1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/bpf-cgroup.h> 8 #include <linux/kernel.h> 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/bpf.h> 12 #include <linux/btf.h> 13 #include <linux/bpf_verifier.h> 14 #include <linux/filter.h> 15 #include <net/netlink.h> 16 #include <linux/file.h> 17 #include <linux/vmalloc.h> 18 #include <linux/stringify.h> 19 #include <linux/bsearch.h> 20 #include <linux/sort.h> 21 #include <linux/perf_event.h> 22 #include <linux/ctype.h> 23 #include <linux/error-injection.h> 24 #include <linux/bpf_lsm.h> 25 #include <linux/btf_ids.h> 26 #include <linux/poison.h> 27 #include <linux/module.h> 28 #include <linux/cpumask.h> 29 #include <linux/bpf_mem_alloc.h> 30 #include <net/xdp.h> 31 #include <linux/trace_events.h> 32 #include <linux/kallsyms.h> 33 34 #include "disasm.h" 35 36 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 37 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 38 [_id] = & _name ## _verifier_ops, 39 #define BPF_MAP_TYPE(_id, _ops) 40 #define BPF_LINK_TYPE(_id, _name) 41 #include <linux/bpf_types.h> 42 #undef BPF_PROG_TYPE 43 #undef BPF_MAP_TYPE 44 #undef BPF_LINK_TYPE 45 }; 46 47 struct bpf_mem_alloc bpf_global_percpu_ma; 48 static bool bpf_global_percpu_ma_set; 49 50 /* bpf_check() is a static code analyzer that walks eBPF program 51 * instruction by instruction and updates register/stack state. 52 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 53 * 54 * The first pass is depth-first-search to check that the program is a DAG. 55 * It rejects the following programs: 56 * - larger than BPF_MAXINSNS insns 57 * - if loop is present (detected via back-edge) 58 * - unreachable insns exist (shouldn't be a forest. program = one function) 59 * - out of bounds or malformed jumps 60 * The second pass is all possible path descent from the 1st insn. 61 * Since it's analyzing all paths through the program, the length of the 62 * analysis is limited to 64k insn, which may be hit even if total number of 63 * insn is less then 4K, but there are too many branches that change stack/regs. 64 * Number of 'branches to be analyzed' is limited to 1k 65 * 66 * On entry to each instruction, each register has a type, and the instruction 67 * changes the types of the registers depending on instruction semantics. 68 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 69 * copied to R1. 70 * 71 * All registers are 64-bit. 72 * R0 - return register 73 * R1-R5 argument passing registers 74 * R6-R9 callee saved registers 75 * R10 - frame pointer read-only 76 * 77 * At the start of BPF program the register R1 contains a pointer to bpf_context 78 * and has type PTR_TO_CTX. 79 * 80 * Verifier tracks arithmetic operations on pointers in case: 81 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 82 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 83 * 1st insn copies R10 (which has FRAME_PTR) type into R1 84 * and 2nd arithmetic instruction is pattern matched to recognize 85 * that it wants to construct a pointer to some element within stack. 86 * So after 2nd insn, the register R1 has type PTR_TO_STACK 87 * (and -20 constant is saved for further stack bounds checking). 88 * Meaning that this reg is a pointer to stack plus known immediate constant. 89 * 90 * Most of the time the registers have SCALAR_VALUE type, which 91 * means the register has some value, but it's not a valid pointer. 92 * (like pointer plus pointer becomes SCALAR_VALUE type) 93 * 94 * When verifier sees load or store instructions the type of base register 95 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 96 * four pointer types recognized by check_mem_access() function. 97 * 98 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 99 * and the range of [ptr, ptr + map's value_size) is accessible. 100 * 101 * registers used to pass values to function calls are checked against 102 * function argument constraints. 103 * 104 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 105 * It means that the register type passed to this function must be 106 * PTR_TO_STACK and it will be used inside the function as 107 * 'pointer to map element key' 108 * 109 * For example the argument constraints for bpf_map_lookup_elem(): 110 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 111 * .arg1_type = ARG_CONST_MAP_PTR, 112 * .arg2_type = ARG_PTR_TO_MAP_KEY, 113 * 114 * ret_type says that this function returns 'pointer to map elem value or null' 115 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 116 * 2nd argument should be a pointer to stack, which will be used inside 117 * the helper function as a pointer to map element key. 118 * 119 * On the kernel side the helper function looks like: 120 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 121 * { 122 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 123 * void *key = (void *) (unsigned long) r2; 124 * void *value; 125 * 126 * here kernel can access 'key' and 'map' pointers safely, knowing that 127 * [key, key + map->key_size) bytes are valid and were initialized on 128 * the stack of eBPF program. 129 * } 130 * 131 * Corresponding eBPF program may look like: 132 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 133 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 134 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 135 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 136 * here verifier looks at prototype of map_lookup_elem() and sees: 137 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 138 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 139 * 140 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 141 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 142 * and were initialized prior to this call. 143 * If it's ok, then verifier allows this BPF_CALL insn and looks at 144 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 145 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 146 * returns either pointer to map value or NULL. 147 * 148 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 149 * insn, the register holding that pointer in the true branch changes state to 150 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 151 * branch. See check_cond_jmp_op(). 152 * 153 * After the call R0 is set to return type of the function and registers R1-R5 154 * are set to NOT_INIT to indicate that they are no longer readable. 155 * 156 * The following reference types represent a potential reference to a kernel 157 * resource which, after first being allocated, must be checked and freed by 158 * the BPF program: 159 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 160 * 161 * When the verifier sees a helper call return a reference type, it allocates a 162 * pointer id for the reference and stores it in the current function state. 163 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 164 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 165 * passes through a NULL-check conditional. For the branch wherein the state is 166 * changed to CONST_IMM, the verifier releases the reference. 167 * 168 * For each helper function that allocates a reference, such as 169 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 170 * bpf_sk_release(). When a reference type passes into the release function, 171 * the verifier also releases the reference. If any unchecked or unreleased 172 * reference remains at the end of the program, the verifier rejects it. 173 */ 174 175 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 176 struct bpf_verifier_stack_elem { 177 /* verifier state is 'st' 178 * before processing instruction 'insn_idx' 179 * and after processing instruction 'prev_insn_idx' 180 */ 181 struct bpf_verifier_state st; 182 int insn_idx; 183 int prev_insn_idx; 184 struct bpf_verifier_stack_elem *next; 185 /* length of verifier log at the time this state was pushed on stack */ 186 u32 log_pos; 187 }; 188 189 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 190 #define BPF_COMPLEXITY_LIMIT_STATES 64 191 192 #define BPF_MAP_KEY_POISON (1ULL << 63) 193 #define BPF_MAP_KEY_SEEN (1ULL << 62) 194 195 #define BPF_GLOBAL_PERCPU_MA_MAX_SIZE 512 196 197 #define BPF_PRIV_STACK_MIN_SIZE 64 198 199 static int acquire_reference(struct bpf_verifier_env *env, int insn_idx); 200 static int release_reference_nomark(struct bpf_verifier_state *state, int ref_obj_id); 201 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id); 202 static void invalidate_non_owning_refs(struct bpf_verifier_env *env); 203 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env); 204 static int ref_set_non_owning(struct bpf_verifier_env *env, 205 struct bpf_reg_state *reg); 206 static void specialize_kfunc(struct bpf_verifier_env *env, 207 u32 func_id, u16 offset, unsigned long *addr); 208 static bool is_trusted_reg(const struct bpf_reg_state *reg); 209 210 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 211 { 212 return aux->map_ptr_state.poison; 213 } 214 215 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 216 { 217 return aux->map_ptr_state.unpriv; 218 } 219 220 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 221 struct bpf_map *map, 222 bool unpriv, bool poison) 223 { 224 unpriv |= bpf_map_ptr_unpriv(aux); 225 aux->map_ptr_state.unpriv = unpriv; 226 aux->map_ptr_state.poison = poison; 227 aux->map_ptr_state.map_ptr = map; 228 } 229 230 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 231 { 232 return aux->map_key_state & BPF_MAP_KEY_POISON; 233 } 234 235 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 236 { 237 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 238 } 239 240 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 241 { 242 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 243 } 244 245 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 246 { 247 bool poisoned = bpf_map_key_poisoned(aux); 248 249 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 250 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 251 } 252 253 static bool bpf_helper_call(const struct bpf_insn *insn) 254 { 255 return insn->code == (BPF_JMP | BPF_CALL) && 256 insn->src_reg == 0; 257 } 258 259 static bool bpf_pseudo_call(const struct bpf_insn *insn) 260 { 261 return insn->code == (BPF_JMP | BPF_CALL) && 262 insn->src_reg == BPF_PSEUDO_CALL; 263 } 264 265 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn) 266 { 267 return insn->code == (BPF_JMP | BPF_CALL) && 268 insn->src_reg == BPF_PSEUDO_KFUNC_CALL; 269 } 270 271 struct bpf_call_arg_meta { 272 struct bpf_map *map_ptr; 273 bool raw_mode; 274 bool pkt_access; 275 u8 release_regno; 276 int regno; 277 int access_size; 278 int mem_size; 279 u64 msize_max_value; 280 int ref_obj_id; 281 int dynptr_id; 282 int map_uid; 283 int func_id; 284 struct btf *btf; 285 u32 btf_id; 286 struct btf *ret_btf; 287 u32 ret_btf_id; 288 u32 subprogno; 289 struct btf_field *kptr_field; 290 s64 const_map_key; 291 }; 292 293 struct bpf_kfunc_call_arg_meta { 294 /* In parameters */ 295 struct btf *btf; 296 u32 func_id; 297 u32 kfunc_flags; 298 const struct btf_type *func_proto; 299 const char *func_name; 300 /* Out parameters */ 301 u32 ref_obj_id; 302 u8 release_regno; 303 bool r0_rdonly; 304 u32 ret_btf_id; 305 u64 r0_size; 306 u32 subprogno; 307 struct { 308 u64 value; 309 bool found; 310 } arg_constant; 311 312 /* arg_{btf,btf_id,owning_ref} are used by kfunc-specific handling, 313 * generally to pass info about user-defined local kptr types to later 314 * verification logic 315 * bpf_obj_drop/bpf_percpu_obj_drop 316 * Record the local kptr type to be drop'd 317 * bpf_refcount_acquire (via KF_ARG_PTR_TO_REFCOUNTED_KPTR arg type) 318 * Record the local kptr type to be refcount_incr'd and use 319 * arg_owning_ref to determine whether refcount_acquire should be 320 * fallible 321 */ 322 struct btf *arg_btf; 323 u32 arg_btf_id; 324 bool arg_owning_ref; 325 bool arg_prog; 326 327 struct { 328 struct btf_field *field; 329 } arg_list_head; 330 struct { 331 struct btf_field *field; 332 } arg_rbtree_root; 333 struct { 334 enum bpf_dynptr_type type; 335 u32 id; 336 u32 ref_obj_id; 337 } initialized_dynptr; 338 struct { 339 u8 spi; 340 u8 frameno; 341 } iter; 342 struct { 343 struct bpf_map *ptr; 344 int uid; 345 } map; 346 u64 mem_size; 347 }; 348 349 struct btf *btf_vmlinux; 350 351 static const char *btf_type_name(const struct btf *btf, u32 id) 352 { 353 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off); 354 } 355 356 static DEFINE_MUTEX(bpf_verifier_lock); 357 static DEFINE_MUTEX(bpf_percpu_ma_lock); 358 359 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 360 { 361 struct bpf_verifier_env *env = private_data; 362 va_list args; 363 364 if (!bpf_verifier_log_needed(&env->log)) 365 return; 366 367 va_start(args, fmt); 368 bpf_verifier_vlog(&env->log, fmt, args); 369 va_end(args); 370 } 371 372 static void verbose_invalid_scalar(struct bpf_verifier_env *env, 373 struct bpf_reg_state *reg, 374 struct bpf_retval_range range, const char *ctx, 375 const char *reg_name) 376 { 377 bool unknown = true; 378 379 verbose(env, "%s the register %s has", ctx, reg_name); 380 if (reg->smin_value > S64_MIN) { 381 verbose(env, " smin=%lld", reg->smin_value); 382 unknown = false; 383 } 384 if (reg->smax_value < S64_MAX) { 385 verbose(env, " smax=%lld", reg->smax_value); 386 unknown = false; 387 } 388 if (unknown) 389 verbose(env, " unknown scalar value"); 390 verbose(env, " should have been in [%d, %d]\n", range.minval, range.maxval); 391 } 392 393 static bool reg_not_null(const struct bpf_reg_state *reg) 394 { 395 enum bpf_reg_type type; 396 397 type = reg->type; 398 if (type_may_be_null(type)) 399 return false; 400 401 type = base_type(type); 402 return type == PTR_TO_SOCKET || 403 type == PTR_TO_TCP_SOCK || 404 type == PTR_TO_MAP_VALUE || 405 type == PTR_TO_MAP_KEY || 406 type == PTR_TO_SOCK_COMMON || 407 (type == PTR_TO_BTF_ID && is_trusted_reg(reg)) || 408 type == PTR_TO_MEM; 409 } 410 411 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg) 412 { 413 struct btf_record *rec = NULL; 414 struct btf_struct_meta *meta; 415 416 if (reg->type == PTR_TO_MAP_VALUE) { 417 rec = reg->map_ptr->record; 418 } else if (type_is_ptr_alloc_obj(reg->type)) { 419 meta = btf_find_struct_meta(reg->btf, reg->btf_id); 420 if (meta) 421 rec = meta->record; 422 } 423 return rec; 424 } 425 426 static bool subprog_is_global(const struct bpf_verifier_env *env, int subprog) 427 { 428 struct bpf_func_info_aux *aux = env->prog->aux->func_info_aux; 429 430 return aux && aux[subprog].linkage == BTF_FUNC_GLOBAL; 431 } 432 433 static const char *subprog_name(const struct bpf_verifier_env *env, int subprog) 434 { 435 struct bpf_func_info *info; 436 437 if (!env->prog->aux->func_info) 438 return ""; 439 440 info = &env->prog->aux->func_info[subprog]; 441 return btf_type_name(env->prog->aux->btf, info->type_id); 442 } 443 444 static void mark_subprog_exc_cb(struct bpf_verifier_env *env, int subprog) 445 { 446 struct bpf_subprog_info *info = subprog_info(env, subprog); 447 448 info->is_cb = true; 449 info->is_async_cb = true; 450 info->is_exception_cb = true; 451 } 452 453 static bool subprog_is_exc_cb(struct bpf_verifier_env *env, int subprog) 454 { 455 return subprog_info(env, subprog)->is_exception_cb; 456 } 457 458 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 459 { 460 return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK | BPF_RES_SPIN_LOCK); 461 } 462 463 static bool type_is_rdonly_mem(u32 type) 464 { 465 return type & MEM_RDONLY; 466 } 467 468 static bool is_acquire_function(enum bpf_func_id func_id, 469 const struct bpf_map *map) 470 { 471 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; 472 473 if (func_id == BPF_FUNC_sk_lookup_tcp || 474 func_id == BPF_FUNC_sk_lookup_udp || 475 func_id == BPF_FUNC_skc_lookup_tcp || 476 func_id == BPF_FUNC_ringbuf_reserve || 477 func_id == BPF_FUNC_kptr_xchg) 478 return true; 479 480 if (func_id == BPF_FUNC_map_lookup_elem && 481 (map_type == BPF_MAP_TYPE_SOCKMAP || 482 map_type == BPF_MAP_TYPE_SOCKHASH)) 483 return true; 484 485 return false; 486 } 487 488 static bool is_ptr_cast_function(enum bpf_func_id func_id) 489 { 490 return func_id == BPF_FUNC_tcp_sock || 491 func_id == BPF_FUNC_sk_fullsock || 492 func_id == BPF_FUNC_skc_to_tcp_sock || 493 func_id == BPF_FUNC_skc_to_tcp6_sock || 494 func_id == BPF_FUNC_skc_to_udp6_sock || 495 func_id == BPF_FUNC_skc_to_mptcp_sock || 496 func_id == BPF_FUNC_skc_to_tcp_timewait_sock || 497 func_id == BPF_FUNC_skc_to_tcp_request_sock; 498 } 499 500 static bool is_dynptr_ref_function(enum bpf_func_id func_id) 501 { 502 return func_id == BPF_FUNC_dynptr_data; 503 } 504 505 static bool is_sync_callback_calling_kfunc(u32 btf_id); 506 static bool is_async_callback_calling_kfunc(u32 btf_id); 507 static bool is_callback_calling_kfunc(u32 btf_id); 508 static bool is_bpf_throw_kfunc(struct bpf_insn *insn); 509 510 static bool is_bpf_wq_set_callback_impl_kfunc(u32 btf_id); 511 512 static bool is_sync_callback_calling_function(enum bpf_func_id func_id) 513 { 514 return func_id == BPF_FUNC_for_each_map_elem || 515 func_id == BPF_FUNC_find_vma || 516 func_id == BPF_FUNC_loop || 517 func_id == BPF_FUNC_user_ringbuf_drain; 518 } 519 520 static bool is_async_callback_calling_function(enum bpf_func_id func_id) 521 { 522 return func_id == BPF_FUNC_timer_set_callback; 523 } 524 525 static bool is_callback_calling_function(enum bpf_func_id func_id) 526 { 527 return is_sync_callback_calling_function(func_id) || 528 is_async_callback_calling_function(func_id); 529 } 530 531 static bool is_sync_callback_calling_insn(struct bpf_insn *insn) 532 { 533 return (bpf_helper_call(insn) && is_sync_callback_calling_function(insn->imm)) || 534 (bpf_pseudo_kfunc_call(insn) && is_sync_callback_calling_kfunc(insn->imm)); 535 } 536 537 static bool is_async_callback_calling_insn(struct bpf_insn *insn) 538 { 539 return (bpf_helper_call(insn) && is_async_callback_calling_function(insn->imm)) || 540 (bpf_pseudo_kfunc_call(insn) && is_async_callback_calling_kfunc(insn->imm)); 541 } 542 543 static bool is_may_goto_insn(struct bpf_insn *insn) 544 { 545 return insn->code == (BPF_JMP | BPF_JCOND) && insn->src_reg == BPF_MAY_GOTO; 546 } 547 548 static bool is_may_goto_insn_at(struct bpf_verifier_env *env, int insn_idx) 549 { 550 return is_may_goto_insn(&env->prog->insnsi[insn_idx]); 551 } 552 553 static bool is_storage_get_function(enum bpf_func_id func_id) 554 { 555 return func_id == BPF_FUNC_sk_storage_get || 556 func_id == BPF_FUNC_inode_storage_get || 557 func_id == BPF_FUNC_task_storage_get || 558 func_id == BPF_FUNC_cgrp_storage_get; 559 } 560 561 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id, 562 const struct bpf_map *map) 563 { 564 int ref_obj_uses = 0; 565 566 if (is_ptr_cast_function(func_id)) 567 ref_obj_uses++; 568 if (is_acquire_function(func_id, map)) 569 ref_obj_uses++; 570 if (is_dynptr_ref_function(func_id)) 571 ref_obj_uses++; 572 573 return ref_obj_uses > 1; 574 } 575 576 static bool is_cmpxchg_insn(const struct bpf_insn *insn) 577 { 578 return BPF_CLASS(insn->code) == BPF_STX && 579 BPF_MODE(insn->code) == BPF_ATOMIC && 580 insn->imm == BPF_CMPXCHG; 581 } 582 583 static bool is_atomic_load_insn(const struct bpf_insn *insn) 584 { 585 return BPF_CLASS(insn->code) == BPF_STX && 586 BPF_MODE(insn->code) == BPF_ATOMIC && 587 insn->imm == BPF_LOAD_ACQ; 588 } 589 590 static int __get_spi(s32 off) 591 { 592 return (-off - 1) / BPF_REG_SIZE; 593 } 594 595 static struct bpf_func_state *func(struct bpf_verifier_env *env, 596 const struct bpf_reg_state *reg) 597 { 598 struct bpf_verifier_state *cur = env->cur_state; 599 600 return cur->frame[reg->frameno]; 601 } 602 603 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots) 604 { 605 int allocated_slots = state->allocated_stack / BPF_REG_SIZE; 606 607 /* We need to check that slots between [spi - nr_slots + 1, spi] are 608 * within [0, allocated_stack). 609 * 610 * Please note that the spi grows downwards. For example, a dynptr 611 * takes the size of two stack slots; the first slot will be at 612 * spi and the second slot will be at spi - 1. 613 */ 614 return spi - nr_slots + 1 >= 0 && spi < allocated_slots; 615 } 616 617 static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 618 const char *obj_kind, int nr_slots) 619 { 620 int off, spi; 621 622 if (!tnum_is_const(reg->var_off)) { 623 verbose(env, "%s has to be at a constant offset\n", obj_kind); 624 return -EINVAL; 625 } 626 627 off = reg->off + reg->var_off.value; 628 if (off % BPF_REG_SIZE) { 629 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off); 630 return -EINVAL; 631 } 632 633 spi = __get_spi(off); 634 if (spi + 1 < nr_slots) { 635 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off); 636 return -EINVAL; 637 } 638 639 if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots)) 640 return -ERANGE; 641 return spi; 642 } 643 644 static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 645 { 646 return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS); 647 } 648 649 static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots) 650 { 651 return stack_slot_obj_get_spi(env, reg, "iter", nr_slots); 652 } 653 654 static int irq_flag_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 655 { 656 return stack_slot_obj_get_spi(env, reg, "irq_flag", 1); 657 } 658 659 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type) 660 { 661 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) { 662 case DYNPTR_TYPE_LOCAL: 663 return BPF_DYNPTR_TYPE_LOCAL; 664 case DYNPTR_TYPE_RINGBUF: 665 return BPF_DYNPTR_TYPE_RINGBUF; 666 case DYNPTR_TYPE_SKB: 667 return BPF_DYNPTR_TYPE_SKB; 668 case DYNPTR_TYPE_XDP: 669 return BPF_DYNPTR_TYPE_XDP; 670 default: 671 return BPF_DYNPTR_TYPE_INVALID; 672 } 673 } 674 675 static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type) 676 { 677 switch (type) { 678 case BPF_DYNPTR_TYPE_LOCAL: 679 return DYNPTR_TYPE_LOCAL; 680 case BPF_DYNPTR_TYPE_RINGBUF: 681 return DYNPTR_TYPE_RINGBUF; 682 case BPF_DYNPTR_TYPE_SKB: 683 return DYNPTR_TYPE_SKB; 684 case BPF_DYNPTR_TYPE_XDP: 685 return DYNPTR_TYPE_XDP; 686 default: 687 return 0; 688 } 689 } 690 691 static bool dynptr_type_refcounted(enum bpf_dynptr_type type) 692 { 693 return type == BPF_DYNPTR_TYPE_RINGBUF; 694 } 695 696 static void __mark_dynptr_reg(struct bpf_reg_state *reg, 697 enum bpf_dynptr_type type, 698 bool first_slot, int dynptr_id); 699 700 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 701 struct bpf_reg_state *reg); 702 703 static void mark_dynptr_stack_regs(struct bpf_verifier_env *env, 704 struct bpf_reg_state *sreg1, 705 struct bpf_reg_state *sreg2, 706 enum bpf_dynptr_type type) 707 { 708 int id = ++env->id_gen; 709 710 __mark_dynptr_reg(sreg1, type, true, id); 711 __mark_dynptr_reg(sreg2, type, false, id); 712 } 713 714 static void mark_dynptr_cb_reg(struct bpf_verifier_env *env, 715 struct bpf_reg_state *reg, 716 enum bpf_dynptr_type type) 717 { 718 __mark_dynptr_reg(reg, type, true, ++env->id_gen); 719 } 720 721 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, 722 struct bpf_func_state *state, int spi); 723 724 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 725 enum bpf_arg_type arg_type, int insn_idx, int clone_ref_obj_id) 726 { 727 struct bpf_func_state *state = func(env, reg); 728 enum bpf_dynptr_type type; 729 int spi, i, err; 730 731 spi = dynptr_get_spi(env, reg); 732 if (spi < 0) 733 return spi; 734 735 /* We cannot assume both spi and spi - 1 belong to the same dynptr, 736 * hence we need to call destroy_if_dynptr_stack_slot twice for both, 737 * to ensure that for the following example: 738 * [d1][d1][d2][d2] 739 * spi 3 2 1 0 740 * So marking spi = 2 should lead to destruction of both d1 and d2. In 741 * case they do belong to same dynptr, second call won't see slot_type 742 * as STACK_DYNPTR and will simply skip destruction. 743 */ 744 err = destroy_if_dynptr_stack_slot(env, state, spi); 745 if (err) 746 return err; 747 err = destroy_if_dynptr_stack_slot(env, state, spi - 1); 748 if (err) 749 return err; 750 751 for (i = 0; i < BPF_REG_SIZE; i++) { 752 state->stack[spi].slot_type[i] = STACK_DYNPTR; 753 state->stack[spi - 1].slot_type[i] = STACK_DYNPTR; 754 } 755 756 type = arg_to_dynptr_type(arg_type); 757 if (type == BPF_DYNPTR_TYPE_INVALID) 758 return -EINVAL; 759 760 mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr, 761 &state->stack[spi - 1].spilled_ptr, type); 762 763 if (dynptr_type_refcounted(type)) { 764 /* The id is used to track proper releasing */ 765 int id; 766 767 if (clone_ref_obj_id) 768 id = clone_ref_obj_id; 769 else 770 id = acquire_reference(env, insn_idx); 771 772 if (id < 0) 773 return id; 774 775 state->stack[spi].spilled_ptr.ref_obj_id = id; 776 state->stack[spi - 1].spilled_ptr.ref_obj_id = id; 777 } 778 779 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 780 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 781 782 return 0; 783 } 784 785 static void invalidate_dynptr(struct bpf_verifier_env *env, struct bpf_func_state *state, int spi) 786 { 787 int i; 788 789 for (i = 0; i < BPF_REG_SIZE; i++) { 790 state->stack[spi].slot_type[i] = STACK_INVALID; 791 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 792 } 793 794 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); 795 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); 796 797 /* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot? 798 * 799 * While we don't allow reading STACK_INVALID, it is still possible to 800 * do <8 byte writes marking some but not all slots as STACK_MISC. Then, 801 * helpers or insns can do partial read of that part without failing, 802 * but check_stack_range_initialized, check_stack_read_var_off, and 803 * check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of 804 * the slot conservatively. Hence we need to prevent those liveness 805 * marking walks. 806 * 807 * This was not a problem before because STACK_INVALID is only set by 808 * default (where the default reg state has its reg->parent as NULL), or 809 * in clean_live_states after REG_LIVE_DONE (at which point 810 * mark_reg_read won't walk reg->parent chain), but not randomly during 811 * verifier state exploration (like we did above). Hence, for our case 812 * parentage chain will still be live (i.e. reg->parent may be 813 * non-NULL), while earlier reg->parent was NULL, so we need 814 * REG_LIVE_WRITTEN to screen off read marker propagation when it is 815 * done later on reads or by mark_dynptr_read as well to unnecessary 816 * mark registers in verifier state. 817 */ 818 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 819 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 820 } 821 822 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 823 { 824 struct bpf_func_state *state = func(env, reg); 825 int spi, ref_obj_id, i; 826 827 spi = dynptr_get_spi(env, reg); 828 if (spi < 0) 829 return spi; 830 831 if (!dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 832 invalidate_dynptr(env, state, spi); 833 return 0; 834 } 835 836 ref_obj_id = state->stack[spi].spilled_ptr.ref_obj_id; 837 838 /* If the dynptr has a ref_obj_id, then we need to invalidate 839 * two things: 840 * 841 * 1) Any dynptrs with a matching ref_obj_id (clones) 842 * 2) Any slices derived from this dynptr. 843 */ 844 845 /* Invalidate any slices associated with this dynptr */ 846 WARN_ON_ONCE(release_reference(env, ref_obj_id)); 847 848 /* Invalidate any dynptr clones */ 849 for (i = 1; i < state->allocated_stack / BPF_REG_SIZE; i++) { 850 if (state->stack[i].spilled_ptr.ref_obj_id != ref_obj_id) 851 continue; 852 853 /* it should always be the case that if the ref obj id 854 * matches then the stack slot also belongs to a 855 * dynptr 856 */ 857 if (state->stack[i].slot_type[0] != STACK_DYNPTR) { 858 verbose(env, "verifier internal error: misconfigured ref_obj_id\n"); 859 return -EFAULT; 860 } 861 if (state->stack[i].spilled_ptr.dynptr.first_slot) 862 invalidate_dynptr(env, state, i); 863 } 864 865 return 0; 866 } 867 868 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 869 struct bpf_reg_state *reg); 870 871 static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg) 872 { 873 if (!env->allow_ptr_leaks) 874 __mark_reg_not_init(env, reg); 875 else 876 __mark_reg_unknown(env, reg); 877 } 878 879 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, 880 struct bpf_func_state *state, int spi) 881 { 882 struct bpf_func_state *fstate; 883 struct bpf_reg_state *dreg; 884 int i, dynptr_id; 885 886 /* We always ensure that STACK_DYNPTR is never set partially, 887 * hence just checking for slot_type[0] is enough. This is 888 * different for STACK_SPILL, where it may be only set for 889 * 1 byte, so code has to use is_spilled_reg. 890 */ 891 if (state->stack[spi].slot_type[0] != STACK_DYNPTR) 892 return 0; 893 894 /* Reposition spi to first slot */ 895 if (!state->stack[spi].spilled_ptr.dynptr.first_slot) 896 spi = spi + 1; 897 898 if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 899 verbose(env, "cannot overwrite referenced dynptr\n"); 900 return -EINVAL; 901 } 902 903 mark_stack_slot_scratched(env, spi); 904 mark_stack_slot_scratched(env, spi - 1); 905 906 /* Writing partially to one dynptr stack slot destroys both. */ 907 for (i = 0; i < BPF_REG_SIZE; i++) { 908 state->stack[spi].slot_type[i] = STACK_INVALID; 909 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 910 } 911 912 dynptr_id = state->stack[spi].spilled_ptr.id; 913 /* Invalidate any slices associated with this dynptr */ 914 bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({ 915 /* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */ 916 if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM) 917 continue; 918 if (dreg->dynptr_id == dynptr_id) 919 mark_reg_invalid(env, dreg); 920 })); 921 922 /* Do not release reference state, we are destroying dynptr on stack, 923 * not using some helper to release it. Just reset register. 924 */ 925 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); 926 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); 927 928 /* Same reason as unmark_stack_slots_dynptr above */ 929 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 930 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 931 932 return 0; 933 } 934 935 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 936 { 937 int spi; 938 939 if (reg->type == CONST_PTR_TO_DYNPTR) 940 return false; 941 942 spi = dynptr_get_spi(env, reg); 943 944 /* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an 945 * error because this just means the stack state hasn't been updated yet. 946 * We will do check_mem_access to check and update stack bounds later. 947 */ 948 if (spi < 0 && spi != -ERANGE) 949 return false; 950 951 /* We don't need to check if the stack slots are marked by previous 952 * dynptr initializations because we allow overwriting existing unreferenced 953 * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls 954 * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are 955 * touching are completely destructed before we reinitialize them for a new 956 * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early 957 * instead of delaying it until the end where the user will get "Unreleased 958 * reference" error. 959 */ 960 return true; 961 } 962 963 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 964 { 965 struct bpf_func_state *state = func(env, reg); 966 int i, spi; 967 968 /* This already represents first slot of initialized bpf_dynptr. 969 * 970 * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to 971 * check_func_arg_reg_off's logic, so we don't need to check its 972 * offset and alignment. 973 */ 974 if (reg->type == CONST_PTR_TO_DYNPTR) 975 return true; 976 977 spi = dynptr_get_spi(env, reg); 978 if (spi < 0) 979 return false; 980 if (!state->stack[spi].spilled_ptr.dynptr.first_slot) 981 return false; 982 983 for (i = 0; i < BPF_REG_SIZE; i++) { 984 if (state->stack[spi].slot_type[i] != STACK_DYNPTR || 985 state->stack[spi - 1].slot_type[i] != STACK_DYNPTR) 986 return false; 987 } 988 989 return true; 990 } 991 992 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 993 enum bpf_arg_type arg_type) 994 { 995 struct bpf_func_state *state = func(env, reg); 996 enum bpf_dynptr_type dynptr_type; 997 int spi; 998 999 /* ARG_PTR_TO_DYNPTR takes any type of dynptr */ 1000 if (arg_type == ARG_PTR_TO_DYNPTR) 1001 return true; 1002 1003 dynptr_type = arg_to_dynptr_type(arg_type); 1004 if (reg->type == CONST_PTR_TO_DYNPTR) { 1005 return reg->dynptr.type == dynptr_type; 1006 } else { 1007 spi = dynptr_get_spi(env, reg); 1008 if (spi < 0) 1009 return false; 1010 return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type; 1011 } 1012 } 1013 1014 static void __mark_reg_known_zero(struct bpf_reg_state *reg); 1015 1016 static bool in_rcu_cs(struct bpf_verifier_env *env); 1017 1018 static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta); 1019 1020 static int mark_stack_slots_iter(struct bpf_verifier_env *env, 1021 struct bpf_kfunc_call_arg_meta *meta, 1022 struct bpf_reg_state *reg, int insn_idx, 1023 struct btf *btf, u32 btf_id, int nr_slots) 1024 { 1025 struct bpf_func_state *state = func(env, reg); 1026 int spi, i, j, id; 1027 1028 spi = iter_get_spi(env, reg, nr_slots); 1029 if (spi < 0) 1030 return spi; 1031 1032 id = acquire_reference(env, insn_idx); 1033 if (id < 0) 1034 return id; 1035 1036 for (i = 0; i < nr_slots; i++) { 1037 struct bpf_stack_state *slot = &state->stack[spi - i]; 1038 struct bpf_reg_state *st = &slot->spilled_ptr; 1039 1040 __mark_reg_known_zero(st); 1041 st->type = PTR_TO_STACK; /* we don't have dedicated reg type */ 1042 if (is_kfunc_rcu_protected(meta)) { 1043 if (in_rcu_cs(env)) 1044 st->type |= MEM_RCU; 1045 else 1046 st->type |= PTR_UNTRUSTED; 1047 } 1048 st->live |= REG_LIVE_WRITTEN; 1049 st->ref_obj_id = i == 0 ? id : 0; 1050 st->iter.btf = btf; 1051 st->iter.btf_id = btf_id; 1052 st->iter.state = BPF_ITER_STATE_ACTIVE; 1053 st->iter.depth = 0; 1054 1055 for (j = 0; j < BPF_REG_SIZE; j++) 1056 slot->slot_type[j] = STACK_ITER; 1057 1058 mark_stack_slot_scratched(env, spi - i); 1059 } 1060 1061 return 0; 1062 } 1063 1064 static int unmark_stack_slots_iter(struct bpf_verifier_env *env, 1065 struct bpf_reg_state *reg, int nr_slots) 1066 { 1067 struct bpf_func_state *state = func(env, reg); 1068 int spi, i, j; 1069 1070 spi = iter_get_spi(env, reg, nr_slots); 1071 if (spi < 0) 1072 return spi; 1073 1074 for (i = 0; i < nr_slots; i++) { 1075 struct bpf_stack_state *slot = &state->stack[spi - i]; 1076 struct bpf_reg_state *st = &slot->spilled_ptr; 1077 1078 if (i == 0) 1079 WARN_ON_ONCE(release_reference(env, st->ref_obj_id)); 1080 1081 __mark_reg_not_init(env, st); 1082 1083 /* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */ 1084 st->live |= REG_LIVE_WRITTEN; 1085 1086 for (j = 0; j < BPF_REG_SIZE; j++) 1087 slot->slot_type[j] = STACK_INVALID; 1088 1089 mark_stack_slot_scratched(env, spi - i); 1090 } 1091 1092 return 0; 1093 } 1094 1095 static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env, 1096 struct bpf_reg_state *reg, int nr_slots) 1097 { 1098 struct bpf_func_state *state = func(env, reg); 1099 int spi, i, j; 1100 1101 /* For -ERANGE (i.e. spi not falling into allocated stack slots), we 1102 * will do check_mem_access to check and update stack bounds later, so 1103 * return true for that case. 1104 */ 1105 spi = iter_get_spi(env, reg, nr_slots); 1106 if (spi == -ERANGE) 1107 return true; 1108 if (spi < 0) 1109 return false; 1110 1111 for (i = 0; i < nr_slots; i++) { 1112 struct bpf_stack_state *slot = &state->stack[spi - i]; 1113 1114 for (j = 0; j < BPF_REG_SIZE; j++) 1115 if (slot->slot_type[j] == STACK_ITER) 1116 return false; 1117 } 1118 1119 return true; 1120 } 1121 1122 static int is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 1123 struct btf *btf, u32 btf_id, int nr_slots) 1124 { 1125 struct bpf_func_state *state = func(env, reg); 1126 int spi, i, j; 1127 1128 spi = iter_get_spi(env, reg, nr_slots); 1129 if (spi < 0) 1130 return -EINVAL; 1131 1132 for (i = 0; i < nr_slots; i++) { 1133 struct bpf_stack_state *slot = &state->stack[spi - i]; 1134 struct bpf_reg_state *st = &slot->spilled_ptr; 1135 1136 if (st->type & PTR_UNTRUSTED) 1137 return -EPROTO; 1138 /* only main (first) slot has ref_obj_id set */ 1139 if (i == 0 && !st->ref_obj_id) 1140 return -EINVAL; 1141 if (i != 0 && st->ref_obj_id) 1142 return -EINVAL; 1143 if (st->iter.btf != btf || st->iter.btf_id != btf_id) 1144 return -EINVAL; 1145 1146 for (j = 0; j < BPF_REG_SIZE; j++) 1147 if (slot->slot_type[j] != STACK_ITER) 1148 return -EINVAL; 1149 } 1150 1151 return 0; 1152 } 1153 1154 static int acquire_irq_state(struct bpf_verifier_env *env, int insn_idx); 1155 static int release_irq_state(struct bpf_verifier_state *state, int id); 1156 1157 static int mark_stack_slot_irq_flag(struct bpf_verifier_env *env, 1158 struct bpf_kfunc_call_arg_meta *meta, 1159 struct bpf_reg_state *reg, int insn_idx, 1160 int kfunc_class) 1161 { 1162 struct bpf_func_state *state = func(env, reg); 1163 struct bpf_stack_state *slot; 1164 struct bpf_reg_state *st; 1165 int spi, i, id; 1166 1167 spi = irq_flag_get_spi(env, reg); 1168 if (spi < 0) 1169 return spi; 1170 1171 id = acquire_irq_state(env, insn_idx); 1172 if (id < 0) 1173 return id; 1174 1175 slot = &state->stack[spi]; 1176 st = &slot->spilled_ptr; 1177 1178 __mark_reg_known_zero(st); 1179 st->type = PTR_TO_STACK; /* we don't have dedicated reg type */ 1180 st->live |= REG_LIVE_WRITTEN; 1181 st->ref_obj_id = id; 1182 st->irq.kfunc_class = kfunc_class; 1183 1184 for (i = 0; i < BPF_REG_SIZE; i++) 1185 slot->slot_type[i] = STACK_IRQ_FLAG; 1186 1187 mark_stack_slot_scratched(env, spi); 1188 return 0; 1189 } 1190 1191 static int unmark_stack_slot_irq_flag(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 1192 int kfunc_class) 1193 { 1194 struct bpf_func_state *state = func(env, reg); 1195 struct bpf_stack_state *slot; 1196 struct bpf_reg_state *st; 1197 int spi, i, err; 1198 1199 spi = irq_flag_get_spi(env, reg); 1200 if (spi < 0) 1201 return spi; 1202 1203 slot = &state->stack[spi]; 1204 st = &slot->spilled_ptr; 1205 1206 if (st->irq.kfunc_class != kfunc_class) { 1207 const char *flag_kfunc = st->irq.kfunc_class == IRQ_NATIVE_KFUNC ? "native" : "lock"; 1208 const char *used_kfunc = kfunc_class == IRQ_NATIVE_KFUNC ? "native" : "lock"; 1209 1210 verbose(env, "irq flag acquired by %s kfuncs cannot be restored with %s kfuncs\n", 1211 flag_kfunc, used_kfunc); 1212 return -EINVAL; 1213 } 1214 1215 err = release_irq_state(env->cur_state, st->ref_obj_id); 1216 WARN_ON_ONCE(err && err != -EACCES); 1217 if (err) { 1218 int insn_idx = 0; 1219 1220 for (int i = 0; i < env->cur_state->acquired_refs; i++) { 1221 if (env->cur_state->refs[i].id == env->cur_state->active_irq_id) { 1222 insn_idx = env->cur_state->refs[i].insn_idx; 1223 break; 1224 } 1225 } 1226 1227 verbose(env, "cannot restore irq state out of order, expected id=%d acquired at insn_idx=%d\n", 1228 env->cur_state->active_irq_id, insn_idx); 1229 return err; 1230 } 1231 1232 __mark_reg_not_init(env, st); 1233 1234 /* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */ 1235 st->live |= REG_LIVE_WRITTEN; 1236 1237 for (i = 0; i < BPF_REG_SIZE; i++) 1238 slot->slot_type[i] = STACK_INVALID; 1239 1240 mark_stack_slot_scratched(env, spi); 1241 return 0; 1242 } 1243 1244 static bool is_irq_flag_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1245 { 1246 struct bpf_func_state *state = func(env, reg); 1247 struct bpf_stack_state *slot; 1248 int spi, i; 1249 1250 /* For -ERANGE (i.e. spi not falling into allocated stack slots), we 1251 * will do check_mem_access to check and update stack bounds later, so 1252 * return true for that case. 1253 */ 1254 spi = irq_flag_get_spi(env, reg); 1255 if (spi == -ERANGE) 1256 return true; 1257 if (spi < 0) 1258 return false; 1259 1260 slot = &state->stack[spi]; 1261 1262 for (i = 0; i < BPF_REG_SIZE; i++) 1263 if (slot->slot_type[i] == STACK_IRQ_FLAG) 1264 return false; 1265 return true; 1266 } 1267 1268 static int is_irq_flag_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1269 { 1270 struct bpf_func_state *state = func(env, reg); 1271 struct bpf_stack_state *slot; 1272 struct bpf_reg_state *st; 1273 int spi, i; 1274 1275 spi = irq_flag_get_spi(env, reg); 1276 if (spi < 0) 1277 return -EINVAL; 1278 1279 slot = &state->stack[spi]; 1280 st = &slot->spilled_ptr; 1281 1282 if (!st->ref_obj_id) 1283 return -EINVAL; 1284 1285 for (i = 0; i < BPF_REG_SIZE; i++) 1286 if (slot->slot_type[i] != STACK_IRQ_FLAG) 1287 return -EINVAL; 1288 return 0; 1289 } 1290 1291 /* Check if given stack slot is "special": 1292 * - spilled register state (STACK_SPILL); 1293 * - dynptr state (STACK_DYNPTR); 1294 * - iter state (STACK_ITER). 1295 * - irq flag state (STACK_IRQ_FLAG) 1296 */ 1297 static bool is_stack_slot_special(const struct bpf_stack_state *stack) 1298 { 1299 enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1]; 1300 1301 switch (type) { 1302 case STACK_SPILL: 1303 case STACK_DYNPTR: 1304 case STACK_ITER: 1305 case STACK_IRQ_FLAG: 1306 return true; 1307 case STACK_INVALID: 1308 case STACK_MISC: 1309 case STACK_ZERO: 1310 return false; 1311 default: 1312 WARN_ONCE(1, "unknown stack slot type %d\n", type); 1313 return true; 1314 } 1315 } 1316 1317 /* The reg state of a pointer or a bounded scalar was saved when 1318 * it was spilled to the stack. 1319 */ 1320 static bool is_spilled_reg(const struct bpf_stack_state *stack) 1321 { 1322 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL; 1323 } 1324 1325 static bool is_spilled_scalar_reg(const struct bpf_stack_state *stack) 1326 { 1327 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL && 1328 stack->spilled_ptr.type == SCALAR_VALUE; 1329 } 1330 1331 static bool is_spilled_scalar_reg64(const struct bpf_stack_state *stack) 1332 { 1333 return stack->slot_type[0] == STACK_SPILL && 1334 stack->spilled_ptr.type == SCALAR_VALUE; 1335 } 1336 1337 /* Mark stack slot as STACK_MISC, unless it is already STACK_INVALID, in which 1338 * case they are equivalent, or it's STACK_ZERO, in which case we preserve 1339 * more precise STACK_ZERO. 1340 * Regardless of allow_ptr_leaks setting (i.e., privileged or unprivileged 1341 * mode), we won't promote STACK_INVALID to STACK_MISC. In privileged case it is 1342 * unnecessary as both are considered equivalent when loading data and pruning, 1343 * in case of unprivileged mode it will be incorrect to allow reads of invalid 1344 * slots. 1345 */ 1346 static void mark_stack_slot_misc(struct bpf_verifier_env *env, u8 *stype) 1347 { 1348 if (*stype == STACK_ZERO) 1349 return; 1350 if (*stype == STACK_INVALID) 1351 return; 1352 *stype = STACK_MISC; 1353 } 1354 1355 static void scrub_spilled_slot(u8 *stype) 1356 { 1357 if (*stype != STACK_INVALID) 1358 *stype = STACK_MISC; 1359 } 1360 1361 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too 1362 * small to hold src. This is different from krealloc since we don't want to preserve 1363 * the contents of dst. 1364 * 1365 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could 1366 * not be allocated. 1367 */ 1368 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags) 1369 { 1370 size_t alloc_bytes; 1371 void *orig = dst; 1372 size_t bytes; 1373 1374 if (ZERO_OR_NULL_PTR(src)) 1375 goto out; 1376 1377 if (unlikely(check_mul_overflow(n, size, &bytes))) 1378 return NULL; 1379 1380 alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes)); 1381 dst = krealloc(orig, alloc_bytes, flags); 1382 if (!dst) { 1383 kfree(orig); 1384 return NULL; 1385 } 1386 1387 memcpy(dst, src, bytes); 1388 out: 1389 return dst ? dst : ZERO_SIZE_PTR; 1390 } 1391 1392 /* resize an array from old_n items to new_n items. the array is reallocated if it's too 1393 * small to hold new_n items. new items are zeroed out if the array grows. 1394 * 1395 * Contrary to krealloc_array, does not free arr if new_n is zero. 1396 */ 1397 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size) 1398 { 1399 size_t alloc_size; 1400 void *new_arr; 1401 1402 if (!new_n || old_n == new_n) 1403 goto out; 1404 1405 alloc_size = kmalloc_size_roundup(size_mul(new_n, size)); 1406 new_arr = krealloc(arr, alloc_size, GFP_KERNEL); 1407 if (!new_arr) { 1408 kfree(arr); 1409 return NULL; 1410 } 1411 arr = new_arr; 1412 1413 if (new_n > old_n) 1414 memset(arr + old_n * size, 0, (new_n - old_n) * size); 1415 1416 out: 1417 return arr ? arr : ZERO_SIZE_PTR; 1418 } 1419 1420 static int copy_reference_state(struct bpf_verifier_state *dst, const struct bpf_verifier_state *src) 1421 { 1422 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs, 1423 sizeof(struct bpf_reference_state), GFP_KERNEL); 1424 if (!dst->refs) 1425 return -ENOMEM; 1426 1427 dst->acquired_refs = src->acquired_refs; 1428 dst->active_locks = src->active_locks; 1429 dst->active_preempt_locks = src->active_preempt_locks; 1430 dst->active_rcu_lock = src->active_rcu_lock; 1431 dst->active_irq_id = src->active_irq_id; 1432 dst->active_lock_id = src->active_lock_id; 1433 dst->active_lock_ptr = src->active_lock_ptr; 1434 return 0; 1435 } 1436 1437 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1438 { 1439 size_t n = src->allocated_stack / BPF_REG_SIZE; 1440 1441 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state), 1442 GFP_KERNEL); 1443 if (!dst->stack) 1444 return -ENOMEM; 1445 1446 dst->allocated_stack = src->allocated_stack; 1447 return 0; 1448 } 1449 1450 static int resize_reference_state(struct bpf_verifier_state *state, size_t n) 1451 { 1452 state->refs = realloc_array(state->refs, state->acquired_refs, n, 1453 sizeof(struct bpf_reference_state)); 1454 if (!state->refs) 1455 return -ENOMEM; 1456 1457 state->acquired_refs = n; 1458 return 0; 1459 } 1460 1461 /* Possibly update state->allocated_stack to be at least size bytes. Also 1462 * possibly update the function's high-water mark in its bpf_subprog_info. 1463 */ 1464 static int grow_stack_state(struct bpf_verifier_env *env, struct bpf_func_state *state, int size) 1465 { 1466 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n; 1467 1468 /* The stack size is always a multiple of BPF_REG_SIZE. */ 1469 size = round_up(size, BPF_REG_SIZE); 1470 n = size / BPF_REG_SIZE; 1471 1472 if (old_n >= n) 1473 return 0; 1474 1475 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state)); 1476 if (!state->stack) 1477 return -ENOMEM; 1478 1479 state->allocated_stack = size; 1480 1481 /* update known max for given subprogram */ 1482 if (env->subprog_info[state->subprogno].stack_depth < size) 1483 env->subprog_info[state->subprogno].stack_depth = size; 1484 1485 return 0; 1486 } 1487 1488 /* Acquire a pointer id from the env and update the state->refs to include 1489 * this new pointer reference. 1490 * On success, returns a valid pointer id to associate with the register 1491 * On failure, returns a negative errno. 1492 */ 1493 static struct bpf_reference_state *acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 1494 { 1495 struct bpf_verifier_state *state = env->cur_state; 1496 int new_ofs = state->acquired_refs; 1497 int err; 1498 1499 err = resize_reference_state(state, state->acquired_refs + 1); 1500 if (err) 1501 return NULL; 1502 state->refs[new_ofs].insn_idx = insn_idx; 1503 1504 return &state->refs[new_ofs]; 1505 } 1506 1507 static int acquire_reference(struct bpf_verifier_env *env, int insn_idx) 1508 { 1509 struct bpf_reference_state *s; 1510 1511 s = acquire_reference_state(env, insn_idx); 1512 if (!s) 1513 return -ENOMEM; 1514 s->type = REF_TYPE_PTR; 1515 s->id = ++env->id_gen; 1516 return s->id; 1517 } 1518 1519 static int acquire_lock_state(struct bpf_verifier_env *env, int insn_idx, enum ref_state_type type, 1520 int id, void *ptr) 1521 { 1522 struct bpf_verifier_state *state = env->cur_state; 1523 struct bpf_reference_state *s; 1524 1525 s = acquire_reference_state(env, insn_idx); 1526 if (!s) 1527 return -ENOMEM; 1528 s->type = type; 1529 s->id = id; 1530 s->ptr = ptr; 1531 1532 state->active_locks++; 1533 state->active_lock_id = id; 1534 state->active_lock_ptr = ptr; 1535 return 0; 1536 } 1537 1538 static int acquire_irq_state(struct bpf_verifier_env *env, int insn_idx) 1539 { 1540 struct bpf_verifier_state *state = env->cur_state; 1541 struct bpf_reference_state *s; 1542 1543 s = acquire_reference_state(env, insn_idx); 1544 if (!s) 1545 return -ENOMEM; 1546 s->type = REF_TYPE_IRQ; 1547 s->id = ++env->id_gen; 1548 1549 state->active_irq_id = s->id; 1550 return s->id; 1551 } 1552 1553 static void release_reference_state(struct bpf_verifier_state *state, int idx) 1554 { 1555 int last_idx; 1556 size_t rem; 1557 1558 /* IRQ state requires the relative ordering of elements remaining the 1559 * same, since it relies on the refs array to behave as a stack, so that 1560 * it can detect out-of-order IRQ restore. Hence use memmove to shift 1561 * the array instead of swapping the final element into the deleted idx. 1562 */ 1563 last_idx = state->acquired_refs - 1; 1564 rem = state->acquired_refs - idx - 1; 1565 if (last_idx && idx != last_idx) 1566 memmove(&state->refs[idx], &state->refs[idx + 1], sizeof(*state->refs) * rem); 1567 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 1568 state->acquired_refs--; 1569 return; 1570 } 1571 1572 static bool find_reference_state(struct bpf_verifier_state *state, int ptr_id) 1573 { 1574 int i; 1575 1576 for (i = 0; i < state->acquired_refs; i++) 1577 if (state->refs[i].id == ptr_id) 1578 return true; 1579 1580 return false; 1581 } 1582 1583 static int release_lock_state(struct bpf_verifier_state *state, int type, int id, void *ptr) 1584 { 1585 void *prev_ptr = NULL; 1586 u32 prev_id = 0; 1587 int i; 1588 1589 for (i = 0; i < state->acquired_refs; i++) { 1590 if (state->refs[i].type == type && state->refs[i].id == id && 1591 state->refs[i].ptr == ptr) { 1592 release_reference_state(state, i); 1593 state->active_locks--; 1594 /* Reassign active lock (id, ptr). */ 1595 state->active_lock_id = prev_id; 1596 state->active_lock_ptr = prev_ptr; 1597 return 0; 1598 } 1599 if (state->refs[i].type & REF_TYPE_LOCK_MASK) { 1600 prev_id = state->refs[i].id; 1601 prev_ptr = state->refs[i].ptr; 1602 } 1603 } 1604 return -EINVAL; 1605 } 1606 1607 static int release_irq_state(struct bpf_verifier_state *state, int id) 1608 { 1609 u32 prev_id = 0; 1610 int i; 1611 1612 if (id != state->active_irq_id) 1613 return -EACCES; 1614 1615 for (i = 0; i < state->acquired_refs; i++) { 1616 if (state->refs[i].type != REF_TYPE_IRQ) 1617 continue; 1618 if (state->refs[i].id == id) { 1619 release_reference_state(state, i); 1620 state->active_irq_id = prev_id; 1621 return 0; 1622 } else { 1623 prev_id = state->refs[i].id; 1624 } 1625 } 1626 return -EINVAL; 1627 } 1628 1629 static struct bpf_reference_state *find_lock_state(struct bpf_verifier_state *state, enum ref_state_type type, 1630 int id, void *ptr) 1631 { 1632 int i; 1633 1634 for (i = 0; i < state->acquired_refs; i++) { 1635 struct bpf_reference_state *s = &state->refs[i]; 1636 1637 if (!(s->type & type)) 1638 continue; 1639 1640 if (s->id == id && s->ptr == ptr) 1641 return s; 1642 } 1643 return NULL; 1644 } 1645 1646 static void update_peak_states(struct bpf_verifier_env *env) 1647 { 1648 u32 cur_states; 1649 1650 cur_states = env->explored_states_size + env->free_list_size; 1651 env->peak_states = max(env->peak_states, cur_states); 1652 } 1653 1654 static void free_func_state(struct bpf_func_state *state) 1655 { 1656 if (!state) 1657 return; 1658 kfree(state->stack); 1659 kfree(state); 1660 } 1661 1662 static void free_verifier_state(struct bpf_verifier_state *state, 1663 bool free_self) 1664 { 1665 int i; 1666 1667 for (i = 0; i <= state->curframe; i++) { 1668 free_func_state(state->frame[i]); 1669 state->frame[i] = NULL; 1670 } 1671 kfree(state->refs); 1672 if (free_self) 1673 kfree(state); 1674 } 1675 1676 /* struct bpf_verifier_state->{parent,loop_entry} refer to states 1677 * that are in either of env->{expored_states,free_list}. 1678 * In both cases the state is contained in struct bpf_verifier_state_list. 1679 */ 1680 static struct bpf_verifier_state_list *state_parent_as_list(struct bpf_verifier_state *st) 1681 { 1682 if (st->parent) 1683 return container_of(st->parent, struct bpf_verifier_state_list, state); 1684 return NULL; 1685 } 1686 1687 static struct bpf_verifier_state_list *state_loop_entry_as_list(struct bpf_verifier_state *st) 1688 { 1689 if (st->loop_entry) 1690 return container_of(st->loop_entry, struct bpf_verifier_state_list, state); 1691 return NULL; 1692 } 1693 1694 /* A state can be freed if it is no longer referenced: 1695 * - is in the env->free_list; 1696 * - has no children states; 1697 * - is not used as loop_entry. 1698 * 1699 * Freeing a state can make it's loop_entry free-able. 1700 */ 1701 static void maybe_free_verifier_state(struct bpf_verifier_env *env, 1702 struct bpf_verifier_state_list *sl) 1703 { 1704 struct bpf_verifier_state_list *loop_entry_sl; 1705 1706 while (sl && sl->in_free_list && 1707 sl->state.branches == 0 && 1708 sl->state.used_as_loop_entry == 0) { 1709 loop_entry_sl = state_loop_entry_as_list(&sl->state); 1710 if (loop_entry_sl) 1711 loop_entry_sl->state.used_as_loop_entry--; 1712 list_del(&sl->node); 1713 free_verifier_state(&sl->state, false); 1714 kfree(sl); 1715 env->free_list_size--; 1716 sl = loop_entry_sl; 1717 } 1718 } 1719 1720 /* copy verifier state from src to dst growing dst stack space 1721 * when necessary to accommodate larger src stack 1722 */ 1723 static int copy_func_state(struct bpf_func_state *dst, 1724 const struct bpf_func_state *src) 1725 { 1726 memcpy(dst, src, offsetof(struct bpf_func_state, stack)); 1727 return copy_stack_state(dst, src); 1728 } 1729 1730 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 1731 const struct bpf_verifier_state *src) 1732 { 1733 struct bpf_func_state *dst; 1734 int i, err; 1735 1736 /* if dst has more stack frames then src frame, free them, this is also 1737 * necessary in case of exceptional exits using bpf_throw. 1738 */ 1739 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 1740 free_func_state(dst_state->frame[i]); 1741 dst_state->frame[i] = NULL; 1742 } 1743 err = copy_reference_state(dst_state, src); 1744 if (err) 1745 return err; 1746 dst_state->speculative = src->speculative; 1747 dst_state->in_sleepable = src->in_sleepable; 1748 dst_state->curframe = src->curframe; 1749 dst_state->branches = src->branches; 1750 dst_state->parent = src->parent; 1751 dst_state->first_insn_idx = src->first_insn_idx; 1752 dst_state->last_insn_idx = src->last_insn_idx; 1753 dst_state->insn_hist_start = src->insn_hist_start; 1754 dst_state->insn_hist_end = src->insn_hist_end; 1755 dst_state->dfs_depth = src->dfs_depth; 1756 dst_state->callback_unroll_depth = src->callback_unroll_depth; 1757 dst_state->used_as_loop_entry = src->used_as_loop_entry; 1758 dst_state->may_goto_depth = src->may_goto_depth; 1759 dst_state->loop_entry = src->loop_entry; 1760 for (i = 0; i <= src->curframe; i++) { 1761 dst = dst_state->frame[i]; 1762 if (!dst) { 1763 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 1764 if (!dst) 1765 return -ENOMEM; 1766 dst_state->frame[i] = dst; 1767 } 1768 err = copy_func_state(dst, src->frame[i]); 1769 if (err) 1770 return err; 1771 } 1772 return 0; 1773 } 1774 1775 static u32 state_htab_size(struct bpf_verifier_env *env) 1776 { 1777 return env->prog->len; 1778 } 1779 1780 static struct list_head *explored_state(struct bpf_verifier_env *env, int idx) 1781 { 1782 struct bpf_verifier_state *cur = env->cur_state; 1783 struct bpf_func_state *state = cur->frame[cur->curframe]; 1784 1785 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 1786 } 1787 1788 static bool same_callsites(struct bpf_verifier_state *a, struct bpf_verifier_state *b) 1789 { 1790 int fr; 1791 1792 if (a->curframe != b->curframe) 1793 return false; 1794 1795 for (fr = a->curframe; fr >= 0; fr--) 1796 if (a->frame[fr]->callsite != b->frame[fr]->callsite) 1797 return false; 1798 1799 return true; 1800 } 1801 1802 /* Open coded iterators allow back-edges in the state graph in order to 1803 * check unbounded loops that iterators. 1804 * 1805 * In is_state_visited() it is necessary to know if explored states are 1806 * part of some loops in order to decide whether non-exact states 1807 * comparison could be used: 1808 * - non-exact states comparison establishes sub-state relation and uses 1809 * read and precision marks to do so, these marks are propagated from 1810 * children states and thus are not guaranteed to be final in a loop; 1811 * - exact states comparison just checks if current and explored states 1812 * are identical (and thus form a back-edge). 1813 * 1814 * Paper "A New Algorithm for Identifying Loops in Decompilation" 1815 * by Tao Wei, Jian Mao, Wei Zou and Yu Chen [1] presents a convenient 1816 * algorithm for loop structure detection and gives an overview of 1817 * relevant terminology. It also has helpful illustrations. 1818 * 1819 * [1] https://api.semanticscholar.org/CorpusID:15784067 1820 * 1821 * We use a similar algorithm but because loop nested structure is 1822 * irrelevant for verifier ours is significantly simpler and resembles 1823 * strongly connected components algorithm from Sedgewick's textbook. 1824 * 1825 * Define topmost loop entry as a first node of the loop traversed in a 1826 * depth first search starting from initial state. The goal of the loop 1827 * tracking algorithm is to associate topmost loop entries with states 1828 * derived from these entries. 1829 * 1830 * For each step in the DFS states traversal algorithm needs to identify 1831 * the following situations: 1832 * 1833 * initial initial initial 1834 * | | | 1835 * V V V 1836 * ... ... .---------> hdr 1837 * | | | | 1838 * V V | V 1839 * cur .-> succ | .------... 1840 * | | | | | | 1841 * V | V | V V 1842 * succ '-- cur | ... ... 1843 * | | | 1844 * | V V 1845 * | succ <- cur 1846 * | | 1847 * | V 1848 * | ... 1849 * | | 1850 * '----' 1851 * 1852 * (A) successor state of cur (B) successor state of cur or it's entry 1853 * not yet traversed are in current DFS path, thus cur and succ 1854 * are members of the same outermost loop 1855 * 1856 * initial initial 1857 * | | 1858 * V V 1859 * ... ... 1860 * | | 1861 * V V 1862 * .------... .------... 1863 * | | | | 1864 * V V V V 1865 * .-> hdr ... ... ... 1866 * | | | | | 1867 * | V V V V 1868 * | succ <- cur succ <- cur 1869 * | | | 1870 * | V V 1871 * | ... ... 1872 * | | | 1873 * '----' exit 1874 * 1875 * (C) successor state of cur is a part of some loop but this loop 1876 * does not include cur or successor state is not in a loop at all. 1877 * 1878 * Algorithm could be described as the following python code: 1879 * 1880 * traversed = set() # Set of traversed nodes 1881 * entries = {} # Mapping from node to loop entry 1882 * depths = {} # Depth level assigned to graph node 1883 * path = set() # Current DFS path 1884 * 1885 * # Find outermost loop entry known for n 1886 * def get_loop_entry(n): 1887 * h = entries.get(n, None) 1888 * while h in entries: 1889 * h = entries[h] 1890 * return h 1891 * 1892 * # Update n's loop entry if h comes before n in current DFS path. 1893 * def update_loop_entry(n, h): 1894 * if h in path and depths[entries.get(n, n)] < depths[n]: 1895 * entries[n] = h1 1896 * 1897 * def dfs(n, depth): 1898 * traversed.add(n) 1899 * path.add(n) 1900 * depths[n] = depth 1901 * for succ in G.successors(n): 1902 * if succ not in traversed: 1903 * # Case A: explore succ and update cur's loop entry 1904 * # only if succ's entry is in current DFS path. 1905 * dfs(succ, depth + 1) 1906 * h = entries.get(succ, None) 1907 * update_loop_entry(n, h) 1908 * else: 1909 * # Case B or C depending on `h1 in path` check in update_loop_entry(). 1910 * update_loop_entry(n, succ) 1911 * path.remove(n) 1912 * 1913 * To adapt this algorithm for use with verifier: 1914 * - use st->branch == 0 as a signal that DFS of succ had been finished 1915 * and cur's loop entry has to be updated (case A), handle this in 1916 * update_branch_counts(); 1917 * - use st->branch > 0 as a signal that st is in the current DFS path; 1918 * - handle cases B and C in is_state_visited(). 1919 */ 1920 static struct bpf_verifier_state *get_loop_entry(struct bpf_verifier_env *env, 1921 struct bpf_verifier_state *st) 1922 { 1923 struct bpf_verifier_state *topmost = st->loop_entry; 1924 u32 steps = 0; 1925 1926 while (topmost && topmost->loop_entry) { 1927 if (verifier_bug_if(steps++ > st->dfs_depth, env, "infinite loop")) 1928 return ERR_PTR(-EFAULT); 1929 topmost = topmost->loop_entry; 1930 } 1931 return topmost; 1932 } 1933 1934 static void update_loop_entry(struct bpf_verifier_env *env, 1935 struct bpf_verifier_state *cur, struct bpf_verifier_state *hdr) 1936 { 1937 /* The hdr->branches check decides between cases B and C in 1938 * comment for get_loop_entry(). If hdr->branches == 0 then 1939 * head's topmost loop entry is not in current DFS path, 1940 * hence 'cur' and 'hdr' are not in the same loop and there is 1941 * no need to update cur->loop_entry. 1942 */ 1943 if (hdr->branches && hdr->dfs_depth < (cur->loop_entry ?: cur)->dfs_depth) { 1944 if (cur->loop_entry) { 1945 cur->loop_entry->used_as_loop_entry--; 1946 maybe_free_verifier_state(env, state_loop_entry_as_list(cur)); 1947 } 1948 cur->loop_entry = hdr; 1949 hdr->used_as_loop_entry++; 1950 } 1951 } 1952 1953 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 1954 { 1955 struct bpf_verifier_state_list *sl = NULL, *parent_sl; 1956 struct bpf_verifier_state *parent; 1957 1958 while (st) { 1959 u32 br = --st->branches; 1960 1961 /* br == 0 signals that DFS exploration for 'st' is finished, 1962 * thus it is necessary to update parent's loop entry if it 1963 * turned out that st is a part of some loop. 1964 * This is a part of 'case A' in get_loop_entry() comment. 1965 */ 1966 if (br == 0 && st->parent && st->loop_entry) 1967 update_loop_entry(env, st->parent, st->loop_entry); 1968 1969 /* WARN_ON(br > 1) technically makes sense here, 1970 * but see comment in push_stack(), hence: 1971 */ 1972 WARN_ONCE((int)br < 0, 1973 "BUG update_branch_counts:branches_to_explore=%d\n", 1974 br); 1975 if (br) 1976 break; 1977 parent = st->parent; 1978 parent_sl = state_parent_as_list(st); 1979 if (sl) 1980 maybe_free_verifier_state(env, sl); 1981 st = parent; 1982 sl = parent_sl; 1983 } 1984 } 1985 1986 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 1987 int *insn_idx, bool pop_log) 1988 { 1989 struct bpf_verifier_state *cur = env->cur_state; 1990 struct bpf_verifier_stack_elem *elem, *head = env->head; 1991 int err; 1992 1993 if (env->head == NULL) 1994 return -ENOENT; 1995 1996 if (cur) { 1997 err = copy_verifier_state(cur, &head->st); 1998 if (err) 1999 return err; 2000 } 2001 if (pop_log) 2002 bpf_vlog_reset(&env->log, head->log_pos); 2003 if (insn_idx) 2004 *insn_idx = head->insn_idx; 2005 if (prev_insn_idx) 2006 *prev_insn_idx = head->prev_insn_idx; 2007 elem = head->next; 2008 free_verifier_state(&head->st, false); 2009 kfree(head); 2010 env->head = elem; 2011 env->stack_size--; 2012 return 0; 2013 } 2014 2015 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 2016 int insn_idx, int prev_insn_idx, 2017 bool speculative) 2018 { 2019 struct bpf_verifier_state *cur = env->cur_state; 2020 struct bpf_verifier_stack_elem *elem; 2021 int err; 2022 2023 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 2024 if (!elem) 2025 goto err; 2026 2027 elem->insn_idx = insn_idx; 2028 elem->prev_insn_idx = prev_insn_idx; 2029 elem->next = env->head; 2030 elem->log_pos = env->log.end_pos; 2031 env->head = elem; 2032 env->stack_size++; 2033 err = copy_verifier_state(&elem->st, cur); 2034 if (err) 2035 goto err; 2036 elem->st.speculative |= speculative; 2037 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 2038 verbose(env, "The sequence of %d jumps is too complex.\n", 2039 env->stack_size); 2040 goto err; 2041 } 2042 if (elem->st.parent) { 2043 ++elem->st.parent->branches; 2044 /* WARN_ON(branches > 2) technically makes sense here, 2045 * but 2046 * 1. speculative states will bump 'branches' for non-branch 2047 * instructions 2048 * 2. is_state_visited() heuristics may decide not to create 2049 * a new state for a sequence of branches and all such current 2050 * and cloned states will be pointing to a single parent state 2051 * which might have large 'branches' count. 2052 */ 2053 } 2054 return &elem->st; 2055 err: 2056 free_verifier_state(env->cur_state, true); 2057 env->cur_state = NULL; 2058 /* pop all elements and return */ 2059 while (!pop_stack(env, NULL, NULL, false)); 2060 return NULL; 2061 } 2062 2063 #define CALLER_SAVED_REGS 6 2064 static const int caller_saved[CALLER_SAVED_REGS] = { 2065 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 2066 }; 2067 2068 /* This helper doesn't clear reg->id */ 2069 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm) 2070 { 2071 reg->var_off = tnum_const(imm); 2072 reg->smin_value = (s64)imm; 2073 reg->smax_value = (s64)imm; 2074 reg->umin_value = imm; 2075 reg->umax_value = imm; 2076 2077 reg->s32_min_value = (s32)imm; 2078 reg->s32_max_value = (s32)imm; 2079 reg->u32_min_value = (u32)imm; 2080 reg->u32_max_value = (u32)imm; 2081 } 2082 2083 /* Mark the unknown part of a register (variable offset or scalar value) as 2084 * known to have the value @imm. 2085 */ 2086 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 2087 { 2088 /* Clear off and union(map_ptr, range) */ 2089 memset(((u8 *)reg) + sizeof(reg->type), 0, 2090 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 2091 reg->id = 0; 2092 reg->ref_obj_id = 0; 2093 ___mark_reg_known(reg, imm); 2094 } 2095 2096 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 2097 { 2098 reg->var_off = tnum_const_subreg(reg->var_off, imm); 2099 reg->s32_min_value = (s32)imm; 2100 reg->s32_max_value = (s32)imm; 2101 reg->u32_min_value = (u32)imm; 2102 reg->u32_max_value = (u32)imm; 2103 } 2104 2105 /* Mark the 'variable offset' part of a register as zero. This should be 2106 * used only on registers holding a pointer type. 2107 */ 2108 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 2109 { 2110 __mark_reg_known(reg, 0); 2111 } 2112 2113 static void __mark_reg_const_zero(const struct bpf_verifier_env *env, struct bpf_reg_state *reg) 2114 { 2115 __mark_reg_known(reg, 0); 2116 reg->type = SCALAR_VALUE; 2117 /* all scalars are assumed imprecise initially (unless unprivileged, 2118 * in which case everything is forced to be precise) 2119 */ 2120 reg->precise = !env->bpf_capable; 2121 } 2122 2123 static void mark_reg_known_zero(struct bpf_verifier_env *env, 2124 struct bpf_reg_state *regs, u32 regno) 2125 { 2126 if (WARN_ON(regno >= MAX_BPF_REG)) { 2127 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 2128 /* Something bad happened, let's kill all regs */ 2129 for (regno = 0; regno < MAX_BPF_REG; regno++) 2130 __mark_reg_not_init(env, regs + regno); 2131 return; 2132 } 2133 __mark_reg_known_zero(regs + regno); 2134 } 2135 2136 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type, 2137 bool first_slot, int dynptr_id) 2138 { 2139 /* reg->type has no meaning for STACK_DYNPTR, but when we set reg for 2140 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply 2141 * set it unconditionally as it is ignored for STACK_DYNPTR anyway. 2142 */ 2143 __mark_reg_known_zero(reg); 2144 reg->type = CONST_PTR_TO_DYNPTR; 2145 /* Give each dynptr a unique id to uniquely associate slices to it. */ 2146 reg->id = dynptr_id; 2147 reg->dynptr.type = type; 2148 reg->dynptr.first_slot = first_slot; 2149 } 2150 2151 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg) 2152 { 2153 if (base_type(reg->type) == PTR_TO_MAP_VALUE) { 2154 const struct bpf_map *map = reg->map_ptr; 2155 2156 if (map->inner_map_meta) { 2157 reg->type = CONST_PTR_TO_MAP; 2158 reg->map_ptr = map->inner_map_meta; 2159 /* transfer reg's id which is unique for every map_lookup_elem 2160 * as UID of the inner map. 2161 */ 2162 if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER)) 2163 reg->map_uid = reg->id; 2164 if (btf_record_has_field(map->inner_map_meta->record, BPF_WORKQUEUE)) 2165 reg->map_uid = reg->id; 2166 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { 2167 reg->type = PTR_TO_XDP_SOCK; 2168 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || 2169 map->map_type == BPF_MAP_TYPE_SOCKHASH) { 2170 reg->type = PTR_TO_SOCKET; 2171 } else { 2172 reg->type = PTR_TO_MAP_VALUE; 2173 } 2174 return; 2175 } 2176 2177 reg->type &= ~PTR_MAYBE_NULL; 2178 } 2179 2180 static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno, 2181 struct btf_field_graph_root *ds_head) 2182 { 2183 __mark_reg_known_zero(®s[regno]); 2184 regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC; 2185 regs[regno].btf = ds_head->btf; 2186 regs[regno].btf_id = ds_head->value_btf_id; 2187 regs[regno].off = ds_head->node_offset; 2188 } 2189 2190 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 2191 { 2192 return type_is_pkt_pointer(reg->type); 2193 } 2194 2195 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 2196 { 2197 return reg_is_pkt_pointer(reg) || 2198 reg->type == PTR_TO_PACKET_END; 2199 } 2200 2201 static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg) 2202 { 2203 return base_type(reg->type) == PTR_TO_MEM && 2204 (reg->type & DYNPTR_TYPE_SKB || reg->type & DYNPTR_TYPE_XDP); 2205 } 2206 2207 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 2208 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 2209 enum bpf_reg_type which) 2210 { 2211 /* The register can already have a range from prior markings. 2212 * This is fine as long as it hasn't been advanced from its 2213 * origin. 2214 */ 2215 return reg->type == which && 2216 reg->id == 0 && 2217 reg->off == 0 && 2218 tnum_equals_const(reg->var_off, 0); 2219 } 2220 2221 /* Reset the min/max bounds of a register */ 2222 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 2223 { 2224 reg->smin_value = S64_MIN; 2225 reg->smax_value = S64_MAX; 2226 reg->umin_value = 0; 2227 reg->umax_value = U64_MAX; 2228 2229 reg->s32_min_value = S32_MIN; 2230 reg->s32_max_value = S32_MAX; 2231 reg->u32_min_value = 0; 2232 reg->u32_max_value = U32_MAX; 2233 } 2234 2235 static void __mark_reg64_unbounded(struct bpf_reg_state *reg) 2236 { 2237 reg->smin_value = S64_MIN; 2238 reg->smax_value = S64_MAX; 2239 reg->umin_value = 0; 2240 reg->umax_value = U64_MAX; 2241 } 2242 2243 static void __mark_reg32_unbounded(struct bpf_reg_state *reg) 2244 { 2245 reg->s32_min_value = S32_MIN; 2246 reg->s32_max_value = S32_MAX; 2247 reg->u32_min_value = 0; 2248 reg->u32_max_value = U32_MAX; 2249 } 2250 2251 static void __update_reg32_bounds(struct bpf_reg_state *reg) 2252 { 2253 struct tnum var32_off = tnum_subreg(reg->var_off); 2254 2255 /* min signed is max(sign bit) | min(other bits) */ 2256 reg->s32_min_value = max_t(s32, reg->s32_min_value, 2257 var32_off.value | (var32_off.mask & S32_MIN)); 2258 /* max signed is min(sign bit) | max(other bits) */ 2259 reg->s32_max_value = min_t(s32, reg->s32_max_value, 2260 var32_off.value | (var32_off.mask & S32_MAX)); 2261 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 2262 reg->u32_max_value = min(reg->u32_max_value, 2263 (u32)(var32_off.value | var32_off.mask)); 2264 } 2265 2266 static void __update_reg64_bounds(struct bpf_reg_state *reg) 2267 { 2268 /* min signed is max(sign bit) | min(other bits) */ 2269 reg->smin_value = max_t(s64, reg->smin_value, 2270 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 2271 /* max signed is min(sign bit) | max(other bits) */ 2272 reg->smax_value = min_t(s64, reg->smax_value, 2273 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 2274 reg->umin_value = max(reg->umin_value, reg->var_off.value); 2275 reg->umax_value = min(reg->umax_value, 2276 reg->var_off.value | reg->var_off.mask); 2277 } 2278 2279 static void __update_reg_bounds(struct bpf_reg_state *reg) 2280 { 2281 __update_reg32_bounds(reg); 2282 __update_reg64_bounds(reg); 2283 } 2284 2285 /* Uses signed min/max values to inform unsigned, and vice-versa */ 2286 static void __reg32_deduce_bounds(struct bpf_reg_state *reg) 2287 { 2288 /* If upper 32 bits of u64/s64 range don't change, we can use lower 32 2289 * bits to improve our u32/s32 boundaries. 2290 * 2291 * E.g., the case where we have upper 32 bits as zero ([10, 20] in 2292 * u64) is pretty trivial, it's obvious that in u32 we'll also have 2293 * [10, 20] range. But this property holds for any 64-bit range as 2294 * long as upper 32 bits in that entire range of values stay the same. 2295 * 2296 * E.g., u64 range [0x10000000A, 0x10000000F] ([4294967306, 4294967311] 2297 * in decimal) has the same upper 32 bits throughout all the values in 2298 * that range. As such, lower 32 bits form a valid [0xA, 0xF] ([10, 15]) 2299 * range. 2300 * 2301 * Note also, that [0xA, 0xF] is a valid range both in u32 and in s32, 2302 * following the rules outlined below about u64/s64 correspondence 2303 * (which equally applies to u32 vs s32 correspondence). In general it 2304 * depends on actual hexadecimal values of 32-bit range. They can form 2305 * only valid u32, or only valid s32 ranges in some cases. 2306 * 2307 * So we use all these insights to derive bounds for subregisters here. 2308 */ 2309 if ((reg->umin_value >> 32) == (reg->umax_value >> 32)) { 2310 /* u64 to u32 casting preserves validity of low 32 bits as 2311 * a range, if upper 32 bits are the same 2312 */ 2313 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)reg->umin_value); 2314 reg->u32_max_value = min_t(u32, reg->u32_max_value, (u32)reg->umax_value); 2315 2316 if ((s32)reg->umin_value <= (s32)reg->umax_value) { 2317 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->umin_value); 2318 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->umax_value); 2319 } 2320 } 2321 if ((reg->smin_value >> 32) == (reg->smax_value >> 32)) { 2322 /* low 32 bits should form a proper u32 range */ 2323 if ((u32)reg->smin_value <= (u32)reg->smax_value) { 2324 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)reg->smin_value); 2325 reg->u32_max_value = min_t(u32, reg->u32_max_value, (u32)reg->smax_value); 2326 } 2327 /* low 32 bits should form a proper s32 range */ 2328 if ((s32)reg->smin_value <= (s32)reg->smax_value) { 2329 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->smin_value); 2330 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->smax_value); 2331 } 2332 } 2333 /* Special case where upper bits form a small sequence of two 2334 * sequential numbers (in 32-bit unsigned space, so 0xffffffff to 2335 * 0x00000000 is also valid), while lower bits form a proper s32 range 2336 * going from negative numbers to positive numbers. E.g., let's say we 2337 * have s64 range [-1, 1] ([0xffffffffffffffff, 0x0000000000000001]). 2338 * Possible s64 values are {-1, 0, 1} ({0xffffffffffffffff, 2339 * 0x0000000000000000, 0x00000000000001}). Ignoring upper 32 bits, 2340 * we still get a valid s32 range [-1, 1] ([0xffffffff, 0x00000001]). 2341 * Note that it doesn't have to be 0xffffffff going to 0x00000000 in 2342 * upper 32 bits. As a random example, s64 range 2343 * [0xfffffff0fffffff0; 0xfffffff100000010], forms a valid s32 range 2344 * [-16, 16] ([0xfffffff0; 0x00000010]) in its 32 bit subregister. 2345 */ 2346 if ((u32)(reg->umin_value >> 32) + 1 == (u32)(reg->umax_value >> 32) && 2347 (s32)reg->umin_value < 0 && (s32)reg->umax_value >= 0) { 2348 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->umin_value); 2349 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->umax_value); 2350 } 2351 if ((u32)(reg->smin_value >> 32) + 1 == (u32)(reg->smax_value >> 32) && 2352 (s32)reg->smin_value < 0 && (s32)reg->smax_value >= 0) { 2353 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->smin_value); 2354 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->smax_value); 2355 } 2356 /* if u32 range forms a valid s32 range (due to matching sign bit), 2357 * try to learn from that 2358 */ 2359 if ((s32)reg->u32_min_value <= (s32)reg->u32_max_value) { 2360 reg->s32_min_value = max_t(s32, reg->s32_min_value, reg->u32_min_value); 2361 reg->s32_max_value = min_t(s32, reg->s32_max_value, reg->u32_max_value); 2362 } 2363 /* If we cannot cross the sign boundary, then signed and unsigned bounds 2364 * are the same, so combine. This works even in the negative case, e.g. 2365 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 2366 */ 2367 if ((u32)reg->s32_min_value <= (u32)reg->s32_max_value) { 2368 reg->u32_min_value = max_t(u32, reg->s32_min_value, reg->u32_min_value); 2369 reg->u32_max_value = min_t(u32, reg->s32_max_value, reg->u32_max_value); 2370 } 2371 } 2372 2373 static void __reg64_deduce_bounds(struct bpf_reg_state *reg) 2374 { 2375 /* If u64 range forms a valid s64 range (due to matching sign bit), 2376 * try to learn from that. Let's do a bit of ASCII art to see when 2377 * this is happening. Let's take u64 range first: 2378 * 2379 * 0 0x7fffffffffffffff 0x8000000000000000 U64_MAX 2380 * |-------------------------------|--------------------------------| 2381 * 2382 * Valid u64 range is formed when umin and umax are anywhere in the 2383 * range [0, U64_MAX], and umin <= umax. u64 case is simple and 2384 * straightforward. Let's see how s64 range maps onto the same range 2385 * of values, annotated below the line for comparison: 2386 * 2387 * 0 0x7fffffffffffffff 0x8000000000000000 U64_MAX 2388 * |-------------------------------|--------------------------------| 2389 * 0 S64_MAX S64_MIN -1 2390 * 2391 * So s64 values basically start in the middle and they are logically 2392 * contiguous to the right of it, wrapping around from -1 to 0, and 2393 * then finishing as S64_MAX (0x7fffffffffffffff) right before 2394 * S64_MIN. We can try drawing the continuity of u64 vs s64 values 2395 * more visually as mapped to sign-agnostic range of hex values. 2396 * 2397 * u64 start u64 end 2398 * _______________________________________________________________ 2399 * / \ 2400 * 0 0x7fffffffffffffff 0x8000000000000000 U64_MAX 2401 * |-------------------------------|--------------------------------| 2402 * 0 S64_MAX S64_MIN -1 2403 * / \ 2404 * >------------------------------ -------------------------------> 2405 * s64 continues... s64 end s64 start s64 "midpoint" 2406 * 2407 * What this means is that, in general, we can't always derive 2408 * something new about u64 from any random s64 range, and vice versa. 2409 * 2410 * But we can do that in two particular cases. One is when entire 2411 * u64/s64 range is *entirely* contained within left half of the above 2412 * diagram or when it is *entirely* contained in the right half. I.e.: 2413 * 2414 * |-------------------------------|--------------------------------| 2415 * ^ ^ ^ ^ 2416 * A B C D 2417 * 2418 * [A, B] and [C, D] are contained entirely in their respective halves 2419 * and form valid contiguous ranges as both u64 and s64 values. [A, B] 2420 * will be non-negative both as u64 and s64 (and in fact it will be 2421 * identical ranges no matter the signedness). [C, D] treated as s64 2422 * will be a range of negative values, while in u64 it will be 2423 * non-negative range of values larger than 0x8000000000000000. 2424 * 2425 * Now, any other range here can't be represented in both u64 and s64 2426 * simultaneously. E.g., [A, C], [A, D], [B, C], [B, D] are valid 2427 * contiguous u64 ranges, but they are discontinuous in s64. [B, C] 2428 * in s64 would be properly presented as [S64_MIN, C] and [B, S64_MAX], 2429 * for example. Similarly, valid s64 range [D, A] (going from negative 2430 * to positive values), would be two separate [D, U64_MAX] and [0, A] 2431 * ranges as u64. Currently reg_state can't represent two segments per 2432 * numeric domain, so in such situations we can only derive maximal 2433 * possible range ([0, U64_MAX] for u64, and [S64_MIN, S64_MAX] for s64). 2434 * 2435 * So we use these facts to derive umin/umax from smin/smax and vice 2436 * versa only if they stay within the same "half". This is equivalent 2437 * to checking sign bit: lower half will have sign bit as zero, upper 2438 * half have sign bit 1. Below in code we simplify this by just 2439 * casting umin/umax as smin/smax and checking if they form valid 2440 * range, and vice versa. Those are equivalent checks. 2441 */ 2442 if ((s64)reg->umin_value <= (s64)reg->umax_value) { 2443 reg->smin_value = max_t(s64, reg->smin_value, reg->umin_value); 2444 reg->smax_value = min_t(s64, reg->smax_value, reg->umax_value); 2445 } 2446 /* If we cannot cross the sign boundary, then signed and unsigned bounds 2447 * are the same, so combine. This works even in the negative case, e.g. 2448 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 2449 */ 2450 if ((u64)reg->smin_value <= (u64)reg->smax_value) { 2451 reg->umin_value = max_t(u64, reg->smin_value, reg->umin_value); 2452 reg->umax_value = min_t(u64, reg->smax_value, reg->umax_value); 2453 } 2454 } 2455 2456 static void __reg_deduce_mixed_bounds(struct bpf_reg_state *reg) 2457 { 2458 /* Try to tighten 64-bit bounds from 32-bit knowledge, using 32-bit 2459 * values on both sides of 64-bit range in hope to have tighter range. 2460 * E.g., if r1 is [0x1'00000000, 0x3'80000000], and we learn from 2461 * 32-bit signed > 0 operation that s32 bounds are now [1; 0x7fffffff]. 2462 * With this, we can substitute 1 as low 32-bits of _low_ 64-bit bound 2463 * (0x100000000 -> 0x100000001) and 0x7fffffff as low 32-bits of 2464 * _high_ 64-bit bound (0x380000000 -> 0x37fffffff) and arrive at a 2465 * better overall bounds for r1 as [0x1'000000001; 0x3'7fffffff]. 2466 * We just need to make sure that derived bounds we are intersecting 2467 * with are well-formed ranges in respective s64 or u64 domain, just 2468 * like we do with similar kinds of 32-to-64 or 64-to-32 adjustments. 2469 */ 2470 __u64 new_umin, new_umax; 2471 __s64 new_smin, new_smax; 2472 2473 /* u32 -> u64 tightening, it's always well-formed */ 2474 new_umin = (reg->umin_value & ~0xffffffffULL) | reg->u32_min_value; 2475 new_umax = (reg->umax_value & ~0xffffffffULL) | reg->u32_max_value; 2476 reg->umin_value = max_t(u64, reg->umin_value, new_umin); 2477 reg->umax_value = min_t(u64, reg->umax_value, new_umax); 2478 /* u32 -> s64 tightening, u32 range embedded into s64 preserves range validity */ 2479 new_smin = (reg->smin_value & ~0xffffffffULL) | reg->u32_min_value; 2480 new_smax = (reg->smax_value & ~0xffffffffULL) | reg->u32_max_value; 2481 reg->smin_value = max_t(s64, reg->smin_value, new_smin); 2482 reg->smax_value = min_t(s64, reg->smax_value, new_smax); 2483 2484 /* if s32 can be treated as valid u32 range, we can use it as well */ 2485 if ((u32)reg->s32_min_value <= (u32)reg->s32_max_value) { 2486 /* s32 -> u64 tightening */ 2487 new_umin = (reg->umin_value & ~0xffffffffULL) | (u32)reg->s32_min_value; 2488 new_umax = (reg->umax_value & ~0xffffffffULL) | (u32)reg->s32_max_value; 2489 reg->umin_value = max_t(u64, reg->umin_value, new_umin); 2490 reg->umax_value = min_t(u64, reg->umax_value, new_umax); 2491 /* s32 -> s64 tightening */ 2492 new_smin = (reg->smin_value & ~0xffffffffULL) | (u32)reg->s32_min_value; 2493 new_smax = (reg->smax_value & ~0xffffffffULL) | (u32)reg->s32_max_value; 2494 reg->smin_value = max_t(s64, reg->smin_value, new_smin); 2495 reg->smax_value = min_t(s64, reg->smax_value, new_smax); 2496 } 2497 2498 /* Here we would like to handle a special case after sign extending load, 2499 * when upper bits for a 64-bit range are all 1s or all 0s. 2500 * 2501 * Upper bits are all 1s when register is in a range: 2502 * [0xffff_ffff_0000_0000, 0xffff_ffff_ffff_ffff] 2503 * Upper bits are all 0s when register is in a range: 2504 * [0x0000_0000_0000_0000, 0x0000_0000_ffff_ffff] 2505 * Together this forms are continuous range: 2506 * [0xffff_ffff_0000_0000, 0x0000_0000_ffff_ffff] 2507 * 2508 * Now, suppose that register range is in fact tighter: 2509 * [0xffff_ffff_8000_0000, 0x0000_0000_ffff_ffff] (R) 2510 * Also suppose that it's 32-bit range is positive, 2511 * meaning that lower 32-bits of the full 64-bit register 2512 * are in the range: 2513 * [0x0000_0000, 0x7fff_ffff] (W) 2514 * 2515 * If this happens, then any value in a range: 2516 * [0xffff_ffff_0000_0000, 0xffff_ffff_7fff_ffff] 2517 * is smaller than a lowest bound of the range (R): 2518 * 0xffff_ffff_8000_0000 2519 * which means that upper bits of the full 64-bit register 2520 * can't be all 1s, when lower bits are in range (W). 2521 * 2522 * Note that: 2523 * - 0xffff_ffff_8000_0000 == (s64)S32_MIN 2524 * - 0x0000_0000_7fff_ffff == (s64)S32_MAX 2525 * These relations are used in the conditions below. 2526 */ 2527 if (reg->s32_min_value >= 0 && reg->smin_value >= S32_MIN && reg->smax_value <= S32_MAX) { 2528 reg->smin_value = reg->s32_min_value; 2529 reg->smax_value = reg->s32_max_value; 2530 reg->umin_value = reg->s32_min_value; 2531 reg->umax_value = reg->s32_max_value; 2532 reg->var_off = tnum_intersect(reg->var_off, 2533 tnum_range(reg->smin_value, reg->smax_value)); 2534 } 2535 } 2536 2537 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 2538 { 2539 __reg32_deduce_bounds(reg); 2540 __reg64_deduce_bounds(reg); 2541 __reg_deduce_mixed_bounds(reg); 2542 } 2543 2544 /* Attempts to improve var_off based on unsigned min/max information */ 2545 static void __reg_bound_offset(struct bpf_reg_state *reg) 2546 { 2547 struct tnum var64_off = tnum_intersect(reg->var_off, 2548 tnum_range(reg->umin_value, 2549 reg->umax_value)); 2550 struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off), 2551 tnum_range(reg->u32_min_value, 2552 reg->u32_max_value)); 2553 2554 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 2555 } 2556 2557 static void reg_bounds_sync(struct bpf_reg_state *reg) 2558 { 2559 /* We might have learned new bounds from the var_off. */ 2560 __update_reg_bounds(reg); 2561 /* We might have learned something about the sign bit. */ 2562 __reg_deduce_bounds(reg); 2563 __reg_deduce_bounds(reg); 2564 /* We might have learned some bits from the bounds. */ 2565 __reg_bound_offset(reg); 2566 /* Intersecting with the old var_off might have improved our bounds 2567 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 2568 * then new var_off is (0; 0x7f...fc) which improves our umax. 2569 */ 2570 __update_reg_bounds(reg); 2571 } 2572 2573 static int reg_bounds_sanity_check(struct bpf_verifier_env *env, 2574 struct bpf_reg_state *reg, const char *ctx) 2575 { 2576 const char *msg; 2577 2578 if (reg->umin_value > reg->umax_value || 2579 reg->smin_value > reg->smax_value || 2580 reg->u32_min_value > reg->u32_max_value || 2581 reg->s32_min_value > reg->s32_max_value) { 2582 msg = "range bounds violation"; 2583 goto out; 2584 } 2585 2586 if (tnum_is_const(reg->var_off)) { 2587 u64 uval = reg->var_off.value; 2588 s64 sval = (s64)uval; 2589 2590 if (reg->umin_value != uval || reg->umax_value != uval || 2591 reg->smin_value != sval || reg->smax_value != sval) { 2592 msg = "const tnum out of sync with range bounds"; 2593 goto out; 2594 } 2595 } 2596 2597 if (tnum_subreg_is_const(reg->var_off)) { 2598 u32 uval32 = tnum_subreg(reg->var_off).value; 2599 s32 sval32 = (s32)uval32; 2600 2601 if (reg->u32_min_value != uval32 || reg->u32_max_value != uval32 || 2602 reg->s32_min_value != sval32 || reg->s32_max_value != sval32) { 2603 msg = "const subreg tnum out of sync with range bounds"; 2604 goto out; 2605 } 2606 } 2607 2608 return 0; 2609 out: 2610 verbose(env, "REG INVARIANTS VIOLATION (%s): %s u64=[%#llx, %#llx] " 2611 "s64=[%#llx, %#llx] u32=[%#x, %#x] s32=[%#x, %#x] var_off=(%#llx, %#llx)\n", 2612 ctx, msg, reg->umin_value, reg->umax_value, 2613 reg->smin_value, reg->smax_value, 2614 reg->u32_min_value, reg->u32_max_value, 2615 reg->s32_min_value, reg->s32_max_value, 2616 reg->var_off.value, reg->var_off.mask); 2617 if (env->test_reg_invariants) 2618 return -EFAULT; 2619 __mark_reg_unbounded(reg); 2620 return 0; 2621 } 2622 2623 static bool __reg32_bound_s64(s32 a) 2624 { 2625 return a >= 0 && a <= S32_MAX; 2626 } 2627 2628 static void __reg_assign_32_into_64(struct bpf_reg_state *reg) 2629 { 2630 reg->umin_value = reg->u32_min_value; 2631 reg->umax_value = reg->u32_max_value; 2632 2633 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must 2634 * be positive otherwise set to worse case bounds and refine later 2635 * from tnum. 2636 */ 2637 if (__reg32_bound_s64(reg->s32_min_value) && 2638 __reg32_bound_s64(reg->s32_max_value)) { 2639 reg->smin_value = reg->s32_min_value; 2640 reg->smax_value = reg->s32_max_value; 2641 } else { 2642 reg->smin_value = 0; 2643 reg->smax_value = U32_MAX; 2644 } 2645 } 2646 2647 /* Mark a register as having a completely unknown (scalar) value. */ 2648 static void __mark_reg_unknown_imprecise(struct bpf_reg_state *reg) 2649 { 2650 /* 2651 * Clear type, off, and union(map_ptr, range) and 2652 * padding between 'type' and union 2653 */ 2654 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 2655 reg->type = SCALAR_VALUE; 2656 reg->id = 0; 2657 reg->ref_obj_id = 0; 2658 reg->var_off = tnum_unknown; 2659 reg->frameno = 0; 2660 reg->precise = false; 2661 __mark_reg_unbounded(reg); 2662 } 2663 2664 /* Mark a register as having a completely unknown (scalar) value, 2665 * initialize .precise as true when not bpf capable. 2666 */ 2667 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 2668 struct bpf_reg_state *reg) 2669 { 2670 __mark_reg_unknown_imprecise(reg); 2671 reg->precise = !env->bpf_capable; 2672 } 2673 2674 static void mark_reg_unknown(struct bpf_verifier_env *env, 2675 struct bpf_reg_state *regs, u32 regno) 2676 { 2677 if (WARN_ON(regno >= MAX_BPF_REG)) { 2678 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 2679 /* Something bad happened, let's kill all regs except FP */ 2680 for (regno = 0; regno < BPF_REG_FP; regno++) 2681 __mark_reg_not_init(env, regs + regno); 2682 return; 2683 } 2684 __mark_reg_unknown(env, regs + regno); 2685 } 2686 2687 static int __mark_reg_s32_range(struct bpf_verifier_env *env, 2688 struct bpf_reg_state *regs, 2689 u32 regno, 2690 s32 s32_min, 2691 s32 s32_max) 2692 { 2693 struct bpf_reg_state *reg = regs + regno; 2694 2695 reg->s32_min_value = max_t(s32, reg->s32_min_value, s32_min); 2696 reg->s32_max_value = min_t(s32, reg->s32_max_value, s32_max); 2697 2698 reg->smin_value = max_t(s64, reg->smin_value, s32_min); 2699 reg->smax_value = min_t(s64, reg->smax_value, s32_max); 2700 2701 reg_bounds_sync(reg); 2702 2703 return reg_bounds_sanity_check(env, reg, "s32_range"); 2704 } 2705 2706 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 2707 struct bpf_reg_state *reg) 2708 { 2709 __mark_reg_unknown(env, reg); 2710 reg->type = NOT_INIT; 2711 } 2712 2713 static void mark_reg_not_init(struct bpf_verifier_env *env, 2714 struct bpf_reg_state *regs, u32 regno) 2715 { 2716 if (WARN_ON(regno >= MAX_BPF_REG)) { 2717 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 2718 /* Something bad happened, let's kill all regs except FP */ 2719 for (regno = 0; regno < BPF_REG_FP; regno++) 2720 __mark_reg_not_init(env, regs + regno); 2721 return; 2722 } 2723 __mark_reg_not_init(env, regs + regno); 2724 } 2725 2726 static void mark_btf_ld_reg(struct bpf_verifier_env *env, 2727 struct bpf_reg_state *regs, u32 regno, 2728 enum bpf_reg_type reg_type, 2729 struct btf *btf, u32 btf_id, 2730 enum bpf_type_flag flag) 2731 { 2732 if (reg_type == SCALAR_VALUE) { 2733 mark_reg_unknown(env, regs, regno); 2734 return; 2735 } 2736 mark_reg_known_zero(env, regs, regno); 2737 regs[regno].type = PTR_TO_BTF_ID | flag; 2738 regs[regno].btf = btf; 2739 regs[regno].btf_id = btf_id; 2740 if (type_may_be_null(flag)) 2741 regs[regno].id = ++env->id_gen; 2742 } 2743 2744 #define DEF_NOT_SUBREG (0) 2745 static void init_reg_state(struct bpf_verifier_env *env, 2746 struct bpf_func_state *state) 2747 { 2748 struct bpf_reg_state *regs = state->regs; 2749 int i; 2750 2751 for (i = 0; i < MAX_BPF_REG; i++) { 2752 mark_reg_not_init(env, regs, i); 2753 regs[i].live = REG_LIVE_NONE; 2754 regs[i].parent = NULL; 2755 regs[i].subreg_def = DEF_NOT_SUBREG; 2756 } 2757 2758 /* frame pointer */ 2759 regs[BPF_REG_FP].type = PTR_TO_STACK; 2760 mark_reg_known_zero(env, regs, BPF_REG_FP); 2761 regs[BPF_REG_FP].frameno = state->frameno; 2762 } 2763 2764 static struct bpf_retval_range retval_range(s32 minval, s32 maxval) 2765 { 2766 return (struct bpf_retval_range){ minval, maxval }; 2767 } 2768 2769 #define BPF_MAIN_FUNC (-1) 2770 static void init_func_state(struct bpf_verifier_env *env, 2771 struct bpf_func_state *state, 2772 int callsite, int frameno, int subprogno) 2773 { 2774 state->callsite = callsite; 2775 state->frameno = frameno; 2776 state->subprogno = subprogno; 2777 state->callback_ret_range = retval_range(0, 0); 2778 init_reg_state(env, state); 2779 mark_verifier_state_scratched(env); 2780 } 2781 2782 /* Similar to push_stack(), but for async callbacks */ 2783 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env, 2784 int insn_idx, int prev_insn_idx, 2785 int subprog, bool is_sleepable) 2786 { 2787 struct bpf_verifier_stack_elem *elem; 2788 struct bpf_func_state *frame; 2789 2790 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 2791 if (!elem) 2792 goto err; 2793 2794 elem->insn_idx = insn_idx; 2795 elem->prev_insn_idx = prev_insn_idx; 2796 elem->next = env->head; 2797 elem->log_pos = env->log.end_pos; 2798 env->head = elem; 2799 env->stack_size++; 2800 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 2801 verbose(env, 2802 "The sequence of %d jumps is too complex for async cb.\n", 2803 env->stack_size); 2804 goto err; 2805 } 2806 /* Unlike push_stack() do not copy_verifier_state(). 2807 * The caller state doesn't matter. 2808 * This is async callback. It starts in a fresh stack. 2809 * Initialize it similar to do_check_common(). 2810 * But we do need to make sure to not clobber insn_hist, so we keep 2811 * chaining insn_hist_start/insn_hist_end indices as for a normal 2812 * child state. 2813 */ 2814 elem->st.branches = 1; 2815 elem->st.in_sleepable = is_sleepable; 2816 elem->st.insn_hist_start = env->cur_state->insn_hist_end; 2817 elem->st.insn_hist_end = elem->st.insn_hist_start; 2818 frame = kzalloc(sizeof(*frame), GFP_KERNEL); 2819 if (!frame) 2820 goto err; 2821 init_func_state(env, frame, 2822 BPF_MAIN_FUNC /* callsite */, 2823 0 /* frameno within this callchain */, 2824 subprog /* subprog number within this prog */); 2825 elem->st.frame[0] = frame; 2826 return &elem->st; 2827 err: 2828 free_verifier_state(env->cur_state, true); 2829 env->cur_state = NULL; 2830 /* pop all elements and return */ 2831 while (!pop_stack(env, NULL, NULL, false)); 2832 return NULL; 2833 } 2834 2835 2836 enum reg_arg_type { 2837 SRC_OP, /* register is used as source operand */ 2838 DST_OP, /* register is used as destination operand */ 2839 DST_OP_NO_MARK /* same as above, check only, don't mark */ 2840 }; 2841 2842 static int cmp_subprogs(const void *a, const void *b) 2843 { 2844 return ((struct bpf_subprog_info *)a)->start - 2845 ((struct bpf_subprog_info *)b)->start; 2846 } 2847 2848 /* Find subprogram that contains instruction at 'off' */ 2849 static struct bpf_subprog_info *find_containing_subprog(struct bpf_verifier_env *env, int off) 2850 { 2851 struct bpf_subprog_info *vals = env->subprog_info; 2852 int l, r, m; 2853 2854 if (off >= env->prog->len || off < 0 || env->subprog_cnt == 0) 2855 return NULL; 2856 2857 l = 0; 2858 r = env->subprog_cnt - 1; 2859 while (l < r) { 2860 m = l + (r - l + 1) / 2; 2861 if (vals[m].start <= off) 2862 l = m; 2863 else 2864 r = m - 1; 2865 } 2866 return &vals[l]; 2867 } 2868 2869 /* Find subprogram that starts exactly at 'off' */ 2870 static int find_subprog(struct bpf_verifier_env *env, int off) 2871 { 2872 struct bpf_subprog_info *p; 2873 2874 p = find_containing_subprog(env, off); 2875 if (!p || p->start != off) 2876 return -ENOENT; 2877 return p - env->subprog_info; 2878 } 2879 2880 static int add_subprog(struct bpf_verifier_env *env, int off) 2881 { 2882 int insn_cnt = env->prog->len; 2883 int ret; 2884 2885 if (off >= insn_cnt || off < 0) { 2886 verbose(env, "call to invalid destination\n"); 2887 return -EINVAL; 2888 } 2889 ret = find_subprog(env, off); 2890 if (ret >= 0) 2891 return ret; 2892 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 2893 verbose(env, "too many subprograms\n"); 2894 return -E2BIG; 2895 } 2896 /* determine subprog starts. The end is one before the next starts */ 2897 env->subprog_info[env->subprog_cnt++].start = off; 2898 sort(env->subprog_info, env->subprog_cnt, 2899 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 2900 return env->subprog_cnt - 1; 2901 } 2902 2903 static int bpf_find_exception_callback_insn_off(struct bpf_verifier_env *env) 2904 { 2905 struct bpf_prog_aux *aux = env->prog->aux; 2906 struct btf *btf = aux->btf; 2907 const struct btf_type *t; 2908 u32 main_btf_id, id; 2909 const char *name; 2910 int ret, i; 2911 2912 /* Non-zero func_info_cnt implies valid btf */ 2913 if (!aux->func_info_cnt) 2914 return 0; 2915 main_btf_id = aux->func_info[0].type_id; 2916 2917 t = btf_type_by_id(btf, main_btf_id); 2918 if (!t) { 2919 verbose(env, "invalid btf id for main subprog in func_info\n"); 2920 return -EINVAL; 2921 } 2922 2923 name = btf_find_decl_tag_value(btf, t, -1, "exception_callback:"); 2924 if (IS_ERR(name)) { 2925 ret = PTR_ERR(name); 2926 /* If there is no tag present, there is no exception callback */ 2927 if (ret == -ENOENT) 2928 ret = 0; 2929 else if (ret == -EEXIST) 2930 verbose(env, "multiple exception callback tags for main subprog\n"); 2931 return ret; 2932 } 2933 2934 ret = btf_find_by_name_kind(btf, name, BTF_KIND_FUNC); 2935 if (ret < 0) { 2936 verbose(env, "exception callback '%s' could not be found in BTF\n", name); 2937 return ret; 2938 } 2939 id = ret; 2940 t = btf_type_by_id(btf, id); 2941 if (btf_func_linkage(t) != BTF_FUNC_GLOBAL) { 2942 verbose(env, "exception callback '%s' must have global linkage\n", name); 2943 return -EINVAL; 2944 } 2945 ret = 0; 2946 for (i = 0; i < aux->func_info_cnt; i++) { 2947 if (aux->func_info[i].type_id != id) 2948 continue; 2949 ret = aux->func_info[i].insn_off; 2950 /* Further func_info and subprog checks will also happen 2951 * later, so assume this is the right insn_off for now. 2952 */ 2953 if (!ret) { 2954 verbose(env, "invalid exception callback insn_off in func_info: 0\n"); 2955 ret = -EINVAL; 2956 } 2957 } 2958 if (!ret) { 2959 verbose(env, "exception callback type id not found in func_info\n"); 2960 ret = -EINVAL; 2961 } 2962 return ret; 2963 } 2964 2965 #define MAX_KFUNC_DESCS 256 2966 #define MAX_KFUNC_BTFS 256 2967 2968 struct bpf_kfunc_desc { 2969 struct btf_func_model func_model; 2970 u32 func_id; 2971 s32 imm; 2972 u16 offset; 2973 unsigned long addr; 2974 }; 2975 2976 struct bpf_kfunc_btf { 2977 struct btf *btf; 2978 struct module *module; 2979 u16 offset; 2980 }; 2981 2982 struct bpf_kfunc_desc_tab { 2983 /* Sorted by func_id (BTF ID) and offset (fd_array offset) during 2984 * verification. JITs do lookups by bpf_insn, where func_id may not be 2985 * available, therefore at the end of verification do_misc_fixups() 2986 * sorts this by imm and offset. 