xref: /linux/kernel/bpf/verifier.c (revision 1623bc27a85a93e82194c8d077eccc464efa67db)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5  */
6 #include <uapi/linux/btf.h>
7 #include <linux/bpf-cgroup.h>
8 #include <linux/kernel.h>
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/bpf.h>
12 #include <linux/btf.h>
13 #include <linux/bpf_verifier.h>
14 #include <linux/filter.h>
15 #include <net/netlink.h>
16 #include <linux/file.h>
17 #include <linux/vmalloc.h>
18 #include <linux/stringify.h>
19 #include <linux/bsearch.h>
20 #include <linux/sort.h>
21 #include <linux/perf_event.h>
22 #include <linux/ctype.h>
23 #include <linux/error-injection.h>
24 #include <linux/bpf_lsm.h>
25 #include <linux/btf_ids.h>
26 #include <linux/poison.h>
27 #include <linux/module.h>
28 #include <linux/cpumask.h>
29 #include <linux/bpf_mem_alloc.h>
30 #include <net/xdp.h>
31 #include <linux/trace_events.h>
32 #include <linux/kallsyms.h>
33 
34 #include "disasm.h"
35 
36 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
37 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
38 	[_id] = & _name ## _verifier_ops,
39 #define BPF_MAP_TYPE(_id, _ops)
40 #define BPF_LINK_TYPE(_id, _name)
41 #include <linux/bpf_types.h>
42 #undef BPF_PROG_TYPE
43 #undef BPF_MAP_TYPE
44 #undef BPF_LINK_TYPE
45 };
46 
47 struct bpf_mem_alloc bpf_global_percpu_ma;
48 static bool bpf_global_percpu_ma_set;
49 
50 /* bpf_check() is a static code analyzer that walks eBPF program
51  * instruction by instruction and updates register/stack state.
52  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
53  *
54  * The first pass is depth-first-search to check that the program is a DAG.
55  * It rejects the following programs:
56  * - larger than BPF_MAXINSNS insns
57  * - if loop is present (detected via back-edge)
58  * - unreachable insns exist (shouldn't be a forest. program = one function)
59  * - out of bounds or malformed jumps
60  * The second pass is all possible path descent from the 1st insn.
61  * Since it's analyzing all paths through the program, the length of the
62  * analysis is limited to 64k insn, which may be hit even if total number of
63  * insn is less then 4K, but there are too many branches that change stack/regs.
64  * Number of 'branches to be analyzed' is limited to 1k
65  *
66  * On entry to each instruction, each register has a type, and the instruction
67  * changes the types of the registers depending on instruction semantics.
68  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
69  * copied to R1.
70  *
71  * All registers are 64-bit.
72  * R0 - return register
73  * R1-R5 argument passing registers
74  * R6-R9 callee saved registers
75  * R10 - frame pointer read-only
76  *
77  * At the start of BPF program the register R1 contains a pointer to bpf_context
78  * and has type PTR_TO_CTX.
79  *
80  * Verifier tracks arithmetic operations on pointers in case:
81  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
82  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
83  * 1st insn copies R10 (which has FRAME_PTR) type into R1
84  * and 2nd arithmetic instruction is pattern matched to recognize
85  * that it wants to construct a pointer to some element within stack.
86  * So after 2nd insn, the register R1 has type PTR_TO_STACK
87  * (and -20 constant is saved for further stack bounds checking).
88  * Meaning that this reg is a pointer to stack plus known immediate constant.
89  *
90  * Most of the time the registers have SCALAR_VALUE type, which
91  * means the register has some value, but it's not a valid pointer.
92  * (like pointer plus pointer becomes SCALAR_VALUE type)
93  *
94  * When verifier sees load or store instructions the type of base register
95  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
96  * four pointer types recognized by check_mem_access() function.
97  *
98  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
99  * and the range of [ptr, ptr + map's value_size) is accessible.
100  *
101  * registers used to pass values to function calls are checked against
102  * function argument constraints.
103  *
104  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
105  * It means that the register type passed to this function must be
106  * PTR_TO_STACK and it will be used inside the function as
107  * 'pointer to map element key'
108  *
109  * For example the argument constraints for bpf_map_lookup_elem():
110  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
111  *   .arg1_type = ARG_CONST_MAP_PTR,
112  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
113  *
114  * ret_type says that this function returns 'pointer to map elem value or null'
115  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
116  * 2nd argument should be a pointer to stack, which will be used inside
117  * the helper function as a pointer to map element key.
118  *
119  * On the kernel side the helper function looks like:
120  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
121  * {
122  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
123  *    void *key = (void *) (unsigned long) r2;
124  *    void *value;
125  *
126  *    here kernel can access 'key' and 'map' pointers safely, knowing that
127  *    [key, key + map->key_size) bytes are valid and were initialized on
128  *    the stack of eBPF program.
129  * }
130  *
131  * Corresponding eBPF program may look like:
132  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
133  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
134  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
135  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
136  * here verifier looks at prototype of map_lookup_elem() and sees:
137  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
138  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
139  *
140  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
141  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
142  * and were initialized prior to this call.
143  * If it's ok, then verifier allows this BPF_CALL insn and looks at
144  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
145  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
146  * returns either pointer to map value or NULL.
147  *
148  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
149  * insn, the register holding that pointer in the true branch changes state to
150  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
151  * branch. See check_cond_jmp_op().
152  *
153  * After the call R0 is set to return type of the function and registers R1-R5
154  * are set to NOT_INIT to indicate that they are no longer readable.
155  *
156  * The following reference types represent a potential reference to a kernel
157  * resource which, after first being allocated, must be checked and freed by
158  * the BPF program:
159  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
160  *
161  * When the verifier sees a helper call return a reference type, it allocates a
162  * pointer id for the reference and stores it in the current function state.
163  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
164  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
165  * passes through a NULL-check conditional. For the branch wherein the state is
166  * changed to CONST_IMM, the verifier releases the reference.
167  *
168  * For each helper function that allocates a reference, such as
169  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
170  * bpf_sk_release(). When a reference type passes into the release function,
171  * the verifier also releases the reference. If any unchecked or unreleased
172  * reference remains at the end of the program, the verifier rejects it.
173  */
174 
175 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
176 struct bpf_verifier_stack_elem {
177 	/* verifier state is 'st'
178 	 * before processing instruction 'insn_idx'
179 	 * and after processing instruction 'prev_insn_idx'
180 	 */
181 	struct bpf_verifier_state st;
182 	int insn_idx;
183 	int prev_insn_idx;
184 	struct bpf_verifier_stack_elem *next;
185 	/* length of verifier log at the time this state was pushed on stack */
186 	u32 log_pos;
187 };
188 
189 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ	8192
190 #define BPF_COMPLEXITY_LIMIT_STATES	64
191 
192 #define BPF_MAP_KEY_POISON	(1ULL << 63)
193 #define BPF_MAP_KEY_SEEN	(1ULL << 62)
194 
195 #define BPF_GLOBAL_PERCPU_MA_MAX_SIZE  512
196 
197 #define BPF_PRIV_STACK_MIN_SIZE		64
198 
199 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx);
200 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id);
201 static void invalidate_non_owning_refs(struct bpf_verifier_env *env);
202 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env);
203 static int ref_set_non_owning(struct bpf_verifier_env *env,
204 			      struct bpf_reg_state *reg);
205 static void specialize_kfunc(struct bpf_verifier_env *env,
206 			     u32 func_id, u16 offset, unsigned long *addr);
207 static bool is_trusted_reg(const struct bpf_reg_state *reg);
208 
209 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
210 {
211 	return aux->map_ptr_state.poison;
212 }
213 
214 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
215 {
216 	return aux->map_ptr_state.unpriv;
217 }
218 
219 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
220 			      struct bpf_map *map,
221 			      bool unpriv, bool poison)
222 {
223 	unpriv |= bpf_map_ptr_unpriv(aux);
224 	aux->map_ptr_state.unpriv = unpriv;
225 	aux->map_ptr_state.poison = poison;
226 	aux->map_ptr_state.map_ptr = map;
227 }
228 
229 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
230 {
231 	return aux->map_key_state & BPF_MAP_KEY_POISON;
232 }
233 
234 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
235 {
236 	return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
237 }
238 
239 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
240 {
241 	return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
242 }
243 
244 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
245 {
246 	bool poisoned = bpf_map_key_poisoned(aux);
247 
248 	aux->map_key_state = state | BPF_MAP_KEY_SEEN |
249 			     (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
250 }
251 
252 static bool bpf_helper_call(const struct bpf_insn *insn)
253 {
254 	return insn->code == (BPF_JMP | BPF_CALL) &&
255 	       insn->src_reg == 0;
256 }
257 
258 static bool bpf_pseudo_call(const struct bpf_insn *insn)
259 {
260 	return insn->code == (BPF_JMP | BPF_CALL) &&
261 	       insn->src_reg == BPF_PSEUDO_CALL;
262 }
263 
264 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
265 {
266 	return insn->code == (BPF_JMP | BPF_CALL) &&
267 	       insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
268 }
269 
270 struct bpf_call_arg_meta {
271 	struct bpf_map *map_ptr;
272 	bool raw_mode;
273 	bool pkt_access;
274 	u8 release_regno;
275 	int regno;
276 	int access_size;
277 	int mem_size;
278 	u64 msize_max_value;
279 	int ref_obj_id;
280 	int dynptr_id;
281 	int map_uid;
282 	int func_id;
283 	struct btf *btf;
284 	u32 btf_id;
285 	struct btf *ret_btf;
286 	u32 ret_btf_id;
287 	u32 subprogno;
288 	struct btf_field *kptr_field;
289 };
290 
291 struct bpf_kfunc_call_arg_meta {
292 	/* In parameters */
293 	struct btf *btf;
294 	u32 func_id;
295 	u32 kfunc_flags;
296 	const struct btf_type *func_proto;
297 	const char *func_name;
298 	/* Out parameters */
299 	u32 ref_obj_id;
300 	u8 release_regno;
301 	bool r0_rdonly;
302 	u32 ret_btf_id;
303 	u64 r0_size;
304 	u32 subprogno;
305 	struct {
306 		u64 value;
307 		bool found;
308 	} arg_constant;
309 
310 	/* arg_{btf,btf_id,owning_ref} are used by kfunc-specific handling,
311 	 * generally to pass info about user-defined local kptr types to later
312 	 * verification logic
313 	 *   bpf_obj_drop/bpf_percpu_obj_drop
314 	 *     Record the local kptr type to be drop'd
315 	 *   bpf_refcount_acquire (via KF_ARG_PTR_TO_REFCOUNTED_KPTR arg type)
316 	 *     Record the local kptr type to be refcount_incr'd and use
317 	 *     arg_owning_ref to determine whether refcount_acquire should be
318 	 *     fallible
319 	 */
320 	struct btf *arg_btf;
321 	u32 arg_btf_id;
322 	bool arg_owning_ref;
323 
324 	struct {
325 		struct btf_field *field;
326 	} arg_list_head;
327 	struct {
328 		struct btf_field *field;
329 	} arg_rbtree_root;
330 	struct {
331 		enum bpf_dynptr_type type;
332 		u32 id;
333 		u32 ref_obj_id;
334 	} initialized_dynptr;
335 	struct {
336 		u8 spi;
337 		u8 frameno;
338 	} iter;
339 	struct {
340 		struct bpf_map *ptr;
341 		int uid;
342 	} map;
343 	u64 mem_size;
344 };
345 
346 struct btf *btf_vmlinux;
347 
348 static const char *btf_type_name(const struct btf *btf, u32 id)
349 {
350 	return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
351 }
352 
353 static DEFINE_MUTEX(bpf_verifier_lock);
354 static DEFINE_MUTEX(bpf_percpu_ma_lock);
355 
356 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
357 {
358 	struct bpf_verifier_env *env = private_data;
359 	va_list args;
360 
361 	if (!bpf_verifier_log_needed(&env->log))
362 		return;
363 
364 	va_start(args, fmt);
365 	bpf_verifier_vlog(&env->log, fmt, args);
366 	va_end(args);
367 }
368 
369 static void verbose_invalid_scalar(struct bpf_verifier_env *env,
370 				   struct bpf_reg_state *reg,
371 				   struct bpf_retval_range range, const char *ctx,
372 				   const char *reg_name)
373 {
374 	bool unknown = true;
375 
376 	verbose(env, "%s the register %s has", ctx, reg_name);
377 	if (reg->smin_value > S64_MIN) {
378 		verbose(env, " smin=%lld", reg->smin_value);
379 		unknown = false;
380 	}
381 	if (reg->smax_value < S64_MAX) {
382 		verbose(env, " smax=%lld", reg->smax_value);
383 		unknown = false;
384 	}
385 	if (unknown)
386 		verbose(env, " unknown scalar value");
387 	verbose(env, " should have been in [%d, %d]\n", range.minval, range.maxval);
388 }
389 
390 static bool reg_not_null(const struct bpf_reg_state *reg)
391 {
392 	enum bpf_reg_type type;
393 
394 	type = reg->type;
395 	if (type_may_be_null(type))
396 		return false;
397 
398 	type = base_type(type);
399 	return type == PTR_TO_SOCKET ||
400 		type == PTR_TO_TCP_SOCK ||
401 		type == PTR_TO_MAP_VALUE ||
402 		type == PTR_TO_MAP_KEY ||
403 		type == PTR_TO_SOCK_COMMON ||
404 		(type == PTR_TO_BTF_ID && is_trusted_reg(reg)) ||
405 		type == PTR_TO_MEM;
406 }
407 
408 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg)
409 {
410 	struct btf_record *rec = NULL;
411 	struct btf_struct_meta *meta;
412 
413 	if (reg->type == PTR_TO_MAP_VALUE) {
414 		rec = reg->map_ptr->record;
415 	} else if (type_is_ptr_alloc_obj(reg->type)) {
416 		meta = btf_find_struct_meta(reg->btf, reg->btf_id);
417 		if (meta)
418 			rec = meta->record;
419 	}
420 	return rec;
421 }
422 
423 static bool subprog_is_global(const struct bpf_verifier_env *env, int subprog)
424 {
425 	struct bpf_func_info_aux *aux = env->prog->aux->func_info_aux;
426 
427 	return aux && aux[subprog].linkage == BTF_FUNC_GLOBAL;
428 }
429 
430 static const char *subprog_name(const struct bpf_verifier_env *env, int subprog)
431 {
432 	struct bpf_func_info *info;
433 
434 	if (!env->prog->aux->func_info)
435 		return "";
436 
437 	info = &env->prog->aux->func_info[subprog];
438 	return btf_type_name(env->prog->aux->btf, info->type_id);
439 }
440 
441 static void mark_subprog_exc_cb(struct bpf_verifier_env *env, int subprog)
442 {
443 	struct bpf_subprog_info *info = subprog_info(env, subprog);
444 
445 	info->is_cb = true;
446 	info->is_async_cb = true;
447 	info->is_exception_cb = true;
448 }
449 
450 static bool subprog_is_exc_cb(struct bpf_verifier_env *env, int subprog)
451 {
452 	return subprog_info(env, subprog)->is_exception_cb;
453 }
454 
455 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
456 {
457 	return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK);
458 }
459 
460 static bool type_is_rdonly_mem(u32 type)
461 {
462 	return type & MEM_RDONLY;
463 }
464 
465 static bool is_acquire_function(enum bpf_func_id func_id,
466 				const struct bpf_map *map)
467 {
468 	enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
469 
470 	if (func_id == BPF_FUNC_sk_lookup_tcp ||
471 	    func_id == BPF_FUNC_sk_lookup_udp ||
472 	    func_id == BPF_FUNC_skc_lookup_tcp ||
473 	    func_id == BPF_FUNC_ringbuf_reserve ||
474 	    func_id == BPF_FUNC_kptr_xchg)
475 		return true;
476 
477 	if (func_id == BPF_FUNC_map_lookup_elem &&
478 	    (map_type == BPF_MAP_TYPE_SOCKMAP ||
479 	     map_type == BPF_MAP_TYPE_SOCKHASH))
480 		return true;
481 
482 	return false;
483 }
484 
485 static bool is_ptr_cast_function(enum bpf_func_id func_id)
486 {
487 	return func_id == BPF_FUNC_tcp_sock ||
488 		func_id == BPF_FUNC_sk_fullsock ||
489 		func_id == BPF_FUNC_skc_to_tcp_sock ||
490 		func_id == BPF_FUNC_skc_to_tcp6_sock ||
491 		func_id == BPF_FUNC_skc_to_udp6_sock ||
492 		func_id == BPF_FUNC_skc_to_mptcp_sock ||
493 		func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
494 		func_id == BPF_FUNC_skc_to_tcp_request_sock;
495 }
496 
497 static bool is_dynptr_ref_function(enum bpf_func_id func_id)
498 {
499 	return func_id == BPF_FUNC_dynptr_data;
500 }
501 
502 static bool is_sync_callback_calling_kfunc(u32 btf_id);
503 static bool is_async_callback_calling_kfunc(u32 btf_id);
504 static bool is_callback_calling_kfunc(u32 btf_id);
505 static bool is_bpf_throw_kfunc(struct bpf_insn *insn);
506 
507 static bool is_bpf_wq_set_callback_impl_kfunc(u32 btf_id);
508 
509 static bool is_sync_callback_calling_function(enum bpf_func_id func_id)
510 {
511 	return func_id == BPF_FUNC_for_each_map_elem ||
512 	       func_id == BPF_FUNC_find_vma ||
513 	       func_id == BPF_FUNC_loop ||
514 	       func_id == BPF_FUNC_user_ringbuf_drain;
515 }
516 
517 static bool is_async_callback_calling_function(enum bpf_func_id func_id)
518 {
519 	return func_id == BPF_FUNC_timer_set_callback;
520 }
521 
522 static bool is_callback_calling_function(enum bpf_func_id func_id)
523 {
524 	return is_sync_callback_calling_function(func_id) ||
525 	       is_async_callback_calling_function(func_id);
526 }
527 
528 static bool is_sync_callback_calling_insn(struct bpf_insn *insn)
529 {
530 	return (bpf_helper_call(insn) && is_sync_callback_calling_function(insn->imm)) ||
531 	       (bpf_pseudo_kfunc_call(insn) && is_sync_callback_calling_kfunc(insn->imm));
532 }
533 
534 static bool is_async_callback_calling_insn(struct bpf_insn *insn)
535 {
536 	return (bpf_helper_call(insn) && is_async_callback_calling_function(insn->imm)) ||
537 	       (bpf_pseudo_kfunc_call(insn) && is_async_callback_calling_kfunc(insn->imm));
538 }
539 
540 static bool is_may_goto_insn(struct bpf_insn *insn)
541 {
542 	return insn->code == (BPF_JMP | BPF_JCOND) && insn->src_reg == BPF_MAY_GOTO;
543 }
544 
545 static bool is_may_goto_insn_at(struct bpf_verifier_env *env, int insn_idx)
546 {
547 	return is_may_goto_insn(&env->prog->insnsi[insn_idx]);
548 }
549 
550 static bool is_storage_get_function(enum bpf_func_id func_id)
551 {
552 	return func_id == BPF_FUNC_sk_storage_get ||
553 	       func_id == BPF_FUNC_inode_storage_get ||
554 	       func_id == BPF_FUNC_task_storage_get ||
555 	       func_id == BPF_FUNC_cgrp_storage_get;
556 }
557 
558 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id,
559 					const struct bpf_map *map)
560 {
561 	int ref_obj_uses = 0;
562 
563 	if (is_ptr_cast_function(func_id))
564 		ref_obj_uses++;
565 	if (is_acquire_function(func_id, map))
566 		ref_obj_uses++;
567 	if (is_dynptr_ref_function(func_id))
568 		ref_obj_uses++;
569 
570 	return ref_obj_uses > 1;
571 }
572 
573 static bool is_cmpxchg_insn(const struct bpf_insn *insn)
574 {
575 	return BPF_CLASS(insn->code) == BPF_STX &&
576 	       BPF_MODE(insn->code) == BPF_ATOMIC &&
577 	       insn->imm == BPF_CMPXCHG;
578 }
579 
580 static int __get_spi(s32 off)
581 {
582 	return (-off - 1) / BPF_REG_SIZE;
583 }
584 
585 static struct bpf_func_state *func(struct bpf_verifier_env *env,
586 				   const struct bpf_reg_state *reg)
587 {
588 	struct bpf_verifier_state *cur = env->cur_state;
589 
590 	return cur->frame[reg->frameno];
591 }
592 
593 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots)
594 {
595        int allocated_slots = state->allocated_stack / BPF_REG_SIZE;
596 
597        /* We need to check that slots between [spi - nr_slots + 1, spi] are
598 	* within [0, allocated_stack).
599 	*
600 	* Please note that the spi grows downwards. For example, a dynptr
601 	* takes the size of two stack slots; the first slot will be at
602 	* spi and the second slot will be at spi - 1.
603 	*/
604        return spi - nr_slots + 1 >= 0 && spi < allocated_slots;
605 }
606 
607 static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
608 			          const char *obj_kind, int nr_slots)
609 {
610 	int off, spi;
611 
612 	if (!tnum_is_const(reg->var_off)) {
613 		verbose(env, "%s has to be at a constant offset\n", obj_kind);
614 		return -EINVAL;
615 	}
616 
617 	off = reg->off + reg->var_off.value;
618 	if (off % BPF_REG_SIZE) {
619 		verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
620 		return -EINVAL;
621 	}
622 
623 	spi = __get_spi(off);
624 	if (spi + 1 < nr_slots) {
625 		verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
626 		return -EINVAL;
627 	}
628 
629 	if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots))
630 		return -ERANGE;
631 	return spi;
632 }
633 
634 static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
635 {
636 	return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS);
637 }
638 
639 static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots)
640 {
641 	return stack_slot_obj_get_spi(env, reg, "iter", nr_slots);
642 }
643 
644 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type)
645 {
646 	switch (arg_type & DYNPTR_TYPE_FLAG_MASK) {
647 	case DYNPTR_TYPE_LOCAL:
648 		return BPF_DYNPTR_TYPE_LOCAL;
649 	case DYNPTR_TYPE_RINGBUF:
650 		return BPF_DYNPTR_TYPE_RINGBUF;
651 	case DYNPTR_TYPE_SKB:
652 		return BPF_DYNPTR_TYPE_SKB;
653 	case DYNPTR_TYPE_XDP:
654 		return BPF_DYNPTR_TYPE_XDP;
655 	default:
656 		return BPF_DYNPTR_TYPE_INVALID;
657 	}
658 }
659 
660 static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type)
661 {
662 	switch (type) {
663 	case BPF_DYNPTR_TYPE_LOCAL:
664 		return DYNPTR_TYPE_LOCAL;
665 	case BPF_DYNPTR_TYPE_RINGBUF:
666 		return DYNPTR_TYPE_RINGBUF;
667 	case BPF_DYNPTR_TYPE_SKB:
668 		return DYNPTR_TYPE_SKB;
669 	case BPF_DYNPTR_TYPE_XDP:
670 		return DYNPTR_TYPE_XDP;
671 	default:
672 		return 0;
673 	}
674 }
675 
676 static bool dynptr_type_refcounted(enum bpf_dynptr_type type)
677 {
678 	return type == BPF_DYNPTR_TYPE_RINGBUF;
679 }
680 
681 static void __mark_dynptr_reg(struct bpf_reg_state *reg,
682 			      enum bpf_dynptr_type type,
683 			      bool first_slot, int dynptr_id);
684 
685 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
686 				struct bpf_reg_state *reg);
687 
688 static void mark_dynptr_stack_regs(struct bpf_verifier_env *env,
689 				   struct bpf_reg_state *sreg1,
690 				   struct bpf_reg_state *sreg2,
691 				   enum bpf_dynptr_type type)
692 {
693 	int id = ++env->id_gen;
694 
695 	__mark_dynptr_reg(sreg1, type, true, id);
696 	__mark_dynptr_reg(sreg2, type, false, id);
697 }
698 
699 static void mark_dynptr_cb_reg(struct bpf_verifier_env *env,
700 			       struct bpf_reg_state *reg,
701 			       enum bpf_dynptr_type type)
702 {
703 	__mark_dynptr_reg(reg, type, true, ++env->id_gen);
704 }
705 
706 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
707 				        struct bpf_func_state *state, int spi);
708 
709 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
710 				   enum bpf_arg_type arg_type, int insn_idx, int clone_ref_obj_id)
711 {
712 	struct bpf_func_state *state = func(env, reg);
713 	enum bpf_dynptr_type type;
714 	int spi, i, err;
715 
716 	spi = dynptr_get_spi(env, reg);
717 	if (spi < 0)
718 		return spi;
719 
720 	/* We cannot assume both spi and spi - 1 belong to the same dynptr,
721 	 * hence we need to call destroy_if_dynptr_stack_slot twice for both,
722 	 * to ensure that for the following example:
723 	 *	[d1][d1][d2][d2]
724 	 * spi    3   2   1   0
725 	 * So marking spi = 2 should lead to destruction of both d1 and d2. In
726 	 * case they do belong to same dynptr, second call won't see slot_type
727 	 * as STACK_DYNPTR and will simply skip destruction.
728 	 */
729 	err = destroy_if_dynptr_stack_slot(env, state, spi);
730 	if (err)
731 		return err;
732 	err = destroy_if_dynptr_stack_slot(env, state, spi - 1);
733 	if (err)
734 		return err;
735 
736 	for (i = 0; i < BPF_REG_SIZE; i++) {
737 		state->stack[spi].slot_type[i] = STACK_DYNPTR;
738 		state->stack[spi - 1].slot_type[i] = STACK_DYNPTR;
739 	}
740 
741 	type = arg_to_dynptr_type(arg_type);
742 	if (type == BPF_DYNPTR_TYPE_INVALID)
743 		return -EINVAL;
744 
745 	mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr,
746 			       &state->stack[spi - 1].spilled_ptr, type);
747 
748 	if (dynptr_type_refcounted(type)) {
749 		/* The id is used to track proper releasing */
750 		int id;
751 
752 		if (clone_ref_obj_id)
753 			id = clone_ref_obj_id;
754 		else
755 			id = acquire_reference_state(env, insn_idx);
756 
757 		if (id < 0)
758 			return id;
759 
760 		state->stack[spi].spilled_ptr.ref_obj_id = id;
761 		state->stack[spi - 1].spilled_ptr.ref_obj_id = id;
762 	}
763 
764 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
765 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
766 
767 	return 0;
768 }
769 
770 static void invalidate_dynptr(struct bpf_verifier_env *env, struct bpf_func_state *state, int spi)
771 {
772 	int i;
773 
774 	for (i = 0; i < BPF_REG_SIZE; i++) {
775 		state->stack[spi].slot_type[i] = STACK_INVALID;
776 		state->stack[spi - 1].slot_type[i] = STACK_INVALID;
777 	}
778 
779 	__mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
780 	__mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
781 
782 	/* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot?
783 	 *
784 	 * While we don't allow reading STACK_INVALID, it is still possible to
785 	 * do <8 byte writes marking some but not all slots as STACK_MISC. Then,
786 	 * helpers or insns can do partial read of that part without failing,
787 	 * but check_stack_range_initialized, check_stack_read_var_off, and
788 	 * check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of
789 	 * the slot conservatively. Hence we need to prevent those liveness
790 	 * marking walks.
791 	 *
792 	 * This was not a problem before because STACK_INVALID is only set by
793 	 * default (where the default reg state has its reg->parent as NULL), or
794 	 * in clean_live_states after REG_LIVE_DONE (at which point
795 	 * mark_reg_read won't walk reg->parent chain), but not randomly during
796 	 * verifier state exploration (like we did above). Hence, for our case
797 	 * parentage chain will still be live (i.e. reg->parent may be
798 	 * non-NULL), while earlier reg->parent was NULL, so we need
799 	 * REG_LIVE_WRITTEN to screen off read marker propagation when it is
800 	 * done later on reads or by mark_dynptr_read as well to unnecessary
801 	 * mark registers in verifier state.
802 	 */
803 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
804 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
805 }
806 
807 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
808 {
809 	struct bpf_func_state *state = func(env, reg);
810 	int spi, ref_obj_id, i;
811 
812 	spi = dynptr_get_spi(env, reg);
813 	if (spi < 0)
814 		return spi;
815 
816 	if (!dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
817 		invalidate_dynptr(env, state, spi);
818 		return 0;
819 	}
820 
821 	ref_obj_id = state->stack[spi].spilled_ptr.ref_obj_id;
822 
823 	/* If the dynptr has a ref_obj_id, then we need to invalidate
824 	 * two things:
825 	 *
826 	 * 1) Any dynptrs with a matching ref_obj_id (clones)
827 	 * 2) Any slices derived from this dynptr.
828 	 */
829 
830 	/* Invalidate any slices associated with this dynptr */
831 	WARN_ON_ONCE(release_reference(env, ref_obj_id));
832 
833 	/* Invalidate any dynptr clones */
834 	for (i = 1; i < state->allocated_stack / BPF_REG_SIZE; i++) {
835 		if (state->stack[i].spilled_ptr.ref_obj_id != ref_obj_id)
836 			continue;
837 
838 		/* it should always be the case that if the ref obj id
839 		 * matches then the stack slot also belongs to a
840 		 * dynptr
841 		 */
842 		if (state->stack[i].slot_type[0] != STACK_DYNPTR) {
843 			verbose(env, "verifier internal error: misconfigured ref_obj_id\n");
844 			return -EFAULT;
845 		}
846 		if (state->stack[i].spilled_ptr.dynptr.first_slot)
847 			invalidate_dynptr(env, state, i);
848 	}
849 
850 	return 0;
851 }
852 
853 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
854 			       struct bpf_reg_state *reg);
855 
856 static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg)
857 {
858 	if (!env->allow_ptr_leaks)
859 		__mark_reg_not_init(env, reg);
860 	else
861 		__mark_reg_unknown(env, reg);
862 }
863 
864 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
865 				        struct bpf_func_state *state, int spi)
866 {
867 	struct bpf_func_state *fstate;
868 	struct bpf_reg_state *dreg;
869 	int i, dynptr_id;
870 
871 	/* We always ensure that STACK_DYNPTR is never set partially,
872 	 * hence just checking for slot_type[0] is enough. This is
873 	 * different for STACK_SPILL, where it may be only set for
874 	 * 1 byte, so code has to use is_spilled_reg.
875 	 */
876 	if (state->stack[spi].slot_type[0] != STACK_DYNPTR)
877 		return 0;
878 
879 	/* Reposition spi to first slot */
880 	if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
881 		spi = spi + 1;
882 
883 	if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
884 		verbose(env, "cannot overwrite referenced dynptr\n");
885 		return -EINVAL;
886 	}
887 
888 	mark_stack_slot_scratched(env, spi);
889 	mark_stack_slot_scratched(env, spi - 1);
890 
891 	/* Writing partially to one dynptr stack slot destroys both. */
892 	for (i = 0; i < BPF_REG_SIZE; i++) {
893 		state->stack[spi].slot_type[i] = STACK_INVALID;
894 		state->stack[spi - 1].slot_type[i] = STACK_INVALID;
895 	}
896 
897 	dynptr_id = state->stack[spi].spilled_ptr.id;
898 	/* Invalidate any slices associated with this dynptr */
899 	bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({
900 		/* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */
901 		if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM)
902 			continue;
903 		if (dreg->dynptr_id == dynptr_id)
904 			mark_reg_invalid(env, dreg);
905 	}));
906 
907 	/* Do not release reference state, we are destroying dynptr on stack,
908 	 * not using some helper to release it. Just reset register.
909 	 */
910 	__mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
911 	__mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
912 
913 	/* Same reason as unmark_stack_slots_dynptr above */
914 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
915 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
916 
917 	return 0;
918 }
919 
920 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
921 {
922 	int spi;
923 
924 	if (reg->type == CONST_PTR_TO_DYNPTR)
925 		return false;
926 
927 	spi = dynptr_get_spi(env, reg);
928 
929 	/* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an
930 	 * error because this just means the stack state hasn't been updated yet.
931 	 * We will do check_mem_access to check and update stack bounds later.
932 	 */
933 	if (spi < 0 && spi != -ERANGE)
934 		return false;
935 
936 	/* We don't need to check if the stack slots are marked by previous
937 	 * dynptr initializations because we allow overwriting existing unreferenced
938 	 * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls
939 	 * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are
940 	 * touching are completely destructed before we reinitialize them for a new
941 	 * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early
942 	 * instead of delaying it until the end where the user will get "Unreleased
943 	 * reference" error.
944 	 */
945 	return true;
946 }
947 
948 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
949 {
950 	struct bpf_func_state *state = func(env, reg);
951 	int i, spi;
952 
953 	/* This already represents first slot of initialized bpf_dynptr.
954 	 *
955 	 * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to
956 	 * check_func_arg_reg_off's logic, so we don't need to check its
957 	 * offset and alignment.
958 	 */
959 	if (reg->type == CONST_PTR_TO_DYNPTR)
960 		return true;
961 
962 	spi = dynptr_get_spi(env, reg);
963 	if (spi < 0)
964 		return false;
965 	if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
966 		return false;
967 
968 	for (i = 0; i < BPF_REG_SIZE; i++) {
969 		if (state->stack[spi].slot_type[i] != STACK_DYNPTR ||
970 		    state->stack[spi - 1].slot_type[i] != STACK_DYNPTR)
971 			return false;
972 	}
973 
974 	return true;
975 }
976 
977 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
978 				    enum bpf_arg_type arg_type)
979 {
980 	struct bpf_func_state *state = func(env, reg);
981 	enum bpf_dynptr_type dynptr_type;
982 	int spi;
983 
984 	/* ARG_PTR_TO_DYNPTR takes any type of dynptr */
985 	if (arg_type == ARG_PTR_TO_DYNPTR)
986 		return true;
987 
988 	dynptr_type = arg_to_dynptr_type(arg_type);
989 	if (reg->type == CONST_PTR_TO_DYNPTR) {
990 		return reg->dynptr.type == dynptr_type;
991 	} else {
992 		spi = dynptr_get_spi(env, reg);
993 		if (spi < 0)
994 			return false;
995 		return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type;
996 	}
997 }
998 
999 static void __mark_reg_known_zero(struct bpf_reg_state *reg);
1000 
1001 static bool in_rcu_cs(struct bpf_verifier_env *env);
1002 
1003 static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta);
1004 
1005 static int mark_stack_slots_iter(struct bpf_verifier_env *env,
1006 				 struct bpf_kfunc_call_arg_meta *meta,
1007 				 struct bpf_reg_state *reg, int insn_idx,
1008 				 struct btf *btf, u32 btf_id, int nr_slots)
1009 {
1010 	struct bpf_func_state *state = func(env, reg);
1011 	int spi, i, j, id;
1012 
1013 	spi = iter_get_spi(env, reg, nr_slots);
1014 	if (spi < 0)
1015 		return spi;
1016 
1017 	id = acquire_reference_state(env, insn_idx);
1018 	if (id < 0)
1019 		return id;
1020 
1021 	for (i = 0; i < nr_slots; i++) {
1022 		struct bpf_stack_state *slot = &state->stack[spi - i];
1023 		struct bpf_reg_state *st = &slot->spilled_ptr;
1024 
1025 		__mark_reg_known_zero(st);
1026 		st->type = PTR_TO_STACK; /* we don't have dedicated reg type */
1027 		if (is_kfunc_rcu_protected(meta)) {
1028 			if (in_rcu_cs(env))
1029 				st->type |= MEM_RCU;
1030 			else
1031 				st->type |= PTR_UNTRUSTED;
1032 		}
1033 		st->live |= REG_LIVE_WRITTEN;
1034 		st->ref_obj_id = i == 0 ? id : 0;
1035 		st->iter.btf = btf;
1036 		st->iter.btf_id = btf_id;
1037 		st->iter.state = BPF_ITER_STATE_ACTIVE;
1038 		st->iter.depth = 0;
1039 
1040 		for (j = 0; j < BPF_REG_SIZE; j++)
1041 			slot->slot_type[j] = STACK_ITER;
1042 
1043 		mark_stack_slot_scratched(env, spi - i);
1044 	}
1045 
1046 	return 0;
1047 }
1048 
1049 static int unmark_stack_slots_iter(struct bpf_verifier_env *env,
1050 				   struct bpf_reg_state *reg, int nr_slots)
1051 {
1052 	struct bpf_func_state *state = func(env, reg);
1053 	int spi, i, j;
1054 
1055 	spi = iter_get_spi(env, reg, nr_slots);
1056 	if (spi < 0)
1057 		return spi;
1058 
1059 	for (i = 0; i < nr_slots; i++) {
1060 		struct bpf_stack_state *slot = &state->stack[spi - i];
1061 		struct bpf_reg_state *st = &slot->spilled_ptr;
1062 
1063 		if (i == 0)
1064 			WARN_ON_ONCE(release_reference(env, st->ref_obj_id));
1065 
1066 		__mark_reg_not_init(env, st);
1067 
1068 		/* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */
1069 		st->live |= REG_LIVE_WRITTEN;
1070 
1071 		for (j = 0; j < BPF_REG_SIZE; j++)
1072 			slot->slot_type[j] = STACK_INVALID;
1073 
1074 		mark_stack_slot_scratched(env, spi - i);
1075 	}
1076 
1077 	return 0;
1078 }
1079 
1080 static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env,
1081 				     struct bpf_reg_state *reg, int nr_slots)
1082 {
1083 	struct bpf_func_state *state = func(env, reg);
1084 	int spi, i, j;
1085 
1086 	/* For -ERANGE (i.e. spi not falling into allocated stack slots), we
1087 	 * will do check_mem_access to check and update stack bounds later, so
1088 	 * return true for that case.
1089 	 */
1090 	spi = iter_get_spi(env, reg, nr_slots);
1091 	if (spi == -ERANGE)
1092 		return true;
1093 	if (spi < 0)
1094 		return false;
1095 
1096 	for (i = 0; i < nr_slots; i++) {
1097 		struct bpf_stack_state *slot = &state->stack[spi - i];
1098 
1099 		for (j = 0; j < BPF_REG_SIZE; j++)
1100 			if (slot->slot_type[j] == STACK_ITER)
1101 				return false;
1102 	}
1103 
1104 	return true;
1105 }
1106 
1107 static int is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
1108 				   struct btf *btf, u32 btf_id, int nr_slots)
1109 {
1110 	struct bpf_func_state *state = func(env, reg);
1111 	int spi, i, j;
1112 
1113 	spi = iter_get_spi(env, reg, nr_slots);
1114 	if (spi < 0)
1115 		return -EINVAL;
1116 
1117 	for (i = 0; i < nr_slots; i++) {
1118 		struct bpf_stack_state *slot = &state->stack[spi - i];
1119 		struct bpf_reg_state *st = &slot->spilled_ptr;
1120 
1121 		if (st->type & PTR_UNTRUSTED)
1122 			return -EPROTO;
1123 		/* only main (first) slot has ref_obj_id set */
1124 		if (i == 0 && !st->ref_obj_id)
1125 			return -EINVAL;
1126 		if (i != 0 && st->ref_obj_id)
1127 			return -EINVAL;
1128 		if (st->iter.btf != btf || st->iter.btf_id != btf_id)
1129 			return -EINVAL;
1130 
1131 		for (j = 0; j < BPF_REG_SIZE; j++)
1132 			if (slot->slot_type[j] != STACK_ITER)
1133 				return -EINVAL;
1134 	}
1135 
1136 	return 0;
1137 }
1138 
1139 /* Check if given stack slot is "special":
1140  *   - spilled register state (STACK_SPILL);
1141  *   - dynptr state (STACK_DYNPTR);
1142  *   - iter state (STACK_ITER).
1143  */
1144 static bool is_stack_slot_special(const struct bpf_stack_state *stack)
1145 {
1146 	enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1];
1147 
1148 	switch (type) {
1149 	case STACK_SPILL:
1150 	case STACK_DYNPTR:
1151 	case STACK_ITER:
1152 		return true;
1153 	case STACK_INVALID:
1154 	case STACK_MISC:
1155 	case STACK_ZERO:
1156 		return false;
1157 	default:
1158 		WARN_ONCE(1, "unknown stack slot type %d\n", type);
1159 		return true;
1160 	}
1161 }
1162 
1163 /* The reg state of a pointer or a bounded scalar was saved when
1164  * it was spilled to the stack.
1165  */
1166 static bool is_spilled_reg(const struct bpf_stack_state *stack)
1167 {
1168 	return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL;
1169 }
1170 
1171 static bool is_spilled_scalar_reg(const struct bpf_stack_state *stack)
1172 {
1173 	return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL &&
1174 	       stack->spilled_ptr.type == SCALAR_VALUE;
1175 }
1176 
1177 static bool is_spilled_scalar_reg64(const struct bpf_stack_state *stack)
1178 {
1179 	return stack->slot_type[0] == STACK_SPILL &&
1180 	       stack->spilled_ptr.type == SCALAR_VALUE;
1181 }
1182 
1183 /* Mark stack slot as STACK_MISC, unless it is already STACK_INVALID, in which
1184  * case they are equivalent, or it's STACK_ZERO, in which case we preserve
1185  * more precise STACK_ZERO.
1186  * Regardless of allow_ptr_leaks setting (i.e., privileged or unprivileged
1187  * mode), we won't promote STACK_INVALID to STACK_MISC. In privileged case it is
1188  * unnecessary as both are considered equivalent when loading data and pruning,
1189  * in case of unprivileged mode it will be incorrect to allow reads of invalid
1190  * slots.
1191  */
1192 static void mark_stack_slot_misc(struct bpf_verifier_env *env, u8 *stype)
1193 {
1194 	if (*stype == STACK_ZERO)
1195 		return;
1196 	if (*stype == STACK_INVALID)
1197 		return;
1198 	*stype = STACK_MISC;
1199 }
1200 
1201 static void scrub_spilled_slot(u8 *stype)
1202 {
1203 	if (*stype != STACK_INVALID)
1204 		*stype = STACK_MISC;
1205 }
1206 
1207 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too
1208  * small to hold src. This is different from krealloc since we don't want to preserve
1209  * the contents of dst.
1210  *
1211  * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
1212  * not be allocated.
1213  */
1214 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
1215 {
1216 	size_t alloc_bytes;
1217 	void *orig = dst;
1218 	size_t bytes;
1219 
1220 	if (ZERO_OR_NULL_PTR(src))
1221 		goto out;
1222 
1223 	if (unlikely(check_mul_overflow(n, size, &bytes)))
1224 		return NULL;
1225 
1226 	alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes));
1227 	dst = krealloc(orig, alloc_bytes, flags);
1228 	if (!dst) {
1229 		kfree(orig);
1230 		return NULL;
1231 	}
1232 
1233 	memcpy(dst, src, bytes);
1234 out:
1235 	return dst ? dst : ZERO_SIZE_PTR;
1236 }
1237 
1238 /* resize an array from old_n items to new_n items. the array is reallocated if it's too
1239  * small to hold new_n items. new items are zeroed out if the array grows.
1240  *
1241  * Contrary to krealloc_array, does not free arr if new_n is zero.
1242  */
1243 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
1244 {
1245 	size_t alloc_size;
1246 	void *new_arr;
1247 
1248 	if (!new_n || old_n == new_n)
1249 		goto out;
1250 
1251 	alloc_size = kmalloc_size_roundup(size_mul(new_n, size));
1252 	new_arr = krealloc(arr, alloc_size, GFP_KERNEL);
1253 	if (!new_arr) {
1254 		kfree(arr);
1255 		return NULL;
1256 	}
1257 	arr = new_arr;
1258 
1259 	if (new_n > old_n)
1260 		memset(arr + old_n * size, 0, (new_n - old_n) * size);
1261 
1262 out:
1263 	return arr ? arr : ZERO_SIZE_PTR;
1264 }
1265 
1266 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1267 {
1268 	dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
1269 			       sizeof(struct bpf_reference_state), GFP_KERNEL);
1270 	if (!dst->refs)
1271 		return -ENOMEM;
1272 
1273 	dst->active_locks = src->active_locks;
1274 	dst->acquired_refs = src->acquired_refs;
1275 	return 0;
1276 }
1277 
1278 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1279 {
1280 	size_t n = src->allocated_stack / BPF_REG_SIZE;
1281 
1282 	dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
1283 				GFP_KERNEL);
1284 	if (!dst->stack)
1285 		return -ENOMEM;
1286 
1287 	dst->allocated_stack = src->allocated_stack;
1288 	return 0;
1289 }
1290 
1291 static int resize_reference_state(struct bpf_func_state *state, size_t n)
1292 {
1293 	state->refs = realloc_array(state->refs, state->acquired_refs, n,
1294 				    sizeof(struct bpf_reference_state));
1295 	if (!state->refs)
1296 		return -ENOMEM;
1297 
1298 	state->acquired_refs = n;
1299 	return 0;
1300 }
1301 
1302 /* Possibly update state->allocated_stack to be at least size bytes. Also
1303  * possibly update the function's high-water mark in its bpf_subprog_info.
1304  */
1305 static int grow_stack_state(struct bpf_verifier_env *env, struct bpf_func_state *state, int size)
1306 {
1307 	size_t old_n = state->allocated_stack / BPF_REG_SIZE, n;
1308 
1309 	/* The stack size is always a multiple of BPF_REG_SIZE. */
1310 	size = round_up(size, BPF_REG_SIZE);
1311 	n = size / BPF_REG_SIZE;
1312 
1313 	if (old_n >= n)
1314 		return 0;
1315 
1316 	state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
1317 	if (!state->stack)
1318 		return -ENOMEM;
1319 
1320 	state->allocated_stack = size;
1321 
1322 	/* update known max for given subprogram */
1323 	if (env->subprog_info[state->subprogno].stack_depth < size)
1324 		env->subprog_info[state->subprogno].stack_depth = size;
1325 
1326 	return 0;
1327 }
1328 
1329 /* Acquire a pointer id from the env and update the state->refs to include
1330  * this new pointer reference.
1331  * On success, returns a valid pointer id to associate with the register
1332  * On failure, returns a negative errno.
1333  */
1334 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
1335 {
1336 	struct bpf_func_state *state = cur_func(env);
1337 	int new_ofs = state->acquired_refs;
1338 	int id, err;
1339 
1340 	err = resize_reference_state(state, state->acquired_refs + 1);
1341 	if (err)
1342 		return err;
1343 	id = ++env->id_gen;
1344 	state->refs[new_ofs].type = REF_TYPE_PTR;
1345 	state->refs[new_ofs].id = id;
1346 	state->refs[new_ofs].insn_idx = insn_idx;
1347 
1348 	return id;
1349 }
1350 
1351 static int acquire_lock_state(struct bpf_verifier_env *env, int insn_idx, enum ref_state_type type,
1352 			      int id, void *ptr)
1353 {
1354 	struct bpf_func_state *state = cur_func(env);
1355 	int new_ofs = state->acquired_refs;
1356 	int err;
1357 
1358 	err = resize_reference_state(state, state->acquired_refs + 1);
1359 	if (err)
1360 		return err;
1361 	state->refs[new_ofs].type = type;
1362 	state->refs[new_ofs].id = id;
1363 	state->refs[new_ofs].insn_idx = insn_idx;
1364 	state->refs[new_ofs].ptr = ptr;
1365 
1366 	state->active_locks++;
1367 	return 0;
1368 }
1369 
1370 /* release function corresponding to acquire_reference_state(). Idempotent. */
1371 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
1372 {
1373 	int i, last_idx;
1374 
1375 	last_idx = state->acquired_refs - 1;
1376 	for (i = 0; i < state->acquired_refs; i++) {
1377 		if (state->refs[i].type != REF_TYPE_PTR)
1378 			continue;
1379 		if (state->refs[i].id == ptr_id) {
1380 			if (last_idx && i != last_idx)
1381 				memcpy(&state->refs[i], &state->refs[last_idx],
1382 				       sizeof(*state->refs));
1383 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
1384 			state->acquired_refs--;
1385 			return 0;
1386 		}
1387 	}
1388 	return -EINVAL;
1389 }
1390 
1391 static int release_lock_state(struct bpf_func_state *state, int type, int id, void *ptr)
1392 {
1393 	int i, last_idx;
1394 
1395 	last_idx = state->acquired_refs - 1;
1396 	for (i = 0; i < state->acquired_refs; i++) {
1397 		if (state->refs[i].type != type)
1398 			continue;
1399 		if (state->refs[i].id == id && state->refs[i].ptr == ptr) {
1400 			if (last_idx && i != last_idx)
1401 				memcpy(&state->refs[i], &state->refs[last_idx],
1402 				       sizeof(*state->refs));
1403 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
1404 			state->acquired_refs--;
1405 			state->active_locks--;
1406 			return 0;
1407 		}
1408 	}
1409 	return -EINVAL;
1410 }
1411 
1412 static struct bpf_reference_state *find_lock_state(struct bpf_verifier_env *env, enum ref_state_type type,
1413 						   int id, void *ptr)
1414 {
1415 	struct bpf_func_state *state = cur_func(env);
1416 	int i;
1417 
1418 	for (i = 0; i < state->acquired_refs; i++) {
1419 		struct bpf_reference_state *s = &state->refs[i];
1420 
1421 		if (s->type == REF_TYPE_PTR || s->type != type)
1422 			continue;
1423 
1424 		if (s->id == id && s->ptr == ptr)
1425 			return s;
1426 	}
1427 	return NULL;
1428 }
1429 
1430 static void free_func_state(struct bpf_func_state *state)
1431 {
1432 	if (!state)
1433 		return;
1434 	kfree(state->refs);
1435 	kfree(state->stack);
1436 	kfree(state);
1437 }
1438 
1439 static void free_verifier_state(struct bpf_verifier_state *state,
1440 				bool free_self)
1441 {
1442 	int i;
1443 
1444 	for (i = 0; i <= state->curframe; i++) {
1445 		free_func_state(state->frame[i]);
1446 		state->frame[i] = NULL;
1447 	}
1448 	if (free_self)
1449 		kfree(state);
1450 }
1451 
1452 /* copy verifier state from src to dst growing dst stack space
1453  * when necessary to accommodate larger src stack
1454  */
1455 static int copy_func_state(struct bpf_func_state *dst,
1456 			   const struct bpf_func_state *src)
1457 {
1458 	int err;
1459 
1460 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
1461 	err = copy_reference_state(dst, src);
1462 	if (err)
1463 		return err;
1464 	return copy_stack_state(dst, src);
1465 }
1466 
1467 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
1468 			       const struct bpf_verifier_state *src)
1469 {
1470 	struct bpf_func_state *dst;
1471 	int i, err;
1472 
1473 	/* if dst has more stack frames then src frame, free them, this is also
1474 	 * necessary in case of exceptional exits using bpf_throw.
1475 	 */
1476 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
1477 		free_func_state(dst_state->frame[i]);
1478 		dst_state->frame[i] = NULL;
1479 	}
1480 	dst_state->speculative = src->speculative;
1481 	dst_state->active_rcu_lock = src->active_rcu_lock;
1482 	dst_state->active_preempt_lock = src->active_preempt_lock;
1483 	dst_state->in_sleepable = src->in_sleepable;
1484 	dst_state->curframe = src->curframe;
1485 	dst_state->branches = src->branches;
1486 	dst_state->parent = src->parent;
1487 	dst_state->first_insn_idx = src->first_insn_idx;
1488 	dst_state->last_insn_idx = src->last_insn_idx;
1489 	dst_state->insn_hist_start = src->insn_hist_start;
1490 	dst_state->insn_hist_end = src->insn_hist_end;
1491 	dst_state->dfs_depth = src->dfs_depth;
1492 	dst_state->callback_unroll_depth = src->callback_unroll_depth;
1493 	dst_state->used_as_loop_entry = src->used_as_loop_entry;
1494 	dst_state->may_goto_depth = src->may_goto_depth;
1495 	for (i = 0; i <= src->curframe; i++) {
1496 		dst = dst_state->frame[i];
1497 		if (!dst) {
1498 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
1499 			if (!dst)
1500 				return -ENOMEM;
1501 			dst_state->frame[i] = dst;
1502 		}
1503 		err = copy_func_state(dst, src->frame[i]);
1504 		if (err)
1505 			return err;
1506 	}
1507 	return 0;
1508 }
1509 
1510 static u32 state_htab_size(struct bpf_verifier_env *env)
1511 {
1512 	return env->prog->len;
1513 }
1514 
1515 static struct bpf_verifier_state_list **explored_state(struct bpf_verifier_env *env, int idx)
1516 {
1517 	struct bpf_verifier_state *cur = env->cur_state;
1518 	struct bpf_func_state *state = cur->frame[cur->curframe];
1519 
1520 	return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
1521 }
1522 
1523 static bool same_callsites(struct bpf_verifier_state *a, struct bpf_verifier_state *b)
1524 {
1525 	int fr;
1526 
1527 	if (a->curframe != b->curframe)
1528 		return false;
1529 
1530 	for (fr = a->curframe; fr >= 0; fr--)
1531 		if (a->frame[fr]->callsite != b->frame[fr]->callsite)
1532 			return false;
1533 
1534 	return true;
1535 }
1536 
1537 /* Open coded iterators allow back-edges in the state graph in order to
1538  * check unbounded loops that iterators.
1539  *
1540  * In is_state_visited() it is necessary to know if explored states are
1541  * part of some loops in order to decide whether non-exact states
1542  * comparison could be used:
1543  * - non-exact states comparison establishes sub-state relation and uses
1544  *   read and precision marks to do so, these marks are propagated from
1545  *   children states and thus are not guaranteed to be final in a loop;
1546  * - exact states comparison just checks if current and explored states
1547  *   are identical (and thus form a back-edge).
1548  *
1549  * Paper "A New Algorithm for Identifying Loops in Decompilation"
1550  * by Tao Wei, Jian Mao, Wei Zou and Yu Chen [1] presents a convenient
1551  * algorithm for loop structure detection and gives an overview of
1552  * relevant terminology. It also has helpful illustrations.
1553  *
1554  * [1] https://api.semanticscholar.org/CorpusID:15784067
1555  *
1556  * We use a similar algorithm but because loop nested structure is
1557  * irrelevant for verifier ours is significantly simpler and resembles
1558  * strongly connected components algorithm from Sedgewick's textbook.
1559  *
1560  * Define topmost loop entry as a first node of the loop traversed in a
1561  * depth first search starting from initial state. The goal of the loop
1562  * tracking algorithm is to associate topmost loop entries with states
1563  * derived from these entries.
1564  *
1565  * For each step in the DFS states traversal algorithm needs to identify
1566  * the following situations:
1567  *
1568  *          initial                     initial                   initial
1569  *            |                           |                         |
1570  *            V                           V                         V
1571  *           ...                         ...           .---------> hdr
1572  *            |                           |            |            |
1573  *            V                           V            |            V
1574  *           cur                     .-> succ          |    .------...
1575  *            |                      |    |            |    |       |
1576  *            V                      |    V            |    V       V
1577  *           succ                    '-- cur           |   ...     ...
1578  *                                                     |    |       |
1579  *                                                     |    V       V
1580  *                                                     |   succ <- cur
1581  *                                                     |    |
1582  *                                                     |    V
1583  *                                                     |   ...
1584  *                                                     |    |
1585  *                                                     '----'
1586  *
1587  *  (A) successor state of cur   (B) successor state of cur or it's entry
1588  *      not yet traversed            are in current DFS path, thus cur and succ
1589  *                                   are members of the same outermost loop
1590  *
1591  *                      initial                  initial
1592  *                        |                        |
1593  *                        V                        V
1594  *                       ...                      ...
1595  *                        |                        |
1596  *                        V                        V
1597  *                .------...               .------...
1598  *                |       |                |       |
1599  *                V       V                V       V
1600  *           .-> hdr     ...              ...     ...
1601  *           |    |       |                |       |
1602  *           |    V       V                V       V
1603  *           |   succ <- cur              succ <- cur
1604  *           |    |                        |
1605  *           |    V                        V
1606  *           |   ...                      ...
1607  *           |    |                        |
1608  *           '----'                       exit
1609  *
1610  * (C) successor state of cur is a part of some loop but this loop
1611  *     does not include cur or successor state is not in a loop at all.
1612  *
1613  * Algorithm could be described as the following python code:
1614  *
1615  *     traversed = set()   # Set of traversed nodes
1616  *     entries = {}        # Mapping from node to loop entry
1617  *     depths = {}         # Depth level assigned to graph node
1618  *     path = set()        # Current DFS path
1619  *
1620  *     # Find outermost loop entry known for n
1621  *     def get_loop_entry(n):
1622  *         h = entries.get(n, None)
1623  *         while h in entries and entries[h] != h:
1624  *             h = entries[h]
1625  *         return h
1626  *
1627  *     # Update n's loop entry if h's outermost entry comes
1628  *     # before n's outermost entry in current DFS path.
1629  *     def update_loop_entry(n, h):
1630  *         n1 = get_loop_entry(n) or n
1631  *         h1 = get_loop_entry(h) or h
1632  *         if h1 in path and depths[h1] <= depths[n1]:
1633  *             entries[n] = h1
1634  *
1635  *     def dfs(n, depth):
1636  *         traversed.add(n)
1637  *         path.add(n)
1638  *         depths[n] = depth
1639  *         for succ in G.successors(n):
1640  *             if succ not in traversed:
1641  *                 # Case A: explore succ and update cur's loop entry
1642  *                 #         only if succ's entry is in current DFS path.
1643  *                 dfs(succ, depth + 1)
1644  *                 h = get_loop_entry(succ)
1645  *                 update_loop_entry(n, h)
1646  *             else:
1647  *                 # Case B or C depending on `h1 in path` check in update_loop_entry().
1648  *                 update_loop_entry(n, succ)
1649  *         path.remove(n)
1650  *
1651  * To adapt this algorithm for use with verifier:
1652  * - use st->branch == 0 as a signal that DFS of succ had been finished
1653  *   and cur's loop entry has to be updated (case A), handle this in
1654  *   update_branch_counts();
1655  * - use st->branch > 0 as a signal that st is in the current DFS path;
1656  * - handle cases B and C in is_state_visited();
1657  * - update topmost loop entry for intermediate states in get_loop_entry().
1658  */
1659 static struct bpf_verifier_state *get_loop_entry(struct bpf_verifier_state *st)
1660 {
1661 	struct bpf_verifier_state *topmost = st->loop_entry, *old;
1662 
1663 	while (topmost && topmost->loop_entry && topmost != topmost->loop_entry)
1664 		topmost = topmost->loop_entry;
1665 	/* Update loop entries for intermediate states to avoid this
1666 	 * traversal in future get_loop_entry() calls.
1667 	 */
1668 	while (st && st->loop_entry != topmost) {
1669 		old = st->loop_entry;
1670 		st->loop_entry = topmost;
1671 		st = old;
1672 	}
1673 	return topmost;
1674 }
1675 
1676 static void update_loop_entry(struct bpf_verifier_state *cur, struct bpf_verifier_state *hdr)
1677 {
1678 	struct bpf_verifier_state *cur1, *hdr1;
1679 
1680 	cur1 = get_loop_entry(cur) ?: cur;
1681 	hdr1 = get_loop_entry(hdr) ?: hdr;
1682 	/* The head1->branches check decides between cases B and C in
1683 	 * comment for get_loop_entry(). If hdr1->branches == 0 then
1684 	 * head's topmost loop entry is not in current DFS path,
1685 	 * hence 'cur' and 'hdr' are not in the same loop and there is
1686 	 * no need to update cur->loop_entry.
1687 	 */
1688 	if (hdr1->branches && hdr1->dfs_depth <= cur1->dfs_depth) {
1689 		cur->loop_entry = hdr;
1690 		hdr->used_as_loop_entry = true;
1691 	}
1692 }
1693 
1694 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
1695 {
1696 	while (st) {
1697 		u32 br = --st->branches;
1698 
1699 		/* br == 0 signals that DFS exploration for 'st' is finished,
1700 		 * thus it is necessary to update parent's loop entry if it
1701 		 * turned out that st is a part of some loop.
1702 		 * This is a part of 'case A' in get_loop_entry() comment.
1703 		 */
1704 		if (br == 0 && st->parent && st->loop_entry)
1705 			update_loop_entry(st->parent, st->loop_entry);
1706 
1707 		/* WARN_ON(br > 1) technically makes sense here,
1708 		 * but see comment in push_stack(), hence:
1709 		 */
1710 		WARN_ONCE((int)br < 0,
1711 			  "BUG update_branch_counts:branches_to_explore=%d\n",
1712 			  br);
1713 		if (br)
1714 			break;
1715 		st = st->parent;
1716 	}
1717 }
1718 
1719 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
1720 		     int *insn_idx, bool pop_log)
1721 {
1722 	struct bpf_verifier_state *cur = env->cur_state;
1723 	struct bpf_verifier_stack_elem *elem, *head = env->head;
1724 	int err;
1725 
1726 	if (env->head == NULL)
1727 		return -ENOENT;
1728 
1729 	if (cur) {
1730 		err = copy_verifier_state(cur, &head->st);
1731 		if (err)
1732 			return err;
1733 	}
1734 	if (pop_log)
1735 		bpf_vlog_reset(&env->log, head->log_pos);
1736 	if (insn_idx)
1737 		*insn_idx = head->insn_idx;
1738 	if (prev_insn_idx)
1739 		*prev_insn_idx = head->prev_insn_idx;
1740 	elem = head->next;
1741 	free_verifier_state(&head->st, false);
1742 	kfree(head);
1743 	env->head = elem;
1744 	env->stack_size--;
1745 	return 0;
1746 }
1747 
1748 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
1749 					     int insn_idx, int prev_insn_idx,
1750 					     bool speculative)
1751 {
1752 	struct bpf_verifier_state *cur = env->cur_state;
1753 	struct bpf_verifier_stack_elem *elem;
1754 	int err;
1755 
1756 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1757 	if (!elem)
1758 		goto err;
1759 
1760 	elem->insn_idx = insn_idx;
1761 	elem->prev_insn_idx = prev_insn_idx;
1762 	elem->next = env->head;
1763 	elem->log_pos = env->log.end_pos;
1764 	env->head = elem;
1765 	env->stack_size++;
1766 	err = copy_verifier_state(&elem->st, cur);
1767 	if (err)
1768 		goto err;
1769 	elem->st.speculative |= speculative;
1770 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1771 		verbose(env, "The sequence of %d jumps is too complex.\n",
1772 			env->stack_size);
1773 		goto err;
1774 	}
1775 	if (elem->st.parent) {
1776 		++elem->st.parent->branches;
1777 		/* WARN_ON(branches > 2) technically makes sense here,
1778 		 * but
1779 		 * 1. speculative states will bump 'branches' for non-branch
1780 		 * instructions
1781 		 * 2. is_state_visited() heuristics may decide not to create
1782 		 * a new state for a sequence of branches and all such current
1783 		 * and cloned states will be pointing to a single parent state
1784 		 * which might have large 'branches' count.
1785 		 */
1786 	}
1787 	return &elem->st;
1788 err:
1789 	free_verifier_state(env->cur_state, true);
1790 	env->cur_state = NULL;
1791 	/* pop all elements and return */
1792 	while (!pop_stack(env, NULL, NULL, false));
1793 	return NULL;
1794 }
1795 
1796 #define CALLER_SAVED_REGS 6
1797 static const int caller_saved[CALLER_SAVED_REGS] = {
1798 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1799 };
1800 
1801 /* This helper doesn't clear reg->id */
1802 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1803 {
1804 	reg->var_off = tnum_const(imm);
1805 	reg->smin_value = (s64)imm;
1806 	reg->smax_value = (s64)imm;
1807 	reg->umin_value = imm;
1808 	reg->umax_value = imm;
1809 
1810 	reg->s32_min_value = (s32)imm;
1811 	reg->s32_max_value = (s32)imm;
1812 	reg->u32_min_value = (u32)imm;
1813 	reg->u32_max_value = (u32)imm;
1814 }
1815 
1816 /* Mark the unknown part of a register (variable offset or scalar value) as
1817  * known to have the value @imm.
1818  */
1819 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1820 {
1821 	/* Clear off and union(map_ptr, range) */
1822 	memset(((u8 *)reg) + sizeof(reg->type), 0,
1823 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1824 	reg->id = 0;
1825 	reg->ref_obj_id = 0;
1826 	___mark_reg_known(reg, imm);
1827 }
1828 
1829 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1830 {
1831 	reg->var_off = tnum_const_subreg(reg->var_off, imm);
1832 	reg->s32_min_value = (s32)imm;
1833 	reg->s32_max_value = (s32)imm;
1834 	reg->u32_min_value = (u32)imm;
1835 	reg->u32_max_value = (u32)imm;
1836 }
1837 
1838 /* Mark the 'variable offset' part of a register as zero.  This should be
1839  * used only on registers holding a pointer type.
1840  */
1841 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
1842 {
1843 	__mark_reg_known(reg, 0);
1844 }
1845 
1846 static void __mark_reg_const_zero(const struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1847 {
1848 	__mark_reg_known(reg, 0);
1849 	reg->type = SCALAR_VALUE;
1850 	/* all scalars are assumed imprecise initially (unless unprivileged,
1851 	 * in which case everything is forced to be precise)
1852 	 */
1853 	reg->precise = !env->bpf_capable;
1854 }
1855 
1856 static void mark_reg_known_zero(struct bpf_verifier_env *env,
1857 				struct bpf_reg_state *regs, u32 regno)
1858 {
1859 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1860 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
1861 		/* Something bad happened, let's kill all regs */
1862 		for (regno = 0; regno < MAX_BPF_REG; regno++)
1863 			__mark_reg_not_init(env, regs + regno);
1864 		return;
1865 	}
1866 	__mark_reg_known_zero(regs + regno);
1867 }
1868 
1869 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type,
1870 			      bool first_slot, int dynptr_id)
1871 {
1872 	/* reg->type has no meaning for STACK_DYNPTR, but when we set reg for
1873 	 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply
1874 	 * set it unconditionally as it is ignored for STACK_DYNPTR anyway.
1875 	 */
1876 	__mark_reg_known_zero(reg);
1877 	reg->type = CONST_PTR_TO_DYNPTR;
1878 	/* Give each dynptr a unique id to uniquely associate slices to it. */
1879 	reg->id = dynptr_id;
1880 	reg->dynptr.type = type;
1881 	reg->dynptr.first_slot = first_slot;
1882 }
1883 
1884 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
1885 {
1886 	if (base_type(reg->type) == PTR_TO_MAP_VALUE) {
1887 		const struct bpf_map *map = reg->map_ptr;
1888 
1889 		if (map->inner_map_meta) {
1890 			reg->type = CONST_PTR_TO_MAP;
1891 			reg->map_ptr = map->inner_map_meta;
1892 			/* transfer reg's id which is unique for every map_lookup_elem
1893 			 * as UID of the inner map.
1894 			 */
1895 			if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER))
1896 				reg->map_uid = reg->id;
1897 			if (btf_record_has_field(map->inner_map_meta->record, BPF_WORKQUEUE))
1898 				reg->map_uid = reg->id;
1899 		} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
1900 			reg->type = PTR_TO_XDP_SOCK;
1901 		} else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
1902 			   map->map_type == BPF_MAP_TYPE_SOCKHASH) {
1903 			reg->type = PTR_TO_SOCKET;
1904 		} else {
1905 			reg->type = PTR_TO_MAP_VALUE;
1906 		}
1907 		return;
1908 	}
1909 
1910 	reg->type &= ~PTR_MAYBE_NULL;
1911 }
1912 
1913 static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno,
1914 				struct btf_field_graph_root *ds_head)
1915 {
1916 	__mark_reg_known_zero(&regs[regno]);
1917 	regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC;
1918 	regs[regno].btf = ds_head->btf;
1919 	regs[regno].btf_id = ds_head->value_btf_id;
1920 	regs[regno].off = ds_head->node_offset;
1921 }
1922 
1923 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1924 {
1925 	return type_is_pkt_pointer(reg->type);
1926 }
1927 
1928 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1929 {
1930 	return reg_is_pkt_pointer(reg) ||
1931 	       reg->type == PTR_TO_PACKET_END;
1932 }
1933 
1934 static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg)
1935 {
1936 	return base_type(reg->type) == PTR_TO_MEM &&
1937 		(reg->type & DYNPTR_TYPE_SKB || reg->type & DYNPTR_TYPE_XDP);
1938 }
1939 
1940 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
1941 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1942 				    enum bpf_reg_type which)
1943 {
1944 	/* The register can already have a range from prior markings.
1945 	 * This is fine as long as it hasn't been advanced from its
1946 	 * origin.
1947 	 */
1948 	return reg->type == which &&
1949 	       reg->id == 0 &&
1950 	       reg->off == 0 &&
1951 	       tnum_equals_const(reg->var_off, 0);
1952 }
1953 
1954 /* Reset the min/max bounds of a register */
1955 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1956 {
1957 	reg->smin_value = S64_MIN;
1958 	reg->smax_value = S64_MAX;
1959 	reg->umin_value = 0;
1960 	reg->umax_value = U64_MAX;
1961 
1962 	reg->s32_min_value = S32_MIN;
1963 	reg->s32_max_value = S32_MAX;
1964 	reg->u32_min_value = 0;
1965 	reg->u32_max_value = U32_MAX;
1966 }
1967 
1968 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1969 {
1970 	reg->smin_value = S64_MIN;
1971 	reg->smax_value = S64_MAX;
1972 	reg->umin_value = 0;
1973 	reg->umax_value = U64_MAX;
1974 }
1975 
1976 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1977 {
1978 	reg->s32_min_value = S32_MIN;
1979 	reg->s32_max_value = S32_MAX;
1980 	reg->u32_min_value = 0;
1981 	reg->u32_max_value = U32_MAX;
1982 }
1983 
1984 static void __update_reg32_bounds(struct bpf_reg_state *reg)
1985 {
1986 	struct tnum var32_off = tnum_subreg(reg->var_off);
1987 
1988 	/* min signed is max(sign bit) | min(other bits) */
1989 	reg->s32_min_value = max_t(s32, reg->s32_min_value,
1990 			var32_off.value | (var32_off.mask & S32_MIN));
1991 	/* max signed is min(sign bit) | max(other bits) */
1992 	reg->s32_max_value = min_t(s32, reg->s32_max_value,
1993 			var32_off.value | (var32_off.mask & S32_MAX));
1994 	reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1995 	reg->u32_max_value = min(reg->u32_max_value,
1996 				 (u32)(var32_off.value | var32_off.mask));
1997 }
1998 
1999 static void __update_reg64_bounds(struct bpf_reg_state *reg)
2000 {
2001 	/* min signed is max(sign bit) | min(other bits) */
2002 	reg->smin_value = max_t(s64, reg->smin_value,
2003 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
2004 	/* max signed is min(sign bit) | max(other bits) */
2005 	reg->smax_value = min_t(s64, reg->smax_value,
2006 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
2007 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
2008 	reg->umax_value = min(reg->umax_value,
2009 			      reg->var_off.value | reg->var_off.mask);
2010 }
2011 
2012 static void __update_reg_bounds(struct bpf_reg_state *reg)
2013 {
2014 	__update_reg32_bounds(reg);
2015 	__update_reg64_bounds(reg);
2016 }
2017 
2018 /* Uses signed min/max values to inform unsigned, and vice-versa */
2019 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
2020 {
2021 	/* If upper 32 bits of u64/s64 range don't change, we can use lower 32
2022 	 * bits to improve our u32/s32 boundaries.
2023 	 *
2024 	 * E.g., the case where we have upper 32 bits as zero ([10, 20] in
2025 	 * u64) is pretty trivial, it's obvious that in u32 we'll also have
2026 	 * [10, 20] range. But this property holds for any 64-bit range as
2027 	 * long as upper 32 bits in that entire range of values stay the same.
2028 	 *
2029 	 * E.g., u64 range [0x10000000A, 0x10000000F] ([4294967306, 4294967311]
2030 	 * in decimal) has the same upper 32 bits throughout all the values in
2031 	 * that range. As such, lower 32 bits form a valid [0xA, 0xF] ([10, 15])
2032 	 * range.
2033 	 *
2034 	 * Note also, that [0xA, 0xF] is a valid range both in u32 and in s32,
2035 	 * following the rules outlined below about u64/s64 correspondence
2036 	 * (which equally applies to u32 vs s32 correspondence). In general it
2037 	 * depends on actual hexadecimal values of 32-bit range. They can form
2038 	 * only valid u32, or only valid s32 ranges in some cases.
2039 	 *
2040 	 * So we use all these insights to derive bounds for subregisters here.
2041 	 */
2042 	if ((reg->umin_value >> 32) == (reg->umax_value >> 32)) {
2043 		/* u64 to u32 casting preserves validity of low 32 bits as
2044 		 * a range, if upper 32 bits are the same
2045 		 */
2046 		reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)reg->umin_value);
2047 		reg->u32_max_value = min_t(u32, reg->u32_max_value, (u32)reg->umax_value);
2048 
2049 		if ((s32)reg->umin_value <= (s32)reg->umax_value) {
2050 			reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->umin_value);
2051 			reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->umax_value);
2052 		}
2053 	}
2054 	if ((reg->smin_value >> 32) == (reg->smax_value >> 32)) {
2055 		/* low 32 bits should form a proper u32 range */
2056 		if ((u32)reg->smin_value <= (u32)reg->smax_value) {
2057 			reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)reg->smin_value);
2058 			reg->u32_max_value = min_t(u32, reg->u32_max_value, (u32)reg->smax_value);
2059 		}
2060 		/* low 32 bits should form a proper s32 range */
2061 		if ((s32)reg->smin_value <= (s32)reg->smax_value) {
2062 			reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->smin_value);
2063 			reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->smax_value);
2064 		}
2065 	}
2066 	/* Special case where upper bits form a small sequence of two
2067 	 * sequential numbers (in 32-bit unsigned space, so 0xffffffff to
2068 	 * 0x00000000 is also valid), while lower bits form a proper s32 range
2069 	 * going from negative numbers to positive numbers. E.g., let's say we
2070 	 * have s64 range [-1, 1] ([0xffffffffffffffff, 0x0000000000000001]).
2071 	 * Possible s64 values are {-1, 0, 1} ({0xffffffffffffffff,
2072 	 * 0x0000000000000000, 0x00000000000001}). Ignoring upper 32 bits,
2073 	 * we still get a valid s32 range [-1, 1] ([0xffffffff, 0x00000001]).
2074 	 * Note that it doesn't have to be 0xffffffff going to 0x00000000 in
2075 	 * upper 32 bits. As a random example, s64 range
2076 	 * [0xfffffff0fffffff0; 0xfffffff100000010], forms a valid s32 range
2077 	 * [-16, 16] ([0xfffffff0; 0x00000010]) in its 32 bit subregister.
2078 	 */
2079 	if ((u32)(reg->umin_value >> 32) + 1 == (u32)(reg->umax_value >> 32) &&
2080 	    (s32)reg->umin_value < 0 && (s32)reg->umax_value >= 0) {
2081 		reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->umin_value);
2082 		reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->umax_value);
2083 	}
2084 	if ((u32)(reg->smin_value >> 32) + 1 == (u32)(reg->smax_value >> 32) &&
2085 	    (s32)reg->smin_value < 0 && (s32)reg->smax_value >= 0) {
2086 		reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->smin_value);
2087 		reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->smax_value);
2088 	}
2089 	/* if u32 range forms a valid s32 range (due to matching sign bit),
2090 	 * try to learn from that
2091 	 */
2092 	if ((s32)reg->u32_min_value <= (s32)reg->u32_max_value) {
2093 		reg->s32_min_value = max_t(s32, reg->s32_min_value, reg->u32_min_value);
2094 		reg->s32_max_value = min_t(s32, reg->s32_max_value, reg->u32_max_value);
2095 	}
2096 	/* If we cannot cross the sign boundary, then signed and unsigned bounds
2097 	 * are the same, so combine.  This works even in the negative case, e.g.
2098 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2099 	 */
2100 	if ((u32)reg->s32_min_value <= (u32)reg->s32_max_value) {
2101 		reg->u32_min_value = max_t(u32, reg->s32_min_value, reg->u32_min_value);
2102 		reg->u32_max_value = min_t(u32, reg->s32_max_value, reg->u32_max_value);
2103 	}
2104 }
2105 
2106 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
2107 {
2108 	/* If u64 range forms a valid s64 range (due to matching sign bit),
2109 	 * try to learn from that. Let's do a bit of ASCII art to see when
2110 	 * this is happening. Let's take u64 range first:
2111 	 *
2112 	 * 0             0x7fffffffffffffff 0x8000000000000000        U64_MAX
2113 	 * |-------------------------------|--------------------------------|
2114 	 *
2115 	 * Valid u64 range is formed when umin and umax are anywhere in the
2116 	 * range [0, U64_MAX], and umin <= umax. u64 case is simple and
2117 	 * straightforward. Let's see how s64 range maps onto the same range
2118 	 * of values, annotated below the line for comparison:
2119 	 *
2120 	 * 0             0x7fffffffffffffff 0x8000000000000000        U64_MAX
2121 	 * |-------------------------------|--------------------------------|
2122 	 * 0                        S64_MAX S64_MIN                        -1
2123 	 *
2124 	 * So s64 values basically start in the middle and they are logically
2125 	 * contiguous to the right of it, wrapping around from -1 to 0, and
2126 	 * then finishing as S64_MAX (0x7fffffffffffffff) right before
2127 	 * S64_MIN. We can try drawing the continuity of u64 vs s64 values
2128 	 * more visually as mapped to sign-agnostic range of hex values.
2129 	 *
2130 	 *  u64 start                                               u64 end
2131 	 *  _______________________________________________________________
2132 	 * /                                                               \
2133 	 * 0             0x7fffffffffffffff 0x8000000000000000        U64_MAX
2134 	 * |-------------------------------|--------------------------------|
2135 	 * 0                        S64_MAX S64_MIN                        -1
2136 	 *                                / \
2137 	 * >------------------------------   ------------------------------->
2138 	 * s64 continues...        s64 end   s64 start          s64 "midpoint"
2139 	 *
2140 	 * What this means is that, in general, we can't always derive
2141 	 * something new about u64 from any random s64 range, and vice versa.
2142 	 *
2143 	 * But we can do that in two particular cases. One is when entire
2144 	 * u64/s64 range is *entirely* contained within left half of the above
2145 	 * diagram or when it is *entirely* contained in the right half. I.e.:
2146 	 *
2147 	 * |-------------------------------|--------------------------------|
2148 	 *     ^                   ^            ^                 ^
2149 	 *     A                   B            C                 D
2150 	 *
2151 	 * [A, B] and [C, D] are contained entirely in their respective halves
2152 	 * and form valid contiguous ranges as both u64 and s64 values. [A, B]
2153 	 * will be non-negative both as u64 and s64 (and in fact it will be
2154 	 * identical ranges no matter the signedness). [C, D] treated as s64
2155 	 * will be a range of negative values, while in u64 it will be
2156 	 * non-negative range of values larger than 0x8000000000000000.
2157 	 *
2158 	 * Now, any other range here can't be represented in both u64 and s64
2159 	 * simultaneously. E.g., [A, C], [A, D], [B, C], [B, D] are valid
2160 	 * contiguous u64 ranges, but they are discontinuous in s64. [B, C]
2161 	 * in s64 would be properly presented as [S64_MIN, C] and [B, S64_MAX],
2162 	 * for example. Similarly, valid s64 range [D, A] (going from negative
2163 	 * to positive values), would be two separate [D, U64_MAX] and [0, A]
2164 	 * ranges as u64. Currently reg_state can't represent two segments per
2165 	 * numeric domain, so in such situations we can only derive maximal
2166 	 * possible range ([0, U64_MAX] for u64, and [S64_MIN, S64_MAX] for s64).
2167 	 *
2168 	 * So we use these facts to derive umin/umax from smin/smax and vice
2169 	 * versa only if they stay within the same "half". This is equivalent
2170 	 * to checking sign bit: lower half will have sign bit as zero, upper
2171 	 * half have sign bit 1. Below in code we simplify this by just
2172 	 * casting umin/umax as smin/smax and checking if they form valid
2173 	 * range, and vice versa. Those are equivalent checks.
2174 	 */
2175 	if ((s64)reg->umin_value <= (s64)reg->umax_value) {
2176 		reg->smin_value = max_t(s64, reg->smin_value, reg->umin_value);
2177 		reg->smax_value = min_t(s64, reg->smax_value, reg->umax_value);
2178 	}
2179 	/* If we cannot cross the sign boundary, then signed and unsigned bounds
2180 	 * are the same, so combine.  This works even in the negative case, e.g.
2181 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2182 	 */
2183 	if ((u64)reg->smin_value <= (u64)reg->smax_value) {
2184 		reg->umin_value = max_t(u64, reg->smin_value, reg->umin_value);
2185 		reg->umax_value = min_t(u64, reg->smax_value, reg->umax_value);
2186 	}
2187 }
2188 
2189 static void __reg_deduce_mixed_bounds(struct bpf_reg_state *reg)
2190 {
2191 	/* Try to tighten 64-bit bounds from 32-bit knowledge, using 32-bit
2192 	 * values on both sides of 64-bit range in hope to have tighter range.
2193 	 * E.g., if r1 is [0x1'00000000, 0x3'80000000], and we learn from
2194 	 * 32-bit signed > 0 operation that s32 bounds are now [1; 0x7fffffff].
2195 	 * With this, we can substitute 1 as low 32-bits of _low_ 64-bit bound
2196 	 * (0x100000000 -> 0x100000001) and 0x7fffffff as low 32-bits of
2197 	 * _high_ 64-bit bound (0x380000000 -> 0x37fffffff) and arrive at a
2198 	 * better overall bounds for r1 as [0x1'000000001; 0x3'7fffffff].
2199 	 * We just need to make sure that derived bounds we are intersecting
2200 	 * with are well-formed ranges in respective s64 or u64 domain, just
2201 	 * like we do with similar kinds of 32-to-64 or 64-to-32 adjustments.
2202 	 */
2203 	__u64 new_umin, new_umax;
2204 	__s64 new_smin, new_smax;
2205 
2206 	/* u32 -> u64 tightening, it's always well-formed */
2207 	new_umin = (reg->umin_value & ~0xffffffffULL) | reg->u32_min_value;
2208 	new_umax = (reg->umax_value & ~0xffffffffULL) | reg->u32_max_value;
2209 	reg->umin_value = max_t(u64, reg->umin_value, new_umin);
2210 	reg->umax_value = min_t(u64, reg->umax_value, new_umax);
2211 	/* u32 -> s64 tightening, u32 range embedded into s64 preserves range validity */
2212 	new_smin = (reg->smin_value & ~0xffffffffULL) | reg->u32_min_value;
2213 	new_smax = (reg->smax_value & ~0xffffffffULL) | reg->u32_max_value;
2214 	reg->smin_value = max_t(s64, reg->smin_value, new_smin);
2215 	reg->smax_value = min_t(s64, reg->smax_value, new_smax);
2216 
2217 	/* if s32 can be treated as valid u32 range, we can use it as well */
2218 	if ((u32)reg->s32_min_value <= (u32)reg->s32_max_value) {
2219 		/* s32 -> u64 tightening */
2220 		new_umin = (reg->umin_value & ~0xffffffffULL) | (u32)reg->s32_min_value;
2221 		new_umax = (reg->umax_value & ~0xffffffffULL) | (u32)reg->s32_max_value;
2222 		reg->umin_value = max_t(u64, reg->umin_value, new_umin);
2223 		reg->umax_value = min_t(u64, reg->umax_value, new_umax);
2224 		/* s32 -> s64 tightening */
2225 		new_smin = (reg->smin_value & ~0xffffffffULL) | (u32)reg->s32_min_value;
2226 		new_smax = (reg->smax_value & ~0xffffffffULL) | (u32)reg->s32_max_value;
2227 		reg->smin_value = max_t(s64, reg->smin_value, new_smin);
2228 		reg->smax_value = min_t(s64, reg->smax_value, new_smax);
2229 	}
2230 
2231 	/* Here we would like to handle a special case after sign extending load,
2232 	 * when upper bits for a 64-bit range are all 1s or all 0s.
2233 	 *
2234 	 * Upper bits are all 1s when register is in a range:
2235 	 *   [0xffff_ffff_0000_0000, 0xffff_ffff_ffff_ffff]
2236 	 * Upper bits are all 0s when register is in a range:
2237 	 *   [0x0000_0000_0000_0000, 0x0000_0000_ffff_ffff]
2238 	 * Together this forms are continuous range:
2239 	 *   [0xffff_ffff_0000_0000, 0x0000_0000_ffff_ffff]
2240 	 *
2241 	 * Now, suppose that register range is in fact tighter:
2242 	 *   [0xffff_ffff_8000_0000, 0x0000_0000_ffff_ffff] (R)
2243 	 * Also suppose that it's 32-bit range is positive,
2244 	 * meaning that lower 32-bits of the full 64-bit register
2245 	 * are in the range:
2246 	 *   [0x0000_0000, 0x7fff_ffff] (W)
2247 	 *
2248 	 * If this happens, then any value in a range:
2249 	 *   [0xffff_ffff_0000_0000, 0xffff_ffff_7fff_ffff]
2250 	 * is smaller than a lowest bound of the range (R):
2251 	 *   0xffff_ffff_8000_0000
2252 	 * which means that upper bits of the full 64-bit register
2253 	 * can't be all 1s, when lower bits are in range (W).
2254 	 *
2255 	 * Note that:
2256 	 *  - 0xffff_ffff_8000_0000 == (s64)S32_MIN
2257 	 *  - 0x0000_0000_7fff_ffff == (s64)S32_MAX
2258 	 * These relations are used in the conditions below.
2259 	 */
2260 	if (reg->s32_min_value >= 0 && reg->smin_value >= S32_MIN && reg->smax_value <= S32_MAX) {
2261 		reg->smin_value = reg->s32_min_value;
2262 		reg->smax_value = reg->s32_max_value;
2263 		reg->umin_value = reg->s32_min_value;
2264 		reg->umax_value = reg->s32_max_value;
2265 		reg->var_off = tnum_intersect(reg->var_off,
2266 					      tnum_range(reg->smin_value, reg->smax_value));
2267 	}
2268 }
2269 
2270 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
2271 {
2272 	__reg32_deduce_bounds(reg);
2273 	__reg64_deduce_bounds(reg);
2274 	__reg_deduce_mixed_bounds(reg);
2275 }
2276 
2277 /* Attempts to improve var_off based on unsigned min/max information */
2278 static void __reg_bound_offset(struct bpf_reg_state *reg)
2279 {
2280 	struct tnum var64_off = tnum_intersect(reg->var_off,
2281 					       tnum_range(reg->umin_value,
2282 							  reg->umax_value));
2283 	struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off),
2284 					       tnum_range(reg->u32_min_value,
2285 							  reg->u32_max_value));
2286 
2287 	reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
2288 }
2289 
2290 static void reg_bounds_sync(struct bpf_reg_state *reg)
2291 {
2292 	/* We might have learned new bounds from the var_off. */
2293 	__update_reg_bounds(reg);
2294 	/* We might have learned something about the sign bit. */
2295 	__reg_deduce_bounds(reg);
2296 	__reg_deduce_bounds(reg);
2297 	/* We might have learned some bits from the bounds. */
2298 	__reg_bound_offset(reg);
2299 	/* Intersecting with the old var_off might have improved our bounds
2300 	 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2301 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
2302 	 */
2303 	__update_reg_bounds(reg);
2304 }
2305 
2306 static int reg_bounds_sanity_check(struct bpf_verifier_env *env,
2307 				   struct bpf_reg_state *reg, const char *ctx)
2308 {
2309 	const char *msg;
2310 
2311 	if (reg->umin_value > reg->umax_value ||
2312 	    reg->smin_value > reg->smax_value ||
2313 	    reg->u32_min_value > reg->u32_max_value ||
2314 	    reg->s32_min_value > reg->s32_max_value) {
2315 		    msg = "range bounds violation";
2316 		    goto out;
2317 	}
2318 
2319 	if (tnum_is_const(reg->var_off)) {
2320 		u64 uval = reg->var_off.value;
2321 		s64 sval = (s64)uval;
2322 
2323 		if (reg->umin_value != uval || reg->umax_value != uval ||
2324 		    reg->smin_value != sval || reg->smax_value != sval) {
2325 			msg = "const tnum out of sync with range bounds";
2326 			goto out;
2327 		}
2328 	}
2329 
2330 	if (tnum_subreg_is_const(reg->var_off)) {
2331 		u32 uval32 = tnum_subreg(reg->var_off).value;
2332 		s32 sval32 = (s32)uval32;
2333 
2334 		if (reg->u32_min_value != uval32 || reg->u32_max_value != uval32 ||
2335 		    reg->s32_min_value != sval32 || reg->s32_max_value != sval32) {
2336 			msg = "const subreg tnum out of sync with range bounds";
2337 			goto out;
2338 		}
2339 	}
2340 
2341 	return 0;
2342 out:
2343 	verbose(env, "REG INVARIANTS VIOLATION (%s): %s u64=[%#llx, %#llx] "
2344 		"s64=[%#llx, %#llx] u32=[%#x, %#x] s32=[%#x, %#x] var_off=(%#llx, %#llx)\n",
2345 		ctx, msg, reg->umin_value, reg->umax_value,
2346 		reg->smin_value, reg->smax_value,
2347 		reg->u32_min_value, reg->u32_max_value,
2348 		reg->s32_min_value, reg->s32_max_value,
2349 		reg->var_off.value, reg->var_off.mask);
2350 	if (env->test_reg_invariants)
2351 		return -EFAULT;
2352 	__mark_reg_unbounded(reg);
2353 	return 0;
2354 }
2355 
2356 static bool __reg32_bound_s64(s32 a)
2357 {
2358 	return a >= 0 && a <= S32_MAX;
2359 }
2360 
2361 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
2362 {
2363 	reg->umin_value = reg->u32_min_value;
2364 	reg->umax_value = reg->u32_max_value;
2365 
2366 	/* Attempt to pull 32-bit signed bounds into 64-bit bounds but must
2367 	 * be positive otherwise set to worse case bounds and refine later
2368 	 * from tnum.
2369 	 */
2370 	if (__reg32_bound_s64(reg->s32_min_value) &&
2371 	    __reg32_bound_s64(reg->s32_max_value)) {
2372 		reg->smin_value = reg->s32_min_value;
2373 		reg->smax_value = reg->s32_max_value;
2374 	} else {
2375 		reg->smin_value = 0;
2376 		reg->smax_value = U32_MAX;
2377 	}
2378 }
2379 
2380 /* Mark a register as having a completely unknown (scalar) value. */
2381 static void __mark_reg_unknown_imprecise(struct bpf_reg_state *reg)
2382 {
2383 	/*
2384 	 * Clear type, off, and union(map_ptr, range) and
2385 	 * padding between 'type' and union
2386 	 */
2387 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
2388 	reg->type = SCALAR_VALUE;
2389 	reg->id = 0;
2390 	reg->ref_obj_id = 0;
2391 	reg->var_off = tnum_unknown;
2392 	reg->frameno = 0;
2393 	reg->precise = false;
2394 	__mark_reg_unbounded(reg);
2395 }
2396 
2397 /* Mark a register as having a completely unknown (scalar) value,
2398  * initialize .precise as true when not bpf capable.
2399  */
2400 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
2401 			       struct bpf_reg_state *reg)
2402 {
2403 	__mark_reg_unknown_imprecise(reg);
2404 	reg->precise = !env->bpf_capable;
2405 }
2406 
2407 static void mark_reg_unknown(struct bpf_verifier_env *env,
2408 			     struct bpf_reg_state *regs, u32 regno)
2409 {
2410 	if (WARN_ON(regno >= MAX_BPF_REG)) {
2411 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
2412 		/* Something bad happened, let's kill all regs except FP */
2413 		for (regno = 0; regno < BPF_REG_FP; regno++)
2414 			__mark_reg_not_init(env, regs + regno);
2415 		return;
2416 	}
2417 	__mark_reg_unknown(env, regs + regno);
2418 }
2419 
2420 static int __mark_reg_s32_range(struct bpf_verifier_env *env,
2421 				struct bpf_reg_state *regs,
2422 				u32 regno,
2423 				s32 s32_min,
2424 				s32 s32_max)
2425 {
2426 	struct bpf_reg_state *reg = regs + regno;
2427 
2428 	reg->s32_min_value = max_t(s32, reg->s32_min_value, s32_min);
2429 	reg->s32_max_value = min_t(s32, reg->s32_max_value, s32_max);
2430 
2431 	reg->smin_value = max_t(s64, reg->smin_value, s32_min);
2432 	reg->smax_value = min_t(s64, reg->smax_value, s32_max);
2433 
2434 	reg_bounds_sync(reg);
2435 
2436 	return reg_bounds_sanity_check(env, reg, "s32_range");
2437 }
2438 
2439 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
2440 				struct bpf_reg_state *reg)
2441 {
2442 	__mark_reg_unknown(env, reg);
2443 	reg->type = NOT_INIT;
2444 }
2445 
2446 static void mark_reg_not_init(struct bpf_verifier_env *env,
2447 			      struct bpf_reg_state *regs, u32 regno)
2448 {
2449 	if (WARN_ON(regno >= MAX_BPF_REG)) {
2450 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
2451 		/* Something bad happened, let's kill all regs except FP */
2452 		for (regno = 0; regno < BPF_REG_FP; regno++)
2453 			__mark_reg_not_init(env, regs + regno);
2454 		return;
2455 	}
2456 	__mark_reg_not_init(env, regs + regno);
2457 }
2458 
2459 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
2460 			    struct bpf_reg_state *regs, u32 regno,
2461 			    enum bpf_reg_type reg_type,
2462 			    struct btf *btf, u32 btf_id,
2463 			    enum bpf_type_flag flag)
2464 {
2465 	if (reg_type == SCALAR_VALUE) {
2466 		mark_reg_unknown(env, regs, regno);
2467 		return;
2468 	}
2469 	mark_reg_known_zero(env, regs, regno);
2470 	regs[regno].type = PTR_TO_BTF_ID | flag;
2471 	regs[regno].btf = btf;
2472 	regs[regno].btf_id = btf_id;
2473 	if (type_may_be_null(flag))
2474 		regs[regno].id = ++env->id_gen;
2475 }
2476 
2477 #define DEF_NOT_SUBREG	(0)
2478 static void init_reg_state(struct bpf_verifier_env *env,
2479 			   struct bpf_func_state *state)
2480 {
2481 	struct bpf_reg_state *regs = state->regs;
2482 	int i;
2483 
2484 	for (i = 0; i < MAX_BPF_REG; i++) {
2485 		mark_reg_not_init(env, regs, i);
2486 		regs[i].live = REG_LIVE_NONE;
2487 		regs[i].parent = NULL;
2488 		regs[i].subreg_def = DEF_NOT_SUBREG;
2489 	}
2490 
2491 	/* frame pointer */
2492 	regs[BPF_REG_FP].type = PTR_TO_STACK;
2493 	mark_reg_known_zero(env, regs, BPF_REG_FP);
2494 	regs[BPF_REG_FP].frameno = state->frameno;
2495 }
2496 
2497 static struct bpf_retval_range retval_range(s32 minval, s32 maxval)
2498 {
2499 	return (struct bpf_retval_range){ minval, maxval };
2500 }
2501 
2502 #define BPF_MAIN_FUNC (-1)
2503 static void init_func_state(struct bpf_verifier_env *env,
2504 			    struct bpf_func_state *state,
2505 			    int callsite, int frameno, int subprogno)
2506 {
2507 	state->callsite = callsite;
2508 	state->frameno = frameno;
2509 	state->subprogno = subprogno;
2510 	state->callback_ret_range = retval_range(0, 0);
2511 	init_reg_state(env, state);
2512 	mark_verifier_state_scratched(env);
2513 }
2514 
2515 /* Similar to push_stack(), but for async callbacks */
2516 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
2517 						int insn_idx, int prev_insn_idx,
2518 						int subprog, bool is_sleepable)
2519 {
2520 	struct bpf_verifier_stack_elem *elem;
2521 	struct bpf_func_state *frame;
2522 
2523 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
2524 	if (!elem)
2525 		goto err;
2526 
2527 	elem->insn_idx = insn_idx;
2528 	elem->prev_insn_idx = prev_insn_idx;
2529 	elem->next = env->head;
2530 	elem->log_pos = env->log.end_pos;
2531 	env->head = elem;
2532 	env->stack_size++;
2533 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
2534 		verbose(env,
2535 			"The sequence of %d jumps is too complex for async cb.\n",
2536 			env->stack_size);
2537 		goto err;
2538 	}
2539 	/* Unlike push_stack() do not copy_verifier_state().
2540 	 * The caller state doesn't matter.
2541 	 * This is async callback. It starts in a fresh stack.
2542 	 * Initialize it similar to do_check_common().
2543 	 * But we do need to make sure to not clobber insn_hist, so we keep
2544 	 * chaining insn_hist_start/insn_hist_end indices as for a normal
2545 	 * child state.
2546 	 */
2547 	elem->st.branches = 1;
2548 	elem->st.in_sleepable = is_sleepable;
2549 	elem->st.insn_hist_start = env->cur_state->insn_hist_end;
2550 	elem->st.insn_hist_end = elem->st.insn_hist_start;
2551 	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
2552 	if (!frame)
2553 		goto err;
2554 	init_func_state(env, frame,
2555 			BPF_MAIN_FUNC /* callsite */,
2556 			0 /* frameno within this callchain */,
2557 			subprog /* subprog number within this prog */);
2558 	elem->st.frame[0] = frame;
2559 	return &elem->st;
2560 err:
2561 	free_verifier_state(env->cur_state, true);
2562 	env->cur_state = NULL;
2563 	/* pop all elements and return */
2564 	while (!pop_stack(env, NULL, NULL, false));
2565 	return NULL;
2566 }
2567 
2568 
2569 enum reg_arg_type {
2570 	SRC_OP,		/* register is used as source operand */
2571 	DST_OP,		/* register is used as destination operand */
2572 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
2573 };
2574 
2575 static int cmp_subprogs(const void *a, const void *b)
2576 {
2577 	return ((struct bpf_subprog_info *)a)->start -
2578 	       ((struct bpf_subprog_info *)b)->start;
2579 }
2580 
2581 /* Find subprogram that contains instruction at 'off' */
2582 static struct bpf_subprog_info *find_containing_subprog(struct bpf_verifier_env *env, int off)
2583 {
2584 	struct bpf_subprog_info *vals = env->subprog_info;
2585 	int l, r, m;
2586 
2587 	if (off >= env->prog->len || off < 0 || env->subprog_cnt == 0)
2588 		return NULL;
2589 
2590 	l = 0;
2591 	r = env->subprog_cnt - 1;
2592 	while (l < r) {
2593 		m = l + (r - l + 1) / 2;
2594 		if (vals[m].start <= off)
2595 			l = m;
2596 		else
2597 			r = m - 1;
2598 	}
2599 	return &vals[l];
2600 }
2601 
2602 /* Find subprogram that starts exactly at 'off' */
2603 static int find_subprog(struct bpf_verifier_env *env, int off)
2604 {
2605 	struct bpf_subprog_info *p;
2606 
2607 	p = find_containing_subprog(env, off);
2608 	if (!p || p->start != off)
2609 		return -ENOENT;
2610 	return p - env->subprog_info;
2611 }
2612 
2613 static int add_subprog(struct bpf_verifier_env *env, int off)
2614 {
2615 	int insn_cnt = env->prog->len;
2616 	int ret;
2617 
2618 	if (off >= insn_cnt || off < 0) {
2619 		verbose(env, "call to invalid destination\n");
2620 		return -EINVAL;
2621 	}
2622 	ret = find_subprog(env, off);
2623 	if (ret >= 0)
2624 		return ret;
2625 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
2626 		verbose(env, "too many subprograms\n");
2627 		return -E2BIG;
2628 	}
2629 	/* determine subprog starts. The end is one before the next starts */
2630 	env->subprog_info[env->subprog_cnt++].start = off;
2631 	sort(env->subprog_info, env->subprog_cnt,
2632 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
2633 	return env->subprog_cnt - 1;
2634 }
2635 
2636 static int bpf_find_exception_callback_insn_off(struct bpf_verifier_env *env)
2637 {
2638 	struct bpf_prog_aux *aux = env->prog->aux;
2639 	struct btf *btf = aux->btf;
2640 	const struct btf_type *t;
2641 	u32 main_btf_id, id;
2642 	const char *name;
2643 	int ret, i;
2644 
2645 	/* Non-zero func_info_cnt implies valid btf */
2646 	if (!aux->func_info_cnt)
2647 		return 0;
2648 	main_btf_id = aux->func_info[0].type_id;
2649 
2650 	t = btf_type_by_id(btf, main_btf_id);
2651 	if (!t) {
2652 		verbose(env, "invalid btf id for main subprog in func_info\n");
2653 		return -EINVAL;
2654 	}
2655 
2656 	name = btf_find_decl_tag_value(btf, t, -1, "exception_callback:");
2657 	if (IS_ERR(name)) {
2658 		ret = PTR_ERR(name);
2659 		/* If there is no tag present, there is no exception callback */
2660 		if (ret == -ENOENT)
2661 			ret = 0;
2662 		else if (ret == -EEXIST)
2663 			verbose(env, "multiple exception callback tags for main subprog\n");
2664 		return ret;
2665 	}
2666 
2667 	ret = btf_find_by_name_kind(btf, name, BTF_KIND_FUNC);
2668 	if (ret < 0) {
2669 		verbose(env, "exception callback '%s' could not be found in BTF\n", name);
2670 		return ret;
2671 	}
2672 	id = ret;
2673 	t = btf_type_by_id(btf, id);
2674 	if (btf_func_linkage(t) != BTF_FUNC_GLOBAL) {
2675 		verbose(env, "exception callback '%s' must have global linkage\n", name);
2676 		return -EINVAL;
2677 	}
2678 	ret = 0;
2679 	for (i = 0; i < aux->func_info_cnt; i++) {
2680 		if (aux->func_info[i].type_id != id)
2681 			continue;
2682 		ret = aux->func_info[i].insn_off;
2683 		/* Further func_info and subprog checks will also happen
2684 		 * later, so assume this is the right insn_off for now.
2685 		 */
2686 		if (!ret) {
2687 			verbose(env, "invalid exception callback insn_off in func_info: 0\n");
2688 			ret = -EINVAL;
2689 		}
2690 	}
2691 	if (!ret) {
2692 		verbose(env, "exception callback type id not found in func_info\n");
2693 		ret = -EINVAL;
2694 	}
2695 	return ret;
2696 }
2697 
2698 #define MAX_KFUNC_DESCS 256
2699 #define MAX_KFUNC_BTFS	256
2700 
2701 struct bpf_kfunc_desc {
2702 	struct btf_func_model func_model;
2703 	u32 func_id;
2704 	s32 imm;
2705 	u16 offset;
2706 	unsigned long addr;
2707 };
2708 
2709 struct bpf_kfunc_btf {
2710 	struct btf *btf;
2711 	struct module *module;
2712 	u16 offset;
2713 };
2714 
2715 struct bpf_kfunc_desc_tab {
2716 	/* Sorted by func_id (BTF ID) and offset (fd_array offset) during
2717 	 * verification. JITs do lookups by bpf_insn, where func_id may not be
2718 	 * available, therefore at the end of verification do_misc_fixups()
2719 	 * sorts this by imm and offset.
2720 	 */
2721 	struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
2722 	u32 nr_descs;
2723 };
2724 
2725 struct bpf_kfunc_btf_tab {
2726 	struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS];
2727 	u32 nr_descs;
2728 };
2729 
2730 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b)
2731 {
2732 	const struct bpf_kfunc_desc *d0 = a;
2733 	const struct bpf_kfunc_desc *d1 = b;
2734 
2735 	/* func_id is not greater than BTF_MAX_TYPE */
2736 	return d0->func_id - d1->func_id ?: d0->offset - d1->offset;
2737 }
2738 
2739 static int kfunc_btf_cmp_by_off(const void *a, const void *b)
2740 {
2741 	const struct bpf_kfunc_btf *d0 = a;
2742 	const struct bpf_kfunc_btf *d1 = b;
2743 
2744 	return d0->offset - d1->offset;
2745 }
2746 
2747 static const struct bpf_kfunc_desc *
2748 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset)
2749 {
2750 	struct bpf_kfunc_desc desc = {
2751 		.func_id = func_id,
2752 		.offset = offset,
2753 	};
2754 	struct bpf_kfunc_desc_tab *tab;
2755 
2756 	tab = prog->aux->kfunc_tab;
2757 	return bsearch(&desc, tab->descs, tab->nr_descs,
2758 		       sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off);
2759 }
2760 
2761 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
2762 		       u16 btf_fd_idx, u8 **func_addr)
2763 {
2764 	const struct bpf_kfunc_desc *desc;
2765 
2766 	desc = find_kfunc_desc(prog, func_id, btf_fd_idx);
2767 	if (!desc)
2768 		return -EFAULT;
2769 
2770 	*func_addr = (u8 *)desc->addr;
2771 	return 0;
2772 }
2773 
2774 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env,
2775 					 s16 offset)
2776 {
2777 	struct bpf_kfunc_btf kf_btf = { .offset = offset };
2778 	struct bpf_kfunc_btf_tab *tab;
2779 	struct bpf_kfunc_btf *b;
2780 	struct module *mod;
2781 	struct btf *btf;
2782 	int btf_fd;
2783 
2784 	tab = env->prog->aux->kfunc_btf_tab;
2785 	b = bsearch(&kf_btf, tab->descs, tab->nr_descs,
2786 		    sizeof(tab->descs[0]), kfunc_btf_cmp_by_off);
2787 	if (!b) {
2788 		if (tab->nr_descs == MAX_KFUNC_BTFS) {
2789 			verbose(env, "too many different module BTFs\n");
2790 			return ERR_PTR(-E2BIG);
2791 		}
2792 
2793 		if (bpfptr_is_null(env->fd_array)) {
2794 			verbose(env, "kfunc offset > 0 without fd_array is invalid\n");
2795 			return ERR_PTR(-EPROTO);
2796 		}
2797 
2798 		if (copy_from_bpfptr_offset(&btf_fd, env->fd_array,
2799 					    offset * sizeof(btf_fd),
2800 					    sizeof(btf_fd)))
2801 			return ERR_PTR(-EFAULT);
2802 
2803 		btf = btf_get_by_fd(btf_fd);
2804 		if (IS_ERR(btf)) {
2805 			verbose(env, "invalid module BTF fd specified\n");
2806 			return btf;
2807 		}
2808 
2809 		if (!btf_is_module(btf)) {
2810 			verbose(env, "BTF fd for kfunc is not a module BTF\n");
2811 			btf_put(btf);
2812 			return ERR_PTR(-EINVAL);
2813 		}
2814 
2815 		mod = btf_try_get_module(btf);
2816 		if (!mod) {
2817 			btf_put(btf);
2818 			return ERR_PTR(-ENXIO);
2819 		}
2820 
2821 		b = &tab->descs[tab->nr_descs++];
2822 		b->btf = btf;
2823 		b->module = mod;
2824 		b->offset = offset;
2825 
2826 		/* sort() reorders entries by value, so b may no longer point
2827 		 * to the right entry after this
2828 		 */
2829 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2830 		     kfunc_btf_cmp_by_off, NULL);
2831 	} else {
2832 		btf = b->btf;
2833 	}
2834 
2835 	return btf;
2836 }
2837 
2838 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab)
2839 {
2840 	if (!tab)
2841 		return;
2842 
2843 	while (tab->nr_descs--) {
2844 		module_put(tab->descs[tab->nr_descs].module);
2845 		btf_put(tab->descs[tab->nr_descs].btf);
2846 	}
2847 	kfree(tab);
2848 }
2849 
2850 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset)
2851 {
2852 	if (offset) {
2853 		if (offset < 0) {
2854 			/* In the future, this can be allowed to increase limit
2855 			 * of fd index into fd_array, interpreted as u16.
