Cannot overflow (as long as bounds are consistent) */ 4655 dst_reg->umin_value -= umax_val; 4656 dst_reg->umax_value -= umin_val; 4657 } 4658 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 4659 break; 4660 case BPF_MUL: 4661 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 4662 if (smin_val < 0 || dst_reg->smin_value < 0) { 4663 /* Ain't nobody got time to multiply that sign */ 4664 __mark_reg_unbounded(dst_reg); 4665 __update_reg_bounds(dst_reg); 4666 break; 4667 } 4668 /* Both values are positive, so we can work with unsigned and 4669 * copy the result to signed (unless it exceeds S64_MAX). 4670 */ 4671 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 4672 /* Potential overflow, we know nothing */ 4673 __mark_reg_unbounded(dst_reg); 4674 /* (except what we can learn from the var_off) */ 4675 __update_reg_bounds(dst_reg); 4676 break; 4677 } 4678 dst_reg->umin_value *= umin_val; 4679 dst_reg->umax_value *= umax_val; 4680 if (dst_reg->umax_value > S64_MAX) { 4681 /* Overflow possible, we know nothing */ 4682 dst_reg->smin_value = S64_MIN; 4683 dst_reg->smax_value = S64_MAX; 4684 } else { 4685 dst_reg->smin_value = dst_reg->umin_value; 4686 dst_reg->smax_value = dst_reg->umax_value; 4687 } 4688 break; 4689 case BPF_AND: 4690 if (src_known && dst_known) { 4691 __mark_reg_known(dst_reg, dst_reg->var_off.value & 4692 src_reg.var_off.value); 4693 break; 4694 } 4695 /* We get our minimum from the var_off, since that's inherently 4696 * bitwise. Our maximum is the minimum of the operands' maxima. 4697 */ 4698 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 4699 dst_reg->umin_value = dst_reg->var_off.value; 4700 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 4701 if (dst_reg->smin_value < 0 || smin_val < 0) { 4702 /* Lose signed bounds when ANDing negative numbers, 4703 * ain't nobody got time for that. 4704 */ 4705 dst_reg->smin_value = S64_MIN; 4706 dst_reg->smax_value = S64_MAX; 4707 } else { 4708 /* ANDing two positives gives a positive, so safe to 4709 * cast result into s64. 4710 */ 4711 dst_reg->smin_value = dst_reg->umin_value; 4712 dst_reg->smax_value = dst_reg->umax_value; 4713 } 4714 /* We may learn something more from the var_off */ 4715 __update_reg_bounds(dst_reg); 4716 break; 4717 case BPF_OR: 4718 if (src_known && dst_known) { 4719 __mark_reg_known(dst_reg, dst_reg->var_off.value | 4720 src_reg.var_off.value); 4721 break; 4722 } 4723 /* We get our maximum from the var_off, and our minimum is the 4724 * maximum of the operands' minima 4725 */ 4726 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 4727 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 4728 dst_reg->umax_value = dst_reg->var_off.value | 4729 dst_reg->var_off.mask; 4730 if (dst_reg->smin_value < 0 || smin_val < 0) { 4731 /* Lose signed bounds when ORing negative numbers, 4732 * ain't nobody got time for that. 4733 */ 4734 dst_reg->smin_value = S64_MIN; 4735 dst_reg->smax_value = S64_MAX; 4736 } else { 4737 /* ORing two positives gives a positive, so safe to 4738 * cast result into s64. 4739 */ 4740 dst_reg->smin_value = dst_reg->umin_value; 4741 dst_reg->smax_value = dst_reg->umax_value; 4742 } 4743 /* We may learn something more from the var_off */ 4744 __update_reg_bounds(dst_reg); 4745 break; 4746 case BPF_LSH: 4747 if (umax_val >= insn_bitness) { 4748 /* Shifts greater than 31 or 63 are undefined. 4749 * This includes shifts by a negative number. 4750 */ 4751 mark_reg_unknown(env, regs, insn->dst_reg); 4752 break; 4753 } 4754 /* We lose all sign bit information (except what we can pick 4755 * up from var_off) 4756 */ 4757 dst_reg->smin_value = S64_MIN; 4758 dst_reg->smax_value = S64_MAX; 4759 /* If we might shift our top bit out, then we know nothing */ 4760 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 4761 dst_reg->umin_value = 0; 4762 dst_reg->umax_value = U64_MAX; 4763 } else { 4764 dst_reg->umin_value <<= umin_val; 4765 dst_reg->umax_value <<= umax_val; 4766 } 4767 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 4768 /* We may learn something more from the var_off */ 4769 __update_reg_bounds(dst_reg); 4770 break; 4771 case BPF_RSH: 4772 if (umax_val >= insn_bitness) { 4773 /* Shifts greater than 31 or 63 are undefined. 4774 * This includes shifts by a negative number. 4775 */ 4776 mark_reg_unknown(env, regs, insn->dst_reg); 4777 break; 4778 } 4779 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 4780 * be negative, then either: 4781 * 1) src_reg might be zero, so the sign bit of the result is 4782 * unknown, so we lose our signed bounds 4783 * 2) it's known negative, thus the unsigned bounds capture the 4784 * signed bounds 4785 * 3) the signed bounds cross zero, so they tell us nothing 4786 * about the result 4787 * If the value in dst_reg is known nonnegative, then again the 4788 * unsigned bounts capture the signed bounds. 4789 * Thus, in all cases it suffices to blow away our signed bounds 4790 * and rely on inferring new ones from the unsigned bounds and 4791 * var_off of the result. 4792 */ 4793 dst_reg->smin_value = S64_MIN; 4794 dst_reg->smax_value = S64_MAX; 4795 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 4796 dst_reg->umin_value >>= umax_val; 4797 dst_reg->umax_value >>= umin_val; 4798 /* We may learn something more from the var_off */ 4799 __update_reg_bounds(dst_reg); 4800 break; 4801 case BPF_ARSH: 4802 if (umax_val >= insn_bitness) { 4803 /* Shifts greater than 31 or 63 are undefined. 4804 * This includes shifts by a negative number. 4805 */ 4806 mark_reg_unknown(env, regs, insn->dst_reg); 4807 break; 4808 } 4809 4810 /* Upon reaching here, src_known is true and 4811 * umax_val is equal to umin_val. 4812 */ 4813 dst_reg->smin_value >>= umin_val; 4814 dst_reg->smax_value >>= umin_val; 4815 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val); 4816 4817 /* blow away the dst_reg umin_value/umax_value and rely on 4818 * dst_reg var_off to refine the result. 4819 */ 4820 dst_reg->umin_value = 0; 4821 dst_reg->umax_value = U64_MAX; 4822 __update_reg_bounds(dst_reg); 4823 break; 4824 default: 4825 mark_reg_unknown(env, regs, insn->dst_reg); 4826 break; 4827 } 4828 4829 if (BPF_CLASS(insn->code) != BPF_ALU64) { 4830 /* 32-bit ALU ops are (32,32)->32 */ 4831 coerce_reg_to_size(dst_reg, 4); 4832 } 4833 4834 __reg_deduce_bounds(dst_reg); 4835 __reg_bound_offset(dst_reg); 4836 return 0; 4837 } 4838 4839 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 4840 * and var_off. 4841 */ 4842 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 4843 struct bpf_insn *insn) 4844 { 4845 struct bpf_verifier_state *vstate = env->cur_state; 4846 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4847 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 4848 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 4849 u8 opcode = BPF_OP(insn->code); 4850 int err; 4851 4852 dst_reg = ®s[insn->dst_reg]; 4853 src_reg = NULL; 4854 if (dst_reg->type != SCALAR_VALUE) 4855 ptr_reg = dst_reg; 4856 if (BPF_SRC(insn->code) == BPF_X) { 4857 src_reg = ®s[insn->src_reg]; 4858 if (src_reg->type != SCALAR_VALUE) { 4859 if (dst_reg->type != SCALAR_VALUE) { 4860 /* Combining two pointers by any ALU op yields 4861 * an arbitrary scalar. Disallow all math except 4862 * pointer subtraction 4863 */ 4864 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 4865 mark_reg_unknown(env, regs, insn->dst_reg); 4866 return 0; 4867 } 4868 verbose(env, "R%d pointer %s pointer prohibited\n", 4869 insn->dst_reg, 4870 bpf_alu_string[opcode >> 4]); 4871 return -EACCES; 4872 } else { 4873 /* scalar += pointer 4874 * This is legal, but we have to reverse our 4875 * src/dest handling in computing the range 4876 */ 4877 err = mark_chain_precision(env, insn->dst_reg); 4878 if (err) 4879 return err; 4880 return adjust_ptr_min_max_vals(env, insn, 4881 src_reg, dst_reg); 4882 } 4883 } else if (ptr_reg) { 4884 /* pointer += scalar */ 4885 err = mark_chain_precision(env, insn->src_reg); 4886 if (err) 4887 return err; 4888 return adjust_ptr_min_max_vals(env, insn, 4889 dst_reg, src_reg); 4890 } 4891 } else { 4892 /* Pretend the src is a reg with a known value, since we only 4893 * need to be able to read from this state. 4894 */ 4895 off_reg.type = SCALAR_VALUE; 4896 __mark_reg_known(&off_reg, insn->imm); 4897 src_reg = &off_reg; 4898 if (ptr_reg) /* pointer += K */ 4899 return adjust_ptr_min_max_vals(env, insn, 4900 ptr_reg, src_reg); 4901 } 4902 4903 /* Got here implies adding two SCALAR_VALUEs */ 4904 if (WARN_ON_ONCE(ptr_reg)) { 4905 print_verifier_state(env, state); 4906 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 4907 return -EINVAL; 4908 } 4909 if (WARN_ON(!src_reg)) { 4910 print_verifier_state(env, state); 4911 verbose(env, "verifier internal error: no src_reg\n"); 4912 return -EINVAL; 4913 } 4914 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 4915 } 4916 4917 /* check validity of 32-bit and 64-bit arithmetic operations */ 4918 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 4919 { 4920 struct bpf_reg_state *regs = cur_regs(env); 4921 u8 opcode = BPF_OP(insn->code); 4922 int err; 4923 4924 if (opcode == BPF_END || opcode == BPF_NEG) { 4925 if (opcode == BPF_NEG) { 4926 if (BPF_SRC(insn->code) != 0 || 4927 insn->src_reg != BPF_REG_0 || 4928 insn->off != 0 || insn->imm != 0) { 4929 verbose(env, "BPF_NEG uses reserved fields\n"); 4930 return -EINVAL; 4931 } 4932 } else { 4933 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 4934 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 4935 BPF_CLASS(insn->code) == BPF_ALU64) { 4936 verbose(env, "BPF_END uses reserved fields\n"); 4937 return -EINVAL; 4938 } 4939 } 4940 4941 /* check src operand */ 4942 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 4943 if (err) 4944 return err; 4945 4946 if (is_pointer_value(env, insn->dst_reg)) { 4947 verbose(env, "R%d pointer arithmetic prohibited\n", 4948 insn->dst_reg); 4949 return -EACCES; 4950 } 4951 4952 /* check dest operand */ 4953 err = check_reg_arg(env, insn->dst_reg, DST_OP); 4954 if (err) 4955 return err; 4956 4957 } else if (opcode == BPF_MOV) { 4958 4959 if (BPF_SRC(insn->code) == BPF_X) { 4960 if (insn->imm != 0 || insn->off != 0) { 4961 verbose(env, "BPF_MOV uses reserved fields\n"); 4962 return -EINVAL; 4963 } 4964 4965 /* check src operand */ 4966 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4967 if (err) 4968 return err; 4969 } else { 4970 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 4971 verbose(env, "BPF_MOV uses reserved fields\n"); 4972 return -EINVAL; 4973 } 4974 } 4975 4976 /* check dest operand, mark as required later */ 4977 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 4978 if (err) 4979 return err; 4980 4981 if (BPF_SRC(insn->code) == BPF_X) { 4982 struct bpf_reg_state *src_reg = regs + insn->src_reg; 4983 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 4984 4985 if (BPF_CLASS(insn->code) == BPF_ALU64) { 4986 /* case: R1 = R2 4987 * copy register state to dest reg 4988 */ 4989 *dst_reg = *src_reg; 4990 dst_reg->live |= REG_LIVE_WRITTEN; 4991 dst_reg->subreg_def = DEF_NOT_SUBREG; 4992 } else { 4993 /* R1 = (u32) R2 */ 4994 if (is_pointer_value(env, insn->src_reg)) { 4995 verbose(env, 4996 "R%d partial copy of pointer\n", 4997 insn->src_reg); 4998 return -EACCES; 4999 } else if (src_reg->type == SCALAR_VALUE) { 5000 *dst_reg = *src_reg; 5001 dst_reg->live |= REG_LIVE_WRITTEN; 5002 dst_reg->subreg_def = env->insn_idx + 1; 5003 } else { 5004 mark_reg_unknown(env, regs, 5005 insn->dst_reg); 5006 } 5007 coerce_reg_to_size(dst_reg, 4); 5008 } 5009 } else { 5010 /* case: R = imm 5011 * remember the value we stored into this reg 5012 */ 5013 /* clear any state __mark_reg_known doesn't set */ 5014 mark_reg_unknown(env, regs, insn->dst_reg); 5015 regs[insn->dst_reg].type = SCALAR_VALUE; 5016 if (BPF_CLASS(insn->code) == BPF_ALU64) { 5017 __mark_reg_known(regs + insn->dst_reg, 5018 insn->imm); 5019 } else { 5020 __mark_reg_known(regs + insn->dst_reg, 5021 (u32)insn->imm); 5022 } 5023 } 5024 5025 } else if (opcode > BPF_END) { 5026 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 5027 return -EINVAL; 5028 5029 } else { /* all other ALU ops: and, sub, xor, add, ... */ 5030 5031 if (BPF_SRC(insn->code) == BPF_X) { 5032 if (insn->imm != 0 || insn->off != 0) { 5033 verbose(env, "BPF_ALU uses reserved fields\n"); 5034 return -EINVAL; 5035 } 5036 /* check src1 operand */ 5037 err = check_reg_arg(env, insn->src_reg, SRC_OP); 5038 if (err) 5039 return err; 5040 } else { 5041 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 5042 verbose(env, "BPF_ALU uses reserved fields\n"); 5043 return -EINVAL; 5044 } 5045 } 5046 5047 /* check src2 operand */ 5048 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 5049 if (err) 5050 return err; 5051 5052 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 5053 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 5054 verbose(env, "div by zero\n"); 5055 return -EINVAL; 5056 } 5057 5058 if ((opcode == BPF_LSH || opcode == BPF_RSH || 5059 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 5060 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 5061 5062 if (insn->imm < 0 || insn->imm >= size) { 5063 verbose(env, "invalid shift %d\n", insn->imm); 5064 return -EINVAL; 5065 } 5066 } 5067 5068 /* check dest operand */ 5069 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 5070 if (err) 5071 return err; 5072 5073 return adjust_reg_min_max_vals(env, insn); 5074 } 5075 5076 return 0; 5077 } 5078 5079 static void __find_good_pkt_pointers(struct bpf_func_state *state, 5080 struct bpf_reg_state *dst_reg, 5081 enum bpf_reg_type type, u16 new_range) 5082 { 5083 struct bpf_reg_state *reg; 5084 int i; 5085 5086 for (i = 0; i < MAX_BPF_REG; i++) { 5087 reg = &state->regs[i]; 5088 if (reg->type == type && reg->id == dst_reg->id) 5089 /* keep the maximum range already checked */ 5090 reg->range = max(reg->range, new_range); 5091 } 5092 5093 bpf_for_each_spilled_reg(i, state, reg) { 5094 if (!reg) 5095 continue; 5096 if (reg->type == type && reg->id == dst_reg->id) 5097 reg->range = max(reg->range, new_range); 5098 } 5099 } 5100 5101 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 5102 struct bpf_reg_state *dst_reg, 5103 enum bpf_reg_type type, 5104 bool range_right_open) 5105 { 5106 u16 new_range; 5107 int i; 5108 5109 if (dst_reg->off < 0 || 5110 (dst_reg->off == 0 && range_right_open)) 5111 /* This doesn't give us any range */ 5112 return; 5113 5114 if (dst_reg->umax_value > MAX_PACKET_OFF || 5115 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 5116 /* Risk of overflow. For instance, ptr + (1<<63) may be less 5117 * than pkt_end, but that's because it's also less than pkt. 5118 */ 5119 return; 5120 5121 new_range = dst_reg->off; 5122 if (range_right_open) 5123 new_range--; 5124 5125 /* Examples for register markings: 5126 * 5127 * pkt_data in dst register: 5128 * 5129 * r2 = r3; 5130 * r2 += 8; 5131 * if (r2 > pkt_end) goto <handle exception> 5132 * <access okay> 5133 * 5134 * r2 = r3; 5135 * r2 += 8; 5136 * if (r2 < pkt_end) goto <access okay> 5137 * <handle exception> 5138 * 5139 * Where: 5140 * r2 == dst_reg, pkt_end == src_reg 5141 * r2=pkt(id=n,off=8,r=0) 5142 * r3=pkt(id=n,off=0,r=0) 5143 * 5144 * pkt_data in src register: 5145 * 5146 * r2 = r3; 5147 * r2 += 8; 5148 * if (pkt_end >= r2) goto <access okay> 5149 * <handle exception> 5150 * 5151 * r2 = r3; 5152 * r2 += 8; 5153 * if (pkt_end <= r2) goto <handle exception> 5154 * <access okay> 5155 * 5156 * Where: 5157 * pkt_end == dst_reg, r2 == src_reg 5158 * r2=pkt(id=n,off=8,r=0) 5159 * r3=pkt(id=n,off=0,r=0) 5160 * 5161 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 5162 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 5163 * and [r3, r3 + 8-1) respectively is safe to access depending on 5164 * the check. 5165 */ 5166 5167 /* If our ids match, then we must have the same max_value. And we 5168 * don't care about the other reg's fixed offset, since if it's too big 5169 * the range won't allow anything. 5170 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 5171 */ 5172 for (i = 0; i <= vstate->curframe; i++) 5173 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type, 5174 new_range); 5175 } 5176 5177 /* compute branch direction of the expression "if (reg opcode val) goto target;" 5178 * and return: 5179 * 1 - branch will be taken and "goto target" will be executed 5180 * 0 - branch will not be taken and fall-through to next insn 5181 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value range [0,10] 5182 */ 5183 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, 5184 bool is_jmp32) 5185 { 5186 struct bpf_reg_state reg_lo; 5187 s64 sval; 5188 5189 if (__is_pointer_value(false, reg)) 5190 return -1; 5191 5192 if (is_jmp32) { 5193 reg_lo = *reg; 5194 reg = ®_lo; 5195 /* For JMP32, only low 32 bits are compared, coerce_reg_to_size 5196 * could truncate high bits and update umin/umax according to 5197 * information of low bits. 5198 */ 5199 coerce_reg_to_size(reg, 4); 5200 /* smin/smax need special handling. For example, after coerce, 5201 * if smin_value is 0x00000000ffffffffLL, the value is -1 when 5202 * used as operand to JMP32. It is a negative number from s32's 5203 * point of view, while it is a positive number when seen as 5204 * s64. The smin/smax are kept as s64, therefore, when used with 5205 * JMP32, they need to be transformed into s32, then sign 5206 * extended back to s64. 5207 * 5208 * Also, smin/smax were copied from umin/umax. If umin/umax has 5209 * different sign bit, then min/max relationship doesn't 5210 * maintain after casting into s32, for this case, set smin/smax 5211 * to safest range. 5212 */ 5213 if ((reg->umax_value ^ reg->umin_value) & 5214 (1ULL << 31)) { 5215 reg->smin_value = S32_MIN; 5216 reg->smax_value = S32_MAX; 5217 } 5218 reg->smin_value = (s64)(s32)reg->smin_value; 5219 reg->smax_value = (s64)(s32)reg->smax_value; 5220 5221 val = (u32)val; 5222 sval = (s64)(s32)val; 5223 } else { 5224 sval = (s64)val; 5225 } 5226 5227 switch (opcode) { 5228 case BPF_JEQ: 5229 if (tnum_is_const(reg->var_off)) 5230 return !!tnum_equals_const(reg->var_off, val); 5231 break; 5232 case BPF_JNE: 5233 if (tnum_is_const(reg->var_off)) 5234 return !tnum_equals_const(reg->var_off, val); 5235 break; 5236 case BPF_JSET: 5237 if ((~reg->var_off.mask & reg->var_off.value) & val) 5238 return 1; 5239 if (!