xref: /linux/kernel/bpf/verifier.c (revision 110d3047a3ec033de00322b1a8068b1215efa97a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5  */
6 #include <uapi/linux/btf.h>
7 #include <linux/bpf-cgroup.h>
8 #include <linux/kernel.h>
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/bpf.h>
12 #include <linux/btf.h>
13 #include <linux/bpf_verifier.h>
14 #include <linux/filter.h>
15 #include <net/netlink.h>
16 #include <linux/file.h>
17 #include <linux/vmalloc.h>
18 #include <linux/stringify.h>
19 #include <linux/bsearch.h>
20 #include <linux/sort.h>
21 #include <linux/perf_event.h>
22 #include <linux/ctype.h>
23 #include <linux/error-injection.h>
24 #include <linux/bpf_lsm.h>
25 #include <linux/btf_ids.h>
26 #include <linux/poison.h>
27 #include <linux/module.h>
28 #include <linux/cpumask.h>
29 #include <linux/bpf_mem_alloc.h>
30 #include <net/xdp.h>
31 
32 #include "disasm.h"
33 
34 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
35 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
36 	[_id] = & _name ## _verifier_ops,
37 #define BPF_MAP_TYPE(_id, _ops)
38 #define BPF_LINK_TYPE(_id, _name)
39 #include <linux/bpf_types.h>
40 #undef BPF_PROG_TYPE
41 #undef BPF_MAP_TYPE
42 #undef BPF_LINK_TYPE
43 };
44 
45 struct bpf_mem_alloc bpf_global_percpu_ma;
46 static bool bpf_global_percpu_ma_set;
47 
48 /* bpf_check() is a static code analyzer that walks eBPF program
49  * instruction by instruction and updates register/stack state.
50  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
51  *
52  * The first pass is depth-first-search to check that the program is a DAG.
53  * It rejects the following programs:
54  * - larger than BPF_MAXINSNS insns
55  * - if loop is present (detected via back-edge)
56  * - unreachable insns exist (shouldn't be a forest. program = one function)
57  * - out of bounds or malformed jumps
58  * The second pass is all possible path descent from the 1st insn.
59  * Since it's analyzing all paths through the program, the length of the
60  * analysis is limited to 64k insn, which may be hit even if total number of
61  * insn is less then 4K, but there are too many branches that change stack/regs.
62  * Number of 'branches to be analyzed' is limited to 1k
63  *
64  * On entry to each instruction, each register has a type, and the instruction
65  * changes the types of the registers depending on instruction semantics.
66  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
67  * copied to R1.
68  *
69  * All registers are 64-bit.
70  * R0 - return register
71  * R1-R5 argument passing registers
72  * R6-R9 callee saved registers
73  * R10 - frame pointer read-only
74  *
75  * At the start of BPF program the register R1 contains a pointer to bpf_context
76  * and has type PTR_TO_CTX.
77  *
78  * Verifier tracks arithmetic operations on pointers in case:
79  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
80  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
81  * 1st insn copies R10 (which has FRAME_PTR) type into R1
82  * and 2nd arithmetic instruction is pattern matched to recognize
83  * that it wants to construct a pointer to some element within stack.
84  * So after 2nd insn, the register R1 has type PTR_TO_STACK
85  * (and -20 constant is saved for further stack bounds checking).
86  * Meaning that this reg is a pointer to stack plus known immediate constant.
87  *
88  * Most of the time the registers have SCALAR_VALUE type, which
89  * means the register has some value, but it's not a valid pointer.
90  * (like pointer plus pointer becomes SCALAR_VALUE type)
91  *
92  * When verifier sees load or store instructions the type of base register
93  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
94  * four pointer types recognized by check_mem_access() function.
95  *
96  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
97  * and the range of [ptr, ptr + map's value_size) is accessible.
98  *
99  * registers used to pass values to function calls are checked against
100  * function argument constraints.
101  *
102  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
103  * It means that the register type passed to this function must be
104  * PTR_TO_STACK and it will be used inside the function as
105  * 'pointer to map element key'
106  *
107  * For example the argument constraints for bpf_map_lookup_elem():
108  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
109  *   .arg1_type = ARG_CONST_MAP_PTR,
110  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
111  *
112  * ret_type says that this function returns 'pointer to map elem value or null'
113  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
114  * 2nd argument should be a pointer to stack, which will be used inside
115  * the helper function as a pointer to map element key.
116  *
117  * On the kernel side the helper function looks like:
118  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
119  * {
120  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
121  *    void *key = (void *) (unsigned long) r2;
122  *    void *value;
123  *
124  *    here kernel can access 'key' and 'map' pointers safely, knowing that
125  *    [key, key + map->key_size) bytes are valid and were initialized on
126  *    the stack of eBPF program.
127  * }
128  *
129  * Corresponding eBPF program may look like:
130  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
131  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
132  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
133  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
134  * here verifier looks at prototype of map_lookup_elem() and sees:
135  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
136  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
137  *
138  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
139  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
140  * and were initialized prior to this call.
141  * If it's ok, then verifier allows this BPF_CALL insn and looks at
142  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
143  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
144  * returns either pointer to map value or NULL.
145  *
146  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
147  * insn, the register holding that pointer in the true branch changes state to
148  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
149  * branch. See check_cond_jmp_op().
150  *
151  * After the call R0 is set to return type of the function and registers R1-R5
152  * are set to NOT_INIT to indicate that they are no longer readable.
153  *
154  * The following reference types represent a potential reference to a kernel
155  * resource which, after first being allocated, must be checked and freed by
156  * the BPF program:
157  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
158  *
159  * When the verifier sees a helper call return a reference type, it allocates a
160  * pointer id for the reference and stores it in the current function state.
161  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
162  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
163  * passes through a NULL-check conditional. For the branch wherein the state is
164  * changed to CONST_IMM, the verifier releases the reference.
165  *
166  * For each helper function that allocates a reference, such as
167  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
168  * bpf_sk_release(). When a reference type passes into the release function,
169  * the verifier also releases the reference. If any unchecked or unreleased
170  * reference remains at the end of the program, the verifier rejects it.
171  */
172 
173 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
174 struct bpf_verifier_stack_elem {
175 	/* verifer state is 'st'
176 	 * before processing instruction 'insn_idx'
177 	 * and after processing instruction 'prev_insn_idx'
178 	 */
179 	struct bpf_verifier_state st;
180 	int insn_idx;
181 	int prev_insn_idx;
182 	struct bpf_verifier_stack_elem *next;
183 	/* length of verifier log at the time this state was pushed on stack */
184 	u32 log_pos;
185 };
186 
187 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ	8192
188 #define BPF_COMPLEXITY_LIMIT_STATES	64
189 
190 #define BPF_MAP_KEY_POISON	(1ULL << 63)
191 #define BPF_MAP_KEY_SEEN	(1ULL << 62)
192 
193 #define BPF_MAP_PTR_UNPRIV	1UL
194 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
195 					  POISON_POINTER_DELTA))
196 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
197 
198 #define BPF_GLOBAL_PERCPU_MA_MAX_SIZE  512
199 
200 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx);
201 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id);
202 static void invalidate_non_owning_refs(struct bpf_verifier_env *env);
203 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env);
204 static int ref_set_non_owning(struct bpf_verifier_env *env,
205 			      struct bpf_reg_state *reg);
206 static void specialize_kfunc(struct bpf_verifier_env *env,
207 			     u32 func_id, u16 offset, unsigned long *addr);
208 static bool is_trusted_reg(const struct bpf_reg_state *reg);
209 
210 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
211 {
212 	return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
213 }
214 
215 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
216 {
217 	return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
218 }
219 
220 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
221 			      const struct bpf_map *map, bool unpriv)
222 {
223 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
224 	unpriv |= bpf_map_ptr_unpriv(aux);
225 	aux->map_ptr_state = (unsigned long)map |
226 			     (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
227 }
228 
229 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
230 {
231 	return aux->map_key_state & BPF_MAP_KEY_POISON;
232 }
233 
234 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
235 {
236 	return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
237 }
238 
239 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
240 {
241 	return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
242 }
243 
244 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
245 {
246 	bool poisoned = bpf_map_key_poisoned(aux);
247 
248 	aux->map_key_state = state | BPF_MAP_KEY_SEEN |
249 			     (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
250 }
251 
252 static bool bpf_helper_call(const struct bpf_insn *insn)
253 {
254 	return insn->code == (BPF_JMP | BPF_CALL) &&
255 	       insn->src_reg == 0;
256 }
257 
258 static bool bpf_pseudo_call(const struct bpf_insn *insn)
259 {
260 	return insn->code == (BPF_JMP | BPF_CALL) &&
261 	       insn->src_reg == BPF_PSEUDO_CALL;
262 }
263 
264 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
265 {
266 	return insn->code == (BPF_JMP | BPF_CALL) &&
267 	       insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
268 }
269 
270 struct bpf_call_arg_meta {
271 	struct bpf_map *map_ptr;
272 	bool raw_mode;
273 	bool pkt_access;
274 	u8 release_regno;
275 	int regno;
276 	int access_size;
277 	int mem_size;
278 	u64 msize_max_value;
279 	int ref_obj_id;
280 	int dynptr_id;
281 	int map_uid;
282 	int func_id;
283 	struct btf *btf;
284 	u32 btf_id;
285 	struct btf *ret_btf;
286 	u32 ret_btf_id;
287 	u32 subprogno;
288 	struct btf_field *kptr_field;
289 };
290 
291 struct bpf_kfunc_call_arg_meta {
292 	/* In parameters */
293 	struct btf *btf;
294 	u32 func_id;
295 	u32 kfunc_flags;
296 	const struct btf_type *func_proto;
297 	const char *func_name;
298 	/* Out parameters */
299 	u32 ref_obj_id;
300 	u8 release_regno;
301 	bool r0_rdonly;
302 	u32 ret_btf_id;
303 	u64 r0_size;
304 	u32 subprogno;
305 	struct {
306 		u64 value;
307 		bool found;
308 	} arg_constant;
309 
310 	/* arg_{btf,btf_id,owning_ref} are used by kfunc-specific handling,
311 	 * generally to pass info about user-defined local kptr types to later
312 	 * verification logic
313 	 *   bpf_obj_drop/bpf_percpu_obj_drop
314 	 *     Record the local kptr type to be drop'd
315 	 *   bpf_refcount_acquire (via KF_ARG_PTR_TO_REFCOUNTED_KPTR arg type)
316 	 *     Record the local kptr type to be refcount_incr'd and use
317 	 *     arg_owning_ref to determine whether refcount_acquire should be
318 	 *     fallible
319 	 */
320 	struct btf *arg_btf;
321 	u32 arg_btf_id;
322 	bool arg_owning_ref;
323 
324 	struct {
325 		struct btf_field *field;
326 	} arg_list_head;
327 	struct {
328 		struct btf_field *field;
329 	} arg_rbtree_root;
330 	struct {
331 		enum bpf_dynptr_type type;
332 		u32 id;
333 		u32 ref_obj_id;
334 	} initialized_dynptr;
335 	struct {
336 		u8 spi;
337 		u8 frameno;
338 	} iter;
339 	u64 mem_size;
340 };
341 
342 struct btf *btf_vmlinux;
343 
344 static const char *btf_type_name(const struct btf *btf, u32 id)
345 {
346 	return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
347 }
348 
349 static DEFINE_MUTEX(bpf_verifier_lock);
350 static DEFINE_MUTEX(bpf_percpu_ma_lock);
351 
352 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
353 {
354 	struct bpf_verifier_env *env = private_data;
355 	va_list args;
356 
357 	if (!bpf_verifier_log_needed(&env->log))
358 		return;
359 
360 	va_start(args, fmt);
361 	bpf_verifier_vlog(&env->log, fmt, args);
362 	va_end(args);
363 }
364 
365 static void verbose_invalid_scalar(struct bpf_verifier_env *env,
366 				   struct bpf_reg_state *reg,
367 				   struct bpf_retval_range range, const char *ctx,
368 				   const char *reg_name)
369 {
370 	bool unknown = true;
371 
372 	verbose(env, "%s the register %s has", ctx, reg_name);
373 	if (reg->smin_value > S64_MIN) {
374 		verbose(env, " smin=%lld", reg->smin_value);
375 		unknown = false;
376 	}
377 	if (reg->smax_value < S64_MAX) {
378 		verbose(env, " smax=%lld", reg->smax_value);
379 		unknown = false;
380 	}
381 	if (unknown)
382 		verbose(env, " unknown scalar value");
383 	verbose(env, " should have been in [%d, %d]\n", range.minval, range.maxval);
384 }
385 
386 static bool type_may_be_null(u32 type)
387 {
388 	return type & PTR_MAYBE_NULL;
389 }
390 
391 static bool reg_not_null(const struct bpf_reg_state *reg)
392 {
393 	enum bpf_reg_type type;
394 
395 	type = reg->type;
396 	if (type_may_be_null(type))
397 		return false;
398 
399 	type = base_type(type);
400 	return type == PTR_TO_SOCKET ||
401 		type == PTR_TO_TCP_SOCK ||
402 		type == PTR_TO_MAP_VALUE ||
403 		type == PTR_TO_MAP_KEY ||
404 		type == PTR_TO_SOCK_COMMON ||
405 		(type == PTR_TO_BTF_ID && is_trusted_reg(reg)) ||
406 		type == PTR_TO_MEM;
407 }
408 
409 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg)
410 {
411 	struct btf_record *rec = NULL;
412 	struct btf_struct_meta *meta;
413 
414 	if (reg->type == PTR_TO_MAP_VALUE) {
415 		rec = reg->map_ptr->record;
416 	} else if (type_is_ptr_alloc_obj(reg->type)) {
417 		meta = btf_find_struct_meta(reg->btf, reg->btf_id);
418 		if (meta)
419 			rec = meta->record;
420 	}
421 	return rec;
422 }
423 
424 static bool subprog_is_global(const struct bpf_verifier_env *env, int subprog)
425 {
426 	struct bpf_func_info_aux *aux = env->prog->aux->func_info_aux;
427 
428 	return aux && aux[subprog].linkage == BTF_FUNC_GLOBAL;
429 }
430 
431 static const char *subprog_name(const struct bpf_verifier_env *env, int subprog)
432 {
433 	struct bpf_func_info *info;
434 
435 	if (!env->prog->aux->func_info)
436 		return "";
437 
438 	info = &env->prog->aux->func_info[subprog];
439 	return btf_type_name(env->prog->aux->btf, info->type_id);
440 }
441 
442 static void mark_subprog_exc_cb(struct bpf_verifier_env *env, int subprog)
443 {
444 	struct bpf_subprog_info *info = subprog_info(env, subprog);
445 
446 	info->is_cb = true;
447 	info->is_async_cb = true;
448 	info->is_exception_cb = true;
449 }
450 
451 static bool subprog_is_exc_cb(struct bpf_verifier_env *env, int subprog)
452 {
453 	return subprog_info(env, subprog)->is_exception_cb;
454 }
455 
456 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
457 {
458 	return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK);
459 }
460 
461 static bool type_is_rdonly_mem(u32 type)
462 {
463 	return type & MEM_RDONLY;
464 }
465 
466 static bool is_acquire_function(enum bpf_func_id func_id,
467 				const struct bpf_map *map)
468 {
469 	enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
470 
471 	if (func_id == BPF_FUNC_sk_lookup_tcp ||
472 	    func_id == BPF_FUNC_sk_lookup_udp ||
473 	    func_id == BPF_FUNC_skc_lookup_tcp ||
474 	    func_id == BPF_FUNC_ringbuf_reserve ||
475 	    func_id == BPF_FUNC_kptr_xchg)
476 		return true;
477 
478 	if (func_id == BPF_FUNC_map_lookup_elem &&
479 	    (map_type == BPF_MAP_TYPE_SOCKMAP ||
480 	     map_type == BPF_MAP_TYPE_SOCKHASH))
481 		return true;
482 
483 	return false;
484 }
485 
486 static bool is_ptr_cast_function(enum bpf_func_id func_id)
487 {
488 	return func_id == BPF_FUNC_tcp_sock ||
489 		func_id == BPF_FUNC_sk_fullsock ||
490 		func_id == BPF_FUNC_skc_to_tcp_sock ||
491 		func_id == BPF_FUNC_skc_to_tcp6_sock ||
492 		func_id == BPF_FUNC_skc_to_udp6_sock ||
493 		func_id == BPF_FUNC_skc_to_mptcp_sock ||
494 		func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
495 		func_id == BPF_FUNC_skc_to_tcp_request_sock;
496 }
497 
498 static bool is_dynptr_ref_function(enum bpf_func_id func_id)
499 {
500 	return func_id == BPF_FUNC_dynptr_data;
501 }
502 
503 static bool is_sync_callback_calling_kfunc(u32 btf_id);
504 static bool is_bpf_throw_kfunc(struct bpf_insn *insn);
505 
506 static bool is_sync_callback_calling_function(enum bpf_func_id func_id)
507 {
508 	return func_id == BPF_FUNC_for_each_map_elem ||
509 	       func_id == BPF_FUNC_find_vma ||
510 	       func_id == BPF_FUNC_loop ||
511 	       func_id == BPF_FUNC_user_ringbuf_drain;
512 }
513 
514 static bool is_async_callback_calling_function(enum bpf_func_id func_id)
515 {
516 	return func_id == BPF_FUNC_timer_set_callback;
517 }
518 
519 static bool is_callback_calling_function(enum bpf_func_id func_id)
520 {
521 	return is_sync_callback_calling_function(func_id) ||
522 	       is_async_callback_calling_function(func_id);
523 }
524 
525 static bool is_sync_callback_calling_insn(struct bpf_insn *insn)
526 {
527 	return (bpf_helper_call(insn) && is_sync_callback_calling_function(insn->imm)) ||
528 	       (bpf_pseudo_kfunc_call(insn) && is_sync_callback_calling_kfunc(insn->imm));
529 }
530 
531 static bool is_storage_get_function(enum bpf_func_id func_id)
532 {
533 	return func_id == BPF_FUNC_sk_storage_get ||
534 	       func_id == BPF_FUNC_inode_storage_get ||
535 	       func_id == BPF_FUNC_task_storage_get ||
536 	       func_id == BPF_FUNC_cgrp_storage_get;
537 }
538 
539 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id,
540 					const struct bpf_map *map)
541 {
542 	int ref_obj_uses = 0;
543 
544 	if (is_ptr_cast_function(func_id))
545 		ref_obj_uses++;
546 	if (is_acquire_function(func_id, map))
547 		ref_obj_uses++;
548 	if (is_dynptr_ref_function(func_id))
549 		ref_obj_uses++;
550 
551 	return ref_obj_uses > 1;
552 }
553 
554 static bool is_cmpxchg_insn(const struct bpf_insn *insn)
555 {
556 	return BPF_CLASS(insn->code) == BPF_STX &&
557 	       BPF_MODE(insn->code) == BPF_ATOMIC &&
558 	       insn->imm == BPF_CMPXCHG;
559 }
560 
561 static int __get_spi(s32 off)
562 {
563 	return (-off - 1) / BPF_REG_SIZE;
564 }
565 
566 static struct bpf_func_state *func(struct bpf_verifier_env *env,
567 				   const struct bpf_reg_state *reg)
568 {
569 	struct bpf_verifier_state *cur = env->cur_state;
570 
571 	return cur->frame[reg->frameno];
572 }
573 
574 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots)
575 {
576        int allocated_slots = state->allocated_stack / BPF_REG_SIZE;
577 
578        /* We need to check that slots between [spi - nr_slots + 1, spi] are
579 	* within [0, allocated_stack).
580 	*
581 	* Please note that the spi grows downwards. For example, a dynptr
582 	* takes the size of two stack slots; the first slot will be at
583 	* spi and the second slot will be at spi - 1.
584 	*/
585        return spi - nr_slots + 1 >= 0 && spi < allocated_slots;
586 }
587 
588 static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
589 			          const char *obj_kind, int nr_slots)
590 {
591 	int off, spi;
592 
593 	if (!tnum_is_const(reg->var_off)) {
594 		verbose(env, "%s has to be at a constant offset\n", obj_kind);
595 		return -EINVAL;
596 	}
597 
598 	off = reg->off + reg->var_off.value;
599 	if (off % BPF_REG_SIZE) {
600 		verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
601 		return -EINVAL;
602 	}
603 
604 	spi = __get_spi(off);
605 	if (spi + 1 < nr_slots) {
606 		verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
607 		return -EINVAL;
608 	}
609 
610 	if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots))
611 		return -ERANGE;
612 	return spi;
613 }
614 
615 static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
616 {
617 	return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS);
618 }
619 
620 static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots)
621 {
622 	return stack_slot_obj_get_spi(env, reg, "iter", nr_slots);
623 }
624 
625 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type)
626 {
627 	switch (arg_type & DYNPTR_TYPE_FLAG_MASK) {
628 	case DYNPTR_TYPE_LOCAL:
629 		return BPF_DYNPTR_TYPE_LOCAL;
630 	case DYNPTR_TYPE_RINGBUF:
631 		return BPF_DYNPTR_TYPE_RINGBUF;
632 	case DYNPTR_TYPE_SKB:
633 		return BPF_DYNPTR_TYPE_SKB;
634 	case DYNPTR_TYPE_XDP:
635 		return BPF_DYNPTR_TYPE_XDP;
636 	default:
637 		return BPF_DYNPTR_TYPE_INVALID;
638 	}
639 }
640 
641 static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type)
642 {
643 	switch (type) {
644 	case BPF_DYNPTR_TYPE_LOCAL:
645 		return DYNPTR_TYPE_LOCAL;
646 	case BPF_DYNPTR_TYPE_RINGBUF:
647 		return DYNPTR_TYPE_RINGBUF;
648 	case BPF_DYNPTR_TYPE_SKB:
649 		return DYNPTR_TYPE_SKB;
650 	case BPF_DYNPTR_TYPE_XDP:
651 		return DYNPTR_TYPE_XDP;
652 	default:
653 		return 0;
654 	}
655 }
656 
657 static bool dynptr_type_refcounted(enum bpf_dynptr_type type)
658 {
659 	return type == BPF_DYNPTR_TYPE_RINGBUF;
660 }
661 
662 static void __mark_dynptr_reg(struct bpf_reg_state *reg,
663 			      enum bpf_dynptr_type type,
664 			      bool first_slot, int dynptr_id);
665 
666 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
667 				struct bpf_reg_state *reg);
668 
669 static void mark_dynptr_stack_regs(struct bpf_verifier_env *env,
670 				   struct bpf_reg_state *sreg1,
671 				   struct bpf_reg_state *sreg2,
672 				   enum bpf_dynptr_type type)
673 {
674 	int id = ++env->id_gen;
675 
676 	__mark_dynptr_reg(sreg1, type, true, id);
677 	__mark_dynptr_reg(sreg2, type, false, id);
678 }
679 
680 static void mark_dynptr_cb_reg(struct bpf_verifier_env *env,
681 			       struct bpf_reg_state *reg,
682 			       enum bpf_dynptr_type type)
683 {
684 	__mark_dynptr_reg(reg, type, true, ++env->id_gen);
685 }
686 
687 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
688 				        struct bpf_func_state *state, int spi);
689 
690 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
691 				   enum bpf_arg_type arg_type, int insn_idx, int clone_ref_obj_id)
692 {
693 	struct bpf_func_state *state = func(env, reg);
694 	enum bpf_dynptr_type type;
695 	int spi, i, err;
696 
697 	spi = dynptr_get_spi(env, reg);
698 	if (spi < 0)
699 		return spi;
700 
701 	/* We cannot assume both spi and spi - 1 belong to the same dynptr,
702 	 * hence we need to call destroy_if_dynptr_stack_slot twice for both,
703 	 * to ensure that for the following example:
704 	 *	[d1][d1][d2][d2]
705 	 * spi    3   2   1   0
706 	 * So marking spi = 2 should lead to destruction of both d1 and d2. In
707 	 * case they do belong to same dynptr, second call won't see slot_type
708 	 * as STACK_DYNPTR and will simply skip destruction.
709 	 */
710 	err = destroy_if_dynptr_stack_slot(env, state, spi);
711 	if (err)
712 		return err;
713 	err = destroy_if_dynptr_stack_slot(env, state, spi - 1);
714 	if (err)
715 		return err;
716 
717 	for (i = 0; i < BPF_REG_SIZE; i++) {
718 		state->stack[spi].slot_type[i] = STACK_DYNPTR;
719 		state->stack[spi - 1].slot_type[i] = STACK_DYNPTR;
720 	}
721 
722 	type = arg_to_dynptr_type(arg_type);
723 	if (type == BPF_DYNPTR_TYPE_INVALID)
724 		return -EINVAL;
725 
726 	mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr,
727 			       &state->stack[spi - 1].spilled_ptr, type);
728 
729 	if (dynptr_type_refcounted(type)) {
730 		/* The id is used to track proper releasing */
731 		int id;
732 
733 		if (clone_ref_obj_id)
734 			id = clone_ref_obj_id;
735 		else
736 			id = acquire_reference_state(env, insn_idx);
737 
738 		if (id < 0)
739 			return id;
740 
741 		state->stack[spi].spilled_ptr.ref_obj_id = id;
742 		state->stack[spi - 1].spilled_ptr.ref_obj_id = id;
743 	}
744 
745 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
746 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
747 
748 	return 0;
749 }
750 
751 static void invalidate_dynptr(struct bpf_verifier_env *env, struct bpf_func_state *state, int spi)
752 {
753 	int i;
754 
755 	for (i = 0; i < BPF_REG_SIZE; i++) {
756 		state->stack[spi].slot_type[i] = STACK_INVALID;
757 		state->stack[spi - 1].slot_type[i] = STACK_INVALID;
758 	}
759 
760 	__mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
761 	__mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
762 
763 	/* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot?
764 	 *
765 	 * While we don't allow reading STACK_INVALID, it is still possible to
766 	 * do <8 byte writes marking some but not all slots as STACK_MISC. Then,
767 	 * helpers or insns can do partial read of that part without failing,
768 	 * but check_stack_range_initialized, check_stack_read_var_off, and
769 	 * check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of
770 	 * the slot conservatively. Hence we need to prevent those liveness
771 	 * marking walks.
772 	 *
773 	 * This was not a problem before because STACK_INVALID is only set by
774 	 * default (where the default reg state has its reg->parent as NULL), or
775 	 * in clean_live_states after REG_LIVE_DONE (at which point
776 	 * mark_reg_read won't walk reg->parent chain), but not randomly during
777 	 * verifier state exploration (like we did above). Hence, for our case
778 	 * parentage chain will still be live (i.e. reg->parent may be
779 	 * non-NULL), while earlier reg->parent was NULL, so we need
780 	 * REG_LIVE_WRITTEN to screen off read marker propagation when it is
781 	 * done later on reads or by mark_dynptr_read as well to unnecessary
782 	 * mark registers in verifier state.
783 	 */
784 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
785 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
786 }
787 
788 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
789 {
790 	struct bpf_func_state *state = func(env, reg);
791 	int spi, ref_obj_id, i;
792 
793 	spi = dynptr_get_spi(env, reg);
794 	if (spi < 0)
795 		return spi;
796 
797 	if (!dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
798 		invalidate_dynptr(env, state, spi);
799 		return 0;
800 	}
801 
802 	ref_obj_id = state->stack[spi].spilled_ptr.ref_obj_id;
803 
804 	/* If the dynptr has a ref_obj_id, then we need to invalidate
805 	 * two things:
806 	 *
807 	 * 1) Any dynptrs with a matching ref_obj_id (clones)
808 	 * 2) Any slices derived from this dynptr.
809 	 */
810 
811 	/* Invalidate any slices associated with this dynptr */
812 	WARN_ON_ONCE(release_reference(env, ref_obj_id));
813 
814 	/* Invalidate any dynptr clones */
815 	for (i = 1; i < state->allocated_stack / BPF_REG_SIZE; i++) {
816 		if (state->stack[i].spilled_ptr.ref_obj_id != ref_obj_id)
817 			continue;
818 
819 		/* it should always be the case that if the ref obj id
820 		 * matches then the stack slot also belongs to a
821 		 * dynptr
822 		 */
823 		if (state->stack[i].slot_type[0] != STACK_DYNPTR) {
824 			verbose(env, "verifier internal error: misconfigured ref_obj_id\n");
825 			return -EFAULT;
826 		}
827 		if (state->stack[i].spilled_ptr.dynptr.first_slot)
828 			invalidate_dynptr(env, state, i);
829 	}
830 
831 	return 0;
832 }
833 
834 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
835 			       struct bpf_reg_state *reg);
836 
837 static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg)
838 {
839 	if (!env->allow_ptr_leaks)
840 		__mark_reg_not_init(env, reg);
841 	else
842 		__mark_reg_unknown(env, reg);
843 }
844 
845 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
846 				        struct bpf_func_state *state, int spi)
847 {
848 	struct bpf_func_state *fstate;
849 	struct bpf_reg_state *dreg;
850 	int i, dynptr_id;
851 
852 	/* We always ensure that STACK_DYNPTR is never set partially,
853 	 * hence just checking for slot_type[0] is enough. This is
854 	 * different for STACK_SPILL, where it may be only set for
855 	 * 1 byte, so code has to use is_spilled_reg.
856 	 */
857 	if (state->stack[spi].slot_type[0] != STACK_DYNPTR)
858 		return 0;
859 
860 	/* Reposition spi to first slot */
861 	if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
862 		spi = spi + 1;
863 
864 	if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
865 		verbose(env, "cannot overwrite referenced dynptr\n");
866 		return -EINVAL;
867 	}
868 
869 	mark_stack_slot_scratched(env, spi);
870 	mark_stack_slot_scratched(env, spi - 1);
871 
872 	/* Writing partially to one dynptr stack slot destroys both. */
873 	for (i = 0; i < BPF_REG_SIZE; i++) {
874 		state->stack[spi].slot_type[i] = STACK_INVALID;
875 		state->stack[spi - 1].slot_type[i] = STACK_INVALID;
876 	}
877 
878 	dynptr_id = state->stack[spi].spilled_ptr.id;
879 	/* Invalidate any slices associated with this dynptr */
880 	bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({
881 		/* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */
882 		if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM)
883 			continue;
884 		if (dreg->dynptr_id == dynptr_id)
885 			mark_reg_invalid(env, dreg);
886 	}));
887 
888 	/* Do not release reference state, we are destroying dynptr on stack,
889 	 * not using some helper to release it. Just reset register.
890 	 */
891 	__mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
892 	__mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
893 
894 	/* Same reason as unmark_stack_slots_dynptr above */
895 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
896 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
897 
898 	return 0;
899 }
900 
901 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
902 {
903 	int spi;
904 
905 	if (reg->type == CONST_PTR_TO_DYNPTR)
906 		return false;
907 
908 	spi = dynptr_get_spi(env, reg);
909 
910 	/* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an
911 	 * error because this just means the stack state hasn't been updated yet.
912 	 * We will do check_mem_access to check and update stack bounds later.
913 	 */
914 	if (spi < 0 && spi != -ERANGE)
915 		return false;
916 
917 	/* We don't need to check if the stack slots are marked by previous
918 	 * dynptr initializations because we allow overwriting existing unreferenced
919 	 * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls
920 	 * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are
921 	 * touching are completely destructed before we reinitialize them for a new
922 	 * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early
923 	 * instead of delaying it until the end where the user will get "Unreleased
924 	 * reference" error.
925 	 */
926 	return true;
927 }
928 
929 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
930 {
931 	struct bpf_func_state *state = func(env, reg);
932 	int i, spi;
933 
934 	/* This already represents first slot of initialized bpf_dynptr.
935 	 *
936 	 * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to
937 	 * check_func_arg_reg_off's logic, so we don't need to check its
938 	 * offset and alignment.
939 	 */
940 	if (reg->type == CONST_PTR_TO_DYNPTR)
941 		return true;
942 
943 	spi = dynptr_get_spi(env, reg);
944 	if (spi < 0)
945 		return false;
946 	if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
947 		return false;
948 
949 	for (i = 0; i < BPF_REG_SIZE; i++) {
950 		if (state->stack[spi].slot_type[i] != STACK_DYNPTR ||
951 		    state->stack[spi - 1].slot_type[i] != STACK_DYNPTR)
952 			return false;
953 	}
954 
955 	return true;
956 }
957 
958 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
959 				    enum bpf_arg_type arg_type)
960 {
961 	struct bpf_func_state *state = func(env, reg);
962 	enum bpf_dynptr_type dynptr_type;
963 	int spi;
964 
965 	/* ARG_PTR_TO_DYNPTR takes any type of dynptr */
966 	if (arg_type == ARG_PTR_TO_DYNPTR)
967 		return true;
968 
969 	dynptr_type = arg_to_dynptr_type(arg_type);
970 	if (reg->type == CONST_PTR_TO_DYNPTR) {
971 		return reg->dynptr.type == dynptr_type;
972 	} else {
973 		spi = dynptr_get_spi(env, reg);
974 		if (spi < 0)
975 			return false;
976 		return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type;
977 	}
978 }
979 
980 static void __mark_reg_known_zero(struct bpf_reg_state *reg);
981 
982 static bool in_rcu_cs(struct bpf_verifier_env *env);
983 
984 static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta);
985 
986 static int mark_stack_slots_iter(struct bpf_verifier_env *env,
987 				 struct bpf_kfunc_call_arg_meta *meta,
988 				 struct bpf_reg_state *reg, int insn_idx,
989 				 struct btf *btf, u32 btf_id, int nr_slots)
990 {
991 	struct bpf_func_state *state = func(env, reg);
992 	int spi, i, j, id;
993 
994 	spi = iter_get_spi(env, reg, nr_slots);
995 	if (spi < 0)
996 		return spi;
997 
998 	id = acquire_reference_state(env, insn_idx);
999 	if (id < 0)
1000 		return id;
1001 
1002 	for (i = 0; i < nr_slots; i++) {
1003 		struct bpf_stack_state *slot = &state->stack[spi - i];
1004 		struct bpf_reg_state *st = &slot->spilled_ptr;
1005 
1006 		__mark_reg_known_zero(st);
1007 		st->type = PTR_TO_STACK; /* we don't have dedicated reg type */
1008 		if (is_kfunc_rcu_protected(meta)) {
1009 			if (in_rcu_cs(env))
1010 				st->type |= MEM_RCU;
1011 			else
1012 				st->type |= PTR_UNTRUSTED;
1013 		}
1014 		st->live |= REG_LIVE_WRITTEN;
1015 		st->ref_obj_id = i == 0 ? id : 0;
1016 		st->iter.btf = btf;
1017 		st->iter.btf_id = btf_id;
1018 		st->iter.state = BPF_ITER_STATE_ACTIVE;
1019 		st->iter.depth = 0;
1020 
1021 		for (j = 0; j < BPF_REG_SIZE; j++)
1022 			slot->slot_type[j] = STACK_ITER;
1023 
1024 		mark_stack_slot_scratched(env, spi - i);
1025 	}
1026 
1027 	return 0;
1028 }
1029 
1030 static int unmark_stack_slots_iter(struct bpf_verifier_env *env,
1031 				   struct bpf_reg_state *reg, int nr_slots)
1032 {
1033 	struct bpf_func_state *state = func(env, reg);
1034 	int spi, i, j;
1035 
1036 	spi = iter_get_spi(env, reg, nr_slots);
1037 	if (spi < 0)
1038 		return spi;
1039 
1040 	for (i = 0; i < nr_slots; i++) {
1041 		struct bpf_stack_state *slot = &state->stack[spi - i];
1042 		struct bpf_reg_state *st = &slot->spilled_ptr;
1043 
1044 		if (i == 0)
1045 			WARN_ON_ONCE(release_reference(env, st->ref_obj_id));
1046 
1047 		__mark_reg_not_init(env, st);
1048 
1049 		/* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */
1050 		st->live |= REG_LIVE_WRITTEN;
1051 
1052 		for (j = 0; j < BPF_REG_SIZE; j++)
1053 			slot->slot_type[j] = STACK_INVALID;
1054 
1055 		mark_stack_slot_scratched(env, spi - i);
1056 	}
1057 
1058 	return 0;
1059 }
1060 
1061 static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env,
1062 				     struct bpf_reg_state *reg, int nr_slots)
1063 {
1064 	struct bpf_func_state *state = func(env, reg);
1065 	int spi, i, j;
1066 
1067 	/* For -ERANGE (i.e. spi not falling into allocated stack slots), we
1068 	 * will do check_mem_access to check and update stack bounds later, so
1069 	 * return true for that case.
1070 	 */
1071 	spi = iter_get_spi(env, reg, nr_slots);
1072 	if (spi == -ERANGE)
1073 		return true;
1074 	if (spi < 0)
1075 		return false;
1076 
1077 	for (i = 0; i < nr_slots; i++) {
1078 		struct bpf_stack_state *slot = &state->stack[spi - i];
1079 
1080 		for (j = 0; j < BPF_REG_SIZE; j++)
1081 			if (slot->slot_type[j] == STACK_ITER)
1082 				return false;
1083 	}
1084 
1085 	return true;
1086 }
1087 
1088 static int is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
1089 				   struct btf *btf, u32 btf_id, int nr_slots)
1090 {
1091 	struct bpf_func_state *state = func(env, reg);
1092 	int spi, i, j;
1093 
1094 	spi = iter_get_spi(env, reg, nr_slots);
1095 	if (spi < 0)
1096 		return -EINVAL;
1097 
1098 	for (i = 0; i < nr_slots; i++) {
1099 		struct bpf_stack_state *slot = &state->stack[spi - i];
1100 		struct bpf_reg_state *st = &slot->spilled_ptr;
1101 
1102 		if (st->type & PTR_UNTRUSTED)
1103 			return -EPROTO;
1104 		/* only main (first) slot has ref_obj_id set */
1105 		if (i == 0 && !st->ref_obj_id)
1106 			return -EINVAL;
1107 		if (i != 0 && st->ref_obj_id)
1108 			return -EINVAL;
1109 		if (st->iter.btf != btf || st->iter.btf_id != btf_id)
1110 			return -EINVAL;
1111 
1112 		for (j = 0; j < BPF_REG_SIZE; j++)
1113 			if (slot->slot_type[j] != STACK_ITER)
1114 				return -EINVAL;
1115 	}
1116 
1117 	return 0;
1118 }
1119 
1120 /* Check if given stack slot is "special":
1121  *   - spilled register state (STACK_SPILL);
1122  *   - dynptr state (STACK_DYNPTR);
1123  *   - iter state (STACK_ITER).
1124  */
1125 static bool is_stack_slot_special(const struct bpf_stack_state *stack)
1126 {
1127 	enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1];
1128 
1129 	switch (type) {
1130 	case STACK_SPILL:
1131 	case STACK_DYNPTR:
1132 	case STACK_ITER:
1133 		return true;
1134 	case STACK_INVALID:
1135 	case STACK_MISC:
1136 	case STACK_ZERO:
1137 		return false;
1138 	default:
1139 		WARN_ONCE(1, "unknown stack slot type %d\n", type);
1140 		return true;
1141 	}
1142 }
1143 
1144 /* The reg state of a pointer or a bounded scalar was saved when
1145  * it was spilled to the stack.
1146  */
1147 static bool is_spilled_reg(const struct bpf_stack_state *stack)
1148 {
1149 	return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL;
1150 }
1151 
1152 static bool is_spilled_scalar_reg(const struct bpf_stack_state *stack)
1153 {
1154 	return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL &&
1155 	       stack->spilled_ptr.type == SCALAR_VALUE;
1156 }
1157 
1158 /* Mark stack slot as STACK_MISC, unless it is already STACK_INVALID, in which
1159  * case they are equivalent, or it's STACK_ZERO, in which case we preserve
1160  * more precise STACK_ZERO.
1161  * Note, in uprivileged mode leaving STACK_INVALID is wrong, so we take
1162  * env->allow_ptr_leaks into account and force STACK_MISC, if necessary.
1163  */
1164 static void mark_stack_slot_misc(struct bpf_verifier_env *env, u8 *stype)
1165 {
1166 	if (*stype == STACK_ZERO)
1167 		return;
1168 	if (env->allow_ptr_leaks && *stype == STACK_INVALID)
1169 		return;
1170 	*stype = STACK_MISC;
1171 }
1172 
1173 static void scrub_spilled_slot(u8 *stype)
1174 {
1175 	if (*stype != STACK_INVALID)
1176 		*stype = STACK_MISC;
1177 }
1178 
1179 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too
1180  * small to hold src. This is different from krealloc since we don't want to preserve
1181  * the contents of dst.
1182  *
1183  * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
1184  * not be allocated.
1185  */
1186 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
1187 {
1188 	size_t alloc_bytes;
1189 	void *orig = dst;
1190 	size_t bytes;
1191 
1192 	if (ZERO_OR_NULL_PTR(src))
1193 		goto out;
1194 
1195 	if (unlikely(check_mul_overflow(n, size, &bytes)))
1196 		return NULL;
1197 
1198 	alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes));
1199 	dst = krealloc(orig, alloc_bytes, flags);
1200 	if (!dst) {
1201 		kfree(orig);
1202 		return NULL;
1203 	}
1204 
1205 	memcpy(dst, src, bytes);
1206 out:
1207 	return dst ? dst : ZERO_SIZE_PTR;
1208 }
1209 
1210 /* resize an array from old_n items to new_n items. the array is reallocated if it's too
1211  * small to hold new_n items. new items are zeroed out if the array grows.
1212  *
1213  * Contrary to krealloc_array, does not free arr if new_n is zero.
1214  */
1215 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
1216 {
1217 	size_t alloc_size;
1218 	void *new_arr;
1219 
1220 	if (!new_n || old_n == new_n)
1221 		goto out;
1222 
1223 	alloc_size = kmalloc_size_roundup(size_mul(new_n, size));
1224 	new_arr = krealloc(arr, alloc_size, GFP_KERNEL);
1225 	if (!new_arr) {
1226 		kfree(arr);
1227 		return NULL;
1228 	}
1229 	arr = new_arr;
1230 
1231 	if (new_n > old_n)
1232 		memset(arr + old_n * size, 0, (new_n - old_n) * size);
1233 
1234 out:
1235 	return arr ? arr : ZERO_SIZE_PTR;
1236 }
1237 
1238 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1239 {
1240 	dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
1241 			       sizeof(struct bpf_reference_state), GFP_KERNEL);
1242 	if (!dst->refs)
1243 		return -ENOMEM;
1244 
1245 	dst->acquired_refs = src->acquired_refs;
1246 	return 0;
1247 }
1248 
1249 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1250 {
1251 	size_t n = src->allocated_stack / BPF_REG_SIZE;
1252 
1253 	dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
1254 				GFP_KERNEL);
1255 	if (!dst->stack)
1256 		return -ENOMEM;
1257 
1258 	dst->allocated_stack = src->allocated_stack;
1259 	return 0;
1260 }
1261 
1262 static int resize_reference_state(struct bpf_func_state *state, size_t n)
1263 {
1264 	state->refs = realloc_array(state->refs, state->acquired_refs, n,
1265 				    sizeof(struct bpf_reference_state));
1266 	if (!state->refs)
1267 		return -ENOMEM;
1268 
1269 	state->acquired_refs = n;
1270 	return 0;
1271 }
1272 
1273 /* Possibly update state->allocated_stack to be at least size bytes. Also
1274  * possibly update the function's high-water mark in its bpf_subprog_info.
1275  */
1276 static int grow_stack_state(struct bpf_verifier_env *env, struct bpf_func_state *state, int size)
1277 {
1278 	size_t old_n = state->allocated_stack / BPF_REG_SIZE, n;
1279 
1280 	/* The stack size is always a multiple of BPF_REG_SIZE. */
1281 	size = round_up(size, BPF_REG_SIZE);
1282 	n = size / BPF_REG_SIZE;
1283 
1284 	if (old_n >= n)
1285 		return 0;
1286 
1287 	state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
1288 	if (!state->stack)
1289 		return -ENOMEM;
1290 
1291 	state->allocated_stack = size;
1292 
1293 	/* update known max for given subprogram */
1294 	if (env->subprog_info[state->subprogno].stack_depth < size)
1295 		env->subprog_info[state->subprogno].stack_depth = size;
1296 
1297 	return 0;
1298 }
1299 
1300 /* Acquire a pointer id from the env and update the state->refs to include
1301  * this new pointer reference.
1302  * On success, returns a valid pointer id to associate with the register
1303  * On failure, returns a negative errno.
1304  */
1305 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
1306 {
1307 	struct bpf_func_state *state = cur_func(env);
1308 	int new_ofs = state->acquired_refs;
1309 	int id, err;
1310 
1311 	err = resize_reference_state(state, state->acquired_refs + 1);
1312 	if (err)
1313 		return err;
1314 	id = ++env->id_gen;
1315 	state->refs[new_ofs].id = id;
1316 	state->refs[new_ofs].insn_idx = insn_idx;
1317 	state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0;
1318 
1319 	return id;
1320 }
1321 
1322 /* release function corresponding to acquire_reference_state(). Idempotent. */
1323 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
1324 {
1325 	int i, last_idx;
1326 
1327 	last_idx = state->acquired_refs - 1;
1328 	for (i = 0; i < state->acquired_refs; i++) {
1329 		if (state->refs[i].id == ptr_id) {
1330 			/* Cannot release caller references in callbacks */
1331 			if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
1332 				return -EINVAL;
1333 			if (last_idx && i != last_idx)
1334 				memcpy(&state->refs[i], &state->refs[last_idx],
1335 				       sizeof(*state->refs));
1336 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
1337 			state->acquired_refs--;
1338 			return 0;
1339 		}
1340 	}
1341 	return -EINVAL;
1342 }
1343 
1344 static void free_func_state(struct bpf_func_state *state)
1345 {
1346 	if (!state)
1347 		return;
1348 	kfree(state->refs);
1349 	kfree(state->stack);
1350 	kfree(state);
1351 }
1352 
1353 static void clear_jmp_history(struct bpf_verifier_state *state)
1354 {
1355 	kfree(state->jmp_history);
1356 	state->jmp_history = NULL;
1357 	state->jmp_history_cnt = 0;
1358 }
1359 
1360 static void free_verifier_state(struct bpf_verifier_state *state,
1361 				bool free_self)
1362 {
1363 	int i;
1364 
1365 	for (i = 0; i <= state->curframe; i++) {
1366 		free_func_state(state->frame[i]);
1367 		state->frame[i] = NULL;
1368 	}
1369 	clear_jmp_history(state);
1370 	if (free_self)
1371 		kfree(state);
1372 }
1373 
1374 /* copy verifier state from src to dst growing dst stack space
1375  * when necessary to accommodate larger src stack
1376  */
1377 static int copy_func_state(struct bpf_func_state *dst,
1378 			   const struct bpf_func_state *src)
1379 {
1380 	int err;
1381 
1382 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
1383 	err = copy_reference_state(dst, src);
1384 	if (err)
1385 		return err;
1386 	return copy_stack_state(dst, src);
1387 }
1388 
1389 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
1390 			       const struct bpf_verifier_state *src)
1391 {
1392 	struct bpf_func_state *dst;
1393 	int i, err;
1394 
1395 	dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
1396 					  src->jmp_history_cnt, sizeof(*dst_state->jmp_history),
1397 					  GFP_USER);
1398 	if (!dst_state->jmp_history)
1399 		return -ENOMEM;
1400 	dst_state->jmp_history_cnt = src->jmp_history_cnt;
1401 
1402 	/* if dst has more stack frames then src frame, free them, this is also
1403 	 * necessary in case of exceptional exits using bpf_throw.
1404 	 */
1405 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
1406 		free_func_state(dst_state->frame[i]);
1407 		dst_state->frame[i] = NULL;
1408 	}
1409 	dst_state->speculative = src->speculative;
1410 	dst_state->active_rcu_lock = src->active_rcu_lock;
1411 	dst_state->curframe = src->curframe;
1412 	dst_state->active_lock.ptr = src->active_lock.ptr;
1413 	dst_state->active_lock.id = src->active_lock.id;
1414 	dst_state->branches = src->branches;
1415 	dst_state->parent = src->parent;
1416 	dst_state->first_insn_idx = src->first_insn_idx;
1417 	dst_state->last_insn_idx = src->last_insn_idx;
1418 	dst_state->dfs_depth = src->dfs_depth;
1419 	dst_state->callback_unroll_depth = src->callback_unroll_depth;
1420 	dst_state->used_as_loop_entry = src->used_as_loop_entry;
1421 	for (i = 0; i <= src->curframe; i++) {
1422 		dst = dst_state->frame[i];
1423 		if (!dst) {
1424 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
1425 			if (!dst)
1426 				return -ENOMEM;
1427 			dst_state->frame[i] = dst;
1428 		}
1429 		err = copy_func_state(dst, src->frame[i]);
1430 		if (err)
1431 			return err;
1432 	}
1433 	return 0;
1434 }
1435 
1436 static u32 state_htab_size(struct bpf_verifier_env *env)
1437 {
1438 	return env->prog->len;
1439 }
1440 
1441 static struct bpf_verifier_state_list **explored_state(struct bpf_verifier_env *env, int idx)
1442 {
1443 	struct bpf_verifier_state *cur = env->cur_state;
1444 	struct bpf_func_state *state = cur->frame[cur->curframe];
1445 
1446 	return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
1447 }
1448 
1449 static bool same_callsites(struct bpf_verifier_state *a, struct bpf_verifier_state *b)
1450 {
1451 	int fr;
1452 
1453 	if (a->curframe != b->curframe)
1454 		return false;
1455 
1456 	for (fr = a->curframe; fr >= 0; fr--)
1457 		if (a->frame[fr]->callsite != b->frame[fr]->callsite)
1458 			return false;
1459 
1460 	return true;
1461 }
1462 
1463 /* Open coded iterators allow back-edges in the state graph in order to
1464  * check unbounded loops that iterators.
1465  *
1466  * In is_state_visited() it is necessary to know if explored states are
1467  * part of some loops in order to decide whether non-exact states
1468  * comparison could be used:
1469  * - non-exact states comparison establishes sub-state relation and uses
1470  *   read and precision marks to do so, these marks are propagated from
1471  *   children states and thus are not guaranteed to be final in a loop;
1472  * - exact states comparison just checks if current and explored states
1473  *   are identical (and thus form a back-edge).
1474  *
1475  * Paper "A New Algorithm for Identifying Loops in Decompilation"
1476  * by Tao Wei, Jian Mao, Wei Zou and Yu Chen [1] presents a convenient
1477  * algorithm for loop structure detection and gives an overview of
1478  * relevant terminology. It also has helpful illustrations.
1479  *
1480  * [1] https://api.semanticscholar.org/CorpusID:15784067
1481  *
1482  * We use a similar algorithm but because loop nested structure is
1483  * irrelevant for verifier ours is significantly simpler and resembles
1484  * strongly connected components algorithm from Sedgewick's textbook.
1485  *
1486  * Define topmost loop entry as a first node of the loop traversed in a
1487  * depth first search starting from initial state. The goal of the loop
1488  * tracking algorithm is to associate topmost loop entries with states
1489  * derived from these entries.
1490  *
1491  * For each step in the DFS states traversal algorithm needs to identify
1492  * the following situations:
1493  *
1494  *          initial                     initial                   initial
1495  *            |                           |                         |
1496  *            V                           V                         V
1497  *           ...                         ...           .---------> hdr
1498  *            |                           |            |            |
1499  *            V                           V            |            V
1500  *           cur                     .-> succ          |    .------...
1501  *            |                      |    |            |    |       |
1502  *            V                      |    V            |    V       V
1503  *           succ                    '-- cur           |   ...     ...
1504  *                                                     |    |       |
1505  *                                                     |    V       V
1506  *                                                     |   succ <- cur
1507  *                                                     |    |
1508  *                                                     |    V
1509  *                                                     |   ...
1510  *                                                     |    |
1511  *                                                     '----'
1512  *
1513  *  (A) successor state of cur   (B) successor state of cur or it's entry
1514  *      not yet traversed            are in current DFS path, thus cur and succ
1515  *                                   are members of the same outermost loop
1516  *
1517  *                      initial                  initial
1518  *                        |                        |
1519  *                        V                        V
1520  *                       ...                      ...
1521  *                        |                        |
1522  *                        V                        V
1523  *                .------...               .------...
1524  *                |       |                |       |
1525  *                V       V                V       V
1526  *           .-> hdr     ...              ...     ...
1527  *           |    |       |                |       |
1528  *           |    V       V                V       V
1529  *           |   succ <- cur              succ <- cur
1530  *           |    |                        |
1531  *           |    V                        V
1532  *           |   ...                      ...
1533  *           |    |                        |
1534  *           '----'                       exit
1535  *
1536  * (C) successor state of cur is a part of some loop but this loop
1537  *     does not include cur or successor state is not in a loop at all.
1538  *
1539  * Algorithm could be described as the following python code:
1540  *
1541  *     traversed = set()   # Set of traversed nodes
1542  *     entries = {}        # Mapping from node to loop entry
1543  *     depths = {}         # Depth level assigned to graph node
1544  *     path = set()        # Current DFS path
1545  *
1546  *     # Find outermost loop entry known for n
1547  *     def get_loop_entry(n):
1548  *         h = entries.get(n, None)
1549  *         while h in entries and entries[h] != h:
1550  *             h = entries[h]
1551  *         return h
1552  *
1553  *     # Update n's loop entry if h's outermost entry comes
1554  *     # before n's outermost entry in current DFS path.
1555  *     def update_loop_entry(n, h):
1556  *         n1 = get_loop_entry(n) or n
1557  *         h1 = get_loop_entry(h) or h
1558  *         if h1 in path and depths[h1] <= depths[n1]:
1559  *             entries[n] = h1
1560  *
1561  *     def dfs(n, depth):
1562  *         traversed.add(n)
1563  *         path.add(n)
1564  *         depths[n] = depth
1565  *         for succ in G.successors(n):
1566  *             if succ not in traversed:
1567  *                 # Case A: explore succ and update cur's loop entry
1568  *                 #         only if succ's entry is in current DFS path.
1569  *                 dfs(succ, depth + 1)
1570  *                 h = get_loop_entry(succ)
1571  *                 update_loop_entry(n, h)
1572  *             else:
1573  *                 # Case B or C depending on `h1 in path` check in update_loop_entry().
1574  *                 update_loop_entry(n, succ)
1575  *         path.remove(n)
1576  *
1577  * To adapt this algorithm for use with verifier:
1578  * - use st->branch == 0 as a signal that DFS of succ had been finished
1579  *   and cur's loop entry has to be updated (case A), handle this in
1580  *   update_branch_counts();
1581  * - use st->branch > 0 as a signal that st is in the current DFS path;
1582  * - handle cases B and C in is_state_visited();
1583  * - update topmost loop entry for intermediate states in get_loop_entry().
1584  */
1585 static struct bpf_verifier_state *get_loop_entry(struct bpf_verifier_state *st)
1586 {
1587 	struct bpf_verifier_state *topmost = st->loop_entry, *old;
1588 
1589 	while (topmost && topmost->loop_entry && topmost != topmost->loop_entry)
1590 		topmost = topmost->loop_entry;
1591 	/* Update loop entries for intermediate states to avoid this
1592 	 * traversal in future get_loop_entry() calls.
1593 	 */
1594 	while (st && st->loop_entry != topmost) {
1595 		old = st->loop_entry;
1596 		st->loop_entry = topmost;
1597 		st = old;
1598 	}
1599 	return topmost;
1600 }
1601 
1602 static void update_loop_entry(struct bpf_verifier_state *cur, struct bpf_verifier_state *hdr)
1603 {
1604 	struct bpf_verifier_state *cur1, *hdr1;
1605 
1606 	cur1 = get_loop_entry(cur) ?: cur;
1607 	hdr1 = get_loop_entry(hdr) ?: hdr;
1608 	/* The head1->branches check decides between cases B and C in
1609 	 * comment for get_loop_entry(). If hdr1->branches == 0 then
1610 	 * head's topmost loop entry is not in current DFS path,
1611 	 * hence 'cur' and 'hdr' are not in the same loop and there is
1612 	 * no need to update cur->loop_entry.
1613 	 */
1614 	if (hdr1->branches && hdr1->dfs_depth <= cur1->dfs_depth) {
1615 		cur->loop_entry = hdr;
1616 		hdr->used_as_loop_entry = true;
1617 	}
1618 }
1619 
1620 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
1621 {
1622 	while (st) {
1623 		u32 br = --st->branches;
1624 
1625 		/* br == 0 signals that DFS exploration for 'st' is finished,
1626 		 * thus it is necessary to update parent's loop entry if it
1627 		 * turned out that st is a part of some loop.
1628 		 * This is a part of 'case A' in get_loop_entry() comment.
1629 		 */
1630 		if (br == 0 && st->parent && st->loop_entry)
1631 			update_loop_entry(st->parent, st->loop_entry);
1632 
1633 		/* WARN_ON(br > 1) technically makes sense here,
1634 		 * but see comment in push_stack(), hence:
1635 		 */
1636 		WARN_ONCE((int)br < 0,
1637 			  "BUG update_branch_counts:branches_to_explore=%d\n",
1638 			  br);
1639 		if (br)
1640 			break;
1641 		st = st->parent;
1642 	}
1643 }
1644 
1645 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
1646 		     int *insn_idx, bool pop_log)
1647 {
1648 	struct bpf_verifier_state *cur = env->cur_state;
1649 	struct bpf_verifier_stack_elem *elem, *head = env->head;
1650 	int err;
1651 
1652 	if (env->head == NULL)
1653 		return -ENOENT;
1654 
1655 	if (cur) {
1656 		err = copy_verifier_state(cur, &head->st);
1657 		if (err)
1658 			return err;
1659 	}
1660 	if (pop_log)
1661 		bpf_vlog_reset(&env->log, head->log_pos);
1662 	if (insn_idx)
1663 		*insn_idx = head->insn_idx;
1664 	if (prev_insn_idx)
1665 		*prev_insn_idx = head->prev_insn_idx;
1666 	elem = head->next;
1667 	free_verifier_state(&head->st, false);
1668 	kfree(head);
1669 	env->head = elem;
1670 	env->stack_size--;
1671 	return 0;
1672 }
1673 
1674 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
1675 					     int insn_idx, int prev_insn_idx,
1676 					     bool speculative)
1677 {
1678 	struct bpf_verifier_state *cur = env->cur_state;
1679 	struct bpf_verifier_stack_elem *elem;
1680 	int err;
1681 
1682 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1683 	if (!elem)
1684 		goto err;
1685 
1686 	elem->insn_idx = insn_idx;
1687 	elem->prev_insn_idx = prev_insn_idx;
1688 	elem->next = env->head;
1689 	elem->log_pos = env->log.end_pos;
1690 	env->head = elem;
1691 	env->stack_size++;
1692 	err = copy_verifier_state(&elem->st, cur);
1693 	if (err)
1694 		goto err;
1695 	elem->st.speculative |= speculative;
1696 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1697 		verbose(env, "The sequence of %d jumps is too complex.\n",
1698 			env->stack_size);
1699 		goto err;
1700 	}
1701 	if (elem->st.parent) {
1702 		++elem->st.parent->branches;
1703 		/* WARN_ON(branches > 2) technically makes sense here,
1704 		 * but
1705 		 * 1. speculative states will bump 'branches' for non-branch
1706 		 * instructions
1707 		 * 2. is_state_visited() heuristics may decide not to create
1708 		 * a new state for a sequence of branches and all such current
1709 		 * and cloned states will be pointing to a single parent state
1710 		 * which might have large 'branches' count.
1711 		 */
1712 	}
1713 	return &elem->st;
1714 err:
1715 	free_verifier_state(env->cur_state, true);
1716 	env->cur_state = NULL;
1717 	/* pop all elements and return */
1718 	while (!pop_stack(env, NULL, NULL, false));
1719 	return NULL;
1720 }
1721 
1722 #define CALLER_SAVED_REGS 6
1723 static const int caller_saved[CALLER_SAVED_REGS] = {
1724 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1725 };
1726 
1727 /* This helper doesn't clear reg->id */
1728 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1729 {
1730 	reg->var_off = tnum_const(imm);
1731 	reg->smin_value = (s64)imm;
1732 	reg->smax_value = (s64)imm;
1733 	reg->umin_value = imm;
1734 	reg->umax_value = imm;
1735 
1736 	reg->s32_min_value = (s32)imm;
1737 	reg->s32_max_value = (s32)imm;
1738 	reg->u32_min_value = (u32)imm;
1739 	reg->u32_max_value = (u32)imm;
1740 }
1741 
1742 /* Mark the unknown part of a register (variable offset or scalar value) as
1743  * known to have the value @imm.
1744  */
1745 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1746 {
1747 	/* Clear off and union(map_ptr, range) */
1748 	memset(((u8 *)reg) + sizeof(reg->type), 0,
1749 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1750 	reg->id = 0;
1751 	reg->ref_obj_id = 0;
1752 	___mark_reg_known(reg, imm);
1753 }
1754 
1755 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1756 {
1757 	reg->var_off = tnum_const_subreg(reg->var_off, imm);
1758 	reg->s32_min_value = (s32)imm;
1759 	reg->s32_max_value = (s32)imm;
1760 	reg->u32_min_value = (u32)imm;
1761 	reg->u32_max_value = (u32)imm;
1762 }
1763 
1764 /* Mark the 'variable offset' part of a register as zero.  This should be
1765  * used only on registers holding a pointer type.