2987 */ 2988 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS]; 2989 u32 nr_descs; 2990 }; 2991 2992 struct bpf_kfunc_btf_tab { 2993 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS]; 2994 u32 nr_descs; 2995 }; 2996 2997 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b) 2998 { 2999 const struct bpf_kfunc_desc *d0 = a; 3000 const struct bpf_kfunc_desc *d1 = b; 3001 3002 /* func_id is not greater than BTF_MAX_TYPE */ 3003 return d0->func_id - d1->func_id ?: d0->offset - d1->offset; 3004 } 3005 3006 static int kfunc_btf_cmp_by_off(const void *a, const void *b) 3007 { 3008 const struct bpf_kfunc_btf *d0 = a; 3009 const struct bpf_kfunc_btf *d1 = b; 3010 3011 return d0->offset - d1->offset; 3012 } 3013 3014 static const struct bpf_kfunc_desc * 3015 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset) 3016 { 3017 struct bpf_kfunc_desc desc = { 3018 .func_id = func_id, 3019 .offset = offset, 3020 }; 3021 struct bpf_kfunc_desc_tab *tab; 3022 3023 tab = prog->aux->kfunc_tab; 3024 return bsearch(&desc, tab->descs, tab->nr_descs, 3025 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off); 3026 } 3027 3028 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id, 3029 u16 btf_fd_idx, u8 **func_addr) 3030 { 3031 const struct bpf_kfunc_desc *desc; 3032 3033 desc = find_kfunc_desc(prog, func_id, btf_fd_idx); 3034 if (!desc) 3035 return -EFAULT; 3036 3037 *func_addr = (u8 *)desc->addr; 3038 return 0; 3039 } 3040 3041 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env, 3042 s16 offset) 3043 { 3044 struct bpf_kfunc_btf kf_btf = { .offset = offset }; 3045 struct bpf_kfunc_btf_tab *tab; 3046 struct bpf_kfunc_btf *b; 3047 struct module *mod; 3048 struct btf *btf; 3049 int btf_fd; 3050 3051 tab = env->prog->aux->kfunc_btf_tab; 3052 b = bsearch(&kf_btf, tab->descs, tab->nr_descs, 3053 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off); 3054 if (!b) { 3055 if (tab->nr_descs == MAX_KFUNC_BTFS) { 3056 verbose(env, "too many different module BTFs\n"); 3057 return ERR_PTR(-E2BIG); 3058 } 3059 3060 if (bpfptr_is_null(env->fd_array)) { 3061 verbose(env, "kfunc offset > 0 without fd_array is invalid\n"); 3062 return ERR_PTR(-EPROTO); 3063 } 3064 3065 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array, 3066 offset * sizeof(btf_fd), 3067 sizeof(btf_fd))) 3068 return ERR_PTR(-EFAULT); 3069 3070 btf = btf_get_by_fd(btf_fd); 3071 if (IS_ERR(btf)) { 3072 verbose(env, "invalid module BTF fd specified\n"); 3073 return btf; 3074 } 3075 3076 if (!btf_is_module(btf)) { 3077 verbose(env, "BTF fd for kfunc is not a module BTF\n"); 3078 btf_put(btf); 3079 return ERR_PTR(-EINVAL); 3080 } 3081 3082 mod = btf_try_get_module(btf); 3083 if (!mod) { 3084 btf_put(btf); 3085 return ERR_PTR(-ENXIO); 3086 } 3087 3088 b = &tab->descs[tab->nr_descs++]; 3089 b->btf = btf; 3090 b->module = mod; 3091 b->offset = offset; 3092 3093 /* sort() reorders entries by value, so b may no longer point 3094 * to the right entry after this 3095 */ 3096 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 3097 kfunc_btf_cmp_by_off, NULL); 3098 } else { 3099 btf = b->btf; 3100 } 3101 3102 return btf; 3103 } 3104 3105 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab) 3106 { 3107 if (!tab) 3108 return; 3109 3110 while (tab->nr_descs--) { 3111 module_put(tab->descs[tab->nr_descs].module); 3112 btf_put(tab->descs[tab->nr_descs].btf); 3113 } 3114 kfree(tab); 3115 } 3116 3117 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset) 3118 { 3119 if (offset) { 3120 if (offset < 0) { 3121 /* In the future, this can be allowed to increase limit 3122 * of fd index into fd_array, interpreted as u16. 3123 */ 3124 verbose(env, "negative offset disallowed for kernel module function call\n"); 3125 return ERR_PTR(-EINVAL); 3126 } 3127 3128 return __find_kfunc_desc_btf(env, offset); 3129 } 3130 return btf_vmlinux ?: ERR_PTR(-ENOENT); 3131 } 3132 3133 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset) 3134 { 3135 const struct btf_type *func, *func_proto; 3136 struct bpf_kfunc_btf_tab *btf_tab; 3137 struct bpf_kfunc_desc_tab *tab; 3138 struct bpf_prog_aux *prog_aux; 3139 struct bpf_kfunc_desc *desc; 3140 const char *func_name; 3141 struct btf *desc_btf; 3142 unsigned long call_imm; 3143 unsigned long addr; 3144 int err; 3145 3146 prog_aux = env->prog->aux; 3147 tab = prog_aux->kfunc_tab; 3148 btf_tab = prog_aux->kfunc_btf_tab; 3149 if (!tab) { 3150 if (!btf_vmlinux) { 3151 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n"); 3152 return -ENOTSUPP; 3153 } 3154 3155 if (!env->prog->jit_requested) { 3156 verbose(env, "JIT is required for calling kernel function\n"); 3157 return -ENOTSUPP; 3158 } 3159 3160 if (!bpf_jit_supports_kfunc_call()) { 3161 verbose(env, "JIT does not support calling kernel function\n"); 3162 return -ENOTSUPP; 3163 } 3164 3165 if (!env->prog->gpl_compatible) { 3166 verbose(env, "cannot call kernel function from non-GPL compatible program\n"); 3167 return -EINVAL; 3168 } 3169 3170 tab = kzalloc(sizeof(*tab), GFP_KERNEL); 3171 if (!tab) 3172 return -ENOMEM; 3173 prog_aux->kfunc_tab = tab; 3174 } 3175 3176 /* func_id == 0 is always invalid, but instead of returning an error, be 3177 * conservative and wait until the code elimination pass before returning 3178 * error, so that invalid calls that get pruned out can be in BPF programs 3179 * loaded from userspace. It is also required that offset be untouched 3180 * for such calls. 3181 */ 3182 if (!func_id && !offset) 3183 return 0; 3184 3185 if (!btf_tab && offset) { 3186 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL); 3187 if (!btf_tab) 3188 return -ENOMEM; 3189 prog_aux->kfunc_btf_tab = btf_tab; 3190 } 3191 3192 desc_btf = find_kfunc_desc_btf(env, offset); 3193 if (IS_ERR(desc_btf)) { 3194 verbose(env, "failed to find BTF for kernel function\n"); 3195 return PTR_ERR(desc_btf); 3196 } 3197 3198 if (find_kfunc_desc(env->prog, func_id, offset)) 3199 return 0; 3200 3201 if (tab->nr_descs == MAX_KFUNC_DESCS) { 3202 verbose(env, "too many different kernel function calls\n"); 3203 return -E2BIG; 3204 } 3205 3206 func = btf_type_by_id(desc_btf, func_id); 3207 if (!func || !btf_type_is_func(func)) { 3208 verbose(env, "kernel btf_id %u is not a function\n", 3209 func_id); 3210 return -EINVAL; 3211 } 3212 func_proto = btf_type_by_id(desc_btf, func->type); 3213 if (!func_proto || !btf_type_is_func_proto(func_proto)) { 3214 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n", 3215 func_id); 3216 return -EINVAL; 3217 } 3218 3219 func_name = btf_name_by_offset(desc_btf, func->name_off); 3220 addr = kallsyms_lookup_name(func_name); 3221 if (!addr) { 3222 verbose(env, "cannot find address for kernel function %s\n", 3223 func_name); 3224 return -EINVAL; 3225 } 3226 specialize_kfunc(env, func_id, offset, &addr); 3227 3228 if (bpf_jit_supports_far_kfunc_call()) { 3229 call_imm = func_id; 3230 } else { 3231 call_imm = BPF_CALL_IMM(addr); 3232 /* Check whether the relative offset overflows desc->imm */ 3233 if ((unsigned long)(s32)call_imm != call_imm) { 3234 verbose(env, "address of kernel function %s is out of range\n", 3235 func_name); 3236 return -EINVAL; 3237 } 3238 } 3239 3240 if (bpf_dev_bound_kfunc_id(func_id)) { 3241 err = bpf_dev_bound_kfunc_check(&env->log, prog_aux); 3242 if (err) 3243 return err; 3244 } 3245 3246 desc = &tab->descs[tab->nr_descs++]; 3247 desc->func_id = func_id; 3248 desc->imm = call_imm; 3249 desc->offset = offset; 3250 desc->addr = addr; 3251 err = btf_distill_func_proto(&env->log, desc_btf, 3252 func_proto, func_name, 3253 &desc->func_model); 3254 if (!err) 3255 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 3256 kfunc_desc_cmp_by_id_off, NULL); 3257 return err; 3258 } 3259 3260 static int kfunc_desc_cmp_by_imm_off(const void *a, const void *b) 3261 { 3262 const struct bpf_kfunc_desc *d0 = a; 3263 const struct bpf_kfunc_desc *d1 = b; 3264 3265 if (d0->imm != d1->imm) 3266 return d0->imm < d1->imm ? -1 : 1; 3267 if (d0->offset != d1->offset) 3268 return d0->offset < d1->offset ? -1 : 1; 3269 return 0; 3270 } 3271 3272 static void sort_kfunc_descs_by_imm_off(struct bpf_prog *prog) 3273 { 3274 struct bpf_kfunc_desc_tab *tab; 3275 3276 tab = prog->aux->kfunc_tab; 3277 if (!tab) 3278 return; 3279 3280 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 3281 kfunc_desc_cmp_by_imm_off, NULL); 3282 } 3283 3284 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 3285 { 3286 return !!prog->aux->kfunc_tab; 3287 } 3288 3289 const struct btf_func_model * 3290 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 3291 const struct bpf_insn *insn) 3292 { 3293 const struct bpf_kfunc_desc desc = { 3294 .imm = insn->imm, 3295 .offset = insn->off, 3296 }; 3297 const struct bpf_kfunc_desc *res; 3298 struct bpf_kfunc_desc_tab *tab; 3299 3300 tab = prog->aux->kfunc_tab; 3301 res = bsearch(&desc, tab->descs, tab->nr_descs, 3302 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm_off); 3303 3304 return res ? &res->func_model : NULL; 3305 } 3306 3307 static int add_kfunc_in_insns(struct bpf_verifier_env *env, 3308 struct bpf_insn *insn, int cnt) 3309 { 3310 int i, ret; 3311 3312 for (i = 0; i < cnt; i++, insn++) { 3313 if (bpf_pseudo_kfunc_call(insn)) { 3314 ret = add_kfunc_call(env, insn->imm, insn->off); 3315 if (ret < 0) 3316 return ret; 3317 } 3318 } 3319 return 0; 3320 } 3321 3322 static int add_subprog_and_kfunc(struct bpf_verifier_env *env) 3323 { 3324 struct bpf_subprog_info *subprog = env->subprog_info; 3325 int i, ret, insn_cnt = env->prog->len, ex_cb_insn; 3326 struct bpf_insn *insn = env->prog->insnsi; 3327 3328 /* Add entry function. */ 3329 ret = add_subprog(env, 0); 3330 if (ret) 3331 return ret; 3332 3333 for (i = 0; i < insn_cnt; i++, insn++) { 3334 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) && 3335 !bpf_pseudo_kfunc_call(insn)) 3336 continue; 3337 3338 if (!env->bpf_capable) { 3339 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); 3340 return -EPERM; 3341 } 3342 3343 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn)) 3344 ret = add_subprog(env, i + insn->imm + 1); 3345 else 3346 ret = add_kfunc_call(env, insn->imm, insn->off); 3347 3348 if (ret < 0) 3349 return ret; 3350 } 3351 3352 ret = bpf_find_exception_callback_insn_off(env); 3353 if (ret < 0) 3354 return ret; 3355 ex_cb_insn = ret; 3356 3357 /* If ex_cb_insn > 0, this means that the main program has a subprog 3358 * marked using BTF decl tag to serve as the exception callback. 3359 */ 3360 if (ex_cb_insn) { 3361 ret = add_subprog(env, ex_cb_insn); 3362 if (ret < 0) 3363 return ret; 3364 for (i = 1; i < env->subprog_cnt; i++) { 3365 if (env->subprog_info[i].start != ex_cb_insn) 3366 continue; 3367 env->exception_callback_subprog = i; 3368 mark_subprog_exc_cb(env, i); 3369 break; 3370 } 3371 } 3372 3373 /* Add a fake 'exit' subprog which could simplify subprog iteration 3374 * logic. 'subprog_cnt' should not be increased. 3375 */ 3376 subprog[env->subprog_cnt].start = insn_cnt; 3377 3378 if (env->log.level & BPF_LOG_LEVEL2) 3379 for (i = 0; i < env->subprog_cnt; i++) 3380 verbose(env, "func#%d @%d\n", i, subprog[i].start); 3381 3382 return 0; 3383 } 3384 3385 static int jmp_offset(struct bpf_insn *insn) 3386 { 3387 u8 code = insn->code; 3388 3389 if (code == (BPF_JMP32 | BPF_JA)) 3390 return insn->imm; 3391 return insn->off; 3392 } 3393 3394 static int check_subprogs(struct bpf_verifier_env *env) 3395 { 3396 int i, subprog_start, subprog_end, off, cur_subprog = 0; 3397 struct bpf_subprog_info *subprog = env->subprog_info; 3398 struct bpf_insn *insn = env->prog->insnsi; 3399 int insn_cnt = env->prog->len; 3400 3401 /* now check that all jumps are within the same subprog */ 3402 subprog_start = subprog[cur_subprog].start; 3403 subprog_end = subprog[cur_subprog + 1].start; 3404 for (i = 0; i < insn_cnt; i++) { 3405 u8 code = insn[i].code; 3406 3407 if (code == (BPF_JMP | BPF_CALL) && 3408 insn[i].src_reg == 0 && 3409 insn[i].imm == BPF_FUNC_tail_call) { 3410 subprog[cur_subprog].has_tail_call = true; 3411 subprog[cur_subprog].tail_call_reachable = true; 3412 } 3413 if (BPF_CLASS(code) == BPF_LD && 3414 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND)) 3415 subprog[cur_subprog].has_ld_abs = true; 3416 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 3417 goto next; 3418 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 3419 goto next; 3420 off = i + jmp_offset(&insn[i]) + 1; 3421 if (off < subprog_start || off >= subprog_end) { 3422 verbose(env, "jump out of range from insn %d to %d\n", i, off); 3423 return -EINVAL; 3424 } 3425 next: 3426 if (i == subprog_end - 1) { 3427 /* to avoid fall-through from one subprog into another 3428 * the last insn of the subprog should be either exit 3429 * or unconditional jump back or bpf_throw call 3430 */ 3431 if (code != (BPF_JMP | BPF_EXIT) && 3432 code != (BPF_JMP32 | BPF_JA) && 3433 code != (BPF_JMP | BPF_JA)) { 3434 verbose(env, "last insn is not an exit or jmp\n"); 3435 return -EINVAL; 3436 } 3437 subprog_start = subprog_end; 3438 cur_subprog++; 3439 if (cur_subprog < env->subprog_cnt) 3440 subprog_end = subprog[cur_subprog + 1].start; 3441 } 3442 } 3443 return 0; 3444 } 3445 3446 /* Parentage chain of this register (or stack slot) should take care of all 3447 * issues like callee-saved registers, stack slot allocation time, etc. 3448 */ 3449 static int mark_reg_read(struct bpf_verifier_env *env, 3450 const struct bpf_reg_state *state, 3451 struct bpf_reg_state *parent, u8 flag) 3452 { 3453 bool writes = parent == state->parent; /* Observe write marks */ 3454 int cnt = 0; 3455 3456 while (parent) { 3457 /* if read wasn't screened by an earlier write ... */ 3458 if (writes && state->live & REG_LIVE_WRITTEN) 3459 break; 3460 if (verifier_bug_if(parent->live & REG_LIVE_DONE, env, 3461 "type %s var_off %lld off %d", 3462 reg_type_str(env, parent->type), 3463 parent->var_off.value, parent->off)) 3464 return -EFAULT; 3465 /* The first condition is more likely to be true than the 3466 * second, checked it first. 3467 */ 3468 if ((parent->live & REG_LIVE_READ) == flag || 3469 parent->live & REG_LIVE_READ64) 3470 /* The parentage chain never changes and 3471 * this parent was already marked as LIVE_READ. 3472 * There is no need to keep walking the chain again and 3473 * keep re-marking all parents as LIVE_READ. 3474 * This case happens when the same register is read 3475 * multiple times without writes into it in-between. 3476 * Also, if parent has the stronger REG_LIVE_READ64 set, 3477 * then no need to set the weak REG_LIVE_READ32. 3478 */ 3479 break; 3480 /* ... then we depend on parent's value */ 3481 parent->live |= flag; 3482 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 3483 if (flag == REG_LIVE_READ64) 3484 parent->live &= ~REG_LIVE_READ32; 3485 state = parent; 3486 parent = state->parent; 3487 writes = true; 3488 cnt++; 3489 } 3490 3491 if (env->longest_mark_read_walk < cnt) 3492 env->longest_mark_read_walk = cnt; 3493 return 0; 3494 } 3495 3496 static int mark_stack_slot_obj_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 3497 int spi, int nr_slots) 3498 { 3499 struct bpf_func_state *state = func(env, reg); 3500 int err, i; 3501 3502 for (i = 0; i < nr_slots; i++) { 3503 struct bpf_reg_state *st = &state->stack[spi - i].spilled_ptr; 3504 3505 err = mark_reg_read(env, st, st->parent, REG_LIVE_READ64); 3506 if (err) 3507 return err; 3508 3509 mark_stack_slot_scratched(env, spi - i); 3510 } 3511 return 0; 3512 } 3513 3514 static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 3515 { 3516 int spi; 3517 3518 /* For CONST_PTR_TO_DYNPTR, it must have already been done by 3519 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in 3520 * check_kfunc_call. 3521 */ 3522 if (reg->type == CONST_PTR_TO_DYNPTR) 3523 return 0; 3524 spi = dynptr_get_spi(env, reg); 3525 if (spi < 0) 3526 return spi; 3527 /* Caller ensures dynptr is valid and initialized, which means spi is in 3528 * bounds and spi is the first dynptr slot. Simply mark stack slot as 3529 * read. 3530 */ 3531 return mark_stack_slot_obj_read(env, reg, spi, BPF_DYNPTR_NR_SLOTS); 3532 } 3533 3534 static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 3535 int spi, int nr_slots) 3536 { 3537 return mark_stack_slot_obj_read(env, reg, spi, nr_slots); 3538 } 3539 3540 static int mark_irq_flag_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 3541 { 3542 int spi; 3543 3544 spi = irq_flag_get_spi(env, reg); 3545 if (spi < 0) 3546 return spi; 3547 return mark_stack_slot_obj_read(env, reg, spi, 1); 3548 } 3549 3550 /* This function is supposed to be used by the following 32-bit optimization 3551 * code only. It returns TRUE if the source or destination register operates 3552 * on 64-bit, otherwise return FALSE. 3553 */ 3554 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 3555 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 3556 { 3557 u8 code, class, op; 3558 3559 code = insn->code; 3560 class = BPF_CLASS(code); 3561 op = BPF_OP(code); 3562 if (class == BPF_JMP) { 3563 /* BPF_EXIT for "main" will reach here. Return TRUE 3564 * conservatively. 3565 */ 3566 if (op == BPF_EXIT) 3567 return true; 3568 if (op == BPF_CALL) { 3569 /* BPF to BPF call will reach here because of marking 3570 * caller saved clobber with DST_OP_NO_MARK for which we 3571 * don't care the register def because they are anyway 3572 * marked as NOT_INIT already. 3573 */ 3574 if (insn->src_reg == BPF_PSEUDO_CALL) 3575 return false; 3576 /* Helper call will reach here because of arg type 3577 * check, conservatively return TRUE. 3578 */ 3579 if (t == SRC_OP) 3580 return true; 3581 3582 return false; 3583 } 3584 } 3585 3586 if (class == BPF_ALU64 && op == BPF_END && (insn->imm == 16 || insn->imm == 32)) 3587 return false; 3588 3589 if (class == BPF_ALU64 || class == BPF_JMP || 3590 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 3591 return true; 3592 3593 if (class == BPF_ALU || class == BPF_JMP32) 3594 return false; 3595 3596 if (class == BPF_LDX) { 3597 if (t != SRC_OP) 3598 return BPF_SIZE(code) == BPF_DW || BPF_MODE(code) == BPF_MEMSX; 3599 /* LDX source must be ptr. */ 3600 return true; 3601 } 3602 3603 if (class == BPF_STX) { 3604 /* BPF_STX (including atomic variants) has one or more source 3605 * operands, one of which is a ptr. Check whether the caller is 3606 * asking about it. 3607 */ 3608 if (t == SRC_OP && reg->type != SCALAR_VALUE) 3609 return true; 3610 return BPF_SIZE(code) == BPF_DW; 3611 } 3612 3613 if (class == BPF_LD) { 3614 u8 mode = BPF_MODE(code); 3615 3616 /* LD_IMM64 */ 3617 if (mode == BPF_IMM) 3618 return true; 3619 3620 /* Both LD_IND and LD_ABS return 32-bit data. */ 3621 if (t != SRC_OP) 3622 return false; 3623 3624 /* Implicit ctx ptr. */ 3625 if (regno == BPF_REG_6) 3626 return true; 3627 3628 /* Explicit source could be any width. */ 3629 return true; 3630 } 3631 3632 if (class == BPF_ST) 3633 /* The only source register for BPF_ST is a ptr. */ 3634 return true; 3635 3636 /* Conservatively return true at default. */ 3637 return true; 3638 } 3639 3640 /* Return the regno defined by the insn, or -1. */ 3641 static int insn_def_regno(const struct bpf_insn *insn) 3642 { 3643 switch (BPF_CLASS(insn->code)) { 3644 case BPF_JMP: 3645 case BPF_JMP32: 3646 case BPF_ST: 3647 return -1; 3648 case BPF_STX: 3649 if (BPF_MODE(insn->code) == BPF_ATOMIC || 3650 BPF_MODE(insn->code) == BPF_PROBE_ATOMIC) { 3651 if (insn->imm == BPF_CMPXCHG) 3652 return BPF_REG_0; 3653 else if (insn->imm == BPF_LOAD_ACQ) 3654 return insn->dst_reg; 3655 else if (insn->imm & BPF_FETCH) 3656 return insn->src_reg; 3657 } 3658 return -1; 3659 default: 3660 return insn->dst_reg; 3661 } 3662 } 3663 3664 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 3665 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 3666 { 3667 int dst_reg = insn_def_regno(insn); 3668 3669 if (dst_reg == -1) 3670 return false; 3671 3672 return !is_reg64(env, insn, dst_reg, NULL, DST_OP); 3673 } 3674 3675 static void mark_insn_zext(struct bpf_verifier_env *env, 3676 struct bpf_reg_state *reg) 3677 { 3678 s32 def_idx = reg->subreg_def; 3679 3680 if (def_idx == DEF_NOT_SUBREG) 3681 return; 3682 3683 env->insn_aux_data[def_idx - 1].zext_dst = true; 3684 /* The dst will be zero extended, so won't be sub-register anymore. */ 3685 reg->subreg_def = DEF_NOT_SUBREG; 3686 } 3687 3688 static int __check_reg_arg(struct bpf_verifier_env *env, struct bpf_reg_state *regs, u32 regno, 3689 enum reg_arg_type t) 3690 { 3691 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 3692 struct bpf_reg_state *reg; 3693 bool rw64; 3694 3695 if (regno >= MAX_BPF_REG) { 3696 verbose(env, "R%d is invalid\n", regno); 3697 return -EINVAL; 3698 } 3699 3700 mark_reg_scratched(env, regno); 3701 3702 reg = ®s[regno]; 3703 rw64 = is_reg64(env, insn, regno, reg, t); 3704 if (t == SRC_OP) { 3705 /* check whether register used as source operand can be read */ 3706 if (reg->type == NOT_INIT) { 3707 verbose(env, "R%d !read_ok\n", regno); 3708 return -EACCES; 3709 } 3710 /* We don't need to worry about FP liveness because it's read-only */ 3711 if (regno == BPF_REG_FP) 3712 return 0; 3713 3714 if (rw64) 3715 mark_insn_zext(env, reg); 3716 3717 return mark_reg_read(env, reg, reg->parent, 3718 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 3719 } else { 3720 /* check whether register used as dest operand can be written to */ 3721 if (regno == BPF_REG_FP) { 3722 verbose(env, "frame pointer is read only\n"); 3723 return -EACCES; 3724 } 3725 reg->live |= REG_LIVE_WRITTEN; 3726 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 3727 if (t == DST_OP) 3728 mark_reg_unknown(env, regs, regno); 3729 } 3730 return 0; 3731 } 3732 3733 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 3734 enum reg_arg_type t) 3735 { 3736 struct bpf_verifier_state *vstate = env->cur_state; 3737 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3738 3739 return __check_reg_arg(env, state->regs, regno, t); 3740 } 3741 3742 static int insn_stack_access_flags(int frameno, int spi) 3743 { 3744 return INSN_F_STACK_ACCESS | (spi << INSN_F_SPI_SHIFT) | frameno; 3745 } 3746 3747 static int insn_stack_access_spi(int insn_flags) 3748 { 3749 return (insn_flags >> INSN_F_SPI_SHIFT) & INSN_F_SPI_MASK; 3750 } 3751 3752 static int insn_stack_access_frameno(int insn_flags) 3753 { 3754 return insn_flags & INSN_F_FRAMENO_MASK; 3755 } 3756 3757 static void mark_jmp_point(struct bpf_verifier_env *env, int idx) 3758 { 3759 env->insn_aux_data[idx].jmp_point = true; 3760 } 3761 3762 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx) 3763 { 3764 return env->insn_aux_data[insn_idx].jmp_point; 3765 } 3766 3767 #define LR_FRAMENO_BITS 3 3768 #define LR_SPI_BITS 6 3769 #define LR_ENTRY_BITS (LR_SPI_BITS + LR_FRAMENO_BITS + 1) 3770 #define LR_SIZE_BITS 4 3771 #define LR_FRAMENO_MASK ((1ull << LR_FRAMENO_BITS) - 1) 3772 #define LR_SPI_MASK ((1ull << LR_SPI_BITS) - 1) 3773 #define LR_SIZE_MASK ((1ull << LR_SIZE_BITS) - 1) 3774 #define LR_SPI_OFF LR_FRAMENO_BITS 3775 #define LR_IS_REG_OFF (LR_SPI_BITS + LR_FRAMENO_BITS) 3776 #define LINKED_REGS_MAX 6 3777 3778 struct linked_reg { 3779 u8 frameno; 3780 union { 3781 u8 spi; 3782 u8 regno; 3783 }; 3784 bool is_reg; 3785 }; 3786 3787 struct linked_regs { 3788 int cnt; 3789 struct linked_reg entries[LINKED_REGS_MAX]; 3790 }; 3791 3792 static struct linked_reg *linked_regs_push(struct linked_regs *s) 3793 { 3794 if (s->cnt < LINKED_REGS_MAX) 3795 return &s->entries[s->cnt++]; 3796 3797 return NULL; 3798 } 3799 3800 /* Use u64 as a vector of 6 10-bit values, use first 4-bits to track 3801 * number of elements currently in stack. 3802 * Pack one history entry for linked registers as 10 bits in the following format: 3803 * - 3-bits frameno 3804 * - 6-bits spi_or_reg 3805 * - 1-bit is_reg 3806 */ 3807 static u64 linked_regs_pack(struct linked_regs *s) 3808 { 3809 u64 val = 0; 3810 int i; 3811 3812 for (i = 0; i < s->cnt; ++i) { 3813 struct linked_reg *e = &s->entries[i]; 3814 u64 tmp = 0; 3815 3816 tmp |= e->frameno; 3817 tmp |= e->spi << LR_SPI_OFF; 3818 tmp |= (e->is_reg ? 1 : 0) << LR_IS_REG_OFF; 3819 3820 val <<= LR_ENTRY_BITS; 3821 val |= tmp; 3822 } 3823 val <<= LR_SIZE_BITS; 3824 val |= s->cnt; 3825 return val; 3826 } 3827 3828 static void linked_regs_unpack(u64 val, struct linked_regs *s) 3829 { 3830 int i; 3831 3832 s->cnt = val & LR_SIZE_MASK; 3833 val >>= LR_SIZE_BITS; 3834 3835 for (i = 0; i < s->cnt; ++i) { 3836 struct linked_reg *e = &s->entries[i]; 3837 3838 e->frameno = val & LR_FRAMENO_MASK; 3839 e->spi = (val >> LR_SPI_OFF) & LR_SPI_MASK; 3840 e->is_reg = (val >> LR_IS_REG_OFF) & 0x1; 3841 val >>= LR_ENTRY_BITS; 3842 } 3843 } 3844 3845 /* for any branch, call, exit record the history of jmps in the given state */ 3846 static int push_insn_history(struct bpf_verifier_env *env, struct bpf_verifier_state *cur, 3847 int insn_flags, u64 linked_regs) 3848 { 3849 struct bpf_insn_hist_entry *p; 3850 size_t alloc_size; 3851 3852 /* combine instruction flags if we already recorded this instruction */ 3853 if (env->cur_hist_ent) { 3854 /* atomic instructions push insn_flags twice, for READ and 3855 * WRITE sides, but they should agree on stack slot 3856 */ 3857 verifier_bug_if((env->cur_hist_ent->flags & insn_flags) && 3858 (env->cur_hist_ent->flags & insn_flags) != insn_flags, 3859 env, "insn history: insn_idx %d cur flags %x new flags %x", 3860 env->insn_idx, env->cur_hist_ent->flags, insn_flags); 3861 env->cur_hist_ent->flags |= insn_flags; 3862 verifier_bug_if(env->cur_hist_ent->linked_regs != 0, env, 3863 "insn history: insn_idx %d linked_regs: %#llx", 3864 env->insn_idx, env->cur_hist_ent->linked_regs); 3865 env->cur_hist_ent->linked_regs = linked_regs; 3866 return 0; 3867 } 3868 3869 if (cur->insn_hist_end + 1 > env->insn_hist_cap) { 3870 alloc_size = size_mul(cur->insn_hist_end + 1, sizeof(*p)); 3871 p = kvrealloc(env->insn_hist, alloc_size, GFP_USER); 3872 if (!p) 3873 return -ENOMEM; 3874 env->insn_hist = p; 3875 env->insn_hist_cap = alloc_size / sizeof(*p); 3876 } 3877 3878 p = &env->insn_hist[cur->insn_hist_end]; 3879 p->idx = env->insn_idx; 3880 p->prev_idx = env->prev_insn_idx; 3881 p->flags = insn_flags; 3882 p->linked_regs = linked_regs; 3883 3884 cur->insn_hist_end++; 3885 env->cur_hist_ent = p; 3886 3887 return 0; 3888 } 3889 3890 static struct bpf_insn_hist_entry *get_insn_hist_entry(struct bpf_verifier_env *env, 3891 u32 hist_start, u32 hist_end, int insn_idx) 3892 { 3893 if (hist_end > hist_start && env->insn_hist[hist_end - 1].idx == insn_idx) 3894 return &env->insn_hist[hist_end - 1]; 3895 return NULL; 3896 } 3897 3898 /* Backtrack one insn at a time. If idx is not at the top of recorded 3899 * history then previous instruction came from straight line execution. 3900 * Return -ENOENT if we exhausted all instructions within given state. 3901 * 3902 * It's legal to have a bit of a looping with the same starting and ending 3903 * insn index within the same state, e.g.: 3->4->5->3, so just because current 3904 * instruction index is the same as state's first_idx doesn't mean we are 3905 * done. If there is still some jump history left, we should keep going. We 3906 * need to take into account that we might have a jump history between given 3907 * state's parent and itself, due to checkpointing. In this case, we'll have 3908 * history entry recording a jump from last instruction of parent state and 3909 * first instruction of given state. 3910 */ 3911 static int get_prev_insn_idx(const struct bpf_verifier_env *env, 3912 struct bpf_verifier_state *st, 3913 int insn_idx, u32 hist_start, u32 *hist_endp) 3914 { 3915 u32 hist_end = *hist_endp; 3916 u32 cnt = hist_end - hist_start; 3917 3918 if (insn_idx == st->first_insn_idx) { 3919 if (cnt == 0) 3920 return -ENOENT; 3921 if (cnt == 1 && env->insn_hist[hist_start].idx == insn_idx) 3922 return -ENOENT; 3923 } 3924 3925 if (cnt && env->insn_hist[hist_end - 1].idx == insn_idx) { 3926 (*hist_endp)--; 3927 return env->insn_hist[hist_end - 1].prev_idx; 3928 } else { 3929 return insn_idx - 1; 3930 } 3931 } 3932 3933 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn) 3934 { 3935 const struct btf_type *func; 3936 struct btf *desc_btf; 3937 3938 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL) 3939 return NULL; 3940 3941 desc_btf = find_kfunc_desc_btf(data, insn->off); 3942 if (IS_ERR(desc_btf)) 3943 return "<error>"; 3944 3945 func = btf_type_by_id(desc_btf, insn->imm); 3946 return btf_name_by_offset(desc_btf, func->name_off); 3947 } 3948 3949 static void verbose_insn(struct bpf_verifier_env *env, struct bpf_insn *insn) 3950 { 3951 const struct bpf_insn_cbs cbs = { 3952 .cb_call = disasm_kfunc_name, 3953 .cb_print = verbose, 3954 .private_data = env, 3955 }; 3956 3957 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 3958 } 3959 3960 static inline void bt_init(struct backtrack_state *bt, u32 frame) 3961 { 3962 bt->frame = frame; 3963 } 3964 3965 static inline void bt_reset(struct backtrack_state *bt) 3966 { 3967 struct bpf_verifier_env *env = bt->env; 3968 3969 memset(bt, 0, sizeof(*bt)); 3970 bt->env = env; 3971 } 3972 3973 static inline u32 bt_empty(struct backtrack_state *bt) 3974 { 3975 u64 mask = 0; 3976 int i; 3977 3978 for (i = 0; i <= bt->frame; i++) 3979 mask |= bt->reg_masks[i] | bt->stack_masks[i]; 3980 3981 return mask == 0; 3982 } 3983 3984 static inline int bt_subprog_enter(struct backtrack_state *bt) 3985 { 3986 if (bt->frame == MAX_CALL_FRAMES - 1) { 3987 verifier_bug(bt->env, "subprog enter from frame %d", bt->frame); 3988 return -EFAULT; 3989 } 3990 bt->frame++; 3991 return 0; 3992 } 3993 3994 static inline int bt_subprog_exit(struct backtrack_state *bt) 3995 { 3996 if (bt->frame == 0) { 3997 verifier_bug(bt->env, "subprog exit from frame 0"); 3998 return -EFAULT; 3999 } 4000 bt->frame--; 4001 return 0; 4002 } 4003 4004 static inline void bt_set_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg) 4005 { 4006 bt->reg_masks[frame] |= 1 << reg; 4007 } 4008 4009 static inline void bt_clear_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg) 4010 { 4011 bt->reg_masks[frame] &= ~(1 << reg); 4012 } 4013 4014 static inline void bt_set_reg(struct backtrack_state *bt, u32 reg) 4015 { 4016 bt_set_frame_reg(bt, bt->frame, reg); 4017 } 4018 4019 static inline void bt_clear_reg(struct backtrack_state *bt, u32 reg) 4020 { 4021 bt_clear_frame_reg(bt, bt->frame, reg); 4022 } 4023 4024 static inline void bt_set_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot) 4025 { 4026 bt->stack_masks[frame] |= 1ull << slot; 4027 } 4028 4029 static inline void bt_clear_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot) 4030 { 4031 bt->stack_masks[frame] &= ~(1ull << slot); 4032 } 4033 4034 static inline u32 bt_frame_reg_mask(struct backtrack_state *bt, u32 frame) 4035 { 4036 return bt->reg_masks[frame]; 4037 } 4038 4039 static inline u32 bt_reg_mask(struct backtrack_state *bt) 4040 { 4041 return bt->reg_masks[bt->frame]; 4042 } 4043 4044 static inline u64 bt_frame_stack_mask(struct backtrack_state *bt, u32 frame) 4045 { 4046 return bt->stack_masks[frame]; 4047 } 4048 4049 static inline u64 bt_stack_mask(struct backtrack_state *bt) 4050 { 4051 return bt->stack_masks[bt->frame]; 4052 } 4053 4054 static inline bool bt_is_reg_set(struct backtrack_state *bt, u32 reg) 4055 { 4056 return bt->reg_masks[bt->frame] & (1 << reg); 4057 } 4058 4059 static inline bool bt_is_frame_reg_set(struct backtrack_state *bt, u32 frame, u32 reg) 4060 { 4061 return bt->reg_masks[frame] & (1 << reg); 4062 } 4063 4064 static inline bool bt_is_frame_slot_set(struct backtrack_state *bt, u32 frame, u32 slot) 4065 { 4066 return bt->stack_masks[frame] & (1ull << slot); 4067 } 4068 4069 /* format registers bitmask, e.g., "r0,r2,r4" for 0x15 mask */ 4070 static void fmt_reg_mask(char *buf, ssize_t buf_sz, u32 reg_mask) 4071 { 4072 DECLARE_BITMAP(mask, 64); 4073 bool first = true; 4074 int i, n; 4075 4076 buf[0] = '\0'; 4077 4078 bitmap_from_u64(mask, reg_mask); 4079 for_each_set_bit(i, mask, 32) { 4080 n = snprintf(buf, buf_sz, "%sr%d", first ? "" : ",", i); 4081 first = false; 4082 buf += n; 4083 buf_sz -= n; 4084 if (buf_sz < 0) 4085 break; 4086 } 4087 } 4088 /* format stack slots bitmask, e.g., "-8,-24,-40" for 0x15 mask */ 4089 static void fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask) 4090 { 4091 DECLARE_BITMAP(mask, 64); 4092 bool first = true; 4093 int i, n; 4094 4095 buf[0] = '\0'; 4096 4097 bitmap_from_u64(mask, stack_mask); 4098 for_each_set_bit(i, mask, 64) { 4099 n = snprintf(buf, buf_sz, "%s%d", first ? "" : ",", -(i + 1) * 8); 4100 first = false; 4101 buf += n; 4102 buf_sz -= n; 4103 if (buf_sz < 0) 4104 break; 4105 } 4106 } 4107 4108 /* If any register R in hist->linked_regs is marked as precise in bt, 4109 * do bt_set_frame_{reg,slot}(bt, R) for all registers in hist->linked_regs. 4110 */ 4111 static void bt_sync_linked_regs(struct backtrack_state *bt, struct bpf_insn_hist_entry *hist) 4112 { 4113 struct linked_regs linked_regs; 4114 bool some_precise = false; 4115 int i; 4116 4117 if (!hist || hist->linked_regs == 0) 4118 return; 4119 4120 linked_regs_unpack(hist->linked_regs, &linked_regs); 4121 for (i = 0; i < linked_regs.cnt; ++i) { 4122 struct linked_reg *e = &linked_regs.entries[i]; 4123 4124 if ((e->is_reg && bt_is_frame_reg_set(bt, e->frameno, e->regno)) || 4125 (!e->is_reg && bt_is_frame_slot_set(bt, e->frameno, e->spi))) { 4126 some_precise = true; 4127 break; 4128 } 4129 } 4130 4131 if (!some_precise) 4132 return; 4133 4134 for (i = 0; i < linked_regs.cnt; ++i) { 4135 struct linked_reg *e = &linked_regs.entries[i]; 4136 4137 if (e->is_reg) 4138 bt_set_frame_reg(bt, e->frameno, e->regno); 4139 else 4140 bt_set_frame_slot(bt, e->frameno, e->spi); 4141 } 4142 } 4143 4144 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx); 4145 4146 /* For given verifier state backtrack_insn() is called from the last insn to 4147 * the first insn. Its purpose is to compute a bitmask of registers and 4148 * stack slots that needs precision in the parent verifier state. 4149 * 4150 * @idx is an index of the instruction we are currently processing; 4151 * @subseq_idx is an index of the subsequent instruction that: 4152 * - *would be* executed next, if jump history is viewed in forward order; 4153 * - *was* processed previously during backtracking. 4154 */ 4155 static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx, 4156 struct bpf_insn_hist_entry *hist, struct backtrack_state *bt) 4157 { 4158 struct bpf_insn *insn = env->prog->insnsi + idx; 4159 u8 class = BPF_CLASS(insn->code); 4160 u8 opcode = BPF_OP(insn->code); 4161 u8 mode = BPF_MODE(insn->code); 4162 u32 dreg = insn->dst_reg; 4163 u32 sreg = insn->src_reg; 4164 u32 spi, i, fr; 4165 4166 if (insn->code == 0) 4167 return 0; 4168 if (env->log.level & BPF_LOG_LEVEL2) { 4169 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_reg_mask(bt)); 4170 verbose(env, "mark_precise: frame%d: regs=%s ", 4171 bt->frame, env->tmp_str_buf); 4172 fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt)); 4173 verbose(env, "stack=%s before ", env->tmp_str_buf); 4174 verbose(env, "%d: ", idx); 4175 verbose_insn(env, insn); 4176 } 4177 4178 /* If there is a history record that some registers gained range at this insn, 4179 * propagate precision marks to those registers, so that bt_is_reg_set() 4180 * accounts for these registers. 4181 */ 4182 bt_sync_linked_regs(bt, hist); 4183 4184 if (class == BPF_ALU || class == BPF_ALU64) { 4185 if (!bt_is_reg_set(bt, dreg)) 4186 return 0; 4187 if (opcode == BPF_END || opcode == BPF_NEG) { 4188 /* sreg is reserved and unused 4189 * dreg still need precision before this insn 4190 */ 4191 return 0; 4192 } else if (opcode == BPF_MOV) { 4193 if (BPF_SRC(insn->code) == BPF_X) { 4194 /* dreg = sreg or dreg = (s8, s16, s32)sreg 4195 * dreg needs precision after this insn 4196 * sreg needs precision before this insn 4197 */ 4198 bt_clear_reg(bt, dreg); 4199 if (sreg != BPF_REG_FP) 4200 bt_set_reg(bt, sreg); 4201 } else { 4202 /* dreg = K 4203 * dreg needs precision after this insn. 4204 * Corresponding register is already marked 4205 * as precise=true in this verifier state. 4206 * No further markings in parent are necessary 4207 */ 4208 bt_clear_reg(bt, dreg); 4209 } 4210 } else { 4211 if (BPF_SRC(insn->code) == BPF_X) { 4212 /* dreg += sreg 4213 * both dreg and sreg need precision 4214 * before this insn 4215 */ 4216 if (sreg != BPF_REG_FP) 4217 bt_set_reg(bt, sreg); 4218 } /* else dreg += K 4219 * dreg still needs precision before this insn 4220 */ 4221 } 4222 } else if (class == BPF_LDX || is_atomic_load_insn(insn)) { 4223 if (!bt_is_reg_set(bt, dreg)) 4224 return 0; 4225 bt_clear_reg(bt, dreg); 4226 4227 /* scalars can only be spilled into stack w/o losing precision. 4228 * Load from any other memory can be zero extended. 4229 * The desire to keep that precision is already indicated 4230 * by 'precise' mark in corresponding register of this state. 4231 * No further tracking necessary. 4232 */ 4233 if (!hist || !(hist->flags & INSN_F_STACK_ACCESS)) 4234 return 0; 4235 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 4236 * that [fp - off] slot contains scalar that needs to be 4237 * tracked with precision 4238 */ 4239 spi = insn_stack_access_spi(hist->flags); 4240 fr = insn_stack_access_frameno(hist->flags); 4241 bt_set_frame_slot(bt, fr, spi); 4242 } else if (class == BPF_STX || class == BPF_ST) { 4243 if (bt_is_reg_set(bt, dreg)) 4244 /* stx & st shouldn't be using _scalar_ dst_reg 4245 * to access memory. It means backtracking 4246 * encountered a case of pointer subtraction. 4247 */ 4248 return -ENOTSUPP; 4249 /* scalars can only be spilled into stack */ 4250 if (!hist || !(hist->flags & INSN_F_STACK_ACCESS)) 4251 return 0; 4252 spi = insn_stack_access_spi(hist->flags); 4253 fr = insn_stack_access_frameno(hist->flags); 4254 if (!bt_is_frame_slot_set(bt, fr, spi)) 4255 return 0; 4256 bt_clear_frame_slot(bt, fr, spi); 4257 if (class == BPF_STX) 4258 bt_set_reg(bt, sreg); 4259 } else if (class == BPF_JMP || class == BPF_JMP32) { 4260 if (bpf_pseudo_call(insn)) { 4261 int subprog_insn_idx, subprog; 4262 4263 subprog_insn_idx = idx + insn->imm + 1; 4264 subprog = find_subprog(env, subprog_insn_idx); 4265 if (subprog < 0) 4266 return -EFAULT; 4267 4268 if (subprog_is_global(env, subprog)) { 4269 /* check that jump history doesn't have any 4270 * extra instructions from subprog; the next 4271 * instruction after call to global subprog 4272 * should be literally next instruction in 4273 * caller program 4274 */ 4275 verifier_bug_if(idx + 1 != subseq_idx, env, 4276 "extra insn from subprog"); 4277 /* r1-r5 are invalidated after subprog call, 4278 * so for global func call it shouldn't be set 4279 * anymore 4280 */ 4281 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 4282 verifier_bug(env, "global subprog unexpected regs %x", 4283 bt_reg_mask(bt)); 4284 return -EFAULT; 4285 } 4286 /* global subprog always sets R0 */ 4287 bt_clear_reg(bt, BPF_REG_0); 4288 return 0; 4289 } else { 4290 /* static subprog call instruction, which 4291 * means that we are exiting current subprog, 4292 * so only r1-r5 could be still requested as 4293 * precise, r0 and r6-r10 or any stack slot in 4294 * the current frame should be zero by now 4295 */ 4296 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) { 4297 verifier_bug(env, "static subprog unexpected regs %x", 4298 bt_reg_mask(bt)); 4299 return -EFAULT; 4300 } 4301 /* we are now tracking register spills correctly, 4302 * so any instance of leftover slots is a bug 4303 */ 4304 if (bt_stack_mask(bt) != 0) { 4305 verifier_bug(env, 4306 "static subprog leftover stack slots %llx", 4307 bt_stack_mask(bt)); 4308 return -EFAULT; 4309 } 4310 /* propagate r1-r5 to the caller */ 4311 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 4312 if (bt_is_reg_set(bt, i)) { 4313 bt_clear_reg(bt, i); 4314 bt_set_frame_reg(bt, bt->frame - 1, i); 4315 } 4316 } 4317 if (bt_subprog_exit(bt)) 4318 return -EFAULT; 4319 return 0; 4320 } 4321 } else if (is_sync_callback_calling_insn(insn) && idx != subseq_idx - 1) { 4322 /* exit from callback subprog to callback-calling helper or 4323 * kfunc call. Use idx/subseq_idx check to discern it from 4324 * straight line code backtracking. 4325 * Unlike the subprog call handling above, we shouldn't 4326 * propagate precision of r1-r5 (if any requested), as they are 4327 * not actually arguments passed directly to callback subprogs 4328 */ 4329 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) { 4330 verifier_bug(env, "callback unexpected regs %x", 4331 bt_reg_mask(bt)); 4332 return -EFAULT; 4333 } 4334 if (bt_stack_mask(bt) != 0) { 4335 verifier_bug(env, "callback leftover stack slots %llx", 4336 bt_stack_mask(bt)); 4337 return -EFAULT; 4338 } 4339 /* clear r1-r5 in callback subprog's mask */ 4340 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 4341 bt_clear_reg(bt, i); 4342 if (bt_subprog_exit(bt)) 4343 return -EFAULT; 4344 return 0; 4345 } else if (opcode == BPF_CALL) { 4346 /* kfunc with imm==0 is invalid and fixup_kfunc_call will 4347 * catch this error later. Make backtracking conservative 4348 * with ENOTSUPP. 4349 */ 4350 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0) 4351 return -ENOTSUPP; 4352 /* regular helper call sets R0 */ 4353 bt_clear_reg(bt, BPF_REG_0); 4354 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 4355 /* if backtracking was looking for registers R1-R5 4356 * they should have been found already. 4357 */ 4358 verifier_bug(env, "backtracking call unexpected regs %x", 4359 bt_reg_mask(bt)); 4360 return -EFAULT; 4361 } 4362 } else if (opcode == BPF_EXIT) { 4363 bool r0_precise; 4364 4365 /* Backtracking to a nested function call, 'idx' is a part of 4366 * the inner frame 'subseq_idx' is a part of the outer frame. 4367 * In case of a regular function call, instructions giving 4368 * precision to registers R1-R5 should have been found already. 4369 * In case of a callback, it is ok to have R1-R5 marked for 4370 * backtracking, as these registers are set by the function 4371 * invoking callback. 4372 */ 4373 if (subseq_idx >= 0 && calls_callback(env, subseq_idx)) 4374 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 4375 bt_clear_reg(bt, i); 4376 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 4377 verifier_bug(env, "backtracking exit unexpected regs %x", 4378 bt_reg_mask(bt)); 4379 return -EFAULT; 4380 } 4381 4382 /* BPF_EXIT in subprog or callback always returns 4383 * right after the call instruction, so by checking 4384 * whether the instruction at subseq_idx-1 is subprog 4385 * call or not we can distinguish actual exit from 4386 * *subprog* from exit from *callback*. In the former 4387 * case, we need to propagate r0 precision, if 4388 * necessary. In the former we never do that. 4389 */ 4390 r0_precise = subseq_idx - 1 >= 0 && 4391 bpf_pseudo_call(&env->prog->insnsi[subseq_idx - 1]) && 4392 bt_is_reg_set(bt, BPF_REG_0); 4393 4394 bt_clear_reg(bt, BPF_REG_0); 4395 if (bt_subprog_enter(bt)) 4396 return -EFAULT; 4397 4398 if (r0_precise) 4399 bt_set_reg(bt, BPF_REG_0); 4400 /* r6-r9 and stack slots will stay set in caller frame 4401 * bitmasks until we return back from callee(s) 4402 */ 4403 return 0; 4404 } else if (BPF_SRC(insn->code) == BPF_X) { 4405 if (!bt_is_reg_set(bt, dreg) && !bt_is_reg_set(bt, sreg)) 4406 return 0; 4407 /* dreg <cond> sreg 4408 * Both dreg and sreg need precision before 4409 * this insn. If only sreg was marked precise 4410 * before it would be equally necessary to 4411 * propagate it to dreg. 4412 */ 4413 if (!hist || !(hist->flags & INSN_F_SRC_REG_STACK)) 4414 bt_set_reg(bt, sreg); 4415 if (!hist || !(hist->flags & INSN_F_DST_REG_STACK)) 4416 bt_set_reg(bt, dreg); 4417 } else if (BPF_SRC(insn->code) == BPF_K) { 4418 /* dreg <cond> K 4419 * Only dreg still needs precision before 4420 * this insn, so for the K-based conditional 4421 * there is nothing new to be marked. 4422 */ 4423 } 4424 } else if (class == BPF_LD) { 4425 if (!bt_is_reg_set(bt, dreg)) 4426 return 0; 4427 bt_clear_reg(bt, dreg); 4428 /* It's ld_imm64 or ld_abs or ld_ind. 4429 * For ld_imm64 no further tracking of precision 4430 * into parent is necessary 4431 */ 4432 if (mode == BPF_IND || mode == BPF_ABS) 4433 /* to be analyzed */ 4434 return -ENOTSUPP; 4435 } 4436 /* Propagate precision marks to linked registers, to account for 4437 * registers marked as precise in this function. 4438 */ 4439 bt_sync_linked_regs(bt, hist); 4440 return 0; 4441 } 4442 4443 /* the scalar precision tracking algorithm: 4444 * . at the start all registers have precise=false. 4445 * . scalar ranges are tracked as normal through alu and jmp insns. 4446 * . once precise value of the scalar register is used in: 4447 * . ptr + scalar alu 4448 * . if (scalar cond K|scalar) 4449 * . helper_call(.., scalar, ...) where ARG_CONST is expected 4450 * backtrack through the verifier states and mark all registers and 4451 * stack slots with spilled constants that these scalar regisers 4452 * should be precise. 4453 * . during state pruning two registers (or spilled stack slots) 4454 * are equivalent if both are not precise. 4455 * 4456 * Note the verifier cannot simply walk register parentage chain, 4457 * since many different registers and stack slots could have been 4458 * used to compute single precise scalar. 4459 * 4460 * The approach of starting with precise=true for all registers and then 4461 * backtrack to mark a register as not precise when the verifier detects 4462 * that program doesn't care about specific value (e.g., when helper 4463 * takes register as ARG_ANYTHING parameter) is not safe. 4464 * 4465 * It's ok to walk single parentage chain of the verifier states. 4466 * It's possible that this backtracking will go all the way till 1st insn. 4467 * All other branches will be explored for needing precision later. 4468 * 4469 * The backtracking needs to deal with cases like: 4470 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 4471 * r9 -= r8 4472 * r5 = r9 4473 * if r5 > 0x79f goto pc+7 4474 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 4475 * r5 += 1 4476 * ... 4477 * call bpf_perf_event_output#25 4478 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 4479 * 4480 * and this case: 4481 * r6 = 1 4482 * call foo // uses callee's r6 inside to compute r0 4483 * r0 += r6 4484 * if r0 == 0 goto 4485 * 4486 * to track above reg_mask/stack_mask needs to be independent for each frame. 4487 * 4488 * Also if parent's curframe > frame where backtracking started, 4489 * the verifier need to mark registers in both frames, otherwise callees 4490 * may incorrectly prune callers. This is similar to 4491 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 4492 * 4493 * For now backtracking falls back into conservative marking. 4494 */ 4495 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 4496 struct bpf_verifier_state *st) 4497 { 4498 struct bpf_func_state *func; 4499 struct bpf_reg_state *reg; 4500 int i, j; 4501 4502 if (env->log.level & BPF_LOG_LEVEL2) { 4503 verbose(env, "mark_precise: frame%d: falling back to forcing all scalars precise\n", 4504 st->curframe); 4505 } 4506 4507 /* big hammer: mark all scalars precise in this path. 4508 * pop_stack may still get !precise scalars. 4509 * We also skip current state and go straight to first parent state, 4510 * because precision markings in current non-checkpointed state are 4511 * not needed. See why in the comment in __mark_chain_precision below. 4512 */ 4513 for (st = st->parent; st; st = st->parent) { 4514 for (i = 0; i <= st->curframe; i++) { 4515 func = st->frame[i]; 4516 for (j = 0; j < BPF_REG_FP; j++) { 4517 reg = &func->regs[j]; 4518 if (reg->type != SCALAR_VALUE || reg->precise) 4519 continue; 4520 reg->precise = true; 4521 if (env->log.level & BPF_LOG_LEVEL2) { 4522 verbose(env, "force_precise: frame%d: forcing r%d to be precise\n", 4523 i, j); 4524 } 4525 } 4526 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 4527 if (!is_spilled_reg(&func->stack[j])) 4528 continue; 4529 reg = &func->stack[j].spilled_ptr; 4530 if (reg->type != SCALAR_VALUE || reg->precise) 4531 continue; 4532 reg->precise = true; 4533 if (env->log.level & BPF_LOG_LEVEL2) { 4534 verbose(env, "force_precise: frame%d: forcing fp%d to be precise\n", 4535 i, -(j + 1) * 8); 4536 } 4537 } 4538 } 4539 } 4540 } 4541 4542 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 4543 { 4544 struct bpf_func_state *func; 4545 struct bpf_reg_state *reg; 4546 int i, j; 4547 4548 for (i = 0; i <= st->curframe; i++) { 4549 func = st->frame[i]; 4550 for (j = 0; j < BPF_REG_FP; j++) { 4551 reg = &func->regs[j]; 4552 if (reg->type != SCALAR_VALUE) 4553 continue; 4554 reg->precise = false; 4555 } 4556 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 4557 if (!is_spilled_reg(&func->stack[j])) 4558 continue; 4559 reg = &func->stack[j].spilled_ptr; 4560 if (reg->type != SCALAR_VALUE) 4561 continue; 4562 reg->precise = false; 4563 } 4564 } 4565 } 4566 4567 /* 4568 * __mark_chain_precision() backtracks BPF program instruction sequence and 4569 * chain of verifier states making sure that register *regno* (if regno >= 0) 4570 * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked 4571 * SCALARS, as well as any other registers and slots that contribute to 4572 * a tracked state of given registers/stack slots, depending on specific BPF 4573 * assembly instructions (see backtrack_insns() for exact instruction handling 4574 * logic). This backtracking relies on recorded insn_hist and is able to 4575 * traverse entire chain of parent states. This process ends only when all the 4576 * necessary registers/slots and their transitive dependencies are marked as 4577 * precise. 4578 * 4579 * One important and subtle aspect is that precise marks *do not matter* in 4580 * the currently verified state (current state). It is important to understand 4581 * why this is the case. 4582 * 4583 * First, note that current state is the state that is not yet "checkpointed", 4584 * i.e., it is not yet put into env->explored_states, and it has no children 4585 * states as well. It's ephemeral, and can end up either a) being discarded if 4586 * compatible explored state is found at some point or BPF_EXIT instruction is 4587 * reached or b) checkpointed and put into env->explored_states, branching out 4588 * into one or more children states. 4589 * 4590 * In the former case, precise markings in current state are completely 4591 * ignored by state comparison code (see regsafe() for details). Only 4592 * checkpointed ("old") state precise markings are important, and if old 4593 * state's register/slot is precise, regsafe() assumes current state's 4594 * register/slot as precise and checks value ranges exactly and precisely. If 4595 * states turn out to be compatible, current state's necessary precise 4596 * markings and any required parent states' precise markings are enforced 4597 * after the fact with propagate_precision() logic, after the fact. But it's 4598 * important to realize that in this case, even after marking current state 4599 * registers/slots as precise, we immediately discard current state. So what 4600 * actually matters is any of the precise markings propagated into current 4601 * state's parent states, which are always checkpointed (due to b) case above). 4602 * As such, for scenario a) it doesn't matter if current state has precise 4603 * markings set or not. 4604 * 4605 * Now, for the scenario b), checkpointing and forking into child(ren) 4606 * state(s). Note that before current state gets to checkpointing step, any 4607 * processed instruction always assumes precise SCALAR register/slot 4608 * knowledge: if precise value or range is useful to prune jump branch, BPF 4609 * verifier takes this opportunity enthusiastically. Similarly, when 4610 * register's value is used to calculate offset or memory address, exact 4611 * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to 4612 * what we mentioned above about state comparison ignoring precise markings 4613 * during state comparison, BPF verifier ignores and also assumes precise 4614 * markings *at will* during instruction verification process. But as verifier 4615 * assumes precision, it also propagates any precision dependencies across 4616 * parent states, which are not yet finalized, so can be further restricted 4617 * based on new knowledge gained from restrictions enforced by their children 4618 * states. This is so that once those parent states are finalized, i.e., when 4619 * they have no more active children state, state comparison logic in 4620 * is_state_visited() would enforce strict and precise SCALAR ranges, if 4621 * required for correctness. 4622 * 4623 * To build a bit more intuition, note also that once a state is checkpointed, 4624 * the path we took to get to that state is not important. This is crucial 4625 * property for state pruning. When state is checkpointed and finalized at 4626 * some instruction index, it can be correctly and safely used to "short 4627 * circuit" any *compatible* state that reaches exactly the same instruction 4628 * index. I.e., if we jumped to that instruction from a completely different 4629 * code path than original finalized state was derived from, it doesn't 4630 * matter, current state can be discarded because from that instruction 4631 * forward having a compatible state will ensure we will safely reach the 4632 * exit. States describe preconditions for further exploration, but completely 4633 * forget the history of how we got here. 4634 * 4635 * This also means that even if we needed precise SCALAR range to get to 4636 * finalized state, but from that point forward *that same* SCALAR register is 4637 * never used in a precise context (i.e., it's precise value is not needed for 4638 * correctness), it's correct and safe to mark such register as "imprecise" 4639 * (i.e., precise marking set to false). This is what we rely on when we do 4640 * not set precise marking in current state. If no child state requires 4641 * precision for any given SCALAR register, it's safe to dictate that it can 4642 * be imprecise. If any child state does require this register to be precise, 4643 * we'll mark it precise later retroactively during precise markings 4644 * propagation from child state to parent states. 4645 * 4646 * Skipping precise marking setting in current state is a mild version of 4647 * relying on the above observation. But we can utilize this property even 4648 * more aggressively by proactively forgetting any precise marking in the 4649 * current state (which we inherited from the parent state), right before we 4650 * checkpoint it and branch off into new child state. This is done by 4651 * mark_all_scalars_imprecise() to hopefully get more permissive and generic 4652 * finalized states which help in short circuiting more future states. 4653 */ 4654 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno) 4655 { 4656 struct backtrack_state *bt = &env->bt; 4657 struct bpf_verifier_state *st = env->cur_state; 4658 int first_idx = st->first_insn_idx; 4659 int last_idx = env->insn_idx; 4660 int subseq_idx = -1; 4661 struct bpf_func_state *func; 4662 struct bpf_reg_state *reg; 4663 bool skip_first = true; 4664 int i, fr, err; 4665 4666 if (!env->bpf_capable) 4667 return 0; 4668 4669 /* set frame number from which we are starting to backtrack */ 4670 bt_init(bt, env->cur_state->curframe); 4671 4672 /* Do sanity checks against current state of register and/or stack 4673 * slot, but don't set precise flag in current state, as precision 4674 * tracking in the current state is unnecessary. 4675 */ 4676 func = st->frame[bt->frame]; 4677 if (regno >= 0) { 4678 reg = &func->regs[regno]; 4679 if (reg->type != SCALAR_VALUE) { 4680 WARN_ONCE(1, "backtracing misuse"); 4681 return -EFAULT; 4682 } 4683 bt_set_reg(bt, regno); 4684 } 4685 4686 if (bt_empty(bt)) 4687 return 0; 4688 4689 for (;;) { 4690 DECLARE_BITMAP(mask, 64); 4691 u32 hist_start = st->insn_hist_start; 4692 u32 hist_end = st->insn_hist_end; 4693 struct bpf_insn_hist_entry *hist; 4694 4695 if (env->log.level & BPF_LOG_LEVEL2) { 4696 verbose(env, "mark_precise: frame%d: last_idx %d first_idx %d subseq_idx %d \n", 4697 bt->frame, last_idx, first_idx, subseq_idx); 4698 } 4699 4700 if (last_idx < 0) { 4701 /* we are at the entry into subprog, which 4702 * is expected for global funcs, but only if 4703 * requested precise registers are R1-R5 4704 * (which are global func's input arguments) 4705 */ 4706 if (st->curframe == 0 && 4707 st->frame[0]->subprogno > 0 && 4708 st->frame[0]->callsite == BPF_MAIN_FUNC && 4709 bt_stack_mask(bt) == 0 && 4710 (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) == 0) { 4711 bitmap_from_u64(mask, bt_reg_mask(bt)); 4712 for_each_set_bit(i, mask, 32) { 4713 reg = &st->frame[0]->regs[i]; 4714 bt_clear_reg(bt, i); 4715 if (reg->type == SCALAR_VALUE) 4716 reg->precise = true; 4717 } 4718 return 0; 4719 } 4720 4721 verifier_bug(env, "backtracking func entry subprog %d reg_mask %x stack_mask %llx", 4722 st->frame[0]->subprogno, bt_reg_mask(bt), bt_stack_mask(bt)); 4723 return -EFAULT; 4724 } 4725 4726 for (i = last_idx;;) { 4727 if (skip_first) { 4728 err = 0; 4729 skip_first = false; 4730 } else { 4731 hist = get_insn_hist_entry(env, hist_start, hist_end, i); 4732 err = backtrack_insn(env, i, subseq_idx, hist, bt); 4733 } 4734 if (err == -ENOTSUPP) { 4735 mark_all_scalars_precise(env, env->cur_state); 4736 bt_reset(bt); 4737 return 0; 4738 } else if (err) { 4739 return err; 4740 } 4741 if (bt_empty(bt)) 4742 /* Found assignment(s) into tracked register in this state. 4743 * Since this state is already marked, just return. 4744 * Nothing to be tracked further in the parent state. 4745 */ 4746 return 0; 4747 subseq_idx = i; 4748 i = get_prev_insn_idx(env, st, i, hist_start, &hist_end); 4749 if (i == -ENOENT) 4750 break; 4751 if (i >= env->prog->len) { 4752 /* This can happen if backtracking reached insn 0 4753 * and there are still reg_mask or stack_mask 4754 * to backtrack. 4755 * It means the backtracking missed the spot where 4756 * particular register was initialized with a constant. 4757 */ 4758 verifier_bug(env, "backtracking idx %d", i); 4759 return -EFAULT; 4760 } 4761 } 4762 st = st->parent; 4763 if (!st) 4764 break; 4765 4766 for (fr = bt->frame; fr >= 0; fr--) { 4767 func = st->frame[fr]; 4768 bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr)); 4769 for_each_set_bit(i, mask, 32) { 4770 reg = &func->regs[i]; 4771 if (reg->type != SCALAR_VALUE) { 4772 bt_clear_frame_reg(bt, fr, i); 4773 continue; 4774 } 4775 if (reg->precise) 4776 bt_clear_frame_reg(bt, fr, i); 4777 else 4778 reg->precise = true; 4779 } 4780 4781 bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr)); 4782 for_each_set_bit(i, mask, 64) { 4783 if (verifier_bug_if(i >= func->allocated_stack / BPF_REG_SIZE, 4784 env, "stack slot %d, total slots %d", 4785 i, func->allocated_stack / BPF_REG_SIZE)) 4786 return -EFAULT; 4787 4788 if (!is_spilled_scalar_reg(&func->stack[i])) { 4789 bt_clear_frame_slot(bt, fr, i); 4790 continue; 4791 } 4792 reg = &func->stack[i].spilled_ptr; 4793 if (reg->precise) 4794 bt_clear_frame_slot(bt, fr, i); 4795 else 4796 reg->precise = true; 4797 } 4798 if (env->log.level & BPF_LOG_LEVEL2) { 4799 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, 4800 bt_frame_reg_mask(bt, fr)); 4801 verbose(env, "mark_precise: frame%d: parent state regs=%s ", 4802 fr, env->tmp_str_buf); 4803 fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, 4804 bt_frame_stack_mask(bt, fr)); 4805 verbose(env, "stack=%s: ", env->tmp_str_buf); 4806 print_verifier_state(env, st, fr, true); 4807 } 4808 } 4809 4810 if (bt_empty(bt)) 4811 return 0; 4812 4813 subseq_idx = first_idx; 4814 last_idx = st->last_insn_idx; 4815 first_idx = st->first_insn_idx; 4816 } 4817 4818 /* if we still have requested precise regs or slots, we missed 4819 * something (e.g., stack access through non-r10 register), so 4820 * fallback to marking all precise 4821 */ 4822 if (!bt_empty(bt)) { 4823 mark_all_scalars_precise(env, env->cur_state); 4824 bt_reset(bt); 4825 } 4826 4827 return 0; 4828 } 4829 4830 int mark_chain_precision(struct bpf_verifier_env *env, int regno) 4831 { 4832 return __mark_chain_precision(env, regno); 4833 } 4834 4835 /* mark_chain_precision_batch() assumes that env->bt is set in the caller to 4836 * desired reg and stack masks across all relevant frames 4837 */ 4838 static int mark_chain_precision_batch(struct bpf_verifier_env *env) 4839 { 4840 return __mark_chain_precision(env, -1); 4841 } 4842 4843 static bool is_spillable_regtype(enum bpf_reg_type type) 4844 { 4845 switch (base_type(type)) { 4846 case PTR_TO_MAP_VALUE: 4847 case PTR_TO_STACK: 4848 case PTR_TO_CTX: 4849 case PTR_TO_PACKET: 4850 case PTR_TO_PACKET_META: 4851 case PTR_TO_PACKET_END: 4852 case PTR_TO_FLOW_KEYS: 4853 case CONST_PTR_TO_MAP: 4854 case PTR_TO_SOCKET: 4855 case PTR_TO_SOCK_COMMON: 4856 case PTR_TO_TCP_SOCK: 4857 case PTR_TO_XDP_SOCK: 4858 case PTR_TO_BTF_ID: 4859 case PTR_TO_BUF: 4860 case PTR_TO_MEM: 4861 case PTR_TO_FUNC: 4862 case PTR_TO_MAP_KEY: 4863 case PTR_TO_ARENA: 4864 return true; 4865 default: 4866 return false; 4867 } 4868 } 4869 4870 /* Does this register contain a constant zero? */ 4871 static bool register_is_null(struct bpf_reg_state *reg) 4872 { 4873 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 4874 } 4875 4876 /* check if register is a constant scalar value */ 4877 static bool is_reg_const(struct bpf_reg_state *reg, bool subreg32) 4878 { 4879 return reg->type == SCALAR_VALUE && 4880 tnum_is_const(subreg32 ? tnum_subreg(reg->var_off) : reg->var_off); 4881 } 4882 4883 /* assuming is_reg_const() is true, return constant value of a register */ 4884 static u64 reg_const_value(struct bpf_reg_state *reg, bool subreg32) 4885 { 4886 return subreg32 ? tnum_subreg(reg->var_off).value : reg->var_off.value; 4887 } 4888 4889 static bool __is_pointer_value(bool allow_ptr_leaks, 4890 const struct bpf_reg_state *reg) 4891 { 4892 if (allow_ptr_leaks) 4893 return false; 4894 4895 return reg->type != SCALAR_VALUE; 4896 } 4897 4898 static void assign_scalar_id_before_mov(struct bpf_verifier_env *env, 4899 struct bpf_reg_state *src_reg) 4900 { 4901 if (src_reg->type != SCALAR_VALUE) 4902 return; 4903 4904 if (src_reg->id & BPF_ADD_CONST) { 4905 /* 4906 * The verifier is processing rX = rY insn and 4907 * rY->id has special linked register already. 4908 * Cleared it, since multiple rX += const are not supported. 4909 */ 4910 src_reg->id = 0; 4911 src_reg->off = 0; 4912 } 4913 4914 if (!src_reg->id && !tnum_is_const(src_reg->var_off)) 4915 /* Ensure that src_reg has a valid ID that will be copied to 4916 * dst_reg and then will be used by sync_linked_regs() to 4917 * propagate min/max range. 4918 */ 4919 src_reg->id = ++env->id_gen; 4920 } 4921 4922 /* Copy src state preserving dst->parent and dst->live fields */ 4923 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src) 4924 { 4925 struct bpf_reg_state *parent = dst->parent; 4926 enum bpf_reg_liveness live = dst->live; 4927 4928 *dst = *src; 4929 dst->parent = parent; 4930 dst->live = live; 4931 } 4932 4933 static void save_register_state(struct bpf_verifier_env *env, 4934 struct bpf_func_state *state, 4935 int spi, struct bpf_reg_state *reg, 4936 int size) 4937 { 4938 int i; 4939 4940 copy_register_state(&state->stack[spi].spilled_ptr, reg); 4941 if (size == BPF_REG_SIZE) 4942 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 4943 4944 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--) 4945 state->stack[spi].slot_type[i - 1] = STACK_SPILL; 4946 4947 /* size < 8 bytes spill */ 4948 for (; i; i--) 4949 mark_stack_slot_misc(env, &state->stack[spi].slot_type[i - 1]); 4950 } 4951 4952 static bool is_bpf_st_mem(struct bpf_insn *insn) 4953 { 4954 return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM; 4955 } 4956 4957 static int get_reg_width(struct bpf_reg_state *reg) 4958 { 4959 return fls64(reg->umax_value); 4960 } 4961 4962 /* See comment for mark_fastcall_pattern_for_call() */ 4963 static void check_fastcall_stack_contract(struct bpf_verifier_env *env, 4964 struct bpf_func_state *state, int insn_idx, int off) 4965 { 4966 struct bpf_subprog_info *subprog = &env->subprog_info[state->subprogno]; 4967 struct bpf_insn_aux_data *aux = env->insn_aux_data; 4968 int i; 4969 4970 if (subprog->fastcall_stack_off <= off || aux[insn_idx].fastcall_pattern) 4971 return; 4972 /* access to the region [max_stack_depth .. fastcall_stack_off) 4973 * from something that is not a part of the fastcall pattern, 4974 * disable fastcall rewrites for current subprogram by setting 4975 * fastcall_stack_off to a value smaller than any possible offset. 4976 */ 4977 subprog->fastcall_stack_off = S16_MIN; 4978 /* reset fastcall aux flags within subprogram, 4979 * happens at most once per subprogram 4980 */ 4981 for (i = subprog->start; i < (subprog + 1)->start; ++i) { 4982 aux[i].fastcall_spills_num = 0; 4983 aux[i].fastcall_pattern = 0; 4984 } 4985 } 4986 4987 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers, 4988 * stack boundary and alignment are checked in check_mem_access() 4989 */ 4990 static int check_stack_write_fixed_off(struct bpf_verifier_env *env, 4991 /* stack frame we're writing to */ 4992 struct bpf_func_state *state, 4993 int off, int size, int value_regno, 4994 int insn_idx) 4995 { 4996 struct bpf_func_state *cur; /* state of the current function */ 4997 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 4998 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 4999 struct bpf_reg_state *reg = NULL; 5000 int insn_flags = insn_stack_access_flags(state->frameno, spi); 5001 5002 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 5003 * so it's aligned access and [off, off + size) are within stack limits 5004 */ 5005 if (!env->allow_ptr_leaks && 5006 is_spilled_reg(&state->stack[spi]) && 5007 !is_spilled_scalar_reg(&state->stack[spi]) && 5008 size != BPF_REG_SIZE) { 5009 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 5010 return -EACCES; 5011 } 5012 5013 cur = env->cur_state->frame[env->cur_state->curframe]; 5014 if (value_regno >= 0) 5015 reg = &cur->regs[value_regno]; 5016 if (!env->bypass_spec_v4) { 5017 bool sanitize = reg && is_spillable_regtype(reg->type); 5018 5019 for (i = 0; i < size; i++) { 5020 u8 type = state->stack[spi].slot_type[i]; 5021 5022 if (type != STACK_MISC && type != STACK_ZERO) { 5023 sanitize = true; 5024 break; 5025 } 5026 } 5027 5028 if (sanitize) 5029 env->insn_aux_data[insn_idx].sanitize_stack_spill = true; 5030 } 5031 5032 err = destroy_if_dynptr_stack_slot(env, state, spi); 5033 if (err) 5034 return err; 5035 5036 check_fastcall_stack_contract(env, state, insn_idx, off); 5037 mark_stack_slot_scratched(env, spi); 5038 if (reg && !(off % BPF_REG_SIZE) && reg->type == SCALAR_VALUE && env->bpf_capable) { 5039 bool reg_value_fits; 5040 5041 reg_value_fits = get_reg_width(reg) <= BITS_PER_BYTE * size; 5042 /* Make sure that reg had an ID to build a relation on spill. */ 5043 if (reg_value_fits) 5044 assign_scalar_id_before_mov(env, reg); 5045 save_register_state(env, state, spi, reg, size); 5046 /* Break the relation on a narrowing spill. */ 5047 if (!reg_value_fits) 5048 state->stack[spi].spilled_ptr.id = 0; 5049 } else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) && 5050 env->bpf_capable) { 5051 struct bpf_reg_state *tmp_reg = &env->fake_reg[0]; 5052 5053 memset(tmp_reg, 0, sizeof(*tmp_reg)); 5054 __mark_reg_known(tmp_reg, insn->imm); 5055 tmp_reg->type = SCALAR_VALUE; 5056 save_register_state(env, state, spi, tmp_reg, size); 5057 } else if (reg && is_spillable_regtype(reg->type)) { 5058 /* register containing pointer is being spilled into stack */ 5059 if (size != BPF_REG_SIZE) { 5060 verbose_linfo(env, insn_idx, "; "); 5061 verbose(env, "invalid size of register spill\n"); 5062 return -EACCES; 5063 } 5064 if (state != cur && reg->type == PTR_TO_STACK) { 5065 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 5066 return -EINVAL; 5067 } 5068 save_register_state(env, state, spi, reg, size); 5069 } else { 5070 u8 type = STACK_MISC; 5071 5072 /* regular write of data into stack destroys any spilled ptr */ 5073 state->stack[spi].spilled_ptr.type = NOT_INIT; 5074 /* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */ 5075 if (is_stack_slot_special(&state->stack[spi])) 5076 for (i = 0; i < BPF_REG_SIZE; i++) 5077 scrub_spilled_slot(&state->stack[spi].slot_type[i]); 5078 5079 /* only mark the slot as written if all 8 bytes were written 5080 * otherwise read propagation may incorrectly stop too soon 5081 * when stack slots are partially written. 5082 * This heuristic means that read propagation will be 5083 * conservative, since it will add reg_live_read marks 5084 * to stack slots all the way to first state when programs 5085 * writes+reads less than 8 bytes 5086 */ 5087 if (size == BPF_REG_SIZE) 5088 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 5089 5090 /* when we zero initialize stack slots mark them as such */ 5091 if ((reg && register_is_null(reg)) || 5092 (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) { 5093 /* STACK_ZERO case happened because register spill 5094 * wasn't properly aligned at the stack slot boundary, 5095 * so it's not a register spill anymore; force 5096 * originating register to be precise to make 5097 * STACK_ZERO correct for subsequent states 5098 */ 5099 err = mark_chain_precision(env, value_regno); 5100 if (err) 5101 return err; 5102 type = STACK_ZERO; 5103 } 5104 5105 /* Mark slots affected by this stack write. */ 5106 for (i = 0; i < size; i++) 5107 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = type; 5108 insn_flags = 0; /* not a register spill */ 5109 } 5110 5111 if (insn_flags) 5112 return push_insn_history(env, env->cur_state, insn_flags, 0); 5113 return 0; 5114 } 5115 5116 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is 5117 * known to contain a variable offset. 5118 * This function checks whether the write is permitted and conservatively 5119 * tracks the effects of the write, considering that each stack slot in the 5120 * dynamic range is potentially written to. 5121 * 5122 * 'off' includes 'regno->off'. 5123 * 'value_regno' can be -1, meaning that an unknown value is being written to 5124 * the stack. 5125 * 5126 * Spilled pointers in range are not marked as written because we don't know 5127 * what's going to be actually written. This means that read propagation for 5128 * future reads cannot be terminated by this write. 5129 * 5130 * For privileged programs, uninitialized stack slots are considered 5131 * initialized by this write (even though we don't know exactly what offsets 5132 * are going to be written to). The idea is that we don't want the verifier to 5133 * reject future reads that access slots written to through variable offsets. 5134 */ 5135 static int check_stack_write_var_off(struct bpf_verifier_env *env, 5136 /* func where register points to */ 5137 struct bpf_func_state *state, 5138 int ptr_regno, int off, int size, 5139 int value_regno, int insn_idx) 5140 { 5141 struct bpf_func_state *cur; /* state of the current function */ 5142 int min_off, max_off; 5143 int i, err; 5144 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL; 5145 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 5146 bool writing_zero = false; 5147 /* set if the fact that we're writing a zero is used to let any 5148 * stack slots remain STACK_ZERO 5149 */ 5150 bool zero_used = false; 5151 5152 cur = env->cur_state->frame[env->cur_state->curframe]; 5153 ptr_reg = &cur->regs[ptr_regno]; 5154 min_off = ptr_reg->smin_value + off; 5155 max_off = ptr_reg->smax_value + off + size; 5156 if (value_regno >= 0) 5157 value_reg = &cur->regs[value_regno]; 5158 if ((value_reg && register_is_null(value_reg)) || 5159 (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0)) 5160 writing_zero = true; 5161 5162 for (i = min_off; i < max_off; i++) { 5163 int spi; 5164 5165 spi = __get_spi(i); 5166 err = destroy_if_dynptr_stack_slot(env, state, spi); 5167 if (err) 5168 return err; 5169 } 5170 5171 check_fastcall_stack_contract(env, state, insn_idx, min_off); 5172 /* Variable offset writes destroy any spilled pointers in range. */ 5173 for (i = min_off; i < max_off; i++) { 5174 u8 new_type, *stype; 5175 int slot, spi; 5176 5177 slot = -i - 1; 5178 spi = slot / BPF_REG_SIZE; 5179 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 5180 mark_stack_slot_scratched(env, spi); 5181 5182 if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) { 5183 /* Reject the write if range we may write to has not 5184 * been initialized beforehand. If we didn't reject 5185 * here, the ptr status would be erased below (even 5186 * though not all slots are actually overwritten), 5187 * possibly opening the door to leaks. 5188 * 5189 * We do however catch STACK_INVALID case below, and 5190 * only allow reading possibly uninitialized memory 5191 * later for CAP_PERFMON, as the write may not happen to 5192 * that slot. 5193 */ 5194 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d", 5195 insn_idx, i); 5196 return -EINVAL; 5197 } 5198 5199 /* If writing_zero and the spi slot contains a spill of value 0, 5200 * maintain the spill type. 5201 */ 5202 if (writing_zero && *stype == STACK_SPILL && 5203 is_spilled_scalar_reg(&state->stack[spi])) { 5204 struct bpf_reg_state *spill_reg = &state->stack[spi].spilled_ptr; 5205 5206 if (tnum_is_const(spill_reg->var_off) && spill_reg->var_off.value == 0) { 5207 zero_used = true; 5208 continue; 5209 } 5210 } 5211 5212 /* Erase all other spilled pointers. */ 5213 state->stack[spi].spilled_ptr.type = NOT_INIT; 5214 5215 /* Update the slot type. */ 5216 new_type = STACK_MISC; 5217 if (writing_zero && *stype == STACK_ZERO) { 5218 new_type = STACK_ZERO; 5219 zero_used = true; 5220 } 5221 /* If the slot is STACK_INVALID, we check whether it's OK to 5222 * pretend that it will be initialized by this write. The slot 5223 * might not actually be written to, and so if we mark it as 5224 * initialized future reads might leak uninitialized memory. 5225 * For privileged programs, we will accept such reads to slots 5226 * that may or may not be written because, if we're reject 5227 * them, the error would be too confusing. 5228 */ 5229 if (*stype == STACK_INVALID && !env->allow_uninit_stack) { 5230 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d", 5231 insn_idx, i); 5232 return -EINVAL; 5233 } 5234 *stype = new_type; 5235 } 5236 if (zero_used) { 5237 /* backtracking doesn't work for STACK_ZERO yet. */ 5238 err = mark_chain_precision(env, value_regno); 5239 if (err) 5240 return err; 5241 } 5242 return 0; 5243 } 5244 5245 /* When register 'dst_regno' is assigned some values from stack[min_off, 5246 * max_off), we set the register's type according to the types of the 5247 * respective stack slots. If all the stack values are known to be zeros, then 5248 * so is the destination reg. Otherwise, the register is considered to be 5249 * SCALAR. This function does not deal with register filling; the caller must 5250 * ensure that all spilled registers in the stack range have been marked as 5251 * read. 5252 */ 5253 static void mark_reg_stack_read(struct bpf_verifier_env *env, 5254 /* func where src register points to */ 5255 struct bpf_func_state *ptr_state, 5256 int min_off, int max_off, int dst_regno) 5257 { 5258 struct bpf_verifier_state *vstate = env->cur_state; 5259 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5260 int i, slot, spi; 5261 u8 *stype; 5262 int zeros = 0; 5263 5264 for (i = min_off; i < max_off; i++) { 5265 slot = -i - 1; 5266 spi = slot / BPF_REG_SIZE; 5267 mark_stack_slot_scratched(env, spi); 5268 stype = ptr_state->stack[spi].slot_type; 5269 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO) 5270 break; 5271 zeros++; 5272 } 5273 if (zeros == max_off - min_off) { 5274 /* Any access_size read into register is zero extended, 5275 * so the whole register == const_zero. 5276 */ 5277 __mark_reg_const_zero(env, &state->regs[dst_regno]); 5278 } else { 5279 /* have read misc data from the stack */ 5280 mark_reg_unknown(env, state->regs, dst_regno); 5281 } 5282 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 5283 } 5284 5285 /* Read the stack at 'off' and put the results into the register indicated by 5286 * 'dst_regno'. It handles reg filling if the addressed stack slot is a 5287 * spilled reg. 5288 * 5289 * 'dst_regno' can be -1, meaning that the read value is not going to a 5290 * register. 5291 * 5292 * The access is assumed to be within the current stack bounds. 5293 */ 5294 static int check_stack_read_fixed_off(struct bpf_verifier_env *env, 5295 /* func where src register points to */ 5296 struct bpf_func_state *reg_state, 5297 int off, int size, int dst_regno) 5298 { 5299 struct bpf_verifier_state *vstate = env->cur_state; 5300 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5301 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 5302 struct bpf_reg_state *reg; 5303 u8 *stype, type; 5304 int insn_flags = insn_stack_access_flags(reg_state->frameno, spi); 5305 5306 stype = reg_state->stack[spi].slot_type; 5307 reg = ®_state->stack[spi].spilled_ptr; 5308 5309 mark_stack_slot_scratched(env, spi); 5310 check_fastcall_stack_contract(env, state, env->insn_idx, off); 5311 5312 if (is_spilled_reg(®_state->stack[spi])) { 5313 u8 spill_size = 1; 5314 5315 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--) 5316 spill_size++; 5317 5318 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) { 5319 if (reg->type != SCALAR_VALUE) { 5320 verbose_linfo(env, env->insn_idx, "; "); 5321 verbose(env, "invalid size of register fill\n"); 5322 return -EACCES; 5323 } 5324 5325 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 5326 if (dst_regno < 0) 5327 return 0; 5328 5329 if (size <= spill_size && 5330 bpf_stack_narrow_access_ok(off, size, spill_size)) { 5331 /* The earlier check_reg_arg() has decided the 5332 * subreg_def for this insn. Save it first. 5333 */ 5334 s32 subreg_def = state->regs[dst_regno].subreg_def; 5335 5336 copy_register_state(&state->regs[dst_regno], reg); 5337 state->regs[dst_regno].subreg_def = subreg_def; 5338 5339 /* Break the relation on a narrowing fill. 5340 * coerce_reg_to_size will adjust the boundaries. 5341 */ 5342 if (get_reg_width(reg) > size * BITS_PER_BYTE) 5343 state->regs[dst_regno].id = 0; 5344 } else { 5345 int spill_cnt = 0, zero_cnt = 0; 5346 5347 for (i = 0; i < size; i++) { 5348 type = stype[(slot - i) % BPF_REG_SIZE]; 5349 if (type == STACK_SPILL) { 5350 spill_cnt++; 5351 continue; 5352 } 5353 if (type == STACK_MISC) 5354 continue; 5355 if (type == STACK_ZERO) { 5356 zero_cnt++; 5357 continue; 5358 } 5359 if (type == STACK_INVALID && env->allow_uninit_stack) 5360 continue; 5361 verbose(env, "invalid read from stack off %d+%d size %d\n", 5362 off, i, size); 5363 return -EACCES; 5364 } 5365 5366 if (spill_cnt == size && 5367 tnum_is_const(reg->var_off) && reg->var_off.value == 0) { 5368 __mark_reg_const_zero(env, &state->regs[dst_regno]); 5369 /* this IS register fill, so keep insn_flags */ 5370 } else if (zero_cnt == size) { 5371 /* similarly to mark_reg_stack_read(), preserve zeroes */ 5372 __mark_reg_const_zero(env, &state->regs[dst_regno]); 5373 insn_flags = 0; /* not restoring original register state */ 5374 } else { 5375 mark_reg_unknown(env, state->regs, dst_regno); 5376 insn_flags = 0; /* not restoring original register state */ 5377 } 5378 } 5379 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 5380 } else if (dst_regno >= 0) { 5381 /* restore register state from stack */ 5382 copy_register_state(&state->regs[dst_regno], reg); 5383 /* mark reg as written since spilled pointer state likely 5384 * has its liveness marks cleared by is_state_visited() 5385 * which resets stack/reg liveness for state transitions 5386 */ 5387 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 5388 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { 5389 /* If dst_regno==-1, the caller is asking us whether 5390 * it is acceptable to use this value as a SCALAR_VALUE 5391 * (e.g. for XADD). 5392 * We must not allow unprivileged callers to do that 5393 * with spilled pointers. 5394 */ 5395 verbose(env, "leaking pointer from stack off %d\n", 5396 off); 5397 return -EACCES; 5398 } 5399 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 5400 } else { 5401 for (i = 0; i < size; i++) { 5402 type = stype[(slot - i) % BPF_REG_SIZE]; 5403 if (type == STACK_MISC) 5404 continue; 5405 if (type == STACK_ZERO) 5406 continue; 5407 if (type == STACK_INVALID && env->allow_uninit_stack) 5408 continue; 5409 verbose(env, "invalid read from stack off %d+%d size %d\n", 5410 off, i, size); 5411 return -EACCES; 5412 } 5413 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 5414 if (dst_regno >= 0) 5415 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno); 5416 insn_flags = 0; /* we are not restoring spilled register */ 5417 } 5418 if (insn_flags) 5419 return push_insn_history(env, env->cur_state, insn_flags, 0); 5420 return 0; 5421 } 5422 5423 enum bpf_access_src { 5424 ACCESS_DIRECT = 1, /* the access is performed by an instruction */ 5425 ACCESS_HELPER = 2, /* the access is performed by a helper */ 5426 }; 5427 5428 static int check_stack_range_initialized(struct bpf_verifier_env *env, 5429 int regno, int off, int access_size, 5430 bool zero_size_allowed, 5431 enum bpf_access_type type, 5432 struct bpf_call_arg_meta *meta); 5433 5434 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 5435 { 5436 return cur_regs(env) + regno; 5437 } 5438 5439 /* Read the stack at 'ptr_regno + off' and put the result into the register 5440 * 'dst_regno'. 5441 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'), 5442 * but not its variable offset. 5443 * 'size' is assumed to be <= reg size and the access is assumed to be aligned. 5444 * 5445 * As opposed to check_stack_read_fixed_off, this function doesn't deal with 5446 * filling registers (i.e. reads of spilled register cannot be detected when 5447 * the offset is not fixed). We conservatively mark 'dst_regno' as containing 5448 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable 5449 * offset; for a fixed offset check_stack_read_fixed_off should be used 5450 * instead. 5451 */ 5452 static int check_stack_read_var_off(struct bpf_verifier_env *env, 5453 int ptr_regno, int off, int size, int dst_regno) 5454 { 5455 /* The state of the source register. */ 5456 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 5457 struct bpf_func_state *ptr_state = func(env, reg); 5458 int err; 5459 int min_off, max_off; 5460 5461 /* Note that we pass a NULL meta, so raw access will not be permitted. 5462 */ 5463 err = check_stack_range_initialized(env, ptr_regno, off, size, 5464 false, BPF_READ, NULL); 5465 if (err) 5466 return err; 5467 5468 min_off = reg->smin_value + off; 5469 max_off = reg->smax_value + off; 5470 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno); 5471 check_fastcall_stack_contract(env, ptr_state, env->insn_idx, min_off); 5472 return 0; 5473 } 5474 5475 /* check_stack_read dispatches to check_stack_read_fixed_off or 5476 * check_stack_read_var_off. 5477 * 5478 * The caller must ensure that the offset falls within the allocated stack 5479 * bounds. 5480 * 5481 * 'dst_regno' is a register which will receive the value from the stack. It 5482 * can be -1, meaning that the read value is not going to a register. 5483 */ 5484 static int check_stack_read(struct bpf_verifier_env *env, 5485 int ptr_regno, int off, int size, 5486 int dst_regno) 5487 { 5488 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 5489 struct bpf_func_state *state = func(env, reg); 5490 int err; 5491 /* Some accesses are only permitted with a static offset. */ 5492 bool var_off = !tnum_is_const(reg->var_off); 5493 5494 /* The offset is required to be static when reads don't go to a 5495 * register, in order to not leak pointers (see 5496 * check_stack_read_fixed_off). 5497 */ 5498 if (dst_regno < 0 && var_off) { 5499 char tn_buf[48]; 5500 5501 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5502 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n", 5503 tn_buf, off, size); 5504 return -EACCES; 5505 } 5506 /* Variable offset is prohibited for unprivileged mode for simplicity 5507 * since it requires corresponding support in Spectre masking for stack 5508 * ALU. See also retrieve_ptr_limit(). The check in 5509 * check_stack_access_for_ptr_arithmetic() called by 5510 * adjust_ptr_min_max_vals() prevents users from creating stack pointers 5511 * with variable offsets, therefore no check is required here. Further, 5512 * just checking it here would be insufficient as speculative stack 5513 * writes could still lead to unsafe speculative behaviour. 5514 */ 5515 if (!var_off) { 5516 off += reg->var_off.value; 5517 err = check_stack_read_fixed_off(env, state, off, size, 5518 dst_regno); 5519 } else { 5520 /* Variable offset stack reads need more conservative handling 5521 * than fixed offset ones. Note that dst_regno >= 0 on this 5522 * branch. 5523 */ 5524 err = check_stack_read_var_off(env, ptr_regno, off, size, 5525 dst_regno); 5526 } 5527 return err; 5528 } 5529 5530 5531 /* check_stack_write dispatches to check_stack_write_fixed_off or 5532 * check_stack_write_var_off. 5533 * 5534 * 'ptr_regno' is the register used as a pointer into the stack. 5535 * 'off' includes 'ptr_regno->off', but not its variable offset (if any). 5536 * 'value_regno' is the register whose value we're writing to the stack. It can 5537 * be -1, meaning that we're not writing from a register. 5538 * 5539 * The caller must ensure that the offset falls within the maximum stack size. 5540 */ 5541 static int check_stack_write(struct bpf_verifier_env *env, 5542 int ptr_regno, int off, int size, 5543 int value_regno, int insn_idx) 5544 { 5545 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 5546 struct bpf_func_state *state = func(env, reg); 5547 int err; 5548 5549 if (tnum_is_const(reg->var_off)) { 5550 off += reg->var_off.value; 5551 err = check_stack_write_fixed_off(env, state, off, size, 5552 value_regno, insn_idx); 5553 } else { 5554 /* Variable offset stack reads need more conservative handling 5555 * than fixed offset ones. 5556 */ 5557 err = check_stack_write_var_off(env, state, 5558 ptr_regno, off, size, 5559 value_regno, insn_idx); 5560 } 5561 return err; 5562 } 5563 5564 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 5565 int off, int size, enum bpf_access_type type) 5566 { 5567 struct bpf_reg_state *regs = cur_regs(env); 5568 struct bpf_map *map = regs[regno].map_ptr; 5569 u32 cap = bpf_map_flags_to_cap(map); 5570 5571 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 5572 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 5573 map->value_size, off, size); 5574 return -EACCES; 5575 } 5576 5577 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 5578 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 5579 map->value_size, off, size); 5580 return -EACCES; 5581 } 5582 5583 return 0; 5584 } 5585 5586 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */ 5587 static int __check_mem_access(struct bpf_verifier_env *env, int regno, 5588 int off, int size, u32 mem_size, 5589 bool zero_size_allowed) 5590 { 5591 bool size_ok = size > 0 || (size == 0 && zero_size_allowed); 5592 struct bpf_reg_state *reg; 5593 5594 if (off >= 0 && size_ok && (u64)off + size <= mem_size) 5595 return 0; 5596 5597 reg = &cur_regs(env)[regno]; 5598 switch (reg->type) { 5599 case PTR_TO_MAP_KEY: 5600 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n", 5601 mem_size, off, size); 5602 break; 5603 case PTR_TO_MAP_VALUE: 5604 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 5605 mem_size, off, size); 5606 break; 5607 case PTR_TO_PACKET: 5608 case PTR_TO_PACKET_META: 5609 case PTR_TO_PACKET_END: 5610 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 5611 off, size, regno, reg->id, off, mem_size); 5612 break; 5613 case PTR_TO_MEM: 5614 default: 5615 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n", 5616 mem_size, off, size); 5617 } 5618 5619 return -EACCES; 5620 } 5621 5622 /* check read/write into a memory region with possible variable offset */ 5623 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, 5624 int off, int size, u32 mem_size, 5625 bool zero_size_allowed) 5626 { 5627 struct bpf_verifier_state *vstate = env->cur_state; 5628 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5629 struct bpf_reg_state *reg = &state->regs[regno]; 5630 int err; 5631 5632 /* We may have adjusted the register pointing to memory region, so we 5633 * need to try adding each of min_value and max_value to off 5634 * to make sure our theoretical access will be safe. 5635 * 5636 * The minimum value is only important with signed 5637 * comparisons where we can't assume the floor of a 5638 * value is 0. If we are using signed variables for our 5639 * index'es we need to make sure that whatever we use 5640 * will have a set floor within our range. 5641 */ 5642 if (reg->smin_value < 0 && 5643 (reg->smin_value == S64_MIN || 5644 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 5645 reg->smin_value + off < 0)) { 5646 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 5647 regno); 5648 return -EACCES; 5649 } 5650 err = __check_mem_access(env, regno, reg->smin_value + off, size, 5651 mem_size, zero_size_allowed); 5652 if (err) { 5653 verbose(env, "R%d min value is outside of the allowed memory range\n", 5654 regno); 5655 return err; 5656 } 5657 5658 /* If we haven't set a max value then we need to bail since we can't be 5659 * sure we won't do bad things. 5660 * If reg->umax_value + off could overflow, treat that as unbounded too. 5661 */ 5662 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 5663 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n", 5664 regno); 5665 return -EACCES; 5666 } 5667 err = __check_mem_access(env, regno, reg->umax_value + off, size, 5668 mem_size, zero_size_allowed); 5669 if (err) { 5670 verbose(env, "R%d max value is outside of the allowed memory range\n", 5671 regno); 5672 return err; 5673 } 5674 5675 return 0; 5676 } 5677 5678 static int __check_ptr_off_reg(struct bpf_verifier_env *env, 5679 const struct bpf_reg_state *reg, int regno, 5680 bool fixed_off_ok) 5681 { 5682 /* Access to this pointer-typed register or passing it to a helper 5683 * is only allowed in its original, unmodified form. 5684 */ 5685 5686 if (reg->off < 0) { 5687 verbose(env, "negative offset %s ptr R%d off=%d disallowed\n", 5688 reg_type_str(env, reg->type), regno, reg->off); 5689 return -EACCES; 5690 } 5691 5692 if (!fixed_off_ok && reg->off) { 5693 verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n", 5694 reg_type_str(env, reg->type), regno, reg->off); 5695 return -EACCES; 5696 } 5697 5698 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 5699 char tn_buf[48]; 5700 5701 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5702 verbose(env, "variable %s access var_off=%s disallowed\n", 5703 reg_type_str(env, reg->type), tn_buf); 5704 return -EACCES; 5705 } 5706 5707 return 0; 5708 } 5709 5710 static int check_ptr_off_reg(struct bpf_verifier_env *env, 5711 const struct bpf_reg_state *reg, int regno) 5712 { 5713 return __check_ptr_off_reg(env, reg, regno, false); 5714 } 5715 5716 static int map_kptr_match_type(struct bpf_verifier_env *env, 5717 struct btf_field *kptr_field, 5718 struct bpf_reg_state *reg, u32 regno) 5719 { 5720 const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id); 5721 int perm_flags; 5722 const char *reg_name = ""; 5723 5724 if (btf_is_kernel(reg->btf)) { 5725 perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU; 5726 5727 /* Only unreferenced case accepts untrusted pointers */ 5728 if (kptr_field->type == BPF_KPTR_UNREF) 5729 perm_flags |= PTR_UNTRUSTED; 5730 } else { 5731 perm_flags = PTR_MAYBE_NULL | MEM_ALLOC; 5732 if (kptr_field->type == BPF_KPTR_PERCPU) 5733 perm_flags |= MEM_PERCPU; 5734 } 5735 5736 if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags)) 5737 goto bad_type; 5738 5739 /* We need to verify reg->type and reg->btf, before accessing reg->btf */ 5740 reg_name = btf_type_name(reg->btf, reg->btf_id); 5741 5742 /* For ref_ptr case, release function check should ensure we get one 5743 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the 5744 * normal store of unreferenced kptr, we must ensure var_off is zero. 5745 * Since ref_ptr cannot be accessed directly by BPF insns, checks for 5746 * reg->off and reg->ref_obj_id are not needed here. 5747 */ 5748 if (__check_ptr_off_reg(env, reg, regno, true)) 5749 return -EACCES; 5750 5751 /* A full type match is needed, as BTF can be vmlinux, module or prog BTF, and 5752 * we also need to take into account the reg->off. 5753 * 5754 * We want to support cases like: 5755 * 5756 * struct foo { 5757 * struct bar br; 5758 * struct baz bz; 5759 * }; 5760 * 5761 * struct foo *v; 5762 * v = func(); // PTR_TO_BTF_ID 5763 * val->foo = v; // reg->off is zero, btf and btf_id match type 5764 * val->bar = &v->br; // reg->off is still zero, but we need to retry with 5765 * // first member type of struct after comparison fails 5766 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked 5767 * // to match type 5768 * 5769 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off 5770 * is zero. We must also ensure that btf_struct_ids_match does not walk 5771 * the struct to match type against first member of struct, i.e. reject 5772 * second case from above. Hence, when type is BPF_KPTR_REF, we set 5773 * strict mode to true for type match. 5774 */ 5775 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 5776 kptr_field->kptr.btf, kptr_field->kptr.btf_id, 5777 kptr_field->type != BPF_KPTR_UNREF)) 5778 goto bad_type; 5779 return 0; 5780 bad_type: 5781 verbose(env, "invalid kptr access, R%d type=%s%s ", regno, 5782 reg_type_str(env, reg->type), reg_name); 5783 verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name); 5784 if (kptr_field->type == BPF_KPTR_UNREF) 5785 verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED), 5786 targ_name); 5787 else 5788 verbose(env, "\n"); 5789 return -EINVAL; 5790 } 5791 5792 static bool in_sleepable(struct bpf_verifier_env *env) 5793 { 5794 return env->prog->sleepable || 5795 (env->cur_state && env->cur_state->in_sleepable); 5796 } 5797 5798 /* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock() 5799 * can dereference RCU protected pointers and result is PTR_TRUSTED. 5800 */ 5801 static bool in_rcu_cs(struct bpf_verifier_env *env) 5802 { 5803 return env->cur_state->active_rcu_lock || 5804 env->cur_state->active_locks || 5805 !in_sleepable(env); 5806 } 5807 5808 /* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */ 5809 BTF_SET_START(rcu_protected_types) 5810 #ifdef CONFIG_NET 5811 BTF_ID(struct, prog_test_ref_kfunc) 5812 #endif 5813 #ifdef CONFIG_CGROUPS 5814 BTF_ID(struct, cgroup) 5815 #endif 5816 #ifdef CONFIG_BPF_JIT 5817 BTF_ID(struct, bpf_cpumask) 5818 #endif 5819 BTF_ID(struct, task_struct) 5820 #ifdef CONFIG_CRYPTO 5821 BTF_ID(struct, bpf_crypto_ctx) 5822 #endif 5823 BTF_SET_END(rcu_protected_types) 5824 5825 static bool rcu_protected_object(const struct btf *btf, u32 btf_id) 5826 { 5827 if (!btf_is_kernel(btf)) 5828 return true; 5829 return btf_id_set_contains(&rcu_protected_types, btf_id); 5830 } 5831 5832 static struct btf_record *kptr_pointee_btf_record(struct btf_field *kptr_field) 5833 { 5834 struct btf_struct_meta *meta; 5835 5836 if (btf_is_kernel(kptr_field->kptr.btf)) 5837 return NULL; 5838 5839 meta = btf_find_struct_meta(kptr_field->kptr.btf, 5840 kptr_field->kptr.btf_id); 5841 5842 return meta ? meta->record : NULL; 5843 } 5844 5845 static bool rcu_safe_kptr(const struct btf_field *field) 5846 { 5847 const struct btf_field_kptr *kptr = &field->kptr; 5848 5849 return field->type == BPF_KPTR_PERCPU || 5850 (field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id)); 5851 } 5852 5853 static u32 btf_ld_kptr_type(struct bpf_verifier_env *env, struct btf_field *kptr_field) 5854 { 5855 struct btf_record *rec; 5856 u32 ret; 5857 5858 ret = PTR_MAYBE_NULL; 5859 if (rcu_safe_kptr(kptr_field) && in_rcu_cs(env)) { 5860 ret |= MEM_RCU; 5861 if (kptr_field->type == BPF_KPTR_PERCPU) 5862 ret |= MEM_PERCPU; 5863 else if (!btf_is_kernel(kptr_field->kptr.btf)) 5864 ret |= MEM_ALLOC; 5865 5866 rec = kptr_pointee_btf_record(kptr_field); 5867 if (rec && btf_record_has_field(rec, BPF_GRAPH_NODE)) 5868 ret |= NON_OWN_REF; 5869 } else { 5870 ret |= PTR_UNTRUSTED; 5871 } 5872 5873 return ret; 5874 } 5875 5876 static int mark_uptr_ld_reg(struct bpf_verifier_env *env, u32 regno, 5877 struct btf_field *field) 5878 { 5879 struct bpf_reg_state *reg; 5880 const struct btf_type *t; 5881 5882 t = btf_type_by_id(field->kptr.btf, field->kptr.btf_id); 5883 mark_reg_known_zero(env, cur_regs(env), regno); 5884 reg = reg_state(env, regno); 5885 reg->type = PTR_TO_MEM | PTR_MAYBE_NULL; 5886 reg->mem_size = t->size; 5887 reg->id = ++env->id_gen; 5888 5889 return 0; 5890 } 5891 5892 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno, 5893 int value_regno, int insn_idx, 5894 struct btf_field *kptr_field) 5895 { 5896 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 5897 int class = BPF_CLASS(insn->code); 5898 struct bpf_reg_state *val_reg; 5899 5900 /* Things we already checked for in check_map_access and caller: 5901 * - Reject cases where variable offset may touch kptr 5902 * - size of access (must be BPF_DW) 5903 * - tnum_is_const(reg->var_off) 5904 * - kptr_field->offset == off + reg->var_off.value 5905 */ 5906 /* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */ 5907 if (BPF_MODE(insn->code) != BPF_MEM) { 5908 verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n"); 5909 return -EACCES; 5910 } 5911 5912 /* We only allow loading referenced kptr, since it will be marked as 5913 * untrusted, similar to unreferenced kptr. 5914 */ 5915 if (class != BPF_LDX && 5916 (kptr_field->type == BPF_KPTR_REF || kptr_field->type == BPF_KPTR_PERCPU)) { 5917 verbose(env, "store to referenced kptr disallowed\n"); 5918 return -EACCES; 5919 } 5920 if (class != BPF_LDX && kptr_field->type == BPF_UPTR) { 5921 verbose(env, "store to uptr disallowed\n"); 5922 return -EACCES; 5923 } 5924 5925 if (class == BPF_LDX) { 5926 if (kptr_field->type == BPF_UPTR) 5927 return mark_uptr_ld_reg(env, value_regno, kptr_field); 5928 5929 /* We can simply mark the value_regno receiving the pointer 5930 * value from map as PTR_TO_BTF_ID, with the correct type. 5931 */ 5932 mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf, 5933 kptr_field->kptr.btf_id, btf_ld_kptr_type(env, kptr_field)); 5934 } else if (class == BPF_STX) { 5935 val_reg = reg_state(env, value_regno); 5936 if (!register_is_null(val_reg) && 5937 map_kptr_match_type(env, kptr_field, val_reg, value_regno)) 5938 return -EACCES; 5939 } else if (class == BPF_ST) { 5940 if (insn->imm) { 5941 verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n", 5942 kptr_field->offset); 5943 return -EACCES; 5944 } 5945 } else { 5946 verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n"); 5947 return -EACCES; 5948 } 5949 return 0; 5950 } 5951 5952 /* check read/write into a map element with possible variable offset */ 5953 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 5954 int off, int size, bool zero_size_allowed, 5955 enum bpf_access_src src) 5956 { 5957 struct bpf_verifier_state *vstate = env->cur_state; 5958 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5959 struct bpf_reg_state *reg = &state->regs[regno]; 5960 struct bpf_map *map = reg->map_ptr; 5961 struct btf_record *rec; 5962 int err, i; 5963 5964 err = check_mem_region_access(env, regno, off, size, map->value_size, 5965 zero_size_allowed); 5966 if (err) 5967 return err; 5968 5969 if (IS_ERR_OR_NULL(map->record)) 5970 return 0; 5971 rec = map->record; 5972 for (i = 0; i < rec->cnt; i++) { 5973 struct btf_field *field = &rec->fields[i]; 5974 u32 p = field->offset; 5975 5976 /* If any part of a field can be touched by load/store, reject 5977 * this program. To check that [x1, x2) overlaps with [y1, y2), 5978 * it is sufficient to check x1 < y2 && y1 < x2. 5979 */ 5980 if (reg->smin_value + off < p + field->size && 5981 p < reg->umax_value + off + size) { 5982 switch (field->type) { 5983 case BPF_KPTR_UNREF: 5984 case BPF_KPTR_REF: 5985 case BPF_KPTR_PERCPU: 5986 case BPF_UPTR: 5987 if (src != ACCESS_DIRECT) { 5988 verbose(env, "%s cannot be accessed indirectly by helper\n", 5989 btf_field_type_name(field->type)); 5990 return -EACCES; 5991 } 5992 if (!tnum_is_const(reg->var_off)) { 5993 verbose(env, "%s access cannot have variable offset\n", 5994 btf_field_type_name(field->type)); 5995 return -EACCES; 5996 } 5997 if (p != off + reg->var_off.value) { 5998 verbose(env, "%s access misaligned expected=%u off=%llu\n", 5999 btf_field_type_name(field->type), 6000 p, off + reg->var_off.value); 6001 return -EACCES; 6002 } 6003 if (size != bpf_size_to_bytes(BPF_DW)) { 6004 verbose(env, "%s access size must be BPF_DW\n", 6005 btf_field_type_name(field->type)); 6006 return -EACCES; 6007 } 6008 break; 6009 default: 6010 verbose(env, "%s cannot be accessed directly by load/store\n", 6011 btf_field_type_name(field->type)); 6012 return -EACCES; 6013 } 6014 } 6015 } 6016 return 0; 6017 } 6018 6019 #define MAX_PACKET_OFF 0xffff 6020 6021 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 6022 const struct bpf_call_arg_meta *meta, 6023 enum bpf_access_type t) 6024 { 6025 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 6026 6027 switch (prog_type) { 6028 /* Program types only with direct read access go here! */ 6029 case BPF_PROG_TYPE_LWT_IN: 6030 case BPF_PROG_TYPE_LWT_OUT: 6031 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 6032 case BPF_PROG_TYPE_SK_REUSEPORT: 6033 case BPF_PROG_TYPE_FLOW_DISSECTOR: 6034 case BPF_PROG_TYPE_CGROUP_SKB: 6035 if (t == BPF_WRITE) 6036 return false; 6037 fallthrough; 6038 6039 /* Program types with direct read + write access go here! */ 6040 case BPF_PROG_TYPE_SCHED_CLS: 6041 case BPF_PROG_TYPE_SCHED_ACT: 6042 case BPF_PROG_TYPE_XDP: 6043 case BPF_PROG_TYPE_LWT_XMIT: 6044 case BPF_PROG_TYPE_SK_SKB: 6045 case BPF_PROG_TYPE_SK_MSG: 6046 if (meta) 6047 return meta->pkt_access; 6048 6049 env->seen_direct_write = true; 6050 return true; 6051 6052 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 6053 if (t == BPF_WRITE) 6054 env->seen_direct_write = true; 6055 6056 return true; 6057 6058 default: 6059 return false; 6060 } 6061 } 6062 6063 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 6064 int size, bool zero_size_allowed) 6065 { 6066 struct bpf_reg_state *regs = cur_regs(env); 6067 struct bpf_reg_state *reg = ®s[regno]; 6068 int err; 6069 6070 /* We may have added a variable offset to the packet pointer; but any 6071 * reg->range we have comes after that. We are only checking the fixed 6072 * offset. 