2856 			 */
2857 			verbose(env, "negative offset disallowed for kernel module function call\n");
2858 			return ERR_PTR(-EINVAL);
2859 		}
2860 
2861 		return __find_kfunc_desc_btf(env, offset);
2862 	}
2863 	return btf_vmlinux ?: ERR_PTR(-ENOENT);
2864 }
2865 
2866 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset)
2867 {
2868 	const struct btf_type *func, *func_proto;
2869 	struct bpf_kfunc_btf_tab *btf_tab;
2870 	struct bpf_kfunc_desc_tab *tab;
2871 	struct bpf_prog_aux *prog_aux;
2872 	struct bpf_kfunc_desc *desc;
2873 	const char *func_name;
2874 	struct btf *desc_btf;
2875 	unsigned long call_imm;
2876 	unsigned long addr;
2877 	int err;
2878 
2879 	prog_aux = env->prog->aux;
2880 	tab = prog_aux->kfunc_tab;
2881 	btf_tab = prog_aux->kfunc_btf_tab;
2882 	if (!tab) {
2883 		if (!btf_vmlinux) {
2884 			verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
2885 			return -ENOTSUPP;
2886 		}
2887 
2888 		if (!env->prog->jit_requested) {
2889 			verbose(env, "JIT is required for calling kernel function\n");
2890 			return -ENOTSUPP;
2891 		}
2892 
2893 		if (!bpf_jit_supports_kfunc_call()) {
2894 			verbose(env, "JIT does not support calling kernel function\n");
2895 			return -ENOTSUPP;
2896 		}
2897 
2898 		if (!env->prog->gpl_compatible) {
2899 			verbose(env, "cannot call kernel function from non-GPL compatible program\n");
2900 			return -EINVAL;
2901 		}
2902 
2903 		tab = kzalloc(sizeof(*tab), GFP_KERNEL);
2904 		if (!tab)
2905 			return -ENOMEM;
2906 		prog_aux->kfunc_tab = tab;
2907 	}
2908 
2909 	/* func_id == 0 is always invalid, but instead of returning an error, be
2910 	 * conservative and wait until the code elimination pass before returning
2911 	 * error, so that invalid calls that get pruned out can be in BPF programs
2912 	 * loaded from userspace.  It is also required that offset be untouched
2913 	 * for such calls.
2914 	 */
2915 	if (!func_id && !offset)
2916 		return 0;
2917 
2918 	if (!btf_tab && offset) {
2919 		btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL);
2920 		if (!btf_tab)
2921 			return -ENOMEM;
2922 		prog_aux->kfunc_btf_tab = btf_tab;
2923 	}
2924 
2925 	desc_btf = find_kfunc_desc_btf(env, offset);
2926 	if (IS_ERR(desc_btf)) {
2927 		verbose(env, "failed to find BTF for kernel function\n");
2928 		return PTR_ERR(desc_btf);
2929 	}
2930 
2931 	if (find_kfunc_desc(env->prog, func_id, offset))
2932 		return 0;
2933 
2934 	if (tab->nr_descs == MAX_KFUNC_DESCS) {
2935 		verbose(env, "too many different kernel function calls\n");
2936 		return -E2BIG;
2937 	}
2938 
2939 	func = btf_type_by_id(desc_btf, func_id);
2940 	if (!func || !btf_type_is_func(func)) {
2941 		verbose(env, "kernel btf_id %u is not a function\n",
2942 			func_id);
2943 		return -EINVAL;
2944 	}
2945 	func_proto = btf_type_by_id(desc_btf, func->type);
2946 	if (!func_proto || !btf_type_is_func_proto(func_proto)) {
2947 		verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
2948 			func_id);
2949 		return -EINVAL;
2950 	}
2951 
2952 	func_name = btf_name_by_offset(desc_btf, func->name_off);
2953 	addr = kallsyms_lookup_name(func_name);
2954 	if (!addr) {
2955 		verbose(env, "cannot find address for kernel function %s\n",
2956 			func_name);
2957 		return -EINVAL;
2958 	}
2959 	specialize_kfunc(env, func_id, offset, &addr);
2960 
2961 	if (bpf_jit_supports_far_kfunc_call()) {
2962 		call_imm = func_id;
2963 	} else {
2964 		call_imm = BPF_CALL_IMM(addr);
2965 		/* Check whether the relative offset overflows desc->imm */
2966 		if ((unsigned long)(s32)call_imm != call_imm) {
2967 			verbose(env, "address of kernel function %s is out of range\n",
2968 				func_name);
2969 			return -EINVAL;
2970 		}
2971 	}
2972 
2973 	if (bpf_dev_bound_kfunc_id(func_id)) {
2974 		err = bpf_dev_bound_kfunc_check(&env->log, prog_aux);
2975 		if (err)
2976 			return err;
2977 	}
2978 
2979 	desc = &tab->descs[tab->nr_descs++];
2980 	desc->func_id = func_id;
2981 	desc->imm = call_imm;
2982 	desc->offset = offset;
2983 	desc->addr = addr;
2984 	err = btf_distill_func_proto(&env->log, desc_btf,
2985 				     func_proto, func_name,
2986 				     &desc->func_model);
2987 	if (!err)
2988 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2989 		     kfunc_desc_cmp_by_id_off, NULL);
2990 	return err;
2991 }
2992 
2993 static int kfunc_desc_cmp_by_imm_off(const void *a, const void *b)
2994 {
2995 	const struct bpf_kfunc_desc *d0 = a;
2996 	const struct bpf_kfunc_desc *d1 = b;
2997 
2998 	if (d0->imm != d1->imm)
2999 		return d0->imm < d1->imm ? -1 : 1;
3000 	if (d0->offset != d1->offset)
3001 		return d0->offset < d1->offset ? -1 : 1;
3002 	return 0;
3003 }
3004 
3005 static void sort_kfunc_descs_by_imm_off(struct bpf_prog *prog)
3006 {
3007 	struct bpf_kfunc_desc_tab *tab;
3008 
3009 	tab = prog->aux->kfunc_tab;
3010 	if (!tab)
3011 		return;
3012 
3013 	sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
3014 	     kfunc_desc_cmp_by_imm_off, NULL);
3015 }
3016 
3017 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
3018 {
3019 	return !!prog->aux->kfunc_tab;
3020 }
3021 
3022 const struct btf_func_model *
3023 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
3024 			 const struct bpf_insn *insn)
3025 {
3026 	const struct bpf_kfunc_desc desc = {
3027 		.imm = insn->imm,
3028 		.offset = insn->off,
3029 	};
3030 	const struct bpf_kfunc_desc *res;
3031 	struct bpf_kfunc_desc_tab *tab;
3032 
3033 	tab = prog->aux->kfunc_tab;
3034 	res = bsearch(&desc, tab->descs, tab->nr_descs,
3035 		      sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm_off);
3036 
3037 	return res ? &res->func_model : NULL;
3038 }
3039 
3040 static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
3041 {
3042 	struct bpf_subprog_info *subprog = env->subprog_info;
3043 	int i, ret, insn_cnt = env->prog->len, ex_cb_insn;
3044 	struct bpf_insn *insn = env->prog->insnsi;
3045 
3046 	/* Add entry function. */
3047 	ret = add_subprog(env, 0);
3048 	if (ret)
3049 		return ret;
3050 
3051 	for (i = 0; i < insn_cnt; i++, insn++) {
3052 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
3053 		    !bpf_pseudo_kfunc_call(insn))
3054 			continue;
3055 
3056 		if (!env->bpf_capable) {
3057 			verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
3058 			return -EPERM;
3059 		}
3060 
3061 		if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn))
3062 			ret = add_subprog(env, i + insn->imm + 1);
3063 		else
3064 			ret = add_kfunc_call(env, insn->imm, insn->off);
3065 
3066 		if (ret < 0)
3067 			return ret;
3068 	}
3069 
3070 	ret = bpf_find_exception_callback_insn_off(env);
3071 	if (ret < 0)
3072 		return ret;
3073 	ex_cb_insn = ret;
3074 
3075 	/* If ex_cb_insn > 0, this means that the main program has a subprog
3076 	 * marked using BTF decl tag to serve as the exception callback.
3077 	 */
3078 	if (ex_cb_insn) {
3079 		ret = add_subprog(env, ex_cb_insn);
3080 		if (ret < 0)
3081 			return ret;
3082 		for (i = 1; i < env->subprog_cnt; i++) {
3083 			if (env->subprog_info[i].start != ex_cb_insn)
3084 				continue;
3085 			env->exception_callback_subprog = i;
3086 			mark_subprog_exc_cb(env, i);
3087 			break;
3088 		}
3089 	}
3090 
3091 	/* Add a fake 'exit' subprog which could simplify subprog iteration
3092 	 * logic. 'subprog_cnt' should not be increased.
3093 	 */
3094 	subprog[env->subprog_cnt].start = insn_cnt;
3095 
3096 	if (env->log.level & BPF_LOG_LEVEL2)
3097 		for (i = 0; i < env->subprog_cnt; i++)
3098 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
3099 
3100 	return 0;
3101 }
3102 
3103 static int check_subprogs(struct bpf_verifier_env *env)
3104 {
3105 	int i, subprog_start, subprog_end, off, cur_subprog = 0;
3106 	struct bpf_subprog_info *subprog = env->subprog_info;
3107 	struct bpf_insn *insn = env->prog->insnsi;
3108 	int insn_cnt = env->prog->len;
3109 
3110 	/* now check that all jumps are within the same subprog */
3111 	subprog_start = subprog[cur_subprog].start;
3112 	subprog_end = subprog[cur_subprog + 1].start;
3113 	for (i = 0; i < insn_cnt; i++) {
3114 		u8 code = insn[i].code;
3115 
3116 		if (code == (BPF_JMP | BPF_CALL) &&
3117 		    insn[i].src_reg == 0 &&
3118 		    insn[i].imm == BPF_FUNC_tail_call) {
3119 			subprog[cur_subprog].has_tail_call = true;
3120 			subprog[cur_subprog].tail_call_reachable = true;
3121 		}
3122 		if (BPF_CLASS(code) == BPF_LD &&
3123 		    (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
3124 			subprog[cur_subprog].has_ld_abs = true;
3125 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
3126 			goto next;
3127 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
3128 			goto next;
3129 		if (code == (BPF_JMP32 | BPF_JA))
3130 			off = i + insn[i].imm + 1;
3131 		else
3132 			off = i + insn[i].off + 1;
3133 		if (off < subprog_start || off >= subprog_end) {
3134 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
3135 			return -EINVAL;
3136 		}
3137 next:
3138 		if (i == subprog_end - 1) {
3139 			/* to avoid fall-through from one subprog into another
3140 			 * the last insn of the subprog should be either exit
3141 			 * or unconditional jump back or bpf_throw call
3142 			 */
3143 			if (code != (BPF_JMP | BPF_EXIT) &&
3144 			    code != (BPF_JMP32 | BPF_JA) &&
3145 			    code != (BPF_JMP | BPF_JA)) {
3146 				verbose(env, "last insn is not an exit or jmp\n");
3147 				return -EINVAL;
3148 			}
3149 			subprog_start = subprog_end;
3150 			cur_subprog++;
3151 			if (cur_subprog < env->subprog_cnt)
3152 				subprog_end = subprog[cur_subprog + 1].start;
3153 		}
3154 	}
3155 	return 0;
3156 }
3157 
3158 /* Parentage chain of this register (or stack slot) should take care of all
3159  * issues like callee-saved registers, stack slot allocation time, etc.
3160  */
3161 static int mark_reg_read(struct bpf_verifier_env *env,
3162 			 const struct bpf_reg_state *state,
3163 			 struct bpf_reg_state *parent, u8 flag)
3164 {
3165 	bool writes = parent == state->parent; /* Observe write marks */
3166 	int cnt = 0;
3167 
3168 	while (parent) {
3169 		/* if read wasn't screened by an earlier write ... */
3170 		if (writes && state->live & REG_LIVE_WRITTEN)
3171 			break;
3172 		if (parent->live & REG_LIVE_DONE) {
3173 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
3174 				reg_type_str(env, parent->type),
3175 				parent->var_off.value, parent->off);
3176 			return -EFAULT;
3177 		}
3178 		/* The first condition is more likely to be true than the
3179 		 * second, checked it first.
3180 		 */
3181 		if ((parent->live & REG_LIVE_READ) == flag ||
3182 		    parent->live & REG_LIVE_READ64)
3183 			/* The parentage chain never changes and
3184 			 * this parent was already marked as LIVE_READ.
3185 			 * There is no need to keep walking the chain again and
3186 			 * keep re-marking all parents as LIVE_READ.
3187 			 * This case happens when the same register is read
3188 			 * multiple times without writes into it in-between.
3189 			 * Also, if parent has the stronger REG_LIVE_READ64 set,
3190 			 * then no need to set the weak REG_LIVE_READ32.
3191 			 */
3192 			break;
3193 		/* ... then we depend on parent's value */
3194 		parent->live |= flag;
3195 		/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
3196 		if (flag == REG_LIVE_READ64)
3197 			parent->live &= ~REG_LIVE_READ32;
3198 		state = parent;
3199 		parent = state->parent;
3200 		writes = true;
3201 		cnt++;
3202 	}
3203 
3204 	if (env->longest_mark_read_walk < cnt)
3205 		env->longest_mark_read_walk = cnt;
3206 	return 0;
3207 }
3208 
3209 static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
3210 {
3211 	struct bpf_func_state *state = func(env, reg);
3212 	int spi, ret;
3213 
3214 	/* For CONST_PTR_TO_DYNPTR, it must have already been done by
3215 	 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in
3216 	 * check_kfunc_call.
3217 	 */
3218 	if (reg->type == CONST_PTR_TO_DYNPTR)
3219 		return 0;
3220 	spi = dynptr_get_spi(env, reg);
3221 	if (spi < 0)
3222 		return spi;
3223 	/* Caller ensures dynptr is valid and initialized, which means spi is in
3224 	 * bounds and spi is the first dynptr slot. Simply mark stack slot as
3225 	 * read.
3226 	 */
3227 	ret = mark_reg_read(env, &state->stack[spi].spilled_ptr,
3228 			    state->stack[spi].spilled_ptr.parent, REG_LIVE_READ64);
3229 	if (ret)
3230 		return ret;
3231 	return mark_reg_read(env, &state->stack[spi - 1].spilled_ptr,
3232 			     state->stack[spi - 1].spilled_ptr.parent, REG_LIVE_READ64);
3233 }
3234 
3235 static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
3236 			  int spi, int nr_slots)
3237 {
3238 	struct bpf_func_state *state = func(env, reg);
3239 	int err, i;
3240 
3241 	for (i = 0; i < nr_slots; i++) {
3242 		struct bpf_reg_state *st = &state->stack[spi - i].spilled_ptr;
3243 
3244 		err = mark_reg_read(env, st, st->parent, REG_LIVE_READ64);
3245 		if (err)
3246 			return err;
3247 
3248 		mark_stack_slot_scratched(env, spi - i);
3249 	}
3250 
3251 	return 0;
3252 }
3253 
3254 /* This function is supposed to be used by the following 32-bit optimization
3255  * code only. It returns TRUE if the source or destination register operates
3256  * on 64-bit, otherwise return FALSE.
3257  */
3258 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
3259 		     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
3260 {
3261 	u8 code, class, op;
3262 
3263 	code = insn->code;
3264 	class = BPF_CLASS(code);
3265 	op = BPF_OP(code);
3266 	if (class == BPF_JMP) {
3267 		/* BPF_EXIT for "main" will reach here. Return TRUE
3268 		 * conservatively.
3269 		 */
3270 		if (op == BPF_EXIT)
3271 			return true;
3272 		if (op == BPF_CALL) {
3273 			/* BPF to BPF call will reach here because of marking
3274 			 * caller saved clobber with DST_OP_NO_MARK for which we
3275 			 * don't care the register def because they are anyway
3276 			 * marked as NOT_INIT already.
3277 			 */
3278 			if (insn->src_reg == BPF_PSEUDO_CALL)
3279 				return false;
3280 			/* Helper call will reach here because of arg type
3281 			 * check, conservatively return TRUE.
3282 			 */
3283 			if (t == SRC_OP)
3284 				return true;
3285 
3286 			return false;
3287 		}
3288 	}
3289 
3290 	if (class == BPF_ALU64 && op == BPF_END && (insn->imm == 16 || insn->imm == 32))
3291 		return false;
3292 
3293 	if (class == BPF_ALU64 || class == BPF_JMP ||
3294 	    (class == BPF_ALU && op == BPF_END && insn->imm == 64))
3295 		return true;
3296 
3297 	if (class == BPF_ALU || class == BPF_JMP32)
3298 		return false;
3299 
3300 	if (class == BPF_LDX) {
3301 		if (t != SRC_OP)
3302 			return BPF_SIZE(code) == BPF_DW || BPF_MODE(code) == BPF_MEMSX;
3303 		/* LDX source must be ptr. */
3304 		return true;
3305 	}
3306 
3307 	if (class == BPF_STX) {
3308 		/* BPF_STX (including atomic variants) has multiple source
3309 		 * operands, one of which is a ptr. Check whether the caller is
3310 		 * asking about it.
3311 		 */
3312 		if (t == SRC_OP && reg->type != SCALAR_VALUE)
3313 			return true;
3314 		return BPF_SIZE(code) == BPF_DW;
3315 	}
3316 
3317 	if (class == BPF_LD) {
3318 		u8 mode = BPF_MODE(code);
3319 
3320 		/* LD_IMM64 */
3321 		if (mode == BPF_IMM)
3322 			return true;
3323 
3324 		/* Both LD_IND and LD_ABS return 32-bit data. */
3325 		if (t != SRC_OP)
3326 			return  false;
3327 
3328 		/* Implicit ctx ptr. */
3329 		if (regno == BPF_REG_6)
3330 			return true;
3331 
3332 		/* Explicit source could be any width. */
3333 		return true;
3334 	}
3335 
3336 	if (class == BPF_ST)
3337 		/* The only source register for BPF_ST is a ptr. */
3338 		return true;
3339 
3340 	/* Conservatively return true at default. */
3341 	return true;
3342 }
3343 
3344 /* Return the regno defined by the insn, or -1. */
3345 static int insn_def_regno(const struct bpf_insn *insn)
3346 {
3347 	switch (BPF_CLASS(insn->code)) {
3348 	case BPF_JMP:
3349 	case BPF_JMP32:
3350 	case BPF_ST:
3351 		return -1;
3352 	case BPF_STX:
3353 		if ((BPF_MODE(insn->code) == BPF_ATOMIC ||
3354 		     BPF_MODE(insn->code) == BPF_PROBE_ATOMIC) &&
3355 		    (insn->imm & BPF_FETCH)) {
3356 			if (insn->imm == BPF_CMPXCHG)
3357 				return BPF_REG_0;
3358 			else
3359 				return insn->src_reg;
3360 		} else {
3361 			return -1;
3362 		}
3363 	default:
3364 		return insn->dst_reg;
3365 	}
3366 }
3367 
3368 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
3369 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
3370 {
3371 	int dst_reg = insn_def_regno(insn);
3372 
3373 	if (dst_reg == -1)
3374 		return false;
3375 
3376 	return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
3377 }
3378 
3379 static void mark_insn_zext(struct bpf_verifier_env *env,
3380 			   struct bpf_reg_state *reg)
3381 {
3382 	s32 def_idx = reg->subreg_def;
3383 
3384 	if (def_idx == DEF_NOT_SUBREG)
3385 		return;
3386 
3387 	env->insn_aux_data[def_idx - 1].zext_dst = true;
3388 	/* The dst will be zero extended, so won't be sub-register anymore. */
3389 	reg->subreg_def = DEF_NOT_SUBREG;
3390 }
3391 
3392 static int __check_reg_arg(struct bpf_verifier_env *env, struct bpf_reg_state *regs, u32 regno,
3393 			   enum reg_arg_type t)
3394 {
3395 	struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
3396 	struct bpf_reg_state *reg;
3397 	bool rw64;
3398 
3399 	if (regno >= MAX_BPF_REG) {
3400 		verbose(env, "R%d is invalid\n", regno);
3401 		return -EINVAL;
3402 	}
3403 
3404 	mark_reg_scratched(env, regno);
3405 
3406 	reg = &regs[regno];
3407 	rw64 = is_reg64(env, insn, regno, reg, t);
3408 	if (t == SRC_OP) {
3409 		/* check whether register used as source operand can be read */
3410 		if (reg->type == NOT_INIT) {
3411 			verbose(env, "R%d !read_ok\n", regno);
3412 			return -EACCES;
3413 		}
3414 		/* We don't need to worry about FP liveness because it's read-only */
3415 		if (regno == BPF_REG_FP)
3416 			return 0;
3417 
3418 		if (rw64)
3419 			mark_insn_zext(env, reg);
3420 
3421 		return mark_reg_read(env, reg, reg->parent,
3422 				     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
3423 	} else {
3424 		/* check whether register used as dest operand can be written to */
3425 		if (regno == BPF_REG_FP) {
3426 			verbose(env, "frame pointer is read only\n");
3427 			return -EACCES;
3428 		}
3429 		reg->live |= REG_LIVE_WRITTEN;
3430 		reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
3431 		if (t == DST_OP)
3432 			mark_reg_unknown(env, regs, regno);
3433 	}
3434 	return 0;
3435 }
3436 
3437 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
3438 			 enum reg_arg_type t)
3439 {
3440 	struct bpf_verifier_state *vstate = env->cur_state;
3441 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3442 
3443 	return __check_reg_arg(env, state->regs, regno, t);
3444 }
3445 
3446 static int insn_stack_access_flags(int frameno, int spi)
3447 {
3448 	return INSN_F_STACK_ACCESS | (spi << INSN_F_SPI_SHIFT) | frameno;
3449 }
3450 
3451 static int insn_stack_access_spi(int insn_flags)
3452 {
3453 	return (insn_flags >> INSN_F_SPI_SHIFT) & INSN_F_SPI_MASK;
3454 }
3455 
3456 static int insn_stack_access_frameno(int insn_flags)
3457 {
3458 	return insn_flags & INSN_F_FRAMENO_MASK;
3459 }
3460 
3461 static void mark_jmp_point(struct bpf_verifier_env *env, int idx)
3462 {
3463 	env->insn_aux_data[idx].jmp_point = true;
3464 }
3465 
3466 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx)
3467 {
3468 	return env->insn_aux_data[insn_idx].jmp_point;
3469 }
3470 
3471 #define LR_FRAMENO_BITS	3
3472 #define LR_SPI_BITS	6
3473 #define LR_ENTRY_BITS	(LR_SPI_BITS + LR_FRAMENO_BITS + 1)
3474 #define LR_SIZE_BITS	4
3475 #define LR_FRAMENO_MASK	((1ull << LR_FRAMENO_BITS) - 1)
3476 #define LR_SPI_MASK	((1ull << LR_SPI_BITS)     - 1)
3477 #define LR_SIZE_MASK	((1ull << LR_SIZE_BITS)    - 1)
3478 #define LR_SPI_OFF	LR_FRAMENO_BITS
3479 #define LR_IS_REG_OFF	(LR_SPI_BITS + LR_FRAMENO_BITS)
3480 #define LINKED_REGS_MAX	6
3481 
3482 struct linked_reg {
3483 	u8 frameno;
3484 	union {
3485 		u8 spi;
3486 		u8 regno;
3487 	};
3488 	bool is_reg;
3489 };
3490 
3491 struct linked_regs {
3492 	int cnt;
3493 	struct linked_reg entries[LINKED_REGS_MAX];
3494 };
3495 
3496 static struct linked_reg *linked_regs_push(struct linked_regs *s)
3497 {
3498 	if (s->cnt < LINKED_REGS_MAX)
3499 		return &s->entries[s->cnt++];
3500 
3501 	return NULL;
3502 }
3503 
3504 /* Use u64 as a vector of 6 10-bit values, use first 4-bits to track
3505  * number of elements currently in stack.
3506  * Pack one history entry for linked registers as 10 bits in the following format:
3507  * - 3-bits frameno
3508  * - 6-bits spi_or_reg
3509  * - 1-bit  is_reg
3510  */
3511 static u64 linked_regs_pack(struct linked_regs *s)
3512 {
3513 	u64 val = 0;
3514 	int i;
3515 
3516 	for (i = 0; i < s->cnt; ++i) {
3517 		struct linked_reg *e = &s->entries[i];
3518 		u64 tmp = 0;
3519 
3520 		tmp |= e->frameno;
3521 		tmp |= e->spi << LR_SPI_OFF;
3522 		tmp |= (e->is_reg ? 1 : 0) << LR_IS_REG_OFF;
3523 
3524 		val <<= LR_ENTRY_BITS;
3525 		val |= tmp;
3526 	}
3527 	val <<= LR_SIZE_BITS;
3528 	val |= s->cnt;
3529 	return val;
3530 }
3531 
3532 static void linked_regs_unpack(u64 val, struct linked_regs *s)
3533 {
3534 	int i;
3535 
3536 	s->cnt = val & LR_SIZE_MASK;
3537 	val >>= LR_SIZE_BITS;
3538 
3539 	for (i = 0; i < s->cnt; ++i) {
3540 		struct linked_reg *e = &s->entries[i];
3541 
3542 		e->frameno =  val & LR_FRAMENO_MASK;
3543 		e->spi     = (val >> LR_SPI_OFF) & LR_SPI_MASK;
3544 		e->is_reg  = (val >> LR_IS_REG_OFF) & 0x1;
3545 		val >>= LR_ENTRY_BITS;
3546 	}
3547 }
3548 
3549 /* for any branch, call, exit record the history of jmps in the given state */
3550 static int push_insn_history(struct bpf_verifier_env *env, struct bpf_verifier_state *cur,
3551 			     int insn_flags, u64 linked_regs)
3552 {
3553 	struct bpf_insn_hist_entry *p;
3554 	size_t alloc_size;
3555 
3556 	/* combine instruction flags if we already recorded this instruction */
3557 	if (env->cur_hist_ent) {
3558 		/* atomic instructions push insn_flags twice, for READ and
3559 		 * WRITE sides, but they should agree on stack slot
3560 		 */
3561 		WARN_ONCE((env->cur_hist_ent->flags & insn_flags) &&
3562 			  (env->cur_hist_ent->flags & insn_flags) != insn_flags,
3563 			  "verifier insn history bug: insn_idx %d cur flags %x new flags %x\n",
3564 			  env->insn_idx, env->cur_hist_ent->flags, insn_flags);
3565 		env->cur_hist_ent->flags |= insn_flags;
3566 		WARN_ONCE(env->cur_hist_ent->linked_regs != 0,
3567 			  "verifier insn history bug: insn_idx %d linked_regs != 0: %#llx\n",
3568 			  env->insn_idx, env->cur_hist_ent->linked_regs);
3569 		env->cur_hist_ent->linked_regs = linked_regs;
3570 		return 0;
3571 	}
3572 
3573 	if (cur->insn_hist_end + 1 > env->insn_hist_cap) {
3574 		alloc_size = size_mul(cur->insn_hist_end + 1, sizeof(*p));
3575 		p = kvrealloc(env->insn_hist, alloc_size, GFP_USER);
3576 		if (!p)
3577 			return -ENOMEM;
3578 		env->insn_hist = p;
3579 		env->insn_hist_cap = alloc_size / sizeof(*p);
3580 	}
3581 
3582 	p = &env->insn_hist[cur->insn_hist_end];
3583 	p->idx = env->insn_idx;
3584 	p->prev_idx = env->prev_insn_idx;
3585 	p->flags = insn_flags;
3586 	p->linked_regs = linked_regs;
3587 
3588 	cur->insn_hist_end++;
3589 	env->cur_hist_ent = p;
3590 
3591 	return 0;
3592 }
3593 
3594 static struct bpf_insn_hist_entry *get_insn_hist_entry(struct bpf_verifier_env *env,
3595 						       u32 hist_start, u32 hist_end, int insn_idx)
3596 {
3597 	if (hist_end > hist_start && env->insn_hist[hist_end - 1].idx == insn_idx)
3598 		return &env->insn_hist[hist_end - 1];
3599 	return NULL;
3600 }
3601 
3602 /* Backtrack one insn at a time. If idx is not at the top of recorded
3603  * history then previous instruction came from straight line execution.
3604  * Return -ENOENT if we exhausted all instructions within given state.
3605  *
3606  * It's legal to have a bit of a looping with the same starting and ending
3607  * insn index within the same state, e.g.: 3->4->5->3, so just because current
3608  * instruction index is the same as state's first_idx doesn't mean we are
3609  * done. If there is still some jump history left, we should keep going. We
3610  * need to take into account that we might have a jump history between given
3611  * state's parent and itself, due to checkpointing. In this case, we'll have
3612  * history entry recording a jump from last instruction of parent state and
3613  * first instruction of given state.
3614  */
3615 static int get_prev_insn_idx(const struct bpf_verifier_env *env,
3616 			     struct bpf_verifier_state *st,
3617 			     int insn_idx, u32 hist_start, u32 *hist_endp)
3618 {
3619 	u32 hist_end = *hist_endp;
3620 	u32 cnt = hist_end - hist_start;
3621 
3622 	if (insn_idx == st->first_insn_idx) {
3623 		if (cnt == 0)
3624 			return -ENOENT;
3625 		if (cnt == 1 && env->insn_hist[hist_start].idx == insn_idx)
3626 			return -ENOENT;
3627 	}
3628 
3629 	if (cnt && env->insn_hist[hist_end - 1].idx == insn_idx) {
3630 		(*hist_endp)--;
3631 		return env->insn_hist[hist_end - 1].prev_idx;
3632 	} else {
3633 		return insn_idx - 1;
3634 	}
3635 }
3636 
3637 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
3638 {
3639 	const struct btf_type *func;
3640 	struct btf *desc_btf;
3641 
3642 	if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
3643 		return NULL;
3644 
3645 	desc_btf = find_kfunc_desc_btf(data, insn->off);
3646 	if (IS_ERR(desc_btf))
3647 		return "<error>";
3648 
3649 	func = btf_type_by_id(desc_btf, insn->imm);
3650 	return btf_name_by_offset(desc_btf, func->name_off);
3651 }
3652 
3653 static inline void bt_init(struct backtrack_state *bt, u32 frame)
3654 {
3655 	bt->frame = frame;
3656 }
3657 
3658 static inline void bt_reset(struct backtrack_state *bt)
3659 {
3660 	struct bpf_verifier_env *env = bt->env;
3661 
3662 	memset(bt, 0, sizeof(*bt));
3663 	bt->env = env;
3664 }
3665 
3666 static inline u32 bt_empty(struct backtrack_state *bt)
3667 {
3668 	u64 mask = 0;
3669 	int i;
3670 
3671 	for (i = 0; i <= bt->frame; i++)
3672 		mask |= bt->reg_masks[i] | bt->stack_masks[i];
3673 
3674 	return mask == 0;
3675 }
3676 
3677 static inline int bt_subprog_enter(struct backtrack_state *bt)
3678 {
3679 	if (bt->frame == MAX_CALL_FRAMES - 1) {
3680 		verbose(bt->env, "BUG subprog enter from frame %d\n", bt->frame);
3681 		WARN_ONCE(1, "verifier backtracking bug");
3682 		return -EFAULT;
3683 	}
3684 	bt->frame++;
3685 	return 0;
3686 }
3687 
3688 static inline int bt_subprog_exit(struct backtrack_state *bt)
3689 {
3690 	if (bt->frame == 0) {
3691 		verbose(bt->env, "BUG subprog exit from frame 0\n");
3692 		WARN_ONCE(1, "verifier backtracking bug");
3693 		return -EFAULT;
3694 	}
3695 	bt->frame--;
3696 	return 0;
3697 }
3698 
3699 static inline void bt_set_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg)
3700 {
3701 	bt->reg_masks[frame] |= 1 << reg;
3702 }
3703 
3704 static inline void bt_clear_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg)
3705 {
3706 	bt->reg_masks[frame] &= ~(1 << reg);
3707 }
3708 
3709 static inline void bt_set_reg(struct backtrack_state *bt, u32 reg)
3710 {
3711 	bt_set_frame_reg(bt, bt->frame, reg);
3712 }
3713 
3714 static inline void bt_clear_reg(struct backtrack_state *bt, u32 reg)
3715 {
3716 	bt_clear_frame_reg(bt, bt->frame, reg);
3717 }
3718 
3719 static inline void bt_set_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot)
3720 {
3721 	bt->stack_masks[frame] |= 1ull << slot;
3722 }
3723 
3724 static inline void bt_clear_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot)
3725 {
3726 	bt->stack_masks[frame] &= ~(1ull << slot);
3727 }
3728 
3729 static inline u32 bt_frame_reg_mask(struct backtrack_state *bt, u32 frame)
3730 {
3731 	return bt->reg_masks[frame];
3732 }
3733 
3734 static inline u32 bt_reg_mask(struct backtrack_state *bt)
3735 {
3736 	return bt->reg_masks[bt->frame];
3737 }
3738 
3739 static inline u64 bt_frame_stack_mask(struct backtrack_state *bt, u32 frame)
3740 {
3741 	return bt->stack_masks[frame];
3742 }
3743 
3744 static inline u64 bt_stack_mask(struct backtrack_state *bt)
3745 {
3746 	return bt->stack_masks[bt->frame];
3747 }
3748 
3749 static inline bool bt_is_reg_set(struct backtrack_state *bt, u32 reg)
3750 {
3751 	return bt->reg_masks[bt->frame] & (1 << reg);
3752 }
3753 
3754 static inline bool bt_is_frame_reg_set(struct backtrack_state *bt, u32 frame, u32 reg)
3755 {
3756 	return bt->reg_masks[frame] & (1 << reg);
3757 }
3758 
3759 static inline bool bt_is_frame_slot_set(struct backtrack_state *bt, u32 frame, u32 slot)
3760 {
3761 	return bt->stack_masks[frame] & (1ull << slot);
3762 }
3763 
3764 /* format registers bitmask, e.g., "r0,r2,r4" for 0x15 mask */
3765 static void fmt_reg_mask(char *buf, ssize_t buf_sz, u32 reg_mask)
3766 {
3767 	DECLARE_BITMAP(mask, 64);
3768 	bool first = true;
3769 	int i, n;
3770 
3771 	buf[0] = '\0';
3772 
3773 	bitmap_from_u64(mask, reg_mask);
3774 	for_each_set_bit(i, mask, 32) {
3775 		n = snprintf(buf, buf_sz, "%sr%d", first ? "" : ",", i);
3776 		first = false;
3777 		buf += n;
3778 		buf_sz -= n;
3779 		if (buf_sz < 0)
3780 			break;
3781 	}
3782 }
3783 /* format stack slots bitmask, e.g., "-8,-24,-40" for 0x15 mask */
3784 static void fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask)
3785 {
3786 	DECLARE_BITMAP(mask, 64);
3787 	bool first = true;
3788 	int i, n;
3789 
3790 	buf[0] = '\0';
3791 
3792 	bitmap_from_u64(mask, stack_mask);
3793 	for_each_set_bit(i, mask, 64) {
3794 		n = snprintf(buf, buf_sz, "%s%d", first ? "" : ",", -(i + 1) * 8);
3795 		first = false;
3796 		buf += n;
3797 		buf_sz -= n;
3798 		if (buf_sz < 0)
3799 			break;
3800 	}
3801 }
3802 
3803 /* If any register R in hist->linked_regs is marked as precise in bt,
3804  * do bt_set_frame_{reg,slot}(bt, R) for all registers in hist->linked_regs.
3805  */
3806 static void bt_sync_linked_regs(struct backtrack_state *bt, struct bpf_insn_hist_entry *hist)
3807 {
3808 	struct linked_regs linked_regs;
3809 	bool some_precise = false;
3810 	int i;
3811 
3812 	if (!hist || hist->linked_regs == 0)
3813 		return;
3814 
3815 	linked_regs_unpack(hist->linked_regs, &linked_regs);
3816 	for (i = 0; i < linked_regs.cnt; ++i) {
3817 		struct linked_reg *e = &linked_regs.entries[i];
3818 
3819 		if ((e->is_reg && bt_is_frame_reg_set(bt, e->frameno, e->regno)) ||
3820 		    (!e->is_reg && bt_is_frame_slot_set(bt, e->frameno, e->spi))) {
3821 			some_precise = true;
3822 			break;
3823 		}
3824 	}
3825 
3826 	if (!some_precise)
3827 		return;
3828 
3829 	for (i = 0; i < linked_regs.cnt; ++i) {
3830 		struct linked_reg *e = &linked_regs.entries[i];
3831 
3832 		if (e->is_reg)
3833 			bt_set_frame_reg(bt, e->frameno, e->regno);
3834 		else
3835 			bt_set_frame_slot(bt, e->frameno, e->spi);
3836 	}
3837 }
3838 
3839 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx);
3840 
3841 /* For given verifier state backtrack_insn() is called from the last insn to
3842  * the first insn. Its purpose is to compute a bitmask of registers and
3843  * stack slots that needs precision in the parent verifier state.
3844  *
3845  * @idx is an index of the instruction we are currently processing;
3846  * @subseq_idx is an index of the subsequent instruction that:
3847  *   - *would be* executed next, if jump history is viewed in forward order;
3848  *   - *was* processed previously during backtracking.
3849  */
3850 static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx,
3851 			  struct bpf_insn_hist_entry *hist, struct backtrack_state *bt)
3852 {
3853 	const struct bpf_insn_cbs cbs = {
3854 		.cb_call	= disasm_kfunc_name,
3855 		.cb_print	= verbose,
3856 		.private_data	= env,
3857 	};
3858 	struct bpf_insn *insn = env->prog->insnsi + idx;
3859 	u8 class = BPF_CLASS(insn->code);
3860 	u8 opcode = BPF_OP(insn->code);
3861 	u8 mode = BPF_MODE(insn->code);
3862 	u32 dreg = insn->dst_reg;
3863 	u32 sreg = insn->src_reg;
3864 	u32 spi, i, fr;
3865 
3866 	if (insn->code == 0)
3867 		return 0;
3868 	if (env->log.level & BPF_LOG_LEVEL2) {
3869 		fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_reg_mask(bt));
3870 		verbose(env, "mark_precise: frame%d: regs=%s ",
3871 			bt->frame, env->tmp_str_buf);
3872 		fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt));
3873 		verbose(env, "stack=%s before ", env->tmp_str_buf);
3874 		verbose(env, "%d: ", idx);
3875 		print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
3876 	}
3877 
3878 	/* If there is a history record that some registers gained range at this insn,
3879 	 * propagate precision marks to those registers, so that bt_is_reg_set()
3880 	 * accounts for these registers.
3881 	 */
3882 	bt_sync_linked_regs(bt, hist);
3883 
3884 	if (class == BPF_ALU || class == BPF_ALU64) {
3885 		if (!bt_is_reg_set(bt, dreg))
3886 			return 0;
3887 		if (opcode == BPF_END || opcode == BPF_NEG) {
3888 			/* sreg is reserved and unused
3889 			 * dreg still need precision before this insn
3890 			 */
3891 			return 0;
3892 		} else if (opcode == BPF_MOV) {
3893 			if (BPF_SRC(insn->code) == BPF_X) {
3894 				/* dreg = sreg or dreg = (s8, s16, s32)sreg
3895 				 * dreg needs precision after this insn
3896 				 * sreg needs precision before this insn
3897 				 */
3898 				bt_clear_reg(bt, dreg);
3899 				if (sreg != BPF_REG_FP)
3900 					bt_set_reg(bt, sreg);
3901 			} else {
3902 				/* dreg = K
3903 				 * dreg needs precision after this insn.
3904 				 * Corresponding register is already marked
3905 				 * as precise=true in this verifier state.
3906 				 * No further markings in parent are necessary
3907 				 */
3908 				bt_clear_reg(bt, dreg);
3909 			}
3910 		} else {
3911 			if (BPF_SRC(insn->code) == BPF_X) {
3912 				/* dreg += sreg
3913 				 * both dreg and sreg need precision
3914 				 * before this insn
3915 				 */
3916 				if (sreg != BPF_REG_FP)
3917 					bt_set_reg(bt, sreg);
3918 			} /* else dreg += K
3919 			   * dreg still needs precision before this insn
3920 			   */
3921 		}
3922 	} else if (class == BPF_LDX) {
3923 		if (!bt_is_reg_set(bt, dreg))
3924 			return 0;
3925 		bt_clear_reg(bt, dreg);
3926 
3927 		/* scalars can only be spilled into stack w/o losing precision.
3928 		 * Load from any other memory can be zero extended.
3929 		 * The desire to keep that precision is already indicated
3930 		 * by 'precise' mark in corresponding register of this state.
3931 		 * No further tracking necessary.
3932 		 */
3933 		if (!hist || !(hist->flags & INSN_F_STACK_ACCESS))
3934 			return 0;
3935 		/* dreg = *(u64 *)[fp - off] was a fill from the stack.
3936 		 * that [fp - off] slot contains scalar that needs to be
3937 		 * tracked with precision
3938 		 */
3939 		spi = insn_stack_access_spi(hist->flags);
3940 		fr = insn_stack_access_frameno(hist->flags);
3941 		bt_set_frame_slot(bt, fr, spi);
3942 	} else if (class == BPF_STX || class == BPF_ST) {
3943 		if (bt_is_reg_set(bt, dreg))
3944 			/* stx & st shouldn't be using _scalar_ dst_reg
3945 			 * to access memory. It means backtracking
3946 			 * encountered a case of pointer subtraction.
3947 			 */
3948 			return -ENOTSUPP;
3949 		/* scalars can only be spilled into stack */
3950 		if (!hist || !(hist->flags & INSN_F_STACK_ACCESS))
3951 			return 0;
3952 		spi = insn_stack_access_spi(hist->flags);
3953 		fr = insn_stack_access_frameno(hist->flags);
3954 		if (!bt_is_frame_slot_set(bt, fr, spi))
3955 			return 0;
3956 		bt_clear_frame_slot(bt, fr, spi);
3957 		if (class == BPF_STX)
3958 			bt_set_reg(bt, sreg);
3959 	} else if (class == BPF_JMP || class == BPF_JMP32) {
3960 		if (bpf_pseudo_call(insn)) {
3961 			int subprog_insn_idx, subprog;
3962 
3963 			subprog_insn_idx = idx + insn->imm + 1;
3964 			subprog = find_subprog(env, subprog_insn_idx);
3965 			if (subprog < 0)
3966 				return -EFAULT;
3967 
3968 			if (subprog_is_global(env, subprog)) {
3969 				/* check that jump history doesn't have any
3970 				 * extra instructions from subprog; the next
3971 				 * instruction after call to global subprog
3972 				 * should be literally next instruction in
3973 				 * caller program
3974 				 */
3975 				WARN_ONCE(idx + 1 != subseq_idx, "verifier backtracking bug");
3976 				/* r1-r5 are invalidated after subprog call,
3977 				 * so for global func call it shouldn't be set
3978 				 * anymore
3979 				 */
3980 				if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3981 					verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3982 					WARN_ONCE(1, "verifier backtracking bug");
3983 					return -EFAULT;
3984 				}
3985 				/* global subprog always sets R0 */
3986 				bt_clear_reg(bt, BPF_REG_0);
3987 				return 0;
3988 			} else {
3989 				/* static subprog call instruction, which
3990 				 * means that we are exiting current subprog,
3991 				 * so only r1-r5 could be still requested as
3992 				 * precise, r0 and r6-r10 or any stack slot in
3993 				 * the current frame should be zero by now
3994 				 */
3995 				if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
3996 					verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3997 					WARN_ONCE(1, "verifier backtracking bug");
3998 					return -EFAULT;
3999 				}
4000 				/* we are now tracking register spills correctly,
4001 				 * so any instance of leftover slots is a bug
4002 				 */
4003 				if (bt_stack_mask(bt) != 0) {
4004 					verbose(env, "BUG stack slots %llx\n", bt_stack_mask(bt));
4005 					WARN_ONCE(1, "verifier backtracking bug (subprog leftover stack slots)");
4006 					return -EFAULT;
4007 				}
4008 				/* propagate r1-r5 to the caller */
4009 				for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
4010 					if (bt_is_reg_set(bt, i)) {
4011 						bt_clear_reg(bt, i);
4012 						bt_set_frame_reg(bt, bt->frame - 1, i);
4013 					}
4014 				}
4015 				if (bt_subprog_exit(bt))
4016 					return -EFAULT;
4017 				return 0;
4018 			}
4019 		} else if (is_sync_callback_calling_insn(insn) && idx != subseq_idx - 1) {
4020 			/* exit from callback subprog to callback-calling helper or
4021 			 * kfunc call. Use idx/subseq_idx check to discern it from
4022 			 * straight line code backtracking.
4023 			 * Unlike the subprog call handling above, we shouldn't
4024 			 * propagate precision of r1-r5 (if any requested), as they are
4025 			 * not actually arguments passed directly to callback subprogs
4026 			 */
4027 			if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
4028 				verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
4029 				WARN_ONCE(1, "verifier backtracking bug");
4030 				return -EFAULT;
4031 			}
4032 			if (bt_stack_mask(bt) != 0) {
4033 				verbose(env, "BUG stack slots %llx\n", bt_stack_mask(bt));
4034 				WARN_ONCE(1, "verifier backtracking bug (callback leftover stack slots)");
4035 				return -EFAULT;
4036 			}
4037 			/* clear r1-r5 in callback subprog's mask */
4038 			for (i = BPF_REG_1; i <= BPF_REG_5; i++)
4039 				bt_clear_reg(bt, i);
4040 			if (bt_subprog_exit(bt))
4041 				return -EFAULT;
4042 			return 0;
4043 		} else if (opcode == BPF_CALL) {
4044 			/* kfunc with imm==0 is invalid and fixup_kfunc_call will
4045 			 * catch this error later. Make backtracking conservative
4046 			 * with ENOTSUPP.
4047 			 */
4048 			if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0)
4049 				return -ENOTSUPP;
4050 			/* regular helper call sets R0 */
4051 			bt_clear_reg(bt, BPF_REG_0);
4052 			if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
4053 				/* if backtracing was looking for registers R1-R5
4054 				 * they should have been found already.
4055 				 */
4056 				verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
4057 				WARN_ONCE(1, "verifier backtracking bug");
4058 				return -EFAULT;
4059 			}
4060 		} else if (opcode == BPF_EXIT) {
4061 			bool r0_precise;
4062 
4063 			/* Backtracking to a nested function call, 'idx' is a part of
4064 			 * the inner frame 'subseq_idx' is a part of the outer frame.
4065 			 * In case of a regular function call, instructions giving
4066 			 * precision to registers R1-R5 should have been found already.
4067 			 * In case of a callback, it is ok to have R1-R5 marked for
4068 			 * backtracking, as these registers are set by the function
4069 			 * invoking callback.
4070 			 */
4071 			if (subseq_idx >= 0 && calls_callback(env, subseq_idx))
4072 				for (i = BPF_REG_1; i <= BPF_REG_5; i++)
4073 					bt_clear_reg(bt, i);
4074 			if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
4075 				verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
4076 				WARN_ONCE(1, "verifier backtracking bug");
4077 				return -EFAULT;
4078 			}
4079 
4080 			/* BPF_EXIT in subprog or callback always returns
4081 			 * right after the call instruction, so by checking
4082 			 * whether the instruction at subseq_idx-1 is subprog
4083 			 * call or not we can distinguish actual exit from
4084 			 * *subprog* from exit from *callback*. In the former
4085 			 * case, we need to propagate r0 precision, if
4086 			 * necessary. In the former we never do that.
4087 			 */
4088 			r0_precise = subseq_idx - 1 >= 0 &&
4089 				     bpf_pseudo_call(&env->prog->insnsi[subseq_idx - 1]) &&
4090 				     bt_is_reg_set(bt, BPF_REG_0);
4091 
4092 			bt_clear_reg(bt, BPF_REG_0);
4093 			if (bt_subprog_enter(bt))
4094 				return -EFAULT;
4095 
4096 			if (r0_precise)
4097 				bt_set_reg(bt, BPF_REG_0);
4098 			/* r6-r9 and stack slots will stay set in caller frame
4099 			 * bitmasks until we return back from callee(s)
4100 			 */
4101 			return 0;
4102 		} else if (BPF_SRC(insn->code) == BPF_X) {
4103 			if (!bt_is_reg_set(bt, dreg) && !bt_is_reg_set(bt, sreg))
4104 				return 0;
4105 			/* dreg <cond> sreg
4106 			 * Both dreg and sreg need precision before
4107 			 * this insn. If only sreg was marked precise
4108 			 * before it would be equally necessary to
4109 			 * propagate it to dreg.
4110 			 */
4111 			bt_set_reg(bt, dreg);
4112 			bt_set_reg(bt, sreg);
4113 		} else if (BPF_SRC(insn->code) == BPF_K) {
4114 			 /* dreg <cond> K
4115 			  * Only dreg still needs precision before
4116 			  * this insn, so for the K-based conditional
4117 			  * there is nothing new to be marked.
4118 			  */
4119 		}
4120 	} else if (class == BPF_LD) {
4121 		if (!bt_is_reg_set(bt, dreg))
4122 			return 0;
4123 		bt_clear_reg(bt, dreg);
4124 		/* It's ld_imm64 or ld_abs or ld_ind.
4125 		 * For ld_imm64 no further tracking of precision
4126 		 * into parent is necessary
4127 		 */
4128 		if (mode == BPF_IND || mode == BPF_ABS)
4129 			/* to be analyzed */
4130 			return -ENOTSUPP;
4131 	}
4132 	/* Propagate precision marks to linked registers, to account for
4133 	 * registers marked as precise in this function.
4134 	 */
4135 	bt_sync_linked_regs(bt, hist);
4136 	return 0;
4137 }
4138 
4139 /* the scalar precision tracking algorithm:
4140  * . at the start all registers have precise=false.
4141  * . scalar ranges are tracked as normal through alu and jmp insns.
4142  * . once precise value of the scalar register is used in:
4143  *   .  ptr + scalar alu
4144  *   . if (scalar cond K|scalar)
4145  *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
4146  *   backtrack through the verifier states and mark all registers and
4147  *   stack slots with spilled constants that these scalar regisers
4148  *   should be precise.
4149  * . during state pruning two registers (or spilled stack slots)
4150  *   are equivalent if both are not precise.
4151  *
4152  * Note the verifier cannot simply walk register parentage chain,
4153  * since many different registers and stack slots could have been
4154  * used to compute single precise scalar.
4155  *
4156  * The approach of starting with precise=true for all registers and then
4157  * backtrack to mark a register as not precise when the verifier detects
4158  * that program doesn't care about specific value (e.g., when helper
4159  * takes register as ARG_ANYTHING parameter) is not safe.
4160  *
4161  * It's ok to walk single parentage chain of the verifier states.
4162  * It's possible that this backtracking will go all the way till 1st insn.
4163  * All other branches will be explored for needing precision later.
4164  *
4165  * The backtracking needs to deal with cases like:
4166  *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
4167  * r9 -= r8
4168  * r5 = r9
4169  * if r5 > 0x79f goto pc+7
4170  *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
4171  * r5 += 1
4172  * ...
4173  * call bpf_perf_event_output#25
4174  *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
4175  *
4176  * and this case:
4177  * r6 = 1
4178  * call foo // uses callee's r6 inside to compute r0
4179  * r0 += r6
4180  * if r0 == 0 goto
4181  *
4182  * to track above reg_mask/stack_mask needs to be independent for each frame.
4183  *
4184  * Also if parent's curframe > frame where backtracking started,
4185  * the verifier need to mark registers in both frames, otherwise callees
4186  * may incorrectly prune callers. This is similar to
4187  * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
4188  *
4189  * For now backtracking falls back into conservative marking.
4190  */
4191 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
4192 				     struct bpf_verifier_state *st)
4193 {
4194 	struct bpf_func_state *func;
4195 	struct bpf_reg_state *reg;
4196 	int i, j;
4197 
4198 	if (env->log.level & BPF_LOG_LEVEL2) {
4199 		verbose(env, "mark_precise: frame%d: falling back to forcing all scalars precise\n",
4200 			st->curframe);
4201 	}
4202 
4203 	/* big hammer: mark all scalars precise in this path.
4204 	 * pop_stack may still get !precise scalars.
4205 	 * We also skip current state and go straight to first parent state,
4206 	 * because precision markings in current non-checkpointed state are
4207 	 * not needed. See why in the comment in __mark_chain_precision below.
4208 	 */
4209 	for (st = st->parent; st; st = st->parent) {
4210 		for (i = 0; i <= st->curframe; i++) {
4211 			func = st->frame[i];
4212 			for (j = 0; j < BPF_REG_FP; j++) {
4213 				reg = &func->regs[j];
4214 				if (reg->type != SCALAR_VALUE || reg->precise)
4215 					continue;
4216 				reg->precise = true;
4217 				if (env->log.level & BPF_LOG_LEVEL2) {
4218 					verbose(env, "force_precise: frame%d: forcing r%d to be precise\n",
4219 						i, j);
4220 				}
4221 			}
4222 			for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
4223 				if (!is_spilled_reg(&func->stack[j]))
4224 					continue;
4225 				reg = &func->stack[j].spilled_ptr;
4226 				if (reg->type != SCALAR_VALUE || reg->precise)
4227 					continue;
4228 				reg->precise = true;
4229 				if (env->log.level & BPF_LOG_LEVEL2) {
4230 					verbose(env, "force_precise: frame%d: forcing fp%d to be precise\n",
4231 						i, -(j + 1) * 8);
4232 				}
4233 			}
4234 		}
4235 	}
4236 }
4237 
4238 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
4239 {
4240 	struct bpf_func_state *func;
4241 	struct bpf_reg_state *reg;
4242 	int i, j;
4243 
4244 	for (i = 0; i <= st->curframe; i++) {
4245 		func = st->frame[i];
4246 		for (j = 0; j < BPF_REG_FP; j++) {
4247 			reg = &func->regs[j];
4248 			if (reg->type != SCALAR_VALUE)
4249 				continue;
4250 			reg->precise = false;
4251 		}
4252 		for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
4253 			if (!is_spilled_reg(&func->stack[j]))
4254 				continue;
4255 			reg = &func->stack[j].spilled_ptr;
4256 			if (reg->type != SCALAR_VALUE)
4257 				continue;
4258 			reg->precise = false;
4259 		}
4260 	}
4261 }
4262 
4263 /*
4264  * __mark_chain_precision() backtracks BPF program instruction sequence and
4265  * chain of verifier states making sure that register *regno* (if regno >= 0)
4266  * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked
4267  * SCALARS, as well as any other registers and slots that contribute to
4268  * a tracked state of given registers/stack slots, depending on specific BPF
4269  * assembly instructions (see backtrack_insns() for exact instruction handling
4270  * logic). This backtracking relies on recorded insn_hist and is able to
4271  * traverse entire chain of parent states. This process ends only when all the
4272  * necessary registers/slots and their transitive dependencies are marked as
4273  * precise.
4274  *
4275  * One important and subtle aspect is that precise marks *do not matter* in
4276  * the currently verified state (current state). It is important to understand
4277  * why this is the case.
4278  *
4279  * First, note that current state is the state that is not yet "checkpointed",
4280  * i.e., it is not yet put into env->explored_states, and it has no children
4281  * states as well. It's ephemeral, and can end up either a) being discarded if
4282  * compatible explored state is found at some point or BPF_EXIT instruction is
4283  * reached or b) checkpointed and put into env->explored_states, branching out
4284  * into one or more children states.
4285  *
4286  * In the former case, precise markings in current state are completely
4287  * ignored by state comparison code (see regsafe() for details). Only
4288  * checkpointed ("old") state precise markings are important, and if old
4289  * state's register/slot is precise, regsafe() assumes current state's
4290  * register/slot as precise and checks value ranges exactly and precisely. If
4291  * states turn out to be compatible, current state's necessary precise
4292  * markings and any required parent states' precise markings are enforced
4293  * after the fact with propagate_precision() logic, after the fact. But it's
4294  * important to realize that in this case, even after marking current state
4295  * registers/slots as precise, we immediately discard current state. So what
4296  * actually matters is any of the precise markings propagated into current
4297  * state's parent states, which are always checkpointed (due to b) case above).
4298  * As such, for scenario a) it doesn't matter if current state has precise
4299  * markings set or not.
4300  *
4301  * Now, for the scenario b), checkpointing and forking into child(ren)
4302  * state(s). Note that before current state gets to checkpointing step, any
4303  * processed instruction always assumes precise SCALAR register/slot
4304  * knowledge: if precise value or range is useful to prune jump branch, BPF
4305  * verifier takes this opportunity enthusiastically. Similarly, when
4306  * register's value is used to calculate offset or memory address, exact
4307  * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to
4308  * what we mentioned above about state comparison ignoring precise markings
4309  * during state comparison, BPF verifier ignores and also assumes precise
4310  * markings *at will* during instruction verification process. But as verifier
4311  * assumes precision, it also propagates any precision dependencies across
4312  * parent states, which are not yet finalized, so can be further restricted
4313  * based on new knowledge gained from restrictions enforced by their children
4314  * states. This is so that once those parent states are finalized, i.e., when
4315  * they have no more active children state, state comparison logic in
4316  * is_state_visited() would enforce strict and precise SCALAR ranges, if
4317  * required for correctness.
4318  *
4319  * To build a bit more intuition, note also that once a state is checkpointed,
4320  * the path we took to get to that state is not important. This is crucial
4321  * property for state pruning. When state is checkpointed and finalized at
4322  * some instruction index, it can be correctly and safely used to "short
4323  * circuit" any *compatible* state that reaches exactly the same instruction
4324  * index. I.e., if we jumped to that instruction from a completely different
4325  * code path than original finalized state was derived from, it doesn't
4326  * matter, current state can be discarded because from that instruction
4327  * forward having a compatible state will ensure we will safely reach the
4328  * exit. States describe preconditions for further exploration, but completely
4329  * forget the history of how we got here.
4330  *
4331  * This also means that even if we needed precise SCALAR range to get to
4332  * finalized state, but from that point forward *that same* SCALAR register is
4333  * never used in a precise context (i.e., it's precise value is not needed for
4334  * correctness), it's correct and safe to mark such register as "imprecise"
4335  * (i.e., precise marking set to false). This is what we rely on when we do
4336  * not set precise marking in current state. If no child state requires
4337  * precision for any given SCALAR register, it's safe to dictate that it can
4338  * be imprecise. If any child state does require this register to be precise,
4339  * we'll mark it precise later retroactively during precise markings
4340  * propagation from child state to parent states.
4341  *
4342  * Skipping precise marking setting in current state is a mild version of
4343  * relying on the above observation. But we can utilize this property even
4344  * more aggressively by proactively forgetting any precise marking in the
4345  * current state (which we inherited from the parent state), right before we
4346  * checkpoint it and branch off into new child state. This is done by
4347  * mark_all_scalars_imprecise() to hopefully get more permissive and generic
4348  * finalized states which help in short circuiting more future states.
4349  */
4350 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno)
4351 {
4352 	struct backtrack_state *bt = &env->bt;
4353 	struct bpf_verifier_state *st = env->cur_state;
4354 	int first_idx = st->first_insn_idx;
4355 	int last_idx = env->insn_idx;
4356 	int subseq_idx = -1;
4357 	struct bpf_func_state *func;
4358 	struct bpf_reg_state *reg;
4359 	bool skip_first = true;
4360 	int i, fr, err;
4361 
4362 	if (!env->bpf_capable)
4363 		return 0;
4364 
4365 	/* set frame number from which we are starting to backtrack */
4366 	bt_init(bt, env->cur_state->curframe);
4367 
4368 	/* Do sanity checks against current state of register and/or stack
4369 	 * slot, but don't set precise flag in current state, as precision
4370 	 * tracking in the current state is unnecessary.
4371 	 */
4372 	func = st->frame[bt->frame];
4373 	if (regno >= 0) {
4374 		reg = &func->regs[regno];
4375 		if (reg->type != SCALAR_VALUE) {
4376 			WARN_ONCE(1, "backtracing misuse");
4377 			return -EFAULT;
4378 		}
4379 		bt_set_reg(bt, regno);
4380 	}
4381 
4382 	if (bt_empty(bt))
4383 		return 0;
4384 
4385 	for (;;) {
4386 		DECLARE_BITMAP(mask, 64);
4387 		u32 hist_start = st->insn_hist_start;
4388 		u32 hist_end = st->insn_hist_end;
4389 		struct bpf_insn_hist_entry *hist;
4390 
4391 		if (env->log.level & BPF_LOG_LEVEL2) {
4392 			verbose(env, "mark_precise: frame%d: last_idx %d first_idx %d subseq_idx %d \n",
4393 				bt->frame, last_idx, first_idx, subseq_idx);
4394 		}
4395 
4396 		if (last_idx < 0) {
4397 			/* we are at the entry into subprog, which
4398 			 * is expected for global funcs, but only if
4399 			 * requested precise registers are R1-R5
4400 			 * (which are global func's input arguments)
4401 			 */
4402 			if (st->curframe == 0 &&
4403 			    st->frame[0]->subprogno > 0 &&
4404 			    st->frame[0]->callsite == BPF_MAIN_FUNC &&
4405 			    bt_stack_mask(bt) == 0 &&
4406 			    (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) == 0) {
4407 				bitmap_from_u64(mask, bt_reg_mask(bt));
4408 				for_each_set_bit(i, mask, 32) {
4409 					reg = &st->frame[0]->regs[i];
4410 					bt_clear_reg(bt, i);
4411 					if (reg->type == SCALAR_VALUE)
4412 						reg->precise = true;
4413 				}
4414 				return 0;
4415 			}
4416 
4417 			verbose(env, "BUG backtracking func entry subprog %d reg_mask %x stack_mask %llx\n",
4418 				st->frame[0]->subprogno, bt_reg_mask(bt), bt_stack_mask(bt));
4419 			WARN_ONCE(1, "verifier backtracking bug");
4420 			return -EFAULT;
4421 		}
4422 
4423 		for (i = last_idx;;) {
4424 			if (skip_first) {
4425 				err = 0;
4426 				skip_first = false;
4427 			} else {
4428 				hist = get_insn_hist_entry(env, hist_start, hist_end, i);
4429 				err = backtrack_insn(env, i, subseq_idx, hist, bt);
4430 			}
4431 			if (err == -ENOTSUPP) {
4432 				mark_all_scalars_precise(env, env->cur_state);
4433 				bt_reset(bt);
4434 				return 0;
4435 			} else if (err) {
4436 				return err;
4437 			}
4438 			if (bt_empty(bt))
4439 				/* Found assignment(s) into tracked register in this state.
4440 				 * Since this state is already marked, just return.
4441 				 * Nothing to be tracked further in the parent state.
4442 				 */
4443 				return 0;
4444 			subseq_idx = i;
4445 			i = get_prev_insn_idx(env, st, i, hist_start, &hist_end);
4446 			if (i == -ENOENT)
4447 				break;
4448 			if (i >= env->prog->len) {
4449 				/* This can happen if backtracking reached insn 0
4450 				 * and there are still reg_mask or stack_mask
4451 				 * to backtrack.
4452 				 * It means the backtracking missed the spot where
4453 				 * particular register was initialized with a constant.
4454 				 */
4455 				verbose(env, "BUG backtracking idx %d\n", i);
4456 				WARN_ONCE(1, "verifier backtracking bug");
4457 				return -EFAULT;
4458 			}
4459 		}
4460 		st = st->parent;
4461 		if (!st)
4462 			break;
4463 
4464 		for (fr = bt->frame; fr >= 0; fr--) {
4465 			func = st->frame[fr];
4466 			bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr));
4467 			for_each_set_bit(i, mask, 32) {
4468 				reg = &func->regs[i];
4469 				if (reg->type != SCALAR_VALUE) {
4470 					bt_clear_frame_reg(bt, fr, i);
4471 					continue;
4472 				}
4473 				if (reg->precise)
4474 					bt_clear_frame_reg(bt, fr, i);
4475 				else
4476 					reg->precise = true;
4477 			}
4478 
4479 			bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr));
4480 			for_each_set_bit(i, mask, 64) {
4481 				if (i >= func->allocated_stack / BPF_REG_SIZE) {
4482 					verbose(env, "BUG backtracking (stack slot %d, total slots %d)\n",
4483 						i, func->allocated_stack / BPF_REG_SIZE);
4484 					WARN_ONCE(1, "verifier backtracking bug (stack slot out of bounds)");
4485 					return -EFAULT;
4486 				}
4487 
4488 				if (!is_spilled_scalar_reg(&func->stack[i])) {
4489 					bt_clear_frame_slot(bt, fr, i);
4490 					continue;
4491 				}
4492 				reg = &func->stack[i].spilled_ptr;
4493 				if (reg->precise)
4494 					bt_clear_frame_slot(bt, fr, i);
4495 				else
4496 					reg->precise = true;
4497 			}
4498 			if (env->log.level & BPF_LOG_LEVEL2) {
4499 				fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
4500 					     bt_frame_reg_mask(bt, fr));
4501 				verbose(env, "mark_precise: frame%d: parent state regs=%s ",
4502 					fr, env->tmp_str_buf);
4503 				fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
4504 					       bt_frame_stack_mask(bt, fr));
4505 				verbose(env, "stack=%s: ", env->tmp_str_buf);
4506 				print_verifier_state(env, func, true);
4507 			}
4508 		}
4509 
4510 		if (bt_empty(bt))
4511 			return 0;
4512 
4513 		subseq_idx = first_idx;
4514 		last_idx = st->last_insn_idx;
4515 		first_idx = st->first_insn_idx;
4516 	}
4517 
4518 	/* if we still have requested precise regs or slots, we missed
4519 	 * something (e.g., stack access through non-r10 register), so
4520 	 * fallback to marking all precise
4521 	 */
4522 	if (!bt_empty(bt)) {
4523 		mark_all_scalars_precise(env, env->cur_state);
4524 		bt_reset(bt);
4525 	}
4526 
4527 	return 0;
4528 }
4529 
4530 int mark_chain_precision(struct bpf_verifier_env *env, int regno)
4531 {
4532 	return __mark_chain_precision(env, regno);
4533 }
4534 
4535 /* mark_chain_precision_batch() assumes that env->bt is set in the caller to
4536  * desired reg and stack masks across all relevant frames
4537  */
4538 static int mark_chain_precision_batch(struct bpf_verifier_env *env)
4539 {
4540 	return __mark_chain_precision(env, -1);
4541 }
4542 
4543 static bool is_spillable_regtype(enum bpf_reg_type type)
4544 {
4545 	switch (base_type(type)) {
4546 	case PTR_TO_MAP_VALUE:
4547 	case PTR_TO_STACK:
4548 	case PTR_TO_CTX:
4549 	case PTR_TO_PACKET:
4550 	case PTR_TO_PACKET_META:
4551 	case PTR_TO_PACKET_END:
4552 	case PTR_TO_FLOW_KEYS:
4553 	case CONST_PTR_TO_MAP:
4554 	case PTR_TO_SOCKET:
4555 	case PTR_TO_SOCK_COMMON:
4556 	case PTR_TO_TCP_SOCK:
4557 	case PTR_TO_XDP_SOCK:
4558 	case PTR_TO_BTF_ID:
4559 	case PTR_TO_BUF:
4560 	case PTR_TO_MEM:
4561 	case PTR_TO_FUNC:
4562 	case PTR_TO_MAP_KEY:
4563 	case PTR_TO_ARENA:
4564 		return true;
4565 	default:
4566 		return false;
4567 	}
4568 }
4569 
4570 /* Does this register contain a constant zero? */
4571 static bool register_is_null(struct bpf_reg_state *reg)
4572 {
4573 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
4574 }
4575 
4576 /* check if register is a constant scalar value */
4577 static bool is_reg_const(struct bpf_reg_state *reg, bool subreg32)
4578 {
4579 	return reg->type == SCALAR_VALUE &&
4580 	       tnum_is_const(subreg32 ? tnum_subreg(reg->var_off) : reg->var_off);
4581 }
4582 
4583 /* assuming is_reg_const() is true, return constant value of a register */
4584 static u64 reg_const_value(struct bpf_reg_state *reg, bool subreg32)
4585 {
4586 	return subreg32 ? tnum_subreg(reg->var_off).value : reg->var_off.value;
4587 }
4588 
4589 static bool __is_pointer_value(bool allow_ptr_leaks,
4590 			       const struct bpf_reg_state *reg)
4591 {
4592 	if (allow_ptr_leaks)
4593 		return false;
4594 
4595 	return reg->type != SCALAR_VALUE;
4596 }
4597 
4598 static void assign_scalar_id_before_mov(struct bpf_verifier_env *env,
4599 					struct bpf_reg_state *src_reg)
4600 {
4601 	if (src_reg->type != SCALAR_VALUE)
4602 		return;
4603 
4604 	if (src_reg->id & BPF_ADD_CONST) {
4605 		/*
4606 		 * The verifier is processing rX = rY insn and
4607 		 * rY->id has special linked register already.
4608 		 * Cleared it, since multiple rX += const are not supported.
4609 		 */
4610 		src_reg->id = 0;
4611 		src_reg->off = 0;
4612 	}
4613 
4614 	if (!src_reg->id && !tnum_is_const(src_reg->var_off))
4615 		/* Ensure that src_reg has a valid ID that will be copied to
4616 		 * dst_reg and then will be used by sync_linked_regs() to
4617 		 * propagate min/max range.
4618 		 */
4619 		src_reg->id = ++env->id_gen;
4620 }
4621 
4622 /* Copy src state preserving dst->parent and dst->live fields */
4623 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src)
4624 {
4625 	struct bpf_reg_state *parent = dst->parent;
4626 	enum bpf_reg_liveness live = dst->live;
4627 
4628 	*dst = *src;
4629 	dst->parent = parent;
4630 	dst->live = live;
4631 }
4632 
4633 static void save_register_state(struct bpf_verifier_env *env,
4634 				struct bpf_func_state *state,
4635 				int spi, struct bpf_reg_state *reg,
4636 				int size)
4637 {
4638 	int i;
4639 
4640 	copy_register_state(&state->stack[spi].spilled_ptr, reg);
4641 	if (size == BPF_REG_SIZE)
4642 		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
4643 
4644 	for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--)
4645 		state->stack[spi].slot_type[i - 1] = STACK_SPILL;
4646 
4647 	/* size < 8 bytes spill */
4648 	for (; i; i--)
4649 		mark_stack_slot_misc(env, &state->stack[spi].slot_type[i - 1]);
4650 }
4651 
4652 static bool is_bpf_st_mem(struct bpf_insn *insn)
4653 {
4654 	return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM;
4655 }
4656 
4657 static int get_reg_width(struct bpf_reg_state *reg)
4658 {
4659 	return fls64(reg->umax_value);
4660 }
4661 
4662 /* See comment for mark_fastcall_pattern_for_call() */
4663 static void check_fastcall_stack_contract(struct bpf_verifier_env *env,
4664 					  struct bpf_func_state *state, int insn_idx, int off)
4665 {
4666 	struct bpf_subprog_info *subprog = &env->subprog_info[state->subprogno];
4667 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
4668 	int i;
4669 
4670 	if (subprog->fastcall_stack_off <= off || aux[insn_idx].fastcall_pattern)
4671 		return;
4672 	/* access to the region [max_stack_depth .. fastcall_stack_off)
4673 	 * from something that is not a part of the fastcall pattern,
4674 	 * disable fastcall rewrites for current subprogram by setting
4675 	 * fastcall_stack_off to a value smaller than any possible offset.
4676 	 */
4677 	subprog->fastcall_stack_off = S16_MIN;
4678 	/* reset fastcall aux flags within subprogram,
4679 	 * happens at most once per subprogram
4680 	 */
4681 	for (i = subprog->start; i < (subprog + 1)->start; ++i) {
4682 		aux[i].fastcall_spills_num = 0;
4683 		aux[i].fastcall_pattern = 0;
4684 	}
4685 }
4686 
4687 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
4688  * stack boundary and alignment are checked in check_mem_access()
4689  */
4690 static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
4691 				       /* stack frame we're writing to */
4692 				       struct bpf_func_state *state,
4693 				       int off, int size, int value_regno,
4694 				       int insn_idx)
4695 {
4696 	struct bpf_func_state *cur; /* state of the current function */
4697 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
4698 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
4699 	struct bpf_reg_state *reg = NULL;
4700 	int insn_flags = insn_stack_access_flags(state->frameno, spi);
4701 
4702 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
4703 	 * so it's aligned access and [off, off + size) are within stack limits
4704 	 */
4705 	if (!env->allow_ptr_leaks &&
4706 	    is_spilled_reg(&state->stack[spi]) &&
4707 	    !is_spilled_scalar_reg(&state->stack[spi]) &&
4708 	    size != BPF_REG_SIZE) {
4709 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
4710 		return -EACCES;
4711 	}
4712 
4713 	cur = env->cur_state->frame[env->cur_state->curframe];
4714 	if (value_regno >= 0)
4715 		reg = &cur->regs[value_regno];
4716 	if (!env->bypass_spec_v4) {
4717 		bool sanitize = reg && is_spillable_regtype(reg->type);
4718 
4719 		for (i = 0; i < size; i++) {
4720 			u8 type = state->stack[spi].slot_type[i];
4721 
4722 			if (type != STACK_MISC && type != STACK_ZERO) {
4723 				sanitize = true;
4724 				break;
4725 			}
4726 		}
4727 
4728 		if (sanitize)
4729 			env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
4730 	}
4731 
4732 	err = destroy_if_dynptr_stack_slot(env, state, spi);
4733 	if (err)
4734 		return err;
4735 
4736 	check_fastcall_stack_contract(env, state, insn_idx, off);
4737 	mark_stack_slot_scratched(env, spi);
4738 	if (reg && !(off % BPF_REG_SIZE) && reg->type == SCALAR_VALUE && env->bpf_capable) {
4739 		bool reg_value_fits;
4740 
4741 		reg_value_fits = get_reg_width(reg) <= BITS_PER_BYTE * size;
4742 		/* Make sure that reg had an ID to build a relation on spill. */
4743 		if (reg_value_fits)
4744 			assign_scalar_id_before_mov(env, reg);
4745 		save_register_state(env, state, spi, reg, size);
4746 		/* Break the relation on a narrowing spill. */
4747 		if (!reg_value_fits)
4748 			state->stack[spi].spilled_ptr.id = 0;
4749 	} else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) &&
4750 		   env->bpf_capable) {
4751 		struct bpf_reg_state *tmp_reg = &env->fake_reg[0];
4752 
4753 		memset(tmp_reg, 0, sizeof(*tmp_reg));
4754 		__mark_reg_known(tmp_reg, insn->imm);
4755 		tmp_reg->type = SCALAR_VALUE;
4756 		save_register_state(env, state, spi, tmp_reg, size);
4757 	} else if (reg && is_spillable_regtype(reg->type)) {
4758 		/* register containing pointer is being spilled into stack */
4759 		if (size != BPF_REG_SIZE) {
4760 			verbose_linfo(env, insn_idx, "; ");
4761 			verbose(env, "invalid size of register spill\n");
4762 			return -EACCES;
4763 		}
4764 		if (state != cur && reg->type == PTR_TO_STACK) {
4765 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
4766 			return -EINVAL;
4767 		}
4768 		save_register_state(env, state, spi, reg, size);
4769 	} else {
4770 		u8 type = STACK_MISC;
4771 
4772 		/* regular write of data into stack destroys any spilled ptr */
4773 		state->stack[spi].spilled_ptr.type = NOT_INIT;
4774 		/* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */
4775 		if (is_stack_slot_special(&state->stack[spi]))
4776 			for (i = 0; i < BPF_REG_SIZE; i++)
4777 				scrub_spilled_slot(&state->stack[spi].slot_type[i]);
4778 
4779 		/* only mark the slot as written if all 8 bytes were written
4780 		 * otherwise read propagation may incorrectly stop too soon
4781 		 * when stack slots are partially written.
4782 		 * This heuristic means that read propagation will be
4783 		 * conservative, since it will add reg_live_read marks
4784 		 * to stack slots all the way to first state when programs
4785 		 * writes+reads less than 8 bytes
4786 		 */
4787 		if (size == BPF_REG_SIZE)
4788 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
4789 
4790 		/* when we zero initialize stack slots mark them as such */
4791 		if ((reg && register_is_null(reg)) ||
4792 		    (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) {
4793 			/* STACK_ZERO case happened because register spill
4794 			 * wasn't properly aligned at the stack slot boundary,
4795 			 * so it's not a register spill anymore; force
4796 			 * originating register to be precise to make
4797 			 * STACK_ZERO correct for subsequent states
4798 			 */
4799 			err = mark_chain_precision(env, value_regno);
4800 			if (err)
4801 				return err;
4802 			type = STACK_ZERO;
4803 		}
4804 
4805 		/* Mark slots affected by this stack write. */
4806 		for (i = 0; i < size; i++)
4807 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = type;
4808 		insn_flags = 0; /* not a register spill */
4809 	}
4810 
4811 	if (insn_flags)
4812 		return push_insn_history(env, env->cur_state, insn_flags, 0);
4813 	return 0;
4814 }
4815 
4816 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
4817  * known to contain a variable offset.
4818  * This function checks whether the write is permitted and conservatively
4819  * tracks the effects of the write, considering that each stack slot in the
4820  * dynamic range is potentially written to.
4821  *
4822  * 'off' includes 'regno->off'.
4823  * 'value_regno' can be -1, meaning that an unknown value is being written to
4824  * the stack.
4825  *
4826  * Spilled pointers in range are not marked as written because we don't know
4827  * what's going to be actually written. This means that read propagation for
4828  * future reads cannot be terminated by this write.
4829  *
4830  * For privileged programs, uninitialized stack slots are considered
4831  * initialized by this write (even though we don't know exactly what offsets
4832  * are going to be written to). The idea is that we don't want the verifier to
4833  * reject future reads that access slots written to through variable offsets.
4834  */
4835 static int check_stack_write_var_off(struct bpf_verifier_env *env,
4836 				     /* func where register points to */
4837 				     struct bpf_func_state *state,
4838 				     int ptr_regno, int off, int size,
4839 				     int value_regno, int insn_idx)
4840 {
4841 	struct bpf_func_state *cur; /* state of the current function */
4842 	int min_off, max_off;
4843 	int i, err;
4844 	struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
4845 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
4846 	bool writing_zero = false;
4847 	/* set if the fact that we're writing a zero is used to let any
4848 	 * stack slots remain STACK_ZERO
4849 	 */
4850 	bool zero_used = false;
4851 
4852 	cur = env->cur_state->frame[env->cur_state->curframe];
4853 	ptr_reg = &cur->regs[ptr_regno];
4854 	min_off = ptr_reg->smin_value + off;
4855 	max_off = ptr_reg->smax_value + off + size;
4856 	if (value_regno >= 0)
4857 		value_reg = &cur->regs[value_regno];
4858 	if ((value_reg && register_is_null(value_reg)) ||
4859 	    (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0))
4860 		writing_zero = true;
4861 
4862 	for (i = min_off; i < max_off; i++) {
4863 		int spi;
4864 
4865 		spi = __get_spi(i);
4866 		err = destroy_if_dynptr_stack_slot(env, state, spi);
4867 		if (err)
4868 			return err;
4869 	}
4870 
4871 	check_fastcall_stack_contract(env, state, insn_idx, min_off);
4872 	/* Variable offset writes destroy any spilled pointers in range. */
4873 	for (i = min_off; i < max_off; i++) {
4874 		u8 new_type, *stype;
4875 		int slot, spi;
4876 
4877 		slot = -i - 1;
4878 		spi = slot / BPF_REG_SIZE;
4879 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
4880 		mark_stack_slot_scratched(env, spi);
4881 
4882 		if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) {
4883 			/* Reject the write if range we may write to has not
4884 			 * been initialized beforehand. If we didn't reject
4885 			 * here, the ptr status would be erased below (even
4886 			 * though not all slots are actually overwritten),
4887 			 * possibly opening the door to leaks.
4888 			 *
4889 			 * We do however catch STACK_INVALID case below, and
4890 			 * only allow reading possibly uninitialized memory
4891 			 * later for CAP_PERFMON, as the write may not happen to
4892 			 * that slot.
4893 			 */
4894 			verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
4895 				insn_idx, i);
4896 			return -EINVAL;
4897 		}
4898 
4899 		/* If writing_zero and the spi slot contains a spill of value 0,
4900 		 * maintain the spill type.
4901 		 */
4902 		if (writing_zero && *stype == STACK_SPILL &&
4903 		    is_spilled_scalar_reg(&state->stack[spi])) {
4904 			struct bpf_reg_state *spill_reg = &state->stack[spi].spilled_ptr;
4905 
4906 			if (tnum_is_const(spill_reg->var_off) && spill_reg->var_off.value == 0) {
4907 				zero_used = true;
4908 				continue;
4909 			}
4910 		}
4911 
4912 		/* Erase all other spilled pointers. */
4913 		state->stack[spi].spilled_ptr.type = NOT_INIT;
4914 
4915 		/* Update the slot type. */
4916 		new_type = STACK_MISC;
4917 		if (writing_zero && *stype == STACK_ZERO) {
4918 			new_type = STACK_ZERO;
4919 			zero_used = true;
4920 		}
4921 		/* If the slot is STACK_INVALID, we check whether it's OK to
4922 		 * pretend that it will be initialized by this write. The slot
4923 		 * might not actually be written to, and so if we mark it as
4924 		 * initialized future reads might leak uninitialized memory.
4925 		 * For privileged programs, we will accept such reads to slots
4926 		 * that may or may not be written because, if we're reject
4927 		 * them, the error would be too confusing.
4928 		 */
4929 		if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
4930 			verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
4931 					insn_idx, i);
4932 			return -EINVAL;
4933 		}
4934 		*stype = new_type;
4935 	}
4936 	if (zero_used) {
4937 		/* backtracking doesn't work for STACK_ZERO yet. */
4938 		err = mark_chain_precision(env, value_regno);
4939 		if (err)
4940 			return err;
4941 	}
4942 	return 0;
4943 }
4944 
4945 /* When register 'dst_regno' is assigned some values from stack[min_off,
4946  * max_off), we set the register's type according to the types of the
4947  * respective stack slots. If all the stack values are known to be zeros, then
4948  * so is the destination reg. Otherwise, the register is considered to be
4949  * SCALAR. This function does not deal with register filling; the caller must
4950  * ensure that all spilled registers in the stack range have been marked as
4951  * read.
4952  */
4953 static void mark_reg_stack_read(struct bpf_verifier_env *env,
4954 				/* func where src register points to */
4955 				struct bpf_func_state *ptr_state,
4956 				int min_off, int max_off, int dst_regno)
4957 {
4958 	struct bpf_verifier_state *vstate = env->cur_state;
4959 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4960 	int i, slot, spi;
4961 	u8 *stype;
4962 	int zeros = 0;
4963 
4964 	for (i = min_off; i < max_off; i++) {
4965 		slot = -i - 1;
4966 		spi = slot / BPF_REG_SIZE;
4967 		mark_stack_slot_scratched(env, spi);
4968 		stype = ptr_state->stack[spi].slot_type;
4969 		if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
4970 			break;
4971 		zeros++;
4972 	}
4973 	if (zeros == max_off - min_off) {
4974 		/* Any access_size read into register is zero extended,
4975 		 * so the whole register == const_zero.
4976 		 */
4977 		__mark_reg_const_zero(env, &state->regs[dst_regno]);
4978 	} else {
4979 		/* have read misc data from the stack */
4980 		mark_reg_unknown(env, state->regs, dst_regno);
4981 	}
4982 	state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4983 }
4984 
4985 /* Read the stack at 'off' and put the results into the register indicated by
4986  * 'dst_regno'. It handles reg filling if the addressed stack slot is a
4987  * spilled reg.
4988  *
4989  * 'dst_regno' can be -1, meaning that the read value is not going to a
4990  * register.
4991  *
4992  * The access is assumed to be within the current stack bounds.
4993  */
4994 static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
4995 				      /* func where src register points to */
4996 				      struct bpf_func_state *reg_state,
4997 				      int off, int size, int dst_regno)
4998 {
4999 	struct bpf_verifier_state *vstate = env->cur_state;
5000 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5001 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
5002 	struct bpf_reg_state *reg;
5003 	u8 *stype, type;
5004 	int insn_flags = insn_stack_access_flags(reg_state->frameno, spi);
5005 
5006 	stype = reg_state->stack[spi].slot_type;
5007 	reg = &reg_state->stack[spi].spilled_ptr;
5008 
5009 	mark_stack_slot_scratched(env, spi);
5010 	check_fastcall_stack_contract(env, state, env->insn_idx, off);
5011 
5012 	if (is_spilled_reg(&reg_state->stack[spi])) {
5013 		u8 spill_size = 1;
5014 
5015 		for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--)
5016 			spill_size++;
5017 
5018 		if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) {
5019 			if (reg->type != SCALAR_VALUE) {
5020 				verbose_linfo(env, env->insn_idx, "; ");
5021 				verbose(env, "invalid size of register fill\n");
5022 				return -EACCES;
5023 			}
5024 
5025 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
5026 			if (dst_regno < 0)
5027 				return 0;
5028 
5029 			if (size <= spill_size &&
5030 			    bpf_stack_narrow_access_ok(off, size, spill_size)) {
5031 				/* The earlier check_reg_arg() has decided the
5032 				 * subreg_def for this insn.  Save it first.
5033 				 */
5034 				s32 subreg_def = state->regs[dst_regno].subreg_def;
5035 
5036 				copy_register_state(&state->regs[dst_regno], reg);
5037 				state->regs[dst_regno].subreg_def = subreg_def;
5038 
5039 				/* Break the relation on a narrowing fill.
5040 				 * coerce_reg_to_size will adjust the boundaries.
5041 				 */
5042 				if (get_reg_width(reg) > size * BITS_PER_BYTE)
5043 					state->regs[dst_regno].id = 0;
5044 			} else {
5045 				int spill_cnt = 0, zero_cnt = 0;
5046 
5047 				for (i = 0; i < size; i++) {
5048 					type = stype[(slot - i) % BPF_REG_SIZE];
5049 					if (type == STACK_SPILL) {
5050 						spill_cnt++;
5051 						continue;
5052 					}
5053 					if (type == STACK_MISC)
5054 						continue;
5055 					if (type == STACK_ZERO) {
5056 						zero_cnt++;
5057 						continue;
5058 					}
5059 					if (type == STACK_INVALID && env->allow_uninit_stack)
5060 						continue;
5061 					verbose(env, "invalid read from stack off %d+%d size %d\n",
5062 						off, i, size);
5063 					return -EACCES;
5064 				}
5065 
5066 				if (spill_cnt == size &&
5067 				    tnum_is_const(reg->var_off) && reg->var_off.value == 0) {
5068 					__mark_reg_const_zero(env, &state->regs[dst_regno]);
5069 					/* this IS register fill, so keep insn_flags */
5070 				} else if (zero_cnt == size) {
5071 					/* similarly to mark_reg_stack_read(), preserve zeroes */
5072 					__mark_reg_const_zero(env, &state->regs[dst_regno]);
5073 					insn_flags = 0; /* not restoring original register state */
5074 				} else {
5075 					mark_reg_unknown(env, state->regs, dst_regno);
5076 					insn_flags = 0; /* not restoring original register state */
5077 				}
5078 			}
5079 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
5080 		} else if (dst_regno >= 0) {
5081 			/* restore register state from stack */
5082 			copy_register_state(&state->regs[dst_regno], reg);
5083 			/* mark reg as written since spilled pointer state likely
5084 			 * has its liveness marks cleared by is_state_visited()
5085 			 * which resets stack/reg liveness for state transitions
5086 			 */
5087 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
5088 		} else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
5089 			/* If dst_regno==-1, the caller is asking us whether
5090 			 * it is acceptable to use this value as a SCALAR_VALUE
5091 			 * (e.g. for XADD).
5092 			 * We must not allow unprivileged callers to do that
5093 			 * with spilled pointers.
5094 			 */
5095 			verbose(env, "leaking pointer from stack off %d\n",
5096 				off);
5097 			return -EACCES;
5098 		}
5099 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
5100 	} else {
5101 		for (i = 0; i < size; i++) {
5102 			type = stype[(slot - i) % BPF_REG_SIZE];
5103 			if (type == STACK_MISC)
5104 				continue;
5105 			if (type == STACK_ZERO)
5106 				continue;
5107 			if (type == STACK_INVALID && env->allow_uninit_stack)
5108 				continue;
5109 			verbose(env, "invalid read from stack off %d+%d size %d\n",
5110 				off, i, size);
5111 			return -EACCES;
5112 		}
5113 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
5114 		if (dst_regno >= 0)
5115 			mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
5116 		insn_flags = 0; /* we are not restoring spilled register */
5117 	}
5118 	if (insn_flags)
5119 		return push_insn_history(env, env->cur_state, insn_flags, 0);
5120 	return 0;
5121 }
5122 
5123 enum bpf_access_src {
5124 	ACCESS_DIRECT = 1,  /* the access is performed by an instruction */
5125 	ACCESS_HELPER = 2,  /* the access is performed by a helper */
5126 };
5127 
5128 static int check_stack_range_initialized(struct bpf_verifier_env *env,
5129 					 int regno, int off, int access_size,
5130 					 bool zero_size_allowed,
5131 					 enum bpf_access_src type,
5132 					 struct bpf_call_arg_meta *meta);
5133 
5134 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
5135 {
5136 	return cur_regs(env) + regno;
5137 }
5138 
5139 /* Read the stack at 'ptr_regno + off' and put the result into the register
5140  * 'dst_regno'.
5141  * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
5142  * but not its variable offset.
5143  * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
5144  *
5145  * As opposed to check_stack_read_fixed_off, this function doesn't deal with
5146  * filling registers (i.e. reads of spilled register cannot be detected when
5147  * the offset is not fixed). We conservatively mark 'dst_regno' as containing
5148  * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
5149  * offset; for a fixed offset check_stack_read_fixed_off should be used
5150  * instead.
5151  */
5152 static int check_stack_read_var_off(struct bpf_verifier_env *env,
5153 				    int ptr_regno, int off, int size, int dst_regno)
5154 {
5155 	/* The state of the source register. */
5156 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
5157 	struct bpf_func_state *ptr_state = func(env, reg);
5158 	int err;
5159 	int min_off, max_off;
5160 
5161 	/* Note that we pass a NULL meta, so raw access will not be permitted.
5162 	 */
5163 	err = check_stack_range_initialized(env, ptr_regno, off, size,
5164 					    false, ACCESS_DIRECT, NULL);
5165 	if (err)
5166 		return err;
5167 
5168 	min_off = reg->smin_value + off;
5169 	max_off = reg->smax_value + off;
5170 	mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
5171 	check_fastcall_stack_contract(env, ptr_state, env->insn_idx, min_off);
5172 	return 0;
5173 }
5174 
5175 /* check_stack_read dispatches to check_stack_read_fixed_off or
5176  * check_stack_read_var_off.
5177  *
5178  * The caller must ensure that the offset falls within the allocated stack
5179  * bounds.
5180  *
5181  * 'dst_regno' is a register which will receive the value from the stack. It
5182  * can be -1, meaning that the read value is not going to a register.
5183  */
5184 static int check_stack_read(struct bpf_verifier_env *env,
5185 			    int ptr_regno, int off, int size,
5186 			    int dst_regno)
5187 {
5188 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
5189 	struct bpf_func_state *state = func(env, reg);
5190 	int err;
5191 	/* Some accesses are only permitted with a static offset. */
5192 	bool var_off = !tnum_is_const(reg->var_off);
5193 
5194 	/* The offset is required to be static when reads don't go to a
5195 	 * register, in order to not leak pointers (see
5196 	 * check_stack_read_fixed_off).
5197 	 */
5198 	if (dst_regno < 0 && var_off) {
5199 		char tn_buf[48];
5200 
5201 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5202 		verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
5203 			tn_buf, off, size);
5204 		return -EACCES;
5205 	}
5206 	/* Variable offset is prohibited for unprivileged mode for simplicity
5207 	 * since it requires corresponding support in Spectre masking for stack
5208 	 * ALU. See also retrieve_ptr_limit(). The check in
5209 	 * check_stack_access_for_ptr_arithmetic() called by
5210 	 * adjust_ptr_min_max_vals() prevents users from creating stack pointers
5211 	 * with variable offsets, therefore no check is required here. Further,
5212 	 * just checking it here would be insufficient as speculative stack
5213 	 * writes could still lead to unsafe speculative behaviour.
5214 	 */
5215 	if (!var_off) {
5216 		off += reg->var_off.value;
5217 		err = check_stack_read_fixed_off(env, state, off, size,
5218 						 dst_regno);
5219 	} else {
5220 		/* Variable offset stack reads need more conservative handling
5221 		 * than fixed offset ones. Note that dst_regno >= 0 on this
5222 		 * branch.
5223 		 */
5224 		err = check_stack_read_var_off(env, ptr_regno, off, size,
5225 					       dst_regno);
5226 	}
5227 	return err;
5228 }
5229 
5230 
5231 /* check_stack_write dispatches to check_stack_write_fixed_off or
5232  * check_stack_write_var_off.
5233  *
5234  * 'ptr_regno' is the register used as a pointer into the stack.
5235  * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
5236  * 'value_regno' is the register whose value we're writing to the stack. It can
5237  * be -1, meaning that we're not writing from a register.
5238  *
5239  * The caller must ensure that the offset falls within the maximum stack size.
5240  */
5241 static int check_stack_write(struct bpf_verifier_env *env,
5242 			     int ptr_regno, int off, int size,
5243 			     int value_regno, int insn_idx)
5244 {
5245 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
5246 	struct bpf_func_state *state = func(env, reg);
5247 	int err;
5248 
5249 	if (tnum_is_const(reg->var_off)) {
5250 		off += reg->var_off.value;
5251 		err = check_stack_write_fixed_off(env, state, off, size,
5252 						  value_regno, insn_idx);
5253 	} else {
5254 		/* Variable offset stack reads need more conservative handling
5255 		 * than fixed offset ones.
5256 		 */
5257 		err = check_stack_write_var_off(env, state,
5258 						ptr_regno, off, size,
5259 						value_regno, insn_idx);
5260 	}
5261 	return err;
5262 }
5263 
5264 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
5265 				 int off, int size, enum bpf_access_type type)
5266 {
5267 	struct bpf_reg_state *regs = cur_regs(env);
5268 	struct bpf_map *map = regs[regno].map_ptr;
5269 	u32 cap = bpf_map_flags_to_cap(map);
5270 
5271 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
5272 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
5273 			map->value_size, off, size);
5274 		return -EACCES;
5275 	}
5276 
5277 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
5278 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
5279 			map->value_size, off, size);
5280 		return -EACCES;
5281 	}
5282 
5283 	return 0;
5284 }
5285 
5286 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
5287 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
5288 			      int off, int size, u32 mem_size,
5289 			      bool zero_size_allowed)
5290 {
5291 	bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
5292 	struct bpf_reg_state *reg;
5293 
5294 	if (off >= 0 && size_ok && (u64)off + size <= mem_size)
5295 		return 0;
5296 
5297 	reg = &cur_regs(env)[regno];
5298 	switch (reg->type) {
5299 	case PTR_TO_MAP_KEY:
5300 		verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
5301 			mem_size, off, size);
5302 		break;
5303 	case PTR_TO_MAP_VALUE:
5304 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
5305 			mem_size, off, size);
5306 		break;
5307 	case PTR_TO_PACKET:
5308 	case PTR_TO_PACKET_META:
5309 	case PTR_TO_PACKET_END:
5310 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
5311 			off, size, regno, reg->id, off, mem_size);
5312 		break;
5313 	case PTR_TO_MEM:
5314 	default:
5315 		verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
5316 			mem_size, off, size);
5317 	}
5318 
5319 	return -EACCES;
5320 }
5321 
5322 /* check read/write into a memory region with possible variable offset */
5323 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
5324 				   int off, int size, u32 mem_size,
5325 				   bool zero_size_allowed)
5326 {
5327 	struct bpf_verifier_state *vstate = env->cur_state;
5328 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5329 	struct bpf_reg_state *reg = &state->regs[regno];
5330 	int err;
5331 
5332 	/* We may have adjusted the register pointing to memory region, so we
5333 	 * need to try adding each of min_value and max_value to off
5334 	 * to make sure our theoretical access will be safe.
5335 	 *
5336 	 * The minimum value is only important with signed
5337 	 * comparisons where we can't assume the floor of a
5338 	 * value is 0.  If we are using signed variables for our
5339 	 * index'es we need to make sure that whatever we use
5340 	 * will have a set floor within our range.
5341 	 */
5342 	if (reg->smin_value < 0 &&
5343 	    (reg->smin_value == S64_MIN ||
5344 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
5345 	      reg->smin_value + off < 0)) {
5346 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5347 			regno);
5348 		return -EACCES;
5349 	}
5350 	err = __check_mem_access(env, regno, reg->smin_value + off, size,
5351 				 mem_size, zero_size_allowed);
5352 	if (err) {
5353 		verbose(env, "R%d min value is outside of the allowed memory range\n",
5354 			regno);
5355 		return err;
5356 	}
5357 
5358 	/* If we haven't set a max value then we need to bail since we can't be
5359 	 * sure we won't do bad things.
5360 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
5361 	 */
5362 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
5363 		verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
5364 			regno);
5365 		return -EACCES;
5366 	}
5367 	err = __check_mem_access(env, regno, reg->umax_value + off, size,
5368 				 mem_size, zero_size_allowed);
5369 	if (err) {
5370 		verbose(env, "R%d max value is outside of the allowed memory range\n",
5371 			regno);
5372 		return err;
5373 	}
5374 
5375 	return 0;
5376 }
5377 
5378 static int __check_ptr_off_reg(struct bpf_verifier_env *env,
5379 			       const struct bpf_reg_state *reg, int regno,
5380 			       bool fixed_off_ok)
5381 {
5382 	/* Access to this pointer-typed register or passing it to a helper
5383 	 * is only allowed in its original, unmodified form.
5384 	 */
5385 
5386 	if (reg->off < 0) {
5387 		verbose(env, "negative offset %s ptr R%d off=%d disallowed\n",
5388 			reg_type_str(env, reg->type), regno, reg->off);
5389 		return -EACCES;
5390 	}
5391 
5392 	if (!fixed_off_ok && reg->off) {
5393 		verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n",
5394 			reg_type_str(env, reg->type), regno, reg->off);
5395 		return -EACCES;
5396 	}
5397 
5398 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
5399 		char tn_buf[48];
5400 
5401 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5402 		verbose(env, "variable %s access var_off=%s disallowed\n",
5403 			reg_type_str(env, reg->type), tn_buf);
5404 		return -EACCES;
5405 	}
5406 
5407 	return 0;
5408 }
5409 
5410 static int check_ptr_off_reg(struct bpf_verifier_env *env,
5411 		             const struct bpf_reg_state *reg, int regno)
5412 {
5413 	return __check_ptr_off_reg(env, reg, regno, false);
5414 }
5415 
5416 static int map_kptr_match_type(struct bpf_verifier_env *env,
5417 			       struct btf_field *kptr_field,
5418 			       struct bpf_reg_state *reg, u32 regno)
5419 {
5420 	const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id);
5421 	int perm_flags;
5422 	const char *reg_name = "";
5423 
5424 	if (btf_is_kernel(reg->btf)) {
5425 		perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU;
5426 
5427 		/* Only unreferenced case accepts untrusted pointers */
5428 		if (kptr_field->type == BPF_KPTR_UNREF)
5429 			perm_flags |= PTR_UNTRUSTED;
5430 	} else {
5431 		perm_flags = PTR_MAYBE_NULL | MEM_ALLOC;
5432 		if (kptr_field->type == BPF_KPTR_PERCPU)
5433 			perm_flags |= MEM_PERCPU;
5434 	}
5435 
5436 	if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags))
5437 		goto bad_type;
5438 
5439 	/* We need to verify reg->type and reg->btf, before accessing reg->btf */
5440 	reg_name = btf_type_name(reg->btf, reg->btf_id);
5441 
5442 	/* For ref_ptr case, release function check should ensure we get one
5443 	 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the
5444 	 * normal store of unreferenced kptr, we must ensure var_off is zero.
5445 	 * Since ref_ptr cannot be accessed directly by BPF insns, checks for
5446 	 * reg->off and reg->ref_obj_id are not needed here.
5447 	 */
5448 	if (__check_ptr_off_reg(env, reg, regno, true))
5449 		return -EACCES;
5450 
5451 	/* A full type match is needed, as BTF can be vmlinux, module or prog BTF, and
5452 	 * we also need to take into account the reg->off.
5453 	 *
5454 	 * We want to support cases like:
5455 	 *
5456 	 * struct foo {
5457 	 *         struct bar br;
5458 	 *         struct baz bz;
5459 	 * };
5460 	 *
5461 	 * struct foo *v;
5462 	 * v = func();	      // PTR_TO_BTF_ID
5463 	 * val->foo = v;      // reg->off is zero, btf and btf_id match type
5464 	 * val->bar = &v->br; // reg->off is still zero, but we need to retry with
5465 	 *                    // first member type of struct after comparison fails
5466 	 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked
5467 	 *                    // to match type
5468 	 *
5469 	 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off
5470 	 * is zero. We must also ensure that btf_struct_ids_match does not walk
5471 	 * the struct to match type against first member of struct, i.e. reject
5472 	 * second case from above. Hence, when type is BPF_KPTR_REF, we set
5473 	 * strict mode to true for type match.
5474 	 */
5475 	if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
5476 				  kptr_field->kptr.btf, kptr_field->kptr.btf_id,
5477 				  kptr_field->type != BPF_KPTR_UNREF))
5478 		goto bad_type;
5479 	return 0;
5480 bad_type:
5481 	verbose(env, "invalid kptr access, R%d type=%s%s ", regno,
5482 		reg_type_str(env, reg->type), reg_name);
5483 	verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name);
5484 	if (kptr_field->type == BPF_KPTR_UNREF)
5485 		verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED),
5486 			targ_name);
5487 	else
5488 		verbose(env, "\n");
5489 	return -EINVAL;
5490 }
5491 
5492 static bool in_sleepable(struct bpf_verifier_env *env)
5493 {
5494 	return env->prog->sleepable ||
5495 	       (env->cur_state && env->cur_state->in_sleepable);
5496 }
5497 
5498 /* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock()
5499  * can dereference RCU protected pointers and result is PTR_TRUSTED.
5500  */
5501 static bool in_rcu_cs(struct bpf_verifier_env *env)
5502 {
5503 	return env->cur_state->active_rcu_lock ||
5504 	       cur_func(env)->active_locks ||
5505 	       !in_sleepable(env);
5506 }
5507 
5508 /* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */
5509 BTF_SET_START(rcu_protected_types)
5510 BTF_ID(struct, prog_test_ref_kfunc)
5511 #ifdef CONFIG_CGROUPS
5512 BTF_ID(struct, cgroup)
5513 #endif
5514 #ifdef CONFIG_BPF_JIT
5515 BTF_ID(struct, bpf_cpumask)
5516 #endif
5517 BTF_ID(struct, task_struct)
5518 BTF_ID(struct, bpf_crypto_ctx)
5519 BTF_SET_END(rcu_protected_types)
5520 
5521 static bool rcu_protected_object(const struct btf *btf, u32 btf_id)
5522 {
5523 	if (!btf_is_kernel(btf))
5524 		return true;
5525 	return btf_id_set_contains(&rcu_protected_types, btf_id);
5526 }
5527 
5528 static struct btf_record *kptr_pointee_btf_record(struct btf_field *kptr_field)
5529 {
5530 	struct btf_struct_meta *meta;
5531 
5532 	if (btf_is_kernel(kptr_field->kptr.btf))
5533 		return NULL;
5534 
5535 	meta = btf_find_struct_meta(kptr_field->kptr.btf,
5536 				    kptr_field->kptr.btf_id);
5537 
5538 	return meta ? meta->record : NULL;
5539 }
5540 
5541 static bool rcu_safe_kptr(const struct btf_field *field)
5542 {
5543 	const struct btf_field_kptr *kptr = &field->kptr;
5544 
5545 	return field->type == BPF_KPTR_PERCPU ||
5546 	       (field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id));
5547 }
5548 
5549 static u32 btf_ld_kptr_type(struct bpf_verifier_env *env, struct btf_field *kptr_field)
5550 {
5551 	struct btf_record *rec;
5552 	u32 ret;
5553 
5554 	ret = PTR_MAYBE_NULL;
5555 	if (rcu_safe_kptr(kptr_field) && in_rcu_cs(env)) {
5556 		ret |= MEM_RCU;
5557 		if (kptr_field->type == BPF_KPTR_PERCPU)
5558 			ret |= MEM_PERCPU;
5559 		else if (!btf_is_kernel(kptr_field->kptr.btf))
5560 			ret |= MEM_ALLOC;
5561 
5562 		rec = kptr_pointee_btf_record(kptr_field);
5563 		if (rec && btf_record_has_field(rec, BPF_GRAPH_NODE))
5564 			ret |= NON_OWN_REF;
5565 	} else {
5566 		ret |= PTR_UNTRUSTED;
5567 	}
5568 
5569 	return ret;
5570 }
5571 
5572 static int mark_uptr_ld_reg(struct bpf_verifier_env *env, u32 regno,
5573 			    struct btf_field *field)
5574 {
5575 	struct bpf_reg_state *reg;
5576 	const struct btf_type *t;
5577 
5578 	t = btf_type_by_id(field->kptr.btf, field->kptr.btf_id);
5579 	mark_reg_known_zero(env, cur_regs(env), regno);
5580 	reg = reg_state(env, regno);
5581 	reg->type = PTR_TO_MEM | PTR_MAYBE_NULL;
5582 	reg->mem_size = t->size;
5583 	reg->id = ++env->id_gen;
5584 
5585 	return 0;
5586 }
5587 
5588 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno,
5589 				 int value_regno, int insn_idx,
5590 				 struct btf_field *kptr_field)
5591 {
5592 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
5593 	int class = BPF_CLASS(insn->code);
5594 	struct bpf_reg_state *val_reg;
5595 
5596 	/* Things we already checked for in check_map_access and caller:
5597 	 *  - Reject cases where variable offset may touch kptr
5598 	 *  - size of access (must be BPF_DW)
5599 	 *  - tnum_is_const(reg->var_off)
5600 	 *  - kptr_field->offset == off + reg->var_off.value
5601 	 */
5602 	/* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */
5603 	if (BPF_MODE(insn->code) != BPF_MEM) {
5604 		verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n");
5605 		return -EACCES;
5606 	}
5607 
5608 	/* We only allow loading referenced kptr, since it will be marked as
5609 	 * untrusted, similar to unreferenced kptr.
5610 	 */
5611 	if (class != BPF_LDX &&
5612 	    (kptr_field->type == BPF_KPTR_REF || kptr_field->type == BPF_KPTR_PERCPU)) {
5613 		verbose(env, "store to referenced kptr disallowed\n");
5614 		return -EACCES;
5615 	}
5616 	if (class != BPF_LDX && kptr_field->type == BPF_UPTR) {
5617 		verbose(env, "store to uptr disallowed\n");
5618 		return -EACCES;
5619 	}
5620 
5621 	if (class == BPF_LDX) {
5622 		if (kptr_field->type == BPF_UPTR)
5623 			return mark_uptr_ld_reg(env, value_regno, kptr_field);
5624 
5625 		/* We can simply mark the value_regno receiving the pointer
5626 		 * value from map as PTR_TO_BTF_ID, with the correct type.
5627 		 */
5628 		mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf,
5629 				kptr_field->kptr.btf_id, btf_ld_kptr_type(env, kptr_field));
5630 	} else if (class == BPF_STX) {
5631 		val_reg = reg_state(env, value_regno);
5632 		if (!register_is_null(val_reg) &&
5633 		    map_kptr_match_type(env, kptr_field, val_reg, value_regno))
5634 			return -EACCES;
5635 	} else if (class == BPF_ST) {
5636 		if (insn->imm) {
5637 			verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n",
5638 				kptr_field->offset);
5639 			return -EACCES;
5640 		}
5641 	} else {
5642 		verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n");
5643 		return -EACCES;
5644 	}
5645 	return 0;
5646 }
5647 
5648 /* check read/write into a map element with possible variable offset */
5649 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
5650 			    int off, int size, bool zero_size_allowed,
5651 			    enum bpf_access_src src)
5652 {
5653 	struct bpf_verifier_state *vstate = env->cur_state;
5654 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5655 	struct bpf_reg_state *reg = &state->regs[regno];
5656 	struct bpf_map *map = reg->map_ptr;
5657 	struct btf_record *rec;
5658 	int err, i;
5659 
5660 	err = check_mem_region_access(env, regno, off, size, map->value_size,
5661 				      zero_size_allowed);
5662 	if (err)
5663 		return err;
5664 
5665 	if (IS_ERR_OR_NULL(map->record))
5666 		return 0;
5667 	rec = map->record;
5668 	for (i = 0; i < rec->cnt; i++) {
5669 		struct btf_field *field = &rec->fields[i];
5670 		u32 p = field->offset;
5671 
5672 		/* If any part of a field  can be touched by load/store, reject
5673 		 * this program. To check that [x1, x2) overlaps with [y1, y2),
5674 		 * it is sufficient to check x1 < y2 && y1 < x2.
