1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/kernel.h> 8 #include <linux/types.h> 9 #include <linux/slab.h> 10 #include <linux/bpf.h> 11 #include <linux/btf.h> 12 #include <linux/bpf_verifier.h> 13 #include <linux/filter.h> 14 #include <net/netlink.h> 15 #include <linux/file.h> 16 #include <linux/vmalloc.h> 17 #include <linux/stringify.h> 18 #include <linux/bsearch.h> 19 #include <linux/sort.h> 20 #include <linux/perf_event.h> 21 #include <linux/ctype.h> 22 23 #include "disasm.h" 24 25 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 26 #define BPF_PROG_TYPE(_id, _name) \ 27 [_id] = & _name ## _verifier_ops, 28 #define BPF_MAP_TYPE(_id, _ops) 29 #include <linux/bpf_types.h> 30 #undef BPF_PROG_TYPE 31 #undef BPF_MAP_TYPE 32 }; 33 34 /* bpf_check() is a static code analyzer that walks eBPF program 35 * instruction by instruction and updates register/stack state. 36 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 37 * 38 * The first pass is depth-first-search to check that the program is a DAG. 39 * It rejects the following programs: 40 * - larger than BPF_MAXINSNS insns 41 * - if loop is present (detected via back-edge) 42 * - unreachable insns exist (shouldn't be a forest. program = one function) 43 * - out of bounds or malformed jumps 44 * The second pass is all possible path descent from the 1st insn. 45 * Since it's analyzing all pathes through the program, the length of the 46 * analysis is limited to 64k insn, which may be hit even if total number of 47 * insn is less then 4K, but there are too many branches that change stack/regs. 48 * Number of 'branches to be analyzed' is limited to 1k 49 * 50 * On entry to each instruction, each register has a type, and the instruction 51 * changes the types of the registers depending on instruction semantics. 52 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 53 * copied to R1. 54 * 55 * All registers are 64-bit. 56 * R0 - return register 57 * R1-R5 argument passing registers 58 * R6-R9 callee saved registers 59 * R10 - frame pointer read-only 60 * 61 * At the start of BPF program the register R1 contains a pointer to bpf_context 62 * and has type PTR_TO_CTX. 63 * 64 * Verifier tracks arithmetic operations on pointers in case: 65 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 66 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 67 * 1st insn copies R10 (which has FRAME_PTR) type into R1 68 * and 2nd arithmetic instruction is pattern matched to recognize 69 * that it wants to construct a pointer to some element within stack. 70 * So after 2nd insn, the register R1 has type PTR_TO_STACK 71 * (and -20 constant is saved for further stack bounds checking). 72 * Meaning that this reg is a pointer to stack plus known immediate constant. 73 * 74 * Most of the time the registers have SCALAR_VALUE type, which 75 * means the register has some value, but it's not a valid pointer. 76 * (like pointer plus pointer becomes SCALAR_VALUE type) 77 * 78 * When verifier sees load or store instructions the type of base register 79 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 80 * four pointer types recognized by check_mem_access() function. 81 * 82 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 83 * and the range of [ptr, ptr + map's value_size) is accessible. 84 * 85 * registers used to pass values to function calls are checked against 86 * function argument constraints. 87 * 88 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 89 * It means that the register type passed to this function must be 90 * PTR_TO_STACK and it will be used inside the function as 91 * 'pointer to map element key' 92 * 93 * For example the argument constraints for bpf_map_lookup_elem(): 94 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 95 * .arg1_type = ARG_CONST_MAP_PTR, 96 * .arg2_type = ARG_PTR_TO_MAP_KEY, 97 * 98 * ret_type says that this function returns 'pointer to map elem value or null' 99 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 100 * 2nd argument should be a pointer to stack, which will be used inside 101 * the helper function as a pointer to map element key. 102 * 103 * On the kernel side the helper function looks like: 104 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 105 * { 106 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 107 * void *key = (void *) (unsigned long) r2; 108 * void *value; 109 * 110 * here kernel can access 'key' and 'map' pointers safely, knowing that 111 * [key, key + map->key_size) bytes are valid and were initialized on 112 * the stack of eBPF program. 113 * } 114 * 115 * Corresponding eBPF program may look like: 116 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 117 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 118 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 119 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 120 * here verifier looks at prototype of map_lookup_elem() and sees: 121 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 122 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 123 * 124 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 125 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 126 * and were initialized prior to this call. 127 * If it's ok, then verifier allows this BPF_CALL insn and looks at 128 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 129 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 130 * returns ether pointer to map value or NULL. 131 * 132 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 133 * insn, the register holding that pointer in the true branch changes state to 134 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 135 * branch. See check_cond_jmp_op(). 136 * 137 * After the call R0 is set to return type of the function and registers R1-R5 138 * are set to NOT_INIT to indicate that they are no longer readable. 139 * 140 * The following reference types represent a potential reference to a kernel 141 * resource which, after first being allocated, must be checked and freed by 142 * the BPF program: 143 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 144 * 145 * When the verifier sees a helper call return a reference type, it allocates a 146 * pointer id for the reference and stores it in the current function state. 147 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 148 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 149 * passes through a NULL-check conditional. For the branch wherein the state is 150 * changed to CONST_IMM, the verifier releases the reference. 151 * 152 * For each helper function that allocates a reference, such as 153 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 154 * bpf_sk_release(). When a reference type passes into the release function, 155 * the verifier also releases the reference. If any unchecked or unreleased 156 * reference remains at the end of the program, the verifier rejects it. 157 */ 158 159 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 160 struct bpf_verifier_stack_elem { 161 /* verifer state is 'st' 162 * before processing instruction 'insn_idx' 163 * and after processing instruction 'prev_insn_idx' 164 */ 165 struct bpf_verifier_state st; 166 int insn_idx; 167 int prev_insn_idx; 168 struct bpf_verifier_stack_elem *next; 169 }; 170 171 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 172 #define BPF_COMPLEXITY_LIMIT_STATES 64 173 174 #define BPF_MAP_PTR_UNPRIV 1UL 175 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 176 POISON_POINTER_DELTA)) 177 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 178 179 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 180 { 181 return BPF_MAP_PTR(aux->map_state) == BPF_MAP_PTR_POISON; 182 } 183 184 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 185 { 186 return aux->map_state & BPF_MAP_PTR_UNPRIV; 187 } 188 189 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 190 const struct bpf_map *map, bool unpriv) 191 { 192 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 193 unpriv |= bpf_map_ptr_unpriv(aux); 194 aux->map_state = (unsigned long)map | 195 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 196 } 197 198 struct bpf_call_arg_meta { 199 struct bpf_map *map_ptr; 200 bool raw_mode; 201 bool pkt_access; 202 int regno; 203 int access_size; 204 s64 msize_smax_value; 205 u64 msize_umax_value; 206 int ref_obj_id; 207 int func_id; 208 }; 209 210 static DEFINE_MUTEX(bpf_verifier_lock); 211 212 static const struct bpf_line_info * 213 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 214 { 215 const struct bpf_line_info *linfo; 216 const struct bpf_prog *prog; 217 u32 i, nr_linfo; 218 219 prog = env->prog; 220 nr_linfo = prog->aux->nr_linfo; 221 222 if (!nr_linfo || insn_off >= prog->len) 223 return NULL; 224 225 linfo = prog->aux->linfo; 226 for (i = 1; i < nr_linfo; i++) 227 if (insn_off < linfo[i].insn_off) 228 break; 229 230 return &linfo[i - 1]; 231 } 232 233 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, 234 va_list args) 235 { 236 unsigned int n; 237 238 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 239 240 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 241 "verifier log line truncated - local buffer too short\n"); 242 243 n = min(log->len_total - log->len_used - 1, n); 244 log->kbuf[n] = '\0'; 245 246 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 247 log->len_used += n; 248 else 249 log->ubuf = NULL; 250 } 251 252 /* log_level controls verbosity level of eBPF verifier. 253 * bpf_verifier_log_write() is used to dump the verification trace to the log, 254 * so the user can figure out what's wrong with the program 255 */ 256 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 257 const char *fmt, ...) 258 { 259 va_list args; 260 261 if (!bpf_verifier_log_needed(&env->log)) 262 return; 263 264 va_start(args, fmt); 265 bpf_verifier_vlog(&env->log, fmt, args); 266 va_end(args); 267 } 268 EXPORT_SYMBOL_GPL(bpf_verifier_log_write); 269 270 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 271 { 272 struct bpf_verifier_env *env = private_data; 273 va_list args; 274 275 if (!bpf_verifier_log_needed(&env->log)) 276 return; 277 278 va_start(args, fmt); 279 bpf_verifier_vlog(&env->log, fmt, args); 280 va_end(args); 281 } 282 283 static const char *ltrim(const char *s) 284 { 285 while (isspace(*s)) 286 s++; 287 288 return s; 289 } 290 291 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 292 u32 insn_off, 293 const char *prefix_fmt, ...) 294 { 295 const struct bpf_line_info *linfo; 296 297 if (!bpf_verifier_log_needed(&env->log)) 298 return; 299 300 linfo = find_linfo(env, insn_off); 301 if (!linfo || linfo == env->prev_linfo) 302 return; 303 304 if (prefix_fmt) { 305 va_list args; 306 307 va_start(args, prefix_fmt); 308 bpf_verifier_vlog(&env->log, prefix_fmt, args); 309 va_end(args); 310 } 311 312 verbose(env, "%s\n", 313 ltrim(btf_name_by_offset(env->prog->aux->btf, 314 linfo->line_off))); 315 316 env->prev_linfo = linfo; 317 } 318 319 static bool type_is_pkt_pointer(enum bpf_reg_type type) 320 { 321 return type == PTR_TO_PACKET || 322 type == PTR_TO_PACKET_META; 323 } 324 325 static bool type_is_sk_pointer(enum bpf_reg_type type) 326 { 327 return type == PTR_TO_SOCKET || 328 type == PTR_TO_SOCK_COMMON || 329 type == PTR_TO_TCP_SOCK; 330 } 331 332 static bool reg_type_may_be_null(enum bpf_reg_type type) 333 { 334 return type == PTR_TO_MAP_VALUE_OR_NULL || 335 type == PTR_TO_SOCKET_OR_NULL || 336 type == PTR_TO_SOCK_COMMON_OR_NULL || 337 type == PTR_TO_TCP_SOCK_OR_NULL; 338 } 339 340 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 341 { 342 return reg->type == PTR_TO_MAP_VALUE && 343 map_value_has_spin_lock(reg->map_ptr); 344 } 345 346 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type) 347 { 348 return type == PTR_TO_SOCKET || 349 type == PTR_TO_SOCKET_OR_NULL || 350 type == PTR_TO_TCP_SOCK || 351 type == PTR_TO_TCP_SOCK_OR_NULL; 352 } 353 354 static bool arg_type_may_be_refcounted(enum bpf_arg_type type) 355 { 356 return type == ARG_PTR_TO_SOCK_COMMON; 357 } 358 359 /* Determine whether the function releases some resources allocated by another 360 * function call. The first reference type argument will be assumed to be 361 * released by release_reference(). 362 */ 363 static bool is_release_function(enum bpf_func_id func_id) 364 { 365 return func_id == BPF_FUNC_sk_release; 366 } 367 368 static bool is_acquire_function(enum bpf_func_id func_id) 369 { 370 return func_id == BPF_FUNC_sk_lookup_tcp || 371 func_id == BPF_FUNC_sk_lookup_udp || 372 func_id == BPF_FUNC_skc_lookup_tcp; 373 } 374 375 static bool is_ptr_cast_function(enum bpf_func_id func_id) 376 { 377 return func_id == BPF_FUNC_tcp_sock || 378 func_id == BPF_FUNC_sk_fullsock; 379 } 380 381 /* string representation of 'enum bpf_reg_type' */ 382 static const char * const reg_type_str[] = { 383 [NOT_INIT] = "?", 384 [SCALAR_VALUE] = "inv", 385 [PTR_TO_CTX] = "ctx", 386 [CONST_PTR_TO_MAP] = "map_ptr", 387 [PTR_TO_MAP_VALUE] = "map_value", 388 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null", 389 [PTR_TO_STACK] = "fp", 390 [PTR_TO_PACKET] = "pkt", 391 [PTR_TO_PACKET_META] = "pkt_meta", 392 [PTR_TO_PACKET_END] = "pkt_end", 393 [PTR_TO_FLOW_KEYS] = "flow_keys", 394 [PTR_TO_SOCKET] = "sock", 395 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null", 396 [PTR_TO_SOCK_COMMON] = "sock_common", 397 [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null", 398 [PTR_TO_TCP_SOCK] = "tcp_sock", 399 [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null", 400 [PTR_TO_TP_BUFFER] = "tp_buffer", 401 }; 402 403 static char slot_type_char[] = { 404 [STACK_INVALID] = '?', 405 [STACK_SPILL] = 'r', 406 [STACK_MISC] = 'm', 407 [STACK_ZERO] = '0', 408 }; 409 410 static void print_liveness(struct bpf_verifier_env *env, 411 enum bpf_reg_liveness live) 412 { 413 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 414 verbose(env, "_"); 415 if (live & REG_LIVE_READ) 416 verbose(env, "r"); 417 if (live & REG_LIVE_WRITTEN) 418 verbose(env, "w"); 419 if (live & REG_LIVE_DONE) 420 verbose(env, "D"); 421 } 422 423 static struct bpf_func_state *func(struct bpf_verifier_env *env, 424 const struct bpf_reg_state *reg) 425 { 426 struct bpf_verifier_state *cur = env->cur_state; 427 428 return cur->frame[reg->frameno]; 429 } 430 431 static void print_verifier_state(struct bpf_verifier_env *env, 432 const struct bpf_func_state *state) 433 { 434 const struct bpf_reg_state *reg; 435 enum bpf_reg_type t; 436 int i; 437 438 if (state->frameno) 439 verbose(env, " frame%d:", state->frameno); 440 for (i = 0; i < MAX_BPF_REG; i++) { 441 reg = &state->regs[i]; 442 t = reg->type; 443 if (t == NOT_INIT) 444 continue; 445 verbose(env, " R%d", i); 446 print_liveness(env, reg->live); 447 verbose(env, "=%s", reg_type_str[t]); 448 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 449 tnum_is_const(reg->var_off)) { 450 /* reg->off should be 0 for SCALAR_VALUE */ 451 verbose(env, "%lld", reg->var_off.value + reg->off); 452 if (t == PTR_TO_STACK) 453 verbose(env, ",call_%d", func(env, reg)->callsite); 454 } else { 455 verbose(env, "(id=%d", reg->id); 456 if (reg_type_may_be_refcounted_or_null(t)) 457 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id); 458 if (t != SCALAR_VALUE) 459 verbose(env, ",off=%d", reg->off); 460 if (type_is_pkt_pointer(t)) 461 verbose(env, ",r=%d", reg->range); 462 else if (t == CONST_PTR_TO_MAP || 463 t == PTR_TO_MAP_VALUE || 464 t == PTR_TO_MAP_VALUE_OR_NULL) 465 verbose(env, ",ks=%d,vs=%d", 466 reg->map_ptr->key_size, 467 reg->map_ptr->value_size); 468 if (tnum_is_const(reg->var_off)) { 469 /* Typically an immediate SCALAR_VALUE, but 470 * could be a pointer whose offset is too big 471 * for reg->off 472 */ 473 verbose(env, ",imm=%llx", reg->var_off.value); 474 } else { 475 if (reg->smin_value != reg->umin_value && 476 reg->smin_value != S64_MIN) 477 verbose(env, ",smin_value=%lld", 478 (long long)reg->smin_value); 479 if (reg->smax_value != reg->umax_value && 480 reg->smax_value != S64_MAX) 481 verbose(env, ",smax_value=%lld", 482 (long long)reg->smax_value); 483 if (reg->umin_value != 0) 484 verbose(env, ",umin_value=%llu", 485 (unsigned long long)reg->umin_value); 486 if (reg->umax_value != U64_MAX) 487 verbose(env, ",umax_value=%llu", 488 (unsigned long long)reg->umax_value); 489 if (!tnum_is_unknown(reg->var_off)) { 490 char tn_buf[48]; 491 492 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 493 verbose(env, ",var_off=%s", tn_buf); 494 } 495 } 496 verbose(env, ")"); 497 } 498 } 499 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 500 char types_buf[BPF_REG_SIZE + 1]; 501 bool valid = false; 502 int j; 503 504 for (j = 0; j < BPF_REG_SIZE; j++) { 505 if (state->stack[i].slot_type[j] != STACK_INVALID) 506 valid = true; 507 types_buf[j] = slot_type_char[ 508 state->stack[i].slot_type[j]]; 509 } 510 types_buf[BPF_REG_SIZE] = 0; 511 if (!valid) 512 continue; 513 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 514 print_liveness(env, state->stack[i].spilled_ptr.live); 515 if (state->stack[i].slot_type[0] == STACK_SPILL) 516 verbose(env, "=%s", 517 reg_type_str[state->stack[i].spilled_ptr.type]); 518 else 519 verbose(env, "=%s", types_buf); 520 } 521 if (state->acquired_refs && state->refs[0].id) { 522 verbose(env, " refs=%d", state->refs[0].id); 523 for (i = 1; i < state->acquired_refs; i++) 524 if (state->refs[i].id) 525 verbose(env, ",%d", state->refs[i].id); 526 } 527 verbose(env, "\n"); 528 } 529 530 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 531 static int copy_##NAME##_state(struct bpf_func_state *dst, \ 532 const struct bpf_func_state *src) \ 533 { \ 534 if (!src->FIELD) \ 535 return 0; \ 536 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \ 537 /* internal bug, make state invalid to reject the program */ \ 538 memset(dst, 0, sizeof(*dst)); \ 539 return -EFAULT; \ 540 } \ 541 memcpy(dst->FIELD, src->FIELD, \ 542 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \ 543 return 0; \ 544 } 545 /* copy_reference_state() */ 546 COPY_STATE_FN(reference, acquired_refs, refs, 1) 547 /* copy_stack_state() */ 548 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 549 #undef COPY_STATE_FN 550 551 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 552 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \ 553 bool copy_old) \ 554 { \ 555 u32 old_size = state->COUNT; \ 556 struct bpf_##NAME##_state *new_##FIELD; \ 557 int slot = size / SIZE; \ 558 \ 559 if (size <= old_size || !size) { \ 560 if (copy_old) \ 561 return 0; \ 562 state->COUNT = slot * SIZE; \ 563 if (!size && old_size) { \ 564 kfree(state->FIELD); \ 565 state->FIELD = NULL; \ 566 } \ 567 return 0; \ 568 } \ 569 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \ 570 GFP_KERNEL); \ 571 if (!new_##FIELD) \ 572 return -ENOMEM; \ 573 if (copy_old) { \ 574 if (state->FIELD) \ 575 memcpy(new_##FIELD, state->FIELD, \ 576 sizeof(*new_##FIELD) * (old_size / SIZE)); \ 577 memset(new_##FIELD + old_size / SIZE, 0, \ 578 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \ 579 } \ 580 state->COUNT = slot * SIZE; \ 581 kfree(state->FIELD); \ 582 state->FIELD = new_##FIELD; \ 583 return 0; \ 584 } 585 /* realloc_reference_state() */ 586 REALLOC_STATE_FN(reference, acquired_refs, refs, 1) 587 /* realloc_stack_state() */ 588 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 589 #undef REALLOC_STATE_FN 590 591 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to 592 * make it consume minimal amount of memory. check_stack_write() access from 593 * the program calls into realloc_func_state() to grow the stack size. 594 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state 595 * which realloc_stack_state() copies over. It points to previous 596 * bpf_verifier_state which is never reallocated. 597 */ 598 static int realloc_func_state(struct bpf_func_state *state, int stack_size, 599 int refs_size, bool copy_old) 600 { 601 int err = realloc_reference_state(state, refs_size, copy_old); 602 if (err) 603 return err; 604 return realloc_stack_state(state, stack_size, copy_old); 605 } 606 607 /* Acquire a pointer id from the env and update the state->refs to include 608 * this new pointer reference. 609 * On success, returns a valid pointer id to associate with the register 610 * On failure, returns a negative errno. 611 */ 612 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 613 { 614 struct bpf_func_state *state = cur_func(env); 615 int new_ofs = state->acquired_refs; 616 int id, err; 617 618 err = realloc_reference_state(state, state->acquired_refs + 1, true); 619 if (err) 620 return err; 621 id = ++env->id_gen; 622 state->refs[new_ofs].id = id; 623 state->refs[new_ofs].insn_idx = insn_idx; 624 625 return id; 626 } 627 628 /* release function corresponding to acquire_reference_state(). Idempotent. */ 629 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 630 { 631 int i, last_idx; 632 633 last_idx = state->acquired_refs - 1; 634 for (i = 0; i < state->acquired_refs; i++) { 635 if (state->refs[i].id == ptr_id) { 636 if (last_idx && i != last_idx) 637 memcpy(&state->refs[i], &state->refs[last_idx], 638 sizeof(*state->refs)); 639 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 640 state->acquired_refs--; 641 return 0; 642 } 643 } 644 return -EINVAL; 645 } 646 647 static int transfer_reference_state(struct bpf_func_state *dst, 648 struct bpf_func_state *src) 649 { 650 int err = realloc_reference_state(dst, src->acquired_refs, false); 651 if (err) 652 return err; 653 err = copy_reference_state(dst, src); 654 if (err) 655 return err; 656 return 0; 657 } 658 659 static void free_func_state(struct bpf_func_state *state) 660 { 661 if (!state) 662 return; 663 kfree(state->refs); 664 kfree(state->stack); 665 kfree(state); 666 } 667 668 static void free_verifier_state(struct bpf_verifier_state *state, 669 bool free_self) 670 { 671 int i; 672 673 for (i = 0; i <= state->curframe; i++) { 674 free_func_state(state->frame[i]); 675 state->frame[i] = NULL; 676 } 677 if (free_self) 678 kfree(state); 679 } 680 681 /* copy verifier state from src to dst growing dst stack space 682 * when necessary to accommodate larger src stack 683 */ 684 static int copy_func_state(struct bpf_func_state *dst, 685 const struct bpf_func_state *src) 686 { 687 int err; 688 689 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs, 690 false); 691 if (err) 692 return err; 693 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 694 err = copy_reference_state(dst, src); 695 if (err) 696 return err; 697 return copy_stack_state(dst, src); 698 } 699 700 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 701 const struct bpf_verifier_state *src) 702 { 703 struct bpf_func_state *dst; 704 int i, err; 705 706 /* if dst has more stack frames then src frame, free them */ 707 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 708 free_func_state(dst_state->frame[i]); 709 dst_state->frame[i] = NULL; 710 } 711 dst_state->speculative = src->speculative; 712 dst_state->curframe = src->curframe; 713 dst_state->active_spin_lock = src->active_spin_lock; 714 for (i = 0; i <= src->curframe; i++) { 715 dst = dst_state->frame[i]; 716 if (!dst) { 717 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 718 if (!dst) 719 return -ENOMEM; 720 dst_state->frame[i] = dst; 721 } 722 err = copy_func_state(dst, src->frame[i]); 723 if (err) 724 return err; 725 } 726 return 0; 727 } 728 729 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 730 int *insn_idx) 731 { 732 struct bpf_verifier_state *cur = env->cur_state; 733 struct bpf_verifier_stack_elem *elem, *head = env->head; 734 int err; 735 736 if (env->head == NULL) 737 return -ENOENT; 738 739 if (cur) { 740 err = copy_verifier_state(cur, &head->st); 741 if (err) 742 return err; 743 } 744 if (insn_idx) 745 *insn_idx = head->insn_idx; 746 if (prev_insn_idx) 747 *prev_insn_idx = head->prev_insn_idx; 748 elem = head->next; 749 free_verifier_state(&head->st, false); 750 kfree(head); 751 env->head = elem; 752 env->stack_size--; 753 return 0; 754 } 755 756 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 757 int insn_idx, int prev_insn_idx, 758 bool speculative) 759 { 760 struct bpf_verifier_state *cur = env->cur_state; 761 struct bpf_verifier_stack_elem *elem; 762 int err; 763 764 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 765 if (!elem) 766 goto err; 767 768 elem->insn_idx = insn_idx; 769 elem->prev_insn_idx = prev_insn_idx; 770 elem->next = env->head; 771 env->head = elem; 772 env->stack_size++; 773 err = copy_verifier_state(&elem->st, cur); 774 if (err) 775 goto err; 776 elem->st.speculative |= speculative; 777 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 778 verbose(env, "The sequence of %d jumps is too complex.\n", 779 env->stack_size); 780 goto err; 781 } 782 return &elem->st; 783 err: 784 free_verifier_state(env->cur_state, true); 785 env->cur_state = NULL; 786 /* pop all elements and return */ 787 while (!pop_stack(env, NULL, NULL)); 788 return NULL; 789 } 790 791 #define CALLER_SAVED_REGS 6 792 static const int caller_saved[CALLER_SAVED_REGS] = { 793 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 794 }; 795 796 static void __mark_reg_not_init(struct bpf_reg_state *reg); 797 798 /* Mark the unknown part of a register (variable offset or scalar value) as 799 * known to have the value @imm. 800 */ 801 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 802 { 803 /* Clear id, off, and union(map_ptr, range) */ 804 memset(((u8 *)reg) + sizeof(reg->type), 0, 805 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 806 reg->var_off = tnum_const(imm); 807 reg->smin_value = (s64)imm; 808 reg->smax_value = (s64)imm; 809 reg->umin_value = imm; 810 reg->umax_value = imm; 811 } 812 813 /* Mark the 'variable offset' part of a register as zero. This should be 814 * used only on registers holding a pointer type. 815 */ 816 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 817 { 818 __mark_reg_known(reg, 0); 819 } 820 821 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 822 { 823 __mark_reg_known(reg, 0); 824 reg->type = SCALAR_VALUE; 825 } 826 827 static void mark_reg_known_zero(struct bpf_verifier_env *env, 828 struct bpf_reg_state *regs, u32 regno) 829 { 830 if (WARN_ON(regno >= MAX_BPF_REG)) { 831 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 832 /* Something bad happened, let's kill all regs */ 833 for (regno = 0; regno < MAX_BPF_REG; regno++) 834 __mark_reg_not_init(regs + regno); 835 return; 836 } 837 __mark_reg_known_zero(regs + regno); 838 } 839 840 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 841 { 842 return type_is_pkt_pointer(reg->type); 843 } 844 845 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 846 { 847 return reg_is_pkt_pointer(reg) || 848 reg->type == PTR_TO_PACKET_END; 849 } 850 851 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 852 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 853 enum bpf_reg_type which) 854 { 855 /* The register can already have a range from prior markings. 856 * This is fine as long as it hasn't been advanced from its 857 * origin. 858 */ 859 return reg->type == which && 860 reg->id == 0 && 861 reg->off == 0 && 862 tnum_equals_const(reg->var_off, 0); 863 } 864 865 /* Attempts to improve min/max values based on var_off information */ 866 static void __update_reg_bounds(struct bpf_reg_state *reg) 867 { 868 /* min signed is max(sign bit) | min(other bits) */ 869 reg->smin_value = max_t(s64, reg->smin_value, 870 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 871 /* max signed is min(sign bit) | max(other bits) */ 872 reg->smax_value = min_t(s64, reg->smax_value, 873 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 874 reg->umin_value = max(reg->umin_value, reg->var_off.value); 875 reg->umax_value = min(reg->umax_value, 876 reg->var_off.value | reg->var_off.mask); 877 } 878 879 /* Uses signed min/max values to inform unsigned, and vice-versa */ 880 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 881 { 882 /* Learn sign from signed bounds. 883 * If we cannot cross the sign boundary, then signed and unsigned bounds 884 * are the same, so combine. This works even in the negative case, e.g. 885 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 886 */ 887 if (reg->smin_value >= 0 || reg->smax_value < 0) { 888 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 889 reg->umin_value); 890 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 891 reg->umax_value); 892 return; 893 } 894 /* Learn sign from unsigned bounds. Signed bounds cross the sign 895 * boundary, so we must be careful. 896 */ 897 if ((s64)reg->umax_value >= 0) { 898 /* Positive. We can't learn anything from the smin, but smax 899 * is positive, hence safe. 900 */ 901 reg->smin_value = reg->umin_value; 902 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 903 reg->umax_value); 904 } else if ((s64)reg->umin_value < 0) { 905 /* Negative. We can't learn anything from the smax, but smin 906 * is negative, hence safe. 907 */ 908 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 909 reg->umin_value); 910 reg->smax_value = reg->umax_value; 911 } 912 } 913 914 /* Attempts to improve var_off based on unsigned min/max information */ 915 static void __reg_bound_offset(struct bpf_reg_state *reg) 916 { 917 reg->var_off = tnum_intersect(reg->var_off, 918 tnum_range(reg->umin_value, 919 reg->umax_value)); 920 } 921 922 /* Reset the min/max bounds of a register */ 923 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 924 { 925 reg->smin_value = S64_MIN; 926 reg->smax_value = S64_MAX; 927 reg->umin_value = 0; 928 reg->umax_value = U64_MAX; 929 } 930 931 /* Mark a register as having a completely unknown (scalar) value. */ 932 static void __mark_reg_unknown(struct bpf_reg_state *reg) 933 { 934 /* 935 * Clear type, id, off, and union(map_ptr, range) and 936 * padding between 'type' and union 937 */ 938 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 939 reg->type = SCALAR_VALUE; 940 reg->var_off = tnum_unknown; 941 reg->frameno = 0; 942 __mark_reg_unbounded(reg); 943 } 944 945 static void mark_reg_unknown(struct bpf_verifier_env *env, 946 struct bpf_reg_state *regs, u32 regno) 947 { 948 if (WARN_ON(regno >= MAX_BPF_REG)) { 949 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 950 /* Something bad happened, let's kill all regs except FP */ 951 for (regno = 0; regno < BPF_REG_FP; regno++) 952 __mark_reg_not_init(regs + regno); 953 return; 954 } 955 __mark_reg_unknown(regs + regno); 956 } 957 958 static void __mark_reg_not_init(struct bpf_reg_state *reg) 959 { 960 __mark_reg_unknown(reg); 961 reg->type = NOT_INIT; 962 } 963 964 static void mark_reg_not_init(struct bpf_verifier_env *env, 965 struct bpf_reg_state *regs, u32 regno) 966 { 967 if (WARN_ON(regno >= MAX_BPF_REG)) { 968 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 969 /* Something bad happened, let's kill all regs except FP */ 970 for (regno = 0; regno < BPF_REG_FP; regno++) 971 __mark_reg_not_init(regs + regno); 972 return; 973 } 974 __mark_reg_not_init(regs + regno); 975 } 976 977 #define DEF_NOT_SUBREG (0) 978 static void init_reg_state(struct bpf_verifier_env *env, 979 struct bpf_func_state *state) 980 { 981 struct bpf_reg_state *regs = state->regs; 982 int i; 983 984 for (i = 0; i < MAX_BPF_REG; i++) { 985 mark_reg_not_init(env, regs, i); 986 regs[i].live = REG_LIVE_NONE; 987 regs[i].parent = NULL; 988 regs[i].subreg_def = DEF_NOT_SUBREG; 989 } 990 991 /* frame pointer */ 992 regs[BPF_REG_FP].type = PTR_TO_STACK; 993 mark_reg_known_zero(env, regs, BPF_REG_FP); 994 regs[BPF_REG_FP].frameno = state->frameno; 995 996 /* 1st arg to a function */ 997 regs[BPF_REG_1].type = PTR_TO_CTX; 998 mark_reg_known_zero(env, regs, BPF_REG_1); 999 } 1000 1001 #define BPF_MAIN_FUNC (-1) 1002 static void init_func_state(struct bpf_verifier_env *env, 1003 struct bpf_func_state *state, 1004 int callsite, int frameno, int subprogno) 1005 { 1006 state->callsite = callsite; 1007 state->frameno = frameno; 1008 state->subprogno = subprogno; 1009 init_reg_state(env, state); 1010 } 1011 1012 enum reg_arg_type { 1013 SRC_OP, /* register is used as source operand */ 1014 DST_OP, /* register is used as destination operand */ 1015 DST_OP_NO_MARK /* same as above, check only, don't mark */ 1016 }; 1017 1018 static int cmp_subprogs(const void *a, const void *b) 1019 { 1020 return ((struct bpf_subprog_info *)a)->start - 1021 ((struct bpf_subprog_info *)b)->start; 1022 } 1023 1024 static int find_subprog(struct bpf_verifier_env *env, int off) 1025 { 1026 struct bpf_subprog_info *p; 1027 1028 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 1029 sizeof(env->subprog_info[0]), cmp_subprogs); 1030 if (!p) 1031 return -ENOENT; 1032 return p - env->subprog_info; 1033 1034 } 1035 1036 static int add_subprog(struct bpf_verifier_env *env, int off) 1037 { 1038 int insn_cnt = env->prog->len; 1039 int ret; 1040 1041 if (off >= insn_cnt || off < 0) { 1042 verbose(env, "call to invalid destination\n"); 1043 return -EINVAL; 1044 } 1045 ret = find_subprog(env, off); 1046 if (ret >= 0) 1047 return 0; 1048 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 1049 verbose(env, "too many subprograms\n"); 1050 return -E2BIG; 1051 } 1052 env->subprog_info[env->subprog_cnt++].start = off; 1053 sort(env->subprog_info, env->subprog_cnt, 1054 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 1055 return 0; 1056 } 1057 1058 static int check_subprogs(struct bpf_verifier_env *env) 1059 { 1060 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0; 1061 struct bpf_subprog_info *subprog = env->subprog_info; 1062 struct bpf_insn *insn = env->prog->insnsi; 1063 int insn_cnt = env->prog->len; 1064 1065 /* Add entry function. */ 1066 ret = add_subprog(env, 0); 1067 if (ret < 0) 1068 return ret; 1069 1070 /* determine subprog starts. The end is one before the next starts */ 1071 for (i = 0; i < insn_cnt; i++) { 1072 if (insn[i].code != (BPF_JMP | BPF_CALL)) 1073 continue; 1074 if (insn[i].src_reg != BPF_PSEUDO_CALL) 1075 continue; 1076 if (!env->allow_ptr_leaks) { 1077 verbose(env, "function calls to other bpf functions are allowed for root only\n"); 1078 return -EPERM; 1079 } 1080 ret = add_subprog(env, i + insn[i].imm + 1); 1081 if (ret < 0) 1082 return ret; 1083 } 1084 1085 /* Add a fake 'exit' subprog which could simplify subprog iteration 1086 * logic. 