((reg->var_off.mask | reg->var_off.value) & val)) 5240 return 0; 5241 break; 5242 case BPF_JGT: 5243 if (reg->umin_value > val) 5244 return 1; 5245 else if (reg->umax_value <= val) 5246 return 0; 5247 break; 5248 case BPF_JSGT: 5249 if (reg->smin_value > sval) 5250 return 1; 5251 else if (reg->smax_value < sval) 5252 return 0; 5253 break; 5254 case BPF_JLT: 5255 if (reg->umax_value < val) 5256 return 1; 5257 else if (reg->umin_value >= val) 5258 return 0; 5259 break; 5260 case BPF_JSLT: 5261 if (reg->smax_value < sval) 5262 return 1; 5263 else if (reg->smin_value >= sval) 5264 return 0; 5265 break; 5266 case BPF_JGE: 5267 if (reg->umin_value >= val) 5268 return 1; 5269 else if (reg->umax_value < val) 5270 return 0; 5271 break; 5272 case BPF_JSGE: 5273 if (reg->smin_value >= sval) 5274 return 1; 5275 else if (reg->smax_value < sval) 5276 return 0; 5277 break; 5278 case BPF_JLE: 5279 if (reg->umax_value <= val) 5280 return 1; 5281 else if (reg->umin_value > val) 5282 return 0; 5283 break; 5284 case BPF_JSLE: 5285 if (reg->smax_value <= sval) 5286 return 1; 5287 else if (reg->smin_value > sval) 5288 return 0; 5289 break; 5290 } 5291 5292 return -1; 5293 } 5294 5295 /* Generate min value of the high 32-bit from TNUM info. */ 5296 static u64 gen_hi_min(struct tnum var) 5297 { 5298 return var.value & ~0xffffffffULL; 5299 } 5300 5301 /* Generate max value of the high 32-bit from TNUM info. */ 5302 static u64 gen_hi_max(struct tnum var) 5303 { 5304 return (var.value | var.mask) & ~0xffffffffULL; 5305 } 5306 5307 /* Return true if VAL is compared with a s64 sign extended from s32, and they 5308 * are with the same signedness. 5309 */ 5310 static bool cmp_val_with_extended_s64(s64 sval, struct bpf_reg_state *reg) 5311 { 5312 return ((s32)sval >= 0 && 5313 reg->smin_value >= 0 && reg->smax_value <= S32_MAX) || 5314 ((s32)sval < 0 && 5315 reg->smax_value <= 0 && reg->smin_value >= S32_MIN); 5316 } 5317 5318 /* Adjusts the register min/max values in the case that the dst_reg is the 5319 * variable register that we are working on, and src_reg is a constant or we're 5320 * simply doing a BPF_K check. 5321 * In JEQ/JNE cases we also adjust the var_off values. 5322 */ 5323 static void reg_set_min_max(struct bpf_reg_state *true_reg, 5324 struct bpf_reg_state *false_reg, u64 val, 5325 u8 opcode, bool is_jmp32) 5326 { 5327 s64 sval; 5328 5329 /* If the dst_reg is a pointer, we can't learn anything about its 5330 * variable offset from the compare (unless src_reg were a pointer into 5331 * the same object, but we don't bother with that. 5332 * Since false_reg and true_reg have the same type by construction, we 5333 * only need to check one of them for pointerness. 5334 */ 5335 if (__is_pointer_value(false, false_reg)) 5336 return; 5337 5338 val = is_jmp32 ? (u32)val : val; 5339 sval = is_jmp32 ? (s64)(s32)val : (s64)val; 5340 5341 switch (opcode) { 5342 case BPF_JEQ: 5343 case BPF_JNE: 5344 { 5345 struct bpf_reg_state *reg = 5346 opcode == BPF_JEQ ? true_reg : false_reg; 5347 5348 /* For BPF_JEQ, if this is false we know nothing Jon Snow, but 5349 * if it is true we know the value for sure. Likewise for 5350 * BPF_JNE. 5351 */ 5352 if (is_jmp32) { 5353 u64 old_v = reg->var_off.value; 5354 u64 hi_mask = ~0xffffffffULL; 5355 5356 reg->var_off.value = (old_v & hi_mask) | val; 5357 reg->var_off.mask &= hi_mask; 5358 } else { 5359 __mark_reg_known(reg, val); 5360 } 5361 break; 5362 } 5363 case BPF_JSET: 5364 false_reg->var_off = tnum_and(false_reg->var_off, 5365 tnum_const(~val)); 5366 if (is_power_of_2(val)) 5367 true_reg->var_off = tnum_or(true_reg->var_off, 5368 tnum_const(val)); 5369 break; 5370 case BPF_JGE: 5371 case BPF_JGT: 5372 { 5373 u64 false_umax = opcode == BPF_JGT ? val : val - 1; 5374 u64 true_umin = opcode == BPF_JGT ? val + 1 : val; 5375 5376 if (is_jmp32) { 5377 false_umax += gen_hi_max(false_reg->var_off); 5378 true_umin += gen_hi_min(true_reg->var_off); 5379 } 5380 false_reg->umax_value = min(false_reg->umax_value, false_umax); 5381 true_reg->umin_value = max(true_reg->umin_value, true_umin); 5382 break; 5383 } 5384 case BPF_JSGE: 5385 case BPF_JSGT: 5386 { 5387 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; 5388 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; 5389 5390 /* If the full s64 was not sign-extended from s32 then don't 5391 * deduct further info. 5392 */ 5393 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg)) 5394 break; 5395 false_reg->smax_value = min(false_reg->smax_value, false_smax); 5396 true_reg->smin_value = max(true_reg->smin_value, true_smin); 5397 break; 5398 } 5399 case BPF_JLE: 5400 case BPF_JLT: 5401 { 5402 u64 false_umin = opcode == BPF_JLT ? val : val + 1; 5403 u64 true_umax = opcode == BPF_JLT ? val - 1 : val; 5404 5405 if (is_jmp32) { 5406 false_umin += gen_hi_min(false_reg->var_off); 5407 true_umax += gen_hi_max(true_reg->var_off); 5408 } 5409 false_reg->umin_value = max(false_reg->umin_value, false_umin); 5410 true_reg->umax_value = min(true_reg->umax_value, true_umax); 5411 break; 5412 } 5413 case BPF_JSLE: 5414 case BPF_JSLT: 5415 { 5416 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; 5417 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; 5418 5419 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg)) 5420 break; 5421 false_reg->smin_value = max(false_reg->smin_value, false_smin); 5422 true_reg->smax_value = min(true_reg->smax_value, true_smax); 5423 break; 5424 } 5425 default: 5426 break; 5427 } 5428 5429 __reg_deduce_bounds(false_reg); 5430 __reg_deduce_bounds(true_reg); 5431 /* We might have learned some bits from the bounds. */ 5432 __reg_bound_offset(false_reg); 5433 __reg_bound_offset(true_reg); 5434 /* Intersecting with the old var_off might have improved our bounds 5435 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 5436 * then new var_off is (0; 0x7f...fc) which improves our umax. 5437 */ 5438 __update_reg_bounds(false_reg); 5439 __update_reg_bounds(true_reg); 5440 } 5441 5442 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 5443 * the variable reg. 5444 */ 5445 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 5446 struct bpf_reg_state *false_reg, u64 val, 5447 u8 opcode, bool is_jmp32) 5448 { 5449 s64 sval; 5450 5451 if (__is_pointer_value(false, false_reg)) 5452 return; 5453 5454 val = is_jmp32 ? (u32)val : val; 5455 sval = is_jmp32 ? (s64)(s32)val : (s64)val; 5456 5457 switch (opcode) { 5458 case BPF_JEQ: 5459 case BPF_JNE: 5460 { 5461 struct bpf_reg_state *reg = 5462 opcode == BPF_JEQ ? true_reg : false_reg; 5463 5464 if (is_jmp32) { 5465 u64 old_v = reg->var_off.value; 5466 u64 hi_mask = ~0xffffffffULL; 5467 5468 reg->var_off.value = (old_v & hi_mask) | val; 5469 reg->var_off.mask &= hi_mask; 5470 } else { 5471 __mark_reg_known(reg, val); 5472 } 5473 break; 5474 } 5475 case BPF_JSET: 5476 false_reg->var_off = tnum_and(false_reg->var_off, 5477 tnum_const(~val)); 5478 if (is_power_of_2(val)) 5479 true_reg->var_off = tnum_or(true_reg->var_off, 5480 tnum_const(val)); 5481 break; 5482 case BPF_JGE: 5483 case BPF_JGT: 5484 { 5485 u64 false_umin = opcode == BPF_JGT ? val : val + 1; 5486 u64 true_umax = opcode == BPF_JGT ? val - 1 : val; 5487 5488 if (is_jmp32) { 5489 false_umin += gen_hi_min(false_reg->var_off); 5490 true_umax += gen_hi_max(true_reg->var_off); 5491 } 5492 false_reg->umin_value = max(false_reg->umin_value, false_umin); 5493 true_reg->umax_value = min(true_reg->umax_value, true_umax); 5494 break; 5495 } 5496 case BPF_JSGE: 5497 case BPF_JSGT: 5498 { 5499 s64 false_smin = opcode == BPF_JSGT ? sval : sval + 1; 5500 s64 true_smax = opcode == BPF_JSGT ? sval - 1 : sval; 5501 5502 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg)) 5503 break; 5504 false_reg->smin_value = max(false_reg->smin_value, false_smin); 5505 true_reg->smax_value = min(true_reg->smax_value, true_smax); 5506 break; 5507 } 5508 case BPF_JLE: 5509 case BPF_JLT: 5510 { 5511 u64 false_umax = opcode == BPF_JLT ? val : val - 1; 5512 u64 true_umin = opcode == BPF_JLT ? val + 1 : val; 5513 5514 if (is_jmp32) { 5515 false_umax += gen_hi_max(false_reg->var_off); 5516 true_umin += gen_hi_min(true_reg->var_off); 5517 } 5518 false_reg->umax_value = min(false_reg->umax_value, false_umax); 5519 true_reg->umin_value = max(true_reg->umin_value, true_umin); 5520 break; 5521 } 5522 case BPF_JSLE: 5523 case BPF_JSLT: 5524 { 5525 s64 false_smax = opcode == BPF_JSLT ? sval : sval - 1; 5526 s64 true_smin = opcode == BPF_JSLT ? sval + 1 : sval; 5527 5528 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg)) 5529 break; 5530 false_reg->smax_value = min(false_reg->smax_value, false_smax); 5531 true_reg->smin_value = max(true_reg->smin_value, true_smin); 5532 break; 5533 } 5534 default: 5535 break; 5536 } 5537 5538 __reg_deduce_bounds(false_reg); 5539 __reg_deduce_bounds(true_reg); 5540 /* We might have learned some bits from the bounds. */ 5541 __reg_bound_offset(false_reg); 5542 __reg_bound_offset(true_reg); 5543 /* Intersecting with the old var_off might have improved our bounds 5544 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 5545 * then new var_off is (0; 0x7f...fc) which improves our umax. 5546 */ 5547 __update_reg_bounds(false_reg); 5548 __update_reg_bounds(true_reg); 5549 } 5550 5551 /* Regs are known to be equal, so intersect their min/max/var_off */ 5552 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 5553 struct bpf_reg_state *dst_reg) 5554 { 5555 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 5556 dst_reg->umin_value); 5557 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 5558 dst_reg->umax_value); 5559 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 5560 dst_reg->smin_value); 5561 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 5562 dst_reg->smax_value); 5563 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 5564 dst_reg->var_off); 5565 /* We might have learned new bounds from the var_off. */ 5566 __update_reg_bounds(src_reg); 5567 __update_reg_bounds(dst_reg); 5568 /* We might have learned something about the sign bit. */ 5569 __reg_deduce_bounds(src_reg); 5570 __reg_deduce_bounds(dst_reg); 5571 /* We might have learned some bits from the bounds. */ 5572 __reg_bound_offset(src_reg); 5573 __reg_bound_offset(dst_reg); 5574 /* Intersecting with the old var_off might have improved our bounds 5575 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 5576 * then new var_off is (0; 0x7f...fc) which improves our umax. 5577 */ 5578 __update_reg_bounds(src_reg); 5579 __update_reg_bounds(dst_reg); 5580 } 5581 5582 static void reg_combine_min_max(struct bpf_reg_state *true_src, 5583 struct bpf_reg_state *true_dst, 5584 struct bpf_reg_state *false_src, 5585 struct bpf_reg_state *false_dst, 5586 u8 opcode) 5587 { 5588 switch (opcode) { 5589 case BPF_JEQ: 5590 __reg_combine_min_max(true_src, true_dst); 5591 break; 5592 case BPF_JNE: 5593 __reg_combine_min_max(false_src, false_dst); 5594 break; 5595 } 5596 } 5597 5598 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 5599 struct bpf_reg_state *reg, u32 id, 5600 bool is_null) 5601 { 5602 if (reg_type_may_be_null(reg->type) && reg->id == id) { 5603 /* Old offset (both fixed and variable parts) should 5604 * have been known-zero, because we don't allow pointer 5605 * arithmetic on pointers that might be NULL. 5606 */ 5607 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || 5608 !tnum_equals_const(reg->var_off, 0) || 5609 reg->off)) { 5610 __mark_reg_known_zero(reg); 5611 reg->off = 0; 5612 } 5613 if (is_null) { 5614 reg->type = SCALAR_VALUE; 5615 } else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) { 5616 if (reg->map_ptr->inner_map_meta) { 5617 reg->type = CONST_PTR_TO_MAP; 5618 reg->map_ptr = reg->map_ptr->inner_map_meta; 5619 } else if (reg->map_ptr->map_type == 5620 BPF_MAP_TYPE_XSKMAP) { 5621 reg->type = PTR_TO_XDP_SOCK; 5622 } else { 5623 reg->type = PTR_TO_MAP_VALUE; 5624 } 5625 } else if (reg->type == PTR_TO_SOCKET_OR_NULL) { 5626 reg->type = PTR_TO_SOCKET; 5627 } else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) { 5628 reg->type = PTR_TO_SOCK_COMMON; 5629 } else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) { 5630 reg->type = PTR_TO_TCP_SOCK; 5631 } 5632 if (is_null) { 5633 /* We don't need id and ref_obj_id from this point 5634 * onwards anymore, thus we should better reset it, 5635 * so that state pruning has chances to take effect. 5636 */ 5637 reg->id = 0; 5638 reg->ref_obj_id = 0; 5639 } else if (!reg_may_point_to_spin_lock(reg)) { 5640 /* For not-NULL ptr, reg->ref_obj_id will be reset 5641 * in release_reg_references(). 5642 * 5643 * reg->id is still used by spin_lock ptr. Other 5644 * than spin_lock ptr type, reg->id can be reset. 5645 */ 5646 reg->id = 0; 5647 } 5648 } 5649 } 5650 5651 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id, 5652 bool is_null) 5653 { 5654 struct bpf_reg_state *reg; 5655 int i; 5656 5657 for (i = 0; i < MAX_BPF_REG; i++) 5658 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null); 5659 5660 bpf_for_each_spilled_reg(i, state, reg) { 5661 if (!reg) 5662 continue; 5663 mark_ptr_or_null_reg(state, reg, id, is_null); 5664 } 5665 } 5666 5667 /* The logic is similar to find_good_pkt_pointers(), both could eventually 5668 * be folded together at some point. 5669 */ 5670 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 5671 bool is_null) 5672 { 5673 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5674 struct bpf_reg_state *regs = state->regs; 5675 u32 ref_obj_id = regs[regno].ref_obj_id; 5676 u32 id = regs[regno].id; 5677 int i; 5678 5679 if (ref_obj_id && ref_obj_id == id && is_null) 5680 /* regs[regno] is in the " == NULL" branch. 5681 * No one could have freed the reference state before 5682 * doing the NULL check. 5683 */ 5684 WARN_ON_ONCE(release_reference_state(state, id)); 5685 5686 for (i = 0; i <= vstate->curframe; i++) 5687 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null); 5688 } 5689 5690 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 5691 struct bpf_reg_state *dst_reg, 5692 struct bpf_reg_state *src_reg, 5693 struct bpf_verifier_state *this_branch, 5694 struct bpf_verifier_state *other_branch) 5695 { 5696 if (BPF_SRC(insn->code) != BPF_X) 5697 return false; 5698 5699 /* Pointers are always 64-bit. */ 5700 if (BPF_CLASS(insn->code) == BPF_JMP32) 5701 return false; 5702 5703 switch (BPF_OP(insn->code)) { 5704 case BPF_JGT: 5705 if ((dst_reg->type == PTR_TO_PACKET && 5706 src_reg->type == PTR_TO_PACKET_END) || 5707 (dst_reg->type == PTR_TO_PACKET_META && 5708 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 5709 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 5710 find_good_pkt_pointers(this_branch, dst_reg, 5711 dst_reg->type, false); 5712 } else if ((dst_reg->type == PTR_TO_PACKET_END && 5713 src_reg->type == PTR_TO_PACKET) || 5714 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 5715 src_reg->type == PTR_TO_PACKET_META)) { 5716 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 5717 find_good_pkt_pointers(other_branch, src_reg, 5718 src_reg->type, true); 5719 } else { 5720 return false; 5721 } 5722 break; 5723 case BPF_JLT: 5724 if ((dst_reg->type == PTR_TO_PACKET && 5725 src_reg->type == PTR_TO_PACKET_END) || 5726 (dst_reg->type == PTR_TO_PACKET_META && 5727 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 5728 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 5729 find_good_pkt_pointers(other_branch, dst_reg, 5730 dst_reg->type, true); 5731 } else if ((dst_reg->type == PTR_TO_PACKET_END && 5732 src_reg->type == PTR_TO_PACKET) || 5733 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 5734 src_reg->type == PTR_TO_PACKET_META)) { 5735 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 5736 find_good_pkt_pointers(this_branch, src_reg, 5737 src_reg->type, false); 5738 } else { 5739 return false; 5740 } 5741 break; 5742 case BPF_JGE: 5743 if ((dst_reg->type == PTR_TO_PACKET && 5744 src_reg->type == PTR_TO_PACKET_END) || 5745 (dst_reg->type == PTR_TO_PACKET_META && 5746 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 5747 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 5748 find_good_pkt_pointers(this_branch, dst_reg, 5749 dst_reg->type, true); 5750 } else if ((dst_reg->type == PTR_TO_PACKET_END && 5751 src_reg->type == PTR_TO_PACKET) || 5752 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 5753 src_reg->type == PTR_TO_PACKET_META)) { 5754 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 5755 find_good_pkt_pointers(other_branch, src_reg, 5756 src_reg->type, false); 5757 } else { 5758 return false; 5759 } 5760 break; 5761 case BPF_JLE: 5762 if ((dst_reg->type == PTR_TO_PACKET && 5763 src_reg->type == PTR_TO_PACKET_END) || 5764 (dst_reg->type == PTR_TO_PACKET_META && 5765 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 5766 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 5767 find_good_pkt_pointers(other_branch, dst_reg, 5768 dst_reg->type, false); 5769 } else if ((dst_reg->type == PTR_TO_PACKET_END && 5770 src_reg->type == PTR_TO_PACKET) || 5771 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 5772 src_reg->type == PTR_TO_PACKET_META)) { 5773 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 5774 find_good_pkt_pointers(this_branch, src_reg, 5775 src_reg->type, true); 5776 } else { 5777 return false; 5778 } 5779 break; 5780 default: 5781 return false; 5782 } 5783 5784 return true; 5785 } 5786 5787 static int check_cond_jmp_op(struct bpf_verifier_env *env, 5788 struct bpf_insn *insn, int *insn_idx) 5789 { 5790 struct bpf_verifier_state *this_branch = env->cur_state; 5791 struct bpf_verifier_state *other_branch; 5792 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 5793 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 5794 u8 opcode = BPF_OP(insn->code); 5795 bool is_jmp32; 5796 int pred = -1; 5797 int err; 5798 5799 /* Only conditional jumps are expected to reach here. */ 5800 if (opcode == BPF_JA || opcode > BPF_JSLE) { 5801 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 5802 return -EINVAL; 5803 } 5804 5805 if (BPF_SRC(insn->code) == BPF_X) { 5806 if (insn->imm != 0) { 5807 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 5808 return -EINVAL; 5809 } 5810 5811 /* check src1 operand */ 5812 err = check_reg_arg(env, insn->src_reg, SRC_OP); 5813 if (err) 5814 return err; 5815 5816 if (is_pointer_value(env, insn->src_reg)) { 5817 verbose(env, "R%d pointer comparison prohibited\n", 5818 insn->src_reg); 5819 return -EACCES; 5820 } 5821 src_reg = ®s[insn->src_reg]; 5822 } else { 5823 if (insn->src_reg != BPF_REG_0) { 5824 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 5825 return -EINVAL; 5826 } 5827 } 5828 5829 /* check src2 operand */ 5830 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 5831 if (err) 5832 return err; 5833 5834 dst_reg = ®s[insn->dst_reg]; 5835 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 5836 5837 if (BPF_SRC(insn->code) == BPF_K) 5838 pred = is_branch_taken(dst_reg, insn->imm, 5839 opcode, is_jmp32); 5840 else if (src_reg->type == SCALAR_VALUE && 5841 tnum_is_const(src_reg->var_off)) 5842 pred = is_branch_taken(dst_reg, src_reg->var_off.value, 5843 opcode, is_jmp32); 5844 if (pred >= 0) { 5845 err = mark_chain_precision(env, insn->dst_reg); 5846 if (BPF_SRC(insn->code) == BPF_X && !err) 5847 err = mark_chain_precision(env, insn->src_reg); 5848 if (err) 5849 return err; 5850 } 5851 if (pred == 1) { 5852 /* only follow the goto, ignore fall-through */ 5853 *insn_idx += insn->off; 5854 return 0; 5855 } else if (pred == 0) { 5856 /* only follow fall-through branch, since 5857 * that's where the program will go 5858 */ 5859 return 0; 5860 } 5861 5862 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 5863 false); 5864 if (!other_branch) 5865 return -EFAULT; 5866 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 5867 5868 /* detect if we are comparing against a constant value so we can adjust 5869 * our min/max values for our dst register. 