6073 */ 6074 6075 /* We don't allow negative numbers, because we aren't tracking enough 6076 * detail to prove they're safe. 6077 */ 6078 if (reg->smin_value < 0) { 6079 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 6080 regno); 6081 return -EACCES; 6082 } 6083 6084 err = reg->range < 0 ? -EINVAL : 6085 __check_mem_access(env, regno, off, size, reg->range, 6086 zero_size_allowed); 6087 if (err) { 6088 verbose(env, "R%d offset is outside of the packet\n", regno); 6089 return err; 6090 } 6091 6092 /* __check_mem_access has made sure "off + size - 1" is within u16. 6093 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 6094 * otherwise find_good_pkt_pointers would have refused to set range info 6095 * that __check_mem_access would have rejected this pkt access. 6096 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 6097 */ 6098 env->prog->aux->max_pkt_offset = 6099 max_t(u32, env->prog->aux->max_pkt_offset, 6100 off + reg->umax_value + size - 1); 6101 6102 return err; 6103 } 6104 6105 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 6106 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 6107 enum bpf_access_type t, struct bpf_insn_access_aux *info) 6108 { 6109 if (env->ops->is_valid_access && 6110 env->ops->is_valid_access(off, size, t, env->prog, info)) { 6111 /* A non zero info.ctx_field_size indicates that this field is a 6112 * candidate for later verifier transformation to load the whole 6113 * field and then apply a mask when accessed with a narrower 6114 * access than actual ctx access size. A zero info.ctx_field_size 6115 * will only allow for whole field access and rejects any other 6116 * type of narrower access. 6117 */ 6118 if (base_type(info->reg_type) == PTR_TO_BTF_ID) { 6119 if (info->ref_obj_id && 6120 !find_reference_state(env->cur_state, info->ref_obj_id)) { 6121 verbose(env, "invalid bpf_context access off=%d. Reference may already be released\n", 6122 off); 6123 return -EACCES; 6124 } 6125 } else { 6126 env->insn_aux_data[insn_idx].ctx_field_size = info->ctx_field_size; 6127 } 6128 /* remember the offset of last byte accessed in ctx */ 6129 if (env->prog->aux->max_ctx_offset < off + size) 6130 env->prog->aux->max_ctx_offset = off + size; 6131 return 0; 6132 } 6133 6134 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 6135 return -EACCES; 6136 } 6137 6138 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 6139 int size) 6140 { 6141 if (size < 0 || off < 0 || 6142 (u64)off + size > sizeof(struct bpf_flow_keys)) { 6143 verbose(env, "invalid access to flow keys off=%d size=%d\n", 6144 off, size); 6145 return -EACCES; 6146 } 6147 return 0; 6148 } 6149 6150 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 6151 u32 regno, int off, int size, 6152 enum bpf_access_type t) 6153 { 6154 struct bpf_reg_state *regs = cur_regs(env); 6155 struct bpf_reg_state *reg = ®s[regno]; 6156 struct bpf_insn_access_aux info = {}; 6157 bool valid; 6158 6159 if (reg->smin_value < 0) { 6160 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 6161 regno); 6162 return -EACCES; 6163 } 6164 6165 switch (reg->type) { 6166 case PTR_TO_SOCK_COMMON: 6167 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 6168 break; 6169 case PTR_TO_SOCKET: 6170 valid = bpf_sock_is_valid_access(off, size, t, &info); 6171 break; 6172 case PTR_TO_TCP_SOCK: 6173 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 6174 break; 6175 case PTR_TO_XDP_SOCK: 6176 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 6177 break; 6178 default: 6179 valid = false; 6180 } 6181 6182 6183 if (valid) { 6184 env->insn_aux_data[insn_idx].ctx_field_size = 6185 info.ctx_field_size; 6186 return 0; 6187 } 6188 6189 verbose(env, "R%d invalid %s access off=%d size=%d\n", 6190 regno, reg_type_str(env, reg->type), off, size); 6191 6192 return -EACCES; 6193 } 6194 6195 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 6196 { 6197 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 6198 } 6199 6200 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 6201 { 6202 const struct bpf_reg_state *reg = reg_state(env, regno); 6203 6204 return reg->type == PTR_TO_CTX; 6205 } 6206 6207 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 6208 { 6209 const struct bpf_reg_state *reg = reg_state(env, regno); 6210 6211 return type_is_sk_pointer(reg->type); 6212 } 6213 6214 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 6215 { 6216 const struct bpf_reg_state *reg = reg_state(env, regno); 6217 6218 return type_is_pkt_pointer(reg->type); 6219 } 6220 6221 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 6222 { 6223 const struct bpf_reg_state *reg = reg_state(env, regno); 6224 6225 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 6226 return reg->type == PTR_TO_FLOW_KEYS; 6227 } 6228 6229 static bool is_arena_reg(struct bpf_verifier_env *env, int regno) 6230 { 6231 const struct bpf_reg_state *reg = reg_state(env, regno); 6232 6233 return reg->type == PTR_TO_ARENA; 6234 } 6235 6236 /* Return false if @regno contains a pointer whose type isn't supported for 6237 * atomic instruction @insn. 6238 */ 6239 static bool atomic_ptr_type_ok(struct bpf_verifier_env *env, int regno, 6240 struct bpf_insn *insn) 6241 { 6242 if (is_ctx_reg(env, regno)) 6243 return false; 6244 if (is_pkt_reg(env, regno)) 6245 return false; 6246 if (is_flow_key_reg(env, regno)) 6247 return false; 6248 if (is_sk_reg(env, regno)) 6249 return false; 6250 if (is_arena_reg(env, regno)) 6251 return bpf_jit_supports_insn(insn, true); 6252 6253 return true; 6254 } 6255 6256 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = { 6257 #ifdef CONFIG_NET 6258 [PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK], 6259 [PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 6260 [PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP], 6261 #endif 6262 [CONST_PTR_TO_MAP] = btf_bpf_map_id, 6263 }; 6264 6265 static bool is_trusted_reg(const struct bpf_reg_state *reg) 6266 { 6267 /* A referenced register is always trusted. */ 6268 if (reg->ref_obj_id) 6269 return true; 6270 6271 /* Types listed in the reg2btf_ids are always trusted */ 6272 if (reg2btf_ids[base_type(reg->type)] && 6273 !bpf_type_has_unsafe_modifiers(reg->type)) 6274 return true; 6275 6276 /* If a register is not referenced, it is trusted if it has the 6277 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the 6278 * other type modifiers may be safe, but we elect to take an opt-in 6279 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are 6280 * not. 6281 * 6282 * Eventually, we should make PTR_TRUSTED the single source of truth 6283 * for whether a register is trusted. 6284 */ 6285 return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS && 6286 !bpf_type_has_unsafe_modifiers(reg->type); 6287 } 6288 6289 static bool is_rcu_reg(const struct bpf_reg_state *reg) 6290 { 6291 return reg->type & MEM_RCU; 6292 } 6293 6294 static void clear_trusted_flags(enum bpf_type_flag *flag) 6295 { 6296 *flag &= ~(BPF_REG_TRUSTED_MODIFIERS | MEM_RCU); 6297 } 6298 6299 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 6300 const struct bpf_reg_state *reg, 6301 int off, int size, bool strict) 6302 { 6303 struct tnum reg_off; 6304 int ip_align; 6305 6306 /* Byte size accesses are always allowed. */ 6307 if (!strict || size == 1) 6308 return 0; 6309 6310 /* For platforms that do not have a Kconfig enabling 6311 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 6312 * NET_IP_ALIGN is universally set to '2'. And on platforms 6313 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 6314 * to this code only in strict mode where we want to emulate 6315 * the NET_IP_ALIGN==2 checking. Therefore use an 6316 * unconditional IP align value of '2'. 6317 */ 6318 ip_align = 2; 6319 6320 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 6321 if (!tnum_is_aligned(reg_off, size)) { 6322 char tn_buf[48]; 6323 6324 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6325 verbose(env, 6326 "misaligned packet access off %d+%s+%d+%d size %d\n", 6327 ip_align, tn_buf, reg->off, off, size); 6328 return -EACCES; 6329 } 6330 6331 return 0; 6332 } 6333 6334 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 6335 const struct bpf_reg_state *reg, 6336 const char *pointer_desc, 6337 int off, int size, bool strict) 6338 { 6339 struct tnum reg_off; 6340 6341 /* Byte size accesses are always allowed. */ 6342 if (!strict || size == 1) 6343 return 0; 6344 6345 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 6346 if (!tnum_is_aligned(reg_off, size)) { 6347 char tn_buf[48]; 6348 6349 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6350 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 6351 pointer_desc, tn_buf, reg->off, off, size); 6352 return -EACCES; 6353 } 6354 6355 return 0; 6356 } 6357 6358 static int check_ptr_alignment(struct bpf_verifier_env *env, 6359 const struct bpf_reg_state *reg, int off, 6360 int size, bool strict_alignment_once) 6361 { 6362 bool strict = env->strict_alignment || strict_alignment_once; 6363 const char *pointer_desc = ""; 6364 6365 switch (reg->type) { 6366 case PTR_TO_PACKET: 6367 case PTR_TO_PACKET_META: 6368 /* Special case, because of NET_IP_ALIGN. Given metadata sits 6369 * right in front, treat it the very same way. 6370 */ 6371 return check_pkt_ptr_alignment(env, reg, off, size, strict); 6372 case PTR_TO_FLOW_KEYS: 6373 pointer_desc = "flow keys "; 6374 break; 6375 case PTR_TO_MAP_KEY: 6376 pointer_desc = "key "; 6377 break; 6378 case PTR_TO_MAP_VALUE: 6379 pointer_desc = "value "; 6380 break; 6381 case PTR_TO_CTX: 6382 pointer_desc = "context "; 6383 break; 6384 case PTR_TO_STACK: 6385 pointer_desc = "stack "; 6386 /* The stack spill tracking logic in check_stack_write_fixed_off() 6387 * and check_stack_read_fixed_off() relies on stack accesses being 6388 * aligned. 6389 */ 6390 strict = true; 6391 break; 6392 case PTR_TO_SOCKET: 6393 pointer_desc = "sock "; 6394 break; 6395 case PTR_TO_SOCK_COMMON: 6396 pointer_desc = "sock_common "; 6397 break; 6398 case PTR_TO_TCP_SOCK: 6399 pointer_desc = "tcp_sock "; 6400 break; 6401 case PTR_TO_XDP_SOCK: 6402 pointer_desc = "xdp_sock "; 6403 break; 6404 case PTR_TO_ARENA: 6405 return 0; 6406 default: 6407 break; 6408 } 6409 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 6410 strict); 6411 } 6412 6413 static enum priv_stack_mode bpf_enable_priv_stack(struct bpf_prog *prog) 6414 { 6415 if (!bpf_jit_supports_private_stack()) 6416 return NO_PRIV_STACK; 6417 6418 /* bpf_prog_check_recur() checks all prog types that use bpf trampoline 6419 * while kprobe/tp/perf_event/raw_tp don't use trampoline hence checked 6420 * explicitly. 6421 */ 6422 switch (prog->type) { 6423 case BPF_PROG_TYPE_KPROBE: 6424 case BPF_PROG_TYPE_TRACEPOINT: 6425 case BPF_PROG_TYPE_PERF_EVENT: 6426 case BPF_PROG_TYPE_RAW_TRACEPOINT: 6427 return PRIV_STACK_ADAPTIVE; 6428 case BPF_PROG_TYPE_TRACING: 6429 case BPF_PROG_TYPE_LSM: 6430 case BPF_PROG_TYPE_STRUCT_OPS: 6431 if (prog->aux->priv_stack_requested || bpf_prog_check_recur(prog)) 6432 return PRIV_STACK_ADAPTIVE; 6433 fallthrough; 6434 default: 6435 break; 6436 } 6437 6438 return NO_PRIV_STACK; 6439 } 6440 6441 static int round_up_stack_depth(struct bpf_verifier_env *env, int stack_depth) 6442 { 6443 if (env->prog->jit_requested) 6444 return round_up(stack_depth, 16); 6445 6446 /* round up to 32-bytes, since this is granularity 6447 * of interpreter stack size 6448 */ 6449 return round_up(max_t(u32, stack_depth, 1), 32); 6450 } 6451 6452 /* starting from main bpf function walk all instructions of the function 6453 * and recursively walk all callees that given function can call. 6454 * Ignore jump and exit insns. 6455 * Since recursion is prevented by check_cfg() this algorithm 6456 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 6457 */ 6458 static int check_max_stack_depth_subprog(struct bpf_verifier_env *env, int idx, 6459 bool priv_stack_supported) 6460 { 6461 struct bpf_subprog_info *subprog = env->subprog_info; 6462 struct bpf_insn *insn = env->prog->insnsi; 6463 int depth = 0, frame = 0, i, subprog_end, subprog_depth; 6464 bool tail_call_reachable = false; 6465 int ret_insn[MAX_CALL_FRAMES]; 6466 int ret_prog[MAX_CALL_FRAMES]; 6467 int j; 6468 6469 i = subprog[idx].start; 6470 if (!priv_stack_supported) 6471 subprog[idx].priv_stack_mode = NO_PRIV_STACK; 6472 process_func: 6473 /* protect against potential stack overflow that might happen when 6474 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack 6475 * depth for such case down to 256 so that the worst case scenario 6476 * would result in 8k stack size (32 which is tailcall limit * 256 = 6477 * 8k). 6478 * 6479 * To get the idea what might happen, see an example: 6480 * func1 -> sub rsp, 128 6481 * subfunc1 -> sub rsp, 256 6482 * tailcall1 -> add rsp, 256 6483 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320) 6484 * subfunc2 -> sub rsp, 64 6485 * subfunc22 -> sub rsp, 128 6486 * tailcall2 -> add rsp, 128 6487 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416) 6488 * 6489 * tailcall will unwind the current stack frame but it will not get rid 6490 * of caller's stack as shown on the example above. 6491 */ 6492 if (idx && subprog[idx].has_tail_call && depth >= 256) { 6493 verbose(env, 6494 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n", 6495 depth); 6496 return -EACCES; 6497 } 6498 6499 subprog_depth = round_up_stack_depth(env, subprog[idx].stack_depth); 6500 if (priv_stack_supported) { 6501 /* Request private stack support only if the subprog stack 6502 * depth is no less than BPF_PRIV_STACK_MIN_SIZE. This is to 6503 * avoid jit penalty if the stack usage is small. 6504 */ 6505 if (subprog[idx].priv_stack_mode == PRIV_STACK_UNKNOWN && 6506 subprog_depth >= BPF_PRIV_STACK_MIN_SIZE) 6507 subprog[idx].priv_stack_mode = PRIV_STACK_ADAPTIVE; 6508 } 6509 6510 if (subprog[idx].priv_stack_mode == PRIV_STACK_ADAPTIVE) { 6511 if (subprog_depth > MAX_BPF_STACK) { 6512 verbose(env, "stack size of subprog %d is %d. Too large\n", 6513 idx, subprog_depth); 6514 return -EACCES; 6515 } 6516 } else { 6517 depth += subprog_depth; 6518 if (depth > MAX_BPF_STACK) { 6519 verbose(env, "combined stack size of %d calls is %d. Too large\n", 6520 frame + 1, depth); 6521 return -EACCES; 6522 } 6523 } 6524 continue_func: 6525 subprog_end = subprog[idx + 1].start; 6526 for (; i < subprog_end; i++) { 6527 int next_insn, sidx; 6528 6529 if (bpf_pseudo_kfunc_call(insn + i) && !insn[i].off) { 6530 bool err = false; 6531 6532 if (!is_bpf_throw_kfunc(insn + i)) 6533 continue; 6534 if (subprog[idx].is_cb) 6535 err = true; 6536 for (int c = 0; c < frame && !err; c++) { 6537 if (subprog[ret_prog[c]].is_cb) { 6538 err = true; 6539 break; 6540 } 6541 } 6542 if (!err) 6543 continue; 6544 verbose(env, 6545 "bpf_throw kfunc (insn %d) cannot be called from callback subprog %d\n", 6546 i, idx); 6547 return -EINVAL; 6548 } 6549 6550 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i)) 6551 continue; 6552 /* remember insn and function to return to */ 6553 ret_insn[frame] = i + 1; 6554 ret_prog[frame] = idx; 6555 6556 /* find the callee */ 6557 next_insn = i + insn[i].imm + 1; 6558 sidx = find_subprog(env, next_insn); 6559 if (verifier_bug_if(sidx < 0, env, "callee not found at insn %d", next_insn)) 6560 return -EFAULT; 6561 if (subprog[sidx].is_async_cb) { 6562 if (subprog[sidx].has_tail_call) { 6563 verifier_bug(env, "subprog has tail_call and async cb"); 6564 return -EFAULT; 6565 } 6566 /* async callbacks don't increase bpf prog stack size unless called directly */ 6567 if (!bpf_pseudo_call(insn + i)) 6568 continue; 6569 if (subprog[sidx].is_exception_cb) { 6570 verbose(env, "insn %d cannot call exception cb directly", i); 6571 return -EINVAL; 6572 } 6573 } 6574 i = next_insn; 6575 idx = sidx; 6576 if (!priv_stack_supported) 6577 subprog[idx].priv_stack_mode = NO_PRIV_STACK; 6578 6579 if (subprog[idx].has_tail_call) 6580 tail_call_reachable = true; 6581 6582 frame++; 6583 if (frame >= MAX_CALL_FRAMES) { 6584 verbose(env, "the call stack of %d frames is too deep !\n", 6585 frame); 6586 return -E2BIG; 6587 } 6588 goto process_func; 6589 } 6590 /* if tail call got detected across bpf2bpf calls then mark each of the 6591 * currently present subprog frames as tail call reachable subprogs; 6592 * this info will be utilized by JIT so that we will be preserving the 6593 * tail call counter throughout bpf2bpf calls combined with tailcalls 6594 */ 6595 if (tail_call_reachable) 6596 for (j = 0; j < frame; j++) { 6597 if (subprog[ret_prog[j]].is_exception_cb) { 6598 verbose(env, "cannot tail call within exception cb\n"); 6599 return -EINVAL; 6600 } 6601 subprog[ret_prog[j]].tail_call_reachable = true; 6602 } 6603 if (subprog[0].tail_call_reachable) 6604 env->prog->aux->tail_call_reachable = true; 6605 6606 /* end of for() loop means the last insn of the 'subprog' 6607 * was reached. Doesn't matter whether it was JA or EXIT 6608 */ 6609 if (frame == 0) 6610 return 0; 6611 if (subprog[idx].priv_stack_mode != PRIV_STACK_ADAPTIVE) 6612 depth -= round_up_stack_depth(env, subprog[idx].stack_depth); 6613 frame--; 6614 i = ret_insn[frame]; 6615 idx = ret_prog[frame]; 6616 goto continue_func; 6617 } 6618 6619 static int check_max_stack_depth(struct bpf_verifier_env *env) 6620 { 6621 enum priv_stack_mode priv_stack_mode = PRIV_STACK_UNKNOWN; 6622 struct bpf_subprog_info *si = env->subprog_info; 6623 bool priv_stack_supported; 6624 int ret; 6625 6626 for (int i = 0; i < env->subprog_cnt; i++) { 6627 if (si[i].has_tail_call) { 6628 priv_stack_mode = NO_PRIV_STACK; 6629 break; 6630 } 6631 } 6632 6633 if (priv_stack_mode == PRIV_STACK_UNKNOWN) 6634 priv_stack_mode = bpf_enable_priv_stack(env->prog); 6635 6636 /* All async_cb subprogs use normal kernel stack. If a particular 6637 * subprog appears in both main prog and async_cb subtree, that 6638 * subprog will use normal kernel stack to avoid potential nesting. 6639 * The reverse subprog traversal ensures when main prog subtree is 6640 * checked, the subprogs appearing in async_cb subtrees are already 6641 * marked as using normal kernel stack, so stack size checking can 6642 * be done properly. 6643 */ 6644 for (int i = env->subprog_cnt - 1; i >= 0; i--) { 6645 if (!i || si[i].is_async_cb) { 6646 priv_stack_supported = !i && priv_stack_mode == PRIV_STACK_ADAPTIVE; 6647 ret = check_max_stack_depth_subprog(env, i, priv_stack_supported); 6648 if (ret < 0) 6649 return ret; 6650 } 6651 } 6652 6653 for (int i = 0; i < env->subprog_cnt; i++) { 6654 if (si[i].priv_stack_mode == PRIV_STACK_ADAPTIVE) { 6655 env->prog->aux->jits_use_priv_stack = true; 6656 break; 6657 } 6658 } 6659 6660 return 0; 6661 } 6662 6663 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 6664 static int get_callee_stack_depth(struct bpf_verifier_env *env, 6665 const struct bpf_insn *insn, int idx) 6666 { 6667 int start = idx + insn->imm + 1, subprog; 6668 6669 subprog = find_subprog(env, start); 6670 if (verifier_bug_if(subprog < 0, env, "get stack depth: no program at insn %d", start)) 6671 return -EFAULT; 6672 return env->subprog_info[subprog].stack_depth; 6673 } 6674 #endif 6675 6676 static int __check_buffer_access(struct bpf_verifier_env *env, 6677 const char *buf_info, 6678 const struct bpf_reg_state *reg, 6679 int regno, int off, int size) 6680 { 6681 if (off < 0) { 6682 verbose(env, 6683 "R%d invalid %s buffer access: off=%d, size=%d\n", 6684 regno, buf_info, off, size); 6685 return -EACCES; 6686 } 6687 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 6688 char tn_buf[48]; 6689 6690 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6691 verbose(env, 6692 "R%d invalid variable buffer offset: off=%d, var_off=%s\n", 6693 regno, off, tn_buf); 6694 return -EACCES; 6695 } 6696 6697 return 0; 6698 } 6699 6700 static int check_tp_buffer_access(struct bpf_verifier_env *env, 6701 const struct bpf_reg_state *reg, 6702 int regno, int off, int size) 6703 { 6704 int err; 6705 6706 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size); 6707 if (err) 6708 return err; 6709 6710 if (off + size > env->prog->aux->max_tp_access) 6711 env->prog->aux->max_tp_access = off + size; 6712 6713 return 0; 6714 } 6715 6716 static int check_buffer_access(struct bpf_verifier_env *env, 6717 const struct bpf_reg_state *reg, 6718 int regno, int off, int size, 6719 bool zero_size_allowed, 6720 u32 *max_access) 6721 { 6722 const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr"; 6723 int err; 6724 6725 err = __check_buffer_access(env, buf_info, reg, regno, off, size); 6726 if (err) 6727 return err; 6728 6729 if (off + size > *max_access) 6730 *max_access = off + size; 6731 6732 return 0; 6733 } 6734 6735 /* BPF architecture zero extends alu32 ops into 64-bit registesr */ 6736 static void zext_32_to_64(struct bpf_reg_state *reg) 6737 { 6738 reg->var_off = tnum_subreg(reg->var_off); 6739 __reg_assign_32_into_64(reg); 6740 } 6741 6742 /* truncate register to smaller size (in bytes) 6743 * must be called with size < BPF_REG_SIZE 6744 */ 6745 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 6746 { 6747 u64 mask; 6748 6749 /* clear high bits in bit representation */ 6750 reg->var_off = tnum_cast(reg->var_off, size); 6751 6752 /* fix arithmetic bounds */ 6753 mask = ((u64)1 << (size * 8)) - 1; 6754 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 6755 reg->umin_value &= mask; 6756 reg->umax_value &= mask; 6757 } else { 6758 reg->umin_value = 0; 6759 reg->umax_value = mask; 6760 } 6761 reg->smin_value = reg->umin_value; 6762 reg->smax_value = reg->umax_value; 6763 6764 /* If size is smaller than 32bit register the 32bit register 6765 * values are also truncated so we push 64-bit bounds into 6766 * 32-bit bounds. Above were truncated < 32-bits already. 6767 */ 6768 if (size < 4) 6769 __mark_reg32_unbounded(reg); 6770 6771 reg_bounds_sync(reg); 6772 } 6773 6774 static void set_sext64_default_val(struct bpf_reg_state *reg, int size) 6775 { 6776 if (size == 1) { 6777 reg->smin_value = reg->s32_min_value = S8_MIN; 6778 reg->smax_value = reg->s32_max_value = S8_MAX; 6779 } else if (size == 2) { 6780 reg->smin_value = reg->s32_min_value = S16_MIN; 6781 reg->smax_value = reg->s32_max_value = S16_MAX; 6782 } else { 6783 /* size == 4 */ 6784 reg->smin_value = reg->s32_min_value = S32_MIN; 6785 reg->smax_value = reg->s32_max_value = S32_MAX; 6786 } 6787 reg->umin_value = reg->u32_min_value = 0; 6788 reg->umax_value = U64_MAX; 6789 reg->u32_max_value = U32_MAX; 6790 reg->var_off = tnum_unknown; 6791 } 6792 6793 static void coerce_reg_to_size_sx(struct bpf_reg_state *reg, int size) 6794 { 6795 s64 init_s64_max, init_s64_min, s64_max, s64_min, u64_cval; 6796 u64 top_smax_value, top_smin_value; 6797 u64 num_bits = size * 8; 6798 6799 if (tnum_is_const(reg->var_off)) { 6800 u64_cval = reg->var_off.value; 6801 if (size == 1) 6802 reg->var_off = tnum_const((s8)u64_cval); 6803 else if (size == 2) 6804 reg->var_off = tnum_const((s16)u64_cval); 6805 else 6806 /* size == 4 */ 6807 reg->var_off = tnum_const((s32)u64_cval); 6808 6809 u64_cval = reg->var_off.value; 6810 reg->smax_value = reg->smin_value = u64_cval; 6811 reg->umax_value = reg->umin_value = u64_cval; 6812 reg->s32_max_value = reg->s32_min_value = u64_cval; 6813 reg->u32_max_value = reg->u32_min_value = u64_cval; 6814 return; 6815 } 6816 6817 top_smax_value = ((u64)reg->smax_value >> num_bits) << num_bits; 6818 top_smin_value = ((u64)reg->smin_value >> num_bits) << num_bits; 6819 6820 if (top_smax_value != top_smin_value) 6821 goto out; 6822 6823 /* find the s64_min and s64_min after sign extension */ 6824 if (size == 1) { 6825 init_s64_max = (s8)reg->smax_value; 6826 init_s64_min = (s8)reg->smin_value; 6827 } else if (size == 2) { 6828 init_s64_max = (s16)reg->smax_value; 6829 init_s64_min = (s16)reg->smin_value; 6830 } else { 6831 init_s64_max = (s32)reg->smax_value; 6832 init_s64_min = (s32)reg->smin_value; 6833 } 6834 6835 s64_max = max(init_s64_max, init_s64_min); 6836 s64_min = min(init_s64_max, init_s64_min); 6837 6838 /* both of s64_max/s64_min positive or negative */ 6839 if ((s64_max >= 0) == (s64_min >= 0)) { 6840 reg->s32_min_value = reg->smin_value = s64_min; 6841 reg->s32_max_value = reg->smax_value = s64_max; 6842 reg->u32_min_value = reg->umin_value = s64_min; 6843 reg->u32_max_value = reg->umax_value = s64_max; 6844 reg->var_off = tnum_range(s64_min, s64_max); 6845 return; 6846 } 6847 6848 out: 6849 set_sext64_default_val(reg, size); 6850 } 6851 6852 static void set_sext32_default_val(struct bpf_reg_state *reg, int size) 6853 { 6854 if (size == 1) { 6855 reg->s32_min_value = S8_MIN; 6856 reg->s32_max_value = S8_MAX; 6857 } else { 6858 /* size == 2 */ 6859 reg->s32_min_value = S16_MIN; 6860 reg->s32_max_value = S16_MAX; 6861 } 6862 reg->u32_min_value = 0; 6863 reg->u32_max_value = U32_MAX; 6864 reg->var_off = tnum_subreg(tnum_unknown); 6865 } 6866 6867 static void coerce_subreg_to_size_sx(struct bpf_reg_state *reg, int size) 6868 { 6869 s32 init_s32_max, init_s32_min, s32_max, s32_min, u32_val; 6870 u32 top_smax_value, top_smin_value; 6871 u32 num_bits = size * 8; 6872 6873 if (tnum_is_const(reg->var_off)) { 6874 u32_val = reg->var_off.value; 6875 if (size == 1) 6876 reg->var_off = tnum_const((s8)u32_val); 6877 else 6878 reg->var_off = tnum_const((s16)u32_val); 6879 6880 u32_val = reg->var_off.value; 6881 reg->s32_min_value = reg->s32_max_value = u32_val; 6882 reg->u32_min_value = reg->u32_max_value = u32_val; 6883 return; 6884 } 6885 6886 top_smax_value = ((u32)reg->s32_max_value >> num_bits) << num_bits; 6887 top_smin_value = ((u32)reg->s32_min_value >> num_bits) << num_bits; 6888 6889 if (top_smax_value != top_smin_value) 6890 goto out; 6891 6892 /* find the s32_min and s32_min after sign extension */ 6893 if (size == 1) { 6894 init_s32_max = (s8)reg->s32_max_value; 6895 init_s32_min = (s8)reg->s32_min_value; 6896 } else { 6897 /* size == 2 */ 6898 init_s32_max = (s16)reg->s32_max_value; 6899 init_s32_min = (s16)reg->s32_min_value; 6900 } 6901 s32_max = max(init_s32_max, init_s32_min); 6902 s32_min = min(init_s32_max, init_s32_min); 6903 6904 if ((s32_min >= 0) == (s32_max >= 0)) { 6905 reg->s32_min_value = s32_min; 6906 reg->s32_max_value = s32_max; 6907 reg->u32_min_value = (u32)s32_min; 6908 reg->u32_max_value = (u32)s32_max; 6909 reg->var_off = tnum_subreg(tnum_range(s32_min, s32_max)); 6910 return; 6911 } 6912 6913 out: 6914 set_sext32_default_val(reg, size); 6915 } 6916 6917 static bool bpf_map_is_rdonly(const struct bpf_map *map) 6918 { 6919 /* A map is considered read-only if the following condition are true: 6920 * 6921 * 1) BPF program side cannot change any of the map content. The 6922 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map 6923 * and was set at map creation time. 6924 * 2) The map value(s) have been initialized from user space by a 6925 * loader and then "frozen", such that no new map update/delete 6926 * operations from syscall side are possible for the rest of 6927 * the map's lifetime from that point onwards. 6928 * 3) Any parallel/pending map update/delete operations from syscall 6929 * side have been completed. Only after that point, it's safe to 6930 * assume that map value(s) are immutable. 6931 */ 6932 return (map->map_flags & BPF_F_RDONLY_PROG) && 6933 READ_ONCE(map->frozen) && 6934 !bpf_map_write_active(map); 6935 } 6936 6937 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val, 6938 bool is_ldsx) 6939 { 6940 void *ptr; 6941 u64 addr; 6942 int err; 6943 6944 err = map->ops->map_direct_value_addr(map, &addr, off); 6945 if (err) 6946 return err; 6947 ptr = (void *)(long)addr + off; 6948 6949 switch (size) { 6950 case sizeof(u8): 6951 *val = is_ldsx ? (s64)*(s8 *)ptr : (u64)*(u8 *)ptr; 6952 break; 6953 case sizeof(u16): 6954 *val = is_ldsx ? (s64)*(s16 *)ptr : (u64)*(u16 *)ptr; 6955 break; 6956 case sizeof(u32): 6957 *val = is_ldsx ? (s64)*(s32 *)ptr : (u64)*(u32 *)ptr; 6958 break; 6959 case sizeof(u64): 6960 *val = *(u64 *)ptr; 6961 break; 6962 default: 6963 return -EINVAL; 6964 } 6965 return 0; 6966 } 6967 6968 #define BTF_TYPE_SAFE_RCU(__type) __PASTE(__type, __safe_rcu) 6969 #define BTF_TYPE_SAFE_RCU_OR_NULL(__type) __PASTE(__type, __safe_rcu_or_null) 6970 #define BTF_TYPE_SAFE_TRUSTED(__type) __PASTE(__type, __safe_trusted) 6971 #define BTF_TYPE_SAFE_TRUSTED_OR_NULL(__type) __PASTE(__type, __safe_trusted_or_null) 6972 6973 /* 6974 * Allow list few fields as RCU trusted or full trusted. 6975 * This logic doesn't allow mix tagging and will be removed once GCC supports 6976 * btf_type_tag. 6977 */ 6978 6979 /* RCU trusted: these fields are trusted in RCU CS and never NULL */ 6980 BTF_TYPE_SAFE_RCU(struct task_struct) { 6981 const cpumask_t *cpus_ptr; 6982 struct css_set __rcu *cgroups; 6983 struct task_struct __rcu *real_parent; 6984 struct task_struct *group_leader; 6985 }; 6986 6987 BTF_TYPE_SAFE_RCU(struct cgroup) { 6988 /* cgrp->kn is always accessible as documented in kernel/cgroup/cgroup.c */ 6989 struct kernfs_node *kn; 6990 }; 6991 6992 BTF_TYPE_SAFE_RCU(struct css_set) { 6993 struct cgroup *dfl_cgrp; 6994 }; 6995 6996 BTF_TYPE_SAFE_RCU(struct cgroup_subsys_state) { 6997 struct cgroup *cgroup; 6998 }; 6999 7000 /* RCU trusted: these fields are trusted in RCU CS and can be NULL */ 7001 BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct) { 7002 struct file __rcu *exe_file; 7003 }; 7004 7005 /* skb->sk, req->sk are not RCU protected, but we mark them as such 7006 * because bpf prog accessible sockets are SOCK_RCU_FREE. 7007 */ 7008 BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff) { 7009 struct sock *sk; 7010 }; 7011 7012 BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock) { 7013 struct sock *sk; 7014 }; 7015 7016 /* full trusted: these fields are trusted even outside of RCU CS and never NULL */ 7017 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) { 7018 struct seq_file *seq; 7019 }; 7020 7021 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) { 7022 struct bpf_iter_meta *meta; 7023 struct task_struct *task; 7024 }; 7025 7026 BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) { 7027 struct file *file; 7028 }; 7029 7030 BTF_TYPE_SAFE_TRUSTED(struct file) { 7031 struct inode *f_inode; 7032 }; 7033 7034 BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct dentry) { 7035 struct inode *d_inode; 7036 }; 7037 7038 BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket) { 7039 struct sock *sk; 7040 }; 7041 7042 static bool type_is_rcu(struct bpf_verifier_env *env, 7043 struct bpf_reg_state *reg, 7044 const char *field_name, u32 btf_id) 7045 { 7046 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct)); 7047 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup)); 7048 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set)); 7049 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup_subsys_state)); 7050 7051 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu"); 7052 } 7053 7054 static bool type_is_rcu_or_null(struct bpf_verifier_env *env, 7055 struct bpf_reg_state *reg, 7056 const char *field_name, u32 btf_id) 7057 { 7058 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct)); 7059 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff)); 7060 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock)); 7061 7062 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu_or_null"); 7063 } 7064 7065 static bool type_is_trusted(struct bpf_verifier_env *env, 7066 struct bpf_reg_state *reg, 7067 const char *field_name, u32 btf_id) 7068 { 7069 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta)); 7070 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task)); 7071 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm)); 7072 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file)); 7073 7074 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted"); 7075 } 7076 7077 static bool type_is_trusted_or_null(struct bpf_verifier_env *env, 7078 struct bpf_reg_state *reg, 7079 const char *field_name, u32 btf_id) 7080 { 7081 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket)); 7082 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct dentry)); 7083 7084 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, 7085 "__safe_trusted_or_null"); 7086 } 7087 7088 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 7089 struct bpf_reg_state *regs, 7090 int regno, int off, int size, 7091 enum bpf_access_type atype, 7092 int value_regno) 7093 { 7094 struct bpf_reg_state *reg = regs + regno; 7095 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id); 7096 const char *tname = btf_name_by_offset(reg->btf, t->name_off); 7097 const char *field_name = NULL; 7098 enum bpf_type_flag flag = 0; 7099 u32 btf_id = 0; 7100 int ret; 7101 7102 if (!env->allow_ptr_leaks) { 7103 verbose(env, 7104 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 7105 tname); 7106 return -EPERM; 7107 } 7108 if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) { 7109 verbose(env, 7110 "Cannot access kernel 'struct %s' from non-GPL compatible program\n", 7111 tname); 7112 return -EINVAL; 7113 } 7114 if (off < 0) { 7115 verbose(env, 7116 "R%d is ptr_%s invalid negative access: off=%d\n", 7117 regno, tname, off); 7118 return -EACCES; 7119 } 7120 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 7121 char tn_buf[48]; 7122 7123 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 7124 verbose(env, 7125 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 7126 regno, tname, off, tn_buf); 7127 return -EACCES; 7128 } 7129 7130 if (reg->type & MEM_USER) { 7131 verbose(env, 7132 "R%d is ptr_%s access user memory: off=%d\n", 7133 regno, tname, off); 7134 return -EACCES; 7135 } 7136 7137 if (reg->type & MEM_PERCPU) { 7138 verbose(env, 7139 "R%d is ptr_%s access percpu memory: off=%d\n", 7140 regno, tname, off); 7141 return -EACCES; 7142 } 7143 7144 if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) { 7145 if (!btf_is_kernel(reg->btf)) { 7146 verbose(env, "verifier internal error: reg->btf must be kernel btf\n"); 7147 return -EFAULT; 7148 } 7149 ret = env->ops->btf_struct_access(&env->log, reg, off, size); 7150 } else { 7151 /* Writes are permitted with default btf_struct_access for 7152 * program allocated objects (which always have ref_obj_id > 0), 7153 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC. 7154 */ 7155 if (atype != BPF_READ && !type_is_ptr_alloc_obj(reg->type)) { 7156 verbose(env, "only read is supported\n"); 7157 return -EACCES; 7158 } 7159 7160 if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) && 7161 !(reg->type & MEM_RCU) && !reg->ref_obj_id) { 7162 verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n"); 7163 return -EFAULT; 7164 } 7165 7166 ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag, &field_name); 7167 } 7168 7169 if (ret < 0) 7170 return ret; 7171 7172 if (ret != PTR_TO_BTF_ID) { 7173 /* just mark; */ 7174 7175 } else if (type_flag(reg->type) & PTR_UNTRUSTED) { 7176 /* If this is an untrusted pointer, all pointers formed by walking it 7177 * also inherit the untrusted flag. 7178 */ 7179 flag = PTR_UNTRUSTED; 7180 7181 } else if (is_trusted_reg(reg) || is_rcu_reg(reg)) { 7182 /* By default any pointer obtained from walking a trusted pointer is no 7183 * longer trusted, unless the field being accessed has explicitly been 7184 * marked as inheriting its parent's state of trust (either full or RCU). 7185 * For example: 7186 * 'cgroups' pointer is untrusted if task->cgroups dereference 7187 * happened in a sleepable program outside of bpf_rcu_read_lock() 7188 * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU). 7189 * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED. 7190 * 7191 * A regular RCU-protected pointer with __rcu tag can also be deemed 7192 * trusted if we are in an RCU CS. Such pointer can be NULL. 7193 */ 7194 if (type_is_trusted(env, reg, field_name, btf_id)) { 7195 flag |= PTR_TRUSTED; 7196 } else if (type_is_trusted_or_null(env, reg, field_name, btf_id)) { 7197 flag |= PTR_TRUSTED | PTR_MAYBE_NULL; 7198 } else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) { 7199 if (type_is_rcu(env, reg, field_name, btf_id)) { 7200 /* ignore __rcu tag and mark it MEM_RCU */ 7201 flag |= MEM_RCU; 7202 } else if (flag & MEM_RCU || 7203 type_is_rcu_or_null(env, reg, field_name, btf_id)) { 7204 /* __rcu tagged pointers can be NULL */ 7205 flag |= MEM_RCU | PTR_MAYBE_NULL; 7206 7207 /* We always trust them */ 7208 if (type_is_rcu_or_null(env, reg, field_name, btf_id) && 7209 flag & PTR_UNTRUSTED) 7210 flag &= ~PTR_UNTRUSTED; 7211 } else if (flag & (MEM_PERCPU | MEM_USER)) { 7212 /* keep as-is */ 7213 } else { 7214 /* walking unknown pointers yields old deprecated PTR_TO_BTF_ID */ 7215 clear_trusted_flags(&flag); 7216 } 7217 } else { 7218 /* 7219 * If not in RCU CS or MEM_RCU pointer can be NULL then 7220 * aggressively mark as untrusted otherwise such 7221 * pointers will be plain PTR_TO_BTF_ID without flags 7222 * and will be allowed to be passed into helpers for 7223 * compat reasons. 7224 */ 7225 flag = PTR_UNTRUSTED; 7226 } 7227 } else { 7228 /* Old compat. Deprecated */ 7229 clear_trusted_flags(&flag); 7230 } 7231 7232 if (atype == BPF_READ && value_regno >= 0) 7233 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag); 7234 7235 return 0; 7236 } 7237 7238 static int check_ptr_to_map_access(struct bpf_verifier_env *env, 7239 struct bpf_reg_state *regs, 7240 int regno, int off, int size, 7241 enum bpf_access_type atype, 7242 int value_regno) 7243 { 7244 struct bpf_reg_state *reg = regs + regno; 7245 struct bpf_map *map = reg->map_ptr; 7246 struct bpf_reg_state map_reg; 7247 enum bpf_type_flag flag = 0; 7248 const struct btf_type *t; 7249 const char *tname; 7250 u32 btf_id; 7251 int ret; 7252 7253 if (!btf_vmlinux) { 7254 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n"); 7255 return -ENOTSUPP; 7256 } 7257 7258 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) { 7259 verbose(env, "map_ptr access not supported for map type %d\n", 7260 map->map_type); 7261 return -ENOTSUPP; 7262 } 7263 7264 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id); 7265 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 7266 7267 if (!env->allow_ptr_leaks) { 7268 verbose(env, 7269 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 7270 tname); 7271 return -EPERM; 7272 } 7273 7274 if (off < 0) { 7275 verbose(env, "R%d is %s invalid negative access: off=%d\n", 7276 regno, tname, off); 7277 return -EACCES; 7278 } 7279 7280 if (atype != BPF_READ) { 7281 verbose(env, "only read from %s is supported\n", tname); 7282 return -EACCES; 7283 } 7284 7285 /* Simulate access to a PTR_TO_BTF_ID */ 7286 memset(&map_reg, 0, sizeof(map_reg)); 7287 mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0); 7288 ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag, NULL); 7289 if (ret < 0) 7290 return ret; 7291 7292 if (value_regno >= 0) 7293 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag); 7294 7295 return 0; 7296 } 7297 7298 /* Check that the stack access at the given offset is within bounds. The 7299 * maximum valid offset is -1. 7300 * 7301 * The minimum valid offset is -MAX_BPF_STACK for writes, and 7302 * -state->allocated_stack for reads. 7303 */ 7304 static int check_stack_slot_within_bounds(struct bpf_verifier_env *env, 7305 s64 off, 7306 struct bpf_func_state *state, 7307 enum bpf_access_type t) 7308 { 7309 int min_valid_off; 7310 7311 if (t == BPF_WRITE || env->allow_uninit_stack) 7312 min_valid_off = -MAX_BPF_STACK; 7313 else 7314 min_valid_off = -state->allocated_stack; 7315 7316 if (off < min_valid_off || off > -1) 7317 return -EACCES; 7318 return 0; 7319 } 7320 7321 /* Check that the stack access at 'regno + off' falls within the maximum stack 7322 * bounds. 7323 * 7324 * 'off' includes `regno->offset`, but not its dynamic part (if any). 7325 */ 7326 static int check_stack_access_within_bounds( 7327 struct bpf_verifier_env *env, 7328 int regno, int off, int access_size, 7329 enum bpf_access_type type) 7330 { 7331 struct bpf_reg_state *regs = cur_regs(env); 7332 struct bpf_reg_state *reg = regs + regno; 7333 struct bpf_func_state *state = func(env, reg); 7334 s64 min_off, max_off; 7335 int err; 7336 char *err_extra; 7337 7338 if (type == BPF_READ) 7339 err_extra = " read from"; 7340 else 7341 err_extra = " write to"; 7342 7343 if (tnum_is_const(reg->var_off)) { 7344 min_off = (s64)reg->var_off.value + off; 7345 max_off = min_off + access_size; 7346 } else { 7347 if (reg->smax_value >= BPF_MAX_VAR_OFF || 7348 reg->smin_value <= -BPF_MAX_VAR_OFF) { 7349 verbose(env, "invalid unbounded variable-offset%s stack R%d\n", 7350 err_extra, regno); 7351 return -EACCES; 7352 } 7353 min_off = reg->smin_value + off; 7354 max_off = reg->smax_value + off + access_size; 7355 } 7356 7357 err = check_stack_slot_within_bounds(env, min_off, state, type); 7358 if (!err && max_off > 0) 7359 err = -EINVAL; /* out of stack access into non-negative offsets */ 7360 if (!err && access_size < 0) 7361 /* access_size should not be negative (or overflow an int); others checks 7362 * along the way should have prevented such an access. 7363 */ 7364 err = -EFAULT; /* invalid negative access size; integer overflow? */ 7365 7366 if (err) { 7367 if (tnum_is_const(reg->var_off)) { 7368 verbose(env, "invalid%s stack R%d off=%d size=%d\n", 7369 err_extra, regno, off, access_size); 7370 } else { 7371 char tn_buf[48]; 7372 7373 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 7374 verbose(env, "invalid variable-offset%s stack R%d var_off=%s off=%d size=%d\n", 7375 err_extra, regno, tn_buf, off, access_size); 7376 } 7377 return err; 7378 } 7379 7380 /* Note that there is no stack access with offset zero, so the needed stack 7381 * size is -min_off, not -min_off+1. 7382 */ 7383 return grow_stack_state(env, state, -min_off /* size */); 7384 } 7385 7386 static bool get_func_retval_range(struct bpf_prog *prog, 7387 struct bpf_retval_range *range) 7388 { 7389 if (prog->type == BPF_PROG_TYPE_LSM && 7390 prog->expected_attach_type == BPF_LSM_MAC && 7391 !bpf_lsm_get_retval_range(prog, range)) { 7392 return true; 7393 } 7394 return false; 7395 } 7396 7397 /* check whether memory at (regno + off) is accessible for t = (read | write) 7398 * if t==write, value_regno is a register which value is stored into memory 7399 * if t==read, value_regno is a register which will receive the value from memory 7400 * if t==write && value_regno==-1, some unknown value is stored into memory 7401 * if t==read && value_regno==-1, don't care what we read from memory 7402 */ 7403 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 7404 int off, int bpf_size, enum bpf_access_type t, 7405 int value_regno, bool strict_alignment_once, bool is_ldsx) 7406 { 7407 struct bpf_reg_state *regs = cur_regs(env); 7408 struct bpf_reg_state *reg = regs + regno; 7409 int size, err = 0; 7410 7411 size = bpf_size_to_bytes(bpf_size); 7412 if (size < 0) 7413 return size; 7414 7415 /* alignment checks will add in reg->off themselves */ 7416 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 7417 if (err) 7418 return err; 7419 7420 /* for access checks, reg->off is just part of off */ 7421 off += reg->off; 7422 7423 if (reg->type == PTR_TO_MAP_KEY) { 7424 if (t == BPF_WRITE) { 7425 verbose(env, "write to change key R%d not allowed\n", regno); 7426 return -EACCES; 7427 } 7428 7429 err = check_mem_region_access(env, regno, off, size, 7430 reg->map_ptr->key_size, false); 7431 if (err) 7432 return err; 7433 if (value_regno >= 0) 7434 mark_reg_unknown(env, regs, value_regno); 7435 } else if (reg->type == PTR_TO_MAP_VALUE) { 7436 struct btf_field *kptr_field = NULL; 7437 7438 if (t == BPF_WRITE && value_regno >= 0 && 7439 is_pointer_value(env, value_regno)) { 7440 verbose(env, "R%d leaks addr into map\n", value_regno); 7441 return -EACCES; 7442 } 7443 err = check_map_access_type(env, regno, off, size, t); 7444 if (err) 7445 return err; 7446 err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT); 7447 if (err) 7448 return err; 7449 if (tnum_is_const(reg->var_off)) 7450 kptr_field = btf_record_find(reg->map_ptr->record, 7451 off + reg->var_off.value, BPF_KPTR | BPF_UPTR); 7452 if (kptr_field) { 7453 err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field); 7454 } else if (t == BPF_READ && value_regno >= 0) { 7455 struct bpf_map *map = reg->map_ptr; 7456 7457 /* if map is read-only, track its contents as scalars */ 7458 if (tnum_is_const(reg->var_off) && 7459 bpf_map_is_rdonly(map) && 7460 map->ops->map_direct_value_addr) { 7461 int map_off = off + reg->var_off.value; 7462 u64 val = 0; 7463 7464 err = bpf_map_direct_read(map, map_off, size, 7465 &val, is_ldsx); 7466 if (err) 7467 return err; 7468 7469 regs[value_regno].type = SCALAR_VALUE; 7470 __mark_reg_known(®s[value_regno], val); 7471 } else { 7472 mark_reg_unknown(env, regs, value_regno); 7473 } 7474 } 7475 } else if (base_type(reg->type) == PTR_TO_MEM) { 7476 bool rdonly_mem = type_is_rdonly_mem(reg->type); 7477 7478 if (type_may_be_null(reg->type)) { 7479 verbose(env, "R%d invalid mem access '%s'\n", regno, 7480 reg_type_str(env, reg->type)); 7481 return -EACCES; 7482 } 7483 7484 if (t == BPF_WRITE && rdonly_mem) { 7485 verbose(env, "R%d cannot write into %s\n", 7486 regno, reg_type_str(env, reg->type)); 7487 return -EACCES; 7488 } 7489 7490 if (t == BPF_WRITE && value_regno >= 0 && 7491 is_pointer_value(env, value_regno)) { 7492 verbose(env, "R%d leaks addr into mem\n", value_regno); 7493 return -EACCES; 7494 } 7495 7496 err = check_mem_region_access(env, regno, off, size, 7497 reg->mem_size, false); 7498 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem)) 7499 mark_reg_unknown(env, regs, value_regno); 7500 } else if (reg->type == PTR_TO_CTX) { 7501 struct bpf_retval_range range; 7502 struct bpf_insn_access_aux info = { 7503 .reg_type = SCALAR_VALUE, 7504 .is_ldsx = is_ldsx, 7505 .log = &env->log, 7506 }; 7507 7508 if (t == BPF_WRITE && value_regno >= 0 && 7509 is_pointer_value(env, value_regno)) { 7510 verbose(env, "R%d leaks addr into ctx\n", value_regno); 7511 return -EACCES; 7512 } 7513 7514 err = check_ptr_off_reg(env, reg, regno); 7515 if (err < 0) 7516 return err; 7517 7518 err = check_ctx_access(env, insn_idx, off, size, t, &info); 7519 if (err) 7520 verbose_linfo(env, insn_idx, "; "); 7521 if (!err && t == BPF_READ && value_regno >= 0) { 7522 /* ctx access returns either a scalar, or a 7523 * PTR_TO_PACKET[_META,_END]. In the latter 7524 * case, we know the offset is zero. 7525 */ 7526 if (info.reg_type == SCALAR_VALUE) { 7527 if (info.is_retval && get_func_retval_range(env->prog, &range)) { 7528 err = __mark_reg_s32_range(env, regs, value_regno, 7529 range.minval, range.maxval); 7530 if (err) 7531 return err; 7532 } else { 7533 mark_reg_unknown(env, regs, value_regno); 7534 } 7535 } else { 7536 mark_reg_known_zero(env, regs, 7537 value_regno); 7538 if (type_may_be_null(info.reg_type)) 7539 regs[value_regno].id = ++env->id_gen; 7540 /* A load of ctx field could have different 7541 * actual load size with the one encoded in the 7542 * insn. When the dst is PTR, it is for sure not 7543 * a sub-register. 7544 */ 7545 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 7546 if (base_type(info.reg_type) == PTR_TO_BTF_ID) { 7547 regs[value_regno].btf = info.btf; 7548 regs[value_regno].btf_id = info.btf_id; 7549 regs[value_regno].ref_obj_id = info.ref_obj_id; 7550 } 7551 } 7552 regs[value_regno].type = info.reg_type; 7553 } 7554 7555 } else if (reg->type == PTR_TO_STACK) { 7556 /* Basic bounds checks. */ 7557 err = check_stack_access_within_bounds(env, regno, off, size, t); 7558 if (err) 7559 return err; 7560 7561 if (t == BPF_READ) 7562 err = check_stack_read(env, regno, off, size, 7563 value_regno); 7564 else 7565 err = check_stack_write(env, regno, off, size, 7566 value_regno, insn_idx); 7567 } else if (reg_is_pkt_pointer(reg)) { 7568 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 7569 verbose(env, "cannot write into packet\n"); 7570 return -EACCES; 7571 } 7572 if (t == BPF_WRITE && value_regno >= 0 && 7573 is_pointer_value(env, value_regno)) { 7574 verbose(env, "R%d leaks addr into packet\n", 7575 value_regno); 7576 return -EACCES; 7577 } 7578 err = check_packet_access(env, regno, off, size, false); 7579 if (!err && t == BPF_READ && value_regno >= 0) 7580 mark_reg_unknown(env, regs, value_regno); 7581 } else if (reg->type == PTR_TO_FLOW_KEYS) { 7582 if (t == BPF_WRITE && value_regno >= 0 && 7583 is_pointer_value(env, value_regno)) { 7584 verbose(env, "R%d leaks addr into flow keys\n", 7585 value_regno); 7586 return -EACCES; 7587 } 7588 7589 err = check_flow_keys_access(env, off, size); 7590 if (!err && t == BPF_READ && value_regno >= 0) 7591 mark_reg_unknown(env, regs, value_regno); 7592 } else if (type_is_sk_pointer(reg->type)) { 7593 if (t == BPF_WRITE) { 7594 verbose(env, "R%d cannot write into %s\n", 7595 regno, reg_type_str(env, reg->type)); 7596 return -EACCES; 7597 } 7598 err = check_sock_access(env, insn_idx, regno, off, size, t); 7599 if (!err && value_regno >= 0) 7600 mark_reg_unknown(env, regs, value_regno); 7601 } else if (reg->type == PTR_TO_TP_BUFFER) { 7602 err = check_tp_buffer_access(env, reg, regno, off, size); 7603 if (!err && t == BPF_READ && value_regno >= 0) 7604 mark_reg_unknown(env, regs, value_regno); 7605 } else if (base_type(reg->type) == PTR_TO_BTF_ID && 7606 !type_may_be_null(reg->type)) { 7607 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 7608 value_regno); 7609 } else if (reg->type == CONST_PTR_TO_MAP) { 7610 err = check_ptr_to_map_access(env, regs, regno, off, size, t, 7611 value_regno); 7612 } else if (base_type(reg->type) == PTR_TO_BUF) { 7613 bool rdonly_mem = type_is_rdonly_mem(reg->type); 7614 u32 *max_access; 7615 7616 if (rdonly_mem) { 7617 if (t == BPF_WRITE) { 7618 verbose(env, "R%d cannot write into %s\n", 7619 regno, reg_type_str(env, reg->type)); 7620 return -EACCES; 7621 } 7622 max_access = &env->prog->aux->max_rdonly_access; 7623 } else { 7624 max_access = &env->prog->aux->max_rdwr_access; 7625 } 7626 7627 err = check_buffer_access(env, reg, regno, off, size, false, 7628 max_access); 7629 7630 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ)) 7631 mark_reg_unknown(env, regs, value_regno); 7632 } else if (reg->type == PTR_TO_ARENA) { 7633 if (t == BPF_READ && value_regno >= 0) 7634 mark_reg_unknown(env, regs, value_regno); 7635 } else { 7636 verbose(env, "R%d invalid mem access '%s'\n", regno, 7637 reg_type_str(env, reg->type)); 7638 return -EACCES; 7639 } 7640 7641 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 7642 regs[value_regno].type == SCALAR_VALUE) { 7643 if (!is_ldsx) 7644 /* b/h/w load zero-extends, mark upper bits as known 0 */ 7645 coerce_reg_to_size(®s[value_regno], size); 7646 else 7647 coerce_reg_to_size_sx(®s[value_regno], size); 7648 } 7649 return err; 7650 } 7651 7652 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type, 7653 bool allow_trust_mismatch); 7654 7655 static int check_load_mem(struct bpf_verifier_env *env, struct bpf_insn *insn, 7656 bool strict_alignment_once, bool is_ldsx, 7657 bool allow_trust_mismatch, const char *ctx) 7658 { 7659 struct bpf_reg_state *regs = cur_regs(env); 7660 enum bpf_reg_type src_reg_type; 7661 int err; 7662 7663 /* check src operand */ 7664 err = check_reg_arg(env, insn->src_reg, SRC_OP); 7665 if (err) 7666 return err; 7667 7668 /* check dst operand */ 7669 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 7670 if (err) 7671 return err; 7672 7673 src_reg_type = regs[insn->src_reg].type; 7674 7675 /* Check if (src_reg + off) is readable. The state of dst_reg will be 7676 * updated by this call. 7677 */ 7678 err = check_mem_access(env, env->insn_idx, insn->src_reg, insn->off, 7679 BPF_SIZE(insn->code), BPF_READ, insn->dst_reg, 7680 strict_alignment_once, is_ldsx); 7681 err = err ?: save_aux_ptr_type(env, src_reg_type, 7682 allow_trust_mismatch); 7683 err = err ?: reg_bounds_sanity_check(env, ®s[insn->dst_reg], ctx); 7684 7685 return err; 7686 } 7687 7688 static int check_store_reg(struct bpf_verifier_env *env, struct bpf_insn *insn, 7689 bool strict_alignment_once) 7690 { 7691 struct bpf_reg_state *regs = cur_regs(env); 7692 enum bpf_reg_type dst_reg_type; 7693 int err; 7694 7695 /* check src1 operand */ 7696 err = check_reg_arg(env, insn->src_reg, SRC_OP); 7697 if (err) 7698 return err; 7699 7700 /* check src2 operand */ 7701 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 7702 if (err) 7703 return err; 7704 7705 dst_reg_type = regs[insn->dst_reg].type; 7706 7707 /* Check if (dst_reg + off) is writeable. */ 7708 err = check_mem_access(env, env->insn_idx, insn->dst_reg, insn->off, 7709 BPF_SIZE(insn->code), BPF_WRITE, insn->src_reg, 7710 strict_alignment_once, false); 7711 err = err ?: save_aux_ptr_type(env, dst_reg_type, false); 7712 7713 return err; 7714 } 7715 7716 static int check_atomic_rmw(struct bpf_verifier_env *env, 7717 struct bpf_insn *insn) 7718 { 7719 int load_reg; 7720 int err; 7721 7722 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) { 7723 verbose(env, "invalid atomic operand size\n"); 7724 return -EINVAL; 7725 } 7726 7727 /* check src1 operand */ 7728 err = check_reg_arg(env, insn->src_reg, SRC_OP); 7729 if (err) 7730 return err; 7731 7732 /* check src2 operand */ 7733 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 7734 if (err) 7735 return err; 7736 7737 if (insn->imm == BPF_CMPXCHG) { 7738 /* Check comparison of R0 with memory location */ 7739 const u32 aux_reg = BPF_REG_0; 7740 7741 err = check_reg_arg(env, aux_reg, SRC_OP); 7742 if (err) 7743 return err; 7744 7745 if (is_pointer_value(env, aux_reg)) { 7746 verbose(env, "R%d leaks addr into mem\n", aux_reg); 7747 return -EACCES; 7748 } 7749 } 7750 7751 if (is_pointer_value(env, insn->src_reg)) { 7752 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 7753 return -EACCES; 7754 } 7755 7756 if (!atomic_ptr_type_ok(env, insn->dst_reg, insn)) { 7757 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n", 7758 insn->dst_reg, 7759 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 7760 return -EACCES; 7761 } 7762 7763 if (insn->imm & BPF_FETCH) { 7764 if (insn->imm == BPF_CMPXCHG) 7765 load_reg = BPF_REG_0; 7766 else 7767 load_reg = insn->src_reg; 7768 7769 /* check and record load of old value */ 7770 err = check_reg_arg(env, load_reg, DST_OP); 7771 if (err) 7772 return err; 7773 } else { 7774 /* This instruction accesses a memory location but doesn't 7775 * actually load it into a register. 7776 */ 7777 load_reg = -1; 7778 } 7779 7780 /* Check whether we can read the memory, with second call for fetch 7781 * case to simulate the register fill. 7782 */ 7783 err = check_mem_access(env, env->insn_idx, insn->dst_reg, insn->off, 7784 BPF_SIZE(insn->code), BPF_READ, -1, true, false); 7785 if (!err && load_reg >= 0) 7786 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 7787 insn->off, BPF_SIZE(insn->code), 7788 BPF_READ, load_reg, true, false); 7789 if (err) 7790 return err; 7791 7792 if (is_arena_reg(env, insn->dst_reg)) { 7793 err = save_aux_ptr_type(env, PTR_TO_ARENA, false); 7794 if (err) 7795 return err; 7796 } 7797 /* Check whether we can write into the same memory. */ 7798 err = check_mem_access(env, env->insn_idx, insn->dst_reg, insn->off, 7799 BPF_SIZE(insn->code), BPF_WRITE, -1, true, false); 7800 if (err) 7801 return err; 7802 return 0; 7803 } 7804 7805 static int check_atomic_load(struct bpf_verifier_env *env, 7806 struct bpf_insn *insn) 7807 { 7808 int err; 7809 7810 err = check_load_mem(env, insn, true, false, false, "atomic_load"); 7811 if (err) 7812 return err; 7813 7814 if (!atomic_ptr_type_ok(env, insn->src_reg, insn)) { 7815 verbose(env, "BPF_ATOMIC loads from R%d %s is not allowed\n", 7816 insn->src_reg, 7817 reg_type_str(env, reg_state(env, insn->src_reg)->type)); 7818 return -EACCES; 7819 } 7820 7821 return 0; 7822 } 7823 7824 static int check_atomic_store(struct bpf_verifier_env *env, 7825 struct bpf_insn *insn) 7826 { 7827 int err; 7828 7829 err = check_store_reg(env, insn, true); 7830 if (err) 7831 return err; 7832 7833 if (!atomic_ptr_type_ok(env, insn->dst_reg, insn)) { 7834 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n", 7835 insn->dst_reg, 7836 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 7837 return -EACCES; 7838 } 7839 7840 return 0; 7841 } 7842 7843 static int check_atomic(struct bpf_verifier_env *env, struct bpf_insn *insn) 7844 { 7845 switch (insn->imm) { 7846 case BPF_ADD: 7847 case BPF_ADD | BPF_FETCH: 7848 case BPF_AND: 7849 case BPF_AND | BPF_FETCH: 7850 case BPF_OR: 7851 case BPF_OR | BPF_FETCH: 7852 case BPF_XOR: 7853 case BPF_XOR | BPF_FETCH: 7854 case BPF_XCHG: 7855 case BPF_CMPXCHG: 7856 return check_atomic_rmw(env, insn); 7857 case BPF_LOAD_ACQ: 7858 if (BPF_SIZE(insn->code) == BPF_DW && BITS_PER_LONG != 64) { 7859 verbose(env, 7860 "64-bit load-acquires are only supported on 64-bit arches\n"); 7861 return -EOPNOTSUPP; 7862 } 7863 return check_atomic_load(env, insn); 7864 case BPF_STORE_REL: 7865 if (BPF_SIZE(insn->code) == BPF_DW && BITS_PER_LONG != 64) { 7866 verbose(env, 7867 "64-bit store-releases are only supported on 64-bit arches\n"); 7868 return -EOPNOTSUPP; 7869 } 7870 return check_atomic_store(env, insn); 7871 default: 7872 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", 7873 insn->imm); 7874 return -EINVAL; 7875 } 7876 } 7877 7878 /* When register 'regno' is used to read the stack (either directly or through 7879 * a helper function) make sure that it's within stack boundary and, depending 7880 * on the access type and privileges, that all elements of the stack are 7881 * initialized. 7882 * 7883 * 'off' includes 'regno->off', but not its dynamic part (if any). 7884 * 7885 * All registers that have been spilled on the stack in the slots within the 7886 * read offsets are marked as read. 7887 */ 7888 static int check_stack_range_initialized( 7889 struct bpf_verifier_env *env, int regno, int off, 7890 int access_size, bool zero_size_allowed, 7891 enum bpf_access_type type, struct bpf_call_arg_meta *meta) 7892 { 7893 struct bpf_reg_state *reg = reg_state(env, regno); 7894 struct bpf_func_state *state = func(env, reg); 7895 int err, min_off, max_off, i, j, slot, spi; 7896 /* Some accesses can write anything into the stack, others are 7897 * read-only. 7898 */ 7899 bool clobber = false; 7900 7901 if (access_size == 0 && !zero_size_allowed) { 7902 verbose(env, "invalid zero-sized read\n"); 7903 return -EACCES; 7904 } 7905 7906 if (type == BPF_WRITE) 7907 clobber = true; 7908 7909 err = check_stack_access_within_bounds(env, regno, off, access_size, type); 7910 if (err) 7911 return err; 7912 7913 7914 if (tnum_is_const(reg->var_off)) { 7915 min_off = max_off = reg->var_off.value + off; 7916 } else { 7917 /* Variable offset is prohibited for unprivileged mode for 7918 * simplicity since it requires corresponding support in 7919 * Spectre masking for stack ALU. 7920 * See also retrieve_ptr_limit(). 7921 */ 7922 if (!env->bypass_spec_v1) { 7923 char tn_buf[48]; 7924 7925 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 7926 verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n", 7927 regno, tn_buf); 7928 return -EACCES; 7929 } 7930 /* Only initialized buffer on stack is allowed to be accessed 7931 * with variable offset. With uninitialized buffer it's hard to 7932 * guarantee that whole memory is marked as initialized on 7933 * helper return since specific bounds are unknown what may 7934 * cause uninitialized stack leaking. 7935 */ 7936 if (meta && meta->raw_mode) 7937 meta = NULL; 7938 7939 min_off = reg->smin_value + off; 7940 max_off = reg->smax_value + off; 7941 } 7942 7943 if (meta && meta->raw_mode) { 7944 /* Ensure we won't be overwriting dynptrs when simulating byte 7945 * by byte access in check_helper_call using meta.access_size. 7946 * This would be a problem if we have a helper in the future 7947 * which takes: 7948 * 7949 * helper(uninit_mem, len, dynptr) 7950 * 7951 * Now, uninint_mem may overlap with dynptr pointer. Hence, it 7952 * may end up writing to dynptr itself when touching memory from 7953 * arg 1. This can be relaxed on a case by case basis for known 7954 * safe cases, but reject due to the possibilitiy of aliasing by 7955 * default. 7956 */ 7957 for (i = min_off; i < max_off + access_size; i++) { 7958 int stack_off = -i - 1; 7959 7960 spi = __get_spi(i); 7961 /* raw_mode may write past allocated_stack */ 7962 if (state->allocated_stack <= stack_off) 7963 continue; 7964 if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) { 7965 verbose(env, "potential write to dynptr at off=%d disallowed\n", i); 7966 return -EACCES; 7967 } 7968 } 7969 meta->access_size = access_size; 7970 meta->regno = regno; 7971 return 0; 7972 } 7973 7974 for (i = min_off; i < max_off + access_size; i++) { 7975 u8 *stype; 7976 7977 slot = -i - 1; 7978 spi = slot / BPF_REG_SIZE; 7979 if (state->allocated_stack <= slot) { 7980 verbose(env, "allocated_stack too small\n"); 7981 return -EFAULT; 7982 } 7983 7984 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 7985 if (*stype == STACK_MISC) 7986 goto mark; 7987 if ((*stype == STACK_ZERO) || 7988 (*stype == STACK_INVALID && env->allow_uninit_stack)) { 7989 if (clobber) { 7990 /* helper can write anything into the stack */ 7991 *stype = STACK_MISC; 7992 } 7993 goto mark; 7994 } 7995 7996 if (is_spilled_reg(&state->stack[spi]) && 7997 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE || 7998 env->allow_ptr_leaks)) { 7999 if (clobber) { 8000 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 8001 for (j = 0; j < BPF_REG_SIZE; j++) 8002 scrub_spilled_slot(&state->stack[spi].slot_type[j]); 8003 } 8004 goto mark; 8005 } 8006 8007 if (tnum_is_const(reg->var_off)) { 8008 verbose(env, "invalid read from stack R%d off %d+%d size %d\n", 8009 regno, min_off, i - min_off, access_size); 8010 } else { 8011 char tn_buf[48]; 8012 8013 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 8014 verbose(env, "invalid read from stack R%d var_off %s+%d size %d\n", 8015 regno, tn_buf, i - min_off, access_size); 8016 } 8017 return -EACCES; 8018 mark: 8019 /* reading any byte out of 8-byte 'spill_slot' will cause 8020 * the whole slot to be marked as 'read' 8021 */ 8022 mark_reg_read(env, &state->stack[spi].spilled_ptr, 8023 state->stack[spi].spilled_ptr.parent, 8024 REG_LIVE_READ64); 8025 /* We do not set REG_LIVE_WRITTEN for stack slot, as we can not 8026 * be sure that whether stack slot is written to or not. Hence, 8027 * we must still conservatively propagate reads upwards even if 8028 * helper may write to the entire memory range. 8029 */ 8030 } 8031 return 0; 8032 } 8033 8034 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 8035 int access_size, enum bpf_access_type access_type, 8036 bool zero_size_allowed, 8037 struct bpf_call_arg_meta *meta) 8038 { 8039 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8040 u32 *max_access; 8041 8042 switch (base_type(reg->type)) { 8043 case PTR_TO_PACKET: 8044 case PTR_TO_PACKET_META: 8045 return check_packet_access(env, regno, reg->off, access_size, 8046 zero_size_allowed); 8047 case PTR_TO_MAP_KEY: 8048 if (access_type == BPF_WRITE) { 8049 verbose(env, "R%d cannot write into %s\n", regno, 8050 reg_type_str(env, reg->type)); 8051 return -EACCES; 8052 } 8053 return check_mem_region_access(env, regno, reg->off, access_size, 8054 reg->map_ptr->key_size, false); 8055 case PTR_TO_MAP_VALUE: 8056 if (check_map_access_type(env, regno, reg->off, access_size, access_type)) 8057 return -EACCES; 8058 return check_map_access(env, regno, reg->off, access_size, 8059 zero_size_allowed, ACCESS_HELPER); 8060 case PTR_TO_MEM: 8061 if (type_is_rdonly_mem(reg->type)) { 8062 if (access_type == BPF_WRITE) { 8063 verbose(env, "R%d cannot write into %s\n", regno, 8064 reg_type_str(env, reg->type)); 8065 return -EACCES; 8066 } 8067 } 8068 return check_mem_region_access(env, regno, reg->off, 8069 access_size, reg->mem_size, 8070 zero_size_allowed); 8071 case PTR_TO_BUF: 8072 if (type_is_rdonly_mem(reg->type)) { 8073 if (access_type == BPF_WRITE) { 8074 verbose(env, "R%d cannot write into %s\n", regno, 8075 reg_type_str(env, reg->type)); 8076 return -EACCES; 8077 } 8078 8079 max_access = &env->prog->aux->max_rdonly_access; 8080 } else { 8081 max_access = &env->prog->aux->max_rdwr_access; 8082 } 8083 return check_buffer_access(env, reg, regno, reg->off, 8084 access_size, zero_size_allowed, 8085 max_access); 8086 case PTR_TO_STACK: 8087 return check_stack_range_initialized( 8088 env, 8089 regno, reg->off, access_size, 8090 zero_size_allowed, access_type, meta); 8091 case PTR_TO_BTF_ID: 8092 return check_ptr_to_btf_access(env, regs, regno, reg->off, 8093 access_size, BPF_READ, -1); 8094 case PTR_TO_CTX: 8095 /* in case the function doesn't know how to access the context, 8096 * (because we are in a program of type SYSCALL for example), we 8097 * can not statically check its size. 8098 * Dynamically check it now. 8099 */ 8100 if (!env->ops->convert_ctx_access) { 8101 int offset = access_size - 1; 8102 8103 /* Allow zero-byte read from PTR_TO_CTX */ 8104 if (access_size == 0) 8105 return zero_size_allowed ? 0 : -EACCES; 8106 8107 return check_mem_access(env, env->insn_idx, regno, offset, BPF_B, 8108 access_type, -1, false, false); 8109 } 8110 8111 fallthrough; 8112 default: /* scalar_value or invalid ptr */ 8113 /* Allow zero-byte read from NULL, regardless of pointer type */ 8114 if (zero_size_allowed && access_size == 0 && 8115 register_is_null(reg)) 8116 return 0; 8117 8118 verbose(env, "R%d type=%s ", regno, 8119 reg_type_str(env, reg->type)); 8120 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK)); 8121 return -EACCES; 8122 } 8123 } 8124 8125 /* verify arguments to helpers or kfuncs consisting of a pointer and an access 8126 * size. 8127 * 8128 * @regno is the register containing the access size. regno-1 is the register 8129 * containing the pointer. 8130 */ 8131 static int check_mem_size_reg(struct bpf_verifier_env *env, 8132 struct bpf_reg_state *reg, u32 regno, 8133 enum bpf_access_type access_type, 8134 bool zero_size_allowed, 8135 struct bpf_call_arg_meta *meta) 8136 { 8137 int err; 8138 8139 /* This is used to refine r0 return value bounds for helpers 8140 * that enforce this value as an upper bound on return values. 8141 * See do_refine_retval_range() for helpers that can refine 8142 * the return value. C type of helper is u32 so we pull register 8143 * bound from umax_value however, if negative verifier errors 8144 * out. Only upper bounds can be learned because retval is an 8145 * int type and negative retvals are allowed. 8146 */ 8147 meta->msize_max_value = reg->umax_value; 8148 8149 /* The register is SCALAR_VALUE; the access check happens using 8150 * its boundaries. For unprivileged variable accesses, disable 8151 * raw mode so that the program is required to initialize all 8152 * the memory that the helper could just partially fill up. 8153 */ 8154 if (!tnum_is_const(reg->var_off)) 8155 meta = NULL; 8156 8157 if (reg->smin_value < 0) { 8158 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 8159 regno); 8160 return -EACCES; 8161 } 8162 8163 if (reg->umin_value == 0 && !zero_size_allowed) { 8164 verbose(env, "R%d invalid zero-sized read: u64=[%lld,%lld]\n", 8165 regno, reg->umin_value, reg->umax_value); 8166 return -EACCES; 8167 } 8168 8169 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 8170 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 8171 regno); 8172 return -EACCES; 8173 } 8174 err = check_helper_mem_access(env, regno - 1, reg->umax_value, 8175 access_type, zero_size_allowed, meta); 8176 if (!err) 8177 err = mark_chain_precision(env, regno); 8178 return err; 8179 } 8180 8181 static int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 8182 u32 regno, u32 mem_size) 8183 { 8184 bool may_be_null = type_may_be_null(reg->type); 8185 struct bpf_reg_state saved_reg; 8186 int err; 8187 8188 if (register_is_null(reg)) 8189 return 0; 8190 8191 /* Assuming that the register contains a value check if the memory 8192 * access is safe. Temporarily save and restore the register's state as 8193 * the conversion shouldn't be visible to a caller. 8194 */ 8195 if (may_be_null) { 8196 saved_reg = *reg; 8197 mark_ptr_not_null_reg(reg); 8198 } 8199 8200 err = check_helper_mem_access(env, regno, mem_size, BPF_READ, true, NULL); 8201 err = err ?: check_helper_mem_access(env, regno, mem_size, BPF_WRITE, true, NULL); 8202 8203 if (may_be_null) 8204 *reg = saved_reg; 8205 8206 return err; 8207 } 8208 8209 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 8210 u32 regno) 8211 { 8212 struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1]; 8213 bool may_be_null = type_may_be_null(mem_reg->type); 8214 struct bpf_reg_state saved_reg; 8215 struct bpf_call_arg_meta meta; 8216 int err; 8217 8218 WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5); 8219 8220 memset(&meta, 0, sizeof(meta)); 8221 8222 if (may_be_null) { 8223 saved_reg = *mem_reg; 8224 mark_ptr_not_null_reg(mem_reg); 8225 } 8226 8227 err = check_mem_size_reg(env, reg, regno, BPF_READ, true, &meta); 8228 err = err ?: check_mem_size_reg(env, reg, regno, BPF_WRITE, true, &meta); 8229 8230 if (may_be_null) 8231 *mem_reg = saved_reg; 8232 8233 return err; 8234 } 8235 8236 enum { 8237 PROCESS_SPIN_LOCK = (1 << 0), 8238 PROCESS_RES_LOCK = (1 << 1), 8239 PROCESS_LOCK_IRQ = (1 << 2), 8240 }; 8241 8242 /* Implementation details: 8243 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL. 8244 * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL. 8245 * Two bpf_map_lookups (even with the same key) will have different reg->id. 8246 * Two separate bpf_obj_new will also have different reg->id. 8247 * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier 8248 * clears reg->id after value_or_null->value transition, since the verifier only 8249 * cares about the range of access to valid map value pointer and doesn't care 8250 * about actual address of the map element. 8251 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 8252 * reg->id > 0 after value_or_null->value transition. By doing so 8253 * two bpf_map_lookups will be considered two different pointers that 8254 * point to different bpf_spin_locks. Likewise for pointers to allocated objects 8255 * returned from bpf_obj_new. 8256 * The verifier allows taking only one bpf_spin_lock at a time to avoid 8257 * dead-locks. 8258 * Since only one bpf_spin_lock is allowed the checks are simpler than 8259 * reg_is_refcounted() logic. The verifier needs to remember only 8260 * one spin_lock instead of array of acquired_refs. 8261 * env->cur_state->active_locks remembers which map value element or allocated 8262 * object got locked and clears it after bpf_spin_unlock. 8263 */ 8264 static int process_spin_lock(struct bpf_verifier_env *env, int regno, int flags) 8265 { 8266 bool is_lock = flags & PROCESS_SPIN_LOCK, is_res_lock = flags & PROCESS_RES_LOCK; 8267 const char *lock_str = is_res_lock ? "bpf_res_spin" : "bpf_spin"; 8268 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8269 struct bpf_verifier_state *cur = env->cur_state; 8270 bool is_const = tnum_is_const(reg->var_off); 8271 bool is_irq = flags & PROCESS_LOCK_IRQ; 8272 u64 val = reg->var_off.value; 8273 struct bpf_map *map = NULL; 8274 struct btf *btf = NULL; 8275 struct btf_record *rec; 8276 u32 spin_lock_off; 8277 int err; 8278 8279 if (!is_const) { 8280 verbose(env, 8281 "R%d doesn't have constant offset. %s_lock has to be at the constant offset\n", 8282 regno, lock_str); 8283 return -EINVAL; 8284 } 8285 if (reg->type == PTR_TO_MAP_VALUE) { 8286 map = reg->map_ptr; 8287 if (!map->btf) { 8288 verbose(env, 8289 "map '%s' has to have BTF in order to use %s_lock\n", 8290 map->name, lock_str); 8291 return -EINVAL; 8292 } 8293 } else { 8294 btf = reg->btf; 8295 } 8296 8297 rec = reg_btf_record(reg); 8298 if (!btf_record_has_field(rec, is_res_lock ? BPF_RES_SPIN_LOCK : BPF_SPIN_LOCK)) { 8299 verbose(env, "%s '%s' has no valid %s_lock\n", map ? "map" : "local", 8300 map ? map->name : "kptr", lock_str); 8301 return -EINVAL; 8302 } 8303 spin_lock_off = is_res_lock ? rec->res_spin_lock_off : rec->spin_lock_off; 8304 if (spin_lock_off != val + reg->off) { 8305 verbose(env, "off %lld doesn't point to 'struct %s_lock' that is at %d\n", 8306 val + reg->off, lock_str, spin_lock_off); 8307 return -EINVAL; 8308 } 8309 if (is_lock) { 8310 void *ptr; 8311 int type; 8312 8313 if (map) 8314 ptr = map; 8315 else 8316 ptr = btf; 8317 8318 if (!is_res_lock && cur->active_locks) { 8319 if (find_lock_state(env->cur_state, REF_TYPE_LOCK, 0, NULL)) { 8320 verbose(env, 8321 "Locking two bpf_spin_locks are not allowed\n"); 8322 return -EINVAL; 8323 } 8324 } else if (is_res_lock && cur->active_locks) { 8325 if (find_lock_state(env->cur_state, REF_TYPE_RES_LOCK | REF_TYPE_RES_LOCK_IRQ, reg->id, ptr)) { 8326 verbose(env, "Acquiring the same lock again, AA deadlock detected\n"); 8327 return -EINVAL; 8328 } 8329 } 8330 8331 if (is_res_lock && is_irq) 8332 type = REF_TYPE_RES_LOCK_IRQ; 8333 else if (is_res_lock) 8334 type = REF_TYPE_RES_LOCK; 8335 else 8336 type = REF_TYPE_LOCK; 8337 err = acquire_lock_state(env, env->insn_idx, type, reg->id, ptr); 8338 if (err < 0) { 8339 verbose(env, "Failed to acquire lock state\n"); 8340 return err; 8341 } 8342 } else { 8343 void *ptr; 8344 int type; 8345 8346 if (map) 8347 ptr = map; 8348 else 8349 ptr = btf; 8350 8351 if (!cur->active_locks) { 8352 verbose(env, "%s_unlock without taking a lock\n", lock_str); 8353 return -EINVAL; 8354 } 8355 8356 if (is_res_lock && is_irq) 8357 type = REF_TYPE_RES_LOCK_IRQ; 8358 else if (is_res_lock) 8359 type = REF_TYPE_RES_LOCK; 8360 else 8361 type = REF_TYPE_LOCK; 8362 if (!find_lock_state(cur, type, reg->id, ptr)) { 8363 verbose(env, "%s_unlock of different lock\n", lock_str); 8364 return -EINVAL; 8365 } 8366 if (reg->id != cur->active_lock_id || ptr != cur->active_lock_ptr) { 8367 verbose(env, "%s_unlock cannot be out of order\n", lock_str); 8368 return -EINVAL; 8369 } 8370 if (release_lock_state(cur, type, reg->id, ptr)) { 8371 verbose(env, "%s_unlock of different lock\n", lock_str); 8372 return -EINVAL; 8373 } 8374 8375 invalidate_non_owning_refs(env); 8376 } 8377 return 0; 8378 } 8379 8380 static int process_timer_func(struct bpf_verifier_env *env, int regno, 8381 struct bpf_call_arg_meta *meta) 8382 { 8383 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8384 bool is_const = tnum_is_const(reg->var_off); 8385 struct bpf_map *map = reg->map_ptr; 8386 u64 val = reg->var_off.value; 8387 8388 if (!is_const) { 8389 verbose(env, 8390 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n", 8391 regno); 8392 return -EINVAL; 8393 } 8394 if (!map->btf) { 8395 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n", 8396 map->name); 8397 return -EINVAL; 8398 } 8399 if (!btf_record_has_field(map->record, BPF_TIMER)) { 8400 verbose(env, "map '%s' has no valid bpf_timer\n", map->name); 8401 return -EINVAL; 8402 } 8403 if (map->record->timer_off != val + reg->off) { 8404 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n", 8405 val + reg->off, map->record->timer_off); 8406 return -EINVAL; 8407 } 8408 if (meta->map_ptr) { 8409 verifier_bug(env, "Two map pointers in a timer helper"); 8410 return -EFAULT; 8411 } 8412 meta->map_uid = reg->map_uid; 8413 meta->map_ptr = map; 8414 return 0; 8415 } 8416 8417 static int process_wq_func(struct bpf_verifier_env *env, int regno, 8418 struct bpf_kfunc_call_arg_meta *meta) 8419 { 8420 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8421 struct bpf_map *map = reg->map_ptr; 8422 u64 val = reg->var_off.value; 8423 8424 if (map->record->wq_off != val + reg->off) { 8425 verbose(env, "off %lld doesn't point to 'struct bpf_wq' that is at %d\n", 8426 val + reg->off, map->record->wq_off); 8427 return -EINVAL; 8428 } 8429 meta->map.uid = reg->map_uid; 8430 meta->map.ptr = map; 8431 return 0; 8432 } 8433 8434 static int process_kptr_func(struct bpf_verifier_env *env, int regno, 8435 struct bpf_call_arg_meta *meta) 8436 { 8437 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8438 struct btf_field *kptr_field; 8439 struct bpf_map *map_ptr; 8440 struct btf_record *rec; 8441 u32 kptr_off; 8442 8443 if (type_is_ptr_alloc_obj(reg->type)) { 8444 rec = reg_btf_record(reg); 8445 } else { /* PTR_TO_MAP_VALUE */ 8446 map_ptr = reg->map_ptr; 8447 if (!map_ptr->btf) { 8448 verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n", 8449 map_ptr->name); 8450 return -EINVAL; 8451 } 8452 rec = map_ptr->record; 8453 meta->map_ptr = map_ptr; 8454 } 8455 8456 if (!tnum_is_const(reg->var_off)) { 8457 verbose(env, 8458 "R%d doesn't have constant offset. kptr has to be at the constant offset\n", 8459 regno); 8460 return -EINVAL; 8461 } 8462 8463 if (!btf_record_has_field(rec, BPF_KPTR)) { 8464 verbose(env, "R%d has no valid kptr\n", regno); 8465 return -EINVAL; 8466 } 8467 8468 kptr_off = reg->off + reg->var_off.value; 8469 kptr_field = btf_record_find(rec, kptr_off, BPF_KPTR); 8470 if (!kptr_field) { 8471 verbose(env, "off=%d doesn't point to kptr\n", kptr_off); 8472 return -EACCES; 8473 } 8474 if (kptr_field->type != BPF_KPTR_REF && kptr_field->type != BPF_KPTR_PERCPU) { 8475 verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off); 8476 return -EACCES; 8477 } 8478 meta->kptr_field = kptr_field; 8479 return 0; 8480 } 8481 8482 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK 8483 * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR. 8484 * 8485 * In both cases we deal with the first 8 bytes, but need to mark the next 8 8486 * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of 8487 * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object. 8488 * 8489 * Mutability of bpf_dynptr is at two levels, one is at the level of struct 8490 * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct 8491 * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can 8492 * mutate the view of the dynptr and also possibly destroy it. In the latter 8493 * case, it cannot mutate the bpf_dynptr itself but it can still mutate the 8494 * memory that dynptr points to. 8495 * 8496 * The verifier will keep track both levels of mutation (bpf_dynptr's in 8497 * reg->type and the memory's in reg->dynptr.type), but there is no support for 8498 * readonly dynptr view yet, hence only the first case is tracked and checked. 8499 * 8500 * This is consistent with how C applies the const modifier to a struct object, 8501 * where the pointer itself inside bpf_dynptr becomes const but not what it 8502 * points to. 8503 * 8504 * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument 8505 * type, and declare it as 'const struct bpf_dynptr *' in their prototype. 8506 */ 8507 static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx, 8508 enum bpf_arg_type arg_type, int clone_ref_obj_id) 8509 { 8510 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8511 int err; 8512 8513 if (reg->type != PTR_TO_STACK && reg->type != CONST_PTR_TO_DYNPTR) { 8514 verbose(env, 8515 "arg#%d expected pointer to stack or const struct bpf_dynptr\n", 8516 regno - 1); 8517 return -EINVAL; 8518 } 8519 8520 /* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an 8521 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*): 8522 */ 8523 if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) { 8524 verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n"); 8525 return -EFAULT; 8526 } 8527 8528 /* MEM_UNINIT - Points to memory that is an appropriate candidate for 8529 * constructing a mutable bpf_dynptr object. 8530 * 8531 * Currently, this is only possible with PTR_TO_STACK 8532 * pointing to a region of at least 16 bytes which doesn't 8533 * contain an existing bpf_dynptr. 8534 * 8535 * MEM_RDONLY - Points to a initialized bpf_dynptr that will not be 8536 * mutated or destroyed. However, the memory it points to 8537 * may be mutated. 8538 * 8539 * None - Points to a initialized dynptr that can be mutated and 8540 * destroyed, including mutation of the memory it points 8541 * to. 8542 */ 8543 if (arg_type & MEM_UNINIT) { 8544 int i; 8545 8546 if (!is_dynptr_reg_valid_uninit(env, reg)) { 8547 verbose(env, "Dynptr has to be an uninitialized dynptr\n"); 8548 return -EINVAL; 8549 } 8550 8551 /* we write BPF_DW bits (8 bytes) at a time */ 8552 for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) { 8553 err = check_mem_access(env, insn_idx, regno, 8554 i, BPF_DW, BPF_WRITE, -1, false, false); 8555 if (err) 8556 return err; 8557 } 8558 8559 err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx, clone_ref_obj_id); 8560 } else /* MEM_RDONLY and None case from above */ { 8561 /* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */ 8562 if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) { 8563 verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n"); 8564 return -EINVAL; 8565 } 8566 8567 if (!is_dynptr_reg_valid_init(env, reg)) { 8568 verbose(env, 8569 "Expected an initialized dynptr as arg #%d\n", 8570 regno - 1); 8571 return -EINVAL; 8572 } 8573 8574 /* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */ 8575 if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) { 8576 verbose(env, 8577 "Expected a dynptr of type %s as arg #%d\n", 8578 dynptr_type_str(arg_to_dynptr_type(arg_type)), regno - 1); 8579 return -EINVAL; 8580 } 8581 8582 err = mark_dynptr_read(env, reg); 8583 } 8584 return err; 8585 } 8586 8587 static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi) 8588 { 8589 struct bpf_func_state *state = func(env, reg); 8590 8591 return state->stack[spi].spilled_ptr.ref_obj_id; 8592 } 8593 8594 static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta) 8595 { 8596 return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY); 8597 } 8598 8599 static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta) 8600 { 8601 return meta->kfunc_flags & KF_ITER_NEW; 8602 } 8603 8604 static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta) 8605 { 8606 return meta->kfunc_flags & KF_ITER_NEXT; 8607 } 8608 8609 static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta) 8610 { 8611 return meta->kfunc_flags & KF_ITER_DESTROY; 8612 } 8613 8614 static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg_idx, 8615 const struct btf_param *arg) 8616 { 8617 /* btf_check_iter_kfuncs() guarantees that first argument of any iter 8618 * kfunc is iter state pointer 8619 */ 8620 if (is_iter_kfunc(meta)) 8621 return arg_idx == 0; 8622 8623 /* iter passed as an argument to a generic kfunc */ 8624 return btf_param_match_suffix(meta->btf, arg, "__iter"); 8625 } 8626 8627 static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx, 8628 struct bpf_kfunc_call_arg_meta *meta) 8629 { 8630 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8631 const struct btf_type *t; 8632 int spi, err, i, nr_slots, btf_id; 8633 8634 if (reg->type != PTR_TO_STACK) { 8635 verbose(env, "arg#%d expected pointer to an iterator on stack\n", regno - 1); 8636 return -EINVAL; 8637 } 8638 8639 /* For iter_{new,next,destroy} functions, btf_check_iter_kfuncs() 8640 * ensures struct convention, so we wouldn't need to do any BTF 8641 * validation here. But given iter state can be passed as a parameter 8642 * to any kfunc, if arg has "__iter" suffix, we need to be a bit more 8643 * conservative here. 8644 */ 8645 btf_id = btf_check_iter_arg(meta->btf, meta->func_proto, regno - 1); 8646 if (btf_id < 0) { 8647 verbose(env, "expected valid iter pointer as arg #%d\n", regno - 1); 8648 return -EINVAL; 8649 } 8650 t = btf_type_by_id(meta->btf, btf_id); 8651 nr_slots = t->size / BPF_REG_SIZE; 8652 8653 if (is_iter_new_kfunc(meta)) { 8654 /* bpf_iter_<type>_new() expects pointer to uninit iter state */ 8655 if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) { 8656 verbose(env, "expected uninitialized iter_%s as arg #%d\n", 8657 iter_type_str(meta->btf, btf_id), regno - 1); 8658 return -EINVAL; 8659 } 8660 8661 for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) { 8662 err = check_mem_access(env, insn_idx, regno, 8663 i, BPF_DW, BPF_WRITE, -1, false, false); 8664 if (err) 8665 return err; 8666 } 8667 8668 err = mark_stack_slots_iter(env, meta, reg, insn_idx, meta->btf, btf_id, nr_slots); 8669 if (err) 8670 return err; 8671 } else { 8672 /* iter_next() or iter_destroy(), as well as any kfunc 8673 * accepting iter argument, expect initialized iter state 8674 */ 8675 err = is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots); 8676 switch (err) { 8677 case 0: 8678 break; 8679 case -EINVAL: 8680 verbose(env, "expected an initialized iter_%s as arg #%d\n", 8681 iter_type_str(meta->btf, btf_id), regno - 1); 8682 return err; 8683 case -EPROTO: 8684 verbose(env, "expected an RCU CS when using %s\n", meta->func_name); 8685 return err; 8686 default: 8687 return err; 8688 } 8689 8690 spi = iter_get_spi(env, reg, nr_slots); 8691 if (spi < 0) 8692 return spi; 8693 8694 err = mark_iter_read(env, reg, spi, nr_slots); 8695 if (err) 8696 return err; 8697 8698 /* remember meta->iter info for process_iter_next_call() */ 8699 meta->iter.spi = spi; 8700 meta->iter.frameno = reg->frameno; 8701 meta->ref_obj_id = iter_ref_obj_id(env, reg, spi); 8702 8703 if (is_iter_destroy_kfunc(meta)) { 8704 err = unmark_stack_slots_iter(env, reg, nr_slots); 8705 if (err) 8706 return err; 8707 } 8708 } 8709 8710 return 0; 8711 } 8712 8713 /* Look for a previous loop entry at insn_idx: nearest parent state 8714 * stopped at insn_idx with callsites matching those in cur->frame. 8715 */ 8716 static struct bpf_verifier_state *find_prev_entry(struct bpf_verifier_env *env, 8717 struct bpf_verifier_state *cur, 8718 int insn_idx) 8719 { 8720 struct bpf_verifier_state_list *sl; 8721 struct bpf_verifier_state *st; 8722 struct list_head *pos, *head; 8723 8724 /* Explored states are pushed in stack order, most recent states come first */ 8725 head = explored_state(env, insn_idx); 8726 list_for_each(pos, head) { 8727 sl = container_of(pos, struct bpf_verifier_state_list, node); 8728 /* If st->branches != 0 state is a part of current DFS verification path, 8729 * hence cur & st for a loop. 8730 */ 8731 st = &sl->state; 8732 if (st->insn_idx == insn_idx && st->branches && same_callsites(st, cur) && 8733 st->dfs_depth < cur->dfs_depth) 8734 return st; 8735 } 8736 8737 return NULL; 8738 } 8739 8740 static void reset_idmap_scratch(struct bpf_verifier_env *env); 8741 static bool regs_exact(const struct bpf_reg_state *rold, 8742 const struct bpf_reg_state *rcur, 8743 struct bpf_idmap *idmap); 8744 8745 static void maybe_widen_reg(struct bpf_verifier_env *env, 8746 struct bpf_reg_state *rold, struct bpf_reg_state *rcur, 8747 struct bpf_idmap *idmap) 8748 { 8749 if (rold->type != SCALAR_VALUE) 8750 return; 8751 if (rold->type != rcur->type) 8752 return; 8753 if (rold->precise || rcur->precise || regs_exact(rold, rcur, idmap)) 8754 return; 8755 __mark_reg_unknown(env, rcur); 8756 } 8757 8758 static int widen_imprecise_scalars(struct bpf_verifier_env *env, 8759 struct bpf_verifier_state *old, 8760 struct bpf_verifier_state *cur) 8761 { 8762 struct bpf_func_state *fold, *fcur; 8763 int i, fr; 8764 8765 reset_idmap_scratch(env); 8766 for (fr = old->curframe; fr >= 0; fr--) { 8767 fold = old->frame[fr]; 8768 fcur = cur->frame[fr]; 8769 8770 for (i = 0; i < MAX_BPF_REG; i++) 8771 maybe_widen_reg(env, 8772 &fold->regs[i], 8773 &fcur->regs[i], 8774 &env->idmap_scratch); 8775 8776 for (i = 0; i < fold->allocated_stack / BPF_REG_SIZE; i++) { 8777 if (!is_spilled_reg(&fold->stack[i]) || 8778 !is_spilled_reg(&fcur->stack[i])) 8779 continue; 8780 8781 maybe_widen_reg(env, 8782 &fold->stack[i].spilled_ptr, 8783 &fcur->stack[i].spilled_ptr, 8784 &env->idmap_scratch); 8785 } 8786 } 8787 return 0; 8788 } 8789 8790 static struct bpf_reg_state *get_iter_from_state(struct bpf_verifier_state *cur_st, 8791 struct bpf_kfunc_call_arg_meta *meta) 8792 { 8793 int iter_frameno = meta->iter.frameno; 8794 int iter_spi = meta->iter.spi; 8795 8796 return &cur_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr; 8797 } 8798 8799 /* process_iter_next_call() is called when verifier gets to iterator's next 8800 * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer 8801 * to it as just "iter_next()" in comments below. 8802 * 8803 * BPF verifier relies on a crucial contract for any iter_next() 8804 * implementation: it should *eventually* return NULL, and once that happens 8805 * it should keep returning NULL. That is, once iterator exhausts elements to 8806 * iterate, it should never reset or spuriously return new elements. 8807 * 8808 * With the assumption of such contract, process_iter_next_call() simulates 8809 * a fork in the verifier state to validate loop logic correctness and safety 8810 * without having to simulate infinite amount of iterations. 8811 * 8812 * In current state, we first assume that iter_next() returned NULL and 8813 * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such 8814 * conditions we should not form an infinite loop and should eventually reach 8815 * exit. 8816 * 8817 * Besides that, we also fork current state and enqueue it for later 8818 * verification. In a forked state we keep iterator state as ACTIVE 8819 * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We 8820 * also bump iteration depth to prevent erroneous infinite loop detection 8821 * later on (see iter_active_depths_differ() comment for details). In this 8822 * state we assume that we'll eventually loop back to another iter_next() 8823 * calls (it could be in exactly same location or in some other instruction, 8824 * it doesn't matter, we don't make any unnecessary assumptions about this, 8825 * everything revolves around iterator state in a stack slot, not which 8826 * instruction is calling iter_next()). When that happens, we either will come 8827 * to iter_next() with equivalent state and can conclude that next iteration 8828 * will proceed in exactly the same way as we just verified, so it's safe to 8829 * assume that loop converges. If not, we'll go on another iteration 8830 * simulation with a different input state, until all possible starting states 8831 * are validated or we reach maximum number of instructions limit. 8832 * 8833 * This way, we will either exhaustively discover all possible input states 8834 * that iterator loop can start with and eventually will converge, or we'll 8835 * effectively regress into bounded loop simulation logic and either reach 8836 * maximum number of instructions if loop is not provably convergent, or there 8837 * is some statically known limit on number of iterations (e.g., if there is 8838 * an explicit `if n > 100 then break;` statement somewhere in the loop). 8839 * 8840 * Iteration convergence logic in is_state_visited() relies on exact 8841 * states comparison, which ignores read and precision marks. 8842 * This is necessary because read and precision marks are not finalized 8843 * while in the loop. Exact comparison might preclude convergence for 8844 * simple programs like below: 8845 * 8846 * i = 0; 8847 * while(iter_next(&it)) 8848 * i++; 8849 * 8850 * At each iteration step i++ would produce a new distinct state and 8851 * eventually instruction processing limit would be reached. 8852 * 8853 * To avoid such behavior speculatively forget (widen) range for 8854 * imprecise scalar registers, if those registers were not precise at the 8855 * end of the previous iteration and do not match exactly. 8856 * 8857 * This is a conservative heuristic that allows to verify wide range of programs, 8858 * however it precludes verification of programs that conjure an 8859 * imprecise value on the first loop iteration and use it as precise on a second. 8860 * For example, the following safe program would fail to verify: 8861 * 8862 * struct bpf_num_iter it; 8863 * int arr[10]; 8864 * int i = 0, a = 0; 8865 * bpf_iter_num_new(&it, 0, 10); 8866 * while (bpf_iter_num_next(&it)) { 8867 * if (a == 0) { 8868 * a = 1; 8869 * i = 7; // Because i changed verifier would forget 8870 * // it's range on second loop entry. 8871 * } else { 8872 * arr[i] = 42; // This would fail to verify. 8873 * } 8874 * } 8875 * bpf_iter_num_destroy(&it); 8876 */ 8877 static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx, 8878 struct bpf_kfunc_call_arg_meta *meta) 8879 { 8880 struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st; 8881 struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr; 8882 struct bpf_reg_state *cur_iter, *queued_iter; 8883 8884 BTF_TYPE_EMIT(struct bpf_iter); 8885 8886 cur_iter = get_iter_from_state(cur_st, meta); 8887 8888 if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE && 8889 cur_iter->iter.state != BPF_ITER_STATE_DRAINED) { 8890 verbose(env, "verifier internal error: unexpected iterator state %d (%s)\n", 8891 cur_iter->iter.state, iter_state_str(cur_iter->iter.state)); 8892 return -EFAULT; 8893 } 8894 8895 if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) { 8896 /* Because iter_next() call is a checkpoint is_state_visitied() 8897 * should guarantee parent state with same call sites and insn_idx. 8898 */ 8899 if (!cur_st->parent || cur_st->parent->insn_idx != insn_idx || 8900 !same_callsites(cur_st->parent, cur_st)) { 8901 verbose(env, "bug: bad parent state for iter next call"); 8902 return -EFAULT; 8903 } 8904 /* Note cur_st->parent in the call below, it is necessary to skip 8905 * checkpoint created for cur_st by is_state_visited() 8906 * right at this instruction. 8907 */ 8908 prev_st = find_prev_entry(env, cur_st->parent, insn_idx); 8909 /* branch out active iter state */ 8910 queued_st = push_stack(env, insn_idx + 1, insn_idx, false); 8911 if (!queued_st) 8912 return -ENOMEM; 8913 8914 queued_iter = get_iter_from_state(queued_st, meta); 8915 queued_iter->iter.state = BPF_ITER_STATE_ACTIVE; 8916 queued_iter->iter.depth++; 8917 if (prev_st) 8918 widen_imprecise_scalars(env, prev_st, queued_st); 8919 8920 queued_fr = queued_st->frame[queued_st->curframe]; 8921 mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]); 8922 } 8923 8924 /* switch to DRAINED state, but keep the depth unchanged */ 8925 /* mark current iter state as drained and assume returned NULL */ 8926 cur_iter->iter.state = BPF_ITER_STATE_DRAINED; 8927 __mark_reg_const_zero(env, &cur_fr->regs[BPF_REG_0]); 8928 8929 return 0; 8930 } 8931 8932 static bool arg_type_is_mem_size(enum bpf_arg_type type) 8933 { 8934 return type == ARG_CONST_SIZE || 8935 type == ARG_CONST_SIZE_OR_ZERO; 8936 } 8937 8938 static bool arg_type_is_raw_mem(enum bpf_arg_type type) 8939 { 8940 return base_type(type) == ARG_PTR_TO_MEM && 8941 type & MEM_UNINIT; 8942 } 8943 8944 static bool arg_type_is_release(enum bpf_arg_type type) 8945 { 8946 return type & OBJ_RELEASE; 8947 } 8948 8949 static bool arg_type_is_dynptr(enum bpf_arg_type type) 8950 { 8951 return base_type(type) == ARG_PTR_TO_DYNPTR; 8952 } 8953 8954 static int resolve_map_arg_type(struct bpf_verifier_env *env, 8955 const struct bpf_call_arg_meta *meta, 8956 enum bpf_arg_type *arg_type) 8957 { 8958 if (!meta->map_ptr) { 8959 /* kernel subsystem misconfigured verifier */ 8960 verbose(env, "invalid map_ptr to access map->type\n"); 8961 return -EACCES; 8962 } 8963 8964 switch (meta->map_ptr->map_type) { 8965 case BPF_MAP_TYPE_SOCKMAP: 8966 case BPF_MAP_TYPE_SOCKHASH: 8967 if (*arg_type == ARG_PTR_TO_MAP_VALUE) { 8968 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON; 8969 } else { 8970 verbose(env, "invalid arg_type for sockmap/sockhash\n"); 8971 return -EINVAL; 8972 } 8973 break; 8974 case BPF_MAP_TYPE_BLOOM_FILTER: 8975 if (meta->func_id == BPF_FUNC_map_peek_elem) 8976 *arg_type = ARG_PTR_TO_MAP_VALUE; 8977 break; 8978 default: 8979 break; 8980 } 8981 return 0; 8982 } 8983 8984 struct bpf_reg_types { 8985 const enum bpf_reg_type types[10]; 8986 u32 *btf_id; 8987 }; 8988 8989 static const struct bpf_reg_types sock_types = { 8990 .types = { 8991 PTR_TO_SOCK_COMMON, 8992 PTR_TO_SOCKET, 8993 PTR_TO_TCP_SOCK, 8994 PTR_TO_XDP_SOCK, 8995 }, 8996 }; 8997 8998 #ifdef CONFIG_NET 8999 static const struct bpf_reg_types btf_id_sock_common_types = { 9000 .types = { 9001 PTR_TO_SOCK_COMMON, 9002 PTR_TO_SOCKET, 9003 PTR_TO_TCP_SOCK, 9004 PTR_TO_XDP_SOCK, 9005 PTR_TO_BTF_ID, 9006 PTR_TO_BTF_ID | PTR_TRUSTED, 9007 }, 9008 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 9009 }; 9010 #endif 9011 9012 static const struct bpf_reg_types mem_types = { 9013 .types = { 9014 PTR_TO_STACK, 9015 PTR_TO_PACKET, 9016 PTR_TO_PACKET_META, 9017 PTR_TO_MAP_KEY, 9018 PTR_TO_MAP_VALUE, 9019 PTR_TO_MEM, 9020 PTR_TO_MEM | MEM_RINGBUF, 9021 PTR_TO_BUF, 9022 PTR_TO_BTF_ID | PTR_TRUSTED, 9023 }, 9024 }; 9025 9026 static const struct bpf_reg_types spin_lock_types = { 9027 .types = { 9028 PTR_TO_MAP_VALUE, 9029 PTR_TO_BTF_ID | MEM_ALLOC, 9030 } 9031 }; 9032 9033 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } }; 9034 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } }; 9035 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } }; 9036 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } }; 9037 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } }; 9038 static const struct bpf_reg_types btf_ptr_types = { 9039 .types = { 9040 PTR_TO_BTF_ID, 9041 PTR_TO_BTF_ID | PTR_TRUSTED, 9042 PTR_TO_BTF_ID | MEM_RCU, 9043 }, 9044 }; 9045 static const struct bpf_reg_types percpu_btf_ptr_types = { 9046 .types = { 9047 PTR_TO_BTF_ID | MEM_PERCPU, 9048 PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU, 9049 PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED, 9050 } 9051 }; 9052 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } }; 9053 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } }; 9054 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } }; 9055 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } }; 9056 static const struct bpf_reg_types kptr_xchg_dest_types = { 9057 .types = { 9058 PTR_TO_MAP_VALUE, 9059 PTR_TO_BTF_ID | MEM_ALLOC 9060 } 9061 }; 9062 static const struct bpf_reg_types dynptr_types = { 9063 .types = { 9064 PTR_TO_STACK, 9065 CONST_PTR_TO_DYNPTR, 9066 } 9067 }; 9068 9069 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = { 9070 [ARG_PTR_TO_MAP_KEY] = &mem_types, 9071 [ARG_PTR_TO_MAP_VALUE] = &mem_types, 9072 [ARG_CONST_SIZE] = &scalar_types, 9073 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types, 9074 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types, 9075 [ARG_CONST_MAP_PTR] = &const_map_ptr_types, 9076 [ARG_PTR_TO_CTX] = &context_types, 9077 [ARG_PTR_TO_SOCK_COMMON] = &sock_types, 9078 #ifdef CONFIG_NET 9079 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types, 9080 #endif 9081 [ARG_PTR_TO_SOCKET] = &fullsock_types, 9082 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types, 9083 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types, 9084 [ARG_PTR_TO_MEM] = &mem_types, 9085 [ARG_PTR_TO_RINGBUF_MEM] = &ringbuf_mem_types, 9086 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types, 9087 [ARG_PTR_TO_FUNC] = &func_ptr_types, 9088 [ARG_PTR_TO_STACK] = &stack_ptr_types, 9089 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types, 9090 [ARG_PTR_TO_TIMER] = &timer_types, 9091 [ARG_KPTR_XCHG_DEST] = &kptr_xchg_dest_types, 9092 [ARG_PTR_TO_DYNPTR] = &dynptr_types, 9093 }; 9094 9095 static int check_reg_type(struct bpf_verifier_env *env, u32 regno, 9096 enum bpf_arg_type arg_type, 9097 const u32 *arg_btf_id, 9098 struct bpf_call_arg_meta *meta) 9099 { 9100 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 9101 enum bpf_reg_type expected, type = reg->type; 9102 const struct bpf_reg_types *compatible; 9103 int i, j; 9104 9105 compatible = compatible_reg_types[base_type(arg_type)]; 9106 if (!compatible) { 9107 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type); 9108 return -EFAULT; 9109 } 9110 9111 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY, 9112 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY 9113 * 9114 * Same for MAYBE_NULL: 9115 * 9116 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL, 9117 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL 9118 * 9119 * ARG_PTR_TO_MEM is compatible with PTR_TO_MEM that is tagged with a dynptr type. 9120 * 9121 * Therefore we fold these flags depending on the arg_type before comparison. 9122 */ 9123 if (arg_type & MEM_RDONLY) 9124 type &= ~MEM_RDONLY; 9125 if (arg_type & PTR_MAYBE_NULL) 9126 type &= ~PTR_MAYBE_NULL; 9127 if (base_type(arg_type) == ARG_PTR_TO_MEM) 9128 type &= ~DYNPTR_TYPE_FLAG_MASK; 9129 9130 /* Local kptr types are allowed as the source argument of bpf_kptr_xchg */ 9131 if (meta->func_id == BPF_FUNC_kptr_xchg && type_is_alloc(type) && regno == BPF_REG_2) { 9132 type &= ~MEM_ALLOC; 9133 type &= ~MEM_PERCPU; 9134 } 9135 9136 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) { 9137 expected = compatible->types[i]; 9138 if (expected == NOT_INIT) 9139 break; 9140 9141 if (type == expected) 9142 goto found; 9143 } 9144 9145 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type)); 9146 for (j = 0; j + 1 < i; j++) 9147 verbose(env, "%s, ", reg_type_str(env, compatible->types[j])); 9148 verbose(env, "%s\n", reg_type_str(env, compatible->types[j])); 9149 return -EACCES; 9150 9151 found: 9152 if (base_type(reg->type) != PTR_TO_BTF_ID) 9153 return 0; 9154 9155 if (compatible == &mem_types) { 9156 if (!