5675 		 */
5676 		if (reg->smin_value + off < p + field->size &&
5677 		    p < reg->umax_value + off + size) {
5678 			switch (field->type) {
5679 			case BPF_KPTR_UNREF:
5680 			case BPF_KPTR_REF:
5681 			case BPF_KPTR_PERCPU:
5682 			case BPF_UPTR:
5683 				if (src != ACCESS_DIRECT) {
5684 					verbose(env, "%s cannot be accessed indirectly by helper\n",
5685 						btf_field_type_name(field->type));
5686 					return -EACCES;
5687 				}
5688 				if (!tnum_is_const(reg->var_off)) {
5689 					verbose(env, "%s access cannot have variable offset\n",
5690 						btf_field_type_name(field->type));
5691 					return -EACCES;
5692 				}
5693 				if (p != off + reg->var_off.value) {
5694 					verbose(env, "%s access misaligned expected=%u off=%llu\n",
5695 						btf_field_type_name(field->type),
5696 						p, off + reg->var_off.value);
5697 					return -EACCES;
5698 				}
5699 				if (size != bpf_size_to_bytes(BPF_DW)) {
5700 					verbose(env, "%s access size must be BPF_DW\n",
5701 						btf_field_type_name(field->type));
5702 					return -EACCES;
5703 				}
5704 				break;
5705 			default:
5706 				verbose(env, "%s cannot be accessed directly by load/store\n",
5707 					btf_field_type_name(field->type));
5708 				return -EACCES;
5709 			}
5710 		}
5711 	}
5712 	return 0;
5713 }
5714 
5715 #define MAX_PACKET_OFF 0xffff
5716 
5717 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
5718 				       const struct bpf_call_arg_meta *meta,
5719 				       enum bpf_access_type t)
5720 {
5721 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
5722 
5723 	switch (prog_type) {
5724 	/* Program types only with direct read access go here! */
5725 	case BPF_PROG_TYPE_LWT_IN:
5726 	case BPF_PROG_TYPE_LWT_OUT:
5727 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
5728 	case BPF_PROG_TYPE_SK_REUSEPORT:
5729 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
5730 	case BPF_PROG_TYPE_CGROUP_SKB:
5731 		if (t == BPF_WRITE)
5732 			return false;
5733 		fallthrough;
5734 
5735 	/* Program types with direct read + write access go here! */
5736 	case BPF_PROG_TYPE_SCHED_CLS:
5737 	case BPF_PROG_TYPE_SCHED_ACT:
5738 	case BPF_PROG_TYPE_XDP:
5739 	case BPF_PROG_TYPE_LWT_XMIT:
5740 	case BPF_PROG_TYPE_SK_SKB:
5741 	case BPF_PROG_TYPE_SK_MSG:
5742 		if (meta)
5743 			return meta->pkt_access;
5744 
5745 		env->seen_direct_write = true;
5746 		return true;
5747 
5748 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
5749 		if (t == BPF_WRITE)
5750 			env->seen_direct_write = true;
5751 
5752 		return true;
5753 
5754 	default:
5755 		return false;
5756 	}
5757 }
5758 
5759 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
5760 			       int size, bool zero_size_allowed)
5761 {
5762 	struct bpf_reg_state *regs = cur_regs(env);
5763 	struct bpf_reg_state *reg = &regs[regno];
5764 	int err;
5765 
5766 	/* We may have added a variable offset to the packet pointer; but any
5767 	 * reg->range we have comes after that.  We are only checking the fixed
5768 	 * offset.
5769 	 */
5770 
5771 	/* We don't allow negative numbers, because we aren't tracking enough
5772 	 * detail to prove they're safe.
5773 	 */
5774 	if (reg->smin_value < 0) {
5775 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5776 			regno);
5777 		return -EACCES;
5778 	}
5779 
5780 	err = reg->range < 0 ? -EINVAL :
5781 	      __check_mem_access(env, regno, off, size, reg->range,
5782 				 zero_size_allowed);
5783 	if (err) {
5784 		verbose(env, "R%d offset is outside of the packet\n", regno);
5785 		return err;
5786 	}
5787 
5788 	/* __check_mem_access has made sure "off + size - 1" is within u16.
5789 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
5790 	 * otherwise find_good_pkt_pointers would have refused to set range info
5791 	 * that __check_mem_access would have rejected this pkt access.
5792 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
5793 	 */
5794 	env->prog->aux->max_pkt_offset =
5795 		max_t(u32, env->prog->aux->max_pkt_offset,
5796 		      off + reg->umax_value + size - 1);
5797 
5798 	return err;
5799 }
5800 
5801 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
5802 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
5803 			    enum bpf_access_type t, enum bpf_reg_type *reg_type,
5804 			    struct btf **btf, u32 *btf_id, bool *is_retval, bool is_ldsx)
5805 {
5806 	struct bpf_insn_access_aux info = {
5807 		.reg_type = *reg_type,
5808 		.log = &env->log,
5809 		.is_retval = false,
5810 		.is_ldsx = is_ldsx,
5811 	};
5812 
5813 	if (env->ops->is_valid_access &&
5814 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
5815 		/* A non zero info.ctx_field_size indicates that this field is a
5816 		 * candidate for later verifier transformation to load the whole
5817 		 * field and then apply a mask when accessed with a narrower
5818 		 * access than actual ctx access size. A zero info.ctx_field_size
5819 		 * will only allow for whole field access and rejects any other
5820 		 * type of narrower access.
5821 		 */
5822 		*reg_type = info.reg_type;
5823 		*is_retval = info.is_retval;
5824 
5825 		if (base_type(*reg_type) == PTR_TO_BTF_ID) {
5826 			*btf = info.btf;
5827 			*btf_id = info.btf_id;
5828 		} else {
5829 			env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
5830 		}
5831 		/* remember the offset of last byte accessed in ctx */
5832 		if (env->prog->aux->max_ctx_offset < off + size)
5833 			env->prog->aux->max_ctx_offset = off + size;
5834 		return 0;
5835 	}
5836 
5837 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
5838 	return -EACCES;
5839 }
5840 
5841 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
5842 				  int size)
5843 {
5844 	if (size < 0 || off < 0 ||
5845 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
5846 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
5847 			off, size);
5848 		return -EACCES;
5849 	}
5850 	return 0;
5851 }
5852 
5853 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
5854 			     u32 regno, int off, int size,
5855 			     enum bpf_access_type t)
5856 {
5857 	struct bpf_reg_state *regs = cur_regs(env);
5858 	struct bpf_reg_state *reg = &regs[regno];
5859 	struct bpf_insn_access_aux info = {};
5860 	bool valid;
5861 
5862 	if (reg->smin_value < 0) {
5863 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5864 			regno);
5865 		return -EACCES;
5866 	}
5867 
5868 	switch (reg->type) {
5869 	case PTR_TO_SOCK_COMMON:
5870 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
5871 		break;
5872 	case PTR_TO_SOCKET:
5873 		valid = bpf_sock_is_valid_access(off, size, t, &info);
5874 		break;
5875 	case PTR_TO_TCP_SOCK:
5876 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
5877 		break;
5878 	case PTR_TO_XDP_SOCK:
5879 		valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
5880 		break;
5881 	default:
5882 		valid = false;
5883 	}
5884 
5885 
5886 	if (valid) {
5887 		env->insn_aux_data[insn_idx].ctx_field_size =
5888 			info.ctx_field_size;
5889 		return 0;
5890 	}
5891 
5892 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
5893 		regno, reg_type_str(env, reg->type), off, size);
5894 
5895 	return -EACCES;
5896 }
5897 
5898 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
5899 {
5900 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
5901 }
5902 
5903 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
5904 {
5905 	const struct bpf_reg_state *reg = reg_state(env, regno);
5906 
5907 	return reg->type == PTR_TO_CTX;
5908 }
5909 
5910 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
5911 {
5912 	const struct bpf_reg_state *reg = reg_state(env, regno);
5913 
5914 	return type_is_sk_pointer(reg->type);
5915 }
5916 
5917 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
5918 {
5919 	const struct bpf_reg_state *reg = reg_state(env, regno);
5920 
5921 	return type_is_pkt_pointer(reg->type);
5922 }
5923 
5924 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
5925 {
5926 	const struct bpf_reg_state *reg = reg_state(env, regno);
5927 
5928 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
5929 	return reg->type == PTR_TO_FLOW_KEYS;
5930 }
5931 
5932 static bool is_arena_reg(struct bpf_verifier_env *env, int regno)
5933 {
5934 	const struct bpf_reg_state *reg = reg_state(env, regno);
5935 
5936 	return reg->type == PTR_TO_ARENA;
5937 }
5938 
5939 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = {
5940 #ifdef CONFIG_NET
5941 	[PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK],
5942 	[PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
5943 	[PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
5944 #endif
5945 	[CONST_PTR_TO_MAP] = btf_bpf_map_id,
5946 };
5947 
5948 static bool is_trusted_reg(const struct bpf_reg_state *reg)
5949 {
5950 	/* A referenced register is always trusted. */
5951 	if (reg->ref_obj_id)
5952 		return true;
5953 
5954 	/* Types listed in the reg2btf_ids are always trusted */
5955 	if (reg2btf_ids[base_type(reg->type)] &&
5956 	    !bpf_type_has_unsafe_modifiers(reg->type))
5957 		return true;
5958 
5959 	/* If a register is not referenced, it is trusted if it has the
5960 	 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the
5961 	 * other type modifiers may be safe, but we elect to take an opt-in
5962 	 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are
5963 	 * not.
5964 	 *
5965 	 * Eventually, we should make PTR_TRUSTED the single source of truth
5966 	 * for whether a register is trusted.
5967 	 */
5968 	return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS &&
5969 	       !bpf_type_has_unsafe_modifiers(reg->type);
5970 }
5971 
5972 static bool is_rcu_reg(const struct bpf_reg_state *reg)
5973 {
5974 	return reg->type & MEM_RCU;
5975 }
5976 
5977 static void clear_trusted_flags(enum bpf_type_flag *flag)
5978 {
5979 	*flag &= ~(BPF_REG_TRUSTED_MODIFIERS | MEM_RCU);
5980 }
5981 
5982 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
5983 				   const struct bpf_reg_state *reg,
5984 				   int off, int size, bool strict)
5985 {
5986 	struct tnum reg_off;
5987 	int ip_align;
5988 
5989 	/* Byte size accesses are always allowed. */
5990 	if (!strict || size == 1)
5991 		return 0;
5992 
5993 	/* For platforms that do not have a Kconfig enabling
5994 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
5995 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
5996 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
5997 	 * to this code only in strict mode where we want to emulate
5998 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
5999 	 * unconditional IP align value of '2'.
6000 	 */
6001 	ip_align = 2;
6002 
6003 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
6004 	if (!tnum_is_aligned(reg_off, size)) {
6005 		char tn_buf[48];
6006 
6007 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6008 		verbose(env,
6009 			"misaligned packet access off %d+%s+%d+%d size %d\n",
6010 			ip_align, tn_buf, reg->off, off, size);
6011 		return -EACCES;
6012 	}
6013 
6014 	return 0;
6015 }
6016 
6017 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
6018 				       const struct bpf_reg_state *reg,
6019 				       const char *pointer_desc,
6020 				       int off, int size, bool strict)
6021 {
6022 	struct tnum reg_off;
6023 
6024 	/* Byte size accesses are always allowed. */
6025 	if (!strict || size == 1)
6026 		return 0;
6027 
6028 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
6029 	if (!tnum_is_aligned(reg_off, size)) {
6030 		char tn_buf[48];
6031 
6032 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6033 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
6034 			pointer_desc, tn_buf, reg->off, off, size);
6035 		return -EACCES;
6036 	}
6037 
6038 	return 0;
6039 }
6040 
6041 static int check_ptr_alignment(struct bpf_verifier_env *env,
6042 			       const struct bpf_reg_state *reg, int off,
6043 			       int size, bool strict_alignment_once)
6044 {
6045 	bool strict = env->strict_alignment || strict_alignment_once;
6046 	const char *pointer_desc = "";
6047 
6048 	switch (reg->type) {
6049 	case PTR_TO_PACKET:
6050 	case PTR_TO_PACKET_META:
6051 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
6052 		 * right in front, treat it the very same way.
6053 		 */
6054 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
6055 	case PTR_TO_FLOW_KEYS:
6056 		pointer_desc = "flow keys ";
6057 		break;
6058 	case PTR_TO_MAP_KEY:
6059 		pointer_desc = "key ";
6060 		break;
6061 	case PTR_TO_MAP_VALUE:
6062 		pointer_desc = "value ";
6063 		break;
6064 	case PTR_TO_CTX:
6065 		pointer_desc = "context ";
6066 		break;
6067 	case PTR_TO_STACK:
6068 		pointer_desc = "stack ";
6069 		/* The stack spill tracking logic in check_stack_write_fixed_off()
6070 		 * and check_stack_read_fixed_off() relies on stack accesses being
6071 		 * aligned.
6072 		 */
6073 		strict = true;
6074 		break;
6075 	case PTR_TO_SOCKET:
6076 		pointer_desc = "sock ";
6077 		break;
6078 	case PTR_TO_SOCK_COMMON:
6079 		pointer_desc = "sock_common ";
6080 		break;
6081 	case PTR_TO_TCP_SOCK:
6082 		pointer_desc = "tcp_sock ";
6083 		break;
6084 	case PTR_TO_XDP_SOCK:
6085 		pointer_desc = "xdp_sock ";
6086 		break;
6087 	case PTR_TO_ARENA:
6088 		return 0;
6089 	default:
6090 		break;
6091 	}
6092 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
6093 					   strict);
6094 }
6095 
6096 static enum priv_stack_mode bpf_enable_priv_stack(struct bpf_prog *prog)
6097 {
6098 	if (!bpf_jit_supports_private_stack())
6099 		return NO_PRIV_STACK;
6100 
6101 	/* bpf_prog_check_recur() checks all prog types that use bpf trampoline
6102 	 * while kprobe/tp/perf_event/raw_tp don't use trampoline hence checked
6103 	 * explicitly.
6104 	 */
6105 	switch (prog->type) {
6106 	case BPF_PROG_TYPE_KPROBE:
6107 	case BPF_PROG_TYPE_TRACEPOINT:
6108 	case BPF_PROG_TYPE_PERF_EVENT:
6109 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
6110 		return PRIV_STACK_ADAPTIVE;
6111 	case BPF_PROG_TYPE_TRACING:
6112 	case BPF_PROG_TYPE_LSM:
6113 	case BPF_PROG_TYPE_STRUCT_OPS:
6114 		if (prog->aux->priv_stack_requested || bpf_prog_check_recur(prog))
6115 			return PRIV_STACK_ADAPTIVE;
6116 		fallthrough;
6117 	default:
6118 		break;
6119 	}
6120 
6121 	return NO_PRIV_STACK;
6122 }
6123 
6124 static int round_up_stack_depth(struct bpf_verifier_env *env, int stack_depth)
6125 {
6126 	if (env->prog->jit_requested)
6127 		return round_up(stack_depth, 16);
6128 
6129 	/* round up to 32-bytes, since this is granularity
6130 	 * of interpreter stack size
6131 	 */
6132 	return round_up(max_t(u32, stack_depth, 1), 32);
6133 }
6134 
6135 /* starting from main bpf function walk all instructions of the function
6136  * and recursively walk all callees that given function can call.
6137  * Ignore jump and exit insns.
6138  * Since recursion is prevented by check_cfg() this algorithm
6139  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
6140  */
6141 static int check_max_stack_depth_subprog(struct bpf_verifier_env *env, int idx,
6142 					 bool priv_stack_supported)
6143 {
6144 	struct bpf_subprog_info *subprog = env->subprog_info;
6145 	struct bpf_insn *insn = env->prog->insnsi;
6146 	int depth = 0, frame = 0, i, subprog_end, subprog_depth;
6147 	bool tail_call_reachable = false;
6148 	int ret_insn[MAX_CALL_FRAMES];
6149 	int ret_prog[MAX_CALL_FRAMES];
6150 	int j;
6151 
6152 	i = subprog[idx].start;
6153 	if (!priv_stack_supported)
6154 		subprog[idx].priv_stack_mode = NO_PRIV_STACK;
6155 process_func:
6156 	/* protect against potential stack overflow that might happen when
6157 	 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
6158 	 * depth for such case down to 256 so that the worst case scenario
6159 	 * would result in 8k stack size (32 which is tailcall limit * 256 =
6160 	 * 8k).
6161 	 *
6162 	 * To get the idea what might happen, see an example:
6163 	 * func1 -> sub rsp, 128
6164 	 *  subfunc1 -> sub rsp, 256
6165 	 *  tailcall1 -> add rsp, 256
6166 	 *   func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
6167 	 *   subfunc2 -> sub rsp, 64
6168 	 *   subfunc22 -> sub rsp, 128
6169 	 *   tailcall2 -> add rsp, 128
6170 	 *    func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
6171 	 *
6172 	 * tailcall will unwind the current stack frame but it will not get rid
6173 	 * of caller's stack as shown on the example above.
6174 	 */
6175 	if (idx && subprog[idx].has_tail_call && depth >= 256) {
6176 		verbose(env,
6177 			"tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
6178 			depth);
6179 		return -EACCES;
6180 	}
6181 
6182 	subprog_depth = round_up_stack_depth(env, subprog[idx].stack_depth);
6183 	if (priv_stack_supported) {
6184 		/* Request private stack support only if the subprog stack
6185 		 * depth is no less than BPF_PRIV_STACK_MIN_SIZE. This is to
6186 		 * avoid jit penalty if the stack usage is small.
6187 		 */
6188 		if (subprog[idx].priv_stack_mode == PRIV_STACK_UNKNOWN &&
6189 		    subprog_depth >= BPF_PRIV_STACK_MIN_SIZE)
6190 			subprog[idx].priv_stack_mode = PRIV_STACK_ADAPTIVE;
6191 	}
6192 
6193 	if (subprog[idx].priv_stack_mode == PRIV_STACK_ADAPTIVE) {
6194 		if (subprog_depth > MAX_BPF_STACK) {
6195 			verbose(env, "stack size of subprog %d is %d. Too large\n",
6196 				idx, subprog_depth);
6197 			return -EACCES;
6198 		}
6199 	} else {
6200 		depth += subprog_depth;
6201 		if (depth > MAX_BPF_STACK) {
6202 			verbose(env, "combined stack size of %d calls is %d. Too large\n",
6203 				frame + 1, depth);
6204 			return -EACCES;
6205 		}
6206 	}
6207 continue_func:
6208 	subprog_end = subprog[idx + 1].start;
6209 	for (; i < subprog_end; i++) {
6210 		int next_insn, sidx;
6211 
6212 		if (bpf_pseudo_kfunc_call(insn + i) && !insn[i].off) {
6213 			bool err = false;
6214 
6215 			if (!is_bpf_throw_kfunc(insn + i))
6216 				continue;
6217 			if (subprog[idx].is_cb)
6218 				err = true;
6219 			for (int c = 0; c < frame && !err; c++) {
6220 				if (subprog[ret_prog[c]].is_cb) {
6221 					err = true;
6222 					break;
6223 				}
6224 			}
6225 			if (!err)
6226 				continue;
6227 			verbose(env,
6228 				"bpf_throw kfunc (insn %d) cannot be called from callback subprog %d\n",
6229 				i, idx);
6230 			return -EINVAL;
6231 		}
6232 
6233 		if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
6234 			continue;
6235 		/* remember insn and function to return to */
6236 		ret_insn[frame] = i + 1;
6237 		ret_prog[frame] = idx;
6238 
6239 		/* find the callee */
6240 		next_insn = i + insn[i].imm + 1;
6241 		sidx = find_subprog(env, next_insn);
6242 		if (sidx < 0) {
6243 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
6244 				  next_insn);
6245 			return -EFAULT;
6246 		}
6247 		if (subprog[sidx].is_async_cb) {
6248 			if (subprog[sidx].has_tail_call) {
6249 				verbose(env, "verifier bug. subprog has tail_call and async cb\n");
6250 				return -EFAULT;
6251 			}
6252 			/* async callbacks don't increase bpf prog stack size unless called directly */
6253 			if (!bpf_pseudo_call(insn + i))
6254 				continue;
6255 			if (subprog[sidx].is_exception_cb) {
6256 				verbose(env, "insn %d cannot call exception cb directly\n", i);
6257 				return -EINVAL;
6258 			}
6259 		}
6260 		i = next_insn;
6261 		idx = sidx;
6262 		if (!priv_stack_supported)
6263 			subprog[idx].priv_stack_mode = NO_PRIV_STACK;
6264 
6265 		if (subprog[idx].has_tail_call)
6266 			tail_call_reachable = true;
6267 
6268 		frame++;
6269 		if (frame >= MAX_CALL_FRAMES) {
6270 			verbose(env, "the call stack of %d frames is too deep !\n",
6271 				frame);
6272 			return -E2BIG;
6273 		}
6274 		goto process_func;
6275 	}
6276 	/* if tail call got detected across bpf2bpf calls then mark each of the
6277 	 * currently present subprog frames as tail call reachable subprogs;
6278 	 * this info will be utilized by JIT so that we will be preserving the
6279 	 * tail call counter throughout bpf2bpf calls combined with tailcalls
6280 	 */
6281 	if (tail_call_reachable)
6282 		for (j = 0; j < frame; j++) {
6283 			if (subprog[ret_prog[j]].is_exception_cb) {
6284 				verbose(env, "cannot tail call within exception cb\n");
6285 				return -EINVAL;
6286 			}
6287 			subprog[ret_prog[j]].tail_call_reachable = true;
6288 		}
6289 	if (subprog[0].tail_call_reachable)
6290 		env->prog->aux->tail_call_reachable = true;
6291 
6292 	/* end of for() loop means the last insn of the 'subprog'
6293 	 * was reached. Doesn't matter whether it was JA or EXIT
6294 	 */
6295 	if (frame == 0)
6296 		return 0;
6297 	if (subprog[idx].priv_stack_mode != PRIV_STACK_ADAPTIVE)
6298 		depth -= round_up_stack_depth(env, subprog[idx].stack_depth);
6299 	frame--;
6300 	i = ret_insn[frame];
6301 	idx = ret_prog[frame];
6302 	goto continue_func;
6303 }
6304 
6305 static int check_max_stack_depth(struct bpf_verifier_env *env)
6306 {
6307 	enum priv_stack_mode priv_stack_mode = PRIV_STACK_UNKNOWN;
6308 	struct bpf_subprog_info *si = env->subprog_info;
6309 	bool priv_stack_supported;
6310 	int ret;
6311 
6312 	for (int i = 0; i < env->subprog_cnt; i++) {
6313 		if (si[i].has_tail_call) {
6314 			priv_stack_mode = NO_PRIV_STACK;
6315 			break;
6316 		}
6317 	}
6318 
6319 	if (priv_stack_mode == PRIV_STACK_UNKNOWN)
6320 		priv_stack_mode = bpf_enable_priv_stack(env->prog);
6321 
6322 	/* All async_cb subprogs use normal kernel stack. If a particular
6323 	 * subprog appears in both main prog and async_cb subtree, that
6324 	 * subprog will use normal kernel stack to avoid potential nesting.
6325 	 * The reverse subprog traversal ensures when main prog subtree is
6326 	 * checked, the subprogs appearing in async_cb subtrees are already
6327 	 * marked as using normal kernel stack, so stack size checking can
6328 	 * be done properly.
6329 	 */
6330 	for (int i = env->subprog_cnt - 1; i >= 0; i--) {
6331 		if (!i || si[i].is_async_cb) {
6332 			priv_stack_supported = !i && priv_stack_mode == PRIV_STACK_ADAPTIVE;
6333 			ret = check_max_stack_depth_subprog(env, i, priv_stack_supported);
6334 			if (ret < 0)
6335 				return ret;
6336 		}
6337 	}
6338 
6339 	for (int i = 0; i < env->subprog_cnt; i++) {
6340 		if (si[i].priv_stack_mode == PRIV_STACK_ADAPTIVE) {
6341 			env->prog->aux->jits_use_priv_stack = true;
6342 			break;
6343 		}
6344 	}
6345 
6346 	return 0;
6347 }
6348 
6349 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
6350 static int get_callee_stack_depth(struct bpf_verifier_env *env,
6351 				  const struct bpf_insn *insn, int idx)
6352 {
6353 	int start = idx + insn->imm + 1, subprog;
6354 
6355 	subprog = find_subprog(env, start);
6356 	if (subprog < 0) {
6357 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
6358 			  start);
6359 		return -EFAULT;
6360 	}
6361 	return env->subprog_info[subprog].stack_depth;
6362 }
6363 #endif
6364 
6365 static int __check_buffer_access(struct bpf_verifier_env *env,
6366 				 const char *buf_info,
6367 				 const struct bpf_reg_state *reg,
6368 				 int regno, int off, int size)
6369 {
6370 	if (off < 0) {
6371 		verbose(env,
6372 			"R%d invalid %s buffer access: off=%d, size=%d\n",
6373 			regno, buf_info, off, size);
6374 		return -EACCES;
6375 	}
6376 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
6377 		char tn_buf[48];
6378 
6379 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6380 		verbose(env,
6381 			"R%d invalid variable buffer offset: off=%d, var_off=%s\n",
6382 			regno, off, tn_buf);
6383 		return -EACCES;
6384 	}
6385 
6386 	return 0;
6387 }
6388 
6389 static int check_tp_buffer_access(struct bpf_verifier_env *env,
6390 				  const struct bpf_reg_state *reg,
6391 				  int regno, int off, int size)
6392 {
6393 	int err;
6394 
6395 	err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
6396 	if (err)
6397 		return err;
6398 
6399 	if (off + size > env->prog->aux->max_tp_access)
6400 		env->prog->aux->max_tp_access = off + size;
6401 
6402 	return 0;
6403 }
6404 
6405 static int check_buffer_access(struct bpf_verifier_env *env,
6406 			       const struct bpf_reg_state *reg,
6407 			       int regno, int off, int size,
6408 			       bool zero_size_allowed,
6409 			       u32 *max_access)
6410 {
6411 	const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr";
6412 	int err;
6413 
6414 	err = __check_buffer_access(env, buf_info, reg, regno, off, size);
6415 	if (err)
6416 		return err;
6417 
6418 	if (off + size > *max_access)
6419 		*max_access = off + size;
6420 
6421 	return 0;
6422 }
6423 
6424 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
6425 static void zext_32_to_64(struct bpf_reg_state *reg)
6426 {
6427 	reg->var_off = tnum_subreg(reg->var_off);
6428 	__reg_assign_32_into_64(reg);
6429 }
6430 
6431 /* truncate register to smaller size (in bytes)
6432  * must be called with size < BPF_REG_SIZE
6433  */
6434 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
6435 {
6436 	u64 mask;
6437 
6438 	/* clear high bits in bit representation */
6439 	reg->var_off = tnum_cast(reg->var_off, size);
6440 
6441 	/* fix arithmetic bounds */
6442 	mask = ((u64)1 << (size * 8)) - 1;
6443 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
6444 		reg->umin_value &= mask;
6445 		reg->umax_value &= mask;
6446 	} else {
6447 		reg->umin_value = 0;
6448 		reg->umax_value = mask;
6449 	}
6450 	reg->smin_value = reg->umin_value;
6451 	reg->smax_value = reg->umax_value;
6452 
6453 	/* If size is smaller than 32bit register the 32bit register
6454 	 * values are also truncated so we push 64-bit bounds into
6455 	 * 32-bit bounds. Above were truncated < 32-bits already.
6456 	 */
6457 	if (size < 4)
6458 		__mark_reg32_unbounded(reg);
6459 
6460 	reg_bounds_sync(reg);
6461 }
6462 
6463 static void set_sext64_default_val(struct bpf_reg_state *reg, int size)
6464 {
6465 	if (size == 1) {
6466 		reg->smin_value = reg->s32_min_value = S8_MIN;
6467 		reg->smax_value = reg->s32_max_value = S8_MAX;
6468 	} else if (size == 2) {
6469 		reg->smin_value = reg->s32_min_value = S16_MIN;
6470 		reg->smax_value = reg->s32_max_value = S16_MAX;
6471 	} else {
6472 		/* size == 4 */
6473 		reg->smin_value = reg->s32_min_value = S32_MIN;
6474 		reg->smax_value = reg->s32_max_value = S32_MAX;
6475 	}
6476 	reg->umin_value = reg->u32_min_value = 0;
6477 	reg->umax_value = U64_MAX;
6478 	reg->u32_max_value = U32_MAX;
6479 	reg->var_off = tnum_unknown;
6480 }
6481 
6482 static void coerce_reg_to_size_sx(struct bpf_reg_state *reg, int size)
6483 {
6484 	s64 init_s64_max, init_s64_min, s64_max, s64_min, u64_cval;
6485 	u64 top_smax_value, top_smin_value;
6486 	u64 num_bits = size * 8;
6487 
6488 	if (tnum_is_const(reg->var_off)) {
6489 		u64_cval = reg->var_off.value;
6490 		if (size == 1)
6491 			reg->var_off = tnum_const((s8)u64_cval);
6492 		else if (size == 2)
6493 			reg->var_off = tnum_const((s16)u64_cval);
6494 		else
6495 			/* size == 4 */
6496 			reg->var_off = tnum_const((s32)u64_cval);
6497 
6498 		u64_cval = reg->var_off.value;
6499 		reg->smax_value = reg->smin_value = u64_cval;
6500 		reg->umax_value = reg->umin_value = u64_cval;
6501 		reg->s32_max_value = reg->s32_min_value = u64_cval;
6502 		reg->u32_max_value = reg->u32_min_value = u64_cval;
6503 		return;
6504 	}
6505 
6506 	top_smax_value = ((u64)reg->smax_value >> num_bits) << num_bits;
6507 	top_smin_value = ((u64)reg->smin_value >> num_bits) << num_bits;
6508 
6509 	if (top_smax_value != top_smin_value)
6510 		goto out;
6511 
6512 	/* find the s64_min and s64_min after sign extension */
6513 	if (size == 1) {
6514 		init_s64_max = (s8)reg->smax_value;
6515 		init_s64_min = (s8)reg->smin_value;
6516 	} else if (size == 2) {
6517 		init_s64_max = (s16)reg->smax_value;
6518 		init_s64_min = (s16)reg->smin_value;
6519 	} else {
6520 		init_s64_max = (s32)reg->smax_value;
6521 		init_s64_min = (s32)reg->smin_value;
6522 	}
6523 
6524 	s64_max = max(init_s64_max, init_s64_min);
6525 	s64_min = min(init_s64_max, init_s64_min);
6526 
6527 	/* both of s64_max/s64_min positive or negative */
6528 	if ((s64_max >= 0) == (s64_min >= 0)) {
6529 		reg->s32_min_value = reg->smin_value = s64_min;
6530 		reg->s32_max_value = reg->smax_value = s64_max;
6531 		reg->u32_min_value = reg->umin_value = s64_min;
6532 		reg->u32_max_value = reg->umax_value = s64_max;
6533 		reg->var_off = tnum_range(s64_min, s64_max);
6534 		return;
6535 	}
6536 
6537 out:
6538 	set_sext64_default_val(reg, size);
6539 }
6540 
6541 static void set_sext32_default_val(struct bpf_reg_state *reg, int size)
6542 {
6543 	if (size == 1) {
6544 		reg->s32_min_value = S8_MIN;
6545 		reg->s32_max_value = S8_MAX;
6546 	} else {
6547 		/* size == 2 */
6548 		reg->s32_min_value = S16_MIN;
6549 		reg->s32_max_value = S16_MAX;
6550 	}
6551 	reg->u32_min_value = 0;
6552 	reg->u32_max_value = U32_MAX;
6553 	reg->var_off = tnum_subreg(tnum_unknown);
6554 }
6555 
6556 static void coerce_subreg_to_size_sx(struct bpf_reg_state *reg, int size)
6557 {
6558 	s32 init_s32_max, init_s32_min, s32_max, s32_min, u32_val;
6559 	u32 top_smax_value, top_smin_value;
6560 	u32 num_bits = size * 8;
6561 
6562 	if (tnum_is_const(reg->var_off)) {
6563 		u32_val = reg->var_off.value;
6564 		if (size == 1)
6565 			reg->var_off = tnum_const((s8)u32_val);
6566 		else
6567 			reg->var_off = tnum_const((s16)u32_val);
6568 
6569 		u32_val = reg->var_off.value;
6570 		reg->s32_min_value = reg->s32_max_value = u32_val;
6571 		reg->u32_min_value = reg->u32_max_value = u32_val;
6572 		return;
6573 	}
6574 
6575 	top_smax_value = ((u32)reg->s32_max_value >> num_bits) << num_bits;
6576 	top_smin_value = ((u32)reg->s32_min_value >> num_bits) << num_bits;
6577 
6578 	if (top_smax_value != top_smin_value)
6579 		goto out;
6580 
6581 	/* find the s32_min and s32_min after sign extension */
6582 	if (size == 1) {
6583 		init_s32_max = (s8)reg->s32_max_value;
6584 		init_s32_min = (s8)reg->s32_min_value;
6585 	} else {
6586 		/* size == 2 */
6587 		init_s32_max = (s16)reg->s32_max_value;
6588 		init_s32_min = (s16)reg->s32_min_value;
6589 	}
6590 	s32_max = max(init_s32_max, init_s32_min);
6591 	s32_min = min(init_s32_max, init_s32_min);
6592 
6593 	if ((s32_min >= 0) == (s32_max >= 0)) {
6594 		reg->s32_min_value = s32_min;
6595 		reg->s32_max_value = s32_max;
6596 		reg->u32_min_value = (u32)s32_min;
6597 		reg->u32_max_value = (u32)s32_max;
6598 		reg->var_off = tnum_subreg(tnum_range(s32_min, s32_max));
6599 		return;
6600 	}
6601 
6602 out:
6603 	set_sext32_default_val(reg, size);
6604 }
6605 
6606 static bool bpf_map_is_rdonly(const struct bpf_map *map)
6607 {
6608 	/* A map is considered read-only if the following condition are true:
6609 	 *
6610 	 * 1) BPF program side cannot change any of the map content. The
6611 	 *    BPF_F_RDONLY_PROG flag is throughout the lifetime of a map
6612 	 *    and was set at map creation time.
6613 	 * 2) The map value(s) have been initialized from user space by a
6614 	 *    loader and then "frozen", such that no new map update/delete
6615 	 *    operations from syscall side are possible for the rest of
6616 	 *    the map's lifetime from that point onwards.
6617 	 * 3) Any parallel/pending map update/delete operations from syscall
6618 	 *    side have been completed. Only after that point, it's safe to
6619 	 *    assume that map value(s) are immutable.
6620 	 */
6621 	return (map->map_flags & BPF_F_RDONLY_PROG) &&
6622 	       READ_ONCE(map->frozen) &&
6623 	       !bpf_map_write_active(map);
6624 }
6625 
6626 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val,
6627 			       bool is_ldsx)
6628 {
6629 	void *ptr;
6630 	u64 addr;
6631 	int err;
6632 
6633 	err = map->ops->map_direct_value_addr(map, &addr, off);
6634 	if (err)
6635 		return err;
6636 	ptr = (void *)(long)addr + off;
6637 
6638 	switch (size) {
6639 	case sizeof(u8):
6640 		*val = is_ldsx ? (s64)*(s8 *)ptr : (u64)*(u8 *)ptr;
6641 		break;
6642 	case sizeof(u16):
6643 		*val = is_ldsx ? (s64)*(s16 *)ptr : (u64)*(u16 *)ptr;
6644 		break;
6645 	case sizeof(u32):
6646 		*val = is_ldsx ? (s64)*(s32 *)ptr : (u64)*(u32 *)ptr;
6647 		break;
6648 	case sizeof(u64):
6649 		*val = *(u64 *)ptr;
6650 		break;
6651 	default:
6652 		return -EINVAL;
6653 	}
6654 	return 0;
6655 }
6656 
6657 #define BTF_TYPE_SAFE_RCU(__type)  __PASTE(__type, __safe_rcu)
6658 #define BTF_TYPE_SAFE_RCU_OR_NULL(__type)  __PASTE(__type, __safe_rcu_or_null)
6659 #define BTF_TYPE_SAFE_TRUSTED(__type)  __PASTE(__type, __safe_trusted)
6660 #define BTF_TYPE_SAFE_TRUSTED_OR_NULL(__type)  __PASTE(__type, __safe_trusted_or_null)
6661 
6662 /*
6663  * Allow list few fields as RCU trusted or full trusted.
6664  * This logic doesn't allow mix tagging and will be removed once GCC supports
6665  * btf_type_tag.
6666  */
6667 
6668 /* RCU trusted: these fields are trusted in RCU CS and never NULL */
6669 BTF_TYPE_SAFE_RCU(struct task_struct) {
6670 	const cpumask_t *cpus_ptr;
6671 	struct css_set __rcu *cgroups;
6672 	struct task_struct __rcu *real_parent;
6673 	struct task_struct *group_leader;
6674 };
6675 
6676 BTF_TYPE_SAFE_RCU(struct cgroup) {
6677 	/* cgrp->kn is always accessible as documented in kernel/cgroup/cgroup.c */
6678 	struct kernfs_node *kn;
6679 };
6680 
6681 BTF_TYPE_SAFE_RCU(struct css_set) {
6682 	struct cgroup *dfl_cgrp;
6683 };
6684 
6685 /* RCU trusted: these fields are trusted in RCU CS and can be NULL */
6686 BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct) {
6687 	struct file __rcu *exe_file;
6688 };
6689 
6690 /* skb->sk, req->sk are not RCU protected, but we mark them as such
6691  * because bpf prog accessible sockets are SOCK_RCU_FREE.
6692  */
6693 BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff) {
6694 	struct sock *sk;
6695 };
6696 
6697 BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock) {
6698 	struct sock *sk;
6699 };
6700 
6701 /* full trusted: these fields are trusted even outside of RCU CS and never NULL */
6702 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) {
6703 	struct seq_file *seq;
6704 };
6705 
6706 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) {
6707 	struct bpf_iter_meta *meta;
6708 	struct task_struct *task;
6709 };
6710 
6711 BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) {
6712 	struct file *file;
6713 };
6714 
6715 BTF_TYPE_SAFE_TRUSTED(struct file) {
6716 	struct inode *f_inode;
6717 };
6718 
6719 BTF_TYPE_SAFE_TRUSTED(struct dentry) {
6720 	/* no negative dentry-s in places where bpf can see it */
6721 	struct inode *d_inode;
6722 };
6723 
6724 BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket) {
6725 	struct sock *sk;
6726 };
6727 
6728 static bool type_is_rcu(struct bpf_verifier_env *env,
6729 			struct bpf_reg_state *reg,
6730 			const char *field_name, u32 btf_id)
6731 {
6732 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct));
6733 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup));
6734 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set));
6735 
6736 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu");
6737 }
6738 
6739 static bool type_is_rcu_or_null(struct bpf_verifier_env *env,
6740 				struct bpf_reg_state *reg,
6741 				const char *field_name, u32 btf_id)
6742 {
6743 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct));
6744 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff));
6745 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock));
6746 
6747 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu_or_null");
6748 }
6749 
6750 static bool type_is_trusted(struct bpf_verifier_env *env,
6751 			    struct bpf_reg_state *reg,
6752 			    const char *field_name, u32 btf_id)
6753 {
6754 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta));
6755 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task));
6756 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm));
6757 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file));
6758 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct dentry));
6759 
6760 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted");
6761 }
6762 
6763 static bool type_is_trusted_or_null(struct bpf_verifier_env *env,
6764 				    struct bpf_reg_state *reg,
6765 				    const char *field_name, u32 btf_id)
6766 {
6767 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket));
6768 
6769 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id,
6770 					  "__safe_trusted_or_null");
6771 }
6772 
6773 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
6774 				   struct bpf_reg_state *regs,
6775 				   int regno, int off, int size,
6776 				   enum bpf_access_type atype,
6777 				   int value_regno)
6778 {
6779 	struct bpf_reg_state *reg = regs + regno;
6780 	const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
6781 	const char *tname = btf_name_by_offset(reg->btf, t->name_off);
6782 	const char *field_name = NULL;
6783 	enum bpf_type_flag flag = 0;
6784 	u32 btf_id = 0;
6785 	int ret;
6786 
6787 	if (!env->allow_ptr_leaks) {
6788 		verbose(env,
6789 			"'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
6790 			tname);
6791 		return -EPERM;
6792 	}
6793 	if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) {
6794 		verbose(env,
6795 			"Cannot access kernel 'struct %s' from non-GPL compatible program\n",
6796 			tname);
6797 		return -EINVAL;
6798 	}
6799 	if (off < 0) {
6800 		verbose(env,
6801 			"R%d is ptr_%s invalid negative access: off=%d\n",
6802 			regno, tname, off);
6803 		return -EACCES;
6804 	}
6805 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
6806 		char tn_buf[48];
6807 
6808 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6809 		verbose(env,
6810 			"R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
6811 			regno, tname, off, tn_buf);
6812 		return -EACCES;
6813 	}
6814 
6815 	if (reg->type & MEM_USER) {
6816 		verbose(env,
6817 			"R%d is ptr_%s access user memory: off=%d\n",
6818 			regno, tname, off);
6819 		return -EACCES;
6820 	}
6821 
6822 	if (reg->type & MEM_PERCPU) {
6823 		verbose(env,
6824 			"R%d is ptr_%s access percpu memory: off=%d\n",
6825 			regno, tname, off);
6826 		return -EACCES;
6827 	}
6828 
6829 	if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) {
6830 		if (!btf_is_kernel(reg->btf)) {
6831 			verbose(env, "verifier internal error: reg->btf must be kernel btf\n");
6832 			return -EFAULT;
6833 		}
6834 		ret = env->ops->btf_struct_access(&env->log, reg, off, size);
6835 	} else {
6836 		/* Writes are permitted with default btf_struct_access for
6837 		 * program allocated objects (which always have ref_obj_id > 0),
6838 		 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC.
6839 		 */
6840 		if (atype != BPF_READ && !type_is_ptr_alloc_obj(reg->type)) {
6841 			verbose(env, "only read is supported\n");
6842 			return -EACCES;
6843 		}
6844 
6845 		if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) &&
6846 		    !(reg->type & MEM_RCU) && !reg->ref_obj_id) {
6847 			verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n");
6848 			return -EFAULT;
6849 		}
6850 
6851 		ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag, &field_name);
6852 	}
6853 
6854 	if (ret < 0)
6855 		return ret;
6856 
6857 	if (ret != PTR_TO_BTF_ID) {
6858 		/* just mark; */
6859 
6860 	} else if (type_flag(reg->type) & PTR_UNTRUSTED) {
6861 		/* If this is an untrusted pointer, all pointers formed by walking it
6862 		 * also inherit the untrusted flag.
6863 		 */
6864 		flag = PTR_UNTRUSTED;
6865 
6866 	} else if (is_trusted_reg(reg) || is_rcu_reg(reg)) {
6867 		/* By default any pointer obtained from walking a trusted pointer is no
6868 		 * longer trusted, unless the field being accessed has explicitly been
6869 		 * marked as inheriting its parent's state of trust (either full or RCU).
6870 		 * For example:
6871 		 * 'cgroups' pointer is untrusted if task->cgroups dereference
6872 		 * happened in a sleepable program outside of bpf_rcu_read_lock()
6873 		 * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU).
6874 		 * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED.
6875 		 *
6876 		 * A regular RCU-protected pointer with __rcu tag can also be deemed
6877 		 * trusted if we are in an RCU CS. Such pointer can be NULL.
6878 		 */
6879 		if (type_is_trusted(env, reg, field_name, btf_id)) {
6880 			flag |= PTR_TRUSTED;
6881 		} else if (type_is_trusted_or_null(env, reg, field_name, btf_id)) {
6882 			flag |= PTR_TRUSTED | PTR_MAYBE_NULL;
6883 		} else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) {
6884 			if (type_is_rcu(env, reg, field_name, btf_id)) {
6885 				/* ignore __rcu tag and mark it MEM_RCU */
6886 				flag |= MEM_RCU;
6887 			} else if (flag & MEM_RCU ||
6888 				   type_is_rcu_or_null(env, reg, field_name, btf_id)) {
6889 				/* __rcu tagged pointers can be NULL */
6890 				flag |= MEM_RCU | PTR_MAYBE_NULL;
6891 
6892 				/* We always trust them */
6893 				if (type_is_rcu_or_null(env, reg, field_name, btf_id) &&
6894 				    flag & PTR_UNTRUSTED)
6895 					flag &= ~PTR_UNTRUSTED;
6896 			} else if (flag & (MEM_PERCPU | MEM_USER)) {
6897 				/* keep as-is */
6898 			} else {
6899 				/* walking unknown pointers yields old deprecated PTR_TO_BTF_ID */
6900 				clear_trusted_flags(&flag);
6901 			}
6902 		} else {
6903 			/*
6904 			 * If not in RCU CS or MEM_RCU pointer can be NULL then
6905 			 * aggressively mark as untrusted otherwise such
6906 			 * pointers will be plain PTR_TO_BTF_ID without flags
6907 			 * and will be allowed to be passed into helpers for
6908 			 * compat reasons.
6909 			 */
6910 			flag = PTR_UNTRUSTED;
6911 		}
6912 	} else {
6913 		/* Old compat. Deprecated */
6914 		clear_trusted_flags(&flag);
6915 	}
6916 
6917 	if (atype == BPF_READ && value_regno >= 0)
6918 		mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag);
6919 
6920 	return 0;
6921 }
6922 
6923 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
6924 				   struct bpf_reg_state *regs,
6925 				   int regno, int off, int size,
6926 				   enum bpf_access_type atype,
6927 				   int value_regno)
6928 {
6929 	struct bpf_reg_state *reg = regs + regno;
6930 	struct bpf_map *map = reg->map_ptr;
6931 	struct bpf_reg_state map_reg;
6932 	enum bpf_type_flag flag = 0;
6933 	const struct btf_type *t;
6934 	const char *tname;
6935 	u32 btf_id;
6936 	int ret;
6937 
6938 	if (!btf_vmlinux) {
6939 		verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
6940 		return -ENOTSUPP;
6941 	}
6942 
6943 	if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
6944 		verbose(env, "map_ptr access not supported for map type %d\n",
6945 			map->map_type);
6946 		return -ENOTSUPP;
6947 	}
6948 
6949 	t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
6950 	tname = btf_name_by_offset(btf_vmlinux, t->name_off);
6951 
6952 	if (!env->allow_ptr_leaks) {
6953 		verbose(env,
6954 			"'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
6955 			tname);
6956 		return -EPERM;
6957 	}
6958 
6959 	if (off < 0) {
6960 		verbose(env, "R%d is %s invalid negative access: off=%d\n",
6961 			regno, tname, off);
6962 		return -EACCES;
6963 	}
6964 
6965 	if (atype != BPF_READ) {
6966 		verbose(env, "only read from %s is supported\n", tname);
6967 		return -EACCES;
6968 	}
6969 
6970 	/* Simulate access to a PTR_TO_BTF_ID */
6971 	memset(&map_reg, 0, sizeof(map_reg));
6972 	mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0);
6973 	ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag, NULL);
6974 	if (ret < 0)
6975 		return ret;
6976 
6977 	if (value_regno >= 0)
6978 		mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag);
6979 
6980 	return 0;
6981 }
6982 
6983 /* Check that the stack access at the given offset is within bounds. The
6984  * maximum valid offset is -1.
6985  *
6986  * The minimum valid offset is -MAX_BPF_STACK for writes, and
6987  * -state->allocated_stack for reads.
6988  */
6989 static int check_stack_slot_within_bounds(struct bpf_verifier_env *env,
6990                                           s64 off,
6991                                           struct bpf_func_state *state,
6992                                           enum bpf_access_type t)
6993 {
6994 	int min_valid_off;
6995 
6996 	if (t == BPF_WRITE || env->allow_uninit_stack)
6997 		min_valid_off = -MAX_BPF_STACK;
6998 	else
6999 		min_valid_off = -state->allocated_stack;
7000 
7001 	if (off < min_valid_off || off > -1)
7002 		return -EACCES;
7003 	return 0;
7004 }
7005 
7006 /* Check that the stack access at 'regno + off' falls within the maximum stack
7007  * bounds.
7008  *
7009  * 'off' includes `regno->offset`, but not its dynamic part (if any).
7010  */
7011 static int check_stack_access_within_bounds(
7012 		struct bpf_verifier_env *env,
7013 		int regno, int off, int access_size,
7014 		enum bpf_access_src src, enum bpf_access_type type)
7015 {
7016 	struct bpf_reg_state *regs = cur_regs(env);
7017 	struct bpf_reg_state *reg = regs + regno;
7018 	struct bpf_func_state *state = func(env, reg);
7019 	s64 min_off, max_off;
7020 	int err;
7021 	char *err_extra;
7022 
7023 	if (src == ACCESS_HELPER)
7024 		/* We don't know if helpers are reading or writing (or both). */
7025 		err_extra = " indirect access to";
7026 	else if (type == BPF_READ)
7027 		err_extra = " read from";
7028 	else
7029 		err_extra = " write to";
7030 
7031 	if (tnum_is_const(reg->var_off)) {
7032 		min_off = (s64)reg->var_off.value + off;
7033 		max_off = min_off + access_size;
7034 	} else {
7035 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
7036 		    reg->smin_value <= -BPF_MAX_VAR_OFF) {
7037 			verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
7038 				err_extra, regno);
7039 			return -EACCES;
7040 		}
7041 		min_off = reg->smin_value + off;
7042 		max_off = reg->smax_value + off + access_size;
7043 	}
7044 
7045 	err = check_stack_slot_within_bounds(env, min_off, state, type);
7046 	if (!err && max_off > 0)
7047 		err = -EINVAL; /* out of stack access into non-negative offsets */
7048 	if (!err && access_size < 0)
7049 		/* access_size should not be negative (or overflow an int); others checks
7050 		 * along the way should have prevented such an access.
7051 		 */
7052 		err = -EFAULT; /* invalid negative access size; integer overflow? */
7053 
7054 	if (err) {
7055 		if (tnum_is_const(reg->var_off)) {
7056 			verbose(env, "invalid%s stack R%d off=%d size=%d\n",
7057 				err_extra, regno, off, access_size);
7058 		} else {
7059 			char tn_buf[48];
7060 
7061 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7062 			verbose(env, "invalid variable-offset%s stack R%d var_off=%s off=%d size=%d\n",
7063 				err_extra, regno, tn_buf, off, access_size);
7064 		}
7065 		return err;
7066 	}
7067 
7068 	/* Note that there is no stack access with offset zero, so the needed stack
7069 	 * size is -min_off, not -min_off+1.
7070 	 */
7071 	return grow_stack_state(env, state, -min_off /* size */);
7072 }
7073 
7074 static bool get_func_retval_range(struct bpf_prog *prog,
7075 				  struct bpf_retval_range *range)
7076 {
7077 	if (prog->type == BPF_PROG_TYPE_LSM &&
7078 		prog->expected_attach_type == BPF_LSM_MAC &&
7079 		!bpf_lsm_get_retval_range(prog, range)) {
7080 		return true;
7081 	}
7082 	return false;
7083 }
7084 
7085 /* check whether memory at (regno + off) is accessible for t = (read | write)
7086  * if t==write, value_regno is a register which value is stored into memory
7087  * if t==read, value_regno is a register which will receive the value from memory
7088  * if t==write && value_regno==-1, some unknown value is stored into memory
7089  * if t==read && value_regno==-1, don't care what we read from memory
7090  */
7091 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
7092 			    int off, int bpf_size, enum bpf_access_type t,
7093 			    int value_regno, bool strict_alignment_once, bool is_ldsx)
7094 {
7095 	struct bpf_reg_state *regs = cur_regs(env);
7096 	struct bpf_reg_state *reg = regs + regno;
7097 	int size, err = 0;
7098 
7099 	size = bpf_size_to_bytes(bpf_size);
7100 	if (size < 0)
7101 		return size;
7102 
7103 	/* alignment checks will add in reg->off themselves */
7104 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
7105 	if (err)
7106 		return err;
7107 
7108 	/* for access checks, reg->off is just part of off */
7109 	off += reg->off;
7110 
7111 	if (reg->type == PTR_TO_MAP_KEY) {
7112 		if (t == BPF_WRITE) {
7113 			verbose(env, "write to change key R%d not allowed\n", regno);
7114 			return -EACCES;
7115 		}
7116 
7117 		err = check_mem_region_access(env, regno, off, size,
7118 					      reg->map_ptr->key_size, false);
7119 		if (err)
7120 			return err;
7121 		if (value_regno >= 0)
7122 			mark_reg_unknown(env, regs, value_regno);
7123 	} else if (reg->type == PTR_TO_MAP_VALUE) {
7124 		struct btf_field *kptr_field = NULL;
7125 
7126 		if (t == BPF_WRITE && value_regno >= 0 &&
7127 		    is_pointer_value(env, value_regno)) {
7128 			verbose(env, "R%d leaks addr into map\n", value_regno);
7129 			return -EACCES;
7130 		}
7131 		err = check_map_access_type(env, regno, off, size, t);
7132 		if (err)
7133 			return err;
7134 		err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT);
7135 		if (err)
7136 			return err;
7137 		if (tnum_is_const(reg->var_off))
7138 			kptr_field = btf_record_find(reg->map_ptr->record,
7139 						     off + reg->var_off.value, BPF_KPTR | BPF_UPTR);
7140 		if (kptr_field) {
7141 			err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field);
7142 		} else if (t == BPF_READ && value_regno >= 0) {
7143 			struct bpf_map *map = reg->map_ptr;
7144 
7145 			/* if map is read-only, track its contents as scalars */
7146 			if (tnum_is_const(reg->var_off) &&
7147 			    bpf_map_is_rdonly(map) &&
7148 			    map->ops->map_direct_value_addr) {
7149 				int map_off = off + reg->var_off.value;
7150 				u64 val = 0;
7151 
7152 				err = bpf_map_direct_read(map, map_off, size,
7153 							  &val, is_ldsx);
7154 				if (err)
7155 					return err;
7156 
7157 				regs[value_regno].type = SCALAR_VALUE;
7158 				__mark_reg_known(&regs[value_regno], val);
7159 			} else {
7160 				mark_reg_unknown(env, regs, value_regno);
7161 			}
7162 		}
7163 	} else if (base_type(reg->type) == PTR_TO_MEM) {
7164 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
7165 
7166 		if (type_may_be_null(reg->type)) {
7167 			verbose(env, "R%d invalid mem access '%s'\n", regno,
7168 				reg_type_str(env, reg->type));
7169 			return -EACCES;
7170 		}
7171 
7172 		if (t == BPF_WRITE && rdonly_mem) {
7173 			verbose(env, "R%d cannot write into %s\n",
7174 				regno, reg_type_str(env, reg->type));
7175 			return -EACCES;
7176 		}
7177 
7178 		if (t == BPF_WRITE && value_regno >= 0 &&
7179 		    is_pointer_value(env, value_regno)) {
7180 			verbose(env, "R%d leaks addr into mem\n", value_regno);
7181 			return -EACCES;
7182 		}
7183 
7184 		err = check_mem_region_access(env, regno, off, size,
7185 					      reg->mem_size, false);
7186 		if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem))
7187 			mark_reg_unknown(env, regs, value_regno);
7188 	} else if (reg->type == PTR_TO_CTX) {
7189 		bool is_retval = false;
7190 		struct bpf_retval_range range;
7191 		enum bpf_reg_type reg_type = SCALAR_VALUE;
7192 		struct btf *btf = NULL;
7193 		u32 btf_id = 0;
7194 
7195 		if (t == BPF_WRITE && value_regno >= 0 &&
7196 		    is_pointer_value(env, value_regno)) {
7197 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
7198 			return -EACCES;
7199 		}
7200 
7201 		err = check_ptr_off_reg(env, reg, regno);
7202 		if (err < 0)
7203 			return err;
7204 
7205 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf,
7206 				       &btf_id, &is_retval, is_ldsx);
7207 		if (err)
7208 			verbose_linfo(env, insn_idx, "; ");
7209 		if (!err && t == BPF_READ && value_regno >= 0) {
7210 			/* ctx access returns either a scalar, or a
7211 			 * PTR_TO_PACKET[_META,_END]. In the latter
7212 			 * case, we know the offset is zero.
7213 			 */
7214 			if (reg_type == SCALAR_VALUE) {
7215 				if (is_retval && get_func_retval_range(env->prog, &range)) {
7216 					err = __mark_reg_s32_range(env, regs, value_regno,
7217 								   range.minval, range.maxval);
7218 					if (err)
7219 						return err;
7220 				} else {
7221 					mark_reg_unknown(env, regs, value_regno);
7222 				}
7223 			} else {
7224 				mark_reg_known_zero(env, regs,
7225 						    value_regno);
7226 				if (type_may_be_null(reg_type))
7227 					regs[value_regno].id = ++env->id_gen;
7228 				/* A load of ctx field could have different
7229 				 * actual load size with the one encoded in the
7230 				 * insn. When the dst is PTR, it is for sure not
7231 				 * a sub-register.
7232 				 */
7233 				regs[value_regno].subreg_def = DEF_NOT_SUBREG;
7234 				if (base_type(reg_type) == PTR_TO_BTF_ID) {
7235 					regs[value_regno].btf = btf;
7236 					regs[value_regno].btf_id = btf_id;
7237 				}
7238 			}
7239 			regs[value_regno].type = reg_type;
7240 		}
7241 
7242 	} else if (reg->type == PTR_TO_STACK) {
7243 		/* Basic bounds checks. */
7244 		err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
7245 		if (err)
7246 			return err;
7247 
7248 		if (t == BPF_READ)
7249 			err = check_stack_read(env, regno, off, size,
7250 					       value_regno);
7251 		else
7252 			err = check_stack_write(env, regno, off, size,
7253 						value_regno, insn_idx);
7254 	} else if (reg_is_pkt_pointer(reg)) {
7255 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
7256 			verbose(env, "cannot write into packet\n");
7257 			return -EACCES;
7258 		}
7259 		if (t == BPF_WRITE && value_regno >= 0 &&
7260 		    is_pointer_value(env, value_regno)) {
7261 			verbose(env, "R%d leaks addr into packet\n",
7262 				value_regno);
7263 			return -EACCES;
7264 		}
7265 		err = check_packet_access(env, regno, off, size, false);
7266 		if (!err && t == BPF_READ && value_regno >= 0)
7267 			mark_reg_unknown(env, regs, value_regno);
7268 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
7269 		if (t == BPF_WRITE && value_regno >= 0 &&
7270 		    is_pointer_value(env, value_regno)) {
7271 			verbose(env, "R%d leaks addr into flow keys\n",
7272 				value_regno);
7273 			return -EACCES;
7274 		}
7275 
7276 		err = check_flow_keys_access(env, off, size);
7277 		if (!err && t == BPF_READ && value_regno >= 0)
7278 			mark_reg_unknown(env, regs, value_regno);
7279 	} else if (type_is_sk_pointer(reg->type)) {
7280 		if (t == BPF_WRITE) {
7281 			verbose(env, "R%d cannot write into %s\n",
7282 				regno, reg_type_str(env, reg->type));
7283 			return -EACCES;
7284 		}
7285 		err = check_sock_access(env, insn_idx, regno, off, size, t);
7286 		if (!err && value_regno >= 0)
7287 			mark_reg_unknown(env, regs, value_regno);
7288 	} else if (reg->type == PTR_TO_TP_BUFFER) {
7289 		err = check_tp_buffer_access(env, reg, regno, off, size);
7290 		if (!err && t == BPF_READ && value_regno >= 0)
7291 			mark_reg_unknown(env, regs, value_regno);
7292 	} else if (base_type(reg->type) == PTR_TO_BTF_ID &&
7293 		   !type_may_be_null(reg->type)) {
7294 		err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
7295 					      value_regno);
7296 	} else if (reg->type == CONST_PTR_TO_MAP) {
7297 		err = check_ptr_to_map_access(env, regs, regno, off, size, t,
7298 					      value_regno);
7299 	} else if (base_type(reg->type) == PTR_TO_BUF) {
7300 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
7301 		u32 *max_access;
7302 
7303 		if (rdonly_mem) {
7304 			if (t == BPF_WRITE) {
7305 				verbose(env, "R%d cannot write into %s\n",
7306 					regno, reg_type_str(env, reg->type));
7307 				return -EACCES;
7308 			}
7309 			max_access = &env->prog->aux->max_rdonly_access;
7310 		} else {
7311 			max_access = &env->prog->aux->max_rdwr_access;
7312 		}
7313 
7314 		err = check_buffer_access(env, reg, regno, off, size, false,
7315 					  max_access);
7316 
7317 		if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ))
7318 			mark_reg_unknown(env, regs, value_regno);
7319 	} else if (reg->type == PTR_TO_ARENA) {
7320 		if (t == BPF_READ && value_regno >= 0)
7321 			mark_reg_unknown(env, regs, value_regno);
7322 	} else {
7323 		verbose(env, "R%d invalid mem access '%s'\n", regno,
7324 			reg_type_str(env, reg->type));
7325 		return -EACCES;
7326 	}
7327 
7328 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
7329 	    regs[value_regno].type == SCALAR_VALUE) {
7330 		if (!is_ldsx)
7331 			/* b/h/w load zero-extends, mark upper bits as known 0 */
7332 			coerce_reg_to_size(&regs[value_regno], size);
7333 		else
7334 			coerce_reg_to_size_sx(&regs[value_regno], size);
7335 	}
7336 	return err;
7337 }
7338 
7339 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type,
7340 			     bool allow_trust_mismatch);
7341 
7342 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
7343 {
7344 	int load_reg;
7345 	int err;
7346 
7347 	switch (insn->imm) {
7348 	case BPF_ADD:
7349 	case BPF_ADD | BPF_FETCH:
7350 	case BPF_AND:
7351 	case BPF_AND | BPF_FETCH:
7352 	case BPF_OR:
7353 	case BPF_OR | BPF_FETCH:
7354 	case BPF_XOR:
7355 	case BPF_XOR | BPF_FETCH:
7356 	case BPF_XCHG:
7357 	case BPF_CMPXCHG:
7358 		break;
7359 	default:
7360 		verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
7361 		return -EINVAL;
7362 	}
7363 
7364 	if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
7365 		verbose(env, "invalid atomic operand size\n");
7366 		return -EINVAL;
7367 	}
7368 
7369 	/* check src1 operand */
7370 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
7371 	if (err)
7372 		return err;
7373 
7374 	/* check src2 operand */
7375 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7376 	if (err)
7377 		return err;
7378 
7379 	if (insn->imm == BPF_CMPXCHG) {
7380 		/* Check comparison of R0 with memory location */
7381 		const u32 aux_reg = BPF_REG_0;
7382 
7383 		err = check_reg_arg(env, aux_reg, SRC_OP);
7384 		if (err)
7385 			return err;
7386 
7387 		if (is_pointer_value(env, aux_reg)) {
7388 			verbose(env, "R%d leaks addr into mem\n", aux_reg);
7389 			return -EACCES;
7390 		}
7391 	}
7392 
7393 	if (is_pointer_value(env, insn->src_reg)) {
7394 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
7395 		return -EACCES;
7396 	}
7397 
7398 	if (is_ctx_reg(env, insn->dst_reg) ||
7399 	    is_pkt_reg(env, insn->dst_reg) ||
7400 	    is_flow_key_reg(env, insn->dst_reg) ||
7401 	    is_sk_reg(env, insn->dst_reg) ||
7402 	    (is_arena_reg(env, insn->dst_reg) && !bpf_jit_supports_insn(insn, true))) {
7403 		verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
7404 			insn->dst_reg,
7405 			reg_type_str(env, reg_state(env, insn->dst_reg)->type));
7406 		return -EACCES;
7407 	}
7408 
7409 	if (insn->imm & BPF_FETCH) {
7410 		if (insn->imm == BPF_CMPXCHG)
7411 			load_reg = BPF_REG_0;
7412 		else
7413 			load_reg = insn->src_reg;
7414 
7415 		/* check and record load of old value */
7416 		err = check_reg_arg(env, load_reg, DST_OP);
7417 		if (err)
7418 			return err;
7419 	} else {
7420 		/* This instruction accesses a memory location but doesn't
7421 		 * actually load it into a register.
7422 		 */
7423 		load_reg = -1;
7424 	}
7425 
7426 	/* Check whether we can read the memory, with second call for fetch
7427 	 * case to simulate the register fill.
7428 	 */
7429 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
7430 			       BPF_SIZE(insn->code), BPF_READ, -1, true, false);
7431 	if (!err && load_reg >= 0)
7432 		err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
7433 				       BPF_SIZE(insn->code), BPF_READ, load_reg,
7434 				       true, false);
7435 	if (err)
7436 		return err;
7437 
7438 	if (is_arena_reg(env, insn->dst_reg)) {
7439 		err = save_aux_ptr_type(env, PTR_TO_ARENA, false);
7440 		if (err)
7441 			return err;
7442 	}
7443 	/* Check whether we can write into the same memory. */
7444 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
7445 			       BPF_SIZE(insn->code), BPF_WRITE, -1, true, false);
7446 	if (err)
7447 		return err;
7448 	return 0;
7449 }
7450 
7451 /* When register 'regno' is used to read the stack (either directly or through
7452  * a helper function) make sure that it's within stack boundary and, depending
7453  * on the access type and privileges, that all elements of the stack are
7454  * initialized.
7455  *
7456  * 'off' includes 'regno->off', but not its dynamic part (if any).
7457  *
7458  * All registers that have been spilled on the stack in the slots within the
7459  * read offsets are marked as read.
7460  */
7461 static int check_stack_range_initialized(
7462 		struct bpf_verifier_env *env, int regno, int off,
7463 		int access_size, bool zero_size_allowed,
7464 		enum bpf_access_src type, struct bpf_call_arg_meta *meta)
7465 {
7466 	struct bpf_reg_state *reg = reg_state(env, regno);
7467 	struct bpf_func_state *state = func(env, reg);
7468 	int err, min_off, max_off, i, j, slot, spi;
7469 	char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
7470 	enum bpf_access_type bounds_check_type;
7471 	/* Some accesses can write anything into the stack, others are
7472 	 * read-only.
7473 	 */
7474 	bool clobber = false;
7475 
7476 	if (access_size == 0 && !zero_size_allowed) {
7477 		verbose(env, "invalid zero-sized read\n");
7478 		return -EACCES;
7479 	}
7480 
7481 	if (type == ACCESS_HELPER) {
7482 		/* The bounds checks for writes are more permissive than for
7483 		 * reads. However, if raw_mode is not set, we'll do extra
7484 		 * checks below.
7485 		 */
7486 		bounds_check_type = BPF_WRITE;
7487 		clobber = true;
7488 	} else {
7489 		bounds_check_type = BPF_READ;
7490 	}
7491 	err = check_stack_access_within_bounds(env, regno, off, access_size,
7492 					       type, bounds_check_type);
7493 	if (err)
7494 		return err;
7495 
7496 
7497 	if (tnum_is_const(reg->var_off)) {
7498 		min_off = max_off = reg->var_off.value + off;
7499 	} else {
7500 		/* Variable offset is prohibited for unprivileged mode for
7501 		 * simplicity since it requires corresponding support in
7502 		 * Spectre masking for stack ALU.
7503 		 * See also retrieve_ptr_limit().
7504 		 */
7505 		if (!env->bypass_spec_v1) {
7506 			char tn_buf[48];
7507 
7508 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7509 			verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
7510 				regno, err_extra, tn_buf);
7511 			return -EACCES;
7512 		}
7513 		/* Only initialized buffer on stack is allowed to be accessed
7514 		 * with variable offset. With uninitialized buffer it's hard to
7515 		 * guarantee that whole memory is marked as initialized on
7516 		 * helper return since specific bounds are unknown what may
7517 		 * cause uninitialized stack leaking.
7518 		 */
7519 		if (meta && meta->raw_mode)
7520 			meta = NULL;
7521 
7522 		min_off = reg->smin_value + off;
7523 		max_off = reg->smax_value + off;
7524 	}
7525 
7526 	if (meta && meta->raw_mode) {
7527 		/* Ensure we won't be overwriting dynptrs when simulating byte
7528 		 * by byte access in check_helper_call using meta.access_size.
7529 		 * This would be a problem if we have a helper in the future
7530 		 * which takes:
7531 		 *
7532 		 *	helper(uninit_mem, len, dynptr)
7533 		 *
7534 		 * Now, uninint_mem may overlap with dynptr pointer. Hence, it
7535 		 * may end up writing to dynptr itself when touching memory from
7536 		 * arg 1. This can be relaxed on a case by case basis for known
7537 		 * safe cases, but reject due to the possibilitiy of aliasing by
7538 		 * default.
7539 		 */
7540 		for (i = min_off; i < max_off + access_size; i++) {
7541 			int stack_off = -i - 1;
7542 
7543 			spi = __get_spi(i);
7544 			/* raw_mode may write past allocated_stack */
7545 			if (state->allocated_stack <= stack_off)
7546 				continue;
7547 			if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) {
7548 				verbose(env, "potential write to dynptr at off=%d disallowed\n", i);
7549 				return -EACCES;
7550 			}
7551 		}
7552 		meta->access_size = access_size;
7553 		meta->regno = regno;
7554 		return 0;
7555 	}
7556 
7557 	for (i = min_off; i < max_off + access_size; i++) {
7558 		u8 *stype;
7559 
7560 		slot = -i - 1;
7561 		spi = slot / BPF_REG_SIZE;
7562 		if (state->allocated_stack <= slot) {
7563 			verbose(env, "verifier bug: allocated_stack too small");
7564 			return -EFAULT;
7565 		}
7566 
7567 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
7568 		if (*stype == STACK_MISC)
7569 			goto mark;
7570 		if ((*stype == STACK_ZERO) ||
7571 		    (*stype == STACK_INVALID && env->allow_uninit_stack)) {
7572 			if (clobber) {
7573 				/* helper can write anything into the stack */
7574 				*stype = STACK_MISC;
7575 			}
7576 			goto mark;
7577 		}
7578 
7579 		if (is_spilled_reg(&state->stack[spi]) &&
7580 		    (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
7581 		     env->allow_ptr_leaks)) {
7582 			if (clobber) {
7583 				__mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
7584 				for (j = 0; j < BPF_REG_SIZE; j++)
7585 					scrub_spilled_slot(&state->stack[spi].slot_type[j]);
7586 			}
7587 			goto mark;
7588 		}
7589 
7590 		if (tnum_is_const(reg->var_off)) {
7591 			verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
7592 				err_extra, regno, min_off, i - min_off, access_size);
7593 		} else {
7594 			char tn_buf[48];
7595 
7596 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7597 			verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
7598 				err_extra, regno, tn_buf, i - min_off, access_size);
7599 		}
7600 		return -EACCES;
7601 mark:
7602 		/* reading any byte out of 8-byte 'spill_slot' will cause
7603 		 * the whole slot to be marked as 'read'
7604 		 */
7605 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
7606 			      state->stack[spi].spilled_ptr.parent,
7607 			      REG_LIVE_READ64);
7608 		/* We do not set REG_LIVE_WRITTEN for stack slot, as we can not
7609 		 * be sure that whether stack slot is written to or not. Hence,
7610 		 * we must still conservatively propagate reads upwards even if
7611 		 * helper may write to the entire memory range.
7612 		 */
7613 	}
7614 	return 0;
7615 }
7616 
7617 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
7618 				   int access_size, enum bpf_access_type access_type,
7619 				   bool zero_size_allowed,
7620 				   struct bpf_call_arg_meta *meta)
7621 {
7622 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7623 	u32 *max_access;
7624 
7625 	switch (base_type(reg->type)) {
7626 	case PTR_TO_PACKET:
7627 	case PTR_TO_PACKET_META:
7628 		return check_packet_access(env, regno, reg->off, access_size,
7629 					   zero_size_allowed);
7630 	case PTR_TO_MAP_KEY:
7631 		if (access_type == BPF_WRITE) {
7632 			verbose(env, "R%d cannot write into %s\n", regno,
7633 				reg_type_str(env, reg->type));
7634 			return -EACCES;
7635 		}
7636 		return check_mem_region_access(env, regno, reg->off, access_size,
7637 					       reg->map_ptr->key_size, false);
7638 	case PTR_TO_MAP_VALUE:
7639 		if (check_map_access_type(env, regno, reg->off, access_size, access_type))
7640 			return -EACCES;
7641 		return check_map_access(env, regno, reg->off, access_size,
7642 					zero_size_allowed, ACCESS_HELPER);
7643 	case PTR_TO_MEM:
7644 		if (type_is_rdonly_mem(reg->type)) {
7645 			if (access_type == BPF_WRITE) {
7646 				verbose(env, "R%d cannot write into %s\n", regno,
7647 					reg_type_str(env, reg->type));
7648 				return -EACCES;
7649 			}
7650 		}
7651 		return check_mem_region_access(env, regno, reg->off,
7652 					       access_size, reg->mem_size,
7653 					       zero_size_allowed);
7654 	case PTR_TO_BUF:
7655 		if (type_is_rdonly_mem(reg->type)) {
7656 			if (access_type == BPF_WRITE) {
7657 				verbose(env, "R%d cannot write into %s\n", regno,
7658 					reg_type_str(env, reg->type));
7659 				return -EACCES;
7660 			}
7661 
7662 			max_access = &env->prog->aux->max_rdonly_access;
7663 		} else {
7664 			max_access = &env->prog->aux->max_rdwr_access;
7665 		}
7666 		return check_buffer_access(env, reg, regno, reg->off,
7667 					   access_size, zero_size_allowed,
7668 					   max_access);
7669 	case PTR_TO_STACK:
7670 		return check_stack_range_initialized(
7671 				env,
7672 				regno, reg->off, access_size,
7673 				zero_size_allowed, ACCESS_HELPER, meta);
7674 	case PTR_TO_BTF_ID:
7675 		return check_ptr_to_btf_access(env, regs, regno, reg->off,
7676 					       access_size, BPF_READ, -1);
7677 	case PTR_TO_CTX:
7678 		/* in case the function doesn't know how to access the context,
7679 		 * (because we are in a program of type SYSCALL for example), we
7680 		 * can not statically check its size.
7681 		 * Dynamically check it now.
7682 		 */
7683 		if (!env->ops->convert_ctx_access) {
7684 			int offset = access_size - 1;
7685 
7686 			/* Allow zero-byte read from PTR_TO_CTX */
7687 			if (access_size == 0)
7688 				return zero_size_allowed ? 0 : -EACCES;
7689 
7690 			return check_mem_access(env, env->insn_idx, regno, offset, BPF_B,
7691 						access_type, -1, false, false);
7692 		}
7693 
7694 		fallthrough;
7695 	default: /* scalar_value or invalid ptr */
7696 		/* Allow zero-byte read from NULL, regardless of pointer type */
7697 		if (zero_size_allowed && access_size == 0 &&
7698 		    register_is_null(reg))
7699 			return 0;
7700 
7701 		verbose(env, "R%d type=%s ", regno,
7702 			reg_type_str(env, reg->type));
7703 		verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK));
7704 		return -EACCES;
7705 	}
7706 }
7707 
7708 /* verify arguments to helpers or kfuncs consisting of a pointer and an access
7709  * size.
7710  *
7711  * @regno is the register containing the access size. regno-1 is the register
7712  * containing the pointer.
7713  */
7714 static int check_mem_size_reg(struct bpf_verifier_env *env,
7715 			      struct bpf_reg_state *reg, u32 regno,
7716 			      enum bpf_access_type access_type,
7717 			      bool zero_size_allowed,
7718 			      struct bpf_call_arg_meta *meta)
7719 {
7720 	int err;
7721 
7722 	/* This is used to refine r0 return value bounds for helpers
7723 	 * that enforce this value as an upper bound on return values.
7724 	 * See do_refine_retval_range() for helpers that can refine
7725 	 * the return value. C type of helper is u32 so we pull register
7726 	 * bound from umax_value however, if negative verifier errors
7727 	 * out. Only upper bounds can be learned because retval is an
7728 	 * int type and negative retvals are allowed.
7729 	 */
7730 	meta->msize_max_value = reg->umax_value;
7731 
7732 	/* The register is SCALAR_VALUE; the access check happens using
7733 	 * its boundaries. For unprivileged variable accesses, disable
7734 	 * raw mode so that the program is required to initialize all
7735 	 * the memory that the helper could just partially fill up.
7736 	 */
7737 	if (!tnum_is_const(reg->var_off))
7738 		meta = NULL;
7739 
7740 	if (reg->smin_value < 0) {
7741 		verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
7742 			regno);
7743 		return -EACCES;
7744 	}
7745 
7746 	if (reg->umin_value == 0 && !zero_size_allowed) {
7747 		verbose(env, "R%d invalid zero-sized read: u64=[%lld,%lld]\n",
7748 			regno, reg->umin_value, reg->umax_value);
7749 		return -EACCES;
7750 	}
7751 
7752 	if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
7753 		verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
7754 			regno);
7755 		return -EACCES;
7756 	}
7757 	err = check_helper_mem_access(env, regno - 1, reg->umax_value,
7758 				      access_type, zero_size_allowed, meta);
7759 	if (!err)
7760 		err = mark_chain_precision(env, regno);
7761 	return err;
7762 }
7763 
7764 static int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
7765 			 u32 regno, u32 mem_size)
7766 {
7767 	bool may_be_null = type_may_be_null(reg->type);
7768 	struct bpf_reg_state saved_reg;
7769 	int err;
7770 
7771 	if (register_is_null(reg))
7772 		return 0;
7773 
7774 	/* Assuming that the register contains a value check if the memory
7775 	 * access is safe. Temporarily save and restore the register's state as
7776 	 * the conversion shouldn't be visible to a caller.
7777 	 */
7778 	if (may_be_null) {
7779 		saved_reg = *reg;
7780 		mark_ptr_not_null_reg(reg);
7781 	}
7782 
7783 	err = check_helper_mem_access(env, regno, mem_size, BPF_READ, true, NULL);
7784 	err = err ?: check_helper_mem_access(env, regno, mem_size, BPF_WRITE, true, NULL);
7785 
7786 	if (may_be_null)
7787 		*reg = saved_reg;
7788 
7789 	return err;
7790 }
7791 
7792 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
7793 				    u32 regno)
7794 {
7795 	struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1];
7796 	bool may_be_null = type_may_be_null(mem_reg->type);
7797 	struct bpf_reg_state saved_reg;
7798 	struct bpf_call_arg_meta meta;
7799 	int err;
7800 
7801 	WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5);
7802 
7803 	memset(&meta, 0, sizeof(meta));
7804 
7805 	if (may_be_null) {
7806 		saved_reg = *mem_reg;
7807 		mark_ptr_not_null_reg(mem_reg);
7808 	}
7809 
7810 	err = check_mem_size_reg(env, reg, regno, BPF_READ, true, &meta);
7811 	err = err ?: check_mem_size_reg(env, reg, regno, BPF_WRITE, true, &meta);
7812 
7813 	if (may_be_null)
7814 		*mem_reg = saved_reg;
7815 
7816 	return err;
7817 }
7818 
7819 /* Implementation details:
7820  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL.
7821  * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL.
7822  * Two bpf_map_lookups (even with the same key) will have different reg->id.
7823  * Two separate bpf_obj_new will also have different reg->id.
7824  * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier
7825  * clears reg->id after value_or_null->value transition, since the verifier only
7826  * cares about the range of access to valid map value pointer and doesn't care
7827  * about actual address of the map element.
7828  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
7829  * reg->id > 0 after value_or_null->value transition. By doing so
7830  * two bpf_map_lookups will be considered two different pointers that
7831  * point to different bpf_spin_locks. Likewise for pointers to allocated objects
7832  * returned from bpf_obj_new.
7833  * The verifier allows taking only one bpf_spin_lock at a time to avoid
7834  * dead-locks.
7835  * Since only one bpf_spin_lock is allowed the checks are simpler than
7836  * reg_is_refcounted() logic. The verifier needs to remember only
7837  * one spin_lock instead of array of acquired_refs.
7838  * cur_func(env)->active_locks remembers which map value element or allocated
7839  * object got locked and clears it after bpf_spin_unlock.
7840  */
7841 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
7842 			     bool is_lock)
7843 {
7844 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7845 	bool is_const = tnum_is_const(reg->var_off);
7846 	struct bpf_func_state *cur = cur_func(env);
7847 	u64 val = reg->var_off.value;
7848 	struct bpf_map *map = NULL;
7849 	struct btf *btf = NULL;
7850 	struct btf_record *rec;
7851 	int err;
7852 
7853 	if (!is_const) {
7854 		verbose(env,
7855 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
7856 			regno);
7857 		return -EINVAL;
7858 	}
7859 	if (reg->type == PTR_TO_MAP_VALUE) {
7860 		map = reg->map_ptr;
7861 		if (!map->btf) {
7862 			verbose(env,
7863 				"map '%s' has to have BTF in order to use bpf_spin_lock\n",
7864 				map->name);
7865 			return -EINVAL;
7866 		}
7867 	} else {
7868 		btf = reg->btf;
7869 	}
7870 
7871 	rec = reg_btf_record(reg);
7872 	if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) {
7873 		verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local",
7874 			map ? map->name : "kptr");
7875 		return -EINVAL;
7876 	}
7877 	if (rec->spin_lock_off != val + reg->off) {
7878 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n",
7879 			val + reg->off, rec->spin_lock_off);
7880 		return -EINVAL;
7881 	}
7882 	if (is_lock) {
7883 		void *ptr;
7884 
7885 		if (map)
7886 			ptr = map;
7887 		else
7888 			ptr = btf;
7889 
7890 		if (cur->active_locks) {
7891 			verbose(env,
7892 				"Locking two bpf_spin_locks are not allowed\n");
7893 			return -EINVAL;
7894 		}
7895 		err = acquire_lock_state(env, env->insn_idx, REF_TYPE_LOCK, reg->id, ptr);
7896 		if (err < 0) {
7897 			verbose(env, "Failed to acquire lock state\n");
7898 			return err;
7899 		}
7900 	} else {
7901 		void *ptr;
7902 
7903 		if (map)
7904 			ptr = map;
7905 		else
7906 			ptr = btf;
7907 
7908 		if (!cur->active_locks) {
7909 			verbose(env, "bpf_spin_unlock without taking a lock\n");
7910 			return -EINVAL;
7911 		}
7912 
7913 		if (release_lock_state(cur_func(env), REF_TYPE_LOCK, reg->id, ptr)) {
7914 			verbose(env, "bpf_spin_unlock of different lock\n");
7915 			return -EINVAL;
7916 		}
7917 
7918 		invalidate_non_owning_refs(env);
7919 	}
7920 	return 0;
7921 }
7922 
7923 static int process_timer_func(struct bpf_verifier_env *env, int regno,
7924 			      struct bpf_call_arg_meta *meta)
7925 {
7926 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7927 	bool is_const = tnum_is_const(reg->var_off);
7928 	struct bpf_map *map = reg->map_ptr;
7929 	u64 val = reg->var_off.value;
7930 
7931 	if (!is_const) {
7932 		verbose(env,
7933 			"R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n",
7934 			regno);
7935 		return -EINVAL;
7936 	}
7937 	if (!map->btf) {
7938 		verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n",
7939 			map->name);
7940 		return -EINVAL;
7941 	}
7942 	if (!btf_record_has_field(map->record, BPF_TIMER)) {
7943 		verbose(env, "map '%s' has no valid bpf_timer\n", map->name);
7944 		return -EINVAL;
7945 	}
7946 	if (map->record->timer_off != val + reg->off) {
7947 		verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n",
7948 			val + reg->off, map->record->timer_off);
7949 		return -EINVAL;
7950 	}
7951 	if (meta->map_ptr) {
7952 		verbose(env, "verifier bug. Two map pointers in a timer helper\n");
7953 		return -EFAULT;
7954 	}
7955 	meta->map_uid = reg->map_uid;
7956 	meta->map_ptr = map;
7957 	return 0;
7958 }
7959 
7960 static int process_wq_func(struct bpf_verifier_env *env, int regno,
7961 			   struct bpf_kfunc_call_arg_meta *meta)
7962 {
7963 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7964 	struct bpf_map *map = reg->map_ptr;
7965 	u64 val = reg->var_off.value;
7966 
7967 	if (map->record->wq_off != val + reg->off) {
7968 		verbose(env, "off %lld doesn't point to 'struct bpf_wq' that is at %d\n",
7969 			val + reg->off, map->record->wq_off);
7970 		return -EINVAL;
7971 	}
7972 	meta->map.uid = reg->map_uid;
7973 	meta->map.ptr = map;
7974 	return 0;
7975 }
7976 
7977 static int process_kptr_func(struct bpf_verifier_env *env, int regno,
7978 			     struct bpf_call_arg_meta *meta)
7979 {
7980 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7981 	struct btf_field *kptr_field;
7982 	struct bpf_map *map_ptr;
7983 	struct btf_record *rec;
7984 	u32 kptr_off;
7985 
7986 	if (type_is_ptr_alloc_obj(reg->type)) {
7987 		rec = reg_btf_record(reg);
7988 	} else { /* PTR_TO_MAP_VALUE */
7989 		map_ptr = reg->map_ptr;
7990 		if (!map_ptr->btf) {
7991 			verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n",
7992 				map_ptr->name);
7993 			return -EINVAL;
7994 		}
7995 		rec = map_ptr->record;
7996 		meta->map_ptr = map_ptr;
7997 	}
7998 
7999 	if (!tnum_is_const(reg->var_off)) {
8000 		verbose(env,
8001 			"R%d doesn't have constant offset. kptr has to be at the constant offset\n",
8002 			regno);
8003 		return -EINVAL;
8004 	}
8005 
8006 	if (!btf_record_has_field(rec, BPF_KPTR)) {
8007 		verbose(env, "R%d has no valid kptr\n", regno);
8008 		return -EINVAL;
8009 	}
8010 
8011 	kptr_off = reg->off + reg->var_off.value;
8012 	kptr_field = btf_record_find(rec, kptr_off, BPF_KPTR);
8013 	if (!kptr_field) {
8014 		verbose(env, "off=%d doesn't point to kptr\n", kptr_off);
8015 		return -EACCES;
8016 	}
8017 	if (kptr_field->type != BPF_KPTR_REF && kptr_field->type != BPF_KPTR_PERCPU) {
8018 		verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off);
8019 		return -EACCES;
8020 	}
8021 	meta->kptr_field = kptr_field;
8022 	return 0;
8023 }
8024 
8025 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK
8026  * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR.
8027  *
8028  * In both cases we deal with the first 8 bytes, but need to mark the next 8
8029  * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of
8030  * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object.
8031  *
8032  * Mutability of bpf_dynptr is at two levels, one is at the level of struct
8033  * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct
8034  * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can
8035  * mutate the view of the dynptr and also possibly destroy it. In the latter
8036  * case, it cannot mutate the bpf_dynptr itself but it can still mutate the
8037  * memory that dynptr points to.
8038  *
8039  * The verifier will keep track both levels of mutation (bpf_dynptr's in
8040  * reg->type and the memory's in reg->dynptr.type), but there is no support for
8041  * readonly dynptr view yet, hence only the first case is tracked and checked.
8042  *
8043  * This is consistent with how C applies the const modifier to a struct object,
8044  * where the pointer itself inside bpf_dynptr becomes const but not what it
8045  * points to.
8046  *
8047  * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument
8048  * type, and declare it as 'const struct bpf_dynptr *' in their prototype.
8049  */
8050 static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx,
8051 			       enum bpf_arg_type arg_type, int clone_ref_obj_id)
8052 {
8053 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
8054 	int err;
8055 
8056 	if (reg->type != PTR_TO_STACK && reg->type != CONST_PTR_TO_DYNPTR) {
8057 		verbose(env,
8058 			"arg#%d expected pointer to stack or const struct bpf_dynptr\n",
8059 			regno - 1);
8060 		return -EINVAL;
8061 	}
8062 
8063 	/* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an
8064 	 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*):
8065 	 */
8066 	if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) {
8067 		verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n");
8068 		return -EFAULT;
8069 	}
8070 
8071 	/*  MEM_UNINIT - Points to memory that is an appropriate candidate for
8072 	 *		 constructing a mutable bpf_dynptr object.
8073 	 *
8074 	 *		 Currently, this is only possible with PTR_TO_STACK
8075 	 *		 pointing to a region of at least 16 bytes which doesn't
8076 	 *		 contain an existing bpf_dynptr.
8077 	 *
8078 	 *  MEM_RDONLY - Points to a initialized bpf_dynptr that will not be
8079 	 *		 mutated or destroyed. However, the memory it points to
8080 	 *		 may be mutated.
8081 	 *
8082 	 *  None       - Points to a initialized dynptr that can be mutated and
8083 	 *		 destroyed, including mutation of the memory it points
8084 	 *		 to.
8085 	 */
8086 	if (arg_type & MEM_UNINIT) {
8087 		int i;
8088 
8089 		if (!is_dynptr_reg_valid_uninit(env, reg)) {
8090 			verbose(env, "Dynptr has to be an uninitialized dynptr\n");
8091 			return -EINVAL;
8092 		}
8093 
8094 		/* we write BPF_DW bits (8 bytes) at a time */
8095 		for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) {
8096 			err = check_mem_access(env, insn_idx, regno,
8097 					       i, BPF_DW, BPF_WRITE, -1, false, false);
8098 			if (err)
8099 				return err;
8100 		}
8101 
8102 		err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx, clone_ref_obj_id);
8103 	} else /* MEM_RDONLY and None case from above */ {
8104 		/* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */
8105 		if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) {
8106 			verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n");
8107 			return -EINVAL;
8108 		}
8109 
8110 		if (!is_dynptr_reg_valid_init(env, reg)) {
8111 			verbose(env,
8112 				"Expected an initialized dynptr as arg #%d\n",
8113 				regno - 1);
8114 			return -EINVAL;
8115 		}
8116 
8117 		/* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */
8118 		if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) {
8119 			verbose(env,
8120 				"Expected a dynptr of type %s as arg #%d\n",
8121 				dynptr_type_str(arg_to_dynptr_type(arg_type)), regno - 1);
8122 			return -EINVAL;
8123 		}
8124 
8125 		err = mark_dynptr_read(env, reg);
8126 	}
8127 	return err;
8128 }
8129 
8130 static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi)
8131 {
8132 	struct bpf_func_state *state = func(env, reg);
8133 
8134 	return state->stack[spi].spilled_ptr.ref_obj_id;
8135 }
8136 
8137 static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta)
8138 {
8139 	return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY);
8140 }
8141 
8142 static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta)
8143 {
8144 	return meta->kfunc_flags & KF_ITER_NEW;
8145 }
8146 
8147 static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta)
8148 {
8149 	return meta->kfunc_flags & KF_ITER_NEXT;
8150 }
8151 
8152 static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta)
8153 {
8154 	return meta->kfunc_flags & KF_ITER_DESTROY;
8155 }
8156 
8157 static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg_idx,
8158 			      const struct btf_param *arg)
8159 {
8160 	/* btf_check_iter_kfuncs() guarantees that first argument of any iter
8161 	 * kfunc is iter state pointer
8162 	 */
8163 	if (is_iter_kfunc(meta))
8164 		return arg_idx == 0;
8165 
8166 	/* iter passed as an argument to a generic kfunc */
8167 	return btf_param_match_suffix(meta->btf, arg, "__iter");
8168 }
8169 
8170 static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx,
8171 			    struct bpf_kfunc_call_arg_meta *meta)
8172 {
8173 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
8174 	const struct btf_type *t;
8175 	int spi, err, i, nr_slots, btf_id;
8176 
8177 	if (reg->type != PTR_TO_STACK) {
8178 		verbose(env, "arg#%d expected pointer to an iterator on stack\n", regno - 1);
8179 		return -EINVAL;
8180 	}
8181 
8182 	/* For iter_{new,next,destroy} functions, btf_check_iter_kfuncs()
8183 	 * ensures struct convention, so we wouldn't need to do any BTF
8184 	 * validation here. But given iter state can be passed as a parameter
8185 	 * to any kfunc, if arg has "__iter" suffix, we need to be a bit more
8186 	 * conservative here.
8187 	 */
8188 	btf_id = btf_check_iter_arg(meta->btf, meta->func_proto, regno - 1);
8189 	if (btf_id < 0) {
8190 		verbose(env, "expected valid iter pointer as arg #%d\n", regno - 1);
8191 		return -EINVAL;
8192 	}
8193 	t = btf_type_by_id(meta->btf, btf_id);
8194 	nr_slots = t->size / BPF_REG_SIZE;
8195 
8196 	if (is_iter_new_kfunc(meta)) {
8197 		/* bpf_iter_<type>_new() expects pointer to uninit iter state */
8198 		if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) {
8199 			verbose(env, "expected uninitialized iter_%s as arg #%d\n",
8200 				iter_type_str(meta->btf, btf_id), regno - 1);
8201 			return -EINVAL;
8202 		}
8203 
8204 		for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) {
8205 			err = check_mem_access(env, insn_idx, regno,
8206 					       i, BPF_DW, BPF_WRITE, -1, false, false);
8207 			if (err)
8208 				return err;
8209 		}
8210 
8211 		err = mark_stack_slots_iter(env, meta, reg, insn_idx, meta->btf, btf_id, nr_slots);
8212 		if (err)
8213 			return err;
8214 	} else {
8215 		/* iter_next() or iter_destroy(), as well as any kfunc
8216 		 * accepting iter argument, expect initialized iter state
8217 		 */
8218 		err = is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots);
8219 		switch (err) {
8220 		case 0:
8221 			break;
8222 		case -EINVAL:
8223 			verbose(env, "expected an initialized iter_%s as arg #%d\n",
8224 				iter_type_str(meta->btf, btf_id), regno - 1);
8225 			return err;
8226 		case -EPROTO:
8227 			verbose(env, "expected an RCU CS when using %s\n", meta->func_name);
8228 			return err;
8229 		default:
8230 			return err;
8231 		}
8232 
8233 		spi = iter_get_spi(env, reg, nr_slots);
8234 		if (spi < 0)
8235 			return spi;
8236 
8237 		err = mark_iter_read(env, reg, spi, nr_slots);
8238 		if (err)
8239 			return err;
8240 
8241 		/* remember meta->iter info for process_iter_next_call() */
8242 		meta->iter.spi = spi;
8243 		meta->iter.frameno = reg->frameno;
8244 		meta->ref_obj_id = iter_ref_obj_id(env, reg, spi);
8245 
8246 		if (is_iter_destroy_kfunc(meta)) {
8247 			err = unmark_stack_slots_iter(env, reg, nr_slots);
8248 			if (err)
8249 				return err;
8250 		}
8251 	}
8252 
8253 	return 0;
8254 }
8255 
8256 /* Look for a previous loop entry at insn_idx: nearest parent state
8257  * stopped at insn_idx with callsites matching those in cur->frame.
8258  */
8259 static struct bpf_verifier_state *find_prev_entry(struct bpf_verifier_env *env,
8260 						  struct bpf_verifier_state *cur,
8261 						  int insn_idx)
8262 {
8263 	struct bpf_verifier_state_list *sl;
8264 	struct bpf_verifier_state *st;
8265 
8266 	/* Explored states are pushed in stack order, most recent states come first */
8267 	sl = *explored_state(env, insn_idx);
8268 	for (; sl; sl = sl->next) {
8269 		/* If st->branches != 0 state is a part of current DFS verification path,
8270 		 * hence cur & st for a loop.
8271 		 */
8272 		st = &sl->state;
8273 		if (st->insn_idx == insn_idx && st->branches && same_callsites(st, cur) &&
8274 		    st->dfs_depth < cur->dfs_depth)
8275 			return st;
8276 	}
8277 
8278 	return NULL;
8279 }
8280 
8281 static void reset_idmap_scratch(struct bpf_verifier_env *env);
8282 static bool regs_exact(const struct bpf_reg_state *rold,
8283 		       const struct bpf_reg_state *rcur,
8284 		       struct bpf_idmap *idmap);
8285 
8286 static void maybe_widen_reg(struct bpf_verifier_env *env,
8287 			    struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
8288 			    struct bpf_idmap *idmap)
8289 {
8290 	if (rold->type != SCALAR_VALUE)
8291 		return;
8292 	if (rold->type != rcur->type)
8293 		return;
8294 	if (rold->precise || rcur->precise || regs_exact(rold, rcur, idmap))
8295 		return;
8296 	__mark_reg_unknown(env, rcur);
8297 }
8298 
8299 static int widen_imprecise_scalars(struct bpf_verifier_env *env,
8300 				   struct bpf_verifier_state *old,
8301 				   struct bpf_verifier_state *cur)
8302 {
8303 	struct bpf_func_state *fold, *fcur;
8304 	int i, fr;
8305 
8306 	reset_idmap_scratch(env);
8307 	for (fr = old->curframe; fr >= 0; fr--) {
8308 		fold = old->frame[fr];
8309 		fcur = cur->frame[fr];
8310 
8311 		for (i = 0; i < MAX_BPF_REG; i++)
8312 			maybe_widen_reg(env,
8313 					&fold->regs[i],
8314 					&fcur->regs[i],
8315 					&env->idmap_scratch);
8316 
8317 		for (i = 0; i < fold->allocated_stack / BPF_REG_SIZE; i++) {
8318 			if (!is_spilled_reg(&fold->stack[i]) ||
8319 			    !is_spilled_reg(&fcur->stack[i]))
8320 				continue;
8321 
8322 			maybe_widen_reg(env,
8323 					&fold->stack[i].spilled_ptr,
8324 					&fcur->stack[i].spilled_ptr,
8325 					&env->idmap_scratch);
8326 		}
8327 	}
8328 	return 0;
8329 }
8330 
8331 static struct bpf_reg_state *get_iter_from_state(struct bpf_verifier_state *cur_st,
8332 						 struct bpf_kfunc_call_arg_meta *meta)
8333 {
8334 	int iter_frameno = meta->iter.frameno;
8335 	int iter_spi = meta->iter.spi;
8336 
8337 	return &cur_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr;
8338 }
8339 
8340 /* process_iter_next_call() is called when verifier gets to iterator's next
8341  * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer
8342  * to it as just "iter_next()" in comments below.
8343  *
8344  * BPF verifier relies on a crucial contract for any iter_next()
8345  * implementation: it should *eventually* return NULL, and once that happens
8346  * it should keep returning NULL. That is, once iterator exhausts elements to
8347  * iterate, it should never reset or spuriously return new elements.
8348  *
8349  * With the assumption of such contract, process_iter_next_call() simulates
8350  * a fork in the verifier state to validate loop logic correctness and safety
8351  * without having to simulate infinite amount of iterations.
8352  *
8353  * In current state, we first assume that iter_next() returned NULL and
8354  * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such
8355  * conditions we should not form an infinite loop and should eventually reach
8356  * exit.
8357  *
8358  * Besides that, we also fork current state and enqueue it for later
8359  * verification. In a forked state we keep iterator state as ACTIVE
8360  * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We
8361  * also bump iteration depth to prevent erroneous infinite loop detection
8362  * later on (see iter_active_depths_differ() comment for details). In this
8363  * state we assume that we'll eventually loop back to another iter_next()
8364  * calls (it could be in exactly same location or in some other instruction,
8365  * it doesn't matter, we don't make any unnecessary assumptions about this,
8366  * everything revolves around iterator state in a stack slot, not which
8367  * instruction is calling iter_next()). When that happens, we either will come
8368  * to iter_next() with equivalent state and can conclude that next iteration
8369  * will proceed in exactly the same way as we just verified, so it's safe to
8370  * assume that loop converges. If not, we'll go on another iteration
8371  * simulation with a different input state, until all possible starting states
8372  * are validated or we reach maximum number of instructions limit.
8373  *
8374  * This way, we will either exhaustively discover all possible input states
8375  * that iterator loop can start with and eventually will converge, or we'll
8376  * effectively regress into bounded loop simulation logic and either reach
8377  * maximum number of instructions if loop is not provably convergent, or there
8378  * is some statically known limit on number of iterations (e.g., if there is
8379  * an explicit `if n > 100 then break;` statement somewhere in the loop).
8380  *
8381  * Iteration convergence logic in is_state_visited() relies on exact
8382  * states comparison, which ignores read and precision marks.
8383  * This is necessary because read and precision marks are not finalized
8384  * while in the loop. Exact comparison might preclude convergence for
8385  * simple programs like below:
8386  *
8387  *     i = 0;
8388  *     while(iter_next(&it))
8389  *       i++;
8390  *
8391  * At each iteration step i++ would produce a new distinct state and
8392  * eventually instruction processing limit would be reached.
8393  *
8394  * To avoid such behavior speculatively forget (widen) range for
8395  * imprecise scalar registers, if those registers were not precise at the
8396  * end of the previous iteration and do not match exactly.
8397  *
8398  * This is a conservative heuristic that allows to verify wide range of programs,
8399  * however it precludes verification of programs that conjure an
8400  * imprecise value on the first loop iteration and use it as precise on a second.
8401  * For example, the following safe program would fail to verify:
8402  *
8403  *     struct bpf_num_iter it;
8404  *     int arr[10];
8405  *     int i = 0, a = 0;
8406  *     bpf_iter_num_new(&it, 0, 10);
8407  *     while (bpf_iter_num_next(&it)) {
8408  *       if (a == 0) {
8409  *         a = 1;
8410  *         i = 7; // Because i changed verifier would forget
8411  *                // it's range on second loop entry.
8412  *       } else {
8413  *         arr[i] = 42; // This would fail to verify.
8414  *       }
8415  *     }
8416  *     bpf_iter_num_destroy(&it);
8417  */
8418 static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx,
8419 				  struct bpf_kfunc_call_arg_meta *meta)
8420 {
8421 	struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st;
8422 	struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr;
8423 	struct bpf_reg_state *cur_iter, *queued_iter;
8424 
8425 	BTF_TYPE_EMIT(struct bpf_iter);
8426 
8427 	cur_iter = get_iter_from_state(cur_st, meta);
8428 
8429 	if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE &&
8430 	    cur_iter->iter.state != BPF_ITER_STATE_DRAINED) {
8431 		verbose(env, "verifier internal error: unexpected iterator state %d (%s)\n",
8432 			cur_iter->iter.state, iter_state_str(cur_iter->iter.state));
8433 		return -EFAULT;
8434 	}
8435 
8436 	if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) {
8437 		/* Because iter_next() call is a checkpoint is_state_visitied()
8438 		 * should guarantee parent state with same call sites and insn_idx.
8439 		 */
8440 		if (!cur_st->parent || cur_st->parent->insn_idx != insn_idx ||
8441 		    !same_callsites(cur_st->parent, cur_st)) {
8442 			verbose(env, "bug: bad parent state for iter next call");
8443 			return -EFAULT;
8444 		}
8445 		/* Note cur_st->parent in the call below, it is necessary to skip
8446 		 * checkpoint created for cur_st by is_state_visited()
8447 		 * right at this instruction.
8448 		 */
8449 		prev_st = find_prev_entry(env, cur_st->parent, insn_idx);
8450 		/* branch out active iter state */
8451 		queued_st = push_stack(env, insn_idx + 1, insn_idx, false);
8452 		if (!queued_st)
8453 			return -ENOMEM;
8454 
8455 		queued_iter = get_iter_from_state(queued_st, meta);
8456 		queued_iter->iter.state = BPF_ITER_STATE_ACTIVE;
8457 		queued_iter->iter.depth++;
8458 		if (prev_st)
8459 			widen_imprecise_scalars(env, prev_st, queued_st);
8460 
8461 		queued_fr = queued_st->frame[queued_st->curframe];
8462 		mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]);
8463 	}
8464 
8465 	/* switch to DRAINED state, but keep the depth unchanged */
8466 	/* mark current iter state as drained and assume returned NULL */
8467 	cur_iter->iter.state = BPF_ITER_STATE_DRAINED;
8468 	__mark_reg_const_zero(env, &cur_fr->regs[BPF_REG_0]);
8469 
8470 	return 0;
8471 }
8472 
8473 static bool arg_type_is_mem_size(enum bpf_arg_type type)
8474 {
8475 	return type == ARG_CONST_SIZE ||
8476 	       type == ARG_CONST_SIZE_OR_ZERO;
8477 }
8478 
8479 static bool arg_type_is_raw_mem(enum bpf_arg_type type)
8480 {
8481 	return base_type(type) == ARG_PTR_TO_MEM &&
8482 	       type & MEM_UNINIT;
8483 }
8484 
8485 static bool arg_type_is_release(enum bpf_arg_type type)
8486 {
8487 	return type & OBJ_RELEASE;
8488 }
8489 
8490 static bool arg_type_is_dynptr(enum bpf_arg_type type)
8491 {
8492 	return base_type(type) == ARG_PTR_TO_DYNPTR;
8493 }
8494 
8495 static int resolve_map_arg_type(struct bpf_verifier_env *env,
8496 				 const struct bpf_call_arg_meta *meta,
8497 				 enum bpf_arg_type *arg_type)
8498 {
8499 	if (!meta->map_ptr) {
8500 		/* kernel subsystem misconfigured verifier */
8501 		verbose(env, "invalid map_ptr to access map->type\n");
8502 		return -EACCES;
8503 	}
8504 
8505 	switch (meta->map_ptr->map_type) {
8506 	case BPF_MAP_TYPE_SOCKMAP:
8507 	case BPF_MAP_TYPE_SOCKHASH:
8508 		if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
8509 			*arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
8510 		} else {
8511 			verbose(env, "invalid arg_type for sockmap/sockhash\n");
8512 			return -EINVAL;
8513 		}
8514 		break;
8515 	case BPF_MAP_TYPE_BLOOM_FILTER:
8516 		if (meta->func_id == BPF_FUNC_map_peek_elem)
8517 			*arg_type = ARG_PTR_TO_MAP_VALUE;
8518 		break;
8519 	default:
8520 		break;
8521 	}
8522 	return 0;
8523 }
8524 
8525 struct bpf_reg_types {
8526 	const enum bpf_reg_type types[10];
8527 	u32 *btf_id;
8528 };
8529 
8530 static const struct bpf_reg_types sock_types = {
8531 	.types = {
8532 		PTR_TO_SOCK_COMMON,
8533 		PTR_TO_SOCKET,
8534 		PTR_TO_TCP_SOCK,
8535 		PTR_TO_XDP_SOCK,
8536 	},
8537 };
8538 
8539 #ifdef CONFIG_NET
8540 static const struct bpf_reg_types btf_id_sock_common_types = {
8541 	.types = {
8542 		PTR_TO_SOCK_COMMON,
8543 		PTR_TO_SOCKET,
8544 		PTR_TO_TCP_SOCK,
8545 		PTR_TO_XDP_SOCK,
8546 		PTR_TO_BTF_ID,
8547 		PTR_TO_BTF_ID | PTR_TRUSTED,
8548 	},
8549 	.btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
8550 };
8551 #endif
8552 
8553 static const struct bpf_reg_types mem_types = {
8554 	.types = {
8555 		PTR_TO_STACK,
8556 		PTR_TO_PACKET,
8557 		PTR_TO_PACKET_META,
8558 		PTR_TO_MAP_KEY,
8559 		PTR_TO_MAP_VALUE,
8560 		PTR_TO_MEM,
8561 		PTR_TO_MEM | MEM_RINGBUF,
8562 		PTR_TO_BUF,
8563 		PTR_TO_BTF_ID | PTR_TRUSTED,
8564 	},
8565 };
8566 
8567 static const struct bpf_reg_types spin_lock_types = {
8568 	.types = {
8569 		PTR_TO_MAP_VALUE,
8570 		PTR_TO_BTF_ID | MEM_ALLOC,
8571 	}
8572 };
8573 
8574 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
8575 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
8576 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
8577 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } };
8578 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
8579 static const struct bpf_reg_types btf_ptr_types = {
8580 	.types = {
8581 		PTR_TO_BTF_ID,
8582 		PTR_TO_BTF_ID | PTR_TRUSTED,
8583 		PTR_TO_BTF_ID | MEM_RCU,
8584 	},
8585 };
8586 static const struct bpf_reg_types percpu_btf_ptr_types = {
8587 	.types = {
8588 		PTR_TO_BTF_ID | MEM_PERCPU,
8589 		PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU,
8590 		PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED,
8591 	}
8592 };
8593 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
8594 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
8595 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
8596 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } };
8597 static const struct bpf_reg_types kptr_xchg_dest_types = {
8598 	.types = {
8599 		PTR_TO_MAP_VALUE,
8600 		PTR_TO_BTF_ID | MEM_ALLOC
8601 	}
8602 };
8603 static const struct bpf_reg_types dynptr_types = {
8604 	.types = {
8605 		PTR_TO_STACK,
8606 		CONST_PTR_TO_DYNPTR,
8607 	}
8608 };
8609 
8610 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
8611 	[ARG_PTR_TO_MAP_KEY]		= &mem_types,
8612 	[ARG_PTR_TO_MAP_VALUE]		= &mem_types,
8613 	[ARG_CONST_SIZE]		= &scalar_types,
8614 	[ARG_CONST_SIZE_OR_ZERO]	= &scalar_types,
8615 	[ARG_CONST_ALLOC_SIZE_OR_ZERO]	= &scalar_types,
8616 	[ARG_CONST_MAP_PTR]		= &const_map_ptr_types,
8617 	[ARG_PTR_TO_CTX]		= &context_types,
8618 	[ARG_PTR_TO_SOCK_COMMON]	= &sock_types,
8619 #ifdef CONFIG_NET
8620 	[ARG_PTR_TO_BTF_ID_SOCK_COMMON]	= &btf_id_sock_common_types,
8621 #endif
8622 	[ARG_PTR_TO_SOCKET]		= &fullsock_types,
8623 	[ARG_PTR_TO_BTF_ID]		= &btf_ptr_types,
8624 	[ARG_PTR_TO_SPIN_LOCK]		= &spin_lock_types,
8625 	[ARG_PTR_TO_MEM]		= &mem_types,
8626 	[ARG_PTR_TO_RINGBUF_MEM]	= &ringbuf_mem_types,
8627 	[ARG_PTR_TO_PERCPU_BTF_ID]	= &percpu_btf_ptr_types,
8628 	[ARG_PTR_TO_FUNC]		= &func_ptr_types,
8629 	[ARG_PTR_TO_STACK]		= &stack_ptr_types,
8630 	[ARG_PTR_TO_CONST_STR]		= &const_str_ptr_types,
8631 	[ARG_PTR_TO_TIMER]		= &timer_types,
8632 	[ARG_KPTR_XCHG_DEST]		= &kptr_xchg_dest_types,
8633 	[ARG_PTR_TO_DYNPTR]		= &dynptr_types,
8634 };
8635 
8636 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
8637 			  enum bpf_arg_type arg_type,
8638 			  const u32 *arg_btf_id,
8639 			  struct bpf_call_arg_meta *meta)
8640 {
8641 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
8642 	enum bpf_reg_type expected, type = reg->type;
8643 	const struct bpf_reg_types *compatible;
8644 	int i, j;
8645 
8646 	compatible = compatible_reg_types[base_type(arg_type)];
8647 	if (!compatible) {
8648 		verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
8649 		return -EFAULT;
8650 	}
8651 
8652 	/* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY,
8653 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY
8654 	 *
8655 	 * Same for MAYBE_NULL:
8656 	 *
8657 	 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL,
8658 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL
8659 	 *
8660 	 * ARG_PTR_TO_MEM is compatible with PTR_TO_MEM that is tagged with a dynptr type.