5870 * this is only legit if both are scalars (or pointers to the same 5871 * object, I suppose, but we don't support that right now), because 5872 * otherwise the different base pointers mean the offsets aren't 5873 * comparable. 5874 */ 5875 if (BPF_SRC(insn->code) == BPF_X) { 5876 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 5877 struct bpf_reg_state lo_reg0 = *dst_reg; 5878 struct bpf_reg_state lo_reg1 = *src_reg; 5879 struct bpf_reg_state *src_lo, *dst_lo; 5880 5881 dst_lo = &lo_reg0; 5882 src_lo = &lo_reg1; 5883 coerce_reg_to_size(dst_lo, 4); 5884 coerce_reg_to_size(src_lo, 4); 5885 5886 if (dst_reg->type == SCALAR_VALUE && 5887 src_reg->type == SCALAR_VALUE) { 5888 if (tnum_is_const(src_reg->var_off) || 5889 (is_jmp32 && tnum_is_const(src_lo->var_off))) 5890 reg_set_min_max(&other_branch_regs[insn->dst_reg], 5891 dst_reg, 5892 is_jmp32 5893 ? src_lo->var_off.value 5894 : src_reg->var_off.value, 5895 opcode, is_jmp32); 5896 else if (tnum_is_const(dst_reg->var_off) || 5897 (is_jmp32 && tnum_is_const(dst_lo->var_off))) 5898 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 5899 src_reg, 5900 is_jmp32 5901 ? dst_lo->var_off.value 5902 : dst_reg->var_off.value, 5903 opcode, is_jmp32); 5904 else if (!is_jmp32 && 5905 (opcode == BPF_JEQ || opcode == BPF_JNE)) 5906 /* Comparing for equality, we can combine knowledge */ 5907 reg_combine_min_max(&other_branch_regs[insn->src_reg], 5908 &other_branch_regs[insn->dst_reg], 5909 src_reg, dst_reg, opcode); 5910 } 5911 } else if (dst_reg->type == SCALAR_VALUE) { 5912 reg_set_min_max(&other_branch_regs[insn->dst_reg], 5913 dst_reg, insn->imm, opcode, is_jmp32); 5914 } 5915 5916 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 5917 * NOTE: these optimizations below are related with pointer comparison 5918 * which will never be JMP32. 5919 */ 5920 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 5921 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 5922 reg_type_may_be_null(dst_reg->type)) { 5923 /* Mark all identical registers in each branch as either 5924 * safe or unknown depending R == 0 or R != 0 conditional. 5925 */ 5926 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 5927 opcode == BPF_JNE); 5928 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 5929 opcode == BPF_JEQ); 5930 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 5931 this_branch, other_branch) && 5932 is_pointer_value(env, insn->dst_reg)) { 5933 verbose(env, "R%d pointer comparison prohibited\n", 5934 insn->dst_reg); 5935 return -EACCES; 5936 } 5937 if (env->log.level & BPF_LOG_LEVEL) 5938 print_verifier_state(env, this_branch->frame[this_branch->curframe]); 5939 return 0; 5940 } 5941 5942 /* verify BPF_LD_IMM64 instruction */ 5943 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 5944 { 5945 struct bpf_insn_aux_data *aux = cur_aux(env); 5946 struct bpf_reg_state *regs = cur_regs(env); 5947 struct bpf_map *map; 5948 int err; 5949 5950 if (BPF_SIZE(insn->code) != BPF_DW) { 5951 verbose(env, "invalid BPF_LD_IMM insn\n"); 5952 return -EINVAL; 5953 } 5954 if (insn->off != 0) { 5955 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 5956 return -EINVAL; 5957 } 5958 5959 err = check_reg_arg(env, insn->dst_reg, DST_OP); 5960 if (err) 5961 return err; 5962 5963 if (insn->src_reg == 0) { 5964 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 5965 5966 regs[insn->dst_reg].type = SCALAR_VALUE; 5967 __mark_reg_known(®s[insn->dst_reg], imm); 5968 return 0; 5969 } 5970 5971 map = env->used_maps[aux->map_index]; 5972 mark_reg_known_zero(env, regs, insn->dst_reg); 5973 regs[insn->dst_reg].map_ptr = map; 5974 5975 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) { 5976 regs[insn->dst_reg].type = PTR_TO_MAP_VALUE; 5977 regs[insn->dst_reg].off = aux->map_off; 5978 if (map_value_has_spin_lock(map)) 5979 regs[insn->dst_reg].id = ++env->id_gen; 5980 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD) { 5981 regs[insn->dst_reg].type = CONST_PTR_TO_MAP; 5982 } else { 5983 verbose(env, "bpf verifier is misconfigured\n"); 5984 return -EINVAL; 5985 } 5986 5987 return 0; 5988 } 5989 5990 static bool may_access_skb(enum bpf_prog_type type) 5991 { 5992 switch (type) { 5993 case BPF_PROG_TYPE_SOCKET_FILTER: 5994 case BPF_PROG_TYPE_SCHED_CLS: 5995 case BPF_PROG_TYPE_SCHED_ACT: 5996 return true; 5997 default: 5998 return false; 5999 } 6000 } 6001 6002 /* verify safety of LD_ABS|LD_IND instructions: 6003 * - they can only appear in the programs where ctx == skb 6004 * - since they are wrappers of function calls, they scratch R1-R5 registers, 6005 * preserve R6-R9, and store return value into R0 6006 * 6007 * Implicit input: 6008 * ctx == skb == R6 == CTX 6009 * 6010 * Explicit input: 6011 * SRC == any register 6012 * IMM == 32-bit immediate 6013 * 6014 * Output: 6015 * R0 - 8/16/32-bit skb data converted to cpu endianness 6016 */ 6017 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 6018 { 6019 struct bpf_reg_state *regs = cur_regs(env); 6020 u8 mode = BPF_MODE(insn->code); 6021 int i, err; 6022 6023 if (!may_access_skb(env->prog->type)) { 6024 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 6025 return -EINVAL; 6026 } 6027 6028 if (!env->ops->gen_ld_abs) { 6029 verbose(env, "bpf verifier is misconfigured\n"); 6030 return -EINVAL; 6031 } 6032 6033 if (env->subprog_cnt > 1) { 6034 /* when program has LD_ABS insn JITs and interpreter assume 6035 * that r1 == ctx == skb which is not the case for callees 6036 * that can have arbitrary arguments. It's problematic 6037 * for main prog as well since JITs would need to analyze 6038 * all functions in order to make proper register save/restore 6039 * decisions in the main prog. Hence disallow LD_ABS with calls 6040 */ 6041 verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n"); 6042 return -EINVAL; 6043 } 6044 6045 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 6046 BPF_SIZE(insn->code) == BPF_DW || 6047 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 6048 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 6049 return -EINVAL; 6050 } 6051 6052 /* check whether implicit source operand (register R6) is readable */ 6053 err = check_reg_arg(env, BPF_REG_6, SRC_OP); 6054 if (err) 6055 return err; 6056 6057 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 6058 * gen_ld_abs() may terminate the program at runtime, leading to 6059 * reference leak. 6060 */ 6061 err = check_reference_leak(env); 6062 if (err) { 6063 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 6064 return err; 6065 } 6066 6067 if (env->cur_state->active_spin_lock) { 6068 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 6069 return -EINVAL; 6070 } 6071 6072 if (regs[BPF_REG_6].type != PTR_TO_CTX) { 6073 verbose(env, 6074 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 6075 return -EINVAL; 6076 } 6077 6078 if (mode == BPF_IND) { 6079 /* check explicit source operand */ 6080 err = check_reg_arg(env, insn->src_reg, SRC_OP); 6081 if (err) 6082 return err; 6083 } 6084 6085 /* reset caller saved regs to unreadable */ 6086 for (i = 0; i < CALLER_SAVED_REGS; i++) { 6087 mark_reg_not_init(env, regs, caller_saved[i]); 6088 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 6089 } 6090 6091 /* mark destination R0 register as readable, since it contains 6092 * the value fetched from the packet. 6093 * Already marked as written above. 6094 */ 6095 mark_reg_unknown(env, regs, BPF_REG_0); 6096 /* ld_abs load up to 32-bit skb data. */ 6097 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 6098 return 0; 6099 } 6100 6101 static int check_return_code(struct bpf_verifier_env *env) 6102 { 6103 struct tnum enforce_attach_type_range = tnum_unknown; 6104 struct bpf_reg_state *reg; 6105 struct tnum range = tnum_range(0, 1); 6106 6107 switch (env->prog->type) { 6108 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 6109 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 6110 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG) 6111 range = tnum_range(1, 1); 6112 break; 6113 case BPF_PROG_TYPE_CGROUP_SKB: 6114 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 6115 range = tnum_range(0, 3); 6116 enforce_attach_type_range = tnum_range(2, 3); 6117 } 6118 break; 6119 case BPF_PROG_TYPE_CGROUP_SOCK: 6120 case BPF_PROG_TYPE_SOCK_OPS: 6121 case BPF_PROG_TYPE_CGROUP_DEVICE: 6122 case BPF_PROG_TYPE_CGROUP_SYSCTL: 6123 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 6124 break; 6125 default: 6126 return 0; 6127 } 6128 6129 reg = cur_regs(env) + BPF_REG_0; 6130 if (reg->type != SCALAR_VALUE) { 6131 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 6132 reg_type_str[reg->type]); 6133 return -EINVAL; 6134 } 6135 6136 if (!tnum_in(range, reg->var_off)) { 6137 char tn_buf[48]; 6138 6139 verbose(env, "At program exit the register R0 "); 6140 if (!tnum_is_unknown(reg->var_off)) { 6141 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6142 verbose(env, "has value %s", tn_buf); 6143 } else { 6144 verbose(env, "has unknown scalar value"); 6145 } 6146 tnum_strn(tn_buf, sizeof(tn_buf), range); 6147 verbose(env, " should have been in %s\n", tn_buf); 6148 return -EINVAL; 6149 } 6150 6151 if (!tnum_is_unknown(enforce_attach_type_range) && 6152 tnum_in(enforce_attach_type_range, reg->var_off)) 6153 env->prog->enforce_expected_attach_type = 1; 6154 return 0; 6155 } 6156 6157 /* non-recursive DFS pseudo code 6158 * 1 procedure DFS-iterative(G,v): 6159 * 2 label v as discovered 6160 * 3 let S be a stack 6161 * 4 S.push(v) 6162 * 5 while S is not empty 6163 * 6 t <- S.pop() 6164 * 7 if t is what we're looking for: 6165 * 8 return t 6166 * 9 for all edges e in G.adjacentEdges(t) do 6167 * 10 if edge e is already labelled 6168 * 11 continue with the next edge 6169 * 12 w <- G.adjacentVertex(t,e) 6170 * 13 if vertex w is not discovered and not explored 6171 * 14 label e as tree-edge 6172 * 15 label w as discovered 6173 * 16 S.push(w) 6174 * 17 continue at 5 6175 * 18 else if vertex w is discovered 6176 * 19 label e as back-edge 6177 * 20 else 6178 * 21 // vertex w is explored 6179 * 22 label e as forward- or cross-edge 6180 * 23 label t as explored 6181 * 24 S.pop() 6182 * 6183 * convention: 6184 * 0x10 - discovered 6185 * 0x11 - discovered and fall-through edge labelled 6186 * 0x12 - discovered and fall-through and branch edges labelled 6187 * 0x20 - explored 6188 */ 6189 6190 enum { 6191 DISCOVERED = 0x10, 6192 EXPLORED = 0x20, 6193 FALLTHROUGH = 1, 6194 BRANCH = 2, 6195 }; 6196 6197 static u32 state_htab_size(struct bpf_verifier_env *env) 6198 { 6199 return env->prog->len; 6200 } 6201 6202 static struct bpf_verifier_state_list **explored_state( 6203 struct bpf_verifier_env *env, 6204 int idx) 6205 { 6206 struct bpf_verifier_state *cur = env->cur_state; 6207 struct bpf_func_state *state = cur->frame[cur->curframe]; 6208 6209 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 6210 } 6211 6212 static void init_explored_state(struct bpf_verifier_env *env, int idx) 6213 { 6214 env->insn_aux_data[idx].prune_point = true; 6215 } 6216 6217 /* t, w, e - match pseudo-code above: 6218 * t - index of current instruction 6219 * w - next instruction 6220 * e - edge 6221 */ 6222 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env, 6223 bool loop_ok) 6224 { 6225 int *insn_stack = env->cfg.insn_stack; 6226 int *insn_state = env->cfg.insn_state; 6227 6228 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 6229 return 0; 6230 6231 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 6232 return 0; 6233 6234 if (w < 0 || w >= env->prog->len) { 6235 verbose_linfo(env, t, "%d: ", t); 6236 verbose(env, "jump out of range from insn %d to %d\n", t, w); 6237 return -EINVAL; 6238 } 6239 6240 if (e == BRANCH) 6241 /* mark branch target for state pruning */ 6242 init_explored_state(env, w); 6243 6244 if (insn_state[w] == 0) { 6245 /* tree-edge */ 6246 insn_state[t] = DISCOVERED | e; 6247 insn_state[w] = DISCOVERED; 6248 if (env->cfg.cur_stack >= env->prog->len) 6249 return -E2BIG; 6250 insn_stack[env->cfg.cur_stack++] = w; 6251 return 1; 6252 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 6253 if (loop_ok && env->allow_ptr_leaks) 6254 return 0; 6255 verbose_linfo(env, t, "%d: ", t); 6256 verbose_linfo(env, w, "%d: ", w); 6257 verbose(env, "back-edge from insn %d to %d\n", t, w); 6258 return -EINVAL; 6259 } else if (insn_state[w] == EXPLORED) { 6260 /* forward- or cross-edge */ 6261 insn_state[t] = DISCOVERED | e; 6262 } else { 6263 verbose(env, "insn state internal bug\n"); 6264 return -EFAULT; 6265 } 6266 return 0; 6267 } 6268 6269 /* non-recursive depth-first-search to detect loops in BPF program 6270 * loop == back-edge in directed graph 6271 */ 6272 static int check_cfg(struct bpf_verifier_env *env) 6273 { 6274 struct bpf_insn *insns = env->prog->insnsi; 6275 int insn_cnt = env->prog->len; 6276 int *insn_stack, *insn_state; 6277 int ret = 0; 6278 int i, t; 6279 6280 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 6281 if (!insn_state) 6282 return -ENOMEM; 6283 6284 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 6285 if (!insn_stack) { 6286 kvfree(insn_state); 6287 return -ENOMEM; 6288 } 6289 6290 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 6291 insn_stack[0] = 0; /* 0 is the first instruction */ 6292 env->cfg.cur_stack = 1; 6293 6294 peek_stack: 6295 if (env->cfg.cur_stack == 0) 6296 goto check_state; 6297 t = insn_stack[env->cfg.cur_stack - 1]; 6298 6299 if (BPF_CLASS(insns[t].code) == BPF_JMP || 6300 BPF_CLASS(insns[t].code) == BPF_JMP32) { 6301 u8 opcode = BPF_OP(insns[t].code); 6302 6303 if (opcode == BPF_EXIT) { 6304 goto mark_explored; 6305 } else if (opcode == BPF_CALL) { 6306 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 6307 if (ret == 1) 6308 goto peek_stack; 6309 else if (ret < 0) 6310 goto err_free; 6311 if (t + 1 < insn_cnt) 6312 init_explored_state(env, t + 1); 6313 if (insns[t].src_reg == BPF_PSEUDO_CALL) { 6314 init_explored_state(env, t); 6315 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, 6316 env, false); 6317 if (ret == 1) 6318 goto peek_stack; 6319 else if (ret < 0) 6320 goto err_free; 6321 } 6322 } else if (opcode == BPF_JA) { 6323 if (BPF_SRC(insns[t].code) != BPF_K) { 6324 ret = -EINVAL; 6325 goto err_free; 6326 } 6327 /* unconditional jump with single edge */ 6328 ret = push_insn(t, t + insns[t].off + 1, 6329 FALLTHROUGH, env, true); 6330 if (ret == 1) 6331 goto peek_stack; 6332 else if (ret < 0) 6333 goto err_free; 6334 /* unconditional jmp is not a good pruning point, 6335 * but it's marked, since backtracking needs 6336 * to record jmp history in is_state_visited(). 6337 */ 6338 init_explored_state(env, t + insns[t].off + 1); 6339 /* tell verifier to check for equivalent states 6340 * after every call and jump 6341 */ 6342 if (t + 1 < insn_cnt) 6343 init_explored_state(env, t + 1); 6344 } else { 6345 /* conditional jump with two edges */ 6346 init_explored_state(env, t); 6347 ret = push_insn(t, t + 1, FALLTHROUGH, env, true); 6348 if (ret == 1) 6349 goto peek_stack; 6350 else if (ret < 0) 6351 goto err_free; 6352 6353 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env, true); 6354 if (ret == 1) 6355 goto peek_stack; 6356 else if (ret < 0) 6357 goto err_free; 6358 } 6359 } else { 6360 /* all other non-branch instructions with single 6361 * fall-through edge 6362 */ 6363 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 6364 if (ret == 1) 6365 goto peek_stack; 6366 else if (ret < 0) 6367 goto err_free; 6368 } 6369 6370 mark_explored: 6371 insn_state[t] = EXPLORED; 6372 if (env->cfg.cur_stack-- <= 0) { 6373 verbose(env, "pop stack internal bug\n"); 6374 ret = -EFAULT; 6375 goto err_free; 6376 } 6377 goto peek_stack; 6378 6379 check_state: 6380 for (i = 0; i < insn_cnt; i++) { 6381 if (insn_state[i] != EXPLORED) { 6382 verbose(env, "unreachable insn %d\n", i); 6383 ret = -EINVAL; 6384 goto err_free; 6385 } 6386 } 6387 ret = 0; /* cfg looks good */ 6388 6389 err_free: 6390 kvfree(insn_state); 6391 kvfree(insn_stack); 6392 env->cfg.insn_state = env->cfg.insn_stack = NULL; 6393 return ret; 6394 } 6395 6396 /* The minimum supported BTF func info size */ 6397 #define MIN_BPF_FUNCINFO_SIZE 8 6398 #define MAX_FUNCINFO_REC_SIZE 252 6399 6400 static int check_btf_func(struct bpf_verifier_env *env, 6401 const union bpf_attr *attr, 6402 union bpf_attr __user *uattr) 6403 { 6404 u32 i, nfuncs, urec_size, min_size; 6405 u32 krec_size = sizeof(struct bpf_func_info); 6406 struct bpf_func_info *krecord; 6407 const struct btf_type *type; 6408 struct bpf_prog *prog; 6409 const struct btf *btf; 6410 void __user *urecord; 6411 u32 prev_offset = 0; 6412 int ret = 0; 6413 6414 nfuncs = attr->func_info_cnt; 6415 if (!nfuncs) 6416 return 0; 6417 6418 if (nfuncs != env->subprog_cnt) { 6419 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 6420 return -EINVAL; 6421 } 6422 6423 urec_size = attr->func_info_rec_size; 6424 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 6425 urec_size > MAX_FUNCINFO_REC_SIZE || 6426 urec_size % sizeof(u32)) { 6427 verbose(env, "invalid func info rec size %u\n", urec_size); 6428 return -EINVAL; 6429 } 6430 6431 prog = env->prog; 6432 btf = prog->aux->btf; 6433 6434 urecord = u64_to_user_ptr(attr->func_info); 6435 min_size = min_t(u32, krec_size, urec_size); 6436 6437 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 6438 if (!krecord) 6439 return -ENOMEM; 6440 6441 for (i = 0; i < nfuncs; i++) { 6442 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 6443 if (ret) { 6444 if (ret == -E2BIG) { 6445 verbose(env, "nonzero tailing record in func info"); 6446 /* set the size kernel expects so loader can zero 6447 * out the rest of the record. 