(arg_type & MEM_RDONLY)) { 9157 verbose(env, 9158 "%s() may write into memory pointed by R%d type=%s\n", 9159 func_id_name(meta->func_id), 9160 regno, reg_type_str(env, reg->type)); 9161 return -EACCES; 9162 } 9163 return 0; 9164 } 9165 9166 switch ((int)reg->type) { 9167 case PTR_TO_BTF_ID: 9168 case PTR_TO_BTF_ID | PTR_TRUSTED: 9169 case PTR_TO_BTF_ID | PTR_TRUSTED | PTR_MAYBE_NULL: 9170 case PTR_TO_BTF_ID | MEM_RCU: 9171 case PTR_TO_BTF_ID | PTR_MAYBE_NULL: 9172 case PTR_TO_BTF_ID | PTR_MAYBE_NULL | MEM_RCU: 9173 { 9174 /* For bpf_sk_release, it needs to match against first member 9175 * 'struct sock_common', hence make an exception for it. This 9176 * allows bpf_sk_release to work for multiple socket types. 9177 */ 9178 bool strict_type_match = arg_type_is_release(arg_type) && 9179 meta->func_id != BPF_FUNC_sk_release; 9180 9181 if (type_may_be_null(reg->type) && 9182 (!type_may_be_null(arg_type) || arg_type_is_release(arg_type))) { 9183 verbose(env, "Possibly NULL pointer passed to helper arg%d\n", regno); 9184 return -EACCES; 9185 } 9186 9187 if (!arg_btf_id) { 9188 if (!compatible->btf_id) { 9189 verbose(env, "verifier internal error: missing arg compatible BTF ID\n"); 9190 return -EFAULT; 9191 } 9192 arg_btf_id = compatible->btf_id; 9193 } 9194 9195 if (meta->func_id == BPF_FUNC_kptr_xchg) { 9196 if (map_kptr_match_type(env, meta->kptr_field, reg, regno)) 9197 return -EACCES; 9198 } else { 9199 if (arg_btf_id == BPF_PTR_POISON) { 9200 verbose(env, "verifier internal error:"); 9201 verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n", 9202 regno); 9203 return -EACCES; 9204 } 9205 9206 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 9207 btf_vmlinux, *arg_btf_id, 9208 strict_type_match)) { 9209 verbose(env, "R%d is of type %s but %s is expected\n", 9210 regno, btf_type_name(reg->btf, reg->btf_id), 9211 btf_type_name(btf_vmlinux, *arg_btf_id)); 9212 return -EACCES; 9213 } 9214 } 9215 break; 9216 } 9217 case PTR_TO_BTF_ID | MEM_ALLOC: 9218 case PTR_TO_BTF_ID | MEM_PERCPU | MEM_ALLOC: 9219 if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock && 9220 meta->func_id != BPF_FUNC_kptr_xchg) { 9221 verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n"); 9222 return -EFAULT; 9223 } 9224 /* Check if local kptr in src arg matches kptr in dst arg */ 9225 if (meta->func_id == BPF_FUNC_kptr_xchg && regno == BPF_REG_2) { 9226 if (map_kptr_match_type(env, meta->kptr_field, reg, regno)) 9227 return -EACCES; 9228 } 9229 break; 9230 case PTR_TO_BTF_ID | MEM_PERCPU: 9231 case PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU: 9232 case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED: 9233 /* Handled by helper specific checks */ 9234 break; 9235 default: 9236 verbose(env, "verifier internal error: invalid PTR_TO_BTF_ID register for type match\n"); 9237 return -EFAULT; 9238 } 9239 return 0; 9240 } 9241 9242 static struct btf_field * 9243 reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields) 9244 { 9245 struct btf_field *field; 9246 struct btf_record *rec; 9247 9248 rec = reg_btf_record(reg); 9249 if (!rec) 9250 return NULL; 9251 9252 field = btf_record_find(rec, off, fields); 9253 if (!field) 9254 return NULL; 9255 9256 return field; 9257 } 9258 9259 static int check_func_arg_reg_off(struct bpf_verifier_env *env, 9260 const struct bpf_reg_state *reg, int regno, 9261 enum bpf_arg_type arg_type) 9262 { 9263 u32 type = reg->type; 9264 9265 /* When referenced register is passed to release function, its fixed 9266 * offset must be 0. 9267 * 9268 * We will check arg_type_is_release reg has ref_obj_id when storing 9269 * meta->release_regno. 9270 */ 9271 if (arg_type_is_release(arg_type)) { 9272 /* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it 9273 * may not directly point to the object being released, but to 9274 * dynptr pointing to such object, which might be at some offset 9275 * on the stack. In that case, we simply to fallback to the 9276 * default handling. 9277 */ 9278 if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK) 9279 return 0; 9280 9281 /* Doing check_ptr_off_reg check for the offset will catch this 9282 * because fixed_off_ok is false, but checking here allows us 9283 * to give the user a better error message. 9284 */ 9285 if (reg->off) { 9286 verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n", 9287 regno); 9288 return -EINVAL; 9289 } 9290 return __check_ptr_off_reg(env, reg, regno, false); 9291 } 9292 9293 switch (type) { 9294 /* Pointer types where both fixed and variable offset is explicitly allowed: */ 9295 case PTR_TO_STACK: 9296 case PTR_TO_PACKET: 9297 case PTR_TO_PACKET_META: 9298 case PTR_TO_MAP_KEY: 9299 case PTR_TO_MAP_VALUE: 9300 case PTR_TO_MEM: 9301 case PTR_TO_MEM | MEM_RDONLY: 9302 case PTR_TO_MEM | MEM_RINGBUF: 9303 case PTR_TO_BUF: 9304 case PTR_TO_BUF | MEM_RDONLY: 9305 case PTR_TO_ARENA: 9306 case SCALAR_VALUE: 9307 return 0; 9308 /* All the rest must be rejected, except PTR_TO_BTF_ID which allows 9309 * fixed offset. 9310 */ 9311 case PTR_TO_BTF_ID: 9312 case PTR_TO_BTF_ID | MEM_ALLOC: 9313 case PTR_TO_BTF_ID | PTR_TRUSTED: 9314 case PTR_TO_BTF_ID | MEM_RCU: 9315 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF: 9316 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF | MEM_RCU: 9317 /* When referenced PTR_TO_BTF_ID is passed to release function, 9318 * its fixed offset must be 0. In the other cases, fixed offset 9319 * can be non-zero. This was already checked above. So pass 9320 * fixed_off_ok as true to allow fixed offset for all other 9321 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we 9322 * still need to do checks instead of returning. 9323 */ 9324 return __check_ptr_off_reg(env, reg, regno, true); 9325 default: 9326 return __check_ptr_off_reg(env, reg, regno, false); 9327 } 9328 } 9329 9330 static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env, 9331 const struct bpf_func_proto *fn, 9332 struct bpf_reg_state *regs) 9333 { 9334 struct bpf_reg_state *state = NULL; 9335 int i; 9336 9337 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) 9338 if (arg_type_is_dynptr(fn->arg_type[i])) { 9339 if (state) { 9340 verbose(env, "verifier internal error: multiple dynptr args\n"); 9341 return NULL; 9342 } 9343 state = ®s[BPF_REG_1 + i]; 9344 } 9345 9346 if (!state) 9347 verbose(env, "verifier internal error: no dynptr arg found\n"); 9348 9349 return state; 9350 } 9351 9352 static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 9353 { 9354 struct bpf_func_state *state = func(env, reg); 9355 int spi; 9356 9357 if (reg->type == CONST_PTR_TO_DYNPTR) 9358 return reg->id; 9359 spi = dynptr_get_spi(env, reg); 9360 if (spi < 0) 9361 return spi; 9362 return state->stack[spi].spilled_ptr.id; 9363 } 9364 9365 static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 9366 { 9367 struct bpf_func_state *state = func(env, reg); 9368 int spi; 9369 9370 if (reg->type == CONST_PTR_TO_DYNPTR) 9371 return reg->ref_obj_id; 9372 spi = dynptr_get_spi(env, reg); 9373 if (spi < 0) 9374 return spi; 9375 return state->stack[spi].spilled_ptr.ref_obj_id; 9376 } 9377 9378 static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env, 9379 struct bpf_reg_state *reg) 9380 { 9381 struct bpf_func_state *state = func(env, reg); 9382 int spi; 9383 9384 if (reg->type == CONST_PTR_TO_DYNPTR) 9385 return reg->dynptr.type; 9386 9387 spi = __get_spi(reg->off); 9388 if (spi < 0) { 9389 verbose(env, "verifier internal error: invalid spi when querying dynptr type\n"); 9390 return BPF_DYNPTR_TYPE_INVALID; 9391 } 9392 9393 return state->stack[spi].spilled_ptr.dynptr.type; 9394 } 9395 9396 static int check_reg_const_str(struct bpf_verifier_env *env, 9397 struct bpf_reg_state *reg, u32 regno) 9398 { 9399 struct bpf_map *map = reg->map_ptr; 9400 int err; 9401 int map_off; 9402 u64 map_addr; 9403 char *str_ptr; 9404 9405 if (reg->type != PTR_TO_MAP_VALUE) 9406 return -EINVAL; 9407 9408 if (!bpf_map_is_rdonly(map)) { 9409 verbose(env, "R%d does not point to a readonly map'\n", regno); 9410 return -EACCES; 9411 } 9412 9413 if (!tnum_is_const(reg->var_off)) { 9414 verbose(env, "R%d is not a constant address'\n", regno); 9415 return -EACCES; 9416 } 9417 9418 if (!map->ops->map_direct_value_addr) { 9419 verbose(env, "no direct value access support for this map type\n"); 9420 return -EACCES; 9421 } 9422 9423 err = check_map_access(env, regno, reg->off, 9424 map->value_size - reg->off, false, 9425 ACCESS_HELPER); 9426 if (err) 9427 return err; 9428 9429 map_off = reg->off + reg->var_off.value; 9430 err = map->ops->map_direct_value_addr(map, &map_addr, map_off); 9431 if (err) { 9432 verbose(env, "direct value access on string failed\n"); 9433 return err; 9434 } 9435 9436 str_ptr = (char *)(long)(map_addr); 9437 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) { 9438 verbose(env, "string is not zero-terminated\n"); 9439 return -EINVAL; 9440 } 9441 return 0; 9442 } 9443 9444 /* Returns constant key value in `value` if possible, else negative error */ 9445 static int get_constant_map_key(struct bpf_verifier_env *env, 9446 struct bpf_reg_state *key, 9447 u32 key_size, 9448 s64 *value) 9449 { 9450 struct bpf_func_state *state = func(env, key); 9451 struct bpf_reg_state *reg; 9452 int slot, spi, off; 9453 int spill_size = 0; 9454 int zero_size = 0; 9455 int stack_off; 9456 int i, err; 9457 u8 *stype; 9458 9459 if (!env->bpf_capable) 9460 return -EOPNOTSUPP; 9461 if (key->type != PTR_TO_STACK) 9462 return -EOPNOTSUPP; 9463 if (!tnum_is_const(key->var_off)) 9464 return -EOPNOTSUPP; 9465 9466 stack_off = key->off + key->var_off.value; 9467 slot = -stack_off - 1; 9468 spi = slot / BPF_REG_SIZE; 9469 off = slot % BPF_REG_SIZE; 9470 stype = state->stack[spi].slot_type; 9471 9472 /* First handle precisely tracked STACK_ZERO */ 9473 for (i = off; i >= 0 && stype[i] == STACK_ZERO; i--) 9474 zero_size++; 9475 if (zero_size >= key_size) { 9476 *value = 0; 9477 return 0; 9478 } 9479 9480 /* Check that stack contains a scalar spill of expected size */ 9481 if (!is_spilled_scalar_reg(&state->stack[spi])) 9482 return -EOPNOTSUPP; 9483 for (i = off; i >= 0 && stype[i] == STACK_SPILL; i--) 9484 spill_size++; 9485 if (spill_size != key_size) 9486 return -EOPNOTSUPP; 9487 9488 reg = &state->stack[spi].spilled_ptr; 9489 if (!tnum_is_const(reg->var_off)) 9490 /* Stack value not statically known */ 9491 return -EOPNOTSUPP; 9492 9493 /* We are relying on a constant value. So mark as precise 9494 * to prevent pruning on it. 9495 */ 9496 bt_set_frame_slot(&env->bt, key->frameno, spi); 9497 err = mark_chain_precision_batch(env); 9498 if (err < 0) 9499 return err; 9500 9501 *value = reg->var_off.value; 9502 return 0; 9503 } 9504 9505 static bool can_elide_value_nullness(enum bpf_map_type type); 9506 9507 static int check_func_arg(struct bpf_verifier_env *env, u32 arg, 9508 struct bpf_call_arg_meta *meta, 9509 const struct bpf_func_proto *fn, 9510 int insn_idx) 9511 { 9512 u32 regno = BPF_REG_1 + arg; 9513 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 9514 enum bpf_arg_type arg_type = fn->arg_type[arg]; 9515 enum bpf_reg_type type = reg->type; 9516 u32 *arg_btf_id = NULL; 9517 u32 key_size; 9518 int err = 0; 9519 9520 if (arg_type == ARG_DONTCARE) 9521 return 0; 9522 9523 err = check_reg_arg(env, regno, SRC_OP); 9524 if (err) 9525 return err; 9526 9527 if (arg_type == ARG_ANYTHING) { 9528 if (is_pointer_value(env, regno)) { 9529 verbose(env, "R%d leaks addr into helper function\n", 9530 regno); 9531 return -EACCES; 9532 } 9533 return 0; 9534 } 9535 9536 if (type_is_pkt_pointer(type) && 9537 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 9538 verbose(env, "helper access to the packet is not allowed\n"); 9539 return -EACCES; 9540 } 9541 9542 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) { 9543 err = resolve_map_arg_type(env, meta, &arg_type); 9544 if (err) 9545 return err; 9546 } 9547 9548 if (register_is_null(reg) && type_may_be_null(arg_type)) 9549 /* A NULL register has a SCALAR_VALUE type, so skip 9550 * type checking. 9551 */ 9552 goto skip_type_check; 9553 9554 /* arg_btf_id and arg_size are in a union. */ 9555 if (base_type(arg_type) == ARG_PTR_TO_BTF_ID || 9556 base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK) 9557 arg_btf_id = fn->arg_btf_id[arg]; 9558 9559 err = check_reg_type(env, regno, arg_type, arg_btf_id, meta); 9560 if (err) 9561 return err; 9562 9563 err = check_func_arg_reg_off(env, reg, regno, arg_type); 9564 if (err) 9565 return err; 9566 9567 skip_type_check: 9568 if (arg_type_is_release(arg_type)) { 9569 if (arg_type_is_dynptr(arg_type)) { 9570 struct bpf_func_state *state = func(env, reg); 9571 int spi; 9572 9573 /* Only dynptr created on stack can be released, thus 9574 * the get_spi and stack state checks for spilled_ptr 9575 * should only be done before process_dynptr_func for 9576 * PTR_TO_STACK. 9577 */ 9578 if (reg->type == PTR_TO_STACK) { 9579 spi = dynptr_get_spi(env, reg); 9580 if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) { 9581 verbose(env, "arg %d is an unacquired reference\n", regno); 9582 return -EINVAL; 9583 } 9584 } else { 9585 verbose(env, "cannot release unowned const bpf_dynptr\n"); 9586 return -EINVAL; 9587 } 9588 } else if (!reg->ref_obj_id && !register_is_null(reg)) { 9589 verbose(env, "R%d must be referenced when passed to release function\n", 9590 regno); 9591 return -EINVAL; 9592 } 9593 if (meta->release_regno) { 9594 verbose(env, "verifier internal error: more than one release argument\n"); 9595 return -EFAULT; 9596 } 9597 meta->release_regno = regno; 9598 } 9599 9600 if (reg->ref_obj_id && base_type(arg_type) != ARG_KPTR_XCHG_DEST) { 9601 if (meta->ref_obj_id) { 9602 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 9603 regno, reg->ref_obj_id, 9604 meta->ref_obj_id); 9605 return -EFAULT; 9606 } 9607 meta->ref_obj_id = reg->ref_obj_id; 9608 } 9609 9610 switch (base_type(arg_type)) { 9611 case ARG_CONST_MAP_PTR: 9612 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 9613 if (meta->map_ptr) { 9614 /* Use map_uid (which is unique id of inner map) to reject: 9615 * inner_map1 = bpf_map_lookup_elem(outer_map, key1) 9616 * inner_map2 = bpf_map_lookup_elem(outer_map, key2) 9617 * if (inner_map1 && inner_map2) { 9618 * timer = bpf_map_lookup_elem(inner_map1); 9619 * if (timer) 9620 * // mismatch would have been allowed 9621 * bpf_timer_init(timer, inner_map2); 9622 * } 9623 * 9624 * Comparing map_ptr is enough to distinguish normal and outer maps. 9625 */ 9626 if (meta->map_ptr != reg->map_ptr || 9627 meta->map_uid != reg->map_uid) { 9628 verbose(env, 9629 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", 9630 meta->map_uid, reg->map_uid); 9631 return -EINVAL; 9632 } 9633 } 9634 meta->map_ptr = reg->map_ptr; 9635 meta->map_uid = reg->map_uid; 9636 break; 9637 case ARG_PTR_TO_MAP_KEY: 9638 /* bpf_map_xxx(..., map_ptr, ..., key) call: 9639 * check that [key, key + map->key_size) are within 9640 * stack limits and initialized 9641 */ 9642 if (!meta->map_ptr) { 9643 /* in function declaration map_ptr must come before 9644 * map_key, so that it's verified and known before 9645 * we have to check map_key here. Otherwise it means 9646 * that kernel subsystem misconfigured verifier 9647 */ 9648 verbose(env, "invalid map_ptr to access map->key\n"); 9649 return -EACCES; 9650 } 9651 key_size = meta->map_ptr->key_size; 9652 err = check_helper_mem_access(env, regno, key_size, BPF_READ, false, NULL); 9653 if (err) 9654 return err; 9655 if (can_elide_value_nullness(meta->map_ptr->map_type)) { 9656 err = get_constant_map_key(env, reg, key_size, &meta->const_map_key); 9657 if (err < 0) { 9658 meta->const_map_key = -1; 9659 if (err == -EOPNOTSUPP) 9660 err = 0; 9661 else 9662 return err; 9663 } 9664 } 9665 break; 9666 case ARG_PTR_TO_MAP_VALUE: 9667 if (type_may_be_null(arg_type) && register_is_null(reg)) 9668 return 0; 9669 9670 /* bpf_map_xxx(..., map_ptr, ..., value) call: 9671 * check [value, value + map->value_size) validity 9672 */ 9673 if (!meta->map_ptr) { 9674 /* kernel subsystem misconfigured verifier */ 9675 verbose(env, "invalid map_ptr to access map->value\n"); 9676 return -EACCES; 9677 } 9678 meta->raw_mode = arg_type & MEM_UNINIT; 9679 err = check_helper_mem_access(env, regno, meta->map_ptr->value_size, 9680 arg_type & MEM_WRITE ? BPF_WRITE : BPF_READ, 9681 false, meta); 9682 break; 9683 case ARG_PTR_TO_PERCPU_BTF_ID: 9684 if (!reg->btf_id) { 9685 verbose(env, "Helper has invalid btf_id in R%d\n", regno); 9686 return -EACCES; 9687 } 9688 meta->ret_btf = reg->btf; 9689 meta->ret_btf_id = reg->btf_id; 9690 break; 9691 case ARG_PTR_TO_SPIN_LOCK: 9692 if (in_rbtree_lock_required_cb(env)) { 9693 verbose(env, "can't spin_{lock,unlock} in rbtree cb\n"); 9694 return -EACCES; 9695 } 9696 if (meta->func_id == BPF_FUNC_spin_lock) { 9697 err = process_spin_lock(env, regno, PROCESS_SPIN_LOCK); 9698 if (err) 9699 return err; 9700 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 9701 err = process_spin_lock(env, regno, 0); 9702 if (err) 9703 return err; 9704 } else { 9705 verbose(env, "verifier internal error\n"); 9706 return -EFAULT; 9707 } 9708 break; 9709 case ARG_PTR_TO_TIMER: 9710 err = process_timer_func(env, regno, meta); 9711 if (err) 9712 return err; 9713 break; 9714 case ARG_PTR_TO_FUNC: 9715 meta->subprogno = reg->subprogno; 9716 break; 9717 case ARG_PTR_TO_MEM: 9718 /* The access to this pointer is only checked when we hit the 9719 * next is_mem_size argument below. 9720 */ 9721 meta->raw_mode = arg_type & MEM_UNINIT; 9722 if (arg_type & MEM_FIXED_SIZE) { 9723 err = check_helper_mem_access(env, regno, fn->arg_size[arg], 9724 arg_type & MEM_WRITE ? BPF_WRITE : BPF_READ, 9725 false, meta); 9726 if (err) 9727 return err; 9728 if (arg_type & MEM_ALIGNED) 9729 err = check_ptr_alignment(env, reg, 0, fn->arg_size[arg], true); 9730 } 9731 break; 9732 case ARG_CONST_SIZE: 9733 err = check_mem_size_reg(env, reg, regno, 9734 fn->arg_type[arg - 1] & MEM_WRITE ? 9735 BPF_WRITE : BPF_READ, 9736 false, meta); 9737 break; 9738 case ARG_CONST_SIZE_OR_ZERO: 9739 err = check_mem_size_reg(env, reg, regno, 9740 fn->arg_type[arg - 1] & MEM_WRITE ? 9741 BPF_WRITE : BPF_READ, 9742 true, meta); 9743 break; 9744 case ARG_PTR_TO_DYNPTR: 9745 err = process_dynptr_func(env, regno, insn_idx, arg_type, 0); 9746 if (err) 9747 return err; 9748 break; 9749 case ARG_CONST_ALLOC_SIZE_OR_ZERO: 9750 if (!tnum_is_const(reg->var_off)) { 9751 verbose(env, "R%d is not a known constant'\n", 9752 regno); 9753 return -EACCES; 9754 } 9755 meta->mem_size = reg->var_off.value; 9756 err = mark_chain_precision(env, regno); 9757 if (err) 9758 return err; 9759 break; 9760 case ARG_PTR_TO_CONST_STR: 9761 { 9762 err = check_reg_const_str(env, reg, regno); 9763 if (err) 9764 return err; 9765 break; 9766 } 9767 case ARG_KPTR_XCHG_DEST: 9768 err = process_kptr_func(env, regno, meta); 9769 if (err) 9770 return err; 9771 break; 9772 } 9773 9774 return err; 9775 } 9776 9777 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id) 9778 { 9779 enum bpf_attach_type eatype = env->prog->expected_attach_type; 9780 enum bpf_prog_type type = resolve_prog_type(env->prog); 9781 9782 if (func_id != BPF_FUNC_map_update_elem && 9783 func_id != BPF_FUNC_map_delete_elem) 9784 return false; 9785 9786 /* It's not possible to get access to a locked struct sock in these 9787 * contexts, so updating is safe. 9788 */ 9789 switch (type) { 9790 case BPF_PROG_TYPE_TRACING: 9791 if (eatype == BPF_TRACE_ITER) 9792 return true; 9793 break; 9794 case BPF_PROG_TYPE_SOCK_OPS: 9795 /* map_update allowed only via dedicated helpers with event type checks */ 9796 if (func_id == BPF_FUNC_map_delete_elem) 9797 return true; 9798 break; 9799 case BPF_PROG_TYPE_SOCKET_FILTER: 9800 case BPF_PROG_TYPE_SCHED_CLS: 9801 case BPF_PROG_TYPE_SCHED_ACT: 9802 case BPF_PROG_TYPE_XDP: 9803 case BPF_PROG_TYPE_SK_REUSEPORT: 9804 case BPF_PROG_TYPE_FLOW_DISSECTOR: 9805 case BPF_PROG_TYPE_SK_LOOKUP: 9806 return true; 9807 default: 9808 break; 9809 } 9810 9811 verbose(env, "cannot update sockmap in this context\n"); 9812 return false; 9813 } 9814 9815 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env) 9816 { 9817 return env->prog->jit_requested && 9818 bpf_jit_supports_subprog_tailcalls(); 9819 } 9820 9821 static int check_map_func_compatibility(struct bpf_verifier_env *env, 9822 struct bpf_map *map, int func_id) 9823 { 9824 if (!map) 9825 return 0; 9826 9827 /* We need a two way check, first is from map perspective ... */ 9828 switch (map->map_type) { 9829 case BPF_MAP_TYPE_PROG_ARRAY: 9830 if (func_id != BPF_FUNC_tail_call) 9831 goto error; 9832 break; 9833 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 9834 if (func_id != BPF_FUNC_perf_event_read && 9835 func_id != BPF_FUNC_perf_event_output && 9836 func_id != BPF_FUNC_skb_output && 9837 func_id != BPF_FUNC_perf_event_read_value && 9838 func_id != BPF_FUNC_xdp_output) 9839 goto error; 9840 break; 9841 case BPF_MAP_TYPE_RINGBUF: 9842 if (func_id != BPF_FUNC_ringbuf_output && 9843 func_id != BPF_FUNC_ringbuf_reserve && 9844 func_id != BPF_FUNC_ringbuf_query && 9845 func_id != BPF_FUNC_ringbuf_reserve_dynptr && 9846 func_id != BPF_FUNC_ringbuf_submit_dynptr && 9847 func_id != BPF_FUNC_ringbuf_discard_dynptr) 9848 goto error; 9849 break; 9850 case BPF_MAP_TYPE_USER_RINGBUF: 9851 if (func_id != BPF_FUNC_user_ringbuf_drain) 9852 goto error; 9853 break; 9854 case BPF_MAP_TYPE_STACK_TRACE: 9855 if (func_id != BPF_FUNC_get_stackid) 9856 goto error; 9857 break; 9858 case BPF_MAP_TYPE_CGROUP_ARRAY: 9859 if (func_id != BPF_FUNC_skb_under_cgroup && 9860 func_id != BPF_FUNC_current_task_under_cgroup) 9861 goto error; 9862 break; 9863 case BPF_MAP_TYPE_CGROUP_STORAGE: 9864 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 9865 if (func_id != BPF_FUNC_get_local_storage) 9866 goto error; 9867 break; 9868 case BPF_MAP_TYPE_DEVMAP: 9869 case BPF_MAP_TYPE_DEVMAP_HASH: 9870 if (func_id != BPF_FUNC_redirect_map && 9871 func_id != BPF_FUNC_map_lookup_elem) 9872 goto error; 9873 break; 9874 /* Restrict bpf side of cpumap and xskmap, open when use-cases 9875 * appear. 9876 */ 9877 case BPF_MAP_TYPE_CPUMAP: 9878 if (func_id != BPF_FUNC_redirect_map) 9879 goto error; 9880 break; 9881 case BPF_MAP_TYPE_XSKMAP: 9882 if (func_id != BPF_FUNC_redirect_map && 9883 func_id != BPF_FUNC_map_lookup_elem) 9884 goto error; 9885 break; 9886 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 9887 case BPF_MAP_TYPE_HASH_OF_MAPS: 9888 if (func_id != BPF_FUNC_map_lookup_elem) 9889 goto error; 9890 break; 9891 case BPF_MAP_TYPE_SOCKMAP: 9892 if (func_id != BPF_FUNC_sk_redirect_map && 9893 func_id != BPF_FUNC_sock_map_update && 9894 func_id != BPF_FUNC_msg_redirect_map && 9895 func_id != BPF_FUNC_sk_select_reuseport && 9896 func_id != BPF_FUNC_map_lookup_elem && 9897 !may_update_sockmap(env, func_id)) 9898 goto error; 9899 break; 9900 case BPF_MAP_TYPE_SOCKHASH: 9901 if (func_id != BPF_FUNC_sk_redirect_hash && 9902 func_id != BPF_FUNC_sock_hash_update && 9903 func_id != BPF_FUNC_msg_redirect_hash && 9904 func_id != BPF_FUNC_sk_select_reuseport && 9905 func_id != BPF_FUNC_map_lookup_elem && 9906 !may_update_sockmap(env, func_id)) 9907 goto error; 9908 break; 9909 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 9910 if (func_id != BPF_FUNC_sk_select_reuseport) 9911 goto error; 9912 break; 9913 case BPF_MAP_TYPE_QUEUE: 9914 case BPF_MAP_TYPE_STACK: 9915 if (func_id != BPF_FUNC_map_peek_elem && 9916 func_id != BPF_FUNC_map_pop_elem && 9917 func_id != BPF_FUNC_map_push_elem) 9918 goto error; 9919 break; 9920 case BPF_MAP_TYPE_SK_STORAGE: 9921 if (func_id != BPF_FUNC_sk_storage_get && 9922 func_id != BPF_FUNC_sk_storage_delete && 9923 func_id != BPF_FUNC_kptr_xchg) 9924 goto error; 9925 break; 9926 case BPF_MAP_TYPE_INODE_STORAGE: 9927 if (func_id != BPF_FUNC_inode_storage_get && 9928 func_id != BPF_FUNC_inode_storage_delete && 9929 func_id != BPF_FUNC_kptr_xchg) 9930 goto error; 9931 break; 9932 case BPF_MAP_TYPE_TASK_STORAGE: 9933 if (func_id != BPF_FUNC_task_storage_get && 9934 func_id != BPF_FUNC_task_storage_delete && 9935 func_id != BPF_FUNC_kptr_xchg) 9936 goto error; 9937 break; 9938 case BPF_MAP_TYPE_CGRP_STORAGE: 9939 if (func_id != BPF_FUNC_cgrp_storage_get && 9940 func_id != BPF_FUNC_cgrp_storage_delete && 9941 func_id != BPF_FUNC_kptr_xchg) 9942 goto error; 9943 break; 9944 case BPF_MAP_TYPE_BLOOM_FILTER: 9945 if (func_id != BPF_FUNC_map_peek_elem && 9946 func_id != BPF_FUNC_map_push_elem) 9947 goto error; 9948 break; 9949 default: 9950 break; 9951 } 9952 9953 /* ... and second from the function itself. */ 9954 switch (func_id) { 9955 case BPF_FUNC_tail_call: 9956 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 9957 goto error; 9958 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) { 9959 verbose(env, "mixing of tail_calls and bpf-to-bpf calls is not supported\n"); 9960 return -EINVAL; 9961 } 9962 break; 9963 case BPF_FUNC_perf_event_read: 9964 case BPF_FUNC_perf_event_output: 9965 case BPF_FUNC_perf_event_read_value: 9966 case BPF_FUNC_skb_output: 9967 case BPF_FUNC_xdp_output: 9968 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 9969 goto error; 9970 break; 9971 case BPF_FUNC_ringbuf_output: 9972 case BPF_FUNC_ringbuf_reserve: 9973 case BPF_FUNC_ringbuf_query: 9974 case BPF_FUNC_ringbuf_reserve_dynptr: 9975 case BPF_FUNC_ringbuf_submit_dynptr: 9976 case BPF_FUNC_ringbuf_discard_dynptr: 9977 if (map->map_type != BPF_MAP_TYPE_RINGBUF) 9978 goto error; 9979 break; 9980 case BPF_FUNC_user_ringbuf_drain: 9981 if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF) 9982 goto error; 9983 break; 9984 case BPF_FUNC_get_stackid: 9985 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 9986 goto error; 9987 break; 9988 case BPF_FUNC_current_task_under_cgroup: 9989 case BPF_FUNC_skb_under_cgroup: 9990 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 9991 goto error; 9992 break; 9993 case BPF_FUNC_redirect_map: 9994 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 9995 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 9996 map->map_type != BPF_MAP_TYPE_CPUMAP && 9997 map->map_type != BPF_MAP_TYPE_XSKMAP) 9998 goto error; 9999 break; 10000 case BPF_FUNC_sk_redirect_map: 10001 case BPF_FUNC_msg_redirect_map: 10002 case BPF_FUNC_sock_map_update: 10003 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 10004 goto error; 10005 break; 10006 case BPF_FUNC_sk_redirect_hash: 10007 case BPF_FUNC_msg_redirect_hash: 10008 case BPF_FUNC_sock_hash_update: 10009 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 10010 goto error; 10011 break; 10012 case BPF_FUNC_get_local_storage: 10013 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 10014 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 10015 goto error; 10016 break; 10017 case BPF_FUNC_sk_select_reuseport: 10018 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 10019 map->map_type != BPF_MAP_TYPE_SOCKMAP && 10020 map->map_type != BPF_MAP_TYPE_SOCKHASH) 10021 goto error; 10022 break; 10023 case BPF_FUNC_map_pop_elem: 10024 if (map->map_type != BPF_MAP_TYPE_QUEUE && 10025 map->map_type != BPF_MAP_TYPE_STACK) 10026 goto error; 10027 break; 10028 case BPF_FUNC_map_peek_elem: 10029 case BPF_FUNC_map_push_elem: 10030 if (map->map_type != BPF_MAP_TYPE_QUEUE && 10031 map->map_type != BPF_MAP_TYPE_STACK && 10032 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER) 10033 goto error; 10034 break; 10035 case BPF_FUNC_map_lookup_percpu_elem: 10036 if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY && 10037 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 10038 map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH) 10039 goto error; 10040 break; 10041 case BPF_FUNC_sk_storage_get: 10042 case BPF_FUNC_sk_storage_delete: 10043 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 10044 goto error; 10045 break; 10046 case BPF_FUNC_inode_storage_get: 10047 case BPF_FUNC_inode_storage_delete: 10048 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE) 10049 goto error; 10050 break; 10051 case BPF_FUNC_task_storage_get: 10052 case BPF_FUNC_task_storage_delete: 10053 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE) 10054 goto error; 10055 break; 10056 case BPF_FUNC_cgrp_storage_get: 10057 case BPF_FUNC_cgrp_storage_delete: 10058 if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE) 10059 goto error; 10060 break; 10061 default: 10062 break; 10063 } 10064 10065 return 0; 10066 error: 10067 verbose(env, "cannot pass map_type %d into func %s#%d\n", 10068 map->map_type, func_id_name(func_id), func_id); 10069 return -EINVAL; 10070 } 10071 10072 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 10073 { 10074 int count = 0; 10075 10076 if (arg_type_is_raw_mem(fn->arg1_type)) 10077 count++; 10078 if (arg_type_is_raw_mem(fn->arg2_type)) 10079 count++; 10080 if (arg_type_is_raw_mem(fn->arg3_type)) 10081 count++; 10082 if (arg_type_is_raw_mem(fn->arg4_type)) 10083 count++; 10084 if (arg_type_is_raw_mem(fn->arg5_type)) 10085 count++; 10086 10087 /* We only support one arg being in raw mode at the moment, 10088 * which is sufficient for the helper functions we have 10089 * right now. 10090 */ 10091 return count <= 1; 10092 } 10093 10094 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg) 10095 { 10096 bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE; 10097 bool has_size = fn->arg_size[arg] != 0; 10098 bool is_next_size = false; 10099 10100 if (arg + 1 < ARRAY_SIZE(fn->arg_type)) 10101 is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]); 10102 10103 if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM) 10104 return is_next_size; 10105 10106 return has_size == is_next_size || is_next_size == is_fixed; 10107 } 10108 10109 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 10110 { 10111 /* bpf_xxx(..., buf, len) call will access 'len' 10112 * bytes from memory 'buf'. Both arg types need 10113 * to be paired, so make sure there's no buggy 10114 * helper function specification. 10115 */ 10116 if (arg_type_is_mem_size(fn->arg1_type) || 10117 check_args_pair_invalid(fn, 0) || 10118 check_args_pair_invalid(fn, 1) || 10119 check_args_pair_invalid(fn, 2) || 10120 check_args_pair_invalid(fn, 3) || 10121 check_args_pair_invalid(fn, 4)) 10122 return false; 10123 10124 return true; 10125 } 10126 10127 static bool check_btf_id_ok(const struct bpf_func_proto *fn) 10128 { 10129 int i; 10130 10131 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) { 10132 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID) 10133 return !!fn->arg_btf_id[i]; 10134 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK) 10135 return fn->arg_btf_id[i] == BPF_PTR_POISON; 10136 if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] && 10137 /* arg_btf_id and arg_size are in a union. */ 10138 (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM || 10139 !(fn->arg_type[i] & MEM_FIXED_SIZE))) 10140 return false; 10141 } 10142 10143 return true; 10144 } 10145 10146 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 10147 { 10148 return check_raw_mode_ok(fn) && 10149 check_arg_pair_ok(fn) && 10150 check_btf_id_ok(fn) ? 0 : -EINVAL; 10151 } 10152 10153 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 10154 * are now invalid, so turn them into unknown SCALAR_VALUE. 10155 * 10156 * This also applies to dynptr slices belonging to skb and xdp dynptrs, 10157 * since these slices point to packet data. 10158 */ 10159 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 10160 { 10161 struct bpf_func_state *state; 10162 struct bpf_reg_state *reg; 10163 10164 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 10165 if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg)) 10166 mark_reg_invalid(env, reg); 10167 })); 10168 } 10169 10170 enum { 10171 AT_PKT_END = -1, 10172 BEYOND_PKT_END = -2, 10173 }; 10174 10175 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open) 10176 { 10177 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 10178 struct bpf_reg_state *reg = &state->regs[regn]; 10179 10180 if (reg->type != PTR_TO_PACKET) 10181 /* PTR_TO_PACKET_META is not supported yet */ 10182 return; 10183 10184 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end. 10185 * How far beyond pkt_end it goes is unknown. 10186 * if (!range_open) it's the case of pkt >= pkt_end 10187 * if (range_open) it's the case of pkt > pkt_end 10188 * hence this pointer is at least 1 byte bigger than pkt_end 10189 */ 10190 if (range_open) 10191 reg->range = BEYOND_PKT_END; 10192 else 10193 reg->range = AT_PKT_END; 10194 } 10195 10196 static int release_reference_nomark(struct bpf_verifier_state *state, int ref_obj_id) 10197 { 10198 int i; 10199 10200 for (i = 0; i < state->acquired_refs; i++) { 10201 if (state->refs[i].type != REF_TYPE_PTR) 10202 continue; 10203 if (state->refs[i].id == ref_obj_id) { 10204 release_reference_state(state, i); 10205 return 0; 10206 } 10207 } 10208 return -EINVAL; 10209 } 10210 10211 /* The pointer with the specified id has released its reference to kernel 10212 * resources. Identify all copies of the same pointer and clear the reference. 10213 * 10214 * This is the release function corresponding to acquire_reference(). Idempotent. 10215 */ 10216 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id) 10217 { 10218 struct bpf_verifier_state *vstate = env->cur_state; 10219 struct bpf_func_state *state; 10220 struct bpf_reg_state *reg; 10221 int err; 10222 10223 err = release_reference_nomark(vstate, ref_obj_id); 10224 if (err) 10225 return err; 10226 10227 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 10228 if (reg->ref_obj_id == ref_obj_id) 10229 mark_reg_invalid(env, reg); 10230 })); 10231 10232 return 0; 10233 } 10234 10235 static void invalidate_non_owning_refs(struct bpf_verifier_env *env) 10236 { 10237 struct bpf_func_state *unused; 10238 struct bpf_reg_state *reg; 10239 10240 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ 10241 if (type_is_non_owning_ref(reg->type)) 10242 mark_reg_invalid(env, reg); 10243 })); 10244 } 10245 10246 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 10247 struct bpf_reg_state *regs) 10248 { 10249 int i; 10250 10251 /* after the call registers r0 - r5 were scratched */ 10252 for (i = 0; i < CALLER_SAVED_REGS; i++) { 10253 mark_reg_not_init(env, regs, caller_saved[i]); 10254 __check_reg_arg(env, regs, caller_saved[i], DST_OP_NO_MARK); 10255 } 10256 } 10257 10258 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env, 10259 struct bpf_func_state *caller, 10260 struct bpf_func_state *callee, 10261 int insn_idx); 10262 10263 static int set_callee_state(struct bpf_verifier_env *env, 10264 struct bpf_func_state *caller, 10265 struct bpf_func_state *callee, int insn_idx); 10266 10267 static int setup_func_entry(struct bpf_verifier_env *env, int subprog, int callsite, 10268 set_callee_state_fn set_callee_state_cb, 10269 struct bpf_verifier_state *state) 10270 { 10271 struct bpf_func_state *caller, *callee; 10272 int err; 10273 10274 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 10275 verbose(env, "the call stack of %d frames is too deep\n", 10276 state->curframe + 2); 10277 return -E2BIG; 10278 } 10279 10280 if (state->frame[state->curframe + 1]) { 10281 verifier_bug(env, "Frame %d already allocated", state->curframe + 1); 10282 return -EFAULT; 10283 } 10284 10285 caller = state->frame[state->curframe]; 10286 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 10287 if (!callee) 10288 return -ENOMEM; 10289 state->frame[state->curframe + 1] = callee; 10290 10291 /* callee cannot access r0, r6 - r9 for reading and has to write 10292 * into its own stack before reading from it. 10293 * callee can read/write into caller's stack 10294 */ 10295 init_func_state(env, callee, 10296 /* remember the callsite, it will be used by bpf_exit */ 10297 callsite, 10298 state->curframe + 1 /* frameno within this callchain */, 10299 subprog /* subprog number within this prog */); 10300 err = set_callee_state_cb(env, caller, callee, callsite); 10301 if (err) 10302 goto err_out; 10303 10304 /* only increment it after check_reg_arg() finished */ 10305 state->curframe++; 10306 10307 return 0; 10308 10309 err_out: 10310 free_func_state(callee); 10311 state->frame[state->curframe + 1] = NULL; 10312 return err; 10313 } 10314 10315 static int btf_check_func_arg_match(struct bpf_verifier_env *env, int subprog, 10316 const struct btf *btf, 10317 struct bpf_reg_state *regs) 10318 { 10319 struct bpf_subprog_info *sub = subprog_info(env, subprog); 10320 struct bpf_verifier_log *log = &env->log; 10321 u32 i; 10322 int ret; 10323 10324 ret = btf_prepare_func_args(env, subprog); 10325 if (ret) 10326 return ret; 10327 10328 /* check that BTF function arguments match actual types that the 10329 * verifier sees. 10330 */ 10331 for (i = 0; i < sub->arg_cnt; i++) { 10332 u32 regno = i + 1; 10333 struct bpf_reg_state *reg = ®s[regno]; 10334 struct bpf_subprog_arg_info *arg = &sub->args[i]; 10335 10336 if (arg->arg_type == ARG_ANYTHING) { 10337 if (reg->type != SCALAR_VALUE) { 10338 bpf_log(log, "R%d is not a scalar\n", regno); 10339 return -EINVAL; 10340 } 10341 } else if (arg->arg_type == ARG_PTR_TO_CTX) { 10342 ret = check_func_arg_reg_off(env, reg, regno, ARG_DONTCARE); 10343 if (ret < 0) 10344 return ret; 10345 /* If function expects ctx type in BTF check that caller 10346 * is passing PTR_TO_CTX. 10347 */ 10348 if (reg->type != PTR_TO_CTX) { 10349 bpf_log(log, "arg#%d expects pointer to ctx\n", i); 10350 return -EINVAL; 10351 } 10352 } else if (base_type(arg->arg_type) == ARG_PTR_TO_MEM) { 10353 ret = check_func_arg_reg_off(env, reg, regno, ARG_DONTCARE); 10354 if (ret < 0) 10355 return ret; 10356 if (check_mem_reg(env, reg, regno, arg->mem_size)) 10357 return -EINVAL; 10358 if (!(arg->arg_type & PTR_MAYBE_NULL) && (reg->type & PTR_MAYBE_NULL)) { 10359 bpf_log(log, "arg#%d is expected to be non-NULL\n", i); 10360 return -EINVAL; 10361 } 10362 } else if (base_type(arg->arg_type) == ARG_PTR_TO_ARENA) { 10363 /* 10364 * Can pass any value and the kernel won't crash, but 10365 * only PTR_TO_ARENA or SCALAR make sense. Everything 10366 * else is a bug in the bpf program. Point it out to 10367 * the user at the verification time instead of 10368 * run-time debug nightmare. 10369 */ 10370 if (reg->type != PTR_TO_ARENA && reg->type != SCALAR_VALUE) { 10371 bpf_log(log, "R%d is not a pointer to arena or scalar.\n", regno); 10372 return -EINVAL; 10373 } 10374 } else if (arg->arg_type == (ARG_PTR_TO_DYNPTR | MEM_RDONLY)) { 10375 ret = check_func_arg_reg_off(env, reg, regno, ARG_PTR_TO_DYNPTR); 10376 if (ret) 10377 return ret; 10378 10379 ret = process_dynptr_func(env, regno, -1, arg->arg_type, 0); 10380 if (ret) 10381 return ret; 10382 } else if (base_type(arg->arg_type) == ARG_PTR_TO_BTF_ID) { 10383 struct bpf_call_arg_meta meta; 10384 int err; 10385 10386 if (register_is_null(reg) && type_may_be_null(arg->arg_type)) 10387 continue; 10388 10389 memset(&meta, 0, sizeof(meta)); /* leave func_id as zero */ 10390 err = check_reg_type(env, regno, arg->arg_type, &arg->btf_id, &meta); 10391 err = err ?: check_func_arg_reg_off(env, reg, regno, arg->arg_type); 10392 if (err) 10393 return err; 10394 } else { 10395 verifier_bug(env, "unrecognized arg#%d type %d", i, arg->arg_type); 10396 return -EFAULT; 10397 } 10398 } 10399 10400 return 0; 10401 } 10402 10403 /* Compare BTF of a function call with given bpf_reg_state. 10404 * Returns: 10405 * EFAULT - there is a verifier bug. Abort verification. 10406 * EINVAL - there is a type mismatch or BTF is not available. 10407 * 0 - BTF matches with what bpf_reg_state expects. 10408 * Only PTR_TO_CTX and SCALAR_VALUE states are recognized. 10409 */ 10410 static int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog, 10411 struct bpf_reg_state *regs) 10412 { 10413 struct bpf_prog *prog = env->prog; 10414 struct btf *btf = prog->aux->btf; 10415 u32 btf_id; 10416 int err; 10417 10418 if (!prog->aux->func_info) 10419 return -EINVAL; 10420 10421 btf_id = prog->aux->func_info[subprog].type_id; 10422 if (!btf_id) 10423 return -EFAULT; 10424 10425 if (prog->aux->func_info_aux[subprog].unreliable) 10426 return -EINVAL; 10427 10428 err = btf_check_func_arg_match(env, subprog, btf, regs); 10429 /* Compiler optimizations can remove arguments from static functions 10430 * or mismatched type can be passed into a global function. 10431 * In such cases mark the function as unreliable from BTF point of view. 10432 */ 10433 if (err) 10434 prog->aux->func_info_aux[subprog].unreliable = true; 10435 return err; 10436 } 10437 10438 static int push_callback_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 10439 int insn_idx, int subprog, 10440 set_callee_state_fn set_callee_state_cb) 10441 { 10442 struct bpf_verifier_state *state = env->cur_state, *callback_state; 10443 struct bpf_func_state *caller, *callee; 10444 int err; 10445 10446 caller = state->frame[state->curframe]; 10447 err = btf_check_subprog_call(env, subprog, caller->regs); 10448 if (err == -EFAULT) 10449 return err; 10450 10451 /* set_callee_state is used for direct subprog calls, but we are 10452 * interested in validating only BPF helpers that can call subprogs as 10453 * callbacks 10454 */ 10455 env->subprog_info[subprog].is_cb = true; 10456 if (bpf_pseudo_kfunc_call(insn) && 10457 !is_callback_calling_kfunc(insn->imm)) { 10458 verifier_bug(env, "kfunc %s#%d not marked as callback-calling", 10459 func_id_name(insn->imm), insn->imm); 10460 return -EFAULT; 10461 } else if (!bpf_pseudo_kfunc_call(insn) && 10462 !is_callback_calling_function(insn->imm)) { /* helper */ 10463 verifier_bug(env, "helper %s#%d not marked as callback-calling", 10464 func_id_name(insn->imm), insn->imm); 10465 return -EFAULT; 10466 } 10467 10468 if (is_async_callback_calling_insn(insn)) { 10469 struct bpf_verifier_state *async_cb; 10470 10471 /* there is no real recursion here. timer and workqueue callbacks are async */ 10472 env->subprog_info[subprog].is_async_cb = true; 10473 async_cb = push_async_cb(env, env->subprog_info[subprog].start, 10474 insn_idx, subprog, 10475 is_bpf_wq_set_callback_impl_kfunc(insn->imm)); 10476 if (!async_cb) 10477 return -EFAULT; 10478 callee = async_cb->frame[0]; 10479 callee->async_entry_cnt = caller->async_entry_cnt + 1; 10480 10481 /* Convert bpf_timer_set_callback() args into timer callback args */ 10482 err = set_callee_state_cb(env, caller, callee, insn_idx); 10483 if (err) 10484 return err; 10485 10486 return 0; 10487 } 10488 10489 /* for callback functions enqueue entry to callback and 10490 * proceed with next instruction within current frame. 10491 */ 10492 callback_state = push_stack(env, env->subprog_info[subprog].start, insn_idx, false); 10493 if (!callback_state) 10494 return -ENOMEM; 10495 10496 err = setup_func_entry(env, subprog, insn_idx, set_callee_state_cb, 10497 callback_state); 10498 if (err) 10499 return err; 10500 10501 callback_state->callback_unroll_depth++; 10502 callback_state->frame[callback_state->curframe - 1]->callback_depth++; 10503 caller->callback_depth = 0; 10504 return 0; 10505 } 10506 10507 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 10508 int *insn_idx) 10509 { 10510 struct bpf_verifier_state *state = env->cur_state; 10511 struct bpf_func_state *caller; 10512 int err, subprog, target_insn; 10513 10514 target_insn = *insn_idx + insn->imm + 1; 10515 subprog = find_subprog(env, target_insn); 10516 if (verifier_bug_if(subprog < 0, env, "target of func call at insn %d is not a program", 10517 target_insn)) 10518 return -EFAULT; 10519 10520 caller = state->frame[state->curframe]; 10521 err = btf_check_subprog_call(env, subprog, caller->regs); 10522 if (err == -EFAULT) 10523 return err; 10524 if (subprog_is_global(env, subprog)) { 10525 const char *sub_name = subprog_name(env, subprog); 10526 10527 if (env->cur_state->active_locks) { 10528 verbose(env, "global function calls are not allowed while holding a lock,\n" 10529 "use static function instead\n"); 10530 return -EINVAL; 10531 } 10532 10533 if (env->subprog_info[subprog].might_sleep && 10534 (env->cur_state->active_rcu_lock || env->cur_state->active_preempt_locks || 10535 env->cur_state->active_irq_id || !in_sleepable(env))) { 10536 verbose(env, "global functions that may sleep are not allowed in non-sleepable context,\n" 10537 "i.e., in a RCU/IRQ/preempt-disabled section, or in\n" 10538 "a non-sleepable BPF program context\n"); 10539 return -EINVAL; 10540 } 10541 10542 if (err) { 10543 verbose(env, "Caller passes invalid args into func#%d ('%s')\n", 10544 subprog, sub_name); 10545 return err; 10546 } 10547 10548 verbose(env, "Func#%d ('%s') is global and assumed valid.\n", 10549 subprog, sub_name); 10550 if (env->subprog_info[subprog].changes_pkt_data) 10551 clear_all_pkt_pointers(env); 10552 /* mark global subprog for verifying after main prog */ 10553 subprog_aux(env, subprog)->called = true; 10554 clear_caller_saved_regs(env, caller->regs); 10555 10556 /* All global functions return a 64-bit SCALAR_VALUE */ 10557 mark_reg_unknown(env, caller->regs, BPF_REG_0); 10558 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 10559 10560 /* continue with next insn after call */ 10561 return 0; 10562 } 10563 10564 /* for regular function entry setup new frame and continue 10565 * from that frame. 10566 */ 10567 err = setup_func_entry(env, subprog, *insn_idx, set_callee_state, state); 10568 if (err) 10569 return err; 10570 10571 clear_caller_saved_regs(env, caller->regs); 10572 10573 /* and go analyze first insn of the callee */ 10574 *insn_idx = env->subprog_info[subprog].start - 1; 10575 10576 if (env->log.level & BPF_LOG_LEVEL) { 10577 verbose(env, "caller:\n"); 10578 print_verifier_state(env, state, caller->frameno, true); 10579 verbose(env, "callee:\n"); 10580 print_verifier_state(env, state, state->curframe, true); 10581 } 10582 10583 return 0; 10584 } 10585 10586 int map_set_for_each_callback_args(struct bpf_verifier_env *env, 10587 struct bpf_func_state *caller, 10588 struct bpf_func_state *callee) 10589 { 10590 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn, 10591 * void *callback_ctx, u64 flags); 10592 * callback_fn(struct bpf_map *map, void *key, void *value, 10593 * void *callback_ctx); 10594 */ 10595 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 10596 10597 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 10598 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 10599 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr; 10600 10601 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 10602 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 10603 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr; 10604 10605 /* pointer to stack or null */ 10606 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3]; 10607 10608 /* unused */ 10609 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 10610 return 0; 10611 } 10612 10613 static int set_callee_state(struct bpf_verifier_env *env, 10614 struct bpf_func_state *caller, 10615 struct bpf_func_state *callee, int insn_idx) 10616 { 10617 int i; 10618 10619 /* copy r1 - r5 args that callee can access. The copy includes parent 10620 * pointers, which connects us up to the liveness chain 10621 */ 10622 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 10623 callee->regs[i] = caller->regs[i]; 10624 return 0; 10625 } 10626 10627 static int set_map_elem_callback_state(struct bpf_verifier_env *env, 10628 struct bpf_func_state *caller, 10629 struct bpf_func_state *callee, 10630 int insn_idx) 10631 { 10632 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx]; 10633 struct bpf_map *map; 10634 int err; 10635 10636 /* valid map_ptr and poison value does not matter */ 10637 map = insn_aux->map_ptr_state.map_ptr; 10638 if (!map->ops->map_set_for_each_callback_args || 10639 !map->ops->map_for_each_callback) { 10640 verbose(env, "callback function not allowed for map\n"); 10641 return -ENOTSUPP; 10642 } 10643 10644 err = map->ops->map_set_for_each_callback_args(env, caller, callee); 10645 if (err) 10646 return err; 10647 10648 callee->in_callback_fn = true; 10649 callee->callback_ret_range = retval_range(0, 1); 10650 return 0; 10651 } 10652 10653 static int set_loop_callback_state(struct bpf_verifier_env *env, 10654 struct bpf_func_state *caller, 10655 struct bpf_func_state *callee, 10656 int insn_idx) 10657 { 10658 /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx, 10659 * u64 flags); 10660 * callback_fn(u64 index, void *callback_ctx); 10661 */ 10662 callee->regs[BPF_REG_1].type = SCALAR_VALUE; 10663 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 10664 10665 /* unused */ 10666 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 10667 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 10668 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 10669 10670 callee->in_callback_fn = true; 10671 callee->callback_ret_range = retval_range(0, 1); 10672 return 0; 10673 } 10674 10675 static int set_timer_callback_state(struct bpf_verifier_env *env, 10676 struct bpf_func_state *caller, 10677 struct bpf_func_state *callee, 10678 int insn_idx) 10679 { 10680 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr; 10681 10682 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn); 10683 * callback_fn(struct bpf_map *map, void *key, void *value); 10684 */ 10685 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP; 10686 __mark_reg_known_zero(&callee->regs[BPF_REG_1]); 10687 callee->regs[BPF_REG_1].map_ptr = map_ptr; 10688 10689 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 10690 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 10691 callee->regs[BPF_REG_2].map_ptr = map_ptr; 10692 10693 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 10694 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 10695 callee->regs[BPF_REG_3].map_ptr = map_ptr; 10696 10697 /* unused */ 10698 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 10699 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 10700 callee->in_async_callback_fn = true; 10701 callee->callback_ret_range = retval_range(0, 1); 10702 return 0; 10703 } 10704 10705 static int set_find_vma_callback_state(struct bpf_verifier_env *env, 10706 struct bpf_func_state *caller, 10707 struct bpf_func_state *callee, 10708 int insn_idx) 10709 { 10710 /* bpf_find_vma(struct task_struct *task, u64 addr, 10711 * void *callback_fn, void *callback_ctx, u64 flags) 10712 * (callback_fn)(struct task_struct *task, 10713 * struct vm_area_struct *vma, void *callback_ctx); 10714 */ 10715 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 10716 10717 callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID; 10718 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 10719 callee->regs[BPF_REG_2].btf = btf_vmlinux; 10720 callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA]; 10721 10722 /* pointer to stack or null */ 10723 callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4]; 10724 10725 /* unused */ 10726 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 10727 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 10728 callee->in_callback_fn = true; 10729 callee->callback_ret_range = retval_range(0, 1); 10730 return 0; 10731 } 10732 10733 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env, 10734 struct bpf_func_state *caller, 10735 struct bpf_func_state *callee, 10736 int insn_idx) 10737 { 10738 /* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void 10739 * callback_ctx, u64 flags); 10740 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx); 10741 */ 10742 __mark_reg_not_init(env, &callee->regs[BPF_REG_0]); 10743 mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL); 10744 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 10745 10746 /* unused */ 10747 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 10748 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 10749 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 10750 10751 callee->in_callback_fn = true; 10752 callee->callback_ret_range = retval_range(0, 1); 10753 return 0; 10754 } 10755 10756 static int set_rbtree_add_callback_state(struct bpf_verifier_env *env, 10757 struct bpf_func_state *caller, 10758 struct bpf_func_state *callee, 10759 int insn_idx) 10760 { 10761 /* void bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node, 10762 * bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b)); 10763 * 10764 * 'struct bpf_rb_node *node' arg to bpf_rbtree_add_impl is the same PTR_TO_BTF_ID w/ offset 10765 * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd 10766 * by this point, so look at 'root' 10767 */ 10768 struct btf_field *field; 10769 10770 field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off, 10771 BPF_RB_ROOT); 10772 if (!field || !field->graph_root.value_btf_id) 10773 return -EFAULT; 10774 10775 mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root); 10776 ref_set_non_owning(env, &callee->regs[BPF_REG_1]); 10777 mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root); 10778 ref_set_non_owning(env, &callee->regs[BPF_REG_2]); 10779 10780 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 10781 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 10782 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 10783 callee->in_callback_fn = true; 10784 callee->callback_ret_range = retval_range(0, 1); 10785 return 0; 10786 } 10787 10788 static bool is_rbtree_lock_required_kfunc(u32 btf_id); 10789 10790 /* Are we currently verifying the callback for a rbtree helper that must 10791 * be called with lock held? If so, no need to complain about unreleased 10792 * lock 10793 */ 10794 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env) 10795 { 10796 struct bpf_verifier_state *state = env->cur_state; 10797 struct bpf_insn *insn = env->prog->insnsi; 10798 struct bpf_func_state *callee; 10799 int kfunc_btf_id; 10800 10801 if (!state->curframe) 10802 return false; 10803 10804 callee = state->frame[state->curframe]; 10805 10806 if (!callee->in_callback_fn) 10807 return false; 10808 10809 kfunc_btf_id = insn[callee->callsite].imm; 10810 return is_rbtree_lock_required_kfunc(kfunc_btf_id); 10811 } 10812 10813 static bool retval_range_within(struct bpf_retval_range range, const struct bpf_reg_state *reg, 10814 bool return_32bit) 10815 { 10816 if (return_32bit) 10817 return range.minval <= reg->s32_min_value && reg->s32_max_value <= range.maxval; 10818 else 10819 return range.minval <= reg->smin_value && reg->smax_value <= range.maxval; 10820 } 10821 10822 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 10823 { 10824 struct bpf_verifier_state *state = env->cur_state, *prev_st; 10825 struct bpf_func_state *caller, *callee; 10826 struct bpf_reg_state *r0; 10827 bool in_callback_fn; 10828 int err; 10829 10830 callee = state->frame[state->curframe]; 10831 r0 = &callee->regs[BPF_REG_0]; 10832 if (r0->type == PTR_TO_STACK) { 10833 /* technically it's ok to return caller's stack pointer 10834 * (or caller's caller's pointer) back to the caller, 10835 * since these pointers are valid. Only current stack 10836 * pointer will be invalid as soon as function exits, 10837 * but let's be conservative 10838 */ 10839 verbose(env, "cannot return stack pointer to the caller\n"); 10840 return -EINVAL; 10841 } 10842 10843 caller = state->frame[state->curframe - 1]; 10844 if (callee->in_callback_fn) { 10845 if (r0->type != SCALAR_VALUE) { 10846 verbose(env, "R0 not a scalar value\n"); 10847 return -EACCES; 10848 } 10849 10850 /* we are going to rely on register's precise value */ 10851 err = mark_reg_read(env, r0, r0->parent, REG_LIVE_READ64); 10852 err = err ?: mark_chain_precision(env, BPF_REG_0); 10853 if (err) 10854 return err; 10855 10856 /* enforce R0 return value range, and bpf_callback_t returns 64bit */ 10857 if (!retval_range_within(callee->callback_ret_range, r0, false)) { 10858 verbose_invalid_scalar(env, r0, callee->callback_ret_range, 10859 "At callback return", "R0"); 10860 return -EINVAL; 10861 } 10862 if (!calls_callback(env, callee->callsite)) { 10863 verbose(env, "BUG: in callback at %d, callsite %d !calls_callback\n", 10864 *insn_idx, callee->callsite); 10865 return -EFAULT; 10866 } 10867 } else { 10868 /* return to the caller whatever r0 had in the callee */ 10869 caller->regs[BPF_REG_0] = *r0; 10870 } 10871 10872 /* for callbacks like bpf_loop or bpf_for_each_map_elem go back to callsite, 10873 * there function call logic would reschedule callback visit. If iteration 10874 * converges is_state_visited() would prune that visit eventually. 10875 */ 10876 in_callback_fn = callee->in_callback_fn; 10877 if (in_callback_fn) 10878 *insn_idx = callee->callsite; 10879 else 10880 *insn_idx = callee->callsite + 1; 10881 10882 if (env->log.level & BPF_LOG_LEVEL) { 10883 verbose(env, "returning from callee:\n"); 10884 print_verifier_state(env, state, callee->frameno, true); 10885 verbose(env, "to caller at %d:\n", *insn_idx); 10886 print_verifier_state(env, state, caller->frameno, true); 10887 } 10888 /* clear everything in the callee. In case of exceptional exits using 10889 * bpf_throw, this will be done by copy_verifier_state for extra frames. */ 10890 free_func_state(callee); 10891 state->frame[state->curframe--] = NULL; 10892 10893 /* for callbacks widen imprecise scalars to make programs like below verify: 10894 * 10895 * struct ctx { int i; } 10896 * void cb(int idx, struct ctx *ctx) { ctx->i++; ... } 10897 * ... 10898 * struct ctx = { .i = 0; } 10899 * bpf_loop(100, cb, &ctx, 0); 10900 * 10901 * This is similar to what is done in process_iter_next_call() for open 10902 * coded iterators. 10903 */ 10904 prev_st = in_callback_fn ? find_prev_entry(env, state, *insn_idx) : NULL; 10905 if (prev_st) { 10906 err = widen_imprecise_scalars(env, prev_st, state); 10907 if (err) 10908 return err; 10909 } 10910 return 0; 10911 } 10912 10913 static int do_refine_retval_range(struct bpf_verifier_env *env, 10914 struct bpf_reg_state *regs, int ret_type, 10915 int func_id, 10916 struct bpf_call_arg_meta *meta) 10917 { 10918 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 10919 10920 if (ret_type != RET_INTEGER) 10921 return 0; 10922 10923 switch (func_id) { 10924 case BPF_FUNC_get_stack: 10925 case BPF_FUNC_get_task_stack: 10926 case BPF_FUNC_probe_read_str: 10927 case BPF_FUNC_probe_read_kernel_str: 10928 case BPF_FUNC_probe_read_user_str: 10929 ret_reg->smax_value = meta->msize_max_value; 10930 ret_reg->s32_max_value = meta->msize_max_value; 10931 ret_reg->smin_value = -MAX_ERRNO; 10932 ret_reg->s32_min_value = -MAX_ERRNO; 10933 reg_bounds_sync(ret_reg); 10934 break; 10935 case BPF_FUNC_get_smp_processor_id: 10936 ret_reg->umax_value = nr_cpu_ids - 1; 10937 ret_reg->u32_max_value = nr_cpu_ids - 1; 10938 ret_reg->smax_value = nr_cpu_ids - 1; 10939 ret_reg->s32_max_value = nr_cpu_ids - 1; 10940 ret_reg->umin_value = 0; 10941 ret_reg->u32_min_value = 0; 10942 ret_reg->smin_value = 0; 10943 ret_reg->s32_min_value = 0; 10944 reg_bounds_sync(ret_reg); 10945 break; 10946 } 10947 10948 return reg_bounds_sanity_check(env, ret_reg, "retval"); 10949 } 10950 10951 static int 10952 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 10953 int func_id, int insn_idx) 10954 { 10955 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 10956 struct bpf_map *map = meta->map_ptr; 10957 10958 if (func_id != BPF_FUNC_tail_call && 10959 func_id != BPF_FUNC_map_lookup_elem && 10960 func_id != BPF_FUNC_map_update_elem && 10961 func_id != BPF_FUNC_map_delete_elem && 10962 func_id != BPF_FUNC_map_push_elem && 10963 func_id != BPF_FUNC_map_pop_elem && 10964 func_id != BPF_FUNC_map_peek_elem && 10965 func_id != BPF_FUNC_for_each_map_elem && 10966 func_id != BPF_FUNC_redirect_map && 10967 func_id != BPF_FUNC_map_lookup_percpu_elem) 10968 return 0; 10969 10970 if (map == NULL) { 10971 verbose(env, "kernel subsystem misconfigured verifier\n"); 10972 return -EINVAL; 10973 } 10974 10975 /* In case of read-only, some additional restrictions 10976 * need to be applied in order to prevent altering the 10977 * state of the map from program side. 10978 */ 10979 if ((map->map_flags & BPF_F_RDONLY_PROG) && 10980 (func_id == BPF_FUNC_map_delete_elem || 10981 func_id == BPF_FUNC_map_update_elem || 10982 func_id == BPF_FUNC_map_push_elem || 10983 func_id == BPF_FUNC_map_pop_elem)) { 10984 verbose(env, "write into map forbidden\n"); 10985 return -EACCES; 10986 } 10987 10988 if (!aux->map_ptr_state.map_ptr) 10989 bpf_map_ptr_store(aux, meta->map_ptr, 10990 !meta->map_ptr->bypass_spec_v1, false); 10991 else if (aux->map_ptr_state.map_ptr != meta->map_ptr) 10992 bpf_map_ptr_store(aux, meta->map_ptr, 10993 !meta->map_ptr->bypass_spec_v1, true); 10994 return 0; 10995 } 10996 10997 static int 10998 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 10999 int func_id, int insn_idx) 11000 { 11001 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 11002 struct bpf_reg_state *regs = cur_regs(env), *reg; 11003 struct bpf_map *map = meta->map_ptr; 11004 u64 val, max; 11005 int err; 11006 11007 if (func_id != BPF_FUNC_tail_call) 11008 return 0; 11009 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 11010 verbose(env, "kernel subsystem misconfigured verifier\n"); 11011 return -EINVAL; 11012 } 11013 11014 reg = ®s[BPF_REG_3]; 11015 val = reg->var_off.value; 11016 max = map->max_entries; 11017 11018 if (!(is_reg_const(reg, false) && val < max)) { 11019 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 11020 return 0; 11021 } 11022 11023 err = mark_chain_precision(env, BPF_REG_3); 11024 if (err) 11025 return err; 11026 if (bpf_map_key_unseen(aux)) 11027 bpf_map_key_store(aux, val); 11028 else if (!bpf_map_key_poisoned(aux) && 11029 bpf_map_key_immediate(aux) != val) 11030 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 11031 return 0; 11032 } 11033 11034 static int check_reference_leak(struct bpf_verifier_env *env, bool exception_exit) 11035 { 11036 struct bpf_verifier_state *state = env->cur_state; 11037 enum bpf_prog_type type = resolve_prog_type(env->prog); 11038 struct bpf_reg_state *reg = reg_state(env, BPF_REG_0); 11039 bool refs_lingering = false; 11040 int i; 11041 11042 if (!exception_exit && cur_func(env)->frameno) 11043 return 0; 11044 11045 for (i = 0; i < state->acquired_refs; i++) { 11046 if (state->refs[i].type != REF_TYPE_PTR) 11047 continue; 11048 /* Allow struct_ops programs to return a referenced kptr back to 11049 * kernel. Type checks are performed later in check_return_code. 11050 */ 11051 if (type == BPF_PROG_TYPE_STRUCT_OPS && !exception_exit && 11052 reg->ref_obj_id == state->refs[i].id) 11053 continue; 11054 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 11055 state->refs[i].id, state->refs[i].insn_idx); 11056 refs_lingering = true; 11057 } 11058 return refs_lingering ? -EINVAL : 0; 11059 } 11060 11061 static int check_resource_leak(struct bpf_verifier_env *env, bool exception_exit, bool check_lock, const char *prefix) 11062 { 11063 int err; 11064 11065 if (check_lock && env->cur_state->active_locks) { 11066 verbose(env, "%s cannot be used inside bpf_spin_lock-ed region\n", prefix); 11067 return -EINVAL; 11068 } 11069 11070 err = check_reference_leak(env, exception_exit); 11071 if (err) { 11072 verbose(env, "%s would lead to reference leak\n", prefix); 11073 return err; 11074 } 11075 11076 if (check_lock && env->cur_state->active_irq_id) { 11077 verbose(env, "%s cannot be used inside bpf_local_irq_save-ed region\n", prefix); 11078 return -EINVAL; 11079 } 11080 11081 if (check_lock && env->cur_state->active_rcu_lock) { 11082 verbose(env, "%s cannot be used inside bpf_rcu_read_lock-ed region\n", prefix); 11083 return -EINVAL; 11084 } 11085 11086 if (check_lock && env->cur_state->active_preempt_locks) { 11087 verbose(env, "%s cannot be used inside bpf_preempt_disable-ed region\n", prefix); 11088 return -EINVAL; 11089 } 11090 11091 return 0; 11092 } 11093 11094 static int check_bpf_snprintf_call(struct bpf_verifier_env *env, 11095 struct bpf_reg_state *regs) 11096 { 11097 struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3]; 11098 struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5]; 11099 struct bpf_map *fmt_map = fmt_reg->map_ptr; 11100 struct bpf_bprintf_data data = {}; 11101 int err, fmt_map_off, num_args; 11102 u64 fmt_addr; 11103 char *fmt; 11104 11105 /* data must be an array of u64 */ 11106 if (data_len_reg->var_off.value % 8) 11107 return -EINVAL; 11108 num_args = data_len_reg->var_off.value / 8; 11109 11110 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const 11111 * and map_direct_value_addr is set. 11112 */ 11113 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value; 11114 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr, 11115 fmt_map_off); 11116 if (err) { 11117 verbose(env, "failed to retrieve map value address\n"); 11118 return -EFAULT; 11119 } 11120 fmt = (char *)(long)fmt_addr + fmt_map_off; 11121 11122 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we 11123 * can focus on validating the format specifiers. 11124 */ 11125 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data); 11126 if (err < 0) 11127 verbose(env, "Invalid format string\n"); 11128 11129 return err; 11130 } 11131 11132 static int check_get_func_ip(struct bpf_verifier_env *env) 11133 { 11134 enum bpf_prog_type type = resolve_prog_type(env->prog); 11135 int func_id = BPF_FUNC_get_func_ip; 11136 11137 if (type == BPF_PROG_TYPE_TRACING) { 11138 if (!bpf_prog_has_trampoline(env->prog)) { 11139 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n", 11140 func_id_name(func_id), func_id); 11141 return -ENOTSUPP; 11142 } 11143 return 0; 11144 } else if (type == BPF_PROG_TYPE_KPROBE) { 11145 return 0; 11146 } 11147 11148 verbose(env, "func %s#%d not supported for program type %d\n", 11149 func_id_name(func_id), func_id, type); 11150 return -ENOTSUPP; 11151 } 11152 11153 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 11154 { 11155 return &env->insn_aux_data[env->insn_idx]; 11156 } 11157 11158 static bool loop_flag_is_zero(struct bpf_verifier_env *env) 11159 { 11160 struct bpf_reg_state *regs = cur_regs(env); 11161 struct bpf_reg_state *reg = ®s[BPF_REG_4]; 11162 bool reg_is_null = register_is_null(reg); 11163 11164 if (reg_is_null) 11165 mark_chain_precision(env, BPF_REG_4); 11166 11167 return reg_is_null; 11168 } 11169 11170 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno) 11171 { 11172 struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state; 11173 11174 if (!state->initialized) { 11175 state->initialized = 1; 11176 state->fit_for_inline = loop_flag_is_zero(env); 11177 state->callback_subprogno = subprogno; 11178 return; 11179 } 11180 11181 if (!state->fit_for_inline) 11182 return; 11183 11184 state->fit_for_inline = (loop_flag_is_zero(env) && 11185 state->callback_subprogno == subprogno); 11186 } 11187 11188 /* Returns whether or not the given map type can potentially elide 11189 * lookup return value nullness check. This is possible if the key 11190 * is statically known. 11191 */ 11192 static bool can_elide_value_nullness(enum bpf_map_type type) 11193 { 11194 switch (type) { 11195 case BPF_MAP_TYPE_ARRAY: 11196 case BPF_MAP_TYPE_PERCPU_ARRAY: 11197 return true; 11198 default: 11199 return false; 11200 } 11201 } 11202 11203 static int get_helper_proto(struct bpf_verifier_env *env, int func_id, 11204 const struct bpf_func_proto **ptr) 11205 { 11206 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) 11207 return -ERANGE; 11208 11209 if (!env->ops->get_func_proto) 11210 return -EINVAL; 11211 11212 *ptr = env->ops->get_func_proto(func_id, env->prog); 11213 return *ptr ? 0 : -EINVAL; 11214 } 11215 11216 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 11217 int *insn_idx_p) 11218 { 11219 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 11220 bool returns_cpu_specific_alloc_ptr = false; 11221 const struct bpf_func_proto *fn = NULL; 11222 enum bpf_return_type ret_type; 11223 enum bpf_type_flag ret_flag; 11224 struct bpf_reg_state *regs; 11225 struct bpf_call_arg_meta meta; 11226 int insn_idx = *insn_idx_p; 11227 bool changes_data; 11228 int i, err, func_id; 11229 11230 /* find function prototype */ 11231 func_id = insn->imm; 11232 err = get_helper_proto(env, insn->imm, &fn); 11233 if (err == -ERANGE) { 11234 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), func_id); 11235 return -EINVAL; 11236 } 11237 11238 if (err) { 11239 verbose(env, "program of this type cannot use helper %s#%d\n", 11240 func_id_name(func_id), func_id); 11241 return err; 11242 } 11243 11244 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 11245 if (!env->prog->gpl_compatible && fn->gpl_only) { 11246 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 11247 return -EINVAL; 11248 } 11249 11250 if (fn->allowed && !fn->allowed(env->prog)) { 11251 verbose(env, "helper call is not allowed in probe\n"); 11252 return -EINVAL; 11253 } 11254 11255 if (!in_sleepable(env) && fn->might_sleep) { 11256 verbose(env, "helper call might sleep in a non-sleepable prog\n"); 11257 return -EINVAL; 11258 } 11259 11260 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 11261 changes_data = bpf_helper_changes_pkt_data(func_id); 11262 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 11263 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 11264 func_id_name(func_id), func_id); 11265 return -EINVAL; 11266 } 11267 11268 memset(&meta, 0, sizeof(meta)); 11269 meta.pkt_access = fn->pkt_access; 11270 11271 err = check_func_proto(fn, func_id); 11272 if (err) { 11273 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 11274 func_id_name(func_id), func_id); 11275 return err; 11276 } 11277 11278 if (env->cur_state->active_rcu_lock) { 11279 if (fn->might_sleep) { 11280 verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n", 11281 func_id_name(func_id), func_id); 11282 return -EINVAL; 11283 } 11284 11285 if (in_sleepable(env) && is_storage_get_function(func_id)) 11286 env->insn_aux_data[insn_idx].storage_get_func_atomic = true; 11287 } 11288 11289 if (env->cur_state->active_preempt_locks) { 11290 if (fn->might_sleep) { 11291 verbose(env, "sleepable helper %s#%d in non-preemptible region\n", 11292 func_id_name(func_id), func_id); 11293 return -EINVAL; 11294 } 11295 11296 if (in_sleepable(env) && is_storage_get_function(func_id)) 11297 env->insn_aux_data[insn_idx].storage_get_func_atomic = true; 11298 } 11299 11300 if (env->cur_state->active_irq_id) { 11301 if (fn->might_sleep) { 11302 verbose(env, "sleepable helper %s#%d in IRQ-disabled region\n", 11303 func_id_name(func_id), func_id); 11304 return -EINVAL; 11305 } 11306 11307 if (in_sleepable(env) && is_storage_get_function(func_id)) 11308 env->insn_aux_data[insn_idx].storage_get_func_atomic = true; 11309 } 11310 11311 meta.func_id = func_id; 11312 /* check args */ 11313 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 11314 err = check_func_arg(env, i, &meta, fn, insn_idx); 11315 if (err) 11316 return err; 11317 } 11318 11319 err = record_func_map(env, &meta, func_id, insn_idx); 11320 if (err) 11321 return err; 11322 11323 err = record_func_key(env, &meta, func_id, insn_idx); 11324 if (err) 11325 return err; 11326 11327 /* Mark slots with STACK_MISC in case of raw mode, stack offset 11328 * is inferred from register state. 11329 */ 11330 for (i = 0; i < meta.access_size; i++) { 11331 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 11332 BPF_WRITE, -1, false, false); 11333 if (err) 11334 return err; 11335 } 11336 11337 regs = cur_regs(env); 11338 11339 if (meta.release_regno) { 11340 err = -EINVAL; 11341 /* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot 11342 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr 11343 * is safe to do directly. 11344 */ 11345 if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) { 11346 if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) { 11347 verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n"); 11348 return -EFAULT; 11349 } 11350 err = unmark_stack_slots_dynptr(env, ®s[meta.release_regno]); 11351 } else if (func_id == BPF_FUNC_kptr_xchg && meta.ref_obj_id) { 11352 u32 ref_obj_id = meta.ref_obj_id; 11353 bool in_rcu = in_rcu_cs(env); 11354 struct bpf_func_state *state; 11355 struct bpf_reg_state *reg; 11356 11357 err = release_reference_nomark(env->cur_state, ref_obj_id); 11358 if (!err) { 11359 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 11360 if (reg->ref_obj_id == ref_obj_id) { 11361 if (in_rcu && (reg->type & MEM_ALLOC) && (reg->type & MEM_PERCPU)) { 11362 reg->ref_obj_id = 0; 11363 reg->type &= ~MEM_ALLOC; 11364 reg->type |= MEM_RCU; 11365 } else { 11366 mark_reg_invalid(env, reg); 11367 } 11368 } 11369 })); 11370 } 11371 } else if (meta.ref_obj_id) { 11372 err = release_reference(env, meta.ref_obj_id); 11373 } else if (register_is_null(®s[meta.release_regno])) { 11374 /* meta.ref_obj_id can only be 0 if register that is meant to be 11375 * released is NULL, which must be > R0. 11376 */ 11377 err = 0; 11378 } 11379 if (err) { 11380 verbose(env, "func %s#%d reference has not been acquired before\n", 11381 func_id_name(func_id), func_id); 11382 return err; 11383 } 11384 } 11385 11386 switch (func_id) { 11387 case BPF_FUNC_tail_call: 11388 err = check_resource_leak(env, false, true, "tail_call"); 11389 if (err) 11390 return err; 11391 break; 11392 case BPF_FUNC_get_local_storage: 11393 /* check that flags argument in get_local_storage(map, flags) is 0, 11394 * this is required because get_local_storage() can't return an error. 11395 */ 11396 if (!register_is_null(®s[BPF_REG_2])) { 11397 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 11398 return -EINVAL; 11399 } 11400 break; 11401 case BPF_FUNC_for_each_map_elem: 11402 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 11403 set_map_elem_callback_state); 11404 break; 11405 case BPF_FUNC_timer_set_callback: 11406 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 11407 set_timer_callback_state); 11408 break; 11409 case BPF_FUNC_find_vma: 11410 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 11411 set_find_vma_callback_state); 11412 break; 11413 case BPF_FUNC_snprintf: 11414 err = check_bpf_snprintf_call(env, regs); 11415 break; 11416 case BPF_FUNC_loop: 11417 update_loop_inline_state(env, meta.subprogno); 11418 /* Verifier relies on R1 value to determine if bpf_loop() iteration 11419 * is finished, thus mark it precise. 11420 */ 11421 err = mark_chain_precision(env, BPF_REG_1); 11422 if (err) 11423 return err; 11424 if (cur_func(env)->callback_depth < regs[BPF_REG_1].umax_value) { 11425 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 11426 set_loop_callback_state); 11427 } else { 11428 cur_func(env)->callback_depth = 0; 11429 if (env->log.level & BPF_LOG_LEVEL2) 11430 verbose(env, "frame%d bpf_loop iteration limit reached\n", 11431 env->cur_state->curframe); 11432 } 11433 break; 11434 case BPF_FUNC_dynptr_from_mem: 11435 if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) { 11436 verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n", 11437 reg_type_str(env, regs[BPF_REG_1].type)); 11438 return -EACCES; 11439 } 11440 break; 11441 case BPF_FUNC_set_retval: 11442 if (prog_type == BPF_PROG_TYPE_LSM && 11443 env->prog->expected_attach_type == BPF_LSM_CGROUP) { 11444 if (!env->prog->aux->attach_func_proto->type) { 11445 /* Make sure programs that attach to void 11446 * hooks don't try to modify return value. 11447 */ 11448 verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 11449 return -EINVAL; 11450 } 11451 } 11452 break; 11453 case BPF_FUNC_dynptr_data: 11454 { 11455 struct bpf_reg_state *reg; 11456 int id, ref_obj_id; 11457 11458 reg = get_dynptr_arg_reg(env, fn, regs); 11459 if (!reg) 11460 return -EFAULT; 11461 11462 11463 if (meta.dynptr_id) { 11464 verbose(env, "verifier internal error: meta.dynptr_id already set\n"); 11465 return -EFAULT; 11466 } 11467 if (meta.ref_obj_id) { 11468 verbose(env, "verifier internal error: meta.ref_obj_id already set\n"); 11469 return -EFAULT; 11470 } 11471 11472 id = dynptr_id(env, reg); 11473 if (id < 0) { 11474 verbose(env, "verifier internal error: failed to obtain dynptr id\n"); 11475 return id; 11476 } 11477 11478 ref_obj_id = dynptr_ref_obj_id(env, reg); 11479 if (ref_obj_id < 0) { 11480 verbose(env, "verifier internal error: failed to obtain dynptr ref_obj_id\n"); 11481 return ref_obj_id; 11482 } 11483 11484 meta.dynptr_id = id; 11485 meta.ref_obj_id = ref_obj_id; 11486 11487 break; 11488 } 11489 case BPF_FUNC_dynptr_write: 11490 { 11491 enum bpf_dynptr_type dynptr_type; 11492 struct bpf_reg_state *reg; 11493 11494 reg = get_dynptr_arg_reg(env, fn, regs); 11495 if (!reg) 11496 return -EFAULT; 11497 11498 dynptr_type = dynptr_get_type(env, reg); 11499 if (dynptr_type == BPF_DYNPTR_TYPE_INVALID) 11500 return -EFAULT; 11501 11502 if (dynptr_type == BPF_DYNPTR_TYPE_SKB) 11503 /* this will trigger clear_all_pkt_pointers(), which will 11504 * invalidate all dynptr slices associated with the skb 11505 */ 11506 changes_data = true; 11507 11508 break; 11509 } 11510 case BPF_FUNC_per_cpu_ptr: 11511 case BPF_FUNC_this_cpu_ptr: 11512 { 11513 struct bpf_reg_state *reg = ®s[BPF_REG_1]; 11514 const struct btf_type *type; 11515 11516 if (reg->type & MEM_RCU) { 11517 type = btf_type_by_id(reg->btf, reg->btf_id); 11518 if (!type || !btf_type_is_struct(type)) { 11519 verbose(env, "Helper has invalid btf/btf_id in R1\n"); 11520 return -EFAULT; 11521 } 11522 returns_cpu_specific_alloc_ptr = true; 11523 env->insn_aux_data[insn_idx].call_with_percpu_alloc_ptr = true; 11524 } 11525 break; 11526 } 11527 case BPF_FUNC_user_ringbuf_drain: 11528 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 11529 set_user_ringbuf_callback_state); 11530 break; 11531 } 11532 11533 if (err) 11534 return err; 11535 11536 /* reset caller saved regs */ 11537 for (i = 0; i < CALLER_SAVED_REGS; i++) { 11538 mark_reg_not_init(env, regs, caller_saved[i]); 11539 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 11540 } 11541 11542 /* helper call returns 64-bit value. */ 11543 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 11544 11545 /* update return register (already marked as written above) */ 11546 ret_type = fn->ret_type; 11547 ret_flag = type_flag(ret_type); 11548 11549 switch (base_type(ret_type)) { 11550 case RET_INTEGER: 11551 /* sets type to SCALAR_VALUE */ 11552 mark_reg_unknown(env, regs, BPF_REG_0); 11553 break; 11554 case RET_VOID: 11555 regs[BPF_REG_0].type = NOT_INIT; 11556 break; 11557 case RET_PTR_TO_MAP_VALUE: 11558 /* There is no offset yet applied, variable or fixed */ 11559 mark_reg_known_zero(env, regs, BPF_REG_0); 11560 /* remember map_ptr, so that check_map_access() 11561 * can check 'value_size' boundary of memory access 11562 * to map element returned from bpf_map_lookup_elem() 11563 */ 11564 if (meta.map_ptr == NULL) { 11565 verbose(env, 11566 "kernel subsystem misconfigured verifier\n"); 11567 return -EINVAL; 11568 } 11569 11570 if (func_id == BPF_FUNC_map_lookup_elem && 11571 can_elide_value_nullness(meta.map_ptr->map_type) && 11572 meta.const_map_key >= 0 && 11573 meta.const_map_key < meta.map_ptr->max_entries) 11574 ret_flag &= ~PTR_MAYBE_NULL; 11575 11576 regs[BPF_REG_0].map_ptr = meta.map_ptr; 11577 regs[BPF_REG_0].map_uid = meta.map_uid; 11578 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag; 11579 if (!type_may_be_null(ret_flag) && 11580 btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK | BPF_RES_SPIN_LOCK)) { 11581 regs[BPF_REG_0].id = ++env->id_gen; 11582 } 11583 break; 11584 case RET_PTR_TO_SOCKET: 11585 mark_reg_known_zero(env, regs, BPF_REG_0); 11586 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag; 11587 break; 11588 case RET_PTR_TO_SOCK_COMMON: 11589 mark_reg_known_zero(env, regs, BPF_REG_0); 11590 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag; 11591 break; 11592 case RET_PTR_TO_TCP_SOCK: 11593 mark_reg_known_zero(env, regs, BPF_REG_0); 11594 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag; 11595 break; 11596 case RET_PTR_TO_MEM: 11597 mark_reg_known_zero(env, regs, BPF_REG_0); 11598 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 11599 regs[BPF_REG_0].mem_size = meta.mem_size; 11600 break; 11601 case RET_PTR_TO_MEM_OR_BTF_ID: 11602 { 11603 const struct btf_type *t; 11604 11605 mark_reg_known_zero(env, regs, BPF_REG_0); 11606 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL); 11607 if (!btf_type_is_struct(t)) { 11608 u32 tsize; 11609 const struct btf_type *ret; 11610 const char *tname; 11611 11612 /* resolve the type size of ksym. */ 11613 ret = btf_resolve_size(meta.ret_btf, t, &tsize); 11614 if (IS_ERR(ret)) { 11615 tname = btf_name_by_offset(meta.ret_btf, t->name_off); 11616 verbose(env, "unable to resolve the size of type '%s': %ld\n", 11617 tname, PTR_ERR(ret)); 11618 return -EINVAL; 11619 } 11620 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 11621 regs[BPF_REG_0].mem_size = tsize; 11622 } else { 11623 if (returns_cpu_specific_alloc_ptr) { 11624 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC | MEM_RCU; 11625 } else { 11626 /* MEM_RDONLY may be carried from ret_flag, but it 11627 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise 11628 * it will confuse the check of PTR_TO_BTF_ID in 11629 * check_mem_access(). 11630 */ 11631 ret_flag &= ~MEM_RDONLY; 11632 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 11633 } 11634 11635 regs[BPF_REG_0].btf = meta.ret_btf; 11636 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 11637 } 11638 break; 11639 } 11640 case RET_PTR_TO_BTF_ID: 11641 { 11642 struct btf *ret_btf; 11643 int ret_btf_id; 11644 11645 mark_reg_known_zero(env, regs, BPF_REG_0); 11646 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 11647 if (func_id == BPF_FUNC_kptr_xchg) { 11648 ret_btf = meta.kptr_field->kptr.btf; 11649 ret_btf_id = meta.kptr_field->kptr.btf_id; 11650 if (!btf_is_kernel(ret_btf)) { 11651 regs[BPF_REG_0].type |= MEM_ALLOC; 11652 if (meta.kptr_field->type == BPF_KPTR_PERCPU) 11653 regs[BPF_REG_0].type |= MEM_PERCPU; 11654 } 11655 } else { 11656 if (fn->ret_btf_id == BPF_PTR_POISON) { 11657 verbose(env, "verifier internal error:"); 11658 verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n", 11659 func_id_name(func_id)); 11660 return -EINVAL; 11661 } 11662 ret_btf = btf_vmlinux; 11663 ret_btf_id = *fn->ret_btf_id; 11664 } 11665 if (ret_btf_id == 0) { 11666 verbose(env, "invalid return type %u of func %s#%d\n", 11667 base_type(ret_type), func_id_name(func_id), 11668 func_id); 11669 return -EINVAL; 11670 } 11671 regs[BPF_REG_0].btf = ret_btf; 11672 regs[BPF_REG_0].btf_id = ret_btf_id; 11673 break; 11674 } 11675 default: 11676 verbose(env, "unknown return type %u of func %s#%d\n", 11677 base_type(ret_type), func_id_name(func_id), func_id); 11678 return -EINVAL; 11679 } 11680 11681 if (type_may_be_null(regs[BPF_REG_0].type)) 11682 regs[BPF_REG_0].id = ++env->id_gen; 11683 11684 if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) { 11685 verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n", 11686 func_id_name(func_id), func_id); 11687 return -EFAULT; 11688 } 11689 11690 if (is_dynptr_ref_function(func_id)) 11691 regs[BPF_REG_0].dynptr_id = meta.dynptr_id; 11692 11693 if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) { 11694 /* For release_reference() */ 11695 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 11696 } else if (is_acquire_function(func_id, meta.map_ptr)) { 11697 int id = acquire_reference(env, insn_idx); 11698 11699 if (id < 0) 11700 return id; 11701 /* For mark_ptr_or_null_reg() */ 11702 regs[BPF_REG_0].id = id; 11703 /* For release_reference() */ 11704 regs[BPF_REG_0].ref_obj_id = id; 11705 } 11706 11707 err = do_refine_retval_range(env, regs, fn->ret_type, func_id, &meta); 11708 if (err) 11709 return err; 11710 11711 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 11712 if (err) 11713 return err; 11714 11715 if ((func_id == BPF_FUNC_get_stack || 11716 func_id == BPF_FUNC_get_task_stack) && 11717 !env->prog->has_callchain_buf) { 11718 const char *err_str; 11719 11720 #ifdef CONFIG_PERF_EVENTS 11721 err = get_callchain_buffers(sysctl_perf_event_max_stack); 11722 err_str = "cannot get callchain buffer for func %s#%d\n"; 11723 #else 11724 err = -ENOTSUPP; 11725 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 11726 #endif 11727 if (err) { 11728 verbose(env, err_str, func_id_name(func_id), func_id); 11729 return err; 11730 } 11731 11732 env->prog->has_callchain_buf = true; 11733 } 11734 11735 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack) 11736 env->prog->call_get_stack = true; 11737 11738 if (func_id == BPF_FUNC_get_func_ip) { 11739 if (check_get_func_ip(env)) 11740 return -ENOTSUPP; 11741 env->prog->call_get_func_ip = true; 11742 } 11743 11744 if (changes_data) 11745 clear_all_pkt_pointers(env); 11746 return 0; 11747 } 11748 11749 /* mark_btf_func_reg_size() is used when the reg size is determined by 11750 * the BTF func_proto's return value size and argument. 11751 */ 11752 static void __mark_btf_func_reg_size(struct bpf_verifier_env *env, struct bpf_reg_state *regs, 11753 u32 regno, size_t reg_size) 11754 { 11755 struct bpf_reg_state *reg = ®s[regno]; 11756 11757 if (regno == BPF_REG_0) { 11758 /* Function return value */ 11759 reg->live |= REG_LIVE_WRITTEN; 11760 reg->subreg_def = reg_size == sizeof(u64) ? 11761 DEF_NOT_SUBREG : env->insn_idx + 1; 11762 } else { 11763 /* Function argument */ 11764 if (reg_size == sizeof(u64)) { 11765 mark_insn_zext(env, reg); 11766 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 11767 } else { 11768 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32); 11769 } 11770 } 11771 } 11772 11773 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno, 11774 size_t reg_size) 11775 { 11776 return __mark_btf_func_reg_size(env, cur_regs(env), regno, reg_size); 11777 } 11778 11779 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta) 11780 { 11781 return meta->kfunc_flags & KF_ACQUIRE; 11782 } 11783 11784 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta) 11785 { 11786 return meta->kfunc_flags & KF_RELEASE; 11787 } 11788 11789 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta) 11790 { 11791 return (meta->kfunc_flags & KF_TRUSTED_ARGS) || is_kfunc_release(meta); 11792 } 11793 11794 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta) 11795 { 11796 return meta->kfunc_flags & KF_SLEEPABLE; 11797 } 11798 11799 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta) 11800 { 11801 return meta->kfunc_flags & KF_DESTRUCTIVE; 11802 } 11803 11804 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta) 11805 { 11806 return meta->kfunc_flags & KF_RCU; 11807 } 11808 11809 static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta) 11810 { 11811 return meta->kfunc_flags & KF_RCU_PROTECTED; 11812 } 11813 11814 static bool is_kfunc_arg_mem_size(const struct btf *btf, 11815 const struct btf_param *arg, 11816 const struct bpf_reg_state *reg) 11817 { 11818 const struct btf_type *t; 11819 11820 t = btf_type_skip_modifiers(btf, arg->type, NULL); 11821 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 11822 return false; 11823 11824 return btf_param_match_suffix(btf, arg, "__sz"); 11825 } 11826 11827 static bool is_kfunc_arg_const_mem_size(const struct btf *btf, 11828 const struct btf_param *arg, 11829 const struct bpf_reg_state *reg) 11830 { 11831 const struct btf_type *t; 11832 11833 t = btf_type_skip_modifiers(btf, arg->type, NULL); 11834 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 11835 return false; 11836 11837 return btf_param_match_suffix(btf, arg, "__szk"); 11838 } 11839 11840 static bool is_kfunc_arg_optional(const struct btf *btf, const struct btf_param *arg) 11841 { 11842 return btf_param_match_suffix(btf, arg, "__opt"); 11843 } 11844 11845 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg) 11846 { 11847 return btf_param_match_suffix(btf, arg, "__k"); 11848 } 11849 11850 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg) 11851 { 11852 return btf_param_match_suffix(btf, arg, "__ign"); 11853 } 11854 11855 static bool is_kfunc_arg_map(const struct btf *btf, const struct btf_param *arg) 11856 { 11857 return btf_param_match_suffix(btf, arg, "__map"); 11858 } 11859 11860 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg) 11861 { 11862 return btf_param_match_suffix(btf, arg, "__alloc"); 11863 } 11864 11865 static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg) 11866 { 11867 return btf_param_match_suffix(btf, arg, "__uninit"); 11868 } 11869 11870 static bool is_kfunc_arg_refcounted_kptr(const struct btf *btf, const struct btf_param *arg) 11871 { 11872 return btf_param_match_suffix(btf, arg, "__refcounted_kptr"); 11873 } 11874 11875 static bool is_kfunc_arg_nullable(const struct btf *btf, const struct btf_param *arg) 11876 { 11877 return btf_param_match_suffix(btf, arg, "__nullable"); 11878 } 11879 11880 static bool is_kfunc_arg_const_str(const struct btf *btf, const struct btf_param *arg) 11881 { 11882 return btf_param_match_suffix(btf, arg, "__str"); 11883 } 11884 11885 static bool is_kfunc_arg_irq_flag(const struct btf *btf, const struct btf_param *arg) 11886 { 11887 return btf_param_match_suffix(btf, arg, "__irq_flag"); 11888 } 11889 11890 static bool is_kfunc_arg_prog(const struct btf *btf, const struct btf_param *arg) 11891 { 11892 return btf_param_match_suffix(btf, arg, "__prog"); 11893 } 11894 11895 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf, 11896 const struct btf_param *arg, 11897 const char *name) 11898 { 11899 int len, target_len = strlen(name); 11900 const char *param_name; 11901 11902 param_name = btf_name_by_offset(btf, arg->name_off); 11903 if (str_is_empty(param_name)) 11904 return false; 11905 len = strlen(param_name); 11906 if (len != target_len) 11907 return false; 11908 if (strcmp(param_name, name)) 11909 return false; 11910 11911 return true; 11912 } 11913 11914 enum { 11915 KF_ARG_DYNPTR_ID, 11916 KF_ARG_LIST_HEAD_ID, 11917 KF_ARG_LIST_NODE_ID, 11918 KF_ARG_RB_ROOT_ID, 11919 KF_ARG_RB_NODE_ID, 11920 KF_ARG_WORKQUEUE_ID, 11921 KF_ARG_RES_SPIN_LOCK_ID, 11922 }; 11923 11924 BTF_ID_LIST(kf_arg_btf_ids) 11925 BTF_ID(struct, bpf_dynptr) 11926 BTF_ID(struct, bpf_list_head) 11927 BTF_ID(struct, bpf_list_node) 11928 BTF_ID(struct, bpf_rb_root) 11929 BTF_ID(struct, bpf_rb_node) 11930 BTF_ID(struct, bpf_wq) 11931 BTF_ID(struct, bpf_res_spin_lock) 11932 11933 static bool __is_kfunc_ptr_arg_type(const struct btf *btf, 11934 const struct btf_param *arg, int type) 11935 { 11936 const struct btf_type *t; 11937 u32 res_id; 11938 11939 t = btf_type_skip_modifiers(btf, arg->type, NULL); 11940 if (!t) 11941 return false; 11942 if (!btf_type_is_ptr(t)) 11943 return false; 11944 t = btf_type_skip_modifiers(btf, t->type, &res_id); 11945 if (!t) 11946 return false; 11947 return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]); 11948 } 11949 11950 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg) 11951 { 11952 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID); 11953 } 11954 11955 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg) 11956 { 11957 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID); 11958 } 11959 11960 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg) 11961 { 11962 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID); 11963 } 11964 11965 static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg) 11966 { 11967 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID); 11968 } 11969 11970 static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg) 11971 { 11972 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID); 11973 } 11974 11975 static bool is_kfunc_arg_wq(const struct btf *btf, const struct btf_param *arg) 11976 { 11977 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_WORKQUEUE_ID); 11978 } 11979 11980 static bool is_kfunc_arg_res_spin_lock(const struct btf *btf, const struct btf_param *arg) 11981 { 11982 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RES_SPIN_LOCK_ID); 11983 } 11984 11985 static bool is_rbtree_node_type(const struct btf_type *t) 11986 { 11987 return t == btf_type_by_id(btf_vmlinux, kf_arg_btf_ids[KF_ARG_RB_NODE_ID]); 11988 } 11989 11990 static bool is_list_node_type(const struct btf_type *t) 11991 { 11992 return t == btf_type_by_id(btf_vmlinux, kf_arg_btf_ids[KF_ARG_LIST_NODE_ID]); 11993 } 11994 11995 static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf, 11996 const struct btf_param *arg) 11997 { 11998 const struct btf_type *t; 11999 12000 t = btf_type_resolve_func_ptr(btf, arg->type, NULL); 12001 if (!t) 12002 return false; 12003 12004 return true; 12005 } 12006 12007 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */ 12008 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env, 12009 const struct btf *btf, 12010 const struct btf_type *t, int rec) 12011 { 12012 const struct btf_type *member_type; 12013 const struct btf_member *member; 12014 u32 i; 12015 12016 if (!btf_type_is_struct(t)) 12017 return false; 12018 12019 for_each_member(i, t, member) { 12020 const struct btf_array *array; 12021 12022 member_type = btf_type_skip_modifiers(btf, member->type, NULL); 12023 if (btf_type_is_struct(member_type)) { 12024 if (rec >= 3) { 12025 verbose(env, "max struct nesting depth exceeded\n"); 12026 return false; 12027 } 12028 if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1)) 12029 return false; 12030 continue; 12031 } 12032 if (btf_type_is_array(member_type)) { 12033 array = btf_array(member_type); 12034 if (!array->nelems) 12035 return false; 12036 member_type = btf_type_skip_modifiers(btf, array->type, NULL); 12037 if (!btf_type_is_scalar(member_type)) 12038 return false; 12039 continue; 12040 } 12041 if (!btf_type_is_scalar(member_type)) 12042 return false; 12043 } 12044 return true; 12045 } 12046 12047 enum kfunc_ptr_arg_type { 12048 KF_ARG_PTR_TO_CTX, 12049 KF_ARG_PTR_TO_ALLOC_BTF_ID, /* Allocated object */ 12050 KF_ARG_PTR_TO_REFCOUNTED_KPTR, /* Refcounted local kptr */ 12051 KF_ARG_PTR_TO_DYNPTR, 12052 KF_ARG_PTR_TO_ITER, 12053 KF_ARG_PTR_TO_LIST_HEAD, 12054 KF_ARG_PTR_TO_LIST_NODE, 12055 KF_ARG_PTR_TO_BTF_ID, /* Also covers reg2btf_ids conversions */ 12056 KF_ARG_PTR_TO_MEM, 12057 KF_ARG_PTR_TO_MEM_SIZE, /* Size derived from next argument, skip it */ 12058 KF_ARG_PTR_TO_CALLBACK, 12059 KF_ARG_PTR_TO_RB_ROOT, 12060 KF_ARG_PTR_TO_RB_NODE, 12061 KF_ARG_PTR_TO_NULL, 12062 KF_ARG_PTR_TO_CONST_STR, 12063 KF_ARG_PTR_TO_MAP, 12064 KF_ARG_PTR_TO_WORKQUEUE, 12065 KF_ARG_PTR_TO_IRQ_FLAG, 12066 KF_ARG_PTR_TO_RES_SPIN_LOCK, 12067 }; 12068 12069 enum special_kfunc_type { 12070 KF_bpf_obj_new_impl, 12071 KF_bpf_obj_drop_impl, 12072 KF_bpf_refcount_acquire_impl, 12073 KF_bpf_list_push_front_impl, 12074 KF_bpf_list_push_back_impl, 12075 KF_bpf_list_pop_front, 12076 KF_bpf_list_pop_back, 12077 KF_bpf_list_front, 12078 KF_bpf_list_back, 12079 KF_bpf_cast_to_kern_ctx, 12080 KF_bpf_rdonly_cast, 12081 KF_bpf_rcu_read_lock, 12082 KF_bpf_rcu_read_unlock, 12083 KF_bpf_rbtree_remove, 12084 KF_bpf_rbtree_add_impl, 12085 KF_bpf_rbtree_first, 12086 KF_bpf_rbtree_root, 12087 KF_bpf_rbtree_left, 12088 KF_bpf_rbtree_right, 12089 KF_bpf_dynptr_from_skb, 12090 KF_bpf_dynptr_from_xdp, 12091 KF_bpf_dynptr_slice, 12092 KF_bpf_dynptr_slice_rdwr, 12093 KF_bpf_dynptr_clone, 12094 KF_bpf_percpu_obj_new_impl, 12095 KF_bpf_percpu_obj_drop_impl, 12096 KF_bpf_throw, 12097 KF_bpf_wq_set_callback_impl, 12098 KF_bpf_preempt_disable, 12099 KF_bpf_preempt_enable, 12100 KF_bpf_iter_css_task_new, 12101 KF_bpf_session_cookie, 12102 KF_bpf_get_kmem_cache, 12103 KF_bpf_local_irq_save, 12104 KF_bpf_local_irq_restore, 12105 KF_bpf_iter_num_new, 12106 KF_bpf_iter_num_next, 12107 KF_bpf_iter_num_destroy, 12108 KF_bpf_set_dentry_xattr, 12109 KF_bpf_remove_dentry_xattr, 12110 KF_bpf_res_spin_lock, 12111 KF_bpf_res_spin_unlock, 12112 KF_bpf_res_spin_lock_irqsave, 12113 KF_bpf_res_spin_unlock_irqrestore, 12114 KF___bpf_trap, 12115 }; 12116 12117 BTF_ID_LIST(special_kfunc_list) 12118 BTF_ID(func, bpf_obj_new_impl) 12119 BTF_ID(func, bpf_obj_drop_impl) 12120 BTF_ID(func, bpf_refcount_acquire_impl) 12121 BTF_ID(func, bpf_list_push_front_impl) 12122 BTF_ID(func, bpf_list_push_back_impl) 12123 BTF_ID(func, bpf_list_pop_front) 12124 BTF_ID(func, bpf_list_pop_back) 12125 BTF_ID(func, bpf_list_front) 12126 BTF_ID(func, bpf_list_back) 12127 BTF_ID(func, bpf_cast_to_kern_ctx) 12128 BTF_ID(func, bpf_rdonly_cast) 12129 BTF_ID(func, bpf_rcu_read_lock) 12130 BTF_ID(func, bpf_rcu_read_unlock) 12131 BTF_ID(func, bpf_rbtree_remove) 12132 BTF_ID(func, bpf_rbtree_add_impl) 12133 BTF_ID(func, bpf_rbtree_first) 12134 BTF_ID(func, bpf_rbtree_root) 12135 BTF_ID(func, bpf_rbtree_left) 12136 BTF_ID(func, bpf_rbtree_right) 12137 #ifdef CONFIG_NET 12138 BTF_ID(func, bpf_dynptr_from_skb) 12139 BTF_ID(func, bpf_dynptr_from_xdp) 12140 #else 12141 BTF_ID_UNUSED 12142 BTF_ID_UNUSED 12143 #endif 12144 BTF_ID(func, bpf_dynptr_slice) 12145 BTF_ID(func, bpf_dynptr_slice_rdwr) 12146 BTF_ID(func, bpf_dynptr_clone) 12147 BTF_ID(func, bpf_percpu_obj_new_impl) 12148 BTF_ID(func, bpf_percpu_obj_drop_impl) 12149 BTF_ID(func, bpf_throw) 12150 BTF_ID(func, bpf_wq_set_callback_impl) 12151 BTF_ID(func, bpf_preempt_disable) 12152 BTF_ID(func, bpf_preempt_enable) 12153 #ifdef CONFIG_CGROUPS 12154 BTF_ID(func, bpf_iter_css_task_new) 12155 #else 12156 BTF_ID_UNUSED 12157 #endif 12158 #ifdef CONFIG_BPF_EVENTS 12159 BTF_ID(func, bpf_session_cookie) 12160 #else 12161 BTF_ID_UNUSED 12162 #endif 12163 BTF_ID(func, bpf_get_kmem_cache) 12164 BTF_ID(func, bpf_local_irq_save) 12165 BTF_ID(func, bpf_local_irq_restore) 12166 BTF_ID(func, bpf_iter_num_new) 12167 BTF_ID(func, bpf_iter_num_next) 12168 BTF_ID(func, bpf_iter_num_destroy) 12169 #ifdef CONFIG_BPF_LSM 12170 BTF_ID(func, bpf_set_dentry_xattr) 12171 BTF_ID(func, bpf_remove_dentry_xattr) 12172 #else 12173 BTF_ID_UNUSED 12174 BTF_ID_UNUSED 12175 #endif 12176 BTF_ID(func, bpf_res_spin_lock) 12177 BTF_ID(func, bpf_res_spin_unlock) 12178 BTF_ID(func, bpf_res_spin_lock_irqsave) 12179 BTF_ID(func, bpf_res_spin_unlock_irqrestore) 12180 BTF_ID(func, __bpf_trap) 12181 12182 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta) 12183 { 12184 if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] && 12185 meta->arg_owning_ref) { 12186 return false; 12187 } 12188 12189 return meta->kfunc_flags & KF_RET_NULL; 12190 } 12191 12192 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta) 12193 { 12194 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock]; 12195 } 12196 12197 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta) 12198 { 12199 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock]; 12200 } 12201 12202 static bool is_kfunc_bpf_preempt_disable(struct bpf_kfunc_call_arg_meta *meta) 12203 { 12204 return meta->func_id == special_kfunc_list[KF_bpf_preempt_disable]; 12205 } 12206 12207 static bool is_kfunc_bpf_preempt_enable(struct bpf_kfunc_call_arg_meta *meta) 12208 { 12209 return meta->func_id == special_kfunc_list[KF_bpf_preempt_enable]; 12210 } 12211 12212 static enum kfunc_ptr_arg_type 12213 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env, 12214 struct bpf_kfunc_call_arg_meta *meta, 12215 const struct btf_type *t, const struct btf_type *ref_t, 12216 const char *ref_tname, const struct btf_param *args, 12217 int argno, int nargs) 12218 { 12219 u32 regno = argno + 1; 12220 struct bpf_reg_state *regs = cur_regs(env); 12221 struct bpf_reg_state *reg = ®s[regno]; 12222 bool arg_mem_size = false; 12223 12224 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) 12225 return KF_ARG_PTR_TO_CTX; 12226 12227 /* In this function, we verify the kfunc's BTF as per the argument type, 12228 * leaving the rest of the verification with respect to the register 12229 * type to our caller. When a set of conditions hold in the BTF type of 12230 * arguments, we resolve it to a known kfunc_ptr_arg_type. 12231 */ 12232 if (btf_is_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno)) 12233 return KF_ARG_PTR_TO_CTX; 12234 12235 if (is_kfunc_arg_nullable(meta->btf, &args[argno]) && register_is_null(reg)) 12236 return KF_ARG_PTR_TO_NULL; 12237 12238 if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno])) 12239 return KF_ARG_PTR_TO_ALLOC_BTF_ID; 12240 12241 if (is_kfunc_arg_refcounted_kptr(meta->btf, &args[argno])) 12242 return KF_ARG_PTR_TO_REFCOUNTED_KPTR; 12243 12244 if (is_kfunc_arg_dynptr(meta->btf, &args[argno])) 12245 return KF_ARG_PTR_TO_DYNPTR; 12246 12247 if (is_kfunc_arg_iter(meta, argno, &args[argno])) 12248 return KF_ARG_PTR_TO_ITER; 12249 12250 if (is_kfunc_arg_list_head(meta->btf, &args[argno])) 12251 return KF_ARG_PTR_TO_LIST_HEAD; 12252 12253 if (is_kfunc_arg_list_node(meta->btf, &args[argno])) 12254 return KF_ARG_PTR_TO_LIST_NODE; 12255 12256 if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno])) 12257 return KF_ARG_PTR_TO_RB_ROOT; 12258 12259 if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno])) 12260 return KF_ARG_PTR_TO_RB_NODE; 12261 12262 if (is_kfunc_arg_const_str(meta->btf, &args[argno])) 12263 return KF_ARG_PTR_TO_CONST_STR; 12264 12265 if (is_kfunc_arg_map(meta->btf, &args[argno])) 12266 return KF_ARG_PTR_TO_MAP; 12267 12268 if (is_kfunc_arg_wq(meta->btf, &args[argno])) 12269 return KF_ARG_PTR_TO_WORKQUEUE; 12270 12271 if (is_kfunc_arg_irq_flag(meta->btf, &args[argno])) 12272 return KF_ARG_PTR_TO_IRQ_FLAG; 12273 12274 if (is_kfunc_arg_res_spin_lock(meta->btf, &args[argno])) 12275 return KF_ARG_PTR_TO_RES_SPIN_LOCK; 12276 12277 if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) { 12278 if (!btf_type_is_struct(ref_t)) { 12279 verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n", 12280 meta->func_name, argno, btf_type_str(ref_t), ref_tname); 12281 return -EINVAL; 12282 } 12283 return KF_ARG_PTR_TO_BTF_ID; 12284 } 12285 12286 if (is_kfunc_arg_callback(env, meta->btf, &args[argno])) 12287 return KF_ARG_PTR_TO_CALLBACK; 12288 12289 if (argno + 1 < nargs && 12290 (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]) || 12291 is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]))) 12292 arg_mem_size = true; 12293 12294 /* This is the catch all argument type of register types supported by 12295 * check_helper_mem_access. However, we only allow when argument type is 12296 * pointer to scalar, or struct composed (recursively) of scalars. When 12297 * arg_mem_size is true, the pointer can be void *. 