1766  */
1767 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
1768 {
1769 	__mark_reg_known(reg, 0);
1770 }
1771 
1772 static void __mark_reg_const_zero(const struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1773 {
1774 	__mark_reg_known(reg, 0);
1775 	reg->type = SCALAR_VALUE;
1776 	/* all scalars are assumed imprecise initially (unless unprivileged,
1777 	 * in which case everything is forced to be precise)
1778 	 */
1779 	reg->precise = !env->bpf_capable;
1780 }
1781 
1782 static void mark_reg_known_zero(struct bpf_verifier_env *env,
1783 				struct bpf_reg_state *regs, u32 regno)
1784 {
1785 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1786 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
1787 		/* Something bad happened, let's kill all regs */
1788 		for (regno = 0; regno < MAX_BPF_REG; regno++)
1789 			__mark_reg_not_init(env, regs + regno);
1790 		return;
1791 	}
1792 	__mark_reg_known_zero(regs + regno);
1793 }
1794 
1795 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type,
1796 			      bool first_slot, int dynptr_id)
1797 {
1798 	/* reg->type has no meaning for STACK_DYNPTR, but when we set reg for
1799 	 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply
1800 	 * set it unconditionally as it is ignored for STACK_DYNPTR anyway.
1801 	 */
1802 	__mark_reg_known_zero(reg);
1803 	reg->type = CONST_PTR_TO_DYNPTR;
1804 	/* Give each dynptr a unique id to uniquely associate slices to it. */
1805 	reg->id = dynptr_id;
1806 	reg->dynptr.type = type;
1807 	reg->dynptr.first_slot = first_slot;
1808 }
1809 
1810 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
1811 {
1812 	if (base_type(reg->type) == PTR_TO_MAP_VALUE) {
1813 		const struct bpf_map *map = reg->map_ptr;
1814 
1815 		if (map->inner_map_meta) {
1816 			reg->type = CONST_PTR_TO_MAP;
1817 			reg->map_ptr = map->inner_map_meta;
1818 			/* transfer reg's id which is unique for every map_lookup_elem
1819 			 * as UID of the inner map.
1820 			 */
1821 			if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER))
1822 				reg->map_uid = reg->id;
1823 		} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
1824 			reg->type = PTR_TO_XDP_SOCK;
1825 		} else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
1826 			   map->map_type == BPF_MAP_TYPE_SOCKHASH) {
1827 			reg->type = PTR_TO_SOCKET;
1828 		} else {
1829 			reg->type = PTR_TO_MAP_VALUE;
1830 		}
1831 		return;
1832 	}
1833 
1834 	reg->type &= ~PTR_MAYBE_NULL;
1835 }
1836 
1837 static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno,
1838 				struct btf_field_graph_root *ds_head)
1839 {
1840 	__mark_reg_known_zero(&regs[regno]);
1841 	regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC;
1842 	regs[regno].btf = ds_head->btf;
1843 	regs[regno].btf_id = ds_head->value_btf_id;
1844 	regs[regno].off = ds_head->node_offset;
1845 }
1846 
1847 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1848 {
1849 	return type_is_pkt_pointer(reg->type);
1850 }
1851 
1852 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1853 {
1854 	return reg_is_pkt_pointer(reg) ||
1855 	       reg->type == PTR_TO_PACKET_END;
1856 }
1857 
1858 static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg)
1859 {
1860 	return base_type(reg->type) == PTR_TO_MEM &&
1861 		(reg->type & DYNPTR_TYPE_SKB || reg->type & DYNPTR_TYPE_XDP);
1862 }
1863 
1864 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
1865 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1866 				    enum bpf_reg_type which)
1867 {
1868 	/* The register can already have a range from prior markings.
1869 	 * This is fine as long as it hasn't been advanced from its
1870 	 * origin.
1871 	 */
1872 	return reg->type == which &&
1873 	       reg->id == 0 &&
1874 	       reg->off == 0 &&
1875 	       tnum_equals_const(reg->var_off, 0);
1876 }
1877 
1878 /* Reset the min/max bounds of a register */
1879 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1880 {
1881 	reg->smin_value = S64_MIN;
1882 	reg->smax_value = S64_MAX;
1883 	reg->umin_value = 0;
1884 	reg->umax_value = U64_MAX;
1885 
1886 	reg->s32_min_value = S32_MIN;
1887 	reg->s32_max_value = S32_MAX;
1888 	reg->u32_min_value = 0;
1889 	reg->u32_max_value = U32_MAX;
1890 }
1891 
1892 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1893 {
1894 	reg->smin_value = S64_MIN;
1895 	reg->smax_value = S64_MAX;
1896 	reg->umin_value = 0;
1897 	reg->umax_value = U64_MAX;
1898 }
1899 
1900 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1901 {
1902 	reg->s32_min_value = S32_MIN;
1903 	reg->s32_max_value = S32_MAX;
1904 	reg->u32_min_value = 0;
1905 	reg->u32_max_value = U32_MAX;
1906 }
1907 
1908 static void __update_reg32_bounds(struct bpf_reg_state *reg)
1909 {
1910 	struct tnum var32_off = tnum_subreg(reg->var_off);
1911 
1912 	/* min signed is max(sign bit) | min(other bits) */
1913 	reg->s32_min_value = max_t(s32, reg->s32_min_value,
1914 			var32_off.value | (var32_off.mask & S32_MIN));
1915 	/* max signed is min(sign bit) | max(other bits) */
1916 	reg->s32_max_value = min_t(s32, reg->s32_max_value,
1917 			var32_off.value | (var32_off.mask & S32_MAX));
1918 	reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1919 	reg->u32_max_value = min(reg->u32_max_value,
1920 				 (u32)(var32_off.value | var32_off.mask));
1921 }
1922 
1923 static void __update_reg64_bounds(struct bpf_reg_state *reg)
1924 {
1925 	/* min signed is max(sign bit) | min(other bits) */
1926 	reg->smin_value = max_t(s64, reg->smin_value,
1927 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
1928 	/* max signed is min(sign bit) | max(other bits) */
1929 	reg->smax_value = min_t(s64, reg->smax_value,
1930 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
1931 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
1932 	reg->umax_value = min(reg->umax_value,
1933 			      reg->var_off.value | reg->var_off.mask);
1934 }
1935 
1936 static void __update_reg_bounds(struct bpf_reg_state *reg)
1937 {
1938 	__update_reg32_bounds(reg);
1939 	__update_reg64_bounds(reg);
1940 }
1941 
1942 /* Uses signed min/max values to inform unsigned, and vice-versa */
1943 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1944 {
1945 	/* If upper 32 bits of u64/s64 range don't change, we can use lower 32
1946 	 * bits to improve our u32/s32 boundaries.
1947 	 *
1948 	 * E.g., the case where we have upper 32 bits as zero ([10, 20] in
1949 	 * u64) is pretty trivial, it's obvious that in u32 we'll also have
1950 	 * [10, 20] range. But this property holds for any 64-bit range as
1951 	 * long as upper 32 bits in that entire range of values stay the same.
1952 	 *
1953 	 * E.g., u64 range [0x10000000A, 0x10000000F] ([4294967306, 4294967311]
1954 	 * in decimal) has the same upper 32 bits throughout all the values in
1955 	 * that range. As such, lower 32 bits form a valid [0xA, 0xF] ([10, 15])
1956 	 * range.
1957 	 *
1958 	 * Note also, that [0xA, 0xF] is a valid range both in u32 and in s32,
1959 	 * following the rules outlined below about u64/s64 correspondence
1960 	 * (which equally applies to u32 vs s32 correspondence). In general it
1961 	 * depends on actual hexadecimal values of 32-bit range. They can form
1962 	 * only valid u32, or only valid s32 ranges in some cases.
1963 	 *
1964 	 * So we use all these insights to derive bounds for subregisters here.
1965 	 */
1966 	if ((reg->umin_value >> 32) == (reg->umax_value >> 32)) {
1967 		/* u64 to u32 casting preserves validity of low 32 bits as
1968 		 * a range, if upper 32 bits are the same
1969 		 */
1970 		reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)reg->umin_value);
1971 		reg->u32_max_value = min_t(u32, reg->u32_max_value, (u32)reg->umax_value);
1972 
1973 		if ((s32)reg->umin_value <= (s32)reg->umax_value) {
1974 			reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->umin_value);
1975 			reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->umax_value);
1976 		}
1977 	}
1978 	if ((reg->smin_value >> 32) == (reg->smax_value >> 32)) {
1979 		/* low 32 bits should form a proper u32 range */
1980 		if ((u32)reg->smin_value <= (u32)reg->smax_value) {
1981 			reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)reg->smin_value);
1982 			reg->u32_max_value = min_t(u32, reg->u32_max_value, (u32)reg->smax_value);
1983 		}
1984 		/* low 32 bits should form a proper s32 range */
1985 		if ((s32)reg->smin_value <= (s32)reg->smax_value) {
1986 			reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->smin_value);
1987 			reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->smax_value);
1988 		}
1989 	}
1990 	/* Special case where upper bits form a small sequence of two
1991 	 * sequential numbers (in 32-bit unsigned space, so 0xffffffff to
1992 	 * 0x00000000 is also valid), while lower bits form a proper s32 range
1993 	 * going from negative numbers to positive numbers. E.g., let's say we
1994 	 * have s64 range [-1, 1] ([0xffffffffffffffff, 0x0000000000000001]).
1995 	 * Possible s64 values are {-1, 0, 1} ({0xffffffffffffffff,
1996 	 * 0x0000000000000000, 0x00000000000001}). Ignoring upper 32 bits,
1997 	 * we still get a valid s32 range [-1, 1] ([0xffffffff, 0x00000001]).
1998 	 * Note that it doesn't have to be 0xffffffff going to 0x00000000 in
1999 	 * upper 32 bits. As a random example, s64 range
2000 	 * [0xfffffff0fffffff0; 0xfffffff100000010], forms a valid s32 range
2001 	 * [-16, 16] ([0xfffffff0; 0x00000010]) in its 32 bit subregister.
2002 	 */
2003 	if ((u32)(reg->umin_value >> 32) + 1 == (u32)(reg->umax_value >> 32) &&
2004 	    (s32)reg->umin_value < 0 && (s32)reg->umax_value >= 0) {
2005 		reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->umin_value);
2006 		reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->umax_value);
2007 	}
2008 	if ((u32)(reg->smin_value >> 32) + 1 == (u32)(reg->smax_value >> 32) &&
2009 	    (s32)reg->smin_value < 0 && (s32)reg->smax_value >= 0) {
2010 		reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->smin_value);
2011 		reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->smax_value);
2012 	}
2013 	/* if u32 range forms a valid s32 range (due to matching sign bit),
2014 	 * try to learn from that
2015 	 */
2016 	if ((s32)reg->u32_min_value <= (s32)reg->u32_max_value) {
2017 		reg->s32_min_value = max_t(s32, reg->s32_min_value, reg->u32_min_value);
2018 		reg->s32_max_value = min_t(s32, reg->s32_max_value, reg->u32_max_value);
2019 	}
2020 	/* If we cannot cross the sign boundary, then signed and unsigned bounds
2021 	 * are the same, so combine.  This works even in the negative case, e.g.
2022 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2023 	 */
2024 	if ((u32)reg->s32_min_value <= (u32)reg->s32_max_value) {
2025 		reg->u32_min_value = max_t(u32, reg->s32_min_value, reg->u32_min_value);
2026 		reg->u32_max_value = min_t(u32, reg->s32_max_value, reg->u32_max_value);
2027 	}
2028 }
2029 
2030 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
2031 {
2032 	/* If u64 range forms a valid s64 range (due to matching sign bit),
2033 	 * try to learn from that. Let's do a bit of ASCII art to see when
2034 	 * this is happening. Let's take u64 range first:
2035 	 *
2036 	 * 0             0x7fffffffffffffff 0x8000000000000000        U64_MAX
2037 	 * |-------------------------------|--------------------------------|
2038 	 *
2039 	 * Valid u64 range is formed when umin and umax are anywhere in the
2040 	 * range [0, U64_MAX], and umin <= umax. u64 case is simple and
2041 	 * straightforward. Let's see how s64 range maps onto the same range
2042 	 * of values, annotated below the line for comparison:
2043 	 *
2044 	 * 0             0x7fffffffffffffff 0x8000000000000000        U64_MAX
2045 	 * |-------------------------------|--------------------------------|
2046 	 * 0                        S64_MAX S64_MIN                        -1
2047 	 *
2048 	 * So s64 values basically start in the middle and they are logically
2049 	 * contiguous to the right of it, wrapping around from -1 to 0, and
2050 	 * then finishing as S64_MAX (0x7fffffffffffffff) right before
2051 	 * S64_MIN. We can try drawing the continuity of u64 vs s64 values
2052 	 * more visually as mapped to sign-agnostic range of hex values.
2053 	 *
2054 	 *  u64 start                                               u64 end
2055 	 *  _______________________________________________________________
2056 	 * /                                                               \
2057 	 * 0             0x7fffffffffffffff 0x8000000000000000        U64_MAX
2058 	 * |-------------------------------|--------------------------------|
2059 	 * 0                        S64_MAX S64_MIN                        -1
2060 	 *                                / \
2061 	 * >------------------------------   ------------------------------->
2062 	 * s64 continues...        s64 end   s64 start          s64 "midpoint"
2063 	 *
2064 	 * What this means is that, in general, we can't always derive
2065 	 * something new about u64 from any random s64 range, and vice versa.
2066 	 *
2067 	 * But we can do that in two particular cases. One is when entire
2068 	 * u64/s64 range is *entirely* contained within left half of the above
2069 	 * diagram or when it is *entirely* contained in the right half. I.e.:
2070 	 *
2071 	 * |-------------------------------|--------------------------------|
2072 	 *     ^                   ^            ^                 ^
2073 	 *     A                   B            C                 D
2074 	 *
2075 	 * [A, B] and [C, D] are contained entirely in their respective halves
2076 	 * and form valid contiguous ranges as both u64 and s64 values. [A, B]
2077 	 * will be non-negative both as u64 and s64 (and in fact it will be
2078 	 * identical ranges no matter the signedness). [C, D] treated as s64
2079 	 * will be a range of negative values, while in u64 it will be
2080 	 * non-negative range of values larger than 0x8000000000000000.
2081 	 *
2082 	 * Now, any other range here can't be represented in both u64 and s64
2083 	 * simultaneously. E.g., [A, C], [A, D], [B, C], [B, D] are valid
2084 	 * contiguous u64 ranges, but they are discontinuous in s64. [B, C]
2085 	 * in s64 would be properly presented as [S64_MIN, C] and [B, S64_MAX],
2086 	 * for example. Similarly, valid s64 range [D, A] (going from negative
2087 	 * to positive values), would be two separate [D, U64_MAX] and [0, A]
2088 	 * ranges as u64. Currently reg_state can't represent two segments per
2089 	 * numeric domain, so in such situations we can only derive maximal
2090 	 * possible range ([0, U64_MAX] for u64, and [S64_MIN, S64_MAX] for s64).
2091 	 *
2092 	 * So we use these facts to derive umin/umax from smin/smax and vice
2093 	 * versa only if they stay within the same "half". This is equivalent
2094 	 * to checking sign bit: lower half will have sign bit as zero, upper
2095 	 * half have sign bit 1. Below in code we simplify this by just
2096 	 * casting umin/umax as smin/smax and checking if they form valid
2097 	 * range, and vice versa. Those are equivalent checks.
2098 	 */
2099 	if ((s64)reg->umin_value <= (s64)reg->umax_value) {
2100 		reg->smin_value = max_t(s64, reg->smin_value, reg->umin_value);
2101 		reg->smax_value = min_t(s64, reg->smax_value, reg->umax_value);
2102 	}
2103 	/* If we cannot cross the sign boundary, then signed and unsigned bounds
2104 	 * are the same, so combine.  This works even in the negative case, e.g.
2105 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2106 	 */
2107 	if ((u64)reg->smin_value <= (u64)reg->smax_value) {
2108 		reg->umin_value = max_t(u64, reg->smin_value, reg->umin_value);
2109 		reg->umax_value = min_t(u64, reg->smax_value, reg->umax_value);
2110 	}
2111 }
2112 
2113 static void __reg_deduce_mixed_bounds(struct bpf_reg_state *reg)
2114 {
2115 	/* Try to tighten 64-bit bounds from 32-bit knowledge, using 32-bit
2116 	 * values on both sides of 64-bit range in hope to have tigher range.
2117 	 * E.g., if r1 is [0x1'00000000, 0x3'80000000], and we learn from
2118 	 * 32-bit signed > 0 operation that s32 bounds are now [1; 0x7fffffff].
2119 	 * With this, we can substitute 1 as low 32-bits of _low_ 64-bit bound
2120 	 * (0x100000000 -> 0x100000001) and 0x7fffffff as low 32-bits of
2121 	 * _high_ 64-bit bound (0x380000000 -> 0x37fffffff) and arrive at a
2122 	 * better overall bounds for r1 as [0x1'000000001; 0x3'7fffffff].
2123 	 * We just need to make sure that derived bounds we are intersecting
2124 	 * with are well-formed ranges in respecitve s64 or u64 domain, just
2125 	 * like we do with similar kinds of 32-to-64 or 64-to-32 adjustments.
2126 	 */
2127 	__u64 new_umin, new_umax;
2128 	__s64 new_smin, new_smax;
2129 
2130 	/* u32 -> u64 tightening, it's always well-formed */
2131 	new_umin = (reg->umin_value & ~0xffffffffULL) | reg->u32_min_value;
2132 	new_umax = (reg->umax_value & ~0xffffffffULL) | reg->u32_max_value;
2133 	reg->umin_value = max_t(u64, reg->umin_value, new_umin);
2134 	reg->umax_value = min_t(u64, reg->umax_value, new_umax);
2135 	/* u32 -> s64 tightening, u32 range embedded into s64 preserves range validity */
2136 	new_smin = (reg->smin_value & ~0xffffffffULL) | reg->u32_min_value;
2137 	new_smax = (reg->smax_value & ~0xffffffffULL) | reg->u32_max_value;
2138 	reg->smin_value = max_t(s64, reg->smin_value, new_smin);
2139 	reg->smax_value = min_t(s64, reg->smax_value, new_smax);
2140 
2141 	/* if s32 can be treated as valid u32 range, we can use it as well */
2142 	if ((u32)reg->s32_min_value <= (u32)reg->s32_max_value) {
2143 		/* s32 -> u64 tightening */
2144 		new_umin = (reg->umin_value & ~0xffffffffULL) | (u32)reg->s32_min_value;
2145 		new_umax = (reg->umax_value & ~0xffffffffULL) | (u32)reg->s32_max_value;
2146 		reg->umin_value = max_t(u64, reg->umin_value, new_umin);
2147 		reg->umax_value = min_t(u64, reg->umax_value, new_umax);
2148 		/* s32 -> s64 tightening */
2149 		new_smin = (reg->smin_value & ~0xffffffffULL) | (u32)reg->s32_min_value;
2150 		new_smax = (reg->smax_value & ~0xffffffffULL) | (u32)reg->s32_max_value;
2151 		reg->smin_value = max_t(s64, reg->smin_value, new_smin);
2152 		reg->smax_value = min_t(s64, reg->smax_value, new_smax);
2153 	}
2154 }
2155 
2156 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
2157 {
2158 	__reg32_deduce_bounds(reg);
2159 	__reg64_deduce_bounds(reg);
2160 	__reg_deduce_mixed_bounds(reg);
2161 }
2162 
2163 /* Attempts to improve var_off based on unsigned min/max information */
2164 static void __reg_bound_offset(struct bpf_reg_state *reg)
2165 {
2166 	struct tnum var64_off = tnum_intersect(reg->var_off,
2167 					       tnum_range(reg->umin_value,
2168 							  reg->umax_value));
2169 	struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off),
2170 					       tnum_range(reg->u32_min_value,
2171 							  reg->u32_max_value));
2172 
2173 	reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
2174 }
2175 
2176 static void reg_bounds_sync(struct bpf_reg_state *reg)
2177 {
2178 	/* We might have learned new bounds from the var_off. */
2179 	__update_reg_bounds(reg);
2180 	/* We might have learned something about the sign bit. */
2181 	__reg_deduce_bounds(reg);
2182 	__reg_deduce_bounds(reg);
2183 	/* We might have learned some bits from the bounds. */
2184 	__reg_bound_offset(reg);
2185 	/* Intersecting with the old var_off might have improved our bounds
2186 	 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2187 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
2188 	 */
2189 	__update_reg_bounds(reg);
2190 }
2191 
2192 static int reg_bounds_sanity_check(struct bpf_verifier_env *env,
2193 				   struct bpf_reg_state *reg, const char *ctx)
2194 {
2195 	const char *msg;
2196 
2197 	if (reg->umin_value > reg->umax_value ||
2198 	    reg->smin_value > reg->smax_value ||
2199 	    reg->u32_min_value > reg->u32_max_value ||
2200 	    reg->s32_min_value > reg->s32_max_value) {
2201 		    msg = "range bounds violation";
2202 		    goto out;
2203 	}
2204 
2205 	if (tnum_is_const(reg->var_off)) {
2206 		u64 uval = reg->var_off.value;
2207 		s64 sval = (s64)uval;
2208 
2209 		if (reg->umin_value != uval || reg->umax_value != uval ||
2210 		    reg->smin_value != sval || reg->smax_value != sval) {
2211 			msg = "const tnum out of sync with range bounds";
2212 			goto out;
2213 		}
2214 	}
2215 
2216 	if (tnum_subreg_is_const(reg->var_off)) {
2217 		u32 uval32 = tnum_subreg(reg->var_off).value;
2218 		s32 sval32 = (s32)uval32;
2219 
2220 		if (reg->u32_min_value != uval32 || reg->u32_max_value != uval32 ||
2221 		    reg->s32_min_value != sval32 || reg->s32_max_value != sval32) {
2222 			msg = "const subreg tnum out of sync with range bounds";
2223 			goto out;
2224 		}
2225 	}
2226 
2227 	return 0;
2228 out:
2229 	verbose(env, "REG INVARIANTS VIOLATION (%s): %s u64=[%#llx, %#llx] "
2230 		"s64=[%#llx, %#llx] u32=[%#x, %#x] s32=[%#x, %#x] var_off=(%#llx, %#llx)\n",
2231 		ctx, msg, reg->umin_value, reg->umax_value,
2232 		reg->smin_value, reg->smax_value,
2233 		reg->u32_min_value, reg->u32_max_value,
2234 		reg->s32_min_value, reg->s32_max_value,
2235 		reg->var_off.value, reg->var_off.mask);
2236 	if (env->test_reg_invariants)
2237 		return -EFAULT;
2238 	__mark_reg_unbounded(reg);
2239 	return 0;
2240 }
2241 
2242 static bool __reg32_bound_s64(s32 a)
2243 {
2244 	return a >= 0 && a <= S32_MAX;
2245 }
2246 
2247 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
2248 {
2249 	reg->umin_value = reg->u32_min_value;
2250 	reg->umax_value = reg->u32_max_value;
2251 
2252 	/* Attempt to pull 32-bit signed bounds into 64-bit bounds but must
2253 	 * be positive otherwise set to worse case bounds and refine later
2254 	 * from tnum.
2255 	 */
2256 	if (__reg32_bound_s64(reg->s32_min_value) &&
2257 	    __reg32_bound_s64(reg->s32_max_value)) {
2258 		reg->smin_value = reg->s32_min_value;
2259 		reg->smax_value = reg->s32_max_value;
2260 	} else {
2261 		reg->smin_value = 0;
2262 		reg->smax_value = U32_MAX;
2263 	}
2264 }
2265 
2266 /* Mark a register as having a completely unknown (scalar) value. */
2267 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
2268 			       struct bpf_reg_state *reg)
2269 {
2270 	/*
2271 	 * Clear type, off, and union(map_ptr, range) and
2272 	 * padding between 'type' and union
2273 	 */
2274 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
2275 	reg->type = SCALAR_VALUE;
2276 	reg->id = 0;
2277 	reg->ref_obj_id = 0;
2278 	reg->var_off = tnum_unknown;
2279 	reg->frameno = 0;
2280 	reg->precise = !env->bpf_capable;
2281 	__mark_reg_unbounded(reg);
2282 }
2283 
2284 static void mark_reg_unknown(struct bpf_verifier_env *env,
2285 			     struct bpf_reg_state *regs, u32 regno)
2286 {
2287 	if (WARN_ON(regno >= MAX_BPF_REG)) {
2288 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
2289 		/* Something bad happened, let's kill all regs except FP */
2290 		for (regno = 0; regno < BPF_REG_FP; regno++)
2291 			__mark_reg_not_init(env, regs + regno);
2292 		return;
2293 	}
2294 	__mark_reg_unknown(env, regs + regno);
2295 }
2296 
2297 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
2298 				struct bpf_reg_state *reg)
2299 {
2300 	__mark_reg_unknown(env, reg);
2301 	reg->type = NOT_INIT;
2302 }
2303 
2304 static void mark_reg_not_init(struct bpf_verifier_env *env,
2305 			      struct bpf_reg_state *regs, u32 regno)
2306 {
2307 	if (WARN_ON(regno >= MAX_BPF_REG)) {
2308 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
2309 		/* Something bad happened, let's kill all regs except FP */
2310 		for (regno = 0; regno < BPF_REG_FP; regno++)
2311 			__mark_reg_not_init(env, regs + regno);
2312 		return;
2313 	}
2314 	__mark_reg_not_init(env, regs + regno);
2315 }
2316 
2317 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
2318 			    struct bpf_reg_state *regs, u32 regno,
2319 			    enum bpf_reg_type reg_type,
2320 			    struct btf *btf, u32 btf_id,
2321 			    enum bpf_type_flag flag)
2322 {
2323 	if (reg_type == SCALAR_VALUE) {
2324 		mark_reg_unknown(env, regs, regno);
2325 		return;
2326 	}
2327 	mark_reg_known_zero(env, regs, regno);
2328 	regs[regno].type = PTR_TO_BTF_ID | flag;
2329 	regs[regno].btf = btf;
2330 	regs[regno].btf_id = btf_id;
2331 }
2332 
2333 #define DEF_NOT_SUBREG	(0)
2334 static void init_reg_state(struct bpf_verifier_env *env,
2335 			   struct bpf_func_state *state)
2336 {
2337 	struct bpf_reg_state *regs = state->regs;
2338 	int i;
2339 
2340 	for (i = 0; i < MAX_BPF_REG; i++) {
2341 		mark_reg_not_init(env, regs, i);
2342 		regs[i].live = REG_LIVE_NONE;
2343 		regs[i].parent = NULL;
2344 		regs[i].subreg_def = DEF_NOT_SUBREG;
2345 	}
2346 
2347 	/* frame pointer */
2348 	regs[BPF_REG_FP].type = PTR_TO_STACK;
2349 	mark_reg_known_zero(env, regs, BPF_REG_FP);
2350 	regs[BPF_REG_FP].frameno = state->frameno;
2351 }
2352 
2353 static struct bpf_retval_range retval_range(s32 minval, s32 maxval)
2354 {
2355 	return (struct bpf_retval_range){ minval, maxval };
2356 }
2357 
2358 #define BPF_MAIN_FUNC (-1)
2359 static void init_func_state(struct bpf_verifier_env *env,
2360 			    struct bpf_func_state *state,
2361 			    int callsite, int frameno, int subprogno)
2362 {
2363 	state->callsite = callsite;
2364 	state->frameno = frameno;
2365 	state->subprogno = subprogno;
2366 	state->callback_ret_range = retval_range(0, 0);
2367 	init_reg_state(env, state);
2368 	mark_verifier_state_scratched(env);
2369 }
2370 
2371 /* Similar to push_stack(), but for async callbacks */
2372 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
2373 						int insn_idx, int prev_insn_idx,
2374 						int subprog)
2375 {
2376 	struct bpf_verifier_stack_elem *elem;
2377 	struct bpf_func_state *frame;
2378 
2379 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
2380 	if (!elem)
2381 		goto err;
2382 
2383 	elem->insn_idx = insn_idx;
2384 	elem->prev_insn_idx = prev_insn_idx;
2385 	elem->next = env->head;
2386 	elem->log_pos = env->log.end_pos;
2387 	env->head = elem;
2388 	env->stack_size++;
2389 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
2390 		verbose(env,
2391 			"The sequence of %d jumps is too complex for async cb.\n",
2392 			env->stack_size);
2393 		goto err;
2394 	}
2395 	/* Unlike push_stack() do not copy_verifier_state().
2396 	 * The caller state doesn't matter.
2397 	 * This is async callback. It starts in a fresh stack.
2398 	 * Initialize it similar to do_check_common().
2399 	 */
2400 	elem->st.branches = 1;
2401 	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
2402 	if (!frame)
2403 		goto err;
2404 	init_func_state(env, frame,
2405 			BPF_MAIN_FUNC /* callsite */,
2406 			0 /* frameno within this callchain */,
2407 			subprog /* subprog number within this prog */);
2408 	elem->st.frame[0] = frame;
2409 	return &elem->st;
2410 err:
2411 	free_verifier_state(env->cur_state, true);
2412 	env->cur_state = NULL;
2413 	/* pop all elements and return */
2414 	while (!pop_stack(env, NULL, NULL, false));
2415 	return NULL;
2416 }
2417 
2418 
2419 enum reg_arg_type {
2420 	SRC_OP,		/* register is used as source operand */
2421 	DST_OP,		/* register is used as destination operand */
2422 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
2423 };
2424 
2425 static int cmp_subprogs(const void *a, const void *b)
2426 {
2427 	return ((struct bpf_subprog_info *)a)->start -
2428 	       ((struct bpf_subprog_info *)b)->start;
2429 }
2430 
2431 static int find_subprog(struct bpf_verifier_env *env, int off)
2432 {
2433 	struct bpf_subprog_info *p;
2434 
2435 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
2436 		    sizeof(env->subprog_info[0]), cmp_subprogs);
2437 	if (!p)
2438 		return -ENOENT;
2439 	return p - env->subprog_info;
2440 
2441 }
2442 
2443 static int add_subprog(struct bpf_verifier_env *env, int off)
2444 {
2445 	int insn_cnt = env->prog->len;
2446 	int ret;
2447 
2448 	if (off >= insn_cnt || off < 0) {
2449 		verbose(env, "call to invalid destination\n");
2450 		return -EINVAL;
2451 	}
2452 	ret = find_subprog(env, off);
2453 	if (ret >= 0)
2454 		return ret;
2455 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
2456 		verbose(env, "too many subprograms\n");
2457 		return -E2BIG;
2458 	}
2459 	/* determine subprog starts. The end is one before the next starts */
2460 	env->subprog_info[env->subprog_cnt++].start = off;
2461 	sort(env->subprog_info, env->subprog_cnt,
2462 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
2463 	return env->subprog_cnt - 1;
2464 }
2465 
2466 static int bpf_find_exception_callback_insn_off(struct bpf_verifier_env *env)
2467 {
2468 	struct bpf_prog_aux *aux = env->prog->aux;
2469 	struct btf *btf = aux->btf;
2470 	const struct btf_type *t;
2471 	u32 main_btf_id, id;
2472 	const char *name;
2473 	int ret, i;
2474 
2475 	/* Non-zero func_info_cnt implies valid btf */
2476 	if (!aux->func_info_cnt)
2477 		return 0;
2478 	main_btf_id = aux->func_info[0].type_id;
2479 
2480 	t = btf_type_by_id(btf, main_btf_id);
2481 	if (!t) {
2482 		verbose(env, "invalid btf id for main subprog in func_info\n");
2483 		return -EINVAL;
2484 	}
2485 
2486 	name = btf_find_decl_tag_value(btf, t, -1, "exception_callback:");
2487 	if (IS_ERR(name)) {
2488 		ret = PTR_ERR(name);
2489 		/* If there is no tag present, there is no exception callback */
2490 		if (ret == -ENOENT)
2491 			ret = 0;
2492 		else if (ret == -EEXIST)
2493 			verbose(env, "multiple exception callback tags for main subprog\n");
2494 		return ret;
2495 	}
2496 
2497 	ret = btf_find_by_name_kind(btf, name, BTF_KIND_FUNC);
2498 	if (ret < 0) {
2499 		verbose(env, "exception callback '%s' could not be found in BTF\n", name);
2500 		return ret;
2501 	}
2502 	id = ret;
2503 	t = btf_type_by_id(btf, id);
2504 	if (btf_func_linkage(t) != BTF_FUNC_GLOBAL) {
2505 		verbose(env, "exception callback '%s' must have global linkage\n", name);
2506 		return -EINVAL;
2507 	}
2508 	ret = 0;
2509 	for (i = 0; i < aux->func_info_cnt; i++) {
2510 		if (aux->func_info[i].type_id != id)
2511 			continue;
2512 		ret = aux->func_info[i].insn_off;
2513 		/* Further func_info and subprog checks will also happen
2514 		 * later, so assume this is the right insn_off for now.
2515 		 */
2516 		if (!ret) {
2517 			verbose(env, "invalid exception callback insn_off in func_info: 0\n");
2518 			ret = -EINVAL;
2519 		}
2520 	}
2521 	if (!ret) {
2522 		verbose(env, "exception callback type id not found in func_info\n");
2523 		ret = -EINVAL;
2524 	}
2525 	return ret;
2526 }
2527 
2528 #define MAX_KFUNC_DESCS 256
2529 #define MAX_KFUNC_BTFS	256
2530 
2531 struct bpf_kfunc_desc {
2532 	struct btf_func_model func_model;
2533 	u32 func_id;
2534 	s32 imm;
2535 	u16 offset;
2536 	unsigned long addr;
2537 };
2538 
2539 struct bpf_kfunc_btf {
2540 	struct btf *btf;
2541 	struct module *module;
2542 	u16 offset;
2543 };
2544 
2545 struct bpf_kfunc_desc_tab {
2546 	/* Sorted by func_id (BTF ID) and offset (fd_array offset) during
2547 	 * verification. JITs do lookups by bpf_insn, where func_id may not be
2548 	 * available, therefore at the end of verification do_misc_fixups()
2549 	 * sorts this by imm and offset.
2550 	 */
2551 	struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
2552 	u32 nr_descs;
2553 };
2554 
2555 struct bpf_kfunc_btf_tab {
2556 	struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS];
2557 	u32 nr_descs;
2558 };
2559 
2560 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b)
2561 {
2562 	const struct bpf_kfunc_desc *d0 = a;
2563 	const struct bpf_kfunc_desc *d1 = b;
2564 
2565 	/* func_id is not greater than BTF_MAX_TYPE */
2566 	return d0->func_id - d1->func_id ?: d0->offset - d1->offset;
2567 }
2568 
2569 static int kfunc_btf_cmp_by_off(const void *a, const void *b)
2570 {
2571 	const struct bpf_kfunc_btf *d0 = a;
2572 	const struct bpf_kfunc_btf *d1 = b;
2573 
2574 	return d0->offset - d1->offset;
2575 }
2576 
2577 static const struct bpf_kfunc_desc *
2578 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset)
2579 {
2580 	struct bpf_kfunc_desc desc = {
2581 		.func_id = func_id,
2582 		.offset = offset,
2583 	};
2584 	struct bpf_kfunc_desc_tab *tab;
2585 
2586 	tab = prog->aux->kfunc_tab;
2587 	return bsearch(&desc, tab->descs, tab->nr_descs,
2588 		       sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off);
2589 }
2590 
2591 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
2592 		       u16 btf_fd_idx, u8 **func_addr)
2593 {
2594 	const struct bpf_kfunc_desc *desc;
2595 
2596 	desc = find_kfunc_desc(prog, func_id, btf_fd_idx);
2597 	if (!desc)
2598 		return -EFAULT;
2599 
2600 	*func_addr = (u8 *)desc->addr;
2601 	return 0;
2602 }
2603 
2604 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env,
2605 					 s16 offset)
2606 {
2607 	struct bpf_kfunc_btf kf_btf = { .offset = offset };
2608 	struct bpf_kfunc_btf_tab *tab;
2609 	struct bpf_kfunc_btf *b;
2610 	struct module *mod;
2611 	struct btf *btf;
2612 	int btf_fd;
2613 
2614 	tab = env->prog->aux->kfunc_btf_tab;
2615 	b = bsearch(&kf_btf, tab->descs, tab->nr_descs,
2616 		    sizeof(tab->descs[0]), kfunc_btf_cmp_by_off);
2617 	if (!b) {
2618 		if (tab->nr_descs == MAX_KFUNC_BTFS) {
2619 			verbose(env, "too many different module BTFs\n");
2620 			return ERR_PTR(-E2BIG);
2621 		}
2622 
2623 		if (bpfptr_is_null(env->fd_array)) {
2624 			verbose(env, "kfunc offset > 0 without fd_array is invalid\n");
2625 			return ERR_PTR(-EPROTO);
2626 		}
2627 
2628 		if (copy_from_bpfptr_offset(&btf_fd, env->fd_array,
2629 					    offset * sizeof(btf_fd),
2630 					    sizeof(btf_fd)))
2631 			return ERR_PTR(-EFAULT);
2632 
2633 		btf = btf_get_by_fd(btf_fd);
2634 		if (IS_ERR(btf)) {
2635 			verbose(env, "invalid module BTF fd specified\n");
2636 			return btf;
2637 		}
2638 
2639 		if (!btf_is_module(btf)) {
2640 			verbose(env, "BTF fd for kfunc is not a module BTF\n");
2641 			btf_put(btf);
2642 			return ERR_PTR(-EINVAL);
2643 		}
2644 
2645 		mod = btf_try_get_module(btf);
2646 		if (!mod) {
2647 			btf_put(btf);
2648 			return ERR_PTR(-ENXIO);
2649 		}
2650 
2651 		b = &tab->descs[tab->nr_descs++];
2652 		b->btf = btf;
2653 		b->module = mod;
2654 		b->offset = offset;
2655 
2656 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2657 		     kfunc_btf_cmp_by_off, NULL);
2658 	}
2659 	return b->btf;
2660 }
2661 
2662 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab)
2663 {
2664 	if (!tab)
2665 		return;
2666 
2667 	while (tab->nr_descs--) {
2668 		module_put(tab->descs[tab->nr_descs].module);
2669 		btf_put(tab->descs[tab->nr_descs].btf);
2670 	}
2671 	kfree(tab);
2672 }
2673 
2674 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset)
2675 {
2676 	if (offset) {
2677 		if (offset < 0) {
2678 			/* In the future, this can be allowed to increase limit
2679 			 * of fd index into fd_array, interpreted as u16.
2680 			 */
2681 			verbose(env, "negative offset disallowed for kernel module function call\n");
2682 			return ERR_PTR(-EINVAL);
2683 		}
2684 
2685 		return __find_kfunc_desc_btf(env, offset);
2686 	}
2687 	return btf_vmlinux ?: ERR_PTR(-ENOENT);
2688 }
2689 
2690 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset)
2691 {
2692 	const struct btf_type *func, *func_proto;
2693 	struct bpf_kfunc_btf_tab *btf_tab;
2694 	struct bpf_kfunc_desc_tab *tab;
2695 	struct bpf_prog_aux *prog_aux;
2696 	struct bpf_kfunc_desc *desc;
2697 	const char *func_name;
2698 	struct btf *desc_btf;
2699 	unsigned long call_imm;
2700 	unsigned long addr;
2701 	int err;
2702 
2703 	prog_aux = env->prog->aux;
2704 	tab = prog_aux->kfunc_tab;
2705 	btf_tab = prog_aux->kfunc_btf_tab;
2706 	if (!tab) {
2707 		if (!btf_vmlinux) {
2708 			verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
2709 			return -ENOTSUPP;
2710 		}
2711 
2712 		if (!env->prog->jit_requested) {
2713 			verbose(env, "JIT is required for calling kernel function\n");
2714 			return -ENOTSUPP;
2715 		}
2716 
2717 		if (!bpf_jit_supports_kfunc_call()) {
2718 			verbose(env, "JIT does not support calling kernel function\n");
2719 			return -ENOTSUPP;
2720 		}
2721 
2722 		if (!env->prog->gpl_compatible) {
2723 			verbose(env, "cannot call kernel function from non-GPL compatible program\n");
2724 			return -EINVAL;
2725 		}
2726 
2727 		tab = kzalloc(sizeof(*tab), GFP_KERNEL);
2728 		if (!tab)
2729 			return -ENOMEM;
2730 		prog_aux->kfunc_tab = tab;
2731 	}
2732 
2733 	/* func_id == 0 is always invalid, but instead of returning an error, be
2734 	 * conservative and wait until the code elimination pass before returning
2735 	 * error, so that invalid calls that get pruned out can be in BPF programs
2736 	 * loaded from userspace.  It is also required that offset be untouched
2737 	 * for such calls.
2738 	 */
2739 	if (!func_id && !offset)
2740 		return 0;
2741 
2742 	if (!btf_tab && offset) {
2743 		btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL);
2744 		if (!btf_tab)
2745 			return -ENOMEM;
2746 		prog_aux->kfunc_btf_tab = btf_tab;
2747 	}
2748 
2749 	desc_btf = find_kfunc_desc_btf(env, offset);
2750 	if (IS_ERR(desc_btf)) {
2751 		verbose(env, "failed to find BTF for kernel function\n");
2752 		return PTR_ERR(desc_btf);
2753 	}
2754 
2755 	if (find_kfunc_desc(env->prog, func_id, offset))
2756 		return 0;
2757 
2758 	if (tab->nr_descs == MAX_KFUNC_DESCS) {
2759 		verbose(env, "too many different kernel function calls\n");
2760 		return -E2BIG;
2761 	}
2762 
2763 	func = btf_type_by_id(desc_btf, func_id);
2764 	if (!func || !btf_type_is_func(func)) {
2765 		verbose(env, "kernel btf_id %u is not a function\n",
2766 			func_id);
2767 		return -EINVAL;
2768 	}
2769 	func_proto = btf_type_by_id(desc_btf, func->type);
2770 	if (!func_proto || !btf_type_is_func_proto(func_proto)) {
2771 		verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
2772 			func_id);
2773 		return -EINVAL;
2774 	}
2775 
2776 	func_name = btf_name_by_offset(desc_btf, func->name_off);
2777 	addr = kallsyms_lookup_name(func_name);
2778 	if (!addr) {
2779 		verbose(env, "cannot find address for kernel function %s\n",
2780 			func_name);
2781 		return -EINVAL;
2782 	}
2783 	specialize_kfunc(env, func_id, offset, &addr);
2784 
2785 	if (bpf_jit_supports_far_kfunc_call()) {
2786 		call_imm = func_id;
2787 	} else {
2788 		call_imm = BPF_CALL_IMM(addr);
2789 		/* Check whether the relative offset overflows desc->imm */
2790 		if ((unsigned long)(s32)call_imm != call_imm) {
2791 			verbose(env, "address of kernel function %s is out of range\n",
2792 				func_name);
2793 			return -EINVAL;
2794 		}
2795 	}
2796 
2797 	if (bpf_dev_bound_kfunc_id(func_id)) {
2798 		err = bpf_dev_bound_kfunc_check(&env->log, prog_aux);
2799 		if (err)
2800 			return err;
2801 	}
2802 
2803 	desc = &tab->descs[tab->nr_descs++];
2804 	desc->func_id = func_id;
2805 	desc->imm = call_imm;
2806 	desc->offset = offset;
2807 	desc->addr = addr;
2808 	err = btf_distill_func_proto(&env->log, desc_btf,
2809 				     func_proto, func_name,
2810 				     &desc->func_model);
2811 	if (!err)
2812 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2813 		     kfunc_desc_cmp_by_id_off, NULL);
2814 	return err;
2815 }
2816 
2817 static int kfunc_desc_cmp_by_imm_off(const void *a, const void *b)
2818 {
2819 	const struct bpf_kfunc_desc *d0 = a;
2820 	const struct bpf_kfunc_desc *d1 = b;
2821 
2822 	if (d0->imm != d1->imm)
2823 		return d0->imm < d1->imm ? -1 : 1;
2824 	if (d0->offset != d1->offset)
2825 		return d0->offset < d1->offset ? -1 : 1;
2826 	return 0;
2827 }
2828 
2829 static void sort_kfunc_descs_by_imm_off(struct bpf_prog *prog)
2830 {
2831 	struct bpf_kfunc_desc_tab *tab;
2832 
2833 	tab = prog->aux->kfunc_tab;
2834 	if (!tab)
2835 		return;
2836 
2837 	sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2838 	     kfunc_desc_cmp_by_imm_off, NULL);
2839 }
2840 
2841 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
2842 {
2843 	return !!prog->aux->kfunc_tab;
2844 }
2845 
2846 const struct btf_func_model *
2847 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2848 			 const struct bpf_insn *insn)
2849 {
2850 	const struct bpf_kfunc_desc desc = {
2851 		.imm = insn->imm,
2852 		.offset = insn->off,
2853 	};
2854 	const struct bpf_kfunc_desc *res;
2855 	struct bpf_kfunc_desc_tab *tab;
2856 
2857 	tab = prog->aux->kfunc_tab;
2858 	res = bsearch(&desc, tab->descs, tab->nr_descs,
2859 		      sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm_off);
2860 
2861 	return res ? &res->func_model : NULL;
2862 }
2863 
2864 static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
2865 {
2866 	struct bpf_subprog_info *subprog = env->subprog_info;
2867 	int i, ret, insn_cnt = env->prog->len, ex_cb_insn;
2868 	struct bpf_insn *insn = env->prog->insnsi;
2869 
2870 	/* Add entry function. */
2871 	ret = add_subprog(env, 0);
2872 	if (ret)
2873 		return ret;
2874 
2875 	for (i = 0; i < insn_cnt; i++, insn++) {
2876 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
2877 		    !bpf_pseudo_kfunc_call(insn))
2878 			continue;
2879 
2880 		if (!env->bpf_capable) {
2881 			verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
2882 			return -EPERM;
2883 		}
2884 
2885 		if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn))
2886 			ret = add_subprog(env, i + insn->imm + 1);
2887 		else
2888 			ret = add_kfunc_call(env, insn->imm, insn->off);
2889 
2890 		if (ret < 0)
2891 			return ret;
2892 	}
2893 
2894 	ret = bpf_find_exception_callback_insn_off(env);
2895 	if (ret < 0)
2896 		return ret;
2897 	ex_cb_insn = ret;
2898 
2899 	/* If ex_cb_insn > 0, this means that the main program has a subprog
2900 	 * marked using BTF decl tag to serve as the exception callback.
2901 	 */
2902 	if (ex_cb_insn) {
2903 		ret = add_subprog(env, ex_cb_insn);
2904 		if (ret < 0)
2905 			return ret;
2906 		for (i = 1; i < env->subprog_cnt; i++) {
2907 			if (env->subprog_info[i].start != ex_cb_insn)
2908 				continue;
2909 			env->exception_callback_subprog = i;
2910 			mark_subprog_exc_cb(env, i);
2911 			break;
2912 		}
2913 	}
2914 
2915 	/* Add a fake 'exit' subprog which could simplify subprog iteration
2916 	 * logic. 'subprog_cnt' should not be increased.
2917 	 */
2918 	subprog[env->subprog_cnt].start = insn_cnt;
2919 
2920 	if (env->log.level & BPF_LOG_LEVEL2)
2921 		for (i = 0; i < env->subprog_cnt; i++)
2922 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
2923 
2924 	return 0;
2925 }
2926 
2927 static int check_subprogs(struct bpf_verifier_env *env)
2928 {
2929 	int i, subprog_start, subprog_end, off, cur_subprog = 0;
2930 	struct bpf_subprog_info *subprog = env->subprog_info;
2931 	struct bpf_insn *insn = env->prog->insnsi;
2932 	int insn_cnt = env->prog->len;
2933 
2934 	/* now check that all jumps are within the same subprog */
2935 	subprog_start = subprog[cur_subprog].start;
2936 	subprog_end = subprog[cur_subprog + 1].start;
2937 	for (i = 0; i < insn_cnt; i++) {
2938 		u8 code = insn[i].code;
2939 
2940 		if (code == (BPF_JMP | BPF_CALL) &&
2941 		    insn[i].src_reg == 0 &&
2942 		    insn[i].imm == BPF_FUNC_tail_call)
2943 			subprog[cur_subprog].has_tail_call = true;
2944 		if (BPF_CLASS(code) == BPF_LD &&
2945 		    (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
2946 			subprog[cur_subprog].has_ld_abs = true;
2947 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
2948 			goto next;
2949 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
2950 			goto next;
2951 		if (code == (BPF_JMP32 | BPF_JA))
2952 			off = i + insn[i].imm + 1;
2953 		else
2954 			off = i + insn[i].off + 1;
2955 		if (off < subprog_start || off >= subprog_end) {
2956 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
2957 			return -EINVAL;
2958 		}
2959 next:
2960 		if (i == subprog_end - 1) {
2961 			/* to avoid fall-through from one subprog into another
2962 			 * the last insn of the subprog should be either exit
2963 			 * or unconditional jump back or bpf_throw call
2964 			 */
2965 			if (code != (BPF_JMP | BPF_EXIT) &&
2966 			    code != (BPF_JMP32 | BPF_JA) &&
2967 			    code != (BPF_JMP | BPF_JA)) {
2968 				verbose(env, "last insn is not an exit or jmp\n");
2969 				return -EINVAL;
2970 			}
2971 			subprog_start = subprog_end;
2972 			cur_subprog++;
2973 			if (cur_subprog < env->subprog_cnt)
2974 				subprog_end = subprog[cur_subprog + 1].start;
2975 		}
2976 	}
2977 	return 0;
2978 }
2979 
2980 /* Parentage chain of this register (or stack slot) should take care of all
2981  * issues like callee-saved registers, stack slot allocation time, etc.
2982  */
2983 static int mark_reg_read(struct bpf_verifier_env *env,
2984 			 const struct bpf_reg_state *state,
2985 			 struct bpf_reg_state *parent, u8 flag)
2986 {
2987 	bool writes = parent == state->parent; /* Observe write marks */
2988 	int cnt = 0;
2989 
2990 	while (parent) {
2991 		/* if read wasn't screened by an earlier write ... */
2992 		if (writes && state->live & REG_LIVE_WRITTEN)
2993 			break;
2994 		if (parent->live & REG_LIVE_DONE) {
2995 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
2996 				reg_type_str(env, parent->type),
2997 				parent->var_off.value, parent->off);
2998 			return -EFAULT;
2999 		}
3000 		/* The first condition is more likely to be true than the
3001 		 * second, checked it first.
3002 		 */
3003 		if ((parent->live & REG_LIVE_READ) == flag ||
3004 		    parent->live & REG_LIVE_READ64)
3005 			/* The parentage chain never changes and
3006 			 * this parent was already marked as LIVE_READ.
3007 			 * There is no need to keep walking the chain again and
3008 			 * keep re-marking all parents as LIVE_READ.
3009 			 * This case happens when the same register is read
3010 			 * multiple times without writes into it in-between.
3011 			 * Also, if parent has the stronger REG_LIVE_READ64 set,
3012 			 * then no need to set the weak REG_LIVE_READ32.
3013 			 */
3014 			break;
3015 		/* ... then we depend on parent's value */
3016 		parent->live |= flag;
3017 		/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
3018 		if (flag == REG_LIVE_READ64)
3019 			parent->live &= ~REG_LIVE_READ32;
3020 		state = parent;
3021 		parent = state->parent;
3022 		writes = true;
3023 		cnt++;
3024 	}
3025 
3026 	if (env->longest_mark_read_walk < cnt)
3027 		env->longest_mark_read_walk = cnt;
3028 	return 0;
3029 }
3030 
3031 static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
3032 {
3033 	struct bpf_func_state *state = func(env, reg);
3034 	int spi, ret;
3035 
3036 	/* For CONST_PTR_TO_DYNPTR, it must have already been done by
3037 	 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in
3038 	 * check_kfunc_call.
3039 	 */
3040 	if (reg->type == CONST_PTR_TO_DYNPTR)
3041 		return 0;
3042 	spi = dynptr_get_spi(env, reg);
3043 	if (spi < 0)
3044 		return spi;
3045 	/* Caller ensures dynptr is valid and initialized, which means spi is in
3046 	 * bounds and spi is the first dynptr slot. Simply mark stack slot as
3047 	 * read.
3048 	 */
3049 	ret = mark_reg_read(env, &state->stack[spi].spilled_ptr,
3050 			    state->stack[spi].spilled_ptr.parent, REG_LIVE_READ64);
3051 	if (ret)
3052 		return ret;
3053 	return mark_reg_read(env, &state->stack[spi - 1].spilled_ptr,
3054 			     state->stack[spi - 1].spilled_ptr.parent, REG_LIVE_READ64);
3055 }
3056 
3057 static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
3058 			  int spi, int nr_slots)
3059 {
3060 	struct bpf_func_state *state = func(env, reg);
3061 	int err, i;
3062 
3063 	for (i = 0; i < nr_slots; i++) {
3064 		struct bpf_reg_state *st = &state->stack[spi - i].spilled_ptr;
3065 
3066 		err = mark_reg_read(env, st, st->parent, REG_LIVE_READ64);
3067 		if (err)
3068 			return err;
3069 
3070 		mark_stack_slot_scratched(env, spi - i);
3071 	}
3072 
3073 	return 0;
3074 }
3075 
3076 /* This function is supposed to be used by the following 32-bit optimization
3077  * code only. It returns TRUE if the source or destination register operates
3078  * on 64-bit, otherwise return FALSE.
3079  */
3080 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
3081 		     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
3082 {
3083 	u8 code, class, op;
3084 
3085 	code = insn->code;
3086 	class = BPF_CLASS(code);
3087 	op = BPF_OP(code);
3088 	if (class == BPF_JMP) {
3089 		/* BPF_EXIT for "main" will reach here. Return TRUE
3090 		 * conservatively.
3091 		 */
3092 		if (op == BPF_EXIT)
3093 			return true;
3094 		if (op == BPF_CALL) {
3095 			/* BPF to BPF call will reach here because of marking
3096 			 * caller saved clobber with DST_OP_NO_MARK for which we
3097 			 * don't care the register def because they are anyway
3098 			 * marked as NOT_INIT already.
3099 			 */
3100 			if (insn->src_reg == BPF_PSEUDO_CALL)
3101 				return false;
3102 			/* Helper call will reach here because of arg type
3103 			 * check, conservatively return TRUE.
3104 			 */
3105 			if (t == SRC_OP)
3106 				return true;
3107 
3108 			return false;
3109 		}
3110 	}
3111 
3112 	if (class == BPF_ALU64 && op == BPF_END && (insn->imm == 16 || insn->imm == 32))
3113 		return false;
3114 
3115 	if (class == BPF_ALU64 || class == BPF_JMP ||
3116 	    (class == BPF_ALU && op == BPF_END && insn->imm == 64))
3117 		return true;
3118 
3119 	if (class == BPF_ALU || class == BPF_JMP32)
3120 		return false;
3121 
3122 	if (class == BPF_LDX) {
3123 		if (t != SRC_OP)
3124 			return BPF_SIZE(code) == BPF_DW || BPF_MODE(code) == BPF_MEMSX;
3125 		/* LDX source must be ptr. */
3126 		return true;
3127 	}
3128 
3129 	if (class == BPF_STX) {
3130 		/* BPF_STX (including atomic variants) has multiple source
3131 		 * operands, one of which is a ptr. Check whether the caller is
3132 		 * asking about it.
3133 		 */
3134 		if (t == SRC_OP && reg->type != SCALAR_VALUE)
3135 			return true;
3136 		return BPF_SIZE(code) == BPF_DW;
3137 	}
3138 
3139 	if (class == BPF_LD) {
3140 		u8 mode = BPF_MODE(code);
3141 
3142 		/* LD_IMM64 */
3143 		if (mode == BPF_IMM)
3144 			return true;
3145 
3146 		/* Both LD_IND and LD_ABS return 32-bit data. */
3147 		if (t != SRC_OP)
3148 			return  false;
3149 
3150 		/* Implicit ctx ptr. */
3151 		if (regno == BPF_REG_6)
3152 			return true;
3153 
3154 		/* Explicit source could be any width. */
3155 		return true;
3156 	}
3157 
3158 	if (class == BPF_ST)
3159 		/* The only source register for BPF_ST is a ptr. */
3160 		return true;
3161 
3162 	/* Conservatively return true at default. */
3163 	return true;
3164 }
3165 
3166 /* Return the regno defined by the insn, or -1. */
3167 static int insn_def_regno(const struct bpf_insn *insn)
3168 {
3169 	switch (BPF_CLASS(insn->code)) {
3170 	case BPF_JMP:
3171 	case BPF_JMP32:
3172 	case BPF_ST:
3173 		return -1;
3174 	case BPF_STX:
3175 		if (BPF_MODE(insn->code) == BPF_ATOMIC &&
3176 		    (insn->imm & BPF_FETCH)) {
3177 			if (insn->imm == BPF_CMPXCHG)
3178 				return BPF_REG_0;
3179 			else
3180 				return insn->src_reg;
3181 		} else {
3182 			return -1;
3183 		}
3184 	default:
3185 		return insn->dst_reg;
3186 	}
3187 }
3188 
3189 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
3190 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
3191 {
3192 	int dst_reg = insn_def_regno(insn);
3193 
3194 	if (dst_reg == -1)
3195 		return false;
3196 
3197 	return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
3198 }
3199 
3200 static void mark_insn_zext(struct bpf_verifier_env *env,
3201 			   struct bpf_reg_state *reg)
3202 {
3203 	s32 def_idx = reg->subreg_def;
3204 
3205 	if (def_idx == DEF_NOT_SUBREG)
3206 		return;
3207 
3208 	env->insn_aux_data[def_idx - 1].zext_dst = true;
3209 	/* The dst will be zero extended, so won't be sub-register anymore. */
3210 	reg->subreg_def = DEF_NOT_SUBREG;
3211 }
3212 
3213 static int __check_reg_arg(struct bpf_verifier_env *env, struct bpf_reg_state *regs, u32 regno,
3214 			   enum reg_arg_type t)
3215 {
3216 	struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
3217 	struct bpf_reg_state *reg;
3218 	bool rw64;
3219 
3220 	if (regno >= MAX_BPF_REG) {
3221 		verbose(env, "R%d is invalid\n", regno);
3222 		return -EINVAL;
3223 	}
3224 
3225 	mark_reg_scratched(env, regno);
3226 
3227 	reg = &regs[regno];
3228 	rw64 = is_reg64(env, insn, regno, reg, t);
3229 	if (t == SRC_OP) {
3230 		/* check whether register used as source operand can be read */
3231 		if (reg->type == NOT_INIT) {
3232 			verbose(env, "R%d !read_ok\n", regno);
3233 			return -EACCES;
3234 		}
3235 		/* We don't need to worry about FP liveness because it's read-only */
3236 		if (regno == BPF_REG_FP)
3237 			return 0;
3238 
3239 		if (rw64)
3240 			mark_insn_zext(env, reg);
3241 
3242 		return mark_reg_read(env, reg, reg->parent,
3243 				     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
3244 	} else {
3245 		/* check whether register used as dest operand can be written to */
3246 		if (regno == BPF_REG_FP) {
3247 			verbose(env, "frame pointer is read only\n");
3248 			return -EACCES;
3249 		}
3250 		reg->live |= REG_LIVE_WRITTEN;
3251 		reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
3252 		if (t == DST_OP)
3253 			mark_reg_unknown(env, regs, regno);
3254 	}
3255 	return 0;
3256 }
3257 
3258 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
3259 			 enum reg_arg_type t)
3260 {
3261 	struct bpf_verifier_state *vstate = env->cur_state;
3262 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3263 
3264 	return __check_reg_arg(env, state->regs, regno, t);
3265 }
3266 
3267 static int insn_stack_access_flags(int frameno, int spi)
3268 {
3269 	return INSN_F_STACK_ACCESS | (spi << INSN_F_SPI_SHIFT) | frameno;
3270 }
3271 
3272 static int insn_stack_access_spi(int insn_flags)
3273 {
3274 	return (insn_flags >> INSN_F_SPI_SHIFT) & INSN_F_SPI_MASK;
3275 }
3276 
3277 static int insn_stack_access_frameno(int insn_flags)
3278 {
3279 	return insn_flags & INSN_F_FRAMENO_MASK;
3280 }
3281 
3282 static void mark_jmp_point(struct bpf_verifier_env *env, int idx)
3283 {
3284 	env->insn_aux_data[idx].jmp_point = true;
3285 }
3286 
3287 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx)
3288 {
3289 	return env->insn_aux_data[insn_idx].jmp_point;
3290 }
3291 
3292 /* for any branch, call, exit record the history of jmps in the given state */
3293 static int push_jmp_history(struct bpf_verifier_env *env, struct bpf_verifier_state *cur,
3294 			    int insn_flags)
3295 {
3296 	u32 cnt = cur->jmp_history_cnt;
3297 	struct bpf_jmp_history_entry *p;
3298 	size_t alloc_size;
3299 
3300 	/* combine instruction flags if we already recorded this instruction */
3301 	if (env->cur_hist_ent) {
3302 		/* atomic instructions push insn_flags twice, for READ and
3303 		 * WRITE sides, but they should agree on stack slot
3304 		 */
3305 		WARN_ONCE((env->cur_hist_ent->flags & insn_flags) &&
3306 			  (env->cur_hist_ent->flags & insn_flags) != insn_flags,
3307 			  "verifier insn history bug: insn_idx %d cur flags %x new flags %x\n",
3308 			  env->insn_idx, env->cur_hist_ent->flags, insn_flags);
3309 		env->cur_hist_ent->flags |= insn_flags;
3310 		return 0;
3311 	}
3312 
3313 	cnt++;
3314 	alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p)));
3315 	p = krealloc(cur->jmp_history, alloc_size, GFP_USER);
3316 	if (!p)
3317 		return -ENOMEM;
3318 	cur->jmp_history = p;
3319 
3320 	p = &cur->jmp_history[cnt - 1];
3321 	p->idx = env->insn_idx;
3322 	p->prev_idx = env->prev_insn_idx;
3323 	p->flags = insn_flags;
3324 	cur->jmp_history_cnt = cnt;
3325 	env->cur_hist_ent = p;
3326 
3327 	return 0;
3328 }
3329 
3330 static struct bpf_jmp_history_entry *get_jmp_hist_entry(struct bpf_verifier_state *st,
3331 						        u32 hist_end, int insn_idx)
3332 {
3333 	if (hist_end > 0 && st->jmp_history[hist_end - 1].idx == insn_idx)
3334 		return &st->jmp_history[hist_end - 1];
3335 	return NULL;
3336 }
3337 
3338 /* Backtrack one insn at a time. If idx is not at the top of recorded
3339  * history then previous instruction came from straight line execution.