6448 */ 6449 if (put_user(min_size, &uattr->func_info_rec_size)) 6450 ret = -EFAULT; 6451 } 6452 goto err_free; 6453 } 6454 6455 if (copy_from_user(&krecord[i], urecord, min_size)) { 6456 ret = -EFAULT; 6457 goto err_free; 6458 } 6459 6460 /* check insn_off */ 6461 if (i == 0) { 6462 if (krecord[i].insn_off) { 6463 verbose(env, 6464 "nonzero insn_off %u for the first func info record", 6465 krecord[i].insn_off); 6466 ret = -EINVAL; 6467 goto err_free; 6468 } 6469 } else if (krecord[i].insn_off <= prev_offset) { 6470 verbose(env, 6471 "same or smaller insn offset (%u) than previous func info record (%u)", 6472 krecord[i].insn_off, prev_offset); 6473 ret = -EINVAL; 6474 goto err_free; 6475 } 6476 6477 if (env->subprog_info[i].start != krecord[i].insn_off) { 6478 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 6479 ret = -EINVAL; 6480 goto err_free; 6481 } 6482 6483 /* check type_id */ 6484 type = btf_type_by_id(btf, krecord[i].type_id); 6485 if (!type || BTF_INFO_KIND(type->info) != BTF_KIND_FUNC) { 6486 verbose(env, "invalid type id %d in func info", 6487 krecord[i].type_id); 6488 ret = -EINVAL; 6489 goto err_free; 6490 } 6491 6492 prev_offset = krecord[i].insn_off; 6493 urecord += urec_size; 6494 } 6495 6496 prog->aux->func_info = krecord; 6497 prog->aux->func_info_cnt = nfuncs; 6498 return 0; 6499 6500 err_free: 6501 kvfree(krecord); 6502 return ret; 6503 } 6504 6505 static void adjust_btf_func(struct bpf_verifier_env *env) 6506 { 6507 int i; 6508 6509 if (!env->prog->aux->func_info) 6510 return; 6511 6512 for (i = 0; i < env->subprog_cnt; i++) 6513 env->prog->aux->func_info[i].insn_off = env->subprog_info[i].start; 6514 } 6515 6516 #define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \ 6517 sizeof(((struct bpf_line_info *)(0))->line_col)) 6518 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 6519 6520 static int check_btf_line(struct bpf_verifier_env *env, 6521 const union bpf_attr *attr, 6522 union bpf_attr __user *uattr) 6523 { 6524 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 6525 struct bpf_subprog_info *sub; 6526 struct bpf_line_info *linfo; 6527 struct bpf_prog *prog; 6528 const struct btf *btf; 6529 void __user *ulinfo; 6530 int err; 6531 6532 nr_linfo = attr->line_info_cnt; 6533 if (!nr_linfo) 6534 return 0; 6535 6536 rec_size = attr->line_info_rec_size; 6537 if (rec_size < MIN_BPF_LINEINFO_SIZE || 6538 rec_size > MAX_LINEINFO_REC_SIZE || 6539 rec_size & (sizeof(u32) - 1)) 6540 return -EINVAL; 6541 6542 /* Need to zero it in case the userspace may 6543 * pass in a smaller bpf_line_info object. 6544 */ 6545 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 6546 GFP_KERNEL | __GFP_NOWARN); 6547 if (!linfo) 6548 return -ENOMEM; 6549 6550 prog = env->prog; 6551 btf = prog->aux->btf; 6552 6553 s = 0; 6554 sub = env->subprog_info; 6555 ulinfo = u64_to_user_ptr(attr->line_info); 6556 expected_size = sizeof(struct bpf_line_info); 6557 ncopy = min_t(u32, expected_size, rec_size); 6558 for (i = 0; i < nr_linfo; i++) { 6559 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 6560 if (err) { 6561 if (err == -E2BIG) { 6562 verbose(env, "nonzero tailing record in line_info"); 6563 if (put_user(expected_size, 6564 &uattr->line_info_rec_size)) 6565 err = -EFAULT; 6566 } 6567 goto err_free; 6568 } 6569 6570 if (copy_from_user(&linfo[i], ulinfo, ncopy)) { 6571 err = -EFAULT; 6572 goto err_free; 6573 } 6574 6575 /* 6576 * Check insn_off to ensure 6577 * 1) strictly increasing AND 6578 * 2) bounded by prog->len 6579 * 6580 * The linfo[0].insn_off == 0 check logically falls into 6581 * the later "missing bpf_line_info for func..." case 6582 * because the first linfo[0].insn_off must be the 6583 * first sub also and the first sub must have 6584 * subprog_info[0].start == 0. 6585 */ 6586 if ((i && linfo[i].insn_off <= prev_offset) || 6587 linfo[i].insn_off >= prog->len) { 6588 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 6589 i, linfo[i].insn_off, prev_offset, 6590 prog->len); 6591 err = -EINVAL; 6592 goto err_free; 6593 } 6594 6595 if (!prog->insnsi[linfo[i].insn_off].code) { 6596 verbose(env, 6597 "Invalid insn code at line_info[%u].insn_off\n", 6598 i); 6599 err = -EINVAL; 6600 goto err_free; 6601 } 6602 6603 if (!btf_name_by_offset(btf, linfo[i].line_off) || 6604 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 6605 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 6606 err = -EINVAL; 6607 goto err_free; 6608 } 6609 6610 if (s != env->subprog_cnt) { 6611 if (linfo[i].insn_off == sub[s].start) { 6612 sub[s].linfo_idx = i; 6613 s++; 6614 } else if (sub[s].start < linfo[i].insn_off) { 6615 verbose(env, "missing bpf_line_info for func#%u\n", s); 6616 err = -EINVAL; 6617 goto err_free; 6618 } 6619 } 6620 6621 prev_offset = linfo[i].insn_off; 6622 ulinfo += rec_size; 6623 } 6624 6625 if (s != env->subprog_cnt) { 6626 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 6627 env->subprog_cnt - s, s); 6628 err = -EINVAL; 6629 goto err_free; 6630 } 6631 6632 prog->aux->linfo = linfo; 6633 prog->aux->nr_linfo = nr_linfo; 6634 6635 return 0; 6636 6637 err_free: 6638 kvfree(linfo); 6639 return err; 6640 } 6641 6642 static int check_btf_info(struct bpf_verifier_env *env, 6643 const union bpf_attr *attr, 6644 union bpf_attr __user *uattr) 6645 { 6646 struct btf *btf; 6647 int err; 6648 6649 if (!attr->func_info_cnt && !attr->line_info_cnt) 6650 return 0; 6651 6652 btf = btf_get_by_fd(attr->prog_btf_fd); 6653 if (IS_ERR(btf)) 6654 return PTR_ERR(btf); 6655 env->prog->aux->btf = btf; 6656 6657 err = check_btf_func(env, attr, uattr); 6658 if (err) 6659 return err; 6660 6661 err = check_btf_line(env, attr, uattr); 6662 if (err) 6663 return err; 6664 6665 return 0; 6666 } 6667 6668 /* check %cur's range satisfies %old's */ 6669 static bool range_within(struct bpf_reg_state *old, 6670 struct bpf_reg_state *cur) 6671 { 6672 return old->umin_value <= cur->umin_value && 6673 old->umax_value >= cur->umax_value && 6674 old->smin_value <= cur->smin_value && 6675 old->smax_value >= cur->smax_value; 6676 } 6677 6678 /* Maximum number of register states that can exist at once */ 6679 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE) 6680 struct idpair { 6681 u32 old; 6682 u32 cur; 6683 }; 6684 6685 /* If in the old state two registers had the same id, then they need to have 6686 * the same id in the new state as well. But that id could be different from 6687 * the old state, so we need to track the mapping from old to new ids. 6688 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 6689 * regs with old id 5 must also have new id 9 for the new state to be safe. But 6690 * regs with a different old id could still have new id 9, we don't care about 6691 * that. 6692 * So we look through our idmap to see if this old id has been seen before. If 6693 * so, we require the new id to match; otherwise, we add the id pair to the map. 6694 */ 6695 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap) 6696 { 6697 unsigned int i; 6698 6699 for (i = 0; i < ID_MAP_SIZE; i++) { 6700 if (!idmap[i].old) { 6701 /* Reached an empty slot; haven't seen this id before */ 6702 idmap[i].old = old_id; 6703 idmap[i].cur = cur_id; 6704 return true; 6705 } 6706 if (idmap[i].old == old_id) 6707 return idmap[i].cur == cur_id; 6708 } 6709 /* We ran out of idmap slots, which should be impossible */ 6710 WARN_ON_ONCE(1); 6711 return false; 6712 } 6713 6714 static void clean_func_state(struct bpf_verifier_env *env, 6715 struct bpf_func_state *st) 6716 { 6717 enum bpf_reg_liveness live; 6718 int i, j; 6719 6720 for (i = 0; i < BPF_REG_FP; i++) { 6721 live = st->regs[i].live; 6722 /* liveness must not touch this register anymore */ 6723 st->regs[i].live |= REG_LIVE_DONE; 6724 if (!(live & REG_LIVE_READ)) 6725 /* since the register is unused, clear its state 6726 * to make further comparison simpler 6727 */ 6728 __mark_reg_not_init(&st->regs[i]); 6729 } 6730 6731 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 6732 live = st->stack[i].spilled_ptr.live; 6733 /* liveness must not touch this stack slot anymore */ 6734 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 6735 if (!(live & REG_LIVE_READ)) { 6736 __mark_reg_not_init(&st->stack[i].spilled_ptr); 6737 for (j = 0; j < BPF_REG_SIZE; j++) 6738 st->stack[i].slot_type[j] = STACK_INVALID; 6739 } 6740 } 6741 } 6742 6743 static void clean_verifier_state(struct bpf_verifier_env *env, 6744 struct bpf_verifier_state *st) 6745 { 6746 int i; 6747 6748 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 6749 /* all regs in this state in all frames were already marked */ 6750 return; 6751 6752 for (i = 0; i <= st->curframe; i++) 6753 clean_func_state(env, st->frame[i]); 6754 } 6755 6756 /* the parentage chains form a tree. 6757 * the verifier states are added to state lists at given insn and 6758 * pushed into state stack for future exploration. 6759 * when the verifier reaches bpf_exit insn some of the verifer states 6760 * stored in the state lists have their final liveness state already, 6761 * but a lot of states will get revised from liveness point of view when 6762 * the verifier explores other branches. 6763 * Example: 6764 * 1: r0 = 1 6765 * 2: if r1 == 100 goto pc+1 6766 * 3: r0 = 2 6767 * 4: exit 6768 * when the verifier reaches exit insn the register r0 in the state list of 6769 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 6770 * of insn 2 and goes exploring further. At the insn 4 it will walk the 6771 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 6772 * 6773 * Since the verifier pushes the branch states as it sees them while exploring 6774 * the program the condition of walking the branch instruction for the second 6775 * time means that all states below this branch were already explored and 6776 * their final liveness markes are already propagated. 6777 * Hence when the verifier completes the search of state list in is_state_visited() 6778 * we can call this clean_live_states() function to mark all liveness states 6779 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 6780 * will not be used. 6781 * This function also clears the registers and stack for states that !READ 6782 * to simplify state merging. 6783 * 6784 * Important note here that walking the same branch instruction in the callee 6785 * doesn't meant that the states are DONE. The verifier has to compare 6786 * the callsites 6787 */ 6788 static void clean_live_states(struct bpf_verifier_env *env, int insn, 6789 struct bpf_verifier_state *cur) 6790 { 6791 struct bpf_verifier_state_list *sl; 6792 int i; 6793 6794 sl = *explored_state(env, insn); 6795 while (sl) { 6796 if (sl->state.branches) 6797 goto next; 6798 if (sl->state.insn_idx != insn || 6799 sl->state.curframe != cur->curframe) 6800 goto next; 6801 for (i = 0; i <= cur->curframe; i++) 6802 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite) 6803 goto next; 6804 clean_verifier_state(env, &sl->state); 6805 next: 6806 sl = sl->next; 6807 } 6808 } 6809 6810 /* Returns true if (rold safe implies rcur safe) */ 6811 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur, 6812 struct idpair *idmap) 6813 { 6814 bool equal; 6815 6816 if (!(rold->live & REG_LIVE_READ)) 6817 /* explored state didn't use this */ 6818 return true; 6819 6820 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0; 6821 6822 if (rold->type == PTR_TO_STACK) 6823 /* two stack pointers are equal only if they're pointing to 6824 * the same stack frame, since fp-8 in foo != fp-8 in bar 6825 */ 6826 return equal && rold->frameno == rcur->frameno; 6827 6828 if (equal) 6829 return true; 6830 6831 if (rold->type == NOT_INIT) 6832 /* explored state can't have used this */ 6833 return true; 6834 if (rcur->type == NOT_INIT) 6835 return false; 6836 switch (rold->type) { 6837 case SCALAR_VALUE: 6838 if (rcur->type == SCALAR_VALUE) { 6839 if (!rold->precise && !rcur->precise) 6840 return true; 6841 /* new val must satisfy old val knowledge */ 6842 return range_within(rold, rcur) && 6843 tnum_in(rold->var_off, rcur->var_off); 6844 } else { 6845 /* We're trying to use a pointer in place of a scalar. 6846 * Even if the scalar was unbounded, this could lead to 6847 * pointer leaks because scalars are allowed to leak 6848 * while pointers are not. We could make this safe in 6849 * special cases if root is calling us, but it's 6850 * probably not worth the hassle. 6851 */ 6852 return false; 6853 } 6854 case PTR_TO_MAP_VALUE: 6855 /* If the new min/max/var_off satisfy the old ones and 6856 * everything else matches, we are OK. 6857 * 'id' is not compared, since it's only used for maps with 6858 * bpf_spin_lock inside map element and in such cases if 6859 * the rest of the prog is valid for one map element then 6860 * it's valid for all map elements regardless of the key 6861 * used in bpf_map_lookup() 6862 */ 6863 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 6864 range_within(rold, rcur) && 6865 tnum_in(rold->var_off, rcur->var_off); 6866 case PTR_TO_MAP_VALUE_OR_NULL: 6867 /* a PTR_TO_MAP_VALUE could be safe to use as a 6868 * PTR_TO_MAP_VALUE_OR_NULL into the same map. 6869 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- 6870 * checked, doing so could have affected others with the same 6871 * id, and we can't check for that because we lost the id when 6872 * we converted to a PTR_TO_MAP_VALUE. 6873 */ 6874 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL) 6875 return false; 6876 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) 6877 return false; 6878 /* Check our ids match any regs they're supposed to */ 6879 return check_ids(rold->id, rcur->id, idmap); 6880 case PTR_TO_PACKET_META: 6881 case PTR_TO_PACKET: 6882 if (rcur->type != rold->type) 6883 return false; 6884 /* We must have at least as much range as the old ptr 6885 * did, so that any accesses which were safe before are 6886 * still safe. This is true even if old range < old off, 6887 * since someone could have accessed through (ptr - k), or 6888 * even done ptr -= k in a register, to get a safe access. 6889 */ 6890 if (rold->range > rcur->range) 6891 return false; 6892 /* If the offsets don't match, we can't trust our alignment; 6893 * nor can we be sure that we won't fall out of range. 6894 */ 6895 if (rold->off != rcur->off) 6896 return false; 6897 /* id relations must be preserved */ 6898 if (rold->id && !check_ids(rold->id, rcur->id, idmap)) 6899 return false; 6900 /* new val must satisfy old val knowledge */ 6901 return range_within(rold, rcur) && 6902 tnum_in(rold->var_off, rcur->var_off); 6903 case PTR_TO_CTX: 6904 case CONST_PTR_TO_MAP: 6905 case PTR_TO_PACKET_END: 6906 case PTR_TO_FLOW_KEYS: 6907 case PTR_TO_SOCKET: 6908 case PTR_TO_SOCKET_OR_NULL: 6909 case PTR_TO_SOCK_COMMON: 6910 case PTR_TO_SOCK_COMMON_OR_NULL: 6911 case PTR_TO_TCP_SOCK: 6912 case PTR_TO_TCP_SOCK_OR_NULL: 6913 case PTR_TO_XDP_SOCK: 6914 /* Only valid matches are exact, which memcmp() above 6915 * would have accepted 6916 */ 6917 default: 6918 /* Don't know what's going on, just say it's not safe */ 6919 return false; 6920 } 6921 6922 /* Shouldn't get here; if we do, say it's not safe */ 6923 WARN_ON_ONCE(1); 6924 return false; 6925 } 6926 6927 static bool stacksafe(struct bpf_func_state *old, 6928 struct bpf_func_state *cur, 6929 struct idpair *idmap) 6930 { 6931 int i, spi; 6932 6933 /* walk slots of the explored stack and ignore any additional 6934 * slots in the current stack, since explored(safe) state 6935 * didn't use them 6936 */ 6937 for (i = 0; i < old->allocated_stack; i++) { 6938 spi = i / BPF_REG_SIZE; 6939 6940 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) { 6941 i += BPF_REG_SIZE - 1; 6942 /* explored state didn't use this */ 6943 continue; 6944 } 6945 6946 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 6947 continue; 6948 6949 /* explored stack has more populated slots than current stack 6950 * and these slots were used 6951 */ 6952 if (i >= cur->allocated_stack) 6953 return false; 6954 6955 /* if old state was safe with misc data in the stack 6956 * it will be safe with zero-initialized stack. 6957 * The opposite is not true 6958 */ 6959 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 6960 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 6961 continue; 6962 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 6963 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 6964 /* Ex: old explored (safe) state has STACK_SPILL in 6965 * this stack slot, but current has has STACK_MISC -> 6966 * this verifier states are not equivalent, 6967 * return false to continue verification of this path 6968 */ 6969 return false; 6970 if (i % BPF_REG_SIZE) 6971 continue; 6972 if (old->stack[spi].slot_type[0] != STACK_SPILL) 6973 continue; 6974 if (!regsafe(&old->stack[spi].spilled_ptr, 6975 &cur->stack[spi].spilled_ptr, 6976 idmap)) 6977 /* when explored and current stack slot are both storing 6978 * spilled registers, check that stored pointers types 6979 * are the same as well. 6980 * Ex: explored safe path could have stored 6981 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 6982 * but current path has stored: 6983 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 6984 * such verifier states are not equivalent. 6985 * return false to continue verification of this path 6986 */ 6987 return false; 6988 } 6989 return true; 6990 } 6991 6992 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur) 6993 { 6994 if (old->acquired_refs != cur->acquired_refs) 6995 return false; 6996 return !memcmp(old->refs, cur->refs, 6997 sizeof(*old->refs) * old->acquired_refs); 6998 } 6999 7000 /* compare two verifier states 7001 * 7002 * all states stored in state_list are known to be valid, since 7003 * verifier reached 'bpf_exit' instruction through them 7004 * 7005 * this function is called when verifier exploring different branches of 7006 * execution popped from the state stack. If it sees an old state that has 7007 * more strict register state and more strict stack state then this execution 7008 * branch doesn't need to be explored further, since verifier already 7009 * concluded that more strict state leads to valid finish. 