'subprog_cnt' should not be increased. 1087 */ 1088 subprog[env->subprog_cnt].start = insn_cnt; 1089 1090 if (env->log.level & BPF_LOG_LEVEL2) 1091 for (i = 0; i < env->subprog_cnt; i++) 1092 verbose(env, "func#%d @%d\n", i, subprog[i].start); 1093 1094 /* now check that all jumps are within the same subprog */ 1095 subprog_start = subprog[cur_subprog].start; 1096 subprog_end = subprog[cur_subprog + 1].start; 1097 for (i = 0; i < insn_cnt; i++) { 1098 u8 code = insn[i].code; 1099 1100 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 1101 goto next; 1102 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 1103 goto next; 1104 off = i + insn[i].off + 1; 1105 if (off < subprog_start || off >= subprog_end) { 1106 verbose(env, "jump out of range from insn %d to %d\n", i, off); 1107 return -EINVAL; 1108 } 1109 next: 1110 if (i == subprog_end - 1) { 1111 /* to avoid fall-through from one subprog into another 1112 * the last insn of the subprog should be either exit 1113 * or unconditional jump back 1114 */ 1115 if (code != (BPF_JMP | BPF_EXIT) && 1116 code != (BPF_JMP | BPF_JA)) { 1117 verbose(env, "last insn is not an exit or jmp\n"); 1118 return -EINVAL; 1119 } 1120 subprog_start = subprog_end; 1121 cur_subprog++; 1122 if (cur_subprog < env->subprog_cnt) 1123 subprog_end = subprog[cur_subprog + 1].start; 1124 } 1125 } 1126 return 0; 1127 } 1128 1129 /* Parentage chain of this register (or stack slot) should take care of all 1130 * issues like callee-saved registers, stack slot allocation time, etc. 1131 */ 1132 static int mark_reg_read(struct bpf_verifier_env *env, 1133 const struct bpf_reg_state *state, 1134 struct bpf_reg_state *parent, u8 flag) 1135 { 1136 bool writes = parent == state->parent; /* Observe write marks */ 1137 int cnt = 0; 1138 1139 while (parent) { 1140 /* if read wasn't screened by an earlier write ... */ 1141 if (writes && state->live & REG_LIVE_WRITTEN) 1142 break; 1143 if (parent->live & REG_LIVE_DONE) { 1144 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 1145 reg_type_str[parent->type], 1146 parent->var_off.value, parent->off); 1147 return -EFAULT; 1148 } 1149 /* The first condition is more likely to be true than the 1150 * second, checked it first. 1151 */ 1152 if ((parent->live & REG_LIVE_READ) == flag || 1153 parent->live & REG_LIVE_READ64) 1154 /* The parentage chain never changes and 1155 * this parent was already marked as LIVE_READ. 1156 * There is no need to keep walking the chain again and 1157 * keep re-marking all parents as LIVE_READ. 1158 * This case happens when the same register is read 1159 * multiple times without writes into it in-between. 1160 * Also, if parent has the stronger REG_LIVE_READ64 set, 1161 * then no need to set the weak REG_LIVE_READ32. 1162 */ 1163 break; 1164 /* ... then we depend on parent's value */ 1165 parent->live |= flag; 1166 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 1167 if (flag == REG_LIVE_READ64) 1168 parent->live &= ~REG_LIVE_READ32; 1169 state = parent; 1170 parent = state->parent; 1171 writes = true; 1172 cnt++; 1173 } 1174 1175 if (env->longest_mark_read_walk < cnt) 1176 env->longest_mark_read_walk = cnt; 1177 return 0; 1178 } 1179 1180 /* This function is supposed to be used by the following 32-bit optimization 1181 * code only. It returns TRUE if the source or destination register operates 1182 * on 64-bit, otherwise return FALSE. 1183 */ 1184 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 1185 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 1186 { 1187 u8 code, class, op; 1188 1189 code = insn->code; 1190 class = BPF_CLASS(code); 1191 op = BPF_OP(code); 1192 if (class == BPF_JMP) { 1193 /* BPF_EXIT for "main" will reach here. Return TRUE 1194 * conservatively. 1195 */ 1196 if (op == BPF_EXIT) 1197 return true; 1198 if (op == BPF_CALL) { 1199 /* BPF to BPF call will reach here because of marking 1200 * caller saved clobber with DST_OP_NO_MARK for which we 1201 * don't care the register def because they are anyway 1202 * marked as NOT_INIT already. 1203 */ 1204 if (insn->src_reg == BPF_PSEUDO_CALL) 1205 return false; 1206 /* Helper call will reach here because of arg type 1207 * check, conservatively return TRUE. 1208 */ 1209 if (t == SRC_OP) 1210 return true; 1211 1212 return false; 1213 } 1214 } 1215 1216 if (class == BPF_ALU64 || class == BPF_JMP || 1217 /* BPF_END always use BPF_ALU class. */ 1218 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 1219 return true; 1220 1221 if (class == BPF_ALU || class == BPF_JMP32) 1222 return false; 1223 1224 if (class == BPF_LDX) { 1225 if (t != SRC_OP) 1226 return BPF_SIZE(code) == BPF_DW; 1227 /* LDX source must be ptr. */ 1228 return true; 1229 } 1230 1231 if (class == BPF_STX) { 1232 if (reg->type != SCALAR_VALUE) 1233 return true; 1234 return BPF_SIZE(code) == BPF_DW; 1235 } 1236 1237 if (class == BPF_LD) { 1238 u8 mode = BPF_MODE(code); 1239 1240 /* LD_IMM64 */ 1241 if (mode == BPF_IMM) 1242 return true; 1243 1244 /* Both LD_IND and LD_ABS return 32-bit data. */ 1245 if (t != SRC_OP) 1246 return false; 1247 1248 /* Implicit ctx ptr. */ 1249 if (regno == BPF_REG_6) 1250 return true; 1251 1252 /* Explicit source could be any width. */ 1253 return true; 1254 } 1255 1256 if (class == BPF_ST) 1257 /* The only source register for BPF_ST is a ptr. */ 1258 return true; 1259 1260 /* Conservatively return true at default. */ 1261 return true; 1262 } 1263 1264 /* Return TRUE if INSN doesn't have explicit value define. */ 1265 static bool insn_no_def(struct bpf_insn *insn) 1266 { 1267 u8 class = BPF_CLASS(insn->code); 1268 1269 return (class == BPF_JMP || class == BPF_JMP32 || 1270 class == BPF_STX || class == BPF_ST); 1271 } 1272 1273 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 1274 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 1275 { 1276 if (insn_no_def(insn)) 1277 return false; 1278 1279 return !is_reg64(env, insn, insn->dst_reg, NULL, DST_OP); 1280 } 1281 1282 static void mark_insn_zext(struct bpf_verifier_env *env, 1283 struct bpf_reg_state *reg) 1284 { 1285 s32 def_idx = reg->subreg_def; 1286 1287 if (def_idx == DEF_NOT_SUBREG) 1288 return; 1289 1290 env->insn_aux_data[def_idx - 1].zext_dst = true; 1291 /* The dst will be zero extended, so won't be sub-register anymore. */ 1292 reg->subreg_def = DEF_NOT_SUBREG; 1293 } 1294 1295 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 1296 enum reg_arg_type t) 1297 { 1298 struct bpf_verifier_state *vstate = env->cur_state; 1299 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1300 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 1301 struct bpf_reg_state *reg, *regs = state->regs; 1302 bool rw64; 1303 1304 if (regno >= MAX_BPF_REG) { 1305 verbose(env, "R%d is invalid\n", regno); 1306 return -EINVAL; 1307 } 1308 1309 reg = ®s[regno]; 1310 rw64 = is_reg64(env, insn, regno, reg, t); 1311 if (t == SRC_OP) { 1312 /* check whether register used as source operand can be read */ 1313 if (reg->type == NOT_INIT) { 1314 verbose(env, "R%d !read_ok\n", regno); 1315 return -EACCES; 1316 } 1317 /* We don't need to worry about FP liveness because it's read-only */ 1318 if (regno == BPF_REG_FP) 1319 return 0; 1320 1321 if (rw64) 1322 mark_insn_zext(env, reg); 1323 1324 return mark_reg_read(env, reg, reg->parent, 1325 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 1326 } else { 1327 /* check whether register used as dest operand can be written to */ 1328 if (regno == BPF_REG_FP) { 1329 verbose(env, "frame pointer is read only\n"); 1330 return -EACCES; 1331 } 1332 reg->live |= REG_LIVE_WRITTEN; 1333 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 1334 if (t == DST_OP) 1335 mark_reg_unknown(env, regs, regno); 1336 } 1337 return 0; 1338 } 1339 1340 static bool is_spillable_regtype(enum bpf_reg_type type) 1341 { 1342 switch (type) { 1343 case PTR_TO_MAP_VALUE: 1344 case PTR_TO_MAP_VALUE_OR_NULL: 1345 case PTR_TO_STACK: 1346 case PTR_TO_CTX: 1347 case PTR_TO_PACKET: 1348 case PTR_TO_PACKET_META: 1349 case PTR_TO_PACKET_END: 1350 case PTR_TO_FLOW_KEYS: 1351 case CONST_PTR_TO_MAP: 1352 case PTR_TO_SOCKET: 1353 case PTR_TO_SOCKET_OR_NULL: 1354 case PTR_TO_SOCK_COMMON: 1355 case PTR_TO_SOCK_COMMON_OR_NULL: 1356 case PTR_TO_TCP_SOCK: 1357 case PTR_TO_TCP_SOCK_OR_NULL: 1358 return true; 1359 default: 1360 return false; 1361 } 1362 } 1363 1364 /* Does this register contain a constant zero? */ 1365 static bool register_is_null(struct bpf_reg_state *reg) 1366 { 1367 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 1368 } 1369 1370 /* check_stack_read/write functions track spill/fill of registers, 1371 * stack boundary and alignment are checked in check_mem_access() 1372 */ 1373 static int check_stack_write(struct bpf_verifier_env *env, 1374 struct bpf_func_state *state, /* func where register points to */ 1375 int off, int size, int value_regno, int insn_idx) 1376 { 1377 struct bpf_func_state *cur; /* state of the current function */ 1378 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 1379 enum bpf_reg_type type; 1380 1381 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE), 1382 state->acquired_refs, true); 1383 if (err) 1384 return err; 1385 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 1386 * so it's aligned access and [off, off + size) are within stack limits 1387 */ 1388 if (!env->allow_ptr_leaks && 1389 state->stack[spi].slot_type[0] == STACK_SPILL && 1390 size != BPF_REG_SIZE) { 1391 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 1392 return -EACCES; 1393 } 1394 1395 cur = env->cur_state->frame[env->cur_state->curframe]; 1396 if (value_regno >= 0 && 1397 is_spillable_regtype((type = cur->regs[value_regno].type))) { 1398 1399 /* register containing pointer is being spilled into stack */ 1400 if (size != BPF_REG_SIZE) { 1401 verbose(env, "invalid size of register spill\n"); 1402 return -EACCES; 1403 } 1404 1405 if (state != cur && type == PTR_TO_STACK) { 1406 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 1407 return -EINVAL; 1408 } 1409 1410 /* save register state */ 1411 state->stack[spi].spilled_ptr = cur->regs[value_regno]; 1412 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 1413 1414 for (i = 0; i < BPF_REG_SIZE; i++) { 1415 if (state->stack[spi].slot_type[i] == STACK_MISC && 1416 !env->allow_ptr_leaks) { 1417 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off; 1418 int soff = (-spi - 1) * BPF_REG_SIZE; 1419 1420 /* detected reuse of integer stack slot with a pointer 1421 * which means either llvm is reusing stack slot or 1422 * an attacker is trying to exploit CVE-2018-3639 1423 * (speculative store bypass) 1424 * Have to sanitize that slot with preemptive 1425 * store of zero. 1426 */ 1427 if (*poff && *poff != soff) { 1428 /* disallow programs where single insn stores 1429 * into two different stack slots, since verifier 1430 * cannot sanitize them 1431 */ 1432 verbose(env, 1433 "insn %d cannot access two stack slots fp%d and fp%d", 1434 insn_idx, *poff, soff); 1435 return -EINVAL; 1436 } 1437 *poff = soff; 1438 } 1439 state->stack[spi].slot_type[i] = STACK_SPILL; 1440 } 1441 } else { 1442 u8 type = STACK_MISC; 1443 1444 /* regular write of data into stack destroys any spilled ptr */ 1445 state->stack[spi].spilled_ptr.type = NOT_INIT; 1446 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */ 1447 if (state->stack[spi].slot_type[0] == STACK_SPILL) 1448 for (i = 0; i < BPF_REG_SIZE; i++) 1449 state->stack[spi].slot_type[i] = STACK_MISC; 1450 1451 /* only mark the slot as written if all 8 bytes were written 1452 * otherwise read propagation may incorrectly stop too soon 1453 * when stack slots are partially written. 1454 * This heuristic means that read propagation will be 1455 * conservative, since it will add reg_live_read marks 1456 * to stack slots all the way to first state when programs 1457 * writes+reads less than 8 bytes 1458 */ 1459 if (size == BPF_REG_SIZE) 1460 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 1461 1462 /* when we zero initialize stack slots mark them as such */ 1463 if (value_regno >= 0 && 1464 register_is_null(&cur->regs[value_regno])) 1465 type = STACK_ZERO; 1466 1467 /* Mark slots affected by this stack write. */ 1468 for (i = 0; i < size; i++) 1469 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 1470 type; 1471 } 1472 return 0; 1473 } 1474 1475 static int check_stack_read(struct bpf_verifier_env *env, 1476 struct bpf_func_state *reg_state /* func where register points to */, 1477 int off, int size, int value_regno) 1478 { 1479 struct bpf_verifier_state *vstate = env->cur_state; 1480 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1481 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 1482 u8 *stype; 1483 1484 if (reg_state->allocated_stack <= slot) { 1485 verbose(env, "invalid read from stack off %d+0 size %d\n", 1486 off, size); 1487 return -EACCES; 1488 } 1489 stype = reg_state->stack[spi].slot_type; 1490 1491 if (stype[0] == STACK_SPILL) { 1492 if (size != BPF_REG_SIZE) { 1493 verbose(env, "invalid size of register spill\n"); 1494 return -EACCES; 1495 } 1496 for (i = 1; i < BPF_REG_SIZE; i++) { 1497 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) { 1498 verbose(env, "corrupted spill memory\n"); 1499 return -EACCES; 1500 } 1501 } 1502 1503 if (value_regno >= 0) { 1504 /* restore register state from stack */ 1505 state->regs[value_regno] = reg_state->stack[spi].spilled_ptr; 1506 /* mark reg as written since spilled pointer state likely 1507 * has its liveness marks cleared by is_state_visited() 1508 * which resets stack/reg liveness for state transitions 1509 */ 1510 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 1511 } 1512 mark_reg_read(env, ®_state->stack[spi].spilled_ptr, 1513 reg_state->stack[spi].spilled_ptr.parent, 1514 REG_LIVE_READ64); 1515 return 0; 1516 } else { 1517 int zeros = 0; 1518 1519 for (i = 0; i < size; i++) { 1520 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC) 1521 continue; 1522 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) { 1523 zeros++; 1524 continue; 1525 } 1526 verbose(env, "invalid read from stack off %d+%d size %d\n", 1527 off, i, size); 1528 return -EACCES; 1529 } 1530 mark_reg_read(env, ®_state->stack[spi].spilled_ptr, 1531 reg_state->stack[spi].spilled_ptr.parent, 1532 REG_LIVE_READ64); 1533 if (value_regno >= 0) { 1534 if (zeros == size) { 1535 /* any size read into register is zero extended, 1536 * so the whole register == const_zero 1537 */ 1538 __mark_reg_const_zero(&state->regs[value_regno]); 1539 } else { 1540 /* have read misc data from the stack */ 1541 mark_reg_unknown(env, state->regs, value_regno); 1542 } 1543 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 1544 } 1545 return 0; 1546 } 1547 } 1548 1549 static int check_stack_access(struct bpf_verifier_env *env, 1550 const struct bpf_reg_state *reg, 1551 int off, int size) 1552 { 1553 /* Stack accesses must be at a fixed offset, so that we 1554 * can determine what type of data were returned. See 1555 * check_stack_read(). 1556 */ 1557 if (!tnum_is_const(reg->var_off)) { 1558 char tn_buf[48]; 1559 1560 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1561 verbose(env, "variable stack access var_off=%s off=%d size=%d\n", 1562 tn_buf, off, size); 1563 return -EACCES; 1564 } 1565 1566 if (off >= 0 || off < -MAX_BPF_STACK) { 1567 verbose(env, "invalid stack off=%d size=%d\n", off, size); 1568 return -EACCES; 1569 } 1570 1571 return 0; 1572 } 1573 1574 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 1575 int off, int size, enum bpf_access_type type) 1576 { 1577 struct bpf_reg_state *regs = cur_regs(env); 1578 struct bpf_map *map = regs[regno].map_ptr; 1579 u32 cap = bpf_map_flags_to_cap(map); 1580 1581 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 1582 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 1583 map->value_size, off, size); 1584 return -EACCES; 1585 } 1586 1587 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 1588 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 1589 map->value_size, off, size); 1590 return -EACCES; 1591 } 1592 1593 return 0; 1594 } 1595 1596 /* check read/write into map element returned by bpf_map_lookup_elem() */ 1597 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off, 1598 int size, bool zero_size_allowed) 1599 { 1600 struct bpf_reg_state *regs = cur_regs(env); 1601 struct bpf_map *map = regs[regno].map_ptr; 1602 1603 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) || 1604 off + size > map->value_size) { 1605 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 1606 map->value_size, off, size); 1607 return -EACCES; 1608 } 1609 return 0; 1610 } 1611 1612 /* check read/write into a map element with possible variable offset */ 1613 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 1614 int off, int size, bool zero_size_allowed) 1615 { 1616 struct bpf_verifier_state *vstate = env->cur_state; 1617 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1618 struct bpf_reg_state *reg = &state->regs[regno]; 1619 int err; 1620 1621 /* We may have adjusted the register to this map value, so we 1622 * need to try adding each of min_value and max_value to off 1623 * to make sure our theoretical access will be safe. 1624 */ 1625 if (env->log.level & BPF_LOG_LEVEL) 1626 print_verifier_state(env, state); 1627 1628 /* The minimum value is only important with signed 1629 * comparisons where we can't assume the floor of a 1630 * value is 0. If we are using signed variables for our 1631 * index'es we need to make sure that whatever we use 1632 * will have a set floor within our range. 1633 */ 1634 if (reg->smin_value < 0 && 1635 (reg->smin_value == S64_MIN || 1636 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 1637 reg->smin_value + off < 0)) { 1638 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 1639 regno); 1640 return -EACCES; 1641 } 1642 err = __check_map_access(env, regno, reg->smin_value + off, size, 1643 zero_size_allowed); 1644 if (err) { 1645 verbose(env, "R%d min value is outside of the array range\n", 1646 regno); 1647 return err; 1648 } 1649 1650 /* If we haven't set a max value then we need to bail since we can't be 1651 * sure we won't do bad things. 1652 * If reg->umax_value + off could overflow, treat that as unbounded too. 1653 */ 1654 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 1655 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n", 1656 regno); 1657 return -EACCES; 1658 } 1659 err = __check_map_access(env, regno, reg->umax_value + off, size, 1660 zero_size_allowed); 1661 if (err) 1662 verbose(env, "R%d max value is outside of the array range\n", 1663 regno); 1664 1665 if (map_value_has_spin_lock(reg->map_ptr)) { 1666 u32 lock = reg->map_ptr->spin_lock_off; 1667 1668 /* if any part of struct bpf_spin_lock can be touched by 1669 * load/store reject this program. 1670 * To check that [x1, x2) overlaps with [y1, y2) 1671 * it is sufficient to check x1 < y2 && y1 < x2. 1672 */ 1673 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) && 1674 lock < reg->umax_value + off + size) { 1675 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n"); 1676 return -EACCES; 1677 } 1678 } 1679 return err; 1680 } 1681 1682 #define MAX_PACKET_OFF 0xffff 1683 1684 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 1685 const struct bpf_call_arg_meta *meta, 1686 enum bpf_access_type t) 1687 { 1688 switch (env->prog->type) { 1689 /* Program types only with direct read access go here! */ 1690 case BPF_PROG_TYPE_LWT_IN: 1691 case BPF_PROG_TYPE_LWT_OUT: 1692 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 1693 case BPF_PROG_TYPE_SK_REUSEPORT: 1694 case BPF_PROG_TYPE_FLOW_DISSECTOR: 1695 case BPF_PROG_TYPE_CGROUP_SKB: 1696 if (t == BPF_WRITE) 1697 return false; 1698 /* fallthrough */ 1699 1700 /* Program types with direct read + write access go here! */ 1701 case BPF_PROG_TYPE_SCHED_CLS: 1702 case BPF_PROG_TYPE_SCHED_ACT: 1703 case BPF_PROG_TYPE_XDP: 1704 case BPF_PROG_TYPE_LWT_XMIT: 1705 case BPF_PROG_TYPE_SK_SKB: 1706 case BPF_PROG_TYPE_SK_MSG: 1707 if (meta) 1708 return meta->pkt_access; 1709 1710 env->seen_direct_write = true; 1711 return true; 1712 default: 1713 return false; 1714 } 1715 } 1716 1717 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno, 1718 int off, int size, bool zero_size_allowed) 1719 { 1720 struct bpf_reg_state *regs = cur_regs(env); 1721 struct bpf_reg_state *reg = ®s[regno]; 1722 1723 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) || 1724 (u64)off + size > reg->range) { 1725 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 1726 off, size, regno, reg->id, reg->off, reg->range); 1727 return -EACCES; 1728 } 1729 return 0; 1730 } 1731 1732 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 1733 int size, bool zero_size_allowed) 1734 { 1735 struct bpf_reg_state *regs = cur_regs(env); 1736 struct bpf_reg_state *reg = ®s[regno]; 1737 int err; 1738 1739 /* We may have added a variable offset to the packet pointer; but any 1740 * reg->range we have comes after that. We are only checking the fixed 1741 * offset. 1742 */ 1743 1744 /* We don't allow negative numbers, because we aren't tracking enough 1745 * detail to prove they're safe. 1746 */ 1747 if (reg->smin_value < 0) { 1748 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 1749 regno); 1750 return -EACCES; 1751 } 1752 err = __check_packet_access(env, regno, off, size, zero_size_allowed); 1753 if (err) { 1754 verbose(env, "R%d offset is outside of the packet\n", regno); 1755 return err; 1756 } 1757 1758 /* __check_packet_access has made sure "off + size - 1" is within u16. 1759 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 1760 * otherwise find_good_pkt_pointers would have refused to set range info 1761 * that __check_packet_access would have rejected this pkt access. 1762 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 1763 */ 1764 env->prog->aux->max_pkt_offset = 1765 max_t(u32, env->prog->aux->max_pkt_offset, 1766 off + reg->umax_value + size - 1); 1767 1768 return err; 1769 } 1770 1771 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 1772 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 1773 enum bpf_access_type t, enum bpf_reg_type *reg_type) 1774 { 1775 struct bpf_insn_access_aux info = { 1776 .reg_type = *reg_type, 1777 }; 1778 1779 if (env->ops->is_valid_access && 1780 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 1781 /* A non zero info.ctx_field_size indicates that this field is a 1782 * candidate for later verifier transformation to load the whole 1783 * field and then apply a mask when accessed with a narrower 1784 * access than actual ctx access size. A zero info.ctx_field_size 1785 * will only allow for whole field access and rejects any other 1786 * type of narrower access. 1787 */ 1788 *reg_type = info.reg_type; 1789 1790 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 1791 /* remember the offset of last byte accessed in ctx */ 1792 if (env->prog->aux->max_ctx_offset < off + size) 1793 env->prog->aux->max_ctx_offset = off + size; 1794 return 0; 1795 } 1796 1797 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 1798 return -EACCES; 1799 } 1800 1801 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 1802 int size) 1803 { 1804 if (size < 0 || off < 0 || 1805 (u64)off + size > sizeof(struct bpf_flow_keys)) { 1806 verbose(env, "invalid access to flow keys off=%d size=%d\n", 1807 off, size); 1808 return -EACCES; 1809 } 1810 return 0; 1811 } 1812 1813 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 1814 u32 regno, int off, int size, 1815 enum bpf_access_type t) 1816 { 1817 struct bpf_reg_state *regs = cur_regs(env); 1818 struct bpf_reg_state *reg = ®s[regno]; 1819 struct bpf_insn_access_aux info = {}; 1820 bool valid; 1821 1822 if (reg->smin_value < 0) { 1823 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 1824 regno); 1825 return -EACCES; 1826 } 1827 1828 switch (reg->type) { 1829 case PTR_TO_SOCK_COMMON: 1830 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 1831 break; 1832 case PTR_TO_SOCKET: 1833 valid = bpf_sock_is_valid_access(off, size, t, &info); 1834 break; 1835 case PTR_TO_TCP_SOCK: 1836 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 1837 break; 1838 default: 1839 valid = false; 1840 } 1841 1842 1843 if (valid) { 1844 env->insn_aux_data[insn_idx].ctx_field_size = 1845 info.ctx_field_size; 1846 return 0; 1847 } 1848 1849 verbose(env, "R%d invalid %s access off=%d size=%d\n", 1850 regno, reg_type_str[reg->type], off, size); 1851 1852 return -EACCES; 1853 } 1854 1855 static bool __is_pointer_value(bool allow_ptr_leaks, 1856 const struct bpf_reg_state *reg) 1857 { 1858 if (allow_ptr_leaks) 1859 return false; 1860 1861 return reg->type != SCALAR_VALUE; 1862 } 1863 1864 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 1865 { 1866 return cur_regs(env) + regno; 1867 } 1868 1869 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 1870 { 1871 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 1872 } 1873 1874 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 1875 { 1876 const struct bpf_reg_state *reg = reg_state(env, regno); 1877 1878 return reg->type == PTR_TO_CTX; 1879 } 1880 1881 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 1882 { 1883 const struct bpf_reg_state *reg = reg_state(env, regno); 1884 1885 return type_is_sk_pointer(reg->type); 1886 } 1887 1888 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 1889 { 1890 const struct bpf_reg_state *reg = reg_state(env, regno); 1891 1892 return type_is_pkt_pointer(reg->type); 1893 } 1894 1895 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 1896 { 1897 const struct bpf_reg_state *reg = reg_state(env, regno); 1898 1899 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 1900 return reg->type == PTR_TO_FLOW_KEYS; 1901 } 1902 1903 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 1904 const struct bpf_reg_state *reg, 1905 int off, int size, bool strict) 1906 { 1907 struct tnum reg_off; 1908 int ip_align; 1909 1910 /* Byte size accesses are always allowed. */ 1911 if (!strict || size == 1) 1912 return 0; 1913 1914 /* For platforms that do not have a Kconfig enabling 1915 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 1916 * NET_IP_ALIGN is universally set to '2'. And on platforms 1917 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 1918 * to this code only in strict mode where we want to emulate 1919 * the NET_IP_ALIGN==2 checking. Therefore use an 1920 * unconditional IP align value of '2'. 1921 */ 1922 ip_align = 2; 1923 1924 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 1925 if (!tnum_is_aligned(reg_off, size)) { 1926 char tn_buf[48]; 1927 1928 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1929 verbose(env, 1930 "misaligned packet access off %d+%s+%d+%d size %d\n", 1931 ip_align, tn_buf, reg->off, off, size); 1932 return -EACCES; 1933 } 1934 1935 return 0; 1936 } 1937 1938 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 1939 const struct bpf_reg_state *reg, 1940 const char *pointer_desc, 1941 int off, int size, bool strict) 1942 { 1943 struct tnum reg_off; 1944 1945 /* Byte size accesses are always allowed. */ 1946 if (!strict || size == 1) 1947 return 0; 1948 1949 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 1950 if (!tnum_is_aligned(reg_off, size)) { 1951 char tn_buf[48]; 1952 1953 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1954 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 1955 pointer_desc, tn_buf, reg->off, off, size); 1956 return -EACCES; 1957 } 1958 1959 return 0; 1960 } 1961 1962 static int check_ptr_alignment(struct bpf_verifier_env *env, 1963 const struct bpf_reg_state *reg, int off, 1964 int size, bool strict_alignment_once) 1965 { 1966 bool strict = env->strict_alignment || strict_alignment_once; 1967 const char *pointer_desc = ""; 1968 1969 switch (reg->type) { 1970 case PTR_TO_PACKET: 1971 case PTR_TO_PACKET_META: 1972 /* Special case, because of NET_IP_ALIGN. Given metadata sits 1973 * right in front, treat it the very same way. 1974 */ 1975 return check_pkt_ptr_alignment(env, reg, off, size, strict); 1976 case PTR_TO_FLOW_KEYS: 1977 pointer_desc = "flow keys "; 1978 break; 1979 case PTR_TO_MAP_VALUE: 1980 pointer_desc = "value "; 1981 break; 1982 case PTR_TO_CTX: 1983 pointer_desc = "context "; 1984 break; 1985 case PTR_TO_STACK: 1986 pointer_desc = "stack "; 1987 /* The stack spill tracking logic in check_stack_write() 1988 * and check_stack_read() relies on stack accesses being 1989 * aligned. 1990 */ 1991 strict = true; 1992 break; 1993 case PTR_TO_SOCKET: 1994 pointer_desc = "sock "; 1995 break; 1996 case PTR_TO_SOCK_COMMON: 1997 pointer_desc = "sock_common "; 1998 break; 1999 case PTR_TO_TCP_SOCK: 2000 pointer_desc = "tcp_sock "; 2001 break; 2002 default: 2003 break; 2004 } 2005 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 2006 strict); 2007 } 2008 2009 static int update_stack_depth(struct bpf_verifier_env *env, 2010 const struct bpf_func_state *func, 2011 int off) 2012 { 2013 u16 stack = env->subprog_info[func->subprogno].stack_depth; 2014 2015 if (stack >= -off) 2016 return 0; 2017 2018 /* update known max for given subprogram */ 2019 env->subprog_info[func->subprogno].stack_depth = -off; 2020 return 0; 2021 } 2022 2023 /* starting from main bpf function walk all instructions of the function 2024 * and recursively walk all callees that given function can call. 2025 * Ignore jump and exit insns. 2026 * Since recursion is prevented by check_cfg() this algorithm 2027 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 2028 */ 2029 static int check_max_stack_depth(struct bpf_verifier_env *env) 2030 { 2031 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; 2032 struct bpf_subprog_info *subprog = env->subprog_info; 2033 struct bpf_insn *insn = env->prog->insnsi; 2034 int ret_insn[MAX_CALL_FRAMES]; 2035 int ret_prog[MAX_CALL_FRAMES]; 2036 2037 process_func: 2038 /* round up to 32-bytes, since this is granularity 2039 * of interpreter stack size 2040 */ 2041 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 2042 if (depth > MAX_BPF_STACK) { 2043 verbose(env, "combined stack size of %d calls is %d. Too large\n", 2044 frame + 1, depth); 2045 return -EACCES; 2046 } 2047 continue_func: 2048 subprog_end = subprog[idx + 1].start; 2049 for (; i < subprog_end; i++) { 2050 if (insn[i].code != (BPF_JMP | BPF_CALL)) 2051 continue; 2052 if (insn[i].src_reg != BPF_PSEUDO_CALL) 2053 continue; 2054 /* remember insn and function to return to */ 2055 ret_insn[frame] = i + 1; 2056 ret_prog[frame] = idx; 2057 2058 /* find the callee */ 2059 i = i + insn[i].imm + 1; 2060 idx = find_subprog(env, i); 2061 if (idx < 0) { 2062 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 2063 i); 2064 return -EFAULT; 2065 } 2066 frame++; 2067 if (frame >= MAX_CALL_FRAMES) { 2068 verbose(env, "the call stack of %d frames is too deep !