1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/bpf-cgroup.h> 8 #include <linux/kernel.h> 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/bpf.h> 12 #include <linux/btf.h> 13 #include <linux/bpf_verifier.h> 14 #include <linux/filter.h> 15 #include <net/netlink.h> 16 #include <linux/file.h> 17 #include <linux/vmalloc.h> 18 #include <linux/stringify.h> 19 #include <linux/bsearch.h> 20 #include <linux/sort.h> 21 #include <linux/perf_event.h> 22 #include <linux/ctype.h> 23 #include <linux/error-injection.h> 24 #include <linux/bpf_lsm.h> 25 #include <linux/btf_ids.h> 26 #include <linux/poison.h> 27 #include <linux/module.h> 28 #include <linux/cpumask.h> 29 #include <linux/bpf_mem_alloc.h> 30 #include <net/xdp.h> 31 32 #include "disasm.h" 33 34 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 35 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 36 [_id] = & _name ## _verifier_ops, 37 #define BPF_MAP_TYPE(_id, _ops) 38 #define BPF_LINK_TYPE(_id, _name) 39 #include <linux/bpf_types.h> 40 #undef BPF_PROG_TYPE 41 #undef BPF_MAP_TYPE 42 #undef BPF_LINK_TYPE 43 }; 44 45 struct bpf_mem_alloc bpf_global_percpu_ma; 46 static bool bpf_global_percpu_ma_set; 47 48 /* bpf_check() is a static code analyzer that walks eBPF program 49 * instruction by instruction and updates register/stack state. 50 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 51 * 52 * The first pass is depth-first-search to check that the program is a DAG. 53 * It rejects the following programs: 54 * - larger than BPF_MAXINSNS insns 55 * - if loop is present (detected via back-edge) 56 * - unreachable insns exist (shouldn't be a forest. program = one function) 57 * - out of bounds or malformed jumps 58 * The second pass is all possible path descent from the 1st insn. 59 * Since it's analyzing all paths through the program, the length of the 60 * analysis is limited to 64k insn, which may be hit even if total number of 61 * insn is less then 4K, but there are too many branches that change stack/regs. 62 * Number of 'branches to be analyzed' is limited to 1k 63 * 64 * On entry to each instruction, each register has a type, and the instruction 65 * changes the types of the registers depending on instruction semantics. 66 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 67 * copied to R1. 68 * 69 * All registers are 64-bit. 70 * R0 - return register 71 * R1-R5 argument passing registers 72 * R6-R9 callee saved registers 73 * R10 - frame pointer read-only 74 * 75 * At the start of BPF program the register R1 contains a pointer to bpf_context 76 * and has type PTR_TO_CTX. 77 * 78 * Verifier tracks arithmetic operations on pointers in case: 79 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 80 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 81 * 1st insn copies R10 (which has FRAME_PTR) type into R1 82 * and 2nd arithmetic instruction is pattern matched to recognize 83 * that it wants to construct a pointer to some element within stack. 84 * So after 2nd insn, the register R1 has type PTR_TO_STACK 85 * (and -20 constant is saved for further stack bounds checking). 86 * Meaning that this reg is a pointer to stack plus known immediate constant. 87 * 88 * Most of the time the registers have SCALAR_VALUE type, which 89 * means the register has some value, but it's not a valid pointer. 90 * (like pointer plus pointer becomes SCALAR_VALUE type) 91 * 92 * When verifier sees load or store instructions the type of base register 93 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 94 * four pointer types recognized by check_mem_access() function. 95 * 96 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 97 * and the range of [ptr, ptr + map's value_size) is accessible. 98 * 99 * registers used to pass values to function calls are checked against 100 * function argument constraints. 101 * 102 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 103 * It means that the register type passed to this function must be 104 * PTR_TO_STACK and it will be used inside the function as 105 * 'pointer to map element key' 106 * 107 * For example the argument constraints for bpf_map_lookup_elem(): 108 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 109 * .arg1_type = ARG_CONST_MAP_PTR, 110 * .arg2_type = ARG_PTR_TO_MAP_KEY, 111 * 112 * ret_type says that this function returns 'pointer to map elem value or null' 113 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 114 * 2nd argument should be a pointer to stack, which will be used inside 115 * the helper function as a pointer to map element key. 116 * 117 * On the kernel side the helper function looks like: 118 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 119 * { 120 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 121 * void *key = (void *) (unsigned long) r2; 122 * void *value; 123 * 124 * here kernel can access 'key' and 'map' pointers safely, knowing that 125 * [key, key + map->key_size) bytes are valid and were initialized on 126 * the stack of eBPF program. 127 * } 128 * 129 * Corresponding eBPF program may look like: 130 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 131 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 132 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 133 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 134 * here verifier looks at prototype of map_lookup_elem() and sees: 135 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 136 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 137 * 138 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 139 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 140 * and were initialized prior to this call. 141 * If it's ok, then verifier allows this BPF_CALL insn and looks at 142 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 143 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 144 * returns either pointer to map value or NULL. 145 * 146 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 147 * insn, the register holding that pointer in the true branch changes state to 148 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 149 * branch. See check_cond_jmp_op(). 150 * 151 * After the call R0 is set to return type of the function and registers R1-R5 152 * are set to NOT_INIT to indicate that they are no longer readable. 153 * 154 * The following reference types represent a potential reference to a kernel 155 * resource which, after first being allocated, must be checked and freed by 156 * the BPF program: 157 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 158 * 159 * When the verifier sees a helper call return a reference type, it allocates a 160 * pointer id for the reference and stores it in the current function state. 161 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 162 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 163 * passes through a NULL-check conditional. For the branch wherein the state is 164 * changed to CONST_IMM, the verifier releases the reference. 165 * 166 * For each helper function that allocates a reference, such as 167 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 168 * bpf_sk_release(). When a reference type passes into the release function, 169 * the verifier also releases the reference. If any unchecked or unreleased 170 * reference remains at the end of the program, the verifier rejects it. 171 */ 172 173 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 174 struct bpf_verifier_stack_elem { 175 /* verifer state is 'st' 176 * before processing instruction 'insn_idx' 177 * and after processing instruction 'prev_insn_idx' 178 */ 179 struct bpf_verifier_state st; 180 int insn_idx; 181 int prev_insn_idx; 182 struct bpf_verifier_stack_elem *next; 183 /* length of verifier log at the time this state was pushed on stack */ 184 u32 log_pos; 185 }; 186 187 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 188 #define BPF_COMPLEXITY_LIMIT_STATES 64 189 190 #define BPF_MAP_KEY_POISON (1ULL << 63) 191 #define BPF_MAP_KEY_SEEN (1ULL << 62) 192 193 #define BPF_MAP_PTR_UNPRIV 1UL 194 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 195 POISON_POINTER_DELTA)) 196 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 197 198 #define BPF_GLOBAL_PERCPU_MA_MAX_SIZE 512 199 200 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx); 201 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id); 202 static void invalidate_non_owning_refs(struct bpf_verifier_env *env); 203 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env); 204 static int ref_set_non_owning(struct bpf_verifier_env *env, 205 struct bpf_reg_state *reg); 206 static void specialize_kfunc(struct bpf_verifier_env *env, 207 u32 func_id, u16 offset, unsigned long *addr); 208 static bool is_trusted_reg(const struct bpf_reg_state *reg); 209 210 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 211 { 212 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON; 213 } 214 215 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 216 { 217 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV; 218 } 219 220 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 221 const struct bpf_map *map, bool unpriv) 222 { 223 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 224 unpriv |= bpf_map_ptr_unpriv(aux); 225 aux->map_ptr_state = (unsigned long)map | 226 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 227 } 228 229 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 230 { 231 return aux->map_key_state & BPF_MAP_KEY_POISON; 232 } 233 234 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 235 { 236 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 237 } 238 239 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 240 { 241 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 242 } 243 244 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 245 { 246 bool poisoned = bpf_map_key_poisoned(aux); 247 248 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 249 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 250 } 251 252 static bool bpf_helper_call(const struct bpf_insn *insn) 253 { 254 return insn->code == (BPF_JMP | BPF_CALL) && 255 insn->src_reg == 0; 256 } 257 258 static bool bpf_pseudo_call(const struct bpf_insn *insn) 259 { 260 return insn->code == (BPF_JMP | BPF_CALL) && 261 insn->src_reg == BPF_PSEUDO_CALL; 262 } 263 264 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn) 265 { 266 return insn->code == (BPF_JMP | BPF_CALL) && 267 insn->src_reg == BPF_PSEUDO_KFUNC_CALL; 268 } 269 270 struct bpf_call_arg_meta { 271 struct bpf_map *map_ptr; 272 bool raw_mode; 273 bool pkt_access; 274 u8 release_regno; 275 int regno; 276 int access_size; 277 int mem_size; 278 u64 msize_max_value; 279 int ref_obj_id; 280 int dynptr_id; 281 int map_uid; 282 int func_id; 283 struct btf *btf; 284 u32 btf_id; 285 struct btf *ret_btf; 286 u32 ret_btf_id; 287 u32 subprogno; 288 struct btf_field *kptr_field; 289 }; 290 291 struct bpf_kfunc_call_arg_meta { 292 /* In parameters */ 293 struct btf *btf; 294 u32 func_id; 295 u32 kfunc_flags; 296 const struct btf_type *func_proto; 297 const char *func_name; 298 /* Out parameters */ 299 u32 ref_obj_id; 300 u8 release_regno; 301 bool r0_rdonly; 302 u32 ret_btf_id; 303 u64 r0_size; 304 u32 subprogno; 305 struct { 306 u64 value; 307 bool found; 308 } arg_constant; 309 310 /* arg_{btf,btf_id,owning_ref} are used by kfunc-specific handling, 311 * generally to pass info about user-defined local kptr types to later 312 * verification logic 313 * bpf_obj_drop/bpf_percpu_obj_drop 314 * Record the local kptr type to be drop'd 315 * bpf_refcount_acquire (via KF_ARG_PTR_TO_REFCOUNTED_KPTR arg type) 316 * Record the local kptr type to be refcount_incr'd and use 317 * arg_owning_ref to determine whether refcount_acquire should be 318 * fallible 319 */ 320 struct btf *arg_btf; 321 u32 arg_btf_id; 322 bool arg_owning_ref; 323 324 struct { 325 struct btf_field *field; 326 } arg_list_head; 327 struct { 328 struct btf_field *field; 329 } arg_rbtree_root; 330 struct { 331 enum bpf_dynptr_type type; 332 u32 id; 333 u32 ref_obj_id; 334 } initialized_dynptr; 335 struct { 336 u8 spi; 337 u8 frameno; 338 } iter; 339 u64 mem_size; 340 }; 341 342 struct btf *btf_vmlinux; 343 344 static const char *btf_type_name(const struct btf *btf, u32 id) 345 { 346 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off); 347 } 348 349 static DEFINE_MUTEX(bpf_verifier_lock); 350 static DEFINE_MUTEX(bpf_percpu_ma_lock); 351 352 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 353 { 354 struct bpf_verifier_env *env = private_data; 355 va_list args; 356 357 if (!bpf_verifier_log_needed(&env->log)) 358 return; 359 360 va_start(args, fmt); 361 bpf_verifier_vlog(&env->log, fmt, args); 362 va_end(args); 363 } 364 365 static void verbose_invalid_scalar(struct bpf_verifier_env *env, 366 struct bpf_reg_state *reg, 367 struct bpf_retval_range range, const char *ctx, 368 const char *reg_name) 369 { 370 bool unknown = true; 371 372 verbose(env, "%s the register %s has", ctx, reg_name); 373 if (reg->smin_value > S64_MIN) { 374 verbose(env, " smin=%lld", reg->smin_value); 375 unknown = false; 376 } 377 if (reg->smax_value < S64_MAX) { 378 verbose(env, " smax=%lld", reg->smax_value); 379 unknown = false; 380 } 381 if (unknown) 382 verbose(env, " unknown scalar value"); 383 verbose(env, " should have been in [%d, %d]\n", range.minval, range.maxval); 384 } 385 386 static bool type_may_be_null(u32 type) 387 { 388 return type & PTR_MAYBE_NULL; 389 } 390 391 static bool reg_not_null(const struct bpf_reg_state *reg) 392 { 393 enum bpf_reg_type type; 394 395 type = reg->type; 396 if (type_may_be_null(type)) 397 return false; 398 399 type = base_type(type); 400 return type == PTR_TO_SOCKET || 401 type == PTR_TO_TCP_SOCK || 402 type == PTR_TO_MAP_VALUE || 403 type == PTR_TO_MAP_KEY || 404 type == PTR_TO_SOCK_COMMON || 405 (type == PTR_TO_BTF_ID && is_trusted_reg(reg)) || 406 type == PTR_TO_MEM; 407 } 408 409 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg) 410 { 411 struct btf_record *rec = NULL; 412 struct btf_struct_meta *meta; 413 414 if (reg->type == PTR_TO_MAP_VALUE) { 415 rec = reg->map_ptr->record; 416 } else if (type_is_ptr_alloc_obj(reg->type)) { 417 meta = btf_find_struct_meta(reg->btf, reg->btf_id); 418 if (meta) 419 rec = meta->record; 420 } 421 return rec; 422 } 423 424 static bool subprog_is_global(const struct bpf_verifier_env *env, int subprog) 425 { 426 struct bpf_func_info_aux *aux = env->prog->aux->func_info_aux; 427 428 return aux && aux[subprog].linkage == BTF_FUNC_GLOBAL; 429 } 430 431 static const char *subprog_name(const struct bpf_verifier_env *env, int subprog) 432 { 433 struct bpf_func_info *info; 434 435 if (!env->prog->aux->func_info) 436 return ""; 437 438 info = &env->prog->aux->func_info[subprog]; 439 return btf_type_name(env->prog->aux->btf, info->type_id); 440 } 441 442 static void mark_subprog_exc_cb(struct bpf_verifier_env *env, int subprog) 443 { 444 struct bpf_subprog_info *info = subprog_info(env, subprog); 445 446 info->is_cb = true; 447 info->is_async_cb = true; 448 info->is_exception_cb = true; 449 } 450 451 static bool subprog_is_exc_cb(struct bpf_verifier_env *env, int subprog) 452 { 453 return subprog_info(env, subprog)->is_exception_cb; 454 } 455 456 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 457 { 458 return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK); 459 } 460 461 static bool type_is_rdonly_mem(u32 type) 462 { 463 return type & MEM_RDONLY; 464 } 465 466 static bool is_acquire_function(enum bpf_func_id func_id, 467 const struct bpf_map *map) 468 { 469 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; 470 471 if (func_id == BPF_FUNC_sk_lookup_tcp || 472 func_id == BPF_FUNC_sk_lookup_udp || 473 func_id == BPF_FUNC_skc_lookup_tcp || 474 func_id == BPF_FUNC_ringbuf_reserve || 475 func_id == BPF_FUNC_kptr_xchg) 476 return true; 477 478 if (func_id == BPF_FUNC_map_lookup_elem && 479 (map_type == BPF_MAP_TYPE_SOCKMAP || 480 map_type == BPF_MAP_TYPE_SOCKHASH)) 481 return true; 482 483 return false; 484 } 485 486 static bool is_ptr_cast_function(enum bpf_func_id func_id) 487 { 488 return func_id == BPF_FUNC_tcp_sock || 489 func_id == BPF_FUNC_sk_fullsock || 490 func_id == BPF_FUNC_skc_to_tcp_sock || 491 func_id == BPF_FUNC_skc_to_tcp6_sock || 492 func_id == BPF_FUNC_skc_to_udp6_sock || 493 func_id == BPF_FUNC_skc_to_mptcp_sock || 494 func_id == BPF_FUNC_skc_to_tcp_timewait_sock || 495 func_id == BPF_FUNC_skc_to_tcp_request_sock; 496 } 497 498 static bool is_dynptr_ref_function(enum bpf_func_id func_id) 499 { 500 return func_id == BPF_FUNC_dynptr_data; 501 } 502 503 static bool is_sync_callback_calling_kfunc(u32 btf_id); 504 static bool is_bpf_throw_kfunc(struct bpf_insn *insn); 505 506 static bool is_sync_callback_calling_function(enum bpf_func_id func_id) 507 { 508 return func_id == BPF_FUNC_for_each_map_elem || 509 func_id == BPF_FUNC_find_vma || 510 func_id == BPF_FUNC_loop || 511 func_id == BPF_FUNC_user_ringbuf_drain; 512 } 513 514 static bool is_async_callback_calling_function(enum bpf_func_id func_id) 515 { 516 return func_id == BPF_FUNC_timer_set_callback; 517 } 518 519 static bool is_callback_calling_function(enum bpf_func_id func_id) 520 { 521 return is_sync_callback_calling_function(func_id) || 522 is_async_callback_calling_function(func_id); 523 } 524 525 static bool is_sync_callback_calling_insn(struct bpf_insn *insn) 526 { 527 return (bpf_helper_call(insn) && is_sync_callback_calling_function(insn->imm)) || 528 (bpf_pseudo_kfunc_call(insn) && is_sync_callback_calling_kfunc(insn->imm)); 529 } 530 531 static bool is_async_callback_calling_insn(struct bpf_insn *insn) 532 { 533 return bpf_helper_call(insn) && is_async_callback_calling_function(insn->imm); 534 } 535 536 static bool is_may_goto_insn(struct bpf_insn *insn) 537 { 538 return insn->code == (BPF_JMP | BPF_JCOND) && insn->src_reg == BPF_MAY_GOTO; 539 } 540 541 static bool is_may_goto_insn_at(struct bpf_verifier_env *env, int insn_idx) 542 { 543 return is_may_goto_insn(&env->prog->insnsi[insn_idx]); 544 } 545 546 static bool is_storage_get_function(enum bpf_func_id func_id) 547 { 548 return func_id == BPF_FUNC_sk_storage_get || 549 func_id == BPF_FUNC_inode_storage_get || 550 func_id == BPF_FUNC_task_storage_get || 551 func_id == BPF_FUNC_cgrp_storage_get; 552 } 553 554 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id, 555 const struct bpf_map *map) 556 { 557 int ref_obj_uses = 0; 558 559 if (is_ptr_cast_function(func_id)) 560 ref_obj_uses++; 561 if (is_acquire_function(func_id, map)) 562 ref_obj_uses++; 563 if (is_dynptr_ref_function(func_id)) 564 ref_obj_uses++; 565 566 return ref_obj_uses > 1; 567 } 568 569 static bool is_cmpxchg_insn(const struct bpf_insn *insn) 570 { 571 return BPF_CLASS(insn->code) == BPF_STX && 572 BPF_MODE(insn->code) == BPF_ATOMIC && 573 insn->imm == BPF_CMPXCHG; 574 } 575 576 static int __get_spi(s32 off) 577 { 578 return (-off - 1) / BPF_REG_SIZE; 579 } 580 581 static struct bpf_func_state *func(struct bpf_verifier_env *env, 582 const struct bpf_reg_state *reg) 583 { 584 struct bpf_verifier_state *cur = env->cur_state; 585 586 return cur->frame[reg->frameno]; 587 } 588 589 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots) 590 { 591 int allocated_slots = state->allocated_stack / BPF_REG_SIZE; 592 593 /* We need to check that slots between [spi - nr_slots + 1, spi] are 594 * within [0, allocated_stack). 595 * 596 * Please note that the spi grows downwards. For example, a dynptr 597 * takes the size of two stack slots; the first slot will be at 598 * spi and the second slot will be at spi - 1. 599 */ 600 return spi - nr_slots + 1 >= 0 && spi < allocated_slots; 601 } 602 603 static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 604 const char *obj_kind, int nr_slots) 605 { 606 int off, spi; 607 608 if (!tnum_is_const(reg->var_off)) { 609 verbose(env, "%s has to be at a constant offset\n", obj_kind); 610 return -EINVAL; 611 } 612 613 off = reg->off + reg->var_off.value; 614 if (off % BPF_REG_SIZE) { 615 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off); 616 return -EINVAL; 617 } 618 619 spi = __get_spi(off); 620 if (spi + 1 < nr_slots) { 621 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off); 622 return -EINVAL; 623 } 624 625 if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots)) 626 return -ERANGE; 627 return spi; 628 } 629 630 static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 631 { 632 return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS); 633 } 634 635 static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots) 636 { 637 return stack_slot_obj_get_spi(env, reg, "iter", nr_slots); 638 } 639 640 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type) 641 { 642 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) { 643 case DYNPTR_TYPE_LOCAL: 644 return BPF_DYNPTR_TYPE_LOCAL; 645 case DYNPTR_TYPE_RINGBUF: 646 return BPF_DYNPTR_TYPE_RINGBUF; 647 case DYNPTR_TYPE_SKB: 648 return BPF_DYNPTR_TYPE_SKB; 649 case DYNPTR_TYPE_XDP: 650 return BPF_DYNPTR_TYPE_XDP; 651 default: 652 return BPF_DYNPTR_TYPE_INVALID; 653 } 654 } 655 656 static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type) 657 { 658 switch (type) { 659 case BPF_DYNPTR_TYPE_LOCAL: 660 return DYNPTR_TYPE_LOCAL; 661 case BPF_DYNPTR_TYPE_RINGBUF: 662 return DYNPTR_TYPE_RINGBUF; 663 case BPF_DYNPTR_TYPE_SKB: 664 return DYNPTR_TYPE_SKB; 665 case BPF_DYNPTR_TYPE_XDP: 666 return DYNPTR_TYPE_XDP; 667 default: 668 return 0; 669 } 670 } 671 672 static bool dynptr_type_refcounted(enum bpf_dynptr_type type) 673 { 674 return type == BPF_DYNPTR_TYPE_RINGBUF; 675 } 676 677 static void __mark_dynptr_reg(struct bpf_reg_state *reg, 678 enum bpf_dynptr_type type, 679 bool first_slot, int dynptr_id); 680 681 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 682 struct bpf_reg_state *reg); 683 684 static void mark_dynptr_stack_regs(struct bpf_verifier_env *env, 685 struct bpf_reg_state *sreg1, 686 struct bpf_reg_state *sreg2, 687 enum bpf_dynptr_type type) 688 { 689 int id = ++env->id_gen; 690 691 __mark_dynptr_reg(sreg1, type, true, id); 692 __mark_dynptr_reg(sreg2, type, false, id); 693 } 694 695 static void mark_dynptr_cb_reg(struct bpf_verifier_env *env, 696 struct bpf_reg_state *reg, 697 enum bpf_dynptr_type type) 698 { 699 __mark_dynptr_reg(reg, type, true, ++env->id_gen); 700 } 701 702 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, 703 struct bpf_func_state *state, int spi); 704 705 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 706 enum bpf_arg_type arg_type, int insn_idx, int clone_ref_obj_id) 707 { 708 struct bpf_func_state *state = func(env, reg); 709 enum bpf_dynptr_type type; 710 int spi, i, err; 711 712 spi = dynptr_get_spi(env, reg); 713 if (spi < 0) 714 return spi; 715 716 /* We cannot assume both spi and spi - 1 belong to the same dynptr, 717 * hence we need to call destroy_if_dynptr_stack_slot twice for both, 718 * to ensure that for the following example: 719 * [d1][d1][d2][d2] 720 * spi 3 2 1 0 721 * So marking spi = 2 should lead to destruction of both d1 and d2. In 722 * case they do belong to same dynptr, second call won't see slot_type 723 * as STACK_DYNPTR and will simply skip destruction. 724 */ 725 err = destroy_if_dynptr_stack_slot(env, state, spi); 726 if (err) 727 return err; 728 err = destroy_if_dynptr_stack_slot(env, state, spi - 1); 729 if (err) 730 return err; 731 732 for (i = 0; i < BPF_REG_SIZE; i++) { 733 state->stack[spi].slot_type[i] = STACK_DYNPTR; 734 state->stack[spi - 1].slot_type[i] = STACK_DYNPTR; 735 } 736 737 type = arg_to_dynptr_type(arg_type); 738 if (type == BPF_DYNPTR_TYPE_INVALID) 739 return -EINVAL; 740 741 mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr, 742 &state->stack[spi - 1].spilled_ptr, type); 743 744 if (dynptr_type_refcounted(type)) { 745 /* The id is used to track proper releasing */ 746 int id; 747 748 if (clone_ref_obj_id) 749 id = clone_ref_obj_id; 750 else 751 id = acquire_reference_state(env, insn_idx); 752 753 if (id < 0) 754 return id; 755 756 state->stack[spi].spilled_ptr.ref_obj_id = id; 757 state->stack[spi - 1].spilled_ptr.ref_obj_id = id; 758 } 759 760 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 761 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 762 763 return 0; 764 } 765 766 static void invalidate_dynptr(struct bpf_verifier_env *env, struct bpf_func_state *state, int spi) 767 { 768 int i; 769 770 for (i = 0; i < BPF_REG_SIZE; i++) { 771 state->stack[spi].slot_type[i] = STACK_INVALID; 772 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 773 } 774 775 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); 776 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); 777 778 /* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot? 779 * 780 * While we don't allow reading STACK_INVALID, it is still possible to 781 * do <8 byte writes marking some but not all slots as STACK_MISC. Then, 782 * helpers or insns can do partial read of that part without failing, 783 * but check_stack_range_initialized, check_stack_read_var_off, and 784 * check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of 785 * the slot conservatively. Hence we need to prevent those liveness 786 * marking walks. 787 * 788 * This was not a problem before because STACK_INVALID is only set by 789 * default (where the default reg state has its reg->parent as NULL), or 790 * in clean_live_states after REG_LIVE_DONE (at which point 791 * mark_reg_read won't walk reg->parent chain), but not randomly during 792 * verifier state exploration (like we did above). Hence, for our case 793 * parentage chain will still be live (i.e. reg->parent may be 794 * non-NULL), while earlier reg->parent was NULL, so we need 795 * REG_LIVE_WRITTEN to screen off read marker propagation when it is 796 * done later on reads or by mark_dynptr_read as well to unnecessary 797 * mark registers in verifier state. 798 */ 799 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 800 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 801 } 802 803 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 804 { 805 struct bpf_func_state *state = func(env, reg); 806 int spi, ref_obj_id, i; 807 808 spi = dynptr_get_spi(env, reg); 809 if (spi < 0) 810 return spi; 811 812 if (!dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 813 invalidate_dynptr(env, state, spi); 814 return 0; 815 } 816 817 ref_obj_id = state->stack[spi].spilled_ptr.ref_obj_id; 818 819 /* If the dynptr has a ref_obj_id, then we need to invalidate 820 * two things: 821 * 822 * 1) Any dynptrs with a matching ref_obj_id (clones) 823 * 2) Any slices derived from this dynptr. 824 */ 825 826 /* Invalidate any slices associated with this dynptr */ 827 WARN_ON_ONCE(release_reference(env, ref_obj_id)); 828 829 /* Invalidate any dynptr clones */ 830 for (i = 1; i < state->allocated_stack / BPF_REG_SIZE; i++) { 831 if (state->stack[i].spilled_ptr.ref_obj_id != ref_obj_id) 832 continue; 833 834 /* it should always be the case that if the ref obj id 835 * matches then the stack slot also belongs to a 836 * dynptr 837 */ 838 if (state->stack[i].slot_type[0] != STACK_DYNPTR) { 839 verbose(env, "verifier internal error: misconfigured ref_obj_id\n"); 840 return -EFAULT; 841 } 842 if (state->stack[i].spilled_ptr.dynptr.first_slot) 843 invalidate_dynptr(env, state, i); 844 } 845 846 return 0; 847 } 848 849 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 850 struct bpf_reg_state *reg); 851 852 static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg) 853 { 854 if (!env->allow_ptr_leaks) 855 __mark_reg_not_init(env, reg); 856 else 857 __mark_reg_unknown(env, reg); 858 } 859 860 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, 861 struct bpf_func_state *state, int spi) 862 { 863 struct bpf_func_state *fstate; 864 struct bpf_reg_state *dreg; 865 int i, dynptr_id; 866 867 /* We always ensure that STACK_DYNPTR is never set partially, 868 * hence just checking for slot_type[0] is enough. This is 869 * different for STACK_SPILL, where it may be only set for 870 * 1 byte, so code has to use is_spilled_reg. 871 */ 872 if (state->stack[spi].slot_type[0] != STACK_DYNPTR) 873 return 0; 874 875 /* Reposition spi to first slot */ 876 if (!state->stack[spi].spilled_ptr.dynptr.first_slot) 877 spi = spi + 1; 878 879 if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 880 verbose(env, "cannot overwrite referenced dynptr\n"); 881 return -EINVAL; 882 } 883 884 mark_stack_slot_scratched(env, spi); 885 mark_stack_slot_scratched(env, spi - 1); 886 887 /* Writing partially to one dynptr stack slot destroys both. */ 888 for (i = 0; i < BPF_REG_SIZE; i++) { 889 state->stack[spi].slot_type[i] = STACK_INVALID; 890 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 891 } 892 893 dynptr_id = state->stack[spi].spilled_ptr.id; 894 /* Invalidate any slices associated with this dynptr */ 895 bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({ 896 /* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */ 897 if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM) 898 continue; 899 if (dreg->dynptr_id == dynptr_id) 900 mark_reg_invalid(env, dreg); 901 })); 902 903 /* Do not release reference state, we are destroying dynptr on stack, 904 * not using some helper to release it. Just reset register. 905 */ 906 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); 907 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); 908 909 /* Same reason as unmark_stack_slots_dynptr above */ 910 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 911 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 912 913 return 0; 914 } 915 916 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 917 { 918 int spi; 919 920 if (reg->type == CONST_PTR_TO_DYNPTR) 921 return false; 922 923 spi = dynptr_get_spi(env, reg); 924 925 /* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an 926 * error because this just means the stack state hasn't been updated yet. 927 * We will do check_mem_access to check and update stack bounds later. 928 */ 929 if (spi < 0 && spi != -ERANGE) 930 return false; 931 932 /* We don't need to check if the stack slots are marked by previous 933 * dynptr initializations because we allow overwriting existing unreferenced 934 * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls 935 * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are 936 * touching are completely destructed before we reinitialize them for a new 937 * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early 938 * instead of delaying it until the end where the user will get "Unreleased 939 * reference" error. 940 */ 941 return true; 942 } 943 944 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 945 { 946 struct bpf_func_state *state = func(env, reg); 947 int i, spi; 948 949 /* This already represents first slot of initialized bpf_dynptr. 950 * 951 * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to 952 * check_func_arg_reg_off's logic, so we don't need to check its 953 * offset and alignment. 954 */ 955 if (reg->type == CONST_PTR_TO_DYNPTR) 956 return true; 957 958 spi = dynptr_get_spi(env, reg); 959 if (spi < 0) 960 return false; 961 if (!state->stack[spi].spilled_ptr.dynptr.first_slot) 962 return false; 963 964 for (i = 0; i < BPF_REG_SIZE; i++) { 965 if (state->stack[spi].slot_type[i] != STACK_DYNPTR || 966 state->stack[spi - 1].slot_type[i] != STACK_DYNPTR) 967 return false; 968 } 969 970 return true; 971 } 972 973 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 974 enum bpf_arg_type arg_type) 975 { 976 struct bpf_func_state *state = func(env, reg); 977 enum bpf_dynptr_type dynptr_type; 978 int spi; 979 980 /* ARG_PTR_TO_DYNPTR takes any type of dynptr */ 981 if (arg_type == ARG_PTR_TO_DYNPTR) 982 return true; 983 984 dynptr_type = arg_to_dynptr_type(arg_type); 985 if (reg->type == CONST_PTR_TO_DYNPTR) { 986 return reg->dynptr.type == dynptr_type; 987 } else { 988 spi = dynptr_get_spi(env, reg); 989 if (spi < 0) 990 return false; 991 return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type; 992 } 993 } 994 995 static void __mark_reg_known_zero(struct bpf_reg_state *reg); 996 997 static bool in_rcu_cs(struct bpf_verifier_env *env); 998 999 static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta); 1000 1001 static int mark_stack_slots_iter(struct bpf_verifier_env *env, 1002 struct bpf_kfunc_call_arg_meta *meta, 1003 struct bpf_reg_state *reg, int insn_idx, 1004 struct btf *btf, u32 btf_id, int nr_slots) 1005 { 1006 struct bpf_func_state *state = func(env, reg); 1007 int spi, i, j, id; 1008 1009 spi = iter_get_spi(env, reg, nr_slots); 1010 if (spi < 0) 1011 return spi; 1012 1013 id = acquire_reference_state(env, insn_idx); 1014 if (id < 0) 1015 return id; 1016 1017 for (i = 0; i < nr_slots; i++) { 1018 struct bpf_stack_state *slot = &state->stack[spi - i]; 1019 struct bpf_reg_state *st = &slot->spilled_ptr; 1020 1021 __mark_reg_known_zero(st); 1022 st->type = PTR_TO_STACK; /* we don't have dedicated reg type */ 1023 if (is_kfunc_rcu_protected(meta)) { 1024 if (in_rcu_cs(env)) 1025 st->type |= MEM_RCU; 1026 else 1027 st->type |= PTR_UNTRUSTED; 1028 } 1029 st->live |= REG_LIVE_WRITTEN; 1030 st->ref_obj_id = i == 0 ? id : 0; 1031 st->iter.btf = btf; 1032 st->iter.btf_id = btf_id; 1033 st->iter.state = BPF_ITER_STATE_ACTIVE; 1034 st->iter.depth = 0; 1035 1036 for (j = 0; j < BPF_REG_SIZE; j++) 1037 slot->slot_type[j] = STACK_ITER; 1038 1039 mark_stack_slot_scratched(env, spi - i); 1040 } 1041 1042 return 0; 1043 } 1044 1045 static int unmark_stack_slots_iter(struct bpf_verifier_env *env, 1046 struct bpf_reg_state *reg, int nr_slots) 1047 { 1048 struct bpf_func_state *state = func(env, reg); 1049 int spi, i, j; 1050 1051 spi = iter_get_spi(env, reg, nr_slots); 1052 if (spi < 0) 1053 return spi; 1054 1055 for (i = 0; i < nr_slots; i++) { 1056 struct bpf_stack_state *slot = &state->stack[spi - i]; 1057 struct bpf_reg_state *st = &slot->spilled_ptr; 1058 1059 if (i == 0) 1060 WARN_ON_ONCE(release_reference(env, st->ref_obj_id)); 1061 1062 __mark_reg_not_init(env, st); 1063 1064 /* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */ 1065 st->live |= REG_LIVE_WRITTEN; 1066 1067 for (j = 0; j < BPF_REG_SIZE; j++) 1068 slot->slot_type[j] = STACK_INVALID; 1069 1070 mark_stack_slot_scratched(env, spi - i); 1071 } 1072 1073 return 0; 1074 } 1075 1076 static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env, 1077 struct bpf_reg_state *reg, int nr_slots) 1078 { 1079 struct bpf_func_state *state = func(env, reg); 1080 int spi, i, j; 1081 1082 /* For -ERANGE (i.e. spi not falling into allocated stack slots), we 1083 * will do check_mem_access to check and update stack bounds later, so 1084 * return true for that case. 1085 */ 1086 spi = iter_get_spi(env, reg, nr_slots); 1087 if (spi == -ERANGE) 1088 return true; 1089 if (spi < 0) 1090 return false; 1091 1092 for (i = 0; i < nr_slots; i++) { 1093 struct bpf_stack_state *slot = &state->stack[spi - i]; 1094 1095 for (j = 0; j < BPF_REG_SIZE; j++) 1096 if (slot->slot_type[j] == STACK_ITER) 1097 return false; 1098 } 1099 1100 return true; 1101 } 1102 1103 static int is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 1104 struct btf *btf, u32 btf_id, int nr_slots) 1105 { 1106 struct bpf_func_state *state = func(env, reg); 1107 int spi, i, j; 1108 1109 spi = iter_get_spi(env, reg, nr_slots); 1110 if (spi < 0) 1111 return -EINVAL; 1112 1113 for (i = 0; i < nr_slots; i++) { 1114 struct bpf_stack_state *slot = &state->stack[spi - i]; 1115 struct bpf_reg_state *st = &slot->spilled_ptr; 1116 1117 if (st->type & PTR_UNTRUSTED) 1118 return -EPROTO; 1119 /* only main (first) slot has ref_obj_id set */ 1120 if (i == 0 && !st->ref_obj_id) 1121 return -EINVAL; 1122 if (i != 0 && st->ref_obj_id) 1123 return -EINVAL; 1124 if (st->iter.btf != btf || st->iter.btf_id != btf_id) 1125 return -EINVAL; 1126 1127 for (j = 0; j < BPF_REG_SIZE; j++) 1128 if (slot->slot_type[j] != STACK_ITER) 1129 return -EINVAL; 1130 } 1131 1132 return 0; 1133 } 1134 1135 /* Check if given stack slot is "special": 1136 * - spilled register state (STACK_SPILL); 1137 * - dynptr state (STACK_DYNPTR); 1138 * - iter state (STACK_ITER). 1139 */ 1140 static bool is_stack_slot_special(const struct bpf_stack_state *stack) 1141 { 1142 enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1]; 1143 1144 switch (type) { 1145 case STACK_SPILL: 1146 case STACK_DYNPTR: 1147 case STACK_ITER: 1148 return true; 1149 case STACK_INVALID: 1150 case STACK_MISC: 1151 case STACK_ZERO: 1152 return false; 1153 default: 1154 WARN_ONCE(1, "unknown stack slot type %d\n", type); 1155 return true; 1156 } 1157 } 1158 1159 /* The reg state of a pointer or a bounded scalar was saved when 1160 * it was spilled to the stack. 1161 */ 1162 static bool is_spilled_reg(const struct bpf_stack_state *stack) 1163 { 1164 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL; 1165 } 1166 1167 static bool is_spilled_scalar_reg(const struct bpf_stack_state *stack) 1168 { 1169 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL && 1170 stack->spilled_ptr.type == SCALAR_VALUE; 1171 } 1172 1173 static bool is_spilled_scalar_reg64(const struct bpf_stack_state *stack) 1174 { 1175 return stack->slot_type[0] == STACK_SPILL && 1176 stack->spilled_ptr.type == SCALAR_VALUE; 1177 } 1178 1179 /* Mark stack slot as STACK_MISC, unless it is already STACK_INVALID, in which 1180 * case they are equivalent, or it's STACK_ZERO, in which case we preserve 1181 * more precise STACK_ZERO. 1182 * Note, in uprivileged mode leaving STACK_INVALID is wrong, so we take 1183 * env->allow_ptr_leaks into account and force STACK_MISC, if necessary. 1184 */ 1185 static void mark_stack_slot_misc(struct bpf_verifier_env *env, u8 *stype) 1186 { 1187 if (*stype == STACK_ZERO) 1188 return; 1189 if (env->allow_ptr_leaks && *stype == STACK_INVALID) 1190 return; 1191 *stype = STACK_MISC; 1192 } 1193 1194 static void scrub_spilled_slot(u8 *stype) 1195 { 1196 if (*stype != STACK_INVALID) 1197 *stype = STACK_MISC; 1198 } 1199 1200 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too 1201 * small to hold src. This is different from krealloc since we don't want to preserve 1202 * the contents of dst. 1203 * 1204 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could 1205 * not be allocated. 1206 */ 1207 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags) 1208 { 1209 size_t alloc_bytes; 1210 void *orig = dst; 1211 size_t bytes; 1212 1213 if (ZERO_OR_NULL_PTR(src)) 1214 goto out; 1215 1216 if (unlikely(check_mul_overflow(n, size, &bytes))) 1217 return NULL; 1218 1219 alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes)); 1220 dst = krealloc(orig, alloc_bytes, flags); 1221 if (!dst) { 1222 kfree(orig); 1223 return NULL; 1224 } 1225 1226 memcpy(dst, src, bytes); 1227 out: 1228 return dst ? dst : ZERO_SIZE_PTR; 1229 } 1230 1231 /* resize an array from old_n items to new_n items. the array is reallocated if it's too 1232 * small to hold new_n items. new items are zeroed out if the array grows. 1233 * 1234 * Contrary to krealloc_array, does not free arr if new_n is zero. 1235 */ 1236 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size) 1237 { 1238 size_t alloc_size; 1239 void *new_arr; 1240 1241 if (!new_n || old_n == new_n) 1242 goto out; 1243 1244 alloc_size = kmalloc_size_roundup(size_mul(new_n, size)); 1245 new_arr = krealloc(arr, alloc_size, GFP_KERNEL); 1246 if (!new_arr) { 1247 kfree(arr); 1248 return NULL; 1249 } 1250 arr = new_arr; 1251 1252 if (new_n > old_n) 1253 memset(arr + old_n * size, 0, (new_n - old_n) * size); 1254 1255 out: 1256 return arr ? arr : ZERO_SIZE_PTR; 1257 } 1258 1259 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1260 { 1261 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs, 1262 sizeof(struct bpf_reference_state), GFP_KERNEL); 1263 if (!dst->refs) 1264 return -ENOMEM; 1265 1266 dst->acquired_refs = src->acquired_refs; 1267 return 0; 1268 } 1269 1270 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1271 { 1272 size_t n = src->allocated_stack / BPF_REG_SIZE; 1273 1274 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state), 1275 GFP_KERNEL); 1276 if (!dst->stack) 1277 return -ENOMEM; 1278 1279 dst->allocated_stack = src->allocated_stack; 1280 return 0; 1281 } 1282 1283 static int resize_reference_state(struct bpf_func_state *state, size_t n) 1284 { 1285 state->refs = realloc_array(state->refs, state->acquired_refs, n, 1286 sizeof(struct bpf_reference_state)); 1287 if (!state->refs) 1288 return -ENOMEM; 1289 1290 state->acquired_refs = n; 1291 return 0; 1292 } 1293 1294 /* Possibly update state->allocated_stack to be at least size bytes. Also 1295 * possibly update the function's high-water mark in its bpf_subprog_info. 1296 */ 1297 static int grow_stack_state(struct bpf_verifier_env *env, struct bpf_func_state *state, int size) 1298 { 1299 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n; 1300 1301 /* The stack size is always a multiple of BPF_REG_SIZE. */ 1302 size = round_up(size, BPF_REG_SIZE); 1303 n = size / BPF_REG_SIZE; 1304 1305 if (old_n >= n) 1306 return 0; 1307 1308 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state)); 1309 if (!state->stack) 1310 return -ENOMEM; 1311 1312 state->allocated_stack = size; 1313 1314 /* update known max for given subprogram */ 1315 if (env->subprog_info[state->subprogno].stack_depth < size) 1316 env->subprog_info[state->subprogno].stack_depth = size; 1317 1318 return 0; 1319 } 1320 1321 /* Acquire a pointer id from the env and update the state->refs to include 1322 * this new pointer reference. 1323 * On success, returns a valid pointer id to associate with the register 1324 * On failure, returns a negative errno. 1325 */ 1326 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 1327 { 1328 struct bpf_func_state *state = cur_func(env); 1329 int new_ofs = state->acquired_refs; 1330 int id, err; 1331 1332 err = resize_reference_state(state, state->acquired_refs + 1); 1333 if (err) 1334 return err; 1335 id = ++env->id_gen; 1336 state->refs[new_ofs].id = id; 1337 state->refs[new_ofs].insn_idx = insn_idx; 1338 state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0; 1339 1340 return id; 1341 } 1342 1343 /* release function corresponding to acquire_reference_state(). Idempotent. */ 1344 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 1345 { 1346 int i, last_idx; 1347 1348 last_idx = state->acquired_refs - 1; 1349 for (i = 0; i < state->acquired_refs; i++) { 1350 if (state->refs[i].id == ptr_id) { 1351 /* Cannot release caller references in callbacks */ 1352 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno) 1353 return -EINVAL; 1354 if (last_idx && i != last_idx) 1355 memcpy(&state->refs[i], &state->refs[last_idx], 1356 sizeof(*state->refs)); 1357 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 1358 state->acquired_refs--; 1359 return 0; 1360 } 1361 } 1362 return -EINVAL; 1363 } 1364 1365 static void free_func_state(struct bpf_func_state *state) 1366 { 1367 if (!state) 1368 return; 1369 kfree(state->refs); 1370 kfree(state->stack); 1371 kfree(state); 1372 } 1373 1374 static void clear_jmp_history(struct bpf_verifier_state *state) 1375 { 1376 kfree(state->jmp_history); 1377 state->jmp_history = NULL; 1378 state->jmp_history_cnt = 0; 1379 } 1380 1381 static void free_verifier_state(struct bpf_verifier_state *state, 1382 bool free_self) 1383 { 1384 int i; 1385 1386 for (i = 0; i <= state->curframe; i++) { 1387 free_func_state(state->frame[i]); 1388 state->frame[i] = NULL; 1389 } 1390 clear_jmp_history(state); 1391 if (free_self) 1392 kfree(state); 1393 } 1394 1395 /* copy verifier state from src to dst growing dst stack space 1396 * when necessary to accommodate larger src stack 1397 */ 1398 static int copy_func_state(struct bpf_func_state *dst, 1399 const struct bpf_func_state *src) 1400 { 1401 int err; 1402 1403 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 1404 err = copy_reference_state(dst, src); 1405 if (err) 1406 return err; 1407 return copy_stack_state(dst, src); 1408 } 1409 1410 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 1411 const struct bpf_verifier_state *src) 1412 { 1413 struct bpf_func_state *dst; 1414 int i, err; 1415 1416 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history, 1417 src->jmp_history_cnt, sizeof(*dst_state->jmp_history), 1418 GFP_USER); 1419 if (!dst_state->jmp_history) 1420 return -ENOMEM; 1421 dst_state->jmp_history_cnt = src->jmp_history_cnt; 1422 1423 /* if dst has more stack frames then src frame, free them, this is also 1424 * necessary in case of exceptional exits using bpf_throw. 1425 */ 1426 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 1427 free_func_state(dst_state->frame[i]); 1428 dst_state->frame[i] = NULL; 1429 } 1430 dst_state->speculative = src->speculative; 1431 dst_state->active_rcu_lock = src->active_rcu_lock; 1432 dst_state->curframe = src->curframe; 1433 dst_state->active_lock.ptr = src->active_lock.ptr; 1434 dst_state->active_lock.id = src->active_lock.id; 1435 dst_state->branches = src->branches; 1436 dst_state->parent = src->parent; 1437 dst_state->first_insn_idx = src->first_insn_idx; 1438 dst_state->last_insn_idx = src->last_insn_idx; 1439 dst_state->dfs_depth = src->dfs_depth; 1440 dst_state->callback_unroll_depth = src->callback_unroll_depth; 1441 dst_state->used_as_loop_entry = src->used_as_loop_entry; 1442 dst_state->may_goto_depth = src->may_goto_depth; 1443 for (i = 0; i <= src->curframe; i++) { 1444 dst = dst_state->frame[i]; 1445 if (!dst) { 1446 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 1447 if (!dst) 1448 return -ENOMEM; 1449 dst_state->frame[i] = dst; 1450 } 1451 err = copy_func_state(dst, src->frame[i]); 1452 if (err) 1453 return err; 1454 } 1455 return 0; 1456 } 1457 1458 static u32 state_htab_size(struct bpf_verifier_env *env) 1459 { 1460 return env->prog->len; 1461 } 1462 1463 static struct bpf_verifier_state_list **explored_state(struct bpf_verifier_env *env, int idx) 1464 { 1465 struct bpf_verifier_state *cur = env->cur_state; 1466 struct bpf_func_state *state = cur->frame[cur->curframe]; 1467 1468 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 1469 } 1470 1471 static bool same_callsites(struct bpf_verifier_state *a, struct bpf_verifier_state *b) 1472 { 1473 int fr; 1474 1475 if (a->curframe != b->curframe) 1476 return false; 1477 1478 for (fr = a->curframe; fr >= 0; fr--) 1479 if (a->frame[fr]->callsite != b->frame[fr]->callsite) 1480 return false; 1481 1482 return true; 1483 } 1484 1485 /* Open coded iterators allow back-edges in the state graph in order to 1486 * check unbounded loops that iterators. 1487 * 1488 * In is_state_visited() it is necessary to know if explored states are 1489 * part of some loops in order to decide whether non-exact states 1490 * comparison could be used: 1491 * - non-exact states comparison establishes sub-state relation and uses 1492 * read and precision marks to do so, these marks are propagated from 1493 * children states and thus are not guaranteed to be final in a loop; 1494 * - exact states comparison just checks if current and explored states 1495 * are identical (and thus form a back-edge). 1496 * 1497 * Paper "A New Algorithm for Identifying Loops in Decompilation" 1498 * by Tao Wei, Jian Mao, Wei Zou and Yu Chen [1] presents a convenient 1499 * algorithm for loop structure detection and gives an overview of 1500 * relevant terminology. It also has helpful illustrations. 1501 * 1502 * [1] https://api.semanticscholar.org/CorpusID:15784067 1503 * 1504 * We use a similar algorithm but because loop nested structure is 1505 * irrelevant for verifier ours is significantly simpler and resembles 1506 * strongly connected components algorithm from Sedgewick's textbook. 1507 * 1508 * Define topmost loop entry as a first node of the loop traversed in a 1509 * depth first search starting from initial state. The goal of the loop 1510 * tracking algorithm is to associate topmost loop entries with states 1511 * derived from these entries. 1512 * 1513 * For each step in the DFS states traversal algorithm needs to identify 1514 * the following situations: 1515 * 1516 * initial initial initial 1517 * | | | 1518 * V V V 1519 * ... ... .---------> hdr 1520 * | | | | 1521 * V V | V 1522 * cur .-> succ | .------... 1523 * | | | | | | 1524 * V | V | V V 1525 * succ '-- cur | ... ... 1526 * | | | 1527 * | V V 1528 * | succ <- cur 1529 * | | 1530 * | V 1531 * | ... 1532 * | | 1533 * '----' 1534 * 1535 * (A) successor state of cur (B) successor state of cur or it's entry 1536 * not yet traversed are in current DFS path, thus cur and succ 1537 * are members of the same outermost loop 1538 * 1539 * initial initial 1540 * | | 1541 * V V 1542 * ... ... 1543 * | | 1544 * V V 1545 * .------... .------... 1546 * | | | | 1547 * V V V V 1548 * .-> hdr ... ... ... 1549 * | | | | | 1550 * | V V V V 1551 * | succ <- cur succ <- cur 1552 * | | | 1553 * | V V 1554 * | ... ... 1555 * | | | 1556 * '----' exit 1557 * 1558 * (C) successor state of cur is a part of some loop but this loop 1559 * does not include cur or successor state is not in a loop at all. 1560 * 1561 * Algorithm could be described as the following python code: 1562 * 1563 * traversed = set() # Set of traversed nodes 1564 * entries = {} # Mapping from node to loop entry 1565 * depths = {} # Depth level assigned to graph node 1566 * path = set() # Current DFS path 1567 * 1568 * # Find outermost loop entry known for n 1569 * def get_loop_entry(n): 1570 * h = entries.get(n, None) 1571 * while h in entries and entries[h] != h: 1572 * h = entries[h] 1573 * return h 1574 * 1575 * # Update n's loop entry if h's outermost entry comes 1576 * # before n's outermost entry in current DFS path. 1577 * def update_loop_entry(n, h): 1578 * n1 = get_loop_entry(n) or n 1579 * h1 = get_loop_entry(h) or h 1580 * if h1 in path and depths[h1] <= depths[n1]: 1581 * entries[n] = h1 1582 * 1583 * def dfs(n, depth): 1584 * traversed.add(n) 1585 * path.add(n) 1586 * depths[n] = depth 1587 * for succ in G.successors(n): 1588 * if succ not in traversed: 1589 * # Case A: explore succ and update cur's loop entry 1590 * # only if succ's entry is in current DFS path. 1591 * dfs(succ, depth + 1) 1592 * h = get_loop_entry(succ) 1593 * update_loop_entry(n, h) 1594 * else: 1595 * # Case B or C depending on `h1 in path` check in update_loop_entry(). 1596 * update_loop_entry(n, succ) 1597 * path.remove(n) 1598 * 1599 * To adapt this algorithm for use with verifier: 1600 * - use st->branch == 0 as a signal that DFS of succ had been finished 1601 * and cur's loop entry has to be updated (case A), handle this in 1602 * update_branch_counts(); 1603 * - use st->branch > 0 as a signal that st is in the current DFS path; 1604 * - handle cases B and C in is_state_visited(); 1605 * - update topmost loop entry for intermediate states in get_loop_entry(). 1606 */ 1607 static struct bpf_verifier_state *get_loop_entry(struct bpf_verifier_state *st) 1608 { 1609 struct bpf_verifier_state *topmost = st->loop_entry, *old; 1610 1611 while (topmost && topmost->loop_entry && topmost != topmost->loop_entry) 1612 topmost = topmost->loop_entry; 1613 /* Update loop entries for intermediate states to avoid this 1614 * traversal in future get_loop_entry() calls. 1615 */ 1616 while (st && st->loop_entry != topmost) { 1617 old = st->loop_entry; 1618 st->loop_entry = topmost; 1619 st = old; 1620 } 1621 return topmost; 1622 } 1623 1624 static void update_loop_entry(struct bpf_verifier_state *cur, struct bpf_verifier_state *hdr) 1625 { 1626 struct bpf_verifier_state *cur1, *hdr1; 1627 1628 cur1 = get_loop_entry(cur) ?: cur; 1629 hdr1 = get_loop_entry(hdr) ?: hdr; 1630 /* The head1->branches check decides between cases B and C in 1631 * comment for get_loop_entry(). If hdr1->branches == 0 then 1632 * head's topmost loop entry is not in current DFS path, 1633 * hence 'cur' and 'hdr' are not in the same loop and there is 1634 * no need to update cur->loop_entry. 1635 */ 1636 if (hdr1->branches && hdr1->dfs_depth <= cur1->dfs_depth) { 1637 cur->loop_entry = hdr; 1638 hdr->used_as_loop_entry = true; 1639 } 1640 } 1641 1642 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 1643 { 1644 while (st) { 1645 u32 br = --st->branches; 1646 1647 /* br == 0 signals that DFS exploration for 'st' is finished, 1648 * thus it is necessary to update parent's loop entry if it 1649 * turned out that st is a part of some loop. 1650 * This is a part of 'case A' in get_loop_entry() comment. 1651 */ 1652 if (br == 0 && st->parent && st->loop_entry) 1653 update_loop_entry(st->parent, st->loop_entry); 1654 1655 /* WARN_ON(br > 1) technically makes sense here, 1656 * but see comment in push_stack(), hence: 1657 */ 1658 WARN_ONCE((int)br < 0, 1659 "BUG update_branch_counts:branches_to_explore=%d\n", 1660 br); 1661 if (br) 1662 break; 1663 st = st->parent; 1664 } 1665 } 1666 1667 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 1668 int *insn_idx, bool pop_log) 1669 { 1670 struct bpf_verifier_state *cur = env->cur_state; 1671 struct bpf_verifier_stack_elem *elem, *head = env->head; 1672 int err; 1673 1674 if (env->head == NULL) 1675 return -ENOENT; 1676 1677 if (cur) { 1678 err = copy_verifier_state(cur, &head->st); 1679 if (err) 1680 return err; 1681 } 1682 if (pop_log) 1683 bpf_vlog_reset(&env->log, head->log_pos); 1684 if (insn_idx) 1685 *insn_idx = head->insn_idx; 1686 if (prev_insn_idx) 1687 *prev_insn_idx = head->prev_insn_idx; 1688 elem = head->next; 1689 free_verifier_state(&head->st, false); 1690 kfree(head); 1691 env->head = elem; 1692 env->stack_size--; 1693 return 0; 1694 } 1695 1696 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 1697 int insn_idx, int prev_insn_idx, 1698 bool speculative) 1699 { 1700 struct bpf_verifier_state *cur = env->cur_state; 1701 struct bpf_verifier_stack_elem *elem; 1702 int err; 1703 1704 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 1705 if (!elem) 1706 goto err; 1707 1708 elem->insn_idx = insn_idx; 1709 elem->prev_insn_idx = prev_insn_idx; 1710 elem->next = env->head; 1711 elem->log_pos = env->log.end_pos; 1712 env->head = elem; 1713 env->stack_size++; 1714 err = copy_verifier_state(&elem->st, cur); 1715 if (err) 1716 goto err; 1717 elem->st.speculative |= speculative; 1718 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 1719 verbose(env, "The sequence of %d jumps is too complex.\n", 1720 env->stack_size); 1721 goto err; 1722 } 1723 if (elem->st.parent) { 1724 ++elem->st.parent->branches; 1725 /* WARN_ON(branches > 2) technically makes sense here, 1726 * but 1727 * 1. speculative states will bump 'branches' for non-branch 1728 * instructions 1729 * 2. is_state_visited() heuristics may decide not to create 1730 * a new state for a sequence of branches and all such current 1731 * and cloned states will be pointing to a single parent state 1732 * which might have large 'branches' count. 1733 */ 1734 } 1735 return &elem->st; 1736 err: 1737 free_verifier_state(env->cur_state, true); 1738 env->cur_state = NULL; 1739 /* pop all elements and return */ 1740 while (!pop_stack(env, NULL, NULL, false)); 1741 return NULL; 1742 } 1743 1744 #define CALLER_SAVED_REGS 6 1745 static const int caller_saved[CALLER_SAVED_REGS] = { 1746 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 1747 }; 1748 1749 /* This helper doesn't clear reg->id */ 1750 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1751 { 1752 reg->var_off = tnum_const(imm); 1753 reg->smin_value = (s64)imm; 1754 reg->smax_value = (s64)imm; 1755 reg->umin_value = imm; 1756 reg->umax_value = imm; 1757 1758 reg->s32_min_value = (s32)imm; 1759 reg->s32_max_value = (s32)imm; 1760 reg->u32_min_value = (u32)imm; 1761 reg->u32_max_value = (u32)imm; 1762 } 1763 1764 /* Mark the unknown part of a register (variable offset or scalar value) as 1765 * known to have the value @imm. 1766 */ 1767 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1768 { 1769 /* Clear off and union(map_ptr, range) */ 1770 memset(((u8 *)reg) + sizeof(reg->type), 0, 1771 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 1772 reg->id = 0; 1773 reg->ref_obj_id = 0; 1774 ___mark_reg_known(reg, imm); 1775 } 1776 1777 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 1778 { 1779 reg->var_off = tnum_const_subreg(reg->var_off, imm); 1780 reg->s32_min_value = (s32)imm; 1781 reg->s32_max_value = (s32)imm; 1782 reg->u32_min_value = (u32)imm; 1783 reg->u32_max_value = (u32)imm; 1784 } 1785 1786 /* Mark the 'variable offset' part of a register as zero. This should be 1787 * used only on registers holding a pointer type. 1788 */ 1789 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 1790 { 1791 __mark_reg_known(reg, 0); 1792 } 1793 1794 static void __mark_reg_const_zero(const struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1795 { 1796 __mark_reg_known(reg, 0); 1797 reg->type = SCALAR_VALUE; 1798 /* all scalars are assumed imprecise initially (unless unprivileged, 1799 * in which case everything is forced to be precise) 1800 */ 1801 reg->precise = !env->bpf_capable; 1802 } 1803 1804 static void mark_reg_known_zero(struct bpf_verifier_env *env, 1805 struct bpf_reg_state *regs, u32 regno) 1806 { 1807 if (WARN_ON(regno >= MAX_BPF_REG)) { 1808 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 1809 /* Something bad happened, let's kill all regs */ 1810 for (regno = 0; regno < MAX_BPF_REG; regno++) 1811 __mark_reg_not_init(env, regs + regno); 1812 return; 1813 } 1814 __mark_reg_known_zero(regs + regno); 1815 } 1816 1817 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type, 1818 bool first_slot, int dynptr_id) 1819 { 1820 /* reg->type has no meaning for STACK_DYNPTR, but when we set reg for 1821 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply 1822 * set it unconditionally as it is ignored for STACK_DYNPTR anyway. 1823 */ 1824 __mark_reg_known_zero(reg); 1825 reg->type = CONST_PTR_TO_DYNPTR; 1826 /* Give each dynptr a unique id to uniquely associate slices to it. */ 1827 reg->id = dynptr_id; 1828 reg->dynptr.type = type; 1829 reg->dynptr.first_slot = first_slot; 1830 } 1831 1832 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg) 1833 { 1834 if (base_type(reg->type) == PTR_TO_MAP_VALUE) { 1835 const struct bpf_map *map = reg->map_ptr; 1836 1837 if (map->inner_map_meta) { 1838 reg->type = CONST_PTR_TO_MAP; 1839 reg->map_ptr = map->inner_map_meta; 1840 /* transfer reg's id which is unique for every map_lookup_elem 1841 * as UID of the inner map. 1842 */ 1843 if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER)) 1844 reg->map_uid = reg->id; 1845 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { 1846 reg->type = PTR_TO_XDP_SOCK; 1847 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || 1848 map->map_type == BPF_MAP_TYPE_SOCKHASH) { 1849 reg->type = PTR_TO_SOCKET; 1850 } else { 1851 reg->type = PTR_TO_MAP_VALUE; 1852 } 1853 return; 1854 } 1855 1856 reg->type &= ~PTR_MAYBE_NULL; 1857 } 1858 1859 static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno, 1860 struct btf_field_graph_root *ds_head) 1861 { 1862 __mark_reg_known_zero(®s[regno]); 1863 regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC; 1864 regs[regno].btf = ds_head->btf; 1865 regs[regno].btf_id = ds_head->value_btf_id; 1866 regs[regno].off = ds_head->node_offset; 1867 } 1868 1869 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 1870 { 1871 return type_is_pkt_pointer(reg->type); 1872 } 1873 1874 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 1875 { 1876 return reg_is_pkt_pointer(reg) || 1877 reg->type == PTR_TO_PACKET_END; 1878 } 1879 1880 static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg) 1881 { 1882 return base_type(reg->type) == PTR_TO_MEM && 1883 (reg->type & DYNPTR_TYPE_SKB || reg->type & DYNPTR_TYPE_XDP); 1884 } 1885 1886 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 1887 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 1888 enum bpf_reg_type which) 1889 { 1890 /* The register can already have a range from prior markings. 1891 * This is fine as long as it hasn't been advanced from its 1892 * origin. 1893 */ 1894 return reg->type == which && 1895 reg->id == 0 && 1896 reg->off == 0 && 1897 tnum_equals_const(reg->var_off, 0); 1898 } 1899 1900 /* Reset the min/max bounds of a register */ 1901 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 1902 { 1903 reg->smin_value = S64_MIN; 1904 reg->smax_value = S64_MAX; 1905 reg->umin_value = 0; 1906 reg->umax_value = U64_MAX; 1907 1908 reg->s32_min_value = S32_MIN; 1909 reg->s32_max_value = S32_MAX; 1910 reg->u32_min_value = 0; 1911 reg->u32_max_value = U32_MAX; 1912 } 1913 1914 static void __mark_reg64_unbounded(struct bpf_reg_state *reg) 1915 { 1916 reg->smin_value = S64_MIN; 1917 reg->smax_value = S64_MAX; 1918 reg->umin_value = 0; 1919 reg->umax_value = U64_MAX; 1920 } 1921 1922 static void __mark_reg32_unbounded(struct bpf_reg_state *reg) 1923 { 1924 reg->s32_min_value = S32_MIN; 1925 reg->s32_max_value = S32_MAX; 1926 reg->u32_min_value = 0; 1927 reg->u32_max_value = U32_MAX; 1928 } 1929 1930 static void __update_reg32_bounds(struct bpf_reg_state *reg) 1931 { 1932 struct tnum var32_off = tnum_subreg(reg->var_off); 1933 1934 /* min signed is max(sign bit) | min(other bits) */ 1935 reg->s32_min_value = max_t(s32, reg->s32_min_value, 1936 var32_off.value | (var32_off.mask & S32_MIN)); 1937 /* max signed is min(sign bit) | max(other bits) */ 1938 reg->s32_max_value = min_t(s32, reg->s32_max_value, 1939 var32_off.value | (var32_off.mask & S32_MAX)); 1940 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 1941 reg->u32_max_value = min(reg->u32_max_value, 1942 (u32)(var32_off.value | var32_off.mask)); 1943 } 1944 1945 static void __update_reg64_bounds(struct bpf_reg_state *reg) 1946 { 1947 /* min signed is max(sign bit) | min(other bits) */ 1948 reg->smin_value = max_t(s64, reg->smin_value, 1949 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 1950 /* max signed is min(sign bit) | max(other bits) */ 1951 reg->smax_value = min_t(s64, reg->smax_value, 1952 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 1953 reg->umin_value = max(reg->umin_value, reg->var_off.value); 1954 reg->umax_value = min(reg->umax_value, 1955 reg->var_off.value | reg->var_off.mask); 1956 } 1957 1958 static void __update_reg_bounds(struct bpf_reg_state *reg) 1959 { 1960 __update_reg32_bounds(reg); 1961 __update_reg64_bounds(reg); 1962 } 1963 1964 /* Uses signed min/max values to inform unsigned, and vice-versa */ 1965 static void __reg32_deduce_bounds(struct bpf_reg_state *reg) 1966 { 1967 /* If upper 32 bits of u64/s64 range don't change, we can use lower 32 1968 * bits to improve our u32/s32 boundaries. 1969 * 1970 * E.g., the case where we have upper 32 bits as zero ([10, 20] in 1971 * u64) is pretty trivial, it's obvious that in u32 we'll also have 1972 * [10, 20] range. But this property holds for any 64-bit range as 1973 * long as upper 32 bits in that entire range of values stay the same. 1974 * 1975 * E.g., u64 range [0x10000000A, 0x10000000F] ([4294967306, 4294967311] 1976 * in decimal) has the same upper 32 bits throughout all the values in 1977 * that range. As such, lower 32 bits form a valid [0xA, 0xF] ([10, 15]) 1978 * range. 1979 * 1980 * Note also, that [0xA, 0xF] is a valid range both in u32 and in s32, 1981 * following the rules outlined below about u64/s64 correspondence 1982 * (which equally applies to u32 vs s32 correspondence). In general it 1983 * depends on actual hexadecimal values of 32-bit range. They can form 1984 * only valid u32, or only valid s32 ranges in some cases. 1985 * 1986 * So we use all these insights to derive bounds for subregisters here. 1987 */ 1988 if ((reg->umin_value >> 32) == (reg->umax_value >> 32)) { 1989 /* u64 to u32 casting preserves validity of low 32 bits as 1990 * a range, if upper 32 bits are the same 1991 */ 1992 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)reg->umin_value); 1993 reg->u32_max_value = min_t(u32, reg->u32_max_value, (u32)reg->umax_value); 1994 1995 if ((s32)reg->umin_value <= (s32)reg->umax_value) { 1996 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->umin_value); 1997 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->umax_value); 1998 } 1999 } 2000 if ((reg->smin_value >> 32) == (reg->smax_value >> 32)) { 2001 /* low 32 bits should form a proper u32 range */ 2002 if ((u32)reg->smin_value <= (u32)reg->smax_value) { 2003 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)reg->smin_value); 2004 reg->u32_max_value = min_t(u32, reg->u32_max_value, (u32)reg->smax_value); 2005 } 2006 /* low 32 bits should form a proper s32 range */ 2007 if ((s32)reg->smin_value <= (s32)reg->smax_value) { 2008 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->smin_value); 2009 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->smax_value); 2010 } 2011 } 2012 /* Special case where upper bits form a small sequence of two 2013 * sequential numbers (in 32-bit unsigned space, so 0xffffffff to 2014 * 0x00000000 is also valid), while lower bits form a proper s32 range 2015 * going from negative numbers to positive numbers. E.g., let's say we 2016 * have s64 range [-1, 1] ([0xffffffffffffffff, 0x0000000000000001]). 2017 * Possible s64 values are {-1, 0, 1} ({0xffffffffffffffff, 2018 * 0x0000000000000000, 0x00000000000001}). Ignoring upper 32 bits, 2019 * we still get a valid s32 range [-1, 1] ([0xffffffff, 0x00000001]). 2020 * Note that it doesn't have to be 0xffffffff going to 0x00000000 in 2021 * upper 32 bits. As a random example, s64 range 2022 * [0xfffffff0fffffff0; 0xfffffff100000010], forms a valid s32 range 2023 * [-16, 16] ([0xfffffff0; 0x00000010]) in its 32 bit subregister. 2024 */ 2025 if ((u32)(reg->umin_value >> 32) + 1 == (u32)(reg->umax_value >> 32) && 2026 (s32)reg->umin_value < 0 && (s32)reg->umax_value >= 0) { 2027 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->umin_value); 2028 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->umax_value); 2029 } 2030 if ((u32)(reg->smin_value >> 32) + 1 == (u32)(reg->smax_value >> 32) && 2031 (s32)reg->smin_value < 0 && (s32)reg->smax_value >= 0) { 2032 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->smin_value); 2033 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->smax_value); 2034 } 2035 /* if u32 range forms a valid s32 range (due to matching sign bit), 2036 * try to learn from that 2037 */ 2038 if ((s32)reg->u32_min_value <= (s32)reg->u32_max_value) { 2039 reg->s32_min_value = max_t(s32, reg->s32_min_value, reg->u32_min_value); 2040 reg->s32_max_value = min_t(s32, reg->s32_max_value, reg->u32_max_value); 2041 } 2042 /* If we cannot cross the sign boundary, then signed and unsigned bounds 2043 * are the same, so combine. This works even in the negative case, e.g. 2044 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 2045 */ 2046 if ((u32)reg->s32_min_value <= (u32)reg->s32_max_value) { 2047 reg->u32_min_value = max_t(u32, reg->s32_min_value, reg->u32_min_value); 2048 reg->u32_max_value = min_t(u32, reg->s32_max_value, reg->u32_max_value); 2049 } 2050 } 2051 2052 static void __reg64_deduce_bounds(struct bpf_reg_state *reg) 2053 { 2054 /* If u64 range forms a valid s64 range (due to matching sign bit), 2055 * try to learn from that. Let's do a bit of ASCII art to see when 2056 * this is happening. Let's take u64 range first: 2057 * 2058 * 0 0x7fffffffffffffff 0x8000000000000000 U64_MAX 2059 * |-------------------------------|--------------------------------| 2060 * 2061 * Valid u64 range is formed when umin and umax are anywhere in the 2062 * range [0, U64_MAX], and umin <= umax. u64 case is simple and 2063 * straightforward. Let's see how s64 range maps onto the same range 2064 * of values, annotated below the line for comparison: 2065 * 2066 * 0 0x7fffffffffffffff 0x8000000000000000 U64_MAX 2067 * |-------------------------------|--------------------------------| 2068 * 0 S64_MAX S64_MIN -1 2069 * 2070 * So s64 values basically start in the middle and they are logically 2071 * contiguous to the right of it, wrapping around from -1 to 0, and 2072 * then finishing as S64_MAX (0x7fffffffffffffff) right before 2073 * S64_MIN. We can try drawing the continuity of u64 vs s64 values 2074 * more visually as mapped to sign-agnostic range of hex values. 2075 * 2076 * u64 start u64 end 2077 * _______________________________________________________________ 2078 * / \ 2079 * 0 0x7fffffffffffffff 0x8000000000000000 U64_MAX 2080 * |-------------------------------|--------------------------------| 2081 * 0 S64_MAX S64_MIN -1 2082 * / \ 2083 * >------------------------------ -------------------------------> 2084 * s64 continues... s64 end s64 start s64 "midpoint" 2085 * 2086 * What this means is that, in general, we can't always derive 2087 * something new about u64 from any random s64 range, and vice versa. 2088 * 2089 * But we can do that in two particular cases. One is when entire 2090 * u64/s64 range is *entirely* contained within left half of the above 2091 * diagram or when it is *entirely* contained in the right half. I.e.: 2092 * 2093 * |-------------------------------|--------------------------------| 2094 * ^ ^ ^ ^ 2095 * A B C D 2096 * 2097 * [A, B] and [C, D] are contained entirely in their respective halves 2098 * and form valid contiguous ranges as both u64 and s64 values. [A, B] 2099 * will be non-negative both as u64 and s64 (and in fact it will be 2100 * identical ranges no matter the signedness). [C, D] treated as s64 2101 * will be a range of negative values, while in u64 it will be 2102 * non-negative range of values larger than 0x8000000000000000. 2103 * 2104 * Now, any other range here can't be represented in both u64 and s64 2105 * simultaneously. E.g., [A, C], [A, D], [B, C], [B, D] are valid 2106 * contiguous u64 ranges, but they are discontinuous in s64. [B, C] 2107 * in s64 would be properly presented as [S64_MIN, C] and [B, S64_MAX], 2108 * for example. Similarly, valid s64 range [D, A] (going from negative 2109 * to positive values), would be two separate [D, U64_MAX] and [0, A] 2110 * ranges as u64. Currently reg_state can't represent two segments per 2111 * numeric domain, so in such situations we can only derive maximal 2112 * possible range ([0, U64_MAX] for u64, and [S64_MIN, S64_MAX] for s64). 2113 * 2114 * So we use these facts to derive umin/umax from smin/smax and vice 2115 * versa only if they stay within the same "half". This is equivalent 2116 * to checking sign bit: lower half will have sign bit as zero, upper 2117 * half have sign bit 1. Below in code we simplify this by just 2118 * casting umin/umax as smin/smax and checking if they form valid 2119 * range, and vice versa. Those are equivalent checks. 2120 */ 2121 if ((s64)reg->umin_value <= (s64)reg->umax_value) { 2122 reg->smin_value = max_t(s64, reg->smin_value, reg->umin_value); 2123 reg->smax_value = min_t(s64, reg->smax_value, reg->umax_value); 2124 } 2125 /* If we cannot cross the sign boundary, then signed and unsigned bounds 2126 * are the same, so combine. This works even in the negative case, e.g. 2127 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 2128 */ 2129 if ((u64)reg->smin_value <= (u64)reg->smax_value) { 2130 reg->umin_value = max_t(u64, reg->smin_value, reg->umin_value); 2131 reg->umax_value = min_t(u64, reg->smax_value, reg->umax_value); 2132 } 2133 } 2134 2135 static void __reg_deduce_mixed_bounds(struct bpf_reg_state *reg) 2136 { 2137 /* Try to tighten 64-bit bounds from 32-bit knowledge, using 32-bit 2138 * values on both sides of 64-bit range in hope to have tigher range. 2139 * E.g., if r1 is [0x1'00000000, 0x3'80000000], and we learn from 2140 * 32-bit signed > 0 operation that s32 bounds are now [1; 0x7fffffff]. 2141 * With this, we can substitute 1 as low 32-bits of _low_ 64-bit bound 2142 * (0x100000000 -> 0x100000001) and 0x7fffffff as low 32-bits of 2143 * _high_ 64-bit bound (0x380000000 -> 0x37fffffff) and arrive at a 2144 * better overall bounds for r1 as [0x1'000000001; 0x3'7fffffff]. 2145 * We just need to make sure that derived bounds we are intersecting 2146 * with are well-formed ranges in respecitve s64 or u64 domain, just 2147 * like we do with similar kinds of 32-to-64 or 64-to-32 adjustments. 2148 */ 2149 __u64 new_umin, new_umax; 2150 __s64 new_smin, new_smax; 2151 2152 /* u32 -> u64 tightening, it's always well-formed */ 2153 new_umin = (reg->umin_value & ~0xffffffffULL) | reg->u32_min_value; 2154 new_umax = (reg->umax_value & ~0xffffffffULL) | reg->u32_max_value; 2155 reg->umin_value = max_t(u64, reg->umin_value, new_umin); 2156 reg->umax_value = min_t(u64, reg->umax_value, new_umax); 2157 /* u32 -> s64 tightening, u32 range embedded into s64 preserves range validity */ 2158 new_smin = (reg->smin_value & ~0xffffffffULL) | reg->u32_min_value; 2159 new_smax = (reg->smax_value & ~0xffffffffULL) | reg->u32_max_value; 2160 reg->smin_value = max_t(s64, reg->smin_value, new_smin); 2161 reg->smax_value = min_t(s64, reg->smax_value, new_smax); 2162 2163 /* if s32 can be treated as valid u32 range, we can use it as well */ 2164 if ((u32)reg->s32_min_value <= (u32)reg->s32_max_value) { 2165 /* s32 -> u64 tightening */ 2166 new_umin = (reg->umin_value & ~0xffffffffULL) | (u32)reg->s32_min_value; 2167 new_umax = (reg->umax_value & ~0xffffffffULL) | (u32)reg->s32_max_value; 2168 reg->umin_value = max_t(u64, reg->umin_value, new_umin); 2169 reg->umax_value = min_t(u64, reg->umax_value, new_umax); 2170 /* s32 -> s64 tightening */ 2171 new_smin = (reg->smin_value & ~0xffffffffULL) | (u32)reg->s32_min_value; 2172 new_smax = (reg->smax_value & ~0xffffffffULL) | (u32)reg->s32_max_value; 2173 reg->smin_value = max_t(s64, reg->smin_value, new_smin); 2174 reg->smax_value = min_t(s64, reg->smax_value, new_smax); 2175 } 2176 } 2177 2178 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 2179 { 2180 __reg32_deduce_bounds(reg); 2181 __reg64_deduce_bounds(reg); 2182 __reg_deduce_mixed_bounds(reg); 2183 } 2184 2185 /* Attempts to improve var_off based on unsigned min/max information */ 2186 static void __reg_bound_offset(struct bpf_reg_state *reg) 2187 { 2188 struct tnum var64_off = tnum_intersect(reg->var_off, 2189 tnum_range(reg->umin_value, 2190 reg->umax_value)); 2191 struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off), 2192 tnum_range(reg->u32_min_value, 2193 reg->u32_max_value)); 2194 2195 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 2196 } 2197 2198 static void reg_bounds_sync(struct bpf_reg_state *reg) 2199 { 2200 /* We might have learned new bounds from the var_off. */ 2201 __update_reg_bounds(reg); 2202 /* We might have learned something about the sign bit. */ 2203 __reg_deduce_bounds(reg); 2204 __reg_deduce_bounds(reg); 2205 /* We might have learned some bits from the bounds. */ 2206 __reg_bound_offset(reg); 2207 /* Intersecting with the old var_off might have improved our bounds 2208 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 2209 * then new var_off is (0; 0x7f...fc) which improves our umax. 2210 */ 2211 __update_reg_bounds(reg); 2212 } 2213 2214 static int reg_bounds_sanity_check(struct bpf_verifier_env *env, 2215 struct bpf_reg_state *reg, const char *ctx) 2216 { 2217 const char *msg; 2218 2219 if (reg->umin_value > reg->umax_value || 2220 reg->smin_value > reg->smax_value || 2221 reg->u32_min_value > reg->u32_max_value || 2222 reg->s32_min_value > reg->s32_max_value) { 2223 msg = "range bounds violation"; 2224 goto out; 2225 } 2226 2227 if (tnum_is_const(reg->var_off)) { 2228 u64 uval = reg->var_off.value; 2229 s64 sval = (s64)uval; 2230 2231 if (reg->umin_value != uval || reg->umax_value != uval || 2232 reg->smin_value != sval || reg->smax_value != sval) { 2233 msg = "const tnum out of sync with range bounds"; 2234 goto out; 2235 } 2236 } 2237 2238 if (tnum_subreg_is_const(reg->var_off)) { 2239 u32 uval32 = tnum_subreg(reg->var_off).value; 2240 s32 sval32 = (s32)uval32; 2241 2242 if (reg->u32_min_value != uval32 || reg->u32_max_value != uval32 || 2243 reg->s32_min_value != sval32 || reg->s32_max_value != sval32) { 2244 msg = "const subreg tnum out of sync with range bounds"; 2245 goto out; 2246 } 2247 } 2248 2249 return 0; 2250 out: 2251 verbose(env, "REG INVARIANTS VIOLATION (%s): %s u64=[%#llx, %#llx] " 2252 "s64=[%#llx, %#llx] u32=[%#x, %#x] s32=[%#x, %#x] var_off=(%#llx, %#llx)\n", 2253 ctx, msg, reg->umin_value, reg->umax_value, 2254 reg->smin_value, reg->smax_value, 2255 reg->u32_min_value, reg->u32_max_value, 2256 reg->s32_min_value, reg->s32_max_value, 2257 reg->var_off.value, reg->var_off.mask); 2258 if (env->test_reg_invariants) 2259 return -EFAULT; 2260 __mark_reg_unbounded(reg); 2261 return 0; 2262 } 2263 2264 static bool __reg32_bound_s64(s32 a) 2265 { 2266 return a >= 0 && a <= S32_MAX; 2267 } 2268 2269 static void __reg_assign_32_into_64(struct bpf_reg_state *reg) 2270 { 2271 reg->umin_value = reg->u32_min_value; 2272 reg->umax_value = reg->u32_max_value; 2273 2274 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must 2275 * be positive otherwise set to worse case bounds and refine later 2276 * from tnum. 2277 */ 2278 if (__reg32_bound_s64(reg->s32_min_value) && 2279 __reg32_bound_s64(reg->s32_max_value)) { 2280 reg->smin_value = reg->s32_min_value; 2281 reg->smax_value = reg->s32_max_value; 2282 } else { 2283 reg->smin_value = 0; 2284 reg->smax_value = U32_MAX; 2285 } 2286 } 2287 2288 /* Mark a register as having a completely unknown (scalar) value. */ 2289 static void __mark_reg_unknown_imprecise(struct bpf_reg_state *reg) 2290 { 2291 /* 2292 * Clear type, off, and union(map_ptr, range) and 2293 * padding between 'type' and union 2294 */ 2295 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 2296 reg->type = SCALAR_VALUE; 2297 reg->id = 0; 2298 reg->ref_obj_id = 0; 2299 reg->var_off = tnum_unknown; 2300 reg->frameno = 0; 2301 reg->precise = false; 2302 __mark_reg_unbounded(reg); 2303 } 2304 2305 /* Mark a register as having a completely unknown (scalar) value, 2306 * initialize .precise as true when not bpf capable. 2307 */ 2308 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 2309 struct bpf_reg_state *reg) 2310 { 2311 __mark_reg_unknown_imprecise(reg); 2312 reg->precise = !env->bpf_capable; 2313 } 2314 2315 static void mark_reg_unknown(struct bpf_verifier_env *env, 2316 struct bpf_reg_state *regs, u32 regno) 2317 { 2318 if (WARN_ON(regno >= MAX_BPF_REG)) { 2319 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 2320 /* Something bad happened, let's kill all regs except FP */ 2321 for (regno = 0; regno < BPF_REG_FP; regno++) 2322 __mark_reg_not_init(env, regs + regno); 2323 return; 2324 } 2325 __mark_reg_unknown(env, regs + regno); 2326 } 2327 2328 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 2329 struct bpf_reg_state *reg) 2330 { 2331 __mark_reg_unknown(env, reg); 2332 reg->type = NOT_INIT; 2333 } 2334 2335 static void mark_reg_not_init(struct bpf_verifier_env *env, 2336 struct bpf_reg_state *regs, u32 regno) 2337 { 2338 if (WARN_ON(regno >= MAX_BPF_REG)) { 2339 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 2340 /* Something bad happened, let's kill all regs except FP */ 2341 for (regno = 0; regno < BPF_REG_FP; regno++) 2342 __mark_reg_not_init(env, regs + regno); 2343 return; 2344 } 2345 __mark_reg_not_init(env, regs + regno); 2346 } 2347 2348 static void mark_btf_ld_reg(struct bpf_verifier_env *env, 2349 struct bpf_reg_state *regs, u32 regno, 2350 enum bpf_reg_type reg_type, 2351 struct btf *btf, u32 btf_id, 2352 enum bpf_type_flag flag) 2353 { 2354 if (reg_type == SCALAR_VALUE) { 2355 mark_reg_unknown(env, regs, regno); 2356 return; 2357 } 2358 mark_reg_known_zero(env, regs, regno); 2359 regs[regno].type = PTR_TO_BTF_ID | flag; 2360 regs[regno].btf = btf; 2361 regs[regno].btf_id = btf_id; 2362 } 2363 2364 #define DEF_NOT_SUBREG (0) 2365 static void init_reg_state(struct bpf_verifier_env *env, 2366 struct bpf_func_state *state) 2367 { 2368 struct bpf_reg_state *regs = state->regs; 2369 int i; 2370 2371 for (i = 0; i < MAX_BPF_REG; i++) { 2372 mark_reg_not_init(env, regs, i); 2373 regs[i].live = REG_LIVE_NONE; 2374 regs[i].parent = NULL; 2375 regs[i].subreg_def = DEF_NOT_SUBREG; 2376 } 2377 2378 /* frame pointer */ 2379 regs[BPF_REG_FP].type = PTR_TO_STACK; 2380 mark_reg_known_zero(env, regs, BPF_REG_FP); 2381 regs[BPF_REG_FP].frameno = state->frameno; 2382 } 2383 2384 static struct bpf_retval_range retval_range(s32 minval, s32 maxval) 2385 { 2386 return (struct bpf_retval_range){ minval, maxval }; 2387 } 2388 2389 #define BPF_MAIN_FUNC (-1) 2390 static void init_func_state(struct bpf_verifier_env *env, 2391 struct bpf_func_state *state, 2392 int callsite, int frameno, int subprogno) 2393 { 2394 state->callsite = callsite; 2395 state->frameno = frameno; 2396 state->subprogno = subprogno; 2397 state->callback_ret_range = retval_range(0, 0); 2398 init_reg_state(env, state); 2399 mark_verifier_state_scratched(env); 2400 } 2401 2402 /* Similar to push_stack(), but for async callbacks */ 2403 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env, 2404 int insn_idx, int prev_insn_idx, 2405 int subprog) 2406 { 2407 struct bpf_verifier_stack_elem *elem; 2408 struct bpf_func_state *frame; 2409 2410 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 2411 if (!elem) 2412 goto err; 2413 2414 elem->insn_idx = insn_idx; 2415 elem->prev_insn_idx = prev_insn_idx; 2416 elem->next = env->head; 2417 elem->log_pos = env->log.end_pos; 2418 env->head = elem; 2419 env->stack_size++; 2420 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 2421 verbose(env, 2422 "The sequence of %d jumps is too complex for async cb.\n", 2423 env->stack_size); 2424 goto err; 2425 } 2426 /* Unlike push_stack() do not copy_verifier_state(). 2427 * The caller state doesn't matter. 2428 * This is async callback. It starts in a fresh stack. 2429 * Initialize it similar to do_check_common(). 2430 */ 2431 elem->st.branches = 1; 2432 frame = kzalloc(sizeof(*frame), GFP_KERNEL); 2433 if (!frame) 2434 goto err; 2435 init_func_state(env, frame, 2436 BPF_MAIN_FUNC /* callsite */, 2437 0 /* frameno within this callchain */, 2438 subprog /* subprog number within this prog */); 2439 elem->st.frame[0] = frame; 2440 return &elem->st; 2441 err: 2442 free_verifier_state(env->cur_state, true); 2443 env->cur_state = NULL; 2444 /* pop all elements and return */ 2445 while (!pop_stack(env, NULL, NULL, false)); 2446 return NULL; 2447 } 2448 2449 2450 enum reg_arg_type { 2451 SRC_OP, /* register is used as source operand */ 2452 DST_OP, /* register is used as destination operand */ 2453 DST_OP_NO_MARK /* same as above, check only, don't mark */ 2454 }; 2455 2456 static int cmp_subprogs(const void *a, const void *b) 2457 { 2458 return ((struct bpf_subprog_info *)a)->start - 2459 ((struct bpf_subprog_info *)b)->start; 2460 } 2461 2462 static int find_subprog(struct bpf_verifier_env *env, int off) 2463 { 2464 struct bpf_subprog_info *p; 2465 2466 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 2467 sizeof(env->subprog_info[0]), cmp_subprogs); 2468 if (!p) 2469 return -ENOENT; 2470 return p - env->subprog_info; 2471 2472 } 2473 2474 static int add_subprog(struct bpf_verifier_env *env, int off) 2475 { 2476 int insn_cnt = env->prog->len; 2477 int ret; 2478 2479 if (off >= insn_cnt || off < 0) { 2480 verbose(env, "call to invalid destination\n"); 2481 return -EINVAL; 2482 } 2483 ret = find_subprog(env, off); 2484 if (ret >= 0) 2485 return ret; 2486 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 2487 verbose(env, "too many subprograms\n"); 2488 return -E2BIG; 2489 } 2490 /* determine subprog starts. The end is one before the next starts */ 2491 env->subprog_info[env->subprog_cnt++].start = off; 2492 sort(env->subprog_info, env->subprog_cnt, 2493 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 2494 return env->subprog_cnt - 1; 2495 } 2496 2497 static int bpf_find_exception_callback_insn_off(struct bpf_verifier_env *env) 2498 { 2499 struct bpf_prog_aux *aux = env->prog->aux; 2500 struct btf *btf = aux->btf; 2501 const struct btf_type *t; 2502 u32 main_btf_id, id; 2503 const char *name; 2504 int ret, i; 2505 2506 /* Non-zero func_info_cnt implies valid btf */ 2507 if (!aux->func_info_cnt) 2508 return 0; 2509 main_btf_id = aux->func_info[0].type_id; 2510 2511 t = btf_type_by_id(btf, main_btf_id); 2512 if (!t) { 2513 verbose(env, "invalid btf id for main subprog in func_info\n"); 2514 return -EINVAL; 2515 } 2516 2517 name = btf_find_decl_tag_value(btf, t, -1, "exception_callback:"); 2518 if (IS_ERR(name)) { 2519 ret = PTR_ERR(name); 2520 /* If there is no tag present, there is no exception callback */ 2521 if (ret == -ENOENT) 2522 ret = 0; 2523 else if (ret == -EEXIST) 2524 verbose(env, "multiple exception callback tags for main subprog\n"); 2525 return ret; 2526 } 2527 2528 ret = btf_find_by_name_kind(btf, name, BTF_KIND_FUNC); 2529 if (ret < 0) { 2530 verbose(env, "exception callback '%s' could not be found in BTF\n", name); 2531 return ret; 2532 } 2533 id = ret; 2534 t = btf_type_by_id(btf, id); 2535 if (btf_func_linkage(t) != BTF_FUNC_GLOBAL) { 2536 verbose(env, "exception callback '%s' must have global linkage\n", name); 2537 return -EINVAL; 2538 } 2539 ret = 0; 2540 for (i = 0; i < aux->func_info_cnt; i++) { 2541 if (aux->func_info[i].type_id != id) 2542 continue; 2543 ret = aux->func_info[i].insn_off; 2544 /* Further func_info and subprog checks will also happen 2545 * later, so assume this is the right insn_off for now. 2546 */ 2547 if (!ret) { 2548 verbose(env, "invalid exception callback insn_off in func_info: 0\n"); 2549 ret = -EINVAL; 2550 } 2551 } 2552 if (!ret) { 2553 verbose(env, "exception callback type id not found in func_info\n"); 2554 ret = -EINVAL; 2555 } 2556 return ret; 2557 } 2558 2559 #define MAX_KFUNC_DESCS 256 2560 #define MAX_KFUNC_BTFS 256 2561 2562 struct bpf_kfunc_desc { 2563 struct btf_func_model func_model; 2564 u32 func_id; 2565 s32 imm; 2566 u16 offset; 2567 unsigned long addr; 2568 }; 2569 2570 struct bpf_kfunc_btf { 2571 struct btf *btf; 2572 struct module *module; 2573 u16 offset; 2574 }; 2575 2576 struct bpf_kfunc_desc_tab { 2577 /* Sorted by func_id (BTF ID) and offset (fd_array offset) during 2578 * verification. JITs do lookups by bpf_insn, where func_id may not be 2579 * available, therefore at the end of verification do_misc_fixups() 2580 * sorts this by imm and offset. 2581 */ 2582 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS]; 2583 u32 nr_descs; 2584 }; 2585 2586 struct bpf_kfunc_btf_tab { 2587 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS]; 2588 u32 nr_descs; 2589 }; 2590 2591 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b) 2592 { 2593 const struct bpf_kfunc_desc *d0 = a; 2594 const struct bpf_kfunc_desc *d1 = b; 2595 2596 /* func_id is not greater than BTF_MAX_TYPE */ 2597 return d0->func_id - d1->func_id ?: d0->offset - d1->offset; 2598 } 2599 2600 static int kfunc_btf_cmp_by_off(const void *a, const void *b) 2601 { 2602 const struct bpf_kfunc_btf *d0 = a; 2603 const struct bpf_kfunc_btf *d1 = b; 2604 2605 return d0->offset - d1->offset; 2606 } 2607 2608 static const struct bpf_kfunc_desc * 2609 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset) 2610 { 2611 struct bpf_kfunc_desc desc = { 2612 .func_id = func_id, 2613 .offset = offset, 2614 }; 2615 struct bpf_kfunc_desc_tab *tab; 2616 2617 tab = prog->aux->kfunc_tab; 2618 return bsearch(&desc, tab->descs, tab->nr_descs, 2619 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off); 2620 } 2621 2622 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id, 2623 u16 btf_fd_idx, u8 **func_addr) 2624 { 2625 const struct bpf_kfunc_desc *desc; 2626 2627 desc = find_kfunc_desc(prog, func_id, btf_fd_idx); 2628 if (!desc) 2629 return -EFAULT; 2630 2631 *func_addr = (u8 *)desc->addr; 2632 return 0; 2633 } 2634 2635 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env, 2636 s16 offset) 2637 { 2638 struct bpf_kfunc_btf kf_btf = { .offset = offset }; 2639 struct bpf_kfunc_btf_tab *tab; 2640 struct bpf_kfunc_btf *b; 2641 struct module *mod; 2642 struct btf *btf; 2643 int btf_fd; 2644 2645 tab = env->prog->aux->kfunc_btf_tab; 2646 b = bsearch(&kf_btf, tab->descs, tab->nr_descs, 2647 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off); 2648 if (!b) { 2649 if (tab->nr_descs == MAX_KFUNC_BTFS) { 2650 verbose(env, "too many different module BTFs\n"); 2651 return ERR_PTR(-E2BIG); 2652 } 2653 2654 if (bpfptr_is_null(env->fd_array)) { 2655 verbose(env, "kfunc offset > 0 without fd_array is invalid\n"); 2656 return ERR_PTR(-EPROTO); 2657 } 2658 2659 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array, 2660 offset * sizeof(btf_fd), 2661 sizeof(btf_fd))) 2662 return ERR_PTR(-EFAULT); 2663 2664 btf = btf_get_by_fd(btf_fd); 2665 if (IS_ERR(btf)) { 2666 verbose(env, "invalid module BTF fd specified\n"); 2667 return btf; 2668 } 2669 2670 if (!btf_is_module(btf)) { 2671 verbose(env, "BTF fd for kfunc is not a module BTF\n"); 2672 btf_put(btf); 2673 return ERR_PTR(-EINVAL); 2674 } 2675 2676 mod = btf_try_get_module(btf); 2677 if (!mod) { 2678 btf_put(btf); 2679 return ERR_PTR(-ENXIO); 2680 } 2681 2682 b = &tab->descs[tab->nr_descs++]; 2683 b->btf = btf; 2684 b->module = mod; 2685 b->offset = offset; 2686 2687 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2688 kfunc_btf_cmp_by_off, NULL); 2689 } 2690 return b->btf; 2691 } 2692 2693 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab) 2694 { 2695 if (!tab) 2696 return; 2697 2698 while (tab->nr_descs--) { 2699 module_put(tab->descs[tab->nr_descs].module); 2700 btf_put(tab->descs[tab->nr_descs].btf); 2701 } 2702 kfree(tab); 2703 } 2704 2705 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset) 2706 { 2707 if (offset) { 2708 if (offset < 0) { 2709 /* In the future, this can be allowed to increase limit 2710 * of fd index into fd_array, interpreted as u16. 