3340  * Return -ENOENT if we exhausted all instructions within given state.
3341  *
3342  * It's legal to have a bit of a looping with the same starting and ending
3343  * insn index within the same state, e.g.: 3->4->5->3, so just because current
3344  * instruction index is the same as state's first_idx doesn't mean we are
3345  * done. If there is still some jump history left, we should keep going. We
3346  * need to take into account that we might have a jump history between given
3347  * state's parent and itself, due to checkpointing. In this case, we'll have
3348  * history entry recording a jump from last instruction of parent state and
3349  * first instruction of given state.
3350  */
3351 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
3352 			     u32 *history)
3353 {
3354 	u32 cnt = *history;
3355 
3356 	if (i == st->first_insn_idx) {
3357 		if (cnt == 0)
3358 			return -ENOENT;
3359 		if (cnt == 1 && st->jmp_history[0].idx == i)
3360 			return -ENOENT;
3361 	}
3362 
3363 	if (cnt && st->jmp_history[cnt - 1].idx == i) {
3364 		i = st->jmp_history[cnt - 1].prev_idx;
3365 		(*history)--;
3366 	} else {
3367 		i--;
3368 	}
3369 	return i;
3370 }
3371 
3372 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
3373 {
3374 	const struct btf_type *func;
3375 	struct btf *desc_btf;
3376 
3377 	if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
3378 		return NULL;
3379 
3380 	desc_btf = find_kfunc_desc_btf(data, insn->off);
3381 	if (IS_ERR(desc_btf))
3382 		return "<error>";
3383 
3384 	func = btf_type_by_id(desc_btf, insn->imm);
3385 	return btf_name_by_offset(desc_btf, func->name_off);
3386 }
3387 
3388 static inline void bt_init(struct backtrack_state *bt, u32 frame)
3389 {
3390 	bt->frame = frame;
3391 }
3392 
3393 static inline void bt_reset(struct backtrack_state *bt)
3394 {
3395 	struct bpf_verifier_env *env = bt->env;
3396 
3397 	memset(bt, 0, sizeof(*bt));
3398 	bt->env = env;
3399 }
3400 
3401 static inline u32 bt_empty(struct backtrack_state *bt)
3402 {
3403 	u64 mask = 0;
3404 	int i;
3405 
3406 	for (i = 0; i <= bt->frame; i++)
3407 		mask |= bt->reg_masks[i] | bt->stack_masks[i];
3408 
3409 	return mask == 0;
3410 }
3411 
3412 static inline int bt_subprog_enter(struct backtrack_state *bt)
3413 {
3414 	if (bt->frame == MAX_CALL_FRAMES - 1) {
3415 		verbose(bt->env, "BUG subprog enter from frame %d\n", bt->frame);
3416 		WARN_ONCE(1, "verifier backtracking bug");
3417 		return -EFAULT;
3418 	}
3419 	bt->frame++;
3420 	return 0;
3421 }
3422 
3423 static inline int bt_subprog_exit(struct backtrack_state *bt)
3424 {
3425 	if (bt->frame == 0) {
3426 		verbose(bt->env, "BUG subprog exit from frame 0\n");
3427 		WARN_ONCE(1, "verifier backtracking bug");
3428 		return -EFAULT;
3429 	}
3430 	bt->frame--;
3431 	return 0;
3432 }
3433 
3434 static inline void bt_set_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg)
3435 {
3436 	bt->reg_masks[frame] |= 1 << reg;
3437 }
3438 
3439 static inline void bt_clear_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg)
3440 {
3441 	bt->reg_masks[frame] &= ~(1 << reg);
3442 }
3443 
3444 static inline void bt_set_reg(struct backtrack_state *bt, u32 reg)
3445 {
3446 	bt_set_frame_reg(bt, bt->frame, reg);
3447 }
3448 
3449 static inline void bt_clear_reg(struct backtrack_state *bt, u32 reg)
3450 {
3451 	bt_clear_frame_reg(bt, bt->frame, reg);
3452 }
3453 
3454 static inline void bt_set_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot)
3455 {
3456 	bt->stack_masks[frame] |= 1ull << slot;
3457 }
3458 
3459 static inline void bt_clear_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot)
3460 {
3461 	bt->stack_masks[frame] &= ~(1ull << slot);
3462 }
3463 
3464 static inline u32 bt_frame_reg_mask(struct backtrack_state *bt, u32 frame)
3465 {
3466 	return bt->reg_masks[frame];
3467 }
3468 
3469 static inline u32 bt_reg_mask(struct backtrack_state *bt)
3470 {
3471 	return bt->reg_masks[bt->frame];
3472 }
3473 
3474 static inline u64 bt_frame_stack_mask(struct backtrack_state *bt, u32 frame)
3475 {
3476 	return bt->stack_masks[frame];
3477 }
3478 
3479 static inline u64 bt_stack_mask(struct backtrack_state *bt)
3480 {
3481 	return bt->stack_masks[bt->frame];
3482 }
3483 
3484 static inline bool bt_is_reg_set(struct backtrack_state *bt, u32 reg)
3485 {
3486 	return bt->reg_masks[bt->frame] & (1 << reg);
3487 }
3488 
3489 static inline bool bt_is_frame_slot_set(struct backtrack_state *bt, u32 frame, u32 slot)
3490 {
3491 	return bt->stack_masks[frame] & (1ull << slot);
3492 }
3493 
3494 /* format registers bitmask, e.g., "r0,r2,r4" for 0x15 mask */
3495 static void fmt_reg_mask(char *buf, ssize_t buf_sz, u32 reg_mask)
3496 {
3497 	DECLARE_BITMAP(mask, 64);
3498 	bool first = true;
3499 	int i, n;
3500 
3501 	buf[0] = '\0';
3502 
3503 	bitmap_from_u64(mask, reg_mask);
3504 	for_each_set_bit(i, mask, 32) {
3505 		n = snprintf(buf, buf_sz, "%sr%d", first ? "" : ",", i);
3506 		first = false;
3507 		buf += n;
3508 		buf_sz -= n;
3509 		if (buf_sz < 0)
3510 			break;
3511 	}
3512 }
3513 /* format stack slots bitmask, e.g., "-8,-24,-40" for 0x15 mask */
3514 static void fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask)
3515 {
3516 	DECLARE_BITMAP(mask, 64);
3517 	bool first = true;
3518 	int i, n;
3519 
3520 	buf[0] = '\0';
3521 
3522 	bitmap_from_u64(mask, stack_mask);
3523 	for_each_set_bit(i, mask, 64) {
3524 		n = snprintf(buf, buf_sz, "%s%d", first ? "" : ",", -(i + 1) * 8);
3525 		first = false;
3526 		buf += n;
3527 		buf_sz -= n;
3528 		if (buf_sz < 0)
3529 			break;
3530 	}
3531 }
3532 
3533 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx);
3534 
3535 /* For given verifier state backtrack_insn() is called from the last insn to
3536  * the first insn. Its purpose is to compute a bitmask of registers and
3537  * stack slots that needs precision in the parent verifier state.
3538  *
3539  * @idx is an index of the instruction we are currently processing;
3540  * @subseq_idx is an index of the subsequent instruction that:
3541  *   - *would be* executed next, if jump history is viewed in forward order;
3542  *   - *was* processed previously during backtracking.
3543  */
3544 static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx,
3545 			  struct bpf_jmp_history_entry *hist, struct backtrack_state *bt)
3546 {
3547 	const struct bpf_insn_cbs cbs = {
3548 		.cb_call	= disasm_kfunc_name,
3549 		.cb_print	= verbose,
3550 		.private_data	= env,
3551 	};
3552 	struct bpf_insn *insn = env->prog->insnsi + idx;
3553 	u8 class = BPF_CLASS(insn->code);
3554 	u8 opcode = BPF_OP(insn->code);
3555 	u8 mode = BPF_MODE(insn->code);
3556 	u32 dreg = insn->dst_reg;
3557 	u32 sreg = insn->src_reg;
3558 	u32 spi, i, fr;
3559 
3560 	if (insn->code == 0)
3561 		return 0;
3562 	if (env->log.level & BPF_LOG_LEVEL2) {
3563 		fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_reg_mask(bt));
3564 		verbose(env, "mark_precise: frame%d: regs=%s ",
3565 			bt->frame, env->tmp_str_buf);
3566 		fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt));
3567 		verbose(env, "stack=%s before ", env->tmp_str_buf);
3568 		verbose(env, "%d: ", idx);
3569 		print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
3570 	}
3571 
3572 	if (class == BPF_ALU || class == BPF_ALU64) {
3573 		if (!bt_is_reg_set(bt, dreg))
3574 			return 0;
3575 		if (opcode == BPF_END || opcode == BPF_NEG) {
3576 			/* sreg is reserved and unused
3577 			 * dreg still need precision before this insn
3578 			 */
3579 			return 0;
3580 		} else if (opcode == BPF_MOV) {
3581 			if (BPF_SRC(insn->code) == BPF_X) {
3582 				/* dreg = sreg or dreg = (s8, s16, s32)sreg
3583 				 * dreg needs precision after this insn
3584 				 * sreg needs precision before this insn
3585 				 */
3586 				bt_clear_reg(bt, dreg);
3587 				bt_set_reg(bt, sreg);
3588 			} else {
3589 				/* dreg = K
3590 				 * dreg needs precision after this insn.
3591 				 * Corresponding register is already marked
3592 				 * as precise=true in this verifier state.
3593 				 * No further markings in parent are necessary
3594 				 */
3595 				bt_clear_reg(bt, dreg);
3596 			}
3597 		} else {
3598 			if (BPF_SRC(insn->code) == BPF_X) {
3599 				/* dreg += sreg
3600 				 * both dreg and sreg need precision
3601 				 * before this insn
3602 				 */
3603 				bt_set_reg(bt, sreg);
3604 			} /* else dreg += K
3605 			   * dreg still needs precision before this insn
3606 			   */
3607 		}
3608 	} else if (class == BPF_LDX) {
3609 		if (!bt_is_reg_set(bt, dreg))
3610 			return 0;
3611 		bt_clear_reg(bt, dreg);
3612 
3613 		/* scalars can only be spilled into stack w/o losing precision.
3614 		 * Load from any other memory can be zero extended.
3615 		 * The desire to keep that precision is already indicated
3616 		 * by 'precise' mark in corresponding register of this state.
3617 		 * No further tracking necessary.
3618 		 */
3619 		if (!hist || !(hist->flags & INSN_F_STACK_ACCESS))
3620 			return 0;
3621 		/* dreg = *(u64 *)[fp - off] was a fill from the stack.
3622 		 * that [fp - off] slot contains scalar that needs to be
3623 		 * tracked with precision
3624 		 */
3625 		spi = insn_stack_access_spi(hist->flags);
3626 		fr = insn_stack_access_frameno(hist->flags);
3627 		bt_set_frame_slot(bt, fr, spi);
3628 	} else if (class == BPF_STX || class == BPF_ST) {
3629 		if (bt_is_reg_set(bt, dreg))
3630 			/* stx & st shouldn't be using _scalar_ dst_reg
3631 			 * to access memory. It means backtracking
3632 			 * encountered a case of pointer subtraction.
3633 			 */
3634 			return -ENOTSUPP;
3635 		/* scalars can only be spilled into stack */
3636 		if (!hist || !(hist->flags & INSN_F_STACK_ACCESS))
3637 			return 0;
3638 		spi = insn_stack_access_spi(hist->flags);
3639 		fr = insn_stack_access_frameno(hist->flags);
3640 		if (!bt_is_frame_slot_set(bt, fr, spi))
3641 			return 0;
3642 		bt_clear_frame_slot(bt, fr, spi);
3643 		if (class == BPF_STX)
3644 			bt_set_reg(bt, sreg);
3645 	} else if (class == BPF_JMP || class == BPF_JMP32) {
3646 		if (bpf_pseudo_call(insn)) {
3647 			int subprog_insn_idx, subprog;
3648 
3649 			subprog_insn_idx = idx + insn->imm + 1;
3650 			subprog = find_subprog(env, subprog_insn_idx);
3651 			if (subprog < 0)
3652 				return -EFAULT;
3653 
3654 			if (subprog_is_global(env, subprog)) {
3655 				/* check that jump history doesn't have any
3656 				 * extra instructions from subprog; the next
3657 				 * instruction after call to global subprog
3658 				 * should be literally next instruction in
3659 				 * caller program
3660 				 */
3661 				WARN_ONCE(idx + 1 != subseq_idx, "verifier backtracking bug");
3662 				/* r1-r5 are invalidated after subprog call,
3663 				 * so for global func call it shouldn't be set
3664 				 * anymore
3665 				 */
3666 				if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3667 					verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3668 					WARN_ONCE(1, "verifier backtracking bug");
3669 					return -EFAULT;
3670 				}
3671 				/* global subprog always sets R0 */
3672 				bt_clear_reg(bt, BPF_REG_0);
3673 				return 0;
3674 			} else {
3675 				/* static subprog call instruction, which
3676 				 * means that we are exiting current subprog,
3677 				 * so only r1-r5 could be still requested as
3678 				 * precise, r0 and r6-r10 or any stack slot in
3679 				 * the current frame should be zero by now
3680 				 */
3681 				if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
3682 					verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3683 					WARN_ONCE(1, "verifier backtracking bug");
3684 					return -EFAULT;
3685 				}
3686 				/* we are now tracking register spills correctly,
3687 				 * so any instance of leftover slots is a bug
3688 				 */
3689 				if (bt_stack_mask(bt) != 0) {
3690 					verbose(env, "BUG stack slots %llx\n", bt_stack_mask(bt));
3691 					WARN_ONCE(1, "verifier backtracking bug (subprog leftover stack slots)");
3692 					return -EFAULT;
3693 				}
3694 				/* propagate r1-r5 to the caller */
3695 				for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
3696 					if (bt_is_reg_set(bt, i)) {
3697 						bt_clear_reg(bt, i);
3698 						bt_set_frame_reg(bt, bt->frame - 1, i);
3699 					}
3700 				}
3701 				if (bt_subprog_exit(bt))
3702 					return -EFAULT;
3703 				return 0;
3704 			}
3705 		} else if (is_sync_callback_calling_insn(insn) && idx != subseq_idx - 1) {
3706 			/* exit from callback subprog to callback-calling helper or
3707 			 * kfunc call. Use idx/subseq_idx check to discern it from
3708 			 * straight line code backtracking.
3709 			 * Unlike the subprog call handling above, we shouldn't
3710 			 * propagate precision of r1-r5 (if any requested), as they are
3711 			 * not actually arguments passed directly to callback subprogs
3712 			 */
3713 			if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
3714 				verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3715 				WARN_ONCE(1, "verifier backtracking bug");
3716 				return -EFAULT;
3717 			}
3718 			if (bt_stack_mask(bt) != 0) {
3719 				verbose(env, "BUG stack slots %llx\n", bt_stack_mask(bt));
3720 				WARN_ONCE(1, "verifier backtracking bug (callback leftover stack slots)");
3721 				return -EFAULT;
3722 			}
3723 			/* clear r1-r5 in callback subprog's mask */
3724 			for (i = BPF_REG_1; i <= BPF_REG_5; i++)
3725 				bt_clear_reg(bt, i);
3726 			if (bt_subprog_exit(bt))
3727 				return -EFAULT;
3728 			return 0;
3729 		} else if (opcode == BPF_CALL) {
3730 			/* kfunc with imm==0 is invalid and fixup_kfunc_call will
3731 			 * catch this error later. Make backtracking conservative
3732 			 * with ENOTSUPP.
3733 			 */
3734 			if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0)
3735 				return -ENOTSUPP;
3736 			/* regular helper call sets R0 */
3737 			bt_clear_reg(bt, BPF_REG_0);
3738 			if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3739 				/* if backtracing was looking for registers R1-R5
3740 				 * they should have been found already.
3741 				 */
3742 				verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3743 				WARN_ONCE(1, "verifier backtracking bug");
3744 				return -EFAULT;
3745 			}
3746 		} else if (opcode == BPF_EXIT) {
3747 			bool r0_precise;
3748 
3749 			/* Backtracking to a nested function call, 'idx' is a part of
3750 			 * the inner frame 'subseq_idx' is a part of the outer frame.
3751 			 * In case of a regular function call, instructions giving
3752 			 * precision to registers R1-R5 should have been found already.
3753 			 * In case of a callback, it is ok to have R1-R5 marked for
3754 			 * backtracking, as these registers are set by the function
3755 			 * invoking callback.
3756 			 */
3757 			if (subseq_idx >= 0 && calls_callback(env, subseq_idx))
3758 				for (i = BPF_REG_1; i <= BPF_REG_5; i++)
3759 					bt_clear_reg(bt, i);
3760 			if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3761 				verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3762 				WARN_ONCE(1, "verifier backtracking bug");
3763 				return -EFAULT;
3764 			}
3765 
3766 			/* BPF_EXIT in subprog or callback always returns
3767 			 * right after the call instruction, so by checking
3768 			 * whether the instruction at subseq_idx-1 is subprog
3769 			 * call or not we can distinguish actual exit from
3770 			 * *subprog* from exit from *callback*. In the former
3771 			 * case, we need to propagate r0 precision, if
3772 			 * necessary. In the former we never do that.
3773 			 */
3774 			r0_precise = subseq_idx - 1 >= 0 &&
3775 				     bpf_pseudo_call(&env->prog->insnsi[subseq_idx - 1]) &&
3776 				     bt_is_reg_set(bt, BPF_REG_0);
3777 
3778 			bt_clear_reg(bt, BPF_REG_0);
3779 			if (bt_subprog_enter(bt))
3780 				return -EFAULT;
3781 
3782 			if (r0_precise)
3783 				bt_set_reg(bt, BPF_REG_0);
3784 			/* r6-r9 and stack slots will stay set in caller frame
3785 			 * bitmasks until we return back from callee(s)
3786 			 */
3787 			return 0;
3788 		} else if (BPF_SRC(insn->code) == BPF_X) {
3789 			if (!bt_is_reg_set(bt, dreg) && !bt_is_reg_set(bt, sreg))
3790 				return 0;
3791 			/* dreg <cond> sreg
3792 			 * Both dreg and sreg need precision before
3793 			 * this insn. If only sreg was marked precise
3794 			 * before it would be equally necessary to
3795 			 * propagate it to dreg.
3796 			 */
3797 			bt_set_reg(bt, dreg);
3798 			bt_set_reg(bt, sreg);
3799 			 /* else dreg <cond> K
3800 			  * Only dreg still needs precision before
3801 			  * this insn, so for the K-based conditional
3802 			  * there is nothing new to be marked.
3803 			  */
3804 		}
3805 	} else if (class == BPF_LD) {
3806 		if (!bt_is_reg_set(bt, dreg))
3807 			return 0;
3808 		bt_clear_reg(bt, dreg);
3809 		/* It's ld_imm64 or ld_abs or ld_ind.
3810 		 * For ld_imm64 no further tracking of precision
3811 		 * into parent is necessary
3812 		 */
3813 		if (mode == BPF_IND || mode == BPF_ABS)
3814 			/* to be analyzed */
3815 			return -ENOTSUPP;
3816 	}
3817 	return 0;
3818 }
3819 
3820 /* the scalar precision tracking algorithm:
3821  * . at the start all registers have precise=false.
3822  * . scalar ranges are tracked as normal through alu and jmp insns.
3823  * . once precise value of the scalar register is used in:
3824  *   .  ptr + scalar alu
3825  *   . if (scalar cond K|scalar)
3826  *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
3827  *   backtrack through the verifier states and mark all registers and
3828  *   stack slots with spilled constants that these scalar regisers
3829  *   should be precise.
3830  * . during state pruning two registers (or spilled stack slots)
3831  *   are equivalent if both are not precise.
3832  *
3833  * Note the verifier cannot simply walk register parentage chain,
3834  * since many different registers and stack slots could have been
3835  * used to compute single precise scalar.
3836  *
3837  * The approach of starting with precise=true for all registers and then
3838  * backtrack to mark a register as not precise when the verifier detects
3839  * that program doesn't care about specific value (e.g., when helper
3840  * takes register as ARG_ANYTHING parameter) is not safe.
3841  *
3842  * It's ok to walk single parentage chain of the verifier states.
3843  * It's possible that this backtracking will go all the way till 1st insn.
3844  * All other branches will be explored for needing precision later.
3845  *
3846  * The backtracking needs to deal with cases like:
3847  *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
3848  * r9 -= r8
3849  * r5 = r9
3850  * if r5 > 0x79f goto pc+7
3851  *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
3852  * r5 += 1
3853  * ...
3854  * call bpf_perf_event_output#25
3855  *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
3856  *
3857  * and this case:
3858  * r6 = 1
3859  * call foo // uses callee's r6 inside to compute r0
3860  * r0 += r6
3861  * if r0 == 0 goto
3862  *
3863  * to track above reg_mask/stack_mask needs to be independent for each frame.
3864  *
3865  * Also if parent's curframe > frame where backtracking started,
3866  * the verifier need to mark registers in both frames, otherwise callees
3867  * may incorrectly prune callers. This is similar to
3868  * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
3869  *
3870  * For now backtracking falls back into conservative marking.
3871  */
3872 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
3873 				     struct bpf_verifier_state *st)
3874 {
3875 	struct bpf_func_state *func;
3876 	struct bpf_reg_state *reg;
3877 	int i, j;
3878 
3879 	if (env->log.level & BPF_LOG_LEVEL2) {
3880 		verbose(env, "mark_precise: frame%d: falling back to forcing all scalars precise\n",
3881 			st->curframe);
3882 	}
3883 
3884 	/* big hammer: mark all scalars precise in this path.
3885 	 * pop_stack may still get !precise scalars.
3886 	 * We also skip current state and go straight to first parent state,
3887 	 * because precision markings in current non-checkpointed state are
3888 	 * not needed. See why in the comment in __mark_chain_precision below.
3889 	 */
3890 	for (st = st->parent; st; st = st->parent) {
3891 		for (i = 0; i <= st->curframe; i++) {
3892 			func = st->frame[i];
3893 			for (j = 0; j < BPF_REG_FP; j++) {
3894 				reg = &func->regs[j];
3895 				if (reg->type != SCALAR_VALUE || reg->precise)
3896 					continue;
3897 				reg->precise = true;
3898 				if (env->log.level & BPF_LOG_LEVEL2) {
3899 					verbose(env, "force_precise: frame%d: forcing r%d to be precise\n",
3900 						i, j);
3901 				}
3902 			}
3903 			for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
3904 				if (!is_spilled_reg(&func->stack[j]))
3905 					continue;
3906 				reg = &func->stack[j].spilled_ptr;
3907 				if (reg->type != SCALAR_VALUE || reg->precise)
3908 					continue;
3909 				reg->precise = true;
3910 				if (env->log.level & BPF_LOG_LEVEL2) {
3911 					verbose(env, "force_precise: frame%d: forcing fp%d to be precise\n",
3912 						i, -(j + 1) * 8);
3913 				}
3914 			}
3915 		}
3916 	}
3917 }
3918 
3919 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
3920 {
3921 	struct bpf_func_state *func;
3922 	struct bpf_reg_state *reg;
3923 	int i, j;
3924 
3925 	for (i = 0; i <= st->curframe; i++) {
3926 		func = st->frame[i];
3927 		for (j = 0; j < BPF_REG_FP; j++) {
3928 			reg = &func->regs[j];
3929 			if (reg->type != SCALAR_VALUE)
3930 				continue;
3931 			reg->precise = false;
3932 		}
3933 		for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
3934 			if (!is_spilled_reg(&func->stack[j]))
3935 				continue;
3936 			reg = &func->stack[j].spilled_ptr;
3937 			if (reg->type != SCALAR_VALUE)
3938 				continue;
3939 			reg->precise = false;
3940 		}
3941 	}
3942 }
3943 
3944 static bool idset_contains(struct bpf_idset *s, u32 id)
3945 {
3946 	u32 i;
3947 
3948 	for (i = 0; i < s->count; ++i)
3949 		if (s->ids[i] == id)
3950 			return true;
3951 
3952 	return false;
3953 }
3954 
3955 static int idset_push(struct bpf_idset *s, u32 id)
3956 {
3957 	if (WARN_ON_ONCE(s->count >= ARRAY_SIZE(s->ids)))
3958 		return -EFAULT;
3959 	s->ids[s->count++] = id;
3960 	return 0;
3961 }
3962 
3963 static void idset_reset(struct bpf_idset *s)
3964 {
3965 	s->count = 0;
3966 }
3967 
3968 /* Collect a set of IDs for all registers currently marked as precise in env->bt.
3969  * Mark all registers with these IDs as precise.
3970  */
3971 static int mark_precise_scalar_ids(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
3972 {
3973 	struct bpf_idset *precise_ids = &env->idset_scratch;
3974 	struct backtrack_state *bt = &env->bt;
3975 	struct bpf_func_state *func;
3976 	struct bpf_reg_state *reg;
3977 	DECLARE_BITMAP(mask, 64);
3978 	int i, fr;
3979 
3980 	idset_reset(precise_ids);
3981 
3982 	for (fr = bt->frame; fr >= 0; fr--) {
3983 		func = st->frame[fr];
3984 
3985 		bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr));
3986 		for_each_set_bit(i, mask, 32) {
3987 			reg = &func->regs[i];
3988 			if (!reg->id || reg->type != SCALAR_VALUE)
3989 				continue;
3990 			if (idset_push(precise_ids, reg->id))
3991 				return -EFAULT;
3992 		}
3993 
3994 		bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr));
3995 		for_each_set_bit(i, mask, 64) {
3996 			if (i >= func->allocated_stack / BPF_REG_SIZE)
3997 				break;
3998 			if (!is_spilled_scalar_reg(&func->stack[i]))
3999 				continue;
4000 			reg = &func->stack[i].spilled_ptr;
4001 			if (!reg->id)
4002 				continue;
4003 			if (idset_push(precise_ids, reg->id))
4004 				return -EFAULT;
4005 		}
4006 	}
4007 
4008 	for (fr = 0; fr <= st->curframe; ++fr) {
4009 		func = st->frame[fr];
4010 
4011 		for (i = BPF_REG_0; i < BPF_REG_10; ++i) {
4012 			reg = &func->regs[i];
4013 			if (!reg->id)
4014 				continue;
4015 			if (!idset_contains(precise_ids, reg->id))
4016 				continue;
4017 			bt_set_frame_reg(bt, fr, i);
4018 		}
4019 		for (i = 0; i < func->allocated_stack / BPF_REG_SIZE; ++i) {
4020 			if (!is_spilled_scalar_reg(&func->stack[i]))
4021 				continue;
4022 			reg = &func->stack[i].spilled_ptr;
4023 			if (!reg->id)
4024 				continue;
4025 			if (!idset_contains(precise_ids, reg->id))
4026 				continue;
4027 			bt_set_frame_slot(bt, fr, i);
4028 		}
4029 	}
4030 
4031 	return 0;
4032 }
4033 
4034 /*
4035  * __mark_chain_precision() backtracks BPF program instruction sequence and
4036  * chain of verifier states making sure that register *regno* (if regno >= 0)
4037  * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked
4038  * SCALARS, as well as any other registers and slots that contribute to
4039  * a tracked state of given registers/stack slots, depending on specific BPF
4040  * assembly instructions (see backtrack_insns() for exact instruction handling
4041  * logic). This backtracking relies on recorded jmp_history and is able to
4042  * traverse entire chain of parent states. This process ends only when all the
4043  * necessary registers/slots and their transitive dependencies are marked as
4044  * precise.
4045  *
4046  * One important and subtle aspect is that precise marks *do not matter* in
4047  * the currently verified state (current state). It is important to understand
4048  * why this is the case.
4049  *
4050  * First, note that current state is the state that is not yet "checkpointed",
4051  * i.e., it is not yet put into env->explored_states, and it has no children
4052  * states as well. It's ephemeral, and can end up either a) being discarded if
4053  * compatible explored state is found at some point or BPF_EXIT instruction is
4054  * reached or b) checkpointed and put into env->explored_states, branching out
4055  * into one or more children states.
4056  *
4057  * In the former case, precise markings in current state are completely
4058  * ignored by state comparison code (see regsafe() for details). Only
4059  * checkpointed ("old") state precise markings are important, and if old
4060  * state's register/slot is precise, regsafe() assumes current state's
4061  * register/slot as precise and checks value ranges exactly and precisely. If
4062  * states turn out to be compatible, current state's necessary precise
4063  * markings and any required parent states' precise markings are enforced
4064  * after the fact with propagate_precision() logic, after the fact. But it's
4065  * important to realize that in this case, even after marking current state
4066  * registers/slots as precise, we immediately discard current state. So what
4067  * actually matters is any of the precise markings propagated into current
4068  * state's parent states, which are always checkpointed (due to b) case above).
4069  * As such, for scenario a) it doesn't matter if current state has precise
4070  * markings set or not.
4071  *
4072  * Now, for the scenario b), checkpointing and forking into child(ren)
4073  * state(s). Note that before current state gets to checkpointing step, any
4074  * processed instruction always assumes precise SCALAR register/slot
4075  * knowledge: if precise value or range is useful to prune jump branch, BPF
4076  * verifier takes this opportunity enthusiastically. Similarly, when
4077  * register's value is used to calculate offset or memory address, exact
4078  * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to
4079  * what we mentioned above about state comparison ignoring precise markings
4080  * during state comparison, BPF verifier ignores and also assumes precise
4081  * markings *at will* during instruction verification process. But as verifier
4082  * assumes precision, it also propagates any precision dependencies across
4083  * parent states, which are not yet finalized, so can be further restricted
4084  * based on new knowledge gained from restrictions enforced by their children
4085  * states. This is so that once those parent states are finalized, i.e., when
4086  * they have no more active children state, state comparison logic in
4087  * is_state_visited() would enforce strict and precise SCALAR ranges, if
4088  * required for correctness.
4089  *
4090  * To build a bit more intuition, note also that once a state is checkpointed,
4091  * the path we took to get to that state is not important. This is crucial
4092  * property for state pruning. When state is checkpointed and finalized at
4093  * some instruction index, it can be correctly and safely used to "short
4094  * circuit" any *compatible* state that reaches exactly the same instruction
4095  * index. I.e., if we jumped to that instruction from a completely different
4096  * code path than original finalized state was derived from, it doesn't
4097  * matter, current state can be discarded because from that instruction
4098  * forward having a compatible state will ensure we will safely reach the
4099  * exit. States describe preconditions for further exploration, but completely
4100  * forget the history of how we got here.
4101  *
4102  * This also means that even if we needed precise SCALAR range to get to
4103  * finalized state, but from that point forward *that same* SCALAR register is
4104  * never used in a precise context (i.e., it's precise value is not needed for
4105  * correctness), it's correct and safe to mark such register as "imprecise"
4106  * (i.e., precise marking set to false). This is what we rely on when we do
4107  * not set precise marking in current state. If no child state requires
4108  * precision for any given SCALAR register, it's safe to dictate that it can
4109  * be imprecise. If any child state does require this register to be precise,
4110  * we'll mark it precise later retroactively during precise markings
4111  * propagation from child state to parent states.
4112  *
4113  * Skipping precise marking setting in current state is a mild version of
4114  * relying on the above observation. But we can utilize this property even
4115  * more aggressively by proactively forgetting any precise marking in the
4116  * current state (which we inherited from the parent state), right before we
4117  * checkpoint it and branch off into new child state. This is done by
4118  * mark_all_scalars_imprecise() to hopefully get more permissive and generic
4119  * finalized states which help in short circuiting more future states.
4120  */
4121 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno)
4122 {
4123 	struct backtrack_state *bt = &env->bt;
4124 	struct bpf_verifier_state *st = env->cur_state;
4125 	int first_idx = st->first_insn_idx;
4126 	int last_idx = env->insn_idx;
4127 	int subseq_idx = -1;
4128 	struct bpf_func_state *func;
4129 	struct bpf_reg_state *reg;
4130 	bool skip_first = true;
4131 	int i, fr, err;
4132 
4133 	if (!env->bpf_capable)
4134 		return 0;
4135 
4136 	/* set frame number from which we are starting to backtrack */
4137 	bt_init(bt, env->cur_state->curframe);
4138 
4139 	/* Do sanity checks against current state of register and/or stack
4140 	 * slot, but don't set precise flag in current state, as precision
4141 	 * tracking in the current state is unnecessary.
4142 	 */
4143 	func = st->frame[bt->frame];
4144 	if (regno >= 0) {
4145 		reg = &func->regs[regno];
4146 		if (reg->type != SCALAR_VALUE) {
4147 			WARN_ONCE(1, "backtracing misuse");
4148 			return -EFAULT;
4149 		}
4150 		bt_set_reg(bt, regno);
4151 	}
4152 
4153 	if (bt_empty(bt))
4154 		return 0;
4155 
4156 	for (;;) {
4157 		DECLARE_BITMAP(mask, 64);
4158 		u32 history = st->jmp_history_cnt;
4159 		struct bpf_jmp_history_entry *hist;
4160 
4161 		if (env->log.level & BPF_LOG_LEVEL2) {
4162 			verbose(env, "mark_precise: frame%d: last_idx %d first_idx %d subseq_idx %d \n",
4163 				bt->frame, last_idx, first_idx, subseq_idx);
4164 		}
4165 
4166 		/* If some register with scalar ID is marked as precise,
4167 		 * make sure that all registers sharing this ID are also precise.
4168 		 * This is needed to estimate effect of find_equal_scalars().
4169 		 * Do this at the last instruction of each state,
4170 		 * bpf_reg_state::id fields are valid for these instructions.
4171 		 *
4172 		 * Allows to track precision in situation like below:
4173 		 *
4174 		 *     r2 = unknown value
4175 		 *     ...
4176 		 *   --- state #0 ---
4177 		 *     ...
4178 		 *     r1 = r2                 // r1 and r2 now share the same ID
4179 		 *     ...
4180 		 *   --- state #1 {r1.id = A, r2.id = A} ---
4181 		 *     ...
4182 		 *     if (r2 > 10) goto exit; // find_equal_scalars() assigns range to r1
4183 		 *     ...
4184 		 *   --- state #2 {r1.id = A, r2.id = A} ---
4185 		 *     r3 = r10
4186 		 *     r3 += r1                // need to mark both r1 and r2
4187 		 */
4188 		if (mark_precise_scalar_ids(env, st))
4189 			return -EFAULT;
4190 
4191 		if (last_idx < 0) {
4192 			/* we are at the entry into subprog, which
4193 			 * is expected for global funcs, but only if
4194 			 * requested precise registers are R1-R5
4195 			 * (which are global func's input arguments)
4196 			 */
4197 			if (st->curframe == 0 &&
4198 			    st->frame[0]->subprogno > 0 &&
4199 			    st->frame[0]->callsite == BPF_MAIN_FUNC &&
4200 			    bt_stack_mask(bt) == 0 &&
4201 			    (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) == 0) {
4202 				bitmap_from_u64(mask, bt_reg_mask(bt));
4203 				for_each_set_bit(i, mask, 32) {
4204 					reg = &st->frame[0]->regs[i];
4205 					bt_clear_reg(bt, i);
4206 					if (reg->type == SCALAR_VALUE)
4207 						reg->precise = true;
4208 				}
4209 				return 0;
4210 			}
4211 
4212 			verbose(env, "BUG backtracking func entry subprog %d reg_mask %x stack_mask %llx\n",
4213 				st->frame[0]->subprogno, bt_reg_mask(bt), bt_stack_mask(bt));
4214 			WARN_ONCE(1, "verifier backtracking bug");
4215 			return -EFAULT;
4216 		}
4217 
4218 		for (i = last_idx;;) {
4219 			if (skip_first) {
4220 				err = 0;
4221 				skip_first = false;
4222 			} else {
4223 				hist = get_jmp_hist_entry(st, history, i);
4224 				err = backtrack_insn(env, i, subseq_idx, hist, bt);
4225 			}
4226 			if (err == -ENOTSUPP) {
4227 				mark_all_scalars_precise(env, env->cur_state);
4228 				bt_reset(bt);
4229 				return 0;
4230 			} else if (err) {
4231 				return err;
4232 			}
4233 			if (bt_empty(bt))
4234 				/* Found assignment(s) into tracked register in this state.
4235 				 * Since this state is already marked, just return.
4236 				 * Nothing to be tracked further in the parent state.
4237 				 */
4238 				return 0;
4239 			subseq_idx = i;
4240 			i = get_prev_insn_idx(st, i, &history);
4241 			if (i == -ENOENT)
4242 				break;
4243 			if (i >= env->prog->len) {
4244 				/* This can happen if backtracking reached insn 0
4245 				 * and there are still reg_mask or stack_mask
4246 				 * to backtrack.
4247 				 * It means the backtracking missed the spot where
4248 				 * particular register was initialized with a constant.
4249 				 */
4250 				verbose(env, "BUG backtracking idx %d\n", i);
4251 				WARN_ONCE(1, "verifier backtracking bug");
4252 				return -EFAULT;
4253 			}
4254 		}
4255 		st = st->parent;
4256 		if (!st)
4257 			break;
4258 
4259 		for (fr = bt->frame; fr >= 0; fr--) {
4260 			func = st->frame[fr];
4261 			bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr));
4262 			for_each_set_bit(i, mask, 32) {
4263 				reg = &func->regs[i];
4264 				if (reg->type != SCALAR_VALUE) {
4265 					bt_clear_frame_reg(bt, fr, i);
4266 					continue;
4267 				}
4268 				if (reg->precise)
4269 					bt_clear_frame_reg(bt, fr, i);
4270 				else
4271 					reg->precise = true;
4272 			}
4273 
4274 			bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr));
4275 			for_each_set_bit(i, mask, 64) {
4276 				if (i >= func->allocated_stack / BPF_REG_SIZE) {
4277 					verbose(env, "BUG backtracking (stack slot %d, total slots %d)\n",
4278 						i, func->allocated_stack / BPF_REG_SIZE);
4279 					WARN_ONCE(1, "verifier backtracking bug (stack slot out of bounds)");
4280 					return -EFAULT;
4281 				}
4282 
4283 				if (!is_spilled_scalar_reg(&func->stack[i])) {
4284 					bt_clear_frame_slot(bt, fr, i);
4285 					continue;
4286 				}
4287 				reg = &func->stack[i].spilled_ptr;
4288 				if (reg->precise)
4289 					bt_clear_frame_slot(bt, fr, i);
4290 				else
4291 					reg->precise = true;
4292 			}
4293 			if (env->log.level & BPF_LOG_LEVEL2) {
4294 				fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
4295 					     bt_frame_reg_mask(bt, fr));
4296 				verbose(env, "mark_precise: frame%d: parent state regs=%s ",
4297 					fr, env->tmp_str_buf);
4298 				fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
4299 					       bt_frame_stack_mask(bt, fr));
4300 				verbose(env, "stack=%s: ", env->tmp_str_buf);
4301 				print_verifier_state(env, func, true);
4302 			}
4303 		}
4304 
4305 		if (bt_empty(bt))
4306 			return 0;
4307 
4308 		subseq_idx = first_idx;
4309 		last_idx = st->last_insn_idx;
4310 		first_idx = st->first_insn_idx;
4311 	}
4312 
4313 	/* if we still have requested precise regs or slots, we missed
4314 	 * something (e.g., stack access through non-r10 register), so
4315 	 * fallback to marking all precise
4316 	 */
4317 	if (!bt_empty(bt)) {
4318 		mark_all_scalars_precise(env, env->cur_state);
4319 		bt_reset(bt);
4320 	}
4321 
4322 	return 0;
4323 }
4324 
4325 int mark_chain_precision(struct bpf_verifier_env *env, int regno)
4326 {
4327 	return __mark_chain_precision(env, regno);
4328 }
4329 
4330 /* mark_chain_precision_batch() assumes that env->bt is set in the caller to
4331  * desired reg and stack masks across all relevant frames
4332  */
4333 static int mark_chain_precision_batch(struct bpf_verifier_env *env)
4334 {
4335 	return __mark_chain_precision(env, -1);
4336 }
4337 
4338 static bool is_spillable_regtype(enum bpf_reg_type type)
4339 {
4340 	switch (base_type(type)) {
4341 	case PTR_TO_MAP_VALUE:
4342 	case PTR_TO_STACK:
4343 	case PTR_TO_CTX:
4344 	case PTR_TO_PACKET:
4345 	case PTR_TO_PACKET_META:
4346 	case PTR_TO_PACKET_END:
4347 	case PTR_TO_FLOW_KEYS:
4348 	case CONST_PTR_TO_MAP:
4349 	case PTR_TO_SOCKET:
4350 	case PTR_TO_SOCK_COMMON:
4351 	case PTR_TO_TCP_SOCK:
4352 	case PTR_TO_XDP_SOCK:
4353 	case PTR_TO_BTF_ID:
4354 	case PTR_TO_BUF:
4355 	case PTR_TO_MEM:
4356 	case PTR_TO_FUNC:
4357 	case PTR_TO_MAP_KEY:
4358 		return true;
4359 	default:
4360 		return false;
4361 	}
4362 }
4363 
4364 /* Does this register contain a constant zero? */
4365 static bool register_is_null(struct bpf_reg_state *reg)
4366 {
4367 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
4368 }
4369 
4370 /* check if register is a constant scalar value */
4371 static bool is_reg_const(struct bpf_reg_state *reg, bool subreg32)
4372 {
4373 	return reg->type == SCALAR_VALUE &&
4374 	       tnum_is_const(subreg32 ? tnum_subreg(reg->var_off) : reg->var_off);
4375 }
4376 
4377 /* assuming is_reg_const() is true, return constant value of a register */
4378 static u64 reg_const_value(struct bpf_reg_state *reg, bool subreg32)
4379 {
4380 	return subreg32 ? tnum_subreg(reg->var_off).value : reg->var_off.value;
4381 }
4382 
4383 static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
4384 {
4385 	return tnum_is_unknown(reg->var_off) &&
4386 	       reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
4387 	       reg->umin_value == 0 && reg->umax_value == U64_MAX &&
4388 	       reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
4389 	       reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
4390 }
4391 
4392 static bool register_is_bounded(struct bpf_reg_state *reg)
4393 {
4394 	return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
4395 }
4396 
4397 static bool __is_pointer_value(bool allow_ptr_leaks,
4398 			       const struct bpf_reg_state *reg)
4399 {
4400 	if (allow_ptr_leaks)
4401 		return false;
4402 
4403 	return reg->type != SCALAR_VALUE;
4404 }
4405 
4406 static void assign_scalar_id_before_mov(struct bpf_verifier_env *env,
4407 					struct bpf_reg_state *src_reg)
4408 {
4409 	if (src_reg->type == SCALAR_VALUE && !src_reg->id &&
4410 	    !tnum_is_const(src_reg->var_off))
4411 		/* Ensure that src_reg has a valid ID that will be copied to
4412 		 * dst_reg and then will be used by find_equal_scalars() to
4413 		 * propagate min/max range.
4414 		 */
4415 		src_reg->id = ++env->id_gen;
4416 }
4417 
4418 /* Copy src state preserving dst->parent and dst->live fields */
4419 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src)
4420 {
4421 	struct bpf_reg_state *parent = dst->parent;
4422 	enum bpf_reg_liveness live = dst->live;
4423 
4424 	*dst = *src;
4425 	dst->parent = parent;
4426 	dst->live = live;
4427 }
4428 
4429 static void save_register_state(struct bpf_verifier_env *env,
4430 				struct bpf_func_state *state,
4431 				int spi, struct bpf_reg_state *reg,
4432 				int size)
4433 {
4434 	int i;
4435 
4436 	copy_register_state(&state->stack[spi].spilled_ptr, reg);
4437 	if (size == BPF_REG_SIZE)
4438 		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
4439 
4440 	for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--)
4441 		state->stack[spi].slot_type[i - 1] = STACK_SPILL;
4442 
4443 	/* size < 8 bytes spill */
4444 	for (; i; i--)
4445 		mark_stack_slot_misc(env, &state->stack[spi].slot_type[i - 1]);
4446 }
4447 
4448 static bool is_bpf_st_mem(struct bpf_insn *insn)
4449 {
4450 	return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM;
4451 }
4452 
4453 static int get_reg_width(struct bpf_reg_state *reg)
4454 {
4455 	return fls64(reg->umax_value);
4456 }
4457 
4458 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
4459  * stack boundary and alignment are checked in check_mem_access()
4460  */
4461 static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
4462 				       /* stack frame we're writing to */
4463 				       struct bpf_func_state *state,
4464 				       int off, int size, int value_regno,
4465 				       int insn_idx)
4466 {
4467 	struct bpf_func_state *cur; /* state of the current function */
4468 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
4469 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
4470 	struct bpf_reg_state *reg = NULL;
4471 	int insn_flags = insn_stack_access_flags(state->frameno, spi);
4472 
4473 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
4474 	 * so it's aligned access and [off, off + size) are within stack limits
4475 	 */
4476 	if (!env->allow_ptr_leaks &&
4477 	    is_spilled_reg(&state->stack[spi]) &&
4478 	    size != BPF_REG_SIZE) {
4479 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
4480 		return -EACCES;
4481 	}
4482 
4483 	cur = env->cur_state->frame[env->cur_state->curframe];
4484 	if (value_regno >= 0)
4485 		reg = &cur->regs[value_regno];
4486 	if (!env->bypass_spec_v4) {
4487 		bool sanitize = reg && is_spillable_regtype(reg->type);
4488 
4489 		for (i = 0; i < size; i++) {
4490 			u8 type = state->stack[spi].slot_type[i];
4491 
4492 			if (type != STACK_MISC && type != STACK_ZERO) {
4493 				sanitize = true;
4494 				break;
4495 			}
4496 		}
4497 
4498 		if (sanitize)
4499 			env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
4500 	}
4501 
4502 	err = destroy_if_dynptr_stack_slot(env, state, spi);
4503 	if (err)
4504 		return err;
4505 
4506 	mark_stack_slot_scratched(env, spi);
4507 	if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) && env->bpf_capable) {
4508 		bool reg_value_fits;
4509 
4510 		reg_value_fits = get_reg_width(reg) <= BITS_PER_BYTE * size;
4511 		/* Make sure that reg had an ID to build a relation on spill. */
4512 		if (reg_value_fits)
4513 			assign_scalar_id_before_mov(env, reg);
4514 		save_register_state(env, state, spi, reg, size);
4515 		/* Break the relation on a narrowing spill. */
4516 		if (!reg_value_fits)
4517 			state->stack[spi].spilled_ptr.id = 0;
4518 	} else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) &&
4519 		   env->bpf_capable) {
4520 		struct bpf_reg_state fake_reg = {};
4521 
4522 		__mark_reg_known(&fake_reg, insn->imm);
4523 		fake_reg.type = SCALAR_VALUE;
4524 		save_register_state(env, state, spi, &fake_reg, size);
4525 	} else if (reg && is_spillable_regtype(reg->type)) {
4526 		/* register containing pointer is being spilled into stack */
4527 		if (size != BPF_REG_SIZE) {
4528 			verbose_linfo(env, insn_idx, "; ");
4529 			verbose(env, "invalid size of register spill\n");
4530 			return -EACCES;
4531 		}
4532 		if (state != cur && reg->type == PTR_TO_STACK) {
4533 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
4534 			return -EINVAL;
4535 		}
4536 		save_register_state(env, state, spi, reg, size);
4537 	} else {
4538 		u8 type = STACK_MISC;
4539 
4540 		/* regular write of data into stack destroys any spilled ptr */
4541 		state->stack[spi].spilled_ptr.type = NOT_INIT;
4542 		/* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */
4543 		if (is_stack_slot_special(&state->stack[spi]))
4544 			for (i = 0; i < BPF_REG_SIZE; i++)
4545 				scrub_spilled_slot(&state->stack[spi].slot_type[i]);
4546 
4547 		/* only mark the slot as written if all 8 bytes were written
4548 		 * otherwise read propagation may incorrectly stop too soon
4549 		 * when stack slots are partially written.
4550 		 * This heuristic means that read propagation will be
4551 		 * conservative, since it will add reg_live_read marks
4552 		 * to stack slots all the way to first state when programs
4553 		 * writes+reads less than 8 bytes
4554 		 */
4555 		if (size == BPF_REG_SIZE)
4556 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
4557 
4558 		/* when we zero initialize stack slots mark them as such */
4559 		if ((reg && register_is_null(reg)) ||
4560 		    (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) {
4561 			/* STACK_ZERO case happened because register spill
4562 			 * wasn't properly aligned at the stack slot boundary,
4563 			 * so it's not a register spill anymore; force
4564 			 * originating register to be precise to make
4565 			 * STACK_ZERO correct for subsequent states
4566 			 */
4567 			err = mark_chain_precision(env, value_regno);
4568 			if (err)
4569 				return err;
4570 			type = STACK_ZERO;
4571 		}
4572 
4573 		/* Mark slots affected by this stack write. */
4574 		for (i = 0; i < size; i++)
4575 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = type;
4576 		insn_flags = 0; /* not a register spill */
4577 	}
4578 
4579 	if (insn_flags)
4580 		return push_jmp_history(env, env->cur_state, insn_flags);
4581 	return 0;
4582 }
4583 
4584 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
4585  * known to contain a variable offset.
4586  * This function checks whether the write is permitted and conservatively
4587  * tracks the effects of the write, considering that each stack slot in the
4588  * dynamic range is potentially written to.
4589  *
4590  * 'off' includes 'regno->off'.
4591  * 'value_regno' can be -1, meaning that an unknown value is being written to
4592  * the stack.
4593  *
4594  * Spilled pointers in range are not marked as written because we don't know
4595  * what's going to be actually written. This means that read propagation for
4596  * future reads cannot be terminated by this write.
4597  *
4598  * For privileged programs, uninitialized stack slots are considered
4599  * initialized by this write (even though we don't know exactly what offsets
4600  * are going to be written to). The idea is that we don't want the verifier to
4601  * reject future reads that access slots written to through variable offsets.
4602  */
4603 static int check_stack_write_var_off(struct bpf_verifier_env *env,
4604 				     /* func where register points to */
4605 				     struct bpf_func_state *state,
4606 				     int ptr_regno, int off, int size,
4607 				     int value_regno, int insn_idx)
4608 {
4609 	struct bpf_func_state *cur; /* state of the current function */
4610 	int min_off, max_off;
4611 	int i, err;
4612 	struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
4613 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
4614 	bool writing_zero = false;
4615 	/* set if the fact that we're writing a zero is used to let any
4616 	 * stack slots remain STACK_ZERO
4617 	 */
4618 	bool zero_used = false;
4619 
4620 	cur = env->cur_state->frame[env->cur_state->curframe];
4621 	ptr_reg = &cur->regs[ptr_regno];
4622 	min_off = ptr_reg->smin_value + off;
4623 	max_off = ptr_reg->smax_value + off + size;
4624 	if (value_regno >= 0)
4625 		value_reg = &cur->regs[value_regno];
4626 	if ((value_reg && register_is_null(value_reg)) ||
4627 	    (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0))
4628 		writing_zero = true;
4629 
4630 	for (i = min_off; i < max_off; i++) {
4631 		int spi;
4632 
4633 		spi = __get_spi(i);
4634 		err = destroy_if_dynptr_stack_slot(env, state, spi);
4635 		if (err)
4636 			return err;
4637 	}
4638 
4639 	/* Variable offset writes destroy any spilled pointers in range. */
4640 	for (i = min_off; i < max_off; i++) {
4641 		u8 new_type, *stype;
4642 		int slot, spi;
4643 
4644 		slot = -i - 1;
4645 		spi = slot / BPF_REG_SIZE;
4646 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
4647 		mark_stack_slot_scratched(env, spi);
4648 
4649 		if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) {
4650 			/* Reject the write if range we may write to has not
4651 			 * been initialized beforehand. If we didn't reject
4652 			 * here, the ptr status would be erased below (even
4653 			 * though not all slots are actually overwritten),
4654 			 * possibly opening the door to leaks.
4655 			 *
4656 			 * We do however catch STACK_INVALID case below, and
4657 			 * only allow reading possibly uninitialized memory
4658 			 * later for CAP_PERFMON, as the write may not happen to
4659 			 * that slot.
4660 			 */
4661 			verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
4662 				insn_idx, i);
4663 			return -EINVAL;
4664 		}
4665 
4666 		/* If writing_zero and the spi slot contains a spill of value 0,
4667 		 * maintain the spill type.
4668 		 */
4669 		if (writing_zero && *stype == STACK_SPILL &&
4670 		    is_spilled_scalar_reg(&state->stack[spi])) {
4671 			struct bpf_reg_state *spill_reg = &state->stack[spi].spilled_ptr;
4672 
4673 			if (tnum_is_const(spill_reg->var_off) && spill_reg->var_off.value == 0) {
4674 				zero_used = true;
4675 				continue;
4676 			}
4677 		}
4678 
4679 		/* Erase all other spilled pointers. */
4680 		state->stack[spi].spilled_ptr.type = NOT_INIT;
4681 
4682 		/* Update the slot type. */
4683 		new_type = STACK_MISC;
4684 		if (writing_zero && *stype == STACK_ZERO) {
4685 			new_type = STACK_ZERO;
4686 			zero_used = true;
4687 		}
4688 		/* If the slot is STACK_INVALID, we check whether it's OK to
4689 		 * pretend that it will be initialized by this write. The slot
4690 		 * might not actually be written to, and so if we mark it as
4691 		 * initialized future reads might leak uninitialized memory.
4692 		 * For privileged programs, we will accept such reads to slots
4693 		 * that may or may not be written because, if we're reject
4694 		 * them, the error would be too confusing.
4695 		 */
4696 		if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
4697 			verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
4698 					insn_idx, i);
4699 			return -EINVAL;
4700 		}
4701 		*stype = new_type;
4702 	}
4703 	if (zero_used) {
4704 		/* backtracking doesn't work for STACK_ZERO yet. */
4705 		err = mark_chain_precision(env, value_regno);
4706 		if (err)
4707 			return err;
4708 	}
4709 	return 0;
4710 }
4711 
4712 /* When register 'dst_regno' is assigned some values from stack[min_off,
4713  * max_off), we set the register's type according to the types of the
4714  * respective stack slots. If all the stack values are known to be zeros, then
4715  * so is the destination reg. Otherwise, the register is considered to be
4716  * SCALAR. This function does not deal with register filling; the caller must
4717  * ensure that all spilled registers in the stack range have been marked as
4718  * read.
4719  */
4720 static void mark_reg_stack_read(struct bpf_verifier_env *env,
4721 				/* func where src register points to */
4722 				struct bpf_func_state *ptr_state,
4723 				int min_off, int max_off, int dst_regno)
4724 {
4725 	struct bpf_verifier_state *vstate = env->cur_state;
4726 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4727 	int i, slot, spi;
4728 	u8 *stype;
4729 	int zeros = 0;
4730 
4731 	for (i = min_off; i < max_off; i++) {
4732 		slot = -i - 1;
4733 		spi = slot / BPF_REG_SIZE;
4734 		mark_stack_slot_scratched(env, spi);
4735 		stype = ptr_state->stack[spi].slot_type;
4736 		if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
4737 			break;
4738 		zeros++;
4739 	}
4740 	if (zeros == max_off - min_off) {
4741 		/* Any access_size read into register is zero extended,
4742 		 * so the whole register == const_zero.
4743 		 */
4744 		__mark_reg_const_zero(env, &state->regs[dst_regno]);
4745 	} else {
4746 		/* have read misc data from the stack */
4747 		mark_reg_unknown(env, state->regs, dst_regno);
4748 	}
4749 	state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4750 }
4751 
4752 /* Read the stack at 'off' and put the results into the register indicated by
4753  * 'dst_regno'. It handles reg filling if the addressed stack slot is a
4754  * spilled reg.
4755  *
4756  * 'dst_regno' can be -1, meaning that the read value is not going to a
4757  * register.
4758  *
4759  * The access is assumed to be within the current stack bounds.
4760  */
4761 static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
4762 				      /* func where src register points to */
4763 				      struct bpf_func_state *reg_state,
4764 				      int off, int size, int dst_regno)
4765 {
4766 	struct bpf_verifier_state *vstate = env->cur_state;
4767 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4768 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
4769 	struct bpf_reg_state *reg;
4770 	u8 *stype, type;
4771 	int insn_flags = insn_stack_access_flags(reg_state->frameno, spi);
4772 
4773 	stype = reg_state->stack[spi].slot_type;
4774 	reg = &reg_state->stack[spi].spilled_ptr;
4775 
4776 	mark_stack_slot_scratched(env, spi);
4777 
4778 	if (is_spilled_reg(&reg_state->stack[spi])) {
4779 		u8 spill_size = 1;
4780 
4781 		for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--)
4782 			spill_size++;
4783 
4784 		if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) {
4785 			if (reg->type != SCALAR_VALUE) {
4786 				verbose_linfo(env, env->insn_idx, "; ");
4787 				verbose(env, "invalid size of register fill\n");
4788 				return -EACCES;
4789 			}
4790 
4791 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4792 			if (dst_regno < 0)
4793 				return 0;
4794 
4795 			if (!(off % BPF_REG_SIZE) && size == spill_size) {
4796 				/* The earlier check_reg_arg() has decided the
4797 				 * subreg_def for this insn.  Save it first.
4798 				 */
4799 				s32 subreg_def = state->regs[dst_regno].subreg_def;
4800 
4801 				copy_register_state(&state->regs[dst_regno], reg);
4802 				state->regs[dst_regno].subreg_def = subreg_def;
4803 			} else {
4804 				int spill_cnt = 0, zero_cnt = 0;
4805 
4806 				for (i = 0; i < size; i++) {
4807 					type = stype[(slot - i) % BPF_REG_SIZE];
4808 					if (type == STACK_SPILL) {
4809 						spill_cnt++;
4810 						continue;
4811 					}
4812 					if (type == STACK_MISC)
4813 						continue;
4814 					if (type == STACK_ZERO) {
4815 						zero_cnt++;
4816 						continue;
4817 					}
4818 					if (type == STACK_INVALID && env->allow_uninit_stack)
4819 						continue;
4820 					verbose(env, "invalid read from stack off %d+%d size %d\n",
4821 						off, i, size);
4822 					return -EACCES;
4823 				}
4824 
4825 				if (spill_cnt == size &&
4826 				    tnum_is_const(reg->var_off) && reg->var_off.value == 0) {
4827 					__mark_reg_const_zero(env, &state->regs[dst_regno]);
4828 					/* this IS register fill, so keep insn_flags */
4829 				} else if (zero_cnt == size) {
4830 					/* similarly to mark_reg_stack_read(), preserve zeroes */
4831 					__mark_reg_const_zero(env, &state->regs[dst_regno]);
4832 					insn_flags = 0; /* not restoring original register state */
4833 				} else {
4834 					mark_reg_unknown(env, state->regs, dst_regno);
4835 					insn_flags = 0; /* not restoring original register state */
4836 				}
4837 			}
4838 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4839 		} else if (dst_regno >= 0) {
4840 			/* restore register state from stack */
4841 			copy_register_state(&state->regs[dst_regno], reg);
4842 			/* mark reg as written since spilled pointer state likely
4843 			 * has its liveness marks cleared by is_state_visited()
4844 			 * which resets stack/reg liveness for state transitions
4845 			 */
4846 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4847 		} else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
4848 			/* If dst_regno==-1, the caller is asking us whether
4849 			 * it is acceptable to use this value as a SCALAR_VALUE
4850 			 * (e.g. for XADD).
4851 			 * We must not allow unprivileged callers to do that
4852 			 * with spilled pointers.