7010 * 7011 * Therefore two states are equivalent if register state is more conservative 7012 * and explored stack state is more conservative than the current one. 7013 * Example: 7014 * explored current 7015 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 7016 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 7017 * 7018 * In other words if current stack state (one being explored) has more 7019 * valid slots than old one that already passed validation, it means 7020 * the verifier can stop exploring and conclude that current state is valid too 7021 * 7022 * Similarly with registers. If explored state has register type as invalid 7023 * whereas register type in current state is meaningful, it means that 7024 * the current state will reach 'bpf_exit' instruction safely 7025 */ 7026 static bool func_states_equal(struct bpf_func_state *old, 7027 struct bpf_func_state *cur) 7028 { 7029 struct idpair *idmap; 7030 bool ret = false; 7031 int i; 7032 7033 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL); 7034 /* If we failed to allocate the idmap, just say it's not safe */ 7035 if (!idmap) 7036 return false; 7037 7038 for (i = 0; i < MAX_BPF_REG; i++) { 7039 if (!regsafe(&old->regs[i], &cur->regs[i], idmap)) 7040 goto out_free; 7041 } 7042 7043 if (!stacksafe(old, cur, idmap)) 7044 goto out_free; 7045 7046 if (!refsafe(old, cur)) 7047 goto out_free; 7048 ret = true; 7049 out_free: 7050 kfree(idmap); 7051 return ret; 7052 } 7053 7054 static bool states_equal(struct bpf_verifier_env *env, 7055 struct bpf_verifier_state *old, 7056 struct bpf_verifier_state *cur) 7057 { 7058 int i; 7059 7060 if (old->curframe != cur->curframe) 7061 return false; 7062 7063 /* Verification state from speculative execution simulation 7064 * must never prune a non-speculative execution one. 7065 */ 7066 if (old->speculative && !cur->speculative) 7067 return false; 7068 7069 if (old->active_spin_lock != cur->active_spin_lock) 7070 return false; 7071 7072 /* for states to be equal callsites have to be the same 7073 * and all frame states need to be equivalent 7074 */ 7075 for (i = 0; i <= old->curframe; i++) { 7076 if (old->frame[i]->callsite != cur->frame[i]->callsite) 7077 return false; 7078 if (!func_states_equal(old->frame[i], cur->frame[i])) 7079 return false; 7080 } 7081 return true; 7082 } 7083 7084 /* Return 0 if no propagation happened. Return negative error code if error 7085 * happened. Otherwise, return the propagated bit. 7086 */ 7087 static int propagate_liveness_reg(struct bpf_verifier_env *env, 7088 struct bpf_reg_state *reg, 7089 struct bpf_reg_state *parent_reg) 7090 { 7091 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 7092 u8 flag = reg->live & REG_LIVE_READ; 7093 int err; 7094 7095 /* When comes here, read flags of PARENT_REG or REG could be any of 7096 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 7097 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 7098 */ 7099 if (parent_flag == REG_LIVE_READ64 || 7100 /* Or if there is no read flag from REG. */ 7101 !flag || 7102 /* Or if the read flag from REG is the same as PARENT_REG. */ 7103 parent_flag == flag) 7104 return 0; 7105 7106 err = mark_reg_read(env, reg, parent_reg, flag); 7107 if (err) 7108 return err; 7109 7110 return flag; 7111 } 7112 7113 /* A write screens off any subsequent reads; but write marks come from the 7114 * straight-line code between a state and its parent. When we arrive at an 7115 * equivalent state (jump target or such) we didn't arrive by the straight-line 7116 * code, so read marks in the state must propagate to the parent regardless 7117 * of the state's write marks. That's what 'parent == state->parent' comparison 7118 * in mark_reg_read() is for. 7119 */ 7120 static int propagate_liveness(struct bpf_verifier_env *env, 7121 const struct bpf_verifier_state *vstate, 7122 struct bpf_verifier_state *vparent) 7123 { 7124 struct bpf_reg_state *state_reg, *parent_reg; 7125 struct bpf_func_state *state, *parent; 7126 int i, frame, err = 0; 7127 7128 if (vparent->curframe != vstate->curframe) { 7129 WARN(1, "propagate_live: parent frame %d current frame %d\n", 7130 vparent->curframe, vstate->curframe); 7131 return -EFAULT; 7132 } 7133 /* Propagate read liveness of registers... */ 7134 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 7135 for (frame = 0; frame <= vstate->curframe; frame++) { 7136 parent = vparent->frame[frame]; 7137 state = vstate->frame[frame]; 7138 parent_reg = parent->regs; 7139 state_reg = state->regs; 7140 /* We don't need to worry about FP liveness, it's read-only */ 7141 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 7142 err = propagate_liveness_reg(env, &state_reg[i], 7143 &parent_reg[i]); 7144 if (err < 0) 7145 return err; 7146 if (err == REG_LIVE_READ64) 7147 mark_insn_zext(env, &parent_reg[i]); 7148 } 7149 7150 /* Propagate stack slots. */ 7151 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 7152 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 7153 parent_reg = &parent->stack[i].spilled_ptr; 7154 state_reg = &state->stack[i].spilled_ptr; 7155 err = propagate_liveness_reg(env, state_reg, 7156 parent_reg); 7157 if (err < 0) 7158 return err; 7159 } 7160 } 7161 return 0; 7162 } 7163 7164 /* find precise scalars in the previous equivalent state and 7165 * propagate them into the current state 7166 */ 7167 static int propagate_precision(struct bpf_verifier_env *env, 7168 const struct bpf_verifier_state *old) 7169 { 7170 struct bpf_reg_state *state_reg; 7171 struct bpf_func_state *state; 7172 int i, err = 0; 7173 7174 state = old->frame[old->curframe]; 7175 state_reg = state->regs; 7176 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 7177 if (state_reg->type != SCALAR_VALUE || 7178 !state_reg->precise) 7179 continue; 7180 if (env->log.level & BPF_LOG_LEVEL2) 7181 verbose(env, "propagating r%d\n", i); 7182 err = mark_chain_precision(env, i); 7183 if (err < 0) 7184 return err; 7185 } 7186 7187 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 7188 if (state->stack[i].slot_type[0] != STACK_SPILL) 7189 continue; 7190 state_reg = &state->stack[i].spilled_ptr; 7191 if (state_reg->type != SCALAR_VALUE || 7192 !state_reg->precise) 7193 continue; 7194 if (env->log.level & BPF_LOG_LEVEL2) 7195 verbose(env, "propagating fp%d\n", 7196 (-i - 1) * BPF_REG_SIZE); 7197 err = mark_chain_precision_stack(env, i); 7198 if (err < 0) 7199 return err; 7200 } 7201 return 0; 7202 } 7203 7204 static bool states_maybe_looping(struct bpf_verifier_state *old, 7205 struct bpf_verifier_state *cur) 7206 { 7207 struct bpf_func_state *fold, *fcur; 7208 int i, fr = cur->curframe; 7209 7210 if (old->curframe != fr) 7211 return false; 7212 7213 fold = old->frame[fr]; 7214 fcur = cur->frame[fr]; 7215 for (i = 0; i < MAX_BPF_REG; i++) 7216 if (memcmp(&fold->regs[i], &fcur->regs[i], 7217 offsetof(struct bpf_reg_state, parent))) 7218 return false; 7219 return true; 7220 } 7221 7222 7223 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 7224 { 7225 struct bpf_verifier_state_list *new_sl; 7226 struct bpf_verifier_state_list *sl, **pprev; 7227 struct bpf_verifier_state *cur = env->cur_state, *new; 7228 int i, j, err, states_cnt = 0; 7229 bool add_new_state = false; 7230 7231 cur->last_insn_idx = env->prev_insn_idx; 7232 if (!env->insn_aux_data[insn_idx].prune_point) 7233 /* this 'insn_idx' instruction wasn't marked, so we will not 7234 * be doing state search here 7235 */ 7236 return 0; 7237 7238 /* bpf progs typically have pruning point every 4 instructions 7239 * http://vger.kernel.org/bpfconf2019.html#session-1 7240 * Do not add new state for future pruning if the verifier hasn't seen 7241 * at least 2 jumps and at least 8 instructions. 7242 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 7243 * In tests that amounts to up to 50% reduction into total verifier 7244 * memory consumption and 20% verifier time speedup. 7245 */ 7246 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 7247 env->insn_processed - env->prev_insn_processed >= 8) 7248 add_new_state = true; 7249 7250 pprev = explored_state(env, insn_idx); 7251 sl = *pprev; 7252 7253 clean_live_states(env, insn_idx, cur); 7254 7255 while (sl) { 7256 states_cnt++; 7257 if (sl->state.insn_idx != insn_idx) 7258 goto next; 7259 if (sl->state.branches) { 7260 if (states_maybe_looping(&sl->state, cur) && 7261 states_equal(env, &sl->state, cur)) { 7262 verbose_linfo(env, insn_idx, "; "); 7263 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 7264 return -EINVAL; 7265 } 7266 /* if the verifier is processing a loop, avoid adding new state 7267 * too often, since different loop iterations have distinct 7268 * states and may not help future pruning. 7269 * This threshold shouldn't be too low to make sure that 7270 * a loop with large bound will be rejected quickly. 7271 * The most abusive loop will be: 7272 * r1 += 1 7273 * if r1 < 1000000 goto pc-2 7274 * 1M insn_procssed limit / 100 == 10k peak states. 7275 * This threshold shouldn't be too high either, since states 7276 * at the end of the loop are likely to be useful in pruning. 7277 */ 7278 if (env->jmps_processed - env->prev_jmps_processed < 20 && 7279 env->insn_processed - env->prev_insn_processed < 100) 7280 add_new_state = false; 7281 goto miss; 7282 } 7283 if (states_equal(env, &sl->state, cur)) { 7284 sl->hit_cnt++; 7285 /* reached equivalent register/stack state, 7286 * prune the search. 7287 * Registers read by the continuation are read by us. 7288 * If we have any write marks in env->cur_state, they 7289 * will prevent corresponding reads in the continuation 7290 * from reaching our parent (an explored_state). Our 7291 * own state will get the read marks recorded, but 7292 * they'll be immediately forgotten as we're pruning 7293 * this state and will pop a new one. 7294 */ 7295 err = propagate_liveness(env, &sl->state, cur); 7296 7297 /* if previous state reached the exit with precision and 7298 * current state is equivalent to it (except precsion marks) 7299 * the precision needs to be propagated back in 7300 * the current state. 7301 */ 7302 err = err ? : push_jmp_history(env, cur); 7303 err = err ? : propagate_precision(env, &sl->state); 7304 if (err) 7305 return err; 7306 return 1; 7307 } 7308 miss: 7309 /* when new state is not going to be added do not increase miss count. 7310 * Otherwise several loop iterations will remove the state 7311 * recorded earlier. The goal of these heuristics is to have 7312 * states from some iterations of the loop (some in the beginning 7313 * and some at the end) to help pruning. 7314 */ 7315 if (add_new_state) 7316 sl->miss_cnt++; 7317 /* heuristic to determine whether this state is beneficial 7318 * to keep checking from state equivalence point of view. 7319 * Higher numbers increase max_states_per_insn and verification time, 7320 * but do not meaningfully decrease insn_processed. 7321 */ 7322 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) { 7323 /* the state is unlikely to be useful. Remove it to 7324 * speed up verification 7325 */ 7326 *pprev = sl->next; 7327 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) { 7328 u32 br = sl->state.branches; 7329 7330 WARN_ONCE(br, 7331 "BUG live_done but branches_to_explore %d\n", 7332 br); 7333 free_verifier_state(&sl->state, false); 7334 kfree(sl); 7335 env->peak_states--; 7336 } else { 7337 /* cannot free this state, since parentage chain may 7338 * walk it later. Add it for free_list instead to 7339 * be freed at the end of verification 7340 */ 7341 sl->next = env->free_list; 7342 env->free_list = sl; 7343 } 7344 sl = *pprev; 7345 continue; 7346 } 7347 next: 7348 pprev = &sl->next; 7349 sl = *pprev; 7350 } 7351 7352 if (env->max_states_per_insn < states_cnt) 7353 env->max_states_per_insn = states_cnt; 7354 7355 if (!env->allow_ptr_leaks && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 7356 return push_jmp_history(env, cur); 7357 7358 if (!add_new_state) 7359 return push_jmp_history(env, cur); 7360 7361 /* There were no equivalent states, remember the current one. 7362 * Technically the current state is not proven to be safe yet, 7363 * but it will either reach outer most bpf_exit (which means it's safe) 7364 * or it will be rejected. When there are no loops the verifier won't be 7365 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 7366 * again on the way to bpf_exit. 7367 * When looping the sl->state.branches will be > 0 and this state 7368 * will not be considered for equivalence until branches == 0. 7369 */ 7370 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 7371 if (!new_sl) 7372 return -ENOMEM; 7373 env->total_states++; 7374 env->peak_states++; 7375 env->prev_jmps_processed = env->jmps_processed; 7376 env->prev_insn_processed = env->insn_processed; 7377 7378 /* add new state to the head of linked list */ 7379 new = &new_sl->state; 7380 err = copy_verifier_state(new, cur); 7381 if (err) { 7382 free_verifier_state(new, false); 7383 kfree(new_sl); 7384 return err; 7385 } 7386 new->insn_idx = insn_idx; 7387 WARN_ONCE(new->branches != 1, 7388 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 7389 7390 cur->parent = new; 7391 cur->first_insn_idx = insn_idx; 7392 clear_jmp_history(cur); 7393 new_sl->next = *explored_state(env, insn_idx); 7394 *explored_state(env, insn_idx) = new_sl; 7395 /* connect new state to parentage chain. Current frame needs all 7396 * registers connected. Only r6 - r9 of the callers are alive (pushed 7397 * to the stack implicitly by JITs) so in callers' frames connect just 7398 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 7399 * the state of the call instruction (with WRITTEN set), and r0 comes 7400 * from callee with its full parentage chain, anyway. 7401 */ 7402 /* clear write marks in current state: the writes we did are not writes 7403 * our child did, so they don't screen off its reads from us. 7404 * (There are no read marks in current state, because reads always mark 7405 * their parent and current state never has children yet. Only 7406 * explored_states can get read marks.) 7407 */ 7408 for (j = 0; j <= cur->curframe; j++) { 7409 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 7410 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 7411 for (i = 0; i < BPF_REG_FP; i++) 7412 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 7413 } 7414 7415 /* all stack frames are accessible from callee, clear them all */ 7416 for (j = 0; j <= cur->curframe; j++) { 7417 struct bpf_func_state *frame = cur->frame[j]; 7418 struct bpf_func_state *newframe = new->frame[j]; 7419 7420 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 7421 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 7422 frame->stack[i].spilled_ptr.parent = 7423 &newframe->stack[i].spilled_ptr; 7424 } 7425 } 7426 return 0; 7427 } 7428 7429 /* Return true if it's OK to have the same insn return a different type. */ 7430 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 7431 { 7432 switch (type) { 7433 case PTR_TO_CTX: 7434 case PTR_TO_SOCKET: 7435 case PTR_TO_SOCKET_OR_NULL: 7436 case PTR_TO_SOCK_COMMON: 7437 case PTR_TO_SOCK_COMMON_OR_NULL: 7438 case PTR_TO_TCP_SOCK: 7439 case PTR_TO_TCP_SOCK_OR_NULL: 7440 case PTR_TO_XDP_SOCK: 7441 return false; 7442 default: 7443 return true; 7444 } 7445 } 7446 7447 /* If an instruction was previously used with particular pointer types, then we 7448 * need to be careful to avoid cases such as the below, where it may be ok 7449 * for one branch accessing the pointer, but not ok for the other branch: 7450 * 7451 * R1 = sock_ptr 7452 * goto X; 7453 * ... 7454 * R1 = some_other_valid_ptr; 7455 * goto X; 7456 * ... 7457 * R2 = *(u32 *)(R1 + 0); 7458 */ 7459 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 7460 { 7461 return src != prev && (!reg_type_mismatch_ok(src) || 7462 !reg_type_mismatch_ok(prev)); 7463 } 7464 7465 static int do_check(struct bpf_verifier_env *env) 7466 { 7467 struct bpf_verifier_state *state; 7468 struct bpf_insn *insns = env->prog->insnsi; 7469 struct bpf_reg_state *regs; 7470 int insn_cnt = env->prog->len; 7471 bool do_print_state = false; 7472 int prev_insn_idx = -1; 7473 7474 env->prev_linfo = NULL; 7475 7476 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 7477 if (!state) 7478 return -ENOMEM; 7479 state->curframe = 0; 7480 state->speculative = false; 7481 state->branches = 1; 7482 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 7483 if (!state->frame[0]) { 7484 kfree(state); 7485 return -ENOMEM; 7486 } 7487 env->cur_state = state; 7488 init_func_state(env, state->frame[0], 7489 BPF_MAIN_FUNC /* callsite */, 7490 0 /* frameno */, 7491 0 /* subprogno, zero == main subprog */); 7492 7493 for (;;) { 7494 struct bpf_insn *insn; 7495 u8 class; 7496 int err; 7497 7498 env->prev_insn_idx = prev_insn_idx; 7499 if (env->insn_idx >= insn_cnt) { 7500 verbose(env, "invalid insn idx %d insn_cnt %d\n", 7501 env->insn_idx, insn_cnt); 7502 return -EFAULT; 7503 } 7504 7505 insn = &insns[env->insn_idx]; 7506 class = BPF_CLASS(insn->code); 7507 7508 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 7509 verbose(env, 7510 "BPF program is too large. Processed %d insn\n", 7511 env->insn_processed); 7512 return -E2BIG; 7513 } 7514 7515 err = is_state_visited(env, env->insn_idx); 7516 if (err < 0) 7517 return err; 7518 if (err == 1) { 7519 /* found equivalent state, can prune the search */ 7520 if (env->log.level & BPF_LOG_LEVEL) { 7521 if (do_print_state) 7522 verbose(env, "\nfrom %d to %d%s: safe\n", 7523 env->prev_insn_idx, env->insn_idx, 7524 env->cur_state->speculative ? 7525 " (speculative execution)" : ""); 7526 else 7527 verbose(env, "%d: safe\n", env->insn_idx); 7528 } 7529 goto process_bpf_exit; 7530 } 7531 7532 if (signal_pending(current)) 7533 return -EAGAIN; 7534 7535 if (need_resched()) 7536 cond_resched(); 7537 7538 if (env->log.level & BPF_LOG_LEVEL2 || 7539 (env->log.level & BPF_LOG_LEVEL && do_print_state)) { 7540 if (env->log.level & BPF_LOG_LEVEL2) 7541 verbose(env, "%d:", env->insn_idx); 7542 else 7543 verbose(env, "\nfrom %d to %d%s:", 7544 env->prev_insn_idx, env->insn_idx, 7545 env->cur_state->speculative ? 