2711 */ 2712 verbose(env, "negative offset disallowed for kernel module function call\n"); 2713 return ERR_PTR(-EINVAL); 2714 } 2715 2716 return __find_kfunc_desc_btf(env, offset); 2717 } 2718 return btf_vmlinux ?: ERR_PTR(-ENOENT); 2719 } 2720 2721 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset) 2722 { 2723 const struct btf_type *func, *func_proto; 2724 struct bpf_kfunc_btf_tab *btf_tab; 2725 struct bpf_kfunc_desc_tab *tab; 2726 struct bpf_prog_aux *prog_aux; 2727 struct bpf_kfunc_desc *desc; 2728 const char *func_name; 2729 struct btf *desc_btf; 2730 unsigned long call_imm; 2731 unsigned long addr; 2732 int err; 2733 2734 prog_aux = env->prog->aux; 2735 tab = prog_aux->kfunc_tab; 2736 btf_tab = prog_aux->kfunc_btf_tab; 2737 if (!tab) { 2738 if (!btf_vmlinux) { 2739 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n"); 2740 return -ENOTSUPP; 2741 } 2742 2743 if (!env->prog->jit_requested) { 2744 verbose(env, "JIT is required for calling kernel function\n"); 2745 return -ENOTSUPP; 2746 } 2747 2748 if (!bpf_jit_supports_kfunc_call()) { 2749 verbose(env, "JIT does not support calling kernel function\n"); 2750 return -ENOTSUPP; 2751 } 2752 2753 if (!env->prog->gpl_compatible) { 2754 verbose(env, "cannot call kernel function from non-GPL compatible program\n"); 2755 return -EINVAL; 2756 } 2757 2758 tab = kzalloc(sizeof(*tab), GFP_KERNEL); 2759 if (!tab) 2760 return -ENOMEM; 2761 prog_aux->kfunc_tab = tab; 2762 } 2763 2764 /* func_id == 0 is always invalid, but instead of returning an error, be 2765 * conservative and wait until the code elimination pass before returning 2766 * error, so that invalid calls that get pruned out can be in BPF programs 2767 * loaded from userspace. It is also required that offset be untouched 2768 * for such calls. 2769 */ 2770 if (!func_id && !offset) 2771 return 0; 2772 2773 if (!btf_tab && offset) { 2774 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL); 2775 if (!btf_tab) 2776 return -ENOMEM; 2777 prog_aux->kfunc_btf_tab = btf_tab; 2778 } 2779 2780 desc_btf = find_kfunc_desc_btf(env, offset); 2781 if (IS_ERR(desc_btf)) { 2782 verbose(env, "failed to find BTF for kernel function\n"); 2783 return PTR_ERR(desc_btf); 2784 } 2785 2786 if (find_kfunc_desc(env->prog, func_id, offset)) 2787 return 0; 2788 2789 if (tab->nr_descs == MAX_KFUNC_DESCS) { 2790 verbose(env, "too many different kernel function calls\n"); 2791 return -E2BIG; 2792 } 2793 2794 func = btf_type_by_id(desc_btf, func_id); 2795 if (!func || !btf_type_is_func(func)) { 2796 verbose(env, "kernel btf_id %u is not a function\n", 2797 func_id); 2798 return -EINVAL; 2799 } 2800 func_proto = btf_type_by_id(desc_btf, func->type); 2801 if (!func_proto || !btf_type_is_func_proto(func_proto)) { 2802 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n", 2803 func_id); 2804 return -EINVAL; 2805 } 2806 2807 func_name = btf_name_by_offset(desc_btf, func->name_off); 2808 addr = kallsyms_lookup_name(func_name); 2809 if (!addr) { 2810 verbose(env, "cannot find address for kernel function %s\n", 2811 func_name); 2812 return -EINVAL; 2813 } 2814 specialize_kfunc(env, func_id, offset, &addr); 2815 2816 if (bpf_jit_supports_far_kfunc_call()) { 2817 call_imm = func_id; 2818 } else { 2819 call_imm = BPF_CALL_IMM(addr); 2820 /* Check whether the relative offset overflows desc->imm */ 2821 if ((unsigned long)(s32)call_imm != call_imm) { 2822 verbose(env, "address of kernel function %s is out of range\n", 2823 func_name); 2824 return -EINVAL; 2825 } 2826 } 2827 2828 if (bpf_dev_bound_kfunc_id(func_id)) { 2829 err = bpf_dev_bound_kfunc_check(&env->log, prog_aux); 2830 if (err) 2831 return err; 2832 } 2833 2834 desc = &tab->descs[tab->nr_descs++]; 2835 desc->func_id = func_id; 2836 desc->imm = call_imm; 2837 desc->offset = offset; 2838 desc->addr = addr; 2839 err = btf_distill_func_proto(&env->log, desc_btf, 2840 func_proto, func_name, 2841 &desc->func_model); 2842 if (!err) 2843 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2844 kfunc_desc_cmp_by_id_off, NULL); 2845 return err; 2846 } 2847 2848 static int kfunc_desc_cmp_by_imm_off(const void *a, const void *b) 2849 { 2850 const struct bpf_kfunc_desc *d0 = a; 2851 const struct bpf_kfunc_desc *d1 = b; 2852 2853 if (d0->imm != d1->imm) 2854 return d0->imm < d1->imm ? -1 : 1; 2855 if (d0->offset != d1->offset) 2856 return d0->offset < d1->offset ? -1 : 1; 2857 return 0; 2858 } 2859 2860 static void sort_kfunc_descs_by_imm_off(struct bpf_prog *prog) 2861 { 2862 struct bpf_kfunc_desc_tab *tab; 2863 2864 tab = prog->aux->kfunc_tab; 2865 if (!tab) 2866 return; 2867 2868 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2869 kfunc_desc_cmp_by_imm_off, NULL); 2870 } 2871 2872 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 2873 { 2874 return !!prog->aux->kfunc_tab; 2875 } 2876 2877 const struct btf_func_model * 2878 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 2879 const struct bpf_insn *insn) 2880 { 2881 const struct bpf_kfunc_desc desc = { 2882 .imm = insn->imm, 2883 .offset = insn->off, 2884 }; 2885 const struct bpf_kfunc_desc *res; 2886 struct bpf_kfunc_desc_tab *tab; 2887 2888 tab = prog->aux->kfunc_tab; 2889 res = bsearch(&desc, tab->descs, tab->nr_descs, 2890 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm_off); 2891 2892 return res ? &res->func_model : NULL; 2893 } 2894 2895 static int add_subprog_and_kfunc(struct bpf_verifier_env *env) 2896 { 2897 struct bpf_subprog_info *subprog = env->subprog_info; 2898 int i, ret, insn_cnt = env->prog->len, ex_cb_insn; 2899 struct bpf_insn *insn = env->prog->insnsi; 2900 2901 /* Add entry function. */ 2902 ret = add_subprog(env, 0); 2903 if (ret) 2904 return ret; 2905 2906 for (i = 0; i < insn_cnt; i++, insn++) { 2907 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) && 2908 !bpf_pseudo_kfunc_call(insn)) 2909 continue; 2910 2911 if (!env->bpf_capable) { 2912 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); 2913 return -EPERM; 2914 } 2915 2916 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn)) 2917 ret = add_subprog(env, i + insn->imm + 1); 2918 else 2919 ret = add_kfunc_call(env, insn->imm, insn->off); 2920 2921 if (ret < 0) 2922 return ret; 2923 } 2924 2925 ret = bpf_find_exception_callback_insn_off(env); 2926 if (ret < 0) 2927 return ret; 2928 ex_cb_insn = ret; 2929 2930 /* If ex_cb_insn > 0, this means that the main program has a subprog 2931 * marked using BTF decl tag to serve as the exception callback. 2932 */ 2933 if (ex_cb_insn) { 2934 ret = add_subprog(env, ex_cb_insn); 2935 if (ret < 0) 2936 return ret; 2937 for (i = 1; i < env->subprog_cnt; i++) { 2938 if (env->subprog_info[i].start != ex_cb_insn) 2939 continue; 2940 env->exception_callback_subprog = i; 2941 mark_subprog_exc_cb(env, i); 2942 break; 2943 } 2944 } 2945 2946 /* Add a fake 'exit' subprog which could simplify subprog iteration 2947 * logic. 'subprog_cnt' should not be increased. 2948 */ 2949 subprog[env->subprog_cnt].start = insn_cnt; 2950 2951 if (env->log.level & BPF_LOG_LEVEL2) 2952 for (i = 0; i < env->subprog_cnt; i++) 2953 verbose(env, "func#%d @%d\n", i, subprog[i].start); 2954 2955 return 0; 2956 } 2957 2958 static int check_subprogs(struct bpf_verifier_env *env) 2959 { 2960 int i, subprog_start, subprog_end, off, cur_subprog = 0; 2961 struct bpf_subprog_info *subprog = env->subprog_info; 2962 struct bpf_insn *insn = env->prog->insnsi; 2963 int insn_cnt = env->prog->len; 2964 2965 /* now check that all jumps are within the same subprog */ 2966 subprog_start = subprog[cur_subprog].start; 2967 subprog_end = subprog[cur_subprog + 1].start; 2968 for (i = 0; i < insn_cnt; i++) { 2969 u8 code = insn[i].code; 2970 2971 if (code == (BPF_JMP | BPF_CALL) && 2972 insn[i].src_reg == 0 && 2973 insn[i].imm == BPF_FUNC_tail_call) 2974 subprog[cur_subprog].has_tail_call = true; 2975 if (BPF_CLASS(code) == BPF_LD && 2976 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND)) 2977 subprog[cur_subprog].has_ld_abs = true; 2978 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 2979 goto next; 2980 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 2981 goto next; 2982 if (code == (BPF_JMP32 | BPF_JA)) 2983 off = i + insn[i].imm + 1; 2984 else 2985 off = i + insn[i].off + 1; 2986 if (off < subprog_start || off >= subprog_end) { 2987 verbose(env, "jump out of range from insn %d to %d\n", i, off); 2988 return -EINVAL; 2989 } 2990 next: 2991 if (i == subprog_end - 1) { 2992 /* to avoid fall-through from one subprog into another 2993 * the last insn of the subprog should be either exit 2994 * or unconditional jump back or bpf_throw call 2995 */ 2996 if (code != (BPF_JMP | BPF_EXIT) && 2997 code != (BPF_JMP32 | BPF_JA) && 2998 code != (BPF_JMP | BPF_JA)) { 2999 verbose(env, "last insn is not an exit or jmp\n"); 3000 return -EINVAL; 3001 } 3002 subprog_start = subprog_end; 3003 cur_subprog++; 3004 if (cur_subprog < env->subprog_cnt) 3005 subprog_end = subprog[cur_subprog + 1].start; 3006 } 3007 } 3008 return 0; 3009 } 3010 3011 /* Parentage chain of this register (or stack slot) should take care of all 3012 * issues like callee-saved registers, stack slot allocation time, etc. 3013 */ 3014 static int mark_reg_read(struct bpf_verifier_env *env, 3015 const struct bpf_reg_state *state, 3016 struct bpf_reg_state *parent, u8 flag) 3017 { 3018 bool writes = parent == state->parent; /* Observe write marks */ 3019 int cnt = 0; 3020 3021 while (parent) { 3022 /* if read wasn't screened by an earlier write ... */ 3023 if (writes && state->live & REG_LIVE_WRITTEN) 3024 break; 3025 if (parent->live & REG_LIVE_DONE) { 3026 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 3027 reg_type_str(env, parent->type), 3028 parent->var_off.value, parent->off); 3029 return -EFAULT; 3030 } 3031 /* The first condition is more likely to be true than the 3032 * second, checked it first. 3033 */ 3034 if ((parent->live & REG_LIVE_READ) == flag || 3035 parent->live & REG_LIVE_READ64) 3036 /* The parentage chain never changes and 3037 * this parent was already marked as LIVE_READ. 3038 * There is no need to keep walking the chain again and 3039 * keep re-marking all parents as LIVE_READ. 3040 * This case happens when the same register is read 3041 * multiple times without writes into it in-between. 3042 * Also, if parent has the stronger REG_LIVE_READ64 set, 3043 * then no need to set the weak REG_LIVE_READ32. 3044 */ 3045 break; 3046 /* ... then we depend on parent's value */ 3047 parent->live |= flag; 3048 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 3049 if (flag == REG_LIVE_READ64) 3050 parent->live &= ~REG_LIVE_READ32; 3051 state = parent; 3052 parent = state->parent; 3053 writes = true; 3054 cnt++; 3055 } 3056 3057 if (env->longest_mark_read_walk < cnt) 3058 env->longest_mark_read_walk = cnt; 3059 return 0; 3060 } 3061 3062 static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 3063 { 3064 struct bpf_func_state *state = func(env, reg); 3065 int spi, ret; 3066 3067 /* For CONST_PTR_TO_DYNPTR, it must have already been done by 3068 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in 3069 * check_kfunc_call. 3070 */ 3071 if (reg->type == CONST_PTR_TO_DYNPTR) 3072 return 0; 3073 spi = dynptr_get_spi(env, reg); 3074 if (spi < 0) 3075 return spi; 3076 /* Caller ensures dynptr is valid and initialized, which means spi is in 3077 * bounds and spi is the first dynptr slot. Simply mark stack slot as 3078 * read. 3079 */ 3080 ret = mark_reg_read(env, &state->stack[spi].spilled_ptr, 3081 state->stack[spi].spilled_ptr.parent, REG_LIVE_READ64); 3082 if (ret) 3083 return ret; 3084 return mark_reg_read(env, &state->stack[spi - 1].spilled_ptr, 3085 state->stack[spi - 1].spilled_ptr.parent, REG_LIVE_READ64); 3086 } 3087 3088 static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 3089 int spi, int nr_slots) 3090 { 3091 struct bpf_func_state *state = func(env, reg); 3092 int err, i; 3093 3094 for (i = 0; i < nr_slots; i++) { 3095 struct bpf_reg_state *st = &state->stack[spi - i].spilled_ptr; 3096 3097 err = mark_reg_read(env, st, st->parent, REG_LIVE_READ64); 3098 if (err) 3099 return err; 3100 3101 mark_stack_slot_scratched(env, spi - i); 3102 } 3103 3104 return 0; 3105 } 3106 3107 /* This function is supposed to be used by the following 32-bit optimization 3108 * code only. It returns TRUE if the source or destination register operates 3109 * on 64-bit, otherwise return FALSE. 3110 */ 3111 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 3112 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 3113 { 3114 u8 code, class, op; 3115 3116 code = insn->code; 3117 class = BPF_CLASS(code); 3118 op = BPF_OP(code); 3119 if (class == BPF_JMP) { 3120 /* BPF_EXIT for "main" will reach here. Return TRUE 3121 * conservatively. 3122 */ 3123 if (op == BPF_EXIT) 3124 return true; 3125 if (op == BPF_CALL) { 3126 /* BPF to BPF call will reach here because of marking 3127 * caller saved clobber with DST_OP_NO_MARK for which we 3128 * don't care the register def because they are anyway 3129 * marked as NOT_INIT already. 3130 */ 3131 if (insn->src_reg == BPF_PSEUDO_CALL) 3132 return false; 3133 /* Helper call will reach here because of arg type 3134 * check, conservatively return TRUE. 3135 */ 3136 if (t == SRC_OP) 3137 return true; 3138 3139 return false; 3140 } 3141 } 3142 3143 if (class == BPF_ALU64 && op == BPF_END && (insn->imm == 16 || insn->imm == 32)) 3144 return false; 3145 3146 if (class == BPF_ALU64 || class == BPF_JMP || 3147 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 3148 return true; 3149 3150 if (class == BPF_ALU || class == BPF_JMP32) 3151 return false; 3152 3153 if (class == BPF_LDX) { 3154 if (t != SRC_OP) 3155 return BPF_SIZE(code) == BPF_DW || BPF_MODE(code) == BPF_MEMSX; 3156 /* LDX source must be ptr. */ 3157 return true; 3158 } 3159 3160 if (class == BPF_STX) { 3161 /* BPF_STX (including atomic variants) has multiple source 3162 * operands, one of which is a ptr. Check whether the caller is 3163 * asking about it. 3164 */ 3165 if (t == SRC_OP && reg->type != SCALAR_VALUE) 3166 return true; 3167 return BPF_SIZE(code) == BPF_DW; 3168 } 3169 3170 if (class == BPF_LD) { 3171 u8 mode = BPF_MODE(code); 3172 3173 /* LD_IMM64 */ 3174 if (mode == BPF_IMM) 3175 return true; 3176 3177 /* Both LD_IND and LD_ABS return 32-bit data. */ 3178 if (t != SRC_OP) 3179 return false; 3180 3181 /* Implicit ctx ptr. */ 3182 if (regno == BPF_REG_6) 3183 return true; 3184 3185 /* Explicit source could be any width. */ 3186 return true; 3187 } 3188 3189 if (class == BPF_ST) 3190 /* The only source register for BPF_ST is a ptr. */ 3191 return true; 3192 3193 /* Conservatively return true at default. */ 3194 return true; 3195 } 3196 3197 /* Return the regno defined by the insn, or -1. */ 3198 static int insn_def_regno(const struct bpf_insn *insn) 3199 { 3200 switch (BPF_CLASS(insn->code)) { 3201 case BPF_JMP: 3202 case BPF_JMP32: 3203 case BPF_ST: 3204 return -1; 3205 case BPF_STX: 3206 if (BPF_MODE(insn->code) == BPF_ATOMIC && 3207 (insn->imm & BPF_FETCH)) { 3208 if (insn->imm == BPF_CMPXCHG) 3209 return BPF_REG_0; 3210 else 3211 return insn->src_reg; 3212 } else { 3213 return -1; 3214 } 3215 default: 3216 return insn->dst_reg; 3217 } 3218 } 3219 3220 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 3221 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 3222 { 3223 int dst_reg = insn_def_regno(insn); 3224 3225 if (dst_reg == -1) 3226 return false; 3227 3228 return !is_reg64(env, insn, dst_reg, NULL, DST_OP); 3229 } 3230 3231 static void mark_insn_zext(struct bpf_verifier_env *env, 3232 struct bpf_reg_state *reg) 3233 { 3234 s32 def_idx = reg->subreg_def; 3235 3236 if (def_idx == DEF_NOT_SUBREG) 3237 return; 3238 3239 env->insn_aux_data[def_idx - 1].zext_dst = true; 3240 /* The dst will be zero extended, so won't be sub-register anymore. */ 3241 reg->subreg_def = DEF_NOT_SUBREG; 3242 } 3243 3244 static int __check_reg_arg(struct bpf_verifier_env *env, struct bpf_reg_state *regs, u32 regno, 3245 enum reg_arg_type t) 3246 { 3247 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 3248 struct bpf_reg_state *reg; 3249 bool rw64; 3250 3251 if (regno >= MAX_BPF_REG) { 3252 verbose(env, "R%d is invalid\n", regno); 3253 return -EINVAL; 3254 } 3255 3256 mark_reg_scratched(env, regno); 3257 3258 reg = ®s[regno]; 3259 rw64 = is_reg64(env, insn, regno, reg, t); 3260 if (t == SRC_OP) { 3261 /* check whether register used as source operand can be read */ 3262 if (reg->type == NOT_INIT) { 3263 verbose(env, "R%d !read_ok\n", regno); 3264 return -EACCES; 3265 } 3266 /* We don't need to worry about FP liveness because it's read-only */ 3267 if (regno == BPF_REG_FP) 3268 return 0; 3269 3270 if (rw64) 3271 mark_insn_zext(env, reg); 3272 3273 return mark_reg_read(env, reg, reg->parent, 3274 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 3275 } else { 3276 /* check whether register used as dest operand can be written to */ 3277 if (regno == BPF_REG_FP) { 3278 verbose(env, "frame pointer is read only\n"); 3279 return -EACCES; 3280 } 3281 reg->live |= REG_LIVE_WRITTEN; 3282 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 3283 if (t == DST_OP) 3284 mark_reg_unknown(env, regs, regno); 3285 } 3286 return 0; 3287 } 3288 3289 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 3290 enum reg_arg_type t) 3291 { 3292 struct bpf_verifier_state *vstate = env->cur_state; 3293 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3294 3295 return __check_reg_arg(env, state->regs, regno, t); 3296 } 3297 3298 static int insn_stack_access_flags(int frameno, int spi) 3299 { 3300 return INSN_F_STACK_ACCESS | (spi << INSN_F_SPI_SHIFT) | frameno; 3301 } 3302 3303 static int insn_stack_access_spi(int insn_flags) 3304 { 3305 return (insn_flags >> INSN_F_SPI_SHIFT) & INSN_F_SPI_MASK; 3306 } 3307 3308 static int insn_stack_access_frameno(int insn_flags) 3309 { 3310 return insn_flags & INSN_F_FRAMENO_MASK; 3311 } 3312 3313 static void mark_jmp_point(struct bpf_verifier_env *env, int idx) 3314 { 3315 env->insn_aux_data[idx].jmp_point = true; 3316 } 3317 3318 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx) 3319 { 3320 return env->insn_aux_data[insn_idx].jmp_point; 3321 } 3322 3323 /* for any branch, call, exit record the history of jmps in the given state */ 3324 static int push_jmp_history(struct bpf_verifier_env *env, struct bpf_verifier_state *cur, 3325 int insn_flags) 3326 { 3327 u32 cnt = cur->jmp_history_cnt; 3328 struct bpf_jmp_history_entry *p; 3329 size_t alloc_size; 3330 3331 /* combine instruction flags if we already recorded this instruction */ 3332 if (env->cur_hist_ent) { 3333 /* atomic instructions push insn_flags twice, for READ and 3334 * WRITE sides, but they should agree on stack slot 3335 */ 3336 WARN_ONCE((env->cur_hist_ent->flags & insn_flags) && 3337 (env->cur_hist_ent->flags & insn_flags) != insn_flags, 3338 "verifier insn history bug: insn_idx %d cur flags %x new flags %x\n", 3339 env->insn_idx, env->cur_hist_ent->flags, insn_flags); 3340 env->cur_hist_ent->flags |= insn_flags; 3341 return 0; 3342 } 3343 3344 cnt++; 3345 alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p))); 3346 p = krealloc(cur->jmp_history, alloc_size, GFP_USER); 3347 if (!p) 3348 return -ENOMEM; 3349 cur->jmp_history = p; 3350 3351 p = &cur->jmp_history[cnt - 1]; 3352 p->idx = env->insn_idx; 3353 p->prev_idx = env->prev_insn_idx; 3354 p->flags = insn_flags; 3355 cur->jmp_history_cnt = cnt; 3356 env->cur_hist_ent = p; 3357 3358 return 0; 3359 } 3360 3361 static struct bpf_jmp_history_entry *get_jmp_hist_entry(struct bpf_verifier_state *st, 3362 u32 hist_end, int insn_idx) 3363 { 3364 if (hist_end > 0 && st->jmp_history[hist_end - 1].idx == insn_idx) 3365 return &st->jmp_history[hist_end - 1]; 3366 return NULL; 3367 } 3368 3369 /* Backtrack one insn at a time. If idx is not at the top of recorded 3370 * history then previous instruction came from straight line execution. 3371 * Return -ENOENT if we exhausted all instructions within given state. 3372 * 3373 * It's legal to have a bit of a looping with the same starting and ending 3374 * insn index within the same state, e.g.: 3->4->5->3, so just because current 3375 * instruction index is the same as state's first_idx doesn't mean we are 3376 * done. If there is still some jump history left, we should keep going. We 3377 * need to take into account that we might have a jump history between given 3378 * state's parent and itself, due to checkpointing. In this case, we'll have 3379 * history entry recording a jump from last instruction of parent state and 3380 * first instruction of given state. 3381 */ 3382 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 3383 u32 *history) 3384 { 3385 u32 cnt = *history; 3386 3387 if (i == st->first_insn_idx) { 3388 if (cnt == 0) 3389 return -ENOENT; 3390 if (cnt == 1 && st->jmp_history[0].idx == i) 3391 return -ENOENT; 3392 } 3393 3394 if (cnt && st->jmp_history[cnt - 1].idx == i) { 3395 i = st->jmp_history[cnt - 1].prev_idx; 3396 (*history)--; 3397 } else { 3398 i--; 3399 } 3400 return i; 3401 } 3402 3403 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn) 3404 { 3405 const struct btf_type *func; 3406 struct btf *desc_btf; 3407 3408 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL) 3409 return NULL; 3410 3411 desc_btf = find_kfunc_desc_btf(data, insn->off); 3412 if (IS_ERR(desc_btf)) 3413 return "<error>"; 3414 3415 func = btf_type_by_id(desc_btf, insn->imm); 3416 return btf_name_by_offset(desc_btf, func->name_off); 3417 } 3418 3419 static inline void bt_init(struct backtrack_state *bt, u32 frame) 3420 { 3421 bt->frame = frame; 3422 } 3423 3424 static inline void bt_reset(struct backtrack_state *bt) 3425 { 3426 struct bpf_verifier_env *env = bt->env; 3427 3428 memset(bt, 0, sizeof(*bt)); 3429 bt->env = env; 3430 } 3431 3432 static inline u32 bt_empty(struct backtrack_state *bt) 3433 { 3434 u64 mask = 0; 3435 int i; 3436 3437 for (i = 0; i <= bt->frame; i++) 3438 mask |= bt->reg_masks[i] | bt->stack_masks[i]; 3439 3440 return mask == 0; 3441 } 3442 3443 static inline int bt_subprog_enter(struct backtrack_state *bt) 3444 { 3445 if (bt->frame == MAX_CALL_FRAMES - 1) { 3446 verbose(bt->env, "BUG subprog enter from frame %d\n", bt->frame); 3447 WARN_ONCE(1, "verifier backtracking bug"); 3448 return -EFAULT; 3449 } 3450 bt->frame++; 3451 return 0; 3452 } 3453 3454 static inline int bt_subprog_exit(struct backtrack_state *bt) 3455 { 3456 if (bt->frame == 0) { 3457 verbose(bt->env, "BUG subprog exit from frame 0\n"); 3458 WARN_ONCE(1, "verifier backtracking bug"); 3459 return -EFAULT; 3460 } 3461 bt->frame--; 3462 return 0; 3463 } 3464 3465 static inline void bt_set_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg) 3466 { 3467 bt->reg_masks[frame] |= 1 << reg; 3468 } 3469 3470 static inline void bt_clear_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg) 3471 { 3472 bt->reg_masks[frame] &= ~(1 << reg); 3473 } 3474 3475 static inline void bt_set_reg(struct backtrack_state *bt, u32 reg) 3476 { 3477 bt_set_frame_reg(bt, bt->frame, reg); 3478 } 3479 3480 static inline void bt_clear_reg(struct backtrack_state *bt, u32 reg) 3481 { 3482 bt_clear_frame_reg(bt, bt->frame, reg); 3483 } 3484 3485 static inline void bt_set_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot) 3486 { 3487 bt->stack_masks[frame] |= 1ull << slot; 3488 } 3489 3490 static inline void bt_clear_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot) 3491 { 3492 bt->stack_masks[frame] &= ~(1ull << slot); 3493 } 3494 3495 static inline u32 bt_frame_reg_mask(struct backtrack_state *bt, u32 frame) 3496 { 3497 return bt->reg_masks[frame]; 3498 } 3499 3500 static inline u32 bt_reg_mask(struct backtrack_state *bt) 3501 { 3502 return bt->reg_masks[bt->frame]; 3503 } 3504 3505 static inline u64 bt_frame_stack_mask(struct backtrack_state *bt, u32 frame) 3506 { 3507 return bt->stack_masks[frame]; 3508 } 3509 3510 static inline u64 bt_stack_mask(struct backtrack_state *bt) 3511 { 3512 return bt->stack_masks[bt->frame]; 3513 } 3514 3515 static inline bool bt_is_reg_set(struct backtrack_state *bt, u32 reg) 3516 { 3517 return bt->reg_masks[bt->frame] & (1 << reg); 3518 } 3519 3520 static inline bool bt_is_frame_slot_set(struct backtrack_state *bt, u32 frame, u32 slot) 3521 { 3522 return bt->stack_masks[frame] & (1ull << slot); 3523 } 3524 3525 /* format registers bitmask, e.g., "r0,r2,r4" for 0x15 mask */ 3526 static void fmt_reg_mask(char *buf, ssize_t buf_sz, u32 reg_mask) 3527 { 3528 DECLARE_BITMAP(mask, 64); 3529 bool first = true; 3530 int i, n; 3531 3532 buf[0] = '\0'; 3533 3534 bitmap_from_u64(mask, reg_mask); 3535 for_each_set_bit(i, mask, 32) { 3536 n = snprintf(buf, buf_sz, "%sr%d", first ? "" : ",", i); 3537 first = false; 3538 buf += n; 3539 buf_sz -= n; 3540 if (buf_sz < 0) 3541 break; 3542 } 3543 } 3544 /* format stack slots bitmask, e.g., "-8,-24,-40" for 0x15 mask */ 3545 static void fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask) 3546 { 3547 DECLARE_BITMAP(mask, 64); 3548 bool first = true; 3549 int i, n; 3550 3551 buf[0] = '\0'; 3552 3553 bitmap_from_u64(mask, stack_mask); 3554 for_each_set_bit(i, mask, 64) { 3555 n = snprintf(buf, buf_sz, "%s%d", first ? "" : ",", -(i + 1) * 8); 3556 first = false; 3557 buf += n; 3558 buf_sz -= n; 3559 if (buf_sz < 0) 3560 break; 3561 } 3562 } 3563 3564 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx); 3565 3566 /* For given verifier state backtrack_insn() is called from the last insn to 3567 * the first insn. Its purpose is to compute a bitmask of registers and 3568 * stack slots that needs precision in the parent verifier state. 3569 * 3570 * @idx is an index of the instruction we are currently processing; 3571 * @subseq_idx is an index of the subsequent instruction that: 3572 * - *would be* executed next, if jump history is viewed in forward order; 3573 * - *was* processed previously during backtracking. 3574 */ 3575 static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx, 3576 struct bpf_jmp_history_entry *hist, struct backtrack_state *bt) 3577 { 3578 const struct bpf_insn_cbs cbs = { 3579 .cb_call = disasm_kfunc_name, 3580 .cb_print = verbose, 3581 .private_data = env, 3582 }; 3583 struct bpf_insn *insn = env->prog->insnsi + idx; 3584 u8 class = BPF_CLASS(insn->code); 3585 u8 opcode = BPF_OP(insn->code); 3586 u8 mode = BPF_MODE(insn->code); 3587 u32 dreg = insn->dst_reg; 3588 u32 sreg = insn->src_reg; 3589 u32 spi, i, fr; 3590 3591 if (insn->code == 0) 3592 return 0; 3593 if (env->log.level & BPF_LOG_LEVEL2) { 3594 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_reg_mask(bt)); 3595 verbose(env, "mark_precise: frame%d: regs=%s ", 3596 bt->frame, env->tmp_str_buf); 3597 fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt)); 3598 verbose(env, "stack=%s before ", env->tmp_str_buf); 3599 verbose(env, "%d: ", idx); 3600 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 3601 } 3602 3603 if (class == BPF_ALU || class == BPF_ALU64) { 3604 if (!bt_is_reg_set(bt, dreg)) 3605 return 0; 3606 if (opcode == BPF_END || opcode == BPF_NEG) { 3607 /* sreg is reserved and unused 3608 * dreg still need precision before this insn 3609 */ 3610 return 0; 3611 } else if (opcode == BPF_MOV) { 3612 if (BPF_SRC(insn->code) == BPF_X) { 3613 /* dreg = sreg or dreg = (s8, s16, s32)sreg 3614 * dreg needs precision after this insn 3615 * sreg needs precision before this insn 3616 */ 3617 bt_clear_reg(bt, dreg); 3618 bt_set_reg(bt, sreg); 3619 } else { 3620 /* dreg = K 3621 * dreg needs precision after this insn. 3622 * Corresponding register is already marked 3623 * as precise=true in this verifier state. 3624 * No further markings in parent are necessary 3625 */ 3626 bt_clear_reg(bt, dreg); 3627 } 3628 } else { 3629 if (BPF_SRC(insn->code) == BPF_X) { 3630 /* dreg += sreg 3631 * both dreg and sreg need precision 3632 * before this insn 3633 */ 3634 bt_set_reg(bt, sreg); 3635 } /* else dreg += K 3636 * dreg still needs precision before this insn 3637 */ 3638 } 3639 } else if (class == BPF_LDX) { 3640 if (!bt_is_reg_set(bt, dreg)) 3641 return 0; 3642 bt_clear_reg(bt, dreg); 3643 3644 /* scalars can only be spilled into stack w/o losing precision. 3645 * Load from any other memory can be zero extended. 3646 * The desire to keep that precision is already indicated 3647 * by 'precise' mark in corresponding register of this state. 3648 * No further tracking necessary. 3649 */ 3650 if (!hist || !(hist->flags & INSN_F_STACK_ACCESS)) 3651 return 0; 3652 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 3653 * that [fp - off] slot contains scalar that needs to be 3654 * tracked with precision 3655 */ 3656 spi = insn_stack_access_spi(hist->flags); 3657 fr = insn_stack_access_frameno(hist->flags); 3658 bt_set_frame_slot(bt, fr, spi); 3659 } else if (class == BPF_STX || class == BPF_ST) { 3660 if (bt_is_reg_set(bt, dreg)) 3661 /* stx & st shouldn't be using _scalar_ dst_reg 3662 * to access memory. It means backtracking 3663 * encountered a case of pointer subtraction. 3664 */ 3665 return -ENOTSUPP; 3666 /* scalars can only be spilled into stack */ 3667 if (!hist || !(hist->flags & INSN_F_STACK_ACCESS)) 3668 return 0; 3669 spi = insn_stack_access_spi(hist->flags); 3670 fr = insn_stack_access_frameno(hist->flags); 3671 if (!bt_is_frame_slot_set(bt, fr, spi)) 3672 return 0; 3673 bt_clear_frame_slot(bt, fr, spi); 3674 if (class == BPF_STX) 3675 bt_set_reg(bt, sreg); 3676 } else if (class == BPF_JMP || class == BPF_JMP32) { 3677 if (bpf_pseudo_call(insn)) { 3678 int subprog_insn_idx, subprog; 3679 3680 subprog_insn_idx = idx + insn->imm + 1; 3681 subprog = find_subprog(env, subprog_insn_idx); 3682 if (subprog < 0) 3683 return -EFAULT; 3684 3685 if (subprog_is_global(env, subprog)) { 3686 /* check that jump history doesn't have any 3687 * extra instructions from subprog; the next 3688 * instruction after call to global subprog 3689 * should be literally next instruction in 3690 * caller program 3691 */ 3692 WARN_ONCE(idx + 1 != subseq_idx, "verifier backtracking bug"); 3693 /* r1-r5 are invalidated after subprog call, 3694 * so for global func call it shouldn't be set 3695 * anymore 3696 */ 3697 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 3698 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3699 WARN_ONCE(1, "verifier backtracking bug"); 3700 return -EFAULT; 3701 } 3702 /* global subprog always sets R0 */ 3703 bt_clear_reg(bt, BPF_REG_0); 3704 return 0; 3705 } else { 3706 /* static subprog call instruction, which 3707 * means that we are exiting current subprog, 3708 * so only r1-r5 could be still requested as 3709 * precise, r0 and r6-r10 or any stack slot in 3710 * the current frame should be zero by now 3711 */ 3712 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) { 3713 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3714 WARN_ONCE(1, "verifier backtracking bug"); 3715 return -EFAULT; 3716 } 3717 /* we are now tracking register spills correctly, 3718 * so any instance of leftover slots is a bug 3719 */ 3720 if (bt_stack_mask(bt) != 0) { 3721 verbose(env, "BUG stack slots %llx\n", bt_stack_mask(bt)); 3722 WARN_ONCE(1, "verifier backtracking bug (subprog leftover stack slots)"); 3723 return -EFAULT; 3724 } 3725 /* propagate r1-r5 to the caller */ 3726 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 3727 if (bt_is_reg_set(bt, i)) { 3728 bt_clear_reg(bt, i); 3729 bt_set_frame_reg(bt, bt->frame - 1, i); 3730 } 3731 } 3732 if (bt_subprog_exit(bt)) 3733 return -EFAULT; 3734 return 0; 3735 } 3736 } else if (is_sync_callback_calling_insn(insn) && idx != subseq_idx - 1) { 3737 /* exit from callback subprog to callback-calling helper or 3738 * kfunc call. Use idx/subseq_idx check to discern it from 3739 * straight line code backtracking. 3740 * Unlike the subprog call handling above, we shouldn't 3741 * propagate precision of r1-r5 (if any requested), as they are 3742 * not actually arguments passed directly to callback subprogs 3743 */ 3744 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) { 3745 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3746 WARN_ONCE(1, "verifier backtracking bug"); 3747 return -EFAULT; 3748 } 3749 if (bt_stack_mask(bt) != 0) { 3750 verbose(env, "BUG stack slots %llx\n", bt_stack_mask(bt)); 3751 WARN_ONCE(1, "verifier backtracking bug (callback leftover stack slots)"); 3752 return -EFAULT; 3753 } 3754 /* clear r1-r5 in callback subprog's mask */ 3755 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 3756 bt_clear_reg(bt, i); 3757 if (bt_subprog_exit(bt)) 3758 return -EFAULT; 3759 return 0; 3760 } else if (opcode == BPF_CALL) { 3761 /* kfunc with imm==0 is invalid and fixup_kfunc_call will 3762 * catch this error later. Make backtracking conservative 3763 * with ENOTSUPP. 3764 */ 3765 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0) 3766 return -ENOTSUPP; 3767 /* regular helper call sets R0 */ 3768 bt_clear_reg(bt, BPF_REG_0); 3769 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 3770 /* if backtracing was looking for registers R1-R5 3771 * they should have been found already. 3772 */ 3773 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3774 WARN_ONCE(1, "verifier backtracking bug"); 3775 return -EFAULT; 3776 } 3777 } else if (opcode == BPF_EXIT) { 3778 bool r0_precise; 3779 3780 /* Backtracking to a nested function call, 'idx' is a part of 3781 * the inner frame 'subseq_idx' is a part of the outer frame. 3782 * In case of a regular function call, instructions giving 3783 * precision to registers R1-R5 should have been found already. 3784 * In case of a callback, it is ok to have R1-R5 marked for 3785 * backtracking, as these registers are set by the function 3786 * invoking callback. 3787 */ 3788 if (subseq_idx >= 0 && calls_callback(env, subseq_idx)) 3789 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 3790 bt_clear_reg(bt, i); 3791 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 3792 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3793 WARN_ONCE(1, "verifier backtracking bug"); 3794 return -EFAULT; 3795 } 3796 3797 /* BPF_EXIT in subprog or callback always returns 3798 * right after the call instruction, so by checking 3799 * whether the instruction at subseq_idx-1 is subprog 3800 * call or not we can distinguish actual exit from 3801 * *subprog* from exit from *callback*. In the former 3802 * case, we need to propagate r0 precision, if 3803 * necessary. In the former we never do that. 3804 */ 3805 r0_precise = subseq_idx - 1 >= 0 && 3806 bpf_pseudo_call(&env->prog->insnsi[subseq_idx - 1]) && 3807 bt_is_reg_set(bt, BPF_REG_0); 3808 3809 bt_clear_reg(bt, BPF_REG_0); 3810 if (bt_subprog_enter(bt)) 3811 return -EFAULT; 3812 3813 if (r0_precise) 3814 bt_set_reg(bt, BPF_REG_0); 3815 /* r6-r9 and stack slots will stay set in caller frame 3816 * bitmasks until we return back from callee(s) 3817 */ 3818 return 0; 3819 } else if (BPF_SRC(insn->code) == BPF_X) { 3820 if (!bt_is_reg_set(bt, dreg) && !bt_is_reg_set(bt, sreg)) 3821 return 0; 3822 /* dreg <cond> sreg 3823 * Both dreg and sreg need precision before 3824 * this insn. If only sreg was marked precise 3825 * before it would be equally necessary to 3826 * propagate it to dreg. 3827 */ 3828 bt_set_reg(bt, dreg); 3829 bt_set_reg(bt, sreg); 3830 /* else dreg <cond> K 3831 * Only dreg still needs precision before 3832 * this insn, so for the K-based conditional 3833 * there is nothing new to be marked. 3834 */ 3835 } 3836 } else if (class == BPF_LD) { 3837 if (!bt_is_reg_set(bt, dreg)) 3838 return 0; 3839 bt_clear_reg(bt, dreg); 3840 /* It's ld_imm64 or ld_abs or ld_ind. 3841 * For ld_imm64 no further tracking of precision 3842 * into parent is necessary 3843 */ 3844 if (mode == BPF_IND || mode == BPF_ABS) 3845 /* to be analyzed */ 3846 return -ENOTSUPP; 3847 } 3848 return 0; 3849 } 3850 3851 /* the scalar precision tracking algorithm: 3852 * . at the start all registers have precise=false. 3853 * . scalar ranges are tracked as normal through alu and jmp insns. 3854 * . once precise value of the scalar register is used in: 3855 * . ptr + scalar alu 3856 * . if (scalar cond K|scalar) 3857 * . helper_call(.., scalar, ...) where ARG_CONST is expected 3858 * backtrack through the verifier states and mark all registers and 3859 * stack slots with spilled constants that these scalar regisers 3860 * should be precise. 3861 * . during state pruning two registers (or spilled stack slots) 3862 * are equivalent if both are not precise. 3863 * 3864 * Note the verifier cannot simply walk register parentage chain, 3865 * since many different registers and stack slots could have been 3866 * used to compute single precise scalar. 3867 * 3868 * The approach of starting with precise=true for all registers and then 3869 * backtrack to mark a register as not precise when the verifier detects 3870 * that program doesn't care about specific value (e.g., when helper 3871 * takes register as ARG_ANYTHING parameter) is not safe. 3872 * 3873 * It's ok to walk single parentage chain of the verifier states. 3874 * It's possible that this backtracking will go all the way till 1st insn. 3875 * All other branches will be explored for needing precision later. 3876 * 3877 * The backtracking needs to deal with cases like: 3878 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 3879 * r9 -= r8 3880 * r5 = r9 3881 * if r5 > 0x79f goto pc+7 3882 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 3883 * r5 += 1 3884 * ... 3885 * call bpf_perf_event_output#25 3886 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 3887 * 3888 * and this case: 3889 * r6 = 1 3890 * call foo // uses callee's r6 inside to compute r0 3891 * r0 += r6 3892 * if r0 == 0 goto 3893 * 3894 * to track above reg_mask/stack_mask needs to be independent for each frame. 3895 * 3896 * Also if parent's curframe > frame where backtracking started, 3897 * the verifier need to mark registers in both frames, otherwise callees 3898 * may incorrectly prune callers. This is similar to 3899 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 3900 * 3901 * For now backtracking falls back into conservative marking. 3902 */ 3903 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 3904 struct bpf_verifier_state *st) 3905 { 3906 struct bpf_func_state *func; 3907 struct bpf_reg_state *reg; 3908 int i, j; 3909 3910 if (env->log.level & BPF_LOG_LEVEL2) { 3911 verbose(env, "mark_precise: frame%d: falling back to forcing all scalars precise\n", 3912 st->curframe); 3913 } 3914 3915 /* big hammer: mark all scalars precise in this path. 3916 * pop_stack may still get !precise scalars. 3917 * We also skip current state and go straight to first parent state, 3918 * because precision markings in current non-checkpointed state are 3919 * not needed. See why in the comment in __mark_chain_precision below. 3920 */ 3921 for (st = st->parent; st; st = st->parent) { 3922 for (i = 0; i <= st->curframe; i++) { 3923 func = st->frame[i]; 3924 for (j = 0; j < BPF_REG_FP; j++) { 3925 reg = &func->regs[j]; 3926 if (reg->type != SCALAR_VALUE || reg->precise) 3927 continue; 3928 reg->precise = true; 3929 if (env->log.level & BPF_LOG_LEVEL2) { 3930 verbose(env, "force_precise: frame%d: forcing r%d to be precise\n", 3931 i, j); 3932 } 3933 } 3934 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 3935 if (!is_spilled_reg(&func->stack[j])) 3936 continue; 3937 reg = &func->stack[j].spilled_ptr; 3938 if (reg->type != SCALAR_VALUE || reg->precise) 3939 continue; 3940 reg->precise = true; 3941 if (env->log.level & BPF_LOG_LEVEL2) { 3942 verbose(env, "force_precise: frame%d: forcing fp%d to be precise\n", 3943 i, -(j + 1) * 8); 3944 } 3945 } 3946 } 3947 } 3948 } 3949 3950 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 3951 { 3952 struct bpf_func_state *func; 3953 struct bpf_reg_state *reg; 3954 int i, j; 3955 3956 for (i = 0; i <= st->curframe; i++) { 3957 func = st->frame[i]; 3958 for (j = 0; j < BPF_REG_FP; j++) { 3959 reg = &func->regs[j]; 3960 if (reg->type != SCALAR_VALUE) 3961 continue; 3962 reg->precise = false; 3963 } 3964 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 3965 if (!is_spilled_reg(&func->stack[j])) 3966 continue; 3967 reg = &func->stack[j].spilled_ptr; 3968 if (reg->type != SCALAR_VALUE) 3969 continue; 3970 reg->precise = false; 3971 } 3972 } 3973 } 3974 3975 static bool idset_contains(struct bpf_idset *s, u32 id) 3976 { 3977 u32 i; 3978 3979 for (i = 0; i < s->count; ++i) 3980 if (s->ids[i] == id) 3981 return true; 3982 3983 return false; 3984 } 3985 3986 static int idset_push(struct bpf_idset *s, u32 id) 3987 { 3988 if (WARN_ON_ONCE(s->count >= ARRAY_SIZE(s->ids))) 3989 return -EFAULT; 3990 s->ids[s->count++] = id; 3991 return 0; 3992 } 3993 3994 static void idset_reset(struct bpf_idset *s) 3995 { 3996 s->count = 0; 3997 } 3998 3999 /* Collect a set of IDs for all registers currently marked as precise in env->bt. 4000 * Mark all registers with these IDs as precise. 4001 */ 4002 static int mark_precise_scalar_ids(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 4003 { 4004 struct bpf_idset *precise_ids = &env->idset_scratch; 4005 struct backtrack_state *bt = &env->bt; 4006 struct bpf_func_state *func; 4007 struct bpf_reg_state *reg; 4008 DECLARE_BITMAP(mask, 64); 4009 int i, fr; 4010 4011 idset_reset(precise_ids); 4012 4013 for (fr = bt->frame; fr >= 0; fr--) { 4014 func = st->frame[fr]; 4015 4016 bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr)); 4017 for_each_set_bit(i, mask, 32) { 4018 reg = &func->regs[i]; 4019 if (!reg->id || reg->type != SCALAR_VALUE) 4020 continue; 4021 if (idset_push(precise_ids, reg->id)) 4022 return -EFAULT; 4023 } 4024 4025 bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr)); 4026 for_each_set_bit(i, mask, 64) { 4027 if (i >= func->allocated_stack / BPF_REG_SIZE) 4028 break; 4029 if (!is_spilled_scalar_reg(&func->stack[i])) 4030 continue; 4031 reg = &func->stack[i].spilled_ptr; 4032 if (!reg->id) 4033 continue; 4034 if (idset_push(precise_ids, reg->id)) 4035 return -EFAULT; 4036 } 4037 } 4038 4039 for (fr = 0; fr <= st->curframe; ++fr) { 4040 func = st->frame[fr]; 4041 4042 for (i = BPF_REG_0; i < BPF_REG_10; ++i) { 4043 reg = &func->regs[i]; 4044 if (!reg->id) 4045 continue; 4046 if (!idset_contains(precise_ids, reg->id)) 4047 continue; 4048 bt_set_frame_reg(bt, fr, i); 4049 } 4050 for (i = 0; i < func->allocated_stack / BPF_REG_SIZE; ++i) { 4051 if (!is_spilled_scalar_reg(&func->stack[i])) 4052 continue; 4053 reg = &func->stack[i].spilled_ptr; 4054 if (!reg->id) 4055 continue; 4056 if (!idset_contains(precise_ids, reg->id)) 4057 continue; 4058 bt_set_frame_slot(bt, fr, i); 4059 } 4060 } 4061 4062 return 0; 4063 } 4064 4065 /* 4066 * __mark_chain_precision() backtracks BPF program instruction sequence and 4067 * chain of verifier states making sure that register *regno* (if regno >= 0) 4068 * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked 4069 * SCALARS, as well as any other registers and slots that contribute to 4070 * a tracked state of given registers/stack slots, depending on specific BPF 4071 * assembly instructions (see backtrack_insns() for exact instruction handling 4072 * logic). This backtracking relies on recorded jmp_history and is able to 4073 * traverse entire chain of parent states. This process ends only when all the 4074 * necessary registers/slots and their transitive dependencies are marked as 4075 * precise. 4076 * 4077 * One important and subtle aspect is that precise marks *do not matter* in 4078 * the currently verified state (current state). It is important to understand 4079 * why this is the case. 4080 * 4081 * First, note that current state is the state that is not yet "checkpointed", 4082 * i.e., it is not yet put into env->explored_states, and it has no children 4083 * states as well. It's ephemeral, and can end up either a) being discarded if 4084 * compatible explored state is found at some point or BPF_EXIT instruction is 4085 * reached or b) checkpointed and put into env->explored_states, branching out 4086 * into one or more children states. 4087 * 4088 * In the former case, precise markings in current state are completely 4089 * ignored by state comparison code (see regsafe() for details). Only 4090 * checkpointed ("old") state precise markings are important, and if old 4091 * state's register/slot is precise, regsafe() assumes current state's 4092 * register/slot as precise and checks value ranges exactly and precisely. If 4093 * states turn out to be compatible, current state's necessary precise 4094 * markings and any required parent states' precise markings are enforced 4095 * after the fact with propagate_precision() logic, after the fact. But it's 4096 * important to realize that in this case, even after marking current state 4097 * registers/slots as precise, we immediately discard current state. So what 4098 * actually matters is any of the precise markings propagated into current 4099 * state's parent states, which are always checkpointed (due to b) case above). 4100 * As such, for scenario a) it doesn't matter if current state has precise 4101 * markings set or not. 4102 * 4103 * Now, for the scenario b), checkpointing and forking into child(ren) 4104 * state(s). Note that before current state gets to checkpointing step, any 4105 * processed instruction always assumes precise SCALAR register/slot 4106 * knowledge: if precise value or range is useful to prune jump branch, BPF 4107 * verifier takes this opportunity enthusiastically. Similarly, when 4108 * register's value is used to calculate offset or memory address, exact 4109 * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to 4110 * what we mentioned above about state comparison ignoring precise markings 4111 * during state comparison, BPF verifier ignores and also assumes precise 4112 * markings *at will* during instruction verification process. But as verifier 4113 * assumes precision, it also propagates any precision dependencies across 4114 * parent states, which are not yet finalized, so can be further restricted 4115 * based on new knowledge gained from restrictions enforced by their children 4116 * states. This is so that once those parent states are finalized, i.e., when 4117 * they have no more active children state, state comparison logic in 4118 * is_state_visited() would enforce strict and precise SCALAR ranges, if 4119 * required for correctness. 4120 * 4121 * To build a bit more intuition, note also that once a state is checkpointed, 4122 * the path we took to get to that state is not important. This is crucial 4123 * property for state pruning. When state is checkpointed and finalized at 4124 * some instruction index, it can be correctly and safely used to "short 4125 * circuit" any *compatible* state that reaches exactly the same instruction 4126 * index. I.e., if we jumped to that instruction from a completely different 4127 * code path than original finalized state was derived from, it doesn't 4128 * matter, current state can be discarded because from that instruction 4129 * forward having a compatible state will ensure we will safely reach the 4130 * exit. States describe preconditions for further exploration, but completely 4131 * forget the history of how we got here. 4132 * 4133 * This also means that even if we needed precise SCALAR range to get to 4134 * finalized state, but from that point forward *that same* SCALAR register is 4135 * never used in a precise context (i.e., it's precise value is not needed for 4136 * correctness), it's correct and safe to mark such register as "imprecise" 4137 * (i.e., precise marking set to false). This is what we rely on when we do 4138 * not set precise marking in current state. If no child state requires 4139 * precision for any given SCALAR register, it's safe to dictate that it can 4140 * be imprecise. If any child state does require this register to be precise, 4141 * we'll mark it precise later retroactively during precise markings 4142 * propagation from child state to parent states. 4143 * 4144 * Skipping precise marking setting in current state is a mild version of 4145 * relying on the above observation. But we can utilize this property even 4146 * more aggressively by proactively forgetting any precise marking in the 4147 * current state (which we inherited from the parent state), right before we 4148 * checkpoint it and branch off into new child state. This is done by 4149 * mark_all_scalars_imprecise() to hopefully get more permissive and generic 4150 * finalized states which help in short circuiting more future states. 4151 */ 4152 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno) 4153 { 4154 struct backtrack_state *bt = &env->bt; 4155 struct bpf_verifier_state *st = env->cur_state; 4156 int first_idx = st->first_insn_idx; 4157 int last_idx = env->insn_idx; 4158 int subseq_idx = -1; 4159 struct bpf_func_state *func; 4160 struct bpf_reg_state *reg; 4161 bool skip_first = true; 4162 int i, fr, err; 4163 4164 if (!env->bpf_capable) 4165 return 0; 4166 4167 /* set frame number from which we are starting to backtrack */ 4168 bt_init(bt, env->cur_state->curframe); 4169 4170 /* Do sanity checks against current state of register and/or stack 4171 * slot, but don't set precise flag in current state, as precision 4172 * tracking in the current state is unnecessary. 4173 */ 4174 func = st->frame[bt->frame]; 4175 if (regno >= 0) { 4176 reg = &func->regs[regno]; 4177 if (reg->type != SCALAR_VALUE) { 4178 WARN_ONCE(1, "backtracing misuse"); 4179 return -EFAULT; 4180 } 4181 bt_set_reg(bt, regno); 4182 } 4183 4184 if (bt_empty(bt)) 4185 return 0; 4186 4187 for (;;) { 4188 DECLARE_BITMAP(mask, 64); 4189 u32 history = st->jmp_history_cnt; 4190 struct bpf_jmp_history_entry *hist; 4191 4192 if (env->log.level & BPF_LOG_LEVEL2) { 4193 verbose(env, "mark_precise: frame%d: last_idx %d first_idx %d subseq_idx %d \n", 4194 bt->frame, last_idx, first_idx, subseq_idx); 4195 } 4196 4197 /* If some register with scalar ID is marked as precise, 4198 * make sure that all registers sharing this ID are also precise. 4199 * This is needed to estimate effect of find_equal_scalars(). 4200 * Do this at the last instruction of each state, 4201 * bpf_reg_state::id fields are valid for these instructions. 4202 * 4203 * Allows to track precision in situation like below: 4204 * 4205 * r2 = unknown value 4206 * ... 4207 * --- state #0 --- 4208 * ... 4209 * r1 = r2 // r1 and r2 now share the same ID 4210 * ... 4211 * --- state #1 {r1.id = A, r2.id = A} --- 4212 * ... 4213 * if (r2 > 10) goto exit; // find_equal_scalars() assigns range to r1 4214 * ... 4215 * --- state #2 {r1.id = A, r2.id = A} --- 4216 * r3 = r10 4217 * r3 += r1 // need to mark both r1 and r2 4218 */ 4219 if (mark_precise_scalar_ids(env, st)) 4220 return -EFAULT; 4221 4222 if (last_idx < 0) { 4223 /* we are at the entry into subprog, which 4224 * is expected for global funcs, but only if 4225 * requested precise registers are R1-R5 4226 * (which are global func's input arguments) 4227 */ 4228 if (st->curframe == 0 && 4229 st->frame[0]->subprogno > 0 && 4230 st->frame[0]->callsite == BPF_MAIN_FUNC && 4231 bt_stack_mask(bt) == 0 && 4232 (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) == 0) { 4233 bitmap_from_u64(mask, bt_reg_mask(bt)); 4234 for_each_set_bit(i, mask, 32) { 4235 reg = &st->frame[0]->regs[i]; 4236 bt_clear_reg(bt, i); 4237 if (reg->type == SCALAR_VALUE) 4238 reg->precise = true; 4239 } 4240 return 0; 4241 } 4242 4243 verbose(env, "BUG backtracking func entry subprog %d reg_mask %x stack_mask %llx\n", 4244 st->frame[0]->subprogno, bt_reg_mask(bt), bt_stack_mask(bt)); 4245 WARN_ONCE(1, "verifier backtracking bug"); 4246 return -EFAULT; 4247 } 4248 4249 for (i = last_idx;;) { 4250 if (skip_first) { 4251 err = 0; 4252 skip_first = false; 4253 } else { 4254 hist = get_jmp_hist_entry(st, history, i); 4255 err = backtrack_insn(env, i, subseq_idx, hist, bt); 4256 } 4257 if (err == -ENOTSUPP) { 4258 mark_all_scalars_precise(env, env->cur_state); 4259 bt_reset(bt); 4260 return 0; 4261 } else if (err) { 4262 return err; 4263 } 4264 if (bt_empty(bt)) 4265 /* Found assignment(s) into tracked register in this state. 4266 * Since this state is already marked, just return. 4267 * Nothing to be tracked further in the parent state. 4268 */ 4269 return 0; 4270 subseq_idx = i; 4271 i = get_prev_insn_idx(st, i, &history); 4272 if (i == -ENOENT) 4273 break; 4274 if (i >= env->prog->len) { 4275 /* This can happen if backtracking reached insn 0 4276 * and there are still reg_mask or stack_mask 4277 * to backtrack. 4278 * It means the backtracking missed the spot where 4279 * particular register was initialized with a constant. 4280 */ 4281 verbose(env, "BUG backtracking idx %d\n", i); 4282 WARN_ONCE(1, "verifier backtracking bug"); 4283 return -EFAULT; 4284 } 4285 } 4286 st = st->parent; 4287 if (!st) 4288 break; 4289 4290 for (fr = bt->frame; fr >= 0; fr--) { 4291 func = st->frame[fr]; 4292 bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr)); 4293 for_each_set_bit(i, mask, 32) { 4294 reg = &func->regs[i]; 4295 if (reg->type != SCALAR_VALUE) { 4296 bt_clear_frame_reg(bt, fr, i); 4297 continue; 4298 } 4299 if (reg->precise) 4300 bt_clear_frame_reg(bt, fr, i); 4301 else 4302 reg->precise = true; 4303 } 4304 4305 bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr)); 4306 for_each_set_bit(i, mask, 64) { 4307 if (i >= func->allocated_stack / BPF_REG_SIZE) { 4308 verbose(env, "BUG backtracking (stack slot %d, total slots %d)\n", 4309 i, func->allocated_stack / BPF_REG_SIZE); 4310 WARN_ONCE(1, "verifier backtracking bug (stack slot out of bounds)"); 4311 return -EFAULT; 4312 } 4313 4314 if (!is_spilled_scalar_reg(&func->stack[i])) { 4315 bt_clear_frame_slot(bt, fr, i); 4316 continue; 4317 } 4318 reg = &func->stack[i].spilled_ptr; 4319 if (reg->precise) 4320 bt_clear_frame_slot(bt, fr, i); 4321 else 4322 reg->precise = true; 4323 } 4324 if (env->log.level & BPF_LOG_LEVEL2) { 4325 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, 4326 bt_frame_reg_mask(bt, fr)); 4327 verbose(env, "mark_precise: frame%d: parent state regs=%s ", 4328 fr, env->tmp_str_buf); 4329 fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, 4330 bt_frame_stack_mask(bt, fr)); 4331 verbose(env, "stack=%s: ", env->tmp_str_buf); 4332 print_verifier_state(env, func, true); 4333 } 4334 } 4335 4336 if (bt_empty(bt)) 4337 return 0; 4338 4339 subseq_idx = first_idx; 4340 last_idx = st->last_insn_idx; 4341 first_idx = st->first_insn_idx; 4342 } 4343 4344 /* if we still have requested precise regs or slots, we missed 4345 * something (e.g., stack access through non-r10 register), so 4346 * fallback to marking all precise 4347 */ 4348 if (!bt_empty(bt)) { 4349 mark_all_scalars_precise(env, env->cur_state); 4350 bt_reset(bt); 4351 } 4352 4353 return 0; 4354 } 4355 4356 int mark_chain_precision(struct bpf_verifier_env *env, int regno) 4357 { 4358 return __mark_chain_precision(env, regno); 4359 } 4360 4361 /* mark_chain_precision_batch() assumes that env->bt is set in the caller to 4362 * desired reg and stack masks across all relevant frames 4363 */ 4364 static int mark_chain_precision_batch(struct bpf_verifier_env *env) 4365 { 4366 return __mark_chain_precision(env, -1); 4367 } 4368 4369 static bool is_spillable_regtype(enum bpf_reg_type type) 4370 { 4371 switch (base_type(type)) { 4372 case PTR_TO_MAP_VALUE: 4373 case PTR_TO_STACK: 4374 case PTR_TO_CTX: 4375 case PTR_TO_PACKET: 4376 case PTR_TO_PACKET_META: 4377 case PTR_TO_PACKET_END: 4378 case PTR_TO_FLOW_KEYS: 4379 case CONST_PTR_TO_MAP: 4380 case PTR_TO_SOCKET: 4381 case PTR_TO_SOCK_COMMON: 4382 case PTR_TO_TCP_SOCK: 4383 case PTR_TO_XDP_SOCK: 4384 case PTR_TO_BTF_ID: 4385 case PTR_TO_BUF: 4386 case PTR_TO_MEM: 4387 case PTR_TO_FUNC: 4388 case PTR_TO_MAP_KEY: 4389 case PTR_TO_ARENA: 4390 return true; 4391 default: 4392 return false; 4393 } 4394 } 4395 4396 /* Does this register contain a constant zero? */ 4397 static bool register_is_null(struct bpf_reg_state *reg) 4398 { 4399 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 4400 } 4401 4402 /* check if register is a constant scalar value */ 4403 static bool is_reg_const(struct bpf_reg_state *reg, bool subreg32) 4404 { 4405 return reg->type == SCALAR_VALUE && 4406 tnum_is_const(subreg32 ? tnum_subreg(reg->var_off) : reg->var_off); 4407 } 4408 4409 /* assuming is_reg_const() is true, return constant value of a register */ 4410 static u64 reg_const_value(struct bpf_reg_state *reg, bool subreg32) 4411 { 4412 return subreg32 ? tnum_subreg(reg->var_off).value : reg->var_off.value; 4413 } 4414 4415 static bool __is_pointer_value(bool allow_ptr_leaks, 4416 const struct bpf_reg_state *reg) 4417 { 4418 if (allow_ptr_leaks) 4419 return false; 4420 4421 return reg->type != SCALAR_VALUE; 4422 } 4423 4424 static void assign_scalar_id_before_mov(struct bpf_verifier_env *env, 4425 struct bpf_reg_state *src_reg) 4426 { 4427 if (src_reg->type == SCALAR_VALUE && !src_reg->id && 4428 !tnum_is_const(src_reg->var_off)) 4429 /* Ensure that src_reg has a valid ID that will be copied to 4430 * dst_reg and then will be used by find_equal_scalars() to 4431 * propagate min/max range. 4432 */ 4433 src_reg->id = ++env->id_gen; 4434 } 4435 4436 /* Copy src state preserving dst->parent and dst->live fields */ 4437 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src) 4438 { 4439 struct bpf_reg_state *parent = dst->parent; 4440 enum bpf_reg_liveness live = dst->live; 4441 4442 *dst = *src; 4443 dst->parent = parent; 4444 dst->live = live; 4445 } 4446 4447 static void save_register_state(struct bpf_verifier_env *env, 4448 struct bpf_func_state *state, 4449 int spi, struct bpf_reg_state *reg, 4450 int size) 4451 { 4452 int i; 4453 4454 copy_register_state(&state->stack[spi].spilled_ptr, reg); 4455 if (size == BPF_REG_SIZE) 4456 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 4457 4458 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--) 4459 state->stack[spi].slot_type[i - 1] = STACK_SPILL; 4460 4461 /* size < 8 bytes spill */ 4462 for (; i; i--) 4463 mark_stack_slot_misc(env, &state->stack[spi].slot_type[i - 1]); 4464 } 4465 4466 static bool is_bpf_st_mem(struct bpf_insn *insn) 4467 { 4468 return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM; 4469 } 4470 4471 static int get_reg_width(struct bpf_reg_state *reg) 4472 { 4473 return fls64(reg->umax_value); 4474 } 4475 4476 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers, 4477 * stack boundary and alignment are checked in check_mem_access() 4478 */ 4479 static int check_stack_write_fixed_off(struct bpf_verifier_env *env, 4480 /* stack frame we're writing to */ 4481 struct bpf_func_state *state, 4482 int off, int size, int value_regno, 4483 int insn_idx) 4484 { 4485 struct bpf_func_state *cur; /* state of the current function */ 4486 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 4487 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 4488 struct bpf_reg_state *reg = NULL; 4489 int insn_flags = insn_stack_access_flags(state->frameno, spi); 4490 4491 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 4492 * so it's aligned access and [off, off + size) are within stack limits 4493 */ 4494 if (!env->allow_ptr_leaks && 4495 is_spilled_reg(&state->stack[spi]) && 4496 size != BPF_REG_SIZE) { 4497 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 4498 return -EACCES; 4499 } 4500 4501 cur = env->cur_state->frame[env->cur_state->curframe]; 4502 if (value_regno >= 0) 4503 reg = &cur->regs[value_regno]; 4504 if (!env->bypass_spec_v4) { 4505 bool sanitize = reg && is_spillable_regtype(reg->type); 4506 4507 for (i = 0; i < size; i++) { 4508 u8 type = state->stack[spi].slot_type[i]; 4509 4510 if (type != STACK_MISC && type != STACK_ZERO) { 4511 sanitize = true; 4512 break; 4513 } 4514 } 4515 4516 if (sanitize) 4517 env->insn_aux_data[insn_idx].sanitize_stack_spill = true; 4518 } 4519 4520 err = destroy_if_dynptr_stack_slot(env, state, spi); 4521 if (err) 4522 return err; 4523 4524 mark_stack_slot_scratched(env, spi); 4525 if (reg && !(off % BPF_REG_SIZE) && reg->type == SCALAR_VALUE && env->bpf_capable) { 4526 bool reg_value_fits; 4527 4528 reg_value_fits = get_reg_width(reg) <= BITS_PER_BYTE * size; 4529 /* Make sure that reg had an ID to build a relation on spill. */ 4530 if (reg_value_fits) 4531 assign_scalar_id_before_mov(env, reg); 4532 save_register_state(env, state, spi, reg, size); 4533 /* Break the relation on a narrowing spill. */ 4534 if (!reg_value_fits) 4535 state->stack[spi].spilled_ptr.id = 0; 4536 } else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) && 4537 env->bpf_capable) { 4538 struct bpf_reg_state fake_reg = {}; 4539 4540 __mark_reg_known(&fake_reg, insn->imm); 4541 fake_reg.type = SCALAR_VALUE; 4542 save_register_state(env, state, spi, &fake_reg, size); 4543 } else if (reg && is_spillable_regtype(reg->type)) { 4544 /* register containing pointer is being spilled into stack */ 4545 if (size != BPF_REG_SIZE) { 4546 verbose_linfo(env, insn_idx, "; "); 4547 verbose(env, "invalid size of register spill\n"); 4548 return -EACCES; 4549 } 4550 if (state != cur && reg->type == PTR_TO_STACK) { 4551 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 4552 return -EINVAL; 4553 } 4554 save_register_state(env, state, spi, reg, size); 4555 } else { 4556 u8 type = STACK_MISC; 4557 4558 /* regular write of data into stack destroys any spilled ptr */ 4559 state->stack[spi].spilled_ptr.type = NOT_INIT; 4560 /* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */ 4561 if (is_stack_slot_special(&state->stack[spi])) 4562 for (i = 0; i < BPF_REG_SIZE; i++) 4563 scrub_spilled_slot(&state->stack[spi].slot_type[i]); 4564 4565 /* only mark the slot as written if all 8 bytes were written 4566 * otherwise read propagation may incorrectly stop too soon 4567 * when stack slots are partially written. 4568 * This heuristic means that read propagation will be 4569 * conservative, since it will add reg_live_read marks 4570 * to stack slots all the way to first state when programs 4571 * writes+reads less than 8 bytes 4572 */ 4573 if (size == BPF_REG_SIZE) 4574 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 4575 4576 /* when we zero initialize stack slots mark them as such */ 4577 if ((reg && register_is_null(reg)) || 4578 (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) { 4579 /* STACK_ZERO case happened because register spill 4580 * wasn't properly aligned at the stack slot boundary, 4581 * so it's not a register spill anymore; force 4582 * originating register to be precise to make 4583 * STACK_ZERO correct for subsequent states 4584 */ 4585 err = mark_chain_precision(env, value_regno); 4586 if (err) 4587 return err; 4588 type = STACK_ZERO; 4589 } 4590 4591 /* Mark slots affected by this stack write. */ 4592 for (i = 0; i < size; i++) 4593 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = type; 4594 insn_flags = 0; /* not a register spill */ 4595 } 4596 4597 if (insn_flags) 4598 return push_jmp_history(env, env->cur_state, insn_flags); 4599 return 0; 4600 } 4601 4602 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is 4603 * known to contain a variable offset. 4604 * This function checks whether the write is permitted and conservatively 4605 * tracks the effects of the write, considering that each stack slot in the 4606 * dynamic range is potentially written to. 4607 * 4608 * 'off' includes 'regno->off'. 4609 * 'value_regno' can be -1, meaning that an unknown value is being written to 4610 * the stack. 4611 * 4612 * Spilled pointers in range are not marked as written because we don't know 4613 * what's going to be actually written. This means that read propagation for 4614 * future reads cannot be terminated by this write. 4615 * 4616 * For privileged programs, uninitialized stack slots are considered 4617 * initialized by this write (even though we don't know exactly what offsets 4618 * are going to be written to). The idea is that we don't want the verifier to 4619 * reject future reads that access slots written to through variable offsets. 4620 */ 4621 static int check_stack_write_var_off(struct bpf_verifier_env *env, 4622 /* func where register points to */ 4623 struct bpf_func_state *state, 4624 int ptr_regno, int off, int size, 4625 int value_regno, int insn_idx) 4626 { 4627 struct bpf_func_state *cur; /* state of the current function */ 4628 int min_off, max_off; 4629 int i, err; 4630 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL; 4631 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 4632 bool writing_zero = false; 4633 /* set if the fact that we're writing a zero is used to let any 4634 * stack slots remain STACK_ZERO 4635 */ 4636 bool zero_used = false; 4637 4638 cur = env->cur_state->frame[env->cur_state->curframe]; 4639 ptr_reg = &cur->regs[ptr_regno]; 4640 min_off = ptr_reg->smin_value + off; 4641 max_off = ptr_reg->smax_value + off + size; 4642 if (value_regno >= 0) 4643 value_reg = &cur->regs[value_regno]; 4644 if ((value_reg && register_is_null(value_reg)) || 4645 (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0)) 4646 writing_zero = true; 4647 4648 for (i = min_off; i < max_off; i++) { 4649 int spi; 4650 4651 spi = __get_spi(i); 4652 err = destroy_if_dynptr_stack_slot(env, state, spi); 4653 if (err) 4654 return err; 4655 } 4656 4657 /* Variable offset writes destroy any spilled pointers in range. */ 4658 for (i = min_off; i < max_off; i++) { 4659 u8 new_type, *stype; 4660 int slot, spi; 4661 4662 slot = -i - 1; 4663 spi = slot / BPF_REG_SIZE; 4664 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 4665 mark_stack_slot_scratched(env, spi); 4666 4667 if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) { 4668 /* Reject the write if range we may write to has not 4669 * been initialized beforehand. If we didn't reject 4670 * here, the ptr status would be erased below (even 4671 * though not all slots are actually overwritten), 4672 * possibly opening the door to leaks. 4673 * 4674 * We do however catch STACK_INVALID case below, and 4675 * only allow reading possibly uninitialized memory 4676 * later for CAP_PERFMON, as the write may not happen to 4677 * that slot. 4678 */ 4679 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d", 4680 insn_idx, i); 4681 return -EINVAL; 4682 } 4683 4684 /* If writing_zero and the spi slot contains a spill of value 0, 4685 * maintain the spill type. 4686 */ 4687 if (writing_zero && *stype == STACK_SPILL && 4688 is_spilled_scalar_reg(&state->stack[spi])) { 4689 struct bpf_reg_state *spill_reg = &state->stack[spi].spilled_ptr; 4690 4691 if (tnum_is_const(spill_reg->var_off) && spill_reg->var_off.value == 0) { 4692 zero_used = true; 4693 continue; 4694 } 4695 } 4696 4697 /* Erase all other spilled pointers. */ 4698 state->stack[spi].spilled_ptr.type = NOT_INIT; 4699 4700 /* Update the slot type. */ 4701 new_type = STACK_MISC; 4702 if (writing_zero && *stype == STACK_ZERO) { 4703 new_type = STACK_ZERO; 4704 zero_used = true; 4705 } 4706 /* If the slot is STACK_INVALID, we check whether it's OK to 4707 * pretend that it will be initialized by this write. The slot 4708 * might not actually be written to, and so if we mark it as 4709 * initialized future reads might leak uninitialized memory. 4710 * For privileged programs, we will accept such reads to slots 4711 * that may or may not be written because, if we're reject 4712 * them, the error would be too confusing. 4713 */ 4714 if (*stype == STACK_INVALID && !env->allow_uninit_stack) { 4715 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d", 4716 insn_idx, i); 4717 return -EINVAL; 4718 } 4719 *stype = new_type; 4720 } 4721 if (zero_used) { 4722 /* backtracking doesn't work for STACK_ZERO yet. */ 4723 err = mark_chain_precision(env, value_regno); 4724 if (err) 4725 return err; 4726 } 4727 return 0; 4728 } 4729 4730 /* When register 'dst_regno' is assigned some values from stack[min_off, 4731 * max_off), we set the register's type according to the types of the 4732 * respective stack slots. If all the stack values are known to be zeros, then 4733 * so is the destination reg. Otherwise, the register is considered to be 4734 * SCALAR. This function does not deal with register filling; the caller must 4735 * ensure that all spilled registers in the stack range have been marked as 4736 * read. 4737 */ 4738 static void mark_reg_stack_read(struct bpf_verifier_env *env, 4739 /* func where src register points to */ 4740 struct bpf_func_state *ptr_state, 4741 int min_off, int max_off, int dst_regno) 4742 { 4743 struct bpf_verifier_state *vstate = env->cur_state; 4744 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4745 int i, slot, spi; 4746 u8 *stype; 4747 int zeros = 0; 4748 4749 for (i = min_off; i < max_off; i++) { 4750 slot = -i - 1; 4751 spi = slot / BPF_REG_SIZE; 4752 mark_stack_slot_scratched(env, spi); 4753 stype = ptr_state->stack[spi].slot_type; 4754 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO) 4755 break; 4756 zeros++; 4757 } 4758 if (zeros == max_off - min_off) { 4759 /* Any access_size read into register is zero extended, 4760 * so the whole register == const_zero. 4761 */ 4762 __mark_reg_const_zero(env, &state->regs[dst_regno]); 4763 } else { 4764 /* have read misc data from the stack */ 4765 mark_reg_unknown(env, state->regs, dst_regno); 4766 } 4767 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 4768 } 4769 4770 /* Read the stack at 'off' and put the results into the register indicated by 4771 * 'dst_regno'. It handles reg filling if the addressed stack slot is a 4772 * spilled reg. 4773 * 4774 * 'dst_regno' can be -1, meaning that the read value is not going to a 4775 * register. 4776 * 4777 * The access is assumed to be within the current stack bounds. 4778 */ 4779 static int check_stack_read_fixed_off(struct bpf_verifier_env *env, 4780 /* func where src register points to */ 4781 struct bpf_func_state *reg_state, 4782 int off, int size, int dst_regno) 4783 { 4784 struct bpf_verifier_state *vstate = env->cur_state; 4785 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4786 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 4787 struct bpf_reg_state *reg; 4788 u8 *stype, type; 4789 int insn_flags = insn_stack_access_flags(reg_state->frameno, spi); 4790 4791 stype = reg_state->stack[spi].slot_type; 4792 reg = ®_state->stack[spi].spilled_ptr; 4793 4794 mark_stack_slot_scratched(env, spi); 4795 4796 if (is_spilled_reg(®_state->stack[spi])) { 4797 u8 spill_size = 1; 4798 4799 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--) 4800 spill_size++; 4801 4802 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) { 4803 if (reg->type != SCALAR_VALUE) { 4804 verbose_linfo(env, env->insn_idx, "; "); 4805 verbose(env, "invalid size of register fill\n"); 4806 return -EACCES; 4807 } 4808 4809 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 4810 if (dst_regno < 0) 4811 return 0; 4812 4813 if (size <= spill_size && 4814 bpf_stack_narrow_access_ok(off, size, spill_size)) { 4815 /* The earlier check_reg_arg() has decided the 4816 * subreg_def for this insn. Save it first. 4817 */ 4818 s32 subreg_def = state->regs[dst_regno].subreg_def; 4819 4820 copy_register_state(&state->regs[dst_regno], reg); 4821 state->regs[dst_regno].subreg_def = subreg_def; 4822 4823 /* Break the relation on a narrowing fill. 4824 * coerce_reg_to_size will adjust the boundaries. 4825 */ 4826 if (get_reg_width(reg) > size * BITS_PER_BYTE) 4827 state->regs[dst_regno].id = 0; 4828 } else { 4829 int spill_cnt = 0, zero_cnt = 0; 4830 4831 for (i = 0; i < size; i++) { 4832 type = stype[(slot - i) % BPF_REG_SIZE]; 4833 if (type == STACK_SPILL) { 4834 spill_cnt++; 4835 continue; 4836 } 4837 if (type == STACK_MISC) 4838 continue; 4839 if (type == STACK_ZERO) { 4840 zero_cnt++; 4841 continue; 4842 } 4843 if (type == STACK_INVALID && env->allow_uninit_stack) 4844 continue; 4845 verbose(env, "invalid read from stack off %d+%d size %d\n", 4846 off, i, size); 4847 return -EACCES; 4848 } 4849 4850 if (spill_cnt == size && 4851 tnum_is_const(reg->var_off) && reg->var_off.value == 0) { 4852 __mark_reg_const_zero(env, &state->regs[dst_regno]); 4853 /* this IS register fill, so keep insn_flags */ 4854 } else if (zero_cnt == size) { 4855 /* similarly to mark_reg_stack_read(), preserve zeroes */ 4856 __mark_reg_const_zero(env, &state->regs[dst_regno]); 4857 insn_flags = 0; /* not restoring original register state */ 4858 } else { 4859 mark_reg_unknown(env, state->regs, dst_regno); 4860 insn_flags = 0; /* not restoring original register state */ 4861 } 4862 } 4863 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 4864 } else if (dst_regno >= 0) { 4865 /* restore register state from stack */ 4866 copy_register_state(&state->regs[dst_regno], reg); 4867 /* mark reg as written since spilled pointer state likely 4868 * has its liveness marks cleared by is_state_visited() 4869 * which resets stack/reg liveness for state transitions 4870 */ 4871 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 4872 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { 4873 /* If dst_regno==-1, the caller is asking us whether 4874 * it is acceptable to use this value as a SCALAR_VALUE 4875 * (e.g. for XADD). 4876 * We must not allow unprivileged callers to do that 4877 * with spilled pointers. 4878 */ 4879 verbose(env, "leaking pointer from stack off %d\n", 4880 off); 4881 return -EACCES; 4882 } 4883 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 4884 } else { 4885 for (i = 0; i < size; i++) { 4886 type = stype[(slot - i) % BPF_REG_SIZE]; 4887 if (type == STACK_MISC) 4888 continue; 4889 if (type == STACK_ZERO) 4890 continue; 4891 if (type == STACK_INVALID && env->allow_uninit_stack) 4892 continue; 4893 verbose(env, "invalid read from stack off %d+%d size %d\n", 4894 off, i, size); 4895 return -EACCES; 4896 } 4897 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 4898 if (dst_regno >= 0) 4899 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno); 4900 insn_flags = 0; /* we are not restoring spilled register */ 4901 } 4902 if (insn_flags) 4903 return push_jmp_history(env, env->cur_state, insn_flags); 4904 return 0; 4905 } 4906 4907 enum bpf_access_src { 4908 ACCESS_DIRECT = 1, /* the access is performed by an instruction */ 4909 ACCESS_HELPER = 2, /* the access is performed by a helper */ 4910 }; 4911 4912 static int check_stack_range_initialized(struct bpf_verifier_env *env, 4913 int regno, int off, int access_size, 4914 bool zero_size_allowed, 4915 enum bpf_access_src type, 4916 struct bpf_call_arg_meta *meta); 4917 4918 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 4919 { 4920 return cur_regs(env) + regno; 4921 } 4922 4923 /* Read the stack at 'ptr_regno + off' and put the result into the register 4924 * 'dst_regno'. 4925 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'), 4926 * but not its variable offset. 4927 * 'size' is assumed to be <= reg size and the access is assumed to be aligned. 4928 * 4929 * As opposed to check_stack_read_fixed_off, this function doesn't deal with 4930 * filling registers (i.e. reads of spilled register cannot be detected when 4931 * the offset is not fixed). We conservatively mark 'dst_regno' as containing 4932 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable 4933 * offset; for a fixed offset check_stack_read_fixed_off should be used 4934 * instead. 4935 */ 4936 static int check_stack_read_var_off(struct bpf_verifier_env *env, 4937 int ptr_regno, int off, int size, int dst_regno) 4938 { 4939 /* The state of the source register. */ 4940 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 4941 struct bpf_func_state *ptr_state = func(env, reg); 4942 int err; 4943 int min_off, max_off; 4944 4945 /* Note that we pass a NULL meta, so raw access will not be permitted. 4946 */ 4947 err = check_stack_range_initialized(env, ptr_regno, off, size, 4948 false, ACCESS_DIRECT, NULL); 4949 if (err) 4950 return err; 4951 4952 min_off = reg->smin_value + off; 4953 max_off = reg->smax_value + off; 4954 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno); 4955 return 0; 4956 } 4957 4958 /* check_stack_read dispatches to check_stack_read_fixed_off or 4959 * check_stack_read_var_off. 4960 * 4961 * The caller must ensure that the offset falls within the allocated stack 4962 * bounds. 4963 * 4964 * 'dst_regno' is a register which will receive the value from the stack. It 4965 * can be -1, meaning that the read value is not going to a register. 4966 */ 4967 static int check_stack_read(struct bpf_verifier_env *env, 4968 int ptr_regno, int off, int size, 4969 int dst_regno) 4970 { 4971 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 4972 struct bpf_func_state *state = func(env, reg); 4973 int err; 4974 /* Some accesses are only permitted with a static offset. */ 4975 bool var_off = !tnum_is_const(reg->var_off); 4976 4977 /* The offset is required to be static when reads don't go to a 4978 * register, in order to not leak pointers (see 4979 * check_stack_read_fixed_off). 4980 */ 4981 if (dst_regno < 0 && var_off) { 4982 char tn_buf[48]; 4983 4984 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4985 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n", 4986 tn_buf, off, size); 4987 return -EACCES; 4988 } 4989 /* Variable offset is prohibited for unprivileged mode for simplicity 4990 * since it requires corresponding support in Spectre masking for stack 4991 * ALU. See also retrieve_ptr_limit(). The check in 4992 * check_stack_access_for_ptr_arithmetic() called by 4993 * adjust_ptr_min_max_vals() prevents users from creating stack pointers 4994 * with variable offsets, therefore no check is required here. Further, 4995 * just checking it here would be insufficient as speculative stack 4996 * writes could still lead to unsafe speculative behaviour. 4997 */ 4998 if (!var_off) { 4999 off += reg->var_off.value; 5000 err = check_stack_read_fixed_off(env, state, off, size, 5001 dst_regno); 5002 } else { 5003 /* Variable offset stack reads need more conservative handling 5004 * than fixed offset ones. Note that dst_regno >= 0 on this 5005 * branch. 5006 */ 5007 err = check_stack_read_var_off(env, ptr_regno, off, size, 5008 dst_regno); 5009 } 5010 return err; 5011 } 5012 5013 5014 /* check_stack_write dispatches to check_stack_write_fixed_off or 5015 * check_stack_write_var_off. 5016 * 5017 * 'ptr_regno' is the register used as a pointer into the stack. 5018 * 'off' includes 'ptr_regno->off', but not its variable offset (if any). 5019 * 'value_regno' is the register whose value we're writing to the stack. It can 5020 * be -1, meaning that we're not writing from a register. 5021 * 5022 * The caller must ensure that the offset falls within the maximum stack size. 5023 */ 5024 static int check_stack_write(struct bpf_verifier_env *env, 5025 int ptr_regno, int off, int size, 5026 int value_regno, int insn_idx) 5027 { 5028 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 5029 struct bpf_func_state *state = func(env, reg); 5030 int err; 5031 5032 if (tnum_is_const(reg->var_off)) { 5033 off += reg->var_off.value; 5034 err = check_stack_write_fixed_off(env, state, off, size, 5035 value_regno, insn_idx); 5036 } else { 5037 /* Variable offset stack reads need more conservative handling 5038 * than fixed offset ones. 5039 */ 5040 err = check_stack_write_var_off(env, state, 5041 ptr_regno, off, size, 5042 value_regno, insn_idx); 5043 } 5044 return err; 5045 } 5046 5047 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 5048 int off, int size, enum bpf_access_type type) 5049 { 5050 struct bpf_reg_state *regs = cur_regs(env); 5051 struct bpf_map *map = regs[regno].map_ptr; 5052 u32 cap = bpf_map_flags_to_cap(map); 5053 5054 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 5055 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 5056 map->value_size, off, size); 5057 return -EACCES; 5058 } 5059 5060 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 5061 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 5062 map->value_size, off, size); 5063 return -EACCES; 5064 } 5065 5066 return 0; 5067 } 5068 5069 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */ 5070 static int __check_mem_access(struct bpf_verifier_env *env, int regno, 5071 int off, int size, u32 mem_size, 5072 bool zero_size_allowed) 5073 { 5074 bool size_ok = size > 0 || (size == 0 && zero_size_allowed); 5075 struct bpf_reg_state *reg; 5076 5077 if (off >= 0 && size_ok && (u64)off + size <= mem_size) 5078 return 0; 5079 5080 reg = &cur_regs(env)[regno]; 5081 switch (reg->type) { 5082 case PTR_TO_MAP_KEY: 5083 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n", 5084 mem_size, off, size); 5085 break; 5086 case PTR_TO_MAP_VALUE: 5087 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 5088 mem_size, off, size); 5089 break; 5090 case PTR_TO_PACKET: 5091 case PTR_TO_PACKET_META: 5092 case PTR_TO_PACKET_END: 5093 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 5094 off, size, regno, reg->id, off, mem_size); 5095 break; 5096 case PTR_TO_MEM: 5097 default: 5098 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n", 5099 mem_size, off, size); 5100 } 5101 5102 return -EACCES; 5103 } 5104 5105 /* check read/write into a memory region with possible variable offset */ 5106 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, 5107 int off, int size, u32 mem_size, 5108 bool zero_size_allowed) 5109 { 5110 struct bpf_verifier_state *vstate = env->cur_state; 5111 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5112 struct bpf_reg_state *reg = &state->regs[regno]; 5113 int err; 5114 5115 /* We may have adjusted the register pointing to memory region, so we 5116 * need to try adding each of min_value and max_value to off 5117 * to make sure our theoretical access will be safe. 5118 * 5119 * The minimum value is only important with signed 5120 * comparisons where we can't assume the floor of a 5121 * value is 0. If we are using signed variables for our 5122 * index'es we need to make sure that whatever we use 5123 * will have a set floor within our range. 5124 */ 5125 if (reg->smin_value < 0 && 5126 (reg->smin_value == S64_MIN || 5127 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 5128 reg->smin_value + off < 0)) { 5129 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 5130 regno); 5131 return -EACCES; 5132 } 5133 err = __check_mem_access(env, regno, reg->smin_value + off, size, 5134 mem_size, zero_size_allowed); 5135 if (err) { 5136 verbose(env, "R%d min value is outside of the allowed memory range\n", 5137 regno); 5138 return err; 5139 } 5140 5141 /* If we haven't set a max value then we need to bail since we can't be 5142 * sure we won't do bad things. 5143 * If reg->umax_value + off could overflow, treat that as unbounded too. 5144 */ 5145 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 5146 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n", 5147 regno); 5148 return -EACCES; 5149 } 5150 err = __check_mem_access(env, regno, reg->umax_value + off, size, 5151 mem_size, zero_size_allowed); 5152 if (err) { 5153 verbose(env, "R%d max value is outside of the allowed memory range\n", 5154 regno); 5155 return err; 5156 } 5157 5158 return 0; 5159 } 5160 5161 static int __check_ptr_off_reg(struct bpf_verifier_env *env, 5162 const struct bpf_reg_state *reg, int regno, 5163 bool fixed_off_ok) 5164 { 5165 /* Access to this pointer-typed register or passing it to a helper 5166 * is only allowed in its original, unmodified form. 5167 */ 5168 5169 if (reg->off < 0) { 5170 verbose(env, "negative offset %s ptr R%d off=%d disallowed\n", 5171 reg_type_str(env, reg->type), regno, reg->off); 5172 return -EACCES; 5173 } 5174 5175 if (!fixed_off_ok && reg->off) { 5176 verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n", 5177 reg_type_str(env, reg->type), regno, reg->off); 5178 return -EACCES; 5179 } 5180 5181 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 5182 char tn_buf[48]; 5183 5184 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5185 verbose(env, "variable %s access var_off=%s disallowed\n", 5186 reg_type_str(env, reg->type), tn_buf); 5187 return -EACCES; 5188 } 5189 5190 return 0; 5191 } 5192 5193 static int check_ptr_off_reg(struct bpf_verifier_env *env, 5194 const struct bpf_reg_state *reg, int regno) 5195 { 5196 return __check_ptr_off_reg(env, reg, regno, false); 5197 } 5198 5199 static int map_kptr_match_type(struct bpf_verifier_env *env, 5200 struct btf_field *kptr_field, 5201 struct bpf_reg_state *reg, u32 regno) 5202 { 5203 const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id); 5204 int perm_flags; 5205 const char *reg_name = ""; 5206 5207 if (btf_is_kernel(reg->btf)) { 5208 perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU; 5209 5210 /* Only unreferenced case accepts untrusted pointers */ 5211 if (kptr_field->type == BPF_KPTR_UNREF) 5212 perm_flags |= PTR_UNTRUSTED; 5213 } else { 5214 perm_flags = PTR_MAYBE_NULL | MEM_ALLOC; 5215 if (kptr_field->type == BPF_KPTR_PERCPU) 5216 perm_flags |= MEM_PERCPU; 5217 } 5218 5219 if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags)) 5220 goto bad_type; 5221 5222 /* We need to verify reg->type and reg->btf, before accessing reg->btf */ 5223 reg_name = btf_type_name(reg->btf, reg->btf_id); 5224 5225 /* For ref_ptr case, release function check should ensure we get one 5226 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the 5227 * normal store of unreferenced kptr, we must ensure var_off is zero. 5228 * Since ref_ptr cannot be accessed directly by BPF insns, checks for 5229 * reg->off and reg->ref_obj_id are not needed here. 5230 */ 5231 if (__check_ptr_off_reg(env, reg, regno, true)) 5232 return -EACCES; 5233 5234 /* A full type match is needed, as BTF can be vmlinux, module or prog BTF, and 5235 * we also need to take into account the reg->off. 5236 * 5237 * We want to support cases like: 5238 * 5239 * struct foo { 5240 * struct bar br; 5241 * struct baz bz; 5242 * }; 5243 * 5244 * struct foo *v; 5245 * v = func(); // PTR_TO_BTF_ID 5246 * val->foo = v; // reg->off is zero, btf and btf_id match type 5247 * val->bar = &v->br; // reg->off is still zero, but we need to retry with 5248 * // first member type of struct after comparison fails 5249 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked 5250 * // to match type 5251 * 5252 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off 5253 * is zero. We must also ensure that btf_struct_ids_match does not walk 5254 * the struct to match type against first member of struct, i.e. reject 5255 * second case from above. Hence, when type is BPF_KPTR_REF, we set 5256 * strict mode to true for type match. 5257 */ 5258 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 5259 kptr_field->kptr.btf, kptr_field->kptr.btf_id, 5260 kptr_field->type != BPF_KPTR_UNREF)) 5261 goto bad_type; 5262 return 0; 5263 bad_type: 5264 verbose(env, "invalid kptr access, R%d type=%s%s ", regno, 5265 reg_type_str(env, reg->type), reg_name); 5266 verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name); 5267 if (kptr_field->type == BPF_KPTR_UNREF) 5268 verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED), 5269 targ_name); 5270 else 5271 verbose(env, "\n"); 5272 return -EINVAL; 5273 } 5274 5275 static bool in_sleepable(struct bpf_verifier_env *env) 5276 { 5277 return env->prog->sleepable; 5278 } 5279 5280 /* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock() 5281 * can dereference RCU protected pointers and result is PTR_TRUSTED. 