4853 			 */
4854 			verbose(env, "leaking pointer from stack off %d\n",
4855 				off);
4856 			return -EACCES;
4857 		}
4858 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4859 	} else {
4860 		for (i = 0; i < size; i++) {
4861 			type = stype[(slot - i) % BPF_REG_SIZE];
4862 			if (type == STACK_MISC)
4863 				continue;
4864 			if (type == STACK_ZERO)
4865 				continue;
4866 			if (type == STACK_INVALID && env->allow_uninit_stack)
4867 				continue;
4868 			verbose(env, "invalid read from stack off %d+%d size %d\n",
4869 				off, i, size);
4870 			return -EACCES;
4871 		}
4872 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4873 		if (dst_regno >= 0)
4874 			mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
4875 		insn_flags = 0; /* we are not restoring spilled register */
4876 	}
4877 	if (insn_flags)
4878 		return push_jmp_history(env, env->cur_state, insn_flags);
4879 	return 0;
4880 }
4881 
4882 enum bpf_access_src {
4883 	ACCESS_DIRECT = 1,  /* the access is performed by an instruction */
4884 	ACCESS_HELPER = 2,  /* the access is performed by a helper */
4885 };
4886 
4887 static int check_stack_range_initialized(struct bpf_verifier_env *env,
4888 					 int regno, int off, int access_size,
4889 					 bool zero_size_allowed,
4890 					 enum bpf_access_src type,
4891 					 struct bpf_call_arg_meta *meta);
4892 
4893 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
4894 {
4895 	return cur_regs(env) + regno;
4896 }
4897 
4898 /* Read the stack at 'ptr_regno + off' and put the result into the register
4899  * 'dst_regno'.
4900  * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
4901  * but not its variable offset.
4902  * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
4903  *
4904  * As opposed to check_stack_read_fixed_off, this function doesn't deal with
4905  * filling registers (i.e. reads of spilled register cannot be detected when
4906  * the offset is not fixed). We conservatively mark 'dst_regno' as containing
4907  * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
4908  * offset; for a fixed offset check_stack_read_fixed_off should be used
4909  * instead.
4910  */
4911 static int check_stack_read_var_off(struct bpf_verifier_env *env,
4912 				    int ptr_regno, int off, int size, int dst_regno)
4913 {
4914 	/* The state of the source register. */
4915 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
4916 	struct bpf_func_state *ptr_state = func(env, reg);
4917 	int err;
4918 	int min_off, max_off;
4919 
4920 	/* Note that we pass a NULL meta, so raw access will not be permitted.
4921 	 */
4922 	err = check_stack_range_initialized(env, ptr_regno, off, size,
4923 					    false, ACCESS_DIRECT, NULL);
4924 	if (err)
4925 		return err;
4926 
4927 	min_off = reg->smin_value + off;
4928 	max_off = reg->smax_value + off;
4929 	mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
4930 	return 0;
4931 }
4932 
4933 /* check_stack_read dispatches to check_stack_read_fixed_off or
4934  * check_stack_read_var_off.
4935  *
4936  * The caller must ensure that the offset falls within the allocated stack
4937  * bounds.
4938  *
4939  * 'dst_regno' is a register which will receive the value from the stack. It
4940  * can be -1, meaning that the read value is not going to a register.
4941  */
4942 static int check_stack_read(struct bpf_verifier_env *env,
4943 			    int ptr_regno, int off, int size,
4944 			    int dst_regno)
4945 {
4946 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
4947 	struct bpf_func_state *state = func(env, reg);
4948 	int err;
4949 	/* Some accesses are only permitted with a static offset. */
4950 	bool var_off = !tnum_is_const(reg->var_off);
4951 
4952 	/* The offset is required to be static when reads don't go to a
4953 	 * register, in order to not leak pointers (see
4954 	 * check_stack_read_fixed_off).
4955 	 */
4956 	if (dst_regno < 0 && var_off) {
4957 		char tn_buf[48];
4958 
4959 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4960 		verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
4961 			tn_buf, off, size);
4962 		return -EACCES;
4963 	}
4964 	/* Variable offset is prohibited for unprivileged mode for simplicity
4965 	 * since it requires corresponding support in Spectre masking for stack
4966 	 * ALU. See also retrieve_ptr_limit(). The check in
4967 	 * check_stack_access_for_ptr_arithmetic() called by
4968 	 * adjust_ptr_min_max_vals() prevents users from creating stack pointers
4969 	 * with variable offsets, therefore no check is required here. Further,
4970 	 * just checking it here would be insufficient as speculative stack
4971 	 * writes could still lead to unsafe speculative behaviour.
4972 	 */
4973 	if (!var_off) {
4974 		off += reg->var_off.value;
4975 		err = check_stack_read_fixed_off(env, state, off, size,
4976 						 dst_regno);
4977 	} else {
4978 		/* Variable offset stack reads need more conservative handling
4979 		 * than fixed offset ones. Note that dst_regno >= 0 on this
4980 		 * branch.
4981 		 */
4982 		err = check_stack_read_var_off(env, ptr_regno, off, size,
4983 					       dst_regno);
4984 	}
4985 	return err;
4986 }
4987 
4988 
4989 /* check_stack_write dispatches to check_stack_write_fixed_off or
4990  * check_stack_write_var_off.
4991  *
4992  * 'ptr_regno' is the register used as a pointer into the stack.
4993  * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
4994  * 'value_regno' is the register whose value we're writing to the stack. It can
4995  * be -1, meaning that we're not writing from a register.
4996  *
4997  * The caller must ensure that the offset falls within the maximum stack size.
4998  */
4999 static int check_stack_write(struct bpf_verifier_env *env,
5000 			     int ptr_regno, int off, int size,
5001 			     int value_regno, int insn_idx)
5002 {
5003 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
5004 	struct bpf_func_state *state = func(env, reg);
5005 	int err;
5006 
5007 	if (tnum_is_const(reg->var_off)) {
5008 		off += reg->var_off.value;
5009 		err = check_stack_write_fixed_off(env, state, off, size,
5010 						  value_regno, insn_idx);
5011 	} else {
5012 		/* Variable offset stack reads need more conservative handling
5013 		 * than fixed offset ones.
5014 		 */
5015 		err = check_stack_write_var_off(env, state,
5016 						ptr_regno, off, size,
5017 						value_regno, insn_idx);
5018 	}
5019 	return err;
5020 }
5021 
5022 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
5023 				 int off, int size, enum bpf_access_type type)
5024 {
5025 	struct bpf_reg_state *regs = cur_regs(env);
5026 	struct bpf_map *map = regs[regno].map_ptr;
5027 	u32 cap = bpf_map_flags_to_cap(map);
5028 
5029 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
5030 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
5031 			map->value_size, off, size);
5032 		return -EACCES;
5033 	}
5034 
5035 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
5036 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
5037 			map->value_size, off, size);
5038 		return -EACCES;
5039 	}
5040 
5041 	return 0;
5042 }
5043 
5044 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
5045 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
5046 			      int off, int size, u32 mem_size,
5047 			      bool zero_size_allowed)
5048 {
5049 	bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
5050 	struct bpf_reg_state *reg;
5051 
5052 	if (off >= 0 && size_ok && (u64)off + size <= mem_size)
5053 		return 0;
5054 
5055 	reg = &cur_regs(env)[regno];
5056 	switch (reg->type) {
5057 	case PTR_TO_MAP_KEY:
5058 		verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
5059 			mem_size, off, size);
5060 		break;
5061 	case PTR_TO_MAP_VALUE:
5062 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
5063 			mem_size, off, size);
5064 		break;
5065 	case PTR_TO_PACKET:
5066 	case PTR_TO_PACKET_META:
5067 	case PTR_TO_PACKET_END:
5068 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
5069 			off, size, regno, reg->id, off, mem_size);
5070 		break;
5071 	case PTR_TO_MEM:
5072 	default:
5073 		verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
5074 			mem_size, off, size);
5075 	}
5076 
5077 	return -EACCES;
5078 }
5079 
5080 /* check read/write into a memory region with possible variable offset */
5081 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
5082 				   int off, int size, u32 mem_size,
5083 				   bool zero_size_allowed)
5084 {
5085 	struct bpf_verifier_state *vstate = env->cur_state;
5086 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5087 	struct bpf_reg_state *reg = &state->regs[regno];
5088 	int err;
5089 
5090 	/* We may have adjusted the register pointing to memory region, so we
5091 	 * need to try adding each of min_value and max_value to off
5092 	 * to make sure our theoretical access will be safe.
5093 	 *
5094 	 * The minimum value is only important with signed
5095 	 * comparisons where we can't assume the floor of a
5096 	 * value is 0.  If we are using signed variables for our
5097 	 * index'es we need to make sure that whatever we use
5098 	 * will have a set floor within our range.
5099 	 */
5100 	if (reg->smin_value < 0 &&
5101 	    (reg->smin_value == S64_MIN ||
5102 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
5103 	      reg->smin_value + off < 0)) {
5104 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5105 			regno);
5106 		return -EACCES;
5107 	}
5108 	err = __check_mem_access(env, regno, reg->smin_value + off, size,
5109 				 mem_size, zero_size_allowed);
5110 	if (err) {
5111 		verbose(env, "R%d min value is outside of the allowed memory range\n",
5112 			regno);
5113 		return err;
5114 	}
5115 
5116 	/* If we haven't set a max value then we need to bail since we can't be
5117 	 * sure we won't do bad things.
5118 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
5119 	 */
5120 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
5121 		verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
5122 			regno);
5123 		return -EACCES;
5124 	}
5125 	err = __check_mem_access(env, regno, reg->umax_value + off, size,
5126 				 mem_size, zero_size_allowed);
5127 	if (err) {
5128 		verbose(env, "R%d max value is outside of the allowed memory range\n",
5129 			regno);
5130 		return err;
5131 	}
5132 
5133 	return 0;
5134 }
5135 
5136 static int __check_ptr_off_reg(struct bpf_verifier_env *env,
5137 			       const struct bpf_reg_state *reg, int regno,
5138 			       bool fixed_off_ok)
5139 {
5140 	/* Access to this pointer-typed register or passing it to a helper
5141 	 * is only allowed in its original, unmodified form.
5142 	 */
5143 
5144 	if (reg->off < 0) {
5145 		verbose(env, "negative offset %s ptr R%d off=%d disallowed\n",
5146 			reg_type_str(env, reg->type), regno, reg->off);
5147 		return -EACCES;
5148 	}
5149 
5150 	if (!fixed_off_ok && reg->off) {
5151 		verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n",
5152 			reg_type_str(env, reg->type), regno, reg->off);
5153 		return -EACCES;
5154 	}
5155 
5156 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
5157 		char tn_buf[48];
5158 
5159 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5160 		verbose(env, "variable %s access var_off=%s disallowed\n",
5161 			reg_type_str(env, reg->type), tn_buf);
5162 		return -EACCES;
5163 	}
5164 
5165 	return 0;
5166 }
5167 
5168 static int check_ptr_off_reg(struct bpf_verifier_env *env,
5169 		             const struct bpf_reg_state *reg, int regno)
5170 {
5171 	return __check_ptr_off_reg(env, reg, regno, false);
5172 }
5173 
5174 static int map_kptr_match_type(struct bpf_verifier_env *env,
5175 			       struct btf_field *kptr_field,
5176 			       struct bpf_reg_state *reg, u32 regno)
5177 {
5178 	const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id);
5179 	int perm_flags;
5180 	const char *reg_name = "";
5181 
5182 	if (btf_is_kernel(reg->btf)) {
5183 		perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU;
5184 
5185 		/* Only unreferenced case accepts untrusted pointers */
5186 		if (kptr_field->type == BPF_KPTR_UNREF)
5187 			perm_flags |= PTR_UNTRUSTED;
5188 	} else {
5189 		perm_flags = PTR_MAYBE_NULL | MEM_ALLOC;
5190 		if (kptr_field->type == BPF_KPTR_PERCPU)
5191 			perm_flags |= MEM_PERCPU;
5192 	}
5193 
5194 	if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags))
5195 		goto bad_type;
5196 
5197 	/* We need to verify reg->type and reg->btf, before accessing reg->btf */
5198 	reg_name = btf_type_name(reg->btf, reg->btf_id);
5199 
5200 	/* For ref_ptr case, release function check should ensure we get one
5201 	 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the
5202 	 * normal store of unreferenced kptr, we must ensure var_off is zero.
5203 	 * Since ref_ptr cannot be accessed directly by BPF insns, checks for
5204 	 * reg->off and reg->ref_obj_id are not needed here.
5205 	 */
5206 	if (__check_ptr_off_reg(env, reg, regno, true))
5207 		return -EACCES;
5208 
5209 	/* A full type match is needed, as BTF can be vmlinux, module or prog BTF, and
5210 	 * we also need to take into account the reg->off.
5211 	 *
5212 	 * We want to support cases like:
5213 	 *
5214 	 * struct foo {
5215 	 *         struct bar br;
5216 	 *         struct baz bz;
5217 	 * };
5218 	 *
5219 	 * struct foo *v;
5220 	 * v = func();	      // PTR_TO_BTF_ID
5221 	 * val->foo = v;      // reg->off is zero, btf and btf_id match type
5222 	 * val->bar = &v->br; // reg->off is still zero, but we need to retry with
5223 	 *                    // first member type of struct after comparison fails
5224 	 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked
5225 	 *                    // to match type
5226 	 *
5227 	 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off
5228 	 * is zero. We must also ensure that btf_struct_ids_match does not walk
5229 	 * the struct to match type against first member of struct, i.e. reject
5230 	 * second case from above. Hence, when type is BPF_KPTR_REF, we set
5231 	 * strict mode to true for type match.
5232 	 */
5233 	if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
5234 				  kptr_field->kptr.btf, kptr_field->kptr.btf_id,
5235 				  kptr_field->type != BPF_KPTR_UNREF))
5236 		goto bad_type;
5237 	return 0;
5238 bad_type:
5239 	verbose(env, "invalid kptr access, R%d type=%s%s ", regno,
5240 		reg_type_str(env, reg->type), reg_name);
5241 	verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name);
5242 	if (kptr_field->type == BPF_KPTR_UNREF)
5243 		verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED),
5244 			targ_name);
5245 	else
5246 		verbose(env, "\n");
5247 	return -EINVAL;
5248 }
5249 
5250 /* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock()
5251  * can dereference RCU protected pointers and result is PTR_TRUSTED.
5252  */
5253 static bool in_rcu_cs(struct bpf_verifier_env *env)
5254 {
5255 	return env->cur_state->active_rcu_lock ||
5256 	       env->cur_state->active_lock.ptr ||
5257 	       !env->prog->aux->sleepable;
5258 }
5259 
5260 /* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */
5261 BTF_SET_START(rcu_protected_types)
5262 BTF_ID(struct, prog_test_ref_kfunc)
5263 #ifdef CONFIG_CGROUPS
5264 BTF_ID(struct, cgroup)
5265 #endif
5266 BTF_ID(struct, bpf_cpumask)
5267 BTF_ID(struct, task_struct)
5268 BTF_SET_END(rcu_protected_types)
5269 
5270 static bool rcu_protected_object(const struct btf *btf, u32 btf_id)
5271 {
5272 	if (!btf_is_kernel(btf))
5273 		return true;
5274 	return btf_id_set_contains(&rcu_protected_types, btf_id);
5275 }
5276 
5277 static struct btf_record *kptr_pointee_btf_record(struct btf_field *kptr_field)
5278 {
5279 	struct btf_struct_meta *meta;
5280 
5281 	if (btf_is_kernel(kptr_field->kptr.btf))
5282 		return NULL;
5283 
5284 	meta = btf_find_struct_meta(kptr_field->kptr.btf,
5285 				    kptr_field->kptr.btf_id);
5286 
5287 	return meta ? meta->record : NULL;
5288 }
5289 
5290 static bool rcu_safe_kptr(const struct btf_field *field)
5291 {
5292 	const struct btf_field_kptr *kptr = &field->kptr;
5293 
5294 	return field->type == BPF_KPTR_PERCPU ||
5295 	       (field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id));
5296 }
5297 
5298 static u32 btf_ld_kptr_type(struct bpf_verifier_env *env, struct btf_field *kptr_field)
5299 {
5300 	struct btf_record *rec;
5301 	u32 ret;
5302 
5303 	ret = PTR_MAYBE_NULL;
5304 	if (rcu_safe_kptr(kptr_field) && in_rcu_cs(env)) {
5305 		ret |= MEM_RCU;
5306 		if (kptr_field->type == BPF_KPTR_PERCPU)
5307 			ret |= MEM_PERCPU;
5308 		else if (!btf_is_kernel(kptr_field->kptr.btf))
5309 			ret |= MEM_ALLOC;
5310 
5311 		rec = kptr_pointee_btf_record(kptr_field);
5312 		if (rec && btf_record_has_field(rec, BPF_GRAPH_NODE))
5313 			ret |= NON_OWN_REF;
5314 	} else {
5315 		ret |= PTR_UNTRUSTED;
5316 	}
5317 
5318 	return ret;
5319 }
5320 
5321 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno,
5322 				 int value_regno, int insn_idx,
5323 				 struct btf_field *kptr_field)
5324 {
5325 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
5326 	int class = BPF_CLASS(insn->code);
5327 	struct bpf_reg_state *val_reg;
5328 
5329 	/* Things we already checked for in check_map_access and caller:
5330 	 *  - Reject cases where variable offset may touch kptr
5331 	 *  - size of access (must be BPF_DW)
5332 	 *  - tnum_is_const(reg->var_off)
5333 	 *  - kptr_field->offset == off + reg->var_off.value
5334 	 */
5335 	/* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */
5336 	if (BPF_MODE(insn->code) != BPF_MEM) {
5337 		verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n");
5338 		return -EACCES;
5339 	}
5340 
5341 	/* We only allow loading referenced kptr, since it will be marked as
5342 	 * untrusted, similar to unreferenced kptr.
5343 	 */
5344 	if (class != BPF_LDX &&
5345 	    (kptr_field->type == BPF_KPTR_REF || kptr_field->type == BPF_KPTR_PERCPU)) {
5346 		verbose(env, "store to referenced kptr disallowed\n");
5347 		return -EACCES;
5348 	}
5349 
5350 	if (class == BPF_LDX) {
5351 		val_reg = reg_state(env, value_regno);
5352 		/* We can simply mark the value_regno receiving the pointer
5353 		 * value from map as PTR_TO_BTF_ID, with the correct type.
5354 		 */
5355 		mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf,
5356 				kptr_field->kptr.btf_id, btf_ld_kptr_type(env, kptr_field));
5357 		/* For mark_ptr_or_null_reg */
5358 		val_reg->id = ++env->id_gen;
5359 	} else if (class == BPF_STX) {
5360 		val_reg = reg_state(env, value_regno);
5361 		if (!register_is_null(val_reg) &&
5362 		    map_kptr_match_type(env, kptr_field, val_reg, value_regno))
5363 			return -EACCES;
5364 	} else if (class == BPF_ST) {
5365 		if (insn->imm) {
5366 			verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n",
5367 				kptr_field->offset);
5368 			return -EACCES;
5369 		}
5370 	} else {
5371 		verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n");
5372 		return -EACCES;
5373 	}
5374 	return 0;
5375 }
5376 
5377 /* check read/write into a map element with possible variable offset */
5378 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
5379 			    int off, int size, bool zero_size_allowed,
5380 			    enum bpf_access_src src)
5381 {
5382 	struct bpf_verifier_state *vstate = env->cur_state;
5383 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5384 	struct bpf_reg_state *reg = &state->regs[regno];
5385 	struct bpf_map *map = reg->map_ptr;
5386 	struct btf_record *rec;
5387 	int err, i;
5388 
5389 	err = check_mem_region_access(env, regno, off, size, map->value_size,
5390 				      zero_size_allowed);
5391 	if (err)
5392 		return err;
5393 
5394 	if (IS_ERR_OR_NULL(map->record))
5395 		return 0;
5396 	rec = map->record;
5397 	for (i = 0; i < rec->cnt; i++) {
5398 		struct btf_field *field = &rec->fields[i];
5399 		u32 p = field->offset;
5400 
5401 		/* If any part of a field  can be touched by load/store, reject
5402 		 * this program. To check that [x1, x2) overlaps with [y1, y2),
5403 		 * it is sufficient to check x1 < y2 && y1 < x2.
5404 		 */
5405 		if (reg->smin_value + off < p + btf_field_type_size(field->type) &&
5406 		    p < reg->umax_value + off + size) {
5407 			switch (field->type) {
5408 			case BPF_KPTR_UNREF:
5409 			case BPF_KPTR_REF:
5410 			case BPF_KPTR_PERCPU:
5411 				if (src != ACCESS_DIRECT) {
5412 					verbose(env, "kptr cannot be accessed indirectly by helper\n");
5413 					return -EACCES;
5414 				}
5415 				if (!tnum_is_const(reg->var_off)) {
5416 					verbose(env, "kptr access cannot have variable offset\n");
5417 					return -EACCES;
5418 				}
5419 				if (p != off + reg->var_off.value) {
5420 					verbose(env, "kptr access misaligned expected=%u off=%llu\n",
5421 						p, off + reg->var_off.value);
5422 					return -EACCES;
5423 				}
5424 				if (size != bpf_size_to_bytes(BPF_DW)) {
5425 					verbose(env, "kptr access size must be BPF_DW\n");
5426 					return -EACCES;
5427 				}
5428 				break;
5429 			default:
5430 				verbose(env, "%s cannot be accessed directly by load/store\n",
5431 					btf_field_type_name(field->type));
5432 				return -EACCES;
5433 			}
5434 		}
5435 	}
5436 	return 0;
5437 }
5438 
5439 #define MAX_PACKET_OFF 0xffff
5440 
5441 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
5442 				       const struct bpf_call_arg_meta *meta,
5443 				       enum bpf_access_type t)
5444 {
5445 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
5446 
5447 	switch (prog_type) {
5448 	/* Program types only with direct read access go here! */
5449 	case BPF_PROG_TYPE_LWT_IN:
5450 	case BPF_PROG_TYPE_LWT_OUT:
5451 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
5452 	case BPF_PROG_TYPE_SK_REUSEPORT:
5453 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
5454 	case BPF_PROG_TYPE_CGROUP_SKB:
5455 		if (t == BPF_WRITE)
5456 			return false;
5457 		fallthrough;
5458 
5459 	/* Program types with direct read + write access go here! */
5460 	case BPF_PROG_TYPE_SCHED_CLS:
5461 	case BPF_PROG_TYPE_SCHED_ACT:
5462 	case BPF_PROG_TYPE_XDP:
5463 	case BPF_PROG_TYPE_LWT_XMIT:
5464 	case BPF_PROG_TYPE_SK_SKB:
5465 	case BPF_PROG_TYPE_SK_MSG:
5466 		if (meta)
5467 			return meta->pkt_access;
5468 
5469 		env->seen_direct_write = true;
5470 		return true;
5471 
5472 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
5473 		if (t == BPF_WRITE)
5474 			env->seen_direct_write = true;
5475 
5476 		return true;
5477 
5478 	default:
5479 		return false;
5480 	}
5481 }
5482 
5483 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
5484 			       int size, bool zero_size_allowed)
5485 {
5486 	struct bpf_reg_state *regs = cur_regs(env);
5487 	struct bpf_reg_state *reg = &regs[regno];
5488 	int err;
5489 
5490 	/* We may have added a variable offset to the packet pointer; but any
5491 	 * reg->range we have comes after that.  We are only checking the fixed
5492 	 * offset.
5493 	 */
5494 
5495 	/* We don't allow negative numbers, because we aren't tracking enough
5496 	 * detail to prove they're safe.
5497 	 */
5498 	if (reg->smin_value < 0) {
5499 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5500 			regno);
5501 		return -EACCES;
5502 	}
5503 
5504 	err = reg->range < 0 ? -EINVAL :
5505 	      __check_mem_access(env, regno, off, size, reg->range,
5506 				 zero_size_allowed);
5507 	if (err) {
5508 		verbose(env, "R%d offset is outside of the packet\n", regno);
5509 		return err;
5510 	}
5511 
5512 	/* __check_mem_access has made sure "off + size - 1" is within u16.
5513 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
5514 	 * otherwise find_good_pkt_pointers would have refused to set range info
5515 	 * that __check_mem_access would have rejected this pkt access.
5516 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
5517 	 */
5518 	env->prog->aux->max_pkt_offset =
5519 		max_t(u32, env->prog->aux->max_pkt_offset,
5520 		      off + reg->umax_value + size - 1);
5521 
5522 	return err;
5523 }
5524 
5525 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
5526 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
5527 			    enum bpf_access_type t, enum bpf_reg_type *reg_type,
5528 			    struct btf **btf, u32 *btf_id)
5529 {
5530 	struct bpf_insn_access_aux info = {
5531 		.reg_type = *reg_type,
5532 		.log = &env->log,
5533 	};
5534 
5535 	if (env->ops->is_valid_access &&
5536 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
5537 		/* A non zero info.ctx_field_size indicates that this field is a
5538 		 * candidate for later verifier transformation to load the whole
5539 		 * field and then apply a mask when accessed with a narrower
5540 		 * access than actual ctx access size. A zero info.ctx_field_size
5541 		 * will only allow for whole field access and rejects any other
5542 		 * type of narrower access.
5543 		 */
5544 		*reg_type = info.reg_type;
5545 
5546 		if (base_type(*reg_type) == PTR_TO_BTF_ID) {
5547 			*btf = info.btf;
5548 			*btf_id = info.btf_id;
5549 		} else {
5550 			env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
5551 		}
5552 		/* remember the offset of last byte accessed in ctx */
5553 		if (env->prog->aux->max_ctx_offset < off + size)
5554 			env->prog->aux->max_ctx_offset = off + size;
5555 		return 0;
5556 	}
5557 
5558 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
5559 	return -EACCES;
5560 }
5561 
5562 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
5563 				  int size)
5564 {
5565 	if (size < 0 || off < 0 ||
5566 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
5567 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
5568 			off, size);
5569 		return -EACCES;
5570 	}
5571 	return 0;
5572 }
5573 
5574 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
5575 			     u32 regno, int off, int size,
5576 			     enum bpf_access_type t)
5577 {
5578 	struct bpf_reg_state *regs = cur_regs(env);
5579 	struct bpf_reg_state *reg = &regs[regno];
5580 	struct bpf_insn_access_aux info = {};
5581 	bool valid;
5582 
5583 	if (reg->smin_value < 0) {
5584 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5585 			regno);
5586 		return -EACCES;
5587 	}
5588 
5589 	switch (reg->type) {
5590 	case PTR_TO_SOCK_COMMON:
5591 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
5592 		break;
5593 	case PTR_TO_SOCKET:
5594 		valid = bpf_sock_is_valid_access(off, size, t, &info);
5595 		break;
5596 	case PTR_TO_TCP_SOCK:
5597 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
5598 		break;
5599 	case PTR_TO_XDP_SOCK:
5600 		valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
5601 		break;
5602 	default:
5603 		valid = false;
5604 	}
5605 
5606 
5607 	if (valid) {
5608 		env->insn_aux_data[insn_idx].ctx_field_size =
5609 			info.ctx_field_size;
5610 		return 0;
5611 	}
5612 
5613 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
5614 		regno, reg_type_str(env, reg->type), off, size);
5615 
5616 	return -EACCES;
5617 }
5618 
5619 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
5620 {
5621 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
5622 }
5623 
5624 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
5625 {
5626 	const struct bpf_reg_state *reg = reg_state(env, regno);
5627 
5628 	return reg->type == PTR_TO_CTX;
5629 }
5630 
5631 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
5632 {
5633 	const struct bpf_reg_state *reg = reg_state(env, regno);
5634 
5635 	return type_is_sk_pointer(reg->type);
5636 }
5637 
5638 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
5639 {
5640 	const struct bpf_reg_state *reg = reg_state(env, regno);
5641 
5642 	return type_is_pkt_pointer(reg->type);
5643 }
5644 
5645 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
5646 {
5647 	const struct bpf_reg_state *reg = reg_state(env, regno);
5648 
5649 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
5650 	return reg->type == PTR_TO_FLOW_KEYS;
5651 }
5652 
5653 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = {
5654 #ifdef CONFIG_NET
5655 	[PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK],
5656 	[PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
5657 	[PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
5658 #endif
5659 	[CONST_PTR_TO_MAP] = btf_bpf_map_id,
5660 };
5661 
5662 static bool is_trusted_reg(const struct bpf_reg_state *reg)
5663 {
5664 	/* A referenced register is always trusted. */
5665 	if (reg->ref_obj_id)
5666 		return true;
5667 
5668 	/* Types listed in the reg2btf_ids are always trusted */
5669 	if (reg2btf_ids[base_type(reg->type)])
5670 		return true;
5671 
5672 	/* If a register is not referenced, it is trusted if it has the
5673 	 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the
5674 	 * other type modifiers may be safe, but we elect to take an opt-in
5675 	 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are
5676 	 * not.
5677 	 *
5678 	 * Eventually, we should make PTR_TRUSTED the single source of truth
5679 	 * for whether a register is trusted.
5680 	 */
5681 	return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS &&
5682 	       !bpf_type_has_unsafe_modifiers(reg->type);
5683 }
5684 
5685 static bool is_rcu_reg(const struct bpf_reg_state *reg)
5686 {
5687 	return reg->type & MEM_RCU;
5688 }
5689 
5690 static void clear_trusted_flags(enum bpf_type_flag *flag)
5691 {
5692 	*flag &= ~(BPF_REG_TRUSTED_MODIFIERS | MEM_RCU);
5693 }
5694 
5695 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
5696 				   const struct bpf_reg_state *reg,
5697 				   int off, int size, bool strict)
5698 {
5699 	struct tnum reg_off;
5700 	int ip_align;
5701 
5702 	/* Byte size accesses are always allowed. */
5703 	if (!strict || size == 1)
5704 		return 0;
5705 
5706 	/* For platforms that do not have a Kconfig enabling
5707 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
5708 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
5709 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
5710 	 * to this code only in strict mode where we want to emulate
5711 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
5712 	 * unconditional IP align value of '2'.
5713 	 */
5714 	ip_align = 2;
5715 
5716 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
5717 	if (!tnum_is_aligned(reg_off, size)) {
5718 		char tn_buf[48];
5719 
5720 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5721 		verbose(env,
5722 			"misaligned packet access off %d+%s+%d+%d size %d\n",
5723 			ip_align, tn_buf, reg->off, off, size);
5724 		return -EACCES;
5725 	}
5726 
5727 	return 0;
5728 }
5729 
5730 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
5731 				       const struct bpf_reg_state *reg,
5732 				       const char *pointer_desc,
5733 				       int off, int size, bool strict)
5734 {
5735 	struct tnum reg_off;
5736 
5737 	/* Byte size accesses are always allowed. */
5738 	if (!strict || size == 1)
5739 		return 0;
5740 
5741 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
5742 	if (!tnum_is_aligned(reg_off, size)) {
5743 		char tn_buf[48];
5744 
5745 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5746 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
5747 			pointer_desc, tn_buf, reg->off, off, size);
5748 		return -EACCES;
5749 	}
5750 
5751 	return 0;
5752 }
5753 
5754 static int check_ptr_alignment(struct bpf_verifier_env *env,
5755 			       const struct bpf_reg_state *reg, int off,
5756 			       int size, bool strict_alignment_once)
5757 {
5758 	bool strict = env->strict_alignment || strict_alignment_once;
5759 	const char *pointer_desc = "";
5760 
5761 	switch (reg->type) {
5762 	case PTR_TO_PACKET:
5763 	case PTR_TO_PACKET_META:
5764 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
5765 		 * right in front, treat it the very same way.
5766 		 */
5767 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
5768 	case PTR_TO_FLOW_KEYS:
5769 		pointer_desc = "flow keys ";
5770 		break;
5771 	case PTR_TO_MAP_KEY:
5772 		pointer_desc = "key ";
5773 		break;
5774 	case PTR_TO_MAP_VALUE:
5775 		pointer_desc = "value ";
5776 		break;
5777 	case PTR_TO_CTX:
5778 		pointer_desc = "context ";
5779 		break;
5780 	case PTR_TO_STACK:
5781 		pointer_desc = "stack ";
5782 		/* The stack spill tracking logic in check_stack_write_fixed_off()
5783 		 * and check_stack_read_fixed_off() relies on stack accesses being
5784 		 * aligned.
5785 		 */
5786 		strict = true;
5787 		break;
5788 	case PTR_TO_SOCKET:
5789 		pointer_desc = "sock ";
5790 		break;
5791 	case PTR_TO_SOCK_COMMON:
5792 		pointer_desc = "sock_common ";
5793 		break;
5794 	case PTR_TO_TCP_SOCK:
5795 		pointer_desc = "tcp_sock ";
5796 		break;
5797 	case PTR_TO_XDP_SOCK:
5798 		pointer_desc = "xdp_sock ";
5799 		break;
5800 	default:
5801 		break;
5802 	}
5803 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
5804 					   strict);
5805 }
5806 
5807 /* starting from main bpf function walk all instructions of the function
5808  * and recursively walk all callees that given function can call.
5809  * Ignore jump and exit insns.
5810  * Since recursion is prevented by check_cfg() this algorithm
5811  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
5812  */
5813 static int check_max_stack_depth_subprog(struct bpf_verifier_env *env, int idx)
5814 {
5815 	struct bpf_subprog_info *subprog = env->subprog_info;
5816 	struct bpf_insn *insn = env->prog->insnsi;
5817 	int depth = 0, frame = 0, i, subprog_end;
5818 	bool tail_call_reachable = false;
5819 	int ret_insn[MAX_CALL_FRAMES];
5820 	int ret_prog[MAX_CALL_FRAMES];
5821 	int j;
5822 
5823 	i = subprog[idx].start;
5824 process_func:
5825 	/* protect against potential stack overflow that might happen when
5826 	 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
5827 	 * depth for such case down to 256 so that the worst case scenario
5828 	 * would result in 8k stack size (32 which is tailcall limit * 256 =
5829 	 * 8k).
5830 	 *
5831 	 * To get the idea what might happen, see an example:
5832 	 * func1 -> sub rsp, 128
5833 	 *  subfunc1 -> sub rsp, 256
5834 	 *  tailcall1 -> add rsp, 256
5835 	 *   func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
5836 	 *   subfunc2 -> sub rsp, 64
5837 	 *   subfunc22 -> sub rsp, 128
5838 	 *   tailcall2 -> add rsp, 128
5839 	 *    func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
5840 	 *
5841 	 * tailcall will unwind the current stack frame but it will not get rid
5842 	 * of caller's stack as shown on the example above.
5843 	 */
5844 	if (idx && subprog[idx].has_tail_call && depth >= 256) {
5845 		verbose(env,
5846 			"tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
5847 			depth);
5848 		return -EACCES;
5849 	}
5850 	/* round up to 32-bytes, since this is granularity
5851 	 * of interpreter stack size
5852 	 */
5853 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
5854 	if (depth > MAX_BPF_STACK) {
5855 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
5856 			frame + 1, depth);
5857 		return -EACCES;
5858 	}
5859 continue_func:
5860 	subprog_end = subprog[idx + 1].start;
5861 	for (; i < subprog_end; i++) {
5862 		int next_insn, sidx;
5863 
5864 		if (bpf_pseudo_kfunc_call(insn + i) && !insn[i].off) {
5865 			bool err = false;
5866 
5867 			if (!is_bpf_throw_kfunc(insn + i))
5868 				continue;
5869 			if (subprog[idx].is_cb)
5870 				err = true;
5871 			for (int c = 0; c < frame && !err; c++) {
5872 				if (subprog[ret_prog[c]].is_cb) {
5873 					err = true;
5874 					break;
5875 				}
5876 			}
5877 			if (!err)
5878 				continue;
5879 			verbose(env,
5880 				"bpf_throw kfunc (insn %d) cannot be called from callback subprog %d\n",
5881 				i, idx);
5882 			return -EINVAL;
5883 		}
5884 
5885 		if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
5886 			continue;
5887 		/* remember insn and function to return to */
5888 		ret_insn[frame] = i + 1;
5889 		ret_prog[frame] = idx;
5890 
5891 		/* find the callee */
5892 		next_insn = i + insn[i].imm + 1;
5893 		sidx = find_subprog(env, next_insn);
5894 		if (sidx < 0) {
5895 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
5896 				  next_insn);
5897 			return -EFAULT;
5898 		}
5899 		if (subprog[sidx].is_async_cb) {
5900 			if (subprog[sidx].has_tail_call) {
5901 				verbose(env, "verifier bug. subprog has tail_call and async cb\n");
5902 				return -EFAULT;
5903 			}
5904 			/* async callbacks don't increase bpf prog stack size unless called directly */
5905 			if (!bpf_pseudo_call(insn + i))
5906 				continue;
5907 			if (subprog[sidx].is_exception_cb) {
5908 				verbose(env, "insn %d cannot call exception cb directly\n", i);
5909 				return -EINVAL;
5910 			}
5911 		}
5912 		i = next_insn;
5913 		idx = sidx;
5914 
5915 		if (subprog[idx].has_tail_call)
5916 			tail_call_reachable = true;
5917 
5918 		frame++;
5919 		if (frame >= MAX_CALL_FRAMES) {
5920 			verbose(env, "the call stack of %d frames is too deep !\n",
5921 				frame);
5922 			return -E2BIG;
5923 		}
5924 		goto process_func;
5925 	}
5926 	/* if tail call got detected across bpf2bpf calls then mark each of the
5927 	 * currently present subprog frames as tail call reachable subprogs;
5928 	 * this info will be utilized by JIT so that we will be preserving the
5929 	 * tail call counter throughout bpf2bpf calls combined with tailcalls
5930 	 */
5931 	if (tail_call_reachable)
5932 		for (j = 0; j < frame; j++) {
5933 			if (subprog[ret_prog[j]].is_exception_cb) {
5934 				verbose(env, "cannot tail call within exception cb\n");
5935 				return -EINVAL;
5936 			}
5937 			subprog[ret_prog[j]].tail_call_reachable = true;
5938 		}
5939 	if (subprog[0].tail_call_reachable)
5940 		env->prog->aux->tail_call_reachable = true;
5941 
5942 	/* end of for() loop means the last insn of the 'subprog'
5943 	 * was reached. Doesn't matter whether it was JA or EXIT
5944 	 */
5945 	if (frame == 0)
5946 		return 0;
5947 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
5948 	frame--;
5949 	i = ret_insn[frame];
5950 	idx = ret_prog[frame];
5951 	goto continue_func;
5952 }
5953 
5954 static int check_max_stack_depth(struct bpf_verifier_env *env)
5955 {
5956 	struct bpf_subprog_info *si = env->subprog_info;
5957 	int ret;
5958 
5959 	for (int i = 0; i < env->subprog_cnt; i++) {
5960 		if (!i || si[i].is_async_cb) {
5961 			ret = check_max_stack_depth_subprog(env, i);
5962 			if (ret < 0)
5963 				return ret;
5964 		}
5965 		continue;
5966 	}
5967 	return 0;
5968 }
5969 
5970 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
5971 static int get_callee_stack_depth(struct bpf_verifier_env *env,
5972 				  const struct bpf_insn *insn, int idx)
5973 {
5974 	int start = idx + insn->imm + 1, subprog;
5975 
5976 	subprog = find_subprog(env, start);
5977 	if (subprog < 0) {
5978 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
5979 			  start);
5980 		return -EFAULT;
5981 	}
5982 	return env->subprog_info[subprog].stack_depth;
5983 }
5984 #endif
5985 
5986 static int __check_buffer_access(struct bpf_verifier_env *env,
5987 				 const char *buf_info,
5988 				 const struct bpf_reg_state *reg,
5989 				 int regno, int off, int size)
5990 {
5991 	if (off < 0) {
5992 		verbose(env,
5993 			"R%d invalid %s buffer access: off=%d, size=%d\n",
5994 			regno, buf_info, off, size);
5995 		return -EACCES;
5996 	}
5997 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
5998 		char tn_buf[48];
5999 
6000 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6001 		verbose(env,
6002 			"R%d invalid variable buffer offset: off=%d, var_off=%s\n",
6003 			regno, off, tn_buf);
6004 		return -EACCES;
6005 	}
6006 
6007 	return 0;
6008 }
6009 
6010 static int check_tp_buffer_access(struct bpf_verifier_env *env,
6011 				  const struct bpf_reg_state *reg,
6012 				  int regno, int off, int size)
6013 {
6014 	int err;
6015 
6016 	err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
6017 	if (err)
6018 		return err;
6019 
6020 	if (off + size > env->prog->aux->max_tp_access)
6021 		env->prog->aux->max_tp_access = off + size;
6022 
6023 	return 0;
6024 }
6025 
6026 static int check_buffer_access(struct bpf_verifier_env *env,
6027 			       const struct bpf_reg_state *reg,
6028 			       int regno, int off, int size,
6029 			       bool zero_size_allowed,
6030 			       u32 *max_access)
6031 {
6032 	const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr";
6033 	int err;
6034 
6035 	err = __check_buffer_access(env, buf_info, reg, regno, off, size);
6036 	if (err)
6037 		return err;
6038 
6039 	if (off + size > *max_access)
6040 		*max_access = off + size;
6041 
6042 	return 0;
6043 }
6044 
6045 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
6046 static void zext_32_to_64(struct bpf_reg_state *reg)
6047 {
6048 	reg->var_off = tnum_subreg(reg->var_off);
6049 	__reg_assign_32_into_64(reg);
6050 }
6051 
6052 /* truncate register to smaller size (in bytes)
6053  * must be called with size < BPF_REG_SIZE
6054  */
6055 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
6056 {
6057 	u64 mask;
6058 
6059 	/* clear high bits in bit representation */
6060 	reg->var_off = tnum_cast(reg->var_off, size);
6061 
6062 	/* fix arithmetic bounds */
6063 	mask = ((u64)1 << (size * 8)) - 1;
6064 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
6065 		reg->umin_value &= mask;
6066 		reg->umax_value &= mask;
6067 	} else {
6068 		reg->umin_value = 0;
6069 		reg->umax_value = mask;
6070 	}
6071 	reg->smin_value = reg->umin_value;
6072 	reg->smax_value = reg->umax_value;
6073 
6074 	/* If size is smaller than 32bit register the 32bit register
6075 	 * values are also truncated so we push 64-bit bounds into
6076 	 * 32-bit bounds. Above were truncated < 32-bits already.
6077 	 */
6078 	if (size < 4) {
6079 		__mark_reg32_unbounded(reg);
6080 		reg_bounds_sync(reg);
6081 	}
6082 }
6083 
6084 static void set_sext64_default_val(struct bpf_reg_state *reg, int size)
6085 {
6086 	if (size == 1) {
6087 		reg->smin_value = reg->s32_min_value = S8_MIN;
6088 		reg->smax_value = reg->s32_max_value = S8_MAX;
6089 	} else if (size == 2) {
6090 		reg->smin_value = reg->s32_min_value = S16_MIN;
6091 		reg->smax_value = reg->s32_max_value = S16_MAX;
6092 	} else {
6093 		/* size == 4 */
6094 		reg->smin_value = reg->s32_min_value = S32_MIN;
6095 		reg->smax_value = reg->s32_max_value = S32_MAX;
6096 	}
6097 	reg->umin_value = reg->u32_min_value = 0;
6098 	reg->umax_value = U64_MAX;
6099 	reg->u32_max_value = U32_MAX;
6100 	reg->var_off = tnum_unknown;
6101 }
6102 
6103 static void coerce_reg_to_size_sx(struct bpf_reg_state *reg, int size)
6104 {
6105 	s64 init_s64_max, init_s64_min, s64_max, s64_min, u64_cval;
6106 	u64 top_smax_value, top_smin_value;
6107 	u64 num_bits = size * 8;
6108 
6109 	if (tnum_is_const(reg->var_off)) {
6110 		u64_cval = reg->var_off.value;
6111 		if (size == 1)
6112 			reg->var_off = tnum_const((s8)u64_cval);
6113 		else if (size == 2)
6114 			reg->var_off = tnum_const((s16)u64_cval);
6115 		else
6116 			/* size == 4 */
6117 			reg->var_off = tnum_const((s32)u64_cval);
6118 
6119 		u64_cval = reg->var_off.value;
6120 		reg->smax_value = reg->smin_value = u64_cval;
6121 		reg->umax_value = reg->umin_value = u64_cval;
6122 		reg->s32_max_value = reg->s32_min_value = u64_cval;
6123 		reg->u32_max_value = reg->u32_min_value = u64_cval;
6124 		return;
6125 	}
6126 
6127 	top_smax_value = ((u64)reg->smax_value >> num_bits) << num_bits;
6128 	top_smin_value = ((u64)reg->smin_value >> num_bits) << num_bits;
6129 
6130 	if (top_smax_value != top_smin_value)
6131 		goto out;
6132 
6133 	/* find the s64_min and s64_min after sign extension */
6134 	if (size == 1) {
6135 		init_s64_max = (s8)reg->smax_value;
6136 		init_s64_min = (s8)reg->smin_value;
6137 	} else if (size == 2) {
6138 		init_s64_max = (s16)reg->smax_value;
6139 		init_s64_min = (s16)reg->smin_value;
6140 	} else {
6141 		init_s64_max = (s32)reg->smax_value;
6142 		init_s64_min = (s32)reg->smin_value;
6143 	}
6144 
6145 	s64_max = max(init_s64_max, init_s64_min);
6146 	s64_min = min(init_s64_max, init_s64_min);
6147 
6148 	/* both of s64_max/s64_min positive or negative */
6149 	if ((s64_max >= 0) == (s64_min >= 0)) {
6150 		reg->smin_value = reg->s32_min_value = s64_min;
6151 		reg->smax_value = reg->s32_max_value = s64_max;
6152 		reg->umin_value = reg->u32_min_value = s64_min;
6153 		reg->umax_value = reg->u32_max_value = s64_max;
6154 		reg->var_off = tnum_range(s64_min, s64_max);
6155 		return;
6156 	}
6157 
6158 out:
6159 	set_sext64_default_val(reg, size);
6160 }
6161 
6162 static void set_sext32_default_val(struct bpf_reg_state *reg, int size)
6163 {
6164 	if (size == 1) {
6165 		reg->s32_min_value = S8_MIN;
6166 		reg->s32_max_value = S8_MAX;
6167 	} else {
6168 		/* size == 2 */
6169 		reg->s32_min_value = S16_MIN;
6170 		reg->s32_max_value = S16_MAX;
6171 	}
6172 	reg->u32_min_value = 0;
6173 	reg->u32_max_value = U32_MAX;
6174 }
6175 
6176 static void coerce_subreg_to_size_sx(struct bpf_reg_state *reg, int size)
6177 {
6178 	s32 init_s32_max, init_s32_min, s32_max, s32_min, u32_val;
6179 	u32 top_smax_value, top_smin_value;
6180 	u32 num_bits = size * 8;
6181 
6182 	if (tnum_is_const(reg->var_off)) {
6183 		u32_val = reg->var_off.value;
6184 		if (size == 1)
6185 			reg->var_off = tnum_const((s8)u32_val);
6186 		else
6187 			reg->var_off = tnum_const((s16)u32_val);
6188 
6189 		u32_val = reg->var_off.value;
6190 		reg->s32_min_value = reg->s32_max_value = u32_val;
6191 		reg->u32_min_value = reg->u32_max_value = u32_val;
6192 		return;
6193 	}
6194 
6195 	top_smax_value = ((u32)reg->s32_max_value >> num_bits) << num_bits;
6196 	top_smin_value = ((u32)reg->s32_min_value >> num_bits) << num_bits;
6197 
6198 	if (top_smax_value != top_smin_value)
6199 		goto out;
6200 
6201 	/* find the s32_min and s32_min after sign extension */
6202 	if (size == 1) {
6203 		init_s32_max = (s8)reg->s32_max_value;
6204 		init_s32_min = (s8)reg->s32_min_value;
6205 	} else {
6206 		/* size == 2 */
6207 		init_s32_max = (s16)reg->s32_max_value;
6208 		init_s32_min = (s16)reg->s32_min_value;
6209 	}
6210 	s32_max = max(init_s32_max, init_s32_min);
6211 	s32_min = min(init_s32_max, init_s32_min);
6212 
6213 	if ((s32_min >= 0) == (s32_max >= 0)) {
6214 		reg->s32_min_value = s32_min;
6215 		reg->s32_max_value = s32_max;
6216 		reg->u32_min_value = (u32)s32_min;
6217 		reg->u32_max_value = (u32)s32_max;
6218 		return;
6219 	}
6220 
6221 out:
6222 	set_sext32_default_val(reg, size);
6223 }
6224 
6225 static bool bpf_map_is_rdonly(const struct bpf_map *map)
6226 {
6227 	/* A map is considered read-only if the following condition are true:
6228 	 *
6229 	 * 1) BPF program side cannot change any of the map content. The
6230 	 *    BPF_F_RDONLY_PROG flag is throughout the lifetime of a map
6231 	 *    and was set at map creation time.
6232 	 * 2) The map value(s) have been initialized from user space by a
6233 	 *    loader and then "frozen", such that no new map update/delete
6234 	 *    operations from syscall side are possible for the rest of
6235 	 *    the map's lifetime from that point onwards.
6236 	 * 3) Any parallel/pending map update/delete operations from syscall
6237 	 *    side have been completed. Only after that point, it's safe to
6238 	 *    assume that map value(s) are immutable.
6239 	 */
6240 	return (map->map_flags & BPF_F_RDONLY_PROG) &&
6241 	       READ_ONCE(map->frozen) &&
6242 	       !bpf_map_write_active(map);
6243 }
6244 
6245 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val,
6246 			       bool is_ldsx)
6247 {
6248 	void *ptr;
6249 	u64 addr;
6250 	int err;
6251 
6252 	err = map->ops->map_direct_value_addr(map, &addr, off);
6253 	if (err)
6254 		return err;
6255 	ptr = (void *)(long)addr + off;
6256 
6257 	switch (size) {
6258 	case sizeof(u8):
6259 		*val = is_ldsx ? (s64)*(s8 *)ptr : (u64)*(u8 *)ptr;
6260 		break;
6261 	case sizeof(u16):
6262 		*val = is_ldsx ? (s64)*(s16 *)ptr : (u64)*(u16 *)ptr;
6263 		break;
6264 	case sizeof(u32):
6265 		*val = is_ldsx ? (s64)*(s32 *)ptr : (u64)*(u32 *)ptr;
6266 		break;
6267 	case sizeof(u64):
6268 		*val = *(u64 *)ptr;
6269 		break;
6270 	default:
6271 		return -EINVAL;
6272 	}
6273 	return 0;
6274 }
6275 
6276 #define BTF_TYPE_SAFE_RCU(__type)  __PASTE(__type, __safe_rcu)
6277 #define BTF_TYPE_SAFE_RCU_OR_NULL(__type)  __PASTE(__type, __safe_rcu_or_null)
6278 #define BTF_TYPE_SAFE_TRUSTED(__type)  __PASTE(__type, __safe_trusted)
6279 
6280 /*
6281  * Allow list few fields as RCU trusted or full trusted.
6282  * This logic doesn't allow mix tagging and will be removed once GCC supports
6283  * btf_type_tag.
6284  */
6285 
6286 /* RCU trusted: these fields are trusted in RCU CS and never NULL */
6287 BTF_TYPE_SAFE_RCU(struct task_struct) {
6288 	const cpumask_t *cpus_ptr;
6289 	struct css_set __rcu *cgroups;
6290 	struct task_struct __rcu *real_parent;
6291 	struct task_struct *group_leader;
6292 };
6293 
6294 BTF_TYPE_SAFE_RCU(struct cgroup) {
6295 	/* cgrp->kn is always accessible as documented in kernel/cgroup/cgroup.c */
6296 	struct kernfs_node *kn;
6297 };
6298 
6299 BTF_TYPE_SAFE_RCU(struct css_set) {
6300 	struct cgroup *dfl_cgrp;
6301 };
6302 
6303 /* RCU trusted: these fields are trusted in RCU CS and can be NULL */
6304 BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct) {
6305 	struct file __rcu *exe_file;
6306 };
6307 
6308 /* skb->sk, req->sk are not RCU protected, but we mark them as such
6309  * because bpf prog accessible sockets are SOCK_RCU_FREE.
6310  */
6311 BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff) {
6312 	struct sock *sk;
6313 };
6314 
6315 BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock) {
6316 	struct sock *sk;
6317 };
6318 
6319 /* full trusted: these fields are trusted even outside of RCU CS and never NULL */
6320 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) {
6321 	struct seq_file *seq;
6322 };
6323 
6324 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) {
6325 	struct bpf_iter_meta *meta;
6326 	struct task_struct *task;
6327 };
6328 
6329 BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) {
6330 	struct file *file;
6331 };
6332 
6333 BTF_TYPE_SAFE_TRUSTED(struct file) {
6334 	struct inode *f_inode;
6335 };
6336 
6337 BTF_TYPE_SAFE_TRUSTED(struct dentry) {
6338 	/* no negative dentry-s in places where bpf can see it */
6339 	struct inode *d_inode;
6340 };
6341 
6342 BTF_TYPE_SAFE_TRUSTED(struct socket) {
6343 	struct sock *sk;
6344 };
6345 
6346 static bool type_is_rcu(struct bpf_verifier_env *env,
6347 			struct bpf_reg_state *reg,
6348 			const char *field_name, u32 btf_id)
6349 {
6350 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct));
6351 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup));
6352 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set));
6353 
6354 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu");
6355 }
6356 
6357 static bool type_is_rcu_or_null(struct bpf_verifier_env *env,
6358 				struct bpf_reg_state *reg,
6359 				const char *field_name, u32 btf_id)
6360 {
6361 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct));
6362 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff));
6363 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock));
6364 
6365 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu_or_null");
6366 }
6367 
6368 static bool type_is_trusted(struct bpf_verifier_env *env,
6369 			    struct bpf_reg_state *reg,
6370 			    const char *field_name, u32 btf_id)
6371 {
6372 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta));
6373 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task));
6374 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm));
6375 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file));
6376 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct dentry));
6377 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct socket));
6378 
6379 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted");
6380 }
6381 
6382 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
6383 				   struct bpf_reg_state *regs,
6384 				   int regno, int off, int size,
6385 				   enum bpf_access_type atype,
6386 				   int value_regno)
6387 {
6388 	struct bpf_reg_state *reg = regs + regno;
6389 	const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
6390 	const char *tname = btf_name_by_offset(reg->btf, t->name_off);
6391 	const char *field_name = NULL;
6392 	enum bpf_type_flag flag = 0;
6393 	u32 btf_id = 0;
6394 	int ret;
6395 
6396 	if (!env->allow_ptr_leaks) {
6397 		verbose(env,
6398 			"'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
6399 			tname);
6400 		return -EPERM;
6401 	}
6402 	if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) {
6403 		verbose(env,
6404 			"Cannot access kernel 'struct %s' from non-GPL compatible program\n",
6405 			tname);
6406 		return -EINVAL;
6407 	}
6408 	if (off < 0) {
6409 		verbose(env,
6410 			"R%d is ptr_%s invalid negative access: off=%d\n",
6411 			regno, tname, off);
6412 		return -EACCES;
6413 	}
6414 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
6415 		char tn_buf[48];
6416 
6417 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6418 		verbose(env,
6419 			"R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
6420 			regno, tname, off, tn_buf);
6421 		return -EACCES;
6422 	}
6423 
6424 	if (reg->type & MEM_USER) {
6425 		verbose(env,
6426 			"R%d is ptr_%s access user memory: off=%d\n",
6427 			regno, tname, off);
6428 		return -EACCES;
6429 	}
6430 
6431 	if (reg->type & MEM_PERCPU) {
6432 		verbose(env,
6433 			"R%d is ptr_%s access percpu memory: off=%d\n",
6434 			regno, tname, off);
6435 		return -EACCES;
6436 	}
6437 
6438 	if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) {
6439 		if (!btf_is_kernel(reg->btf)) {
6440 			verbose(env, "verifier internal error: reg->btf must be kernel btf\n");
6441 			return -EFAULT;
6442 		}
6443 		ret = env->ops->btf_struct_access(&env->log, reg, off, size);
6444 	} else {
6445 		/* Writes are permitted with default btf_struct_access for
6446 		 * program allocated objects (which always have ref_obj_id > 0),
6447 		 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC.
6448 		 */
6449 		if (atype != BPF_READ && !type_is_ptr_alloc_obj(reg->type)) {
6450 			verbose(env, "only read is supported\n");
6451 			return -EACCES;
6452 		}
6453 
6454 		if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) &&
6455 		    !(reg->type & MEM_RCU) && !reg->ref_obj_id) {
6456 			verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n");
6457 			return -EFAULT;
6458 		}
6459 
6460 		ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag, &field_name);
6461 	}
6462 
6463 	if (ret < 0)
6464 		return ret;
6465 
6466 	if (ret != PTR_TO_BTF_ID) {
6467 		/* just mark; */
6468 
6469 	} else if (type_flag(reg->type) & PTR_UNTRUSTED) {
6470 		/* If this is an untrusted pointer, all pointers formed by walking it
6471 		 * also inherit the untrusted flag.
6472 		 */
6473 		flag = PTR_UNTRUSTED;
6474 
6475 	} else if (is_trusted_reg(reg) || is_rcu_reg(reg)) {
6476 		/* By default any pointer obtained from walking a trusted pointer is no
6477 		 * longer trusted, unless the field being accessed has explicitly been
6478 		 * marked as inheriting its parent's state of trust (either full or RCU).
6479 		 * For example:
6480 		 * 'cgroups' pointer is untrusted if task->cgroups dereference
6481 		 * happened in a sleepable program outside of bpf_rcu_read_lock()
6482 		 * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU).
6483 		 * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED.
6484 		 *
6485 		 * A regular RCU-protected pointer with __rcu tag can also be deemed
6486 		 * trusted if we are in an RCU CS. Such pointer can be NULL.
6487 		 */
6488 		if (type_is_trusted(env, reg, field_name, btf_id)) {
6489 			flag |= PTR_TRUSTED;
6490 		} else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) {
6491 			if (type_is_rcu(env, reg, field_name, btf_id)) {
6492 				/* ignore __rcu tag and mark it MEM_RCU */
6493 				flag |= MEM_RCU;
6494 			} else if (flag & MEM_RCU ||
6495 				   type_is_rcu_or_null(env, reg, field_name, btf_id)) {
6496 				/* __rcu tagged pointers can be NULL */
6497 				flag |= MEM_RCU | PTR_MAYBE_NULL;
6498 
6499 				/* We always trust them */
6500 				if (type_is_rcu_or_null(env, reg, field_name, btf_id) &&
6501 				    flag & PTR_UNTRUSTED)
6502 					flag &= ~PTR_UNTRUSTED;
6503 			} else if (flag & (MEM_PERCPU | MEM_USER)) {
6504 				/* keep as-is */
6505 			} else {
6506 				/* walking unknown pointers yields old deprecated PTR_TO_BTF_ID */
6507 				clear_trusted_flags(&flag);
6508 			}
6509 		} else {
6510 			/*
6511 			 * If not in RCU CS or MEM_RCU pointer can be NULL then
6512 			 * aggressively mark as untrusted otherwise such
6513 			 * pointers will be plain PTR_TO_BTF_ID without flags
6514 			 * and will be allowed to be passed into helpers for
6515 			 * compat reasons.
6516 			 */
6517 			flag = PTR_UNTRUSTED;
6518 		}
6519 	} else {
6520 		/* Old compat. Deprecated */
6521 		clear_trusted_flags(&flag);
6522 	}
6523 
6524 	if (atype == BPF_READ && value_regno >= 0)
6525 		mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag);
6526 
6527 	return 0;
6528 }
6529 
6530 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
6531 				   struct bpf_reg_state *regs,
6532 				   int regno, int off, int size,
6533 				   enum bpf_access_type atype,
6534 				   int value_regno)
6535 {
6536 	struct bpf_reg_state *reg = regs + regno;
6537 	struct bpf_map *map = reg->map_ptr;
6538 	struct bpf_reg_state map_reg;
6539 	enum bpf_type_flag flag = 0;
6540 	const struct btf_type *t;
6541 	const char *tname;
6542 	u32 btf_id;
6543 	int ret;
6544 
6545 	if (!btf_vmlinux) {
6546 		verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
6547 		return -ENOTSUPP;
6548 	}
6549 
6550 	if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
6551 		verbose(env, "map_ptr access not supported for map type %d\n",
6552 			map->map_type);
6553 		return -ENOTSUPP;
6554 	}
6555 
6556 	t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
6557 	tname = btf_name_by_offset(btf_vmlinux, t->name_off);
6558 
6559 	if (!env->allow_ptr_leaks) {
6560 		verbose(env,
6561 			"'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
6562 			tname);
6563 		return -EPERM;
6564 	}
6565 
6566 	if (off < 0) {
6567 		verbose(env, "R%d is %s invalid negative access: off=%d\n",
6568 			regno, tname, off);
6569 		return -EACCES;
6570 	}
6571 
6572 	if (atype != BPF_READ) {
6573 		verbose(env, "only read from %s is supported\n", tname);
6574 		return -EACCES;
6575 	}
6576 
6577 	/* Simulate access to a PTR_TO_BTF_ID */
6578 	memset(&map_reg, 0, sizeof(map_reg));
6579 	mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0);
6580 	ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag, NULL);
6581 	if (ret < 0)
6582 		return ret;
6583 
6584 	if (value_regno >= 0)
6585 		mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag);
6586 
6587 	return 0;
6588 }
6589 
6590 /* Check that the stack access at the given offset is within bounds. The
6591  * maximum valid offset is -1.