\n", 2069 frame); 2070 return -E2BIG; 2071 } 2072 goto process_func; 2073 } 2074 /* end of for() loop means the last insn of the 'subprog' 2075 * was reached. Doesn't matter whether it was JA or EXIT 2076 */ 2077 if (frame == 0) 2078 return 0; 2079 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 2080 frame--; 2081 i = ret_insn[frame]; 2082 idx = ret_prog[frame]; 2083 goto continue_func; 2084 } 2085 2086 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 2087 static int get_callee_stack_depth(struct bpf_verifier_env *env, 2088 const struct bpf_insn *insn, int idx) 2089 { 2090 int start = idx + insn->imm + 1, subprog; 2091 2092 subprog = find_subprog(env, start); 2093 if (subprog < 0) { 2094 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 2095 start); 2096 return -EFAULT; 2097 } 2098 return env->subprog_info[subprog].stack_depth; 2099 } 2100 #endif 2101 2102 static int check_ctx_reg(struct bpf_verifier_env *env, 2103 const struct bpf_reg_state *reg, int regno) 2104 { 2105 /* Access to ctx or passing it to a helper is only allowed in 2106 * its original, unmodified form. 2107 */ 2108 2109 if (reg->off) { 2110 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n", 2111 regno, reg->off); 2112 return -EACCES; 2113 } 2114 2115 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 2116 char tn_buf[48]; 2117 2118 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2119 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf); 2120 return -EACCES; 2121 } 2122 2123 return 0; 2124 } 2125 2126 static int check_tp_buffer_access(struct bpf_verifier_env *env, 2127 const struct bpf_reg_state *reg, 2128 int regno, int off, int size) 2129 { 2130 if (off < 0) { 2131 verbose(env, 2132 "R%d invalid tracepoint buffer access: off=%d, size=%d", 2133 regno, off, size); 2134 return -EACCES; 2135 } 2136 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 2137 char tn_buf[48]; 2138 2139 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2140 verbose(env, 2141 "R%d invalid variable buffer offset: off=%d, var_off=%s", 2142 regno, off, tn_buf); 2143 return -EACCES; 2144 } 2145 if (off + size > env->prog->aux->max_tp_access) 2146 env->prog->aux->max_tp_access = off + size; 2147 2148 return 0; 2149 } 2150 2151 2152 /* truncate register to smaller size (in bytes) 2153 * must be called with size < BPF_REG_SIZE 2154 */ 2155 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 2156 { 2157 u64 mask; 2158 2159 /* clear high bits in bit representation */ 2160 reg->var_off = tnum_cast(reg->var_off, size); 2161 2162 /* fix arithmetic bounds */ 2163 mask = ((u64)1 << (size * 8)) - 1; 2164 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 2165 reg->umin_value &= mask; 2166 reg->umax_value &= mask; 2167 } else { 2168 reg->umin_value = 0; 2169 reg->umax_value = mask; 2170 } 2171 reg->smin_value = reg->umin_value; 2172 reg->smax_value = reg->umax_value; 2173 } 2174 2175 /* check whether memory at (regno + off) is accessible for t = (read | write) 2176 * if t==write, value_regno is a register which value is stored into memory 2177 * if t==read, value_regno is a register which will receive the value from memory 2178 * if t==write && value_regno==-1, some unknown value is stored into memory 2179 * if t==read && value_regno==-1, don't care what we read from memory 2180 */ 2181 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 2182 int off, int bpf_size, enum bpf_access_type t, 2183 int value_regno, bool strict_alignment_once) 2184 { 2185 struct bpf_reg_state *regs = cur_regs(env); 2186 struct bpf_reg_state *reg = regs + regno; 2187 struct bpf_func_state *state; 2188 int size, err = 0; 2189 2190 size = bpf_size_to_bytes(bpf_size); 2191 if (size < 0) 2192 return size; 2193 2194 /* alignment checks will add in reg->off themselves */ 2195 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 2196 if (err) 2197 return err; 2198 2199 /* for access checks, reg->off is just part of off */ 2200 off += reg->off; 2201 2202 if (reg->type == PTR_TO_MAP_VALUE) { 2203 if (t == BPF_WRITE && value_regno >= 0 && 2204 is_pointer_value(env, value_regno)) { 2205 verbose(env, "R%d leaks addr into map\n", value_regno); 2206 return -EACCES; 2207 } 2208 err = check_map_access_type(env, regno, off, size, t); 2209 if (err) 2210 return err; 2211 err = check_map_access(env, regno, off, size, false); 2212 if (!err && t == BPF_READ && value_regno >= 0) 2213 mark_reg_unknown(env, regs, value_regno); 2214 2215 } else if (reg->type == PTR_TO_CTX) { 2216 enum bpf_reg_type reg_type = SCALAR_VALUE; 2217 2218 if (t == BPF_WRITE && value_regno >= 0 && 2219 is_pointer_value(env, value_regno)) { 2220 verbose(env, "R%d leaks addr into ctx\n", value_regno); 2221 return -EACCES; 2222 } 2223 2224 err = check_ctx_reg(env, reg, regno); 2225 if (err < 0) 2226 return err; 2227 2228 err = check_ctx_access(env, insn_idx, off, size, t, ®_type); 2229 if (!err && t == BPF_READ && value_regno >= 0) { 2230 /* ctx access returns either a scalar, or a 2231 * PTR_TO_PACKET[_META,_END]. In the latter 2232 * case, we know the offset is zero. 2233 */ 2234 if (reg_type == SCALAR_VALUE) { 2235 mark_reg_unknown(env, regs, value_regno); 2236 } else { 2237 mark_reg_known_zero(env, regs, 2238 value_regno); 2239 if (reg_type_may_be_null(reg_type)) 2240 regs[value_regno].id = ++env->id_gen; 2241 /* A load of ctx field could have different 2242 * actual load size with the one encoded in the 2243 * insn. When the dst is PTR, it is for sure not 2244 * a sub-register. 2245 */ 2246 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 2247 } 2248 regs[value_regno].type = reg_type; 2249 } 2250 2251 } else if (reg->type == PTR_TO_STACK) { 2252 off += reg->var_off.value; 2253 err = check_stack_access(env, reg, off, size); 2254 if (err) 2255 return err; 2256 2257 state = func(env, reg); 2258 err = update_stack_depth(env, state, off); 2259 if (err) 2260 return err; 2261 2262 if (t == BPF_WRITE) 2263 err = check_stack_write(env, state, off, size, 2264 value_regno, insn_idx); 2265 else 2266 err = check_stack_read(env, state, off, size, 2267 value_regno); 2268 } else if (reg_is_pkt_pointer(reg)) { 2269 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 2270 verbose(env, "cannot write into packet\n"); 2271 return -EACCES; 2272 } 2273 if (t == BPF_WRITE && value_regno >= 0 && 2274 is_pointer_value(env, value_regno)) { 2275 verbose(env, "R%d leaks addr into packet\n", 2276 value_regno); 2277 return -EACCES; 2278 } 2279 err = check_packet_access(env, regno, off, size, false); 2280 if (!err && t == BPF_READ && value_regno >= 0) 2281 mark_reg_unknown(env, regs, value_regno); 2282 } else if (reg->type == PTR_TO_FLOW_KEYS) { 2283 if (t == BPF_WRITE && value_regno >= 0 && 2284 is_pointer_value(env, value_regno)) { 2285 verbose(env, "R%d leaks addr into flow keys\n", 2286 value_regno); 2287 return -EACCES; 2288 } 2289 2290 err = check_flow_keys_access(env, off, size); 2291 if (!err && t == BPF_READ && value_regno >= 0) 2292 mark_reg_unknown(env, regs, value_regno); 2293 } else if (type_is_sk_pointer(reg->type)) { 2294 if (t == BPF_WRITE) { 2295 verbose(env, "R%d cannot write into %s\n", 2296 regno, reg_type_str[reg->type]); 2297 return -EACCES; 2298 } 2299 err = check_sock_access(env, insn_idx, regno, off, size, t); 2300 if (!err && value_regno >= 0) 2301 mark_reg_unknown(env, regs, value_regno); 2302 } else if (reg->type == PTR_TO_TP_BUFFER) { 2303 err = check_tp_buffer_access(env, reg, regno, off, size); 2304 if (!err && t == BPF_READ && value_regno >= 0) 2305 mark_reg_unknown(env, regs, value_regno); 2306 } else { 2307 verbose(env, "R%d invalid mem access '%s'\n", regno, 2308 reg_type_str[reg->type]); 2309 return -EACCES; 2310 } 2311 2312 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 2313 regs[value_regno].type == SCALAR_VALUE) { 2314 /* b/h/w load zero-extends, mark upper bits as known 0 */ 2315 coerce_reg_to_size(®s[value_regno], size); 2316 } 2317 return err; 2318 } 2319 2320 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 2321 { 2322 int err; 2323 2324 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) || 2325 insn->imm != 0) { 2326 verbose(env, "BPF_XADD uses reserved fields\n"); 2327 return -EINVAL; 2328 } 2329 2330 /* check src1 operand */ 2331 err = check_reg_arg(env, insn->src_reg, SRC_OP); 2332 if (err) 2333 return err; 2334 2335 /* check src2 operand */ 2336 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 2337 if (err) 2338 return err; 2339 2340 if (is_pointer_value(env, insn->src_reg)) { 2341 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 2342 return -EACCES; 2343 } 2344 2345 if (is_ctx_reg(env, insn->dst_reg) || 2346 is_pkt_reg(env, insn->dst_reg) || 2347 is_flow_key_reg(env, insn->dst_reg) || 2348 is_sk_reg(env, insn->dst_reg)) { 2349 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n", 2350 insn->dst_reg, 2351 reg_type_str[reg_state(env, insn->dst_reg)->type]); 2352 return -EACCES; 2353 } 2354 2355 /* check whether atomic_add can read the memory */ 2356 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 2357 BPF_SIZE(insn->code), BPF_READ, -1, true); 2358 if (err) 2359 return err; 2360 2361 /* check whether atomic_add can write into the same memory */ 2362 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 2363 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 2364 } 2365 2366 static int __check_stack_boundary(struct bpf_verifier_env *env, u32 regno, 2367 int off, int access_size, 2368 bool zero_size_allowed) 2369 { 2370 struct bpf_reg_state *reg = reg_state(env, regno); 2371 2372 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 || 2373 access_size < 0 || (access_size == 0 && !zero_size_allowed)) { 2374 if (tnum_is_const(reg->var_off)) { 2375 verbose(env, "invalid stack type R%d off=%d access_size=%d\n", 2376 regno, off, access_size); 2377 } else { 2378 char tn_buf[48]; 2379 2380 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2381 verbose(env, "invalid stack type R%d var_off=%s access_size=%d\n", 2382 regno, tn_buf, access_size); 2383 } 2384 return -EACCES; 2385 } 2386 return 0; 2387 } 2388 2389 /* when register 'regno' is passed into function that will read 'access_size' 2390 * bytes from that pointer, make sure that it's within stack boundary 2391 * and all elements of stack are initialized. 2392 * Unlike most pointer bounds-checking functions, this one doesn't take an 2393 * 'off' argument, so it has to add in reg->off itself. 2394 */ 2395 static int check_stack_boundary(struct bpf_verifier_env *env, int regno, 2396 int access_size, bool zero_size_allowed, 2397 struct bpf_call_arg_meta *meta) 2398 { 2399 struct bpf_reg_state *reg = reg_state(env, regno); 2400 struct bpf_func_state *state = func(env, reg); 2401 int err, min_off, max_off, i, slot, spi; 2402 2403 if (reg->type != PTR_TO_STACK) { 2404 /* Allow zero-byte read from NULL, regardless of pointer type */ 2405 if (zero_size_allowed && access_size == 0 && 2406 register_is_null(reg)) 2407 return 0; 2408 2409 verbose(env, "R%d type=%s expected=%s\n", regno, 2410 reg_type_str[reg->type], 2411 reg_type_str[PTR_TO_STACK]); 2412 return -EACCES; 2413 } 2414 2415 if (tnum_is_const(reg->var_off)) { 2416 min_off = max_off = reg->var_off.value + reg->off; 2417 err = __check_stack_boundary(env, regno, min_off, access_size, 2418 zero_size_allowed); 2419 if (err) 2420 return err; 2421 } else { 2422 /* Variable offset is prohibited for unprivileged mode for 2423 * simplicity since it requires corresponding support in 2424 * Spectre masking for stack ALU. 2425 * See also retrieve_ptr_limit(). 2426 */ 2427 if (!env->allow_ptr_leaks) { 2428 char tn_buf[48]; 2429 2430 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2431 verbose(env, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n", 2432 regno, tn_buf); 2433 return -EACCES; 2434 } 2435 /* Only initialized buffer on stack is allowed to be accessed 2436 * with variable offset. With uninitialized buffer it's hard to 2437 * guarantee that whole memory is marked as initialized on 2438 * helper return since specific bounds are unknown what may 2439 * cause uninitialized stack leaking. 2440 */ 2441 if (meta && meta->raw_mode) 2442 meta = NULL; 2443 2444 if (reg->smax_value >= BPF_MAX_VAR_OFF || 2445 reg->smax_value <= -BPF_MAX_VAR_OFF) { 2446 verbose(env, "R%d unbounded indirect variable offset stack access\n", 2447 regno); 2448 return -EACCES; 2449 } 2450 min_off = reg->smin_value + reg->off; 2451 max_off = reg->smax_value + reg->off; 2452 err = __check_stack_boundary(env, regno, min_off, access_size, 2453 zero_size_allowed); 2454 if (err) { 2455 verbose(env, "R%d min value is outside of stack bound\n", 2456 regno); 2457 return err; 2458 } 2459 err = __check_stack_boundary(env, regno, max_off, access_size, 2460 zero_size_allowed); 2461 if (err) { 2462 verbose(env, "R%d max value is outside of stack bound\n", 2463 regno); 2464 return err; 2465 } 2466 } 2467 2468 if (meta && meta->raw_mode) { 2469 meta->access_size = access_size; 2470 meta->regno = regno; 2471 return 0; 2472 } 2473 2474 for (i = min_off; i < max_off + access_size; i++) { 2475 u8 *stype; 2476 2477 slot = -i - 1; 2478 spi = slot / BPF_REG_SIZE; 2479 if (state->allocated_stack <= slot) 2480 goto err; 2481 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 2482 if (*stype == STACK_MISC) 2483 goto mark; 2484 if (*stype == STACK_ZERO) { 2485 /* helper can write anything into the stack */ 2486 *stype = STACK_MISC; 2487 goto mark; 2488 } 2489 err: 2490 if (tnum_is_const(reg->var_off)) { 2491 verbose(env, "invalid indirect read from stack off %d+%d size %d\n", 2492 min_off, i - min_off, access_size); 2493 } else { 2494 char tn_buf[48]; 2495 2496 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2497 verbose(env, "invalid indirect read from stack var_off %s+%d size %d\n", 2498 tn_buf, i - min_off, access_size); 2499 } 2500 return -EACCES; 2501 mark: 2502 /* reading any byte out of 8-byte 'spill_slot' will cause 2503 * the whole slot to be marked as 'read' 2504 */ 2505 mark_reg_read(env, &state->stack[spi].spilled_ptr, 2506 state->stack[spi].spilled_ptr.parent, 2507 REG_LIVE_READ64); 2508 } 2509 return update_stack_depth(env, state, min_off); 2510 } 2511 2512 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 2513 int access_size, bool zero_size_allowed, 2514 struct bpf_call_arg_meta *meta) 2515 { 2516 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 2517 2518 switch (reg->type) { 2519 case PTR_TO_PACKET: 2520 case PTR_TO_PACKET_META: 2521 return check_packet_access(env, regno, reg->off, access_size, 2522 zero_size_allowed); 2523 case PTR_TO_MAP_VALUE: 2524 if (check_map_access_type(env, regno, reg->off, access_size, 2525 meta && meta->raw_mode ? BPF_WRITE : 2526 BPF_READ)) 2527 return -EACCES; 2528 return check_map_access(env, regno, reg->off, access_size, 2529 zero_size_allowed); 2530 default: /* scalar_value|ptr_to_stack or invalid ptr */ 2531 return check_stack_boundary(env, regno, access_size, 2532 zero_size_allowed, meta); 2533 } 2534 } 2535 2536 /* Implementation details: 2537 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL 2538 * Two bpf_map_lookups (even with the same key) will have different reg->id. 2539 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after 2540 * value_or_null->value transition, since the verifier only cares about 2541 * the range of access to valid map value pointer and doesn't care about actual 2542 * address of the map element. 2543 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 2544 * reg->id > 0 after value_or_null->value transition. By doing so 2545 * two bpf_map_lookups will be considered two different pointers that 2546 * point to different bpf_spin_locks. 2547 * The verifier allows taking only one bpf_spin_lock at a time to avoid 2548 * dead-locks. 2549 * Since only one bpf_spin_lock is allowed the checks are simpler than 2550 * reg_is_refcounted() logic. The verifier needs to remember only 2551 * one spin_lock instead of array of acquired_refs. 2552 * cur_state->active_spin_lock remembers which map value element got locked 2553 * and clears it after bpf_spin_unlock. 2554 */ 2555 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 2556 bool is_lock) 2557 { 2558 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 2559 struct bpf_verifier_state *cur = env->cur_state; 2560 bool is_const = tnum_is_const(reg->var_off); 2561 struct bpf_map *map = reg->map_ptr; 2562 u64 val = reg->var_off.value; 2563 2564 if (reg->type != PTR_TO_MAP_VALUE) { 2565 verbose(env, "R%d is not a pointer to map_value\n", regno); 2566 return -EINVAL; 2567 } 2568 if (!is_const) { 2569 verbose(env, 2570 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 2571 regno); 2572 return -EINVAL; 2573 } 2574 if (!map->btf) { 2575 verbose(env, 2576 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 2577 map->name); 2578 return -EINVAL; 2579 } 2580 if (!map_value_has_spin_lock(map)) { 2581 if (map->spin_lock_off == -E2BIG) 2582 verbose(env, 2583 "map '%s' has more than one 'struct bpf_spin_lock'\n", 2584 map->name); 2585 else if (map->spin_lock_off == -ENOENT) 2586 verbose(env, 2587 "map '%s' doesn't have 'struct bpf_spin_lock'\n", 2588 map->name); 2589 else 2590 verbose(env, 2591 "map '%s' is not a struct type or bpf_spin_lock is mangled\n", 2592 map->name); 2593 return -EINVAL; 2594 } 2595 if (map->spin_lock_off != val + reg->off) { 2596 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n", 2597 val + reg->off); 2598 return -EINVAL; 2599 } 2600 if (is_lock) { 2601 if (cur->active_spin_lock) { 2602 verbose(env, 2603 "Locking two bpf_spin_locks are not allowed\n"); 2604 return -EINVAL; 2605 } 2606 cur->active_spin_lock = reg->id; 2607 } else { 2608 if (!cur->active_spin_lock) { 2609 verbose(env, "bpf_spin_unlock without taking a lock\n"); 2610 return -EINVAL; 2611 } 2612 if (cur->active_spin_lock != reg->id) { 2613 verbose(env, "bpf_spin_unlock of different lock\n"); 2614 return -EINVAL; 2615 } 2616 cur->active_spin_lock = 0; 2617 } 2618 return 0; 2619 } 2620 2621 static bool arg_type_is_mem_ptr(enum bpf_arg_type type) 2622 { 2623 return type == ARG_PTR_TO_MEM || 2624 type == ARG_PTR_TO_MEM_OR_NULL || 2625 type == ARG_PTR_TO_UNINIT_MEM; 2626 } 2627 2628 static bool arg_type_is_mem_size(enum bpf_arg_type type) 2629 { 2630 return type == ARG_CONST_SIZE || 2631 type == ARG_CONST_SIZE_OR_ZERO; 2632 } 2633 2634 static bool arg_type_is_int_ptr(enum bpf_arg_type type) 2635 { 2636 return type == ARG_PTR_TO_INT || 2637 type == ARG_PTR_TO_LONG; 2638 } 2639 2640 static int int_ptr_type_to_size(enum bpf_arg_type type) 2641 { 2642 if (type == ARG_PTR_TO_INT) 2643 return sizeof(u32); 2644 else if (type == ARG_PTR_TO_LONG) 2645 return sizeof(u64); 2646 2647 return -EINVAL; 2648 } 2649 2650 static int check_func_arg(struct bpf_verifier_env *env, u32 regno, 2651 enum bpf_arg_type arg_type, 2652 struct bpf_call_arg_meta *meta) 2653 { 2654 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 2655 enum bpf_reg_type expected_type, type = reg->type; 2656 int err = 0; 2657 2658 if (arg_type == ARG_DONTCARE) 2659 return 0; 2660 2661 err = check_reg_arg(env, regno, SRC_OP); 2662 if (err) 2663 return err; 2664 2665 if (arg_type == ARG_ANYTHING) { 2666 if (is_pointer_value(env, regno)) { 2667 verbose(env, "R%d leaks addr into helper function\n", 2668 regno); 2669 return -EACCES; 2670 } 2671 return 0; 2672 } 2673 2674 if (type_is_pkt_pointer(type) && 2675 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 2676 verbose(env, "helper access to the packet is not allowed\n"); 2677 return -EACCES; 2678 } 2679 2680 if (arg_type == ARG_PTR_TO_MAP_KEY || 2681 arg_type == ARG_PTR_TO_MAP_VALUE || 2682 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE || 2683 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) { 2684 expected_type = PTR_TO_STACK; 2685 if (register_is_null(reg) && 2686 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) 2687 /* final test in check_stack_boundary() */; 2688 else if (!type_is_pkt_pointer(type) && 2689 type != PTR_TO_MAP_VALUE && 2690 type != expected_type) 2691 goto err_type; 2692 } else if (arg_type == ARG_CONST_SIZE || 2693 arg_type == ARG_CONST_SIZE_OR_ZERO) { 2694 expected_type = SCALAR_VALUE; 2695 if (type != expected_type) 2696 goto err_type; 2697 } else if (arg_type == ARG_CONST_MAP_PTR) { 2698 expected_type = CONST_PTR_TO_MAP; 2699 if (type != expected_type) 2700 goto err_type; 2701 } else if (arg_type == ARG_PTR_TO_CTX) { 2702 expected_type = PTR_TO_CTX; 2703 if (type != expected_type) 2704 goto err_type; 2705 err = check_ctx_reg(env, reg, regno); 2706 if (err < 0) 2707 return err; 2708 } else if (arg_type == ARG_PTR_TO_SOCK_COMMON) { 2709 expected_type = PTR_TO_SOCK_COMMON; 2710 /* Any sk pointer can be ARG_PTR_TO_SOCK_COMMON */ 2711 if (!type_is_sk_pointer(type)) 2712 goto err_type; 2713 if (reg->ref_obj_id) { 2714 if (meta->ref_obj_id) { 2715 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 2716 regno, reg->ref_obj_id, 2717 meta->ref_obj_id); 2718 return -EFAULT; 2719 } 2720 meta->ref_obj_id = reg->ref_obj_id; 2721 } 2722 } else if (arg_type == ARG_PTR_TO_SOCKET) { 2723 expected_type = PTR_TO_SOCKET; 2724 if (type != expected_type) 2725 goto err_type; 2726 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) { 2727 if (meta->func_id == BPF_FUNC_spin_lock) { 2728 if (process_spin_lock(env, regno, true)) 2729 return -EACCES; 2730 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 2731 if (process_spin_lock(env, regno, false)) 2732 return -EACCES; 2733 } else { 2734 verbose(env, "verifier internal error\n"); 2735 return -EFAULT; 2736 } 2737 } else if (arg_type_is_mem_ptr(arg_type)) { 2738 expected_type = PTR_TO_STACK; 2739 /* One exception here. In case function allows for NULL to be 2740 * passed in as argument, it's a SCALAR_VALUE type. Final test 2741 * happens during stack boundary checking. 2742 */ 2743 if (register_is_null(reg) && 2744 arg_type == ARG_PTR_TO_MEM_OR_NULL) 2745 /* final test in check_stack_boundary() */; 2746 else if (!type_is_pkt_pointer(type) && 2747 type != PTR_TO_MAP_VALUE && 2748 type != expected_type) 2749 goto err_type; 2750 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM; 2751 } else if (arg_type_is_int_ptr(arg_type)) { 2752 expected_type = PTR_TO_STACK; 2753 if (!type_is_pkt_pointer(type) && 2754 type != PTR_TO_MAP_VALUE && 2755 type != expected_type) 2756 goto err_type; 2757 } else { 2758 verbose(env, "unsupported arg_type %d\n", arg_type); 2759 return -EFAULT; 2760 } 2761 2762 if (arg_type == ARG_CONST_MAP_PTR) { 2763 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 2764 meta->map_ptr = reg->map_ptr; 2765 } else if (arg_type == ARG_PTR_TO_MAP_KEY) { 2766 /* bpf_map_xxx(..., map_ptr, ..., key) call: 2767 * check that [key, key + map->key_size) are within 2768 * stack limits and initialized 2769 */ 2770 if (!meta->map_ptr) { 2771 /* in function declaration map_ptr must come before 2772 * map_key, so that it's verified and known before 2773 * we have to check map_key here. Otherwise it means 2774 * that kernel subsystem misconfigured verifier 2775 */ 2776 verbose(env, "invalid map_ptr to access map->key\n"); 2777 return -EACCES; 2778 } 2779 err = check_helper_mem_access(env, regno, 2780 meta->map_ptr->key_size, false, 2781 NULL); 2782 } else if (arg_type == ARG_PTR_TO_MAP_VALUE || 2783 (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL && 2784 !register_is_null(reg)) || 2785 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) { 2786 /* bpf_map_xxx(..., map_ptr, ..., value) call: 2787 * check [value, value + map->value_size) validity 2788 */ 2789 if (!meta->map_ptr) { 2790 /* kernel subsystem misconfigured verifier */ 2791 verbose(env, "invalid map_ptr to access map->value\n"); 2792 return -EACCES; 2793 } 2794 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE); 2795 err = check_helper_mem_access(env, regno, 2796 meta->map_ptr->value_size, false, 2797 meta); 2798 } else if (arg_type_is_mem_size(arg_type)) { 2799 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO); 2800 2801 /* remember the mem_size which may be used later 2802 * to refine return values. 2803 */ 2804 meta->msize_smax_value = reg->smax_value; 2805 meta->msize_umax_value = reg->umax_value; 2806 2807 /* The register is SCALAR_VALUE; the access check 2808 * happens using its boundaries. 2809 */ 2810 if (!tnum_is_const(reg->var_off)) 2811 /* For unprivileged variable accesses, disable raw 2812 * mode so that the program is required to 2813 * initialize all the memory that the helper could 2814 * just partially fill up. 2815 */ 2816 meta = NULL; 2817 2818 if (reg->smin_value < 0) { 2819 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 2820 regno); 2821 return -EACCES; 2822 } 2823 2824 if (reg->umin_value == 0) { 2825 err = check_helper_mem_access(env, regno - 1, 0, 2826 zero_size_allowed, 2827 meta); 2828 if (err) 2829 return err; 2830 } 2831 2832 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 2833 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 2834 regno); 2835 return -EACCES; 2836 } 2837 err = check_helper_mem_access(env, regno - 1, 2838 reg->umax_value, 2839 zero_size_allowed, meta); 2840 } else if (arg_type_is_int_ptr(arg_type)) { 2841 int size = int_ptr_type_to_size(arg_type); 2842 2843 err = check_helper_mem_access(env, regno, size, false, meta); 2844 if (err) 2845 return err; 2846 err = check_ptr_alignment(env, reg, 0, size, true); 2847 } 2848 2849 return err; 2850 err_type: 2851 verbose(env, "R%d type=%s expected=%s\n", regno, 2852 reg_type_str[type], reg_type_str[expected_type]); 2853 return -EACCES; 2854 } 2855 2856 static int check_map_func_compatibility(struct bpf_verifier_env *env, 2857 struct bpf_map *map, int func_id) 2858 { 2859 if (!map) 2860 return 0; 2861 2862 /* We need a two way check, first is from map perspective ... */ 2863 switch (map->map_type) { 2864 case BPF_MAP_TYPE_PROG_ARRAY: 2865 if (func_id != BPF_FUNC_tail_call) 2866 goto error; 2867 break; 2868 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 2869 if (func_id != BPF_FUNC_perf_event_read && 2870 func_id != BPF_FUNC_perf_event_output && 2871 func_id != BPF_FUNC_perf_event_read_value) 2872 goto error; 2873 break; 2874 case BPF_MAP_TYPE_STACK_TRACE: 2875 if (func_id != BPF_FUNC_get_stackid) 2876 goto error; 2877 break; 2878 case BPF_MAP_TYPE_CGROUP_ARRAY: 2879 if (func_id != BPF_FUNC_skb_under_cgroup && 2880 func_id != BPF_FUNC_current_task_under_cgroup) 2881 goto error; 2882 break; 2883 case BPF_MAP_TYPE_CGROUP_STORAGE: 2884 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 2885 if (func_id != BPF_FUNC_get_local_storage) 2886 goto error; 2887 break; 2888 /* devmap returns a pointer to a live net_device ifindex that we cannot 2889 * allow to be modified from bpf side. So do not allow lookup elements 2890 * for now. 2891 */ 2892 case BPF_MAP_TYPE_DEVMAP: 2893 if (func_id != BPF_FUNC_redirect_map) 2894 goto error; 2895 break; 2896 /* Restrict bpf side of cpumap and xskmap, open when use-cases 2897 * appear. 2898 */ 2899 case BPF_MAP_TYPE_CPUMAP: 2900 case BPF_MAP_TYPE_XSKMAP: 2901 if (func_id != BPF_FUNC_redirect_map) 2902 goto error; 2903 break; 2904 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 2905 case BPF_MAP_TYPE_HASH_OF_MAPS: 2906 if (func_id != BPF_FUNC_map_lookup_elem) 2907 goto error; 2908 break; 2909 case BPF_MAP_TYPE_SOCKMAP: 2910 if (func_id != BPF_FUNC_sk_redirect_map && 2911 func_id != BPF_FUNC_sock_map_update && 2912 func_id != BPF_FUNC_map_delete_elem && 2913 func_id != BPF_FUNC_msg_redirect_map) 2914 goto error; 2915 break; 2916 case BPF_MAP_TYPE_SOCKHASH: 2917 if (func_id != BPF_FUNC_sk_redirect_hash && 2918 func_id != BPF_FUNC_sock_hash_update && 2919 func_id != BPF_FUNC_map_delete_elem && 2920 func_id != BPF_FUNC_msg_redirect_hash) 2921 goto error; 2922 break; 2923 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 2924 if (func_id != BPF_FUNC_sk_select_reuseport) 2925 goto error; 2926 break; 2927 case BPF_MAP_TYPE_QUEUE: 2928 case BPF_MAP_TYPE_STACK: 2929 if (func_id != BPF_FUNC_map_peek_elem && 2930 func_id != BPF_FUNC_map_pop_elem && 2931 func_id != BPF_FUNC_map_push_elem) 2932 goto error; 2933 break; 2934 case BPF_MAP_TYPE_SK_STORAGE: 2935 if (func_id != BPF_FUNC_sk_storage_get && 2936 func_id != BPF_FUNC_sk_storage_delete) 2937 goto error; 2938 break; 2939 default: 2940 break; 2941 } 2942 2943 /* ... and second from the function itself. */ 2944 switch (func_id) { 2945 case BPF_FUNC_tail_call: 2946 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 2947 goto error; 2948 if (env->subprog_cnt > 1) { 2949 verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n"); 2950 return -EINVAL; 2951 } 2952 break; 2953 case BPF_FUNC_perf_event_read: 2954 case BPF_FUNC_perf_event_output: 2955 case BPF_FUNC_perf_event_read_value: 2956 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 2957 goto error; 2958 break; 2959 case BPF_FUNC_get_stackid: 2960 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 2961 goto error; 2962 break; 2963 case BPF_FUNC_current_task_under_cgroup: 2964 case BPF_FUNC_skb_under_cgroup: 2965 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 2966 goto error; 2967 break; 2968 case BPF_FUNC_redirect_map: 2969 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 2970 map->map_type != BPF_MAP_TYPE_CPUMAP && 2971 map->map_type != BPF_MAP_TYPE_XSKMAP) 2972 goto error; 2973 break; 2974 case BPF_FUNC_sk_redirect_map: 2975 case BPF_FUNC_msg_redirect_map: 2976 case BPF_FUNC_sock_map_update: 2977 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 2978 goto error; 2979 break; 2980 case BPF_FUNC_sk_redirect_hash: 2981 case BPF_FUNC_msg_redirect_hash: 2982 case BPF_FUNC_sock_hash_update: 2983 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 2984 goto error; 2985 break; 2986 case BPF_FUNC_get_local_storage: 2987 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 2988 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 2989 goto error; 2990 break; 2991 case BPF_FUNC_sk_select_reuseport: 2992 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY) 2993 goto error; 2994 break; 2995 case BPF_FUNC_map_peek_elem: 2996 case BPF_FUNC_map_pop_elem: 2997 case BPF_FUNC_map_push_elem: 2998 if (map->map_type != BPF_MAP_TYPE_QUEUE && 2999 map->map_type != BPF_MAP_TYPE_STACK) 3000 goto error; 3001 break; 3002 case BPF_FUNC_sk_storage_get: 3003 case BPF_FUNC_sk_storage_delete: 3004 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 3005 goto error; 3006 break; 3007 default: 3008 break; 3009 } 3010 3011 return 0; 3012 error: 3013 verbose(env, "cannot pass map_type %d into func %s#%d\n", 3014 map->map_type, func_id_name(func_id), func_id); 3015 return -EINVAL; 3016 } 3017 3018 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 3019 { 3020 int count = 0; 3021 3022 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 3023 count++; 3024 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 3025 count++; 3026 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 3027 count++; 3028 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 3029 count++; 3030 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 3031 count++; 3032 3033 /* We only support one arg being in raw mode at the moment, 3034 * which is sufficient for the helper functions we have 3035 * right now. 3036 */ 3037 return count <= 1; 3038 } 3039 3040 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr, 3041 enum bpf_arg_type arg_next) 3042 { 3043 return (arg_type_is_mem_ptr(arg_curr) && 3044 !arg_type_is_mem_size(arg_next)) || 3045 (!arg_type_is_mem_ptr(arg_curr) && 3046 arg_type_is_mem_size(arg_next)); 3047 } 3048 3049 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 3050 { 3051 /* bpf_xxx(..., buf, len) call will access 'len' 3052 * bytes from memory 'buf'. Both arg types need 3053 * to be paired, so make sure there's no buggy 3054 * helper function specification. 3055 */ 3056 if (arg_type_is_mem_size(fn->arg1_type) || 3057 arg_type_is_mem_ptr(fn->arg5_type) || 3058 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) || 3059 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) || 3060 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) || 3061 check_args_pair_invalid(fn->arg4_type, fn->arg5_type)) 3062 return false; 3063 3064 return true; 3065 } 3066 3067 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id) 3068 { 3069 int count = 0; 3070 3071 if (arg_type_may_be_refcounted(fn->arg1_type)) 3072 count++; 3073 if (arg_type_may_be_refcounted(fn->arg2_type)) 3074 count++; 3075 if (arg_type_may_be_refcounted(fn->arg3_type)) 3076 count++; 3077 if (arg_type_may_be_refcounted(fn->arg4_type)) 3078 count++; 3079 if (arg_type_may_be_refcounted(fn->arg5_type)) 3080 count++; 3081 3082 /* A reference acquiring function cannot acquire 3083 * another refcounted ptr. 3084 */ 3085 if (is_acquire_function(func_id) && count) 3086 return false; 3087 3088 /* We only support one arg being unreferenced at the moment, 3089 * which is sufficient for the helper functions we have right now. 3090 */ 3091 return count <= 1; 3092 } 3093 3094 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 3095 { 3096 return check_raw_mode_ok(fn) && 3097 check_arg_pair_ok(fn) && 3098 check_refcount_ok(fn, func_id) ? 0 : -EINVAL; 3099 } 3100 3101 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 3102 * are now invalid, so turn them into unknown SCALAR_VALUE. 3103 */ 3104 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env, 3105 struct bpf_func_state *state) 3106 { 3107 struct bpf_reg_state *regs = state->regs, *reg; 3108 int i; 3109 3110 for (i = 0; i < MAX_BPF_REG; i++) 3111 if (reg_is_pkt_pointer_any(®s[i])) 3112 mark_reg_unknown(env, regs, i); 3113 3114 bpf_for_each_spilled_reg(i, state, reg) { 3115 if (!reg) 3116 continue; 3117 if (reg_is_pkt_pointer_any(reg)) 3118 __mark_reg_unknown(reg); 3119 } 3120 } 3121 3122 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 3123 { 3124 struct bpf_verifier_state *vstate = env->cur_state; 3125 int i; 3126 3127 for (i = 0; i <= vstate->curframe; i++) 3128 __clear_all_pkt_pointers(env, vstate->frame[i]); 3129 } 3130 3131 static void release_reg_references(struct bpf_verifier_env *env, 3132 struct bpf_func_state *state, 3133 int ref_obj_id) 3134 { 3135 struct bpf_reg_state *regs = state->regs, *reg; 3136 int i; 3137 3138 for (i = 0; i < MAX_BPF_REG; i++) 3139 if (regs[i].ref_obj_id == ref_obj_id) 3140 mark_reg_unknown(env, regs, i); 3141 3142 bpf_for_each_spilled_reg(i, state, reg) { 3143 if (!reg) 3144 continue; 3145 if (reg->ref_obj_id == ref_obj_id) 3146 __mark_reg_unknown(reg); 3147 } 3148 } 3149 3150 /* The pointer with the specified id has released its reference to kernel 3151 * resources. Identify all copies of the same pointer and clear the reference. 