5282 */ 5283 static bool in_rcu_cs(struct bpf_verifier_env *env) 5284 { 5285 return env->cur_state->active_rcu_lock || 5286 env->cur_state->active_lock.ptr || 5287 !in_sleepable(env); 5288 } 5289 5290 /* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */ 5291 BTF_SET_START(rcu_protected_types) 5292 BTF_ID(struct, prog_test_ref_kfunc) 5293 #ifdef CONFIG_CGROUPS 5294 BTF_ID(struct, cgroup) 5295 #endif 5296 #ifdef CONFIG_BPF_JIT 5297 BTF_ID(struct, bpf_cpumask) 5298 #endif 5299 BTF_ID(struct, task_struct) 5300 BTF_SET_END(rcu_protected_types) 5301 5302 static bool rcu_protected_object(const struct btf *btf, u32 btf_id) 5303 { 5304 if (!btf_is_kernel(btf)) 5305 return true; 5306 return btf_id_set_contains(&rcu_protected_types, btf_id); 5307 } 5308 5309 static struct btf_record *kptr_pointee_btf_record(struct btf_field *kptr_field) 5310 { 5311 struct btf_struct_meta *meta; 5312 5313 if (btf_is_kernel(kptr_field->kptr.btf)) 5314 return NULL; 5315 5316 meta = btf_find_struct_meta(kptr_field->kptr.btf, 5317 kptr_field->kptr.btf_id); 5318 5319 return meta ? meta->record : NULL; 5320 } 5321 5322 static bool rcu_safe_kptr(const struct btf_field *field) 5323 { 5324 const struct btf_field_kptr *kptr = &field->kptr; 5325 5326 return field->type == BPF_KPTR_PERCPU || 5327 (field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id)); 5328 } 5329 5330 static u32 btf_ld_kptr_type(struct bpf_verifier_env *env, struct btf_field *kptr_field) 5331 { 5332 struct btf_record *rec; 5333 u32 ret; 5334 5335 ret = PTR_MAYBE_NULL; 5336 if (rcu_safe_kptr(kptr_field) && in_rcu_cs(env)) { 5337 ret |= MEM_RCU; 5338 if (kptr_field->type == BPF_KPTR_PERCPU) 5339 ret |= MEM_PERCPU; 5340 else if (!btf_is_kernel(kptr_field->kptr.btf)) 5341 ret |= MEM_ALLOC; 5342 5343 rec = kptr_pointee_btf_record(kptr_field); 5344 if (rec && btf_record_has_field(rec, BPF_GRAPH_NODE)) 5345 ret |= NON_OWN_REF; 5346 } else { 5347 ret |= PTR_UNTRUSTED; 5348 } 5349 5350 return ret; 5351 } 5352 5353 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno, 5354 int value_regno, int insn_idx, 5355 struct btf_field *kptr_field) 5356 { 5357 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 5358 int class = BPF_CLASS(insn->code); 5359 struct bpf_reg_state *val_reg; 5360 5361 /* Things we already checked for in check_map_access and caller: 5362 * - Reject cases where variable offset may touch kptr 5363 * - size of access (must be BPF_DW) 5364 * - tnum_is_const(reg->var_off) 5365 * - kptr_field->offset == off + reg->var_off.value 5366 */ 5367 /* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */ 5368 if (BPF_MODE(insn->code) != BPF_MEM) { 5369 verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n"); 5370 return -EACCES; 5371 } 5372 5373 /* We only allow loading referenced kptr, since it will be marked as 5374 * untrusted, similar to unreferenced kptr. 5375 */ 5376 if (class != BPF_LDX && 5377 (kptr_field->type == BPF_KPTR_REF || kptr_field->type == BPF_KPTR_PERCPU)) { 5378 verbose(env, "store to referenced kptr disallowed\n"); 5379 return -EACCES; 5380 } 5381 5382 if (class == BPF_LDX) { 5383 val_reg = reg_state(env, value_regno); 5384 /* We can simply mark the value_regno receiving the pointer 5385 * value from map as PTR_TO_BTF_ID, with the correct type. 5386 */ 5387 mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf, 5388 kptr_field->kptr.btf_id, btf_ld_kptr_type(env, kptr_field)); 5389 /* For mark_ptr_or_null_reg */ 5390 val_reg->id = ++env->id_gen; 5391 } else if (class == BPF_STX) { 5392 val_reg = reg_state(env, value_regno); 5393 if (!register_is_null(val_reg) && 5394 map_kptr_match_type(env, kptr_field, val_reg, value_regno)) 5395 return -EACCES; 5396 } else if (class == BPF_ST) { 5397 if (insn->imm) { 5398 verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n", 5399 kptr_field->offset); 5400 return -EACCES; 5401 } 5402 } else { 5403 verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n"); 5404 return -EACCES; 5405 } 5406 return 0; 5407 } 5408 5409 /* check read/write into a map element with possible variable offset */ 5410 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 5411 int off, int size, bool zero_size_allowed, 5412 enum bpf_access_src src) 5413 { 5414 struct bpf_verifier_state *vstate = env->cur_state; 5415 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5416 struct bpf_reg_state *reg = &state->regs[regno]; 5417 struct bpf_map *map = reg->map_ptr; 5418 struct btf_record *rec; 5419 int err, i; 5420 5421 err = check_mem_region_access(env, regno, off, size, map->value_size, 5422 zero_size_allowed); 5423 if (err) 5424 return err; 5425 5426 if (IS_ERR_OR_NULL(map->record)) 5427 return 0; 5428 rec = map->record; 5429 for (i = 0; i < rec->cnt; i++) { 5430 struct btf_field *field = &rec->fields[i]; 5431 u32 p = field->offset; 5432 5433 /* If any part of a field can be touched by load/store, reject 5434 * this program. To check that [x1, x2) overlaps with [y1, y2), 5435 * it is sufficient to check x1 < y2 && y1 < x2. 5436 */ 5437 if (reg->smin_value + off < p + btf_field_type_size(field->type) && 5438 p < reg->umax_value + off + size) { 5439 switch (field->type) { 5440 case BPF_KPTR_UNREF: 5441 case BPF_KPTR_REF: 5442 case BPF_KPTR_PERCPU: 5443 if (src != ACCESS_DIRECT) { 5444 verbose(env, "kptr cannot be accessed indirectly by helper\n"); 5445 return -EACCES; 5446 } 5447 if (!tnum_is_const(reg->var_off)) { 5448 verbose(env, "kptr access cannot have variable offset\n"); 5449 return -EACCES; 5450 } 5451 if (p != off + reg->var_off.value) { 5452 verbose(env, "kptr access misaligned expected=%u off=%llu\n", 5453 p, off + reg->var_off.value); 5454 return -EACCES; 5455 } 5456 if (size != bpf_size_to_bytes(BPF_DW)) { 5457 verbose(env, "kptr access size must be BPF_DW\n"); 5458 return -EACCES; 5459 } 5460 break; 5461 default: 5462 verbose(env, "%s cannot be accessed directly by load/store\n", 5463 btf_field_type_name(field->type)); 5464 return -EACCES; 5465 } 5466 } 5467 } 5468 return 0; 5469 } 5470 5471 #define MAX_PACKET_OFF 0xffff 5472 5473 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 5474 const struct bpf_call_arg_meta *meta, 5475 enum bpf_access_type t) 5476 { 5477 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 5478 5479 switch (prog_type) { 5480 /* Program types only with direct read access go here! */ 5481 case BPF_PROG_TYPE_LWT_IN: 5482 case BPF_PROG_TYPE_LWT_OUT: 5483 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 5484 case BPF_PROG_TYPE_SK_REUSEPORT: 5485 case BPF_PROG_TYPE_FLOW_DISSECTOR: 5486 case BPF_PROG_TYPE_CGROUP_SKB: 5487 if (t == BPF_WRITE) 5488 return false; 5489 fallthrough; 5490 5491 /* Program types with direct read + write access go here! */ 5492 case BPF_PROG_TYPE_SCHED_CLS: 5493 case BPF_PROG_TYPE_SCHED_ACT: 5494 case BPF_PROG_TYPE_XDP: 5495 case BPF_PROG_TYPE_LWT_XMIT: 5496 case BPF_PROG_TYPE_SK_SKB: 5497 case BPF_PROG_TYPE_SK_MSG: 5498 if (meta) 5499 return meta->pkt_access; 5500 5501 env->seen_direct_write = true; 5502 return true; 5503 5504 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 5505 if (t == BPF_WRITE) 5506 env->seen_direct_write = true; 5507 5508 return true; 5509 5510 default: 5511 return false; 5512 } 5513 } 5514 5515 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 5516 int size, bool zero_size_allowed) 5517 { 5518 struct bpf_reg_state *regs = cur_regs(env); 5519 struct bpf_reg_state *reg = ®s[regno]; 5520 int err; 5521 5522 /* We may have added a variable offset to the packet pointer; but any 5523 * reg->range we have comes after that. We are only checking the fixed 5524 * offset. 5525 */ 5526 5527 /* We don't allow negative numbers, because we aren't tracking enough 5528 * detail to prove they're safe. 5529 */ 5530 if (reg->smin_value < 0) { 5531 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 5532 regno); 5533 return -EACCES; 5534 } 5535 5536 err = reg->range < 0 ? -EINVAL : 5537 __check_mem_access(env, regno, off, size, reg->range, 5538 zero_size_allowed); 5539 if (err) { 5540 verbose(env, "R%d offset is outside of the packet\n", regno); 5541 return err; 5542 } 5543 5544 /* __check_mem_access has made sure "off + size - 1" is within u16. 5545 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 5546 * otherwise find_good_pkt_pointers would have refused to set range info 5547 * that __check_mem_access would have rejected this pkt access. 5548 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 5549 */ 5550 env->prog->aux->max_pkt_offset = 5551 max_t(u32, env->prog->aux->max_pkt_offset, 5552 off + reg->umax_value + size - 1); 5553 5554 return err; 5555 } 5556 5557 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 5558 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 5559 enum bpf_access_type t, enum bpf_reg_type *reg_type, 5560 struct btf **btf, u32 *btf_id) 5561 { 5562 struct bpf_insn_access_aux info = { 5563 .reg_type = *reg_type, 5564 .log = &env->log, 5565 }; 5566 5567 if (env->ops->is_valid_access && 5568 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 5569 /* A non zero info.ctx_field_size indicates that this field is a 5570 * candidate for later verifier transformation to load the whole 5571 * field and then apply a mask when accessed with a narrower 5572 * access than actual ctx access size. A zero info.ctx_field_size 5573 * will only allow for whole field access and rejects any other 5574 * type of narrower access. 5575 */ 5576 *reg_type = info.reg_type; 5577 5578 if (base_type(*reg_type) == PTR_TO_BTF_ID) { 5579 *btf = info.btf; 5580 *btf_id = info.btf_id; 5581 } else { 5582 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 5583 } 5584 /* remember the offset of last byte accessed in ctx */ 5585 if (env->prog->aux->max_ctx_offset < off + size) 5586 env->prog->aux->max_ctx_offset = off + size; 5587 return 0; 5588 } 5589 5590 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 5591 return -EACCES; 5592 } 5593 5594 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 5595 int size) 5596 { 5597 if (size < 0 || off < 0 || 5598 (u64)off + size > sizeof(struct bpf_flow_keys)) { 5599 verbose(env, "invalid access to flow keys off=%d size=%d\n", 5600 off, size); 5601 return -EACCES; 5602 } 5603 return 0; 5604 } 5605 5606 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 5607 u32 regno, int off, int size, 5608 enum bpf_access_type t) 5609 { 5610 struct bpf_reg_state *regs = cur_regs(env); 5611 struct bpf_reg_state *reg = ®s[regno]; 5612 struct bpf_insn_access_aux info = {}; 5613 bool valid; 5614 5615 if (reg->smin_value < 0) { 5616 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 5617 regno); 5618 return -EACCES; 5619 } 5620 5621 switch (reg->type) { 5622 case PTR_TO_SOCK_COMMON: 5623 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 5624 break; 5625 case PTR_TO_SOCKET: 5626 valid = bpf_sock_is_valid_access(off, size, t, &info); 5627 break; 5628 case PTR_TO_TCP_SOCK: 5629 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 5630 break; 5631 case PTR_TO_XDP_SOCK: 5632 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 5633 break; 5634 default: 5635 valid = false; 5636 } 5637 5638 5639 if (valid) { 5640 env->insn_aux_data[insn_idx].ctx_field_size = 5641 info.ctx_field_size; 5642 return 0; 5643 } 5644 5645 verbose(env, "R%d invalid %s access off=%d size=%d\n", 5646 regno, reg_type_str(env, reg->type), off, size); 5647 5648 return -EACCES; 5649 } 5650 5651 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 5652 { 5653 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 5654 } 5655 5656 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 5657 { 5658 const struct bpf_reg_state *reg = reg_state(env, regno); 5659 5660 return reg->type == PTR_TO_CTX; 5661 } 5662 5663 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 5664 { 5665 const struct bpf_reg_state *reg = reg_state(env, regno); 5666 5667 return type_is_sk_pointer(reg->type); 5668 } 5669 5670 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 5671 { 5672 const struct bpf_reg_state *reg = reg_state(env, regno); 5673 5674 return type_is_pkt_pointer(reg->type); 5675 } 5676 5677 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 5678 { 5679 const struct bpf_reg_state *reg = reg_state(env, regno); 5680 5681 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 5682 return reg->type == PTR_TO_FLOW_KEYS; 5683 } 5684 5685 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = { 5686 #ifdef CONFIG_NET 5687 [PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK], 5688 [PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 5689 [PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP], 5690 #endif 5691 [CONST_PTR_TO_MAP] = btf_bpf_map_id, 5692 }; 5693 5694 static bool is_trusted_reg(const struct bpf_reg_state *reg) 5695 { 5696 /* A referenced register is always trusted. */ 5697 if (reg->ref_obj_id) 5698 return true; 5699 5700 /* Types listed in the reg2btf_ids are always trusted */ 5701 if (reg2btf_ids[base_type(reg->type)]) 5702 return true; 5703 5704 /* If a register is not referenced, it is trusted if it has the 5705 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the 5706 * other type modifiers may be safe, but we elect to take an opt-in 5707 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are 5708 * not. 5709 * 5710 * Eventually, we should make PTR_TRUSTED the single source of truth 5711 * for whether a register is trusted. 5712 */ 5713 return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS && 5714 !bpf_type_has_unsafe_modifiers(reg->type); 5715 } 5716 5717 static bool is_rcu_reg(const struct bpf_reg_state *reg) 5718 { 5719 return reg->type & MEM_RCU; 5720 } 5721 5722 static void clear_trusted_flags(enum bpf_type_flag *flag) 5723 { 5724 *flag &= ~(BPF_REG_TRUSTED_MODIFIERS | MEM_RCU); 5725 } 5726 5727 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 5728 const struct bpf_reg_state *reg, 5729 int off, int size, bool strict) 5730 { 5731 struct tnum reg_off; 5732 int ip_align; 5733 5734 /* Byte size accesses are always allowed. */ 5735 if (!strict || size == 1) 5736 return 0; 5737 5738 /* For platforms that do not have a Kconfig enabling 5739 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 5740 * NET_IP_ALIGN is universally set to '2'. And on platforms 5741 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 5742 * to this code only in strict mode where we want to emulate 5743 * the NET_IP_ALIGN==2 checking. Therefore use an 5744 * unconditional IP align value of '2'. 5745 */ 5746 ip_align = 2; 5747 5748 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 5749 if (!tnum_is_aligned(reg_off, size)) { 5750 char tn_buf[48]; 5751 5752 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5753 verbose(env, 5754 "misaligned packet access off %d+%s+%d+%d size %d\n", 5755 ip_align, tn_buf, reg->off, off, size); 5756 return -EACCES; 5757 } 5758 5759 return 0; 5760 } 5761 5762 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 5763 const struct bpf_reg_state *reg, 5764 const char *pointer_desc, 5765 int off, int size, bool strict) 5766 { 5767 struct tnum reg_off; 5768 5769 /* Byte size accesses are always allowed. */ 5770 if (!strict || size == 1) 5771 return 0; 5772 5773 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 5774 if (!tnum_is_aligned(reg_off, size)) { 5775 char tn_buf[48]; 5776 5777 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5778 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 5779 pointer_desc, tn_buf, reg->off, off, size); 5780 return -EACCES; 5781 } 5782 5783 return 0; 5784 } 5785 5786 static int check_ptr_alignment(struct bpf_verifier_env *env, 5787 const struct bpf_reg_state *reg, int off, 5788 int size, bool strict_alignment_once) 5789 { 5790 bool strict = env->strict_alignment || strict_alignment_once; 5791 const char *pointer_desc = ""; 5792 5793 switch (reg->type) { 5794 case PTR_TO_PACKET: 5795 case PTR_TO_PACKET_META: 5796 /* Special case, because of NET_IP_ALIGN. Given metadata sits 5797 * right in front, treat it the very same way. 5798 */ 5799 return check_pkt_ptr_alignment(env, reg, off, size, strict); 5800 case PTR_TO_FLOW_KEYS: 5801 pointer_desc = "flow keys "; 5802 break; 5803 case PTR_TO_MAP_KEY: 5804 pointer_desc = "key "; 5805 break; 5806 case PTR_TO_MAP_VALUE: 5807 pointer_desc = "value "; 5808 break; 5809 case PTR_TO_CTX: 5810 pointer_desc = "context "; 5811 break; 5812 case PTR_TO_STACK: 5813 pointer_desc = "stack "; 5814 /* The stack spill tracking logic in check_stack_write_fixed_off() 5815 * and check_stack_read_fixed_off() relies on stack accesses being 5816 * aligned. 5817 */ 5818 strict = true; 5819 break; 5820 case PTR_TO_SOCKET: 5821 pointer_desc = "sock "; 5822 break; 5823 case PTR_TO_SOCK_COMMON: 5824 pointer_desc = "sock_common "; 5825 break; 5826 case PTR_TO_TCP_SOCK: 5827 pointer_desc = "tcp_sock "; 5828 break; 5829 case PTR_TO_XDP_SOCK: 5830 pointer_desc = "xdp_sock "; 5831 break; 5832 case PTR_TO_ARENA: 5833 return 0; 5834 default: 5835 break; 5836 } 5837 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 5838 strict); 5839 } 5840 5841 static int round_up_stack_depth(struct bpf_verifier_env *env, int stack_depth) 5842 { 5843 if (env->prog->jit_requested) 5844 return round_up(stack_depth, 16); 5845 5846 /* round up to 32-bytes, since this is granularity 5847 * of interpreter stack size 5848 */ 5849 return round_up(max_t(u32, stack_depth, 1), 32); 5850 } 5851 5852 /* starting from main bpf function walk all instructions of the function 5853 * and recursively walk all callees that given function can call. 5854 * Ignore jump and exit insns. 5855 * Since recursion is prevented by check_cfg() this algorithm 5856 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 5857 */ 5858 static int check_max_stack_depth_subprog(struct bpf_verifier_env *env, int idx) 5859 { 5860 struct bpf_subprog_info *subprog = env->subprog_info; 5861 struct bpf_insn *insn = env->prog->insnsi; 5862 int depth = 0, frame = 0, i, subprog_end; 5863 bool tail_call_reachable = false; 5864 int ret_insn[MAX_CALL_FRAMES]; 5865 int ret_prog[MAX_CALL_FRAMES]; 5866 int j; 5867 5868 i = subprog[idx].start; 5869 process_func: 5870 /* protect against potential stack overflow that might happen when 5871 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack 5872 * depth for such case down to 256 so that the worst case scenario 5873 * would result in 8k stack size (32 which is tailcall limit * 256 = 5874 * 8k). 5875 * 5876 * To get the idea what might happen, see an example: 5877 * func1 -> sub rsp, 128 5878 * subfunc1 -> sub rsp, 256 5879 * tailcall1 -> add rsp, 256 5880 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320) 5881 * subfunc2 -> sub rsp, 64 5882 * subfunc22 -> sub rsp, 128 5883 * tailcall2 -> add rsp, 128 5884 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416) 5885 * 5886 * tailcall will unwind the current stack frame but it will not get rid 5887 * of caller's stack as shown on the example above. 5888 */ 5889 if (idx && subprog[idx].has_tail_call && depth >= 256) { 5890 verbose(env, 5891 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n", 5892 depth); 5893 return -EACCES; 5894 } 5895 depth += round_up_stack_depth(env, subprog[idx].stack_depth); 5896 if (depth > MAX_BPF_STACK) { 5897 verbose(env, "combined stack size of %d calls is %d. Too large\n", 5898 frame + 1, depth); 5899 return -EACCES; 5900 } 5901 continue_func: 5902 subprog_end = subprog[idx + 1].start; 5903 for (; i < subprog_end; i++) { 5904 int next_insn, sidx; 5905 5906 if (bpf_pseudo_kfunc_call(insn + i) && !insn[i].off) { 5907 bool err = false; 5908 5909 if (!is_bpf_throw_kfunc(insn + i)) 5910 continue; 5911 if (subprog[idx].is_cb) 5912 err = true; 5913 for (int c = 0; c < frame && !err; c++) { 5914 if (subprog[ret_prog[c]].is_cb) { 5915 err = true; 5916 break; 5917 } 5918 } 5919 if (!err) 5920 continue; 5921 verbose(env, 5922 "bpf_throw kfunc (insn %d) cannot be called from callback subprog %d\n", 5923 i, idx); 5924 return -EINVAL; 5925 } 5926 5927 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i)) 5928 continue; 5929 /* remember insn and function to return to */ 5930 ret_insn[frame] = i + 1; 5931 ret_prog[frame] = idx; 5932 5933 /* find the callee */ 5934 next_insn = i + insn[i].imm + 1; 5935 sidx = find_subprog(env, next_insn); 5936 if (sidx < 0) { 5937 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 5938 next_insn); 5939 return -EFAULT; 5940 } 5941 if (subprog[sidx].is_async_cb) { 5942 if (subprog[sidx].has_tail_call) { 5943 verbose(env, "verifier bug. subprog has tail_call and async cb\n"); 5944 return -EFAULT; 5945 } 5946 /* async callbacks don't increase bpf prog stack size unless called directly */ 5947 if (!bpf_pseudo_call(insn + i)) 5948 continue; 5949 if (subprog[sidx].is_exception_cb) { 5950 verbose(env, "insn %d cannot call exception cb directly\n", i); 5951 return -EINVAL; 5952 } 5953 } 5954 i = next_insn; 5955 idx = sidx; 5956 5957 if (subprog[idx].has_tail_call) 5958 tail_call_reachable = true; 5959 5960 frame++; 5961 if (frame >= MAX_CALL_FRAMES) { 5962 verbose(env, "the call stack of %d frames is too deep !\n", 5963 frame); 5964 return -E2BIG; 5965 } 5966 goto process_func; 5967 } 5968 /* if tail call got detected across bpf2bpf calls then mark each of the 5969 * currently present subprog frames as tail call reachable subprogs; 5970 * this info will be utilized by JIT so that we will be preserving the 5971 * tail call counter throughout bpf2bpf calls combined with tailcalls 5972 */ 5973 if (tail_call_reachable) 5974 for (j = 0; j < frame; j++) { 5975 if (subprog[ret_prog[j]].is_exception_cb) { 5976 verbose(env, "cannot tail call within exception cb\n"); 5977 return -EINVAL; 5978 } 5979 subprog[ret_prog[j]].tail_call_reachable = true; 5980 } 5981 if (subprog[0].tail_call_reachable) 5982 env->prog->aux->tail_call_reachable = true; 5983 5984 /* end of for() loop means the last insn of the 'subprog' 5985 * was reached. Doesn't matter whether it was JA or EXIT 5986 */ 5987 if (frame == 0) 5988 return 0; 5989 depth -= round_up_stack_depth(env, subprog[idx].stack_depth); 5990 frame--; 5991 i = ret_insn[frame]; 5992 idx = ret_prog[frame]; 5993 goto continue_func; 5994 } 5995 5996 static int check_max_stack_depth(struct bpf_verifier_env *env) 5997 { 5998 struct bpf_subprog_info *si = env->subprog_info; 5999 int ret; 6000 6001 for (int i = 0; i < env->subprog_cnt; i++) { 6002 if (!i || si[i].is_async_cb) { 6003 ret = check_max_stack_depth_subprog(env, i); 6004 if (ret < 0) 6005 return ret; 6006 } 6007 continue; 6008 } 6009 return 0; 6010 } 6011 6012 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 6013 static int get_callee_stack_depth(struct bpf_verifier_env *env, 6014 const struct bpf_insn *insn, int idx) 6015 { 6016 int start = idx + insn->imm + 1, subprog; 6017 6018 subprog = find_subprog(env, start); 6019 if (subprog < 0) { 6020 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 6021 start); 6022 return -EFAULT; 6023 } 6024 return env->subprog_info[subprog].stack_depth; 6025 } 6026 #endif 6027 6028 static int __check_buffer_access(struct bpf_verifier_env *env, 6029 const char *buf_info, 6030 const struct bpf_reg_state *reg, 6031 int regno, int off, int size) 6032 { 6033 if (off < 0) { 6034 verbose(env, 6035 "R%d invalid %s buffer access: off=%d, size=%d\n", 6036 regno, buf_info, off, size); 6037 return -EACCES; 6038 } 6039 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 6040 char tn_buf[48]; 6041 6042 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6043 verbose(env, 6044 "R%d invalid variable buffer offset: off=%d, var_off=%s\n", 6045 regno, off, tn_buf); 6046 return -EACCES; 6047 } 6048 6049 return 0; 6050 } 6051 6052 static int check_tp_buffer_access(struct bpf_verifier_env *env, 6053 const struct bpf_reg_state *reg, 6054 int regno, int off, int size) 6055 { 6056 int err; 6057 6058 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size); 6059 if (err) 6060 return err; 6061 6062 if (off + size > env->prog->aux->max_tp_access) 6063 env->prog->aux->max_tp_access = off + size; 6064 6065 return 0; 6066 } 6067 6068 static int check_buffer_access(struct bpf_verifier_env *env, 6069 const struct bpf_reg_state *reg, 6070 int regno, int off, int size, 6071 bool zero_size_allowed, 6072 u32 *max_access) 6073 { 6074 const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr"; 6075 int err; 6076 6077 err = __check_buffer_access(env, buf_info, reg, regno, off, size); 6078 if (err) 6079 return err; 6080 6081 if (off + size > *max_access) 6082 *max_access = off + size; 6083 6084 return 0; 6085 } 6086 6087 /* BPF architecture zero extends alu32 ops into 64-bit registesr */ 6088 static void zext_32_to_64(struct bpf_reg_state *reg) 6089 { 6090 reg->var_off = tnum_subreg(reg->var_off); 6091 __reg_assign_32_into_64(reg); 6092 } 6093 6094 /* truncate register to smaller size (in bytes) 6095 * must be called with size < BPF_REG_SIZE 6096 */ 6097 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 6098 { 6099 u64 mask; 6100 6101 /* clear high bits in bit representation */ 6102 reg->var_off = tnum_cast(reg->var_off, size); 6103 6104 /* fix arithmetic bounds */ 6105 mask = ((u64)1 << (size * 8)) - 1; 6106 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 6107 reg->umin_value &= mask; 6108 reg->umax_value &= mask; 6109 } else { 6110 reg->umin_value = 0; 6111 reg->umax_value = mask; 6112 } 6113 reg->smin_value = reg->umin_value; 6114 reg->smax_value = reg->umax_value; 6115 6116 /* If size is smaller than 32bit register the 32bit register 6117 * values are also truncated so we push 64-bit bounds into 6118 * 32-bit bounds. Above were truncated < 32-bits already. 6119 */ 6120 if (size < 4) 6121 __mark_reg32_unbounded(reg); 6122 6123 reg_bounds_sync(reg); 6124 } 6125 6126 static void set_sext64_default_val(struct bpf_reg_state *reg, int size) 6127 { 6128 if (size == 1) { 6129 reg->smin_value = reg->s32_min_value = S8_MIN; 6130 reg->smax_value = reg->s32_max_value = S8_MAX; 6131 } else if (size == 2) { 6132 reg->smin_value = reg->s32_min_value = S16_MIN; 6133 reg->smax_value = reg->s32_max_value = S16_MAX; 6134 } else { 6135 /* size == 4 */ 6136 reg->smin_value = reg->s32_min_value = S32_MIN; 6137 reg->smax_value = reg->s32_max_value = S32_MAX; 6138 } 6139 reg->umin_value = reg->u32_min_value = 0; 6140 reg->umax_value = U64_MAX; 6141 reg->u32_max_value = U32_MAX; 6142 reg->var_off = tnum_unknown; 6143 } 6144 6145 static void coerce_reg_to_size_sx(struct bpf_reg_state *reg, int size) 6146 { 6147 s64 init_s64_max, init_s64_min, s64_max, s64_min, u64_cval; 6148 u64 top_smax_value, top_smin_value; 6149 u64 num_bits = size * 8; 6150 6151 if (tnum_is_const(reg->var_off)) { 6152 u64_cval = reg->var_off.value; 6153 if (size == 1) 6154 reg->var_off = tnum_const((s8)u64_cval); 6155 else if (size == 2) 6156 reg->var_off = tnum_const((s16)u64_cval); 6157 else 6158 /* size == 4 */ 6159 reg->var_off = tnum_const((s32)u64_cval); 6160 6161 u64_cval = reg->var_off.value; 6162 reg->smax_value = reg->smin_value = u64_cval; 6163 reg->umax_value = reg->umin_value = u64_cval; 6164 reg->s32_max_value = reg->s32_min_value = u64_cval; 6165 reg->u32_max_value = reg->u32_min_value = u64_cval; 6166 return; 6167 } 6168 6169 top_smax_value = ((u64)reg->smax_value >> num_bits) << num_bits; 6170 top_smin_value = ((u64)reg->smin_value >> num_bits) << num_bits; 6171 6172 if (top_smax_value != top_smin_value) 6173 goto out; 6174 6175 /* find the s64_min and s64_min after sign extension */ 6176 if (size == 1) { 6177 init_s64_max = (s8)reg->smax_value; 6178 init_s64_min = (s8)reg->smin_value; 6179 } else if (size == 2) { 6180 init_s64_max = (s16)reg->smax_value; 6181 init_s64_min = (s16)reg->smin_value; 6182 } else { 6183 init_s64_max = (s32)reg->smax_value; 6184 init_s64_min = (s32)reg->smin_value; 6185 } 6186 6187 s64_max = max(init_s64_max, init_s64_min); 6188 s64_min = min(init_s64_max, init_s64_min); 6189 6190 /* both of s64_max/s64_min positive or negative */ 6191 if ((s64_max >= 0) == (s64_min >= 0)) { 6192 reg->smin_value = reg->s32_min_value = s64_min; 6193 reg->smax_value = reg->s32_max_value = s64_max; 6194 reg->umin_value = reg->u32_min_value = s64_min; 6195 reg->umax_value = reg->u32_max_value = s64_max; 6196 reg->var_off = tnum_range(s64_min, s64_max); 6197 return; 6198 } 6199 6200 out: 6201 set_sext64_default_val(reg, size); 6202 } 6203 6204 static void set_sext32_default_val(struct bpf_reg_state *reg, int size) 6205 { 6206 if (size == 1) { 6207 reg->s32_min_value = S8_MIN; 6208 reg->s32_max_value = S8_MAX; 6209 } else { 6210 /* size == 2 */ 6211 reg->s32_min_value = S16_MIN; 6212 reg->s32_max_value = S16_MAX; 6213 } 6214 reg->u32_min_value = 0; 6215 reg->u32_max_value = U32_MAX; 6216 } 6217 6218 static void coerce_subreg_to_size_sx(struct bpf_reg_state *reg, int size) 6219 { 6220 s32 init_s32_max, init_s32_min, s32_max, s32_min, u32_val; 6221 u32 top_smax_value, top_smin_value; 6222 u32 num_bits = size * 8; 6223 6224 if (tnum_is_const(reg->var_off)) { 6225 u32_val = reg->var_off.value; 6226 if (size == 1) 6227 reg->var_off = tnum_const((s8)u32_val); 6228 else 6229 reg->var_off = tnum_const((s16)u32_val); 6230 6231 u32_val = reg->var_off.value; 6232 reg->s32_min_value = reg->s32_max_value = u32_val; 6233 reg->u32_min_value = reg->u32_max_value = u32_val; 6234 return; 6235 } 6236 6237 top_smax_value = ((u32)reg->s32_max_value >> num_bits) << num_bits; 6238 top_smin_value = ((u32)reg->s32_min_value >> num_bits) << num_bits; 6239 6240 if (top_smax_value != top_smin_value) 6241 goto out; 6242 6243 /* find the s32_min and s32_min after sign extension */ 6244 if (size == 1) { 6245 init_s32_max = (s8)reg->s32_max_value; 6246 init_s32_min = (s8)reg->s32_min_value; 6247 } else { 6248 /* size == 2 */ 6249 init_s32_max = (s16)reg->s32_max_value; 6250 init_s32_min = (s16)reg->s32_min_value; 6251 } 6252 s32_max = max(init_s32_max, init_s32_min); 6253 s32_min = min(init_s32_max, init_s32_min); 6254 6255 if ((s32_min >= 0) == (s32_max >= 0)) { 6256 reg->s32_min_value = s32_min; 6257 reg->s32_max_value = s32_max; 6258 reg->u32_min_value = (u32)s32_min; 6259 reg->u32_max_value = (u32)s32_max; 6260 return; 6261 } 6262 6263 out: 6264 set_sext32_default_val(reg, size); 6265 } 6266 6267 static bool bpf_map_is_rdonly(const struct bpf_map *map) 6268 { 6269 /* A map is considered read-only if the following condition are true: 6270 * 6271 * 1) BPF program side cannot change any of the map content. The 6272 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map 6273 * and was set at map creation time. 6274 * 2) The map value(s) have been initialized from user space by a 6275 * loader and then "frozen", such that no new map update/delete 6276 * operations from syscall side are possible for the rest of 6277 * the map's lifetime from that point onwards. 6278 * 3) Any parallel/pending map update/delete operations from syscall 6279 * side have been completed. Only after that point, it's safe to 6280 * assume that map value(s) are immutable. 6281 */ 6282 return (map->map_flags & BPF_F_RDONLY_PROG) && 6283 READ_ONCE(map->frozen) && 6284 !bpf_map_write_active(map); 6285 } 6286 6287 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val, 6288 bool is_ldsx) 6289 { 6290 void *ptr; 6291 u64 addr; 6292 int err; 6293 6294 err = map->ops->map_direct_value_addr(map, &addr, off); 6295 if (err) 6296 return err; 6297 ptr = (void *)(long)addr + off; 6298 6299 switch (size) { 6300 case sizeof(u8): 6301 *val = is_ldsx ? (s64)*(s8 *)ptr : (u64)*(u8 *)ptr; 6302 break; 6303 case sizeof(u16): 6304 *val = is_ldsx ? (s64)*(s16 *)ptr : (u64)*(u16 *)ptr; 6305 break; 6306 case sizeof(u32): 6307 *val = is_ldsx ? (s64)*(s32 *)ptr : (u64)*(u32 *)ptr; 6308 break; 6309 case sizeof(u64): 6310 *val = *(u64 *)ptr; 6311 break; 6312 default: 6313 return -EINVAL; 6314 } 6315 return 0; 6316 } 6317 6318 #define BTF_TYPE_SAFE_RCU(__type) __PASTE(__type, __safe_rcu) 6319 #define BTF_TYPE_SAFE_RCU_OR_NULL(__type) __PASTE(__type, __safe_rcu_or_null) 6320 #define BTF_TYPE_SAFE_TRUSTED(__type) __PASTE(__type, __safe_trusted) 6321 6322 /* 6323 * Allow list few fields as RCU trusted or full trusted. 6324 * This logic doesn't allow mix tagging and will be removed once GCC supports 6325 * btf_type_tag. 6326 */ 6327 6328 /* RCU trusted: these fields are trusted in RCU CS and never NULL */ 6329 BTF_TYPE_SAFE_RCU(struct task_struct) { 6330 const cpumask_t *cpus_ptr; 6331 struct css_set __rcu *cgroups; 6332 struct task_struct __rcu *real_parent; 6333 struct task_struct *group_leader; 6334 }; 6335 6336 BTF_TYPE_SAFE_RCU(struct cgroup) { 6337 /* cgrp->kn is always accessible as documented in kernel/cgroup/cgroup.c */ 6338 struct kernfs_node *kn; 6339 }; 6340 6341 BTF_TYPE_SAFE_RCU(struct css_set) { 6342 struct cgroup *dfl_cgrp; 6343 }; 6344 6345 /* RCU trusted: these fields are trusted in RCU CS and can be NULL */ 6346 BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct) { 6347 struct file __rcu *exe_file; 6348 }; 6349 6350 /* skb->sk, req->sk are not RCU protected, but we mark them as such 6351 * because bpf prog accessible sockets are SOCK_RCU_FREE. 6352 */ 6353 BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff) { 6354 struct sock *sk; 6355 }; 6356 6357 BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock) { 6358 struct sock *sk; 6359 }; 6360 6361 /* full trusted: these fields are trusted even outside of RCU CS and never NULL */ 6362 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) { 6363 struct seq_file *seq; 6364 }; 6365 6366 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) { 6367 struct bpf_iter_meta *meta; 6368 struct task_struct *task; 6369 }; 6370 6371 BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) { 6372 struct file *file; 6373 }; 6374 6375 BTF_TYPE_SAFE_TRUSTED(struct file) { 6376 struct inode *f_inode; 6377 }; 6378 6379 BTF_TYPE_SAFE_TRUSTED(struct dentry) { 6380 /* no negative dentry-s in places where bpf can see it */ 6381 struct inode *d_inode; 6382 }; 6383 6384 BTF_TYPE_SAFE_TRUSTED(struct socket) { 6385 struct sock *sk; 6386 }; 6387 6388 static bool type_is_rcu(struct bpf_verifier_env *env, 6389 struct bpf_reg_state *reg, 6390 const char *field_name, u32 btf_id) 6391 { 6392 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct)); 6393 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup)); 6394 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set)); 6395 6396 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu"); 6397 } 6398 6399 static bool type_is_rcu_or_null(struct bpf_verifier_env *env, 6400 struct bpf_reg_state *reg, 6401 const char *field_name, u32 btf_id) 6402 { 6403 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct)); 6404 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff)); 6405 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock)); 6406 6407 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu_or_null"); 6408 } 6409 6410 static bool type_is_trusted(struct bpf_verifier_env *env, 6411 struct bpf_reg_state *reg, 6412 const char *field_name, u32 btf_id) 6413 { 6414 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta)); 6415 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task)); 6416 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm)); 6417 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file)); 6418 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct dentry)); 6419 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct socket)); 6420 6421 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted"); 6422 } 6423 6424 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 6425 struct bpf_reg_state *regs, 6426 int regno, int off, int size, 6427 enum bpf_access_type atype, 6428 int value_regno) 6429 { 6430 struct bpf_reg_state *reg = regs + regno; 6431 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id); 6432 const char *tname = btf_name_by_offset(reg->btf, t->name_off); 6433 const char *field_name = NULL; 6434 enum bpf_type_flag flag = 0; 6435 u32 btf_id = 0; 6436 int ret; 6437 6438 if (!env->allow_ptr_leaks) { 6439 verbose(env, 6440 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 6441 tname); 6442 return -EPERM; 6443 } 6444 if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) { 6445 verbose(env, 6446 "Cannot access kernel 'struct %s' from non-GPL compatible program\n", 6447 tname); 6448 return -EINVAL; 6449 } 6450 if (off < 0) { 6451 verbose(env, 6452 "R%d is ptr_%s invalid negative access: off=%d\n", 6453 regno, tname, off); 6454 return -EACCES; 6455 } 6456 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 6457 char tn_buf[48]; 6458 6459 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6460 verbose(env, 6461 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 6462 regno, tname, off, tn_buf); 6463 return -EACCES; 6464 } 6465 6466 if (reg->type & MEM_USER) { 6467 verbose(env, 6468 "R%d is ptr_%s access user memory: off=%d\n", 6469 regno, tname, off); 6470 return -EACCES; 6471 } 6472 6473 if (reg->type & MEM_PERCPU) { 6474 verbose(env, 6475 "R%d is ptr_%s access percpu memory: off=%d\n", 6476 regno, tname, off); 6477 return -EACCES; 6478 } 6479 6480 if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) { 6481 if (!btf_is_kernel(reg->btf)) { 6482 verbose(env, "verifier internal error: reg->btf must be kernel btf\n"); 6483 return -EFAULT; 6484 } 6485 ret = env->ops->btf_struct_access(&env->log, reg, off, size); 6486 } else { 6487 /* Writes are permitted with default btf_struct_access for 6488 * program allocated objects (which always have ref_obj_id > 0), 6489 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC. 6490 */ 6491 if (atype != BPF_READ && !type_is_ptr_alloc_obj(reg->type)) { 6492 verbose(env, "only read is supported\n"); 6493 return -EACCES; 6494 } 6495 6496 if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) && 6497 !(reg->type & MEM_RCU) && !reg->ref_obj_id) { 6498 verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n"); 6499 return -EFAULT; 6500 } 6501 6502 ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag, &field_name); 6503 } 6504 6505 if (ret < 0) 6506 return ret; 6507 6508 if (ret != PTR_TO_BTF_ID) { 6509 /* just mark; */ 6510 6511 } else if (type_flag(reg->type) & PTR_UNTRUSTED) { 6512 /* If this is an untrusted pointer, all pointers formed by walking it 6513 * also inherit the untrusted flag. 6514 */ 6515 flag = PTR_UNTRUSTED; 6516 6517 } else if (is_trusted_reg(reg) || is_rcu_reg(reg)) { 6518 /* By default any pointer obtained from walking a trusted pointer is no 6519 * longer trusted, unless the field being accessed has explicitly been 6520 * marked as inheriting its parent's state of trust (either full or RCU). 6521 * For example: 6522 * 'cgroups' pointer is untrusted if task->cgroups dereference 6523 * happened in a sleepable program outside of bpf_rcu_read_lock() 6524 * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU). 6525 * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED. 6526 * 6527 * A regular RCU-protected pointer with __rcu tag can also be deemed 6528 * trusted if we are in an RCU CS. Such pointer can be NULL. 6529 */ 6530 if (type_is_trusted(env, reg, field_name, btf_id)) { 6531 flag |= PTR_TRUSTED; 6532 } else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) { 6533 if (type_is_rcu(env, reg, field_name, btf_id)) { 6534 /* ignore __rcu tag and mark it MEM_RCU */ 6535 flag |= MEM_RCU; 6536 } else if (flag & MEM_RCU || 6537 type_is_rcu_or_null(env, reg, field_name, btf_id)) { 6538 /* __rcu tagged pointers can be NULL */ 6539 flag |= MEM_RCU | PTR_MAYBE_NULL; 6540 6541 /* We always trust them */ 6542 if (type_is_rcu_or_null(env, reg, field_name, btf_id) && 6543 flag & PTR_UNTRUSTED) 6544 flag &= ~PTR_UNTRUSTED; 6545 } else if (flag & (MEM_PERCPU | MEM_USER)) { 6546 /* keep as-is */ 6547 } else { 6548 /* walking unknown pointers yields old deprecated PTR_TO_BTF_ID */ 6549 clear_trusted_flags(&flag); 6550 } 6551 } else { 6552 /* 6553 * If not in RCU CS or MEM_RCU pointer can be NULL then 6554 * aggressively mark as untrusted otherwise such 6555 * pointers will be plain PTR_TO_BTF_ID without flags 6556 * and will be allowed to be passed into helpers for 6557 * compat reasons. 6558 */ 6559 flag = PTR_UNTRUSTED; 6560 } 6561 } else { 6562 /* Old compat. Deprecated */ 6563 clear_trusted_flags(&flag); 6564 } 6565 6566 if (atype == BPF_READ && value_regno >= 0) 6567 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag); 6568 6569 return 0; 6570 } 6571 6572 static int check_ptr_to_map_access(struct bpf_verifier_env *env, 6573 struct bpf_reg_state *regs, 6574 int regno, int off, int size, 6575 enum bpf_access_type atype, 6576 int value_regno) 6577 { 6578 struct bpf_reg_state *reg = regs + regno; 6579 struct bpf_map *map = reg->map_ptr; 6580 struct bpf_reg_state map_reg; 6581 enum bpf_type_flag flag = 0; 6582 const struct btf_type *t; 6583 const char *tname; 6584 u32 btf_id; 6585 int ret; 6586 6587 if (!btf_vmlinux) { 6588 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n"); 6589 return -ENOTSUPP; 6590 } 6591 6592 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) { 6593 verbose(env, "map_ptr access not supported for map type %d\n", 6594 map->map_type); 6595 return -ENOTSUPP; 6596 } 6597 6598 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id); 6599 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 6600 6601 if (!env->allow_ptr_leaks) { 6602 verbose(env, 6603 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 6604 tname); 6605 return -EPERM; 6606 } 6607 6608 if (off < 0) { 6609 verbose(env, "R%d is %s invalid negative access: off=%d\n", 6610 regno, tname, off); 6611 return -EACCES; 6612 } 6613 6614 if (atype != BPF_READ) { 6615 verbose(env, "only read from %s is supported\n", tname); 6616 return -EACCES; 6617 } 6618 6619 /* Simulate access to a PTR_TO_BTF_ID */ 6620 memset(&map_reg, 0, sizeof(map_reg)); 6621 mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0); 6622 ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag, NULL); 6623 if (ret < 0) 6624 return ret; 6625 6626 if (value_regno >= 0) 6627 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag); 6628 6629 return 0; 6630 } 6631 6632 /* Check that the stack access at the given offset is within bounds. The 6633 * maximum valid offset is -1. 6634 * 6635 * The minimum valid offset is -MAX_BPF_STACK for writes, and 6636 * -state->allocated_stack for reads. 6637 */ 6638 static int check_stack_slot_within_bounds(struct bpf_verifier_env *env, 6639 s64 off, 6640 struct bpf_func_state *state, 6641 enum bpf_access_type t) 6642 { 6643 int min_valid_off; 6644 6645 if (t == BPF_WRITE || env->allow_uninit_stack) 6646 min_valid_off = -MAX_BPF_STACK; 6647 else 6648 min_valid_off = -state->allocated_stack; 6649 6650 if (off < min_valid_off || off > -1) 6651 return -EACCES; 6652 return 0; 6653 } 6654 6655 /* Check that the stack access at 'regno + off' falls within the maximum stack 6656 * bounds. 6657 * 6658 * 'off' includes `regno->offset`, but not its dynamic part (if any). 6659 */ 6660 static int check_stack_access_within_bounds( 6661 struct bpf_verifier_env *env, 6662 int regno, int off, int access_size, 6663 enum bpf_access_src src, enum bpf_access_type type) 6664 { 6665 struct bpf_reg_state *regs = cur_regs(env); 6666 struct bpf_reg_state *reg = regs + regno; 6667 struct bpf_func_state *state = func(env, reg); 6668 s64 min_off, max_off; 6669 int err; 6670 char *err_extra; 6671 6672 if (src == ACCESS_HELPER) 6673 /* We don't know if helpers are reading or writing (or both). */ 6674 err_extra = " indirect access to"; 6675 else if (type == BPF_READ) 6676 err_extra = " read from"; 6677 else 6678 err_extra = " write to"; 6679 6680 if (tnum_is_const(reg->var_off)) { 6681 min_off = (s64)reg->var_off.value + off; 6682 max_off = min_off + access_size; 6683 } else { 6684 if (reg->smax_value >= BPF_MAX_VAR_OFF || 6685 reg->smin_value <= -BPF_MAX_VAR_OFF) { 6686 verbose(env, "invalid unbounded variable-offset%s stack R%d\n", 6687 err_extra, regno); 6688 return -EACCES; 6689 } 6690 min_off = reg->smin_value + off; 6691 max_off = reg->smax_value + off + access_size; 6692 } 6693 6694 err = check_stack_slot_within_bounds(env, min_off, state, type); 6695 if (!err && max_off > 0) 6696 err = -EINVAL; /* out of stack access into non-negative offsets */ 6697 6698 if (err) { 6699 if (tnum_is_const(reg->var_off)) { 6700 verbose(env, "invalid%s stack R%d off=%d size=%d\n", 6701 err_extra, regno, off, access_size); 6702 } else { 6703 char tn_buf[48]; 6704 6705 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6706 verbose(env, "invalid variable-offset%s stack R%d var_off=%s off=%d size=%d\n", 6707 err_extra, regno, tn_buf, off, access_size); 6708 } 6709 return err; 6710 } 6711 6712 /* Note that there is no stack access with offset zero, so the needed stack 6713 * size is -min_off, not -min_off+1. 6714 */ 6715 return grow_stack_state(env, state, -min_off /* size */); 6716 } 6717 6718 /* check whether memory at (regno + off) is accessible for t = (read | write) 6719 * if t==write, value_regno is a register which value is stored into memory 6720 * if t==read, value_regno is a register which will receive the value from memory 6721 * if t==write && value_regno==-1, some unknown value is stored into memory 6722 * if t==read && value_regno==-1, don't care what we read from memory 6723 */ 6724 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 6725 int off, int bpf_size, enum bpf_access_type t, 6726 int value_regno, bool strict_alignment_once, bool is_ldsx) 6727 { 6728 struct bpf_reg_state *regs = cur_regs(env); 6729 struct bpf_reg_state *reg = regs + regno; 6730 int size, err = 0; 6731 6732 size = bpf_size_to_bytes(bpf_size); 6733 if (size < 0) 6734 return size; 6735 6736 /* alignment checks will add in reg->off themselves */ 6737 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 6738 if (err) 6739 return err; 6740 6741 /* for access checks, reg->off is just part of off */ 6742 off += reg->off; 6743 6744 if (reg->type == PTR_TO_MAP_KEY) { 6745 if (t == BPF_WRITE) { 6746 verbose(env, "write to change key R%d not allowed\n", regno); 6747 return -EACCES; 6748 } 6749 6750 err = check_mem_region_access(env, regno, off, size, 6751 reg->map_ptr->key_size, false); 6752 if (err) 6753 return err; 6754 if (value_regno >= 0) 6755 mark_reg_unknown(env, regs, value_regno); 6756 } else if (reg->type == PTR_TO_MAP_VALUE) { 6757 struct btf_field *kptr_field = NULL; 6758 6759 if (t == BPF_WRITE && value_regno >= 0 && 6760 is_pointer_value(env, value_regno)) { 6761 verbose(env, "R%d leaks addr into map\n", value_regno); 6762 return -EACCES; 6763 } 6764 err = check_map_access_type(env, regno, off, size, t); 6765 if (err) 6766 return err; 6767 err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT); 6768 if (err) 6769 return err; 6770 if (tnum_is_const(reg->var_off)) 6771 kptr_field = btf_record_find(reg->map_ptr->record, 6772 off + reg->var_off.value, BPF_KPTR); 6773 if (kptr_field) { 6774 err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field); 6775 } else if (t == BPF_READ && value_regno >= 0) { 6776 struct bpf_map *map = reg->map_ptr; 6777 6778 /* if map is read-only, track its contents as scalars */ 6779 if (tnum_is_const(reg->var_off) && 6780 bpf_map_is_rdonly(map) && 6781 map->ops->map_direct_value_addr) { 6782 int map_off = off + reg->var_off.value; 6783 u64 val = 0; 6784 6785 err = bpf_map_direct_read(map, map_off, size, 6786 &val, is_ldsx); 6787 if (err) 6788 return err; 6789 6790 regs[value_regno].type = SCALAR_VALUE; 6791 __mark_reg_known(®s[value_regno], val); 6792 } else { 6793 mark_reg_unknown(env, regs, value_regno); 6794 } 6795 } 6796 } else if (base_type(reg->type) == PTR_TO_MEM) { 6797 bool rdonly_mem = type_is_rdonly_mem(reg->type); 6798 6799 if (type_may_be_null(reg->type)) { 6800 verbose(env, "R%d invalid mem access '%s'\n", regno, 6801 reg_type_str(env, reg->type)); 6802 return -EACCES; 6803 } 6804 6805 if (t == BPF_WRITE && rdonly_mem) { 6806 verbose(env, "R%d cannot write into %s\n", 6807 regno, reg_type_str(env, reg->type)); 6808 return -EACCES; 6809 } 6810 6811 if (t == BPF_WRITE && value_regno >= 0 && 6812 is_pointer_value(env, value_regno)) { 6813 verbose(env, "R%d leaks addr into mem\n", value_regno); 6814 return -EACCES; 6815 } 6816 6817 err = check_mem_region_access(env, regno, off, size, 6818 reg->mem_size, false); 6819 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem)) 6820 mark_reg_unknown(env, regs, value_regno); 6821 } else if (reg->type == PTR_TO_CTX) { 6822 enum bpf_reg_type reg_type = SCALAR_VALUE; 6823 struct btf *btf = NULL; 6824 u32 btf_id = 0; 6825 6826 if (t == BPF_WRITE && value_regno >= 0 && 6827 is_pointer_value(env, value_regno)) { 6828 verbose(env, "R%d leaks addr into ctx\n", value_regno); 6829 return -EACCES; 6830 } 6831 6832 err = check_ptr_off_reg(env, reg, regno); 6833 if (err < 0) 6834 return err; 6835 6836 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf, 6837 &btf_id); 6838 if (err) 6839 verbose_linfo(env, insn_idx, "; "); 6840 if (!err && t == BPF_READ && value_regno >= 0) { 6841 /* ctx access returns either a scalar, or a 6842 * PTR_TO_PACKET[_META,_END]. In the latter 6843 * case, we know the offset is zero. 6844 */ 6845 if (reg_type == SCALAR_VALUE) { 6846 mark_reg_unknown(env, regs, value_regno); 6847 } else { 6848 mark_reg_known_zero(env, regs, 6849 value_regno); 6850 if (type_may_be_null(reg_type)) 6851 regs[value_regno].id = ++env->id_gen; 6852 /* A load of ctx field could have different 6853 * actual load size with the one encoded in the 6854 * insn. When the dst is PTR, it is for sure not 6855 * a sub-register. 6856 */ 6857 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 6858 if (base_type(reg_type) == PTR_TO_BTF_ID) { 6859 regs[value_regno].btf = btf; 6860 regs[value_regno].btf_id = btf_id; 6861 } 6862 } 6863 regs[value_regno].type = reg_type; 6864 } 6865 6866 } else if (reg->type == PTR_TO_STACK) { 6867 /* Basic bounds checks. */ 6868 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t); 6869 if (err) 6870 return err; 6871 6872 if (t == BPF_READ) 6873 err = check_stack_read(env, regno, off, size, 6874 value_regno); 6875 else 6876 err = check_stack_write(env, regno, off, size, 6877 value_regno, insn_idx); 6878 } else if (reg_is_pkt_pointer(reg)) { 6879 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 6880 verbose(env, "cannot write into packet\n"); 6881 return -EACCES; 6882 } 6883 if (t == BPF_WRITE && value_regno >= 0 && 6884 is_pointer_value(env, value_regno)) { 6885 verbose(env, "R%d leaks addr into packet\n", 6886 value_regno); 6887 return -EACCES; 6888 } 6889 err = check_packet_access(env, regno, off, size, false); 6890 if (!err && t == BPF_READ && value_regno >= 0) 6891 mark_reg_unknown(env, regs, value_regno); 6892 } else if (reg->type == PTR_TO_FLOW_KEYS) { 6893 if (t == BPF_WRITE && value_regno >= 0 && 6894 is_pointer_value(env, value_regno)) { 6895 verbose(env, "R%d leaks addr into flow keys\n", 6896 value_regno); 6897 return -EACCES; 6898 } 6899 6900 err = check_flow_keys_access(env, off, size); 6901 if (!err && t == BPF_READ && value_regno >= 0) 6902 mark_reg_unknown(env, regs, value_regno); 6903 } else if (type_is_sk_pointer(reg->type)) { 6904 if (t == BPF_WRITE) { 6905 verbose(env, "R%d cannot write into %s\n", 6906 regno, reg_type_str(env, reg->type)); 6907 return -EACCES; 6908 } 6909 err = check_sock_access(env, insn_idx, regno, off, size, t); 6910 if (!err && value_regno >= 0) 6911 mark_reg_unknown(env, regs, value_regno); 6912 } else if (reg->type == PTR_TO_TP_BUFFER) { 6913 err = check_tp_buffer_access(env, reg, regno, off, size); 6914 if (!err && t == BPF_READ && value_regno >= 0) 6915 mark_reg_unknown(env, regs, value_regno); 6916 } else if (base_type(reg->type) == PTR_TO_BTF_ID && 6917 !type_may_be_null(reg->type)) { 6918 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 6919 value_regno); 6920 } else if (reg->type == CONST_PTR_TO_MAP) { 6921 err = check_ptr_to_map_access(env, regs, regno, off, size, t, 6922 value_regno); 6923 } else if (base_type(reg->type) == PTR_TO_BUF) { 6924 bool rdonly_mem = type_is_rdonly_mem(reg->type); 6925 u32 *max_access; 6926 6927 if (rdonly_mem) { 6928 if (t == BPF_WRITE) { 6929 verbose(env, "R%d cannot write into %s\n", 6930 regno, reg_type_str(env, reg->type)); 6931 return -EACCES; 6932 } 6933 max_access = &env->prog->aux->max_rdonly_access; 6934 } else { 6935 max_access = &env->prog->aux->max_rdwr_access; 6936 } 6937 6938 err = check_buffer_access(env, reg, regno, off, size, false, 6939 max_access); 6940 6941 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ)) 6942 mark_reg_unknown(env, regs, value_regno); 6943 } else if (reg->type == PTR_TO_ARENA) { 6944 if (t == BPF_READ && value_regno >= 0) 6945 mark_reg_unknown(env, regs, value_regno); 6946 } else { 6947 verbose(env, "R%d invalid mem access '%s'\n", regno, 6948 reg_type_str(env, reg->type)); 6949 return -EACCES; 6950 } 6951 6952 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 6953 regs[value_regno].type == SCALAR_VALUE) { 6954 if (!is_ldsx) 6955 /* b/h/w load zero-extends, mark upper bits as known 0 */ 6956 coerce_reg_to_size(®s[value_regno], size); 6957 else 6958 coerce_reg_to_size_sx(®s[value_regno], size); 6959 } 6960 return err; 6961 } 6962 6963 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 6964 { 6965 int load_reg; 6966 int err; 6967 6968 switch (insn->imm) { 6969 case BPF_ADD: 6970 case BPF_ADD | BPF_FETCH: 6971 case BPF_AND: 6972 case BPF_AND | BPF_FETCH: 6973 case BPF_OR: 6974 case BPF_OR | BPF_FETCH: 6975 case BPF_XOR: 6976 case BPF_XOR | BPF_FETCH: 6977 case BPF_XCHG: 6978 case BPF_CMPXCHG: 6979 break; 6980 default: 6981 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm); 6982 return -EINVAL; 6983 } 6984 6985 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) { 6986 verbose(env, "invalid atomic operand size\n"); 6987 return -EINVAL; 6988 } 6989 6990 /* check src1 operand */ 6991 err = check_reg_arg(env, insn->src_reg, SRC_OP); 6992 if (err) 6993 return err; 6994 6995 /* check src2 operand */ 6996 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 6997 if (err) 6998 return err; 6999 7000 if (insn->imm == BPF_CMPXCHG) { 7001 /* Check comparison of R0 with memory location */ 7002 const u32 aux_reg = BPF_REG_0; 7003 7004 err = check_reg_arg(env, aux_reg, SRC_OP); 7005 if (err) 7006 return err; 7007 7008 if (is_pointer_value(env, aux_reg)) { 7009 verbose(env, "R%d leaks addr into mem\n", aux_reg); 7010 return -EACCES; 7011 } 7012 } 7013 7014 if (is_pointer_value(env, insn->src_reg)) { 7015 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 7016 return -EACCES; 7017 } 7018 7019 if (is_ctx_reg(env, insn->dst_reg) || 7020 is_pkt_reg(env, insn->dst_reg) || 7021 is_flow_key_reg(env, insn->dst_reg) || 7022 is_sk_reg(env, insn->dst_reg)) { 7023 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n", 7024 insn->dst_reg, 7025 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 7026 return -EACCES; 7027 } 7028 7029 if (insn->imm & BPF_FETCH) { 7030 if (insn->imm == BPF_CMPXCHG) 7031 load_reg = BPF_REG_0; 7032 else 7033 load_reg = insn->src_reg; 7034 7035 /* check and record load of old value */ 7036 err = check_reg_arg(env, load_reg, DST_OP); 7037 if (err) 7038 return err; 7039 } else { 7040 /* This instruction accesses a memory location but doesn't 7041 * actually load it into a register. 7042 */ 7043 load_reg = -1; 7044 } 7045 7046 /* Check whether we can read the memory, with second call for fetch 7047 * case to simulate the register fill. 7048 */ 7049 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 7050 BPF_SIZE(insn->code), BPF_READ, -1, true, false); 7051 if (!err && load_reg >= 0) 7052 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 7053 BPF_SIZE(insn->code), BPF_READ, load_reg, 7054 true, false); 7055 if (err) 7056 return err; 7057 7058 /* Check whether we can write into the same memory. */ 7059 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 7060 BPF_SIZE(insn->code), BPF_WRITE, -1, true, false); 7061 if (err) 7062 return err; 7063 return 0; 7064 } 7065 7066 /* When register 'regno' is used to read the stack (either directly or through 7067 * a helper function) make sure that it's within stack boundary and, depending 7068 * on the access type and privileges, that all elements of the stack are 7069 * initialized. 7070 * 7071 * 'off' includes 'regno->off', but not its dynamic part (if any). 7072 * 7073 * All registers that have been spilled on the stack in the slots within the 7074 * read offsets are marked as read. 7075 */ 7076 static int check_stack_range_initialized( 7077 struct bpf_verifier_env *env, int regno, int off, 7078 int access_size, bool zero_size_allowed, 7079 enum bpf_access_src type, struct bpf_call_arg_meta *meta) 7080 { 7081 struct bpf_reg_state *reg = reg_state(env, regno); 7082 struct bpf_func_state *state = func(env, reg); 7083 int err, min_off, max_off, i, j, slot, spi; 7084 char *err_extra = type == ACCESS_HELPER ? " indirect" : ""; 7085 enum bpf_access_type bounds_check_type; 7086 /* Some accesses can write anything into the stack, others are 7087 * read-only. 7088 */ 7089 bool clobber = false; 7090 7091 if (access_size == 0 && !zero_size_allowed) { 7092 verbose(env, "invalid zero-sized read\n"); 7093 return -EACCES; 7094 } 7095 7096 if (type == ACCESS_HELPER) { 7097 /* The bounds checks for writes are more permissive than for 7098 * reads. However, if raw_mode is not set, we'll do extra 7099 * checks below. 7100 */ 7101 bounds_check_type = BPF_WRITE; 7102 clobber = true; 7103 } else { 7104 bounds_check_type = BPF_READ; 7105 } 7106 err = check_stack_access_within_bounds(env, regno, off, access_size, 7107 type, bounds_check_type); 7108 if (err) 7109 return err; 7110 7111 7112 if (tnum_is_const(reg->var_off)) { 7113 min_off = max_off = reg->var_off.value + off; 7114 } else { 7115 /* Variable offset is prohibited for unprivileged mode for 7116 * simplicity since it requires corresponding support in 7117 * Spectre masking for stack ALU. 7118 * See also retrieve_ptr_limit(). 7119 */ 7120 if (!env->bypass_spec_v1) { 7121 char tn_buf[48]; 7122 7123 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 7124 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n", 7125 regno, err_extra, tn_buf); 7126 return -EACCES; 7127 } 7128 /* Only initialized buffer on stack is allowed to be accessed 7129 * with variable offset. With uninitialized buffer it's hard to 7130 * guarantee that whole memory is marked as initialized on 7131 * helper return since specific bounds are unknown what may 7132 * cause uninitialized stack leaking. 7133 */ 7134 if (meta && meta->raw_mode) 7135 meta = NULL; 7136 7137 min_off = reg->smin_value + off; 7138 max_off = reg->smax_value + off; 7139 } 7140 7141 if (meta && meta->raw_mode) { 7142 /* Ensure we won't be overwriting dynptrs when simulating byte 7143 * by byte access in check_helper_call using meta.access_size. 7144 * This would be a problem if we have a helper in the future 7145 * which takes: 7146 * 7147 * helper(uninit_mem, len, dynptr) 7148 * 7149 * Now, uninint_mem may overlap with dynptr pointer. Hence, it 7150 * may end up writing to dynptr itself when touching memory from 7151 * arg 1. This can be relaxed on a case by case basis for known 7152 * safe cases, but reject due to the possibilitiy of aliasing by 7153 * default. 7154 */ 7155 for (i = min_off; i < max_off + access_size; i++) { 7156 int stack_off = -i - 1; 7157 7158 spi = __get_spi(i); 7159 /* raw_mode may write past allocated_stack */ 7160 if (state->allocated_stack <= stack_off) 7161 continue; 7162 if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) { 7163 verbose(env, "potential write to dynptr at off=%d disallowed\n", i); 7164 return -EACCES; 7165 } 7166 } 7167 meta->access_size = access_size; 7168 meta->regno = regno; 7169 return 0; 7170 } 7171 7172 for (i = min_off; i < max_off + access_size; i++) { 7173 u8 *stype; 7174 7175 slot = -i - 1; 7176 spi = slot / BPF_REG_SIZE; 7177 if (state->allocated_stack <= slot) { 7178 verbose(env, "verifier bug: allocated_stack too small"); 7179 return -EFAULT; 7180 } 7181 7182 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 7183 if (*stype == STACK_MISC) 7184 goto mark; 7185 if ((*stype == STACK_ZERO) || 7186 (*stype == STACK_INVALID && env->allow_uninit_stack)) { 7187 if (clobber) { 7188 /* helper can write anything into the stack */ 7189 *stype = STACK_MISC; 7190 } 7191 goto mark; 7192 } 7193 7194 if (is_spilled_reg(&state->stack[spi]) && 7195 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE || 7196 env->allow_ptr_leaks)) { 7197 if (clobber) { 7198 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 7199 for (j = 0; j < BPF_REG_SIZE; j++) 7200 scrub_spilled_slot(&state->stack[spi].slot_type[j]); 7201 } 7202 goto mark; 7203 } 7204 7205 if (tnum_is_const(reg->var_off)) { 7206 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n", 7207 err_extra, regno, min_off, i - min_off, access_size); 7208 } else { 7209 char tn_buf[48]; 7210 7211 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 7212 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n", 7213 err_extra, regno, tn_buf, i - min_off, access_size); 7214 } 7215 return -EACCES; 7216 mark: 7217 /* reading any byte out of 8-byte 'spill_slot' will cause 7218 * the whole slot to be marked as 'read' 7219 */ 7220 mark_reg_read(env, &state->stack[spi].spilled_ptr, 7221 state->stack[spi].spilled_ptr.parent, 7222 REG_LIVE_READ64); 7223 /* We do not set REG_LIVE_WRITTEN for stack slot, as we can not 7224 * be sure that whether stack slot is written to or not. Hence, 7225 * we must still conservatively propagate reads upwards even if 7226 * helper may write to the entire memory range. 7227 */ 7228 } 7229 return 0; 7230 } 7231 7232 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 7233 int access_size, bool zero_size_allowed, 7234 struct bpf_call_arg_meta *meta) 7235 { 7236 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7237 u32 *max_access; 7238 7239 switch (base_type(reg->type)) { 7240 case PTR_TO_PACKET: 7241 case PTR_TO_PACKET_META: 7242 return check_packet_access(env, regno, reg->off, access_size, 7243 zero_size_allowed); 7244 case PTR_TO_MAP_KEY: 7245 if (meta && meta->raw_mode) { 7246 verbose(env, "R%d cannot write into %s\n", regno, 7247 reg_type_str(env, reg->type)); 7248 return -EACCES; 7249 } 7250 return check_mem_region_access(env, regno, reg->off, access_size, 7251 reg->map_ptr->key_size, false); 7252 case PTR_TO_MAP_VALUE: 7253 if (check_map_access_type(env, regno, reg->off, access_size, 7254 meta && meta->raw_mode ? BPF_WRITE : 7255 BPF_READ)) 7256 return -EACCES; 7257 return check_map_access(env, regno, reg->off, access_size, 7258 zero_size_allowed, ACCESS_HELPER); 7259 case PTR_TO_MEM: 7260 if (type_is_rdonly_mem(reg->type)) { 7261 if (meta && meta->raw_mode) { 7262 verbose(env, "R%d cannot write into %s\n", regno, 7263 reg_type_str(env, reg->type)); 7264 return -EACCES; 7265 } 7266 } 7267 return check_mem_region_access(env, regno, reg->off, 7268 access_size, reg->mem_size, 7269 zero_size_allowed); 7270 case PTR_TO_BUF: 7271 if (type_is_rdonly_mem(reg->type)) { 7272 if (meta && meta->raw_mode) { 7273 verbose(env, "R%d cannot write into %s\n", regno, 7274 reg_type_str(env, reg->type)); 7275 return -EACCES; 7276 } 7277 7278 max_access = &env->prog->aux->max_rdonly_access; 7279 } else { 7280 max_access = &env->prog->aux->max_rdwr_access; 7281 } 7282 return check_buffer_access(env, reg, regno, reg->off, 7283 access_size, zero_size_allowed, 7284 max_access); 7285 case PTR_TO_STACK: 7286 return check_stack_range_initialized( 7287 env, 7288 regno, reg->off, access_size, 7289 zero_size_allowed, ACCESS_HELPER, meta); 7290 case PTR_TO_BTF_ID: 7291 return check_ptr_to_btf_access(env, regs, regno, reg->off, 7292 access_size, BPF_READ, -1); 7293 case PTR_TO_CTX: 7294 /* in case the function doesn't know how to access the context, 7295 * (because we are in a program of type SYSCALL for example), we 7296 * can not statically check its size. 7297 * Dynamically check it now. 7298 */ 7299 if (!env->ops->convert_ctx_access) { 7300 enum bpf_access_type atype = meta && meta->raw_mode ? BPF_WRITE : BPF_READ; 7301 int offset = access_size - 1; 7302 7303 /* Allow zero-byte read from PTR_TO_CTX */ 7304 if (access_size == 0) 7305 return zero_size_allowed ? 0 : -EACCES; 7306 7307 return check_mem_access(env, env->insn_idx, regno, offset, BPF_B, 7308 atype, -1, false, false); 7309 } 7310 7311 fallthrough; 7312 default: /* scalar_value or invalid ptr */ 7313 /* Allow zero-byte read from NULL, regardless of pointer type */ 7314 if (zero_size_allowed && access_size == 0 && 7315 register_is_null(reg)) 7316 return 0; 7317 7318 verbose(env, "R%d type=%s ", regno, 7319 reg_type_str(env, reg->type)); 7320 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK)); 7321 return -EACCES; 7322 } 7323 } 7324 7325 /* verify arguments to helpers or kfuncs consisting of a pointer and an access 7326 * size. 7327 * 7328 * @regno is the register containing the access size. regno-1 is the register 7329 * containing the pointer. 7330 */ 7331 static int check_mem_size_reg(struct bpf_verifier_env *env, 7332 struct bpf_reg_state *reg, u32 regno, 7333 bool zero_size_allowed, 7334 struct bpf_call_arg_meta *meta) 7335 { 7336 int err; 7337 7338 /* This is used to refine r0 return value bounds for helpers 7339 * that enforce this value as an upper bound on return values. 7340 * See do_refine_retval_range() for helpers that can refine 7341 * the return value. C type of helper is u32 so we pull register 7342 * bound from umax_value however, if negative verifier errors 7343 * out. Only upper bounds can be learned because retval is an 7344 * int type and negative retvals are allowed. 7345 */ 7346 meta->msize_max_value = reg->umax_value; 7347 7348 /* The register is SCALAR_VALUE; the access check 7349 * happens using its boundaries. 7350 */ 7351 if (!tnum_is_const(reg->var_off)) 7352 /* For unprivileged variable accesses, disable raw 7353 * mode so that the program is required to 7354 * initialize all the memory that the helper could 7355 * just partially fill up. 7356 */ 7357 meta = NULL; 7358 7359 if (reg->smin_value < 0) { 7360 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 7361 regno); 7362 return -EACCES; 7363 } 7364 7365 if (reg->umin_value == 0 && !zero_size_allowed) { 7366 verbose(env, "R%d invalid zero-sized read: u64=[%lld,%lld]\n", 7367 regno, reg->umin_value, reg->umax_value); 7368 return -EACCES; 7369 } 7370 7371 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 7372 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 7373 regno); 7374 return -EACCES; 7375 } 7376 err = check_helper_mem_access(env, regno - 1, 7377 reg->umax_value, 7378 zero_size_allowed, meta); 7379 if (!err) 7380 err = mark_chain_precision(env, regno); 7381 return err; 7382 } 7383 7384 static int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 7385 u32 regno, u32 mem_size) 7386 { 7387 bool may_be_null = type_may_be_null(reg->type); 7388 struct bpf_reg_state saved_reg; 7389 struct bpf_call_arg_meta meta; 7390 int err; 7391 7392 if (register_is_null(reg)) 7393 return 0; 7394 7395 memset(&meta, 0, sizeof(meta)); 7396 /* Assuming that the register contains a value check if the memory 7397 * access is safe. Temporarily save and restore the register's state as 7398 * the conversion shouldn't be visible to a caller. 7399 */ 7400 if (may_be_null) { 7401 saved_reg = *reg; 7402 mark_ptr_not_null_reg(reg); 7403 } 7404 7405 err = check_helper_mem_access(env, regno, mem_size, true, &meta); 7406 /* Check access for BPF_WRITE */ 7407 meta.raw_mode = true; 7408 err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta); 7409 7410 if (may_be_null) 7411 *reg = saved_reg; 7412 7413 return err; 7414 } 7415 7416 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 7417 u32 regno) 7418 { 7419 struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1]; 7420 bool may_be_null = type_may_be_null(mem_reg->type); 7421 struct bpf_reg_state saved_reg; 7422 struct bpf_call_arg_meta meta; 7423 int err; 7424 7425 WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5); 7426 7427 memset(&meta, 0, sizeof(meta)); 7428 7429 if (may_be_null) { 7430 saved_reg = *mem_reg; 7431 mark_ptr_not_null_reg(mem_reg); 7432 } 7433 7434 err = check_mem_size_reg(env, reg, regno, true, &meta); 7435 /* Check access for BPF_WRITE */ 7436 meta.raw_mode = true; 7437 err = err ?: check_mem_size_reg(env, reg, regno, true, &meta); 7438 7439 if (may_be_null) 7440 *mem_reg = saved_reg; 7441 return err; 7442 } 7443 7444 /* Implementation details: 7445 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL. 7446 * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL. 7447 * Two bpf_map_lookups (even with the same key) will have different reg->id. 7448 * Two separate bpf_obj_new will also have different reg->id. 7449 * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier 7450 * clears reg->id after value_or_null->value transition, since the verifier only 7451 * cares about the range of access to valid map value pointer and doesn't care 7452 * about actual address of the map element. 7453 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 7454 * reg->id > 0 after value_or_null->value transition. By doing so 7455 * two bpf_map_lookups will be considered two different pointers that 7456 * point to different bpf_spin_locks. Likewise for pointers to allocated objects 7457 * returned from bpf_obj_new. 7458 * The verifier allows taking only one bpf_spin_lock at a time to avoid 7459 * dead-locks. 7460 * Since only one bpf_spin_lock is allowed the checks are simpler than 7461 * reg_is_refcounted() logic. The verifier needs to remember only 7462 * one spin_lock instead of array of acquired_refs. 7463 * cur_state->active_lock remembers which map value element or allocated 7464 * object got locked and clears it after bpf_spin_unlock. 7465 */ 7466 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 7467 bool is_lock) 7468 { 7469 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7470 struct bpf_verifier_state *cur = env->cur_state; 7471 bool is_const = tnum_is_const(reg->var_off); 7472 u64 val = reg->var_off.value; 7473 struct bpf_map *map = NULL; 7474 struct btf *btf = NULL; 7475 struct btf_record *rec; 7476 7477 if (!is_const) { 7478 verbose(env, 7479 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 7480 regno); 7481 return -EINVAL; 7482 } 7483 if (reg->type == PTR_TO_MAP_VALUE) { 7484 map = reg->map_ptr; 7485 if (!map->btf) { 7486 verbose(env, 7487 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 7488 map->name); 7489 return -EINVAL; 7490 } 7491 } else { 7492 btf = reg->btf; 7493 } 7494 7495 rec = reg_btf_record(reg); 7496 if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) { 7497 verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local", 7498 map ? map->name : "kptr"); 7499 return -EINVAL; 7500 } 7501 if (rec->spin_lock_off != val + reg->off) { 7502 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n", 7503 val + reg->off, rec->spin_lock_off); 7504 return -EINVAL; 7505 } 7506 if (is_lock) { 7507 if (cur->active_lock.ptr) { 7508 verbose(env, 7509 "Locking two bpf_spin_locks are not allowed\n"); 7510 return -EINVAL; 7511 } 7512 if (map) 7513 cur->active_lock.ptr = map; 7514 else 7515 cur->active_lock.ptr = btf; 7516 cur->active_lock.id = reg->id; 7517 } else { 7518 void *ptr; 7519 7520 if (map) 7521 ptr = map; 7522 else 7523 ptr = btf; 7524 7525 if (!cur->active_lock.ptr) { 7526 verbose(env, "bpf_spin_unlock without taking a lock\n"); 7527 return -EINVAL; 7528 } 7529 if (cur->active_lock.ptr != ptr || 7530 cur->active_lock.id != reg->id) { 7531 verbose(env, "bpf_spin_unlock of different lock\n"); 7532 return -EINVAL; 7533 } 7534 7535 invalidate_non_owning_refs(env); 7536 7537 cur->active_lock.ptr = NULL; 7538 cur->active_lock.id = 0; 7539 } 7540 return 0; 7541 } 7542 7543 static int process_timer_func(struct bpf_verifier_env *env, int regno, 7544 struct bpf_call_arg_meta *meta) 7545 { 7546 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7547 bool is_const = tnum_is_const(reg->var_off); 7548 struct bpf_map *map = reg->map_ptr; 7549 u64 val = reg->var_off.value; 7550 7551 if (!is_const) { 7552 verbose(env, 7553 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n", 7554 regno); 7555 return -EINVAL; 7556 } 7557 if (!map->btf) { 7558 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n", 7559 map->name); 7560 return -EINVAL; 7561 } 7562 if (!btf_record_has_field(map->record, BPF_TIMER)) { 7563 verbose(env, "map '%s' has no valid bpf_timer\n", map->name); 7564 return -EINVAL; 7565 } 7566 if (map->record->timer_off != val + reg->off) { 7567 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n", 7568 val + reg->off, map->record->timer_off); 7569 return -EINVAL; 7570 } 7571 if (meta->map_ptr) { 7572 verbose(env, "verifier bug. Two map pointers in a timer helper\n"); 7573 return -EFAULT; 7574 } 7575 meta->map_uid = reg->map_uid; 7576 meta->map_ptr = map; 7577 return 0; 7578 } 7579 7580 static int process_kptr_func(struct bpf_verifier_env *env, int regno, 7581 struct bpf_call_arg_meta *meta) 7582 { 7583 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7584 struct bpf_map *map_ptr = reg->map_ptr; 7585 struct btf_field *kptr_field; 7586 u32 kptr_off; 7587 7588 if (!tnum_is_const(reg->var_off)) { 7589 verbose(env, 7590 "R%d doesn't have constant offset. kptr has to be at the constant offset\n", 7591 regno); 7592 return -EINVAL; 7593 } 7594 if (!map_ptr->btf) { 7595 verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n", 7596 map_ptr->name); 7597 return -EINVAL; 7598 } 7599 if (!btf_record_has_field(map_ptr->record, BPF_KPTR)) { 7600 verbose(env, "map '%s' has no valid kptr\n", map_ptr->name); 7601 return -EINVAL; 7602 } 7603 7604 meta->map_ptr = map_ptr; 7605 kptr_off = reg->off + reg->var_off.value; 7606 kptr_field = btf_record_find(map_ptr->record, kptr_off, BPF_KPTR); 7607 if (!kptr_field) { 7608 verbose(env, "off=%d doesn't point to kptr\n", kptr_off); 7609 return -EACCES; 7610 } 7611 if (kptr_field->type != BPF_KPTR_REF && kptr_field->type != BPF_KPTR_PERCPU) { 7612 verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off); 7613 return -EACCES; 7614 } 7615 meta->kptr_field = kptr_field; 7616 return 0; 7617 } 7618 7619 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK 7620 * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR. 7621 * 7622 * In both cases we deal with the first 8 bytes, but need to mark the next 8 7623 * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of 7624 * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object. 7625 * 7626 * Mutability of bpf_dynptr is at two levels, one is at the level of struct 7627 * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct 7628 * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can 7629 * mutate the view of the dynptr and also possibly destroy it. In the latter 7630 * case, it cannot mutate the bpf_dynptr itself but it can still mutate the 7631 * memory that dynptr points to. 7632 * 7633 * The verifier will keep track both levels of mutation (bpf_dynptr's in 7634 * reg->type and the memory's in reg->dynptr.type), but there is no support for 7635 * readonly dynptr view yet, hence only the first case is tracked and checked. 7636 * 7637 * This is consistent with how C applies the const modifier to a struct object, 7638 * where the pointer itself inside bpf_dynptr becomes const but not what it 7639 * points to. 7640 * 7641 * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument 7642 * type, and declare it as 'const struct bpf_dynptr *' in their prototype. 7643 */ 7644 static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx, 7645 enum bpf_arg_type arg_type, int clone_ref_obj_id) 7646 { 7647 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7648 int err; 7649 7650 /* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an 7651 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*): 7652 */ 7653 if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) { 7654 verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n"); 7655 return -EFAULT; 7656 } 7657 7658 /* MEM_UNINIT - Points to memory that is an appropriate candidate for 7659 * constructing a mutable bpf_dynptr object. 7660 * 7661 * Currently, this is only possible with PTR_TO_STACK 7662 * pointing to a region of at least 16 bytes which doesn't 7663 * contain an existing bpf_dynptr. 7664 * 7665 * MEM_RDONLY - Points to a initialized bpf_dynptr that will not be 7666 * mutated or destroyed. However, the memory it points to 7667 * may be mutated. 7668 * 7669 * None - Points to a initialized dynptr that can be mutated and 7670 * destroyed, including mutation of the memory it points 7671 * to. 7672 */ 7673 if (arg_type & MEM_UNINIT) { 7674 int i; 7675 7676 if (!is_dynptr_reg_valid_uninit(env, reg)) { 7677 verbose(env, "Dynptr has to be an uninitialized dynptr\n"); 7678 return -EINVAL; 7679 } 7680 7681 /* we write BPF_DW bits (8 bytes) at a time */ 7682 for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) { 7683 err = check_mem_access(env, insn_idx, regno, 7684 i, BPF_DW, BPF_WRITE, -1, false, false); 7685 if (err) 7686 return err; 7687 } 7688 7689 err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx, clone_ref_obj_id); 7690 } else /* MEM_RDONLY and None case from above */ { 7691 /* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */ 7692 if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) { 7693 verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n"); 7694 return -EINVAL; 7695 } 7696 7697 if (!is_dynptr_reg_valid_init(env, reg)) { 7698 verbose(env, 7699 "Expected an initialized dynptr as arg #%d\n", 7700 regno); 7701 return -EINVAL; 7702 } 7703 7704 /* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */ 7705 if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) { 7706 verbose(env, 7707 "Expected a dynptr of type %s as arg #%d\n", 7708 dynptr_type_str(arg_to_dynptr_type(arg_type)), regno); 7709 return -EINVAL; 7710 } 7711 7712 err = mark_dynptr_read(env, reg); 7713 } 7714 return err; 7715 } 7716 7717 static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi) 7718 { 7719 struct bpf_func_state *state = func(env, reg); 7720 7721 return state->stack[spi].spilled_ptr.ref_obj_id; 7722 } 7723 7724 static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7725 { 7726 return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY); 7727 } 7728 7729 static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7730 { 7731 return meta->kfunc_flags & KF_ITER_NEW; 7732 } 7733 7734 static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7735 { 7736 return meta->kfunc_flags & KF_ITER_NEXT; 7737 } 7738 7739 static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7740 { 7741 return meta->kfunc_flags & KF_ITER_DESTROY; 7742 } 7743 7744 static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg) 7745 { 7746 /* btf_check_iter_kfuncs() guarantees that first argument of any iter 7747 * kfunc is iter state pointer 7748 */ 7749 return arg == 0 && is_iter_kfunc(meta); 7750 } 7751 7752 static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx, 7753 struct bpf_kfunc_call_arg_meta *meta) 7754 { 7755 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7756 const struct btf_type *t; 7757 const struct btf_param *arg; 7758 int spi, err, i, nr_slots; 7759 u32 btf_id; 7760 7761 /* btf_check_iter_kfuncs() ensures we don't need to validate anything here */ 7762 arg = &btf_params(meta->func_proto)[0]; 7763 t = btf_type_skip_modifiers(meta->btf, arg->type, NULL); /* PTR */ 7764 t = btf_type_skip_modifiers(meta->btf, t->type, &btf_id); /* STRUCT */ 7765 nr_slots = t->size / BPF_REG_SIZE; 7766 7767 if (is_iter_new_kfunc(meta)) { 7768 /* bpf_iter_<type>_new() expects pointer to uninit iter state */ 7769 if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) { 7770 verbose(env, "expected uninitialized iter_%s as arg #%d\n", 7771 iter_type_str(meta->btf, btf_id), regno); 7772 return -EINVAL; 7773 } 7774 7775 for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) { 7776 err = check_mem_access(env, insn_idx, regno, 7777 i, BPF_DW, BPF_WRITE, -1, false, false); 7778 if (err) 7779 return err; 7780 } 7781 7782 err = mark_stack_slots_iter(env, meta, reg, insn_idx, meta->btf, btf_id, nr_slots); 7783 if (err) 7784 return err; 7785 } else { 7786 /* iter_next() or iter_destroy() expect initialized iter state*/ 7787 err = is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots); 7788 switch (err) { 7789 case 0: 7790 break; 7791 case -EINVAL: 7792 verbose(env, "expected an initialized iter_%s as arg #%d\n", 7793 iter_type_str(meta->btf, btf_id), regno); 7794 return err; 7795 case -EPROTO: 7796 verbose(env, "expected an RCU CS when using %s\n", meta->func_name); 7797 return err; 7798 default: 7799 return err; 7800 } 7801 7802 spi = iter_get_spi(env, reg, nr_slots); 7803 if (spi < 0) 7804 return spi; 7805 7806 err = mark_iter_read(env, reg, spi, nr_slots); 7807 if (err) 7808 return err; 7809 7810 /* remember meta->iter info for process_iter_next_call() */ 7811 meta->iter.spi = spi; 7812 meta->iter.frameno = reg->frameno; 7813 meta->ref_obj_id = iter_ref_obj_id(env, reg, spi); 7814 7815 if (is_iter_destroy_kfunc(meta)) { 7816 err = unmark_stack_slots_iter(env, reg, nr_slots); 7817 if (err) 7818 return err; 7819 } 7820 } 7821 7822 return 0; 7823 } 7824 7825 /* Look for a previous loop entry at insn_idx: nearest parent state 7826 * stopped at insn_idx with callsites matching those in cur->frame. 7827 */ 7828 static struct bpf_verifier_state *find_prev_entry(struct bpf_verifier_env *env, 7829 struct bpf_verifier_state *cur, 7830 int insn_idx) 7831 { 7832 struct bpf_verifier_state_list *sl; 7833 struct bpf_verifier_state *st; 7834 7835 /* Explored states are pushed in stack order, most recent states come first */ 7836 sl = *explored_state(env, insn_idx); 7837 for (; sl; sl = sl->next) { 7838 /* If st->branches != 0 state is a part of current DFS verification path, 7839 * hence cur & st for a loop. 7840 */ 7841 st = &sl->state; 7842 if (st->insn_idx == insn_idx && st->branches && same_callsites(st, cur) && 7843 st->dfs_depth < cur->dfs_depth) 7844 return st; 7845 } 7846 7847 return NULL; 7848 } 7849 7850 static void reset_idmap_scratch(struct bpf_verifier_env *env); 7851 static bool regs_exact(const struct bpf_reg_state *rold, 7852 const struct bpf_reg_state *rcur, 7853 struct bpf_idmap *idmap); 7854 7855 static void maybe_widen_reg(struct bpf_verifier_env *env, 7856 struct bpf_reg_state *rold, struct bpf_reg_state *rcur, 7857 struct bpf_idmap *idmap) 7858 { 7859 if (rold->type != SCALAR_VALUE) 7860 return; 7861 if (rold->type != rcur->type) 7862 return; 7863 if (rold->precise || rcur->precise || regs_exact(rold, rcur, idmap)) 7864 return; 7865 __mark_reg_unknown(env, rcur); 7866 } 7867 7868 static int widen_imprecise_scalars(struct bpf_verifier_env *env, 7869 struct bpf_verifier_state *old, 7870 struct bpf_verifier_state *cur) 7871 { 7872 struct bpf_func_state *fold, *fcur; 7873 int i, fr; 7874 7875 reset_idmap_scratch(env); 7876 for (fr = old->curframe; fr >= 0; fr--) { 7877 fold = old->frame[fr]; 7878 fcur = cur->frame[fr]; 7879 7880 for (i = 0; i < MAX_BPF_REG; i++) 7881 maybe_widen_reg(env, 7882 &fold->regs[i], 7883 &fcur->regs[i], 7884 &env->idmap_scratch); 7885 7886 for (i = 0; i < fold->allocated_stack / BPF_REG_SIZE; i++) { 7887 if (!is_spilled_reg(&fold->stack[i]) || 7888 !is_spilled_reg(&fcur->stack[i])) 7889 continue; 7890 7891 maybe_widen_reg(env, 7892 &fold->stack[i].spilled_ptr, 7893 &fcur->stack[i].spilled_ptr, 7894 &env->idmap_scratch); 7895 } 7896 } 7897 return 0; 7898 } 7899 7900 /* process_iter_next_call() is called when verifier gets to iterator's next 7901 * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer 7902 * to it as just "iter_next()" in comments below. 7903 * 7904 * BPF verifier relies on a crucial contract for any iter_next() 7905 * implementation: it should *eventually* return NULL, and once that happens 7906 * it should keep returning NULL. That is, once iterator exhausts elements to 7907 * iterate, it should never reset or spuriously return new elements. 7908 * 7909 * With the assumption of such contract, process_iter_next_call() simulates 7910 * a fork in the verifier state to validate loop logic correctness and safety 7911 * without having to simulate infinite amount of iterations. 7912 * 7913 * In current state, we first assume that iter_next() returned NULL and 7914 * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such 7915 * conditions we should not form an infinite loop and should eventually reach 7916 * exit. 7917 * 7918 * Besides that, we also fork current state and enqueue it for later 7919 * verification. In a forked state we keep iterator state as ACTIVE 7920 * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We 7921 * also bump iteration depth to prevent erroneous infinite loop detection 7922 * later on (see iter_active_depths_differ() comment for details). In this 7923 * state we assume that we'll eventually loop back to another iter_next() 7924 * calls (it could be in exactly same location or in some other instruction, 7925 * it doesn't matter, we don't make any unnecessary assumptions about this, 7926 * everything revolves around iterator state in a stack slot, not which 7927 * instruction is calling iter_next()). When that happens, we either will come 7928 * to iter_next() with equivalent state and can conclude that next iteration 7929 * will proceed in exactly the same way as we just verified, so it's safe to 7930 * assume that loop converges. If not, we'll go on another iteration 7931 * simulation with a different input state, until all possible starting states 7932 * are validated or we reach maximum number of instructions limit. 7933 * 7934 * This way, we will either exhaustively discover all possible input states 7935 * that iterator loop can start with and eventually will converge, or we'll 7936 * effectively regress into bounded loop simulation logic and either reach 7937 * maximum number of instructions if loop is not provably convergent, or there 7938 * is some statically known limit on number of iterations (e.g., if there is 7939 * an explicit `if n > 100 then break;` statement somewhere in the loop). 7940 * 7941 * Iteration convergence logic in is_state_visited() relies on exact 7942 * states comparison, which ignores read and precision marks. 7943 * This is necessary because read and precision marks are not finalized 7944 * while in the loop. Exact comparison might preclude convergence for 7945 * simple programs like below: 7946 * 7947 * i = 0; 7948 * while(iter_next(&it)) 7949 * i++; 7950 * 7951 * At each iteration step i++ would produce a new distinct state and 7952 * eventually instruction processing limit would be reached. 7953 * 7954 * To avoid such behavior speculatively forget (widen) range for 7955 * imprecise scalar registers, if those registers were not precise at the 7956 * end of the previous iteration and do not match exactly. 7957 * 7958 * This is a conservative heuristic that allows to verify wide range of programs, 7959 * however it precludes verification of programs that conjure an 7960 * imprecise value on the first loop iteration and use it as precise on a second. 7961 * For example, the following safe program would fail to verify: 7962 * 7963 * struct bpf_num_iter it; 7964 * int arr[10]; 7965 * int i = 0, a = 0; 7966 * bpf_iter_num_new(&it, 0, 10); 7967 * while (bpf_iter_num_next(&it)) { 7968 * if (a == 0) { 7969 * a = 1; 7970 * i = 7; // Because i changed verifier would forget 7971 * // it's range on second loop entry. 7972 * } else { 7973 * arr[i] = 42; // This would fail to verify. 7974 * } 7975 * } 7976 * bpf_iter_num_destroy(&it); 7977 */ 7978 static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx, 7979 struct bpf_kfunc_call_arg_meta *meta) 7980 { 7981 struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st; 7982 struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr; 7983 struct bpf_reg_state *cur_iter, *queued_iter; 7984 int iter_frameno = meta->iter.frameno; 7985 int iter_spi = meta->iter.spi; 7986 7987 BTF_TYPE_EMIT(struct bpf_iter); 7988 7989 cur_iter = &env->cur_state->frame[iter_frameno]->stack[iter_spi].spilled_ptr; 7990 7991 if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE && 7992 cur_iter->iter.state != BPF_ITER_STATE_DRAINED) { 7993 verbose(env, "verifier internal error: unexpected iterator state %d (%s)\n", 7994 cur_iter->iter.state, iter_state_str(cur_iter->iter.state)); 7995 return -EFAULT; 7996 } 7997 7998 if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) { 7999 /* Because iter_next() call is a checkpoint is_state_visitied() 8000 * should guarantee parent state with same call sites and insn_idx. 8001 */ 8002 if (!cur_st->parent || cur_st->parent->insn_idx != insn_idx || 8003 !same_callsites(cur_st->parent, cur_st)) { 8004 verbose(env, "bug: bad parent state for iter next call"); 8005 return -EFAULT; 8006 } 8007 /* Note cur_st->parent in the call below, it is necessary to skip 8008 * checkpoint created for cur_st by is_state_visited() 8009 * right at this instruction. 