8661 	 *
8662 	 * Therefore we fold these flags depending on the arg_type before comparison.
8663 	 */
8664 	if (arg_type & MEM_RDONLY)
8665 		type &= ~MEM_RDONLY;
8666 	if (arg_type & PTR_MAYBE_NULL)
8667 		type &= ~PTR_MAYBE_NULL;
8668 	if (base_type(arg_type) == ARG_PTR_TO_MEM)
8669 		type &= ~DYNPTR_TYPE_FLAG_MASK;
8670 
8671 	/* Local kptr types are allowed as the source argument of bpf_kptr_xchg */
8672 	if (meta->func_id == BPF_FUNC_kptr_xchg && type_is_alloc(type) && regno == BPF_REG_2) {
8673 		type &= ~MEM_ALLOC;
8674 		type &= ~MEM_PERCPU;
8675 	}
8676 
8677 	for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
8678 		expected = compatible->types[i];
8679 		if (expected == NOT_INIT)
8680 			break;
8681 
8682 		if (type == expected)
8683 			goto found;
8684 	}
8685 
8686 	verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type));
8687 	for (j = 0; j + 1 < i; j++)
8688 		verbose(env, "%s, ", reg_type_str(env, compatible->types[j]));
8689 	verbose(env, "%s\n", reg_type_str(env, compatible->types[j]));
8690 	return -EACCES;
8691 
8692 found:
8693 	if (base_type(reg->type) != PTR_TO_BTF_ID)
8694 		return 0;
8695 
8696 	if (compatible == &mem_types) {
8697 		if (!(arg_type & MEM_RDONLY)) {
8698 			verbose(env,
8699 				"%s() may write into memory pointed by R%d type=%s\n",
8700 				func_id_name(meta->func_id),
8701 				regno, reg_type_str(env, reg->type));
8702 			return -EACCES;
8703 		}
8704 		return 0;
8705 	}
8706 
8707 	switch ((int)reg->type) {
8708 	case PTR_TO_BTF_ID:
8709 	case PTR_TO_BTF_ID | PTR_TRUSTED:
8710 	case PTR_TO_BTF_ID | PTR_TRUSTED | PTR_MAYBE_NULL:
8711 	case PTR_TO_BTF_ID | MEM_RCU:
8712 	case PTR_TO_BTF_ID | PTR_MAYBE_NULL:
8713 	case PTR_TO_BTF_ID | PTR_MAYBE_NULL | MEM_RCU:
8714 	{
8715 		/* For bpf_sk_release, it needs to match against first member
8716 		 * 'struct sock_common', hence make an exception for it. This
8717 		 * allows bpf_sk_release to work for multiple socket types.
8718 		 */
8719 		bool strict_type_match = arg_type_is_release(arg_type) &&
8720 					 meta->func_id != BPF_FUNC_sk_release;
8721 
8722 		if (type_may_be_null(reg->type) &&
8723 		    (!type_may_be_null(arg_type) || arg_type_is_release(arg_type))) {
8724 			verbose(env, "Possibly NULL pointer passed to helper arg%d\n", regno);
8725 			return -EACCES;
8726 		}
8727 
8728 		if (!arg_btf_id) {
8729 			if (!compatible->btf_id) {
8730 				verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
8731 				return -EFAULT;
8732 			}
8733 			arg_btf_id = compatible->btf_id;
8734 		}
8735 
8736 		if (meta->func_id == BPF_FUNC_kptr_xchg) {
8737 			if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
8738 				return -EACCES;
8739 		} else {
8740 			if (arg_btf_id == BPF_PTR_POISON) {
8741 				verbose(env, "verifier internal error:");
8742 				verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n",
8743 					regno);
8744 				return -EACCES;
8745 			}
8746 
8747 			if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
8748 						  btf_vmlinux, *arg_btf_id,
8749 						  strict_type_match)) {
8750 				verbose(env, "R%d is of type %s but %s is expected\n",
8751 					regno, btf_type_name(reg->btf, reg->btf_id),
8752 					btf_type_name(btf_vmlinux, *arg_btf_id));
8753 				return -EACCES;
8754 			}
8755 		}
8756 		break;
8757 	}
8758 	case PTR_TO_BTF_ID | MEM_ALLOC:
8759 	case PTR_TO_BTF_ID | MEM_PERCPU | MEM_ALLOC:
8760 		if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock &&
8761 		    meta->func_id != BPF_FUNC_kptr_xchg) {
8762 			verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n");
8763 			return -EFAULT;
8764 		}
8765 		/* Check if local kptr in src arg matches kptr in dst arg */
8766 		if (meta->func_id == BPF_FUNC_kptr_xchg && regno == BPF_REG_2) {
8767 			if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
8768 				return -EACCES;
8769 		}
8770 		break;
8771 	case PTR_TO_BTF_ID | MEM_PERCPU:
8772 	case PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU:
8773 	case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED:
8774 		/* Handled by helper specific checks */
8775 		break;
8776 	default:
8777 		verbose(env, "verifier internal error: invalid PTR_TO_BTF_ID register for type match\n");
8778 		return -EFAULT;
8779 	}
8780 	return 0;
8781 }
8782 
8783 static struct btf_field *
8784 reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields)
8785 {
8786 	struct btf_field *field;
8787 	struct btf_record *rec;
8788 
8789 	rec = reg_btf_record(reg);
8790 	if (!rec)
8791 		return NULL;
8792 
8793 	field = btf_record_find(rec, off, fields);
8794 	if (!field)
8795 		return NULL;
8796 
8797 	return field;
8798 }
8799 
8800 static int check_func_arg_reg_off(struct bpf_verifier_env *env,
8801 				  const struct bpf_reg_state *reg, int regno,
8802 				  enum bpf_arg_type arg_type)
8803 {
8804 	u32 type = reg->type;
8805 
8806 	/* When referenced register is passed to release function, its fixed
8807 	 * offset must be 0.
8808 	 *
8809 	 * We will check arg_type_is_release reg has ref_obj_id when storing
8810 	 * meta->release_regno.
8811 	 */
8812 	if (arg_type_is_release(arg_type)) {
8813 		/* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it
8814 		 * may not directly point to the object being released, but to
8815 		 * dynptr pointing to such object, which might be at some offset
8816 		 * on the stack. In that case, we simply to fallback to the
8817 		 * default handling.
8818 		 */
8819 		if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK)
8820 			return 0;
8821 
8822 		/* Doing check_ptr_off_reg check for the offset will catch this
8823 		 * because fixed_off_ok is false, but checking here allows us
8824 		 * to give the user a better error message.
8825 		 */
8826 		if (reg->off) {
8827 			verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n",
8828 				regno);
8829 			return -EINVAL;
8830 		}
8831 		return __check_ptr_off_reg(env, reg, regno, false);
8832 	}
8833 
8834 	switch (type) {
8835 	/* Pointer types where both fixed and variable offset is explicitly allowed: */
8836 	case PTR_TO_STACK:
8837 	case PTR_TO_PACKET:
8838 	case PTR_TO_PACKET_META:
8839 	case PTR_TO_MAP_KEY:
8840 	case PTR_TO_MAP_VALUE:
8841 	case PTR_TO_MEM:
8842 	case PTR_TO_MEM | MEM_RDONLY:
8843 	case PTR_TO_MEM | MEM_RINGBUF:
8844 	case PTR_TO_BUF:
8845 	case PTR_TO_BUF | MEM_RDONLY:
8846 	case PTR_TO_ARENA:
8847 	case SCALAR_VALUE:
8848 		return 0;
8849 	/* All the rest must be rejected, except PTR_TO_BTF_ID which allows
8850 	 * fixed offset.
8851 	 */
8852 	case PTR_TO_BTF_ID:
8853 	case PTR_TO_BTF_ID | MEM_ALLOC:
8854 	case PTR_TO_BTF_ID | PTR_TRUSTED:
8855 	case PTR_TO_BTF_ID | MEM_RCU:
8856 	case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF:
8857 	case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF | MEM_RCU:
8858 		/* When referenced PTR_TO_BTF_ID is passed to release function,
8859 		 * its fixed offset must be 0. In the other cases, fixed offset
8860 		 * can be non-zero. This was already checked above. So pass
8861 		 * fixed_off_ok as true to allow fixed offset for all other
8862 		 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we
8863 		 * still need to do checks instead of returning.
8864 		 */
8865 		return __check_ptr_off_reg(env, reg, regno, true);
8866 	default:
8867 		return __check_ptr_off_reg(env, reg, regno, false);
8868 	}
8869 }
8870 
8871 static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env,
8872 						const struct bpf_func_proto *fn,
8873 						struct bpf_reg_state *regs)
8874 {
8875 	struct bpf_reg_state *state = NULL;
8876 	int i;
8877 
8878 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++)
8879 		if (arg_type_is_dynptr(fn->arg_type[i])) {
8880 			if (state) {
8881 				verbose(env, "verifier internal error: multiple dynptr args\n");
8882 				return NULL;
8883 			}
8884 			state = &regs[BPF_REG_1 + i];
8885 		}
8886 
8887 	if (!state)
8888 		verbose(env, "verifier internal error: no dynptr arg found\n");
8889 
8890 	return state;
8891 }
8892 
8893 static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
8894 {
8895 	struct bpf_func_state *state = func(env, reg);
8896 	int spi;
8897 
8898 	if (reg->type == CONST_PTR_TO_DYNPTR)
8899 		return reg->id;
8900 	spi = dynptr_get_spi(env, reg);
8901 	if (spi < 0)
8902 		return spi;
8903 	return state->stack[spi].spilled_ptr.id;
8904 }
8905 
8906 static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
8907 {
8908 	struct bpf_func_state *state = func(env, reg);
8909 	int spi;
8910 
8911 	if (reg->type == CONST_PTR_TO_DYNPTR)
8912 		return reg->ref_obj_id;
8913 	spi = dynptr_get_spi(env, reg);
8914 	if (spi < 0)
8915 		return spi;
8916 	return state->stack[spi].spilled_ptr.ref_obj_id;
8917 }
8918 
8919 static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env,
8920 					    struct bpf_reg_state *reg)
8921 {
8922 	struct bpf_func_state *state = func(env, reg);
8923 	int spi;
8924 
8925 	if (reg->type == CONST_PTR_TO_DYNPTR)
8926 		return reg->dynptr.type;
8927 
8928 	spi = __get_spi(reg->off);
8929 	if (spi < 0) {
8930 		verbose(env, "verifier internal error: invalid spi when querying dynptr type\n");
8931 		return BPF_DYNPTR_TYPE_INVALID;
8932 	}
8933 
8934 	return state->stack[spi].spilled_ptr.dynptr.type;
8935 }
8936 
8937 static int check_reg_const_str(struct bpf_verifier_env *env,
8938 			       struct bpf_reg_state *reg, u32 regno)
8939 {
8940 	struct bpf_map *map = reg->map_ptr;
8941 	int err;
8942 	int map_off;
8943 	u64 map_addr;
8944 	char *str_ptr;
8945 
8946 	if (reg->type != PTR_TO_MAP_VALUE)
8947 		return -EINVAL;
8948 
8949 	if (!bpf_map_is_rdonly(map)) {
8950 		verbose(env, "R%d does not point to a readonly map'\n", regno);
8951 		return -EACCES;
8952 	}
8953 
8954 	if (!tnum_is_const(reg->var_off)) {
8955 		verbose(env, "R%d is not a constant address'\n", regno);
8956 		return -EACCES;
8957 	}
8958 
8959 	if (!map->ops->map_direct_value_addr) {
8960 		verbose(env, "no direct value access support for this map type\n");
8961 		return -EACCES;
8962 	}
8963 
8964 	err = check_map_access(env, regno, reg->off,
8965 			       map->value_size - reg->off, false,
8966 			       ACCESS_HELPER);
8967 	if (err)
8968 		return err;
8969 
8970 	map_off = reg->off + reg->var_off.value;
8971 	err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
8972 	if (err) {
8973 		verbose(env, "direct value access on string failed\n");
8974 		return err;
8975 	}
8976 
8977 	str_ptr = (char *)(long)(map_addr);
8978 	if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
8979 		verbose(env, "string is not zero-terminated\n");
8980 		return -EINVAL;
8981 	}
8982 	return 0;
8983 }
8984 
8985 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
8986 			  struct bpf_call_arg_meta *meta,
8987 			  const struct bpf_func_proto *fn,
8988 			  int insn_idx)
8989 {
8990 	u32 regno = BPF_REG_1 + arg;
8991 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
8992 	enum bpf_arg_type arg_type = fn->arg_type[arg];
8993 	enum bpf_reg_type type = reg->type;
8994 	u32 *arg_btf_id = NULL;
8995 	int err = 0;
8996 
8997 	if (arg_type == ARG_DONTCARE)
8998 		return 0;
8999 
9000 	err = check_reg_arg(env, regno, SRC_OP);
9001 	if (err)
9002 		return err;
9003 
9004 	if (arg_type == ARG_ANYTHING) {
9005 		if (is_pointer_value(env, regno)) {
9006 			verbose(env, "R%d leaks addr into helper function\n",
9007 				regno);
9008 			return -EACCES;
9009 		}
9010 		return 0;
9011 	}
9012 
9013 	if (type_is_pkt_pointer(type) &&
9014 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
9015 		verbose(env, "helper access to the packet is not allowed\n");
9016 		return -EACCES;
9017 	}
9018 
9019 	if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) {
9020 		err = resolve_map_arg_type(env, meta, &arg_type);
9021 		if (err)
9022 			return err;
9023 	}
9024 
9025 	if (register_is_null(reg) && type_may_be_null(arg_type))
9026 		/* A NULL register has a SCALAR_VALUE type, so skip
9027 		 * type checking.
9028 		 */
9029 		goto skip_type_check;
9030 
9031 	/* arg_btf_id and arg_size are in a union. */
9032 	if (base_type(arg_type) == ARG_PTR_TO_BTF_ID ||
9033 	    base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK)
9034 		arg_btf_id = fn->arg_btf_id[arg];
9035 
9036 	err = check_reg_type(env, regno, arg_type, arg_btf_id, meta);
9037 	if (err)
9038 		return err;
9039 
9040 	err = check_func_arg_reg_off(env, reg, regno, arg_type);
9041 	if (err)
9042 		return err;
9043 
9044 skip_type_check:
9045 	if (arg_type_is_release(arg_type)) {
9046 		if (arg_type_is_dynptr(arg_type)) {
9047 			struct bpf_func_state *state = func(env, reg);
9048 			int spi;
9049 
9050 			/* Only dynptr created on stack can be released, thus
9051 			 * the get_spi and stack state checks for spilled_ptr
9052 			 * should only be done before process_dynptr_func for
9053 			 * PTR_TO_STACK.
9054 			 */
9055 			if (reg->type == PTR_TO_STACK) {
9056 				spi = dynptr_get_spi(env, reg);
9057 				if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) {
9058 					verbose(env, "arg %d is an unacquired reference\n", regno);
9059 					return -EINVAL;
9060 				}
9061 			} else {
9062 				verbose(env, "cannot release unowned const bpf_dynptr\n");
9063 				return -EINVAL;
9064 			}
9065 		} else if (!reg->ref_obj_id && !register_is_null(reg)) {
9066 			verbose(env, "R%d must be referenced when passed to release function\n",
9067 				regno);
9068 			return -EINVAL;
9069 		}
9070 		if (meta->release_regno) {
9071 			verbose(env, "verifier internal error: more than one release argument\n");
9072 			return -EFAULT;
9073 		}
9074 		meta->release_regno = regno;
9075 	}
9076 
9077 	if (reg->ref_obj_id && base_type(arg_type) != ARG_KPTR_XCHG_DEST) {
9078 		if (meta->ref_obj_id) {
9079 			verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
9080 				regno, reg->ref_obj_id,
9081 				meta->ref_obj_id);
9082 			return -EFAULT;
9083 		}
9084 		meta->ref_obj_id = reg->ref_obj_id;
9085 	}
9086 
9087 	switch (base_type(arg_type)) {
9088 	case ARG_CONST_MAP_PTR:
9089 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
9090 		if (meta->map_ptr) {
9091 			/* Use map_uid (which is unique id of inner map) to reject:
9092 			 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
9093 			 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
9094 			 * if (inner_map1 && inner_map2) {
9095 			 *     timer = bpf_map_lookup_elem(inner_map1);
9096 			 *     if (timer)
9097 			 *         // mismatch would have been allowed
9098 			 *         bpf_timer_init(timer, inner_map2);
9099 			 * }
9100 			 *
9101 			 * Comparing map_ptr is enough to distinguish normal and outer maps.
9102 			 */
9103 			if (meta->map_ptr != reg->map_ptr ||
9104 			    meta->map_uid != reg->map_uid) {
9105 				verbose(env,
9106 					"timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
9107 					meta->map_uid, reg->map_uid);
9108 				return -EINVAL;
9109 			}
9110 		}
9111 		meta->map_ptr = reg->map_ptr;
9112 		meta->map_uid = reg->map_uid;
9113 		break;
9114 	case ARG_PTR_TO_MAP_KEY:
9115 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
9116 		 * check that [key, key + map->key_size) are within
9117 		 * stack limits and initialized
9118 		 */
9119 		if (!meta->map_ptr) {
9120 			/* in function declaration map_ptr must come before
9121 			 * map_key, so that it's verified and known before
9122 			 * we have to check map_key here. Otherwise it means
9123 			 * that kernel subsystem misconfigured verifier
9124 			 */
9125 			verbose(env, "invalid map_ptr to access map->key\n");
9126 			return -EACCES;
9127 		}
9128 		err = check_helper_mem_access(env, regno, meta->map_ptr->key_size,
9129 					      BPF_READ, false, NULL);
9130 		break;
9131 	case ARG_PTR_TO_MAP_VALUE:
9132 		if (type_may_be_null(arg_type) && register_is_null(reg))
9133 			return 0;
9134 
9135 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
9136 		 * check [value, value + map->value_size) validity
9137 		 */
9138 		if (!meta->map_ptr) {
9139 			/* kernel subsystem misconfigured verifier */
9140 			verbose(env, "invalid map_ptr to access map->value\n");
9141 			return -EACCES;
9142 		}
9143 		meta->raw_mode = arg_type & MEM_UNINIT;
9144 		err = check_helper_mem_access(env, regno, meta->map_ptr->value_size,
9145 					      arg_type & MEM_WRITE ? BPF_WRITE : BPF_READ,
9146 					      false, meta);
9147 		break;
9148 	case ARG_PTR_TO_PERCPU_BTF_ID:
9149 		if (!reg->btf_id) {
9150 			verbose(env, "Helper has invalid btf_id in R%d\n", regno);
9151 			return -EACCES;
9152 		}
9153 		meta->ret_btf = reg->btf;
9154 		meta->ret_btf_id = reg->btf_id;
9155 		break;
9156 	case ARG_PTR_TO_SPIN_LOCK:
9157 		if (in_rbtree_lock_required_cb(env)) {
9158 			verbose(env, "can't spin_{lock,unlock} in rbtree cb\n");
9159 			return -EACCES;
9160 		}
9161 		if (meta->func_id == BPF_FUNC_spin_lock) {
9162 			err = process_spin_lock(env, regno, true);
9163 			if (err)
9164 				return err;
9165 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
9166 			err = process_spin_lock(env, regno, false);
9167 			if (err)
9168 				return err;
9169 		} else {
9170 			verbose(env, "verifier internal error\n");
9171 			return -EFAULT;
9172 		}
9173 		break;
9174 	case ARG_PTR_TO_TIMER:
9175 		err = process_timer_func(env, regno, meta);
9176 		if (err)
9177 			return err;
9178 		break;
9179 	case ARG_PTR_TO_FUNC:
9180 		meta->subprogno = reg->subprogno;
9181 		break;
9182 	case ARG_PTR_TO_MEM:
9183 		/* The access to this pointer is only checked when we hit the
9184 		 * next is_mem_size argument below.
9185 		 */
9186 		meta->raw_mode = arg_type & MEM_UNINIT;
9187 		if (arg_type & MEM_FIXED_SIZE) {
9188 			err = check_helper_mem_access(env, regno, fn->arg_size[arg],
9189 						      arg_type & MEM_WRITE ? BPF_WRITE : BPF_READ,
9190 						      false, meta);
9191 			if (err)
9192 				return err;
9193 			if (arg_type & MEM_ALIGNED)
9194 				err = check_ptr_alignment(env, reg, 0, fn->arg_size[arg], true);
9195 		}
9196 		break;
9197 	case ARG_CONST_SIZE:
9198 		err = check_mem_size_reg(env, reg, regno,
9199 					 fn->arg_type[arg - 1] & MEM_WRITE ?
9200 					 BPF_WRITE : BPF_READ,
9201 					 false, meta);
9202 		break;
9203 	case ARG_CONST_SIZE_OR_ZERO:
9204 		err = check_mem_size_reg(env, reg, regno,
9205 					 fn->arg_type[arg - 1] & MEM_WRITE ?
9206 					 BPF_WRITE : BPF_READ,
9207 					 true, meta);
9208 		break;
9209 	case ARG_PTR_TO_DYNPTR:
9210 		err = process_dynptr_func(env, regno, insn_idx, arg_type, 0);
9211 		if (err)
9212 			return err;
9213 		break;
9214 	case ARG_CONST_ALLOC_SIZE_OR_ZERO:
9215 		if (!tnum_is_const(reg->var_off)) {
9216 			verbose(env, "R%d is not a known constant'\n",
9217 				regno);
9218 			return -EACCES;
9219 		}
9220 		meta->mem_size = reg->var_off.value;
9221 		err = mark_chain_precision(env, regno);
9222 		if (err)
9223 			return err;
9224 		break;
9225 	case ARG_PTR_TO_CONST_STR:
9226 	{
9227 		err = check_reg_const_str(env, reg, regno);
9228 		if (err)
9229 			return err;
9230 		break;
9231 	}
9232 	case ARG_KPTR_XCHG_DEST:
9233 		err = process_kptr_func(env, regno, meta);
9234 		if (err)
9235 			return err;
9236 		break;
9237 	}
9238 
9239 	return err;
9240 }
9241 
9242 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
9243 {
9244 	enum bpf_attach_type eatype = env->prog->expected_attach_type;
9245 	enum bpf_prog_type type = resolve_prog_type(env->prog);
9246 
9247 	if (func_id != BPF_FUNC_map_update_elem &&
9248 	    func_id != BPF_FUNC_map_delete_elem)
9249 		return false;
9250 
9251 	/* It's not possible to get access to a locked struct sock in these
9252 	 * contexts, so updating is safe.
9253 	 */
9254 	switch (type) {
9255 	case BPF_PROG_TYPE_TRACING:
9256 		if (eatype == BPF_TRACE_ITER)
9257 			return true;
9258 		break;
9259 	case BPF_PROG_TYPE_SOCK_OPS:
9260 		/* map_update allowed only via dedicated helpers with event type checks */
9261 		if (func_id == BPF_FUNC_map_delete_elem)
9262 			return true;
9263 		break;
9264 	case BPF_PROG_TYPE_SOCKET_FILTER:
9265 	case BPF_PROG_TYPE_SCHED_CLS:
9266 	case BPF_PROG_TYPE_SCHED_ACT:
9267 	case BPF_PROG_TYPE_XDP:
9268 	case BPF_PROG_TYPE_SK_REUSEPORT:
9269 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
9270 	case BPF_PROG_TYPE_SK_LOOKUP:
9271 		return true;
9272 	default:
9273 		break;
9274 	}
9275 
9276 	verbose(env, "cannot update sockmap in this context\n");
9277 	return false;
9278 }
9279 
9280 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
9281 {
9282 	return env->prog->jit_requested &&
9283 	       bpf_jit_supports_subprog_tailcalls();
9284 }
9285 
9286 static int check_map_func_compatibility(struct bpf_verifier_env *env,
9287 					struct bpf_map *map, int func_id)
9288 {
9289 	if (!map)
9290 		return 0;
9291 
9292 	/* We need a two way check, first is from map perspective ... */
9293 	switch (map->map_type) {
9294 	case BPF_MAP_TYPE_PROG_ARRAY:
9295 		if (func_id != BPF_FUNC_tail_call)
9296 			goto error;
9297 		break;
9298 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
9299 		if (func_id != BPF_FUNC_perf_event_read &&
9300 		    func_id != BPF_FUNC_perf_event_output &&
9301 		    func_id != BPF_FUNC_skb_output &&
9302 		    func_id != BPF_FUNC_perf_event_read_value &&
9303 		    func_id != BPF_FUNC_xdp_output)
9304 			goto error;
9305 		break;
9306 	case BPF_MAP_TYPE_RINGBUF:
9307 		if (func_id != BPF_FUNC_ringbuf_output &&
9308 		    func_id != BPF_FUNC_ringbuf_reserve &&
9309 		    func_id != BPF_FUNC_ringbuf_query &&
9310 		    func_id != BPF_FUNC_ringbuf_reserve_dynptr &&
9311 		    func_id != BPF_FUNC_ringbuf_submit_dynptr &&
9312 		    func_id != BPF_FUNC_ringbuf_discard_dynptr)
9313 			goto error;
9314 		break;
9315 	case BPF_MAP_TYPE_USER_RINGBUF:
9316 		if (func_id != BPF_FUNC_user_ringbuf_drain)
9317 			goto error;
9318 		break;
9319 	case BPF_MAP_TYPE_STACK_TRACE:
9320 		if (func_id != BPF_FUNC_get_stackid)
9321 			goto error;
9322 		break;
9323 	case BPF_MAP_TYPE_CGROUP_ARRAY:
9324 		if (func_id != BPF_FUNC_skb_under_cgroup &&
9325 		    func_id != BPF_FUNC_current_task_under_cgroup)
9326 			goto error;
9327 		break;
9328 	case BPF_MAP_TYPE_CGROUP_STORAGE:
9329 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
9330 		if (func_id != BPF_FUNC_get_local_storage)
9331 			goto error;
9332 		break;
9333 	case BPF_MAP_TYPE_DEVMAP:
9334 	case BPF_MAP_TYPE_DEVMAP_HASH:
9335 		if (func_id != BPF_FUNC_redirect_map &&
9336 		    func_id != BPF_FUNC_map_lookup_elem)
9337 			goto error;
9338 		break;
9339 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
9340 	 * appear.
9341 	 */
9342 	case BPF_MAP_TYPE_CPUMAP:
9343 		if (func_id != BPF_FUNC_redirect_map)
9344 			goto error;
9345 		break;
9346 	case BPF_MAP_TYPE_XSKMAP:
9347 		if (func_id != BPF_FUNC_redirect_map &&
9348 		    func_id != BPF_FUNC_map_lookup_elem)
9349 			goto error;
9350 		break;
9351 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
9352 	case BPF_MAP_TYPE_HASH_OF_MAPS:
9353 		if (func_id != BPF_FUNC_map_lookup_elem)
9354 			goto error;
9355 		break;
9356 	case BPF_MAP_TYPE_SOCKMAP:
9357 		if (func_id != BPF_FUNC_sk_redirect_map &&
9358 		    func_id != BPF_FUNC_sock_map_update &&
9359 		    func_id != BPF_FUNC_msg_redirect_map &&
9360 		    func_id != BPF_FUNC_sk_select_reuseport &&
9361 		    func_id != BPF_FUNC_map_lookup_elem &&
9362 		    !may_update_sockmap(env, func_id))
9363 			goto error;
9364 		break;
9365 	case BPF_MAP_TYPE_SOCKHASH:
9366 		if (func_id != BPF_FUNC_sk_redirect_hash &&
9367 		    func_id != BPF_FUNC_sock_hash_update &&
9368 		    func_id != BPF_FUNC_msg_redirect_hash &&
9369 		    func_id != BPF_FUNC_sk_select_reuseport &&
9370 		    func_id != BPF_FUNC_map_lookup_elem &&
9371 		    !may_update_sockmap(env, func_id))
9372 			goto error;
9373 		break;
9374 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
9375 		if (func_id != BPF_FUNC_sk_select_reuseport)
9376 			goto error;
9377 		break;
9378 	case BPF_MAP_TYPE_QUEUE:
9379 	case BPF_MAP_TYPE_STACK:
9380 		if (func_id != BPF_FUNC_map_peek_elem &&
9381 		    func_id != BPF_FUNC_map_pop_elem &&
9382 		    func_id != BPF_FUNC_map_push_elem)
9383 			goto error;
9384 		break;
9385 	case BPF_MAP_TYPE_SK_STORAGE:
9386 		if (func_id != BPF_FUNC_sk_storage_get &&
9387 		    func_id != BPF_FUNC_sk_storage_delete &&
9388 		    func_id != BPF_FUNC_kptr_xchg)
9389 			goto error;
9390 		break;
9391 	case BPF_MAP_TYPE_INODE_STORAGE:
9392 		if (func_id != BPF_FUNC_inode_storage_get &&
9393 		    func_id != BPF_FUNC_inode_storage_delete &&
9394 		    func_id != BPF_FUNC_kptr_xchg)
9395 			goto error;
9396 		break;
9397 	case BPF_MAP_TYPE_TASK_STORAGE:
9398 		if (func_id != BPF_FUNC_task_storage_get &&
9399 		    func_id != BPF_FUNC_task_storage_delete &&
9400 		    func_id != BPF_FUNC_kptr_xchg)
9401 			goto error;
9402 		break;
9403 	case BPF_MAP_TYPE_CGRP_STORAGE:
9404 		if (func_id != BPF_FUNC_cgrp_storage_get &&
9405 		    func_id != BPF_FUNC_cgrp_storage_delete &&
9406 		    func_id != BPF_FUNC_kptr_xchg)
9407 			goto error;
9408 		break;
9409 	case BPF_MAP_TYPE_BLOOM_FILTER:
9410 		if (func_id != BPF_FUNC_map_peek_elem &&
9411 		    func_id != BPF_FUNC_map_push_elem)
9412 			goto error;
9413 		break;
9414 	default:
9415 		break;
9416 	}
9417 
9418 	/* ... and second from the function itself. */
9419 	switch (func_id) {
9420 	case BPF_FUNC_tail_call:
9421 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
9422 			goto error;
9423 		if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
9424 			verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
9425 			return -EINVAL;
9426 		}
9427 		break;
9428 	case BPF_FUNC_perf_event_read:
9429 	case BPF_FUNC_perf_event_output:
9430 	case BPF_FUNC_perf_event_read_value:
9431 	case BPF_FUNC_skb_output:
9432 	case BPF_FUNC_xdp_output:
9433 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
9434 			goto error;
9435 		break;
9436 	case BPF_FUNC_ringbuf_output:
9437 	case BPF_FUNC_ringbuf_reserve:
9438 	case BPF_FUNC_ringbuf_query:
9439 	case BPF_FUNC_ringbuf_reserve_dynptr:
9440 	case BPF_FUNC_ringbuf_submit_dynptr:
9441 	case BPF_FUNC_ringbuf_discard_dynptr:
9442 		if (map->map_type != BPF_MAP_TYPE_RINGBUF)
9443 			goto error;
9444 		break;
9445 	case BPF_FUNC_user_ringbuf_drain:
9446 		if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF)
9447 			goto error;
9448 		break;
9449 	case BPF_FUNC_get_stackid:
9450 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
9451 			goto error;
9452 		break;
9453 	case BPF_FUNC_current_task_under_cgroup:
9454 	case BPF_FUNC_skb_under_cgroup:
9455 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
9456 			goto error;
9457 		break;
9458 	case BPF_FUNC_redirect_map:
9459 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
9460 		    map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
9461 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
9462 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
9463 			goto error;
9464 		break;
9465 	case BPF_FUNC_sk_redirect_map:
9466 	case BPF_FUNC_msg_redirect_map:
9467 	case BPF_FUNC_sock_map_update:
9468 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
9469 			goto error;
9470 		break;
9471 	case BPF_FUNC_sk_redirect_hash:
9472 	case BPF_FUNC_msg_redirect_hash:
9473 	case BPF_FUNC_sock_hash_update:
9474 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
9475 			goto error;
9476 		break;
9477 	case BPF_FUNC_get_local_storage:
9478 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
9479 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
9480 			goto error;
9481 		break;
9482 	case BPF_FUNC_sk_select_reuseport:
9483 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
9484 		    map->map_type != BPF_MAP_TYPE_SOCKMAP &&
9485 		    map->map_type != BPF_MAP_TYPE_SOCKHASH)
9486 			goto error;
9487 		break;
9488 	case BPF_FUNC_map_pop_elem:
9489 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
9490 		    map->map_type != BPF_MAP_TYPE_STACK)
9491 			goto error;
9492 		break;
9493 	case BPF_FUNC_map_peek_elem:
9494 	case BPF_FUNC_map_push_elem:
9495 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
9496 		    map->map_type != BPF_MAP_TYPE_STACK &&
9497 		    map->map_type != BPF_MAP_TYPE_BLOOM_FILTER)
9498 			goto error;
9499 		break;
9500 	case BPF_FUNC_map_lookup_percpu_elem:
9501 		if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY &&
9502 		    map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
9503 		    map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH)
9504 			goto error;
9505 		break;
9506 	case BPF_FUNC_sk_storage_get:
9507 	case BPF_FUNC_sk_storage_delete:
9508 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
9509 			goto error;
9510 		break;
9511 	case BPF_FUNC_inode_storage_get:
9512 	case BPF_FUNC_inode_storage_delete:
9513 		if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
9514 			goto error;
9515 		break;
9516 	case BPF_FUNC_task_storage_get:
9517 	case BPF_FUNC_task_storage_delete:
9518 		if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
9519 			goto error;
9520 		break;
9521 	case BPF_FUNC_cgrp_storage_get:
9522 	case BPF_FUNC_cgrp_storage_delete:
9523 		if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE)
9524 			goto error;
9525 		break;
9526 	default:
9527 		break;
9528 	}
9529 
9530 	return 0;
9531 error:
9532 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
9533 		map->map_type, func_id_name(func_id), func_id);
9534 	return -EINVAL;
9535 }
9536 
9537 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
9538 {
9539 	int count = 0;
9540 
9541 	if (arg_type_is_raw_mem(fn->arg1_type))
9542 		count++;
9543 	if (arg_type_is_raw_mem(fn->arg2_type))
9544 		count++;
9545 	if (arg_type_is_raw_mem(fn->arg3_type))
9546 		count++;
9547 	if (arg_type_is_raw_mem(fn->arg4_type))
9548 		count++;
9549 	if (arg_type_is_raw_mem(fn->arg5_type))
9550 		count++;
9551 
9552 	/* We only support one arg being in raw mode at the moment,
9553 	 * which is sufficient for the helper functions we have
9554 	 * right now.
9555 	 */
9556 	return count <= 1;
9557 }
9558 
9559 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg)
9560 {
9561 	bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE;
9562 	bool has_size = fn->arg_size[arg] != 0;
9563 	bool is_next_size = false;
9564 
9565 	if (arg + 1 < ARRAY_SIZE(fn->arg_type))
9566 		is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]);
9567 
9568 	if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM)
9569 		return is_next_size;
9570 
9571 	return has_size == is_next_size || is_next_size == is_fixed;
9572 }
9573 
9574 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
9575 {
9576 	/* bpf_xxx(..., buf, len) call will access 'len'
9577 	 * bytes from memory 'buf'. Both arg types need
9578 	 * to be paired, so make sure there's no buggy
9579 	 * helper function specification.
9580 	 */
9581 	if (arg_type_is_mem_size(fn->arg1_type) ||
9582 	    check_args_pair_invalid(fn, 0) ||
9583 	    check_args_pair_invalid(fn, 1) ||
9584 	    check_args_pair_invalid(fn, 2) ||
9585 	    check_args_pair_invalid(fn, 3) ||
9586 	    check_args_pair_invalid(fn, 4))
9587 		return false;
9588 
9589 	return true;
9590 }
9591 
9592 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
9593 {
9594 	int i;
9595 
9596 	for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
9597 		if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID)
9598 			return !!fn->arg_btf_id[i];
9599 		if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK)
9600 			return fn->arg_btf_id[i] == BPF_PTR_POISON;
9601 		if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] &&
9602 		    /* arg_btf_id and arg_size are in a union. */
9603 		    (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM ||
9604 		     !(fn->arg_type[i] & MEM_FIXED_SIZE)))
9605 			return false;
9606 	}
9607 
9608 	return true;
9609 }
9610 
9611 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
9612 {
9613 	return check_raw_mode_ok(fn) &&
9614 	       check_arg_pair_ok(fn) &&
9615 	       check_btf_id_ok(fn) ? 0 : -EINVAL;
9616 }
9617 
9618 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
9619  * are now invalid, so turn them into unknown SCALAR_VALUE.
9620  *
9621  * This also applies to dynptr slices belonging to skb and xdp dynptrs,
9622  * since these slices point to packet data.
9623  */
9624 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
9625 {
9626 	struct bpf_func_state *state;
9627 	struct bpf_reg_state *reg;
9628 
9629 	bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
9630 		if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg))
9631 			mark_reg_invalid(env, reg);
9632 	}));
9633 }
9634 
9635 enum {
9636 	AT_PKT_END = -1,
9637 	BEYOND_PKT_END = -2,
9638 };
9639 
9640 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
9641 {
9642 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
9643 	struct bpf_reg_state *reg = &state->regs[regn];
9644 
9645 	if (reg->type != PTR_TO_PACKET)
9646 		/* PTR_TO_PACKET_META is not supported yet */
9647 		return;
9648 
9649 	/* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
9650 	 * How far beyond pkt_end it goes is unknown.
9651 	 * if (!range_open) it's the case of pkt >= pkt_end
9652 	 * if (range_open) it's the case of pkt > pkt_end
9653 	 * hence this pointer is at least 1 byte bigger than pkt_end
9654 	 */
9655 	if (range_open)
9656 		reg->range = BEYOND_PKT_END;
9657 	else
9658 		reg->range = AT_PKT_END;
9659 }
9660 
9661 /* The pointer with the specified id has released its reference to kernel
9662  * resources. Identify all copies of the same pointer and clear the reference.
9663  */
9664 static int release_reference(struct bpf_verifier_env *env,
9665 			     int ref_obj_id)
9666 {
9667 	struct bpf_func_state *state;
9668 	struct bpf_reg_state *reg;
9669 	int err;
9670 
9671 	err = release_reference_state(cur_func(env), ref_obj_id);
9672 	if (err)
9673 		return err;
9674 
9675 	bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
9676 		if (reg->ref_obj_id == ref_obj_id)
9677 			mark_reg_invalid(env, reg);
9678 	}));
9679 
9680 	return 0;
9681 }
9682 
9683 static void invalidate_non_owning_refs(struct bpf_verifier_env *env)
9684 {
9685 	struct bpf_func_state *unused;
9686 	struct bpf_reg_state *reg;
9687 
9688 	bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
9689 		if (type_is_non_owning_ref(reg->type))
9690 			mark_reg_invalid(env, reg);
9691 	}));
9692 }
9693 
9694 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
9695 				    struct bpf_reg_state *regs)
9696 {
9697 	int i;
9698 
9699 	/* after the call registers r0 - r5 were scratched */
9700 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
9701 		mark_reg_not_init(env, regs, caller_saved[i]);
9702 		__check_reg_arg(env, regs, caller_saved[i], DST_OP_NO_MARK);
9703 	}
9704 }
9705 
9706 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
9707 				   struct bpf_func_state *caller,
9708 				   struct bpf_func_state *callee,
9709 				   int insn_idx);
9710 
9711 static int set_callee_state(struct bpf_verifier_env *env,
9712 			    struct bpf_func_state *caller,
9713 			    struct bpf_func_state *callee, int insn_idx);
9714 
9715 static int setup_func_entry(struct bpf_verifier_env *env, int subprog, int callsite,
9716 			    set_callee_state_fn set_callee_state_cb,
9717 			    struct bpf_verifier_state *state)
9718 {
9719 	struct bpf_func_state *caller, *callee;
9720 	int err;
9721 
9722 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
9723 		verbose(env, "the call stack of %d frames is too deep\n",
9724 			state->curframe + 2);
9725 		return -E2BIG;
9726 	}
9727 
9728 	if (state->frame[state->curframe + 1]) {
9729 		verbose(env, "verifier bug. Frame %d already allocated\n",
9730 			state->curframe + 1);
9731 		return -EFAULT;
9732 	}
9733 
9734 	caller = state->frame[state->curframe];
9735 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
9736 	if (!callee)
9737 		return -ENOMEM;
9738 	state->frame[state->curframe + 1] = callee;
9739 
9740 	/* callee cannot access r0, r6 - r9 for reading and has to write
9741 	 * into its own stack before reading from it.
9742 	 * callee can read/write into caller's stack
9743 	 */
9744 	init_func_state(env, callee,
9745 			/* remember the callsite, it will be used by bpf_exit */
9746 			callsite,
9747 			state->curframe + 1 /* frameno within this callchain */,
9748 			subprog /* subprog number within this prog */);
9749 	/* Transfer references to the callee */
9750 	err = copy_reference_state(callee, caller);
9751 	err = err ?: set_callee_state_cb(env, caller, callee, callsite);
9752 	if (err)
9753 		goto err_out;
9754 
9755 	/* only increment it after check_reg_arg() finished */
9756 	state->curframe++;
9757 
9758 	return 0;
9759 
9760 err_out:
9761 	free_func_state(callee);
9762 	state->frame[state->curframe + 1] = NULL;
9763 	return err;
9764 }
9765 
9766 static int btf_check_func_arg_match(struct bpf_verifier_env *env, int subprog,
9767 				    const struct btf *btf,
9768 				    struct bpf_reg_state *regs)
9769 {
9770 	struct bpf_subprog_info *sub = subprog_info(env, subprog);
9771 	struct bpf_verifier_log *log = &env->log;
9772 	u32 i;
9773 	int ret;
9774 
9775 	ret = btf_prepare_func_args(env, subprog);
9776 	if (ret)
9777 		return ret;
9778 
9779 	/* check that BTF function arguments match actual types that the
9780 	 * verifier sees.
9781 	 */
9782 	for (i = 0; i < sub->arg_cnt; i++) {
9783 		u32 regno = i + 1;
9784 		struct bpf_reg_state *reg = &regs[regno];
9785 		struct bpf_subprog_arg_info *arg = &sub->args[i];
9786 
9787 		if (arg->arg_type == ARG_ANYTHING) {
9788 			if (reg->type != SCALAR_VALUE) {
9789 				bpf_log(log, "R%d is not a scalar\n", regno);
9790 				return -EINVAL;
9791 			}
9792 		} else if (arg->arg_type == ARG_PTR_TO_CTX) {
9793 			ret = check_func_arg_reg_off(env, reg, regno, ARG_DONTCARE);
9794 			if (ret < 0)
9795 				return ret;
9796 			/* If function expects ctx type in BTF check that caller
9797 			 * is passing PTR_TO_CTX.
9798 			 */
9799 			if (reg->type != PTR_TO_CTX) {
9800 				bpf_log(log, "arg#%d expects pointer to ctx\n", i);
9801 				return -EINVAL;
9802 			}
9803 		} else if (base_type(arg->arg_type) == ARG_PTR_TO_MEM) {
9804 			ret = check_func_arg_reg_off(env, reg, regno, ARG_DONTCARE);
9805 			if (ret < 0)
9806 				return ret;
9807 			if (check_mem_reg(env, reg, regno, arg->mem_size))
9808 				return -EINVAL;
9809 			if (!(arg->arg_type & PTR_MAYBE_NULL) && (reg->type & PTR_MAYBE_NULL)) {
9810 				bpf_log(log, "arg#%d is expected to be non-NULL\n", i);
9811 				return -EINVAL;
9812 			}
9813 		} else if (base_type(arg->arg_type) == ARG_PTR_TO_ARENA) {
9814 			/*
9815 			 * Can pass any value and the kernel won't crash, but
9816 			 * only PTR_TO_ARENA or SCALAR make sense. Everything
9817 			 * else is a bug in the bpf program. Point it out to
9818 			 * the user at the verification time instead of
9819 			 * run-time debug nightmare.
9820 			 */
9821 			if (reg->type != PTR_TO_ARENA && reg->type != SCALAR_VALUE) {
9822 				bpf_log(log, "R%d is not a pointer to arena or scalar.\n", regno);
9823 				return -EINVAL;
9824 			}
9825 		} else if (arg->arg_type == (ARG_PTR_TO_DYNPTR | MEM_RDONLY)) {
9826 			ret = check_func_arg_reg_off(env, reg, regno, ARG_PTR_TO_DYNPTR);
9827 			if (ret)
9828 				return ret;
9829 
9830 			ret = process_dynptr_func(env, regno, -1, arg->arg_type, 0);
9831 			if (ret)
9832 				return ret;
9833 		} else if (base_type(arg->arg_type) == ARG_PTR_TO_BTF_ID) {
9834 			struct bpf_call_arg_meta meta;
9835 			int err;
9836 
9837 			if (register_is_null(reg) && type_may_be_null(arg->arg_type))
9838 				continue;
9839 
9840 			memset(&meta, 0, sizeof(meta)); /* leave func_id as zero */
9841 			err = check_reg_type(env, regno, arg->arg_type, &arg->btf_id, &meta);
9842 			err = err ?: check_func_arg_reg_off(env, reg, regno, arg->arg_type);
9843 			if (err)
9844 				return err;
9845 		} else {
9846 			bpf_log(log, "verifier bug: unrecognized arg#%d type %d\n",
9847 				i, arg->arg_type);
9848 			return -EFAULT;
9849 		}
9850 	}
9851 
9852 	return 0;
9853 }
9854 
9855 /* Compare BTF of a function call with given bpf_reg_state.
9856  * Returns:
9857  * EFAULT - there is a verifier bug. Abort verification.
9858  * EINVAL - there is a type mismatch or BTF is not available.
9859  * 0 - BTF matches with what bpf_reg_state expects.
9860  * Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
9861  */
9862 static int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog,
9863 				  struct bpf_reg_state *regs)
9864 {
9865 	struct bpf_prog *prog = env->prog;
9866 	struct btf *btf = prog->aux->btf;
9867 	u32 btf_id;
9868 	int err;
9869 
9870 	if (!prog->aux->func_info)
9871 		return -EINVAL;
9872 
9873 	btf_id = prog->aux->func_info[subprog].type_id;
9874 	if (!btf_id)
9875 		return -EFAULT;
9876 
9877 	if (prog->aux->func_info_aux[subprog].unreliable)
9878 		return -EINVAL;
9879 
9880 	err = btf_check_func_arg_match(env, subprog, btf, regs);
9881 	/* Compiler optimizations can remove arguments from static functions
9882 	 * or mismatched type can be passed into a global function.
9883 	 * In such cases mark the function as unreliable from BTF point of view.
9884 	 */
9885 	if (err)
9886 		prog->aux->func_info_aux[subprog].unreliable = true;
9887 	return err;
9888 }
9889 
9890 static int push_callback_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
9891 			      int insn_idx, int subprog,
9892 			      set_callee_state_fn set_callee_state_cb)
9893 {
9894 	struct bpf_verifier_state *state = env->cur_state, *callback_state;
9895 	struct bpf_func_state *caller, *callee;
9896 	int err;
9897 
9898 	caller = state->frame[state->curframe];
9899 	err = btf_check_subprog_call(env, subprog, caller->regs);
9900 	if (err == -EFAULT)
9901 		return err;
9902 
9903 	/* set_callee_state is used for direct subprog calls, but we are
9904 	 * interested in validating only BPF helpers that can call subprogs as
9905 	 * callbacks
9906 	 */
9907 	env->subprog_info[subprog].is_cb = true;
9908 	if (bpf_pseudo_kfunc_call(insn) &&
9909 	    !is_callback_calling_kfunc(insn->imm)) {
9910 		verbose(env, "verifier bug: kfunc %s#%d not marked as callback-calling\n",
9911 			func_id_name(insn->imm), insn->imm);
9912 		return -EFAULT;
9913 	} else if (!bpf_pseudo_kfunc_call(insn) &&
9914 		   !is_callback_calling_function(insn->imm)) { /* helper */
9915 		verbose(env, "verifier bug: helper %s#%d not marked as callback-calling\n",
9916 			func_id_name(insn->imm), insn->imm);
9917 		return -EFAULT;
9918 	}
9919 
9920 	if (is_async_callback_calling_insn(insn)) {
9921 		struct bpf_verifier_state *async_cb;
9922 
9923 		/* there is no real recursion here. timer and workqueue callbacks are async */
9924 		env->subprog_info[subprog].is_async_cb = true;
9925 		async_cb = push_async_cb(env, env->subprog_info[subprog].start,
9926 					 insn_idx, subprog,
9927 					 is_bpf_wq_set_callback_impl_kfunc(insn->imm));
9928 		if (!async_cb)
9929 			return -EFAULT;
9930 		callee = async_cb->frame[0];
9931 		callee->async_entry_cnt = caller->async_entry_cnt + 1;
9932 
9933 		/* Convert bpf_timer_set_callback() args into timer callback args */
9934 		err = set_callee_state_cb(env, caller, callee, insn_idx);
9935 		if (err)
9936 			return err;
9937 
9938 		return 0;
9939 	}
9940 
9941 	/* for callback functions enqueue entry to callback and
9942 	 * proceed with next instruction within current frame.
9943 	 */
9944 	callback_state = push_stack(env, env->subprog_info[subprog].start, insn_idx, false);
9945 	if (!callback_state)
9946 		return -ENOMEM;
9947 
9948 	err = setup_func_entry(env, subprog, insn_idx, set_callee_state_cb,
9949 			       callback_state);
9950 	if (err)
9951 		return err;
9952 
9953 	callback_state->callback_unroll_depth++;
9954 	callback_state->frame[callback_state->curframe - 1]->callback_depth++;
9955 	caller->callback_depth = 0;
9956 	return 0;
9957 }
9958 
9959 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
9960 			   int *insn_idx)
9961 {
9962 	struct bpf_verifier_state *state = env->cur_state;
9963 	struct bpf_func_state *caller;
9964 	int err, subprog, target_insn;
9965 
9966 	target_insn = *insn_idx + insn->imm + 1;
9967 	subprog = find_subprog(env, target_insn);
9968 	if (subprog < 0) {
9969 		verbose(env, "verifier bug. No program starts at insn %d\n", target_insn);
9970 		return -EFAULT;
9971 	}
9972 
9973 	caller = state->frame[state->curframe];
9974 	err = btf_check_subprog_call(env, subprog, caller->regs);
9975 	if (err == -EFAULT)
9976 		return err;
9977 	if (subprog_is_global(env, subprog)) {
9978 		const char *sub_name = subprog_name(env, subprog);
9979 
9980 		/* Only global subprogs cannot be called with a lock held. */
9981 		if (cur_func(env)->active_locks) {
9982 			verbose(env, "global function calls are not allowed while holding a lock,\n"
9983 				     "use static function instead\n");
9984 			return -EINVAL;
9985 		}
9986 
9987 		/* Only global subprogs cannot be called with preemption disabled. */
9988 		if (env->cur_state->active_preempt_lock) {
9989 			verbose(env, "global function calls are not allowed with preemption disabled,\n"
9990 				     "use static function instead\n");
9991 			return -EINVAL;
9992 		}
9993 
9994 		if (err) {
9995 			verbose(env, "Caller passes invalid args into func#%d ('%s')\n",
9996 				subprog, sub_name);
9997 			return err;
9998 		}
9999 
10000 		verbose(env, "Func#%d ('%s') is global and assumed valid.\n",
10001 			subprog, sub_name);
10002 		if (env->subprog_info[subprog].changes_pkt_data)
10003 			clear_all_pkt_pointers(env);
10004 		/* mark global subprog for verifying after main prog */
10005 		subprog_aux(env, subprog)->called = true;
10006 		clear_caller_saved_regs(env, caller->regs);
10007 
10008 		/* All global functions return a 64-bit SCALAR_VALUE */
10009 		mark_reg_unknown(env, caller->regs, BPF_REG_0);
10010 		caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
10011 
10012 		/* continue with next insn after call */
10013 		return 0;
10014 	}
10015 
10016 	/* for regular function entry setup new frame and continue
10017 	 * from that frame.
10018 	 */
10019 	err = setup_func_entry(env, subprog, *insn_idx, set_callee_state, state);
10020 	if (err)
10021 		return err;
10022 
10023 	clear_caller_saved_regs(env, caller->regs);
10024 
10025 	/* and go analyze first insn of the callee */
10026 	*insn_idx = env->subprog_info[subprog].start - 1;
10027 
10028 	if (env->log.level & BPF_LOG_LEVEL) {
10029 		verbose(env, "caller:\n");
10030 		print_verifier_state(env, caller, true);
10031 		verbose(env, "callee:\n");
10032 		print_verifier_state(env, state->frame[state->curframe], true);
10033 	}
10034 
10035 	return 0;
10036 }
10037 
10038 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
10039 				   struct bpf_func_state *caller,
10040 				   struct bpf_func_state *callee)
10041 {
10042 	/* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
10043 	 *      void *callback_ctx, u64 flags);
10044 	 * callback_fn(struct bpf_map *map, void *key, void *value,
10045 	 *      void *callback_ctx);
10046 	 */
10047 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
10048 
10049 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
10050 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
10051 	callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
10052 
10053 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
10054 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
10055 	callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
10056 
10057 	/* pointer to stack or null */
10058 	callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
10059 
10060 	/* unused */
10061 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
10062 	return 0;
10063 }
10064 
10065 static int set_callee_state(struct bpf_verifier_env *env,
10066 			    struct bpf_func_state *caller,
10067 			    struct bpf_func_state *callee, int insn_idx)
10068 {
10069 	int i;
10070 
10071 	/* copy r1 - r5 args that callee can access.  The copy includes parent
10072 	 * pointers, which connects us up to the liveness chain
10073 	 */
10074 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
10075 		callee->regs[i] = caller->regs[i];
10076 	return 0;
10077 }
10078 
10079 static int set_map_elem_callback_state(struct bpf_verifier_env *env,
10080 				       struct bpf_func_state *caller,
10081 				       struct bpf_func_state *callee,
10082 				       int insn_idx)
10083 {
10084 	struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
10085 	struct bpf_map *map;
10086 	int err;
10087 
10088 	/* valid map_ptr and poison value does not matter */
10089 	map = insn_aux->map_ptr_state.map_ptr;
10090 	if (!map->ops->map_set_for_each_callback_args ||
10091 	    !map->ops->map_for_each_callback) {
10092 		verbose(env, "callback function not allowed for map\n");
10093 		return -ENOTSUPP;
10094 	}
10095 
10096 	err = map->ops->map_set_for_each_callback_args(env, caller, callee);
10097 	if (err)
10098 		return err;
10099 
10100 	callee->in_callback_fn = true;
10101 	callee->callback_ret_range = retval_range(0, 1);
10102 	return 0;
10103 }
10104 
10105 static int set_loop_callback_state(struct bpf_verifier_env *env,
10106 				   struct bpf_func_state *caller,
10107 				   struct bpf_func_state *callee,
10108 				   int insn_idx)
10109 {
10110 	/* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx,
10111 	 *	    u64 flags);
10112 	 * callback_fn(u64 index, void *callback_ctx);
10113 	 */
10114 	callee->regs[BPF_REG_1].type = SCALAR_VALUE;
10115 	callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
10116 
10117 	/* unused */
10118 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
10119 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
10120 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
10121 
10122 	callee->in_callback_fn = true;
10123 	callee->callback_ret_range = retval_range(0, 1);
10124 	return 0;
10125 }
10126 
10127 static int set_timer_callback_state(struct bpf_verifier_env *env,
10128 				    struct bpf_func_state *caller,
10129 				    struct bpf_func_state *callee,
10130 				    int insn_idx)
10131 {
10132 	struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr;
10133 
10134 	/* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
10135 	 * callback_fn(struct bpf_map *map, void *key, void *value);
10136 	 */
10137 	callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP;
10138 	__mark_reg_known_zero(&callee->regs[BPF_REG_1]);
10139 	callee->regs[BPF_REG_1].map_ptr = map_ptr;
10140 
10141 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
10142 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
10143 	callee->regs[BPF_REG_2].map_ptr = map_ptr;
10144 
10145 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
10146 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
10147 	callee->regs[BPF_REG_3].map_ptr = map_ptr;
10148 
10149 	/* unused */
10150 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
10151 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
10152 	callee->in_async_callback_fn = true;
10153 	callee->callback_ret_range = retval_range(0, 1);
10154 	return 0;
10155 }
10156 
10157 static int set_find_vma_callback_state(struct bpf_verifier_env *env,
10158 				       struct bpf_func_state *caller,
10159 				       struct bpf_func_state *callee,
10160 				       int insn_idx)
10161 {
10162 	/* bpf_find_vma(struct task_struct *task, u64 addr,
10163 	 *               void *callback_fn, void *callback_ctx, u64 flags)
10164 	 * (callback_fn)(struct task_struct *task,
10165 	 *               struct vm_area_struct *vma, void *callback_ctx);
10166 	 */
10167 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
10168 
10169 	callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID;
10170 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
10171 	callee->regs[BPF_REG_2].btf =  btf_vmlinux;
10172 	callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA];
10173 
10174 	/* pointer to stack or null */
10175 	callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4];
10176 
10177 	/* unused */
10178 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
10179 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
10180 	callee->in_callback_fn = true;
10181 	callee->callback_ret_range = retval_range(0, 1);
10182 	return 0;
10183 }
10184 
10185 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env,
10186 					   struct bpf_func_state *caller,
10187 					   struct bpf_func_state *callee,
10188 					   int insn_idx)
10189 {
10190 	/* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void
10191 	 *			  callback_ctx, u64 flags);
10192 	 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx);
10193 	 */
10194 	__mark_reg_not_init(env, &callee->regs[BPF_REG_0]);
10195 	mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL);
10196 	callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
10197 
10198 	/* unused */
10199 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
10200 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
10201 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
10202 
10203 	callee->in_callback_fn = true;
10204 	callee->callback_ret_range = retval_range(0, 1);
10205 	return 0;
10206 }
10207 
10208 static int set_rbtree_add_callback_state(struct bpf_verifier_env *env,
10209 					 struct bpf_func_state *caller,
10210 					 struct bpf_func_state *callee,
10211 					 int insn_idx)
10212 {
10213 	/* void bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node,
10214 	 *                     bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b));
10215 	 *
10216 	 * 'struct bpf_rb_node *node' arg to bpf_rbtree_add_impl is the same PTR_TO_BTF_ID w/ offset
10217 	 * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd
10218 	 * by this point, so look at 'root'
10219 	 */
10220 	struct btf_field *field;
10221 
10222 	field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off,
10223 				      BPF_RB_ROOT);
10224 	if (!field || !field->graph_root.value_btf_id)
10225 		return -EFAULT;
10226 
10227 	mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root);
10228 	ref_set_non_owning(env, &callee->regs[BPF_REG_1]);
10229 	mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root);
10230 	ref_set_non_owning(env, &callee->regs[BPF_REG_2]);
10231 
10232 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
10233 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
10234 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
10235 	callee->in_callback_fn = true;
10236 	callee->callback_ret_range = retval_range(0, 1);
10237 	return 0;
10238 }
10239 
10240 static bool is_rbtree_lock_required_kfunc(u32 btf_id);
10241 
10242 /* Are we currently verifying the callback for a rbtree helper that must
10243  * be called with lock held? If so, no need to complain about unreleased
10244  * lock
10245  */
10246 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env)
10247 {
10248 	struct bpf_verifier_state *state = env->cur_state;
10249 	struct bpf_insn *insn = env->prog->insnsi;
10250 	struct bpf_func_state *callee;
10251 	int kfunc_btf_id;
10252 
10253 	if (!state->curframe)
10254 		return false;
10255 
10256 	callee = state->frame[state->curframe];
10257 
10258 	if (!callee->in_callback_fn)
10259 		return false;
10260 
10261 	kfunc_btf_id = insn[callee->callsite].imm;
10262 	return is_rbtree_lock_required_kfunc(kfunc_btf_id);
10263 }
10264 
10265 static bool retval_range_within(struct bpf_retval_range range, const struct bpf_reg_state *reg,
10266 				bool return_32bit)
10267 {
10268 	if (return_32bit)
10269 		return range.minval <= reg->s32_min_value && reg->s32_max_value <= range.maxval;
10270 	else
10271 		return range.minval <= reg->smin_value && reg->smax_value <= range.maxval;
10272 }
10273 
10274 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
10275 {
10276 	struct bpf_verifier_state *state = env->cur_state, *prev_st;
10277 	struct bpf_func_state *caller, *callee;
10278 	struct bpf_reg_state *r0;
10279 	bool in_callback_fn;
10280 	int err;
10281 
10282 	callee = state->frame[state->curframe];
10283 	r0 = &callee->regs[BPF_REG_0];
10284 	if (r0->type == PTR_TO_STACK) {
10285 		/* technically it's ok to return caller's stack pointer
10286 		 * (or caller's caller's pointer) back to the caller,
10287 		 * since these pointers are valid. Only current stack
10288 		 * pointer will be invalid as soon as function exits,
10289 		 * but let's be conservative
10290 		 */
10291 		verbose(env, "cannot return stack pointer to the caller\n");
10292 		return -EINVAL;
10293 	}
10294 
10295 	caller = state->frame[state->curframe - 1];
10296 	if (callee->in_callback_fn) {
10297 		if (r0->type != SCALAR_VALUE) {
10298 			verbose(env, "R0 not a scalar value\n");
10299 			return -EACCES;
10300 		}
10301 
10302 		/* we are going to rely on register's precise value */
10303 		err = mark_reg_read(env, r0, r0->parent, REG_LIVE_READ64);
10304 		err = err ?: mark_chain_precision(env, BPF_REG_0);
10305 		if (err)
10306 			return err;
10307 
10308 		/* enforce R0 return value range, and bpf_callback_t returns 64bit */
10309 		if (!retval_range_within(callee->callback_ret_range, r0, false)) {
10310 			verbose_invalid_scalar(env, r0, callee->callback_ret_range,
10311 					       "At callback return", "R0");
10312 			return -EINVAL;
10313 		}
10314 		if (!calls_callback(env, callee->callsite)) {
10315 			verbose(env, "BUG: in callback at %d, callsite %d !calls_callback\n",
10316 				*insn_idx, callee->callsite);
10317 			return -EFAULT;
10318 		}
10319 	} else {
10320 		/* return to the caller whatever r0 had in the callee */
10321 		caller->regs[BPF_REG_0] = *r0;
10322 	}
10323 
10324 	/* Transfer references to the caller */
10325 	err = copy_reference_state(caller, callee);
10326 	if (err)
10327 		return err;
10328 
10329 	/* for callbacks like bpf_loop or bpf_for_each_map_elem go back to callsite,
10330 	 * there function call logic would reschedule callback visit. If iteration
10331 	 * converges is_state_visited() would prune that visit eventually.
10332 	 */
10333 	in_callback_fn = callee->in_callback_fn;
10334 	if (in_callback_fn)
10335 		*insn_idx = callee->callsite;
10336 	else
10337 		*insn_idx = callee->callsite + 1;
10338 
10339 	if (env->log.level & BPF_LOG_LEVEL) {
10340 		verbose(env, "returning from callee:\n");
10341 		print_verifier_state(env, callee, true);
10342 		verbose(env, "to caller at %d:\n", *insn_idx);
10343 		print_verifier_state(env, caller, true);
10344 	}
10345 	/* clear everything in the callee. In case of exceptional exits using
10346 	 * bpf_throw, this will be done by copy_verifier_state for extra frames. */
10347 	free_func_state(callee);
10348 	state->frame[state->curframe--] = NULL;
10349 
10350 	/* for callbacks widen imprecise scalars to make programs like below verify:
10351 	 *
10352 	 *   struct ctx { int i; }
10353 	 *   void cb(int idx, struct ctx *ctx) { ctx->i++; ... }
10354 	 *   ...
10355 	 *   struct ctx = { .i = 0; }
10356 	 *   bpf_loop(100, cb, &ctx, 0);
10357 	 *
10358 	 * This is similar to what is done in process_iter_next_call() for open
10359 	 * coded iterators.
10360 	 */
10361 	prev_st = in_callback_fn ? find_prev_entry(env, state, *insn_idx) : NULL;
10362 	if (prev_st) {
10363 		err = widen_imprecise_scalars(env, prev_st, state);
10364 		if (err)
10365 			return err;
10366 	}
10367 	return 0;
10368 }
10369 
10370 static int do_refine_retval_range(struct bpf_verifier_env *env,
10371 				  struct bpf_reg_state *regs, int ret_type,
10372 				  int func_id,
10373 				  struct bpf_call_arg_meta *meta)
10374 {
10375 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
10376 
10377 	if (ret_type != RET_INTEGER)
10378 		return 0;
10379 
10380 	switch (func_id) {
10381 	case BPF_FUNC_get_stack:
10382 	case BPF_FUNC_get_task_stack:
10383 	case BPF_FUNC_probe_read_str:
10384 	case BPF_FUNC_probe_read_kernel_str:
10385 	case BPF_FUNC_probe_read_user_str:
10386 		ret_reg->smax_value = meta->msize_max_value;
10387 		ret_reg->s32_max_value = meta->msize_max_value;
10388 		ret_reg->smin_value = -MAX_ERRNO;
10389 		ret_reg->s32_min_value = -MAX_ERRNO;
10390 		reg_bounds_sync(ret_reg);
10391 		break;
10392 	case BPF_FUNC_get_smp_processor_id:
10393 		ret_reg->umax_value = nr_cpu_ids - 1;
10394 		ret_reg->u32_max_value = nr_cpu_ids - 1;
10395 		ret_reg->smax_value = nr_cpu_ids - 1;
10396 		ret_reg->s32_max_value = nr_cpu_ids - 1;
10397 		ret_reg->umin_value = 0;
10398 		ret_reg->u32_min_value = 0;
10399 		ret_reg->smin_value = 0;
10400 		ret_reg->s32_min_value = 0;
10401 		reg_bounds_sync(ret_reg);
10402 		break;
10403 	}
10404 
10405 	return reg_bounds_sanity_check(env, ret_reg, "retval");
10406 }
10407 
10408 static int
10409 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
10410 		int func_id, int insn_idx)
10411 {
10412 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
10413 	struct bpf_map *map = meta->map_ptr;
10414 
10415 	if (func_id != BPF_FUNC_tail_call &&
10416 	    func_id != BPF_FUNC_map_lookup_elem &&
10417 	    func_id != BPF_FUNC_map_update_elem &&
10418 	    func_id != BPF_FUNC_map_delete_elem &&
10419 	    func_id != BPF_FUNC_map_push_elem &&
10420 	    func_id != BPF_FUNC_map_pop_elem &&
10421 	    func_id != BPF_FUNC_map_peek_elem &&
10422 	    func_id != BPF_FUNC_for_each_map_elem &&
10423 	    func_id != BPF_FUNC_redirect_map &&
10424 	    func_id != BPF_FUNC_map_lookup_percpu_elem)
10425 		return 0;
10426 
10427 	if (map == NULL) {
10428 		verbose(env, "kernel subsystem misconfigured verifier\n");
10429 		return -EINVAL;
10430 	}
10431 
10432 	/* In case of read-only, some additional restrictions
10433 	 * need to be applied in order to prevent altering the
10434 	 * state of the map from program side.
10435 	 */
10436 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
10437 	    (func_id == BPF_FUNC_map_delete_elem ||
10438 	     func_id == BPF_FUNC_map_update_elem ||
10439 	     func_id == BPF_FUNC_map_push_elem ||
10440 	     func_id == BPF_FUNC_map_pop_elem)) {
10441 		verbose(env, "write into map forbidden\n");
10442 		return -EACCES;
10443 	}
10444 
10445 	if (!aux->map_ptr_state.map_ptr)
10446 		bpf_map_ptr_store(aux, meta->map_ptr,
10447 				  !meta->map_ptr->bypass_spec_v1, false);
10448 	else if (aux->map_ptr_state.map_ptr != meta->map_ptr)
10449 		bpf_map_ptr_store(aux, meta->map_ptr,
10450 				  !meta->map_ptr->bypass_spec_v1, true);
10451 	return 0;
10452 }
10453 
10454 static int
10455 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
10456 		int func_id, int insn_idx)
10457 {
10458 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
10459 	struct bpf_reg_state *regs = cur_regs(env), *reg;
10460 	struct bpf_map *map = meta->map_ptr;
10461 	u64 val, max;
10462 	int err;
10463 
10464 	if (func_id != BPF_FUNC_tail_call)
10465 		return 0;
10466 	if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
10467 		verbose(env, "kernel subsystem misconfigured verifier\n");
10468 		return -EINVAL;
10469 	}
10470 
10471 	reg = &regs[BPF_REG_3];
10472 	val = reg->var_off.value;
10473 	max = map->max_entries;
10474 
10475 	if (!(is_reg_const(reg, false) && val < max)) {
10476 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
10477 		return 0;
10478 	}
10479 
10480 	err = mark_chain_precision(env, BPF_REG_3);
10481 	if (err)
10482 		return err;
10483 	if (bpf_map_key_unseen(aux))
10484 		bpf_map_key_store(aux, val);
10485 	else if (!bpf_map_key_poisoned(aux) &&
10486 		  bpf_map_key_immediate(aux) != val)
10487 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
10488 	return 0;
10489 }
10490 
10491 static int check_reference_leak(struct bpf_verifier_env *env, bool exception_exit)
10492 {
10493 	struct bpf_func_state *state = cur_func(env);
10494 	bool refs_lingering = false;
10495 	int i;
10496 
10497 	if (!exception_exit && state->frameno)
10498 		return 0;
10499 
10500 	for (i = 0; i < state->acquired_refs; i++) {
10501 		if (state->refs[i].type != REF_TYPE_PTR)
10502 			continue;
10503 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
10504 			state->refs[i].id, state->refs[i].insn_idx);
10505 		refs_lingering = true;
10506 	}
10507 	return refs_lingering ? -EINVAL : 0;
10508 }
10509 
10510 static int check_resource_leak(struct bpf_verifier_env *env, bool exception_exit, bool check_lock, const char *prefix)
10511 {
10512 	int err;
10513 
10514 	if (check_lock && cur_func(env)->active_locks) {
10515 		verbose(env, "%s cannot be used inside bpf_spin_lock-ed region\n", prefix);
10516 		return -EINVAL;
10517 	}
10518 
10519 	err = check_reference_leak(env, exception_exit);
10520 	if (err) {
10521 		verbose(env, "%s would lead to reference leak\n", prefix);
10522 		return err;
10523 	}
10524 
10525 	if (check_lock && env->cur_state->active_rcu_lock) {
10526 		verbose(env, "%s cannot be used inside bpf_rcu_read_lock-ed region\n", prefix);
10527 		return -EINVAL;
10528 	}
10529 
10530 	if (check_lock && env->cur_state->active_preempt_lock) {
10531 		verbose(env, "%s cannot be used inside bpf_preempt_disable-ed region\n", prefix);
10532 		return -EINVAL;
10533 	}
10534 
10535 	return 0;
10536 }
10537 
10538 static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
10539 				   struct bpf_reg_state *regs)
10540 {
10541 	struct bpf_reg_state *fmt_reg = &regs[BPF_REG_3];
10542 	struct bpf_reg_state *data_len_reg = &regs[BPF_REG_5];
10543 	struct bpf_map *fmt_map = fmt_reg->map_ptr;
10544 	struct bpf_bprintf_data data = {};
10545 	int err, fmt_map_off, num_args;
10546 	u64 fmt_addr;
10547 	char *fmt;
10548 
10549 	/* data must be an array of u64 */
10550 	if (data_len_reg->var_off.value % 8)
10551 		return -EINVAL;
10552 	num_args = data_len_reg->var_off.value / 8;
10553 
10554 	/* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
10555 	 * and map_direct_value_addr is set.
10556 	 */
10557 	fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
10558 	err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
10559 						  fmt_map_off);
10560 	if (err) {
10561 		verbose(env, "verifier bug\n");
10562 		return -EFAULT;
10563 	}
10564 	fmt = (char *)(long)fmt_addr + fmt_map_off;
10565 
10566 	/* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
10567 	 * can focus on validating the format specifiers.
10568 	 */
10569 	err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data);
10570 	if (err < 0)
10571 		verbose(env, "Invalid format string\n");
10572 
10573 	return err;
10574 }
10575 
10576 static int check_get_func_ip(struct bpf_verifier_env *env)
10577 {
10578 	enum bpf_prog_type type = resolve_prog_type(env->prog);
10579 	int func_id = BPF_FUNC_get_func_ip;
10580 
10581 	if (type == BPF_PROG_TYPE_TRACING) {
10582 		if (!bpf_prog_has_trampoline(env->prog)) {
10583 			verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n",
10584 				func_id_name(func_id), func_id);
10585 			return -ENOTSUPP;
10586 		}
10587 		return 0;
10588 	} else if (type == BPF_PROG_TYPE_KPROBE) {
10589 		return 0;
10590 	}
10591 
10592 	verbose(env, "func %s#%d not supported for program type %d\n",
10593 		func_id_name(func_id), func_id, type);
10594 	return -ENOTSUPP;
10595 }
10596 
10597 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
10598 {
10599 	return &env->insn_aux_data[env->insn_idx];
10600 }
10601 
10602 static bool loop_flag_is_zero(struct bpf_verifier_env *env)
10603 {
10604 	struct bpf_reg_state *regs = cur_regs(env);
10605 	struct bpf_reg_state *reg = &regs[BPF_REG_4];
10606 	bool reg_is_null = register_is_null(reg);
10607 
10608 	if (reg_is_null)
10609 		mark_chain_precision(env, BPF_REG_4);
10610 
10611 	return reg_is_null;
10612 }
10613 
10614 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno)
10615 {
10616 	struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state;
10617 
10618 	if (!state->initialized) {
10619 		state->initialized = 1;
10620 		state->fit_for_inline = loop_flag_is_zero(env);
10621 		state->callback_subprogno = subprogno;
10622 		return;
10623 	}
10624 
10625 	if (!state->fit_for_inline)
10626 		return;
10627 
10628 	state->fit_for_inline = (loop_flag_is_zero(env) &&
10629 				 state->callback_subprogno == subprogno);
10630 }
10631 
10632 static int get_helper_proto(struct bpf_verifier_env *env, int func_id,
10633 			    const struct bpf_func_proto **ptr)
10634 {
10635 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID)
10636 		return -ERANGE;
10637 
10638 	if (!env->ops->get_func_proto)
10639 		return -EINVAL;
10640 
10641 	*ptr = env->ops->get_func_proto(func_id, env->prog);
10642 	return *ptr ? 0 : -EINVAL;
10643 }
10644 
10645 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
10646 			     int *insn_idx_p)
10647 {
10648 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
10649 	bool returns_cpu_specific_alloc_ptr = false;
10650 	const struct bpf_func_proto *fn = NULL;
10651 	enum bpf_return_type ret_type;
10652 	enum bpf_type_flag ret_flag;
10653 	struct bpf_reg_state *regs;
10654 	struct bpf_call_arg_meta meta;
10655 	int insn_idx = *insn_idx_p;
10656 	bool changes_data;
10657 	int i, err, func_id;
10658 
10659 	/* find function prototype */
10660 	func_id = insn->imm;
10661 	err = get_helper_proto(env, insn->imm, &fn);
10662 	if (err == -ERANGE) {
10663 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id), func_id);
10664 		return -EINVAL;
10665 	}
10666 
10667 	if (err) {
10668 		verbose(env, "program of this type cannot use helper %s#%d\n",
10669 			func_id_name(func_id), func_id);
10670 		return err;
10671 	}
10672 
10673 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
10674 	if (!env->prog->gpl_compatible && fn->gpl_only) {
10675 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
10676 		return -EINVAL;
10677 	}
10678 
10679 	if (fn->allowed && !fn->allowed(env->prog)) {
10680 		verbose(env, "helper call is not allowed in probe\n");
10681 		return -EINVAL;
10682 	}
10683 
10684 	if (!in_sleepable(env) && fn->might_sleep) {
10685 		verbose(env, "helper call might sleep in a non-sleepable prog\n");
10686 		return -EINVAL;
10687 	}
10688 
10689 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
10690 	changes_data = bpf_helper_changes_pkt_data(func_id);
10691 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
10692 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
10693 			func_id_name(func_id), func_id);
10694 		return -EINVAL;
10695 	}
10696 
10697 	memset(&meta, 0, sizeof(meta));
10698 	meta.pkt_access = fn->pkt_access;
10699 
10700 	err = check_func_proto(fn, func_id);
10701 	if (err) {
10702 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
10703 			func_id_name(func_id), func_id);
10704 		return err;
10705 	}
10706 
10707 	if (env->cur_state->active_rcu_lock) {
10708 		if (fn->might_sleep) {
10709 			verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n",
10710 				func_id_name(func_id), func_id);
10711 			return -EINVAL;
10712 		}
10713 
10714 		if (in_sleepable(env) && is_storage_get_function(func_id))
10715 			env->insn_aux_data[insn_idx].storage_get_func_atomic = true;
10716 	}
10717 
10718 	if (env->cur_state->active_preempt_lock) {
10719 		if (fn->might_sleep) {
10720 			verbose(env, "sleepable helper %s#%d in non-preemptible region\n",
10721 				func_id_name(func_id), func_id);
10722 			return -EINVAL;
10723 		}
10724 
10725 		if (in_sleepable(env) && is_storage_get_function(func_id))
10726 			env->insn_aux_data[insn_idx].storage_get_func_atomic = true;
10727 	}
10728 
10729 	meta.func_id = func_id;
10730 	/* check args */
10731 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
10732 		err = check_func_arg(env, i, &meta, fn, insn_idx);
10733 		if (err)
10734 			return err;
10735 	}
10736 
10737 	err = record_func_map(env, &meta, func_id, insn_idx);
10738 	if (err)
10739 		return err;
10740 
10741 	err = record_func_key(env, &meta, func_id, insn_idx);
10742 	if (err)
10743 		return err;
10744 
10745 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
10746 	 * is inferred from register state.
10747 	 */
10748 	for (i = 0; i < meta.access_size; i++) {
10749 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
10750 				       BPF_WRITE, -1, false, false);
10751 		if (err)
10752 			return err;
10753 	}
10754 
10755 	regs = cur_regs(env);
10756 
10757 	if (meta.release_regno) {
10758 		err = -EINVAL;
10759 		/* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot
10760 		 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr
10761 		 * is safe to do directly.
10762 		 */
10763 		if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) {
10764 			if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) {
10765 				verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n");
10766 				return -EFAULT;
10767 			}
10768 			err = unmark_stack_slots_dynptr(env, &regs[meta.release_regno]);
10769 		} else if (func_id == BPF_FUNC_kptr_xchg && meta.ref_obj_id) {
10770 			u32 ref_obj_id = meta.ref_obj_id;
10771 			bool in_rcu = in_rcu_cs(env);
10772 			struct bpf_func_state *state;
10773 			struct bpf_reg_state *reg;
10774 
10775 			err = release_reference_state(cur_func(env), ref_obj_id);
10776 			if (!err) {
10777 				bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
10778 					if (reg->ref_obj_id == ref_obj_id) {
10779 						if (in_rcu && (reg->type & MEM_ALLOC) && (reg->type & MEM_PERCPU)) {
10780 							reg->ref_obj_id = 0;
10781 							reg->type &= ~MEM_ALLOC;
10782 							reg->type |= MEM_RCU;
10783 						} else {
10784 							mark_reg_invalid(env, reg);
10785 						}
10786 					}
10787 				}));
10788 			}
10789 		} else if (meta.ref_obj_id) {
10790 			err = release_reference(env, meta.ref_obj_id);
10791 		} else if (register_is_null(&regs[meta.release_regno])) {
10792 			/* meta.ref_obj_id can only be 0 if register that is meant to be
10793 			 * released is NULL, which must be > R0.
10794 			 */
10795 			err = 0;
10796 		}
10797 		if (err) {
10798 			verbose(env, "func %s#%d reference has not been acquired before\n",
10799 				func_id_name(func_id), func_id);
10800 			return err;
10801 		}
10802 	}
10803 
10804 	switch (func_id) {
10805 	case BPF_FUNC_tail_call:
10806 		err = check_resource_leak(env, false, true, "tail_call");
10807 		if (err)
10808 			return err;
10809 		break;
10810 	case BPF_FUNC_get_local_storage:
10811 		/* check that flags argument in get_local_storage(map, flags) is 0,
10812 		 * this is required because get_local_storage() can't return an error.
10813 		 */
10814 		if (!register_is_null(&regs[BPF_REG_2])) {
10815 			verbose(env, "get_local_storage() doesn't support non-zero flags\n");
10816 			return -EINVAL;
10817 		}
10818 		break;
10819 	case BPF_FUNC_for_each_map_elem:
10820 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10821 					 set_map_elem_callback_state);
10822 		break;
10823 	case BPF_FUNC_timer_set_callback:
10824 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10825 					 set_timer_callback_state);
10826 		break;
10827 	case BPF_FUNC_find_vma:
10828 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10829 					 set_find_vma_callback_state);
10830 		break;
10831 	case BPF_FUNC_snprintf:
10832 		err = check_bpf_snprintf_call(env, regs);
10833 		break;
10834 	case BPF_FUNC_loop:
10835 		update_loop_inline_state(env, meta.subprogno);
10836 		/* Verifier relies on R1 value to determine if bpf_loop() iteration
10837 		 * is finished, thus mark it precise.
10838 		 */
10839 		err = mark_chain_precision(env, BPF_REG_1);
10840 		if (err)
10841 			return err;
10842 		if (cur_func(env)->callback_depth < regs[BPF_REG_1].umax_value) {
10843 			err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10844 						 set_loop_callback_state);
10845 		} else {
10846 			cur_func(env)->callback_depth = 0;
10847 			if (env->log.level & BPF_LOG_LEVEL2)
10848 				verbose(env, "frame%d bpf_loop iteration limit reached\n",
10849 					env->cur_state->curframe);
10850 		}
10851 		break;
10852 	case BPF_FUNC_dynptr_from_mem:
10853 		if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) {
10854 			verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n",
10855 				reg_type_str(env, regs[BPF_REG_1].type));
10856 			return -EACCES;
10857 		}
10858 		break;
10859 	case BPF_FUNC_set_retval:
10860 		if (prog_type == BPF_PROG_TYPE_LSM &&
10861 		    env->prog->expected_attach_type == BPF_LSM_CGROUP) {
10862 			if (!env->prog->aux->attach_func_proto->type) {
10863 				/* Make sure programs that attach to void
10864 				 * hooks don't try to modify return value.
10865 				 */
10866 				verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
10867 				return -EINVAL;
10868 			}
10869 		}
10870 		break;
10871 	case BPF_FUNC_dynptr_data:
10872 	{
10873 		struct bpf_reg_state *reg;
10874 		int id, ref_obj_id;
10875 
10876 		reg = get_dynptr_arg_reg(env, fn, regs);
10877 		if (!reg)
10878 			return -EFAULT;
10879 
10880 
10881 		if (meta.dynptr_id) {
10882 			verbose(env, "verifier internal error: meta.dynptr_id already set\n");
10883 			return -EFAULT;
10884 		}
10885 		if (meta.ref_obj_id) {
10886 			verbose(env, "verifier internal error: meta.ref_obj_id already set\n");
10887 			return -EFAULT;
10888 		}
10889 
10890 		id = dynptr_id(env, reg);
10891 		if (id < 0) {
10892 			verbose(env, "verifier internal error: failed to obtain dynptr id\n");
10893 			return id;
10894 		}
10895 
10896 		ref_obj_id = dynptr_ref_obj_id(env, reg);
10897 		if (ref_obj_id < 0) {
10898 			verbose(env, "verifier internal error: failed to obtain dynptr ref_obj_id\n");
10899 			return ref_obj_id;
10900 		}
10901 
10902 		meta.dynptr_id = id;
10903 		meta.ref_obj_id = ref_obj_id;
10904 
10905 		break;
10906 	}
10907 	case BPF_FUNC_dynptr_write:
10908 	{
10909 		enum bpf_dynptr_type dynptr_type;
10910 		struct bpf_reg_state *reg;
10911 
10912 		reg = get_dynptr_arg_reg(env, fn, regs);
10913 		if (!reg)
10914 			return -EFAULT;
10915 
10916 		dynptr_type = dynptr_get_type(env, reg);
10917 		if (dynptr_type == BPF_DYNPTR_TYPE_INVALID)
10918 			return -EFAULT;
10919 
10920 		if (dynptr_type == BPF_DYNPTR_TYPE_SKB)
10921 			/* this will trigger clear_all_pkt_pointers(), which will
10922 			 * invalidate all dynptr slices associated with the skb
10923 			 */
10924 			changes_data = true;
10925 
10926 		break;
10927 	}
10928 	case BPF_FUNC_per_cpu_ptr:
10929 	case BPF_FUNC_this_cpu_ptr:
10930 	{
10931 		struct bpf_reg_state *reg = &regs[BPF_REG_1];
10932 		const struct btf_type *type;
10933 
10934 		if (reg->type & MEM_RCU) {
10935 			type = btf_type_by_id(reg->btf, reg->btf_id);
10936 			if (!type || !btf_type_is_struct(type)) {
10937 				verbose(env, "Helper has invalid btf/btf_id in R1\n");
10938 				return -EFAULT;
10939 			}
10940 			returns_cpu_specific_alloc_ptr = true;
10941 			env->insn_aux_data[insn_idx].call_with_percpu_alloc_ptr = true;
10942 		}
10943 		break;
10944 	}
10945 	case BPF_FUNC_user_ringbuf_drain:
10946 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10947 					 set_user_ringbuf_callback_state);
10948 		break;
10949 	}
10950 
10951 	if (err)
10952 		return err;
10953 
10954 	/* reset caller saved regs */
10955 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
10956 		mark_reg_not_init(env, regs, caller_saved[i]);
10957 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
10958 	}
10959 
10960 	/* helper call returns 64-bit value. */
10961 	regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
10962 
10963 	/* update return register (already marked as written above) */
10964 	ret_type = fn->ret_type;
10965 	ret_flag = type_flag(ret_type);
10966 
10967 	switch (base_type(ret_type)) {
10968 	case RET_INTEGER:
10969 		/* sets type to SCALAR_VALUE */
10970 		mark_reg_unknown(env, regs, BPF_REG_0);
10971 		break;
10972 	case RET_VOID:
10973 		regs[BPF_REG_0].type = NOT_INIT;
10974 		break;
10975 	case RET_PTR_TO_MAP_VALUE:
10976 		/* There is no offset yet applied, variable or fixed */
10977 		mark_reg_known_zero(env, regs, BPF_REG_0);
10978 		/* remember map_ptr, so that check_map_access()
10979 		 * can check 'value_size' boundary of memory access
10980 		 * to map element returned from bpf_map_lookup_elem()
10981 		 */
10982 		if (meta.map_ptr == NULL) {
10983 			verbose(env,
10984 				"kernel subsystem misconfigured verifier\n");
10985 			return -EINVAL;
10986 		}
10987 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
10988 		regs[BPF_REG_0].map_uid = meta.map_uid;
10989 		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag;
10990 		if (!type_may_be_null(ret_type) &&
10991 		    btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) {
10992 			regs[BPF_REG_0].id = ++env->id_gen;
10993 		}
10994 		break;
10995 	case RET_PTR_TO_SOCKET:
10996 		mark_reg_known_zero(env, regs, BPF_REG_0);
10997 		regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag;
10998 		break;
10999 	case RET_PTR_TO_SOCK_COMMON:
11000 		mark_reg_known_zero(env, regs, BPF_REG_0);
11001 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag;
11002 		break;
11003 	case RET_PTR_TO_TCP_SOCK:
11004 		mark_reg_known_zero(env, regs, BPF_REG_0);
11005 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag;
11006 		break;
11007 	case RET_PTR_TO_MEM:
11008 		mark_reg_known_zero(env, regs, BPF_REG_0);
11009 		regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
11010 		regs[BPF_REG_0].mem_size = meta.mem_size;
11011 		break;
11012 	case RET_PTR_TO_MEM_OR_BTF_ID:
11013 	{
11014 		const struct btf_type *t;
11015 
11016 		mark_reg_known_zero(env, regs, BPF_REG_0);
11017 		t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
11018 		if (!btf_type_is_struct(t)) {
11019 			u32 tsize;
11020 			const struct btf_type *ret;
11021 			const char *tname;
11022 
11023 			/* resolve the type size of ksym. */
11024 			ret = btf_resolve_size(meta.ret_btf, t, &tsize);
11025 			if (IS_ERR(ret)) {
11026 				tname = btf_name_by_offset(meta.ret_btf, t->name_off);
11027 				verbose(env, "unable to resolve the size of type '%s': %ld\n",
11028 					tname, PTR_ERR(ret));
11029 				return -EINVAL;
11030 			}
11031 			regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
11032 			regs[BPF_REG_0].mem_size = tsize;
11033 		} else {
11034 			if (returns_cpu_specific_alloc_ptr) {
11035 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC | MEM_RCU;
11036 			} else {
11037 				/* MEM_RDONLY may be carried from ret_flag, but it
11038 				 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise
11039 				 * it will confuse the check of PTR_TO_BTF_ID in
11040 				 * check_mem_access().
11041 				 */
11042 				ret_flag &= ~MEM_RDONLY;
11043 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
11044 			}
11045 
11046 			regs[BPF_REG_0].btf = meta.ret_btf;
11047 			regs[BPF_REG_0].btf_id = meta.ret_btf_id;
11048 		}
11049 		break;
11050 	}
11051 	case RET_PTR_TO_BTF_ID:
11052 	{
11053 		struct btf *ret_btf;
11054 		int ret_btf_id;
11055 
11056 		mark_reg_known_zero(env, regs, BPF_REG_0);
11057 		regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
11058 		if (func_id == BPF_FUNC_kptr_xchg) {
11059 			ret_btf = meta.kptr_field->kptr.btf;
11060 			ret_btf_id = meta.kptr_field->kptr.btf_id;
11061 			if (!btf_is_kernel(ret_btf)) {
11062 				regs[BPF_REG_0].type |= MEM_ALLOC;
11063 				if (meta.kptr_field->type == BPF_KPTR_PERCPU)
11064 					regs[BPF_REG_0].type |= MEM_PERCPU;
11065 			}
11066 		} else {
11067 			if (fn->ret_btf_id == BPF_PTR_POISON) {
11068 				verbose(env, "verifier internal error:");
11069 				verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n",
11070 					func_id_name(func_id));
11071 				return -EINVAL;
11072 			}
11073 			ret_btf = btf_vmlinux;
11074 			ret_btf_id = *fn->ret_btf_id;
11075 		}
11076 		if (ret_btf_id == 0) {
11077 			verbose(env, "invalid return type %u of func %s#%d\n",
11078 				base_type(ret_type), func_id_name(func_id),
11079 				func_id);
11080 			return -EINVAL;
11081 		}
11082 		regs[BPF_REG_0].btf = ret_btf;
11083 		regs[BPF_REG_0].btf_id = ret_btf_id;
11084 		break;
11085 	}
11086 	default:
11087 		verbose(env, "unknown return type %u of func %s#%d\n",
11088 			base_type(ret_type), func_id_name(func_id), func_id);
11089 		return -EINVAL;
11090 	}
11091 
11092 	if (type_may_be_null(regs[BPF_REG_0].type))
11093 		regs[BPF_REG_0].id = ++env->id_gen;
11094 
11095 	if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) {
11096 		verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n",
11097 			func_id_name(func_id), func_id);
11098 		return -EFAULT;
11099 	}
11100 
11101 	if (is_dynptr_ref_function(func_id))
11102 		regs[BPF_REG_0].dynptr_id = meta.dynptr_id;
11103 
11104 	if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) {
11105 		/* For release_reference() */
11106 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
11107 	} else if (is_acquire_function(func_id, meta.map_ptr)) {
11108 		int id = acquire_reference_state(env, insn_idx);
11109 
11110 		if (id < 0)
11111 			return id;
11112 		/* For mark_ptr_or_null_reg() */
11113 		regs[BPF_REG_0].id = id;
11114 		/* For release_reference() */
11115 		regs[BPF_REG_0].ref_obj_id = id;
11116 	}
11117 
11118 	err = do_refine_retval_range(env, regs, fn->ret_type, func_id, &meta);
11119 	if (err)
11120 		return err;
11121 
11122 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
11123 	if (err)
11124 		return err;
11125 
11126 	if ((func_id == BPF_FUNC_get_stack ||
11127 	     func_id == BPF_FUNC_get_task_stack) &&
11128 	    !env->prog->has_callchain_buf) {
11129 		const char *err_str;
11130 
11131 #ifdef CONFIG_PERF_EVENTS
11132 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
11133 		err_str = "cannot get callchain buffer for func %s#%d\n";
11134 #else
11135 		err = -ENOTSUPP;
11136 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
11137 #endif
11138 		if (err) {
11139 			verbose(env, err_str, func_id_name(func_id), func_id);
11140 			return err;
11141 		}
11142 
11143 		env->prog->has_callchain_buf = true;
11144 	}
11145 
11146 	if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
11147 		env->prog->call_get_stack = true;
11148 
11149 	if (func_id == BPF_FUNC_get_func_ip) {
11150 		if (check_get_func_ip(env))
11151 			return -ENOTSUPP;
11152 		env->prog->call_get_func_ip = true;
11153 	}
11154 
11155 	if (changes_data)
11156 		clear_all_pkt_pointers(env);
11157 	return 0;
11158 }
11159 
11160 /* mark_btf_func_reg_size() is used when the reg size is determined by
11161  * the BTF func_proto's return value size and argument.
11162  */
11163 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
11164 				   size_t reg_size)
11165 {
11166 	struct bpf_reg_state *reg = &cur_regs(env)[regno];
11167 
11168 	if (regno == BPF_REG_0) {
11169 		/* Function return value */
11170 		reg->live |= REG_LIVE_WRITTEN;
11171 		reg->subreg_def = reg_size == sizeof(u64) ?
11172 			DEF_NOT_SUBREG : env->insn_idx + 1;
11173 	} else {
11174 		/* Function argument */
11175 		if (reg_size == sizeof(u64)) {
11176 			mark_insn_zext(env, reg);
11177 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
11178 		} else {
11179 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
11180 		}
11181 	}
11182 }
11183 
11184 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta)
11185 {
11186 	return meta->kfunc_flags & KF_ACQUIRE;
11187 }
11188 
11189 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta)
11190 {
11191 	return meta->kfunc_flags & KF_RELEASE;
11192 }
11193 
11194 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta)
11195 {
11196 	return (meta->kfunc_flags & KF_TRUSTED_ARGS) || is_kfunc_release(meta);
11197 }
11198 
11199 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta)
11200 {
11201 	return meta->kfunc_flags & KF_SLEEPABLE;
11202 }
11203 
11204 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta)
11205 {
11206 	return meta->kfunc_flags & KF_DESTRUCTIVE;
11207 }
11208 
11209 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta)
11210 {
11211 	return meta->kfunc_flags & KF_RCU;
11212 }
11213 
11214 static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta)
11215 {
11216 	return meta->kfunc_flags & KF_RCU_PROTECTED;
11217 }
11218 
11219 static bool is_kfunc_arg_mem_size(const struct btf *btf,
11220 				  const struct btf_param *arg,
11221 				  const struct bpf_reg_state *reg)
11222 {
11223 	const struct btf_type *t;
11224 
11225 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
11226 	if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
11227 		return false;
11228 
11229 	return btf_param_match_suffix(btf, arg, "__sz");
11230 }
11231 
11232 static bool is_kfunc_arg_const_mem_size(const struct btf *btf,
11233 					const struct btf_param *arg,
11234 					const struct bpf_reg_state *reg)
11235 {
11236 	const struct btf_type *t;
11237 
11238 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
11239 	if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
11240 		return false;
11241 
11242 	return btf_param_match_suffix(btf, arg, "__szk");
11243 }
11244 
11245 static bool is_kfunc_arg_optional(const struct btf *btf, const struct btf_param *arg)
11246 {
11247 	return btf_param_match_suffix(btf, arg, "__opt");
11248 }
11249 
11250 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg)
11251 {
11252 	return btf_param_match_suffix(btf, arg, "__k");
11253 }
11254 
11255 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg)
11256 {
11257 	return btf_param_match_suffix(btf, arg, "__ign");
11258 }
11259 
11260 static bool is_kfunc_arg_map(const struct btf *btf, const struct btf_param *arg)
11261 {
11262 	return btf_param_match_suffix(btf, arg, "__map");
11263 }
11264 
11265 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg)
11266 {
11267 	return btf_param_match_suffix(btf, arg, "__alloc");
11268 }
11269 
11270 static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg)
11271 {
11272 	return btf_param_match_suffix(btf, arg, "__uninit");
11273 }
11274 
11275 static bool is_kfunc_arg_refcounted_kptr(const struct btf *btf, const struct btf_param *arg)
11276 {
11277 	return btf_param_match_suffix(btf, arg, "__refcounted_kptr");
11278 }
11279 
11280 static bool is_kfunc_arg_nullable(const struct btf *btf, const struct btf_param *arg)
11281 {
11282 	return btf_param_match_suffix(btf, arg, "__nullable");
11283 }
11284 
11285 static bool is_kfunc_arg_const_str(const struct btf *btf, const struct btf_param *arg)
11286 {
11287 	return btf_param_match_suffix(btf, arg, "__str");
11288 }
11289 
11290 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf,
11291 					  const struct btf_param *arg,
11292 					  const char *name)
11293 {
11294 	int len, target_len = strlen(name);
11295 	const char *param_name;
11296 
11297 	param_name = btf_name_by_offset(btf, arg->name_off);
11298 	if (str_is_empty(param_name))
11299 		return false;
11300 	len = strlen(param_name);
11301 	if (len != target_len)
11302 		return false;
11303 	if (strcmp(param_name, name))
11304 		return false;
11305 
11306 	return true;
11307 }
11308 
11309 enum {
11310 	KF_ARG_DYNPTR_ID,
11311 	KF_ARG_LIST_HEAD_ID,
11312 	KF_ARG_LIST_NODE_ID,
11313 	KF_ARG_RB_ROOT_ID,
11314 	KF_ARG_RB_NODE_ID,
11315 	KF_ARG_WORKQUEUE_ID,
11316 };
11317 
11318 BTF_ID_LIST(kf_arg_btf_ids)
11319 BTF_ID(struct, bpf_dynptr)
11320 BTF_ID(struct, bpf_list_head)
11321 BTF_ID(struct, bpf_list_node)
11322 BTF_ID(struct, bpf_rb_root)
11323 BTF_ID(struct, bpf_rb_node)
11324 BTF_ID(struct, bpf_wq)
11325 
11326 static bool __is_kfunc_ptr_arg_type(const struct btf *btf,
11327 				    const struct btf_param *arg, int type)
11328 {
11329 	const struct btf_type *t;
11330 	u32 res_id;
11331 
11332 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
11333 	if (!t)
11334 		return false;
11335 	if (!btf_type_is_ptr(t))
11336 		return false;
11337 	t = btf_type_skip_modifiers(btf, t->type, &res_id);
11338 	if (!t)
11339 		return false;
11340 	return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]);
11341 }
11342 
11343 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg)
11344 {
11345 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID);
11346 }
11347 
11348 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg)
11349 {
11350 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID);
11351 }
11352 
11353 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg)
11354 {
11355 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID);
11356 }
11357 
11358 static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg)
11359 {
11360 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID);
11361 }
11362 
11363 static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg)
11364 {
11365 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID);
11366 }
11367 
11368 static bool is_kfunc_arg_wq(const struct btf *btf, const struct btf_param *arg)
11369 {
11370 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_WORKQUEUE_ID);
11371 }
11372 
11373 static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf,
11374 				  const struct btf_param *arg)
11375 {
11376 	const struct btf_type *t;
11377 
11378 	t = btf_type_resolve_func_ptr(btf, arg->type, NULL);
11379 	if (!t)
11380 		return false;
11381 
11382 	return true;
11383 }
11384 
11385 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */
11386 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env,
11387 					const struct btf *btf,
11388 					const struct btf_type *t, int rec)
11389 {
11390 	const struct btf_type *member_type;
11391 	const struct btf_member *member;
11392 	u32 i;
11393 
11394 	if (!btf_type_is_struct(t))
11395 		return false;
11396 
11397 	for_each_member(i, t, member) {
11398 		const struct btf_array *array;
11399 
11400 		member_type = btf_type_skip_modifiers(btf, member->type, NULL);
11401 		if (btf_type_is_struct(member_type)) {
11402 			if (rec >= 3) {
11403 				verbose(env, "max struct nesting depth exceeded\n");
11404 				return false;
11405 			}
11406 			if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1))
11407 				return false;
11408 			continue;
11409 		}
11410 		if (btf_type_is_array(member_type)) {
11411 			array = btf_array(member_type);
11412 			if (!array->nelems)
11413 				return false;
11414 			member_type = btf_type_skip_modifiers(btf, array->type, NULL);
11415 			if (!btf_type_is_scalar(member_type))
11416 				return false;
11417 			continue;
11418 		}
11419 		if (!btf_type_is_scalar(member_type))
11420 			return false;
11421 	}
11422 	return true;
11423 }
11424 
11425 enum kfunc_ptr_arg_type {
11426 	KF_ARG_PTR_TO_CTX,
11427 	KF_ARG_PTR_TO_ALLOC_BTF_ID,    /* Allocated object */
11428 	KF_ARG_PTR_TO_REFCOUNTED_KPTR, /* Refcounted local kptr */
11429 	KF_ARG_PTR_TO_DYNPTR,
11430 	KF_ARG_PTR_TO_ITER,
11431 	KF_ARG_PTR_TO_LIST_HEAD,
11432 	KF_ARG_PTR_TO_LIST_NODE,
11433 	KF_ARG_PTR_TO_BTF_ID,	       /* Also covers reg2btf_ids conversions */
11434 	KF_ARG_PTR_TO_MEM,
11435 	KF_ARG_PTR_TO_MEM_SIZE,	       /* Size derived from next argument, skip it */
11436 	KF_ARG_PTR_TO_CALLBACK,
11437 	KF_ARG_PTR_TO_RB_ROOT,
11438 	KF_ARG_PTR_TO_RB_NODE,
11439 	KF_ARG_PTR_TO_NULL,
11440 	KF_ARG_PTR_TO_CONST_STR,
11441 	KF_ARG_PTR_TO_MAP,
11442 	KF_ARG_PTR_TO_WORKQUEUE,
11443 };
11444 
11445 enum special_kfunc_type {
11446 	KF_bpf_obj_new_impl,
11447 	KF_bpf_obj_drop_impl,
11448 	KF_bpf_refcount_acquire_impl,
11449 	KF_bpf_list_push_front_impl,
11450 	KF_bpf_list_push_back_impl,
11451 	KF_bpf_list_pop_front,
11452 	KF_bpf_list_pop_back,
11453 	KF_bpf_cast_to_kern_ctx,
11454 	KF_bpf_rdonly_cast,
11455 	KF_bpf_rcu_read_lock,
11456 	KF_bpf_rcu_read_unlock,
11457 	KF_bpf_rbtree_remove,
11458 	KF_bpf_rbtree_add_impl,
11459 	KF_bpf_rbtree_first,
11460 	KF_bpf_dynptr_from_skb,
11461 	KF_bpf_dynptr_from_xdp,
11462 	KF_bpf_dynptr_slice,
11463 	KF_bpf_dynptr_slice_rdwr,
11464 	KF_bpf_dynptr_clone,
11465 	KF_bpf_percpu_obj_new_impl,
11466 	KF_bpf_percpu_obj_drop_impl,
11467 	KF_bpf_throw,
11468 	KF_bpf_wq_set_callback_impl,
11469 	KF_bpf_preempt_disable,
11470 	KF_bpf_preempt_enable,
11471 	KF_bpf_iter_css_task_new,
11472 	KF_bpf_session_cookie,
11473 	KF_bpf_get_kmem_cache,
11474 };
11475 
11476 BTF_SET_START(special_kfunc_set)
11477 BTF_ID(func, bpf_obj_new_impl)
11478 BTF_ID(func, bpf_obj_drop_impl)
11479 BTF_ID(func, bpf_refcount_acquire_impl)
11480 BTF_ID(func, bpf_list_push_front_impl)
11481 BTF_ID(func, bpf_list_push_back_impl)
11482 BTF_ID(func, bpf_list_pop_front)
11483 BTF_ID(func, bpf_list_pop_back)
11484 BTF_ID(func, bpf_cast_to_kern_ctx)
11485 BTF_ID(func, bpf_rdonly_cast)
11486 BTF_ID(func, bpf_rbtree_remove)
11487 BTF_ID(func, bpf_rbtree_add_impl)
11488 BTF_ID(func, bpf_rbtree_first)
11489 BTF_ID(func, bpf_dynptr_from_skb)
11490 BTF_ID(func, bpf_dynptr_from_xdp)
11491 BTF_ID(func, bpf_dynptr_slice)
11492 BTF_ID(func, bpf_dynptr_slice_rdwr)
11493 BTF_ID(func, bpf_dynptr_clone)
11494 BTF_ID(func, bpf_percpu_obj_new_impl)
11495 BTF_ID(func, bpf_percpu_obj_drop_impl)
11496 BTF_ID(func, bpf_throw)
11497 BTF_ID(func, bpf_wq_set_callback_impl)
11498 #ifdef CONFIG_CGROUPS
11499 BTF_ID(func, bpf_iter_css_task_new)
11500 #endif
11501 BTF_SET_END(special_kfunc_set)
11502 
11503 BTF_ID_LIST(special_kfunc_list)
11504 BTF_ID(func, bpf_obj_new_impl)
11505 BTF_ID(func, bpf_obj_drop_impl)
11506 BTF_ID(func, bpf_refcount_acquire_impl)
11507 BTF_ID(func, bpf_list_push_front_impl)
11508 BTF_ID(func, bpf_list_push_back_impl)
11509 BTF_ID(func, bpf_list_pop_front)
11510 BTF_ID(func, bpf_list_pop_back)
11511 BTF_ID(func, bpf_cast_to_kern_ctx)
11512 BTF_ID(func, bpf_rdonly_cast)
11513 BTF_ID(func, bpf_rcu_read_lock)
11514 BTF_ID(func, bpf_rcu_read_unlock)
11515 BTF_ID(func, bpf_rbtree_remove)
11516 BTF_ID(func, bpf_rbtree_add_impl)
11517 BTF_ID(func, bpf_rbtree_first)
11518 BTF_ID(func, bpf_dynptr_from_skb)
11519 BTF_ID(func, bpf_dynptr_from_xdp)
11520 BTF_ID(func, bpf_dynptr_slice)
11521 BTF_ID(func, bpf_dynptr_slice_rdwr)
11522 BTF_ID(func, bpf_dynptr_clone)
11523 BTF_ID(func, bpf_percpu_obj_new_impl)
11524 BTF_ID(func, bpf_percpu_obj_drop_impl)
11525 BTF_ID(func, bpf_throw)
11526 BTF_ID(func, bpf_wq_set_callback_impl)
11527 BTF_ID(func, bpf_preempt_disable)
11528 BTF_ID(func, bpf_preempt_enable)
11529 #ifdef CONFIG_CGROUPS
11530 BTF_ID(func, bpf_iter_css_task_new)
11531 #else
11532 BTF_ID_UNUSED
11533 #endif
11534 #ifdef CONFIG_BPF_EVENTS
11535 BTF_ID(func, bpf_session_cookie)
11536 #else
11537 BTF_ID_UNUSED
11538 #endif
11539 BTF_ID(func, bpf_get_kmem_cache)
11540 
11541 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta)
11542 {
11543 	if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] &&
11544 	    meta->arg_owning_ref) {
11545 		return false;
11546 	}
11547 
11548 	return meta->kfunc_flags & KF_RET_NULL;
11549 }
11550 
11551 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta)
11552 {
11553 	return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock];
11554 }
11555 
11556 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta)
11557 {
11558 	return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock];
11559 }
11560 
11561 static bool is_kfunc_bpf_preempt_disable(struct bpf_kfunc_call_arg_meta *meta)
11562 {
11563 	return meta->func_id == special_kfunc_list[KF_bpf_preempt_disable];
11564 }
11565 
11566 static bool is_kfunc_bpf_preempt_enable(struct bpf_kfunc_call_arg_meta *meta)
11567 {
11568 	return meta->func_id == special_kfunc_list[KF_bpf_preempt_enable];
11569 }
11570 
11571 static enum kfunc_ptr_arg_type
11572 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env,
11573 		       struct bpf_kfunc_call_arg_meta *meta,
11574 		       const struct btf_type *t, const struct btf_type *ref_t,
11575 		       const char *ref_tname, const struct btf_param *args,
11576 		       int argno, int nargs)
11577 {
11578 	u32 regno = argno + 1;
11579 	struct bpf_reg_state *regs = cur_regs(env);
11580 	struct bpf_reg_state *reg = &regs[regno];
11581 	bool arg_mem_size = false;
11582 
11583 	if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx])
11584 		return KF_ARG_PTR_TO_CTX;
11585 
11586 	/* In this function, we verify the kfunc's BTF as per the argument type,
11587 	 * leaving the rest of the verification with respect to the register
11588 	 * type to our caller. When a set of conditions hold in the BTF type of
11589 	 * arguments, we resolve it to a known kfunc_ptr_arg_type.