3152 */ 3153 static int release_reference(struct bpf_verifier_env *env, 3154 int ref_obj_id) 3155 { 3156 struct bpf_verifier_state *vstate = env->cur_state; 3157 int err; 3158 int i; 3159 3160 err = release_reference_state(cur_func(env), ref_obj_id); 3161 if (err) 3162 return err; 3163 3164 for (i = 0; i <= vstate->curframe; i++) 3165 release_reg_references(env, vstate->frame[i], ref_obj_id); 3166 3167 return 0; 3168 } 3169 3170 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 3171 int *insn_idx) 3172 { 3173 struct bpf_verifier_state *state = env->cur_state; 3174 struct bpf_func_state *caller, *callee; 3175 int i, err, subprog, target_insn; 3176 3177 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 3178 verbose(env, "the call stack of %d frames is too deep\n", 3179 state->curframe + 2); 3180 return -E2BIG; 3181 } 3182 3183 target_insn = *insn_idx + insn->imm; 3184 subprog = find_subprog(env, target_insn + 1); 3185 if (subprog < 0) { 3186 verbose(env, "verifier bug. No program starts at insn %d\n", 3187 target_insn + 1); 3188 return -EFAULT; 3189 } 3190 3191 caller = state->frame[state->curframe]; 3192 if (state->frame[state->curframe + 1]) { 3193 verbose(env, "verifier bug. Frame %d already allocated\n", 3194 state->curframe + 1); 3195 return -EFAULT; 3196 } 3197 3198 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 3199 if (!callee) 3200 return -ENOMEM; 3201 state->frame[state->curframe + 1] = callee; 3202 3203 /* callee cannot access r0, r6 - r9 for reading and has to write 3204 * into its own stack before reading from it. 3205 * callee can read/write into caller's stack 3206 */ 3207 init_func_state(env, callee, 3208 /* remember the callsite, it will be used by bpf_exit */ 3209 *insn_idx /* callsite */, 3210 state->curframe + 1 /* frameno within this callchain */, 3211 subprog /* subprog number within this prog */); 3212 3213 /* Transfer references to the callee */ 3214 err = transfer_reference_state(callee, caller); 3215 if (err) 3216 return err; 3217 3218 /* copy r1 - r5 args that callee can access. The copy includes parent 3219 * pointers, which connects us up to the liveness chain 3220 */ 3221 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 3222 callee->regs[i] = caller->regs[i]; 3223 3224 /* after the call registers r0 - r5 were scratched */ 3225 for (i = 0; i < CALLER_SAVED_REGS; i++) { 3226 mark_reg_not_init(env, caller->regs, caller_saved[i]); 3227 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 3228 } 3229 3230 /* only increment it after check_reg_arg() finished */ 3231 state->curframe++; 3232 3233 /* and go analyze first insn of the callee */ 3234 *insn_idx = target_insn; 3235 3236 if (env->log.level & BPF_LOG_LEVEL) { 3237 verbose(env, "caller:\n"); 3238 print_verifier_state(env, caller); 3239 verbose(env, "callee:\n"); 3240 print_verifier_state(env, callee); 3241 } 3242 return 0; 3243 } 3244 3245 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 3246 { 3247 struct bpf_verifier_state *state = env->cur_state; 3248 struct bpf_func_state *caller, *callee; 3249 struct bpf_reg_state *r0; 3250 int err; 3251 3252 callee = state->frame[state->curframe]; 3253 r0 = &callee->regs[BPF_REG_0]; 3254 if (r0->type == PTR_TO_STACK) { 3255 /* technically it's ok to return caller's stack pointer 3256 * (or caller's caller's pointer) back to the caller, 3257 * since these pointers are valid. Only current stack 3258 * pointer will be invalid as soon as function exits, 3259 * but let's be conservative 3260 */ 3261 verbose(env, "cannot return stack pointer to the caller\n"); 3262 return -EINVAL; 3263 } 3264 3265 state->curframe--; 3266 caller = state->frame[state->curframe]; 3267 /* return to the caller whatever r0 had in the callee */ 3268 caller->regs[BPF_REG_0] = *r0; 3269 3270 /* Transfer references to the caller */ 3271 err = transfer_reference_state(caller, callee); 3272 if (err) 3273 return err; 3274 3275 *insn_idx = callee->callsite + 1; 3276 if (env->log.level & BPF_LOG_LEVEL) { 3277 verbose(env, "returning from callee:\n"); 3278 print_verifier_state(env, callee); 3279 verbose(env, "to caller at %d:\n", *insn_idx); 3280 print_verifier_state(env, caller); 3281 } 3282 /* clear everything in the callee */ 3283 free_func_state(callee); 3284 state->frame[state->curframe + 1] = NULL; 3285 return 0; 3286 } 3287 3288 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 3289 int func_id, 3290 struct bpf_call_arg_meta *meta) 3291 { 3292 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 3293 3294 if (ret_type != RET_INTEGER || 3295 (func_id != BPF_FUNC_get_stack && 3296 func_id != BPF_FUNC_probe_read_str)) 3297 return; 3298 3299 ret_reg->smax_value = meta->msize_smax_value; 3300 ret_reg->umax_value = meta->msize_umax_value; 3301 __reg_deduce_bounds(ret_reg); 3302 __reg_bound_offset(ret_reg); 3303 } 3304 3305 static int 3306 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 3307 int func_id, int insn_idx) 3308 { 3309 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 3310 struct bpf_map *map = meta->map_ptr; 3311 3312 if (func_id != BPF_FUNC_tail_call && 3313 func_id != BPF_FUNC_map_lookup_elem && 3314 func_id != BPF_FUNC_map_update_elem && 3315 func_id != BPF_FUNC_map_delete_elem && 3316 func_id != BPF_FUNC_map_push_elem && 3317 func_id != BPF_FUNC_map_pop_elem && 3318 func_id != BPF_FUNC_map_peek_elem) 3319 return 0; 3320 3321 if (map == NULL) { 3322 verbose(env, "kernel subsystem misconfigured verifier\n"); 3323 return -EINVAL; 3324 } 3325 3326 /* In case of read-only, some additional restrictions 3327 * need to be applied in order to prevent altering the 3328 * state of the map from program side. 3329 */ 3330 if ((map->map_flags & BPF_F_RDONLY_PROG) && 3331 (func_id == BPF_FUNC_map_delete_elem || 3332 func_id == BPF_FUNC_map_update_elem || 3333 func_id == BPF_FUNC_map_push_elem || 3334 func_id == BPF_FUNC_map_pop_elem)) { 3335 verbose(env, "write into map forbidden\n"); 3336 return -EACCES; 3337 } 3338 3339 if (!BPF_MAP_PTR(aux->map_state)) 3340 bpf_map_ptr_store(aux, meta->map_ptr, 3341 meta->map_ptr->unpriv_array); 3342 else if (BPF_MAP_PTR(aux->map_state) != meta->map_ptr) 3343 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 3344 meta->map_ptr->unpriv_array); 3345 return 0; 3346 } 3347 3348 static int check_reference_leak(struct bpf_verifier_env *env) 3349 { 3350 struct bpf_func_state *state = cur_func(env); 3351 int i; 3352 3353 for (i = 0; i < state->acquired_refs; i++) { 3354 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 3355 state->refs[i].id, state->refs[i].insn_idx); 3356 } 3357 return state->acquired_refs ? -EINVAL : 0; 3358 } 3359 3360 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx) 3361 { 3362 const struct bpf_func_proto *fn = NULL; 3363 struct bpf_reg_state *regs; 3364 struct bpf_call_arg_meta meta; 3365 bool changes_data; 3366 int i, err; 3367 3368 /* find function prototype */ 3369 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 3370 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 3371 func_id); 3372 return -EINVAL; 3373 } 3374 3375 if (env->ops->get_func_proto) 3376 fn = env->ops->get_func_proto(func_id, env->prog); 3377 if (!fn) { 3378 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 3379 func_id); 3380 return -EINVAL; 3381 } 3382 3383 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 3384 if (!env->prog->gpl_compatible && fn->gpl_only) { 3385 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 3386 return -EINVAL; 3387 } 3388 3389 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 3390 changes_data = bpf_helper_changes_pkt_data(fn->func); 3391 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 3392 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 3393 func_id_name(func_id), func_id); 3394 return -EINVAL; 3395 } 3396 3397 memset(&meta, 0, sizeof(meta)); 3398 meta.pkt_access = fn->pkt_access; 3399 3400 err = check_func_proto(fn, func_id); 3401 if (err) { 3402 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 3403 func_id_name(func_id), func_id); 3404 return err; 3405 } 3406 3407 meta.func_id = func_id; 3408 /* check args */ 3409 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta); 3410 if (err) 3411 return err; 3412 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta); 3413 if (err) 3414 return err; 3415 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta); 3416 if (err) 3417 return err; 3418 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta); 3419 if (err) 3420 return err; 3421 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta); 3422 if (err) 3423 return err; 3424 3425 err = record_func_map(env, &meta, func_id, insn_idx); 3426 if (err) 3427 return err; 3428 3429 /* Mark slots with STACK_MISC in case of raw mode, stack offset 3430 * is inferred from register state. 3431 */ 3432 for (i = 0; i < meta.access_size; i++) { 3433 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 3434 BPF_WRITE, -1, false); 3435 if (err) 3436 return err; 3437 } 3438 3439 if (func_id == BPF_FUNC_tail_call) { 3440 err = check_reference_leak(env); 3441 if (err) { 3442 verbose(env, "tail_call would lead to reference leak\n"); 3443 return err; 3444 } 3445 } else if (is_release_function(func_id)) { 3446 err = release_reference(env, meta.ref_obj_id); 3447 if (err) { 3448 verbose(env, "func %s#%d reference has not been acquired before\n", 3449 func_id_name(func_id), func_id); 3450 return err; 3451 } 3452 } 3453 3454 regs = cur_regs(env); 3455 3456 /* check that flags argument in get_local_storage(map, flags) is 0, 3457 * this is required because get_local_storage() can't return an error. 3458 */ 3459 if (func_id == BPF_FUNC_get_local_storage && 3460 !register_is_null(®s[BPF_REG_2])) { 3461 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 3462 return -EINVAL; 3463 } 3464 3465 /* reset caller saved regs */ 3466 for (i = 0; i < CALLER_SAVED_REGS; i++) { 3467 mark_reg_not_init(env, regs, caller_saved[i]); 3468 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 3469 } 3470 3471 /* helper call returns 64-bit value. */ 3472 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 3473 3474 /* update return register (already marked as written above) */ 3475 if (fn->ret_type == RET_INTEGER) { 3476 /* sets type to SCALAR_VALUE */ 3477 mark_reg_unknown(env, regs, BPF_REG_0); 3478 } else if (fn->ret_type == RET_VOID) { 3479 regs[BPF_REG_0].type = NOT_INIT; 3480 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL || 3481 fn->ret_type == RET_PTR_TO_MAP_VALUE) { 3482 /* There is no offset yet applied, variable or fixed */ 3483 mark_reg_known_zero(env, regs, BPF_REG_0); 3484 /* remember map_ptr, so that check_map_access() 3485 * can check 'value_size' boundary of memory access 3486 * to map element returned from bpf_map_lookup_elem() 3487 */ 3488 if (meta.map_ptr == NULL) { 3489 verbose(env, 3490 "kernel subsystem misconfigured verifier\n"); 3491 return -EINVAL; 3492 } 3493 regs[BPF_REG_0].map_ptr = meta.map_ptr; 3494 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) { 3495 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE; 3496 if (map_value_has_spin_lock(meta.map_ptr)) 3497 regs[BPF_REG_0].id = ++env->id_gen; 3498 } else { 3499 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL; 3500 regs[BPF_REG_0].id = ++env->id_gen; 3501 } 3502 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) { 3503 mark_reg_known_zero(env, regs, BPF_REG_0); 3504 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL; 3505 regs[BPF_REG_0].id = ++env->id_gen; 3506 } else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) { 3507 mark_reg_known_zero(env, regs, BPF_REG_0); 3508 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL; 3509 regs[BPF_REG_0].id = ++env->id_gen; 3510 } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) { 3511 mark_reg_known_zero(env, regs, BPF_REG_0); 3512 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL; 3513 regs[BPF_REG_0].id = ++env->id_gen; 3514 } else { 3515 verbose(env, "unknown return type %d of func %s#%d\n", 3516 fn->ret_type, func_id_name(func_id), func_id); 3517 return -EINVAL; 3518 } 3519 3520 if (is_ptr_cast_function(func_id)) { 3521 /* For release_reference() */ 3522 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 3523 } else if (is_acquire_function(func_id)) { 3524 int id = acquire_reference_state(env, insn_idx); 3525 3526 if (id < 0) 3527 return id; 3528 /* For mark_ptr_or_null_reg() */ 3529 regs[BPF_REG_0].id = id; 3530 /* For release_reference() */ 3531 regs[BPF_REG_0].ref_obj_id = id; 3532 } 3533 3534 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 3535 3536 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 3537 if (err) 3538 return err; 3539 3540 if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) { 3541 const char *err_str; 3542 3543 #ifdef CONFIG_PERF_EVENTS 3544 err = get_callchain_buffers(sysctl_perf_event_max_stack); 3545 err_str = "cannot get callchain buffer for func %s#%d\n"; 3546 #else 3547 err = -ENOTSUPP; 3548 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 3549 #endif 3550 if (err) { 3551 verbose(env, err_str, func_id_name(func_id), func_id); 3552 return err; 3553 } 3554 3555 env->prog->has_callchain_buf = true; 3556 } 3557 3558 if (changes_data) 3559 clear_all_pkt_pointers(env); 3560 return 0; 3561 } 3562 3563 static bool signed_add_overflows(s64 a, s64 b) 3564 { 3565 /* Do the add in u64, where overflow is well-defined */ 3566 s64 res = (s64)((u64)a + (u64)b); 3567 3568 if (b < 0) 3569 return res > a; 3570 return res < a; 3571 } 3572 3573 static bool signed_sub_overflows(s64 a, s64 b) 3574 { 3575 /* Do the sub in u64, where overflow is well-defined */ 3576 s64 res = (s64)((u64)a - (u64)b); 3577 3578 if (b < 0) 3579 return res < a; 3580 return res > a; 3581 } 3582 3583 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 3584 const struct bpf_reg_state *reg, 3585 enum bpf_reg_type type) 3586 { 3587 bool known = tnum_is_const(reg->var_off); 3588 s64 val = reg->var_off.value; 3589 s64 smin = reg->smin_value; 3590 3591 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 3592 verbose(env, "math between %s pointer and %lld is not allowed\n", 3593 reg_type_str[type], val); 3594 return false; 3595 } 3596 3597 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 3598 verbose(env, "%s pointer offset %d is not allowed\n", 3599 reg_type_str[type], reg->off); 3600 return false; 3601 } 3602 3603 if (smin == S64_MIN) { 3604 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 3605 reg_type_str[type]); 3606 return false; 3607 } 3608 3609 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 3610 verbose(env, "value %lld makes %s pointer be out of bounds\n", 3611 smin, reg_type_str[type]); 3612 return false; 3613 } 3614 3615 return true; 3616 } 3617 3618 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 3619 { 3620 return &env->insn_aux_data[env->insn_idx]; 3621 } 3622 3623 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 3624 u32 *ptr_limit, u8 opcode, bool off_is_neg) 3625 { 3626 bool mask_to_left = (opcode == BPF_ADD && off_is_neg) || 3627 (opcode == BPF_SUB && !off_is_neg); 3628 u32 off; 3629 3630 switch (ptr_reg->type) { 3631 case PTR_TO_STACK: 3632 /* Indirect variable offset stack access is prohibited in 3633 * unprivileged mode so it's not handled here. 3634 */ 3635 off = ptr_reg->off + ptr_reg->var_off.value; 3636 if (mask_to_left) 3637 *ptr_limit = MAX_BPF_STACK + off; 3638 else 3639 *ptr_limit = -off; 3640 return 0; 3641 case PTR_TO_MAP_VALUE: 3642 if (mask_to_left) { 3643 *ptr_limit = ptr_reg->umax_value + ptr_reg->off; 3644 } else { 3645 off = ptr_reg->smin_value + ptr_reg->off; 3646 *ptr_limit = ptr_reg->map_ptr->value_size - off; 3647 } 3648 return 0; 3649 default: 3650 return -EINVAL; 3651 } 3652 } 3653 3654 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 3655 const struct bpf_insn *insn) 3656 { 3657 return env->allow_ptr_leaks || BPF_SRC(insn->code) == BPF_K; 3658 } 3659 3660 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 3661 u32 alu_state, u32 alu_limit) 3662 { 3663 /* If we arrived here from different branches with different 3664 * state or limits to sanitize, then this won't work. 3665 */ 3666 if (aux->alu_state && 3667 (aux->alu_state != alu_state || 3668 aux->alu_limit != alu_limit)) 3669 return -EACCES; 3670 3671 /* Corresponding fixup done in fixup_bpf_calls(). */ 3672 aux->alu_state = alu_state; 3673 aux->alu_limit = alu_limit; 3674 return 0; 3675 } 3676 3677 static int sanitize_val_alu(struct bpf_verifier_env *env, 3678 struct bpf_insn *insn) 3679 { 3680 struct bpf_insn_aux_data *aux = cur_aux(env); 3681 3682 if (can_skip_alu_sanitation(env, insn)) 3683 return 0; 3684 3685 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 3686 } 3687 3688 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 3689 struct bpf_insn *insn, 3690 const struct bpf_reg_state *ptr_reg, 3691 struct bpf_reg_state *dst_reg, 3692 bool off_is_neg) 3693 { 3694 struct bpf_verifier_state *vstate = env->cur_state; 3695 struct bpf_insn_aux_data *aux = cur_aux(env); 3696 bool ptr_is_dst_reg = ptr_reg == dst_reg; 3697 u8 opcode = BPF_OP(insn->code); 3698 u32 alu_state, alu_limit; 3699 struct bpf_reg_state tmp; 3700 bool ret; 3701 3702 if (can_skip_alu_sanitation(env, insn)) 3703 return 0; 3704 3705 /* We already marked aux for masking from non-speculative 3706 * paths, thus we got here in the first place. We only care 3707 * to explore bad access from here. 3708 */ 3709 if (vstate->speculative) 3710 goto do_sim; 3711 3712 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 3713 alu_state |= ptr_is_dst_reg ? 3714 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 3715 3716 if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg)) 3717 return 0; 3718 if (update_alu_sanitation_state(aux, alu_state, alu_limit)) 3719 return -EACCES; 3720 do_sim: 3721 /* Simulate and find potential out-of-bounds access under 3722 * speculative execution from truncation as a result of 3723 * masking when off was not within expected range. If off 3724 * sits in dst, then we temporarily need to move ptr there 3725 * to simulate dst (== 0) +/-= ptr. Needed, for example, 3726 * for cases where we use K-based arithmetic in one direction 3727 * and truncated reg-based in the other in order to explore 3728 * bad access. 3729 */ 3730 if (!ptr_is_dst_reg) { 3731 tmp = *dst_reg; 3732 *dst_reg = *ptr_reg; 3733 } 3734 ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true); 3735 if (!ptr_is_dst_reg && ret) 3736 *dst_reg = tmp; 3737 return !ret ? -EFAULT : 0; 3738 } 3739 3740 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 3741 * Caller should also handle BPF_MOV case separately. 3742 * If we return -EACCES, caller may want to try again treating pointer as a 3743 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 3744 */ 3745 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 3746 struct bpf_insn *insn, 3747 const struct bpf_reg_state *ptr_reg, 3748 const struct bpf_reg_state *off_reg) 3749 { 3750 struct bpf_verifier_state *vstate = env->cur_state; 3751 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3752 struct bpf_reg_state *regs = state->regs, *dst_reg; 3753 bool known = tnum_is_const(off_reg->var_off); 3754 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 3755 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 3756 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 3757 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 3758 u32 dst = insn->dst_reg, src = insn->src_reg; 3759 u8 opcode = BPF_OP(insn->code); 3760 int ret; 3761 3762 dst_reg = ®s[dst]; 3763 3764 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 3765 smin_val > smax_val || umin_val > umax_val) { 3766 /* Taint dst register if offset had invalid bounds derived from 3767 * e.g. dead branches. 3768 */ 3769 __mark_reg_unknown(dst_reg); 3770 return 0; 3771 } 3772 3773 if (BPF_CLASS(insn->code) != BPF_ALU64) { 3774 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 3775 verbose(env, 3776 "R%d 32-bit pointer arithmetic prohibited\n", 3777 dst); 3778 return -EACCES; 3779 } 3780 3781 switch (ptr_reg->type) { 3782 case PTR_TO_MAP_VALUE_OR_NULL: 3783 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 3784 dst, reg_type_str[ptr_reg->type]); 3785 return -EACCES; 3786 case CONST_PTR_TO_MAP: 3787 case PTR_TO_PACKET_END: 3788 case PTR_TO_SOCKET: 3789 case PTR_TO_SOCKET_OR_NULL: 3790 case PTR_TO_SOCK_COMMON: 3791 case PTR_TO_SOCK_COMMON_OR_NULL: 3792 case PTR_TO_TCP_SOCK: 3793 case PTR_TO_TCP_SOCK_OR_NULL: 3794 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 3795 dst, reg_type_str[ptr_reg->type]); 3796 return -EACCES; 3797 case PTR_TO_MAP_VALUE: 3798 if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) { 3799 verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n", 3800 off_reg == dst_reg ? dst : src); 3801 return -EACCES; 3802 } 3803 /* fall-through */ 3804 default: 3805 break; 3806 } 3807 3808 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 3809 * The id may be overwritten later if we create a new variable offset. 3810 */ 3811 dst_reg->type = ptr_reg->type; 3812 dst_reg->id = ptr_reg->id; 3813 3814 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 3815 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 3816 return -EINVAL; 3817 3818 switch (opcode) { 3819 case BPF_ADD: 3820 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0); 3821 if (ret < 0) { 3822 verbose(env, "R%d tried to add from different maps or paths\n", dst); 3823 return ret; 3824 } 3825 /* We can take a fixed offset as long as it doesn't overflow 3826 * the s32 'off' field 3827 */ 3828 if (known && (ptr_reg->off + smin_val == 3829 (s64)(s32)(ptr_reg->off + smin_val))) { 3830 /* pointer += K. Accumulate it into fixed offset */ 3831 dst_reg->smin_value = smin_ptr; 3832 dst_reg->smax_value = smax_ptr; 3833 dst_reg->umin_value = umin_ptr; 3834 dst_reg->umax_value = umax_ptr; 3835 dst_reg->var_off = ptr_reg->var_off; 3836 dst_reg->off = ptr_reg->off + smin_val; 3837 dst_reg->raw = ptr_reg->raw; 3838 break; 3839 } 3840 /* A new variable offset is created. Note that off_reg->off 3841 * == 0, since it's a scalar. 3842 * dst_reg gets the pointer type and since some positive 3843 * integer value was added to the pointer, give it a new 'id' 3844 * if it's a PTR_TO_PACKET. 3845 * this creates a new 'base' pointer, off_reg (variable) gets 3846 * added into the variable offset, and we copy the fixed offset 3847 * from ptr_reg. 3848 */ 3849 if (signed_add_overflows(smin_ptr, smin_val) || 3850 signed_add_overflows(smax_ptr, smax_val)) { 3851 dst_reg->smin_value = S64_MIN; 3852 dst_reg->smax_value = S64_MAX; 3853 } else { 3854 dst_reg->smin_value = smin_ptr + smin_val; 3855 dst_reg->smax_value = smax_ptr + smax_val; 3856 } 3857 if (umin_ptr + umin_val < umin_ptr || 3858 umax_ptr + umax_val < umax_ptr) { 3859 dst_reg->umin_value = 0; 3860 dst_reg->umax_value = U64_MAX; 3861 } else { 3862 dst_reg->umin_value = umin_ptr + umin_val; 3863 dst_reg->umax_value = umax_ptr + umax_val; 3864 } 3865 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 3866 dst_reg->off = ptr_reg->off; 3867 dst_reg->raw = ptr_reg->raw; 3868 if (reg_is_pkt_pointer(ptr_reg)) { 3869 dst_reg->id = ++env->id_gen; 3870 /* something was added to pkt_ptr, set range to zero */ 3871 dst_reg->raw = 0; 3872 } 3873 break; 3874 case BPF_SUB: 3875 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0); 3876 if (ret < 0) { 3877 verbose(env, "R%d tried to sub from different maps or paths\n", dst); 3878 return ret; 3879 } 3880 if (dst_reg == off_reg) { 3881 /* scalar -= pointer. Creates an unknown scalar */ 3882 verbose(env, "R%d tried to subtract pointer from scalar\n", 3883 dst); 3884 return -EACCES; 3885 } 3886 /* We don't allow subtraction from FP, because (according to 3887 * test_verifier.c test "invalid fp arithmetic", JITs might not 3888 * be able to deal with it. 3889 */ 3890 if (ptr_reg->type == PTR_TO_STACK) { 3891 verbose(env, "R%d subtraction from stack pointer prohibited\n", 3892 dst); 3893 return -EACCES; 3894 } 3895 if (known && (ptr_reg->off - smin_val == 3896 (s64)(s32)(ptr_reg->off - smin_val))) { 3897 /* pointer -= K. Subtract it from fixed offset */ 3898 dst_reg->smin_value = smin_ptr; 3899 dst_reg->smax_value = smax_ptr; 3900 dst_reg->umin_value = umin_ptr; 3901 dst_reg->umax_value = umax_ptr; 3902 dst_reg->var_off = ptr_reg->var_off; 3903 dst_reg->id = ptr_reg->id; 3904 dst_reg->off = ptr_reg->off - smin_val; 3905 dst_reg->raw = ptr_reg->raw; 3906 break; 3907 } 3908 /* A new variable offset is created. If the subtrahend is known 3909 * nonnegative, then any reg->range we had before is still good. 3910 */ 3911 if (signed_sub_overflows(smin_ptr, smax_val) || 3912 signed_sub_overflows(smax_ptr, smin_val)) { 3913 /* Overflow possible, we know nothing */ 3914 dst_reg->smin_value = S64_MIN; 3915 dst_reg->smax_value = S64_MAX; 3916 } else { 3917 dst_reg->smin_value = smin_ptr - smax_val; 3918 dst_reg->smax_value = smax_ptr - smin_val; 3919 } 3920 if (umin_ptr < umax_val) { 3921 /* Overflow possible, we know nothing */ 3922 dst_reg->umin_value = 0; 3923 dst_reg->umax_value = U64_MAX; 3924 } else { 3925 /* Cannot overflow (as long as bounds are consistent) */ 3926 dst_reg->umin_value = umin_ptr - umax_val; 3927 dst_reg->umax_value = umax_ptr - umin_val; 3928 } 3929 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 3930 dst_reg->off = ptr_reg->off; 3931 dst_reg->raw = ptr_reg->raw; 3932 if (reg_is_pkt_pointer(ptr_reg)) { 3933 dst_reg->id = ++env->id_gen; 3934 /* something was added to pkt_ptr, set range to zero */ 3935 if (smin_val < 0) 3936 dst_reg->raw = 0; 3937 } 3938 break; 3939 case BPF_AND: 3940 case BPF_OR: 3941 case BPF_XOR: 3942 /* bitwise ops on pointers are troublesome, prohibit. */ 3943 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 3944 dst, bpf_alu_string[opcode >> 4]); 3945 return -EACCES; 3946 default: 3947 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 3948 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 3949 dst, bpf_alu_string[opcode >> 4]); 3950 return -EACCES; 3951 } 3952 3953 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 3954 return -EINVAL; 3955 3956 __update_reg_bounds(dst_reg); 3957 __reg_deduce_bounds(dst_reg); 3958 __reg_bound_offset(dst_reg); 3959 3960 /* For unprivileged we require that resulting offset must be in bounds 3961 * in order to be able to sanitize access later on. 3962 */ 3963 if (!env->allow_ptr_leaks) { 3964 if (dst_reg->type == PTR_TO_MAP_VALUE && 3965 check_map_access(env, dst, dst_reg->off, 1, false)) { 3966 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 3967 "prohibited for !root\n", dst); 3968 return -EACCES; 3969 } else if (dst_reg->type == PTR_TO_STACK && 3970 check_stack_access(env, dst_reg, dst_reg->off + 3971 dst_reg->var_off.value, 1)) { 3972 verbose(env, "R%d stack pointer arithmetic goes out of range, " 3973 "prohibited for !root\n", dst); 3974 return -EACCES; 3975 } 3976 } 3977 3978 return 0; 3979 } 3980 3981 /* WARNING: This function does calculations on 64-bit values, but the actual 3982 * execution may occur on 32-bit values. Therefore, things like bitshifts 3983 * need extra checks in the 32-bit case. 3984 */ 3985 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 3986 struct bpf_insn *insn, 3987 struct bpf_reg_state *dst_reg, 3988 struct bpf_reg_state src_reg) 3989 { 3990 struct bpf_reg_state *regs = cur_regs(env); 3991 u8 opcode = BPF_OP(insn->code); 3992 bool src_known, dst_known; 3993 s64 smin_val, smax_val; 3994 u64 umin_val, umax_val; 3995 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 3996 u32 dst = insn->dst_reg; 3997 int ret; 3998 3999 if (insn_bitness == 32) { 4000 /* Relevant for 32-bit RSH: Information can propagate towards 4001 * LSB, so it isn't sufficient to only truncate the output to 4002 * 32 bits. 4003 */ 4004 coerce_reg_to_size(dst_reg, 4); 4005 coerce_reg_to_size(&src_reg, 4); 4006 } 4007 4008 smin_val = src_reg.smin_value; 4009 smax_val = src_reg.smax_value; 4010 umin_val = src_reg.umin_value; 4011 umax_val = src_reg.umax_value; 4012 src_known = tnum_is_const(src_reg.var_off); 4013 dst_known = tnum_is_const(dst_reg->var_off); 4014 4015 if ((src_known && (smin_val != smax_val || umin_val != umax_val)) || 4016 smin_val > smax_val || umin_val > umax_val) { 4017 /* Taint dst register if offset had invalid bounds derived from 4018 * e.g. dead branches. 4019 */ 4020 __mark_reg_unknown(dst_reg); 4021 return 0; 4022 } 4023 4024 if (!src_known && 4025 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 4026 __mark_reg_unknown(dst_reg); 4027 return 0; 4028 } 4029 4030 switch (opcode) { 4031 case BPF_ADD: 4032 ret = sanitize_val_alu(env, insn); 4033 if (ret < 0) { 4034 verbose(env, "R%d tried to add from different pointers or scalars\n", dst); 4035 return ret; 4036 } 4037 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 4038 signed_add_overflows(dst_reg->smax_value, smax_val)) { 4039 dst_reg->smin_value = S64_MIN; 4040 dst_reg->smax_value = S64_MAX; 4041 } else { 4042 dst_reg->smin_value += smin_val; 4043 dst_reg->smax_value += smax_val; 4044 } 4045 if (dst_reg->umin_value + umin_val < umin_val || 4046 dst_reg->umax_value + umax_val < umax_val) { 4047 dst_reg->umin_value = 0; 4048 dst_reg->umax_value = U64_MAX; 4049 } else { 4050 dst_reg->umin_value += umin_val; 4051 dst_reg->umax_value += umax_val; 4052 } 4053 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 4054 break; 4055 case BPF_SUB: 4056 ret = sanitize_val_alu(env, insn); 4057 if (ret < 0) { 4058 verbose(env, "R%d tried to sub from different pointers or scalars\n", dst); 4059 return ret; 4060 } 4061 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 4062 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 4063 /* Overflow possible, we know nothing */ 4064 dst_reg->smin_value = S64_MIN; 4065 dst_reg->smax_value = S64_MAX; 4066 } else { 4067 dst_reg->smin_value -= smax_val; 4068 dst_reg->smax_value -= smin_val; 4069 } 4070 if (dst_reg->umin_value < umax_val) { 4071 /* Overflow possible, we know nothing */ 4072 dst_reg->umin_value = 0; 4073 dst_reg->umax_value = U64_MAX; 4074 } else { 4075 /* Cannot overflow (as long as bounds are consistent) */ 4076 dst_reg->umin_value -= umax_val; 4077 dst_reg->umax_value -= umin_val; 4078 } 4079 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 4080 break; 4081 case BPF_MUL: 4082 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 4083 if (smin_val < 0 || dst_reg->smin_value < 0) { 4084 /* Ain't nobody got time to multiply that sign */ 4085 __mark_reg_unbounded(dst_reg); 4086 __update_reg_bounds(dst_reg); 4087 break; 4088 } 4089 /* Both values are positive, so we can work with unsigned and 4090 * copy the result to signed (unless it exceeds S64_MAX). 4091 */ 4092 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 4093 /* Potential overflow, we know nothing */ 4094 __mark_reg_unbounded(dst_reg); 4095 /* (except what we can learn from the var_off) */ 4096 __update_reg_bounds(dst_reg); 4097 break; 4098 } 4099 dst_reg->umin_value *= umin_val; 4100 dst_reg->umax_value *= umax_val; 4101 if (dst_reg->umax_value > S64_MAX) { 4102 /* Overflow possible, we know nothing */ 4103 dst_reg->smin_value = S64_MIN; 4104 dst_reg->smax_value = S64_MAX; 4105 } else { 4106 dst_reg->smin_value = dst_reg->umin_value; 4107 dst_reg->smax_value = dst_reg->umax_value; 4108 } 4109 break; 4110 case BPF_AND: 4111 if (src_known && dst_known) { 4112 __mark_reg_known(dst_reg, dst_reg->var_off.value & 4113 src_reg.var_off.value); 4114 break; 4115 } 4116 /* We get our minimum from the var_off, since that's inherently 4117 * bitwise. Our maximum is the minimum of the operands' maxima. 4118 */ 4119 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 4120 dst_reg->umin_value = dst_reg->var_off.value; 4121 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 4122 if (dst_reg->smin_value < 0 || smin_val < 0) { 4123 /* Lose signed bounds when ANDing negative numbers, 4124 * ain't nobody got time for that. 4125 */ 4126 dst_reg->smin_value = S64_MIN; 4127 dst_reg->smax_value = S64_MAX; 4128 } else { 4129 /* ANDing two positives gives a positive, so safe to 4130 * cast result into s64. 4131 */ 4132 dst_reg->smin_value = dst_reg->umin_value; 4133 dst_reg->smax_value = dst_reg->umax_value; 4134 } 4135 /* We may learn something more from the var_off */ 4136 __update_reg_bounds(dst_reg); 4137 break; 4138 case BPF_OR: 4139 if (src_known && dst_known) { 4140 __mark_reg_known(dst_reg, dst_reg->var_off.value | 4141 src_reg.var_off.value); 4142 break; 4143 } 4144 /* We get our maximum from the var_off, and our minimum is the 4145 * maximum of the operands' minima 4146 */ 4147 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 4148 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 4149 dst_reg->umax_value = dst_reg->var_off.value | 4150 dst_reg->var_off.mask; 4151 if (dst_reg->smin_value < 0 || smin_val < 0) { 4152 /* Lose signed bounds when ORing negative numbers, 4153 * ain't nobody got time for that. 4154 */ 4155 dst_reg->smin_value = S64_MIN; 4156 dst_reg->smax_value = S64_MAX; 4157 } else { 4158 /* ORing two positives gives a positive, so safe to 4159 * cast result into s64. 4160 */ 4161 dst_reg->smin_value = dst_reg->umin_value; 4162 dst_reg->smax_value = dst_reg->umax_value; 4163 } 4164 /* We may learn something more from the var_off */ 4165 __update_reg_bounds(dst_reg); 4166 break; 4167 case BPF_LSH: 4168 if (umax_val >= insn_bitness) { 4169 /* Shifts greater than 31 or 63 are undefined. 4170 * This includes shifts by a negative number. 4171 */ 4172 mark_reg_unknown(env, regs, insn->dst_reg); 4173 break; 4174 } 4175 /* We lose all sign bit information (except what we can pick 4176 * up from var_off) 4177 */ 4178 dst_reg->smin_value = S64_MIN; 4179 dst_reg->smax_value = S64_MAX; 4180 /* If we might shift our top bit out, then we know nothing */ 4181 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 4182 dst_reg->umin_value = 0; 4183 dst_reg->umax_value = U64_MAX; 4184 } else { 4185 dst_reg->umin_value <<= umin_val; 4186 dst_reg->umax_value <<= umax_val; 4187 } 4188 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 4189 /* We may learn something more from the var_off */ 4190 __update_reg_bounds(dst_reg); 4191 break; 4192 case BPF_RSH: 4193 if (umax_val >= insn_bitness) { 4194 /* Shifts greater than 31 or 63 are undefined. 4195 * This includes shifts by a negative number. 4196 */ 4197 mark_reg_unknown(env, regs, insn->dst_reg); 4198 break; 4199 } 4200 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 4201 * be negative, then either: 4202 * 1) src_reg might be zero, so the sign bit of the result is 4203 * unknown, so we lose our signed bounds 4204 * 2) it's known negative, thus the unsigned bounds capture the 4205 * signed bounds 4206 * 3) the signed bounds cross zero, so they tell us nothing 4207 * about the result 4208 * If the value in dst_reg is known nonnegative, then again the 4209 * unsigned bounts capture the signed bounds. 4210 * Thus, in all cases it suffices to blow away our signed bounds 4211 * and rely on inferring new ones from the unsigned bounds and 4212 * var_off of the result. 4213 */ 4214 dst_reg->smin_value = S64_MIN; 4215 dst_reg->smax_value = S64_MAX; 4216 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 4217 dst_reg->umin_value >>= umax_val; 4218 dst_reg->umax_value >>= umin_val; 4219 /* We may learn something more from the var_off */ 4220 __update_reg_bounds(dst_reg); 4221 break; 4222 case BPF_ARSH: 4223 if (umax_val >= insn_bitness) { 4224 /* Shifts greater than 31 or 63 are undefined. 4225 * This includes shifts by a negative number. 