8010 */ 8011 prev_st = find_prev_entry(env, cur_st->parent, insn_idx); 8012 /* branch out active iter state */ 8013 queued_st = push_stack(env, insn_idx + 1, insn_idx, false); 8014 if (!queued_st) 8015 return -ENOMEM; 8016 8017 queued_iter = &queued_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr; 8018 queued_iter->iter.state = BPF_ITER_STATE_ACTIVE; 8019 queued_iter->iter.depth++; 8020 if (prev_st) 8021 widen_imprecise_scalars(env, prev_st, queued_st); 8022 8023 queued_fr = queued_st->frame[queued_st->curframe]; 8024 mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]); 8025 } 8026 8027 /* switch to DRAINED state, but keep the depth unchanged */ 8028 /* mark current iter state as drained and assume returned NULL */ 8029 cur_iter->iter.state = BPF_ITER_STATE_DRAINED; 8030 __mark_reg_const_zero(env, &cur_fr->regs[BPF_REG_0]); 8031 8032 return 0; 8033 } 8034 8035 static bool arg_type_is_mem_size(enum bpf_arg_type type) 8036 { 8037 return type == ARG_CONST_SIZE || 8038 type == ARG_CONST_SIZE_OR_ZERO; 8039 } 8040 8041 static bool arg_type_is_release(enum bpf_arg_type type) 8042 { 8043 return type & OBJ_RELEASE; 8044 } 8045 8046 static bool arg_type_is_dynptr(enum bpf_arg_type type) 8047 { 8048 return base_type(type) == ARG_PTR_TO_DYNPTR; 8049 } 8050 8051 static int int_ptr_type_to_size(enum bpf_arg_type type) 8052 { 8053 if (type == ARG_PTR_TO_INT) 8054 return sizeof(u32); 8055 else if (type == ARG_PTR_TO_LONG) 8056 return sizeof(u64); 8057 8058 return -EINVAL; 8059 } 8060 8061 static int resolve_map_arg_type(struct bpf_verifier_env *env, 8062 const struct bpf_call_arg_meta *meta, 8063 enum bpf_arg_type *arg_type) 8064 { 8065 if (!meta->map_ptr) { 8066 /* kernel subsystem misconfigured verifier */ 8067 verbose(env, "invalid map_ptr to access map->type\n"); 8068 return -EACCES; 8069 } 8070 8071 switch (meta->map_ptr->map_type) { 8072 case BPF_MAP_TYPE_SOCKMAP: 8073 case BPF_MAP_TYPE_SOCKHASH: 8074 if (*arg_type == ARG_PTR_TO_MAP_VALUE) { 8075 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON; 8076 } else { 8077 verbose(env, "invalid arg_type for sockmap/sockhash\n"); 8078 return -EINVAL; 8079 } 8080 break; 8081 case BPF_MAP_TYPE_BLOOM_FILTER: 8082 if (meta->func_id == BPF_FUNC_map_peek_elem) 8083 *arg_type = ARG_PTR_TO_MAP_VALUE; 8084 break; 8085 default: 8086 break; 8087 } 8088 return 0; 8089 } 8090 8091 struct bpf_reg_types { 8092 const enum bpf_reg_type types[10]; 8093 u32 *btf_id; 8094 }; 8095 8096 static const struct bpf_reg_types sock_types = { 8097 .types = { 8098 PTR_TO_SOCK_COMMON, 8099 PTR_TO_SOCKET, 8100 PTR_TO_TCP_SOCK, 8101 PTR_TO_XDP_SOCK, 8102 }, 8103 }; 8104 8105 #ifdef CONFIG_NET 8106 static const struct bpf_reg_types btf_id_sock_common_types = { 8107 .types = { 8108 PTR_TO_SOCK_COMMON, 8109 PTR_TO_SOCKET, 8110 PTR_TO_TCP_SOCK, 8111 PTR_TO_XDP_SOCK, 8112 PTR_TO_BTF_ID, 8113 PTR_TO_BTF_ID | PTR_TRUSTED, 8114 }, 8115 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 8116 }; 8117 #endif 8118 8119 static const struct bpf_reg_types mem_types = { 8120 .types = { 8121 PTR_TO_STACK, 8122 PTR_TO_PACKET, 8123 PTR_TO_PACKET_META, 8124 PTR_TO_MAP_KEY, 8125 PTR_TO_MAP_VALUE, 8126 PTR_TO_MEM, 8127 PTR_TO_MEM | MEM_RINGBUF, 8128 PTR_TO_BUF, 8129 PTR_TO_BTF_ID | PTR_TRUSTED, 8130 }, 8131 }; 8132 8133 static const struct bpf_reg_types int_ptr_types = { 8134 .types = { 8135 PTR_TO_STACK, 8136 PTR_TO_PACKET, 8137 PTR_TO_PACKET_META, 8138 PTR_TO_MAP_KEY, 8139 PTR_TO_MAP_VALUE, 8140 }, 8141 }; 8142 8143 static const struct bpf_reg_types spin_lock_types = { 8144 .types = { 8145 PTR_TO_MAP_VALUE, 8146 PTR_TO_BTF_ID | MEM_ALLOC, 8147 } 8148 }; 8149 8150 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } }; 8151 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } }; 8152 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } }; 8153 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } }; 8154 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } }; 8155 static const struct bpf_reg_types btf_ptr_types = { 8156 .types = { 8157 PTR_TO_BTF_ID, 8158 PTR_TO_BTF_ID | PTR_TRUSTED, 8159 PTR_TO_BTF_ID | MEM_RCU, 8160 }, 8161 }; 8162 static const struct bpf_reg_types percpu_btf_ptr_types = { 8163 .types = { 8164 PTR_TO_BTF_ID | MEM_PERCPU, 8165 PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU, 8166 PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED, 8167 } 8168 }; 8169 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } }; 8170 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } }; 8171 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } }; 8172 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } }; 8173 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } }; 8174 static const struct bpf_reg_types dynptr_types = { 8175 .types = { 8176 PTR_TO_STACK, 8177 CONST_PTR_TO_DYNPTR, 8178 } 8179 }; 8180 8181 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = { 8182 [ARG_PTR_TO_MAP_KEY] = &mem_types, 8183 [ARG_PTR_TO_MAP_VALUE] = &mem_types, 8184 [ARG_CONST_SIZE] = &scalar_types, 8185 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types, 8186 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types, 8187 [ARG_CONST_MAP_PTR] = &const_map_ptr_types, 8188 [ARG_PTR_TO_CTX] = &context_types, 8189 [ARG_PTR_TO_SOCK_COMMON] = &sock_types, 8190 #ifdef CONFIG_NET 8191 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types, 8192 #endif 8193 [ARG_PTR_TO_SOCKET] = &fullsock_types, 8194 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types, 8195 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types, 8196 [ARG_PTR_TO_MEM] = &mem_types, 8197 [ARG_PTR_TO_RINGBUF_MEM] = &ringbuf_mem_types, 8198 [ARG_PTR_TO_INT] = &int_ptr_types, 8199 [ARG_PTR_TO_LONG] = &int_ptr_types, 8200 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types, 8201 [ARG_PTR_TO_FUNC] = &func_ptr_types, 8202 [ARG_PTR_TO_STACK] = &stack_ptr_types, 8203 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types, 8204 [ARG_PTR_TO_TIMER] = &timer_types, 8205 [ARG_PTR_TO_KPTR] = &kptr_types, 8206 [ARG_PTR_TO_DYNPTR] = &dynptr_types, 8207 }; 8208 8209 static int check_reg_type(struct bpf_verifier_env *env, u32 regno, 8210 enum bpf_arg_type arg_type, 8211 const u32 *arg_btf_id, 8212 struct bpf_call_arg_meta *meta) 8213 { 8214 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8215 enum bpf_reg_type expected, type = reg->type; 8216 const struct bpf_reg_types *compatible; 8217 int i, j; 8218 8219 compatible = compatible_reg_types[base_type(arg_type)]; 8220 if (!compatible) { 8221 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type); 8222 return -EFAULT; 8223 } 8224 8225 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY, 8226 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY 8227 * 8228 * Same for MAYBE_NULL: 8229 * 8230 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL, 8231 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL 8232 * 8233 * ARG_PTR_TO_MEM is compatible with PTR_TO_MEM that is tagged with a dynptr type. 8234 * 8235 * Therefore we fold these flags depending on the arg_type before comparison. 8236 */ 8237 if (arg_type & MEM_RDONLY) 8238 type &= ~MEM_RDONLY; 8239 if (arg_type & PTR_MAYBE_NULL) 8240 type &= ~PTR_MAYBE_NULL; 8241 if (base_type(arg_type) == ARG_PTR_TO_MEM) 8242 type &= ~DYNPTR_TYPE_FLAG_MASK; 8243 8244 if (meta->func_id == BPF_FUNC_kptr_xchg && type_is_alloc(type)) { 8245 type &= ~MEM_ALLOC; 8246 type &= ~MEM_PERCPU; 8247 } 8248 8249 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) { 8250 expected = compatible->types[i]; 8251 if (expected == NOT_INIT) 8252 break; 8253 8254 if (type == expected) 8255 goto found; 8256 } 8257 8258 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type)); 8259 for (j = 0; j + 1 < i; j++) 8260 verbose(env, "%s, ", reg_type_str(env, compatible->types[j])); 8261 verbose(env, "%s\n", reg_type_str(env, compatible->types[j])); 8262 return -EACCES; 8263 8264 found: 8265 if (base_type(reg->type) != PTR_TO_BTF_ID) 8266 return 0; 8267 8268 if (compatible == &mem_types) { 8269 if (!(arg_type & MEM_RDONLY)) { 8270 verbose(env, 8271 "%s() may write into memory pointed by R%d type=%s\n", 8272 func_id_name(meta->func_id), 8273 regno, reg_type_str(env, reg->type)); 8274 return -EACCES; 8275 } 8276 return 0; 8277 } 8278 8279 switch ((int)reg->type) { 8280 case PTR_TO_BTF_ID: 8281 case PTR_TO_BTF_ID | PTR_TRUSTED: 8282 case PTR_TO_BTF_ID | PTR_TRUSTED | PTR_MAYBE_NULL: 8283 case PTR_TO_BTF_ID | MEM_RCU: 8284 case PTR_TO_BTF_ID | PTR_MAYBE_NULL: 8285 case PTR_TO_BTF_ID | PTR_MAYBE_NULL | MEM_RCU: 8286 { 8287 /* For bpf_sk_release, it needs to match against first member 8288 * 'struct sock_common', hence make an exception for it. This 8289 * allows bpf_sk_release to work for multiple socket types. 8290 */ 8291 bool strict_type_match = arg_type_is_release(arg_type) && 8292 meta->func_id != BPF_FUNC_sk_release; 8293 8294 if (type_may_be_null(reg->type) && 8295 (!type_may_be_null(arg_type) || arg_type_is_release(arg_type))) { 8296 verbose(env, "Possibly NULL pointer passed to helper arg%d\n", regno); 8297 return -EACCES; 8298 } 8299 8300 if (!arg_btf_id) { 8301 if (!compatible->btf_id) { 8302 verbose(env, "verifier internal error: missing arg compatible BTF ID\n"); 8303 return -EFAULT; 8304 } 8305 arg_btf_id = compatible->btf_id; 8306 } 8307 8308 if (meta->func_id == BPF_FUNC_kptr_xchg) { 8309 if (map_kptr_match_type(env, meta->kptr_field, reg, regno)) 8310 return -EACCES; 8311 } else { 8312 if (arg_btf_id == BPF_PTR_POISON) { 8313 verbose(env, "verifier internal error:"); 8314 verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n", 8315 regno); 8316 return -EACCES; 8317 } 8318 8319 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 8320 btf_vmlinux, *arg_btf_id, 8321 strict_type_match)) { 8322 verbose(env, "R%d is of type %s but %s is expected\n", 8323 regno, btf_type_name(reg->btf, reg->btf_id), 8324 btf_type_name(btf_vmlinux, *arg_btf_id)); 8325 return -EACCES; 8326 } 8327 } 8328 break; 8329 } 8330 case PTR_TO_BTF_ID | MEM_ALLOC: 8331 case PTR_TO_BTF_ID | MEM_PERCPU | MEM_ALLOC: 8332 if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock && 8333 meta->func_id != BPF_FUNC_kptr_xchg) { 8334 verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n"); 8335 return -EFAULT; 8336 } 8337 if (meta->func_id == BPF_FUNC_kptr_xchg) { 8338 if (map_kptr_match_type(env, meta->kptr_field, reg, regno)) 8339 return -EACCES; 8340 } 8341 break; 8342 case PTR_TO_BTF_ID | MEM_PERCPU: 8343 case PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU: 8344 case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED: 8345 /* Handled by helper specific checks */ 8346 break; 8347 default: 8348 verbose(env, "verifier internal error: invalid PTR_TO_BTF_ID register for type match\n"); 8349 return -EFAULT; 8350 } 8351 return 0; 8352 } 8353 8354 static struct btf_field * 8355 reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields) 8356 { 8357 struct btf_field *field; 8358 struct btf_record *rec; 8359 8360 rec = reg_btf_record(reg); 8361 if (!rec) 8362 return NULL; 8363 8364 field = btf_record_find(rec, off, fields); 8365 if (!field) 8366 return NULL; 8367 8368 return field; 8369 } 8370 8371 static int check_func_arg_reg_off(struct bpf_verifier_env *env, 8372 const struct bpf_reg_state *reg, int regno, 8373 enum bpf_arg_type arg_type) 8374 { 8375 u32 type = reg->type; 8376 8377 /* When referenced register is passed to release function, its fixed 8378 * offset must be 0. 8379 * 8380 * We will check arg_type_is_release reg has ref_obj_id when storing 8381 * meta->release_regno. 8382 */ 8383 if (arg_type_is_release(arg_type)) { 8384 /* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it 8385 * may not directly point to the object being released, but to 8386 * dynptr pointing to such object, which might be at some offset 8387 * on the stack. In that case, we simply to fallback to the 8388 * default handling. 8389 */ 8390 if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK) 8391 return 0; 8392 8393 /* Doing check_ptr_off_reg check for the offset will catch this 8394 * because fixed_off_ok is false, but checking here allows us 8395 * to give the user a better error message. 8396 */ 8397 if (reg->off) { 8398 verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n", 8399 regno); 8400 return -EINVAL; 8401 } 8402 return __check_ptr_off_reg(env, reg, regno, false); 8403 } 8404 8405 switch (type) { 8406 /* Pointer types where both fixed and variable offset is explicitly allowed: */ 8407 case PTR_TO_STACK: 8408 case PTR_TO_PACKET: 8409 case PTR_TO_PACKET_META: 8410 case PTR_TO_MAP_KEY: 8411 case PTR_TO_MAP_VALUE: 8412 case PTR_TO_MEM: 8413 case PTR_TO_MEM | MEM_RDONLY: 8414 case PTR_TO_MEM | MEM_RINGBUF: 8415 case PTR_TO_BUF: 8416 case PTR_TO_BUF | MEM_RDONLY: 8417 case PTR_TO_ARENA: 8418 case SCALAR_VALUE: 8419 return 0; 8420 /* All the rest must be rejected, except PTR_TO_BTF_ID which allows 8421 * fixed offset. 8422 */ 8423 case PTR_TO_BTF_ID: 8424 case PTR_TO_BTF_ID | MEM_ALLOC: 8425 case PTR_TO_BTF_ID | PTR_TRUSTED: 8426 case PTR_TO_BTF_ID | MEM_RCU: 8427 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF: 8428 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF | MEM_RCU: 8429 /* When referenced PTR_TO_BTF_ID is passed to release function, 8430 * its fixed offset must be 0. In the other cases, fixed offset 8431 * can be non-zero. This was already checked above. So pass 8432 * fixed_off_ok as true to allow fixed offset for all other 8433 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we 8434 * still need to do checks instead of returning. 8435 */ 8436 return __check_ptr_off_reg(env, reg, regno, true); 8437 default: 8438 return __check_ptr_off_reg(env, reg, regno, false); 8439 } 8440 } 8441 8442 static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env, 8443 const struct bpf_func_proto *fn, 8444 struct bpf_reg_state *regs) 8445 { 8446 struct bpf_reg_state *state = NULL; 8447 int i; 8448 8449 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) 8450 if (arg_type_is_dynptr(fn->arg_type[i])) { 8451 if (state) { 8452 verbose(env, "verifier internal error: multiple dynptr args\n"); 8453 return NULL; 8454 } 8455 state = ®s[BPF_REG_1 + i]; 8456 } 8457 8458 if (!state) 8459 verbose(env, "verifier internal error: no dynptr arg found\n"); 8460 8461 return state; 8462 } 8463 8464 static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 8465 { 8466 struct bpf_func_state *state = func(env, reg); 8467 int spi; 8468 8469 if (reg->type == CONST_PTR_TO_DYNPTR) 8470 return reg->id; 8471 spi = dynptr_get_spi(env, reg); 8472 if (spi < 0) 8473 return spi; 8474 return state->stack[spi].spilled_ptr.id; 8475 } 8476 8477 static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 8478 { 8479 struct bpf_func_state *state = func(env, reg); 8480 int spi; 8481 8482 if (reg->type == CONST_PTR_TO_DYNPTR) 8483 return reg->ref_obj_id; 8484 spi = dynptr_get_spi(env, reg); 8485 if (spi < 0) 8486 return spi; 8487 return state->stack[spi].spilled_ptr.ref_obj_id; 8488 } 8489 8490 static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env, 8491 struct bpf_reg_state *reg) 8492 { 8493 struct bpf_func_state *state = func(env, reg); 8494 int spi; 8495 8496 if (reg->type == CONST_PTR_TO_DYNPTR) 8497 return reg->dynptr.type; 8498 8499 spi = __get_spi(reg->off); 8500 if (spi < 0) { 8501 verbose(env, "verifier internal error: invalid spi when querying dynptr type\n"); 8502 return BPF_DYNPTR_TYPE_INVALID; 8503 } 8504 8505 return state->stack[spi].spilled_ptr.dynptr.type; 8506 } 8507 8508 static int check_reg_const_str(struct bpf_verifier_env *env, 8509 struct bpf_reg_state *reg, u32 regno) 8510 { 8511 struct bpf_map *map = reg->map_ptr; 8512 int err; 8513 int map_off; 8514 u64 map_addr; 8515 char *str_ptr; 8516 8517 if (reg->type != PTR_TO_MAP_VALUE) 8518 return -EINVAL; 8519 8520 if (!bpf_map_is_rdonly(map)) { 8521 verbose(env, "R%d does not point to a readonly map'\n", regno); 8522 return -EACCES; 8523 } 8524 8525 if (!tnum_is_const(reg->var_off)) { 8526 verbose(env, "R%d is not a constant address'\n", regno); 8527 return -EACCES; 8528 } 8529 8530 if (!map->ops->map_direct_value_addr) { 8531 verbose(env, "no direct value access support for this map type\n"); 8532 return -EACCES; 8533 } 8534 8535 err = check_map_access(env, regno, reg->off, 8536 map->value_size - reg->off, false, 8537 ACCESS_HELPER); 8538 if (err) 8539 return err; 8540 8541 map_off = reg->off + reg->var_off.value; 8542 err = map->ops->map_direct_value_addr(map, &map_addr, map_off); 8543 if (err) { 8544 verbose(env, "direct value access on string failed\n"); 8545 return err; 8546 } 8547 8548 str_ptr = (char *)(long)(map_addr); 8549 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) { 8550 verbose(env, "string is not zero-terminated\n"); 8551 return -EINVAL; 8552 } 8553 return 0; 8554 } 8555 8556 static int check_func_arg(struct bpf_verifier_env *env, u32 arg, 8557 struct bpf_call_arg_meta *meta, 8558 const struct bpf_func_proto *fn, 8559 int insn_idx) 8560 { 8561 u32 regno = BPF_REG_1 + arg; 8562 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8563 enum bpf_arg_type arg_type = fn->arg_type[arg]; 8564 enum bpf_reg_type type = reg->type; 8565 u32 *arg_btf_id = NULL; 8566 int err = 0; 8567 8568 if (arg_type == ARG_DONTCARE) 8569 return 0; 8570 8571 err = check_reg_arg(env, regno, SRC_OP); 8572 if (err) 8573 return err; 8574 8575 if (arg_type == ARG_ANYTHING) { 8576 if (is_pointer_value(env, regno)) { 8577 verbose(env, "R%d leaks addr into helper function\n", 8578 regno); 8579 return -EACCES; 8580 } 8581 return 0; 8582 } 8583 8584 if (type_is_pkt_pointer(type) && 8585 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 8586 verbose(env, "helper access to the packet is not allowed\n"); 8587 return -EACCES; 8588 } 8589 8590 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) { 8591 err = resolve_map_arg_type(env, meta, &arg_type); 8592 if (err) 8593 return err; 8594 } 8595 8596 if (register_is_null(reg) && type_may_be_null(arg_type)) 8597 /* A NULL register has a SCALAR_VALUE type, so skip 8598 * type checking. 8599 */ 8600 goto skip_type_check; 8601 8602 /* arg_btf_id and arg_size are in a union. */ 8603 if (base_type(arg_type) == ARG_PTR_TO_BTF_ID || 8604 base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK) 8605 arg_btf_id = fn->arg_btf_id[arg]; 8606 8607 err = check_reg_type(env, regno, arg_type, arg_btf_id, meta); 8608 if (err) 8609 return err; 8610 8611 err = check_func_arg_reg_off(env, reg, regno, arg_type); 8612 if (err) 8613 return err; 8614 8615 skip_type_check: 8616 if (arg_type_is_release(arg_type)) { 8617 if (arg_type_is_dynptr(arg_type)) { 8618 struct bpf_func_state *state = func(env, reg); 8619 int spi; 8620 8621 /* Only dynptr created on stack can be released, thus 8622 * the get_spi and stack state checks for spilled_ptr 8623 * should only be done before process_dynptr_func for 8624 * PTR_TO_STACK. 8625 */ 8626 if (reg->type == PTR_TO_STACK) { 8627 spi = dynptr_get_spi(env, reg); 8628 if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) { 8629 verbose(env, "arg %d is an unacquired reference\n", regno); 8630 return -EINVAL; 8631 } 8632 } else { 8633 verbose(env, "cannot release unowned const bpf_dynptr\n"); 8634 return -EINVAL; 8635 } 8636 } else if (!reg->ref_obj_id && !register_is_null(reg)) { 8637 verbose(env, "R%d must be referenced when passed to release function\n", 8638 regno); 8639 return -EINVAL; 8640 } 8641 if (meta->release_regno) { 8642 verbose(env, "verifier internal error: more than one release argument\n"); 8643 return -EFAULT; 8644 } 8645 meta->release_regno = regno; 8646 } 8647 8648 if (reg->ref_obj_id) { 8649 if (meta->ref_obj_id) { 8650 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 8651 regno, reg->ref_obj_id, 8652 meta->ref_obj_id); 8653 return -EFAULT; 8654 } 8655 meta->ref_obj_id = reg->ref_obj_id; 8656 } 8657 8658 switch (base_type(arg_type)) { 8659 case ARG_CONST_MAP_PTR: 8660 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 8661 if (meta->map_ptr) { 8662 /* Use map_uid (which is unique id of inner map) to reject: 8663 * inner_map1 = bpf_map_lookup_elem(outer_map, key1) 8664 * inner_map2 = bpf_map_lookup_elem(outer_map, key2) 8665 * if (inner_map1 && inner_map2) { 8666 * timer = bpf_map_lookup_elem(inner_map1); 8667 * if (timer) 8668 * // mismatch would have been allowed 8669 * bpf_timer_init(timer, inner_map2); 8670 * } 8671 * 8672 * Comparing map_ptr is enough to distinguish normal and outer maps. 8673 */ 8674 if (meta->map_ptr != reg->map_ptr || 8675 meta->map_uid != reg->map_uid) { 8676 verbose(env, 8677 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", 8678 meta->map_uid, reg->map_uid); 8679 return -EINVAL; 8680 } 8681 } 8682 meta->map_ptr = reg->map_ptr; 8683 meta->map_uid = reg->map_uid; 8684 break; 8685 case ARG_PTR_TO_MAP_KEY: 8686 /* bpf_map_xxx(..., map_ptr, ..., key) call: 8687 * check that [key, key + map->key_size) are within 8688 * stack limits and initialized 8689 */ 8690 if (!meta->map_ptr) { 8691 /* in function declaration map_ptr must come before 8692 * map_key, so that it's verified and known before 8693 * we have to check map_key here. Otherwise it means 8694 * that kernel subsystem misconfigured verifier 8695 */ 8696 verbose(env, "invalid map_ptr to access map->key\n"); 8697 return -EACCES; 8698 } 8699 err = check_helper_mem_access(env, regno, 8700 meta->map_ptr->key_size, false, 8701 NULL); 8702 break; 8703 case ARG_PTR_TO_MAP_VALUE: 8704 if (type_may_be_null(arg_type) && register_is_null(reg)) 8705 return 0; 8706 8707 /* bpf_map_xxx(..., map_ptr, ..., value) call: 8708 * check [value, value + map->value_size) validity 8709 */ 8710 if (!meta->map_ptr) { 8711 /* kernel subsystem misconfigured verifier */ 8712 verbose(env, "invalid map_ptr to access map->value\n"); 8713 return -EACCES; 8714 } 8715 meta->raw_mode = arg_type & MEM_UNINIT; 8716 err = check_helper_mem_access(env, regno, 8717 meta->map_ptr->value_size, false, 8718 meta); 8719 break; 8720 case ARG_PTR_TO_PERCPU_BTF_ID: 8721 if (!reg->btf_id) { 8722 verbose(env, "Helper has invalid btf_id in R%d\n", regno); 8723 return -EACCES; 8724 } 8725 meta->ret_btf = reg->btf; 8726 meta->ret_btf_id = reg->btf_id; 8727 break; 8728 case ARG_PTR_TO_SPIN_LOCK: 8729 if (in_rbtree_lock_required_cb(env)) { 8730 verbose(env, "can't spin_{lock,unlock} in rbtree cb\n"); 8731 return -EACCES; 8732 } 8733 if (meta->func_id == BPF_FUNC_spin_lock) { 8734 err = process_spin_lock(env, regno, true); 8735 if (err) 8736 return err; 8737 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 8738 err = process_spin_lock(env, regno, false); 8739 if (err) 8740 return err; 8741 } else { 8742 verbose(env, "verifier internal error\n"); 8743 return -EFAULT; 8744 } 8745 break; 8746 case ARG_PTR_TO_TIMER: 8747 err = process_timer_func(env, regno, meta); 8748 if (err) 8749 return err; 8750 break; 8751 case ARG_PTR_TO_FUNC: 8752 meta->subprogno = reg->subprogno; 8753 break; 8754 case ARG_PTR_TO_MEM: 8755 /* The access to this pointer is only checked when we hit the 8756 * next is_mem_size argument below. 8757 */ 8758 meta->raw_mode = arg_type & MEM_UNINIT; 8759 if (arg_type & MEM_FIXED_SIZE) { 8760 err = check_helper_mem_access(env, regno, 8761 fn->arg_size[arg], false, 8762 meta); 8763 } 8764 break; 8765 case ARG_CONST_SIZE: 8766 err = check_mem_size_reg(env, reg, regno, false, meta); 8767 break; 8768 case ARG_CONST_SIZE_OR_ZERO: 8769 err = check_mem_size_reg(env, reg, regno, true, meta); 8770 break; 8771 case ARG_PTR_TO_DYNPTR: 8772 err = process_dynptr_func(env, regno, insn_idx, arg_type, 0); 8773 if (err) 8774 return err; 8775 break; 8776 case ARG_CONST_ALLOC_SIZE_OR_ZERO: 8777 if (!tnum_is_const(reg->var_off)) { 8778 verbose(env, "R%d is not a known constant'\n", 8779 regno); 8780 return -EACCES; 8781 } 8782 meta->mem_size = reg->var_off.value; 8783 err = mark_chain_precision(env, regno); 8784 if (err) 8785 return err; 8786 break; 8787 case ARG_PTR_TO_INT: 8788 case ARG_PTR_TO_LONG: 8789 { 8790 int size = int_ptr_type_to_size(arg_type); 8791 8792 err = check_helper_mem_access(env, regno, size, false, meta); 8793 if (err) 8794 return err; 8795 err = check_ptr_alignment(env, reg, 0, size, true); 8796 break; 8797 } 8798 case ARG_PTR_TO_CONST_STR: 8799 { 8800 err = check_reg_const_str(env, reg, regno); 8801 if (err) 8802 return err; 8803 break; 8804 } 8805 case ARG_PTR_TO_KPTR: 8806 err = process_kptr_func(env, regno, meta); 8807 if (err) 8808 return err; 8809 break; 8810 } 8811 8812 return err; 8813 } 8814 8815 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id) 8816 { 8817 enum bpf_attach_type eatype = env->prog->expected_attach_type; 8818 enum bpf_prog_type type = resolve_prog_type(env->prog); 8819 8820 if (func_id != BPF_FUNC_map_update_elem) 8821 return false; 8822 8823 /* It's not possible to get access to a locked struct sock in these 8824 * contexts, so updating is safe. 8825 */ 8826 switch (type) { 8827 case BPF_PROG_TYPE_TRACING: 8828 if (eatype == BPF_TRACE_ITER) 8829 return true; 8830 break; 8831 case BPF_PROG_TYPE_SOCKET_FILTER: 8832 case BPF_PROG_TYPE_SCHED_CLS: 8833 case BPF_PROG_TYPE_SCHED_ACT: 8834 case BPF_PROG_TYPE_XDP: 8835 case BPF_PROG_TYPE_SK_REUSEPORT: 8836 case BPF_PROG_TYPE_FLOW_DISSECTOR: 8837 case BPF_PROG_TYPE_SK_LOOKUP: 8838 return true; 8839 default: 8840 break; 8841 } 8842 8843 verbose(env, "cannot update sockmap in this context\n"); 8844 return false; 8845 } 8846 8847 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env) 8848 { 8849 return env->prog->jit_requested && 8850 bpf_jit_supports_subprog_tailcalls(); 8851 } 8852 8853 static int check_map_func_compatibility(struct bpf_verifier_env *env, 8854 struct bpf_map *map, int func_id) 8855 { 8856 if (!map) 8857 return 0; 8858 8859 /* We need a two way check, first is from map perspective ... */ 8860 switch (map->map_type) { 8861 case BPF_MAP_TYPE_PROG_ARRAY: 8862 if (func_id != BPF_FUNC_tail_call) 8863 goto error; 8864 break; 8865 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 8866 if (func_id != BPF_FUNC_perf_event_read && 8867 func_id != BPF_FUNC_perf_event_output && 8868 func_id != BPF_FUNC_skb_output && 8869 func_id != BPF_FUNC_perf_event_read_value && 8870 func_id != BPF_FUNC_xdp_output) 8871 goto error; 8872 break; 8873 case BPF_MAP_TYPE_RINGBUF: 8874 if (func_id != BPF_FUNC_ringbuf_output && 8875 func_id != BPF_FUNC_ringbuf_reserve && 8876 func_id != BPF_FUNC_ringbuf_query && 8877 func_id != BPF_FUNC_ringbuf_reserve_dynptr && 8878 func_id != BPF_FUNC_ringbuf_submit_dynptr && 8879 func_id != BPF_FUNC_ringbuf_discard_dynptr) 8880 goto error; 8881 break; 8882 case BPF_MAP_TYPE_USER_RINGBUF: 8883 if (func_id != BPF_FUNC_user_ringbuf_drain) 8884 goto error; 8885 break; 8886 case BPF_MAP_TYPE_STACK_TRACE: 8887 if (func_id != BPF_FUNC_get_stackid) 8888 goto error; 8889 break; 8890 case BPF_MAP_TYPE_CGROUP_ARRAY: 8891 if (func_id != BPF_FUNC_skb_under_cgroup && 8892 func_id != BPF_FUNC_current_task_under_cgroup) 8893 goto error; 8894 break; 8895 case BPF_MAP_TYPE_CGROUP_STORAGE: 8896 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 8897 if (func_id != BPF_FUNC_get_local_storage) 8898 goto error; 8899 break; 8900 case BPF_MAP_TYPE_DEVMAP: 8901 case BPF_MAP_TYPE_DEVMAP_HASH: 8902 if (func_id != BPF_FUNC_redirect_map && 8903 func_id != BPF_FUNC_map_lookup_elem) 8904 goto error; 8905 break; 8906 /* Restrict bpf side of cpumap and xskmap, open when use-cases 8907 * appear. 8908 */ 8909 case BPF_MAP_TYPE_CPUMAP: 8910 if (func_id != BPF_FUNC_redirect_map) 8911 goto error; 8912 break; 8913 case BPF_MAP_TYPE_XSKMAP: 8914 if (func_id != BPF_FUNC_redirect_map && 8915 func_id != BPF_FUNC_map_lookup_elem) 8916 goto error; 8917 break; 8918 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 8919 case BPF_MAP_TYPE_HASH_OF_MAPS: 8920 if (func_id != BPF_FUNC_map_lookup_elem) 8921 goto error; 8922 break; 8923 case BPF_MAP_TYPE_SOCKMAP: 8924 if (func_id != BPF_FUNC_sk_redirect_map && 8925 func_id != BPF_FUNC_sock_map_update && 8926 func_id != BPF_FUNC_map_delete_elem && 8927 func_id != BPF_FUNC_msg_redirect_map && 8928 func_id != BPF_FUNC_sk_select_reuseport && 8929 func_id != BPF_FUNC_map_lookup_elem && 8930 !may_update_sockmap(env, func_id)) 8931 goto error; 8932 break; 8933 case BPF_MAP_TYPE_SOCKHASH: 8934 if (func_id != BPF_FUNC_sk_redirect_hash && 8935 func_id != BPF_FUNC_sock_hash_update && 8936 func_id != BPF_FUNC_map_delete_elem && 8937 func_id != BPF_FUNC_msg_redirect_hash && 8938 func_id != BPF_FUNC_sk_select_reuseport && 8939 func_id != BPF_FUNC_map_lookup_elem && 8940 !may_update_sockmap(env, func_id)) 8941 goto error; 8942 break; 8943 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 8944 if (func_id != BPF_FUNC_sk_select_reuseport) 8945 goto error; 8946 break; 8947 case BPF_MAP_TYPE_QUEUE: 8948 case BPF_MAP_TYPE_STACK: 8949 if (func_id != BPF_FUNC_map_peek_elem && 8950 func_id != BPF_FUNC_map_pop_elem && 8951 func_id != BPF_FUNC_map_push_elem) 8952 goto error; 8953 break; 8954 case BPF_MAP_TYPE_SK_STORAGE: 8955 if (func_id != BPF_FUNC_sk_storage_get && 8956 func_id != BPF_FUNC_sk_storage_delete && 8957 func_id != BPF_FUNC_kptr_xchg) 8958 goto error; 8959 break; 8960 case BPF_MAP_TYPE_INODE_STORAGE: 8961 if (func_id != BPF_FUNC_inode_storage_get && 8962 func_id != BPF_FUNC_inode_storage_delete && 8963 func_id != BPF_FUNC_kptr_xchg) 8964 goto error; 8965 break; 8966 case BPF_MAP_TYPE_TASK_STORAGE: 8967 if (func_id != BPF_FUNC_task_storage_get && 8968 func_id != BPF_FUNC_task_storage_delete && 8969 func_id != BPF_FUNC_kptr_xchg) 8970 goto error; 8971 break; 8972 case BPF_MAP_TYPE_CGRP_STORAGE: 8973 if (func_id != BPF_FUNC_cgrp_storage_get && 8974 func_id != BPF_FUNC_cgrp_storage_delete && 8975 func_id != BPF_FUNC_kptr_xchg) 8976 goto error; 8977 break; 8978 case BPF_MAP_TYPE_BLOOM_FILTER: 8979 if (func_id != BPF_FUNC_map_peek_elem && 8980 func_id != BPF_FUNC_map_push_elem) 8981 goto error; 8982 break; 8983 default: 8984 break; 8985 } 8986 8987 /* ... and second from the function itself. */ 8988 switch (func_id) { 8989 case BPF_FUNC_tail_call: 8990 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 8991 goto error; 8992 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) { 8993 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 8994 return -EINVAL; 8995 } 8996 break; 8997 case BPF_FUNC_perf_event_read: 8998 case BPF_FUNC_perf_event_output: 8999 case BPF_FUNC_perf_event_read_value: 9000 case BPF_FUNC_skb_output: 9001 case BPF_FUNC_xdp_output: 9002 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 9003 goto error; 9004 break; 9005 case BPF_FUNC_ringbuf_output: 9006 case BPF_FUNC_ringbuf_reserve: 9007 case BPF_FUNC_ringbuf_query: 9008 case BPF_FUNC_ringbuf_reserve_dynptr: 9009 case BPF_FUNC_ringbuf_submit_dynptr: 9010 case BPF_FUNC_ringbuf_discard_dynptr: 9011 if (map->map_type != BPF_MAP_TYPE_RINGBUF) 9012 goto error; 9013 break; 9014 case BPF_FUNC_user_ringbuf_drain: 9015 if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF) 9016 goto error; 9017 break; 9018 case BPF_FUNC_get_stackid: 9019 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 9020 goto error; 9021 break; 9022 case BPF_FUNC_current_task_under_cgroup: 9023 case BPF_FUNC_skb_under_cgroup: 9024 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 9025 goto error; 9026 break; 9027 case BPF_FUNC_redirect_map: 9028 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 9029 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 9030 map->map_type != BPF_MAP_TYPE_CPUMAP && 9031 map->map_type != BPF_MAP_TYPE_XSKMAP) 9032 goto error; 9033 break; 9034 case BPF_FUNC_sk_redirect_map: 9035 case BPF_FUNC_msg_redirect_map: 9036 case BPF_FUNC_sock_map_update: 9037 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 9038 goto error; 9039 break; 9040 case BPF_FUNC_sk_redirect_hash: 9041 case BPF_FUNC_msg_redirect_hash: 9042 case BPF_FUNC_sock_hash_update: 9043 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 9044 goto error; 9045 break; 9046 case BPF_FUNC_get_local_storage: 9047 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 9048 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 9049 goto error; 9050 break; 9051 case BPF_FUNC_sk_select_reuseport: 9052 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 9053 map->map_type != BPF_MAP_TYPE_SOCKMAP && 9054 map->map_type != BPF_MAP_TYPE_SOCKHASH) 9055 goto error; 9056 break; 9057 case BPF_FUNC_map_pop_elem: 9058 if (map->map_type != BPF_MAP_TYPE_QUEUE && 9059 map->map_type != BPF_MAP_TYPE_STACK) 9060 goto error; 9061 break; 9062 case BPF_FUNC_map_peek_elem: 9063 case BPF_FUNC_map_push_elem: 9064 if (map->map_type != BPF_MAP_TYPE_QUEUE && 9065 map->map_type != BPF_MAP_TYPE_STACK && 9066 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER) 9067 goto error; 9068 break; 9069 case BPF_FUNC_map_lookup_percpu_elem: 9070 if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY && 9071 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 9072 map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH) 9073 goto error; 9074 break; 9075 case BPF_FUNC_sk_storage_get: 9076 case BPF_FUNC_sk_storage_delete: 9077 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 9078 goto error; 9079 break; 9080 case BPF_FUNC_inode_storage_get: 9081 case BPF_FUNC_inode_storage_delete: 9082 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE) 9083 goto error; 9084 break; 9085 case BPF_FUNC_task_storage_get: 9086 case BPF_FUNC_task_storage_delete: 9087 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE) 9088 goto error; 9089 break; 9090 case BPF_FUNC_cgrp_storage_get: 9091 case BPF_FUNC_cgrp_storage_delete: 9092 if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE) 9093 goto error; 9094 break; 9095 default: 9096 break; 9097 } 9098 9099 return 0; 9100 error: 9101 verbose(env, "cannot pass map_type %d into func %s#%d\n", 9102 map->map_type, func_id_name(func_id), func_id); 9103 return -EINVAL; 9104 } 9105 9106 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 9107 { 9108 int count = 0; 9109 9110 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 9111 count++; 9112 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 9113 count++; 9114 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 9115 count++; 9116 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 9117 count++; 9118 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 9119 count++; 9120 9121 /* We only support one arg being in raw mode at the moment, 9122 * which is sufficient for the helper functions we have 9123 * right now. 9124 */ 9125 return count <= 1; 9126 } 9127 9128 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg) 9129 { 9130 bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE; 9131 bool has_size = fn->arg_size[arg] != 0; 9132 bool is_next_size = false; 9133 9134 if (arg + 1 < ARRAY_SIZE(fn->arg_type)) 9135 is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]); 9136 9137 if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM) 9138 return is_next_size; 9139 9140 return has_size == is_next_size || is_next_size == is_fixed; 9141 } 9142 9143 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 9144 { 9145 /* bpf_xxx(..., buf, len) call will access 'len' 9146 * bytes from memory 'buf'. Both arg types need 9147 * to be paired, so make sure there's no buggy 9148 * helper function specification. 9149 */ 9150 if (arg_type_is_mem_size(fn->arg1_type) || 9151 check_args_pair_invalid(fn, 0) || 9152 check_args_pair_invalid(fn, 1) || 9153 check_args_pair_invalid(fn, 2) || 9154 check_args_pair_invalid(fn, 3) || 9155 check_args_pair_invalid(fn, 4)) 9156 return false; 9157 9158 return true; 9159 } 9160 9161 static bool check_btf_id_ok(const struct bpf_func_proto *fn) 9162 { 9163 int i; 9164 9165 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) { 9166 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID) 9167 return !!fn->arg_btf_id[i]; 9168 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK) 9169 return fn->arg_btf_id[i] == BPF_PTR_POISON; 9170 if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] && 9171 /* arg_btf_id and arg_size are in a union. */ 9172 (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM || 9173 !(fn->arg_type[i] & MEM_FIXED_SIZE))) 9174 return false; 9175 } 9176 9177 return true; 9178 } 9179 9180 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 9181 { 9182 return check_raw_mode_ok(fn) && 9183 check_arg_pair_ok(fn) && 9184 check_btf_id_ok(fn) ? 0 : -EINVAL; 9185 } 9186 9187 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 9188 * are now invalid, so turn them into unknown SCALAR_VALUE. 9189 * 9190 * This also applies to dynptr slices belonging to skb and xdp dynptrs, 9191 * since these slices point to packet data. 9192 */ 9193 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 9194 { 9195 struct bpf_func_state *state; 9196 struct bpf_reg_state *reg; 9197 9198 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 9199 if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg)) 9200 mark_reg_invalid(env, reg); 9201 })); 9202 } 9203 9204 enum { 9205 AT_PKT_END = -1, 9206 BEYOND_PKT_END = -2, 9207 }; 9208 9209 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open) 9210 { 9211 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 9212 struct bpf_reg_state *reg = &state->regs[regn]; 9213 9214 if (reg->type != PTR_TO_PACKET) 9215 /* PTR_TO_PACKET_META is not supported yet */ 9216 return; 9217 9218 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end. 9219 * How far beyond pkt_end it goes is unknown. 9220 * if (!range_open) it's the case of pkt >= pkt_end 9221 * if (range_open) it's the case of pkt > pkt_end 9222 * hence this pointer is at least 1 byte bigger than pkt_end 9223 */ 9224 if (range_open) 9225 reg->range = BEYOND_PKT_END; 9226 else 9227 reg->range = AT_PKT_END; 9228 } 9229 9230 /* The pointer with the specified id has released its reference to kernel 9231 * resources. Identify all copies of the same pointer and clear the reference. 9232 */ 9233 static int release_reference(struct bpf_verifier_env *env, 9234 int ref_obj_id) 9235 { 9236 struct bpf_func_state *state; 9237 struct bpf_reg_state *reg; 9238 int err; 9239 9240 err = release_reference_state(cur_func(env), ref_obj_id); 9241 if (err) 9242 return err; 9243 9244 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 9245 if (reg->ref_obj_id == ref_obj_id) 9246 mark_reg_invalid(env, reg); 9247 })); 9248 9249 return 0; 9250 } 9251 9252 static void invalidate_non_owning_refs(struct bpf_verifier_env *env) 9253 { 9254 struct bpf_func_state *unused; 9255 struct bpf_reg_state *reg; 9256 9257 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ 9258 if (type_is_non_owning_ref(reg->type)) 9259 mark_reg_invalid(env, reg); 9260 })); 9261 } 9262 9263 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 9264 struct bpf_reg_state *regs) 9265 { 9266 int i; 9267 9268 /* after the call registers r0 - r5 were scratched */ 9269 for (i = 0; i < CALLER_SAVED_REGS; i++) { 9270 mark_reg_not_init(env, regs, caller_saved[i]); 9271 __check_reg_arg(env, regs, caller_saved[i], DST_OP_NO_MARK); 9272 } 9273 } 9274 9275 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env, 9276 struct bpf_func_state *caller, 9277 struct bpf_func_state *callee, 9278 int insn_idx); 9279 9280 static int set_callee_state(struct bpf_verifier_env *env, 9281 struct bpf_func_state *caller, 9282 struct bpf_func_state *callee, int insn_idx); 9283 9284 static int setup_func_entry(struct bpf_verifier_env *env, int subprog, int callsite, 9285 set_callee_state_fn set_callee_state_cb, 9286 struct bpf_verifier_state *state) 9287 { 9288 struct bpf_func_state *caller, *callee; 9289 int err; 9290 9291 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 9292 verbose(env, "the call stack of %d frames is too deep\n", 9293 state->curframe + 2); 9294 return -E2BIG; 9295 } 9296 9297 if (state->frame[state->curframe + 1]) { 9298 verbose(env, "verifier bug. Frame %d already allocated\n", 9299 state->curframe + 1); 9300 return -EFAULT; 9301 } 9302 9303 caller = state->frame[state->curframe]; 9304 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 9305 if (!callee) 9306 return -ENOMEM; 9307 state->frame[state->curframe + 1] = callee; 9308 9309 /* callee cannot access r0, r6 - r9 for reading and has to write 9310 * into its own stack before reading from it. 9311 * callee can read/write into caller's stack 9312 */ 9313 init_func_state(env, callee, 9314 /* remember the callsite, it will be used by bpf_exit */ 9315 callsite, 9316 state->curframe + 1 /* frameno within this callchain */, 9317 subprog /* subprog number within this prog */); 9318 /* Transfer references to the callee */ 9319 err = copy_reference_state(callee, caller); 9320 err = err ?: set_callee_state_cb(env, caller, callee, callsite); 9321 if (err) 9322 goto err_out; 9323 9324 /* only increment it after check_reg_arg() finished */ 9325 state->curframe++; 9326 9327 return 0; 9328 9329 err_out: 9330 free_func_state(callee); 9331 state->frame[state->curframe + 1] = NULL; 9332 return err; 9333 } 9334 9335 static int btf_check_func_arg_match(struct bpf_verifier_env *env, int subprog, 9336 const struct btf *btf, 9337 struct bpf_reg_state *regs) 9338 { 9339 struct bpf_subprog_info *sub = subprog_info(env, subprog); 9340 struct bpf_verifier_log *log = &env->log; 9341 u32 i; 9342 int ret; 9343 9344 ret = btf_prepare_func_args(env, subprog); 9345 if (ret) 9346 return ret; 9347 9348 /* check that BTF function arguments match actual types that the 9349 * verifier sees. 9350 */ 9351 for (i = 0; i < sub->arg_cnt; i++) { 9352 u32 regno = i + 1; 9353 struct bpf_reg_state *reg = ®s[regno]; 9354 struct bpf_subprog_arg_info *arg = &sub->args[i]; 9355 9356 if (arg->arg_type == ARG_ANYTHING) { 9357 if (reg->type != SCALAR_VALUE) { 9358 bpf_log(log, "R%d is not a scalar\n", regno); 9359 return -EINVAL; 9360 } 9361 } else if (arg->arg_type == ARG_PTR_TO_CTX) { 9362 ret = check_func_arg_reg_off(env, reg, regno, ARG_DONTCARE); 9363 if (ret < 0) 9364 return ret; 9365 /* If function expects ctx type in BTF check that caller 9366 * is passing PTR_TO_CTX. 9367 */ 9368 if (reg->type != PTR_TO_CTX) { 9369 bpf_log(log, "arg#%d expects pointer to ctx\n", i); 9370 return -EINVAL; 9371 } 9372 } else if (base_type(arg->arg_type) == ARG_PTR_TO_MEM) { 9373 ret = check_func_arg_reg_off(env, reg, regno, ARG_DONTCARE); 9374 if (ret < 0) 9375 return ret; 9376 if (check_mem_reg(env, reg, regno, arg->mem_size)) 9377 return -EINVAL; 9378 if (!(arg->arg_type & PTR_MAYBE_NULL) && (reg->type & PTR_MAYBE_NULL)) { 9379 bpf_log(log, "arg#%d is expected to be non-NULL\n", i); 9380 return -EINVAL; 9381 } 9382 } else if (base_type(arg->arg_type) == ARG_PTR_TO_ARENA) { 9383 /* 9384 * Can pass any value and the kernel won't crash, but 9385 * only PTR_TO_ARENA or SCALAR make sense. Everything 9386 * else is a bug in the bpf program. Point it out to 9387 * the user at the verification time instead of 9388 * run-time debug nightmare. 9389 */ 9390 if (reg->type != PTR_TO_ARENA && reg->type != SCALAR_VALUE) { 9391 bpf_log(log, "R%d is not a pointer to arena or scalar.\n", regno); 9392 return -EINVAL; 9393 } 9394 } else if (arg->arg_type == (ARG_PTR_TO_DYNPTR | MEM_RDONLY)) { 9395 ret = process_dynptr_func(env, regno, -1, arg->arg_type, 0); 9396 if (ret) 9397 return ret; 9398 } else if (base_type(arg->arg_type) == ARG_PTR_TO_BTF_ID) { 9399 struct bpf_call_arg_meta meta; 9400 int err; 9401 9402 if (register_is_null(reg) && type_may_be_null(arg->arg_type)) 9403 continue; 9404 9405 memset(&meta, 0, sizeof(meta)); /* leave func_id as zero */ 9406 err = check_reg_type(env, regno, arg->arg_type, &arg->btf_id, &meta); 9407 err = err ?: check_func_arg_reg_off(env, reg, regno, arg->arg_type); 9408 if (err) 9409 return err; 9410 } else { 9411 bpf_log(log, "verifier bug: unrecognized arg#%d type %d\n", 9412 i, arg->arg_type); 9413 return -EFAULT; 9414 } 9415 } 9416 9417 return 0; 9418 } 9419 9420 /* Compare BTF of a function call with given bpf_reg_state. 9421 * Returns: 9422 * EFAULT - there is a verifier bug. Abort verification. 9423 * EINVAL - there is a type mismatch or BTF is not available. 9424 * 0 - BTF matches with what bpf_reg_state expects. 9425 * Only PTR_TO_CTX and SCALAR_VALUE states are recognized. 9426 */ 9427 static int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog, 9428 struct bpf_reg_state *regs) 9429 { 9430 struct bpf_prog *prog = env->prog; 9431 struct btf *btf = prog->aux->btf; 9432 u32 btf_id; 9433 int err; 9434 9435 if (!prog->aux->func_info) 9436 return -EINVAL; 9437 9438 btf_id = prog->aux->func_info[subprog].type_id; 9439 if (!btf_id) 9440 return -EFAULT; 9441 9442 if (prog->aux->func_info_aux[subprog].unreliable) 9443 return -EINVAL; 9444 9445 err = btf_check_func_arg_match(env, subprog, btf, regs); 9446 /* Compiler optimizations can remove arguments from static functions 9447 * or mismatched type can be passed into a global function. 9448 * In such cases mark the function as unreliable from BTF point of view. 9449 */ 9450 if (err) 9451 prog->aux->func_info_aux[subprog].unreliable = true; 9452 return err; 9453 } 9454 9455 static int push_callback_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 9456 int insn_idx, int subprog, 9457 set_callee_state_fn set_callee_state_cb) 9458 { 9459 struct bpf_verifier_state *state = env->cur_state, *callback_state; 9460 struct bpf_func_state *caller, *callee; 9461 int err; 9462 9463 caller = state->frame[state->curframe]; 9464 err = btf_check_subprog_call(env, subprog, caller->regs); 9465 if (err == -EFAULT) 9466 return err; 9467 9468 /* set_callee_state is used for direct subprog calls, but we are 9469 * interested in validating only BPF helpers that can call subprogs as 9470 * callbacks 9471 */ 9472 env->subprog_info[subprog].is_cb = true; 9473 if (bpf_pseudo_kfunc_call(insn) && 9474 !is_sync_callback_calling_kfunc(insn->imm)) { 9475 verbose(env, "verifier bug: kfunc %s#%d not marked as callback-calling\n", 9476 func_id_name(insn->imm), insn->imm); 9477 return -EFAULT; 9478 } else if (!bpf_pseudo_kfunc_call(insn) && 9479 !is_callback_calling_function(insn->imm)) { /* helper */ 9480 verbose(env, "verifier bug: helper %s#%d not marked as callback-calling\n", 9481 func_id_name(insn->imm), insn->imm); 9482 return -EFAULT; 9483 } 9484 9485 if (is_async_callback_calling_insn(insn)) { 9486 struct bpf_verifier_state *async_cb; 9487 9488 /* there is no real recursion here. timer callbacks are async */ 9489 env->subprog_info[subprog].is_async_cb = true; 9490 async_cb = push_async_cb(env, env->subprog_info[subprog].start, 9491 insn_idx, subprog); 9492 if (!async_cb) 9493 return -EFAULT; 9494 callee = async_cb->frame[0]; 9495 callee->async_entry_cnt = caller->async_entry_cnt + 1; 9496 9497 /* Convert bpf_timer_set_callback() args into timer callback args */ 9498 err = set_callee_state_cb(env, caller, callee, insn_idx); 9499 if (err) 9500 return err; 9501 9502 return 0; 9503 } 9504 9505 /* for callback functions enqueue entry to callback and 9506 * proceed with next instruction within current frame. 9507 */ 9508 callback_state = push_stack(env, env->subprog_info[subprog].start, insn_idx, false); 9509 if (!callback_state) 9510 return -ENOMEM; 9511 9512 err = setup_func_entry(env, subprog, insn_idx, set_callee_state_cb, 9513 callback_state); 9514 if (err) 9515 return err; 9516 9517 callback_state->callback_unroll_depth++; 9518 callback_state->frame[callback_state->curframe - 1]->callback_depth++; 9519 caller->callback_depth = 0; 9520 return 0; 9521 } 9522 9523 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 9524 int *insn_idx) 9525 { 9526 struct bpf_verifier_state *state = env->cur_state; 9527 struct bpf_func_state *caller; 9528 int err, subprog, target_insn; 9529 9530 target_insn = *insn_idx + insn->imm + 1; 9531 subprog = find_subprog(env, target_insn); 9532 if (subprog < 0) { 9533 verbose(env, "verifier bug. No program starts at insn %d\n", target_insn); 9534 return -EFAULT; 9535 } 9536 9537 caller = state->frame[state->curframe]; 9538 err = btf_check_subprog_call(env, subprog, caller->regs); 9539 if (err == -EFAULT) 9540 return err; 9541 if (subprog_is_global(env, subprog)) { 9542 const char *sub_name = subprog_name(env, subprog); 9543 9544 /* Only global subprogs cannot be called with a lock held. */ 9545 if (env->cur_state->active_lock.ptr) { 9546 verbose(env, "global function calls are not allowed while holding a lock,\n" 9547 "use static function instead\n"); 9548 return -EINVAL; 9549 } 9550 9551 if (err) { 9552 verbose(env, "Caller passes invalid args into func#%d ('%s')\n", 9553 subprog, sub_name); 9554 return err; 9555 } 9556 9557 verbose(env, "Func#%d ('%s') is global and assumed valid.\n", 9558 subprog, sub_name); 9559 /* mark global subprog for verifying after main prog */ 9560 subprog_aux(env, subprog)->called = true; 9561 clear_caller_saved_regs(env, caller->regs); 9562 9563 /* All global functions return a 64-bit SCALAR_VALUE */ 9564 mark_reg_unknown(env, caller->regs, BPF_REG_0); 9565 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 9566 9567 /* continue with next insn after call */ 9568 return 0; 9569 } 9570 9571 /* for regular function entry setup new frame and continue 9572 * from that frame. 9573 */ 9574 err = setup_func_entry(env, subprog, *insn_idx, set_callee_state, state); 9575 if (err) 9576 return err; 9577 9578 clear_caller_saved_regs(env, caller->regs); 9579 9580 /* and go analyze first insn of the callee */ 9581 *insn_idx = env->subprog_info[subprog].start - 1; 9582 9583 if (env->log.level & BPF_LOG_LEVEL) { 9584 verbose(env, "caller:\n"); 9585 print_verifier_state(env, caller, true); 9586 verbose(env, "callee:\n"); 9587 print_verifier_state(env, state->frame[state->curframe], true); 9588 } 9589 9590 return 0; 9591 } 9592 9593 int map_set_for_each_callback_args(struct bpf_verifier_env *env, 9594 struct bpf_func_state *caller, 9595 struct bpf_func_state *callee) 9596 { 9597 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn, 9598 * void *callback_ctx, u64 flags); 9599 * callback_fn(struct bpf_map *map, void *key, void *value, 9600 * void *callback_ctx); 9601 */ 9602 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 9603 9604 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 9605 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 9606 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr; 9607 9608 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 9609 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 9610 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr; 9611 9612 /* pointer to stack or null */ 9613 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3]; 9614 9615 /* unused */ 9616 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9617 return 0; 9618 } 9619 9620 static int set_callee_state(struct bpf_verifier_env *env, 9621 struct bpf_func_state *caller, 9622 struct bpf_func_state *callee, int insn_idx) 9623 { 9624 int i; 9625 9626 /* copy r1 - r5 args that callee can access. The copy includes parent 9627 * pointers, which connects us up to the liveness chain 9628 */ 9629 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 9630 callee->regs[i] = caller->regs[i]; 9631 return 0; 9632 } 9633 9634 static int set_map_elem_callback_state(struct bpf_verifier_env *env, 9635 struct bpf_func_state *caller, 9636 struct bpf_func_state *callee, 9637 int insn_idx) 9638 { 9639 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx]; 9640 struct bpf_map *map; 9641 int err; 9642 9643 if (bpf_map_ptr_poisoned(insn_aux)) { 9644 verbose(env, "tail_call abusing map_ptr\n"); 9645 return -EINVAL; 9646 } 9647 9648 map = BPF_MAP_PTR(insn_aux->map_ptr_state); 9649 if (!map->ops->map_set_for_each_callback_args || 9650 !map->ops->map_for_each_callback) { 9651 verbose(env, "callback function not allowed for map\n"); 9652 return -ENOTSUPP; 9653 } 9654 9655 err = map->ops->map_set_for_each_callback_args(env, caller, callee); 9656 if (err) 9657 return err; 9658 9659 callee->in_callback_fn = true; 9660 callee->callback_ret_range = retval_range(0, 1); 9661 return 0; 9662 } 9663 9664 static int set_loop_callback_state(struct bpf_verifier_env *env, 9665 struct bpf_func_state *caller, 9666 struct bpf_func_state *callee, 9667 int insn_idx) 9668 { 9669 /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx, 9670 * u64 flags); 9671 * callback_fn(u32 index, void *callback_ctx); 9672 */ 9673 callee->regs[BPF_REG_1].type = SCALAR_VALUE; 9674 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 9675 9676 /* unused */ 9677 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 9678 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9679 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9680 9681 callee->in_callback_fn = true; 9682 callee->callback_ret_range = retval_range(0, 1); 9683 return 0; 9684 } 9685 9686 static int set_timer_callback_state(struct bpf_verifier_env *env, 9687 struct bpf_func_state *caller, 9688 struct bpf_func_state *callee, 9689 int insn_idx) 9690 { 9691 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr; 9692 9693 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn); 9694 * callback_fn(struct bpf_map *map, void *key, void *value); 9695 */ 9696 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP; 9697 __mark_reg_known_zero(&callee->regs[BPF_REG_1]); 9698 callee->regs[BPF_REG_1].map_ptr = map_ptr; 9699 9700 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 9701 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 9702 callee->regs[BPF_REG_2].map_ptr = map_ptr; 9703 9704 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 9705 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 9706 callee->regs[BPF_REG_3].map_ptr = map_ptr; 9707 9708 /* unused */ 9709 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9710 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9711 callee->in_async_callback_fn = true; 9712 callee->callback_ret_range = retval_range(0, 1); 9713 return 0; 9714 } 9715 9716 static int set_find_vma_callback_state(struct bpf_verifier_env *env, 9717 struct bpf_func_state *caller, 9718 struct bpf_func_state *callee, 9719 int insn_idx) 9720 { 9721 /* bpf_find_vma(struct task_struct *task, u64 addr, 9722 * void *callback_fn, void *callback_ctx, u64 flags) 9723 * (callback_fn)(struct task_struct *task, 9724 * struct vm_area_struct *vma, void *callback_ctx); 9725 */ 9726 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 9727 9728 callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID; 9729 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 9730 callee->regs[BPF_REG_2].btf = btf_vmlinux; 9731 callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA]; 9732 9733 /* pointer to stack or null */ 9734 callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4]; 9735 9736 /* unused */ 9737 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9738 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9739 callee->in_callback_fn = true; 9740 callee->callback_ret_range = retval_range(0, 1); 9741 return 0; 9742 } 9743 9744 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env, 9745 struct bpf_func_state *caller, 9746 struct bpf_func_state *callee, 9747 int insn_idx) 9748 { 9749 /* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void 9750 * callback_ctx, u64 flags); 9751 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx); 9752 */ 9753 __mark_reg_not_init(env, &callee->regs[BPF_REG_0]); 9754 mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL); 9755 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 9756 9757 /* unused */ 9758 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 9759 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9760 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9761 9762 callee->in_callback_fn = true; 9763 callee->callback_ret_range = retval_range(0, 1); 9764 return 0; 9765 } 9766 9767 static int set_rbtree_add_callback_state(struct bpf_verifier_env *env, 9768 struct bpf_func_state *caller, 9769 struct bpf_func_state *callee, 9770 int insn_idx) 9771 { 9772 /* void bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node, 9773 * bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b)); 9774 * 9775 * 'struct bpf_rb_node *node' arg to bpf_rbtree_add_impl is the same PTR_TO_BTF_ID w/ offset 9776 * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd 9777 * by this point, so look at 'root' 9778 */ 9779 struct btf_field *field; 9780 9781 field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off, 9782 BPF_RB_ROOT); 9783 if (!field || !field->graph_root.value_btf_id) 9784 return -EFAULT; 9785 9786 mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root); 9787 ref_set_non_owning(env, &callee->regs[BPF_REG_1]); 9788 mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root); 9789 ref_set_non_owning(env, &callee->regs[BPF_REG_2]); 9790 9791 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 9792 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9793 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9794 callee->in_callback_fn = true; 9795 callee->callback_ret_range = retval_range(0, 1); 9796 return 0; 9797 } 9798 9799 static bool is_rbtree_lock_required_kfunc(u32 btf_id); 9800 9801 /* Are we currently verifying the callback for a rbtree helper that must 9802 * be called with lock held? If so, no need to complain about unreleased 9803 * lock 9804 */ 9805 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env) 9806 { 9807 struct bpf_verifier_state *state = env->cur_state; 9808 struct bpf_insn *insn = env->prog->insnsi; 9809 struct bpf_func_state *callee; 9810 int kfunc_btf_id; 9811 9812 if (!state->curframe) 9813 return false; 9814 9815 callee = state->frame[state->curframe]; 9816 9817 if (!callee->in_callback_fn) 9818 return false; 9819 9820 kfunc_btf_id = insn[callee->callsite].imm; 9821 return is_rbtree_lock_required_kfunc(kfunc_btf_id); 9822 } 9823 9824 static bool retval_range_within(struct bpf_retval_range range, const struct bpf_reg_state *reg) 9825 { 9826 return range.minval <= reg->smin_value && reg->smax_value <= range.maxval; 9827 } 9828 9829 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 9830 { 9831 struct bpf_verifier_state *state = env->cur_state, *prev_st; 9832 struct bpf_func_state *caller, *callee; 9833 struct bpf_reg_state *r0; 9834 bool in_callback_fn; 9835 int err; 9836 9837 callee = state->frame[state->curframe]; 9838 r0 = &callee->regs[BPF_REG_0]; 9839 if (r0->type == PTR_TO_STACK) { 9840 /* technically it's ok to return caller's stack pointer 9841 * (or caller's caller's pointer) back to the caller, 9842 * since these pointers are valid. Only current stack 9843 * pointer will be invalid as soon as function exits, 9844 * but let's be conservative 9845 */ 9846 verbose(env, "cannot return stack pointer to the caller\n"); 9847 return -EINVAL; 9848 } 9849 9850 caller = state->frame[state->curframe - 1]; 9851 if (callee->in_callback_fn) { 9852 if (r0->type != SCALAR_VALUE) { 9853 verbose(env, "R0 not a scalar value\n"); 9854 return -EACCES; 9855 } 9856 9857 /* we are going to rely on register's precise value */ 9858 err = mark_reg_read(env, r0, r0->parent, REG_LIVE_READ64); 9859 err = err ?: mark_chain_precision(env, BPF_REG_0); 9860 if (err) 9861 return err; 9862 9863 /* enforce R0 return value range */ 9864 if (!retval_range_within(callee->callback_ret_range, r0)) { 9865 verbose_invalid_scalar(env, r0, callee->callback_ret_range, 9866 "At callback return", "R0"); 9867 return -EINVAL; 9868 } 9869 if (!calls_callback(env, callee->callsite)) { 9870 verbose(env, "BUG: in callback at %d, callsite %d !calls_callback\n", 9871 *insn_idx, callee->callsite); 9872 return -EFAULT; 9873 } 9874 } else { 9875 /* return to the caller whatever r0 had in the callee */ 9876 caller->regs[BPF_REG_0] = *r0; 9877 } 9878 9879 /* callback_fn frame should have released its own additions to parent's 9880 * reference state at this point, or check_reference_leak would 9881 * complain, hence it must be the same as the caller. There is no need 9882 * to copy it back. 9883 */ 9884 if (!callee->in_callback_fn) { 9885 /* Transfer references to the caller */ 9886 err = copy_reference_state(caller, callee); 9887 if (err) 9888 return err; 9889 } 9890 9891 /* for callbacks like bpf_loop or bpf_for_each_map_elem go back to callsite, 9892 * there function call logic would reschedule callback visit. If iteration 9893 * converges is_state_visited() would prune that visit eventually. 9894 */ 9895 in_callback_fn = callee->in_callback_fn; 9896 if (in_callback_fn) 9897 *insn_idx = callee->callsite; 9898 else 9899 *insn_idx = callee->callsite + 1; 9900 9901 if (env->log.level & BPF_LOG_LEVEL) { 9902 verbose(env, "returning from callee:\n"); 9903 print_verifier_state(env, callee, true); 9904 verbose(env, "to caller at %d:\n", *insn_idx); 9905 print_verifier_state(env, caller, true); 9906 } 9907 /* clear everything in the callee. In case of exceptional exits using 9908 * bpf_throw, this will be done by copy_verifier_state for extra frames. */ 9909 free_func_state(callee); 9910 state->frame[state->curframe--] = NULL; 9911 9912 /* for callbacks widen imprecise scalars to make programs like below verify: 9913 * 9914 * struct ctx { int i; } 9915 * void cb(int idx, struct ctx *ctx) { ctx->i++; ... } 9916 * ... 9917 * struct ctx = { .i = 0; } 9918 * bpf_loop(100, cb, &ctx, 0); 9919 * 9920 * This is similar to what is done in process_iter_next_call() for open 9921 * coded iterators. 9922 */ 9923 prev_st = in_callback_fn ? find_prev_entry(env, state, *insn_idx) : NULL; 9924 if (prev_st) { 9925 err = widen_imprecise_scalars(env, prev_st, state); 9926 if (err) 9927 return err; 9928 } 9929 return 0; 9930 } 9931 9932 static int do_refine_retval_range(struct bpf_verifier_env *env, 9933 struct bpf_reg_state *regs, int ret_type, 9934 int func_id, 9935 struct bpf_call_arg_meta *meta) 9936 { 9937 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 9938 9939 if (ret_type != RET_INTEGER) 9940 return 0; 9941 9942 switch (func_id) { 9943 case BPF_FUNC_get_stack: 9944 case BPF_FUNC_get_task_stack: 9945 case BPF_FUNC_probe_read_str: 9946 case BPF_FUNC_probe_read_kernel_str: 9947 case BPF_FUNC_probe_read_user_str: 9948 ret_reg->smax_value = meta->msize_max_value; 9949 ret_reg->s32_max_value = meta->msize_max_value; 9950 ret_reg->smin_value = -MAX_ERRNO; 9951 ret_reg->s32_min_value = -MAX_ERRNO; 9952 reg_bounds_sync(ret_reg); 9953 break; 9954 case BPF_FUNC_get_smp_processor_id: 9955 ret_reg->umax_value = nr_cpu_ids - 1; 9956 ret_reg->u32_max_value = nr_cpu_ids - 1; 9957 ret_reg->smax_value = nr_cpu_ids - 1; 9958 ret_reg->s32_max_value = nr_cpu_ids - 1; 9959 ret_reg->umin_value = 0; 9960 ret_reg->u32_min_value = 0; 9961 ret_reg->smin_value = 0; 9962 ret_reg->s32_min_value = 0; 9963 reg_bounds_sync(ret_reg); 9964 break; 9965 } 9966 9967 return reg_bounds_sanity_check(env, ret_reg, "retval"); 9968 } 9969 9970 static int 9971 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 9972 int func_id, int insn_idx) 9973 { 9974 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 9975 struct bpf_map *map = meta->map_ptr; 9976 9977 if (func_id != BPF_FUNC_tail_call && 9978 func_id != BPF_FUNC_map_lookup_elem && 9979 func_id != BPF_FUNC_map_update_elem && 9980 func_id != BPF_FUNC_map_delete_elem && 9981 func_id != BPF_FUNC_map_push_elem && 9982 func_id != BPF_FUNC_map_pop_elem && 9983 func_id != BPF_FUNC_map_peek_elem && 9984 func_id != BPF_FUNC_for_each_map_elem && 9985 func_id != BPF_FUNC_redirect_map && 9986 func_id != BPF_FUNC_map_lookup_percpu_elem) 9987 return 0; 9988 9989 if (map == NULL) { 9990 verbose(env, "kernel subsystem misconfigured verifier\n"); 9991 return -EINVAL; 9992 } 9993 9994 /* In case of read-only, some additional restrictions 9995 * need to be applied in order to prevent altering the 9996 * state of the map from program side. 9997 */ 9998 if ((map->map_flags & BPF_F_RDONLY_PROG) && 9999 (func_id == BPF_FUNC_map_delete_elem || 10000 func_id == BPF_FUNC_map_update_elem || 10001 func_id == BPF_FUNC_map_push_elem || 10002 func_id == BPF_FUNC_map_pop_elem)) { 10003 verbose(env, "write into map forbidden\n"); 10004 return -EACCES; 10005 } 10006 10007 if (!BPF_MAP_PTR(aux->map_ptr_state)) 10008 bpf_map_ptr_store(aux, meta->map_ptr, 10009 !meta->map_ptr->bypass_spec_v1); 10010 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr) 10011 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 10012 !meta->map_ptr->bypass_spec_v1); 10013 return 0; 10014 } 10015 10016 static int 10017 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 10018 int func_id, int insn_idx) 10019 { 10020 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 10021 struct bpf_reg_state *regs = cur_regs(env), *reg; 10022 struct bpf_map *map = meta->map_ptr; 10023 u64 val, max; 10024 int err; 10025 10026 if (func_id != BPF_FUNC_tail_call) 10027 return 0; 10028 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 10029 verbose(env, "kernel subsystem misconfigured verifier\n"); 10030 return -EINVAL; 10031 } 10032 10033 reg = ®s[BPF_REG_3]; 10034 val = reg->var_off.value; 10035 max = map->max_entries; 10036 10037 if (!(is_reg_const(reg, false) && val < max)) { 10038 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 10039 return 0; 10040 } 10041 10042 err = mark_chain_precision(env, BPF_REG_3); 10043 if (err) 10044 return err; 10045 if (bpf_map_key_unseen(aux)) 10046 bpf_map_key_store(aux, val); 10047 else if (!bpf_map_key_poisoned(aux) && 10048 bpf_map_key_immediate(aux) != val) 10049 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 10050 return 0; 10051 } 10052 10053 static int check_reference_leak(struct bpf_verifier_env *env, bool exception_exit) 10054 { 10055 struct bpf_func_state *state = cur_func(env); 10056 bool refs_lingering = false; 10057 int i; 10058 10059 if (!exception_exit && state->frameno && !state->in_callback_fn) 10060 return 0; 10061 10062 for (i = 0; i < state->acquired_refs; i++) { 10063 if (!exception_exit && state->in_callback_fn && state->refs[i].callback_ref != state->frameno) 10064 continue; 10065 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 10066 state->refs[i].id, state->refs[i].insn_idx); 10067 refs_lingering = true; 10068 } 10069 return refs_lingering ? -EINVAL : 0; 10070 } 10071 10072 static int check_bpf_snprintf_call(struct bpf_verifier_env *env, 10073 struct bpf_reg_state *regs) 10074 { 10075 struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3]; 10076 struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5]; 10077 struct bpf_map *fmt_map = fmt_reg->map_ptr; 10078 struct bpf_bprintf_data data = {}; 10079 int err, fmt_map_off, num_args; 10080 u64 fmt_addr; 10081 char *fmt; 10082 10083 /* data must be an array of u64 */ 10084 if (data_len_reg->var_off.value % 8) 10085 return -EINVAL; 10086 num_args = data_len_reg->var_off.value / 8; 10087 10088 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const 10089 * and map_direct_value_addr is set. 10090 */ 10091 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value; 10092 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr, 10093 fmt_map_off); 10094 if (err) { 10095 verbose(env, "verifier bug\n"); 10096 return -EFAULT; 10097 } 10098 fmt = (char *)(long)fmt_addr + fmt_map_off; 10099 10100 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we 10101 * can focus on validating the format specifiers. 10102 */ 10103 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data); 10104 if (err < 0) 10105 verbose(env, "Invalid format string\n"); 10106 10107 return err; 10108 } 10109 10110 static int check_get_func_ip(struct bpf_verifier_env *env) 10111 { 10112 enum bpf_prog_type type = resolve_prog_type(env->prog); 10113 int func_id = BPF_FUNC_get_func_ip; 10114 10115 if (type == BPF_PROG_TYPE_TRACING) { 10116 if (!bpf_prog_has_trampoline(env->prog)) { 10117 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n", 10118 func_id_name(func_id), func_id); 10119 return -ENOTSUPP; 10120 } 10121 return 0; 10122 } else if (type == BPF_PROG_TYPE_KPROBE) { 10123 return 0; 10124 } 10125 10126 verbose(env, "func %s#%d not supported for program type %d\n", 10127 func_id_name(func_id), func_id, type); 10128 return -ENOTSUPP; 10129 } 10130 10131 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 10132 { 10133 return &env->insn_aux_data[env->insn_idx]; 10134 } 10135 10136 static bool loop_flag_is_zero(struct bpf_verifier_env *env) 10137 { 10138 struct bpf_reg_state *regs = cur_regs(env); 10139 struct bpf_reg_state *reg = ®s[BPF_REG_4]; 10140 bool reg_is_null = register_is_null(reg); 10141 10142 if (reg_is_null) 10143 mark_chain_precision(env, BPF_REG_4); 10144 10145 return reg_is_null; 10146 } 10147 10148 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno) 10149 { 10150 struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state; 10151 10152 if (!state->initialized) { 10153 state->initialized = 1; 10154 state->fit_for_inline = loop_flag_is_zero(env); 10155 state->callback_subprogno = subprogno; 10156 return; 10157 } 10158 10159 if (!state->fit_for_inline) 10160 return; 10161 10162 state->fit_for_inline = (loop_flag_is_zero(env) && 10163 state->callback_subprogno == subprogno); 10164 } 10165 10166 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 10167 int *insn_idx_p) 10168 { 10169 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 10170 bool returns_cpu_specific_alloc_ptr = false; 10171 const struct bpf_func_proto *fn = NULL; 10172 enum bpf_return_type ret_type; 10173 enum bpf_type_flag ret_flag; 10174 struct bpf_reg_state *regs; 10175 struct bpf_call_arg_meta meta; 10176 int insn_idx = *insn_idx_p; 10177 bool changes_data; 10178 int i, err, func_id; 10179 10180 /* find function prototype */ 10181 func_id = insn->imm; 10182 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 10183 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 10184 func_id); 10185 return -EINVAL; 10186 } 10187 10188 if (env->ops->get_func_proto) 10189 fn = env->ops->get_func_proto(func_id, env->prog); 10190 if (!fn) { 10191 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 10192 func_id); 10193 return -EINVAL; 10194 } 10195 10196 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 10197 if (!env->prog->gpl_compatible && fn->gpl_only) { 10198 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 10199 return -EINVAL; 10200 } 10201 10202 if (fn->allowed && !fn->allowed(env->prog)) { 10203 verbose(env, "helper call is not allowed in probe\n"); 10204 return -EINVAL; 10205 } 10206 10207 if (!in_sleepable(env) && fn->might_sleep) { 10208 verbose(env, "helper call might sleep in a non-sleepable prog\n"); 10209 return -EINVAL; 10210 } 10211 10212 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 10213 changes_data = bpf_helper_changes_pkt_data(fn->func); 10214 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 10215 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 10216 func_id_name(func_id), func_id); 10217 return -EINVAL; 10218 } 10219 10220 memset(&meta, 0, sizeof(meta)); 10221 meta.pkt_access = fn->pkt_access; 10222 10223 err = check_func_proto(fn, func_id); 10224 if (err) { 10225 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 10226 func_id_name(func_id), func_id); 10227 return err; 10228 } 10229 10230 if (env->cur_state->active_rcu_lock) { 10231 if (fn->might_sleep) { 10232 verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n", 10233 func_id_name(func_id), func_id); 10234 return -EINVAL; 10235 } 10236 10237 if (in_sleepable(env) && is_storage_get_function(func_id)) 10238 env->insn_aux_data[insn_idx].storage_get_func_atomic = true; 10239 } 10240 10241 meta.func_id = func_id; 10242 /* check args */ 10243 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 10244 err = check_func_arg(env, i, &meta, fn, insn_idx); 10245 if (err) 10246 return err; 10247 } 10248 10249 err = record_func_map(env, &meta, func_id, insn_idx); 10250 if (err) 10251 return err; 10252 10253 err = record_func_key(env, &meta, func_id, insn_idx); 10254 if (err) 10255 return err; 10256 10257 /* Mark slots with STACK_MISC in case of raw mode, stack offset 10258 * is inferred from register state. 10259 */ 10260 for (i = 0; i < meta.access_size; i++) { 10261 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 10262 BPF_WRITE, -1, false, false); 10263 if (err) 10264 return err; 10265 } 10266 10267 regs = cur_regs(env); 10268 10269 if (meta.release_regno) { 10270 err = -EINVAL; 10271 /* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot 10272 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr 10273 * is safe to do directly. 10274 */ 10275 if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) { 10276 if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) { 10277 verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n"); 10278 return -EFAULT; 10279 } 10280 err = unmark_stack_slots_dynptr(env, ®s[meta.release_regno]); 10281 } else if (func_id == BPF_FUNC_kptr_xchg && meta.ref_obj_id) { 10282 u32 ref_obj_id = meta.ref_obj_id; 10283 bool in_rcu = in_rcu_cs(env); 10284 struct bpf_func_state *state; 10285 struct bpf_reg_state *reg; 10286 10287 err = release_reference_state(cur_func(env), ref_obj_id); 10288 if (!err) { 10289 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 10290 if (reg->ref_obj_id == ref_obj_id) { 10291 if (in_rcu && (reg->type & MEM_ALLOC) && (reg->type & MEM_PERCPU)) { 10292 reg->ref_obj_id = 0; 10293 reg->type &= ~MEM_ALLOC; 10294 reg->type |= MEM_RCU; 10295 } else { 10296 mark_reg_invalid(env, reg); 10297 } 10298 } 10299 })); 10300 } 10301 } else if (meta.ref_obj_id) { 10302 err = release_reference(env, meta.ref_obj_id); 10303 } else if (register_is_null(®s[meta.release_regno])) { 10304 /* meta.ref_obj_id can only be 0 if register that is meant to be 10305 * released is NULL, which must be > R0. 10306 */ 10307 err = 0; 10308 } 10309 if (err) { 10310 verbose(env, "func %s#%d reference has not been acquired before\n", 10311 func_id_name(func_id), func_id); 10312 return err; 10313 } 10314 } 10315 10316 switch (func_id) { 10317 case BPF_FUNC_tail_call: 10318 err = check_reference_leak(env, false); 10319 if (err) { 10320 verbose(env, "tail_call would lead to reference leak\n"); 10321 return err; 10322 } 10323 break; 10324 case BPF_FUNC_get_local_storage: 10325 /* check that flags argument in get_local_storage(map, flags) is 0, 10326 * this is required because get_local_storage() can't return an error. 10327 */ 10328 if (!register_is_null(®s[BPF_REG_2])) { 10329 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 10330 return -EINVAL; 10331 } 10332 break; 10333 case BPF_FUNC_for_each_map_elem: 10334 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 10335 set_map_elem_callback_state); 10336 break; 10337 case BPF_FUNC_timer_set_callback: 10338 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 10339 set_timer_callback_state); 10340 break; 10341 case BPF_FUNC_find_vma: 10342 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 10343 set_find_vma_callback_state); 10344 break; 10345 case BPF_FUNC_snprintf: 10346 err = check_bpf_snprintf_call(env, regs); 10347 break; 10348 case BPF_FUNC_loop: 10349 update_loop_inline_state(env, meta.subprogno); 10350 /* Verifier relies on R1 value to determine if bpf_loop() iteration 10351 * is finished, thus mark it precise. 10352 */ 10353 err = mark_chain_precision(env, BPF_REG_1); 10354 if (err) 10355 return err; 10356 if (cur_func(env)->callback_depth < regs[BPF_REG_1].umax_value) { 10357 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 10358 set_loop_callback_state); 10359 } else { 10360 cur_func(env)->callback_depth = 0; 10361 if (env->log.level & BPF_LOG_LEVEL2) 10362 verbose(env, "frame%d bpf_loop iteration limit reached\n", 10363 env->cur_state->curframe); 10364 } 10365 break; 10366 case BPF_FUNC_dynptr_from_mem: 10367 if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) { 10368 verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n", 10369 reg_type_str(env, regs[BPF_REG_1].type)); 10370 return -EACCES; 10371 } 10372 break; 10373 case BPF_FUNC_set_retval: 10374 if (prog_type == BPF_PROG_TYPE_LSM && 10375 env->prog->expected_attach_type == BPF_LSM_CGROUP) { 10376 if (!env->prog->aux->attach_func_proto->type) { 10377 /* Make sure programs that attach to void 10378 * hooks don't try to modify return value. 10379 */ 10380 verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 10381 return -EINVAL; 10382 } 10383 } 10384 break; 10385 case BPF_FUNC_dynptr_data: 10386 { 10387 struct bpf_reg_state *reg; 10388 int id, ref_obj_id; 10389 10390 reg = get_dynptr_arg_reg(env, fn, regs); 10391 if (!reg) 10392 return -EFAULT; 10393 10394 10395 if (meta.dynptr_id) { 10396 verbose(env, "verifier internal error: meta.dynptr_id already set\n"); 10397 return -EFAULT; 10398 } 10399 if (meta.ref_obj_id) { 10400 verbose(env, "verifier internal error: meta.ref_obj_id already set\n"); 10401 return -EFAULT; 10402 } 10403 10404 id = dynptr_id(env, reg); 10405 if (id < 0) { 10406 verbose(env, "verifier internal error: failed to obtain dynptr id\n"); 10407 return id; 10408 } 10409 10410 ref_obj_id = dynptr_ref_obj_id(env, reg); 10411 if (ref_obj_id < 0) { 10412 verbose(env, "verifier internal error: failed to obtain dynptr ref_obj_id\n"); 10413 return ref_obj_id; 10414 } 10415 10416 meta.dynptr_id = id; 10417 meta.ref_obj_id = ref_obj_id; 10418 10419 break; 10420 } 10421 case BPF_FUNC_dynptr_write: 10422 { 10423 enum bpf_dynptr_type dynptr_type; 10424 struct bpf_reg_state *reg; 10425 10426 reg = get_dynptr_arg_reg(env, fn, regs); 10427 if (!reg) 10428 return -EFAULT; 10429 10430 dynptr_type = dynptr_get_type(env, reg); 10431 if (dynptr_type == BPF_DYNPTR_TYPE_INVALID) 10432 return -EFAULT; 10433 10434 if (dynptr_type == BPF_DYNPTR_TYPE_SKB) 10435 /* this will trigger clear_all_pkt_pointers(), which will 10436 * invalidate all dynptr slices associated with the skb 10437 */ 10438 changes_data = true; 10439 10440 break; 10441 } 10442 case BPF_FUNC_per_cpu_ptr: 10443 case BPF_FUNC_this_cpu_ptr: 10444 { 10445 struct bpf_reg_state *reg = ®s[BPF_REG_1]; 10446 const struct btf_type *type; 10447 10448 if (reg->type & MEM_RCU) { 10449 type = btf_type_by_id(reg->btf, reg->btf_id); 10450 if (!type || !btf_type_is_struct(type)) { 10451 verbose(env, "Helper has invalid btf/btf_id in R1\n"); 10452 return -EFAULT; 10453 } 10454 returns_cpu_specific_alloc_ptr = true; 10455 env->insn_aux_data[insn_idx].call_with_percpu_alloc_ptr = true; 10456 } 10457 break; 10458 } 10459 case BPF_FUNC_user_ringbuf_drain: 10460 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 10461 set_user_ringbuf_callback_state); 10462 break; 10463 } 10464 10465 if (err) 10466 return err; 10467 10468 /* reset caller saved regs */ 10469 for (i = 0; i < CALLER_SAVED_REGS; i++) { 10470 mark_reg_not_init(env, regs, caller_saved[i]); 10471 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 10472 } 10473 10474 /* helper call returns 64-bit value. */ 10475 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 10476 10477 /* update return register (already marked as written above) */ 10478 ret_type = fn->ret_type; 10479 ret_flag = type_flag(ret_type); 10480 10481 switch (base_type(ret_type)) { 10482 case RET_INTEGER: 10483 /* sets type to SCALAR_VALUE */ 10484 mark_reg_unknown(env, regs, BPF_REG_0); 10485 break; 10486 case RET_VOID: 10487 regs[BPF_REG_0].type = NOT_INIT; 10488 break; 10489 case RET_PTR_TO_MAP_VALUE: 10490 /* There is no offset yet applied, variable or fixed */ 10491 mark_reg_known_zero(env, regs, BPF_REG_0); 10492 /* remember map_ptr, so that check_map_access() 10493 * can check 'value_size' boundary of memory access 10494 * to map element returned from bpf_map_lookup_elem() 10495 */ 10496 if (meta.map_ptr == NULL) { 10497 verbose(env, 10498 "kernel subsystem misconfigured verifier\n"); 10499 return -EINVAL; 10500 } 10501 regs[BPF_REG_0].map_ptr = meta.map_ptr; 10502 regs[BPF_REG_0].map_uid = meta.map_uid; 10503 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag; 10504 if (!type_may_be_null(ret_type) && 10505 btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) { 10506 regs[BPF_REG_0].id = ++env->id_gen; 10507 } 10508 break; 10509 case RET_PTR_TO_SOCKET: 10510 mark_reg_known_zero(env, regs, BPF_REG_0); 10511 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag; 10512 break; 10513 case RET_PTR_TO_SOCK_COMMON: 10514 mark_reg_known_zero(env, regs, BPF_REG_0); 10515 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag; 10516 break; 10517 case RET_PTR_TO_TCP_SOCK: 10518 mark_reg_known_zero(env, regs, BPF_REG_0); 10519 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag; 10520 break; 10521 case RET_PTR_TO_MEM: 10522 mark_reg_known_zero(env, regs, BPF_REG_0); 10523 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 10524 regs[BPF_REG_0].mem_size = meta.mem_size; 10525 break; 10526 case RET_PTR_TO_MEM_OR_BTF_ID: 10527 { 10528 const struct btf_type *t; 10529 10530 mark_reg_known_zero(env, regs, BPF_REG_0); 10531 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL); 10532 if (!btf_type_is_struct(t)) { 10533 u32 tsize; 10534 const struct btf_type *ret; 10535 const char *tname; 10536 10537 /* resolve the type size of ksym. */ 10538 ret = btf_resolve_size(meta.ret_btf, t, &tsize); 10539 if (IS_ERR(ret)) { 10540 tname = btf_name_by_offset(meta.ret_btf, t->name_off); 10541 verbose(env, "unable to resolve the size of type '%s': %ld\n", 10542 tname, PTR_ERR(ret)); 10543 return -EINVAL; 10544 } 10545 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 10546 regs[BPF_REG_0].mem_size = tsize; 10547 } else { 10548 if (returns_cpu_specific_alloc_ptr) { 10549 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC | MEM_RCU; 10550 } else { 10551 /* MEM_RDONLY may be carried from ret_flag, but it 10552 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise 10553 * it will confuse the check of PTR_TO_BTF_ID in 10554 * check_mem_access(). 10555 */ 10556 ret_flag &= ~MEM_RDONLY; 10557 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 10558 } 10559 10560 regs[BPF_REG_0].btf = meta.ret_btf; 10561 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 10562 } 10563 break; 10564 } 10565 case RET_PTR_TO_BTF_ID: 10566 { 10567 struct btf *ret_btf; 10568 int ret_btf_id; 10569 10570 mark_reg_known_zero(env, regs, BPF_REG_0); 10571 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 10572 if (func_id == BPF_FUNC_kptr_xchg) { 10573 ret_btf = meta.kptr_field->kptr.btf; 10574 ret_btf_id = meta.kptr_field->kptr.btf_id; 10575 if (!btf_is_kernel(ret_btf)) { 10576 regs[BPF_REG_0].type |= MEM_ALLOC; 10577 if (meta.kptr_field->type == BPF_KPTR_PERCPU) 10578 regs[BPF_REG_0].type |= MEM_PERCPU; 10579 } 10580 } else { 10581 if (fn->ret_btf_id == BPF_PTR_POISON) { 10582 verbose(env, "verifier internal error:"); 10583 verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n", 10584 func_id_name(func_id)); 10585 return -EINVAL; 10586 } 10587 ret_btf = btf_vmlinux; 10588 ret_btf_id = *fn->ret_btf_id; 10589 } 10590 if (ret_btf_id == 0) { 10591 verbose(env, "invalid return type %u of func %s#%d\n", 10592 base_type(ret_type), func_id_name(func_id), 10593 func_id); 10594 return -EINVAL; 10595 } 10596 regs[BPF_REG_0].btf = ret_btf; 10597 regs[BPF_REG_0].btf_id = ret_btf_id; 10598 break; 10599 } 10600 default: 10601 verbose(env, "unknown return type %u of func %s#%d\n", 10602 base_type(ret_type), func_id_name(func_id), func_id); 10603 return -EINVAL; 10604 } 10605 10606 if (type_may_be_null(regs[BPF_REG_0].type)) 10607 regs[BPF_REG_0].id = ++env->id_gen; 10608 10609 if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) { 10610 verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n", 10611 func_id_name(func_id), func_id); 10612 return -EFAULT; 10613 } 10614 10615 if (is_dynptr_ref_function(func_id)) 10616 regs[BPF_REG_0].dynptr_id = meta.dynptr_id; 10617 10618 if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) { 10619 /* For release_reference() */ 10620 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 10621 } else if (is_acquire_function(func_id, meta.map_ptr)) { 10622 int id = acquire_reference_state(env, insn_idx); 10623 10624 if (id < 0) 10625 return id; 10626 /* For mark_ptr_or_null_reg() */ 10627 regs[BPF_REG_0].id = id; 10628 /* For release_reference() */ 10629 regs[BPF_REG_0].ref_obj_id = id; 10630 } 10631 10632 err = do_refine_retval_range(env, regs, fn->ret_type, func_id, &meta); 10633 if (err) 10634 return err; 10635 10636 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 10637 if (err) 10638 return err; 10639 10640 if ((func_id == BPF_FUNC_get_stack || 10641 func_id == BPF_FUNC_get_task_stack) && 10642 !env->prog->has_callchain_buf) { 10643 const char *err_str; 10644 10645 #ifdef CONFIG_PERF_EVENTS 10646 err = get_callchain_buffers(sysctl_perf_event_max_stack); 10647 err_str = "cannot get callchain buffer for func %s#%d\n"; 10648 #else 10649 err = -ENOTSUPP; 10650 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 10651 #endif 10652 if (err) { 10653 verbose(env, err_str, func_id_name(func_id), func_id); 10654 return err; 10655 } 10656 10657 env->prog->has_callchain_buf = true; 10658 } 10659 10660 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack) 10661 env->prog->call_get_stack = true; 10662 10663 if (func_id == BPF_FUNC_get_func_ip) { 10664 if (check_get_func_ip(env)) 10665 return -ENOTSUPP; 10666 env->prog->call_get_func_ip = true; 10667 } 10668 10669 if (changes_data) 10670 clear_all_pkt_pointers(env); 10671 return 0; 10672 } 10673 10674 /* mark_btf_func_reg_size() is used when the reg size is determined by 10675 * the BTF func_proto's return value size and argument. 10676 */ 10677 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno, 10678 size_t reg_size) 10679 { 10680 struct bpf_reg_state *reg = &cur_regs(env)[regno]; 10681 10682 if (regno == BPF_REG_0) { 10683 /* Function return value */ 10684 reg->live |= REG_LIVE_WRITTEN; 10685 reg->subreg_def = reg_size == sizeof(u64) ? 