11590 	 */
11591 	if (btf_is_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno))
11592 		return KF_ARG_PTR_TO_CTX;
11593 
11594 	if (is_kfunc_arg_nullable(meta->btf, &args[argno]) && register_is_null(reg))
11595 		return KF_ARG_PTR_TO_NULL;
11596 
11597 	if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno]))
11598 		return KF_ARG_PTR_TO_ALLOC_BTF_ID;
11599 
11600 	if (is_kfunc_arg_refcounted_kptr(meta->btf, &args[argno]))
11601 		return KF_ARG_PTR_TO_REFCOUNTED_KPTR;
11602 
11603 	if (is_kfunc_arg_dynptr(meta->btf, &args[argno]))
11604 		return KF_ARG_PTR_TO_DYNPTR;
11605 
11606 	if (is_kfunc_arg_iter(meta, argno, &args[argno]))
11607 		return KF_ARG_PTR_TO_ITER;
11608 
11609 	if (is_kfunc_arg_list_head(meta->btf, &args[argno]))
11610 		return KF_ARG_PTR_TO_LIST_HEAD;
11611 
11612 	if (is_kfunc_arg_list_node(meta->btf, &args[argno]))
11613 		return KF_ARG_PTR_TO_LIST_NODE;
11614 
11615 	if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno]))
11616 		return KF_ARG_PTR_TO_RB_ROOT;
11617 
11618 	if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno]))
11619 		return KF_ARG_PTR_TO_RB_NODE;
11620 
11621 	if (is_kfunc_arg_const_str(meta->btf, &args[argno]))
11622 		return KF_ARG_PTR_TO_CONST_STR;
11623 
11624 	if (is_kfunc_arg_map(meta->btf, &args[argno]))
11625 		return KF_ARG_PTR_TO_MAP;
11626 
11627 	if (is_kfunc_arg_wq(meta->btf, &args[argno]))
11628 		return KF_ARG_PTR_TO_WORKQUEUE;
11629 
11630 	if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) {
11631 		if (!btf_type_is_struct(ref_t)) {
11632 			verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n",
11633 				meta->func_name, argno, btf_type_str(ref_t), ref_tname);
11634 			return -EINVAL;
11635 		}
11636 		return KF_ARG_PTR_TO_BTF_ID;
11637 	}
11638 
11639 	if (is_kfunc_arg_callback(env, meta->btf, &args[argno]))
11640 		return KF_ARG_PTR_TO_CALLBACK;
11641 
11642 	if (argno + 1 < nargs &&
11643 	    (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], &regs[regno + 1]) ||
11644 	     is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], &regs[regno + 1])))
11645 		arg_mem_size = true;
11646 
11647 	/* This is the catch all argument type of register types supported by
11648 	 * check_helper_mem_access. However, we only allow when argument type is
11649 	 * pointer to scalar, or struct composed (recursively) of scalars. When
11650 	 * arg_mem_size is true, the pointer can be void *.
11651 	 */
11652 	if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) &&
11653 	    (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) {
11654 		verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n",
11655 			argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : "");
11656 		return -EINVAL;
11657 	}
11658 	return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM;
11659 }
11660 
11661 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env,
11662 					struct bpf_reg_state *reg,
11663 					const struct btf_type *ref_t,
11664 					const char *ref_tname, u32 ref_id,
11665 					struct bpf_kfunc_call_arg_meta *meta,
11666 					int argno)
11667 {
11668 	const struct btf_type *reg_ref_t;
11669 	bool strict_type_match = false;
11670 	const struct btf *reg_btf;
11671 	const char *reg_ref_tname;
11672 	bool taking_projection;
11673 	bool struct_same;
11674 	u32 reg_ref_id;
11675 
11676 	if (base_type(reg->type) == PTR_TO_BTF_ID) {
11677 		reg_btf = reg->btf;
11678 		reg_ref_id = reg->btf_id;
11679 	} else {
11680 		reg_btf = btf_vmlinux;
11681 		reg_ref_id = *reg2btf_ids[base_type(reg->type)];
11682 	}
11683 
11684 	/* Enforce strict type matching for calls to kfuncs that are acquiring
11685 	 * or releasing a reference, or are no-cast aliases. We do _not_
11686 	 * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default,
11687 	 * as we want to enable BPF programs to pass types that are bitwise
11688 	 * equivalent without forcing them to explicitly cast with something
11689 	 * like bpf_cast_to_kern_ctx().
11690 	 *
11691 	 * For example, say we had a type like the following:
11692 	 *
11693 	 * struct bpf_cpumask {
11694 	 *	cpumask_t cpumask;
11695 	 *	refcount_t usage;
11696 	 * };
11697 	 *
11698 	 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed
11699 	 * to a struct cpumask, so it would be safe to pass a struct
11700 	 * bpf_cpumask * to a kfunc expecting a struct cpumask *.
11701 	 *
11702 	 * The philosophy here is similar to how we allow scalars of different
11703 	 * types to be passed to kfuncs as long as the size is the same. The
11704 	 * only difference here is that we're simply allowing
11705 	 * btf_struct_ids_match() to walk the struct at the 0th offset, and
11706 	 * resolve types.
11707 	 */
11708 	if ((is_kfunc_release(meta) && reg->ref_obj_id) ||
11709 	    btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id))
11710 		strict_type_match = true;
11711 
11712 	WARN_ON_ONCE(is_kfunc_release(meta) &&
11713 		     (reg->off || !tnum_is_const(reg->var_off) ||
11714 		      reg->var_off.value));
11715 
11716 	reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, &reg_ref_id);
11717 	reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off);
11718 	struct_same = btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match);
11719 	/* If kfunc is accepting a projection type (ie. __sk_buff), it cannot
11720 	 * actually use it -- it must cast to the underlying type. So we allow
11721 	 * caller to pass in the underlying type.
11722 	 */
11723 	taking_projection = btf_is_projection_of(ref_tname, reg_ref_tname);
11724 	if (!taking_projection && !struct_same) {
11725 		verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n",
11726 			meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1,
11727 			btf_type_str(reg_ref_t), reg_ref_tname);
11728 		return -EINVAL;
11729 	}
11730 	return 0;
11731 }
11732 
11733 static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
11734 {
11735 	struct btf_record *rec = reg_btf_record(reg);
11736 
11737 	if (!cur_func(env)->active_locks) {
11738 		verbose(env, "verifier internal error: ref_set_non_owning w/o active lock\n");
11739 		return -EFAULT;
11740 	}
11741 
11742 	if (type_flag(reg->type) & NON_OWN_REF) {
11743 		verbose(env, "verifier internal error: NON_OWN_REF already set\n");
11744 		return -EFAULT;
11745 	}
11746 
11747 	reg->type |= NON_OWN_REF;
11748 	if (rec->refcount_off >= 0)
11749 		reg->type |= MEM_RCU;
11750 
11751 	return 0;
11752 }
11753 
11754 static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id)
11755 {
11756 	struct bpf_func_state *state, *unused;
11757 	struct bpf_reg_state *reg;
11758 	int i;
11759 
11760 	state = cur_func(env);
11761 
11762 	if (!ref_obj_id) {
11763 		verbose(env, "verifier internal error: ref_obj_id is zero for "
11764 			     "owning -> non-owning conversion\n");
11765 		return -EFAULT;
11766 	}
11767 
11768 	for (i = 0; i < state->acquired_refs; i++) {
11769 		if (state->refs[i].id != ref_obj_id)
11770 			continue;
11771 
11772 		/* Clear ref_obj_id here so release_reference doesn't clobber
11773 		 * the whole reg
11774 		 */
11775 		bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
11776 			if (reg->ref_obj_id == ref_obj_id) {
11777 				reg->ref_obj_id = 0;
11778 				ref_set_non_owning(env, reg);
11779 			}
11780 		}));
11781 		return 0;
11782 	}
11783 
11784 	verbose(env, "verifier internal error: ref state missing for ref_obj_id\n");
11785 	return -EFAULT;
11786 }
11787 
11788 /* Implementation details:
11789  *
11790  * Each register points to some region of memory, which we define as an
11791  * allocation. Each allocation may embed a bpf_spin_lock which protects any
11792  * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same
11793  * allocation. The lock and the data it protects are colocated in the same
11794  * memory region.
11795  *
11796  * Hence, everytime a register holds a pointer value pointing to such
11797  * allocation, the verifier preserves a unique reg->id for it.
11798  *
11799  * The verifier remembers the lock 'ptr' and the lock 'id' whenever
11800  * bpf_spin_lock is called.
11801  *
11802  * To enable this, lock state in the verifier captures two values:
11803  *	active_lock.ptr = Register's type specific pointer
11804  *	active_lock.id  = A unique ID for each register pointer value
11805  *
11806  * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two
11807  * supported register types.
11808  *
11809  * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of
11810  * allocated objects is the reg->btf pointer.
11811  *
11812  * The active_lock.id is non-unique for maps supporting direct_value_addr, as we
11813  * can establish the provenance of the map value statically for each distinct
11814  * lookup into such maps. They always contain a single map value hence unique
11815  * IDs for each pseudo load pessimizes the algorithm and rejects valid programs.
11816  *
11817  * So, in case of global variables, they use array maps with max_entries = 1,
11818  * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point
11819  * into the same map value as max_entries is 1, as described above).
11820  *
11821  * In case of inner map lookups, the inner map pointer has same map_ptr as the
11822  * outer map pointer (in verifier context), but each lookup into an inner map
11823  * assigns a fresh reg->id to the lookup, so while lookups into distinct inner
11824  * maps from the same outer map share the same map_ptr as active_lock.ptr, they
11825  * will get different reg->id assigned to each lookup, hence different
11826  * active_lock.id.
11827  *
11828  * In case of allocated objects, active_lock.ptr is the reg->btf, and the
11829  * reg->id is a unique ID preserved after the NULL pointer check on the pointer
11830  * returned from bpf_obj_new. Each allocation receives a new reg->id.
11831  */
11832 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
11833 {
11834 	struct bpf_reference_state *s;
11835 	void *ptr;
11836 	u32 id;
11837 
11838 	switch ((int)reg->type) {
11839 	case PTR_TO_MAP_VALUE:
11840 		ptr = reg->map_ptr;
11841 		break;
11842 	case PTR_TO_BTF_ID | MEM_ALLOC:
11843 		ptr = reg->btf;
11844 		break;
11845 	default:
11846 		verbose(env, "verifier internal error: unknown reg type for lock check\n");
11847 		return -EFAULT;
11848 	}
11849 	id = reg->id;
11850 
11851 	if (!cur_func(env)->active_locks)
11852 		return -EINVAL;
11853 	s = find_lock_state(env, REF_TYPE_LOCK, id, ptr);
11854 	if (!s) {
11855 		verbose(env, "held lock and object are not in the same allocation\n");
11856 		return -EINVAL;
11857 	}
11858 	return 0;
11859 }
11860 
11861 static bool is_bpf_list_api_kfunc(u32 btf_id)
11862 {
11863 	return btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
11864 	       btf_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
11865 	       btf_id == special_kfunc_list[KF_bpf_list_pop_front] ||
11866 	       btf_id == special_kfunc_list[KF_bpf_list_pop_back];
11867 }
11868 
11869 static bool is_bpf_rbtree_api_kfunc(u32 btf_id)
11870 {
11871 	return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] ||
11872 	       btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
11873 	       btf_id == special_kfunc_list[KF_bpf_rbtree_first];
11874 }
11875 
11876 static bool is_bpf_graph_api_kfunc(u32 btf_id)
11877 {
11878 	return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id) ||
11879 	       btf_id == special_kfunc_list[KF_bpf_refcount_acquire_impl];
11880 }
11881 
11882 static bool is_sync_callback_calling_kfunc(u32 btf_id)
11883 {
11884 	return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl];
11885 }
11886 
11887 static bool is_async_callback_calling_kfunc(u32 btf_id)
11888 {
11889 	return btf_id == special_kfunc_list[KF_bpf_wq_set_callback_impl];
11890 }
11891 
11892 static bool is_bpf_throw_kfunc(struct bpf_insn *insn)
11893 {
11894 	return bpf_pseudo_kfunc_call(insn) && insn->off == 0 &&
11895 	       insn->imm == special_kfunc_list[KF_bpf_throw];
11896 }
11897 
11898 static bool is_bpf_wq_set_callback_impl_kfunc(u32 btf_id)
11899 {
11900 	return btf_id == special_kfunc_list[KF_bpf_wq_set_callback_impl];
11901 }
11902 
11903 static bool is_callback_calling_kfunc(u32 btf_id)
11904 {
11905 	return is_sync_callback_calling_kfunc(btf_id) ||
11906 	       is_async_callback_calling_kfunc(btf_id);
11907 }
11908 
11909 static bool is_rbtree_lock_required_kfunc(u32 btf_id)
11910 {
11911 	return is_bpf_rbtree_api_kfunc(btf_id);
11912 }
11913 
11914 static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env,
11915 					  enum btf_field_type head_field_type,
11916 					  u32 kfunc_btf_id)
11917 {
11918 	bool ret;
11919 
11920 	switch (head_field_type) {
11921 	case BPF_LIST_HEAD:
11922 		ret = is_bpf_list_api_kfunc(kfunc_btf_id);
11923 		break;
11924 	case BPF_RB_ROOT:
11925 		ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id);
11926 		break;
11927 	default:
11928 		verbose(env, "verifier internal error: unexpected graph root argument type %s\n",
11929 			btf_field_type_name(head_field_type));
11930 		return false;
11931 	}
11932 
11933 	if (!ret)
11934 		verbose(env, "verifier internal error: %s head arg for unknown kfunc\n",
11935 			btf_field_type_name(head_field_type));
11936 	return ret;
11937 }
11938 
11939 static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env,
11940 					  enum btf_field_type node_field_type,
11941 					  u32 kfunc_btf_id)
11942 {
11943 	bool ret;
11944 
11945 	switch (node_field_type) {
11946 	case BPF_LIST_NODE:
11947 		ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
11948 		       kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back_impl]);
11949 		break;
11950 	case BPF_RB_NODE:
11951 		ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
11952 		       kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]);
11953 		break;
11954 	default:
11955 		verbose(env, "verifier internal error: unexpected graph node argument type %s\n",
11956 			btf_field_type_name(node_field_type));
11957 		return false;
11958 	}
11959 
11960 	if (!ret)
11961 		verbose(env, "verifier internal error: %s node arg for unknown kfunc\n",
11962 			btf_field_type_name(node_field_type));
11963 	return ret;
11964 }
11965 
11966 static int
11967 __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env,
11968 				   struct bpf_reg_state *reg, u32 regno,
11969 				   struct bpf_kfunc_call_arg_meta *meta,
11970 				   enum btf_field_type head_field_type,
11971 				   struct btf_field **head_field)
11972 {
11973 	const char *head_type_name;
11974 	struct btf_field *field;
11975 	struct btf_record *rec;
11976 	u32 head_off;
11977 
11978 	if (meta->btf != btf_vmlinux) {
11979 		verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n");
11980 		return -EFAULT;
11981 	}
11982 
11983 	if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id))
11984 		return -EFAULT;
11985 
11986 	head_type_name = btf_field_type_name(head_field_type);
11987 	if (!tnum_is_const(reg->var_off)) {
11988 		verbose(env,
11989 			"R%d doesn't have constant offset. %s has to be at the constant offset\n",
11990 			regno, head_type_name);
11991 		return -EINVAL;
11992 	}
11993 
11994 	rec = reg_btf_record(reg);
11995 	head_off = reg->off + reg->var_off.value;
11996 	field = btf_record_find(rec, head_off, head_field_type);
11997 	if (!field) {
11998 		verbose(env, "%s not found at offset=%u\n", head_type_name, head_off);
11999 		return -EINVAL;
12000 	}
12001 
12002 	/* All functions require bpf_list_head to be protected using a bpf_spin_lock */
12003 	if (check_reg_allocation_locked(env, reg)) {
12004 		verbose(env, "bpf_spin_lock at off=%d must be held for %s\n",
12005 			rec->spin_lock_off, head_type_name);
12006 		return -EINVAL;
12007 	}
12008 
12009 	if (*head_field) {
12010 		verbose(env, "verifier internal error: repeating %s arg\n", head_type_name);
12011 		return -EFAULT;
12012 	}
12013 	*head_field = field;
12014 	return 0;
12015 }
12016 
12017 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env,
12018 					   struct bpf_reg_state *reg, u32 regno,
12019 					   struct bpf_kfunc_call_arg_meta *meta)
12020 {
12021 	return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD,
12022 							  &meta->arg_list_head.field);
12023 }
12024 
12025 static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env,
12026 					     struct bpf_reg_state *reg, u32 regno,
12027 					     struct bpf_kfunc_call_arg_meta *meta)
12028 {
12029 	return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT,
12030 							  &meta->arg_rbtree_root.field);
12031 }
12032 
12033 static int
12034 __process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env,
12035 				   struct bpf_reg_state *reg, u32 regno,
12036 				   struct bpf_kfunc_call_arg_meta *meta,
12037 				   enum btf_field_type head_field_type,
12038 				   enum btf_field_type node_field_type,
12039 				   struct btf_field **node_field)
12040 {
12041 	const char *node_type_name;
12042 	const struct btf_type *et, *t;
12043 	struct btf_field *field;
12044 	u32 node_off;
12045 
12046 	if (meta->btf != btf_vmlinux) {
12047 		verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n");
12048 		return -EFAULT;
12049 	}
12050 
12051 	if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id))
12052 		return -EFAULT;
12053 
12054 	node_type_name = btf_field_type_name(node_field_type);
12055 	if (!tnum_is_const(reg->var_off)) {
12056 		verbose(env,
12057 			"R%d doesn't have constant offset. %s has to be at the constant offset\n",
12058 			regno, node_type_name);
12059 		return -EINVAL;
12060 	}
12061 
12062 	node_off = reg->off + reg->var_off.value;
12063 	field = reg_find_field_offset(reg, node_off, node_field_type);
12064 	if (!field) {
12065 		verbose(env, "%s not found at offset=%u\n", node_type_name, node_off);
12066 		return -EINVAL;
12067 	}
12068 
12069 	field = *node_field;
12070 
12071 	et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id);
12072 	t = btf_type_by_id(reg->btf, reg->btf_id);
12073 	if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf,
12074 				  field->graph_root.value_btf_id, true)) {
12075 		verbose(env, "operation on %s expects arg#1 %s at offset=%d "
12076 			"in struct %s, but arg is at offset=%d in struct %s\n",
12077 			btf_field_type_name(head_field_type),
12078 			btf_field_type_name(node_field_type),
12079 			field->graph_root.node_offset,
12080 			btf_name_by_offset(field->graph_root.btf, et->name_off),
12081 			node_off, btf_name_by_offset(reg->btf, t->name_off));
12082 		return -EINVAL;
12083 	}
12084 	meta->arg_btf = reg->btf;
12085 	meta->arg_btf_id = reg->btf_id;
12086 
12087 	if (node_off != field->graph_root.node_offset) {
12088 		verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n",
12089 			node_off, btf_field_type_name(node_field_type),
12090 			field->graph_root.node_offset,
12091 			btf_name_by_offset(field->graph_root.btf, et->name_off));
12092 		return -EINVAL;
12093 	}
12094 
12095 	return 0;
12096 }
12097 
12098 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env,
12099 					   struct bpf_reg_state *reg, u32 regno,
12100 					   struct bpf_kfunc_call_arg_meta *meta)
12101 {
12102 	return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
12103 						  BPF_LIST_HEAD, BPF_LIST_NODE,
12104 						  &meta->arg_list_head.field);
12105 }
12106 
12107 static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env,
12108 					     struct bpf_reg_state *reg, u32 regno,
12109 					     struct bpf_kfunc_call_arg_meta *meta)
12110 {
12111 	return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
12112 						  BPF_RB_ROOT, BPF_RB_NODE,
12113 						  &meta->arg_rbtree_root.field);
12114 }
12115 
12116 /*
12117  * css_task iter allowlist is needed to avoid dead locking on css_set_lock.
12118  * LSM hooks and iters (both sleepable and non-sleepable) are safe.
12119  * Any sleepable progs are also safe since bpf_check_attach_target() enforce
12120  * them can only be attached to some specific hook points.
12121  */
12122 static bool check_css_task_iter_allowlist(struct bpf_verifier_env *env)
12123 {
12124 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
12125 
12126 	switch (prog_type) {
12127 	case BPF_PROG_TYPE_LSM:
12128 		return true;
12129 	case BPF_PROG_TYPE_TRACING:
12130 		if (env->prog->expected_attach_type == BPF_TRACE_ITER)
12131 			return true;
12132 		fallthrough;
12133 	default:
12134 		return in_sleepable(env);
12135 	}
12136 }
12137 
12138 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta,
12139 			    int insn_idx)
12140 {
12141 	const char *func_name = meta->func_name, *ref_tname;
12142 	const struct btf *btf = meta->btf;
12143 	const struct btf_param *args;
12144 	struct btf_record *rec;
12145 	u32 i, nargs;
12146 	int ret;
12147 
12148 	args = (const struct btf_param *)(meta->func_proto + 1);
12149 	nargs = btf_type_vlen(meta->func_proto);
12150 	if (nargs > MAX_BPF_FUNC_REG_ARGS) {
12151 		verbose(env, "Function %s has %d > %d args\n", func_name, nargs,
12152 			MAX_BPF_FUNC_REG_ARGS);
12153 		return -EINVAL;
12154 	}
12155 
12156 	/* Check that BTF function arguments match actual types that the
12157 	 * verifier sees.
12158 	 */
12159 	for (i = 0; i < nargs; i++) {
12160 		struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[i + 1];
12161 		const struct btf_type *t, *ref_t, *resolve_ret;
12162 		enum bpf_arg_type arg_type = ARG_DONTCARE;
12163 		u32 regno = i + 1, ref_id, type_size;
12164 		bool is_ret_buf_sz = false;
12165 		int kf_arg_type;
12166 
12167 		t = btf_type_skip_modifiers(btf, args[i].type, NULL);
12168 
12169 		if (is_kfunc_arg_ignore(btf, &args[i]))
12170 			continue;
12171 
12172 		if (btf_type_is_scalar(t)) {
12173 			if (reg->type != SCALAR_VALUE) {
12174 				verbose(env, "R%d is not a scalar\n", regno);
12175 				return -EINVAL;
12176 			}
12177 
12178 			if (is_kfunc_arg_constant(meta->btf, &args[i])) {
12179 				if (meta->arg_constant.found) {
12180 					verbose(env, "verifier internal error: only one constant argument permitted\n");
12181 					return -EFAULT;
12182 				}
12183 				if (!tnum_is_const(reg->var_off)) {
12184 					verbose(env, "R%d must be a known constant\n", regno);
12185 					return -EINVAL;
12186 				}
12187 				ret = mark_chain_precision(env, regno);
12188 				if (ret < 0)
12189 					return ret;
12190 				meta->arg_constant.found = true;
12191 				meta->arg_constant.value = reg->var_off.value;
12192 			} else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) {
12193 				meta->r0_rdonly = true;
12194 				is_ret_buf_sz = true;
12195 			} else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) {
12196 				is_ret_buf_sz = true;
12197 			}
12198 
12199 			if (is_ret_buf_sz) {
12200 				if (meta->r0_size) {
12201 					verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc");
12202 					return -EINVAL;
12203 				}
12204 
12205 				if (!tnum_is_const(reg->var_off)) {
12206 					verbose(env, "R%d is not a const\n", regno);
12207 					return -EINVAL;
12208 				}
12209 
12210 				meta->r0_size = reg->var_off.value;
12211 				ret = mark_chain_precision(env, regno);
12212 				if (ret)
12213 					return ret;
12214 			}
12215 			continue;
12216 		}
12217 
12218 		if (!btf_type_is_ptr(t)) {
12219 			verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t));
12220 			return -EINVAL;
12221 		}
12222 
12223 		if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) &&
12224 		    (register_is_null(reg) || type_may_be_null(reg->type)) &&
12225 			!is_kfunc_arg_nullable(meta->btf, &args[i])) {
12226 			verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i);
12227 			return -EACCES;
12228 		}
12229 
12230 		if (reg->ref_obj_id) {
12231 			if (is_kfunc_release(meta) && meta->ref_obj_id) {
12232 				verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
12233 					regno, reg->ref_obj_id,
12234 					meta->ref_obj_id);
12235 				return -EFAULT;
12236 			}
12237 			meta->ref_obj_id = reg->ref_obj_id;
12238 			if (is_kfunc_release(meta))
12239 				meta->release_regno = regno;
12240 		}
12241 
12242 		ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
12243 		ref_tname = btf_name_by_offset(btf, ref_t->name_off);
12244 
12245 		kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs);
12246 		if (kf_arg_type < 0)
12247 			return kf_arg_type;
12248 
12249 		switch (kf_arg_type) {
12250 		case KF_ARG_PTR_TO_NULL:
12251 			continue;
12252 		case KF_ARG_PTR_TO_MAP:
12253 			if (!reg->map_ptr) {
12254 				verbose(env, "pointer in R%d isn't map pointer\n", regno);
12255 				return -EINVAL;
12256 			}
12257 			if (meta->map.ptr && reg->map_ptr->record->wq_off >= 0) {
12258 				/* Use map_uid (which is unique id of inner map) to reject:
12259 				 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
12260 				 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
12261 				 * if (inner_map1 && inner_map2) {
12262 				 *     wq = bpf_map_lookup_elem(inner_map1);
12263 				 *     if (wq)
12264 				 *         // mismatch would have been allowed
12265 				 *         bpf_wq_init(wq, inner_map2);
12266 				 * }
12267 				 *
12268 				 * Comparing map_ptr is enough to distinguish normal and outer maps.
12269 				 */
12270 				if (meta->map.ptr != reg->map_ptr ||
12271 				    meta->map.uid != reg->map_uid) {
12272 					verbose(env,
12273 						"workqueue pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
12274 						meta->map.uid, reg->map_uid);
12275 					return -EINVAL;
12276 				}
12277 			}
12278 			meta->map.ptr = reg->map_ptr;
12279 			meta->map.uid = reg->map_uid;
12280 			fallthrough;
12281 		case KF_ARG_PTR_TO_ALLOC_BTF_ID:
12282 		case KF_ARG_PTR_TO_BTF_ID:
12283 			if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta))
12284 				break;
12285 
12286 			if (!is_trusted_reg(reg)) {
12287 				if (!is_kfunc_rcu(meta)) {
12288 					verbose(env, "R%d must be referenced or trusted\n", regno);
12289 					return -EINVAL;
12290 				}
12291 				if (!is_rcu_reg(reg)) {
12292 					verbose(env, "R%d must be a rcu pointer\n", regno);
12293 					return -EINVAL;
12294 				}
12295 			}
12296 			fallthrough;
12297 		case KF_ARG_PTR_TO_CTX:
12298 		case KF_ARG_PTR_TO_DYNPTR:
12299 		case KF_ARG_PTR_TO_ITER:
12300 		case KF_ARG_PTR_TO_LIST_HEAD:
12301 		case KF_ARG_PTR_TO_LIST_NODE:
12302 		case KF_ARG_PTR_TO_RB_ROOT:
12303 		case KF_ARG_PTR_TO_RB_NODE:
12304 		case KF_ARG_PTR_TO_MEM:
12305 		case KF_ARG_PTR_TO_MEM_SIZE:
12306 		case KF_ARG_PTR_TO_CALLBACK:
12307 		case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
12308 		case KF_ARG_PTR_TO_CONST_STR:
12309 		case KF_ARG_PTR_TO_WORKQUEUE:
12310 			break;
12311 		default:
12312 			WARN_ON_ONCE(1);
12313 			return -EFAULT;
12314 		}
12315 
12316 		if (is_kfunc_release(meta) && reg->ref_obj_id)
12317 			arg_type |= OBJ_RELEASE;
12318 		ret = check_func_arg_reg_off(env, reg, regno, arg_type);
12319 		if (ret < 0)
12320 			return ret;
12321 
12322 		switch (kf_arg_type) {
12323 		case KF_ARG_PTR_TO_CTX:
12324 			if (reg->type != PTR_TO_CTX) {
12325 				verbose(env, "arg#%d expected pointer to ctx, but got %s\n",
12326 					i, reg_type_str(env, reg->type));
12327 				return -EINVAL;
12328 			}
12329 
12330 			if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
12331 				ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog));
12332 				if (ret < 0)
12333 					return -EINVAL;
12334 				meta->ret_btf_id  = ret;
12335 			}
12336 			break;
12337 		case KF_ARG_PTR_TO_ALLOC_BTF_ID:
12338 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC)) {
12339 				if (meta->func_id != special_kfunc_list[KF_bpf_obj_drop_impl]) {
12340 					verbose(env, "arg#%d expected for bpf_obj_drop_impl()\n", i);
12341 					return -EINVAL;
12342 				}
12343 			} else if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC | MEM_PERCPU)) {
12344 				if (meta->func_id != special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) {
12345 					verbose(env, "arg#%d expected for bpf_percpu_obj_drop_impl()\n", i);
12346 					return -EINVAL;
12347 				}
12348 			} else {
12349 				verbose(env, "arg#%d expected pointer to allocated object\n", i);
12350 				return -EINVAL;
12351 			}
12352 			if (!reg->ref_obj_id) {
12353 				verbose(env, "allocated object must be referenced\n");
12354 				return -EINVAL;
12355 			}
12356 			if (meta->btf == btf_vmlinux) {
12357 				meta->arg_btf = reg->btf;
12358 				meta->arg_btf_id = reg->btf_id;
12359 			}
12360 			break;
12361 		case KF_ARG_PTR_TO_DYNPTR:
12362 		{
12363 			enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR;
12364 			int clone_ref_obj_id = 0;
12365 
12366 			if (reg->type == CONST_PTR_TO_DYNPTR)
12367 				dynptr_arg_type |= MEM_RDONLY;
12368 
12369 			if (is_kfunc_arg_uninit(btf, &args[i]))
12370 				dynptr_arg_type |= MEM_UNINIT;
12371 
12372 			if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
12373 				dynptr_arg_type |= DYNPTR_TYPE_SKB;
12374 			} else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp]) {
12375 				dynptr_arg_type |= DYNPTR_TYPE_XDP;
12376 			} else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_clone] &&
12377 				   (dynptr_arg_type & MEM_UNINIT)) {
12378 				enum bpf_dynptr_type parent_type = meta->initialized_dynptr.type;
12379 
12380 				if (parent_type == BPF_DYNPTR_TYPE_INVALID) {
12381 					verbose(env, "verifier internal error: no dynptr type for parent of clone\n");
12382 					return -EFAULT;
12383 				}
12384 
12385 				dynptr_arg_type |= (unsigned int)get_dynptr_type_flag(parent_type);
12386 				clone_ref_obj_id = meta->initialized_dynptr.ref_obj_id;
12387 				if (dynptr_type_refcounted(parent_type) && !clone_ref_obj_id) {
12388 					verbose(env, "verifier internal error: missing ref obj id for parent of clone\n");
12389 					return -EFAULT;
12390 				}
12391 			}
12392 
12393 			ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type, clone_ref_obj_id);
12394 			if (ret < 0)
12395 				return ret;
12396 
12397 			if (!(dynptr_arg_type & MEM_UNINIT)) {
12398 				int id = dynptr_id(env, reg);
12399 
12400 				if (id < 0) {
12401 					verbose(env, "verifier internal error: failed to obtain dynptr id\n");
12402 					return id;
12403 				}
12404 				meta->initialized_dynptr.id = id;
12405 				meta->initialized_dynptr.type = dynptr_get_type(env, reg);
12406 				meta->initialized_dynptr.ref_obj_id = dynptr_ref_obj_id(env, reg);
12407 			}
12408 
12409 			break;
12410 		}
12411 		case KF_ARG_PTR_TO_ITER:
12412 			if (meta->func_id == special_kfunc_list[KF_bpf_iter_css_task_new]) {
12413 				if (!check_css_task_iter_allowlist(env)) {
12414 					verbose(env, "css_task_iter is only allowed in bpf_lsm, bpf_iter and sleepable progs\n");
12415 					return -EINVAL;
12416 				}
12417 			}
12418 			ret = process_iter_arg(env, regno, insn_idx, meta);
12419 			if (ret < 0)
12420 				return ret;
12421 			break;
12422 		case KF_ARG_PTR_TO_LIST_HEAD:
12423 			if (reg->type != PTR_TO_MAP_VALUE &&
12424 			    reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
12425 				verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
12426 				return -EINVAL;
12427 			}
12428 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
12429 				verbose(env, "allocated object must be referenced\n");
12430 				return -EINVAL;
12431 			}
12432 			ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta);
12433 			if (ret < 0)
12434 				return ret;
12435 			break;
12436 		case KF_ARG_PTR_TO_RB_ROOT:
12437 			if (reg->type != PTR_TO_MAP_VALUE &&
12438 			    reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
12439 				verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
12440 				return -EINVAL;
12441 			}
12442 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
12443 				verbose(env, "allocated object must be referenced\n");
12444 				return -EINVAL;
12445 			}
12446 			ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta);
12447 			if (ret < 0)
12448 				return ret;
12449 			break;
12450 		case KF_ARG_PTR_TO_LIST_NODE:
12451 			if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
12452 				verbose(env, "arg#%d expected pointer to allocated object\n", i);
12453 				return -EINVAL;
12454 			}
12455 			if (!reg->ref_obj_id) {
12456 				verbose(env, "allocated object must be referenced\n");
12457 				return -EINVAL;
12458 			}
12459 			ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta);
12460 			if (ret < 0)
12461 				return ret;
12462 			break;
12463 		case KF_ARG_PTR_TO_RB_NODE:
12464 			if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_remove]) {
12465 				if (!type_is_non_owning_ref(reg->type) || reg->ref_obj_id) {
12466 					verbose(env, "rbtree_remove node input must be non-owning ref\n");
12467 					return -EINVAL;
12468 				}
12469 				if (in_rbtree_lock_required_cb(env)) {
12470 					verbose(env, "rbtree_remove not allowed in rbtree cb\n");
12471 					return -EINVAL;
12472 				}
12473 			} else {
12474 				if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
12475 					verbose(env, "arg#%d expected pointer to allocated object\n", i);
12476 					return -EINVAL;
12477 				}
12478 				if (!reg->ref_obj_id) {
12479 					verbose(env, "allocated object must be referenced\n");
12480 					return -EINVAL;
12481 				}
12482 			}
12483 
12484 			ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta);
12485 			if (ret < 0)
12486 				return ret;
12487 			break;
12488 		case KF_ARG_PTR_TO_MAP:
12489 			/* If argument has '__map' suffix expect 'struct bpf_map *' */
12490 			ref_id = *reg2btf_ids[CONST_PTR_TO_MAP];
12491 			ref_t = btf_type_by_id(btf_vmlinux, ref_id);
12492 			ref_tname = btf_name_by_offset(btf, ref_t->name_off);
12493 			fallthrough;
12494 		case KF_ARG_PTR_TO_BTF_ID:
12495 			/* Only base_type is checked, further checks are done here */
12496 			if ((base_type(reg->type) != PTR_TO_BTF_ID ||
12497 			     (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) &&
12498 			    !reg2btf_ids[base_type(reg->type)]) {
12499 				verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type));
12500 				verbose(env, "expected %s or socket\n",
12501 					reg_type_str(env, base_type(reg->type) |
12502 							  (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS)));
12503 				return -EINVAL;
12504 			}
12505 			ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i);
12506 			if (ret < 0)
12507 				return ret;
12508 			break;
12509 		case KF_ARG_PTR_TO_MEM:
12510 			resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
12511 			if (IS_ERR(resolve_ret)) {
12512 				verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
12513 					i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret));
12514 				return -EINVAL;
12515 			}
12516 			ret = check_mem_reg(env, reg, regno, type_size);
12517 			if (ret < 0)
12518 				return ret;
12519 			break;
12520 		case KF_ARG_PTR_TO_MEM_SIZE:
12521 		{
12522 			struct bpf_reg_state *buff_reg = &regs[regno];
12523 			const struct btf_param *buff_arg = &args[i];
12524 			struct bpf_reg_state *size_reg = &regs[regno + 1];
12525 			const struct btf_param *size_arg = &args[i + 1];
12526 
12527 			if (!register_is_null(buff_reg) || !is_kfunc_arg_optional(meta->btf, buff_arg)) {
12528 				ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1);
12529 				if (ret < 0) {
12530 					verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1);
12531 					return ret;
12532 				}
12533 			}
12534 
12535 			if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) {
12536 				if (meta->arg_constant.found) {
12537 					verbose(env, "verifier internal error: only one constant argument permitted\n");
12538 					return -EFAULT;
12539 				}
12540 				if (!tnum_is_const(size_reg->var_off)) {
12541 					verbose(env, "R%d must be a known constant\n", regno + 1);
12542 					return -EINVAL;
12543 				}
12544 				meta->arg_constant.found = true;
12545 				meta->arg_constant.value = size_reg->var_off.value;
12546 			}
12547 
12548 			/* Skip next '__sz' or '__szk' argument */
12549 			i++;
12550 			break;
12551 		}
12552 		case KF_ARG_PTR_TO_CALLBACK:
12553 			if (reg->type != PTR_TO_FUNC) {
12554 				verbose(env, "arg%d expected pointer to func\n", i);
12555 				return -EINVAL;
12556 			}
12557 			meta->subprogno = reg->subprogno;
12558 			break;
12559 		case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
12560 			if (!type_is_ptr_alloc_obj(reg->type)) {
12561 				verbose(env, "arg#%d is neither owning or non-owning ref\n", i);
12562 				return -EINVAL;
12563 			}
12564 			if (!type_is_non_owning_ref(reg->type))
12565 				meta->arg_owning_ref = true;
12566 
12567 			rec = reg_btf_record(reg);
12568 			if (!rec) {
12569 				verbose(env, "verifier internal error: Couldn't find btf_record\n");
12570 				return -EFAULT;
12571 			}
12572 
12573 			if (rec->refcount_off < 0) {
12574 				verbose(env, "arg#%d doesn't point to a type with bpf_refcount field\n", i);
12575 				return -EINVAL;
12576 			}
12577 
12578 			meta->arg_btf = reg->btf;
12579 			meta->arg_btf_id = reg->btf_id;
12580 			break;
12581 		case KF_ARG_PTR_TO_CONST_STR:
12582 			if (reg->type != PTR_TO_MAP_VALUE) {
12583 				verbose(env, "arg#%d doesn't point to a const string\n", i);
12584 				return -EINVAL;
12585 			}
12586 			ret = check_reg_const_str(env, reg, regno);
12587 			if (ret)
12588 				return ret;
12589 			break;
12590 		case KF_ARG_PTR_TO_WORKQUEUE:
12591 			if (reg->type != PTR_TO_MAP_VALUE) {
12592 				verbose(env, "arg#%d doesn't point to a map value\n", i);
12593 				return -EINVAL;
12594 			}
12595 			ret = process_wq_func(env, regno, meta);
12596 			if (ret < 0)
12597 				return ret;
12598 			break;
12599 		}
12600 	}
12601 
12602 	if (is_kfunc_release(meta) && !meta->release_regno) {
12603 		verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n",
12604 			func_name);
12605 		return -EINVAL;
12606 	}
12607 
12608 	return 0;
12609 }
12610 
12611 static int fetch_kfunc_meta(struct bpf_verifier_env *env,
12612 			    struct bpf_insn *insn,
12613 			    struct bpf_kfunc_call_arg_meta *meta,
12614 			    const char **kfunc_name)
12615 {
12616 	const struct btf_type *func, *func_proto;
12617 	u32 func_id, *kfunc_flags;
12618 	const char *func_name;
12619 	struct btf *desc_btf;
12620 
12621 	if (kfunc_name)
12622 		*kfunc_name = NULL;
12623 
12624 	if (!insn->imm)
12625 		return -EINVAL;
12626 
12627 	desc_btf = find_kfunc_desc_btf(env, insn->off);
12628 	if (IS_ERR(desc_btf))
12629 		return PTR_ERR(desc_btf);
12630 
12631 	func_id = insn->imm;
12632 	func = btf_type_by_id(desc_btf, func_id);
12633 	func_name = btf_name_by_offset(desc_btf, func->name_off);
12634 	if (kfunc_name)
12635 		*kfunc_name = func_name;
12636 	func_proto = btf_type_by_id(desc_btf, func->type);
12637 
12638 	kfunc_flags = btf_kfunc_id_set_contains(desc_btf, func_id, env->prog);
12639 	if (!kfunc_flags) {
12640 		return -EACCES;
12641 	}
12642 
12643 	memset(meta, 0, sizeof(*meta));
12644 	meta->btf = desc_btf;
12645 	meta->func_id = func_id;
12646 	meta->kfunc_flags = *kfunc_flags;
12647 	meta->func_proto = func_proto;
12648 	meta->func_name = func_name;
12649 
12650 	return 0;
12651 }
12652 
12653 static int check_return_code(struct bpf_verifier_env *env, int regno, const char *reg_name);
12654 
12655 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
12656 			    int *insn_idx_p)
12657 {
12658 	bool sleepable, rcu_lock, rcu_unlock, preempt_disable, preempt_enable;
12659 	u32 i, nargs, ptr_type_id, release_ref_obj_id;
12660 	struct bpf_reg_state *regs = cur_regs(env);
12661 	const char *func_name, *ptr_type_name;
12662 	const struct btf_type *t, *ptr_type;
12663 	struct bpf_kfunc_call_arg_meta meta;
12664 	struct bpf_insn_aux_data *insn_aux;
12665 	int err, insn_idx = *insn_idx_p;
12666 	const struct btf_param *args;
12667 	const struct btf_type *ret_t;
12668 	struct btf *desc_btf;
12669 
12670 	/* skip for now, but return error when we find this in fixup_kfunc_call */
12671 	if (!insn->imm)
12672 		return 0;
12673 
12674 	err = fetch_kfunc_meta(env, insn, &meta, &func_name);
12675 	if (err == -EACCES && func_name)
12676 		verbose(env, "calling kernel function %s is not allowed\n", func_name);
12677 	if (err)
12678 		return err;
12679 	desc_btf = meta.btf;
12680 	insn_aux = &env->insn_aux_data[insn_idx];
12681 
12682 	insn_aux->is_iter_next = is_iter_next_kfunc(&meta);
12683 
12684 	if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) {
12685 		verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n");
12686 		return -EACCES;
12687 	}
12688 
12689 	sleepable = is_kfunc_sleepable(&meta);
12690 	if (sleepable && !in_sleepable(env)) {
12691 		verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name);
12692 		return -EACCES;
12693 	}
12694 
12695 	/* Check the arguments */
12696 	err = check_kfunc_args(env, &meta, insn_idx);
12697 	if (err < 0)
12698 		return err;
12699 
12700 	if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
12701 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
12702 					 set_rbtree_add_callback_state);
12703 		if (err) {
12704 			verbose(env, "kfunc %s#%d failed callback verification\n",
12705 				func_name, meta.func_id);
12706 			return err;
12707 		}
12708 	}
12709 
12710 	if (meta.func_id == special_kfunc_list[KF_bpf_session_cookie]) {
12711 		meta.r0_size = sizeof(u64);
12712 		meta.r0_rdonly = false;
12713 	}
12714 
12715 	if (is_bpf_wq_set_callback_impl_kfunc(meta.func_id)) {
12716 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
12717 					 set_timer_callback_state);
12718 		if (err) {
12719 			verbose(env, "kfunc %s#%d failed callback verification\n",
12720 				func_name, meta.func_id);
12721 			return err;
12722 		}
12723 	}
12724 
12725 	rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta);
12726 	rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta);
12727 
12728 	preempt_disable = is_kfunc_bpf_preempt_disable(&meta);
12729 	preempt_enable = is_kfunc_bpf_preempt_enable(&meta);
12730 
12731 	if (env->cur_state->active_rcu_lock) {
12732 		struct bpf_func_state *state;
12733 		struct bpf_reg_state *reg;
12734 		u32 clear_mask = (1 << STACK_SPILL) | (1 << STACK_ITER);
12735 
12736 		if (in_rbtree_lock_required_cb(env) && (rcu_lock || rcu_unlock)) {
12737 			verbose(env, "Calling bpf_rcu_read_{lock,unlock} in unnecessary rbtree callback\n");
12738 			return -EACCES;
12739 		}
12740 
12741 		if (rcu_lock) {
12742 			verbose(env, "nested rcu read lock (kernel function %s)\n", func_name);
12743 			return -EINVAL;
12744 		} else if (rcu_unlock) {
12745 			bpf_for_each_reg_in_vstate_mask(env->cur_state, state, reg, clear_mask, ({
12746 				if (reg->type & MEM_RCU) {
12747 					reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL);
12748 					reg->type |= PTR_UNTRUSTED;
12749 				}
12750 			}));
12751 			env->cur_state->active_rcu_lock = false;
12752 		} else if (sleepable) {
12753 			verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name);
12754 			return -EACCES;
12755 		}
12756 	} else if (rcu_lock) {
12757 		env->cur_state->active_rcu_lock = true;
12758 	} else if (rcu_unlock) {
12759 		verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name);
12760 		return -EINVAL;
12761 	}
12762 
12763 	if (env->cur_state->active_preempt_lock) {
12764 		if (preempt_disable) {
12765 			env->cur_state->active_preempt_lock++;
12766 		} else if (preempt_enable) {
12767 			env->cur_state->active_preempt_lock--;
12768 		} else if (sleepable) {
12769 			verbose(env, "kernel func %s is sleepable within non-preemptible region\n", func_name);
12770 			return -EACCES;
12771 		}
12772 	} else if (preempt_disable) {
12773 		env->cur_state->active_preempt_lock++;
12774 	} else if (preempt_enable) {
12775 		verbose(env, "unmatched attempt to enable preemption (kernel function %s)\n", func_name);
12776 		return -EINVAL;
12777 	}
12778 
12779 	/* In case of release function, we get register number of refcounted
12780 	 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now.
12781 	 */
12782 	if (meta.release_regno) {
12783 		err = release_reference(env, regs[meta.release_regno].ref_obj_id);
12784 		if (err) {
12785 			verbose(env, "kfunc %s#%d reference has not been acquired before\n",
12786 				func_name, meta.func_id);
12787 			return err;
12788 		}
12789 	}
12790 
12791 	if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
12792 	    meta.func_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
12793 	    meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
12794 		release_ref_obj_id = regs[BPF_REG_2].ref_obj_id;
12795 		insn_aux->insert_off = regs[BPF_REG_2].off;
12796 		insn_aux->kptr_struct_meta = btf_find_struct_meta(meta.arg_btf, meta.arg_btf_id);
12797 		err = ref_convert_owning_non_owning(env, release_ref_obj_id);
12798 		if (err) {
12799 			verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n",
12800 				func_name, meta.func_id);
12801 			return err;
12802 		}
12803 
12804 		err = release_reference(env, release_ref_obj_id);
12805 		if (err) {
12806 			verbose(env, "kfunc %s#%d reference has not been acquired before\n",
12807 				func_name, meta.func_id);
12808 			return err;
12809 		}
12810 	}
12811 
12812 	if (meta.func_id == special_kfunc_list[KF_bpf_throw]) {
12813 		if (!bpf_jit_supports_exceptions()) {
12814 			verbose(env, "JIT does not support calling kfunc %s#%d\n",
12815 				func_name, meta.func_id);
12816 			return -ENOTSUPP;
12817 		}
12818 		env->seen_exception = true;
12819 
12820 		/* In the case of the default callback, the cookie value passed
12821 		 * to bpf_throw becomes the return value of the program.
12822 		 */
12823 		if (!env->exception_callback_subprog) {
12824 			err = check_return_code(env, BPF_REG_1, "R1");
12825 			if (err < 0)
12826 				return err;
12827 		}
12828 	}
12829 
12830 	for (i = 0; i < CALLER_SAVED_REGS; i++)
12831 		mark_reg_not_init(env, regs, caller_saved[i]);
12832 
12833 	/* Check return type */
12834 	t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL);
12835 
12836 	if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) {
12837 		/* Only exception is bpf_obj_new_impl */
12838 		if (meta.btf != btf_vmlinux ||
12839 		    (meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl] &&
12840 		     meta.func_id != special_kfunc_list[KF_bpf_percpu_obj_new_impl] &&
12841 		     meta.func_id != special_kfunc_list[KF_bpf_refcount_acquire_impl])) {
12842 			verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n");
12843 			return -EINVAL;
12844 		}
12845 	}
12846 
12847 	if (btf_type_is_scalar(t)) {
12848 		mark_reg_unknown(env, regs, BPF_REG_0);
12849 		mark_btf_func_reg_size(env, BPF_REG_0, t->size);
12850 	} else if (btf_type_is_ptr(t)) {
12851 		ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id);
12852 
12853 		if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
12854 			if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl] ||
12855 			    meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
12856 				struct btf_struct_meta *struct_meta;
12857 				struct btf *ret_btf;
12858 				u32 ret_btf_id;
12859 
12860 				if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl] && !bpf_global_ma_set)
12861 					return -ENOMEM;
12862 
12863 				if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) {
12864 					verbose(env, "local type ID argument must be in range [0, U32_MAX]\n");
12865 					return -EINVAL;
12866 				}
12867 
12868 				ret_btf = env->prog->aux->btf;
12869 				ret_btf_id = meta.arg_constant.value;
12870 
12871 				/* This may be NULL due to user not supplying a BTF */
12872 				if (!ret_btf) {
12873 					verbose(env, "bpf_obj_new/bpf_percpu_obj_new requires prog BTF\n");
12874 					return -EINVAL;
12875 				}
12876 
12877 				ret_t = btf_type_by_id(ret_btf, ret_btf_id);
12878 				if (!ret_t || !__btf_type_is_struct(ret_t)) {
12879 					verbose(env, "bpf_obj_new/bpf_percpu_obj_new type ID argument must be of a struct\n");
12880 					return -EINVAL;
12881 				}
12882 
12883 				if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
12884 					if (ret_t->size > BPF_GLOBAL_PERCPU_MA_MAX_SIZE) {
12885 						verbose(env, "bpf_percpu_obj_new type size (%d) is greater than %d\n",
12886 							ret_t->size, BPF_GLOBAL_PERCPU_MA_MAX_SIZE);
12887 						return -EINVAL;
12888 					}
12889 
12890 					if (!bpf_global_percpu_ma_set) {
12891 						mutex_lock(&bpf_percpu_ma_lock);
12892 						if (!bpf_global_percpu_ma_set) {
12893 							/* Charge memory allocated with bpf_global_percpu_ma to
12894 							 * root memcg. The obj_cgroup for root memcg is NULL.
12895 							 */
12896 							err = bpf_mem_alloc_percpu_init(&bpf_global_percpu_ma, NULL);
12897 							if (!err)
12898 								bpf_global_percpu_ma_set = true;
12899 						}
12900 						mutex_unlock(&bpf_percpu_ma_lock);
12901 						if (err)
12902 							return err;
12903 					}
12904 
12905 					mutex_lock(&bpf_percpu_ma_lock);
12906 					err = bpf_mem_alloc_percpu_unit_init(&bpf_global_percpu_ma, ret_t->size);
12907 					mutex_unlock(&bpf_percpu_ma_lock);
12908 					if (err)
12909 						return err;
12910 				}
12911 
12912 				struct_meta = btf_find_struct_meta(ret_btf, ret_btf_id);
12913 				if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
12914 					if (!__btf_type_is_scalar_struct(env, ret_btf, ret_t, 0)) {
12915 						verbose(env, "bpf_percpu_obj_new type ID argument must be of a struct of scalars\n");
12916 						return -EINVAL;
12917 					}
12918 
12919 					if (struct_meta) {
12920 						verbose(env, "bpf_percpu_obj_new type ID argument must not contain special fields\n");
12921 						return -EINVAL;
12922 					}
12923 				}
12924 
12925 				mark_reg_known_zero(env, regs, BPF_REG_0);
12926 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
12927 				regs[BPF_REG_0].btf = ret_btf;
12928 				regs[BPF_REG_0].btf_id = ret_btf_id;
12929 				if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl])
12930 					regs[BPF_REG_0].type |= MEM_PERCPU;
12931 
12932 				insn_aux->obj_new_size = ret_t->size;
12933 				insn_aux->kptr_struct_meta = struct_meta;
12934 			} else if (meta.func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
12935 				mark_reg_known_zero(env, regs, BPF_REG_0);
12936 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
12937 				regs[BPF_REG_0].btf = meta.arg_btf;
12938 				regs[BPF_REG_0].btf_id = meta.arg_btf_id;
12939 
12940 				insn_aux->kptr_struct_meta =
12941 					btf_find_struct_meta(meta.arg_btf,
12942 							     meta.arg_btf_id);
12943 			} else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] ||
12944 				   meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) {
12945 				struct btf_field *field = meta.arg_list_head.field;
12946 
12947 				mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
12948 			} else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
12949 				   meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) {
12950 				struct btf_field *field = meta.arg_rbtree_root.field;
12951 
12952 				mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
12953 			} else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
12954 				mark_reg_known_zero(env, regs, BPF_REG_0);
12955 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED;
12956 				regs[BPF_REG_0].btf = desc_btf;
12957 				regs[BPF_REG_0].btf_id = meta.ret_btf_id;
12958 			} else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
12959 				ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value);
12960 				if (!ret_t || !btf_type_is_struct(ret_t)) {
12961 					verbose(env,
12962 						"kfunc bpf_rdonly_cast type ID argument must be of a struct\n");
12963 					return -EINVAL;
12964 				}
12965 
12966 				mark_reg_known_zero(env, regs, BPF_REG_0);
12967 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
12968 				regs[BPF_REG_0].btf = desc_btf;
12969 				regs[BPF_REG_0].btf_id = meta.arg_constant.value;
12970 			} else if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice] ||
12971 				   meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) {
12972 				enum bpf_type_flag type_flag = get_dynptr_type_flag(meta.initialized_dynptr.type);
12973 
12974 				mark_reg_known_zero(env, regs, BPF_REG_0);
12975 
12976 				if (!meta.arg_constant.found) {
12977 					verbose(env, "verifier internal error: bpf_dynptr_slice(_rdwr) no constant size\n");
12978 					return -EFAULT;
12979 				}
12980 
12981 				regs[BPF_REG_0].mem_size = meta.arg_constant.value;
12982 
12983 				/* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */
12984 				regs[BPF_REG_0].type = PTR_TO_MEM | type_flag;
12985 
12986 				if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice]) {
12987 					regs[BPF_REG_0].type |= MEM_RDONLY;
12988 				} else {
12989 					/* this will set env->seen_direct_write to true */
12990 					if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) {
12991 						verbose(env, "the prog does not allow writes to packet data\n");
12992 						return -EINVAL;
12993 					}
12994 				}
12995 
12996 				if (!meta.initialized_dynptr.id) {
12997 					verbose(env, "verifier internal error: no dynptr id\n");
12998 					return -EFAULT;
12999 				}
13000 				regs[BPF_REG_0].dynptr_id = meta.initialized_dynptr.id;
13001 
13002 				/* we don't need to set BPF_REG_0's ref obj id
13003 				 * because packet slices are not refcounted (see
13004 				 * dynptr_type_refcounted)
13005 				 */
13006 			} else {
13007 				verbose(env, "kernel function %s unhandled dynamic return type\n",
13008 					meta.func_name);
13009 				return -EFAULT;
13010 			}
13011 		} else if (btf_type_is_void(ptr_type)) {
13012 			/* kfunc returning 'void *' is equivalent to returning scalar */
13013 			mark_reg_unknown(env, regs, BPF_REG_0);
13014 		} else if (!__btf_type_is_struct(ptr_type)) {
13015 			if (!meta.r0_size) {
13016 				__u32 sz;
13017 
13018 				if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) {
13019 					meta.r0_size = sz;
13020 					meta.r0_rdonly = true;
13021 				}
13022 			}
13023 			if (!meta.r0_size) {
13024 				ptr_type_name = btf_name_by_offset(desc_btf,
13025 								   ptr_type->name_off);
13026 				verbose(env,
13027 					"kernel function %s returns pointer type %s %s is not supported\n",
13028 					func_name,
13029 					btf_type_str(ptr_type),
13030 					ptr_type_name);
13031 				return -EINVAL;
13032 			}
13033 
13034 			mark_reg_known_zero(env, regs, BPF_REG_0);
13035 			regs[BPF_REG_0].type = PTR_TO_MEM;
13036 			regs[BPF_REG_0].mem_size = meta.r0_size;
13037 
13038 			if (meta.r0_rdonly)
13039 				regs[BPF_REG_0].type |= MEM_RDONLY;
13040 
13041 			/* Ensures we don't access the memory after a release_reference() */
13042 			if (meta.ref_obj_id)
13043 				regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
13044 		} else {
13045 			mark_reg_known_zero(env, regs, BPF_REG_0);
13046 			regs[BPF_REG_0].btf = desc_btf;
13047 			regs[BPF_REG_0].type = PTR_TO_BTF_ID;
13048 			regs[BPF_REG_0].btf_id = ptr_type_id;
13049 
13050 			if (meta.func_id == special_kfunc_list[KF_bpf_get_kmem_cache])
13051 				regs[BPF_REG_0].type |= PTR_UNTRUSTED;
13052 
13053 			if (is_iter_next_kfunc(&meta)) {
13054 				struct bpf_reg_state *cur_iter;
13055 
13056 				cur_iter = get_iter_from_state(env->cur_state, &meta);
13057 
13058 				if (cur_iter->type & MEM_RCU) /* KF_RCU_PROTECTED */
13059 					regs[BPF_REG_0].type |= MEM_RCU;
13060 				else
13061 					regs[BPF_REG_0].type |= PTR_TRUSTED;
13062 			}
13063 		}
13064 
13065 		if (is_kfunc_ret_null(&meta)) {
13066 			regs[BPF_REG_0].type |= PTR_MAYBE_NULL;
13067 			/* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */
13068 			regs[BPF_REG_0].id = ++env->id_gen;
13069 		}
13070 		mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
13071 		if (is_kfunc_acquire(&meta)) {
13072 			int id = acquire_reference_state(env, insn_idx);
13073 
13074 			if (id < 0)
13075 				return id;
13076 			if (is_kfunc_ret_null(&meta))
13077 				regs[BPF_REG_0].id = id;
13078 			regs[BPF_REG_0].ref_obj_id = id;
13079 		} else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) {
13080 			ref_set_non_owning(env, &regs[BPF_REG_0]);
13081 		}
13082 
13083 		if (reg_may_point_to_spin_lock(&regs[BPF_REG_0]) && !regs[BPF_REG_0].id)
13084 			regs[BPF_REG_0].id = ++env->id_gen;
13085 	} else if (btf_type_is_void(t)) {
13086 		if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
13087 			if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl] ||
13088 			    meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) {
13089 				insn_aux->kptr_struct_meta =
13090 					btf_find_struct_meta(meta.arg_btf,
13091 							     meta.arg_btf_id);
13092 			}
13093 		}
13094 	}
13095 
13096 	nargs = btf_type_vlen(meta.func_proto);
13097 	args = (const struct btf_param *)(meta.func_proto + 1);
13098 	for (i = 0; i < nargs; i++) {
13099 		u32 regno = i + 1;
13100 
13101 		t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL);
13102 		if (btf_type_is_ptr(t))
13103 			mark_btf_func_reg_size(env, regno, sizeof(void *));
13104 		else
13105 			/* scalar. ensured by btf_check_kfunc_arg_match() */
13106 			mark_btf_func_reg_size(env, regno, t->size);
13107 	}
13108 
13109 	if (is_iter_next_kfunc(&meta)) {
13110 		err = process_iter_next_call(env, insn_idx, &meta);
13111 		if (err)
13112 			return err;
13113 	}
13114 
13115 	return 0;
13116 }
13117 
13118 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
13119 				  const struct bpf_reg_state *reg,
13120 				  enum bpf_reg_type type)
13121 {
13122 	bool known = tnum_is_const(reg->var_off);
13123 	s64 val = reg->var_off.value;
13124 	s64 smin = reg->smin_value;
13125 
13126 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
13127 		verbose(env, "math between %s pointer and %lld is not allowed\n",
13128 			reg_type_str(env, type), val);
13129 		return false;
13130 	}
13131 
13132 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
13133 		verbose(env, "%s pointer offset %d is not allowed\n",
13134 			reg_type_str(env, type), reg->off);
13135 		return false;
13136 	}
13137 
13138 	if (smin == S64_MIN) {
13139 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
13140 			reg_type_str(env, type));
13141 		return false;
13142 	}
13143 
13144 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
13145 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
13146 			smin, reg_type_str(env, type));
13147 		return false;
13148 	}
13149 
13150 	return true;
13151 }
13152 
13153 enum {
13154 	REASON_BOUNDS	= -1,
13155 	REASON_TYPE	= -2,
13156 	REASON_PATHS	= -3,
13157 	REASON_LIMIT	= -4,
13158 	REASON_STACK	= -5,
13159 };
13160 
13161 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
13162 			      u32 *alu_limit, bool mask_to_left)
13163 {
13164 	u32 max = 0, ptr_limit = 0;
13165 
13166 	switch (ptr_reg->type) {
13167 	case PTR_TO_STACK:
13168 		/* Offset 0 is out-of-bounds, but acceptable start for the
13169 		 * left direction, see BPF_REG_FP. Also, unknown scalar
13170 		 * offset where we would need to deal with min/max bounds is
13171 		 * currently prohibited for unprivileged.
13172 		 */
13173 		max = MAX_BPF_STACK + mask_to_left;
13174 		ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
13175 		break;
13176 	case PTR_TO_MAP_VALUE:
13177 		max = ptr_reg->map_ptr->value_size;
13178 		ptr_limit = (mask_to_left ?
13179 			     ptr_reg->smin_value :
13180 			     ptr_reg->umax_value) + ptr_reg->off;
13181 		break;
13182 	default:
13183 		return REASON_TYPE;
13184 	}
13185 
13186 	if (ptr_limit >= max)
13187 		return REASON_LIMIT;
13188 	*alu_limit = ptr_limit;
13189 	return 0;
13190 }
13191 
13192 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
13193 				    const struct bpf_insn *insn)
13194 {
13195 	return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
13196 }
13197 
13198 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
13199 				       u32 alu_state, u32 alu_limit)
13200 {
13201 	/* If we arrived here from different branches with different
13202 	 * state or limits to sanitize, then this won't work.
13203 	 */
13204 	if (aux->alu_state &&
13205 	    (aux->alu_state != alu_state ||
13206 	     aux->alu_limit != alu_limit))
13207 		return REASON_PATHS;
13208 
13209 	/* Corresponding fixup done in do_misc_fixups(). */
13210 	aux->alu_state = alu_state;
13211 	aux->alu_limit = alu_limit;
13212 	return 0;
13213 }
13214 
13215 static int sanitize_val_alu(struct bpf_verifier_env *env,
13216 			    struct bpf_insn *insn)
13217 {
13218 	struct bpf_insn_aux_data *aux = cur_aux(env);
13219 
13220 	if (can_skip_alu_sanitation(env, insn))
13221 		return 0;
13222 
13223 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
13224 }
13225 
13226 static bool sanitize_needed(u8 opcode)
13227 {
13228 	return opcode == BPF_ADD || opcode == BPF_SUB;
13229 }
13230 
13231 struct bpf_sanitize_info {
13232 	struct bpf_insn_aux_data aux;
13233 	bool mask_to_left;
13234 };
13235 
13236 static struct bpf_verifier_state *
13237 sanitize_speculative_path(struct bpf_verifier_env *env,
13238 			  const struct bpf_insn *insn,
13239 			  u32 next_idx, u32 curr_idx)
13240 {
13241 	struct bpf_verifier_state *branch;
13242 	struct bpf_reg_state *regs;
13243 
13244 	branch = push_stack(env, next_idx, curr_idx, true);
13245 	if (branch && insn) {
13246 		regs = branch->frame[branch->curframe]->regs;
13247 		if (BPF_SRC(insn->code) == BPF_K) {
13248 			mark_reg_unknown(env, regs, insn->dst_reg);
13249 		} else if (BPF_SRC(insn->code) == BPF_X) {
13250 			mark_reg_unknown(env, regs, insn->dst_reg);
13251 			mark_reg_unknown(env, regs, insn->src_reg);
13252 		}
13253 	}
13254 	return branch;
13255 }
13256 
13257 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
13258 			    struct bpf_insn *insn,
13259 			    const struct bpf_reg_state *ptr_reg,
13260 			    const struct bpf_reg_state *off_reg,
13261 			    struct bpf_reg_state *dst_reg,
13262 			    struct bpf_sanitize_info *info,
13263 			    const bool commit_window)
13264 {
13265 	struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
13266 	struct bpf_verifier_state *vstate = env->cur_state;
13267 	bool off_is_imm = tnum_is_const(off_reg->var_off);
13268 	bool off_is_neg = off_reg->smin_value < 0;
13269 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
13270 	u8 opcode = BPF_OP(insn->code);
13271 	u32 alu_state, alu_limit;
13272 	struct bpf_reg_state tmp;
13273 	bool ret;
13274 	int err;
13275 
13276 	if (can_skip_alu_sanitation(env, insn))
13277 		return 0;
13278 
13279 	/* We already marked aux for masking from non-speculative
13280 	 * paths, thus we got here in the first place. We only care
13281 	 * to explore bad access from here.
13282 	 */
13283 	if (vstate->speculative)
13284 		goto do_sim;
13285 
13286 	if (!commit_window) {
13287 		if (!tnum_is_const(off_reg->var_off) &&
13288 		    (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
13289 			return REASON_BOUNDS;
13290 
13291 		info->mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
13292 				     (opcode == BPF_SUB && !off_is_neg);
13293 	}
13294 
13295 	err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
13296 	if (err < 0)
13297 		return err;
13298 
13299 	if (commit_window) {
13300 		/* In commit phase we narrow the masking window based on
13301 		 * the observed pointer move after the simulated operation.
13302 		 */
13303 		alu_state = info->aux.alu_state;
13304 		alu_limit = abs(info->aux.alu_limit - alu_limit);
13305 	} else {
13306 		alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
13307 		alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
13308 		alu_state |= ptr_is_dst_reg ?
13309 			     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
13310 
13311 		/* Limit pruning on unknown scalars to enable deep search for
13312 		 * potential masking differences from other program paths.
13313 		 */
13314 		if (!off_is_imm)
13315 			env->explore_alu_limits = true;
13316 	}
13317 
13318 	err = update_alu_sanitation_state(aux, alu_state, alu_limit);
13319 	if (err < 0)
13320 		return err;
13321 do_sim:
13322 	/* If we're in commit phase, we're done here given we already
13323 	 * pushed the truncated dst_reg into the speculative verification
13324 	 * stack.
13325 	 *
13326 	 * Also, when register is a known constant, we rewrite register-based
13327 	 * operation to immediate-based, and thus do not need masking (and as
13328 	 * a consequence, do not need to simulate the zero-truncation either).
13329 	 */
13330 	if (commit_window || off_is_imm)
13331 		return 0;
13332 
13333 	/* Simulate and find potential out-of-bounds access under
13334 	 * speculative execution from truncation as a result of
13335 	 * masking when off was not within expected range. If off
13336 	 * sits in dst, then we temporarily need to move ptr there
13337 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
13338 	 * for cases where we use K-based arithmetic in one direction
13339 	 * and truncated reg-based in the other in order to explore
13340 	 * bad access.
13341 	 */
13342 	if (!ptr_is_dst_reg) {
13343 		tmp = *dst_reg;
13344 		copy_register_state(dst_reg, ptr_reg);
13345 	}
13346 	ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
13347 					env->insn_idx);
13348 	if (!ptr_is_dst_reg && ret)
13349 		*dst_reg = tmp;
13350 	return !ret ? REASON_STACK : 0;
13351 }
13352 
13353 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
13354 {
13355 	struct bpf_verifier_state *vstate = env->cur_state;
13356 
13357 	/* If we simulate paths under speculation, we don't update the
13358 	 * insn as 'seen' such that when we verify unreachable paths in
13359 	 * the non-speculative domain, sanitize_dead_code() can still
13360 	 * rewrite/sanitize them.
13361 	 */
13362 	if (!vstate->speculative)
13363 		env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
13364 }
13365 
13366 static int sanitize_err(struct bpf_verifier_env *env,
13367 			const struct bpf_insn *insn, int reason,
13368 			const struct bpf_reg_state *off_reg,
13369 			const struct bpf_reg_state *dst_reg)
13370 {
13371 	static const char *err = "pointer arithmetic with it prohibited for !root";
13372 	const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
13373 	u32 dst = insn->dst_reg, src = insn->src_reg;
13374 
13375 	switch (reason) {
13376 	case REASON_BOUNDS:
13377 		verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
13378 			off_reg == dst_reg ? dst : src, err);
13379 		break;
13380 	case REASON_TYPE:
13381 		verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
13382 			off_reg == dst_reg ? src : dst, err);
13383 		break;
13384 	case REASON_PATHS:
13385 		verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
13386 			dst, op, err);
13387 		break;
13388 	case REASON_LIMIT:
13389 		verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
13390 			dst, op, err);
13391 		break;
13392 	case REASON_STACK:
13393 		verbose(env, "R%d could not be pushed for speculative verification, %s\n",
13394 			dst, err);
13395 		break;
13396 	default:
13397 		verbose(env, "verifier internal error: unknown reason (%d)\n",
13398 			reason);
13399 		break;
13400 	}
13401 
13402 	return -EACCES;
13403 }
13404 
13405 /* check that stack access falls within stack limits and that 'reg' doesn't
13406  * have a variable offset.
13407  *
13408  * Variable offset is prohibited for unprivileged mode for simplicity since it
13409  * requires corresponding support in Spectre masking for stack ALU.  See also
13410  * retrieve_ptr_limit().
13411  *
13412  *
13413  * 'off' includes 'reg->off'.
13414  */
13415 static int check_stack_access_for_ptr_arithmetic(
13416 				struct bpf_verifier_env *env,
13417 				int regno,
13418 				const struct bpf_reg_state *reg,
13419 				int off)
13420 {
13421 	if (!tnum_is_const(reg->var_off)) {
13422 		char tn_buf[48];
13423 
13424 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
13425 		verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
13426 			regno, tn_buf, off);
13427 		return -EACCES;
13428 	}
13429 
13430 	if (off >= 0 || off < -MAX_BPF_STACK) {
13431 		verbose(env, "R%d stack pointer arithmetic goes out of range, "
13432 			"prohibited for !root; off=%d\n", regno, off);
13433 		return -EACCES;
13434 	}
13435 
13436 	return 0;
13437 }
13438 
13439 static int sanitize_check_bounds(struct bpf_verifier_env *env,
13440 				 const struct bpf_insn *insn,
13441 				 const struct bpf_reg_state *dst_reg)
13442 {
13443 	u32 dst = insn->dst_reg;
13444 
13445 	/* For unprivileged we require that resulting offset must be in bounds
13446 	 * in order to be able to sanitize access later on.
13447 	 */
13448 	if (env->bypass_spec_v1)
13449 		return 0;
13450 
13451 	switch (dst_reg->type) {
13452 	case PTR_TO_STACK:
13453 		if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
13454 					dst_reg->off + dst_reg->var_off.value))
13455 			return -EACCES;
13456 		break;
13457 	case PTR_TO_MAP_VALUE:
13458 		if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) {
13459 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
13460 				"prohibited for !root\n", dst);
13461 			return -EACCES;
13462 		}
13463 		break;
13464 	default:
13465 		break;
13466 	}
13467 
13468 	return 0;
13469 }
13470 
13471 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
13472  * Caller should also handle BPF_MOV case separately.
13473  * If we return -EACCES, caller may want to try again treating pointer as a
13474  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
13475  */
13476 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
13477 				   struct bpf_insn *insn,
13478 				   const struct bpf_reg_state *ptr_reg,
13479 				   const struct bpf_reg_state *off_reg)
13480 {
13481 	struct bpf_verifier_state *vstate = env->cur_state;
13482 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
13483 	struct bpf_reg_state *regs = state->regs, *dst_reg;
13484 	bool known = tnum_is_const(off_reg->var_off);
13485 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
13486 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
13487 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
13488 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
13489 	struct bpf_sanitize_info info = {};
13490 	u8 opcode = BPF_OP(insn->code);
13491 	u32 dst = insn->dst_reg;
13492 	int ret;
13493 
13494 	dst_reg = &regs[dst];
13495 
13496 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
13497 	    smin_val > smax_val || umin_val > umax_val) {
13498 		/* Taint dst register if offset had invalid bounds derived from
13499 		 * e.g. dead branches.
13500 		 */
13501 		__mark_reg_unknown(env, dst_reg);
13502 		return 0;
13503 	}
13504 
13505 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
13506 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
13507 		if (opcode == BPF_SUB && env->allow_ptr_leaks) {
13508 			__mark_reg_unknown(env, dst_reg);
13509 			return 0;
13510 		}
13511 
13512 		verbose(env,
13513 			"R%d 32-bit pointer arithmetic prohibited\n",
13514 			dst);
13515 		return -EACCES;
13516 	}
13517 
13518 	if (ptr_reg->type & PTR_MAYBE_NULL) {
13519 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
13520 			dst, reg_type_str(env, ptr_reg->type));
13521 		return -EACCES;
13522 	}
13523 
13524 	switch (base_type(ptr_reg->type)) {
13525 	case PTR_TO_CTX:
13526 	case PTR_TO_MAP_VALUE:
13527 	case PTR_TO_MAP_KEY:
13528 	case PTR_TO_STACK:
13529 	case PTR_TO_PACKET_META:
13530 	case PTR_TO_PACKET:
13531 	case PTR_TO_TP_BUFFER:
13532 	case PTR_TO_BTF_ID:
13533 	case PTR_TO_MEM:
13534 	case PTR_TO_BUF:
13535 	case PTR_TO_FUNC:
13536 	case CONST_PTR_TO_DYNPTR:
13537 		break;
13538 	case PTR_TO_FLOW_KEYS:
13539 		if (known)
13540 			break;
13541 		fallthrough;
13542 	case CONST_PTR_TO_MAP:
13543 		/* smin_val represents the known value */
13544 		if (known && smin_val == 0 && opcode == BPF_ADD)
13545 			break;
13546 		fallthrough;
13547 	default:
13548 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
13549 			dst, reg_type_str(env, ptr_reg->type));
13550 		return -EACCES;
13551 	}
13552 
13553 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
13554 	 * The id may be overwritten later if we create a new variable offset.
13555 	 */
13556 	dst_reg->type = ptr_reg->type;
13557 	dst_reg->id = ptr_reg->id;
13558 
13559 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
13560 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
13561 		return -EINVAL;
13562 
13563 	/* pointer types do not carry 32-bit bounds at the moment. */
13564 	__mark_reg32_unbounded(dst_reg);
13565 
13566 	if (sanitize_needed(opcode)) {
13567 		ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
13568 				       &info, false);
13569 		if (ret < 0)
13570 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
13571 	}
13572 
13573 	switch (opcode) {
13574 	case BPF_ADD:
13575 		/* We can take a fixed offset as long as it doesn't overflow
13576 		 * the s32 'off' field
13577 		 */
13578 		if (known && (ptr_reg->off + smin_val ==
13579 			      (s64)(s32)(ptr_reg->off + smin_val))) {
13580 			/* pointer += K.  Accumulate it into fixed offset */
13581 			dst_reg->smin_value = smin_ptr;
13582 			dst_reg->smax_value = smax_ptr;
13583 			dst_reg->umin_value = umin_ptr;
13584 			dst_reg->umax_value = umax_ptr;
13585 			dst_reg->var_off = ptr_reg->var_off;
13586 			dst_reg->off = ptr_reg->off + smin_val;
13587 			dst_reg->raw = ptr_reg->raw;
13588 			break;
13589 		}
13590 		/* A new variable offset is created.  Note that off_reg->off
13591 		 * == 0, since it's a scalar.
13592 		 * dst_reg gets the pointer type and since some positive
13593 		 * integer value was added to the pointer, give it a new 'id'
13594 		 * if it's a PTR_TO_PACKET.
13595 		 * this creates a new 'base' pointer, off_reg (variable) gets
13596 		 * added into the variable offset, and we copy the fixed offset
13597 		 * from ptr_reg.
13598 		 */
13599 		if (check_add_overflow(smin_ptr, smin_val, &dst_reg->smin_value) ||
13600 		    check_add_overflow(smax_ptr, smax_val, &dst_reg->smax_value)) {
13601 			dst_reg->smin_value = S64_MIN;
13602 			dst_reg->smax_value = S64_MAX;
13603 		}
13604 		if (check_add_overflow(umin_ptr, umin_val, &dst_reg->umin_value) ||
13605 		    check_add_overflow(umax_ptr, umax_val, &dst_reg->umax_value)) {
13606 			dst_reg->umin_value = 0;
13607 			dst_reg->umax_value = U64_MAX;
13608 		}
13609 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
13610 		dst_reg->off = ptr_reg->off;
13611 		dst_reg->raw = ptr_reg->raw;
13612 		if (reg_is_pkt_pointer(ptr_reg)) {
13613 			dst_reg->id = ++env->id_gen;
13614 			/* something was added to pkt_ptr, set range to zero */
13615 			memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
13616 		}
13617 		break;
13618 	case BPF_SUB:
13619 		if (dst_reg == off_reg) {
13620 			/* scalar -= pointer.  Creates an unknown scalar */
13621 			verbose(env, "R%d tried to subtract pointer from scalar\n",
13622 				dst);
13623 			return -EACCES;
13624 		}
13625 		/* We don't allow subtraction from FP, because (according to
13626 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
13627 		 * be able to deal with it.
13628 		 */
13629 		if (ptr_reg->type == PTR_TO_STACK) {
13630 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
13631 				dst);
13632 			return -EACCES;
13633 		}
13634 		if (known && (ptr_reg->off - smin_val ==
13635 			      (s64)(s32)(ptr_reg->off - smin_val))) {
13636 			/* pointer -= K.  Subtract it from fixed offset */
13637 			dst_reg->smin_value = smin_ptr;
13638 			dst_reg->smax_value = smax_ptr;
13639 			dst_reg->umin_value = umin_ptr;
13640 			dst_reg->umax_value = umax_ptr;
13641 			dst_reg->var_off = ptr_reg->var_off;
13642 			dst_reg->id = ptr_reg->id;
13643 			dst_reg->off = ptr_reg->off - smin_val;
13644 			dst_reg->raw = ptr_reg->raw;
13645 			break;
13646 		}
13647 		/* A new variable offset is created.  If the subtrahend is known
13648 		 * nonnegative, then any reg->range we had before is still good.
13649 		 */
13650 		if (check_sub_overflow(smin_ptr, smax_val, &dst_reg->smin_value) ||
13651 		    check_sub_overflow(smax_ptr, smin_val, &dst_reg->smax_value)) {
13652 			/* Overflow possible, we know nothing */
13653 			dst_reg->smin_value = S64_MIN;
13654 			dst_reg->smax_value = S64_MAX;
13655 		}
13656 		if (umin_ptr < umax_val) {
13657 			/* Overflow possible, we know nothing */
13658 			dst_reg->umin_value = 0;
13659 			dst_reg->umax_value = U64_MAX;
13660 		} else {
13661 			/* Cannot overflow (as long as bounds are consistent) */
13662 			dst_reg->umin_value = umin_ptr - umax_val;
13663 			dst_reg->umax_value = umax_ptr - umin_val;
13664 		}
13665 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
13666 		dst_reg->off = ptr_reg->off;
13667 		dst_reg->raw = ptr_reg->raw;
13668 		if (reg_is_pkt_pointer(ptr_reg)) {
13669 			dst_reg->id = ++env->id_gen;
13670 			/* something was added to pkt_ptr, set range to zero */
13671 			if (smin_val < 0)
13672 				memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
13673 		}
13674 		break;
13675 	case BPF_AND:
13676 	case BPF_OR:
13677 	case BPF_XOR:
13678 		/* bitwise ops on pointers are troublesome, prohibit. */
13679 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
13680 			dst, bpf_alu_string[opcode >> 4]);
13681 		return -EACCES;
13682 	default:
13683 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
13684 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
13685 			dst, bpf_alu_string[opcode >> 4]);
13686 		return -EACCES;
13687 	}
13688 
13689 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
13690 		return -EINVAL;
13691 	reg_bounds_sync(dst_reg);
13692 	if (sanitize_check_bounds(env, insn, dst_reg) < 0)
13693 		return -EACCES;
13694 	if (sanitize_needed(opcode)) {
13695 		ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
13696 				       &info, true);
13697 		if (ret < 0)
13698 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
13699 	}
13700 
13701 	return 0;
13702 }
13703 
13704 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
13705 				 struct bpf_reg_state *src_reg)
13706 {
13707 	s32 *dst_smin = &dst_reg->s32_min_value;
13708 	s32 *dst_smax = &dst_reg->s32_max_value;
13709 	u32 *dst_umin = &dst_reg->u32_min_value;
13710 	u32 *dst_umax = &dst_reg->u32_max_value;
13711 
13712 	if (check_add_overflow(*dst_smin, src_reg->s32_min_value, dst_smin) ||
13713 	    check_add_overflow(*dst_smax, src_reg->s32_max_value, dst_smax)) {
13714 		*dst_smin = S32_MIN;
13715 		*dst_smax = S32_MAX;
13716 	}
13717 	if (check_add_overflow(*dst_umin, src_reg->u32_min_value, dst_umin) ||
13718 	    check_add_overflow(*dst_umax, src_reg->u32_max_value, dst_umax)) {
13719 		*dst_umin = 0;
13720 		*dst_umax = U32_MAX;
13721 	}
13722 }
13723 
13724 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
13725 			       struct bpf_reg_state *src_reg)
13726 {
13727 	s64 *dst_smin = &dst_reg->smin_value;
13728 	s64 *dst_smax = &dst_reg->smax_value;
13729 	u64 *dst_umin = &dst_reg->umin_value;
13730 	u64 *dst_umax = &dst_reg->umax_value;
13731 
13732 	if (check_add_overflow(*dst_smin, src_reg->smin_value, dst_smin) ||
13733 	    check_add_overflow(*dst_smax, src_reg->smax_value, dst_smax)) {
13734 		*dst_smin = S64_MIN;
13735 		*dst_smax = S64_MAX;
13736 	}
13737 	if (check_add_overflow(*dst_umin, src_reg->umin_value, dst_umin) ||
13738 	    check_add_overflow(*dst_umax, src_reg->umax_value, dst_umax)) {
13739 		*dst_umin = 0;
13740 		*dst_umax = U64_MAX;
13741 	}
13742 }
13743 
13744 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
13745 				 struct bpf_reg_state *src_reg)
13746 {
13747 	s32 *dst_smin = &dst_reg->s32_min_value;
13748 	s32 *dst_smax = &dst_reg->s32_max_value;
13749 	u32 umin_val = src_reg->u32_min_value;
13750 	u32 umax_val = src_reg->u32_max_value;
13751 
13752 	if (check_sub_overflow(*dst_smin, src_reg->s32_max_value, dst_smin) ||
13753 	    check_sub_overflow(*dst_smax, src_reg->s32_min_value, dst_smax)) {
13754 		/* Overflow possible, we know nothing */
13755 		*dst_smin = S32_MIN;
13756 		*dst_smax = S32_MAX;
13757 	}
13758 	if (dst_reg->u32_min_value < umax_val) {
13759 		/* Overflow possible, we know nothing */
13760 		dst_reg->u32_min_value = 0;
13761 		dst_reg->u32_max_value = U32_MAX;
13762 	} else {
13763 		/* Cannot overflow (as long as bounds are consistent) */
13764 		dst_reg->u32_min_value -= umax_val;
13765 		dst_reg->u32_max_value -= umin_val;
13766 	}
13767 }
13768 
13769 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
13770 			       struct bpf_reg_state *src_reg)
13771 {
13772 	s64 *dst_smin = &dst_reg->smin_value;
13773 	s64 *dst_smax = &dst_reg->smax_value;
13774 	u64 umin_val = src_reg->umin_value;
13775 	u64 umax_val = src_reg->umax_value;
13776 
13777 	if (check_sub_overflow(*dst_smin, src_reg->smax_value, dst_smin) ||
13778 	    check_sub_overflow(*dst_smax, src_reg->smin_value, dst_smax)) {
13779 		/* Overflow possible, we know nothing */
13780 		*dst_smin = S64_MIN;
13781 		*dst_smax = S64_MAX;
13782 	}
13783 	if (dst_reg->umin_value < umax_val) {
13784 		/* Overflow possible, we know nothing */
13785 		dst_reg->umin_value = 0;
13786 		dst_reg->umax_value = U64_MAX;
13787 	} else {
13788 		/* Cannot overflow (as long as bounds are consistent) */
13789 		dst_reg->umin_value -= umax_val;
13790 		dst_reg->umax_value -= umin_val;
13791 	}
13792 }
13793 
13794 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
13795 				 struct bpf_reg_state *src_reg)
13796 {
13797 	s32 smin_val = src_reg->s32_min_value;
13798 	u32 umin_val = src_reg->u32_min_value;
13799 	u32 umax_val = src_reg->u32_max_value;
13800 
13801 	if (smin_val < 0 || dst_reg->s32_min_value < 0) {
13802 		/* Ain't nobody got time to multiply that sign */
13803 		__mark_reg32_unbounded(dst_reg);
13804 		return;
13805 	}
13806 	/* Both values are positive, so we can work with unsigned and
13807 	 * copy the result to signed (unless it exceeds S32_MAX).
13808 	 */
13809 	if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
13810 		/* Potential overflow, we know nothing */
13811 		__mark_reg32_unbounded(dst_reg);
13812 		return;
13813 	}
13814 	dst_reg->u32_min_value *= umin_val;
13815 	dst_reg->u32_max_value *= umax_val;
13816 	if (dst_reg->u32_max_value > S32_MAX) {
13817 		/* Overflow possible, we know nothing */
13818 		dst_reg->s32_min_value = S32_MIN;
13819 		dst_reg->s32_max_value = S32_MAX;
13820 	} else {
13821 		dst_reg->s32_min_value = dst_reg->u32_min_value;
13822 		dst_reg->s32_max_value = dst_reg->u32_max_value;
13823 	}
13824 }
13825 
13826 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
13827 			       struct bpf_reg_state *src_reg)
13828 {
13829 	s64 smin_val = src_reg->smin_value;
13830 	u64 umin_val = src_reg->umin_value;
13831 	u64 umax_val = src_reg->umax_value;
13832 
13833 	if (smin_val < 0 || dst_reg->smin_value < 0) {
13834 		/* Ain't nobody got time to multiply that sign */
13835 		__mark_reg64_unbounded(dst_reg);
13836 		return;
13837 	}
13838 	/* Both values are positive, so we can work with unsigned and
13839 	 * copy the result to signed (unless it exceeds S64_MAX).
13840 	 */
13841 	if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
13842 		/* Potential overflow, we know nothing */
13843 		__mark_reg64_unbounded(dst_reg);
13844 		return;
13845 	}
13846 	dst_reg->umin_value *= umin_val;
13847 	dst_reg->umax_value *= umax_val;
13848 	if (dst_reg->umax_value > S64_MAX) {
13849 		/* Overflow possible, we know nothing */
13850 		dst_reg->smin_value = S64_MIN;
13851 		dst_reg->smax_value = S64_MAX;
13852 	} else {
13853 		dst_reg->smin_value = dst_reg->umin_value;
13854 		dst_reg->smax_value = dst_reg->umax_value;
13855 	}
13856 }
13857 
13858 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
13859 				 struct bpf_reg_state *src_reg)
13860 {
13861 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
13862 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
13863 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
13864 	u32 umax_val = src_reg->u32_max_value;
13865 
13866 	if (src_known && dst_known) {
13867 		__mark_reg32_known(dst_reg, var32_off.value);
13868 		return;
13869 	}
13870 
13871 	/* We get our minimum from the var_off, since that's inherently
13872 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
13873 	 */
13874 	dst_reg->u32_min_value = var32_off.value;
13875 	dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
13876 
13877 	/* Safe to set s32 bounds by casting u32 result into s32 when u32
13878 	 * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded.
13879 	 */
13880 	if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) {
13881 		dst_reg->s32_min_value = dst_reg->u32_min_value;
13882 		dst_reg->s32_max_value = dst_reg->u32_max_value;
13883 	} else {
13884 		dst_reg->s32_min_value = S32_MIN;
13885 		dst_reg->s32_max_value = S32_MAX;
13886 	}
13887 }
13888 
13889 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
13890 			       struct bpf_reg_state *src_reg)
13891 {
13892 	bool src_known = tnum_is_const(src_reg->var_off);
13893 	bool dst_known = tnum_is_const(dst_reg->var_off);
13894 	u64 umax_val = src_reg->umax_value;
13895 
13896 	if (src_known && dst_known) {
13897 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
13898 		return;
13899 	}
13900 
13901 	/* We get our minimum from the var_off, since that's inherently
13902 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
13903 	 */
13904 	dst_reg->umin_value = dst_reg->var_off.value;
13905 	dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
13906 
13907 	/* Safe to set s64 bounds by casting u64 result into s64 when u64
13908 	 * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded.
13909 	 */
13910 	if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) {
13911 		dst_reg->smin_value = dst_reg->umin_value;
13912 		dst_reg->smax_value = dst_reg->umax_value;
13913 	} else {
13914 		dst_reg->smin_value = S64_MIN;
13915 		dst_reg->smax_value = S64_MAX;
13916 	}
13917 	/* We may learn something more from the var_off */
13918 	__update_reg_bounds(dst_reg);
13919 }
13920 
13921 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
13922 				struct bpf_reg_state *src_reg)
13923 {
13924 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
13925 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
13926 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
13927 	u32 umin_val = src_reg->u32_min_value;
13928 
13929 	if (src_known && dst_known) {
13930 		__mark_reg32_known(dst_reg, var32_off.value);
13931 		return;
13932 	}
13933 
13934 	/* We get our maximum from the var_off, and our minimum is the
13935 	 * maximum of the operands' minima
13936 	 */
13937 	dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
13938 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
13939 
13940 	/* Safe to set s32 bounds by casting u32 result into s32 when u32
13941 	 * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded.
13942 	 */
13943 	if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) {
13944 		dst_reg->s32_min_value = dst_reg->u32_min_value;
13945 		dst_reg->s32_max_value = dst_reg->u32_max_value;
13946 	} else {
13947 		dst_reg->s32_min_value = S32_MIN;
13948 		dst_reg->s32_max_value = S32_MAX;
13949 	}
13950 }
13951 
13952 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
13953 			      struct bpf_reg_state *src_reg)
13954 {
13955 	bool src_known = tnum_is_const(src_reg->var_off);
13956 	bool dst_known = tnum_is_const(dst_reg->var_off);
13957 	u64 umin_val = src_reg->umin_value;
13958 
13959 	if (src_known && dst_known) {
13960 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
13961 		return;
13962 	}
13963 
13964 	/* We get our maximum from the var_off, and our minimum is the
13965 	 * maximum of the operands' minima
13966 	 */
13967 	dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
13968 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
13969 
13970 	/* Safe to set s64 bounds by casting u64 result into s64 when u64
13971 	 * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded.
13972 	 */
13973 	if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) {
13974 		dst_reg->smin_value = dst_reg->umin_value;
13975 		dst_reg->smax_value = dst_reg->umax_value;
13976 	} else {
13977 		dst_reg->smin_value = S64_MIN;
13978 		dst_reg->smax_value = S64_MAX;
13979 	}
13980 	/* We may learn something more from the var_off */
13981 	__update_reg_bounds(dst_reg);
13982 }
13983 
13984 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
13985 				 struct bpf_reg_state *src_reg)
13986 {
13987 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
13988 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
13989 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
13990 
13991 	if (src_known && dst_known) {
13992 		__mark_reg32_known(dst_reg, var32_off.value);
13993 		return;
13994 	}
13995 
13996 	/* We get both minimum and maximum from the var32_off. */
13997 	dst_reg->u32_min_value = var32_off.value;
13998 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
13999 
14000 	/* Safe to set s32 bounds by casting u32 result into s32 when u32
14001 	 * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded.
14002 	 */
14003 	if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) {
14004 		dst_reg->s32_min_value = dst_reg->u32_min_value;
14005 		dst_reg->s32_max_value = dst_reg->u32_max_value;
14006 	} else {
14007 		dst_reg->s32_min_value = S32_MIN;
14008 		dst_reg->s32_max_value = S32_MAX;
14009 	}
14010 }
14011 
14012 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
14013 			       struct bpf_reg_state *src_reg)
14014 {
14015 	bool src_known = tnum_is_const(src_reg->var_off);
14016 	bool dst_known = tnum_is_const(dst_reg->var_off);
14017 
14018 	if (src_known && dst_known) {
14019 		/* dst_reg->var_off.value has been updated earlier */
14020 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
14021 		return;
14022 	}
14023 
14024 	/* We get both minimum and maximum from the var_off. */
14025 	dst_reg->umin_value = dst_reg->var_off.value;
14026 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
14027 
14028 	/* Safe to set s64 bounds by casting u64 result into s64 when u64
14029 	 * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded.
14030 	 */
14031 	if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) {
14032 		dst_reg->smin_value = dst_reg->umin_value;
14033 		dst_reg->smax_value = dst_reg->umax_value;
14034 	} else {
14035 		dst_reg->smin_value = S64_MIN;
14036 		dst_reg->smax_value = S64_MAX;
14037 	}
14038 
14039 	__update_reg_bounds(dst_reg);
14040 }
14041 
14042 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
14043 				   u64 umin_val, u64 umax_val)
14044 {
14045 	/* We lose all sign bit information (except what we can pick
14046 	 * up from var_off)
14047 	 */
14048 	dst_reg->s32_min_value = S32_MIN;
14049 	dst_reg->s32_max_value = S32_MAX;
14050 	/* If we might shift our top bit out, then we know nothing */
14051 	if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
14052 		dst_reg->u32_min_value = 0;
14053 		dst_reg->u32_max_value = U32_MAX;
14054 	} else {
14055 		dst_reg->u32_min_value <<= umin_val;
14056 		dst_reg->u32_max_value <<= umax_val;
14057 	}
14058 }
14059 
14060 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
14061 				 struct bpf_reg_state *src_reg)
14062 {
14063 	u32 umax_val = src_reg->u32_max_value;
14064 	u32 umin_val = src_reg->u32_min_value;
14065 	/* u32 alu operation will zext upper bits */
14066 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
14067 
14068 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
14069 	dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
14070 	/* Not required but being careful mark reg64 bounds as unknown so
14071 	 * that we are forced to pick them up from tnum and zext later and
14072 	 * if some path skips this step we are still safe.
14073 	 */
14074 	__mark_reg64_unbounded(dst_reg);
14075 	__update_reg32_bounds(dst_reg);
14076 }
14077 
14078 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
14079 				   u64 umin_val, u64 umax_val)
14080 {
14081 	/* Special case <<32 because it is a common compiler pattern to sign
14082 	 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
14083 	 * positive we know this shift will also be positive so we can track
14084 	 * bounds correctly. Otherwise we lose all sign bit information except
14085 	 * what we can pick up from var_off. Perhaps we can generalize this
14086 	 * later to shifts of any length.
14087 	 */
14088 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
14089 		dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
14090 	else
14091 		dst_reg->smax_value = S64_MAX;
14092 
14093 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
14094 		dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
14095 	else
14096 		dst_reg->smin_value = S64_MIN;
14097 
14098 	/* If we might shift our top bit out, then we know nothing */
14099 	if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
14100 		dst_reg->umin_value = 0;
14101 		dst_reg->umax_value = U64_MAX;
14102 	} else {
14103 		dst_reg->umin_value <<= umin_val;
14104 		dst_reg->umax_value <<= umax_val;
14105 	}
14106 }
14107 
14108 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
14109 			       struct bpf_reg_state *src_reg)
14110 {
14111 	u64 umax_val = src_reg->umax_value;
14112 	u64 umin_val = src_reg->umin_value;
14113 
14114 	/* scalar64 calc uses 32bit unshifted bounds so must be called first */
14115 	__scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
14116 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
14117 
14118 	dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
14119 	/* We may learn something more from the var_off */
14120 	__update_reg_bounds(dst_reg);
14121 }
14122 
14123 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
14124 				 struct bpf_reg_state *src_reg)
14125 {
14126 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
14127 	u32 umax_val = src_reg->u32_max_value;
14128 	u32 umin_val = src_reg->u32_min_value;
14129 
14130 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
14131 	 * be negative, then either:
14132 	 * 1) src_reg might be zero, so the sign bit of the result is
14133 	 *    unknown, so we lose our signed bounds
14134 	 * 2) it's known negative, thus the unsigned bounds capture the
14135 	 *    signed bounds
14136 	 * 3) the signed bounds cross zero, so they tell us nothing
14137 	 *    about the result
14138 	 * If the value in dst_reg is known nonnegative, then again the
14139 	 * unsigned bounds capture the signed bounds.
14140 	 * Thus, in all cases it suffices to blow away our signed bounds
14141 	 * and rely on inferring new ones from the unsigned bounds and
14142 	 * var_off of the result.
14143 	 */
14144 	dst_reg->s32_min_value = S32_MIN;
14145 	dst_reg->s32_max_value = S32_MAX;
14146 
14147 	dst_reg->var_off = tnum_rshift(subreg, umin_val);
14148 	dst_reg->u32_min_value >>= umax_val;
14149 	dst_reg->u32_max_value >>= umin_val;
14150 
14151 	__mark_reg64_unbounded(dst_reg);
14152 	__update_reg32_bounds(dst_reg);
14153 }
14154 
14155 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
14156 			       struct bpf_reg_state *src_reg)
14157 {
14158 	u64 umax_val = src_reg->umax_value;
14159 	u64 umin_val = src_reg->umin_value;
14160 
14161 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
14162 	 * be negative, then either:
14163 	 * 1) src_reg might be zero, so the sign bit of the result is
14164 	 *    unknown, so we lose our signed bounds
14165 	 * 2) it's known negative, thus the unsigned bounds capture the
14166 	 *    signed bounds
14167 	 * 3) the signed bounds cross zero, so they tell us nothing
14168 	 *    about the result
14169 	 * If the value in dst_reg is known nonnegative, then again the
14170 	 * unsigned bounds capture the signed bounds.
14171 	 * Thus, in all cases it suffices to blow away our signed bounds
14172 	 * and rely on inferring new ones from the unsigned bounds and
14173 	 * var_off of the result.
14174 	 */
14175 	dst_reg->smin_value = S64_MIN;
14176 	dst_reg->smax_value = S64_MAX;
14177 	dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
14178 	dst_reg->umin_value >>= umax_val;
14179 	dst_reg->umax_value >>= umin_val;
14180 
14181 	/* Its not easy to operate on alu32 bounds here because it depends
14182 	 * on bits being shifted in. Take easy way out and mark unbounded
14183 	 * so we can recalculate later from tnum.
14184 	 */
14185 	__mark_reg32_unbounded(dst_reg);
14186 	__update_reg_bounds(dst_reg);
14187 }
14188 
14189 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
14190 				  struct bpf_reg_state *src_reg)
14191 {
14192 	u64 umin_val = src_reg->u32_min_value;
14193 
14194 	/* Upon reaching here, src_known is true and
14195 	 * umax_val is equal to umin_val.
14196 	 */
14197 	dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
14198 	dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
14199 
14200 	dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
14201 
14202 	/* blow away the dst_reg umin_value/umax_value and rely on
14203 	 * dst_reg var_off to refine the result.
14204 	 */
14205 	dst_reg->u32_min_value = 0;
14206 	dst_reg->u32_max_value = U32_MAX;
14207 
14208 	__mark_reg64_unbounded(dst_reg);
14209 	__update_reg32_bounds(dst_reg);
14210 }
14211 
14212 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
14213 				struct bpf_reg_state *src_reg)
14214 {
14215 	u64 umin_val = src_reg->umin_value;
14216 
14217 	/* Upon reaching here, src_known is true and umax_val is equal
14218 	 * to umin_val.
14219 	 */
14220 	dst_reg->smin_value >>= umin_val;
14221 	dst_reg->smax_value >>= umin_val;
14222 
14223 	dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
14224 
14225 	/* blow away the dst_reg umin_value/umax_value and rely on
14226 	 * dst_reg var_off to refine the result.
14227 	 */
14228 	dst_reg->umin_value = 0;
14229 	dst_reg->umax_value = U64_MAX;
14230 
14231 	/* Its not easy to operate on alu32 bounds here because it depends
14232 	 * on bits being shifted in from upper 32-bits. Take easy way out
14233 	 * and mark unbounded so we can recalculate later from tnum.
14234 	 */
14235 	__mark_reg32_unbounded(dst_reg);
14236 	__update_reg_bounds(dst_reg);
14237 }
14238 
14239 static bool is_safe_to_compute_dst_reg_range(struct bpf_insn *insn,
14240 					     const struct bpf_reg_state *src_reg)
14241 {
14242 	bool src_is_const = false;
14243 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
14244 
14245 	if (insn_bitness == 32) {
14246 		if (tnum_subreg_is_const(src_reg->var_off)
14247 		    && src_reg->s32_min_value == src_reg->s32_max_value
14248 		    && src_reg->u32_min_value == src_reg->u32_max_value)
14249 			src_is_const = true;
14250 	} else {
14251 		if (tnum_is_const(src_reg->var_off)
14252 		    && src_reg->smin_value == src_reg->smax_value
14253 		    && src_reg->umin_value == src_reg->umax_value)
14254 			src_is_const = true;
14255 	}
14256 
14257 	switch (BPF_OP(insn->code)) {
14258 	case BPF_ADD:
14259 	case BPF_SUB:
14260 	case BPF_AND:
14261 	case BPF_XOR:
14262 	case BPF_OR:
14263 	case BPF_MUL:
14264 		return true;
14265 
14266 	/* Shift operators range is only computable if shift dimension operand
14267 	 * is a constant. Shifts greater than 31 or 63 are undefined. This
14268 	 * includes shifts by a negative number.
14269 	 */
14270 	case BPF_LSH:
14271 	case BPF_RSH:
14272 	case BPF_ARSH:
14273 		return (src_is_const && src_reg->umax_value < insn_bitness);
14274 	default:
14275 		return false;
14276 	}
14277 }
14278 
14279 /* WARNING: This function does calculations on 64-bit values, but the actual
14280  * execution may occur on 32-bit values. Therefore, things like bitshifts
14281  * need extra checks in the 32-bit case.
14282  */
14283 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
14284 				      struct bpf_insn *insn,
14285 				      struct bpf_reg_state *dst_reg,
14286 				      struct bpf_reg_state src_reg)
14287 {
14288 	u8 opcode = BPF_OP(insn->code);
14289 	bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
14290 	int ret;
14291 
14292 	if (!is_safe_to_compute_dst_reg_range(insn, &src_reg)) {
14293 		__mark_reg_unknown(env, dst_reg);
14294 		return 0;
14295 	}
14296 
14297 	if (sanitize_needed(opcode)) {
14298 		ret = sanitize_val_alu(env, insn);
14299 		if (ret < 0)
14300 			return sanitize_err(env, insn, ret, NULL, NULL);
14301 	}
14302 
14303 	/* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
14304 	 * There are two classes of instructions: The first class we track both
14305 	 * alu32 and alu64 sign/unsigned bounds independently this provides the
14306 	 * greatest amount of precision when alu operations are mixed with jmp32
14307 	 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
14308 	 * and BPF_OR. This is possible because these ops have fairly easy to
14309 	 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
14310 	 * See alu32 verifier tests for examples. The second class of
14311 	 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
14312 	 * with regards to tracking sign/unsigned bounds because the bits may
14313 	 * cross subreg boundaries in the alu64 case. When this happens we mark
14314 	 * the reg unbounded in the subreg bound space and use the resulting
14315 	 * tnum to calculate an approximation of the sign/unsigned bounds.