4226 */ 4227 mark_reg_unknown(env, regs, insn->dst_reg); 4228 break; 4229 } 4230 4231 /* Upon reaching here, src_known is true and 4232 * umax_val is equal to umin_val. 4233 */ 4234 dst_reg->smin_value >>= umin_val; 4235 dst_reg->smax_value >>= umin_val; 4236 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val); 4237 4238 /* blow away the dst_reg umin_value/umax_value and rely on 4239 * dst_reg var_off to refine the result. 4240 */ 4241 dst_reg->umin_value = 0; 4242 dst_reg->umax_value = U64_MAX; 4243 __update_reg_bounds(dst_reg); 4244 break; 4245 default: 4246 mark_reg_unknown(env, regs, insn->dst_reg); 4247 break; 4248 } 4249 4250 if (BPF_CLASS(insn->code) != BPF_ALU64) { 4251 /* 32-bit ALU ops are (32,32)->32 */ 4252 coerce_reg_to_size(dst_reg, 4); 4253 } 4254 4255 __reg_deduce_bounds(dst_reg); 4256 __reg_bound_offset(dst_reg); 4257 return 0; 4258 } 4259 4260 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 4261 * and var_off. 4262 */ 4263 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 4264 struct bpf_insn *insn) 4265 { 4266 struct bpf_verifier_state *vstate = env->cur_state; 4267 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4268 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 4269 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 4270 u8 opcode = BPF_OP(insn->code); 4271 4272 dst_reg = ®s[insn->dst_reg]; 4273 src_reg = NULL; 4274 if (dst_reg->type != SCALAR_VALUE) 4275 ptr_reg = dst_reg; 4276 if (BPF_SRC(insn->code) == BPF_X) { 4277 src_reg = ®s[insn->src_reg]; 4278 if (src_reg->type != SCALAR_VALUE) { 4279 if (dst_reg->type != SCALAR_VALUE) { 4280 /* Combining two pointers by any ALU op yields 4281 * an arbitrary scalar. Disallow all math except 4282 * pointer subtraction 4283 */ 4284 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 4285 mark_reg_unknown(env, regs, insn->dst_reg); 4286 return 0; 4287 } 4288 verbose(env, "R%d pointer %s pointer prohibited\n", 4289 insn->dst_reg, 4290 bpf_alu_string[opcode >> 4]); 4291 return -EACCES; 4292 } else { 4293 /* scalar += pointer 4294 * This is legal, but we have to reverse our 4295 * src/dest handling in computing the range 4296 */ 4297 return adjust_ptr_min_max_vals(env, insn, 4298 src_reg, dst_reg); 4299 } 4300 } else if (ptr_reg) { 4301 /* pointer += scalar */ 4302 return adjust_ptr_min_max_vals(env, insn, 4303 dst_reg, src_reg); 4304 } 4305 } else { 4306 /* Pretend the src is a reg with a known value, since we only 4307 * need to be able to read from this state. 4308 */ 4309 off_reg.type = SCALAR_VALUE; 4310 __mark_reg_known(&off_reg, insn->imm); 4311 src_reg = &off_reg; 4312 if (ptr_reg) /* pointer += K */ 4313 return adjust_ptr_min_max_vals(env, insn, 4314 ptr_reg, src_reg); 4315 } 4316 4317 /* Got here implies adding two SCALAR_VALUEs */ 4318 if (WARN_ON_ONCE(ptr_reg)) { 4319 print_verifier_state(env, state); 4320 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 4321 return -EINVAL; 4322 } 4323 if (WARN_ON(!src_reg)) { 4324 print_verifier_state(env, state); 4325 verbose(env, "verifier internal error: no src_reg\n"); 4326 return -EINVAL; 4327 } 4328 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 4329 } 4330 4331 /* check validity of 32-bit and 64-bit arithmetic operations */ 4332 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 4333 { 4334 struct bpf_reg_state *regs = cur_regs(env); 4335 u8 opcode = BPF_OP(insn->code); 4336 int err; 4337 4338 if (opcode == BPF_END || opcode == BPF_NEG) { 4339 if (opcode == BPF_NEG) { 4340 if (BPF_SRC(insn->code) != 0 || 4341 insn->src_reg != BPF_REG_0 || 4342 insn->off != 0 || insn->imm != 0) { 4343 verbose(env, "BPF_NEG uses reserved fields\n"); 4344 return -EINVAL; 4345 } 4346 } else { 4347 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 4348 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 4349 BPF_CLASS(insn->code) == BPF_ALU64) { 4350 verbose(env, "BPF_END uses reserved fields\n"); 4351 return -EINVAL; 4352 } 4353 } 4354 4355 /* check src operand */ 4356 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 4357 if (err) 4358 return err; 4359 4360 if (is_pointer_value(env, insn->dst_reg)) { 4361 verbose(env, "R%d pointer arithmetic prohibited\n", 4362 insn->dst_reg); 4363 return -EACCES; 4364 } 4365 4366 /* check dest operand */ 4367 err = check_reg_arg(env, insn->dst_reg, DST_OP); 4368 if (err) 4369 return err; 4370 4371 } else if (opcode == BPF_MOV) { 4372 4373 if (BPF_SRC(insn->code) == BPF_X) { 4374 if (insn->imm != 0 || insn->off != 0) { 4375 verbose(env, "BPF_MOV uses reserved fields\n"); 4376 return -EINVAL; 4377 } 4378 4379 /* check src operand */ 4380 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4381 if (err) 4382 return err; 4383 } else { 4384 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 4385 verbose(env, "BPF_MOV uses reserved fields\n"); 4386 return -EINVAL; 4387 } 4388 } 4389 4390 /* check dest operand, mark as required later */ 4391 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 4392 if (err) 4393 return err; 4394 4395 if (BPF_SRC(insn->code) == BPF_X) { 4396 struct bpf_reg_state *src_reg = regs + insn->src_reg; 4397 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 4398 4399 if (BPF_CLASS(insn->code) == BPF_ALU64) { 4400 /* case: R1 = R2 4401 * copy register state to dest reg 4402 */ 4403 *dst_reg = *src_reg; 4404 dst_reg->live |= REG_LIVE_WRITTEN; 4405 dst_reg->subreg_def = DEF_NOT_SUBREG; 4406 } else { 4407 /* R1 = (u32) R2 */ 4408 if (is_pointer_value(env, insn->src_reg)) { 4409 verbose(env, 4410 "R%d partial copy of pointer\n", 4411 insn->src_reg); 4412 return -EACCES; 4413 } else if (src_reg->type == SCALAR_VALUE) { 4414 *dst_reg = *src_reg; 4415 dst_reg->live |= REG_LIVE_WRITTEN; 4416 dst_reg->subreg_def = env->insn_idx + 1; 4417 } else { 4418 mark_reg_unknown(env, regs, 4419 insn->dst_reg); 4420 } 4421 coerce_reg_to_size(dst_reg, 4); 4422 } 4423 } else { 4424 /* case: R = imm 4425 * remember the value we stored into this reg 4426 */ 4427 /* clear any state __mark_reg_known doesn't set */ 4428 mark_reg_unknown(env, regs, insn->dst_reg); 4429 regs[insn->dst_reg].type = SCALAR_VALUE; 4430 if (BPF_CLASS(insn->code) == BPF_ALU64) { 4431 __mark_reg_known(regs + insn->dst_reg, 4432 insn->imm); 4433 } else { 4434 __mark_reg_known(regs + insn->dst_reg, 4435 (u32)insn->imm); 4436 } 4437 } 4438 4439 } else if (opcode > BPF_END) { 4440 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 4441 return -EINVAL; 4442 4443 } else { /* all other ALU ops: and, sub, xor, add, ... */ 4444 4445 if (BPF_SRC(insn->code) == BPF_X) { 4446 if (insn->imm != 0 || insn->off != 0) { 4447 verbose(env, "BPF_ALU uses reserved fields\n"); 4448 return -EINVAL; 4449 } 4450 /* check src1 operand */ 4451 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4452 if (err) 4453 return err; 4454 } else { 4455 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 4456 verbose(env, "BPF_ALU uses reserved fields\n"); 4457 return -EINVAL; 4458 } 4459 } 4460 4461 /* check src2 operand */ 4462 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 4463 if (err) 4464 return err; 4465 4466 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 4467 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 4468 verbose(env, "div by zero\n"); 4469 return -EINVAL; 4470 } 4471 4472 if ((opcode == BPF_LSH || opcode == BPF_RSH || 4473 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 4474 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 4475 4476 if (insn->imm < 0 || insn->imm >= size) { 4477 verbose(env, "invalid shift %d\n", insn->imm); 4478 return -EINVAL; 4479 } 4480 } 4481 4482 /* check dest operand */ 4483 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 4484 if (err) 4485 return err; 4486 4487 return adjust_reg_min_max_vals(env, insn); 4488 } 4489 4490 return 0; 4491 } 4492 4493 static void __find_good_pkt_pointers(struct bpf_func_state *state, 4494 struct bpf_reg_state *dst_reg, 4495 enum bpf_reg_type type, u16 new_range) 4496 { 4497 struct bpf_reg_state *reg; 4498 int i; 4499 4500 for (i = 0; i < MAX_BPF_REG; i++) { 4501 reg = &state->regs[i]; 4502 if (reg->type == type && reg->id == dst_reg->id) 4503 /* keep the maximum range already checked */ 4504 reg->range = max(reg->range, new_range); 4505 } 4506 4507 bpf_for_each_spilled_reg(i, state, reg) { 4508 if (!reg) 4509 continue; 4510 if (reg->type == type && reg->id == dst_reg->id) 4511 reg->range = max(reg->range, new_range); 4512 } 4513 } 4514 4515 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 4516 struct bpf_reg_state *dst_reg, 4517 enum bpf_reg_type type, 4518 bool range_right_open) 4519 { 4520 u16 new_range; 4521 int i; 4522 4523 if (dst_reg->off < 0 || 4524 (dst_reg->off == 0 && range_right_open)) 4525 /* This doesn't give us any range */ 4526 return; 4527 4528 if (dst_reg->umax_value > MAX_PACKET_OFF || 4529 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 4530 /* Risk of overflow. For instance, ptr + (1<<63) may be less 4531 * than pkt_end, but that's because it's also less than pkt. 4532 */ 4533 return; 4534 4535 new_range = dst_reg->off; 4536 if (range_right_open) 4537 new_range--; 4538 4539 /* Examples for register markings: 4540 * 4541 * pkt_data in dst register: 4542 * 4543 * r2 = r3; 4544 * r2 += 8; 4545 * if (r2 > pkt_end) goto <handle exception> 4546 * <access okay> 4547 * 4548 * r2 = r3; 4549 * r2 += 8; 4550 * if (r2 < pkt_end) goto <access okay> 4551 * <handle exception> 4552 * 4553 * Where: 4554 * r2 == dst_reg, pkt_end == src_reg 4555 * r2=pkt(id=n,off=8,r=0) 4556 * r3=pkt(id=n,off=0,r=0) 4557 * 4558 * pkt_data in src register: 4559 * 4560 * r2 = r3; 4561 * r2 += 8; 4562 * if (pkt_end >= r2) goto <access okay> 4563 * <handle exception> 4564 * 4565 * r2 = r3; 4566 * r2 += 8; 4567 * if (pkt_end <= r2) goto <handle exception> 4568 * <access okay> 4569 * 4570 * Where: 4571 * pkt_end == dst_reg, r2 == src_reg 4572 * r2=pkt(id=n,off=8,r=0) 4573 * r3=pkt(id=n,off=0,r=0) 4574 * 4575 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 4576 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 4577 * and [r3, r3 + 8-1) respectively is safe to access depending on 4578 * the check. 4579 */ 4580 4581 /* If our ids match, then we must have the same max_value. And we 4582 * don't care about the other reg's fixed offset, since if it's too big 4583 * the range won't allow anything. 4584 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 4585 */ 4586 for (i = 0; i <= vstate->curframe; i++) 4587 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type, 4588 new_range); 4589 } 4590 4591 /* compute branch direction of the expression "if (reg opcode val) goto target;" 4592 * and return: 4593 * 1 - branch will be taken and "goto target" will be executed 4594 * 0 - branch will not be taken and fall-through to next insn 4595 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value range [0,10] 4596 */ 4597 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, 4598 bool is_jmp32) 4599 { 4600 struct bpf_reg_state reg_lo; 4601 s64 sval; 4602 4603 if (__is_pointer_value(false, reg)) 4604 return -1; 4605 4606 if (is_jmp32) { 4607 reg_lo = *reg; 4608 reg = ®_lo; 4609 /* For JMP32, only low 32 bits are compared, coerce_reg_to_size 4610 * could truncate high bits and update umin/umax according to 4611 * information of low bits. 4612 */ 4613 coerce_reg_to_size(reg, 4); 4614 /* smin/smax need special handling. For example, after coerce, 4615 * if smin_value is 0x00000000ffffffffLL, the value is -1 when 4616 * used as operand to JMP32. It is a negative number from s32's 4617 * point of view, while it is a positive number when seen as 4618 * s64. The smin/smax are kept as s64, therefore, when used with 4619 * JMP32, they need to be transformed into s32, then sign 4620 * extended back to s64. 4621 * 4622 * Also, smin/smax were copied from umin/umax. If umin/umax has 4623 * different sign bit, then min/max relationship doesn't 4624 * maintain after casting into s32, for this case, set smin/smax 4625 * to safest range. 4626 */ 4627 if ((reg->umax_value ^ reg->umin_value) & 4628 (1ULL << 31)) { 4629 reg->smin_value = S32_MIN; 4630 reg->smax_value = S32_MAX; 4631 } 4632 reg->smin_value = (s64)(s32)reg->smin_value; 4633 reg->smax_value = (s64)(s32)reg->smax_value; 4634 4635 val = (u32)val; 4636 sval = (s64)(s32)val; 4637 } else { 4638 sval = (s64)val; 4639 } 4640 4641 switch (opcode) { 4642 case BPF_JEQ: 4643 if (tnum_is_const(reg->var_off)) 4644 return !!tnum_equals_const(reg->var_off, val); 4645 break; 4646 case BPF_JNE: 4647 if (tnum_is_const(reg->var_off)) 4648 return !tnum_equals_const(reg->var_off, val); 4649 break; 4650 case BPF_JSET: 4651 if ((~reg->var_off.mask & reg->var_off.value) & val) 4652 return 1; 4653 if (!((reg->var_off.mask | reg->var_off.value) & val)) 4654 return 0; 4655 break; 4656 case BPF_JGT: 4657 if (reg->umin_value > val) 4658 return 1; 4659 else if (reg->umax_value <= val) 4660 return 0; 4661 break; 4662 case BPF_JSGT: 4663 if (reg->smin_value > sval) 4664 return 1; 4665 else if (reg->smax_value < sval) 4666 return 0; 4667 break; 4668 case BPF_JLT: 4669 if (reg->umax_value < val) 4670 return 1; 4671 else if (reg->umin_value >= val) 4672 return 0; 4673 break; 4674 case BPF_JSLT: 4675 if (reg->smax_value < sval) 4676 return 1; 4677 else if (reg->smin_value >= sval) 4678 return 0; 4679 break; 4680 case BPF_JGE: 4681 if (reg->umin_value >= val) 4682 return 1; 4683 else if (reg->umax_value < val) 4684 return 0; 4685 break; 4686 case BPF_JSGE: 4687 if (reg->smin_value >= sval) 4688 return 1; 4689 else if (reg->smax_value < sval) 4690 return 0; 4691 break; 4692 case BPF_JLE: 4693 if (reg->umax_value <= val) 4694 return 1; 4695 else if (reg->umin_value > val) 4696 return 0; 4697 break; 4698 case BPF_JSLE: 4699 if (reg->smax_value <= sval) 4700 return 1; 4701 else if (reg->smin_value > sval) 4702 return 0; 4703 break; 4704 } 4705 4706 return -1; 4707 } 4708 4709 /* Generate min value of the high 32-bit from TNUM info. */ 4710 static u64 gen_hi_min(struct tnum var) 4711 { 4712 return var.value & ~0xffffffffULL; 4713 } 4714 4715 /* Generate max value of the high 32-bit from TNUM info. */ 4716 static u64 gen_hi_max(struct tnum var) 4717 { 4718 return (var.value | var.mask) & ~0xffffffffULL; 4719 } 4720 4721 /* Return true if VAL is compared with a s64 sign extended from s32, and they 4722 * are with the same signedness. 4723 */ 4724 static bool cmp_val_with_extended_s64(s64 sval, struct bpf_reg_state *reg) 4725 { 4726 return ((s32)sval >= 0 && 4727 reg->smin_value >= 0 && reg->smax_value <= S32_MAX) || 4728 ((s32)sval < 0 && 4729 reg->smax_value <= 0 && reg->smin_value >= S32_MIN); 4730 } 4731 4732 /* Adjusts the register min/max values in the case that the dst_reg is the 4733 * variable register that we are working on, and src_reg is a constant or we're 4734 * simply doing a BPF_K check. 4735 * In JEQ/JNE cases we also adjust the var_off values. 4736 */ 4737 static void reg_set_min_max(struct bpf_reg_state *true_reg, 4738 struct bpf_reg_state *false_reg, u64 val, 4739 u8 opcode, bool is_jmp32) 4740 { 4741 s64 sval; 4742 4743 /* If the dst_reg is a pointer, we can't learn anything about its 4744 * variable offset from the compare (unless src_reg were a pointer into 4745 * the same object, but we don't bother with that. 4746 * Since false_reg and true_reg have the same type by construction, we 4747 * only need to check one of them for pointerness. 4748 */ 4749 if (__is_pointer_value(false, false_reg)) 4750 return; 4751 4752 val = is_jmp32 ? (u32)val : val; 4753 sval = is_jmp32 ? (s64)(s32)val : (s64)val; 4754 4755 switch (opcode) { 4756 case BPF_JEQ: 4757 case BPF_JNE: 4758 { 4759 struct bpf_reg_state *reg = 4760 opcode == BPF_JEQ ? true_reg : false_reg; 4761 4762 /* For BPF_JEQ, if this is false we know nothing Jon Snow, but 4763 * if it is true we know the value for sure. Likewise for 4764 * BPF_JNE. 4765 */ 4766 if (is_jmp32) { 4767 u64 old_v = reg->var_off.value; 4768 u64 hi_mask = ~0xffffffffULL; 4769 4770 reg->var_off.value = (old_v & hi_mask) | val; 4771 reg->var_off.mask &= hi_mask; 4772 } else { 4773 __mark_reg_known(reg, val); 4774 } 4775 break; 4776 } 4777 case BPF_JSET: 4778 false_reg->var_off = tnum_and(false_reg->var_off, 4779 tnum_const(~val)); 4780 if (is_power_of_2(val)) 4781 true_reg->var_off = tnum_or(true_reg->var_off, 4782 tnum_const(val)); 4783 break; 4784 case BPF_JGE: 4785 case BPF_JGT: 4786 { 4787 u64 false_umax = opcode == BPF_JGT ? val : val - 1; 4788 u64 true_umin = opcode == BPF_JGT ? val + 1 : val; 4789 4790 if (is_jmp32) { 4791 false_umax += gen_hi_max(false_reg->var_off); 4792 true_umin += gen_hi_min(true_reg->var_off); 4793 } 4794 false_reg->umax_value = min(false_reg->umax_value, false_umax); 4795 true_reg->umin_value = max(true_reg->umin_value, true_umin); 4796 break; 4797 } 4798 case BPF_JSGE: 4799 case BPF_JSGT: 4800 { 4801 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; 4802 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; 4803 4804 /* If the full s64 was not sign-extended from s32 then don't 4805 * deduct further info. 4806 */ 4807 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg)) 4808 break; 4809 false_reg->smax_value = min(false_reg->smax_value, false_smax); 4810 true_reg->smin_value = max(true_reg->smin_value, true_smin); 4811 break; 4812 } 4813 case BPF_JLE: 4814 case BPF_JLT: 4815 { 4816 u64 false_umin = opcode == BPF_JLT ? val : val + 1; 4817 u64 true_umax = opcode == BPF_JLT ? val - 1 : val; 4818 4819 if (is_jmp32) { 4820 false_umin += gen_hi_min(false_reg->var_off); 4821 true_umax += gen_hi_max(true_reg->var_off); 4822 } 4823 false_reg->umin_value = max(false_reg->umin_value, false_umin); 4824 true_reg->umax_value = min(true_reg->umax_value, true_umax); 4825 break; 4826 } 4827 case BPF_JSLE: 4828 case BPF_JSLT: 4829 { 4830 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; 4831 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; 4832 4833 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg)) 4834 break; 4835 false_reg->smin_value = max(false_reg->smin_value, false_smin); 4836 true_reg->smax_value = min(true_reg->smax_value, true_smax); 4837 break; 4838 } 4839 default: 4840 break; 4841 } 4842 4843 __reg_deduce_bounds(false_reg); 4844 __reg_deduce_bounds(true_reg); 4845 /* We might have learned some bits from the bounds. */ 4846 __reg_bound_offset(false_reg); 4847 __reg_bound_offset(true_reg); 4848 /* Intersecting with the old var_off might have improved our bounds 4849 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 4850 * then new var_off is (0; 0x7f...fc) which improves our umax. 4851 */ 4852 __update_reg_bounds(false_reg); 4853 __update_reg_bounds(true_reg); 4854 } 4855 4856 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 4857 * the variable reg. 4858 */ 4859 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 4860 struct bpf_reg_state *false_reg, u64 val, 4861 u8 opcode, bool is_jmp32) 4862 { 4863 s64 sval; 4864 4865 if (__is_pointer_value(false, false_reg)) 4866 return; 4867 4868 val = is_jmp32 ? (u32)val : val; 4869 sval = is_jmp32 ? (s64)(s32)val : (s64)val; 4870 4871 switch (opcode) { 4872 case BPF_JEQ: 4873 case BPF_JNE: 4874 { 4875 struct bpf_reg_state *reg = 4876 opcode == BPF_JEQ ? true_reg : false_reg; 4877 4878 if (is_jmp32) { 4879 u64 old_v = reg->var_off.value; 4880 u64 hi_mask = ~0xffffffffULL; 4881 4882 reg->var_off.value = (old_v & hi_mask) | val; 4883 reg->var_off.mask &= hi_mask; 4884 } else { 4885 __mark_reg_known(reg, val); 4886 } 4887 break; 4888 } 4889 case BPF_JSET: 4890 false_reg->var_off = tnum_and(false_reg->var_off, 4891 tnum_const(~val)); 4892 if (is_power_of_2(val)) 4893 true_reg->var_off = tnum_or(true_reg->var_off, 4894 tnum_const(val)); 4895 break; 4896 case BPF_JGE: 4897 case BPF_JGT: 4898 { 4899 u64 false_umin = opcode == BPF_JGT ? val : val + 1; 4900 u64 true_umax = opcode == BPF_JGT ? val - 1 : val; 4901 4902 if (is_jmp32) { 4903 false_umin += gen_hi_min(false_reg->var_off); 4904 true_umax += gen_hi_max(true_reg->var_off); 4905 } 4906 false_reg->umin_value = max(false_reg->umin_value, false_umin); 4907 true_reg->umax_value = min(true_reg->umax_value, true_umax); 4908 break; 4909 } 4910 case BPF_JSGE: 4911 case BPF_JSGT: 4912 { 4913 s64 false_smin = opcode == BPF_JSGT ? sval : sval + 1; 4914 s64 true_smax = opcode == BPF_JSGT ? sval - 1 : sval; 4915 4916 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg)) 4917 break; 4918 false_reg->smin_value = max(false_reg->smin_value, false_smin); 4919 true_reg->smax_value = min(true_reg->smax_value, true_smax); 4920 break; 4921 } 4922 case BPF_JLE: 4923 case BPF_JLT: 4924 { 4925 u64 false_umax = opcode == BPF_JLT ? val : val - 1; 4926 u64 true_umin = opcode == BPF_JLT ? val + 1 : val; 4927 4928 if (is_jmp32) { 4929 false_umax += gen_hi_max(false_reg->var_off); 4930 true_umin += gen_hi_min(true_reg->var_off); 4931 } 4932 false_reg->umax_value = min(false_reg->umax_value, false_umax); 4933 true_reg->umin_value = max(true_reg->umin_value, true_umin); 4934 break; 4935 } 4936 case BPF_JSLE: 4937 case BPF_JSLT: 4938 { 4939 s64 false_smax = opcode == BPF_JSLT ? sval : sval - 1; 4940 s64 true_smin = opcode == BPF_JSLT ? sval + 1 : sval; 4941 4942 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg)) 4943 break; 4944 false_reg->smax_value = min(false_reg->smax_value, false_smax); 4945 true_reg->smin_value = max(true_reg->smin_value, true_smin); 4946 break; 4947 } 4948 default: 4949 break; 4950 } 4951 4952 __reg_deduce_bounds(false_reg); 4953 __reg_deduce_bounds(true_reg); 4954 /* We might have learned some bits from the bounds. */ 4955 __reg_bound_offset(false_reg); 4956 __reg_bound_offset(true_reg); 4957 /* Intersecting with the old var_off might have improved our bounds 4958 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 4959 * then new var_off is (0; 0x7f...fc) which improves our umax. 4960 */ 4961 __update_reg_bounds(false_reg); 4962 __update_reg_bounds(true_reg); 4963 } 4964 4965 /* Regs are known to be equal, so intersect their min/max/var_off */ 4966 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 4967 struct bpf_reg_state *dst_reg) 4968 { 4969 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 4970 dst_reg->umin_value); 4971 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 4972 dst_reg->umax_value); 4973 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 4974 dst_reg->smin_value); 4975 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 4976 dst_reg->smax_value); 4977 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 4978 dst_reg->var_off); 4979 /* We might have learned new bounds from the var_off. */ 4980 __update_reg_bounds(src_reg); 4981 __update_reg_bounds(dst_reg); 4982 /* We might have learned something about the sign bit. */ 4983 __reg_deduce_bounds(src_reg); 4984 __reg_deduce_bounds(dst_reg); 4985 /* We might have learned some bits from the bounds. */ 4986 __reg_bound_offset(src_reg); 4987 __reg_bound_offset(dst_reg); 4988 /* Intersecting with the old var_off might have improved our bounds 4989 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 4990 * then new var_off is (0; 0x7f...fc) which improves our umax. 4991 */ 4992 __update_reg_bounds(src_reg); 4993 __update_reg_bounds(dst_reg); 4994 } 4995 4996 static void reg_combine_min_max(struct bpf_reg_state *true_src, 4997 struct bpf_reg_state *true_dst, 4998 struct bpf_reg_state *false_src, 4999 struct bpf_reg_state *false_dst, 5000 u8 opcode) 5001 { 5002 switch (opcode) { 5003 case BPF_JEQ: 5004 __reg_combine_min_max(true_src, true_dst); 5005 break; 5006 case BPF_JNE: 5007 __reg_combine_min_max(false_src, false_dst); 5008 break; 5009 } 5010 } 5011 5012 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 5013 struct bpf_reg_state *reg, u32 id, 5014 bool is_null) 5015 { 5016 if (reg_type_may_be_null(reg->type) && reg->id == id) { 5017 /* Old offset (both fixed and variable parts) should 5018 * have been known-zero, because we don't allow pointer 5019 * arithmetic on pointers that might be NULL. 5020 */ 5021 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || 5022 !tnum_equals_const(reg->var_off, 0) || 5023 reg->off)) { 5024 __mark_reg_known_zero(reg); 5025 reg->off = 0; 5026 } 5027 if (is_null) { 5028 reg->type = SCALAR_VALUE; 5029 } else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) { 5030 if (reg->map_ptr->inner_map_meta) { 5031 reg->type = CONST_PTR_TO_MAP; 5032 reg->map_ptr = reg->map_ptr->inner_map_meta; 5033 } else { 5034 reg->type = PTR_TO_MAP_VALUE; 5035 } 5036 } else if (reg->type == PTR_TO_SOCKET_OR_NULL) { 5037 reg->type = PTR_TO_SOCKET; 5038 } else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) { 5039 reg->type = PTR_TO_SOCK_COMMON; 5040 } else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) { 5041 reg->type = PTR_TO_TCP_SOCK; 5042 } 5043 if (is_null) { 5044 /* We don't need id and ref_obj_id from this point 5045 * onwards anymore, thus we should better reset it, 5046 * so that state pruning has chances to take effect. 5047 */ 5048 reg->id = 0; 5049 reg->ref_obj_id = 0; 5050 } else if (!reg_may_point_to_spin_lock(reg)) { 5051 /* For not-NULL ptr, reg->ref_obj_id will be reset 5052 * in release_reg_references(). 5053 * 5054 * reg->id is still used by spin_lock ptr. Other 5055 * than spin_lock ptr type, reg->id can be reset. 5056 */ 5057 reg->id = 0; 5058 } 5059 } 5060 } 5061 5062 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id, 5063 bool is_null) 5064 { 5065 struct bpf_reg_state *reg; 5066 int i; 5067 5068 for (i = 0; i < MAX_BPF_REG; i++) 5069 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null); 5070 5071 bpf_for_each_spilled_reg(i, state, reg) { 5072 if (!reg) 5073 continue; 5074 mark_ptr_or_null_reg(state, reg, id, is_null); 5075 } 5076 } 5077 5078 /* The logic is similar to find_good_pkt_pointers(), both could eventually 5079 * be folded together at some point. 5080 */ 5081 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 5082 bool is_null) 5083 { 5084 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5085 struct bpf_reg_state *regs = state->regs; 5086 u32 ref_obj_id = regs[regno].ref_obj_id; 5087 u32 id = regs[regno].id; 5088 int i; 5089 5090 if (ref_obj_id && ref_obj_id == id && is_null) 5091 /* regs[regno] is in the " == NULL" branch. 5092 * No one could have freed the reference state before 5093 * doing the NULL check. 5094 */ 5095 WARN_ON_ONCE(release_reference_state(state, id)); 5096 5097 for (i = 0; i <= vstate->curframe; i++) 5098 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null); 5099 } 5100 5101 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 5102 struct bpf_reg_state *dst_reg, 5103 struct bpf_reg_state *src_reg, 5104 struct bpf_verifier_state *this_branch, 5105 struct bpf_verifier_state *other_branch) 5106 { 5107 if (BPF_SRC(insn->code) != BPF_X) 5108 return false; 5109 5110 /* Pointers are always 64-bit. */ 5111 if (BPF_CLASS(insn->code) == BPF_JMP32) 5112 return false; 5113 5114 switch (BPF_OP(insn->code)) { 5115 case BPF_JGT: 5116 if ((dst_reg->type == PTR_TO_PACKET && 5117 src_reg->type == PTR_TO_PACKET_END) || 5118 (dst_reg->type == PTR_TO_PACKET_META && 5119 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 5120 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 5121 find_good_pkt_pointers(this_branch, dst_reg, 5122 dst_reg->type, false); 5123 } else if ((dst_reg->type == PTR_TO_PACKET_END && 5124 src_reg->type == PTR_TO_PACKET) || 5125 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 5126 src_reg->type == PTR_TO_PACKET_META)) { 5127 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 5128 find_good_pkt_pointers(other_branch, src_reg, 5129 src_reg->type, true); 5130 } else { 5131 return false; 5132 } 5133 break; 5134 case BPF_JLT: 5135 if ((dst_reg->type == PTR_TO_PACKET && 5136 src_reg->type == PTR_TO_PACKET_END) || 5137 (dst_reg->type == PTR_TO_PACKET_META && 5138 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 5139 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 5140 find_good_pkt_pointers(other_branch, dst_reg, 5141 dst_reg->type, true); 5142 } else if ((dst_reg->type == PTR_TO_PACKET_END && 5143 src_reg->type == PTR_TO_PACKET) || 5144 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 5145 src_reg->type == PTR_TO_PACKET_META)) { 5146 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 5147 find_good_pkt_pointers(this_branch, src_reg, 5148 src_reg->type, false); 5149 } else { 5150 return false; 5151 } 5152 break; 5153 case BPF_JGE: 5154 if ((dst_reg->type == PTR_TO_PACKET && 5155 src_reg->type == PTR_TO_PACKET_END) || 5156 (dst_reg->type == PTR_TO_PACKET_META && 5157 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 5158 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 5159 find_good_pkt_pointers(this_branch, dst_reg, 5160 dst_reg->type, true); 5161 } else if ((dst_reg->type == PTR_TO_PACKET_END && 5162 src_reg->type == PTR_TO_PACKET) || 5163 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 5164 src_reg->type == PTR_TO_PACKET_META)) { 5165 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 5166 find_good_pkt_pointers(other_branch, src_reg, 5167 src_reg->type, false); 5168 } else { 5169 return false; 5170 } 5171 break; 5172 case BPF_JLE: 5173 if ((dst_reg->type == PTR_TO_PACKET && 5174 src_reg->type == PTR_TO_PACKET_END) || 5175 (dst_reg->type == PTR_TO_PACKET_META && 5176 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 5177 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 5178 find_good_pkt_pointers(other_branch, dst_reg, 5179 dst_reg->type, false); 5180 } else if ((dst_reg->type == PTR_TO_PACKET_END && 5181 src_reg->type == PTR_TO_PACKET) || 5182 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 5183 src_reg->type == PTR_TO_PACKET_META)) { 5184 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 5185 find_good_pkt_pointers(this_branch, src_reg, 5186 src_reg->type, true); 5187 } else { 5188 return false; 5189 } 5190 break; 5191 default: 5192 return false; 5193 } 5194 5195 return true; 5196 } 5197 5198 static int check_cond_jmp_op(struct bpf_verifier_env *env, 5199 struct bpf_insn *insn, int *insn_idx) 5200 { 5201 struct bpf_verifier_state *this_branch = env->cur_state; 5202 struct bpf_verifier_state *other_branch; 5203 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 5204 struct bpf_reg_state *dst_reg, *other_branch_regs; 5205 u8 opcode = BPF_OP(insn->code); 5206 bool is_jmp32; 5207 int err; 5208 5209 /* Only conditional jumps are expected to reach here. */ 5210 if (opcode == BPF_JA || opcode > BPF_JSLE) { 5211 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 5212 return -EINVAL; 5213 } 5214 5215 if (BPF_SRC(insn->code) == BPF_X) { 5216 if (insn->imm != 0) { 5217 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 5218 return -EINVAL; 5219 } 5220 5221 /* check src1 operand */ 5222 err = check_reg_arg(env, insn->src_reg, SRC_OP); 5223 if (err) 5224 return err; 5225 5226 if (is_pointer_value(env, insn->src_reg)) { 5227 verbose(env, "R%d pointer comparison prohibited\n", 5228 insn->src_reg); 5229 return -EACCES; 5230 } 5231 } else { 5232 if (insn->src_reg != BPF_REG_0) { 5233 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 5234 return -EINVAL; 5235 } 5236 } 5237 5238 /* check src2 operand */ 5239 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 5240 if (err) 5241 return err; 5242 5243 dst_reg = ®s[insn->dst_reg]; 5244 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 5245 5246 if (BPF_SRC(insn->code) == BPF_K) { 5247 int pred = is_branch_taken(dst_reg, insn->imm, opcode, 5248 is_jmp32); 5249 5250 if (pred == 1) { 5251 /* only follow the goto, ignore fall-through */ 5252 *insn_idx += insn->off; 5253 return 0; 5254 } else if (pred == 0) { 5255 /* only follow fall-through branch, since 5256 * that's where the program will go 5257 */ 5258 return 0; 5259 } 5260 } 5261 5262 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 5263 false); 5264 if (!other_branch) 5265 return -EFAULT; 5266 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 5267 5268 /* detect if we are comparing against a constant value so we can adjust 5269 * our min/max values for our dst register. 5270 * this is only legit if both are scalars (or pointers to the same 5271 * object, I suppose, but we don't support that right now), because 5272 * otherwise the different base pointers mean the offsets aren't 5273 * comparable. 5274 */ 5275 if (BPF_SRC(insn->code) == BPF_X) { 5276 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 5277 struct bpf_reg_state lo_reg0 = *dst_reg; 5278 struct bpf_reg_state lo_reg1 = *src_reg; 5279 struct bpf_reg_state *src_lo, *dst_lo; 5280 5281 dst_lo = &lo_reg0; 5282 src_lo = &lo_reg1; 5283 coerce_reg_to_size(dst_lo, 4); 5284 coerce_reg_to_size(src_lo, 4); 5285 5286 if (dst_reg->type == SCALAR_VALUE && 5287 src_reg->type == SCALAR_VALUE) { 5288 if (tnum_is_const(src_reg->var_off) || 5289 (is_jmp32 && tnum_is_const(src_lo->var_off))) 5290 reg_set_min_max(&other_branch_regs[insn->dst_reg], 5291 dst_reg, 5292 is_jmp32 5293 ? src_lo->var_off.value 5294 : src_reg->var_off.value, 5295 opcode, is_jmp32); 5296 else if (tnum_is_const(dst_reg->var_off) || 5297 (is_jmp32 && tnum_is_const(dst_lo->var_off))) 5298 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 5299 src_reg, 5300 is_jmp32 5301 ? dst_lo->var_off.value 5302 : dst_reg->var_off.value, 5303 opcode, is_jmp32); 5304 else if (!is_jmp32 && 5305 (opcode == BPF_JEQ || opcode == BPF_JNE)) 5306 /* Comparing for equality, we can combine knowledge */ 5307 reg_combine_min_max(&other_branch_regs[insn->src_reg], 5308 &other_branch_regs[insn->dst_reg], 5309 src_reg, dst_reg, opcode); 5310 } 5311 } else if (dst_reg->type == SCALAR_VALUE) { 5312 reg_set_min_max(&other_branch_regs[insn->dst_reg], 5313 dst_reg, insn->imm, opcode, is_jmp32); 5314 } 5315 5316 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 5317 * NOTE: these optimizations below are related with pointer comparison 5318 * which will never be JMP32. 