12298 */ 12299 if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) && 12300 (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) { 12301 verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n", 12302 argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : ""); 12303 return -EINVAL; 12304 } 12305 return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM; 12306 } 12307 12308 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env, 12309 struct bpf_reg_state *reg, 12310 const struct btf_type *ref_t, 12311 const char *ref_tname, u32 ref_id, 12312 struct bpf_kfunc_call_arg_meta *meta, 12313 int argno) 12314 { 12315 const struct btf_type *reg_ref_t; 12316 bool strict_type_match = false; 12317 const struct btf *reg_btf; 12318 const char *reg_ref_tname; 12319 bool taking_projection; 12320 bool struct_same; 12321 u32 reg_ref_id; 12322 12323 if (base_type(reg->type) == PTR_TO_BTF_ID) { 12324 reg_btf = reg->btf; 12325 reg_ref_id = reg->btf_id; 12326 } else { 12327 reg_btf = btf_vmlinux; 12328 reg_ref_id = *reg2btf_ids[base_type(reg->type)]; 12329 } 12330 12331 /* Enforce strict type matching for calls to kfuncs that are acquiring 12332 * or releasing a reference, or are no-cast aliases. We do _not_ 12333 * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default, 12334 * as we want to enable BPF programs to pass types that are bitwise 12335 * equivalent without forcing them to explicitly cast with something 12336 * like bpf_cast_to_kern_ctx(). 12337 * 12338 * For example, say we had a type like the following: 12339 * 12340 * struct bpf_cpumask { 12341 * cpumask_t cpumask; 12342 * refcount_t usage; 12343 * }; 12344 * 12345 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed 12346 * to a struct cpumask, so it would be safe to pass a struct 12347 * bpf_cpumask * to a kfunc expecting a struct cpumask *. 12348 * 12349 * The philosophy here is similar to how we allow scalars of different 12350 * types to be passed to kfuncs as long as the size is the same. The 12351 * only difference here is that we're simply allowing 12352 * btf_struct_ids_match() to walk the struct at the 0th offset, and 12353 * resolve types. 12354 */ 12355 if ((is_kfunc_release(meta) && reg->ref_obj_id) || 12356 btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id)) 12357 strict_type_match = true; 12358 12359 WARN_ON_ONCE(is_kfunc_release(meta) && 12360 (reg->off || !tnum_is_const(reg->var_off) || 12361 reg->var_off.value)); 12362 12363 reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, ®_ref_id); 12364 reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off); 12365 struct_same = btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match); 12366 /* If kfunc is accepting a projection type (ie. __sk_buff), it cannot 12367 * actually use it -- it must cast to the underlying type. So we allow 12368 * caller to pass in the underlying type. 12369 */ 12370 taking_projection = btf_is_projection_of(ref_tname, reg_ref_tname); 12371 if (!taking_projection && !struct_same) { 12372 verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n", 12373 meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1, 12374 btf_type_str(reg_ref_t), reg_ref_tname); 12375 return -EINVAL; 12376 } 12377 return 0; 12378 } 12379 12380 static int process_irq_flag(struct bpf_verifier_env *env, int regno, 12381 struct bpf_kfunc_call_arg_meta *meta) 12382 { 12383 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 12384 int err, kfunc_class = IRQ_NATIVE_KFUNC; 12385 bool irq_save; 12386 12387 if (meta->func_id == special_kfunc_list[KF_bpf_local_irq_save] || 12388 meta->func_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave]) { 12389 irq_save = true; 12390 if (meta->func_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave]) 12391 kfunc_class = IRQ_LOCK_KFUNC; 12392 } else if (meta->func_id == special_kfunc_list[KF_bpf_local_irq_restore] || 12393 meta->func_id == special_kfunc_list[KF_bpf_res_spin_unlock_irqrestore]) { 12394 irq_save = false; 12395 if (meta->func_id == special_kfunc_list[KF_bpf_res_spin_unlock_irqrestore]) 12396 kfunc_class = IRQ_LOCK_KFUNC; 12397 } else { 12398 verbose(env, "verifier internal error: unknown irq flags kfunc\n"); 12399 return -EFAULT; 12400 } 12401 12402 if (irq_save) { 12403 if (!is_irq_flag_reg_valid_uninit(env, reg)) { 12404 verbose(env, "expected uninitialized irq flag as arg#%d\n", regno - 1); 12405 return -EINVAL; 12406 } 12407 12408 err = check_mem_access(env, env->insn_idx, regno, 0, BPF_DW, BPF_WRITE, -1, false, false); 12409 if (err) 12410 return err; 12411 12412 err = mark_stack_slot_irq_flag(env, meta, reg, env->insn_idx, kfunc_class); 12413 if (err) 12414 return err; 12415 } else { 12416 err = is_irq_flag_reg_valid_init(env, reg); 12417 if (err) { 12418 verbose(env, "expected an initialized irq flag as arg#%d\n", regno - 1); 12419 return err; 12420 } 12421 12422 err = mark_irq_flag_read(env, reg); 12423 if (err) 12424 return err; 12425 12426 err = unmark_stack_slot_irq_flag(env, reg, kfunc_class); 12427 if (err) 12428 return err; 12429 } 12430 return 0; 12431 } 12432 12433 12434 static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 12435 { 12436 struct btf_record *rec = reg_btf_record(reg); 12437 12438 if (!env->cur_state->active_locks) { 12439 verbose(env, "verifier internal error: ref_set_non_owning w/o active lock\n"); 12440 return -EFAULT; 12441 } 12442 12443 if (type_flag(reg->type) & NON_OWN_REF) { 12444 verbose(env, "verifier internal error: NON_OWN_REF already set\n"); 12445 return -EFAULT; 12446 } 12447 12448 reg->type |= NON_OWN_REF; 12449 if (rec->refcount_off >= 0) 12450 reg->type |= MEM_RCU; 12451 12452 return 0; 12453 } 12454 12455 static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id) 12456 { 12457 struct bpf_verifier_state *state = env->cur_state; 12458 struct bpf_func_state *unused; 12459 struct bpf_reg_state *reg; 12460 int i; 12461 12462 if (!ref_obj_id) { 12463 verbose(env, "verifier internal error: ref_obj_id is zero for " 12464 "owning -> non-owning conversion\n"); 12465 return -EFAULT; 12466 } 12467 12468 for (i = 0; i < state->acquired_refs; i++) { 12469 if (state->refs[i].id != ref_obj_id) 12470 continue; 12471 12472 /* Clear ref_obj_id here so release_reference doesn't clobber 12473 * the whole reg 12474 */ 12475 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ 12476 if (reg->ref_obj_id == ref_obj_id) { 12477 reg->ref_obj_id = 0; 12478 ref_set_non_owning(env, reg); 12479 } 12480 })); 12481 return 0; 12482 } 12483 12484 verbose(env, "verifier internal error: ref state missing for ref_obj_id\n"); 12485 return -EFAULT; 12486 } 12487 12488 /* Implementation details: 12489 * 12490 * Each register points to some region of memory, which we define as an 12491 * allocation. Each allocation may embed a bpf_spin_lock which protects any 12492 * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same 12493 * allocation. The lock and the data it protects are colocated in the same 12494 * memory region. 12495 * 12496 * Hence, everytime a register holds a pointer value pointing to such 12497 * allocation, the verifier preserves a unique reg->id for it. 12498 * 12499 * The verifier remembers the lock 'ptr' and the lock 'id' whenever 12500 * bpf_spin_lock is called. 12501 * 12502 * To enable this, lock state in the verifier captures two values: 12503 * active_lock.ptr = Register's type specific pointer 12504 * active_lock.id = A unique ID for each register pointer value 12505 * 12506 * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two 12507 * supported register types. 12508 * 12509 * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of 12510 * allocated objects is the reg->btf pointer. 12511 * 12512 * The active_lock.id is non-unique for maps supporting direct_value_addr, as we 12513 * can establish the provenance of the map value statically for each distinct 12514 * lookup into such maps. They always contain a single map value hence unique 12515 * IDs for each pseudo load pessimizes the algorithm and rejects valid programs. 12516 * 12517 * So, in case of global variables, they use array maps with max_entries = 1, 12518 * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point 12519 * into the same map value as max_entries is 1, as described above). 12520 * 12521 * In case of inner map lookups, the inner map pointer has same map_ptr as the 12522 * outer map pointer (in verifier context), but each lookup into an inner map 12523 * assigns a fresh reg->id to the lookup, so while lookups into distinct inner 12524 * maps from the same outer map share the same map_ptr as active_lock.ptr, they 12525 * will get different reg->id assigned to each lookup, hence different 12526 * active_lock.id. 12527 * 12528 * In case of allocated objects, active_lock.ptr is the reg->btf, and the 12529 * reg->id is a unique ID preserved after the NULL pointer check on the pointer 12530 * returned from bpf_obj_new. Each allocation receives a new reg->id. 12531 */ 12532 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 12533 { 12534 struct bpf_reference_state *s; 12535 void *ptr; 12536 u32 id; 12537 12538 switch ((int)reg->type) { 12539 case PTR_TO_MAP_VALUE: 12540 ptr = reg->map_ptr; 12541 break; 12542 case PTR_TO_BTF_ID | MEM_ALLOC: 12543 ptr = reg->btf; 12544 break; 12545 default: 12546 verbose(env, "verifier internal error: unknown reg type for lock check\n"); 12547 return -EFAULT; 12548 } 12549 id = reg->id; 12550 12551 if (!env->cur_state->active_locks) 12552 return -EINVAL; 12553 s = find_lock_state(env->cur_state, REF_TYPE_LOCK_MASK, id, ptr); 12554 if (!s) { 12555 verbose(env, "held lock and object are not in the same allocation\n"); 12556 return -EINVAL; 12557 } 12558 return 0; 12559 } 12560 12561 static bool is_bpf_list_api_kfunc(u32 btf_id) 12562 { 12563 return btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 12564 btf_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 12565 btf_id == special_kfunc_list[KF_bpf_list_pop_front] || 12566 btf_id == special_kfunc_list[KF_bpf_list_pop_back] || 12567 btf_id == special_kfunc_list[KF_bpf_list_front] || 12568 btf_id == special_kfunc_list[KF_bpf_list_back]; 12569 } 12570 12571 static bool is_bpf_rbtree_api_kfunc(u32 btf_id) 12572 { 12573 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] || 12574 btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || 12575 btf_id == special_kfunc_list[KF_bpf_rbtree_first] || 12576 btf_id == special_kfunc_list[KF_bpf_rbtree_root] || 12577 btf_id == special_kfunc_list[KF_bpf_rbtree_left] || 12578 btf_id == special_kfunc_list[KF_bpf_rbtree_right]; 12579 } 12580 12581 static bool is_bpf_iter_num_api_kfunc(u32 btf_id) 12582 { 12583 return btf_id == special_kfunc_list[KF_bpf_iter_num_new] || 12584 btf_id == special_kfunc_list[KF_bpf_iter_num_next] || 12585 btf_id == special_kfunc_list[KF_bpf_iter_num_destroy]; 12586 } 12587 12588 static bool is_bpf_graph_api_kfunc(u32 btf_id) 12589 { 12590 return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id) || 12591 btf_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]; 12592 } 12593 12594 static bool is_bpf_res_spin_lock_kfunc(u32 btf_id) 12595 { 12596 return btf_id == special_kfunc_list[KF_bpf_res_spin_lock] || 12597 btf_id == special_kfunc_list[KF_bpf_res_spin_unlock] || 12598 btf_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave] || 12599 btf_id == special_kfunc_list[KF_bpf_res_spin_unlock_irqrestore]; 12600 } 12601 12602 static bool kfunc_spin_allowed(u32 btf_id) 12603 { 12604 return is_bpf_graph_api_kfunc(btf_id) || is_bpf_iter_num_api_kfunc(btf_id) || 12605 is_bpf_res_spin_lock_kfunc(btf_id); 12606 } 12607 12608 static bool is_sync_callback_calling_kfunc(u32 btf_id) 12609 { 12610 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]; 12611 } 12612 12613 static bool is_async_callback_calling_kfunc(u32 btf_id) 12614 { 12615 return btf_id == special_kfunc_list[KF_bpf_wq_set_callback_impl]; 12616 } 12617 12618 static bool is_bpf_throw_kfunc(struct bpf_insn *insn) 12619 { 12620 return bpf_pseudo_kfunc_call(insn) && insn->off == 0 && 12621 insn->imm == special_kfunc_list[KF_bpf_throw]; 12622 } 12623 12624 static bool is_bpf_wq_set_callback_impl_kfunc(u32 btf_id) 12625 { 12626 return btf_id == special_kfunc_list[KF_bpf_wq_set_callback_impl]; 12627 } 12628 12629 static bool is_callback_calling_kfunc(u32 btf_id) 12630 { 12631 return is_sync_callback_calling_kfunc(btf_id) || 12632 is_async_callback_calling_kfunc(btf_id); 12633 } 12634 12635 static bool is_rbtree_lock_required_kfunc(u32 btf_id) 12636 { 12637 return is_bpf_rbtree_api_kfunc(btf_id); 12638 } 12639 12640 static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env, 12641 enum btf_field_type head_field_type, 12642 u32 kfunc_btf_id) 12643 { 12644 bool ret; 12645 12646 switch (head_field_type) { 12647 case BPF_LIST_HEAD: 12648 ret = is_bpf_list_api_kfunc(kfunc_btf_id); 12649 break; 12650 case BPF_RB_ROOT: 12651 ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id); 12652 break; 12653 default: 12654 verbose(env, "verifier internal error: unexpected graph root argument type %s\n", 12655 btf_field_type_name(head_field_type)); 12656 return false; 12657 } 12658 12659 if (!ret) 12660 verbose(env, "verifier internal error: %s head arg for unknown kfunc\n", 12661 btf_field_type_name(head_field_type)); 12662 return ret; 12663 } 12664 12665 static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env, 12666 enum btf_field_type node_field_type, 12667 u32 kfunc_btf_id) 12668 { 12669 bool ret; 12670 12671 switch (node_field_type) { 12672 case BPF_LIST_NODE: 12673 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 12674 kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back_impl]); 12675 break; 12676 case BPF_RB_NODE: 12677 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || 12678 kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] || 12679 kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_left] || 12680 kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_right]); 12681 break; 12682 default: 12683 verbose(env, "verifier internal error: unexpected graph node argument type %s\n", 12684 btf_field_type_name(node_field_type)); 12685 return false; 12686 } 12687 12688 if (!ret) 12689 verbose(env, "verifier internal error: %s node arg for unknown kfunc\n", 12690 btf_field_type_name(node_field_type)); 12691 return ret; 12692 } 12693 12694 static int 12695 __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env, 12696 struct bpf_reg_state *reg, u32 regno, 12697 struct bpf_kfunc_call_arg_meta *meta, 12698 enum btf_field_type head_field_type, 12699 struct btf_field **head_field) 12700 { 12701 const char *head_type_name; 12702 struct btf_field *field; 12703 struct btf_record *rec; 12704 u32 head_off; 12705 12706 if (meta->btf != btf_vmlinux) { 12707 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n"); 12708 return -EFAULT; 12709 } 12710 12711 if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id)) 12712 return -EFAULT; 12713 12714 head_type_name = btf_field_type_name(head_field_type); 12715 if (!tnum_is_const(reg->var_off)) { 12716 verbose(env, 12717 "R%d doesn't have constant offset. %s has to be at the constant offset\n", 12718 regno, head_type_name); 12719 return -EINVAL; 12720 } 12721 12722 rec = reg_btf_record(reg); 12723 head_off = reg->off + reg->var_off.value; 12724 field = btf_record_find(rec, head_off, head_field_type); 12725 if (!field) { 12726 verbose(env, "%s not found at offset=%u\n", head_type_name, head_off); 12727 return -EINVAL; 12728 } 12729 12730 /* All functions require bpf_list_head to be protected using a bpf_spin_lock */ 12731 if (check_reg_allocation_locked(env, reg)) { 12732 verbose(env, "bpf_spin_lock at off=%d must be held for %s\n", 12733 rec->spin_lock_off, head_type_name); 12734 return -EINVAL; 12735 } 12736 12737 if (*head_field) { 12738 verbose(env, "verifier internal error: repeating %s arg\n", head_type_name); 12739 return -EFAULT; 12740 } 12741 *head_field = field; 12742 return 0; 12743 } 12744 12745 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env, 12746 struct bpf_reg_state *reg, u32 regno, 12747 struct bpf_kfunc_call_arg_meta *meta) 12748 { 12749 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD, 12750 &meta->arg_list_head.field); 12751 } 12752 12753 static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env, 12754 struct bpf_reg_state *reg, u32 regno, 12755 struct bpf_kfunc_call_arg_meta *meta) 12756 { 12757 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT, 12758 &meta->arg_rbtree_root.field); 12759 } 12760 12761 static int 12762 __process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env, 12763 struct bpf_reg_state *reg, u32 regno, 12764 struct bpf_kfunc_call_arg_meta *meta, 12765 enum btf_field_type head_field_type, 12766 enum btf_field_type node_field_type, 12767 struct btf_field **node_field) 12768 { 12769 const char *node_type_name; 12770 const struct btf_type *et, *t; 12771 struct btf_field *field; 12772 u32 node_off; 12773 12774 if (meta->btf != btf_vmlinux) { 12775 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n"); 12776 return -EFAULT; 12777 } 12778 12779 if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id)) 12780 return -EFAULT; 12781 12782 node_type_name = btf_field_type_name(node_field_type); 12783 if (!tnum_is_const(reg->var_off)) { 12784 verbose(env, 12785 "R%d doesn't have constant offset. %s has to be at the constant offset\n", 12786 regno, node_type_name); 12787 return -EINVAL; 12788 } 12789 12790 node_off = reg->off + reg->var_off.value; 12791 field = reg_find_field_offset(reg, node_off, node_field_type); 12792 if (!field) { 12793 verbose(env, "%s not found at offset=%u\n", node_type_name, node_off); 12794 return -EINVAL; 12795 } 12796 12797 field = *node_field; 12798 12799 et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id); 12800 t = btf_type_by_id(reg->btf, reg->btf_id); 12801 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf, 12802 field->graph_root.value_btf_id, true)) { 12803 verbose(env, "operation on %s expects arg#1 %s at offset=%d " 12804 "in struct %s, but arg is at offset=%d in struct %s\n", 12805 btf_field_type_name(head_field_type), 12806 btf_field_type_name(node_field_type), 12807 field->graph_root.node_offset, 12808 btf_name_by_offset(field->graph_root.btf, et->name_off), 12809 node_off, btf_name_by_offset(reg->btf, t->name_off)); 12810 return -EINVAL; 12811 } 12812 meta->arg_btf = reg->btf; 12813 meta->arg_btf_id = reg->btf_id; 12814 12815 if (node_off != field->graph_root.node_offset) { 12816 verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n", 12817 node_off, btf_field_type_name(node_field_type), 12818 field->graph_root.node_offset, 12819 btf_name_by_offset(field->graph_root.btf, et->name_off)); 12820 return -EINVAL; 12821 } 12822 12823 return 0; 12824 } 12825 12826 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env, 12827 struct bpf_reg_state *reg, u32 regno, 12828 struct bpf_kfunc_call_arg_meta *meta) 12829 { 12830 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, 12831 BPF_LIST_HEAD, BPF_LIST_NODE, 12832 &meta->arg_list_head.field); 12833 } 12834 12835 static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env, 12836 struct bpf_reg_state *reg, u32 regno, 12837 struct bpf_kfunc_call_arg_meta *meta) 12838 { 12839 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, 12840 BPF_RB_ROOT, BPF_RB_NODE, 12841 &meta->arg_rbtree_root.field); 12842 } 12843 12844 /* 12845 * css_task iter allowlist is needed to avoid dead locking on css_set_lock. 12846 * LSM hooks and iters (both sleepable and non-sleepable) are safe. 12847 * Any sleepable progs are also safe since bpf_check_attach_target() enforce 12848 * them can only be attached to some specific hook points. 12849 */ 12850 static bool check_css_task_iter_allowlist(struct bpf_verifier_env *env) 12851 { 12852 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 12853 12854 switch (prog_type) { 12855 case BPF_PROG_TYPE_LSM: 12856 return true; 12857 case BPF_PROG_TYPE_TRACING: 12858 if (env->prog->expected_attach_type == BPF_TRACE_ITER) 12859 return true; 12860 fallthrough; 12861 default: 12862 return in_sleepable(env); 12863 } 12864 } 12865 12866 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta, 12867 int insn_idx) 12868 { 12869 const char *func_name = meta->func_name, *ref_tname; 12870 const struct btf *btf = meta->btf; 12871 const struct btf_param *args; 12872 struct btf_record *rec; 12873 u32 i, nargs; 12874 int ret; 12875 12876 args = (const struct btf_param *)(meta->func_proto + 1); 12877 nargs = btf_type_vlen(meta->func_proto); 12878 if (nargs > MAX_BPF_FUNC_REG_ARGS) { 12879 verbose(env, "Function %s has %d > %d args\n", func_name, nargs, 12880 MAX_BPF_FUNC_REG_ARGS); 12881 return -EINVAL; 12882 } 12883 12884 /* Check that BTF function arguments match actual types that the 12885 * verifier sees. 12886 */ 12887 for (i = 0; i < nargs; i++) { 12888 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[i + 1]; 12889 const struct btf_type *t, *ref_t, *resolve_ret; 12890 enum bpf_arg_type arg_type = ARG_DONTCARE; 12891 u32 regno = i + 1, ref_id, type_size; 12892 bool is_ret_buf_sz = false; 12893 int kf_arg_type; 12894 12895 t = btf_type_skip_modifiers(btf, args[i].type, NULL); 12896 12897 if (is_kfunc_arg_ignore(btf, &args[i])) 12898 continue; 12899 12900 if (is_kfunc_arg_prog(btf, &args[i])) { 12901 /* Used to reject repeated use of __prog. */ 12902 if (meta->arg_prog) { 12903 verbose(env, "Only 1 prog->aux argument supported per-kfunc\n"); 12904 return -EFAULT; 12905 } 12906 meta->arg_prog = true; 12907 cur_aux(env)->arg_prog = regno; 12908 continue; 12909 } 12910 12911 if (btf_type_is_scalar(t)) { 12912 if (reg->type != SCALAR_VALUE) { 12913 verbose(env, "R%d is not a scalar\n", regno); 12914 return -EINVAL; 12915 } 12916 12917 if (is_kfunc_arg_constant(meta->btf, &args[i])) { 12918 if (meta->arg_constant.found) { 12919 verbose(env, "verifier internal error: only one constant argument permitted\n"); 12920 return -EFAULT; 12921 } 12922 if (!tnum_is_const(reg->var_off)) { 12923 verbose(env, "R%d must be a known constant\n", regno); 12924 return -EINVAL; 12925 } 12926 ret = mark_chain_precision(env, regno); 12927 if (ret < 0) 12928 return ret; 12929 meta->arg_constant.found = true; 12930 meta->arg_constant.value = reg->var_off.value; 12931 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) { 12932 meta->r0_rdonly = true; 12933 is_ret_buf_sz = true; 12934 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) { 12935 is_ret_buf_sz = true; 12936 } 12937 12938 if (is_ret_buf_sz) { 12939 if (meta->r0_size) { 12940 verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc"); 12941 return -EINVAL; 12942 } 12943 12944 if (!tnum_is_const(reg->var_off)) { 12945 verbose(env, "R%d is not a const\n", regno); 12946 return -EINVAL; 12947 } 12948 12949 meta->r0_size = reg->var_off.value; 12950 ret = mark_chain_precision(env, regno); 12951 if (ret) 12952 return ret; 12953 } 12954 continue; 12955 } 12956 12957 if (!btf_type_is_ptr(t)) { 12958 verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t)); 12959 return -EINVAL; 12960 } 12961 12962 if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) && 12963 (register_is_null(reg) || type_may_be_null(reg->type)) && 12964 !is_kfunc_arg_nullable(meta->btf, &args[i])) { 12965 verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i); 12966 return -EACCES; 12967 } 12968 12969 if (reg->ref_obj_id) { 12970 if (is_kfunc_release(meta) && meta->ref_obj_id) { 12971 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 12972 regno, reg->ref_obj_id, 12973 meta->ref_obj_id); 12974 return -EFAULT; 12975 } 12976 meta->ref_obj_id = reg->ref_obj_id; 12977 if (is_kfunc_release(meta)) 12978 meta->release_regno = regno; 12979 } 12980 12981 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id); 12982 ref_tname = btf_name_by_offset(btf, ref_t->name_off); 12983 12984 kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs); 12985 if (kf_arg_type < 0) 12986 return kf_arg_type; 12987 12988 switch (kf_arg_type) { 12989 case KF_ARG_PTR_TO_NULL: 12990 continue; 12991 case KF_ARG_PTR_TO_MAP: 12992 if (!reg->map_ptr) { 12993 verbose(env, "pointer in R%d isn't map pointer\n", regno); 12994 return -EINVAL; 12995 } 12996 if (meta->map.ptr && reg->map_ptr->record->wq_off >= 0) { 12997 /* Use map_uid (which is unique id of inner map) to reject: 12998 * inner_map1 = bpf_map_lookup_elem(outer_map, key1) 12999 * inner_map2 = bpf_map_lookup_elem(outer_map, key2) 13000 * if (inner_map1 && inner_map2) { 13001 * wq = bpf_map_lookup_elem(inner_map1); 13002 * if (wq) 13003 * // mismatch would have been allowed 13004 * bpf_wq_init(wq, inner_map2); 13005 * } 13006 * 13007 * Comparing map_ptr is enough to distinguish normal and outer maps. 13008 */ 13009 if (meta->map.ptr != reg->map_ptr || 13010 meta->map.uid != reg->map_uid) { 13011 verbose(env, 13012 "workqueue pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", 13013 meta->map.uid, reg->map_uid); 13014 return -EINVAL; 13015 } 13016 } 13017 meta->map.ptr = reg->map_ptr; 13018 meta->map.uid = reg->map_uid; 13019 fallthrough; 13020 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 13021 case KF_ARG_PTR_TO_BTF_ID: 13022 if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta)) 13023 break; 13024 13025 if (!is_trusted_reg(reg)) { 13026 if (!is_kfunc_rcu(meta)) { 13027 verbose(env, "R%d must be referenced or trusted\n", regno); 13028 return -EINVAL; 13029 } 13030 if (!is_rcu_reg(reg)) { 13031 verbose(env, "R%d must be a rcu pointer\n", regno); 13032 return -EINVAL; 13033 } 13034 } 13035 fallthrough; 13036 case KF_ARG_PTR_TO_CTX: 13037 case KF_ARG_PTR_TO_DYNPTR: 13038 case KF_ARG_PTR_TO_ITER: 13039 case KF_ARG_PTR_TO_LIST_HEAD: 13040 case KF_ARG_PTR_TO_LIST_NODE: 13041 case KF_ARG_PTR_TO_RB_ROOT: 13042 case KF_ARG_PTR_TO_RB_NODE: 13043 case KF_ARG_PTR_TO_MEM: 13044 case KF_ARG_PTR_TO_MEM_SIZE: 13045 case KF_ARG_PTR_TO_CALLBACK: 13046 case KF_ARG_PTR_TO_REFCOUNTED_KPTR: 13047 case KF_ARG_PTR_TO_CONST_STR: 13048 case KF_ARG_PTR_TO_WORKQUEUE: 13049 case KF_ARG_PTR_TO_IRQ_FLAG: 13050 case KF_ARG_PTR_TO_RES_SPIN_LOCK: 13051 break; 13052 default: 13053 WARN_ON_ONCE(1); 13054 return -EFAULT; 13055 } 13056 13057 if (is_kfunc_release(meta) && reg->ref_obj_id) 13058 arg_type |= OBJ_RELEASE; 13059 ret = check_func_arg_reg_off(env, reg, regno, arg_type); 13060 if (ret < 0) 13061 return ret; 13062 13063 switch (kf_arg_type) { 13064 case KF_ARG_PTR_TO_CTX: 13065 if (reg->type != PTR_TO_CTX) { 13066 verbose(env, "arg#%d expected pointer to ctx, but got %s\n", 13067 i, reg_type_str(env, reg->type)); 13068 return -EINVAL; 13069 } 13070 13071 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 13072 ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog)); 13073 if (ret < 0) 13074 return -EINVAL; 13075 meta->ret_btf_id = ret; 13076 } 13077 break; 13078 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 13079 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC)) { 13080 if (meta->func_id != special_kfunc_list[KF_bpf_obj_drop_impl]) { 13081 verbose(env, "arg#%d expected for bpf_obj_drop_impl()\n", i); 13082 return -EINVAL; 13083 } 13084 } else if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC | MEM_PERCPU)) { 13085 if (meta->func_id != special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) { 13086 verbose(env, "arg#%d expected for bpf_percpu_obj_drop_impl()\n", i); 13087 return -EINVAL; 13088 } 13089 } else { 13090 verbose(env, "arg#%d expected pointer to allocated object\n", i); 13091 return -EINVAL; 13092 } 13093 if (!reg->ref_obj_id) { 13094 verbose(env, "allocated object must be referenced\n"); 13095 return -EINVAL; 13096 } 13097 if (meta->btf == btf_vmlinux) { 13098 meta->arg_btf = reg->btf; 13099 meta->arg_btf_id = reg->btf_id; 13100 } 13101 break; 13102 case KF_ARG_PTR_TO_DYNPTR: 13103 { 13104 enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR; 13105 int clone_ref_obj_id = 0; 13106 13107 if (reg->type == CONST_PTR_TO_DYNPTR) 13108 dynptr_arg_type |= MEM_RDONLY; 13109 13110 if (is_kfunc_arg_uninit(btf, &args[i])) 13111 dynptr_arg_type |= MEM_UNINIT; 13112 13113 if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) { 13114 dynptr_arg_type |= DYNPTR_TYPE_SKB; 13115 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp]) { 13116 dynptr_arg_type |= DYNPTR_TYPE_XDP; 13117 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_clone] && 13118 (dynptr_arg_type & MEM_UNINIT)) { 13119 enum bpf_dynptr_type parent_type = meta->initialized_dynptr.type; 13120 13121 if (parent_type == BPF_DYNPTR_TYPE_INVALID) { 13122 verbose(env, "verifier internal error: no dynptr type for parent of clone\n"); 13123 return -EFAULT; 13124 } 13125 13126 dynptr_arg_type |= (unsigned int)get_dynptr_type_flag(parent_type); 13127 clone_ref_obj_id = meta->initialized_dynptr.ref_obj_id; 13128 if (dynptr_type_refcounted(parent_type) && !clone_ref_obj_id) { 13129 verbose(env, "verifier internal error: missing ref obj id for parent of clone\n"); 13130 return -EFAULT; 13131 } 13132 } 13133 13134 ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type, clone_ref_obj_id); 13135 if (ret < 0) 13136 return ret; 13137 13138 if (!(dynptr_arg_type & MEM_UNINIT)) { 13139 int id = dynptr_id(env, reg); 13140 13141 if (id < 0) { 13142 verbose(env, "verifier internal error: failed to obtain dynptr id\n"); 13143 return id; 13144 } 13145 meta->initialized_dynptr.id = id; 13146 meta->initialized_dynptr.type = dynptr_get_type(env, reg); 13147 meta->initialized_dynptr.ref_obj_id = dynptr_ref_obj_id(env, reg); 13148 } 13149 13150 break; 13151 } 13152 case KF_ARG_PTR_TO_ITER: 13153 if (meta->func_id == special_kfunc_list[KF_bpf_iter_css_task_new]) { 13154 if (!check_css_task_iter_allowlist(env)) { 13155 verbose(env, "css_task_iter is only allowed in bpf_lsm, bpf_iter and sleepable progs\n"); 13156 return -EINVAL; 13157 } 13158 } 13159 ret = process_iter_arg(env, regno, insn_idx, meta); 13160 if (ret < 0) 13161 return ret; 13162 break; 13163 case KF_ARG_PTR_TO_LIST_HEAD: 13164 if (reg->type != PTR_TO_MAP_VALUE && 13165 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 13166 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 13167 return -EINVAL; 13168 } 13169 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 13170 verbose(env, "allocated object must be referenced\n"); 13171 return -EINVAL; 13172 } 13173 ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta); 13174 if (ret < 0) 13175 return ret; 13176 break; 13177 case KF_ARG_PTR_TO_RB_ROOT: 13178 if (reg->type != PTR_TO_MAP_VALUE && 13179 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 13180 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 13181 return -EINVAL; 13182 } 13183 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 13184 verbose(env, "allocated object must be referenced\n"); 13185 return -EINVAL; 13186 } 13187 ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta); 13188 if (ret < 0) 13189 return ret; 13190 break; 13191 case KF_ARG_PTR_TO_LIST_NODE: 13192 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 13193 verbose(env, "arg#%d expected pointer to allocated object\n", i); 13194 return -EINVAL; 13195 } 13196 if (!reg->ref_obj_id) { 13197 verbose(env, "allocated object must be referenced\n"); 13198 return -EINVAL; 13199 } 13200 ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta); 13201 if (ret < 0) 13202 return ret; 13203 break; 13204 case KF_ARG_PTR_TO_RB_NODE: 13205 if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 13206 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 13207 verbose(env, "arg#%d expected pointer to allocated object\n", i); 13208 return -EINVAL; 13209 } 13210 if (!reg->ref_obj_id) { 13211 verbose(env, "allocated object must be referenced\n"); 13212 return -EINVAL; 13213 } 13214 } else { 13215 if (!type_is_non_owning_ref(reg->type) && !reg->ref_obj_id) { 13216 verbose(env, "%s can only take non-owning or refcounted bpf_rb_node pointer\n", func_name); 13217 return -EINVAL; 13218 } 13219 if (in_rbtree_lock_required_cb(env)) { 13220 verbose(env, "%s not allowed in rbtree cb\n", func_name); 13221 return -EINVAL; 13222 } 13223 } 13224 13225 ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta); 13226 if (ret < 0) 13227 return ret; 13228 break; 13229 case KF_ARG_PTR_TO_MAP: 13230 /* If argument has '__map' suffix expect 'struct bpf_map *' */ 13231 ref_id = *reg2btf_ids[CONST_PTR_TO_MAP]; 13232 ref_t = btf_type_by_id(btf_vmlinux, ref_id); 13233 ref_tname = btf_name_by_offset(btf, ref_t->name_off); 13234 fallthrough; 13235 case KF_ARG_PTR_TO_BTF_ID: 13236 /* Only base_type is checked, further checks are done here */ 13237 if ((base_type(reg->type) != PTR_TO_BTF_ID || 13238 (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) && 13239 !reg2btf_ids[base_type(reg->type)]) { 13240 verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type)); 13241 verbose(env, "expected %s or socket\n", 13242 reg_type_str(env, base_type(reg->type) | 13243 (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS))); 13244 return -EINVAL; 13245 } 13246 ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i); 13247 if (ret < 0) 13248 return ret; 13249 break; 13250 case KF_ARG_PTR_TO_MEM: 13251 resolve_ret = btf_resolve_size(btf, ref_t, &type_size); 13252 if (IS_ERR(resolve_ret)) { 13253 verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n", 13254 i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret)); 13255 return -EINVAL; 13256 } 13257 ret = check_mem_reg(env, reg, regno, type_size); 13258 if (ret < 0) 13259 return ret; 13260 break; 13261 case KF_ARG_PTR_TO_MEM_SIZE: 13262 { 13263 struct bpf_reg_state *buff_reg = ®s[regno]; 13264 const struct btf_param *buff_arg = &args[i]; 13265 struct bpf_reg_state *size_reg = ®s[regno + 1]; 13266 const struct btf_param *size_arg = &args[i + 1]; 13267 13268 if (!register_is_null(buff_reg) || !is_kfunc_arg_optional(meta->btf, buff_arg)) { 13269 ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1); 13270 if (ret < 0) { 13271 verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1); 13272 return ret; 13273 } 13274 } 13275 13276 if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) { 13277 if (meta->arg_constant.found) { 13278 verbose(env, "verifier internal error: only one constant argument permitted\n"); 13279 return -EFAULT; 13280 } 13281 if (!tnum_is_const(size_reg->var_off)) { 13282 verbose(env, "R%d must be a known constant\n", regno + 1); 13283 return -EINVAL; 13284 } 13285 meta->arg_constant.found = true; 13286 meta->arg_constant.value = size_reg->var_off.value; 13287 } 13288 13289 /* Skip next '__sz' or '__szk' argument */ 13290 i++; 13291 break; 13292 } 13293 case KF_ARG_PTR_TO_CALLBACK: 13294 if (reg->type != PTR_TO_FUNC) { 13295 verbose(env, "arg%d expected pointer to func\n", i); 13296 return -EINVAL; 13297 } 13298 meta->subprogno = reg->subprogno; 13299 break; 13300 case KF_ARG_PTR_TO_REFCOUNTED_KPTR: 13301 if (!type_is_ptr_alloc_obj(reg->type)) { 13302 verbose(env, "arg#%d is neither owning or non-owning ref\n", i); 13303 return -EINVAL; 13304 } 13305 if (!type_is_non_owning_ref(reg->type)) 13306 meta->arg_owning_ref = true; 13307 13308 rec = reg_btf_record(reg); 13309 if (!rec) { 13310 verbose(env, "verifier internal error: Couldn't find btf_record\n"); 13311 return -EFAULT; 13312 } 13313 13314 if (rec->refcount_off < 0) { 13315 verbose(env, "arg#%d doesn't point to a type with bpf_refcount field\n", i); 13316 return -EINVAL; 13317 } 13318 13319 meta->arg_btf = reg->btf; 13320 meta->arg_btf_id = reg->btf_id; 13321 break; 13322 case KF_ARG_PTR_TO_CONST_STR: 13323 if (reg->type != PTR_TO_MAP_VALUE) { 13324 verbose(env, "arg#%d doesn't point to a const string\n", i); 13325 return -EINVAL; 13326 } 13327 ret = check_reg_const_str(env, reg, regno); 13328 if (ret) 13329 return ret; 13330 break; 13331 case KF_ARG_PTR_TO_WORKQUEUE: 13332 if (reg->type != PTR_TO_MAP_VALUE) { 13333 verbose(env, "arg#%d doesn't point to a map value\n", i); 13334 return -EINVAL; 13335 } 13336 ret = process_wq_func(env, regno, meta); 13337 if (ret < 0) 13338 return ret; 13339 break; 13340 case KF_ARG_PTR_TO_IRQ_FLAG: 13341 if (reg->type != PTR_TO_STACK) { 13342 verbose(env, "arg#%d doesn't point to an irq flag on stack\n", i); 13343 return -EINVAL; 13344 } 13345 ret = process_irq_flag(env, regno, meta); 13346 if (ret < 0) 13347 return ret; 13348 break; 13349 case KF_ARG_PTR_TO_RES_SPIN_LOCK: 13350 { 13351 int flags = PROCESS_RES_LOCK; 13352 13353 if (reg->type != PTR_TO_MAP_VALUE && reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 13354 verbose(env, "arg#%d doesn't point to map value or allocated object\n", i); 13355 return -EINVAL; 13356 } 13357 13358 if (!is_bpf_res_spin_lock_kfunc(meta->func_id)) 13359 return -EFAULT; 13360 if (meta->func_id == special_kfunc_list[KF_bpf_res_spin_lock] || 13361 meta->func_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave]) 13362 flags |= PROCESS_SPIN_LOCK; 13363 if (meta->func_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave] || 13364 meta->func_id == special_kfunc_list[KF_bpf_res_spin_unlock_irqrestore]) 13365 flags |= PROCESS_LOCK_IRQ; 13366 ret = process_spin_lock(env, regno, flags); 13367 if (ret < 0) 13368 return ret; 13369 break; 13370 } 13371 } 13372 } 13373 13374 if (is_kfunc_release(meta) && !meta->release_regno) { 13375 verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n", 13376 func_name); 13377 return -EINVAL; 13378 } 13379 13380 return 0; 13381 } 13382 13383 static int fetch_kfunc_meta(struct bpf_verifier_env *env, 13384 struct bpf_insn *insn, 13385 struct bpf_kfunc_call_arg_meta *meta, 13386 const char **kfunc_name) 13387 { 13388 const struct btf_type *func, *func_proto; 13389 u32 func_id, *kfunc_flags; 13390 const char *func_name; 13391 struct btf *desc_btf; 13392 13393 if (kfunc_name) 13394 *kfunc_name = NULL; 13395 13396 if (!insn->imm) 13397 return -EINVAL; 13398 13399 desc_btf = find_kfunc_desc_btf(env, insn->off); 13400 if (IS_ERR(desc_btf)) 13401 return PTR_ERR(desc_btf); 13402 13403 func_id = insn->imm; 13404 func = btf_type_by_id(desc_btf, func_id); 13405 func_name = btf_name_by_offset(desc_btf, func->name_off); 13406 if (kfunc_name) 13407 *kfunc_name = func_name; 13408 func_proto = btf_type_by_id(desc_btf, func->type); 13409 13410 kfunc_flags = btf_kfunc_id_set_contains(desc_btf, func_id, env->prog); 13411 if (!kfunc_flags) { 13412 return -EACCES; 13413 } 13414 13415 memset(meta, 0, sizeof(*meta)); 13416 meta->btf = desc_btf; 13417 meta->func_id = func_id; 13418 meta->kfunc_flags = *kfunc_flags; 13419 meta->func_proto = func_proto; 13420 meta->func_name = func_name; 13421 13422 return 0; 13423 } 13424 13425 /* check special kfuncs and return: 13426 * 1 - not fall-through to 'else' branch, continue verification 13427 * 0 - fall-through to 'else' branch 13428 * < 0 - not fall-through to 'else' branch, return error 13429 */ 13430 static int check_special_kfunc(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta, 13431 struct bpf_reg_state *regs, struct bpf_insn_aux_data *insn_aux, 13432 const struct btf_type *ptr_type, struct btf *desc_btf) 13433 { 13434 const struct btf_type *ret_t; 13435 int err = 0; 13436 13437 if (meta->btf != btf_vmlinux) 13438 return 0; 13439 13440 if (meta->func_id == special_kfunc_list[KF_bpf_obj_new_impl] || 13441 meta->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { 13442 struct btf_struct_meta *struct_meta; 13443 struct btf *ret_btf; 13444 u32 ret_btf_id; 13445 13446 if (meta->func_id == special_kfunc_list[KF_bpf_obj_new_impl] && !bpf_global_ma_set) 13447 return -ENOMEM; 13448 13449 if (((u64)(u32)meta->arg_constant.value) != meta->arg_constant.value) { 13450 verbose(env, "local type ID argument must be in range [0, U32_MAX]\n"); 13451 return -EINVAL; 13452 } 13453 13454 ret_btf = env->prog->aux->btf; 13455 ret_btf_id = meta->arg_constant.value; 13456 13457 /* This may be NULL due to user not supplying a BTF */ 13458 if (!ret_btf) { 13459 verbose(env, "bpf_obj_new/bpf_percpu_obj_new requires prog BTF\n"); 13460 return -EINVAL; 13461 } 13462 13463 ret_t = btf_type_by_id(ret_btf, ret_btf_id); 13464 if (!ret_t || !__btf_type_is_struct(ret_t)) { 13465 verbose(env, "bpf_obj_new/bpf_percpu_obj_new type ID argument must be of a struct\n"); 13466 return -EINVAL; 13467 } 13468 13469 if (meta->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { 13470 if (ret_t->size > BPF_GLOBAL_PERCPU_MA_MAX_SIZE) { 13471 verbose(env, "bpf_percpu_obj_new type size (%d) is greater than %d\n", 13472 ret_t->size, BPF_GLOBAL_PERCPU_MA_MAX_SIZE); 13473 return -EINVAL; 13474 } 13475 13476 if (!bpf_global_percpu_ma_set) { 13477 mutex_lock(&bpf_percpu_ma_lock); 13478 if (!bpf_global_percpu_ma_set) { 13479 /* Charge memory allocated with bpf_global_percpu_ma to 13480 * root memcg. The obj_cgroup for root memcg is NULL. 13481 */ 13482 err = bpf_mem_alloc_percpu_init(&bpf_global_percpu_ma, NULL); 13483 if (!err) 13484 bpf_global_percpu_ma_set = true; 13485 } 13486 mutex_unlock(&bpf_percpu_ma_lock); 13487 if (err) 13488 return err; 13489 } 13490 13491 mutex_lock(&bpf_percpu_ma_lock); 13492 err = bpf_mem_alloc_percpu_unit_init(&bpf_global_percpu_ma, ret_t->size); 13493 mutex_unlock(&bpf_percpu_ma_lock); 13494 if (err) 13495 return err; 13496 } 13497 13498 struct_meta = btf_find_struct_meta(ret_btf, ret_btf_id); 13499 if (meta->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { 13500 if (!__btf_type_is_scalar_struct(env, ret_btf, ret_t, 0)) { 13501 verbose(env, "bpf_percpu_obj_new type ID argument must be of a struct of scalars\n"); 13502 return -EINVAL; 13503 } 13504 13505 if (struct_meta) { 13506 verbose(env, "bpf_percpu_obj_new type ID argument must not contain special fields\n"); 13507 return -EINVAL; 13508 } 13509 } 13510 13511 mark_reg_known_zero(env, regs, BPF_REG_0); 13512 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 13513 regs[BPF_REG_0].btf = ret_btf; 13514 regs[BPF_REG_0].btf_id = ret_btf_id; 13515 if (meta->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) 13516 regs[BPF_REG_0].type |= MEM_PERCPU; 13517 13518 insn_aux->obj_new_size = ret_t->size; 13519 insn_aux->kptr_struct_meta = struct_meta; 13520 } else if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) { 13521 mark_reg_known_zero(env, regs, BPF_REG_0); 13522 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 13523 regs[BPF_REG_0].btf = meta->arg_btf; 13524 regs[BPF_REG_0].btf_id = meta->arg_btf_id; 13525 13526 insn_aux->kptr_struct_meta = 13527 btf_find_struct_meta(meta->arg_btf, 13528 meta->arg_btf_id); 13529 } else if (is_list_node_type(ptr_type)) { 13530 struct btf_field *field = meta->arg_list_head.field; 13531 13532 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); 13533 } else if (is_rbtree_node_type(ptr_type)) { 13534 struct btf_field *field = meta->arg_rbtree_root.field; 13535 13536 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); 13537 } else if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 13538 mark_reg_known_zero(env, regs, BPF_REG_0); 13539 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED; 13540 regs[BPF_REG_0].btf = desc_btf; 13541 regs[BPF_REG_0].btf_id = meta->ret_btf_id; 13542 } else if (meta->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 13543 ret_t = btf_type_by_id(desc_btf, meta->arg_constant.value); 13544 if (!ret_t || !btf_type_is_struct(ret_t)) { 13545 verbose(env, 13546 "kfunc bpf_rdonly_cast type ID argument must be of a struct\n"); 13547 return -EINVAL; 13548 } 13549 13550 mark_reg_known_zero(env, regs, BPF_REG_0); 13551 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED; 13552 regs[BPF_REG_0].btf = desc_btf; 13553 regs[BPF_REG_0].btf_id = meta->arg_constant.value; 13554 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_slice] || 13555 meta->func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) { 13556 enum bpf_type_flag type_flag = get_dynptr_type_flag(meta->initialized_dynptr.type); 13557 13558 mark_reg_known_zero(env, regs, BPF_REG_0); 13559 13560 if (!meta->arg_constant.found) { 13561 verbose(env, "verifier internal error: bpf_dynptr_slice(_rdwr) no constant size\n"); 13562 return -EFAULT; 13563 } 13564 13565 regs[BPF_REG_0].mem_size = meta->arg_constant.value; 13566 13567 /* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */ 13568 regs[BPF_REG_0].type = PTR_TO_MEM | type_flag; 13569 13570 if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_slice]) { 13571 regs[BPF_REG_0].type |= MEM_RDONLY; 13572 } else { 13573 /* this will set env->seen_direct_write to true */ 13574 if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) { 13575 verbose(env, "the prog does not allow writes to packet data\n"); 13576 return -EINVAL; 13577 } 13578 } 13579 13580 if (!meta->initialized_dynptr.id) { 13581 verbose(env, "verifier internal error: no dynptr id\n"); 13582 return -EFAULT; 13583 } 13584 regs[BPF_REG_0].dynptr_id = meta->initialized_dynptr.id; 13585 13586 /* we don't need to set BPF_REG_0's ref obj id 13587 * because packet slices are not refcounted (see 13588 * dynptr_type_refcounted) 13589 */ 13590 } else { 13591 return 0; 13592 } 13593 13594 return 1; 13595 } 13596 13597 static int check_return_code(struct bpf_verifier_env *env, int regno, const char *reg_name); 13598 13599 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 13600 int *insn_idx_p) 13601 { 13602 bool sleepable, rcu_lock, rcu_unlock, preempt_disable, preempt_enable; 13603 u32 i, nargs, ptr_type_id, release_ref_obj_id; 13604 struct bpf_reg_state *regs = cur_regs(env); 13605 const char *func_name, *ptr_type_name; 13606 const struct btf_type *t, *ptr_type; 13607 struct bpf_kfunc_call_arg_meta meta; 13608 struct bpf_insn_aux_data *insn_aux; 13609 int err, insn_idx = *insn_idx_p; 13610 const struct btf_param *args; 13611 struct btf *desc_btf; 13612 13613 /* skip for now, but return error when we find this in fixup_kfunc_call */ 13614 if (!insn->imm) 13615 return 0; 13616 13617 err = fetch_kfunc_meta(env, insn, &meta, &func_name); 13618 if (err == -EACCES && func_name) 13619 verbose(env, "calling kernel function %s is not allowed\n", func_name); 13620 if (err) 13621 return err; 13622 desc_btf = meta.btf; 13623 insn_aux = &env->insn_aux_data[insn_idx]; 13624 13625 insn_aux->is_iter_next = is_iter_next_kfunc(&meta); 13626 13627 if (!insn->off && 13628 (insn->imm == special_kfunc_list[KF_bpf_res_spin_lock] || 13629 insn->imm == special_kfunc_list[KF_bpf_res_spin_lock_irqsave])) { 13630 struct bpf_verifier_state *branch; 13631 struct bpf_reg_state *regs; 13632 13633 branch = push_stack(env, env->insn_idx + 1, env->insn_idx, false); 13634 if (!branch) { 13635 verbose(env, "failed to push state for failed lock acquisition\n"); 13636 return -ENOMEM; 13637 } 13638 13639 regs = branch->frame[branch->curframe]->regs; 13640 13641 /* Clear r0-r5 registers in forked state */ 13642 for (i = 0; i < CALLER_SAVED_REGS; i++) 13643 mark_reg_not_init(env, regs, caller_saved[i]); 13644 13645 mark_reg_unknown(env, regs, BPF_REG_0); 13646 err = __mark_reg_s32_range(env, regs, BPF_REG_0, -MAX_ERRNO, -1); 13647 if (err) { 13648 verbose(env, "failed to mark s32 range for retval in forked state for lock\n"); 13649 return err; 13650 } 13651 __mark_btf_func_reg_size(env, regs, BPF_REG_0, sizeof(u32)); 13652 } else if (!insn->off && insn->imm == special_kfunc_list[KF___bpf_trap]) { 13653 verbose(env, "unexpected __bpf_trap() due to uninitialized variable?\n"); 13654 return -EFAULT; 13655 } 13656 13657 if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) { 13658 verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n"); 13659 return -EACCES; 13660 } 13661 13662 sleepable = is_kfunc_sleepable(&meta); 13663 if (sleepable && !in_sleepable(env)) { 13664 verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name); 13665 return -EACCES; 13666 } 13667 13668 /* Check the arguments */ 13669 err = check_kfunc_args(env, &meta, insn_idx); 13670 if (err < 0) 13671 return err; 13672 13673 if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 13674 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 13675 set_rbtree_add_callback_state); 13676 if (err) { 13677 verbose(env, "kfunc %s#%d failed callback verification\n", 13678 func_name, meta.func_id); 13679 return err; 13680 } 13681 } 13682 13683 if (meta.func_id == special_kfunc_list[KF_bpf_session_cookie]) { 13684 meta.r0_size = sizeof(u64); 13685 meta.r0_rdonly = false; 13686 } 13687 13688 if (is_bpf_wq_set_callback_impl_kfunc(meta.func_id)) { 13689 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 13690 set_timer_callback_state); 13691 if (err) { 13692 verbose(env, "kfunc %s#%d failed callback verification\n", 13693 func_name, meta.func_id); 13694 return err; 13695 } 13696 } 13697 13698 rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta); 13699 rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta); 13700 13701 preempt_disable = is_kfunc_bpf_preempt_disable(&meta); 13702 preempt_enable = is_kfunc_bpf_preempt_enable(&meta); 13703 13704 if (env->cur_state->active_rcu_lock) { 13705 struct bpf_func_state *state; 13706 struct bpf_reg_state *reg; 13707 u32 clear_mask = (1 << STACK_SPILL) | (1 << STACK_ITER); 13708 13709 if (in_rbtree_lock_required_cb(env) && (rcu_lock || rcu_unlock)) { 13710 verbose(env, "Calling bpf_rcu_read_{lock,unlock} in unnecessary rbtree callback\n"); 13711 return -EACCES; 13712 } 13713 13714 if (rcu_lock) { 13715 verbose(env, "nested rcu read lock (kernel function %s)\n", func_name); 13716 return -EINVAL; 13717 } else if (rcu_unlock) { 13718 bpf_for_each_reg_in_vstate_mask(env->cur_state, state, reg, clear_mask, ({ 13719 if (reg->type & MEM_RCU) { 13720 reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL); 13721 reg->type |= PTR_UNTRUSTED; 13722 } 13723 })); 13724 env->cur_state->active_rcu_lock = false; 13725 } else if (sleepable) { 13726 verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name); 13727 return -EACCES; 13728 } 13729 } else if (rcu_lock) { 13730 env->cur_state->active_rcu_lock = true; 13731 } else if (rcu_unlock) { 13732 verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name); 13733 return -EINVAL; 13734 } 13735 13736 if (env->cur_state->active_preempt_locks) { 13737 if (preempt_disable) { 13738 env->cur_state->active_preempt_locks++; 13739 } else if (preempt_enable) { 13740 env->cur_state->active_preempt_locks--; 13741 } else if (sleepable) { 13742 verbose(env, "kernel func %s is sleepable within non-preemptible region\n", func_name); 13743 return -EACCES; 13744 } 13745 } else if (preempt_disable) { 13746 env->cur_state->active_preempt_locks++; 13747 } else if (preempt_enable) { 13748 verbose(env, "unmatched attempt to enable preemption (kernel function %s)\n", func_name); 13749 return -EINVAL; 13750 } 13751 13752 if (env->cur_state->active_irq_id && sleepable) { 13753 verbose(env, "kernel func %s is sleepable within IRQ-disabled region\n", func_name); 13754 return -EACCES; 13755 } 13756 13757 /* In case of release function, we get register number of refcounted 13758 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now. 13759 */ 13760 if (meta.release_regno) { 13761 err = release_reference(env, regs[meta.release_regno].ref_obj_id); 13762 if (err) { 13763 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 13764 func_name, meta.func_id); 13765 return err; 13766 } 13767 } 13768 13769 if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 13770 meta.func_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 13771 meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 13772 release_ref_obj_id = regs[BPF_REG_2].ref_obj_id; 13773 insn_aux->insert_off = regs[BPF_REG_2].off; 13774 insn_aux->kptr_struct_meta = btf_find_struct_meta(meta.arg_btf, meta.arg_btf_id); 13775 err = ref_convert_owning_non_owning(env, release_ref_obj_id); 13776 if (err) { 13777 verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n", 13778 func_name, meta.func_id); 13779 return err; 13780 } 13781 13782 err = release_reference(env, release_ref_obj_id); 13783 if (err) { 13784 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 13785 func_name, meta.func_id); 13786 return err; 13787 } 13788 } 13789 13790 if (meta.func_id == special_kfunc_list[KF_bpf_throw]) { 13791 if (!bpf_jit_supports_exceptions()) { 13792 verbose(env, "JIT does not support calling kfunc %s#%d\n", 13793 func_name, meta.func_id); 13794 return -ENOTSUPP; 13795 } 13796 env->seen_exception = true; 13797 13798 /* In the case of the default callback, the cookie value passed 13799 * to bpf_throw becomes the return value of the program. 13800 */ 13801 if (!env->exception_callback_subprog) { 13802 err = check_return_code(env, BPF_REG_1, "R1"); 13803 if (err < 0) 13804 return err; 13805 } 13806 } 13807 13808 for (i = 0; i < CALLER_SAVED_REGS; i++) 13809 mark_reg_not_init(env, regs, caller_saved[i]); 13810 13811 /* Check return type */ 13812 t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL); 13813 13814 if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) { 13815 /* Only exception is bpf_obj_new_impl */ 13816 if (meta.btf != btf_vmlinux || 13817 (meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl] && 13818 meta.func_id != special_kfunc_list[KF_bpf_percpu_obj_new_impl] && 13819 meta.func_id != special_kfunc_list[KF_bpf_refcount_acquire_impl])) { 13820 verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n"); 13821 return -EINVAL; 13822 } 13823 } 13824 13825 if (btf_type_is_scalar(t)) { 13826 mark_reg_unknown(env, regs, BPF_REG_0); 13827 if (meta.btf == btf_vmlinux && (meta.func_id == special_kfunc_list[KF_bpf_res_spin_lock] || 13828 meta.func_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave])) 13829 __mark_reg_const_zero(env, ®s[BPF_REG_0]); 13830 mark_btf_func_reg_size(env, BPF_REG_0, t->size); 13831 } else if (btf_type_is_ptr(t)) { 13832 ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id); 13833 err = check_special_kfunc(env, &meta, regs, insn_aux, ptr_type, desc_btf); 13834 if (err) { 13835 if (err < 0) 13836 return err; 13837 } else if (btf_type_is_void(ptr_type)) { 13838 /* kfunc returning 'void *' is equivalent to returning scalar */ 13839 mark_reg_unknown(env, regs, BPF_REG_0); 13840 } else if (!__btf_type_is_struct(ptr_type)) { 13841 if (!meta.r0_size) { 13842 __u32 sz; 13843 13844 if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) { 13845 meta.r0_size = sz; 13846 meta.r0_rdonly = true; 13847 } 13848 } 13849 if (!meta.r0_size) { 13850 ptr_type_name = btf_name_by_offset(desc_btf, 13851 ptr_type->name_off); 13852 verbose(env, 13853 "kernel function %s returns pointer type %s %s is not supported\n", 13854 func_name, 13855 btf_type_str(ptr_type), 13856 ptr_type_name); 13857 return -EINVAL; 13858 } 13859 13860 mark_reg_known_zero(env, regs, BPF_REG_0); 13861 regs[BPF_REG_0].type = PTR_TO_MEM; 13862 regs[BPF_REG_0].mem_size = meta.r0_size; 13863 13864 if (meta.r0_rdonly) 13865 regs[BPF_REG_0].type |= MEM_RDONLY; 13866 13867 /* Ensures we don't access the memory after a release_reference() */ 13868 if (meta.ref_obj_id) 13869 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 13870 } else { 13871 mark_reg_known_zero(env, regs, BPF_REG_0); 13872 regs[BPF_REG_0].btf = desc_btf; 13873 regs[BPF_REG_0].type = PTR_TO_BTF_ID; 13874 regs[BPF_REG_0].btf_id = ptr_type_id; 13875 13876 if (meta.func_id == special_kfunc_list[KF_bpf_get_kmem_cache]) 13877 regs[BPF_REG_0].type |= PTR_UNTRUSTED; 13878 13879 if (is_iter_next_kfunc(&meta)) { 13880 struct bpf_reg_state *cur_iter; 13881 13882 cur_iter = get_iter_from_state(env->cur_state, &meta); 13883 13884 if (cur_iter->type & MEM_RCU) /* KF_RCU_PROTECTED */ 13885 regs[BPF_REG_0].type |= MEM_RCU; 13886 else 13887 regs[BPF_REG_0].type |= PTR_TRUSTED; 13888 } 13889 } 13890 13891 if (is_kfunc_ret_null(&meta)) { 13892 regs[BPF_REG_0].type |= PTR_MAYBE_NULL; 13893 /* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */ 13894 regs[BPF_REG_0].id = ++env->id_gen; 13895 } 13896 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *)); 13897 if (is_kfunc_acquire(&meta)) { 13898 int id = acquire_reference(env, insn_idx); 13899 13900 if (id < 0) 13901 return id; 13902 if (is_kfunc_ret_null(&meta)) 13903 regs[BPF_REG_0].id = id; 13904 regs[BPF_REG_0].ref_obj_id = id; 13905 } else if (is_rbtree_node_type(ptr_type) || is_list_node_type(ptr_type)) { 13906 ref_set_non_owning(env, ®s[BPF_REG_0]); 13907 } 13908 13909 if (reg_may_point_to_spin_lock(®s[BPF_REG_0]) && !regs[BPF_REG_0].id) 13910 regs[BPF_REG_0].id = ++env->id_gen; 13911 } else if (btf_type_is_void(t)) { 13912 if (meta.btf == btf_vmlinux) { 13913 if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl] || 13914 meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) { 13915 insn_aux->kptr_struct_meta = 13916 btf_find_struct_meta(meta.arg_btf, 13917 meta.arg_btf_id); 13918 } 13919 } 13920 } 13921 13922 nargs = btf_type_vlen(meta.func_proto); 13923 args = (const struct btf_param *)(meta.func_proto + 1); 13924 for (i = 0; i < nargs; i++) { 13925 u32 regno = i + 1; 13926 13927 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL); 13928 if (btf_type_is_ptr(t)) 13929 mark_btf_func_reg_size(env, regno, sizeof(void *)); 13930 else 13931 /* scalar. ensured by btf_check_kfunc_arg_match() */ 13932 mark_btf_func_reg_size(env, regno, t->size); 13933 } 13934 13935 if (is_iter_next_kfunc(&meta)) { 13936 err = process_iter_next_call(env, insn_idx, &meta); 13937 if (err) 13938 return err; 13939 } 13940 13941 return 0; 13942 } 13943 13944 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 13945 const struct bpf_reg_state *reg, 13946 enum bpf_reg_type type) 13947 { 13948 bool known = tnum_is_const(reg->var_off); 13949 s64 val = reg->var_off.value; 13950 s64 smin = reg->smin_value; 13951 13952 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 13953 verbose(env, "math between %s pointer and %lld is not allowed\n", 13954 reg_type_str(env, type), val); 13955 return false; 13956 } 13957 13958 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 13959 verbose(env, "%s pointer offset %d is not allowed\n", 13960 reg_type_str(env, type), reg->off); 13961 return false; 13962 } 13963 13964 if (smin == S64_MIN) { 13965 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 13966 reg_type_str(env, type)); 13967 return false; 13968 } 13969 13970 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 13971 verbose(env, "value %lld makes %s pointer be out of bounds\n", 13972 smin, reg_type_str(env, type)); 13973 return false; 13974 } 13975 13976 return true; 13977 } 13978 13979 enum { 13980 REASON_BOUNDS = -1, 13981 REASON_TYPE = -2, 13982 REASON_PATHS = -3, 13983 REASON_LIMIT = -4, 13984 REASON_STACK = -5, 13985 }; 13986 13987 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 13988 u32 *alu_limit, bool mask_to_left) 13989 { 13990 u32 max = 0, ptr_limit = 0; 13991 13992 switch (ptr_reg->type) { 13993 case PTR_TO_STACK: 13994 /* Offset 0 is out-of-bounds, but acceptable start for the 13995 * left direction, see BPF_REG_FP. Also, unknown scalar 13996 * offset where we would need to deal with min/max bounds is 13997 * currently prohibited for unprivileged. 13998 */ 13999 max = MAX_BPF_STACK + mask_to_left; 14000 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off); 14001 break; 14002 case PTR_TO_MAP_VALUE: 14003 max = ptr_reg->map_ptr->value_size; 14004 ptr_limit = (mask_to_left ? 14005 ptr_reg->smin_value : 14006 ptr_reg->umax_value) + ptr_reg->off; 14007 break; 14008 default: 14009 return REASON_TYPE; 14010 } 14011 14012 if (ptr_limit >= max) 14013 return REASON_LIMIT; 14014 *alu_limit = ptr_limit; 14015 return 0; 14016 } 14017 14018 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 14019 const struct bpf_insn *insn) 14020 { 14021 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K; 14022 } 14023 14024 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 14025 u32 alu_state, u32 alu_limit) 14026 { 14027 /* If we arrived here from different branches with different 14028 * state or limits to sanitize, then this won't work. 14029 */ 14030 if (aux->alu_state && 14031 (aux->alu_state != alu_state || 14032 aux->alu_limit != alu_limit)) 14033 return REASON_PATHS; 14034 14035 /* Corresponding fixup done in do_misc_fixups(). */ 14036 aux->alu_state = alu_state; 14037 aux->alu_limit = alu_limit; 14038 return 0; 14039 } 14040 14041 static int sanitize_val_alu(struct bpf_verifier_env *env, 14042 struct bpf_insn *insn) 14043 { 14044 struct bpf_insn_aux_data *aux = cur_aux(env); 14045 14046 if (can_skip_alu_sanitation(env, insn)) 14047 return 0; 14048 14049 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 14050 } 14051 14052 static bool sanitize_needed(u8 opcode) 14053 { 14054 return opcode == BPF_ADD || opcode == BPF_SUB; 14055 } 14056 14057 struct bpf_sanitize_info { 14058 struct bpf_insn_aux_data aux; 14059 bool mask_to_left; 14060 }; 14061 14062 static struct bpf_verifier_state * 14063 sanitize_speculative_path(struct bpf_verifier_env *env, 14064 const struct bpf_insn *insn, 14065 u32 next_idx, u32 curr_idx) 14066 { 14067 struct bpf_verifier_state *branch; 14068 struct bpf_reg_state *regs; 14069 14070 branch = push_stack(env, next_idx, curr_idx, true); 14071 if (branch && insn) { 14072 regs = branch->frame[branch->curframe]->regs; 14073 if (BPF_SRC(insn->code) == BPF_K) { 14074 mark_reg_unknown(env, regs, insn->dst_reg); 14075 } else if (BPF_SRC(insn->code) == BPF_X) { 14076 mark_reg_unknown(env, regs, insn->dst_reg); 14077 mark_reg_unknown(env, regs, insn->src_reg); 14078 } 14079 } 14080 return branch; 14081 } 14082 14083 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 14084 struct bpf_insn *insn, 14085 const struct bpf_reg_state *ptr_reg, 14086 const struct bpf_reg_state *off_reg, 14087 struct bpf_reg_state *dst_reg, 14088 struct bpf_sanitize_info *info, 14089 const bool commit_window) 14090 { 14091 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux; 14092 struct bpf_verifier_state *vstate = env->cur_state; 14093 bool off_is_imm = tnum_is_const(off_reg->var_off); 14094 bool off_is_neg = off_reg->smin_value < 0; 14095 bool ptr_is_dst_reg = ptr_reg == dst_reg; 14096 u8 opcode = BPF_OP(insn->code); 14097 u32 alu_state, alu_limit; 14098 struct bpf_reg_state tmp; 14099 bool ret; 14100 int err; 14101 14102 if (can_skip_alu_sanitation(env, insn)) 14103 return 0; 14104 14105 /* We already marked aux for masking from non-speculative 14106 * paths, thus we got here in the first place. We only care 14107 * to explore bad access from here. 14108 */ 14109 if (vstate->speculative) 14110 goto do_sim; 14111 14112 if (!commit_window) { 14113 if (!tnum_is_const(off_reg->var_off) && 14114 (off_reg->smin_value < 0) != (off_reg->smax_value < 0)) 14115 return REASON_BOUNDS; 14116 14117 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) || 14118 (opcode == BPF_SUB && !off_is_neg); 14119 } 14120 14121 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left); 14122 if (err < 0) 14123 return err; 14124 14125 if (commit_window) { 14126 /* In commit phase we narrow the masking window based on 14127 * the observed pointer move after the simulated operation. 14128 */ 14129 alu_state = info->aux.alu_state; 14130 alu_limit = abs(info->aux.alu_limit - alu_limit); 14131 } else { 14132 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 14133 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0; 14134 alu_state |= ptr_is_dst_reg ? 14135 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 14136 14137 /* Limit pruning on unknown scalars to enable deep search for 14138 * potential masking differences from other program paths. 14139 */ 14140 if (!off_is_imm) 14141 env->explore_alu_limits = true; 14142 } 14143 14144 err = update_alu_sanitation_state(aux, alu_state, alu_limit); 14145 if (err < 0) 14146 return err; 14147 do_sim: 14148 /* If we're in commit phase, we're done here given we already 14149 * pushed the truncated dst_reg into the speculative verification 14150 * stack. 14151 * 14152 * Also, when register is a known constant, we rewrite register-based 14153 * operation to immediate-based, and thus do not need masking (and as 14154 * a consequence, do not need to simulate the zero-truncation either). 14155 */ 14156 if (commit_window || off_is_imm) 14157 return 0; 14158 14159 /* Simulate and find potential out-of-bounds access under 14160 * speculative execution from truncation as a result of 14161 * masking when off was not within expected range. If off 14162 * sits in dst, then we temporarily need to move ptr there 14163 * to simulate dst (== 0) +/-= ptr. Needed, for example, 14164 * for cases where we use K-based arithmetic in one direction 14165 * and truncated reg-based in the other in order to explore 14166 * bad access. 14167 */ 14168 if (!ptr_is_dst_reg) { 14169 tmp = *dst_reg; 14170 copy_register_state(dst_reg, ptr_reg); 14171 } 14172 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1, 14173 env->insn_idx); 14174 if (!ptr_is_dst_reg && ret) 14175 *dst_reg = tmp; 14176 return !ret ? REASON_STACK : 0; 14177 } 14178 14179 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env) 14180 { 14181 struct bpf_verifier_state *vstate = env->cur_state; 14182 14183 /* If we simulate paths under speculation, we don't update the 14184 * insn as 'seen' such that when we verify unreachable paths in 14185 * the non-speculative domain, sanitize_dead_code() can still 14186 * rewrite/sanitize them. 14187 */ 14188 if (!vstate->speculative) 14189 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 14190 } 14191 14192 static int sanitize_err(struct bpf_verifier_env *env, 14193 const struct bpf_insn *insn, int reason, 14194 const struct bpf_reg_state *off_reg, 14195 const struct bpf_reg_state *dst_reg) 14196 { 14197 static const char *err = "pointer arithmetic with it prohibited for !root"; 14198 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub"; 14199 u32 dst = insn->dst_reg, src = insn->src_reg; 14200 14201 switch (reason) { 14202 case REASON_BOUNDS: 14203 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n", 14204 off_reg == dst_reg ? dst : src, err); 14205 break; 14206 case REASON_TYPE: 14207 verbose(env, "R%d has pointer with unsupported alu operation, %s\n", 14208 off_reg == dst_reg ? src : dst, err); 14209 break; 14210 case REASON_PATHS: 14211 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n", 14212 dst, op, err); 14213 break; 14214 case REASON_LIMIT: 14215 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n", 14216 dst, op, err); 14217 break; 14218 case REASON_STACK: 14219 verbose(env, "R%d could not be pushed for speculative verification, %s\n", 14220 dst, err); 14221 break; 14222 default: 14223 verbose(env, "verifier internal error: unknown reason (%d)\n", 14224 reason); 14225 break; 14226 } 14227 14228 return -EACCES; 14229 } 14230 14231 /* check that stack access falls within stack limits and that 'reg' doesn't 14232 * have a variable offset. 14233 * 14234 * Variable offset is prohibited for unprivileged mode for simplicity since it 14235 * requires corresponding support in Spectre masking for stack ALU. See also 14236 * retrieve_ptr_limit(). 14237 * 14238 * 14239 * 'off' includes 'reg->off'. 14240 */ 14241 static int check_stack_access_for_ptr_arithmetic( 14242 struct bpf_verifier_env *env, 14243 int regno, 14244 const struct bpf_reg_state *reg, 14245 int off) 14246 { 14247 if (!tnum_is_const(reg->var_off)) { 14248 char tn_buf[48]; 14249 14250 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 14251 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n", 14252 regno, tn_buf, off); 14253 return -EACCES; 14254 } 14255 14256 if (off >= 0 || off < -MAX_BPF_STACK) { 14257 verbose(env, "R%d stack pointer arithmetic goes out of range, " 14258 "prohibited for !root; off=%d\n", regno, off); 14259 return -EACCES; 14260 } 14261 14262 return 0; 14263 } 14264 14265 static int sanitize_check_bounds(struct bpf_verifier_env *env, 14266 const struct bpf_insn *insn, 14267 const struct bpf_reg_state *dst_reg) 14268 { 14269 u32 dst = insn->dst_reg; 14270 14271 /* For unprivileged we require that resulting offset must be in bounds 14272 * in order to be able to sanitize access later on. 14273 */ 14274 if (env->bypass_spec_v1) 14275 return 0; 14276 14277 switch (dst_reg->type) { 14278 case PTR_TO_STACK: 14279 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg, 14280 dst_reg->off + dst_reg->var_off.value)) 14281 return -EACCES; 14282 break; 14283 case PTR_TO_MAP_VALUE: 14284 if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) { 14285 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 14286 "prohibited for !root\n", dst); 14287 return -EACCES; 14288 } 14289 break; 14290 default: 14291 break; 14292 } 14293 14294 return 0; 14295 } 14296 14297 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 14298 * Caller should also handle BPF_MOV case separately. 14299 * If we return -EACCES, caller may want to try again treating pointer as a 14300 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 14301 */ 14302 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 14303 struct bpf_insn *insn, 14304 const struct bpf_reg_state *ptr_reg, 14305 const struct bpf_reg_state *off_reg) 14306 { 14307 struct bpf_verifier_state *vstate = env->cur_state; 14308 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 14309 struct bpf_reg_state *regs = state->regs, *dst_reg; 14310 bool known = tnum_is_const(off_reg->var_off); 14311 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 14312 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 14313 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 14314 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 14315 struct bpf_sanitize_info info = {}; 14316 u8 opcode = BPF_OP(insn->code); 14317 u32 dst = insn->dst_reg; 14318 int ret; 14319 14320 dst_reg = ®s[dst]; 14321 14322 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 14323 smin_val > smax_val || umin_val > umax_val) { 14324 /* Taint dst register if offset had invalid bounds derived from 14325 * e.g. dead branches. 14326 */ 14327 __mark_reg_unknown(env, dst_reg); 14328 return 0; 14329 } 14330 14331 if (BPF_CLASS(insn->code) != BPF_ALU64) { 14332 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 14333 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 14334 __mark_reg_unknown(env, dst_reg); 14335 return 0; 14336 } 14337 14338 verbose(env, 14339 "R%d 32-bit pointer arithmetic prohibited\n", 14340 dst); 14341 return -EACCES; 14342 } 14343 14344 if (ptr_reg->type & PTR_MAYBE_NULL) { 14345 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 14346 dst, reg_type_str(env, ptr_reg->type)); 14347 return -EACCES; 14348 } 14349 14350 switch (base_type(ptr_reg->type)) { 14351 case PTR_TO_CTX: 14352 case PTR_TO_MAP_VALUE: 14353 case PTR_TO_MAP_KEY: 14354 case PTR_TO_STACK: 14355 case PTR_TO_PACKET_META: 14356 case PTR_TO_PACKET: 14357 case PTR_TO_TP_BUFFER: 14358 case PTR_TO_BTF_ID: 14359 case PTR_TO_MEM: 14360 case PTR_TO_BUF: 14361 case PTR_TO_FUNC: 14362 case CONST_PTR_TO_DYNPTR: 14363 break; 14364 case PTR_TO_FLOW_KEYS: 14365 if (known) 14366 break; 14367 fallthrough; 14368 case CONST_PTR_TO_MAP: 14369 /* smin_val represents the known value */ 14370 if (known && smin_val == 0 && opcode == BPF_ADD) 14371 break; 14372 fallthrough; 14373 default: 14374 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 14375 dst, reg_type_str(env, ptr_reg->type)); 14376 return -EACCES; 14377 } 14378 14379 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 14380 * The id may be overwritten later if we create a new variable offset. 14381 */ 14382 dst_reg->type = ptr_reg->type; 14383 dst_reg->id = ptr_reg->id; 14384 14385 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 14386 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 14387 return -EINVAL; 14388 14389 /* pointer types do not carry 32-bit bounds at the moment. */ 14390 __mark_reg32_unbounded(dst_reg); 14391 14392 if (sanitize_needed(opcode)) { 14393 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg, 14394 &info, false); 14395 if (ret < 0) 14396 return sanitize_err(env, insn, ret, off_reg, dst_reg); 14397 } 14398 14399 switch (opcode) { 14400 case BPF_ADD: 14401 /* We can take a fixed offset as long as it doesn't overflow 14402 * the s32 'off' field 14403 */ 14404 if (known && (ptr_reg->off + smin_val == 14405 (s64)(s32)(ptr_reg->off + smin_val))) { 14406 /* pointer += K. Accumulate it into fixed offset */ 14407 dst_reg->smin_value = smin_ptr; 14408 dst_reg->smax_value = smax_ptr; 14409 dst_reg->umin_value = umin_ptr; 14410 dst_reg->umax_value = umax_ptr; 14411 dst_reg->var_off = ptr_reg->var_off; 14412 dst_reg->off = ptr_reg->off + smin_val; 14413 dst_reg->raw = ptr_reg->raw; 14414 break; 14415 } 14416 /* A new variable offset is created. Note that off_reg->off 14417 * == 0, since it's a scalar. 14418 * dst_reg gets the pointer type and since some positive 14419 * integer value was added to the pointer, give it a new 'id' 14420 * if it's a PTR_TO_PACKET. 14421 * this creates a new 'base' pointer, off_reg (variable) gets 14422 * added into the variable offset, and we copy the fixed offset 14423 * from ptr_reg. 14424 */ 14425 if (check_add_overflow(smin_ptr, smin_val, &dst_reg->smin_value) || 14426 check_add_overflow(smax_ptr, smax_val, &dst_reg->smax_value)) { 14427 dst_reg->smin_value = S64_MIN; 14428 dst_reg->smax_value = S64_MAX; 14429 } 14430 if (check_add_overflow(umin_ptr, umin_val, &dst_reg->umin_value) || 14431 check_add_overflow(umax_ptr, umax_val, &dst_reg->umax_value)) { 14432 dst_reg->umin_value = 0; 14433 dst_reg->umax_value = U64_MAX; 14434 } 14435 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 14436 dst_reg->off = ptr_reg->off; 14437 dst_reg->raw = ptr_reg->raw; 14438 if (reg_is_pkt_pointer(ptr_reg)) { 14439 dst_reg->id = ++env->id_gen; 14440 /* something was added to pkt_ptr, set range to zero */ 14441 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 14442 } 14443 break; 14444 case BPF_SUB: 14445 if (dst_reg == off_reg) { 14446 /* scalar -= pointer. Creates an unknown scalar */ 14447 verbose(env, "R%d tried to subtract pointer from scalar\n", 14448 dst); 14449 return -EACCES; 14450 } 14451 /* We don't allow subtraction from FP, because (according to 14452 * test_verifier.c test "invalid fp arithmetic", JITs might not 14453 * be able to deal with it. 14454 */ 14455 if (ptr_reg->type == PTR_TO_STACK) { 14456 verbose(env, "R%d subtraction from stack pointer prohibited\n", 14457 dst); 14458 return -EACCES; 14459 } 14460 if (known && (ptr_reg->off - smin_val == 14461 (s64)(s32)(ptr_reg->off - smin_val))) { 14462 /* pointer -= K. Subtract it from fixed offset */ 14463 dst_reg->smin_value = smin_ptr; 14464 dst_reg->smax_value = smax_ptr; 14465 dst_reg->umin_value = umin_ptr; 14466 dst_reg->umax_value = umax_ptr; 14467 dst_reg->var_off = ptr_reg->var_off; 14468 dst_reg->id = ptr_reg->id; 14469 dst_reg->off = ptr_reg->off - smin_val; 14470 dst_reg->raw = ptr_reg->raw; 14471 break; 14472 } 14473 /* A new variable offset is created. If the subtrahend is known 14474 * nonnegative, then any reg->range we had before is still good. 14475 */ 14476 if (check_sub_overflow(smin_ptr, smax_val, &dst_reg->smin_value) || 14477 check_sub_overflow(smax_ptr, smin_val, &dst_reg->smax_value)) { 14478 /* Overflow possible, we know nothing */ 14479 dst_reg->smin_value = S64_MIN; 14480 dst_reg->smax_value = S64_MAX; 14481 } 14482 if (umin_ptr < umax_val) { 14483 /* Overflow possible, we know nothing */ 14484 dst_reg->umin_value = 0; 14485 dst_reg->umax_value = U64_MAX; 14486 } else { 14487 /* Cannot overflow (as long as bounds are consistent) */ 14488 dst_reg->umin_value = umin_ptr - umax_val; 14489 dst_reg->umax_value = umax_ptr - umin_val; 14490 } 14491 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 14492 dst_reg->off = ptr_reg->off; 14493 dst_reg->raw = ptr_reg->raw; 14494 if (reg_is_pkt_pointer(ptr_reg)) { 14495 dst_reg->id = ++env->id_gen; 14496 /* something was added to pkt_ptr, set range to zero */ 14497 if (smin_val < 0) 14498 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 14499 } 14500 break; 14501 case BPF_AND: 14502 case BPF_OR: 14503 case BPF_XOR: 14504 /* bitwise ops on pointers are troublesome, prohibit. */ 14505 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 14506 dst, bpf_alu_string[opcode >> 4]); 14507 return -EACCES; 14508 default: 14509 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 14510 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 14511 dst, bpf_alu_string[opcode >> 4]); 14512 return -EACCES; 14513 } 14514 14515 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 14516 return -EINVAL; 14517 reg_bounds_sync(dst_reg); 14518 if (sanitize_check_bounds(env, insn, dst_reg) < 0) 14519 return -EACCES; 14520 if (sanitize_needed(opcode)) { 14521 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg, 14522 &info, true); 14523 if (ret < 0) 14524 return sanitize_err(env, insn, ret, off_reg, dst_reg); 14525 } 14526 14527 return 0; 14528 } 14529 14530 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, 14531 struct bpf_reg_state *src_reg) 14532 { 14533 s32 *dst_smin = &dst_reg->s32_min_value; 14534 s32 *dst_smax = &dst_reg->s32_max_value; 14535 u32 *dst_umin = &dst_reg->u32_min_value; 14536 u32 *dst_umax = &dst_reg->u32_max_value; 14537 14538 if (check_add_overflow(*dst_smin, src_reg->s32_min_value, dst_smin) || 14539 check_add_overflow(*dst_smax, src_reg->s32_max_value, dst_smax)) { 14540 *dst_smin = S32_MIN; 14541 *dst_smax = S32_MAX; 14542 } 14543 if (check_add_overflow(*dst_umin, src_reg->u32_min_value, dst_umin) || 14544 check_add_overflow(*dst_umax, src_reg->u32_max_value, dst_umax)) { 14545 *dst_umin = 0; 14546 *dst_umax = U32_MAX; 14547 } 14548 } 14549 14550 static void scalar_min_max_add(struct bpf_reg_state *dst_reg, 14551 struct bpf_reg_state *src_reg) 14552 { 14553 s64 *dst_smin = &dst_reg->smin_value; 14554 s64 *dst_smax = &dst_reg->smax_value; 14555 u64 *dst_umin = &dst_reg->umin_value; 14556 u64 *dst_umax = &dst_reg->umax_value; 14557 14558 if (check_add_overflow(*dst_smin, src_reg->smin_value, dst_smin) || 14559 check_add_overflow(*dst_smax, src_reg->smax_value, dst_smax)) { 14560 *dst_smin = S64_MIN; 14561 *dst_smax = S64_MAX; 14562 } 14563 if (check_add_overflow(*dst_umin, src_reg->umin_value, dst_umin) || 14564 check_add_overflow(*dst_umax, src_reg->umax_value, dst_umax)) { 14565 *dst_umin = 0; 14566 *dst_umax = U64_MAX; 14567 } 14568 } 14569 14570 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, 14571 struct bpf_reg_state *src_reg) 14572 { 14573 s32 *dst_smin = &dst_reg->s32_min_value; 14574 s32 *dst_smax = &dst_reg->s32_max_value; 14575 u32 umin_val = src_reg->u32_min_value; 14576 u32 umax_val = src_reg->u32_max_value; 14577 14578 if (check_sub_overflow(*dst_smin, src_reg->s32_max_value, dst_smin) || 14579 check_sub_overflow(*dst_smax, src_reg->s32_min_value, dst_smax)) { 14580 /* Overflow possible, we know nothing */ 14581 *dst_smin = S32_MIN; 14582 *dst_smax = S32_MAX; 14583 } 14584 if (dst_reg->u32_min_value < umax_val) { 14585 /* Overflow possible, we know nothing */ 14586 dst_reg->u32_min_value = 0; 14587 dst_reg->u32_max_value = U32_MAX; 14588 } else { 14589 /* Cannot overflow (as long as bounds are consistent) */ 14590 dst_reg->u32_min_value -= umax_val; 14591 dst_reg->u32_max_value -= umin_val; 14592 } 14593 } 14594 14595 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, 14596 struct bpf_reg_state *src_reg) 14597 { 14598 s64 *dst_smin = &dst_reg->smin_value; 14599 s64 *dst_smax = &dst_reg->smax_value; 14600 u64 umin_val = src_reg->umin_value; 14601 u64 umax_val = src_reg->umax_value; 14602 14603 if (check_sub_overflow(*dst_smin, src_reg->smax_value, dst_smin) || 14604 check_sub_overflow(*dst_smax, src_reg->smin_value, dst_smax)) { 14605 /* Overflow possible, we know nothing */ 14606 *dst_smin = S64_MIN; 14607 *dst_smax = S64_MAX; 14608 } 14609 if (dst_reg->umin_value < umax_val) { 14610 /* Overflow possible, we know nothing */ 14611 dst_reg->umin_value = 0; 14612 dst_reg->umax_value = U64_MAX; 14613 } else { 14614 /* Cannot overflow (as long as bounds are consistent) */ 14615 dst_reg->umin_value -= umax_val; 14616 dst_reg->umax_value -= umin_val; 14617 } 14618 } 14619 14620 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, 14621 struct bpf_reg_state *src_reg) 14622 { 14623 s32 *dst_smin = &dst_reg->s32_min_value; 14624 s32 *dst_smax = &dst_reg->s32_max_value; 14625 u32 *dst_umin = &dst_reg->u32_min_value; 14626 u32 *dst_umax = &dst_reg->u32_max_value; 14627 s32 tmp_prod[4]; 14628 14629 if (check_mul_overflow(*dst_umax, src_reg->u32_max_value, dst_umax) || 14630 check_mul_overflow(*dst_umin, src_reg->u32_min_value, dst_umin)) { 14631 /* Overflow possible, we know nothing */ 14632 *dst_umin = 0; 14633 *dst_umax = U32_MAX; 14634 } 14635 if (check_mul_overflow(*dst_smin, src_reg->s32_min_value, &tmp_prod[0]) || 14636 check_mul_overflow(*dst_smin, src_reg->s32_max_value, &tmp_prod[1]) || 14637 check_mul_overflow(*dst_smax, src_reg->s32_min_value, &tmp_prod[2]) || 14638 check_mul_overflow(*dst_smax, src_reg->s32_max_value, &tmp_prod[3])) { 14639 /* Overflow possible, we know nothing */ 14640 *dst_smin = S32_MIN; 14641 *dst_smax = S32_MAX; 14642 } else { 14643 *dst_smin = min_array(tmp_prod, 4); 14644 *dst_smax = max_array(tmp_prod, 4); 14645 } 14646 } 14647 14648 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, 14649 struct bpf_reg_state *src_reg) 14650 { 14651 s64 *dst_smin = &dst_reg->smin_value; 14652 s64 *dst_smax = &dst_reg->smax_value; 14653 u64 *dst_umin = &dst_reg->umin_value; 14654 u64 *dst_umax = &dst_reg->umax_value; 14655 s64 tmp_prod[4]; 14656 14657 if (check_mul_overflow(*dst_umax, src_reg->umax_value, dst_umax) || 14658 check_mul_overflow(*dst_umin, src_reg->umin_value, dst_umin)) { 14659 /* Overflow possible, we know nothing */ 14660 *dst_umin = 0; 14661 *dst_umax = U64_MAX; 14662 } 14663 if (check_mul_overflow(*dst_smin, src_reg->smin_value, &tmp_prod[0]) || 14664 check_mul_overflow(*dst_smin, src_reg->smax_value, &tmp_prod[1]) || 14665 check_mul_overflow(*dst_smax, src_reg->smin_value, &tmp_prod[2]) || 14666 check_mul_overflow(*dst_smax, src_reg->smax_value, &tmp_prod[3])) { 14667 /* Overflow possible, we know nothing */ 14668 *dst_smin = S64_MIN; 14669 *dst_smax = S64_MAX; 14670 } else { 14671 *dst_smin = min_array(tmp_prod, 4); 14672 *dst_smax = max_array(tmp_prod, 4); 14673 } 14674 } 14675 14676 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, 14677 struct bpf_reg_state *src_reg) 14678 { 14679 bool src_known = tnum_subreg_is_const(src_reg->var_off); 14680 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 14681 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 14682 u32 umax_val = src_reg->u32_max_value; 14683 14684 if (src_known && dst_known) { 14685 __mark_reg32_known(dst_reg, var32_off.value); 14686 return; 14687 } 14688 14689 /* We get our minimum from the var_off, since that's inherently 14690 * bitwise. Our maximum is the minimum of the operands' maxima. 14691 */ 14692 dst_reg->u32_min_value = var32_off.value; 14693 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 14694 14695 /* Safe to set s32 bounds by casting u32 result into s32 when u32 14696 * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded. 14697 */ 14698 if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) { 14699 dst_reg->s32_min_value = dst_reg->u32_min_value; 14700 dst_reg->s32_max_value = dst_reg->u32_max_value; 14701 } else { 14702 dst_reg->s32_min_value = S32_MIN; 14703 dst_reg->s32_max_value = S32_MAX; 14704 } 14705 } 14706 14707 static void scalar_min_max_and(struct bpf_reg_state *dst_reg, 14708 struct bpf_reg_state *src_reg) 14709 { 14710 bool src_known = tnum_is_const(src_reg->var_off); 14711 bool dst_known = tnum_is_const(dst_reg->var_off); 14712 u64 umax_val = src_reg->umax_value; 14713 14714 if (src_known && dst_known) { 14715 __mark_reg_known(dst_reg, dst_reg->var_off.value); 14716 return; 14717 } 14718 14719 /* We get our minimum from the var_off, since that's inherently 14720 * bitwise. Our maximum is the minimum of the operands' maxima. 14721 */ 14722 dst_reg->umin_value = dst_reg->var_off.value; 14723 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 14724 14725 /* Safe to set s64 bounds by casting u64 result into s64 when u64 14726 * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded. 14727 */ 14728 if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) { 14729 dst_reg->smin_value = dst_reg->umin_value; 14730 dst_reg->smax_value = dst_reg->umax_value; 14731 } else { 14732 dst_reg->smin_value = S64_MIN; 14733 dst_reg->smax_value = S64_MAX; 14734 } 14735 /* We may learn something more from the var_off */ 14736 __update_reg_bounds(dst_reg); 14737 } 14738 14739 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, 14740 struct bpf_reg_state *src_reg) 14741 { 14742 bool src_known = tnum_subreg_is_const(src_reg->var_off); 14743 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 14744 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 14745 u32 umin_val = src_reg->u32_min_value; 14746 14747 if (src_known && dst_known) { 14748 __mark_reg32_known(dst_reg, var32_off.value); 14749 return; 14750 } 14751 14752 /* We get our maximum from the var_off, and our minimum is the 14753 * maximum of the operands' minima 14754 */ 14755 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 14756 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 14757 14758 /* Safe to set s32 bounds by casting u32 result into s32 when u32 14759 * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded. 14760 */ 14761 if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) { 14762 dst_reg->s32_min_value = dst_reg->u32_min_value; 14763 dst_reg->s32_max_value = dst_reg->u32_max_value; 14764 } else { 14765 dst_reg->s32_min_value = S32_MIN; 14766 dst_reg->s32_max_value = S32_MAX; 14767 } 14768 } 14769 14770 static void scalar_min_max_or(struct bpf_reg_state *dst_reg, 14771 struct bpf_reg_state *src_reg) 14772 { 14773 bool src_known = tnum_is_const(src_reg->var_off); 14774 bool dst_known = tnum_is_const(dst_reg->var_off); 14775 u64 umin_val = src_reg->umin_value; 14776 14777 if (src_known && dst_known) { 14778 __mark_reg_known(dst_reg, dst_reg->var_off.value); 14779 return; 14780 } 14781 14782 /* We get our maximum from the var_off, and our minimum is the 14783 * maximum of the operands' minima 14784 */ 14785 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 14786 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 14787 14788 /* Safe to set s64 bounds by casting u64 result into s64 when u64 14789 * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded. 14790 */ 14791 if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) { 14792 dst_reg->smin_value = dst_reg->umin_value; 14793 dst_reg->smax_value = dst_reg->umax_value; 14794 } else { 14795 dst_reg->smin_value = S64_MIN; 14796 dst_reg->smax_value = S64_MAX; 14797 } 14798 /* We may learn something more from the var_off */ 14799 __update_reg_bounds(dst_reg); 14800 } 14801 14802 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg, 14803 struct bpf_reg_state *src_reg) 14804 { 14805 bool src_known = tnum_subreg_is_const(src_reg->var_off); 14806 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 14807 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 14808 14809 if (src_known && dst_known) { 14810 __mark_reg32_known(dst_reg, var32_off.value); 14811 return; 14812 } 14813 14814 /* We get both minimum and maximum from the var32_off. */ 14815 dst_reg->u32_min_value = var32_off.value; 14816 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 14817 14818 /* Safe to set s32 bounds by casting u32 result into s32 when u32 14819 * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded. 14820 */ 14821 if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) { 14822 dst_reg->s32_min_value = dst_reg->u32_min_value; 14823 dst_reg->s32_max_value = dst_reg->u32_max_value; 14824 } else { 14825 dst_reg->s32_min_value = S32_MIN; 14826 dst_reg->s32_max_value = S32_MAX; 14827 } 14828 } 14829 14830 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg, 14831 struct bpf_reg_state *src_reg) 14832 { 14833 bool src_known = tnum_is_const(src_reg->var_off); 14834 bool dst_known = tnum_is_const(dst_reg->var_off); 14835 14836 if (src_known && dst_known) { 14837 /* dst_reg->var_off.value has been updated earlier */ 14838 __mark_reg_known(dst_reg, dst_reg->var_off.value); 14839 return; 14840 } 14841 14842 /* We get both minimum and maximum from the var_off. */ 14843 dst_reg->umin_value = dst_reg->var_off.value; 14844 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 14845 14846 /* Safe to set s64 bounds by casting u64 result into s64 when u64 14847 * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded. 14848 */ 14849 if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) { 14850 dst_reg->smin_value = dst_reg->umin_value; 14851 dst_reg->smax_value = dst_reg->umax_value; 14852 } else { 14853 dst_reg->smin_value = S64_MIN; 14854 dst_reg->smax_value = S64_MAX; 14855 } 14856 14857 __update_reg_bounds(dst_reg); 14858 } 14859 14860 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 14861 u64 umin_val, u64 umax_val) 14862 { 14863 /* We lose all sign bit information (except what we can pick 14864 * up from var_off) 14865 */ 14866 dst_reg->s32_min_value = S32_MIN; 14867 dst_reg->s32_max_value = S32_MAX; 14868 /* If we might shift our top bit out, then we know nothing */ 14869 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { 14870 dst_reg->u32_min_value = 0; 14871 dst_reg->u32_max_value = U32_MAX; 14872 } else { 14873 dst_reg->u32_min_value <<= umin_val; 14874 dst_reg->u32_max_value <<= umax_val; 14875 } 14876 } 14877 14878 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 14879 struct bpf_reg_state *src_reg) 14880 { 14881 u32 umax_val = src_reg->u32_max_value; 14882 u32 umin_val = src_reg->u32_min_value; 14883 /* u32 alu operation will zext upper bits */ 14884 struct tnum subreg = tnum_subreg(dst_reg->var_off); 14885 14886 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 14887 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 14888 /* Not required but being careful mark reg64 bounds as unknown so 14889 * that we are forced to pick them up from tnum and zext later and 14890 * if some path skips this step we are still safe. 14891 */ 14892 __mark_reg64_unbounded(dst_reg); 14893 __update_reg32_bounds(dst_reg); 14894 } 14895 14896 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, 14897 u64 umin_val, u64 umax_val) 14898 { 14899 /* Special case <<32 because it is a common compiler pattern to sign 14900 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are 14901 * positive we know this shift will also be positive so we can track 14902 * bounds correctly. Otherwise we lose all sign bit information except 14903 * what we can pick up from var_off. Perhaps we can generalize this 14904 * later to shifts of any length. 14905 */ 14906 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) 14907 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; 14908 else 14909 dst_reg->smax_value = S64_MAX; 14910 14911 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) 14912 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; 14913 else 14914 dst_reg->smin_value = S64_MIN; 14915 14916 /* If we might shift our top bit out, then we know nothing */ 14917 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 14918 dst_reg->umin_value = 0; 14919 dst_reg->umax_value = U64_MAX; 14920 } else { 14921 dst_reg->umin_value <<= umin_val; 14922 dst_reg->umax_value <<= umax_val; 14923 } 14924 } 14925 14926 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, 14927 struct bpf_reg_state *src_reg) 14928 { 14929 u64 umax_val = src_reg->umax_value; 14930 u64 umin_val = src_reg->umin_value; 14931 14932 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 14933 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 14934 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 14935 14936 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 14937 /* We may learn something more from the var_off */ 14938 __update_reg_bounds(dst_reg); 14939 } 14940 14941 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, 14942 struct bpf_reg_state *src_reg) 14943 { 14944 struct tnum subreg = tnum_subreg(dst_reg->var_off); 14945 u32 umax_val = src_reg->u32_max_value; 14946 u32 umin_val = src_reg->u32_min_value; 14947 14948 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 14949 * be negative, then either: 14950 * 1) src_reg might be zero, so the sign bit of the result is 14951 * unknown, so we lose our signed bounds 14952 * 2) it's known negative, thus the unsigned bounds capture the 14953 * signed bounds 14954 * 3) the signed bounds cross zero, so they tell us nothing 14955 * about the result 14956 * If the value in dst_reg is known nonnegative, then again the 14957 * unsigned bounds capture the signed bounds. 14958 * Thus, in all cases it suffices to blow away our signed bounds 14959 * and rely on inferring new ones from the unsigned bounds and 14960 * var_off of the result. 14961 */ 14962 dst_reg->s32_min_value = S32_MIN; 14963 dst_reg->s32_max_value = S32_MAX; 14964 14965 dst_reg->var_off = tnum_rshift(subreg, umin_val); 14966 dst_reg->u32_min_value >>= umax_val; 14967 dst_reg->u32_max_value >>= umin_val; 14968 14969 __mark_reg64_unbounded(dst_reg); 14970 __update_reg32_bounds(dst_reg); 14971 } 14972 14973 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, 14974 struct bpf_reg_state *src_reg) 14975 { 14976 u64 umax_val = src_reg->umax_value; 14977 u64 umin_val = src_reg->umin_value; 14978 14979 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 14980 * be negative, then either: 14981 * 1) src_reg might be zero, so the sign bit of the result is 14982 * unknown, so we lose our signed bounds 14983 * 2) it's known negative, thus the unsigned bounds capture the 14984 * signed bounds 14985 * 3) the signed bounds cross zero, so they tell us nothing 14986 * about the result 14987 * If the value in dst_reg is known nonnegative, then again the 14988 * unsigned bounds capture the signed bounds. 14989 * Thus, in all cases it suffices to blow away our signed bounds 14990 * and rely on inferring new ones from the unsigned bounds and 14991 * var_off of the result. 14992 */ 14993 dst_reg->smin_value = S64_MIN; 14994 dst_reg->smax_value = S64_MAX; 14995 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 14996 dst_reg->umin_value >>= umax_val; 14997 dst_reg->umax_value >>= umin_val; 14998 14999 /* Its not easy to operate on alu32 bounds here because it depends 15000 * on bits being shifted in. Take easy way out and mark unbounded 15001 * so we can recalculate later from tnum. 15002 */ 15003 __mark_reg32_unbounded(dst_reg); 15004 __update_reg_bounds(dst_reg); 15005 } 15006 15007 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, 15008 struct bpf_reg_state *src_reg) 15009 { 15010 u64 umin_val = src_reg->u32_min_value; 15011 15012 /* Upon reaching here, src_known is true and 15013 * umax_val is equal to umin_val. 15014 */ 15015 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 15016 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 15017 15018 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); 15019 15020 /* blow away the dst_reg umin_value/umax_value and rely on 15021 * dst_reg var_off to refine the result. 15022 */ 15023 dst_reg->u32_min_value = 0; 15024 dst_reg->u32_max_value = U32_MAX; 15025 15026 __mark_reg64_unbounded(dst_reg); 15027 __update_reg32_bounds(dst_reg); 15028 } 15029 15030 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, 15031 struct bpf_reg_state *src_reg) 15032 { 15033 u64 umin_val = src_reg->umin_value; 15034 15035 /* Upon reaching here, src_known is true and umax_val is equal 15036 * to umin_val. 15037 */ 15038 dst_reg->smin_value >>= umin_val; 15039 dst_reg->smax_value >>= umin_val; 15040 15041 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); 15042 15043 /* blow away the dst_reg umin_value/umax_value and rely on 15044 * dst_reg var_off to refine the result. 15045 */ 15046 dst_reg->umin_value = 0; 15047 dst_reg->umax_value = U64_MAX; 15048 15049 /* Its not easy to operate on alu32 bounds here because it depends 15050 * on bits being shifted in from upper 32-bits. Take easy way out 15051 * and mark unbounded so we can recalculate later from tnum. 15052 */ 15053 __mark_reg32_unbounded(dst_reg); 15054 __update_reg_bounds(dst_reg); 15055 } 15056 15057 static bool is_safe_to_compute_dst_reg_range(struct bpf_insn *insn, 15058 const struct bpf_reg_state *src_reg) 15059 { 15060 bool src_is_const = false; 15061 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 15062 15063 if (insn_bitness == 32) { 15064 if (tnum_subreg_is_const(src_reg->var_off) 15065 && src_reg->s32_min_value == src_reg->s32_max_value 15066 && src_reg->u32_min_value == src_reg->u32_max_value) 15067 src_is_const = true; 15068 } else { 15069 if (tnum_is_const(src_reg->var_off) 15070 && src_reg->smin_value == src_reg->smax_value 15071 && src_reg->umin_value == src_reg->umax_value) 15072 src_is_const = true; 15073 } 15074 15075 switch (BPF_OP(insn->code)) { 15076 case BPF_ADD: 15077 case BPF_SUB: 15078 case BPF_AND: 15079 case BPF_XOR: 15080 case BPF_OR: 15081 case BPF_MUL: 15082 return true; 15083 15084 /* Shift operators range is only computable if shift dimension operand 15085 * is a constant. Shifts greater than 31 or 63 are undefined. This 15086 * includes shifts by a negative number. 15087 */ 15088 case BPF_LSH: 15089 case BPF_RSH: 15090 case BPF_ARSH: 15091 return (src_is_const && src_reg->umax_value < insn_bitness); 15092 default: 15093 return false; 15094 } 15095 } 15096 15097 /* WARNING: This function does calculations on 64-bit values, but the actual 15098 * execution may occur on 32-bit values. Therefore, things like bitshifts 15099 * need extra checks in the 32-bit case. 15100 */ 15101 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 15102 struct bpf_insn *insn, 15103 struct bpf_reg_state *dst_reg, 15104 struct bpf_reg_state src_reg) 15105 { 15106 u8 opcode = BPF_OP(insn->code); 15107 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 15108 int ret; 15109 15110 if (!is_safe_to_compute_dst_reg_range(insn, &src_reg)) { 15111 __mark_reg_unknown(env, dst_reg); 15112 return 0; 15113 } 15114 15115 if (sanitize_needed(opcode)) { 15116 ret = sanitize_val_alu(env, insn); 15117 if (ret < 0) 15118 return sanitize_err(env, insn, ret, NULL, NULL); 15119 } 15120 15121 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 15122 * There are two classes of instructions: The first class we track both 15123 * alu32 and alu64 sign/unsigned bounds independently this provides the 15124 * greatest amount of precision when alu operations are mixed with jmp32 15125 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 15126 * and BPF_OR. This is possible because these ops have fairly easy to 15127 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 15128 * See alu32 verifier tests for examples. The second class of 15129 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 15130 * with regards to tracking sign/unsigned bounds because the bits may 15131 * cross subreg boundaries in the alu64 case. When this happens we mark 15132 * the reg unbounded in the subreg bound space and use the resulting 15133 * tnum to calculate an approximation of the sign/unsigned bounds. 