6592  *
6593  * The minimum valid offset is -MAX_BPF_STACK for writes, and
6594  * -state->allocated_stack for reads.
6595  */
6596 static int check_stack_slot_within_bounds(struct bpf_verifier_env *env,
6597                                           s64 off,
6598                                           struct bpf_func_state *state,
6599                                           enum bpf_access_type t)
6600 {
6601 	int min_valid_off;
6602 
6603 	if (t == BPF_WRITE || env->allow_uninit_stack)
6604 		min_valid_off = -MAX_BPF_STACK;
6605 	else
6606 		min_valid_off = -state->allocated_stack;
6607 
6608 	if (off < min_valid_off || off > -1)
6609 		return -EACCES;
6610 	return 0;
6611 }
6612 
6613 /* Check that the stack access at 'regno + off' falls within the maximum stack
6614  * bounds.
6615  *
6616  * 'off' includes `regno->offset`, but not its dynamic part (if any).
6617  */
6618 static int check_stack_access_within_bounds(
6619 		struct bpf_verifier_env *env,
6620 		int regno, int off, int access_size,
6621 		enum bpf_access_src src, enum bpf_access_type type)
6622 {
6623 	struct bpf_reg_state *regs = cur_regs(env);
6624 	struct bpf_reg_state *reg = regs + regno;
6625 	struct bpf_func_state *state = func(env, reg);
6626 	s64 min_off, max_off;
6627 	int err;
6628 	char *err_extra;
6629 
6630 	if (src == ACCESS_HELPER)
6631 		/* We don't know if helpers are reading or writing (or both). */
6632 		err_extra = " indirect access to";
6633 	else if (type == BPF_READ)
6634 		err_extra = " read from";
6635 	else
6636 		err_extra = " write to";
6637 
6638 	if (tnum_is_const(reg->var_off)) {
6639 		min_off = (s64)reg->var_off.value + off;
6640 		max_off = min_off + access_size;
6641 	} else {
6642 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
6643 		    reg->smin_value <= -BPF_MAX_VAR_OFF) {
6644 			verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
6645 				err_extra, regno);
6646 			return -EACCES;
6647 		}
6648 		min_off = reg->smin_value + off;
6649 		max_off = reg->smax_value + off + access_size;
6650 	}
6651 
6652 	err = check_stack_slot_within_bounds(env, min_off, state, type);
6653 	if (!err && max_off > 0)
6654 		err = -EINVAL; /* out of stack access into non-negative offsets */
6655 
6656 	if (err) {
6657 		if (tnum_is_const(reg->var_off)) {
6658 			verbose(env, "invalid%s stack R%d off=%d size=%d\n",
6659 				err_extra, regno, off, access_size);
6660 		} else {
6661 			char tn_buf[48];
6662 
6663 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6664 			verbose(env, "invalid variable-offset%s stack R%d var_off=%s off=%d size=%d\n",
6665 				err_extra, regno, tn_buf, off, access_size);
6666 		}
6667 		return err;
6668 	}
6669 
6670 	/* Note that there is no stack access with offset zero, so the needed stack
6671 	 * size is -min_off, not -min_off+1.
6672 	 */
6673 	return grow_stack_state(env, state, -min_off /* size */);
6674 }
6675 
6676 /* check whether memory at (regno + off) is accessible for t = (read | write)
6677  * if t==write, value_regno is a register which value is stored into memory
6678  * if t==read, value_regno is a register which will receive the value from memory
6679  * if t==write && value_regno==-1, some unknown value is stored into memory
6680  * if t==read && value_regno==-1, don't care what we read from memory
6681  */
6682 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
6683 			    int off, int bpf_size, enum bpf_access_type t,
6684 			    int value_regno, bool strict_alignment_once, bool is_ldsx)
6685 {
6686 	struct bpf_reg_state *regs = cur_regs(env);
6687 	struct bpf_reg_state *reg = regs + regno;
6688 	int size, err = 0;
6689 
6690 	size = bpf_size_to_bytes(bpf_size);
6691 	if (size < 0)
6692 		return size;
6693 
6694 	/* alignment checks will add in reg->off themselves */
6695 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
6696 	if (err)
6697 		return err;
6698 
6699 	/* for access checks, reg->off is just part of off */
6700 	off += reg->off;
6701 
6702 	if (reg->type == PTR_TO_MAP_KEY) {
6703 		if (t == BPF_WRITE) {
6704 			verbose(env, "write to change key R%d not allowed\n", regno);
6705 			return -EACCES;
6706 		}
6707 
6708 		err = check_mem_region_access(env, regno, off, size,
6709 					      reg->map_ptr->key_size, false);
6710 		if (err)
6711 			return err;
6712 		if (value_regno >= 0)
6713 			mark_reg_unknown(env, regs, value_regno);
6714 	} else if (reg->type == PTR_TO_MAP_VALUE) {
6715 		struct btf_field *kptr_field = NULL;
6716 
6717 		if (t == BPF_WRITE && value_regno >= 0 &&
6718 		    is_pointer_value(env, value_regno)) {
6719 			verbose(env, "R%d leaks addr into map\n", value_regno);
6720 			return -EACCES;
6721 		}
6722 		err = check_map_access_type(env, regno, off, size, t);
6723 		if (err)
6724 			return err;
6725 		err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT);
6726 		if (err)
6727 			return err;
6728 		if (tnum_is_const(reg->var_off))
6729 			kptr_field = btf_record_find(reg->map_ptr->record,
6730 						     off + reg->var_off.value, BPF_KPTR);
6731 		if (kptr_field) {
6732 			err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field);
6733 		} else if (t == BPF_READ && value_regno >= 0) {
6734 			struct bpf_map *map = reg->map_ptr;
6735 
6736 			/* if map is read-only, track its contents as scalars */
6737 			if (tnum_is_const(reg->var_off) &&
6738 			    bpf_map_is_rdonly(map) &&
6739 			    map->ops->map_direct_value_addr) {
6740 				int map_off = off + reg->var_off.value;
6741 				u64 val = 0;
6742 
6743 				err = bpf_map_direct_read(map, map_off, size,
6744 							  &val, is_ldsx);
6745 				if (err)
6746 					return err;
6747 
6748 				regs[value_regno].type = SCALAR_VALUE;
6749 				__mark_reg_known(&regs[value_regno], val);
6750 			} else {
6751 				mark_reg_unknown(env, regs, value_regno);
6752 			}
6753 		}
6754 	} else if (base_type(reg->type) == PTR_TO_MEM) {
6755 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
6756 
6757 		if (type_may_be_null(reg->type)) {
6758 			verbose(env, "R%d invalid mem access '%s'\n", regno,
6759 				reg_type_str(env, reg->type));
6760 			return -EACCES;
6761 		}
6762 
6763 		if (t == BPF_WRITE && rdonly_mem) {
6764 			verbose(env, "R%d cannot write into %s\n",
6765 				regno, reg_type_str(env, reg->type));
6766 			return -EACCES;
6767 		}
6768 
6769 		if (t == BPF_WRITE && value_regno >= 0 &&
6770 		    is_pointer_value(env, value_regno)) {
6771 			verbose(env, "R%d leaks addr into mem\n", value_regno);
6772 			return -EACCES;
6773 		}
6774 
6775 		err = check_mem_region_access(env, regno, off, size,
6776 					      reg->mem_size, false);
6777 		if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem))
6778 			mark_reg_unknown(env, regs, value_regno);
6779 	} else if (reg->type == PTR_TO_CTX) {
6780 		enum bpf_reg_type reg_type = SCALAR_VALUE;
6781 		struct btf *btf = NULL;
6782 		u32 btf_id = 0;
6783 
6784 		if (t == BPF_WRITE && value_regno >= 0 &&
6785 		    is_pointer_value(env, value_regno)) {
6786 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
6787 			return -EACCES;
6788 		}
6789 
6790 		err = check_ptr_off_reg(env, reg, regno);
6791 		if (err < 0)
6792 			return err;
6793 
6794 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf,
6795 				       &btf_id);
6796 		if (err)
6797 			verbose_linfo(env, insn_idx, "; ");
6798 		if (!err && t == BPF_READ && value_regno >= 0) {
6799 			/* ctx access returns either a scalar, or a
6800 			 * PTR_TO_PACKET[_META,_END]. In the latter
6801 			 * case, we know the offset is zero.
6802 			 */
6803 			if (reg_type == SCALAR_VALUE) {
6804 				mark_reg_unknown(env, regs, value_regno);
6805 			} else {
6806 				mark_reg_known_zero(env, regs,
6807 						    value_regno);
6808 				if (type_may_be_null(reg_type))
6809 					regs[value_regno].id = ++env->id_gen;
6810 				/* A load of ctx field could have different
6811 				 * actual load size with the one encoded in the
6812 				 * insn. When the dst is PTR, it is for sure not
6813 				 * a sub-register.
6814 				 */
6815 				regs[value_regno].subreg_def = DEF_NOT_SUBREG;
6816 				if (base_type(reg_type) == PTR_TO_BTF_ID) {
6817 					regs[value_regno].btf = btf;
6818 					regs[value_regno].btf_id = btf_id;
6819 				}
6820 			}
6821 			regs[value_regno].type = reg_type;
6822 		}
6823 
6824 	} else if (reg->type == PTR_TO_STACK) {
6825 		/* Basic bounds checks. */
6826 		err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
6827 		if (err)
6828 			return err;
6829 
6830 		if (t == BPF_READ)
6831 			err = check_stack_read(env, regno, off, size,
6832 					       value_regno);
6833 		else
6834 			err = check_stack_write(env, regno, off, size,
6835 						value_regno, insn_idx);
6836 	} else if (reg_is_pkt_pointer(reg)) {
6837 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
6838 			verbose(env, "cannot write into packet\n");
6839 			return -EACCES;
6840 		}
6841 		if (t == BPF_WRITE && value_regno >= 0 &&
6842 		    is_pointer_value(env, value_regno)) {
6843 			verbose(env, "R%d leaks addr into packet\n",
6844 				value_regno);
6845 			return -EACCES;
6846 		}
6847 		err = check_packet_access(env, regno, off, size, false);
6848 		if (!err && t == BPF_READ && value_regno >= 0)
6849 			mark_reg_unknown(env, regs, value_regno);
6850 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
6851 		if (t == BPF_WRITE && value_regno >= 0 &&
6852 		    is_pointer_value(env, value_regno)) {
6853 			verbose(env, "R%d leaks addr into flow keys\n",
6854 				value_regno);
6855 			return -EACCES;
6856 		}
6857 
6858 		err = check_flow_keys_access(env, off, size);
6859 		if (!err && t == BPF_READ && value_regno >= 0)
6860 			mark_reg_unknown(env, regs, value_regno);
6861 	} else if (type_is_sk_pointer(reg->type)) {
6862 		if (t == BPF_WRITE) {
6863 			verbose(env, "R%d cannot write into %s\n",
6864 				regno, reg_type_str(env, reg->type));
6865 			return -EACCES;
6866 		}
6867 		err = check_sock_access(env, insn_idx, regno, off, size, t);
6868 		if (!err && value_regno >= 0)
6869 			mark_reg_unknown(env, regs, value_regno);
6870 	} else if (reg->type == PTR_TO_TP_BUFFER) {
6871 		err = check_tp_buffer_access(env, reg, regno, off, size);
6872 		if (!err && t == BPF_READ && value_regno >= 0)
6873 			mark_reg_unknown(env, regs, value_regno);
6874 	} else if (base_type(reg->type) == PTR_TO_BTF_ID &&
6875 		   !type_may_be_null(reg->type)) {
6876 		err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
6877 					      value_regno);
6878 	} else if (reg->type == CONST_PTR_TO_MAP) {
6879 		err = check_ptr_to_map_access(env, regs, regno, off, size, t,
6880 					      value_regno);
6881 	} else if (base_type(reg->type) == PTR_TO_BUF) {
6882 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
6883 		u32 *max_access;
6884 
6885 		if (rdonly_mem) {
6886 			if (t == BPF_WRITE) {
6887 				verbose(env, "R%d cannot write into %s\n",
6888 					regno, reg_type_str(env, reg->type));
6889 				return -EACCES;
6890 			}
6891 			max_access = &env->prog->aux->max_rdonly_access;
6892 		} else {
6893 			max_access = &env->prog->aux->max_rdwr_access;
6894 		}
6895 
6896 		err = check_buffer_access(env, reg, regno, off, size, false,
6897 					  max_access);
6898 
6899 		if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ))
6900 			mark_reg_unknown(env, regs, value_regno);
6901 	} else {
6902 		verbose(env, "R%d invalid mem access '%s'\n", regno,
6903 			reg_type_str(env, reg->type));
6904 		return -EACCES;
6905 	}
6906 
6907 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
6908 	    regs[value_regno].type == SCALAR_VALUE) {
6909 		if (!is_ldsx)
6910 			/* b/h/w load zero-extends, mark upper bits as known 0 */
6911 			coerce_reg_to_size(&regs[value_regno], size);
6912 		else
6913 			coerce_reg_to_size_sx(&regs[value_regno], size);
6914 	}
6915 	return err;
6916 }
6917 
6918 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
6919 {
6920 	int load_reg;
6921 	int err;
6922 
6923 	switch (insn->imm) {
6924 	case BPF_ADD:
6925 	case BPF_ADD | BPF_FETCH:
6926 	case BPF_AND:
6927 	case BPF_AND | BPF_FETCH:
6928 	case BPF_OR:
6929 	case BPF_OR | BPF_FETCH:
6930 	case BPF_XOR:
6931 	case BPF_XOR | BPF_FETCH:
6932 	case BPF_XCHG:
6933 	case BPF_CMPXCHG:
6934 		break;
6935 	default:
6936 		verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
6937 		return -EINVAL;
6938 	}
6939 
6940 	if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
6941 		verbose(env, "invalid atomic operand size\n");
6942 		return -EINVAL;
6943 	}
6944 
6945 	/* check src1 operand */
6946 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
6947 	if (err)
6948 		return err;
6949 
6950 	/* check src2 operand */
6951 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
6952 	if (err)
6953 		return err;
6954 
6955 	if (insn->imm == BPF_CMPXCHG) {
6956 		/* Check comparison of R0 with memory location */
6957 		const u32 aux_reg = BPF_REG_0;
6958 
6959 		err = check_reg_arg(env, aux_reg, SRC_OP);
6960 		if (err)
6961 			return err;
6962 
6963 		if (is_pointer_value(env, aux_reg)) {
6964 			verbose(env, "R%d leaks addr into mem\n", aux_reg);
6965 			return -EACCES;
6966 		}
6967 	}
6968 
6969 	if (is_pointer_value(env, insn->src_reg)) {
6970 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
6971 		return -EACCES;
6972 	}
6973 
6974 	if (is_ctx_reg(env, insn->dst_reg) ||
6975 	    is_pkt_reg(env, insn->dst_reg) ||
6976 	    is_flow_key_reg(env, insn->dst_reg) ||
6977 	    is_sk_reg(env, insn->dst_reg)) {
6978 		verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
6979 			insn->dst_reg,
6980 			reg_type_str(env, reg_state(env, insn->dst_reg)->type));
6981 		return -EACCES;
6982 	}
6983 
6984 	if (insn->imm & BPF_FETCH) {
6985 		if (insn->imm == BPF_CMPXCHG)
6986 			load_reg = BPF_REG_0;
6987 		else
6988 			load_reg = insn->src_reg;
6989 
6990 		/* check and record load of old value */
6991 		err = check_reg_arg(env, load_reg, DST_OP);
6992 		if (err)
6993 			return err;
6994 	} else {
6995 		/* This instruction accesses a memory location but doesn't
6996 		 * actually load it into a register.
6997 		 */
6998 		load_reg = -1;
6999 	}
7000 
7001 	/* Check whether we can read the memory, with second call for fetch
7002 	 * case to simulate the register fill.
7003 	 */
7004 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
7005 			       BPF_SIZE(insn->code), BPF_READ, -1, true, false);
7006 	if (!err && load_reg >= 0)
7007 		err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
7008 				       BPF_SIZE(insn->code), BPF_READ, load_reg,
7009 				       true, false);
7010 	if (err)
7011 		return err;
7012 
7013 	/* Check whether we can write into the same memory. */
7014 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
7015 			       BPF_SIZE(insn->code), BPF_WRITE, -1, true, false);
7016 	if (err)
7017 		return err;
7018 	return 0;
7019 }
7020 
7021 /* When register 'regno' is used to read the stack (either directly or through
7022  * a helper function) make sure that it's within stack boundary and, depending
7023  * on the access type and privileges, that all elements of the stack are
7024  * initialized.
7025  *
7026  * 'off' includes 'regno->off', but not its dynamic part (if any).
7027  *
7028  * All registers that have been spilled on the stack in the slots within the
7029  * read offsets are marked as read.
7030  */
7031 static int check_stack_range_initialized(
7032 		struct bpf_verifier_env *env, int regno, int off,
7033 		int access_size, bool zero_size_allowed,
7034 		enum bpf_access_src type, struct bpf_call_arg_meta *meta)
7035 {
7036 	struct bpf_reg_state *reg = reg_state(env, regno);
7037 	struct bpf_func_state *state = func(env, reg);
7038 	int err, min_off, max_off, i, j, slot, spi;
7039 	char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
7040 	enum bpf_access_type bounds_check_type;
7041 	/* Some accesses can write anything into the stack, others are
7042 	 * read-only.
7043 	 */
7044 	bool clobber = false;
7045 
7046 	if (access_size == 0 && !zero_size_allowed) {
7047 		verbose(env, "invalid zero-sized read\n");
7048 		return -EACCES;
7049 	}
7050 
7051 	if (type == ACCESS_HELPER) {
7052 		/* The bounds checks for writes are more permissive than for
7053 		 * reads. However, if raw_mode is not set, we'll do extra
7054 		 * checks below.
7055 		 */
7056 		bounds_check_type = BPF_WRITE;
7057 		clobber = true;
7058 	} else {
7059 		bounds_check_type = BPF_READ;
7060 	}
7061 	err = check_stack_access_within_bounds(env, regno, off, access_size,
7062 					       type, bounds_check_type);
7063 	if (err)
7064 		return err;
7065 
7066 
7067 	if (tnum_is_const(reg->var_off)) {
7068 		min_off = max_off = reg->var_off.value + off;
7069 	} else {
7070 		/* Variable offset is prohibited for unprivileged mode for
7071 		 * simplicity since it requires corresponding support in
7072 		 * Spectre masking for stack ALU.
7073 		 * See also retrieve_ptr_limit().
7074 		 */
7075 		if (!env->bypass_spec_v1) {
7076 			char tn_buf[48];
7077 
7078 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7079 			verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
7080 				regno, err_extra, tn_buf);
7081 			return -EACCES;
7082 		}
7083 		/* Only initialized buffer on stack is allowed to be accessed
7084 		 * with variable offset. With uninitialized buffer it's hard to
7085 		 * guarantee that whole memory is marked as initialized on
7086 		 * helper return since specific bounds are unknown what may
7087 		 * cause uninitialized stack leaking.
7088 		 */
7089 		if (meta && meta->raw_mode)
7090 			meta = NULL;
7091 
7092 		min_off = reg->smin_value + off;
7093 		max_off = reg->smax_value + off;
7094 	}
7095 
7096 	if (meta && meta->raw_mode) {
7097 		/* Ensure we won't be overwriting dynptrs when simulating byte
7098 		 * by byte access in check_helper_call using meta.access_size.
7099 		 * This would be a problem if we have a helper in the future
7100 		 * which takes:
7101 		 *
7102 		 *	helper(uninit_mem, len, dynptr)
7103 		 *
7104 		 * Now, uninint_mem may overlap with dynptr pointer. Hence, it
7105 		 * may end up writing to dynptr itself when touching memory from
7106 		 * arg 1. This can be relaxed on a case by case basis for known
7107 		 * safe cases, but reject due to the possibilitiy of aliasing by
7108 		 * default.
7109 		 */
7110 		for (i = min_off; i < max_off + access_size; i++) {
7111 			int stack_off = -i - 1;
7112 
7113 			spi = __get_spi(i);
7114 			/* raw_mode may write past allocated_stack */
7115 			if (state->allocated_stack <= stack_off)
7116 				continue;
7117 			if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) {
7118 				verbose(env, "potential write to dynptr at off=%d disallowed\n", i);
7119 				return -EACCES;
7120 			}
7121 		}
7122 		meta->access_size = access_size;
7123 		meta->regno = regno;
7124 		return 0;
7125 	}
7126 
7127 	for (i = min_off; i < max_off + access_size; i++) {
7128 		u8 *stype;
7129 
7130 		slot = -i - 1;
7131 		spi = slot / BPF_REG_SIZE;
7132 		if (state->allocated_stack <= slot) {
7133 			verbose(env, "verifier bug: allocated_stack too small");
7134 			return -EFAULT;
7135 		}
7136 
7137 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
7138 		if (*stype == STACK_MISC)
7139 			goto mark;
7140 		if ((*stype == STACK_ZERO) ||
7141 		    (*stype == STACK_INVALID && env->allow_uninit_stack)) {
7142 			if (clobber) {
7143 				/* helper can write anything into the stack */
7144 				*stype = STACK_MISC;
7145 			}
7146 			goto mark;
7147 		}
7148 
7149 		if (is_spilled_reg(&state->stack[spi]) &&
7150 		    (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
7151 		     env->allow_ptr_leaks)) {
7152 			if (clobber) {
7153 				__mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
7154 				for (j = 0; j < BPF_REG_SIZE; j++)
7155 					scrub_spilled_slot(&state->stack[spi].slot_type[j]);
7156 			}
7157 			goto mark;
7158 		}
7159 
7160 		if (tnum_is_const(reg->var_off)) {
7161 			verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
7162 				err_extra, regno, min_off, i - min_off, access_size);
7163 		} else {
7164 			char tn_buf[48];
7165 
7166 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7167 			verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
7168 				err_extra, regno, tn_buf, i - min_off, access_size);
7169 		}
7170 		return -EACCES;
7171 mark:
7172 		/* reading any byte out of 8-byte 'spill_slot' will cause
7173 		 * the whole slot to be marked as 'read'
7174 		 */
7175 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
7176 			      state->stack[spi].spilled_ptr.parent,
7177 			      REG_LIVE_READ64);
7178 		/* We do not set REG_LIVE_WRITTEN for stack slot, as we can not
7179 		 * be sure that whether stack slot is written to or not. Hence,
7180 		 * we must still conservatively propagate reads upwards even if
7181 		 * helper may write to the entire memory range.
7182 		 */
7183 	}
7184 	return 0;
7185 }
7186 
7187 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
7188 				   int access_size, bool zero_size_allowed,
7189 				   struct bpf_call_arg_meta *meta)
7190 {
7191 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7192 	u32 *max_access;
7193 
7194 	switch (base_type(reg->type)) {
7195 	case PTR_TO_PACKET:
7196 	case PTR_TO_PACKET_META:
7197 		return check_packet_access(env, regno, reg->off, access_size,
7198 					   zero_size_allowed);
7199 	case PTR_TO_MAP_KEY:
7200 		if (meta && meta->raw_mode) {
7201 			verbose(env, "R%d cannot write into %s\n", regno,
7202 				reg_type_str(env, reg->type));
7203 			return -EACCES;
7204 		}
7205 		return check_mem_region_access(env, regno, reg->off, access_size,
7206 					       reg->map_ptr->key_size, false);
7207 	case PTR_TO_MAP_VALUE:
7208 		if (check_map_access_type(env, regno, reg->off, access_size,
7209 					  meta && meta->raw_mode ? BPF_WRITE :
7210 					  BPF_READ))
7211 			return -EACCES;
7212 		return check_map_access(env, regno, reg->off, access_size,
7213 					zero_size_allowed, ACCESS_HELPER);
7214 	case PTR_TO_MEM:
7215 		if (type_is_rdonly_mem(reg->type)) {
7216 			if (meta && meta->raw_mode) {
7217 				verbose(env, "R%d cannot write into %s\n", regno,
7218 					reg_type_str(env, reg->type));
7219 				return -EACCES;
7220 			}
7221 		}
7222 		return check_mem_region_access(env, regno, reg->off,
7223 					       access_size, reg->mem_size,
7224 					       zero_size_allowed);
7225 	case PTR_TO_BUF:
7226 		if (type_is_rdonly_mem(reg->type)) {
7227 			if (meta && meta->raw_mode) {
7228 				verbose(env, "R%d cannot write into %s\n", regno,
7229 					reg_type_str(env, reg->type));
7230 				return -EACCES;
7231 			}
7232 
7233 			max_access = &env->prog->aux->max_rdonly_access;
7234 		} else {
7235 			max_access = &env->prog->aux->max_rdwr_access;
7236 		}
7237 		return check_buffer_access(env, reg, regno, reg->off,
7238 					   access_size, zero_size_allowed,
7239 					   max_access);
7240 	case PTR_TO_STACK:
7241 		return check_stack_range_initialized(
7242 				env,
7243 				regno, reg->off, access_size,
7244 				zero_size_allowed, ACCESS_HELPER, meta);
7245 	case PTR_TO_BTF_ID:
7246 		return check_ptr_to_btf_access(env, regs, regno, reg->off,
7247 					       access_size, BPF_READ, -1);
7248 	case PTR_TO_CTX:
7249 		/* in case the function doesn't know how to access the context,
7250 		 * (because we are in a program of type SYSCALL for example), we
7251 		 * can not statically check its size.
7252 		 * Dynamically check it now.
7253 		 */
7254 		if (!env->ops->convert_ctx_access) {
7255 			enum bpf_access_type atype = meta && meta->raw_mode ? BPF_WRITE : BPF_READ;
7256 			int offset = access_size - 1;
7257 
7258 			/* Allow zero-byte read from PTR_TO_CTX */
7259 			if (access_size == 0)
7260 				return zero_size_allowed ? 0 : -EACCES;
7261 
7262 			return check_mem_access(env, env->insn_idx, regno, offset, BPF_B,
7263 						atype, -1, false, false);
7264 		}
7265 
7266 		fallthrough;
7267 	default: /* scalar_value or invalid ptr */
7268 		/* Allow zero-byte read from NULL, regardless of pointer type */
7269 		if (zero_size_allowed && access_size == 0 &&
7270 		    register_is_null(reg))
7271 			return 0;
7272 
7273 		verbose(env, "R%d type=%s ", regno,
7274 			reg_type_str(env, reg->type));
7275 		verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK));
7276 		return -EACCES;
7277 	}
7278 }
7279 
7280 /* verify arguments to helpers or kfuncs consisting of a pointer and an access
7281  * size.
7282  *
7283  * @regno is the register containing the access size. regno-1 is the register
7284  * containing the pointer.
7285  */
7286 static int check_mem_size_reg(struct bpf_verifier_env *env,
7287 			      struct bpf_reg_state *reg, u32 regno,
7288 			      bool zero_size_allowed,
7289 			      struct bpf_call_arg_meta *meta)
7290 {
7291 	int err;
7292 
7293 	/* This is used to refine r0 return value bounds for helpers
7294 	 * that enforce this value as an upper bound on return values.
7295 	 * See do_refine_retval_range() for helpers that can refine
7296 	 * the return value. C type of helper is u32 so we pull register
7297 	 * bound from umax_value however, if negative verifier errors
7298 	 * out. Only upper bounds can be learned because retval is an
7299 	 * int type and negative retvals are allowed.
7300 	 */
7301 	meta->msize_max_value = reg->umax_value;
7302 
7303 	/* The register is SCALAR_VALUE; the access check
7304 	 * happens using its boundaries.
7305 	 */
7306 	if (!tnum_is_const(reg->var_off))
7307 		/* For unprivileged variable accesses, disable raw
7308 		 * mode so that the program is required to
7309 		 * initialize all the memory that the helper could
7310 		 * just partially fill up.
7311 		 */
7312 		meta = NULL;
7313 
7314 	if (reg->smin_value < 0) {
7315 		verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
7316 			regno);
7317 		return -EACCES;
7318 	}
7319 
7320 	if (reg->umin_value == 0 && !zero_size_allowed) {
7321 		verbose(env, "R%d invalid zero-sized read: u64=[%lld,%lld]\n",
7322 			regno, reg->umin_value, reg->umax_value);
7323 		return -EACCES;
7324 	}
7325 
7326 	if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
7327 		verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
7328 			regno);
7329 		return -EACCES;
7330 	}
7331 	err = check_helper_mem_access(env, regno - 1,
7332 				      reg->umax_value,
7333 				      zero_size_allowed, meta);
7334 	if (!err)
7335 		err = mark_chain_precision(env, regno);
7336 	return err;
7337 }
7338 
7339 static int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
7340 			 u32 regno, u32 mem_size)
7341 {
7342 	bool may_be_null = type_may_be_null(reg->type);
7343 	struct bpf_reg_state saved_reg;
7344 	struct bpf_call_arg_meta meta;
7345 	int err;
7346 
7347 	if (register_is_null(reg))
7348 		return 0;
7349 
7350 	memset(&meta, 0, sizeof(meta));
7351 	/* Assuming that the register contains a value check if the memory
7352 	 * access is safe. Temporarily save and restore the register's state as
7353 	 * the conversion shouldn't be visible to a caller.
7354 	 */
7355 	if (may_be_null) {
7356 		saved_reg = *reg;
7357 		mark_ptr_not_null_reg(reg);
7358 	}
7359 
7360 	err = check_helper_mem_access(env, regno, mem_size, true, &meta);
7361 	/* Check access for BPF_WRITE */
7362 	meta.raw_mode = true;
7363 	err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta);
7364 
7365 	if (may_be_null)
7366 		*reg = saved_reg;
7367 
7368 	return err;
7369 }
7370 
7371 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
7372 				    u32 regno)
7373 {
7374 	struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1];
7375 	bool may_be_null = type_may_be_null(mem_reg->type);
7376 	struct bpf_reg_state saved_reg;
7377 	struct bpf_call_arg_meta meta;
7378 	int err;
7379 
7380 	WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5);
7381 
7382 	memset(&meta, 0, sizeof(meta));
7383 
7384 	if (may_be_null) {
7385 		saved_reg = *mem_reg;
7386 		mark_ptr_not_null_reg(mem_reg);
7387 	}
7388 
7389 	err = check_mem_size_reg(env, reg, regno, true, &meta);
7390 	/* Check access for BPF_WRITE */
7391 	meta.raw_mode = true;
7392 	err = err ?: check_mem_size_reg(env, reg, regno, true, &meta);
7393 
7394 	if (may_be_null)
7395 		*mem_reg = saved_reg;
7396 	return err;
7397 }
7398 
7399 /* Implementation details:
7400  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL.
7401  * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL.
7402  * Two bpf_map_lookups (even with the same key) will have different reg->id.
7403  * Two separate bpf_obj_new will also have different reg->id.
7404  * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier
7405  * clears reg->id after value_or_null->value transition, since the verifier only
7406  * cares about the range of access to valid map value pointer and doesn't care
7407  * about actual address of the map element.
7408  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
7409  * reg->id > 0 after value_or_null->value transition. By doing so
7410  * two bpf_map_lookups will be considered two different pointers that
7411  * point to different bpf_spin_locks. Likewise for pointers to allocated objects
7412  * returned from bpf_obj_new.
7413  * The verifier allows taking only one bpf_spin_lock at a time to avoid
7414  * dead-locks.
7415  * Since only one bpf_spin_lock is allowed the checks are simpler than
7416  * reg_is_refcounted() logic. The verifier needs to remember only
7417  * one spin_lock instead of array of acquired_refs.
7418  * cur_state->active_lock remembers which map value element or allocated
7419  * object got locked and clears it after bpf_spin_unlock.
7420  */
7421 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
7422 			     bool is_lock)
7423 {
7424 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7425 	struct bpf_verifier_state *cur = env->cur_state;
7426 	bool is_const = tnum_is_const(reg->var_off);
7427 	u64 val = reg->var_off.value;
7428 	struct bpf_map *map = NULL;
7429 	struct btf *btf = NULL;
7430 	struct btf_record *rec;
7431 
7432 	if (!is_const) {
7433 		verbose(env,
7434 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
7435 			regno);
7436 		return -EINVAL;
7437 	}
7438 	if (reg->type == PTR_TO_MAP_VALUE) {
7439 		map = reg->map_ptr;
7440 		if (!map->btf) {
7441 			verbose(env,
7442 				"map '%s' has to have BTF in order to use bpf_spin_lock\n",
7443 				map->name);
7444 			return -EINVAL;
7445 		}
7446 	} else {
7447 		btf = reg->btf;
7448 	}
7449 
7450 	rec = reg_btf_record(reg);
7451 	if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) {
7452 		verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local",
7453 			map ? map->name : "kptr");
7454 		return -EINVAL;
7455 	}
7456 	if (rec->spin_lock_off != val + reg->off) {
7457 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n",
7458 			val + reg->off, rec->spin_lock_off);
7459 		return -EINVAL;
7460 	}
7461 	if (is_lock) {
7462 		if (cur->active_lock.ptr) {
7463 			verbose(env,
7464 				"Locking two bpf_spin_locks are not allowed\n");
7465 			return -EINVAL;
7466 		}
7467 		if (map)
7468 			cur->active_lock.ptr = map;
7469 		else
7470 			cur->active_lock.ptr = btf;
7471 		cur->active_lock.id = reg->id;
7472 	} else {
7473 		void *ptr;
7474 
7475 		if (map)
7476 			ptr = map;
7477 		else
7478 			ptr = btf;
7479 
7480 		if (!cur->active_lock.ptr) {
7481 			verbose(env, "bpf_spin_unlock without taking a lock\n");
7482 			return -EINVAL;
7483 		}
7484 		if (cur->active_lock.ptr != ptr ||
7485 		    cur->active_lock.id != reg->id) {
7486 			verbose(env, "bpf_spin_unlock of different lock\n");
7487 			return -EINVAL;
7488 		}
7489 
7490 		invalidate_non_owning_refs(env);
7491 
7492 		cur->active_lock.ptr = NULL;
7493 		cur->active_lock.id = 0;
7494 	}
7495 	return 0;
7496 }
7497 
7498 static int process_timer_func(struct bpf_verifier_env *env, int regno,
7499 			      struct bpf_call_arg_meta *meta)
7500 {
7501 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7502 	bool is_const = tnum_is_const(reg->var_off);
7503 	struct bpf_map *map = reg->map_ptr;
7504 	u64 val = reg->var_off.value;
7505 
7506 	if (!is_const) {
7507 		verbose(env,
7508 			"R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n",
7509 			regno);
7510 		return -EINVAL;
7511 	}
7512 	if (!map->btf) {
7513 		verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n",
7514 			map->name);
7515 		return -EINVAL;
7516 	}
7517 	if (!btf_record_has_field(map->record, BPF_TIMER)) {
7518 		verbose(env, "map '%s' has no valid bpf_timer\n", map->name);
7519 		return -EINVAL;
7520 	}
7521 	if (map->record->timer_off != val + reg->off) {
7522 		verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n",
7523 			val + reg->off, map->record->timer_off);
7524 		return -EINVAL;
7525 	}
7526 	if (meta->map_ptr) {
7527 		verbose(env, "verifier bug. Two map pointers in a timer helper\n");
7528 		return -EFAULT;
7529 	}
7530 	meta->map_uid = reg->map_uid;
7531 	meta->map_ptr = map;
7532 	return 0;
7533 }
7534 
7535 static int process_kptr_func(struct bpf_verifier_env *env, int regno,
7536 			     struct bpf_call_arg_meta *meta)
7537 {
7538 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7539 	struct bpf_map *map_ptr = reg->map_ptr;
7540 	struct btf_field *kptr_field;
7541 	u32 kptr_off;
7542 
7543 	if (!tnum_is_const(reg->var_off)) {
7544 		verbose(env,
7545 			"R%d doesn't have constant offset. kptr has to be at the constant offset\n",
7546 			regno);
7547 		return -EINVAL;
7548 	}
7549 	if (!map_ptr->btf) {
7550 		verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n",
7551 			map_ptr->name);
7552 		return -EINVAL;
7553 	}
7554 	if (!btf_record_has_field(map_ptr->record, BPF_KPTR)) {
7555 		verbose(env, "map '%s' has no valid kptr\n", map_ptr->name);
7556 		return -EINVAL;
7557 	}
7558 
7559 	meta->map_ptr = map_ptr;
7560 	kptr_off = reg->off + reg->var_off.value;
7561 	kptr_field = btf_record_find(map_ptr->record, kptr_off, BPF_KPTR);
7562 	if (!kptr_field) {
7563 		verbose(env, "off=%d doesn't point to kptr\n", kptr_off);
7564 		return -EACCES;
7565 	}
7566 	if (kptr_field->type != BPF_KPTR_REF && kptr_field->type != BPF_KPTR_PERCPU) {
7567 		verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off);
7568 		return -EACCES;
7569 	}
7570 	meta->kptr_field = kptr_field;
7571 	return 0;
7572 }
7573 
7574 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK
7575  * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR.
7576  *
7577  * In both cases we deal with the first 8 bytes, but need to mark the next 8
7578  * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of
7579  * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object.
7580  *
7581  * Mutability of bpf_dynptr is at two levels, one is at the level of struct
7582  * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct
7583  * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can
7584  * mutate the view of the dynptr and also possibly destroy it. In the latter
7585  * case, it cannot mutate the bpf_dynptr itself but it can still mutate the
7586  * memory that dynptr points to.
7587  *
7588  * The verifier will keep track both levels of mutation (bpf_dynptr's in
7589  * reg->type and the memory's in reg->dynptr.type), but there is no support for
7590  * readonly dynptr view yet, hence only the first case is tracked and checked.
7591  *
7592  * This is consistent with how C applies the const modifier to a struct object,
7593  * where the pointer itself inside bpf_dynptr becomes const but not what it
7594  * points to.
7595  *
7596  * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument
7597  * type, and declare it as 'const struct bpf_dynptr *' in their prototype.
7598  */
7599 static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx,
7600 			       enum bpf_arg_type arg_type, int clone_ref_obj_id)
7601 {
7602 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7603 	int err;
7604 
7605 	/* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an
7606 	 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*):
7607 	 */
7608 	if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) {
7609 		verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n");
7610 		return -EFAULT;
7611 	}
7612 
7613 	/*  MEM_UNINIT - Points to memory that is an appropriate candidate for
7614 	 *		 constructing a mutable bpf_dynptr object.
7615 	 *
7616 	 *		 Currently, this is only possible with PTR_TO_STACK
7617 	 *		 pointing to a region of at least 16 bytes which doesn't
7618 	 *		 contain an existing bpf_dynptr.
7619 	 *
7620 	 *  MEM_RDONLY - Points to a initialized bpf_dynptr that will not be
7621 	 *		 mutated or destroyed. However, the memory it points to
7622 	 *		 may be mutated.
7623 	 *
7624 	 *  None       - Points to a initialized dynptr that can be mutated and
7625 	 *		 destroyed, including mutation of the memory it points
7626 	 *		 to.
7627 	 */
7628 	if (arg_type & MEM_UNINIT) {
7629 		int i;
7630 
7631 		if (!is_dynptr_reg_valid_uninit(env, reg)) {
7632 			verbose(env, "Dynptr has to be an uninitialized dynptr\n");
7633 			return -EINVAL;
7634 		}
7635 
7636 		/* we write BPF_DW bits (8 bytes) at a time */
7637 		for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) {
7638 			err = check_mem_access(env, insn_idx, regno,
7639 					       i, BPF_DW, BPF_WRITE, -1, false, false);
7640 			if (err)
7641 				return err;
7642 		}
7643 
7644 		err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx, clone_ref_obj_id);
7645 	} else /* MEM_RDONLY and None case from above */ {
7646 		/* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */
7647 		if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) {
7648 			verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n");
7649 			return -EINVAL;
7650 		}
7651 
7652 		if (!is_dynptr_reg_valid_init(env, reg)) {
7653 			verbose(env,
7654 				"Expected an initialized dynptr as arg #%d\n",
7655 				regno);
7656 			return -EINVAL;
7657 		}
7658 
7659 		/* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */
7660 		if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) {
7661 			verbose(env,
7662 				"Expected a dynptr of type %s as arg #%d\n",
7663 				dynptr_type_str(arg_to_dynptr_type(arg_type)), regno);
7664 			return -EINVAL;
7665 		}
7666 
7667 		err = mark_dynptr_read(env, reg);
7668 	}
7669 	return err;
7670 }
7671 
7672 static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi)
7673 {
7674 	struct bpf_func_state *state = func(env, reg);
7675 
7676 	return state->stack[spi].spilled_ptr.ref_obj_id;
7677 }
7678 
7679 static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7680 {
7681 	return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY);
7682 }
7683 
7684 static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7685 {
7686 	return meta->kfunc_flags & KF_ITER_NEW;
7687 }
7688 
7689 static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7690 {
7691 	return meta->kfunc_flags & KF_ITER_NEXT;
7692 }
7693 
7694 static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7695 {
7696 	return meta->kfunc_flags & KF_ITER_DESTROY;
7697 }
7698 
7699 static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg)
7700 {
7701 	/* btf_check_iter_kfuncs() guarantees that first argument of any iter
7702 	 * kfunc is iter state pointer
7703 	 */
7704 	return arg == 0 && is_iter_kfunc(meta);
7705 }
7706 
7707 static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx,
7708 			    struct bpf_kfunc_call_arg_meta *meta)
7709 {
7710 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7711 	const struct btf_type *t;
7712 	const struct btf_param *arg;
7713 	int spi, err, i, nr_slots;
7714 	u32 btf_id;
7715 
7716 	/* btf_check_iter_kfuncs() ensures we don't need to validate anything here */
7717 	arg = &btf_params(meta->func_proto)[0];
7718 	t = btf_type_skip_modifiers(meta->btf, arg->type, NULL);	/* PTR */
7719 	t = btf_type_skip_modifiers(meta->btf, t->type, &btf_id);	/* STRUCT */
7720 	nr_slots = t->size / BPF_REG_SIZE;
7721 
7722 	if (is_iter_new_kfunc(meta)) {
7723 		/* bpf_iter_<type>_new() expects pointer to uninit iter state */
7724 		if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) {
7725 			verbose(env, "expected uninitialized iter_%s as arg #%d\n",
7726 				iter_type_str(meta->btf, btf_id), regno);
7727 			return -EINVAL;
7728 		}
7729 
7730 		for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) {
7731 			err = check_mem_access(env, insn_idx, regno,
7732 					       i, BPF_DW, BPF_WRITE, -1, false, false);
7733 			if (err)
7734 				return err;
7735 		}
7736 
7737 		err = mark_stack_slots_iter(env, meta, reg, insn_idx, meta->btf, btf_id, nr_slots);
7738 		if (err)
7739 			return err;
7740 	} else {
7741 		/* iter_next() or iter_destroy() expect initialized iter state*/
7742 		err = is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots);
7743 		switch (err) {
7744 		case 0:
7745 			break;
7746 		case -EINVAL:
7747 			verbose(env, "expected an initialized iter_%s as arg #%d\n",
7748 				iter_type_str(meta->btf, btf_id), regno);
7749 			return err;
7750 		case -EPROTO:
7751 			verbose(env, "expected an RCU CS when using %s\n", meta->func_name);
7752 			return err;
7753 		default:
7754 			return err;
7755 		}
7756 
7757 		spi = iter_get_spi(env, reg, nr_slots);
7758 		if (spi < 0)
7759 			return spi;
7760 
7761 		err = mark_iter_read(env, reg, spi, nr_slots);
7762 		if (err)
7763 			return err;
7764 
7765 		/* remember meta->iter info for process_iter_next_call() */
7766 		meta->iter.spi = spi;
7767 		meta->iter.frameno = reg->frameno;
7768 		meta->ref_obj_id = iter_ref_obj_id(env, reg, spi);
7769 
7770 		if (is_iter_destroy_kfunc(meta)) {
7771 			err = unmark_stack_slots_iter(env, reg, nr_slots);
7772 			if (err)
7773 				return err;
7774 		}
7775 	}
7776 
7777 	return 0;
7778 }
7779 
7780 /* Look for a previous loop entry at insn_idx: nearest parent state
7781  * stopped at insn_idx with callsites matching those in cur->frame.
7782  */
7783 static struct bpf_verifier_state *find_prev_entry(struct bpf_verifier_env *env,
7784 						  struct bpf_verifier_state *cur,
7785 						  int insn_idx)
7786 {
7787 	struct bpf_verifier_state_list *sl;
7788 	struct bpf_verifier_state *st;
7789 
7790 	/* Explored states are pushed in stack order, most recent states come first */
7791 	sl = *explored_state(env, insn_idx);
7792 	for (; sl; sl = sl->next) {
7793 		/* If st->branches != 0 state is a part of current DFS verification path,
7794 		 * hence cur & st for a loop.
7795 		 */
7796 		st = &sl->state;
7797 		if (st->insn_idx == insn_idx && st->branches && same_callsites(st, cur) &&
7798 		    st->dfs_depth < cur->dfs_depth)
7799 			return st;
7800 	}
7801 
7802 	return NULL;
7803 }
7804 
7805 static void reset_idmap_scratch(struct bpf_verifier_env *env);
7806 static bool regs_exact(const struct bpf_reg_state *rold,
7807 		       const struct bpf_reg_state *rcur,
7808 		       struct bpf_idmap *idmap);
7809 
7810 static void maybe_widen_reg(struct bpf_verifier_env *env,
7811 			    struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
7812 			    struct bpf_idmap *idmap)
7813 {
7814 	if (rold->type != SCALAR_VALUE)
7815 		return;
7816 	if (rold->type != rcur->type)
7817 		return;
7818 	if (rold->precise || rcur->precise || regs_exact(rold, rcur, idmap))
7819 		return;
7820 	__mark_reg_unknown(env, rcur);
7821 }
7822 
7823 static int widen_imprecise_scalars(struct bpf_verifier_env *env,
7824 				   struct bpf_verifier_state *old,
7825 				   struct bpf_verifier_state *cur)
7826 {
7827 	struct bpf_func_state *fold, *fcur;
7828 	int i, fr;
7829 
7830 	reset_idmap_scratch(env);
7831 	for (fr = old->curframe; fr >= 0; fr--) {
7832 		fold = old->frame[fr];
7833 		fcur = cur->frame[fr];
7834 
7835 		for (i = 0; i < MAX_BPF_REG; i++)
7836 			maybe_widen_reg(env,
7837 					&fold->regs[i],
7838 					&fcur->regs[i],
7839 					&env->idmap_scratch);
7840 
7841 		for (i = 0; i < fold->allocated_stack / BPF_REG_SIZE; i++) {
7842 			if (!is_spilled_reg(&fold->stack[i]) ||
7843 			    !is_spilled_reg(&fcur->stack[i]))
7844 				continue;
7845 
7846 			maybe_widen_reg(env,
7847 					&fold->stack[i].spilled_ptr,
7848 					&fcur->stack[i].spilled_ptr,
7849 					&env->idmap_scratch);
7850 		}
7851 	}
7852 	return 0;
7853 }
7854 
7855 /* process_iter_next_call() is called when verifier gets to iterator's next
7856  * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer
7857  * to it as just "iter_next()" in comments below.
7858  *
7859  * BPF verifier relies on a crucial contract for any iter_next()
7860  * implementation: it should *eventually* return NULL, and once that happens
7861  * it should keep returning NULL. That is, once iterator exhausts elements to
7862  * iterate, it should never reset or spuriously return new elements.
7863  *
7864  * With the assumption of such contract, process_iter_next_call() simulates
7865  * a fork in the verifier state to validate loop logic correctness and safety
7866  * without having to simulate infinite amount of iterations.
7867  *
7868  * In current state, we first assume that iter_next() returned NULL and
7869  * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such
7870  * conditions we should not form an infinite loop and should eventually reach
7871  * exit.
7872  *
7873  * Besides that, we also fork current state and enqueue it for later
7874  * verification. In a forked state we keep iterator state as ACTIVE
7875  * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We
7876  * also bump iteration depth to prevent erroneous infinite loop detection
7877  * later on (see iter_active_depths_differ() comment for details). In this
7878  * state we assume that we'll eventually loop back to another iter_next()
7879  * calls (it could be in exactly same location or in some other instruction,
7880  * it doesn't matter, we don't make any unnecessary assumptions about this,
7881  * everything revolves around iterator state in a stack slot, not which
7882  * instruction is calling iter_next()). When that happens, we either will come
7883  * to iter_next() with equivalent state and can conclude that next iteration
7884  * will proceed in exactly the same way as we just verified, so it's safe to
7885  * assume that loop converges. If not, we'll go on another iteration
7886  * simulation with a different input state, until all possible starting states
7887  * are validated or we reach maximum number of instructions limit.
7888  *
7889  * This way, we will either exhaustively discover all possible input states
7890  * that iterator loop can start with and eventually will converge, or we'll
7891  * effectively regress into bounded loop simulation logic and either reach
7892  * maximum number of instructions if loop is not provably convergent, or there
7893  * is some statically known limit on number of iterations (e.g., if there is
7894  * an explicit `if n > 100 then break;` statement somewhere in the loop).
7895  *
7896  * Iteration convergence logic in is_state_visited() relies on exact
7897  * states comparison, which ignores read and precision marks.
7898  * This is necessary because read and precision marks are not finalized
7899  * while in the loop. Exact comparison might preclude convergence for
7900  * simple programs like below:
7901  *
7902  *     i = 0;
7903  *     while(iter_next(&it))
7904  *       i++;
7905  *
7906  * At each iteration step i++ would produce a new distinct state and
7907  * eventually instruction processing limit would be reached.
7908  *
7909  * To avoid such behavior speculatively forget (widen) range for
7910  * imprecise scalar registers, if those registers were not precise at the
7911  * end of the previous iteration and do not match exactly.
7912  *
7913  * This is a conservative heuristic that allows to verify wide range of programs,
7914  * however it precludes verification of programs that conjure an
7915  * imprecise value on the first loop iteration and use it as precise on a second.
7916  * For example, the following safe program would fail to verify:
7917  *
7918  *     struct bpf_num_iter it;
7919  *     int arr[10];
7920  *     int i = 0, a = 0;
7921  *     bpf_iter_num_new(&it, 0, 10);
7922  *     while (bpf_iter_num_next(&it)) {
7923  *       if (a == 0) {
7924  *         a = 1;
7925  *         i = 7; // Because i changed verifier would forget
7926  *                // it's range on second loop entry.
7927  *       } else {
7928  *         arr[i] = 42; // This would fail to verify.
7929  *       }
7930  *     }
7931  *     bpf_iter_num_destroy(&it);
7932  */
7933 static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx,
7934 				  struct bpf_kfunc_call_arg_meta *meta)
7935 {
7936 	struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st;
7937 	struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr;
7938 	struct bpf_reg_state *cur_iter, *queued_iter;
7939 	int iter_frameno = meta->iter.frameno;
7940 	int iter_spi = meta->iter.spi;
7941 
7942 	BTF_TYPE_EMIT(struct bpf_iter);
7943 
7944 	cur_iter = &env->cur_state->frame[iter_frameno]->stack[iter_spi].spilled_ptr;
7945 
7946 	if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE &&
7947 	    cur_iter->iter.state != BPF_ITER_STATE_DRAINED) {
7948 		verbose(env, "verifier internal error: unexpected iterator state %d (%s)\n",
7949 			cur_iter->iter.state, iter_state_str(cur_iter->iter.state));
7950 		return -EFAULT;
7951 	}
7952 
7953 	if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) {
7954 		/* Because iter_next() call is a checkpoint is_state_visitied()
7955 		 * should guarantee parent state with same call sites and insn_idx.
7956 		 */
7957 		if (!cur_st->parent || cur_st->parent->insn_idx != insn_idx ||
7958 		    !same_callsites(cur_st->parent, cur_st)) {
7959 			verbose(env, "bug: bad parent state for iter next call");
7960 			return -EFAULT;
7961 		}
7962 		/* Note cur_st->parent in the call below, it is necessary to skip
7963 		 * checkpoint created for cur_st by is_state_visited()
7964 		 * right at this instruction.
7965 		 */
7966 		prev_st = find_prev_entry(env, cur_st->parent, insn_idx);
7967 		/* branch out active iter state */
7968 		queued_st = push_stack(env, insn_idx + 1, insn_idx, false);
7969 		if (!queued_st)
7970 			return -ENOMEM;
7971 
7972 		queued_iter = &queued_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr;
7973 		queued_iter->iter.state = BPF_ITER_STATE_ACTIVE;
7974 		queued_iter->iter.depth++;
7975 		if (prev_st)
7976 			widen_imprecise_scalars(env, prev_st, queued_st);
7977 
7978 		queued_fr = queued_st->frame[queued_st->curframe];
7979 		mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]);
7980 	}
7981 
7982 	/* switch to DRAINED state, but keep the depth unchanged */
7983 	/* mark current iter state as drained and assume returned NULL */
7984 	cur_iter->iter.state = BPF_ITER_STATE_DRAINED;
7985 	__mark_reg_const_zero(env, &cur_fr->regs[BPF_REG_0]);
7986 
7987 	return 0;
7988 }
7989 
7990 static bool arg_type_is_mem_size(enum bpf_arg_type type)
7991 {
7992 	return type == ARG_CONST_SIZE ||
7993 	       type == ARG_CONST_SIZE_OR_ZERO;
7994 }
7995 
7996 static bool arg_type_is_release(enum bpf_arg_type type)
7997 {
7998 	return type & OBJ_RELEASE;
7999 }
8000 
8001 static bool arg_type_is_dynptr(enum bpf_arg_type type)
8002 {
8003 	return base_type(type) == ARG_PTR_TO_DYNPTR;
8004 }
8005 
8006 static int int_ptr_type_to_size(enum bpf_arg_type type)
8007 {
8008 	if (type == ARG_PTR_TO_INT)
8009 		return sizeof(u32);
8010 	else if (type == ARG_PTR_TO_LONG)
8011 		return sizeof(u64);
8012 
8013 	return -EINVAL;
8014 }
8015 
8016 static int resolve_map_arg_type(struct bpf_verifier_env *env,
8017 				 const struct bpf_call_arg_meta *meta,
8018 				 enum bpf_arg_type *arg_type)
8019 {
8020 	if (!meta->map_ptr) {
8021 		/* kernel subsystem misconfigured verifier */
8022 		verbose(env, "invalid map_ptr to access map->type\n");
8023 		return -EACCES;
8024 	}
8025 
8026 	switch (meta->map_ptr->map_type) {
8027 	case BPF_MAP_TYPE_SOCKMAP:
8028 	case BPF_MAP_TYPE_SOCKHASH:
8029 		if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
8030 			*arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
8031 		} else {
8032 			verbose(env, "invalid arg_type for sockmap/sockhash\n");
8033 			return -EINVAL;
8034 		}
8035 		break;
8036 	case BPF_MAP_TYPE_BLOOM_FILTER:
8037 		if (meta->func_id == BPF_FUNC_map_peek_elem)
8038 			*arg_type = ARG_PTR_TO_MAP_VALUE;
8039 		break;
8040 	default:
8041 		break;
8042 	}
8043 	return 0;
8044 }
8045 
8046 struct bpf_reg_types {
8047 	const enum bpf_reg_type types[10];
8048 	u32 *btf_id;
8049 };
8050 
8051 static const struct bpf_reg_types sock_types = {
8052 	.types = {
8053 		PTR_TO_SOCK_COMMON,
8054 		PTR_TO_SOCKET,
8055 		PTR_TO_TCP_SOCK,
8056 		PTR_TO_XDP_SOCK,
8057 	},
8058 };
8059 
8060 #ifdef CONFIG_NET
8061 static const struct bpf_reg_types btf_id_sock_common_types = {
8062 	.types = {
8063 		PTR_TO_SOCK_COMMON,
8064 		PTR_TO_SOCKET,
8065 		PTR_TO_TCP_SOCK,
8066 		PTR_TO_XDP_SOCK,
8067 		PTR_TO_BTF_ID,
8068 		PTR_TO_BTF_ID | PTR_TRUSTED,
8069 	},
8070 	.btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
8071 };
8072 #endif
8073 
8074 static const struct bpf_reg_types mem_types = {
8075 	.types = {
8076 		PTR_TO_STACK,
8077 		PTR_TO_PACKET,
8078 		PTR_TO_PACKET_META,
8079 		PTR_TO_MAP_KEY,
8080 		PTR_TO_MAP_VALUE,
8081 		PTR_TO_MEM,
8082 		PTR_TO_MEM | MEM_RINGBUF,
8083 		PTR_TO_BUF,
8084 		PTR_TO_BTF_ID | PTR_TRUSTED,
8085 	},
8086 };
8087 
8088 static const struct bpf_reg_types int_ptr_types = {
8089 	.types = {
8090 		PTR_TO_STACK,
8091 		PTR_TO_PACKET,
8092 		PTR_TO_PACKET_META,
8093 		PTR_TO_MAP_KEY,
8094 		PTR_TO_MAP_VALUE,
8095 	},
8096 };
8097 
8098 static const struct bpf_reg_types spin_lock_types = {
8099 	.types = {
8100 		PTR_TO_MAP_VALUE,
8101 		PTR_TO_BTF_ID | MEM_ALLOC,
8102 	}
8103 };
8104 
8105 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
8106 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
8107 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
8108 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } };
8109 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
8110 static const struct bpf_reg_types btf_ptr_types = {
8111 	.types = {
8112 		PTR_TO_BTF_ID,
8113 		PTR_TO_BTF_ID | PTR_TRUSTED,
8114 		PTR_TO_BTF_ID | MEM_RCU,
8115 	},
8116 };
8117 static const struct bpf_reg_types percpu_btf_ptr_types = {
8118 	.types = {
8119 		PTR_TO_BTF_ID | MEM_PERCPU,
8120 		PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU,
8121 		PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED,
8122 	}
8123 };
8124 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
8125 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
8126 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
8127 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } };
8128 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } };
8129 static const struct bpf_reg_types dynptr_types = {
8130 	.types = {
8131 		PTR_TO_STACK,
8132 		CONST_PTR_TO_DYNPTR,
8133 	}
8134 };
8135 
8136 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
8137 	[ARG_PTR_TO_MAP_KEY]		= &mem_types,
8138 	[ARG_PTR_TO_MAP_VALUE]		= &mem_types,
8139 	[ARG_CONST_SIZE]		= &scalar_types,
8140 	[ARG_CONST_SIZE_OR_ZERO]	= &scalar_types,
8141 	[ARG_CONST_ALLOC_SIZE_OR_ZERO]	= &scalar_types,
8142 	[ARG_CONST_MAP_PTR]		= &const_map_ptr_types,
8143 	[ARG_PTR_TO_CTX]		= &context_types,
8144 	[ARG_PTR_TO_SOCK_COMMON]	= &sock_types,
8145 #ifdef CONFIG_NET
8146 	[ARG_PTR_TO_BTF_ID_SOCK_COMMON]	= &btf_id_sock_common_types,
8147 #endif
8148 	[ARG_PTR_TO_SOCKET]		= &fullsock_types,
8149 	[ARG_PTR_TO_BTF_ID]		= &btf_ptr_types,
8150 	[ARG_PTR_TO_SPIN_LOCK]		= &spin_lock_types,
8151 	[ARG_PTR_TO_MEM]		= &mem_types,
8152 	[ARG_PTR_TO_RINGBUF_MEM]	= &ringbuf_mem_types,
8153 	[ARG_PTR_TO_INT]		= &int_ptr_types,
8154 	[ARG_PTR_TO_LONG]		= &int_ptr_types,
8155 	[ARG_PTR_TO_PERCPU_BTF_ID]	= &percpu_btf_ptr_types,
8156 	[ARG_PTR_TO_FUNC]		= &func_ptr_types,
8157 	[ARG_PTR_TO_STACK]		= &stack_ptr_types,
8158 	[ARG_PTR_TO_CONST_STR]		= &const_str_ptr_types,
8159 	[ARG_PTR_TO_TIMER]		= &timer_types,
8160 	[ARG_PTR_TO_KPTR]		= &kptr_types,
8161 	[ARG_PTR_TO_DYNPTR]		= &dynptr_types,
8162 };
8163 
8164 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
8165 			  enum bpf_arg_type arg_type,
8166 			  const u32 *arg_btf_id,
8167 			  struct bpf_call_arg_meta *meta)
8168 {
8169 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
8170 	enum bpf_reg_type expected, type = reg->type;
8171 	const struct bpf_reg_types *compatible;
8172 	int i, j;
8173 
8174 	compatible = compatible_reg_types[base_type(arg_type)];
8175 	if (!compatible) {
8176 		verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
8177 		return -EFAULT;
8178 	}
8179 
8180 	/* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY,
8181 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY
8182 	 *
8183 	 * Same for MAYBE_NULL:
8184 	 *
8185 	 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL,
8186 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL
8187 	 *
8188 	 * ARG_PTR_TO_MEM is compatible with PTR_TO_MEM that is tagged with a dynptr type.
8189 	 *
8190 	 * Therefore we fold these flags depending on the arg_type before comparison.