7546 " (speculative execution)" : ""); 7547 print_verifier_state(env, state->frame[state->curframe]); 7548 do_print_state = false; 7549 } 7550 7551 if (env->log.level & BPF_LOG_LEVEL) { 7552 const struct bpf_insn_cbs cbs = { 7553 .cb_print = verbose, 7554 .private_data = env, 7555 }; 7556 7557 verbose_linfo(env, env->insn_idx, "; "); 7558 verbose(env, "%d: ", env->insn_idx); 7559 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 7560 } 7561 7562 if (bpf_prog_is_dev_bound(env->prog->aux)) { 7563 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 7564 env->prev_insn_idx); 7565 if (err) 7566 return err; 7567 } 7568 7569 regs = cur_regs(env); 7570 env->insn_aux_data[env->insn_idx].seen = true; 7571 prev_insn_idx = env->insn_idx; 7572 7573 if (class == BPF_ALU || class == BPF_ALU64) { 7574 err = check_alu_op(env, insn); 7575 if (err) 7576 return err; 7577 7578 } else if (class == BPF_LDX) { 7579 enum bpf_reg_type *prev_src_type, src_reg_type; 7580 7581 /* check for reserved fields is already done */ 7582 7583 /* check src operand */ 7584 err = check_reg_arg(env, insn->src_reg, SRC_OP); 7585 if (err) 7586 return err; 7587 7588 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 7589 if (err) 7590 return err; 7591 7592 src_reg_type = regs[insn->src_reg].type; 7593 7594 /* check that memory (src_reg + off) is readable, 7595 * the state of dst_reg will be updated by this func 7596 */ 7597 err = check_mem_access(env, env->insn_idx, insn->src_reg, 7598 insn->off, BPF_SIZE(insn->code), 7599 BPF_READ, insn->dst_reg, false); 7600 if (err) 7601 return err; 7602 7603 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type; 7604 7605 if (*prev_src_type == NOT_INIT) { 7606 /* saw a valid insn 7607 * dst_reg = *(u32 *)(src_reg + off) 7608 * save type to validate intersecting paths 7609 */ 7610 *prev_src_type = src_reg_type; 7611 7612 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) { 7613 /* ABuser program is trying to use the same insn 7614 * dst_reg = *(u32*) (src_reg + off) 7615 * with different pointer types: 7616 * src_reg == ctx in one branch and 7617 * src_reg == stack|map in some other branch. 7618 * Reject it. 7619 */ 7620 verbose(env, "same insn cannot be used with different pointers\n"); 7621 return -EINVAL; 7622 } 7623 7624 } else if (class == BPF_STX) { 7625 enum bpf_reg_type *prev_dst_type, dst_reg_type; 7626 7627 if (BPF_MODE(insn->code) == BPF_XADD) { 7628 err = check_xadd(env, env->insn_idx, insn); 7629 if (err) 7630 return err; 7631 env->insn_idx++; 7632 continue; 7633 } 7634 7635 /* check src1 operand */ 7636 err = check_reg_arg(env, insn->src_reg, SRC_OP); 7637 if (err) 7638 return err; 7639 /* check src2 operand */ 7640 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 7641 if (err) 7642 return err; 7643 7644 dst_reg_type = regs[insn->dst_reg].type; 7645 7646 /* check that memory (dst_reg + off) is writeable */ 7647 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 7648 insn->off, BPF_SIZE(insn->code), 7649 BPF_WRITE, insn->src_reg, false); 7650 if (err) 7651 return err; 7652 7653 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type; 7654 7655 if (*prev_dst_type == NOT_INIT) { 7656 *prev_dst_type = dst_reg_type; 7657 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) { 7658 verbose(env, "same insn cannot be used with different pointers\n"); 7659 return -EINVAL; 7660 } 7661 7662 } else if (class == BPF_ST) { 7663 if (BPF_MODE(insn->code) != BPF_MEM || 7664 insn->src_reg != BPF_REG_0) { 7665 verbose(env, "BPF_ST uses reserved fields\n"); 7666 return -EINVAL; 7667 } 7668 /* check src operand */ 7669 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 7670 if (err) 7671 return err; 7672 7673 if (is_ctx_reg(env, insn->dst_reg)) { 7674 verbose(env, "BPF_ST stores into R%d %s is not allowed\n", 7675 insn->dst_reg, 7676 reg_type_str[reg_state(env, insn->dst_reg)->type]); 7677 return -EACCES; 7678 } 7679 7680 /* check that memory (dst_reg + off) is writeable */ 7681 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 7682 insn->off, BPF_SIZE(insn->code), 7683 BPF_WRITE, -1, false); 7684 if (err) 7685 return err; 7686 7687 } else if (class == BPF_JMP || class == BPF_JMP32) { 7688 u8 opcode = BPF_OP(insn->code); 7689 7690 env->jmps_processed++; 7691 if (opcode == BPF_CALL) { 7692 if (BPF_SRC(insn->code) != BPF_K || 7693 insn->off != 0 || 7694 (insn->src_reg != BPF_REG_0 && 7695 insn->src_reg != BPF_PSEUDO_CALL) || 7696 insn->dst_reg != BPF_REG_0 || 7697 class == BPF_JMP32) { 7698 verbose(env, "BPF_CALL uses reserved fields\n"); 7699 return -EINVAL; 7700 } 7701 7702 if (env->cur_state->active_spin_lock && 7703 (insn->src_reg == BPF_PSEUDO_CALL || 7704 insn->imm != BPF_FUNC_spin_unlock)) { 7705 verbose(env, "function calls are not allowed while holding a lock\n"); 7706 return -EINVAL; 7707 } 7708 if (insn->src_reg == BPF_PSEUDO_CALL) 7709 err = check_func_call(env, insn, &env->insn_idx); 7710 else 7711 err = check_helper_call(env, insn->imm, env->insn_idx); 7712 if (err) 7713 return err; 7714 7715 } else if (opcode == BPF_JA) { 7716 if (BPF_SRC(insn->code) != BPF_K || 7717 insn->imm != 0 || 7718 insn->src_reg != BPF_REG_0 || 7719 insn->dst_reg != BPF_REG_0 || 7720 class == BPF_JMP32) { 7721 verbose(env, "BPF_JA uses reserved fields\n"); 7722 return -EINVAL; 7723 } 7724 7725 env->insn_idx += insn->off + 1; 7726 continue; 7727 7728 } else if (opcode == BPF_EXIT) { 7729 if (BPF_SRC(insn->code) != BPF_K || 7730 insn->imm != 0 || 7731 insn->src_reg != BPF_REG_0 || 7732 insn->dst_reg != BPF_REG_0 || 7733 class == BPF_JMP32) { 7734 verbose(env, "BPF_EXIT uses reserved fields\n"); 7735 return -EINVAL; 7736 } 7737 7738 if (env->cur_state->active_spin_lock) { 7739 verbose(env, "bpf_spin_unlock is missing\n"); 7740 return -EINVAL; 7741 } 7742 7743 if (state->curframe) { 7744 /* exit from nested function */ 7745 err = prepare_func_exit(env, &env->insn_idx); 7746 if (err) 7747 return err; 7748 do_print_state = true; 7749 continue; 7750 } 7751 7752 err = check_reference_leak(env); 7753 if (err) 7754 return err; 7755 7756 /* eBPF calling convetion is such that R0 is used 7757 * to return the value from eBPF program. 7758 * Make sure that it's readable at this time 7759 * of bpf_exit, which means that program wrote 7760 * something into it earlier 7761 */ 7762 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 7763 if (err) 7764 return err; 7765 7766 if (is_pointer_value(env, BPF_REG_0)) { 7767 verbose(env, "R0 leaks addr as return value\n"); 7768 return -EACCES; 7769 } 7770 7771 err = check_return_code(env); 7772 if (err) 7773 return err; 7774 process_bpf_exit: 7775 update_branch_counts(env, env->cur_state); 7776 err = pop_stack(env, &prev_insn_idx, 7777 &env->insn_idx); 7778 if (err < 0) { 7779 if (err != -ENOENT) 7780 return err; 7781 break; 7782 } else { 7783 do_print_state = true; 7784 continue; 7785 } 7786 } else { 7787 err = check_cond_jmp_op(env, insn, &env->insn_idx); 7788 if (err) 7789 return err; 7790 } 7791 } else if (class == BPF_LD) { 7792 u8 mode = BPF_MODE(insn->code); 7793 7794 if (mode == BPF_ABS || mode == BPF_IND) { 7795 err = check_ld_abs(env, insn); 7796 if (err) 7797 return err; 7798 7799 } else if (mode == BPF_IMM) { 7800 err = check_ld_imm(env, insn); 7801 if (err) 7802 return err; 7803 7804 env->insn_idx++; 7805 env->insn_aux_data[env->insn_idx].seen = true; 7806 } else { 7807 verbose(env, "invalid BPF_LD mode\n"); 7808 return -EINVAL; 7809 } 7810 } else { 7811 verbose(env, "unknown insn class %d\n", class); 7812 return -EINVAL; 7813 } 7814 7815 env->insn_idx++; 7816 } 7817 7818 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 7819 return 0; 7820 } 7821 7822 static int check_map_prealloc(struct bpf_map *map) 7823 { 7824 return (map->map_type != BPF_MAP_TYPE_HASH && 7825 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 7826 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) || 7827 !(map->map_flags & BPF_F_NO_PREALLOC); 7828 } 7829 7830 static bool is_tracing_prog_type(enum bpf_prog_type type) 7831 { 7832 switch (type) { 7833 case BPF_PROG_TYPE_KPROBE: 7834 case BPF_PROG_TYPE_TRACEPOINT: 7835 case BPF_PROG_TYPE_PERF_EVENT: 7836 case BPF_PROG_TYPE_RAW_TRACEPOINT: 7837 return true; 7838 default: 7839 return false; 7840 } 7841 } 7842 7843 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 7844 struct bpf_map *map, 7845 struct bpf_prog *prog) 7846 7847 { 7848 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use 7849 * preallocated hash maps, since doing memory allocation 7850 * in overflow_handler can crash depending on where nmi got 7851 * triggered. 7852 */ 7853 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) { 7854 if (!check_map_prealloc(map)) { 7855 verbose(env, "perf_event programs can only use preallocated hash map\n"); 7856 return -EINVAL; 7857 } 7858 if (map->inner_map_meta && 7859 !check_map_prealloc(map->inner_map_meta)) { 7860 verbose(env, "perf_event programs can only use preallocated inner hash map\n"); 7861 return -EINVAL; 7862 } 7863 } 7864 7865 if ((is_tracing_prog_type(prog->type) || 7866 prog->type == BPF_PROG_TYPE_SOCKET_FILTER) && 7867 map_value_has_spin_lock(map)) { 7868 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 7869 return -EINVAL; 7870 } 7871 7872 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) && 7873 !bpf_offload_prog_map_match(prog, map)) { 7874 verbose(env, "offload device mismatch between prog and map\n"); 7875 return -EINVAL; 7876 } 7877 7878 return 0; 7879 } 7880 7881 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 7882 { 7883 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 7884 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 7885 } 7886 7887 /* look for pseudo eBPF instructions that access map FDs and 7888 * replace them with actual map pointers 7889 */ 7890 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env) 7891 { 7892 struct bpf_insn *insn = env->prog->insnsi; 7893 int insn_cnt = env->prog->len; 7894 int i, j, err; 7895 7896 err = bpf_prog_calc_tag(env->prog); 7897 if (err) 7898 return err; 7899 7900 for (i = 0; i < insn_cnt; i++, insn++) { 7901 if (BPF_CLASS(insn->code) == BPF_LDX && 7902 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 7903 verbose(env, "BPF_LDX uses reserved fields\n"); 7904 return -EINVAL; 7905 } 7906 7907 if (BPF_CLASS(insn->code) == BPF_STX && 7908 ((BPF_MODE(insn->code) != BPF_MEM && 7909 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) { 7910 verbose(env, "BPF_STX uses reserved fields\n"); 7911 return -EINVAL; 7912 } 7913 7914 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 7915 struct bpf_insn_aux_data *aux; 7916 struct bpf_map *map; 7917 struct fd f; 7918 u64 addr; 7919 7920 if (i == insn_cnt - 1 || insn[1].code != 0 || 7921 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 7922 insn[1].off != 0) { 7923 verbose(env, "invalid bpf_ld_imm64 insn\n"); 7924 return -EINVAL; 7925 } 7926 7927 if (insn[0].src_reg == 0) 7928 /* valid generic load 64-bit imm */ 7929 goto next_insn; 7930 7931 /* In final convert_pseudo_ld_imm64() step, this is 7932 * converted into regular 64-bit imm load insn. 7933 */ 7934 if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD && 7935 insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) || 7936 (insn[0].src_reg == BPF_PSEUDO_MAP_FD && 7937 insn[1].imm != 0)) { 7938 verbose(env, 7939 "unrecognized bpf_ld_imm64 insn\n"); 7940 return -EINVAL; 7941 } 7942 7943 f = fdget(insn[0].imm); 7944 map = __bpf_map_get(f); 7945 if (IS_ERR(map)) { 7946 verbose(env, "fd %d is not pointing to valid bpf_map\n", 7947 insn[0].imm); 7948 return PTR_ERR(map); 7949 } 7950 7951 err = check_map_prog_compatibility(env, map, env->prog); 7952 if (err) { 7953 fdput(f); 7954 return err; 7955 } 7956 7957 aux = &env->insn_aux_data[i]; 7958 if (insn->src_reg == BPF_PSEUDO_MAP_FD) { 7959 addr = (unsigned long)map; 7960 } else { 7961 u32 off = insn[1].imm; 7962 7963 if (off >= BPF_MAX_VAR_OFF) { 7964 verbose(env, "direct value offset of %u is not allowed\n", off); 7965 fdput(f); 7966 return -EINVAL; 7967 } 7968 7969 if (!map->ops->map_direct_value_addr) { 7970 verbose(env, "no direct value access support for this map type\n"); 7971 fdput(f); 7972 return -EINVAL; 7973 } 7974 7975 err = map->ops->map_direct_value_addr(map, &addr, off); 7976 if (err) { 7977 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 7978 map->value_size, off); 7979 fdput(f); 7980 return err; 7981 } 7982 7983 aux->map_off = off; 7984 addr += off; 7985 } 7986 7987 insn[0].imm = (u32)addr; 7988 insn[1].imm = addr >> 32; 7989 7990 /* check whether we recorded this map already */ 7991 for (j = 0; j < env->used_map_cnt; j++) { 7992 if (env->used_maps[j] == map) { 7993 aux->map_index = j; 7994 fdput(f); 7995 goto next_insn; 7996 } 7997 } 7998 7999 if (env->used_map_cnt >= MAX_USED_MAPS) { 8000 fdput(f); 8001 return -E2BIG; 8002 } 8003 8004 /* hold the map. If the program is rejected by verifier, 8005 * the map will be released by release_maps() or it 8006 * will be used by the valid program until it's unloaded 8007 * and all maps are released in free_used_maps() 8008 */ 8009 map = bpf_map_inc(map, false); 8010 if (IS_ERR(map)) { 8011 fdput(f); 8012 return PTR_ERR(map); 8013 } 8014 8015 aux->map_index = env->used_map_cnt; 8016 env->used_maps[env->used_map_cnt++] = map; 8017 8018 if (bpf_map_is_cgroup_storage(map) && 8019 bpf_cgroup_storage_assign(env->prog, map)) { 8020 verbose(env, "only one cgroup storage of each type is allowed\n"); 8021 fdput(f); 8022 return -EBUSY; 8023 } 8024 8025 fdput(f); 8026 next_insn: 8027 insn++; 8028 i++; 8029 continue; 8030 } 8031 8032 /* Basic sanity check before we invest more work here. */ 8033 if (!bpf_opcode_in_insntable(insn->code)) { 8034 verbose(env, "unknown opcode %02x\n", insn->code); 8035 return -EINVAL; 8036 } 8037 } 8038 8039 /* now all pseudo BPF_LD_IMM64 instructions load valid 8040 * 'struct bpf_map *' into a register instead of user map_fd. 8041 * These pointers will be used later by verifier to validate map access. 8042 */ 8043 return 0; 8044 } 8045 8046 /* drop refcnt of maps used by the rejected program */ 8047 static void release_maps(struct bpf_verifier_env *env) 8048 { 8049 enum bpf_cgroup_storage_type stype; 8050 int i; 8051 8052 for_each_cgroup_storage_type(stype) { 8053 if (!env->prog->aux->cgroup_storage[stype]) 8054 continue; 8055 bpf_cgroup_storage_release(env->prog, 8056 env->prog->aux->cgroup_storage[stype]); 8057 } 8058 8059 for (i = 0; i < env->used_map_cnt; i++) 8060 bpf_map_put(env->used_maps[i]); 8061 } 8062 8063 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 8064 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 8065 { 8066 struct bpf_insn *insn = env->prog->insnsi; 8067 int insn_cnt = env->prog->len; 8068 int i; 8069 8070 for (i = 0; i < insn_cnt; i++, insn++) 8071 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW)) 8072 insn->src_reg = 0; 8073 } 8074 8075 /* single env->prog->insni[off] instruction was replaced with the range 8076 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 8077 * [0, off) and [off, end) to new locations, so the patched range stays zero 8078 */ 8079 static int adjust_insn_aux_data(struct bpf_verifier_env *env, 8080 struct bpf_prog *new_prog, u32 off, u32 cnt) 8081 { 8082 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data; 8083 struct bpf_insn *insn = new_prog->insnsi; 8084 u32 prog_len; 8085 int i; 8086 8087 /* aux info at OFF always needs adjustment, no matter fast path 8088 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 8089 * original insn at old prog. 8090 */ 8091 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 8092 8093 if (cnt == 1) 8094 return 0; 8095 prog_len = new_prog->len; 8096 new_data = vzalloc(array_size(prog_len, 8097 sizeof(struct bpf_insn_aux_data))); 8098 if (!new_data) 8099 return -ENOMEM; 8100 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 8101 memcpy(new_data + off + cnt - 1, old_data + off, 8102 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 8103 for (i = off; i < off + cnt - 1; i++) { 8104 new_data[i].seen = true; 8105 new_data[i].zext_dst = insn_has_def32(env, insn + i); 8106 } 8107 env->insn_aux_data = new_data; 8108 vfree(old_data); 8109 return 0; 8110 } 8111 8112 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 8113 { 8114 int i; 8115 8116 if (len == 1) 8117 return; 8118 /* NOTE: fake 'exit' subprog should be updated as well. */ 8119 for (i = 0; i <= env->subprog_cnt; i++) { 8120 if (env->subprog_info[i].start <= off) 8121 continue; 8122 env->subprog_info[i].start += len - 1; 8123 } 8124 } 8125 8126 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 8127 const struct bpf_insn *patch, u32 len) 8128 { 8129 struct bpf_prog *new_prog; 8130 8131 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 8132 if (IS_ERR(new_prog)) { 8133 if (PTR_ERR(new_prog) == -ERANGE) 8134 verbose(env, 8135 "insn %d cannot be patched due to 16-bit range\n", 8136 env->insn_aux_data[off].orig_idx); 8137 return NULL; 8138 } 8139 if (adjust_insn_aux_data(env, new_prog, off, len)) 8140 return NULL; 8141 adjust_subprog_starts(env, off, len); 8142 return new_prog; 8143 } 8144 8145 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 8146 u32 off, u32 cnt) 8147 { 8148 int i, j; 8149 8150 /* find first prog starting at or after off (first to remove) */ 8151 for (i = 0; i < env->subprog_cnt; i++) 8152 if (env->subprog_info[i].start >= off) 8153 break; 8154 /* find first prog starting at or after off + cnt (first to stay) */ 8155 for (j = i; j < env->subprog_cnt; j++) 8156 if (env->subprog_info[j].start >= off + cnt) 8157 break; 8158 /* if j doesn't start exactly at off + cnt, we are just removing 8159 * the front of previous prog 8160 */ 8161 if (env->subprog_info[j].start != off + cnt) 8162 j--; 8163 8164 if (j > i) { 8165 struct bpf_prog_aux *aux = env->prog->aux; 8166 int move; 8167 8168 /* move fake 'exit' subprog as well */ 8169 move = env->subprog_cnt + 1 - j; 8170 8171 memmove(env->subprog_info + i, 8172 env->subprog_info + j, 8173 sizeof(*env->subprog_info) * move); 8174 env->subprog_cnt -= j - i; 8175 8176 /* remove func_info */ 8177 if (aux->func_info) { 8178 move = aux->func_info_cnt - j; 8179 8180 memmove(aux->func_info + i, 8181 aux->func_info + j, 8182 sizeof(*aux->func_info) * move); 8183 aux->func_info_cnt -= j - i; 8184 /* func_info->insn_off is set after all code rewrites, 8185 * in adjust_btf_func() - no need to adjust 8186 */ 8187 } 8188 } else { 8189 /* convert i from "first prog to remove" to "first to adjust" */ 8190 if (env->subprog_info[i].start == off) 8191 i++; 8192 } 8193 8194 /* update fake 'exit' subprog as well */ 8195 for (; i <= env->subprog_cnt; i++) 8196 env->subprog_info[i].start -= cnt; 8197 8198 return 0; 8199 } 8200 8201 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 8202 u32 cnt) 8203 { 8204 struct bpf_prog *prog = env->prog; 8205 u32 i, l_off, l_cnt, nr_linfo; 8206 struct bpf_line_info *linfo; 8207 8208 nr_linfo = prog->aux->nr_linfo; 8209 if (!nr_linfo) 8210 return 0; 8211 8212 linfo = prog->aux->linfo; 8213 8214 /* find first line info to remove, count lines to be removed */ 8215 for (i = 0; i < nr_linfo; i++) 8216 if (linfo[i].insn_off >= off) 8217 break; 8218 8219 l_off = i; 8220 l_cnt = 0; 8221 for (; i < nr_linfo; i++) 8222 if (linfo[i].insn_off < off + cnt) 8223 l_cnt++; 8224 else 8225 break; 8226 8227 /* First live insn doesn't match first live linfo, it needs to "inherit" 8228 * last removed linfo. prog is already modified, so prog->len == off 8229 * means no live instructions after (tail of the program was removed). 