10686 DEF_NOT_SUBREG : env->insn_idx + 1; 10687 } else { 10688 /* Function argument */ 10689 if (reg_size == sizeof(u64)) { 10690 mark_insn_zext(env, reg); 10691 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 10692 } else { 10693 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32); 10694 } 10695 } 10696 } 10697 10698 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta) 10699 { 10700 return meta->kfunc_flags & KF_ACQUIRE; 10701 } 10702 10703 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta) 10704 { 10705 return meta->kfunc_flags & KF_RELEASE; 10706 } 10707 10708 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta) 10709 { 10710 return (meta->kfunc_flags & KF_TRUSTED_ARGS) || is_kfunc_release(meta); 10711 } 10712 10713 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta) 10714 { 10715 return meta->kfunc_flags & KF_SLEEPABLE; 10716 } 10717 10718 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta) 10719 { 10720 return meta->kfunc_flags & KF_DESTRUCTIVE; 10721 } 10722 10723 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta) 10724 { 10725 return meta->kfunc_flags & KF_RCU; 10726 } 10727 10728 static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta) 10729 { 10730 return meta->kfunc_flags & KF_RCU_PROTECTED; 10731 } 10732 10733 static bool is_kfunc_arg_mem_size(const struct btf *btf, 10734 const struct btf_param *arg, 10735 const struct bpf_reg_state *reg) 10736 { 10737 const struct btf_type *t; 10738 10739 t = btf_type_skip_modifiers(btf, arg->type, NULL); 10740 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 10741 return false; 10742 10743 return btf_param_match_suffix(btf, arg, "__sz"); 10744 } 10745 10746 static bool is_kfunc_arg_const_mem_size(const struct btf *btf, 10747 const struct btf_param *arg, 10748 const struct bpf_reg_state *reg) 10749 { 10750 const struct btf_type *t; 10751 10752 t = btf_type_skip_modifiers(btf, arg->type, NULL); 10753 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 10754 return false; 10755 10756 return btf_param_match_suffix(btf, arg, "__szk"); 10757 } 10758 10759 static bool is_kfunc_arg_optional(const struct btf *btf, const struct btf_param *arg) 10760 { 10761 return btf_param_match_suffix(btf, arg, "__opt"); 10762 } 10763 10764 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg) 10765 { 10766 return btf_param_match_suffix(btf, arg, "__k"); 10767 } 10768 10769 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg) 10770 { 10771 return btf_param_match_suffix(btf, arg, "__ign"); 10772 } 10773 10774 static bool is_kfunc_arg_map(const struct btf *btf, const struct btf_param *arg) 10775 { 10776 return btf_param_match_suffix(btf, arg, "__map"); 10777 } 10778 10779 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg) 10780 { 10781 return btf_param_match_suffix(btf, arg, "__alloc"); 10782 } 10783 10784 static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg) 10785 { 10786 return btf_param_match_suffix(btf, arg, "__uninit"); 10787 } 10788 10789 static bool is_kfunc_arg_refcounted_kptr(const struct btf *btf, const struct btf_param *arg) 10790 { 10791 return btf_param_match_suffix(btf, arg, "__refcounted_kptr"); 10792 } 10793 10794 static bool is_kfunc_arg_nullable(const struct btf *btf, const struct btf_param *arg) 10795 { 10796 return btf_param_match_suffix(btf, arg, "__nullable"); 10797 } 10798 10799 static bool is_kfunc_arg_const_str(const struct btf *btf, const struct btf_param *arg) 10800 { 10801 return btf_param_match_suffix(btf, arg, "__str"); 10802 } 10803 10804 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf, 10805 const struct btf_param *arg, 10806 const char *name) 10807 { 10808 int len, target_len = strlen(name); 10809 const char *param_name; 10810 10811 param_name = btf_name_by_offset(btf, arg->name_off); 10812 if (str_is_empty(param_name)) 10813 return false; 10814 len = strlen(param_name); 10815 if (len != target_len) 10816 return false; 10817 if (strcmp(param_name, name)) 10818 return false; 10819 10820 return true; 10821 } 10822 10823 enum { 10824 KF_ARG_DYNPTR_ID, 10825 KF_ARG_LIST_HEAD_ID, 10826 KF_ARG_LIST_NODE_ID, 10827 KF_ARG_RB_ROOT_ID, 10828 KF_ARG_RB_NODE_ID, 10829 }; 10830 10831 BTF_ID_LIST(kf_arg_btf_ids) 10832 BTF_ID(struct, bpf_dynptr_kern) 10833 BTF_ID(struct, bpf_list_head) 10834 BTF_ID(struct, bpf_list_node) 10835 BTF_ID(struct, bpf_rb_root) 10836 BTF_ID(struct, bpf_rb_node) 10837 10838 static bool __is_kfunc_ptr_arg_type(const struct btf *btf, 10839 const struct btf_param *arg, int type) 10840 { 10841 const struct btf_type *t; 10842 u32 res_id; 10843 10844 t = btf_type_skip_modifiers(btf, arg->type, NULL); 10845 if (!t) 10846 return false; 10847 if (!btf_type_is_ptr(t)) 10848 return false; 10849 t = btf_type_skip_modifiers(btf, t->type, &res_id); 10850 if (!t) 10851 return false; 10852 return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]); 10853 } 10854 10855 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg) 10856 { 10857 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID); 10858 } 10859 10860 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg) 10861 { 10862 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID); 10863 } 10864 10865 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg) 10866 { 10867 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID); 10868 } 10869 10870 static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg) 10871 { 10872 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID); 10873 } 10874 10875 static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg) 10876 { 10877 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID); 10878 } 10879 10880 static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf, 10881 const struct btf_param *arg) 10882 { 10883 const struct btf_type *t; 10884 10885 t = btf_type_resolve_func_ptr(btf, arg->type, NULL); 10886 if (!t) 10887 return false; 10888 10889 return true; 10890 } 10891 10892 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */ 10893 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env, 10894 const struct btf *btf, 10895 const struct btf_type *t, int rec) 10896 { 10897 const struct btf_type *member_type; 10898 const struct btf_member *member; 10899 u32 i; 10900 10901 if (!btf_type_is_struct(t)) 10902 return false; 10903 10904 for_each_member(i, t, member) { 10905 const struct btf_array *array; 10906 10907 member_type = btf_type_skip_modifiers(btf, member->type, NULL); 10908 if (btf_type_is_struct(member_type)) { 10909 if (rec >= 3) { 10910 verbose(env, "max struct nesting depth exceeded\n"); 10911 return false; 10912 } 10913 if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1)) 10914 return false; 10915 continue; 10916 } 10917 if (btf_type_is_array(member_type)) { 10918 array = btf_array(member_type); 10919 if (!array->nelems) 10920 return false; 10921 member_type = btf_type_skip_modifiers(btf, array->type, NULL); 10922 if (!btf_type_is_scalar(member_type)) 10923 return false; 10924 continue; 10925 } 10926 if (!btf_type_is_scalar(member_type)) 10927 return false; 10928 } 10929 return true; 10930 } 10931 10932 enum kfunc_ptr_arg_type { 10933 KF_ARG_PTR_TO_CTX, 10934 KF_ARG_PTR_TO_ALLOC_BTF_ID, /* Allocated object */ 10935 KF_ARG_PTR_TO_REFCOUNTED_KPTR, /* Refcounted local kptr */ 10936 KF_ARG_PTR_TO_DYNPTR, 10937 KF_ARG_PTR_TO_ITER, 10938 KF_ARG_PTR_TO_LIST_HEAD, 10939 KF_ARG_PTR_TO_LIST_NODE, 10940 KF_ARG_PTR_TO_BTF_ID, /* Also covers reg2btf_ids conversions */ 10941 KF_ARG_PTR_TO_MEM, 10942 KF_ARG_PTR_TO_MEM_SIZE, /* Size derived from next argument, skip it */ 10943 KF_ARG_PTR_TO_CALLBACK, 10944 KF_ARG_PTR_TO_RB_ROOT, 10945 KF_ARG_PTR_TO_RB_NODE, 10946 KF_ARG_PTR_TO_NULL, 10947 KF_ARG_PTR_TO_CONST_STR, 10948 KF_ARG_PTR_TO_MAP, 10949 }; 10950 10951 enum special_kfunc_type { 10952 KF_bpf_obj_new_impl, 10953 KF_bpf_obj_drop_impl, 10954 KF_bpf_refcount_acquire_impl, 10955 KF_bpf_list_push_front_impl, 10956 KF_bpf_list_push_back_impl, 10957 KF_bpf_list_pop_front, 10958 KF_bpf_list_pop_back, 10959 KF_bpf_cast_to_kern_ctx, 10960 KF_bpf_rdonly_cast, 10961 KF_bpf_rcu_read_lock, 10962 KF_bpf_rcu_read_unlock, 10963 KF_bpf_rbtree_remove, 10964 KF_bpf_rbtree_add_impl, 10965 KF_bpf_rbtree_first, 10966 KF_bpf_dynptr_from_skb, 10967 KF_bpf_dynptr_from_xdp, 10968 KF_bpf_dynptr_slice, 10969 KF_bpf_dynptr_slice_rdwr, 10970 KF_bpf_dynptr_clone, 10971 KF_bpf_percpu_obj_new_impl, 10972 KF_bpf_percpu_obj_drop_impl, 10973 KF_bpf_throw, 10974 KF_bpf_iter_css_task_new, 10975 }; 10976 10977 BTF_SET_START(special_kfunc_set) 10978 BTF_ID(func, bpf_obj_new_impl) 10979 BTF_ID(func, bpf_obj_drop_impl) 10980 BTF_ID(func, bpf_refcount_acquire_impl) 10981 BTF_ID(func, bpf_list_push_front_impl) 10982 BTF_ID(func, bpf_list_push_back_impl) 10983 BTF_ID(func, bpf_list_pop_front) 10984 BTF_ID(func, bpf_list_pop_back) 10985 BTF_ID(func, bpf_cast_to_kern_ctx) 10986 BTF_ID(func, bpf_rdonly_cast) 10987 BTF_ID(func, bpf_rbtree_remove) 10988 BTF_ID(func, bpf_rbtree_add_impl) 10989 BTF_ID(func, bpf_rbtree_first) 10990 BTF_ID(func, bpf_dynptr_from_skb) 10991 BTF_ID(func, bpf_dynptr_from_xdp) 10992 BTF_ID(func, bpf_dynptr_slice) 10993 BTF_ID(func, bpf_dynptr_slice_rdwr) 10994 BTF_ID(func, bpf_dynptr_clone) 10995 BTF_ID(func, bpf_percpu_obj_new_impl) 10996 BTF_ID(func, bpf_percpu_obj_drop_impl) 10997 BTF_ID(func, bpf_throw) 10998 #ifdef CONFIG_CGROUPS 10999 BTF_ID(func, bpf_iter_css_task_new) 11000 #endif 11001 BTF_SET_END(special_kfunc_set) 11002 11003 BTF_ID_LIST(special_kfunc_list) 11004 BTF_ID(func, bpf_obj_new_impl) 11005 BTF_ID(func, bpf_obj_drop_impl) 11006 BTF_ID(func, bpf_refcount_acquire_impl) 11007 BTF_ID(func, bpf_list_push_front_impl) 11008 BTF_ID(func, bpf_list_push_back_impl) 11009 BTF_ID(func, bpf_list_pop_front) 11010 BTF_ID(func, bpf_list_pop_back) 11011 BTF_ID(func, bpf_cast_to_kern_ctx) 11012 BTF_ID(func, bpf_rdonly_cast) 11013 BTF_ID(func, bpf_rcu_read_lock) 11014 BTF_ID(func, bpf_rcu_read_unlock) 11015 BTF_ID(func, bpf_rbtree_remove) 11016 BTF_ID(func, bpf_rbtree_add_impl) 11017 BTF_ID(func, bpf_rbtree_first) 11018 BTF_ID(func, bpf_dynptr_from_skb) 11019 BTF_ID(func, bpf_dynptr_from_xdp) 11020 BTF_ID(func, bpf_dynptr_slice) 11021 BTF_ID(func, bpf_dynptr_slice_rdwr) 11022 BTF_ID(func, bpf_dynptr_clone) 11023 BTF_ID(func, bpf_percpu_obj_new_impl) 11024 BTF_ID(func, bpf_percpu_obj_drop_impl) 11025 BTF_ID(func, bpf_throw) 11026 #ifdef CONFIG_CGROUPS 11027 BTF_ID(func, bpf_iter_css_task_new) 11028 #else 11029 BTF_ID_UNUSED 11030 #endif 11031 11032 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta) 11033 { 11034 if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] && 11035 meta->arg_owning_ref) { 11036 return false; 11037 } 11038 11039 return meta->kfunc_flags & KF_RET_NULL; 11040 } 11041 11042 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta) 11043 { 11044 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock]; 11045 } 11046 11047 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta) 11048 { 11049 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock]; 11050 } 11051 11052 static enum kfunc_ptr_arg_type 11053 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env, 11054 struct bpf_kfunc_call_arg_meta *meta, 11055 const struct btf_type *t, const struct btf_type *ref_t, 11056 const char *ref_tname, const struct btf_param *args, 11057 int argno, int nargs) 11058 { 11059 u32 regno = argno + 1; 11060 struct bpf_reg_state *regs = cur_regs(env); 11061 struct bpf_reg_state *reg = ®s[regno]; 11062 bool arg_mem_size = false; 11063 11064 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) 11065 return KF_ARG_PTR_TO_CTX; 11066 11067 /* In this function, we verify the kfunc's BTF as per the argument type, 11068 * leaving the rest of the verification with respect to the register 11069 * type to our caller. When a set of conditions hold in the BTF type of 11070 * arguments, we resolve it to a known kfunc_ptr_arg_type. 11071 */ 11072 if (btf_is_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno)) 11073 return KF_ARG_PTR_TO_CTX; 11074 11075 if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno])) 11076 return KF_ARG_PTR_TO_ALLOC_BTF_ID; 11077 11078 if (is_kfunc_arg_refcounted_kptr(meta->btf, &args[argno])) 11079 return KF_ARG_PTR_TO_REFCOUNTED_KPTR; 11080 11081 if (is_kfunc_arg_dynptr(meta->btf, &args[argno])) 11082 return KF_ARG_PTR_TO_DYNPTR; 11083 11084 if (is_kfunc_arg_iter(meta, argno)) 11085 return KF_ARG_PTR_TO_ITER; 11086 11087 if (is_kfunc_arg_list_head(meta->btf, &args[argno])) 11088 return KF_ARG_PTR_TO_LIST_HEAD; 11089 11090 if (is_kfunc_arg_list_node(meta->btf, &args[argno])) 11091 return KF_ARG_PTR_TO_LIST_NODE; 11092 11093 if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno])) 11094 return KF_ARG_PTR_TO_RB_ROOT; 11095 11096 if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno])) 11097 return KF_ARG_PTR_TO_RB_NODE; 11098 11099 if (is_kfunc_arg_const_str(meta->btf, &args[argno])) 11100 return KF_ARG_PTR_TO_CONST_STR; 11101 11102 if (is_kfunc_arg_map(meta->btf, &args[argno])) 11103 return KF_ARG_PTR_TO_MAP; 11104 11105 if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) { 11106 if (!btf_type_is_struct(ref_t)) { 11107 verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n", 11108 meta->func_name, argno, btf_type_str(ref_t), ref_tname); 11109 return -EINVAL; 11110 } 11111 return KF_ARG_PTR_TO_BTF_ID; 11112 } 11113 11114 if (is_kfunc_arg_callback(env, meta->btf, &args[argno])) 11115 return KF_ARG_PTR_TO_CALLBACK; 11116 11117 if (is_kfunc_arg_nullable(meta->btf, &args[argno]) && register_is_null(reg)) 11118 return KF_ARG_PTR_TO_NULL; 11119 11120 if (argno + 1 < nargs && 11121 (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]) || 11122 is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]))) 11123 arg_mem_size = true; 11124 11125 /* This is the catch all argument type of register types supported by 11126 * check_helper_mem_access. However, we only allow when argument type is 11127 * pointer to scalar, or struct composed (recursively) of scalars. When 11128 * arg_mem_size is true, the pointer can be void *. 11129 */ 11130 if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) && 11131 (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) { 11132 verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n", 11133 argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : ""); 11134 return -EINVAL; 11135 } 11136 return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM; 11137 } 11138 11139 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env, 11140 struct bpf_reg_state *reg, 11141 const struct btf_type *ref_t, 11142 const char *ref_tname, u32 ref_id, 11143 struct bpf_kfunc_call_arg_meta *meta, 11144 int argno) 11145 { 11146 const struct btf_type *reg_ref_t; 11147 bool strict_type_match = false; 11148 const struct btf *reg_btf; 11149 const char *reg_ref_tname; 11150 u32 reg_ref_id; 11151 11152 if (base_type(reg->type) == PTR_TO_BTF_ID) { 11153 reg_btf = reg->btf; 11154 reg_ref_id = reg->btf_id; 11155 } else { 11156 reg_btf = btf_vmlinux; 11157 reg_ref_id = *reg2btf_ids[base_type(reg->type)]; 11158 } 11159 11160 /* Enforce strict type matching for calls to kfuncs that are acquiring 11161 * or releasing a reference, or are no-cast aliases. We do _not_ 11162 * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default, 11163 * as we want to enable BPF programs to pass types that are bitwise 11164 * equivalent without forcing them to explicitly cast with something 11165 * like bpf_cast_to_kern_ctx(). 11166 * 11167 * For example, say we had a type like the following: 11168 * 11169 * struct bpf_cpumask { 11170 * cpumask_t cpumask; 11171 * refcount_t usage; 11172 * }; 11173 * 11174 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed 11175 * to a struct cpumask, so it would be safe to pass a struct 11176 * bpf_cpumask * to a kfunc expecting a struct cpumask *. 11177 * 11178 * The philosophy here is similar to how we allow scalars of different 11179 * types to be passed to kfuncs as long as the size is the same. The 11180 * only difference here is that we're simply allowing 11181 * btf_struct_ids_match() to walk the struct at the 0th offset, and 11182 * resolve types. 11183 */ 11184 if (is_kfunc_acquire(meta) || 11185 (is_kfunc_release(meta) && reg->ref_obj_id) || 11186 btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id)) 11187 strict_type_match = true; 11188 11189 WARN_ON_ONCE(is_kfunc_trusted_args(meta) && reg->off); 11190 11191 reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, ®_ref_id); 11192 reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off); 11193 if (!btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match)) { 11194 verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n", 11195 meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1, 11196 btf_type_str(reg_ref_t), reg_ref_tname); 11197 return -EINVAL; 11198 } 11199 return 0; 11200 } 11201 11202 static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 11203 { 11204 struct bpf_verifier_state *state = env->cur_state; 11205 struct btf_record *rec = reg_btf_record(reg); 11206 11207 if (!state->active_lock.ptr) { 11208 verbose(env, "verifier internal error: ref_set_non_owning w/o active lock\n"); 11209 return -EFAULT; 11210 } 11211 11212 if (type_flag(reg->type) & NON_OWN_REF) { 11213 verbose(env, "verifier internal error: NON_OWN_REF already set\n"); 11214 return -EFAULT; 11215 } 11216 11217 reg->type |= NON_OWN_REF; 11218 if (rec->refcount_off >= 0) 11219 reg->type |= MEM_RCU; 11220 11221 return 0; 11222 } 11223 11224 static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id) 11225 { 11226 struct bpf_func_state *state, *unused; 11227 struct bpf_reg_state *reg; 11228 int i; 11229 11230 state = cur_func(env); 11231 11232 if (!ref_obj_id) { 11233 verbose(env, "verifier internal error: ref_obj_id is zero for " 11234 "owning -> non-owning conversion\n"); 11235 return -EFAULT; 11236 } 11237 11238 for (i = 0; i < state->acquired_refs; i++) { 11239 if (state->refs[i].id != ref_obj_id) 11240 continue; 11241 11242 /* Clear ref_obj_id here so release_reference doesn't clobber 11243 * the whole reg 11244 */ 11245 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ 11246 if (reg->ref_obj_id == ref_obj_id) { 11247 reg->ref_obj_id = 0; 11248 ref_set_non_owning(env, reg); 11249 } 11250 })); 11251 return 0; 11252 } 11253 11254 verbose(env, "verifier internal error: ref state missing for ref_obj_id\n"); 11255 return -EFAULT; 11256 } 11257 11258 /* Implementation details: 11259 * 11260 * Each register points to some region of memory, which we define as an 11261 * allocation. Each allocation may embed a bpf_spin_lock which protects any 11262 * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same 11263 * allocation. The lock and the data it protects are colocated in the same 11264 * memory region. 11265 * 11266 * Hence, everytime a register holds a pointer value pointing to such 11267 * allocation, the verifier preserves a unique reg->id for it. 11268 * 11269 * The verifier remembers the lock 'ptr' and the lock 'id' whenever 11270 * bpf_spin_lock is called. 11271 * 11272 * To enable this, lock state in the verifier captures two values: 11273 * active_lock.ptr = Register's type specific pointer 11274 * active_lock.id = A unique ID for each register pointer value 11275 * 11276 * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two 11277 * supported register types. 11278 * 11279 * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of 11280 * allocated objects is the reg->btf pointer. 11281 * 11282 * The active_lock.id is non-unique for maps supporting direct_value_addr, as we 11283 * can establish the provenance of the map value statically for each distinct 11284 * lookup into such maps. They always contain a single map value hence unique 11285 * IDs for each pseudo load pessimizes the algorithm and rejects valid programs. 11286 * 11287 * So, in case of global variables, they use array maps with max_entries = 1, 11288 * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point 11289 * into the same map value as max_entries is 1, as described above). 11290 * 11291 * In case of inner map lookups, the inner map pointer has same map_ptr as the 11292 * outer map pointer (in verifier context), but each lookup into an inner map 11293 * assigns a fresh reg->id to the lookup, so while lookups into distinct inner 11294 * maps from the same outer map share the same map_ptr as active_lock.ptr, they 11295 * will get different reg->id assigned to each lookup, hence different 11296 * active_lock.id. 11297 * 11298 * In case of allocated objects, active_lock.ptr is the reg->btf, and the 11299 * reg->id is a unique ID preserved after the NULL pointer check on the pointer 11300 * returned from bpf_obj_new. Each allocation receives a new reg->id. 11301 */ 11302 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 11303 { 11304 void *ptr; 11305 u32 id; 11306 11307 switch ((int)reg->type) { 11308 case PTR_TO_MAP_VALUE: 11309 ptr = reg->map_ptr; 11310 break; 11311 case PTR_TO_BTF_ID | MEM_ALLOC: 11312 ptr = reg->btf; 11313 break; 11314 default: 11315 verbose(env, "verifier internal error: unknown reg type for lock check\n"); 11316 return -EFAULT; 11317 } 11318 id = reg->id; 11319 11320 if (!env->cur_state->active_lock.ptr) 11321 return -EINVAL; 11322 if (env->cur_state->active_lock.ptr != ptr || 11323 env->cur_state->active_lock.id != id) { 11324 verbose(env, "held lock and object are not in the same allocation\n"); 11325 return -EINVAL; 11326 } 11327 return 0; 11328 } 11329 11330 static bool is_bpf_list_api_kfunc(u32 btf_id) 11331 { 11332 return btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 11333 btf_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 11334 btf_id == special_kfunc_list[KF_bpf_list_pop_front] || 11335 btf_id == special_kfunc_list[KF_bpf_list_pop_back]; 11336 } 11337 11338 static bool is_bpf_rbtree_api_kfunc(u32 btf_id) 11339 { 11340 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] || 11341 btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || 11342 btf_id == special_kfunc_list[KF_bpf_rbtree_first]; 11343 } 11344 11345 static bool is_bpf_graph_api_kfunc(u32 btf_id) 11346 { 11347 return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id) || 11348 btf_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]; 11349 } 11350 11351 static bool is_sync_callback_calling_kfunc(u32 btf_id) 11352 { 11353 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]; 11354 } 11355 11356 static bool is_bpf_throw_kfunc(struct bpf_insn *insn) 11357 { 11358 return bpf_pseudo_kfunc_call(insn) && insn->off == 0 && 11359 insn->imm == special_kfunc_list[KF_bpf_throw]; 11360 } 11361 11362 static bool is_rbtree_lock_required_kfunc(u32 btf_id) 11363 { 11364 return is_bpf_rbtree_api_kfunc(btf_id); 11365 } 11366 11367 static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env, 11368 enum btf_field_type head_field_type, 11369 u32 kfunc_btf_id) 11370 { 11371 bool ret; 11372 11373 switch (head_field_type) { 11374 case BPF_LIST_HEAD: 11375 ret = is_bpf_list_api_kfunc(kfunc_btf_id); 11376 break; 11377 case BPF_RB_ROOT: 11378 ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id); 11379 break; 11380 default: 11381 verbose(env, "verifier internal error: unexpected graph root argument type %s\n", 11382 btf_field_type_name(head_field_type)); 11383 return false; 11384 } 11385 11386 if (!ret) 11387 verbose(env, "verifier internal error: %s head arg for unknown kfunc\n", 11388 btf_field_type_name(head_field_type)); 11389 return ret; 11390 } 11391 11392 static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env, 11393 enum btf_field_type node_field_type, 11394 u32 kfunc_btf_id) 11395 { 11396 bool ret; 11397 11398 switch (node_field_type) { 11399 case BPF_LIST_NODE: 11400 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 11401 kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back_impl]); 11402 break; 11403 case BPF_RB_NODE: 11404 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || 11405 kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]); 11406 break; 11407 default: 11408 verbose(env, "verifier internal error: unexpected graph node argument type %s\n", 11409 btf_field_type_name(node_field_type)); 11410 return false; 11411 } 11412 11413 if (!ret) 11414 verbose(env, "verifier internal error: %s node arg for unknown kfunc\n", 11415 btf_field_type_name(node_field_type)); 11416 return ret; 11417 } 11418 11419 static int 11420 __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env, 11421 struct bpf_reg_state *reg, u32 regno, 11422 struct bpf_kfunc_call_arg_meta *meta, 11423 enum btf_field_type head_field_type, 11424 struct btf_field **head_field) 11425 { 11426 const char *head_type_name; 11427 struct btf_field *field; 11428 struct btf_record *rec; 11429 u32 head_off; 11430 11431 if (meta->btf != btf_vmlinux) { 11432 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n"); 11433 return -EFAULT; 11434 } 11435 11436 if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id)) 11437 return -EFAULT; 11438 11439 head_type_name = btf_field_type_name(head_field_type); 11440 if (!tnum_is_const(reg->var_off)) { 11441 verbose(env, 11442 "R%d doesn't have constant offset. %s has to be at the constant offset\n", 11443 regno, head_type_name); 11444 return -EINVAL; 11445 } 11446 11447 rec = reg_btf_record(reg); 11448 head_off = reg->off + reg->var_off.value; 11449 field = btf_record_find(rec, head_off, head_field_type); 11450 if (!field) { 11451 verbose(env, "%s not found at offset=%u\n", head_type_name, head_off); 11452 return -EINVAL; 11453 } 11454 11455 /* All functions require bpf_list_head to be protected using a bpf_spin_lock */ 11456 if (check_reg_allocation_locked(env, reg)) { 11457 verbose(env, "bpf_spin_lock at off=%d must be held for %s\n", 11458 rec->spin_lock_off, head_type_name); 11459 return -EINVAL; 11460 } 11461 11462 if (*head_field) { 11463 verbose(env, "verifier internal error: repeating %s arg\n", head_type_name); 11464 return -EFAULT; 11465 } 11466 *head_field = field; 11467 return 0; 11468 } 11469 11470 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env, 11471 struct bpf_reg_state *reg, u32 regno, 11472 struct bpf_kfunc_call_arg_meta *meta) 11473 { 11474 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD, 11475 &meta->arg_list_head.field); 11476 } 11477 11478 static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env, 11479 struct bpf_reg_state *reg, u32 regno, 11480 struct bpf_kfunc_call_arg_meta *meta) 11481 { 11482 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT, 11483 &meta->arg_rbtree_root.field); 11484 } 11485 11486 static int 11487 __process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env, 11488 struct bpf_reg_state *reg, u32 regno, 11489 struct bpf_kfunc_call_arg_meta *meta, 11490 enum btf_field_type head_field_type, 11491 enum btf_field_type node_field_type, 11492 struct btf_field **node_field) 11493 { 11494 const char *node_type_name; 11495 const struct btf_type *et, *t; 11496 struct btf_field *field; 11497 u32 node_off; 11498 11499 if (meta->btf != btf_vmlinux) { 11500 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n"); 11501 return -EFAULT; 11502 } 11503 11504 if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id)) 11505 return -EFAULT; 11506 11507 node_type_name = btf_field_type_name(node_field_type); 11508 if (!tnum_is_const(reg->var_off)) { 11509 verbose(env, 11510 "R%d doesn't have constant offset. %s has to be at the constant offset\n", 11511 regno, node_type_name); 11512 return -EINVAL; 11513 } 11514 11515 node_off = reg->off + reg->var_off.value; 11516 field = reg_find_field_offset(reg, node_off, node_field_type); 11517 if (!field || field->offset != node_off) { 11518 verbose(env, "%s not found at offset=%u\n", node_type_name, node_off); 11519 return -EINVAL; 11520 } 11521 11522 field = *node_field; 11523 11524 et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id); 11525 t = btf_type_by_id(reg->btf, reg->btf_id); 11526 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf, 11527 field->graph_root.value_btf_id, true)) { 11528 verbose(env, "operation on %s expects arg#1 %s at offset=%d " 11529 "in struct %s, but arg is at offset=%d in struct %s\n", 11530 btf_field_type_name(head_field_type), 11531 btf_field_type_name(node_field_type), 11532 field->graph_root.node_offset, 11533 btf_name_by_offset(field->graph_root.btf, et->name_off), 11534 node_off, btf_name_by_offset(reg->btf, t->name_off)); 11535 return -EINVAL; 11536 } 11537 meta->arg_btf = reg->btf; 11538 meta->arg_btf_id = reg->btf_id; 11539 11540 if (node_off != field->graph_root.node_offset) { 11541 verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n", 11542 node_off, btf_field_type_name(node_field_type), 11543 field->graph_root.node_offset, 11544 btf_name_by_offset(field->graph_root.btf, et->name_off)); 11545 return -EINVAL; 11546 } 11547 11548 return 0; 11549 } 11550 11551 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env, 11552 struct bpf_reg_state *reg, u32 regno, 11553 struct bpf_kfunc_call_arg_meta *meta) 11554 { 11555 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, 11556 BPF_LIST_HEAD, BPF_LIST_NODE, 11557 &meta->arg_list_head.field); 11558 } 11559 11560 static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env, 11561 struct bpf_reg_state *reg, u32 regno, 11562 struct bpf_kfunc_call_arg_meta *meta) 11563 { 11564 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, 11565 BPF_RB_ROOT, BPF_RB_NODE, 11566 &meta->arg_rbtree_root.field); 11567 } 11568 11569 /* 11570 * css_task iter allowlist is needed to avoid dead locking on css_set_lock. 11571 * LSM hooks and iters (both sleepable and non-sleepable) are safe. 11572 * Any sleepable progs are also safe since bpf_check_attach_target() enforce 11573 * them can only be attached to some specific hook points. 11574 */ 11575 static bool check_css_task_iter_allowlist(struct bpf_verifier_env *env) 11576 { 11577 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 11578 11579 switch (prog_type) { 11580 case BPF_PROG_TYPE_LSM: 11581 return true; 11582 case BPF_PROG_TYPE_TRACING: 11583 if (env->prog->expected_attach_type == BPF_TRACE_ITER) 11584 return true; 11585 fallthrough; 11586 default: 11587 return in_sleepable(env); 11588 } 11589 } 11590 11591 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta, 11592 int insn_idx) 11593 { 11594 const char *func_name = meta->func_name, *ref_tname; 11595 const struct btf *btf = meta->btf; 11596 const struct btf_param *args; 11597 struct btf_record *rec; 11598 u32 i, nargs; 11599 int ret; 11600 11601 args = (const struct btf_param *)(meta->func_proto + 1); 11602 nargs = btf_type_vlen(meta->func_proto); 11603 if (nargs > MAX_BPF_FUNC_REG_ARGS) { 11604 verbose(env, "Function %s has %d > %d args\n", func_name, nargs, 11605 MAX_BPF_FUNC_REG_ARGS); 11606 return -EINVAL; 11607 } 11608 11609 /* Check that BTF function arguments match actual types that the 11610 * verifier sees. 11611 */ 11612 for (i = 0; i < nargs; i++) { 11613 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[i + 1]; 11614 const struct btf_type *t, *ref_t, *resolve_ret; 11615 enum bpf_arg_type arg_type = ARG_DONTCARE; 11616 u32 regno = i + 1, ref_id, type_size; 11617 bool is_ret_buf_sz = false; 11618 int kf_arg_type; 11619 11620 t = btf_type_skip_modifiers(btf, args[i].type, NULL); 11621 11622 if (is_kfunc_arg_ignore(btf, &args[i])) 11623 continue; 11624 11625 if (btf_type_is_scalar(t)) { 11626 if (reg->type != SCALAR_VALUE) { 11627 verbose(env, "R%d is not a scalar\n", regno); 11628 return -EINVAL; 11629 } 11630 11631 if (is_kfunc_arg_constant(meta->btf, &args[i])) { 11632 if (meta->arg_constant.found) { 11633 verbose(env, "verifier internal error: only one constant argument permitted\n"); 11634 return -EFAULT; 11635 } 11636 if (!tnum_is_const(reg->var_off)) { 11637 verbose(env, "R%d must be a known constant\n", regno); 11638 return -EINVAL; 11639 } 11640 ret = mark_chain_precision(env, regno); 11641 if (ret < 0) 11642 return ret; 11643 meta->arg_constant.found = true; 11644 meta->arg_constant.value = reg->var_off.value; 11645 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) { 11646 meta->r0_rdonly = true; 11647 is_ret_buf_sz = true; 11648 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) { 11649 is_ret_buf_sz = true; 11650 } 11651 11652 if (is_ret_buf_sz) { 11653 if (meta->r0_size) { 11654 verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc"); 11655 return -EINVAL; 11656 } 11657 11658 if (!tnum_is_const(reg->var_off)) { 11659 verbose(env, "R%d is not a const\n", regno); 11660 return -EINVAL; 11661 } 11662 11663 meta->r0_size = reg->var_off.value; 11664 ret = mark_chain_precision(env, regno); 11665 if (ret) 11666 return ret; 11667 } 11668 continue; 11669 } 11670 11671 if (!btf_type_is_ptr(t)) { 11672 verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t)); 11673 return -EINVAL; 11674 } 11675 11676 if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) && 11677 (register_is_null(reg) || type_may_be_null(reg->type)) && 11678 !is_kfunc_arg_nullable(meta->btf, &args[i])) { 11679 verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i); 11680 return -EACCES; 11681 } 11682 11683 if (reg->ref_obj_id) { 11684 if (is_kfunc_release(meta) && meta->ref_obj_id) { 11685 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 11686 regno, reg->ref_obj_id, 11687 meta->ref_obj_id); 11688 return -EFAULT; 11689 } 11690 meta->ref_obj_id = reg->ref_obj_id; 11691 if (is_kfunc_release(meta)) 11692 meta->release_regno = regno; 11693 } 11694 11695 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id); 11696 ref_tname = btf_name_by_offset(btf, ref_t->name_off); 11697 11698 kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs); 11699 if (kf_arg_type < 0) 11700 return kf_arg_type; 11701 11702 switch (kf_arg_type) { 11703 case KF_ARG_PTR_TO_NULL: 11704 continue; 11705 case KF_ARG_PTR_TO_MAP: 11706 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 11707 case KF_ARG_PTR_TO_BTF_ID: 11708 if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta)) 11709 break; 11710 11711 if (!is_trusted_reg(reg)) { 11712 if (!is_kfunc_rcu(meta)) { 11713 verbose(env, "R%d must be referenced or trusted\n", regno); 11714 return -EINVAL; 11715 } 11716 if (!is_rcu_reg(reg)) { 11717 verbose(env, "R%d must be a rcu pointer\n", regno); 11718 return -EINVAL; 11719 } 11720 } 11721 11722 fallthrough; 11723 case KF_ARG_PTR_TO_CTX: 11724 /* Trusted arguments have the same offset checks as release arguments */ 11725 arg_type |= OBJ_RELEASE; 11726 break; 11727 case KF_ARG_PTR_TO_DYNPTR: 11728 case KF_ARG_PTR_TO_ITER: 11729 case KF_ARG_PTR_TO_LIST_HEAD: 11730 case KF_ARG_PTR_TO_LIST_NODE: 11731 case KF_ARG_PTR_TO_RB_ROOT: 11732 case KF_ARG_PTR_TO_RB_NODE: 11733 case KF_ARG_PTR_TO_MEM: 11734 case KF_ARG_PTR_TO_MEM_SIZE: 11735 case KF_ARG_PTR_TO_CALLBACK: 11736 case KF_ARG_PTR_TO_REFCOUNTED_KPTR: 11737 case KF_ARG_PTR_TO_CONST_STR: 11738 /* Trusted by default */ 11739 break; 11740 default: 11741 WARN_ON_ONCE(1); 11742 return -EFAULT; 11743 } 11744 11745 if (is_kfunc_release(meta) && reg->ref_obj_id) 11746 arg_type |= OBJ_RELEASE; 11747 ret = check_func_arg_reg_off(env, reg, regno, arg_type); 11748 if (ret < 0) 11749 return ret; 11750 11751 switch (kf_arg_type) { 11752 case KF_ARG_PTR_TO_CTX: 11753 if (reg->type != PTR_TO_CTX) { 11754 verbose(env, "arg#%d expected pointer to ctx, but got %s\n", i, btf_type_str(t)); 11755 return -EINVAL; 11756 } 11757 11758 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 11759 ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog)); 11760 if (ret < 0) 11761 return -EINVAL; 11762 meta->ret_btf_id = ret; 11763 } 11764 break; 11765 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 11766 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC)) { 11767 if (meta->func_id != special_kfunc_list[KF_bpf_obj_drop_impl]) { 11768 verbose(env, "arg#%d expected for bpf_obj_drop_impl()\n", i); 11769 return -EINVAL; 11770 } 11771 } else if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC | MEM_PERCPU)) { 11772 if (meta->func_id != special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) { 11773 verbose(env, "arg#%d expected for bpf_percpu_obj_drop_impl()\n", i); 11774 return -EINVAL; 11775 } 11776 } else { 11777 verbose(env, "arg#%d expected pointer to allocated object\n", i); 11778 return -EINVAL; 11779 } 11780 if (!reg->ref_obj_id) { 11781 verbose(env, "allocated object must be referenced\n"); 11782 return -EINVAL; 11783 } 11784 if (meta->btf == btf_vmlinux) { 11785 meta->arg_btf = reg->btf; 11786 meta->arg_btf_id = reg->btf_id; 11787 } 11788 break; 11789 case KF_ARG_PTR_TO_DYNPTR: 11790 { 11791 enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR; 11792 int clone_ref_obj_id = 0; 11793 11794 if (reg->type != PTR_TO_STACK && 11795 reg->type != CONST_PTR_TO_DYNPTR) { 11796 verbose(env, "arg#%d expected pointer to stack or dynptr_ptr\n", i); 11797 return -EINVAL; 11798 } 11799 11800 if (reg->type == CONST_PTR_TO_DYNPTR) 11801 dynptr_arg_type |= MEM_RDONLY; 11802 11803 if (is_kfunc_arg_uninit(btf, &args[i])) 11804 dynptr_arg_type |= MEM_UNINIT; 11805 11806 if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) { 11807 dynptr_arg_type |= DYNPTR_TYPE_SKB; 11808 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp]) { 11809 dynptr_arg_type |= DYNPTR_TYPE_XDP; 11810 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_clone] && 11811 (dynptr_arg_type & MEM_UNINIT)) { 11812 enum bpf_dynptr_type parent_type = meta->initialized_dynptr.type; 11813 11814 if (parent_type == BPF_DYNPTR_TYPE_INVALID) { 11815 verbose(env, "verifier internal error: no dynptr type for parent of clone\n"); 11816 return -EFAULT; 11817 } 11818 11819 dynptr_arg_type |= (unsigned int)get_dynptr_type_flag(parent_type); 11820 clone_ref_obj_id = meta->initialized_dynptr.ref_obj_id; 11821 if (dynptr_type_refcounted(parent_type) && !clone_ref_obj_id) { 11822 verbose(env, "verifier internal error: missing ref obj id for parent of clone\n"); 11823 return -EFAULT; 11824 } 11825 } 11826 11827 ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type, clone_ref_obj_id); 11828 if (ret < 0) 11829 return ret; 11830 11831 if (!(dynptr_arg_type & MEM_UNINIT)) { 11832 int id = dynptr_id(env, reg); 11833 11834 if (id < 0) { 11835 verbose(env, "verifier internal error: failed to obtain dynptr id\n"); 11836 return id; 11837 } 11838 meta->initialized_dynptr.id = id; 11839 meta->initialized_dynptr.type = dynptr_get_type(env, reg); 11840 meta->initialized_dynptr.ref_obj_id = dynptr_ref_obj_id(env, reg); 11841 } 11842 11843 break; 11844 } 11845 case KF_ARG_PTR_TO_ITER: 11846 if (meta->func_id == special_kfunc_list[KF_bpf_iter_css_task_new]) { 11847 if (!check_css_task_iter_allowlist(env)) { 11848 verbose(env, "css_task_iter is only allowed in bpf_lsm, bpf_iter and sleepable progs\n"); 11849 return -EINVAL; 11850 } 11851 } 11852 ret = process_iter_arg(env, regno, insn_idx, meta); 11853 if (ret < 0) 11854 return ret; 11855 break; 11856 case KF_ARG_PTR_TO_LIST_HEAD: 11857 if (reg->type != PTR_TO_MAP_VALUE && 11858 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 11859 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 11860 return -EINVAL; 11861 } 11862 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 11863 verbose(env, "allocated object must be referenced\n"); 11864 return -EINVAL; 11865 } 11866 ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta); 11867 if (ret < 0) 11868 return ret; 11869 break; 11870 case KF_ARG_PTR_TO_RB_ROOT: 11871 if (reg->type != PTR_TO_MAP_VALUE && 11872 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 11873 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 11874 return -EINVAL; 11875 } 11876 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 11877 verbose(env, "allocated object must be referenced\n"); 11878 return -EINVAL; 11879 } 11880 ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta); 11881 if (ret < 0) 11882 return ret; 11883 break; 11884 case KF_ARG_PTR_TO_LIST_NODE: 11885 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 11886 verbose(env, "arg#%d expected pointer to allocated object\n", i); 11887 return -EINVAL; 11888 } 11889 if (!reg->ref_obj_id) { 11890 verbose(env, "allocated object must be referenced\n"); 11891 return -EINVAL; 11892 } 11893 ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta); 11894 if (ret < 0) 11895 return ret; 11896 break; 11897 case KF_ARG_PTR_TO_RB_NODE: 11898 if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_remove]) { 11899 if (!type_is_non_owning_ref(reg->type) || reg->ref_obj_id) { 11900 verbose(env, "rbtree_remove node input must be non-owning ref\n"); 11901 return -EINVAL; 11902 } 11903 if (in_rbtree_lock_required_cb(env)) { 11904 verbose(env, "rbtree_remove not allowed in rbtree cb\n"); 11905 return -EINVAL; 11906 } 11907 } else { 11908 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 11909 verbose(env, "arg#%d expected pointer to allocated object\n", i); 11910 return -EINVAL; 11911 } 11912 if (!reg->ref_obj_id) { 11913 verbose(env, "allocated object must be referenced\n"); 11914 return -EINVAL; 11915 } 11916 } 11917 11918 ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta); 11919 if (ret < 0) 11920 return ret; 11921 break; 11922 case KF_ARG_PTR_TO_MAP: 11923 /* If argument has '__map' suffix expect 'struct bpf_map *' */ 11924 ref_id = *reg2btf_ids[CONST_PTR_TO_MAP]; 11925 ref_t = btf_type_by_id(btf_vmlinux, ref_id); 11926 ref_tname = btf_name_by_offset(btf, ref_t->name_off); 11927 fallthrough; 11928 case KF_ARG_PTR_TO_BTF_ID: 11929 /* Only base_type is checked, further checks are done here */ 11930 if ((base_type(reg->type) != PTR_TO_BTF_ID || 11931 (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) && 11932 !reg2btf_ids[base_type(reg->type)]) { 11933 verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type)); 11934 verbose(env, "expected %s or socket\n", 11935 reg_type_str(env, base_type(reg->type) | 11936 (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS))); 11937 return -EINVAL; 11938 } 11939 ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i); 11940 if (ret < 0) 11941 return ret; 11942 break; 11943 case KF_ARG_PTR_TO_MEM: 11944 resolve_ret = btf_resolve_size(btf, ref_t, &type_size); 11945 if (IS_ERR(resolve_ret)) { 11946 verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n", 11947 i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret)); 11948 return -EINVAL; 11949 } 11950 ret = check_mem_reg(env, reg, regno, type_size); 11951 if (ret < 0) 11952 return ret; 11953 break; 11954 case KF_ARG_PTR_TO_MEM_SIZE: 11955 { 11956 struct bpf_reg_state *buff_reg = ®s[regno]; 11957 const struct btf_param *buff_arg = &args[i]; 11958 struct bpf_reg_state *size_reg = ®s[regno + 1]; 11959 const struct btf_param *size_arg = &args[i + 1]; 11960 11961 if (!register_is_null(buff_reg) || !is_kfunc_arg_optional(meta->btf, buff_arg)) { 11962 ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1); 11963 if (ret < 0) { 11964 verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1); 11965 return ret; 11966 } 11967 } 11968 11969 if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) { 11970 if (meta->arg_constant.found) { 11971 verbose(env, "verifier internal error: only one constant argument permitted\n"); 11972 return -EFAULT; 11973 } 11974 if (!tnum_is_const(size_reg->var_off)) { 11975 verbose(env, "R%d must be a known constant\n", regno + 1); 11976 return -EINVAL; 11977 } 11978 meta->arg_constant.found = true; 11979 meta->arg_constant.value = size_reg->var_off.value; 11980 } 11981 11982 /* Skip next '__sz' or '__szk' argument */ 11983 i++; 11984 break; 11985 } 11986 case KF_ARG_PTR_TO_CALLBACK: 11987 if (reg->type != PTR_TO_FUNC) { 11988 verbose(env, "arg%d expected pointer to func\n", i); 11989 return -EINVAL; 11990 } 11991 meta->subprogno = reg->subprogno; 11992 break; 11993 case KF_ARG_PTR_TO_REFCOUNTED_KPTR: 11994 if (!type_is_ptr_alloc_obj(reg->type)) { 11995 verbose(env, "arg#%d is neither owning or non-owning ref\n", i); 11996 return -EINVAL; 11997 } 11998 if (!type_is_non_owning_ref(reg->type)) 11999 meta->arg_owning_ref = true; 12000 12001 rec = reg_btf_record(reg); 12002 if (!rec) { 12003 verbose(env, "verifier internal error: Couldn't find btf_record\n"); 12004 return -EFAULT; 12005 } 12006 12007 if (rec->refcount_off < 0) { 12008 verbose(env, "arg#%d doesn't point to a type with bpf_refcount field\n", i); 12009 return -EINVAL; 12010 } 12011 12012 meta->arg_btf = reg->btf; 12013 meta->arg_btf_id = reg->btf_id; 12014 break; 12015 case KF_ARG_PTR_TO_CONST_STR: 12016 if (reg->type != PTR_TO_MAP_VALUE) { 12017 verbose(env, "arg#%d doesn't point to a const string\n", i); 12018 return -EINVAL; 12019 } 12020 ret = check_reg_const_str(env, reg, regno); 12021 if (ret) 12022 return ret; 12023 break; 12024 } 12025 } 12026 12027 if (is_kfunc_release(meta) && !meta->release_regno) { 12028 verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n", 12029 func_name); 12030 return -EINVAL; 12031 } 12032 12033 return 0; 12034 } 12035 12036 static int fetch_kfunc_meta(struct bpf_verifier_env *env, 12037 struct bpf_insn *insn, 12038 struct bpf_kfunc_call_arg_meta *meta, 12039 const char **kfunc_name) 12040 { 12041 const struct btf_type *func, *func_proto; 12042 u32 func_id, *kfunc_flags; 12043 const char *func_name; 12044 struct btf *desc_btf; 12045 12046 if (kfunc_name) 12047 *kfunc_name = NULL; 12048 12049 if (!insn->imm) 12050 return -EINVAL; 12051 12052 desc_btf = find_kfunc_desc_btf(env, insn->off); 12053 if (IS_ERR(desc_btf)) 12054 return PTR_ERR(desc_btf); 12055 12056 func_id = insn->imm; 12057 func = btf_type_by_id(desc_btf, func_id); 12058 func_name = btf_name_by_offset(desc_btf, func->name_off); 12059 if (kfunc_name) 12060 *kfunc_name = func_name; 12061 func_proto = btf_type_by_id(desc_btf, func->type); 12062 12063 kfunc_flags = btf_kfunc_id_set_contains(desc_btf, func_id, env->prog); 12064 if (!kfunc_flags) { 12065 return -EACCES; 12066 } 12067 12068 memset(meta, 0, sizeof(*meta)); 12069 meta->btf = desc_btf; 12070 meta->func_id = func_id; 12071 meta->kfunc_flags = *kfunc_flags; 12072 meta->func_proto = func_proto; 12073 meta->func_name = func_name; 12074 12075 return 0; 12076 } 12077 12078 static int check_return_code(struct bpf_verifier_env *env, int regno, const char *reg_name); 12079 12080 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 12081 int *insn_idx_p) 12082 { 12083 const struct btf_type *t, *ptr_type; 12084 u32 i, nargs, ptr_type_id, release_ref_obj_id; 12085 struct bpf_reg_state *regs = cur_regs(env); 12086 const char *func_name, *ptr_type_name; 12087 bool sleepable, rcu_lock, rcu_unlock; 12088 struct bpf_kfunc_call_arg_meta meta; 12089 struct bpf_insn_aux_data *insn_aux; 12090 int err, insn_idx = *insn_idx_p; 12091 const struct btf_param *args; 12092 const struct btf_type *ret_t; 12093 struct btf *desc_btf; 12094 12095 /* skip for now, but return error when we find this in fixup_kfunc_call */ 12096 if (!insn->imm) 12097 return 0; 12098 12099 err = fetch_kfunc_meta(env, insn, &meta, &func_name); 12100 if (err == -EACCES && func_name) 12101 verbose(env, "calling kernel function %s is not allowed\n", func_name); 12102 if (err) 12103 return err; 12104 desc_btf = meta.btf; 12105 insn_aux = &env->insn_aux_data[insn_idx]; 12106 12107 insn_aux->is_iter_next = is_iter_next_kfunc(&meta); 12108 12109 if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) { 12110 verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n"); 12111 return -EACCES; 12112 } 12113 12114 sleepable = is_kfunc_sleepable(&meta); 12115 if (sleepable && !in_sleepable(env)) { 12116 verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name); 12117 return -EACCES; 12118 } 12119 12120 /* Check the arguments */ 12121 err = check_kfunc_args(env, &meta, insn_idx); 12122 if (err < 0) 12123 return err; 12124 12125 if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 12126 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 12127 set_rbtree_add_callback_state); 12128 if (err) { 12129 verbose(env, "kfunc %s#%d failed callback verification\n", 12130 func_name, meta.func_id); 12131 return err; 12132 } 12133 } 12134 12135 rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta); 12136 rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta); 12137 12138 if (env->cur_state->active_rcu_lock) { 12139 struct bpf_func_state *state; 12140 struct bpf_reg_state *reg; 12141 u32 clear_mask = (1 << STACK_SPILL) | (1 << STACK_ITER); 12142 12143 if (in_rbtree_lock_required_cb(env) && (rcu_lock || rcu_unlock)) { 12144 verbose(env, "Calling bpf_rcu_read_{lock,unlock} in unnecessary rbtree callback\n"); 12145 return -EACCES; 12146 } 12147 12148 if (rcu_lock) { 12149 verbose(env, "nested rcu read lock (kernel function %s)\n", func_name); 12150 return -EINVAL; 12151 } else if (rcu_unlock) { 12152 bpf_for_each_reg_in_vstate_mask(env->cur_state, state, reg, clear_mask, ({ 12153 if (reg->type & MEM_RCU) { 12154 reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL); 12155 reg->type |= PTR_UNTRUSTED; 12156 } 12157 })); 12158 env->cur_state->active_rcu_lock = false; 12159 } else if (sleepable) { 12160 verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name); 12161 return -EACCES; 12162 } 12163 } else if (rcu_lock) { 12164 env->cur_state->active_rcu_lock = true; 12165 } else if (rcu_unlock) { 12166 verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name); 12167 return -EINVAL; 12168 } 12169 12170 /* In case of release function, we get register number of refcounted 12171 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now. 12172 */ 12173 if (meta.release_regno) { 12174 err = release_reference(env, regs[meta.release_regno].ref_obj_id); 12175 if (err) { 12176 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 12177 func_name, meta.func_id); 12178 return err; 12179 } 12180 } 12181 12182 if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 12183 meta.func_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 12184 meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 12185 release_ref_obj_id = regs[BPF_REG_2].ref_obj_id; 12186 insn_aux->insert_off = regs[BPF_REG_2].off; 12187 insn_aux->kptr_struct_meta = btf_find_struct_meta(meta.arg_btf, meta.arg_btf_id); 12188 err = ref_convert_owning_non_owning(env, release_ref_obj_id); 12189 if (err) { 12190 verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n", 12191 func_name, meta.func_id); 12192 return err; 12193 } 12194 12195 err = release_reference(env, release_ref_obj_id); 12196 if (err) { 12197 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 12198 func_name, meta.func_id); 12199 return err; 12200 } 12201 } 12202 12203 if (meta.func_id == special_kfunc_list[KF_bpf_throw]) { 12204 if (!bpf_jit_supports_exceptions()) { 12205 verbose(env, "JIT does not support calling kfunc %s#%d\n", 12206 func_name, meta.func_id); 12207 return -ENOTSUPP; 12208 } 12209 env->seen_exception = true; 12210 12211 /* In the case of the default callback, the cookie value passed 12212 * to bpf_throw becomes the return value of the program. 12213 */ 12214 if (!env->exception_callback_subprog) { 12215 err = check_return_code(env, BPF_REG_1, "R1"); 12216 if (err < 0) 12217 return err; 12218 } 12219 } 12220 12221 for (i = 0; i < CALLER_SAVED_REGS; i++) 12222 mark_reg_not_init(env, regs, caller_saved[i]); 12223 12224 /* Check return type */ 12225 t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL); 12226 12227 if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) { 12228 /* Only exception is bpf_obj_new_impl */ 12229 if (meta.btf != btf_vmlinux || 12230 (meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl] && 12231 meta.func_id != special_kfunc_list[KF_bpf_percpu_obj_new_impl] && 12232 meta.func_id != special_kfunc_list[KF_bpf_refcount_acquire_impl])) { 12233 verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n"); 12234 return -EINVAL; 12235 } 12236 } 12237 12238 if (btf_type_is_scalar(t)) { 12239 mark_reg_unknown(env, regs, BPF_REG_0); 12240 mark_btf_func_reg_size(env, BPF_REG_0, t->size); 12241 } else if (btf_type_is_ptr(t)) { 12242 ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id); 12243 12244 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) { 12245 if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl] || 12246 meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { 12247 struct btf_struct_meta *struct_meta; 12248 struct btf *ret_btf; 12249 u32 ret_btf_id; 12250 12251 if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl] && !bpf_global_ma_set) 12252 return -ENOMEM; 12253 12254 if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) { 12255 verbose(env, "local type ID argument must be in range [0, U32_MAX]\n"); 12256 return -EINVAL; 12257 } 12258 12259 ret_btf = env->prog->aux->btf; 12260 ret_btf_id = meta.arg_constant.value; 12261 12262 /* This may be NULL due to user not supplying a BTF */ 12263 if (!ret_btf) { 12264 verbose(env, "bpf_obj_new/bpf_percpu_obj_new requires prog BTF\n"); 12265 return -EINVAL; 12266 } 12267 12268 ret_t = btf_type_by_id(ret_btf, ret_btf_id); 12269 if (!ret_t || !__btf_type_is_struct(ret_t)) { 12270 verbose(env, "bpf_obj_new/bpf_percpu_obj_new type ID argument must be of a struct\n"); 12271 return -EINVAL; 12272 } 12273 12274 if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { 12275 if (ret_t->size > BPF_GLOBAL_PERCPU_MA_MAX_SIZE) { 12276 verbose(env, "bpf_percpu_obj_new type size (%d) is greater than %d\n", 12277 ret_t->size, BPF_GLOBAL_PERCPU_MA_MAX_SIZE); 12278 return -EINVAL; 12279 } 12280 12281 if (!bpf_global_percpu_ma_set) { 12282 mutex_lock(&bpf_percpu_ma_lock); 12283 if (!bpf_global_percpu_ma_set) { 12284 /* Charge memory allocated with bpf_global_percpu_ma to 12285 * root memcg. The obj_cgroup for root memcg is NULL. 12286 */ 12287 err = bpf_mem_alloc_percpu_init(&bpf_global_percpu_ma, NULL); 12288 if (!err) 12289 bpf_global_percpu_ma_set = true; 12290 } 12291 mutex_unlock(&bpf_percpu_ma_lock); 12292 if (err) 12293 return err; 12294 } 12295 12296 mutex_lock(&bpf_percpu_ma_lock); 12297 err = bpf_mem_alloc_percpu_unit_init(&bpf_global_percpu_ma, ret_t->size); 12298 mutex_unlock(&bpf_percpu_ma_lock); 12299 if (err) 12300 return err; 12301 } 12302 12303 struct_meta = btf_find_struct_meta(ret_btf, ret_btf_id); 12304 if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { 12305 if (!__btf_type_is_scalar_struct(env, ret_btf, ret_t, 0)) { 12306 verbose(env, "bpf_percpu_obj_new type ID argument must be of a struct of scalars\n"); 12307 return -EINVAL; 12308 } 12309 12310 if (struct_meta) { 12311 verbose(env, "bpf_percpu_obj_new type ID argument must not contain special fields\n"); 12312 return -EINVAL; 12313 } 12314 } 12315 12316 mark_reg_known_zero(env, regs, BPF_REG_0); 12317 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 12318 regs[BPF_REG_0].btf = ret_btf; 12319 regs[BPF_REG_0].btf_id = ret_btf_id; 12320 if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) 12321 regs[BPF_REG_0].type |= MEM_PERCPU; 12322 12323 insn_aux->obj_new_size = ret_t->size; 12324 insn_aux->kptr_struct_meta = struct_meta; 12325 } else if (meta.func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) { 12326 mark_reg_known_zero(env, regs, BPF_REG_0); 12327 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 12328 regs[BPF_REG_0].btf = meta.arg_btf; 12329 regs[BPF_REG_0].btf_id = meta.arg_btf_id; 12330 12331 insn_aux->kptr_struct_meta = 12332 btf_find_struct_meta(meta.arg_btf, 12333 meta.arg_btf_id); 12334 } else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] || 12335 meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) { 12336 struct btf_field *field = meta.arg_list_head.field; 12337 12338 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); 12339 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove] || 12340 meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) { 12341 struct btf_field *field = meta.arg_rbtree_root.field; 12342 12343 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); 12344 } else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 12345 mark_reg_known_zero(env, regs, BPF_REG_0); 12346 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED; 12347 regs[BPF_REG_0].btf = desc_btf; 12348 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 12349 } else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 12350 ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value); 12351 if (!ret_t || !btf_type_is_struct(ret_t)) { 12352 verbose(env, 12353 "kfunc bpf_rdonly_cast type ID argument must be of a struct\n"); 12354 return -EINVAL; 12355 } 12356 12357 mark_reg_known_zero(env, regs, BPF_REG_0); 12358 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED; 12359 regs[BPF_REG_0].btf = desc_btf; 12360 regs[BPF_REG_0].btf_id = meta.arg_constant.value; 12361 } else if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice] || 12362 meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) { 12363 enum bpf_type_flag type_flag = get_dynptr_type_flag(meta.initialized_dynptr.type); 12364 12365 mark_reg_known_zero(env, regs, BPF_REG_0); 12366 12367 if (!meta.arg_constant.found) { 12368 verbose(env, "verifier internal error: bpf_dynptr_slice(_rdwr) no constant size\n"); 12369 return -EFAULT; 12370 } 12371 12372 regs[BPF_REG_0].mem_size = meta.arg_constant.value; 12373 12374 /* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */ 12375 regs[BPF_REG_0].type = PTR_TO_MEM | type_flag; 12376 12377 if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice]) { 12378 regs[BPF_REG_0].type |= MEM_RDONLY; 12379 } else { 12380 /* this will set env->seen_direct_write to true */ 12381 if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) { 12382 verbose(env, "the prog does not allow writes to packet data\n"); 12383 return -EINVAL; 12384 } 12385 } 12386 12387 if (!meta.initialized_dynptr.id) { 12388 verbose(env, "verifier internal error: no dynptr id\n"); 12389 return -EFAULT; 12390 } 12391 regs[BPF_REG_0].dynptr_id = meta.initialized_dynptr.id; 12392 12393 /* we don't need to set BPF_REG_0's ref obj id 12394 * because packet slices are not refcounted (see 12395 * dynptr_type_refcounted) 12396 */ 12397 } else { 12398 verbose(env, "kernel function %s unhandled dynamic return type\n", 12399 meta.func_name); 12400 return -EFAULT; 12401 } 12402 } else if (btf_type_is_void(ptr_type)) { 12403 /* kfunc returning 'void *' is equivalent to returning scalar */ 12404 mark_reg_unknown(env, regs, BPF_REG_0); 12405 } else if (!__btf_type_is_struct(ptr_type)) { 12406 if (!meta.r0_size) { 12407 __u32 sz; 12408 12409 if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) { 12410 meta.r0_size = sz; 12411 meta.r0_rdonly = true; 12412 } 12413 } 12414 if (!meta.r0_size) { 12415 ptr_type_name = btf_name_by_offset(desc_btf, 12416 ptr_type->name_off); 12417 verbose(env, 12418 "kernel function %s returns pointer type %s %s is not supported\n", 12419 func_name, 12420 btf_type_str(ptr_type), 12421 ptr_type_name); 12422 return -EINVAL; 12423 } 12424 12425 mark_reg_known_zero(env, regs, BPF_REG_0); 12426 regs[BPF_REG_0].type = PTR_TO_MEM; 12427 regs[BPF_REG_0].mem_size = meta.r0_size; 12428 12429 if (meta.r0_rdonly) 12430 regs[BPF_REG_0].type |= MEM_RDONLY; 12431 12432 /* Ensures we don't access the memory after a release_reference() */ 12433 if (meta.ref_obj_id) 12434 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 12435 } else { 12436 mark_reg_known_zero(env, regs, BPF_REG_0); 12437 regs[BPF_REG_0].btf = desc_btf; 12438 regs[BPF_REG_0].type = PTR_TO_BTF_ID; 12439 regs[BPF_REG_0].btf_id = ptr_type_id; 12440 } 12441 12442 if (is_kfunc_ret_null(&meta)) { 12443 regs[BPF_REG_0].type |= PTR_MAYBE_NULL; 12444 /* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */ 12445 regs[BPF_REG_0].id = ++env->id_gen; 12446 } 12447 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *)); 12448 if (is_kfunc_acquire(&meta)) { 12449 int id = acquire_reference_state(env, insn_idx); 12450 12451 if (id < 0) 12452 return id; 12453 if (is_kfunc_ret_null(&meta)) 12454 regs[BPF_REG_0].id = id; 12455 regs[BPF_REG_0].ref_obj_id = id; 12456 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) { 12457 ref_set_non_owning(env, ®s[BPF_REG_0]); 12458 } 12459 12460 if (reg_may_point_to_spin_lock(®s[BPF_REG_0]) && !regs[BPF_REG_0].id) 12461 regs[BPF_REG_0].id = ++env->id_gen; 12462 } else if (btf_type_is_void(t)) { 12463 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) { 12464 if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl] || 12465 meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) { 12466 insn_aux->kptr_struct_meta = 12467 btf_find_struct_meta(meta.arg_btf, 12468 meta.arg_btf_id); 12469 } 12470 } 12471 } 12472 12473 nargs = btf_type_vlen(meta.func_proto); 12474 args = (const struct btf_param *)(meta.func_proto + 1); 12475 for (i = 0; i < nargs; i++) { 12476 u32 regno = i + 1; 12477 12478 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL); 12479 if (btf_type_is_ptr(t)) 12480 mark_btf_func_reg_size(env, regno, sizeof(void *)); 12481 else 12482 /* scalar. ensured by btf_check_kfunc_arg_match() */ 12483 mark_btf_func_reg_size(env, regno, t->size); 12484 } 12485 12486 if (is_iter_next_kfunc(&meta)) { 12487 err = process_iter_next_call(env, insn_idx, &meta); 12488 if (err) 12489 return err; 12490 } 12491 12492 return 0; 12493 } 12494 12495 static bool signed_add_overflows(s64 a, s64 b) 12496 { 12497 /* Do the add in u64, where overflow is well-defined */ 12498 s64 res = (s64)((u64)a + (u64)b); 12499 12500 if (b < 0) 12501 return res > a; 12502 return res < a; 12503 } 12504 12505 static bool signed_add32_overflows(s32 a, s32 b) 12506 { 12507 /* Do the add in u32, where overflow is well-defined */ 12508 s32 res = (s32)((u32)a + (u32)b); 12509 12510 if (b < 0) 12511 return res > a; 12512 return res < a; 12513 } 12514 12515 static bool signed_sub_overflows(s64 a, s64 b) 12516 { 12517 /* Do the sub in u64, where overflow is well-defined */ 12518 s64 res = (s64)((u64)a - (u64)b); 12519 12520 if (b < 0) 12521 return res < a; 12522 return res > a; 12523 } 12524 12525 static bool signed_sub32_overflows(s32 a, s32 b) 12526 { 12527 /* Do the sub in u32, where overflow is well-defined */ 12528 s32 res = (s32)((u32)a - (u32)b); 12529 12530 if (b < 0) 12531 return res < a; 12532 return res > a; 12533 } 12534 12535 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 12536 const struct bpf_reg_state *reg, 12537 enum bpf_reg_type type) 12538 { 12539 bool known = tnum_is_const(reg->var_off); 12540 s64 val = reg->var_off.value; 12541 s64 smin = reg->smin_value; 12542 12543 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 12544 verbose(env, "math between %s pointer and %lld is not allowed\n", 12545 reg_type_str(env, type), val); 12546 return false; 12547 } 12548 12549 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 12550 verbose(env, "%s pointer offset %d is not allowed\n", 12551 reg_type_str(env, type), reg->off); 12552 return false; 12553 } 12554 12555 if (smin == S64_MIN) { 12556 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 12557 reg_type_str(env, type)); 12558 return false; 12559 } 12560 12561 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 12562 verbose(env, "value %lld makes %s pointer be out of bounds\n", 12563 smin, reg_type_str(env, type)); 12564 return false; 12565 } 12566 12567 return true; 12568 } 12569 12570 enum { 12571 REASON_BOUNDS = -1, 12572 REASON_TYPE = -2, 12573 REASON_PATHS = -3, 12574 REASON_LIMIT = -4, 12575 REASON_STACK = -5, 12576 }; 12577 12578 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 12579 u32 *alu_limit, bool mask_to_left) 12580 { 12581 u32 max = 0, ptr_limit = 0; 12582 12583 switch (ptr_reg->type) { 12584 case PTR_TO_STACK: 12585 /* Offset 0 is out-of-bounds, but acceptable start for the 12586 * left direction, see BPF_REG_FP. Also, unknown scalar 12587 * offset where we would need to deal with min/max bounds is 12588 * currently prohibited for unprivileged. 12589 */ 12590 max = MAX_BPF_STACK + mask_to_left; 12591 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off); 12592 break; 12593 case PTR_TO_MAP_VALUE: 12594 max = ptr_reg->map_ptr->value_size; 12595 ptr_limit = (mask_to_left ? 12596 ptr_reg->smin_value : 12597 ptr_reg->umax_value) + ptr_reg->off; 12598 break; 12599 default: 12600 return REASON_TYPE; 12601 } 12602 12603 if (ptr_limit >= max) 12604 return REASON_LIMIT; 12605 *alu_limit = ptr_limit; 12606 return 0; 12607 } 12608 12609 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 12610 const struct bpf_insn *insn) 12611 { 12612 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K; 12613 } 12614 12615 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 12616 u32 alu_state, u32 alu_limit) 12617 { 12618 /* If we arrived here from different branches with different 12619 * state or limits to sanitize, then this won't work. 12620 */ 12621 if (aux->alu_state && 12622 (aux->alu_state != alu_state || 12623 aux->alu_limit != alu_limit)) 12624 return REASON_PATHS; 12625 12626 /* Corresponding fixup done in do_misc_fixups(). */ 12627 aux->alu_state = alu_state; 12628 aux->alu_limit = alu_limit; 12629 return 0; 12630 } 12631 12632 static int sanitize_val_alu(struct bpf_verifier_env *env, 12633 struct bpf_insn *insn) 12634 { 12635 struct bpf_insn_aux_data *aux = cur_aux(env); 12636 12637 if (can_skip_alu_sanitation(env, insn)) 12638 return 0; 12639 12640 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 12641 } 12642 12643 static bool sanitize_needed(u8 opcode) 12644 { 12645 return opcode == BPF_ADD || opcode == BPF_SUB; 12646 } 12647 12648 struct bpf_sanitize_info { 12649 struct bpf_insn_aux_data aux; 12650 bool mask_to_left; 12651 }; 12652 12653 static struct bpf_verifier_state * 12654 sanitize_speculative_path(struct bpf_verifier_env *env, 12655 const struct bpf_insn *insn, 12656 u32 next_idx, u32 curr_idx) 12657 { 12658 struct bpf_verifier_state *branch; 12659 struct bpf_reg_state *regs; 12660 12661 branch = push_stack(env, next_idx, curr_idx, true); 12662 if (branch && insn) { 12663 regs = branch->frame[branch->curframe]->regs; 12664 if (BPF_SRC(insn->code) == BPF_K) { 12665 mark_reg_unknown(env, regs, insn->dst_reg); 12666 } else if (BPF_SRC(insn->code) == BPF_X) { 12667 mark_reg_unknown(env, regs, insn->dst_reg); 12668 mark_reg_unknown(env, regs, insn->src_reg); 12669 } 12670 } 12671 return branch; 12672 } 12673 12674 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 12675 struct bpf_insn *insn, 12676 const struct bpf_reg_state *ptr_reg, 12677 const struct bpf_reg_state *off_reg, 12678 struct bpf_reg_state *dst_reg, 12679 struct bpf_sanitize_info *info, 12680 const bool commit_window) 12681 { 12682 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux; 12683 struct bpf_verifier_state *vstate = env->cur_state; 12684 bool off_is_imm = tnum_is_const(off_reg->var_off); 12685 bool off_is_neg = off_reg->smin_value < 0; 12686 bool ptr_is_dst_reg = ptr_reg == dst_reg; 12687 u8 opcode = BPF_OP(insn->code); 12688 u32 alu_state, alu_limit; 12689 struct bpf_reg_state tmp; 12690 bool ret; 12691 int err; 12692 12693 if (can_skip_alu_sanitation(env, insn)) 12694 return 0; 12695 12696 /* We already marked aux for masking from non-speculative 12697 * paths, thus we got here in the first place. We only care 12698 * to explore bad access from here. 12699 */ 12700 if (vstate->speculative) 12701 goto do_sim; 12702 12703 if (!commit_window) { 12704 if (!tnum_is_const(off_reg->var_off) && 12705 (off_reg->smin_value < 0) != (off_reg->smax_value < 0)) 12706 return REASON_BOUNDS; 12707 12708 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) || 12709 (opcode == BPF_SUB && !off_is_neg); 12710 } 12711 12712 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left); 12713 if (err < 0) 12714 return err; 12715 12716 if (commit_window) { 12717 /* In commit phase we narrow the masking window based on 12718 * the observed pointer move after the simulated operation. 12719 */ 12720 alu_state = info->aux.alu_state; 12721 alu_limit = abs(info->aux.alu_limit - alu_limit); 12722 } else { 12723 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 12724 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0; 12725 alu_state |= ptr_is_dst_reg ? 12726 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 12727 12728 /* Limit pruning on unknown scalars to enable deep search for 12729 * potential masking differences from other program paths. 12730 */ 12731 if (!off_is_imm) 12732 env->explore_alu_limits = true; 12733 } 12734 12735 err = update_alu_sanitation_state(aux, alu_state, alu_limit); 12736 if (err < 0) 12737 return err; 12738 do_sim: 12739 /* If we're in commit phase, we're done here given we already 12740 * pushed the truncated dst_reg into the speculative verification 12741 * stack. 12742 * 12743 * Also, when register is a known constant, we rewrite register-based 12744 * operation to immediate-based, and thus do not need masking (and as 12745 * a consequence, do not need to simulate the zero-truncation either). 12746 */ 12747 if (commit_window || off_is_imm) 12748 return 0; 12749 12750 /* Simulate and find potential out-of-bounds access under 12751 * speculative execution from truncation as a result of 12752 * masking when off was not within expected range. If off 12753 * sits in dst, then we temporarily need to move ptr there 12754 * to simulate dst (== 0) +/-= ptr. Needed, for example, 12755 * for cases where we use K-based arithmetic in one direction 12756 * and truncated reg-based in the other in order to explore 12757 * bad access. 12758 */ 12759 if (!ptr_is_dst_reg) { 12760 tmp = *dst_reg; 12761 copy_register_state(dst_reg, ptr_reg); 12762 } 12763 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1, 12764 env->insn_idx); 12765 if (!ptr_is_dst_reg && ret) 12766 *dst_reg = tmp; 12767 return !ret ? REASON_STACK : 0; 12768 } 12769 12770 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env) 12771 { 12772 struct bpf_verifier_state *vstate = env->cur_state; 12773 12774 /* If we simulate paths under speculation, we don't update the 12775 * insn as 'seen' such that when we verify unreachable paths in 12776 * the non-speculative domain, sanitize_dead_code() can still 12777 * rewrite/sanitize them. 12778 */ 12779 if (!vstate->speculative) 12780 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 12781 } 12782 12783 static int sanitize_err(struct bpf_verifier_env *env, 12784 const struct bpf_insn *insn, int reason, 12785 const struct bpf_reg_state *off_reg, 12786 const struct bpf_reg_state *dst_reg) 12787 { 12788 static const char *err = "pointer arithmetic with it prohibited for !root"; 12789 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub"; 12790 u32 dst = insn->dst_reg, src = insn->src_reg; 12791 12792 switch (reason) { 12793 case REASON_BOUNDS: 12794 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n", 12795 off_reg == dst_reg ? dst : src, err); 12796 break; 12797 case REASON_TYPE: 12798 verbose(env, "R%d has pointer with unsupported alu operation, %s\n", 12799 off_reg == dst_reg ? src : dst, err); 12800 break; 12801 case REASON_PATHS: 12802 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n", 12803 dst, op, err); 12804 break; 12805 case REASON_LIMIT: 12806 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n", 12807 dst, op, err); 12808 break; 12809 case REASON_STACK: 12810 verbose(env, "R%d could not be pushed for speculative verification, %s\n", 12811 dst, err); 12812 break; 12813 default: 12814 verbose(env, "verifier internal error: unknown reason (%d)\n", 12815 reason); 12816 break; 12817 } 12818 12819 return -EACCES; 12820 } 12821 12822 /* check that stack access falls within stack limits and that 'reg' doesn't 12823 * have a variable offset. 12824 * 12825 * Variable offset is prohibited for unprivileged mode for simplicity since it 12826 * requires corresponding support in Spectre masking for stack ALU. See also 12827 * retrieve_ptr_limit(). 12828 * 12829 * 12830 * 'off' includes 'reg->off'. 12831 */ 12832 static int check_stack_access_for_ptr_arithmetic( 12833 struct bpf_verifier_env *env, 12834 int regno, 12835 const struct bpf_reg_state *reg, 12836 int off) 12837 { 12838 if (!tnum_is_const(reg->var_off)) { 12839 char tn_buf[48]; 12840 12841 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 12842 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n", 12843 regno, tn_buf, off); 12844 return -EACCES; 12845 } 12846 12847 if (off >= 0 || off < -MAX_BPF_STACK) { 12848 verbose(env, "R%d stack pointer arithmetic goes out of range, " 12849 "prohibited for !root; off=%d\n", regno, off); 12850 return -EACCES; 12851 } 12852 12853 return 0; 12854 } 12855 12856 static int sanitize_check_bounds(struct bpf_verifier_env *env, 12857 const struct bpf_insn *insn, 12858 const struct bpf_reg_state *dst_reg) 12859 { 12860 u32 dst = insn->dst_reg; 12861 12862 /* For unprivileged we require that resulting offset must be in bounds 12863 * in order to be able to sanitize access later on. 12864 */ 12865 if (env->bypass_spec_v1) 12866 return 0; 12867 12868 switch (dst_reg->type) { 12869 case PTR_TO_STACK: 12870 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg, 12871 dst_reg->off + dst_reg->var_off.value)) 12872 return -EACCES; 12873 break; 12874 case PTR_TO_MAP_VALUE: 12875 if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) { 12876 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 12877 "prohibited for !root\n", dst); 12878 return -EACCES; 12879 } 12880 break; 12881 default: 12882 break; 12883 } 12884 12885 return 0; 12886 } 12887 12888 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 12889 * Caller should also handle BPF_MOV case separately. 12890 * If we return -EACCES, caller may want to try again treating pointer as a 12891 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 12892 */ 12893 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 12894 struct bpf_insn *insn, 12895 const struct bpf_reg_state *ptr_reg, 12896 const struct bpf_reg_state *off_reg) 12897 { 12898 struct bpf_verifier_state *vstate = env->cur_state; 12899 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 12900 struct bpf_reg_state *regs = state->regs, *dst_reg; 12901 bool known = tnum_is_const(off_reg->var_off); 12902 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 12903 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 12904 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 12905 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 12906 struct bpf_sanitize_info info = {}; 12907 u8 opcode = BPF_OP(insn->code); 12908 u32 dst = insn->dst_reg; 12909 int ret; 12910 12911 dst_reg = ®s[dst]; 12912 12913 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 12914 smin_val > smax_val || umin_val > umax_val) { 12915 /* Taint dst register if offset had invalid bounds derived from 12916 * e.g. dead branches. 12917 */ 12918 __mark_reg_unknown(env, dst_reg); 12919 return 0; 12920 } 12921 12922 if (BPF_CLASS(insn->code) != BPF_ALU64) { 12923 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 12924 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 12925 __mark_reg_unknown(env, dst_reg); 12926 return 0; 12927 } 12928 12929 verbose(env, 12930 "R%d 32-bit pointer arithmetic prohibited\n", 12931 dst); 12932 return -EACCES; 12933 } 12934 12935 if (ptr_reg->type & PTR_MAYBE_NULL) { 12936 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 12937 dst, reg_type_str(env, ptr_reg->type)); 12938 return -EACCES; 12939 } 12940 12941 switch (base_type(ptr_reg->type)) { 12942 case PTR_TO_CTX: 12943 case PTR_TO_MAP_VALUE: 12944 case PTR_TO_MAP_KEY: 12945 case PTR_TO_STACK: 12946 case PTR_TO_PACKET_META: 12947 case PTR_TO_PACKET: 12948 case PTR_TO_TP_BUFFER: 12949 case PTR_TO_BTF_ID: 12950 case PTR_TO_MEM: 12951 case PTR_TO_BUF: 12952 case PTR_TO_FUNC: 12953 case CONST_PTR_TO_DYNPTR: 12954 break; 12955 case PTR_TO_FLOW_KEYS: 12956 if (known) 12957 break; 12958 fallthrough; 12959 case CONST_PTR_TO_MAP: 12960 /* smin_val represents the known value */ 12961 if (known && smin_val == 0 && opcode == BPF_ADD) 12962 break; 12963 fallthrough; 12964 default: 12965 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 12966 dst, reg_type_str(env, ptr_reg->type)); 12967 return -EACCES; 12968 } 12969 12970 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 12971 * The id may be overwritten later if we create a new variable offset. 12972 */ 12973 dst_reg->type = ptr_reg->type; 12974 dst_reg->id = ptr_reg->id; 12975 12976 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 12977 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 12978 return -EINVAL; 12979 12980 /* pointer types do not carry 32-bit bounds at the moment. */ 12981 __mark_reg32_unbounded(dst_reg); 12982 12983 if (sanitize_needed(opcode)) { 12984 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg, 12985 &info, false); 12986 if (ret < 0) 12987 return sanitize_err(env, insn, ret, off_reg, dst_reg); 12988 } 12989 12990 switch (opcode) { 12991 case BPF_ADD: 12992 /* We can take a fixed offset as long as it doesn't overflow 12993 * the s32 'off' field 12994 */ 12995 if (known && (ptr_reg->off + smin_val == 12996 (s64)(s32)(ptr_reg->off + smin_val))) { 12997 /* pointer += K. Accumulate it into fixed offset */ 12998 dst_reg->smin_value = smin_ptr; 12999 dst_reg->smax_value = smax_ptr; 13000 dst_reg->umin_value = umin_ptr; 13001 dst_reg->umax_value = umax_ptr; 13002 dst_reg->var_off = ptr_reg->var_off; 13003 dst_reg->off = ptr_reg->off + smin_val; 13004 dst_reg->raw = ptr_reg->raw; 13005 break; 13006 } 13007 /* A new variable offset is created. Note that off_reg->off 13008 * == 0, since it's a scalar. 13009 * dst_reg gets the pointer type and since some positive 13010 * integer value was added to the pointer, give it a new 'id' 13011 * if it's a PTR_TO_PACKET. 13012 * this creates a new 'base' pointer, off_reg (variable) gets 13013 * added into the variable offset, and we copy the fixed offset 13014 * from ptr_reg. 13015 */ 13016 if (signed_add_overflows(smin_ptr, smin_val) || 13017 signed_add_overflows(smax_ptr, smax_val)) { 13018 dst_reg->smin_value = S64_MIN; 13019 dst_reg->smax_value = S64_MAX; 13020 } else { 13021 dst_reg->smin_value = smin_ptr + smin_val; 13022 dst_reg->smax_value = smax_ptr + smax_val; 13023 } 13024 if (umin_ptr + umin_val < umin_ptr || 13025 umax_ptr + umax_val < umax_ptr) { 13026 dst_reg->umin_value = 0; 13027 dst_reg->umax_value = U64_MAX; 13028 } else { 13029 dst_reg->umin_value = umin_ptr + umin_val; 13030 dst_reg->umax_value = umax_ptr + umax_val; 13031 } 13032 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 13033 dst_reg->off = ptr_reg->off; 13034 dst_reg->raw = ptr_reg->raw; 13035 if (reg_is_pkt_pointer(ptr_reg)) { 13036 dst_reg->id = ++env->id_gen; 13037 /* something was added to pkt_ptr, set range to zero */ 13038 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 13039 } 13040 break; 13041 case BPF_SUB: 13042 if (dst_reg == off_reg) { 13043 /* scalar -= pointer. Creates an unknown scalar */ 13044 verbose(env, "R%d tried to subtract pointer from scalar\n", 13045 dst); 13046 return -EACCES; 13047 } 13048 /* We don't allow subtraction from FP, because (according to 13049 * test_verifier.c test "invalid fp arithmetic", JITs might not 13050 * be able to deal with it. 13051 */ 13052 if (ptr_reg->type == PTR_TO_STACK) { 13053 verbose(env, "R%d subtraction from stack pointer prohibited\n", 13054 dst); 13055 return -EACCES; 13056 } 13057 if (known && (ptr_reg->off - smin_val == 13058 (s64)(s32)(ptr_reg->off - smin_val))) { 13059 /* pointer -= K. Subtract it from fixed offset */ 13060 dst_reg->smin_value = smin_ptr; 13061 dst_reg->smax_value = smax_ptr; 13062 dst_reg->umin_value = umin_ptr; 13063 dst_reg->umax_value = umax_ptr; 13064 dst_reg->var_off = ptr_reg->var_off; 13065 dst_reg->id = ptr_reg->id; 13066 dst_reg->off = ptr_reg->off - smin_val; 13067 dst_reg->raw = ptr_reg->raw; 13068 break; 13069 } 13070 /* A new variable offset is created. If the subtrahend is known 13071 * nonnegative, then any reg->range we had before is still good. 13072 */ 13073 if (signed_sub_overflows(smin_ptr, smax_val) || 13074 signed_sub_overflows(smax_ptr, smin_val)) { 13075 /* Overflow possible, we know nothing */ 13076 dst_reg->smin_value = S64_MIN; 13077 dst_reg->smax_value = S64_MAX; 13078 } else { 13079 dst_reg->smin_value = smin_ptr - smax_val; 13080 dst_reg->smax_value = smax_ptr - smin_val; 13081 } 13082 if (umin_ptr < umax_val) { 13083 /* Overflow possible, we know nothing */ 13084 dst_reg->umin_value = 0; 13085 dst_reg->umax_value = U64_MAX; 13086 } else { 13087 /* Cannot overflow (as long as bounds are consistent) */ 13088 dst_reg->umin_value = umin_ptr - umax_val; 13089 dst_reg->umax_value = umax_ptr - umin_val; 13090 } 13091 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 13092 dst_reg->off = ptr_reg->off; 13093 dst_reg->raw = ptr_reg->raw; 13094 if (reg_is_pkt_pointer(ptr_reg)) { 13095 dst_reg->id = ++env->id_gen; 13096 /* something was added to pkt_ptr, set range to zero */ 13097 if (smin_val < 0) 13098 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 13099 } 13100 break; 13101 case BPF_AND: 13102 case BPF_OR: 13103 case BPF_XOR: 13104 /* bitwise ops on pointers are troublesome, prohibit. */ 13105 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 13106 dst, bpf_alu_string[opcode >> 4]); 13107 return -EACCES; 13108 default: 13109 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 13110 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 13111 dst, bpf_alu_string[opcode >> 4]); 13112 return -EACCES; 13113 } 13114 13115 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 13116 return -EINVAL; 13117 reg_bounds_sync(dst_reg); 13118 if (sanitize_check_bounds(env, insn, dst_reg) < 0) 13119 return -EACCES; 13120 if (sanitize_needed(opcode)) { 13121 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg, 13122 &info, true); 13123 if (ret < 0) 13124 return sanitize_err(env, insn, ret, off_reg, dst_reg); 13125 } 13126 13127 return 0; 13128 } 13129 13130 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, 13131 struct bpf_reg_state *src_reg) 13132 { 13133 s32 smin_val = src_reg->s32_min_value; 13134 s32 smax_val = src_reg->s32_max_value; 13135 u32 umin_val = src_reg->u32_min_value; 13136 u32 umax_val = src_reg->u32_max_value; 13137 13138 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) || 13139 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) { 13140 dst_reg->s32_min_value = S32_MIN; 13141 dst_reg->s32_max_value = S32_MAX; 13142 } else { 13143 dst_reg->s32_min_value += smin_val; 13144 dst_reg->s32_max_value += smax_val; 13145 } 13146 if (dst_reg->u32_min_value + umin_val < umin_val || 13147 dst_reg->u32_max_value + umax_val < umax_val) { 13148 dst_reg->u32_min_value = 0; 13149 dst_reg->u32_max_value = U32_MAX; 13150 } else { 13151 dst_reg->u32_min_value += umin_val; 13152 dst_reg->u32_max_value += umax_val; 13153 } 13154 } 13155 13156 static void scalar_min_max_add(struct bpf_reg_state *dst_reg, 13157 struct bpf_reg_state *src_reg) 13158 { 13159 s64 smin_val = src_reg->smin_value; 13160 s64 smax_val = src_reg->smax_value; 13161 u64 umin_val = src_reg->umin_value; 13162 u64 umax_val = src_reg->umax_value; 13163 13164 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 13165 signed_add_overflows(dst_reg->smax_value, smax_val)) { 13166 dst_reg->smin_value = S64_MIN; 13167 dst_reg->smax_value = S64_MAX; 13168 } else { 13169 dst_reg->smin_value += smin_val; 13170 dst_reg->smax_value += smax_val; 13171 } 13172 if (dst_reg->umin_value + umin_val < umin_val || 13173 dst_reg->umax_value + umax_val < umax_val) { 13174 dst_reg->umin_value = 0; 13175 dst_reg->umax_value = U64_MAX; 13176 } else { 13177 dst_reg->umin_value += umin_val; 13178 dst_reg->umax_value += umax_val; 13179 } 13180 } 13181 13182 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, 13183 struct bpf_reg_state *src_reg) 13184 { 13185 s32 smin_val = src_reg->s32_min_value; 13186 s32 smax_val = src_reg->s32_max_value; 13187 u32 umin_val = src_reg->u32_min_value; 13188 u32 umax_val = src_reg->u32_max_value; 13189 13190 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) || 13191 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) { 13192 /* Overflow possible, we know nothing */ 13193 dst_reg->s32_min_value = S32_MIN; 13194 dst_reg->s32_max_value = S32_MAX; 13195 } else { 13196 dst_reg->s32_min_value -= smax_val; 13197 dst_reg->s32_max_value -= smin_val; 13198 } 13199 if (dst_reg->u32_min_value < umax_val) { 13200 /* Overflow possible, we know nothing */ 13201 dst_reg->u32_min_value = 0; 13202 dst_reg->u32_max_value = U32_MAX; 13203 } else { 13204 /* Cannot overflow (as long as bounds are consistent) */ 13205 dst_reg->u32_min_value -= umax_val; 13206 dst_reg->u32_max_value -= umin_val; 13207 } 13208 } 13209 13210 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, 13211 struct bpf_reg_state *src_reg) 13212 { 13213 s64 smin_val = src_reg->smin_value; 13214 s64 smax_val = src_reg->smax_value; 13215 u64 umin_val = src_reg->umin_value; 13216 u64 umax_val = src_reg->umax_value; 13217 13218 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 13219 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 13220 /* Overflow possible, we know nothing */ 13221 dst_reg->smin_value = S64_MIN; 13222 dst_reg->smax_value = S64_MAX; 13223 } else { 13224 dst_reg->smin_value -= smax_val; 13225 dst_reg->smax_value -= smin_val; 13226 } 13227 if (dst_reg->umin_value < umax_val) { 13228 /* Overflow possible, we know nothing */ 13229 dst_reg->umin_value = 0; 13230 dst_reg->umax_value = U64_MAX; 13231 } else { 13232 /* Cannot overflow (as long as bounds are consistent) */ 13233 dst_reg->umin_value -= umax_val; 13234 dst_reg->umax_value -= umin_val; 13235 } 13236 } 13237 13238 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, 13239 struct bpf_reg_state *src_reg) 13240 { 13241 s32 smin_val = src_reg->s32_min_value; 13242 u32 umin_val = src_reg->u32_min_value; 13243 u32 umax_val = src_reg->u32_max_value; 13244 13245 if (smin_val < 0 || dst_reg->s32_min_value < 0) { 13246 /* Ain't nobody got time to multiply that sign */ 13247 __mark_reg32_unbounded(dst_reg); 13248 return; 13249 } 13250 /* Both values are positive, so we can work with unsigned and 13251 * copy the result to signed (unless it exceeds S32_MAX). 13252 */ 13253 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) { 13254 /* Potential overflow, we know nothing */ 13255 __mark_reg32_unbounded(dst_reg); 13256 return; 13257 } 13258 dst_reg->u32_min_value *= umin_val; 13259 dst_reg->u32_max_value *= umax_val; 13260 if (dst_reg->u32_max_value > S32_MAX) { 13261 /* Overflow possible, we know nothing */ 13262 dst_reg->s32_min_value = S32_MIN; 13263 dst_reg->s32_max_value = S32_MAX; 13264 } else { 13265 dst_reg->s32_min_value = dst_reg->u32_min_value; 13266 dst_reg->s32_max_value = dst_reg->u32_max_value; 13267 } 13268 } 13269 13270 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, 13271 struct bpf_reg_state *src_reg) 13272 { 13273 s64 smin_val = src_reg->smin_value; 13274 u64 umin_val = src_reg->umin_value; 13275 u64 umax_val = src_reg->umax_value; 13276 13277 if (smin_val < 0 || dst_reg->smin_value < 0) { 13278 /* Ain't nobody got time to multiply that sign */ 13279 __mark_reg64_unbounded(dst_reg); 13280 return; 13281 } 13282 /* Both values are positive, so we can work with unsigned and 13283 * copy the result to signed (unless it exceeds S64_MAX). 13284 */ 13285 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 13286 /* Potential overflow, we know nothing */ 13287 __mark_reg64_unbounded(dst_reg); 13288 return; 13289 } 13290 dst_reg->umin_value *= umin_val; 13291 dst_reg->umax_value *= umax_val; 13292 if (dst_reg->umax_value > S64_MAX) { 13293 /* Overflow possible, we know nothing */ 13294 dst_reg->smin_value = S64_MIN; 13295 dst_reg->smax_value = S64_MAX; 13296 } else { 13297 dst_reg->smin_value = dst_reg->umin_value; 13298 dst_reg->smax_value = dst_reg->umax_value; 13299 } 13300 } 13301 13302 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, 13303 struct bpf_reg_state *src_reg) 13304 { 13305 bool src_known = tnum_subreg_is_const(src_reg->var_off); 13306 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 13307 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 13308 s32 smin_val = src_reg->s32_min_value; 13309 u32 umax_val = src_reg->u32_max_value; 13310 13311 if (src_known && dst_known) { 13312 __mark_reg32_known(dst_reg, var32_off.value); 13313 return; 13314 } 13315 13316 /* We get our minimum from the var_off, since that's inherently 13317 * bitwise. Our maximum is the minimum of the operands' maxima. 13318 */ 13319 dst_reg->u32_min_value = var32_off.value; 13320 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 13321 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 13322 /* Lose signed bounds when ANDing negative numbers, 13323 * ain't nobody got time for that. 13324 */ 13325 dst_reg->s32_min_value = S32_MIN; 13326 dst_reg->s32_max_value = S32_MAX; 13327 } else { 13328 /* ANDing two positives gives a positive, so safe to 13329 * cast result into s64. 13330 */ 13331 dst_reg->s32_min_value = dst_reg->u32_min_value; 13332 dst_reg->s32_max_value = dst_reg->u32_max_value; 13333 } 13334 } 13335 13336 static void scalar_min_max_and(struct bpf_reg_state *dst_reg, 13337 struct bpf_reg_state *src_reg) 13338 { 13339 bool src_known = tnum_is_const(src_reg->var_off); 13340 bool dst_known = tnum_is_const(dst_reg->var_off); 13341 s64 smin_val = src_reg->smin_value; 13342 u64 umax_val = src_reg->umax_value; 13343 13344 if (src_known && dst_known) { 13345 __mark_reg_known(dst_reg, dst_reg->var_off.value); 13346 return; 13347 } 13348 13349 /* We get our minimum from the var_off, since that's inherently 13350 * bitwise. Our maximum is the minimum of the operands' maxima. 13351 */ 13352 dst_reg->umin_value = dst_reg->var_off.value; 13353 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 13354 if (dst_reg->smin_value < 0 || smin_val < 0) { 13355 /* Lose signed bounds when ANDing negative numbers, 13356 * ain't nobody got time for that. 13357 */ 13358 dst_reg->smin_value = S64_MIN; 13359 dst_reg->smax_value = S64_MAX; 13360 } else { 13361 /* ANDing two positives gives a positive, so safe to 13362 * cast result into s64. 13363 */ 13364 dst_reg->smin_value = dst_reg->umin_value; 13365 dst_reg->smax_value = dst_reg->umax_value; 13366 } 13367 /* We may learn something more from the var_off */ 13368 __update_reg_bounds(dst_reg); 13369 } 13370 13371 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, 13372 struct bpf_reg_state *src_reg) 13373 { 13374 bool src_known = tnum_subreg_is_const(src_reg->var_off); 13375 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 13376 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 13377 s32 smin_val = src_reg->s32_min_value; 13378 u32 umin_val = src_reg->u32_min_value; 13379 13380 if (src_known && dst_known) { 13381 __mark_reg32_known(dst_reg, var32_off.value); 13382 return; 13383 } 13384 13385 /* We get our maximum from the var_off, and our minimum is the 13386 * maximum of the operands' minima 13387 */ 13388 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 13389 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 13390 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 13391 /* Lose signed bounds when ORing negative numbers, 13392 * ain't nobody got time for that. 13393 */ 13394 dst_reg->s32_min_value = S32_MIN; 13395 dst_reg->s32_max_value = S32_MAX; 13396 } else { 13397 /* ORing two positives gives a positive, so safe to 13398 * cast result into s64. 