15134 */ 15135 switch (opcode) { 15136 case BPF_ADD: 15137 scalar32_min_max_add(dst_reg, &src_reg); 15138 scalar_min_max_add(dst_reg, &src_reg); 15139 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 15140 break; 15141 case BPF_SUB: 15142 scalar32_min_max_sub(dst_reg, &src_reg); 15143 scalar_min_max_sub(dst_reg, &src_reg); 15144 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 15145 break; 15146 case BPF_MUL: 15147 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 15148 scalar32_min_max_mul(dst_reg, &src_reg); 15149 scalar_min_max_mul(dst_reg, &src_reg); 15150 break; 15151 case BPF_AND: 15152 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 15153 scalar32_min_max_and(dst_reg, &src_reg); 15154 scalar_min_max_and(dst_reg, &src_reg); 15155 break; 15156 case BPF_OR: 15157 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 15158 scalar32_min_max_or(dst_reg, &src_reg); 15159 scalar_min_max_or(dst_reg, &src_reg); 15160 break; 15161 case BPF_XOR: 15162 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off); 15163 scalar32_min_max_xor(dst_reg, &src_reg); 15164 scalar_min_max_xor(dst_reg, &src_reg); 15165 break; 15166 case BPF_LSH: 15167 if (alu32) 15168 scalar32_min_max_lsh(dst_reg, &src_reg); 15169 else 15170 scalar_min_max_lsh(dst_reg, &src_reg); 15171 break; 15172 case BPF_RSH: 15173 if (alu32) 15174 scalar32_min_max_rsh(dst_reg, &src_reg); 15175 else 15176 scalar_min_max_rsh(dst_reg, &src_reg); 15177 break; 15178 case BPF_ARSH: 15179 if (alu32) 15180 scalar32_min_max_arsh(dst_reg, &src_reg); 15181 else 15182 scalar_min_max_arsh(dst_reg, &src_reg); 15183 break; 15184 default: 15185 break; 15186 } 15187 15188 /* ALU32 ops are zero extended into 64bit register */ 15189 if (alu32) 15190 zext_32_to_64(dst_reg); 15191 reg_bounds_sync(dst_reg); 15192 return 0; 15193 } 15194 15195 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 15196 * and var_off. 15197 */ 15198 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 15199 struct bpf_insn *insn) 15200 { 15201 struct bpf_verifier_state *vstate = env->cur_state; 15202 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 15203 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 15204 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 15205 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 15206 u8 opcode = BPF_OP(insn->code); 15207 int err; 15208 15209 dst_reg = ®s[insn->dst_reg]; 15210 src_reg = NULL; 15211 15212 if (dst_reg->type == PTR_TO_ARENA) { 15213 struct bpf_insn_aux_data *aux = cur_aux(env); 15214 15215 if (BPF_CLASS(insn->code) == BPF_ALU64) 15216 /* 15217 * 32-bit operations zero upper bits automatically. 15218 * 64-bit operations need to be converted to 32. 15219 */ 15220 aux->needs_zext = true; 15221 15222 /* Any arithmetic operations are allowed on arena pointers */ 15223 return 0; 15224 } 15225 15226 if (dst_reg->type != SCALAR_VALUE) 15227 ptr_reg = dst_reg; 15228 15229 if (BPF_SRC(insn->code) == BPF_X) { 15230 src_reg = ®s[insn->src_reg]; 15231 if (src_reg->type != SCALAR_VALUE) { 15232 if (dst_reg->type != SCALAR_VALUE) { 15233 /* Combining two pointers by any ALU op yields 15234 * an arbitrary scalar. Disallow all math except 15235 * pointer subtraction 15236 */ 15237 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 15238 mark_reg_unknown(env, regs, insn->dst_reg); 15239 return 0; 15240 } 15241 verbose(env, "R%d pointer %s pointer prohibited\n", 15242 insn->dst_reg, 15243 bpf_alu_string[opcode >> 4]); 15244 return -EACCES; 15245 } else { 15246 /* scalar += pointer 15247 * This is legal, but we have to reverse our 15248 * src/dest handling in computing the range 15249 */ 15250 err = mark_chain_precision(env, insn->dst_reg); 15251 if (err) 15252 return err; 15253 return adjust_ptr_min_max_vals(env, insn, 15254 src_reg, dst_reg); 15255 } 15256 } else if (ptr_reg) { 15257 /* pointer += scalar */ 15258 err = mark_chain_precision(env, insn->src_reg); 15259 if (err) 15260 return err; 15261 return adjust_ptr_min_max_vals(env, insn, 15262 dst_reg, src_reg); 15263 } else if (dst_reg->precise) { 15264 /* if dst_reg is precise, src_reg should be precise as well */ 15265 err = mark_chain_precision(env, insn->src_reg); 15266 if (err) 15267 return err; 15268 } 15269 } else { 15270 /* Pretend the src is a reg with a known value, since we only 15271 * need to be able to read from this state. 15272 */ 15273 off_reg.type = SCALAR_VALUE; 15274 __mark_reg_known(&off_reg, insn->imm); 15275 src_reg = &off_reg; 15276 if (ptr_reg) /* pointer += K */ 15277 return adjust_ptr_min_max_vals(env, insn, 15278 ptr_reg, src_reg); 15279 } 15280 15281 /* Got here implies adding two SCALAR_VALUEs */ 15282 if (WARN_ON_ONCE(ptr_reg)) { 15283 print_verifier_state(env, vstate, vstate->curframe, true); 15284 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 15285 return -EINVAL; 15286 } 15287 if (WARN_ON(!src_reg)) { 15288 print_verifier_state(env, vstate, vstate->curframe, true); 15289 verbose(env, "verifier internal error: no src_reg\n"); 15290 return -EINVAL; 15291 } 15292 err = adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 15293 if (err) 15294 return err; 15295 /* 15296 * Compilers can generate the code 15297 * r1 = r2 15298 * r1 += 0x1 15299 * if r2 < 1000 goto ... 15300 * use r1 in memory access 15301 * So for 64-bit alu remember constant delta between r2 and r1 and 15302 * update r1 after 'if' condition. 15303 */ 15304 if (env->bpf_capable && 15305 BPF_OP(insn->code) == BPF_ADD && !alu32 && 15306 dst_reg->id && is_reg_const(src_reg, false)) { 15307 u64 val = reg_const_value(src_reg, false); 15308 15309 if ((dst_reg->id & BPF_ADD_CONST) || 15310 /* prevent overflow in sync_linked_regs() later */ 15311 val > (u32)S32_MAX) { 15312 /* 15313 * If the register already went through rX += val 15314 * we cannot accumulate another val into rx->off. 15315 */ 15316 dst_reg->off = 0; 15317 dst_reg->id = 0; 15318 } else { 15319 dst_reg->id |= BPF_ADD_CONST; 15320 dst_reg->off = val; 15321 } 15322 } else { 15323 /* 15324 * Make sure ID is cleared otherwise dst_reg min/max could be 15325 * incorrectly propagated into other registers by sync_linked_regs() 15326 */ 15327 dst_reg->id = 0; 15328 } 15329 return 0; 15330 } 15331 15332 /* check validity of 32-bit and 64-bit arithmetic operations */ 15333 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 15334 { 15335 struct bpf_reg_state *regs = cur_regs(env); 15336 u8 opcode = BPF_OP(insn->code); 15337 int err; 15338 15339 if (opcode == BPF_END || opcode == BPF_NEG) { 15340 if (opcode == BPF_NEG) { 15341 if (BPF_SRC(insn->code) != BPF_K || 15342 insn->src_reg != BPF_REG_0 || 15343 insn->off != 0 || insn->imm != 0) { 15344 verbose(env, "BPF_NEG uses reserved fields\n"); 15345 return -EINVAL; 15346 } 15347 } else { 15348 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 15349 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 15350 (BPF_CLASS(insn->code) == BPF_ALU64 && 15351 BPF_SRC(insn->code) != BPF_TO_LE)) { 15352 verbose(env, "BPF_END uses reserved fields\n"); 15353 return -EINVAL; 15354 } 15355 } 15356 15357 /* check src operand */ 15358 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 15359 if (err) 15360 return err; 15361 15362 if (is_pointer_value(env, insn->dst_reg)) { 15363 verbose(env, "R%d pointer arithmetic prohibited\n", 15364 insn->dst_reg); 15365 return -EACCES; 15366 } 15367 15368 /* check dest operand */ 15369 err = check_reg_arg(env, insn->dst_reg, DST_OP); 15370 if (err) 15371 return err; 15372 15373 } else if (opcode == BPF_MOV) { 15374 15375 if (BPF_SRC(insn->code) == BPF_X) { 15376 if (BPF_CLASS(insn->code) == BPF_ALU) { 15377 if ((insn->off != 0 && insn->off != 8 && insn->off != 16) || 15378 insn->imm) { 15379 verbose(env, "BPF_MOV uses reserved fields\n"); 15380 return -EINVAL; 15381 } 15382 } else if (insn->off == BPF_ADDR_SPACE_CAST) { 15383 if (insn->imm != 1 && insn->imm != 1u << 16) { 15384 verbose(env, "addr_space_cast insn can only convert between address space 1 and 0\n"); 15385 return -EINVAL; 15386 } 15387 if (!env->prog->aux->arena) { 15388 verbose(env, "addr_space_cast insn can only be used in a program that has an associated arena\n"); 15389 return -EINVAL; 15390 } 15391 } else { 15392 if ((insn->off != 0 && insn->off != 8 && insn->off != 16 && 15393 insn->off != 32) || insn->imm) { 15394 verbose(env, "BPF_MOV uses reserved fields\n"); 15395 return -EINVAL; 15396 } 15397 } 15398 15399 /* check src operand */ 15400 err = check_reg_arg(env, insn->src_reg, SRC_OP); 15401 if (err) 15402 return err; 15403 } else { 15404 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 15405 verbose(env, "BPF_MOV uses reserved fields\n"); 15406 return -EINVAL; 15407 } 15408 } 15409 15410 /* check dest operand, mark as required later */ 15411 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 15412 if (err) 15413 return err; 15414 15415 if (BPF_SRC(insn->code) == BPF_X) { 15416 struct bpf_reg_state *src_reg = regs + insn->src_reg; 15417 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 15418 15419 if (BPF_CLASS(insn->code) == BPF_ALU64) { 15420 if (insn->imm) { 15421 /* off == BPF_ADDR_SPACE_CAST */ 15422 mark_reg_unknown(env, regs, insn->dst_reg); 15423 if (insn->imm == 1) { /* cast from as(1) to as(0) */ 15424 dst_reg->type = PTR_TO_ARENA; 15425 /* PTR_TO_ARENA is 32-bit */ 15426 dst_reg->subreg_def = env->insn_idx + 1; 15427 } 15428 } else if (insn->off == 0) { 15429 /* case: R1 = R2 15430 * copy register state to dest reg 15431 */ 15432 assign_scalar_id_before_mov(env, src_reg); 15433 copy_register_state(dst_reg, src_reg); 15434 dst_reg->live |= REG_LIVE_WRITTEN; 15435 dst_reg->subreg_def = DEF_NOT_SUBREG; 15436 } else { 15437 /* case: R1 = (s8, s16 s32)R2 */ 15438 if (is_pointer_value(env, insn->src_reg)) { 15439 verbose(env, 15440 "R%d sign-extension part of pointer\n", 15441 insn->src_reg); 15442 return -EACCES; 15443 } else if (src_reg->type == SCALAR_VALUE) { 15444 bool no_sext; 15445 15446 no_sext = src_reg->umax_value < (1ULL << (insn->off - 1)); 15447 if (no_sext) 15448 assign_scalar_id_before_mov(env, src_reg); 15449 copy_register_state(dst_reg, src_reg); 15450 if (!no_sext) 15451 dst_reg->id = 0; 15452 coerce_reg_to_size_sx(dst_reg, insn->off >> 3); 15453 dst_reg->live |= REG_LIVE_WRITTEN; 15454 dst_reg->subreg_def = DEF_NOT_SUBREG; 15455 } else { 15456 mark_reg_unknown(env, regs, insn->dst_reg); 15457 } 15458 } 15459 } else { 15460 /* R1 = (u32) R2 */ 15461 if (is_pointer_value(env, insn->src_reg)) { 15462 verbose(env, 15463 "R%d partial copy of pointer\n", 15464 insn->src_reg); 15465 return -EACCES; 15466 } else if (src_reg->type == SCALAR_VALUE) { 15467 if (insn->off == 0) { 15468 bool is_src_reg_u32 = get_reg_width(src_reg) <= 32; 15469 15470 if (is_src_reg_u32) 15471 assign_scalar_id_before_mov(env, src_reg); 15472 copy_register_state(dst_reg, src_reg); 15473 /* Make sure ID is cleared if src_reg is not in u32 15474 * range otherwise dst_reg min/max could be incorrectly 15475 * propagated into src_reg by sync_linked_regs() 15476 */ 15477 if (!is_src_reg_u32) 15478 dst_reg->id = 0; 15479 dst_reg->live |= REG_LIVE_WRITTEN; 15480 dst_reg->subreg_def = env->insn_idx + 1; 15481 } else { 15482 /* case: W1 = (s8, s16)W2 */ 15483 bool no_sext = src_reg->umax_value < (1ULL << (insn->off - 1)); 15484 15485 if (no_sext) 15486 assign_scalar_id_before_mov(env, src_reg); 15487 copy_register_state(dst_reg, src_reg); 15488 if (!no_sext) 15489 dst_reg->id = 0; 15490 dst_reg->live |= REG_LIVE_WRITTEN; 15491 dst_reg->subreg_def = env->insn_idx + 1; 15492 coerce_subreg_to_size_sx(dst_reg, insn->off >> 3); 15493 } 15494 } else { 15495 mark_reg_unknown(env, regs, 15496 insn->dst_reg); 15497 } 15498 zext_32_to_64(dst_reg); 15499 reg_bounds_sync(dst_reg); 15500 } 15501 } else { 15502 /* case: R = imm 15503 * remember the value we stored into this reg 15504 */ 15505 /* clear any state __mark_reg_known doesn't set */ 15506 mark_reg_unknown(env, regs, insn->dst_reg); 15507 regs[insn->dst_reg].type = SCALAR_VALUE; 15508 if (BPF_CLASS(insn->code) == BPF_ALU64) { 15509 __mark_reg_known(regs + insn->dst_reg, 15510 insn->imm); 15511 } else { 15512 __mark_reg_known(regs + insn->dst_reg, 15513 (u32)insn->imm); 15514 } 15515 } 15516 15517 } else if (opcode > BPF_END) { 15518 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 15519 return -EINVAL; 15520 15521 } else { /* all other ALU ops: and, sub, xor, add, ... */ 15522 15523 if (BPF_SRC(insn->code) == BPF_X) { 15524 if (insn->imm != 0 || insn->off > 1 || 15525 (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) { 15526 verbose(env, "BPF_ALU uses reserved fields\n"); 15527 return -EINVAL; 15528 } 15529 /* check src1 operand */ 15530 err = check_reg_arg(env, insn->src_reg, SRC_OP); 15531 if (err) 15532 return err; 15533 } else { 15534 if (insn->src_reg != BPF_REG_0 || insn->off > 1 || 15535 (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) { 15536 verbose(env, "BPF_ALU uses reserved fields\n"); 15537 return -EINVAL; 15538 } 15539 } 15540 15541 /* check src2 operand */ 15542 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 15543 if (err) 15544 return err; 15545 15546 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 15547 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 15548 verbose(env, "div by zero\n"); 15549 return -EINVAL; 15550 } 15551 15552 if ((opcode == BPF_LSH || opcode == BPF_RSH || 15553 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 15554 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 15555 15556 if (insn->imm < 0 || insn->imm >= size) { 15557 verbose(env, "invalid shift %d\n", insn->imm); 15558 return -EINVAL; 15559 } 15560 } 15561 15562 /* check dest operand */ 15563 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 15564 err = err ?: adjust_reg_min_max_vals(env, insn); 15565 if (err) 15566 return err; 15567 } 15568 15569 return reg_bounds_sanity_check(env, ®s[insn->dst_reg], "alu"); 15570 } 15571 15572 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 15573 struct bpf_reg_state *dst_reg, 15574 enum bpf_reg_type type, 15575 bool range_right_open) 15576 { 15577 struct bpf_func_state *state; 15578 struct bpf_reg_state *reg; 15579 int new_range; 15580 15581 if (dst_reg->off < 0 || 15582 (dst_reg->off == 0 && range_right_open)) 15583 /* This doesn't give us any range */ 15584 return; 15585 15586 if (dst_reg->umax_value > MAX_PACKET_OFF || 15587 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 15588 /* Risk of overflow. For instance, ptr + (1<<63) may be less 15589 * than pkt_end, but that's because it's also less than pkt. 15590 */ 15591 return; 15592 15593 new_range = dst_reg->off; 15594 if (range_right_open) 15595 new_range++; 15596 15597 /* Examples for register markings: 15598 * 15599 * pkt_data in dst register: 15600 * 15601 * r2 = r3; 15602 * r2 += 8; 15603 * if (r2 > pkt_end) goto <handle exception> 15604 * <access okay> 15605 * 15606 * r2 = r3; 15607 * r2 += 8; 15608 * if (r2 < pkt_end) goto <access okay> 15609 * <handle exception> 15610 * 15611 * Where: 15612 * r2 == dst_reg, pkt_end == src_reg 15613 * r2=pkt(id=n,off=8,r=0) 15614 * r3=pkt(id=n,off=0,r=0) 15615 * 15616 * pkt_data in src register: 15617 * 15618 * r2 = r3; 15619 * r2 += 8; 15620 * if (pkt_end >= r2) goto <access okay> 15621 * <handle exception> 15622 * 15623 * r2 = r3; 15624 * r2 += 8; 15625 * if (pkt_end <= r2) goto <handle exception> 15626 * <access okay> 15627 * 15628 * Where: 15629 * pkt_end == dst_reg, r2 == src_reg 15630 * r2=pkt(id=n,off=8,r=0) 15631 * r3=pkt(id=n,off=0,r=0) 15632 * 15633 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 15634 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 15635 * and [r3, r3 + 8-1) respectively is safe to access depending on 15636 * the check. 15637 */ 15638 15639 /* If our ids match, then we must have the same max_value. And we 15640 * don't care about the other reg's fixed offset, since if it's too big 15641 * the range won't allow anything. 15642 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 15643 */ 15644 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 15645 if (reg->type == type && reg->id == dst_reg->id) 15646 /* keep the maximum range already checked */ 15647 reg->range = max(reg->range, new_range); 15648 })); 15649 } 15650 15651 /* 15652 * <reg1> <op> <reg2>, currently assuming reg2 is a constant 15653 */ 15654 static int is_scalar_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2, 15655 u8 opcode, bool is_jmp32) 15656 { 15657 struct tnum t1 = is_jmp32 ? tnum_subreg(reg1->var_off) : reg1->var_off; 15658 struct tnum t2 = is_jmp32 ? tnum_subreg(reg2->var_off) : reg2->var_off; 15659 u64 umin1 = is_jmp32 ? (u64)reg1->u32_min_value : reg1->umin_value; 15660 u64 umax1 = is_jmp32 ? (u64)reg1->u32_max_value : reg1->umax_value; 15661 s64 smin1 = is_jmp32 ? (s64)reg1->s32_min_value : reg1->smin_value; 15662 s64 smax1 = is_jmp32 ? (s64)reg1->s32_max_value : reg1->smax_value; 15663 u64 umin2 = is_jmp32 ? (u64)reg2->u32_min_value : reg2->umin_value; 15664 u64 umax2 = is_jmp32 ? (u64)reg2->u32_max_value : reg2->umax_value; 15665 s64 smin2 = is_jmp32 ? (s64)reg2->s32_min_value : reg2->smin_value; 15666 s64 smax2 = is_jmp32 ? (s64)reg2->s32_max_value : reg2->smax_value; 15667 15668 switch (opcode) { 15669 case BPF_JEQ: 15670 /* constants, umin/umax and smin/smax checks would be 15671 * redundant in this case because they all should match 15672 */ 15673 if (tnum_is_const(t1) && tnum_is_const(t2)) 15674 return t1.value == t2.value; 15675 /* non-overlapping ranges */ 15676 if (umin1 > umax2 || umax1 < umin2) 15677 return 0; 15678 if (smin1 > smax2 || smax1 < smin2) 15679 return 0; 15680 if (!is_jmp32) { 15681 /* if 64-bit ranges are inconclusive, see if we can 15682 * utilize 32-bit subrange knowledge to eliminate 15683 * branches that can't be taken a priori 15684 */ 15685 if (reg1->u32_min_value > reg2->u32_max_value || 15686 reg1->u32_max_value < reg2->u32_min_value) 15687 return 0; 15688 if (reg1->s32_min_value > reg2->s32_max_value || 15689 reg1->s32_max_value < reg2->s32_min_value) 15690 return 0; 15691 } 15692 break; 15693 case BPF_JNE: 15694 /* constants, umin/umax and smin/smax checks would be 15695 * redundant in this case because they all should match 15696 */ 15697 if (tnum_is_const(t1) && tnum_is_const(t2)) 15698 return t1.value != t2.value; 15699 /* non-overlapping ranges */ 15700 if (umin1 > umax2 || umax1 < umin2) 15701 return 1; 15702 if (smin1 > smax2 || smax1 < smin2) 15703 return 1; 15704 if (!is_jmp32) { 15705 /* if 64-bit ranges are inconclusive, see if we can 15706 * utilize 32-bit subrange knowledge to eliminate 15707 * branches that can't be taken a priori 15708 */ 15709 if (reg1->u32_min_value > reg2->u32_max_value || 15710 reg1->u32_max_value < reg2->u32_min_value) 15711 return 1; 15712 if (reg1->s32_min_value > reg2->s32_max_value || 15713 reg1->s32_max_value < reg2->s32_min_value) 15714 return 1; 15715 } 15716 break; 15717 case BPF_JSET: 15718 if (!is_reg_const(reg2, is_jmp32)) { 15719 swap(reg1, reg2); 15720 swap(t1, t2); 15721 } 15722 if (!is_reg_const(reg2, is_jmp32)) 15723 return -1; 15724 if ((~t1.mask & t1.value) & t2.value) 15725 return 1; 15726 if (!((t1.mask | t1.value) & t2.value)) 15727 return 0; 15728 break; 15729 case BPF_JGT: 15730 if (umin1 > umax2) 15731 return 1; 15732 else if (umax1 <= umin2) 15733 return 0; 15734 break; 15735 case BPF_JSGT: 15736 if (smin1 > smax2) 15737 return 1; 15738 else if (smax1 <= smin2) 15739 return 0; 15740 break; 15741 case BPF_JLT: 15742 if (umax1 < umin2) 15743 return 1; 15744 else if (umin1 >= umax2) 15745 return 0; 15746 break; 15747 case BPF_JSLT: 15748 if (smax1 < smin2) 15749 return 1; 15750 else if (smin1 >= smax2) 15751 return 0; 15752 break; 15753 case BPF_JGE: 15754 if (umin1 >= umax2) 15755 return 1; 15756 else if (umax1 < umin2) 15757 return 0; 15758 break; 15759 case BPF_JSGE: 15760 if (smin1 >= smax2) 15761 return 1; 15762 else if (smax1 < smin2) 15763 return 0; 15764 break; 15765 case BPF_JLE: 15766 if (umax1 <= umin2) 15767 return 1; 15768 else if (umin1 > umax2) 15769 return 0; 15770 break; 15771 case BPF_JSLE: 15772 if (smax1 <= smin2) 15773 return 1; 15774 else if (smin1 > smax2) 15775 return 0; 15776 break; 15777 } 15778 15779 return -1; 15780 } 15781 15782 static int flip_opcode(u32 opcode) 15783 { 15784 /* How can we transform "a <op> b" into "b <op> a"? */ 15785 static const u8 opcode_flip[16] = { 15786 /* these stay the same */ 15787 [BPF_JEQ >> 4] = BPF_JEQ, 15788 [BPF_JNE >> 4] = BPF_JNE, 15789 [BPF_JSET >> 4] = BPF_JSET, 15790 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 15791 [BPF_JGE >> 4] = BPF_JLE, 15792 [BPF_JGT >> 4] = BPF_JLT, 15793 [BPF_JLE >> 4] = BPF_JGE, 15794 [BPF_JLT >> 4] = BPF_JGT, 15795 [BPF_JSGE >> 4] = BPF_JSLE, 15796 [BPF_JSGT >> 4] = BPF_JSLT, 15797 [BPF_JSLE >> 4] = BPF_JSGE, 15798 [BPF_JSLT >> 4] = BPF_JSGT 15799 }; 15800 return opcode_flip[opcode >> 4]; 15801 } 15802 15803 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg, 15804 struct bpf_reg_state *src_reg, 15805 u8 opcode) 15806 { 15807 struct bpf_reg_state *pkt; 15808 15809 if (src_reg->type == PTR_TO_PACKET_END) { 15810 pkt = dst_reg; 15811 } else if (dst_reg->type == PTR_TO_PACKET_END) { 15812 pkt = src_reg; 15813 opcode = flip_opcode(opcode); 15814 } else { 15815 return -1; 15816 } 15817 15818 if (pkt->range >= 0) 15819 return -1; 15820 15821 switch (opcode) { 15822 case BPF_JLE: 15823 /* pkt <= pkt_end */ 15824 fallthrough; 15825 case BPF_JGT: 15826 /* pkt > pkt_end */ 15827 if (pkt->range == BEYOND_PKT_END) 15828 /* pkt has at last one extra byte beyond pkt_end */ 15829 return opcode == BPF_JGT; 15830 break; 15831 case BPF_JLT: 15832 /* pkt < pkt_end */ 15833 fallthrough; 15834 case BPF_JGE: 15835 /* pkt >= pkt_end */ 15836 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END) 15837 return opcode == BPF_JGE; 15838 break; 15839 } 15840 return -1; 15841 } 15842 15843 /* compute branch direction of the expression "if (<reg1> opcode <reg2>) goto target;" 15844 * and return: 15845 * 1 - branch will be taken and "goto target" will be executed 15846 * 0 - branch will not be taken and fall-through to next insn 15847 * -1 - unknown. Example: "if (reg1 < 5)" is unknown when register value 15848 * range [0,10] 15849 */ 15850 static int is_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2, 15851 u8 opcode, bool is_jmp32) 15852 { 15853 if (reg_is_pkt_pointer_any(reg1) && reg_is_pkt_pointer_any(reg2) && !is_jmp32) 15854 return is_pkt_ptr_branch_taken(reg1, reg2, opcode); 15855 15856 if (__is_pointer_value(false, reg1) || __is_pointer_value(false, reg2)) { 15857 u64 val; 15858 15859 /* arrange that reg2 is a scalar, and reg1 is a pointer */ 15860 if (!is_reg_const(reg2, is_jmp32)) { 15861 opcode = flip_opcode(opcode); 15862 swap(reg1, reg2); 15863 } 15864 /* and ensure that reg2 is a constant */ 15865 if (!is_reg_const(reg2, is_jmp32)) 15866 return -1; 15867 15868 if (!reg_not_null(reg1)) 15869 return -1; 15870 15871 /* If pointer is valid tests against zero will fail so we can 15872 * use this to direct branch taken. 15873 */ 15874 val = reg_const_value(reg2, is_jmp32); 15875 if (val != 0) 15876 return -1; 15877 15878 switch (opcode) { 15879 case BPF_JEQ: 15880 return 0; 15881 case BPF_JNE: 15882 return 1; 15883 default: 15884 return -1; 15885 } 15886 } 15887 15888 /* now deal with two scalars, but not necessarily constants */ 15889 return is_scalar_branch_taken(reg1, reg2, opcode, is_jmp32); 15890 } 15891 15892 /* Opcode that corresponds to a *false* branch condition. 15893 * E.g., if r1 < r2, then reverse (false) condition is r1 >= r2 15894 */ 15895 static u8 rev_opcode(u8 opcode) 15896 { 15897 switch (opcode) { 15898 case BPF_JEQ: return BPF_JNE; 15899 case BPF_JNE: return BPF_JEQ; 15900 /* JSET doesn't have it's reverse opcode in BPF, so add 15901 * BPF_X flag to denote the reverse of that operation 15902 */ 15903 case BPF_JSET: return BPF_JSET | BPF_X; 15904 case BPF_JSET | BPF_X: return BPF_JSET; 15905 case BPF_JGE: return BPF_JLT; 15906 case BPF_JGT: return BPF_JLE; 15907 case BPF_JLE: return BPF_JGT; 15908 case BPF_JLT: return BPF_JGE; 15909 case BPF_JSGE: return BPF_JSLT; 15910 case BPF_JSGT: return BPF_JSLE; 15911 case BPF_JSLE: return BPF_JSGT; 15912 case BPF_JSLT: return BPF_JSGE; 15913 default: return 0; 15914 } 15915 } 15916 15917 /* Refine range knowledge for <reg1> <op> <reg>2 conditional operation. */ 15918 static void regs_refine_cond_op(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2, 15919 u8 opcode, bool is_jmp32) 15920 { 15921 struct tnum t; 15922 u64 val; 15923 15924 /* In case of GE/GT/SGE/JST, reuse LE/LT/SLE/SLT logic from below */ 15925 switch (opcode) { 15926 case BPF_JGE: 15927 case BPF_JGT: 15928 case BPF_JSGE: 15929 case BPF_JSGT: 15930 opcode = flip_opcode(opcode); 15931 swap(reg1, reg2); 15932 break; 15933 default: 15934 break; 15935 } 15936 15937 switch (opcode) { 15938 case BPF_JEQ: 15939 if (is_jmp32) { 15940 reg1->u32_min_value = max(reg1->u32_min_value, reg2->u32_min_value); 15941 reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value); 15942 reg1->s32_min_value = max(reg1->s32_min_value, reg2->s32_min_value); 15943 reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value); 15944 reg2->u32_min_value = reg1->u32_min_value; 15945 reg2->u32_max_value = reg1->u32_max_value; 15946 reg2->s32_min_value = reg1->s32_min_value; 15947 reg2->s32_max_value = reg1->s32_max_value; 15948 15949 t = tnum_intersect(tnum_subreg(reg1->var_off), tnum_subreg(reg2->var_off)); 15950 reg1->var_off = tnum_with_subreg(reg1->var_off, t); 15951 reg2->var_off = tnum_with_subreg(reg2->var_off, t); 15952 } else { 15953 reg1->umin_value = max(reg1->umin_value, reg2->umin_value); 15954 reg1->umax_value = min(reg1->umax_value, reg2->umax_value); 15955 reg1->smin_value = max(reg1->smin_value, reg2->smin_value); 15956 reg1->smax_value = min(reg1->smax_value, reg2->smax_value); 15957 reg2->umin_value = reg1->umin_value; 15958 reg2->umax_value = reg1->umax_value; 15959 reg2->smin_value = reg1->smin_value; 15960 reg2->smax_value = reg1->smax_value; 15961 15962 reg1->var_off = tnum_intersect(reg1->var_off, reg2->var_off); 15963 reg2->var_off = reg1->var_off; 15964 } 15965 break; 15966 case BPF_JNE: 15967 if (!is_reg_const(reg2, is_jmp32)) 15968 swap(reg1, reg2); 15969 if (!is_reg_const(reg2, is_jmp32)) 15970 break; 15971 15972 /* try to recompute the bound of reg1 if reg2 is a const and 15973 * is exactly the edge of reg1. 15974 */ 15975 val = reg_const_value(reg2, is_jmp32); 15976 if (is_jmp32) { 15977 /* u32_min_value is not equal to 0xffffffff at this point, 15978 * because otherwise u32_max_value is 0xffffffff as well, 15979 * in such a case both reg1 and reg2 would be constants, 15980 * jump would be predicted and reg_set_min_max() won't 15981 * be called. 15982 * 15983 * Same reasoning works for all {u,s}{min,max}{32,64} cases 15984 * below. 15985 */ 15986 if (reg1->u32_min_value == (u32)val) 15987 reg1->u32_min_value++; 15988 if (reg1->u32_max_value == (u32)val) 15989 reg1->u32_max_value--; 15990 if (reg1->s32_min_value == (s32)val) 15991 reg1->s32_min_value++; 15992 if (reg1->s32_max_value == (s32)val) 15993 reg1->s32_max_value--; 15994 } else { 15995 if (reg1->umin_value == (u64)val) 15996 reg1->umin_value++; 15997 if (reg1->umax_value == (u64)val) 15998 reg1->umax_value--; 15999 if (reg1->smin_value == (s64)val) 16000 reg1->smin_value++; 16001 if (reg1->smax_value == (s64)val) 16002 reg1->smax_value--; 16003 } 16004 break; 16005 case BPF_JSET: 16006 if (!is_reg_const(reg2, is_jmp32)) 16007 swap(reg1, reg2); 16008 if (!is_reg_const(reg2, is_jmp32)) 16009 break; 16010 val = reg_const_value(reg2, is_jmp32); 16011 /* BPF_JSET (i.e., TRUE branch, *not* BPF_JSET | BPF_X) 16012 * requires single bit to learn something useful. E.g., if we 16013 * know that `r1 & 0x3` is true, then which bits (0, 1, or both) 16014 * are actually set? We can learn something definite only if 16015 * it's a single-bit value to begin with. 16016 * 16017 * BPF_JSET | BPF_X (i.e., negation of BPF_JSET) doesn't have 16018 * this restriction. I.e., !(r1 & 0x3) means neither bit 0 nor 16019 * bit 1 is set, which we can readily use in adjustments. 16020 */ 16021 if (!is_power_of_2(val)) 16022 break; 16023 if (is_jmp32) { 16024 t = tnum_or(tnum_subreg(reg1->var_off), tnum_const(val)); 16025 reg1->var_off = tnum_with_subreg(reg1->var_off, t); 16026 } else { 16027 reg1->var_off = tnum_or(reg1->var_off, tnum_const(val)); 16028 } 16029 break; 16030 case BPF_JSET | BPF_X: /* reverse of BPF_JSET, see rev_opcode() */ 16031 if (!is_reg_const(reg2, is_jmp32)) 16032 swap(reg1, reg2); 16033 if (!is_reg_const(reg2, is_jmp32)) 16034 break; 16035 val = reg_const_value(reg2, is_jmp32); 16036 if (is_jmp32) { 16037 t = tnum_and(tnum_subreg(reg1->var_off), tnum_const(~val)); 16038 reg1->var_off = tnum_with_subreg(reg1->var_off, t); 16039 } else { 16040 reg1->var_off = tnum_and(reg1->var_off, tnum_const(~val)); 16041 } 16042 break; 16043 case BPF_JLE: 16044 if (is_jmp32) { 16045 reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value); 16046 reg2->u32_min_value = max(reg1->u32_min_value, reg2->u32_min_value); 16047 } else { 16048 reg1->umax_value = min(reg1->umax_value, reg2->umax_value); 16049 reg2->umin_value = max(reg1->umin_value, reg2->umin_value); 16050 } 16051 break; 16052 case BPF_JLT: 16053 if (is_jmp32) { 16054 reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value - 1); 16055 reg2->u32_min_value = max(reg1->u32_min_value + 1, reg2->u32_min_value); 16056 } else { 16057 reg1->umax_value = min(reg1->umax_value, reg2->umax_value - 1); 16058 reg2->umin_value = max(reg1->umin_value + 1, reg2->umin_value); 16059 } 16060 break; 16061 case BPF_JSLE: 16062 if (is_jmp32) { 16063 reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value); 16064 reg2->s32_min_value = max(reg1->s32_min_value, reg2->s32_min_value); 16065 } else { 16066 reg1->smax_value = min(reg1->smax_value, reg2->smax_value); 16067 reg2->smin_value = max(reg1->smin_value, reg2->smin_value); 16068 } 16069 break; 16070 case BPF_JSLT: 16071 if (is_jmp32) { 16072 reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value - 1); 16073 reg2->s32_min_value = max(reg1->s32_min_value + 1, reg2->s32_min_value); 16074 } else { 16075 reg1->smax_value = min(reg1->smax_value, reg2->smax_value - 1); 16076 reg2->smin_value = max(reg1->smin_value + 1, reg2->smin_value); 16077 } 16078 break; 16079 default: 16080 return; 16081 } 16082 } 16083 16084 /* Adjusts the register min/max values in the case that the dst_reg and 16085 * src_reg are both SCALAR_VALUE registers (or we are simply doing a BPF_K 16086 * check, in which case we have a fake SCALAR_VALUE representing insn->imm). 16087 * Technically we can do similar adjustments for pointers to the same object, 16088 * but we don't support that right now. 16089 */ 16090 static int reg_set_min_max(struct bpf_verifier_env *env, 16091 struct bpf_reg_state *true_reg1, 16092 struct bpf_reg_state *true_reg2, 16093 struct bpf_reg_state *false_reg1, 16094 struct bpf_reg_state *false_reg2, 16095 u8 opcode, bool is_jmp32) 16096 { 16097 int err; 16098 16099 /* If either register is a pointer, we can't learn anything about its 16100 * variable offset from the compare (unless they were a pointer into 16101 * the same object, but we don't bother with that). 16102 */ 16103 if (false_reg1->type != SCALAR_VALUE || false_reg2->type != SCALAR_VALUE) 16104 return 0; 16105 16106 /* fallthrough (FALSE) branch */ 16107 regs_refine_cond_op(false_reg1, false_reg2, rev_opcode(opcode), is_jmp32); 16108 reg_bounds_sync(false_reg1); 16109 reg_bounds_sync(false_reg2); 16110 16111 /* jump (TRUE) branch */ 16112 regs_refine_cond_op(true_reg1, true_reg2, opcode, is_jmp32); 16113 reg_bounds_sync(true_reg1); 16114 reg_bounds_sync(true_reg2); 16115 16116 err = reg_bounds_sanity_check(env, true_reg1, "true_reg1"); 16117 err = err ?: reg_bounds_sanity_check(env, true_reg2, "true_reg2"); 16118 err = err ?: reg_bounds_sanity_check(env, false_reg1, "false_reg1"); 16119 err = err ?: reg_bounds_sanity_check(env, false_reg2, "false_reg2"); 16120 return err; 16121 } 16122 16123 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 16124 struct bpf_reg_state *reg, u32 id, 16125 bool is_null) 16126 { 16127 if (type_may_be_null(reg->type) && reg->id == id && 16128 (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) { 16129 /* Old offset (both fixed and variable parts) should have been 16130 * known-zero, because we don't allow pointer arithmetic on 16131 * pointers that might be NULL. If we see this happening, don't 16132 * convert the register. 16133 * 16134 * But in some cases, some helpers that return local kptrs 16135 * advance offset for the returned pointer. In those cases, it 16136 * is fine to expect to see reg->off. 16137 */ 16138 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0))) 16139 return; 16140 if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) && 16141 WARN_ON_ONCE(reg->off)) 16142 return; 16143 16144 if (is_null) { 16145 reg->type = SCALAR_VALUE; 16146 /* We don't need id and ref_obj_id from this point 16147 * onwards anymore, thus we should better reset it, 16148 * so that state pruning has chances to take effect. 16149 */ 16150 reg->id = 0; 16151 reg->ref_obj_id = 0; 16152 16153 return; 16154 } 16155 16156 mark_ptr_not_null_reg(reg); 16157 16158 if (!reg_may_point_to_spin_lock(reg)) { 16159 /* For not-NULL ptr, reg->ref_obj_id will be reset 16160 * in release_reference(). 16161 * 16162 * reg->id is still used by spin_lock ptr. Other 16163 * than spin_lock ptr type, reg->id can be reset. 16164 */ 16165 reg->id = 0; 16166 } 16167 } 16168 } 16169 16170 /* The logic is similar to find_good_pkt_pointers(), both could eventually 16171 * be folded together at some point. 16172 */ 16173 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 16174 bool is_null) 16175 { 16176 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 16177 struct bpf_reg_state *regs = state->regs, *reg; 16178 u32 ref_obj_id = regs[regno].ref_obj_id; 16179 u32 id = regs[regno].id; 16180 16181 if (ref_obj_id && ref_obj_id == id && is_null) 16182 /* regs[regno] is in the " == NULL" branch. 16183 * No one could have freed the reference state before 16184 * doing the NULL check. 16185 */ 16186 WARN_ON_ONCE(release_reference_nomark(vstate, id)); 16187 16188 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 16189 mark_ptr_or_null_reg(state, reg, id, is_null); 16190 })); 16191 } 16192 16193 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 16194 struct bpf_reg_state *dst_reg, 16195 struct bpf_reg_state *src_reg, 16196 struct bpf_verifier_state *this_branch, 16197 struct bpf_verifier_state *other_branch) 16198 { 16199 if (BPF_SRC(insn->code) != BPF_X) 16200 return false; 16201 16202 /* Pointers are always 64-bit. */ 16203 if (BPF_CLASS(insn->code) == BPF_JMP32) 16204 return false; 16205 16206 switch (BPF_OP(insn->code)) { 16207 case BPF_JGT: 16208 if ((dst_reg->type == PTR_TO_PACKET && 16209 src_reg->type == PTR_TO_PACKET_END) || 16210 (dst_reg->type == PTR_TO_PACKET_META && 16211 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 16212 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 16213 find_good_pkt_pointers(this_branch, dst_reg, 16214 dst_reg->type, false); 16215 mark_pkt_end(other_branch, insn->dst_reg, true); 16216 } else if ((dst_reg->type == PTR_TO_PACKET_END && 16217 src_reg->type == PTR_TO_PACKET) || 16218 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 16219 src_reg->type == PTR_TO_PACKET_META)) { 16220 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 16221 find_good_pkt_pointers(other_branch, src_reg, 16222 src_reg->type, true); 16223 mark_pkt_end(this_branch, insn->src_reg, false); 16224 } else { 16225 return false; 16226 } 16227 break; 16228 case BPF_JLT: 16229 if ((dst_reg->type == PTR_TO_PACKET && 16230 src_reg->type == PTR_TO_PACKET_END) || 16231 (dst_reg->type == PTR_TO_PACKET_META && 16232 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 16233 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 16234 find_good_pkt_pointers(other_branch, dst_reg, 16235 dst_reg->type, true); 16236 mark_pkt_end(this_branch, insn->dst_reg, false); 16237 } else if ((dst_reg->type == PTR_TO_PACKET_END && 16238 src_reg->type == PTR_TO_PACKET) || 16239 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 16240 src_reg->type == PTR_TO_PACKET_META)) { 16241 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 16242 find_good_pkt_pointers(this_branch, src_reg, 16243 src_reg->type, false); 16244 mark_pkt_end(other_branch, insn->src_reg, true); 16245 } else { 16246 return false; 16247 } 16248 break; 16249 case BPF_JGE: 16250 if ((dst_reg->type == PTR_TO_PACKET && 16251 src_reg->type == PTR_TO_PACKET_END) || 16252 (dst_reg->type == PTR_TO_PACKET_META && 16253 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 16254 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 16255 find_good_pkt_pointers(this_branch, dst_reg, 16256 dst_reg->type, true); 16257 mark_pkt_end(other_branch, insn->dst_reg, false); 16258 } else if ((dst_reg->type == PTR_TO_PACKET_END && 16259 src_reg->type == PTR_TO_PACKET) || 16260 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 16261 src_reg->type == PTR_TO_PACKET_META)) { 16262 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 16263 find_good_pkt_pointers(other_branch, src_reg, 16264 src_reg->type, false); 16265 mark_pkt_end(this_branch, insn->src_reg, true); 16266 } else { 16267 return false; 16268 } 16269 break; 16270 case BPF_JLE: 16271 if ((dst_reg->type == PTR_TO_PACKET && 16272 src_reg->type == PTR_TO_PACKET_END) || 16273 (dst_reg->type == PTR_TO_PACKET_META && 16274 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 16275 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 16276 find_good_pkt_pointers(other_branch, dst_reg, 16277 dst_reg->type, false); 16278 mark_pkt_end(this_branch, insn->dst_reg, true); 16279 } else if ((dst_reg->type == PTR_TO_PACKET_END && 16280 src_reg->type == PTR_TO_PACKET) || 16281 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 16282 src_reg->type == PTR_TO_PACKET_META)) { 16283 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 16284 find_good_pkt_pointers(this_branch, src_reg, 16285 src_reg->type, true); 16286 mark_pkt_end(other_branch, insn->src_reg, false); 16287 } else { 16288 return false; 16289 } 16290 break; 16291 default: 16292 return false; 16293 } 16294 16295 return true; 16296 } 16297 16298 static void __collect_linked_regs(struct linked_regs *reg_set, struct bpf_reg_state *reg, 16299 u32 id, u32 frameno, u32 spi_or_reg, bool is_reg) 16300 { 16301 struct linked_reg *e; 16302 16303 if (reg->type != SCALAR_VALUE || (reg->id & ~BPF_ADD_CONST) != id) 16304 return; 16305 16306 e = linked_regs_push(reg_set); 16307 if (e) { 16308 e->frameno = frameno; 16309 e->is_reg = is_reg; 16310 e->regno = spi_or_reg; 16311 } else { 16312 reg->id = 0; 16313 } 16314 } 16315 16316 /* For all R being scalar registers or spilled scalar registers 16317 * in verifier state, save R in linked_regs if R->id == id. 16318 * If there are too many Rs sharing same id, reset id for leftover Rs. 16319 */ 16320 static void collect_linked_regs(struct bpf_verifier_state *vstate, u32 id, 16321 struct linked_regs *linked_regs) 16322 { 16323 struct bpf_func_state *func; 16324 struct bpf_reg_state *reg; 16325 int i, j; 16326 16327 id = id & ~BPF_ADD_CONST; 16328 for (i = vstate->curframe; i >= 0; i--) { 16329 func = vstate->frame[i]; 16330 for (j = 0; j < BPF_REG_FP; j++) { 16331 reg = &func->regs[j]; 16332 __collect_linked_regs(linked_regs, reg, id, i, j, true); 16333 } 16334 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 16335 if (!is_spilled_reg(&func->stack[j])) 16336 continue; 16337 reg = &func->stack[j].spilled_ptr; 16338 __collect_linked_regs(linked_regs, reg, id, i, j, false); 16339 } 16340 } 16341 } 16342 16343 /* For all R in linked_regs, copy known_reg range into R 16344 * if R->id == known_reg->id. 16345 */ 16346 static void sync_linked_regs(struct bpf_verifier_state *vstate, struct bpf_reg_state *known_reg, 16347 struct linked_regs *linked_regs) 16348 { 16349 struct bpf_reg_state fake_reg; 16350 struct bpf_reg_state *reg; 16351 struct linked_reg *e; 16352 int i; 16353 16354 for (i = 0; i < linked_regs->cnt; ++i) { 16355 e = &linked_regs->entries[i]; 16356 reg = e->is_reg ? &vstate->frame[e->frameno]->regs[e->regno] 16357 : &vstate->frame[e->frameno]->stack[e->spi].spilled_ptr; 16358 if (reg->type != SCALAR_VALUE || reg == known_reg) 16359 continue; 16360 if ((reg->id & ~BPF_ADD_CONST) != (known_reg->id & ~BPF_ADD_CONST)) 16361 continue; 16362 if ((!(reg->id & BPF_ADD_CONST) && !(known_reg->id & BPF_ADD_CONST)) || 16363 reg->off == known_reg->off) { 16364 s32 saved_subreg_def = reg->subreg_def; 16365 16366 copy_register_state(reg, known_reg); 16367 reg->subreg_def = saved_subreg_def; 16368 } else { 16369 s32 saved_subreg_def = reg->subreg_def; 16370 s32 saved_off = reg->off; 16371 16372 fake_reg.type = SCALAR_VALUE; 16373 __mark_reg_known(&fake_reg, (s32)reg->off - (s32)known_reg->off); 16374 16375 /* reg = known_reg; reg += delta */ 16376 copy_register_state(reg, known_reg); 16377 /* 16378 * Must preserve off, id and add_const flag, 16379 * otherwise another sync_linked_regs() will be incorrect. 16380 */ 16381 reg->off = saved_off; 16382 reg->subreg_def = saved_subreg_def; 16383 16384 scalar32_min_max_add(reg, &fake_reg); 16385 scalar_min_max_add(reg, &fake_reg); 16386 reg->var_off = tnum_add(reg->var_off, fake_reg.var_off); 16387 } 16388 } 16389 } 16390 16391 static int check_cond_jmp_op(struct bpf_verifier_env *env, 16392 struct bpf_insn *insn, int *insn_idx) 16393 { 16394 struct bpf_verifier_state *this_branch = env->cur_state; 16395 struct bpf_verifier_state *other_branch; 16396 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 16397 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 16398 struct bpf_reg_state *eq_branch_regs; 16399 struct linked_regs linked_regs = {}; 16400 u8 opcode = BPF_OP(insn->code); 16401 int insn_flags = 0; 16402 bool is_jmp32; 16403 int pred = -1; 16404 int err; 16405 16406 /* Only conditional jumps are expected to reach here. */ 16407 if (opcode == BPF_JA || opcode > BPF_JCOND) { 16408 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 16409 return -EINVAL; 16410 } 16411 16412 if (opcode == BPF_JCOND) { 16413 struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st; 16414 int idx = *insn_idx; 16415 16416 if (insn->code != (BPF_JMP | BPF_JCOND) || 16417 insn->src_reg != BPF_MAY_GOTO || 16418 insn->dst_reg || insn->imm) { 16419 verbose(env, "invalid may_goto imm %d\n", insn->imm); 16420 return -EINVAL; 16421 } 16422 prev_st = find_prev_entry(env, cur_st->parent, idx); 16423 16424 /* branch out 'fallthrough' insn as a new state to explore */ 16425 queued_st = push_stack(env, idx + 1, idx, false); 16426 if (!queued_st) 16427 return -ENOMEM; 16428 16429 queued_st->may_goto_depth++; 16430 if (prev_st) 16431 widen_imprecise_scalars(env, prev_st, queued_st); 16432 *insn_idx += insn->off; 16433 return 0; 16434 } 16435 16436 /* check src2 operand */ 16437 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 16438 if (err) 16439 return err; 16440 16441 dst_reg = ®s[insn->dst_reg]; 16442 if (BPF_SRC(insn->code) == BPF_X) { 16443 if (insn->imm != 0) { 16444 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 16445 return -EINVAL; 16446 } 16447 16448 /* check src1 operand */ 16449 err = check_reg_arg(env, insn->src_reg, SRC_OP); 16450 if (err) 16451 return err; 16452 16453 src_reg = ®s[insn->src_reg]; 16454 if (!(reg_is_pkt_pointer_any(dst_reg) && reg_is_pkt_pointer_any(src_reg)) && 16455 is_pointer_value(env, insn->src_reg)) { 16456 verbose(env, "R%d pointer comparison prohibited\n", 16457 insn->src_reg); 16458 return -EACCES; 16459 } 16460 16461 if (src_reg->type == PTR_TO_STACK) 16462 insn_flags |= INSN_F_SRC_REG_STACK; 16463 if (dst_reg->type == PTR_TO_STACK) 16464 insn_flags |= INSN_F_DST_REG_STACK; 16465 } else { 16466 if (insn->src_reg != BPF_REG_0) { 16467 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 16468 return -EINVAL; 16469 } 16470 src_reg = &env->fake_reg[0]; 16471 memset(src_reg, 0, sizeof(*src_reg)); 16472 src_reg->type = SCALAR_VALUE; 16473 __mark_reg_known(src_reg, insn->imm); 16474 16475 if (dst_reg->type == PTR_TO_STACK) 16476 insn_flags |= INSN_F_DST_REG_STACK; 16477 } 16478 16479 if (insn_flags) { 16480 err = push_insn_history(env, this_branch, insn_flags, 0); 16481 if (err) 16482 return err; 16483 } 16484 16485 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 16486 pred = is_branch_taken(dst_reg, src_reg, opcode, is_jmp32); 16487 if (pred >= 0) { 16488 /* If we get here with a dst_reg pointer type it is because 16489 * above is_branch_taken() special cased the 0 comparison. 16490 */ 16491 if (!__is_pointer_value(false, dst_reg)) 16492 err = mark_chain_precision(env, insn->dst_reg); 16493 if (BPF_SRC(insn->code) == BPF_X && !err && 16494 !__is_pointer_value(false, src_reg)) 16495 err = mark_chain_precision(env, insn->src_reg); 16496 if (err) 16497 return err; 16498 } 16499 16500 if (pred == 1) { 16501 /* Only follow the goto, ignore fall-through. If needed, push 16502 * the fall-through branch for simulation under speculative 16503 * execution. 16504 */ 16505 if (!env->bypass_spec_v1 && 16506 !sanitize_speculative_path(env, insn, *insn_idx + 1, 16507 *insn_idx)) 16508 return -EFAULT; 16509 if (env->log.level & BPF_LOG_LEVEL) 16510 print_insn_state(env, this_branch, this_branch->curframe); 16511 *insn_idx += insn->off; 16512 return 0; 16513 } else if (pred == 0) { 16514 /* Only follow the fall-through branch, since that's where the 16515 * program will go. If needed, push the goto branch for 16516 * simulation under speculative execution. 16517 */ 16518 if (!env->bypass_spec_v1 && 16519 !sanitize_speculative_path(env, insn, 16520 *insn_idx + insn->off + 1, 16521 *insn_idx)) 16522 return -EFAULT; 16523 if (env->log.level & BPF_LOG_LEVEL) 16524 print_insn_state(env, this_branch, this_branch->curframe); 16525 return 0; 16526 } 16527 16528 /* Push scalar registers sharing same ID to jump history, 16529 * do this before creating 'other_branch', so that both 16530 * 'this_branch' and 'other_branch' share this history 16531 * if parent state is created. 16532 */ 16533 if (BPF_SRC(insn->code) == BPF_X && src_reg->type == SCALAR_VALUE && src_reg->id) 16534 collect_linked_regs(this_branch, src_reg->id, &linked_regs); 16535 if (dst_reg->type == SCALAR_VALUE && dst_reg->id) 16536 collect_linked_regs(this_branch, dst_reg->id, &linked_regs); 16537 if (linked_regs.cnt > 1) { 16538 err = push_insn_history(env, this_branch, 0, linked_regs_pack(&linked_regs)); 16539 if (err) 16540 return err; 16541 } 16542 16543 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 16544 false); 16545 if (!other_branch) 16546 return -EFAULT; 16547 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 16548 16549 if (BPF_SRC(insn->code) == BPF_X) { 16550 err = reg_set_min_max(env, 16551 &other_branch_regs[insn->dst_reg], 16552 &other_branch_regs[insn->src_reg], 16553 dst_reg, src_reg, opcode, is_jmp32); 16554 } else /* BPF_SRC(insn->code) == BPF_K */ { 16555 /* reg_set_min_max() can mangle the fake_reg. Make a copy 16556 * so that these are two different memory locations. The 16557 * src_reg is not used beyond here in context of K. 16558 */ 16559 memcpy(&env->fake_reg[1], &env->fake_reg[0], 16560 sizeof(env->fake_reg[0])); 16561 err = reg_set_min_max(env, 16562 &other_branch_regs[insn->dst_reg], 16563 &env->fake_reg[0], 16564 dst_reg, &env->fake_reg[1], 16565 opcode, is_jmp32); 16566 } 16567 if (err) 16568 return err; 16569 16570 if (BPF_SRC(insn->code) == BPF_X && 16571 src_reg->type == SCALAR_VALUE && src_reg->id && 16572 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) { 16573 sync_linked_regs(this_branch, src_reg, &linked_regs); 16574 sync_linked_regs(other_branch, &other_branch_regs[insn->src_reg], &linked_regs); 16575 } 16576 if (dst_reg->type == SCALAR_VALUE && dst_reg->id && 16577 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) { 16578 sync_linked_regs(this_branch, dst_reg, &linked_regs); 16579 sync_linked_regs(other_branch, &other_branch_regs[insn->dst_reg], &linked_regs); 16580 } 16581 16582 /* if one pointer register is compared to another pointer 16583 * register check if PTR_MAYBE_NULL could be lifted. 16584 * E.g. register A - maybe null 16585 * register B - not null 16586 * for JNE A, B, ... - A is not null in the false branch; 16587 * for JEQ A, B, ... - A is not null in the true branch. 16588 * 16589 * Since PTR_TO_BTF_ID points to a kernel struct that does 16590 * not need to be null checked by the BPF program, i.e., 16591 * could be null even without PTR_MAYBE_NULL marking, so 16592 * only propagate nullness when neither reg is that type. 16593 */ 16594 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X && 16595 __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) && 16596 type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) && 16597 base_type(src_reg->type) != PTR_TO_BTF_ID && 16598 base_type(dst_reg->type) != PTR_TO_BTF_ID) { 16599 eq_branch_regs = NULL; 16600 switch (opcode) { 16601 case BPF_JEQ: 16602 eq_branch_regs = other_branch_regs; 16603 break; 16604 case BPF_JNE: 16605 eq_branch_regs = regs; 16606 break; 16607 default: 16608 /* do nothing */ 16609 break; 16610 } 16611 if (eq_branch_regs) { 16612 if (type_may_be_null(src_reg->type)) 16613 mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]); 16614 else 16615 mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]); 16616 } 16617 } 16618 16619 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 16620 * NOTE: these optimizations below are related with pointer comparison 16621 * which will never be JMP32. 16622 */ 16623 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 16624 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 16625 type_may_be_null(dst_reg->type)) { 16626 /* Mark all identical registers in each branch as either 16627 * safe or unknown depending R == 0 or R != 0 conditional. 16628 */ 16629 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 16630 opcode == BPF_JNE); 16631 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 16632 opcode == BPF_JEQ); 16633 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 16634 this_branch, other_branch) && 16635 is_pointer_value(env, insn->dst_reg)) { 16636 verbose(env, "R%d pointer comparison prohibited\n", 16637 insn->dst_reg); 16638 return -EACCES; 16639 } 16640 if (env->log.level & BPF_LOG_LEVEL) 16641 print_insn_state(env, this_branch, this_branch->curframe); 16642 return 0; 16643 } 16644 16645 /* verify BPF_LD_IMM64 instruction */ 16646 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 16647 { 16648 struct bpf_insn_aux_data *aux = cur_aux(env); 16649 struct bpf_reg_state *regs = cur_regs(env); 16650 struct bpf_reg_state *dst_reg; 16651 struct bpf_map *map; 16652 int err; 16653 16654 if (BPF_SIZE(insn->code) != BPF_DW) { 16655 verbose(env, "invalid BPF_LD_IMM insn\n"); 16656 return -EINVAL; 16657 } 16658 if (insn->off != 0) { 16659 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 16660 return -EINVAL; 16661 } 16662 16663 err = check_reg_arg(env, insn->dst_reg, DST_OP); 16664 if (err) 16665 return err; 16666 16667 dst_reg = ®s[insn->dst_reg]; 16668 if (insn->src_reg == 0) { 16669 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 16670 16671 dst_reg->type = SCALAR_VALUE; 16672 __mark_reg_known(®s[insn->dst_reg], imm); 16673 return 0; 16674 } 16675 16676 /* All special src_reg cases are listed below. From this point onwards 16677 * we either succeed and assign a corresponding dst_reg->type after 16678 * zeroing the offset, or fail and reject the program. 16679 */ 16680 mark_reg_known_zero(env, regs, insn->dst_reg); 16681 16682 if (insn->src_reg == BPF_PSEUDO_BTF_ID) { 16683 dst_reg->type = aux->btf_var.reg_type; 16684 switch (base_type(dst_reg->type)) { 16685 case PTR_TO_MEM: 16686 dst_reg->mem_size = aux->btf_var.mem_size; 16687 break; 16688 case PTR_TO_BTF_ID: 16689 dst_reg->btf = aux->btf_var.btf; 16690 dst_reg->btf_id = aux->btf_var.btf_id; 16691 break; 16692 default: 16693 verbose(env, "bpf verifier is misconfigured\n"); 16694 return -EFAULT; 16695 } 16696 return 0; 16697 } 16698 16699 if (insn->src_reg == BPF_PSEUDO_FUNC) { 16700 struct bpf_prog_aux *aux = env->prog->aux; 16701 u32 subprogno = find_subprog(env, 16702 env->insn_idx + insn->imm + 1); 16703 16704 if (!aux->func_info) { 16705 verbose(env, "missing btf func_info\n"); 16706 return -EINVAL; 16707 } 16708 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) { 16709 verbose(env, "callback function not static\n"); 16710 return -EINVAL; 16711 } 16712 16713 dst_reg->type = PTR_TO_FUNC; 16714 dst_reg->subprogno = subprogno; 16715 return 0; 16716 } 16717 16718 map = env->used_maps[aux->map_index]; 16719 dst_reg->map_ptr = map; 16720 16721 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE || 16722 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) { 16723 if (map->map_type == BPF_MAP_TYPE_ARENA) { 16724 __mark_reg_unknown(env, dst_reg); 16725 return 0; 16726 } 16727 dst_reg->type = PTR_TO_MAP_VALUE; 16728 dst_reg->off = aux->map_off; 16729 WARN_ON_ONCE(map->max_entries != 1); 16730 /* We want reg->id to be same (0) as map_value is not distinct */ 16731 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD || 16732 insn->src_reg == BPF_PSEUDO_MAP_IDX) { 16733 dst_reg->type = CONST_PTR_TO_MAP; 16734 } else { 16735 verbose(env, "bpf verifier is misconfigured\n"); 16736 return -EINVAL; 16737 } 16738 16739 return 0; 16740 } 16741 16742 static bool may_access_skb(enum bpf_prog_type type) 16743 { 16744 switch (type) { 16745 case BPF_PROG_TYPE_SOCKET_FILTER: 16746 case BPF_PROG_TYPE_SCHED_CLS: 16747 case BPF_PROG_TYPE_SCHED_ACT: 16748 return true; 16749 default: 16750 return false; 16751 } 16752 } 16753 16754 /* verify safety of LD_ABS|LD_IND instructions: 16755 * - they can only appear in the programs where ctx == skb 16756 * - since they are wrappers of function calls, they scratch R1-R5 registers, 16757 * preserve R6-R9, and store return value into R0 16758 * 16759 * Implicit input: 16760 * ctx == skb == R6 == CTX 16761 * 16762 * Explicit input: 16763 * SRC == any register 16764 * IMM == 32-bit immediate 16765 * 16766 * Output: 16767 * R0 - 8/16/32-bit skb data converted to cpu endianness 16768 */ 16769 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 16770 { 16771 struct bpf_reg_state *regs = cur_regs(env); 16772 static const int ctx_reg = BPF_REG_6; 16773 u8 mode = BPF_MODE(insn->code); 16774 int i, err; 16775 16776 if (!may_access_skb(resolve_prog_type(env->prog))) { 16777 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 16778 return -EINVAL; 16779 } 16780 16781 if (!env->ops->gen_ld_abs) { 16782 verbose(env, "bpf verifier is misconfigured\n"); 16783 return -EINVAL; 16784 } 16785 16786 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 16787 BPF_SIZE(insn->code) == BPF_DW || 16788 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 16789 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 16790 return -EINVAL; 16791 } 16792 16793 /* check whether implicit source operand (register R6) is readable */ 16794 err = check_reg_arg(env, ctx_reg, SRC_OP); 16795 if (err) 16796 return err; 16797 16798 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 16799 * gen_ld_abs() may terminate the program at runtime, leading to 16800 * reference leak. 16801 */ 16802 err = check_resource_leak(env, false, true, "BPF_LD_[ABS|IND]"); 16803 if (err) 16804 return err; 16805 16806 if (regs[ctx_reg].type != PTR_TO_CTX) { 16807 verbose(env, 16808 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 16809 return -EINVAL; 16810 } 16811 16812 if (mode == BPF_IND) { 16813 /* check explicit source operand */ 16814 err = check_reg_arg(env, insn->src_reg, SRC_OP); 16815 if (err) 16816 return err; 16817 } 16818 16819 err = check_ptr_off_reg(env, ®s[ctx_reg], ctx_reg); 16820 if (err < 0) 16821 return err; 16822 16823 /* reset caller saved regs to unreadable */ 16824 for (i = 0; i < CALLER_SAVED_REGS; i++) { 16825 mark_reg_not_init(env, regs, caller_saved[i]); 16826 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 16827 } 16828 16829 /* mark destination R0 register as readable, since it contains 16830 * the value fetched from the packet. 16831 * Already marked as written above. 16832 */ 16833 mark_reg_unknown(env, regs, BPF_REG_0); 16834 /* ld_abs load up to 32-bit skb data. */ 16835 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 16836 return 0; 16837 } 16838 16839 static int check_return_code(struct bpf_verifier_env *env, int regno, const char *reg_name) 16840 { 16841 const char *exit_ctx = "At program exit"; 16842 struct tnum enforce_attach_type_range = tnum_unknown; 16843 const struct bpf_prog *prog = env->prog; 16844 struct bpf_reg_state *reg = reg_state(env, regno); 16845 struct bpf_retval_range range = retval_range(0, 1); 16846 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 16847 int err; 16848 struct bpf_func_state *frame = env->cur_state->frame[0]; 16849 const bool is_subprog = frame->subprogno; 16850 bool return_32bit = false; 16851 const struct btf_type *reg_type, *ret_type = NULL; 16852 16853 /* LSM and struct_ops func-ptr's return type could be "void" */ 16854 if (!is_subprog || frame->in_exception_callback_fn) { 16855 switch (prog_type) { 16856 case BPF_PROG_TYPE_LSM: 16857 if (prog->expected_attach_type == BPF_LSM_CGROUP) 16858 /* See below, can be 0 or 0-1 depending on hook. */ 16859 break; 16860 if (!prog->aux->attach_func_proto->type) 16861 return 0; 16862 break; 16863 case BPF_PROG_TYPE_STRUCT_OPS: 16864 if (!prog->aux->attach_func_proto->type) 16865 return 0; 16866 16867 if (frame->in_exception_callback_fn) 16868 break; 16869 16870 /* Allow a struct_ops program to return a referenced kptr if it 16871 * matches the operator's return type and is in its unmodified 16872 * form. A scalar zero (i.e., a null pointer) is also allowed. 16873 */ 16874 reg_type = reg->btf ? btf_type_by_id(reg->btf, reg->btf_id) : NULL; 16875 ret_type = btf_type_resolve_ptr(prog->aux->attach_btf, 16876 prog->aux->attach_func_proto->type, 16877 NULL); 16878 if (ret_type && ret_type == reg_type && reg->ref_obj_id) 16879 return __check_ptr_off_reg(env, reg, regno, false); 16880 break; 16881 default: 16882 break; 16883 } 16884 } 16885 16886 /* eBPF calling convention is such that R0 is used 16887 * to return the value from eBPF program. 16888 * Make sure that it's readable at this time 16889 * of bpf_exit, which means that program wrote 16890 * something into it earlier 16891 */ 16892 err = check_reg_arg(env, regno, SRC_OP); 16893 if (err) 16894 return err; 16895 16896 if (is_pointer_value(env, regno)) { 16897 verbose(env, "R%d leaks addr as return value\n", regno); 16898 return -EACCES; 16899 } 16900 16901 if (frame->in_async_callback_fn) { 16902 /* enforce return zero from async callbacks like timer */ 16903 exit_ctx = "At async callback return"; 16904 range = retval_range(0, 0); 16905 goto enforce_retval; 16906 } 16907 16908 if (is_subprog && !frame->in_exception_callback_fn) { 16909 if (reg->type != SCALAR_VALUE) { 16910 verbose(env, "At subprogram exit the register R%d is not a scalar value (%s)\n", 16911 regno, reg_type_str(env, reg->type)); 16912 return -EINVAL; 16913 } 16914 return 0; 16915 } 16916 16917 switch (prog_type) { 16918 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 16919 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 16920 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || 16921 env->prog->expected_attach_type == BPF_CGROUP_UNIX_RECVMSG || 16922 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || 16923 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || 16924 env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETPEERNAME || 16925 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || 16926 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME || 16927 env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETSOCKNAME) 16928 range = retval_range(1, 1); 16929 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND || 16930 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND) 16931 range = retval_range(0, 3); 16932 break; 16933 case BPF_PROG_TYPE_CGROUP_SKB: 16934 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 16935 range = retval_range(0, 3); 16936 enforce_attach_type_range = tnum_range(2, 3); 16937 } 16938 break; 16939 case BPF_PROG_TYPE_CGROUP_SOCK: 16940 case BPF_PROG_TYPE_SOCK_OPS: 16941 case BPF_PROG_TYPE_CGROUP_DEVICE: 16942 case BPF_PROG_TYPE_CGROUP_SYSCTL: 16943 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 16944 break; 16945 case BPF_PROG_TYPE_RAW_TRACEPOINT: 16946 if (!env->prog->aux->attach_btf_id) 16947 return 0; 16948 range = retval_range(0, 0); 16949 break; 16950 case BPF_PROG_TYPE_TRACING: 16951 switch (env->prog->expected_attach_type) { 16952 case BPF_TRACE_FENTRY: 16953 case BPF_TRACE_FEXIT: 16954 range = retval_range(0, 0); 16955 break; 16956 case BPF_TRACE_RAW_TP: 16957 case BPF_MODIFY_RETURN: 16958 return 0; 16959 case BPF_TRACE_ITER: 16960 break; 16961 default: 16962 return -ENOTSUPP; 16963 } 16964 break; 16965 case BPF_PROG_TYPE_KPROBE: 16966 switch (env->prog->expected_attach_type) { 16967 case BPF_TRACE_KPROBE_SESSION: 16968 case BPF_TRACE_UPROBE_SESSION: 16969 range = retval_range(0, 1); 16970 break; 16971 default: 16972 return 0; 16973 } 16974 break; 16975 case BPF_PROG_TYPE_SK_LOOKUP: 16976 range = retval_range(SK_DROP, SK_PASS); 16977 break; 16978 16979 case BPF_PROG_TYPE_LSM: 16980 if (env->prog->expected_attach_type != BPF_LSM_CGROUP) { 16981 /* no range found, any return value is allowed */ 16982 if (!get_func_retval_range(env->prog, &range)) 16983 return 0; 16984 /* no restricted range, any return value is allowed */ 16985 if (range.minval == S32_MIN && range.maxval == S32_MAX) 16986 return 0; 16987 return_32bit = true; 16988 } else if (!env->prog->aux->attach_func_proto->type) { 16989 /* Make sure programs that attach to void 16990 * hooks don't try to modify return value. 16991 */ 16992 range = retval_range(1, 1); 16993 } 16994 break; 16995 16996 case BPF_PROG_TYPE_NETFILTER: 16997 range = retval_range(NF_DROP, NF_ACCEPT); 16998 break; 16999 case BPF_PROG_TYPE_STRUCT_OPS: 17000 if (!ret_type) 17001 return 0; 17002 range = retval_range(0, 0); 17003 break; 17004 case BPF_PROG_TYPE_EXT: 17005 /* freplace program can return anything as its return value 17006 * depends on the to-be-replaced kernel func or bpf program. 17007 */ 17008 default: 17009 return 0; 17010 } 17011 17012 enforce_retval: 17013 if (reg->type != SCALAR_VALUE) { 17014 verbose(env, "%s the register R%d is not a known value (%s)\n", 17015 exit_ctx, regno, reg_type_str(env, reg->type)); 17016 return -EINVAL; 17017 } 17018 17019 err = mark_chain_precision(env, regno); 17020 if (err) 17021 return err; 17022 17023 if (!retval_range_within(range, reg, return_32bit)) { 17024 verbose_invalid_scalar(env, reg, range, exit_ctx, reg_name); 17025 if (!is_subprog && 17026 prog->expected_attach_type == BPF_LSM_CGROUP && 17027 prog_type == BPF_PROG_TYPE_LSM && 17028 !prog->aux->attach_func_proto->type) 17029 verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 17030 return -EINVAL; 17031 } 17032 17033 if (!tnum_is_unknown(enforce_attach_type_range) && 17034 tnum_in(enforce_attach_type_range, reg->var_off)) 17035 env->prog->enforce_expected_attach_type = 1; 17036 return 0; 17037 } 17038 17039 static void mark_subprog_changes_pkt_data(struct bpf_verifier_env *env, int off) 17040 { 17041 struct bpf_subprog_info *subprog; 17042 17043 subprog = find_containing_subprog(env, off); 17044 subprog->changes_pkt_data = true; 17045 } 17046 17047 static void mark_subprog_might_sleep(struct bpf_verifier_env *env, int off) 17048 { 17049 struct bpf_subprog_info *subprog; 17050 17051 subprog = find_containing_subprog(env, off); 17052 subprog->might_sleep = true; 17053 } 17054 17055 /* 't' is an index of a call-site. 17056 * 'w' is a callee entry point. 17057 * Eventually this function would be called when env->cfg.insn_state[w] == EXPLORED. 17058 * Rely on DFS traversal order and absence of recursive calls to guarantee that 17059 * callee's change_pkt_data marks would be correct at that moment. 17060 */ 17061 static void merge_callee_effects(struct bpf_verifier_env *env, int t, int w) 17062 { 17063 struct bpf_subprog_info *caller, *callee; 17064 17065 caller = find_containing_subprog(env, t); 17066 callee = find_containing_subprog(env, w); 17067 caller->changes_pkt_data |= callee->changes_pkt_data; 17068 caller->might_sleep |= callee->might_sleep; 17069 } 17070 17071 /* non-recursive DFS pseudo code 17072 * 1 procedure DFS-iterative(G,v): 17073 * 2 label v as discovered 17074 * 3 let S be a stack 17075 * 4 S.push(v) 17076 * 5 while S is not empty 17077 * 6 t <- S.peek() 17078 * 7 if t is what we're looking for: 17079 * 8 return t 17080 * 9 for all edges e in G.adjacentEdges(t) do 17081 * 10 if edge e is already labelled 17082 * 11 continue with the next edge 17083 * 12 w <- G.adjacentVertex(t,e) 17084 * 13 if vertex w is not discovered and not explored 17085 * 14 label e as tree-edge 17086 * 15 label w as discovered 17087 * 16 S.push(w) 17088 * 17 continue at 5 17089 * 18 else if vertex w is discovered 17090 * 19 label e as back-edge 17091 * 20 else 17092 * 21 // vertex w is explored 17093 * 22 label e as forward- or cross-edge 17094 * 23 label t as explored 17095 * 24 S.pop() 17096 * 17097 * convention: 17098 * 0x10 - discovered 17099 * 0x11 - discovered and fall-through edge labelled 17100 * 0x12 - discovered and fall-through and branch edges labelled 17101 * 0x20 - explored 17102 */ 17103 17104 enum { 17105 DISCOVERED = 0x10, 17106 EXPLORED = 0x20, 17107 FALLTHROUGH = 1, 17108 BRANCH = 2, 17109 }; 17110 17111 static void mark_prune_point(struct bpf_verifier_env *env, int idx) 17112 { 17113 env->insn_aux_data[idx].prune_point = true; 17114 } 17115 17116 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx) 17117 { 17118 return env->insn_aux_data[insn_idx].prune_point; 17119 } 17120 17121 static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx) 17122 { 17123 env->insn_aux_data[idx].force_checkpoint = true; 17124 } 17125 17126 static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx) 17127 { 17128 return env->insn_aux_data[insn_idx].force_checkpoint; 17129 } 17130 17131 static void mark_calls_callback(struct bpf_verifier_env *env, int idx) 17132 { 17133 env->insn_aux_data[idx].calls_callback = true; 17134 } 17135 17136 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx) 17137 { 17138 return env->insn_aux_data[insn_idx].calls_callback; 17139 } 17140 17141 enum { 17142 DONE_EXPLORING = 0, 17143 KEEP_EXPLORING = 1, 17144 }; 17145 17146 /* t, w, e - match pseudo-code above: 17147 * t - index of current instruction 17148 * w - next instruction 17149 * e - edge 17150 */ 17151 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env) 17152 { 17153 int *insn_stack = env->cfg.insn_stack; 17154 int *insn_state = env->cfg.insn_state; 17155 17156 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 17157 return DONE_EXPLORING; 17158 17159 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 17160 return DONE_EXPLORING; 17161 17162 if (w < 0 || w >= env->prog->len) { 17163 verbose_linfo(env, t, "%d: ", t); 17164 verbose(env, "jump out of range from insn %d to %d\n", t, w); 17165 return -EINVAL; 17166 } 17167 17168 if (e == BRANCH) { 17169 /* mark branch target for state pruning */ 17170 mark_prune_point(env, w); 17171 mark_jmp_point(env, w); 17172 } 17173 17174 if (insn_state[w] == 0) { 17175 /* tree-edge */ 17176 insn_state[t] = DISCOVERED | e; 17177 insn_state[w] = DISCOVERED; 17178 if (env->cfg.cur_stack >= env->prog->len) 17179 return -E2BIG; 17180 insn_stack[env->cfg.cur_stack++] = w; 17181 return KEEP_EXPLORING; 17182 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 17183 if (env->bpf_capable) 17184 return DONE_EXPLORING; 17185 verbose_linfo(env, t, "%d: ", t); 17186 verbose_linfo(env, w, "%d: ", w); 17187 verbose(env, "back-edge from insn %d to %d\n", t, w); 17188 return -EINVAL; 17189 } else if (insn_state[w] == EXPLORED) { 17190 /* forward- or cross-edge */ 17191 insn_state[t] = DISCOVERED | e; 17192 } else { 17193 verbose(env, "insn state internal bug\n"); 17194 return -EFAULT; 17195 } 17196 return DONE_EXPLORING; 17197 } 17198 17199 static int visit_func_call_insn(int t, struct bpf_insn *insns, 17200 struct bpf_verifier_env *env, 17201 bool visit_callee) 17202 { 17203 int ret, insn_sz; 17204 int w; 17205 17206 insn_sz = bpf_is_ldimm64(&insns[t]) ? 2 : 1; 17207 ret = push_insn(t, t + insn_sz, FALLTHROUGH, env); 17208 if (ret) 17209 return ret; 17210 17211 mark_prune_point(env, t + insn_sz); 17212 /* when we exit from subprog, we need to record non-linear history */ 17213 mark_jmp_point(env, t + insn_sz); 17214 17215 if (visit_callee) { 17216 w = t + insns[t].imm + 1; 17217 mark_prune_point(env, t); 17218 merge_callee_effects(env, t, w); 17219 ret = push_insn(t, w, BRANCH, env); 17220 } 17221 return ret; 17222 } 17223 17224 /* Bitmask with 1s for all caller saved registers */ 17225 #define ALL_CALLER_SAVED_REGS ((1u << CALLER_SAVED_REGS) - 1) 17226 17227 /* True if do_misc_fixups() replaces calls to helper number 'imm', 17228 * replacement patch is presumed to follow bpf_fastcall contract 17229 * (see mark_fastcall_pattern_for_call() below). 17230 */ 17231 static bool verifier_inlines_helper_call(struct bpf_verifier_env *env, s32 imm) 17232 { 17233 switch (imm) { 17234 #ifdef CONFIG_X86_64 17235 case BPF_FUNC_get_smp_processor_id: 17236 return env->prog->jit_requested && bpf_jit_supports_percpu_insn(); 17237 #endif 17238 default: 17239 return false; 17240 } 17241 } 17242 17243 struct call_summary { 17244 u8 num_params; 17245 bool is_void; 17246 bool fastcall; 17247 }; 17248 17249 /* If @call is a kfunc or helper call, fills @cs and returns true, 17250 * otherwise returns false. 17251 */ 17252 static bool get_call_summary(struct bpf_verifier_env *env, struct bpf_insn *call, 17253 struct call_summary *cs) 17254 { 17255 struct bpf_kfunc_call_arg_meta meta; 17256 const struct bpf_func_proto *fn; 17257 int i; 17258 17259 if (bpf_helper_call(call)) { 17260 17261 if (get_helper_proto(env, call->imm, &fn) < 0) 17262 /* error would be reported later */ 17263 return false; 17264 cs->fastcall = fn->allow_fastcall && 17265 (verifier_inlines_helper_call(env, call->imm) || 17266 bpf_jit_inlines_helper_call(call->imm)); 17267 cs->is_void = fn->ret_type == RET_VOID; 17268 cs->num_params = 0; 17269 for (i = 0; i < ARRAY_SIZE(fn->arg_type); ++i) { 17270 if (fn->arg_type[i] == ARG_DONTCARE) 17271 break; 17272 cs->num_params++; 17273 } 17274 return true; 17275 } 17276 17277 if (bpf_pseudo_kfunc_call(call)) { 17278 int err; 17279 17280 err = fetch_kfunc_meta(env, call, &meta, NULL); 17281 if (err < 0) 17282 /* error would be reported later */ 17283 return false; 17284 cs->num_params = btf_type_vlen(meta.func_proto); 17285 cs->fastcall = meta.kfunc_flags & KF_FASTCALL; 17286 cs->is_void = btf_type_is_void(btf_type_by_id(meta.btf, meta.func_proto->type)); 17287 return true; 17288 } 17289 17290 return false; 17291 } 17292 17293 /* LLVM define a bpf_fastcall function attribute. 17294 * This attribute means that function scratches only some of 17295 * the caller saved registers defined by ABI. 17296 * For BPF the set of such registers could be defined as follows: 17297 * - R0 is scratched only if function is non-void; 17298 * - R1-R5 are scratched only if corresponding parameter type is defined 17299 * in the function prototype. 17300 * 17301 * The contract between kernel and clang allows to simultaneously use 17302 * such functions and maintain backwards compatibility with old 17303 * kernels that don't understand bpf_fastcall calls: 17304 * 17305 * - for bpf_fastcall calls clang allocates registers as-if relevant r0-r5 17306 * registers are not scratched by the call; 17307 * 17308 * - as a post-processing step, clang visits each bpf_fastcall call and adds 17309 * spill/fill for every live r0-r5; 17310 * 17311 * - stack offsets used for the spill/fill are allocated as lowest 17312 * stack offsets in whole function and are not used for any other 17313 * purposes; 17314 * 17315 * - when kernel loads a program, it looks for such patterns 17316 * (bpf_fastcall function surrounded by spills/fills) and checks if 17317 * spill/fill stack offsets are used exclusively in fastcall patterns; 17318 * 17319 * - if so, and if verifier or current JIT inlines the call to the 17320 * bpf_fastcall function (e.g. a helper call), kernel removes unnecessary 17321 * spill/fill pairs; 17322 * 17323 * - when old kernel loads a program, presence of spill/fill pairs 17324 * keeps BPF program valid, albeit slightly less efficient. 17325 * 17326 * For example: 17327 * 17328 * r1 = 1; 17329 * r2 = 2; 17330 * *(u64 *)(r10 - 8) = r1; r1 = 1; 17331 * *(u64 *)(r10 - 16) = r2; r2 = 2; 17332 * call %[to_be_inlined] --> call %[to_be_inlined] 17333 * r2 = *(u64 *)(r10 - 16); r0 = r1; 17334 * r1 = *(u64 *)(r10 - 8); r0 += r2; 17335 * r0 = r1; exit; 17336 * r0 += r2; 17337 * exit; 17338 * 17339 * The purpose of mark_fastcall_pattern_for_call is to: 17340 * - look for such patterns; 17341 * - mark spill and fill instructions in env->insn_aux_data[*].fastcall_pattern; 17342 * - mark set env->insn_aux_data[*].fastcall_spills_num for call instruction; 17343 * - update env->subprog_info[*]->fastcall_stack_off to find an offset 17344 * at which bpf_fastcall spill/fill stack slots start; 17345 * - update env->subprog_info[*]->keep_fastcall_stack. 17346 * 17347 * The .fastcall_pattern and .fastcall_stack_off are used by 17348 * check_fastcall_stack_contract() to check if every stack access to 17349 * fastcall spill/fill stack slot originates from spill/fill 17350 * instructions, members of fastcall patterns. 17351 * 17352 * If such condition holds true for a subprogram, fastcall patterns could 17353 * be rewritten by remove_fastcall_spills_fills(). 17354 * Otherwise bpf_fastcall patterns are not changed in the subprogram 17355 * (code, presumably, generated by an older clang version). 17356 * 17357 * For example, it is *not* safe to remove spill/fill below: 17358 * 17359 * r1 = 1; 17360 * *(u64 *)(r10 - 8) = r1; r1 = 1; 17361 * call %[to_be_inlined] --> call %[to_be_inlined] 17362 * r1 = *(u64 *)(r10 - 8); r0 = *(u64 *)(r10 - 8); <---- wrong !!! 17363 * r0 = *(u64 *)(r10 - 8); r0 += r1; 17364 * r0 += r1; exit; 17365 * exit; 17366 */ 17367 static void mark_fastcall_pattern_for_call(struct bpf_verifier_env *env, 17368 struct bpf_subprog_info *subprog, 17369 int insn_idx, s16 lowest_off) 17370 { 17371 struct bpf_insn *insns = env->prog->insnsi, *stx, *ldx; 17372 struct bpf_insn *call = &env->prog->insnsi[insn_idx]; 17373 u32 clobbered_regs_mask; 17374 struct call_summary cs; 17375 u32 expected_regs_mask; 17376 s16 off; 17377 int i; 17378 17379 if (!get_call_summary(env, call, &cs)) 17380 return; 17381 17382 /* A bitmask specifying which caller saved registers are clobbered 17383 * by a call to a helper/kfunc *as if* this helper/kfunc follows 17384 * bpf_fastcall contract: 17385 * - includes R0 if function is non-void; 17386 * - includes R1-R5 if corresponding parameter has is described 17387 * in the function prototype. 17388 */ 17389 clobbered_regs_mask = GENMASK(cs.num_params, cs.is_void ? 1 : 0); 17390 /* e.g. if helper call clobbers r{0,1}, expect r{2,3,4,5} in the pattern */ 17391 expected_regs_mask = ~clobbered_regs_mask & ALL_CALLER_SAVED_REGS; 17392 17393 /* match pairs of form: 17394 * 17395 * *(u64 *)(r10 - Y) = rX (where Y % 8 == 0) 17396 * ... 17397 * call %[to_be_inlined] 17398 * ... 17399 * rX = *(u64 *)(r10 - Y) 17400 */ 17401 for (i = 1, off = lowest_off; i <= ARRAY_SIZE(caller_saved); ++i, off += BPF_REG_SIZE) { 17402 if (insn_idx - i < 0 || insn_idx + i >= env->prog->len) 17403 break; 17404 stx = &insns[insn_idx - i]; 17405 ldx = &insns[insn_idx + i]; 17406 /* must be a stack spill/fill pair */ 17407 if (stx->code != (BPF_STX | BPF_MEM | BPF_DW) || 17408 ldx->code != (BPF_LDX | BPF_MEM | BPF_DW) || 17409 stx->dst_reg != BPF_REG_10 || 17410 ldx->src_reg != BPF_REG_10) 17411 break; 17412 /* must be a spill/fill for the same reg */ 17413 if (stx->src_reg != ldx->dst_reg) 17414 break; 17415 /* must be one of the previously unseen registers */ 17416 if ((BIT(stx->src_reg) & expected_regs_mask) == 0) 17417 break; 17418 /* must be a spill/fill for the same expected offset, 17419 * no need to check offset alignment, BPF_DW stack access 17420 * is always 8-byte aligned. 17421 */ 17422 if (stx->off != off || ldx->off != off) 17423 break; 17424 expected_regs_mask &= ~BIT(stx->src_reg); 17425 env->insn_aux_data[insn_idx - i].fastcall_pattern = 1; 17426 env->insn_aux_data[insn_idx + i].fastcall_pattern = 1; 17427 } 17428 if (i == 1) 17429 return; 17430 17431 /* Conditionally set 'fastcall_spills_num' to allow forward 17432 * compatibility when more helper functions are marked as 17433 * bpf_fastcall at compile time than current kernel supports, e.g: 17434 * 17435 * 1: *(u64 *)(r10 - 8) = r1 17436 * 2: call A ;; assume A is bpf_fastcall for current kernel 17437 * 3: r1 = *(u64 *)(r10 - 8) 17438 * 4: *(u64 *)(r10 - 8) = r1 17439 * 5: call B ;; assume B is not bpf_fastcall for current kernel 17440 * 6: r1 = *(u64 *)(r10 - 8) 17441 * 17442 * There is no need to block bpf_fastcall rewrite for such program. 17443 * Set 'fastcall_pattern' for both calls to keep check_fastcall_stack_contract() happy, 17444 * don't set 'fastcall_spills_num' for call B so that remove_fastcall_spills_fills() 17445 * does not remove spill/fill pair {4,6}. 17446 */ 17447 if (cs.fastcall) 17448 env->insn_aux_data[insn_idx].fastcall_spills_num = i - 1; 17449 else 17450 subprog->keep_fastcall_stack = 1; 17451 subprog->fastcall_stack_off = min(subprog->fastcall_stack_off, off); 17452 } 17453 17454 static int mark_fastcall_patterns(struct bpf_verifier_env *env) 17455 { 17456 struct bpf_subprog_info *subprog = env->subprog_info; 17457 struct bpf_insn *insn; 17458 s16 lowest_off; 17459 int s, i; 17460 17461 for (s = 0; s < env->subprog_cnt; ++s, ++subprog) { 17462 /* find lowest stack spill offset used in this subprog */ 17463 lowest_off = 0; 17464 for (i = subprog->start; i < (subprog + 1)->start; ++i) { 17465 insn = env->prog->insnsi + i; 17466 if (insn->code != (BPF_STX | BPF_MEM | BPF_DW) || 17467 insn->dst_reg != BPF_REG_10) 17468 continue; 17469 lowest_off = min(lowest_off, insn->off); 17470 } 17471 /* use this offset to find fastcall patterns */ 17472 for (i = subprog->start; i < (subprog + 1)->start; ++i) { 17473 insn = env->prog->insnsi + i; 17474 if (insn->code != (BPF_JMP | BPF_CALL)) 17475 continue; 17476 mark_fastcall_pattern_for_call(env, subprog, i, lowest_off); 17477 } 17478 } 17479 return 0; 17480 } 17481 17482 /* Visits the instruction at index t and returns one of the following: 17483 * < 0 - an error occurred 17484 * DONE_EXPLORING - the instruction was fully explored 17485 * KEEP_EXPLORING - there is still work to be done before it is fully explored 17486 */ 17487 static int visit_insn(int t, struct bpf_verifier_env *env) 17488 { 17489 struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t]; 17490 int ret, off, insn_sz; 17491 17492 if (bpf_pseudo_func(insn)) 17493 return visit_func_call_insn(t, insns, env, true); 17494 17495 /* All non-branch instructions have a single fall-through edge. */ 17496 if (BPF_CLASS(insn->code) != BPF_JMP && 17497 BPF_CLASS(insn->code) != BPF_JMP32) { 17498 insn_sz = bpf_is_ldimm64(insn) ? 2 : 1; 17499 return push_insn(t, t + insn_sz, FALLTHROUGH, env); 17500 } 17501 17502 switch (BPF_OP(insn->code)) { 17503 case BPF_EXIT: 17504 return DONE_EXPLORING; 17505 17506 case BPF_CALL: 17507 if (is_async_callback_calling_insn(insn)) 17508 /* Mark this call insn as a prune point to trigger 17509 * is_state_visited() check before call itself is 17510 * processed by __check_func_call(). Otherwise new 17511 * async state will be pushed for further exploration. 17512 */ 17513 mark_prune_point(env, t); 17514 /* For functions that invoke callbacks it is not known how many times 17515 * callback would be called. Verifier models callback calling functions 17516 * by repeatedly visiting callback bodies and returning to origin call 17517 * instruction. 17518 * In order to stop such iteration verifier needs to identify when a 17519 * state identical some state from a previous iteration is reached. 17520 * Check below forces creation of checkpoint before callback calling 17521 * instruction to allow search for such identical states. 17522 */ 17523 if (is_sync_callback_calling_insn(insn)) { 17524 mark_calls_callback(env, t); 17525 mark_force_checkpoint(env, t); 17526 mark_prune_point(env, t); 17527 mark_jmp_point(env, t); 17528 } 17529 if (bpf_helper_call(insn)) { 17530 const struct bpf_func_proto *fp; 17531 17532 ret = get_helper_proto(env, insn->imm, &fp); 17533 /* If called in a non-sleepable context program will be 17534 * rejected anyway, so we should end up with precise 17535 * sleepable marks on subprogs, except for dead code 17536 * elimination. 17537 */ 17538 if (ret == 0 && fp->might_sleep) 17539 mark_subprog_might_sleep(env, t); 17540 if (bpf_helper_changes_pkt_data(insn->imm)) 17541 mark_subprog_changes_pkt_data(env, t); 17542 } else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 17543 struct bpf_kfunc_call_arg_meta meta; 17544 17545 ret = fetch_kfunc_meta(env, insn, &meta, NULL); 17546 if (ret == 0 && is_iter_next_kfunc(&meta)) { 17547 mark_prune_point(env, t); 17548 /* Checking and saving state checkpoints at iter_next() call 17549 * is crucial for fast convergence of open-coded iterator loop 17550 * logic, so we need to force it. If we don't do that, 17551 * is_state_visited() might skip saving a checkpoint, causing 17552 * unnecessarily long sequence of not checkpointed 17553 * instructions and jumps, leading to exhaustion of jump 17554 * history buffer, and potentially other undesired outcomes. 17555 * It is expected that with correct open-coded iterators 17556 * convergence will happen quickly, so we don't run a risk of 17557 * exhausting memory. 17558 */ 17559 mark_force_checkpoint(env, t); 17560 } 17561 /* Same as helpers, if called in a non-sleepable context 17562 * program will be rejected anyway, so we should end up 17563 * with precise sleepable marks on subprogs, except for 17564 * dead code elimination. 17565 */ 17566 if (ret == 0 && is_kfunc_sleepable(&meta)) 17567 mark_subprog_might_sleep(env, t); 17568 } 17569 return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL); 17570 17571 case BPF_JA: 17572 if (BPF_SRC(insn->code) != BPF_K) 17573 return -EINVAL; 17574 17575 if (BPF_CLASS(insn->code) == BPF_JMP) 17576 off = insn->off; 17577 else 17578 off = insn->imm; 17579 17580 /* unconditional jump with single edge */ 17581 ret = push_insn(t, t + off + 1, FALLTHROUGH, env); 17582 if (ret) 17583 return ret; 17584 17585 mark_prune_point(env, t + off + 1); 17586 mark_jmp_point(env, t + off + 1); 17587 17588 return ret; 17589 17590 default: 17591 /* conditional jump with two edges */ 17592 mark_prune_point(env, t); 17593 if (is_may_goto_insn(insn)) 17594 mark_force_checkpoint(env, t); 17595 17596 ret = push_insn(t, t + 1, FALLTHROUGH, env); 17597 if (ret) 17598 return ret; 17599 17600 return push_insn(t, t + insn->off + 1, BRANCH, env); 17601 } 17602 } 17603 17604 /* non-recursive depth-first-search to detect loops in BPF program 17605 * loop == back-edge in directed graph 17606 */ 17607 static int check_cfg(struct bpf_verifier_env *env) 17608 { 17609 int insn_cnt = env->prog->len; 17610 int *insn_stack, *insn_state, *insn_postorder; 17611 int ex_insn_beg, i, ret = 0; 17612 17613 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 17614 if (!insn_state) 17615 return -ENOMEM; 17616 17617 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 17618 if (!insn_stack) { 17619 kvfree(insn_state); 17620 return -ENOMEM; 17621 } 17622 17623 insn_postorder = env->cfg.insn_postorder = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 17624 if (!insn_postorder) { 17625 kvfree(insn_state); 17626 kvfree(insn_stack); 17627 return -ENOMEM; 17628 } 17629 17630 ex_insn_beg = env->exception_callback_subprog 17631 ? env->subprog_info[env->exception_callback_subprog].start 17632 : 0; 17633 17634 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 17635 insn_stack[0] = 0; /* 0 is the first instruction */ 17636 env->cfg.cur_stack = 1; 17637 17638 walk_cfg: 17639 while (env->cfg.cur_stack > 0) { 17640 int t = insn_stack[env->cfg.cur_stack - 1]; 17641 17642 ret = visit_insn(t, env); 17643 switch (ret) { 17644 case DONE_EXPLORING: 17645 insn_state[t] = EXPLORED; 17646 env->cfg.cur_stack--; 17647 insn_postorder[env->cfg.cur_postorder++] = t; 17648 break; 17649 case KEEP_EXPLORING: 17650 break; 17651 default: 17652 if (ret > 0) { 17653 verbose(env, "visit_insn internal bug\n"); 17654 ret = -EFAULT; 17655 } 17656 goto err_free; 17657 } 17658 } 17659 17660 if (env->cfg.cur_stack < 0) { 17661 verbose(env, "pop stack internal bug\n"); 17662 ret = -EFAULT; 17663 goto err_free; 17664 } 17665 17666 if (ex_insn_beg && insn_state[ex_insn_beg] != EXPLORED) { 17667 insn_state[ex_insn_beg] = DISCOVERED; 17668 insn_stack[0] = ex_insn_beg; 17669 env->cfg.cur_stack = 1; 17670 goto walk_cfg; 17671 } 17672 17673 for (i = 0; i < insn_cnt; i++) { 17674 struct bpf_insn *insn = &env->prog->insnsi[i]; 17675 17676 if (insn_state[i] != EXPLORED) { 17677 verbose(env, "unreachable insn %d\n", i); 17678 ret = -EINVAL; 17679 goto err_free; 17680 } 17681 if (bpf_is_ldimm64(insn)) { 17682 if (insn_state[i + 1] != 0) { 17683 verbose(env, "jump into the middle of ldimm64 insn %d\n", i); 17684 ret = -EINVAL; 17685 goto err_free; 17686 } 17687 i++; /* skip second half of ldimm64 */ 17688 } 17689 } 17690 ret = 0; /* cfg looks good */ 17691 env->prog->aux->changes_pkt_data = env->subprog_info[0].changes_pkt_data; 17692 env->prog->aux->might_sleep = env->subprog_info[0].might_sleep; 17693 17694 err_free: 17695 kvfree(insn_state); 17696 kvfree(insn_stack); 17697 env->cfg.insn_state = env->cfg.insn_stack = NULL; 17698 return ret; 17699 } 17700 17701 static int check_abnormal_return(struct bpf_verifier_env *env) 17702 { 17703 int i; 17704 17705 for (i = 1; i < env->subprog_cnt; i++) { 17706 if (env->subprog_info[i].has_ld_abs) { 17707 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n"); 17708 return -EINVAL; 17709 } 17710 if (env->subprog_info[i].has_tail_call) { 17711 verbose(env, "tail_call is not allowed in subprogs without BTF\n"); 17712 return -EINVAL; 17713 } 17714 } 17715 return 0; 17716 } 17717 17718 /* The minimum supported BTF func info size */ 17719 #define MIN_BPF_FUNCINFO_SIZE 8 17720 #define MAX_FUNCINFO_REC_SIZE 252 17721 17722 static int check_btf_func_early(struct bpf_verifier_env *env, 17723 const union bpf_attr *attr, 17724 bpfptr_t uattr) 17725 { 17726 u32 krec_size = sizeof(struct bpf_func_info); 17727 const struct btf_type *type, *func_proto; 17728 u32 i, nfuncs, urec_size, min_size; 17729 struct bpf_func_info *krecord; 17730 struct bpf_prog *prog; 17731 const struct btf *btf; 17732 u32 prev_offset = 0; 17733 bpfptr_t urecord; 17734 int ret = -ENOMEM; 17735 17736 nfuncs = attr->func_info_cnt; 17737 if (!nfuncs) { 17738 if (check_abnormal_return(env)) 17739 return -EINVAL; 17740 return 0; 17741 } 17742 17743 urec_size = attr->func_info_rec_size; 17744 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 17745 urec_size > MAX_FUNCINFO_REC_SIZE || 17746 urec_size % sizeof(u32)) { 17747 verbose(env, "invalid func info rec size %u\n", urec_size); 17748 return -EINVAL; 17749 } 17750 17751 prog = env->prog; 17752 btf = prog->aux->btf; 17753 17754 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 17755 min_size = min_t(u32, krec_size, urec_size); 17756 17757 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 17758 if (!krecord) 17759 return -ENOMEM; 17760 17761 for (i = 0; i < nfuncs; i++) { 17762 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 17763 if (ret) { 17764 if (ret == -E2BIG) { 17765 verbose(env, "nonzero tailing record in func info"); 17766 /* set the size kernel expects so loader can zero 17767 * out the rest of the record. 17768 */ 17769 if (copy_to_bpfptr_offset(uattr, 17770 offsetof(union bpf_attr, func_info_rec_size), 17771 &min_size, sizeof(min_size))) 17772 ret = -EFAULT; 17773 } 17774 goto err_free; 17775 } 17776 17777 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) { 17778 ret = -EFAULT; 17779 goto err_free; 17780 } 17781 17782 /* check insn_off */ 17783 ret = -EINVAL; 17784 if (i == 0) { 17785 if (krecord[i].insn_off) { 17786 verbose(env, 17787 "nonzero insn_off %u for the first func info record", 17788 krecord[i].insn_off); 17789 goto err_free; 17790 } 17791 } else if (krecord[i].insn_off <= prev_offset) { 17792 verbose(env, 17793 "same or smaller insn offset (%u) than previous func info record (%u)", 17794 krecord[i].insn_off, prev_offset); 17795 goto err_free; 17796 } 17797 17798 /* check type_id */ 17799 type = btf_type_by_id(btf, krecord[i].type_id); 17800 if (!type || !btf_type_is_func(type)) { 17801 verbose(env, "invalid type id %d in func info", 17802 krecord[i].type_id); 17803 goto err_free; 17804 } 17805 17806 func_proto = btf_type_by_id(btf, type->type); 17807 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto))) 17808 /* btf_func_check() already verified it during BTF load */ 17809 goto err_free; 17810 17811 prev_offset = krecord[i].insn_off; 17812 bpfptr_add(&urecord, urec_size); 17813 } 17814 17815 prog->aux->func_info = krecord; 17816 prog->aux->func_info_cnt = nfuncs; 17817 return 0; 17818 17819 err_free: 17820 kvfree(krecord); 17821 return ret; 17822 } 17823 17824 static int check_btf_func(struct bpf_verifier_env *env, 17825 const union bpf_attr *attr, 17826 bpfptr_t uattr) 17827 { 17828 const struct btf_type *type, *func_proto, *ret_type; 17829 u32 i, nfuncs, urec_size; 17830 struct bpf_func_info *krecord; 17831 struct bpf_func_info_aux *info_aux = NULL; 17832 struct bpf_prog *prog; 17833 const struct btf *btf; 17834 bpfptr_t urecord; 17835 bool scalar_return; 17836 int ret = -ENOMEM; 17837 17838 nfuncs = attr->func_info_cnt; 17839 if (!nfuncs) { 17840 if (check_abnormal_return(env)) 17841 return -EINVAL; 17842 return 0; 17843 } 17844 if (nfuncs != env->subprog_cnt) { 17845 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 17846 return -EINVAL; 17847 } 17848 17849 urec_size = attr->func_info_rec_size; 17850 17851 prog = env->prog; 17852 btf = prog->aux->btf; 17853 17854 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 17855 17856 krecord = prog->aux->func_info; 17857 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); 17858 if (!info_aux) 17859 return -ENOMEM; 17860 17861 for (i = 0; i < nfuncs; i++) { 17862 /* check insn_off */ 17863 ret = -EINVAL; 17864 17865 if (env->subprog_info[i].start != krecord[i].insn_off) { 17866 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 17867 goto err_free; 17868 } 17869 17870 /* Already checked type_id */ 17871 type = btf_type_by_id(btf, krecord[i].type_id); 17872 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 17873 /* Already checked func_proto */ 17874 func_proto = btf_type_by_id(btf, type->type); 17875 17876 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL); 17877 scalar_return = 17878 btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type); 17879 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) { 17880 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n"); 17881 goto err_free; 17882 } 17883 if (i && !scalar_return && env->subprog_info[i].has_tail_call) { 17884 verbose(env, "tail_call is only allowed in functions that return 'int'.\n"); 17885 goto err_free; 17886 } 17887 17888 bpfptr_add(&urecord, urec_size); 17889 } 17890 17891 prog->aux->func_info_aux = info_aux; 17892 return 0; 17893 17894 err_free: 17895 kfree(info_aux); 17896 return ret; 17897 } 17898 17899 static void adjust_btf_func(struct bpf_verifier_env *env) 17900 { 17901 struct bpf_prog_aux *aux = env->prog->aux; 17902 int i; 17903 17904 if (!aux->func_info) 17905 return; 17906 17907 /* func_info is not available for hidden subprogs */ 17908 for (i = 0; i < env->subprog_cnt - env->hidden_subprog_cnt; i++) 17909 aux->func_info[i].insn_off = env->subprog_info[i].start; 17910 } 17911 17912 #define MIN_BPF_LINEINFO_SIZE offsetofend(struct bpf_line_info, line_col) 17913 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 17914 17915 static int check_btf_line(struct bpf_verifier_env *env, 17916 const union bpf_attr *attr, 17917 bpfptr_t uattr) 17918 { 17919 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 17920 struct bpf_subprog_info *sub; 17921 struct bpf_line_info *linfo; 17922 struct bpf_prog *prog; 17923 const struct btf *btf; 17924 bpfptr_t ulinfo; 17925 int err; 17926 17927 nr_linfo = attr->line_info_cnt; 17928 if (!nr_linfo) 17929 return 0; 17930 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info)) 17931 return -EINVAL; 17932 17933 rec_size = attr->line_info_rec_size; 17934 if (rec_size < MIN_BPF_LINEINFO_SIZE || 17935 rec_size > MAX_LINEINFO_REC_SIZE || 17936 rec_size & (sizeof(u32) - 1)) 17937 return -EINVAL; 17938 17939 /* Need to zero it in case the userspace may 17940 * pass in a smaller bpf_line_info object. 17941 */ 17942 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 17943 GFP_KERNEL | __GFP_NOWARN); 17944 if (!linfo) 17945 return -ENOMEM; 17946 17947 prog = env->prog; 17948 btf = prog->aux->btf; 17949 17950 s = 0; 17951 sub = env->subprog_info; 17952 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel); 17953 expected_size = sizeof(struct bpf_line_info); 17954 ncopy = min_t(u32, expected_size, rec_size); 17955 for (i = 0; i < nr_linfo; i++) { 17956 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 17957 if (err) { 17958 if (err == -E2BIG) { 17959 verbose(env, "nonzero tailing record in line_info"); 17960 if (copy_to_bpfptr_offset(uattr, 17961 offsetof(union bpf_attr, line_info_rec_size), 17962 &expected_size, sizeof(expected_size))) 17963 err = -EFAULT; 17964 } 17965 goto err_free; 17966 } 17967 17968 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) { 17969 err = -EFAULT; 17970 goto err_free; 17971 } 17972 17973 /* 17974 * Check insn_off to ensure 17975 * 1) strictly increasing AND 17976 * 2) bounded by prog->len 17977 * 17978 * The linfo[0].insn_off == 0 check logically falls into 17979 * the later "missing bpf_line_info for func..." case 17980 * because the first linfo[0].insn_off must be the 17981 * first sub also and the first sub must have 17982 * subprog_info[0].start == 0. 17983 */ 17984 if ((i && linfo[i].insn_off <= prev_offset) || 17985 linfo[i].insn_off >= prog->len) { 17986 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 17987 i, linfo[i].insn_off, prev_offset, 17988 prog->len); 17989 err = -EINVAL; 17990 goto err_free; 17991 } 17992 17993 if (!prog->insnsi[linfo[i].insn_off].code) { 17994 verbose(env, 17995 "Invalid insn code at line_info[%u].insn_off\n", 17996 i); 17997 err = -EINVAL; 17998 goto err_free; 17999 } 18000 18001 if (!btf_name_by_offset(btf, linfo[i].line_off) || 18002 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 18003 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 18004 err = -EINVAL; 18005 goto err_free; 18006 } 18007 18008 if (s != env->subprog_cnt) { 18009 if (linfo[i].insn_off == sub[s].start) { 18010 sub[s].linfo_idx = i; 18011 s++; 18012 } else if (sub[s].start < linfo[i].insn_off) { 18013 verbose(env, "missing bpf_line_info for func#%u\n", s); 18014 err = -EINVAL; 18015 goto err_free; 18016 } 18017 } 18018 18019 prev_offset = linfo[i].insn_off; 18020 bpfptr_add(&ulinfo, rec_size); 18021 } 18022 18023 if (s != env->subprog_cnt) { 18024 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 18025 env->subprog_cnt - s, s); 18026 err = -EINVAL; 18027 goto err_free; 18028 } 18029 18030 prog->aux->linfo = linfo; 18031 prog->aux->nr_linfo = nr_linfo; 18032 18033 return 0; 18034 18035 err_free: 18036 kvfree(linfo); 18037 return err; 18038 } 18039 18040 #define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo) 18041 #define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE 18042 18043 static int check_core_relo(struct bpf_verifier_env *env, 18044 const union bpf_attr *attr, 18045 bpfptr_t uattr) 18046 { 18047 u32 i, nr_core_relo, ncopy, expected_size, rec_size; 18048 struct bpf_core_relo core_relo = {}; 18049 struct bpf_prog *prog = env->prog; 18050 const struct btf *btf = prog->aux->btf; 18051 struct bpf_core_ctx ctx = { 18052 .log = &env->log, 18053 .btf = btf, 18054 }; 18055 bpfptr_t u_core_relo; 18056 int err; 18057 18058 nr_core_relo = attr->core_relo_cnt; 18059 if (!nr_core_relo) 18060 return 0; 18061 if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo)) 18062 return -EINVAL; 18063 18064 rec_size = attr->core_relo_rec_size; 18065 if (rec_size < MIN_CORE_RELO_SIZE || 18066 rec_size > MAX_CORE_RELO_SIZE || 18067 rec_size % sizeof(u32)) 18068 return -EINVAL; 18069 18070 u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel); 18071 expected_size = sizeof(struct bpf_core_relo); 18072 ncopy = min_t(u32, expected_size, rec_size); 18073 18074 /* Unlike func_info and line_info, copy and apply each CO-RE 18075 * relocation record one at a time. 18076 */ 18077 for (i = 0; i < nr_core_relo; i++) { 18078 /* future proofing when sizeof(bpf_core_relo) changes */ 18079 err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size); 18080 if (err) { 18081 if (err == -E2BIG) { 18082 verbose(env, "nonzero tailing record in core_relo"); 18083 if (copy_to_bpfptr_offset(uattr, 18084 offsetof(union bpf_attr, core_relo_rec_size), 18085 &expected_size, sizeof(expected_size))) 18086 err = -EFAULT; 18087 } 18088 break; 18089 } 18090 18091 if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) { 18092 err = -EFAULT; 18093 break; 18094 } 18095 18096 if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) { 18097 verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n", 18098 i, core_relo.insn_off, prog->len); 18099 err = -EINVAL; 18100 break; 18101 } 18102 18103 err = bpf_core_apply(&ctx, &core_relo, i, 18104 &prog->insnsi[core_relo.insn_off / 8]); 18105 if (err) 18106 break; 18107 bpfptr_add(&u_core_relo, rec_size); 18108 } 18109 return err; 18110 } 18111 18112 static int check_btf_info_early(struct bpf_verifier_env *env, 18113 const union bpf_attr *attr, 18114 bpfptr_t uattr) 18115 { 18116 struct btf *btf; 18117 int err; 18118 18119 if (!attr->func_info_cnt && !attr->line_info_cnt) { 18120 if (check_abnormal_return(env)) 18121 return -EINVAL; 18122 return 0; 18123 } 18124 18125 btf = btf_get_by_fd(attr->prog_btf_fd); 18126 if (IS_ERR(btf)) 18127 return PTR_ERR(btf); 18128 if (btf_is_kernel(btf)) { 18129 btf_put(btf); 18130 return -EACCES; 18131 } 18132 env->prog->aux->btf = btf; 18133 18134 err = check_btf_func_early(env, attr, uattr); 18135 if (err) 18136 return err; 18137 return 0; 18138 } 18139 18140 static int check_btf_info(struct bpf_verifier_env *env, 18141 const union bpf_attr *attr, 18142 bpfptr_t uattr) 18143 { 18144 int err; 18145 18146 if (!attr->func_info_cnt && !attr->line_info_cnt) { 18147 if (check_abnormal_return(env)) 18148 return -EINVAL; 18149 return 0; 18150 } 18151 18152 err = check_btf_func(env, attr, uattr); 18153 if (err) 18154 return err; 18155 18156 err = check_btf_line(env, attr, uattr); 18157 if (err) 18158 return err; 18159 18160 err = check_core_relo(env, attr, uattr); 18161 if (err) 18162 return err; 18163 18164 return 0; 18165 } 18166 18167 /* check %cur's range satisfies %old's */ 18168 static bool range_within(const struct bpf_reg_state *old, 18169 const struct bpf_reg_state *cur) 18170 { 18171 return old->umin_value <= cur->umin_value && 18172 old->umax_value >= cur->umax_value && 18173 old->smin_value <= cur->smin_value && 18174 old->smax_value >= cur->smax_value && 18175 old->u32_min_value <= cur->u32_min_value && 18176 old->u32_max_value >= cur->u32_max_value && 18177 old->s32_min_value <= cur->s32_min_value && 18178 old->s32_max_value >= cur->s32_max_value; 18179 } 18180 18181 /* If in the old state two registers had the same id, then they need to have 18182 * the same id in the new state as well. But that id could be different from 18183 * the old state, so we need to track the mapping from old to new ids. 18184 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 18185 * regs with old id 5 must also have new id 9 for the new state to be safe. But 18186 * regs with a different old id could still have new id 9, we don't care about 18187 * that. 18188 * So we look through our idmap to see if this old id has been seen before. If 18189 * so, we require the new id to match; otherwise, we add the id pair to the map. 18190 */ 18191 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap) 18192 { 18193 struct bpf_id_pair *map = idmap->map; 18194 unsigned int i; 18195 18196 /* either both IDs should be set or both should be zero */ 18197 if (!!old_id != !!cur_id) 18198 return false; 18199 18200 if (old_id == 0) /* cur_id == 0 as well */ 18201 return true; 18202 18203 for (i = 0; i < BPF_ID_MAP_SIZE; i++) { 18204 if (!map[i].old) { 18205 /* Reached an empty slot; haven't seen this id before */ 18206 map[i].old = old_id; 18207 map[i].cur = cur_id; 18208 return true; 18209 } 18210 if (map[i].old == old_id) 18211 return map[i].cur == cur_id; 18212 if (map[i].cur == cur_id) 18213 return false; 18214 } 18215 /* We ran out of idmap slots, which should be impossible */ 18216 WARN_ON_ONCE(1); 18217 return false; 18218 } 18219 18220 /* Similar to check_ids(), but allocate a unique temporary ID 18221 * for 'old_id' or 'cur_id' of zero. 18222 * This makes pairs like '0 vs unique ID', 'unique ID vs 0' valid. 