5319 */ 5320 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 5321 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 5322 reg_type_may_be_null(dst_reg->type)) { 5323 /* Mark all identical registers in each branch as either 5324 * safe or unknown depending R == 0 or R != 0 conditional. 5325 */ 5326 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 5327 opcode == BPF_JNE); 5328 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 5329 opcode == BPF_JEQ); 5330 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 5331 this_branch, other_branch) && 5332 is_pointer_value(env, insn->dst_reg)) { 5333 verbose(env, "R%d pointer comparison prohibited\n", 5334 insn->dst_reg); 5335 return -EACCES; 5336 } 5337 if (env->log.level & BPF_LOG_LEVEL) 5338 print_verifier_state(env, this_branch->frame[this_branch->curframe]); 5339 return 0; 5340 } 5341 5342 /* verify BPF_LD_IMM64 instruction */ 5343 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 5344 { 5345 struct bpf_insn_aux_data *aux = cur_aux(env); 5346 struct bpf_reg_state *regs = cur_regs(env); 5347 struct bpf_map *map; 5348 int err; 5349 5350 if (BPF_SIZE(insn->code) != BPF_DW) { 5351 verbose(env, "invalid BPF_LD_IMM insn\n"); 5352 return -EINVAL; 5353 } 5354 if (insn->off != 0) { 5355 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 5356 return -EINVAL; 5357 } 5358 5359 err = check_reg_arg(env, insn->dst_reg, DST_OP); 5360 if (err) 5361 return err; 5362 5363 if (insn->src_reg == 0) { 5364 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 5365 5366 regs[insn->dst_reg].type = SCALAR_VALUE; 5367 __mark_reg_known(®s[insn->dst_reg], imm); 5368 return 0; 5369 } 5370 5371 map = env->used_maps[aux->map_index]; 5372 mark_reg_known_zero(env, regs, insn->dst_reg); 5373 regs[insn->dst_reg].map_ptr = map; 5374 5375 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) { 5376 regs[insn->dst_reg].type = PTR_TO_MAP_VALUE; 5377 regs[insn->dst_reg].off = aux->map_off; 5378 if (map_value_has_spin_lock(map)) 5379 regs[insn->dst_reg].id = ++env->id_gen; 5380 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD) { 5381 regs[insn->dst_reg].type = CONST_PTR_TO_MAP; 5382 } else { 5383 verbose(env, "bpf verifier is misconfigured\n"); 5384 return -EINVAL; 5385 } 5386 5387 return 0; 5388 } 5389 5390 static bool may_access_skb(enum bpf_prog_type type) 5391 { 5392 switch (type) { 5393 case BPF_PROG_TYPE_SOCKET_FILTER: 5394 case BPF_PROG_TYPE_SCHED_CLS: 5395 case BPF_PROG_TYPE_SCHED_ACT: 5396 return true; 5397 default: 5398 return false; 5399 } 5400 } 5401 5402 /* verify safety of LD_ABS|LD_IND instructions: 5403 * - they can only appear in the programs where ctx == skb 5404 * - since they are wrappers of function calls, they scratch R1-R5 registers, 5405 * preserve R6-R9, and store return value into R0 5406 * 5407 * Implicit input: 5408 * ctx == skb == R6 == CTX 5409 * 5410 * Explicit input: 5411 * SRC == any register 5412 * IMM == 32-bit immediate 5413 * 5414 * Output: 5415 * R0 - 8/16/32-bit skb data converted to cpu endianness 5416 */ 5417 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 5418 { 5419 struct bpf_reg_state *regs = cur_regs(env); 5420 u8 mode = BPF_MODE(insn->code); 5421 int i, err; 5422 5423 if (!may_access_skb(env->prog->type)) { 5424 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 5425 return -EINVAL; 5426 } 5427 5428 if (!env->ops->gen_ld_abs) { 5429 verbose(env, "bpf verifier is misconfigured\n"); 5430 return -EINVAL; 5431 } 5432 5433 if (env->subprog_cnt > 1) { 5434 /* when program has LD_ABS insn JITs and interpreter assume 5435 * that r1 == ctx == skb which is not the case for callees 5436 * that can have arbitrary arguments. It's problematic 5437 * for main prog as well since JITs would need to analyze 5438 * all functions in order to make proper register save/restore 5439 * decisions in the main prog. Hence disallow LD_ABS with calls 5440 */ 5441 verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n"); 5442 return -EINVAL; 5443 } 5444 5445 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 5446 BPF_SIZE(insn->code) == BPF_DW || 5447 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 5448 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 5449 return -EINVAL; 5450 } 5451 5452 /* check whether implicit source operand (register R6) is readable */ 5453 err = check_reg_arg(env, BPF_REG_6, SRC_OP); 5454 if (err) 5455 return err; 5456 5457 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 5458 * gen_ld_abs() may terminate the program at runtime, leading to 5459 * reference leak. 5460 */ 5461 err = check_reference_leak(env); 5462 if (err) { 5463 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 5464 return err; 5465 } 5466 5467 if (env->cur_state->active_spin_lock) { 5468 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 5469 return -EINVAL; 5470 } 5471 5472 if (regs[BPF_REG_6].type != PTR_TO_CTX) { 5473 verbose(env, 5474 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 5475 return -EINVAL; 5476 } 5477 5478 if (mode == BPF_IND) { 5479 /* check explicit source operand */ 5480 err = check_reg_arg(env, insn->src_reg, SRC_OP); 5481 if (err) 5482 return err; 5483 } 5484 5485 /* reset caller saved regs to unreadable */ 5486 for (i = 0; i < CALLER_SAVED_REGS; i++) { 5487 mark_reg_not_init(env, regs, caller_saved[i]); 5488 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 5489 } 5490 5491 /* mark destination R0 register as readable, since it contains 5492 * the value fetched from the packet. 5493 * Already marked as written above. 5494 */ 5495 mark_reg_unknown(env, regs, BPF_REG_0); 5496 /* ld_abs load up to 32-bit skb data. */ 5497 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 5498 return 0; 5499 } 5500 5501 static int check_return_code(struct bpf_verifier_env *env) 5502 { 5503 struct tnum enforce_attach_type_range = tnum_unknown; 5504 struct bpf_reg_state *reg; 5505 struct tnum range = tnum_range(0, 1); 5506 5507 switch (env->prog->type) { 5508 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 5509 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 5510 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG) 5511 range = tnum_range(1, 1); 5512 case BPF_PROG_TYPE_CGROUP_SKB: 5513 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 5514 range = tnum_range(0, 3); 5515 enforce_attach_type_range = tnum_range(2, 3); 5516 } 5517 case BPF_PROG_TYPE_CGROUP_SOCK: 5518 case BPF_PROG_TYPE_SOCK_OPS: 5519 case BPF_PROG_TYPE_CGROUP_DEVICE: 5520 case BPF_PROG_TYPE_CGROUP_SYSCTL: 5521 break; 5522 default: 5523 return 0; 5524 } 5525 5526 reg = cur_regs(env) + BPF_REG_0; 5527 if (reg->type != SCALAR_VALUE) { 5528 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 5529 reg_type_str[reg->type]); 5530 return -EINVAL; 5531 } 5532 5533 if (!tnum_in(range, reg->var_off)) { 5534 char tn_buf[48]; 5535 5536 verbose(env, "At program exit the register R0 "); 5537 if (!tnum_is_unknown(reg->var_off)) { 5538 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5539 verbose(env, "has value %s", tn_buf); 5540 } else { 5541 verbose(env, "has unknown scalar value"); 5542 } 5543 tnum_strn(tn_buf, sizeof(tn_buf), range); 5544 verbose(env, " should have been in %s\n", tn_buf); 5545 return -EINVAL; 5546 } 5547 5548 if (!tnum_is_unknown(enforce_attach_type_range) && 5549 tnum_in(enforce_attach_type_range, reg->var_off)) 5550 env->prog->enforce_expected_attach_type = 1; 5551 return 0; 5552 } 5553 5554 /* non-recursive DFS pseudo code 5555 * 1 procedure DFS-iterative(G,v): 5556 * 2 label v as discovered 5557 * 3 let S be a stack 5558 * 4 S.push(v) 5559 * 5 while S is not empty 5560 * 6 t <- S.pop() 5561 * 7 if t is what we're looking for: 5562 * 8 return t 5563 * 9 for all edges e in G.adjacentEdges(t) do 5564 * 10 if edge e is already labelled 5565 * 11 continue with the next edge 5566 * 12 w <- G.adjacentVertex(t,e) 5567 * 13 if vertex w is not discovered and not explored 5568 * 14 label e as tree-edge 5569 * 15 label w as discovered 5570 * 16 S.push(w) 5571 * 17 continue at 5 5572 * 18 else if vertex w is discovered 5573 * 19 label e as back-edge 5574 * 20 else 5575 * 21 // vertex w is explored 5576 * 22 label e as forward- or cross-edge 5577 * 23 label t as explored 5578 * 24 S.pop() 5579 * 5580 * convention: 5581 * 0x10 - discovered 5582 * 0x11 - discovered and fall-through edge labelled 5583 * 0x12 - discovered and fall-through and branch edges labelled 5584 * 0x20 - explored 5585 */ 5586 5587 enum { 5588 DISCOVERED = 0x10, 5589 EXPLORED = 0x20, 5590 FALLTHROUGH = 1, 5591 BRANCH = 2, 5592 }; 5593 5594 static u32 state_htab_size(struct bpf_verifier_env *env) 5595 { 5596 return env->prog->len; 5597 } 5598 5599 static struct bpf_verifier_state_list **explored_state( 5600 struct bpf_verifier_env *env, 5601 int idx) 5602 { 5603 struct bpf_verifier_state *cur = env->cur_state; 5604 struct bpf_func_state *state = cur->frame[cur->curframe]; 5605 5606 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 5607 } 5608 5609 static void init_explored_state(struct bpf_verifier_env *env, int idx) 5610 { 5611 env->insn_aux_data[idx].prune_point = true; 5612 } 5613 5614 /* t, w, e - match pseudo-code above: 5615 * t - index of current instruction 5616 * w - next instruction 5617 * e - edge 5618 */ 5619 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env) 5620 { 5621 int *insn_stack = env->cfg.insn_stack; 5622 int *insn_state = env->cfg.insn_state; 5623 5624 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 5625 return 0; 5626 5627 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 5628 return 0; 5629 5630 if (w < 0 || w >= env->prog->len) { 5631 verbose_linfo(env, t, "%d: ", t); 5632 verbose(env, "jump out of range from insn %d to %d\n", t, w); 5633 return -EINVAL; 5634 } 5635 5636 if (e == BRANCH) 5637 /* mark branch target for state pruning */ 5638 init_explored_state(env, w); 5639 5640 if (insn_state[w] == 0) { 5641 /* tree-edge */ 5642 insn_state[t] = DISCOVERED | e; 5643 insn_state[w] = DISCOVERED; 5644 if (env->cfg.cur_stack >= env->prog->len) 5645 return -E2BIG; 5646 insn_stack[env->cfg.cur_stack++] = w; 5647 return 1; 5648 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 5649 verbose_linfo(env, t, "%d: ", t); 5650 verbose_linfo(env, w, "%d: ", w); 5651 verbose(env, "back-edge from insn %d to %d\n", t, w); 5652 return -EINVAL; 5653 } else if (insn_state[w] == EXPLORED) { 5654 /* forward- or cross-edge */ 5655 insn_state[t] = DISCOVERED | e; 5656 } else { 5657 verbose(env, "insn state internal bug\n"); 5658 return -EFAULT; 5659 } 5660 return 0; 5661 } 5662 5663 /* non-recursive depth-first-search to detect loops in BPF program 5664 * loop == back-edge in directed graph 5665 */ 5666 static int check_cfg(struct bpf_verifier_env *env) 5667 { 5668 struct bpf_insn *insns = env->prog->insnsi; 5669 int insn_cnt = env->prog->len; 5670 int *insn_stack, *insn_state; 5671 int ret = 0; 5672 int i, t; 5673 5674 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 5675 if (!insn_state) 5676 return -ENOMEM; 5677 5678 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 5679 if (!insn_stack) { 5680 kvfree(insn_state); 5681 return -ENOMEM; 5682 } 5683 5684 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 5685 insn_stack[0] = 0; /* 0 is the first instruction */ 5686 env->cfg.cur_stack = 1; 5687 5688 peek_stack: 5689 if (env->cfg.cur_stack == 0) 5690 goto check_state; 5691 t = insn_stack[env->cfg.cur_stack - 1]; 5692 5693 if (BPF_CLASS(insns[t].code) == BPF_JMP || 5694 BPF_CLASS(insns[t].code) == BPF_JMP32) { 5695 u8 opcode = BPF_OP(insns[t].code); 5696 5697 if (opcode == BPF_EXIT) { 5698 goto mark_explored; 5699 } else if (opcode == BPF_CALL) { 5700 ret = push_insn(t, t + 1, FALLTHROUGH, env); 5701 if (ret == 1) 5702 goto peek_stack; 5703 else if (ret < 0) 5704 goto err_free; 5705 if (t + 1 < insn_cnt) 5706 init_explored_state(env, t + 1); 5707 if (insns[t].src_reg == BPF_PSEUDO_CALL) { 5708 init_explored_state(env, t); 5709 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env); 5710 if (ret == 1) 5711 goto peek_stack; 5712 else if (ret < 0) 5713 goto err_free; 5714 } 5715 } else if (opcode == BPF_JA) { 5716 if (BPF_SRC(insns[t].code) != BPF_K) { 5717 ret = -EINVAL; 5718 goto err_free; 5719 } 5720 /* unconditional jump with single edge */ 5721 ret = push_insn(t, t + insns[t].off + 1, 5722 FALLTHROUGH, env); 5723 if (ret == 1) 5724 goto peek_stack; 5725 else if (ret < 0) 5726 goto err_free; 5727 /* tell verifier to check for equivalent states 5728 * after every call and jump 5729 */ 5730 if (t + 1 < insn_cnt) 5731 init_explored_state(env, t + 1); 5732 } else { 5733 /* conditional jump with two edges */ 5734 init_explored_state(env, t); 5735 ret = push_insn(t, t + 1, FALLTHROUGH, env); 5736 if (ret == 1) 5737 goto peek_stack; 5738 else if (ret < 0) 5739 goto err_free; 5740 5741 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env); 5742 if (ret == 1) 5743 goto peek_stack; 5744 else if (ret < 0) 5745 goto err_free; 5746 } 5747 } else { 5748 /* all other non-branch instructions with single 5749 * fall-through edge 5750 */ 5751 ret = push_insn(t, t + 1, FALLTHROUGH, env); 5752 if (ret == 1) 5753 goto peek_stack; 5754 else if (ret < 0) 5755 goto err_free; 5756 } 5757 5758 mark_explored: 5759 insn_state[t] = EXPLORED; 5760 if (env->cfg.cur_stack-- <= 0) { 5761 verbose(env, "pop stack internal bug\n"); 5762 ret = -EFAULT; 5763 goto err_free; 5764 } 5765 goto peek_stack; 5766 5767 check_state: 5768 for (i = 0; i < insn_cnt; i++) { 5769 if (insn_state[i] != EXPLORED) { 5770 verbose(env, "unreachable insn %d\n", i); 5771 ret = -EINVAL; 5772 goto err_free; 5773 } 5774 } 5775 ret = 0; /* cfg looks good */ 5776 5777 err_free: 5778 kvfree(insn_state); 5779 kvfree(insn_stack); 5780 env->cfg.insn_state = env->cfg.insn_stack = NULL; 5781 return ret; 5782 } 5783 5784 /* The minimum supported BTF func info size */ 5785 #define MIN_BPF_FUNCINFO_SIZE 8 5786 #define MAX_FUNCINFO_REC_SIZE 252 5787 5788 static int check_btf_func(struct bpf_verifier_env *env, 5789 const union bpf_attr *attr, 5790 union bpf_attr __user *uattr) 5791 { 5792 u32 i, nfuncs, urec_size, min_size; 5793 u32 krec_size = sizeof(struct bpf_func_info); 5794 struct bpf_func_info *krecord; 5795 const struct btf_type *type; 5796 struct bpf_prog *prog; 5797 const struct btf *btf; 5798 void __user *urecord; 5799 u32 prev_offset = 0; 5800 int ret = 0; 5801 5802 nfuncs = attr->func_info_cnt; 5803 if (!nfuncs) 5804 return 0; 5805 5806 if (nfuncs != env->subprog_cnt) { 5807 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 5808 return -EINVAL; 5809 } 5810 5811 urec_size = attr->func_info_rec_size; 5812 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 5813 urec_size > MAX_FUNCINFO_REC_SIZE || 5814 urec_size % sizeof(u32)) { 5815 verbose(env, "invalid func info rec size %u\n", urec_size); 5816 return -EINVAL; 5817 } 5818 5819 prog = env->prog; 5820 btf = prog->aux->btf; 5821 5822 urecord = u64_to_user_ptr(attr->func_info); 5823 min_size = min_t(u32, krec_size, urec_size); 5824 5825 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 5826 if (!krecord) 5827 return -ENOMEM; 5828 5829 for (i = 0; i < nfuncs; i++) { 5830 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 5831 if (ret) { 5832 if (ret == -E2BIG) { 5833 verbose(env, "nonzero tailing record in func info"); 5834 /* set the size kernel expects so loader can zero 5835 * out the rest of the record. 5836 */ 5837 if (put_user(min_size, &uattr->func_info_rec_size)) 5838 ret = -EFAULT; 5839 } 5840 goto err_free; 5841 } 5842 5843 if (copy_from_user(&krecord[i], urecord, min_size)) { 5844 ret = -EFAULT; 5845 goto err_free; 5846 } 5847 5848 /* check insn_off */ 5849 if (i == 0) { 5850 if (krecord[i].insn_off) { 5851 verbose(env, 5852 "nonzero insn_off %u for the first func info record", 5853 krecord[i].insn_off); 5854 ret = -EINVAL; 5855 goto err_free; 5856 } 5857 } else if (krecord[i].insn_off <= prev_offset) { 5858 verbose(env, 5859 "same or smaller insn offset (%u) than previous func info record (%u)", 5860 krecord[i].insn_off, prev_offset); 5861 ret = -EINVAL; 5862 goto err_free; 5863 } 5864 5865 if (env->subprog_info[i].start != krecord[i].insn_off) { 5866 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 5867 ret = -EINVAL; 5868 goto err_free; 5869 } 5870 5871 /* check type_id */ 5872 type = btf_type_by_id(btf, krecord[i].type_id); 5873 if (!type || BTF_INFO_KIND(type->info) != BTF_KIND_FUNC) { 5874 verbose(env, "invalid type id %d in func info", 5875 krecord[i].type_id); 5876 ret = -EINVAL; 5877 goto err_free; 5878 } 5879 5880 prev_offset = krecord[i].insn_off; 5881 urecord += urec_size; 5882 } 5883 5884 prog->aux->func_info = krecord; 5885 prog->aux->func_info_cnt = nfuncs; 5886 return 0; 5887 5888 err_free: 5889 kvfree(krecord); 5890 return ret; 5891 } 5892 5893 static void adjust_btf_func(struct bpf_verifier_env *env) 5894 { 5895 int i; 5896 5897 if (!env->prog->aux->func_info) 5898 return; 5899 5900 for (i = 0; i < env->subprog_cnt; i++) 5901 env->prog->aux->func_info[i].insn_off = env->subprog_info[i].start; 5902 } 5903 5904 #define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \ 5905 sizeof(((struct bpf_line_info *)(0))->line_col)) 5906 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 5907 5908 static int check_btf_line(struct bpf_verifier_env *env, 5909 const union bpf_attr *attr, 5910 union bpf_attr __user *uattr) 5911 { 5912 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 5913 struct bpf_subprog_info *sub; 5914 struct bpf_line_info *linfo; 5915 struct bpf_prog *prog; 5916 const struct btf *btf; 5917 void __user *ulinfo; 5918 int err; 5919 5920 nr_linfo = attr->line_info_cnt; 5921 if (!nr_linfo) 5922 return 0; 5923 5924 rec_size = attr->line_info_rec_size; 5925 if (rec_size < MIN_BPF_LINEINFO_SIZE || 5926 rec_size > MAX_LINEINFO_REC_SIZE || 5927 rec_size & (sizeof(u32) - 1)) 5928 return -EINVAL; 5929 5930 /* Need to zero it in case the userspace may 5931 * pass in a smaller bpf_line_info object. 5932 */ 5933 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 5934 GFP_KERNEL | __GFP_NOWARN); 5935 if (!linfo) 5936 return -ENOMEM; 5937 5938 prog = env->prog; 5939 btf = prog->aux->btf; 5940 5941 s = 0; 5942 sub = env->subprog_info; 5943 ulinfo = u64_to_user_ptr(attr->line_info); 5944 expected_size = sizeof(struct bpf_line_info); 5945 ncopy = min_t(u32, expected_size, rec_size); 5946 for (i = 0; i < nr_linfo; i++) { 5947 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 5948 if (err) { 5949 if (err == -E2BIG) { 5950 verbose(env, "nonzero tailing record in line_info"); 5951 if (put_user(expected_size, 5952 &uattr->line_info_rec_size)) 5953 err = -EFAULT; 5954 } 5955 goto err_free; 5956 } 5957 5958 if (copy_from_user(&linfo[i], ulinfo, ncopy)) { 5959 err = -EFAULT; 5960 goto err_free; 5961 } 5962 5963 /* 5964 * Check insn_off to ensure 5965 * 1) strictly increasing AND 5966 * 2) bounded by prog->len 5967 * 5968 * The linfo[0].insn_off == 0 check logically falls into 5969 * the later "missing bpf_line_info for func..." case 5970 * because the first linfo[0].insn_off must be the 5971 * first sub also and the first sub must have 5972 * subprog_info[0].start == 0. 5973 */ 5974 if ((i && linfo[i].insn_off <= prev_offset) || 5975 linfo[i].insn_off >= prog->len) { 5976 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 5977 i, linfo[i].insn_off, prev_offset, 5978 prog->len); 5979 err = -EINVAL; 5980 goto err_free; 5981 } 5982 5983 if (!prog->insnsi[linfo[i].insn_off].code) { 5984 verbose(env, 5985 "Invalid insn code at line_info[%u].insn_off\n", 5986 i); 5987 err = -EINVAL; 5988 goto err_free; 5989 } 5990 5991 if (!btf_name_by_offset(btf, linfo[i].line_off) || 5992 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 5993 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 5994 err = -EINVAL; 5995 goto err_free; 5996 } 5997 5998 if (s != env->subprog_cnt) { 5999 if (linfo[i].insn_off == sub[s].start) { 6000 sub[s].linfo_idx = i; 6001 s++; 6002 } else if (sub[s].start < linfo[i].insn_off) { 6003 verbose(env, "missing bpf_line_info for func#%u\n", s); 6004 err = -EINVAL; 6005 goto err_free; 6006 } 6007 } 6008 6009 prev_offset = linfo[i].insn_off; 6010 ulinfo += rec_size; 6011 } 6012 6013 if (s != env->subprog_cnt) { 6014 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 6015 env->subprog_cnt - s, s); 6016 err = -EINVAL; 6017 goto err_free; 6018 } 6019 6020 prog->aux->linfo = linfo; 6021 prog->aux->nr_linfo = nr_linfo; 6022 6023 return 0; 6024 6025 err_free: 6026 kvfree(linfo); 6027 return err; 6028 } 6029 6030 static int check_btf_info(struct bpf_verifier_env *env, 6031 const union bpf_attr *attr, 6032 union bpf_attr __user *uattr) 6033 { 6034 struct btf *btf; 6035 int err; 6036 6037 if (!attr->func_info_cnt && !attr->line_info_cnt) 6038 return 0; 6039 6040 btf = btf_get_by_fd(attr->prog_btf_fd); 6041 if (IS_ERR(btf)) 6042 return PTR_ERR(btf); 6043 env->prog->aux->btf = btf; 6044 6045 err = check_btf_func(env, attr, uattr); 6046 if (err) 6047 return err; 6048 6049 err = check_btf_line(env, attr, uattr); 6050 if (err) 6051 return err; 6052 6053 return 0; 6054 } 6055 6056 /* check %cur's range satisfies %old's */ 6057 static bool range_within(struct bpf_reg_state *old, 6058 struct bpf_reg_state *cur) 6059 { 6060 return old->umin_value <= cur->umin_value && 6061 old->umax_value >= cur->umax_value && 6062 old->smin_value <= cur->smin_value && 6063 old->smax_value >= cur->smax_value; 6064 } 6065 6066 /* Maximum number of register states that can exist at once */ 6067 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE) 6068 struct idpair { 6069 u32 old; 6070 u32 cur; 6071 }; 6072 6073 /* If in the old state two registers had the same id, then they need to have 6074 * the same id in the new state as well. But that id could be different from 6075 * the old state, so we need to track the mapping from old to new ids. 6076 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 6077 * regs with old id 5 must also have new id 9 for the new state to be safe. But 6078 * regs with a different old id could still have new id 9, we don't care about 6079 * that. 6080 * So we look through our idmap to see if this old id has been seen before. If 6081 * so, we require the new id to match; otherwise, we add the id pair to the map. 6082 */ 6083 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap) 6084 { 6085 unsigned int i; 6086 6087 for (i = 0; i < ID_MAP_SIZE; i++) { 6088 if (!idmap[i].old) { 6089 /* Reached an empty slot; haven't seen this id before */ 6090 idmap[i].old = old_id; 6091 idmap[i].cur = cur_id; 6092 return true; 6093 } 6094 if (idmap[i].old == old_id) 6095 return idmap[i].cur == cur_id; 6096 } 6097 /* We ran out of idmap slots, which should be impossible */ 6098 WARN_ON_ONCE(1); 6099 return false; 6100 } 6101 6102 static void clean_func_state(struct bpf_verifier_env *env, 6103 struct bpf_func_state *st) 6104 { 6105 enum bpf_reg_liveness live; 6106 int i, j; 6107 6108 for (i = 0; i < BPF_REG_FP; i++) { 6109 live = st->regs[i].live; 6110 /* liveness must not touch this register anymore */ 6111 st->regs[i].live |= REG_LIVE_DONE; 6112 if (!(live & REG_LIVE_READ)) 6113 /* since the register is unused, clear its state 6114 * to make further comparison simpler 6115 */ 6116 __mark_reg_not_init(&st->regs[i]); 6117 } 6118 6119 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 6120 live = st->stack[i].spilled_ptr.live; 6121 /* liveness must not touch this stack slot anymore */ 6122 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 6123 if (!(live & REG_LIVE_READ)) { 6124 __mark_reg_not_init(&st->stack[i].spilled_ptr); 6125 for (j = 0; j < BPF_REG_SIZE; j++) 6126 st->stack[i].slot_type[j] = STACK_INVALID; 6127 } 6128 } 6129 } 6130 6131 static void clean_verifier_state(struct bpf_verifier_env *env, 6132 struct bpf_verifier_state *st) 6133 { 6134 int i; 6135 6136 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 6137 /* all regs in this state in all frames were already marked */ 6138 return; 6139 6140 for (i = 0; i <= st->curframe; i++) 6141 clean_func_state(env, st->frame[i]); 6142 } 6143 6144 /* the parentage chains form a tree. 6145 * the verifier states are added to state lists at given insn and 6146 * pushed into state stack for future exploration. 6147 * when the verifier reaches bpf_exit insn some of the verifer states 6148 * stored in the state lists have their final liveness state already, 6149 * but a lot of states will get revised from liveness point of view when 6150 * the verifier explores other branches. 6151 * Example: 6152 * 1: r0 = 1 6153 * 2: if r1 == 100 goto pc+1 6154 * 3: r0 = 2 6155 * 4: exit 6156 * when the verifier reaches exit insn the register r0 in the state list of 6157 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 6158 * of insn 2 and goes exploring further. At the insn 4 it will walk the 6159 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 6160 * 6161 * Since the verifier pushes the branch states as it sees them while exploring 6162 * the program the condition of walking the branch instruction for the second 6163 * time means that all states below this branch were already explored and 6164 * their final liveness markes are already propagated. 6165 * Hence when the verifier completes the search of state list in is_state_visited() 6166 * we can call this clean_live_states() function to mark all liveness states 6167 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 6168 * will not be used. 6169 * This function also clears the registers and stack for states that !READ 6170 * to simplify state merging. 6171 * 6172 * Important note here that walking the same branch instruction in the callee 6173 * doesn't meant that the states are DONE. The verifier has to compare 6174 * the callsites 6175 */ 6176 static void clean_live_states(struct bpf_verifier_env *env, int insn, 6177 struct bpf_verifier_state *cur) 6178 { 6179 struct bpf_verifier_state_list *sl; 6180 int i; 6181 6182 sl = *explored_state(env, insn); 6183 while (sl) { 6184 if (sl->state.insn_idx != insn || 6185 sl->state.curframe != cur->curframe) 6186 goto next; 6187 for (i = 0; i <= cur->curframe; i++) 6188 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite) 6189 goto next; 6190 clean_verifier_state(env, &sl->state); 6191 next: 6192 sl = sl->next; 6193 } 6194 } 6195 6196 /* Returns true if (rold safe implies rcur safe) */ 6197 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur, 6198 struct idpair *idmap) 6199 { 6200 bool equal; 6201 6202 if (!(rold->live & REG_LIVE_READ)) 6203 /* explored state didn't use this */ 6204 return true; 6205 6206 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0; 6207 6208 if (rold->type == PTR_TO_STACK) 6209 /* two stack pointers are equal only if they're pointing to 6210 * the same stack frame, since fp-8 in foo != fp-8 in bar 6211 */ 6212 return equal && rold->frameno == rcur->frameno; 6213 6214 if (equal) 6215 return true; 6216 6217 if (rold->type == NOT_INIT) 6218 /* explored state can't have used this */ 6219 return true; 6220 if (rcur->type == NOT_INIT) 6221 return false; 6222 switch (rold->type) { 6223 case SCALAR_VALUE: 6224 if (rcur->type == SCALAR_VALUE) { 6225 /* new val must satisfy old val knowledge */ 6226 return range_within(rold, rcur) && 6227 tnum_in(rold->var_off, rcur->var_off); 6228 } else { 6229 /* We're trying to use a pointer in place of a scalar. 6230 * Even if the scalar was unbounded, this could lead to 6231 * pointer leaks because scalars are allowed to leak 6232 * while pointers are not. We could make this safe in 6233 * special cases if root is calling us, but it's 6234 * probably not worth the hassle. 6235 */ 6236 return false; 6237 } 6238 case PTR_TO_MAP_VALUE: 6239 /* If the new min/max/var_off satisfy the old ones and 6240 * everything else matches, we are OK. 6241 * 'id' is not compared, since it's only used for maps with 6242 * bpf_spin_lock inside map element and in such cases if 6243 * the rest of the prog is valid for one map element then 6244 * it's valid for all map elements regardless of the key 6245 * used in bpf_map_lookup() 6246 */ 6247 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 6248 range_within(rold, rcur) && 6249 tnum_in(rold->var_off, rcur->var_off); 6250 case PTR_TO_MAP_VALUE_OR_NULL: 6251 /* a PTR_TO_MAP_VALUE could be safe to use as a 6252 * PTR_TO_MAP_VALUE_OR_NULL into the same map. 6253 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- 6254 * checked, doing so could have affected others with the same 6255 * id, and we can't check for that because we lost the id when 6256 * we converted to a PTR_TO_MAP_VALUE. 6257 */ 6258 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL) 6259 return false; 6260 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) 6261 return false; 6262 /* Check our ids match any regs they're supposed to */ 6263 return check_ids(rold->id, rcur->id, idmap); 6264 case PTR_TO_PACKET_META: 6265 case PTR_TO_PACKET: 6266 if (rcur->type != rold->type) 6267 return false; 6268 /* We must have at least as much range as the old ptr 6269 * did, so that any accesses which were safe before are 6270 * still safe. This is true even if old range < old off, 6271 * since someone could have accessed through (ptr - k), or 6272 * even done ptr -= k in a register, to get a safe access. 6273 */ 6274 if (rold->range > rcur->range) 6275 return false; 6276 /* If the offsets don't match, we can't trust our alignment; 6277 * nor can we be sure that we won't fall out of range. 6278 */ 6279 if (rold->off != rcur->off) 6280 return false; 6281 /* id relations must be preserved */ 6282 if (rold->id && !check_ids(rold->id, rcur->id, idmap)) 6283 return false; 6284 /* new val must satisfy old val knowledge */ 6285 return range_within(rold, rcur) && 6286 tnum_in(rold->var_off, rcur->var_off); 6287 case PTR_TO_CTX: 6288 case CONST_PTR_TO_MAP: 6289 case PTR_TO_PACKET_END: 6290 case PTR_TO_FLOW_KEYS: 6291 case PTR_TO_SOCKET: 6292 case PTR_TO_SOCKET_OR_NULL: 6293 case PTR_TO_SOCK_COMMON: 6294 case PTR_TO_SOCK_COMMON_OR_NULL: 6295 case PTR_TO_TCP_SOCK: 6296 case PTR_TO_TCP_SOCK_OR_NULL: 6297 /* Only valid matches are exact, which memcmp() above 6298 * would have accepted 6299 */ 6300 default: 6301 /* Don't know what's going on, just say it's not safe */ 6302 return false; 6303 } 6304 6305 /* Shouldn't get here; if we do, say it's not safe */ 6306 WARN_ON_ONCE(1); 6307 return false; 6308 } 6309 6310 static bool stacksafe(struct bpf_func_state *old, 6311 struct bpf_func_state *cur, 6312 struct idpair *idmap) 6313 { 6314 int i, spi; 6315 6316 /* walk slots of the explored stack and ignore any additional 6317 * slots in the current stack, since explored(safe) state 6318 * didn't use them 6319 */ 6320 for (i = 0; i < old->allocated_stack; i++) { 6321 spi = i / BPF_REG_SIZE; 6322 6323 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) { 6324 i += BPF_REG_SIZE - 1; 6325 /* explored state didn't use this */ 6326 continue; 6327 } 6328 6329 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 6330 continue; 6331 6332 /* explored stack has more populated slots than current stack 6333 * and these slots were used 6334 */ 6335 if (i >= cur->allocated_stack) 6336 return false; 6337 6338 /* if old state was safe with misc data in the stack 6339 * it will be safe with zero-initialized stack. 6340 * The opposite is not true 6341 */ 6342 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 6343 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 6344 continue; 6345 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 6346 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 6347 /* Ex: old explored (safe) state has STACK_SPILL in 6348 * this stack slot, but current has has STACK_MISC -> 6349 * this verifier states are not equivalent, 6350 * return false to continue verification of this path 6351 */ 6352 return false; 6353 if (i % BPF_REG_SIZE) 6354 continue; 6355 if (old->stack[spi].slot_type[0] != STACK_SPILL) 6356 continue; 6357 if (!regsafe(&old->stack[spi].spilled_ptr, 6358 &cur->stack[spi].spilled_ptr, 6359 idmap)) 6360 /* when explored and current stack slot are both storing 6361 * spilled registers, check that stored pointers types 6362 * are the same as well. 6363 * Ex: explored safe path could have stored 6364 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 6365 * but current path has stored: 6366 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 6367 * such verifier states are not equivalent. 6368 * return false to continue verification of this path 6369 */ 6370 return false; 6371 } 6372 return true; 6373 } 6374 6375 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur) 6376 { 6377 if (old->acquired_refs != cur->acquired_refs) 6378 return false; 6379 return !memcmp(old->refs, cur->refs, 6380 sizeof(*old->refs) * old->acquired_refs); 6381 } 6382 6383 /* compare two verifier states 6384 * 6385 * all states stored in state_list are known to be valid, since 6386 * verifier reached 'bpf_exit' instruction through them 6387 * 6388 * this function is called when verifier exploring different branches of 6389 * execution popped from the state stack. If it sees an old state that has 6390 * more strict register state and more strict stack state then this execution 6391 * branch doesn't need to be explored further, since verifier already 6392 * concluded that more strict state leads to valid finish. 