14316 	 */
14317 	switch (opcode) {
14318 	case BPF_ADD:
14319 		scalar32_min_max_add(dst_reg, &src_reg);
14320 		scalar_min_max_add(dst_reg, &src_reg);
14321 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
14322 		break;
14323 	case BPF_SUB:
14324 		scalar32_min_max_sub(dst_reg, &src_reg);
14325 		scalar_min_max_sub(dst_reg, &src_reg);
14326 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
14327 		break;
14328 	case BPF_MUL:
14329 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
14330 		scalar32_min_max_mul(dst_reg, &src_reg);
14331 		scalar_min_max_mul(dst_reg, &src_reg);
14332 		break;
14333 	case BPF_AND:
14334 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
14335 		scalar32_min_max_and(dst_reg, &src_reg);
14336 		scalar_min_max_and(dst_reg, &src_reg);
14337 		break;
14338 	case BPF_OR:
14339 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
14340 		scalar32_min_max_or(dst_reg, &src_reg);
14341 		scalar_min_max_or(dst_reg, &src_reg);
14342 		break;
14343 	case BPF_XOR:
14344 		dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
14345 		scalar32_min_max_xor(dst_reg, &src_reg);
14346 		scalar_min_max_xor(dst_reg, &src_reg);
14347 		break;
14348 	case BPF_LSH:
14349 		if (alu32)
14350 			scalar32_min_max_lsh(dst_reg, &src_reg);
14351 		else
14352 			scalar_min_max_lsh(dst_reg, &src_reg);
14353 		break;
14354 	case BPF_RSH:
14355 		if (alu32)
14356 			scalar32_min_max_rsh(dst_reg, &src_reg);
14357 		else
14358 			scalar_min_max_rsh(dst_reg, &src_reg);
14359 		break;
14360 	case BPF_ARSH:
14361 		if (alu32)
14362 			scalar32_min_max_arsh(dst_reg, &src_reg);
14363 		else
14364 			scalar_min_max_arsh(dst_reg, &src_reg);
14365 		break;
14366 	default:
14367 		break;
14368 	}
14369 
14370 	/* ALU32 ops are zero extended into 64bit register */
14371 	if (alu32)
14372 		zext_32_to_64(dst_reg);
14373 	reg_bounds_sync(dst_reg);
14374 	return 0;
14375 }
14376 
14377 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
14378  * and var_off.
14379  */
14380 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
14381 				   struct bpf_insn *insn)
14382 {
14383 	struct bpf_verifier_state *vstate = env->cur_state;
14384 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
14385 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
14386 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
14387 	bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
14388 	u8 opcode = BPF_OP(insn->code);
14389 	int err;
14390 
14391 	dst_reg = &regs[insn->dst_reg];
14392 	src_reg = NULL;
14393 
14394 	if (dst_reg->type == PTR_TO_ARENA) {
14395 		struct bpf_insn_aux_data *aux = cur_aux(env);
14396 
14397 		if (BPF_CLASS(insn->code) == BPF_ALU64)
14398 			/*
14399 			 * 32-bit operations zero upper bits automatically.
14400 			 * 64-bit operations need to be converted to 32.
14401 			 */
14402 			aux->needs_zext = true;
14403 
14404 		/* Any arithmetic operations are allowed on arena pointers */
14405 		return 0;
14406 	}
14407 
14408 	if (dst_reg->type != SCALAR_VALUE)
14409 		ptr_reg = dst_reg;
14410 
14411 	if (BPF_SRC(insn->code) == BPF_X) {
14412 		src_reg = &regs[insn->src_reg];
14413 		if (src_reg->type != SCALAR_VALUE) {
14414 			if (dst_reg->type != SCALAR_VALUE) {
14415 				/* Combining two pointers by any ALU op yields
14416 				 * an arbitrary scalar. Disallow all math except
14417 				 * pointer subtraction
14418 				 */
14419 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
14420 					mark_reg_unknown(env, regs, insn->dst_reg);
14421 					return 0;
14422 				}
14423 				verbose(env, "R%d pointer %s pointer prohibited\n",
14424 					insn->dst_reg,
14425 					bpf_alu_string[opcode >> 4]);
14426 				return -EACCES;
14427 			} else {
14428 				/* scalar += pointer
14429 				 * This is legal, but we have to reverse our
14430 				 * src/dest handling in computing the range
14431 				 */
14432 				err = mark_chain_precision(env, insn->dst_reg);
14433 				if (err)
14434 					return err;
14435 				return adjust_ptr_min_max_vals(env, insn,
14436 							       src_reg, dst_reg);
14437 			}
14438 		} else if (ptr_reg) {
14439 			/* pointer += scalar */
14440 			err = mark_chain_precision(env, insn->src_reg);
14441 			if (err)
14442 				return err;
14443 			return adjust_ptr_min_max_vals(env, insn,
14444 						       dst_reg, src_reg);
14445 		} else if (dst_reg->precise) {
14446 			/* if dst_reg is precise, src_reg should be precise as well */
14447 			err = mark_chain_precision(env, insn->src_reg);
14448 			if (err)
14449 				return err;
14450 		}
14451 	} else {
14452 		/* Pretend the src is a reg with a known value, since we only
14453 		 * need to be able to read from this state.
14454 		 */
14455 		off_reg.type = SCALAR_VALUE;
14456 		__mark_reg_known(&off_reg, insn->imm);
14457 		src_reg = &off_reg;
14458 		if (ptr_reg) /* pointer += K */
14459 			return adjust_ptr_min_max_vals(env, insn,
14460 						       ptr_reg, src_reg);
14461 	}
14462 
14463 	/* Got here implies adding two SCALAR_VALUEs */
14464 	if (WARN_ON_ONCE(ptr_reg)) {
14465 		print_verifier_state(env, state, true);
14466 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
14467 		return -EINVAL;
14468 	}
14469 	if (WARN_ON(!src_reg)) {
14470 		print_verifier_state(env, state, true);
14471 		verbose(env, "verifier internal error: no src_reg\n");
14472 		return -EINVAL;
14473 	}
14474 	err = adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
14475 	if (err)
14476 		return err;
14477 	/*
14478 	 * Compilers can generate the code
14479 	 * r1 = r2
14480 	 * r1 += 0x1
14481 	 * if r2 < 1000 goto ...
14482 	 * use r1 in memory access
14483 	 * So for 64-bit alu remember constant delta between r2 and r1 and
14484 	 * update r1 after 'if' condition.
14485 	 */
14486 	if (env->bpf_capable &&
14487 	    BPF_OP(insn->code) == BPF_ADD && !alu32 &&
14488 	    dst_reg->id && is_reg_const(src_reg, false)) {
14489 		u64 val = reg_const_value(src_reg, false);
14490 
14491 		if ((dst_reg->id & BPF_ADD_CONST) ||
14492 		    /* prevent overflow in sync_linked_regs() later */
14493 		    val > (u32)S32_MAX) {
14494 			/*
14495 			 * If the register already went through rX += val
14496 			 * we cannot accumulate another val into rx->off.
14497 			 */
14498 			dst_reg->off = 0;
14499 			dst_reg->id = 0;
14500 		} else {
14501 			dst_reg->id |= BPF_ADD_CONST;
14502 			dst_reg->off = val;
14503 		}
14504 	} else {
14505 		/*
14506 		 * Make sure ID is cleared otherwise dst_reg min/max could be
14507 		 * incorrectly propagated into other registers by sync_linked_regs()
14508 		 */
14509 		dst_reg->id = 0;
14510 	}
14511 	return 0;
14512 }
14513 
14514 /* check validity of 32-bit and 64-bit arithmetic operations */
14515 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
14516 {
14517 	struct bpf_reg_state *regs = cur_regs(env);
14518 	u8 opcode = BPF_OP(insn->code);
14519 	int err;
14520 
14521 	if (opcode == BPF_END || opcode == BPF_NEG) {
14522 		if (opcode == BPF_NEG) {
14523 			if (BPF_SRC(insn->code) != BPF_K ||
14524 			    insn->src_reg != BPF_REG_0 ||
14525 			    insn->off != 0 || insn->imm != 0) {
14526 				verbose(env, "BPF_NEG uses reserved fields\n");
14527 				return -EINVAL;
14528 			}
14529 		} else {
14530 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
14531 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
14532 			    (BPF_CLASS(insn->code) == BPF_ALU64 &&
14533 			     BPF_SRC(insn->code) != BPF_TO_LE)) {
14534 				verbose(env, "BPF_END uses reserved fields\n");
14535 				return -EINVAL;
14536 			}
14537 		}
14538 
14539 		/* check src operand */
14540 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
14541 		if (err)
14542 			return err;
14543 
14544 		if (is_pointer_value(env, insn->dst_reg)) {
14545 			verbose(env, "R%d pointer arithmetic prohibited\n",
14546 				insn->dst_reg);
14547 			return -EACCES;
14548 		}
14549 
14550 		/* check dest operand */
14551 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
14552 		if (err)
14553 			return err;
14554 
14555 	} else if (opcode == BPF_MOV) {
14556 
14557 		if (BPF_SRC(insn->code) == BPF_X) {
14558 			if (BPF_CLASS(insn->code) == BPF_ALU) {
14559 				if ((insn->off != 0 && insn->off != 8 && insn->off != 16) ||
14560 				    insn->imm) {
14561 					verbose(env, "BPF_MOV uses reserved fields\n");
14562 					return -EINVAL;
14563 				}
14564 			} else if (insn->off == BPF_ADDR_SPACE_CAST) {
14565 				if (insn->imm != 1 && insn->imm != 1u << 16) {
14566 					verbose(env, "addr_space_cast insn can only convert between address space 1 and 0\n");
14567 					return -EINVAL;
14568 				}
14569 				if (!env->prog->aux->arena) {
14570 					verbose(env, "addr_space_cast insn can only be used in a program that has an associated arena\n");
14571 					return -EINVAL;
14572 				}
14573 			} else {
14574 				if ((insn->off != 0 && insn->off != 8 && insn->off != 16 &&
14575 				     insn->off != 32) || insn->imm) {
14576 					verbose(env, "BPF_MOV uses reserved fields\n");
14577 					return -EINVAL;
14578 				}
14579 			}
14580 
14581 			/* check src operand */
14582 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
14583 			if (err)
14584 				return err;
14585 		} else {
14586 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
14587 				verbose(env, "BPF_MOV uses reserved fields\n");
14588 				return -EINVAL;
14589 			}
14590 		}
14591 
14592 		/* check dest operand, mark as required later */
14593 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
14594 		if (err)
14595 			return err;
14596 
14597 		if (BPF_SRC(insn->code) == BPF_X) {
14598 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
14599 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
14600 
14601 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
14602 				if (insn->imm) {
14603 					/* off == BPF_ADDR_SPACE_CAST */
14604 					mark_reg_unknown(env, regs, insn->dst_reg);
14605 					if (insn->imm == 1) { /* cast from as(1) to as(0) */
14606 						dst_reg->type = PTR_TO_ARENA;
14607 						/* PTR_TO_ARENA is 32-bit */
14608 						dst_reg->subreg_def = env->insn_idx + 1;
14609 					}
14610 				} else if (insn->off == 0) {
14611 					/* case: R1 = R2
14612 					 * copy register state to dest reg
14613 					 */
14614 					assign_scalar_id_before_mov(env, src_reg);
14615 					copy_register_state(dst_reg, src_reg);
14616 					dst_reg->live |= REG_LIVE_WRITTEN;
14617 					dst_reg->subreg_def = DEF_NOT_SUBREG;
14618 				} else {
14619 					/* case: R1 = (s8, s16 s32)R2 */
14620 					if (is_pointer_value(env, insn->src_reg)) {
14621 						verbose(env,
14622 							"R%d sign-extension part of pointer\n",
14623 							insn->src_reg);
14624 						return -EACCES;
14625 					} else if (src_reg->type == SCALAR_VALUE) {
14626 						bool no_sext;
14627 
14628 						no_sext = src_reg->umax_value < (1ULL << (insn->off - 1));
14629 						if (no_sext)
14630 							assign_scalar_id_before_mov(env, src_reg);
14631 						copy_register_state(dst_reg, src_reg);
14632 						if (!no_sext)
14633 							dst_reg->id = 0;
14634 						coerce_reg_to_size_sx(dst_reg, insn->off >> 3);
14635 						dst_reg->live |= REG_LIVE_WRITTEN;
14636 						dst_reg->subreg_def = DEF_NOT_SUBREG;
14637 					} else {
14638 						mark_reg_unknown(env, regs, insn->dst_reg);
14639 					}
14640 				}
14641 			} else {
14642 				/* R1 = (u32) R2 */
14643 				if (is_pointer_value(env, insn->src_reg)) {
14644 					verbose(env,
14645 						"R%d partial copy of pointer\n",
14646 						insn->src_reg);
14647 					return -EACCES;
14648 				} else if (src_reg->type == SCALAR_VALUE) {
14649 					if (insn->off == 0) {
14650 						bool is_src_reg_u32 = get_reg_width(src_reg) <= 32;
14651 
14652 						if (is_src_reg_u32)
14653 							assign_scalar_id_before_mov(env, src_reg);
14654 						copy_register_state(dst_reg, src_reg);
14655 						/* Make sure ID is cleared if src_reg is not in u32
14656 						 * range otherwise dst_reg min/max could be incorrectly
14657 						 * propagated into src_reg by sync_linked_regs()
14658 						 */
14659 						if (!is_src_reg_u32)
14660 							dst_reg->id = 0;
14661 						dst_reg->live |= REG_LIVE_WRITTEN;
14662 						dst_reg->subreg_def = env->insn_idx + 1;
14663 					} else {
14664 						/* case: W1 = (s8, s16)W2 */
14665 						bool no_sext = src_reg->umax_value < (1ULL << (insn->off - 1));
14666 
14667 						if (no_sext)
14668 							assign_scalar_id_before_mov(env, src_reg);
14669 						copy_register_state(dst_reg, src_reg);
14670 						if (!no_sext)
14671 							dst_reg->id = 0;
14672 						dst_reg->live |= REG_LIVE_WRITTEN;
14673 						dst_reg->subreg_def = env->insn_idx + 1;
14674 						coerce_subreg_to_size_sx(dst_reg, insn->off >> 3);
14675 					}
14676 				} else {
14677 					mark_reg_unknown(env, regs,
14678 							 insn->dst_reg);
14679 				}
14680 				zext_32_to_64(dst_reg);
14681 				reg_bounds_sync(dst_reg);
14682 			}
14683 		} else {
14684 			/* case: R = imm
14685 			 * remember the value we stored into this reg
14686 			 */
14687 			/* clear any state __mark_reg_known doesn't set */
14688 			mark_reg_unknown(env, regs, insn->dst_reg);
14689 			regs[insn->dst_reg].type = SCALAR_VALUE;
14690 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
14691 				__mark_reg_known(regs + insn->dst_reg,
14692 						 insn->imm);
14693 			} else {
14694 				__mark_reg_known(regs + insn->dst_reg,
14695 						 (u32)insn->imm);
14696 			}
14697 		}
14698 
14699 	} else if (opcode > BPF_END) {
14700 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
14701 		return -EINVAL;
14702 
14703 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
14704 
14705 		if (BPF_SRC(insn->code) == BPF_X) {
14706 			if (insn->imm != 0 || insn->off > 1 ||
14707 			    (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) {
14708 				verbose(env, "BPF_ALU uses reserved fields\n");
14709 				return -EINVAL;
14710 			}
14711 			/* check src1 operand */
14712 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
14713 			if (err)
14714 				return err;
14715 		} else {
14716 			if (insn->src_reg != BPF_REG_0 || insn->off > 1 ||
14717 			    (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) {
14718 				verbose(env, "BPF_ALU uses reserved fields\n");
14719 				return -EINVAL;
14720 			}
14721 		}
14722 
14723 		/* check src2 operand */
14724 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
14725 		if (err)
14726 			return err;
14727 
14728 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
14729 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
14730 			verbose(env, "div by zero\n");
14731 			return -EINVAL;
14732 		}
14733 
14734 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
14735 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
14736 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
14737 
14738 			if (insn->imm < 0 || insn->imm >= size) {
14739 				verbose(env, "invalid shift %d\n", insn->imm);
14740 				return -EINVAL;
14741 			}
14742 		}
14743 
14744 		/* check dest operand */
14745 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
14746 		err = err ?: adjust_reg_min_max_vals(env, insn);
14747 		if (err)
14748 			return err;
14749 	}
14750 
14751 	return reg_bounds_sanity_check(env, &regs[insn->dst_reg], "alu");
14752 }
14753 
14754 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
14755 				   struct bpf_reg_state *dst_reg,
14756 				   enum bpf_reg_type type,
14757 				   bool range_right_open)
14758 {
14759 	struct bpf_func_state *state;
14760 	struct bpf_reg_state *reg;
14761 	int new_range;
14762 
14763 	if (dst_reg->off < 0 ||
14764 	    (dst_reg->off == 0 && range_right_open))
14765 		/* This doesn't give us any range */
14766 		return;
14767 
14768 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
14769 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
14770 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
14771 		 * than pkt_end, but that's because it's also less than pkt.
14772 		 */
14773 		return;
14774 
14775 	new_range = dst_reg->off;
14776 	if (range_right_open)
14777 		new_range++;
14778 
14779 	/* Examples for register markings:
14780 	 *
14781 	 * pkt_data in dst register:
14782 	 *
14783 	 *   r2 = r3;
14784 	 *   r2 += 8;
14785 	 *   if (r2 > pkt_end) goto <handle exception>
14786 	 *   <access okay>
14787 	 *
14788 	 *   r2 = r3;
14789 	 *   r2 += 8;
14790 	 *   if (r2 < pkt_end) goto <access okay>
14791 	 *   <handle exception>
14792 	 *
14793 	 *   Where:
14794 	 *     r2 == dst_reg, pkt_end == src_reg
14795 	 *     r2=pkt(id=n,off=8,r=0)
14796 	 *     r3=pkt(id=n,off=0,r=0)
14797 	 *
14798 	 * pkt_data in src register:
14799 	 *
14800 	 *   r2 = r3;
14801 	 *   r2 += 8;
14802 	 *   if (pkt_end >= r2) goto <access okay>
14803 	 *   <handle exception>
14804 	 *
14805 	 *   r2 = r3;
14806 	 *   r2 += 8;
14807 	 *   if (pkt_end <= r2) goto <handle exception>
14808 	 *   <access okay>
14809 	 *
14810 	 *   Where:
14811 	 *     pkt_end == dst_reg, r2 == src_reg
14812 	 *     r2=pkt(id=n,off=8,r=0)
14813 	 *     r3=pkt(id=n,off=0,r=0)
14814 	 *
14815 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
14816 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
14817 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
14818 	 * the check.
14819 	 */
14820 
14821 	/* If our ids match, then we must have the same max_value.  And we
14822 	 * don't care about the other reg's fixed offset, since if it's too big
14823 	 * the range won't allow anything.
14824 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
14825 	 */
14826 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
14827 		if (reg->type == type && reg->id == dst_reg->id)
14828 			/* keep the maximum range already checked */
14829 			reg->range = max(reg->range, new_range);
14830 	}));
14831 }
14832 
14833 /*
14834  * <reg1> <op> <reg2>, currently assuming reg2 is a constant
14835  */
14836 static int is_scalar_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2,
14837 				  u8 opcode, bool is_jmp32)
14838 {
14839 	struct tnum t1 = is_jmp32 ? tnum_subreg(reg1->var_off) : reg1->var_off;
14840 	struct tnum t2 = is_jmp32 ? tnum_subreg(reg2->var_off) : reg2->var_off;
14841 	u64 umin1 = is_jmp32 ? (u64)reg1->u32_min_value : reg1->umin_value;
14842 	u64 umax1 = is_jmp32 ? (u64)reg1->u32_max_value : reg1->umax_value;
14843 	s64 smin1 = is_jmp32 ? (s64)reg1->s32_min_value : reg1->smin_value;
14844 	s64 smax1 = is_jmp32 ? (s64)reg1->s32_max_value : reg1->smax_value;
14845 	u64 umin2 = is_jmp32 ? (u64)reg2->u32_min_value : reg2->umin_value;
14846 	u64 umax2 = is_jmp32 ? (u64)reg2->u32_max_value : reg2->umax_value;
14847 	s64 smin2 = is_jmp32 ? (s64)reg2->s32_min_value : reg2->smin_value;
14848 	s64 smax2 = is_jmp32 ? (s64)reg2->s32_max_value : reg2->smax_value;
14849 
14850 	switch (opcode) {
14851 	case BPF_JEQ:
14852 		/* constants, umin/umax and smin/smax checks would be
14853 		 * redundant in this case because they all should match
14854 		 */
14855 		if (tnum_is_const(t1) && tnum_is_const(t2))
14856 			return t1.value == t2.value;
14857 		/* non-overlapping ranges */
14858 		if (umin1 > umax2 || umax1 < umin2)
14859 			return 0;
14860 		if (smin1 > smax2 || smax1 < smin2)
14861 			return 0;
14862 		if (!is_jmp32) {
14863 			/* if 64-bit ranges are inconclusive, see if we can
14864 			 * utilize 32-bit subrange knowledge to eliminate
14865 			 * branches that can't be taken a priori
14866 			 */
14867 			if (reg1->u32_min_value > reg2->u32_max_value ||
14868 			    reg1->u32_max_value < reg2->u32_min_value)
14869 				return 0;
14870 			if (reg1->s32_min_value > reg2->s32_max_value ||
14871 			    reg1->s32_max_value < reg2->s32_min_value)
14872 				return 0;
14873 		}
14874 		break;
14875 	case BPF_JNE:
14876 		/* constants, umin/umax and smin/smax checks would be
14877 		 * redundant in this case because they all should match
14878 		 */
14879 		if (tnum_is_const(t1) && tnum_is_const(t2))
14880 			return t1.value != t2.value;
14881 		/* non-overlapping ranges */
14882 		if (umin1 > umax2 || umax1 < umin2)
14883 			return 1;
14884 		if (smin1 > smax2 || smax1 < smin2)
14885 			return 1;
14886 		if (!is_jmp32) {
14887 			/* if 64-bit ranges are inconclusive, see if we can
14888 			 * utilize 32-bit subrange knowledge to eliminate
14889 			 * branches that can't be taken a priori
14890 			 */
14891 			if (reg1->u32_min_value > reg2->u32_max_value ||
14892 			    reg1->u32_max_value < reg2->u32_min_value)
14893 				return 1;
14894 			if (reg1->s32_min_value > reg2->s32_max_value ||
14895 			    reg1->s32_max_value < reg2->s32_min_value)
14896 				return 1;
14897 		}
14898 		break;
14899 	case BPF_JSET:
14900 		if (!is_reg_const(reg2, is_jmp32)) {
14901 			swap(reg1, reg2);
14902 			swap(t1, t2);
14903 		}
14904 		if (!is_reg_const(reg2, is_jmp32))
14905 			return -1;
14906 		if ((~t1.mask & t1.value) & t2.value)
14907 			return 1;
14908 		if (!((t1.mask | t1.value) & t2.value))
14909 			return 0;
14910 		break;
14911 	case BPF_JGT:
14912 		if (umin1 > umax2)
14913 			return 1;
14914 		else if (umax1 <= umin2)
14915 			return 0;
14916 		break;
14917 	case BPF_JSGT:
14918 		if (smin1 > smax2)
14919 			return 1;
14920 		else if (smax1 <= smin2)
14921 			return 0;
14922 		break;
14923 	case BPF_JLT:
14924 		if (umax1 < umin2)
14925 			return 1;
14926 		else if (umin1 >= umax2)
14927 			return 0;
14928 		break;
14929 	case BPF_JSLT:
14930 		if (smax1 < smin2)
14931 			return 1;
14932 		else if (smin1 >= smax2)
14933 			return 0;
14934 		break;
14935 	case BPF_JGE:
14936 		if (umin1 >= umax2)
14937 			return 1;
14938 		else if (umax1 < umin2)
14939 			return 0;
14940 		break;
14941 	case BPF_JSGE:
14942 		if (smin1 >= smax2)
14943 			return 1;
14944 		else if (smax1 < smin2)
14945 			return 0;
14946 		break;
14947 	case BPF_JLE:
14948 		if (umax1 <= umin2)
14949 			return 1;
14950 		else if (umin1 > umax2)
14951 			return 0;
14952 		break;
14953 	case BPF_JSLE:
14954 		if (smax1 <= smin2)
14955 			return 1;
14956 		else if (smin1 > smax2)
14957 			return 0;
14958 		break;
14959 	}
14960 
14961 	return -1;
14962 }
14963 
14964 static int flip_opcode(u32 opcode)
14965 {
14966 	/* How can we transform "a <op> b" into "b <op> a"? */
14967 	static const u8 opcode_flip[16] = {
14968 		/* these stay the same */
14969 		[BPF_JEQ  >> 4] = BPF_JEQ,
14970 		[BPF_JNE  >> 4] = BPF_JNE,
14971 		[BPF_JSET >> 4] = BPF_JSET,
14972 		/* these swap "lesser" and "greater" (L and G in the opcodes) */
14973 		[BPF_JGE  >> 4] = BPF_JLE,
14974 		[BPF_JGT  >> 4] = BPF_JLT,
14975 		[BPF_JLE  >> 4] = BPF_JGE,
14976 		[BPF_JLT  >> 4] = BPF_JGT,
14977 		[BPF_JSGE >> 4] = BPF_JSLE,
14978 		[BPF_JSGT >> 4] = BPF_JSLT,
14979 		[BPF_JSLE >> 4] = BPF_JSGE,
14980 		[BPF_JSLT >> 4] = BPF_JSGT
14981 	};
14982 	return opcode_flip[opcode >> 4];
14983 }
14984 
14985 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
14986 				   struct bpf_reg_state *src_reg,
14987 				   u8 opcode)
14988 {
14989 	struct bpf_reg_state *pkt;
14990 
14991 	if (src_reg->type == PTR_TO_PACKET_END) {
14992 		pkt = dst_reg;
14993 	} else if (dst_reg->type == PTR_TO_PACKET_END) {
14994 		pkt = src_reg;
14995 		opcode = flip_opcode(opcode);
14996 	} else {
14997 		return -1;
14998 	}
14999 
15000 	if (pkt->range >= 0)
15001 		return -1;
15002 
15003 	switch (opcode) {
15004 	case BPF_JLE:
15005 		/* pkt <= pkt_end */
15006 		fallthrough;
15007 	case BPF_JGT:
15008 		/* pkt > pkt_end */
15009 		if (pkt->range == BEYOND_PKT_END)
15010 			/* pkt has at last one extra byte beyond pkt_end */
15011 			return opcode == BPF_JGT;
15012 		break;
15013 	case BPF_JLT:
15014 		/* pkt < pkt_end */
15015 		fallthrough;
15016 	case BPF_JGE:
15017 		/* pkt >= pkt_end */
15018 		if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
15019 			return opcode == BPF_JGE;
15020 		break;
15021 	}
15022 	return -1;
15023 }
15024 
15025 /* compute branch direction of the expression "if (<reg1> opcode <reg2>) goto target;"
15026  * and return:
15027  *  1 - branch will be taken and "goto target" will be executed
15028  *  0 - branch will not be taken and fall-through to next insn
15029  * -1 - unknown. Example: "if (reg1 < 5)" is unknown when register value
15030  *      range [0,10]
15031  */
15032 static int is_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2,
15033 			   u8 opcode, bool is_jmp32)
15034 {
15035 	if (reg_is_pkt_pointer_any(reg1) && reg_is_pkt_pointer_any(reg2) && !is_jmp32)
15036 		return is_pkt_ptr_branch_taken(reg1, reg2, opcode);
15037 
15038 	if (__is_pointer_value(false, reg1) || __is_pointer_value(false, reg2)) {
15039 		u64 val;
15040 
15041 		/* arrange that reg2 is a scalar, and reg1 is a pointer */
15042 		if (!is_reg_const(reg2, is_jmp32)) {
15043 			opcode = flip_opcode(opcode);
15044 			swap(reg1, reg2);
15045 		}
15046 		/* and ensure that reg2 is a constant */
15047 		if (!is_reg_const(reg2, is_jmp32))
15048 			return -1;
15049 
15050 		if (!reg_not_null(reg1))
15051 			return -1;
15052 
15053 		/* If pointer is valid tests against zero will fail so we can
15054 		 * use this to direct branch taken.
15055 		 */
15056 		val = reg_const_value(reg2, is_jmp32);
15057 		if (val != 0)
15058 			return -1;
15059 
15060 		switch (opcode) {
15061 		case BPF_JEQ:
15062 			return 0;
15063 		case BPF_JNE:
15064 			return 1;
15065 		default:
15066 			return -1;
15067 		}
15068 	}
15069 
15070 	/* now deal with two scalars, but not necessarily constants */
15071 	return is_scalar_branch_taken(reg1, reg2, opcode, is_jmp32);
15072 }
15073 
15074 /* Opcode that corresponds to a *false* branch condition.
15075  * E.g., if r1 < r2, then reverse (false) condition is r1 >= r2
15076  */
15077 static u8 rev_opcode(u8 opcode)
15078 {
15079 	switch (opcode) {
15080 	case BPF_JEQ:		return BPF_JNE;
15081 	case BPF_JNE:		return BPF_JEQ;
15082 	/* JSET doesn't have it's reverse opcode in BPF, so add
15083 	 * BPF_X flag to denote the reverse of that operation
15084 	 */
15085 	case BPF_JSET:		return BPF_JSET | BPF_X;
15086 	case BPF_JSET | BPF_X:	return BPF_JSET;
15087 	case BPF_JGE:		return BPF_JLT;
15088 	case BPF_JGT:		return BPF_JLE;
15089 	case BPF_JLE:		return BPF_JGT;
15090 	case BPF_JLT:		return BPF_JGE;
15091 	case BPF_JSGE:		return BPF_JSLT;
15092 	case BPF_JSGT:		return BPF_JSLE;
15093 	case BPF_JSLE:		return BPF_JSGT;
15094 	case BPF_JSLT:		return BPF_JSGE;
15095 	default:		return 0;
15096 	}
15097 }
15098 
15099 /* Refine range knowledge for <reg1> <op> <reg>2 conditional operation. */
15100 static void regs_refine_cond_op(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2,
15101 				u8 opcode, bool is_jmp32)
15102 {
15103 	struct tnum t;
15104 	u64 val;
15105 
15106 	/* In case of GE/GT/SGE/JST, reuse LE/LT/SLE/SLT logic from below */
15107 	switch (opcode) {
15108 	case BPF_JGE:
15109 	case BPF_JGT:
15110 	case BPF_JSGE:
15111 	case BPF_JSGT:
15112 		opcode = flip_opcode(opcode);
15113 		swap(reg1, reg2);
15114 		break;
15115 	default:
15116 		break;
15117 	}
15118 
15119 	switch (opcode) {
15120 	case BPF_JEQ:
15121 		if (is_jmp32) {
15122 			reg1->u32_min_value = max(reg1->u32_min_value, reg2->u32_min_value);
15123 			reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value);
15124 			reg1->s32_min_value = max(reg1->s32_min_value, reg2->s32_min_value);
15125 			reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value);
15126 			reg2->u32_min_value = reg1->u32_min_value;
15127 			reg2->u32_max_value = reg1->u32_max_value;
15128 			reg2->s32_min_value = reg1->s32_min_value;
15129 			reg2->s32_max_value = reg1->s32_max_value;
15130 
15131 			t = tnum_intersect(tnum_subreg(reg1->var_off), tnum_subreg(reg2->var_off));
15132 			reg1->var_off = tnum_with_subreg(reg1->var_off, t);
15133 			reg2->var_off = tnum_with_subreg(reg2->var_off, t);
15134 		} else {
15135 			reg1->umin_value = max(reg1->umin_value, reg2->umin_value);
15136 			reg1->umax_value = min(reg1->umax_value, reg2->umax_value);
15137 			reg1->smin_value = max(reg1->smin_value, reg2->smin_value);
15138 			reg1->smax_value = min(reg1->smax_value, reg2->smax_value);
15139 			reg2->umin_value = reg1->umin_value;
15140 			reg2->umax_value = reg1->umax_value;
15141 			reg2->smin_value = reg1->smin_value;
15142 			reg2->smax_value = reg1->smax_value;
15143 
15144 			reg1->var_off = tnum_intersect(reg1->var_off, reg2->var_off);
15145 			reg2->var_off = reg1->var_off;
15146 		}
15147 		break;
15148 	case BPF_JNE:
15149 		if (!is_reg_const(reg2, is_jmp32))
15150 			swap(reg1, reg2);
15151 		if (!is_reg_const(reg2, is_jmp32))
15152 			break;
15153 
15154 		/* try to recompute the bound of reg1 if reg2 is a const and
15155 		 * is exactly the edge of reg1.
15156 		 */
15157 		val = reg_const_value(reg2, is_jmp32);
15158 		if (is_jmp32) {
15159 			/* u32_min_value is not equal to 0xffffffff at this point,
15160 			 * because otherwise u32_max_value is 0xffffffff as well,
15161 			 * in such a case both reg1 and reg2 would be constants,
15162 			 * jump would be predicted and reg_set_min_max() won't
15163 			 * be called.
15164 			 *
15165 			 * Same reasoning works for all {u,s}{min,max}{32,64} cases
15166 			 * below.
15167 			 */
15168 			if (reg1->u32_min_value == (u32)val)
15169 				reg1->u32_min_value++;
15170 			if (reg1->u32_max_value == (u32)val)
15171 				reg1->u32_max_value--;
15172 			if (reg1->s32_min_value == (s32)val)
15173 				reg1->s32_min_value++;
15174 			if (reg1->s32_max_value == (s32)val)
15175 				reg1->s32_max_value--;
15176 		} else {
15177 			if (reg1->umin_value == (u64)val)
15178 				reg1->umin_value++;
15179 			if (reg1->umax_value == (u64)val)
15180 				reg1->umax_value--;
15181 			if (reg1->smin_value == (s64)val)
15182 				reg1->smin_value++;
15183 			if (reg1->smax_value == (s64)val)
15184 				reg1->smax_value--;
15185 		}
15186 		break;
15187 	case BPF_JSET:
15188 		if (!is_reg_const(reg2, is_jmp32))
15189 			swap(reg1, reg2);
15190 		if (!is_reg_const(reg2, is_jmp32))
15191 			break;
15192 		val = reg_const_value(reg2, is_jmp32);
15193 		/* BPF_JSET (i.e., TRUE branch, *not* BPF_JSET | BPF_X)
15194 		 * requires single bit to learn something useful. E.g., if we
15195 		 * know that `r1 & 0x3` is true, then which bits (0, 1, or both)
15196 		 * are actually set? We can learn something definite only if
15197 		 * it's a single-bit value to begin with.
15198 		 *
15199 		 * BPF_JSET | BPF_X (i.e., negation of BPF_JSET) doesn't have
15200 		 * this restriction. I.e., !(r1 & 0x3) means neither bit 0 nor
15201 		 * bit 1 is set, which we can readily use in adjustments.
15202 		 */
15203 		if (!is_power_of_2(val))
15204 			break;
15205 		if (is_jmp32) {
15206 			t = tnum_or(tnum_subreg(reg1->var_off), tnum_const(val));
15207 			reg1->var_off = tnum_with_subreg(reg1->var_off, t);
15208 		} else {
15209 			reg1->var_off = tnum_or(reg1->var_off, tnum_const(val));
15210 		}
15211 		break;
15212 	case BPF_JSET | BPF_X: /* reverse of BPF_JSET, see rev_opcode() */
15213 		if (!is_reg_const(reg2, is_jmp32))
15214 			swap(reg1, reg2);
15215 		if (!is_reg_const(reg2, is_jmp32))
15216 			break;
15217 		val = reg_const_value(reg2, is_jmp32);
15218 		if (is_jmp32) {
15219 			t = tnum_and(tnum_subreg(reg1->var_off), tnum_const(~val));
15220 			reg1->var_off = tnum_with_subreg(reg1->var_off, t);
15221 		} else {
15222 			reg1->var_off = tnum_and(reg1->var_off, tnum_const(~val));
15223 		}
15224 		break;
15225 	case BPF_JLE:
15226 		if (is_jmp32) {
15227 			reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value);
15228 			reg2->u32_min_value = max(reg1->u32_min_value, reg2->u32_min_value);
15229 		} else {
15230 			reg1->umax_value = min(reg1->umax_value, reg2->umax_value);
15231 			reg2->umin_value = max(reg1->umin_value, reg2->umin_value);
15232 		}
15233 		break;
15234 	case BPF_JLT:
15235 		if (is_jmp32) {
15236 			reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value - 1);
15237 			reg2->u32_min_value = max(reg1->u32_min_value + 1, reg2->u32_min_value);
15238 		} else {
15239 			reg1->umax_value = min(reg1->umax_value, reg2->umax_value - 1);
15240 			reg2->umin_value = max(reg1->umin_value + 1, reg2->umin_value);
15241 		}
15242 		break;
15243 	case BPF_JSLE:
15244 		if (is_jmp32) {
15245 			reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value);
15246 			reg2->s32_min_value = max(reg1->s32_min_value, reg2->s32_min_value);
15247 		} else {
15248 			reg1->smax_value = min(reg1->smax_value, reg2->smax_value);
15249 			reg2->smin_value = max(reg1->smin_value, reg2->smin_value);
15250 		}
15251 		break;
15252 	case BPF_JSLT:
15253 		if (is_jmp32) {
15254 			reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value - 1);
15255 			reg2->s32_min_value = max(reg1->s32_min_value + 1, reg2->s32_min_value);
15256 		} else {
15257 			reg1->smax_value = min(reg1->smax_value, reg2->smax_value - 1);
15258 			reg2->smin_value = max(reg1->smin_value + 1, reg2->smin_value);
15259 		}
15260 		break;
15261 	default:
15262 		return;
15263 	}
15264 }
15265 
15266 /* Adjusts the register min/max values in the case that the dst_reg and
15267  * src_reg are both SCALAR_VALUE registers (or we are simply doing a BPF_K
15268  * check, in which case we have a fake SCALAR_VALUE representing insn->imm).
15269  * Technically we can do similar adjustments for pointers to the same object,
15270  * but we don't support that right now.
15271  */
15272 static int reg_set_min_max(struct bpf_verifier_env *env,
15273 			   struct bpf_reg_state *true_reg1,
15274 			   struct bpf_reg_state *true_reg2,
15275 			   struct bpf_reg_state *false_reg1,
15276 			   struct bpf_reg_state *false_reg2,
15277 			   u8 opcode, bool is_jmp32)
15278 {
15279 	int err;
15280 
15281 	/* If either register is a pointer, we can't learn anything about its
15282 	 * variable offset from the compare (unless they were a pointer into
15283 	 * the same object, but we don't bother with that).
15284 	 */
15285 	if (false_reg1->type != SCALAR_VALUE || false_reg2->type != SCALAR_VALUE)
15286 		return 0;
15287 
15288 	/* fallthrough (FALSE) branch */
15289 	regs_refine_cond_op(false_reg1, false_reg2, rev_opcode(opcode), is_jmp32);
15290 	reg_bounds_sync(false_reg1);
15291 	reg_bounds_sync(false_reg2);
15292 
15293 	/* jump (TRUE) branch */
15294 	regs_refine_cond_op(true_reg1, true_reg2, opcode, is_jmp32);
15295 	reg_bounds_sync(true_reg1);
15296 	reg_bounds_sync(true_reg2);
15297 
15298 	err = reg_bounds_sanity_check(env, true_reg1, "true_reg1");
15299 	err = err ?: reg_bounds_sanity_check(env, true_reg2, "true_reg2");
15300 	err = err ?: reg_bounds_sanity_check(env, false_reg1, "false_reg1");
15301 	err = err ?: reg_bounds_sanity_check(env, false_reg2, "false_reg2");
15302 	return err;
15303 }
15304 
15305 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
15306 				 struct bpf_reg_state *reg, u32 id,
15307 				 bool is_null)
15308 {
15309 	if (type_may_be_null(reg->type) && reg->id == id &&
15310 	    (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) {
15311 		/* Old offset (both fixed and variable parts) should have been
15312 		 * known-zero, because we don't allow pointer arithmetic on
15313 		 * pointers that might be NULL. If we see this happening, don't
15314 		 * convert the register.
15315 		 *
15316 		 * But in some cases, some helpers that return local kptrs
15317 		 * advance offset for the returned pointer. In those cases, it
15318 		 * is fine to expect to see reg->off.
15319 		 */
15320 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0)))
15321 			return;
15322 		if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) &&
15323 		    WARN_ON_ONCE(reg->off))
15324 			return;
15325 
15326 		if (is_null) {
15327 			reg->type = SCALAR_VALUE;
15328 			/* We don't need id and ref_obj_id from this point
15329 			 * onwards anymore, thus we should better reset it,
15330 			 * so that state pruning has chances to take effect.
15331 			 */
15332 			reg->id = 0;
15333 			reg->ref_obj_id = 0;
15334 
15335 			return;
15336 		}
15337 
15338 		mark_ptr_not_null_reg(reg);
15339 
15340 		if (!reg_may_point_to_spin_lock(reg)) {
15341 			/* For not-NULL ptr, reg->ref_obj_id will be reset
15342 			 * in release_reference().
15343 			 *
15344 			 * reg->id is still used by spin_lock ptr. Other
15345 			 * than spin_lock ptr type, reg->id can be reset.
15346 			 */
15347 			reg->id = 0;
15348 		}
15349 	}
15350 }
15351 
15352 /* The logic is similar to find_good_pkt_pointers(), both could eventually
15353  * be folded together at some point.
15354  */
15355 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
15356 				  bool is_null)
15357 {
15358 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
15359 	struct bpf_reg_state *regs = state->regs, *reg;
15360 	u32 ref_obj_id = regs[regno].ref_obj_id;
15361 	u32 id = regs[regno].id;
15362 
15363 	if (ref_obj_id && ref_obj_id == id && is_null)
15364 		/* regs[regno] is in the " == NULL" branch.
15365 		 * No one could have freed the reference state before
15366 		 * doing the NULL check.
15367 		 */
15368 		WARN_ON_ONCE(release_reference_state(state, id));
15369 
15370 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
15371 		mark_ptr_or_null_reg(state, reg, id, is_null);
15372 	}));
15373 }
15374 
15375 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
15376 				   struct bpf_reg_state *dst_reg,
15377 				   struct bpf_reg_state *src_reg,
15378 				   struct bpf_verifier_state *this_branch,
15379 				   struct bpf_verifier_state *other_branch)
15380 {
15381 	if (BPF_SRC(insn->code) != BPF_X)
15382 		return false;
15383 
15384 	/* Pointers are always 64-bit. */
15385 	if (BPF_CLASS(insn->code) == BPF_JMP32)
15386 		return false;
15387 
15388 	switch (BPF_OP(insn->code)) {
15389 	case BPF_JGT:
15390 		if ((dst_reg->type == PTR_TO_PACKET &&
15391 		     src_reg->type == PTR_TO_PACKET_END) ||
15392 		    (dst_reg->type == PTR_TO_PACKET_META &&
15393 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
15394 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
15395 			find_good_pkt_pointers(this_branch, dst_reg,
15396 					       dst_reg->type, false);
15397 			mark_pkt_end(other_branch, insn->dst_reg, true);
15398 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
15399 			    src_reg->type == PTR_TO_PACKET) ||
15400 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
15401 			    src_reg->type == PTR_TO_PACKET_META)) {
15402 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
15403 			find_good_pkt_pointers(other_branch, src_reg,
15404 					       src_reg->type, true);
15405 			mark_pkt_end(this_branch, insn->src_reg, false);
15406 		} else {
15407 			return false;
15408 		}
15409 		break;
15410 	case BPF_JLT:
15411 		if ((dst_reg->type == PTR_TO_PACKET &&
15412 		     src_reg->type == PTR_TO_PACKET_END) ||
15413 		    (dst_reg->type == PTR_TO_PACKET_META &&
15414 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
15415 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
15416 			find_good_pkt_pointers(other_branch, dst_reg,
15417 					       dst_reg->type, true);
15418 			mark_pkt_end(this_branch, insn->dst_reg, false);
15419 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
15420 			    src_reg->type == PTR_TO_PACKET) ||
15421 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
15422 			    src_reg->type == PTR_TO_PACKET_META)) {
15423 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
15424 			find_good_pkt_pointers(this_branch, src_reg,
15425 					       src_reg->type, false);
15426 			mark_pkt_end(other_branch, insn->src_reg, true);
15427 		} else {
15428 			return false;
15429 		}
15430 		break;
15431 	case BPF_JGE:
15432 		if ((dst_reg->type == PTR_TO_PACKET &&
15433 		     src_reg->type == PTR_TO_PACKET_END) ||
15434 		    (dst_reg->type == PTR_TO_PACKET_META &&
15435 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
15436 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
15437 			find_good_pkt_pointers(this_branch, dst_reg,
15438 					       dst_reg->type, true);
15439 			mark_pkt_end(other_branch, insn->dst_reg, false);
15440 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
15441 			    src_reg->type == PTR_TO_PACKET) ||
15442 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
15443 			    src_reg->type == PTR_TO_PACKET_META)) {
15444 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
15445 			find_good_pkt_pointers(other_branch, src_reg,
15446 					       src_reg->type, false);
15447 			mark_pkt_end(this_branch, insn->src_reg, true);
15448 		} else {
15449 			return false;
15450 		}
15451 		break;
15452 	case BPF_JLE:
15453 		if ((dst_reg->type == PTR_TO_PACKET &&
15454 		     src_reg->type == PTR_TO_PACKET_END) ||
15455 		    (dst_reg->type == PTR_TO_PACKET_META &&
15456 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
15457 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
15458 			find_good_pkt_pointers(other_branch, dst_reg,
15459 					       dst_reg->type, false);
15460 			mark_pkt_end(this_branch, insn->dst_reg, true);
15461 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
15462 			    src_reg->type == PTR_TO_PACKET) ||
15463 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
15464 			    src_reg->type == PTR_TO_PACKET_META)) {
15465 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
15466 			find_good_pkt_pointers(this_branch, src_reg,
15467 					       src_reg->type, true);
15468 			mark_pkt_end(other_branch, insn->src_reg, false);
15469 		} else {
15470 			return false;
15471 		}
15472 		break;
15473 	default:
15474 		return false;
15475 	}
15476 
15477 	return true;
15478 }
15479 
15480 static void __collect_linked_regs(struct linked_regs *reg_set, struct bpf_reg_state *reg,
15481 				  u32 id, u32 frameno, u32 spi_or_reg, bool is_reg)
15482 {
15483 	struct linked_reg *e;
15484 
15485 	if (reg->type != SCALAR_VALUE || (reg->id & ~BPF_ADD_CONST) != id)
15486 		return;
15487 
15488 	e = linked_regs_push(reg_set);
15489 	if (e) {
15490 		e->frameno = frameno;
15491 		e->is_reg = is_reg;
15492 		e->regno = spi_or_reg;
15493 	} else {
15494 		reg->id = 0;
15495 	}
15496 }
15497 
15498 /* For all R being scalar registers or spilled scalar registers
15499  * in verifier state, save R in linked_regs if R->id == id.
15500  * If there are too many Rs sharing same id, reset id for leftover Rs.
15501  */
15502 static void collect_linked_regs(struct bpf_verifier_state *vstate, u32 id,
15503 				struct linked_regs *linked_regs)
15504 {
15505 	struct bpf_func_state *func;
15506 	struct bpf_reg_state *reg;
15507 	int i, j;
15508 
15509 	id = id & ~BPF_ADD_CONST;
15510 	for (i = vstate->curframe; i >= 0; i--) {
15511 		func = vstate->frame[i];
15512 		for (j = 0; j < BPF_REG_FP; j++) {
15513 			reg = &func->regs[j];
15514 			__collect_linked_regs(linked_regs, reg, id, i, j, true);
15515 		}
15516 		for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
15517 			if (!is_spilled_reg(&func->stack[j]))
15518 				continue;
15519 			reg = &func->stack[j].spilled_ptr;
15520 			__collect_linked_regs(linked_regs, reg, id, i, j, false);
15521 		}
15522 	}
15523 }
15524 
15525 /* For all R in linked_regs, copy known_reg range into R
15526  * if R->id == known_reg->id.
15527  */
15528 static void sync_linked_regs(struct bpf_verifier_state *vstate, struct bpf_reg_state *known_reg,
15529 			     struct linked_regs *linked_regs)
15530 {
15531 	struct bpf_reg_state fake_reg;
15532 	struct bpf_reg_state *reg;
15533 	struct linked_reg *e;
15534 	int i;
15535 
15536 	for (i = 0; i < linked_regs->cnt; ++i) {
15537 		e = &linked_regs->entries[i];
15538 		reg = e->is_reg ? &vstate->frame[e->frameno]->regs[e->regno]
15539 				: &vstate->frame[e->frameno]->stack[e->spi].spilled_ptr;
15540 		if (reg->type != SCALAR_VALUE || reg == known_reg)
15541 			continue;
15542 		if ((reg->id & ~BPF_ADD_CONST) != (known_reg->id & ~BPF_ADD_CONST))
15543 			continue;
15544 		if ((!(reg->id & BPF_ADD_CONST) && !(known_reg->id & BPF_ADD_CONST)) ||
15545 		    reg->off == known_reg->off) {
15546 			s32 saved_subreg_def = reg->subreg_def;
15547 
15548 			copy_register_state(reg, known_reg);
15549 			reg->subreg_def = saved_subreg_def;
15550 		} else {
15551 			s32 saved_subreg_def = reg->subreg_def;
15552 			s32 saved_off = reg->off;
15553 
15554 			fake_reg.type = SCALAR_VALUE;
15555 			__mark_reg_known(&fake_reg, (s32)reg->off - (s32)known_reg->off);
15556 
15557 			/* reg = known_reg; reg += delta */
15558 			copy_register_state(reg, known_reg);
15559 			/*
15560 			 * Must preserve off, id and add_const flag,
15561 			 * otherwise another sync_linked_regs() will be incorrect.
15562 			 */
15563 			reg->off = saved_off;
15564 			reg->subreg_def = saved_subreg_def;
15565 
15566 			scalar32_min_max_add(reg, &fake_reg);
15567 			scalar_min_max_add(reg, &fake_reg);
15568 			reg->var_off = tnum_add(reg->var_off, fake_reg.var_off);
15569 		}
15570 	}
15571 }
15572 
15573 static int check_cond_jmp_op(struct bpf_verifier_env *env,
15574 			     struct bpf_insn *insn, int *insn_idx)
15575 {
15576 	struct bpf_verifier_state *this_branch = env->cur_state;
15577 	struct bpf_verifier_state *other_branch;
15578 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
15579 	struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
15580 	struct bpf_reg_state *eq_branch_regs;
15581 	struct linked_regs linked_regs = {};
15582 	u8 opcode = BPF_OP(insn->code);
15583 	bool is_jmp32;
15584 	int pred = -1;
15585 	int err;
15586 
15587 	/* Only conditional jumps are expected to reach here. */
15588 	if (opcode == BPF_JA || opcode > BPF_JCOND) {
15589 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
15590 		return -EINVAL;
15591 	}
15592 
15593 	if (opcode == BPF_JCOND) {
15594 		struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st;
15595 		int idx = *insn_idx;
15596 
15597 		if (insn->code != (BPF_JMP | BPF_JCOND) ||
15598 		    insn->src_reg != BPF_MAY_GOTO ||
15599 		    insn->dst_reg || insn->imm || insn->off == 0) {
15600 			verbose(env, "invalid may_goto off %d imm %d\n",
15601 				insn->off, insn->imm);
15602 			return -EINVAL;
15603 		}
15604 		prev_st = find_prev_entry(env, cur_st->parent, idx);
15605 
15606 		/* branch out 'fallthrough' insn as a new state to explore */
15607 		queued_st = push_stack(env, idx + 1, idx, false);
15608 		if (!queued_st)
15609 			return -ENOMEM;
15610 
15611 		queued_st->may_goto_depth++;
15612 		if (prev_st)
15613 			widen_imprecise_scalars(env, prev_st, queued_st);
15614 		*insn_idx += insn->off;
15615 		return 0;
15616 	}
15617 
15618 	/* check src2 operand */
15619 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
15620 	if (err)
15621 		return err;
15622 
15623 	dst_reg = &regs[insn->dst_reg];
15624 	if (BPF_SRC(insn->code) == BPF_X) {
15625 		if (insn->imm != 0) {
15626 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
15627 			return -EINVAL;
15628 		}
15629 
15630 		/* check src1 operand */
15631 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
15632 		if (err)
15633 			return err;
15634 
15635 		src_reg = &regs[insn->src_reg];
15636 		if (!(reg_is_pkt_pointer_any(dst_reg) && reg_is_pkt_pointer_any(src_reg)) &&
15637 		    is_pointer_value(env, insn->src_reg)) {
15638 			verbose(env, "R%d pointer comparison prohibited\n",
15639 				insn->src_reg);
15640 			return -EACCES;
15641 		}
15642 	} else {
15643 		if (insn->src_reg != BPF_REG_0) {
15644 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
15645 			return -EINVAL;
15646 		}
15647 		src_reg = &env->fake_reg[0];
15648 		memset(src_reg, 0, sizeof(*src_reg));
15649 		src_reg->type = SCALAR_VALUE;
15650 		__mark_reg_known(src_reg, insn->imm);
15651 	}
15652 
15653 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
15654 	pred = is_branch_taken(dst_reg, src_reg, opcode, is_jmp32);
15655 	if (pred >= 0) {
15656 		/* If we get here with a dst_reg pointer type it is because
15657 		 * above is_branch_taken() special cased the 0 comparison.
15658 		 */
15659 		if (!__is_pointer_value(false, dst_reg))
15660 			err = mark_chain_precision(env, insn->dst_reg);
15661 		if (BPF_SRC(insn->code) == BPF_X && !err &&
15662 		    !__is_pointer_value(false, src_reg))
15663 			err = mark_chain_precision(env, insn->src_reg);
15664 		if (err)
15665 			return err;
15666 	}
15667 
15668 	if (pred == 1) {
15669 		/* Only follow the goto, ignore fall-through. If needed, push
15670 		 * the fall-through branch for simulation under speculative
15671 		 * execution.
15672 		 */
15673 		if (!env->bypass_spec_v1 &&
15674 		    !sanitize_speculative_path(env, insn, *insn_idx + 1,
15675 					       *insn_idx))
15676 			return -EFAULT;
15677 		if (env->log.level & BPF_LOG_LEVEL)
15678 			print_insn_state(env, this_branch->frame[this_branch->curframe]);
15679 		*insn_idx += insn->off;
15680 		return 0;
15681 	} else if (pred == 0) {
15682 		/* Only follow the fall-through branch, since that's where the
15683 		 * program will go. If needed, push the goto branch for
15684 		 * simulation under speculative execution.
15685 		 */
15686 		if (!env->bypass_spec_v1 &&
15687 		    !sanitize_speculative_path(env, insn,
15688 					       *insn_idx + insn->off + 1,
15689 					       *insn_idx))
15690 			return -EFAULT;
15691 		if (env->log.level & BPF_LOG_LEVEL)
15692 			print_insn_state(env, this_branch->frame[this_branch->curframe]);
15693 		return 0;
15694 	}
15695 
15696 	/* Push scalar registers sharing same ID to jump history,
15697 	 * do this before creating 'other_branch', so that both
15698 	 * 'this_branch' and 'other_branch' share this history
15699 	 * if parent state is created.
15700 	 */
15701 	if (BPF_SRC(insn->code) == BPF_X && src_reg->type == SCALAR_VALUE && src_reg->id)
15702 		collect_linked_regs(this_branch, src_reg->id, &linked_regs);
15703 	if (dst_reg->type == SCALAR_VALUE && dst_reg->id)
15704 		collect_linked_regs(this_branch, dst_reg->id, &linked_regs);
15705 	if (linked_regs.cnt > 1) {
15706 		err = push_insn_history(env, this_branch, 0, linked_regs_pack(&linked_regs));
15707 		if (err)
15708 			return err;
15709 	}
15710 
15711 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
15712 				  false);
15713 	if (!other_branch)
15714 		return -EFAULT;
15715 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
15716 
15717 	if (BPF_SRC(insn->code) == BPF_X) {
15718 		err = reg_set_min_max(env,
15719 				      &other_branch_regs[insn->dst_reg],
15720 				      &other_branch_regs[insn->src_reg],
15721 				      dst_reg, src_reg, opcode, is_jmp32);
15722 	} else /* BPF_SRC(insn->code) == BPF_K */ {
15723 		/* reg_set_min_max() can mangle the fake_reg. Make a copy
15724 		 * so that these are two different memory locations. The
15725 		 * src_reg is not used beyond here in context of K.
15726 		 */
15727 		memcpy(&env->fake_reg[1], &env->fake_reg[0],
15728 		       sizeof(env->fake_reg[0]));
15729 		err = reg_set_min_max(env,
15730 				      &other_branch_regs[insn->dst_reg],
15731 				      &env->fake_reg[0],
15732 				      dst_reg, &env->fake_reg[1],
15733 				      opcode, is_jmp32);
15734 	}
15735 	if (err)
15736 		return err;
15737 
15738 	if (BPF_SRC(insn->code) == BPF_X &&
15739 	    src_reg->type == SCALAR_VALUE && src_reg->id &&
15740 	    !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
15741 		sync_linked_regs(this_branch, src_reg, &linked_regs);
15742 		sync_linked_regs(other_branch, &other_branch_regs[insn->src_reg], &linked_regs);
15743 	}
15744 	if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
15745 	    !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
15746 		sync_linked_regs(this_branch, dst_reg, &linked_regs);
15747 		sync_linked_regs(other_branch, &other_branch_regs[insn->dst_reg], &linked_regs);
15748 	}
15749 
15750 	/* if one pointer register is compared to another pointer
15751 	 * register check if PTR_MAYBE_NULL could be lifted.
15752 	 * E.g. register A - maybe null
15753 	 *      register B - not null
15754 	 * for JNE A, B, ... - A is not null in the false branch;
15755 	 * for JEQ A, B, ... - A is not null in the true branch.
15756 	 *
15757 	 * Since PTR_TO_BTF_ID points to a kernel struct that does
15758 	 * not need to be null checked by the BPF program, i.e.,
15759 	 * could be null even without PTR_MAYBE_NULL marking, so
15760 	 * only propagate nullness when neither reg is that type.
15761 	 */
15762 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X &&
15763 	    __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) &&
15764 	    type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) &&
15765 	    base_type(src_reg->type) != PTR_TO_BTF_ID &&
15766 	    base_type(dst_reg->type) != PTR_TO_BTF_ID) {
15767 		eq_branch_regs = NULL;
15768 		switch (opcode) {
15769 		case BPF_JEQ:
15770 			eq_branch_regs = other_branch_regs;
15771 			break;
15772 		case BPF_JNE:
15773 			eq_branch_regs = regs;
15774 			break;
15775 		default:
15776 			/* do nothing */
15777 			break;
15778 		}
15779 		if (eq_branch_regs) {
15780 			if (type_may_be_null(src_reg->type))
15781 				mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]);
15782 			else
15783 				mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]);
15784 		}
15785 	}
15786 
15787 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
15788 	 * NOTE: these optimizations below are related with pointer comparison
15789 	 *       which will never be JMP32.
15790 	 */
15791 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
15792 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
15793 	    type_may_be_null(dst_reg->type)) {
15794 		/* Mark all identical registers in each branch as either
15795 		 * safe or unknown depending R == 0 or R != 0 conditional.
15796 		 */
15797 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
15798 				      opcode == BPF_JNE);
15799 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
15800 				      opcode == BPF_JEQ);
15801 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
15802 					   this_branch, other_branch) &&
15803 		   is_pointer_value(env, insn->dst_reg)) {
15804 		verbose(env, "R%d pointer comparison prohibited\n",
15805 			insn->dst_reg);
15806 		return -EACCES;
15807 	}
15808 	if (env->log.level & BPF_LOG_LEVEL)
15809 		print_insn_state(env, this_branch->frame[this_branch->curframe]);
15810 	return 0;
15811 }
15812 
15813 /* verify BPF_LD_IMM64 instruction */
15814 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
15815 {
15816 	struct bpf_insn_aux_data *aux = cur_aux(env);
15817 	struct bpf_reg_state *regs = cur_regs(env);
15818 	struct bpf_reg_state *dst_reg;
15819 	struct bpf_map *map;
15820 	int err;
15821 
15822 	if (BPF_SIZE(insn->code) != BPF_DW) {
15823 		verbose(env, "invalid BPF_LD_IMM insn\n");
15824 		return -EINVAL;
15825 	}
15826 	if (insn->off != 0) {
15827 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
15828 		return -EINVAL;
15829 	}
15830 
15831 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
15832 	if (err)
15833 		return err;
15834 
15835 	dst_reg = &regs[insn->dst_reg];
15836 	if (insn->src_reg == 0) {
15837 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
15838 
15839 		dst_reg->type = SCALAR_VALUE;
15840 		__mark_reg_known(&regs[insn->dst_reg], imm);
15841 		return 0;
15842 	}
15843 
15844 	/* All special src_reg cases are listed below. From this point onwards
15845 	 * we either succeed and assign a corresponding dst_reg->type after
15846 	 * zeroing the offset, or fail and reject the program.
15847 	 */
15848 	mark_reg_known_zero(env, regs, insn->dst_reg);
15849 
15850 	if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
15851 		dst_reg->type = aux->btf_var.reg_type;
15852 		switch (base_type(dst_reg->type)) {
15853 		case PTR_TO_MEM:
15854 			dst_reg->mem_size = aux->btf_var.mem_size;
15855 			break;
15856 		case PTR_TO_BTF_ID:
15857 			dst_reg->btf = aux->btf_var.btf;
15858 			dst_reg->btf_id = aux->btf_var.btf_id;
15859 			break;
15860 		default:
15861 			verbose(env, "bpf verifier is misconfigured\n");
15862 			return -EFAULT;
15863 		}
15864 		return 0;
15865 	}
15866 
15867 	if (insn->src_reg == BPF_PSEUDO_FUNC) {
15868 		struct bpf_prog_aux *aux = env->prog->aux;
15869 		u32 subprogno = find_subprog(env,
15870 					     env->insn_idx + insn->imm + 1);
15871 
15872 		if (!aux->func_info) {
15873 			verbose(env, "missing btf func_info\n");
15874 			return -EINVAL;
15875 		}
15876 		if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
15877 			verbose(env, "callback function not static\n");
15878 			return -EINVAL;
15879 		}
15880 
15881 		dst_reg->type = PTR_TO_FUNC;
15882 		dst_reg->subprogno = subprogno;
15883 		return 0;
15884 	}
15885 
15886 	map = env->used_maps[aux->map_index];
15887 	dst_reg->map_ptr = map;
15888 
15889 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
15890 	    insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
15891 		if (map->map_type == BPF_MAP_TYPE_ARENA) {
15892 			__mark_reg_unknown(env, dst_reg);
15893 			return 0;
15894 		}
15895 		dst_reg->type = PTR_TO_MAP_VALUE;
15896 		dst_reg->off = aux->map_off;
15897 		WARN_ON_ONCE(map->max_entries != 1);
15898 		/* We want reg->id to be same (0) as map_value is not distinct */
15899 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
15900 		   insn->src_reg == BPF_PSEUDO_MAP_IDX) {
15901 		dst_reg->type = CONST_PTR_TO_MAP;
15902 	} else {
15903 		verbose(env, "bpf verifier is misconfigured\n");
15904 		return -EINVAL;
15905 	}
15906 
15907 	return 0;
15908 }
15909 
15910 static bool may_access_skb(enum bpf_prog_type type)
15911 {
15912 	switch (type) {
15913 	case BPF_PROG_TYPE_SOCKET_FILTER:
15914 	case BPF_PROG_TYPE_SCHED_CLS:
15915 	case BPF_PROG_TYPE_SCHED_ACT:
15916 		return true;
15917 	default:
15918 		return false;
15919 	}
15920 }
15921 
15922 /* verify safety of LD_ABS|LD_IND instructions:
15923  * - they can only appear in the programs where ctx == skb
15924  * - since they are wrappers of function calls, they scratch R1-R5 registers,
15925  *   preserve R6-R9, and store return value into R0
15926  *
15927  * Implicit input:
15928  *   ctx == skb == R6 == CTX
15929  *
15930  * Explicit input:
15931  *   SRC == any register
15932  *   IMM == 32-bit immediate
15933  *
15934  * Output:
15935  *   R0 - 8/16/32-bit skb data converted to cpu endianness
15936  */
15937 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
15938 {
15939 	struct bpf_reg_state *regs = cur_regs(env);
15940 	static const int ctx_reg = BPF_REG_6;
15941 	u8 mode = BPF_MODE(insn->code);
15942 	int i, err;
15943 
15944 	if (!may_access_skb(resolve_prog_type(env->prog))) {
15945 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
15946 		return -EINVAL;
15947 	}
15948 
15949 	if (!env->ops->gen_ld_abs) {
15950 		verbose(env, "bpf verifier is misconfigured\n");
15951 		return -EINVAL;
15952 	}
15953 
15954 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
15955 	    BPF_SIZE(insn->code) == BPF_DW ||
15956 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
15957 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
15958 		return -EINVAL;
15959 	}
15960 
15961 	/* check whether implicit source operand (register R6) is readable */
15962 	err = check_reg_arg(env, ctx_reg, SRC_OP);
15963 	if (err)
15964 		return err;
15965 
15966 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
15967 	 * gen_ld_abs() may terminate the program at runtime, leading to
15968 	 * reference leak.
15969 	 */
15970 	err = check_resource_leak(env, false, true, "BPF_LD_[ABS|IND]");
15971 	if (err)
15972 		return err;
15973 
15974 	if (regs[ctx_reg].type != PTR_TO_CTX) {
15975 		verbose(env,
15976 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
15977 		return -EINVAL;
15978 	}
15979 
15980 	if (mode == BPF_IND) {
15981 		/* check explicit source operand */
15982 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
15983 		if (err)
15984 			return err;
15985 	}
15986 
15987 	err = check_ptr_off_reg(env, &regs[ctx_reg], ctx_reg);
15988 	if (err < 0)
15989 		return err;
15990 
15991 	/* reset caller saved regs to unreadable */
15992 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
15993 		mark_reg_not_init(env, regs, caller_saved[i]);
15994 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
15995 	}
15996 
15997 	/* mark destination R0 register as readable, since it contains
15998 	 * the value fetched from the packet.
15999 	 * Already marked as written above.
16000 	 */
16001 	mark_reg_unknown(env, regs, BPF_REG_0);
16002 	/* ld_abs load up to 32-bit skb data. */
16003 	regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
16004 	return 0;
16005 }
16006 
16007 static int check_return_code(struct bpf_verifier_env *env, int regno, const char *reg_name)
16008 {
16009 	const char *exit_ctx = "At program exit";
16010 	struct tnum enforce_attach_type_range = tnum_unknown;
16011 	const struct bpf_prog *prog = env->prog;
16012 	struct bpf_reg_state *reg;
16013 	struct bpf_retval_range range = retval_range(0, 1);
16014 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
16015 	int err;
16016 	struct bpf_func_state *frame = env->cur_state->frame[0];
16017 	const bool is_subprog = frame->subprogno;
16018 	bool return_32bit = false;
16019 
16020 	/* LSM and struct_ops func-ptr's return type could be "void" */
16021 	if (!is_subprog || frame->in_exception_callback_fn) {
16022 		switch (prog_type) {
16023 		case BPF_PROG_TYPE_LSM:
16024 			if (prog->expected_attach_type == BPF_LSM_CGROUP)
16025 				/* See below, can be 0 or 0-1 depending on hook. */
16026 				break;
16027 			fallthrough;
16028 		case BPF_PROG_TYPE_STRUCT_OPS:
16029 			if (!prog->aux->attach_func_proto->type)
16030 				return 0;
16031 			break;
16032 		default:
16033 			break;
16034 		}
16035 	}
16036 
16037 	/* eBPF calling convention is such that R0 is used
16038 	 * to return the value from eBPF program.
16039 	 * Make sure that it's readable at this time
16040 	 * of bpf_exit, which means that program wrote
16041 	 * something into it earlier
16042 	 */
16043 	err = check_reg_arg(env, regno, SRC_OP);
16044 	if (err)
16045 		return err;
16046 
16047 	if (is_pointer_value(env, regno)) {
16048 		verbose(env, "R%d leaks addr as return value\n", regno);
16049 		return -EACCES;
16050 	}
16051 
16052 	reg = cur_regs(env) + regno;
16053 
16054 	if (frame->in_async_callback_fn) {
16055 		/* enforce return zero from async callbacks like timer */
16056 		exit_ctx = "At async callback return";
16057 		range = retval_range(0, 0);
16058 		goto enforce_retval;
16059 	}
16060 
16061 	if (is_subprog && !frame->in_exception_callback_fn) {
16062 		if (reg->type != SCALAR_VALUE) {
16063 			verbose(env, "At subprogram exit the register R%d is not a scalar value (%s)\n",
16064 				regno, reg_type_str(env, reg->type));
16065 			return -EINVAL;
16066 		}
16067 		return 0;
16068 	}
16069 
16070 	switch (prog_type) {
16071 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
16072 		if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
16073 		    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
16074 		    env->prog->expected_attach_type == BPF_CGROUP_UNIX_RECVMSG ||
16075 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
16076 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
16077 		    env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETPEERNAME ||
16078 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
16079 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME ||
16080 		    env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETSOCKNAME)
16081 			range = retval_range(1, 1);
16082 		if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
16083 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
16084 			range = retval_range(0, 3);
16085 		break;
16086 	case BPF_PROG_TYPE_CGROUP_SKB:
16087 		if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
16088 			range = retval_range(0, 3);
16089 			enforce_attach_type_range = tnum_range(2, 3);
16090 		}
16091 		break;
16092 	case BPF_PROG_TYPE_CGROUP_SOCK:
16093 	case BPF_PROG_TYPE_SOCK_OPS:
16094 	case BPF_PROG_TYPE_CGROUP_DEVICE:
16095 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
16096 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
16097 		break;
16098 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
16099 		if (!env->prog->aux->attach_btf_id)
16100 			return 0;
16101 		range = retval_range(0, 0);
16102 		break;
16103 	case BPF_PROG_TYPE_TRACING:
16104 		switch (env->prog->expected_attach_type) {
16105 		case BPF_TRACE_FENTRY:
16106 		case BPF_TRACE_FEXIT:
16107 			range = retval_range(0, 0);
16108 			break;
16109 		case BPF_TRACE_RAW_TP:
16110 		case BPF_MODIFY_RETURN:
16111 			return 0;
16112 		case BPF_TRACE_ITER:
16113 			break;
16114 		default:
16115 			return -ENOTSUPP;
16116 		}
16117 		break;
16118 	case BPF_PROG_TYPE_KPROBE:
16119 		switch (env->prog->expected_attach_type) {
16120 		case BPF_TRACE_KPROBE_SESSION:
16121 		case BPF_TRACE_UPROBE_SESSION:
16122 			range = retval_range(0, 1);
16123 			break;
16124 		default:
16125 			return 0;
16126 		}
16127 		break;
16128 	case BPF_PROG_TYPE_SK_LOOKUP:
16129 		range = retval_range(SK_DROP, SK_PASS);
16130 		break;
16131 
16132 	case BPF_PROG_TYPE_LSM:
16133 		if (env->prog->expected_attach_type != BPF_LSM_CGROUP) {
16134 			/* no range found, any return value is allowed */
16135 			if (!get_func_retval_range(env->prog, &range))
16136 				return 0;
16137 			/* no restricted range, any return value is allowed */
16138 			if (range.minval == S32_MIN && range.maxval == S32_MAX)
16139 				return 0;
16140 			return_32bit = true;
16141 		} else if (!env->prog->aux->attach_func_proto->type) {
16142 			/* Make sure programs that attach to void
16143 			 * hooks don't try to modify return value.
16144 			 */
16145 			range = retval_range(1, 1);
16146 		}
16147 		break;
16148 
16149 	case BPF_PROG_TYPE_NETFILTER:
16150 		range = retval_range(NF_DROP, NF_ACCEPT);
16151 		break;
16152 	case BPF_PROG_TYPE_EXT:
16153 		/* freplace program can return anything as its return value
16154 		 * depends on the to-be-replaced kernel func or bpf program.
16155 		 */
16156 	default:
16157 		return 0;
16158 	}
16159 
16160 enforce_retval:
16161 	if (reg->type != SCALAR_VALUE) {
16162 		verbose(env, "%s the register R%d is not a known value (%s)\n",
16163 			exit_ctx, regno, reg_type_str(env, reg->type));
16164 		return -EINVAL;
16165 	}
16166 
16167 	err = mark_chain_precision(env, regno);
16168 	if (err)
16169 		return err;
16170 
16171 	if (!retval_range_within(range, reg, return_32bit)) {
16172 		verbose_invalid_scalar(env, reg, range, exit_ctx, reg_name);
16173 		if (!is_subprog &&
16174 		    prog->expected_attach_type == BPF_LSM_CGROUP &&
16175 		    prog_type == BPF_PROG_TYPE_LSM &&
16176 		    !prog->aux->attach_func_proto->type)
16177 			verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
16178 		return -EINVAL;
16179 	}
16180 
16181 	if (!tnum_is_unknown(enforce_attach_type_range) &&
16182 	    tnum_in(enforce_attach_type_range, reg->var_off))
16183 		env->prog->enforce_expected_attach_type = 1;
16184 	return 0;
16185 }
16186 
16187 static void mark_subprog_changes_pkt_data(struct bpf_verifier_env *env, int off)
16188 {
16189 	struct bpf_subprog_info *subprog;
16190 
16191 	subprog = find_containing_subprog(env, off);
16192 	subprog->changes_pkt_data = true;
16193 }
16194 
16195 /* 't' is an index of a call-site.
16196  * 'w' is a callee entry point.
16197  * Eventually this function would be called when env->cfg.insn_state[w] == EXPLORED.
16198  * Rely on DFS traversal order and absence of recursive calls to guarantee that
16199  * callee's change_pkt_data marks would be correct at that moment.
16200  */
16201 static void merge_callee_effects(struct bpf_verifier_env *env, int t, int w)
16202 {
16203 	struct bpf_subprog_info *caller, *callee;
16204 
16205 	caller = find_containing_subprog(env, t);
16206 	callee = find_containing_subprog(env, w);
16207 	caller->changes_pkt_data |= callee->changes_pkt_data;
16208 }
16209 
16210 /* non-recursive DFS pseudo code
16211  * 1  procedure DFS-iterative(G,v):
16212  * 2      label v as discovered
16213  * 3      let S be a stack
16214  * 4      S.push(v)
16215  * 5      while S is not empty
16216  * 6            t <- S.peek()
16217  * 7            if t is what we're looking for:
16218  * 8                return t
16219  * 9            for all edges e in G.adjacentEdges(t) do
16220  * 10               if edge e is already labelled
16221  * 11                   continue with the next edge
16222  * 12               w <- G.adjacentVertex(t,e)
16223  * 13               if vertex w is not discovered and not explored
16224  * 14                   label e as tree-edge
16225  * 15                   label w as discovered
16226  * 16                   S.push(w)
16227  * 17                   continue at 5
16228  * 18               else if vertex w is discovered
16229  * 19                   label e as back-edge
16230  * 20               else
16231  * 21                   // vertex w is explored
16232  * 22                   label e as forward- or cross-edge
16233  * 23           label t as explored
16234  * 24           S.pop()
16235  *
16236  * convention:
16237  * 0x10 - discovered
16238  * 0x11 - discovered and fall-through edge labelled
16239  * 0x12 - discovered and fall-through and branch edges labelled
16240  * 0x20 - explored
16241  */
16242 
16243 enum {
16244 	DISCOVERED = 0x10,
16245 	EXPLORED = 0x20,
16246 	FALLTHROUGH = 1,
16247 	BRANCH = 2,
16248 };
16249 
16250 static void mark_prune_point(struct bpf_verifier_env *env, int idx)
16251 {
16252 	env->insn_aux_data[idx].prune_point = true;
16253 }
16254 
16255 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx)
16256 {
16257 	return env->insn_aux_data[insn_idx].prune_point;
16258 }
16259 
16260 static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx)
16261 {
16262 	env->insn_aux_data[idx].force_checkpoint = true;
16263 }
16264 
16265 static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx)
16266 {
16267 	return env->insn_aux_data[insn_idx].force_checkpoint;
16268 }
16269 
16270 static void mark_calls_callback(struct bpf_verifier_env *env, int idx)
16271 {
16272 	env->insn_aux_data[idx].calls_callback = true;
16273 }
16274 
16275 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx)
16276 {
16277 	return env->insn_aux_data[insn_idx].calls_callback;
16278 }
16279 
16280 enum {
16281 	DONE_EXPLORING = 0,
16282 	KEEP_EXPLORING = 1,
16283 };
16284 
16285 /* t, w, e - match pseudo-code above:
16286  * t - index of current instruction
16287  * w - next instruction
16288  * e - edge
16289  */
16290 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
16291 {
16292 	int *insn_stack = env->cfg.insn_stack;
16293 	int *insn_state = env->cfg.insn_state;
16294 
16295 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
16296 		return DONE_EXPLORING;
16297 
16298 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
16299 		return DONE_EXPLORING;
16300 
16301 	if (w < 0 || w >= env->prog->len) {
16302 		verbose_linfo(env, t, "%d: ", t);
16303 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
16304 		return -EINVAL;
16305 	}
16306 
16307 	if (e == BRANCH) {
16308 		/* mark branch target for state pruning */
16309 		mark_prune_point(env, w);
16310 		mark_jmp_point(env, w);
16311 	}
16312 
16313 	if (insn_state[w] == 0) {
16314 		/* tree-edge */
16315 		insn_state[t] = DISCOVERED | e;
16316 		insn_state[w] = DISCOVERED;
16317 		if (env->cfg.cur_stack >= env->prog->len)
16318 			return -E2BIG;
16319 		insn_stack[env->cfg.cur_stack++] = w;
16320 		return KEEP_EXPLORING;
16321 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
16322 		if (env->bpf_capable)
16323 			return DONE_EXPLORING;
16324 		verbose_linfo(env, t, "%d: ", t);
16325 		verbose_linfo(env, w, "%d: ", w);
16326 		verbose(env, "back-edge from insn %d to %d\n", t, w);
16327 		return -EINVAL;
16328 	} else if (insn_state[w] == EXPLORED) {
16329 		/* forward- or cross-edge */
16330 		insn_state[t] = DISCOVERED | e;
16331 	} else {
16332 		verbose(env, "insn state internal bug\n");
16333 		return -EFAULT;
16334 	}
16335 	return DONE_EXPLORING;
16336 }
16337 
16338 static int visit_func_call_insn(int t, struct bpf_insn *insns,
16339 				struct bpf_verifier_env *env,
16340 				bool visit_callee)
16341 {
16342 	int ret, insn_sz;
16343 	int w;
16344 
16345 	insn_sz = bpf_is_ldimm64(&insns[t]) ? 2 : 1;
16346 	ret = push_insn(t, t + insn_sz, FALLTHROUGH, env);
16347 	if (ret)
16348 		return ret;
16349 
16350 	mark_prune_point(env, t + insn_sz);
16351 	/* when we exit from subprog, we need to record non-linear history */
16352 	mark_jmp_point(env, t + insn_sz);
16353 
16354 	if (visit_callee) {
16355 		w = t + insns[t].imm + 1;
16356 		mark_prune_point(env, t);
16357 		merge_callee_effects(env, t, w);
16358 		ret = push_insn(t, w, BRANCH, env);
16359 	}
16360 	return ret;
16361 }
16362 
16363 /* Bitmask with 1s for all caller saved registers */
16364 #define ALL_CALLER_SAVED_REGS ((1u << CALLER_SAVED_REGS) - 1)
16365 
16366 /* Return a bitmask specifying which caller saved registers are
16367  * clobbered by a call to a helper *as if* this helper follows
16368  * bpf_fastcall contract:
16369  * - includes R0 if function is non-void;
16370  * - includes R1-R5 if corresponding parameter has is described
16371  *   in the function prototype.
16372  */
16373 static u32 helper_fastcall_clobber_mask(const struct bpf_func_proto *fn)
16374 {
16375 	u32 mask;
16376 	int i;
16377 
16378 	mask = 0;
16379 	if (fn->ret_type != RET_VOID)
16380 		mask |= BIT(BPF_REG_0);
16381 	for (i = 0; i < ARRAY_SIZE(fn->arg_type); ++i)
16382 		if (fn->arg_type[i] != ARG_DONTCARE)
16383 			mask |= BIT(BPF_REG_1 + i);
16384 	return mask;
16385 }
16386 
16387 /* True if do_misc_fixups() replaces calls to helper number 'imm',
16388  * replacement patch is presumed to follow bpf_fastcall contract
16389  * (see mark_fastcall_pattern_for_call() below).
16390  */
16391 static bool verifier_inlines_helper_call(struct bpf_verifier_env *env, s32 imm)
16392 {
16393 	switch (imm) {
16394 #ifdef CONFIG_X86_64
16395 	case BPF_FUNC_get_smp_processor_id:
16396 		return env->prog->jit_requested && bpf_jit_supports_percpu_insn();
16397 #endif
16398 	default:
16399 		return false;
16400 	}
16401 }
16402 
16403 /* Same as helper_fastcall_clobber_mask() but for kfuncs, see comment above */
16404 static u32 kfunc_fastcall_clobber_mask(struct bpf_kfunc_call_arg_meta *meta)
16405 {
16406 	u32 vlen, i, mask;
16407 
16408 	vlen = btf_type_vlen(meta->func_proto);
16409 	mask = 0;
16410 	if (!btf_type_is_void(btf_type_by_id(meta->btf, meta->func_proto->type)))
16411 		mask |= BIT(BPF_REG_0);
16412 	for (i = 0; i < vlen; ++i)
16413 		mask |= BIT(BPF_REG_1 + i);
16414 	return mask;
16415 }
16416 
16417 /* Same as verifier_inlines_helper_call() but for kfuncs, see comment above */
16418 static bool is_fastcall_kfunc_call(struct bpf_kfunc_call_arg_meta *meta)
16419 {
16420 	return meta->kfunc_flags & KF_FASTCALL;
16421 }
16422 
16423 /* LLVM define a bpf_fastcall function attribute.
16424  * This attribute means that function scratches only some of
16425  * the caller saved registers defined by ABI.
16426  * For BPF the set of such registers could be defined as follows:
16427  * - R0 is scratched only if function is non-void;
16428  * - R1-R5 are scratched only if corresponding parameter type is defined
16429  *   in the function prototype.
16430  *
16431  * The contract between kernel and clang allows to simultaneously use
16432  * such functions and maintain backwards compatibility with old
16433  * kernels that don't understand bpf_fastcall calls:
16434  *
16435  * - for bpf_fastcall calls clang allocates registers as-if relevant r0-r5
16436  *   registers are not scratched by the call;
16437  *
16438  * - as a post-processing step, clang visits each bpf_fastcall call and adds
16439  *   spill/fill for every live r0-r5;
16440  *
16441  * - stack offsets used for the spill/fill are allocated as lowest
16442  *   stack offsets in whole function and are not used for any other
16443  *   purposes;
16444  *
16445  * - when kernel loads a program, it looks for such patterns
16446  *   (bpf_fastcall function surrounded by spills/fills) and checks if
16447  *   spill/fill stack offsets are used exclusively in fastcall patterns;
16448  *
16449  * - if so, and if verifier or current JIT inlines the call to the
16450  *   bpf_fastcall function (e.g. a helper call), kernel removes unnecessary
16451  *   spill/fill pairs;
16452  *
16453  * - when old kernel loads a program, presence of spill/fill pairs
16454  *   keeps BPF program valid, albeit slightly less efficient.
16455  *
16456  * For example:
16457  *
16458  *   r1 = 1;
16459  *   r2 = 2;
16460  *   *(u64 *)(r10 - 8)  = r1;            r1 = 1;
16461  *   *(u64 *)(r10 - 16) = r2;            r2 = 2;
16462  *   call %[to_be_inlined]         -->   call %[to_be_inlined]
16463  *   r2 = *(u64 *)(r10 - 16);            r0 = r1;
16464  *   r1 = *(u64 *)(r10 - 8);             r0 += r2;
16465  *   r0 = r1;                            exit;
16466  *   r0 += r2;
16467  *   exit;
16468  *
16469  * The purpose of mark_fastcall_pattern_for_call is to:
16470  * - look for such patterns;
16471  * - mark spill and fill instructions in env->insn_aux_data[*].fastcall_pattern;
16472  * - mark set env->insn_aux_data[*].fastcall_spills_num for call instruction;
16473  * - update env->subprog_info[*]->fastcall_stack_off to find an offset
16474  *   at which bpf_fastcall spill/fill stack slots start;
16475  * - update env->subprog_info[*]->keep_fastcall_stack.
16476  *
16477  * The .fastcall_pattern and .fastcall_stack_off are used by
16478  * check_fastcall_stack_contract() to check if every stack access to
16479  * fastcall spill/fill stack slot originates from spill/fill
16480  * instructions, members of fastcall patterns.
16481  *
16482  * If such condition holds true for a subprogram, fastcall patterns could
16483  * be rewritten by remove_fastcall_spills_fills().
16484  * Otherwise bpf_fastcall patterns are not changed in the subprogram
16485  * (code, presumably, generated by an older clang version).
16486  *
16487  * For example, it is *not* safe to remove spill/fill below:
16488  *
16489  *   r1 = 1;
16490  *   *(u64 *)(r10 - 8)  = r1;            r1 = 1;
16491  *   call %[to_be_inlined]         -->   call %[to_be_inlined]
16492  *   r1 = *(u64 *)(r10 - 8);             r0 = *(u64 *)(r10 - 8);  <---- wrong !!!
16493  *   r0 = *(u64 *)(r10 - 8);             r0 += r1;
16494  *   r0 += r1;                           exit;
16495  *   exit;
16496  */
16497 static void mark_fastcall_pattern_for_call(struct bpf_verifier_env *env,
16498 					   struct bpf_subprog_info *subprog,
16499 					   int insn_idx, s16 lowest_off)
16500 {
16501 	struct bpf_insn *insns = env->prog->insnsi, *stx, *ldx;
16502 	struct bpf_insn *call = &env->prog->insnsi[insn_idx];
16503 	const struct bpf_func_proto *fn;
16504 	u32 clobbered_regs_mask = ALL_CALLER_SAVED_REGS;
16505 	u32 expected_regs_mask;
16506 	bool can_be_inlined = false;
16507 	s16 off;
16508 	int i;
16509 
16510 	if (bpf_helper_call(call)) {
16511 		if (get_helper_proto(env, call->imm, &fn) < 0)
16512 			/* error would be reported later */
16513 			return;
16514 		clobbered_regs_mask = helper_fastcall_clobber_mask(fn);
16515 		can_be_inlined = fn->allow_fastcall &&
16516 				 (verifier_inlines_helper_call(env, call->imm) ||
16517 				  bpf_jit_inlines_helper_call(call->imm));
16518 	}
16519 
16520 	if (bpf_pseudo_kfunc_call(call)) {
16521 		struct bpf_kfunc_call_arg_meta meta;
16522 		int err;
16523 
16524 		err = fetch_kfunc_meta(env, call, &meta, NULL);
16525 		if (err < 0)
16526 			/* error would be reported later */
16527 			return;
16528 
16529 		clobbered_regs_mask = kfunc_fastcall_clobber_mask(&meta);
16530 		can_be_inlined = is_fastcall_kfunc_call(&meta);
16531 	}
16532 
16533 	if (clobbered_regs_mask == ALL_CALLER_SAVED_REGS)
16534 		return;
16535 
16536 	/* e.g. if helper call clobbers r{0,1}, expect r{2,3,4,5} in the pattern */
16537 	expected_regs_mask = ~clobbered_regs_mask & ALL_CALLER_SAVED_REGS;
16538 
16539 	/* match pairs of form:
16540 	 *
16541 	 * *(u64 *)(r10 - Y) = rX   (where Y % 8 == 0)
16542 	 * ...
16543 	 * call %[to_be_inlined]
16544 	 * ...
16545 	 * rX = *(u64 *)(r10 - Y)
16546 	 */
16547 	for (i = 1, off = lowest_off; i <= ARRAY_SIZE(caller_saved); ++i, off += BPF_REG_SIZE) {
16548 		if (insn_idx - i < 0 || insn_idx + i >= env->prog->len)
16549 			break;
16550 		stx = &insns[insn_idx - i];
16551 		ldx = &insns[insn_idx + i];
16552 		/* must be a stack spill/fill pair */
16553 		if (stx->code != (BPF_STX | BPF_MEM | BPF_DW) ||
16554 		    ldx->code != (BPF_LDX | BPF_MEM | BPF_DW) ||
16555 		    stx->dst_reg != BPF_REG_10 ||
16556 		    ldx->src_reg != BPF_REG_10)
16557 			break;
16558 		/* must be a spill/fill for the same reg */
16559 		if (stx->src_reg != ldx->dst_reg)
16560 			break;
16561 		/* must be one of the previously unseen registers */
16562 		if ((BIT(stx->src_reg) & expected_regs_mask) == 0)
16563 			break;
16564 		/* must be a spill/fill for the same expected offset,
16565 		 * no need to check offset alignment, BPF_DW stack access
16566 		 * is always 8-byte aligned.
16567 		 */
16568 		if (stx->off != off || ldx->off != off)
16569 			break;
16570 		expected_regs_mask &= ~BIT(stx->src_reg);
16571 		env->insn_aux_data[insn_idx - i].fastcall_pattern = 1;
16572 		env->insn_aux_data[insn_idx + i].fastcall_pattern = 1;
16573 	}
16574 	if (i == 1)
16575 		return;
16576 
16577 	/* Conditionally set 'fastcall_spills_num' to allow forward
16578 	 * compatibility when more helper functions are marked as
16579 	 * bpf_fastcall at compile time than current kernel supports, e.g:
16580 	 *
16581 	 *   1: *(u64 *)(r10 - 8) = r1
16582 	 *   2: call A                  ;; assume A is bpf_fastcall for current kernel
16583 	 *   3: r1 = *(u64 *)(r10 - 8)
16584 	 *   4: *(u64 *)(r10 - 8) = r1
16585 	 *   5: call B                  ;; assume B is not bpf_fastcall for current kernel
16586 	 *   6: r1 = *(u64 *)(r10 - 8)
16587 	 *
16588 	 * There is no need to block bpf_fastcall rewrite for such program.
16589 	 * Set 'fastcall_pattern' for both calls to keep check_fastcall_stack_contract() happy,
16590 	 * don't set 'fastcall_spills_num' for call B so that remove_fastcall_spills_fills()
16591 	 * does not remove spill/fill pair {4,6}.
16592 	 */
16593 	if (can_be_inlined)
16594 		env->insn_aux_data[insn_idx].fastcall_spills_num = i - 1;
16595 	else
16596 		subprog->keep_fastcall_stack = 1;
16597 	subprog->fastcall_stack_off = min(subprog->fastcall_stack_off, off);
16598 }
16599 
16600 static int mark_fastcall_patterns(struct bpf_verifier_env *env)
16601 {
16602 	struct bpf_subprog_info *subprog = env->subprog_info;
16603 	struct bpf_insn *insn;
16604 	s16 lowest_off;
16605 	int s, i;
16606 
16607 	for (s = 0; s < env->subprog_cnt; ++s, ++subprog) {
16608 		/* find lowest stack spill offset used in this subprog */
16609 		lowest_off = 0;
16610 		for (i = subprog->start; i < (subprog + 1)->start; ++i) {
16611 			insn = env->prog->insnsi + i;
16612 			if (insn->code != (BPF_STX | BPF_MEM | BPF_DW) ||
16613 			    insn->dst_reg != BPF_REG_10)
16614 				continue;
16615 			lowest_off = min(lowest_off, insn->off);
16616 		}
16617 		/* use this offset to find fastcall patterns */
16618 		for (i = subprog->start; i < (subprog + 1)->start; ++i) {
16619 			insn = env->prog->insnsi + i;
16620 			if (insn->code != (BPF_JMP | BPF_CALL))
16621 				continue;
16622 			mark_fastcall_pattern_for_call(env, subprog, i, lowest_off);
16623 		}
16624 	}
16625 	return 0;
16626 }
16627 
16628 /* Visits the instruction at index t and returns one of the following:
16629  *  < 0 - an error occurred
16630  *  DONE_EXPLORING - the instruction was fully explored
16631  *  KEEP_EXPLORING - there is still work to be done before it is fully explored
16632  */
16633 static int visit_insn(int t, struct bpf_verifier_env *env)
16634 {
16635 	struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t];
16636 	int ret, off, insn_sz;
16637 
16638 	if (bpf_pseudo_func(insn))
16639 		return visit_func_call_insn(t, insns, env, true);
16640 
16641 	/* All non-branch instructions have a single fall-through edge. */
16642 	if (BPF_CLASS(insn->code) != BPF_JMP &&
16643 	    BPF_CLASS(insn->code) != BPF_JMP32) {
16644 		insn_sz = bpf_is_ldimm64(insn) ? 2 : 1;
16645 		return push_insn(t, t + insn_sz, FALLTHROUGH, env);
16646 	}
16647 
16648 	switch (BPF_OP(insn->code)) {
16649 	case BPF_EXIT:
16650 		return DONE_EXPLORING;
16651 
16652 	case BPF_CALL:
16653 		if (is_async_callback_calling_insn(insn))
16654 			/* Mark this call insn as a prune point to trigger
16655 			 * is_state_visited() check before call itself is
16656 			 * processed by __check_func_call(). Otherwise new
16657 			 * async state will be pushed for further exploration.
16658 			 */
16659 			mark_prune_point(env, t);
16660 		/* For functions that invoke callbacks it is not known how many times
16661 		 * callback would be called. Verifier models callback calling functions
16662 		 * by repeatedly visiting callback bodies and returning to origin call
16663 		 * instruction.
16664 		 * In order to stop such iteration verifier needs to identify when a
16665 		 * state identical some state from a previous iteration is reached.
16666 		 * Check below forces creation of checkpoint before callback calling
16667 		 * instruction to allow search for such identical states.
16668 		 */
16669 		if (is_sync_callback_calling_insn(insn)) {
16670 			mark_calls_callback(env, t);
16671 			mark_force_checkpoint(env, t);
16672 			mark_prune_point(env, t);
16673 			mark_jmp_point(env, t);
16674 		}
16675 		if (bpf_helper_call(insn) && bpf_helper_changes_pkt_data(insn->imm))
16676 			mark_subprog_changes_pkt_data(env, t);
16677 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
16678 			struct bpf_kfunc_call_arg_meta meta;
16679 
16680 			ret = fetch_kfunc_meta(env, insn, &meta, NULL);
16681 			if (ret == 0 && is_iter_next_kfunc(&meta)) {
16682 				mark_prune_point(env, t);
16683 				/* Checking and saving state checkpoints at iter_next() call
16684 				 * is crucial for fast convergence of open-coded iterator loop
16685 				 * logic, so we need to force it. If we don't do that,
16686 				 * is_state_visited() might skip saving a checkpoint, causing
16687 				 * unnecessarily long sequence of not checkpointed
16688 				 * instructions and jumps, leading to exhaustion of jump
16689 				 * history buffer, and potentially other undesired outcomes.
16690 				 * It is expected that with correct open-coded iterators
16691 				 * convergence will happen quickly, so we don't run a risk of
16692 				 * exhausting memory.
16693 				 */
16694 				mark_force_checkpoint(env, t);
16695 			}
16696 		}
16697 		return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL);
16698 
16699 	case BPF_JA:
16700 		if (BPF_SRC(insn->code) != BPF_K)
16701 			return -EINVAL;
16702 
16703 		if (BPF_CLASS(insn->code) == BPF_JMP)
16704 			off = insn->off;
16705 		else
16706 			off = insn->imm;
16707 
16708 		/* unconditional jump with single edge */
16709 		ret = push_insn(t, t + off + 1, FALLTHROUGH, env);
16710 		if (ret)
16711 			return ret;
16712 
16713 		mark_prune_point(env, t + off + 1);
16714 		mark_jmp_point(env, t + off + 1);
16715 
16716 		return ret;
16717 
16718 	default:
16719 		/* conditional jump with two edges */
16720 		mark_prune_point(env, t);
16721 		if (is_may_goto_insn(insn))
16722 			mark_force_checkpoint(env, t);
16723 
16724 		ret = push_insn(t, t + 1, FALLTHROUGH, env);
16725 		if (ret)
16726 			return ret;
16727 
16728 		return push_insn(t, t + insn->off + 1, BRANCH, env);
16729 	}
16730 }
16731 
16732 /* non-recursive depth-first-search to detect loops in BPF program
16733  * loop == back-edge in directed graph
16734  */
16735 static int check_cfg(struct bpf_verifier_env *env)
16736 {
16737 	int insn_cnt = env->prog->len;
16738 	int *insn_stack, *insn_state;
16739 	int ex_insn_beg, i, ret = 0;
16740 	bool ex_done = false;
16741 
16742 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
16743 	if (!insn_state)
16744 		return -ENOMEM;
16745 
16746 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
16747 	if (!insn_stack) {
16748 		kvfree(insn_state);
16749 		return -ENOMEM;
16750 	}
16751 
16752 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
16753 	insn_stack[0] = 0; /* 0 is the first instruction */
16754 	env->cfg.cur_stack = 1;
16755 
16756 walk_cfg:
16757 	while (env->cfg.cur_stack > 0) {
16758 		int t = insn_stack[env->cfg.cur_stack - 1];
16759 
16760 		ret = visit_insn(t, env);
16761 		switch (ret) {
16762 		case DONE_EXPLORING:
16763 			insn_state[t] = EXPLORED;
16764 			env->cfg.cur_stack--;
16765 			break;
16766 		case KEEP_EXPLORING:
16767 			break;
16768 		default:
16769 			if (ret > 0) {
16770 				verbose(env, "visit_insn internal bug\n");
16771 				ret = -EFAULT;
16772 			}
16773 			goto err_free;
16774 		}
16775 	}
16776 
16777 	if (env->cfg.cur_stack < 0) {
16778 		verbose(env, "pop stack internal bug\n");
16779 		ret = -EFAULT;
16780 		goto err_free;
16781 	}
16782 
16783 	if (env->exception_callback_subprog && !ex_done) {
16784 		ex_insn_beg = env->subprog_info[env->exception_callback_subprog].start;
16785 
16786 		insn_state[ex_insn_beg] = DISCOVERED;
16787 		insn_stack[0] = ex_insn_beg;
16788 		env->cfg.cur_stack = 1;
16789 		ex_done = true;
16790 		goto walk_cfg;
16791 	}
16792 
16793 	for (i = 0; i < insn_cnt; i++) {
16794 		struct bpf_insn *insn = &env->prog->insnsi[i];
16795 
16796 		if (insn_state[i] != EXPLORED) {
16797 			verbose(env, "unreachable insn %d\n", i);
16798 			ret = -EINVAL;
16799 			goto err_free;
16800 		}
16801 		if (bpf_is_ldimm64(insn)) {
16802 			if (insn_state[i + 1] != 0) {
16803 				verbose(env, "jump into the middle of ldimm64 insn %d\n", i);
16804 				ret = -EINVAL;
16805 				goto err_free;
16806 			}
16807 			i++; /* skip second half of ldimm64 */
16808 		}
16809 	}
16810 	ret = 0; /* cfg looks good */
16811 	env->prog->aux->changes_pkt_data = env->subprog_info[0].changes_pkt_data;
16812 
16813 err_free:
16814 	kvfree(insn_state);
16815 	kvfree(insn_stack);
16816 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
16817 	return ret;
16818 }
16819 
16820 static int check_abnormal_return(struct bpf_verifier_env *env)
16821 {
16822 	int i;
16823 
16824 	for (i = 1; i < env->subprog_cnt; i++) {
16825 		if (env->subprog_info[i].has_ld_abs) {
16826 			verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
16827 			return -EINVAL;
16828 		}
16829 		if (env->subprog_info[i].has_tail_call) {
16830 			verbose(env, "tail_call is not allowed in subprogs without BTF\n");
16831 			return -EINVAL;
16832 		}
16833 	}
16834 	return 0;
16835 }
16836 
16837 /* The minimum supported BTF func info size */
16838 #define MIN_BPF_FUNCINFO_SIZE	8
16839 #define MAX_FUNCINFO_REC_SIZE	252
16840 
16841 static int check_btf_func_early(struct bpf_verifier_env *env,
16842 				const union bpf_attr *attr,
16843 				bpfptr_t uattr)
16844 {
16845 	u32 krec_size = sizeof(struct bpf_func_info);
16846 	const struct btf_type *type, *func_proto;
16847 	u32 i, nfuncs, urec_size, min_size;
16848 	struct bpf_func_info *krecord;
16849 	struct bpf_prog *prog;
16850 	const struct btf *btf;
16851 	u32 prev_offset = 0;
16852 	bpfptr_t urecord;
16853 	int ret = -ENOMEM;
16854 
16855 	nfuncs = attr->func_info_cnt;
16856 	if (!nfuncs) {
16857 		if (check_abnormal_return(env))
16858 			return -EINVAL;
16859 		return 0;
16860 	}
16861 
16862 	urec_size = attr->func_info_rec_size;
16863 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
16864 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
16865 	    urec_size % sizeof(u32)) {
16866 		verbose(env, "invalid func info rec size %u\n", urec_size);
16867 		return -EINVAL;
16868 	}
16869 
16870 	prog = env->prog;
16871 	btf = prog->aux->btf;
16872 
16873 	urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
16874 	min_size = min_t(u32, krec_size, urec_size);
16875 
16876 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
16877 	if (!krecord)
16878 		return -ENOMEM;
16879 
16880 	for (i = 0; i < nfuncs; i++) {
16881 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
16882 		if (ret) {
16883 			if (ret == -E2BIG) {
16884 				verbose(env, "nonzero tailing record in func info");
16885 				/* set the size kernel expects so loader can zero
16886 				 * out the rest of the record.
16887 				 */
16888 				if (copy_to_bpfptr_offset(uattr,
16889 							  offsetof(union bpf_attr, func_info_rec_size),
16890 							  &min_size, sizeof(min_size)))
16891 					ret = -EFAULT;
16892 			}
16893 			goto err_free;
16894 		}
16895 
16896 		if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
16897 			ret = -EFAULT;
16898 			goto err_free;
16899 		}
16900 
16901 		/* check insn_off */
16902 		ret = -EINVAL;
16903 		if (i == 0) {
16904 			if (krecord[i].insn_off) {
16905 				verbose(env,
16906 					"nonzero insn_off %u for the first func info record",
16907 					krecord[i].insn_off);
16908 				goto err_free;
16909 			}
16910 		} else if (krecord[i].insn_off <= prev_offset) {
16911 			verbose(env,
16912 				"same or smaller insn offset (%u) than previous func info record (%u)",
16913 				krecord[i].insn_off, prev_offset);
16914 			goto err_free;
16915 		}
16916 
16917 		/* check type_id */
16918 		type = btf_type_by_id(btf, krecord[i].type_id);
16919 		if (!type || !btf_type_is_func(type)) {
16920 			verbose(env, "invalid type id %d in func info",
16921 				krecord[i].type_id);
16922 			goto err_free;
16923 		}
16924 
16925 		func_proto = btf_type_by_id(btf, type->type);
16926 		if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
16927 			/* btf_func_check() already verified it during BTF load */
16928 			goto err_free;
16929 
16930 		prev_offset = krecord[i].insn_off;
16931 		bpfptr_add(&urecord, urec_size);
16932 	}
16933 
16934 	prog->aux->func_info = krecord;
16935 	prog->aux->func_info_cnt = nfuncs;
16936 	return 0;
16937 
16938 err_free:
16939 	kvfree(krecord);
16940 	return ret;
16941 }
16942 
16943 static int check_btf_func(struct bpf_verifier_env *env,
16944 			  const union bpf_attr *attr,
16945 			  bpfptr_t uattr)
16946 {
16947 	const struct btf_type *type, *func_proto, *ret_type;
16948 	u32 i, nfuncs, urec_size;
16949 	struct bpf_func_info *krecord;
16950 	struct bpf_func_info_aux *info_aux = NULL;
16951 	struct bpf_prog *prog;
16952 	const struct btf *btf;
16953 	bpfptr_t urecord;
16954 	bool scalar_return;
16955 	int ret = -ENOMEM;
16956 
16957 	nfuncs = attr->func_info_cnt;
16958 	if (!nfuncs) {
16959 		if (check_abnormal_return(env))
16960 			return -EINVAL;
16961 		return 0;
16962 	}
16963 	if (nfuncs != env->subprog_cnt) {
16964 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
16965 		return -EINVAL;
16966 	}
16967 
16968 	urec_size = attr->func_info_rec_size;
16969 
16970 	prog = env->prog;
16971 	btf = prog->aux->btf;
16972 
16973 	urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
16974 
16975 	krecord = prog->aux->func_info;
16976 	info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
16977 	if (!info_aux)
16978 		return -ENOMEM;
16979 
16980 	for (i = 0; i < nfuncs; i++) {
16981 		/* check insn_off */
16982 		ret = -EINVAL;
16983 
16984 		if (env->subprog_info[i].start != krecord[i].insn_off) {
16985 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
16986 			goto err_free;
16987 		}
16988 
16989 		/* Already checked type_id */
16990 		type = btf_type_by_id(btf, krecord[i].type_id);
16991 		info_aux[i].linkage = BTF_INFO_VLEN(type->info);
16992 		/* Already checked func_proto */
16993 		func_proto = btf_type_by_id(btf, type->type);
16994 
16995 		ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
16996 		scalar_return =
16997 			btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type);
16998 		if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
16999 			verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
17000 			goto err_free;
17001 		}
17002 		if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
17003 			verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
17004 			goto err_free;
17005 		}
17006 
17007 		bpfptr_add(&urecord, urec_size);
17008 	}
17009 
17010 	prog->aux->func_info_aux = info_aux;
17011 	return 0;
17012 
17013 err_free:
17014 	kfree(info_aux);
17015 	return ret;
17016 }
17017 
17018 static void adjust_btf_func(struct bpf_verifier_env *env)
17019 {
17020 	struct bpf_prog_aux *aux = env->prog->aux;
17021 	int i;
17022 
17023 	if (!aux->func_info)
17024 		return;
17025 
17026 	/* func_info is not available for hidden subprogs */
17027 	for (i = 0; i < env->subprog_cnt - env->hidden_subprog_cnt; i++)
17028 		aux->func_info[i].insn_off = env->subprog_info[i].start;
17029 }
17030 
17031 #define MIN_BPF_LINEINFO_SIZE	offsetofend(struct bpf_line_info, line_col)
17032 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
17033 
17034 static int check_btf_line(struct bpf_verifier_env *env,
17035 			  const union bpf_attr *attr,
17036 			  bpfptr_t uattr)
17037 {
17038 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
17039 	struct bpf_subprog_info *sub;
17040 	struct bpf_line_info *linfo;
17041 	struct bpf_prog *prog;
17042 	const struct btf *btf;
17043 	bpfptr_t ulinfo;
17044 	int err;
17045 
17046 	nr_linfo = attr->line_info_cnt;
17047 	if (!nr_linfo)
17048 		return 0;
17049 	if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
17050 		return -EINVAL;
17051 
17052 	rec_size = attr->line_info_rec_size;
17053 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
17054 	    rec_size > MAX_LINEINFO_REC_SIZE ||
17055 	    rec_size & (sizeof(u32) - 1))
17056 		return -EINVAL;
17057 
17058 	/* Need to zero it in case the userspace may
17059 	 * pass in a smaller bpf_line_info object.
17060 	 */
17061 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
17062 			 GFP_KERNEL | __GFP_NOWARN);
17063 	if (!linfo)
17064 		return -ENOMEM;
17065 
17066 	prog = env->prog;
17067 	btf = prog->aux->btf;
17068 
17069 	s = 0;
17070 	sub = env->subprog_info;
17071 	ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
17072 	expected_size = sizeof(struct bpf_line_info);
17073 	ncopy = min_t(u32, expected_size, rec_size);
17074 	for (i = 0; i < nr_linfo; i++) {
17075 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
17076 		if (err) {
17077 			if (err == -E2BIG) {
17078 				verbose(env, "nonzero tailing record in line_info");
17079 				if (copy_to_bpfptr_offset(uattr,
17080 							  offsetof(union bpf_attr, line_info_rec_size),
17081 							  &expected_size, sizeof(expected_size)))
17082 					err = -EFAULT;
17083 			}
17084 			goto err_free;
17085 		}
17086 
17087 		if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
17088 			err = -EFAULT;
17089 			goto err_free;
17090 		}
17091 
17092 		/*
17093 		 * Check insn_off to ensure
17094 		 * 1) strictly increasing AND
17095 		 * 2) bounded by prog->len
17096 		 *
17097 		 * The linfo[0].insn_off == 0 check logically falls into
17098 		 * the later "missing bpf_line_info for func..." case
17099 		 * because the first linfo[0].insn_off must be the
17100 		 * first sub also and the first sub must have
17101 		 * subprog_info[0].start == 0.