8191 	 */
8192 	if (arg_type & MEM_RDONLY)
8193 		type &= ~MEM_RDONLY;
8194 	if (arg_type & PTR_MAYBE_NULL)
8195 		type &= ~PTR_MAYBE_NULL;
8196 	if (base_type(arg_type) == ARG_PTR_TO_MEM)
8197 		type &= ~DYNPTR_TYPE_FLAG_MASK;
8198 
8199 	if (meta->func_id == BPF_FUNC_kptr_xchg && type_is_alloc(type)) {
8200 		type &= ~MEM_ALLOC;
8201 		type &= ~MEM_PERCPU;
8202 	}
8203 
8204 	for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
8205 		expected = compatible->types[i];
8206 		if (expected == NOT_INIT)
8207 			break;
8208 
8209 		if (type == expected)
8210 			goto found;
8211 	}
8212 
8213 	verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type));
8214 	for (j = 0; j + 1 < i; j++)
8215 		verbose(env, "%s, ", reg_type_str(env, compatible->types[j]));
8216 	verbose(env, "%s\n", reg_type_str(env, compatible->types[j]));
8217 	return -EACCES;
8218 
8219 found:
8220 	if (base_type(reg->type) != PTR_TO_BTF_ID)
8221 		return 0;
8222 
8223 	if (compatible == &mem_types) {
8224 		if (!(arg_type & MEM_RDONLY)) {
8225 			verbose(env,
8226 				"%s() may write into memory pointed by R%d type=%s\n",
8227 				func_id_name(meta->func_id),
8228 				regno, reg_type_str(env, reg->type));
8229 			return -EACCES;
8230 		}
8231 		return 0;
8232 	}
8233 
8234 	switch ((int)reg->type) {
8235 	case PTR_TO_BTF_ID:
8236 	case PTR_TO_BTF_ID | PTR_TRUSTED:
8237 	case PTR_TO_BTF_ID | MEM_RCU:
8238 	case PTR_TO_BTF_ID | PTR_MAYBE_NULL:
8239 	case PTR_TO_BTF_ID | PTR_MAYBE_NULL | MEM_RCU:
8240 	{
8241 		/* For bpf_sk_release, it needs to match against first member
8242 		 * 'struct sock_common', hence make an exception for it. This
8243 		 * allows bpf_sk_release to work for multiple socket types.
8244 		 */
8245 		bool strict_type_match = arg_type_is_release(arg_type) &&
8246 					 meta->func_id != BPF_FUNC_sk_release;
8247 
8248 		if (type_may_be_null(reg->type) &&
8249 		    (!type_may_be_null(arg_type) || arg_type_is_release(arg_type))) {
8250 			verbose(env, "Possibly NULL pointer passed to helper arg%d\n", regno);
8251 			return -EACCES;
8252 		}
8253 
8254 		if (!arg_btf_id) {
8255 			if (!compatible->btf_id) {
8256 				verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
8257 				return -EFAULT;
8258 			}
8259 			arg_btf_id = compatible->btf_id;
8260 		}
8261 
8262 		if (meta->func_id == BPF_FUNC_kptr_xchg) {
8263 			if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
8264 				return -EACCES;
8265 		} else {
8266 			if (arg_btf_id == BPF_PTR_POISON) {
8267 				verbose(env, "verifier internal error:");
8268 				verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n",
8269 					regno);
8270 				return -EACCES;
8271 			}
8272 
8273 			if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
8274 						  btf_vmlinux, *arg_btf_id,
8275 						  strict_type_match)) {
8276 				verbose(env, "R%d is of type %s but %s is expected\n",
8277 					regno, btf_type_name(reg->btf, reg->btf_id),
8278 					btf_type_name(btf_vmlinux, *arg_btf_id));
8279 				return -EACCES;
8280 			}
8281 		}
8282 		break;
8283 	}
8284 	case PTR_TO_BTF_ID | MEM_ALLOC:
8285 	case PTR_TO_BTF_ID | MEM_PERCPU | MEM_ALLOC:
8286 		if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock &&
8287 		    meta->func_id != BPF_FUNC_kptr_xchg) {
8288 			verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n");
8289 			return -EFAULT;
8290 		}
8291 		if (meta->func_id == BPF_FUNC_kptr_xchg) {
8292 			if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
8293 				return -EACCES;
8294 		}
8295 		break;
8296 	case PTR_TO_BTF_ID | MEM_PERCPU:
8297 	case PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU:
8298 	case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED:
8299 		/* Handled by helper specific checks */
8300 		break;
8301 	default:
8302 		verbose(env, "verifier internal error: invalid PTR_TO_BTF_ID register for type match\n");
8303 		return -EFAULT;
8304 	}
8305 	return 0;
8306 }
8307 
8308 static struct btf_field *
8309 reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields)
8310 {
8311 	struct btf_field *field;
8312 	struct btf_record *rec;
8313 
8314 	rec = reg_btf_record(reg);
8315 	if (!rec)
8316 		return NULL;
8317 
8318 	field = btf_record_find(rec, off, fields);
8319 	if (!field)
8320 		return NULL;
8321 
8322 	return field;
8323 }
8324 
8325 static int check_func_arg_reg_off(struct bpf_verifier_env *env,
8326 				  const struct bpf_reg_state *reg, int regno,
8327 				  enum bpf_arg_type arg_type)
8328 {
8329 	u32 type = reg->type;
8330 
8331 	/* When referenced register is passed to release function, its fixed
8332 	 * offset must be 0.
8333 	 *
8334 	 * We will check arg_type_is_release reg has ref_obj_id when storing
8335 	 * meta->release_regno.
8336 	 */
8337 	if (arg_type_is_release(arg_type)) {
8338 		/* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it
8339 		 * may not directly point to the object being released, but to
8340 		 * dynptr pointing to such object, which might be at some offset
8341 		 * on the stack. In that case, we simply to fallback to the
8342 		 * default handling.
8343 		 */
8344 		if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK)
8345 			return 0;
8346 
8347 		/* Doing check_ptr_off_reg check for the offset will catch this
8348 		 * because fixed_off_ok is false, but checking here allows us
8349 		 * to give the user a better error message.
8350 		 */
8351 		if (reg->off) {
8352 			verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n",
8353 				regno);
8354 			return -EINVAL;
8355 		}
8356 		return __check_ptr_off_reg(env, reg, regno, false);
8357 	}
8358 
8359 	switch (type) {
8360 	/* Pointer types where both fixed and variable offset is explicitly allowed: */
8361 	case PTR_TO_STACK:
8362 	case PTR_TO_PACKET:
8363 	case PTR_TO_PACKET_META:
8364 	case PTR_TO_MAP_KEY:
8365 	case PTR_TO_MAP_VALUE:
8366 	case PTR_TO_MEM:
8367 	case PTR_TO_MEM | MEM_RDONLY:
8368 	case PTR_TO_MEM | MEM_RINGBUF:
8369 	case PTR_TO_BUF:
8370 	case PTR_TO_BUF | MEM_RDONLY:
8371 	case SCALAR_VALUE:
8372 		return 0;
8373 	/* All the rest must be rejected, except PTR_TO_BTF_ID which allows
8374 	 * fixed offset.
8375 	 */
8376 	case PTR_TO_BTF_ID:
8377 	case PTR_TO_BTF_ID | MEM_ALLOC:
8378 	case PTR_TO_BTF_ID | PTR_TRUSTED:
8379 	case PTR_TO_BTF_ID | MEM_RCU:
8380 	case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF:
8381 	case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF | MEM_RCU:
8382 		/* When referenced PTR_TO_BTF_ID is passed to release function,
8383 		 * its fixed offset must be 0. In the other cases, fixed offset
8384 		 * can be non-zero. This was already checked above. So pass
8385 		 * fixed_off_ok as true to allow fixed offset for all other
8386 		 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we
8387 		 * still need to do checks instead of returning.
8388 		 */
8389 		return __check_ptr_off_reg(env, reg, regno, true);
8390 	default:
8391 		return __check_ptr_off_reg(env, reg, regno, false);
8392 	}
8393 }
8394 
8395 static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env,
8396 						const struct bpf_func_proto *fn,
8397 						struct bpf_reg_state *regs)
8398 {
8399 	struct bpf_reg_state *state = NULL;
8400 	int i;
8401 
8402 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++)
8403 		if (arg_type_is_dynptr(fn->arg_type[i])) {
8404 			if (state) {
8405 				verbose(env, "verifier internal error: multiple dynptr args\n");
8406 				return NULL;
8407 			}
8408 			state = &regs[BPF_REG_1 + i];
8409 		}
8410 
8411 	if (!state)
8412 		verbose(env, "verifier internal error: no dynptr arg found\n");
8413 
8414 	return state;
8415 }
8416 
8417 static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
8418 {
8419 	struct bpf_func_state *state = func(env, reg);
8420 	int spi;
8421 
8422 	if (reg->type == CONST_PTR_TO_DYNPTR)
8423 		return reg->id;
8424 	spi = dynptr_get_spi(env, reg);
8425 	if (spi < 0)
8426 		return spi;
8427 	return state->stack[spi].spilled_ptr.id;
8428 }
8429 
8430 static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
8431 {
8432 	struct bpf_func_state *state = func(env, reg);
8433 	int spi;
8434 
8435 	if (reg->type == CONST_PTR_TO_DYNPTR)
8436 		return reg->ref_obj_id;
8437 	spi = dynptr_get_spi(env, reg);
8438 	if (spi < 0)
8439 		return spi;
8440 	return state->stack[spi].spilled_ptr.ref_obj_id;
8441 }
8442 
8443 static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env,
8444 					    struct bpf_reg_state *reg)
8445 {
8446 	struct bpf_func_state *state = func(env, reg);
8447 	int spi;
8448 
8449 	if (reg->type == CONST_PTR_TO_DYNPTR)
8450 		return reg->dynptr.type;
8451 
8452 	spi = __get_spi(reg->off);
8453 	if (spi < 0) {
8454 		verbose(env, "verifier internal error: invalid spi when querying dynptr type\n");
8455 		return BPF_DYNPTR_TYPE_INVALID;
8456 	}
8457 
8458 	return state->stack[spi].spilled_ptr.dynptr.type;
8459 }
8460 
8461 static int check_reg_const_str(struct bpf_verifier_env *env,
8462 			       struct bpf_reg_state *reg, u32 regno)
8463 {
8464 	struct bpf_map *map = reg->map_ptr;
8465 	int err;
8466 	int map_off;
8467 	u64 map_addr;
8468 	char *str_ptr;
8469 
8470 	if (reg->type != PTR_TO_MAP_VALUE)
8471 		return -EINVAL;
8472 
8473 	if (!bpf_map_is_rdonly(map)) {
8474 		verbose(env, "R%d does not point to a readonly map'\n", regno);
8475 		return -EACCES;
8476 	}
8477 
8478 	if (!tnum_is_const(reg->var_off)) {
8479 		verbose(env, "R%d is not a constant address'\n", regno);
8480 		return -EACCES;
8481 	}
8482 
8483 	if (!map->ops->map_direct_value_addr) {
8484 		verbose(env, "no direct value access support for this map type\n");
8485 		return -EACCES;
8486 	}
8487 
8488 	err = check_map_access(env, regno, reg->off,
8489 			       map->value_size - reg->off, false,
8490 			       ACCESS_HELPER);
8491 	if (err)
8492 		return err;
8493 
8494 	map_off = reg->off + reg->var_off.value;
8495 	err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
8496 	if (err) {
8497 		verbose(env, "direct value access on string failed\n");
8498 		return err;
8499 	}
8500 
8501 	str_ptr = (char *)(long)(map_addr);
8502 	if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
8503 		verbose(env, "string is not zero-terminated\n");
8504 		return -EINVAL;
8505 	}
8506 	return 0;
8507 }
8508 
8509 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
8510 			  struct bpf_call_arg_meta *meta,
8511 			  const struct bpf_func_proto *fn,
8512 			  int insn_idx)
8513 {
8514 	u32 regno = BPF_REG_1 + arg;
8515 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
8516 	enum bpf_arg_type arg_type = fn->arg_type[arg];
8517 	enum bpf_reg_type type = reg->type;
8518 	u32 *arg_btf_id = NULL;
8519 	int err = 0;
8520 
8521 	if (arg_type == ARG_DONTCARE)
8522 		return 0;
8523 
8524 	err = check_reg_arg(env, regno, SRC_OP);
8525 	if (err)
8526 		return err;
8527 
8528 	if (arg_type == ARG_ANYTHING) {
8529 		if (is_pointer_value(env, regno)) {
8530 			verbose(env, "R%d leaks addr into helper function\n",
8531 				regno);
8532 			return -EACCES;
8533 		}
8534 		return 0;
8535 	}
8536 
8537 	if (type_is_pkt_pointer(type) &&
8538 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
8539 		verbose(env, "helper access to the packet is not allowed\n");
8540 		return -EACCES;
8541 	}
8542 
8543 	if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) {
8544 		err = resolve_map_arg_type(env, meta, &arg_type);
8545 		if (err)
8546 			return err;
8547 	}
8548 
8549 	if (register_is_null(reg) && type_may_be_null(arg_type))
8550 		/* A NULL register has a SCALAR_VALUE type, so skip
8551 		 * type checking.
8552 		 */
8553 		goto skip_type_check;
8554 
8555 	/* arg_btf_id and arg_size are in a union. */
8556 	if (base_type(arg_type) == ARG_PTR_TO_BTF_ID ||
8557 	    base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK)
8558 		arg_btf_id = fn->arg_btf_id[arg];
8559 
8560 	err = check_reg_type(env, regno, arg_type, arg_btf_id, meta);
8561 	if (err)
8562 		return err;
8563 
8564 	err = check_func_arg_reg_off(env, reg, regno, arg_type);
8565 	if (err)
8566 		return err;
8567 
8568 skip_type_check:
8569 	if (arg_type_is_release(arg_type)) {
8570 		if (arg_type_is_dynptr(arg_type)) {
8571 			struct bpf_func_state *state = func(env, reg);
8572 			int spi;
8573 
8574 			/* Only dynptr created on stack can be released, thus
8575 			 * the get_spi and stack state checks for spilled_ptr
8576 			 * should only be done before process_dynptr_func for
8577 			 * PTR_TO_STACK.
8578 			 */
8579 			if (reg->type == PTR_TO_STACK) {
8580 				spi = dynptr_get_spi(env, reg);
8581 				if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) {
8582 					verbose(env, "arg %d is an unacquired reference\n", regno);
8583 					return -EINVAL;
8584 				}
8585 			} else {
8586 				verbose(env, "cannot release unowned const bpf_dynptr\n");
8587 				return -EINVAL;
8588 			}
8589 		} else if (!reg->ref_obj_id && !register_is_null(reg)) {
8590 			verbose(env, "R%d must be referenced when passed to release function\n",
8591 				regno);
8592 			return -EINVAL;
8593 		}
8594 		if (meta->release_regno) {
8595 			verbose(env, "verifier internal error: more than one release argument\n");
8596 			return -EFAULT;
8597 		}
8598 		meta->release_regno = regno;
8599 	}
8600 
8601 	if (reg->ref_obj_id) {
8602 		if (meta->ref_obj_id) {
8603 			verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
8604 				regno, reg->ref_obj_id,
8605 				meta->ref_obj_id);
8606 			return -EFAULT;
8607 		}
8608 		meta->ref_obj_id = reg->ref_obj_id;
8609 	}
8610 
8611 	switch (base_type(arg_type)) {
8612 	case ARG_CONST_MAP_PTR:
8613 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
8614 		if (meta->map_ptr) {
8615 			/* Use map_uid (which is unique id of inner map) to reject:
8616 			 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
8617 			 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
8618 			 * if (inner_map1 && inner_map2) {
8619 			 *     timer = bpf_map_lookup_elem(inner_map1);
8620 			 *     if (timer)
8621 			 *         // mismatch would have been allowed
8622 			 *         bpf_timer_init(timer, inner_map2);
8623 			 * }
8624 			 *
8625 			 * Comparing map_ptr is enough to distinguish normal and outer maps.
8626 			 */
8627 			if (meta->map_ptr != reg->map_ptr ||
8628 			    meta->map_uid != reg->map_uid) {
8629 				verbose(env,
8630 					"timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
8631 					meta->map_uid, reg->map_uid);
8632 				return -EINVAL;
8633 			}
8634 		}
8635 		meta->map_ptr = reg->map_ptr;
8636 		meta->map_uid = reg->map_uid;
8637 		break;
8638 	case ARG_PTR_TO_MAP_KEY:
8639 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
8640 		 * check that [key, key + map->key_size) are within
8641 		 * stack limits and initialized
8642 		 */
8643 		if (!meta->map_ptr) {
8644 			/* in function declaration map_ptr must come before
8645 			 * map_key, so that it's verified and known before
8646 			 * we have to check map_key here. Otherwise it means
8647 			 * that kernel subsystem misconfigured verifier
8648 			 */
8649 			verbose(env, "invalid map_ptr to access map->key\n");
8650 			return -EACCES;
8651 		}
8652 		err = check_helper_mem_access(env, regno,
8653 					      meta->map_ptr->key_size, false,
8654 					      NULL);
8655 		break;
8656 	case ARG_PTR_TO_MAP_VALUE:
8657 		if (type_may_be_null(arg_type) && register_is_null(reg))
8658 			return 0;
8659 
8660 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
8661 		 * check [value, value + map->value_size) validity
8662 		 */
8663 		if (!meta->map_ptr) {
8664 			/* kernel subsystem misconfigured verifier */
8665 			verbose(env, "invalid map_ptr to access map->value\n");
8666 			return -EACCES;
8667 		}
8668 		meta->raw_mode = arg_type & MEM_UNINIT;
8669 		err = check_helper_mem_access(env, regno,
8670 					      meta->map_ptr->value_size, false,
8671 					      meta);
8672 		break;
8673 	case ARG_PTR_TO_PERCPU_BTF_ID:
8674 		if (!reg->btf_id) {
8675 			verbose(env, "Helper has invalid btf_id in R%d\n", regno);
8676 			return -EACCES;
8677 		}
8678 		meta->ret_btf = reg->btf;
8679 		meta->ret_btf_id = reg->btf_id;
8680 		break;
8681 	case ARG_PTR_TO_SPIN_LOCK:
8682 		if (in_rbtree_lock_required_cb(env)) {
8683 			verbose(env, "can't spin_{lock,unlock} in rbtree cb\n");
8684 			return -EACCES;
8685 		}
8686 		if (meta->func_id == BPF_FUNC_spin_lock) {
8687 			err = process_spin_lock(env, regno, true);
8688 			if (err)
8689 				return err;
8690 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
8691 			err = process_spin_lock(env, regno, false);
8692 			if (err)
8693 				return err;
8694 		} else {
8695 			verbose(env, "verifier internal error\n");
8696 			return -EFAULT;
8697 		}
8698 		break;
8699 	case ARG_PTR_TO_TIMER:
8700 		err = process_timer_func(env, regno, meta);
8701 		if (err)
8702 			return err;
8703 		break;
8704 	case ARG_PTR_TO_FUNC:
8705 		meta->subprogno = reg->subprogno;
8706 		break;
8707 	case ARG_PTR_TO_MEM:
8708 		/* The access to this pointer is only checked when we hit the
8709 		 * next is_mem_size argument below.
8710 		 */
8711 		meta->raw_mode = arg_type & MEM_UNINIT;
8712 		if (arg_type & MEM_FIXED_SIZE) {
8713 			err = check_helper_mem_access(env, regno,
8714 						      fn->arg_size[arg], false,
8715 						      meta);
8716 		}
8717 		break;
8718 	case ARG_CONST_SIZE:
8719 		err = check_mem_size_reg(env, reg, regno, false, meta);
8720 		break;
8721 	case ARG_CONST_SIZE_OR_ZERO:
8722 		err = check_mem_size_reg(env, reg, regno, true, meta);
8723 		break;
8724 	case ARG_PTR_TO_DYNPTR:
8725 		err = process_dynptr_func(env, regno, insn_idx, arg_type, 0);
8726 		if (err)
8727 			return err;
8728 		break;
8729 	case ARG_CONST_ALLOC_SIZE_OR_ZERO:
8730 		if (!tnum_is_const(reg->var_off)) {
8731 			verbose(env, "R%d is not a known constant'\n",
8732 				regno);
8733 			return -EACCES;
8734 		}
8735 		meta->mem_size = reg->var_off.value;
8736 		err = mark_chain_precision(env, regno);
8737 		if (err)
8738 			return err;
8739 		break;
8740 	case ARG_PTR_TO_INT:
8741 	case ARG_PTR_TO_LONG:
8742 	{
8743 		int size = int_ptr_type_to_size(arg_type);
8744 
8745 		err = check_helper_mem_access(env, regno, size, false, meta);
8746 		if (err)
8747 			return err;
8748 		err = check_ptr_alignment(env, reg, 0, size, true);
8749 		break;
8750 	}
8751 	case ARG_PTR_TO_CONST_STR:
8752 	{
8753 		err = check_reg_const_str(env, reg, regno);
8754 		if (err)
8755 			return err;
8756 		break;
8757 	}
8758 	case ARG_PTR_TO_KPTR:
8759 		err = process_kptr_func(env, regno, meta);
8760 		if (err)
8761 			return err;
8762 		break;
8763 	}
8764 
8765 	return err;
8766 }
8767 
8768 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
8769 {
8770 	enum bpf_attach_type eatype = env->prog->expected_attach_type;
8771 	enum bpf_prog_type type = resolve_prog_type(env->prog);
8772 
8773 	if (func_id != BPF_FUNC_map_update_elem)
8774 		return false;
8775 
8776 	/* It's not possible to get access to a locked struct sock in these
8777 	 * contexts, so updating is safe.
8778 	 */
8779 	switch (type) {
8780 	case BPF_PROG_TYPE_TRACING:
8781 		if (eatype == BPF_TRACE_ITER)
8782 			return true;
8783 		break;
8784 	case BPF_PROG_TYPE_SOCKET_FILTER:
8785 	case BPF_PROG_TYPE_SCHED_CLS:
8786 	case BPF_PROG_TYPE_SCHED_ACT:
8787 	case BPF_PROG_TYPE_XDP:
8788 	case BPF_PROG_TYPE_SK_REUSEPORT:
8789 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
8790 	case BPF_PROG_TYPE_SK_LOOKUP:
8791 		return true;
8792 	default:
8793 		break;
8794 	}
8795 
8796 	verbose(env, "cannot update sockmap in this context\n");
8797 	return false;
8798 }
8799 
8800 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
8801 {
8802 	return env->prog->jit_requested &&
8803 	       bpf_jit_supports_subprog_tailcalls();
8804 }
8805 
8806 static int check_map_func_compatibility(struct bpf_verifier_env *env,
8807 					struct bpf_map *map, int func_id)
8808 {
8809 	if (!map)
8810 		return 0;
8811 
8812 	/* We need a two way check, first is from map perspective ... */
8813 	switch (map->map_type) {
8814 	case BPF_MAP_TYPE_PROG_ARRAY:
8815 		if (func_id != BPF_FUNC_tail_call)
8816 			goto error;
8817 		break;
8818 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
8819 		if (func_id != BPF_FUNC_perf_event_read &&
8820 		    func_id != BPF_FUNC_perf_event_output &&
8821 		    func_id != BPF_FUNC_skb_output &&
8822 		    func_id != BPF_FUNC_perf_event_read_value &&
8823 		    func_id != BPF_FUNC_xdp_output)
8824 			goto error;
8825 		break;
8826 	case BPF_MAP_TYPE_RINGBUF:
8827 		if (func_id != BPF_FUNC_ringbuf_output &&
8828 		    func_id != BPF_FUNC_ringbuf_reserve &&
8829 		    func_id != BPF_FUNC_ringbuf_query &&
8830 		    func_id != BPF_FUNC_ringbuf_reserve_dynptr &&
8831 		    func_id != BPF_FUNC_ringbuf_submit_dynptr &&
8832 		    func_id != BPF_FUNC_ringbuf_discard_dynptr)
8833 			goto error;
8834 		break;
8835 	case BPF_MAP_TYPE_USER_RINGBUF:
8836 		if (func_id != BPF_FUNC_user_ringbuf_drain)
8837 			goto error;
8838 		break;
8839 	case BPF_MAP_TYPE_STACK_TRACE:
8840 		if (func_id != BPF_FUNC_get_stackid)
8841 			goto error;
8842 		break;
8843 	case BPF_MAP_TYPE_CGROUP_ARRAY:
8844 		if (func_id != BPF_FUNC_skb_under_cgroup &&
8845 		    func_id != BPF_FUNC_current_task_under_cgroup)
8846 			goto error;
8847 		break;
8848 	case BPF_MAP_TYPE_CGROUP_STORAGE:
8849 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
8850 		if (func_id != BPF_FUNC_get_local_storage)
8851 			goto error;
8852 		break;
8853 	case BPF_MAP_TYPE_DEVMAP:
8854 	case BPF_MAP_TYPE_DEVMAP_HASH:
8855 		if (func_id != BPF_FUNC_redirect_map &&
8856 		    func_id != BPF_FUNC_map_lookup_elem)
8857 			goto error;
8858 		break;
8859 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
8860 	 * appear.
8861 	 */
8862 	case BPF_MAP_TYPE_CPUMAP:
8863 		if (func_id != BPF_FUNC_redirect_map)
8864 			goto error;
8865 		break;
8866 	case BPF_MAP_TYPE_XSKMAP:
8867 		if (func_id != BPF_FUNC_redirect_map &&
8868 		    func_id != BPF_FUNC_map_lookup_elem)
8869 			goto error;
8870 		break;
8871 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
8872 	case BPF_MAP_TYPE_HASH_OF_MAPS:
8873 		if (func_id != BPF_FUNC_map_lookup_elem)
8874 			goto error;
8875 		break;
8876 	case BPF_MAP_TYPE_SOCKMAP:
8877 		if (func_id != BPF_FUNC_sk_redirect_map &&
8878 		    func_id != BPF_FUNC_sock_map_update &&
8879 		    func_id != BPF_FUNC_map_delete_elem &&
8880 		    func_id != BPF_FUNC_msg_redirect_map &&
8881 		    func_id != BPF_FUNC_sk_select_reuseport &&
8882 		    func_id != BPF_FUNC_map_lookup_elem &&
8883 		    !may_update_sockmap(env, func_id))
8884 			goto error;
8885 		break;
8886 	case BPF_MAP_TYPE_SOCKHASH:
8887 		if (func_id != BPF_FUNC_sk_redirect_hash &&
8888 		    func_id != BPF_FUNC_sock_hash_update &&
8889 		    func_id != BPF_FUNC_map_delete_elem &&
8890 		    func_id != BPF_FUNC_msg_redirect_hash &&
8891 		    func_id != BPF_FUNC_sk_select_reuseport &&
8892 		    func_id != BPF_FUNC_map_lookup_elem &&
8893 		    !may_update_sockmap(env, func_id))
8894 			goto error;
8895 		break;
8896 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
8897 		if (func_id != BPF_FUNC_sk_select_reuseport)
8898 			goto error;
8899 		break;
8900 	case BPF_MAP_TYPE_QUEUE:
8901 	case BPF_MAP_TYPE_STACK:
8902 		if (func_id != BPF_FUNC_map_peek_elem &&
8903 		    func_id != BPF_FUNC_map_pop_elem &&
8904 		    func_id != BPF_FUNC_map_push_elem)
8905 			goto error;
8906 		break;
8907 	case BPF_MAP_TYPE_SK_STORAGE:
8908 		if (func_id != BPF_FUNC_sk_storage_get &&
8909 		    func_id != BPF_FUNC_sk_storage_delete &&
8910 		    func_id != BPF_FUNC_kptr_xchg)
8911 			goto error;
8912 		break;
8913 	case BPF_MAP_TYPE_INODE_STORAGE:
8914 		if (func_id != BPF_FUNC_inode_storage_get &&
8915 		    func_id != BPF_FUNC_inode_storage_delete &&
8916 		    func_id != BPF_FUNC_kptr_xchg)
8917 			goto error;
8918 		break;
8919 	case BPF_MAP_TYPE_TASK_STORAGE:
8920 		if (func_id != BPF_FUNC_task_storage_get &&
8921 		    func_id != BPF_FUNC_task_storage_delete &&
8922 		    func_id != BPF_FUNC_kptr_xchg)
8923 			goto error;
8924 		break;
8925 	case BPF_MAP_TYPE_CGRP_STORAGE:
8926 		if (func_id != BPF_FUNC_cgrp_storage_get &&
8927 		    func_id != BPF_FUNC_cgrp_storage_delete &&
8928 		    func_id != BPF_FUNC_kptr_xchg)
8929 			goto error;
8930 		break;
8931 	case BPF_MAP_TYPE_BLOOM_FILTER:
8932 		if (func_id != BPF_FUNC_map_peek_elem &&
8933 		    func_id != BPF_FUNC_map_push_elem)
8934 			goto error;
8935 		break;
8936 	default:
8937 		break;
8938 	}
8939 
8940 	/* ... and second from the function itself. */
8941 	switch (func_id) {
8942 	case BPF_FUNC_tail_call:
8943 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
8944 			goto error;
8945 		if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
8946 			verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
8947 			return -EINVAL;
8948 		}
8949 		break;
8950 	case BPF_FUNC_perf_event_read:
8951 	case BPF_FUNC_perf_event_output:
8952 	case BPF_FUNC_perf_event_read_value:
8953 	case BPF_FUNC_skb_output:
8954 	case BPF_FUNC_xdp_output:
8955 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
8956 			goto error;
8957 		break;
8958 	case BPF_FUNC_ringbuf_output:
8959 	case BPF_FUNC_ringbuf_reserve:
8960 	case BPF_FUNC_ringbuf_query:
8961 	case BPF_FUNC_ringbuf_reserve_dynptr:
8962 	case BPF_FUNC_ringbuf_submit_dynptr:
8963 	case BPF_FUNC_ringbuf_discard_dynptr:
8964 		if (map->map_type != BPF_MAP_TYPE_RINGBUF)
8965 			goto error;
8966 		break;
8967 	case BPF_FUNC_user_ringbuf_drain:
8968 		if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF)
8969 			goto error;
8970 		break;
8971 	case BPF_FUNC_get_stackid:
8972 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
8973 			goto error;
8974 		break;
8975 	case BPF_FUNC_current_task_under_cgroup:
8976 	case BPF_FUNC_skb_under_cgroup:
8977 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
8978 			goto error;
8979 		break;
8980 	case BPF_FUNC_redirect_map:
8981 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
8982 		    map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
8983 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
8984 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
8985 			goto error;
8986 		break;
8987 	case BPF_FUNC_sk_redirect_map:
8988 	case BPF_FUNC_msg_redirect_map:
8989 	case BPF_FUNC_sock_map_update:
8990 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
8991 			goto error;
8992 		break;
8993 	case BPF_FUNC_sk_redirect_hash:
8994 	case BPF_FUNC_msg_redirect_hash:
8995 	case BPF_FUNC_sock_hash_update:
8996 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
8997 			goto error;
8998 		break;
8999 	case BPF_FUNC_get_local_storage:
9000 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
9001 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
9002 			goto error;
9003 		break;
9004 	case BPF_FUNC_sk_select_reuseport:
9005 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
9006 		    map->map_type != BPF_MAP_TYPE_SOCKMAP &&
9007 		    map->map_type != BPF_MAP_TYPE_SOCKHASH)
9008 			goto error;
9009 		break;
9010 	case BPF_FUNC_map_pop_elem:
9011 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
9012 		    map->map_type != BPF_MAP_TYPE_STACK)
9013 			goto error;
9014 		break;
9015 	case BPF_FUNC_map_peek_elem:
9016 	case BPF_FUNC_map_push_elem:
9017 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
9018 		    map->map_type != BPF_MAP_TYPE_STACK &&
9019 		    map->map_type != BPF_MAP_TYPE_BLOOM_FILTER)
9020 			goto error;
9021 		break;
9022 	case BPF_FUNC_map_lookup_percpu_elem:
9023 		if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY &&
9024 		    map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
9025 		    map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH)
9026 			goto error;
9027 		break;
9028 	case BPF_FUNC_sk_storage_get:
9029 	case BPF_FUNC_sk_storage_delete:
9030 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
9031 			goto error;
9032 		break;
9033 	case BPF_FUNC_inode_storage_get:
9034 	case BPF_FUNC_inode_storage_delete:
9035 		if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
9036 			goto error;
9037 		break;
9038 	case BPF_FUNC_task_storage_get:
9039 	case BPF_FUNC_task_storage_delete:
9040 		if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
9041 			goto error;
9042 		break;
9043 	case BPF_FUNC_cgrp_storage_get:
9044 	case BPF_FUNC_cgrp_storage_delete:
9045 		if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE)
9046 			goto error;
9047 		break;
9048 	default:
9049 		break;
9050 	}
9051 
9052 	return 0;
9053 error:
9054 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
9055 		map->map_type, func_id_name(func_id), func_id);
9056 	return -EINVAL;
9057 }
9058 
9059 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
9060 {
9061 	int count = 0;
9062 
9063 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
9064 		count++;
9065 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
9066 		count++;
9067 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
9068 		count++;
9069 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
9070 		count++;
9071 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
9072 		count++;
9073 
9074 	/* We only support one arg being in raw mode at the moment,
9075 	 * which is sufficient for the helper functions we have
9076 	 * right now.
9077 	 */
9078 	return count <= 1;
9079 }
9080 
9081 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg)
9082 {
9083 	bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE;
9084 	bool has_size = fn->arg_size[arg] != 0;
9085 	bool is_next_size = false;
9086 
9087 	if (arg + 1 < ARRAY_SIZE(fn->arg_type))
9088 		is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]);
9089 
9090 	if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM)
9091 		return is_next_size;
9092 
9093 	return has_size == is_next_size || is_next_size == is_fixed;
9094 }
9095 
9096 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
9097 {
9098 	/* bpf_xxx(..., buf, len) call will access 'len'
9099 	 * bytes from memory 'buf'. Both arg types need
9100 	 * to be paired, so make sure there's no buggy
9101 	 * helper function specification.
9102 	 */
9103 	if (arg_type_is_mem_size(fn->arg1_type) ||
9104 	    check_args_pair_invalid(fn, 0) ||
9105 	    check_args_pair_invalid(fn, 1) ||
9106 	    check_args_pair_invalid(fn, 2) ||
9107 	    check_args_pair_invalid(fn, 3) ||
9108 	    check_args_pair_invalid(fn, 4))
9109 		return false;
9110 
9111 	return true;
9112 }
9113 
9114 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
9115 {
9116 	int i;
9117 
9118 	for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
9119 		if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID)
9120 			return !!fn->arg_btf_id[i];
9121 		if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK)
9122 			return fn->arg_btf_id[i] == BPF_PTR_POISON;
9123 		if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] &&
9124 		    /* arg_btf_id and arg_size are in a union. */
9125 		    (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM ||
9126 		     !(fn->arg_type[i] & MEM_FIXED_SIZE)))
9127 			return false;
9128 	}
9129 
9130 	return true;
9131 }
9132 
9133 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
9134 {
9135 	return check_raw_mode_ok(fn) &&
9136 	       check_arg_pair_ok(fn) &&
9137 	       check_btf_id_ok(fn) ? 0 : -EINVAL;
9138 }
9139 
9140 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
9141  * are now invalid, so turn them into unknown SCALAR_VALUE.
9142  *
9143  * This also applies to dynptr slices belonging to skb and xdp dynptrs,
9144  * since these slices point to packet data.
9145  */
9146 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
9147 {
9148 	struct bpf_func_state *state;
9149 	struct bpf_reg_state *reg;
9150 
9151 	bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
9152 		if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg))
9153 			mark_reg_invalid(env, reg);
9154 	}));
9155 }
9156 
9157 enum {
9158 	AT_PKT_END = -1,
9159 	BEYOND_PKT_END = -2,
9160 };
9161 
9162 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
9163 {
9164 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
9165 	struct bpf_reg_state *reg = &state->regs[regn];
9166 
9167 	if (reg->type != PTR_TO_PACKET)
9168 		/* PTR_TO_PACKET_META is not supported yet */
9169 		return;
9170 
9171 	/* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
9172 	 * How far beyond pkt_end it goes is unknown.
9173 	 * if (!range_open) it's the case of pkt >= pkt_end
9174 	 * if (range_open) it's the case of pkt > pkt_end
9175 	 * hence this pointer is at least 1 byte bigger than pkt_end
9176 	 */
9177 	if (range_open)
9178 		reg->range = BEYOND_PKT_END;
9179 	else
9180 		reg->range = AT_PKT_END;
9181 }
9182 
9183 /* The pointer with the specified id has released its reference to kernel
9184  * resources. Identify all copies of the same pointer and clear the reference.
9185  */
9186 static int release_reference(struct bpf_verifier_env *env,
9187 			     int ref_obj_id)
9188 {
9189 	struct bpf_func_state *state;
9190 	struct bpf_reg_state *reg;
9191 	int err;
9192 
9193 	err = release_reference_state(cur_func(env), ref_obj_id);
9194 	if (err)
9195 		return err;
9196 
9197 	bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
9198 		if (reg->ref_obj_id == ref_obj_id)
9199 			mark_reg_invalid(env, reg);
9200 	}));
9201 
9202 	return 0;
9203 }
9204 
9205 static void invalidate_non_owning_refs(struct bpf_verifier_env *env)
9206 {
9207 	struct bpf_func_state *unused;
9208 	struct bpf_reg_state *reg;
9209 
9210 	bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
9211 		if (type_is_non_owning_ref(reg->type))
9212 			mark_reg_invalid(env, reg);
9213 	}));
9214 }
9215 
9216 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
9217 				    struct bpf_reg_state *regs)
9218 {
9219 	int i;
9220 
9221 	/* after the call registers r0 - r5 were scratched */
9222 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
9223 		mark_reg_not_init(env, regs, caller_saved[i]);
9224 		__check_reg_arg(env, regs, caller_saved[i], DST_OP_NO_MARK);
9225 	}
9226 }
9227 
9228 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
9229 				   struct bpf_func_state *caller,
9230 				   struct bpf_func_state *callee,
9231 				   int insn_idx);
9232 
9233 static int set_callee_state(struct bpf_verifier_env *env,
9234 			    struct bpf_func_state *caller,
9235 			    struct bpf_func_state *callee, int insn_idx);
9236 
9237 static int setup_func_entry(struct bpf_verifier_env *env, int subprog, int callsite,
9238 			    set_callee_state_fn set_callee_state_cb,
9239 			    struct bpf_verifier_state *state)
9240 {
9241 	struct bpf_func_state *caller, *callee;
9242 	int err;
9243 
9244 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
9245 		verbose(env, "the call stack of %d frames is too deep\n",
9246 			state->curframe + 2);
9247 		return -E2BIG;
9248 	}
9249 
9250 	if (state->frame[state->curframe + 1]) {
9251 		verbose(env, "verifier bug. Frame %d already allocated\n",
9252 			state->curframe + 1);
9253 		return -EFAULT;
9254 	}
9255 
9256 	caller = state->frame[state->curframe];
9257 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
9258 	if (!callee)
9259 		return -ENOMEM;
9260 	state->frame[state->curframe + 1] = callee;
9261 
9262 	/* callee cannot access r0, r6 - r9 for reading and has to write
9263 	 * into its own stack before reading from it.
9264 	 * callee can read/write into caller's stack
9265 	 */
9266 	init_func_state(env, callee,
9267 			/* remember the callsite, it will be used by bpf_exit */
9268 			callsite,
9269 			state->curframe + 1 /* frameno within this callchain */,
9270 			subprog /* subprog number within this prog */);
9271 	/* Transfer references to the callee */
9272 	err = copy_reference_state(callee, caller);
9273 	err = err ?: set_callee_state_cb(env, caller, callee, callsite);
9274 	if (err)
9275 		goto err_out;
9276 
9277 	/* only increment it after check_reg_arg() finished */
9278 	state->curframe++;
9279 
9280 	return 0;
9281 
9282 err_out:
9283 	free_func_state(callee);
9284 	state->frame[state->curframe + 1] = NULL;
9285 	return err;
9286 }
9287 
9288 static int btf_check_func_arg_match(struct bpf_verifier_env *env, int subprog,
9289 				    const struct btf *btf,
9290 				    struct bpf_reg_state *regs)
9291 {
9292 	struct bpf_subprog_info *sub = subprog_info(env, subprog);
9293 	struct bpf_verifier_log *log = &env->log;
9294 	u32 i;
9295 	int ret;
9296 
9297 	ret = btf_prepare_func_args(env, subprog);
9298 	if (ret)
9299 		return ret;
9300 
9301 	/* check that BTF function arguments match actual types that the
9302 	 * verifier sees.
9303 	 */
9304 	for (i = 0; i < sub->arg_cnt; i++) {
9305 		u32 regno = i + 1;
9306 		struct bpf_reg_state *reg = &regs[regno];
9307 		struct bpf_subprog_arg_info *arg = &sub->args[i];
9308 
9309 		if (arg->arg_type == ARG_ANYTHING) {
9310 			if (reg->type != SCALAR_VALUE) {
9311 				bpf_log(log, "R%d is not a scalar\n", regno);
9312 				return -EINVAL;
9313 			}
9314 		} else if (arg->arg_type == ARG_PTR_TO_CTX) {
9315 			ret = check_func_arg_reg_off(env, reg, regno, ARG_DONTCARE);
9316 			if (ret < 0)
9317 				return ret;
9318 			/* If function expects ctx type in BTF check that caller
9319 			 * is passing PTR_TO_CTX.
9320 			 */
9321 			if (reg->type != PTR_TO_CTX) {
9322 				bpf_log(log, "arg#%d expects pointer to ctx\n", i);
9323 				return -EINVAL;
9324 			}
9325 		} else if (base_type(arg->arg_type) == ARG_PTR_TO_MEM) {
9326 			ret = check_func_arg_reg_off(env, reg, regno, ARG_DONTCARE);
9327 			if (ret < 0)
9328 				return ret;
9329 			if (check_mem_reg(env, reg, regno, arg->mem_size))
9330 				return -EINVAL;
9331 			if (!(arg->arg_type & PTR_MAYBE_NULL) && (reg->type & PTR_MAYBE_NULL)) {
9332 				bpf_log(log, "arg#%d is expected to be non-NULL\n", i);
9333 				return -EINVAL;
9334 			}
9335 		} else if (arg->arg_type == (ARG_PTR_TO_DYNPTR | MEM_RDONLY)) {
9336 			ret = process_dynptr_func(env, regno, -1, arg->arg_type, 0);
9337 			if (ret)
9338 				return ret;
9339 		} else {
9340 			bpf_log(log, "verifier bug: unrecognized arg#%d type %d\n",
9341 				i, arg->arg_type);
9342 			return -EFAULT;
9343 		}
9344 	}
9345 
9346 	return 0;
9347 }
9348 
9349 /* Compare BTF of a function call with given bpf_reg_state.
9350  * Returns:
9351  * EFAULT - there is a verifier bug. Abort verification.
9352  * EINVAL - there is a type mismatch or BTF is not available.
9353  * 0 - BTF matches with what bpf_reg_state expects.
9354  * Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
9355  */
9356 static int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog,
9357 				  struct bpf_reg_state *regs)
9358 {
9359 	struct bpf_prog *prog = env->prog;
9360 	struct btf *btf = prog->aux->btf;
9361 	u32 btf_id;
9362 	int err;
9363 
9364 	if (!prog->aux->func_info)
9365 		return -EINVAL;
9366 
9367 	btf_id = prog->aux->func_info[subprog].type_id;
9368 	if (!btf_id)
9369 		return -EFAULT;
9370 
9371 	if (prog->aux->func_info_aux[subprog].unreliable)
9372 		return -EINVAL;
9373 
9374 	err = btf_check_func_arg_match(env, subprog, btf, regs);
9375 	/* Compiler optimizations can remove arguments from static functions
9376 	 * or mismatched type can be passed into a global function.
9377 	 * In such cases mark the function as unreliable from BTF point of view.
9378 	 */
9379 	if (err)
9380 		prog->aux->func_info_aux[subprog].unreliable = true;
9381 	return err;
9382 }
9383 
9384 static int push_callback_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
9385 			      int insn_idx, int subprog,
9386 			      set_callee_state_fn set_callee_state_cb)
9387 {
9388 	struct bpf_verifier_state *state = env->cur_state, *callback_state;
9389 	struct bpf_func_state *caller, *callee;
9390 	int err;
9391 
9392 	caller = state->frame[state->curframe];
9393 	err = btf_check_subprog_call(env, subprog, caller->regs);
9394 	if (err == -EFAULT)
9395 		return err;
9396 
9397 	/* set_callee_state is used for direct subprog calls, but we are
9398 	 * interested in validating only BPF helpers that can call subprogs as
9399 	 * callbacks
9400 	 */
9401 	env->subprog_info[subprog].is_cb = true;
9402 	if (bpf_pseudo_kfunc_call(insn) &&
9403 	    !is_sync_callback_calling_kfunc(insn->imm)) {
9404 		verbose(env, "verifier bug: kfunc %s#%d not marked as callback-calling\n",
9405 			func_id_name(insn->imm), insn->imm);
9406 		return -EFAULT;
9407 	} else if (!bpf_pseudo_kfunc_call(insn) &&
9408 		   !is_callback_calling_function(insn->imm)) { /* helper */
9409 		verbose(env, "verifier bug: helper %s#%d not marked as callback-calling\n",
9410 			func_id_name(insn->imm), insn->imm);
9411 		return -EFAULT;
9412 	}
9413 
9414 	if (insn->code == (BPF_JMP | BPF_CALL) &&
9415 	    insn->src_reg == 0 &&
9416 	    insn->imm == BPF_FUNC_timer_set_callback) {
9417 		struct bpf_verifier_state *async_cb;
9418 
9419 		/* there is no real recursion here. timer callbacks are async */
9420 		env->subprog_info[subprog].is_async_cb = true;
9421 		async_cb = push_async_cb(env, env->subprog_info[subprog].start,
9422 					 insn_idx, subprog);
9423 		if (!async_cb)
9424 			return -EFAULT;
9425 		callee = async_cb->frame[0];
9426 		callee->async_entry_cnt = caller->async_entry_cnt + 1;
9427 
9428 		/* Convert bpf_timer_set_callback() args into timer callback args */
9429 		err = set_callee_state_cb(env, caller, callee, insn_idx);
9430 		if (err)
9431 			return err;
9432 
9433 		return 0;
9434 	}
9435 
9436 	/* for callback functions enqueue entry to callback and
9437 	 * proceed with next instruction within current frame.
9438 	 */
9439 	callback_state = push_stack(env, env->subprog_info[subprog].start, insn_idx, false);
9440 	if (!callback_state)
9441 		return -ENOMEM;
9442 
9443 	err = setup_func_entry(env, subprog, insn_idx, set_callee_state_cb,
9444 			       callback_state);
9445 	if (err)
9446 		return err;
9447 
9448 	callback_state->callback_unroll_depth++;
9449 	callback_state->frame[callback_state->curframe - 1]->callback_depth++;
9450 	caller->callback_depth = 0;
9451 	return 0;
9452 }
9453 
9454 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
9455 			   int *insn_idx)
9456 {
9457 	struct bpf_verifier_state *state = env->cur_state;
9458 	struct bpf_func_state *caller;
9459 	int err, subprog, target_insn;
9460 
9461 	target_insn = *insn_idx + insn->imm + 1;
9462 	subprog = find_subprog(env, target_insn);
9463 	if (subprog < 0) {
9464 		verbose(env, "verifier bug. No program starts at insn %d\n", target_insn);
9465 		return -EFAULT;
9466 	}
9467 
9468 	caller = state->frame[state->curframe];
9469 	err = btf_check_subprog_call(env, subprog, caller->regs);
9470 	if (err == -EFAULT)
9471 		return err;
9472 	if (subprog_is_global(env, subprog)) {
9473 		const char *sub_name = subprog_name(env, subprog);
9474 
9475 		if (err) {
9476 			verbose(env, "Caller passes invalid args into func#%d ('%s')\n",
9477 				subprog, sub_name);
9478 			return err;
9479 		}
9480 
9481 		verbose(env, "Func#%d ('%s') is global and assumed valid.\n",
9482 			subprog, sub_name);
9483 		/* mark global subprog for verifying after main prog */
9484 		subprog_aux(env, subprog)->called = true;
9485 		clear_caller_saved_regs(env, caller->regs);
9486 
9487 		/* All global functions return a 64-bit SCALAR_VALUE */
9488 		mark_reg_unknown(env, caller->regs, BPF_REG_0);
9489 		caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
9490 
9491 		/* continue with next insn after call */
9492 		return 0;
9493 	}
9494 
9495 	/* for regular function entry setup new frame and continue
9496 	 * from that frame.
9497 	 */
9498 	err = setup_func_entry(env, subprog, *insn_idx, set_callee_state, state);
9499 	if (err)
9500 		return err;
9501 
9502 	clear_caller_saved_regs(env, caller->regs);
9503 
9504 	/* and go analyze first insn of the callee */
9505 	*insn_idx = env->subprog_info[subprog].start - 1;
9506 
9507 	if (env->log.level & BPF_LOG_LEVEL) {
9508 		verbose(env, "caller:\n");
9509 		print_verifier_state(env, caller, true);
9510 		verbose(env, "callee:\n");
9511 		print_verifier_state(env, state->frame[state->curframe], true);
9512 	}
9513 
9514 	return 0;
9515 }
9516 
9517 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
9518 				   struct bpf_func_state *caller,
9519 				   struct bpf_func_state *callee)
9520 {
9521 	/* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
9522 	 *      void *callback_ctx, u64 flags);
9523 	 * callback_fn(struct bpf_map *map, void *key, void *value,
9524 	 *      void *callback_ctx);
9525 	 */
9526 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
9527 
9528 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
9529 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9530 	callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
9531 
9532 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
9533 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
9534 	callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
9535 
9536 	/* pointer to stack or null */
9537 	callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
9538 
9539 	/* unused */
9540 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9541 	return 0;
9542 }
9543 
9544 static int set_callee_state(struct bpf_verifier_env *env,
9545 			    struct bpf_func_state *caller,
9546 			    struct bpf_func_state *callee, int insn_idx)
9547 {
9548 	int i;
9549 
9550 	/* copy r1 - r5 args that callee can access.  The copy includes parent
9551 	 * pointers, which connects us up to the liveness chain
9552 	 */
9553 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
9554 		callee->regs[i] = caller->regs[i];
9555 	return 0;
9556 }
9557 
9558 static int set_map_elem_callback_state(struct bpf_verifier_env *env,
9559 				       struct bpf_func_state *caller,
9560 				       struct bpf_func_state *callee,
9561 				       int insn_idx)
9562 {
9563 	struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
9564 	struct bpf_map *map;
9565 	int err;
9566 
9567 	if (bpf_map_ptr_poisoned(insn_aux)) {
9568 		verbose(env, "tail_call abusing map_ptr\n");
9569 		return -EINVAL;
9570 	}
9571 
9572 	map = BPF_MAP_PTR(insn_aux->map_ptr_state);
9573 	if (!map->ops->map_set_for_each_callback_args ||
9574 	    !map->ops->map_for_each_callback) {
9575 		verbose(env, "callback function not allowed for map\n");
9576 		return -ENOTSUPP;
9577 	}
9578 
9579 	err = map->ops->map_set_for_each_callback_args(env, caller, callee);
9580 	if (err)
9581 		return err;
9582 
9583 	callee->in_callback_fn = true;
9584 	callee->callback_ret_range = retval_range(0, 1);
9585 	return 0;
9586 }
9587 
9588 static int set_loop_callback_state(struct bpf_verifier_env *env,
9589 				   struct bpf_func_state *caller,
9590 				   struct bpf_func_state *callee,
9591 				   int insn_idx)
9592 {
9593 	/* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx,
9594 	 *	    u64 flags);
9595 	 * callback_fn(u32 index, void *callback_ctx);
9596 	 */
9597 	callee->regs[BPF_REG_1].type = SCALAR_VALUE;
9598 	callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
9599 
9600 	/* unused */
9601 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9602 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9603 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9604 
9605 	callee->in_callback_fn = true;
9606 	callee->callback_ret_range = retval_range(0, 1);
9607 	return 0;
9608 }
9609 
9610 static int set_timer_callback_state(struct bpf_verifier_env *env,
9611 				    struct bpf_func_state *caller,
9612 				    struct bpf_func_state *callee,
9613 				    int insn_idx)
9614 {
9615 	struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr;
9616 
9617 	/* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
9618 	 * callback_fn(struct bpf_map *map, void *key, void *value);
9619 	 */
9620 	callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP;
9621 	__mark_reg_known_zero(&callee->regs[BPF_REG_1]);
9622 	callee->regs[BPF_REG_1].map_ptr = map_ptr;
9623 
9624 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
9625 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9626 	callee->regs[BPF_REG_2].map_ptr = map_ptr;
9627 
9628 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
9629 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
9630 	callee->regs[BPF_REG_3].map_ptr = map_ptr;
9631 
9632 	/* unused */
9633 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9634 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9635 	callee->in_async_callback_fn = true;
9636 	callee->callback_ret_range = retval_range(0, 1);
9637 	return 0;
9638 }
9639 
9640 static int set_find_vma_callback_state(struct bpf_verifier_env *env,
9641 				       struct bpf_func_state *caller,
9642 				       struct bpf_func_state *callee,
9643 				       int insn_idx)
9644 {
9645 	/* bpf_find_vma(struct task_struct *task, u64 addr,
9646 	 *               void *callback_fn, void *callback_ctx, u64 flags)
9647 	 * (callback_fn)(struct task_struct *task,
9648 	 *               struct vm_area_struct *vma, void *callback_ctx);
9649 	 */
9650 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
9651 
9652 	callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID;
9653 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9654 	callee->regs[BPF_REG_2].btf =  btf_vmlinux;
9655 	callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA];
9656 
9657 	/* pointer to stack or null */
9658 	callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4];
9659 
9660 	/* unused */
9661 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9662 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9663 	callee->in_callback_fn = true;
9664 	callee->callback_ret_range = retval_range(0, 1);
9665 	return 0;
9666 }
9667 
9668 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env,
9669 					   struct bpf_func_state *caller,
9670 					   struct bpf_func_state *callee,
9671 					   int insn_idx)
9672 {
9673 	/* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void
9674 	 *			  callback_ctx, u64 flags);
9675 	 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx);
9676 	 */
9677 	__mark_reg_not_init(env, &callee->regs[BPF_REG_0]);
9678 	mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL);
9679 	callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
9680 
9681 	/* unused */
9682 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9683 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9684 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9685 
9686 	callee->in_callback_fn = true;
9687 	callee->callback_ret_range = retval_range(0, 1);
9688 	return 0;
9689 }
9690 
9691 static int set_rbtree_add_callback_state(struct bpf_verifier_env *env,
9692 					 struct bpf_func_state *caller,
9693 					 struct bpf_func_state *callee,
9694 					 int insn_idx)
9695 {
9696 	/* void bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node,
9697 	 *                     bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b));
9698 	 *
9699 	 * 'struct bpf_rb_node *node' arg to bpf_rbtree_add_impl is the same PTR_TO_BTF_ID w/ offset
9700 	 * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd
9701 	 * by this point, so look at 'root'
9702 	 */
9703 	struct btf_field *field;
9704 
9705 	field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off,
9706 				      BPF_RB_ROOT);
9707 	if (!field || !field->graph_root.value_btf_id)
9708 		return -EFAULT;
9709 
9710 	mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root);
9711 	ref_set_non_owning(env, &callee->regs[BPF_REG_1]);
9712 	mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root);
9713 	ref_set_non_owning(env, &callee->regs[BPF_REG_2]);
9714 
9715 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9716 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9717 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9718 	callee->in_callback_fn = true;
9719 	callee->callback_ret_range = retval_range(0, 1);
9720 	return 0;
9721 }
9722 
9723 static bool is_rbtree_lock_required_kfunc(u32 btf_id);
9724 
9725 /* Are we currently verifying the callback for a rbtree helper that must
9726  * be called with lock held? If so, no need to complain about unreleased
9727  * lock
9728  */
9729 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env)
9730 {
9731 	struct bpf_verifier_state *state = env->cur_state;
9732 	struct bpf_insn *insn = env->prog->insnsi;
9733 	struct bpf_func_state *callee;
9734 	int kfunc_btf_id;
9735 
9736 	if (!state->curframe)
9737 		return false;
9738 
9739 	callee = state->frame[state->curframe];
9740 
9741 	if (!callee->in_callback_fn)
9742 		return false;
9743 
9744 	kfunc_btf_id = insn[callee->callsite].imm;
9745 	return is_rbtree_lock_required_kfunc(kfunc_btf_id);
9746 }
9747 
9748 static bool retval_range_within(struct bpf_retval_range range, const struct bpf_reg_state *reg)
9749 {
9750 	return range.minval <= reg->smin_value && reg->smax_value <= range.maxval;
9751 }
9752 
9753 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
9754 {
9755 	struct bpf_verifier_state *state = env->cur_state, *prev_st;
9756 	struct bpf_func_state *caller, *callee;
9757 	struct bpf_reg_state *r0;
9758 	bool in_callback_fn;
9759 	int err;
9760 
9761 	callee = state->frame[state->curframe];
9762 	r0 = &callee->regs[BPF_REG_0];
9763 	if (r0->type == PTR_TO_STACK) {
9764 		/* technically it's ok to return caller's stack pointer
9765 		 * (or caller's caller's pointer) back to the caller,
9766 		 * since these pointers are valid. Only current stack
9767 		 * pointer will be invalid as soon as function exits,
9768 		 * but let's be conservative
9769 		 */
9770 		verbose(env, "cannot return stack pointer to the caller\n");
9771 		return -EINVAL;
9772 	}
9773 
9774 	caller = state->frame[state->curframe - 1];
9775 	if (callee->in_callback_fn) {
9776 		if (r0->type != SCALAR_VALUE) {
9777 			verbose(env, "R0 not a scalar value\n");
9778 			return -EACCES;
9779 		}
9780 
9781 		/* we are going to rely on register's precise value */
9782 		err = mark_reg_read(env, r0, r0->parent, REG_LIVE_READ64);
9783 		err = err ?: mark_chain_precision(env, BPF_REG_0);
9784 		if (err)
9785 			return err;
9786 
9787 		/* enforce R0 return value range */
9788 		if (!retval_range_within(callee->callback_ret_range, r0)) {
9789 			verbose_invalid_scalar(env, r0, callee->callback_ret_range,
9790 					       "At callback return", "R0");
9791 			return -EINVAL;
9792 		}
9793 		if (!calls_callback(env, callee->callsite)) {
9794 			verbose(env, "BUG: in callback at %d, callsite %d !calls_callback\n",
9795 				*insn_idx, callee->callsite);
9796 			return -EFAULT;
9797 		}
9798 	} else {
9799 		/* return to the caller whatever r0 had in the callee */
9800 		caller->regs[BPF_REG_0] = *r0;
9801 	}
9802 
9803 	/* callback_fn frame should have released its own additions to parent's
9804 	 * reference state at this point, or check_reference_leak would
9805 	 * complain, hence it must be the same as the caller. There is no need
9806 	 * to copy it back.
9807 	 */
9808 	if (!callee->in_callback_fn) {
9809 		/* Transfer references to the caller */
9810 		err = copy_reference_state(caller, callee);
9811 		if (err)
9812 			return err;
9813 	}
9814 
9815 	/* for callbacks like bpf_loop or bpf_for_each_map_elem go back to callsite,
9816 	 * there function call logic would reschedule callback visit. If iteration
9817 	 * converges is_state_visited() would prune that visit eventually.
9818 	 */
9819 	in_callback_fn = callee->in_callback_fn;
9820 	if (in_callback_fn)
9821 		*insn_idx = callee->callsite;
9822 	else
9823 		*insn_idx = callee->callsite + 1;
9824 
9825 	if (env->log.level & BPF_LOG_LEVEL) {
9826 		verbose(env, "returning from callee:\n");
9827 		print_verifier_state(env, callee, true);
9828 		verbose(env, "to caller at %d:\n", *insn_idx);
9829 		print_verifier_state(env, caller, true);
9830 	}
9831 	/* clear everything in the callee. In case of exceptional exits using
9832 	 * bpf_throw, this will be done by copy_verifier_state for extra frames. */
9833 	free_func_state(callee);
9834 	state->frame[state->curframe--] = NULL;
9835 
9836 	/* for callbacks widen imprecise scalars to make programs like below verify:
9837 	 *
9838 	 *   struct ctx { int i; }
9839 	 *   void cb(int idx, struct ctx *ctx) { ctx->i++; ... }
9840 	 *   ...
9841 	 *   struct ctx = { .i = 0; }
9842 	 *   bpf_loop(100, cb, &ctx, 0);
9843 	 *
9844 	 * This is similar to what is done in process_iter_next_call() for open
9845 	 * coded iterators.