8230 */ 8231 if (prog->len != off && l_cnt && 8232 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 8233 l_cnt--; 8234 linfo[--i].insn_off = off + cnt; 8235 } 8236 8237 /* remove the line info which refer to the removed instructions */ 8238 if (l_cnt) { 8239 memmove(linfo + l_off, linfo + i, 8240 sizeof(*linfo) * (nr_linfo - i)); 8241 8242 prog->aux->nr_linfo -= l_cnt; 8243 nr_linfo = prog->aux->nr_linfo; 8244 } 8245 8246 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 8247 for (i = l_off; i < nr_linfo; i++) 8248 linfo[i].insn_off -= cnt; 8249 8250 /* fix up all subprogs (incl. 'exit') which start >= off */ 8251 for (i = 0; i <= env->subprog_cnt; i++) 8252 if (env->subprog_info[i].linfo_idx > l_off) { 8253 /* program may have started in the removed region but 8254 * may not be fully removed 8255 */ 8256 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 8257 env->subprog_info[i].linfo_idx -= l_cnt; 8258 else 8259 env->subprog_info[i].linfo_idx = l_off; 8260 } 8261 8262 return 0; 8263 } 8264 8265 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 8266 { 8267 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 8268 unsigned int orig_prog_len = env->prog->len; 8269 int err; 8270 8271 if (bpf_prog_is_dev_bound(env->prog->aux)) 8272 bpf_prog_offload_remove_insns(env, off, cnt); 8273 8274 err = bpf_remove_insns(env->prog, off, cnt); 8275 if (err) 8276 return err; 8277 8278 err = adjust_subprog_starts_after_remove(env, off, cnt); 8279 if (err) 8280 return err; 8281 8282 err = bpf_adj_linfo_after_remove(env, off, cnt); 8283 if (err) 8284 return err; 8285 8286 memmove(aux_data + off, aux_data + off + cnt, 8287 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 8288 8289 return 0; 8290 } 8291 8292 /* The verifier does more data flow analysis than llvm and will not 8293 * explore branches that are dead at run time. Malicious programs can 8294 * have dead code too. Therefore replace all dead at-run-time code 8295 * with 'ja -1'. 8296 * 8297 * Just nops are not optimal, e.g. if they would sit at the end of the 8298 * program and through another bug we would manage to jump there, then 8299 * we'd execute beyond program memory otherwise. Returning exception 8300 * code also wouldn't work since we can have subprogs where the dead 8301 * code could be located. 8302 */ 8303 static void sanitize_dead_code(struct bpf_verifier_env *env) 8304 { 8305 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 8306 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 8307 struct bpf_insn *insn = env->prog->insnsi; 8308 const int insn_cnt = env->prog->len; 8309 int i; 8310 8311 for (i = 0; i < insn_cnt; i++) { 8312 if (aux_data[i].seen) 8313 continue; 8314 memcpy(insn + i, &trap, sizeof(trap)); 8315 } 8316 } 8317 8318 static bool insn_is_cond_jump(u8 code) 8319 { 8320 u8 op; 8321 8322 if (BPF_CLASS(code) == BPF_JMP32) 8323 return true; 8324 8325 if (BPF_CLASS(code) != BPF_JMP) 8326 return false; 8327 8328 op = BPF_OP(code); 8329 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 8330 } 8331 8332 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 8333 { 8334 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 8335 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 8336 struct bpf_insn *insn = env->prog->insnsi; 8337 const int insn_cnt = env->prog->len; 8338 int i; 8339 8340 for (i = 0; i < insn_cnt; i++, insn++) { 8341 if (!insn_is_cond_jump(insn->code)) 8342 continue; 8343 8344 if (!aux_data[i + 1].seen) 8345 ja.off = insn->off; 8346 else if (!aux_data[i + 1 + insn->off].seen) 8347 ja.off = 0; 8348 else 8349 continue; 8350 8351 if (bpf_prog_is_dev_bound(env->prog->aux)) 8352 bpf_prog_offload_replace_insn(env, i, &ja); 8353 8354 memcpy(insn, &ja, sizeof(ja)); 8355 } 8356 } 8357 8358 static int opt_remove_dead_code(struct bpf_verifier_env *env) 8359 { 8360 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 8361 int insn_cnt = env->prog->len; 8362 int i, err; 8363 8364 for (i = 0; i < insn_cnt; i++) { 8365 int j; 8366 8367 j = 0; 8368 while (i + j < insn_cnt && !aux_data[i + j].seen) 8369 j++; 8370 if (!j) 8371 continue; 8372 8373 err = verifier_remove_insns(env, i, j); 8374 if (err) 8375 return err; 8376 insn_cnt = env->prog->len; 8377 } 8378 8379 return 0; 8380 } 8381 8382 static int opt_remove_nops(struct bpf_verifier_env *env) 8383 { 8384 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 8385 struct bpf_insn *insn = env->prog->insnsi; 8386 int insn_cnt = env->prog->len; 8387 int i, err; 8388 8389 for (i = 0; i < insn_cnt; i++) { 8390 if (memcmp(&insn[i], &ja, sizeof(ja))) 8391 continue; 8392 8393 err = verifier_remove_insns(env, i, 1); 8394 if (err) 8395 return err; 8396 insn_cnt--; 8397 i--; 8398 } 8399 8400 return 0; 8401 } 8402 8403 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 8404 const union bpf_attr *attr) 8405 { 8406 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 8407 struct bpf_insn_aux_data *aux = env->insn_aux_data; 8408 int i, patch_len, delta = 0, len = env->prog->len; 8409 struct bpf_insn *insns = env->prog->insnsi; 8410 struct bpf_prog *new_prog; 8411 bool rnd_hi32; 8412 8413 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 8414 zext_patch[1] = BPF_ZEXT_REG(0); 8415 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 8416 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 8417 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 8418 for (i = 0; i < len; i++) { 8419 int adj_idx = i + delta; 8420 struct bpf_insn insn; 8421 8422 insn = insns[adj_idx]; 8423 if (!aux[adj_idx].zext_dst) { 8424 u8 code, class; 8425 u32 imm_rnd; 8426 8427 if (!rnd_hi32) 8428 continue; 8429 8430 code = insn.code; 8431 class = BPF_CLASS(code); 8432 if (insn_no_def(&insn)) 8433 continue; 8434 8435 /* NOTE: arg "reg" (the fourth one) is only used for 8436 * BPF_STX which has been ruled out in above 8437 * check, it is safe to pass NULL here. 8438 */ 8439 if (is_reg64(env, &insn, insn.dst_reg, NULL, DST_OP)) { 8440 if (class == BPF_LD && 8441 BPF_MODE(code) == BPF_IMM) 8442 i++; 8443 continue; 8444 } 8445 8446 /* ctx load could be transformed into wider load. */ 8447 if (class == BPF_LDX && 8448 aux[adj_idx].ptr_type == PTR_TO_CTX) 8449 continue; 8450 8451 imm_rnd = get_random_int(); 8452 rnd_hi32_patch[0] = insn; 8453 rnd_hi32_patch[1].imm = imm_rnd; 8454 rnd_hi32_patch[3].dst_reg = insn.dst_reg; 8455 patch = rnd_hi32_patch; 8456 patch_len = 4; 8457 goto apply_patch_buffer; 8458 } 8459 8460 if (!bpf_jit_needs_zext()) 8461 continue; 8462 8463 zext_patch[0] = insn; 8464 zext_patch[1].dst_reg = insn.dst_reg; 8465 zext_patch[1].src_reg = insn.dst_reg; 8466 patch = zext_patch; 8467 patch_len = 2; 8468 apply_patch_buffer: 8469 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 8470 if (!new_prog) 8471 return -ENOMEM; 8472 env->prog = new_prog; 8473 insns = new_prog->insnsi; 8474 aux = env->insn_aux_data; 8475 delta += patch_len - 1; 8476 } 8477 8478 return 0; 8479 } 8480 8481 /* convert load instructions that access fields of a context type into a 8482 * sequence of instructions that access fields of the underlying structure: 8483 * struct __sk_buff -> struct sk_buff 8484 * struct bpf_sock_ops -> struct sock 8485 */ 8486 static int convert_ctx_accesses(struct bpf_verifier_env *env) 8487 { 8488 const struct bpf_verifier_ops *ops = env->ops; 8489 int i, cnt, size, ctx_field_size, delta = 0; 8490 const int insn_cnt = env->prog->len; 8491 struct bpf_insn insn_buf[16], *insn; 8492 u32 target_size, size_default, off; 8493 struct bpf_prog *new_prog; 8494 enum bpf_access_type type; 8495 bool is_narrower_load; 8496 8497 if (ops->gen_prologue || env->seen_direct_write) { 8498 if (!ops->gen_prologue) { 8499 verbose(env, "bpf verifier is misconfigured\n"); 8500 return -EINVAL; 8501 } 8502 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 8503 env->prog); 8504 if (cnt >= ARRAY_SIZE(insn_buf)) { 8505 verbose(env, "bpf verifier is misconfigured\n"); 8506 return -EINVAL; 8507 } else if (cnt) { 8508 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 8509 if (!new_prog) 8510 return -ENOMEM; 8511 8512 env->prog = new_prog; 8513 delta += cnt - 1; 8514 } 8515 } 8516 8517 if (bpf_prog_is_dev_bound(env->prog->aux)) 8518 return 0; 8519 8520 insn = env->prog->insnsi + delta; 8521 8522 for (i = 0; i < insn_cnt; i++, insn++) { 8523 bpf_convert_ctx_access_t convert_ctx_access; 8524 8525 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 8526 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 8527 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 8528 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) 8529 type = BPF_READ; 8530 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 8531 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 8532 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 8533 insn->code == (BPF_STX | BPF_MEM | BPF_DW)) 8534 type = BPF_WRITE; 8535 else 8536 continue; 8537 8538 if (type == BPF_WRITE && 8539 env->insn_aux_data[i + delta].sanitize_stack_off) { 8540 struct bpf_insn patch[] = { 8541 /* Sanitize suspicious stack slot with zero. 8542 * There are no memory dependencies for this store, 8543 * since it's only using frame pointer and immediate 8544 * constant of zero 8545 */ 8546 BPF_ST_MEM(BPF_DW, BPF_REG_FP, 8547 env->insn_aux_data[i + delta].sanitize_stack_off, 8548 0), 8549 /* the original STX instruction will immediately 8550 * overwrite the same stack slot with appropriate value 8551 */ 8552 *insn, 8553 }; 8554 8555 cnt = ARRAY_SIZE(patch); 8556 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 8557 if (!new_prog) 8558 return -ENOMEM; 8559 8560 delta += cnt - 1; 8561 env->prog = new_prog; 8562 insn = new_prog->insnsi + i + delta; 8563 continue; 8564 } 8565 8566 switch (env->insn_aux_data[i + delta].ptr_type) { 8567 case PTR_TO_CTX: 8568 if (!ops->convert_ctx_access) 8569 continue; 8570 convert_ctx_access = ops->convert_ctx_access; 8571 break; 8572 case PTR_TO_SOCKET: 8573 case PTR_TO_SOCK_COMMON: 8574 convert_ctx_access = bpf_sock_convert_ctx_access; 8575 break; 8576 case PTR_TO_TCP_SOCK: 8577 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 8578 break; 8579 case PTR_TO_XDP_SOCK: 8580 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 8581 break; 8582 default: 8583 continue; 8584 } 8585 8586 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 8587 size = BPF_LDST_BYTES(insn); 8588 8589 /* If the read access is a narrower load of the field, 8590 * convert to a 4/8-byte load, to minimum program type specific 8591 * convert_ctx_access changes. If conversion is successful, 8592 * we will apply proper mask to the result. 8593 */ 8594 is_narrower_load = size < ctx_field_size; 8595 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 8596 off = insn->off; 8597 if (is_narrower_load) { 8598 u8 size_code; 8599 8600 if (type == BPF_WRITE) { 8601 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 8602 return -EINVAL; 8603 } 8604 8605 size_code = BPF_H; 8606 if (ctx_field_size == 4) 8607 size_code = BPF_W; 8608 else if (ctx_field_size == 8) 8609 size_code = BPF_DW; 8610 8611 insn->off = off & ~(size_default - 1); 8612 insn->code = BPF_LDX | BPF_MEM | size_code; 8613 } 8614 8615 target_size = 0; 8616 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 8617 &target_size); 8618 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 8619 (ctx_field_size && !target_size)) { 8620 verbose(env, "bpf verifier is misconfigured\n"); 8621 return -EINVAL; 8622 } 8623 8624 if (is_narrower_load && size < target_size) { 8625 u8 shift = bpf_ctx_narrow_load_shift(off, size, 8626 size_default); 8627 if (ctx_field_size <= 4) { 8628 if (shift) 8629 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 8630 insn->dst_reg, 8631 shift); 8632 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 8633 (1 << size * 8) - 1); 8634 } else { 8635 if (shift) 8636 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 8637 insn->dst_reg, 8638 shift); 8639 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 8640 (1ULL << size * 8) - 1); 8641 } 8642 } 8643 8644 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 8645 if (!new_prog) 8646 return -ENOMEM; 8647 8648 delta += cnt - 1; 8649 8650 /* keep walking new program and skip insns we just inserted */ 8651 env->prog = new_prog; 8652 insn = new_prog->insnsi + i + delta; 8653 } 8654 8655 return 0; 8656 } 8657 8658 static int jit_subprogs(struct bpf_verifier_env *env) 8659 { 8660 struct bpf_prog *prog = env->prog, **func, *tmp; 8661 int i, j, subprog_start, subprog_end = 0, len, subprog; 8662 struct bpf_insn *insn; 8663 void *old_bpf_func; 8664 int err; 8665 8666 if (env->subprog_cnt <= 1) 8667 return 0; 8668 8669 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 8670 if (insn->code != (BPF_JMP | BPF_CALL) || 8671 insn->src_reg != BPF_PSEUDO_CALL) 8672 continue; 8673 /* Upon error here we cannot fall back to interpreter but 8674 * need a hard reject of the program. Thus -EFAULT is 8675 * propagated in any case. 8676 */ 8677 subprog = find_subprog(env, i + insn->imm + 1); 8678 if (subprog < 0) { 8679 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 8680 i + insn->imm + 1); 8681 return -EFAULT; 8682 } 8683 /* temporarily remember subprog id inside insn instead of 8684 * aux_data, since next loop will split up all insns into funcs 8685 */ 8686 insn->off = subprog; 8687 /* remember original imm in case JIT fails and fallback 8688 * to interpreter will be needed 8689 */ 8690 env->insn_aux_data[i].call_imm = insn->imm; 8691 /* point imm to __bpf_call_base+1 from JITs point of view */ 8692 insn->imm = 1; 8693 } 8694 8695 err = bpf_prog_alloc_jited_linfo(prog); 8696 if (err) 8697 goto out_undo_insn; 8698 8699 err = -ENOMEM; 8700 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 8701 if (!func) 8702 goto out_undo_insn; 8703 8704 for (i = 0; i < env->subprog_cnt; i++) { 8705 subprog_start = subprog_end; 8706 subprog_end = env->subprog_info[i + 1].start; 8707 8708 len = subprog_end - subprog_start; 8709 /* BPF_PROG_RUN doesn't call subprogs directly, 8710 * hence main prog stats include the runtime of subprogs. 8711 * subprogs don't have IDs and not reachable via prog_get_next_id 8712 * func[i]->aux->stats will never be accessed and stays NULL 8713 */ 8714 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 8715 if (!func[i]) 8716 goto out_free; 8717 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 8718 len * sizeof(struct bpf_insn)); 8719 func[i]->type = prog->type; 8720 func[i]->len = len; 8721 if (bpf_prog_calc_tag(func[i])) 8722 goto out_free; 8723 func[i]->is_func = 1; 8724 func[i]->aux->func_idx = i; 8725 /* the btf and func_info will be freed only at prog->aux */ 8726 func[i]->aux->btf = prog->aux->btf; 8727 func[i]->aux->func_info = prog->aux->func_info; 8728 8729 /* Use bpf_prog_F_tag to indicate functions in stack traces. 