17102 		 */
17103 		if ((i && linfo[i].insn_off <= prev_offset) ||
17104 		    linfo[i].insn_off >= prog->len) {
17105 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
17106 				i, linfo[i].insn_off, prev_offset,
17107 				prog->len);
17108 			err = -EINVAL;
17109 			goto err_free;
17110 		}
17111 
17112 		if (!prog->insnsi[linfo[i].insn_off].code) {
17113 			verbose(env,
17114 				"Invalid insn code at line_info[%u].insn_off\n",
17115 				i);
17116 			err = -EINVAL;
17117 			goto err_free;
17118 		}
17119 
17120 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
17121 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
17122 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
17123 			err = -EINVAL;
17124 			goto err_free;
17125 		}
17126 
17127 		if (s != env->subprog_cnt) {
17128 			if (linfo[i].insn_off == sub[s].start) {
17129 				sub[s].linfo_idx = i;
17130 				s++;
17131 			} else if (sub[s].start < linfo[i].insn_off) {
17132 				verbose(env, "missing bpf_line_info for func#%u\n", s);
17133 				err = -EINVAL;
17134 				goto err_free;
17135 			}
17136 		}
17137 
17138 		prev_offset = linfo[i].insn_off;
17139 		bpfptr_add(&ulinfo, rec_size);
17140 	}
17141 
17142 	if (s != env->subprog_cnt) {
17143 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
17144 			env->subprog_cnt - s, s);
17145 		err = -EINVAL;
17146 		goto err_free;
17147 	}
17148 
17149 	prog->aux->linfo = linfo;
17150 	prog->aux->nr_linfo = nr_linfo;
17151 
17152 	return 0;
17153 
17154 err_free:
17155 	kvfree(linfo);
17156 	return err;
17157 }
17158 
17159 #define MIN_CORE_RELO_SIZE	sizeof(struct bpf_core_relo)
17160 #define MAX_CORE_RELO_SIZE	MAX_FUNCINFO_REC_SIZE
17161 
17162 static int check_core_relo(struct bpf_verifier_env *env,
17163 			   const union bpf_attr *attr,
17164 			   bpfptr_t uattr)
17165 {
17166 	u32 i, nr_core_relo, ncopy, expected_size, rec_size;
17167 	struct bpf_core_relo core_relo = {};
17168 	struct bpf_prog *prog = env->prog;
17169 	const struct btf *btf = prog->aux->btf;
17170 	struct bpf_core_ctx ctx = {
17171 		.log = &env->log,
17172 		.btf = btf,
17173 	};
17174 	bpfptr_t u_core_relo;
17175 	int err;
17176 
17177 	nr_core_relo = attr->core_relo_cnt;
17178 	if (!nr_core_relo)
17179 		return 0;
17180 	if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo))
17181 		return -EINVAL;
17182 
17183 	rec_size = attr->core_relo_rec_size;
17184 	if (rec_size < MIN_CORE_RELO_SIZE ||
17185 	    rec_size > MAX_CORE_RELO_SIZE ||
17186 	    rec_size % sizeof(u32))
17187 		return -EINVAL;
17188 
17189 	u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel);
17190 	expected_size = sizeof(struct bpf_core_relo);
17191 	ncopy = min_t(u32, expected_size, rec_size);
17192 
17193 	/* Unlike func_info and line_info, copy and apply each CO-RE
17194 	 * relocation record one at a time.
17195 	 */
17196 	for (i = 0; i < nr_core_relo; i++) {
17197 		/* future proofing when sizeof(bpf_core_relo) changes */
17198 		err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size);
17199 		if (err) {
17200 			if (err == -E2BIG) {
17201 				verbose(env, "nonzero tailing record in core_relo");
17202 				if (copy_to_bpfptr_offset(uattr,
17203 							  offsetof(union bpf_attr, core_relo_rec_size),
17204 							  &expected_size, sizeof(expected_size)))
17205 					err = -EFAULT;
17206 			}
17207 			break;
17208 		}
17209 
17210 		if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) {
17211 			err = -EFAULT;
17212 			break;
17213 		}
17214 
17215 		if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) {
17216 			verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n",
17217 				i, core_relo.insn_off, prog->len);
17218 			err = -EINVAL;
17219 			break;
17220 		}
17221 
17222 		err = bpf_core_apply(&ctx, &core_relo, i,
17223 				     &prog->insnsi[core_relo.insn_off / 8]);
17224 		if (err)
17225 			break;
17226 		bpfptr_add(&u_core_relo, rec_size);
17227 	}
17228 	return err;
17229 }
17230 
17231 static int check_btf_info_early(struct bpf_verifier_env *env,
17232 				const union bpf_attr *attr,
17233 				bpfptr_t uattr)
17234 {
17235 	struct btf *btf;
17236 	int err;
17237 
17238 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
17239 		if (check_abnormal_return(env))
17240 			return -EINVAL;
17241 		return 0;
17242 	}
17243 
17244 	btf = btf_get_by_fd(attr->prog_btf_fd);
17245 	if (IS_ERR(btf))
17246 		return PTR_ERR(btf);
17247 	if (btf_is_kernel(btf)) {
17248 		btf_put(btf);
17249 		return -EACCES;
17250 	}
17251 	env->prog->aux->btf = btf;
17252 
17253 	err = check_btf_func_early(env, attr, uattr);
17254 	if (err)
17255 		return err;
17256 	return 0;
17257 }
17258 
17259 static int check_btf_info(struct bpf_verifier_env *env,
17260 			  const union bpf_attr *attr,
17261 			  bpfptr_t uattr)
17262 {
17263 	int err;
17264 
17265 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
17266 		if (check_abnormal_return(env))
17267 			return -EINVAL;
17268 		return 0;
17269 	}
17270 
17271 	err = check_btf_func(env, attr, uattr);
17272 	if (err)
17273 		return err;
17274 
17275 	err = check_btf_line(env, attr, uattr);
17276 	if (err)
17277 		return err;
17278 
17279 	err = check_core_relo(env, attr, uattr);
17280 	if (err)
17281 		return err;
17282 
17283 	return 0;
17284 }
17285 
17286 /* check %cur's range satisfies %old's */
17287 static bool range_within(const struct bpf_reg_state *old,
17288 			 const struct bpf_reg_state *cur)
17289 {
17290 	return old->umin_value <= cur->umin_value &&
17291 	       old->umax_value >= cur->umax_value &&
17292 	       old->smin_value <= cur->smin_value &&
17293 	       old->smax_value >= cur->smax_value &&
17294 	       old->u32_min_value <= cur->u32_min_value &&
17295 	       old->u32_max_value >= cur->u32_max_value &&
17296 	       old->s32_min_value <= cur->s32_min_value &&
17297 	       old->s32_max_value >= cur->s32_max_value;
17298 }
17299 
17300 /* If in the old state two registers had the same id, then they need to have
17301  * the same id in the new state as well.  But that id could be different from
17302  * the old state, so we need to track the mapping from old to new ids.
17303  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
17304  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
17305  * regs with a different old id could still have new id 9, we don't care about
17306  * that.
17307  * So we look through our idmap to see if this old id has been seen before.  If
17308  * so, we require the new id to match; otherwise, we add the id pair to the map.
17309  */
17310 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap)
17311 {
17312 	struct bpf_id_pair *map = idmap->map;
17313 	unsigned int i;
17314 
17315 	/* either both IDs should be set or both should be zero */
17316 	if (!!old_id != !!cur_id)
17317 		return false;
17318 
17319 	if (old_id == 0) /* cur_id == 0 as well */
17320 		return true;
17321 
17322 	for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
17323 		if (!map[i].old) {
17324 			/* Reached an empty slot; haven't seen this id before */
17325 			map[i].old = old_id;
17326 			map[i].cur = cur_id;
17327 			return true;
17328 		}
17329 		if (map[i].old == old_id)
17330 			return map[i].cur == cur_id;
17331 		if (map[i].cur == cur_id)
17332 			return false;
17333 	}
17334 	/* We ran out of idmap slots, which should be impossible */
17335 	WARN_ON_ONCE(1);
17336 	return false;
17337 }
17338 
17339 /* Similar to check_ids(), but allocate a unique temporary ID
17340  * for 'old_id' or 'cur_id' of zero.
17341  * This makes pairs like '0 vs unique ID', 'unique ID vs 0' valid.
17342  */
17343 static bool check_scalar_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap)
17344 {
17345 	old_id = old_id ? old_id : ++idmap->tmp_id_gen;
17346 	cur_id = cur_id ? cur_id : ++idmap->tmp_id_gen;
17347 
17348 	return check_ids(old_id, cur_id, idmap);
17349 }
17350 
17351 static void clean_func_state(struct bpf_verifier_env *env,
17352 			     struct bpf_func_state *st)
17353 {
17354 	enum bpf_reg_liveness live;
17355 	int i, j;
17356 
17357 	for (i = 0; i < BPF_REG_FP; i++) {
17358 		live = st->regs[i].live;
17359 		/* liveness must not touch this register anymore */
17360 		st->regs[i].live |= REG_LIVE_DONE;
17361 		if (!(live & REG_LIVE_READ))
17362 			/* since the register is unused, clear its state
17363 			 * to make further comparison simpler
17364 			 */
17365 			__mark_reg_not_init(env, &st->regs[i]);
17366 	}
17367 
17368 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
17369 		live = st->stack[i].spilled_ptr.live;
17370 		/* liveness must not touch this stack slot anymore */
17371 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
17372 		if (!(live & REG_LIVE_READ)) {
17373 			__mark_reg_not_init(env, &st->stack[i].spilled_ptr);
17374 			for (j = 0; j < BPF_REG_SIZE; j++)
17375 				st->stack[i].slot_type[j] = STACK_INVALID;
17376 		}
17377 	}
17378 }
17379 
17380 static void clean_verifier_state(struct bpf_verifier_env *env,
17381 				 struct bpf_verifier_state *st)
17382 {
17383 	int i;
17384 
17385 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
17386 		/* all regs in this state in all frames were already marked */
17387 		return;
17388 
17389 	for (i = 0; i <= st->curframe; i++)
17390 		clean_func_state(env, st->frame[i]);
17391 }
17392 
17393 /* the parentage chains form a tree.
17394  * the verifier states are added to state lists at given insn and
17395  * pushed into state stack for future exploration.
17396  * when the verifier reaches bpf_exit insn some of the verifer states
17397  * stored in the state lists have their final liveness state already,
17398  * but a lot of states will get revised from liveness point of view when
17399  * the verifier explores other branches.
17400  * Example:
17401  * 1: r0 = 1
17402  * 2: if r1 == 100 goto pc+1
17403  * 3: r0 = 2
17404  * 4: exit
17405  * when the verifier reaches exit insn the register r0 in the state list of
17406  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
17407  * of insn 2 and goes exploring further. At the insn 4 it will walk the
17408  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
17409  *
17410  * Since the verifier pushes the branch states as it sees them while exploring
17411  * the program the condition of walking the branch instruction for the second
17412  * time means that all states below this branch were already explored and
17413  * their final liveness marks are already propagated.
17414  * Hence when the verifier completes the search of state list in is_state_visited()
17415  * we can call this clean_live_states() function to mark all liveness states
17416  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
17417  * will not be used.
17418  * This function also clears the registers and stack for states that !READ
17419  * to simplify state merging.
17420  *
17421  * Important note here that walking the same branch instruction in the callee
17422  * doesn't meant that the states are DONE. The verifier has to compare
17423  * the callsites
17424  */
17425 static void clean_live_states(struct bpf_verifier_env *env, int insn,
17426 			      struct bpf_verifier_state *cur)
17427 {
17428 	struct bpf_verifier_state_list *sl;
17429 
17430 	sl = *explored_state(env, insn);
17431 	while (sl) {
17432 		if (sl->state.branches)
17433 			goto next;
17434 		if (sl->state.insn_idx != insn ||
17435 		    !same_callsites(&sl->state, cur))
17436 			goto next;
17437 		clean_verifier_state(env, &sl->state);
17438 next:
17439 		sl = sl->next;
17440 	}
17441 }
17442 
17443 static bool regs_exact(const struct bpf_reg_state *rold,
17444 		       const struct bpf_reg_state *rcur,
17445 		       struct bpf_idmap *idmap)
17446 {
17447 	return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
17448 	       check_ids(rold->id, rcur->id, idmap) &&
17449 	       check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
17450 }
17451 
17452 enum exact_level {
17453 	NOT_EXACT,
17454 	EXACT,
17455 	RANGE_WITHIN
17456 };
17457 
17458 /* Returns true if (rold safe implies rcur safe) */
17459 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
17460 		    struct bpf_reg_state *rcur, struct bpf_idmap *idmap,
17461 		    enum exact_level exact)
17462 {
17463 	if (exact == EXACT)
17464 		return regs_exact(rold, rcur, idmap);
17465 
17466 	if (!(rold->live & REG_LIVE_READ) && exact == NOT_EXACT)
17467 		/* explored state didn't use this */
17468 		return true;
17469 	if (rold->type == NOT_INIT) {
17470 		if (exact == NOT_EXACT || rcur->type == NOT_INIT)
17471 			/* explored state can't have used this */
17472 			return true;
17473 	}
17474 
17475 	/* Enforce that register types have to match exactly, including their
17476 	 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general
17477 	 * rule.
17478 	 *
17479 	 * One can make a point that using a pointer register as unbounded
17480 	 * SCALAR would be technically acceptable, but this could lead to
17481 	 * pointer leaks because scalars are allowed to leak while pointers
17482 	 * are not. We could make this safe in special cases if root is
17483 	 * calling us, but it's probably not worth the hassle.
17484 	 *
17485 	 * Also, register types that are *not* MAYBE_NULL could technically be
17486 	 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE
17487 	 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point
17488 	 * to the same map).
17489 	 * However, if the old MAYBE_NULL register then got NULL checked,
17490 	 * doing so could have affected others with the same id, and we can't
17491 	 * check for that because we lost the id when we converted to
17492 	 * a non-MAYBE_NULL variant.
17493 	 * So, as a general rule we don't allow mixing MAYBE_NULL and
17494 	 * non-MAYBE_NULL registers as well.
17495 	 */
17496 	if (rold->type != rcur->type)
17497 		return false;
17498 
17499 	switch (base_type(rold->type)) {
17500 	case SCALAR_VALUE:
17501 		if (env->explore_alu_limits) {
17502 			/* explore_alu_limits disables tnum_in() and range_within()
17503 			 * logic and requires everything to be strict
17504 			 */
17505 			return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
17506 			       check_scalar_ids(rold->id, rcur->id, idmap);
17507 		}
17508 		if (!rold->precise && exact == NOT_EXACT)
17509 			return true;
17510 		if ((rold->id & BPF_ADD_CONST) != (rcur->id & BPF_ADD_CONST))
17511 			return false;
17512 		if ((rold->id & BPF_ADD_CONST) && (rold->off != rcur->off))
17513 			return false;
17514 		/* Why check_ids() for scalar registers?
17515 		 *
17516 		 * Consider the following BPF code:
17517 		 *   1: r6 = ... unbound scalar, ID=a ...
17518 		 *   2: r7 = ... unbound scalar, ID=b ...
17519 		 *   3: if (r6 > r7) goto +1
17520 		 *   4: r6 = r7
17521 		 *   5: if (r6 > X) goto ...
17522 		 *   6: ... memory operation using r7 ...
17523 		 *
17524 		 * First verification path is [1-6]:
17525 		 * - at (4) same bpf_reg_state::id (b) would be assigned to r6 and r7;
17526 		 * - at (5) r6 would be marked <= X, sync_linked_regs() would also mark
17527 		 *   r7 <= X, because r6 and r7 share same id.
17528 		 * Next verification path is [1-4, 6].
17529 		 *
17530 		 * Instruction (6) would be reached in two states:
17531 		 *   I.  r6{.id=b}, r7{.id=b} via path 1-6;
17532 		 *   II. r6{.id=a}, r7{.id=b} via path 1-4, 6.
17533 		 *
17534 		 * Use check_ids() to distinguish these states.
17535 		 * ---
17536 		 * Also verify that new value satisfies old value range knowledge.
17537 		 */
17538 		return range_within(rold, rcur) &&
17539 		       tnum_in(rold->var_off, rcur->var_off) &&
17540 		       check_scalar_ids(rold->id, rcur->id, idmap);
17541 	case PTR_TO_MAP_KEY:
17542 	case PTR_TO_MAP_VALUE:
17543 	case PTR_TO_MEM:
17544 	case PTR_TO_BUF:
17545 	case PTR_TO_TP_BUFFER:
17546 		/* If the new min/max/var_off satisfy the old ones and
17547 		 * everything else matches, we are OK.
17548 		 */
17549 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 &&
17550 		       range_within(rold, rcur) &&
17551 		       tnum_in(rold->var_off, rcur->var_off) &&
17552 		       check_ids(rold->id, rcur->id, idmap) &&
17553 		       check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
17554 	case PTR_TO_PACKET_META:
17555 	case PTR_TO_PACKET:
17556 		/* We must have at least as much range as the old ptr
17557 		 * did, so that any accesses which were safe before are
17558 		 * still safe.  This is true even if old range < old off,
17559 		 * since someone could have accessed through (ptr - k), or
17560 		 * even done ptr -= k in a register, to get a safe access.
17561 		 */
17562 		if (rold->range > rcur->range)
17563 			return false;
17564 		/* If the offsets don't match, we can't trust our alignment;
17565 		 * nor can we be sure that we won't fall out of range.
17566 		 */
17567 		if (rold->off != rcur->off)
17568 			return false;
17569 		/* id relations must be preserved */
17570 		if (!check_ids(rold->id, rcur->id, idmap))
17571 			return false;
17572 		/* new val must satisfy old val knowledge */
17573 		return range_within(rold, rcur) &&
17574 		       tnum_in(rold->var_off, rcur->var_off);
17575 	case PTR_TO_STACK:
17576 		/* two stack pointers are equal only if they're pointing to
17577 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
17578 		 */
17579 		return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno;
17580 	case PTR_TO_ARENA:
17581 		return true;
17582 	default:
17583 		return regs_exact(rold, rcur, idmap);
17584 	}
17585 }
17586 
17587 static struct bpf_reg_state unbound_reg;
17588 
17589 static __init int unbound_reg_init(void)
17590 {
17591 	__mark_reg_unknown_imprecise(&unbound_reg);
17592 	unbound_reg.live |= REG_LIVE_READ;
17593 	return 0;
17594 }
17595 late_initcall(unbound_reg_init);
17596 
17597 static bool is_stack_all_misc(struct bpf_verifier_env *env,
17598 			      struct bpf_stack_state *stack)
17599 {
17600 	u32 i;
17601 
17602 	for (i = 0; i < ARRAY_SIZE(stack->slot_type); ++i) {
17603 		if ((stack->slot_type[i] == STACK_MISC) ||
17604 		    (stack->slot_type[i] == STACK_INVALID && env->allow_uninit_stack))
17605 			continue;
17606 		return false;
17607 	}
17608 
17609 	return true;
17610 }
17611 
17612 static struct bpf_reg_state *scalar_reg_for_stack(struct bpf_verifier_env *env,
17613 						  struct bpf_stack_state *stack)
17614 {
17615 	if (is_spilled_scalar_reg64(stack))
17616 		return &stack->spilled_ptr;
17617 
17618 	if (is_stack_all_misc(env, stack))
17619 		return &unbound_reg;
17620 
17621 	return NULL;
17622 }
17623 
17624 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
17625 		      struct bpf_func_state *cur, struct bpf_idmap *idmap,
17626 		      enum exact_level exact)
17627 {
17628 	int i, spi;
17629 
17630 	/* walk slots of the explored stack and ignore any additional
17631 	 * slots in the current stack, since explored(safe) state
17632 	 * didn't use them
17633 	 */
17634 	for (i = 0; i < old->allocated_stack; i++) {
17635 		struct bpf_reg_state *old_reg, *cur_reg;
17636 
17637 		spi = i / BPF_REG_SIZE;
17638 
17639 		if (exact != NOT_EXACT &&
17640 		    (i >= cur->allocated_stack ||
17641 		     old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
17642 		     cur->stack[spi].slot_type[i % BPF_REG_SIZE]))
17643 			return false;
17644 
17645 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)
17646 		    && exact == NOT_EXACT) {
17647 			i += BPF_REG_SIZE - 1;
17648 			/* explored state didn't use this */
17649 			continue;
17650 		}
17651 
17652 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
17653 			continue;
17654 
17655 		if (env->allow_uninit_stack &&
17656 		    old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC)
17657 			continue;
17658 
17659 		/* explored stack has more populated slots than current stack
17660 		 * and these slots were used
17661 		 */
17662 		if (i >= cur->allocated_stack)
17663 			return false;
17664 
17665 		/* 64-bit scalar spill vs all slots MISC and vice versa.
17666 		 * Load from all slots MISC produces unbound scalar.
17667 		 * Construct a fake register for such stack and call
17668 		 * regsafe() to ensure scalar ids are compared.
17669 		 */
17670 		old_reg = scalar_reg_for_stack(env, &old->stack[spi]);
17671 		cur_reg = scalar_reg_for_stack(env, &cur->stack[spi]);
17672 		if (old_reg && cur_reg) {
17673 			if (!regsafe(env, old_reg, cur_reg, idmap, exact))
17674 				return false;
17675 			i += BPF_REG_SIZE - 1;
17676 			continue;
17677 		}
17678 
17679 		/* if old state was safe with misc data in the stack
17680 		 * it will be safe with zero-initialized stack.
17681 		 * The opposite is not true
17682 		 */
17683 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
17684 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
17685 			continue;
17686 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
17687 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
17688 			/* Ex: old explored (safe) state has STACK_SPILL in
17689 			 * this stack slot, but current has STACK_MISC ->
17690 			 * this verifier states are not equivalent,
17691 			 * return false to continue verification of this path
17692 			 */
17693 			return false;
17694 		if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1)
17695 			continue;
17696 		/* Both old and cur are having same slot_type */
17697 		switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) {
17698 		case STACK_SPILL:
17699 			/* when explored and current stack slot are both storing
17700 			 * spilled registers, check that stored pointers types
17701 			 * are the same as well.
17702 			 * Ex: explored safe path could have stored
17703 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
17704 			 * but current path has stored:
17705 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
17706 			 * such verifier states are not equivalent.
17707 			 * return false to continue verification of this path
17708 			 */
17709 			if (!regsafe(env, &old->stack[spi].spilled_ptr,
17710 				     &cur->stack[spi].spilled_ptr, idmap, exact))
17711 				return false;
17712 			break;
17713 		case STACK_DYNPTR:
17714 			old_reg = &old->stack[spi].spilled_ptr;
17715 			cur_reg = &cur->stack[spi].spilled_ptr;
17716 			if (old_reg->dynptr.type != cur_reg->dynptr.type ||
17717 			    old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot ||
17718 			    !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
17719 				return false;
17720 			break;
17721 		case STACK_ITER:
17722 			old_reg = &old->stack[spi].spilled_ptr;
17723 			cur_reg = &cur->stack[spi].spilled_ptr;
17724 			/* iter.depth is not compared between states as it
17725 			 * doesn't matter for correctness and would otherwise
17726 			 * prevent convergence; we maintain it only to prevent
17727 			 * infinite loop check triggering, see
17728 			 * iter_active_depths_differ()
17729 			 */
17730 			if (old_reg->iter.btf != cur_reg->iter.btf ||
17731 			    old_reg->iter.btf_id != cur_reg->iter.btf_id ||
17732 			    old_reg->iter.state != cur_reg->iter.state ||
17733 			    /* ignore {old_reg,cur_reg}->iter.depth, see above */
17734 			    !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
17735 				return false;
17736 			break;
17737 		case STACK_MISC:
17738 		case STACK_ZERO:
17739 		case STACK_INVALID:
17740 			continue;
17741 		/* Ensure that new unhandled slot types return false by default */
17742 		default:
17743 			return false;
17744 		}
17745 	}
17746 	return true;
17747 }
17748 
17749 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur,
17750 		    struct bpf_idmap *idmap)
17751 {
17752 	int i;
17753 
17754 	if (old->acquired_refs != cur->acquired_refs)
17755 		return false;
17756 
17757 	for (i = 0; i < old->acquired_refs; i++) {
17758 		if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap) ||
17759 		    old->refs[i].type != cur->refs[i].type)
17760 			return false;
17761 		switch (old->refs[i].type) {
17762 		case REF_TYPE_PTR:
17763 			break;
17764 		case REF_TYPE_LOCK:
17765 			if (old->refs[i].ptr != cur->refs[i].ptr)
17766 				return false;
17767 			break;
17768 		default:
17769 			WARN_ONCE(1, "Unhandled enum type for reference state: %d\n", old->refs[i].type);
17770 			return false;
17771 		}
17772 	}
17773 
17774 	return true;
17775 }
17776 
17777 /* compare two verifier states
17778  *
17779  * all states stored in state_list are known to be valid, since
17780  * verifier reached 'bpf_exit' instruction through them
17781  *
17782  * this function is called when verifier exploring different branches of
17783  * execution popped from the state stack. If it sees an old state that has
17784  * more strict register state and more strict stack state then this execution
17785  * branch doesn't need to be explored further, since verifier already
17786  * concluded that more strict state leads to valid finish.
17787  *
17788  * Therefore two states are equivalent if register state is more conservative
17789  * and explored stack state is more conservative than the current one.
17790  * Example:
17791  *       explored                   current
17792  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
17793  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
17794  *
17795  * In other words if current stack state (one being explored) has more
17796  * valid slots than old one that already passed validation, it means
17797  * the verifier can stop exploring and conclude that current state is valid too
17798  *
17799  * Similarly with registers. If explored state has register type as invalid
17800  * whereas register type in current state is meaningful, it means that
17801  * the current state will reach 'bpf_exit' instruction safely
17802  */
17803 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
17804 			      struct bpf_func_state *cur, enum exact_level exact)
17805 {
17806 	int i;
17807 
17808 	if (old->callback_depth > cur->callback_depth)
17809 		return false;
17810 
17811 	for (i = 0; i < MAX_BPF_REG; i++)
17812 		if (!regsafe(env, &old->regs[i], &cur->regs[i],
17813 			     &env->idmap_scratch, exact))
17814 			return false;
17815 
17816 	if (!stacksafe(env, old, cur, &env->idmap_scratch, exact))
17817 		return false;
17818 
17819 	if (!refsafe(old, cur, &env->idmap_scratch))
17820 		return false;
17821 
17822 	return true;
17823 }
17824 
17825 static void reset_idmap_scratch(struct bpf_verifier_env *env)
17826 {
17827 	env->idmap_scratch.tmp_id_gen = env->id_gen;
17828 	memset(&env->idmap_scratch.map, 0, sizeof(env->idmap_scratch.map));
17829 }
17830 
17831 static bool states_equal(struct bpf_verifier_env *env,
17832 			 struct bpf_verifier_state *old,
17833 			 struct bpf_verifier_state *cur,
17834 			 enum exact_level exact)
17835 {
17836 	int i;
17837 
17838 	if (old->curframe != cur->curframe)
17839 		return false;
17840 
17841 	reset_idmap_scratch(env);
17842 
17843 	/* Verification state from speculative execution simulation
17844 	 * must never prune a non-speculative execution one.
17845 	 */
17846 	if (old->speculative && !cur->speculative)
17847 		return false;
17848 
17849 	if (old->active_rcu_lock != cur->active_rcu_lock)
17850 		return false;
17851 
17852 	if (old->active_preempt_lock != cur->active_preempt_lock)
17853 		return false;
17854 
17855 	if (old->in_sleepable != cur->in_sleepable)
17856 		return false;
17857 
17858 	/* for states to be equal callsites have to be the same
17859 	 * and all frame states need to be equivalent
17860 	 */
17861 	for (i = 0; i <= old->curframe; i++) {
17862 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
17863 			return false;
17864 		if (!func_states_equal(env, old->frame[i], cur->frame[i], exact))
17865 			return false;
17866 	}
17867 	return true;
17868 }
17869 
17870 /* Return 0 if no propagation happened. Return negative error code if error
17871  * happened. Otherwise, return the propagated bit.
17872  */
17873 static int propagate_liveness_reg(struct bpf_verifier_env *env,
17874 				  struct bpf_reg_state *reg,
17875 				  struct bpf_reg_state *parent_reg)
17876 {
17877 	u8 parent_flag = parent_reg->live & REG_LIVE_READ;
17878 	u8 flag = reg->live & REG_LIVE_READ;
17879 	int err;
17880 
17881 	/* When comes here, read flags of PARENT_REG or REG could be any of
17882 	 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
17883 	 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
17884 	 */
17885 	if (parent_flag == REG_LIVE_READ64 ||
17886 	    /* Or if there is no read flag from REG. */
17887 	    !flag ||
17888 	    /* Or if the read flag from REG is the same as PARENT_REG. */
17889 	    parent_flag == flag)
17890 		return 0;
17891 
17892 	err = mark_reg_read(env, reg, parent_reg, flag);
17893 	if (err)
17894 		return err;
17895 
17896 	return flag;
17897 }
17898 
17899 /* A write screens off any subsequent reads; but write marks come from the
17900  * straight-line code between a state and its parent.  When we arrive at an
17901  * equivalent state (jump target or such) we didn't arrive by the straight-line
17902  * code, so read marks in the state must propagate to the parent regardless
17903  * of the state's write marks. That's what 'parent == state->parent' comparison
17904  * in mark_reg_read() is for.
17905  */
17906 static int propagate_liveness(struct bpf_verifier_env *env,
17907 			      const struct bpf_verifier_state *vstate,
17908 			      struct bpf_verifier_state *vparent)
17909 {
17910 	struct bpf_reg_state *state_reg, *parent_reg;
17911 	struct bpf_func_state *state, *parent;
17912 	int i, frame, err = 0;
17913 
17914 	if (vparent->curframe != vstate->curframe) {
17915 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
17916 		     vparent->curframe, vstate->curframe);
17917 		return -EFAULT;
17918 	}
17919 	/* Propagate read liveness of registers... */
17920 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
17921 	for (frame = 0; frame <= vstate->curframe; frame++) {
17922 		parent = vparent->frame[frame];
17923 		state = vstate->frame[frame];
17924 		parent_reg = parent->regs;
17925 		state_reg = state->regs;
17926 		/* We don't need to worry about FP liveness, it's read-only */
17927 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
17928 			err = propagate_liveness_reg(env, &state_reg[i],
17929 						     &parent_reg[i]);
17930 			if (err < 0)
17931 				return err;
17932 			if (err == REG_LIVE_READ64)
17933 				mark_insn_zext(env, &parent_reg[i]);
17934 		}
17935 
17936 		/* Propagate stack slots. */
17937 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
17938 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
17939 			parent_reg = &parent->stack[i].spilled_ptr;
17940 			state_reg = &state->stack[i].spilled_ptr;
17941 			err = propagate_liveness_reg(env, state_reg,
17942 						     parent_reg);
17943 			if (err < 0)
17944 				return err;
17945 		}
17946 	}
17947 	return 0;
17948 }
17949 
17950 /* find precise scalars in the previous equivalent state and
17951  * propagate them into the current state
17952  */
17953 static int propagate_precision(struct bpf_verifier_env *env,
17954 			       const struct bpf_verifier_state *old)
17955 {
17956 	struct bpf_reg_state *state_reg;
17957 	struct bpf_func_state *state;
17958 	int i, err = 0, fr;
17959 	bool first;
17960 
17961 	for (fr = old->curframe; fr >= 0; fr--) {
17962 		state = old->frame[fr];
17963 		state_reg = state->regs;
17964 		first = true;
17965 		for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
17966 			if (state_reg->type != SCALAR_VALUE ||
17967 			    !state_reg->precise ||
17968 			    !(state_reg->live & REG_LIVE_READ))
17969 				continue;
17970 			if (env->log.level & BPF_LOG_LEVEL2) {
17971 				if (first)
17972 					verbose(env, "frame %d: propagating r%d", fr, i);
17973 				else
17974 					verbose(env, ",r%d", i);
17975 			}
17976 			bt_set_frame_reg(&env->bt, fr, i);
17977 			first = false;
17978 		}
17979 
17980 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
17981 			if (!is_spilled_reg(&state->stack[i]))
17982 				continue;
17983 			state_reg = &state->stack[i].spilled_ptr;
17984 			if (state_reg->type != SCALAR_VALUE ||
17985 			    !state_reg->precise ||
17986 			    !(state_reg->live & REG_LIVE_READ))
17987 				continue;
17988 			if (env->log.level & BPF_LOG_LEVEL2) {
17989 				if (first)
17990 					verbose(env, "frame %d: propagating fp%d",
17991 						fr, (-i - 1) * BPF_REG_SIZE);
17992 				else
17993 					verbose(env, ",fp%d", (-i - 1) * BPF_REG_SIZE);
17994 			}
17995 			bt_set_frame_slot(&env->bt, fr, i);
17996 			first = false;
17997 		}
17998 		if (!first)
17999 			verbose(env, "\n");
18000 	}
18001 
18002 	err = mark_chain_precision_batch(env);
18003 	if (err < 0)
18004 		return err;
18005 
18006 	return 0;
18007 }
18008 
18009 static bool states_maybe_looping(struct bpf_verifier_state *old,
18010 				 struct bpf_verifier_state *cur)
18011 {
18012 	struct bpf_func_state *fold, *fcur;
18013 	int i, fr = cur->curframe;
18014 
18015 	if (old->curframe != fr)
18016 		return false;
18017 
18018 	fold = old->frame[fr];
18019 	fcur = cur->frame[fr];
18020 	for (i = 0; i < MAX_BPF_REG; i++)
18021 		if (memcmp(&fold->regs[i], &fcur->regs[i],
18022 			   offsetof(struct bpf_reg_state, parent)))
18023 			return false;
18024 	return true;
18025 }
18026 
18027 static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx)
18028 {
18029 	return env->insn_aux_data[insn_idx].is_iter_next;
18030 }
18031 
18032 /* is_state_visited() handles iter_next() (see process_iter_next_call() for
18033  * terminology) calls specially: as opposed to bounded BPF loops, it *expects*
18034  * states to match, which otherwise would look like an infinite loop. So while
18035  * iter_next() calls are taken care of, we still need to be careful and
18036  * prevent erroneous and too eager declaration of "ininite loop", when
18037  * iterators are involved.
18038  *
18039  * Here's a situation in pseudo-BPF assembly form:
18040  *
18041  *   0: again:                          ; set up iter_next() call args
18042  *   1:   r1 = &it                      ; <CHECKPOINT HERE>
18043  *   2:   call bpf_iter_num_next        ; this is iter_next() call
18044  *   3:   if r0 == 0 goto done
18045  *   4:   ... something useful here ...
18046  *   5:   goto again                    ; another iteration
18047  *   6: done:
18048  *   7:   r1 = &it
18049  *   8:   call bpf_iter_num_destroy     ; clean up iter state
18050  *   9:   exit
18051  *
18052  * This is a typical loop. Let's assume that we have a prune point at 1:,
18053  * before we get to `call bpf_iter_num_next` (e.g., because of that `goto
18054  * again`, assuming other heuristics don't get in a way).
18055  *
18056  * When we first time come to 1:, let's say we have some state X. We proceed
18057  * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit.
18058  * Now we come back to validate that forked ACTIVE state. We proceed through
18059  * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we
18060  * are converging. But the problem is that we don't know that yet, as this
18061  * convergence has to happen at iter_next() call site only. So if nothing is
18062  * done, at 1: verifier will use bounded loop logic and declare infinite
18063  * looping (and would be *technically* correct, if not for iterator's
18064  * "eventual sticky NULL" contract, see process_iter_next_call()). But we
18065  * don't want that. So what we do in process_iter_next_call() when we go on
18066  * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's
18067  * a different iteration. So when we suspect an infinite loop, we additionally
18068  * check if any of the *ACTIVE* iterator states depths differ. If yes, we
18069  * pretend we are not looping and wait for next iter_next() call.
18070  *
18071  * This only applies to ACTIVE state. In DRAINED state we don't expect to
18072  * loop, because that would actually mean infinite loop, as DRAINED state is
18073  * "sticky", and so we'll keep returning into the same instruction with the
18074  * same state (at least in one of possible code paths).
18075  *
18076  * This approach allows to keep infinite loop heuristic even in the face of
18077  * active iterator. E.g., C snippet below is and will be detected as
18078  * inifintely looping:
18079  *
18080  *   struct bpf_iter_num it;
18081  *   int *p, x;
18082  *
18083  *   bpf_iter_num_new(&it, 0, 10);
18084  *   while ((p = bpf_iter_num_next(&t))) {
18085  *       x = p;
18086  *       while (x--) {} // <<-- infinite loop here
18087  *   }
18088  *
18089  */
18090 static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur)
18091 {
18092 	struct bpf_reg_state *slot, *cur_slot;
18093 	struct bpf_func_state *state;
18094 	int i, fr;
18095 
18096 	for (fr = old->curframe; fr >= 0; fr--) {
18097 		state = old->frame[fr];
18098 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
18099 			if (state->stack[i].slot_type[0] != STACK_ITER)
18100 				continue;
18101 
18102 			slot = &state->stack[i].spilled_ptr;
18103 			if (slot->iter.state != BPF_ITER_STATE_ACTIVE)
18104 				continue;
18105 
18106 			cur_slot = &cur->frame[fr]->stack[i].spilled_ptr;
18107 			if (cur_slot->iter.depth != slot->iter.depth)
18108 				return true;
18109 		}
18110 	}
18111 	return false;
18112 }
18113 
18114 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
18115 {
18116 	struct bpf_verifier_state_list *new_sl;
18117 	struct bpf_verifier_state_list *sl, **pprev;
18118 	struct bpf_verifier_state *cur = env->cur_state, *new, *loop_entry;
18119 	int i, j, n, err, states_cnt = 0;
18120 	bool force_new_state, add_new_state, force_exact;
18121 
18122 	force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx) ||
18123 			  /* Avoid accumulating infinitely long jmp history */
18124 			  cur->insn_hist_end - cur->insn_hist_start > 40;
18125 
18126 	/* bpf progs typically have pruning point every 4 instructions
18127 	 * http://vger.kernel.org/bpfconf2019.html#session-1
18128 	 * Do not add new state for future pruning if the verifier hasn't seen
18129 	 * at least 2 jumps and at least 8 instructions.
18130 	 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
18131 	 * In tests that amounts to up to 50% reduction into total verifier
18132 	 * memory consumption and 20% verifier time speedup.
18133 	 */
18134 	add_new_state = force_new_state;
18135 	if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
18136 	    env->insn_processed - env->prev_insn_processed >= 8)
18137 		add_new_state = true;
18138 
18139 	pprev = explored_state(env, insn_idx);
18140 	sl = *pprev;
18141 
18142 	clean_live_states(env, insn_idx, cur);
18143 
18144 	while (sl) {
18145 		states_cnt++;
18146 		if (sl->state.insn_idx != insn_idx)
18147 			goto next;
18148 
18149 		if (sl->state.branches) {
18150 			struct bpf_func_state *frame = sl->state.frame[sl->state.curframe];
18151 
18152 			if (frame->in_async_callback_fn &&
18153 			    frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) {
18154 				/* Different async_entry_cnt means that the verifier is
18155 				 * processing another entry into async callback.
18156 				 * Seeing the same state is not an indication of infinite
18157 				 * loop or infinite recursion.
18158 				 * But finding the same state doesn't mean that it's safe
18159 				 * to stop processing the current state. The previous state
18160 				 * hasn't yet reached bpf_exit, since state.branches > 0.
18161 				 * Checking in_async_callback_fn alone is not enough either.
18162 				 * Since the verifier still needs to catch infinite loops
18163 				 * inside async callbacks.
18164 				 */
18165 				goto skip_inf_loop_check;
18166 			}
18167 			/* BPF open-coded iterators loop detection is special.
18168 			 * states_maybe_looping() logic is too simplistic in detecting
18169 			 * states that *might* be equivalent, because it doesn't know
18170 			 * about ID remapping, so don't even perform it.
18171 			 * See process_iter_next_call() and iter_active_depths_differ()
18172 			 * for overview of the logic. When current and one of parent
18173 			 * states are detected as equivalent, it's a good thing: we prove
18174 			 * convergence and can stop simulating further iterations.
18175 			 * It's safe to assume that iterator loop will finish, taking into
18176 			 * account iter_next() contract of eventually returning
18177 			 * sticky NULL result.
18178 			 *
18179 			 * Note, that states have to be compared exactly in this case because
18180 			 * read and precision marks might not be finalized inside the loop.
18181 			 * E.g. as in the program below:
18182 			 *
18183 			 *     1. r7 = -16
18184 			 *     2. r6 = bpf_get_prandom_u32()
18185 			 *     3. while (bpf_iter_num_next(&fp[-8])) {
18186 			 *     4.   if (r6 != 42) {
18187 			 *     5.     r7 = -32
18188 			 *     6.     r6 = bpf_get_prandom_u32()
18189 			 *     7.     continue
18190 			 *     8.   }
18191 			 *     9.   r0 = r10
18192 			 *    10.   r0 += r7
18193 			 *    11.   r8 = *(u64 *)(r0 + 0)
18194 			 *    12.   r6 = bpf_get_prandom_u32()
18195 			 *    13. }
18196 			 *
18197 			 * Here verifier would first visit path 1-3, create a checkpoint at 3
18198 			 * with r7=-16, continue to 4-7,3. Existing checkpoint at 3 does
18199 			 * not have read or precision mark for r7 yet, thus inexact states
18200 			 * comparison would discard current state with r7=-32
18201 			 * => unsafe memory access at 11 would not be caught.
18202 			 */
18203 			if (is_iter_next_insn(env, insn_idx)) {
18204 				if (states_equal(env, &sl->state, cur, RANGE_WITHIN)) {
18205 					struct bpf_func_state *cur_frame;
18206 					struct bpf_reg_state *iter_state, *iter_reg;
18207 					int spi;
18208 
18209 					cur_frame = cur->frame[cur->curframe];
18210 					/* btf_check_iter_kfuncs() enforces that
18211 					 * iter state pointer is always the first arg
18212 					 */
18213 					iter_reg = &cur_frame->regs[BPF_REG_1];
18214 					/* current state is valid due to states_equal(),
18215 					 * so we can assume valid iter and reg state,
18216 					 * no need for extra (re-)validations
18217 					 */
18218 					spi = __get_spi(iter_reg->off + iter_reg->var_off.value);
18219 					iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr;
18220 					if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE) {
18221 						update_loop_entry(cur, &sl->state);
18222 						goto hit;
18223 					}
18224 				}
18225 				goto skip_inf_loop_check;
18226 			}
18227 			if (is_may_goto_insn_at(env, insn_idx)) {
18228 				if (sl->state.may_goto_depth != cur->may_goto_depth &&
18229 				    states_equal(env, &sl->state, cur, RANGE_WITHIN)) {
18230 					update_loop_entry(cur, &sl->state);
18231 					goto hit;
18232 				}
18233 			}
18234 			if (calls_callback(env, insn_idx)) {
18235 				if (states_equal(env, &sl->state, cur, RANGE_WITHIN))
18236 					goto hit;
18237 				goto skip_inf_loop_check;
18238 			}
18239 			/* attempt to detect infinite loop to avoid unnecessary doomed work */
18240 			if (states_maybe_looping(&sl->state, cur) &&
18241 			    states_equal(env, &sl->state, cur, EXACT) &&
18242 			    !iter_active_depths_differ(&sl->state, cur) &&
18243 			    sl->state.may_goto_depth == cur->may_goto_depth &&
18244 			    sl->state.callback_unroll_depth == cur->callback_unroll_depth) {
18245 				verbose_linfo(env, insn_idx, "; ");
18246 				verbose(env, "infinite loop detected at insn %d\n", insn_idx);
18247 				verbose(env, "cur state:");
18248 				print_verifier_state(env, cur->frame[cur->curframe], true);
18249 				verbose(env, "old state:");
18250 				print_verifier_state(env, sl->state.frame[cur->curframe], true);
18251 				return -EINVAL;
18252 			}
18253 			/* if the verifier is processing a loop, avoid adding new state
18254 			 * too often, since different loop iterations have distinct
18255 			 * states and may not help future pruning.
18256 			 * This threshold shouldn't be too low to make sure that
18257 			 * a loop with large bound will be rejected quickly.
18258 			 * The most abusive loop will be:
18259 			 * r1 += 1
18260 			 * if r1 < 1000000 goto pc-2
18261 			 * 1M insn_procssed limit / 100 == 10k peak states.
18262 			 * This threshold shouldn't be too high either, since states
18263 			 * at the end of the loop are likely to be useful in pruning.
18264 			 */
18265 skip_inf_loop_check:
18266 			if (!force_new_state &&
18267 			    env->jmps_processed - env->prev_jmps_processed < 20 &&
18268 			    env->insn_processed - env->prev_insn_processed < 100)
18269 				add_new_state = false;
18270 			goto miss;
18271 		}
18272 		/* If sl->state is a part of a loop and this loop's entry is a part of
18273 		 * current verification path then states have to be compared exactly.
18274 		 * 'force_exact' is needed to catch the following case:
18275 		 *
18276 		 *                initial     Here state 'succ' was processed first,
18277 		 *                  |         it was eventually tracked to produce a
18278 		 *                  V         state identical to 'hdr'.
18279 		 *     .---------> hdr        All branches from 'succ' had been explored
18280 		 *     |            |         and thus 'succ' has its .branches == 0.
18281 		 *     |            V
18282 		 *     |    .------...        Suppose states 'cur' and 'succ' correspond
18283 		 *     |    |       |         to the same instruction + callsites.
18284 		 *     |    V       V         In such case it is necessary to check
18285 		 *     |   ...     ...        if 'succ' and 'cur' are states_equal().
18286 		 *     |    |       |         If 'succ' and 'cur' are a part of the
18287 		 *     |    V       V         same loop exact flag has to be set.
18288 		 *     |   succ <- cur        To check if that is the case, verify
18289 		 *     |    |                 if loop entry of 'succ' is in current
18290 		 *     |    V                 DFS path.
18291 		 *     |   ...
18292 		 *     |    |
18293 		 *     '----'
18294 		 *
18295 		 * Additional details are in the comment before get_loop_entry().
18296 		 */
18297 		loop_entry = get_loop_entry(&sl->state);
18298 		force_exact = loop_entry && loop_entry->branches > 0;
18299 		if (states_equal(env, &sl->state, cur, force_exact ? RANGE_WITHIN : NOT_EXACT)) {
18300 			if (force_exact)
18301 				update_loop_entry(cur, loop_entry);
18302 hit:
18303 			sl->hit_cnt++;
18304 			/* reached equivalent register/stack state,
18305 			 * prune the search.
18306 			 * Registers read by the continuation are read by us.
18307 			 * If we have any write marks in env->cur_state, they
18308 			 * will prevent corresponding reads in the continuation
18309 			 * from reaching our parent (an explored_state).  Our
18310 			 * own state will get the read marks recorded, but
18311 			 * they'll be immediately forgotten as we're pruning
18312 			 * this state and will pop a new one.
18313 			 */
18314 			err = propagate_liveness(env, &sl->state, cur);
18315 
18316 			/* if previous state reached the exit with precision and
18317 			 * current state is equivalent to it (except precision marks)
18318 			 * the precision needs to be propagated back in
18319 			 * the current state.
18320 			 */
18321 			if (is_jmp_point(env, env->insn_idx))
18322 				err = err ? : push_insn_history(env, cur, 0, 0);
18323 			err = err ? : propagate_precision(env, &sl->state);
18324 			if (err)
18325 				return err;
18326 			return 1;
18327 		}
18328 miss:
18329 		/* when new state is not going to be added do not increase miss count.
18330 		 * Otherwise several loop iterations will remove the state
18331 		 * recorded earlier. The goal of these heuristics is to have
18332 		 * states from some iterations of the loop (some in the beginning
18333 		 * and some at the end) to help pruning.
18334 		 */
18335 		if (add_new_state)
18336 			sl->miss_cnt++;
18337 		/* heuristic to determine whether this state is beneficial
18338 		 * to keep checking from state equivalence point of view.
18339 		 * Higher numbers increase max_states_per_insn and verification time,
18340 		 * but do not meaningfully decrease insn_processed.
18341 		 * 'n' controls how many times state could miss before eviction.
18342 		 * Use bigger 'n' for checkpoints because evicting checkpoint states
18343 		 * too early would hinder iterator convergence.
18344 		 */
18345 		n = is_force_checkpoint(env, insn_idx) && sl->state.branches > 0 ? 64 : 3;
18346 		if (sl->miss_cnt > sl->hit_cnt * n + n) {
18347 			/* the state is unlikely to be useful. Remove it to
18348 			 * speed up verification
18349 			 */
18350 			*pprev = sl->next;
18351 			if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE &&
18352 			    !sl->state.used_as_loop_entry) {
18353 				u32 br = sl->state.branches;
18354 
18355 				WARN_ONCE(br,
18356 					  "BUG live_done but branches_to_explore %d\n",
18357 					  br);
18358 				free_verifier_state(&sl->state, false);
18359 				kfree(sl);
18360 				env->peak_states--;
18361 			} else {
18362 				/* cannot free this state, since parentage chain may
18363 				 * walk it later. Add it for free_list instead to
18364 				 * be freed at the end of verification
18365 				 */
18366 				sl->next = env->free_list;
18367 				env->free_list = sl;
18368 			}
18369 			sl = *pprev;
18370 			continue;
18371 		}
18372 next:
18373 		pprev = &sl->next;
18374 		sl = *pprev;
18375 	}
18376 
18377 	if (env->max_states_per_insn < states_cnt)
18378 		env->max_states_per_insn = states_cnt;
18379 
18380 	if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
18381 		return 0;
18382 
18383 	if (!add_new_state)
18384 		return 0;
18385 
18386 	/* There were no equivalent states, remember the current one.
18387 	 * Technically the current state is not proven to be safe yet,
18388 	 * but it will either reach outer most bpf_exit (which means it's safe)
18389 	 * or it will be rejected. When there are no loops the verifier won't be
18390 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
18391 	 * again on the way to bpf_exit.
18392 	 * When looping the sl->state.branches will be > 0 and this state
18393 	 * will not be considered for equivalence until branches == 0.
18394 	 */
18395 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
18396 	if (!new_sl)
18397 		return -ENOMEM;
18398 	env->total_states++;
18399 	env->peak_states++;
18400 	env->prev_jmps_processed = env->jmps_processed;
18401 	env->prev_insn_processed = env->insn_processed;
18402 
18403 	/* forget precise markings we inherited, see __mark_chain_precision */
18404 	if (env->bpf_capable)
18405 		mark_all_scalars_imprecise(env, cur);
18406 
18407 	/* add new state to the head of linked list */
18408 	new = &new_sl->state;
18409 	err = copy_verifier_state(new, cur);
18410 	if (err) {
18411 		free_verifier_state(new, false);
18412 		kfree(new_sl);
18413 		return err;
18414 	}
18415 	new->insn_idx = insn_idx;
18416 	WARN_ONCE(new->branches != 1,
18417 		  "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
18418 
18419 	cur->parent = new;
18420 	cur->first_insn_idx = insn_idx;
18421 	cur->insn_hist_start = cur->insn_hist_end;
18422 	cur->dfs_depth = new->dfs_depth + 1;
18423 	new_sl->next = *explored_state(env, insn_idx);
18424 	*explored_state(env, insn_idx) = new_sl;
18425 	/* connect new state to parentage chain. Current frame needs all
18426 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
18427 	 * to the stack implicitly by JITs) so in callers' frames connect just
18428 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
18429 	 * the state of the call instruction (with WRITTEN set), and r0 comes
18430 	 * from callee with its full parentage chain, anyway.
18431 	 */
18432 	/* clear write marks in current state: the writes we did are not writes
18433 	 * our child did, so they don't screen off its reads from us.
18434 	 * (There are no read marks in current state, because reads always mark
18435 	 * their parent and current state never has children yet.  Only
18436 	 * explored_states can get read marks.)
18437 	 */
18438 	for (j = 0; j <= cur->curframe; j++) {
18439 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
18440 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
18441 		for (i = 0; i < BPF_REG_FP; i++)
18442 			cur->frame[j]->regs[i].live = REG_LIVE_NONE;
18443 	}
18444 
18445 	/* all stack frames are accessible from callee, clear them all */
18446 	for (j = 0; j <= cur->curframe; j++) {
18447 		struct bpf_func_state *frame = cur->frame[j];
18448 		struct bpf_func_state *newframe = new->frame[j];
18449 
18450 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
18451 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
18452 			frame->stack[i].spilled_ptr.parent =
18453 						&newframe->stack[i].spilled_ptr;
18454 		}
18455 	}
18456 	return 0;
18457 }
18458 
18459 /* Return true if it's OK to have the same insn return a different type. */
18460 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
18461 {
18462 	switch (base_type(type)) {
18463 	case PTR_TO_CTX:
18464 	case PTR_TO_SOCKET:
18465 	case PTR_TO_SOCK_COMMON:
18466 	case PTR_TO_TCP_SOCK:
18467 	case PTR_TO_XDP_SOCK:
18468 	case PTR_TO_BTF_ID:
18469 	case PTR_TO_ARENA:
18470 		return false;
18471 	default:
18472 		return true;
18473 	}
18474 }
18475 
18476 /* If an instruction was previously used with particular pointer types, then we
18477  * need to be careful to avoid cases such as the below, where it may be ok
18478  * for one branch accessing the pointer, but not ok for the other branch:
18479  *
18480  * R1 = sock_ptr
18481  * goto X;
18482  * ...
18483  * R1 = some_other_valid_ptr;
18484  * goto X;
18485  * ...
18486  * R2 = *(u32 *)(R1 + 0);
18487  */
18488 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
18489 {
18490 	return src != prev && (!reg_type_mismatch_ok(src) ||
18491 			       !reg_type_mismatch_ok(prev));
18492 }
18493 
18494 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type,
18495 			     bool allow_trust_mismatch)
18496 {
18497 	enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type;
18498 
18499 	if (*prev_type == NOT_INIT) {
18500 		/* Saw a valid insn
18501 		 * dst_reg = *(u32 *)(src_reg + off)
18502 		 * save type to validate intersecting paths
18503 		 */
18504 		*prev_type = type;
18505 	} else if (reg_type_mismatch(type, *prev_type)) {
18506 		/* Abuser program is trying to use the same insn
18507 		 * dst_reg = *(u32*) (src_reg + off)
18508 		 * with different pointer types:
18509 		 * src_reg == ctx in one branch and
18510 		 * src_reg == stack|map in some other branch.
18511 		 * Reject it.
18512 		 */
18513 		if (allow_trust_mismatch &&
18514 		    base_type(type) == PTR_TO_BTF_ID &&
18515 		    base_type(*prev_type) == PTR_TO_BTF_ID) {
18516 			/*
18517 			 * Have to support a use case when one path through
18518 			 * the program yields TRUSTED pointer while another
18519 			 * is UNTRUSTED. Fallback to UNTRUSTED to generate
18520 			 * BPF_PROBE_MEM/BPF_PROBE_MEMSX.
18521 			 */
18522 			*prev_type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
18523 		} else {
18524 			verbose(env, "same insn cannot be used with different pointers\n");
18525 			return -EINVAL;
18526 		}
18527 	}
18528 
18529 	return 0;
18530 }
18531 
18532 static int do_check(struct bpf_verifier_env *env)
18533 {
18534 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
18535 	struct bpf_verifier_state *state = env->cur_state;
18536 	struct bpf_insn *insns = env->prog->insnsi;
18537 	struct bpf_reg_state *regs;
18538 	int insn_cnt = env->prog->len;
18539 	bool do_print_state = false;
18540 	int prev_insn_idx = -1;
18541 
18542 	for (;;) {
18543 		bool exception_exit = false;
18544 		struct bpf_insn *insn;
18545 		u8 class;
18546 		int err;
18547 
18548 		/* reset current history entry on each new instruction */
18549 		env->cur_hist_ent = NULL;
18550 
18551 		env->prev_insn_idx = prev_insn_idx;
18552 		if (env->insn_idx >= insn_cnt) {
18553 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
18554 				env->insn_idx, insn_cnt);
18555 			return -EFAULT;
18556 		}
18557 
18558 		insn = &insns[env->insn_idx];
18559 		class = BPF_CLASS(insn->code);
18560 
18561 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
18562 			verbose(env,
18563 				"BPF program is too large. Processed %d insn\n",
18564 				env->insn_processed);
18565 			return -E2BIG;
18566 		}
18567 
18568 		state->last_insn_idx = env->prev_insn_idx;
18569 
18570 		if (is_prune_point(env, env->insn_idx)) {
18571 			err = is_state_visited(env, env->insn_idx);
18572 			if (err < 0)
18573 				return err;
18574 			if (err == 1) {
18575 				/* found equivalent state, can prune the search */
18576 				if (env->log.level & BPF_LOG_LEVEL) {
18577 					if (do_print_state)
18578 						verbose(env, "\nfrom %d to %d%s: safe\n",
18579 							env->prev_insn_idx, env->insn_idx,
18580 							env->cur_state->speculative ?
18581 							" (speculative execution)" : "");
18582 					else
18583 						verbose(env, "%d: safe\n", env->insn_idx);
18584 				}
18585 				goto process_bpf_exit;
18586 			}
18587 		}
18588 
18589 		if (is_jmp_point(env, env->insn_idx)) {
18590 			err = push_insn_history(env, state, 0, 0);
18591 			if (err)
18592 				return err;
18593 		}
18594 
18595 		if (signal_pending(current))
18596 			return -EAGAIN;
18597 
18598 		if (need_resched())
18599 			cond_resched();
18600 
18601 		if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) {
18602 			verbose(env, "\nfrom %d to %d%s:",
18603 				env->prev_insn_idx, env->insn_idx,
18604 				env->cur_state->speculative ?
18605 				" (speculative execution)" : "");
18606 			print_verifier_state(env, state->frame[state->curframe], true);
18607 			do_print_state = false;
18608 		}
18609 
18610 		if (env->log.level & BPF_LOG_LEVEL) {
18611 			const struct bpf_insn_cbs cbs = {
18612 				.cb_call	= disasm_kfunc_name,
18613 				.cb_print	= verbose,
18614 				.private_data	= env,
18615 			};
18616 
18617 			if (verifier_state_scratched(env))
18618 				print_insn_state(env, state->frame[state->curframe]);
18619 
18620 			verbose_linfo(env, env->insn_idx, "; ");
18621 			env->prev_log_pos = env->log.end_pos;
18622 			verbose(env, "%d: ", env->insn_idx);
18623 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
18624 			env->prev_insn_print_pos = env->log.end_pos - env->prev_log_pos;
18625 			env->prev_log_pos = env->log.end_pos;
18626 		}
18627 
18628 		if (bpf_prog_is_offloaded(env->prog->aux)) {
18629 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
18630 							   env->prev_insn_idx);
18631 			if (err)
18632 				return err;
18633 		}
18634 
18635 		regs = cur_regs(env);
18636 		sanitize_mark_insn_seen(env);
18637 		prev_insn_idx = env->insn_idx;
18638 
18639 		if (class == BPF_ALU || class == BPF_ALU64) {
18640 			err = check_alu_op(env, insn);
18641 			if (err)
18642 				return err;
18643 
18644 		} else if (class == BPF_LDX) {
18645 			enum bpf_reg_type src_reg_type;
18646 
18647 			/* check for reserved fields is already done */
18648 
18649 			/* check src operand */
18650 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
18651 			if (err)
18652 				return err;
18653 
18654 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
18655 			if (err)
18656 				return err;
18657 
18658 			src_reg_type = regs[insn->src_reg].type;
18659 
18660 			/* check that memory (src_reg + off) is readable,
18661 			 * the state of dst_reg will be updated by this func
18662 			 */
18663 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
18664 					       insn->off, BPF_SIZE(insn->code),
18665 					       BPF_READ, insn->dst_reg, false,
18666 					       BPF_MODE(insn->code) == BPF_MEMSX);
18667 			err = err ?: save_aux_ptr_type(env, src_reg_type, true);
18668 			err = err ?: reg_bounds_sanity_check(env, &regs[insn->dst_reg], "ldx");
18669 			if (err)
18670 				return err;
18671 		} else if (class == BPF_STX) {
18672 			enum bpf_reg_type dst_reg_type;
18673 
18674 			if (BPF_MODE(insn->code) == BPF_ATOMIC) {
18675 				err = check_atomic(env, env->insn_idx, insn);
18676 				if (err)
18677 					return err;
18678 				env->insn_idx++;
18679 				continue;
18680 			}
18681 
18682 			if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
18683 				verbose(env, "BPF_STX uses reserved fields\n");
18684 				return -EINVAL;
18685 			}
18686 
18687 			/* check src1 operand */
18688 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
18689 			if (err)
18690 				return err;
18691 			/* check src2 operand */
18692 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
18693 			if (err)
18694 				return err;
18695 
18696 			dst_reg_type = regs[insn->dst_reg].type;
18697 
18698 			/* check that memory (dst_reg + off) is writeable */
18699 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
18700 					       insn->off, BPF_SIZE(insn->code),
18701 					       BPF_WRITE, insn->src_reg, false, false);
18702 			if (err)
18703 				return err;
18704 
18705 			err = save_aux_ptr_type(env, dst_reg_type, false);
18706 			if (err)
18707 				return err;
18708 		} else if (class == BPF_ST) {
18709 			enum bpf_reg_type dst_reg_type;
18710 
18711 			if (BPF_MODE(insn->code) != BPF_MEM ||
18712 			    insn->src_reg != BPF_REG_0) {
18713 				verbose(env, "BPF_ST uses reserved fields\n");
18714 				return -EINVAL;
18715 			}
18716 			/* check src operand */
18717 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
18718 			if (err)
18719 				return err;
18720 
18721 			dst_reg_type = regs[insn->dst_reg].type;
18722 
18723 			/* check that memory (dst_reg + off) is writeable */
18724 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
18725 					       insn->off, BPF_SIZE(insn->code),
18726 					       BPF_WRITE, -1, false, false);
18727 			if (err)
18728 				return err;
18729 
18730 			err = save_aux_ptr_type(env, dst_reg_type, false);
18731 			if (err)
18732 				return err;
18733 		} else if (class == BPF_JMP || class == BPF_JMP32) {
18734 			u8 opcode = BPF_OP(insn->code);
18735 
18736 			env->jmps_processed++;
18737 			if (opcode == BPF_CALL) {
18738 				if (BPF_SRC(insn->code) != BPF_K ||
18739 				    (insn->src_reg != BPF_PSEUDO_KFUNC_CALL
18740 				     && insn->off != 0) ||
18741 				    (insn->src_reg != BPF_REG_0 &&
18742 				     insn->src_reg != BPF_PSEUDO_CALL &&
18743 				     insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
18744 				    insn->dst_reg != BPF_REG_0 ||
18745 				    class == BPF_JMP32) {
18746 					verbose(env, "BPF_CALL uses reserved fields\n");
18747 					return -EINVAL;
18748 				}
18749 
18750 				if (cur_func(env)->active_locks) {
18751 					if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) ||
18752 					    (insn->src_reg == BPF_PSEUDO_KFUNC_CALL &&
18753 					     (insn->off != 0 || !is_bpf_graph_api_kfunc(insn->imm)))) {
18754 						verbose(env, "function calls are not allowed while holding a lock\n");
18755 						return -EINVAL;
18756 					}
18757 				}
18758 				if (insn->src_reg == BPF_PSEUDO_CALL) {
18759 					err = check_func_call(env, insn, &env->insn_idx);
18760 				} else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
18761 					err = check_kfunc_call(env, insn, &env->insn_idx);
18762 					if (!err && is_bpf_throw_kfunc(insn)) {
18763 						exception_exit = true;
18764 						goto process_bpf_exit_full;
18765 					}
18766 				} else {
18767 					err = check_helper_call(env, insn, &env->insn_idx);
18768 				}
18769 				if (err)
18770 					return err;
18771 
18772 				mark_reg_scratched(env, BPF_REG_0);
18773 			} else if (opcode == BPF_JA) {
18774 				if (BPF_SRC(insn->code) != BPF_K ||
18775 				    insn->src_reg != BPF_REG_0 ||
18776 				    insn->dst_reg != BPF_REG_0 ||
18777 				    (class == BPF_JMP && insn->imm != 0) ||
18778 				    (class == BPF_JMP32 && insn->off != 0)) {
18779 					verbose(env, "BPF_JA uses reserved fields\n");
18780 					return -EINVAL;
18781 				}
18782 
18783 				if (class == BPF_JMP)
18784 					env->insn_idx += insn->off + 1;
18785 				else
18786 					env->insn_idx += insn->imm + 1;
18787 				continue;
18788 
18789 			} else if (opcode == BPF_EXIT) {
18790 				if (BPF_SRC(insn->code) != BPF_K ||
18791 				    insn->imm != 0 ||
18792 				    insn->src_reg != BPF_REG_0 ||
18793 				    insn->dst_reg != BPF_REG_0 ||
18794 				    class == BPF_JMP32) {
18795 					verbose(env, "BPF_EXIT uses reserved fields\n");
18796 					return -EINVAL;
18797 				}
18798 process_bpf_exit_full:
18799 				/* We must do check_reference_leak here before
18800 				 * prepare_func_exit to handle the case when
18801 				 * state->curframe > 0, it may be a callback
18802 				 * function, for which reference_state must
18803 				 * match caller reference state when it exits.
18804 				 */
18805 				err = check_resource_leak(env, exception_exit, !env->cur_state->curframe,
18806 							  "BPF_EXIT instruction");
18807 				if (err)
18808 					return err;
18809 
18810 				/* The side effect of the prepare_func_exit
18811 				 * which is being skipped is that it frees
18812 				 * bpf_func_state. Typically, process_bpf_exit
18813 				 * will only be hit with outermost exit.
18814 				 * copy_verifier_state in pop_stack will handle
18815 				 * freeing of any extra bpf_func_state left over
18816 				 * from not processing all nested function
18817 				 * exits. We also skip return code checks as
18818 				 * they are not needed for exceptional exits.
18819 				 */
18820 				if (exception_exit)
18821 					goto process_bpf_exit;
18822 
18823 				if (state->curframe) {
18824 					/* exit from nested function */
18825 					err = prepare_func_exit(env, &env->insn_idx);
18826 					if (err)
18827 						return err;
18828 					do_print_state = true;
18829 					continue;
18830 				}
18831 
18832 				err = check_return_code(env, BPF_REG_0, "R0");
18833 				if (err)
18834 					return err;
18835 process_bpf_exit:
18836 				mark_verifier_state_scratched(env);
18837 				update_branch_counts(env, env->cur_state);
18838 				err = pop_stack(env, &prev_insn_idx,
18839 						&env->insn_idx, pop_log);
18840 				if (err < 0) {
18841 					if (err != -ENOENT)
18842 						return err;
18843 					break;
18844 				} else {
18845 					do_print_state = true;
18846 					continue;
18847 				}
18848 			} else {
18849 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
18850 				if (err)
18851 					return err;
18852 			}
18853 		} else if (class == BPF_LD) {
18854 			u8 mode = BPF_MODE(insn->code);
18855 
18856 			if (mode == BPF_ABS || mode == BPF_IND) {
18857 				err = check_ld_abs(env, insn);
18858 				if (err)
18859 					return err;
18860 
18861 			} else if (mode == BPF_IMM) {
18862 				err = check_ld_imm(env, insn);
18863 				if (err)
18864 					return err;
18865 
18866 				env->insn_idx++;
18867 				sanitize_mark_insn_seen(env);
18868 			} else {
18869 				verbose(env, "invalid BPF_LD mode\n");
18870 				return -EINVAL;
18871 			}
18872 		} else {
18873 			verbose(env, "unknown insn class %d\n", class);
18874 			return -EINVAL;
18875 		}
18876 
18877 		env->insn_idx++;
18878 	}
18879 
18880 	return 0;
18881 }
18882 
18883 static int find_btf_percpu_datasec(struct btf *btf)
18884 {
18885 	const struct btf_type *t;
18886 	const char *tname;
18887 	int i, n;
18888 
18889 	/*
18890 	 * Both vmlinux and module each have their own ".data..percpu"
18891 	 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
18892 	 * types to look at only module's own BTF types.
18893 	 */
18894 	n = btf_nr_types(btf);
18895 	if (btf_is_module(btf))
18896 		i = btf_nr_types(btf_vmlinux);
18897 	else
18898 		i = 1;
18899 
18900 	for(; i < n; i++) {
18901 		t = btf_type_by_id(btf, i);
18902 		if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
18903 			continue;
18904 
18905 		tname = btf_name_by_offset(btf, t->name_off);
18906 		if (!strcmp(tname, ".data..percpu"))
18907 			return i;
18908 	}
18909 
18910 	return -ENOENT;
18911 }
18912 
18913 /* replace pseudo btf_id with kernel symbol address */
18914 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
18915 			       struct bpf_insn *insn,
18916 			       struct bpf_insn_aux_data *aux)
18917 {
18918 	const struct btf_var_secinfo *vsi;
18919 	const struct btf_type *datasec;
18920 	struct btf_mod_pair *btf_mod;
18921 	const struct btf_type *t;
18922 	const char *sym_name;
18923 	bool percpu = false;
18924 	u32 type, id = insn->imm;
18925 	struct btf *btf;
18926 	s32 datasec_id;
18927 	u64 addr;
18928 	int i, btf_fd, err;
18929 
18930 	btf_fd = insn[1].imm;
18931 	if (btf_fd) {
18932 		btf = btf_get_by_fd(btf_fd);
18933 		if (IS_ERR(btf)) {
18934 			verbose(env, "invalid module BTF object FD specified.\n");
18935 			return -EINVAL;
18936 		}
18937 	} else {
18938 		if (!btf_vmlinux) {
18939 			verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
18940 			return -EINVAL;
18941 		}
18942 		btf = btf_vmlinux;
18943 		btf_get(btf);
18944 	}
18945 
18946 	t = btf_type_by_id(btf, id);
18947 	if (!t) {
18948 		verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
18949 		err = -ENOENT;
18950 		goto err_put;
18951 	}
18952 
18953 	if (!btf_type_is_var(t) && !btf_type_is_func(t)) {
18954 		verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id);
18955 		err = -EINVAL;
18956 		goto err_put;
18957 	}
18958 
18959 	sym_name = btf_name_by_offset(btf, t->name_off);
18960 	addr = kallsyms_lookup_name(sym_name);
18961 	if (!addr) {
18962 		verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
18963 			sym_name);
18964 		err = -ENOENT;
18965 		goto err_put;
18966 	}
18967 	insn[0].imm = (u32)addr;
18968 	insn[1].imm = addr >> 32;
18969 
18970 	if (btf_type_is_func(t)) {
18971 		aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
18972 		aux->btf_var.mem_size = 0;
18973 		goto check_btf;
18974 	}
18975 
18976 	datasec_id = find_btf_percpu_datasec(btf);
18977 	if (datasec_id > 0) {
18978 		datasec = btf_type_by_id(btf, datasec_id);
18979 		for_each_vsi(i, datasec, vsi) {
18980 			if (vsi->type == id) {
18981 				percpu = true;
18982 				break;
18983 			}
18984 		}
18985 	}
18986 
18987 	type = t->type;
18988 	t = btf_type_skip_modifiers(btf, type, NULL);
18989 	if (percpu) {
18990 		aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU;
18991 		aux->btf_var.btf = btf;
18992 		aux->btf_var.btf_id = type;
18993 	} else if (!btf_type_is_struct(t)) {
18994 		const struct btf_type *ret;
18995 		const char *tname;
18996 		u32 tsize;
18997 
18998 		/* resolve the type size of ksym. */
18999 		ret = btf_resolve_size(btf, t, &tsize);
19000 		if (IS_ERR(ret)) {
19001 			tname = btf_name_by_offset(btf, t->name_off);
19002 			verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
19003 				tname, PTR_ERR(ret));
19004 			err = -EINVAL;
19005 			goto err_put;
19006 		}
19007 		aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
19008 		aux->btf_var.mem_size = tsize;
19009 	} else {
19010 		aux->btf_var.reg_type = PTR_TO_BTF_ID;
19011 		aux->btf_var.btf = btf;
19012 		aux->btf_var.btf_id = type;
19013 	}
19014 check_btf:
19015 	/* check whether we recorded this BTF (and maybe module) already */
19016 	for (i = 0; i < env->used_btf_cnt; i++) {
19017 		if (env->used_btfs[i].btf == btf) {
19018 			btf_put(btf);
19019 			return 0;
19020 		}
19021 	}
19022 
19023 	if (env->used_btf_cnt >= MAX_USED_BTFS) {
19024 		err = -E2BIG;
19025 		goto err_put;
19026 	}
19027 
19028 	btf_mod = &env->used_btfs[env->used_btf_cnt];
19029 	btf_mod->btf = btf;
19030 	btf_mod->module = NULL;
19031 
19032 	/* if we reference variables from kernel module, bump its refcount */
19033 	if (btf_is_module(btf)) {
19034 		btf_mod->module = btf_try_get_module(btf);
19035 		if (!btf_mod->module) {
19036 			err = -ENXIO;
19037 			goto err_put;
19038 		}
19039 	}
19040 
19041 	env->used_btf_cnt++;
19042 
19043 	return 0;
19044 err_put:
19045 	btf_put(btf);
19046 	return err;
19047 }
19048 
19049 static bool is_tracing_prog_type(enum bpf_prog_type type)
19050 {
19051 	switch (type) {
19052 	case BPF_PROG_TYPE_KPROBE:
19053 	case BPF_PROG_TYPE_TRACEPOINT:
19054 	case BPF_PROG_TYPE_PERF_EVENT:
19055 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
19056 	case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
19057 		return true;
19058 	default:
19059 		return false;
19060 	}
19061 }
19062 
19063 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
19064 					struct bpf_map *map,
19065 					struct bpf_prog *prog)
19066 
19067 {
19068 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
19069 
19070 	if (btf_record_has_field(map->record, BPF_LIST_HEAD) ||
19071 	    btf_record_has_field(map->record, BPF_RB_ROOT)) {
19072 		if (is_tracing_prog_type(prog_type)) {
19073 			verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n");
19074 			return -EINVAL;
19075 		}
19076 	}
19077 
19078 	if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) {
19079 		if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
19080 			verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
19081 			return -EINVAL;
19082 		}
19083 
19084 		if (is_tracing_prog_type(prog_type)) {
19085 			verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
19086 			return -EINVAL;
19087 		}
19088 	}
19089 
19090 	if (btf_record_has_field(map->record, BPF_TIMER)) {
19091 		if (is_tracing_prog_type(prog_type)) {
19092 			verbose(env, "tracing progs cannot use bpf_timer yet\n");
19093 			return -EINVAL;
19094 		}
19095 	}
19096 
19097 	if (btf_record_has_field(map->record, BPF_WORKQUEUE)) {
19098 		if (is_tracing_prog_type(prog_type)) {
19099 			verbose(env, "tracing progs cannot use bpf_wq yet\n");
19100 			return -EINVAL;
19101 		}
19102 	}
19103 
19104 	if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) &&
19105 	    !bpf_offload_prog_map_match(prog, map)) {
19106 		verbose(env, "offload device mismatch between prog and map\n");
19107 		return -EINVAL;
19108 	}
19109 
19110 	if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
19111 		verbose(env, "bpf_struct_ops map cannot be used in prog\n");
19112 		return -EINVAL;
19113 	}
19114 
19115 	if (prog->sleepable)
19116 		switch (map->map_type) {
19117 		case BPF_MAP_TYPE_HASH:
19118 		case BPF_MAP_TYPE_LRU_HASH:
19119 		case BPF_MAP_TYPE_ARRAY:
19120 		case BPF_MAP_TYPE_PERCPU_HASH:
19121 		case BPF_MAP_TYPE_PERCPU_ARRAY:
19122 		case BPF_MAP_TYPE_LRU_PERCPU_HASH:
19123 		case BPF_MAP_TYPE_ARRAY_OF_MAPS:
19124 		case BPF_MAP_TYPE_HASH_OF_MAPS:
19125 		case BPF_MAP_TYPE_RINGBUF:
19126 		case BPF_MAP_TYPE_USER_RINGBUF:
19127 		case BPF_MAP_TYPE_INODE_STORAGE:
19128 		case BPF_MAP_TYPE_SK_STORAGE:
19129 		case BPF_MAP_TYPE_TASK_STORAGE:
19130 		case BPF_MAP_TYPE_CGRP_STORAGE:
19131 		case BPF_MAP_TYPE_QUEUE:
19132 		case BPF_MAP_TYPE_STACK:
19133 		case BPF_MAP_TYPE_ARENA:
19134 			break;
19135 		default:
19136 			verbose(env,
19137 				"Sleepable programs can only use array, hash, ringbuf and local storage maps\n");
19138 			return -EINVAL;
19139 		}
19140 
19141 	return 0;
19142 }
19143 
19144 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
19145 {
19146 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
19147 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
19148 }
19149 
19150 /* Add map behind fd to used maps list, if it's not already there, and return
19151  * its index. Also set *reused to true if this map was already in the list of
19152  * used maps.
19153  * Returns <0 on error, or >= 0 index, on success.
19154  */
19155 static int add_used_map_from_fd(struct bpf_verifier_env *env, int fd, bool *reused)
19156 {
19157 	CLASS(fd, f)(fd);
19158 	struct bpf_map *map;
19159 	int i;
19160 
19161 	map = __bpf_map_get(f);
19162 	if (IS_ERR(map)) {
19163 		verbose(env, "fd %d is not pointing to valid bpf_map\n", fd);
19164 		return PTR_ERR(map);
19165 	}
19166 
19167 	/* check whether we recorded this map already */
19168 	for (i = 0; i < env->used_map_cnt; i++) {
19169 		if (env->used_maps[i] == map) {
19170 			*reused = true;
19171 			return i;
19172 		}
19173 	}
19174 
19175 	if (env->used_map_cnt >= MAX_USED_MAPS) {
19176 		verbose(env, "The total number of maps per program has reached the limit of %u\n",
19177 			MAX_USED_MAPS);
19178 		return -E2BIG;
19179 	}
19180 
19181 	if (env->prog->sleepable)
19182 		atomic64_inc(&map->sleepable_refcnt);
19183 
19184 	/* hold the map. If the program is rejected by verifier,
19185 	 * the map will be released by release_maps() or it
19186 	 * will be used by the valid program until it's unloaded
19187 	 * and all maps are released in bpf_free_used_maps()
19188 	 */
19189 	bpf_map_inc(map);
19190 
19191 	*reused = false;
19192 	env->used_maps[env->used_map_cnt++] = map;
19193 
19194 	return env->used_map_cnt - 1;
19195 }
19196 
19197 /* find and rewrite pseudo imm in ld_imm64 instructions:
19198  *
19199  * 1. if it accesses map FD, replace it with actual map pointer.
19200  * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
19201  *
19202  * NOTE: btf_vmlinux is required for converting pseudo btf_id.
19203  */
19204 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
19205 {
19206 	struct bpf_insn *insn = env->prog->insnsi;
19207 	int insn_cnt = env->prog->len;
19208 	int i, err;
19209 
19210 	err = bpf_prog_calc_tag(env->prog);
19211 	if (err)
19212 		return err;
19213 
19214 	for (i = 0; i < insn_cnt; i++, insn++) {
19215 		if (BPF_CLASS(insn->code) == BPF_LDX &&
19216 		    ((BPF_MODE(insn->code) != BPF_MEM && BPF_MODE(insn->code) != BPF_MEMSX) ||
19217 		    insn->imm != 0)) {
19218 			verbose(env, "BPF_LDX uses reserved fields\n");
19219 			return -EINVAL;
19220 		}
19221 
19222 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
19223 			struct bpf_insn_aux_data *aux;
19224 			struct bpf_map *map;
19225 			int map_idx;
19226 			u64 addr;
19227 			u32 fd;
19228 			bool reused;
19229 
19230 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
19231 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
19232 			    insn[1].off != 0) {
19233 				verbose(env, "invalid bpf_ld_imm64 insn\n");
19234 				return -EINVAL;
19235 			}
19236 
19237 			if (insn[0].src_reg == 0)
19238 				/* valid generic load 64-bit imm */
19239 				goto next_insn;
19240 
19241 			if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
19242 				aux = &env->insn_aux_data[i];
19243 				err = check_pseudo_btf_id(env, insn, aux);
19244 				if (err)
19245 					return err;
19246 				goto next_insn;
19247 			}
19248 
19249 			if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
19250 				aux = &env->insn_aux_data[i];
19251 				aux->ptr_type = PTR_TO_FUNC;
19252 				goto next_insn;
19253 			}
19254 
19255 			/* In final convert_pseudo_ld_imm64() step, this is
19256 			 * converted into regular 64-bit imm load insn.
19257 			 */
19258 			switch (insn[0].src_reg) {
19259 			case BPF_PSEUDO_MAP_VALUE:
19260 			case BPF_PSEUDO_MAP_IDX_VALUE:
19261 				break;
19262 			case BPF_PSEUDO_MAP_FD:
19263 			case BPF_PSEUDO_MAP_IDX:
19264 				if (insn[1].imm == 0)
19265 					break;
19266 				fallthrough;
19267 			default:
19268 				verbose(env, "unrecognized bpf_ld_imm64 insn\n");
19269 				return -EINVAL;
19270 			}
19271 
19272 			switch (insn[0].src_reg) {
19273 			case BPF_PSEUDO_MAP_IDX_VALUE:
19274 			case BPF_PSEUDO_MAP_IDX:
19275 				if (bpfptr_is_null(env->fd_array)) {
19276 					verbose(env, "fd_idx without fd_array is invalid\n");
19277 					return -EPROTO;
19278 				}
19279 				if (copy_from_bpfptr_offset(&fd, env->fd_array,
19280 							    insn[0].imm * sizeof(fd),
19281 							    sizeof(fd)))
19282 					return -EFAULT;
19283 				break;
19284 			default:
19285 				fd = insn[0].imm;
19286 				break;
19287 			}
19288 
19289 			map_idx = add_used_map_from_fd(env, fd, &reused);
19290 			if (map_idx < 0)
19291 				return map_idx;
19292 			map = env->used_maps[map_idx];
19293 
19294 			aux = &env->insn_aux_data[i];
19295 			aux->map_index = map_idx;
19296 
19297 			err = check_map_prog_compatibility(env, map, env->prog);
19298 			if (err)
19299 				return err;
19300 
19301 			if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
19302 			    insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
19303 				addr = (unsigned long)map;
19304 			} else {
19305 				u32 off = insn[1].imm;
19306 
19307 				if (off >= BPF_MAX_VAR_OFF) {
19308 					verbose(env, "direct value offset of %u is not allowed\n", off);
19309 					return -EINVAL;
19310 				}
19311 
19312 				if (!map->ops->map_direct_value_addr) {
19313 					verbose(env, "no direct value access support for this map type\n");
19314 					return -EINVAL;
19315 				}
19316 
19317 				err = map->ops->map_direct_value_addr(map, &addr, off);
19318 				if (err) {
19319 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
19320 						map->value_size, off);
19321 					return err;
19322 				}
19323 
19324 				aux->map_off = off;
19325 				addr += off;
19326 			}
19327 
19328 			insn[0].imm = (u32)addr;
19329 			insn[1].imm = addr >> 32;
19330 
19331 			/* proceed with extra checks only if its newly added used map */
19332 			if (reused)
19333 				goto next_insn;
19334 
19335 			if (bpf_map_is_cgroup_storage(map) &&
19336 			    bpf_cgroup_storage_assign(env->prog->aux, map)) {
19337 				verbose(env, "only one cgroup storage of each type is allowed\n");
19338 				return -EBUSY;
19339 			}
19340 			if (map->map_type == BPF_MAP_TYPE_ARENA) {
19341 				if (env->prog->aux->arena) {
19342 					verbose(env, "Only one arena per program\n");
19343 					return -EBUSY;
19344 				}
19345 				if (!env->allow_ptr_leaks || !env->bpf_capable) {
19346 					verbose(env, "CAP_BPF and CAP_PERFMON are required to use arena\n");
19347 					return -EPERM;
19348 				}
19349 				if (!env->prog->jit_requested) {
19350 					verbose(env, "JIT is required to use arena\n");
19351 					return -EOPNOTSUPP;
19352 				}
19353 				if (!bpf_jit_supports_arena()) {
19354 					verbose(env, "JIT doesn't support arena\n");
19355 					return -EOPNOTSUPP;
19356 				}
19357 				env->prog->aux->arena = (void *)map;
19358 				if (!bpf_arena_get_user_vm_start(env->prog->aux->arena)) {
19359 					verbose(env, "arena's user address must be set via map_extra or mmap()\n");
19360 					return -EINVAL;
19361 				}
19362 			}
19363 
19364 next_insn:
19365 			insn++;
19366 			i++;
19367 			continue;
19368 		}
19369 
19370 		/* Basic sanity check before we invest more work here. */
19371 		if (!bpf_opcode_in_insntable(insn->code)) {
19372 			verbose(env, "unknown opcode %02x\n", insn->code);
19373 			return -EINVAL;
19374 		}
19375 	}
19376 
19377 	/* now all pseudo BPF_LD_IMM64 instructions load valid
19378 	 * 'struct bpf_map *' into a register instead of user map_fd.
19379 	 * These pointers will be used later by verifier to validate map access.
19380 	 */
19381 	return 0;
19382 }
19383 
19384 /* drop refcnt of maps used by the rejected program */
19385 static void release_maps(struct bpf_verifier_env *env)
19386 {
19387 	__bpf_free_used_maps(env->prog->aux, env->used_maps,
19388 			     env->used_map_cnt);
19389 }
19390 
19391 /* drop refcnt of maps used by the rejected program */
19392 static void release_btfs(struct bpf_verifier_env *env)
19393 {
19394 	__bpf_free_used_btfs(env->used_btfs, env->used_btf_cnt);
19395 }
19396 
19397 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
19398 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
19399 {
19400 	struct bpf_insn *insn = env->prog->insnsi;
19401 	int insn_cnt = env->prog->len;
19402 	int i;
19403 
19404 	for (i = 0; i < insn_cnt; i++, insn++) {
19405 		if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
19406 			continue;
19407 		if (insn->src_reg == BPF_PSEUDO_FUNC)
19408 			continue;
19409 		insn->src_reg = 0;
19410 	}
19411 }
19412 
19413 /* single env->prog->insni[off] instruction was replaced with the range
19414  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
19415  * [0, off) and [off, end) to new locations, so the patched range stays zero
19416  */
19417 static void adjust_insn_aux_data(struct bpf_verifier_env *env,
19418 				 struct bpf_insn_aux_data *new_data,
19419 				 struct bpf_prog *new_prog, u32 off, u32 cnt)
19420 {
19421 	struct bpf_insn_aux_data *old_data = env->insn_aux_data;
19422 	struct bpf_insn *insn = new_prog->insnsi;
19423 	u32 old_seen = old_data[off].seen;
19424 	u32 prog_len;
19425 	int i;
19426 
19427 	/* aux info at OFF always needs adjustment, no matter fast path
19428 	 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
19429 	 * original insn at old prog.
19430 	 */
19431 	old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
19432 
19433 	if (cnt == 1)
19434 		return;
19435 	prog_len = new_prog->len;
19436 
19437 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
19438 	memcpy(new_data + off + cnt - 1, old_data + off,
19439 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
19440 	for (i = off; i < off + cnt - 1; i++) {
19441 		/* Expand insni[off]'s seen count to the patched range. */
19442 		new_data[i].seen = old_seen;
19443 		new_data[i].zext_dst = insn_has_def32(env, insn + i);
19444 	}
19445 	env->insn_aux_data = new_data;
19446 	vfree(old_data);
19447 }
19448 
19449 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
19450 {
19451 	int i;
19452 
19453 	if (len == 1)
19454 		return;
19455 	/* NOTE: fake 'exit' subprog should be updated as well. */
19456 	for (i = 0; i <= env->subprog_cnt; i++) {
19457 		if (env->subprog_info[i].start <= off)
19458 			continue;
19459 		env->subprog_info[i].start += len - 1;
19460 	}
19461 }
19462 
19463 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
19464 {
19465 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
19466 	int i, sz = prog->aux->size_poke_tab;
19467 	struct bpf_jit_poke_descriptor *desc;
19468 
19469 	for (i = 0; i < sz; i++) {
19470 		desc = &tab[i];
19471 		if (desc->insn_idx <= off)
19472 			continue;
19473 		desc->insn_idx += len - 1;
19474 	}
19475 }
19476 
19477 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
19478 					    const struct bpf_insn *patch, u32 len)
19479 {
19480 	struct bpf_prog *new_prog;
19481 	struct bpf_insn_aux_data *new_data = NULL;
19482 
19483 	if (len > 1) {
19484 		new_data = vzalloc(array_size(env->prog->len + len - 1,
19485 					      sizeof(struct bpf_insn_aux_data)));
19486 		if (!new_data)
19487 			return NULL;
19488 	}
19489 
19490 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
19491 	if (IS_ERR(new_prog)) {
19492 		if (PTR_ERR(new_prog) == -ERANGE)
19493 			verbose(env,
19494 				"insn %d cannot be patched due to 16-bit range\n",
19495 				env->insn_aux_data[off].orig_idx);
19496 		vfree(new_data);
19497 		return NULL;
19498 	}
19499 	adjust_insn_aux_data(env, new_data, new_prog, off, len);
19500 	adjust_subprog_starts(env, off, len);
19501 	adjust_poke_descs(new_prog, off, len);
19502 	return new_prog;
19503 }
19504 
19505 /*
19506  * For all jmp insns in a given 'prog' that point to 'tgt_idx' insn adjust the
19507  * jump offset by 'delta'.
19508  */
19509 static int adjust_jmp_off(struct bpf_prog *prog, u32 tgt_idx, u32 delta)
19510 {
19511 	struct bpf_insn *insn = prog->insnsi;
19512 	u32 insn_cnt = prog->len, i;
19513 	s32 imm;
19514 	s16 off;
19515 
19516 	for (i = 0; i < insn_cnt; i++, insn++) {
19517 		u8 code = insn->code;
19518 
19519 		if (tgt_idx <= i && i < tgt_idx + delta)
19520 			continue;
19521 
19522 		if ((BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) ||
19523 		    BPF_OP(code) == BPF_CALL || BPF_OP(code) == BPF_EXIT)
19524 			continue;
19525 
19526 		if (insn->code == (BPF_JMP32 | BPF_JA)) {
19527 			if (i + 1 + insn->imm != tgt_idx)
19528 				continue;
19529 			if (check_add_overflow(insn->imm, delta, &imm))
19530 				return -ERANGE;
19531 			insn->imm = imm;
19532 		} else {
19533 			if (i + 1 + insn->off != tgt_idx)
19534 				continue;
19535 			if (check_add_overflow(insn->off, delta, &off))
19536 				return -ERANGE;
19537 			insn->off = off;
19538 		}
19539 	}
19540 	return 0;
19541 }
19542 
19543 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
19544 					      u32 off, u32 cnt)
19545 {
19546 	int i, j;
19547 
19548 	/* find first prog starting at or after off (first to remove) */
19549 	for (i = 0; i < env->subprog_cnt; i++)
19550 		if (env->subprog_info[i].start >= off)
19551 			break;
19552 	/* find first prog starting at or after off + cnt (first to stay) */
19553 	for (j = i; j < env->subprog_cnt; j++)
19554 		if (env->subprog_info[j].start >= off + cnt)
19555 			break;
19556 	/* if j doesn't start exactly at off + cnt, we are just removing
19557 	 * the front of previous prog
19558 	 */
19559 	if (env->subprog_info[j].start != off + cnt)
19560 		j--;
19561 
19562 	if (j > i) {
19563 		struct bpf_prog_aux *aux = env->prog->aux;
19564 		int move;
19565 
19566 		/* move fake 'exit' subprog as well */
19567 		move = env->subprog_cnt + 1 - j;
19568 
19569 		memmove(env->subprog_info + i,
19570 			env->subprog_info + j,
19571 			sizeof(*env->subprog_info) * move);
19572 		env->subprog_cnt -= j - i;
19573 
19574 		/* remove func_info */
19575 		if (aux->func_info) {
19576 			move = aux->func_info_cnt - j;
19577 
19578 			memmove(aux->func_info + i,
19579 				aux->func_info + j,
19580 				sizeof(*aux->func_info) * move);
19581 			aux->func_info_cnt -= j - i;
19582 			/* func_info->insn_off is set after all code rewrites,
19583 			 * in adjust_btf_func() - no need to adjust
19584 			 */
19585 		}
19586 	} else {
19587 		/* convert i from "first prog to remove" to "first to adjust" */
19588 		if (env->subprog_info[i].start == off)
19589 			i++;
19590 	}
19591 
19592 	/* update fake 'exit' subprog as well */
19593 	for (; i <= env->subprog_cnt; i++)
19594 		env->subprog_info[i].start -= cnt;
19595 
19596 	return 0;
19597 }
19598 
19599 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
19600 				      u32 cnt)
19601 {
19602 	struct bpf_prog *prog = env->prog;
19603 	u32 i, l_off, l_cnt, nr_linfo;
19604 	struct bpf_line_info *linfo;
19605 
19606 	nr_linfo = prog->aux->nr_linfo;
19607 	if (!nr_linfo)
19608 		return 0;
19609 
19610 	linfo = prog->aux->linfo;
19611 
19612 	/* find first line info to remove, count lines to be removed */
19613 	for (i = 0; i < nr_linfo; i++)
19614 		if (linfo[i].insn_off >= off)
19615 			break;
19616 
19617 	l_off = i;
19618 	l_cnt = 0;
19619 	for (; i < nr_linfo; i++)
19620 		if (linfo[i].insn_off < off + cnt)
19621 			l_cnt++;
19622 		else
19623 			break;
19624 
19625 	/* First live insn doesn't match first live linfo, it needs to "inherit"
19626 	 * last removed linfo.  prog is already modified, so prog->len == off
19627 	 * means no live instructions after (tail of the program was removed).
19628 	 */
19629 	if (prog->len != off && l_cnt &&
19630 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
19631 		l_cnt--;
19632 		linfo[--i].insn_off = off + cnt;
19633 	}
19634 
19635 	/* remove the line info which refer to the removed instructions */
19636 	if (l_cnt) {
19637 		memmove(linfo + l_off, linfo + i,
19638 			sizeof(*linfo) * (nr_linfo - i));
19639 
19640 		prog->aux->nr_linfo -= l_cnt;
19641 		nr_linfo = prog->aux->nr_linfo;
19642 	}
19643 
19644 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
19645 	for (i = l_off; i < nr_linfo; i++)
19646 		linfo[i].insn_off -= cnt;
19647 
19648 	/* fix up all subprogs (incl. 'exit') which start >= off */
19649 	for (i = 0; i <= env->subprog_cnt; i++)
19650 		if (env->subprog_info[i].linfo_idx > l_off) {
19651 			/* program may have started in the removed region but
19652 			 * may not be fully removed
19653 			 */
19654 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
19655 				env->subprog_info[i].linfo_idx -= l_cnt;
19656 			else
19657 				env->subprog_info[i].linfo_idx = l_off;
19658 		}
19659 
19660 	return 0;
19661 }
19662 
19663 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
19664 {
19665 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
19666 	unsigned int orig_prog_len = env->prog->len;
19667 	int err;
19668 
19669 	if (bpf_prog_is_offloaded(env->prog->aux))
19670 		bpf_prog_offload_remove_insns(env, off, cnt);
19671 
19672 	err = bpf_remove_insns(env->prog, off, cnt);
19673 	if (err)
19674 		return err;
19675 
19676 	err = adjust_subprog_starts_after_remove(env, off, cnt);
19677 	if (err)
19678 		return err;
19679 
19680 	err = bpf_adj_linfo_after_remove(env, off, cnt);
19681 	if (err)
19682 		return err;
19683 
19684 	memmove(aux_data + off,	aux_data + off + cnt,
19685 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
19686 
19687 	return 0;
19688 }
19689 
19690 /* The verifier does more data flow analysis than llvm and will not
19691  * explore branches that are dead at run time. Malicious programs can
19692  * have dead code too. Therefore replace all dead at-run-time code
19693  * with 'ja -1'.
19694  *
19695  * Just nops are not optimal, e.g. if they would sit at the end of the
19696  * program and through another bug we would manage to jump there, then
19697  * we'd execute beyond program memory otherwise. Returning exception
19698  * code also wouldn't work since we can have subprogs where the dead
19699  * code could be located.
19700  */
19701 static void sanitize_dead_code(struct bpf_verifier_env *env)
19702 {
19703 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
19704 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
19705 	struct bpf_insn *insn = env->prog->insnsi;
19706 	const int insn_cnt = env->prog->len;
19707 	int i;
19708 
19709 	for (i = 0; i < insn_cnt; i++) {
19710 		if (aux_data[i].seen)
19711 			continue;
19712 		memcpy(insn + i, &trap, sizeof(trap));
19713 		aux_data[i].zext_dst = false;
19714 	}
19715 }
19716 
19717 static bool insn_is_cond_jump(u8 code)
19718 {
19719 	u8 op;
19720 
19721 	op = BPF_OP(code);
19722 	if (BPF_CLASS(code) == BPF_JMP32)
19723 		return op != BPF_JA;
19724 
19725 	if (BPF_CLASS(code) != BPF_JMP)
19726 		return false;
19727 
19728 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
19729 }
19730 
19731 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
19732 {
19733 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
19734 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
19735 	struct bpf_insn *insn = env->prog->insnsi;
19736 	const int insn_cnt = env->prog->len;
19737 	int i;
19738 
19739 	for (i = 0; i < insn_cnt; i++, insn++) {
19740 		if (!insn_is_cond_jump(insn->code))
19741 			continue;
19742 
19743 		if (!aux_data[i + 1].seen)
19744 			ja.off = insn->off;
19745 		else if (!aux_data[i + 1 + insn->off].seen)
19746 			ja.off = 0;
19747 		else
19748 			continue;
19749 
19750 		if (bpf_prog_is_offloaded(env->prog->aux))
19751 			bpf_prog_offload_replace_insn(env, i, &ja);
19752 
19753 		memcpy(insn, &ja, sizeof(ja));
19754 	}
19755 }
19756 
19757 static int opt_remove_dead_code(struct bpf_verifier_env *env)
19758 {
19759 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
19760 	int insn_cnt = env->prog->len;
19761 	int i, err;
19762 
19763 	for (i = 0; i < insn_cnt; i++) {
19764 		int j;
19765 
19766 		j = 0;
19767 		while (i + j < insn_cnt && !aux_data[i + j].seen)
19768 			j++;
19769 		if (!j)
19770 			continue;
19771 
19772 		err = verifier_remove_insns(env, i, j);
19773 		if (err)
19774 			return err;
19775 		insn_cnt = env->prog->len;
19776 	}
19777 
19778 	return 0;
19779 }
19780 
19781 static const struct bpf_insn NOP = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
19782 
19783 static int opt_remove_nops(struct bpf_verifier_env *env)
19784 {
19785 	const struct bpf_insn ja = NOP;
19786 	struct bpf_insn *insn = env->prog->insnsi;
19787 	int insn_cnt = env->prog->len;
19788 	int i, err;
19789 
19790 	for (i = 0; i < insn_cnt; i++) {
19791 		if (memcmp(&insn[i], &ja, sizeof(ja)))
19792 			continue;
19793 
19794 		err = verifier_remove_insns(env, i, 1);
19795 		if (err)
19796 			return err;
19797 		insn_cnt--;
19798 		i--;
19799 	}
19800 
19801 	return 0;
19802 }
19803 
19804 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
19805 					 const union bpf_attr *attr)
19806 {
19807 	struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
19808 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
19809 	int i, patch_len, delta = 0, len = env->prog->len;
19810 	struct bpf_insn *insns = env->prog->insnsi;
19811 	struct bpf_prog *new_prog;
19812 	bool rnd_hi32;
19813 
19814 	rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
19815 	zext_patch[1] = BPF_ZEXT_REG(0);
19816 	rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
19817 	rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
19818 	rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
19819 	for (i = 0; i < len; i++) {
19820 		int adj_idx = i + delta;
19821 		struct bpf_insn insn;
19822 		int load_reg;
19823 
19824 		insn = insns[adj_idx];
19825 		load_reg = insn_def_regno(&insn);
19826 		if (!aux[adj_idx].zext_dst) {
19827 			u8 code, class;
19828 			u32 imm_rnd;
19829 
19830 			if (!rnd_hi32)
19831 				continue;
19832 
19833 			code = insn.code;
19834 			class = BPF_CLASS(code);
19835 			if (load_reg == -1)
19836 				continue;
19837 
19838 			/* NOTE: arg "reg" (the fourth one) is only used for
19839 			 *       BPF_STX + SRC_OP, so it is safe to pass NULL
19840 			 *       here.
19841 			 */
19842 			if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
19843 				if (class == BPF_LD &&
19844 				    BPF_MODE(code) == BPF_IMM)
19845 					i++;
19846 				continue;
19847 			}
19848 
19849 			/* ctx load could be transformed into wider load. */
19850 			if (class == BPF_LDX &&
19851 			    aux[adj_idx].ptr_type == PTR_TO_CTX)
19852 				continue;
19853 
19854 			imm_rnd = get_random_u32();
19855 			rnd_hi32_patch[0] = insn;
19856 			rnd_hi32_patch[1].imm = imm_rnd;
19857 			rnd_hi32_patch[3].dst_reg = load_reg;
19858 			patch = rnd_hi32_patch;
19859 			patch_len = 4;
19860 			goto apply_patch_buffer;
19861 		}
19862 
19863 		/* Add in an zero-extend instruction if a) the JIT has requested
19864 		 * it or b) it's a CMPXCHG.
19865 		 *
19866 		 * The latter is because: BPF_CMPXCHG always loads a value into
19867 		 * R0, therefore always zero-extends. However some archs'
19868 		 * equivalent instruction only does this load when the
19869 		 * comparison is successful. This detail of CMPXCHG is
19870 		 * orthogonal to the general zero-extension behaviour of the
19871 		 * CPU, so it's treated independently of bpf_jit_needs_zext.
19872 		 */
19873 		if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
19874 			continue;
19875 
19876 		/* Zero-extension is done by the caller. */
19877 		if (bpf_pseudo_kfunc_call(&insn))
19878 			continue;
19879 
19880 		if (WARN_ON(load_reg == -1)) {
19881 			verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
19882 			return -EFAULT;
19883 		}
19884 
19885 		zext_patch[0] = insn;
19886 		zext_patch[1].dst_reg = load_reg;
19887 		zext_patch[1].src_reg = load_reg;
19888 		patch = zext_patch;
19889 		patch_len = 2;
19890 apply_patch_buffer:
19891 		new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
19892 		if (!new_prog)
19893 			return -ENOMEM;
19894 		env->prog = new_prog;
19895 		insns = new_prog->insnsi;
19896 		aux = env->insn_aux_data;
19897 		delta += patch_len - 1;
19898 	}
19899 
19900 	return 0;
19901 }
19902 
19903 /* convert load instructions that access fields of a context type into a
19904  * sequence of instructions that access fields of the underlying structure:
19905  *     struct __sk_buff    -> struct sk_buff
19906  *     struct bpf_sock_ops -> struct sock
19907  */
19908 static int convert_ctx_accesses(struct bpf_verifier_env *env)
19909 {
19910 	struct bpf_subprog_info *subprogs = env->subprog_info;
19911 	const struct bpf_verifier_ops *ops = env->ops;
19912 	int i, cnt, size, ctx_field_size, delta = 0, epilogue_cnt = 0;
19913 	const int insn_cnt = env->prog->len;
19914 	struct bpf_insn *epilogue_buf = env->epilogue_buf;
19915 	struct bpf_insn *insn_buf = env->insn_buf;
19916 	struct bpf_insn *insn;
19917 	u32 target_size, size_default, off;
19918 	struct bpf_prog *new_prog;
19919 	enum bpf_access_type type;
19920 	bool is_narrower_load;
19921 	int epilogue_idx = 0;
19922 
19923 	if (ops->gen_epilogue) {
19924 		epilogue_cnt = ops->gen_epilogue(epilogue_buf, env->prog,
19925 						 -(subprogs[0].stack_depth + 8));
19926 		if (epilogue_cnt >= INSN_BUF_SIZE) {
19927 			verbose(env, "bpf verifier is misconfigured\n");
19928 			return -EINVAL;
19929 		} else if (epilogue_cnt) {
19930 			/* Save the ARG_PTR_TO_CTX for the epilogue to use */
19931 			cnt = 0;
19932 			subprogs[0].stack_depth += 8;
19933 			insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_FP, BPF_REG_1,
19934 						      -subprogs[0].stack_depth);
19935 			insn_buf[cnt++] = env->prog->insnsi[0];
19936 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
19937 			if (!new_prog)
19938 				return -ENOMEM;
19939 			env->prog = new_prog;
19940 			delta += cnt - 1;
19941 		}
19942 	}
19943 
19944 	if (ops->gen_prologue || env->seen_direct_write) {
19945 		if (!ops->gen_prologue) {
19946 			verbose(env, "bpf verifier is misconfigured\n");
19947 			return -EINVAL;
19948 		}
19949 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
19950 					env->prog);
19951 		if (cnt >= INSN_BUF_SIZE) {
19952 			verbose(env, "bpf verifier is misconfigured\n");
19953 			return -EINVAL;
19954 		} else if (cnt) {
19955 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
19956 			if (!new_prog)
19957 				return -ENOMEM;
19958 
19959 			env->prog = new_prog;
19960 			delta += cnt - 1;
19961 		}
19962 	}
19963 
19964 	if (delta)
19965 		WARN_ON(adjust_jmp_off(env->prog, 0, delta));
19966 
19967 	if (bpf_prog_is_offloaded(env->prog->aux))
19968 		return 0;
19969 
19970 	insn = env->prog->insnsi + delta;
19971 
19972 	for (i = 0; i < insn_cnt; i++, insn++) {
19973 		bpf_convert_ctx_access_t convert_ctx_access;
19974 		u8 mode;
19975 
19976 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
19977 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
19978 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
19979 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW) ||
19980 		    insn->code == (BPF_LDX | BPF_MEMSX | BPF_B) ||
19981 		    insn->code == (BPF_LDX | BPF_MEMSX | BPF_H) ||
19982 		    insn->code == (BPF_LDX | BPF_MEMSX | BPF_W)) {
19983 			type = BPF_READ;
19984 		} else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
19985 			   insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
19986 			   insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
19987 			   insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
19988 			   insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
19989 			   insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
19990 			   insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
19991 			   insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
19992 			type = BPF_WRITE;
19993 		} else if ((insn->code == (BPF_STX | BPF_ATOMIC | BPF_W) ||
19994 			    insn->code == (BPF_STX | BPF_ATOMIC | BPF_DW)) &&
19995 			   env->insn_aux_data[i + delta].ptr_type == PTR_TO_ARENA) {
19996 			insn->code = BPF_STX | BPF_PROBE_ATOMIC | BPF_SIZE(insn->code);
19997 			env->prog->aux->num_exentries++;
19998 			continue;
19999 		} else if (insn->code == (BPF_JMP | BPF_EXIT) &&
20000 			   epilogue_cnt &&
20001 			   i + delta < subprogs[1].start) {
20002 			/* Generate epilogue for the main prog */
20003 			if (epilogue_idx) {
20004 				/* jump back to the earlier generated epilogue */
20005 				insn_buf[0] = BPF_JMP32_A(epilogue_idx - i - delta - 1);
20006 				cnt = 1;
20007 			} else {
20008 				memcpy(insn_buf, epilogue_buf,
20009 				       epilogue_cnt * sizeof(*epilogue_buf));
20010 				cnt = epilogue_cnt;
20011 				/* epilogue_idx cannot be 0. It must have at
20012 				 * least one ctx ptr saving insn before the
20013 				 * epilogue.