6393 * 6394 * Therefore two states are equivalent if register state is more conservative 6395 * and explored stack state is more conservative than the current one. 6396 * Example: 6397 * explored current 6398 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 6399 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 6400 * 6401 * In other words if current stack state (one being explored) has more 6402 * valid slots than old one that already passed validation, it means 6403 * the verifier can stop exploring and conclude that current state is valid too 6404 * 6405 * Similarly with registers. If explored state has register type as invalid 6406 * whereas register type in current state is meaningful, it means that 6407 * the current state will reach 'bpf_exit' instruction safely 6408 */ 6409 static bool func_states_equal(struct bpf_func_state *old, 6410 struct bpf_func_state *cur) 6411 { 6412 struct idpair *idmap; 6413 bool ret = false; 6414 int i; 6415 6416 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL); 6417 /* If we failed to allocate the idmap, just say it's not safe */ 6418 if (!idmap) 6419 return false; 6420 6421 for (i = 0; i < MAX_BPF_REG; i++) { 6422 if (!regsafe(&old->regs[i], &cur->regs[i], idmap)) 6423 goto out_free; 6424 } 6425 6426 if (!stacksafe(old, cur, idmap)) 6427 goto out_free; 6428 6429 if (!refsafe(old, cur)) 6430 goto out_free; 6431 ret = true; 6432 out_free: 6433 kfree(idmap); 6434 return ret; 6435 } 6436 6437 static bool states_equal(struct bpf_verifier_env *env, 6438 struct bpf_verifier_state *old, 6439 struct bpf_verifier_state *cur) 6440 { 6441 int i; 6442 6443 if (old->curframe != cur->curframe) 6444 return false; 6445 6446 /* Verification state from speculative execution simulation 6447 * must never prune a non-speculative execution one. 6448 */ 6449 if (old->speculative && !cur->speculative) 6450 return false; 6451 6452 if (old->active_spin_lock != cur->active_spin_lock) 6453 return false; 6454 6455 /* for states to be equal callsites have to be the same 6456 * and all frame states need to be equivalent 6457 */ 6458 for (i = 0; i <= old->curframe; i++) { 6459 if (old->frame[i]->callsite != cur->frame[i]->callsite) 6460 return false; 6461 if (!func_states_equal(old->frame[i], cur->frame[i])) 6462 return false; 6463 } 6464 return true; 6465 } 6466 6467 /* Return 0 if no propagation happened. Return negative error code if error 6468 * happened. Otherwise, return the propagated bit. 6469 */ 6470 static int propagate_liveness_reg(struct bpf_verifier_env *env, 6471 struct bpf_reg_state *reg, 6472 struct bpf_reg_state *parent_reg) 6473 { 6474 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 6475 u8 flag = reg->live & REG_LIVE_READ; 6476 int err; 6477 6478 /* When comes here, read flags of PARENT_REG or REG could be any of 6479 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 6480 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 6481 */ 6482 if (parent_flag == REG_LIVE_READ64 || 6483 /* Or if there is no read flag from REG. */ 6484 !flag || 6485 /* Or if the read flag from REG is the same as PARENT_REG. */ 6486 parent_flag == flag) 6487 return 0; 6488 6489 err = mark_reg_read(env, reg, parent_reg, flag); 6490 if (err) 6491 return err; 6492 6493 return flag; 6494 } 6495 6496 /* A write screens off any subsequent reads; but write marks come from the 6497 * straight-line code between a state and its parent. When we arrive at an 6498 * equivalent state (jump target or such) we didn't arrive by the straight-line 6499 * code, so read marks in the state must propagate to the parent regardless 6500 * of the state's write marks. That's what 'parent == state->parent' comparison 6501 * in mark_reg_read() is for. 6502 */ 6503 static int propagate_liveness(struct bpf_verifier_env *env, 6504 const struct bpf_verifier_state *vstate, 6505 struct bpf_verifier_state *vparent) 6506 { 6507 struct bpf_reg_state *state_reg, *parent_reg; 6508 struct bpf_func_state *state, *parent; 6509 int i, frame, err = 0; 6510 6511 if (vparent->curframe != vstate->curframe) { 6512 WARN(1, "propagate_live: parent frame %d current frame %d\n", 6513 vparent->curframe, vstate->curframe); 6514 return -EFAULT; 6515 } 6516 /* Propagate read liveness of registers... */ 6517 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 6518 for (frame = 0; frame <= vstate->curframe; frame++) { 6519 parent = vparent->frame[frame]; 6520 state = vstate->frame[frame]; 6521 parent_reg = parent->regs; 6522 state_reg = state->regs; 6523 /* We don't need to worry about FP liveness, it's read-only */ 6524 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 6525 err = propagate_liveness_reg(env, &state_reg[i], 6526 &parent_reg[i]); 6527 if (err < 0) 6528 return err; 6529 if (err == REG_LIVE_READ64) 6530 mark_insn_zext(env, &parent_reg[i]); 6531 } 6532 6533 /* Propagate stack slots. */ 6534 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 6535 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 6536 parent_reg = &parent->stack[i].spilled_ptr; 6537 state_reg = &state->stack[i].spilled_ptr; 6538 err = propagate_liveness_reg(env, state_reg, 6539 parent_reg); 6540 if (err < 0) 6541 return err; 6542 } 6543 } 6544 return 0; 6545 } 6546 6547 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 6548 { 6549 struct bpf_verifier_state_list *new_sl; 6550 struct bpf_verifier_state_list *sl, **pprev; 6551 struct bpf_verifier_state *cur = env->cur_state, *new; 6552 int i, j, err, states_cnt = 0; 6553 6554 if (!env->insn_aux_data[insn_idx].prune_point) 6555 /* this 'insn_idx' instruction wasn't marked, so we will not 6556 * be doing state search here 6557 */ 6558 return 0; 6559 6560 pprev = explored_state(env, insn_idx); 6561 sl = *pprev; 6562 6563 clean_live_states(env, insn_idx, cur); 6564 6565 while (sl) { 6566 states_cnt++; 6567 if (sl->state.insn_idx != insn_idx) 6568 goto next; 6569 if (states_equal(env, &sl->state, cur)) { 6570 sl->hit_cnt++; 6571 /* reached equivalent register/stack state, 6572 * prune the search. 6573 * Registers read by the continuation are read by us. 6574 * If we have any write marks in env->cur_state, they 6575 * will prevent corresponding reads in the continuation 6576 * from reaching our parent (an explored_state). Our 6577 * own state will get the read marks recorded, but 6578 * they'll be immediately forgotten as we're pruning 6579 * this state and will pop a new one. 6580 */ 6581 err = propagate_liveness(env, &sl->state, cur); 6582 if (err) 6583 return err; 6584 return 1; 6585 } 6586 sl->miss_cnt++; 6587 /* heuristic to determine whether this state is beneficial 6588 * to keep checking from state equivalence point of view. 6589 * Higher numbers increase max_states_per_insn and verification time, 6590 * but do not meaningfully decrease insn_processed. 6591 */ 6592 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) { 6593 /* the state is unlikely to be useful. Remove it to 6594 * speed up verification 6595 */ 6596 *pprev = sl->next; 6597 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) { 6598 free_verifier_state(&sl->state, false); 6599 kfree(sl); 6600 env->peak_states--; 6601 } else { 6602 /* cannot free this state, since parentage chain may 6603 * walk it later. Add it for free_list instead to 6604 * be freed at the end of verification 6605 */ 6606 sl->next = env->free_list; 6607 env->free_list = sl; 6608 } 6609 sl = *pprev; 6610 continue; 6611 } 6612 next: 6613 pprev = &sl->next; 6614 sl = *pprev; 6615 } 6616 6617 if (env->max_states_per_insn < states_cnt) 6618 env->max_states_per_insn = states_cnt; 6619 6620 if (!env->allow_ptr_leaks && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 6621 return 0; 6622 6623 /* there were no equivalent states, remember current one. 6624 * technically the current state is not proven to be safe yet, 6625 * but it will either reach outer most bpf_exit (which means it's safe) 6626 * or it will be rejected. Since there are no loops, we won't be 6627 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 6628 * again on the way to bpf_exit 6629 */ 6630 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 6631 if (!new_sl) 6632 return -ENOMEM; 6633 env->total_states++; 6634 env->peak_states++; 6635 6636 /* add new state to the head of linked list */ 6637 new = &new_sl->state; 6638 err = copy_verifier_state(new, cur); 6639 if (err) { 6640 free_verifier_state(new, false); 6641 kfree(new_sl); 6642 return err; 6643 } 6644 new->insn_idx = insn_idx; 6645 new_sl->next = *explored_state(env, insn_idx); 6646 *explored_state(env, insn_idx) = new_sl; 6647 /* connect new state to parentage chain. Current frame needs all 6648 * registers connected. Only r6 - r9 of the callers are alive (pushed 6649 * to the stack implicitly by JITs) so in callers' frames connect just 6650 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 6651 * the state of the call instruction (with WRITTEN set), and r0 comes 6652 * from callee with its full parentage chain, anyway. 6653 */ 6654 for (j = 0; j <= cur->curframe; j++) 6655 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 6656 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 6657 /* clear write marks in current state: the writes we did are not writes 6658 * our child did, so they don't screen off its reads from us. 6659 * (There are no read marks in current state, because reads always mark 6660 * their parent and current state never has children yet. Only 6661 * explored_states can get read marks.) 6662 */ 6663 for (i = 0; i < BPF_REG_FP; i++) 6664 cur->frame[cur->curframe]->regs[i].live = REG_LIVE_NONE; 6665 6666 /* all stack frames are accessible from callee, clear them all */ 6667 for (j = 0; j <= cur->curframe; j++) { 6668 struct bpf_func_state *frame = cur->frame[j]; 6669 struct bpf_func_state *newframe = new->frame[j]; 6670 6671 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 6672 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 6673 frame->stack[i].spilled_ptr.parent = 6674 &newframe->stack[i].spilled_ptr; 6675 } 6676 } 6677 return 0; 6678 } 6679 6680 /* Return true if it's OK to have the same insn return a different type. */ 6681 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 6682 { 6683 switch (type) { 6684 case PTR_TO_CTX: 6685 case PTR_TO_SOCKET: 6686 case PTR_TO_SOCKET_OR_NULL: 6687 case PTR_TO_SOCK_COMMON: 6688 case PTR_TO_SOCK_COMMON_OR_NULL: 6689 case PTR_TO_TCP_SOCK: 6690 case PTR_TO_TCP_SOCK_OR_NULL: 6691 return false; 6692 default: 6693 return true; 6694 } 6695 } 6696 6697 /* If an instruction was previously used with particular pointer types, then we 6698 * need to be careful to avoid cases such as the below, where it may be ok 6699 * for one branch accessing the pointer, but not ok for the other branch: 6700 * 6701 * R1 = sock_ptr 6702 * goto X; 6703 * ... 6704 * R1 = some_other_valid_ptr; 6705 * goto X; 6706 * ... 6707 * R2 = *(u32 *)(R1 + 0); 6708 */ 6709 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 6710 { 6711 return src != prev && (!reg_type_mismatch_ok(src) || 6712 !reg_type_mismatch_ok(prev)); 6713 } 6714 6715 static int do_check(struct bpf_verifier_env *env) 6716 { 6717 struct bpf_verifier_state *state; 6718 struct bpf_insn *insns = env->prog->insnsi; 6719 struct bpf_reg_state *regs; 6720 int insn_cnt = env->prog->len; 6721 bool do_print_state = false; 6722 6723 env->prev_linfo = NULL; 6724 6725 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 6726 if (!state) 6727 return -ENOMEM; 6728 state->curframe = 0; 6729 state->speculative = false; 6730 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 6731 if (!state->frame[0]) { 6732 kfree(state); 6733 return -ENOMEM; 6734 } 6735 env->cur_state = state; 6736 init_func_state(env, state->frame[0], 6737 BPF_MAIN_FUNC /* callsite */, 6738 0 /* frameno */, 6739 0 /* subprogno, zero == main subprog */); 6740 6741 for (;;) { 6742 struct bpf_insn *insn; 6743 u8 class; 6744 int err; 6745 6746 if (env->insn_idx >= insn_cnt) { 6747 verbose(env, "invalid insn idx %d insn_cnt %d\n", 6748 env->insn_idx, insn_cnt); 6749 return -EFAULT; 6750 } 6751 6752 insn = &insns[env->insn_idx]; 6753 class = BPF_CLASS(insn->code); 6754 6755 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 6756 verbose(env, 6757 "BPF program is too large. Processed %d insn\n", 6758 env->insn_processed); 6759 return -E2BIG; 6760 } 6761 6762 err = is_state_visited(env, env->insn_idx); 6763 if (err < 0) 6764 return err; 6765 if (err == 1) { 6766 /* found equivalent state, can prune the search */ 6767 if (env->log.level & BPF_LOG_LEVEL) { 6768 if (do_print_state) 6769 verbose(env, "\nfrom %d to %d%s: safe\n", 6770 env->prev_insn_idx, env->insn_idx, 6771 env->cur_state->speculative ? 6772 " (speculative execution)" : ""); 6773 else 6774 verbose(env, "%d: safe\n", env->insn_idx); 6775 } 6776 goto process_bpf_exit; 6777 } 6778 6779 if (signal_pending(current)) 6780 return -EAGAIN; 6781 6782 if (need_resched()) 6783 cond_resched(); 6784 6785 if (env->log.level & BPF_LOG_LEVEL2 || 6786 (env->log.level & BPF_LOG_LEVEL && do_print_state)) { 6787 if (env->log.level & BPF_LOG_LEVEL2) 6788 verbose(env, "%d:", env->insn_idx); 6789 else 6790 verbose(env, "\nfrom %d to %d%s:", 6791 env->prev_insn_idx, env->insn_idx, 6792 env->cur_state->speculative ? 6793 " (speculative execution)" : ""); 6794 print_verifier_state(env, state->frame[state->curframe]); 6795 do_print_state = false; 6796 } 6797 6798 if (env->log.level & BPF_LOG_LEVEL) { 6799 const struct bpf_insn_cbs cbs = { 6800 .cb_print = verbose, 6801 .private_data = env, 6802 }; 6803 6804 verbose_linfo(env, env->insn_idx, "; "); 6805 verbose(env, "%d: ", env->insn_idx); 6806 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 6807 } 6808 6809 if (bpf_prog_is_dev_bound(env->prog->aux)) { 6810 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 6811 env->prev_insn_idx); 6812 if (err) 6813 return err; 6814 } 6815 6816 regs = cur_regs(env); 6817 env->insn_aux_data[env->insn_idx].seen = true; 6818 6819 if (class == BPF_ALU || class == BPF_ALU64) { 6820 err = check_alu_op(env, insn); 6821 if (err) 6822 return err; 6823 6824 } else if (class == BPF_LDX) { 6825 enum bpf_reg_type *prev_src_type, src_reg_type; 6826 6827 /* check for reserved fields is already done */ 6828 6829 /* check src operand */ 6830 err = check_reg_arg(env, insn->src_reg, SRC_OP); 6831 if (err) 6832 return err; 6833 6834 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 6835 if (err) 6836 return err; 6837 6838 src_reg_type = regs[insn->src_reg].type; 6839 6840 /* check that memory (src_reg + off) is readable, 6841 * the state of dst_reg will be updated by this func 6842 */ 6843 err = check_mem_access(env, env->insn_idx, insn->src_reg, 6844 insn->off, BPF_SIZE(insn->code), 6845 BPF_READ, insn->dst_reg, false); 6846 if (err) 6847 return err; 6848 6849 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type; 6850 6851 if (*prev_src_type == NOT_INIT) { 6852 /* saw a valid insn 6853 * dst_reg = *(u32 *)(src_reg + off) 6854 * save type to validate intersecting paths 6855 */ 6856 *prev_src_type = src_reg_type; 6857 6858 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) { 6859 /* ABuser program is trying to use the same insn 6860 * dst_reg = *(u32*) (src_reg + off) 6861 * with different pointer types: 6862 * src_reg == ctx in one branch and 6863 * src_reg == stack|map in some other branch. 6864 * Reject it. 6865 */ 6866 verbose(env, "same insn cannot be used with different pointers\n"); 6867 return -EINVAL; 6868 } 6869 6870 } else if (class == BPF_STX) { 6871 enum bpf_reg_type *prev_dst_type, dst_reg_type; 6872 6873 if (BPF_MODE(insn->code) == BPF_XADD) { 6874 err = check_xadd(env, env->insn_idx, insn); 6875 if (err) 6876 return err; 6877 env->insn_idx++; 6878 continue; 6879 } 6880 6881 /* check src1 operand */ 6882 err = check_reg_arg(env, insn->src_reg, SRC_OP); 6883 if (err) 6884 return err; 6885 /* check src2 operand */ 6886 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 6887 if (err) 6888 return err; 6889 6890 dst_reg_type = regs[insn->dst_reg].type; 6891 6892 /* check that memory (dst_reg + off) is writeable */ 6893 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 6894 insn->off, BPF_SIZE(insn->code), 6895 BPF_WRITE, insn->src_reg, false); 6896 if (err) 6897 return err; 6898 6899 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type; 6900 6901 if (*prev_dst_type == NOT_INIT) { 6902 *prev_dst_type = dst_reg_type; 6903 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) { 6904 verbose(env, "same insn cannot be used with different pointers\n"); 6905 return -EINVAL; 6906 } 6907 6908 } else if (class == BPF_ST) { 6909 if (BPF_MODE(insn->code) != BPF_MEM || 6910 insn->src_reg != BPF_REG_0) { 6911 verbose(env, "BPF_ST uses reserved fields\n"); 6912 return -EINVAL; 6913 } 6914 /* check src operand */ 6915 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 6916 if (err) 6917 return err; 6918 6919 if (is_ctx_reg(env, insn->dst_reg)) { 6920 verbose(env, "BPF_ST stores into R%d %s is not allowed\n", 6921 insn->dst_reg, 6922 reg_type_str[reg_state(env, insn->dst_reg)->type]); 6923 return -EACCES; 6924 } 6925 6926 /* check that memory (dst_reg + off) is writeable */ 6927 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 6928 insn->off, BPF_SIZE(insn->code), 6929 BPF_WRITE, -1, false); 6930 if (err) 6931 return err; 6932 6933 } else if (class == BPF_JMP || class == BPF_JMP32) { 6934 u8 opcode = BPF_OP(insn->code); 6935 6936 if (opcode == BPF_CALL) { 6937 if (BPF_SRC(insn->code) != BPF_K || 6938 insn->off != 0 || 6939 (insn->src_reg != BPF_REG_0 && 6940 insn->src_reg != BPF_PSEUDO_CALL) || 6941 insn->dst_reg != BPF_REG_0 || 6942 class == BPF_JMP32) { 6943 verbose(env, "BPF_CALL uses reserved fields\n"); 6944 return -EINVAL; 6945 } 6946 6947 if (env->cur_state->active_spin_lock && 6948 (insn->src_reg == BPF_PSEUDO_CALL || 6949 insn->imm != BPF_FUNC_spin_unlock)) { 6950 verbose(env, "function calls are not allowed while holding a lock\n"); 6951 return -EINVAL; 6952 } 6953 if (insn->src_reg == BPF_PSEUDO_CALL) 6954 err = check_func_call(env, insn, &env->insn_idx); 6955 else 6956 err = check_helper_call(env, insn->imm, env->insn_idx); 6957 if (err) 6958 return err; 6959 6960 } else if (opcode == BPF_JA) { 6961 if (BPF_SRC(insn->code) != BPF_K || 6962 insn->imm != 0 || 6963 insn->src_reg != BPF_REG_0 || 6964 insn->dst_reg != BPF_REG_0 || 6965 class == BPF_JMP32) { 6966 verbose(env, "BPF_JA uses reserved fields\n"); 6967 return -EINVAL; 6968 } 6969 6970 env->insn_idx += insn->off + 1; 6971 continue; 6972 6973 } else if (opcode == BPF_EXIT) { 6974 if (BPF_SRC(insn->code) != BPF_K || 6975 insn->imm != 0 || 6976 insn->src_reg != BPF_REG_0 || 6977 insn->dst_reg != BPF_REG_0 || 6978 class == BPF_JMP32) { 6979 verbose(env, "BPF_EXIT uses reserved fields\n"); 6980 return -EINVAL; 6981 } 6982 6983 if (env->cur_state->active_spin_lock) { 6984 verbose(env, "bpf_spin_unlock is missing\n"); 6985 return -EINVAL; 6986 } 6987 6988 if (state->curframe) { 6989 /* exit from nested function */ 6990 env->prev_insn_idx = env->insn_idx; 6991 err = prepare_func_exit(env, &env->insn_idx); 6992 if (err) 6993 return err; 6994 do_print_state = true; 6995 continue; 6996 } 6997 6998 err = check_reference_leak(env); 6999 if (err) 7000 return err; 7001 7002 /* eBPF calling convetion is such that R0 is used 7003 * to return the value from eBPF program. 7004 * Make sure that it's readable at this time 7005 * of bpf_exit, which means that program wrote 7006 * something into it earlier 7007 */ 7008 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 7009 if (err) 7010 return err; 7011 7012 if (is_pointer_value(env, BPF_REG_0)) { 7013 verbose(env, "R0 leaks addr as return value\n"); 7014 return -EACCES; 7015 } 7016 7017 err = check_return_code(env); 7018 if (err) 7019 return err; 7020 process_bpf_exit: 7021 err = pop_stack(env, &env->prev_insn_idx, 7022 &env->insn_idx); 7023 if (err < 0) { 7024 if (err != -ENOENT) 7025 return err; 7026 break; 7027 } else { 7028 do_print_state = true; 7029 continue; 7030 } 7031 } else { 7032 err = check_cond_jmp_op(env, insn, &env->insn_idx); 7033 if (err) 7034 return err; 7035 } 7036 } else if (class == BPF_LD) { 7037 u8 mode = BPF_MODE(insn->code); 7038 7039 if (mode == BPF_ABS || mode == BPF_IND) { 7040 err = check_ld_abs(env, insn); 7041 if (err) 7042 return err; 7043 7044 } else if (mode == BPF_IMM) { 7045 err = check_ld_imm(env, insn); 7046 if (err) 7047 return err; 7048 7049 env->insn_idx++; 7050 env->insn_aux_data[env->insn_idx].seen = true; 7051 } else { 7052 verbose(env, "invalid BPF_LD mode\n"); 7053 return -EINVAL; 7054 } 7055 } else { 7056 verbose(env, "unknown insn class %d\n", class); 7057 return -EINVAL; 7058 } 7059 7060 env->insn_idx++; 7061 } 7062 7063 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 7064 return 0; 7065 } 7066 7067 static int check_map_prealloc(struct bpf_map *map) 7068 { 7069 return (map->map_type != BPF_MAP_TYPE_HASH && 7070 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 7071 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) || 7072 !(map->map_flags & BPF_F_NO_PREALLOC); 7073 } 7074 7075 static bool is_tracing_prog_type(enum bpf_prog_type type) 7076 { 7077 switch (type) { 7078 case BPF_PROG_TYPE_KPROBE: 7079 case BPF_PROG_TYPE_TRACEPOINT: 7080 case BPF_PROG_TYPE_PERF_EVENT: 7081 case BPF_PROG_TYPE_RAW_TRACEPOINT: 7082 return true; 7083 default: 7084 return false; 7085 } 7086 } 7087 7088 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 7089 struct bpf_map *map, 7090 struct bpf_prog *prog) 7091 7092 { 7093 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use 7094 * preallocated hash maps, since doing memory allocation 7095 * in overflow_handler can crash depending on where nmi got 7096 * triggered. 7097 */ 7098 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) { 7099 if (!check_map_prealloc(map)) { 7100 verbose(env, "perf_event programs can only use preallocated hash map\n"); 7101 return -EINVAL; 7102 } 7103 if (map->inner_map_meta && 7104 !check_map_prealloc(map->inner_map_meta)) { 7105 verbose(env, "perf_event programs can only use preallocated inner hash map\n"); 7106 return -EINVAL; 7107 } 7108 } 7109 7110 if ((is_tracing_prog_type(prog->type) || 7111 prog->type == BPF_PROG_TYPE_SOCKET_FILTER) && 7112 map_value_has_spin_lock(map)) { 7113 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 7114 return -EINVAL; 7115 } 7116 7117 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) && 7118 !bpf_offload_prog_map_match(prog, map)) { 7119 verbose(env, "offload device mismatch between prog and map\n"); 7120 return -EINVAL; 7121 } 7122 7123 return 0; 7124 } 7125 7126 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 7127 { 7128 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 7129 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 7130 } 7131 7132 /* look for pseudo eBPF instructions that access map FDs and 7133 * replace them with actual map pointers 7134 */ 7135 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env) 7136 { 7137 struct bpf_insn *insn = env->prog->insnsi; 7138 int insn_cnt = env->prog->len; 7139 int i, j, err; 7140 7141 err = bpf_prog_calc_tag(env->prog); 7142 if (err) 7143 return err; 7144 7145 for (i = 0; i < insn_cnt; i++, insn++) { 7146 if (BPF_CLASS(insn->code) == BPF_LDX && 7147 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 7148 verbose(env, "BPF_LDX uses reserved fields\n"); 7149 return -EINVAL; 7150 } 7151 7152 if (BPF_CLASS(insn->code) == BPF_STX && 7153 ((BPF_MODE(insn->code) != BPF_MEM && 7154 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) { 7155 verbose(env, "BPF_STX uses reserved fields\n"); 7156 return -EINVAL; 7157 } 7158 7159 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 7160 struct bpf_insn_aux_data *aux; 7161 struct bpf_map *map; 7162 struct fd f; 7163 u64 addr; 7164 7165 if (i == insn_cnt - 1 || insn[1].code != 0 || 7166 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 7167 insn[1].off != 0) { 7168 verbose(env, "invalid bpf_ld_imm64 insn\n"); 7169 return -EINVAL; 7170 } 7171 7172 if (insn[0].src_reg == 0) 7173 /* valid generic load 64-bit imm */ 7174 goto next_insn; 7175 7176 /* In final convert_pseudo_ld_imm64() step, this is 7177 * converted into regular 64-bit imm load insn. 7178 */ 7179 if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD && 7180 insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) || 7181 (insn[0].src_reg == BPF_PSEUDO_MAP_FD && 7182 insn[1].imm != 0)) { 7183 verbose(env, 7184 "unrecognized bpf_ld_imm64 insn\n"); 7185 return -EINVAL; 7186 } 7187 7188 f = fdget(insn[0].imm); 7189 map = __bpf_map_get(f); 7190 if (IS_ERR(map)) { 7191 verbose(env, "fd %d is not pointing to valid bpf_map\n", 7192 insn[0].imm); 7193 return PTR_ERR(map); 7194 } 7195 7196 err = check_map_prog_compatibility(env, map, env->prog); 7197 if (err) { 7198 fdput(f); 7199 return err; 7200 } 7201 7202 aux = &env->insn_aux_data[i]; 7203 if (insn->src_reg == BPF_PSEUDO_MAP_FD) { 7204 addr = (unsigned long)map; 7205 } else { 7206 u32 off = insn[1].imm; 7207 7208 if (off >= BPF_MAX_VAR_OFF) { 7209 verbose(env, "direct value offset of %u is not allowed\n", off); 7210 fdput(f); 7211 return -EINVAL; 7212 } 7213 7214 if (!map->ops->map_direct_value_addr) { 7215 verbose(env, "no direct value access support for this map type\n"); 7216 fdput(f); 7217 return -EINVAL; 7218 } 7219 7220 err = map->ops->map_direct_value_addr(map, &addr, off); 7221 if (err) { 7222 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 7223 map->value_size, off); 7224 fdput(f); 7225 return err; 7226 } 7227 7228 aux->map_off = off; 7229 addr += off; 7230 } 7231 7232 insn[0].imm = (u32)addr; 7233 insn[1].imm = addr >> 32; 7234 7235 /* check whether we recorded this map already */ 7236 for (j = 0; j < env->used_map_cnt; j++) { 7237 if (env->used_maps[j] == map) { 7238 aux->map_index = j; 7239 fdput(f); 7240 goto next_insn; 7241 } 7242 } 7243 7244 if (env->used_map_cnt >= MAX_USED_MAPS) { 7245 fdput(f); 7246 return -E2BIG; 7247 } 7248 7249 /* hold the map. If the program is rejected by verifier, 7250 * the map will be released by release_maps() or it 7251 * will be used by the valid program until it's unloaded 7252 * and all maps are released in free_used_maps() 7253 */ 7254 map = bpf_map_inc(map, false); 7255 if (IS_ERR(map)) { 7256 fdput(f); 7257 return PTR_ERR(map); 7258 } 7259 7260 aux->map_index = env->used_map_cnt; 7261 env->used_maps[env->used_map_cnt++] = map; 7262 7263 if (bpf_map_is_cgroup_storage(map) && 7264 bpf_cgroup_storage_assign(env->prog, map)) { 7265 verbose(env, "only one cgroup storage of each type is allowed\n"); 7266 fdput(f); 7267 return -EBUSY; 7268 } 7269 7270 fdput(f); 7271 next_insn: 7272 insn++; 7273 i++; 7274 continue; 7275 } 7276 7277 /* Basic sanity check before we invest more work here. */ 7278 if (!bpf_opcode_in_insntable(insn->code)) { 7279 verbose(env, "unknown opcode %02x\n", insn->code); 7280 return -EINVAL; 7281 } 7282 } 7283 7284 /* now all pseudo BPF_LD_IMM64 instructions load valid 7285 * 'struct bpf_map *' into a register instead of user map_fd. 7286 * These pointers will be used later by verifier to validate map access. 7287 */ 7288 return 0; 7289 } 7290 7291 /* drop refcnt of maps used by the rejected program */ 7292 static void release_maps(struct bpf_verifier_env *env) 7293 { 7294 enum bpf_cgroup_storage_type stype; 7295 int i; 7296 7297 for_each_cgroup_storage_type(stype) { 7298 if (!env->prog->aux->cgroup_storage[stype]) 7299 continue; 7300 bpf_cgroup_storage_release(env->prog, 7301 env->prog->aux->cgroup_storage[stype]); 7302 } 7303 7304 for (i = 0; i < env->used_map_cnt; i++) 7305 bpf_map_put(env->used_maps[i]); 7306 } 7307 7308 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 7309 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 7310 { 7311 struct bpf_insn *insn = env->prog->insnsi; 7312 int insn_cnt = env->prog->len; 7313 int i; 7314 7315 for (i = 0; i < insn_cnt; i++, insn++) 7316 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW)) 7317 insn->src_reg = 0; 7318 } 7319 7320 /* single env->prog->insni[off] instruction was replaced with the range 7321 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 7322 * [0, off) and [off, end) to new locations, so the patched range stays zero 7323 */ 7324 static int adjust_insn_aux_data(struct bpf_verifier_env *env, 7325 struct bpf_prog *new_prog, u32 off, u32 cnt) 7326 { 7327 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data; 7328 struct bpf_insn *insn = new_prog->insnsi; 7329 u32 prog_len; 7330 int i; 7331 7332 /* aux info at OFF always needs adjustment, no matter fast path 7333 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 7334 * original insn at old prog. 7335 */ 7336 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 7337 7338 if (cnt == 1) 7339 return 0; 7340 prog_len = new_prog->len; 7341 new_data = vzalloc(array_size(prog_len, 7342 sizeof(struct bpf_insn_aux_data))); 7343 if (!new_data) 7344 return -ENOMEM; 7345 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 7346 memcpy(new_data + off + cnt - 1, old_data + off, 7347 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 7348 for (i = off; i < off + cnt - 1; i++) { 7349 new_data[i].seen = true; 7350 new_data[i].zext_dst = insn_has_def32(env, insn + i); 7351 } 7352 env->insn_aux_data = new_data; 7353 vfree(old_data); 7354 return 0; 7355 } 7356 7357 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 7358 { 7359 int i; 7360 7361 if (len == 1) 7362 return; 7363 /* NOTE: fake 'exit' subprog should be updated as well. */ 7364 for (i = 0; i <= env->subprog_cnt; i++) { 7365 if (env->subprog_info[i].start <= off) 7366 continue; 7367 env->subprog_info[i].start += len - 1; 7368 } 7369 } 7370 7371 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 7372 const struct bpf_insn *patch, u32 len) 7373 { 7374 struct bpf_prog *new_prog; 7375 7376 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 7377 if (IS_ERR(new_prog)) { 7378 if (PTR_ERR(new_prog) == -ERANGE) 7379 verbose(env, 7380 "insn %d cannot be patched due to 16-bit range\n", 7381 env->insn_aux_data[off].orig_idx); 7382 return NULL; 7383 } 7384 if (adjust_insn_aux_data(env, new_prog, off, len)) 7385 return NULL; 7386 adjust_subprog_starts(env, off, len); 7387 return new_prog; 7388 } 7389 7390 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 7391 u32 off, u32 cnt) 7392 { 7393 int i, j; 7394 7395 /* find first prog starting at or after off (first to remove) */ 7396 for (i = 0; i < env->subprog_cnt; i++) 7397 if (env->subprog_info[i].start >= off) 7398 break; 7399 /* find first prog starting at or after off + cnt (first to stay) */ 7400 for (j = i; j < env->subprog_cnt; j++) 7401 if (env->subprog_info[j].start >= off + cnt) 7402 break; 7403 /* if j doesn't start exactly at off + cnt, we are just removing 7404 * the front of previous prog 7405 */ 7406 if (env->subprog_info[j].start != off + cnt) 7407 j--; 7408 7409 if (j > i) { 7410 struct bpf_prog_aux *aux = env->prog->aux; 7411 int move; 7412 7413 /* move fake 'exit' subprog as well */ 7414 move = env->subprog_cnt + 1 - j; 7415 7416 memmove(env->subprog_info + i, 7417 env->subprog_info + j, 7418 sizeof(*env->subprog_info) * move); 7419 env->subprog_cnt -= j - i; 7420 7421 /* remove func_info */ 7422 if (aux->func_info) { 7423 move = aux->func_info_cnt - j; 7424 7425 memmove(aux->func_info + i, 7426 aux->func_info + j, 7427 sizeof(*aux->func_info) * move); 7428 aux->func_info_cnt -= j - i; 7429 /* func_info->insn_off is set after all code rewrites, 7430 * in adjust_btf_func() - no need to adjust 7431 */ 7432 } 7433 } else { 7434 /* convert i from "first prog to remove" to "first to adjust" */ 7435 if (env->subprog_info[i].start == off) 7436 i++; 7437 } 7438 7439 /* update fake 'exit' subprog as well */ 7440 for (; i <= env->subprog_cnt; i++) 7441 env->subprog_info[i].start -= cnt; 7442 7443 return 0; 7444 } 7445 7446 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 7447 u32 cnt) 7448 { 7449 struct bpf_prog *prog = env->prog; 7450 u32 i, l_off, l_cnt, nr_linfo; 7451 struct bpf_line_info *linfo; 7452 7453 nr_linfo = prog->aux->nr_linfo; 7454 if (!nr_linfo) 7455 return 0; 7456 7457 linfo = prog->aux->linfo; 7458 7459 /* find first line info to remove, count lines to be removed */ 7460 for (i = 0; i < nr_linfo; i++) 7461 if (linfo[i].insn_off >= off) 7462 break; 7463 7464 l_off = i; 7465 l_cnt = 0; 7466 for (; i < nr_linfo; i++) 7467 if (linfo[i].insn_off < off + cnt) 7468 l_cnt++; 7469 else 7470 break; 7471 7472 /* First live insn doesn't match first live linfo, it needs to "inherit" 7473 * last removed linfo. prog is already modified, so prog->len == off 7474 * means no live instructions after (tail of the program was removed). 7475 */ 7476 if (prog->len != off && l_cnt && 7477 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 7478 l_cnt--; 7479 linfo[--i].insn_off = off + cnt; 7480 } 7481 7482 /* remove the line info which refer to the removed instructions */ 7483 if (l_cnt) { 7484 memmove(linfo + l_off, linfo + i, 7485 sizeof(*linfo) * (nr_linfo - i)); 7486 7487 prog->aux->nr_linfo -= l_cnt; 7488 nr_linfo = prog->aux->nr_linfo; 7489 } 7490 7491 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 7492 for (i = l_off; i < nr_linfo; i++) 7493 linfo[i].insn_off -= cnt; 7494 7495 /* fix up all subprogs (incl. 'exit') which start >= off */ 7496 for (i = 0; i <= env->subprog_cnt; i++) 7497 if (env->subprog_info[i].linfo_idx > l_off) { 7498 /* program may have started in the removed region but 7499 * may not be fully removed 7500 */ 7501 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 7502 env->subprog_info[i].linfo_idx -= l_cnt; 7503 else 7504 env->subprog_info[i].linfo_idx = l_off; 7505 } 7506 7507 return 0; 7508 } 7509 7510 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 7511 { 7512 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 7513 unsigned int orig_prog_len = env->prog->len; 7514 int err; 7515 7516 if (bpf_prog_is_dev_bound(env->prog->aux)) 7517 bpf_prog_offload_remove_insns(env, off, cnt); 7518 7519 err = bpf_remove_insns(env->prog, off, cnt); 7520 if (err) 7521 return err; 7522 7523 err = adjust_subprog_starts_after_remove(env, off, cnt); 7524 if (err) 7525 return err; 7526 7527 err = bpf_adj_linfo_after_remove(env, off, cnt); 7528 if (err) 7529 return err; 7530 7531 memmove(aux_data + off, aux_data + off + cnt, 7532 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 7533 7534 return 0; 7535 } 7536 7537 /* The verifier does more data flow analysis than llvm and will not 7538 * explore branches that are dead at run time. Malicious programs can 7539 * have dead code too. Therefore replace all dead at-run-time code 7540 * with 'ja -1'. 