9846 	 */
9847 	prev_st = in_callback_fn ? find_prev_entry(env, state, *insn_idx) : NULL;
9848 	if (prev_st) {
9849 		err = widen_imprecise_scalars(env, prev_st, state);
9850 		if (err)
9851 			return err;
9852 	}
9853 	return 0;
9854 }
9855 
9856 static int do_refine_retval_range(struct bpf_verifier_env *env,
9857 				  struct bpf_reg_state *regs, int ret_type,
9858 				  int func_id,
9859 				  struct bpf_call_arg_meta *meta)
9860 {
9861 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
9862 
9863 	if (ret_type != RET_INTEGER)
9864 		return 0;
9865 
9866 	switch (func_id) {
9867 	case BPF_FUNC_get_stack:
9868 	case BPF_FUNC_get_task_stack:
9869 	case BPF_FUNC_probe_read_str:
9870 	case BPF_FUNC_probe_read_kernel_str:
9871 	case BPF_FUNC_probe_read_user_str:
9872 		ret_reg->smax_value = meta->msize_max_value;
9873 		ret_reg->s32_max_value = meta->msize_max_value;
9874 		ret_reg->smin_value = -MAX_ERRNO;
9875 		ret_reg->s32_min_value = -MAX_ERRNO;
9876 		reg_bounds_sync(ret_reg);
9877 		break;
9878 	case BPF_FUNC_get_smp_processor_id:
9879 		ret_reg->umax_value = nr_cpu_ids - 1;
9880 		ret_reg->u32_max_value = nr_cpu_ids - 1;
9881 		ret_reg->smax_value = nr_cpu_ids - 1;
9882 		ret_reg->s32_max_value = nr_cpu_ids - 1;
9883 		ret_reg->umin_value = 0;
9884 		ret_reg->u32_min_value = 0;
9885 		ret_reg->smin_value = 0;
9886 		ret_reg->s32_min_value = 0;
9887 		reg_bounds_sync(ret_reg);
9888 		break;
9889 	}
9890 
9891 	return reg_bounds_sanity_check(env, ret_reg, "retval");
9892 }
9893 
9894 static int
9895 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
9896 		int func_id, int insn_idx)
9897 {
9898 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
9899 	struct bpf_map *map = meta->map_ptr;
9900 
9901 	if (func_id != BPF_FUNC_tail_call &&
9902 	    func_id != BPF_FUNC_map_lookup_elem &&
9903 	    func_id != BPF_FUNC_map_update_elem &&
9904 	    func_id != BPF_FUNC_map_delete_elem &&
9905 	    func_id != BPF_FUNC_map_push_elem &&
9906 	    func_id != BPF_FUNC_map_pop_elem &&
9907 	    func_id != BPF_FUNC_map_peek_elem &&
9908 	    func_id != BPF_FUNC_for_each_map_elem &&
9909 	    func_id != BPF_FUNC_redirect_map &&
9910 	    func_id != BPF_FUNC_map_lookup_percpu_elem)
9911 		return 0;
9912 
9913 	if (map == NULL) {
9914 		verbose(env, "kernel subsystem misconfigured verifier\n");
9915 		return -EINVAL;
9916 	}
9917 
9918 	/* In case of read-only, some additional restrictions
9919 	 * need to be applied in order to prevent altering the
9920 	 * state of the map from program side.
9921 	 */
9922 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
9923 	    (func_id == BPF_FUNC_map_delete_elem ||
9924 	     func_id == BPF_FUNC_map_update_elem ||
9925 	     func_id == BPF_FUNC_map_push_elem ||
9926 	     func_id == BPF_FUNC_map_pop_elem)) {
9927 		verbose(env, "write into map forbidden\n");
9928 		return -EACCES;
9929 	}
9930 
9931 	if (!BPF_MAP_PTR(aux->map_ptr_state))
9932 		bpf_map_ptr_store(aux, meta->map_ptr,
9933 				  !meta->map_ptr->bypass_spec_v1);
9934 	else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
9935 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
9936 				  !meta->map_ptr->bypass_spec_v1);
9937 	return 0;
9938 }
9939 
9940 static int
9941 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
9942 		int func_id, int insn_idx)
9943 {
9944 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
9945 	struct bpf_reg_state *regs = cur_regs(env), *reg;
9946 	struct bpf_map *map = meta->map_ptr;
9947 	u64 val, max;
9948 	int err;
9949 
9950 	if (func_id != BPF_FUNC_tail_call)
9951 		return 0;
9952 	if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
9953 		verbose(env, "kernel subsystem misconfigured verifier\n");
9954 		return -EINVAL;
9955 	}
9956 
9957 	reg = &regs[BPF_REG_3];
9958 	val = reg->var_off.value;
9959 	max = map->max_entries;
9960 
9961 	if (!(is_reg_const(reg, false) && val < max)) {
9962 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
9963 		return 0;
9964 	}
9965 
9966 	err = mark_chain_precision(env, BPF_REG_3);
9967 	if (err)
9968 		return err;
9969 	if (bpf_map_key_unseen(aux))
9970 		bpf_map_key_store(aux, val);
9971 	else if (!bpf_map_key_poisoned(aux) &&
9972 		  bpf_map_key_immediate(aux) != val)
9973 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
9974 	return 0;
9975 }
9976 
9977 static int check_reference_leak(struct bpf_verifier_env *env, bool exception_exit)
9978 {
9979 	struct bpf_func_state *state = cur_func(env);
9980 	bool refs_lingering = false;
9981 	int i;
9982 
9983 	if (!exception_exit && state->frameno && !state->in_callback_fn)
9984 		return 0;
9985 
9986 	for (i = 0; i < state->acquired_refs; i++) {
9987 		if (!exception_exit && state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
9988 			continue;
9989 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
9990 			state->refs[i].id, state->refs[i].insn_idx);
9991 		refs_lingering = true;
9992 	}
9993 	return refs_lingering ? -EINVAL : 0;
9994 }
9995 
9996 static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
9997 				   struct bpf_reg_state *regs)
9998 {
9999 	struct bpf_reg_state *fmt_reg = &regs[BPF_REG_3];
10000 	struct bpf_reg_state *data_len_reg = &regs[BPF_REG_5];
10001 	struct bpf_map *fmt_map = fmt_reg->map_ptr;
10002 	struct bpf_bprintf_data data = {};
10003 	int err, fmt_map_off, num_args;
10004 	u64 fmt_addr;
10005 	char *fmt;
10006 
10007 	/* data must be an array of u64 */
10008 	if (data_len_reg->var_off.value % 8)
10009 		return -EINVAL;
10010 	num_args = data_len_reg->var_off.value / 8;
10011 
10012 	/* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
10013 	 * and map_direct_value_addr is set.
10014 	 */
10015 	fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
10016 	err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
10017 						  fmt_map_off);
10018 	if (err) {
10019 		verbose(env, "verifier bug\n");
10020 		return -EFAULT;
10021 	}
10022 	fmt = (char *)(long)fmt_addr + fmt_map_off;
10023 
10024 	/* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
10025 	 * can focus on validating the format specifiers.
10026 	 */
10027 	err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data);
10028 	if (err < 0)
10029 		verbose(env, "Invalid format string\n");
10030 
10031 	return err;
10032 }
10033 
10034 static int check_get_func_ip(struct bpf_verifier_env *env)
10035 {
10036 	enum bpf_prog_type type = resolve_prog_type(env->prog);
10037 	int func_id = BPF_FUNC_get_func_ip;
10038 
10039 	if (type == BPF_PROG_TYPE_TRACING) {
10040 		if (!bpf_prog_has_trampoline(env->prog)) {
10041 			verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n",
10042 				func_id_name(func_id), func_id);
10043 			return -ENOTSUPP;
10044 		}
10045 		return 0;
10046 	} else if (type == BPF_PROG_TYPE_KPROBE) {
10047 		return 0;
10048 	}
10049 
10050 	verbose(env, "func %s#%d not supported for program type %d\n",
10051 		func_id_name(func_id), func_id, type);
10052 	return -ENOTSUPP;
10053 }
10054 
10055 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
10056 {
10057 	return &env->insn_aux_data[env->insn_idx];
10058 }
10059 
10060 static bool loop_flag_is_zero(struct bpf_verifier_env *env)
10061 {
10062 	struct bpf_reg_state *regs = cur_regs(env);
10063 	struct bpf_reg_state *reg = &regs[BPF_REG_4];
10064 	bool reg_is_null = register_is_null(reg);
10065 
10066 	if (reg_is_null)
10067 		mark_chain_precision(env, BPF_REG_4);
10068 
10069 	return reg_is_null;
10070 }
10071 
10072 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno)
10073 {
10074 	struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state;
10075 
10076 	if (!state->initialized) {
10077 		state->initialized = 1;
10078 		state->fit_for_inline = loop_flag_is_zero(env);
10079 		state->callback_subprogno = subprogno;
10080 		return;
10081 	}
10082 
10083 	if (!state->fit_for_inline)
10084 		return;
10085 
10086 	state->fit_for_inline = (loop_flag_is_zero(env) &&
10087 				 state->callback_subprogno == subprogno);
10088 }
10089 
10090 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
10091 			     int *insn_idx_p)
10092 {
10093 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
10094 	bool returns_cpu_specific_alloc_ptr = false;
10095 	const struct bpf_func_proto *fn = NULL;
10096 	enum bpf_return_type ret_type;
10097 	enum bpf_type_flag ret_flag;
10098 	struct bpf_reg_state *regs;
10099 	struct bpf_call_arg_meta meta;
10100 	int insn_idx = *insn_idx_p;
10101 	bool changes_data;
10102 	int i, err, func_id;
10103 
10104 	/* find function prototype */
10105 	func_id = insn->imm;
10106 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
10107 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
10108 			func_id);
10109 		return -EINVAL;
10110 	}
10111 
10112 	if (env->ops->get_func_proto)
10113 		fn = env->ops->get_func_proto(func_id, env->prog);
10114 	if (!fn) {
10115 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
10116 			func_id);
10117 		return -EINVAL;
10118 	}
10119 
10120 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
10121 	if (!env->prog->gpl_compatible && fn->gpl_only) {
10122 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
10123 		return -EINVAL;
10124 	}
10125 
10126 	if (fn->allowed && !fn->allowed(env->prog)) {
10127 		verbose(env, "helper call is not allowed in probe\n");
10128 		return -EINVAL;
10129 	}
10130 
10131 	if (!env->prog->aux->sleepable && fn->might_sleep) {
10132 		verbose(env, "helper call might sleep in a non-sleepable prog\n");
10133 		return -EINVAL;
10134 	}
10135 
10136 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
10137 	changes_data = bpf_helper_changes_pkt_data(fn->func);
10138 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
10139 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
10140 			func_id_name(func_id), func_id);
10141 		return -EINVAL;
10142 	}
10143 
10144 	memset(&meta, 0, sizeof(meta));
10145 	meta.pkt_access = fn->pkt_access;
10146 
10147 	err = check_func_proto(fn, func_id);
10148 	if (err) {
10149 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
10150 			func_id_name(func_id), func_id);
10151 		return err;
10152 	}
10153 
10154 	if (env->cur_state->active_rcu_lock) {
10155 		if (fn->might_sleep) {
10156 			verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n",
10157 				func_id_name(func_id), func_id);
10158 			return -EINVAL;
10159 		}
10160 
10161 		if (env->prog->aux->sleepable && is_storage_get_function(func_id))
10162 			env->insn_aux_data[insn_idx].storage_get_func_atomic = true;
10163 	}
10164 
10165 	meta.func_id = func_id;
10166 	/* check args */
10167 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
10168 		err = check_func_arg(env, i, &meta, fn, insn_idx);
10169 		if (err)
10170 			return err;
10171 	}
10172 
10173 	err = record_func_map(env, &meta, func_id, insn_idx);
10174 	if (err)
10175 		return err;
10176 
10177 	err = record_func_key(env, &meta, func_id, insn_idx);
10178 	if (err)
10179 		return err;
10180 
10181 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
10182 	 * is inferred from register state.
10183 	 */
10184 	for (i = 0; i < meta.access_size; i++) {
10185 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
10186 				       BPF_WRITE, -1, false, false);
10187 		if (err)
10188 			return err;
10189 	}
10190 
10191 	regs = cur_regs(env);
10192 
10193 	if (meta.release_regno) {
10194 		err = -EINVAL;
10195 		/* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot
10196 		 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr
10197 		 * is safe to do directly.
10198 		 */
10199 		if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) {
10200 			if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) {
10201 				verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n");
10202 				return -EFAULT;
10203 			}
10204 			err = unmark_stack_slots_dynptr(env, &regs[meta.release_regno]);
10205 		} else if (func_id == BPF_FUNC_kptr_xchg && meta.ref_obj_id) {
10206 			u32 ref_obj_id = meta.ref_obj_id;
10207 			bool in_rcu = in_rcu_cs(env);
10208 			struct bpf_func_state *state;
10209 			struct bpf_reg_state *reg;
10210 
10211 			err = release_reference_state(cur_func(env), ref_obj_id);
10212 			if (!err) {
10213 				bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
10214 					if (reg->ref_obj_id == ref_obj_id) {
10215 						if (in_rcu && (reg->type & MEM_ALLOC) && (reg->type & MEM_PERCPU)) {
10216 							reg->ref_obj_id = 0;
10217 							reg->type &= ~MEM_ALLOC;
10218 							reg->type |= MEM_RCU;
10219 						} else {
10220 							mark_reg_invalid(env, reg);
10221 						}
10222 					}
10223 				}));
10224 			}
10225 		} else if (meta.ref_obj_id) {
10226 			err = release_reference(env, meta.ref_obj_id);
10227 		} else if (register_is_null(&regs[meta.release_regno])) {
10228 			/* meta.ref_obj_id can only be 0 if register that is meant to be
10229 			 * released is NULL, which must be > R0.
10230 			 */
10231 			err = 0;
10232 		}
10233 		if (err) {
10234 			verbose(env, "func %s#%d reference has not been acquired before\n",
10235 				func_id_name(func_id), func_id);
10236 			return err;
10237 		}
10238 	}
10239 
10240 	switch (func_id) {
10241 	case BPF_FUNC_tail_call:
10242 		err = check_reference_leak(env, false);
10243 		if (err) {
10244 			verbose(env, "tail_call would lead to reference leak\n");
10245 			return err;
10246 		}
10247 		break;
10248 	case BPF_FUNC_get_local_storage:
10249 		/* check that flags argument in get_local_storage(map, flags) is 0,
10250 		 * this is required because get_local_storage() can't return an error.
10251 		 */
10252 		if (!register_is_null(&regs[BPF_REG_2])) {
10253 			verbose(env, "get_local_storage() doesn't support non-zero flags\n");
10254 			return -EINVAL;
10255 		}
10256 		break;
10257 	case BPF_FUNC_for_each_map_elem:
10258 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10259 					 set_map_elem_callback_state);
10260 		break;
10261 	case BPF_FUNC_timer_set_callback:
10262 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10263 					 set_timer_callback_state);
10264 		break;
10265 	case BPF_FUNC_find_vma:
10266 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10267 					 set_find_vma_callback_state);
10268 		break;
10269 	case BPF_FUNC_snprintf:
10270 		err = check_bpf_snprintf_call(env, regs);
10271 		break;
10272 	case BPF_FUNC_loop:
10273 		update_loop_inline_state(env, meta.subprogno);
10274 		/* Verifier relies on R1 value to determine if bpf_loop() iteration
10275 		 * is finished, thus mark it precise.
10276 		 */
10277 		err = mark_chain_precision(env, BPF_REG_1);
10278 		if (err)
10279 			return err;
10280 		if (cur_func(env)->callback_depth < regs[BPF_REG_1].umax_value) {
10281 			err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10282 						 set_loop_callback_state);
10283 		} else {
10284 			cur_func(env)->callback_depth = 0;
10285 			if (env->log.level & BPF_LOG_LEVEL2)
10286 				verbose(env, "frame%d bpf_loop iteration limit reached\n",
10287 					env->cur_state->curframe);
10288 		}
10289 		break;
10290 	case BPF_FUNC_dynptr_from_mem:
10291 		if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) {
10292 			verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n",
10293 				reg_type_str(env, regs[BPF_REG_1].type));
10294 			return -EACCES;
10295 		}
10296 		break;
10297 	case BPF_FUNC_set_retval:
10298 		if (prog_type == BPF_PROG_TYPE_LSM &&
10299 		    env->prog->expected_attach_type == BPF_LSM_CGROUP) {
10300 			if (!env->prog->aux->attach_func_proto->type) {
10301 				/* Make sure programs that attach to void
10302 				 * hooks don't try to modify return value.
10303 				 */
10304 				verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
10305 				return -EINVAL;
10306 			}
10307 		}
10308 		break;
10309 	case BPF_FUNC_dynptr_data:
10310 	{
10311 		struct bpf_reg_state *reg;
10312 		int id, ref_obj_id;
10313 
10314 		reg = get_dynptr_arg_reg(env, fn, regs);
10315 		if (!reg)
10316 			return -EFAULT;
10317 
10318 
10319 		if (meta.dynptr_id) {
10320 			verbose(env, "verifier internal error: meta.dynptr_id already set\n");
10321 			return -EFAULT;
10322 		}
10323 		if (meta.ref_obj_id) {
10324 			verbose(env, "verifier internal error: meta.ref_obj_id already set\n");
10325 			return -EFAULT;
10326 		}
10327 
10328 		id = dynptr_id(env, reg);
10329 		if (id < 0) {
10330 			verbose(env, "verifier internal error: failed to obtain dynptr id\n");
10331 			return id;
10332 		}
10333 
10334 		ref_obj_id = dynptr_ref_obj_id(env, reg);
10335 		if (ref_obj_id < 0) {
10336 			verbose(env, "verifier internal error: failed to obtain dynptr ref_obj_id\n");
10337 			return ref_obj_id;
10338 		}
10339 
10340 		meta.dynptr_id = id;
10341 		meta.ref_obj_id = ref_obj_id;
10342 
10343 		break;
10344 	}
10345 	case BPF_FUNC_dynptr_write:
10346 	{
10347 		enum bpf_dynptr_type dynptr_type;
10348 		struct bpf_reg_state *reg;
10349 
10350 		reg = get_dynptr_arg_reg(env, fn, regs);
10351 		if (!reg)
10352 			return -EFAULT;
10353 
10354 		dynptr_type = dynptr_get_type(env, reg);
10355 		if (dynptr_type == BPF_DYNPTR_TYPE_INVALID)
10356 			return -EFAULT;
10357 
10358 		if (dynptr_type == BPF_DYNPTR_TYPE_SKB)
10359 			/* this will trigger clear_all_pkt_pointers(), which will
10360 			 * invalidate all dynptr slices associated with the skb
10361 			 */
10362 			changes_data = true;
10363 
10364 		break;
10365 	}
10366 	case BPF_FUNC_per_cpu_ptr:
10367 	case BPF_FUNC_this_cpu_ptr:
10368 	{
10369 		struct bpf_reg_state *reg = &regs[BPF_REG_1];
10370 		const struct btf_type *type;
10371 
10372 		if (reg->type & MEM_RCU) {
10373 			type = btf_type_by_id(reg->btf, reg->btf_id);
10374 			if (!type || !btf_type_is_struct(type)) {
10375 				verbose(env, "Helper has invalid btf/btf_id in R1\n");
10376 				return -EFAULT;
10377 			}
10378 			returns_cpu_specific_alloc_ptr = true;
10379 			env->insn_aux_data[insn_idx].call_with_percpu_alloc_ptr = true;
10380 		}
10381 		break;
10382 	}
10383 	case BPF_FUNC_user_ringbuf_drain:
10384 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10385 					 set_user_ringbuf_callback_state);
10386 		break;
10387 	}
10388 
10389 	if (err)
10390 		return err;
10391 
10392 	/* reset caller saved regs */
10393 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
10394 		mark_reg_not_init(env, regs, caller_saved[i]);
10395 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
10396 	}
10397 
10398 	/* helper call returns 64-bit value. */
10399 	regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
10400 
10401 	/* update return register (already marked as written above) */
10402 	ret_type = fn->ret_type;
10403 	ret_flag = type_flag(ret_type);
10404 
10405 	switch (base_type(ret_type)) {
10406 	case RET_INTEGER:
10407 		/* sets type to SCALAR_VALUE */
10408 		mark_reg_unknown(env, regs, BPF_REG_0);
10409 		break;
10410 	case RET_VOID:
10411 		regs[BPF_REG_0].type = NOT_INIT;
10412 		break;
10413 	case RET_PTR_TO_MAP_VALUE:
10414 		/* There is no offset yet applied, variable or fixed */
10415 		mark_reg_known_zero(env, regs, BPF_REG_0);
10416 		/* remember map_ptr, so that check_map_access()
10417 		 * can check 'value_size' boundary of memory access
10418 		 * to map element returned from bpf_map_lookup_elem()
10419 		 */
10420 		if (meta.map_ptr == NULL) {
10421 			verbose(env,
10422 				"kernel subsystem misconfigured verifier\n");
10423 			return -EINVAL;
10424 		}
10425 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
10426 		regs[BPF_REG_0].map_uid = meta.map_uid;
10427 		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag;
10428 		if (!type_may_be_null(ret_type) &&
10429 		    btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) {
10430 			regs[BPF_REG_0].id = ++env->id_gen;
10431 		}
10432 		break;
10433 	case RET_PTR_TO_SOCKET:
10434 		mark_reg_known_zero(env, regs, BPF_REG_0);
10435 		regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag;
10436 		break;
10437 	case RET_PTR_TO_SOCK_COMMON:
10438 		mark_reg_known_zero(env, regs, BPF_REG_0);
10439 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag;
10440 		break;
10441 	case RET_PTR_TO_TCP_SOCK:
10442 		mark_reg_known_zero(env, regs, BPF_REG_0);
10443 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag;
10444 		break;
10445 	case RET_PTR_TO_MEM:
10446 		mark_reg_known_zero(env, regs, BPF_REG_0);
10447 		regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
10448 		regs[BPF_REG_0].mem_size = meta.mem_size;
10449 		break;
10450 	case RET_PTR_TO_MEM_OR_BTF_ID:
10451 	{
10452 		const struct btf_type *t;
10453 
10454 		mark_reg_known_zero(env, regs, BPF_REG_0);
10455 		t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
10456 		if (!btf_type_is_struct(t)) {
10457 			u32 tsize;
10458 			const struct btf_type *ret;
10459 			const char *tname;
10460 
10461 			/* resolve the type size of ksym. */
10462 			ret = btf_resolve_size(meta.ret_btf, t, &tsize);
10463 			if (IS_ERR(ret)) {
10464 				tname = btf_name_by_offset(meta.ret_btf, t->name_off);
10465 				verbose(env, "unable to resolve the size of type '%s': %ld\n",
10466 					tname, PTR_ERR(ret));
10467 				return -EINVAL;
10468 			}
10469 			regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
10470 			regs[BPF_REG_0].mem_size = tsize;
10471 		} else {
10472 			if (returns_cpu_specific_alloc_ptr) {
10473 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC | MEM_RCU;
10474 			} else {
10475 				/* MEM_RDONLY may be carried from ret_flag, but it
10476 				 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise
10477 				 * it will confuse the check of PTR_TO_BTF_ID in
10478 				 * check_mem_access().
10479 				 */
10480 				ret_flag &= ~MEM_RDONLY;
10481 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
10482 			}
10483 
10484 			regs[BPF_REG_0].btf = meta.ret_btf;
10485 			regs[BPF_REG_0].btf_id = meta.ret_btf_id;
10486 		}
10487 		break;
10488 	}
10489 	case RET_PTR_TO_BTF_ID:
10490 	{
10491 		struct btf *ret_btf;
10492 		int ret_btf_id;
10493 
10494 		mark_reg_known_zero(env, regs, BPF_REG_0);
10495 		regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
10496 		if (func_id == BPF_FUNC_kptr_xchg) {
10497 			ret_btf = meta.kptr_field->kptr.btf;
10498 			ret_btf_id = meta.kptr_field->kptr.btf_id;
10499 			if (!btf_is_kernel(ret_btf)) {
10500 				regs[BPF_REG_0].type |= MEM_ALLOC;
10501 				if (meta.kptr_field->type == BPF_KPTR_PERCPU)
10502 					regs[BPF_REG_0].type |= MEM_PERCPU;
10503 			}
10504 		} else {
10505 			if (fn->ret_btf_id == BPF_PTR_POISON) {
10506 				verbose(env, "verifier internal error:");
10507 				verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n",
10508 					func_id_name(func_id));
10509 				return -EINVAL;
10510 			}
10511 			ret_btf = btf_vmlinux;
10512 			ret_btf_id = *fn->ret_btf_id;
10513 		}
10514 		if (ret_btf_id == 0) {
10515 			verbose(env, "invalid return type %u of func %s#%d\n",
10516 				base_type(ret_type), func_id_name(func_id),
10517 				func_id);
10518 			return -EINVAL;
10519 		}
10520 		regs[BPF_REG_0].btf = ret_btf;
10521 		regs[BPF_REG_0].btf_id = ret_btf_id;
10522 		break;
10523 	}
10524 	default:
10525 		verbose(env, "unknown return type %u of func %s#%d\n",
10526 			base_type(ret_type), func_id_name(func_id), func_id);
10527 		return -EINVAL;
10528 	}
10529 
10530 	if (type_may_be_null(regs[BPF_REG_0].type))
10531 		regs[BPF_REG_0].id = ++env->id_gen;
10532 
10533 	if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) {
10534 		verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n",
10535 			func_id_name(func_id), func_id);
10536 		return -EFAULT;
10537 	}
10538 
10539 	if (is_dynptr_ref_function(func_id))
10540 		regs[BPF_REG_0].dynptr_id = meta.dynptr_id;
10541 
10542 	if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) {
10543 		/* For release_reference() */
10544 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
10545 	} else if (is_acquire_function(func_id, meta.map_ptr)) {
10546 		int id = acquire_reference_state(env, insn_idx);
10547 
10548 		if (id < 0)
10549 			return id;
10550 		/* For mark_ptr_or_null_reg() */
10551 		regs[BPF_REG_0].id = id;
10552 		/* For release_reference() */
10553 		regs[BPF_REG_0].ref_obj_id = id;
10554 	}
10555 
10556 	err = do_refine_retval_range(env, regs, fn->ret_type, func_id, &meta);
10557 	if (err)
10558 		return err;
10559 
10560 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
10561 	if (err)
10562 		return err;
10563 
10564 	if ((func_id == BPF_FUNC_get_stack ||
10565 	     func_id == BPF_FUNC_get_task_stack) &&
10566 	    !env->prog->has_callchain_buf) {
10567 		const char *err_str;
10568 
10569 #ifdef CONFIG_PERF_EVENTS
10570 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
10571 		err_str = "cannot get callchain buffer for func %s#%d\n";
10572 #else
10573 		err = -ENOTSUPP;
10574 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
10575 #endif
10576 		if (err) {
10577 			verbose(env, err_str, func_id_name(func_id), func_id);
10578 			return err;
10579 		}
10580 
10581 		env->prog->has_callchain_buf = true;
10582 	}
10583 
10584 	if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
10585 		env->prog->call_get_stack = true;
10586 
10587 	if (func_id == BPF_FUNC_get_func_ip) {
10588 		if (check_get_func_ip(env))
10589 			return -ENOTSUPP;
10590 		env->prog->call_get_func_ip = true;
10591 	}
10592 
10593 	if (changes_data)
10594 		clear_all_pkt_pointers(env);
10595 	return 0;
10596 }
10597 
10598 /* mark_btf_func_reg_size() is used when the reg size is determined by
10599  * the BTF func_proto's return value size and argument.
10600  */
10601 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
10602 				   size_t reg_size)
10603 {
10604 	struct bpf_reg_state *reg = &cur_regs(env)[regno];
10605 
10606 	if (regno == BPF_REG_0) {
10607 		/* Function return value */
10608 		reg->live |= REG_LIVE_WRITTEN;
10609 		reg->subreg_def = reg_size == sizeof(u64) ?
10610 			DEF_NOT_SUBREG : env->insn_idx + 1;
10611 	} else {
10612 		/* Function argument */
10613 		if (reg_size == sizeof(u64)) {
10614 			mark_insn_zext(env, reg);
10615 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
10616 		} else {
10617 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
10618 		}
10619 	}
10620 }
10621 
10622 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta)
10623 {
10624 	return meta->kfunc_flags & KF_ACQUIRE;
10625 }
10626 
10627 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta)
10628 {
10629 	return meta->kfunc_flags & KF_RELEASE;
10630 }
10631 
10632 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta)
10633 {
10634 	return (meta->kfunc_flags & KF_TRUSTED_ARGS) || is_kfunc_release(meta);
10635 }
10636 
10637 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta)
10638 {
10639 	return meta->kfunc_flags & KF_SLEEPABLE;
10640 }
10641 
10642 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta)
10643 {
10644 	return meta->kfunc_flags & KF_DESTRUCTIVE;
10645 }
10646 
10647 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta)
10648 {
10649 	return meta->kfunc_flags & KF_RCU;
10650 }
10651 
10652 static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta)
10653 {
10654 	return meta->kfunc_flags & KF_RCU_PROTECTED;
10655 }
10656 
10657 static bool __kfunc_param_match_suffix(const struct btf *btf,
10658 				       const struct btf_param *arg,
10659 				       const char *suffix)
10660 {
10661 	int suffix_len = strlen(suffix), len;
10662 	const char *param_name;
10663 
10664 	/* In the future, this can be ported to use BTF tagging */
10665 	param_name = btf_name_by_offset(btf, arg->name_off);
10666 	if (str_is_empty(param_name))
10667 		return false;
10668 	len = strlen(param_name);
10669 	if (len < suffix_len)
10670 		return false;
10671 	param_name += len - suffix_len;
10672 	return !strncmp(param_name, suffix, suffix_len);
10673 }
10674 
10675 static bool is_kfunc_arg_mem_size(const struct btf *btf,
10676 				  const struct btf_param *arg,
10677 				  const struct bpf_reg_state *reg)
10678 {
10679 	const struct btf_type *t;
10680 
10681 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
10682 	if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
10683 		return false;
10684 
10685 	return __kfunc_param_match_suffix(btf, arg, "__sz");
10686 }
10687 
10688 static bool is_kfunc_arg_const_mem_size(const struct btf *btf,
10689 					const struct btf_param *arg,
10690 					const struct bpf_reg_state *reg)
10691 {
10692 	const struct btf_type *t;
10693 
10694 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
10695 	if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
10696 		return false;
10697 
10698 	return __kfunc_param_match_suffix(btf, arg, "__szk");
10699 }
10700 
10701 static bool is_kfunc_arg_optional(const struct btf *btf, const struct btf_param *arg)
10702 {
10703 	return __kfunc_param_match_suffix(btf, arg, "__opt");
10704 }
10705 
10706 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg)
10707 {
10708 	return __kfunc_param_match_suffix(btf, arg, "__k");
10709 }
10710 
10711 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg)
10712 {
10713 	return __kfunc_param_match_suffix(btf, arg, "__ign");
10714 }
10715 
10716 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg)
10717 {
10718 	return __kfunc_param_match_suffix(btf, arg, "__alloc");
10719 }
10720 
10721 static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg)
10722 {
10723 	return __kfunc_param_match_suffix(btf, arg, "__uninit");
10724 }
10725 
10726 static bool is_kfunc_arg_refcounted_kptr(const struct btf *btf, const struct btf_param *arg)
10727 {
10728 	return __kfunc_param_match_suffix(btf, arg, "__refcounted_kptr");
10729 }
10730 
10731 static bool is_kfunc_arg_nullable(const struct btf *btf, const struct btf_param *arg)
10732 {
10733 	return __kfunc_param_match_suffix(btf, arg, "__nullable");
10734 }
10735 
10736 static bool is_kfunc_arg_const_str(const struct btf *btf, const struct btf_param *arg)
10737 {
10738 	return __kfunc_param_match_suffix(btf, arg, "__str");
10739 }
10740 
10741 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf,
10742 					  const struct btf_param *arg,
10743 					  const char *name)
10744 {
10745 	int len, target_len = strlen(name);
10746 	const char *param_name;
10747 
10748 	param_name = btf_name_by_offset(btf, arg->name_off);
10749 	if (str_is_empty(param_name))
10750 		return false;
10751 	len = strlen(param_name);
10752 	if (len != target_len)
10753 		return false;
10754 	if (strcmp(param_name, name))
10755 		return false;
10756 
10757 	return true;
10758 }
10759 
10760 enum {
10761 	KF_ARG_DYNPTR_ID,
10762 	KF_ARG_LIST_HEAD_ID,
10763 	KF_ARG_LIST_NODE_ID,
10764 	KF_ARG_RB_ROOT_ID,
10765 	KF_ARG_RB_NODE_ID,
10766 };
10767 
10768 BTF_ID_LIST(kf_arg_btf_ids)
10769 BTF_ID(struct, bpf_dynptr_kern)
10770 BTF_ID(struct, bpf_list_head)
10771 BTF_ID(struct, bpf_list_node)
10772 BTF_ID(struct, bpf_rb_root)
10773 BTF_ID(struct, bpf_rb_node)
10774 
10775 static bool __is_kfunc_ptr_arg_type(const struct btf *btf,
10776 				    const struct btf_param *arg, int type)
10777 {
10778 	const struct btf_type *t;
10779 	u32 res_id;
10780 
10781 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
10782 	if (!t)
10783 		return false;
10784 	if (!btf_type_is_ptr(t))
10785 		return false;
10786 	t = btf_type_skip_modifiers(btf, t->type, &res_id);
10787 	if (!t)
10788 		return false;
10789 	return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]);
10790 }
10791 
10792 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg)
10793 {
10794 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID);
10795 }
10796 
10797 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg)
10798 {
10799 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID);
10800 }
10801 
10802 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg)
10803 {
10804 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID);
10805 }
10806 
10807 static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg)
10808 {
10809 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID);
10810 }
10811 
10812 static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg)
10813 {
10814 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID);
10815 }
10816 
10817 static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf,
10818 				  const struct btf_param *arg)
10819 {
10820 	const struct btf_type *t;
10821 
10822 	t = btf_type_resolve_func_ptr(btf, arg->type, NULL);
10823 	if (!t)
10824 		return false;
10825 
10826 	return true;
10827 }
10828 
10829 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */
10830 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env,
10831 					const struct btf *btf,
10832 					const struct btf_type *t, int rec)
10833 {
10834 	const struct btf_type *member_type;
10835 	const struct btf_member *member;
10836 	u32 i;
10837 
10838 	if (!btf_type_is_struct(t))
10839 		return false;
10840 
10841 	for_each_member(i, t, member) {
10842 		const struct btf_array *array;
10843 
10844 		member_type = btf_type_skip_modifiers(btf, member->type, NULL);
10845 		if (btf_type_is_struct(member_type)) {
10846 			if (rec >= 3) {
10847 				verbose(env, "max struct nesting depth exceeded\n");
10848 				return false;
10849 			}
10850 			if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1))
10851 				return false;
10852 			continue;
10853 		}
10854 		if (btf_type_is_array(member_type)) {
10855 			array = btf_array(member_type);
10856 			if (!array->nelems)
10857 				return false;
10858 			member_type = btf_type_skip_modifiers(btf, array->type, NULL);
10859 			if (!btf_type_is_scalar(member_type))
10860 				return false;
10861 			continue;
10862 		}
10863 		if (!btf_type_is_scalar(member_type))
10864 			return false;
10865 	}
10866 	return true;
10867 }
10868 
10869 enum kfunc_ptr_arg_type {
10870 	KF_ARG_PTR_TO_CTX,
10871 	KF_ARG_PTR_TO_ALLOC_BTF_ID,    /* Allocated object */
10872 	KF_ARG_PTR_TO_REFCOUNTED_KPTR, /* Refcounted local kptr */
10873 	KF_ARG_PTR_TO_DYNPTR,
10874 	KF_ARG_PTR_TO_ITER,
10875 	KF_ARG_PTR_TO_LIST_HEAD,
10876 	KF_ARG_PTR_TO_LIST_NODE,
10877 	KF_ARG_PTR_TO_BTF_ID,	       /* Also covers reg2btf_ids conversions */
10878 	KF_ARG_PTR_TO_MEM,
10879 	KF_ARG_PTR_TO_MEM_SIZE,	       /* Size derived from next argument, skip it */
10880 	KF_ARG_PTR_TO_CALLBACK,
10881 	KF_ARG_PTR_TO_RB_ROOT,
10882 	KF_ARG_PTR_TO_RB_NODE,
10883 	KF_ARG_PTR_TO_NULL,
10884 	KF_ARG_PTR_TO_CONST_STR,
10885 };
10886 
10887 enum special_kfunc_type {
10888 	KF_bpf_obj_new_impl,
10889 	KF_bpf_obj_drop_impl,
10890 	KF_bpf_refcount_acquire_impl,
10891 	KF_bpf_list_push_front_impl,
10892 	KF_bpf_list_push_back_impl,
10893 	KF_bpf_list_pop_front,
10894 	KF_bpf_list_pop_back,
10895 	KF_bpf_cast_to_kern_ctx,
10896 	KF_bpf_rdonly_cast,
10897 	KF_bpf_rcu_read_lock,
10898 	KF_bpf_rcu_read_unlock,
10899 	KF_bpf_rbtree_remove,
10900 	KF_bpf_rbtree_add_impl,
10901 	KF_bpf_rbtree_first,
10902 	KF_bpf_dynptr_from_skb,
10903 	KF_bpf_dynptr_from_xdp,
10904 	KF_bpf_dynptr_slice,
10905 	KF_bpf_dynptr_slice_rdwr,
10906 	KF_bpf_dynptr_clone,
10907 	KF_bpf_percpu_obj_new_impl,
10908 	KF_bpf_percpu_obj_drop_impl,
10909 	KF_bpf_throw,
10910 	KF_bpf_iter_css_task_new,
10911 };
10912 
10913 BTF_SET_START(special_kfunc_set)
10914 BTF_ID(func, bpf_obj_new_impl)
10915 BTF_ID(func, bpf_obj_drop_impl)
10916 BTF_ID(func, bpf_refcount_acquire_impl)
10917 BTF_ID(func, bpf_list_push_front_impl)
10918 BTF_ID(func, bpf_list_push_back_impl)
10919 BTF_ID(func, bpf_list_pop_front)
10920 BTF_ID(func, bpf_list_pop_back)
10921 BTF_ID(func, bpf_cast_to_kern_ctx)
10922 BTF_ID(func, bpf_rdonly_cast)
10923 BTF_ID(func, bpf_rbtree_remove)
10924 BTF_ID(func, bpf_rbtree_add_impl)
10925 BTF_ID(func, bpf_rbtree_first)
10926 BTF_ID(func, bpf_dynptr_from_skb)
10927 BTF_ID(func, bpf_dynptr_from_xdp)
10928 BTF_ID(func, bpf_dynptr_slice)
10929 BTF_ID(func, bpf_dynptr_slice_rdwr)
10930 BTF_ID(func, bpf_dynptr_clone)
10931 BTF_ID(func, bpf_percpu_obj_new_impl)
10932 BTF_ID(func, bpf_percpu_obj_drop_impl)
10933 BTF_ID(func, bpf_throw)
10934 #ifdef CONFIG_CGROUPS
10935 BTF_ID(func, bpf_iter_css_task_new)
10936 #endif
10937 BTF_SET_END(special_kfunc_set)
10938 
10939 BTF_ID_LIST(special_kfunc_list)
10940 BTF_ID(func, bpf_obj_new_impl)
10941 BTF_ID(func, bpf_obj_drop_impl)
10942 BTF_ID(func, bpf_refcount_acquire_impl)
10943 BTF_ID(func, bpf_list_push_front_impl)
10944 BTF_ID(func, bpf_list_push_back_impl)
10945 BTF_ID(func, bpf_list_pop_front)
10946 BTF_ID(func, bpf_list_pop_back)
10947 BTF_ID(func, bpf_cast_to_kern_ctx)
10948 BTF_ID(func, bpf_rdonly_cast)
10949 BTF_ID(func, bpf_rcu_read_lock)
10950 BTF_ID(func, bpf_rcu_read_unlock)
10951 BTF_ID(func, bpf_rbtree_remove)
10952 BTF_ID(func, bpf_rbtree_add_impl)
10953 BTF_ID(func, bpf_rbtree_first)
10954 BTF_ID(func, bpf_dynptr_from_skb)
10955 BTF_ID(func, bpf_dynptr_from_xdp)
10956 BTF_ID(func, bpf_dynptr_slice)
10957 BTF_ID(func, bpf_dynptr_slice_rdwr)
10958 BTF_ID(func, bpf_dynptr_clone)
10959 BTF_ID(func, bpf_percpu_obj_new_impl)
10960 BTF_ID(func, bpf_percpu_obj_drop_impl)
10961 BTF_ID(func, bpf_throw)
10962 #ifdef CONFIG_CGROUPS
10963 BTF_ID(func, bpf_iter_css_task_new)
10964 #else
10965 BTF_ID_UNUSED
10966 #endif
10967 
10968 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta)
10969 {
10970 	if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] &&
10971 	    meta->arg_owning_ref) {
10972 		return false;
10973 	}
10974 
10975 	return meta->kfunc_flags & KF_RET_NULL;
10976 }
10977 
10978 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta)
10979 {
10980 	return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock];
10981 }
10982 
10983 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta)
10984 {
10985 	return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock];
10986 }
10987 
10988 static enum kfunc_ptr_arg_type
10989 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env,
10990 		       struct bpf_kfunc_call_arg_meta *meta,
10991 		       const struct btf_type *t, const struct btf_type *ref_t,
10992 		       const char *ref_tname, const struct btf_param *args,
10993 		       int argno, int nargs)
10994 {
10995 	u32 regno = argno + 1;
10996 	struct bpf_reg_state *regs = cur_regs(env);
10997 	struct bpf_reg_state *reg = &regs[regno];
10998 	bool arg_mem_size = false;
10999 
11000 	if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx])
11001 		return KF_ARG_PTR_TO_CTX;
11002 
11003 	/* In this function, we verify the kfunc's BTF as per the argument type,
11004 	 * leaving the rest of the verification with respect to the register
11005 	 * type to our caller. When a set of conditions hold in the BTF type of
11006 	 * arguments, we resolve it to a known kfunc_ptr_arg_type.
11007 	 */
11008 	if (btf_get_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno))
11009 		return KF_ARG_PTR_TO_CTX;
11010 
11011 	if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno]))
11012 		return KF_ARG_PTR_TO_ALLOC_BTF_ID;
11013 
11014 	if (is_kfunc_arg_refcounted_kptr(meta->btf, &args[argno]))
11015 		return KF_ARG_PTR_TO_REFCOUNTED_KPTR;
11016 
11017 	if (is_kfunc_arg_dynptr(meta->btf, &args[argno]))
11018 		return KF_ARG_PTR_TO_DYNPTR;
11019 
11020 	if (is_kfunc_arg_iter(meta, argno))
11021 		return KF_ARG_PTR_TO_ITER;
11022 
11023 	if (is_kfunc_arg_list_head(meta->btf, &args[argno]))
11024 		return KF_ARG_PTR_TO_LIST_HEAD;
11025 
11026 	if (is_kfunc_arg_list_node(meta->btf, &args[argno]))
11027 		return KF_ARG_PTR_TO_LIST_NODE;
11028 
11029 	if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno]))
11030 		return KF_ARG_PTR_TO_RB_ROOT;
11031 
11032 	if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno]))
11033 		return KF_ARG_PTR_TO_RB_NODE;
11034 
11035 	if (is_kfunc_arg_const_str(meta->btf, &args[argno]))
11036 		return KF_ARG_PTR_TO_CONST_STR;
11037 
11038 	if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) {
11039 		if (!btf_type_is_struct(ref_t)) {
11040 			verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n",
11041 				meta->func_name, argno, btf_type_str(ref_t), ref_tname);
11042 			return -EINVAL;
11043 		}
11044 		return KF_ARG_PTR_TO_BTF_ID;
11045 	}
11046 
11047 	if (is_kfunc_arg_callback(env, meta->btf, &args[argno]))
11048 		return KF_ARG_PTR_TO_CALLBACK;
11049 
11050 	if (is_kfunc_arg_nullable(meta->btf, &args[argno]) && register_is_null(reg))
11051 		return KF_ARG_PTR_TO_NULL;
11052 
11053 	if (argno + 1 < nargs &&
11054 	    (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], &regs[regno + 1]) ||
11055 	     is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], &regs[regno + 1])))
11056 		arg_mem_size = true;
11057 
11058 	/* This is the catch all argument type of register types supported by
11059 	 * check_helper_mem_access. However, we only allow when argument type is
11060 	 * pointer to scalar, or struct composed (recursively) of scalars. When
11061 	 * arg_mem_size is true, the pointer can be void *.
11062 	 */
11063 	if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) &&
11064 	    (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) {
11065 		verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n",
11066 			argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : "");
11067 		return -EINVAL;
11068 	}
11069 	return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM;
11070 }
11071 
11072 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env,
11073 					struct bpf_reg_state *reg,
11074 					const struct btf_type *ref_t,
11075 					const char *ref_tname, u32 ref_id,
11076 					struct bpf_kfunc_call_arg_meta *meta,
11077 					int argno)
11078 {
11079 	const struct btf_type *reg_ref_t;
11080 	bool strict_type_match = false;
11081 	const struct btf *reg_btf;
11082 	const char *reg_ref_tname;
11083 	u32 reg_ref_id;
11084 
11085 	if (base_type(reg->type) == PTR_TO_BTF_ID) {
11086 		reg_btf = reg->btf;
11087 		reg_ref_id = reg->btf_id;
11088 	} else {
11089 		reg_btf = btf_vmlinux;
11090 		reg_ref_id = *reg2btf_ids[base_type(reg->type)];
11091 	}
11092 
11093 	/* Enforce strict type matching for calls to kfuncs that are acquiring
11094 	 * or releasing a reference, or are no-cast aliases. We do _not_
11095 	 * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default,
11096 	 * as we want to enable BPF programs to pass types that are bitwise
11097 	 * equivalent without forcing them to explicitly cast with something
11098 	 * like bpf_cast_to_kern_ctx().
11099 	 *
11100 	 * For example, say we had a type like the following:
11101 	 *
11102 	 * struct bpf_cpumask {
11103 	 *	cpumask_t cpumask;
11104 	 *	refcount_t usage;
11105 	 * };
11106 	 *
11107 	 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed
11108 	 * to a struct cpumask, so it would be safe to pass a struct
11109 	 * bpf_cpumask * to a kfunc expecting a struct cpumask *.
11110 	 *
11111 	 * The philosophy here is similar to how we allow scalars of different
11112 	 * types to be passed to kfuncs as long as the size is the same. The
11113 	 * only difference here is that we're simply allowing
11114 	 * btf_struct_ids_match() to walk the struct at the 0th offset, and
11115 	 * resolve types.
11116 	 */
11117 	if (is_kfunc_acquire(meta) ||
11118 	    (is_kfunc_release(meta) && reg->ref_obj_id) ||
11119 	    btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id))
11120 		strict_type_match = true;
11121 
11122 	WARN_ON_ONCE(is_kfunc_trusted_args(meta) && reg->off);
11123 
11124 	reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, &reg_ref_id);
11125 	reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off);
11126 	if (!btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match)) {
11127 		verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n",
11128 			meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1,
11129 			btf_type_str(reg_ref_t), reg_ref_tname);
11130 		return -EINVAL;
11131 	}
11132 	return 0;
11133 }
11134 
11135 static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
11136 {
11137 	struct bpf_verifier_state *state = env->cur_state;
11138 	struct btf_record *rec = reg_btf_record(reg);
11139 
11140 	if (!state->active_lock.ptr) {
11141 		verbose(env, "verifier internal error: ref_set_non_owning w/o active lock\n");
11142 		return -EFAULT;
11143 	}
11144 
11145 	if (type_flag(reg->type) & NON_OWN_REF) {
11146 		verbose(env, "verifier internal error: NON_OWN_REF already set\n");
11147 		return -EFAULT;
11148 	}
11149 
11150 	reg->type |= NON_OWN_REF;
11151 	if (rec->refcount_off >= 0)
11152 		reg->type |= MEM_RCU;
11153 
11154 	return 0;
11155 }
11156 
11157 static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id)
11158 {
11159 	struct bpf_func_state *state, *unused;
11160 	struct bpf_reg_state *reg;
11161 	int i;
11162 
11163 	state = cur_func(env);
11164 
11165 	if (!ref_obj_id) {
11166 		verbose(env, "verifier internal error: ref_obj_id is zero for "
11167 			     "owning -> non-owning conversion\n");
11168 		return -EFAULT;
11169 	}
11170 
11171 	for (i = 0; i < state->acquired_refs; i++) {
11172 		if (state->refs[i].id != ref_obj_id)
11173 			continue;
11174 
11175 		/* Clear ref_obj_id here so release_reference doesn't clobber
11176 		 * the whole reg
11177 		 */
11178 		bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
11179 			if (reg->ref_obj_id == ref_obj_id) {
11180 				reg->ref_obj_id = 0;
11181 				ref_set_non_owning(env, reg);
11182 			}
11183 		}));
11184 		return 0;
11185 	}
11186 
11187 	verbose(env, "verifier internal error: ref state missing for ref_obj_id\n");
11188 	return -EFAULT;
11189 }
11190 
11191 /* Implementation details:
11192  *
11193  * Each register points to some region of memory, which we define as an
11194  * allocation. Each allocation may embed a bpf_spin_lock which protects any
11195  * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same
11196  * allocation. The lock and the data it protects are colocated in the same
11197  * memory region.
11198  *
11199  * Hence, everytime a register holds a pointer value pointing to such
11200  * allocation, the verifier preserves a unique reg->id for it.
11201  *
11202  * The verifier remembers the lock 'ptr' and the lock 'id' whenever
11203  * bpf_spin_lock is called.
11204  *
11205  * To enable this, lock state in the verifier captures two values:
11206  *	active_lock.ptr = Register's type specific pointer
11207  *	active_lock.id  = A unique ID for each register pointer value
11208  *
11209  * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two
11210  * supported register types.
11211  *
11212  * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of
11213  * allocated objects is the reg->btf pointer.
11214  *
11215  * The active_lock.id is non-unique for maps supporting direct_value_addr, as we
11216  * can establish the provenance of the map value statically for each distinct
11217  * lookup into such maps. They always contain a single map value hence unique
11218  * IDs for each pseudo load pessimizes the algorithm and rejects valid programs.
11219  *
11220  * So, in case of global variables, they use array maps with max_entries = 1,
11221  * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point
11222  * into the same map value as max_entries is 1, as described above).
11223  *
11224  * In case of inner map lookups, the inner map pointer has same map_ptr as the
11225  * outer map pointer (in verifier context), but each lookup into an inner map
11226  * assigns a fresh reg->id to the lookup, so while lookups into distinct inner
11227  * maps from the same outer map share the same map_ptr as active_lock.ptr, they
11228  * will get different reg->id assigned to each lookup, hence different
11229  * active_lock.id.
11230  *
11231  * In case of allocated objects, active_lock.ptr is the reg->btf, and the
11232  * reg->id is a unique ID preserved after the NULL pointer check on the pointer
11233  * returned from bpf_obj_new. Each allocation receives a new reg->id.
11234  */
11235 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
11236 {
11237 	void *ptr;
11238 	u32 id;
11239 
11240 	switch ((int)reg->type) {
11241 	case PTR_TO_MAP_VALUE:
11242 		ptr = reg->map_ptr;
11243 		break;
11244 	case PTR_TO_BTF_ID | MEM_ALLOC:
11245 		ptr = reg->btf;
11246 		break;
11247 	default:
11248 		verbose(env, "verifier internal error: unknown reg type for lock check\n");
11249 		return -EFAULT;
11250 	}
11251 	id = reg->id;
11252 
11253 	if (!env->cur_state->active_lock.ptr)
11254 		return -EINVAL;
11255 	if (env->cur_state->active_lock.ptr != ptr ||
11256 	    env->cur_state->active_lock.id != id) {
11257 		verbose(env, "held lock and object are not in the same allocation\n");
11258 		return -EINVAL;
11259 	}
11260 	return 0;
11261 }
11262 
11263 static bool is_bpf_list_api_kfunc(u32 btf_id)
11264 {
11265 	return btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
11266 	       btf_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
11267 	       btf_id == special_kfunc_list[KF_bpf_list_pop_front] ||
11268 	       btf_id == special_kfunc_list[KF_bpf_list_pop_back];
11269 }
11270 
11271 static bool is_bpf_rbtree_api_kfunc(u32 btf_id)
11272 {
11273 	return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] ||
11274 	       btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
11275 	       btf_id == special_kfunc_list[KF_bpf_rbtree_first];
11276 }
11277 
11278 static bool is_bpf_graph_api_kfunc(u32 btf_id)
11279 {
11280 	return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id) ||
11281 	       btf_id == special_kfunc_list[KF_bpf_refcount_acquire_impl];
11282 }
11283 
11284 static bool is_sync_callback_calling_kfunc(u32 btf_id)
11285 {
11286 	return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl];
11287 }
11288 
11289 static bool is_bpf_throw_kfunc(struct bpf_insn *insn)
11290 {
11291 	return bpf_pseudo_kfunc_call(insn) && insn->off == 0 &&
11292 	       insn->imm == special_kfunc_list[KF_bpf_throw];
11293 }
11294 
11295 static bool is_rbtree_lock_required_kfunc(u32 btf_id)
11296 {
11297 	return is_bpf_rbtree_api_kfunc(btf_id);
11298 }
11299 
11300 static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env,
11301 					  enum btf_field_type head_field_type,
11302 					  u32 kfunc_btf_id)
11303 {
11304 	bool ret;
11305 
11306 	switch (head_field_type) {
11307 	case BPF_LIST_HEAD:
11308 		ret = is_bpf_list_api_kfunc(kfunc_btf_id);
11309 		break;
11310 	case BPF_RB_ROOT:
11311 		ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id);
11312 		break;
11313 	default:
11314 		verbose(env, "verifier internal error: unexpected graph root argument type %s\n",
11315 			btf_field_type_name(head_field_type));
11316 		return false;
11317 	}
11318 
11319 	if (!ret)
11320 		verbose(env, "verifier internal error: %s head arg for unknown kfunc\n",
11321 			btf_field_type_name(head_field_type));
11322 	return ret;
11323 }
11324 
11325 static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env,
11326 					  enum btf_field_type node_field_type,
11327 					  u32 kfunc_btf_id)
11328 {
11329 	bool ret;
11330 
11331 	switch (node_field_type) {
11332 	case BPF_LIST_NODE:
11333 		ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
11334 		       kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back_impl]);
11335 		break;
11336 	case BPF_RB_NODE:
11337 		ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
11338 		       kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]);
11339 		break;
11340 	default:
11341 		verbose(env, "verifier internal error: unexpected graph node argument type %s\n",
11342 			btf_field_type_name(node_field_type));
11343 		return false;
11344 	}
11345 
11346 	if (!ret)
11347 		verbose(env, "verifier internal error: %s node arg for unknown kfunc\n",
11348 			btf_field_type_name(node_field_type));
11349 	return ret;
11350 }
11351 
11352 static int
11353 __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env,
11354 				   struct bpf_reg_state *reg, u32 regno,
11355 				   struct bpf_kfunc_call_arg_meta *meta,
11356 				   enum btf_field_type head_field_type,
11357 				   struct btf_field **head_field)
11358 {
11359 	const char *head_type_name;
11360 	struct btf_field *field;
11361 	struct btf_record *rec;
11362 	u32 head_off;
11363 
11364 	if (meta->btf != btf_vmlinux) {
11365 		verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n");
11366 		return -EFAULT;
11367 	}
11368 
11369 	if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id))
11370 		return -EFAULT;
11371 
11372 	head_type_name = btf_field_type_name(head_field_type);
11373 	if (!tnum_is_const(reg->var_off)) {
11374 		verbose(env,
11375 			"R%d doesn't have constant offset. %s has to be at the constant offset\n",
11376 			regno, head_type_name);
11377 		return -EINVAL;
11378 	}
11379 
11380 	rec = reg_btf_record(reg);
11381 	head_off = reg->off + reg->var_off.value;
11382 	field = btf_record_find(rec, head_off, head_field_type);
11383 	if (!field) {
11384 		verbose(env, "%s not found at offset=%u\n", head_type_name, head_off);
11385 		return -EINVAL;
11386 	}
11387 
11388 	/* All functions require bpf_list_head to be protected using a bpf_spin_lock */
11389 	if (check_reg_allocation_locked(env, reg)) {
11390 		verbose(env, "bpf_spin_lock at off=%d must be held for %s\n",
11391 			rec->spin_lock_off, head_type_name);
11392 		return -EINVAL;
11393 	}
11394 
11395 	if (*head_field) {
11396 		verbose(env, "verifier internal error: repeating %s arg\n", head_type_name);
11397 		return -EFAULT;
11398 	}
11399 	*head_field = field;
11400 	return 0;
11401 }
11402 
11403 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env,
11404 					   struct bpf_reg_state *reg, u32 regno,
11405 					   struct bpf_kfunc_call_arg_meta *meta)
11406 {
11407 	return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD,
11408 							  &meta->arg_list_head.field);
11409 }
11410 
11411 static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env,
11412 					     struct bpf_reg_state *reg, u32 regno,
11413 					     struct bpf_kfunc_call_arg_meta *meta)
11414 {
11415 	return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT,
11416 							  &meta->arg_rbtree_root.field);
11417 }
11418 
11419 static int
11420 __process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env,
11421 				   struct bpf_reg_state *reg, u32 regno,
11422 				   struct bpf_kfunc_call_arg_meta *meta,
11423 				   enum btf_field_type head_field_type,
11424 				   enum btf_field_type node_field_type,
11425 				   struct btf_field **node_field)
11426 {
11427 	const char *node_type_name;
11428 	const struct btf_type *et, *t;
11429 	struct btf_field *field;
11430 	u32 node_off;
11431 
11432 	if (meta->btf != btf_vmlinux) {
11433 		verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n");
11434 		return -EFAULT;
11435 	}
11436 
11437 	if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id))
11438 		return -EFAULT;
11439 
11440 	node_type_name = btf_field_type_name(node_field_type);
11441 	if (!tnum_is_const(reg->var_off)) {
11442 		verbose(env,
11443 			"R%d doesn't have constant offset. %s has to be at the constant offset\n",
11444 			regno, node_type_name);
11445 		return -EINVAL;
11446 	}
11447 
11448 	node_off = reg->off + reg->var_off.value;
11449 	field = reg_find_field_offset(reg, node_off, node_field_type);
11450 	if (!field || field->offset != node_off) {
11451 		verbose(env, "%s not found at offset=%u\n", node_type_name, node_off);
11452 		return -EINVAL;
11453 	}
11454 
11455 	field = *node_field;
11456 
11457 	et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id);
11458 	t = btf_type_by_id(reg->btf, reg->btf_id);
11459 	if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf,
11460 				  field->graph_root.value_btf_id, true)) {
11461 		verbose(env, "operation on %s expects arg#1 %s at offset=%d "
11462 			"in struct %s, but arg is at offset=%d in struct %s\n",
11463 			btf_field_type_name(head_field_type),
11464 			btf_field_type_name(node_field_type),
11465 			field->graph_root.node_offset,
11466 			btf_name_by_offset(field->graph_root.btf, et->name_off),
11467 			node_off, btf_name_by_offset(reg->btf, t->name_off));
11468 		return -EINVAL;
11469 	}
11470 	meta->arg_btf = reg->btf;
11471 	meta->arg_btf_id = reg->btf_id;
11472 
11473 	if (node_off != field->graph_root.node_offset) {
11474 		verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n",
11475 			node_off, btf_field_type_name(node_field_type),
11476 			field->graph_root.node_offset,
11477 			btf_name_by_offset(field->graph_root.btf, et->name_off));
11478 		return -EINVAL;
11479 	}
11480 
11481 	return 0;
11482 }
11483 
11484 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env,
11485 					   struct bpf_reg_state *reg, u32 regno,
11486 					   struct bpf_kfunc_call_arg_meta *meta)
11487 {
11488 	return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
11489 						  BPF_LIST_HEAD, BPF_LIST_NODE,
11490 						  &meta->arg_list_head.field);
11491 }
11492 
11493 static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env,
11494 					     struct bpf_reg_state *reg, u32 regno,
11495 					     struct bpf_kfunc_call_arg_meta *meta)
11496 {
11497 	return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
11498 						  BPF_RB_ROOT, BPF_RB_NODE,
11499 						  &meta->arg_rbtree_root.field);
11500 }
11501 
11502 /*
11503  * css_task iter allowlist is needed to avoid dead locking on css_set_lock.
11504  * LSM hooks and iters (both sleepable and non-sleepable) are safe.
11505  * Any sleepable progs are also safe since bpf_check_attach_target() enforce
11506  * them can only be attached to some specific hook points.
11507  */
11508 static bool check_css_task_iter_allowlist(struct bpf_verifier_env *env)
11509 {
11510 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
11511 
11512 	switch (prog_type) {
11513 	case BPF_PROG_TYPE_LSM:
11514 		return true;
11515 	case BPF_PROG_TYPE_TRACING:
11516 		if (env->prog->expected_attach_type == BPF_TRACE_ITER)
11517 			return true;
11518 		fallthrough;
11519 	default:
11520 		return env->prog->aux->sleepable;
11521 	}
11522 }
11523 
11524 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta,
11525 			    int insn_idx)
11526 {
11527 	const char *func_name = meta->func_name, *ref_tname;
11528 	const struct btf *btf = meta->btf;
11529 	const struct btf_param *args;
11530 	struct btf_record *rec;
11531 	u32 i, nargs;
11532 	int ret;
11533 
11534 	args = (const struct btf_param *)(meta->func_proto + 1);
11535 	nargs = btf_type_vlen(meta->func_proto);
11536 	if (nargs > MAX_BPF_FUNC_REG_ARGS) {
11537 		verbose(env, "Function %s has %d > %d args\n", func_name, nargs,
11538 			MAX_BPF_FUNC_REG_ARGS);
11539 		return -EINVAL;
11540 	}
11541 
11542 	/* Check that BTF function arguments match actual types that the
11543 	 * verifier sees.