20014 				 */
20015 				epilogue_idx = i + delta;
20016 			}
20017 			goto patch_insn_buf;
20018 		} else {
20019 			continue;
20020 		}
20021 
20022 		if (type == BPF_WRITE &&
20023 		    env->insn_aux_data[i + delta].sanitize_stack_spill) {
20024 			struct bpf_insn patch[] = {
20025 				*insn,
20026 				BPF_ST_NOSPEC(),
20027 			};
20028 
20029 			cnt = ARRAY_SIZE(patch);
20030 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
20031 			if (!new_prog)
20032 				return -ENOMEM;
20033 
20034 			delta    += cnt - 1;
20035 			env->prog = new_prog;
20036 			insn      = new_prog->insnsi + i + delta;
20037 			continue;
20038 		}
20039 
20040 		switch ((int)env->insn_aux_data[i + delta].ptr_type) {
20041 		case PTR_TO_CTX:
20042 			if (!ops->convert_ctx_access)
20043 				continue;
20044 			convert_ctx_access = ops->convert_ctx_access;
20045 			break;
20046 		case PTR_TO_SOCKET:
20047 		case PTR_TO_SOCK_COMMON:
20048 			convert_ctx_access = bpf_sock_convert_ctx_access;
20049 			break;
20050 		case PTR_TO_TCP_SOCK:
20051 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
20052 			break;
20053 		case PTR_TO_XDP_SOCK:
20054 			convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
20055 			break;
20056 		case PTR_TO_BTF_ID:
20057 		case PTR_TO_BTF_ID | PTR_UNTRUSTED:
20058 		/* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike
20059 		 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot
20060 		 * be said once it is marked PTR_UNTRUSTED, hence we must handle
20061 		 * any faults for loads into such types. BPF_WRITE is disallowed
20062 		 * for this case.
20063 		 */
20064 		case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED:
20065 			if (type == BPF_READ) {
20066 				if (BPF_MODE(insn->code) == BPF_MEM)
20067 					insn->code = BPF_LDX | BPF_PROBE_MEM |
20068 						     BPF_SIZE((insn)->code);
20069 				else
20070 					insn->code = BPF_LDX | BPF_PROBE_MEMSX |
20071 						     BPF_SIZE((insn)->code);
20072 				env->prog->aux->num_exentries++;
20073 			}
20074 			continue;
20075 		case PTR_TO_ARENA:
20076 			if (BPF_MODE(insn->code) == BPF_MEMSX) {
20077 				verbose(env, "sign extending loads from arena are not supported yet\n");
20078 				return -EOPNOTSUPP;
20079 			}
20080 			insn->code = BPF_CLASS(insn->code) | BPF_PROBE_MEM32 | BPF_SIZE(insn->code);
20081 			env->prog->aux->num_exentries++;
20082 			continue;
20083 		default:
20084 			continue;
20085 		}
20086 
20087 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
20088 		size = BPF_LDST_BYTES(insn);
20089 		mode = BPF_MODE(insn->code);
20090 
20091 		/* If the read access is a narrower load of the field,
20092 		 * convert to a 4/8-byte load, to minimum program type specific
20093 		 * convert_ctx_access changes. If conversion is successful,
20094 		 * we will apply proper mask to the result.
20095 		 */
20096 		is_narrower_load = size < ctx_field_size;
20097 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
20098 		off = insn->off;
20099 		if (is_narrower_load) {
20100 			u8 size_code;
20101 
20102 			if (type == BPF_WRITE) {
20103 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
20104 				return -EINVAL;
20105 			}
20106 
20107 			size_code = BPF_H;
20108 			if (ctx_field_size == 4)
20109 				size_code = BPF_W;
20110 			else if (ctx_field_size == 8)
20111 				size_code = BPF_DW;
20112 
20113 			insn->off = off & ~(size_default - 1);
20114 			insn->code = BPF_LDX | BPF_MEM | size_code;
20115 		}
20116 
20117 		target_size = 0;
20118 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
20119 					 &target_size);
20120 		if (cnt == 0 || cnt >= INSN_BUF_SIZE ||
20121 		    (ctx_field_size && !target_size)) {
20122 			verbose(env, "bpf verifier is misconfigured\n");
20123 			return -EINVAL;
20124 		}
20125 
20126 		if (is_narrower_load && size < target_size) {
20127 			u8 shift = bpf_ctx_narrow_access_offset(
20128 				off, size, size_default) * 8;
20129 			if (shift && cnt + 1 >= INSN_BUF_SIZE) {
20130 				verbose(env, "bpf verifier narrow ctx load misconfigured\n");
20131 				return -EINVAL;
20132 			}
20133 			if (ctx_field_size <= 4) {
20134 				if (shift)
20135 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
20136 									insn->dst_reg,
20137 									shift);
20138 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
20139 								(1 << size * 8) - 1);
20140 			} else {
20141 				if (shift)
20142 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
20143 									insn->dst_reg,
20144 									shift);
20145 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
20146 								(1ULL << size * 8) - 1);
20147 			}
20148 		}
20149 		if (mode == BPF_MEMSX)
20150 			insn_buf[cnt++] = BPF_RAW_INSN(BPF_ALU64 | BPF_MOV | BPF_X,
20151 						       insn->dst_reg, insn->dst_reg,
20152 						       size * 8, 0);
20153 
20154 patch_insn_buf:
20155 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
20156 		if (!new_prog)
20157 			return -ENOMEM;
20158 
20159 		delta += cnt - 1;
20160 
20161 		/* keep walking new program and skip insns we just inserted */
20162 		env->prog = new_prog;
20163 		insn      = new_prog->insnsi + i + delta;
20164 	}
20165 
20166 	return 0;
20167 }
20168 
20169 static int jit_subprogs(struct bpf_verifier_env *env)
20170 {
20171 	struct bpf_prog *prog = env->prog, **func, *tmp;
20172 	int i, j, subprog_start, subprog_end = 0, len, subprog;
20173 	struct bpf_map *map_ptr;
20174 	struct bpf_insn *insn;
20175 	void *old_bpf_func;
20176 	int err, num_exentries;
20177 
20178 	if (env->subprog_cnt <= 1)
20179 		return 0;
20180 
20181 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
20182 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn))
20183 			continue;
20184 
20185 		/* Upon error here we cannot fall back to interpreter but
20186 		 * need a hard reject of the program. Thus -EFAULT is
20187 		 * propagated in any case.
20188 		 */
20189 		subprog = find_subprog(env, i + insn->imm + 1);
20190 		if (subprog < 0) {
20191 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
20192 				  i + insn->imm + 1);
20193 			return -EFAULT;
20194 		}
20195 		/* temporarily remember subprog id inside insn instead of
20196 		 * aux_data, since next loop will split up all insns into funcs
20197 		 */
20198 		insn->off = subprog;
20199 		/* remember original imm in case JIT fails and fallback
20200 		 * to interpreter will be needed
20201 		 */
20202 		env->insn_aux_data[i].call_imm = insn->imm;
20203 		/* point imm to __bpf_call_base+1 from JITs point of view */
20204 		insn->imm = 1;
20205 		if (bpf_pseudo_func(insn)) {
20206 #if defined(MODULES_VADDR)
20207 			u64 addr = MODULES_VADDR;
20208 #else
20209 			u64 addr = VMALLOC_START;
20210 #endif
20211 			/* jit (e.g. x86_64) may emit fewer instructions
20212 			 * if it learns a u32 imm is the same as a u64 imm.
20213 			 * Set close enough to possible prog address.
20214 			 */
20215 			insn[0].imm = (u32)addr;
20216 			insn[1].imm = addr >> 32;
20217 		}
20218 	}
20219 
20220 	err = bpf_prog_alloc_jited_linfo(prog);
20221 	if (err)
20222 		goto out_undo_insn;
20223 
20224 	err = -ENOMEM;
20225 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
20226 	if (!func)
20227 		goto out_undo_insn;
20228 
20229 	for (i = 0; i < env->subprog_cnt; i++) {
20230 		subprog_start = subprog_end;
20231 		subprog_end = env->subprog_info[i + 1].start;
20232 
20233 		len = subprog_end - subprog_start;
20234 		/* bpf_prog_run() doesn't call subprogs directly,
20235 		 * hence main prog stats include the runtime of subprogs.
20236 		 * subprogs don't have IDs and not reachable via prog_get_next_id
20237 		 * func[i]->stats will never be accessed and stays NULL
20238 		 */
20239 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
20240 		if (!func[i])
20241 			goto out_free;
20242 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
20243 		       len * sizeof(struct bpf_insn));
20244 		func[i]->type = prog->type;
20245 		func[i]->len = len;
20246 		if (bpf_prog_calc_tag(func[i]))
20247 			goto out_free;
20248 		func[i]->is_func = 1;
20249 		func[i]->sleepable = prog->sleepable;
20250 		func[i]->aux->func_idx = i;
20251 		/* Below members will be freed only at prog->aux */
20252 		func[i]->aux->btf = prog->aux->btf;
20253 		func[i]->aux->func_info = prog->aux->func_info;
20254 		func[i]->aux->func_info_cnt = prog->aux->func_info_cnt;
20255 		func[i]->aux->poke_tab = prog->aux->poke_tab;
20256 		func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
20257 
20258 		for (j = 0; j < prog->aux->size_poke_tab; j++) {
20259 			struct bpf_jit_poke_descriptor *poke;
20260 
20261 			poke = &prog->aux->poke_tab[j];
20262 			if (poke->insn_idx < subprog_end &&
20263 			    poke->insn_idx >= subprog_start)
20264 				poke->aux = func[i]->aux;
20265 		}
20266 
20267 		func[i]->aux->name[0] = 'F';
20268 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
20269 		if (env->subprog_info[i].priv_stack_mode == PRIV_STACK_ADAPTIVE)
20270 			func[i]->aux->jits_use_priv_stack = true;
20271 
20272 		func[i]->jit_requested = 1;
20273 		func[i]->blinding_requested = prog->blinding_requested;
20274 		func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
20275 		func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab;
20276 		func[i]->aux->linfo = prog->aux->linfo;
20277 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
20278 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
20279 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
20280 		func[i]->aux->arena = prog->aux->arena;
20281 		num_exentries = 0;
20282 		insn = func[i]->insnsi;
20283 		for (j = 0; j < func[i]->len; j++, insn++) {
20284 			if (BPF_CLASS(insn->code) == BPF_LDX &&
20285 			    (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
20286 			     BPF_MODE(insn->code) == BPF_PROBE_MEM32 ||
20287 			     BPF_MODE(insn->code) == BPF_PROBE_MEMSX))
20288 				num_exentries++;
20289 			if ((BPF_CLASS(insn->code) == BPF_STX ||
20290 			     BPF_CLASS(insn->code) == BPF_ST) &&
20291 			     BPF_MODE(insn->code) == BPF_PROBE_MEM32)
20292 				num_exentries++;
20293 			if (BPF_CLASS(insn->code) == BPF_STX &&
20294 			     BPF_MODE(insn->code) == BPF_PROBE_ATOMIC)
20295 				num_exentries++;
20296 		}
20297 		func[i]->aux->num_exentries = num_exentries;
20298 		func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
20299 		func[i]->aux->exception_cb = env->subprog_info[i].is_exception_cb;
20300 		func[i]->aux->changes_pkt_data = env->subprog_info[i].changes_pkt_data;
20301 		if (!i)
20302 			func[i]->aux->exception_boundary = env->seen_exception;
20303 		func[i] = bpf_int_jit_compile(func[i]);
20304 		if (!func[i]->jited) {
20305 			err = -ENOTSUPP;
20306 			goto out_free;
20307 		}
20308 		cond_resched();
20309 	}
20310 
20311 	/* at this point all bpf functions were successfully JITed
20312 	 * now populate all bpf_calls with correct addresses and
20313 	 * run last pass of JIT
20314 	 */
20315 	for (i = 0; i < env->subprog_cnt; i++) {
20316 		insn = func[i]->insnsi;
20317 		for (j = 0; j < func[i]->len; j++, insn++) {
20318 			if (bpf_pseudo_func(insn)) {
20319 				subprog = insn->off;
20320 				insn[0].imm = (u32)(long)func[subprog]->bpf_func;
20321 				insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
20322 				continue;
20323 			}
20324 			if (!bpf_pseudo_call(insn))
20325 				continue;
20326 			subprog = insn->off;
20327 			insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func);
20328 		}
20329 
20330 		/* we use the aux data to keep a list of the start addresses
20331 		 * of the JITed images for each function in the program
20332 		 *
20333 		 * for some architectures, such as powerpc64, the imm field
20334 		 * might not be large enough to hold the offset of the start
20335 		 * address of the callee's JITed image from __bpf_call_base
20336 		 *
20337 		 * in such cases, we can lookup the start address of a callee
20338 		 * by using its subprog id, available from the off field of
20339 		 * the call instruction, as an index for this list
20340 		 */
20341 		func[i]->aux->func = func;
20342 		func[i]->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt;
20343 		func[i]->aux->real_func_cnt = env->subprog_cnt;
20344 	}
20345 	for (i = 0; i < env->subprog_cnt; i++) {
20346 		old_bpf_func = func[i]->bpf_func;
20347 		tmp = bpf_int_jit_compile(func[i]);
20348 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
20349 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
20350 			err = -ENOTSUPP;
20351 			goto out_free;
20352 		}
20353 		cond_resched();
20354 	}
20355 
20356 	/* finally lock prog and jit images for all functions and
20357 	 * populate kallsysm. Begin at the first subprogram, since
20358 	 * bpf_prog_load will add the kallsyms for the main program.
20359 	 */
20360 	for (i = 1; i < env->subprog_cnt; i++) {
20361 		err = bpf_prog_lock_ro(func[i]);
20362 		if (err)
20363 			goto out_free;
20364 	}
20365 
20366 	for (i = 1; i < env->subprog_cnt; i++)
20367 		bpf_prog_kallsyms_add(func[i]);
20368 
20369 	/* Last step: make now unused interpreter insns from main
20370 	 * prog consistent for later dump requests, so they can
20371 	 * later look the same as if they were interpreted only.
20372 	 */
20373 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
20374 		if (bpf_pseudo_func(insn)) {
20375 			insn[0].imm = env->insn_aux_data[i].call_imm;
20376 			insn[1].imm = insn->off;
20377 			insn->off = 0;
20378 			continue;
20379 		}
20380 		if (!bpf_pseudo_call(insn))
20381 			continue;
20382 		insn->off = env->insn_aux_data[i].call_imm;
20383 		subprog = find_subprog(env, i + insn->off + 1);
20384 		insn->imm = subprog;
20385 	}
20386 
20387 	prog->jited = 1;
20388 	prog->bpf_func = func[0]->bpf_func;
20389 	prog->jited_len = func[0]->jited_len;
20390 	prog->aux->extable = func[0]->aux->extable;
20391 	prog->aux->num_exentries = func[0]->aux->num_exentries;
20392 	prog->aux->func = func;
20393 	prog->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt;
20394 	prog->aux->real_func_cnt = env->subprog_cnt;
20395 	prog->aux->bpf_exception_cb = (void *)func[env->exception_callback_subprog]->bpf_func;
20396 	prog->aux->exception_boundary = func[0]->aux->exception_boundary;
20397 	bpf_prog_jit_attempt_done(prog);
20398 	return 0;
20399 out_free:
20400 	/* We failed JIT'ing, so at this point we need to unregister poke
20401 	 * descriptors from subprogs, so that kernel is not attempting to
20402 	 * patch it anymore as we're freeing the subprog JIT memory.
20403 	 */
20404 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
20405 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
20406 		map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
20407 	}
20408 	/* At this point we're guaranteed that poke descriptors are not
20409 	 * live anymore. We can just unlink its descriptor table as it's
20410 	 * released with the main prog.
20411 	 */
20412 	for (i = 0; i < env->subprog_cnt; i++) {
20413 		if (!func[i])
20414 			continue;
20415 		func[i]->aux->poke_tab = NULL;
20416 		bpf_jit_free(func[i]);
20417 	}
20418 	kfree(func);
20419 out_undo_insn:
20420 	/* cleanup main prog to be interpreted */
20421 	prog->jit_requested = 0;
20422 	prog->blinding_requested = 0;
20423 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
20424 		if (!bpf_pseudo_call(insn))
20425 			continue;
20426 		insn->off = 0;
20427 		insn->imm = env->insn_aux_data[i].call_imm;
20428 	}
20429 	bpf_prog_jit_attempt_done(prog);
20430 	return err;
20431 }
20432 
20433 static int fixup_call_args(struct bpf_verifier_env *env)
20434 {
20435 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
20436 	struct bpf_prog *prog = env->prog;
20437 	struct bpf_insn *insn = prog->insnsi;
20438 	bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
20439 	int i, depth;
20440 #endif
20441 	int err = 0;
20442 
20443 	if (env->prog->jit_requested &&
20444 	    !bpf_prog_is_offloaded(env->prog->aux)) {
20445 		err = jit_subprogs(env);
20446 		if (err == 0)
20447 			return 0;
20448 		if (err == -EFAULT)
20449 			return err;
20450 	}
20451 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
20452 	if (has_kfunc_call) {
20453 		verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
20454 		return -EINVAL;
20455 	}
20456 	if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
20457 		/* When JIT fails the progs with bpf2bpf calls and tail_calls
20458 		 * have to be rejected, since interpreter doesn't support them yet.
20459 		 */
20460 		verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
20461 		return -EINVAL;
20462 	}
20463 	for (i = 0; i < prog->len; i++, insn++) {
20464 		if (bpf_pseudo_func(insn)) {
20465 			/* When JIT fails the progs with callback calls
20466 			 * have to be rejected, since interpreter doesn't support them yet.
20467 			 */
20468 			verbose(env, "callbacks are not allowed in non-JITed programs\n");
20469 			return -EINVAL;
20470 		}
20471 
20472 		if (!bpf_pseudo_call(insn))
20473 			continue;
20474 		depth = get_callee_stack_depth(env, insn, i);
20475 		if (depth < 0)
20476 			return depth;
20477 		bpf_patch_call_args(insn, depth);
20478 	}
20479 	err = 0;
20480 #endif
20481 	return err;
20482 }
20483 
20484 /* replace a generic kfunc with a specialized version if necessary */
20485 static void specialize_kfunc(struct bpf_verifier_env *env,
20486 			     u32 func_id, u16 offset, unsigned long *addr)
20487 {
20488 	struct bpf_prog *prog = env->prog;
20489 	bool seen_direct_write;
20490 	void *xdp_kfunc;
20491 	bool is_rdonly;
20492 
20493 	if (bpf_dev_bound_kfunc_id(func_id)) {
20494 		xdp_kfunc = bpf_dev_bound_resolve_kfunc(prog, func_id);
20495 		if (xdp_kfunc) {
20496 			*addr = (unsigned long)xdp_kfunc;
20497 			return;
20498 		}
20499 		/* fallback to default kfunc when not supported by netdev */
20500 	}
20501 
20502 	if (offset)
20503 		return;
20504 
20505 	if (func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
20506 		seen_direct_write = env->seen_direct_write;
20507 		is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE);
20508 
20509 		if (is_rdonly)
20510 			*addr = (unsigned long)bpf_dynptr_from_skb_rdonly;
20511 
20512 		/* restore env->seen_direct_write to its original value, since
20513 		 * may_access_direct_pkt_data mutates it
20514 		 */
20515 		env->seen_direct_write = seen_direct_write;
20516 	}
20517 }
20518 
20519 static void __fixup_collection_insert_kfunc(struct bpf_insn_aux_data *insn_aux,
20520 					    u16 struct_meta_reg,
20521 					    u16 node_offset_reg,
20522 					    struct bpf_insn *insn,
20523 					    struct bpf_insn *insn_buf,
20524 					    int *cnt)
20525 {
20526 	struct btf_struct_meta *kptr_struct_meta = insn_aux->kptr_struct_meta;
20527 	struct bpf_insn addr[2] = { BPF_LD_IMM64(struct_meta_reg, (long)kptr_struct_meta) };
20528 
20529 	insn_buf[0] = addr[0];
20530 	insn_buf[1] = addr[1];
20531 	insn_buf[2] = BPF_MOV64_IMM(node_offset_reg, insn_aux->insert_off);
20532 	insn_buf[3] = *insn;
20533 	*cnt = 4;
20534 }
20535 
20536 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
20537 			    struct bpf_insn *insn_buf, int insn_idx, int *cnt)
20538 {
20539 	const struct bpf_kfunc_desc *desc;
20540 
20541 	if (!insn->imm) {
20542 		verbose(env, "invalid kernel function call not eliminated in verifier pass\n");
20543 		return -EINVAL;
20544 	}
20545 
20546 	*cnt = 0;
20547 
20548 	/* insn->imm has the btf func_id. Replace it with an offset relative to
20549 	 * __bpf_call_base, unless the JIT needs to call functions that are
20550 	 * further than 32 bits away (bpf_jit_supports_far_kfunc_call()).
20551 	 */
20552 	desc = find_kfunc_desc(env->prog, insn->imm, insn->off);
20553 	if (!desc) {
20554 		verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
20555 			insn->imm);
20556 		return -EFAULT;
20557 	}
20558 
20559 	if (!bpf_jit_supports_far_kfunc_call())
20560 		insn->imm = BPF_CALL_IMM(desc->addr);
20561 	if (insn->off)
20562 		return 0;
20563 	if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl] ||
20564 	    desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
20565 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
20566 		struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
20567 		u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size;
20568 
20569 		if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl] && kptr_struct_meta) {
20570 			verbose(env, "verifier internal error: NULL kptr_struct_meta expected at insn_idx %d\n",
20571 				insn_idx);
20572 			return -EFAULT;
20573 		}
20574 
20575 		insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size);
20576 		insn_buf[1] = addr[0];
20577 		insn_buf[2] = addr[1];
20578 		insn_buf[3] = *insn;
20579 		*cnt = 4;
20580 	} else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl] ||
20581 		   desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] ||
20582 		   desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
20583 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
20584 		struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
20585 
20586 		if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] && kptr_struct_meta) {
20587 			verbose(env, "verifier internal error: NULL kptr_struct_meta expected at insn_idx %d\n",
20588 				insn_idx);
20589 			return -EFAULT;
20590 		}
20591 
20592 		if (desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] &&
20593 		    !kptr_struct_meta) {
20594 			verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n",
20595 				insn_idx);
20596 			return -EFAULT;
20597 		}
20598 
20599 		insn_buf[0] = addr[0];
20600 		insn_buf[1] = addr[1];
20601 		insn_buf[2] = *insn;
20602 		*cnt = 3;
20603 	} else if (desc->func_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
20604 		   desc->func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
20605 		   desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
20606 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
20607 		int struct_meta_reg = BPF_REG_3;
20608 		int node_offset_reg = BPF_REG_4;
20609 
20610 		/* rbtree_add has extra 'less' arg, so args-to-fixup are in diff regs */
20611 		if (desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
20612 			struct_meta_reg = BPF_REG_4;
20613 			node_offset_reg = BPF_REG_5;
20614 		}
20615 
20616 		if (!kptr_struct_meta) {
20617 			verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n",
20618 				insn_idx);
20619 			return -EFAULT;
20620 		}
20621 
20622 		__fixup_collection_insert_kfunc(&env->insn_aux_data[insn_idx], struct_meta_reg,
20623 						node_offset_reg, insn, insn_buf, cnt);
20624 	} else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] ||
20625 		   desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
20626 		insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1);
20627 		*cnt = 1;
20628 	} else if (is_bpf_wq_set_callback_impl_kfunc(desc->func_id)) {
20629 		struct bpf_insn ld_addrs[2] = { BPF_LD_IMM64(BPF_REG_4, (long)env->prog->aux) };
20630 
20631 		insn_buf[0] = ld_addrs[0];
20632 		insn_buf[1] = ld_addrs[1];
20633 		insn_buf[2] = *insn;
20634 		*cnt = 3;
20635 	}
20636 	return 0;
20637 }
20638 
20639 /* The function requires that first instruction in 'patch' is insnsi[prog->len - 1] */
20640 static int add_hidden_subprog(struct bpf_verifier_env *env, struct bpf_insn *patch, int len)
20641 {
20642 	struct bpf_subprog_info *info = env->subprog_info;
20643 	int cnt = env->subprog_cnt;
20644 	struct bpf_prog *prog;
20645 
20646 	/* We only reserve one slot for hidden subprogs in subprog_info. */
20647 	if (env->hidden_subprog_cnt) {
20648 		verbose(env, "verifier internal error: only one hidden subprog supported\n");
20649 		return -EFAULT;
20650 	}
20651 	/* We're not patching any existing instruction, just appending the new
20652 	 * ones for the hidden subprog. Hence all of the adjustment operations
20653 	 * in bpf_patch_insn_data are no-ops.
20654 	 */
20655 	prog = bpf_patch_insn_data(env, env->prog->len - 1, patch, len);
20656 	if (!prog)
20657 		return -ENOMEM;
20658 	env->prog = prog;
20659 	info[cnt + 1].start = info[cnt].start;
20660 	info[cnt].start = prog->len - len + 1;
20661 	env->subprog_cnt++;
20662 	env->hidden_subprog_cnt++;
20663 	return 0;
20664 }
20665 
20666 /* Do various post-verification rewrites in a single program pass.
20667  * These rewrites simplify JIT and interpreter implementations.
20668  */
20669 static int do_misc_fixups(struct bpf_verifier_env *env)
20670 {
20671 	struct bpf_prog *prog = env->prog;
20672 	enum bpf_attach_type eatype = prog->expected_attach_type;
20673 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
20674 	struct bpf_insn *insn = prog->insnsi;
20675 	const struct bpf_func_proto *fn;
20676 	const int insn_cnt = prog->len;
20677 	const struct bpf_map_ops *ops;
20678 	struct bpf_insn_aux_data *aux;
20679 	struct bpf_insn *insn_buf = env->insn_buf;
20680 	struct bpf_prog *new_prog;
20681 	struct bpf_map *map_ptr;
20682 	int i, ret, cnt, delta = 0, cur_subprog = 0;
20683 	struct bpf_subprog_info *subprogs = env->subprog_info;
20684 	u16 stack_depth = subprogs[cur_subprog].stack_depth;
20685 	u16 stack_depth_extra = 0;
20686 
20687 	if (env->seen_exception && !env->exception_callback_subprog) {
20688 		struct bpf_insn patch[] = {
20689 			env->prog->insnsi[insn_cnt - 1],
20690 			BPF_MOV64_REG(BPF_REG_0, BPF_REG_1),
20691 			BPF_EXIT_INSN(),
20692 		};
20693 
20694 		ret = add_hidden_subprog(env, patch, ARRAY_SIZE(patch));
20695 		if (ret < 0)
20696 			return ret;
20697 		prog = env->prog;
20698 		insn = prog->insnsi;
20699 
20700 		env->exception_callback_subprog = env->subprog_cnt - 1;
20701 		/* Don't update insn_cnt, as add_hidden_subprog always appends insns */
20702 		mark_subprog_exc_cb(env, env->exception_callback_subprog);
20703 	}
20704 
20705 	for (i = 0; i < insn_cnt;) {
20706 		if (insn->code == (BPF_ALU64 | BPF_MOV | BPF_X) && insn->imm) {
20707 			if ((insn->off == BPF_ADDR_SPACE_CAST && insn->imm == 1) ||
20708 			    (((struct bpf_map *)env->prog->aux->arena)->map_flags & BPF_F_NO_USER_CONV)) {
20709 				/* convert to 32-bit mov that clears upper 32-bit */
20710 				insn->code = BPF_ALU | BPF_MOV | BPF_X;
20711 				/* clear off and imm, so it's a normal 'wX = wY' from JIT pov */
20712 				insn->off = 0;
20713 				insn->imm = 0;
20714 			} /* cast from as(0) to as(1) should be handled by JIT */
20715 			goto next_insn;
20716 		}
20717 
20718 		if (env->insn_aux_data[i + delta].needs_zext)
20719 			/* Convert BPF_CLASS(insn->code) == BPF_ALU64 to 32-bit ALU */
20720 			insn->code = BPF_ALU | BPF_OP(insn->code) | BPF_SRC(insn->code);
20721 
20722 		/* Make sdiv/smod divide-by-minus-one exceptions impossible. */
20723 		if ((insn->code == (BPF_ALU64 | BPF_MOD | BPF_K) ||
20724 		     insn->code == (BPF_ALU64 | BPF_DIV | BPF_K) ||
20725 		     insn->code == (BPF_ALU | BPF_MOD | BPF_K) ||
20726 		     insn->code == (BPF_ALU | BPF_DIV | BPF_K)) &&
20727 		    insn->off == 1 && insn->imm == -1) {
20728 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
20729 			bool isdiv = BPF_OP(insn->code) == BPF_DIV;
20730 			struct bpf_insn *patchlet;
20731 			struct bpf_insn chk_and_sdiv[] = {
20732 				BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) |
20733 					     BPF_NEG | BPF_K, insn->dst_reg,
20734 					     0, 0, 0),
20735 			};
20736 			struct bpf_insn chk_and_smod[] = {
20737 				BPF_MOV32_IMM(insn->dst_reg, 0),
20738 			};
20739 
20740 			patchlet = isdiv ? chk_and_sdiv : chk_and_smod;
20741 			cnt = isdiv ? ARRAY_SIZE(chk_and_sdiv) : ARRAY_SIZE(chk_and_smod);
20742 
20743 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
20744 			if (!new_prog)
20745 				return -ENOMEM;
20746 
20747 			delta    += cnt - 1;
20748 			env->prog = prog = new_prog;
20749 			insn      = new_prog->insnsi + i + delta;
20750 			goto next_insn;
20751 		}
20752 
20753 		/* Make divide-by-zero and divide-by-minus-one exceptions impossible. */
20754 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
20755 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
20756 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
20757 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
20758 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
20759 			bool isdiv = BPF_OP(insn->code) == BPF_DIV;
20760 			bool is_sdiv = isdiv && insn->off == 1;
20761 			bool is_smod = !isdiv && insn->off == 1;
20762 			struct bpf_insn *patchlet;
20763 			struct bpf_insn chk_and_div[] = {
20764 				/* [R,W]x div 0 -> 0 */
20765 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
20766 					     BPF_JNE | BPF_K, insn->src_reg,
20767 					     0, 2, 0),
20768 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
20769 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
20770 				*insn,
20771 			};
20772 			struct bpf_insn chk_and_mod[] = {
20773 				/* [R,W]x mod 0 -> [R,W]x */
20774 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
20775 					     BPF_JEQ | BPF_K, insn->src_reg,
20776 					     0, 1 + (is64 ? 0 : 1), 0),
20777 				*insn,
20778 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
20779 				BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
20780 			};
20781 			struct bpf_insn chk_and_sdiv[] = {
20782 				/* [R,W]x sdiv 0 -> 0
20783 				 * LLONG_MIN sdiv -1 -> LLONG_MIN
20784 				 * INT_MIN sdiv -1 -> INT_MIN
20785 				 */
20786 				BPF_MOV64_REG(BPF_REG_AX, insn->src_reg),
20787 				BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) |
20788 					     BPF_ADD | BPF_K, BPF_REG_AX,
20789 					     0, 0, 1),
20790 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
20791 					     BPF_JGT | BPF_K, BPF_REG_AX,
20792 					     0, 4, 1),
20793 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
20794 					     BPF_JEQ | BPF_K, BPF_REG_AX,
20795 					     0, 1, 0),
20796 				BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) |
20797 					     BPF_MOV | BPF_K, insn->dst_reg,
20798 					     0, 0, 0),
20799 				/* BPF_NEG(LLONG_MIN) == -LLONG_MIN == LLONG_MIN */
20800 				BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) |
20801 					     BPF_NEG | BPF_K, insn->dst_reg,
20802 					     0, 0, 0),
20803 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
20804 				*insn,
20805 			};
20806 			struct bpf_insn chk_and_smod[] = {
20807 				/* [R,W]x mod 0 -> [R,W]x */
20808 				/* [R,W]x mod -1 -> 0 */
20809 				BPF_MOV64_REG(BPF_REG_AX, insn->src_reg),
20810 				BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) |
20811 					     BPF_ADD | BPF_K, BPF_REG_AX,
20812 					     0, 0, 1),
20813 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
20814 					     BPF_JGT | BPF_K, BPF_REG_AX,
20815 					     0, 3, 1),
20816 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
20817 					     BPF_JEQ | BPF_K, BPF_REG_AX,
20818 					     0, 3 + (is64 ? 0 : 1), 1),
20819 				BPF_MOV32_IMM(insn->dst_reg, 0),
20820 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
20821 				*insn,
20822 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
20823 				BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
20824 			};
20825 
20826 			if (is_sdiv) {
20827 				patchlet = chk_and_sdiv;
20828 				cnt = ARRAY_SIZE(chk_and_sdiv);
20829 			} else if (is_smod) {
20830 				patchlet = chk_and_smod;
20831 				cnt = ARRAY_SIZE(chk_and_smod) - (is64 ? 2 : 0);
20832 			} else {
20833 				patchlet = isdiv ? chk_and_div : chk_and_mod;
20834 				cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
20835 					      ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
20836 			}
20837 
20838 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
20839 			if (!new_prog)
20840 				return -ENOMEM;
20841 
20842 			delta    += cnt - 1;
20843 			env->prog = prog = new_prog;
20844 			insn      = new_prog->insnsi + i + delta;
20845 			goto next_insn;
20846 		}
20847 
20848 		/* Make it impossible to de-reference a userspace address */
20849 		if (BPF_CLASS(insn->code) == BPF_LDX &&
20850 		    (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
20851 		     BPF_MODE(insn->code) == BPF_PROBE_MEMSX)) {
20852 			struct bpf_insn *patch = &insn_buf[0];
20853 			u64 uaddress_limit = bpf_arch_uaddress_limit();
20854 
20855 			if (!uaddress_limit)
20856 				goto next_insn;
20857 
20858 			*patch++ = BPF_MOV64_REG(BPF_REG_AX, insn->src_reg);
20859 			if (insn->off)
20860 				*patch++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_AX, insn->off);
20861 			*patch++ = BPF_ALU64_IMM(BPF_RSH, BPF_REG_AX, 32);
20862 			*patch++ = BPF_JMP_IMM(BPF_JLE, BPF_REG_AX, uaddress_limit >> 32, 2);
20863 			*patch++ = *insn;
20864 			*patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1);
20865 			*patch++ = BPF_MOV64_IMM(insn->dst_reg, 0);
20866 
20867 			cnt = patch - insn_buf;
20868 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
20869 			if (!new_prog)
20870 				return -ENOMEM;
20871 
20872 			delta    += cnt - 1;
20873 			env->prog = prog = new_prog;
20874 			insn      = new_prog->insnsi + i + delta;
20875 			goto next_insn;
20876 		}
20877 
20878 		/* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
20879 		if (BPF_CLASS(insn->code) == BPF_LD &&
20880 		    (BPF_MODE(insn->code) == BPF_ABS ||
20881 		     BPF_MODE(insn->code) == BPF_IND)) {
20882 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
20883 			if (cnt == 0 || cnt >= INSN_BUF_SIZE) {
20884 				verbose(env, "bpf verifier is misconfigured\n");
20885 				return -EINVAL;
20886 			}
20887 
20888 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
20889 			if (!new_prog)
20890 				return -ENOMEM;
20891 
20892 			delta    += cnt - 1;
20893 			env->prog = prog = new_prog;
20894 			insn      = new_prog->insnsi + i + delta;
20895 			goto next_insn;
20896 		}
20897 
20898 		/* Rewrite pointer arithmetic to mitigate speculation attacks. */
20899 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
20900 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
20901 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
20902 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
20903 			struct bpf_insn *patch = &insn_buf[0];
20904 			bool issrc, isneg, isimm;
20905 			u32 off_reg;
20906 
20907 			aux = &env->insn_aux_data[i + delta];
20908 			if (!aux->alu_state ||
20909 			    aux->alu_state == BPF_ALU_NON_POINTER)
20910 				goto next_insn;
20911 
20912 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
20913 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
20914 				BPF_ALU_SANITIZE_SRC;
20915 			isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
20916 
20917 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
20918 			if (isimm) {
20919 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
20920 			} else {
20921 				if (isneg)
20922 					*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
20923 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
20924 				*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
20925 				*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
20926 				*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
20927 				*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
20928 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
20929 			}
20930 			if (!issrc)
20931 				*patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
20932 			insn->src_reg = BPF_REG_AX;
20933 			if (isneg)
20934 				insn->code = insn->code == code_add ?
20935 					     code_sub : code_add;
20936 			*patch++ = *insn;
20937 			if (issrc && isneg && !isimm)
20938 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
20939 			cnt = patch - insn_buf;
20940 
20941 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
20942 			if (!new_prog)
20943 				return -ENOMEM;
20944 
20945 			delta    += cnt - 1;
20946 			env->prog = prog = new_prog;
20947 			insn      = new_prog->insnsi + i + delta;
20948 			goto next_insn;
20949 		}
20950 
20951 		if (is_may_goto_insn(insn)) {
20952 			int stack_off = -stack_depth - 8;
20953 
20954 			stack_depth_extra = 8;
20955 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_AX, BPF_REG_10, stack_off);
20956 			if (insn->off >= 0)
20957 				insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off + 2);
20958 			else
20959 				insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off - 1);
20960 			insn_buf[2] = BPF_ALU64_IMM(BPF_SUB, BPF_REG_AX, 1);
20961 			insn_buf[3] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_AX, stack_off);
20962 			cnt = 4;
20963 
20964 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
20965 			if (!new_prog)
20966 				return -ENOMEM;
20967 
20968 			delta += cnt - 1;
20969 			env->prog = prog = new_prog;
20970 			insn = new_prog->insnsi + i + delta;
20971 			goto next_insn;
20972 		}
20973 
20974 		if (insn->code != (BPF_JMP | BPF_CALL))
20975 			goto next_insn;
20976 		if (insn->src_reg == BPF_PSEUDO_CALL)
20977 			goto next_insn;
20978 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
20979 			ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt);
20980 			if (ret)
20981 				return ret;
20982 			if (cnt == 0)
20983 				goto next_insn;
20984 
20985 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
20986 			if (!new_prog)
20987 				return -ENOMEM;
20988 
20989 			delta	 += cnt - 1;
20990 			env->prog = prog = new_prog;
20991 			insn	  = new_prog->insnsi + i + delta;
20992 			goto next_insn;
20993 		}
20994 
20995 		/* Skip inlining the helper call if the JIT does it. */
20996 		if (bpf_jit_inlines_helper_call(insn->imm))
20997 			goto next_insn;
20998 
20999 		if (insn->imm == BPF_FUNC_get_route_realm)
21000 			prog->dst_needed = 1;
21001 		if (insn->imm == BPF_FUNC_get_prandom_u32)
21002 			bpf_user_rnd_init_once();
21003 		if (insn->imm == BPF_FUNC_override_return)
21004 			prog->kprobe_override = 1;
21005 		if (insn->imm == BPF_FUNC_tail_call) {
21006 			/* If we tail call into other programs, we
21007 			 * cannot make any assumptions since they can
21008 			 * be replaced dynamically during runtime in
21009 			 * the program array.
21010 			 */
21011 			prog->cb_access = 1;
21012 			if (!allow_tail_call_in_subprogs(env))
21013 				prog->aux->stack_depth = MAX_BPF_STACK;
21014 			prog->aux->max_pkt_offset = MAX_PACKET_OFF;
21015 
21016 			/* mark bpf_tail_call as different opcode to avoid
21017 			 * conditional branch in the interpreter for every normal
21018 			 * call and to prevent accidental JITing by JIT compiler
21019 			 * that doesn't support bpf_tail_call yet
21020 			 */
21021 			insn->imm = 0;
21022 			insn->code = BPF_JMP | BPF_TAIL_CALL;
21023 
21024 			aux = &env->insn_aux_data[i + delta];
21025 			if (env->bpf_capable && !prog->blinding_requested &&
21026 			    prog->jit_requested &&
21027 			    !bpf_map_key_poisoned(aux) &&
21028 			    !bpf_map_ptr_poisoned(aux) &&
21029 			    !bpf_map_ptr_unpriv(aux)) {
21030 				struct bpf_jit_poke_descriptor desc = {
21031 					.reason = BPF_POKE_REASON_TAIL_CALL,
21032 					.tail_call.map = aux->map_ptr_state.map_ptr,
21033 					.tail_call.key = bpf_map_key_immediate(aux),
21034 					.insn_idx = i + delta,
21035 				};
21036 
21037 				ret = bpf_jit_add_poke_descriptor(prog, &desc);
21038 				if (ret < 0) {
21039 					verbose(env, "adding tail call poke descriptor failed\n");
21040 					return ret;
21041 				}
21042 
21043 				insn->imm = ret + 1;
21044 				goto next_insn;
21045 			}
21046 
21047 			if (!bpf_map_ptr_unpriv(aux))
21048 				goto next_insn;
21049 
21050 			/* instead of changing every JIT dealing with tail_call
21051 			 * emit two extra insns:
21052 			 * if (index >= max_entries) goto out;
21053 			 * index &= array->index_mask;
21054 			 * to avoid out-of-bounds cpu speculation
21055 			 */
21056 			if (bpf_map_ptr_poisoned(aux)) {
21057 				verbose(env, "tail_call abusing map_ptr\n");
21058 				return -EINVAL;
21059 			}
21060 
21061 			map_ptr = aux->map_ptr_state.map_ptr;
21062 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
21063 						  map_ptr->max_entries, 2);
21064 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
21065 						    container_of(map_ptr,
21066 								 struct bpf_array,
21067 								 map)->index_mask);
21068 			insn_buf[2] = *insn;
21069 			cnt = 3;
21070 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
21071 			if (!new_prog)
21072 				return -ENOMEM;
21073 
21074 			delta    += cnt - 1;
21075 			env->prog = prog = new_prog;
21076 			insn      = new_prog->insnsi + i + delta;
21077 			goto next_insn;
21078 		}
21079 
21080 		if (insn->imm == BPF_FUNC_timer_set_callback) {
21081 			/* The verifier will process callback_fn as many times as necessary
21082 			 * with different maps and the register states prepared by
21083 			 * set_timer_callback_state will be accurate.
21084 			 *
21085 			 * The following use case is valid:
21086 			 *   map1 is shared by prog1, prog2, prog3.
21087 			 *   prog1 calls bpf_timer_init for some map1 elements
21088 			 *   prog2 calls bpf_timer_set_callback for some map1 elements.
21089 			 *     Those that were not bpf_timer_init-ed will return -EINVAL.
21090 			 *   prog3 calls bpf_timer_start for some map1 elements.
21091 			 *     Those that were not both bpf_timer_init-ed and
21092 			 *     bpf_timer_set_callback-ed will return -EINVAL.
21093 			 */
21094 			struct bpf_insn ld_addrs[2] = {
21095 				BPF_LD_IMM64(BPF_REG_3, (long)prog->aux),
21096 			};
21097 
21098 			insn_buf[0] = ld_addrs[0];
21099 			insn_buf[1] = ld_addrs[1];
21100 			insn_buf[2] = *insn;
21101 			cnt = 3;
21102 
21103 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
21104 			if (!new_prog)
21105 				return -ENOMEM;
21106 
21107 			delta    += cnt - 1;
21108 			env->prog = prog = new_prog;
21109 			insn      = new_prog->insnsi + i + delta;
21110 			goto patch_call_imm;
21111 		}
21112 
21113 		if (is_storage_get_function(insn->imm)) {
21114 			if (!in_sleepable(env) ||
21115 			    env->insn_aux_data[i + delta].storage_get_func_atomic)
21116 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC);
21117 			else
21118 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL);
21119 			insn_buf[1] = *insn;
21120 			cnt = 2;
21121 
21122 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
21123 			if (!new_prog)
21124 				return -ENOMEM;
21125 
21126 			delta += cnt - 1;
21127 			env->prog = prog = new_prog;
21128 			insn = new_prog->insnsi + i + delta;
21129 			goto patch_call_imm;
21130 		}
21131 
21132 		/* bpf_per_cpu_ptr() and bpf_this_cpu_ptr() */
21133 		if (env->insn_aux_data[i + delta].call_with_percpu_alloc_ptr) {
21134 			/* patch with 'r1 = *(u64 *)(r1 + 0)' since for percpu data,
21135 			 * bpf_mem_alloc() returns a ptr to the percpu data ptr.
21136 			 */
21137 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_1, 0);
21138 			insn_buf[1] = *insn;
21139 			cnt = 2;
21140 
21141 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
21142 			if (!new_prog)
21143 				return -ENOMEM;
21144 
21145 			delta += cnt - 1;
21146 			env->prog = prog = new_prog;
21147 			insn = new_prog->insnsi + i + delta;
21148 			goto patch_call_imm;
21149 		}
21150 
21151 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
21152 		 * and other inlining handlers are currently limited to 64 bit
21153 		 * only.
21154 		 */
21155 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
21156 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
21157 		     insn->imm == BPF_FUNC_map_update_elem ||
21158 		     insn->imm == BPF_FUNC_map_delete_elem ||
21159 		     insn->imm == BPF_FUNC_map_push_elem   ||
21160 		     insn->imm == BPF_FUNC_map_pop_elem    ||
21161 		     insn->imm == BPF_FUNC_map_peek_elem   ||
21162 		     insn->imm == BPF_FUNC_redirect_map    ||
21163 		     insn->imm == BPF_FUNC_for_each_map_elem ||
21164 		     insn->imm == BPF_FUNC_map_lookup_percpu_elem)) {
21165 			aux = &env->insn_aux_data[i + delta];
21166 			if (bpf_map_ptr_poisoned(aux))
21167 				goto patch_call_imm;
21168 
21169 			map_ptr = aux->map_ptr_state.map_ptr;
21170 			ops = map_ptr->ops;
21171 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
21172 			    ops->map_gen_lookup) {
21173 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
21174 				if (cnt == -EOPNOTSUPP)
21175 					goto patch_map_ops_generic;
21176 				if (cnt <= 0 || cnt >= INSN_BUF_SIZE) {
21177 					verbose(env, "bpf verifier is misconfigured\n");
21178 					return -EINVAL;
21179 				}
21180 
21181 				new_prog = bpf_patch_insn_data(env, i + delta,
21182 							       insn_buf, cnt);
21183 				if (!new_prog)
21184 					return -ENOMEM;
21185 
21186 				delta    += cnt - 1;
21187 				env->prog = prog = new_prog;
21188 				insn      = new_prog->insnsi + i + delta;
21189 				goto next_insn;
21190 			}
21191 
21192 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
21193 				     (void *(*)(struct bpf_map *map, void *key))NULL));
21194 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
21195 				     (long (*)(struct bpf_map *map, void *key))NULL));
21196 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
21197 				     (long (*)(struct bpf_map *map, void *key, void *value,
21198 					      u64 flags))NULL));
21199 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
21200 				     (long (*)(struct bpf_map *map, void *value,
21201 					      u64 flags))NULL));
21202 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
21203 				     (long (*)(struct bpf_map *map, void *value))NULL));
21204 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
21205 				     (long (*)(struct bpf_map *map, void *value))NULL));
21206 			BUILD_BUG_ON(!__same_type(ops->map_redirect,
21207 				     (long (*)(struct bpf_map *map, u64 index, u64 flags))NULL));
21208 			BUILD_BUG_ON(!__same_type(ops->map_for_each_callback,
21209 				     (long (*)(struct bpf_map *map,
21210 					      bpf_callback_t callback_fn,
21211 					      void *callback_ctx,
21212 					      u64 flags))NULL));
21213 			BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem,
21214 				     (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL));
21215 
21216 patch_map_ops_generic:
21217 			switch (insn->imm) {
21218 			case BPF_FUNC_map_lookup_elem:
21219 				insn->imm = BPF_CALL_IMM(ops->map_lookup_elem);
21220 				goto next_insn;
21221 			case BPF_FUNC_map_update_elem:
21222 				insn->imm = BPF_CALL_IMM(ops->map_update_elem);
21223 				goto next_insn;
21224 			case BPF_FUNC_map_delete_elem:
21225 				insn->imm = BPF_CALL_IMM(ops->map_delete_elem);
21226 				goto next_insn;
21227 			case BPF_FUNC_map_push_elem:
21228 				insn->imm = BPF_CALL_IMM(ops->map_push_elem);
21229 				goto next_insn;
21230 			case BPF_FUNC_map_pop_elem:
21231 				insn->imm = BPF_CALL_IMM(ops->map_pop_elem);
21232 				goto next_insn;
21233 			case BPF_FUNC_map_peek_elem:
21234 				insn->imm = BPF_CALL_IMM(ops->map_peek_elem);
21235 				goto next_insn;
21236 			case BPF_FUNC_redirect_map:
21237 				insn->imm = BPF_CALL_IMM(ops->map_redirect);
21238 				goto next_insn;
21239 			case BPF_FUNC_for_each_map_elem:
21240 				insn->imm = BPF_CALL_IMM(ops->map_for_each_callback);
21241 				goto next_insn;
21242 			case BPF_FUNC_map_lookup_percpu_elem:
21243 				insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem);
21244 				goto next_insn;
21245 			}
21246 
21247 			goto patch_call_imm;
21248 		}
21249 
21250 		/* Implement bpf_jiffies64 inline. */
21251 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
21252 		    insn->imm == BPF_FUNC_jiffies64) {
21253 			struct bpf_insn ld_jiffies_addr[2] = {
21254 				BPF_LD_IMM64(BPF_REG_0,
21255 					     (unsigned long)&jiffies),
21256 			};
21257 
21258 			insn_buf[0] = ld_jiffies_addr[0];
21259 			insn_buf[1] = ld_jiffies_addr[1];
21260 			insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
21261 						  BPF_REG_0, 0);
21262 			cnt = 3;
21263 
21264 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
21265 						       cnt);
21266 			if (!new_prog)
21267 				return -ENOMEM;
21268 
21269 			delta    += cnt - 1;
21270 			env->prog = prog = new_prog;
21271 			insn      = new_prog->insnsi + i + delta;
21272 			goto next_insn;
21273 		}
21274 
21275 #if defined(CONFIG_X86_64) && !defined(CONFIG_UML)
21276 		/* Implement bpf_get_smp_processor_id() inline. */
21277 		if (insn->imm == BPF_FUNC_get_smp_processor_id &&
21278 		    verifier_inlines_helper_call(env, insn->imm)) {
21279 			/* BPF_FUNC_get_smp_processor_id inlining is an
21280 			 * optimization, so if pcpu_hot.cpu_number is ever
21281 			 * changed in some incompatible and hard to support
21282 			 * way, it's fine to back out this inlining logic
21283 			 */
21284 #ifdef CONFIG_SMP
21285 			insn_buf[0] = BPF_MOV32_IMM(BPF_REG_0, (u32)(unsigned long)&pcpu_hot.cpu_number);
21286 			insn_buf[1] = BPF_MOV64_PERCPU_REG(BPF_REG_0, BPF_REG_0);
21287 			insn_buf[2] = BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_0, 0);
21288 			cnt = 3;
21289 #else
21290 			insn_buf[0] = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
21291 			cnt = 1;
21292 #endif
21293 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
21294 			if (!new_prog)
21295 				return -ENOMEM;
21296 
21297 			delta    += cnt - 1;
21298 			env->prog = prog = new_prog;
21299 			insn      = new_prog->insnsi + i + delta;
21300 			goto next_insn;
21301 		}
21302 #endif
21303 		/* Implement bpf_get_func_arg inline. */
21304 		if (prog_type == BPF_PROG_TYPE_TRACING &&
21305 		    insn->imm == BPF_FUNC_get_func_arg) {
21306 			/* Load nr_args from ctx - 8 */
21307 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
21308 			insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6);
21309 			insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3);
21310 			insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1);
21311 			insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0);
21312 			insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
21313 			insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0);
21314 			insn_buf[7] = BPF_JMP_A(1);
21315 			insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL);
21316 			cnt = 9;
21317 
21318 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
21319 			if (!new_prog)
21320 				return -ENOMEM;
21321 
21322 			delta    += cnt - 1;
21323 			env->prog = prog = new_prog;
21324 			insn      = new_prog->insnsi + i + delta;
21325 			goto next_insn;
21326 		}
21327 
21328 		/* Implement bpf_get_func_ret inline. */
21329 		if (prog_type == BPF_PROG_TYPE_TRACING &&
21330 		    insn->imm == BPF_FUNC_get_func_ret) {
21331 			if (eatype == BPF_TRACE_FEXIT ||
21332 			    eatype == BPF_MODIFY_RETURN) {
21333 				/* Load nr_args from ctx - 8 */
21334 				insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
21335 				insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3);
21336 				insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1);
21337 				insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
21338 				insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0);
21339 				insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0);
21340 				cnt = 6;
21341 			} else {
21342 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP);
21343 				cnt = 1;
21344 			}
21345 
21346 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
21347 			if (!new_prog)
21348 				return -ENOMEM;
21349 
21350 			delta    += cnt - 1;
21351 			env->prog = prog = new_prog;
21352 			insn      = new_prog->insnsi + i + delta;
21353 			goto next_insn;
21354 		}
21355 
21356 		/* Implement get_func_arg_cnt inline. */
21357 		if (prog_type == BPF_PROG_TYPE_TRACING &&
21358 		    insn->imm == BPF_FUNC_get_func_arg_cnt) {
21359 			/* Load nr_args from ctx - 8 */
21360 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
21361 
21362 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
21363 			if (!new_prog)
21364 				return -ENOMEM;
21365 
21366 			env->prog = prog = new_prog;
21367 			insn      = new_prog->insnsi + i + delta;
21368 			goto next_insn;
21369 		}
21370 
21371 		/* Implement bpf_get_func_ip inline. */
21372 		if (prog_type == BPF_PROG_TYPE_TRACING &&
21373 		    insn->imm == BPF_FUNC_get_func_ip) {
21374 			/* Load IP address from ctx - 16 */
21375 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16);
21376 
21377 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
21378 			if (!new_prog)
21379 				return -ENOMEM;
21380 
21381 			env->prog = prog = new_prog;
21382 			insn      = new_prog->insnsi + i + delta;
21383 			goto next_insn;
21384 		}
21385 
21386 		/* Implement bpf_get_branch_snapshot inline. */
21387 		if (IS_ENABLED(CONFIG_PERF_EVENTS) &&
21388 		    prog->jit_requested && BITS_PER_LONG == 64 &&
21389 		    insn->imm == BPF_FUNC_get_branch_snapshot) {
21390 			/* We are dealing with the following func protos:
21391 			 * u64 bpf_get_branch_snapshot(void *buf, u32 size, u64 flags);
21392 			 * int perf_snapshot_branch_stack(struct perf_branch_entry *entries, u32 cnt);
21393 			 */
21394 			const u32 br_entry_size = sizeof(struct perf_branch_entry);
21395 
21396 			/* struct perf_branch_entry is part of UAPI and is
21397 			 * used as an array element, so extremely unlikely to
21398 			 * ever grow or shrink
21399 			 */
21400 			BUILD_BUG_ON(br_entry_size != 24);
21401 
21402 			/* if (unlikely(flags)) return -EINVAL */
21403 			insn_buf[0] = BPF_JMP_IMM(BPF_JNE, BPF_REG_3, 0, 7);
21404 
21405 			/* Transform size (bytes) into number of entries (cnt = size / 24).
21406 			 * But to avoid expensive division instruction, we implement
21407 			 * divide-by-3 through multiplication, followed by further
21408 			 * division by 8 through 3-bit right shift.
21409 			 * Refer to book "Hacker's Delight, 2nd ed." by Henry S. Warren, Jr.,
21410 			 * p. 227, chapter "Unsigned Division by 3" for details and proofs.
21411 			 *
21412 			 * N / 3 <=> M * N / 2^33, where M = (2^33 + 1) / 3 = 0xaaaaaaab.
21413 			 */
21414 			insn_buf[1] = BPF_MOV32_IMM(BPF_REG_0, 0xaaaaaaab);
21415 			insn_buf[2] = BPF_ALU64_REG(BPF_MUL, BPF_REG_2, BPF_REG_0);
21416 			insn_buf[3] = BPF_ALU64_IMM(BPF_RSH, BPF_REG_2, 36);
21417 
21418 			/* call perf_snapshot_branch_stack implementation */
21419 			insn_buf[4] = BPF_EMIT_CALL(static_call_query(perf_snapshot_branch_stack));
21420 			/* if (entry_cnt == 0) return -ENOENT */
21421 			insn_buf[5] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4);
21422 			/* return entry_cnt * sizeof(struct perf_branch_entry) */
21423 			insn_buf[6] = BPF_ALU32_IMM(BPF_MUL, BPF_REG_0, br_entry_size);
21424 			insn_buf[7] = BPF_JMP_A(3);
21425 			/* return -EINVAL; */
21426 			insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL);
21427 			insn_buf[9] = BPF_JMP_A(1);
21428 			/* return -ENOENT; */
21429 			insn_buf[10] = BPF_MOV64_IMM(BPF_REG_0, -ENOENT);
21430 			cnt = 11;
21431 
21432 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
21433 			if (!new_prog)
21434 				return -ENOMEM;
21435 
21436 			delta    += cnt - 1;
21437 			env->prog = prog = new_prog;
21438 			insn      = new_prog->insnsi + i + delta;
21439 			goto next_insn;
21440 		}
21441 
21442 		/* Implement bpf_kptr_xchg inline */
21443 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
21444 		    insn->imm == BPF_FUNC_kptr_xchg &&
21445 		    bpf_jit_supports_ptr_xchg()) {
21446 			insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_2);
21447 			insn_buf[1] = BPF_ATOMIC_OP(BPF_DW, BPF_XCHG, BPF_REG_1, BPF_REG_0, 0);
21448 			cnt = 2;
21449 
21450 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
21451 			if (!new_prog)
21452 				return -ENOMEM;
21453 
21454 			delta    += cnt - 1;
21455 			env->prog = prog = new_prog;
21456 			insn      = new_prog->insnsi + i + delta;
21457 			goto next_insn;
21458 		}
21459 patch_call_imm:
21460 		fn = env->ops->get_func_proto(insn->imm, env->prog);
21461 		/* all functions that have prototype and verifier allowed
21462 		 * programs to call them, must be real in-kernel functions
21463 		 */
21464 		if (!fn->func) {
21465 			verbose(env,
21466 				"kernel subsystem misconfigured func %s#%d\n",
21467 				func_id_name(insn->imm), insn->imm);
21468 			return -EFAULT;
21469 		}
21470 		insn->imm = fn->func - __bpf_call_base;
21471 next_insn:
21472 		if (subprogs[cur_subprog + 1].start == i + delta + 1) {
21473 			subprogs[cur_subprog].stack_depth += stack_depth_extra;
21474 			subprogs[cur_subprog].stack_extra = stack_depth_extra;
21475 			cur_subprog++;
21476 			stack_depth = subprogs[cur_subprog].stack_depth;
21477 			stack_depth_extra = 0;
21478 		}
21479 		i++;
21480 		insn++;
21481 	}
21482 
21483 	env->prog->aux->stack_depth = subprogs[0].stack_depth;
21484 	for (i = 0; i < env->subprog_cnt; i++) {
21485 		int subprog_start = subprogs[i].start;
21486 		int stack_slots = subprogs[i].stack_extra / 8;
21487 
21488 		if (!stack_slots)
21489 			continue;
21490 		if (stack_slots > 1) {
21491 			verbose(env, "verifier bug: stack_slots supports may_goto only\n");
21492 			return -EFAULT;
21493 		}
21494 
21495 		/* Add ST insn to subprog prologue to init extra stack */
21496 		insn_buf[0] = BPF_ST_MEM(BPF_DW, BPF_REG_FP,
21497 					 -subprogs[i].stack_depth, BPF_MAX_LOOPS);
21498 		/* Copy first actual insn to preserve it */
21499 		insn_buf[1] = env->prog->insnsi[subprog_start];
21500 
21501 		new_prog = bpf_patch_insn_data(env, subprog_start, insn_buf, 2);
21502 		if (!new_prog)
21503 			return -ENOMEM;
21504 		env->prog = prog = new_prog;
21505 		/*
21506 		 * If may_goto is a first insn of a prog there could be a jmp
21507 		 * insn that points to it, hence adjust all such jmps to point
21508 		 * to insn after BPF_ST that inits may_goto count.
21509 		 * Adjustment will succeed because bpf_patch_insn_data() didn't fail.
21510 		 */
21511 		WARN_ON(adjust_jmp_off(env->prog, subprog_start, 1));
21512 	}
21513 
21514 	/* Since poke tab is now finalized, publish aux to tracker. */
21515 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
21516 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
21517 		if (!map_ptr->ops->map_poke_track ||
21518 		    !map_ptr->ops->map_poke_untrack ||
21519 		    !map_ptr->ops->map_poke_run) {
21520 			verbose(env, "bpf verifier is misconfigured\n");
21521 			return -EINVAL;
21522 		}
21523 
21524 		ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
21525 		if (ret < 0) {
21526 			verbose(env, "tracking tail call prog failed\n");
21527 			return ret;
21528 		}
21529 	}
21530 
21531 	sort_kfunc_descs_by_imm_off(env->prog);
21532 
21533 	return 0;
21534 }
21535 
21536 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env,
21537 					int position,
21538 					s32 stack_base,
21539 					u32 callback_subprogno,
21540 					u32 *total_cnt)
21541 {
21542 	s32 r6_offset = stack_base + 0 * BPF_REG_SIZE;
21543 	s32 r7_offset = stack_base + 1 * BPF_REG_SIZE;
21544 	s32 r8_offset = stack_base + 2 * BPF_REG_SIZE;
21545 	int reg_loop_max = BPF_REG_6;
21546 	int reg_loop_cnt = BPF_REG_7;
21547 	int reg_loop_ctx = BPF_REG_8;
21548 
21549 	struct bpf_insn *insn_buf = env->insn_buf;
21550 	struct bpf_prog *new_prog;
21551 	u32 callback_start;
21552 	u32 call_insn_offset;
21553 	s32 callback_offset;
21554 	u32 cnt = 0;
21555 
21556 	/* This represents an inlined version of bpf_iter.c:bpf_loop,
21557 	 * be careful to modify this code in sync.
21558 	 */
21559 
21560 	/* Return error and jump to the end of the patch if
21561 	 * expected number of iterations is too big.
21562 	 */
21563 	insn_buf[cnt++] = BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2);
21564 	insn_buf[cnt++] = BPF_MOV32_IMM(BPF_REG_0, -E2BIG);
21565 	insn_buf[cnt++] = BPF_JMP_IMM(BPF_JA, 0, 0, 16);
21566 	/* spill R6, R7, R8 to use these as loop vars */
21567 	insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset);
21568 	insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset);
21569 	insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset);
21570 	/* initialize loop vars */
21571 	insn_buf[cnt++] = BPF_MOV64_REG(reg_loop_max, BPF_REG_1);
21572 	insn_buf[cnt++] = BPF_MOV32_IMM(reg_loop_cnt, 0);
21573 	insn_buf[cnt++] = BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3);
21574 	/* loop header,
21575 	 * if reg_loop_cnt >= reg_loop_max skip the loop body
21576 	 */
21577 	insn_buf[cnt++] = BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5);
21578 	/* callback call,
21579 	 * correct callback offset would be set after patching
21580 	 */
21581 	insn_buf[cnt++] = BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt);
21582 	insn_buf[cnt++] = BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx);
21583 	insn_buf[cnt++] = BPF_CALL_REL(0);
21584 	/* increment loop counter */
21585 	insn_buf[cnt++] = BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1);
21586 	/* jump to loop header if callback returned 0 */
21587 	insn_buf[cnt++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6);
21588 	/* return value of bpf_loop,
21589 	 * set R0 to the number of iterations
21590 	 */
21591 	insn_buf[cnt++] = BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt);
21592 	/* restore original values of R6, R7, R8 */
21593 	insn_buf[cnt++] = BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset);
21594 	insn_buf[cnt++] = BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset);
21595 	insn_buf[cnt++] = BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset);
21596 
21597 	*total_cnt = cnt;
21598 	new_prog = bpf_patch_insn_data(env, position, insn_buf, cnt);
21599 	if (!new_prog)
21600 		return new_prog;
21601 
21602 	/* callback start is known only after patching */
21603 	callback_start = env->subprog_info[callback_subprogno].start;
21604 	/* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */
21605 	call_insn_offset = position + 12;
21606 	callback_offset = callback_start - call_insn_offset - 1;
21607 	new_prog->insnsi[call_insn_offset].imm = callback_offset;
21608 
21609 	return new_prog;
21610 }
21611 
21612 static bool is_bpf_loop_call(struct bpf_insn *insn)
21613 {
21614 	return insn->code == (BPF_JMP | BPF_CALL) &&
21615 		insn->src_reg == 0 &&
21616 		insn->imm == BPF_FUNC_loop;
21617 }
21618 
21619 /* For all sub-programs in the program (including main) check
21620  * insn_aux_data to see if there are bpf_loop calls that require
21621  * inlining. If such calls are found the calls are replaced with a
21622  * sequence of instructions produced by `inline_bpf_loop` function and
21623  * subprog stack_depth is increased by the size of 3 registers.
21624  * This stack space is used to spill values of the R6, R7, R8.  These
21625  * registers are used to store the loop bound, counter and context
21626  * variables.
21627  */
21628 static int optimize_bpf_loop(struct bpf_verifier_env *env)
21629 {
21630 	struct bpf_subprog_info *subprogs = env->subprog_info;
21631 	int i, cur_subprog = 0, cnt, delta = 0;
21632 	struct bpf_insn *insn = env->prog->insnsi;
21633 	int insn_cnt = env->prog->len;
21634 	u16 stack_depth = subprogs[cur_subprog].stack_depth;
21635 	u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
21636 	u16 stack_depth_extra = 0;
21637 
21638 	for (i = 0; i < insn_cnt; i++, insn++) {
21639 		struct bpf_loop_inline_state *inline_state =
21640 			&env->insn_aux_data[i + delta].loop_inline_state;
21641 
21642 		if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) {
21643 			struct bpf_prog *new_prog;
21644 
21645 			stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup;
21646 			new_prog = inline_bpf_loop(env,
21647 						   i + delta,
21648 						   -(stack_depth + stack_depth_extra),
21649 						   inline_state->callback_subprogno,
21650 						   &cnt);
21651 			if (!new_prog)
21652 				return -ENOMEM;
21653 
21654 			delta     += cnt - 1;
21655 			env->prog  = new_prog;
21656 			insn       = new_prog->insnsi + i + delta;
21657 		}
21658 
21659 		if (subprogs[cur_subprog + 1].start == i + delta + 1) {
21660 			subprogs[cur_subprog].stack_depth += stack_depth_extra;
21661 			cur_subprog++;
21662 			stack_depth = subprogs[cur_subprog].stack_depth;
21663 			stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
21664 			stack_depth_extra = 0;
21665 		}
21666 	}
21667 
21668 	env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
21669 
21670 	return 0;
21671 }
21672 
21673 /* Remove unnecessary spill/fill pairs, members of fastcall pattern,
21674  * adjust subprograms stack depth when possible.
21675  */
21676 static int remove_fastcall_spills_fills(struct bpf_verifier_env *env)
21677 {
21678 	struct bpf_subprog_info *subprog = env->subprog_info;
21679 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
21680 	struct bpf_insn *insn = env->prog->insnsi;
21681 	int insn_cnt = env->prog->len;
21682 	u32 spills_num;
21683 	bool modified = false;
21684 	int i, j;
21685 
21686 	for (i = 0; i < insn_cnt; i++, insn++) {
21687 		if (aux[i].fastcall_spills_num > 0) {
21688 			spills_num = aux[i].fastcall_spills_num;
21689 			/* NOPs would be removed by opt_remove_nops() */
21690 			for (j = 1; j <= spills_num; ++j) {
21691 				*(insn - j) = NOP;
21692 				*(insn + j) = NOP;
21693 			}
21694 			modified = true;
21695 		}
21696 		if ((subprog + 1)->start == i + 1) {
21697 			if (modified && !subprog->keep_fastcall_stack)
21698 				subprog->stack_depth = -subprog->fastcall_stack_off;
21699 			subprog++;
21700 			modified = false;
21701 		}
21702 	}
21703 
21704 	return 0;
21705 }
21706 
21707 static void free_states(struct bpf_verifier_env *env)
21708 {
21709 	struct bpf_verifier_state_list *sl, *sln;
21710 	int i;
21711 
21712 	sl = env->free_list;
21713 	while (sl) {
21714 		sln = sl->next;
21715 		free_verifier_state(&sl->state, false);
21716 		kfree(sl);
21717 		sl = sln;
21718 	}
21719 	env->free_list = NULL;
21720 
21721 	if (!env->explored_states)
21722 		return;
21723 
21724 	for (i = 0; i < state_htab_size(env); i++) {
21725 		sl = env->explored_states[i];
21726 
21727 		while (sl) {
21728 			sln = sl->next;
21729 			free_verifier_state(&sl->state, false);
21730 			kfree(sl);
21731 			sl = sln;
21732 		}
21733 		env->explored_states[i] = NULL;
21734 	}
21735 }
21736 
21737 static int do_check_common(struct bpf_verifier_env *env, int subprog)
21738 {
21739 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
21740 	struct bpf_subprog_info *sub = subprog_info(env, subprog);
21741 	struct bpf_verifier_state *state;
21742 	struct bpf_reg_state *regs;
21743 	int ret, i;
21744 
21745 	env->prev_linfo = NULL;
21746 	env->pass_cnt++;
21747 
21748 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
21749 	if (!state)
21750 		return -ENOMEM;
21751 	state->curframe = 0;
21752 	state->speculative = false;
21753 	state->branches = 1;
21754 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
21755 	if (!state->frame[0]) {
21756 		kfree(state);
21757 		return -ENOMEM;
21758 	}
21759 	env->cur_state = state;
21760 	init_func_state(env, state->frame[0],
21761 			BPF_MAIN_FUNC /* callsite */,
21762 			0 /* frameno */,
21763 			subprog);
21764 	state->first_insn_idx = env->subprog_info[subprog].start;
21765 	state->last_insn_idx = -1;
21766 
21767 	regs = state->frame[state->curframe]->regs;
21768 	if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
21769 		const char *sub_name = subprog_name(env, subprog);
21770 		struct bpf_subprog_arg_info *arg;
21771 		struct bpf_reg_state *reg;
21772 
21773 		verbose(env, "Validating %s() func#%d...\n", sub_name, subprog);
21774 		ret = btf_prepare_func_args(env, subprog);
21775 		if (ret)
21776 			goto out;
21777 
21778 		if (subprog_is_exc_cb(env, subprog)) {
21779 			state->frame[0]->in_exception_callback_fn = true;
21780 			/* We have already ensured that the callback returns an integer, just
21781 			 * like all global subprogs. We need to determine it only has a single
21782 			 * scalar argument.
21783 			 */
21784 			if (sub->arg_cnt != 1 || sub->args[0].arg_type != ARG_ANYTHING) {
21785 				verbose(env, "exception cb only supports single integer argument\n");
21786 				ret = -EINVAL;
21787 				goto out;
21788 			}
21789 		}
21790 		for (i = BPF_REG_1; i <= sub->arg_cnt; i++) {
21791 			arg = &sub->args[i - BPF_REG_1];
21792 			reg = &regs[i];
21793 
21794 			if (arg->arg_type == ARG_PTR_TO_CTX) {
21795 				reg->type = PTR_TO_CTX;
21796 				mark_reg_known_zero(env, regs, i);
21797 			} else if (arg->arg_type == ARG_ANYTHING) {
21798 				reg->type = SCALAR_VALUE;
21799 				mark_reg_unknown(env, regs, i);
21800 			} else if (arg->arg_type == (ARG_PTR_TO_DYNPTR | MEM_RDONLY)) {
21801 				/* assume unspecial LOCAL dynptr type */
21802 				__mark_dynptr_reg(reg, BPF_DYNPTR_TYPE_LOCAL, true, ++env->id_gen);
21803 			} else if (base_type(arg->arg_type) == ARG_PTR_TO_MEM) {
21804 				reg->type = PTR_TO_MEM;
21805 				if (arg->arg_type & PTR_MAYBE_NULL)
21806 					reg->type |= PTR_MAYBE_NULL;
21807 				mark_reg_known_zero(env, regs, i);
21808 				reg->mem_size = arg->mem_size;
21809 				reg->id = ++env->id_gen;
21810 			} else if (base_type(arg->arg_type) == ARG_PTR_TO_BTF_ID) {
21811 				reg->type = PTR_TO_BTF_ID;
21812 				if (arg->arg_type & PTR_MAYBE_NULL)
21813 					reg->type |= PTR_MAYBE_NULL;
21814 				if (arg->arg_type & PTR_UNTRUSTED)
21815 					reg->type |= PTR_UNTRUSTED;
21816 				if (arg->arg_type & PTR_TRUSTED)
21817 					reg->type |= PTR_TRUSTED;
21818 				mark_reg_known_zero(env, regs, i);
21819 				reg->btf = bpf_get_btf_vmlinux(); /* can't fail at this point */
21820 				reg->btf_id = arg->btf_id;
21821 				reg->id = ++env->id_gen;
21822 			} else if (base_type(arg->arg_type) == ARG_PTR_TO_ARENA) {
21823 				/* caller can pass either PTR_TO_ARENA or SCALAR */
21824 				mark_reg_unknown(env, regs, i);
21825 			} else {
21826 				WARN_ONCE(1, "BUG: unhandled arg#%d type %d\n",
21827 					  i - BPF_REG_1, arg->arg_type);
21828 				ret = -EFAULT;
21829 				goto out;
21830 			}
21831 		}
21832 	} else {
21833 		/* if main BPF program has associated BTF info, validate that
21834 		 * it's matching expected signature, and otherwise mark BTF
21835 		 * info for main program as unreliable
21836 		 */
21837 		if (env->prog->aux->func_info_aux) {
21838 			ret = btf_prepare_func_args(env, 0);
21839 			if (ret || sub->arg_cnt != 1 || sub->args[0].arg_type != ARG_PTR_TO_CTX)
21840 				env->prog->aux->func_info_aux[0].unreliable = true;
21841 		}
21842 
21843 		/* 1st arg to a function */
21844 		regs[BPF_REG_1].type = PTR_TO_CTX;
21845 		mark_reg_known_zero(env, regs, BPF_REG_1);
21846 	}
21847 
21848 	ret = do_check(env);
21849 out:
21850 	/* check for NULL is necessary, since cur_state can be freed inside
21851 	 * do_check() under memory pressure.
21852 	 */
21853 	if (env->cur_state) {
21854 		free_verifier_state(env->cur_state, true);
21855 		env->cur_state = NULL;
21856 	}
21857 	while (!pop_stack(env, NULL, NULL, false));
21858 	if (!ret && pop_log)
21859 		bpf_vlog_reset(&env->log, 0);
21860 	free_states(env);
21861 	return ret;
21862 }
21863 
21864 /* Lazily verify all global functions based on their BTF, if they are called
21865  * from main BPF program or any of subprograms transitively.
21866  * BPF global subprogs called from dead code are not validated.
21867  * All callable global functions must pass verification.
21868  * Otherwise the whole program is rejected.
21869  * Consider:
21870  * int bar(int);
21871  * int foo(int f)
21872  * {
21873  *    return bar(f);
21874  * }
21875  * int bar(int b)
21876  * {
21877  *    ...
21878  * }
21879  * foo() will be verified first for R1=any_scalar_value. During verification it
21880  * will be assumed that bar() already verified successfully and call to bar()
21881  * from foo() will be checked for type match only. Later bar() will be verified
21882  * independently to check that it's safe for R1=any_scalar_value.
21883  */
21884 static int do_check_subprogs(struct bpf_verifier_env *env)
21885 {
21886 	struct bpf_prog_aux *aux = env->prog->aux;
21887 	struct bpf_func_info_aux *sub_aux;
21888 	int i, ret, new_cnt;
21889 
21890 	if (!aux->func_info)
21891 		return 0;
21892 
21893 	/* exception callback is presumed to be always called */
21894 	if (env->exception_callback_subprog)
21895 		subprog_aux(env, env->exception_callback_subprog)->called = true;
21896 
21897 again:
21898 	new_cnt = 0;
21899 	for (i = 1; i < env->subprog_cnt; i++) {
21900 		if (!subprog_is_global(env, i))
21901 			continue;
21902 
21903 		sub_aux = subprog_aux(env, i);
21904 		if (!sub_aux->called || sub_aux->verified)
21905 			continue;
21906 
21907 		env->insn_idx = env->subprog_info[i].start;
21908 		WARN_ON_ONCE(env->insn_idx == 0);
21909 		ret = do_check_common(env, i);
21910 		if (ret) {
21911 			return ret;
21912 		} else if (env->log.level & BPF_LOG_LEVEL) {
21913 			verbose(env, "Func#%d ('%s') is safe for any args that match its prototype\n",
21914 				i, subprog_name(env, i));
21915 		}
21916 
21917 		/* We verified new global subprog, it might have called some
21918 		 * more global subprogs that we haven't verified yet, so we
21919 		 * need to do another pass over subprogs to verify those.
21920 		 */
21921 		sub_aux->verified = true;
21922 		new_cnt++;
21923 	}
21924 
21925 	/* We can't loop forever as we verify at least one global subprog on
21926 	 * each pass.
21927 	 */
21928 	if (new_cnt)
21929 		goto again;
21930 
21931 	return 0;
21932 }
21933 
21934 static int do_check_main(struct bpf_verifier_env *env)
21935 {
21936 	int ret;
21937 
21938 	env->insn_idx = 0;
21939 	ret = do_check_common(env, 0);
21940 	if (!ret)
21941 		env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
21942 	return ret;
21943 }
21944 
21945 
21946 static void print_verification_stats(struct bpf_verifier_env *env)
21947 {
21948 	int i;
21949 
21950 	if (env->log.level & BPF_LOG_STATS) {
21951 		verbose(env, "verification time %lld usec\n",
21952 			div_u64(env->verification_time, 1000));
21953 		verbose(env, "stack depth ");
21954 		for (i = 0; i < env->subprog_cnt; i++) {
21955 			u32 depth = env->subprog_info[i].stack_depth;
21956 
21957 			verbose(env, "%d", depth);
21958 			if (i + 1 < env->subprog_cnt)
21959 				verbose(env, "+");
21960 		}
21961 		verbose(env, "\n");
21962 	}
21963 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
21964 		"total_states %d peak_states %d mark_read %d\n",
21965 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
21966 		env->max_states_per_insn, env->total_states,
21967 		env->peak_states, env->longest_mark_read_walk);
21968 }
21969 
21970 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
21971 {
21972 	const struct btf_type *t, *func_proto;
21973 	const struct bpf_struct_ops_desc *st_ops_desc;
21974 	const struct bpf_struct_ops *st_ops;
21975 	const struct btf_member *member;
21976 	struct bpf_prog *prog = env->prog;
21977 	u32 btf_id, member_idx;
21978 	struct btf *btf;
21979 	const char *mname;
21980 	int err;
21981 
21982 	if (!prog->gpl_compatible) {
21983 		verbose(env, "struct ops programs must have a GPL compatible license\n");
21984 		return -EINVAL;
21985 	}
21986 
21987 	if (!prog->aux->attach_btf_id)
21988 		return -ENOTSUPP;
21989 
21990 	btf = prog->aux->attach_btf;
21991 	if (btf_is_module(btf)) {
21992 		/* Make sure st_ops is valid through the lifetime of env */
21993 		env->attach_btf_mod = btf_try_get_module(btf);
21994 		if (!env->attach_btf_mod) {
21995 			verbose(env, "struct_ops module %s is not found\n",
21996 				btf_get_name(btf));
21997 			return -ENOTSUPP;
21998 		}
21999 	}
22000 
22001 	btf_id = prog->aux->attach_btf_id;
22002 	st_ops_desc = bpf_struct_ops_find(btf, btf_id);
22003 	if (!st_ops_desc) {
22004 		verbose(env, "attach_btf_id %u is not a supported struct\n",
22005 			btf_id);
22006 		return -ENOTSUPP;
22007 	}
22008 	st_ops = st_ops_desc->st_ops;
22009 
22010 	t = st_ops_desc->type;
22011 	member_idx = prog->expected_attach_type;
22012 	if (member_idx >= btf_type_vlen(t)) {
22013 		verbose(env, "attach to invalid member idx %u of struct %s\n",
22014 			member_idx, st_ops->name);
22015 		return -EINVAL;
22016 	}
22017 
22018 	member = &btf_type_member(t)[member_idx];
22019 	mname = btf_name_by_offset(btf, member->name_off);
22020 	func_proto = btf_type_resolve_func_ptr(btf, member->type,
22021 					       NULL);
22022 	if (!func_proto) {
22023 		verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
22024 			mname, member_idx, st_ops->name);
22025 		return -EINVAL;
22026 	}
22027 
22028 	err = bpf_struct_ops_supported(st_ops, __btf_member_bit_offset(t, member) / 8);
22029 	if (err) {
22030 		verbose(env, "attach to unsupported member %s of struct %s\n",
22031 			mname, st_ops->name);
22032 		return err;
22033 	}
22034 
22035 	if (st_ops->check_member) {
22036 		err = st_ops->check_member(t, member, prog);
22037 
22038 		if (err) {
22039 			verbose(env, "attach to unsupported member %s of struct %s\n",
22040 				mname, st_ops->name);
22041 			return err;
22042 		}
22043 	}
22044 
22045 	if (prog->aux->priv_stack_requested && !bpf_jit_supports_private_stack()) {
22046 		verbose(env, "Private stack not supported by jit\n");
22047 		return -EACCES;
22048 	}
22049 
22050 	/* btf_ctx_access() used this to provide argument type info */
22051 	prog->aux->ctx_arg_info =
22052 		st_ops_desc->arg_info[member_idx].info;
22053 	prog->aux->ctx_arg_info_size =
22054 		st_ops_desc->arg_info[member_idx].cnt;
22055 
22056 	prog->aux->attach_func_proto = func_proto;
22057 	prog->aux->attach_func_name = mname;
22058 	env->ops = st_ops->verifier_ops;
22059 
22060 	return 0;
22061 }
22062 #define SECURITY_PREFIX "security_"
22063 
22064 static int check_attach_modify_return(unsigned long addr, const char *func_name)
22065 {
22066 	if (within_error_injection_list(addr) ||
22067 	    !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
22068 		return 0;
22069 
22070 	return -EINVAL;
22071 }
22072 
22073 /* list of non-sleepable functions that are otherwise on
22074  * ALLOW_ERROR_INJECTION list
22075  */
22076 BTF_SET_START(btf_non_sleepable_error_inject)
22077 /* Three functions below can be called from sleepable and non-sleepable context.
22078  * Assume non-sleepable from bpf safety point of view.
22079  */
22080 BTF_ID(func, __filemap_add_folio)
22081 #ifdef CONFIG_FAIL_PAGE_ALLOC
22082 BTF_ID(func, should_fail_alloc_page)
22083 #endif
22084 #ifdef CONFIG_FAILSLAB
22085 BTF_ID(func, should_failslab)
22086 #endif
22087 BTF_SET_END(btf_non_sleepable_error_inject)
22088 
22089 static int check_non_sleepable_error_inject(u32 btf_id)
22090 {
22091 	return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
22092 }
22093 
22094 int bpf_check_attach_target(struct bpf_verifier_log *log,
22095 			    const struct bpf_prog *prog,
22096 			    const struct bpf_prog *tgt_prog,
22097 			    u32 btf_id,
22098 			    struct bpf_attach_target_info *tgt_info)
22099 {
22100 	bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
22101 	bool prog_tracing = prog->type == BPF_PROG_TYPE_TRACING;
22102 	char trace_symbol[KSYM_SYMBOL_LEN];
22103 	const char prefix[] = "btf_trace_";
22104 	struct bpf_raw_event_map *btp;
22105 	int ret = 0, subprog = -1, i;
22106 	const struct btf_type *t;
22107 	bool conservative = true;
22108 	const char *tname, *fname;
22109 	struct btf *btf;
22110 	long addr = 0;
22111 	struct module *mod = NULL;
22112 
22113 	if (!btf_id) {
22114 		bpf_log(log, "Tracing programs must provide btf_id\n");
22115 		return -EINVAL;
22116 	}
22117 	btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
22118 	if (!btf) {
22119 		bpf_log(log,
22120 			"FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
22121 		return -EINVAL;
22122 	}
22123 	t = btf_type_by_id(btf, btf_id);
22124 	if (!t) {
22125 		bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
22126 		return -EINVAL;
22127 	}
22128 	tname = btf_name_by_offset(btf, t->name_off);
22129 	if (!tname) {
22130 		bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
22131 		return -EINVAL;
22132 	}
22133 	if (tgt_prog) {
22134 		struct bpf_prog_aux *aux = tgt_prog->aux;
22135 		bool tgt_changes_pkt_data;
22136 
22137 		if (bpf_prog_is_dev_bound(prog->aux) &&
22138 		    !bpf_prog_dev_bound_match(prog, tgt_prog)) {
22139 			bpf_log(log, "Target program bound device mismatch");
22140 			return -EINVAL;
22141 		}
22142 
22143 		for (i = 0; i < aux->func_info_cnt; i++)
22144 			if (aux->func_info[i].type_id == btf_id) {
22145 				subprog = i;
22146 				break;
22147 			}
22148 		if (subprog == -1) {
22149 			bpf_log(log, "Subprog %s doesn't exist\n", tname);
22150 			return -EINVAL;
22151 		}
22152 		if (aux->func && aux->func[subprog]->aux->exception_cb) {
22153 			bpf_log(log,
22154 				"%s programs cannot attach to exception callback\n",
22155 				prog_extension ? "Extension" : "FENTRY/FEXIT");
22156 			return -EINVAL;
22157 		}
22158 		conservative = aux->func_info_aux[subprog].unreliable;
22159 		if (prog_extension) {
22160 			if (conservative) {
22161 				bpf_log(log,
22162 					"Cannot replace static functions\n");
22163 				return -EINVAL;
22164 			}
22165 			if (!prog->jit_requested) {
22166 				bpf_log(log,
22167 					"Extension programs should be JITed\n");
22168 				return -EINVAL;
22169 			}
22170 			tgt_changes_pkt_data = aux->func
22171 					       ? aux->func[subprog]->aux->changes_pkt_data
22172 					       : aux->changes_pkt_data;
22173 			if (prog->aux->changes_pkt_data && !tgt_changes_pkt_data) {
22174 				bpf_log(log,
22175 					"Extension program changes packet data, while original does not\n");
22176 				return -EINVAL;
22177 			}
22178 		}
22179 		if (!tgt_prog->jited) {
22180 			bpf_log(log, "Can attach to only JITed progs\n");
22181 			return -EINVAL;
22182 		}
22183 		if (prog_tracing) {
22184 			if (aux->attach_tracing_prog) {
22185 				/*
22186 				 * Target program is an fentry/fexit which is already attached
22187 				 * to another tracing program. More levels of nesting
22188 				 * attachment are not allowed.
22189 				 */
22190 				bpf_log(log, "Cannot nest tracing program attach more than once\n");
22191 				return -EINVAL;
22192 			}
22193 		} else if (tgt_prog->type == prog->type) {
22194 			/*
22195 			 * To avoid potential call chain cycles, prevent attaching of a
22196 			 * program extension to another extension. It's ok to attach
22197 			 * fentry/fexit to extension program.
22198 			 */
22199 			bpf_log(log, "Cannot recursively attach\n");
22200 			return -EINVAL;
22201 		}
22202 		if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
22203 		    prog_extension &&
22204 		    (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
22205 		     tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
22206 			/* Program extensions can extend all program types
22207 			 * except fentry/fexit. The reason is the following.
22208 			 * The fentry/fexit programs are used for performance
22209 			 * analysis, stats and can be attached to any program
22210 			 * type. When extension program is replacing XDP function
22211 			 * it is necessary to allow performance analysis of all
22212 			 * functions. Both original XDP program and its program
22213 			 * extension. Hence attaching fentry/fexit to
22214 			 * BPF_PROG_TYPE_EXT is allowed. If extending of
22215 			 * fentry/fexit was allowed it would be possible to create
22216 			 * long call chain fentry->extension->fentry->extension
22217 			 * beyond reasonable stack size. Hence extending fentry
22218 			 * is not allowed.
22219 			 */
22220 			bpf_log(log, "Cannot extend fentry/fexit\n");
22221 			return -EINVAL;
22222 		}
22223 	} else {
22224 		if (prog_extension) {
22225 			bpf_log(log, "Cannot replace kernel functions\n");
22226 			return -EINVAL;
22227 		}
22228 	}
22229 
22230 	switch (prog->expected_attach_type) {
22231 	case BPF_TRACE_RAW_TP:
22232 		if (tgt_prog) {
22233 			bpf_log(log,
22234 				"Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
22235 			return -EINVAL;
22236 		}
22237 		if (!btf_type_is_typedef(t)) {
22238 			bpf_log(log, "attach_btf_id %u is not a typedef\n",
22239 				btf_id);
22240 			return -EINVAL;
22241 		}
22242 		if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
22243 			bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
22244 				btf_id, tname);
22245 			return -EINVAL;
22246 		}
22247 		tname += sizeof(prefix) - 1;
22248 
22249 		/* The func_proto of "btf_trace_##tname" is generated from typedef without argument
22250 		 * names. Thus using bpf_raw_event_map to get argument names.
22251 		 */
22252 		btp = bpf_get_raw_tracepoint(tname);
22253 		if (!btp)
22254 			return -EINVAL;
22255 		fname = kallsyms_lookup((unsigned long)btp->bpf_func, NULL, NULL, NULL,
22256 					trace_symbol);
22257 		bpf_put_raw_tracepoint(btp);
22258 
22259 		if (fname)
22260 			ret = btf_find_by_name_kind(btf, fname, BTF_KIND_FUNC);
22261 
22262 		if (!fname || ret < 0) {
22263 			bpf_log(log, "Cannot find btf of tracepoint template, fall back to %s%s.\n",
22264 				prefix, tname);
22265 			t = btf_type_by_id(btf, t->type);
22266 			if (!btf_type_is_ptr(t))
22267 				/* should never happen in valid vmlinux build */
22268 				return -EINVAL;
22269 		} else {
22270 			t = btf_type_by_id(btf, ret);
22271 			if (!btf_type_is_func(t))
22272 				/* should never happen in valid vmlinux build */
22273 				return -EINVAL;
22274 		}
22275 
22276 		t = btf_type_by_id(btf, t->type);
22277 		if (!btf_type_is_func_proto(t))
22278 			/* should never happen in valid vmlinux build */
22279 			return -EINVAL;
22280 
22281 		break;
22282 	case BPF_TRACE_ITER:
22283 		if (!btf_type_is_func(t)) {
22284 			bpf_log(log, "attach_btf_id %u is not a function\n",
22285 				btf_id);
22286 			return -EINVAL;
22287 		}
22288 		t = btf_type_by_id(btf, t->type);
22289 		if (!btf_type_is_func_proto(t))
22290 			return -EINVAL;
22291 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
22292 		if (ret)
22293 			return ret;
22294 		break;
22295 	default:
22296 		if (!prog_extension)
22297 			return -EINVAL;
22298 		fallthrough;
22299 	case BPF_MODIFY_RETURN:
22300 	case BPF_LSM_MAC:
22301 	case BPF_LSM_CGROUP:
22302 	case BPF_TRACE_FENTRY:
22303 	case BPF_TRACE_FEXIT:
22304 		if (!btf_type_is_func(t)) {
22305 			bpf_log(log, "attach_btf_id %u is not a function\n",
22306 				btf_id);
22307 			return -EINVAL;
22308 		}
22309 		if (prog_extension &&
22310 		    btf_check_type_match(log, prog, btf, t))
22311 			return -EINVAL;
22312 		t = btf_type_by_id(btf, t->type);
22313 		if (!btf_type_is_func_proto(t))
22314 			return -EINVAL;
22315 
22316 		if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
22317 		    (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
22318 		     prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
22319 			return -EINVAL;
22320 
22321 		if (tgt_prog && conservative)
22322 			t = NULL;
22323 
22324 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
22325 		if (ret < 0)
22326 			return ret;
22327 
22328 		if (tgt_prog) {
22329 			if (subprog == 0)
22330 				addr = (long) tgt_prog->bpf_func;
22331 			else
22332 				addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
22333 		} else {
22334 			if (btf_is_module(btf)) {
22335 				mod = btf_try_get_module(btf);
22336 				if (mod)
22337 					addr = find_kallsyms_symbol_value(mod, tname);
22338 				else
22339 					addr = 0;
22340 			} else {
22341 				addr = kallsyms_lookup_name(tname);
22342 			}
22343 			if (!addr) {
22344 				module_put(mod);
22345 				bpf_log(log,
22346 					"The address of function %s cannot be found\n",
22347 					tname);
22348 				return -ENOENT;
22349 			}
22350 		}
22351 
22352 		if (prog->sleepable) {
22353 			ret = -EINVAL;
22354 			switch (prog->type) {
22355 			case BPF_PROG_TYPE_TRACING:
22356 
22357 				/* fentry/fexit/fmod_ret progs can be sleepable if they are
22358 				 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
22359 				 */
22360 				if (!check_non_sleepable_error_inject(btf_id) &&
22361 				    within_error_injection_list(addr))
22362 					ret = 0;
22363 				/* fentry/fexit/fmod_ret progs can also be sleepable if they are
22364 				 * in the fmodret id set with the KF_SLEEPABLE flag.
22365 				 */
22366 				else {
22367 					u32 *flags = btf_kfunc_is_modify_return(btf, btf_id,
22368 										prog);
22369 
22370 					if (flags && (*flags & KF_SLEEPABLE))
22371 						ret = 0;
22372 				}
22373 				break;
22374 			case BPF_PROG_TYPE_LSM:
22375 				/* LSM progs check that they are attached to bpf_lsm_*() funcs.
22376 				 * Only some of them are sleepable.
22377 				 */
22378 				if (bpf_lsm_is_sleepable_hook(btf_id))
22379 					ret = 0;
22380 				break;
22381 			default:
22382 				break;
22383 			}
22384 			if (ret) {
22385 				module_put(mod);
22386 				bpf_log(log, "%s is not sleepable\n", tname);
22387 				return ret;
22388 			}
22389 		} else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
22390 			if (tgt_prog) {
22391 				module_put(mod);
22392 				bpf_log(log, "can't modify return codes of BPF programs\n");
22393 				return -EINVAL;
22394 			}
22395 			ret = -EINVAL;
22396 			if (btf_kfunc_is_modify_return(btf, btf_id, prog) ||
22397 			    !check_attach_modify_return(addr, tname))
22398 				ret = 0;
22399 			if (ret) {
22400 				module_put(mod);
22401 				bpf_log(log, "%s() is not modifiable\n", tname);
22402 				return ret;
22403 			}
22404 		}
22405 
22406 		break;
22407 	}
22408 	tgt_info->tgt_addr = addr;
22409 	tgt_info->tgt_name = tname;
22410 	tgt_info->tgt_type = t;
22411 	tgt_info->tgt_mod = mod;
22412 	return 0;
22413 }
22414 
22415 BTF_SET_START(btf_id_deny)
22416 BTF_ID_UNUSED
22417 #ifdef CONFIG_SMP
22418 BTF_ID(func, migrate_disable)
22419 BTF_ID(func, migrate_enable)
22420 #endif
22421 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
22422 BTF_ID(func, rcu_read_unlock_strict)
22423 #endif
22424 #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE)
22425 BTF_ID(func, preempt_count_add)
22426 BTF_ID(func, preempt_count_sub)
22427 #endif
22428 #ifdef CONFIG_PREEMPT_RCU
22429 BTF_ID(func, __rcu_read_lock)
22430 BTF_ID(func, __rcu_read_unlock)
22431 #endif
22432 BTF_SET_END(btf_id_deny)
22433 
22434 static bool can_be_sleepable(struct bpf_prog *prog)
22435 {
22436 	if (prog->type == BPF_PROG_TYPE_TRACING) {
22437 		switch (prog->expected_attach_type) {
22438 		case BPF_TRACE_FENTRY:
22439 		case BPF_TRACE_FEXIT:
22440 		case BPF_MODIFY_RETURN:
22441 		case BPF_TRACE_ITER:
22442 			return true;
22443 		default:
22444 			return false;
22445 		}
22446 	}
22447 	return prog->type == BPF_PROG_TYPE_LSM ||
22448 	       prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ ||
22449 	       prog->type == BPF_PROG_TYPE_STRUCT_OPS;
22450 }
22451 
22452 static int check_attach_btf_id(struct bpf_verifier_env *env)
22453 {
22454 	struct bpf_prog *prog = env->prog;
22455 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
22456 	struct bpf_attach_target_info tgt_info = {};
22457 	u32 btf_id = prog->aux->attach_btf_id;
22458 	struct bpf_trampoline *tr;
22459 	int ret;
22460 	u64 key;
22461 
22462 	if (prog->type == BPF_PROG_TYPE_SYSCALL) {
22463 		if (prog->sleepable)
22464 			/* attach_btf_id checked to be zero already */
22465 			return 0;
22466 		verbose(env, "Syscall programs can only be sleepable\n");
22467 		return -EINVAL;
22468 	}
22469 
22470 	if (prog->sleepable && !can_be_sleepable(prog)) {
22471 		verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n");
22472 		return -EINVAL;
22473 	}
22474 
22475 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
22476 		return check_struct_ops_btf_id(env);
22477 
22478 	if (prog->type != BPF_PROG_TYPE_TRACING &&
22479 	    prog->type != BPF_PROG_TYPE_LSM &&
22480 	    prog->type != BPF_PROG_TYPE_EXT)
22481 		return 0;
22482 
22483 	ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
22484 	if (ret)
22485 		return ret;
22486 
22487 	if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
22488 		/* to make freplace equivalent to their targets, they need to
22489 		 * inherit env->ops and expected_attach_type for the rest of the
22490 		 * verification
22491 		 */
22492 		env->ops = bpf_verifier_ops[tgt_prog->type];
22493 		prog->expected_attach_type = tgt_prog->expected_attach_type;
22494 	}
22495 
22496 	/* store info about the attachment target that will be used later */
22497 	prog->aux->attach_func_proto = tgt_info.tgt_type;
22498 	prog->aux->attach_func_name = tgt_info.tgt_name;
22499 	prog->aux->mod = tgt_info.tgt_mod;
22500 
22501 	if (tgt_prog) {
22502 		prog->aux->saved_dst_prog_type = tgt_prog->type;
22503 		prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
22504 	}
22505 
22506 	if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
22507 		prog->aux->attach_btf_trace = true;
22508 		return 0;
22509 	} else if (prog->expected_attach_type == BPF_TRACE_ITER) {
22510 		if (!bpf_iter_prog_supported(prog))
22511 			return -EINVAL;
22512 		return 0;
22513 	}
22514 
22515 	if (prog->type == BPF_PROG_TYPE_LSM) {
22516 		ret = bpf_lsm_verify_prog(&env->log, prog);
22517 		if (ret < 0)
22518 			return ret;
22519 	} else if (prog->type == BPF_PROG_TYPE_TRACING &&
22520 		   btf_id_set_contains(&btf_id_deny, btf_id)) {
22521 		return -EINVAL;
22522 	}
22523 
22524 	key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
22525 	tr = bpf_trampoline_get(key, &tgt_info);
22526 	if (!tr)
22527 		return -ENOMEM;
22528 
22529 	if (tgt_prog && tgt_prog->aux->tail_call_reachable)
22530 		tr->flags = BPF_TRAMP_F_TAIL_CALL_CTX;
22531 
22532 	prog->aux->dst_trampoline = tr;
22533 	return 0;
22534 }
22535 
22536 struct btf *bpf_get_btf_vmlinux(void)
22537 {
22538 	if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
22539 		mutex_lock(&bpf_verifier_lock);
22540 		if (!btf_vmlinux)
22541 			btf_vmlinux = btf_parse_vmlinux();
22542 		mutex_unlock(&bpf_verifier_lock);
22543 	}
22544 	return btf_vmlinux;
22545 }
22546 
22547 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size)
22548 {
22549 	u64 start_time = ktime_get_ns();
22550 	struct bpf_verifier_env *env;
22551 	int i, len, ret = -EINVAL, err;
22552 	u32 log_true_size;
22553 	bool is_priv;
22554 
22555 	/* no program is valid */
22556 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
22557 		return -EINVAL;
22558 
22559 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
22560 	 * allocate/free it every time bpf_check() is called
22561 	 */
22562 	env = kvzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
22563 	if (!env)
22564 		return -ENOMEM;
22565 
22566 	env->bt.env = env;
22567 
22568 	len = (*prog)->len;
22569 	env->insn_aux_data =
22570 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
22571 	ret = -ENOMEM;
22572 	if (!env->insn_aux_data)
22573 		goto err_free_env;
22574 	for (i = 0; i < len; i++)
22575 		env->insn_aux_data[i].orig_idx = i;
22576 	env->prog = *prog;
22577 	env->ops = bpf_verifier_ops[env->prog->type];
22578 	env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
22579 
22580 	env->allow_ptr_leaks = bpf_allow_ptr_leaks(env->prog->aux->token);
22581 	env->allow_uninit_stack = bpf_allow_uninit_stack(env->prog->aux->token);
22582 	env->bypass_spec_v1 = bpf_bypass_spec_v1(env->prog->aux->token);
22583 	env->bypass_spec_v4 = bpf_bypass_spec_v4(env->prog->aux->token);
22584 	env->bpf_capable = is_priv = bpf_token_capable(env->prog->aux->token, CAP_BPF);
22585 
22586 	bpf_get_btf_vmlinux();
22587 
22588 	/* grab the mutex to protect few globals used by verifier */
22589 	if (!is_priv)
22590 		mutex_lock(&bpf_verifier_lock);
22591 
22592 	/* user could have requested verbose verifier output
22593 	 * and supplied buffer to store the verification trace
22594 	 */
22595 	ret = bpf_vlog_init(&env->log, attr->log_level,
22596 			    (char __user *) (unsigned long) attr->log_buf,
22597 			    attr->log_size);
22598 	if (ret)
22599 		goto err_unlock;
22600 
22601 	mark_verifier_state_clean(env);
22602 
22603 	if (IS_ERR(btf_vmlinux)) {
22604 		/* Either gcc or pahole or kernel are broken. */
22605 		verbose(env, "in-kernel BTF is malformed\n");
22606 		ret = PTR_ERR(btf_vmlinux);
22607 		goto skip_full_check;
22608 	}
22609 
22610 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
22611 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
22612 		env->strict_alignment = true;
22613 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
22614 		env->strict_alignment = false;
22615 
22616 	if (is_priv)
22617 		env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
22618 	env->test_reg_invariants = attr->prog_flags & BPF_F_TEST_REG_INVARIANTS;
22619 
22620 	env->explored_states = kvcalloc(state_htab_size(env),
22621 				       sizeof(struct bpf_verifier_state_list *),
22622 				       GFP_USER);
22623 	ret = -ENOMEM;
22624 	if (!env->explored_states)
22625 		goto skip_full_check;
22626 
22627 	ret = check_btf_info_early(env, attr, uattr);
22628 	if (ret < 0)
22629 		goto skip_full_check;
22630 
22631 	ret = add_subprog_and_kfunc(env);
22632 	if (ret < 0)
22633 		goto skip_full_check;
22634 
22635 	ret = check_subprogs(env);
22636 	if (ret < 0)
22637 		goto skip_full_check;
22638 
22639 	ret = check_btf_info(env, attr, uattr);
22640 	if (ret < 0)
22641 		goto skip_full_check;
22642 
22643 	ret = resolve_pseudo_ldimm64(env);
22644 	if (ret < 0)
22645 		goto skip_full_check;
22646 
22647 	if (bpf_prog_is_offloaded(env->prog->aux)) {
22648 		ret = bpf_prog_offload_verifier_prep(env->prog);
22649 		if (ret)
22650 			goto skip_full_check;
22651 	}
22652 
22653 	ret = check_cfg(env);
22654 	if (ret < 0)
22655 		goto skip_full_check;
22656 
22657 	ret = check_attach_btf_id(env);
22658 	if (ret)
22659 		goto skip_full_check;
22660 
22661 	ret = mark_fastcall_patterns(env);
22662 	if (ret < 0)
22663 		goto skip_full_check;
22664 
22665 	ret = do_check_main(env);
22666 	ret = ret ?: do_check_subprogs(env);
22667 
22668 	if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux))
22669 		ret = bpf_prog_offload_finalize(env);
22670 
22671 skip_full_check:
22672 	kvfree(env->explored_states);
22673 
22674 	/* might decrease stack depth, keep it before passes that
22675 	 * allocate additional slots.
22676 	 */
22677 	if (ret == 0)
22678 		ret = remove_fastcall_spills_fills(env);
22679 
22680 	if (ret == 0)
22681 		ret = check_max_stack_depth(env);
22682 
22683 	/* instruction rewrites happen after this point */
22684 	if (ret == 0)
22685 		ret = optimize_bpf_loop(env);
22686 
22687 	if (is_priv) {
22688 		if (ret == 0)
22689 			opt_hard_wire_dead_code_branches(env);
22690 		if (ret == 0)
22691 			ret = opt_remove_dead_code(env);
22692 		if (ret == 0)
22693 			ret = opt_remove_nops(env);
22694 	} else {
22695 		if (ret == 0)
22696 			sanitize_dead_code(env);
22697 	}
22698 
22699 	if (ret == 0)
22700 		/* program is valid, convert *(u32*)(ctx + off) accesses */
22701 		ret = convert_ctx_accesses(env);
22702 
22703 	if (ret == 0)
22704 		ret = do_misc_fixups(env);
22705 
22706 	/* do 32-bit optimization after insn patching has done so those patched
22707 	 * insns could be handled correctly.
22708 	 */
22709 	if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) {
22710 		ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
22711 		env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
22712 								     : false;
22713 	}
22714 
22715 	if (ret == 0)
22716 		ret = fixup_call_args(env);
22717 
22718 	env->verification_time = ktime_get_ns() - start_time;
22719 	print_verification_stats(env);
22720 	env->prog->aux->verified_insns = env->insn_processed;
22721 
22722 	/* preserve original error even if log finalization is successful */
22723 	err = bpf_vlog_finalize(&env->log, &log_true_size);
22724 	if (err)
22725 		ret = err;
22726 
22727 	if (uattr_size >= offsetofend(union bpf_attr, log_true_size) &&
22728 	    copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, log_true_size),
22729 				  &log_true_size, sizeof(log_true_size))) {
22730 		ret = -EFAULT;
22731 		goto err_release_maps;
22732 	}
22733 
22734 	if (ret)
22735 		goto err_release_maps;
22736 
22737 	if (env->used_map_cnt) {
22738 		/* if program passed verifier, update used_maps in bpf_prog_info */
22739 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
22740 							  sizeof(env->used_maps[0]),
22741 							  GFP_KERNEL);
22742 
22743 		if (!env->prog->aux->used_maps) {
22744 			ret = -ENOMEM;
22745 			goto err_release_maps;
22746 		}
22747 
22748 		memcpy(env->prog->aux->used_maps, env->used_maps,
22749 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
22750 		env->prog->aux->used_map_cnt = env->used_map_cnt;
22751 	}
22752 	if (env->used_btf_cnt) {
22753 		/* if program passed verifier, update used_btfs in bpf_prog_aux */
22754 		env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
22755 							  sizeof(env->used_btfs[0]),
22756 							  GFP_KERNEL);
22757 		if (!env->prog->aux->used_btfs) {
22758 			ret = -ENOMEM;
22759 			goto err_release_maps;
22760 		}
22761 
22762 		memcpy(env->prog->aux->used_btfs, env->used_btfs,
22763 		       sizeof(env->used_btfs[0]) * env->used_btf_cnt);
22764 		env->prog->aux->used_btf_cnt = env->used_btf_cnt;
22765 	}
22766 	if (env->used_map_cnt || env->used_btf_cnt) {
22767 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
22768 		 * bpf_ld_imm64 instructions
22769 		 */
22770 		convert_pseudo_ld_imm64(env);
22771 	}
22772 
22773 	adjust_btf_func(env);
22774 
22775 err_release_maps:
22776 	if (!env->prog->aux->used_maps)
22777 		/* if we didn't copy map pointers into bpf_prog_info, release
22778 		 * them now. Otherwise free_used_maps() will release them.
22779 		 */
22780 		release_maps(env);
22781 	if (!env->prog->aux->used_btfs)
22782 		release_btfs(env);
22783 
22784 	/* extension progs temporarily inherit the attach_type of their targets
22785 	   for verification purposes, so set it back to zero before returning
22786 	 */
22787 	if (env->prog->type == BPF_PROG_TYPE_EXT)
22788 		env->prog->expected_attach_type = 0;
22789 
22790 	*prog = env->prog;
22791 
22792 	module_put(env->attach_btf_mod);
22793 err_unlock:
22794 	if (!is_priv)
22795 		mutex_unlock(&bpf_verifier_lock);
22796 	vfree(env->insn_aux_data);
22797 	kvfree(env->insn_hist);
22798 err_free_env:
22799 	kvfree(env);
22800 	return ret;
22801 }
22802