7541 * 7542 * Just nops are not optimal, e.g. if they would sit at the end of the 7543 * program and through another bug we would manage to jump there, then 7544 * we'd execute beyond program memory otherwise. Returning exception 7545 * code also wouldn't work since we can have subprogs where the dead 7546 * code could be located. 7547 */ 7548 static void sanitize_dead_code(struct bpf_verifier_env *env) 7549 { 7550 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 7551 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 7552 struct bpf_insn *insn = env->prog->insnsi; 7553 const int insn_cnt = env->prog->len; 7554 int i; 7555 7556 for (i = 0; i < insn_cnt; i++) { 7557 if (aux_data[i].seen) 7558 continue; 7559 memcpy(insn + i, &trap, sizeof(trap)); 7560 } 7561 } 7562 7563 static bool insn_is_cond_jump(u8 code) 7564 { 7565 u8 op; 7566 7567 if (BPF_CLASS(code) == BPF_JMP32) 7568 return true; 7569 7570 if (BPF_CLASS(code) != BPF_JMP) 7571 return false; 7572 7573 op = BPF_OP(code); 7574 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 7575 } 7576 7577 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 7578 { 7579 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 7580 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 7581 struct bpf_insn *insn = env->prog->insnsi; 7582 const int insn_cnt = env->prog->len; 7583 int i; 7584 7585 for (i = 0; i < insn_cnt; i++, insn++) { 7586 if (!insn_is_cond_jump(insn->code)) 7587 continue; 7588 7589 if (!aux_data[i + 1].seen) 7590 ja.off = insn->off; 7591 else if (!aux_data[i + 1 + insn->off].seen) 7592 ja.off = 0; 7593 else 7594 continue; 7595 7596 if (bpf_prog_is_dev_bound(env->prog->aux)) 7597 bpf_prog_offload_replace_insn(env, i, &ja); 7598 7599 memcpy(insn, &ja, sizeof(ja)); 7600 } 7601 } 7602 7603 static int opt_remove_dead_code(struct bpf_verifier_env *env) 7604 { 7605 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 7606 int insn_cnt = env->prog->len; 7607 int i, err; 7608 7609 for (i = 0; i < insn_cnt; i++) { 7610 int j; 7611 7612 j = 0; 7613 while (i + j < insn_cnt && !aux_data[i + j].seen) 7614 j++; 7615 if (!j) 7616 continue; 7617 7618 err = verifier_remove_insns(env, i, j); 7619 if (err) 7620 return err; 7621 insn_cnt = env->prog->len; 7622 } 7623 7624 return 0; 7625 } 7626 7627 static int opt_remove_nops(struct bpf_verifier_env *env) 7628 { 7629 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 7630 struct bpf_insn *insn = env->prog->insnsi; 7631 int insn_cnt = env->prog->len; 7632 int i, err; 7633 7634 for (i = 0; i < insn_cnt; i++) { 7635 if (memcmp(&insn[i], &ja, sizeof(ja))) 7636 continue; 7637 7638 err = verifier_remove_insns(env, i, 1); 7639 if (err) 7640 return err; 7641 insn_cnt--; 7642 i--; 7643 } 7644 7645 return 0; 7646 } 7647 7648 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 7649 const union bpf_attr *attr) 7650 { 7651 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 7652 struct bpf_insn_aux_data *aux = env->insn_aux_data; 7653 int i, patch_len, delta = 0, len = env->prog->len; 7654 struct bpf_insn *insns = env->prog->insnsi; 7655 struct bpf_prog *new_prog; 7656 bool rnd_hi32; 7657 7658 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 7659 zext_patch[1] = BPF_ZEXT_REG(0); 7660 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 7661 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 7662 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 7663 for (i = 0; i < len; i++) { 7664 int adj_idx = i + delta; 7665 struct bpf_insn insn; 7666 7667 insn = insns[adj_idx]; 7668 if (!aux[adj_idx].zext_dst) { 7669 u8 code, class; 7670 u32 imm_rnd; 7671 7672 if (!rnd_hi32) 7673 continue; 7674 7675 code = insn.code; 7676 class = BPF_CLASS(code); 7677 if (insn_no_def(&insn)) 7678 continue; 7679 7680 /* NOTE: arg "reg" (the fourth one) is only used for 7681 * BPF_STX which has been ruled out in above 7682 * check, it is safe to pass NULL here. 7683 */ 7684 if (is_reg64(env, &insn, insn.dst_reg, NULL, DST_OP)) { 7685 if (class == BPF_LD && 7686 BPF_MODE(code) == BPF_IMM) 7687 i++; 7688 continue; 7689 } 7690 7691 /* ctx load could be transformed into wider load. */ 7692 if (class == BPF_LDX && 7693 aux[adj_idx].ptr_type == PTR_TO_CTX) 7694 continue; 7695 7696 imm_rnd = get_random_int(); 7697 rnd_hi32_patch[0] = insn; 7698 rnd_hi32_patch[1].imm = imm_rnd; 7699 rnd_hi32_patch[3].dst_reg = insn.dst_reg; 7700 patch = rnd_hi32_patch; 7701 patch_len = 4; 7702 goto apply_patch_buffer; 7703 } 7704 7705 if (!bpf_jit_needs_zext()) 7706 continue; 7707 7708 zext_patch[0] = insn; 7709 zext_patch[1].dst_reg = insn.dst_reg; 7710 zext_patch[1].src_reg = insn.dst_reg; 7711 patch = zext_patch; 7712 patch_len = 2; 7713 apply_patch_buffer: 7714 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 7715 if (!new_prog) 7716 return -ENOMEM; 7717 env->prog = new_prog; 7718 insns = new_prog->insnsi; 7719 aux = env->insn_aux_data; 7720 delta += patch_len - 1; 7721 } 7722 7723 return 0; 7724 } 7725 7726 /* convert load instructions that access fields of a context type into a 7727 * sequence of instructions that access fields of the underlying structure: 7728 * struct __sk_buff -> struct sk_buff 7729 * struct bpf_sock_ops -> struct sock 7730 */ 7731 static int convert_ctx_accesses(struct bpf_verifier_env *env) 7732 { 7733 const struct bpf_verifier_ops *ops = env->ops; 7734 int i, cnt, size, ctx_field_size, delta = 0; 7735 const int insn_cnt = env->prog->len; 7736 struct bpf_insn insn_buf[16], *insn; 7737 u32 target_size, size_default, off; 7738 struct bpf_prog *new_prog; 7739 enum bpf_access_type type; 7740 bool is_narrower_load; 7741 7742 if (ops->gen_prologue || env->seen_direct_write) { 7743 if (!ops->gen_prologue) { 7744 verbose(env, "bpf verifier is misconfigured\n"); 7745 return -EINVAL; 7746 } 7747 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 7748 env->prog); 7749 if (cnt >= ARRAY_SIZE(insn_buf)) { 7750 verbose(env, "bpf verifier is misconfigured\n"); 7751 return -EINVAL; 7752 } else if (cnt) { 7753 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 7754 if (!new_prog) 7755 return -ENOMEM; 7756 7757 env->prog = new_prog; 7758 delta += cnt - 1; 7759 } 7760 } 7761 7762 if (bpf_prog_is_dev_bound(env->prog->aux)) 7763 return 0; 7764 7765 insn = env->prog->insnsi + delta; 7766 7767 for (i = 0; i < insn_cnt; i++, insn++) { 7768 bpf_convert_ctx_access_t convert_ctx_access; 7769 7770 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 7771 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 7772 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 7773 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) 7774 type = BPF_READ; 7775 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 7776 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 7777 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 7778 insn->code == (BPF_STX | BPF_MEM | BPF_DW)) 7779 type = BPF_WRITE; 7780 else 7781 continue; 7782 7783 if (type == BPF_WRITE && 7784 env->insn_aux_data[i + delta].sanitize_stack_off) { 7785 struct bpf_insn patch[] = { 7786 /* Sanitize suspicious stack slot with zero. 7787 * There are no memory dependencies for this store, 7788 * since it's only using frame pointer and immediate 7789 * constant of zero 7790 */ 7791 BPF_ST_MEM(BPF_DW, BPF_REG_FP, 7792 env->insn_aux_data[i + delta].sanitize_stack_off, 7793 0), 7794 /* the original STX instruction will immediately 7795 * overwrite the same stack slot with appropriate value 7796 */ 7797 *insn, 7798 }; 7799 7800 cnt = ARRAY_SIZE(patch); 7801 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 7802 if (!new_prog) 7803 return -ENOMEM; 7804 7805 delta += cnt - 1; 7806 env->prog = new_prog; 7807 insn = new_prog->insnsi + i + delta; 7808 continue; 7809 } 7810 7811 switch (env->insn_aux_data[i + delta].ptr_type) { 7812 case PTR_TO_CTX: 7813 if (!ops->convert_ctx_access) 7814 continue; 7815 convert_ctx_access = ops->convert_ctx_access; 7816 break; 7817 case PTR_TO_SOCKET: 7818 case PTR_TO_SOCK_COMMON: 7819 convert_ctx_access = bpf_sock_convert_ctx_access; 7820 break; 7821 case PTR_TO_TCP_SOCK: 7822 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 7823 break; 7824 default: 7825 continue; 7826 } 7827 7828 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 7829 size = BPF_LDST_BYTES(insn); 7830 7831 /* If the read access is a narrower load of the field, 7832 * convert to a 4/8-byte load, to minimum program type specific 7833 * convert_ctx_access changes. If conversion is successful, 7834 * we will apply proper mask to the result. 7835 */ 7836 is_narrower_load = size < ctx_field_size; 7837 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 7838 off = insn->off; 7839 if (is_narrower_load) { 7840 u8 size_code; 7841 7842 if (type == BPF_WRITE) { 7843 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 7844 return -EINVAL; 7845 } 7846 7847 size_code = BPF_H; 7848 if (ctx_field_size == 4) 7849 size_code = BPF_W; 7850 else if (ctx_field_size == 8) 7851 size_code = BPF_DW; 7852 7853 insn->off = off & ~(size_default - 1); 7854 insn->code = BPF_LDX | BPF_MEM | size_code; 7855 } 7856 7857 target_size = 0; 7858 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 7859 &target_size); 7860 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 7861 (ctx_field_size && !target_size)) { 7862 verbose(env, "bpf verifier is misconfigured\n"); 7863 return -EINVAL; 7864 } 7865 7866 if (is_narrower_load && size < target_size) { 7867 u8 shift = (off & (size_default - 1)) * 8; 7868 7869 if (ctx_field_size <= 4) { 7870 if (shift) 7871 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 7872 insn->dst_reg, 7873 shift); 7874 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 7875 (1 << size * 8) - 1); 7876 } else { 7877 if (shift) 7878 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 7879 insn->dst_reg, 7880 shift); 7881 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 7882 (1ULL << size * 8) - 1); 7883 } 7884 } 7885 7886 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 7887 if (!new_prog) 7888 return -ENOMEM; 7889 7890 delta += cnt - 1; 7891 7892 /* keep walking new program and skip insns we just inserted */ 7893 env->prog = new_prog; 7894 insn = new_prog->insnsi + i + delta; 7895 } 7896 7897 return 0; 7898 } 7899 7900 static int jit_subprogs(struct bpf_verifier_env *env) 7901 { 7902 struct bpf_prog *prog = env->prog, **func, *tmp; 7903 int i, j, subprog_start, subprog_end = 0, len, subprog; 7904 struct bpf_insn *insn; 7905 void *old_bpf_func; 7906 int err; 7907 7908 if (env->subprog_cnt <= 1) 7909 return 0; 7910 7911 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 7912 if (insn->code != (BPF_JMP | BPF_CALL) || 7913 insn->src_reg != BPF_PSEUDO_CALL) 7914 continue; 7915 /* Upon error here we cannot fall back to interpreter but 7916 * need a hard reject of the program. Thus -EFAULT is 7917 * propagated in any case. 7918 */ 7919 subprog = find_subprog(env, i + insn->imm + 1); 7920 if (subprog < 0) { 7921 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 7922 i + insn->imm + 1); 7923 return -EFAULT; 7924 } 7925 /* temporarily remember subprog id inside insn instead of 7926 * aux_data, since next loop will split up all insns into funcs 7927 */ 7928 insn->off = subprog; 7929 /* remember original imm in case JIT fails and fallback 7930 * to interpreter will be needed 7931 */ 7932 env->insn_aux_data[i].call_imm = insn->imm; 7933 /* point imm to __bpf_call_base+1 from JITs point of view */ 7934 insn->imm = 1; 7935 } 7936 7937 err = bpf_prog_alloc_jited_linfo(prog); 7938 if (err) 7939 goto out_undo_insn; 7940 7941 err = -ENOMEM; 7942 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 7943 if (!func) 7944 goto out_undo_insn; 7945 7946 for (i = 0; i < env->subprog_cnt; i++) { 7947 subprog_start = subprog_end; 7948 subprog_end = env->subprog_info[i + 1].start; 7949 7950 len = subprog_end - subprog_start; 7951 /* BPF_PROG_RUN doesn't call subprogs directly, 7952 * hence main prog stats include the runtime of subprogs. 7953 * subprogs don't have IDs and not reachable via prog_get_next_id 7954 * func[i]->aux->stats will never be accessed and stays NULL 7955 */ 7956 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 7957 if (!func[i]) 7958 goto out_free; 7959 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 7960 len * sizeof(struct bpf_insn)); 7961 func[i]->type = prog->type; 7962 func[i]->len = len; 7963 if (bpf_prog_calc_tag(func[i])) 7964 goto out_free; 7965 func[i]->is_func = 1; 7966 func[i]->aux->func_idx = i; 7967 /* the btf and func_info will be freed only at prog->aux */ 7968 func[i]->aux->btf = prog->aux->btf; 7969 func[i]->aux->func_info = prog->aux->func_info; 7970 7971 /* Use bpf_prog_F_tag to indicate functions in stack traces. 7972 * Long term would need debug info to populate names 7973 */ 7974 func[i]->aux->name[0] = 'F'; 7975 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 7976 func[i]->jit_requested = 1; 7977 func[i]->aux->linfo = prog->aux->linfo; 7978 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 7979 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 7980 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 7981 func[i] = bpf_int_jit_compile(func[i]); 7982 if (!func[i]->jited) { 7983 err = -ENOTSUPP; 7984 goto out_free; 7985 } 7986 cond_resched(); 7987 } 7988 /* at this point all bpf functions were successfully JITed 7989 * now populate all bpf_calls with correct addresses and 7990 * run last pass of JIT 7991 */ 7992 for (i = 0; i < env->subprog_cnt; i++) { 7993 insn = func[i]->insnsi; 7994 for (j = 0; j < func[i]->len; j++, insn++) { 7995 if (insn->code != (BPF_JMP | BPF_CALL) || 7996 insn->src_reg != BPF_PSEUDO_CALL) 7997 continue; 7998 subprog = insn->off; 7999 insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) - 8000 __bpf_call_base; 8001 } 8002 8003 /* we use the aux data to keep a list of the start addresses 8004 * of the JITed images for each function in the program 8005 * 8006 * for some architectures, such as powerpc64, the imm field 8007 * might not be large enough to hold the offset of the start 8008 * address of the callee's JITed image from __bpf_call_base 8009 * 8010 * in such cases, we can lookup the start address of a callee 8011 * by using its subprog id, available from the off field of 8012 * the call instruction, as an index for this list 8013 */ 8014 func[i]->aux->func = func; 8015 func[i]->aux->func_cnt = env->subprog_cnt; 8016 } 8017 for (i = 0; i < env->subprog_cnt; i++) { 8018 old_bpf_func = func[i]->bpf_func; 8019 tmp = bpf_int_jit_compile(func[i]); 8020 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 8021 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 8022 err = -ENOTSUPP; 8023 goto out_free; 8024 } 8025 cond_resched(); 8026 } 8027 8028 /* finally lock prog and jit images for all functions and 8029 * populate kallsysm 8030 */ 8031 for (i = 0; i < env->subprog_cnt; i++) { 8032 bpf_prog_lock_ro(func[i]); 8033 bpf_prog_kallsyms_add(func[i]); 8034 } 8035 8036 /* Last step: make now unused interpreter insns from main 8037 * prog consistent for later dump requests, so they can 8038 * later look the same as if they were interpreted only. 8039 */ 8040 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 8041 if (insn->code != (BPF_JMP | BPF_CALL) || 8042 insn->src_reg != BPF_PSEUDO_CALL) 8043 continue; 8044 insn->off = env->insn_aux_data[i].call_imm; 8045 subprog = find_subprog(env, i + insn->off + 1); 8046 insn->imm = subprog; 8047 } 8048 8049 prog->jited = 1; 8050 prog->bpf_func = func[0]->bpf_func; 8051 prog->aux->func = func; 8052 prog->aux->func_cnt = env->subprog_cnt; 8053 bpf_prog_free_unused_jited_linfo(prog); 8054 return 0; 8055 out_free: 8056 for (i = 0; i < env->subprog_cnt; i++) 8057 if (func[i]) 8058 bpf_jit_free(func[i]); 8059 kfree(func); 8060 out_undo_insn: 8061 /* cleanup main prog to be interpreted */ 8062 prog->jit_requested = 0; 8063 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 8064 if (insn->code != (BPF_JMP | BPF_CALL) || 8065 insn->src_reg != BPF_PSEUDO_CALL) 8066 continue; 8067 insn->off = 0; 8068 insn->imm = env->insn_aux_data[i].call_imm; 8069 } 8070 bpf_prog_free_jited_linfo(prog); 8071 return err; 8072 } 8073 8074 static int fixup_call_args(struct bpf_verifier_env *env) 8075 { 8076 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 8077 struct bpf_prog *prog = env->prog; 8078 struct bpf_insn *insn = prog->insnsi; 8079 int i, depth; 8080 #endif 8081 int err = 0; 8082 8083 if (env->prog->jit_requested && 8084 !bpf_prog_is_dev_bound(env->prog->aux)) { 8085 err = jit_subprogs(env); 8086 if (err == 0) 8087 return 0; 8088 if (err == -EFAULT) 8089 return err; 8090 } 8091 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 8092 for (i = 0; i < prog->len; i++, insn++) { 8093 if (insn->code != (BPF_JMP | BPF_CALL) || 8094 insn->src_reg != BPF_PSEUDO_CALL) 8095 continue; 8096 depth = get_callee_stack_depth(env, insn, i); 8097 if (depth < 0) 8098 return depth; 8099 bpf_patch_call_args(insn, depth); 8100 } 8101 err = 0; 8102 #endif 8103 return err; 8104 } 8105 8106 /* fixup insn->imm field of bpf_call instructions 8107 * and inline eligible helpers as explicit sequence of BPF instructions 8108 * 8109 * this function is called after eBPF program passed verification 8110 */ 8111 static int fixup_bpf_calls(struct bpf_verifier_env *env) 8112 { 8113 struct bpf_prog *prog = env->prog; 8114 struct bpf_insn *insn = prog->insnsi; 8115 const struct bpf_func_proto *fn; 8116 const int insn_cnt = prog->len; 8117 const struct bpf_map_ops *ops; 8118 struct bpf_insn_aux_data *aux; 8119 struct bpf_insn insn_buf[16]; 8120 struct bpf_prog *new_prog; 8121 struct bpf_map *map_ptr; 8122 int i, cnt, delta = 0; 8123 8124 for (i = 0; i < insn_cnt; i++, insn++) { 8125 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 8126 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 8127 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 8128 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 8129 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 8130 struct bpf_insn mask_and_div[] = { 8131 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 8132 /* Rx div 0 -> 0 */ 8133 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2), 8134 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 8135 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 8136 *insn, 8137 }; 8138 struct bpf_insn mask_and_mod[] = { 8139 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 8140 /* Rx mod 0 -> Rx */ 8141 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1), 8142 *insn, 8143 }; 8144 struct bpf_insn *patchlet; 8145 8146 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 8147 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 8148 patchlet = mask_and_div + (is64 ? 1 : 0); 8149 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0); 8150 } else { 8151 patchlet = mask_and_mod + (is64 ? 1 : 0); 8152 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0); 8153 } 8154 8155 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 8156 if (!new_prog) 8157 return -ENOMEM; 8158 8159 delta += cnt - 1; 8160 env->prog = prog = new_prog; 8161 insn = new_prog->insnsi + i + delta; 8162 continue; 8163 } 8164 8165 if (BPF_CLASS(insn->code) == BPF_LD && 8166 (BPF_MODE(insn->code) == BPF_ABS || 8167 BPF_MODE(insn->code) == BPF_IND)) { 8168 cnt = env->ops->gen_ld_abs(insn, insn_buf); 8169 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 8170 verbose(env, "bpf verifier is misconfigured\n"); 8171 return -EINVAL; 8172 } 8173 8174 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 8175 if (!new_prog) 8176 return -ENOMEM; 8177 8178 delta += cnt - 1; 8179 env->prog = prog = new_prog; 8180 insn = new_prog->insnsi + i + delta; 8181 continue; 8182 } 8183 8184 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 8185 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 8186 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 8187 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 8188 struct bpf_insn insn_buf[16]; 8189 struct bpf_insn *patch = &insn_buf[0]; 8190 bool issrc, isneg; 8191 u32 off_reg; 8192 8193 aux = &env->insn_aux_data[i + delta]; 8194 if (!aux->alu_state || 8195 aux->alu_state == BPF_ALU_NON_POINTER) 8196 continue; 8197 8198 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 8199 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 8200 BPF_ALU_SANITIZE_SRC; 8201 8202 off_reg = issrc ? insn->src_reg : insn->dst_reg; 8203 if (isneg) 8204 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 8205 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1); 8206 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 8207 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 8208 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 8209 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 8210 if (issrc) { 8211 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, 8212 off_reg); 8213 insn->src_reg = BPF_REG_AX; 8214 } else { 8215 *patch++ = BPF_ALU64_REG(BPF_AND, off_reg, 8216 BPF_REG_AX); 8217 } 8218 if (isneg) 8219 insn->code = insn->code == code_add ? 8220 code_sub : code_add; 8221 *patch++ = *insn; 8222 if (issrc && isneg) 8223 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 8224 cnt = patch - insn_buf; 8225 8226 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 8227 if (!new_prog) 8228 return -ENOMEM; 8229 8230 delta += cnt - 1; 8231 env->prog = prog = new_prog; 8232 insn = new_prog->insnsi + i + delta; 8233 continue; 8234 } 8235 8236 if (insn->code != (BPF_JMP | BPF_CALL)) 8237 continue; 8238 if (insn->src_reg == BPF_PSEUDO_CALL) 8239 continue; 8240 8241 if (insn->imm == BPF_FUNC_get_route_realm) 8242 prog->dst_needed = 1; 8243 if (insn->imm == BPF_FUNC_get_prandom_u32) 8244 bpf_user_rnd_init_once(); 8245 if (insn->imm == BPF_FUNC_override_return) 8246 prog->kprobe_override = 1; 8247 if (insn->imm == BPF_FUNC_tail_call) { 8248 /* If we tail call into other programs, we 8249 * cannot make any assumptions since they can 8250 * be replaced dynamically during runtime in 8251 * the program array. 8252 */ 8253 prog->cb_access = 1; 8254 env->prog->aux->stack_depth = MAX_BPF_STACK; 8255 env->prog->aux->max_pkt_offset = MAX_PACKET_OFF; 8256 8257 /* mark bpf_tail_call as different opcode to avoid 8258 * conditional branch in the interpeter for every normal 8259 * call and to prevent accidental JITing by JIT compiler 8260 * that doesn't support bpf_tail_call yet 8261 */ 8262 insn->imm = 0; 8263 insn->code = BPF_JMP | BPF_TAIL_CALL; 8264 8265 aux = &env->insn_aux_data[i + delta]; 8266 if (!bpf_map_ptr_unpriv(aux)) 8267 continue; 8268 8269 /* instead of changing every JIT dealing with tail_call 8270 * emit two extra insns: 8271 * if (index >= max_entries) goto out; 8272 * index &= array->index_mask; 8273 * to avoid out-of-bounds cpu speculation 8274 */ 8275 if (bpf_map_ptr_poisoned(aux)) { 8276 verbose(env, "tail_call abusing map_ptr\n"); 8277 return -EINVAL; 8278 } 8279 8280 map_ptr = BPF_MAP_PTR(aux->map_state); 8281 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 8282 map_ptr->max_entries, 2); 8283 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 8284 container_of(map_ptr, 8285 struct bpf_array, 8286 map)->index_mask); 8287 insn_buf[2] = *insn; 8288 cnt = 3; 8289 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 8290 if (!new_prog) 8291 return -ENOMEM; 8292 8293 delta += cnt - 1; 8294 env->prog = prog = new_prog; 8295 insn = new_prog->insnsi + i + delta; 8296 continue; 8297 } 8298 8299 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 8300 * and other inlining handlers are currently limited to 64 bit 8301 * only. 8302 */ 8303 if (prog->jit_requested && BITS_PER_LONG == 64 && 8304 (insn->imm == BPF_FUNC_map_lookup_elem || 8305 insn->imm == BPF_FUNC_map_update_elem || 8306 insn->imm == BPF_FUNC_map_delete_elem || 8307 insn->imm == BPF_FUNC_map_push_elem || 8308 insn->imm == BPF_FUNC_map_pop_elem || 8309 insn->imm == BPF_FUNC_map_peek_elem)) { 8310 aux = &env->insn_aux_data[i + delta]; 8311 if (bpf_map_ptr_poisoned(aux)) 8312 goto patch_call_imm; 8313 8314 map_ptr = BPF_MAP_PTR(aux->map_state); 8315 ops = map_ptr->ops; 8316 if (insn->imm == BPF_FUNC_map_lookup_elem && 8317 ops->map_gen_lookup) { 8318 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 8319 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 8320 verbose(env, "bpf verifier is misconfigured\n"); 8321 return -EINVAL; 8322 } 8323 8324 new_prog = bpf_patch_insn_data(env, i + delta, 8325 insn_buf, cnt); 8326 if (!new_prog) 8327 return -ENOMEM; 8328 8329 delta += cnt - 1; 8330 env->prog = prog = new_prog; 8331 insn = new_prog->insnsi + i + delta; 8332 continue; 8333 } 8334 8335 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 8336 (void *(*)(struct bpf_map *map, void *key))NULL)); 8337 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 8338 (int (*)(struct bpf_map *map, void *key))NULL)); 8339 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 8340 (int (*)(struct bpf_map *map, void *key, void *value, 8341 u64 flags))NULL)); 8342 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 8343 (int (*)(struct bpf_map *map, void *value, 8344 u64 flags))NULL)); 8345 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 8346 (int (*)(struct bpf_map *map, void *value))NULL)); 8347 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 8348 (int (*)(struct bpf_map *map, void *value))NULL)); 8349 8350 switch (insn->imm) { 8351 case BPF_FUNC_map_lookup_elem: 8352 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) - 8353 __bpf_call_base; 8354 continue; 8355 case BPF_FUNC_map_update_elem: 8356 insn->imm = BPF_CAST_CALL(ops->map_update_elem) - 8357 __bpf_call_base; 8358 continue; 8359 case BPF_FUNC_map_delete_elem: 8360 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) - 8361 __bpf_call_base; 8362 continue; 8363 case BPF_FUNC_map_push_elem: 8364 insn->imm = BPF_CAST_CALL(ops->map_push_elem) - 8365 __bpf_call_base; 8366 continue; 8367 case BPF_FUNC_map_pop_elem: 8368 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) - 8369 __bpf_call_base; 8370 continue; 8371 case BPF_FUNC_map_peek_elem: 8372 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) - 8373 __bpf_call_base; 8374 continue; 8375 } 8376 8377 goto patch_call_imm; 8378 } 8379 8380 patch_call_imm: 8381 fn = env->ops->get_func_proto(insn->imm, env->prog); 8382 /* all functions that have prototype and verifier allowed 8383 * programs to call them, must be real in-kernel functions 8384 */ 8385 if (!fn->func) { 8386 verbose(env, 8387 "kernel subsystem misconfigured func %s#%d\n", 8388 func_id_name(insn->imm), insn->imm); 8389 return -EFAULT; 8390 } 8391 insn->imm = fn->func - __bpf_call_base; 8392 } 8393 8394 return 0; 8395 } 8396 8397 static void free_states(struct bpf_verifier_env *env) 8398 { 8399 struct bpf_verifier_state_list *sl, *sln; 8400 int i; 8401 8402 sl = env->free_list; 8403 while (sl) { 8404 sln = sl->next; 8405 free_verifier_state(&sl->state, false); 8406 kfree(sl); 8407 sl = sln; 8408 } 8409 8410 if (!env->explored_states) 8411 return; 8412 8413 for (i = 0; i < state_htab_size(env); i++) { 8414 sl = env->explored_states[i]; 8415 8416 while (sl) { 8417 sln = sl->next; 8418 free_verifier_state(&sl->state, false); 8419 kfree(sl); 8420 sl = sln; 8421 } 8422 } 8423 8424 kvfree(env->explored_states); 8425 } 8426 8427 static void print_verification_stats(struct bpf_verifier_env *env) 8428 { 8429 int i; 8430 8431 if (env->log.level & BPF_LOG_STATS) { 8432 verbose(env, "verification time %lld usec\n", 8433 div_u64(env->verification_time, 1000)); 8434 verbose(env, "stack depth "); 8435 for (i = 0; i < env->subprog_cnt; i++) { 8436 u32 depth = env->subprog_info[i].stack_depth; 8437 8438 verbose(env, "%d", depth); 8439 if (i + 1 < env->subprog_cnt) 8440 verbose(env, "+"); 8441 } 8442 verbose(env, "\n"); 8443 } 8444 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 8445 "total_states %d peak_states %d mark_read %d\n", 8446 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 8447 env->max_states_per_insn, env->total_states, 8448 env->peak_states, env->longest_mark_read_walk); 8449 } 8450 8451 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, 8452 union bpf_attr __user *uattr) 8453 { 8454 u64 start_time = ktime_get_ns(); 8455 struct bpf_verifier_env *env; 8456 struct bpf_verifier_log *log; 8457 int i, len, ret = -EINVAL; 8458 bool is_priv; 8459 8460 /* no program is valid */ 8461 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 8462 return -EINVAL; 8463 8464 /* 'struct bpf_verifier_env' can be global, but since it's not small, 8465 * allocate/free it every time bpf_check() is called 8466 */ 8467 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 8468 if (!env) 8469 return -ENOMEM; 8470 log = &env->log; 8471 8472 len = (*prog)->len; 8473 env->insn_aux_data = 8474 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 8475 ret = -ENOMEM; 8476 if (!env->insn_aux_data) 8477 goto err_free_env; 8478 for (i = 0; i < len; i++) 8479 env->insn_aux_data[i].orig_idx = i; 8480 env->prog = *prog; 8481 env->ops = bpf_verifier_ops[env->prog->type]; 8482 is_priv = capable(CAP_SYS_ADMIN); 8483 8484 /* grab the mutex to protect few globals used by verifier */ 8485 if (!is_priv) 8486 mutex_lock(&bpf_verifier_lock); 8487 8488 if (attr->log_level || attr->log_buf || attr->log_size) { 8489 /* user requested verbose verifier output 8490 * and supplied buffer to store the verification trace 8491 */ 8492 log->level = attr->log_level; 8493 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 8494 log->len_total = attr->log_size; 8495 8496 ret = -EINVAL; 8497 /* log attributes have to be sane */ 8498 if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 || 8499 !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK) 8500 goto err_unlock; 8501 } 8502 8503 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 8504 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 8505 env->strict_alignment = true; 8506 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 8507 env->strict_alignment = false; 8508 8509 env->allow_ptr_leaks = is_priv; 8510 8511 ret = replace_map_fd_with_map_ptr(env); 8512 if (ret < 0) 8513 goto skip_full_check; 8514 8515 if (bpf_prog_is_dev_bound(env->prog->aux)) { 8516 ret = bpf_prog_offload_verifier_prep(env->prog); 8517 if (ret) 8518 goto skip_full_check; 8519 } 8520 8521 env->explored_states = kvcalloc(state_htab_size(env), 8522 sizeof(struct bpf_verifier_state_list *), 8523 GFP_USER); 8524 ret = -ENOMEM; 8525 if (!env->explored_states) 8526 goto skip_full_check; 8527 8528 ret = check_subprogs(env); 8529 if (ret < 0) 8530 goto skip_full_check; 8531 8532 ret = check_btf_info(env, attr, uattr); 8533 if (ret < 0) 8534 goto skip_full_check; 8535 8536 ret = check_cfg(env); 8537 if (ret < 0) 8538 goto skip_full_check; 8539 8540 ret = do_check(env); 8541 if (env->cur_state) { 8542 free_verifier_state(env->cur_state, true); 8543 env->cur_state = NULL; 8544 } 8545 8546 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux)) 8547 ret = bpf_prog_offload_finalize(env); 8548 8549 skip_full_check: 8550 while (!pop_stack(env, NULL, NULL)); 8551 free_states(env); 8552 8553 if (ret == 0) 8554 ret = check_max_stack_depth(env); 8555 8556 /* instruction rewrites happen after this point */ 8557 if (is_priv) { 8558 if (ret == 0) 8559 opt_hard_wire_dead_code_branches(env); 8560 if (ret == 0) 8561 ret = opt_remove_dead_code(env); 8562 if (ret == 0) 8563 ret = opt_remove_nops(env); 8564 } else { 8565 if (ret == 0) 8566 sanitize_dead_code(env); 8567 } 8568 8569 if (ret == 0) 8570 /* program is valid, convert *(u32*)(ctx + off) accesses */ 8571 ret = convert_ctx_accesses(env); 8572 8573 if (ret == 0) 8574 ret = fixup_bpf_calls(env); 8575 8576 /* do 32-bit optimization after insn patching has done so those patched 8577 * insns could be handled correctly. 8578 */ 8579 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) { 8580 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 8581 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 8582 : false; 8583 } 8584 8585 if (ret == 0) 8586 ret = fixup_call_args(env); 8587 8588 env->verification_time = ktime_get_ns() - start_time; 8589 print_verification_stats(env); 8590 8591 if (log->level && bpf_verifier_log_full(log)) 8592 ret = -ENOSPC; 8593 if (log->level && !log->ubuf) { 8594 ret = -EFAULT; 8595 goto err_release_maps; 8596 } 8597 8598 if (ret == 0 && env->used_map_cnt) { 8599 /* if program passed verifier, update used_maps in bpf_prog_info */ 8600 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 8601 sizeof(env->used_maps[0]), 8602 GFP_KERNEL); 8603 8604 if (!env->prog->aux->used_maps) { 8605 ret = -ENOMEM; 8606 goto err_release_maps; 8607 } 8608 8609 memcpy(env->prog->aux->used_maps, env->used_maps, 8610 sizeof(env->used_maps[0]) * env->used_map_cnt); 8611 env->prog->aux->used_map_cnt = env->used_map_cnt; 8612 8613 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 8614 * bpf_ld_imm64 instructions 8615 */ 8616 convert_pseudo_ld_imm64(env); 8617 } 8618 8619 if (ret == 0) 8620 adjust_btf_func(env); 8621 8622 err_release_maps: 8623 if (!env->prog->aux->used_maps) 8624 /* if we didn't copy map pointers into bpf_prog_info, release 8625 * them now. Otherwise free_used_maps() will release them. 8626 */ 8627 release_maps(env); 8628 *prog = env->prog; 8629 err_unlock: 8630 if (!is_priv) 8631 mutex_unlock(&bpf_verifier_lock); 8632 vfree(env->insn_aux_data); 8633 err_free_env: 8634 kfree(env); 8635 return ret; 8636 } 8637