13399 */ 13400 dst_reg->s32_min_value = dst_reg->u32_min_value; 13401 dst_reg->s32_max_value = dst_reg->u32_max_value; 13402 } 13403 } 13404 13405 static void scalar_min_max_or(struct bpf_reg_state *dst_reg, 13406 struct bpf_reg_state *src_reg) 13407 { 13408 bool src_known = tnum_is_const(src_reg->var_off); 13409 bool dst_known = tnum_is_const(dst_reg->var_off); 13410 s64 smin_val = src_reg->smin_value; 13411 u64 umin_val = src_reg->umin_value; 13412 13413 if (src_known && dst_known) { 13414 __mark_reg_known(dst_reg, dst_reg->var_off.value); 13415 return; 13416 } 13417 13418 /* We get our maximum from the var_off, and our minimum is the 13419 * maximum of the operands' minima 13420 */ 13421 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 13422 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 13423 if (dst_reg->smin_value < 0 || smin_val < 0) { 13424 /* Lose signed bounds when ORing negative numbers, 13425 * ain't nobody got time for that. 13426 */ 13427 dst_reg->smin_value = S64_MIN; 13428 dst_reg->smax_value = S64_MAX; 13429 } else { 13430 /* ORing two positives gives a positive, so safe to 13431 * cast result into s64. 13432 */ 13433 dst_reg->smin_value = dst_reg->umin_value; 13434 dst_reg->smax_value = dst_reg->umax_value; 13435 } 13436 /* We may learn something more from the var_off */ 13437 __update_reg_bounds(dst_reg); 13438 } 13439 13440 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg, 13441 struct bpf_reg_state *src_reg) 13442 { 13443 bool src_known = tnum_subreg_is_const(src_reg->var_off); 13444 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 13445 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 13446 s32 smin_val = src_reg->s32_min_value; 13447 13448 if (src_known && dst_known) { 13449 __mark_reg32_known(dst_reg, var32_off.value); 13450 return; 13451 } 13452 13453 /* We get both minimum and maximum from the var32_off. */ 13454 dst_reg->u32_min_value = var32_off.value; 13455 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 13456 13457 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) { 13458 /* XORing two positive sign numbers gives a positive, 13459 * so safe to cast u32 result into s32. 13460 */ 13461 dst_reg->s32_min_value = dst_reg->u32_min_value; 13462 dst_reg->s32_max_value = dst_reg->u32_max_value; 13463 } else { 13464 dst_reg->s32_min_value = S32_MIN; 13465 dst_reg->s32_max_value = S32_MAX; 13466 } 13467 } 13468 13469 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg, 13470 struct bpf_reg_state *src_reg) 13471 { 13472 bool src_known = tnum_is_const(src_reg->var_off); 13473 bool dst_known = tnum_is_const(dst_reg->var_off); 13474 s64 smin_val = src_reg->smin_value; 13475 13476 if (src_known && dst_known) { 13477 /* dst_reg->var_off.value has been updated earlier */ 13478 __mark_reg_known(dst_reg, dst_reg->var_off.value); 13479 return; 13480 } 13481 13482 /* We get both minimum and maximum from the var_off. */ 13483 dst_reg->umin_value = dst_reg->var_off.value; 13484 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 13485 13486 if (dst_reg->smin_value >= 0 && smin_val >= 0) { 13487 /* XORing two positive sign numbers gives a positive, 13488 * so safe to cast u64 result into s64. 13489 */ 13490 dst_reg->smin_value = dst_reg->umin_value; 13491 dst_reg->smax_value = dst_reg->umax_value; 13492 } else { 13493 dst_reg->smin_value = S64_MIN; 13494 dst_reg->smax_value = S64_MAX; 13495 } 13496 13497 __update_reg_bounds(dst_reg); 13498 } 13499 13500 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 13501 u64 umin_val, u64 umax_val) 13502 { 13503 /* We lose all sign bit information (except what we can pick 13504 * up from var_off) 13505 */ 13506 dst_reg->s32_min_value = S32_MIN; 13507 dst_reg->s32_max_value = S32_MAX; 13508 /* If we might shift our top bit out, then we know nothing */ 13509 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { 13510 dst_reg->u32_min_value = 0; 13511 dst_reg->u32_max_value = U32_MAX; 13512 } else { 13513 dst_reg->u32_min_value <<= umin_val; 13514 dst_reg->u32_max_value <<= umax_val; 13515 } 13516 } 13517 13518 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 13519 struct bpf_reg_state *src_reg) 13520 { 13521 u32 umax_val = src_reg->u32_max_value; 13522 u32 umin_val = src_reg->u32_min_value; 13523 /* u32 alu operation will zext upper bits */ 13524 struct tnum subreg = tnum_subreg(dst_reg->var_off); 13525 13526 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 13527 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 13528 /* Not required but being careful mark reg64 bounds as unknown so 13529 * that we are forced to pick them up from tnum and zext later and 13530 * if some path skips this step we are still safe. 13531 */ 13532 __mark_reg64_unbounded(dst_reg); 13533 __update_reg32_bounds(dst_reg); 13534 } 13535 13536 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, 13537 u64 umin_val, u64 umax_val) 13538 { 13539 /* Special case <<32 because it is a common compiler pattern to sign 13540 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are 13541 * positive we know this shift will also be positive so we can track 13542 * bounds correctly. Otherwise we lose all sign bit information except 13543 * what we can pick up from var_off. Perhaps we can generalize this 13544 * later to shifts of any length. 13545 */ 13546 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) 13547 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; 13548 else 13549 dst_reg->smax_value = S64_MAX; 13550 13551 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) 13552 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; 13553 else 13554 dst_reg->smin_value = S64_MIN; 13555 13556 /* If we might shift our top bit out, then we know nothing */ 13557 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 13558 dst_reg->umin_value = 0; 13559 dst_reg->umax_value = U64_MAX; 13560 } else { 13561 dst_reg->umin_value <<= umin_val; 13562 dst_reg->umax_value <<= umax_val; 13563 } 13564 } 13565 13566 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, 13567 struct bpf_reg_state *src_reg) 13568 { 13569 u64 umax_val = src_reg->umax_value; 13570 u64 umin_val = src_reg->umin_value; 13571 13572 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 13573 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 13574 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 13575 13576 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 13577 /* We may learn something more from the var_off */ 13578 __update_reg_bounds(dst_reg); 13579 } 13580 13581 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, 13582 struct bpf_reg_state *src_reg) 13583 { 13584 struct tnum subreg = tnum_subreg(dst_reg->var_off); 13585 u32 umax_val = src_reg->u32_max_value; 13586 u32 umin_val = src_reg->u32_min_value; 13587 13588 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 13589 * be negative, then either: 13590 * 1) src_reg might be zero, so the sign bit of the result is 13591 * unknown, so we lose our signed bounds 13592 * 2) it's known negative, thus the unsigned bounds capture the 13593 * signed bounds 13594 * 3) the signed bounds cross zero, so they tell us nothing 13595 * about the result 13596 * If the value in dst_reg is known nonnegative, then again the 13597 * unsigned bounds capture the signed bounds. 13598 * Thus, in all cases it suffices to blow away our signed bounds 13599 * and rely on inferring new ones from the unsigned bounds and 13600 * var_off of the result. 13601 */ 13602 dst_reg->s32_min_value = S32_MIN; 13603 dst_reg->s32_max_value = S32_MAX; 13604 13605 dst_reg->var_off = tnum_rshift(subreg, umin_val); 13606 dst_reg->u32_min_value >>= umax_val; 13607 dst_reg->u32_max_value >>= umin_val; 13608 13609 __mark_reg64_unbounded(dst_reg); 13610 __update_reg32_bounds(dst_reg); 13611 } 13612 13613 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, 13614 struct bpf_reg_state *src_reg) 13615 { 13616 u64 umax_val = src_reg->umax_value; 13617 u64 umin_val = src_reg->umin_value; 13618 13619 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 13620 * be negative, then either: 13621 * 1) src_reg might be zero, so the sign bit of the result is 13622 * unknown, so we lose our signed bounds 13623 * 2) it's known negative, thus the unsigned bounds capture the 13624 * signed bounds 13625 * 3) the signed bounds cross zero, so they tell us nothing 13626 * about the result 13627 * If the value in dst_reg is known nonnegative, then again the 13628 * unsigned bounds capture the signed bounds. 13629 * Thus, in all cases it suffices to blow away our signed bounds 13630 * and rely on inferring new ones from the unsigned bounds and 13631 * var_off of the result. 13632 */ 13633 dst_reg->smin_value = S64_MIN; 13634 dst_reg->smax_value = S64_MAX; 13635 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 13636 dst_reg->umin_value >>= umax_val; 13637 dst_reg->umax_value >>= umin_val; 13638 13639 /* Its not easy to operate on alu32 bounds here because it depends 13640 * on bits being shifted in. Take easy way out and mark unbounded 13641 * so we can recalculate later from tnum. 13642 */ 13643 __mark_reg32_unbounded(dst_reg); 13644 __update_reg_bounds(dst_reg); 13645 } 13646 13647 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, 13648 struct bpf_reg_state *src_reg) 13649 { 13650 u64 umin_val = src_reg->u32_min_value; 13651 13652 /* Upon reaching here, src_known is true and 13653 * umax_val is equal to umin_val. 13654 */ 13655 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 13656 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 13657 13658 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); 13659 13660 /* blow away the dst_reg umin_value/umax_value and rely on 13661 * dst_reg var_off to refine the result. 13662 */ 13663 dst_reg->u32_min_value = 0; 13664 dst_reg->u32_max_value = U32_MAX; 13665 13666 __mark_reg64_unbounded(dst_reg); 13667 __update_reg32_bounds(dst_reg); 13668 } 13669 13670 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, 13671 struct bpf_reg_state *src_reg) 13672 { 13673 u64 umin_val = src_reg->umin_value; 13674 13675 /* Upon reaching here, src_known is true and umax_val is equal 13676 * to umin_val. 13677 */ 13678 dst_reg->smin_value >>= umin_val; 13679 dst_reg->smax_value >>= umin_val; 13680 13681 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); 13682 13683 /* blow away the dst_reg umin_value/umax_value and rely on 13684 * dst_reg var_off to refine the result. 13685 */ 13686 dst_reg->umin_value = 0; 13687 dst_reg->umax_value = U64_MAX; 13688 13689 /* Its not easy to operate on alu32 bounds here because it depends 13690 * on bits being shifted in from upper 32-bits. Take easy way out 13691 * and mark unbounded so we can recalculate later from tnum. 13692 */ 13693 __mark_reg32_unbounded(dst_reg); 13694 __update_reg_bounds(dst_reg); 13695 } 13696 13697 /* WARNING: This function does calculations on 64-bit values, but the actual 13698 * execution may occur on 32-bit values. Therefore, things like bitshifts 13699 * need extra checks in the 32-bit case. 13700 */ 13701 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 13702 struct bpf_insn *insn, 13703 struct bpf_reg_state *dst_reg, 13704 struct bpf_reg_state src_reg) 13705 { 13706 struct bpf_reg_state *regs = cur_regs(env); 13707 u8 opcode = BPF_OP(insn->code); 13708 bool src_known; 13709 s64 smin_val, smax_val; 13710 u64 umin_val, umax_val; 13711 s32 s32_min_val, s32_max_val; 13712 u32 u32_min_val, u32_max_val; 13713 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 13714 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 13715 int ret; 13716 13717 smin_val = src_reg.smin_value; 13718 smax_val = src_reg.smax_value; 13719 umin_val = src_reg.umin_value; 13720 umax_val = src_reg.umax_value; 13721 13722 s32_min_val = src_reg.s32_min_value; 13723 s32_max_val = src_reg.s32_max_value; 13724 u32_min_val = src_reg.u32_min_value; 13725 u32_max_val = src_reg.u32_max_value; 13726 13727 if (alu32) { 13728 src_known = tnum_subreg_is_const(src_reg.var_off); 13729 if ((src_known && 13730 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) || 13731 s32_min_val > s32_max_val || u32_min_val > u32_max_val) { 13732 /* Taint dst register if offset had invalid bounds 13733 * derived from e.g. dead branches. 13734 */ 13735 __mark_reg_unknown(env, dst_reg); 13736 return 0; 13737 } 13738 } else { 13739 src_known = tnum_is_const(src_reg.var_off); 13740 if ((src_known && 13741 (smin_val != smax_val || umin_val != umax_val)) || 13742 smin_val > smax_val || umin_val > umax_val) { 13743 /* Taint dst register if offset had invalid bounds 13744 * derived from e.g. dead branches. 13745 */ 13746 __mark_reg_unknown(env, dst_reg); 13747 return 0; 13748 } 13749 } 13750 13751 if (!src_known && 13752 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 13753 __mark_reg_unknown(env, dst_reg); 13754 return 0; 13755 } 13756 13757 if (sanitize_needed(opcode)) { 13758 ret = sanitize_val_alu(env, insn); 13759 if (ret < 0) 13760 return sanitize_err(env, insn, ret, NULL, NULL); 13761 } 13762 13763 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 13764 * There are two classes of instructions: The first class we track both 13765 * alu32 and alu64 sign/unsigned bounds independently this provides the 13766 * greatest amount of precision when alu operations are mixed with jmp32 13767 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 13768 * and BPF_OR. This is possible because these ops have fairly easy to 13769 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 13770 * See alu32 verifier tests for examples. The second class of 13771 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 13772 * with regards to tracking sign/unsigned bounds because the bits may 13773 * cross subreg boundaries in the alu64 case. When this happens we mark 13774 * the reg unbounded in the subreg bound space and use the resulting 13775 * tnum to calculate an approximation of the sign/unsigned bounds. 13776 */ 13777 switch (opcode) { 13778 case BPF_ADD: 13779 scalar32_min_max_add(dst_reg, &src_reg); 13780 scalar_min_max_add(dst_reg, &src_reg); 13781 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 13782 break; 13783 case BPF_SUB: 13784 scalar32_min_max_sub(dst_reg, &src_reg); 13785 scalar_min_max_sub(dst_reg, &src_reg); 13786 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 13787 break; 13788 case BPF_MUL: 13789 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 13790 scalar32_min_max_mul(dst_reg, &src_reg); 13791 scalar_min_max_mul(dst_reg, &src_reg); 13792 break; 13793 case BPF_AND: 13794 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 13795 scalar32_min_max_and(dst_reg, &src_reg); 13796 scalar_min_max_and(dst_reg, &src_reg); 13797 break; 13798 case BPF_OR: 13799 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 13800 scalar32_min_max_or(dst_reg, &src_reg); 13801 scalar_min_max_or(dst_reg, &src_reg); 13802 break; 13803 case BPF_XOR: 13804 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off); 13805 scalar32_min_max_xor(dst_reg, &src_reg); 13806 scalar_min_max_xor(dst_reg, &src_reg); 13807 break; 13808 case BPF_LSH: 13809 if (umax_val >= insn_bitness) { 13810 /* Shifts greater than 31 or 63 are undefined. 13811 * This includes shifts by a negative number. 13812 */ 13813 mark_reg_unknown(env, regs, insn->dst_reg); 13814 break; 13815 } 13816 if (alu32) 13817 scalar32_min_max_lsh(dst_reg, &src_reg); 13818 else 13819 scalar_min_max_lsh(dst_reg, &src_reg); 13820 break; 13821 case BPF_RSH: 13822 if (umax_val >= insn_bitness) { 13823 /* Shifts greater than 31 or 63 are undefined. 13824 * This includes shifts by a negative number. 13825 */ 13826 mark_reg_unknown(env, regs, insn->dst_reg); 13827 break; 13828 } 13829 if (alu32) 13830 scalar32_min_max_rsh(dst_reg, &src_reg); 13831 else 13832 scalar_min_max_rsh(dst_reg, &src_reg); 13833 break; 13834 case BPF_ARSH: 13835 if (umax_val >= insn_bitness) { 13836 /* Shifts greater than 31 or 63 are undefined. 13837 * This includes shifts by a negative number. 13838 */ 13839 mark_reg_unknown(env, regs, insn->dst_reg); 13840 break; 13841 } 13842 if (alu32) 13843 scalar32_min_max_arsh(dst_reg, &src_reg); 13844 else 13845 scalar_min_max_arsh(dst_reg, &src_reg); 13846 break; 13847 default: 13848 mark_reg_unknown(env, regs, insn->dst_reg); 13849 break; 13850 } 13851 13852 /* ALU32 ops are zero extended into 64bit register */ 13853 if (alu32) 13854 zext_32_to_64(dst_reg); 13855 reg_bounds_sync(dst_reg); 13856 return 0; 13857 } 13858 13859 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 13860 * and var_off. 13861 */ 13862 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 13863 struct bpf_insn *insn) 13864 { 13865 struct bpf_verifier_state *vstate = env->cur_state; 13866 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 13867 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 13868 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 13869 u8 opcode = BPF_OP(insn->code); 13870 int err; 13871 13872 dst_reg = ®s[insn->dst_reg]; 13873 src_reg = NULL; 13874 13875 if (dst_reg->type == PTR_TO_ARENA) { 13876 struct bpf_insn_aux_data *aux = cur_aux(env); 13877 13878 if (BPF_CLASS(insn->code) == BPF_ALU64) 13879 /* 13880 * 32-bit operations zero upper bits automatically. 13881 * 64-bit operations need to be converted to 32. 13882 */ 13883 aux->needs_zext = true; 13884 13885 /* Any arithmetic operations are allowed on arena pointers */ 13886 return 0; 13887 } 13888 13889 if (dst_reg->type != SCALAR_VALUE) 13890 ptr_reg = dst_reg; 13891 else 13892 /* Make sure ID is cleared otherwise dst_reg min/max could be 13893 * incorrectly propagated into other registers by find_equal_scalars() 13894 */ 13895 dst_reg->id = 0; 13896 if (BPF_SRC(insn->code) == BPF_X) { 13897 src_reg = ®s[insn->src_reg]; 13898 if (src_reg->type != SCALAR_VALUE) { 13899 if (dst_reg->type != SCALAR_VALUE) { 13900 /* Combining two pointers by any ALU op yields 13901 * an arbitrary scalar. Disallow all math except 13902 * pointer subtraction 13903 */ 13904 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 13905 mark_reg_unknown(env, regs, insn->dst_reg); 13906 return 0; 13907 } 13908 verbose(env, "R%d pointer %s pointer prohibited\n", 13909 insn->dst_reg, 13910 bpf_alu_string[opcode >> 4]); 13911 return -EACCES; 13912 } else { 13913 /* scalar += pointer 13914 * This is legal, but we have to reverse our 13915 * src/dest handling in computing the range 13916 */ 13917 err = mark_chain_precision(env, insn->dst_reg); 13918 if (err) 13919 return err; 13920 return adjust_ptr_min_max_vals(env, insn, 13921 src_reg, dst_reg); 13922 } 13923 } else if (ptr_reg) { 13924 /* pointer += scalar */ 13925 err = mark_chain_precision(env, insn->src_reg); 13926 if (err) 13927 return err; 13928 return adjust_ptr_min_max_vals(env, insn, 13929 dst_reg, src_reg); 13930 } else if (dst_reg->precise) { 13931 /* if dst_reg is precise, src_reg should be precise as well */ 13932 err = mark_chain_precision(env, insn->src_reg); 13933 if (err) 13934 return err; 13935 } 13936 } else { 13937 /* Pretend the src is a reg with a known value, since we only 13938 * need to be able to read from this state. 13939 */ 13940 off_reg.type = SCALAR_VALUE; 13941 __mark_reg_known(&off_reg, insn->imm); 13942 src_reg = &off_reg; 13943 if (ptr_reg) /* pointer += K */ 13944 return adjust_ptr_min_max_vals(env, insn, 13945 ptr_reg, src_reg); 13946 } 13947 13948 /* Got here implies adding two SCALAR_VALUEs */ 13949 if (WARN_ON_ONCE(ptr_reg)) { 13950 print_verifier_state(env, state, true); 13951 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 13952 return -EINVAL; 13953 } 13954 if (WARN_ON(!src_reg)) { 13955 print_verifier_state(env, state, true); 13956 verbose(env, "verifier internal error: no src_reg\n"); 13957 return -EINVAL; 13958 } 13959 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 13960 } 13961 13962 /* check validity of 32-bit and 64-bit arithmetic operations */ 13963 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 13964 { 13965 struct bpf_reg_state *regs = cur_regs(env); 13966 u8 opcode = BPF_OP(insn->code); 13967 int err; 13968 13969 if (opcode == BPF_END || opcode == BPF_NEG) { 13970 if (opcode == BPF_NEG) { 13971 if (BPF_SRC(insn->code) != BPF_K || 13972 insn->src_reg != BPF_REG_0 || 13973 insn->off != 0 || insn->imm != 0) { 13974 verbose(env, "BPF_NEG uses reserved fields\n"); 13975 return -EINVAL; 13976 } 13977 } else { 13978 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 13979 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 13980 (BPF_CLASS(insn->code) == BPF_ALU64 && 13981 BPF_SRC(insn->code) != BPF_TO_LE)) { 13982 verbose(env, "BPF_END uses reserved fields\n"); 13983 return -EINVAL; 13984 } 13985 } 13986 13987 /* check src operand */ 13988 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 13989 if (err) 13990 return err; 13991 13992 if (is_pointer_value(env, insn->dst_reg)) { 13993 verbose(env, "R%d pointer arithmetic prohibited\n", 13994 insn->dst_reg); 13995 return -EACCES; 13996 } 13997 13998 /* check dest operand */ 13999 err = check_reg_arg(env, insn->dst_reg, DST_OP); 14000 if (err) 14001 return err; 14002 14003 } else if (opcode == BPF_MOV) { 14004 14005 if (BPF_SRC(insn->code) == BPF_X) { 14006 if (BPF_CLASS(insn->code) == BPF_ALU) { 14007 if ((insn->off != 0 && insn->off != 8 && insn->off != 16) || 14008 insn->imm) { 14009 verbose(env, "BPF_MOV uses reserved fields\n"); 14010 return -EINVAL; 14011 } 14012 } else if (insn->off == BPF_ADDR_SPACE_CAST) { 14013 if (insn->imm != 1 && insn->imm != 1u << 16) { 14014 verbose(env, "addr_space_cast insn can only convert between address space 1 and 0\n"); 14015 return -EINVAL; 14016 } 14017 } else { 14018 if ((insn->off != 0 && insn->off != 8 && insn->off != 16 && 14019 insn->off != 32) || insn->imm) { 14020 verbose(env, "BPF_MOV uses reserved fields\n"); 14021 return -EINVAL; 14022 } 14023 } 14024 14025 /* check src operand */ 14026 err = check_reg_arg(env, insn->src_reg, SRC_OP); 14027 if (err) 14028 return err; 14029 } else { 14030 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 14031 verbose(env, "BPF_MOV uses reserved fields\n"); 14032 return -EINVAL; 14033 } 14034 } 14035 14036 /* check dest operand, mark as required later */ 14037 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 14038 if (err) 14039 return err; 14040 14041 if (BPF_SRC(insn->code) == BPF_X) { 14042 struct bpf_reg_state *src_reg = regs + insn->src_reg; 14043 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 14044 14045 if (BPF_CLASS(insn->code) == BPF_ALU64) { 14046 if (insn->imm) { 14047 /* off == BPF_ADDR_SPACE_CAST */ 14048 mark_reg_unknown(env, regs, insn->dst_reg); 14049 if (insn->imm == 1) /* cast from as(1) to as(0) */ 14050 dst_reg->type = PTR_TO_ARENA; 14051 } else if (insn->off == 0) { 14052 /* case: R1 = R2 14053 * copy register state to dest reg 14054 */ 14055 assign_scalar_id_before_mov(env, src_reg); 14056 copy_register_state(dst_reg, src_reg); 14057 dst_reg->live |= REG_LIVE_WRITTEN; 14058 dst_reg->subreg_def = DEF_NOT_SUBREG; 14059 } else { 14060 /* case: R1 = (s8, s16 s32)R2 */ 14061 if (is_pointer_value(env, insn->src_reg)) { 14062 verbose(env, 14063 "R%d sign-extension part of pointer\n", 14064 insn->src_reg); 14065 return -EACCES; 14066 } else if (src_reg->type == SCALAR_VALUE) { 14067 bool no_sext; 14068 14069 no_sext = src_reg->umax_value < (1ULL << (insn->off - 1)); 14070 if (no_sext) 14071 assign_scalar_id_before_mov(env, src_reg); 14072 copy_register_state(dst_reg, src_reg); 14073 if (!no_sext) 14074 dst_reg->id = 0; 14075 coerce_reg_to_size_sx(dst_reg, insn->off >> 3); 14076 dst_reg->live |= REG_LIVE_WRITTEN; 14077 dst_reg->subreg_def = DEF_NOT_SUBREG; 14078 } else { 14079 mark_reg_unknown(env, regs, insn->dst_reg); 14080 } 14081 } 14082 } else { 14083 /* R1 = (u32) R2 */ 14084 if (is_pointer_value(env, insn->src_reg)) { 14085 verbose(env, 14086 "R%d partial copy of pointer\n", 14087 insn->src_reg); 14088 return -EACCES; 14089 } else if (src_reg->type == SCALAR_VALUE) { 14090 if (insn->off == 0) { 14091 bool is_src_reg_u32 = get_reg_width(src_reg) <= 32; 14092 14093 if (is_src_reg_u32) 14094 assign_scalar_id_before_mov(env, src_reg); 14095 copy_register_state(dst_reg, src_reg); 14096 /* Make sure ID is cleared if src_reg is not in u32 14097 * range otherwise dst_reg min/max could be incorrectly 14098 * propagated into src_reg by find_equal_scalars() 14099 */ 14100 if (!is_src_reg_u32) 14101 dst_reg->id = 0; 14102 dst_reg->live |= REG_LIVE_WRITTEN; 14103 dst_reg->subreg_def = env->insn_idx + 1; 14104 } else { 14105 /* case: W1 = (s8, s16)W2 */ 14106 bool no_sext = src_reg->umax_value < (1ULL << (insn->off - 1)); 14107 14108 if (no_sext) 14109 assign_scalar_id_before_mov(env, src_reg); 14110 copy_register_state(dst_reg, src_reg); 14111 if (!no_sext) 14112 dst_reg->id = 0; 14113 dst_reg->live |= REG_LIVE_WRITTEN; 14114 dst_reg->subreg_def = env->insn_idx + 1; 14115 coerce_subreg_to_size_sx(dst_reg, insn->off >> 3); 14116 } 14117 } else { 14118 mark_reg_unknown(env, regs, 14119 insn->dst_reg); 14120 } 14121 zext_32_to_64(dst_reg); 14122 reg_bounds_sync(dst_reg); 14123 } 14124 } else { 14125 /* case: R = imm 14126 * remember the value we stored into this reg 14127 */ 14128 /* clear any state __mark_reg_known doesn't set */ 14129 mark_reg_unknown(env, regs, insn->dst_reg); 14130 regs[insn->dst_reg].type = SCALAR_VALUE; 14131 if (BPF_CLASS(insn->code) == BPF_ALU64) { 14132 __mark_reg_known(regs + insn->dst_reg, 14133 insn->imm); 14134 } else { 14135 __mark_reg_known(regs + insn->dst_reg, 14136 (u32)insn->imm); 14137 } 14138 } 14139 14140 } else if (opcode > BPF_END) { 14141 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 14142 return -EINVAL; 14143 14144 } else { /* all other ALU ops: and, sub, xor, add, ... */ 14145 14146 if (BPF_SRC(insn->code) == BPF_X) { 14147 if (insn->imm != 0 || insn->off > 1 || 14148 (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) { 14149 verbose(env, "BPF_ALU uses reserved fields\n"); 14150 return -EINVAL; 14151 } 14152 /* check src1 operand */ 14153 err = check_reg_arg(env, insn->src_reg, SRC_OP); 14154 if (err) 14155 return err; 14156 } else { 14157 if (insn->src_reg != BPF_REG_0 || insn->off > 1 || 14158 (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) { 14159 verbose(env, "BPF_ALU uses reserved fields\n"); 14160 return -EINVAL; 14161 } 14162 } 14163 14164 /* check src2 operand */ 14165 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 14166 if (err) 14167 return err; 14168 14169 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 14170 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 14171 verbose(env, "div by zero\n"); 14172 return -EINVAL; 14173 } 14174 14175 if ((opcode == BPF_LSH || opcode == BPF_RSH || 14176 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 14177 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 14178 14179 if (insn->imm < 0 || insn->imm >= size) { 14180 verbose(env, "invalid shift %d\n", insn->imm); 14181 return -EINVAL; 14182 } 14183 } 14184 14185 /* check dest operand */ 14186 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 14187 err = err ?: adjust_reg_min_max_vals(env, insn); 14188 if (err) 14189 return err; 14190 } 14191 14192 return reg_bounds_sanity_check(env, ®s[insn->dst_reg], "alu"); 14193 } 14194 14195 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 14196 struct bpf_reg_state *dst_reg, 14197 enum bpf_reg_type type, 14198 bool range_right_open) 14199 { 14200 struct bpf_func_state *state; 14201 struct bpf_reg_state *reg; 14202 int new_range; 14203 14204 if (dst_reg->off < 0 || 14205 (dst_reg->off == 0 && range_right_open)) 14206 /* This doesn't give us any range */ 14207 return; 14208 14209 if (dst_reg->umax_value > MAX_PACKET_OFF || 14210 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 14211 /* Risk of overflow. For instance, ptr + (1<<63) may be less 14212 * than pkt_end, but that's because it's also less than pkt. 14213 */ 14214 return; 14215 14216 new_range = dst_reg->off; 14217 if (range_right_open) 14218 new_range++; 14219 14220 /* Examples for register markings: 14221 * 14222 * pkt_data in dst register: 14223 * 14224 * r2 = r3; 14225 * r2 += 8; 14226 * if (r2 > pkt_end) goto <handle exception> 14227 * <access okay> 14228 * 14229 * r2 = r3; 14230 * r2 += 8; 14231 * if (r2 < pkt_end) goto <access okay> 14232 * <handle exception> 14233 * 14234 * Where: 14235 * r2 == dst_reg, pkt_end == src_reg 14236 * r2=pkt(id=n,off=8,r=0) 14237 * r3=pkt(id=n,off=0,r=0) 14238 * 14239 * pkt_data in src register: 14240 * 14241 * r2 = r3; 14242 * r2 += 8; 14243 * if (pkt_end >= r2) goto <access okay> 14244 * <handle exception> 14245 * 14246 * r2 = r3; 14247 * r2 += 8; 14248 * if (pkt_end <= r2) goto <handle exception> 14249 * <access okay> 14250 * 14251 * Where: 14252 * pkt_end == dst_reg, r2 == src_reg 14253 * r2=pkt(id=n,off=8,r=0) 14254 * r3=pkt(id=n,off=0,r=0) 14255 * 14256 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 14257 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 14258 * and [r3, r3 + 8-1) respectively is safe to access depending on 14259 * the check. 14260 */ 14261 14262 /* If our ids match, then we must have the same max_value. And we 14263 * don't care about the other reg's fixed offset, since if it's too big 14264 * the range won't allow anything. 14265 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 14266 */ 14267 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 14268 if (reg->type == type && reg->id == dst_reg->id) 14269 /* keep the maximum range already checked */ 14270 reg->range = max(reg->range, new_range); 14271 })); 14272 } 14273 14274 /* 14275 * <reg1> <op> <reg2>, currently assuming reg2 is a constant 14276 */ 14277 static int is_scalar_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2, 14278 u8 opcode, bool is_jmp32) 14279 { 14280 struct tnum t1 = is_jmp32 ? tnum_subreg(reg1->var_off) : reg1->var_off; 14281 struct tnum t2 = is_jmp32 ? tnum_subreg(reg2->var_off) : reg2->var_off; 14282 u64 umin1 = is_jmp32 ? (u64)reg1->u32_min_value : reg1->umin_value; 14283 u64 umax1 = is_jmp32 ? (u64)reg1->u32_max_value : reg1->umax_value; 14284 s64 smin1 = is_jmp32 ? (s64)reg1->s32_min_value : reg1->smin_value; 14285 s64 smax1 = is_jmp32 ? (s64)reg1->s32_max_value : reg1->smax_value; 14286 u64 umin2 = is_jmp32 ? (u64)reg2->u32_min_value : reg2->umin_value; 14287 u64 umax2 = is_jmp32 ? (u64)reg2->u32_max_value : reg2->umax_value; 14288 s64 smin2 = is_jmp32 ? (s64)reg2->s32_min_value : reg2->smin_value; 14289 s64 smax2 = is_jmp32 ? (s64)reg2->s32_max_value : reg2->smax_value; 14290 14291 switch (opcode) { 14292 case BPF_JEQ: 14293 /* constants, umin/umax and smin/smax checks would be 14294 * redundant in this case because they all should match 14295 */ 14296 if (tnum_is_const(t1) && tnum_is_const(t2)) 14297 return t1.value == t2.value; 14298 /* non-overlapping ranges */ 14299 if (umin1 > umax2 || umax1 < umin2) 14300 return 0; 14301 if (smin1 > smax2 || smax1 < smin2) 14302 return 0; 14303 if (!is_jmp32) { 14304 /* if 64-bit ranges are inconclusive, see if we can 14305 * utilize 32-bit subrange knowledge to eliminate 14306 * branches that can't be taken a priori 14307 */ 14308 if (reg1->u32_min_value > reg2->u32_max_value || 14309 reg1->u32_max_value < reg2->u32_min_value) 14310 return 0; 14311 if (reg1->s32_min_value > reg2->s32_max_value || 14312 reg1->s32_max_value < reg2->s32_min_value) 14313 return 0; 14314 } 14315 break; 14316 case BPF_JNE: 14317 /* constants, umin/umax and smin/smax checks would be 14318 * redundant in this case because they all should match 14319 */ 14320 if (tnum_is_const(t1) && tnum_is_const(t2)) 14321 return t1.value != t2.value; 14322 /* non-overlapping ranges */ 14323 if (umin1 > umax2 || umax1 < umin2) 14324 return 1; 14325 if (smin1 > smax2 || smax1 < smin2) 14326 return 1; 14327 if (!is_jmp32) { 14328 /* if 64-bit ranges are inconclusive, see if we can 14329 * utilize 32-bit subrange knowledge to eliminate 14330 * branches that can't be taken a priori 14331 */ 14332 if (reg1->u32_min_value > reg2->u32_max_value || 14333 reg1->u32_max_value < reg2->u32_min_value) 14334 return 1; 14335 if (reg1->s32_min_value > reg2->s32_max_value || 14336 reg1->s32_max_value < reg2->s32_min_value) 14337 return 1; 14338 } 14339 break; 14340 case BPF_JSET: 14341 if (!is_reg_const(reg2, is_jmp32)) { 14342 swap(reg1, reg2); 14343 swap(t1, t2); 14344 } 14345 if (!is_reg_const(reg2, is_jmp32)) 14346 return -1; 14347 if ((~t1.mask & t1.value) & t2.value) 14348 return 1; 14349 if (!((t1.mask | t1.value) & t2.value)) 14350 return 0; 14351 break; 14352 case BPF_JGT: 14353 if (umin1 > umax2) 14354 return 1; 14355 else if (umax1 <= umin2) 14356 return 0; 14357 break; 14358 case BPF_JSGT: 14359 if (smin1 > smax2) 14360 return 1; 14361 else if (smax1 <= smin2) 14362 return 0; 14363 break; 14364 case BPF_JLT: 14365 if (umax1 < umin2) 14366 return 1; 14367 else if (umin1 >= umax2) 14368 return 0; 14369 break; 14370 case BPF_JSLT: 14371 if (smax1 < smin2) 14372 return 1; 14373 else if (smin1 >= smax2) 14374 return 0; 14375 break; 14376 case BPF_JGE: 14377 if (umin1 >= umax2) 14378 return 1; 14379 else if (umax1 < umin2) 14380 return 0; 14381 break; 14382 case BPF_JSGE: 14383 if (smin1 >= smax2) 14384 return 1; 14385 else if (smax1 < smin2) 14386 return 0; 14387 break; 14388 case BPF_JLE: 14389 if (umax1 <= umin2) 14390 return 1; 14391 else if (umin1 > umax2) 14392 return 0; 14393 break; 14394 case BPF_JSLE: 14395 if (smax1 <= smin2) 14396 return 1; 14397 else if (smin1 > smax2) 14398 return 0; 14399 break; 14400 } 14401 14402 return -1; 14403 } 14404 14405 static int flip_opcode(u32 opcode) 14406 { 14407 /* How can we transform "a <op> b" into "b <op> a"? */ 14408 static const u8 opcode_flip[16] = { 14409 /* these stay the same */ 14410 [BPF_JEQ >> 4] = BPF_JEQ, 14411 [BPF_JNE >> 4] = BPF_JNE, 14412 [BPF_JSET >> 4] = BPF_JSET, 14413 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 14414 [BPF_JGE >> 4] = BPF_JLE, 14415 [BPF_JGT >> 4] = BPF_JLT, 14416 [BPF_JLE >> 4] = BPF_JGE, 14417 [BPF_JLT >> 4] = BPF_JGT, 14418 [BPF_JSGE >> 4] = BPF_JSLE, 14419 [BPF_JSGT >> 4] = BPF_JSLT, 14420 [BPF_JSLE >> 4] = BPF_JSGE, 14421 [BPF_JSLT >> 4] = BPF_JSGT 14422 }; 14423 return opcode_flip[opcode >> 4]; 14424 } 14425 14426 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg, 14427 struct bpf_reg_state *src_reg, 14428 u8 opcode) 14429 { 14430 struct bpf_reg_state *pkt; 14431 14432 if (src_reg->type == PTR_TO_PACKET_END) { 14433 pkt = dst_reg; 14434 } else if (dst_reg->type == PTR_TO_PACKET_END) { 14435 pkt = src_reg; 14436 opcode = flip_opcode(opcode); 14437 } else { 14438 return -1; 14439 } 14440 14441 if (pkt->range >= 0) 14442 return -1; 14443 14444 switch (opcode) { 14445 case BPF_JLE: 14446 /* pkt <= pkt_end */ 14447 fallthrough; 14448 case BPF_JGT: 14449 /* pkt > pkt_end */ 14450 if (pkt->range == BEYOND_PKT_END) 14451 /* pkt has at last one extra byte beyond pkt_end */ 14452 return opcode == BPF_JGT; 14453 break; 14454 case BPF_JLT: 14455 /* pkt < pkt_end */ 14456 fallthrough; 14457 case BPF_JGE: 14458 /* pkt >= pkt_end */ 14459 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END) 14460 return opcode == BPF_JGE; 14461 break; 14462 } 14463 return -1; 14464 } 14465 14466 /* compute branch direction of the expression "if (<reg1> opcode <reg2>) goto target;" 14467 * and return: 14468 * 1 - branch will be taken and "goto target" will be executed 14469 * 0 - branch will not be taken and fall-through to next insn 14470 * -1 - unknown. Example: "if (reg1 < 5)" is unknown when register value 14471 * range [0,10] 14472 */ 14473 static int is_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2, 14474 u8 opcode, bool is_jmp32) 14475 { 14476 if (reg_is_pkt_pointer_any(reg1) && reg_is_pkt_pointer_any(reg2) && !is_jmp32) 14477 return is_pkt_ptr_branch_taken(reg1, reg2, opcode); 14478 14479 if (__is_pointer_value(false, reg1) || __is_pointer_value(false, reg2)) { 14480 u64 val; 14481 14482 /* arrange that reg2 is a scalar, and reg1 is a pointer */ 14483 if (!is_reg_const(reg2, is_jmp32)) { 14484 opcode = flip_opcode(opcode); 14485 swap(reg1, reg2); 14486 } 14487 /* and ensure that reg2 is a constant */ 14488 if (!is_reg_const(reg2, is_jmp32)) 14489 return -1; 14490 14491 if (!reg_not_null(reg1)) 14492 return -1; 14493 14494 /* If pointer is valid tests against zero will fail so we can 14495 * use this to direct branch taken. 14496 */ 14497 val = reg_const_value(reg2, is_jmp32); 14498 if (val != 0) 14499 return -1; 14500 14501 switch (opcode) { 14502 case BPF_JEQ: 14503 return 0; 14504 case BPF_JNE: 14505 return 1; 14506 default: 14507 return -1; 14508 } 14509 } 14510 14511 /* now deal with two scalars, but not necessarily constants */ 14512 return is_scalar_branch_taken(reg1, reg2, opcode, is_jmp32); 14513 } 14514 14515 /* Opcode that corresponds to a *false* branch condition. 14516 * E.g., if r1 < r2, then reverse (false) condition is r1 >= r2 14517 */ 14518 static u8 rev_opcode(u8 opcode) 14519 { 14520 switch (opcode) { 14521 case BPF_JEQ: return BPF_JNE; 14522 case BPF_JNE: return BPF_JEQ; 14523 /* JSET doesn't have it's reverse opcode in BPF, so add 14524 * BPF_X flag to denote the reverse of that operation 14525 */ 14526 case BPF_JSET: return BPF_JSET | BPF_X; 14527 case BPF_JSET | BPF_X: return BPF_JSET; 14528 case BPF_JGE: return BPF_JLT; 14529 case BPF_JGT: return BPF_JLE; 14530 case BPF_JLE: return BPF_JGT; 14531 case BPF_JLT: return BPF_JGE; 14532 case BPF_JSGE: return BPF_JSLT; 14533 case BPF_JSGT: return BPF_JSLE; 14534 case BPF_JSLE: return BPF_JSGT; 14535 case BPF_JSLT: return BPF_JSGE; 14536 default: return 0; 14537 } 14538 } 14539 14540 /* Refine range knowledge for <reg1> <op> <reg>2 conditional operation. */ 14541 static void regs_refine_cond_op(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2, 14542 u8 opcode, bool is_jmp32) 14543 { 14544 struct tnum t; 14545 u64 val; 14546 14547 again: 14548 switch (opcode) { 14549 case BPF_JEQ: 14550 if (is_jmp32) { 14551 reg1->u32_min_value = max(reg1->u32_min_value, reg2->u32_min_value); 14552 reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value); 14553 reg1->s32_min_value = max(reg1->s32_min_value, reg2->s32_min_value); 14554 reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value); 14555 reg2->u32_min_value = reg1->u32_min_value; 14556 reg2->u32_max_value = reg1->u32_max_value; 14557 reg2->s32_min_value = reg1->s32_min_value; 14558 reg2->s32_max_value = reg1->s32_max_value; 14559 14560 t = tnum_intersect(tnum_subreg(reg1->var_off), tnum_subreg(reg2->var_off)); 14561 reg1->var_off = tnum_with_subreg(reg1->var_off, t); 14562 reg2->var_off = tnum_with_subreg(reg2->var_off, t); 14563 } else { 14564 reg1->umin_value = max(reg1->umin_value, reg2->umin_value); 14565 reg1->umax_value = min(reg1->umax_value, reg2->umax_value); 14566 reg1->smin_value = max(reg1->smin_value, reg2->smin_value); 14567 reg1->smax_value = min(reg1->smax_value, reg2->smax_value); 14568 reg2->umin_value = reg1->umin_value; 14569 reg2->umax_value = reg1->umax_value; 14570 reg2->smin_value = reg1->smin_value; 14571 reg2->smax_value = reg1->smax_value; 14572 14573 reg1->var_off = tnum_intersect(reg1->var_off, reg2->var_off); 14574 reg2->var_off = reg1->var_off; 14575 } 14576 break; 14577 case BPF_JNE: 14578 if (!is_reg_const(reg2, is_jmp32)) 14579 swap(reg1, reg2); 14580 if (!is_reg_const(reg2, is_jmp32)) 14581 break; 14582 14583 /* try to recompute the bound of reg1 if reg2 is a const and 14584 * is exactly the edge of reg1. 14585 */ 14586 val = reg_const_value(reg2, is_jmp32); 14587 if (is_jmp32) { 14588 /* u32_min_value is not equal to 0xffffffff at this point, 14589 * because otherwise u32_max_value is 0xffffffff as well, 14590 * in such a case both reg1 and reg2 would be constants, 14591 * jump would be predicted and reg_set_min_max() won't 14592 * be called. 14593 * 14594 * Same reasoning works for all {u,s}{min,max}{32,64} cases 14595 * below. 14596 */ 14597 if (reg1->u32_min_value == (u32)val) 14598 reg1->u32_min_value++; 14599 if (reg1->u32_max_value == (u32)val) 14600 reg1->u32_max_value--; 14601 if (reg1->s32_min_value == (s32)val) 14602 reg1->s32_min_value++; 14603 if (reg1->s32_max_value == (s32)val) 14604 reg1->s32_max_value--; 14605 } else { 14606 if (reg1->umin_value == (u64)val) 14607 reg1->umin_value++; 14608 if (reg1->umax_value == (u64)val) 14609 reg1->umax_value--; 14610 if (reg1->smin_value == (s64)val) 14611 reg1->smin_value++; 14612 if (reg1->smax_value == (s64)val) 14613 reg1->smax_value--; 14614 } 14615 break; 14616 case BPF_JSET: 14617 if (!is_reg_const(reg2, is_jmp32)) 14618 swap(reg1, reg2); 14619 if (!is_reg_const(reg2, is_jmp32)) 14620 break; 14621 val = reg_const_value(reg2, is_jmp32); 14622 /* BPF_JSET (i.e., TRUE branch, *not* BPF_JSET | BPF_X) 14623 * requires single bit to learn something useful. E.g., if we 14624 * know that `r1 & 0x3` is true, then which bits (0, 1, or both) 14625 * are actually set? We can learn something definite only if 14626 * it's a single-bit value to begin with. 14627 * 14628 * BPF_JSET | BPF_X (i.e., negation of BPF_JSET) doesn't have 14629 * this restriction. I.e., !(r1 & 0x3) means neither bit 0 nor 14630 * bit 1 is set, which we can readily use in adjustments. 14631 */ 14632 if (!is_power_of_2(val)) 14633 break; 14634 if (is_jmp32) { 14635 t = tnum_or(tnum_subreg(reg1->var_off), tnum_const(val)); 14636 reg1->var_off = tnum_with_subreg(reg1->var_off, t); 14637 } else { 14638 reg1->var_off = tnum_or(reg1->var_off, tnum_const(val)); 14639 } 14640 break; 14641 case BPF_JSET | BPF_X: /* reverse of BPF_JSET, see rev_opcode() */ 14642 if (!is_reg_const(reg2, is_jmp32)) 14643 swap(reg1, reg2); 14644 if (!is_reg_const(reg2, is_jmp32)) 14645 break; 14646 val = reg_const_value(reg2, is_jmp32); 14647 if (is_jmp32) { 14648 t = tnum_and(tnum_subreg(reg1->var_off), tnum_const(~val)); 14649 reg1->var_off = tnum_with_subreg(reg1->var_off, t); 14650 } else { 14651 reg1->var_off = tnum_and(reg1->var_off, tnum_const(~val)); 14652 } 14653 break; 14654 case BPF_JLE: 14655 if (is_jmp32) { 14656 reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value); 14657 reg2->u32_min_value = max(reg1->u32_min_value, reg2->u32_min_value); 14658 } else { 14659 reg1->umax_value = min(reg1->umax_value, reg2->umax_value); 14660 reg2->umin_value = max(reg1->umin_value, reg2->umin_value); 14661 } 14662 break; 14663 case BPF_JLT: 14664 if (is_jmp32) { 14665 reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value - 1); 14666 reg2->u32_min_value = max(reg1->u32_min_value + 1, reg2->u32_min_value); 14667 } else { 14668 reg1->umax_value = min(reg1->umax_value, reg2->umax_value - 1); 14669 reg2->umin_value = max(reg1->umin_value + 1, reg2->umin_value); 14670 } 14671 break; 14672 case BPF_JSLE: 14673 if (is_jmp32) { 14674 reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value); 14675 reg2->s32_min_value = max(reg1->s32_min_value, reg2->s32_min_value); 14676 } else { 14677 reg1->smax_value = min(reg1->smax_value, reg2->smax_value); 14678 reg2->smin_value = max(reg1->smin_value, reg2->smin_value); 14679 } 14680 break; 14681 case BPF_JSLT: 14682 if (is_jmp32) { 14683 reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value - 1); 14684 reg2->s32_min_value = max(reg1->s32_min_value + 1, reg2->s32_min_value); 14685 } else { 14686 reg1->smax_value = min(reg1->smax_value, reg2->smax_value - 1); 14687 reg2->smin_value = max(reg1->smin_value + 1, reg2->smin_value); 14688 } 14689 break; 14690 case BPF_JGE: 14691 case BPF_JGT: 14692 case BPF_JSGE: 14693 case BPF_JSGT: 14694 /* just reuse LE/LT logic above */ 14695 opcode = flip_opcode(opcode); 14696 swap(reg1, reg2); 14697 goto again; 14698 default: 14699 return; 14700 } 14701 } 14702 14703 /* Adjusts the register min/max values in the case that the dst_reg and 14704 * src_reg are both SCALAR_VALUE registers (or we are simply doing a BPF_K 14705 * check, in which case we havea fake SCALAR_VALUE representing insn->imm). 14706 * Technically we can do similar adjustments for pointers to the same object, 14707 * but we don't support that right now. 14708 */ 14709 static int reg_set_min_max(struct bpf_verifier_env *env, 14710 struct bpf_reg_state *true_reg1, 14711 struct bpf_reg_state *true_reg2, 14712 struct bpf_reg_state *false_reg1, 14713 struct bpf_reg_state *false_reg2, 14714 u8 opcode, bool is_jmp32) 14715 { 14716 int err; 14717 14718 /* If either register is a pointer, we can't learn anything about its 14719 * variable offset from the compare (unless they were a pointer into 14720 * the same object, but we don't bother with that). 14721 */ 14722 if (false_reg1->type != SCALAR_VALUE || false_reg2->type != SCALAR_VALUE) 14723 return 0; 14724 14725 /* fallthrough (FALSE) branch */ 14726 regs_refine_cond_op(false_reg1, false_reg2, rev_opcode(opcode), is_jmp32); 14727 reg_bounds_sync(false_reg1); 14728 reg_bounds_sync(false_reg2); 14729 14730 /* jump (TRUE) branch */ 14731 regs_refine_cond_op(true_reg1, true_reg2, opcode, is_jmp32); 14732 reg_bounds_sync(true_reg1); 14733 reg_bounds_sync(true_reg2); 14734 14735 err = reg_bounds_sanity_check(env, true_reg1, "true_reg1"); 14736 err = err ?: reg_bounds_sanity_check(env, true_reg2, "true_reg2"); 14737 err = err ?: reg_bounds_sanity_check(env, false_reg1, "false_reg1"); 14738 err = err ?: reg_bounds_sanity_check(env, false_reg2, "false_reg2"); 14739 return err; 14740 } 14741 14742 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 14743 struct bpf_reg_state *reg, u32 id, 14744 bool is_null) 14745 { 14746 if (type_may_be_null(reg->type) && reg->id == id && 14747 (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) { 14748 /* Old offset (both fixed and variable parts) should have been 14749 * known-zero, because we don't allow pointer arithmetic on 14750 * pointers that might be NULL. If we see this happening, don't 14751 * convert the register. 14752 * 14753 * But in some cases, some helpers that return local kptrs 14754 * advance offset for the returned pointer. In those cases, it 14755 * is fine to expect to see reg->off. 14756 */ 14757 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0))) 14758 return; 14759 if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) && 14760 WARN_ON_ONCE(reg->off)) 14761 return; 14762 14763 if (is_null) { 14764 reg->type = SCALAR_VALUE; 14765 /* We don't need id and ref_obj_id from this point 14766 * onwards anymore, thus we should better reset it, 14767 * so that state pruning has chances to take effect. 14768 */ 14769 reg->id = 0; 14770 reg->ref_obj_id = 0; 14771 14772 return; 14773 } 14774 14775 mark_ptr_not_null_reg(reg); 14776 14777 if (!reg_may_point_to_spin_lock(reg)) { 14778 /* For not-NULL ptr, reg->ref_obj_id will be reset 14779 * in release_reference(). 14780 * 14781 * reg->id is still used by spin_lock ptr. Other 14782 * than spin_lock ptr type, reg->id can be reset. 14783 */ 14784 reg->id = 0; 14785 } 14786 } 14787 } 14788 14789 /* The logic is similar to find_good_pkt_pointers(), both could eventually 14790 * be folded together at some point. 14791 */ 14792 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 14793 bool is_null) 14794 { 14795 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 14796 struct bpf_reg_state *regs = state->regs, *reg; 14797 u32 ref_obj_id = regs[regno].ref_obj_id; 14798 u32 id = regs[regno].id; 14799 14800 if (ref_obj_id && ref_obj_id == id && is_null) 14801 /* regs[regno] is in the " == NULL" branch. 14802 * No one could have freed the reference state before 14803 * doing the NULL check. 14804 */ 14805 WARN_ON_ONCE(release_reference_state(state, id)); 14806 14807 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 14808 mark_ptr_or_null_reg(state, reg, id, is_null); 14809 })); 14810 } 14811 14812 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 14813 struct bpf_reg_state *dst_reg, 14814 struct bpf_reg_state *src_reg, 14815 struct bpf_verifier_state *this_branch, 14816 struct bpf_verifier_state *other_branch) 14817 { 14818 if (BPF_SRC(insn->code) != BPF_X) 14819 return false; 14820 14821 /* Pointers are always 64-bit. */ 14822 if (BPF_CLASS(insn->code) == BPF_JMP32) 14823 return false; 14824 14825 switch (BPF_OP(insn->code)) { 14826 case BPF_JGT: 14827 if ((dst_reg->type == PTR_TO_PACKET && 14828 src_reg->type == PTR_TO_PACKET_END) || 14829 (dst_reg->type == PTR_TO_PACKET_META && 14830 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 14831 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 14832 find_good_pkt_pointers(this_branch, dst_reg, 14833 dst_reg->type, false); 14834 mark_pkt_end(other_branch, insn->dst_reg, true); 14835 } else if ((dst_reg->type == PTR_TO_PACKET_END && 14836 src_reg->type == PTR_TO_PACKET) || 14837 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 14838 src_reg->type == PTR_TO_PACKET_META)) { 14839 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 14840 find_good_pkt_pointers(other_branch, src_reg, 14841 src_reg->type, true); 14842 mark_pkt_end(this_branch, insn->src_reg, false); 14843 } else { 14844 return false; 14845 } 14846 break; 14847 case BPF_JLT: 14848 if ((dst_reg->type == PTR_TO_PACKET && 14849 src_reg->type == PTR_TO_PACKET_END) || 14850 (dst_reg->type == PTR_TO_PACKET_META && 14851 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 14852 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 14853 find_good_pkt_pointers(other_branch, dst_reg, 14854 dst_reg->type, true); 14855 mark_pkt_end(this_branch, insn->dst_reg, false); 14856 } else if ((dst_reg->type == PTR_TO_PACKET_END && 14857 src_reg->type == PTR_TO_PACKET) || 14858 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 14859 src_reg->type == PTR_TO_PACKET_META)) { 14860 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 14861 find_good_pkt_pointers(this_branch, src_reg, 14862 src_reg->type, false); 14863 mark_pkt_end(other_branch, insn->src_reg, true); 14864 } else { 14865 return false; 14866 } 14867 break; 14868 case BPF_JGE: 14869 if ((dst_reg->type == PTR_TO_PACKET && 14870 src_reg->type == PTR_TO_PACKET_END) || 14871 (dst_reg->type == PTR_TO_PACKET_META && 14872 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 14873 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 14874 find_good_pkt_pointers(this_branch, dst_reg, 14875 dst_reg->type, true); 14876 mark_pkt_end(other_branch, insn->dst_reg, false); 14877 } else if ((dst_reg->type == PTR_TO_PACKET_END && 14878 src_reg->type == PTR_TO_PACKET) || 14879 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 14880 src_reg->type == PTR_TO_PACKET_META)) { 14881 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 14882 find_good_pkt_pointers(other_branch, src_reg, 14883 src_reg->type, false); 14884 mark_pkt_end(this_branch, insn->src_reg, true); 14885 } else { 14886 return false; 14887 } 14888 break; 14889 case BPF_JLE: 14890 if ((dst_reg->type == PTR_TO_PACKET && 14891 src_reg->type == PTR_TO_PACKET_END) || 14892 (dst_reg->type == PTR_TO_PACKET_META && 14893 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 14894 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 14895 find_good_pkt_pointers(other_branch, dst_reg, 14896 dst_reg->type, false); 14897 mark_pkt_end(this_branch, insn->dst_reg, true); 14898 } else if ((dst_reg->type == PTR_TO_PACKET_END && 14899 src_reg->type == PTR_TO_PACKET) || 14900 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 14901 src_reg->type == PTR_TO_PACKET_META)) { 14902 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 14903 find_good_pkt_pointers(this_branch, src_reg, 14904 src_reg->type, true); 14905 mark_pkt_end(other_branch, insn->src_reg, false); 14906 } else { 14907 return false; 14908 } 14909 break; 14910 default: 14911 return false; 14912 } 14913 14914 return true; 14915 } 14916 14917 static void find_equal_scalars(struct bpf_verifier_state *vstate, 14918 struct bpf_reg_state *known_reg) 14919 { 14920 struct bpf_func_state *state; 14921 struct bpf_reg_state *reg; 14922 14923 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 14924 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 14925 copy_register_state(reg, known_reg); 14926 })); 14927 } 14928 14929 static int check_cond_jmp_op(struct bpf_verifier_env *env, 14930 struct bpf_insn *insn, int *insn_idx) 14931 { 14932 struct bpf_verifier_state *this_branch = env->cur_state; 14933 struct bpf_verifier_state *other_branch; 14934 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 14935 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 14936 struct bpf_reg_state *eq_branch_regs; 14937 struct bpf_reg_state fake_reg = {}; 14938 u8 opcode = BPF_OP(insn->code); 14939 bool is_jmp32; 14940 int pred = -1; 14941 int err; 14942 14943 /* Only conditional jumps are expected to reach here. */ 14944 if (opcode == BPF_JA || opcode > BPF_JCOND) { 14945 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 14946 return -EINVAL; 14947 } 14948 14949 if (opcode == BPF_JCOND) { 14950 struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st; 14951 int idx = *insn_idx; 14952 14953 if (insn->code != (BPF_JMP | BPF_JCOND) || 14954 insn->src_reg != BPF_MAY_GOTO || 14955 insn->dst_reg || insn->imm || insn->off == 0) { 14956 verbose(env, "invalid may_goto off %d imm %d\n", 14957 insn->off, insn->imm); 14958 return -EINVAL; 14959 } 14960 prev_st = find_prev_entry(env, cur_st->parent, idx); 14961 14962 /* branch out 'fallthrough' insn as a new state to explore */ 14963 queued_st = push_stack(env, idx + 1, idx, false); 14964 if (!queued_st) 14965 return -ENOMEM; 14966 14967 queued_st->may_goto_depth++; 14968 if (prev_st) 14969 widen_imprecise_scalars(env, prev_st, queued_st); 14970 *insn_idx += insn->off; 14971 return 0; 14972 } 14973 14974 /* check src2 operand */ 14975 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 14976 if (err) 14977 return err; 14978 14979 dst_reg = ®s[insn->dst_reg]; 14980 if (BPF_SRC(insn->code) == BPF_X) { 14981 if (insn->imm != 0) { 14982 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 14983 return -EINVAL; 14984 } 14985 14986 /* check src1 operand */ 14987 err = check_reg_arg(env, insn->src_reg, SRC_OP); 14988 if (err) 14989 return err; 14990 14991 src_reg = ®s[insn->src_reg]; 14992 if (!(reg_is_pkt_pointer_any(dst_reg) && reg_is_pkt_pointer_any(src_reg)) && 14993 is_pointer_value(env, insn->src_reg)) { 14994 verbose(env, "R%d pointer comparison prohibited\n", 14995 insn->src_reg); 14996 return -EACCES; 14997 } 14998 } else { 14999 if (insn->src_reg != BPF_REG_0) { 15000 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 15001 return -EINVAL; 15002 } 15003 src_reg = &fake_reg; 15004 src_reg->type = SCALAR_VALUE; 15005 __mark_reg_known(src_reg, insn->imm); 15006 } 15007 15008 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 15009 pred = is_branch_taken(dst_reg, src_reg, opcode, is_jmp32); 15010 if (pred >= 0) { 15011 /* If we get here with a dst_reg pointer type it is because 15012 * above is_branch_taken() special cased the 0 comparison. 15013 */ 15014 if (!__is_pointer_value(false, dst_reg)) 15015 err = mark_chain_precision(env, insn->dst_reg); 15016 if (BPF_SRC(insn->code) == BPF_X && !err && 15017 !__is_pointer_value(false, src_reg)) 15018 err = mark_chain_precision(env, insn->src_reg); 15019 if (err) 15020 return err; 15021 } 15022 15023 if (pred == 1) { 15024 /* Only follow the goto, ignore fall-through. If needed, push 15025 * the fall-through branch for simulation under speculative 15026 * execution. 15027 */ 15028 if (!env->bypass_spec_v1 && 15029 !sanitize_speculative_path(env, insn, *insn_idx + 1, 15030 *insn_idx)) 15031 return -EFAULT; 15032 if (env->log.level & BPF_LOG_LEVEL) 15033 print_insn_state(env, this_branch->frame[this_branch->curframe]); 15034 *insn_idx += insn->off; 15035 return 0; 15036 } else if (pred == 0) { 15037 /* Only follow the fall-through branch, since that's where the 15038 * program will go. If needed, push the goto branch for 15039 * simulation under speculative execution. 15040 */ 15041 if (!env->bypass_spec_v1 && 15042 !sanitize_speculative_path(env, insn, 15043 *insn_idx + insn->off + 1, 15044 *insn_idx)) 15045 return -EFAULT; 15046 if (env->log.level & BPF_LOG_LEVEL) 15047 print_insn_state(env, this_branch->frame[this_branch->curframe]); 15048 return 0; 15049 } 15050 15051 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 15052 false); 15053 if (!other_branch) 15054 return -EFAULT; 15055 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 15056 15057 if (BPF_SRC(insn->code) == BPF_X) { 15058 err = reg_set_min_max(env, 15059 &other_branch_regs[insn->dst_reg], 15060 &other_branch_regs[insn->src_reg], 15061 dst_reg, src_reg, opcode, is_jmp32); 15062 } else /* BPF_SRC(insn->code) == BPF_K */ { 15063 err = reg_set_min_max(env, 15064 &other_branch_regs[insn->dst_reg], 15065 src_reg /* fake one */, 15066 dst_reg, src_reg /* same fake one */, 15067 opcode, is_jmp32); 15068 } 15069 if (err) 15070 return err; 15071 15072 if (BPF_SRC(insn->code) == BPF_X && 15073 src_reg->type == SCALAR_VALUE && src_reg->id && 15074 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) { 15075 find_equal_scalars(this_branch, src_reg); 15076 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]); 15077 } 15078 if (dst_reg->type == SCALAR_VALUE && dst_reg->id && 15079 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) { 15080 find_equal_scalars(this_branch, dst_reg); 15081 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]); 15082 } 15083 15084 /* if one pointer register is compared to another pointer 15085 * register check if PTR_MAYBE_NULL could be lifted. 15086 * E.g. register A - maybe null 15087 * register B - not null 15088 * for JNE A, B, ... - A is not null in the false branch; 15089 * for JEQ A, B, ... - A is not null in the true branch. 15090 * 15091 * Since PTR_TO_BTF_ID points to a kernel struct that does 15092 * not need to be null checked by the BPF program, i.e., 15093 * could be null even without PTR_MAYBE_NULL marking, so 15094 * only propagate nullness when neither reg is that type. 15095 */ 15096 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X && 15097 __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) && 15098 type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) && 15099 base_type(src_reg->type) != PTR_TO_BTF_ID && 15100 base_type(dst_reg->type) != PTR_TO_BTF_ID) { 15101 eq_branch_regs = NULL; 15102 switch (opcode) { 15103 case BPF_JEQ: 15104 eq_branch_regs = other_branch_regs; 15105 break; 15106 case BPF_JNE: 15107 eq_branch_regs = regs; 15108 break; 15109 default: 15110 /* do nothing */ 15111 break; 15112 } 15113 if (eq_branch_regs) { 15114 if (type_may_be_null(src_reg->type)) 15115 mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]); 15116 else 15117 mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]); 15118 } 15119 } 15120 15121 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 15122 * NOTE: these optimizations below are related with pointer comparison 15123 * which will never be JMP32. 15124 */ 15125 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 15126 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 15127 type_may_be_null(dst_reg->type)) { 15128 /* Mark all identical registers in each branch as either 15129 * safe or unknown depending R == 0 or R != 0 conditional. 15130 */ 15131 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 15132 opcode == BPF_JNE); 15133 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 15134 opcode == BPF_JEQ); 15135 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 15136 this_branch, other_branch) && 15137 is_pointer_value(env, insn->dst_reg)) { 15138 verbose(env, "R%d pointer comparison prohibited\n", 15139 insn->dst_reg); 15140 return -EACCES; 15141 } 15142 if (env->log.level & BPF_LOG_LEVEL) 15143 print_insn_state(env, this_branch->frame[this_branch->curframe]); 15144 return 0; 15145 } 15146 15147 /* verify BPF_LD_IMM64 instruction */ 15148 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 15149 { 15150 struct bpf_insn_aux_data *aux = cur_aux(env); 15151 struct bpf_reg_state *regs = cur_regs(env); 15152 struct bpf_reg_state *dst_reg; 15153 struct bpf_map *map; 15154 int err; 15155 15156 if (BPF_SIZE(insn->code) != BPF_DW) { 15157 verbose(env, "invalid BPF_LD_IMM insn\n"); 15158 return -EINVAL; 15159 } 15160 if (insn->off != 0) { 15161 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 15162 return -EINVAL; 15163 } 15164 15165 err = check_reg_arg(env, insn->dst_reg, DST_OP); 15166 if (err) 15167 return err; 15168 15169 dst_reg = ®s[insn->dst_reg]; 15170 if (insn->src_reg == 0) { 15171 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 15172 15173 dst_reg->type = SCALAR_VALUE; 15174 __mark_reg_known(®s[insn->dst_reg], imm); 15175 return 0; 15176 } 15177 15178 /* All special src_reg cases are listed below. From this point onwards 15179 * we either succeed and assign a corresponding dst_reg->type after 15180 * zeroing the offset, or fail and reject the program. 15181 */ 15182 mark_reg_known_zero(env, regs, insn->dst_reg); 15183 15184 if (insn->src_reg == BPF_PSEUDO_BTF_ID) { 15185 dst_reg->type = aux->btf_var.reg_type; 15186 switch (base_type(dst_reg->type)) { 15187 case PTR_TO_MEM: 15188 dst_reg->mem_size = aux->btf_var.mem_size; 15189 break; 15190 case PTR_TO_BTF_ID: 15191 dst_reg->btf = aux->btf_var.btf; 15192 dst_reg->btf_id = aux->btf_var.btf_id; 15193 break; 15194 default: 15195 verbose(env, "bpf verifier is misconfigured\n"); 15196 return -EFAULT; 15197 } 15198 return 0; 15199 } 15200 15201 if (insn->src_reg == BPF_PSEUDO_FUNC) { 15202 struct bpf_prog_aux *aux = env->prog->aux; 15203 u32 subprogno = find_subprog(env, 15204 env->insn_idx + insn->imm + 1); 15205 15206 if (!aux->func_info) { 15207 verbose(env, "missing btf func_info\n"); 15208 return -EINVAL; 15209 } 15210 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) { 15211 verbose(env, "callback function not static\n"); 15212 return -EINVAL; 15213 } 15214 15215 dst_reg->type = PTR_TO_FUNC; 15216 dst_reg->subprogno = subprogno; 15217 return 0; 15218 } 15219 15220 map = env->used_maps[aux->map_index]; 15221 dst_reg->map_ptr = map; 15222 15223 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE || 15224 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) { 15225 if (map->map_type == BPF_MAP_TYPE_ARENA) { 15226 __mark_reg_unknown(env, dst_reg); 15227 return 0; 15228 } 15229 dst_reg->type = PTR_TO_MAP_VALUE; 15230 dst_reg->off = aux->map_off; 15231 WARN_ON_ONCE(map->max_entries != 1); 15232 /* We want reg->id to be same (0) as map_value is not distinct */ 15233 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD || 15234 insn->src_reg == BPF_PSEUDO_MAP_IDX) { 15235 dst_reg->type = CONST_PTR_TO_MAP; 15236 } else { 15237 verbose(env, "bpf verifier is misconfigured\n"); 15238 return -EINVAL; 15239 } 15240 15241 return 0; 15242 } 15243 15244 static bool may_access_skb(enum bpf_prog_type type) 15245 { 15246 switch (type) { 15247 case BPF_PROG_TYPE_SOCKET_FILTER: 15248 case BPF_PROG_TYPE_SCHED_CLS: 15249 case BPF_PROG_TYPE_SCHED_ACT: 15250 return true; 15251 default: 15252 return false; 15253 } 15254 } 15255 15256 /* verify safety of LD_ABS|LD_IND instructions: 15257 * - they can only appear in the programs where ctx == skb 15258 * - since they are wrappers of function calls, they scratch R1-R5 registers, 15259 * preserve R6-R9, and store return value into R0 15260 * 15261 * Implicit input: 15262 * ctx == skb == R6 == CTX 15263 * 15264 * Explicit input: 15265 * SRC == any register 15266 * IMM == 32-bit immediate 15267 * 15268 * Output: 15269 * R0 - 8/16/32-bit skb data converted to cpu endianness 15270 */ 15271 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 15272 { 15273 struct bpf_reg_state *regs = cur_regs(env); 15274 static const int ctx_reg = BPF_REG_6; 15275 u8 mode = BPF_MODE(insn->code); 15276 int i, err; 15277 15278 if (!may_access_skb(resolve_prog_type(env->prog))) { 15279 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 15280 return -EINVAL; 15281 } 15282 15283 if (!env->ops->gen_ld_abs) { 15284 verbose(env, "bpf verifier is misconfigured\n"); 15285 return -EINVAL; 15286 } 15287 15288 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 15289 BPF_SIZE(insn->code) == BPF_DW || 15290 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 15291 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 15292 return -EINVAL; 15293 } 15294 15295 /* check whether implicit source operand (register R6) is readable */ 15296 err = check_reg_arg(env, ctx_reg, SRC_OP); 15297 if (err) 15298 return err; 15299 15300 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 15301 * gen_ld_abs() may terminate the program at runtime, leading to 15302 * reference leak. 15303 */ 15304 err = check_reference_leak(env, false); 15305 if (err) { 15306 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 15307 return err; 15308 } 15309 15310 if (env->cur_state->active_lock.ptr) { 15311 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 15312 return -EINVAL; 15313 } 15314 15315 if (env->cur_state->active_rcu_lock) { 15316 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_rcu_read_lock-ed region\n"); 15317 return -EINVAL; 15318 } 15319 15320 if (regs[ctx_reg].type != PTR_TO_CTX) { 15321 verbose(env, 15322 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 15323 return -EINVAL; 15324 } 15325 15326 if (mode == BPF_IND) { 15327 /* check explicit source operand */ 15328 err = check_reg_arg(env, insn->src_reg, SRC_OP); 15329 if (err) 15330 return err; 15331 } 15332 15333 err = check_ptr_off_reg(env, ®s[ctx_reg], ctx_reg); 15334 if (err < 0) 15335 return err; 15336 15337 /* reset caller saved regs to unreadable */ 15338 for (i = 0; i < CALLER_SAVED_REGS; i++) { 15339 mark_reg_not_init(env, regs, caller_saved[i]); 15340 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 15341 } 15342 15343 /* mark destination R0 register as readable, since it contains 15344 * the value fetched from the packet. 15345 * Already marked as written above. 15346 */ 15347 mark_reg_unknown(env, regs, BPF_REG_0); 15348 /* ld_abs load up to 32-bit skb data. */ 15349 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 15350 return 0; 15351 } 15352 15353 static int check_return_code(struct bpf_verifier_env *env, int regno, const char *reg_name) 15354 { 15355 const char *exit_ctx = "At program exit"; 15356 struct tnum enforce_attach_type_range = tnum_unknown; 15357 const struct bpf_prog *prog = env->prog; 15358 struct bpf_reg_state *reg; 15359 struct bpf_retval_range range = retval_range(0, 1); 15360 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 15361 int err; 15362 struct bpf_func_state *frame = env->cur_state->frame[0]; 15363 const bool is_subprog = frame->subprogno; 15364 15365 /* LSM and struct_ops func-ptr's return type could be "void" */ 15366 if (!is_subprog || frame->in_exception_callback_fn) { 15367 switch (prog_type) { 15368 case BPF_PROG_TYPE_LSM: 15369 if (prog->expected_attach_type == BPF_LSM_CGROUP) 15370 /* See below, can be 0 or 0-1 depending on hook. */ 15371 break; 15372 fallthrough; 15373 case BPF_PROG_TYPE_STRUCT_OPS: 15374 if (!prog->aux->attach_func_proto->type) 15375 return 0; 15376 break; 15377 default: 15378 break; 15379 } 15380 } 15381 15382 /* eBPF calling convention is such that R0 is used 15383 * to return the value from eBPF program. 15384 * Make sure that it's readable at this time 15385 * of bpf_exit, which means that program wrote 15386 * something into it earlier 15387 */ 15388 err = check_reg_arg(env, regno, SRC_OP); 15389 if (err) 15390 return err; 15391 15392 if (is_pointer_value(env, regno)) { 15393 verbose(env, "R%d leaks addr as return value\n", regno); 15394 return -EACCES; 15395 } 15396 15397 reg = cur_regs(env) + regno; 15398 15399 if (frame->in_async_callback_fn) { 15400 /* enforce return zero from async callbacks like timer */ 15401 exit_ctx = "At async callback return"; 15402 range = retval_range(0, 0); 15403 goto enforce_retval; 15404 } 15405 15406 if (is_subprog && !frame->in_exception_callback_fn) { 15407 if (reg->type != SCALAR_VALUE) { 15408 verbose(env, "At subprogram exit the register R%d is not a scalar value (%s)\n", 15409 regno, reg_type_str(env, reg->type)); 15410 return -EINVAL; 15411 } 15412 return 0; 15413 } 15414 15415 switch (prog_type) { 15416 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 15417 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 15418 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || 15419 env->prog->expected_attach_type == BPF_CGROUP_UNIX_RECVMSG || 15420 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || 15421 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || 15422 env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETPEERNAME || 15423 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || 15424 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME || 15425 env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETSOCKNAME) 15426 range = retval_range(1, 1); 15427 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND || 15428 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND) 15429 range = retval_range(0, 3); 15430 break; 15431 case BPF_PROG_TYPE_CGROUP_SKB: 15432 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 15433 range = retval_range(0, 3); 15434 enforce_attach_type_range = tnum_range(2, 3); 15435 } 15436 break; 15437 case BPF_PROG_TYPE_CGROUP_SOCK: 15438 case BPF_PROG_TYPE_SOCK_OPS: 15439 case BPF_PROG_TYPE_CGROUP_DEVICE: 15440 case BPF_PROG_TYPE_CGROUP_SYSCTL: 15441 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 15442 break; 15443 case BPF_PROG_TYPE_RAW_TRACEPOINT: 15444 if (!env->prog->aux->attach_btf_id) 15445 return 0; 15446 range = retval_range(0, 0); 15447 break; 15448 case BPF_PROG_TYPE_TRACING: 15449 switch (env->prog->expected_attach_type) { 15450 case BPF_TRACE_FENTRY: 15451 case BPF_TRACE_FEXIT: 15452 range = retval_range(0, 0); 15453 break; 15454 case BPF_TRACE_RAW_TP: 15455 case BPF_MODIFY_RETURN: 15456 return 0; 15457 case BPF_TRACE_ITER: 15458 break; 15459 default: 15460 return -ENOTSUPP; 15461 } 15462 break; 15463 case BPF_PROG_TYPE_SK_LOOKUP: 15464 range = retval_range(SK_DROP, SK_PASS); 15465 break; 15466 15467 case BPF_PROG_TYPE_LSM: 15468 if (env->prog->expected_attach_type != BPF_LSM_CGROUP) { 15469 /* Regular BPF_PROG_TYPE_LSM programs can return 15470 * any value. 15471 */ 15472 return 0; 15473 } 15474 if (!env->prog->aux->attach_func_proto->type) { 15475 /* Make sure programs that attach to void 15476 * hooks don't try to modify return value. 15477 */ 15478 range = retval_range(1, 1); 15479 } 15480 break; 15481 15482 case BPF_PROG_TYPE_NETFILTER: 15483 range = retval_range(NF_DROP, NF_ACCEPT); 15484 break; 15485 case BPF_PROG_TYPE_EXT: 15486 /* freplace program can return anything as its return value 15487 * depends on the to-be-replaced kernel func or bpf program. 15488 */ 15489 default: 15490 return 0; 15491 } 15492 15493 enforce_retval: 15494 if (reg->type != SCALAR_VALUE) { 15495 verbose(env, "%s the register R%d is not a known value (%s)\n", 15496 exit_ctx, regno, reg_type_str(env, reg->type)); 15497 return -EINVAL; 15498 } 15499 15500 err = mark_chain_precision(env, regno); 15501 if (err) 15502 return err; 15503 15504 if (!retval_range_within(range, reg)) { 15505 verbose_invalid_scalar(env, reg, range, exit_ctx, reg_name); 15506 if (!is_subprog && 15507 prog->expected_attach_type == BPF_LSM_CGROUP && 15508 prog_type == BPF_PROG_TYPE_LSM && 15509 !prog->aux->attach_func_proto->type) 15510 verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 15511 return -EINVAL; 15512 } 15513 15514 if (!tnum_is_unknown(enforce_attach_type_range) && 15515 tnum_in(enforce_attach_type_range, reg->var_off)) 15516 env->prog->enforce_expected_attach_type = 1; 15517 return 0; 15518 } 15519 15520 /* non-recursive DFS pseudo code 15521 * 1 procedure DFS-iterative(G,v): 15522 * 2 label v as discovered 15523 * 3 let S be a stack 15524 * 4 S.push(v) 15525 * 5 while S is not empty 15526 * 6 t <- S.peek() 15527 * 7 if t is what we're looking for: 15528 * 8 return t 15529 * 9 for all edges e in G.adjacentEdges(t) do 15530 * 10 if edge e is already labelled 15531 * 11 continue with the next edge 15532 * 12 w <- G.adjacentVertex(t,e) 15533 * 13 if vertex w is not discovered and not explored 15534 * 14 label e as tree-edge 15535 * 15 label w as discovered 15536 * 16 S.push(w) 15537 * 17 continue at 5 15538 * 18 else if vertex w is discovered 15539 * 19 label e as back-edge 15540 * 20 else 15541 * 21 // vertex w is explored 15542 * 22 label e as forward- or cross-edge 15543 * 23 label t as explored 15544 * 24 S.pop() 15545 * 15546 * convention: 15547 * 0x10 - discovered 15548 * 0x11 - discovered and fall-through edge labelled 15549 * 0x12 - discovered and fall-through and branch edges labelled 15550 * 0x20 - explored 15551 */ 15552 15553 enum { 15554 DISCOVERED = 0x10, 15555 EXPLORED = 0x20, 15556 FALLTHROUGH = 1, 15557 BRANCH = 2, 15558 }; 15559 15560 static void mark_prune_point(struct bpf_verifier_env *env, int idx) 15561 { 15562 env->insn_aux_data[idx].prune_point = true; 15563 } 15564 15565 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx) 15566 { 15567 return env->insn_aux_data[insn_idx].prune_point; 15568 } 15569 15570 static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx) 15571 { 15572 env->insn_aux_data[idx].force_checkpoint = true; 15573 } 15574 15575 static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx) 15576 { 15577 return env->insn_aux_data[insn_idx].force_checkpoint; 15578 } 15579 15580 static void mark_calls_callback(struct bpf_verifier_env *env, int idx) 15581 { 15582 env->insn_aux_data[idx].calls_callback = true; 15583 } 15584 15585 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx) 15586 { 15587 return env->insn_aux_data[insn_idx].calls_callback; 15588 } 15589 15590 enum { 15591 DONE_EXPLORING = 0, 15592 KEEP_EXPLORING = 1, 15593 }; 15594 15595 /* t, w, e - match pseudo-code above: 15596 * t - index of current instruction 15597 * w - next instruction 15598 * e - edge 15599 */ 15600 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env) 15601 { 15602 int *insn_stack = env->cfg.insn_stack; 15603 int *insn_state = env->cfg.insn_state; 15604 15605 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 15606 return DONE_EXPLORING; 15607 15608 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 15609 return DONE_EXPLORING; 15610 15611 if (w < 0 || w >= env->prog->len) { 15612 verbose_linfo(env, t, "%d: ", t); 15613 verbose(env, "jump out of range from insn %d to %d\n", t, w); 15614 return -EINVAL; 15615 } 15616 15617 if (e == BRANCH) { 15618 /* mark branch target for state pruning */ 15619 mark_prune_point(env, w); 15620 mark_jmp_point(env, w); 15621 } 15622 15623 if (insn_state[w] == 0) { 15624 /* tree-edge */ 15625 insn_state[t] = DISCOVERED | e; 15626 insn_state[w] = DISCOVERED; 15627 if (env->cfg.cur_stack >= env->prog->len) 15628 return -E2BIG; 15629 insn_stack[env->cfg.cur_stack++] = w; 15630 return KEEP_EXPLORING; 15631 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 15632 if (env->bpf_capable) 15633 return DONE_EXPLORING; 15634 verbose_linfo(env, t, "%d: ", t); 15635 verbose_linfo(env, w, "%d: ", w); 15636 verbose(env, "back-edge from insn %d to %d\n", t, w); 15637 return -EINVAL; 15638 } else if (insn_state[w] == EXPLORED) { 15639 /* forward- or cross-edge */ 15640 insn_state[t] = DISCOVERED | e; 15641 } else { 15642 verbose(env, "insn state internal bug\n"); 15643 return -EFAULT; 15644 } 15645 return DONE_EXPLORING; 15646 } 15647 15648 static int visit_func_call_insn(int t, struct bpf_insn *insns, 15649 struct bpf_verifier_env *env, 15650 bool visit_callee) 15651 { 15652 int ret, insn_sz; 15653 15654 insn_sz = bpf_is_ldimm64(&insns[t]) ? 2 : 1; 15655 ret = push_insn(t, t + insn_sz, FALLTHROUGH, env); 15656 if (ret) 15657 return ret; 15658 15659 mark_prune_point(env, t + insn_sz); 15660 /* when we exit from subprog, we need to record non-linear history */ 15661 mark_jmp_point(env, t + insn_sz); 15662 15663 if (visit_callee) { 15664 mark_prune_point(env, t); 15665 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env); 15666 } 15667 return ret; 15668 } 15669 15670 /* Visits the instruction at index t and returns one of the following: 15671 * < 0 - an error occurred 15672 * DONE_EXPLORING - the instruction was fully explored 15673 * KEEP_EXPLORING - there is still work to be done before it is fully explored 15674 */ 15675 static int visit_insn(int t, struct bpf_verifier_env *env) 15676 { 15677 struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t]; 15678 int ret, off, insn_sz; 15679 15680 if (bpf_pseudo_func(insn)) 15681 return visit_func_call_insn(t, insns, env, true); 15682 15683 /* All non-branch instructions have a single fall-through edge. */ 15684 if (BPF_CLASS(insn->code) != BPF_JMP && 15685 BPF_CLASS(insn->code) != BPF_JMP32) { 15686 insn_sz = bpf_is_ldimm64(insn) ? 2 : 1; 15687 return push_insn(t, t + insn_sz, FALLTHROUGH, env); 15688 } 15689 15690 switch (BPF_OP(insn->code)) { 15691 case BPF_EXIT: 15692 return DONE_EXPLORING; 15693 15694 case BPF_CALL: 15695 if (is_async_callback_calling_insn(insn)) 15696 /* Mark this call insn as a prune point to trigger 15697 * is_state_visited() check before call itself is 15698 * processed by __check_func_call(). Otherwise new 15699 * async state will be pushed for further exploration. 15700 */ 15701 mark_prune_point(env, t); 15702 /* For functions that invoke callbacks it is not known how many times 15703 * callback would be called. Verifier models callback calling functions 15704 * by repeatedly visiting callback bodies and returning to origin call 15705 * instruction. 15706 * In order to stop such iteration verifier needs to identify when a 15707 * state identical some state from a previous iteration is reached. 15708 * Check below forces creation of checkpoint before callback calling 15709 * instruction to allow search for such identical states. 15710 */ 15711 if (is_sync_callback_calling_insn(insn)) { 15712 mark_calls_callback(env, t); 15713 mark_force_checkpoint(env, t); 15714 mark_prune_point(env, t); 15715 mark_jmp_point(env, t); 15716 } 15717 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 15718 struct bpf_kfunc_call_arg_meta meta; 15719 15720 ret = fetch_kfunc_meta(env, insn, &meta, NULL); 15721 if (ret == 0 && is_iter_next_kfunc(&meta)) { 15722 mark_prune_point(env, t); 15723 /* Checking and saving state checkpoints at iter_next() call 15724 * is crucial for fast convergence of open-coded iterator loop 15725 * logic, so we need to force it. If we don't do that, 15726 * is_state_visited() might skip saving a checkpoint, causing 15727 * unnecessarily long sequence of not checkpointed 15728 * instructions and jumps, leading to exhaustion of jump 15729 * history buffer, and potentially other undesired outcomes. 15730 * It is expected that with correct open-coded iterators 15731 * convergence will happen quickly, so we don't run a risk of 15732 * exhausting memory. 15733 */ 15734 mark_force_checkpoint(env, t); 15735 } 15736 } 15737 return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL); 15738 15739 case BPF_JA: 15740 if (BPF_SRC(insn->code) != BPF_K) 15741 return -EINVAL; 15742 15743 if (BPF_CLASS(insn->code) == BPF_JMP) 15744 off = insn->off; 15745 else 15746 off = insn->imm; 15747 15748 /* unconditional jump with single edge */ 15749 ret = push_insn(t, t + off + 1, FALLTHROUGH, env); 15750 if (ret) 15751 return ret; 15752 15753 mark_prune_point(env, t + off + 1); 15754 mark_jmp_point(env, t + off + 1); 15755 15756 return ret; 15757 15758 default: 15759 /* conditional jump with two edges */ 15760 mark_prune_point(env, t); 15761 if (is_may_goto_insn(insn)) 15762 mark_force_checkpoint(env, t); 15763 15764 ret = push_insn(t, t + 1, FALLTHROUGH, env); 15765 if (ret) 15766 return ret; 15767 15768 return push_insn(t, t + insn->off + 1, BRANCH, env); 15769 } 15770 } 15771 15772 /* non-recursive depth-first-search to detect loops in BPF program 15773 * loop == back-edge in directed graph 15774 */ 15775 static int check_cfg(struct bpf_verifier_env *env) 15776 { 15777 int insn_cnt = env->prog->len; 15778 int *insn_stack, *insn_state; 15779 int ex_insn_beg, i, ret = 0; 15780 bool ex_done = false; 15781 15782 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 15783 if (!insn_state) 15784 return -ENOMEM; 15785 15786 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 15787 if (!insn_stack) { 15788 kvfree(insn_state); 15789 return -ENOMEM; 15790 } 15791 15792 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 15793 insn_stack[0] = 0; /* 0 is the first instruction */ 15794 env->cfg.cur_stack = 1; 15795 15796 walk_cfg: 15797 while (env->cfg.cur_stack > 0) { 15798 int t = insn_stack[env->cfg.cur_stack - 1]; 15799 15800 ret = visit_insn(t, env); 15801 switch (ret) { 15802 case DONE_EXPLORING: 15803 insn_state[t] = EXPLORED; 15804 env->cfg.cur_stack--; 15805 break; 15806 case KEEP_EXPLORING: 15807 break; 15808 default: 15809 if (ret > 0) { 15810 verbose(env, "visit_insn internal bug\n"); 15811 ret = -EFAULT; 15812 } 15813 goto err_free; 15814 } 15815 } 15816 15817 if (env->cfg.cur_stack < 0) { 15818 verbose(env, "pop stack internal bug\n"); 15819 ret = -EFAULT; 15820 goto err_free; 15821 } 15822 15823 if (env->exception_callback_subprog && !ex_done) { 15824 ex_insn_beg = env->subprog_info[env->exception_callback_subprog].start; 15825 15826 insn_state[ex_insn_beg] = DISCOVERED; 15827 insn_stack[0] = ex_insn_beg; 15828 env->cfg.cur_stack = 1; 15829 ex_done = true; 15830 goto walk_cfg; 15831 } 15832 15833 for (i = 0; i < insn_cnt; i++) { 15834 struct bpf_insn *insn = &env->prog->insnsi[i]; 15835 15836 if (insn_state[i] != EXPLORED) { 15837 verbose(env, "unreachable insn %d\n", i); 15838 ret = -EINVAL; 15839 goto err_free; 15840 } 15841 if (bpf_is_ldimm64(insn)) { 15842 if (insn_state[i + 1] != 0) { 15843 verbose(env, "jump into the middle of ldimm64 insn %d\n", i); 15844 ret = -EINVAL; 15845 goto err_free; 15846 } 15847 i++; /* skip second half of ldimm64 */ 15848 } 15849 } 15850 ret = 0; /* cfg looks good */ 15851 15852 err_free: 15853 kvfree(insn_state); 15854 kvfree(insn_stack); 15855 env->cfg.insn_state = env->cfg.insn_stack = NULL; 15856 return ret; 15857 } 15858 15859 static int check_abnormal_return(struct bpf_verifier_env *env) 15860 { 15861 int i; 15862 15863 for (i = 1; i < env->subprog_cnt; i++) { 15864 if (env->subprog_info[i].has_ld_abs) { 15865 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n"); 15866 return -EINVAL; 15867 } 15868 if (env->subprog_info[i].has_tail_call) { 15869 verbose(env, "tail_call is not allowed in subprogs without BTF\n"); 15870 return -EINVAL; 15871 } 15872 } 15873 return 0; 15874 } 15875 15876 /* The minimum supported BTF func info size */ 15877 #define MIN_BPF_FUNCINFO_SIZE 8 15878 #define MAX_FUNCINFO_REC_SIZE 252 15879 15880 static int check_btf_func_early(struct bpf_verifier_env *env, 15881 const union bpf_attr *attr, 15882 bpfptr_t uattr) 15883 { 15884 u32 krec_size = sizeof(struct bpf_func_info); 15885 const struct btf_type *type, *func_proto; 15886 u32 i, nfuncs, urec_size, min_size; 15887 struct bpf_func_info *krecord; 15888 struct bpf_prog *prog; 15889 const struct btf *btf; 15890 u32 prev_offset = 0; 15891 bpfptr_t urecord; 15892 int ret = -ENOMEM; 15893 15894 nfuncs = attr->func_info_cnt; 15895 if (!nfuncs) { 15896 if (check_abnormal_return(env)) 15897 return -EINVAL; 15898 return 0; 15899 } 15900 15901 urec_size = attr->func_info_rec_size; 15902 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 15903 urec_size > MAX_FUNCINFO_REC_SIZE || 15904 urec_size % sizeof(u32)) { 15905 verbose(env, "invalid func info rec size %u\n", urec_size); 15906 return -EINVAL; 15907 } 15908 15909 prog = env->prog; 15910 btf = prog->aux->btf; 15911 15912 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 15913 min_size = min_t(u32, krec_size, urec_size); 15914 15915 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 15916 if (!krecord) 15917 return -ENOMEM; 15918 15919 for (i = 0; i < nfuncs; i++) { 15920 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 15921 if (ret) { 15922 if (ret == -E2BIG) { 15923 verbose(env, "nonzero tailing record in func info"); 15924 /* set the size kernel expects so loader can zero 15925 * out the rest of the record. 15926 */ 15927 if (copy_to_bpfptr_offset(uattr, 15928 offsetof(union bpf_attr, func_info_rec_size), 15929 &min_size, sizeof(min_size))) 15930 ret = -EFAULT; 15931 } 15932 goto err_free; 15933 } 15934 15935 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) { 15936 ret = -EFAULT; 15937 goto err_free; 15938 } 15939 15940 /* check insn_off */ 15941 ret = -EINVAL; 15942 if (i == 0) { 15943 if (krecord[i].insn_off) { 15944 verbose(env, 15945 "nonzero insn_off %u for the first func info record", 15946 krecord[i].insn_off); 15947 goto err_free; 15948 } 15949 } else if (krecord[i].insn_off <= prev_offset) { 15950 verbose(env, 15951 "same or smaller insn offset (%u) than previous func info record (%u)", 15952 krecord[i].insn_off, prev_offset); 15953 goto err_free; 15954 } 15955 15956 /* check type_id */ 15957 type = btf_type_by_id(btf, krecord[i].type_id); 15958 if (!type || !btf_type_is_func(type)) { 15959 verbose(env, "invalid type id %d in func info", 15960 krecord[i].type_id); 15961 goto err_free; 15962 } 15963 15964 func_proto = btf_type_by_id(btf, type->type); 15965 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto))) 15966 /* btf_func_check() already verified it during BTF load */ 15967 goto err_free; 15968 15969 prev_offset = krecord[i].insn_off; 15970 bpfptr_add(&urecord, urec_size); 15971 } 15972 15973 prog->aux->func_info = krecord; 15974 prog->aux->func_info_cnt = nfuncs; 15975 return 0; 15976 15977 err_free: 15978 kvfree(krecord); 15979 return ret; 15980 } 15981 15982 static int check_btf_func(struct bpf_verifier_env *env, 15983 const union bpf_attr *attr, 15984 bpfptr_t uattr) 15985 { 15986 const struct btf_type *type, *func_proto, *ret_type; 15987 u32 i, nfuncs, urec_size; 15988 struct bpf_func_info *krecord; 15989 struct bpf_func_info_aux *info_aux = NULL; 15990 struct bpf_prog *prog; 15991 const struct btf *btf; 15992 bpfptr_t urecord; 15993 bool scalar_return; 15994 int ret = -ENOMEM; 15995 15996 nfuncs = attr->func_info_cnt; 15997 if (!nfuncs) { 15998 if (check_abnormal_return(env)) 15999 return -EINVAL; 16000 return 0; 16001 } 16002 if (nfuncs != env->subprog_cnt) { 16003 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 16004 return -EINVAL; 16005 } 16006 16007 urec_size = attr->func_info_rec_size; 16008 16009 prog = env->prog; 16010 btf = prog->aux->btf; 16011 16012 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 16013 16014 krecord = prog->aux->func_info; 16015 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); 16016 if (!info_aux) 16017 return -ENOMEM; 16018 16019 for (i = 0; i < nfuncs; i++) { 16020 /* check insn_off */ 16021 ret = -EINVAL; 16022 16023 if (env->subprog_info[i].start != krecord[i].insn_off) { 16024 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 16025 goto err_free; 16026 } 16027 16028 /* Already checked type_id */ 16029 type = btf_type_by_id(btf, krecord[i].type_id); 16030 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 16031 /* Already checked func_proto */ 16032 func_proto = btf_type_by_id(btf, type->type); 16033 16034 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL); 16035 scalar_return = 16036 btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type); 16037 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) { 16038 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n"); 16039 goto err_free; 16040 } 16041 if (i && !scalar_return && env->subprog_info[i].has_tail_call) { 16042 verbose(env, "tail_call is only allowed in functions that return 'int'.