18223 */ 18224 static bool check_scalar_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap) 18225 { 18226 old_id = old_id ? old_id : ++idmap->tmp_id_gen; 18227 cur_id = cur_id ? cur_id : ++idmap->tmp_id_gen; 18228 18229 return check_ids(old_id, cur_id, idmap); 18230 } 18231 18232 static void clean_func_state(struct bpf_verifier_env *env, 18233 struct bpf_func_state *st) 18234 { 18235 enum bpf_reg_liveness live; 18236 int i, j; 18237 18238 for (i = 0; i < BPF_REG_FP; i++) { 18239 live = st->regs[i].live; 18240 /* liveness must not touch this register anymore */ 18241 st->regs[i].live |= REG_LIVE_DONE; 18242 if (!(live & REG_LIVE_READ)) 18243 /* since the register is unused, clear its state 18244 * to make further comparison simpler 18245 */ 18246 __mark_reg_not_init(env, &st->regs[i]); 18247 } 18248 18249 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 18250 live = st->stack[i].spilled_ptr.live; 18251 /* liveness must not touch this stack slot anymore */ 18252 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 18253 if (!(live & REG_LIVE_READ)) { 18254 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 18255 for (j = 0; j < BPF_REG_SIZE; j++) 18256 st->stack[i].slot_type[j] = STACK_INVALID; 18257 } 18258 } 18259 } 18260 18261 static void clean_verifier_state(struct bpf_verifier_env *env, 18262 struct bpf_verifier_state *st) 18263 { 18264 int i; 18265 18266 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 18267 /* all regs in this state in all frames were already marked */ 18268 return; 18269 18270 for (i = 0; i <= st->curframe; i++) 18271 clean_func_state(env, st->frame[i]); 18272 } 18273 18274 /* the parentage chains form a tree. 18275 * the verifier states are added to state lists at given insn and 18276 * pushed into state stack for future exploration. 18277 * when the verifier reaches bpf_exit insn some of the verifer states 18278 * stored in the state lists have their final liveness state already, 18279 * but a lot of states will get revised from liveness point of view when 18280 * the verifier explores other branches. 18281 * Example: 18282 * 1: r0 = 1 18283 * 2: if r1 == 100 goto pc+1 18284 * 3: r0 = 2 18285 * 4: exit 18286 * when the verifier reaches exit insn the register r0 in the state list of 18287 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 18288 * of insn 2 and goes exploring further. At the insn 4 it will walk the 18289 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 18290 * 18291 * Since the verifier pushes the branch states as it sees them while exploring 18292 * the program the condition of walking the branch instruction for the second 18293 * time means that all states below this branch were already explored and 18294 * their final liveness marks are already propagated. 18295 * Hence when the verifier completes the search of state list in is_state_visited() 18296 * we can call this clean_live_states() function to mark all liveness states 18297 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 18298 * will not be used. 18299 * This function also clears the registers and stack for states that !READ 18300 * to simplify state merging. 18301 * 18302 * Important note here that walking the same branch instruction in the callee 18303 * doesn't meant that the states are DONE. The verifier has to compare 18304 * the callsites 18305 */ 18306 static void clean_live_states(struct bpf_verifier_env *env, int insn, 18307 struct bpf_verifier_state *cur) 18308 { 18309 struct bpf_verifier_state *loop_entry; 18310 struct bpf_verifier_state_list *sl; 18311 struct list_head *pos, *head; 18312 18313 head = explored_state(env, insn); 18314 list_for_each(pos, head) { 18315 sl = container_of(pos, struct bpf_verifier_state_list, node); 18316 if (sl->state.branches) 18317 continue; 18318 loop_entry = get_loop_entry(env, &sl->state); 18319 if (!IS_ERR_OR_NULL(loop_entry) && loop_entry->branches) 18320 continue; 18321 if (sl->state.insn_idx != insn || 18322 !same_callsites(&sl->state, cur)) 18323 continue; 18324 clean_verifier_state(env, &sl->state); 18325 } 18326 } 18327 18328 static bool regs_exact(const struct bpf_reg_state *rold, 18329 const struct bpf_reg_state *rcur, 18330 struct bpf_idmap *idmap) 18331 { 18332 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 18333 check_ids(rold->id, rcur->id, idmap) && 18334 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); 18335 } 18336 18337 enum exact_level { 18338 NOT_EXACT, 18339 EXACT, 18340 RANGE_WITHIN 18341 }; 18342 18343 /* Returns true if (rold safe implies rcur safe) */ 18344 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold, 18345 struct bpf_reg_state *rcur, struct bpf_idmap *idmap, 18346 enum exact_level exact) 18347 { 18348 if (exact == EXACT) 18349 return regs_exact(rold, rcur, idmap); 18350 18351 if (!(rold->live & REG_LIVE_READ) && exact == NOT_EXACT) 18352 /* explored state didn't use this */ 18353 return true; 18354 if (rold->type == NOT_INIT) { 18355 if (exact == NOT_EXACT || rcur->type == NOT_INIT) 18356 /* explored state can't have used this */ 18357 return true; 18358 } 18359 18360 /* Enforce that register types have to match exactly, including their 18361 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general 18362 * rule. 18363 * 18364 * One can make a point that using a pointer register as unbounded 18365 * SCALAR would be technically acceptable, but this could lead to 18366 * pointer leaks because scalars are allowed to leak while pointers 18367 * are not. We could make this safe in special cases if root is 18368 * calling us, but it's probably not worth the hassle. 18369 * 18370 * Also, register types that are *not* MAYBE_NULL could technically be 18371 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE 18372 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point 18373 * to the same map). 18374 * However, if the old MAYBE_NULL register then got NULL checked, 18375 * doing so could have affected others with the same id, and we can't 18376 * check for that because we lost the id when we converted to 18377 * a non-MAYBE_NULL variant. 18378 * So, as a general rule we don't allow mixing MAYBE_NULL and 18379 * non-MAYBE_NULL registers as well. 18380 */ 18381 if (rold->type != rcur->type) 18382 return false; 18383 18384 switch (base_type(rold->type)) { 18385 case SCALAR_VALUE: 18386 if (env->explore_alu_limits) { 18387 /* explore_alu_limits disables tnum_in() and range_within() 18388 * logic and requires everything to be strict 18389 */ 18390 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 18391 check_scalar_ids(rold->id, rcur->id, idmap); 18392 } 18393 if (!rold->precise && exact == NOT_EXACT) 18394 return true; 18395 if ((rold->id & BPF_ADD_CONST) != (rcur->id & BPF_ADD_CONST)) 18396 return false; 18397 if ((rold->id & BPF_ADD_CONST) && (rold->off != rcur->off)) 18398 return false; 18399 /* Why check_ids() for scalar registers? 18400 * 18401 * Consider the following BPF code: 18402 * 1: r6 = ... unbound scalar, ID=a ... 18403 * 2: r7 = ... unbound scalar, ID=b ... 18404 * 3: if (r6 > r7) goto +1 18405 * 4: r6 = r7 18406 * 5: if (r6 > X) goto ... 18407 * 6: ... memory operation using r7 ... 18408 * 18409 * First verification path is [1-6]: 18410 * - at (4) same bpf_reg_state::id (b) would be assigned to r6 and r7; 18411 * - at (5) r6 would be marked <= X, sync_linked_regs() would also mark 18412 * r7 <= X, because r6 and r7 share same id. 18413 * Next verification path is [1-4, 6]. 18414 * 18415 * Instruction (6) would be reached in two states: 18416 * I. r6{.id=b}, r7{.id=b} via path 1-6; 18417 * II. r6{.id=a}, r7{.id=b} via path 1-4, 6. 18418 * 18419 * Use check_ids() to distinguish these states. 18420 * --- 18421 * Also verify that new value satisfies old value range knowledge. 18422 */ 18423 return range_within(rold, rcur) && 18424 tnum_in(rold->var_off, rcur->var_off) && 18425 check_scalar_ids(rold->id, rcur->id, idmap); 18426 case PTR_TO_MAP_KEY: 18427 case PTR_TO_MAP_VALUE: 18428 case PTR_TO_MEM: 18429 case PTR_TO_BUF: 18430 case PTR_TO_TP_BUFFER: 18431 /* If the new min/max/var_off satisfy the old ones and 18432 * everything else matches, we are OK. 18433 */ 18434 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 && 18435 range_within(rold, rcur) && 18436 tnum_in(rold->var_off, rcur->var_off) && 18437 check_ids(rold->id, rcur->id, idmap) && 18438 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); 18439 case PTR_TO_PACKET_META: 18440 case PTR_TO_PACKET: 18441 /* We must have at least as much range as the old ptr 18442 * did, so that any accesses which were safe before are 18443 * still safe. This is true even if old range < old off, 18444 * since someone could have accessed through (ptr - k), or 18445 * even done ptr -= k in a register, to get a safe access. 18446 */ 18447 if (rold->range > rcur->range) 18448 return false; 18449 /* If the offsets don't match, we can't trust our alignment; 18450 * nor can we be sure that we won't fall out of range. 18451 */ 18452 if (rold->off != rcur->off) 18453 return false; 18454 /* id relations must be preserved */ 18455 if (!check_ids(rold->id, rcur->id, idmap)) 18456 return false; 18457 /* new val must satisfy old val knowledge */ 18458 return range_within(rold, rcur) && 18459 tnum_in(rold->var_off, rcur->var_off); 18460 case PTR_TO_STACK: 18461 /* two stack pointers are equal only if they're pointing to 18462 * the same stack frame, since fp-8 in foo != fp-8 in bar 18463 */ 18464 return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno; 18465 case PTR_TO_ARENA: 18466 return true; 18467 default: 18468 return regs_exact(rold, rcur, idmap); 18469 } 18470 } 18471 18472 static struct bpf_reg_state unbound_reg; 18473 18474 static __init int unbound_reg_init(void) 18475 { 18476 __mark_reg_unknown_imprecise(&unbound_reg); 18477 unbound_reg.live |= REG_LIVE_READ; 18478 return 0; 18479 } 18480 late_initcall(unbound_reg_init); 18481 18482 static bool is_stack_all_misc(struct bpf_verifier_env *env, 18483 struct bpf_stack_state *stack) 18484 { 18485 u32 i; 18486 18487 for (i = 0; i < ARRAY_SIZE(stack->slot_type); ++i) { 18488 if ((stack->slot_type[i] == STACK_MISC) || 18489 (stack->slot_type[i] == STACK_INVALID && env->allow_uninit_stack)) 18490 continue; 18491 return false; 18492 } 18493 18494 return true; 18495 } 18496 18497 static struct bpf_reg_state *scalar_reg_for_stack(struct bpf_verifier_env *env, 18498 struct bpf_stack_state *stack) 18499 { 18500 if (is_spilled_scalar_reg64(stack)) 18501 return &stack->spilled_ptr; 18502 18503 if (is_stack_all_misc(env, stack)) 18504 return &unbound_reg; 18505 18506 return NULL; 18507 } 18508 18509 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old, 18510 struct bpf_func_state *cur, struct bpf_idmap *idmap, 18511 enum exact_level exact) 18512 { 18513 int i, spi; 18514 18515 /* walk slots of the explored stack and ignore any additional 18516 * slots in the current stack, since explored(safe) state 18517 * didn't use them 18518 */ 18519 for (i = 0; i < old->allocated_stack; i++) { 18520 struct bpf_reg_state *old_reg, *cur_reg; 18521 18522 spi = i / BPF_REG_SIZE; 18523 18524 if (exact != NOT_EXACT && 18525 (i >= cur->allocated_stack || 18526 old->stack[spi].slot_type[i % BPF_REG_SIZE] != 18527 cur->stack[spi].slot_type[i % BPF_REG_SIZE])) 18528 return false; 18529 18530 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ) 18531 && exact == NOT_EXACT) { 18532 i += BPF_REG_SIZE - 1; 18533 /* explored state didn't use this */ 18534 continue; 18535 } 18536 18537 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 18538 continue; 18539 18540 if (env->allow_uninit_stack && 18541 old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC) 18542 continue; 18543 18544 /* explored stack has more populated slots than current stack 18545 * and these slots were used 18546 */ 18547 if (i >= cur->allocated_stack) 18548 return false; 18549 18550 /* 64-bit scalar spill vs all slots MISC and vice versa. 18551 * Load from all slots MISC produces unbound scalar. 18552 * Construct a fake register for such stack and call 18553 * regsafe() to ensure scalar ids are compared. 18554 */ 18555 old_reg = scalar_reg_for_stack(env, &old->stack[spi]); 18556 cur_reg = scalar_reg_for_stack(env, &cur->stack[spi]); 18557 if (old_reg && cur_reg) { 18558 if (!regsafe(env, old_reg, cur_reg, idmap, exact)) 18559 return false; 18560 i += BPF_REG_SIZE - 1; 18561 continue; 18562 } 18563 18564 /* if old state was safe with misc data in the stack 18565 * it will be safe with zero-initialized stack. 18566 * The opposite is not true 18567 */ 18568 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 18569 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 18570 continue; 18571 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 18572 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 18573 /* Ex: old explored (safe) state has STACK_SPILL in 18574 * this stack slot, but current has STACK_MISC -> 18575 * this verifier states are not equivalent, 18576 * return false to continue verification of this path 18577 */ 18578 return false; 18579 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1) 18580 continue; 18581 /* Both old and cur are having same slot_type */ 18582 switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) { 18583 case STACK_SPILL: 18584 /* when explored and current stack slot are both storing 18585 * spilled registers, check that stored pointers types 18586 * are the same as well. 18587 * Ex: explored safe path could have stored 18588 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 18589 * but current path has stored: 18590 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 18591 * such verifier states are not equivalent. 18592 * return false to continue verification of this path 18593 */ 18594 if (!regsafe(env, &old->stack[spi].spilled_ptr, 18595 &cur->stack[spi].spilled_ptr, idmap, exact)) 18596 return false; 18597 break; 18598 case STACK_DYNPTR: 18599 old_reg = &old->stack[spi].spilled_ptr; 18600 cur_reg = &cur->stack[spi].spilled_ptr; 18601 if (old_reg->dynptr.type != cur_reg->dynptr.type || 18602 old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot || 18603 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) 18604 return false; 18605 break; 18606 case STACK_ITER: 18607 old_reg = &old->stack[spi].spilled_ptr; 18608 cur_reg = &cur->stack[spi].spilled_ptr; 18609 /* iter.depth is not compared between states as it 18610 * doesn't matter for correctness and would otherwise 18611 * prevent convergence; we maintain it only to prevent 18612 * infinite loop check triggering, see 18613 * iter_active_depths_differ() 18614 */ 18615 if (old_reg->iter.btf != cur_reg->iter.btf || 18616 old_reg->iter.btf_id != cur_reg->iter.btf_id || 18617 old_reg->iter.state != cur_reg->iter.state || 18618 /* ignore {old_reg,cur_reg}->iter.depth, see above */ 18619 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) 18620 return false; 18621 break; 18622 case STACK_IRQ_FLAG: 18623 old_reg = &old->stack[spi].spilled_ptr; 18624 cur_reg = &cur->stack[spi].spilled_ptr; 18625 if (!check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap) || 18626 old_reg->irq.kfunc_class != cur_reg->irq.kfunc_class) 18627 return false; 18628 break; 18629 case STACK_MISC: 18630 case STACK_ZERO: 18631 case STACK_INVALID: 18632 continue; 18633 /* Ensure that new unhandled slot types return false by default */ 18634 default: 18635 return false; 18636 } 18637 } 18638 return true; 18639 } 18640 18641 static bool refsafe(struct bpf_verifier_state *old, struct bpf_verifier_state *cur, 18642 struct bpf_idmap *idmap) 18643 { 18644 int i; 18645 18646 if (old->acquired_refs != cur->acquired_refs) 18647 return false; 18648 18649 if (old->active_locks != cur->active_locks) 18650 return false; 18651 18652 if (old->active_preempt_locks != cur->active_preempt_locks) 18653 return false; 18654 18655 if (old->active_rcu_lock != cur->active_rcu_lock) 18656 return false; 18657 18658 if (!check_ids(old->active_irq_id, cur->active_irq_id, idmap)) 18659 return false; 18660 18661 if (!check_ids(old->active_lock_id, cur->active_lock_id, idmap) || 18662 old->active_lock_ptr != cur->active_lock_ptr) 18663 return false; 18664 18665 for (i = 0; i < old->acquired_refs; i++) { 18666 if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap) || 18667 old->refs[i].type != cur->refs[i].type) 18668 return false; 18669 switch (old->refs[i].type) { 18670 case REF_TYPE_PTR: 18671 case REF_TYPE_IRQ: 18672 break; 18673 case REF_TYPE_LOCK: 18674 case REF_TYPE_RES_LOCK: 18675 case REF_TYPE_RES_LOCK_IRQ: 18676 if (old->refs[i].ptr != cur->refs[i].ptr) 18677 return false; 18678 break; 18679 default: 18680 WARN_ONCE(1, "Unhandled enum type for reference state: %d\n", old->refs[i].type); 18681 return false; 18682 } 18683 } 18684 18685 return true; 18686 } 18687 18688 /* compare two verifier states 18689 * 18690 * all states stored in state_list are known to be valid, since 18691 * verifier reached 'bpf_exit' instruction through them 18692 * 18693 * this function is called when verifier exploring different branches of 18694 * execution popped from the state stack. If it sees an old state that has 18695 * more strict register state and more strict stack state then this execution 18696 * branch doesn't need to be explored further, since verifier already 18697 * concluded that more strict state leads to valid finish. 18698 * 18699 * Therefore two states are equivalent if register state is more conservative 18700 * and explored stack state is more conservative than the current one. 18701 * Example: 18702 * explored current 18703 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 18704 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 18705 * 18706 * In other words if current stack state (one being explored) has more 18707 * valid slots than old one that already passed validation, it means 18708 * the verifier can stop exploring and conclude that current state is valid too 18709 * 18710 * Similarly with registers. If explored state has register type as invalid 18711 * whereas register type in current state is meaningful, it means that 18712 * the current state will reach 'bpf_exit' instruction safely 18713 */ 18714 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old, 18715 struct bpf_func_state *cur, u32 insn_idx, enum exact_level exact) 18716 { 18717 u16 live_regs = env->insn_aux_data[insn_idx].live_regs_before; 18718 u16 i; 18719 18720 if (old->callback_depth > cur->callback_depth) 18721 return false; 18722 18723 for (i = 0; i < MAX_BPF_REG; i++) 18724 if (((1 << i) & live_regs) && 18725 !regsafe(env, &old->regs[i], &cur->regs[i], 18726 &env->idmap_scratch, exact)) 18727 return false; 18728 18729 if (!stacksafe(env, old, cur, &env->idmap_scratch, exact)) 18730 return false; 18731 18732 return true; 18733 } 18734 18735 static void reset_idmap_scratch(struct bpf_verifier_env *env) 18736 { 18737 env->idmap_scratch.tmp_id_gen = env->id_gen; 18738 memset(&env->idmap_scratch.map, 0, sizeof(env->idmap_scratch.map)); 18739 } 18740 18741 static bool states_equal(struct bpf_verifier_env *env, 18742 struct bpf_verifier_state *old, 18743 struct bpf_verifier_state *cur, 18744 enum exact_level exact) 18745 { 18746 u32 insn_idx; 18747 int i; 18748 18749 if (old->curframe != cur->curframe) 18750 return false; 18751 18752 reset_idmap_scratch(env); 18753 18754 /* Verification state from speculative execution simulation 18755 * must never prune a non-speculative execution one. 18756 */ 18757 if (old->speculative && !cur->speculative) 18758 return false; 18759 18760 if (old->in_sleepable != cur->in_sleepable) 18761 return false; 18762 18763 if (!refsafe(old, cur, &env->idmap_scratch)) 18764 return false; 18765 18766 /* for states to be equal callsites have to be the same 18767 * and all frame states need to be equivalent 18768 */ 18769 for (i = 0; i <= old->curframe; i++) { 18770 insn_idx = i == old->curframe 18771 ? env->insn_idx 18772 : old->frame[i + 1]->callsite; 18773 if (old->frame[i]->callsite != cur->frame[i]->callsite) 18774 return false; 18775 if (!func_states_equal(env, old->frame[i], cur->frame[i], insn_idx, exact)) 18776 return false; 18777 } 18778 return true; 18779 } 18780 18781 /* Return 0 if no propagation happened. Return negative error code if error 18782 * happened. Otherwise, return the propagated bit. 18783 */ 18784 static int propagate_liveness_reg(struct bpf_verifier_env *env, 18785 struct bpf_reg_state *reg, 18786 struct bpf_reg_state *parent_reg) 18787 { 18788 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 18789 u8 flag = reg->live & REG_LIVE_READ; 18790 int err; 18791 18792 /* When comes here, read flags of PARENT_REG or REG could be any of 18793 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 18794 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 18795 */ 18796 if (parent_flag == REG_LIVE_READ64 || 18797 /* Or if there is no read flag from REG. */ 18798 !flag || 18799 /* Or if the read flag from REG is the same as PARENT_REG. */ 18800 parent_flag == flag) 18801 return 0; 18802 18803 err = mark_reg_read(env, reg, parent_reg, flag); 18804 if (err) 18805 return err; 18806 18807 return flag; 18808 } 18809 18810 /* A write screens off any subsequent reads; but write marks come from the 18811 * straight-line code between a state and its parent. When we arrive at an 18812 * equivalent state (jump target or such) we didn't arrive by the straight-line 18813 * code, so read marks in the state must propagate to the parent regardless 18814 * of the state's write marks. That's what 'parent == state->parent' comparison 18815 * in mark_reg_read() is for. 18816 */ 18817 static int propagate_liveness(struct bpf_verifier_env *env, 18818 const struct bpf_verifier_state *vstate, 18819 struct bpf_verifier_state *vparent) 18820 { 18821 struct bpf_reg_state *state_reg, *parent_reg; 18822 struct bpf_func_state *state, *parent; 18823 int i, frame, err = 0; 18824 18825 if (vparent->curframe != vstate->curframe) { 18826 WARN(1, "propagate_live: parent frame %d current frame %d\n", 18827 vparent->curframe, vstate->curframe); 18828 return -EFAULT; 18829 } 18830 /* Propagate read liveness of registers... */ 18831 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 18832 for (frame = 0; frame <= vstate->curframe; frame++) { 18833 parent = vparent->frame[frame]; 18834 state = vstate->frame[frame]; 18835 parent_reg = parent->regs; 18836 state_reg = state->regs; 18837 /* We don't need to worry about FP liveness, it's read-only */ 18838 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 18839 err = propagate_liveness_reg(env, &state_reg[i], 18840 &parent_reg[i]); 18841 if (err < 0) 18842 return err; 18843 if (err == REG_LIVE_READ64) 18844 mark_insn_zext(env, &parent_reg[i]); 18845 } 18846 18847 /* Propagate stack slots. */ 18848 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 18849 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 18850 parent_reg = &parent->stack[i].spilled_ptr; 18851 state_reg = &state->stack[i].spilled_ptr; 18852 err = propagate_liveness_reg(env, state_reg, 18853 parent_reg); 18854 if (err < 0) 18855 return err; 18856 } 18857 } 18858 return 0; 18859 } 18860 18861 /* find precise scalars in the previous equivalent state and 18862 * propagate them into the current state 18863 */ 18864 static int propagate_precision(struct bpf_verifier_env *env, 18865 const struct bpf_verifier_state *old) 18866 { 18867 struct bpf_reg_state *state_reg; 18868 struct bpf_func_state *state; 18869 int i, err = 0, fr; 18870 bool first; 18871 18872 for (fr = old->curframe; fr >= 0; fr--) { 18873 state = old->frame[fr]; 18874 state_reg = state->regs; 18875 first = true; 18876 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 18877 if (state_reg->type != SCALAR_VALUE || 18878 !state_reg->precise || 18879 !(state_reg->live & REG_LIVE_READ)) 18880 continue; 18881 if (env->log.level & BPF_LOG_LEVEL2) { 18882 if (first) 18883 verbose(env, "frame %d: propagating r%d", fr, i); 18884 else 18885 verbose(env, ",r%d", i); 18886 } 18887 bt_set_frame_reg(&env->bt, fr, i); 18888 first = false; 18889 } 18890 18891 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 18892 if (!is_spilled_reg(&state->stack[i])) 18893 continue; 18894 state_reg = &state->stack[i].spilled_ptr; 18895 if (state_reg->type != SCALAR_VALUE || 18896 !state_reg->precise || 18897 !(state_reg->live & REG_LIVE_READ)) 18898 continue; 18899 if (env->log.level & BPF_LOG_LEVEL2) { 18900 if (first) 18901 verbose(env, "frame %d: propagating fp%d", 18902 fr, (-i - 1) * BPF_REG_SIZE); 18903 else 18904 verbose(env, ",fp%d", (-i - 1) * BPF_REG_SIZE); 18905 } 18906 bt_set_frame_slot(&env->bt, fr, i); 18907 first = false; 18908 } 18909 if (!first) 18910 verbose(env, "\n"); 18911 } 18912 18913 err = mark_chain_precision_batch(env); 18914 if (err < 0) 18915 return err; 18916 18917 return 0; 18918 } 18919 18920 static bool states_maybe_looping(struct bpf_verifier_state *old, 18921 struct bpf_verifier_state *cur) 18922 { 18923 struct bpf_func_state *fold, *fcur; 18924 int i, fr = cur->curframe; 18925 18926 if (old->curframe != fr) 18927 return false; 18928 18929 fold = old->frame[fr]; 18930 fcur = cur->frame[fr]; 18931 for (i = 0; i < MAX_BPF_REG; i++) 18932 if (memcmp(&fold->regs[i], &fcur->regs[i], 18933 offsetof(struct bpf_reg_state, parent))) 18934 return false; 18935 return true; 18936 } 18937 18938 static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx) 18939 { 18940 return env->insn_aux_data[insn_idx].is_iter_next; 18941 } 18942 18943 /* is_state_visited() handles iter_next() (see process_iter_next_call() for 18944 * terminology) calls specially: as opposed to bounded BPF loops, it *expects* 18945 * states to match, which otherwise would look like an infinite loop. So while 18946 * iter_next() calls are taken care of, we still need to be careful and 18947 * prevent erroneous and too eager declaration of "ininite loop", when 18948 * iterators are involved. 18949 * 18950 * Here's a situation in pseudo-BPF assembly form: 18951 * 18952 * 0: again: ; set up iter_next() call args 18953 * 1: r1 = &it ; <CHECKPOINT HERE> 18954 * 2: call bpf_iter_num_next ; this is iter_next() call 18955 * 3: if r0 == 0 goto done 18956 * 4: ... something useful here ... 18957 * 5: goto again ; another iteration 18958 * 6: done: 18959 * 7: r1 = &it 18960 * 8: call bpf_iter_num_destroy ; clean up iter state 18961 * 9: exit 18962 * 18963 * This is a typical loop. Let's assume that we have a prune point at 1:, 18964 * before we get to `call bpf_iter_num_next` (e.g., because of that `goto 18965 * again`, assuming other heuristics don't get in a way). 18966 * 18967 * When we first time come to 1:, let's say we have some state X. We proceed 18968 * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit. 18969 * Now we come back to validate that forked ACTIVE state. We proceed through 18970 * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we 18971 * are converging. But the problem is that we don't know that yet, as this 18972 * convergence has to happen at iter_next() call site only. So if nothing is 18973 * done, at 1: verifier will use bounded loop logic and declare infinite 18974 * looping (and would be *technically* correct, if not for iterator's 18975 * "eventual sticky NULL" contract, see process_iter_next_call()). But we 18976 * don't want that. So what we do in process_iter_next_call() when we go on 18977 * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's 18978 * a different iteration. So when we suspect an infinite loop, we additionally 18979 * check if any of the *ACTIVE* iterator states depths differ. If yes, we 18980 * pretend we are not looping and wait for next iter_next() call. 18981 * 18982 * This only applies to ACTIVE state. In DRAINED state we don't expect to 18983 * loop, because that would actually mean infinite loop, as DRAINED state is 18984 * "sticky", and so we'll keep returning into the same instruction with the 18985 * same state (at least in one of possible code paths). 18986 * 18987 * This approach allows to keep infinite loop heuristic even in the face of 18988 * active iterator. E.g., C snippet below is and will be detected as 18989 * inifintely looping: 18990 * 18991 * struct bpf_iter_num it; 18992 * int *p, x; 18993 * 18994 * bpf_iter_num_new(&it, 0, 10); 18995 * while ((p = bpf_iter_num_next(&t))) { 18996 * x = p; 18997 * while (x--) {} // <<-- infinite loop here 18998 * } 18999 * 19000 */ 19001 static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur) 19002 { 19003 struct bpf_reg_state *slot, *cur_slot; 19004 struct bpf_func_state *state; 19005 int i, fr; 19006 19007 for (fr = old->curframe; fr >= 0; fr--) { 19008 state = old->frame[fr]; 19009 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 19010 if (state->stack[i].slot_type[0] != STACK_ITER) 19011 continue; 19012 19013 slot = &state->stack[i].spilled_ptr; 19014 if (slot->iter.state != BPF_ITER_STATE_ACTIVE) 19015 continue; 19016 19017 cur_slot = &cur->frame[fr]->stack[i].spilled_ptr; 19018 if (cur_slot->iter.depth != slot->iter.depth) 19019 return true; 19020 } 19021 } 19022 return false; 19023 } 19024 19025 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 19026 { 19027 struct bpf_verifier_state_list *new_sl; 19028 struct bpf_verifier_state_list *sl; 19029 struct bpf_verifier_state *cur = env->cur_state, *new, *loop_entry; 19030 int i, j, n, err, states_cnt = 0; 19031 bool force_new_state, add_new_state, force_exact; 19032 struct list_head *pos, *tmp, *head; 19033 19034 force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx) || 19035 /* Avoid accumulating infinitely long jmp history */ 19036 cur->insn_hist_end - cur->insn_hist_start > 40; 19037 19038 /* bpf progs typically have pruning point every 4 instructions 19039 * http://vger.kernel.org/bpfconf2019.html#session-1 19040 * Do not add new state for future pruning if the verifier hasn't seen 19041 * at least 2 jumps and at least 8 instructions. 19042 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 19043 * In tests that amounts to up to 50% reduction into total verifier 19044 * memory consumption and 20% verifier time speedup. 19045 */ 19046 add_new_state = force_new_state; 19047 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 19048 env->insn_processed - env->prev_insn_processed >= 8) 19049 add_new_state = true; 19050 19051 clean_live_states(env, insn_idx, cur); 19052 19053 head = explored_state(env, insn_idx); 19054 list_for_each_safe(pos, tmp, head) { 19055 sl = container_of(pos, struct bpf_verifier_state_list, node); 19056 states_cnt++; 19057 if (sl->state.insn_idx != insn_idx) 19058 continue; 19059 19060 if (sl->state.branches) { 19061 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe]; 19062 19063 if (frame->in_async_callback_fn && 19064 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) { 19065 /* Different async_entry_cnt means that the verifier is 19066 * processing another entry into async callback. 19067 * Seeing the same state is not an indication of infinite 19068 * loop or infinite recursion. 19069 * But finding the same state doesn't mean that it's safe 19070 * to stop processing the current state. The previous state 19071 * hasn't yet reached bpf_exit, since state.branches > 0. 19072 * Checking in_async_callback_fn alone is not enough either. 19073 * Since the verifier still needs to catch infinite loops 19074 * inside async callbacks. 19075 */ 19076 goto skip_inf_loop_check; 19077 } 19078 /* BPF open-coded iterators loop detection is special. 19079 * states_maybe_looping() logic is too simplistic in detecting 19080 * states that *might* be equivalent, because it doesn't know 19081 * about ID remapping, so don't even perform it. 19082 * See process_iter_next_call() and iter_active_depths_differ() 19083 * for overview of the logic. When current and one of parent 19084 * states are detected as equivalent, it's a good thing: we prove 19085 * convergence and can stop simulating further iterations. 19086 * It's safe to assume that iterator loop will finish, taking into 19087 * account iter_next() contract of eventually returning 19088 * sticky NULL result. 19089 * 19090 * Note, that states have to be compared exactly in this case because 19091 * read and precision marks might not be finalized inside the loop. 19092 * E.g. as in the program below: 19093 * 19094 * 1. r7 = -16 19095 * 2. r6 = bpf_get_prandom_u32() 19096 * 3. while (bpf_iter_num_next(&fp[-8])) { 19097 * 4. if (r6 != 42) { 19098 * 5. r7 = -32 19099 * 6. r6 = bpf_get_prandom_u32() 19100 * 7. continue 19101 * 8. } 19102 * 9. r0 = r10 19103 * 10. r0 += r7 19104 * 11. r8 = *(u64 *)(r0 + 0) 19105 * 12. r6 = bpf_get_prandom_u32() 19106 * 13. } 19107 * 19108 * Here verifier would first visit path 1-3, create a checkpoint at 3 19109 * with r7=-16, continue to 4-7,3. Existing checkpoint at 3 does 19110 * not have read or precision mark for r7 yet, thus inexact states 19111 * comparison would discard current state with r7=-32 19112 * => unsafe memory access at 11 would not be caught. 19113 */ 19114 if (is_iter_next_insn(env, insn_idx)) { 19115 if (states_equal(env, &sl->state, cur, RANGE_WITHIN)) { 19116 struct bpf_func_state *cur_frame; 19117 struct bpf_reg_state *iter_state, *iter_reg; 19118 int spi; 19119 19120 cur_frame = cur->frame[cur->curframe]; 19121 /* btf_check_iter_kfuncs() enforces that 19122 * iter state pointer is always the first arg 19123 */ 19124 iter_reg = &cur_frame->regs[BPF_REG_1]; 19125 /* current state is valid due to states_equal(), 19126 * so we can assume valid iter and reg state, 19127 * no need for extra (re-)validations 19128 */ 19129 spi = __get_spi(iter_reg->off + iter_reg->var_off.value); 19130 iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr; 19131 if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE) { 19132 update_loop_entry(env, cur, &sl->state); 19133 goto hit; 19134 } 19135 } 19136 goto skip_inf_loop_check; 19137 } 19138 if (is_may_goto_insn_at(env, insn_idx)) { 19139 if (sl->state.may_goto_depth != cur->may_goto_depth && 19140 states_equal(env, &sl->state, cur, RANGE_WITHIN)) { 19141 update_loop_entry(env, cur, &sl->state); 19142 goto hit; 19143 } 19144 } 19145 if (calls_callback(env, insn_idx)) { 19146 if (states_equal(env, &sl->state, cur, RANGE_WITHIN)) 19147 goto hit; 19148 goto skip_inf_loop_check; 19149 } 19150 /* attempt to detect infinite loop to avoid unnecessary doomed work */ 19151 if (states_maybe_looping(&sl->state, cur) && 19152 states_equal(env, &sl->state, cur, EXACT) && 19153 !iter_active_depths_differ(&sl->state, cur) && 19154 sl->state.may_goto_depth == cur->may_goto_depth && 19155 sl->state.callback_unroll_depth == cur->callback_unroll_depth) { 19156 verbose_linfo(env, insn_idx, "; "); 19157 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 19158 verbose(env, "cur state:"); 19159 print_verifier_state(env, cur, cur->curframe, true); 19160 verbose(env, "old state:"); 19161 print_verifier_state(env, &sl->state, cur->curframe, true); 19162 return -EINVAL; 19163 } 19164 /* if the verifier is processing a loop, avoid adding new state 19165 * too often, since different loop iterations have distinct 19166 * states and may not help future pruning. 19167 * This threshold shouldn't be too low to make sure that 19168 * a loop with large bound will be rejected quickly. 19169 * The most abusive loop will be: 19170 * r1 += 1 19171 * if r1 < 1000000 goto pc-2 19172 * 1M insn_procssed limit / 100 == 10k peak states. 19173 * This threshold shouldn't be too high either, since states 19174 * at the end of the loop are likely to be useful in pruning. 19175 */ 19176 skip_inf_loop_check: 19177 if (!force_new_state && 19178 env->jmps_processed - env->prev_jmps_processed < 20 && 19179 env->insn_processed - env->prev_insn_processed < 100) 19180 add_new_state = false; 19181 goto miss; 19182 } 19183 /* If sl->state is a part of a loop and this loop's entry is a part of 19184 * current verification path then states have to be compared exactly. 19185 * 'force_exact' is needed to catch the following case: 19186 * 19187 * initial Here state 'succ' was processed first, 19188 * | it was eventually tracked to produce a 19189 * V state identical to 'hdr'. 19190 * .---------> hdr All branches from 'succ' had been explored 19191 * | | and thus 'succ' has its .branches == 0. 19192 * | V 19193 * | .------... Suppose states 'cur' and 'succ' correspond 19194 * | | | to the same instruction + callsites. 19195 * | V V In such case it is necessary to check 19196 * | ... ... if 'succ' and 'cur' are states_equal(). 19197 * | | | If 'succ' and 'cur' are a part of the 19198 * | V V same loop exact flag has to be set. 19199 * | succ <- cur To check if that is the case, verify 19200 * | | if loop entry of 'succ' is in current 19201 * | V DFS path. 19202 * | ... 19203 * | | 19204 * '----' 19205 * 19206 * Additional details are in the comment before get_loop_entry(). 19207 */ 19208 loop_entry = get_loop_entry(env, &sl->state); 19209 if (IS_ERR(loop_entry)) 19210 return PTR_ERR(loop_entry); 19211 force_exact = loop_entry && loop_entry->branches > 0; 19212 if (states_equal(env, &sl->state, cur, force_exact ? RANGE_WITHIN : NOT_EXACT)) { 19213 if (force_exact) 19214 update_loop_entry(env, cur, loop_entry); 19215 hit: 19216 sl->hit_cnt++; 19217 /* reached equivalent register/stack state, 19218 * prune the search. 19219 * Registers read by the continuation are read by us. 19220 * If we have any write marks in env->cur_state, they 19221 * will prevent corresponding reads in the continuation 19222 * from reaching our parent (an explored_state). Our 19223 * own state will get the read marks recorded, but 19224 * they'll be immediately forgotten as we're pruning 19225 * this state and will pop a new one. 19226 */ 19227 err = propagate_liveness(env, &sl->state, cur); 19228 19229 /* if previous state reached the exit with precision and 19230 * current state is equivalent to it (except precision marks) 19231 * the precision needs to be propagated back in 19232 * the current state. 19233 */ 19234 if (is_jmp_point(env, env->insn_idx)) 19235 err = err ? : push_insn_history(env, cur, 0, 0); 19236 err = err ? : propagate_precision(env, &sl->state); 19237 if (err) 19238 return err; 19239 return 1; 19240 } 19241 miss: 19242 /* when new state is not going to be added do not increase miss count. 19243 * Otherwise several loop iterations will remove the state 19244 * recorded earlier. The goal of these heuristics is to have 19245 * states from some iterations of the loop (some in the beginning 19246 * and some at the end) to help pruning. 19247 */ 19248 if (add_new_state) 19249 sl->miss_cnt++; 19250 /* heuristic to determine whether this state is beneficial 19251 * to keep checking from state equivalence point of view. 19252 * Higher numbers increase max_states_per_insn and verification time, 19253 * but do not meaningfully decrease insn_processed. 19254 * 'n' controls how many times state could miss before eviction. 19255 * Use bigger 'n' for checkpoints because evicting checkpoint states 19256 * too early would hinder iterator convergence. 19257 */ 19258 n = is_force_checkpoint(env, insn_idx) && sl->state.branches > 0 ? 64 : 3; 19259 if (sl->miss_cnt > sl->hit_cnt * n + n) { 19260 /* the state is unlikely to be useful. Remove it to 19261 * speed up verification 19262 */ 19263 sl->in_free_list = true; 19264 list_del(&sl->node); 19265 list_add(&sl->node, &env->free_list); 19266 env->free_list_size++; 19267 env->explored_states_size--; 19268 maybe_free_verifier_state(env, sl); 19269 } 19270 } 19271 19272 if (env->max_states_per_insn < states_cnt) 19273 env->max_states_per_insn = states_cnt; 19274 19275 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 19276 return 0; 19277 19278 if (!add_new_state) 19279 return 0; 19280 19281 /* There were no equivalent states, remember the current one. 19282 * Technically the current state is not proven to be safe yet, 19283 * but it will either reach outer most bpf_exit (which means it's safe) 19284 * or it will be rejected. When there are no loops the verifier won't be 19285 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 19286 * again on the way to bpf_exit. 19287 * When looping the sl->state.branches will be > 0 and this state 19288 * will not be considered for equivalence until branches == 0. 19289 */ 19290 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 19291 if (!new_sl) 19292 return -ENOMEM; 19293 env->total_states++; 19294 env->explored_states_size++; 19295 update_peak_states(env); 19296 env->prev_jmps_processed = env->jmps_processed; 19297 env->prev_insn_processed = env->insn_processed; 19298 19299 /* forget precise markings we inherited, see __mark_chain_precision */ 19300 if (env->bpf_capable) 19301 mark_all_scalars_imprecise(env, cur); 19302 19303 /* add new state to the head of linked list */ 19304 new = &new_sl->state; 19305 err = copy_verifier_state(new, cur); 19306 if (err) { 19307 free_verifier_state(new, false); 19308 kfree(new_sl); 19309 return err; 19310 } 19311 new->insn_idx = insn_idx; 19312 WARN_ONCE(new->branches != 1, 19313 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 19314 19315 cur->parent = new; 19316 cur->first_insn_idx = insn_idx; 19317 cur->insn_hist_start = cur->insn_hist_end; 19318 cur->dfs_depth = new->dfs_depth + 1; 19319 list_add(&new_sl->node, head); 19320 19321 /* connect new state to parentage chain. Current frame needs all 19322 * registers connected. Only r6 - r9 of the callers are alive (pushed 19323 * to the stack implicitly by JITs) so in callers' frames connect just 19324 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 19325 * the state of the call instruction (with WRITTEN set), and r0 comes 19326 * from callee with its full parentage chain, anyway. 19327 */ 19328 /* clear write marks in current state: the writes we did are not writes 19329 * our child did, so they don't screen off its reads from us. 19330 * (There are no read marks in current state, because reads always mark 19331 * their parent and current state never has children yet. Only 19332 * explored_states can get read marks.) 19333 */ 19334 for (j = 0; j <= cur->curframe; j++) { 19335 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 19336 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 19337 for (i = 0; i < BPF_REG_FP; i++) 19338 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 19339 } 19340 19341 /* all stack frames are accessible from callee, clear them all */ 19342 for (j = 0; j <= cur->curframe; j++) { 19343 struct bpf_func_state *frame = cur->frame[j]; 19344 struct bpf_func_state *newframe = new->frame[j]; 19345 19346 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 19347 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 19348 frame->stack[i].spilled_ptr.parent = 19349 &newframe->stack[i].spilled_ptr; 19350 } 19351 } 19352 return 0; 19353 } 19354 19355 /* Return true if it's OK to have the same insn return a different type. */ 19356 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 19357 { 19358 switch (base_type(type)) { 19359 case PTR_TO_CTX: 19360 case PTR_TO_SOCKET: 19361 case PTR_TO_SOCK_COMMON: 19362 case PTR_TO_TCP_SOCK: 19363 case PTR_TO_XDP_SOCK: 19364 case PTR_TO_BTF_ID: 19365 case PTR_TO_ARENA: 19366 return false; 19367 default: 19368 return true; 19369 } 19370 } 19371 19372 /* If an instruction was previously used with particular pointer types, then we 19373 * need to be careful to avoid cases such as the below, where it may be ok 19374 * for one branch accessing the pointer, but not ok for the other branch: 19375 * 19376 * R1 = sock_ptr 19377 * goto X; 19378 * ... 19379 * R1 = some_other_valid_ptr; 19380 * goto X; 19381 * ... 19382 * R2 = *(u32 *)(R1 + 0); 19383 */ 19384 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 19385 { 19386 return src != prev && (!reg_type_mismatch_ok(src) || 19387 !reg_type_mismatch_ok(prev)); 19388 } 19389 19390 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type, 19391 bool allow_trust_mismatch) 19392 { 19393 enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type; 19394 19395 if (*prev_type == NOT_INIT) { 19396 /* Saw a valid insn 19397 * dst_reg = *(u32 *)(src_reg + off) 19398 * save type to validate intersecting paths 19399 */ 19400 *prev_type = type; 19401 } else if (reg_type_mismatch(type, *prev_type)) { 19402 /* Abuser program is trying to use the same insn 19403 * dst_reg = *(u32*) (src_reg + off) 19404 * with different pointer types: 19405 * src_reg == ctx in one branch and 19406 * src_reg == stack|map in some other branch. 19407 * Reject it. 19408 */ 19409 if (allow_trust_mismatch && 19410 base_type(type) == PTR_TO_BTF_ID && 19411 base_type(*prev_type) == PTR_TO_BTF_ID) { 19412 /* 19413 * Have to support a use case when one path through 19414 * the program yields TRUSTED pointer while another 19415 * is UNTRUSTED. Fallback to UNTRUSTED to generate 19416 * BPF_PROBE_MEM/BPF_PROBE_MEMSX. 19417 */ 19418 *prev_type = PTR_TO_BTF_ID | PTR_UNTRUSTED; 19419 } else { 19420 verbose(env, "same insn cannot be used with different pointers\n"); 19421 return -EINVAL; 19422 } 19423 } 19424 19425 return 0; 19426 } 19427 19428 static int do_check(struct bpf_verifier_env *env) 19429 { 19430 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 19431 struct bpf_verifier_state *state = env->cur_state; 19432 struct bpf_insn *insns = env->prog->insnsi; 19433 struct bpf_reg_state *regs; 19434 int insn_cnt = env->prog->len; 19435 bool do_print_state = false; 19436 int prev_insn_idx = -1; 19437 19438 for (;;) { 19439 bool exception_exit = false; 19440 struct bpf_insn *insn; 19441 u8 class; 19442 int err; 19443 19444 /* reset current history entry on each new instruction */ 19445 env->cur_hist_ent = NULL; 19446 19447 env->prev_insn_idx = prev_insn_idx; 19448 if (env->insn_idx >= insn_cnt) { 19449 verbose(env, "invalid insn idx %d insn_cnt %d\n", 19450 env->insn_idx, insn_cnt); 19451 return -EFAULT; 19452 } 19453 19454 insn = &insns[env->insn_idx]; 19455 class = BPF_CLASS(insn->code); 19456 19457 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 19458 verbose(env, 19459 "BPF program is too large. Processed %d insn\n", 19460 env->insn_processed); 19461 return -E2BIG; 19462 } 19463 19464 state->last_insn_idx = env->prev_insn_idx; 19465 19466 if (is_prune_point(env, env->insn_idx)) { 19467 err = is_state_visited(env, env->insn_idx); 19468 if (err < 0) 19469 return err; 19470 if (err == 1) { 19471 /* found equivalent state, can prune the search */ 19472 if (env->log.level & BPF_LOG_LEVEL) { 19473 if (do_print_state) 19474 verbose(env, "\nfrom %d to %d%s: safe\n", 19475 env->prev_insn_idx, env->insn_idx, 19476 env->cur_state->speculative ? 19477 " (speculative execution)" : ""); 19478 else 19479 verbose(env, "%d: safe\n", env->insn_idx); 19480 } 19481 goto process_bpf_exit; 19482 } 19483 } 19484 19485 if (is_jmp_point(env, env->insn_idx)) { 19486 err = push_insn_history(env, state, 0, 0); 19487 if (err) 19488 return err; 19489 } 19490 19491 if (signal_pending(current)) 19492 return -EAGAIN; 19493 19494 if (need_resched()) 19495 cond_resched(); 19496 19497 if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) { 19498 verbose(env, "\nfrom %d to %d%s:", 19499 env->prev_insn_idx, env->insn_idx, 19500 env->cur_state->speculative ? 19501 " (speculative execution)" : ""); 19502 print_verifier_state(env, state, state->curframe, true); 19503 do_print_state = false; 19504 } 19505 19506 if (env->log.level & BPF_LOG_LEVEL) { 19507 if (verifier_state_scratched(env)) 19508 print_insn_state(env, state, state->curframe); 19509 19510 verbose_linfo(env, env->insn_idx, "; "); 19511 env->prev_log_pos = env->log.end_pos; 19512 verbose(env, "%d: ", env->insn_idx); 19513 verbose_insn(env, insn); 19514 env->prev_insn_print_pos = env->log.end_pos - env->prev_log_pos; 19515 env->prev_log_pos = env->log.end_pos; 19516 } 19517 19518 if (bpf_prog_is_offloaded(env->prog->aux)) { 19519 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 19520 env->prev_insn_idx); 19521 if (err) 19522 return err; 19523 } 19524 19525 regs = cur_regs(env); 19526 sanitize_mark_insn_seen(env); 19527 prev_insn_idx = env->insn_idx; 19528 19529 if (class == BPF_ALU || class == BPF_ALU64) { 19530 err = check_alu_op(env, insn); 19531 if (err) 19532 return err; 19533 19534 } else if (class == BPF_LDX) { 19535 bool is_ldsx = BPF_MODE(insn->code) == BPF_MEMSX; 19536 19537 /* Check for reserved fields is already done in 19538 * resolve_pseudo_ldimm64(). 19539 */ 19540 err = check_load_mem(env, insn, false, is_ldsx, true, 19541 "ldx"); 19542 if (err) 19543 return err; 19544 } else if (class == BPF_STX) { 19545 if (BPF_MODE(insn->code) == BPF_ATOMIC) { 19546 err = check_atomic(env, insn); 19547 if (err) 19548 return err; 19549 env->insn_idx++; 19550 continue; 19551 } 19552 19553 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) { 19554 verbose(env, "BPF_STX uses reserved fields\n"); 19555 return -EINVAL; 19556 } 19557 19558 err = check_store_reg(env, insn, false); 19559 if (err) 19560 return err; 19561 } else if (class == BPF_ST) { 19562 enum bpf_reg_type dst_reg_type; 19563 19564 if (BPF_MODE(insn->code) != BPF_MEM || 19565 insn->src_reg != BPF_REG_0) { 19566 verbose(env, "BPF_ST uses reserved fields\n"); 19567 return -EINVAL; 19568 } 19569 /* check src operand */ 19570 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 19571 if (err) 19572 return err; 19573 19574 dst_reg_type = regs[insn->dst_reg].type; 19575 19576 /* check that memory (dst_reg + off) is writeable */ 19577 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 19578 insn->off, BPF_SIZE(insn->code), 19579 BPF_WRITE, -1, false, false); 19580 if (err) 19581 return err; 19582 19583 err = save_aux_ptr_type(env, dst_reg_type, false); 19584 if (err) 19585 return err; 19586 } else if (class == BPF_JMP || class == BPF_JMP32) { 19587 u8 opcode = BPF_OP(insn->code); 19588 19589 env->jmps_processed++; 19590 if (opcode == BPF_CALL) { 19591 if (BPF_SRC(insn->code) != BPF_K || 19592 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL 19593 && insn->off != 0) || 19594 (insn->src_reg != BPF_REG_0 && 19595 insn->src_reg != BPF_PSEUDO_CALL && 19596 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) || 19597 insn->dst_reg != BPF_REG_0 || 19598 class == BPF_JMP32) { 19599 verbose(env, "BPF_CALL uses reserved fields\n"); 19600 return -EINVAL; 19601 } 19602 19603 if (env->cur_state->active_locks) { 19604 if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) || 19605 (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && 19606 (insn->off != 0 || !kfunc_spin_allowed(insn->imm)))) { 19607 verbose(env, "function calls are not allowed while holding a lock\n"); 19608 return -EINVAL; 19609 } 19610 } 19611 if (insn->src_reg == BPF_PSEUDO_CALL) { 19612 err = check_func_call(env, insn, &env->insn_idx); 19613 } else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 19614 err = check_kfunc_call(env, insn, &env->insn_idx); 19615 if (!err && is_bpf_throw_kfunc(insn)) { 19616 exception_exit = true; 19617 goto process_bpf_exit_full; 19618 } 19619 } else { 19620 err = check_helper_call(env, insn, &env->insn_idx); 19621 } 19622 if (err) 19623 return err; 19624 19625 mark_reg_scratched(env, BPF_REG_0); 19626 } else if (opcode == BPF_JA) { 19627 if (BPF_SRC(insn->code) != BPF_K || 19628 insn->src_reg != BPF_REG_0 || 19629 insn->dst_reg != BPF_REG_0 || 19630 (class == BPF_JMP && insn->imm != 0) || 19631 (class == BPF_JMP32 && insn->off != 0)) { 19632 verbose(env, "BPF_JA uses reserved fields\n"); 19633 return -EINVAL; 19634 } 19635 19636 if (class == BPF_JMP) 19637 env->insn_idx += insn->off + 1; 19638 else 19639 env->insn_idx += insn->imm + 1; 19640 continue; 19641 19642 } else if (opcode == BPF_EXIT) { 19643 if (BPF_SRC(insn->code) != BPF_K || 19644 insn->imm != 0 || 19645 insn->src_reg != BPF_REG_0 || 19646 insn->dst_reg != BPF_REG_0 || 19647 class == BPF_JMP32) { 19648 verbose(env, "BPF_EXIT uses reserved fields\n"); 19649 return -EINVAL; 19650 } 19651 process_bpf_exit_full: 19652 /* We must do check_reference_leak here before 19653 * prepare_func_exit to handle the case when 19654 * state->curframe > 0, it may be a callback 19655 * function, for which reference_state must 19656 * match caller reference state when it exits. 19657 */ 19658 err = check_resource_leak(env, exception_exit, !env->cur_state->curframe, 19659 "BPF_EXIT instruction in main prog"); 19660 if (err) 19661 return err; 19662 19663 /* The side effect of the prepare_func_exit 19664 * which is being skipped is that it frees 19665 * bpf_func_state. Typically, process_bpf_exit 19666 * will only be hit with outermost exit. 19667 * copy_verifier_state in pop_stack will handle 19668 * freeing of any extra bpf_func_state left over 19669 * from not processing all nested function 19670 * exits. We also skip return code checks as 19671 * they are not needed for exceptional exits. 19672 */ 19673 if (exception_exit) 19674 goto process_bpf_exit; 19675 19676 if (state->curframe) { 19677 /* exit from nested function */ 19678 err = prepare_func_exit(env, &env->insn_idx); 19679 if (err) 19680 return err; 19681 do_print_state = true; 19682 continue; 19683 } 19684 19685 err = check_return_code(env, BPF_REG_0, "R0"); 19686 if (err) 19687 return err; 19688 process_bpf_exit: 19689 mark_verifier_state_scratched(env); 19690 update_branch_counts(env, env->cur_state); 19691 err = pop_stack(env, &prev_insn_idx, 19692 &env->insn_idx, pop_log); 19693 if (err < 0) { 19694 if (err != -ENOENT) 19695 return err; 19696 break; 19697 } else { 19698 if (verifier_bug_if(env->cur_state->loop_entry, env, 19699 "broken loop detection")) 19700 return -EFAULT; 19701 do_print_state = true; 19702 continue; 19703 } 19704 } else { 19705 err = check_cond_jmp_op(env, insn, &env->insn_idx); 19706 if (err) 19707 return err; 19708 } 19709 } else if (class == BPF_LD) { 19710 u8 mode = BPF_MODE(insn->code); 19711 19712 if (mode == BPF_ABS || mode == BPF_IND) { 19713 err = check_ld_abs(env, insn); 19714 if (err) 19715 return err; 19716 19717 } else if (mode == BPF_IMM) { 19718 err = check_ld_imm(env, insn); 19719 if (err) 19720 return err; 19721 19722 env->insn_idx++; 19723 sanitize_mark_insn_seen(env); 19724 } else { 19725 verbose(env, "invalid BPF_LD mode\n"); 19726 return -EINVAL; 19727 } 19728 } else { 19729 verbose(env, "unknown insn class %d\n", class); 19730 return -EINVAL; 19731 } 19732 19733 env->insn_idx++; 19734 } 19735 19736 return 0; 19737 } 19738 19739 static int find_btf_percpu_datasec(struct btf *btf) 19740 { 19741 const struct btf_type *t; 19742 const char *tname; 19743 int i, n; 19744 19745 /* 19746 * Both vmlinux and module each have their own ".data..percpu" 19747 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF 19748 * types to look at only module's own BTF types. 19749 */ 19750 n = btf_nr_types(btf); 19751 if (btf_is_module(btf)) 19752 i = btf_nr_types(btf_vmlinux); 19753 else 19754 i = 1; 19755 19756 for(; i < n; i++) { 19757 t = btf_type_by_id(btf, i); 19758 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC) 19759 continue; 19760 19761 tname = btf_name_by_offset(btf, t->name_off); 19762 if (!strcmp(tname, ".data..percpu")) 19763 return i; 19764 } 19765 19766 return -ENOENT; 19767 } 19768 19769 /* 19770 * Add btf to the used_btfs array and return the index. (If the btf was 19771 * already added, then just return the index.) Upon successful insertion 19772 * increase btf refcnt, and, if present, also refcount the corresponding 19773 * kernel module. 19774 */ 19775 static int __add_used_btf(struct bpf_verifier_env *env, struct btf *btf) 19776 { 19777 struct btf_mod_pair *btf_mod; 19778 int i; 19779 19780 /* check whether we recorded this BTF (and maybe module) already */ 19781 for (i = 0; i < env->used_btf_cnt; i++) 19782 if (env->used_btfs[i].btf == btf) 19783 return i; 19784 19785 if (env->used_btf_cnt >= MAX_USED_BTFS) 19786 return -E2BIG; 19787 19788 btf_get(btf); 19789 19790 btf_mod = &env->used_btfs[env->used_btf_cnt]; 19791 btf_mod->btf = btf; 19792 btf_mod->module = NULL; 19793 19794 /* if we reference variables from kernel module, bump its refcount */ 19795 if (btf_is_module(btf)) { 19796 btf_mod->module = btf_try_get_module(btf); 19797 if (!btf_mod->module) { 19798 btf_put(btf); 19799 return -ENXIO; 19800 } 19801 } 19802 19803 return env->used_btf_cnt++; 19804 } 19805 19806 /* replace pseudo btf_id with kernel symbol address */ 19807 static int __check_pseudo_btf_id(struct bpf_verifier_env *env, 19808 struct bpf_insn *insn, 19809 struct bpf_insn_aux_data *aux, 19810 struct btf *btf) 19811 { 19812 const struct btf_var_secinfo *vsi; 19813 const struct btf_type *datasec; 19814 const struct btf_type *t; 19815 const char *sym_name; 19816 bool percpu = false; 19817 u32 type, id = insn->imm; 19818 s32 datasec_id; 19819 u64 addr; 19820 int i; 19821 19822 t = btf_type_by_id(btf, id); 19823 if (!t) { 19824 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id); 19825 return -ENOENT; 19826 } 19827 19828 if (!btf_type_is_var(t) && !btf_type_is_func(t)) { 19829 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id); 19830 return -EINVAL; 19831 } 19832 19833 sym_name = btf_name_by_offset(btf, t->name_off); 19834 addr = kallsyms_lookup_name(sym_name); 19835 if (!addr) { 19836 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n", 19837 sym_name); 19838 return -ENOENT; 19839 } 19840 insn[0].imm = (u32)addr; 19841 insn[1].imm = addr >> 32; 19842 19843 if (btf_type_is_func(t)) { 19844 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 19845 aux->btf_var.mem_size = 0; 19846 return 0; 19847 } 19848 19849 datasec_id = find_btf_percpu_datasec(btf); 19850 if (datasec_id > 0) { 19851 datasec = btf_type_by_id(btf, datasec_id); 19852 for_each_vsi(i, datasec, vsi) { 19853 if (vsi->type == id) { 19854 percpu = true; 19855 break; 19856 } 19857 } 19858 } 19859 19860 type = t->type; 19861 t = btf_type_skip_modifiers(btf, type, NULL); 19862 if (percpu) { 19863 aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU; 19864 aux->btf_var.btf = btf; 19865 aux->btf_var.btf_id = type; 19866 } else if (!btf_type_is_struct(t)) { 19867 const struct btf_type *ret; 19868 const char *tname; 19869 u32 tsize; 19870 19871 /* resolve the type size of ksym. */ 19872 ret = btf_resolve_size(btf, t, &tsize); 19873 if (IS_ERR(ret)) { 19874 tname = btf_name_by_offset(btf, t->name_off); 19875 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n", 19876 tname, PTR_ERR(ret)); 19877 return -EINVAL; 19878 } 19879 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 19880 aux->btf_var.mem_size = tsize; 19881 } else { 19882 aux->btf_var.reg_type = PTR_TO_BTF_ID; 19883 aux->btf_var.btf = btf; 19884 aux->btf_var.btf_id = type; 19885 } 19886 19887 return 0; 19888 } 19889 19890 static int check_pseudo_btf_id(struct bpf_verifier_env *env, 19891 struct bpf_insn *insn, 19892 struct bpf_insn_aux_data *aux) 19893 { 19894 struct btf *btf; 19895 int btf_fd; 19896 int err; 19897 19898 btf_fd = insn[1].imm; 19899 if (btf_fd) { 19900 CLASS(fd, f)(btf_fd); 19901 19902 btf = __btf_get_by_fd(f); 19903 if (IS_ERR(btf)) { 19904 verbose(env, "invalid module BTF object FD specified.\n"); 19905 return -EINVAL; 19906 } 19907 } else { 19908 if (!btf_vmlinux) { 19909 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n"); 19910 return -EINVAL; 19911 } 19912 btf = btf_vmlinux; 19913 } 19914 19915 err = __check_pseudo_btf_id(env, insn, aux, btf); 19916 if (err) 19917 return err; 19918 19919 err = __add_used_btf(env, btf); 19920 if (err < 0) 19921 return err; 19922 return 0; 19923 } 19924 19925 static bool is_tracing_prog_type(enum bpf_prog_type type) 19926 { 19927 switch (type) { 19928 case BPF_PROG_TYPE_KPROBE: 19929 case BPF_PROG_TYPE_TRACEPOINT: 19930 case BPF_PROG_TYPE_PERF_EVENT: 19931 case BPF_PROG_TYPE_RAW_TRACEPOINT: 19932 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: 19933 return true; 19934 default: 19935 return false; 19936 } 19937 } 19938 19939 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 19940 { 19941 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 19942 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 19943 } 19944 19945 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 19946 struct bpf_map *map, 19947 struct bpf_prog *prog) 19948 19949 { 19950 enum bpf_prog_type prog_type = resolve_prog_type(prog); 19951 19952 if (btf_record_has_field(map->record, BPF_LIST_HEAD) || 19953 btf_record_has_field(map->record, BPF_RB_ROOT)) { 19954 if (is_tracing_prog_type(prog_type)) { 19955 verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n"); 19956 return -EINVAL; 19957 } 19958 } 19959 19960 if (btf_record_has_field(map->record, BPF_SPIN_LOCK | BPF_RES_SPIN_LOCK)) { 19961 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) { 19962 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n"); 19963 return -EINVAL; 19964 } 19965 19966 if (is_tracing_prog_type(prog_type)) { 19967 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 19968 return -EINVAL; 19969 } 19970 } 19971 19972 if (btf_record_has_field(map->record, BPF_TIMER)) { 19973 if (is_tracing_prog_type(prog_type)) { 19974 verbose(env, "tracing progs cannot use bpf_timer yet\n"); 19975 return -EINVAL; 19976 } 19977 } 19978 19979 if (btf_record_has_field(map->record, BPF_WORKQUEUE)) { 19980 if (is_tracing_prog_type(prog_type)) { 19981 verbose(env, "tracing progs cannot use bpf_wq yet\n"); 19982 return -EINVAL; 19983 } 19984 } 19985 19986 if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) && 19987 !bpf_offload_prog_map_match(prog, map)) { 19988 verbose(env, "offload device mismatch between prog and map\n"); 19989 return -EINVAL; 19990 } 19991 19992 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 19993 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 19994 return -EINVAL; 19995 } 19996 19997 if (prog->sleepable) 19998 switch (map->map_type) { 19999 case BPF_MAP_TYPE_HASH: 20000 case BPF_MAP_TYPE_LRU_HASH: 20001 case BPF_MAP_TYPE_ARRAY: 20002 case BPF_MAP_TYPE_PERCPU_HASH: 20003 case BPF_MAP_TYPE_PERCPU_ARRAY: 20004 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 20005 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 20006 case BPF_MAP_TYPE_HASH_OF_MAPS: 20007 case BPF_MAP_TYPE_RINGBUF: 20008 case BPF_MAP_TYPE_USER_RINGBUF: 20009 case BPF_MAP_TYPE_INODE_STORAGE: 20010 case BPF_MAP_TYPE_SK_STORAGE: 20011 case BPF_MAP_TYPE_TASK_STORAGE: 20012 case BPF_MAP_TYPE_CGRP_STORAGE: 20013 case BPF_MAP_TYPE_QUEUE: 20014 case BPF_MAP_TYPE_STACK: 20015 case BPF_MAP_TYPE_ARENA: 20016 break; 20017 default: 20018 verbose(env, 20019 "Sleepable programs can only use array, hash, ringbuf and local storage maps\n"); 20020 return -EINVAL; 20021 } 20022 20023 if (bpf_map_is_cgroup_storage(map) && 20024 bpf_cgroup_storage_assign(env->prog->aux, map)) { 20025 verbose(env, "only one cgroup storage of each type is allowed\n"); 20026 return -EBUSY; 20027 } 20028 20029 if (map->map_type == BPF_MAP_TYPE_ARENA) { 20030 if (env->prog->aux->arena) { 20031 verbose(env, "Only one arena per program\n"); 20032 return -EBUSY; 20033 } 20034 if (!env->allow_ptr_leaks || !env->bpf_capable) { 20035 verbose(env, "CAP_BPF and CAP_PERFMON are required to use arena\n"); 20036 return -EPERM; 20037 } 20038 if (!env->prog->jit_requested) { 20039 verbose(env, "JIT is required to use arena\n"); 20040 return -EOPNOTSUPP; 20041 } 20042 if (!bpf_jit_supports_arena()) { 20043 verbose(env, "JIT doesn't support arena\n"); 20044 return -EOPNOTSUPP; 20045 } 20046 env->prog->aux->arena = (void *)map; 20047 if (!bpf_arena_get_user_vm_start(env->prog->aux->arena)) { 20048 verbose(env, "arena's user address must be set via map_extra or mmap()\n"); 20049 return -EINVAL; 20050 } 20051 } 20052 20053 return 0; 20054 } 20055 20056 static int __add_used_map(struct bpf_verifier_env *env, struct bpf_map *map) 20057 { 20058 int i, err; 20059 20060 /* check whether we recorded this map already */ 20061 for (i = 0; i < env->used_map_cnt; i++) 20062 if (env->used_maps[i] == map) 20063 return i; 20064 20065 if (env->used_map_cnt >= MAX_USED_MAPS) { 20066 verbose(env, "The total number of maps per program has reached the limit of %u\n", 20067 MAX_USED_MAPS); 20068 return -E2BIG; 20069 } 20070 20071 err = check_map_prog_compatibility(env, map, env->prog); 20072 if (err) 20073 return err; 20074 20075 if (env->prog->sleepable) 20076 atomic64_inc(&map->sleepable_refcnt); 20077 20078 /* hold the map. If the program is rejected by verifier, 20079 * the map will be released by release_maps() or it 20080 * will be used by the valid program until it's unloaded 20081 * and all maps are released in bpf_free_used_maps() 20082 */ 20083 bpf_map_inc(map); 20084 20085 env->used_maps[env->used_map_cnt++] = map; 20086 20087 return env->used_map_cnt - 1; 20088 } 20089 20090 /* Add map behind fd to used maps list, if it's not already there, and return 20091 * its index. 20092 * Returns <0 on error, or >= 0 index, on success. 20093 */ 20094 static int add_used_map(struct bpf_verifier_env *env, int fd) 20095 { 20096 struct bpf_map *map; 20097 CLASS(fd, f)(fd); 20098 20099 map = __bpf_map_get(f); 20100 if (IS_ERR(map)) { 20101 verbose(env, "fd %d is not pointing to valid bpf_map\n", fd); 20102 return PTR_ERR(map); 20103 } 20104 20105 return __add_used_map(env, map); 20106 } 20107 20108 /* find and rewrite pseudo imm in ld_imm64 instructions: 20109 * 20110 * 1. if it accesses map FD, replace it with actual map pointer. 20111 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var. 20112 * 20113 * NOTE: btf_vmlinux is required for converting pseudo btf_id. 20114 */ 20115 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env) 20116 { 20117 struct bpf_insn *insn = env->prog->insnsi; 20118 int insn_cnt = env->prog->len; 20119 int i, err; 20120 20121 err = bpf_prog_calc_tag(env->prog); 20122 if (err) 20123 return err; 20124 20125 for (i = 0; i < insn_cnt; i++, insn++) { 20126 if (BPF_CLASS(insn->code) == BPF_LDX && 20127 ((BPF_MODE(insn->code) != BPF_MEM && BPF_MODE(insn->code) != BPF_MEMSX) || 20128 insn->imm != 0)) { 20129 verbose(env, "BPF_LDX uses reserved fields\n"); 20130 return -EINVAL; 20131 } 20132 20133 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 20134 struct bpf_insn_aux_data *aux; 20135 struct bpf_map *map; 20136 int map_idx; 20137 u64 addr; 20138 u32 fd; 20139 20140 if (i == insn_cnt - 1 || insn[1].code != 0 || 20141 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 20142 insn[1].off != 0) { 20143 verbose(env, "invalid bpf_ld_imm64 insn\n"); 20144 return -EINVAL; 20145 } 20146 20147 if (insn[0].src_reg == 0) 20148 /* valid generic load 64-bit imm */ 20149 goto next_insn; 20150 20151 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) { 20152 aux = &env->insn_aux_data[i]; 20153 err = check_pseudo_btf_id(env, insn, aux); 20154 if (err) 20155 return err; 20156 goto next_insn; 20157 } 20158 20159 if (insn[0].src_reg == BPF_PSEUDO_FUNC) { 20160 aux = &env->insn_aux_data[i]; 20161 aux->ptr_type = PTR_TO_FUNC; 20162 goto next_insn; 20163 } 20164 20165 /* In final convert_pseudo_ld_imm64() step, this is 20166 * converted into regular 64-bit imm load insn. 20167 */ 20168 switch (insn[0].src_reg) { 20169 case BPF_PSEUDO_MAP_VALUE: 20170 case BPF_PSEUDO_MAP_IDX_VALUE: 20171 break; 20172 case BPF_PSEUDO_MAP_FD: 20173 case BPF_PSEUDO_MAP_IDX: 20174 if (insn[1].imm == 0) 20175 break; 20176 fallthrough; 20177 default: 20178 verbose(env, "unrecognized bpf_ld_imm64 insn\n"); 20179 return -EINVAL; 20180 } 20181 20182 switch (insn[0].src_reg) { 20183 case BPF_PSEUDO_MAP_IDX_VALUE: 20184 case BPF_PSEUDO_MAP_IDX: 20185 if (bpfptr_is_null(env->fd_array)) { 20186 verbose(env, "fd_idx without fd_array is invalid\n"); 20187 return -EPROTO; 20188 } 20189 if (copy_from_bpfptr_offset(&fd, env->fd_array, 20190 insn[0].imm * sizeof(fd), 20191 sizeof(fd))) 20192 return -EFAULT; 20193 break; 20194 default: 20195 fd = insn[0].imm; 20196 break; 20197 } 20198 20199 map_idx = add_used_map(env, fd); 20200 if (map_idx < 0) 20201 return map_idx; 20202 map = env->used_maps[map_idx]; 20203 20204 aux = &env->insn_aux_data[i]; 20205 aux->map_index = map_idx; 20206 20207 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD || 20208 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) { 20209 addr = (unsigned long)map; 20210 } else { 20211 u32 off = insn[1].imm; 20212 20213 if (off >= BPF_MAX_VAR_OFF) { 20214 verbose(env, "direct value offset of %u is not allowed\n", off); 20215 return -EINVAL; 20216 } 20217 20218 if (!map->ops->map_direct_value_addr) { 20219 verbose(env, "no direct value access support for this map type\n"); 20220 return -EINVAL; 20221 } 20222 20223 err = map->ops->map_direct_value_addr(map, &addr, off); 20224 if (err) { 20225 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 20226 map->value_size, off); 20227 return err; 20228 } 20229 20230 aux->map_off = off; 20231 addr += off; 20232 } 20233 20234 insn[0].imm = (u32)addr; 20235 insn[1].imm = addr >> 32; 20236 20237 next_insn: 20238 insn++; 20239 i++; 20240 continue; 20241 } 20242 20243 /* Basic sanity check before we invest more work here. */ 20244 if (!bpf_opcode_in_insntable(insn->code)) { 20245 verbose(env, "unknown opcode %02x\n", insn->code); 20246 return -EINVAL; 20247 } 20248 } 20249 20250 /* now all pseudo BPF_LD_IMM64 instructions load valid 20251 * 'struct bpf_map *' into a register instead of user map_fd. 20252 * These pointers will be used later by verifier to validate map access. 20253 */ 20254 return 0; 20255 } 20256 20257 /* drop refcnt of maps used by the rejected program */ 20258 static void release_maps(struct bpf_verifier_env *env) 20259 { 20260 __bpf_free_used_maps(env->prog->aux, env->used_maps, 20261 env->used_map_cnt); 20262 } 20263 20264 /* drop refcnt of maps used by the rejected program */ 20265 static void release_btfs(struct bpf_verifier_env *env) 20266 { 20267 __bpf_free_used_btfs(env->used_btfs, env->used_btf_cnt); 20268 } 20269 20270 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 20271 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 20272 { 20273 struct bpf_insn *insn = env->prog->insnsi; 20274 int insn_cnt = env->prog->len; 20275 int i; 20276 20277 for (i = 0; i < insn_cnt; i++, insn++) { 20278 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) 20279 continue; 20280 if (insn->src_reg == BPF_PSEUDO_FUNC) 20281 continue; 20282 insn->src_reg = 0; 20283 } 20284 } 20285 20286 /* single env->prog->insni[off] instruction was replaced with the range 20287 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 20288 * [0, off) and [off, end) to new locations, so the patched range stays zero 20289 */ 20290 static void adjust_insn_aux_data(struct bpf_verifier_env *env, 20291 struct bpf_insn_aux_data *new_data, 20292 struct bpf_prog *new_prog, u32 off, u32 cnt) 20293 { 20294 struct bpf_insn_aux_data *old_data = env->insn_aux_data; 20295 struct bpf_insn *insn = new_prog->insnsi; 20296 u32 old_seen = old_data[off].seen; 20297 u32 prog_len; 20298 int i; 20299 20300 /* aux info at OFF always needs adjustment, no matter fast path 20301 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 20302 * original insn at old prog. 20303 */ 20304 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 20305 20306 if (cnt == 1) 20307 return; 20308 prog_len = new_prog->len; 20309 20310 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 20311 memcpy(new_data + off + cnt - 1, old_data + off, 20312 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 20313 for (i = off; i < off + cnt - 1; i++) { 20314 /* Expand insni[off]'s seen count to the patched range. */ 20315 new_data[i].seen = old_seen; 20316 new_data[i].zext_dst = insn_has_def32(env, insn + i); 20317 } 20318 env->insn_aux_data = new_data; 20319 vfree(old_data); 20320 } 20321 20322 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 20323 { 20324 int i; 20325 20326 if (len == 1) 20327 return; 20328 /* NOTE: fake 'exit' subprog should be updated as well. */ 20329 for (i = 0; i <= env->subprog_cnt; i++) { 20330 if (env->subprog_info[i].start <= off) 20331 continue; 20332 env->subprog_info[i].start += len - 1; 20333 } 20334 } 20335 20336 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len) 20337 { 20338 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; 20339 int i, sz = prog->aux->size_poke_tab; 20340 struct bpf_jit_poke_descriptor *desc; 20341 20342 for (i = 0; i < sz; i++) { 20343 desc = &tab[i]; 20344 if (desc->insn_idx <= off) 20345 continue; 20346 desc->insn_idx += len - 1; 20347 } 20348 } 20349 20350 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 20351 const struct bpf_insn *patch, u32 len) 20352 { 20353 struct bpf_prog *new_prog; 20354 struct bpf_insn_aux_data *new_data = NULL; 20355 20356 if (len > 1) { 20357 new_data = vzalloc(array_size(env->prog->len + len - 1, 20358 sizeof(struct bpf_insn_aux_data))); 20359 if (!new_data) 20360 return NULL; 20361 } 20362 20363 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 20364 if (IS_ERR(new_prog)) { 20365 if (PTR_ERR(new_prog) == -ERANGE) 20366 verbose(env, 20367 "insn %d cannot be patched due to 16-bit range\n", 20368 env->insn_aux_data[off].orig_idx); 20369 vfree(new_data); 20370 return NULL; 20371 } 20372 adjust_insn_aux_data(env, new_data, new_prog, off, len); 20373 adjust_subprog_starts(env, off, len); 20374 adjust_poke_descs(new_prog, off, len); 20375 return new_prog; 20376 } 20377 20378 /* 20379 * For all jmp insns in a given 'prog' that point to 'tgt_idx' insn adjust the 20380 * jump offset by 'delta'. 20381 */ 20382 static int adjust_jmp_off(struct bpf_prog *prog, u32 tgt_idx, u32 delta) 20383 { 20384 struct bpf_insn *insn = prog->insnsi; 20385 u32 insn_cnt = prog->len, i; 20386 s32 imm; 20387 s16 off; 20388 20389 for (i = 0; i < insn_cnt; i++, insn++) { 20390 u8 code = insn->code; 20391 20392 if (tgt_idx <= i && i < tgt_idx + delta) 20393 continue; 20394 20395 if ((BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) || 20396 BPF_OP(code) == BPF_CALL || BPF_OP(code) == BPF_EXIT) 20397 continue; 20398 20399 if (insn->code == (BPF_JMP32 | BPF_JA)) { 20400 if (i + 1 + insn->imm != tgt_idx) 20401 continue; 20402 if (check_add_overflow(insn->imm, delta, &imm)) 20403 return -ERANGE; 20404 insn->imm = imm; 20405 } else { 20406 if (i + 1 + insn->off != tgt_idx) 20407 continue; 20408 if (check_add_overflow(insn->off, delta, &off)) 20409 return -ERANGE; 20410 insn->off = off; 20411 } 20412 } 20413 return 0; 20414 } 20415 20416 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 20417 u32 off, u32 cnt) 20418 { 20419 int i, j; 20420 20421 /* find first prog starting at or after off (first to remove) */ 20422 for (i = 0; i < env->subprog_cnt; i++) 20423 if (env->subprog_info[i].start >= off) 20424 break; 20425 /* find first prog starting at or after off + cnt (first to stay) */ 20426 for (j = i; j < env->subprog_cnt; j++) 20427 if (env->subprog_info[j].start >= off + cnt) 20428 break; 20429 /* if j doesn't start exactly at off + cnt, we are just removing 20430 * the front of previous prog 20431 */ 20432 if (env->subprog_info[j].start != off + cnt) 20433 j--; 20434 20435 if (j > i) { 20436 struct bpf_prog_aux *aux = env->prog->aux; 20437 int move; 20438 20439 /* move fake 'exit' subprog as well */ 20440 move = env->subprog_cnt + 1 - j; 20441 20442 memmove(env->subprog_info + i, 20443 env->subprog_info + j, 20444 sizeof(*env->subprog_info) * move); 20445 env->subprog_cnt -= j - i; 20446 20447 /* remove func_info */ 20448 if (aux->func_info) { 20449 move = aux->func_info_cnt - j; 20450 20451 memmove(aux->func_info + i, 20452 aux->func_info + j, 20453 sizeof(*aux->func_info) * move); 20454 aux->func_info_cnt -= j - i; 20455 /* func_info->insn_off is set after all code rewrites, 20456 * in adjust_btf_func() - no need to adjust 20457 */ 20458 } 20459 } else { 20460 /* convert i from "first prog to remove" to "first to adjust" */ 20461 if (env->subprog_info[i].start == off) 20462 i++; 20463 } 20464 20465 /* update fake 'exit' subprog as well */ 20466 for (; i <= env->subprog_cnt; i++) 20467 env->subprog_info[i].start -= cnt; 20468 20469 return 0; 20470 } 20471 20472 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 20473 u32 cnt) 20474 { 20475 struct bpf_prog *prog = env->prog; 20476 u32 i, l_off, l_cnt, nr_linfo; 20477 struct bpf_line_info *linfo; 20478 20479 nr_linfo = prog->aux->nr_linfo; 20480 if (!nr_linfo) 20481 return 0; 20482 20483 linfo = prog->aux->linfo; 20484 20485 /* find first line info to remove, count lines to be removed */ 20486 for (i = 0; i < nr_linfo; i++) 20487 if (linfo[i].insn_off >= off) 20488 break; 20489 20490 l_off = i; 20491 l_cnt = 0; 20492 for (; i < nr_linfo; i++) 20493 if (linfo[i].insn_off < off + cnt) 20494 l_cnt++; 20495 else 20496 break; 20497 20498 /* First live insn doesn't match first live linfo, it needs to "inherit" 20499 * last removed linfo. prog is already modified, so prog->len == off 20500 * means no live instructions after (tail of the program was removed). 20501 */ 20502 if (prog->len != off && l_cnt && 20503 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 20504 l_cnt--; 20505 linfo[--i].insn_off = off + cnt; 20506 } 20507 20508 /* remove the line info which refer to the removed instructions */ 20509 if (l_cnt) { 20510 memmove(linfo + l_off, linfo + i, 20511 sizeof(*linfo) * (nr_linfo - i)); 20512 20513 prog->aux->nr_linfo -= l_cnt; 20514 nr_linfo = prog->aux->nr_linfo; 20515 } 20516 20517 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 20518 for (i = l_off; i < nr_linfo; i++) 20519 linfo[i].insn_off -= cnt; 20520 20521 /* fix up all subprogs (incl. 'exit') which start >= off */ 20522 for (i = 0; i <= env->subprog_cnt; i++) 20523 if (env->subprog_info[i].linfo_idx > l_off) { 20524 /* program may have started in the removed region but 20525 * may not be fully removed 20526 */ 20527 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 20528 env->subprog_info[i].linfo_idx -= l_cnt; 20529 else 20530 env->subprog_info[i].linfo_idx = l_off; 20531 } 20532 20533 return 0; 20534 } 20535 20536 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 20537 { 20538 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 20539 unsigned int orig_prog_len = env->prog->len; 20540 int err; 20541 20542 if (bpf_prog_is_offloaded(env->prog->aux)) 20543 bpf_prog_offload_remove_insns(env, off, cnt); 20544 20545 err = bpf_remove_insns(env->prog, off, cnt); 20546 if (err) 20547 return err; 20548 20549 err = adjust_subprog_starts_after_remove(env, off, cnt); 20550 if (err) 20551 return err; 20552 20553 err = bpf_adj_linfo_after_remove(env, off, cnt); 20554 if (err) 20555 return err; 20556 20557 memmove(aux_data + off, aux_data + off + cnt, 20558 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 20559 20560 return 0; 20561 } 20562 20563 /* The verifier does more data flow analysis than llvm and will not 20564 * explore branches that are dead at run time. Malicious programs can 20565 * have dead code too. Therefore replace all dead at-run-time code 20566 * with 'ja -1'. 20567 * 20568 * Just nops are not optimal, e.g. if they would sit at the end of the 20569 * program and through another bug we would manage to jump there, then 20570 * we'd execute beyond program memory otherwise. Returning exception 20571 * code also wouldn't work since we can have subprogs where the dead 20572 * code could be located. 20573 */ 20574 static void sanitize_dead_code(struct bpf_verifier_env *env) 20575 { 20576 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 20577 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 20578 struct bpf_insn *insn = env->prog->insnsi; 20579 const int insn_cnt = env->prog->len; 20580 int i; 20581 20582 for (i = 0; i < insn_cnt; i++) { 20583 if (aux_data[i].seen) 20584 continue; 20585 memcpy(insn + i, &trap, sizeof(trap)); 20586 aux_data[i].zext_dst = false; 20587 } 20588 } 20589 20590 static bool insn_is_cond_jump(u8 code) 20591 { 20592 u8 op; 20593 20594 op = BPF_OP(code); 20595 if (BPF_CLASS(code) == BPF_JMP32) 20596 return op != BPF_JA; 20597 20598 if (BPF_CLASS(code) != BPF_JMP) 20599 return false; 20600 20601 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 20602 } 20603 20604 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 20605 { 20606 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 20607 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 20608 struct bpf_insn *insn = env->prog->insnsi; 20609 const int insn_cnt = env->prog->len; 20610 int i; 20611 20612 for (i = 0; i < insn_cnt; i++, insn++) { 20613 if (!insn_is_cond_jump(insn->code)) 20614 continue; 20615 20616 if (!aux_data[i + 1].seen) 20617 ja.off = insn->off; 20618 else if (!aux_data[i + 1 + insn->off].seen) 20619 ja.off = 0; 20620 else 20621 continue; 20622 20623 if (bpf_prog_is_offloaded(env->prog->aux)) 20624 bpf_prog_offload_replace_insn(env, i, &ja); 20625 20626 memcpy(insn, &ja, sizeof(ja)); 20627 } 20628 } 20629 20630 static int opt_remove_dead_code(struct bpf_verifier_env *env) 20631 { 20632 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 20633 int insn_cnt = env->prog->len; 20634 int i, err; 20635 20636 for (i = 0; i < insn_cnt; i++) { 20637 int j; 20638 20639 j = 0; 20640 while (i + j < insn_cnt && !aux_data[i + j].seen) 20641 j++; 20642 if (!j) 20643 continue; 20644 20645 err = verifier_remove_insns(env, i, j); 20646 if (err) 20647 return err; 20648 insn_cnt = env->prog->len; 20649 } 20650 20651 return 0; 20652 } 20653 20654 static const struct bpf_insn NOP = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 20655 static const struct bpf_insn MAY_GOTO_0 = BPF_RAW_INSN(BPF_JMP | BPF_JCOND, 0, 0, 0, 0); 20656 20657 static int opt_remove_nops(struct bpf_verifier_env *env) 20658 { 20659 struct bpf_insn *insn = env->prog->insnsi; 20660 int insn_cnt = env->prog->len; 20661 bool is_may_goto_0, is_ja; 20662 int i, err; 20663 20664 for (i = 0; i < insn_cnt; i++) { 20665 is_may_goto_0 = !memcmp(&insn[i], &MAY_GOTO_0, sizeof(MAY_GOTO_0)); 20666 is_ja = !memcmp(&insn[i], &NOP, sizeof(NOP)); 20667 20668 if (!is_may_goto_0 && !is_ja) 20669 continue; 20670 20671 err = verifier_remove_insns(env, i, 1); 20672 if (err) 20673 return err; 20674 insn_cnt--; 20675 /* Go back one insn to catch may_goto +1; may_goto +0 sequence */ 20676 i -= (is_may_goto_0 && i > 0) ? 2 : 1; 20677 } 20678 20679 return 0; 20680 } 20681 20682 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 20683 const union bpf_attr *attr) 20684 { 20685 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 20686 struct bpf_insn_aux_data *aux = env->insn_aux_data; 20687 int i, patch_len, delta = 0, len = env->prog->len; 20688 struct bpf_insn *insns = env->prog->insnsi; 20689 struct bpf_prog *new_prog; 20690 bool rnd_hi32; 20691 20692 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 20693 zext_patch[1] = BPF_ZEXT_REG(0); 20694 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 20695 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 20696 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 20697 for (i = 0; i < len; i++) { 20698 int adj_idx = i + delta; 20699 struct bpf_insn insn; 20700 int load_reg; 20701 20702 insn = insns[adj_idx]; 20703 load_reg = insn_def_regno(&insn); 20704 if (!aux[adj_idx].zext_dst) { 20705 u8 code, class; 20706 u32 imm_rnd; 20707 20708 if (!rnd_hi32) 20709 continue; 20710 20711 code = insn.code; 20712 class = BPF_CLASS(code); 20713 if (load_reg == -1) 20714 continue; 20715 20716 /* NOTE: arg "reg" (the fourth one) is only used for 20717 * BPF_STX + SRC_OP, so it is safe to pass NULL 20718 * here. 20719 */ 20720 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) { 20721 if (class == BPF_LD && 20722 BPF_MODE(code) == BPF_IMM) 20723 i++; 20724 continue; 20725 } 20726 20727 /* ctx load could be transformed into wider load. */ 20728 if (class == BPF_LDX && 20729 aux[adj_idx].ptr_type == PTR_TO_CTX) 20730 continue; 20731 20732 imm_rnd = get_random_u32(); 20733 rnd_hi32_patch[0] = insn; 20734 rnd_hi32_patch[1].imm = imm_rnd; 20735 rnd_hi32_patch[3].dst_reg = load_reg; 20736 patch = rnd_hi32_patch; 20737 patch_len = 4; 20738 goto apply_patch_buffer; 20739 } 20740 20741 /* Add in an zero-extend instruction if a) the JIT has requested 20742 * it or b) it's a CMPXCHG. 20743 * 20744 * The latter is because: BPF_CMPXCHG always loads a value into 20745 * R0, therefore always zero-extends. However some archs' 20746 * equivalent instruction only does this load when the 20747 * comparison is successful. This detail of CMPXCHG is 20748 * orthogonal to the general zero-extension behaviour of the 20749 * CPU, so it's treated independently of bpf_jit_needs_zext. 20750 */ 20751 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn)) 20752 continue; 20753 20754 /* Zero-extension is done by the caller. */ 20755 if (bpf_pseudo_kfunc_call(&insn)) 20756 continue; 20757 20758 if (verifier_bug_if(load_reg == -1, env, 20759 "zext_dst is set, but no reg is defined")) 20760 return -EFAULT; 20761 20762 zext_patch[0] = insn; 20763 zext_patch[1].dst_reg = load_reg; 20764 zext_patch[1].src_reg = load_reg; 20765 patch = zext_patch; 20766 patch_len = 2; 20767 apply_patch_buffer: 20768 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 20769 if (!new_prog) 20770 return -ENOMEM; 20771 env->prog = new_prog; 20772 insns = new_prog->insnsi; 20773 aux = env->insn_aux_data; 20774 delta += patch_len - 1; 20775 } 20776 20777 return 0; 20778 } 20779 20780 /* convert load instructions that access fields of a context type into a 20781 * sequence of instructions that access fields of the underlying structure: 20782 * struct __sk_buff -> struct sk_buff 20783 * struct bpf_sock_ops -> struct sock 20784 */ 20785 static int convert_ctx_accesses(struct bpf_verifier_env *env) 20786 { 20787 struct bpf_subprog_info *subprogs = env->subprog_info; 20788 const struct bpf_verifier_ops *ops = env->ops; 20789 int i, cnt, size, ctx_field_size, ret, delta = 0, epilogue_cnt = 0; 20790 const int insn_cnt = env->prog->len; 20791 struct bpf_insn *epilogue_buf = env->epilogue_buf; 20792 struct bpf_insn *insn_buf = env->insn_buf; 20793 struct bpf_insn *insn; 20794 u32 target_size, size_default, off; 20795 struct bpf_prog *new_prog; 20796 enum bpf_access_type type; 20797 bool is_narrower_load; 20798 int epilogue_idx = 0; 20799 20800 if (ops->gen_epilogue) { 20801 epilogue_cnt = ops->gen_epilogue(epilogue_buf, env->prog, 20802 -(subprogs[0].stack_depth + 8)); 20803 if (epilogue_cnt >= INSN_BUF_SIZE) { 20804 verbose(env, "bpf verifier is misconfigured\n"); 20805 return -EINVAL; 20806 } else if (epilogue_cnt) { 20807 /* Save the ARG_PTR_TO_CTX for the epilogue to use */ 20808 cnt = 0; 20809 subprogs[0].stack_depth += 8; 20810 insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_FP, BPF_REG_1, 20811 -subprogs[0].stack_depth); 20812 insn_buf[cnt++] = env->prog->insnsi[0]; 20813 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 20814 if (!new_prog) 20815 return -ENOMEM; 20816 env->prog = new_prog; 20817 delta += cnt - 1; 20818 20819 ret = add_kfunc_in_insns(env, epilogue_buf, epilogue_cnt - 1); 20820 if (ret < 0) 20821 return ret; 20822 } 20823 } 20824 20825 if (ops->gen_prologue || env->seen_direct_write) { 20826 if (!ops->gen_prologue) { 20827 verbose(env, "bpf verifier is misconfigured\n"); 20828 return -EINVAL; 20829 } 20830 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 20831 env->prog); 20832 if (cnt >= INSN_BUF_SIZE) { 20833 verbose(env, "bpf verifier is misconfigured\n"); 20834 return -EINVAL; 20835 } else if (cnt) { 20836 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 20837 if (!new_prog) 20838 return -ENOMEM; 20839 20840 env->prog = new_prog; 20841 delta += cnt - 1; 20842 20843 ret = add_kfunc_in_insns(env, insn_buf, cnt - 1); 20844 if (ret < 0) 20845 return ret; 20846 } 20847 } 20848 20849 if (delta) 20850 WARN_ON(adjust_jmp_off(env->prog, 0, delta)); 20851 20852 if (bpf_prog_is_offloaded(env->prog->aux)) 20853 return 0; 20854 20855 insn = env->prog->insnsi + delta; 20856 20857 for (i = 0; i < insn_cnt; i++, insn++) { 20858 bpf_convert_ctx_access_t convert_ctx_access; 20859 u8 mode; 20860 20861 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 20862 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 20863 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 20864 insn->code == (BPF_LDX | BPF_MEM | BPF_DW) || 20865 insn->code == (BPF_LDX | BPF_MEMSX | BPF_B) || 20866 insn->code == (BPF_LDX | BPF_MEMSX | BPF_H) || 20867 insn->code == (BPF_LDX | BPF_MEMSX | BPF_W)) { 20868 type = BPF_READ; 20869 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 20870 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 20871 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 20872 insn->code == (BPF_STX | BPF_MEM | BPF_DW) || 20873 insn->code == (BPF_ST | BPF_MEM | BPF_B) || 20874 insn->code == (BPF_ST | BPF_MEM | BPF_H) || 20875 insn->code == (BPF_ST | BPF_MEM | BPF_W) || 20876 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) { 20877 type = BPF_WRITE; 20878 } else if ((insn->code == (BPF_STX | BPF_ATOMIC | BPF_B) || 20879 insn->code == (BPF_STX | BPF_ATOMIC | BPF_H) || 20880 insn->code == (BPF_STX | BPF_ATOMIC | BPF_W) || 20881 insn->code == (BPF_STX | BPF_ATOMIC | BPF_DW)) && 20882 env->insn_aux_data[i + delta].ptr_type == PTR_TO_ARENA) { 20883 insn->code = BPF_STX | BPF_PROBE_ATOMIC | BPF_SIZE(insn->code); 20884 env->prog->aux->num_exentries++; 20885 continue; 20886 } else if (insn->code == (BPF_JMP | BPF_EXIT) && 20887 epilogue_cnt && 20888 i + delta < subprogs[1].start) { 20889 /* Generate epilogue for the main prog */ 20890 if (epilogue_idx) { 20891 /* jump back to the earlier generated epilogue */ 20892 insn_buf[0] = BPF_JMP32_A(epilogue_idx - i - delta - 1); 20893 cnt = 1; 20894 } else { 20895 memcpy(insn_buf, epilogue_buf, 20896 epilogue_cnt * sizeof(*epilogue_buf)); 20897 cnt = epilogue_cnt; 20898 /* epilogue_idx cannot be 0. It must have at 20899 * least one ctx ptr saving insn before the 20900 * epilogue. 20901 */ 20902 epilogue_idx = i + delta; 20903 } 20904 goto patch_insn_buf; 20905 } else { 20906 continue; 20907 } 20908 20909 if (type == BPF_WRITE && 20910 env->insn_aux_data[i + delta].sanitize_stack_spill) { 20911 struct bpf_insn patch[] = { 20912 *insn, 20913 BPF_ST_NOSPEC(), 20914 }; 20915 20916 cnt = ARRAY_SIZE(patch); 20917 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 20918 if (!new_prog) 20919 return -ENOMEM; 20920 20921 delta += cnt - 1; 20922 env->prog = new_prog; 20923 insn = new_prog->insnsi + i + delta; 20924 continue; 20925 } 20926 20927 switch ((int)env->insn_aux_data[i + delta].ptr_type) { 20928 case PTR_TO_CTX: 20929 if (!ops->convert_ctx_access) 20930 continue; 20931 convert_ctx_access = ops->convert_ctx_access; 20932 break; 20933 case PTR_TO_SOCKET: 20934 case PTR_TO_SOCK_COMMON: 20935 convert_ctx_access = bpf_sock_convert_ctx_access; 20936 break; 20937 case PTR_TO_TCP_SOCK: 20938 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 20939 break; 20940 case PTR_TO_XDP_SOCK: 20941 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 20942 break; 20943 case PTR_TO_BTF_ID: 20944 case PTR_TO_BTF_ID | PTR_UNTRUSTED: 20945 /* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike 20946 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot 20947 * be said once it is marked PTR_UNTRUSTED, hence we must handle 20948 * any faults for loads into such types. BPF_WRITE is disallowed 20949 * for this case. 20950 */ 20951 case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED: 20952 if (type == BPF_READ) { 20953 if (BPF_MODE(insn->code) == BPF_MEM) 20954 insn->code = BPF_LDX | BPF_PROBE_MEM | 20955 BPF_SIZE((insn)->code); 20956 else 20957 insn->code = BPF_LDX | BPF_PROBE_MEMSX | 20958 BPF_SIZE((insn)->code); 20959 env->prog->aux->num_exentries++; 20960 } 20961 continue; 20962 case PTR_TO_ARENA: 20963 if (BPF_MODE(insn->code) == BPF_MEMSX) { 20964 verbose(env, "sign extending loads from arena are not supported yet\n"); 20965 return -EOPNOTSUPP; 20966 } 20967 insn->code = BPF_CLASS(insn->code) | BPF_PROBE_MEM32 | BPF_SIZE(insn->code); 20968 env->prog->aux->num_exentries++; 20969 continue; 20970 default: 20971 continue; 20972 } 20973 20974 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 20975 size = BPF_LDST_BYTES(insn); 20976 mode = BPF_MODE(insn->code); 20977 20978 /* If the read access is a narrower load of the field, 20979 * convert to a 4/8-byte load, to minimum program type specific 20980 * convert_ctx_access changes. If conversion is successful, 20981 * we will apply proper mask to the result. 20982 */ 20983 is_narrower_load = size < ctx_field_size; 20984 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 20985 off = insn->off; 20986 if (is_narrower_load) { 20987 u8 size_code; 20988 20989 if (type == BPF_WRITE) { 20990 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 20991 return -EINVAL; 20992 } 20993 20994 size_code = BPF_H; 20995 if (ctx_field_size == 4) 20996 size_code = BPF_W; 20997 else if (ctx_field_size == 8) 20998 size_code = BPF_DW; 20999 21000 insn->off = off & ~(size_default - 1); 21001 insn->code = BPF_LDX | BPF_MEM | size_code; 21002 } 21003 21004 target_size = 0; 21005 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 21006 &target_size); 21007 if (cnt == 0 || cnt >= INSN_BUF_SIZE || 21008 (ctx_field_size && !target_size)) { 21009 verbose(env, "bpf verifier is misconfigured\n"); 21010 return -EINVAL; 21011 } 21012 21013 if (is_narrower_load && size < target_size) { 21014 u8 shift = bpf_ctx_narrow_access_offset( 21015 off, size, size_default) * 8; 21016 if (shift && cnt + 1 >= INSN_BUF_SIZE) { 21017 verbose(env, "bpf verifier narrow ctx load misconfigured\n"); 21018 return -EINVAL; 21019 } 21020 if (ctx_field_size <= 4) { 21021 if (shift) 21022 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 21023 insn->dst_reg, 21024 shift); 21025 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 21026 (1 << size * 8) - 1); 21027 } else { 21028 if (shift) 21029 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 21030 insn->dst_reg, 21031 shift); 21032 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 21033 (1ULL << size * 8) - 1); 21034 } 21035 } 21036 if (mode == BPF_MEMSX) 21037 insn_buf[cnt++] = BPF_RAW_INSN(BPF_ALU64 | BPF_MOV | BPF_X, 21038 insn->dst_reg, insn->dst_reg, 21039 size * 8, 0); 21040 21041 patch_insn_buf: 21042 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 21043 if (!new_prog) 21044 return -ENOMEM; 21045 21046 delta += cnt - 1; 21047 21048 /* keep walking new program and skip insns we just inserted */ 21049 env->prog = new_prog; 21050 insn = new_prog->insnsi + i + delta; 21051 } 21052 21053 return 0; 21054 } 21055 21056 static int jit_subprogs(struct bpf_verifier_env *env) 21057 { 21058 struct bpf_prog *prog = env->prog, **func, *tmp; 21059 int i, j, subprog_start, subprog_end = 0, len, subprog; 21060 struct bpf_map *map_ptr; 21061 struct bpf_insn *insn; 21062 void *old_bpf_func; 21063 int err, num_exentries; 21064 21065 if (env->subprog_cnt <= 1) 21066 return 0; 21067 21068 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 21069 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn)) 21070 continue; 21071 21072 /* Upon error here we cannot fall back to interpreter but 21073 * need a hard reject of the program. Thus -EFAULT is 21074 * propagated in any case. 21075 */ 21076 subprog = find_subprog(env, i + insn->imm + 1); 21077 if (verifier_bug_if(subprog < 0, env, "No program to jit at insn %d", 21078 i + insn->imm + 1)) 21079 return -EFAULT; 21080 /* temporarily remember subprog id inside insn instead of 21081 * aux_data, since next loop will split up all insns into funcs 21082 */ 21083 insn->off = subprog; 21084 /* remember original imm in case JIT fails and fallback 21085 * to interpreter will be needed 21086 */ 21087 env->insn_aux_data[i].call_imm = insn->imm; 21088 /* point imm to __bpf_call_base+1 from JITs point of view */ 21089 insn->imm = 1; 21090 if (bpf_pseudo_func(insn)) { 21091 #if defined(MODULES_VADDR) 21092 u64 addr = MODULES_VADDR; 21093 #else 21094 u64 addr = VMALLOC_START; 21095 #endif 21096 /* jit (e.g. x86_64) may emit fewer instructions 21097 * if it learns a u32 imm is the same as a u64 imm. 21098 * Set close enough to possible prog address. 21099 */ 21100 insn[0].imm = (u32)addr; 21101 insn[1].imm = addr >> 32; 21102 } 21103 } 21104 21105 err = bpf_prog_alloc_jited_linfo(prog); 21106 if (err) 21107 goto out_undo_insn; 21108 21109 err = -ENOMEM; 21110 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 21111 if (!func) 21112 goto out_undo_insn; 21113 21114 for (i = 0; i < env->subprog_cnt; i++) { 21115 subprog_start = subprog_end; 21116 subprog_end = env->subprog_info[i + 1].start; 21117 21118 len = subprog_end - subprog_start; 21119 /* bpf_prog_run() doesn't call subprogs directly, 21120 * hence main prog stats include the runtime of subprogs. 21121 * subprogs don't have IDs and not reachable via prog_get_next_id 21122 * func[i]->stats will never be accessed and stays NULL 21123 */ 21124 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 21125 if (!func[i]) 21126 goto out_free; 21127 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 21128 len * sizeof(struct bpf_insn)); 21129 func[i]->type = prog->type; 21130 func[i]->len = len; 21131 if (bpf_prog_calc_tag(func[i])) 21132 goto out_free; 21133 func[i]->is_func = 1; 21134 func[i]->sleepable = prog->sleepable; 21135 func[i]->aux->func_idx = i; 21136 /* Below members will be freed only at prog->aux */ 21137 func[i]->aux->btf = prog->aux->btf; 21138 func[i]->aux->func_info = prog->aux->func_info; 21139 func[i]->aux->func_info_cnt = prog->aux->func_info_cnt; 21140 func[i]->aux->poke_tab = prog->aux->poke_tab; 21141 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab; 21142 21143 for (j = 0; j < prog->aux->size_poke_tab; j++) { 21144 struct bpf_jit_poke_descriptor *poke; 21145 21146 poke = &prog->aux->poke_tab[j]; 21147 if (poke->insn_idx < subprog_end && 21148 poke->insn_idx >= subprog_start) 21149 poke->aux = func[i]->aux; 21150 } 21151 21152 func[i]->aux->name[0] = 'F'; 21153 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 21154 if (env->subprog_info[i].priv_stack_mode == PRIV_STACK_ADAPTIVE) 21155 func[i]->aux->jits_use_priv_stack = true; 21156 21157 func[i]->jit_requested = 1; 21158 func[i]->blinding_requested = prog->blinding_requested; 21159 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab; 21160 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab; 21161 func[i]->aux->linfo = prog->aux->linfo; 21162 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 21163 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 21164 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 21165 func[i]->aux->arena = prog->aux->arena; 21166 num_exentries = 0; 21167 insn = func[i]->insnsi; 21168 for (j = 0; j < func[i]->len; j++, insn++) { 21169 if (BPF_CLASS(insn->code) == BPF_LDX && 21170 (BPF_MODE(insn->code) == BPF_PROBE_MEM || 21171 BPF_MODE(insn->code) == BPF_PROBE_MEM32 || 21172 BPF_MODE(insn->code) == BPF_PROBE_MEMSX)) 21173 num_exentries++; 21174 if ((BPF_CLASS(insn->code) == BPF_STX || 21175 BPF_CLASS(insn->code) == BPF_ST) && 21176 BPF_MODE(insn->code) == BPF_PROBE_MEM32) 21177 num_exentries++; 21178 if (BPF_CLASS(insn->code) == BPF_STX && 21179 BPF_MODE(insn->code) == BPF_PROBE_ATOMIC) 21180 num_exentries++; 21181 } 21182 func[i]->aux->num_exentries = num_exentries; 21183 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable; 21184 func[i]->aux->exception_cb = env->subprog_info[i].is_exception_cb; 21185 func[i]->aux->changes_pkt_data = env->subprog_info[i].changes_pkt_data; 21186 func[i]->aux->might_sleep = env->subprog_info[i].might_sleep; 21187 if (!i) 21188 func[i]->aux->exception_boundary = env->seen_exception; 21189 func[i] = bpf_int_jit_compile(func[i]); 21190 if (!func[i]->jited) { 21191 err = -ENOTSUPP; 21192 goto out_free; 21193 } 21194 cond_resched(); 21195 } 21196 21197 /* at this point all bpf functions were successfully JITed 21198 * now populate all bpf_calls with correct addresses and 21199 * run last pass of JIT 21200 */ 21201 for (i = 0; i < env->subprog_cnt; i++) { 21202 insn = func[i]->insnsi; 21203 for (j = 0; j < func[i]->len; j++, insn++) { 21204 if (bpf_pseudo_func(insn)) { 21205 subprog = insn->off; 21206 insn[0].imm = (u32)(long)func[subprog]->bpf_func; 21207 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32; 21208 continue; 21209 } 21210 if (!bpf_pseudo_call(insn)) 21211 continue; 21212 subprog = insn->off; 21213 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func); 21214 } 21215 21216 /* we use the aux data to keep a list of the start addresses 21217 * of the JITed images for each function in the program 21218 * 21219 * for some architectures, such as powerpc64, the imm field 21220 * might not be large enough to hold the offset of the start 21221 * address of the callee's JITed image from __bpf_call_base 21222 * 21223 * in such cases, we can lookup the start address of a callee 21224 * by using its subprog id, available from the off field of 21225 * the call instruction, as an index for this list 21226 */ 21227 func[i]->aux->func = func; 21228 func[i]->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt; 21229 func[i]->aux->real_func_cnt = env->subprog_cnt; 21230 } 21231 for (i = 0; i < env->subprog_cnt; i++) { 21232 old_bpf_func = func[i]->bpf_func; 21233 tmp = bpf_int_jit_compile(func[i]); 21234 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 21235 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 21236 err = -ENOTSUPP; 21237 goto out_free; 21238 } 21239 cond_resched(); 21240 } 21241 21242 /* finally lock prog and jit images for all functions and 21243 * populate kallsysm. Begin at the first subprogram, since 21244 * bpf_prog_load will add the kallsyms for the main program. 