8730 * Long term would need debug info to populate names 8731 */ 8732 func[i]->aux->name[0] = 'F'; 8733 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 8734 func[i]->jit_requested = 1; 8735 func[i]->aux->linfo = prog->aux->linfo; 8736 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 8737 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 8738 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 8739 func[i] = bpf_int_jit_compile(func[i]); 8740 if (!func[i]->jited) { 8741 err = -ENOTSUPP; 8742 goto out_free; 8743 } 8744 cond_resched(); 8745 } 8746 /* at this point all bpf functions were successfully JITed 8747 * now populate all bpf_calls with correct addresses and 8748 * run last pass of JIT 8749 */ 8750 for (i = 0; i < env->subprog_cnt; i++) { 8751 insn = func[i]->insnsi; 8752 for (j = 0; j < func[i]->len; j++, insn++) { 8753 if (insn->code != (BPF_JMP | BPF_CALL) || 8754 insn->src_reg != BPF_PSEUDO_CALL) 8755 continue; 8756 subprog = insn->off; 8757 insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) - 8758 __bpf_call_base; 8759 } 8760 8761 /* we use the aux data to keep a list of the start addresses 8762 * of the JITed images for each function in the program 8763 * 8764 * for some architectures, such as powerpc64, the imm field 8765 * might not be large enough to hold the offset of the start 8766 * address of the callee's JITed image from __bpf_call_base 8767 * 8768 * in such cases, we can lookup the start address of a callee 8769 * by using its subprog id, available from the off field of 8770 * the call instruction, as an index for this list 8771 */ 8772 func[i]->aux->func = func; 8773 func[i]->aux->func_cnt = env->subprog_cnt; 8774 } 8775 for (i = 0; i < env->subprog_cnt; i++) { 8776 old_bpf_func = func[i]->bpf_func; 8777 tmp = bpf_int_jit_compile(func[i]); 8778 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 8779 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 8780 err = -ENOTSUPP; 8781 goto out_free; 8782 } 8783 cond_resched(); 8784 } 8785 8786 /* finally lock prog and jit images for all functions and 8787 * populate kallsysm 8788 */ 8789 for (i = 0; i < env->subprog_cnt; i++) { 8790 bpf_prog_lock_ro(func[i]); 8791 bpf_prog_kallsyms_add(func[i]); 8792 } 8793 8794 /* Last step: make now unused interpreter insns from main 8795 * prog consistent for later dump requests, so they can 8796 * later look the same as if they were interpreted only. 8797 */ 8798 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 8799 if (insn->code != (BPF_JMP | BPF_CALL) || 8800 insn->src_reg != BPF_PSEUDO_CALL) 8801 continue; 8802 insn->off = env->insn_aux_data[i].call_imm; 8803 subprog = find_subprog(env, i + insn->off + 1); 8804 insn->imm = subprog; 8805 } 8806 8807 prog->jited = 1; 8808 prog->bpf_func = func[0]->bpf_func; 8809 prog->aux->func = func; 8810 prog->aux->func_cnt = env->subprog_cnt; 8811 bpf_prog_free_unused_jited_linfo(prog); 8812 return 0; 8813 out_free: 8814 for (i = 0; i < env->subprog_cnt; i++) 8815 if (func[i]) 8816 bpf_jit_free(func[i]); 8817 kfree(func); 8818 out_undo_insn: 8819 /* cleanup main prog to be interpreted */ 8820 prog->jit_requested = 0; 8821 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 8822 if (insn->code != (BPF_JMP | BPF_CALL) || 8823 insn->src_reg != BPF_PSEUDO_CALL) 8824 continue; 8825 insn->off = 0; 8826 insn->imm = env->insn_aux_data[i].call_imm; 8827 } 8828 bpf_prog_free_jited_linfo(prog); 8829 return err; 8830 } 8831 8832 static int fixup_call_args(struct bpf_verifier_env *env) 8833 { 8834 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 8835 struct bpf_prog *prog = env->prog; 8836 struct bpf_insn *insn = prog->insnsi; 8837 int i, depth; 8838 #endif 8839 int err = 0; 8840 8841 if (env->prog->jit_requested && 8842 !bpf_prog_is_dev_bound(env->prog->aux)) { 8843 err = jit_subprogs(env); 8844 if (err == 0) 8845 return 0; 8846 if (err == -EFAULT) 8847 return err; 8848 } 8849 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 8850 for (i = 0; i < prog->len; i++, insn++) { 8851 if (insn->code != (BPF_JMP | BPF_CALL) || 8852 insn->src_reg != BPF_PSEUDO_CALL) 8853 continue; 8854 depth = get_callee_stack_depth(env, insn, i); 8855 if (depth < 0) 8856 return depth; 8857 bpf_patch_call_args(insn, depth); 8858 } 8859 err = 0; 8860 #endif 8861 return err; 8862 } 8863 8864 /* fixup insn->imm field of bpf_call instructions 8865 * and inline eligible helpers as explicit sequence of BPF instructions 8866 * 8867 * this function is called after eBPF program passed verification 8868 */ 8869 static int fixup_bpf_calls(struct bpf_verifier_env *env) 8870 { 8871 struct bpf_prog *prog = env->prog; 8872 struct bpf_insn *insn = prog->insnsi; 8873 const struct bpf_func_proto *fn; 8874 const int insn_cnt = prog->len; 8875 const struct bpf_map_ops *ops; 8876 struct bpf_insn_aux_data *aux; 8877 struct bpf_insn insn_buf[16]; 8878 struct bpf_prog *new_prog; 8879 struct bpf_map *map_ptr; 8880 int i, cnt, delta = 0; 8881 8882 for (i = 0; i < insn_cnt; i++, insn++) { 8883 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 8884 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 8885 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 8886 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 8887 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 8888 struct bpf_insn mask_and_div[] = { 8889 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 8890 /* Rx div 0 -> 0 */ 8891 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2), 8892 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 8893 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 8894 *insn, 8895 }; 8896 struct bpf_insn mask_and_mod[] = { 8897 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 8898 /* Rx mod 0 -> Rx */ 8899 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1), 8900 *insn, 8901 }; 8902 struct bpf_insn *patchlet; 8903 8904 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 8905 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 8906 patchlet = mask_and_div + (is64 ? 1 : 0); 8907 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0); 8908 } else { 8909 patchlet = mask_and_mod + (is64 ? 1 : 0); 8910 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0); 8911 } 8912 8913 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 8914 if (!new_prog) 8915 return -ENOMEM; 8916 8917 delta += cnt - 1; 8918 env->prog = prog = new_prog; 8919 insn = new_prog->insnsi + i + delta; 8920 continue; 8921 } 8922 8923 if (BPF_CLASS(insn->code) == BPF_LD && 8924 (BPF_MODE(insn->code) == BPF_ABS || 8925 BPF_MODE(insn->code) == BPF_IND)) { 8926 cnt = env->ops->gen_ld_abs(insn, insn_buf); 8927 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 8928 verbose(env, "bpf verifier is misconfigured\n"); 8929 return -EINVAL; 8930 } 8931 8932 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 8933 if (!new_prog) 8934 return -ENOMEM; 8935 8936 delta += cnt - 1; 8937 env->prog = prog = new_prog; 8938 insn = new_prog->insnsi + i + delta; 8939 continue; 8940 } 8941 8942 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 8943 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 8944 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 8945 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 8946 struct bpf_insn insn_buf[16]; 8947 struct bpf_insn *patch = &insn_buf[0]; 8948 bool issrc, isneg; 8949 u32 off_reg; 8950 8951 aux = &env->insn_aux_data[i + delta]; 8952 if (!aux->alu_state || 8953 aux->alu_state == BPF_ALU_NON_POINTER) 8954 continue; 8955 8956 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 8957 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 8958 BPF_ALU_SANITIZE_SRC; 8959 8960 off_reg = issrc ? insn->src_reg : insn->dst_reg; 8961 if (isneg) 8962 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 8963 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1); 8964 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 8965 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 8966 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 8967 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 8968 if (issrc) { 8969 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, 8970 off_reg); 8971 insn->src_reg = BPF_REG_AX; 8972 } else { 8973 *patch++ = BPF_ALU64_REG(BPF_AND, off_reg, 8974 BPF_REG_AX); 8975 } 8976 if (isneg) 8977 insn->code = insn->code == code_add ? 8978 code_sub : code_add; 8979 *patch++ = *insn; 8980 if (issrc && isneg) 8981 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 8982 cnt = patch - insn_buf; 8983 8984 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 8985 if (!new_prog) 8986 return -ENOMEM; 8987 8988 delta += cnt - 1; 8989 env->prog = prog = new_prog; 8990 insn = new_prog->insnsi + i + delta; 8991 continue; 8992 } 8993 8994 if (insn->code != (BPF_JMP | BPF_CALL)) 8995 continue; 8996 if (insn->src_reg == BPF_PSEUDO_CALL) 8997 continue; 8998 8999 if (insn->imm == BPF_FUNC_get_route_realm) 9000 prog->dst_needed = 1; 9001 if (insn->imm == BPF_FUNC_get_prandom_u32) 9002 bpf_user_rnd_init_once(); 9003 if (insn->imm == BPF_FUNC_override_return) 9004 prog->kprobe_override = 1; 9005 if (insn->imm == BPF_FUNC_tail_call) { 9006 /* If we tail call into other programs, we 9007 * cannot make any assumptions since they can 9008 * be replaced dynamically during runtime in 9009 * the program array. 9010 */ 9011 prog->cb_access = 1; 9012 env->prog->aux->stack_depth = MAX_BPF_STACK; 9013 env->prog->aux->max_pkt_offset = MAX_PACKET_OFF; 9014 9015 /* mark bpf_tail_call as different opcode to avoid 9016 * conditional branch in the interpeter for every normal 9017 * call and to prevent accidental JITing by JIT compiler 9018 * that doesn't support bpf_tail_call yet 9019 */ 9020 insn->imm = 0; 9021 insn->code = BPF_JMP | BPF_TAIL_CALL; 9022 9023 aux = &env->insn_aux_data[i + delta]; 9024 if (!bpf_map_ptr_unpriv(aux)) 9025 continue; 9026 9027 /* instead of changing every JIT dealing with tail_call 9028 * emit two extra insns: 9029 * if (index >= max_entries) goto out; 9030 * index &= array->index_mask; 9031 * to avoid out-of-bounds cpu speculation 9032 */ 9033 if (bpf_map_ptr_poisoned(aux)) { 9034 verbose(env, "tail_call abusing map_ptr\n"); 9035 return -EINVAL; 9036 } 9037 9038 map_ptr = BPF_MAP_PTR(aux->map_state); 9039 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 9040 map_ptr->max_entries, 2); 9041 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 9042 container_of(map_ptr, 9043 struct bpf_array, 9044 map)->index_mask); 9045 insn_buf[2] = *insn; 9046 cnt = 3; 9047 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 9048 if (!new_prog) 9049 return -ENOMEM; 9050 9051 delta += cnt - 1; 9052 env->prog = prog = new_prog; 9053 insn = new_prog->insnsi + i + delta; 9054 continue; 9055 } 9056 9057 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 9058 * and other inlining handlers are currently limited to 64 bit 9059 * only. 9060 */ 9061 if (prog->jit_requested && BITS_PER_LONG == 64 && 9062 (insn->imm == BPF_FUNC_map_lookup_elem || 9063 insn->imm == BPF_FUNC_map_update_elem || 9064 insn->imm == BPF_FUNC_map_delete_elem || 9065 insn->imm == BPF_FUNC_map_push_elem || 9066 insn->imm == BPF_FUNC_map_pop_elem || 9067 insn->imm == BPF_FUNC_map_peek_elem)) { 9068 aux = &env->insn_aux_data[i + delta]; 9069 if (bpf_map_ptr_poisoned(aux)) 9070 goto patch_call_imm; 9071 9072 map_ptr = BPF_MAP_PTR(aux->map_state); 9073 ops = map_ptr->ops; 9074 if (insn->imm == BPF_FUNC_map_lookup_elem && 9075 ops->map_gen_lookup) { 9076 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 9077 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 9078 verbose(env, "bpf verifier is misconfigured\n"); 9079 return -EINVAL; 9080 } 9081 9082 new_prog = bpf_patch_insn_data(env, i + delta, 9083 insn_buf, cnt); 9084 if (!new_prog) 9085 return -ENOMEM; 9086 9087 delta += cnt - 1; 9088 env->prog = prog = new_prog; 9089 insn = new_prog->insnsi + i + delta; 9090 continue; 9091 } 9092 9093 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 9094 (void *(*)(struct bpf_map *map, void *key))NULL)); 9095 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 9096 (int (*)(struct bpf_map *map, void *key))NULL)); 9097 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 9098 (int (*)(struct bpf_map *map, void *key, void *value, 9099 u64 flags))NULL)); 9100 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 9101 (int (*)(struct bpf_map *map, void *value, 9102 u64 flags))NULL)); 9103 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 9104 (int (*)(struct bpf_map *map, void *value))NULL)); 9105 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 9106 (int (*)(struct bpf_map *map, void *value))NULL)); 9107 9108 switch (insn->imm) { 9109 case BPF_FUNC_map_lookup_elem: 9110 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) - 9111 __bpf_call_base; 9112 continue; 9113 case BPF_FUNC_map_update_elem: 9114 insn->imm = BPF_CAST_CALL(ops->map_update_elem) - 9115 __bpf_call_base; 9116 continue; 9117 case BPF_FUNC_map_delete_elem: 9118 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) - 9119 __bpf_call_base; 9120 continue; 9121 case BPF_FUNC_map_push_elem: 9122 insn->imm = BPF_CAST_CALL(ops->map_push_elem) - 9123 __bpf_call_base; 9124 continue; 9125 case BPF_FUNC_map_pop_elem: 9126 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) - 9127 __bpf_call_base; 9128 continue; 9129 case BPF_FUNC_map_peek_elem: 9130 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) - 9131 __bpf_call_base; 9132 continue; 9133 } 9134 9135 goto patch_call_imm; 9136 } 9137 9138 patch_call_imm: 9139 fn = env->ops->get_func_proto(insn->imm, env->prog); 9140 /* all functions that have prototype and verifier allowed 9141 * programs to call them, must be real in-kernel functions 9142 */ 9143 if (!fn->func) { 9144 verbose(env, 9145 "kernel subsystem misconfigured func %s#%d\n", 9146 func_id_name(insn->imm), insn->imm); 9147 return -EFAULT; 9148 } 9149 insn->imm = fn->func - __bpf_call_base; 9150 } 9151 9152 return 0; 9153 } 9154 9155 static void free_states(struct bpf_verifier_env *env) 9156 { 9157 struct bpf_verifier_state_list *sl, *sln; 9158 int i; 9159 9160 sl = env->free_list; 9161 while (sl) { 9162 sln = sl->next; 9163 free_verifier_state(&sl->state, false); 9164 kfree(sl); 9165 sl = sln; 9166 } 9167 9168 if (!env->explored_states) 9169 return; 9170 9171 for (i = 0; i < state_htab_size(env); i++) { 9172 sl = env->explored_states[i]; 9173 9174 while (sl) { 9175 sln = sl->next; 9176 free_verifier_state(&sl->state, false); 9177 kfree(sl); 9178 sl = sln; 9179 } 9180 } 9181 9182 kvfree(env->explored_states); 9183 } 9184 9185 static void print_verification_stats(struct bpf_verifier_env *env) 9186 { 9187 int i; 9188 9189 if (env->log.level & BPF_LOG_STATS) { 9190 verbose(env, "verification time %lld usec\n", 9191 div_u64(env->verification_time, 1000)); 9192 verbose(env, "stack depth "); 9193 for (i = 0; i < env->subprog_cnt; i++) { 9194 u32 depth = env->subprog_info[i].stack_depth; 9195 9196 verbose(env, "%d", depth); 9197 if (i + 1 < env->subprog_cnt) 9198 verbose(env, "+"); 9199 } 9200 verbose(env, "\n"); 9201 } 9202 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 9203 "total_states %d peak_states %d mark_read %d\n", 9204 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 9205 env->max_states_per_insn, env->total_states, 9206 env->peak_states, env->longest_mark_read_walk); 9207 } 9208 9209 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, 9210 union bpf_attr __user *uattr) 9211 { 9212 u64 start_time = ktime_get_ns(); 9213 struct bpf_verifier_env *env; 9214 struct bpf_verifier_log *log; 9215 int i, len, ret = -EINVAL; 9216 bool is_priv; 9217 9218 /* no program is valid */ 9219 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 9220 return -EINVAL; 9221 9222 /* 'struct bpf_verifier_env' can be global, but since it's not small, 9223 * allocate/free it every time bpf_check() is called 9224 */ 9225 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 9226 if (!env) 9227 return -ENOMEM; 9228 log = &env->log; 9229 9230 len = (*prog)->len; 9231 env->insn_aux_data = 9232 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 9233 ret = -ENOMEM; 9234 if (!env->insn_aux_data) 9235 goto err_free_env; 9236 for (i = 0; i < len; i++) 9237 env->insn_aux_data[i].orig_idx = i; 9238 env->prog = *prog; 9239 env->ops = bpf_verifier_ops[env->prog->type]; 9240 is_priv = capable(CAP_SYS_ADMIN); 9241 9242 /* grab the mutex to protect few globals used by verifier */ 9243 if (!is_priv) 9244 mutex_lock(&bpf_verifier_lock); 9245 9246 if (attr->log_level || attr->log_buf || attr->log_size) { 9247 /* user requested verbose verifier output 9248 * and supplied buffer to store the verification trace 9249 */ 9250 log->level = attr->log_level; 9251 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 9252 log->len_total = attr->log_size; 9253 9254 ret = -EINVAL; 9255 /* log attributes have to be sane */ 9256 if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 || 9257 !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK) 9258 goto err_unlock; 9259 } 9260 9261 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 9262 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 9263 env->strict_alignment = true; 9264 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 9265 env->strict_alignment = false; 9266 9267 env->allow_ptr_leaks = is_priv; 9268 9269 ret = replace_map_fd_with_map_ptr(env); 9270 if (ret < 0) 9271 goto skip_full_check; 9272 9273 if (bpf_prog_is_dev_bound(env->prog->aux)) { 9274 ret = bpf_prog_offload_verifier_prep(env->prog); 9275 if (ret) 9276 goto skip_full_check; 9277 } 9278 9279 env->explored_states = kvcalloc(state_htab_size(env), 9280 sizeof(struct bpf_verifier_state_list *), 9281 GFP_USER); 9282 ret = -ENOMEM; 9283 if (!env->explored_states) 9284 goto skip_full_check; 9285 9286 ret = check_subprogs(env); 9287 if (ret < 0) 9288 goto skip_full_check; 9289 9290 ret = check_btf_info(env, attr, uattr); 9291 if (ret < 0) 9292 goto skip_full_check; 9293 9294 ret = check_cfg(env); 9295 if (ret < 0) 9296 goto skip_full_check; 9297 9298 ret = do_check(env); 9299 if (env->cur_state) { 9300 free_verifier_state(env->cur_state, true); 9301 env->cur_state = NULL; 9302 } 9303 9304 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux)) 9305 ret = bpf_prog_offload_finalize(env); 9306 9307 skip_full_check: 9308 while (!pop_stack(env, NULL, NULL)); 9309 free_states(env); 9310 9311 if (ret == 0) 9312 ret = check_max_stack_depth(env); 9313 9314 /* instruction rewrites happen after this point */ 9315 if (is_priv) { 9316 if (ret == 0) 9317 opt_hard_wire_dead_code_branches(env); 9318 if (ret == 0) 9319 ret = opt_remove_dead_code(env); 9320 if (ret == 0) 9321 ret = opt_remove_nops(env); 9322 } else { 9323 if (ret == 0) 9324 sanitize_dead_code(env); 9325 } 9326 9327 if (ret == 0) 9328 /* program is valid, convert *(u32*)(ctx + off) accesses */ 9329 ret = convert_ctx_accesses(env); 9330 9331 if (ret == 0) 9332 ret = fixup_bpf_calls(env); 9333 9334 /* do 32-bit optimization after insn patching has done so those patched 9335 * insns could be handled correctly. 9336 */ 9337 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) { 9338 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 9339 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 9340 : false; 9341 } 9342 9343 if (ret == 0) 9344 ret = fixup_call_args(env); 9345 9346 env->verification_time = ktime_get_ns() - start_time; 9347 print_verification_stats(env); 9348 9349 if (log->level && bpf_verifier_log_full(log)) 9350 ret = -ENOSPC; 9351 if (log->level && !log->ubuf) { 9352 ret = -EFAULT; 9353 goto err_release_maps; 9354 } 9355 9356 if (ret == 0 && env->used_map_cnt) { 9357 /* if program passed verifier, update used_maps in bpf_prog_info */ 9358 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 9359 sizeof(env->used_maps[0]), 9360 GFP_KERNEL); 9361 9362 if (!env->prog->aux->used_maps) { 9363 ret = -ENOMEM; 9364 goto err_release_maps; 9365 } 9366 9367 memcpy(env->prog->aux->used_maps, env->used_maps, 9368 sizeof(env->used_maps[0]) * env->used_map_cnt); 9369 env->prog->aux->used_map_cnt = env->used_map_cnt; 9370 9371 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 9372 * bpf_ld_imm64 instructions 9373 */ 9374 convert_pseudo_ld_imm64(env); 9375 } 9376 9377 if (ret == 0) 9378 adjust_btf_func(env); 9379 9380 err_release_maps: 9381 if (!env->prog->aux->used_maps) 9382 /* if we didn't copy map pointers into bpf_prog_info, release 9383 * them now. Otherwise free_used_maps() will release them. 9384 */ 9385 release_maps(env); 9386 *prog = env->prog; 9387 err_unlock: 9388 if (!is_priv) 9389 mutex_unlock(&bpf_verifier_lock); 9390 vfree(env->insn_aux_data); 9391 err_free_env: 9392 kfree(env); 9393 return ret; 9394 } 9395