\n"); 16043 goto err_free; 16044 } 16045 16046 bpfptr_add(&urecord, urec_size); 16047 } 16048 16049 prog->aux->func_info_aux = info_aux; 16050 return 0; 16051 16052 err_free: 16053 kfree(info_aux); 16054 return ret; 16055 } 16056 16057 static void adjust_btf_func(struct bpf_verifier_env *env) 16058 { 16059 struct bpf_prog_aux *aux = env->prog->aux; 16060 int i; 16061 16062 if (!aux->func_info) 16063 return; 16064 16065 /* func_info is not available for hidden subprogs */ 16066 for (i = 0; i < env->subprog_cnt - env->hidden_subprog_cnt; i++) 16067 aux->func_info[i].insn_off = env->subprog_info[i].start; 16068 } 16069 16070 #define MIN_BPF_LINEINFO_SIZE offsetofend(struct bpf_line_info, line_col) 16071 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 16072 16073 static int check_btf_line(struct bpf_verifier_env *env, 16074 const union bpf_attr *attr, 16075 bpfptr_t uattr) 16076 { 16077 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 16078 struct bpf_subprog_info *sub; 16079 struct bpf_line_info *linfo; 16080 struct bpf_prog *prog; 16081 const struct btf *btf; 16082 bpfptr_t ulinfo; 16083 int err; 16084 16085 nr_linfo = attr->line_info_cnt; 16086 if (!nr_linfo) 16087 return 0; 16088 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info)) 16089 return -EINVAL; 16090 16091 rec_size = attr->line_info_rec_size; 16092 if (rec_size < MIN_BPF_LINEINFO_SIZE || 16093 rec_size > MAX_LINEINFO_REC_SIZE || 16094 rec_size & (sizeof(u32) - 1)) 16095 return -EINVAL; 16096 16097 /* Need to zero it in case the userspace may 16098 * pass in a smaller bpf_line_info object. 16099 */ 16100 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 16101 GFP_KERNEL | __GFP_NOWARN); 16102 if (!linfo) 16103 return -ENOMEM; 16104 16105 prog = env->prog; 16106 btf = prog->aux->btf; 16107 16108 s = 0; 16109 sub = env->subprog_info; 16110 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel); 16111 expected_size = sizeof(struct bpf_line_info); 16112 ncopy = min_t(u32, expected_size, rec_size); 16113 for (i = 0; i < nr_linfo; i++) { 16114 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 16115 if (err) { 16116 if (err == -E2BIG) { 16117 verbose(env, "nonzero tailing record in line_info"); 16118 if (copy_to_bpfptr_offset(uattr, 16119 offsetof(union bpf_attr, line_info_rec_size), 16120 &expected_size, sizeof(expected_size))) 16121 err = -EFAULT; 16122 } 16123 goto err_free; 16124 } 16125 16126 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) { 16127 err = -EFAULT; 16128 goto err_free; 16129 } 16130 16131 /* 16132 * Check insn_off to ensure 16133 * 1) strictly increasing AND 16134 * 2) bounded by prog->len 16135 * 16136 * The linfo[0].insn_off == 0 check logically falls into 16137 * the later "missing bpf_line_info for func..." case 16138 * because the first linfo[0].insn_off must be the 16139 * first sub also and the first sub must have 16140 * subprog_info[0].start == 0. 16141 */ 16142 if ((i && linfo[i].insn_off <= prev_offset) || 16143 linfo[i].insn_off >= prog->len) { 16144 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 16145 i, linfo[i].insn_off, prev_offset, 16146 prog->len); 16147 err = -EINVAL; 16148 goto err_free; 16149 } 16150 16151 if (!prog->insnsi[linfo[i].insn_off].code) { 16152 verbose(env, 16153 "Invalid insn code at line_info[%u].insn_off\n", 16154 i); 16155 err = -EINVAL; 16156 goto err_free; 16157 } 16158 16159 if (!btf_name_by_offset(btf, linfo[i].line_off) || 16160 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 16161 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 16162 err = -EINVAL; 16163 goto err_free; 16164 } 16165 16166 if (s != env->subprog_cnt) { 16167 if (linfo[i].insn_off == sub[s].start) { 16168 sub[s].linfo_idx = i; 16169 s++; 16170 } else if (sub[s].start < linfo[i].insn_off) { 16171 verbose(env, "missing bpf_line_info for func#%u\n", s); 16172 err = -EINVAL; 16173 goto err_free; 16174 } 16175 } 16176 16177 prev_offset = linfo[i].insn_off; 16178 bpfptr_add(&ulinfo, rec_size); 16179 } 16180 16181 if (s != env->subprog_cnt) { 16182 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 16183 env->subprog_cnt - s, s); 16184 err = -EINVAL; 16185 goto err_free; 16186 } 16187 16188 prog->aux->linfo = linfo; 16189 prog->aux->nr_linfo = nr_linfo; 16190 16191 return 0; 16192 16193 err_free: 16194 kvfree(linfo); 16195 return err; 16196 } 16197 16198 #define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo) 16199 #define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE 16200 16201 static int check_core_relo(struct bpf_verifier_env *env, 16202 const union bpf_attr *attr, 16203 bpfptr_t uattr) 16204 { 16205 u32 i, nr_core_relo, ncopy, expected_size, rec_size; 16206 struct bpf_core_relo core_relo = {}; 16207 struct bpf_prog *prog = env->prog; 16208 const struct btf *btf = prog->aux->btf; 16209 struct bpf_core_ctx ctx = { 16210 .log = &env->log, 16211 .btf = btf, 16212 }; 16213 bpfptr_t u_core_relo; 16214 int err; 16215 16216 nr_core_relo = attr->core_relo_cnt; 16217 if (!nr_core_relo) 16218 return 0; 16219 if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo)) 16220 return -EINVAL; 16221 16222 rec_size = attr->core_relo_rec_size; 16223 if (rec_size < MIN_CORE_RELO_SIZE || 16224 rec_size > MAX_CORE_RELO_SIZE || 16225 rec_size % sizeof(u32)) 16226 return -EINVAL; 16227 16228 u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel); 16229 expected_size = sizeof(struct bpf_core_relo); 16230 ncopy = min_t(u32, expected_size, rec_size); 16231 16232 /* Unlike func_info and line_info, copy and apply each CO-RE 16233 * relocation record one at a time. 16234 */ 16235 for (i = 0; i < nr_core_relo; i++) { 16236 /* future proofing when sizeof(bpf_core_relo) changes */ 16237 err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size); 16238 if (err) { 16239 if (err == -E2BIG) { 16240 verbose(env, "nonzero tailing record in core_relo"); 16241 if (copy_to_bpfptr_offset(uattr, 16242 offsetof(union bpf_attr, core_relo_rec_size), 16243 &expected_size, sizeof(expected_size))) 16244 err = -EFAULT; 16245 } 16246 break; 16247 } 16248 16249 if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) { 16250 err = -EFAULT; 16251 break; 16252 } 16253 16254 if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) { 16255 verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n", 16256 i, core_relo.insn_off, prog->len); 16257 err = -EINVAL; 16258 break; 16259 } 16260 16261 err = bpf_core_apply(&ctx, &core_relo, i, 16262 &prog->insnsi[core_relo.insn_off / 8]); 16263 if (err) 16264 break; 16265 bpfptr_add(&u_core_relo, rec_size); 16266 } 16267 return err; 16268 } 16269 16270 static int check_btf_info_early(struct bpf_verifier_env *env, 16271 const union bpf_attr *attr, 16272 bpfptr_t uattr) 16273 { 16274 struct btf *btf; 16275 int err; 16276 16277 if (!attr->func_info_cnt && !attr->line_info_cnt) { 16278 if (check_abnormal_return(env)) 16279 return -EINVAL; 16280 return 0; 16281 } 16282 16283 btf = btf_get_by_fd(attr->prog_btf_fd); 16284 if (IS_ERR(btf)) 16285 return PTR_ERR(btf); 16286 if (btf_is_kernel(btf)) { 16287 btf_put(btf); 16288 return -EACCES; 16289 } 16290 env->prog->aux->btf = btf; 16291 16292 err = check_btf_func_early(env, attr, uattr); 16293 if (err) 16294 return err; 16295 return 0; 16296 } 16297 16298 static int check_btf_info(struct bpf_verifier_env *env, 16299 const union bpf_attr *attr, 16300 bpfptr_t uattr) 16301 { 16302 int err; 16303 16304 if (!attr->func_info_cnt && !attr->line_info_cnt) { 16305 if (check_abnormal_return(env)) 16306 return -EINVAL; 16307 return 0; 16308 } 16309 16310 err = check_btf_func(env, attr, uattr); 16311 if (err) 16312 return err; 16313 16314 err = check_btf_line(env, attr, uattr); 16315 if (err) 16316 return err; 16317 16318 err = check_core_relo(env, attr, uattr); 16319 if (err) 16320 return err; 16321 16322 return 0; 16323 } 16324 16325 /* check %cur's range satisfies %old's */ 16326 static bool range_within(const struct bpf_reg_state *old, 16327 const struct bpf_reg_state *cur) 16328 { 16329 return old->umin_value <= cur->umin_value && 16330 old->umax_value >= cur->umax_value && 16331 old->smin_value <= cur->smin_value && 16332 old->smax_value >= cur->smax_value && 16333 old->u32_min_value <= cur->u32_min_value && 16334 old->u32_max_value >= cur->u32_max_value && 16335 old->s32_min_value <= cur->s32_min_value && 16336 old->s32_max_value >= cur->s32_max_value; 16337 } 16338 16339 /* If in the old state two registers had the same id, then they need to have 16340 * the same id in the new state as well. But that id could be different from 16341 * the old state, so we need to track the mapping from old to new ids. 16342 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 16343 * regs with old id 5 must also have new id 9 for the new state to be safe. But 16344 * regs with a different old id could still have new id 9, we don't care about 16345 * that. 16346 * So we look through our idmap to see if this old id has been seen before. If 16347 * so, we require the new id to match; otherwise, we add the id pair to the map. 16348 */ 16349 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap) 16350 { 16351 struct bpf_id_pair *map = idmap->map; 16352 unsigned int i; 16353 16354 /* either both IDs should be set or both should be zero */ 16355 if (!!old_id != !!cur_id) 16356 return false; 16357 16358 if (old_id == 0) /* cur_id == 0 as well */ 16359 return true; 16360 16361 for (i = 0; i < BPF_ID_MAP_SIZE; i++) { 16362 if (!map[i].old) { 16363 /* Reached an empty slot; haven't seen this id before */ 16364 map[i].old = old_id; 16365 map[i].cur = cur_id; 16366 return true; 16367 } 16368 if (map[i].old == old_id) 16369 return map[i].cur == cur_id; 16370 if (map[i].cur == cur_id) 16371 return false; 16372 } 16373 /* We ran out of idmap slots, which should be impossible */ 16374 WARN_ON_ONCE(1); 16375 return false; 16376 } 16377 16378 /* Similar to check_ids(), but allocate a unique temporary ID 16379 * for 'old_id' or 'cur_id' of zero. 16380 * This makes pairs like '0 vs unique ID', 'unique ID vs 0' valid. 16381 */ 16382 static bool check_scalar_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap) 16383 { 16384 old_id = old_id ? old_id : ++idmap->tmp_id_gen; 16385 cur_id = cur_id ? cur_id : ++idmap->tmp_id_gen; 16386 16387 return check_ids(old_id, cur_id, idmap); 16388 } 16389 16390 static void clean_func_state(struct bpf_verifier_env *env, 16391 struct bpf_func_state *st) 16392 { 16393 enum bpf_reg_liveness live; 16394 int i, j; 16395 16396 for (i = 0; i < BPF_REG_FP; i++) { 16397 live = st->regs[i].live; 16398 /* liveness must not touch this register anymore */ 16399 st->regs[i].live |= REG_LIVE_DONE; 16400 if (!(live & REG_LIVE_READ)) 16401 /* since the register is unused, clear its state 16402 * to make further comparison simpler 16403 */ 16404 __mark_reg_not_init(env, &st->regs[i]); 16405 } 16406 16407 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 16408 live = st->stack[i].spilled_ptr.live; 16409 /* liveness must not touch this stack slot anymore */ 16410 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 16411 if (!(live & REG_LIVE_READ)) { 16412 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 16413 for (j = 0; j < BPF_REG_SIZE; j++) 16414 st->stack[i].slot_type[j] = STACK_INVALID; 16415 } 16416 } 16417 } 16418 16419 static void clean_verifier_state(struct bpf_verifier_env *env, 16420 struct bpf_verifier_state *st) 16421 { 16422 int i; 16423 16424 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 16425 /* all regs in this state in all frames were already marked */ 16426 return; 16427 16428 for (i = 0; i <= st->curframe; i++) 16429 clean_func_state(env, st->frame[i]); 16430 } 16431 16432 /* the parentage chains form a tree. 16433 * the verifier states are added to state lists at given insn and 16434 * pushed into state stack for future exploration. 16435 * when the verifier reaches bpf_exit insn some of the verifer states 16436 * stored in the state lists have their final liveness state already, 16437 * but a lot of states will get revised from liveness point of view when 16438 * the verifier explores other branches. 16439 * Example: 16440 * 1: r0 = 1 16441 * 2: if r1 == 100 goto pc+1 16442 * 3: r0 = 2 16443 * 4: exit 16444 * when the verifier reaches exit insn the register r0 in the state list of 16445 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 16446 * of insn 2 and goes exploring further. At the insn 4 it will walk the 16447 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 16448 * 16449 * Since the verifier pushes the branch states as it sees them while exploring 16450 * the program the condition of walking the branch instruction for the second 16451 * time means that all states below this branch were already explored and 16452 * their final liveness marks are already propagated. 16453 * Hence when the verifier completes the search of state list in is_state_visited() 16454 * we can call this clean_live_states() function to mark all liveness states 16455 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 16456 * will not be used. 16457 * This function also clears the registers and stack for states that !READ 16458 * to simplify state merging. 16459 * 16460 * Important note here that walking the same branch instruction in the callee 16461 * doesn't meant that the states are DONE. The verifier has to compare 16462 * the callsites 16463 */ 16464 static void clean_live_states(struct bpf_verifier_env *env, int insn, 16465 struct bpf_verifier_state *cur) 16466 { 16467 struct bpf_verifier_state_list *sl; 16468 16469 sl = *explored_state(env, insn); 16470 while (sl) { 16471 if (sl->state.branches) 16472 goto next; 16473 if (sl->state.insn_idx != insn || 16474 !same_callsites(&sl->state, cur)) 16475 goto next; 16476 clean_verifier_state(env, &sl->state); 16477 next: 16478 sl = sl->next; 16479 } 16480 } 16481 16482 static bool regs_exact(const struct bpf_reg_state *rold, 16483 const struct bpf_reg_state *rcur, 16484 struct bpf_idmap *idmap) 16485 { 16486 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 16487 check_ids(rold->id, rcur->id, idmap) && 16488 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); 16489 } 16490 16491 enum exact_level { 16492 NOT_EXACT, 16493 EXACT, 16494 RANGE_WITHIN 16495 }; 16496 16497 /* Returns true if (rold safe implies rcur safe) */ 16498 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold, 16499 struct bpf_reg_state *rcur, struct bpf_idmap *idmap, 16500 enum exact_level exact) 16501 { 16502 if (exact == EXACT) 16503 return regs_exact(rold, rcur, idmap); 16504 16505 if (!(rold->live & REG_LIVE_READ) && exact == NOT_EXACT) 16506 /* explored state didn't use this */ 16507 return true; 16508 if (rold->type == NOT_INIT) { 16509 if (exact == NOT_EXACT || rcur->type == NOT_INIT) 16510 /* explored state can't have used this */ 16511 return true; 16512 } 16513 16514 /* Enforce that register types have to match exactly, including their 16515 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general 16516 * rule. 16517 * 16518 * One can make a point that using a pointer register as unbounded 16519 * SCALAR would be technically acceptable, but this could lead to 16520 * pointer leaks because scalars are allowed to leak while pointers 16521 * are not. We could make this safe in special cases if root is 16522 * calling us, but it's probably not worth the hassle. 16523 * 16524 * Also, register types that are *not* MAYBE_NULL could technically be 16525 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE 16526 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point 16527 * to the same map). 16528 * However, if the old MAYBE_NULL register then got NULL checked, 16529 * doing so could have affected others with the same id, and we can't 16530 * check for that because we lost the id when we converted to 16531 * a non-MAYBE_NULL variant. 16532 * So, as a general rule we don't allow mixing MAYBE_NULL and 16533 * non-MAYBE_NULL registers as well. 16534 */ 16535 if (rold->type != rcur->type) 16536 return false; 16537 16538 switch (base_type(rold->type)) { 16539 case SCALAR_VALUE: 16540 if (env->explore_alu_limits) { 16541 /* explore_alu_limits disables tnum_in() and range_within() 16542 * logic and requires everything to be strict 16543 */ 16544 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 16545 check_scalar_ids(rold->id, rcur->id, idmap); 16546 } 16547 if (!rold->precise && exact == NOT_EXACT) 16548 return true; 16549 /* Why check_ids() for scalar registers? 16550 * 16551 * Consider the following BPF code: 16552 * 1: r6 = ... unbound scalar, ID=a ... 16553 * 2: r7 = ... unbound scalar, ID=b ... 16554 * 3: if (r6 > r7) goto +1 16555 * 4: r6 = r7 16556 * 5: if (r6 > X) goto ... 16557 * 6: ... memory operation using r7 ... 16558 * 16559 * First verification path is [1-6]: 16560 * - at (4) same bpf_reg_state::id (b) would be assigned to r6 and r7; 16561 * - at (5) r6 would be marked <= X, find_equal_scalars() would also mark 16562 * r7 <= X, because r6 and r7 share same id. 16563 * Next verification path is [1-4, 6]. 16564 * 16565 * Instruction (6) would be reached in two states: 16566 * I. r6{.id=b}, r7{.id=b} via path 1-6; 16567 * II. r6{.id=a}, r7{.id=b} via path 1-4, 6. 16568 * 16569 * Use check_ids() to distinguish these states. 16570 * --- 16571 * Also verify that new value satisfies old value range knowledge. 16572 */ 16573 return range_within(rold, rcur) && 16574 tnum_in(rold->var_off, rcur->var_off) && 16575 check_scalar_ids(rold->id, rcur->id, idmap); 16576 case PTR_TO_MAP_KEY: 16577 case PTR_TO_MAP_VALUE: 16578 case PTR_TO_MEM: 16579 case PTR_TO_BUF: 16580 case PTR_TO_TP_BUFFER: 16581 /* If the new min/max/var_off satisfy the old ones and 16582 * everything else matches, we are OK. 16583 */ 16584 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 && 16585 range_within(rold, rcur) && 16586 tnum_in(rold->var_off, rcur->var_off) && 16587 check_ids(rold->id, rcur->id, idmap) && 16588 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); 16589 case PTR_TO_PACKET_META: 16590 case PTR_TO_PACKET: 16591 /* We must have at least as much range as the old ptr 16592 * did, so that any accesses which were safe before are 16593 * still safe. This is true even if old range < old off, 16594 * since someone could have accessed through (ptr - k), or 16595 * even done ptr -= k in a register, to get a safe access. 16596 */ 16597 if (rold->range > rcur->range) 16598 return false; 16599 /* If the offsets don't match, we can't trust our alignment; 16600 * nor can we be sure that we won't fall out of range. 16601 */ 16602 if (rold->off != rcur->off) 16603 return false; 16604 /* id relations must be preserved */ 16605 if (!check_ids(rold->id, rcur->id, idmap)) 16606 return false; 16607 /* new val must satisfy old val knowledge */ 16608 return range_within(rold, rcur) && 16609 tnum_in(rold->var_off, rcur->var_off); 16610 case PTR_TO_STACK: 16611 /* two stack pointers are equal only if they're pointing to 16612 * the same stack frame, since fp-8 in foo != fp-8 in bar 16613 */ 16614 return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno; 16615 case PTR_TO_ARENA: 16616 return true; 16617 default: 16618 return regs_exact(rold, rcur, idmap); 16619 } 16620 } 16621 16622 static struct bpf_reg_state unbound_reg; 16623 16624 static __init int unbound_reg_init(void) 16625 { 16626 __mark_reg_unknown_imprecise(&unbound_reg); 16627 unbound_reg.live |= REG_LIVE_READ; 16628 return 0; 16629 } 16630 late_initcall(unbound_reg_init); 16631 16632 static bool is_stack_all_misc(struct bpf_verifier_env *env, 16633 struct bpf_stack_state *stack) 16634 { 16635 u32 i; 16636 16637 for (i = 0; i < ARRAY_SIZE(stack->slot_type); ++i) { 16638 if ((stack->slot_type[i] == STACK_MISC) || 16639 (stack->slot_type[i] == STACK_INVALID && env->allow_uninit_stack)) 16640 continue; 16641 return false; 16642 } 16643 16644 return true; 16645 } 16646 16647 static struct bpf_reg_state *scalar_reg_for_stack(struct bpf_verifier_env *env, 16648 struct bpf_stack_state *stack) 16649 { 16650 if (is_spilled_scalar_reg64(stack)) 16651 return &stack->spilled_ptr; 16652 16653 if (is_stack_all_misc(env, stack)) 16654 return &unbound_reg; 16655 16656 return NULL; 16657 } 16658 16659 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old, 16660 struct bpf_func_state *cur, struct bpf_idmap *idmap, 16661 enum exact_level exact) 16662 { 16663 int i, spi; 16664 16665 /* walk slots of the explored stack and ignore any additional 16666 * slots in the current stack, since explored(safe) state 16667 * didn't use them 16668 */ 16669 for (i = 0; i < old->allocated_stack; i++) { 16670 struct bpf_reg_state *old_reg, *cur_reg; 16671 16672 spi = i / BPF_REG_SIZE; 16673 16674 if (exact != NOT_EXACT && 16675 old->stack[spi].slot_type[i % BPF_REG_SIZE] != 16676 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 16677 return false; 16678 16679 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ) 16680 && exact == NOT_EXACT) { 16681 i += BPF_REG_SIZE - 1; 16682 /* explored state didn't use this */ 16683 continue; 16684 } 16685 16686 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 16687 continue; 16688 16689 if (env->allow_uninit_stack && 16690 old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC) 16691 continue; 16692 16693 /* explored stack has more populated slots than current stack 16694 * and these slots were used 16695 */ 16696 if (i >= cur->allocated_stack) 16697 return false; 16698 16699 /* 64-bit scalar spill vs all slots MISC and vice versa. 16700 * Load from all slots MISC produces unbound scalar. 16701 * Construct a fake register for such stack and call 16702 * regsafe() to ensure scalar ids are compared. 16703 */ 16704 old_reg = scalar_reg_for_stack(env, &old->stack[spi]); 16705 cur_reg = scalar_reg_for_stack(env, &cur->stack[spi]); 16706 if (old_reg && cur_reg) { 16707 if (!regsafe(env, old_reg, cur_reg, idmap, exact)) 16708 return false; 16709 i += BPF_REG_SIZE - 1; 16710 continue; 16711 } 16712 16713 /* if old state was safe with misc data in the stack 16714 * it will be safe with zero-initialized stack. 16715 * The opposite is not true 16716 */ 16717 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 16718 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 16719 continue; 16720 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 16721 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 16722 /* Ex: old explored (safe) state has STACK_SPILL in 16723 * this stack slot, but current has STACK_MISC -> 16724 * this verifier states are not equivalent, 16725 * return false to continue verification of this path 16726 */ 16727 return false; 16728 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1) 16729 continue; 16730 /* Both old and cur are having same slot_type */ 16731 switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) { 16732 case STACK_SPILL: 16733 /* when explored and current stack slot are both storing 16734 * spilled registers, check that stored pointers types 16735 * are the same as well. 16736 * Ex: explored safe path could have stored 16737 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 16738 * but current path has stored: 16739 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 16740 * such verifier states are not equivalent. 16741 * return false to continue verification of this path 16742 */ 16743 if (!regsafe(env, &old->stack[spi].spilled_ptr, 16744 &cur->stack[spi].spilled_ptr, idmap, exact)) 16745 return false; 16746 break; 16747 case STACK_DYNPTR: 16748 old_reg = &old->stack[spi].spilled_ptr; 16749 cur_reg = &cur->stack[spi].spilled_ptr; 16750 if (old_reg->dynptr.type != cur_reg->dynptr.type || 16751 old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot || 16752 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) 16753 return false; 16754 break; 16755 case STACK_ITER: 16756 old_reg = &old->stack[spi].spilled_ptr; 16757 cur_reg = &cur->stack[spi].spilled_ptr; 16758 /* iter.depth is not compared between states as it 16759 * doesn't matter for correctness and would otherwise 16760 * prevent convergence; we maintain it only to prevent 16761 * infinite loop check triggering, see 16762 * iter_active_depths_differ() 16763 */ 16764 if (old_reg->iter.btf != cur_reg->iter.btf || 16765 old_reg->iter.btf_id != cur_reg->iter.btf_id || 16766 old_reg->iter.state != cur_reg->iter.state || 16767 /* ignore {old_reg,cur_reg}->iter.depth, see above */ 16768 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) 16769 return false; 16770 break; 16771 case STACK_MISC: 16772 case STACK_ZERO: 16773 case STACK_INVALID: 16774 continue; 16775 /* Ensure that new unhandled slot types return false by default */ 16776 default: 16777 return false; 16778 } 16779 } 16780 return true; 16781 } 16782 16783 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur, 16784 struct bpf_idmap *idmap) 16785 { 16786 int i; 16787 16788 if (old->acquired_refs != cur->acquired_refs) 16789 return false; 16790 16791 for (i = 0; i < old->acquired_refs; i++) { 16792 if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap)) 16793 return false; 16794 } 16795 16796 return true; 16797 } 16798 16799 /* compare two verifier states 16800 * 16801 * all states stored in state_list are known to be valid, since 16802 * verifier reached 'bpf_exit' instruction through them 16803 * 16804 * this function is called when verifier exploring different branches of 16805 * execution popped from the state stack. If it sees an old state that has 16806 * more strict register state and more strict stack state then this execution 16807 * branch doesn't need to be explored further, since verifier already 16808 * concluded that more strict state leads to valid finish. 16809 * 16810 * Therefore two states are equivalent if register state is more conservative 16811 * and explored stack state is more conservative than the current one. 16812 * Example: 16813 * explored current 16814 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 16815 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 16816 * 16817 * In other words if current stack state (one being explored) has more 16818 * valid slots than old one that already passed validation, it means 16819 * the verifier can stop exploring and conclude that current state is valid too 16820 * 16821 * Similarly with registers. If explored state has register type as invalid 16822 * whereas register type in current state is meaningful, it means that 16823 * the current state will reach 'bpf_exit' instruction safely 16824 */ 16825 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old, 16826 struct bpf_func_state *cur, enum exact_level exact) 16827 { 16828 int i; 16829 16830 if (old->callback_depth > cur->callback_depth) 16831 return false; 16832 16833 for (i = 0; i < MAX_BPF_REG; i++) 16834 if (!regsafe(env, &old->regs[i], &cur->regs[i], 16835 &env->idmap_scratch, exact)) 16836 return false; 16837 16838 if (!stacksafe(env, old, cur, &env->idmap_scratch, exact)) 16839 return false; 16840 16841 if (!refsafe(old, cur, &env->idmap_scratch)) 16842 return false; 16843 16844 return true; 16845 } 16846 16847 static void reset_idmap_scratch(struct bpf_verifier_env *env) 16848 { 16849 env->idmap_scratch.tmp_id_gen = env->id_gen; 16850 memset(&env->idmap_scratch.map, 0, sizeof(env->idmap_scratch.map)); 16851 } 16852 16853 static bool states_equal(struct bpf_verifier_env *env, 16854 struct bpf_verifier_state *old, 16855 struct bpf_verifier_state *cur, 16856 enum exact_level exact) 16857 { 16858 int i; 16859 16860 if (old->curframe != cur->curframe) 16861 return false; 16862 16863 reset_idmap_scratch(env); 16864 16865 /* Verification state from speculative execution simulation 16866 * must never prune a non-speculative execution one. 16867 */ 16868 if (old->speculative && !cur->speculative) 16869 return false; 16870 16871 if (old->active_lock.ptr != cur->active_lock.ptr) 16872 return false; 16873 16874 /* Old and cur active_lock's have to be either both present 16875 * or both absent. 16876 */ 16877 if (!!old->active_lock.id != !!cur->active_lock.id) 16878 return false; 16879 16880 if (old->active_lock.id && 16881 !check_ids(old->active_lock.id, cur->active_lock.id, &env->idmap_scratch)) 16882 return false; 16883 16884 if (old->active_rcu_lock != cur->active_rcu_lock) 16885 return false; 16886 16887 /* for states to be equal callsites have to be the same 16888 * and all frame states need to be equivalent 16889 */ 16890 for (i = 0; i <= old->curframe; i++) { 16891 if (old->frame[i]->callsite != cur->frame[i]->callsite) 16892 return false; 16893 if (!func_states_equal(env, old->frame[i], cur->frame[i], exact)) 16894 return false; 16895 } 16896 return true; 16897 } 16898 16899 /* Return 0 if no propagation happened. Return negative error code if error 16900 * happened. Otherwise, return the propagated bit. 16901 */ 16902 static int propagate_liveness_reg(struct bpf_verifier_env *env, 16903 struct bpf_reg_state *reg, 16904 struct bpf_reg_state *parent_reg) 16905 { 16906 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 16907 u8 flag = reg->live & REG_LIVE_READ; 16908 int err; 16909 16910 /* When comes here, read flags of PARENT_REG or REG could be any of 16911 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 16912 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 16913 */ 16914 if (parent_flag == REG_LIVE_READ64 || 16915 /* Or if there is no read flag from REG. */ 16916 !flag || 16917 /* Or if the read flag from REG is the same as PARENT_REG. */ 16918 parent_flag == flag) 16919 return 0; 16920 16921 err = mark_reg_read(env, reg, parent_reg, flag); 16922 if (err) 16923 return err; 16924 16925 return flag; 16926 } 16927 16928 /* A write screens off any subsequent reads; but write marks come from the 16929 * straight-line code between a state and its parent. When we arrive at an 16930 * equivalent state (jump target or such) we didn't arrive by the straight-line 16931 * code, so read marks in the state must propagate to the parent regardless 16932 * of the state's write marks. That's what 'parent == state->parent' comparison 16933 * in mark_reg_read() is for. 16934 */ 16935 static int propagate_liveness(struct bpf_verifier_env *env, 16936 const struct bpf_verifier_state *vstate, 16937 struct bpf_verifier_state *vparent) 16938 { 16939 struct bpf_reg_state *state_reg, *parent_reg; 16940 struct bpf_func_state *state, *parent; 16941 int i, frame, err = 0; 16942 16943 if (vparent->curframe != vstate->curframe) { 16944 WARN(1, "propagate_live: parent frame %d current frame %d\n", 16945 vparent->curframe, vstate->curframe); 16946 return -EFAULT; 16947 } 16948 /* Propagate read liveness of registers... */ 16949 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 16950 for (frame = 0; frame <= vstate->curframe; frame++) { 16951 parent = vparent->frame[frame]; 16952 state = vstate->frame[frame]; 16953 parent_reg = parent->regs; 16954 state_reg = state->regs; 16955 /* We don't need to worry about FP liveness, it's read-only */ 16956 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 16957 err = propagate_liveness_reg(env, &state_reg[i], 16958 &parent_reg[i]); 16959 if (err < 0) 16960 return err; 16961 if (err == REG_LIVE_READ64) 16962 mark_insn_zext(env, &parent_reg[i]); 16963 } 16964 16965 /* Propagate stack slots. */ 16966 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 16967 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 16968 parent_reg = &parent->stack[i].spilled_ptr; 16969 state_reg = &state->stack[i].spilled_ptr; 16970 err = propagate_liveness_reg(env, state_reg, 16971 parent_reg); 16972 if (err < 0) 16973 return err; 16974 } 16975 } 16976 return 0; 16977 } 16978 16979 /* find precise scalars in the previous equivalent state and 16980 * propagate them into the current state 16981 */ 16982 static int propagate_precision(struct bpf_verifier_env *env, 16983 const struct bpf_verifier_state *old) 16984 { 16985 struct bpf_reg_state *state_reg; 16986 struct bpf_func_state *state; 16987 int i, err = 0, fr; 16988 bool first; 16989 16990 for (fr = old->curframe; fr >= 0; fr--) { 16991 state = old->frame[fr]; 16992 state_reg = state->regs; 16993 first = true; 16994 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 16995 if (state_reg->type != SCALAR_VALUE || 16996 !state_reg->precise || 16997 !(state_reg->live & REG_LIVE_READ)) 16998 continue; 16999 if (env->log.level & BPF_LOG_LEVEL2) { 17000 if (first) 17001 verbose(env, "frame %d: propagating r%d", fr, i); 17002 else 17003 verbose(env, ",r%d", i); 17004 } 17005 bt_set_frame_reg(&env->bt, fr, i); 17006 first = false; 17007 } 17008 17009 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 17010 if (!is_spilled_reg(&state->stack[i])) 17011 continue; 17012 state_reg = &state->stack[i].spilled_ptr; 17013 if (state_reg->type != SCALAR_VALUE || 17014 !state_reg->precise || 17015 !(state_reg->live & REG_LIVE_READ)) 17016 continue; 17017 if (env->log.level & BPF_LOG_LEVEL2) { 17018 if (first) 17019 verbose(env, "frame %d: propagating fp%d", 17020 fr, (-i - 1) * BPF_REG_SIZE); 17021 else 17022 verbose(env, ",fp%d", (-i - 1) * BPF_REG_SIZE); 17023 } 17024 bt_set_frame_slot(&env->bt, fr, i); 17025 first = false; 17026 } 17027 if (!first) 17028 verbose(env, "\n"); 17029 } 17030 17031 err = mark_chain_precision_batch(env); 17032 if (err < 0) 17033 return err; 17034 17035 return 0; 17036 } 17037 17038 static bool states_maybe_looping(struct bpf_verifier_state *old, 17039 struct bpf_verifier_state *cur) 17040 { 17041 struct bpf_func_state *fold, *fcur; 17042 int i, fr = cur->curframe; 17043 17044 if (old->curframe != fr) 17045 return false; 17046 17047 fold = old->frame[fr]; 17048 fcur = cur->frame[fr]; 17049 for (i = 0; i < MAX_BPF_REG; i++) 17050 if (memcmp(&fold->regs[i], &fcur->regs[i], 17051 offsetof(struct bpf_reg_state, parent))) 17052 return false; 17053 return true; 17054 } 17055 17056 static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx) 17057 { 17058 return env->insn_aux_data[insn_idx].is_iter_next; 17059 } 17060 17061 /* is_state_visited() handles iter_next() (see process_iter_next_call() for 17062 * terminology) calls specially: as opposed to bounded BPF loops, it *expects* 17063 * states to match, which otherwise would look like an infinite loop. So while 17064 * iter_next() calls are taken care of, we still need to be careful and 17065 * prevent erroneous and too eager declaration of "ininite loop", when 17066 * iterators are involved. 17067 * 17068 * Here's a situation in pseudo-BPF assembly form: 17069 * 17070 * 0: again: ; set up iter_next() call args 17071 * 1: r1 = &it ; <CHECKPOINT HERE> 17072 * 2: call bpf_iter_num_next ; this is iter_next() call 17073 * 3: if r0 == 0 goto done 17074 * 4: ... something useful here ... 17075 * 5: goto again ; another iteration 17076 * 6: done: 17077 * 7: r1 = &it 17078 * 8: call bpf_iter_num_destroy ; clean up iter state 17079 * 9: exit 17080 * 17081 * This is a typical loop. Let's assume that we have a prune point at 1:, 17082 * before we get to `call bpf_iter_num_next` (e.g., because of that `goto 17083 * again`, assuming other heuristics don't get in a way). 17084 * 17085 * When we first time come to 1:, let's say we have some state X. We proceed 17086 * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit. 17087 * Now we come back to validate that forked ACTIVE state. We proceed through 17088 * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we 17089 * are converging. But the problem is that we don't know that yet, as this 17090 * convergence has to happen at iter_next() call site only. So if nothing is 17091 * done, at 1: verifier will use bounded loop logic and declare infinite 17092 * looping (and would be *technically* correct, if not for iterator's 17093 * "eventual sticky NULL" contract, see process_iter_next_call()). But we 17094 * don't want that. So what we do in process_iter_next_call() when we go on 17095 * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's 17096 * a different iteration. So when we suspect an infinite loop, we additionally 17097 * check if any of the *ACTIVE* iterator states depths differ. If yes, we 17098 * pretend we are not looping and wait for next iter_next() call. 17099 * 17100 * This only applies to ACTIVE state. In DRAINED state we don't expect to 17101 * loop, because that would actually mean infinite loop, as DRAINED state is 17102 * "sticky", and so we'll keep returning into the same instruction with the 17103 * same state (at least in one of possible code paths). 17104 * 17105 * This approach allows to keep infinite loop heuristic even in the face of 17106 * active iterator. E.g., C snippet below is and will be detected as 17107 * inifintely looping: 17108 * 17109 * struct bpf_iter_num it; 17110 * int *p, x; 17111 * 17112 * bpf_iter_num_new(&it, 0, 10); 17113 * while ((p = bpf_iter_num_next(&t))) { 17114 * x = p; 17115 * while (x--) {} // <<-- infinite loop here 17116 * } 17117 * 17118 */ 17119 static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur) 17120 { 17121 struct bpf_reg_state *slot, *cur_slot; 17122 struct bpf_func_state *state; 17123 int i, fr; 17124 17125 for (fr = old->curframe; fr >= 0; fr--) { 17126 state = old->frame[fr]; 17127 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 17128 if (state->stack[i].slot_type[0] != STACK_ITER) 17129 continue; 17130 17131 slot = &state->stack[i].spilled_ptr; 17132 if (slot->iter.state != BPF_ITER_STATE_ACTIVE) 17133 continue; 17134 17135 cur_slot = &cur->frame[fr]->stack[i].spilled_ptr; 17136 if (cur_slot->iter.depth != slot->iter.depth) 17137 return true; 17138 } 17139 } 17140 return false; 17141 } 17142 17143 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 17144 { 17145 struct bpf_verifier_state_list *new_sl; 17146 struct bpf_verifier_state_list *sl, **pprev; 17147 struct bpf_verifier_state *cur = env->cur_state, *new, *loop_entry; 17148 int i, j, n, err, states_cnt = 0; 17149 bool force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx); 17150 bool add_new_state = force_new_state; 17151 bool force_exact; 17152 17153 /* bpf progs typically have pruning point every 4 instructions 17154 * http://vger.kernel.org/bpfconf2019.html#session-1 17155 * Do not add new state for future pruning if the verifier hasn't seen 17156 * at least 2 jumps and at least 8 instructions. 17157 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 17158 * In tests that amounts to up to 50% reduction into total verifier 17159 * memory consumption and 20% verifier time speedup. 17160 */ 17161 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 17162 env->insn_processed - env->prev_insn_processed >= 8) 17163 add_new_state = true; 17164 17165 pprev = explored_state(env, insn_idx); 17166 sl = *pprev; 17167 17168 clean_live_states(env, insn_idx, cur); 17169 17170 while (sl) { 17171 states_cnt++; 17172 if (sl->state.insn_idx != insn_idx) 17173 goto next; 17174 17175 if (sl->state.branches) { 17176 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe]; 17177 17178 if (frame->in_async_callback_fn && 17179 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) { 17180 /* Different async_entry_cnt means that the verifier is 17181 * processing another entry into async callback. 17182 * Seeing the same state is not an indication of infinite 17183 * loop or infinite recursion. 17184 * But finding the same state doesn't mean that it's safe 17185 * to stop processing the current state. The previous state 17186 * hasn't yet reached bpf_exit, since state.branches > 0. 17187 * Checking in_async_callback_fn alone is not enough either. 17188 * Since the verifier still needs to catch infinite loops 17189 * inside async callbacks. 17190 */ 17191 goto skip_inf_loop_check; 17192 } 17193 /* BPF open-coded iterators loop detection is special. 17194 * states_maybe_looping() logic is too simplistic in detecting 17195 * states that *might* be equivalent, because it doesn't know 17196 * about ID remapping, so don't even perform it. 17197 * See process_iter_next_call() and iter_active_depths_differ() 17198 * for overview of the logic. When current and one of parent 17199 * states are detected as equivalent, it's a good thing: we prove 17200 * convergence and can stop simulating further iterations. 17201 * It's safe to assume that iterator loop will finish, taking into 17202 * account iter_next() contract of eventually returning 17203 * sticky NULL result. 17204 * 17205 * Note, that states have to be compared exactly in this case because 17206 * read and precision marks might not be finalized inside the loop. 17207 * E.g. as in the program below: 17208 * 17209 * 1. r7 = -16 17210 * 2. r6 = bpf_get_prandom_u32() 17211 * 3. while (bpf_iter_num_next(&fp[-8])) { 17212 * 4. if (r6 != 42) { 17213 * 5. r7 = -32 17214 * 6. r6 = bpf_get_prandom_u32() 17215 * 7. continue 17216 * 8. } 17217 * 9. r0 = r10 17218 * 10. r0 += r7 17219 * 11. r8 = *(u64 *)(r0 + 0) 17220 * 12. r6 = bpf_get_prandom_u32() 17221 * 13. } 17222 * 17223 * Here verifier would first visit path 1-3, create a checkpoint at 3 17224 * with r7=-16, continue to 4-7,3. Existing checkpoint at 3 does 17225 * not have read or precision mark for r7 yet, thus inexact states 17226 * comparison would discard current state with r7=-32 17227 * => unsafe memory access at 11 would not be caught. 17228 */ 17229 if (is_iter_next_insn(env, insn_idx)) { 17230 if (states_equal(env, &sl->state, cur, RANGE_WITHIN)) { 17231 struct bpf_func_state *cur_frame; 17232 struct bpf_reg_state *iter_state, *iter_reg; 17233 int spi; 17234 17235 cur_frame = cur->frame[cur->curframe]; 17236 /* btf_check_iter_kfuncs() enforces that 17237 * iter state pointer is always the first arg 17238 */ 17239 iter_reg = &cur_frame->regs[BPF_REG_1]; 17240 /* current state is valid due to states_equal(), 17241 * so we can assume valid iter and reg state, 17242 * no need for extra (re-)validations 17243 */ 17244 spi = __get_spi(iter_reg->off + iter_reg->var_off.value); 17245 iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr; 17246 if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE) { 17247 update_loop_entry(cur, &sl->state); 17248 goto hit; 17249 } 17250 } 17251 goto skip_inf_loop_check; 17252 } 17253 if (is_may_goto_insn_at(env, insn_idx)) { 17254 if (states_equal(env, &sl->state, cur, RANGE_WITHIN)) { 17255 update_loop_entry(cur, &sl->state); 17256 goto hit; 17257 } 17258 goto skip_inf_loop_check; 17259 } 17260 if (calls_callback(env, insn_idx)) { 17261 if (states_equal(env, &sl->state, cur, RANGE_WITHIN)) 17262 goto hit; 17263 goto skip_inf_loop_check; 17264 } 17265 /* attempt to detect infinite loop to avoid unnecessary doomed work */ 17266 if (states_maybe_looping(&sl->state, cur) && 17267 states_equal(env, &sl->state, cur, EXACT) && 17268 !iter_active_depths_differ(&sl->state, cur) && 17269 sl->state.may_goto_depth == cur->may_goto_depth && 17270 sl->state.callback_unroll_depth == cur->callback_unroll_depth) { 17271 verbose_linfo(env, insn_idx, "; "); 17272 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 17273 verbose(env, "cur state:"); 17274 print_verifier_state(env, cur->frame[cur->curframe], true); 17275 verbose(env, "old state:"); 17276 print_verifier_state(env, sl->state.frame[cur->curframe], true); 17277 return -EINVAL; 17278 } 17279 /* if the verifier is processing a loop, avoid adding new state 17280 * too often, since different loop iterations have distinct 17281 * states and may not help future pruning. 17282 * This threshold shouldn't be too low to make sure that 17283 * a loop with large bound will be rejected quickly. 17284 * The most abusive loop will be: 17285 * r1 += 1 17286 * if r1 < 1000000 goto pc-2 17287 * 1M insn_procssed limit / 100 == 10k peak states. 17288 * This threshold shouldn't be too high either, since states 17289 * at the end of the loop are likely to be useful in pruning. 17290 */ 17291 skip_inf_loop_check: 17292 if (!force_new_state && 17293 env->jmps_processed - env->prev_jmps_processed < 20 && 17294 env->insn_processed - env->prev_insn_processed < 100) 17295 add_new_state = false; 17296 goto miss; 17297 } 17298 /* If sl->state is a part of a loop and this loop's entry is a part of 17299 * current verification path then states have to be compared exactly. 17300 * 'force_exact' is needed to catch the following case: 17301 * 17302 * initial Here state 'succ' was processed first, 17303 * | it was eventually tracked to produce a 17304 * V state identical to 'hdr'. 17305 * .---------> hdr All branches from 'succ' had been explored 17306 * | | and thus 'succ' has its .branches == 0. 17307 * | V 17308 * | .------... Suppose states 'cur' and 'succ' correspond 17309 * | | | to the same instruction + callsites. 17310 * | V V In such case it is necessary to check 17311 * | ... ... if 'succ' and 'cur' are states_equal(). 17312 * | | | If 'succ' and 'cur' are a part of the 17313 * | V V same loop exact flag has to be set. 17314 * | succ <- cur To check if that is the case, verify 17315 * | | if loop entry of 'succ' is in current 17316 * | V DFS path. 17317 * | ... 17318 * | | 17319 * '----' 17320 * 17321 * Additional details are in the comment before get_loop_entry(). 17322 */ 17323 loop_entry = get_loop_entry(&sl->state); 17324 force_exact = loop_entry && loop_entry->branches > 0; 17325 if (states_equal(env, &sl->state, cur, force_exact ? RANGE_WITHIN : NOT_EXACT)) { 17326 if (force_exact) 17327 update_loop_entry(cur, loop_entry); 17328 hit: 17329 sl->hit_cnt++; 17330 /* reached equivalent register/stack state, 17331 * prune the search. 17332 * Registers read by the continuation are read by us. 17333 * If we have any write marks in env->cur_state, they 17334 * will prevent corresponding reads in the continuation 17335 * from reaching our parent (an explored_state). Our 17336 * own state will get the read marks recorded, but 17337 * they'll be immediately forgotten as we're pruning 17338 * this state and will pop a new one. 17339 */ 17340 err = propagate_liveness(env, &sl->state, cur); 17341 17342 /* if previous state reached the exit with precision and 17343 * current state is equivalent to it (except precsion marks) 17344 * the precision needs to be propagated back in 17345 * the current state. 17346 */ 17347 if (is_jmp_point(env, env->insn_idx)) 17348 err = err ? : push_jmp_history(env, cur, 0); 17349 err = err ? : propagate_precision(env, &sl->state); 17350 if (err) 17351 return err; 17352 return 1; 17353 } 17354 miss: 17355 /* when new state is not going to be added do not increase miss count. 17356 * Otherwise several loop iterations will remove the state 17357 * recorded earlier. The goal of these heuristics is to have 17358 * states from some iterations of the loop (some in the beginning 17359 * and some at the end) to help pruning. 17360 */ 17361 if (add_new_state) 17362 sl->miss_cnt++; 17363 /* heuristic to determine whether this state is beneficial 17364 * to keep checking from state equivalence point of view. 17365 * Higher numbers increase max_states_per_insn and verification time, 17366 * but do not meaningfully decrease insn_processed. 17367 * 'n' controls how many times state could miss before eviction. 17368 * Use bigger 'n' for checkpoints because evicting checkpoint states 17369 * too early would hinder iterator convergence. 17370 */ 17371 n = is_force_checkpoint(env, insn_idx) && sl->state.branches > 0 ? 64 : 3; 17372 if (sl->miss_cnt > sl->hit_cnt * n + n) { 17373 /* the state is unlikely to be useful. Remove it to 17374 * speed up verification 17375 */ 17376 *pprev = sl->next; 17377 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE && 17378 !sl->state.used_as_loop_entry) { 17379 u32 br = sl->state.branches; 17380 17381 WARN_ONCE(br, 17382 "BUG live_done but branches_to_explore %d\n", 17383 br); 17384 free_verifier_state(&sl->state, false); 17385 kfree(sl); 17386 env->peak_states--; 17387 } else { 17388 /* cannot free this state, since parentage chain may 17389 * walk it later. Add it for free_list instead to 17390 * be freed at the end of verification 17391 */ 17392 sl->next = env->free_list; 17393 env->free_list = sl; 17394 } 17395 sl = *pprev; 17396 continue; 17397 } 17398 next: 17399 pprev = &sl->next; 17400 sl = *pprev; 17401 } 17402 17403 if (env->max_states_per_insn < states_cnt) 17404 env->max_states_per_insn = states_cnt; 17405 17406 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 17407 return 0; 17408 17409 if (!add_new_state) 17410 return 0; 17411 17412 /* There were no equivalent states, remember the current one. 17413 * Technically the current state is not proven to be safe yet, 17414 * but it will either reach outer most bpf_exit (which means it's safe) 17415 * or it will be rejected. When there are no loops the verifier won't be 17416 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 17417 * again on the way to bpf_exit. 17418 * When looping the sl->state.branches will be > 0 and this state 17419 * will not be considered for equivalence until branches == 0. 17420 */ 17421 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 17422 if (!new_sl) 17423 return -ENOMEM; 17424 env->total_states++; 17425 env->peak_states++; 17426 env->prev_jmps_processed = env->jmps_processed; 17427 env->prev_insn_processed = env->insn_processed; 17428 17429 /* forget precise markings we inherited, see __mark_chain_precision */ 17430 if (env->bpf_capable) 17431 mark_all_scalars_imprecise(env, cur); 17432 17433 /* add new state to the head of linked list */ 17434 new = &new_sl->state; 17435 err = copy_verifier_state(new, cur); 17436 if (err) { 17437 free_verifier_state(new, false); 17438 kfree(new_sl); 17439 return err; 17440 } 17441 new->insn_idx = insn_idx; 17442 WARN_ONCE(new->branches != 1, 17443 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 17444 17445 cur->parent = new; 17446 cur->first_insn_idx = insn_idx; 17447 cur->dfs_depth = new->dfs_depth + 1; 17448 clear_jmp_history(cur); 17449 new_sl->next = *explored_state(env, insn_idx); 17450 *explored_state(env, insn_idx) = new_sl; 17451 /* connect new state to parentage chain. Current frame needs all 17452 * registers connected. Only r6 - r9 of the callers are alive (pushed 17453 * to the stack implicitly by JITs) so in callers' frames connect just 17454 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 17455 * the state of the call instruction (with WRITTEN set), and r0 comes 17456 * from callee with its full parentage chain, anyway. 17457 */ 17458 /* clear write marks in current state: the writes we did are not writes 17459 * our child did, so they don't screen off its reads from us. 17460 * (There are no read marks in current state, because reads always mark 17461 * their parent and current state never has children yet. Only 17462 * explored_states can get read marks.) 17463 */ 17464 for (j = 0; j <= cur->curframe; j++) { 17465 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 17466 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 17467 for (i = 0; i < BPF_REG_FP; i++) 17468 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 17469 } 17470 17471 /* all stack frames are accessible from callee, clear them all */ 17472 for (j = 0; j <= cur->curframe; j++) { 17473 struct bpf_func_state *frame = cur->frame[j]; 17474 struct bpf_func_state *newframe = new->frame[j]; 17475 17476 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 17477 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 17478 frame->stack[i].spilled_ptr.parent = 17479 &newframe->stack[i].spilled_ptr; 17480 } 17481 } 17482 return 0; 17483 } 17484 17485 /* Return true if it's OK to have the same insn return a different type. */ 17486 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 17487 { 17488 switch (base_type(type)) { 17489 case PTR_TO_CTX: 17490 case PTR_TO_SOCKET: 17491 case PTR_TO_SOCK_COMMON: 17492 case PTR_TO_TCP_SOCK: 17493 case PTR_TO_XDP_SOCK: 17494 case PTR_TO_BTF_ID: 17495 case PTR_TO_ARENA: 17496 return false; 17497 default: 17498 return true; 17499 } 17500 } 17501 17502 /* If an instruction was previously used with particular pointer types, then we 17503 * need to be careful to avoid cases such as the below, where it may be ok 17504 * for one branch accessing the pointer, but not ok for the other branch: 17505 * 17506 * R1 = sock_ptr 17507 * goto X; 17508 * ... 17509 * R1 = some_other_valid_ptr; 17510 * goto X; 17511 * ... 17512 * R2 = *(u32 *)(R1 + 0); 17513 */ 17514 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 17515 { 17516 return src != prev && (!reg_type_mismatch_ok(src) || 17517 !reg_type_mismatch_ok(prev)); 17518 } 17519 17520 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type, 17521 bool allow_trust_missmatch) 17522 { 17523 enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type; 17524 17525 if (*prev_type == NOT_INIT) { 17526 /* Saw a valid insn 17527 * dst_reg = *(u32 *)(src_reg + off) 17528 * save type to validate intersecting paths 17529 */ 17530 *prev_type = type; 17531 } else if (reg_type_mismatch(type, *prev_type)) { 17532 /* Abuser program is trying to use the same insn 17533 * dst_reg = *(u32*) (src_reg + off) 17534 * with different pointer types: 17535 * src_reg == ctx in one branch and 17536 * src_reg == stack|map in some other branch. 17537 * Reject it. 17538 */ 17539 if (allow_trust_missmatch && 17540 base_type(type) == PTR_TO_BTF_ID && 17541 base_type(*prev_type) == PTR_TO_BTF_ID) { 17542 /* 17543 * Have to support a use case when one path through 17544 * the program yields TRUSTED pointer while another 17545 * is UNTRUSTED. Fallback to UNTRUSTED to generate 17546 * BPF_PROBE_MEM/BPF_PROBE_MEMSX. 17547 */ 17548 *prev_type = PTR_TO_BTF_ID | PTR_UNTRUSTED; 17549 } else { 17550 verbose(env, "same insn cannot be used with different pointers\n"); 17551 return -EINVAL; 17552 } 17553 } 17554 17555 return 0; 17556 } 17557 17558 static int do_check(struct bpf_verifier_env *env) 17559 { 17560 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 17561 struct bpf_verifier_state *state = env->cur_state; 17562 struct bpf_insn *insns = env->prog->insnsi; 17563 struct bpf_reg_state *regs; 17564 int insn_cnt = env->prog->len; 17565 bool do_print_state = false; 17566 int prev_insn_idx = -1; 17567 17568 for (;;) { 17569 bool exception_exit = false; 17570 struct bpf_insn *insn; 17571 u8 class; 17572 int err; 17573 17574 /* reset current history entry on each new instruction */ 17575 env->cur_hist_ent = NULL; 17576 17577 env->prev_insn_idx = prev_insn_idx; 17578 if (env->insn_idx >= insn_cnt) { 17579 verbose(env, "invalid insn idx %d insn_cnt %d\n", 17580 env->insn_idx, insn_cnt); 17581 return -EFAULT; 17582 } 17583 17584 insn = &insns[env->insn_idx]; 17585 class = BPF_CLASS(insn->code); 17586 17587 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 17588 verbose(env, 17589 "BPF program is too large. Processed %d insn\n", 17590 env->insn_processed); 17591 return -E2BIG; 17592 } 17593 17594 state->last_insn_idx = env->prev_insn_idx; 17595 17596 if (is_prune_point(env, env->insn_idx)) { 17597 err = is_state_visited(env, env->insn_idx); 17598 if (err < 0) 17599 return err; 17600 if (err == 1) { 17601 /* found equivalent state, can prune the search */ 17602 if (env->log.level & BPF_LOG_LEVEL) { 17603 if (do_print_state) 17604 verbose(env, "\nfrom %d to %d%s: safe\n", 17605 env->prev_insn_idx, env->insn_idx, 17606 env->cur_state->speculative ? 17607 " (speculative execution)" : ""); 17608 else 17609 verbose(env, "%d: safe\n", env->insn_idx); 17610 } 17611 goto process_bpf_exit; 17612 } 17613 } 17614 17615 if (is_jmp_point(env, env->insn_idx)) { 17616 err = push_jmp_history(env, state, 0); 17617 if (err) 17618 return err; 17619 } 17620 17621 if (signal_pending(current)) 17622 return -EAGAIN; 17623 17624 if (need_resched()) 17625 cond_resched(); 17626 17627 if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) { 17628 verbose(env, "\nfrom %d to %d%s:", 17629 env->prev_insn_idx, env->insn_idx, 17630 env->cur_state->speculative ? 17631 " (speculative execution)" : ""); 17632 print_verifier_state(env, state->frame[state->curframe], true); 17633 do_print_state = false; 17634 } 17635 17636 if (env->log.level & BPF_LOG_LEVEL) { 17637 const struct bpf_insn_cbs cbs = { 17638 .cb_call = disasm_kfunc_name, 17639 .cb_print = verbose, 17640 .private_data = env, 17641 }; 17642 17643 if (verifier_state_scratched(env)) 17644 print_insn_state(env, state->frame[state->curframe]); 17645 17646 verbose_linfo(env, env->insn_idx, "; "); 17647 env->prev_log_pos = env->log.end_pos; 17648 verbose(env, "%d: ", env->insn_idx); 17649 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 17650 env->prev_insn_print_pos = env->log.end_pos - env->prev_log_pos; 17651 env->prev_log_pos = env->log.end_pos; 17652 } 17653 17654 if (bpf_prog_is_offloaded(env->prog->aux)) { 17655 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 17656 env->prev_insn_idx); 17657 if (err) 17658 return err; 17659 } 17660 17661 regs = cur_regs(env); 17662 sanitize_mark_insn_seen(env); 17663 prev_insn_idx = env->insn_idx; 17664 17665 if (class == BPF_ALU || class == BPF_ALU64) { 17666 err = check_alu_op(env, insn); 17667 if (err) 17668 return err; 17669 17670 } else if (class == BPF_LDX) { 17671 enum bpf_reg_type src_reg_type; 17672 17673 /* check for reserved fields is already done */ 17674 17675 /* check src operand */ 17676 err = check_reg_arg(env, insn->src_reg, SRC_OP); 17677 if (err) 17678 return err; 17679 17680 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 17681 if (err) 17682 return err; 17683 17684 src_reg_type = regs[insn->src_reg].type; 17685 17686 /* check that memory (src_reg + off) is readable, 17687 * the state of dst_reg will be updated by this func 17688 */ 17689 err = check_mem_access(env, env->insn_idx, insn->src_reg, 17690 insn->off, BPF_SIZE(insn->code), 17691 BPF_READ, insn->dst_reg, false, 17692 BPF_MODE(insn->code) == BPF_MEMSX); 17693 err = err ?: save_aux_ptr_type(env, src_reg_type, true); 17694 err = err ?: reg_bounds_sanity_check(env, ®s[insn->dst_reg], "ldx"); 17695 if (err) 17696 return err; 17697 } else if (class == BPF_STX) { 17698 enum bpf_reg_type dst_reg_type; 17699 17700 if (BPF_MODE(insn->code) == BPF_ATOMIC) { 17701 err = check_atomic(env, env->insn_idx, insn); 17702 if (err) 17703 return err; 17704 env->insn_idx++; 17705 continue; 17706 } 17707 17708 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) { 17709 verbose(env, "BPF_STX uses reserved fields\n"); 17710 return -EINVAL; 17711 } 17712 17713 /* check src1 operand */ 17714 err = check_reg_arg(env, insn->src_reg, SRC_OP); 17715 if (err) 17716 return err; 17717 /* check src2 operand */ 17718 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 17719 if (err) 17720 return err; 17721 17722 dst_reg_type = regs[insn->dst_reg].type; 17723 17724 /* check that memory (dst_reg + off) is writeable */ 17725 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 17726 insn->off, BPF_SIZE(insn->code), 17727 BPF_WRITE, insn->src_reg, false, false); 17728 if (err) 17729 return err; 17730 17731 err = save_aux_ptr_type(env, dst_reg_type, false); 17732 if (err) 17733 return err; 17734 } else if (class == BPF_ST) { 17735 enum bpf_reg_type dst_reg_type; 17736 17737 if (BPF_MODE(insn->code) != BPF_MEM || 17738 insn->src_reg != BPF_REG_0) { 17739 verbose(env, "BPF_ST uses reserved fields\n"); 17740 return -EINVAL; 17741 } 17742 /* check src operand */ 17743 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 17744 if (err) 17745 return err; 17746 17747 dst_reg_type = regs[insn->dst_reg].type; 17748 17749 /* check that memory (dst_reg + off) is writeable */ 17750 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 17751 insn->off, BPF_SIZE(insn->code), 17752 BPF_WRITE, -1, false, false); 17753 if (err) 17754 return err; 17755 17756 err = save_aux_ptr_type(env, dst_reg_type, false); 17757 if (err) 17758 return err; 17759 } else if (class == BPF_JMP || class == BPF_JMP32) { 17760 u8 opcode = BPF_OP(insn->code); 17761 17762 env->jmps_processed++; 17763 if (opcode == BPF_CALL) { 17764 if (BPF_SRC(insn->code) != BPF_K || 17765 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL 17766 && insn->off != 0) || 17767 (insn->src_reg != BPF_REG_0 && 17768 insn->src_reg != BPF_PSEUDO_CALL && 17769 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) || 17770 insn->dst_reg != BPF_REG_0 || 17771 class == BPF_JMP32) { 17772 verbose(env, "BPF_CALL uses reserved fields\n"); 17773 return -EINVAL; 17774 } 17775 17776 if (env->cur_state->active_lock.ptr) { 17777 if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) || 17778 (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && 17779 (insn->off != 0 || !is_bpf_graph_api_kfunc(insn->imm)))) { 17780 verbose(env, "function calls are not allowed while holding a lock\n"); 17781 return -EINVAL; 17782 } 17783 } 17784 if (insn->src_reg == BPF_PSEUDO_CALL) { 17785 err = check_func_call(env, insn, &env->insn_idx); 17786 } else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 17787 err = check_kfunc_call(env, insn, &env->insn_idx); 17788 if (!err && is_bpf_throw_kfunc(insn)) { 17789 exception_exit = true; 17790 goto process_bpf_exit_full; 17791 } 17792 } else { 17793 err = check_helper_call(env, insn, &env->insn_idx); 17794 } 17795 if (err) 17796 return err; 17797 17798 mark_reg_scratched(env, BPF_REG_0); 17799 } else if (opcode == BPF_JA) { 17800 if (BPF_SRC(insn->code) != BPF_K || 17801 insn->src_reg != BPF_REG_0 || 17802 insn->dst_reg != BPF_REG_0 || 17803 (class == BPF_JMP && insn->imm != 0) || 17804 (class == BPF_JMP32 && insn->off != 0)) { 17805 verbose(env, "BPF_JA uses reserved fields\n"); 17806 return -EINVAL; 17807 } 17808 17809 if (class == BPF_JMP) 17810 env->insn_idx += insn->off + 1; 17811 else 17812 env->insn_idx += insn->imm + 1; 17813 continue; 17814 17815 } else if (opcode == BPF_EXIT) { 17816 if (BPF_SRC(insn->code) != BPF_K || 17817 insn->imm != 0 || 17818 insn->src_reg != BPF_REG_0 || 17819 insn->dst_reg != BPF_REG_0 || 17820 class == BPF_JMP32) { 17821 verbose(env, "BPF_EXIT uses reserved fields\n"); 17822 return -EINVAL; 17823 } 17824 process_bpf_exit_full: 17825 if (env->cur_state->active_lock.ptr && !env->cur_state->curframe) { 17826 verbose(env, "bpf_spin_unlock is missing\n"); 17827 return -EINVAL; 17828 } 17829 17830 if (env->cur_state->active_rcu_lock && !env->cur_state->curframe) { 17831 verbose(env, "bpf_rcu_read_unlock is missing\n"); 17832 return -EINVAL; 17833 } 17834 17835 /* We must do check_reference_leak here before 17836 * prepare_func_exit to handle the case when 17837 * state->curframe > 0, it may be a callback 17838 * function, for which reference_state must 17839 * match caller reference state when it exits. 17840 */ 17841 err = check_reference_leak(env, exception_exit); 17842 if (err) 17843 return err; 17844 17845 /* The side effect of the prepare_func_exit 17846 * which is being skipped is that it frees 17847 * bpf_func_state. Typically, process_bpf_exit 17848 * will only be hit with outermost exit. 17849 * copy_verifier_state in pop_stack will handle 17850 * freeing of any extra bpf_func_state left over 17851 * from not processing all nested function 17852 * exits. We also skip return code checks as 17853 * they are not needed for exceptional exits. 17854 */ 17855 if (exception_exit) 17856 goto process_bpf_exit; 17857 17858 if (state->curframe) { 17859 /* exit from nested function */ 17860 err = prepare_func_exit(env, &env->insn_idx); 17861 if (err) 17862 return err; 17863 do_print_state = true; 17864 continue; 17865 } 17866 17867 err = check_return_code(env, BPF_REG_0, "R0"); 17868 if (err) 17869 return err; 17870 process_bpf_exit: 17871 mark_verifier_state_scratched(env); 17872 update_branch_counts(env, env->cur_state); 17873 err = pop_stack(env, &prev_insn_idx, 17874 &env->insn_idx, pop_log); 17875 if (err < 0) { 17876 if (err != -ENOENT) 17877 return err; 17878 break; 17879 } else { 17880 do_print_state = true; 17881 continue; 17882 } 17883 } else { 17884 err = check_cond_jmp_op(env, insn, &env->insn_idx); 17885 if (err) 17886 return err; 17887 } 17888 } else if (class == BPF_LD) { 17889 u8 mode = BPF_MODE(insn->code); 17890 17891 if (mode == BPF_ABS || mode == BPF_IND) { 17892 err = check_ld_abs(env, insn); 17893 if (err) 17894 return err; 17895 17896 } else if (mode == BPF_IMM) { 17897 err = check_ld_imm(env, insn); 17898 if (err) 17899 return err; 17900 17901 env->insn_idx++; 17902 sanitize_mark_insn_seen(env); 17903 } else { 17904 verbose(env, "invalid BPF_LD mode\n"); 17905 return -EINVAL; 17906 } 17907 } else { 17908 verbose(env, "unknown insn class %d\n", class); 17909 return -EINVAL; 17910 } 17911 17912 env->insn_idx++; 17913 } 17914 17915 return 0; 17916 } 17917 17918 static int find_btf_percpu_datasec(struct btf *btf) 17919 { 17920 const struct btf_type *t; 17921 const char *tname; 17922 int i, n; 17923 17924 /* 17925 * Both vmlinux and module each have their own ".data..percpu" 17926 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF 17927 * types to look at only module's own BTF types. 17928 */ 17929 n = btf_nr_types(btf); 17930 if (btf_is_module(btf)) 17931 i = btf_nr_types(btf_vmlinux); 17932 else 17933 i = 1; 17934 17935 for(; i < n; i++) { 17936 t = btf_type_by_id(btf, i); 17937 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC) 17938 continue; 17939 17940 tname = btf_name_by_offset(btf, t->name_off); 17941 if (!strcmp(tname, ".data..percpu")) 17942 return i; 17943 } 17944 17945 return -ENOENT; 17946 } 17947 17948 /* replace pseudo btf_id with kernel symbol address */ 17949 static int check_pseudo_btf_id(struct bpf_verifier_env *env, 17950 struct bpf_insn *insn, 17951 struct bpf_insn_aux_data *aux) 17952 { 17953 const struct btf_var_secinfo *vsi; 17954 const struct btf_type *datasec; 17955 struct btf_mod_pair *btf_mod; 17956 const struct btf_type *t; 17957 const char *sym_name; 17958 bool percpu = false; 17959 u32 type, id = insn->imm; 17960 struct btf *btf; 17961 s32 datasec_id; 17962 u64 addr; 17963 int i, btf_fd, err; 17964 17965 btf_fd = insn[1].imm; 17966 if (btf_fd) { 17967 btf = btf_get_by_fd(btf_fd); 17968 if (IS_ERR(btf)) { 17969 verbose(env, "invalid module BTF object FD specified.\n"); 17970 return -EINVAL; 17971 } 17972 } else { 17973 if (!btf_vmlinux) { 17974 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n"); 17975 return -EINVAL; 17976 } 17977 btf = btf_vmlinux; 17978 btf_get(btf); 17979 } 17980 17981 t = btf_type_by_id(btf, id); 17982 if (!t) { 17983 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id); 17984 err = -ENOENT; 17985 goto err_put; 17986 } 17987 17988 if (!btf_type_is_var(t) && !btf_type_is_func(t)) { 17989 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id); 17990 err = -EINVAL; 17991 goto err_put; 17992 } 17993 17994 sym_name = btf_name_by_offset(btf, t->name_off); 17995 addr = kallsyms_lookup_name(sym_name); 17996 if (!addr) { 17997 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n", 17998 sym_name); 17999 err = -ENOENT; 18000 goto err_put; 18001 } 18002 insn[0].imm = (u32)addr; 18003 insn[1].imm = addr >> 32; 18004 18005 if (btf_type_is_func(t)) { 18006 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 18007 aux->btf_var.mem_size = 0; 18008 goto check_btf; 18009 } 18010 18011 datasec_id = find_btf_percpu_datasec(btf); 18012 if (datasec_id > 0) { 18013 datasec = btf_type_by_id(btf, datasec_id); 18014 for_each_vsi(i, datasec, vsi) { 18015 if (vsi->type == id) { 18016 percpu = true; 18017 break; 18018 } 18019 } 18020 } 18021 18022 type = t->type; 18023 t = btf_type_skip_modifiers(btf, type, NULL); 18024 if (percpu) { 18025 aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU; 18026 aux->btf_var.btf = btf; 18027 aux->btf_var.btf_id = type; 18028 } else if (!btf_type_is_struct(t)) { 18029 const struct btf_type *ret; 18030 const char *tname; 18031 u32 tsize; 18032 18033 /* resolve the type size of ksym. */ 18034 ret = btf_resolve_size(btf, t, &tsize); 18035 if (IS_ERR(ret)) { 18036 tname = btf_name_by_offset(btf, t->name_off); 18037 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n", 18038 tname, PTR_ERR(ret)); 18039 err = -EINVAL; 18040 goto err_put; 18041 } 18042 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 18043 aux->btf_var.mem_size = tsize; 18044 } else { 18045 aux->btf_var.reg_type = PTR_TO_BTF_ID; 18046 aux->btf_var.btf = btf; 18047 aux->btf_var.btf_id = type; 18048 } 18049 check_btf: 18050 /* check whether we recorded this BTF (and maybe module) already */ 18051 for (i = 0; i < env->used_btf_cnt; i++) { 18052 if (env->used_btfs[i].btf == btf) { 18053 btf_put(btf); 18054 return 0; 18055 } 18056 } 18057 18058 if (env->used_btf_cnt >= MAX_USED_BTFS) { 18059 err = -E2BIG; 18060 goto err_put; 18061 } 18062 18063 btf_mod = &env->used_btfs[env->used_btf_cnt]; 18064 btf_mod->btf = btf; 18065 btf_mod->module = NULL; 18066 18067 /* if we reference variables from kernel module, bump its refcount */ 18068 if (btf_is_module(btf)) { 18069 btf_mod->module = btf_try_get_module(btf); 18070 if (!btf_mod->module) { 18071 err = -ENXIO; 18072 goto err_put; 18073 } 18074 } 18075 18076 env->used_btf_cnt++; 18077 18078 return 0; 18079 err_put: 18080 btf_put(btf); 18081 return err; 18082 } 18083 18084 static bool is_tracing_prog_type(enum bpf_prog_type type) 18085 { 18086 switch (type) { 18087 case BPF_PROG_TYPE_KPROBE: 18088 case BPF_PROG_TYPE_TRACEPOINT: 18089 case BPF_PROG_TYPE_PERF_EVENT: 18090 case BPF_PROG_TYPE_RAW_TRACEPOINT: 18091 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: 18092 return true; 18093 default: 18094 return false; 18095 } 18096 } 18097 18098 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 18099 struct bpf_map *map, 18100 struct bpf_prog *prog) 18101 18102 { 18103 enum bpf_prog_type prog_type = resolve_prog_type(prog); 18104 18105 if (btf_record_has_field(map->record, BPF_LIST_HEAD) || 18106 btf_record_has_field(map->record, BPF_RB_ROOT)) { 18107 if (is_tracing_prog_type(prog_type)) { 18108 verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n"); 18109 return -EINVAL; 18110 } 18111 } 18112 18113 if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) { 18114 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) { 18115 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n"); 18116 return -EINVAL; 18117 } 18118 18119 if (is_tracing_prog_type(prog_type)) { 18120 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 18121 return -EINVAL; 18122 } 18123 } 18124 18125 if (btf_record_has_field(map->record, BPF_TIMER)) { 18126 if (is_tracing_prog_type(prog_type)) { 18127 verbose(env, "tracing progs cannot use bpf_timer yet\n"); 18128 return -EINVAL; 18129 } 18130 } 18131 18132 if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) && 18133 !bpf_offload_prog_map_match(prog, map)) { 18134 verbose(env, "offload device mismatch between prog and map\n"); 18135 return -EINVAL; 18136 } 18137 18138 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 18139 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 18140 return -EINVAL; 18141 } 18142 18143 if (prog->sleepable) 18144 switch (map->map_type) { 18145 case BPF_MAP_TYPE_HASH: 18146 case BPF_MAP_TYPE_LRU_HASH: 18147 case BPF_MAP_TYPE_ARRAY: 18148 case BPF_MAP_TYPE_PERCPU_HASH: 18149 case BPF_MAP_TYPE_PERCPU_ARRAY: 18150 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 18151 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 18152 case BPF_MAP_TYPE_HASH_OF_MAPS: 18153 case BPF_MAP_TYPE_RINGBUF: 18154 case BPF_MAP_TYPE_USER_RINGBUF: 18155 case BPF_MAP_TYPE_INODE_STORAGE: 18156 case BPF_MAP_TYPE_SK_STORAGE: 18157 case BPF_MAP_TYPE_TASK_STORAGE: 18158 case BPF_MAP_TYPE_CGRP_STORAGE: 18159 case BPF_MAP_TYPE_QUEUE: 18160 case BPF_MAP_TYPE_STACK: 18161 case BPF_MAP_TYPE_ARENA: 18162 break; 18163 default: 18164 verbose(env, 18165 "Sleepable programs can only use array, hash, ringbuf and local storage maps\n"); 18166 return -EINVAL; 18167 } 18168 18169 return 0; 18170 } 18171 18172 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 18173 { 18174 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 18175 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 18176 } 18177 18178 /* find and rewrite pseudo imm in ld_imm64 instructions: 18179 * 18180 * 1. if it accesses map FD, replace it with actual map pointer. 18181 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var. 18182 * 18183 * NOTE: btf_vmlinux is required for converting pseudo btf_id. 18184 */ 18185 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env) 18186 { 18187 struct bpf_insn *insn = env->prog->insnsi; 18188 int insn_cnt = env->prog->len; 18189 int i, j, err; 18190 18191 err = bpf_prog_calc_tag(env->prog); 18192 if (err) 18193 return err; 18194 18195 for (i = 0; i < insn_cnt; i++, insn++) { 18196 if (BPF_CLASS(insn->code) == BPF_LDX && 18197 ((BPF_MODE(insn->code) != BPF_MEM && BPF_MODE(insn->code) != BPF_MEMSX) || 18198 insn->imm != 0)) { 18199 verbose(env, "BPF_LDX uses reserved fields\n"); 18200 return -EINVAL; 18201 } 18202 18203 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 18204 struct bpf_insn_aux_data *aux; 18205 struct bpf_map *map; 18206 struct fd f; 18207 u64 addr; 18208 u32 fd; 18209 18210 if (i == insn_cnt - 1 || insn[1].code != 0 || 18211 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 18212 insn[1].off != 0) { 18213 verbose(env, "invalid bpf_ld_imm64 insn\n"); 18214 return -EINVAL; 18215 } 18216 18217 if (insn[0].src_reg == 0) 18218 /* valid generic load 64-bit imm */ 18219 goto next_insn; 18220 18221 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) { 18222 aux = &env->insn_aux_data[i]; 18223 err = check_pseudo_btf_id(env, insn, aux); 18224 if (err) 18225 return err; 18226 goto next_insn; 18227 } 18228 18229 if (insn[0].src_reg == BPF_PSEUDO_FUNC) { 18230 aux = &env->insn_aux_data[i]; 18231 aux->ptr_type = PTR_TO_FUNC; 18232 goto next_insn; 18233 } 18234 18235 /* In final convert_pseudo_ld_imm64() step, this is 18236 * converted into regular 64-bit imm load insn. 18237 */ 18238 switch (insn[0].src_reg) { 18239 case BPF_PSEUDO_MAP_VALUE: 18240 case BPF_PSEUDO_MAP_IDX_VALUE: 18241 break; 18242 case BPF_PSEUDO_MAP_FD: 18243 case BPF_PSEUDO_MAP_IDX: 18244 if (insn[1].imm == 0) 18245 break; 18246 fallthrough; 18247 default: 18248 verbose(env, "unrecognized bpf_ld_imm64 insn\n"); 18249 return -EINVAL; 18250 } 18251 18252 switch (insn[0].src_reg) { 18253 case BPF_PSEUDO_MAP_IDX_VALUE: 18254 case BPF_PSEUDO_MAP_IDX: 18255 if (bpfptr_is_null(env->fd_array)) { 18256 verbose(env, "fd_idx without fd_array is invalid\n"); 18257 return -EPROTO; 18258 } 18259 if (copy_from_bpfptr_offset(&fd, env->fd_array, 18260 insn[0].imm * sizeof(fd), 18261 sizeof(fd))) 18262 return -EFAULT; 18263 break; 18264 default: 18265 fd = insn[0].imm; 18266 break; 18267 } 18268 18269 f = fdget(fd); 18270 map = __bpf_map_get(f); 18271 if (IS_ERR(map)) { 18272 verbose(env, "fd %d is not pointing to valid bpf_map\n", 18273 insn[0].imm); 18274 return PTR_ERR(map); 18275 } 18276 18277 err = check_map_prog_compatibility(env, map, env->prog); 18278 if (err) { 18279 fdput(f); 18280 return err; 18281 } 18282 18283 aux = &env->insn_aux_data[i]; 18284 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD || 18285 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) { 18286 addr = (unsigned long)map; 18287 } else { 18288 u32 off = insn[1].imm; 18289 18290 if (off >= BPF_MAX_VAR_OFF) { 18291 verbose(env, "direct value offset of %u is not allowed\n", off); 18292 fdput(f); 18293 return -EINVAL; 18294 } 18295 18296 if (!map->ops->map_direct_value_addr) { 18297 verbose(env, "no direct value access support for this map type\n"); 18298 fdput(f); 18299 return -EINVAL; 18300 } 18301 18302 err = map->ops->map_direct_value_addr(map, &addr, off); 18303 if (err) { 18304 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 18305 map->value_size, off); 18306 fdput(f); 18307 return err; 18308 } 18309 18310 aux->map_off = off; 18311 addr += off; 18312 } 18313 18314 insn[0].imm = (u32)addr; 18315 insn[1].imm = addr >> 32; 18316 18317 /* check whether we recorded this map already */ 18318 for (j = 0; j < env->used_map_cnt; j++) { 18319 if (env->used_maps[j] == map) { 18320 aux->map_index = j; 18321 fdput(f); 18322 goto next_insn; 18323 } 18324 } 18325 18326 if (env->used_map_cnt >= MAX_USED_MAPS) { 18327 fdput(f); 18328 return -E2BIG; 18329 } 18330 18331 if (env->prog->sleepable) 18332 atomic64_inc(&map->sleepable_refcnt); 18333 /* hold the map. If the program is rejected by verifier, 18334 * the map will be released by release_maps() or it 18335 * will be used by the valid program until it's unloaded 18336 * and all maps are released in bpf_free_used_maps() 18337 */ 18338 bpf_map_inc(map); 18339 18340 aux->map_index = env->used_map_cnt; 18341 env->used_maps[env->used_map_cnt++] = map; 18342 18343 if (bpf_map_is_cgroup_storage(map) && 18344 bpf_cgroup_storage_assign(env->prog->aux, map)) { 18345 verbose(env, "only one cgroup storage of each type is allowed\n"); 18346 fdput(f); 18347 return -EBUSY; 18348 } 18349 if (map->map_type == BPF_MAP_TYPE_ARENA) { 18350 if (env->prog->aux->arena) { 18351 verbose(env, "Only one arena per program\n"); 18352 fdput(f); 18353 return -EBUSY; 18354 } 18355 if (!env->allow_ptr_leaks || !env->bpf_capable) { 18356 verbose(env, "CAP_BPF and CAP_PERFMON are required to use arena\n"); 18357 fdput(f); 18358 return -EPERM; 18359 } 18360 if (!env->prog->jit_requested) { 18361 verbose(env, "JIT is required to use arena\n"); 18362 return -EOPNOTSUPP; 18363 } 18364 if (!bpf_jit_supports_arena()) { 18365 verbose(env, "JIT doesn't support arena\n"); 18366 return -EOPNOTSUPP; 18367 } 18368 env->prog->aux->arena = (void *)map; 18369 if (!bpf_arena_get_user_vm_start(env->prog->aux->arena)) { 18370 verbose(env, "arena's user address must be set via map_extra or mmap()\n"); 18371 return -EINVAL; 18372 } 18373 } 18374 18375 fdput(f); 18376 next_insn: 18377 insn++; 18378 i++; 18379 continue; 18380 } 18381 18382 /* Basic sanity check before we invest more work here. */ 18383 if (!bpf_opcode_in_insntable(insn->code)) { 18384 verbose(env, "unknown opcode %02x\n", insn->code); 18385 return -EINVAL; 18386 } 18387 } 18388 18389 /* now all pseudo BPF_LD_IMM64 instructions load valid 18390 * 'struct bpf_map *' into a register instead of user map_fd. 18391 * These pointers will be used later by verifier to validate map access. 18392 */ 18393 return 0; 18394 } 18395 18396 /* drop refcnt of maps used by the rejected program */ 18397 static void release_maps(struct bpf_verifier_env *env) 18398 { 18399 __bpf_free_used_maps(env->prog->aux, env->used_maps, 18400 env->used_map_cnt); 18401 } 18402 18403 /* drop refcnt of maps used by the rejected program */ 18404 static void release_btfs(struct bpf_verifier_env *env) 18405 { 18406 __bpf_free_used_btfs(env->prog->aux, env->used_btfs, 18407 env->used_btf_cnt); 18408 } 18409 18410 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 18411 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 18412 { 18413 struct bpf_insn *insn = env->prog->insnsi; 18414 int insn_cnt = env->prog->len; 18415 int i; 18416 18417 for (i = 0; i < insn_cnt; i++, insn++) { 18418 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) 18419 continue; 18420 if (insn->src_reg == BPF_PSEUDO_FUNC) 18421 continue; 18422 insn->src_reg = 0; 18423 } 18424 } 18425 18426 /* single env->prog->insni[off] instruction was replaced with the range 18427 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 18428 * [0, off) and [off, end) to new locations, so the patched range stays zero 18429 */ 18430 static void adjust_insn_aux_data(struct bpf_verifier_env *env, 18431 struct bpf_insn_aux_data *new_data, 18432 struct bpf_prog *new_prog, u32 off, u32 cnt) 18433 { 18434 struct bpf_insn_aux_data *old_data = env->insn_aux_data; 18435 struct bpf_insn *insn = new_prog->insnsi; 18436 u32 old_seen = old_data[off].seen; 18437 u32 prog_len; 18438 int i; 18439 18440 /* aux info at OFF always needs adjustment, no matter fast path 18441 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 18442 * original insn at old prog. 18443 */ 18444 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 18445 18446 if (cnt == 1) 18447 return; 18448 prog_len = new_prog->len; 18449 18450 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 18451 memcpy(new_data + off + cnt - 1, old_data + off, 18452 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 18453 for (i = off; i < off + cnt - 1; i++) { 18454 /* Expand insni[off]'s seen count to the patched range. */ 18455 new_data[i].seen = old_seen; 18456 new_data[i].zext_dst = insn_has_def32(env, insn + i); 18457 } 18458 env->insn_aux_data = new_data; 18459 vfree(old_data); 18460 } 18461 18462 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 18463 { 18464 int i; 18465 18466 if (len == 1) 18467 return; 18468 /* NOTE: fake 'exit' subprog should be updated as well. */ 18469 for (i = 0; i <= env->subprog_cnt; i++) { 18470 if (env->subprog_info[i].start <= off) 18471 continue; 18472 env->subprog_info[i].start += len - 1; 18473 } 18474 } 18475 18476 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len) 18477 { 18478 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; 18479 int i, sz = prog->aux->size_poke_tab; 18480 struct bpf_jit_poke_descriptor *desc; 18481 18482 for (i = 0; i < sz; i++) { 18483 desc = &tab[i]; 18484 if (desc->insn_idx <= off) 18485 continue; 18486 desc->insn_idx += len - 1; 18487 } 18488 } 18489 18490 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 18491 const struct bpf_insn *patch, u32 len) 18492 { 18493 struct bpf_prog *new_prog; 18494 struct bpf_insn_aux_data *new_data = NULL; 18495 18496 if (len > 1) { 18497 new_data = vzalloc(array_size(env->prog->len + len - 1, 18498 sizeof(struct bpf_insn_aux_data))); 18499 if (!new_data) 18500 return NULL; 18501 } 18502 18503 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 18504 if (IS_ERR(new_prog)) { 18505 if (PTR_ERR(new_prog) == -ERANGE) 18506 verbose(env, 18507 "insn %d cannot be patched due to 16-bit range\n", 18508 env->insn_aux_data[off].orig_idx); 18509 vfree(new_data); 18510 return NULL; 18511 } 18512 adjust_insn_aux_data(env, new_data, new_prog, off, len); 18513 adjust_subprog_starts(env, off, len); 18514 adjust_poke_descs(new_prog, off, len); 18515 return new_prog; 18516 } 18517 18518 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 18519 u32 off, u32 cnt) 18520 { 18521 int i, j; 18522 18523 /* find first prog starting at or after off (first to remove) */ 18524 for (i = 0; i < env->subprog_cnt; i++) 18525 if (env->subprog_info[i].start >= off) 18526 break; 18527 /* find first prog starting at or after off + cnt (first to stay) */ 18528 for (j = i; j < env->subprog_cnt; j++) 18529 if (env->subprog_info[j].start >= off + cnt) 18530 break; 18531 /* if j doesn't start exactly at off + cnt, we are just removing 18532 * the front of previous prog 18533 */ 18534 if (env->subprog_info[j].start != off + cnt) 18535 j--; 18536 18537 if (j > i) { 18538 struct bpf_prog_aux *aux = env->prog->aux; 18539 int move; 18540 18541 /* move fake 'exit' subprog as well */ 18542 move = env->subprog_cnt + 1 - j; 18543 18544 memmove(env->subprog_info + i, 18545 env->subprog_info + j, 18546 sizeof(*env->subprog_info) * move); 18547 env->subprog_cnt -= j - i; 18548 18549 /* remove func_info */ 18550 if (aux->func_info) { 18551 move = aux->func_info_cnt - j; 18552 18553 memmove(aux->func_info + i, 18554 aux->func_info + j, 18555 sizeof(*aux->func_info) * move); 18556 aux->func_info_cnt -= j - i; 18557 /* func_info->insn_off is set after all code rewrites, 18558 * in adjust_btf_func() - no need to adjust 18559 */ 18560 } 18561 } else { 18562 /* convert i from "first prog to remove" to "first to adjust" */ 18563 if (env->subprog_info[i].start == off) 18564 i++; 18565 } 18566 18567 /* update fake 'exit' subprog as well */ 18568 for (; i <= env->subprog_cnt; i++) 18569 env->subprog_info[i].start -= cnt; 18570 18571 return 0; 18572 } 18573 18574 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 18575 u32 cnt) 18576 { 18577 struct bpf_prog *prog = env->prog; 18578 u32 i, l_off, l_cnt, nr_linfo; 18579 struct bpf_line_info *linfo; 18580 18581 nr_linfo = prog->aux->nr_linfo; 18582 if (!nr_linfo) 18583 return 0; 18584 18585 linfo = prog->aux->linfo; 18586 18587 /* find first line info to remove, count lines to be removed */ 18588 for (i = 0; i < nr_linfo; i++) 18589 if (linfo[i].insn_off >= off) 18590 break; 18591 18592 l_off = i; 18593 l_cnt = 0; 18594 for (; i < nr_linfo; i++) 18595 if (linfo[i].insn_off < off + cnt) 18596 l_cnt++; 18597 else 18598 break; 18599 18600 /* First live insn doesn't match first live linfo, it needs to "inherit" 18601 * last removed linfo. prog is already modified, so prog->len == off 18602 * means no live instructions after (tail of the program was removed). 18603 */ 18604 if (prog->len != off && l_cnt && 18605 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 18606 l_cnt--; 18607 linfo[--i].insn_off = off + cnt; 18608 } 18609 18610 /* remove the line info which refer to the removed instructions */ 18611 if (l_cnt) { 18612 memmove(linfo + l_off, linfo + i, 18613 sizeof(*linfo) * (nr_linfo - i)); 18614 18615 prog->aux->nr_linfo -= l_cnt; 18616 nr_linfo = prog->aux->nr_linfo; 18617 } 18618 18619 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 18620 for (i = l_off; i < nr_linfo; i++) 18621 linfo[i].insn_off -= cnt; 18622 18623 /* fix up all subprogs (incl. 'exit') which start >= off */ 18624 for (i = 0; i <= env->subprog_cnt; i++) 18625 if (env->subprog_info[i].linfo_idx > l_off) { 18626 /* program may have started in the removed region but 18627 * may not be fully removed 18628 */ 18629 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 18630 env->subprog_info[i].linfo_idx -= l_cnt; 18631 else 18632 env->subprog_info[i].linfo_idx = l_off; 18633 } 18634 18635 return 0; 18636 } 18637 18638 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 18639 { 18640 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 18641 unsigned int orig_prog_len = env->prog->len; 18642 int err; 18643 18644 if (bpf_prog_is_offloaded(env->prog->aux)) 18645 bpf_prog_offload_remove_insns(env, off, cnt); 18646 18647 err = bpf_remove_insns(env->prog, off, cnt); 18648 if (err) 18649 return err; 18650 18651 err = adjust_subprog_starts_after_remove(env, off, cnt); 18652 if (err) 18653 return err; 18654 18655 err = bpf_adj_linfo_after_remove(env, off, cnt); 18656 if (err) 18657 return err; 18658 18659 memmove(aux_data + off, aux_data + off + cnt, 18660 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 18661 18662 return 0; 18663 } 18664 18665 /* The verifier does more data flow analysis than llvm and will not 18666 * explore branches that are dead at run time. Malicious programs can 18667 * have dead code too. Therefore replace all dead at-run-time code 18668 * with 'ja -1'. 18669 * 18670 * Just nops are not optimal, e.g. if they would sit at the end of the 18671 * program and through another bug we would manage to jump there, then 18672 * we'd execute beyond program memory otherwise. Returning exception 18673 * code also wouldn't work since we can have subprogs where the dead 18674 * code could be located. 