21245 */ 21246 for (i = 1; i < env->subprog_cnt; i++) { 21247 err = bpf_prog_lock_ro(func[i]); 21248 if (err) 21249 goto out_free; 21250 } 21251 21252 for (i = 1; i < env->subprog_cnt; i++) 21253 bpf_prog_kallsyms_add(func[i]); 21254 21255 /* Last step: make now unused interpreter insns from main 21256 * prog consistent for later dump requests, so they can 21257 * later look the same as if they were interpreted only. 21258 */ 21259 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 21260 if (bpf_pseudo_func(insn)) { 21261 insn[0].imm = env->insn_aux_data[i].call_imm; 21262 insn[1].imm = insn->off; 21263 insn->off = 0; 21264 continue; 21265 } 21266 if (!bpf_pseudo_call(insn)) 21267 continue; 21268 insn->off = env->insn_aux_data[i].call_imm; 21269 subprog = find_subprog(env, i + insn->off + 1); 21270 insn->imm = subprog; 21271 } 21272 21273 prog->jited = 1; 21274 prog->bpf_func = func[0]->bpf_func; 21275 prog->jited_len = func[0]->jited_len; 21276 prog->aux->extable = func[0]->aux->extable; 21277 prog->aux->num_exentries = func[0]->aux->num_exentries; 21278 prog->aux->func = func; 21279 prog->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt; 21280 prog->aux->real_func_cnt = env->subprog_cnt; 21281 prog->aux->bpf_exception_cb = (void *)func[env->exception_callback_subprog]->bpf_func; 21282 prog->aux->exception_boundary = func[0]->aux->exception_boundary; 21283 bpf_prog_jit_attempt_done(prog); 21284 return 0; 21285 out_free: 21286 /* We failed JIT'ing, so at this point we need to unregister poke 21287 * descriptors from subprogs, so that kernel is not attempting to 21288 * patch it anymore as we're freeing the subprog JIT memory. 21289 */ 21290 for (i = 0; i < prog->aux->size_poke_tab; i++) { 21291 map_ptr = prog->aux->poke_tab[i].tail_call.map; 21292 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux); 21293 } 21294 /* At this point we're guaranteed that poke descriptors are not 21295 * live anymore. We can just unlink its descriptor table as it's 21296 * released with the main prog. 21297 */ 21298 for (i = 0; i < env->subprog_cnt; i++) { 21299 if (!func[i]) 21300 continue; 21301 func[i]->aux->poke_tab = NULL; 21302 bpf_jit_free(func[i]); 21303 } 21304 kfree(func); 21305 out_undo_insn: 21306 /* cleanup main prog to be interpreted */ 21307 prog->jit_requested = 0; 21308 prog->blinding_requested = 0; 21309 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 21310 if (!bpf_pseudo_call(insn)) 21311 continue; 21312 insn->off = 0; 21313 insn->imm = env->insn_aux_data[i].call_imm; 21314 } 21315 bpf_prog_jit_attempt_done(prog); 21316 return err; 21317 } 21318 21319 static int fixup_call_args(struct bpf_verifier_env *env) 21320 { 21321 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 21322 struct bpf_prog *prog = env->prog; 21323 struct bpf_insn *insn = prog->insnsi; 21324 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog); 21325 int i, depth; 21326 #endif 21327 int err = 0; 21328 21329 if (env->prog->jit_requested && 21330 !bpf_prog_is_offloaded(env->prog->aux)) { 21331 err = jit_subprogs(env); 21332 if (err == 0) 21333 return 0; 21334 if (err == -EFAULT) 21335 return err; 21336 } 21337 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 21338 if (has_kfunc_call) { 21339 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n"); 21340 return -EINVAL; 21341 } 21342 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) { 21343 /* When JIT fails the progs with bpf2bpf calls and tail_calls 21344 * have to be rejected, since interpreter doesn't support them yet. 21345 */ 21346 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 21347 return -EINVAL; 21348 } 21349 for (i = 0; i < prog->len; i++, insn++) { 21350 if (bpf_pseudo_func(insn)) { 21351 /* When JIT fails the progs with callback calls 21352 * have to be rejected, since interpreter doesn't support them yet. 21353 */ 21354 verbose(env, "callbacks are not allowed in non-JITed programs\n"); 21355 return -EINVAL; 21356 } 21357 21358 if (!bpf_pseudo_call(insn)) 21359 continue; 21360 depth = get_callee_stack_depth(env, insn, i); 21361 if (depth < 0) 21362 return depth; 21363 bpf_patch_call_args(insn, depth); 21364 } 21365 err = 0; 21366 #endif 21367 return err; 21368 } 21369 21370 /* replace a generic kfunc with a specialized version if necessary */ 21371 static void specialize_kfunc(struct bpf_verifier_env *env, 21372 u32 func_id, u16 offset, unsigned long *addr) 21373 { 21374 struct bpf_prog *prog = env->prog; 21375 bool seen_direct_write; 21376 void *xdp_kfunc; 21377 bool is_rdonly; 21378 21379 if (bpf_dev_bound_kfunc_id(func_id)) { 21380 xdp_kfunc = bpf_dev_bound_resolve_kfunc(prog, func_id); 21381 if (xdp_kfunc) { 21382 *addr = (unsigned long)xdp_kfunc; 21383 return; 21384 } 21385 /* fallback to default kfunc when not supported by netdev */ 21386 } 21387 21388 if (offset) 21389 return; 21390 21391 if (func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) { 21392 seen_direct_write = env->seen_direct_write; 21393 is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE); 21394 21395 if (is_rdonly) 21396 *addr = (unsigned long)bpf_dynptr_from_skb_rdonly; 21397 21398 /* restore env->seen_direct_write to its original value, since 21399 * may_access_direct_pkt_data mutates it 21400 */ 21401 env->seen_direct_write = seen_direct_write; 21402 } 21403 21404 if (func_id == special_kfunc_list[KF_bpf_set_dentry_xattr] && 21405 bpf_lsm_has_d_inode_locked(prog)) 21406 *addr = (unsigned long)bpf_set_dentry_xattr_locked; 21407 21408 if (func_id == special_kfunc_list[KF_bpf_remove_dentry_xattr] && 21409 bpf_lsm_has_d_inode_locked(prog)) 21410 *addr = (unsigned long)bpf_remove_dentry_xattr_locked; 21411 } 21412 21413 static void __fixup_collection_insert_kfunc(struct bpf_insn_aux_data *insn_aux, 21414 u16 struct_meta_reg, 21415 u16 node_offset_reg, 21416 struct bpf_insn *insn, 21417 struct bpf_insn *insn_buf, 21418 int *cnt) 21419 { 21420 struct btf_struct_meta *kptr_struct_meta = insn_aux->kptr_struct_meta; 21421 struct bpf_insn addr[2] = { BPF_LD_IMM64(struct_meta_reg, (long)kptr_struct_meta) }; 21422 21423 insn_buf[0] = addr[0]; 21424 insn_buf[1] = addr[1]; 21425 insn_buf[2] = BPF_MOV64_IMM(node_offset_reg, insn_aux->insert_off); 21426 insn_buf[3] = *insn; 21427 *cnt = 4; 21428 } 21429 21430 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 21431 struct bpf_insn *insn_buf, int insn_idx, int *cnt) 21432 { 21433 const struct bpf_kfunc_desc *desc; 21434 21435 if (!insn->imm) { 21436 verbose(env, "invalid kernel function call not eliminated in verifier pass\n"); 21437 return -EINVAL; 21438 } 21439 21440 *cnt = 0; 21441 21442 /* insn->imm has the btf func_id. Replace it with an offset relative to 21443 * __bpf_call_base, unless the JIT needs to call functions that are 21444 * further than 32 bits away (bpf_jit_supports_far_kfunc_call()). 21445 */ 21446 desc = find_kfunc_desc(env->prog, insn->imm, insn->off); 21447 if (!desc) { 21448 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n", 21449 insn->imm); 21450 return -EFAULT; 21451 } 21452 21453 if (!bpf_jit_supports_far_kfunc_call()) 21454 insn->imm = BPF_CALL_IMM(desc->addr); 21455 if (insn->off) 21456 return 0; 21457 if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl] || 21458 desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { 21459 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 21460 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 21461 u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size; 21462 21463 if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl] && kptr_struct_meta) { 21464 verbose(env, "verifier internal error: NULL kptr_struct_meta expected at insn_idx %d\n", 21465 insn_idx); 21466 return -EFAULT; 21467 } 21468 21469 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size); 21470 insn_buf[1] = addr[0]; 21471 insn_buf[2] = addr[1]; 21472 insn_buf[3] = *insn; 21473 *cnt = 4; 21474 } else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl] || 21475 desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] || 21476 desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) { 21477 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 21478 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 21479 21480 if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] && kptr_struct_meta) { 21481 verbose(env, "verifier internal error: NULL kptr_struct_meta expected at insn_idx %d\n", 21482 insn_idx); 21483 return -EFAULT; 21484 } 21485 21486 if (desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] && 21487 !kptr_struct_meta) { 21488 verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n", 21489 insn_idx); 21490 return -EFAULT; 21491 } 21492 21493 insn_buf[0] = addr[0]; 21494 insn_buf[1] = addr[1]; 21495 insn_buf[2] = *insn; 21496 *cnt = 3; 21497 } else if (desc->func_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 21498 desc->func_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 21499 desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 21500 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 21501 int struct_meta_reg = BPF_REG_3; 21502 int node_offset_reg = BPF_REG_4; 21503 21504 /* rbtree_add has extra 'less' arg, so args-to-fixup are in diff regs */ 21505 if (desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 21506 struct_meta_reg = BPF_REG_4; 21507 node_offset_reg = BPF_REG_5; 21508 } 21509 21510 if (!kptr_struct_meta) { 21511 verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n", 21512 insn_idx); 21513 return -EFAULT; 21514 } 21515 21516 __fixup_collection_insert_kfunc(&env->insn_aux_data[insn_idx], struct_meta_reg, 21517 node_offset_reg, insn, insn_buf, cnt); 21518 } else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] || 21519 desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 21520 insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1); 21521 *cnt = 1; 21522 } 21523 21524 if (env->insn_aux_data[insn_idx].arg_prog) { 21525 u32 regno = env->insn_aux_data[insn_idx].arg_prog; 21526 struct bpf_insn ld_addrs[2] = { BPF_LD_IMM64(regno, (long)env->prog->aux) }; 21527 int idx = *cnt; 21528 21529 insn_buf[idx++] = ld_addrs[0]; 21530 insn_buf[idx++] = ld_addrs[1]; 21531 insn_buf[idx++] = *insn; 21532 *cnt = idx; 21533 } 21534 return 0; 21535 } 21536 21537 /* The function requires that first instruction in 'patch' is insnsi[prog->len - 1] */ 21538 static int add_hidden_subprog(struct bpf_verifier_env *env, struct bpf_insn *patch, int len) 21539 { 21540 struct bpf_subprog_info *info = env->subprog_info; 21541 int cnt = env->subprog_cnt; 21542 struct bpf_prog *prog; 21543 21544 /* We only reserve one slot for hidden subprogs in subprog_info. */ 21545 if (env->hidden_subprog_cnt) { 21546 verbose(env, "verifier internal error: only one hidden subprog supported\n"); 21547 return -EFAULT; 21548 } 21549 /* We're not patching any existing instruction, just appending the new 21550 * ones for the hidden subprog. Hence all of the adjustment operations 21551 * in bpf_patch_insn_data are no-ops. 21552 */ 21553 prog = bpf_patch_insn_data(env, env->prog->len - 1, patch, len); 21554 if (!prog) 21555 return -ENOMEM; 21556 env->prog = prog; 21557 info[cnt + 1].start = info[cnt].start; 21558 info[cnt].start = prog->len - len + 1; 21559 env->subprog_cnt++; 21560 env->hidden_subprog_cnt++; 21561 return 0; 21562 } 21563 21564 /* Do various post-verification rewrites in a single program pass. 21565 * These rewrites simplify JIT and interpreter implementations. 21566 */ 21567 static int do_misc_fixups(struct bpf_verifier_env *env) 21568 { 21569 struct bpf_prog *prog = env->prog; 21570 enum bpf_attach_type eatype = prog->expected_attach_type; 21571 enum bpf_prog_type prog_type = resolve_prog_type(prog); 21572 struct bpf_insn *insn = prog->insnsi; 21573 const struct bpf_func_proto *fn; 21574 const int insn_cnt = prog->len; 21575 const struct bpf_map_ops *ops; 21576 struct bpf_insn_aux_data *aux; 21577 struct bpf_insn *insn_buf = env->insn_buf; 21578 struct bpf_prog *new_prog; 21579 struct bpf_map *map_ptr; 21580 int i, ret, cnt, delta = 0, cur_subprog = 0; 21581 struct bpf_subprog_info *subprogs = env->subprog_info; 21582 u16 stack_depth = subprogs[cur_subprog].stack_depth; 21583 u16 stack_depth_extra = 0; 21584 21585 if (env->seen_exception && !env->exception_callback_subprog) { 21586 struct bpf_insn patch[] = { 21587 env->prog->insnsi[insn_cnt - 1], 21588 BPF_MOV64_REG(BPF_REG_0, BPF_REG_1), 21589 BPF_EXIT_INSN(), 21590 }; 21591 21592 ret = add_hidden_subprog(env, patch, ARRAY_SIZE(patch)); 21593 if (ret < 0) 21594 return ret; 21595 prog = env->prog; 21596 insn = prog->insnsi; 21597 21598 env->exception_callback_subprog = env->subprog_cnt - 1; 21599 /* Don't update insn_cnt, as add_hidden_subprog always appends insns */ 21600 mark_subprog_exc_cb(env, env->exception_callback_subprog); 21601 } 21602 21603 for (i = 0; i < insn_cnt;) { 21604 if (insn->code == (BPF_ALU64 | BPF_MOV | BPF_X) && insn->imm) { 21605 if ((insn->off == BPF_ADDR_SPACE_CAST && insn->imm == 1) || 21606 (((struct bpf_map *)env->prog->aux->arena)->map_flags & BPF_F_NO_USER_CONV)) { 21607 /* convert to 32-bit mov that clears upper 32-bit */ 21608 insn->code = BPF_ALU | BPF_MOV | BPF_X; 21609 /* clear off and imm, so it's a normal 'wX = wY' from JIT pov */ 21610 insn->off = 0; 21611 insn->imm = 0; 21612 } /* cast from as(0) to as(1) should be handled by JIT */ 21613 goto next_insn; 21614 } 21615 21616 if (env->insn_aux_data[i + delta].needs_zext) 21617 /* Convert BPF_CLASS(insn->code) == BPF_ALU64 to 32-bit ALU */ 21618 insn->code = BPF_ALU | BPF_OP(insn->code) | BPF_SRC(insn->code); 21619 21620 /* Make sdiv/smod divide-by-minus-one exceptions impossible. */ 21621 if ((insn->code == (BPF_ALU64 | BPF_MOD | BPF_K) || 21622 insn->code == (BPF_ALU64 | BPF_DIV | BPF_K) || 21623 insn->code == (BPF_ALU | BPF_MOD | BPF_K) || 21624 insn->code == (BPF_ALU | BPF_DIV | BPF_K)) && 21625 insn->off == 1 && insn->imm == -1) { 21626 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 21627 bool isdiv = BPF_OP(insn->code) == BPF_DIV; 21628 struct bpf_insn *patchlet; 21629 struct bpf_insn chk_and_sdiv[] = { 21630 BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) | 21631 BPF_NEG | BPF_K, insn->dst_reg, 21632 0, 0, 0), 21633 }; 21634 struct bpf_insn chk_and_smod[] = { 21635 BPF_MOV32_IMM(insn->dst_reg, 0), 21636 }; 21637 21638 patchlet = isdiv ? chk_and_sdiv : chk_and_smod; 21639 cnt = isdiv ? ARRAY_SIZE(chk_and_sdiv) : ARRAY_SIZE(chk_and_smod); 21640 21641 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 21642 if (!new_prog) 21643 return -ENOMEM; 21644 21645 delta += cnt - 1; 21646 env->prog = prog = new_prog; 21647 insn = new_prog->insnsi + i + delta; 21648 goto next_insn; 21649 } 21650 21651 /* Make divide-by-zero and divide-by-minus-one exceptions impossible. */ 21652 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 21653 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 21654 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 21655 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 21656 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 21657 bool isdiv = BPF_OP(insn->code) == BPF_DIV; 21658 bool is_sdiv = isdiv && insn->off == 1; 21659 bool is_smod = !isdiv && insn->off == 1; 21660 struct bpf_insn *patchlet; 21661 struct bpf_insn chk_and_div[] = { 21662 /* [R,W]x div 0 -> 0 */ 21663 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 21664 BPF_JNE | BPF_K, insn->src_reg, 21665 0, 2, 0), 21666 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 21667 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 21668 *insn, 21669 }; 21670 struct bpf_insn chk_and_mod[] = { 21671 /* [R,W]x mod 0 -> [R,W]x */ 21672 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 21673 BPF_JEQ | BPF_K, insn->src_reg, 21674 0, 1 + (is64 ? 0 : 1), 0), 21675 *insn, 21676 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 21677 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg), 21678 }; 21679 struct bpf_insn chk_and_sdiv[] = { 21680 /* [R,W]x sdiv 0 -> 0 21681 * LLONG_MIN sdiv -1 -> LLONG_MIN 21682 * INT_MIN sdiv -1 -> INT_MIN 21683 */ 21684 BPF_MOV64_REG(BPF_REG_AX, insn->src_reg), 21685 BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) | 21686 BPF_ADD | BPF_K, BPF_REG_AX, 21687 0, 0, 1), 21688 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 21689 BPF_JGT | BPF_K, BPF_REG_AX, 21690 0, 4, 1), 21691 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 21692 BPF_JEQ | BPF_K, BPF_REG_AX, 21693 0, 1, 0), 21694 BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) | 21695 BPF_MOV | BPF_K, insn->dst_reg, 21696 0, 0, 0), 21697 /* BPF_NEG(LLONG_MIN) == -LLONG_MIN == LLONG_MIN */ 21698 BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) | 21699 BPF_NEG | BPF_K, insn->dst_reg, 21700 0, 0, 0), 21701 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 21702 *insn, 21703 }; 21704 struct bpf_insn chk_and_smod[] = { 21705 /* [R,W]x mod 0 -> [R,W]x */ 21706 /* [R,W]x mod -1 -> 0 */ 21707 BPF_MOV64_REG(BPF_REG_AX, insn->src_reg), 21708 BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) | 21709 BPF_ADD | BPF_K, BPF_REG_AX, 21710 0, 0, 1), 21711 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 21712 BPF_JGT | BPF_K, BPF_REG_AX, 21713 0, 3, 1), 21714 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 21715 BPF_JEQ | BPF_K, BPF_REG_AX, 21716 0, 3 + (is64 ? 0 : 1), 1), 21717 BPF_MOV32_IMM(insn->dst_reg, 0), 21718 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 21719 *insn, 21720 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 21721 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg), 21722 }; 21723 21724 if (is_sdiv) { 21725 patchlet = chk_and_sdiv; 21726 cnt = ARRAY_SIZE(chk_and_sdiv); 21727 } else if (is_smod) { 21728 patchlet = chk_and_smod; 21729 cnt = ARRAY_SIZE(chk_and_smod) - (is64 ? 2 : 0); 21730 } else { 21731 patchlet = isdiv ? chk_and_div : chk_and_mod; 21732 cnt = isdiv ? ARRAY_SIZE(chk_and_div) : 21733 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0); 21734 } 21735 21736 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 21737 if (!new_prog) 21738 return -ENOMEM; 21739 21740 delta += cnt - 1; 21741 env->prog = prog = new_prog; 21742 insn = new_prog->insnsi + i + delta; 21743 goto next_insn; 21744 } 21745 21746 /* Make it impossible to de-reference a userspace address */ 21747 if (BPF_CLASS(insn->code) == BPF_LDX && 21748 (BPF_MODE(insn->code) == BPF_PROBE_MEM || 21749 BPF_MODE(insn->code) == BPF_PROBE_MEMSX)) { 21750 struct bpf_insn *patch = &insn_buf[0]; 21751 u64 uaddress_limit = bpf_arch_uaddress_limit(); 21752 21753 if (!uaddress_limit) 21754 goto next_insn; 21755 21756 *patch++ = BPF_MOV64_REG(BPF_REG_AX, insn->src_reg); 21757 if (insn->off) 21758 *patch++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_AX, insn->off); 21759 *patch++ = BPF_ALU64_IMM(BPF_RSH, BPF_REG_AX, 32); 21760 *patch++ = BPF_JMP_IMM(BPF_JLE, BPF_REG_AX, uaddress_limit >> 32, 2); 21761 *patch++ = *insn; 21762 *patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1); 21763 *patch++ = BPF_MOV64_IMM(insn->dst_reg, 0); 21764 21765 cnt = patch - insn_buf; 21766 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 21767 if (!new_prog) 21768 return -ENOMEM; 21769 21770 delta += cnt - 1; 21771 env->prog = prog = new_prog; 21772 insn = new_prog->insnsi + i + delta; 21773 goto next_insn; 21774 } 21775 21776 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */ 21777 if (BPF_CLASS(insn->code) == BPF_LD && 21778 (BPF_MODE(insn->code) == BPF_ABS || 21779 BPF_MODE(insn->code) == BPF_IND)) { 21780 cnt = env->ops->gen_ld_abs(insn, insn_buf); 21781 if (cnt == 0 || cnt >= INSN_BUF_SIZE) { 21782 verbose(env, "bpf verifier is misconfigured\n"); 21783 return -EINVAL; 21784 } 21785 21786 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 21787 if (!new_prog) 21788 return -ENOMEM; 21789 21790 delta += cnt - 1; 21791 env->prog = prog = new_prog; 21792 insn = new_prog->insnsi + i + delta; 21793 goto next_insn; 21794 } 21795 21796 /* Rewrite pointer arithmetic to mitigate speculation attacks. */ 21797 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 21798 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 21799 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 21800 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 21801 struct bpf_insn *patch = &insn_buf[0]; 21802 bool issrc, isneg, isimm; 21803 u32 off_reg; 21804 21805 aux = &env->insn_aux_data[i + delta]; 21806 if (!aux->alu_state || 21807 aux->alu_state == BPF_ALU_NON_POINTER) 21808 goto next_insn; 21809 21810 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 21811 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 21812 BPF_ALU_SANITIZE_SRC; 21813 isimm = aux->alu_state & BPF_ALU_IMMEDIATE; 21814 21815 off_reg = issrc ? insn->src_reg : insn->dst_reg; 21816 if (isimm) { 21817 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 21818 } else { 21819 if (isneg) 21820 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 21821 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 21822 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 21823 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 21824 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 21825 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 21826 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg); 21827 } 21828 if (!issrc) 21829 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg); 21830 insn->src_reg = BPF_REG_AX; 21831 if (isneg) 21832 insn->code = insn->code == code_add ? 21833 code_sub : code_add; 21834 *patch++ = *insn; 21835 if (issrc && isneg && !isimm) 21836 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 21837 cnt = patch - insn_buf; 21838 21839 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 21840 if (!new_prog) 21841 return -ENOMEM; 21842 21843 delta += cnt - 1; 21844 env->prog = prog = new_prog; 21845 insn = new_prog->insnsi + i + delta; 21846 goto next_insn; 21847 } 21848 21849 if (is_may_goto_insn(insn) && bpf_jit_supports_timed_may_goto()) { 21850 int stack_off_cnt = -stack_depth - 16; 21851 21852 /* 21853 * Two 8 byte slots, depth-16 stores the count, and 21854 * depth-8 stores the start timestamp of the loop. 21855 * 21856 * The starting value of count is BPF_MAX_TIMED_LOOPS 21857 * (0xffff). Every iteration loads it and subs it by 1, 21858 * until the value becomes 0 in AX (thus, 1 in stack), 21859 * after which we call arch_bpf_timed_may_goto, which 21860 * either sets AX to 0xffff to keep looping, or to 0 21861 * upon timeout. AX is then stored into the stack. In 21862 * the next iteration, we either see 0 and break out, or 21863 * continue iterating until the next time value is 0 21864 * after subtraction, rinse and repeat. 21865 */ 21866 stack_depth_extra = 16; 21867 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_AX, BPF_REG_10, stack_off_cnt); 21868 if (insn->off >= 0) 21869 insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off + 5); 21870 else 21871 insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off - 1); 21872 insn_buf[2] = BPF_ALU64_IMM(BPF_SUB, BPF_REG_AX, 1); 21873 insn_buf[3] = BPF_JMP_IMM(BPF_JNE, BPF_REG_AX, 0, 2); 21874 /* 21875 * AX is used as an argument to pass in stack_off_cnt 21876 * (to add to r10/fp), and also as the return value of 21877 * the call to arch_bpf_timed_may_goto. 21878 */ 21879 insn_buf[4] = BPF_MOV64_IMM(BPF_REG_AX, stack_off_cnt); 21880 insn_buf[5] = BPF_EMIT_CALL(arch_bpf_timed_may_goto); 21881 insn_buf[6] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_AX, stack_off_cnt); 21882 cnt = 7; 21883 21884 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 21885 if (!new_prog) 21886 return -ENOMEM; 21887 21888 delta += cnt - 1; 21889 env->prog = prog = new_prog; 21890 insn = new_prog->insnsi + i + delta; 21891 goto next_insn; 21892 } else if (is_may_goto_insn(insn)) { 21893 int stack_off = -stack_depth - 8; 21894 21895 stack_depth_extra = 8; 21896 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_AX, BPF_REG_10, stack_off); 21897 if (insn->off >= 0) 21898 insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off + 2); 21899 else 21900 insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off - 1); 21901 insn_buf[2] = BPF_ALU64_IMM(BPF_SUB, BPF_REG_AX, 1); 21902 insn_buf[3] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_AX, stack_off); 21903 cnt = 4; 21904 21905 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 21906 if (!new_prog) 21907 return -ENOMEM; 21908 21909 delta += cnt - 1; 21910 env->prog = prog = new_prog; 21911 insn = new_prog->insnsi + i + delta; 21912 goto next_insn; 21913 } 21914 21915 if (insn->code != (BPF_JMP | BPF_CALL)) 21916 goto next_insn; 21917 if (insn->src_reg == BPF_PSEUDO_CALL) 21918 goto next_insn; 21919 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 21920 ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt); 21921 if (ret) 21922 return ret; 21923 if (cnt == 0) 21924 goto next_insn; 21925 21926 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 21927 if (!new_prog) 21928 return -ENOMEM; 21929 21930 delta += cnt - 1; 21931 env->prog = prog = new_prog; 21932 insn = new_prog->insnsi + i + delta; 21933 goto next_insn; 21934 } 21935 21936 /* Skip inlining the helper call if the JIT does it. */ 21937 if (bpf_jit_inlines_helper_call(insn->imm)) 21938 goto next_insn; 21939 21940 if (insn->imm == BPF_FUNC_get_route_realm) 21941 prog->dst_needed = 1; 21942 if (insn->imm == BPF_FUNC_get_prandom_u32) 21943 bpf_user_rnd_init_once(); 21944 if (insn->imm == BPF_FUNC_override_return) 21945 prog->kprobe_override = 1; 21946 if (insn->imm == BPF_FUNC_tail_call) { 21947 /* If we tail call into other programs, we 21948 * cannot make any assumptions since they can 21949 * be replaced dynamically during runtime in 21950 * the program array. 21951 */ 21952 prog->cb_access = 1; 21953 if (!allow_tail_call_in_subprogs(env)) 21954 prog->aux->stack_depth = MAX_BPF_STACK; 21955 prog->aux->max_pkt_offset = MAX_PACKET_OFF; 21956 21957 /* mark bpf_tail_call as different opcode to avoid 21958 * conditional branch in the interpreter for every normal 21959 * call and to prevent accidental JITing by JIT compiler 21960 * that doesn't support bpf_tail_call yet 21961 */ 21962 insn->imm = 0; 21963 insn->code = BPF_JMP | BPF_TAIL_CALL; 21964 21965 aux = &env->insn_aux_data[i + delta]; 21966 if (env->bpf_capable && !prog->blinding_requested && 21967 prog->jit_requested && 21968 !bpf_map_key_poisoned(aux) && 21969 !bpf_map_ptr_poisoned(aux) && 21970 !bpf_map_ptr_unpriv(aux)) { 21971 struct bpf_jit_poke_descriptor desc = { 21972 .reason = BPF_POKE_REASON_TAIL_CALL, 21973 .tail_call.map = aux->map_ptr_state.map_ptr, 21974 .tail_call.key = bpf_map_key_immediate(aux), 21975 .insn_idx = i + delta, 21976 }; 21977 21978 ret = bpf_jit_add_poke_descriptor(prog, &desc); 21979 if (ret < 0) { 21980 verbose(env, "adding tail call poke descriptor failed\n"); 21981 return ret; 21982 } 21983 21984 insn->imm = ret + 1; 21985 goto next_insn; 21986 } 21987 21988 if (!bpf_map_ptr_unpriv(aux)) 21989 goto next_insn; 21990 21991 /* instead of changing every JIT dealing with tail_call 21992 * emit two extra insns: 21993 * if (index >= max_entries) goto out; 21994 * index &= array->index_mask; 21995 * to avoid out-of-bounds cpu speculation 21996 */ 21997 if (bpf_map_ptr_poisoned(aux)) { 21998 verbose(env, "tail_call abusing map_ptr\n"); 21999 return -EINVAL; 22000 } 22001 22002 map_ptr = aux->map_ptr_state.map_ptr; 22003 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 22004 map_ptr->max_entries, 2); 22005 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 22006 container_of(map_ptr, 22007 struct bpf_array, 22008 map)->index_mask); 22009 insn_buf[2] = *insn; 22010 cnt = 3; 22011 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 22012 if (!new_prog) 22013 return -ENOMEM; 22014 22015 delta += cnt - 1; 22016 env->prog = prog = new_prog; 22017 insn = new_prog->insnsi + i + delta; 22018 goto next_insn; 22019 } 22020 22021 if (insn->imm == BPF_FUNC_timer_set_callback) { 22022 /* The verifier will process callback_fn as many times as necessary 22023 * with different maps and the register states prepared by 22024 * set_timer_callback_state will be accurate. 22025 * 22026 * The following use case is valid: 22027 * map1 is shared by prog1, prog2, prog3. 22028 * prog1 calls bpf_timer_init for some map1 elements 22029 * prog2 calls bpf_timer_set_callback for some map1 elements. 22030 * Those that were not bpf_timer_init-ed will return -EINVAL. 22031 * prog3 calls bpf_timer_start for some map1 elements. 22032 * Those that were not both bpf_timer_init-ed and 22033 * bpf_timer_set_callback-ed will return -EINVAL. 22034 */ 22035 struct bpf_insn ld_addrs[2] = { 22036 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux), 22037 }; 22038 22039 insn_buf[0] = ld_addrs[0]; 22040 insn_buf[1] = ld_addrs[1]; 22041 insn_buf[2] = *insn; 22042 cnt = 3; 22043 22044 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 22045 if (!new_prog) 22046 return -ENOMEM; 22047 22048 delta += cnt - 1; 22049 env->prog = prog = new_prog; 22050 insn = new_prog->insnsi + i + delta; 22051 goto patch_call_imm; 22052 } 22053 22054 if (is_storage_get_function(insn->imm)) { 22055 if (!in_sleepable(env) || 22056 env->insn_aux_data[i + delta].storage_get_func_atomic) 22057 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC); 22058 else 22059 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL); 22060 insn_buf[1] = *insn; 22061 cnt = 2; 22062 22063 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 22064 if (!new_prog) 22065 return -ENOMEM; 22066 22067 delta += cnt - 1; 22068 env->prog = prog = new_prog; 22069 insn = new_prog->insnsi + i + delta; 22070 goto patch_call_imm; 22071 } 22072 22073 /* bpf_per_cpu_ptr() and bpf_this_cpu_ptr() */ 22074 if (env->insn_aux_data[i + delta].call_with_percpu_alloc_ptr) { 22075 /* patch with 'r1 = *(u64 *)(r1 + 0)' since for percpu data, 22076 * bpf_mem_alloc() returns a ptr to the percpu data ptr. 22077 */ 22078 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_1, 0); 22079 insn_buf[1] = *insn; 22080 cnt = 2; 22081 22082 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 22083 if (!new_prog) 22084 return -ENOMEM; 22085 22086 delta += cnt - 1; 22087 env->prog = prog = new_prog; 22088 insn = new_prog->insnsi + i + delta; 22089 goto patch_call_imm; 22090 } 22091 22092 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 22093 * and other inlining handlers are currently limited to 64 bit 22094 * only. 22095 */ 22096 if (prog->jit_requested && BITS_PER_LONG == 64 && 22097 (insn->imm == BPF_FUNC_map_lookup_elem || 22098 insn->imm == BPF_FUNC_map_update_elem || 22099 insn->imm == BPF_FUNC_map_delete_elem || 22100 insn->imm == BPF_FUNC_map_push_elem || 22101 insn->imm == BPF_FUNC_map_pop_elem || 22102 insn->imm == BPF_FUNC_map_peek_elem || 22103 insn->imm == BPF_FUNC_redirect_map || 22104 insn->imm == BPF_FUNC_for_each_map_elem || 22105 insn->imm == BPF_FUNC_map_lookup_percpu_elem)) { 22106 aux = &env->insn_aux_data[i + delta]; 22107 if (bpf_map_ptr_poisoned(aux)) 22108 goto patch_call_imm; 22109 22110 map_ptr = aux->map_ptr_state.map_ptr; 22111 ops = map_ptr->ops; 22112 if (insn->imm == BPF_FUNC_map_lookup_elem && 22113 ops->map_gen_lookup) { 22114 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 22115 if (cnt == -EOPNOTSUPP) 22116 goto patch_map_ops_generic; 22117 if (cnt <= 0 || cnt >= INSN_BUF_SIZE) { 22118 verbose(env, "bpf verifier is misconfigured\n"); 22119 return -EINVAL; 22120 } 22121 22122 new_prog = bpf_patch_insn_data(env, i + delta, 22123 insn_buf, cnt); 22124 if (!new_prog) 22125 return -ENOMEM; 22126 22127 delta += cnt - 1; 22128 env->prog = prog = new_prog; 22129 insn = new_prog->insnsi + i + delta; 22130 goto next_insn; 22131 } 22132 22133 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 22134 (void *(*)(struct bpf_map *map, void *key))NULL)); 22135 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 22136 (long (*)(struct bpf_map *map, void *key))NULL)); 22137 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 22138 (long (*)(struct bpf_map *map, void *key, void *value, 22139 u64 flags))NULL)); 22140 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 22141 (long (*)(struct bpf_map *map, void *value, 22142 u64 flags))NULL)); 22143 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 22144 (long (*)(struct bpf_map *map, void *value))NULL)); 22145 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 22146 (long (*)(struct bpf_map *map, void *value))NULL)); 22147 BUILD_BUG_ON(!__same_type(ops->map_redirect, 22148 (long (*)(struct bpf_map *map, u64 index, u64 flags))NULL)); 22149 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback, 22150 (long (*)(struct bpf_map *map, 22151 bpf_callback_t callback_fn, 22152 void *callback_ctx, 22153 u64 flags))NULL)); 22154 BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem, 22155 (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL)); 22156 22157 patch_map_ops_generic: 22158 switch (insn->imm) { 22159 case BPF_FUNC_map_lookup_elem: 22160 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem); 22161 goto next_insn; 22162 case BPF_FUNC_map_update_elem: 22163 insn->imm = BPF_CALL_IMM(ops->map_update_elem); 22164 goto next_insn; 22165 case BPF_FUNC_map_delete_elem: 22166 insn->imm = BPF_CALL_IMM(ops->map_delete_elem); 22167 goto next_insn; 22168 case BPF_FUNC_map_push_elem: 22169 insn->imm = BPF_CALL_IMM(ops->map_push_elem); 22170 goto next_insn; 22171 case BPF_FUNC_map_pop_elem: 22172 insn->imm = BPF_CALL_IMM(ops->map_pop_elem); 22173 goto next_insn; 22174 case BPF_FUNC_map_peek_elem: 22175 insn->imm = BPF_CALL_IMM(ops->map_peek_elem); 22176 goto next_insn; 22177 case BPF_FUNC_redirect_map: 22178 insn->imm = BPF_CALL_IMM(ops->map_redirect); 22179 goto next_insn; 22180 case BPF_FUNC_for_each_map_elem: 22181 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback); 22182 goto next_insn; 22183 case BPF_FUNC_map_lookup_percpu_elem: 22184 insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem); 22185 goto next_insn; 22186 } 22187 22188 goto patch_call_imm; 22189 } 22190 22191 /* Implement bpf_jiffies64 inline. */ 22192 if (prog->jit_requested && BITS_PER_LONG == 64 && 22193 insn->imm == BPF_FUNC_jiffies64) { 22194 struct bpf_insn ld_jiffies_addr[2] = { 22195 BPF_LD_IMM64(BPF_REG_0, 22196 (unsigned long)&jiffies), 22197 }; 22198 22199 insn_buf[0] = ld_jiffies_addr[0]; 22200 insn_buf[1] = ld_jiffies_addr[1]; 22201 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 22202 BPF_REG_0, 0); 22203 cnt = 3; 22204 22205 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 22206 cnt); 22207 if (!new_prog) 22208 return -ENOMEM; 22209 22210 delta += cnt - 1; 22211 env->prog = prog = new_prog; 22212 insn = new_prog->insnsi + i + delta; 22213 goto next_insn; 22214 } 22215 22216 #if defined(CONFIG_X86_64) && !defined(CONFIG_UML) 22217 /* Implement bpf_get_smp_processor_id() inline. */ 22218 if (insn->imm == BPF_FUNC_get_smp_processor_id && 22219 verifier_inlines_helper_call(env, insn->imm)) { 22220 /* BPF_FUNC_get_smp_processor_id inlining is an 22221 * optimization, so if cpu_number is ever 22222 * changed in some incompatible and hard to support 22223 * way, it's fine to back out this inlining logic 22224 */ 22225 #ifdef CONFIG_SMP 22226 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, (u32)(unsigned long)&cpu_number); 22227 insn_buf[1] = BPF_MOV64_PERCPU_REG(BPF_REG_0, BPF_REG_0); 22228 insn_buf[2] = BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_0, 0); 22229 cnt = 3; 22230 #else 22231 insn_buf[0] = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0); 22232 cnt = 1; 22233 #endif 22234 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 22235 if (!new_prog) 22236 return -ENOMEM; 22237 22238 delta += cnt - 1; 22239 env->prog = prog = new_prog; 22240 insn = new_prog->insnsi + i + delta; 22241 goto next_insn; 22242 } 22243 #endif 22244 /* Implement bpf_get_func_arg inline. */ 22245 if (prog_type == BPF_PROG_TYPE_TRACING && 22246 insn->imm == BPF_FUNC_get_func_arg) { 22247 /* Load nr_args from ctx - 8 */ 22248 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 22249 insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6); 22250 insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3); 22251 insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1); 22252 insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0); 22253 insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 22254 insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0); 22255 insn_buf[7] = BPF_JMP_A(1); 22256 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL); 22257 cnt = 9; 22258 22259 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 22260 if (!new_prog) 22261 return -ENOMEM; 22262 22263 delta += cnt - 1; 22264 env->prog = prog = new_prog; 22265 insn = new_prog->insnsi + i + delta; 22266 goto next_insn; 22267 } 22268 22269 /* Implement bpf_get_func_ret inline. */ 22270 if (prog_type == BPF_PROG_TYPE_TRACING && 22271 insn->imm == BPF_FUNC_get_func_ret) { 22272 if (eatype == BPF_TRACE_FEXIT || 22273 eatype == BPF_MODIFY_RETURN) { 22274 /* Load nr_args from ctx - 8 */ 22275 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 22276 insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3); 22277 insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1); 22278 insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 22279 insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0); 22280 insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0); 22281 cnt = 6; 22282 } else { 22283 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP); 22284 cnt = 1; 22285 } 22286 22287 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 22288 if (!new_prog) 22289 return -ENOMEM; 22290 22291 delta += cnt - 1; 22292 env->prog = prog = new_prog; 22293 insn = new_prog->insnsi + i + delta; 22294 goto next_insn; 22295 } 22296 22297 /* Implement get_func_arg_cnt inline. */ 22298 if (prog_type == BPF_PROG_TYPE_TRACING && 22299 insn->imm == BPF_FUNC_get_func_arg_cnt) { 22300 /* Load nr_args from ctx - 8 */ 22301 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 22302 22303 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 22304 if (!new_prog) 22305 return -ENOMEM; 22306 22307 env->prog = prog = new_prog; 22308 insn = new_prog->insnsi + i + delta; 22309 goto next_insn; 22310 } 22311 22312 /* Implement bpf_get_func_ip inline. */ 22313 if (prog_type == BPF_PROG_TYPE_TRACING && 22314 insn->imm == BPF_FUNC_get_func_ip) { 22315 /* Load IP address from ctx - 16 */ 22316 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16); 22317 22318 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 22319 if (!new_prog) 22320 return -ENOMEM; 22321 22322 env->prog = prog = new_prog; 22323 insn = new_prog->insnsi + i + delta; 22324 goto next_insn; 22325 } 22326 22327 /* Implement bpf_get_branch_snapshot inline. */ 22328 if (IS_ENABLED(CONFIG_PERF_EVENTS) && 22329 prog->jit_requested && BITS_PER_LONG == 64 && 22330 insn->imm == BPF_FUNC_get_branch_snapshot) { 22331 /* We are dealing with the following func protos: 22332 * u64 bpf_get_branch_snapshot(void *buf, u32 size, u64 flags); 22333 * int perf_snapshot_branch_stack(struct perf_branch_entry *entries, u32 cnt); 22334 */ 22335 const u32 br_entry_size = sizeof(struct perf_branch_entry); 22336 22337 /* struct perf_branch_entry is part of UAPI and is 22338 * used as an array element, so extremely unlikely to 22339 * ever grow or shrink 22340 */ 22341 BUILD_BUG_ON(br_entry_size != 24); 22342 22343 /* if (unlikely(flags)) return -EINVAL */ 22344 insn_buf[0] = BPF_JMP_IMM(BPF_JNE, BPF_REG_3, 0, 7); 22345 22346 /* Transform size (bytes) into number of entries (cnt = size / 24). 22347 * But to avoid expensive division instruction, we implement 22348 * divide-by-3 through multiplication, followed by further 22349 * division by 8 through 3-bit right shift. 22350 * Refer to book "Hacker's Delight, 2nd ed." by Henry S. Warren, Jr., 22351 * p. 227, chapter "Unsigned Division by 3" for details and proofs. 22352 * 22353 * N / 3 <=> M * N / 2^33, where M = (2^33 + 1) / 3 = 0xaaaaaaab. 22354 */ 22355 insn_buf[1] = BPF_MOV32_IMM(BPF_REG_0, 0xaaaaaaab); 22356 insn_buf[2] = BPF_ALU64_REG(BPF_MUL, BPF_REG_2, BPF_REG_0); 22357 insn_buf[3] = BPF_ALU64_IMM(BPF_RSH, BPF_REG_2, 36); 22358 22359 /* call perf_snapshot_branch_stack implementation */ 22360 insn_buf[4] = BPF_EMIT_CALL(static_call_query(perf_snapshot_branch_stack)); 22361 /* if (entry_cnt == 0) return -ENOENT */ 22362 insn_buf[5] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4); 22363 /* return entry_cnt * sizeof(struct perf_branch_entry) */ 22364 insn_buf[6] = BPF_ALU32_IMM(BPF_MUL, BPF_REG_0, br_entry_size); 22365 insn_buf[7] = BPF_JMP_A(3); 22366 /* return -EINVAL; */ 22367 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL); 22368 insn_buf[9] = BPF_JMP_A(1); 22369 /* return -ENOENT; */ 22370 insn_buf[10] = BPF_MOV64_IMM(BPF_REG_0, -ENOENT); 22371 cnt = 11; 22372 22373 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 22374 if (!new_prog) 22375 return -ENOMEM; 22376 22377 delta += cnt - 1; 22378 env->prog = prog = new_prog; 22379 insn = new_prog->insnsi + i + delta; 22380 goto next_insn; 22381 } 22382 22383 /* Implement bpf_kptr_xchg inline */ 22384 if (prog->jit_requested && BITS_PER_LONG == 64 && 22385 insn->imm == BPF_FUNC_kptr_xchg && 22386 bpf_jit_supports_ptr_xchg()) { 22387 insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_2); 22388 insn_buf[1] = BPF_ATOMIC_OP(BPF_DW, BPF_XCHG, BPF_REG_1, BPF_REG_0, 0); 22389 cnt = 2; 22390 22391 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 22392 if (!new_prog) 22393 return -ENOMEM; 22394 22395 delta += cnt - 1; 22396 env->prog = prog = new_prog; 22397 insn = new_prog->insnsi + i + delta; 22398 goto next_insn; 22399 } 22400 patch_call_imm: 22401 fn = env->ops->get_func_proto(insn->imm, env->prog); 22402 /* all functions that have prototype and verifier allowed 22403 * programs to call them, must be real in-kernel functions 22404 */ 22405 if (!fn->func) { 22406 verbose(env, 22407 "kernel subsystem misconfigured func %s#%d\n", 22408 func_id_name(insn->imm), insn->imm); 22409 return -EFAULT; 22410 } 22411 insn->imm = fn->func - __bpf_call_base; 22412 next_insn: 22413 if (subprogs[cur_subprog + 1].start == i + delta + 1) { 22414 subprogs[cur_subprog].stack_depth += stack_depth_extra; 22415 subprogs[cur_subprog].stack_extra = stack_depth_extra; 22416 22417 stack_depth = subprogs[cur_subprog].stack_depth; 22418 if (stack_depth > MAX_BPF_STACK && !prog->jit_requested) { 22419 verbose(env, "stack size %d(extra %d) is too large\n", 22420 stack_depth, stack_depth_extra); 22421 return -EINVAL; 22422 } 22423 cur_subprog++; 22424 stack_depth = subprogs[cur_subprog].stack_depth; 22425 stack_depth_extra = 0; 22426 } 22427 i++; 22428 insn++; 22429 } 22430 22431 env->prog->aux->stack_depth = subprogs[0].stack_depth; 22432 for (i = 0; i < env->subprog_cnt; i++) { 22433 int delta = bpf_jit_supports_timed_may_goto() ? 2 : 1; 22434 int subprog_start = subprogs[i].start; 22435 int stack_slots = subprogs[i].stack_extra / 8; 22436 int slots = delta, cnt = 0; 22437 22438 if (!stack_slots) 22439 continue; 22440 /* We need two slots in case timed may_goto is supported. */ 22441 if (stack_slots > slots) { 22442 verifier_bug(env, "stack_slots supports may_goto only"); 22443 return -EFAULT; 22444 } 22445 22446 stack_depth = subprogs[i].stack_depth; 22447 if (bpf_jit_supports_timed_may_goto()) { 22448 insn_buf[cnt++] = BPF_ST_MEM(BPF_DW, BPF_REG_FP, -stack_depth, 22449 BPF_MAX_TIMED_LOOPS); 22450 insn_buf[cnt++] = BPF_ST_MEM(BPF_DW, BPF_REG_FP, -stack_depth + 8, 0); 22451 } else { 22452 /* Add ST insn to subprog prologue to init extra stack */ 22453 insn_buf[cnt++] = BPF_ST_MEM(BPF_DW, BPF_REG_FP, -stack_depth, 22454 BPF_MAX_LOOPS); 22455 } 22456 /* Copy first actual insn to preserve it */ 22457 insn_buf[cnt++] = env->prog->insnsi[subprog_start]; 22458 22459 new_prog = bpf_patch_insn_data(env, subprog_start, insn_buf, cnt); 22460 if (!new_prog) 22461 return -ENOMEM; 22462 env->prog = prog = new_prog; 22463 /* 22464 * If may_goto is a first insn of a prog there could be a jmp 22465 * insn that points to it, hence adjust all such jmps to point 22466 * to insn after BPF_ST that inits may_goto count. 22467 * Adjustment will succeed because bpf_patch_insn_data() didn't fail. 22468 */ 22469 WARN_ON(adjust_jmp_off(env->prog, subprog_start, delta)); 22470 } 22471 22472 /* Since poke tab is now finalized, publish aux to tracker. */ 22473 for (i = 0; i < prog->aux->size_poke_tab; i++) { 22474 map_ptr = prog->aux->poke_tab[i].tail_call.map; 22475 if (!map_ptr->ops->map_poke_track || 22476 !map_ptr->ops->map_poke_untrack || 22477 !map_ptr->ops->map_poke_run) { 22478 verbose(env, "bpf verifier is misconfigured\n"); 22479 return -EINVAL; 22480 } 22481 22482 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 22483 if (ret < 0) { 22484 verbose(env, "tracking tail call prog failed\n"); 22485 return ret; 22486 } 22487 } 22488 22489 sort_kfunc_descs_by_imm_off(env->prog); 22490 22491 return 0; 22492 } 22493 22494 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env, 22495 int position, 22496 s32 stack_base, 22497 u32 callback_subprogno, 22498 u32 *total_cnt) 22499 { 22500 s32 r6_offset = stack_base + 0 * BPF_REG_SIZE; 22501 s32 r7_offset = stack_base + 1 * BPF_REG_SIZE; 22502 s32 r8_offset = stack_base + 2 * BPF_REG_SIZE; 22503 int reg_loop_max = BPF_REG_6; 22504 int reg_loop_cnt = BPF_REG_7; 22505 int reg_loop_ctx = BPF_REG_8; 22506 22507 struct bpf_insn *insn_buf = env->insn_buf; 22508 struct bpf_prog *new_prog; 22509 u32 callback_start; 22510 u32 call_insn_offset; 22511 s32 callback_offset; 22512 u32 cnt = 0; 22513 22514 /* This represents an inlined version of bpf_iter.c:bpf_loop, 22515 * be careful to modify this code in sync. 22516 */ 22517 22518 /* Return error and jump to the end of the patch if 22519 * expected number of iterations is too big. 22520 */ 22521 insn_buf[cnt++] = BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2); 22522 insn_buf[cnt++] = BPF_MOV32_IMM(BPF_REG_0, -E2BIG); 22523 insn_buf[cnt++] = BPF_JMP_IMM(BPF_JA, 0, 0, 16); 22524 /* spill R6, R7, R8 to use these as loop vars */ 22525 insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset); 22526 insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset); 22527 insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset); 22528 /* initialize loop vars */ 22529 insn_buf[cnt++] = BPF_MOV64_REG(reg_loop_max, BPF_REG_1); 22530 insn_buf[cnt++] = BPF_MOV32_IMM(reg_loop_cnt, 0); 22531 insn_buf[cnt++] = BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3); 22532 /* loop header, 22533 * if reg_loop_cnt >= reg_loop_max skip the loop body 22534 */ 22535 insn_buf[cnt++] = BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5); 22536 /* callback call, 22537 * correct callback offset would be set after patching 22538 */ 22539 insn_buf[cnt++] = BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt); 22540 insn_buf[cnt++] = BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx); 22541 insn_buf[cnt++] = BPF_CALL_REL(0); 22542 /* increment loop counter */ 22543 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1); 22544 /* jump to loop header if callback returned 0 */ 22545 insn_buf[cnt++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6); 22546 /* return value of bpf_loop, 22547 * set R0 to the number of iterations 22548 */ 22549 insn_buf[cnt++] = BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt); 22550 /* restore original values of R6, R7, R8 */ 22551 insn_buf[cnt++] = BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset); 22552 insn_buf[cnt++] = BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset); 22553 insn_buf[cnt++] = BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset); 22554 22555 *total_cnt = cnt; 22556 new_prog = bpf_patch_insn_data(env, position, insn_buf, cnt); 22557 if (!new_prog) 22558 return new_prog; 22559 22560 /* callback start is known only after patching */ 22561 callback_start = env->subprog_info[callback_subprogno].start; 22562 /* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */ 22563 call_insn_offset = position + 12; 22564 callback_offset = callback_start - call_insn_offset - 1; 22565 new_prog->insnsi[call_insn_offset].imm = callback_offset; 22566 22567 return new_prog; 22568 } 22569 22570 static bool is_bpf_loop_call(struct bpf_insn *insn) 22571 { 22572 return insn->code == (BPF_JMP | BPF_CALL) && 22573 insn->src_reg == 0 && 22574 insn->imm == BPF_FUNC_loop; 22575 } 22576 22577 /* For all sub-programs in the program (including main) check 22578 * insn_aux_data to see if there are bpf_loop calls that require 22579 * inlining. If such calls are found the calls are replaced with a 22580 * sequence of instructions produced by `inline_bpf_loop` function and 22581 * subprog stack_depth is increased by the size of 3 registers. 22582 * This stack space is used to spill values of the R6, R7, R8. These 22583 * registers are used to store the loop bound, counter and context 22584 * variables. 22585 */ 22586 static int optimize_bpf_loop(struct bpf_verifier_env *env) 22587 { 22588 struct bpf_subprog_info *subprogs = env->subprog_info; 22589 int i, cur_subprog = 0, cnt, delta = 0; 22590 struct bpf_insn *insn = env->prog->insnsi; 22591 int insn_cnt = env->prog->len; 22592 u16 stack_depth = subprogs[cur_subprog].stack_depth; 22593 u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 22594 u16 stack_depth_extra = 0; 22595 22596 for (i = 0; i < insn_cnt; i++, insn++) { 22597 struct bpf_loop_inline_state *inline_state = 22598 &env->insn_aux_data[i + delta].loop_inline_state; 22599 22600 if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) { 22601 struct bpf_prog *new_prog; 22602 22603 stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup; 22604 new_prog = inline_bpf_loop(env, 22605 i + delta, 22606 -(stack_depth + stack_depth_extra), 22607 inline_state->callback_subprogno, 22608 &cnt); 22609 if (!new_prog) 22610 return -ENOMEM; 22611 22612 delta += cnt - 1; 22613 env->prog = new_prog; 22614 insn = new_prog->insnsi + i + delta; 22615 } 22616 22617 if (subprogs[cur_subprog + 1].start == i + delta + 1) { 22618 subprogs[cur_subprog].stack_depth += stack_depth_extra; 22619 cur_subprog++; 22620 stack_depth = subprogs[cur_subprog].stack_depth; 22621 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 22622 stack_depth_extra = 0; 22623 } 22624 } 22625 22626 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 22627 22628 return 0; 22629 } 22630 22631 /* Remove unnecessary spill/fill pairs, members of fastcall pattern, 22632 * adjust subprograms stack depth when possible. 22633 */ 22634 static int remove_fastcall_spills_fills(struct bpf_verifier_env *env) 22635 { 22636 struct bpf_subprog_info *subprog = env->subprog_info; 22637 struct bpf_insn_aux_data *aux = env->insn_aux_data; 22638 struct bpf_insn *insn = env->prog->insnsi; 22639 int insn_cnt = env->prog->len; 22640 u32 spills_num; 22641 bool modified = false; 22642 int i, j; 22643 22644 for (i = 0; i < insn_cnt; i++, insn++) { 22645 if (aux[i].fastcall_spills_num > 0) { 22646 spills_num = aux[i].fastcall_spills_num; 22647 /* NOPs would be removed by opt_remove_nops() */ 22648 for (j = 1; j <= spills_num; ++j) { 22649 *(insn - j) = NOP; 22650 *(insn + j) = NOP; 22651 } 22652 modified = true; 22653 } 22654 if ((subprog + 1)->start == i + 1) { 22655 if (modified && !subprog->keep_fastcall_stack) 22656 subprog->stack_depth = -subprog->fastcall_stack_off; 22657 subprog++; 22658 modified = false; 22659 } 22660 } 22661 22662 return 0; 22663 } 22664 22665 static void free_states(struct bpf_verifier_env *env) 22666 { 22667 struct bpf_verifier_state_list *sl; 22668 struct list_head *head, *pos, *tmp; 22669 int i; 22670 22671 list_for_each_safe(pos, tmp, &env->free_list) { 22672 sl = container_of(pos, struct bpf_verifier_state_list, node); 22673 free_verifier_state(&sl->state, false); 22674 kfree(sl); 22675 } 22676 INIT_LIST_HEAD(&env->free_list); 22677 22678 if (!env->explored_states) 22679 return; 22680 22681 for (i = 0; i < state_htab_size(env); i++) { 22682 head = &env->explored_states[i]; 22683 22684 list_for_each_safe(pos, tmp, head) { 22685 sl = container_of(pos, struct bpf_verifier_state_list, node); 22686 free_verifier_state(&sl->state, false); 22687 kfree(sl); 22688 } 22689 INIT_LIST_HEAD(&env->explored_states[i]); 22690 } 22691 } 22692 22693 static int do_check_common(struct bpf_verifier_env *env, int subprog) 22694 { 22695 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 22696 struct bpf_subprog_info *sub = subprog_info(env, subprog); 22697 struct bpf_prog_aux *aux = env->prog->aux; 22698 struct bpf_verifier_state *state; 22699 struct bpf_reg_state *regs; 22700 int ret, i; 22701 22702 env->prev_linfo = NULL; 22703 env->pass_cnt++; 22704 22705 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 22706 if (!state) 22707 return -ENOMEM; 22708 state->curframe = 0; 22709 state->speculative = false; 22710 state->branches = 1; 22711 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 22712 if (!state->frame[0]) { 22713 kfree(state); 22714 return -ENOMEM; 22715 } 22716 env->cur_state = state; 22717 init_func_state(env, state->frame[0], 22718 BPF_MAIN_FUNC /* callsite */, 22719 0 /* frameno */, 22720 subprog); 22721 state->first_insn_idx = env->subprog_info[subprog].start; 22722 state->last_insn_idx = -1; 22723 22724 regs = state->frame[state->curframe]->regs; 22725 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 22726 const char *sub_name = subprog_name(env, subprog); 22727 struct bpf_subprog_arg_info *arg; 22728 struct bpf_reg_state *reg; 22729 22730 verbose(env, "Validating %s() func#%d...\n", sub_name, subprog); 22731 ret = btf_prepare_func_args(env, subprog); 22732 if (ret) 22733 goto out; 22734 22735 if (subprog_is_exc_cb(env, subprog)) { 22736 state->frame[0]->in_exception_callback_fn = true; 22737 /* We have already ensured that the callback returns an integer, just 22738 * like all global subprogs. We need to determine it only has a single 22739 * scalar argument. 22740 */ 22741 if (sub->arg_cnt != 1 || sub->args[0].arg_type != ARG_ANYTHING) { 22742 verbose(env, "exception cb only supports single integer argument\n"); 22743 ret = -EINVAL; 22744 goto out; 22745 } 22746 } 22747 for (i = BPF_REG_1; i <= sub->arg_cnt; i++) { 22748 arg = &sub->args[i - BPF_REG_1]; 22749 reg = ®s[i]; 22750 22751 if (arg->arg_type == ARG_PTR_TO_CTX) { 22752 reg->type = PTR_TO_CTX; 22753 mark_reg_known_zero(env, regs, i); 22754 } else if (arg->arg_type == ARG_ANYTHING) { 22755 reg->type = SCALAR_VALUE; 22756 mark_reg_unknown(env, regs, i); 22757 } else if (arg->arg_type == (ARG_PTR_TO_DYNPTR | MEM_RDONLY)) { 22758 /* assume unspecial LOCAL dynptr type */ 22759 __mark_dynptr_reg(reg, BPF_DYNPTR_TYPE_LOCAL, true, ++env->id_gen); 22760 } else if (base_type(arg->arg_type) == ARG_PTR_TO_MEM) { 22761 reg->type = PTR_TO_MEM; 22762 if (arg->arg_type & PTR_MAYBE_NULL) 22763 reg->type |= PTR_MAYBE_NULL; 22764 mark_reg_known_zero(env, regs, i); 22765 reg->mem_size = arg->mem_size; 22766 reg->id = ++env->id_gen; 22767 } else if (base_type(arg->arg_type) == ARG_PTR_TO_BTF_ID) { 22768 reg->type = PTR_TO_BTF_ID; 22769 if (arg->arg_type & PTR_MAYBE_NULL) 22770 reg->type |= PTR_MAYBE_NULL; 22771 if (arg->arg_type & PTR_UNTRUSTED) 22772 reg->type |= PTR_UNTRUSTED; 22773 if (arg->arg_type & PTR_TRUSTED) 22774 reg->type |= PTR_TRUSTED; 22775 mark_reg_known_zero(env, regs, i); 22776 reg->btf = bpf_get_btf_vmlinux(); /* can't fail at this point */ 22777 reg->btf_id = arg->btf_id; 22778 reg->id = ++env->id_gen; 22779 } else if (base_type(arg->arg_type) == ARG_PTR_TO_ARENA) { 22780 /* caller can pass either PTR_TO_ARENA or SCALAR */ 22781 mark_reg_unknown(env, regs, i); 22782 } else { 22783 WARN_ONCE(1, "BUG: unhandled arg#%d type %d\n", 22784 i - BPF_REG_1, arg->arg_type); 22785 ret = -EFAULT; 22786 goto out; 22787 } 22788 } 22789 } else { 22790 /* if main BPF program has associated BTF info, validate that 22791 * it's matching expected signature, and otherwise mark BTF 22792 * info for main program as unreliable 22793 */ 22794 if (env->prog->aux->func_info_aux) { 22795 ret = btf_prepare_func_args(env, 0); 22796 if (ret || sub->arg_cnt != 1 || sub->args[0].arg_type != ARG_PTR_TO_CTX) 22797 env->prog->aux->func_info_aux[0].unreliable = true; 22798 } 22799 22800 /* 1st arg to a function */ 22801 regs[BPF_REG_1].type = PTR_TO_CTX; 22802 mark_reg_known_zero(env, regs, BPF_REG_1); 22803 } 22804 22805 /* Acquire references for struct_ops program arguments tagged with "__ref" */ 22806 if (!subprog && env->prog->type == BPF_PROG_TYPE_STRUCT_OPS) { 22807 for (i = 0; i < aux->ctx_arg_info_size; i++) 22808 aux->ctx_arg_info[i].ref_obj_id = aux->ctx_arg_info[i].refcounted ? 22809 acquire_reference(env, 0) : 0; 22810 } 22811 22812 ret = do_check(env); 22813 out: 22814 /* check for NULL is necessary, since cur_state can be freed inside 22815 * do_check() under memory pressure. 22816 */ 22817 if (env->cur_state) { 22818 free_verifier_state(env->cur_state, true); 22819 env->cur_state = NULL; 22820 } 22821 while (!pop_stack(env, NULL, NULL, false)); 22822 if (!ret && pop_log) 22823 bpf_vlog_reset(&env->log, 0); 22824 free_states(env); 22825 return ret; 22826 } 22827 22828 /* Lazily verify all global functions based on their BTF, if they are called 22829 * from main BPF program or any of subprograms transitively. 22830 * BPF global subprogs called from dead code are not validated. 22831 * All callable global functions must pass verification. 22832 * Otherwise the whole program is rejected. 22833 * Consider: 22834 * int bar(int); 22835 * int foo(int f) 22836 * { 22837 * return bar(f); 22838 * } 22839 * int bar(int b) 22840 * { 22841 * ... 22842 * } 22843 * foo() will be verified first for R1=any_scalar_value. During verification it 22844 * will be assumed that bar() already verified successfully and call to bar() 22845 * from foo() will be checked for type match only. Later bar() will be verified 22846 * independently to check that it's safe for R1=any_scalar_value. 22847 */ 22848 static int do_check_subprogs(struct bpf_verifier_env *env) 22849 { 22850 struct bpf_prog_aux *aux = env->prog->aux; 22851 struct bpf_func_info_aux *sub_aux; 22852 int i, ret, new_cnt; 22853 22854 if (!aux->func_info) 22855 return 0; 22856 22857 /* exception callback is presumed to be always called */ 22858 if (env->exception_callback_subprog) 22859 subprog_aux(env, env->exception_callback_subprog)->called = true; 22860 22861 again: 22862 new_cnt = 0; 22863 for (i = 1; i < env->subprog_cnt; i++) { 22864 if (!subprog_is_global(env, i)) 22865 continue; 22866 22867 sub_aux = subprog_aux(env, i); 22868 if (!sub_aux->called || sub_aux->verified) 22869 continue; 22870 22871 env->insn_idx = env->subprog_info[i].start; 22872 WARN_ON_ONCE(env->insn_idx == 0); 22873 ret = do_check_common(env, i); 22874 if (ret) { 22875 return ret; 22876 } else if (env->log.level & BPF_LOG_LEVEL) { 22877 verbose(env, "Func#%d ('%s') is safe for any args that match its prototype\n", 22878 i, subprog_name(env, i)); 22879 } 22880 22881 /* We verified new global subprog, it might have called some 22882 * more global subprogs that we haven't verified yet, so we 22883 * need to do another pass over subprogs to verify those. 22884 */ 22885 sub_aux->verified = true; 22886 new_cnt++; 22887 } 22888 22889 /* We can't loop forever as we verify at least one global subprog on 22890 * each pass. 22891 */ 22892 if (new_cnt) 22893 goto again; 22894 22895 return 0; 22896 } 22897 22898 static int do_check_main(struct bpf_verifier_env *env) 22899 { 22900 int ret; 22901 22902 env->insn_idx = 0; 22903 ret = do_check_common(env, 0); 22904 if (!ret) 22905 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 22906 return ret; 22907 } 22908 22909 22910 static void print_verification_stats(struct bpf_verifier_env *env) 22911 { 22912 int i; 22913 22914 if (env->log.level & BPF_LOG_STATS) { 22915 verbose(env, "verification time %lld usec\n", 22916 div_u64(env->verification_time, 1000)); 22917 verbose(env, "stack depth "); 22918 for (i = 0; i < env->subprog_cnt; i++) { 22919 u32 depth = env->subprog_info[i].stack_depth; 22920 22921 verbose(env, "%d", depth); 22922 if (i + 1 < env->subprog_cnt) 22923 verbose(env, "+"); 22924 } 22925 verbose(env, "\n"); 22926 } 22927 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 22928 "total_states %d peak_states %d mark_read %d\n", 22929 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 22930 env->max_states_per_insn, env->total_states, 22931 env->peak_states, env->longest_mark_read_walk); 22932 } 22933 22934 int bpf_prog_ctx_arg_info_init(struct bpf_prog *prog, 22935 const struct bpf_ctx_arg_aux *info, u32 cnt) 22936 { 22937 prog->aux->ctx_arg_info = kmemdup_array(info, cnt, sizeof(*info), GFP_KERNEL); 22938 prog->aux->ctx_arg_info_size = cnt; 22939 22940 return prog->aux->ctx_arg_info ? 0 : -ENOMEM; 22941 } 22942 22943 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 22944 { 22945 const struct btf_type *t, *func_proto; 22946 const struct bpf_struct_ops_desc *st_ops_desc; 22947 const struct bpf_struct_ops *st_ops; 22948 const struct btf_member *member; 22949 struct bpf_prog *prog = env->prog; 22950 bool has_refcounted_arg = false; 22951 u32 btf_id, member_idx, member_off; 22952 struct btf *btf; 22953 const char *mname; 22954 int i, err; 22955 22956 if (!prog->gpl_compatible) { 22957 verbose(env, "struct ops programs must have a GPL compatible license\n"); 22958 return -EINVAL; 22959 } 22960 22961 if (!prog->aux->attach_btf_id) 22962 return -ENOTSUPP; 22963 22964 btf = prog->aux->attach_btf; 22965 if (btf_is_module(btf)) { 22966 /* Make sure st_ops is valid through the lifetime of env */ 22967 env->attach_btf_mod = btf_try_get_module(btf); 22968 if (!env->attach_btf_mod) { 22969 verbose(env, "struct_ops module %s is not found\n", 22970 btf_get_name(btf)); 22971 return -ENOTSUPP; 22972 } 22973 } 22974 22975 btf_id = prog->aux->attach_btf_id; 22976 st_ops_desc = bpf_struct_ops_find(btf, btf_id); 22977 if (!st_ops_desc) { 22978 verbose(env, "attach_btf_id %u is not a supported struct\n", 22979 btf_id); 22980 return -ENOTSUPP; 22981 } 22982 st_ops = st_ops_desc->st_ops; 22983 22984 t = st_ops_desc->type; 22985 member_idx = prog->expected_attach_type; 22986 if (member_idx >= btf_type_vlen(t)) { 22987 verbose(env, "attach to invalid member idx %u of struct %s\n", 22988 member_idx, st_ops->name); 22989 return -EINVAL; 22990 } 22991 22992 member = &btf_type_member(t)[member_idx]; 22993 mname = btf_name_by_offset(btf, member->name_off); 22994 func_proto = btf_type_resolve_func_ptr(btf, member->type, 22995 NULL); 22996 if (!func_proto) { 22997 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 22998 mname, member_idx, st_ops->name); 22999 return -EINVAL; 23000 } 23001 23002 member_off = __btf_member_bit_offset(t, member) / 8; 23003 err = bpf_struct_ops_supported(st_ops, member_off); 23004 if (err) { 23005 verbose(env, "attach to unsupported member %s of struct %s\n", 23006 mname, st_ops->name); 23007 return err; 23008 } 23009 23010 if (st_ops->check_member) { 23011 err = st_ops->check_member(t, member, prog); 23012 23013 if (err) { 23014 verbose(env, "attach to unsupported member %s of struct %s\n", 23015 mname, st_ops->name); 23016 return err; 23017 } 23018 } 23019 23020 if (prog->aux->priv_stack_requested && !bpf_jit_supports_private_stack()) { 23021 verbose(env, "Private stack not supported by jit\n"); 23022 return -EACCES; 23023 } 23024 23025 for (i = 0; i < st_ops_desc->arg_info[member_idx].cnt; i++) { 23026 if (st_ops_desc->arg_info[member_idx].info->refcounted) { 23027 has_refcounted_arg = true; 23028 break; 23029 } 23030 } 23031 23032 /* Tail call is not allowed for programs with refcounted arguments since we 23033 * cannot guarantee that valid refcounted kptrs will be passed to the callee. 23034 */ 23035 for (i = 0; i < env->subprog_cnt; i++) { 23036 if (has_refcounted_arg && env->subprog_info[i].has_tail_call) { 23037 verbose(env, "program with __ref argument cannot tail call\n"); 23038 return -EINVAL; 23039 } 23040 } 23041 23042 prog->aux->st_ops = st_ops; 23043 prog->aux->attach_st_ops_member_off = member_off; 23044 23045 prog->aux->attach_func_proto = func_proto; 23046 prog->aux->attach_func_name = mname; 23047 env->ops = st_ops->verifier_ops; 23048 23049 return bpf_prog_ctx_arg_info_init(prog, st_ops_desc->arg_info[member_idx].info, 23050 st_ops_desc->arg_info[member_idx].cnt); 23051 } 23052 #define SECURITY_PREFIX "security_" 23053 23054 static int check_attach_modify_return(unsigned long addr, const char *func_name) 23055 { 23056 if (within_error_injection_list(addr) || 23057 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1)) 23058 return 0; 23059 23060 return -EINVAL; 23061 } 23062 23063 /* list of non-sleepable functions that are otherwise on 23064 * ALLOW_ERROR_INJECTION list 23065 */ 23066 BTF_SET_START(btf_non_sleepable_error_inject) 23067 /* Three functions below can be called from sleepable and non-sleepable context. 23068 * Assume non-sleepable from bpf safety point of view. 23069 */ 23070 BTF_ID(func, __filemap_add_folio) 23071 #ifdef CONFIG_FAIL_PAGE_ALLOC 23072 BTF_ID(func, should_fail_alloc_page) 23073 #endif 23074 #ifdef CONFIG_FAILSLAB 23075 BTF_ID(func, should_failslab) 23076 #endif 23077 BTF_SET_END(btf_non_sleepable_error_inject) 23078 23079 static int check_non_sleepable_error_inject(u32 btf_id) 23080 { 23081 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id); 23082 } 23083 23084 int bpf_check_attach_target(struct bpf_verifier_log *log, 23085 const struct bpf_prog *prog, 23086 const struct bpf_prog *tgt_prog, 23087 u32 btf_id, 23088 struct bpf_attach_target_info *tgt_info) 23089 { 23090 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 23091 bool prog_tracing = prog->type == BPF_PROG_TYPE_TRACING; 23092 char trace_symbol[KSYM_SYMBOL_LEN]; 23093 const char prefix[] = "btf_trace_"; 23094 struct bpf_raw_event_map *btp; 23095 int ret = 0, subprog = -1, i; 23096 const struct btf_type *t; 23097 bool conservative = true; 23098 const char *tname, *fname; 23099 struct btf *btf; 23100 long addr = 0; 23101 struct module *mod = NULL; 23102 23103 if (!btf_id) { 23104 bpf_log(log, "Tracing programs must provide btf_id\n"); 23105 return -EINVAL; 23106 } 23107 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf; 23108 if (!btf) { 23109 bpf_log(log, 23110 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 23111 return -EINVAL; 23112 } 23113 t = btf_type_by_id(btf, btf_id); 23114 if (!t) { 23115 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id); 23116 return -EINVAL; 23117 } 23118 tname = btf_name_by_offset(btf, t->name_off); 23119 if (!tname) { 23120 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id); 23121 return -EINVAL; 23122 } 23123 if (tgt_prog) { 23124 struct bpf_prog_aux *aux = tgt_prog->aux; 23125 bool tgt_changes_pkt_data; 23126 bool tgt_might_sleep; 23127 23128 if (bpf_prog_is_dev_bound(prog->aux) && 23129 !bpf_prog_dev_bound_match(prog, tgt_prog)) { 23130 bpf_log(log, "Target program bound device mismatch"); 23131 return -EINVAL; 23132 } 23133 23134 for (i = 0; i < aux->func_info_cnt; i++) 23135 if (aux->func_info[i].type_id == btf_id) { 23136 subprog = i; 23137 break; 23138 } 23139 if (subprog == -1) { 23140 bpf_log(log, "Subprog %s doesn't exist\n", tname); 23141 return -EINVAL; 23142 } 23143 if (aux->func && aux->func[subprog]->aux->exception_cb) { 23144 bpf_log(log, 23145 "%s programs cannot attach to exception callback\n", 23146 prog_extension ? "Extension" : "FENTRY/FEXIT"); 23147 return -EINVAL; 23148 } 23149 conservative = aux->func_info_aux[subprog].unreliable; 23150 if (prog_extension) { 23151 if (conservative) { 23152 bpf_log(log, 23153 "Cannot replace static functions\n"); 23154 return -EINVAL; 23155 } 23156 if (!prog->jit_requested) { 23157 bpf_log(log, 23158 "Extension programs should be JITed\n"); 23159 return -EINVAL; 23160 } 23161 tgt_changes_pkt_data = aux->func 23162 ? aux->func[subprog]->aux->changes_pkt_data 23163 : aux->changes_pkt_data; 23164 if (prog->aux->changes_pkt_data && !tgt_changes_pkt_data) { 23165 bpf_log(log, 23166 "Extension program changes packet data, while original does not\n"); 23167 return -EINVAL; 23168 } 23169 23170 tgt_might_sleep = aux->func 23171 ? aux->func[subprog]->aux->might_sleep 23172 : aux->might_sleep; 23173 if (prog->aux->might_sleep && !tgt_might_sleep) { 23174 bpf_log(log, 23175 "Extension program may sleep, while original does not\n"); 23176 return -EINVAL; 23177 } 23178 } 23179 if (!tgt_prog->jited) { 23180 bpf_log(log, "Can attach to only JITed progs\n"); 23181 return -EINVAL; 23182 } 23183 if (prog_tracing) { 23184 if (aux->attach_tracing_prog) { 23185 /* 23186 * Target program is an fentry/fexit which is already attached 23187 * to another tracing program. More levels of nesting 23188 * attachment are not allowed. 23189 */ 23190 bpf_log(log, "Cannot nest tracing program attach more than once\n"); 23191 return -EINVAL; 23192 } 23193 } else if (tgt_prog->type == prog->type) { 23194 /* 23195 * To avoid potential call chain cycles, prevent attaching of a 23196 * program extension to another extension. It's ok to attach 23197 * fentry/fexit to extension program. 23198 */ 23199 bpf_log(log, "Cannot recursively attach\n"); 23200 return -EINVAL; 23201 } 23202 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 23203 prog_extension && 23204 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 23205 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 23206 /* Program extensions can extend all program types 23207 * except fentry/fexit. The reason is the following. 23208 * The fentry/fexit programs are used for performance 23209 * analysis, stats and can be attached to any program 23210 * type. When extension program is replacing XDP function 23211 * it is necessary to allow performance analysis of all 23212 * functions. Both original XDP program and its program 23213 * extension. Hence attaching fentry/fexit to 23214 * BPF_PROG_TYPE_EXT is allowed. If extending of 23215 * fentry/fexit was allowed it would be possible to create 23216 * long call chain fentry->extension->fentry->extension 23217 * beyond reasonable stack size. Hence extending fentry 23218 * is not allowed. 23219 */ 23220 bpf_log(log, "Cannot extend fentry/fexit\n"); 23221 return -EINVAL; 23222 } 23223 } else { 23224 if (prog_extension) { 23225 bpf_log(log, "Cannot replace kernel functions\n"); 23226 return -EINVAL; 23227 } 23228 } 23229 23230 switch (prog->expected_attach_type) { 23231 case BPF_TRACE_RAW_TP: 23232 if (tgt_prog) { 23233 bpf_log(log, 23234 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 23235 return -EINVAL; 23236 } 23237 if (!btf_type_is_typedef(t)) { 23238 bpf_log(log, "attach_btf_id %u is not a typedef\n", 23239 btf_id); 23240 return -EINVAL; 23241 } 23242 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 23243 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n", 23244 btf_id, tname); 23245 return -EINVAL; 23246 } 23247 tname += sizeof(prefix) - 1; 23248 23249 /* The func_proto of "btf_trace_##tname" is generated from typedef without argument 23250 * names. Thus using bpf_raw_event_map to get argument names. 23251 */ 23252 btp = bpf_get_raw_tracepoint(tname); 23253 if (!btp) 23254 return -EINVAL; 23255 fname = kallsyms_lookup((unsigned long)btp->bpf_func, NULL, NULL, NULL, 23256 trace_symbol); 23257 bpf_put_raw_tracepoint(btp); 23258 23259 if (fname) 23260 ret = btf_find_by_name_kind(btf, fname, BTF_KIND_FUNC); 23261 23262 if (!fname || ret < 0) { 23263 bpf_log(log, "Cannot find btf of tracepoint template, fall back to %s%s.\n", 23264 prefix, tname); 23265 t = btf_type_by_id(btf, t->type); 23266 if (!btf_type_is_ptr(t)) 23267 /* should never happen in valid vmlinux build */ 23268 return -EINVAL; 23269 } else { 23270 t = btf_type_by_id(btf, ret); 23271 if (!btf_type_is_func(t)) 23272 /* should never happen in valid vmlinux build */ 23273 return -EINVAL; 23274 } 23275 23276 t = btf_type_by_id(btf, t->type); 23277 if (!btf_type_is_func_proto(t)) 23278 /* should never happen in valid vmlinux build */ 23279 return -EINVAL; 23280 23281 break; 23282 case BPF_TRACE_ITER: 23283 if (!btf_type_is_func(t)) { 23284 bpf_log(log, "attach_btf_id %u is not a function\n", 23285 btf_id); 23286 return -EINVAL; 23287 } 23288 t = btf_type_by_id(btf, t->type); 23289 if (!btf_type_is_func_proto(t)) 23290 return -EINVAL; 23291 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 23292 if (ret) 23293 return ret; 23294 break; 23295 default: 23296 if (!prog_extension) 23297 return -EINVAL; 23298 fallthrough; 23299 case BPF_MODIFY_RETURN: 23300 case BPF_LSM_MAC: 23301 case BPF_LSM_CGROUP: 23302 case BPF_TRACE_FENTRY: 23303 case BPF_TRACE_FEXIT: 23304 if (!btf_type_is_func(t)) { 23305 bpf_log(log, "attach_btf_id %u is not a function\n", 23306 btf_id); 23307 return -EINVAL; 23308 } 23309 if (prog_extension && 23310 btf_check_type_match(log, prog, btf, t)) 23311 return -EINVAL; 23312 t = btf_type_by_id(btf, t->type); 23313 if (!btf_type_is_func_proto(t)) 23314 return -EINVAL; 23315 23316 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) && 23317 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type || 23318 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type)) 23319 return -EINVAL; 23320 23321 if (tgt_prog && conservative) 23322 t = NULL; 23323 23324 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 23325 if (ret < 0) 23326 return ret; 23327 23328 if (tgt_prog) { 23329 if (subprog == 0) 23330 addr = (long) tgt_prog->bpf_func; 23331 else 23332 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 23333 } else { 23334 if (btf_is_module(btf)) { 23335 mod = btf_try_get_module(btf); 23336 if (mod) 23337 addr = find_kallsyms_symbol_value(mod, tname); 23338 else 23339 addr = 0; 23340 } else { 23341 addr = kallsyms_lookup_name(tname); 23342 } 23343 if (!addr) { 23344 module_put(mod); 23345 bpf_log(log, 23346 "The address of function %s cannot be found\n", 23347 tname); 23348 return -ENOENT; 23349 } 23350 } 23351 23352 if (prog->sleepable) { 23353 ret = -EINVAL; 23354 switch (prog->type) { 23355 case BPF_PROG_TYPE_TRACING: 23356 23357 /* fentry/fexit/fmod_ret progs can be sleepable if they are 23358 * attached to ALLOW_ERROR_INJECTION and are not in denylist. 23359 */ 23360 if (!check_non_sleepable_error_inject(btf_id) && 23361 within_error_injection_list(addr)) 23362 ret = 0; 23363 /* fentry/fexit/fmod_ret progs can also be sleepable if they are 23364 * in the fmodret id set with the KF_SLEEPABLE flag. 23365 */ 23366 else { 23367 u32 *flags = btf_kfunc_is_modify_return(btf, btf_id, 23368 prog); 23369 23370 if (flags && (*flags & KF_SLEEPABLE)) 23371 ret = 0; 23372 } 23373 break; 23374 case BPF_PROG_TYPE_LSM: 23375 /* LSM progs check that they are attached to bpf_lsm_*() funcs. 23376 * Only some of them are sleepable. 23377 */ 23378 if (bpf_lsm_is_sleepable_hook(btf_id)) 23379 ret = 0; 23380 break; 23381 default: 23382 break; 23383 } 23384 if (ret) { 23385 module_put(mod); 23386 bpf_log(log, "%s is not sleepable\n", tname); 23387 return ret; 23388 } 23389 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) { 23390 if (tgt_prog) { 23391 module_put(mod); 23392 bpf_log(log, "can't modify return codes of BPF programs\n"); 23393 return -EINVAL; 23394 } 23395 ret = -EINVAL; 23396 if (btf_kfunc_is_modify_return(btf, btf_id, prog) || 23397 !check_attach_modify_return(addr, tname)) 23398 ret = 0; 23399 if (ret) { 23400 module_put(mod); 23401 bpf_log(log, "%s() is not modifiable\n", tname); 23402 return ret; 23403 } 23404 } 23405 23406 break; 23407 } 23408 tgt_info->tgt_addr = addr; 23409 tgt_info->tgt_name = tname; 23410 tgt_info->tgt_type = t; 23411 tgt_info->tgt_mod = mod; 23412 return 0; 23413 } 23414 23415 BTF_SET_START(btf_id_deny) 23416 BTF_ID_UNUSED 23417 #ifdef CONFIG_SMP 23418 BTF_ID(func, migrate_disable) 23419 BTF_ID(func, migrate_enable) 23420 #endif 23421 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU 23422 BTF_ID(func, rcu_read_unlock_strict) 23423 #endif 23424 #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE) 23425 BTF_ID(func, preempt_count_add) 23426 BTF_ID(func, preempt_count_sub) 23427 #endif 23428 #ifdef CONFIG_PREEMPT_RCU 23429 BTF_ID(func, __rcu_read_lock) 23430 BTF_ID(func, __rcu_read_unlock) 23431 #endif 23432 BTF_SET_END(btf_id_deny) 23433 23434 /* fexit and fmod_ret can't be used to attach to __noreturn functions. 23435 * Currently, we must manually list all __noreturn functions here. Once a more 23436 * robust solution is implemented, this workaround can be removed. 23437 */ 23438 BTF_SET_START(noreturn_deny) 23439 #ifdef CONFIG_IA32_EMULATION 23440 BTF_ID(func, __ia32_sys_exit) 23441 BTF_ID(func, __ia32_sys_exit_group) 23442 #endif 23443 #ifdef CONFIG_KUNIT 23444 BTF_ID(func, __kunit_abort) 23445 BTF_ID(func, kunit_try_catch_throw) 23446 #endif 23447 #ifdef CONFIG_MODULES 23448 BTF_ID(func, __module_put_and_kthread_exit) 23449 #endif 23450 #ifdef CONFIG_X86_64 23451 BTF_ID(func, __x64_sys_exit) 23452 BTF_ID(func, __x64_sys_exit_group) 23453 #endif 23454 BTF_ID(func, do_exit) 23455 BTF_ID(func, do_group_exit) 23456 BTF_ID(func, kthread_complete_and_exit) 23457 BTF_ID(func, kthread_exit) 23458 BTF_ID(func, make_task_dead) 23459 BTF_SET_END(noreturn_deny) 23460 23461 static bool can_be_sleepable(struct bpf_prog *prog) 23462 { 23463 if (prog->type == BPF_PROG_TYPE_TRACING) { 23464 switch (prog->expected_attach_type) { 23465 case BPF_TRACE_FENTRY: 23466 case BPF_TRACE_FEXIT: 23467 case BPF_MODIFY_RETURN: 23468 case BPF_TRACE_ITER: 23469 return true; 23470 default: 23471 return false; 23472 } 23473 } 23474 return prog->type == BPF_PROG_TYPE_LSM || 23475 prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ || 23476 prog->type == BPF_PROG_TYPE_STRUCT_OPS; 23477 } 23478 23479 static int check_attach_btf_id(struct bpf_verifier_env *env) 23480 { 23481 struct bpf_prog *prog = env->prog; 23482 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 23483 struct bpf_attach_target_info tgt_info = {}; 23484 u32 btf_id = prog->aux->attach_btf_id; 23485 struct bpf_trampoline *tr; 23486 int ret; 23487 u64 key; 23488 23489 if (prog->type == BPF_PROG_TYPE_SYSCALL) { 23490 if (prog->sleepable) 23491 /* attach_btf_id checked to be zero already */ 23492 return 0; 23493 verbose(env, "Syscall programs can only be sleepable\n"); 23494 return -EINVAL; 23495 } 23496 23497 if (prog->sleepable && !can_be_sleepable(prog)) { 23498 verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n"); 23499 return -EINVAL; 23500 } 23501 23502 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 23503 return check_struct_ops_btf_id(env); 23504 23505 if (prog->type != BPF_PROG_TYPE_TRACING && 23506 prog->type != BPF_PROG_TYPE_LSM && 23507 prog->type != BPF_PROG_TYPE_EXT) 23508 return 0; 23509 23510 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info); 23511 if (ret) 23512 return ret; 23513 23514 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) { 23515 /* to make freplace equivalent to their targets, they need to 23516 * inherit env->ops and expected_attach_type for the rest of the 23517 * verification 23518 */ 23519 env->ops = bpf_verifier_ops[tgt_prog->type]; 23520 prog->expected_attach_type = tgt_prog->expected_attach_type; 23521 } 23522 23523 /* store info about the attachment target that will be used later */ 23524 prog->aux->attach_func_proto = tgt_info.tgt_type; 23525 prog->aux->attach_func_name = tgt_info.tgt_name; 23526 prog->aux->mod = tgt_info.tgt_mod; 23527 23528 if (tgt_prog) { 23529 prog->aux->saved_dst_prog_type = tgt_prog->type; 23530 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type; 23531 } 23532 23533 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { 23534 prog->aux->attach_btf_trace = true; 23535 return 0; 23536 } else if (prog->expected_attach_type == BPF_TRACE_ITER) { 23537 return bpf_iter_prog_supported(prog); 23538 } 23539 23540 if (prog->type == BPF_PROG_TYPE_LSM) { 23541 ret = bpf_lsm_verify_prog(&env->log, prog); 23542 if (ret < 0) 23543 return ret; 23544 } else if (prog->type == BPF_PROG_TYPE_TRACING && 23545 btf_id_set_contains(&btf_id_deny, btf_id)) { 23546 return -EINVAL; 23547 } else if ((prog->expected_attach_type == BPF_TRACE_FEXIT || 23548 prog->expected_attach_type == BPF_MODIFY_RETURN) && 23549 btf_id_set_contains(&noreturn_deny, btf_id)) { 23550 verbose(env, "Attaching fexit/fmod_ret to __noreturn functions is rejected.\n"); 23551 return -EINVAL; 23552 } 23553 23554 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id); 23555 tr = bpf_trampoline_get(key, &tgt_info); 23556 if (!tr) 23557 return -ENOMEM; 23558 23559 if (tgt_prog && tgt_prog->aux->tail_call_reachable) 23560 tr->flags = BPF_TRAMP_F_TAIL_CALL_CTX; 23561 23562 prog->aux->dst_trampoline = tr; 23563 return 0; 23564 } 23565 23566 struct btf *bpf_get_btf_vmlinux(void) 23567 { 23568 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 23569 mutex_lock(&bpf_verifier_lock); 23570 if (!btf_vmlinux) 23571 btf_vmlinux = btf_parse_vmlinux(); 23572 mutex_unlock(&bpf_verifier_lock); 23573 } 23574 return btf_vmlinux; 23575 } 23576 23577 /* 23578 * The add_fd_from_fd_array() is executed only if fd_array_cnt is non-zero. In 23579 * this case expect that every file descriptor in the array is either a map or 23580 * a BTF. Everything else is considered to be trash. 23581 */ 23582 static int add_fd_from_fd_array(struct bpf_verifier_env *env, int fd) 23583 { 23584 struct bpf_map *map; 23585 struct btf *btf; 23586 CLASS(fd, f)(fd); 23587 int err; 23588 23589 map = __bpf_map_get(f); 23590 if (!IS_ERR(map)) { 23591 err = __add_used_map(env, map); 23592 if (err < 0) 23593 return err; 23594 return 0; 23595 } 23596 23597 btf = __btf_get_by_fd(f); 23598 if (!IS_ERR(btf)) { 23599 err = __add_used_btf(env, btf); 23600 if (err < 0) 23601 return err; 23602 return 0; 23603 } 23604 23605 verbose(env, "fd %d is not pointing to valid bpf_map or btf\n", fd); 23606 return PTR_ERR(map); 23607 } 23608 23609 static int process_fd_array(struct bpf_verifier_env *env, union bpf_attr *attr, bpfptr_t uattr) 23610 { 23611 size_t size = sizeof(int); 23612 int ret; 23613 int fd; 23614 u32 i; 23615 23616 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel); 23617 23618 /* 23619 * The only difference between old (no fd_array_cnt is given) and new 23620 * APIs is that in the latter case the fd_array is expected to be 23621 * continuous and is scanned for map fds right away 23622 */ 23623 if (!attr->fd_array_cnt) 23624 return 0; 23625 23626 /* Check for integer overflow */ 23627 if (attr->fd_array_cnt >= (U32_MAX / size)) { 23628 verbose(env, "fd_array_cnt is too big (%u)\n", attr->fd_array_cnt); 23629 return -EINVAL; 23630 } 23631 23632 for (i = 0; i < attr->fd_array_cnt; i++) { 23633 if (copy_from_bpfptr_offset(&fd, env->fd_array, i * size, size)) 23634 return -EFAULT; 23635 23636 ret = add_fd_from_fd_array(env, fd); 23637 if (ret) 23638 return ret; 23639 } 23640 23641 return 0; 23642 } 23643 23644 static bool can_fallthrough(struct bpf_insn *insn) 23645 { 23646 u8 class = BPF_CLASS(insn->code); 23647 u8 opcode = BPF_OP(insn->code); 23648 23649 if (class != BPF_JMP && class != BPF_JMP32) 23650 return true; 23651 23652 if (opcode == BPF_EXIT || opcode == BPF_JA) 23653 return false; 23654 23655 return true; 23656 } 23657 23658 static bool can_jump(struct bpf_insn *insn) 23659 { 23660 u8 class = BPF_CLASS(insn->code); 23661 u8 opcode = BPF_OP(insn->code); 23662 23663 if (class != BPF_JMP && class != BPF_JMP32) 23664 return false; 23665 23666 switch (opcode) { 23667 case BPF_JA: 23668 case BPF_JEQ: 23669 case BPF_JNE: 23670 case BPF_JLT: 23671 case BPF_JLE: 23672 case BPF_JGT: 23673 case BPF_JGE: 23674 case BPF_JSGT: 23675 case BPF_JSGE: 23676 case BPF_JSLT: 23677 case BPF_JSLE: 23678 case BPF_JCOND: 23679 return true; 23680 } 23681 23682 return false; 23683 } 23684 23685 static int insn_successors(struct bpf_prog *prog, u32 idx, u32 succ[2]) 23686 { 23687 struct bpf_insn *insn = &prog->insnsi[idx]; 23688 int i = 0, insn_sz; 23689 u32 dst; 23690 23691 insn_sz = bpf_is_ldimm64(insn) ? 2 : 1; 23692 if (can_fallthrough(insn) && idx + 1 < prog->len) 23693 succ[i++] = idx + insn_sz; 23694 23695 if (can_jump(insn)) { 23696 dst = idx + jmp_offset(insn) + 1; 23697 if (i == 0 || succ[0] != dst) 23698 succ[i++] = dst; 23699 } 23700 23701 return i; 23702 } 23703 23704 /* Each field is a register bitmask */ 23705 struct insn_live_regs { 23706 u16 use; /* registers read by instruction */ 23707 u16 def; /* registers written by instruction */ 23708 u16 in; /* registers that may be alive before instruction */ 23709 u16 out; /* registers that may be alive after instruction */ 23710 }; 23711 23712 /* Bitmask with 1s for all caller saved registers */ 23713 #define ALL_CALLER_SAVED_REGS ((1u << CALLER_SAVED_REGS) - 1) 23714 23715 /* Compute info->{use,def} fields for the instruction */ 23716 static void compute_insn_live_regs(struct bpf_verifier_env *env, 23717 struct bpf_insn *insn, 23718 struct insn_live_regs *info) 23719 { 23720 struct call_summary cs; 23721 u8 class = BPF_CLASS(insn->code); 23722 u8 code = BPF_OP(insn->code); 23723 u8 mode = BPF_MODE(insn->code); 23724 u16 src = BIT(insn->src_reg); 23725 u16 dst = BIT(insn->dst_reg); 23726 u16 r0 = BIT(0); 23727 u16 def = 0; 23728 u16 use = 0xffff; 23729 23730 switch (class) { 23731 case BPF_LD: 23732 switch (mode) { 23733 case BPF_IMM: 23734 if (BPF_SIZE(insn->code) == BPF_DW) { 23735 def = dst; 23736 use = 0; 23737 } 23738 break; 23739 case BPF_LD | BPF_ABS: 23740 case BPF_LD | BPF_IND: 23741 /* stick with defaults */ 23742 break; 23743 } 23744 break; 23745 case BPF_LDX: 23746 switch (mode) { 23747 case BPF_MEM: 23748 case BPF_MEMSX: 23749 def = dst; 23750 use = src; 23751 break; 23752 } 23753 break; 23754 case BPF_ST: 23755 switch (mode) { 23756 case BPF_MEM: 23757 def = 0; 23758 use = dst; 23759 break; 23760 } 23761 break; 23762 case BPF_STX: 23763 switch (mode) { 23764 case BPF_MEM: 23765 def = 0; 23766 use = dst | src; 23767 break; 23768 case BPF_ATOMIC: 23769 switch (insn->imm) { 23770 case BPF_CMPXCHG: 23771 use = r0 | dst | src; 23772 def = r0; 23773 break; 23774 case BPF_LOAD_ACQ: 23775 def = dst; 23776 use = src; 23777 break; 23778 case BPF_STORE_REL: 23779 def = 0; 23780 use = dst | src; 23781 break; 23782 default: 23783 use = dst | src; 23784 if (insn->imm & BPF_FETCH) 23785 def = src; 23786 else 23787 def = 0; 23788 } 23789 break; 23790 } 23791 break; 23792 case BPF_ALU: 23793 case BPF_ALU64: 23794 switch (code) { 23795 case BPF_END: 23796 use = dst; 23797 def = dst; 23798 break; 23799 case BPF_MOV: 23800 def = dst; 23801 if (BPF_SRC(insn->code) == BPF_K) 23802 use = 0; 23803 else 23804 use = src; 23805 break; 23806 default: 23807 def = dst; 23808 if (BPF_SRC(insn->code) == BPF_K) 23809 use = dst; 23810 else 23811 use = dst | src; 23812 } 23813 break; 23814 case BPF_JMP: 23815 case BPF_JMP32: 23816 switch (code) { 23817 case BPF_JA: 23818 case BPF_JCOND: 23819 def = 0; 23820 use = 0; 23821 break; 23822 case BPF_EXIT: 23823 def = 0; 23824 use = r0; 23825 break; 23826 case BPF_CALL: 23827 def = ALL_CALLER_SAVED_REGS; 23828 use = def & ~BIT(BPF_REG_0); 23829 if (get_call_summary(env, insn, &cs)) 23830 use = GENMASK(cs.num_params, 1); 23831 break; 23832 default: 23833 def = 0; 23834 if (BPF_SRC(insn->code) == BPF_K) 23835 use = dst; 23836 else 23837 use = dst | src; 23838 } 23839 break; 23840 } 23841 23842 info->def = def; 23843 info->use = use; 23844 } 23845 23846 /* Compute may-live registers after each instruction in the program. 23847 * The register is live after the instruction I if it is read by some 23848 * instruction S following I during program execution and is not 23849 * overwritten between I and S. 23850 * 23851 * Store result in env->insn_aux_data[i].live_regs. 23852 */ 23853 static int compute_live_registers(struct bpf_verifier_env *env) 23854 { 23855 struct bpf_insn_aux_data *insn_aux = env->insn_aux_data; 23856 struct bpf_insn *insns = env->prog->insnsi; 23857 struct insn_live_regs *state; 23858 int insn_cnt = env->prog->len; 23859 int err = 0, i, j; 23860 bool changed; 23861 23862 /* Use the following algorithm: 23863 * - define the following: 23864 * - I.use : a set of all registers read by instruction I; 23865 * - I.def : a set of all registers written by instruction I; 23866 * - I.in : a set of all registers that may be alive before I execution; 23867 * - I.out : a set of all registers that may be alive after I execution; 23868 * - insn_successors(I): a set of instructions S that might immediately 23869 * follow I for some program execution; 23870 * - associate separate empty sets 'I.in' and 'I.out' with each instruction; 23871 * - visit each instruction in a postorder and update 23872 * state[i].in, state[i].out as follows: 23873 * 23874 * state[i].out = U [state[s].in for S in insn_successors(i)] 23875 * state[i].in = (state[i].out / state[i].def) U state[i].use 23876 * 23877 * (where U stands for set union, / stands for set difference) 23878 * - repeat the computation while {in,out} fields changes for 23879 * any instruction. 23880 */ 23881 state = kvcalloc(insn_cnt, sizeof(*state), GFP_KERNEL); 23882 if (!state) { 23883 err = -ENOMEM; 23884 goto out; 23885 } 23886 23887 for (i = 0; i < insn_cnt; ++i) 23888 compute_insn_live_regs(env, &insns[i], &state[i]); 23889 23890 changed = true; 23891 while (changed) { 23892 changed = false; 23893 for (i = 0; i < env->cfg.cur_postorder; ++i) { 23894 int insn_idx = env->cfg.insn_postorder[i]; 23895 struct insn_live_regs *live = &state[insn_idx]; 23896 int succ_num; 23897 u32 succ[2]; 23898 u16 new_out = 0; 23899 u16 new_in = 0; 23900 23901 succ_num = insn_successors(env->prog, insn_idx, succ); 23902 for (int s = 0; s < succ_num; ++s) 23903 new_out |= state[succ[s]].in; 23904 new_in = (new_out & ~live->def) | live->use; 23905 if (new_out != live->out || new_in != live->in) { 23906 live->in = new_in; 23907 live->out = new_out; 23908 changed = true; 23909 } 23910 } 23911 } 23912 23913 for (i = 0; i < insn_cnt; ++i) 23914 insn_aux[i].live_regs_before = state[i].in; 23915 23916 if (env->log.level & BPF_LOG_LEVEL2) { 23917 verbose(env, "Live regs before insn:\n"); 23918 for (i = 0; i < insn_cnt; ++i) { 23919 verbose(env, "%3d: ", i); 23920 for (j = BPF_REG_0; j < BPF_REG_10; ++j) 23921 if (insn_aux[i].live_regs_before & BIT(j)) 23922 verbose(env, "%d", j); 23923 else 23924 verbose(env, "."); 23925 verbose(env, " "); 23926 verbose_insn(env, &insns[i]); 23927 if (bpf_is_ldimm64(&insns[i])) 23928 i++; 23929 } 23930 } 23931 23932 out: 23933 kvfree(state); 23934 kvfree(env->cfg.insn_postorder); 23935 env->cfg.insn_postorder = NULL; 23936 env->cfg.cur_postorder = 0; 23937 return err; 23938 } 23939 23940 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size) 23941 { 23942 u64 start_time = ktime_get_ns(); 23943 struct bpf_verifier_env *env; 23944 int i, len, ret = -EINVAL, err; 23945 u32 log_true_size; 23946 bool is_priv; 23947 23948 /* no program is valid */ 23949 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 23950 return -EINVAL; 23951 23952 /* 'struct bpf_verifier_env' can be global, but since it's not small, 23953 * allocate/free it every time bpf_check() is called 23954 */ 23955 env = kvzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 23956 if (!env) 23957 return -ENOMEM; 23958 23959 env->bt.env = env; 23960 23961 len = (*prog)->len; 23962 env->insn_aux_data = 23963 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 23964 ret = -ENOMEM; 23965 if (!env->insn_aux_data) 23966 goto err_free_env; 23967 for (i = 0; i < len; i++) 23968 env->insn_aux_data[i].orig_idx = i; 23969 env->prog = *prog; 23970 env->ops = bpf_verifier_ops[env->prog->type]; 23971 23972 env->allow_ptr_leaks = bpf_allow_ptr_leaks(env->prog->aux->token); 23973 env->allow_uninit_stack = bpf_allow_uninit_stack(env->prog->aux->token); 23974 env->bypass_spec_v1 = bpf_bypass_spec_v1(env->prog->aux->token); 23975 env->bypass_spec_v4 = bpf_bypass_spec_v4(env->prog->aux->token); 23976 env->bpf_capable = is_priv = bpf_token_capable(env->prog->aux->token, CAP_BPF); 23977 23978 bpf_get_btf_vmlinux(); 23979 23980 /* grab the mutex to protect few globals used by verifier */ 23981 if (!is_priv) 23982 mutex_lock(&bpf_verifier_lock); 23983 23984 /* user could have requested verbose verifier output 23985 * and supplied buffer to store the verification trace 23986 */ 23987 ret = bpf_vlog_init(&env->log, attr->log_level, 23988 (char __user *) (unsigned long) attr->log_buf, 23989 attr->log_size); 23990 if (ret) 23991 goto err_unlock; 23992 23993 ret = process_fd_array(env, attr, uattr); 23994 if (ret) 23995 goto skip_full_check; 23996 23997 mark_verifier_state_clean(env); 23998 23999 if (IS_ERR(btf_vmlinux)) { 24000 /* Either gcc or pahole or kernel are broken. */ 24001 verbose(env, "in-kernel BTF is malformed\n"); 24002 ret = PTR_ERR(btf_vmlinux); 24003 goto skip_full_check; 24004 } 24005 24006 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 24007 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 24008 env->strict_alignment = true; 24009 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 24010 env->strict_alignment = false; 24011 24012 if (is_priv) 24013 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 24014 env->test_reg_invariants = attr->prog_flags & BPF_F_TEST_REG_INVARIANTS; 24015 24016 env->explored_states = kvcalloc(state_htab_size(env), 24017 sizeof(struct list_head), 24018 GFP_USER); 24019 ret = -ENOMEM; 24020 if (!env->explored_states) 24021 goto skip_full_check; 24022 24023 for (i = 0; i < state_htab_size(env); i++) 24024 INIT_LIST_HEAD(&env->explored_states[i]); 24025 INIT_LIST_HEAD(&env->free_list); 24026 24027 ret = check_btf_info_early(env, attr, uattr); 24028 if (ret < 0) 24029 goto skip_full_check; 24030 24031 ret = add_subprog_and_kfunc(env); 24032 if (ret < 0) 24033 goto skip_full_check; 24034 24035 ret = check_subprogs(env); 24036 if (ret < 0) 24037 goto skip_full_check; 24038 24039 ret = check_btf_info(env, attr, uattr); 24040 if (ret < 0) 24041 goto skip_full_check; 24042 24043 ret = resolve_pseudo_ldimm64(env); 24044 if (ret < 0) 24045 goto skip_full_check; 24046 24047 if (bpf_prog_is_offloaded(env->prog->aux)) { 24048 ret = bpf_prog_offload_verifier_prep(env->prog); 24049 if (ret) 24050 goto skip_full_check; 24051 } 24052 24053 ret = check_cfg(env); 24054 if (ret < 0) 24055 goto skip_full_check; 24056 24057 ret = check_attach_btf_id(env); 24058 if (ret) 24059 goto skip_full_check; 24060 24061 ret = compute_live_registers(env); 24062 if (ret < 0) 24063 goto skip_full_check; 24064 24065 ret = mark_fastcall_patterns(env); 24066 if (ret < 0) 24067 goto skip_full_check; 24068 24069 ret = do_check_main(env); 24070 ret = ret ?: do_check_subprogs(env); 24071 24072 if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux)) 24073 ret = bpf_prog_offload_finalize(env); 24074 24075 skip_full_check: 24076 kvfree(env->explored_states); 24077 24078 /* might decrease stack depth, keep it before passes that 24079 * allocate additional slots. 24080 */ 24081 if (ret == 0) 24082 ret = remove_fastcall_spills_fills(env); 24083 24084 if (ret == 0) 24085 ret = check_max_stack_depth(env); 24086 24087 /* instruction rewrites happen after this point */ 24088 if (ret == 0) 24089 ret = optimize_bpf_loop(env); 24090 24091 if (is_priv) { 24092 if (ret == 0) 24093 opt_hard_wire_dead_code_branches(env); 24094 if (ret == 0) 24095 ret = opt_remove_dead_code(env); 24096 if (ret == 0) 24097 ret = opt_remove_nops(env); 24098 } else { 24099 if (ret == 0) 24100 sanitize_dead_code(env); 24101 } 24102 24103 if (ret == 0) 24104 /* program is valid, convert *(u32*)(ctx + off) accesses */ 24105 ret = convert_ctx_accesses(env); 24106 24107 if (ret == 0) 24108 ret = do_misc_fixups(env); 24109 24110 /* do 32-bit optimization after insn patching has done so those patched 24111 * insns could be handled correctly. 24112 */ 24113 if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) { 24114 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 24115 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 24116 : false; 24117 } 24118 24119 if (ret == 0) 24120 ret = fixup_call_args(env); 24121 24122 env->verification_time = ktime_get_ns() - start_time; 24123 print_verification_stats(env); 24124 env->prog->aux->verified_insns = env->insn_processed; 24125 24126 /* preserve original error even if log finalization is successful */ 24127 err = bpf_vlog_finalize(&env->log, &log_true_size); 24128 if (err) 24129 ret = err; 24130 24131 if (uattr_size >= offsetofend(union bpf_attr, log_true_size) && 24132 copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, log_true_size), 24133 &log_true_size, sizeof(log_true_size))) { 24134 ret = -EFAULT; 24135 goto err_release_maps; 24136 } 24137 24138 if (ret) 24139 goto err_release_maps; 24140 24141 if (env->used_map_cnt) { 24142 /* if program passed verifier, update used_maps in bpf_prog_info */ 24143 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 24144 sizeof(env->used_maps[0]), 24145 GFP_KERNEL); 24146 24147 if (!env->prog->aux->used_maps) { 24148 ret = -ENOMEM; 24149 goto err_release_maps; 24150 } 24151 24152 memcpy(env->prog->aux->used_maps, env->used_maps, 24153 sizeof(env->used_maps[0]) * env->used_map_cnt); 24154 env->prog->aux->used_map_cnt = env->used_map_cnt; 24155 } 24156 if (env->used_btf_cnt) { 24157 /* if program passed verifier, update used_btfs in bpf_prog_aux */ 24158 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt, 24159 sizeof(env->used_btfs[0]), 24160 GFP_KERNEL); 24161 if (!env->prog->aux->used_btfs) { 24162 ret = -ENOMEM; 24163 goto err_release_maps; 24164 } 24165 24166 memcpy(env->prog->aux->used_btfs, env->used_btfs, 24167 sizeof(env->used_btfs[0]) * env->used_btf_cnt); 24168 env->prog->aux->used_btf_cnt = env->used_btf_cnt; 24169 } 24170 if (env->used_map_cnt || env->used_btf_cnt) { 24171 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 24172 * bpf_ld_imm64 instructions 24173 */ 24174 convert_pseudo_ld_imm64(env); 24175 } 24176 24177 adjust_btf_func(env); 24178 24179 err_release_maps: 24180 if (!env->prog->aux->used_maps) 24181 /* if we didn't copy map pointers into bpf_prog_info, release 24182 * them now. Otherwise free_used_maps() will release them. 24183 */ 24184 release_maps(env); 24185 if (!env->prog->aux->used_btfs) 24186 release_btfs(env); 24187 24188 /* extension progs temporarily inherit the attach_type of their targets 24189 for verification purposes, so set it back to zero before returning 24190 */ 24191 if (env->prog->type == BPF_PROG_TYPE_EXT) 24192 env->prog->expected_attach_type = 0; 24193 24194 *prog = env->prog; 24195 24196 module_put(env->attach_btf_mod); 24197 err_unlock: 24198 if (!is_priv) 24199 mutex_unlock(&bpf_verifier_lock); 24200 vfree(env->insn_aux_data); 24201 kvfree(env->insn_hist); 24202 err_free_env: 24203 kvfree(env->cfg.insn_postorder); 24204 kvfree(env); 24205 return ret; 24206 } 24207