18675 */ 18676 static void sanitize_dead_code(struct bpf_verifier_env *env) 18677 { 18678 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 18679 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 18680 struct bpf_insn *insn = env->prog->insnsi; 18681 const int insn_cnt = env->prog->len; 18682 int i; 18683 18684 for (i = 0; i < insn_cnt; i++) { 18685 if (aux_data[i].seen) 18686 continue; 18687 memcpy(insn + i, &trap, sizeof(trap)); 18688 aux_data[i].zext_dst = false; 18689 } 18690 } 18691 18692 static bool insn_is_cond_jump(u8 code) 18693 { 18694 u8 op; 18695 18696 op = BPF_OP(code); 18697 if (BPF_CLASS(code) == BPF_JMP32) 18698 return op != BPF_JA; 18699 18700 if (BPF_CLASS(code) != BPF_JMP) 18701 return false; 18702 18703 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 18704 } 18705 18706 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 18707 { 18708 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 18709 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 18710 struct bpf_insn *insn = env->prog->insnsi; 18711 const int insn_cnt = env->prog->len; 18712 int i; 18713 18714 for (i = 0; i < insn_cnt; i++, insn++) { 18715 if (!insn_is_cond_jump(insn->code)) 18716 continue; 18717 18718 if (!aux_data[i + 1].seen) 18719 ja.off = insn->off; 18720 else if (!aux_data[i + 1 + insn->off].seen) 18721 ja.off = 0; 18722 else 18723 continue; 18724 18725 if (bpf_prog_is_offloaded(env->prog->aux)) 18726 bpf_prog_offload_replace_insn(env, i, &ja); 18727 18728 memcpy(insn, &ja, sizeof(ja)); 18729 } 18730 } 18731 18732 static int opt_remove_dead_code(struct bpf_verifier_env *env) 18733 { 18734 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 18735 int insn_cnt = env->prog->len; 18736 int i, err; 18737 18738 for (i = 0; i < insn_cnt; i++) { 18739 int j; 18740 18741 j = 0; 18742 while (i + j < insn_cnt && !aux_data[i + j].seen) 18743 j++; 18744 if (!j) 18745 continue; 18746 18747 err = verifier_remove_insns(env, i, j); 18748 if (err) 18749 return err; 18750 insn_cnt = env->prog->len; 18751 } 18752 18753 return 0; 18754 } 18755 18756 static int opt_remove_nops(struct bpf_verifier_env *env) 18757 { 18758 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 18759 struct bpf_insn *insn = env->prog->insnsi; 18760 int insn_cnt = env->prog->len; 18761 int i, err; 18762 18763 for (i = 0; i < insn_cnt; i++) { 18764 if (memcmp(&insn[i], &ja, sizeof(ja))) 18765 continue; 18766 18767 err = verifier_remove_insns(env, i, 1); 18768 if (err) 18769 return err; 18770 insn_cnt--; 18771 i--; 18772 } 18773 18774 return 0; 18775 } 18776 18777 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 18778 const union bpf_attr *attr) 18779 { 18780 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 18781 struct bpf_insn_aux_data *aux = env->insn_aux_data; 18782 int i, patch_len, delta = 0, len = env->prog->len; 18783 struct bpf_insn *insns = env->prog->insnsi; 18784 struct bpf_prog *new_prog; 18785 bool rnd_hi32; 18786 18787 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 18788 zext_patch[1] = BPF_ZEXT_REG(0); 18789 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 18790 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 18791 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 18792 for (i = 0; i < len; i++) { 18793 int adj_idx = i + delta; 18794 struct bpf_insn insn; 18795 int load_reg; 18796 18797 insn = insns[adj_idx]; 18798 load_reg = insn_def_regno(&insn); 18799 if (!aux[adj_idx].zext_dst) { 18800 u8 code, class; 18801 u32 imm_rnd; 18802 18803 if (!rnd_hi32) 18804 continue; 18805 18806 code = insn.code; 18807 class = BPF_CLASS(code); 18808 if (load_reg == -1) 18809 continue; 18810 18811 /* NOTE: arg "reg" (the fourth one) is only used for 18812 * BPF_STX + SRC_OP, so it is safe to pass NULL 18813 * here. 18814 */ 18815 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) { 18816 if (class == BPF_LD && 18817 BPF_MODE(code) == BPF_IMM) 18818 i++; 18819 continue; 18820 } 18821 18822 /* ctx load could be transformed into wider load. */ 18823 if (class == BPF_LDX && 18824 aux[adj_idx].ptr_type == PTR_TO_CTX) 18825 continue; 18826 18827 imm_rnd = get_random_u32(); 18828 rnd_hi32_patch[0] = insn; 18829 rnd_hi32_patch[1].imm = imm_rnd; 18830 rnd_hi32_patch[3].dst_reg = load_reg; 18831 patch = rnd_hi32_patch; 18832 patch_len = 4; 18833 goto apply_patch_buffer; 18834 } 18835 18836 /* Add in an zero-extend instruction if a) the JIT has requested 18837 * it or b) it's a CMPXCHG. 18838 * 18839 * The latter is because: BPF_CMPXCHG always loads a value into 18840 * R0, therefore always zero-extends. However some archs' 18841 * equivalent instruction only does this load when the 18842 * comparison is successful. This detail of CMPXCHG is 18843 * orthogonal to the general zero-extension behaviour of the 18844 * CPU, so it's treated independently of bpf_jit_needs_zext. 18845 */ 18846 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn)) 18847 continue; 18848 18849 /* Zero-extension is done by the caller. */ 18850 if (bpf_pseudo_kfunc_call(&insn)) 18851 continue; 18852 18853 if (WARN_ON(load_reg == -1)) { 18854 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n"); 18855 return -EFAULT; 18856 } 18857 18858 zext_patch[0] = insn; 18859 zext_patch[1].dst_reg = load_reg; 18860 zext_patch[1].src_reg = load_reg; 18861 patch = zext_patch; 18862 patch_len = 2; 18863 apply_patch_buffer: 18864 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 18865 if (!new_prog) 18866 return -ENOMEM; 18867 env->prog = new_prog; 18868 insns = new_prog->insnsi; 18869 aux = env->insn_aux_data; 18870 delta += patch_len - 1; 18871 } 18872 18873 return 0; 18874 } 18875 18876 /* convert load instructions that access fields of a context type into a 18877 * sequence of instructions that access fields of the underlying structure: 18878 * struct __sk_buff -> struct sk_buff 18879 * struct bpf_sock_ops -> struct sock 18880 */ 18881 static int convert_ctx_accesses(struct bpf_verifier_env *env) 18882 { 18883 const struct bpf_verifier_ops *ops = env->ops; 18884 int i, cnt, size, ctx_field_size, delta = 0; 18885 const int insn_cnt = env->prog->len; 18886 struct bpf_insn insn_buf[16], *insn; 18887 u32 target_size, size_default, off; 18888 struct bpf_prog *new_prog; 18889 enum bpf_access_type type; 18890 bool is_narrower_load; 18891 18892 if (ops->gen_prologue || env->seen_direct_write) { 18893 if (!ops->gen_prologue) { 18894 verbose(env, "bpf verifier is misconfigured\n"); 18895 return -EINVAL; 18896 } 18897 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 18898 env->prog); 18899 if (cnt >= ARRAY_SIZE(insn_buf)) { 18900 verbose(env, "bpf verifier is misconfigured\n"); 18901 return -EINVAL; 18902 } else if (cnt) { 18903 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 18904 if (!new_prog) 18905 return -ENOMEM; 18906 18907 env->prog = new_prog; 18908 delta += cnt - 1; 18909 } 18910 } 18911 18912 if (bpf_prog_is_offloaded(env->prog->aux)) 18913 return 0; 18914 18915 insn = env->prog->insnsi + delta; 18916 18917 for (i = 0; i < insn_cnt; i++, insn++) { 18918 bpf_convert_ctx_access_t convert_ctx_access; 18919 u8 mode; 18920 18921 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 18922 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 18923 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 18924 insn->code == (BPF_LDX | BPF_MEM | BPF_DW) || 18925 insn->code == (BPF_LDX | BPF_MEMSX | BPF_B) || 18926 insn->code == (BPF_LDX | BPF_MEMSX | BPF_H) || 18927 insn->code == (BPF_LDX | BPF_MEMSX | BPF_W)) { 18928 type = BPF_READ; 18929 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 18930 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 18931 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 18932 insn->code == (BPF_STX | BPF_MEM | BPF_DW) || 18933 insn->code == (BPF_ST | BPF_MEM | BPF_B) || 18934 insn->code == (BPF_ST | BPF_MEM | BPF_H) || 18935 insn->code == (BPF_ST | BPF_MEM | BPF_W) || 18936 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) { 18937 type = BPF_WRITE; 18938 } else { 18939 continue; 18940 } 18941 18942 if (type == BPF_WRITE && 18943 env->insn_aux_data[i + delta].sanitize_stack_spill) { 18944 struct bpf_insn patch[] = { 18945 *insn, 18946 BPF_ST_NOSPEC(), 18947 }; 18948 18949 cnt = ARRAY_SIZE(patch); 18950 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 18951 if (!new_prog) 18952 return -ENOMEM; 18953 18954 delta += cnt - 1; 18955 env->prog = new_prog; 18956 insn = new_prog->insnsi + i + delta; 18957 continue; 18958 } 18959 18960 switch ((int)env->insn_aux_data[i + delta].ptr_type) { 18961 case PTR_TO_CTX: 18962 if (!ops->convert_ctx_access) 18963 continue; 18964 convert_ctx_access = ops->convert_ctx_access; 18965 break; 18966 case PTR_TO_SOCKET: 18967 case PTR_TO_SOCK_COMMON: 18968 convert_ctx_access = bpf_sock_convert_ctx_access; 18969 break; 18970 case PTR_TO_TCP_SOCK: 18971 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 18972 break; 18973 case PTR_TO_XDP_SOCK: 18974 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 18975 break; 18976 case PTR_TO_BTF_ID: 18977 case PTR_TO_BTF_ID | PTR_UNTRUSTED: 18978 /* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike 18979 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot 18980 * be said once it is marked PTR_UNTRUSTED, hence we must handle 18981 * any faults for loads into such types. BPF_WRITE is disallowed 18982 * for this case. 18983 */ 18984 case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED: 18985 if (type == BPF_READ) { 18986 if (BPF_MODE(insn->code) == BPF_MEM) 18987 insn->code = BPF_LDX | BPF_PROBE_MEM | 18988 BPF_SIZE((insn)->code); 18989 else 18990 insn->code = BPF_LDX | BPF_PROBE_MEMSX | 18991 BPF_SIZE((insn)->code); 18992 env->prog->aux->num_exentries++; 18993 } 18994 continue; 18995 case PTR_TO_ARENA: 18996 if (BPF_MODE(insn->code) == BPF_MEMSX) { 18997 verbose(env, "sign extending loads from arena are not supported yet\n"); 18998 return -EOPNOTSUPP; 18999 } 19000 insn->code = BPF_CLASS(insn->code) | BPF_PROBE_MEM32 | BPF_SIZE(insn->code); 19001 env->prog->aux->num_exentries++; 19002 continue; 19003 default: 19004 continue; 19005 } 19006 19007 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 19008 size = BPF_LDST_BYTES(insn); 19009 mode = BPF_MODE(insn->code); 19010 19011 /* If the read access is a narrower load of the field, 19012 * convert to a 4/8-byte load, to minimum program type specific 19013 * convert_ctx_access changes. If conversion is successful, 19014 * we will apply proper mask to the result. 19015 */ 19016 is_narrower_load = size < ctx_field_size; 19017 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 19018 off = insn->off; 19019 if (is_narrower_load) { 19020 u8 size_code; 19021 19022 if (type == BPF_WRITE) { 19023 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 19024 return -EINVAL; 19025 } 19026 19027 size_code = BPF_H; 19028 if (ctx_field_size == 4) 19029 size_code = BPF_W; 19030 else if (ctx_field_size == 8) 19031 size_code = BPF_DW; 19032 19033 insn->off = off & ~(size_default - 1); 19034 insn->code = BPF_LDX | BPF_MEM | size_code; 19035 } 19036 19037 target_size = 0; 19038 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 19039 &target_size); 19040 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 19041 (ctx_field_size && !target_size)) { 19042 verbose(env, "bpf verifier is misconfigured\n"); 19043 return -EINVAL; 19044 } 19045 19046 if (is_narrower_load && size < target_size) { 19047 u8 shift = bpf_ctx_narrow_access_offset( 19048 off, size, size_default) * 8; 19049 if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) { 19050 verbose(env, "bpf verifier narrow ctx load misconfigured\n"); 19051 return -EINVAL; 19052 } 19053 if (ctx_field_size <= 4) { 19054 if (shift) 19055 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 19056 insn->dst_reg, 19057 shift); 19058 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 19059 (1 << size * 8) - 1); 19060 } else { 19061 if (shift) 19062 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 19063 insn->dst_reg, 19064 shift); 19065 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 19066 (1ULL << size * 8) - 1); 19067 } 19068 } 19069 if (mode == BPF_MEMSX) 19070 insn_buf[cnt++] = BPF_RAW_INSN(BPF_ALU64 | BPF_MOV | BPF_X, 19071 insn->dst_reg, insn->dst_reg, 19072 size * 8, 0); 19073 19074 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19075 if (!new_prog) 19076 return -ENOMEM; 19077 19078 delta += cnt - 1; 19079 19080 /* keep walking new program and skip insns we just inserted */ 19081 env->prog = new_prog; 19082 insn = new_prog->insnsi + i + delta; 19083 } 19084 19085 return 0; 19086 } 19087 19088 static int jit_subprogs(struct bpf_verifier_env *env) 19089 { 19090 struct bpf_prog *prog = env->prog, **func, *tmp; 19091 int i, j, subprog_start, subprog_end = 0, len, subprog; 19092 struct bpf_map *map_ptr; 19093 struct bpf_insn *insn; 19094 void *old_bpf_func; 19095 int err, num_exentries; 19096 19097 if (env->subprog_cnt <= 1) 19098 return 0; 19099 19100 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 19101 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn)) 19102 continue; 19103 19104 /* Upon error here we cannot fall back to interpreter but 19105 * need a hard reject of the program. Thus -EFAULT is 19106 * propagated in any case. 19107 */ 19108 subprog = find_subprog(env, i + insn->imm + 1); 19109 if (subprog < 0) { 19110 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 19111 i + insn->imm + 1); 19112 return -EFAULT; 19113 } 19114 /* temporarily remember subprog id inside insn instead of 19115 * aux_data, since next loop will split up all insns into funcs 19116 */ 19117 insn->off = subprog; 19118 /* remember original imm in case JIT fails and fallback 19119 * to interpreter will be needed 19120 */ 19121 env->insn_aux_data[i].call_imm = insn->imm; 19122 /* point imm to __bpf_call_base+1 from JITs point of view */ 19123 insn->imm = 1; 19124 if (bpf_pseudo_func(insn)) 19125 /* jit (e.g. x86_64) may emit fewer instructions 19126 * if it learns a u32 imm is the same as a u64 imm. 19127 * Force a non zero here. 19128 */ 19129 insn[1].imm = 1; 19130 } 19131 19132 err = bpf_prog_alloc_jited_linfo(prog); 19133 if (err) 19134 goto out_undo_insn; 19135 19136 err = -ENOMEM; 19137 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 19138 if (!func) 19139 goto out_undo_insn; 19140 19141 for (i = 0; i < env->subprog_cnt; i++) { 19142 subprog_start = subprog_end; 19143 subprog_end = env->subprog_info[i + 1].start; 19144 19145 len = subprog_end - subprog_start; 19146 /* bpf_prog_run() doesn't call subprogs directly, 19147 * hence main prog stats include the runtime of subprogs. 19148 * subprogs don't have IDs and not reachable via prog_get_next_id 19149 * func[i]->stats will never be accessed and stays NULL 19150 */ 19151 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 19152 if (!func[i]) 19153 goto out_free; 19154 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 19155 len * sizeof(struct bpf_insn)); 19156 func[i]->type = prog->type; 19157 func[i]->len = len; 19158 if (bpf_prog_calc_tag(func[i])) 19159 goto out_free; 19160 func[i]->is_func = 1; 19161 func[i]->aux->func_idx = i; 19162 /* Below members will be freed only at prog->aux */ 19163 func[i]->aux->btf = prog->aux->btf; 19164 func[i]->aux->func_info = prog->aux->func_info; 19165 func[i]->aux->func_info_cnt = prog->aux->func_info_cnt; 19166 func[i]->aux->poke_tab = prog->aux->poke_tab; 19167 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab; 19168 19169 for (j = 0; j < prog->aux->size_poke_tab; j++) { 19170 struct bpf_jit_poke_descriptor *poke; 19171 19172 poke = &prog->aux->poke_tab[j]; 19173 if (poke->insn_idx < subprog_end && 19174 poke->insn_idx >= subprog_start) 19175 poke->aux = func[i]->aux; 19176 } 19177 19178 func[i]->aux->name[0] = 'F'; 19179 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 19180 func[i]->jit_requested = 1; 19181 func[i]->blinding_requested = prog->blinding_requested; 19182 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab; 19183 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab; 19184 func[i]->aux->linfo = prog->aux->linfo; 19185 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 19186 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 19187 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 19188 func[i]->aux->arena = prog->aux->arena; 19189 num_exentries = 0; 19190 insn = func[i]->insnsi; 19191 for (j = 0; j < func[i]->len; j++, insn++) { 19192 if (BPF_CLASS(insn->code) == BPF_LDX && 19193 (BPF_MODE(insn->code) == BPF_PROBE_MEM || 19194 BPF_MODE(insn->code) == BPF_PROBE_MEM32 || 19195 BPF_MODE(insn->code) == BPF_PROBE_MEMSX)) 19196 num_exentries++; 19197 if ((BPF_CLASS(insn->code) == BPF_STX || 19198 BPF_CLASS(insn->code) == BPF_ST) && 19199 BPF_MODE(insn->code) == BPF_PROBE_MEM32) 19200 num_exentries++; 19201 } 19202 func[i]->aux->num_exentries = num_exentries; 19203 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable; 19204 func[i]->aux->exception_cb = env->subprog_info[i].is_exception_cb; 19205 if (!i) 19206 func[i]->aux->exception_boundary = env->seen_exception; 19207 func[i] = bpf_int_jit_compile(func[i]); 19208 if (!func[i]->jited) { 19209 err = -ENOTSUPP; 19210 goto out_free; 19211 } 19212 cond_resched(); 19213 } 19214 19215 /* at this point all bpf functions were successfully JITed 19216 * now populate all bpf_calls with correct addresses and 19217 * run last pass of JIT 19218 */ 19219 for (i = 0; i < env->subprog_cnt; i++) { 19220 insn = func[i]->insnsi; 19221 for (j = 0; j < func[i]->len; j++, insn++) { 19222 if (bpf_pseudo_func(insn)) { 19223 subprog = insn->off; 19224 insn[0].imm = (u32)(long)func[subprog]->bpf_func; 19225 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32; 19226 continue; 19227 } 19228 if (!bpf_pseudo_call(insn)) 19229 continue; 19230 subprog = insn->off; 19231 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func); 19232 } 19233 19234 /* we use the aux data to keep a list of the start addresses 19235 * of the JITed images for each function in the program 19236 * 19237 * for some architectures, such as powerpc64, the imm field 19238 * might not be large enough to hold the offset of the start 19239 * address of the callee's JITed image from __bpf_call_base 19240 * 19241 * in such cases, we can lookup the start address of a callee 19242 * by using its subprog id, available from the off field of 19243 * the call instruction, as an index for this list 19244 */ 19245 func[i]->aux->func = func; 19246 func[i]->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt; 19247 func[i]->aux->real_func_cnt = env->subprog_cnt; 19248 } 19249 for (i = 0; i < env->subprog_cnt; i++) { 19250 old_bpf_func = func[i]->bpf_func; 19251 tmp = bpf_int_jit_compile(func[i]); 19252 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 19253 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 19254 err = -ENOTSUPP; 19255 goto out_free; 19256 } 19257 cond_resched(); 19258 } 19259 19260 /* finally lock prog and jit images for all functions and 19261 * populate kallsysm. Begin at the first subprogram, since 19262 * bpf_prog_load will add the kallsyms for the main program. 19263 */ 19264 for (i = 1; i < env->subprog_cnt; i++) { 19265 bpf_prog_lock_ro(func[i]); 19266 bpf_prog_kallsyms_add(func[i]); 19267 } 19268 19269 /* Last step: make now unused interpreter insns from main 19270 * prog consistent for later dump requests, so they can 19271 * later look the same as if they were interpreted only. 19272 */ 19273 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 19274 if (bpf_pseudo_func(insn)) { 19275 insn[0].imm = env->insn_aux_data[i].call_imm; 19276 insn[1].imm = insn->off; 19277 insn->off = 0; 19278 continue; 19279 } 19280 if (!bpf_pseudo_call(insn)) 19281 continue; 19282 insn->off = env->insn_aux_data[i].call_imm; 19283 subprog = find_subprog(env, i + insn->off + 1); 19284 insn->imm = subprog; 19285 } 19286 19287 prog->jited = 1; 19288 prog->bpf_func = func[0]->bpf_func; 19289 prog->jited_len = func[0]->jited_len; 19290 prog->aux->extable = func[0]->aux->extable; 19291 prog->aux->num_exentries = func[0]->aux->num_exentries; 19292 prog->aux->func = func; 19293 prog->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt; 19294 prog->aux->real_func_cnt = env->subprog_cnt; 19295 prog->aux->bpf_exception_cb = (void *)func[env->exception_callback_subprog]->bpf_func; 19296 prog->aux->exception_boundary = func[0]->aux->exception_boundary; 19297 bpf_prog_jit_attempt_done(prog); 19298 return 0; 19299 out_free: 19300 /* We failed JIT'ing, so at this point we need to unregister poke 19301 * descriptors from subprogs, so that kernel is not attempting to 19302 * patch it anymore as we're freeing the subprog JIT memory. 19303 */ 19304 for (i = 0; i < prog->aux->size_poke_tab; i++) { 19305 map_ptr = prog->aux->poke_tab[i].tail_call.map; 19306 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux); 19307 } 19308 /* At this point we're guaranteed that poke descriptors are not 19309 * live anymore. We can just unlink its descriptor table as it's 19310 * released with the main prog. 19311 */ 19312 for (i = 0; i < env->subprog_cnt; i++) { 19313 if (!func[i]) 19314 continue; 19315 func[i]->aux->poke_tab = NULL; 19316 bpf_jit_free(func[i]); 19317 } 19318 kfree(func); 19319 out_undo_insn: 19320 /* cleanup main prog to be interpreted */ 19321 prog->jit_requested = 0; 19322 prog->blinding_requested = 0; 19323 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 19324 if (!bpf_pseudo_call(insn)) 19325 continue; 19326 insn->off = 0; 19327 insn->imm = env->insn_aux_data[i].call_imm; 19328 } 19329 bpf_prog_jit_attempt_done(prog); 19330 return err; 19331 } 19332 19333 static int fixup_call_args(struct bpf_verifier_env *env) 19334 { 19335 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 19336 struct bpf_prog *prog = env->prog; 19337 struct bpf_insn *insn = prog->insnsi; 19338 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog); 19339 int i, depth; 19340 #endif 19341 int err = 0; 19342 19343 if (env->prog->jit_requested && 19344 !bpf_prog_is_offloaded(env->prog->aux)) { 19345 err = jit_subprogs(env); 19346 if (err == 0) 19347 return 0; 19348 if (err == -EFAULT) 19349 return err; 19350 } 19351 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 19352 if (has_kfunc_call) { 19353 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n"); 19354 return -EINVAL; 19355 } 19356 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) { 19357 /* When JIT fails the progs with bpf2bpf calls and tail_calls 19358 * have to be rejected, since interpreter doesn't support them yet. 19359 */ 19360 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 19361 return -EINVAL; 19362 } 19363 for (i = 0; i < prog->len; i++, insn++) { 19364 if (bpf_pseudo_func(insn)) { 19365 /* When JIT fails the progs with callback calls 19366 * have to be rejected, since interpreter doesn't support them yet. 19367 */ 19368 verbose(env, "callbacks are not allowed in non-JITed programs\n"); 19369 return -EINVAL; 19370 } 19371 19372 if (!bpf_pseudo_call(insn)) 19373 continue; 19374 depth = get_callee_stack_depth(env, insn, i); 19375 if (depth < 0) 19376 return depth; 19377 bpf_patch_call_args(insn, depth); 19378 } 19379 err = 0; 19380 #endif 19381 return err; 19382 } 19383 19384 /* replace a generic kfunc with a specialized version if necessary */ 19385 static void specialize_kfunc(struct bpf_verifier_env *env, 19386 u32 func_id, u16 offset, unsigned long *addr) 19387 { 19388 struct bpf_prog *prog = env->prog; 19389 bool seen_direct_write; 19390 void *xdp_kfunc; 19391 bool is_rdonly; 19392 19393 if (bpf_dev_bound_kfunc_id(func_id)) { 19394 xdp_kfunc = bpf_dev_bound_resolve_kfunc(prog, func_id); 19395 if (xdp_kfunc) { 19396 *addr = (unsigned long)xdp_kfunc; 19397 return; 19398 } 19399 /* fallback to default kfunc when not supported by netdev */ 19400 } 19401 19402 if (offset) 19403 return; 19404 19405 if (func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) { 19406 seen_direct_write = env->seen_direct_write; 19407 is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE); 19408 19409 if (is_rdonly) 19410 *addr = (unsigned long)bpf_dynptr_from_skb_rdonly; 19411 19412 /* restore env->seen_direct_write to its original value, since 19413 * may_access_direct_pkt_data mutates it 19414 */ 19415 env->seen_direct_write = seen_direct_write; 19416 } 19417 } 19418 19419 static void __fixup_collection_insert_kfunc(struct bpf_insn_aux_data *insn_aux, 19420 u16 struct_meta_reg, 19421 u16 node_offset_reg, 19422 struct bpf_insn *insn, 19423 struct bpf_insn *insn_buf, 19424 int *cnt) 19425 { 19426 struct btf_struct_meta *kptr_struct_meta = insn_aux->kptr_struct_meta; 19427 struct bpf_insn addr[2] = { BPF_LD_IMM64(struct_meta_reg, (long)kptr_struct_meta) }; 19428 19429 insn_buf[0] = addr[0]; 19430 insn_buf[1] = addr[1]; 19431 insn_buf[2] = BPF_MOV64_IMM(node_offset_reg, insn_aux->insert_off); 19432 insn_buf[3] = *insn; 19433 *cnt = 4; 19434 } 19435 19436 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 19437 struct bpf_insn *insn_buf, int insn_idx, int *cnt) 19438 { 19439 const struct bpf_kfunc_desc *desc; 19440 19441 if (!insn->imm) { 19442 verbose(env, "invalid kernel function call not eliminated in verifier pass\n"); 19443 return -EINVAL; 19444 } 19445 19446 *cnt = 0; 19447 19448 /* insn->imm has the btf func_id. Replace it with an offset relative to 19449 * __bpf_call_base, unless the JIT needs to call functions that are 19450 * further than 32 bits away (bpf_jit_supports_far_kfunc_call()). 19451 */ 19452 desc = find_kfunc_desc(env->prog, insn->imm, insn->off); 19453 if (!desc) { 19454 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n", 19455 insn->imm); 19456 return -EFAULT; 19457 } 19458 19459 if (!bpf_jit_supports_far_kfunc_call()) 19460 insn->imm = BPF_CALL_IMM(desc->addr); 19461 if (insn->off) 19462 return 0; 19463 if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl] || 19464 desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { 19465 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 19466 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 19467 u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size; 19468 19469 if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl] && kptr_struct_meta) { 19470 verbose(env, "verifier internal error: NULL kptr_struct_meta expected at insn_idx %d\n", 19471 insn_idx); 19472 return -EFAULT; 19473 } 19474 19475 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size); 19476 insn_buf[1] = addr[0]; 19477 insn_buf[2] = addr[1]; 19478 insn_buf[3] = *insn; 19479 *cnt = 4; 19480 } else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl] || 19481 desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] || 19482 desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) { 19483 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 19484 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 19485 19486 if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] && kptr_struct_meta) { 19487 verbose(env, "verifier internal error: NULL kptr_struct_meta expected at insn_idx %d\n", 19488 insn_idx); 19489 return -EFAULT; 19490 } 19491 19492 if (desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] && 19493 !kptr_struct_meta) { 19494 verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n", 19495 insn_idx); 19496 return -EFAULT; 19497 } 19498 19499 insn_buf[0] = addr[0]; 19500 insn_buf[1] = addr[1]; 19501 insn_buf[2] = *insn; 19502 *cnt = 3; 19503 } else if (desc->func_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 19504 desc->func_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 19505 desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 19506 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 19507 int struct_meta_reg = BPF_REG_3; 19508 int node_offset_reg = BPF_REG_4; 19509 19510 /* rbtree_add has extra 'less' arg, so args-to-fixup are in diff regs */ 19511 if (desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 19512 struct_meta_reg = BPF_REG_4; 19513 node_offset_reg = BPF_REG_5; 19514 } 19515 19516 if (!kptr_struct_meta) { 19517 verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n", 19518 insn_idx); 19519 return -EFAULT; 19520 } 19521 19522 __fixup_collection_insert_kfunc(&env->insn_aux_data[insn_idx], struct_meta_reg, 19523 node_offset_reg, insn, insn_buf, cnt); 19524 } else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] || 19525 desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 19526 insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1); 19527 *cnt = 1; 19528 } 19529 return 0; 19530 } 19531 19532 /* The function requires that first instruction in 'patch' is insnsi[prog->len - 1] */ 19533 static int add_hidden_subprog(struct bpf_verifier_env *env, struct bpf_insn *patch, int len) 19534 { 19535 struct bpf_subprog_info *info = env->subprog_info; 19536 int cnt = env->subprog_cnt; 19537 struct bpf_prog *prog; 19538 19539 /* We only reserve one slot for hidden subprogs in subprog_info. */ 19540 if (env->hidden_subprog_cnt) { 19541 verbose(env, "verifier internal error: only one hidden subprog supported\n"); 19542 return -EFAULT; 19543 } 19544 /* We're not patching any existing instruction, just appending the new 19545 * ones for the hidden subprog. Hence all of the adjustment operations 19546 * in bpf_patch_insn_data are no-ops. 19547 */ 19548 prog = bpf_patch_insn_data(env, env->prog->len - 1, patch, len); 19549 if (!prog) 19550 return -ENOMEM; 19551 env->prog = prog; 19552 info[cnt + 1].start = info[cnt].start; 19553 info[cnt].start = prog->len - len + 1; 19554 env->subprog_cnt++; 19555 env->hidden_subprog_cnt++; 19556 return 0; 19557 } 19558 19559 /* Do various post-verification rewrites in a single program pass. 19560 * These rewrites simplify JIT and interpreter implementations. 19561 */ 19562 static int do_misc_fixups(struct bpf_verifier_env *env) 19563 { 19564 struct bpf_prog *prog = env->prog; 19565 enum bpf_attach_type eatype = prog->expected_attach_type; 19566 enum bpf_prog_type prog_type = resolve_prog_type(prog); 19567 struct bpf_insn *insn = prog->insnsi; 19568 const struct bpf_func_proto *fn; 19569 const int insn_cnt = prog->len; 19570 const struct bpf_map_ops *ops; 19571 struct bpf_insn_aux_data *aux; 19572 struct bpf_insn insn_buf[16]; 19573 struct bpf_prog *new_prog; 19574 struct bpf_map *map_ptr; 19575 int i, ret, cnt, delta = 0, cur_subprog = 0; 19576 struct bpf_subprog_info *subprogs = env->subprog_info; 19577 u16 stack_depth = subprogs[cur_subprog].stack_depth; 19578 u16 stack_depth_extra = 0; 19579 19580 if (env->seen_exception && !env->exception_callback_subprog) { 19581 struct bpf_insn patch[] = { 19582 env->prog->insnsi[insn_cnt - 1], 19583 BPF_MOV64_REG(BPF_REG_0, BPF_REG_1), 19584 BPF_EXIT_INSN(), 19585 }; 19586 19587 ret = add_hidden_subprog(env, patch, ARRAY_SIZE(patch)); 19588 if (ret < 0) 19589 return ret; 19590 prog = env->prog; 19591 insn = prog->insnsi; 19592 19593 env->exception_callback_subprog = env->subprog_cnt - 1; 19594 /* Don't update insn_cnt, as add_hidden_subprog always appends insns */ 19595 mark_subprog_exc_cb(env, env->exception_callback_subprog); 19596 } 19597 19598 for (i = 0; i < insn_cnt;) { 19599 if (insn->code == (BPF_ALU64 | BPF_MOV | BPF_X) && insn->imm) { 19600 if ((insn->off == BPF_ADDR_SPACE_CAST && insn->imm == 1) || 19601 (((struct bpf_map *)env->prog->aux->arena)->map_flags & BPF_F_NO_USER_CONV)) { 19602 /* convert to 32-bit mov that clears upper 32-bit */ 19603 insn->code = BPF_ALU | BPF_MOV | BPF_X; 19604 /* clear off, so it's a normal 'wX = wY' from JIT pov */ 19605 insn->off = 0; 19606 } /* cast from as(0) to as(1) should be handled by JIT */ 19607 goto next_insn; 19608 } 19609 19610 if (env->insn_aux_data[i + delta].needs_zext) 19611 /* Convert BPF_CLASS(insn->code) == BPF_ALU64 to 32-bit ALU */ 19612 insn->code = BPF_ALU | BPF_OP(insn->code) | BPF_SRC(insn->code); 19613 19614 /* Make divide-by-zero exceptions impossible. */ 19615 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 19616 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 19617 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 19618 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 19619 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 19620 bool isdiv = BPF_OP(insn->code) == BPF_DIV; 19621 struct bpf_insn *patchlet; 19622 struct bpf_insn chk_and_div[] = { 19623 /* [R,W]x div 0 -> 0 */ 19624 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 19625 BPF_JNE | BPF_K, insn->src_reg, 19626 0, 2, 0), 19627 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 19628 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 19629 *insn, 19630 }; 19631 struct bpf_insn chk_and_mod[] = { 19632 /* [R,W]x mod 0 -> [R,W]x */ 19633 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 19634 BPF_JEQ | BPF_K, insn->src_reg, 19635 0, 1 + (is64 ? 0 : 1), 0), 19636 *insn, 19637 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 19638 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg), 19639 }; 19640 19641 patchlet = isdiv ? chk_and_div : chk_and_mod; 19642 cnt = isdiv ? ARRAY_SIZE(chk_and_div) : 19643 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0); 19644 19645 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 19646 if (!new_prog) 19647 return -ENOMEM; 19648 19649 delta += cnt - 1; 19650 env->prog = prog = new_prog; 19651 insn = new_prog->insnsi + i + delta; 19652 goto next_insn; 19653 } 19654 19655 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */ 19656 if (BPF_CLASS(insn->code) == BPF_LD && 19657 (BPF_MODE(insn->code) == BPF_ABS || 19658 BPF_MODE(insn->code) == BPF_IND)) { 19659 cnt = env->ops->gen_ld_abs(insn, insn_buf); 19660 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 19661 verbose(env, "bpf verifier is misconfigured\n"); 19662 return -EINVAL; 19663 } 19664 19665 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19666 if (!new_prog) 19667 return -ENOMEM; 19668 19669 delta += cnt - 1; 19670 env->prog = prog = new_prog; 19671 insn = new_prog->insnsi + i + delta; 19672 goto next_insn; 19673 } 19674 19675 /* Rewrite pointer arithmetic to mitigate speculation attacks. */ 19676 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 19677 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 19678 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 19679 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 19680 struct bpf_insn *patch = &insn_buf[0]; 19681 bool issrc, isneg, isimm; 19682 u32 off_reg; 19683 19684 aux = &env->insn_aux_data[i + delta]; 19685 if (!aux->alu_state || 19686 aux->alu_state == BPF_ALU_NON_POINTER) 19687 goto next_insn; 19688 19689 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 19690 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 19691 BPF_ALU_SANITIZE_SRC; 19692 isimm = aux->alu_state & BPF_ALU_IMMEDIATE; 19693 19694 off_reg = issrc ? insn->src_reg : insn->dst_reg; 19695 if (isimm) { 19696 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 19697 } else { 19698 if (isneg) 19699 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 19700 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 19701 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 19702 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 19703 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 19704 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 19705 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg); 19706 } 19707 if (!issrc) 19708 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg); 19709 insn->src_reg = BPF_REG_AX; 19710 if (isneg) 19711 insn->code = insn->code == code_add ? 19712 code_sub : code_add; 19713 *patch++ = *insn; 19714 if (issrc && isneg && !isimm) 19715 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 19716 cnt = patch - insn_buf; 19717 19718 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19719 if (!new_prog) 19720 return -ENOMEM; 19721 19722 delta += cnt - 1; 19723 env->prog = prog = new_prog; 19724 insn = new_prog->insnsi + i + delta; 19725 goto next_insn; 19726 } 19727 19728 if (is_may_goto_insn(insn)) { 19729 int stack_off = -stack_depth - 8; 19730 19731 stack_depth_extra = 8; 19732 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_AX, BPF_REG_10, stack_off); 19733 insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off + 2); 19734 insn_buf[2] = BPF_ALU64_IMM(BPF_SUB, BPF_REG_AX, 1); 19735 insn_buf[3] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_AX, stack_off); 19736 cnt = 4; 19737 19738 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19739 if (!new_prog) 19740 return -ENOMEM; 19741 19742 delta += cnt - 1; 19743 env->prog = prog = new_prog; 19744 insn = new_prog->insnsi + i + delta; 19745 goto next_insn; 19746 } 19747 19748 if (insn->code != (BPF_JMP | BPF_CALL)) 19749 goto next_insn; 19750 if (insn->src_reg == BPF_PSEUDO_CALL) 19751 goto next_insn; 19752 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 19753 ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt); 19754 if (ret) 19755 return ret; 19756 if (cnt == 0) 19757 goto next_insn; 19758 19759 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19760 if (!new_prog) 19761 return -ENOMEM; 19762 19763 delta += cnt - 1; 19764 env->prog = prog = new_prog; 19765 insn = new_prog->insnsi + i + delta; 19766 goto next_insn; 19767 } 19768 19769 if (insn->imm == BPF_FUNC_get_route_realm) 19770 prog->dst_needed = 1; 19771 if (insn->imm == BPF_FUNC_get_prandom_u32) 19772 bpf_user_rnd_init_once(); 19773 if (insn->imm == BPF_FUNC_override_return) 19774 prog->kprobe_override = 1; 19775 if (insn->imm == BPF_FUNC_tail_call) { 19776 /* If we tail call into other programs, we 19777 * cannot make any assumptions since they can 19778 * be replaced dynamically during runtime in 19779 * the program array. 19780 */ 19781 prog->cb_access = 1; 19782 if (!allow_tail_call_in_subprogs(env)) 19783 prog->aux->stack_depth = MAX_BPF_STACK; 19784 prog->aux->max_pkt_offset = MAX_PACKET_OFF; 19785 19786 /* mark bpf_tail_call as different opcode to avoid 19787 * conditional branch in the interpreter for every normal 19788 * call and to prevent accidental JITing by JIT compiler 19789 * that doesn't support bpf_tail_call yet 19790 */ 19791 insn->imm = 0; 19792 insn->code = BPF_JMP | BPF_TAIL_CALL; 19793 19794 aux = &env->insn_aux_data[i + delta]; 19795 if (env->bpf_capable && !prog->blinding_requested && 19796 prog->jit_requested && 19797 !bpf_map_key_poisoned(aux) && 19798 !bpf_map_ptr_poisoned(aux) && 19799 !bpf_map_ptr_unpriv(aux)) { 19800 struct bpf_jit_poke_descriptor desc = { 19801 .reason = BPF_POKE_REASON_TAIL_CALL, 19802 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state), 19803 .tail_call.key = bpf_map_key_immediate(aux), 19804 .insn_idx = i + delta, 19805 }; 19806 19807 ret = bpf_jit_add_poke_descriptor(prog, &desc); 19808 if (ret < 0) { 19809 verbose(env, "adding tail call poke descriptor failed\n"); 19810 return ret; 19811 } 19812 19813 insn->imm = ret + 1; 19814 goto next_insn; 19815 } 19816 19817 if (!bpf_map_ptr_unpriv(aux)) 19818 goto next_insn; 19819 19820 /* instead of changing every JIT dealing with tail_call 19821 * emit two extra insns: 19822 * if (index >= max_entries) goto out; 19823 * index &= array->index_mask; 19824 * to avoid out-of-bounds cpu speculation 19825 */ 19826 if (bpf_map_ptr_poisoned(aux)) { 19827 verbose(env, "tail_call abusing map_ptr\n"); 19828 return -EINVAL; 19829 } 19830 19831 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 19832 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 19833 map_ptr->max_entries, 2); 19834 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 19835 container_of(map_ptr, 19836 struct bpf_array, 19837 map)->index_mask); 19838 insn_buf[2] = *insn; 19839 cnt = 3; 19840 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19841 if (!new_prog) 19842 return -ENOMEM; 19843 19844 delta += cnt - 1; 19845 env->prog = prog = new_prog; 19846 insn = new_prog->insnsi + i + delta; 19847 goto next_insn; 19848 } 19849 19850 if (insn->imm == BPF_FUNC_timer_set_callback) { 19851 /* The verifier will process callback_fn as many times as necessary 19852 * with different maps and the register states prepared by 19853 * set_timer_callback_state will be accurate. 19854 * 19855 * The following use case is valid: 19856 * map1 is shared by prog1, prog2, prog3. 19857 * prog1 calls bpf_timer_init for some map1 elements 19858 * prog2 calls bpf_timer_set_callback for some map1 elements. 19859 * Those that were not bpf_timer_init-ed will return -EINVAL. 19860 * prog3 calls bpf_timer_start for some map1 elements. 19861 * Those that were not both bpf_timer_init-ed and 19862 * bpf_timer_set_callback-ed will return -EINVAL. 19863 */ 19864 struct bpf_insn ld_addrs[2] = { 19865 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux), 19866 }; 19867 19868 insn_buf[0] = ld_addrs[0]; 19869 insn_buf[1] = ld_addrs[1]; 19870 insn_buf[2] = *insn; 19871 cnt = 3; 19872 19873 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19874 if (!new_prog) 19875 return -ENOMEM; 19876 19877 delta += cnt - 1; 19878 env->prog = prog = new_prog; 19879 insn = new_prog->insnsi + i + delta; 19880 goto patch_call_imm; 19881 } 19882 19883 if (is_storage_get_function(insn->imm)) { 19884 if (!in_sleepable(env) || 19885 env->insn_aux_data[i + delta].storage_get_func_atomic) 19886 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC); 19887 else 19888 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL); 19889 insn_buf[1] = *insn; 19890 cnt = 2; 19891 19892 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19893 if (!new_prog) 19894 return -ENOMEM; 19895 19896 delta += cnt - 1; 19897 env->prog = prog = new_prog; 19898 insn = new_prog->insnsi + i + delta; 19899 goto patch_call_imm; 19900 } 19901 19902 /* bpf_per_cpu_ptr() and bpf_this_cpu_ptr() */ 19903 if (env->insn_aux_data[i + delta].call_with_percpu_alloc_ptr) { 19904 /* patch with 'r1 = *(u64 *)(r1 + 0)' since for percpu data, 19905 * bpf_mem_alloc() returns a ptr to the percpu data ptr. 19906 */ 19907 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_1, 0); 19908 insn_buf[1] = *insn; 19909 cnt = 2; 19910 19911 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19912 if (!new_prog) 19913 return -ENOMEM; 19914 19915 delta += cnt - 1; 19916 env->prog = prog = new_prog; 19917 insn = new_prog->insnsi + i + delta; 19918 goto patch_call_imm; 19919 } 19920 19921 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 19922 * and other inlining handlers are currently limited to 64 bit 19923 * only. 19924 */ 19925 if (prog->jit_requested && BITS_PER_LONG == 64 && 19926 (insn->imm == BPF_FUNC_map_lookup_elem || 19927 insn->imm == BPF_FUNC_map_update_elem || 19928 insn->imm == BPF_FUNC_map_delete_elem || 19929 insn->imm == BPF_FUNC_map_push_elem || 19930 insn->imm == BPF_FUNC_map_pop_elem || 19931 insn->imm == BPF_FUNC_map_peek_elem || 19932 insn->imm == BPF_FUNC_redirect_map || 19933 insn->imm == BPF_FUNC_for_each_map_elem || 19934 insn->imm == BPF_FUNC_map_lookup_percpu_elem)) { 19935 aux = &env->insn_aux_data[i + delta]; 19936 if (bpf_map_ptr_poisoned(aux)) 19937 goto patch_call_imm; 19938 19939 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 19940 ops = map_ptr->ops; 19941 if (insn->imm == BPF_FUNC_map_lookup_elem && 19942 ops->map_gen_lookup) { 19943 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 19944 if (cnt == -EOPNOTSUPP) 19945 goto patch_map_ops_generic; 19946 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) { 19947 verbose(env, "bpf verifier is misconfigured\n"); 19948 return -EINVAL; 19949 } 19950 19951 new_prog = bpf_patch_insn_data(env, i + delta, 19952 insn_buf, cnt); 19953 if (!new_prog) 19954 return -ENOMEM; 19955 19956 delta += cnt - 1; 19957 env->prog = prog = new_prog; 19958 insn = new_prog->insnsi + i + delta; 19959 goto next_insn; 19960 } 19961 19962 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 19963 (void *(*)(struct bpf_map *map, void *key))NULL)); 19964 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 19965 (long (*)(struct bpf_map *map, void *key))NULL)); 19966 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 19967 (long (*)(struct bpf_map *map, void *key, void *value, 19968 u64 flags))NULL)); 19969 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 19970 (long (*)(struct bpf_map *map, void *value, 19971 u64 flags))NULL)); 19972 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 19973 (long (*)(struct bpf_map *map, void *value))NULL)); 19974 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 19975 (long (*)(struct bpf_map *map, void *value))NULL)); 19976 BUILD_BUG_ON(!__same_type(ops->map_redirect, 19977 (long (*)(struct bpf_map *map, u64 index, u64 flags))NULL)); 19978 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback, 19979 (long (*)(struct bpf_map *map, 19980 bpf_callback_t callback_fn, 19981 void *callback_ctx, 19982 u64 flags))NULL)); 19983 BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem, 19984 (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL)); 19985 19986 patch_map_ops_generic: 19987 switch (insn->imm) { 19988 case BPF_FUNC_map_lookup_elem: 19989 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem); 19990 goto next_insn; 19991 case BPF_FUNC_map_update_elem: 19992 insn->imm = BPF_CALL_IMM(ops->map_update_elem); 19993 goto next_insn; 19994 case BPF_FUNC_map_delete_elem: 19995 insn->imm = BPF_CALL_IMM(ops->map_delete_elem); 19996 goto next_insn; 19997 case BPF_FUNC_map_push_elem: 19998 insn->imm = BPF_CALL_IMM(ops->map_push_elem); 19999 goto next_insn; 20000 case BPF_FUNC_map_pop_elem: 20001 insn->imm = BPF_CALL_IMM(ops->map_pop_elem); 20002 goto next_insn; 20003 case BPF_FUNC_map_peek_elem: 20004 insn->imm = BPF_CALL_IMM(ops->map_peek_elem); 20005 goto next_insn; 20006 case BPF_FUNC_redirect_map: 20007 insn->imm = BPF_CALL_IMM(ops->map_redirect); 20008 goto next_insn; 20009 case BPF_FUNC_for_each_map_elem: 20010 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback); 20011 goto next_insn; 20012 case BPF_FUNC_map_lookup_percpu_elem: 20013 insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem); 20014 goto next_insn; 20015 } 20016 20017 goto patch_call_imm; 20018 } 20019 20020 /* Implement bpf_jiffies64 inline. */ 20021 if (prog->jit_requested && BITS_PER_LONG == 64 && 20022 insn->imm == BPF_FUNC_jiffies64) { 20023 struct bpf_insn ld_jiffies_addr[2] = { 20024 BPF_LD_IMM64(BPF_REG_0, 20025 (unsigned long)&jiffies), 20026 }; 20027 20028 insn_buf[0] = ld_jiffies_addr[0]; 20029 insn_buf[1] = ld_jiffies_addr[1]; 20030 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 20031 BPF_REG_0, 0); 20032 cnt = 3; 20033 20034 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 20035 cnt); 20036 if (!new_prog) 20037 return -ENOMEM; 20038 20039 delta += cnt - 1; 20040 env->prog = prog = new_prog; 20041 insn = new_prog->insnsi + i + delta; 20042 goto next_insn; 20043 } 20044 20045 /* Implement bpf_get_func_arg inline. */ 20046 if (prog_type == BPF_PROG_TYPE_TRACING && 20047 insn->imm == BPF_FUNC_get_func_arg) { 20048 /* Load nr_args from ctx - 8 */ 20049 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 20050 insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6); 20051 insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3); 20052 insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1); 20053 insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0); 20054 insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 20055 insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0); 20056 insn_buf[7] = BPF_JMP_A(1); 20057 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL); 20058 cnt = 9; 20059 20060 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 20061 if (!new_prog) 20062 return -ENOMEM; 20063 20064 delta += cnt - 1; 20065 env->prog = prog = new_prog; 20066 insn = new_prog->insnsi + i + delta; 20067 goto next_insn; 20068 } 20069 20070 /* Implement bpf_get_func_ret inline. */ 20071 if (prog_type == BPF_PROG_TYPE_TRACING && 20072 insn->imm == BPF_FUNC_get_func_ret) { 20073 if (eatype == BPF_TRACE_FEXIT || 20074 eatype == BPF_MODIFY_RETURN) { 20075 /* Load nr_args from ctx - 8 */ 20076 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 20077 insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3); 20078 insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1); 20079 insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 20080 insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0); 20081 insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0); 20082 cnt = 6; 20083 } else { 20084 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP); 20085 cnt = 1; 20086 } 20087 20088 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 20089 if (!new_prog) 20090 return -ENOMEM; 20091 20092 delta += cnt - 1; 20093 env->prog = prog = new_prog; 20094 insn = new_prog->insnsi + i + delta; 20095 goto next_insn; 20096 } 20097 20098 /* Implement get_func_arg_cnt inline. */ 20099 if (prog_type == BPF_PROG_TYPE_TRACING && 20100 insn->imm == BPF_FUNC_get_func_arg_cnt) { 20101 /* Load nr_args from ctx - 8 */ 20102 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 20103 20104 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 20105 if (!new_prog) 20106 return -ENOMEM; 20107 20108 env->prog = prog = new_prog; 20109 insn = new_prog->insnsi + i + delta; 20110 goto next_insn; 20111 } 20112 20113 /* Implement bpf_get_func_ip inline. */ 20114 if (prog_type == BPF_PROG_TYPE_TRACING && 20115 insn->imm == BPF_FUNC_get_func_ip) { 20116 /* Load IP address from ctx - 16 */ 20117 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16); 20118 20119 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 20120 if (!new_prog) 20121 return -ENOMEM; 20122 20123 env->prog = prog = new_prog; 20124 insn = new_prog->insnsi + i + delta; 20125 goto next_insn; 20126 } 20127 20128 /* Implement bpf_kptr_xchg inline */ 20129 if (prog->jit_requested && BITS_PER_LONG == 64 && 20130 insn->imm == BPF_FUNC_kptr_xchg && 20131 bpf_jit_supports_ptr_xchg()) { 20132 insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_2); 20133 insn_buf[1] = BPF_ATOMIC_OP(BPF_DW, BPF_XCHG, BPF_REG_1, BPF_REG_0, 0); 20134 cnt = 2; 20135 20136 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 20137 if (!new_prog) 20138 return -ENOMEM; 20139 20140 delta += cnt - 1; 20141 env->prog = prog = new_prog; 20142 insn = new_prog->insnsi + i + delta; 20143 goto next_insn; 20144 } 20145 patch_call_imm: 20146 fn = env->ops->get_func_proto(insn->imm, env->prog); 20147 /* all functions that have prototype and verifier allowed 20148 * programs to call them, must be real in-kernel functions 20149 */ 20150 if (!fn->func) { 20151 verbose(env, 20152 "kernel subsystem misconfigured func %s#%d\n", 20153 func_id_name(insn->imm), insn->imm); 20154 return -EFAULT; 20155 } 20156 insn->imm = fn->func - __bpf_call_base; 20157 next_insn: 20158 if (subprogs[cur_subprog + 1].start == i + delta + 1) { 20159 subprogs[cur_subprog].stack_depth += stack_depth_extra; 20160 subprogs[cur_subprog].stack_extra = stack_depth_extra; 20161 cur_subprog++; 20162 stack_depth = subprogs[cur_subprog].stack_depth; 20163 stack_depth_extra = 0; 20164 } 20165 i++; 20166 insn++; 20167 } 20168 20169 env->prog->aux->stack_depth = subprogs[0].stack_depth; 20170 for (i = 0; i < env->subprog_cnt; i++) { 20171 int subprog_start = subprogs[i].start; 20172 int stack_slots = subprogs[i].stack_extra / 8; 20173 20174 if (!stack_slots) 20175 continue; 20176 if (stack_slots > 1) { 20177 verbose(env, "verifier bug: stack_slots supports may_goto only\n"); 20178 return -EFAULT; 20179 } 20180 20181 /* Add ST insn to subprog prologue to init extra stack */ 20182 insn_buf[0] = BPF_ST_MEM(BPF_DW, BPF_REG_FP, 20183 -subprogs[i].stack_depth, BPF_MAX_LOOPS); 20184 /* Copy first actual insn to preserve it */ 20185 insn_buf[1] = env->prog->insnsi[subprog_start]; 20186 20187 new_prog = bpf_patch_insn_data(env, subprog_start, insn_buf, 2); 20188 if (!new_prog) 20189 return -ENOMEM; 20190 env->prog = prog = new_prog; 20191 } 20192 20193 /* Since poke tab is now finalized, publish aux to tracker. */ 20194 for (i = 0; i < prog->aux->size_poke_tab; i++) { 20195 map_ptr = prog->aux->poke_tab[i].tail_call.map; 20196 if (!map_ptr->ops->map_poke_track || 20197 !map_ptr->ops->map_poke_untrack || 20198 !map_ptr->ops->map_poke_run) { 20199 verbose(env, "bpf verifier is misconfigured\n"); 20200 return -EINVAL; 20201 } 20202 20203 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 20204 if (ret < 0) { 20205 verbose(env, "tracking tail call prog failed\n"); 20206 return ret; 20207 } 20208 } 20209 20210 sort_kfunc_descs_by_imm_off(env->prog); 20211 20212 return 0; 20213 } 20214 20215 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env, 20216 int position, 20217 s32 stack_base, 20218 u32 callback_subprogno, 20219 u32 *cnt) 20220 { 20221 s32 r6_offset = stack_base + 0 * BPF_REG_SIZE; 20222 s32 r7_offset = stack_base + 1 * BPF_REG_SIZE; 20223 s32 r8_offset = stack_base + 2 * BPF_REG_SIZE; 20224 int reg_loop_max = BPF_REG_6; 20225 int reg_loop_cnt = BPF_REG_7; 20226 int reg_loop_ctx = BPF_REG_8; 20227 20228 struct bpf_prog *new_prog; 20229 u32 callback_start; 20230 u32 call_insn_offset; 20231 s32 callback_offset; 20232 20233 /* This represents an inlined version of bpf_iter.c:bpf_loop, 20234 * be careful to modify this code in sync. 20235 */ 20236 struct bpf_insn insn_buf[] = { 20237 /* Return error and jump to the end of the patch if 20238 * expected number of iterations is too big. 20239 */ 20240 BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2), 20241 BPF_MOV32_IMM(BPF_REG_0, -E2BIG), 20242 BPF_JMP_IMM(BPF_JA, 0, 0, 16), 20243 /* spill R6, R7, R8 to use these as loop vars */ 20244 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset), 20245 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset), 20246 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset), 20247 /* initialize loop vars */ 20248 BPF_MOV64_REG(reg_loop_max, BPF_REG_1), 20249 BPF_MOV32_IMM(reg_loop_cnt, 0), 20250 BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3), 20251 /* loop header, 20252 * if reg_loop_cnt >= reg_loop_max skip the loop body 20253 */ 20254 BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5), 20255 /* callback call, 20256 * correct callback offset would be set after patching 20257 */ 20258 BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt), 20259 BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx), 20260 BPF_CALL_REL(0), 20261 /* increment loop counter */ 20262 BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1), 20263 /* jump to loop header if callback returned 0 */ 20264 BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6), 20265 /* return value of bpf_loop, 20266 * set R0 to the number of iterations 20267 */ 20268 BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt), 20269 /* restore original values of R6, R7, R8 */ 20270 BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset), 20271 BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset), 20272 BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset), 20273 }; 20274 20275 *cnt = ARRAY_SIZE(insn_buf); 20276 new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt); 20277 if (!new_prog) 20278 return new_prog; 20279 20280 /* callback start is known only after patching */ 20281 callback_start = env->subprog_info[callback_subprogno].start; 20282 /* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */ 20283 call_insn_offset = position + 12; 20284 callback_offset = callback_start - call_insn_offset - 1; 20285 new_prog->insnsi[call_insn_offset].imm = callback_offset; 20286 20287 return new_prog; 20288 } 20289 20290 static bool is_bpf_loop_call(struct bpf_insn *insn) 20291 { 20292 return insn->code == (BPF_JMP | BPF_CALL) && 20293 insn->src_reg == 0 && 20294 insn->imm == BPF_FUNC_loop; 20295 } 20296 20297 /* For all sub-programs in the program (including main) check 20298 * insn_aux_data to see if there are bpf_loop calls that require 20299 * inlining. If such calls are found the calls are replaced with a 20300 * sequence of instructions produced by `inline_bpf_loop` function and 20301 * subprog stack_depth is increased by the size of 3 registers. 20302 * This stack space is used to spill values of the R6, R7, R8. These 20303 * registers are used to store the loop bound, counter and context 20304 * variables. 20305 */ 20306 static int optimize_bpf_loop(struct bpf_verifier_env *env) 20307 { 20308 struct bpf_subprog_info *subprogs = env->subprog_info; 20309 int i, cur_subprog = 0, cnt, delta = 0; 20310 struct bpf_insn *insn = env->prog->insnsi; 20311 int insn_cnt = env->prog->len; 20312 u16 stack_depth = subprogs[cur_subprog].stack_depth; 20313 u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 20314 u16 stack_depth_extra = 0; 20315 20316 for (i = 0; i < insn_cnt; i++, insn++) { 20317 struct bpf_loop_inline_state *inline_state = 20318 &env->insn_aux_data[i + delta].loop_inline_state; 20319 20320 if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) { 20321 struct bpf_prog *new_prog; 20322 20323 stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup; 20324 new_prog = inline_bpf_loop(env, 20325 i + delta, 20326 -(stack_depth + stack_depth_extra), 20327 inline_state->callback_subprogno, 20328 &cnt); 20329 if (!new_prog) 20330 return -ENOMEM; 20331 20332 delta += cnt - 1; 20333 env->prog = new_prog; 20334 insn = new_prog->insnsi + i + delta; 20335 } 20336 20337 if (subprogs[cur_subprog + 1].start == i + delta + 1) { 20338 subprogs[cur_subprog].stack_depth += stack_depth_extra; 20339 cur_subprog++; 20340 stack_depth = subprogs[cur_subprog].stack_depth; 20341 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 20342 stack_depth_extra = 0; 20343 } 20344 } 20345 20346 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 20347 20348 return 0; 20349 } 20350 20351 static void free_states(struct bpf_verifier_env *env) 20352 { 20353 struct bpf_verifier_state_list *sl, *sln; 20354 int i; 20355 20356 sl = env->free_list; 20357 while (sl) { 20358 sln = sl->next; 20359 free_verifier_state(&sl->state, false); 20360 kfree(sl); 20361 sl = sln; 20362 } 20363 env->free_list = NULL; 20364 20365 if (!env->explored_states) 20366 return; 20367 20368 for (i = 0; i < state_htab_size(env); i++) { 20369 sl = env->explored_states[i]; 20370 20371 while (sl) { 20372 sln = sl->next; 20373 free_verifier_state(&sl->state, false); 20374 kfree(sl); 20375 sl = sln; 20376 } 20377 env->explored_states[i] = NULL; 20378 } 20379 } 20380 20381 static int do_check_common(struct bpf_verifier_env *env, int subprog) 20382 { 20383 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 20384 struct bpf_subprog_info *sub = subprog_info(env, subprog); 20385 struct bpf_verifier_state *state; 20386 struct bpf_reg_state *regs; 20387 int ret, i; 20388 20389 env->prev_linfo = NULL; 20390 env->pass_cnt++; 20391 20392 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 20393 if (!state) 20394 return -ENOMEM; 20395 state->curframe = 0; 20396 state->speculative = false; 20397 state->branches = 1; 20398 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 20399 if (!state->frame[0]) { 20400 kfree(state); 20401 return -ENOMEM; 20402 } 20403 env->cur_state = state; 20404 init_func_state(env, state->frame[0], 20405 BPF_MAIN_FUNC /* callsite */, 20406 0 /* frameno */, 20407 subprog); 20408 state->first_insn_idx = env->subprog_info[subprog].start; 20409 state->last_insn_idx = -1; 20410 20411 regs = state->frame[state->curframe]->regs; 20412 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 20413 const char *sub_name = subprog_name(env, subprog); 20414 struct bpf_subprog_arg_info *arg; 20415 struct bpf_reg_state *reg; 20416 20417 verbose(env, "Validating %s() func#%d...\n", sub_name, subprog); 20418 ret = btf_prepare_func_args(env, subprog); 20419 if (ret) 20420 goto out; 20421 20422 if (subprog_is_exc_cb(env, subprog)) { 20423 state->frame[0]->in_exception_callback_fn = true; 20424 /* We have already ensured that the callback returns an integer, just 20425 * like all global subprogs. We need to determine it only has a single 20426 * scalar argument. 20427 */ 20428 if (sub->arg_cnt != 1 || sub->args[0].arg_type != ARG_ANYTHING) { 20429 verbose(env, "exception cb only supports single integer argument\n"); 20430 ret = -EINVAL; 20431 goto out; 20432 } 20433 } 20434 for (i = BPF_REG_1; i <= sub->arg_cnt; i++) { 20435 arg = &sub->args[i - BPF_REG_1]; 20436 reg = ®s[i]; 20437 20438 if (arg->arg_type == ARG_PTR_TO_CTX) { 20439 reg->type = PTR_TO_CTX; 20440 mark_reg_known_zero(env, regs, i); 20441 } else if (arg->arg_type == ARG_ANYTHING) { 20442 reg->type = SCALAR_VALUE; 20443 mark_reg_unknown(env, regs, i); 20444 } else if (arg->arg_type == (ARG_PTR_TO_DYNPTR | MEM_RDONLY)) { 20445 /* assume unspecial LOCAL dynptr type */ 20446 __mark_dynptr_reg(reg, BPF_DYNPTR_TYPE_LOCAL, true, ++env->id_gen); 20447 } else if (base_type(arg->arg_type) == ARG_PTR_TO_MEM) { 20448 reg->type = PTR_TO_MEM; 20449 if (arg->arg_type & PTR_MAYBE_NULL) 20450 reg->type |= PTR_MAYBE_NULL; 20451 mark_reg_known_zero(env, regs, i); 20452 reg->mem_size = arg->mem_size; 20453 reg->id = ++env->id_gen; 20454 } else if (base_type(arg->arg_type) == ARG_PTR_TO_BTF_ID) { 20455 reg->type = PTR_TO_BTF_ID; 20456 if (arg->arg_type & PTR_MAYBE_NULL) 20457 reg->type |= PTR_MAYBE_NULL; 20458 if (arg->arg_type & PTR_UNTRUSTED) 20459 reg->type |= PTR_UNTRUSTED; 20460 if (arg->arg_type & PTR_TRUSTED) 20461 reg->type |= PTR_TRUSTED; 20462 mark_reg_known_zero(env, regs, i); 20463 reg->btf = bpf_get_btf_vmlinux(); /* can't fail at this point */ 20464 reg->btf_id = arg->btf_id; 20465 reg->id = ++env->id_gen; 20466 } else if (base_type(arg->arg_type) == ARG_PTR_TO_ARENA) { 20467 /* caller can pass either PTR_TO_ARENA or SCALAR */ 20468 mark_reg_unknown(env, regs, i); 20469 } else { 20470 WARN_ONCE(1, "BUG: unhandled arg#%d type %d\n", 20471 i - BPF_REG_1, arg->arg_type); 20472 ret = -EFAULT; 20473 goto out; 20474 } 20475 } 20476 } else { 20477 /* if main BPF program has associated BTF info, validate that 20478 * it's matching expected signature, and otherwise mark BTF 20479 * info for main program as unreliable 20480 */ 20481 if (env->prog->aux->func_info_aux) { 20482 ret = btf_prepare_func_args(env, 0); 20483 if (ret || sub->arg_cnt != 1 || sub->args[0].arg_type != ARG_PTR_TO_CTX) 20484 env->prog->aux->func_info_aux[0].unreliable = true; 20485 } 20486 20487 /* 1st arg to a function */ 20488 regs[BPF_REG_1].type = PTR_TO_CTX; 20489 mark_reg_known_zero(env, regs, BPF_REG_1); 20490 } 20491 20492 ret = do_check(env); 20493 out: 20494 /* check for NULL is necessary, since cur_state can be freed inside 20495 * do_check() under memory pressure. 20496 */ 20497 if (env->cur_state) { 20498 free_verifier_state(env->cur_state, true); 20499 env->cur_state = NULL; 20500 } 20501 while (!pop_stack(env, NULL, NULL, false)); 20502 if (!ret && pop_log) 20503 bpf_vlog_reset(&env->log, 0); 20504 free_states(env); 20505 return ret; 20506 } 20507 20508 /* Lazily verify all global functions based on their BTF, if they are called 20509 * from main BPF program or any of subprograms transitively. 20510 * BPF global subprogs called from dead code are not validated. 20511 * All callable global functions must pass verification. 20512 * Otherwise the whole program is rejected. 20513 * Consider: 20514 * int bar(int); 20515 * int foo(int f) 20516 * { 20517 * return bar(f); 20518 * } 20519 * int bar(int b) 20520 * { 20521 * ... 20522 * } 20523 * foo() will be verified first for R1=any_scalar_value. During verification it 20524 * will be assumed that bar() already verified successfully and call to bar() 20525 * from foo() will be checked for type match only. Later bar() will be verified 20526 * independently to check that it's safe for R1=any_scalar_value. 20527 */ 20528 static int do_check_subprogs(struct bpf_verifier_env *env) 20529 { 20530 struct bpf_prog_aux *aux = env->prog->aux; 20531 struct bpf_func_info_aux *sub_aux; 20532 int i, ret, new_cnt; 20533 20534 if (!aux->func_info) 20535 return 0; 20536 20537 /* exception callback is presumed to be always called */ 20538 if (env->exception_callback_subprog) 20539 subprog_aux(env, env->exception_callback_subprog)->called = true; 20540 20541 again: 20542 new_cnt = 0; 20543 for (i = 1; i < env->subprog_cnt; i++) { 20544 if (!subprog_is_global(env, i)) 20545 continue; 20546 20547 sub_aux = subprog_aux(env, i); 20548 if (!sub_aux->called || sub_aux->verified) 20549 continue; 20550 20551 env->insn_idx = env->subprog_info[i].start; 20552 WARN_ON_ONCE(env->insn_idx == 0); 20553 ret = do_check_common(env, i); 20554 if (ret) { 20555 return ret; 20556 } else if (env->log.level & BPF_LOG_LEVEL) { 20557 verbose(env, "Func#%d ('%s') is safe for any args that match its prototype\n", 20558 i, subprog_name(env, i)); 20559 } 20560 20561 /* We verified new global subprog, it might have called some 20562 * more global subprogs that we haven't verified yet, so we 20563 * need to do another pass over subprogs to verify those. 20564 */ 20565 sub_aux->verified = true; 20566 new_cnt++; 20567 } 20568 20569 /* We can't loop forever as we verify at least one global subprog on 20570 * each pass. 20571 */ 20572 if (new_cnt) 20573 goto again; 20574 20575 return 0; 20576 } 20577 20578 static int do_check_main(struct bpf_verifier_env *env) 20579 { 20580 int ret; 20581 20582 env->insn_idx = 0; 20583 ret = do_check_common(env, 0); 20584 if (!ret) 20585 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 20586 return ret; 20587 } 20588 20589 20590 static void print_verification_stats(struct bpf_verifier_env *env) 20591 { 20592 int i; 20593 20594 if (env->log.level & BPF_LOG_STATS) { 20595 verbose(env, "verification time %lld usec\n", 20596 div_u64(env->verification_time, 1000)); 20597 verbose(env, "stack depth "); 20598 for (i = 0; i < env->subprog_cnt; i++) { 20599 u32 depth = env->subprog_info[i].stack_depth; 20600 20601 verbose(env, "%d", depth); 20602 if (i + 1 < env->subprog_cnt) 20603 verbose(env, "+"); 20604 } 20605 verbose(env, "\n"); 20606 } 20607 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 20608 "total_states %d peak_states %d mark_read %d\n", 20609 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 20610 env->max_states_per_insn, env->total_states, 20611 env->peak_states, env->longest_mark_read_walk); 20612 } 20613 20614 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 20615 { 20616 const struct btf_type *t, *func_proto; 20617 const struct bpf_struct_ops_desc *st_ops_desc; 20618 const struct bpf_struct_ops *st_ops; 20619 const struct btf_member *member; 20620 struct bpf_prog *prog = env->prog; 20621 u32 btf_id, member_idx; 20622 struct btf *btf; 20623 const char *mname; 20624 20625 if (!prog->gpl_compatible) { 20626 verbose(env, "struct ops programs must have a GPL compatible license\n"); 20627 return -EINVAL; 20628 } 20629 20630 if (!prog->aux->attach_btf_id) 20631 return -ENOTSUPP; 20632 20633 btf = prog->aux->attach_btf; 20634 if (btf_is_module(btf)) { 20635 /* Make sure st_ops is valid through the lifetime of env */ 20636 env->attach_btf_mod = btf_try_get_module(btf); 20637 if (!env->attach_btf_mod) { 20638 verbose(env, "struct_ops module %s is not found\n", 20639 btf_get_name(btf)); 20640 return -ENOTSUPP; 20641 } 20642 } 20643 20644 btf_id = prog->aux->attach_btf_id; 20645 st_ops_desc = bpf_struct_ops_find(btf, btf_id); 20646 if (!st_ops_desc) { 20647 verbose(env, "attach_btf_id %u is not a supported struct\n", 20648 btf_id); 20649 return -ENOTSUPP; 20650 } 20651 st_ops = st_ops_desc->st_ops; 20652 20653 t = st_ops_desc->type; 20654 member_idx = prog->expected_attach_type; 20655 if (member_idx >= btf_type_vlen(t)) { 20656 verbose(env, "attach to invalid member idx %u of struct %s\n", 20657 member_idx, st_ops->name); 20658 return -EINVAL; 20659 } 20660 20661 member = &btf_type_member(t)[member_idx]; 20662 mname = btf_name_by_offset(btf, member->name_off); 20663 func_proto = btf_type_resolve_func_ptr(btf, member->type, 20664 NULL); 20665 if (!func_proto) { 20666 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 20667 mname, member_idx, st_ops->name); 20668 return -EINVAL; 20669 } 20670 20671 if (st_ops->check_member) { 20672 int err = st_ops->check_member(t, member, prog); 20673 20674 if (err) { 20675 verbose(env, "attach to unsupported member %s of struct %s\n", 20676 mname, st_ops->name); 20677 return err; 20678 } 20679 } 20680 20681 /* btf_ctx_access() used this to provide argument type info */ 20682 prog->aux->ctx_arg_info = 20683 st_ops_desc->arg_info[member_idx].info; 20684 prog->aux->ctx_arg_info_size = 20685 st_ops_desc->arg_info[member_idx].cnt; 20686 20687 prog->aux->attach_func_proto = func_proto; 20688 prog->aux->attach_func_name = mname; 20689 env->ops = st_ops->verifier_ops; 20690 20691 return 0; 20692 } 20693 #define SECURITY_PREFIX "security_" 20694 20695 static int check_attach_modify_return(unsigned long addr, const char *func_name) 20696 { 20697 if (within_error_injection_list(addr) || 20698 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1)) 20699 return 0; 20700 20701 return -EINVAL; 20702 } 20703 20704 /* list of non-sleepable functions that are otherwise on 20705 * ALLOW_ERROR_INJECTION list 20706 */ 20707 BTF_SET_START(btf_non_sleepable_error_inject) 20708 /* Three functions below can be called from sleepable and non-sleepable context. 20709 * Assume non-sleepable from bpf safety point of view. 20710 */ 20711 BTF_ID(func, __filemap_add_folio) 20712 BTF_ID(func, should_fail_alloc_page) 20713 BTF_ID(func, should_failslab) 20714 BTF_SET_END(btf_non_sleepable_error_inject) 20715 20716 static int check_non_sleepable_error_inject(u32 btf_id) 20717 { 20718 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id); 20719 } 20720 20721 int bpf_check_attach_target(struct bpf_verifier_log *log, 20722 const struct bpf_prog *prog, 20723 const struct bpf_prog *tgt_prog, 20724 u32 btf_id, 20725 struct bpf_attach_target_info *tgt_info) 20726 { 20727 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 20728 bool prog_tracing = prog->type == BPF_PROG_TYPE_TRACING; 20729 const char prefix[] = "btf_trace_"; 20730 int ret = 0, subprog = -1, i; 20731 const struct btf_type *t; 20732 bool conservative = true; 20733 const char *tname; 20734 struct btf *btf; 20735 long addr = 0; 20736 struct module *mod = NULL; 20737 20738 if (!btf_id) { 20739 bpf_log(log, "Tracing programs must provide btf_id\n"); 20740 return -EINVAL; 20741 } 20742 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf; 20743 if (!btf) { 20744 bpf_log(log, 20745 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 20746 return -EINVAL; 20747 } 20748 t = btf_type_by_id(btf, btf_id); 20749 if (!t) { 20750 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id); 20751 return -EINVAL; 20752 } 20753 tname = btf_name_by_offset(btf, t->name_off); 20754 if (!tname) { 20755 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id); 20756 return -EINVAL; 20757 } 20758 if (tgt_prog) { 20759 struct bpf_prog_aux *aux = tgt_prog->aux; 20760 20761 if (bpf_prog_is_dev_bound(prog->aux) && 20762 !bpf_prog_dev_bound_match(prog, tgt_prog)) { 20763 bpf_log(log, "Target program bound device mismatch"); 20764 return -EINVAL; 20765 } 20766 20767 for (i = 0; i < aux->func_info_cnt; i++) 20768 if (aux->func_info[i].type_id == btf_id) { 20769 subprog = i; 20770 break; 20771 } 20772 if (subprog == -1) { 20773 bpf_log(log, "Subprog %s doesn't exist\n", tname); 20774 return -EINVAL; 20775 } 20776 if (aux->func && aux->func[subprog]->aux->exception_cb) { 20777 bpf_log(log, 20778 "%s programs cannot attach to exception callback\n", 20779 prog_extension ? "Extension" : "FENTRY/FEXIT"); 20780 return -EINVAL; 20781 } 20782 conservative = aux->func_info_aux[subprog].unreliable; 20783 if (prog_extension) { 20784 if (conservative) { 20785 bpf_log(log, 20786 "Cannot replace static functions\n"); 20787 return -EINVAL; 20788 } 20789 if (!prog->jit_requested) { 20790 bpf_log(log, 20791 "Extension programs should be JITed\n"); 20792 return -EINVAL; 20793 } 20794 } 20795 if (!tgt_prog->jited) { 20796 bpf_log(log, "Can attach to only JITed progs\n"); 20797 return -EINVAL; 20798 } 20799 if (prog_tracing) { 20800 if (aux->attach_tracing_prog) { 20801 /* 20802 * Target program is an fentry/fexit which is already attached 20803 * to another tracing program. More levels of nesting 20804 * attachment are not allowed. 20805 */ 20806 bpf_log(log, "Cannot nest tracing program attach more than once\n"); 20807 return -EINVAL; 20808 } 20809 } else if (tgt_prog->type == prog->type) { 20810 /* 20811 * To avoid potential call chain cycles, prevent attaching of a 20812 * program extension to another extension. It's ok to attach 20813 * fentry/fexit to extension program. 20814 */ 20815 bpf_log(log, "Cannot recursively attach\n"); 20816 return -EINVAL; 20817 } 20818 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 20819 prog_extension && 20820 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 20821 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 20822 /* Program extensions can extend all program types 20823 * except fentry/fexit. The reason is the following. 20824 * The fentry/fexit programs are used for performance 20825 * analysis, stats and can be attached to any program 20826 * type. When extension program is replacing XDP function 20827 * it is necessary to allow performance analysis of all 20828 * functions. Both original XDP program and its program 20829 * extension. Hence attaching fentry/fexit to 20830 * BPF_PROG_TYPE_EXT is allowed. If extending of 20831 * fentry/fexit was allowed it would be possible to create 20832 * long call chain fentry->extension->fentry->extension 20833 * beyond reasonable stack size. Hence extending fentry 20834 * is not allowed. 20835 */ 20836 bpf_log(log, "Cannot extend fentry/fexit\n"); 20837 return -EINVAL; 20838 } 20839 } else { 20840 if (prog_extension) { 20841 bpf_log(log, "Cannot replace kernel functions\n"); 20842 return -EINVAL; 20843 } 20844 } 20845 20846 switch (prog->expected_attach_type) { 20847 case BPF_TRACE_RAW_TP: 20848 if (tgt_prog) { 20849 bpf_log(log, 20850 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 20851 return -EINVAL; 20852 } 20853 if (!btf_type_is_typedef(t)) { 20854 bpf_log(log, "attach_btf_id %u is not a typedef\n", 20855 btf_id); 20856 return -EINVAL; 20857 } 20858 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 20859 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n", 20860 btf_id, tname); 20861 return -EINVAL; 20862 } 20863 tname += sizeof(prefix) - 1; 20864 t = btf_type_by_id(btf, t->type); 20865 if (!btf_type_is_ptr(t)) 20866 /* should never happen in valid vmlinux build */ 20867 return -EINVAL; 20868 t = btf_type_by_id(btf, t->type); 20869 if (!btf_type_is_func_proto(t)) 20870 /* should never happen in valid vmlinux build */ 20871 return -EINVAL; 20872 20873 break; 20874 case BPF_TRACE_ITER: 20875 if (!btf_type_is_func(t)) { 20876 bpf_log(log, "attach_btf_id %u is not a function\n", 20877 btf_id); 20878 return -EINVAL; 20879 } 20880 t = btf_type_by_id(btf, t->type); 20881 if (!btf_type_is_func_proto(t)) 20882 return -EINVAL; 20883 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 20884 if (ret) 20885 return ret; 20886 break; 20887 default: 20888 if (!prog_extension) 20889 return -EINVAL; 20890 fallthrough; 20891 case BPF_MODIFY_RETURN: 20892 case BPF_LSM_MAC: 20893 case BPF_LSM_CGROUP: 20894 case BPF_TRACE_FENTRY: 20895 case BPF_TRACE_FEXIT: 20896 if (!btf_type_is_func(t)) { 20897 bpf_log(log, "attach_btf_id %u is not a function\n", 20898 btf_id); 20899 return -EINVAL; 20900 } 20901 if (prog_extension && 20902 btf_check_type_match(log, prog, btf, t)) 20903 return -EINVAL; 20904 t = btf_type_by_id(btf, t->type); 20905 if (!btf_type_is_func_proto(t)) 20906 return -EINVAL; 20907 20908 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) && 20909 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type || 20910 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type)) 20911 return -EINVAL; 20912 20913 if (tgt_prog && conservative) 20914 t = NULL; 20915 20916 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 20917 if (ret < 0) 20918 return ret; 20919 20920 if (tgt_prog) { 20921 if (subprog == 0) 20922 addr = (long) tgt_prog->bpf_func; 20923 else 20924 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 20925 } else { 20926 if (btf_is_module(btf)) { 20927 mod = btf_try_get_module(btf); 20928 if (mod) 20929 addr = find_kallsyms_symbol_value(mod, tname); 20930 else 20931 addr = 0; 20932 } else { 20933 addr = kallsyms_lookup_name(tname); 20934 } 20935 if (!addr) { 20936 module_put(mod); 20937 bpf_log(log, 20938 "The address of function %s cannot be found\n", 20939 tname); 20940 return -ENOENT; 20941 } 20942 } 20943 20944 if (prog->sleepable) { 20945 ret = -EINVAL; 20946 switch (prog->type) { 20947 case BPF_PROG_TYPE_TRACING: 20948 20949 /* fentry/fexit/fmod_ret progs can be sleepable if they are 20950 * attached to ALLOW_ERROR_INJECTION and are not in denylist. 20951 */ 20952 if (!check_non_sleepable_error_inject(btf_id) && 20953 within_error_injection_list(addr)) 20954 ret = 0; 20955 /* fentry/fexit/fmod_ret progs can also be sleepable if they are 20956 * in the fmodret id set with the KF_SLEEPABLE flag. 20957 */ 20958 else { 20959 u32 *flags = btf_kfunc_is_modify_return(btf, btf_id, 20960 prog); 20961 20962 if (flags && (*flags & KF_SLEEPABLE)) 20963 ret = 0; 20964 } 20965 break; 20966 case BPF_PROG_TYPE_LSM: 20967 /* LSM progs check that they are attached to bpf_lsm_*() funcs. 20968 * Only some of them are sleepable. 20969 */ 20970 if (bpf_lsm_is_sleepable_hook(btf_id)) 20971 ret = 0; 20972 break; 20973 default: 20974 break; 20975 } 20976 if (ret) { 20977 module_put(mod); 20978 bpf_log(log, "%s is not sleepable\n", tname); 20979 return ret; 20980 } 20981 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) { 20982 if (tgt_prog) { 20983 module_put(mod); 20984 bpf_log(log, "can't modify return codes of BPF programs\n"); 20985 return -EINVAL; 20986 } 20987 ret = -EINVAL; 20988 if (btf_kfunc_is_modify_return(btf, btf_id, prog) || 20989 !check_attach_modify_return(addr, tname)) 20990 ret = 0; 20991 if (ret) { 20992 module_put(mod); 20993 bpf_log(log, "%s() is not modifiable\n", tname); 20994 return ret; 20995 } 20996 } 20997 20998 break; 20999 } 21000 tgt_info->tgt_addr = addr; 21001 tgt_info->tgt_name = tname; 21002 tgt_info->tgt_type = t; 21003 tgt_info->tgt_mod = mod; 21004 return 0; 21005 } 21006 21007 BTF_SET_START(btf_id_deny) 21008 BTF_ID_UNUSED 21009 #ifdef CONFIG_SMP 21010 BTF_ID(func, migrate_disable) 21011 BTF_ID(func, migrate_enable) 21012 #endif 21013 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU 21014 BTF_ID(func, rcu_read_unlock_strict) 21015 #endif 21016 #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE) 21017 BTF_ID(func, preempt_count_add) 21018 BTF_ID(func, preempt_count_sub) 21019 #endif 21020 #ifdef CONFIG_PREEMPT_RCU 21021 BTF_ID(func, __rcu_read_lock) 21022 BTF_ID(func, __rcu_read_unlock) 21023 #endif 21024 BTF_SET_END(btf_id_deny) 21025 21026 static bool can_be_sleepable(struct bpf_prog *prog) 21027 { 21028 if (prog->type == BPF_PROG_TYPE_TRACING) { 21029 switch (prog->expected_attach_type) { 21030 case BPF_TRACE_FENTRY: 21031 case BPF_TRACE_FEXIT: 21032 case BPF_MODIFY_RETURN: 21033 case BPF_TRACE_ITER: 21034 return true; 21035 default: 21036 return false; 21037 } 21038 } 21039 return prog->type == BPF_PROG_TYPE_LSM || 21040 prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ || 21041 prog->type == BPF_PROG_TYPE_STRUCT_OPS; 21042 } 21043 21044 static int check_attach_btf_id(struct bpf_verifier_env *env) 21045 { 21046 struct bpf_prog *prog = env->prog; 21047 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 21048 struct bpf_attach_target_info tgt_info = {}; 21049 u32 btf_id = prog->aux->attach_btf_id; 21050 struct bpf_trampoline *tr; 21051 int ret; 21052 u64 key; 21053 21054 if (prog->type == BPF_PROG_TYPE_SYSCALL) { 21055 if (prog->sleepable) 21056 /* attach_btf_id checked to be zero already */ 21057 return 0; 21058 verbose(env, "Syscall programs can only be sleepable\n"); 21059 return -EINVAL; 21060 } 21061 21062 if (prog->sleepable && !can_be_sleepable(prog)) { 21063 verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n"); 21064 return -EINVAL; 21065 } 21066 21067 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 21068 return check_struct_ops_btf_id(env); 21069 21070 if (prog->type != BPF_PROG_TYPE_TRACING && 21071 prog->type != BPF_PROG_TYPE_LSM && 21072 prog->type != BPF_PROG_TYPE_EXT) 21073 return 0; 21074 21075 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info); 21076 if (ret) 21077 return ret; 21078 21079 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) { 21080 /* to make freplace equivalent to their targets, they need to 21081 * inherit env->ops and expected_attach_type for the rest of the 21082 * verification 21083 */ 21084 env->ops = bpf_verifier_ops[tgt_prog->type]; 21085 prog->expected_attach_type = tgt_prog->expected_attach_type; 21086 } 21087 21088 /* store info about the attachment target that will be used later */ 21089 prog->aux->attach_func_proto = tgt_info.tgt_type; 21090 prog->aux->attach_func_name = tgt_info.tgt_name; 21091 prog->aux->mod = tgt_info.tgt_mod; 21092 21093 if (tgt_prog) { 21094 prog->aux->saved_dst_prog_type = tgt_prog->type; 21095 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type; 21096 } 21097 21098 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { 21099 prog->aux->attach_btf_trace = true; 21100 return 0; 21101 } else if (prog->expected_attach_type == BPF_TRACE_ITER) { 21102 if (!bpf_iter_prog_supported(prog)) 21103 return -EINVAL; 21104 return 0; 21105 } 21106 21107 if (prog->type == BPF_PROG_TYPE_LSM) { 21108 ret = bpf_lsm_verify_prog(&env->log, prog); 21109 if (ret < 0) 21110 return ret; 21111 } else if (prog->type == BPF_PROG_TYPE_TRACING && 21112 btf_id_set_contains(&btf_id_deny, btf_id)) { 21113 return -EINVAL; 21114 } 21115 21116 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id); 21117 tr = bpf_trampoline_get(key, &tgt_info); 21118 if (!tr) 21119 return -ENOMEM; 21120 21121 if (tgt_prog && tgt_prog->aux->tail_call_reachable) 21122 tr->flags = BPF_TRAMP_F_TAIL_CALL_CTX; 21123 21124 prog->aux->dst_trampoline = tr; 21125 return 0; 21126 } 21127 21128 struct btf *bpf_get_btf_vmlinux(void) 21129 { 21130 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 21131 mutex_lock(&bpf_verifier_lock); 21132 if (!btf_vmlinux) 21133 btf_vmlinux = btf_parse_vmlinux(); 21134 mutex_unlock(&bpf_verifier_lock); 21135 } 21136 return btf_vmlinux; 21137 } 21138 21139 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size) 21140 { 21141 u64 start_time = ktime_get_ns(); 21142 struct bpf_verifier_env *env; 21143 int i, len, ret = -EINVAL, err; 21144 u32 log_true_size; 21145 bool is_priv; 21146 21147 /* no program is valid */ 21148 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 21149 return -EINVAL; 21150 21151 /* 'struct bpf_verifier_env' can be global, but since it's not small, 21152 * allocate/free it every time bpf_check() is called 21153 */ 21154 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 21155 if (!env) 21156 return -ENOMEM; 21157 21158 env->bt.env = env; 21159 21160 len = (*prog)->len; 21161 env->insn_aux_data = 21162 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 21163 ret = -ENOMEM; 21164 if (!env->insn_aux_data) 21165 goto err_free_env; 21166 for (i = 0; i < len; i++) 21167 env->insn_aux_data[i].orig_idx = i; 21168 env->prog = *prog; 21169 env->ops = bpf_verifier_ops[env->prog->type]; 21170 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel); 21171 21172 env->allow_ptr_leaks = bpf_allow_ptr_leaks(env->prog->aux->token); 21173 env->allow_uninit_stack = bpf_allow_uninit_stack(env->prog->aux->token); 21174 env->bypass_spec_v1 = bpf_bypass_spec_v1(env->prog->aux->token); 21175 env->bypass_spec_v4 = bpf_bypass_spec_v4(env->prog->aux->token); 21176 env->bpf_capable = is_priv = bpf_token_capable(env->prog->aux->token, CAP_BPF); 21177 21178 bpf_get_btf_vmlinux(); 21179 21180 /* grab the mutex to protect few globals used by verifier */ 21181 if (!is_priv) 21182 mutex_lock(&bpf_verifier_lock); 21183 21184 /* user could have requested verbose verifier output 21185 * and supplied buffer to store the verification trace 21186 */ 21187 ret = bpf_vlog_init(&env->log, attr->log_level, 21188 (char __user *) (unsigned long) attr->log_buf, 21189 attr->log_size); 21190 if (ret) 21191 goto err_unlock; 21192 21193 mark_verifier_state_clean(env); 21194 21195 if (IS_ERR(btf_vmlinux)) { 21196 /* Either gcc or pahole or kernel are broken. */ 21197 verbose(env, "in-kernel BTF is malformed\n"); 21198 ret = PTR_ERR(btf_vmlinux); 21199 goto skip_full_check; 21200 } 21201 21202 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 21203 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 21204 env->strict_alignment = true; 21205 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 21206 env->strict_alignment = false; 21207 21208 if (is_priv) 21209 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 21210 env->test_reg_invariants = attr->prog_flags & BPF_F_TEST_REG_INVARIANTS; 21211 21212 env->explored_states = kvcalloc(state_htab_size(env), 21213 sizeof(struct bpf_verifier_state_list *), 21214 GFP_USER); 21215 ret = -ENOMEM; 21216 if (!env->explored_states) 21217 goto skip_full_check; 21218 21219 ret = check_btf_info_early(env, attr, uattr); 21220 if (ret < 0) 21221 goto skip_full_check; 21222 21223 ret = add_subprog_and_kfunc(env); 21224 if (ret < 0) 21225 goto skip_full_check; 21226 21227 ret = check_subprogs(env); 21228 if (ret < 0) 21229 goto skip_full_check; 21230 21231 ret = check_btf_info(env, attr, uattr); 21232 if (ret < 0) 21233 goto skip_full_check; 21234 21235 ret = check_attach_btf_id(env); 21236 if (ret) 21237 goto skip_full_check; 21238 21239 ret = resolve_pseudo_ldimm64(env); 21240 if (ret < 0) 21241 goto skip_full_check; 21242 21243 if (bpf_prog_is_offloaded(env->prog->aux)) { 21244 ret = bpf_prog_offload_verifier_prep(env->prog); 21245 if (ret) 21246 goto skip_full_check; 21247 } 21248 21249 ret = check_cfg(env); 21250 if (ret < 0) 21251 goto skip_full_check; 21252 21253 ret = do_check_main(env); 21254 ret = ret ?: do_check_subprogs(env); 21255 21256 if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux)) 21257 ret = bpf_prog_offload_finalize(env); 21258 21259 skip_full_check: 21260 kvfree(env->explored_states); 21261 21262 if (ret == 0) 21263 ret = check_max_stack_depth(env); 21264 21265 /* instruction rewrites happen after this point */ 21266 if (ret == 0) 21267 ret = optimize_bpf_loop(env); 21268 21269 if (is_priv) { 21270 if (ret == 0) 21271 opt_hard_wire_dead_code_branches(env); 21272 if (ret == 0) 21273 ret = opt_remove_dead_code(env); 21274 if (ret == 0) 21275 ret = opt_remove_nops(env); 21276 } else { 21277 if (ret == 0) 21278 sanitize_dead_code(env); 21279 } 21280 21281 if (ret == 0) 21282 /* program is valid, convert *(u32*)(ctx + off) accesses */ 21283 ret = convert_ctx_accesses(env); 21284 21285 if (ret == 0) 21286 ret = do_misc_fixups(env); 21287 21288 /* do 32-bit optimization after insn patching has done so those patched 21289 * insns could be handled correctly. 21290 */ 21291 if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) { 21292 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 21293 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 21294 : false; 21295 } 21296 21297 if (ret == 0) 21298 ret = fixup_call_args(env); 21299 21300 env->verification_time = ktime_get_ns() - start_time; 21301 print_verification_stats(env); 21302 env->prog->aux->verified_insns = env->insn_processed; 21303 21304 /* preserve original error even if log finalization is successful */ 21305 err = bpf_vlog_finalize(&env->log, &log_true_size); 21306 if (err) 21307 ret = err; 21308 21309 if (uattr_size >= offsetofend(union bpf_attr, log_true_size) && 21310 copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, log_true_size), 21311 &log_true_size, sizeof(log_true_size))) { 21312 ret = -EFAULT; 21313 goto err_release_maps; 21314 } 21315 21316 if (ret) 21317 goto err_release_maps; 21318 21319 if (env->used_map_cnt) { 21320 /* if program passed verifier, update used_maps in bpf_prog_info */ 21321 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 21322 sizeof(env->used_maps[0]), 21323 GFP_KERNEL); 21324 21325 if (!env->prog->aux->used_maps) { 21326 ret = -ENOMEM; 21327 goto err_release_maps; 21328 } 21329 21330 memcpy(env->prog->aux->used_maps, env->used_maps, 21331 sizeof(env->used_maps[0]) * env->used_map_cnt); 21332 env->prog->aux->used_map_cnt = env->used_map_cnt; 21333 } 21334 if (env->used_btf_cnt) { 21335 /* if program passed verifier, update used_btfs in bpf_prog_aux */ 21336 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt, 21337 sizeof(env->used_btfs[0]), 21338 GFP_KERNEL); 21339 if (!env->prog->aux->used_btfs) { 21340 ret = -ENOMEM; 21341 goto err_release_maps; 21342 } 21343 21344 memcpy(env->prog->aux->used_btfs, env->used_btfs, 21345 sizeof(env->used_btfs[0]) * env->used_btf_cnt); 21346 env->prog->aux->used_btf_cnt = env->used_btf_cnt; 21347 } 21348 if (env->used_map_cnt || env->used_btf_cnt) { 21349 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 21350 * bpf_ld_imm64 instructions 21351 */ 21352 convert_pseudo_ld_imm64(env); 21353 } 21354 21355 adjust_btf_func(env); 21356 21357 err_release_maps: 21358 if (!env->prog->aux->used_maps) 21359 /* if we didn't copy map pointers into bpf_prog_info, release 21360 * them now. Otherwise free_used_maps() will release them. 21361 */ 21362 release_maps(env); 21363 if (!env->prog->aux->used_btfs) 21364 release_btfs(env); 21365 21366 /* extension progs temporarily inherit the attach_type of their targets 21367 for verification purposes, so set it back to zero before returning 21368 */ 21369 if (env->prog->type == BPF_PROG_TYPE_EXT) 21370 env->prog->expected_attach_type = 0; 21371 21372 *prog = env->prog; 21373 21374 module_put(env->attach_btf_mod); 21375 err_unlock: 21376 if (!is_priv) 21377 mutex_unlock(&bpf_verifier_lock); 21378 vfree(env->insn_aux_data); 21379 err_free_env: 21380 kfree(env); 21381 return ret; 21382 } 21383