11544 	 */
11545 	for (i = 0; i < nargs; i++) {
11546 		struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[i + 1];
11547 		const struct btf_type *t, *ref_t, *resolve_ret;
11548 		enum bpf_arg_type arg_type = ARG_DONTCARE;
11549 		u32 regno = i + 1, ref_id, type_size;
11550 		bool is_ret_buf_sz = false;
11551 		int kf_arg_type;
11552 
11553 		t = btf_type_skip_modifiers(btf, args[i].type, NULL);
11554 
11555 		if (is_kfunc_arg_ignore(btf, &args[i]))
11556 			continue;
11557 
11558 		if (btf_type_is_scalar(t)) {
11559 			if (reg->type != SCALAR_VALUE) {
11560 				verbose(env, "R%d is not a scalar\n", regno);
11561 				return -EINVAL;
11562 			}
11563 
11564 			if (is_kfunc_arg_constant(meta->btf, &args[i])) {
11565 				if (meta->arg_constant.found) {
11566 					verbose(env, "verifier internal error: only one constant argument permitted\n");
11567 					return -EFAULT;
11568 				}
11569 				if (!tnum_is_const(reg->var_off)) {
11570 					verbose(env, "R%d must be a known constant\n", regno);
11571 					return -EINVAL;
11572 				}
11573 				ret = mark_chain_precision(env, regno);
11574 				if (ret < 0)
11575 					return ret;
11576 				meta->arg_constant.found = true;
11577 				meta->arg_constant.value = reg->var_off.value;
11578 			} else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) {
11579 				meta->r0_rdonly = true;
11580 				is_ret_buf_sz = true;
11581 			} else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) {
11582 				is_ret_buf_sz = true;
11583 			}
11584 
11585 			if (is_ret_buf_sz) {
11586 				if (meta->r0_size) {
11587 					verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc");
11588 					return -EINVAL;
11589 				}
11590 
11591 				if (!tnum_is_const(reg->var_off)) {
11592 					verbose(env, "R%d is not a const\n", regno);
11593 					return -EINVAL;
11594 				}
11595 
11596 				meta->r0_size = reg->var_off.value;
11597 				ret = mark_chain_precision(env, regno);
11598 				if (ret)
11599 					return ret;
11600 			}
11601 			continue;
11602 		}
11603 
11604 		if (!btf_type_is_ptr(t)) {
11605 			verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t));
11606 			return -EINVAL;
11607 		}
11608 
11609 		if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) &&
11610 		    (register_is_null(reg) || type_may_be_null(reg->type)) &&
11611 			!is_kfunc_arg_nullable(meta->btf, &args[i])) {
11612 			verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i);
11613 			return -EACCES;
11614 		}
11615 
11616 		if (reg->ref_obj_id) {
11617 			if (is_kfunc_release(meta) && meta->ref_obj_id) {
11618 				verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
11619 					regno, reg->ref_obj_id,
11620 					meta->ref_obj_id);
11621 				return -EFAULT;
11622 			}
11623 			meta->ref_obj_id = reg->ref_obj_id;
11624 			if (is_kfunc_release(meta))
11625 				meta->release_regno = regno;
11626 		}
11627 
11628 		ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
11629 		ref_tname = btf_name_by_offset(btf, ref_t->name_off);
11630 
11631 		kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs);
11632 		if (kf_arg_type < 0)
11633 			return kf_arg_type;
11634 
11635 		switch (kf_arg_type) {
11636 		case KF_ARG_PTR_TO_NULL:
11637 			continue;
11638 		case KF_ARG_PTR_TO_ALLOC_BTF_ID:
11639 		case KF_ARG_PTR_TO_BTF_ID:
11640 			if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta))
11641 				break;
11642 
11643 			if (!is_trusted_reg(reg)) {
11644 				if (!is_kfunc_rcu(meta)) {
11645 					verbose(env, "R%d must be referenced or trusted\n", regno);
11646 					return -EINVAL;
11647 				}
11648 				if (!is_rcu_reg(reg)) {
11649 					verbose(env, "R%d must be a rcu pointer\n", regno);
11650 					return -EINVAL;
11651 				}
11652 			}
11653 
11654 			fallthrough;
11655 		case KF_ARG_PTR_TO_CTX:
11656 			/* Trusted arguments have the same offset checks as release arguments */
11657 			arg_type |= OBJ_RELEASE;
11658 			break;
11659 		case KF_ARG_PTR_TO_DYNPTR:
11660 		case KF_ARG_PTR_TO_ITER:
11661 		case KF_ARG_PTR_TO_LIST_HEAD:
11662 		case KF_ARG_PTR_TO_LIST_NODE:
11663 		case KF_ARG_PTR_TO_RB_ROOT:
11664 		case KF_ARG_PTR_TO_RB_NODE:
11665 		case KF_ARG_PTR_TO_MEM:
11666 		case KF_ARG_PTR_TO_MEM_SIZE:
11667 		case KF_ARG_PTR_TO_CALLBACK:
11668 		case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
11669 		case KF_ARG_PTR_TO_CONST_STR:
11670 			/* Trusted by default */
11671 			break;
11672 		default:
11673 			WARN_ON_ONCE(1);
11674 			return -EFAULT;
11675 		}
11676 
11677 		if (is_kfunc_release(meta) && reg->ref_obj_id)
11678 			arg_type |= OBJ_RELEASE;
11679 		ret = check_func_arg_reg_off(env, reg, regno, arg_type);
11680 		if (ret < 0)
11681 			return ret;
11682 
11683 		switch (kf_arg_type) {
11684 		case KF_ARG_PTR_TO_CTX:
11685 			if (reg->type != PTR_TO_CTX) {
11686 				verbose(env, "arg#%d expected pointer to ctx, but got %s\n", i, btf_type_str(t));
11687 				return -EINVAL;
11688 			}
11689 
11690 			if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
11691 				ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog));
11692 				if (ret < 0)
11693 					return -EINVAL;
11694 				meta->ret_btf_id  = ret;
11695 			}
11696 			break;
11697 		case KF_ARG_PTR_TO_ALLOC_BTF_ID:
11698 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC)) {
11699 				if (meta->func_id != special_kfunc_list[KF_bpf_obj_drop_impl]) {
11700 					verbose(env, "arg#%d expected for bpf_obj_drop_impl()\n", i);
11701 					return -EINVAL;
11702 				}
11703 			} else if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC | MEM_PERCPU)) {
11704 				if (meta->func_id != special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) {
11705 					verbose(env, "arg#%d expected for bpf_percpu_obj_drop_impl()\n", i);
11706 					return -EINVAL;
11707 				}
11708 			} else {
11709 				verbose(env, "arg#%d expected pointer to allocated object\n", i);
11710 				return -EINVAL;
11711 			}
11712 			if (!reg->ref_obj_id) {
11713 				verbose(env, "allocated object must be referenced\n");
11714 				return -EINVAL;
11715 			}
11716 			if (meta->btf == btf_vmlinux) {
11717 				meta->arg_btf = reg->btf;
11718 				meta->arg_btf_id = reg->btf_id;
11719 			}
11720 			break;
11721 		case KF_ARG_PTR_TO_DYNPTR:
11722 		{
11723 			enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR;
11724 			int clone_ref_obj_id = 0;
11725 
11726 			if (reg->type != PTR_TO_STACK &&
11727 			    reg->type != CONST_PTR_TO_DYNPTR) {
11728 				verbose(env, "arg#%d expected pointer to stack or dynptr_ptr\n", i);
11729 				return -EINVAL;
11730 			}
11731 
11732 			if (reg->type == CONST_PTR_TO_DYNPTR)
11733 				dynptr_arg_type |= MEM_RDONLY;
11734 
11735 			if (is_kfunc_arg_uninit(btf, &args[i]))
11736 				dynptr_arg_type |= MEM_UNINIT;
11737 
11738 			if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
11739 				dynptr_arg_type |= DYNPTR_TYPE_SKB;
11740 			} else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp]) {
11741 				dynptr_arg_type |= DYNPTR_TYPE_XDP;
11742 			} else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_clone] &&
11743 				   (dynptr_arg_type & MEM_UNINIT)) {
11744 				enum bpf_dynptr_type parent_type = meta->initialized_dynptr.type;
11745 
11746 				if (parent_type == BPF_DYNPTR_TYPE_INVALID) {
11747 					verbose(env, "verifier internal error: no dynptr type for parent of clone\n");
11748 					return -EFAULT;
11749 				}
11750 
11751 				dynptr_arg_type |= (unsigned int)get_dynptr_type_flag(parent_type);
11752 				clone_ref_obj_id = meta->initialized_dynptr.ref_obj_id;
11753 				if (dynptr_type_refcounted(parent_type) && !clone_ref_obj_id) {
11754 					verbose(env, "verifier internal error: missing ref obj id for parent of clone\n");
11755 					return -EFAULT;
11756 				}
11757 			}
11758 
11759 			ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type, clone_ref_obj_id);
11760 			if (ret < 0)
11761 				return ret;
11762 
11763 			if (!(dynptr_arg_type & MEM_UNINIT)) {
11764 				int id = dynptr_id(env, reg);
11765 
11766 				if (id < 0) {
11767 					verbose(env, "verifier internal error: failed to obtain dynptr id\n");
11768 					return id;
11769 				}
11770 				meta->initialized_dynptr.id = id;
11771 				meta->initialized_dynptr.type = dynptr_get_type(env, reg);
11772 				meta->initialized_dynptr.ref_obj_id = dynptr_ref_obj_id(env, reg);
11773 			}
11774 
11775 			break;
11776 		}
11777 		case KF_ARG_PTR_TO_ITER:
11778 			if (meta->func_id == special_kfunc_list[KF_bpf_iter_css_task_new]) {
11779 				if (!check_css_task_iter_allowlist(env)) {
11780 					verbose(env, "css_task_iter is only allowed in bpf_lsm, bpf_iter and sleepable progs\n");
11781 					return -EINVAL;
11782 				}
11783 			}
11784 			ret = process_iter_arg(env, regno, insn_idx, meta);
11785 			if (ret < 0)
11786 				return ret;
11787 			break;
11788 		case KF_ARG_PTR_TO_LIST_HEAD:
11789 			if (reg->type != PTR_TO_MAP_VALUE &&
11790 			    reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11791 				verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
11792 				return -EINVAL;
11793 			}
11794 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
11795 				verbose(env, "allocated object must be referenced\n");
11796 				return -EINVAL;
11797 			}
11798 			ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta);
11799 			if (ret < 0)
11800 				return ret;
11801 			break;
11802 		case KF_ARG_PTR_TO_RB_ROOT:
11803 			if (reg->type != PTR_TO_MAP_VALUE &&
11804 			    reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11805 				verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
11806 				return -EINVAL;
11807 			}
11808 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
11809 				verbose(env, "allocated object must be referenced\n");
11810 				return -EINVAL;
11811 			}
11812 			ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta);
11813 			if (ret < 0)
11814 				return ret;
11815 			break;
11816 		case KF_ARG_PTR_TO_LIST_NODE:
11817 			if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11818 				verbose(env, "arg#%d expected pointer to allocated object\n", i);
11819 				return -EINVAL;
11820 			}
11821 			if (!reg->ref_obj_id) {
11822 				verbose(env, "allocated object must be referenced\n");
11823 				return -EINVAL;
11824 			}
11825 			ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta);
11826 			if (ret < 0)
11827 				return ret;
11828 			break;
11829 		case KF_ARG_PTR_TO_RB_NODE:
11830 			if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_remove]) {
11831 				if (!type_is_non_owning_ref(reg->type) || reg->ref_obj_id) {
11832 					verbose(env, "rbtree_remove node input must be non-owning ref\n");
11833 					return -EINVAL;
11834 				}
11835 				if (in_rbtree_lock_required_cb(env)) {
11836 					verbose(env, "rbtree_remove not allowed in rbtree cb\n");
11837 					return -EINVAL;
11838 				}
11839 			} else {
11840 				if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11841 					verbose(env, "arg#%d expected pointer to allocated object\n", i);
11842 					return -EINVAL;
11843 				}
11844 				if (!reg->ref_obj_id) {
11845 					verbose(env, "allocated object must be referenced\n");
11846 					return -EINVAL;
11847 				}
11848 			}
11849 
11850 			ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta);
11851 			if (ret < 0)
11852 				return ret;
11853 			break;
11854 		case KF_ARG_PTR_TO_BTF_ID:
11855 			/* Only base_type is checked, further checks are done here */
11856 			if ((base_type(reg->type) != PTR_TO_BTF_ID ||
11857 			     (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) &&
11858 			    !reg2btf_ids[base_type(reg->type)]) {
11859 				verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type));
11860 				verbose(env, "expected %s or socket\n",
11861 					reg_type_str(env, base_type(reg->type) |
11862 							  (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS)));
11863 				return -EINVAL;
11864 			}
11865 			ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i);
11866 			if (ret < 0)
11867 				return ret;
11868 			break;
11869 		case KF_ARG_PTR_TO_MEM:
11870 			resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
11871 			if (IS_ERR(resolve_ret)) {
11872 				verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
11873 					i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret));
11874 				return -EINVAL;
11875 			}
11876 			ret = check_mem_reg(env, reg, regno, type_size);
11877 			if (ret < 0)
11878 				return ret;
11879 			break;
11880 		case KF_ARG_PTR_TO_MEM_SIZE:
11881 		{
11882 			struct bpf_reg_state *buff_reg = &regs[regno];
11883 			const struct btf_param *buff_arg = &args[i];
11884 			struct bpf_reg_state *size_reg = &regs[regno + 1];
11885 			const struct btf_param *size_arg = &args[i + 1];
11886 
11887 			if (!register_is_null(buff_reg) || !is_kfunc_arg_optional(meta->btf, buff_arg)) {
11888 				ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1);
11889 				if (ret < 0) {
11890 					verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1);
11891 					return ret;
11892 				}
11893 			}
11894 
11895 			if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) {
11896 				if (meta->arg_constant.found) {
11897 					verbose(env, "verifier internal error: only one constant argument permitted\n");
11898 					return -EFAULT;
11899 				}
11900 				if (!tnum_is_const(size_reg->var_off)) {
11901 					verbose(env, "R%d must be a known constant\n", regno + 1);
11902 					return -EINVAL;
11903 				}
11904 				meta->arg_constant.found = true;
11905 				meta->arg_constant.value = size_reg->var_off.value;
11906 			}
11907 
11908 			/* Skip next '__sz' or '__szk' argument */
11909 			i++;
11910 			break;
11911 		}
11912 		case KF_ARG_PTR_TO_CALLBACK:
11913 			if (reg->type != PTR_TO_FUNC) {
11914 				verbose(env, "arg%d expected pointer to func\n", i);
11915 				return -EINVAL;
11916 			}
11917 			meta->subprogno = reg->subprogno;
11918 			break;
11919 		case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
11920 			if (!type_is_ptr_alloc_obj(reg->type)) {
11921 				verbose(env, "arg#%d is neither owning or non-owning ref\n", i);
11922 				return -EINVAL;
11923 			}
11924 			if (!type_is_non_owning_ref(reg->type))
11925 				meta->arg_owning_ref = true;
11926 
11927 			rec = reg_btf_record(reg);
11928 			if (!rec) {
11929 				verbose(env, "verifier internal error: Couldn't find btf_record\n");
11930 				return -EFAULT;
11931 			}
11932 
11933 			if (rec->refcount_off < 0) {
11934 				verbose(env, "arg#%d doesn't point to a type with bpf_refcount field\n", i);
11935 				return -EINVAL;
11936 			}
11937 
11938 			meta->arg_btf = reg->btf;
11939 			meta->arg_btf_id = reg->btf_id;
11940 			break;
11941 		case KF_ARG_PTR_TO_CONST_STR:
11942 			if (reg->type != PTR_TO_MAP_VALUE) {
11943 				verbose(env, "arg#%d doesn't point to a const string\n", i);
11944 				return -EINVAL;
11945 			}
11946 			ret = check_reg_const_str(env, reg, regno);
11947 			if (ret)
11948 				return ret;
11949 			break;
11950 		}
11951 	}
11952 
11953 	if (is_kfunc_release(meta) && !meta->release_regno) {
11954 		verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n",
11955 			func_name);
11956 		return -EINVAL;
11957 	}
11958 
11959 	return 0;
11960 }
11961 
11962 static int fetch_kfunc_meta(struct bpf_verifier_env *env,
11963 			    struct bpf_insn *insn,
11964 			    struct bpf_kfunc_call_arg_meta *meta,
11965 			    const char **kfunc_name)
11966 {
11967 	const struct btf_type *func, *func_proto;
11968 	u32 func_id, *kfunc_flags;
11969 	const char *func_name;
11970 	struct btf *desc_btf;
11971 
11972 	if (kfunc_name)
11973 		*kfunc_name = NULL;
11974 
11975 	if (!insn->imm)
11976 		return -EINVAL;
11977 
11978 	desc_btf = find_kfunc_desc_btf(env, insn->off);
11979 	if (IS_ERR(desc_btf))
11980 		return PTR_ERR(desc_btf);
11981 
11982 	func_id = insn->imm;
11983 	func = btf_type_by_id(desc_btf, func_id);
11984 	func_name = btf_name_by_offset(desc_btf, func->name_off);
11985 	if (kfunc_name)
11986 		*kfunc_name = func_name;
11987 	func_proto = btf_type_by_id(desc_btf, func->type);
11988 
11989 	kfunc_flags = btf_kfunc_id_set_contains(desc_btf, func_id, env->prog);
11990 	if (!kfunc_flags) {
11991 		return -EACCES;
11992 	}
11993 
11994 	memset(meta, 0, sizeof(*meta));
11995 	meta->btf = desc_btf;
11996 	meta->func_id = func_id;
11997 	meta->kfunc_flags = *kfunc_flags;
11998 	meta->func_proto = func_proto;
11999 	meta->func_name = func_name;
12000 
12001 	return 0;
12002 }
12003 
12004 static int check_return_code(struct bpf_verifier_env *env, int regno, const char *reg_name);
12005 
12006 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
12007 			    int *insn_idx_p)
12008 {
12009 	const struct btf_type *t, *ptr_type;
12010 	u32 i, nargs, ptr_type_id, release_ref_obj_id;
12011 	struct bpf_reg_state *regs = cur_regs(env);
12012 	const char *func_name, *ptr_type_name;
12013 	bool sleepable, rcu_lock, rcu_unlock;
12014 	struct bpf_kfunc_call_arg_meta meta;
12015 	struct bpf_insn_aux_data *insn_aux;
12016 	int err, insn_idx = *insn_idx_p;
12017 	const struct btf_param *args;
12018 	const struct btf_type *ret_t;
12019 	struct btf *desc_btf;
12020 
12021 	/* skip for now, but return error when we find this in fixup_kfunc_call */
12022 	if (!insn->imm)
12023 		return 0;
12024 
12025 	err = fetch_kfunc_meta(env, insn, &meta, &func_name);
12026 	if (err == -EACCES && func_name)
12027 		verbose(env, "calling kernel function %s is not allowed\n", func_name);
12028 	if (err)
12029 		return err;
12030 	desc_btf = meta.btf;
12031 	insn_aux = &env->insn_aux_data[insn_idx];
12032 
12033 	insn_aux->is_iter_next = is_iter_next_kfunc(&meta);
12034 
12035 	if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) {
12036 		verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n");
12037 		return -EACCES;
12038 	}
12039 
12040 	sleepable = is_kfunc_sleepable(&meta);
12041 	if (sleepable && !env->prog->aux->sleepable) {
12042 		verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name);
12043 		return -EACCES;
12044 	}
12045 
12046 	/* Check the arguments */
12047 	err = check_kfunc_args(env, &meta, insn_idx);
12048 	if (err < 0)
12049 		return err;
12050 
12051 	if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
12052 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
12053 					 set_rbtree_add_callback_state);
12054 		if (err) {
12055 			verbose(env, "kfunc %s#%d failed callback verification\n",
12056 				func_name, meta.func_id);
12057 			return err;
12058 		}
12059 	}
12060 
12061 	rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta);
12062 	rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta);
12063 
12064 	if (env->cur_state->active_rcu_lock) {
12065 		struct bpf_func_state *state;
12066 		struct bpf_reg_state *reg;
12067 		u32 clear_mask = (1 << STACK_SPILL) | (1 << STACK_ITER);
12068 
12069 		if (in_rbtree_lock_required_cb(env) && (rcu_lock || rcu_unlock)) {
12070 			verbose(env, "Calling bpf_rcu_read_{lock,unlock} in unnecessary rbtree callback\n");
12071 			return -EACCES;
12072 		}
12073 
12074 		if (rcu_lock) {
12075 			verbose(env, "nested rcu read lock (kernel function %s)\n", func_name);
12076 			return -EINVAL;
12077 		} else if (rcu_unlock) {
12078 			bpf_for_each_reg_in_vstate_mask(env->cur_state, state, reg, clear_mask, ({
12079 				if (reg->type & MEM_RCU) {
12080 					reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL);
12081 					reg->type |= PTR_UNTRUSTED;
12082 				}
12083 			}));
12084 			env->cur_state->active_rcu_lock = false;
12085 		} else if (sleepable) {
12086 			verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name);
12087 			return -EACCES;
12088 		}
12089 	} else if (rcu_lock) {
12090 		env->cur_state->active_rcu_lock = true;
12091 	} else if (rcu_unlock) {
12092 		verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name);
12093 		return -EINVAL;
12094 	}
12095 
12096 	/* In case of release function, we get register number of refcounted
12097 	 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now.
12098 	 */
12099 	if (meta.release_regno) {
12100 		err = release_reference(env, regs[meta.release_regno].ref_obj_id);
12101 		if (err) {
12102 			verbose(env, "kfunc %s#%d reference has not been acquired before\n",
12103 				func_name, meta.func_id);
12104 			return err;
12105 		}
12106 	}
12107 
12108 	if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
12109 	    meta.func_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
12110 	    meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
12111 		release_ref_obj_id = regs[BPF_REG_2].ref_obj_id;
12112 		insn_aux->insert_off = regs[BPF_REG_2].off;
12113 		insn_aux->kptr_struct_meta = btf_find_struct_meta(meta.arg_btf, meta.arg_btf_id);
12114 		err = ref_convert_owning_non_owning(env, release_ref_obj_id);
12115 		if (err) {
12116 			verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n",
12117 				func_name, meta.func_id);
12118 			return err;
12119 		}
12120 
12121 		err = release_reference(env, release_ref_obj_id);
12122 		if (err) {
12123 			verbose(env, "kfunc %s#%d reference has not been acquired before\n",
12124 				func_name, meta.func_id);
12125 			return err;
12126 		}
12127 	}
12128 
12129 	if (meta.func_id == special_kfunc_list[KF_bpf_throw]) {
12130 		if (!bpf_jit_supports_exceptions()) {
12131 			verbose(env, "JIT does not support calling kfunc %s#%d\n",
12132 				func_name, meta.func_id);
12133 			return -ENOTSUPP;
12134 		}
12135 		env->seen_exception = true;
12136 
12137 		/* In the case of the default callback, the cookie value passed
12138 		 * to bpf_throw becomes the return value of the program.
12139 		 */
12140 		if (!env->exception_callback_subprog) {
12141 			err = check_return_code(env, BPF_REG_1, "R1");
12142 			if (err < 0)
12143 				return err;
12144 		}
12145 	}
12146 
12147 	for (i = 0; i < CALLER_SAVED_REGS; i++)
12148 		mark_reg_not_init(env, regs, caller_saved[i]);
12149 
12150 	/* Check return type */
12151 	t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL);
12152 
12153 	if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) {
12154 		/* Only exception is bpf_obj_new_impl */
12155 		if (meta.btf != btf_vmlinux ||
12156 		    (meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl] &&
12157 		     meta.func_id != special_kfunc_list[KF_bpf_percpu_obj_new_impl] &&
12158 		     meta.func_id != special_kfunc_list[KF_bpf_refcount_acquire_impl])) {
12159 			verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n");
12160 			return -EINVAL;
12161 		}
12162 	}
12163 
12164 	if (btf_type_is_scalar(t)) {
12165 		mark_reg_unknown(env, regs, BPF_REG_0);
12166 		mark_btf_func_reg_size(env, BPF_REG_0, t->size);
12167 	} else if (btf_type_is_ptr(t)) {
12168 		ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id);
12169 
12170 		if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
12171 			if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl] ||
12172 			    meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
12173 				struct btf_struct_meta *struct_meta;
12174 				struct btf *ret_btf;
12175 				u32 ret_btf_id;
12176 
12177 				if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl] && !bpf_global_ma_set)
12178 					return -ENOMEM;
12179 
12180 				if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) {
12181 					verbose(env, "local type ID argument must be in range [0, U32_MAX]\n");
12182 					return -EINVAL;
12183 				}
12184 
12185 				ret_btf = env->prog->aux->btf;
12186 				ret_btf_id = meta.arg_constant.value;
12187 
12188 				/* This may be NULL due to user not supplying a BTF */
12189 				if (!ret_btf) {
12190 					verbose(env, "bpf_obj_new/bpf_percpu_obj_new requires prog BTF\n");
12191 					return -EINVAL;
12192 				}
12193 
12194 				ret_t = btf_type_by_id(ret_btf, ret_btf_id);
12195 				if (!ret_t || !__btf_type_is_struct(ret_t)) {
12196 					verbose(env, "bpf_obj_new/bpf_percpu_obj_new type ID argument must be of a struct\n");
12197 					return -EINVAL;
12198 				}
12199 
12200 				if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
12201 					if (ret_t->size > BPF_GLOBAL_PERCPU_MA_MAX_SIZE) {
12202 						verbose(env, "bpf_percpu_obj_new type size (%d) is greater than %d\n",
12203 							ret_t->size, BPF_GLOBAL_PERCPU_MA_MAX_SIZE);
12204 						return -EINVAL;
12205 					}
12206 
12207 					if (!bpf_global_percpu_ma_set) {
12208 						mutex_lock(&bpf_percpu_ma_lock);
12209 						if (!bpf_global_percpu_ma_set) {
12210 							/* Charge memory allocated with bpf_global_percpu_ma to
12211 							 * root memcg. The obj_cgroup for root memcg is NULL.
12212 							 */
12213 							err = bpf_mem_alloc_percpu_init(&bpf_global_percpu_ma, NULL);
12214 							if (!err)
12215 								bpf_global_percpu_ma_set = true;
12216 						}
12217 						mutex_unlock(&bpf_percpu_ma_lock);
12218 						if (err)
12219 							return err;
12220 					}
12221 
12222 					mutex_lock(&bpf_percpu_ma_lock);
12223 					err = bpf_mem_alloc_percpu_unit_init(&bpf_global_percpu_ma, ret_t->size);
12224 					mutex_unlock(&bpf_percpu_ma_lock);
12225 					if (err)
12226 						return err;
12227 				}
12228 
12229 				struct_meta = btf_find_struct_meta(ret_btf, ret_btf_id);
12230 				if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
12231 					if (!__btf_type_is_scalar_struct(env, ret_btf, ret_t, 0)) {
12232 						verbose(env, "bpf_percpu_obj_new type ID argument must be of a struct of scalars\n");
12233 						return -EINVAL;
12234 					}
12235 
12236 					if (struct_meta) {
12237 						verbose(env, "bpf_percpu_obj_new type ID argument must not contain special fields\n");
12238 						return -EINVAL;
12239 					}
12240 				}
12241 
12242 				mark_reg_known_zero(env, regs, BPF_REG_0);
12243 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
12244 				regs[BPF_REG_0].btf = ret_btf;
12245 				regs[BPF_REG_0].btf_id = ret_btf_id;
12246 				if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl])
12247 					regs[BPF_REG_0].type |= MEM_PERCPU;
12248 
12249 				insn_aux->obj_new_size = ret_t->size;
12250 				insn_aux->kptr_struct_meta = struct_meta;
12251 			} else if (meta.func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
12252 				mark_reg_known_zero(env, regs, BPF_REG_0);
12253 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
12254 				regs[BPF_REG_0].btf = meta.arg_btf;
12255 				regs[BPF_REG_0].btf_id = meta.arg_btf_id;
12256 
12257 				insn_aux->kptr_struct_meta =
12258 					btf_find_struct_meta(meta.arg_btf,
12259 							     meta.arg_btf_id);
12260 			} else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] ||
12261 				   meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) {
12262 				struct btf_field *field = meta.arg_list_head.field;
12263 
12264 				mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
12265 			} else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
12266 				   meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) {
12267 				struct btf_field *field = meta.arg_rbtree_root.field;
12268 
12269 				mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
12270 			} else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
12271 				mark_reg_known_zero(env, regs, BPF_REG_0);
12272 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED;
12273 				regs[BPF_REG_0].btf = desc_btf;
12274 				regs[BPF_REG_0].btf_id = meta.ret_btf_id;
12275 			} else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
12276 				ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value);
12277 				if (!ret_t || !btf_type_is_struct(ret_t)) {
12278 					verbose(env,
12279 						"kfunc bpf_rdonly_cast type ID argument must be of a struct\n");
12280 					return -EINVAL;
12281 				}
12282 
12283 				mark_reg_known_zero(env, regs, BPF_REG_0);
12284 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
12285 				regs[BPF_REG_0].btf = desc_btf;
12286 				regs[BPF_REG_0].btf_id = meta.arg_constant.value;
12287 			} else if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice] ||
12288 				   meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) {
12289 				enum bpf_type_flag type_flag = get_dynptr_type_flag(meta.initialized_dynptr.type);
12290 
12291 				mark_reg_known_zero(env, regs, BPF_REG_0);
12292 
12293 				if (!meta.arg_constant.found) {
12294 					verbose(env, "verifier internal error: bpf_dynptr_slice(_rdwr) no constant size\n");
12295 					return -EFAULT;
12296 				}
12297 
12298 				regs[BPF_REG_0].mem_size = meta.arg_constant.value;
12299 
12300 				/* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */
12301 				regs[BPF_REG_0].type = PTR_TO_MEM | type_flag;
12302 
12303 				if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice]) {
12304 					regs[BPF_REG_0].type |= MEM_RDONLY;
12305 				} else {
12306 					/* this will set env->seen_direct_write to true */
12307 					if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) {
12308 						verbose(env, "the prog does not allow writes to packet data\n");
12309 						return -EINVAL;
12310 					}
12311 				}
12312 
12313 				if (!meta.initialized_dynptr.id) {
12314 					verbose(env, "verifier internal error: no dynptr id\n");
12315 					return -EFAULT;
12316 				}
12317 				regs[BPF_REG_0].dynptr_id = meta.initialized_dynptr.id;
12318 
12319 				/* we don't need to set BPF_REG_0's ref obj id
12320 				 * because packet slices are not refcounted (see
12321 				 * dynptr_type_refcounted)
12322 				 */
12323 			} else {
12324 				verbose(env, "kernel function %s unhandled dynamic return type\n",
12325 					meta.func_name);
12326 				return -EFAULT;
12327 			}
12328 		} else if (!__btf_type_is_struct(ptr_type)) {
12329 			if (!meta.r0_size) {
12330 				__u32 sz;
12331 
12332 				if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) {
12333 					meta.r0_size = sz;
12334 					meta.r0_rdonly = true;
12335 				}
12336 			}
12337 			if (!meta.r0_size) {
12338 				ptr_type_name = btf_name_by_offset(desc_btf,
12339 								   ptr_type->name_off);
12340 				verbose(env,
12341 					"kernel function %s returns pointer type %s %s is not supported\n",
12342 					func_name,
12343 					btf_type_str(ptr_type),
12344 					ptr_type_name);
12345 				return -EINVAL;
12346 			}
12347 
12348 			mark_reg_known_zero(env, regs, BPF_REG_0);
12349 			regs[BPF_REG_0].type = PTR_TO_MEM;
12350 			regs[BPF_REG_0].mem_size = meta.r0_size;
12351 
12352 			if (meta.r0_rdonly)
12353 				regs[BPF_REG_0].type |= MEM_RDONLY;
12354 
12355 			/* Ensures we don't access the memory after a release_reference() */
12356 			if (meta.ref_obj_id)
12357 				regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
12358 		} else {
12359 			mark_reg_known_zero(env, regs, BPF_REG_0);
12360 			regs[BPF_REG_0].btf = desc_btf;
12361 			regs[BPF_REG_0].type = PTR_TO_BTF_ID;
12362 			regs[BPF_REG_0].btf_id = ptr_type_id;
12363 		}
12364 
12365 		if (is_kfunc_ret_null(&meta)) {
12366 			regs[BPF_REG_0].type |= PTR_MAYBE_NULL;
12367 			/* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */
12368 			regs[BPF_REG_0].id = ++env->id_gen;
12369 		}
12370 		mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
12371 		if (is_kfunc_acquire(&meta)) {
12372 			int id = acquire_reference_state(env, insn_idx);
12373 
12374 			if (id < 0)
12375 				return id;
12376 			if (is_kfunc_ret_null(&meta))
12377 				regs[BPF_REG_0].id = id;
12378 			regs[BPF_REG_0].ref_obj_id = id;
12379 		} else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) {
12380 			ref_set_non_owning(env, &regs[BPF_REG_0]);
12381 		}
12382 
12383 		if (reg_may_point_to_spin_lock(&regs[BPF_REG_0]) && !regs[BPF_REG_0].id)
12384 			regs[BPF_REG_0].id = ++env->id_gen;
12385 	} else if (btf_type_is_void(t)) {
12386 		if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
12387 			if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl] ||
12388 			    meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) {
12389 				insn_aux->kptr_struct_meta =
12390 					btf_find_struct_meta(meta.arg_btf,
12391 							     meta.arg_btf_id);
12392 			}
12393 		}
12394 	}
12395 
12396 	nargs = btf_type_vlen(meta.func_proto);
12397 	args = (const struct btf_param *)(meta.func_proto + 1);
12398 	for (i = 0; i < nargs; i++) {
12399 		u32 regno = i + 1;
12400 
12401 		t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL);
12402 		if (btf_type_is_ptr(t))
12403 			mark_btf_func_reg_size(env, regno, sizeof(void *));
12404 		else
12405 			/* scalar. ensured by btf_check_kfunc_arg_match() */
12406 			mark_btf_func_reg_size(env, regno, t->size);
12407 	}
12408 
12409 	if (is_iter_next_kfunc(&meta)) {
12410 		err = process_iter_next_call(env, insn_idx, &meta);
12411 		if (err)
12412 			return err;
12413 	}
12414 
12415 	return 0;
12416 }
12417 
12418 static bool signed_add_overflows(s64 a, s64 b)
12419 {
12420 	/* Do the add in u64, where overflow is well-defined */
12421 	s64 res = (s64)((u64)a + (u64)b);
12422 
12423 	if (b < 0)
12424 		return res > a;
12425 	return res < a;
12426 }
12427 
12428 static bool signed_add32_overflows(s32 a, s32 b)
12429 {
12430 	/* Do the add in u32, where overflow is well-defined */
12431 	s32 res = (s32)((u32)a + (u32)b);
12432 
12433 	if (b < 0)
12434 		return res > a;
12435 	return res < a;
12436 }
12437 
12438 static bool signed_sub_overflows(s64 a, s64 b)
12439 {
12440 	/* Do the sub in u64, where overflow is well-defined */
12441 	s64 res = (s64)((u64)a - (u64)b);
12442 
12443 	if (b < 0)
12444 		return res < a;
12445 	return res > a;
12446 }
12447 
12448 static bool signed_sub32_overflows(s32 a, s32 b)
12449 {
12450 	/* Do the sub in u32, where overflow is well-defined */
12451 	s32 res = (s32)((u32)a - (u32)b);
12452 
12453 	if (b < 0)
12454 		return res < a;
12455 	return res > a;
12456 }
12457 
12458 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
12459 				  const struct bpf_reg_state *reg,
12460 				  enum bpf_reg_type type)
12461 {
12462 	bool known = tnum_is_const(reg->var_off);
12463 	s64 val = reg->var_off.value;
12464 	s64 smin = reg->smin_value;
12465 
12466 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
12467 		verbose(env, "math between %s pointer and %lld is not allowed\n",
12468 			reg_type_str(env, type), val);
12469 		return false;
12470 	}
12471 
12472 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
12473 		verbose(env, "%s pointer offset %d is not allowed\n",
12474 			reg_type_str(env, type), reg->off);
12475 		return false;
12476 	}
12477 
12478 	if (smin == S64_MIN) {
12479 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
12480 			reg_type_str(env, type));
12481 		return false;
12482 	}
12483 
12484 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
12485 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
12486 			smin, reg_type_str(env, type));
12487 		return false;
12488 	}
12489 
12490 	return true;
12491 }
12492 
12493 enum {
12494 	REASON_BOUNDS	= -1,
12495 	REASON_TYPE	= -2,
12496 	REASON_PATHS	= -3,
12497 	REASON_LIMIT	= -4,
12498 	REASON_STACK	= -5,
12499 };
12500 
12501 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
12502 			      u32 *alu_limit, bool mask_to_left)
12503 {
12504 	u32 max = 0, ptr_limit = 0;
12505 
12506 	switch (ptr_reg->type) {
12507 	case PTR_TO_STACK:
12508 		/* Offset 0 is out-of-bounds, but acceptable start for the
12509 		 * left direction, see BPF_REG_FP. Also, unknown scalar
12510 		 * offset where we would need to deal with min/max bounds is
12511 		 * currently prohibited for unprivileged.
12512 		 */
12513 		max = MAX_BPF_STACK + mask_to_left;
12514 		ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
12515 		break;
12516 	case PTR_TO_MAP_VALUE:
12517 		max = ptr_reg->map_ptr->value_size;
12518 		ptr_limit = (mask_to_left ?
12519 			     ptr_reg->smin_value :
12520 			     ptr_reg->umax_value) + ptr_reg->off;
12521 		break;
12522 	default:
12523 		return REASON_TYPE;
12524 	}
12525 
12526 	if (ptr_limit >= max)
12527 		return REASON_LIMIT;
12528 	*alu_limit = ptr_limit;
12529 	return 0;
12530 }
12531 
12532 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
12533 				    const struct bpf_insn *insn)
12534 {
12535 	return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
12536 }
12537 
12538 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
12539 				       u32 alu_state, u32 alu_limit)
12540 {
12541 	/* If we arrived here from different branches with different
12542 	 * state or limits to sanitize, then this won't work.
12543 	 */
12544 	if (aux->alu_state &&
12545 	    (aux->alu_state != alu_state ||
12546 	     aux->alu_limit != alu_limit))
12547 		return REASON_PATHS;
12548 
12549 	/* Corresponding fixup done in do_misc_fixups(). */
12550 	aux->alu_state = alu_state;
12551 	aux->alu_limit = alu_limit;
12552 	return 0;
12553 }
12554 
12555 static int sanitize_val_alu(struct bpf_verifier_env *env,
12556 			    struct bpf_insn *insn)
12557 {
12558 	struct bpf_insn_aux_data *aux = cur_aux(env);
12559 
12560 	if (can_skip_alu_sanitation(env, insn))
12561 		return 0;
12562 
12563 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
12564 }
12565 
12566 static bool sanitize_needed(u8 opcode)
12567 {
12568 	return opcode == BPF_ADD || opcode == BPF_SUB;
12569 }
12570 
12571 struct bpf_sanitize_info {
12572 	struct bpf_insn_aux_data aux;
12573 	bool mask_to_left;
12574 };
12575 
12576 static struct bpf_verifier_state *
12577 sanitize_speculative_path(struct bpf_verifier_env *env,
12578 			  const struct bpf_insn *insn,
12579 			  u32 next_idx, u32 curr_idx)
12580 {
12581 	struct bpf_verifier_state *branch;
12582 	struct bpf_reg_state *regs;
12583 
12584 	branch = push_stack(env, next_idx, curr_idx, true);
12585 	if (branch && insn) {
12586 		regs = branch->frame[branch->curframe]->regs;
12587 		if (BPF_SRC(insn->code) == BPF_K) {
12588 			mark_reg_unknown(env, regs, insn->dst_reg);
12589 		} else if (BPF_SRC(insn->code) == BPF_X) {
12590 			mark_reg_unknown(env, regs, insn->dst_reg);
12591 			mark_reg_unknown(env, regs, insn->src_reg);
12592 		}
12593 	}
12594 	return branch;
12595 }
12596 
12597 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
12598 			    struct bpf_insn *insn,
12599 			    const struct bpf_reg_state *ptr_reg,
12600 			    const struct bpf_reg_state *off_reg,
12601 			    struct bpf_reg_state *dst_reg,
12602 			    struct bpf_sanitize_info *info,
12603 			    const bool commit_window)
12604 {
12605 	struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
12606 	struct bpf_verifier_state *vstate = env->cur_state;
12607 	bool off_is_imm = tnum_is_const(off_reg->var_off);
12608 	bool off_is_neg = off_reg->smin_value < 0;
12609 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
12610 	u8 opcode = BPF_OP(insn->code);
12611 	u32 alu_state, alu_limit;
12612 	struct bpf_reg_state tmp;
12613 	bool ret;
12614 	int err;
12615 
12616 	if (can_skip_alu_sanitation(env, insn))
12617 		return 0;
12618 
12619 	/* We already marked aux for masking from non-speculative
12620 	 * paths, thus we got here in the first place. We only care
12621 	 * to explore bad access from here.
12622 	 */
12623 	if (vstate->speculative)
12624 		goto do_sim;
12625 
12626 	if (!commit_window) {
12627 		if (!tnum_is_const(off_reg->var_off) &&
12628 		    (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
12629 			return REASON_BOUNDS;
12630 
12631 		info->mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
12632 				     (opcode == BPF_SUB && !off_is_neg);
12633 	}
12634 
12635 	err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
12636 	if (err < 0)
12637 		return err;
12638 
12639 	if (commit_window) {
12640 		/* In commit phase we narrow the masking window based on
12641 		 * the observed pointer move after the simulated operation.
12642 		 */
12643 		alu_state = info->aux.alu_state;
12644 		alu_limit = abs(info->aux.alu_limit - alu_limit);
12645 	} else {
12646 		alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
12647 		alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
12648 		alu_state |= ptr_is_dst_reg ?
12649 			     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
12650 
12651 		/* Limit pruning on unknown scalars to enable deep search for
12652 		 * potential masking differences from other program paths.
12653 		 */
12654 		if (!off_is_imm)
12655 			env->explore_alu_limits = true;
12656 	}
12657 
12658 	err = update_alu_sanitation_state(aux, alu_state, alu_limit);
12659 	if (err < 0)
12660 		return err;
12661 do_sim:
12662 	/* If we're in commit phase, we're done here given we already
12663 	 * pushed the truncated dst_reg into the speculative verification
12664 	 * stack.
12665 	 *
12666 	 * Also, when register is a known constant, we rewrite register-based
12667 	 * operation to immediate-based, and thus do not need masking (and as
12668 	 * a consequence, do not need to simulate the zero-truncation either).
12669 	 */
12670 	if (commit_window || off_is_imm)
12671 		return 0;
12672 
12673 	/* Simulate and find potential out-of-bounds access under
12674 	 * speculative execution from truncation as a result of
12675 	 * masking when off was not within expected range. If off
12676 	 * sits in dst, then we temporarily need to move ptr there
12677 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
12678 	 * for cases where we use K-based arithmetic in one direction
12679 	 * and truncated reg-based in the other in order to explore
12680 	 * bad access.
12681 	 */
12682 	if (!ptr_is_dst_reg) {
12683 		tmp = *dst_reg;
12684 		copy_register_state(dst_reg, ptr_reg);
12685 	}
12686 	ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
12687 					env->insn_idx);
12688 	if (!ptr_is_dst_reg && ret)
12689 		*dst_reg = tmp;
12690 	return !ret ? REASON_STACK : 0;
12691 }
12692 
12693 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
12694 {
12695 	struct bpf_verifier_state *vstate = env->cur_state;
12696 
12697 	/* If we simulate paths under speculation, we don't update the
12698 	 * insn as 'seen' such that when we verify unreachable paths in
12699 	 * the non-speculative domain, sanitize_dead_code() can still
12700 	 * rewrite/sanitize them.
12701 	 */
12702 	if (!vstate->speculative)
12703 		env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
12704 }
12705 
12706 static int sanitize_err(struct bpf_verifier_env *env,
12707 			const struct bpf_insn *insn, int reason,
12708 			const struct bpf_reg_state *off_reg,
12709 			const struct bpf_reg_state *dst_reg)
12710 {
12711 	static const char *err = "pointer arithmetic with it prohibited for !root";
12712 	const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
12713 	u32 dst = insn->dst_reg, src = insn->src_reg;
12714 
12715 	switch (reason) {
12716 	case REASON_BOUNDS:
12717 		verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
12718 			off_reg == dst_reg ? dst : src, err);
12719 		break;
12720 	case REASON_TYPE:
12721 		verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
12722 			off_reg == dst_reg ? src : dst, err);
12723 		break;
12724 	case REASON_PATHS:
12725 		verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
12726 			dst, op, err);
12727 		break;
12728 	case REASON_LIMIT:
12729 		verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
12730 			dst, op, err);
12731 		break;
12732 	case REASON_STACK:
12733 		verbose(env, "R%d could not be pushed for speculative verification, %s\n",
12734 			dst, err);
12735 		break;
12736 	default:
12737 		verbose(env, "verifier internal error: unknown reason (%d)\n",
12738 			reason);
12739 		break;
12740 	}
12741 
12742 	return -EACCES;
12743 }
12744 
12745 /* check that stack access falls within stack limits and that 'reg' doesn't
12746  * have a variable offset.
12747  *
12748  * Variable offset is prohibited for unprivileged mode for simplicity since it
12749  * requires corresponding support in Spectre masking for stack ALU.  See also
12750  * retrieve_ptr_limit().
12751  *
12752  *
12753  * 'off' includes 'reg->off'.
12754  */
12755 static int check_stack_access_for_ptr_arithmetic(
12756 				struct bpf_verifier_env *env,
12757 				int regno,
12758 				const struct bpf_reg_state *reg,
12759 				int off)
12760 {
12761 	if (!tnum_is_const(reg->var_off)) {
12762 		char tn_buf[48];
12763 
12764 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
12765 		verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
12766 			regno, tn_buf, off);
12767 		return -EACCES;
12768 	}
12769 
12770 	if (off >= 0 || off < -MAX_BPF_STACK) {
12771 		verbose(env, "R%d stack pointer arithmetic goes out of range, "
12772 			"prohibited for !root; off=%d\n", regno, off);
12773 		return -EACCES;
12774 	}
12775 
12776 	return 0;
12777 }
12778 
12779 static int sanitize_check_bounds(struct bpf_verifier_env *env,
12780 				 const struct bpf_insn *insn,
12781 				 const struct bpf_reg_state *dst_reg)
12782 {
12783 	u32 dst = insn->dst_reg;
12784 
12785 	/* For unprivileged we require that resulting offset must be in bounds
12786 	 * in order to be able to sanitize access later on.
12787 	 */
12788 	if (env->bypass_spec_v1)
12789 		return 0;
12790 
12791 	switch (dst_reg->type) {
12792 	case PTR_TO_STACK:
12793 		if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
12794 					dst_reg->off + dst_reg->var_off.value))
12795 			return -EACCES;
12796 		break;
12797 	case PTR_TO_MAP_VALUE:
12798 		if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) {
12799 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
12800 				"prohibited for !root\n", dst);
12801 			return -EACCES;
12802 		}
12803 		break;
12804 	default:
12805 		break;
12806 	}
12807 
12808 	return 0;
12809 }
12810 
12811 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
12812  * Caller should also handle BPF_MOV case separately.
12813  * If we return -EACCES, caller may want to try again treating pointer as a
12814  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
12815  */
12816 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
12817 				   struct bpf_insn *insn,
12818 				   const struct bpf_reg_state *ptr_reg,
12819 				   const struct bpf_reg_state *off_reg)
12820 {
12821 	struct bpf_verifier_state *vstate = env->cur_state;
12822 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
12823 	struct bpf_reg_state *regs = state->regs, *dst_reg;
12824 	bool known = tnum_is_const(off_reg->var_off);
12825 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
12826 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
12827 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
12828 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
12829 	struct bpf_sanitize_info info = {};
12830 	u8 opcode = BPF_OP(insn->code);
12831 	u32 dst = insn->dst_reg;
12832 	int ret;
12833 
12834 	dst_reg = &regs[dst];
12835 
12836 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
12837 	    smin_val > smax_val || umin_val > umax_val) {
12838 		/* Taint dst register if offset had invalid bounds derived from
12839 		 * e.g. dead branches.
12840 		 */
12841 		__mark_reg_unknown(env, dst_reg);
12842 		return 0;
12843 	}
12844 
12845 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
12846 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
12847 		if (opcode == BPF_SUB && env->allow_ptr_leaks) {
12848 			__mark_reg_unknown(env, dst_reg);
12849 			return 0;
12850 		}
12851 
12852 		verbose(env,
12853 			"R%d 32-bit pointer arithmetic prohibited\n",
12854 			dst);
12855 		return -EACCES;
12856 	}
12857 
12858 	if (ptr_reg->type & PTR_MAYBE_NULL) {
12859 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
12860 			dst, reg_type_str(env, ptr_reg->type));
12861 		return -EACCES;
12862 	}
12863 
12864 	switch (base_type(ptr_reg->type)) {
12865 	case PTR_TO_CTX:
12866 	case PTR_TO_MAP_VALUE:
12867 	case PTR_TO_MAP_KEY:
12868 	case PTR_TO_STACK:
12869 	case PTR_TO_PACKET_META:
12870 	case PTR_TO_PACKET:
12871 	case PTR_TO_TP_BUFFER:
12872 	case PTR_TO_BTF_ID:
12873 	case PTR_TO_MEM:
12874 	case PTR_TO_BUF:
12875 	case PTR_TO_FUNC:
12876 	case CONST_PTR_TO_DYNPTR:
12877 		break;
12878 	case PTR_TO_FLOW_KEYS:
12879 		if (known)
12880 			break;
12881 		fallthrough;
12882 	case CONST_PTR_TO_MAP:
12883 		/* smin_val represents the known value */
12884 		if (known && smin_val == 0 && opcode == BPF_ADD)
12885 			break;
12886 		fallthrough;
12887 	default:
12888 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
12889 			dst, reg_type_str(env, ptr_reg->type));
12890 		return -EACCES;
12891 	}
12892 
12893 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
12894 	 * The id may be overwritten later if we create a new variable offset.
12895 	 */
12896 	dst_reg->type = ptr_reg->type;
12897 	dst_reg->id = ptr_reg->id;
12898 
12899 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
12900 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
12901 		return -EINVAL;
12902 
12903 	/* pointer types do not carry 32-bit bounds at the moment. */
12904 	__mark_reg32_unbounded(dst_reg);
12905 
12906 	if (sanitize_needed(opcode)) {
12907 		ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
12908 				       &info, false);
12909 		if (ret < 0)
12910 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
12911 	}
12912 
12913 	switch (opcode) {
12914 	case BPF_ADD:
12915 		/* We can take a fixed offset as long as it doesn't overflow
12916 		 * the s32 'off' field
12917 		 */
12918 		if (known && (ptr_reg->off + smin_val ==
12919 			      (s64)(s32)(ptr_reg->off + smin_val))) {
12920 			/* pointer += K.  Accumulate it into fixed offset */
12921 			dst_reg->smin_value = smin_ptr;
12922 			dst_reg->smax_value = smax_ptr;
12923 			dst_reg->umin_value = umin_ptr;
12924 			dst_reg->umax_value = umax_ptr;
12925 			dst_reg->var_off = ptr_reg->var_off;
12926 			dst_reg->off = ptr_reg->off + smin_val;
12927 			dst_reg->raw = ptr_reg->raw;
12928 			break;
12929 		}
12930 		/* A new variable offset is created.  Note that off_reg->off
12931 		 * == 0, since it's a scalar.
12932 		 * dst_reg gets the pointer type and since some positive
12933 		 * integer value was added to the pointer, give it a new 'id'
12934 		 * if it's a PTR_TO_PACKET.
12935 		 * this creates a new 'base' pointer, off_reg (variable) gets
12936 		 * added into the variable offset, and we copy the fixed offset
12937 		 * from ptr_reg.
12938 		 */
12939 		if (signed_add_overflows(smin_ptr, smin_val) ||
12940 		    signed_add_overflows(smax_ptr, smax_val)) {
12941 			dst_reg->smin_value = S64_MIN;
12942 			dst_reg->smax_value = S64_MAX;
12943 		} else {
12944 			dst_reg->smin_value = smin_ptr + smin_val;
12945 			dst_reg->smax_value = smax_ptr + smax_val;
12946 		}
12947 		if (umin_ptr + umin_val < umin_ptr ||
12948 		    umax_ptr + umax_val < umax_ptr) {
12949 			dst_reg->umin_value = 0;
12950 			dst_reg->umax_value = U64_MAX;
12951 		} else {
12952 			dst_reg->umin_value = umin_ptr + umin_val;
12953 			dst_reg->umax_value = umax_ptr + umax_val;
12954 		}
12955 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
12956 		dst_reg->off = ptr_reg->off;
12957 		dst_reg->raw = ptr_reg->raw;
12958 		if (reg_is_pkt_pointer(ptr_reg)) {
12959 			dst_reg->id = ++env->id_gen;
12960 			/* something was added to pkt_ptr, set range to zero */
12961 			memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
12962 		}
12963 		break;
12964 	case BPF_SUB:
12965 		if (dst_reg == off_reg) {
12966 			/* scalar -= pointer.  Creates an unknown scalar */
12967 			verbose(env, "R%d tried to subtract pointer from scalar\n",
12968 				dst);
12969 			return -EACCES;
12970 		}
12971 		/* We don't allow subtraction from FP, because (according to
12972 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
12973 		 * be able to deal with it.
12974 		 */
12975 		if (ptr_reg->type == PTR_TO_STACK) {
12976 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
12977 				dst);
12978 			return -EACCES;
12979 		}
12980 		if (known && (ptr_reg->off - smin_val ==
12981 			      (s64)(s32)(ptr_reg->off - smin_val))) {
12982 			/* pointer -= K.  Subtract it from fixed offset */
12983 			dst_reg->smin_value = smin_ptr;
12984 			dst_reg->smax_value = smax_ptr;
12985 			dst_reg->umin_value = umin_ptr;
12986 			dst_reg->umax_value = umax_ptr;
12987 			dst_reg->var_off = ptr_reg->var_off;
12988 			dst_reg->id = ptr_reg->id;
12989 			dst_reg->off = ptr_reg->off - smin_val;
12990 			dst_reg->raw = ptr_reg->raw;
12991 			break;
12992 		}
12993 		/* A new variable offset is created.  If the subtrahend is known
12994 		 * nonnegative, then any reg->range we had before is still good.
12995 		 */
12996 		if (signed_sub_overflows(smin_ptr, smax_val) ||
12997 		    signed_sub_overflows(smax_ptr, smin_val)) {
12998 			/* Overflow possible, we know nothing */
12999 			dst_reg->smin_value = S64_MIN;
13000 			dst_reg->smax_value = S64_MAX;
13001 		} else {
13002 			dst_reg->smin_value = smin_ptr - smax_val;
13003 			dst_reg->smax_value = smax_ptr - smin_val;
13004 		}
13005 		if (umin_ptr < umax_val) {
13006 			/* Overflow possible, we know nothing */
13007 			dst_reg->umin_value = 0;
13008 			dst_reg->umax_value = U64_MAX;
13009 		} else {
13010 			/* Cannot overflow (as long as bounds are consistent) */
13011 			dst_reg->umin_value = umin_ptr - umax_val;
13012 			dst_reg->umax_value = umax_ptr - umin_val;
13013 		}
13014 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
13015 		dst_reg->off = ptr_reg->off;
13016 		dst_reg->raw = ptr_reg->raw;
13017 		if (reg_is_pkt_pointer(ptr_reg)) {
13018 			dst_reg->id = ++env->id_gen;
13019 			/* something was added to pkt_ptr, set range to zero */
13020 			if (smin_val < 0)
13021 				memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
13022 		}
13023 		break;
13024 	case BPF_AND:
13025 	case BPF_OR:
13026 	case BPF_XOR:
13027 		/* bitwise ops on pointers are troublesome, prohibit. */
13028 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
13029 			dst, bpf_alu_string[opcode >> 4]);
13030 		return -EACCES;
13031 	default:
13032 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
13033 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
13034 			dst, bpf_alu_string[opcode >> 4]);
13035 		return -EACCES;
13036 	}
13037 
13038 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
13039 		return -EINVAL;
13040 	reg_bounds_sync(dst_reg);
13041 	if (sanitize_check_bounds(env, insn, dst_reg) < 0)
13042 		return -EACCES;
13043 	if (sanitize_needed(opcode)) {
13044 		ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
13045 				       &info, true);
13046 		if (ret < 0)
13047 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
13048 	}
13049 
13050 	return 0;
13051 }
13052 
13053 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
13054 				 struct bpf_reg_state *src_reg)
13055 {
13056 	s32 smin_val = src_reg->s32_min_value;
13057 	s32 smax_val = src_reg->s32_max_value;
13058 	u32 umin_val = src_reg->u32_min_value;
13059 	u32 umax_val = src_reg->u32_max_value;
13060 
13061 	if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
13062 	    signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
13063 		dst_reg->s32_min_value = S32_MIN;
13064 		dst_reg->s32_max_value = S32_MAX;
13065 	} else {
13066 		dst_reg->s32_min_value += smin_val;
13067 		dst_reg->s32_max_value += smax_val;
13068 	}
13069 	if (dst_reg->u32_min_value + umin_val < umin_val ||
13070 	    dst_reg->u32_max_value + umax_val < umax_val) {
13071 		dst_reg->u32_min_value = 0;
13072 		dst_reg->u32_max_value = U32_MAX;
13073 	} else {
13074 		dst_reg->u32_min_value += umin_val;
13075 		dst_reg->u32_max_value += umax_val;
13076 	}
13077 }
13078 
13079 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
13080 			       struct bpf_reg_state *src_reg)
13081 {
13082 	s64 smin_val = src_reg->smin_value;
13083 	s64 smax_val = src_reg->smax_value;
13084 	u64 umin_val = src_reg->umin_value;
13085 	u64 umax_val = src_reg->umax_value;
13086 
13087 	if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
13088 	    signed_add_overflows(dst_reg->smax_value, smax_val)) {
13089 		dst_reg->smin_value = S64_MIN;
13090 		dst_reg->smax_value = S64_MAX;
13091 	} else {
13092 		dst_reg->smin_value += smin_val;
13093 		dst_reg->smax_value += smax_val;
13094 	}
13095 	if (dst_reg->umin_value + umin_val < umin_val ||
13096 	    dst_reg->umax_value + umax_val < umax_val) {
13097 		dst_reg->umin_value = 0;
13098 		dst_reg->umax_value = U64_MAX;
13099 	} else {
13100 		dst_reg->umin_value += umin_val;
13101 		dst_reg->umax_value += umax_val;
13102 	}
13103 }
13104 
13105 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
13106 				 struct bpf_reg_state *src_reg)
13107 {
13108 	s32 smin_val = src_reg->s32_min_value;
13109 	s32 smax_val = src_reg->s32_max_value;
13110 	u32 umin_val = src_reg->u32_min_value;
13111 	u32 umax_val = src_reg->u32_max_value;
13112 
13113 	if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
13114 	    signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
13115 		/* Overflow possible, we know nothing */
13116 		dst_reg->s32_min_value = S32_MIN;
13117 		dst_reg->s32_max_value = S32_MAX;
13118 	} else {
13119 		dst_reg->s32_min_value -= smax_val;
13120 		dst_reg->s32_max_value -= smin_val;
13121 	}
13122 	if (dst_reg->u32_min_value < umax_val) {
13123 		/* Overflow possible, we know nothing */
13124 		dst_reg->u32_min_value = 0;
13125 		dst_reg->u32_max_value = U32_MAX;
13126 	} else {
13127 		/* Cannot overflow (as long as bounds are consistent) */
13128 		dst_reg->u32_min_value -= umax_val;
13129 		dst_reg->u32_max_value -= umin_val;
13130 	}
13131 }
13132 
13133 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
13134 			       struct bpf_reg_state *src_reg)
13135 {
13136 	s64 smin_val = src_reg->smin_value;
13137 	s64 smax_val = src_reg->smax_value;
13138 	u64 umin_val = src_reg->umin_value;
13139 	u64 umax_val = src_reg->umax_value;
13140 
13141 	if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
13142 	    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
13143 		/* Overflow possible, we know nothing */
13144 		dst_reg->smin_value = S64_MIN;
13145 		dst_reg->smax_value = S64_MAX;
13146 	} else {
13147 		dst_reg->smin_value -= smax_val;
13148 		dst_reg->smax_value -= smin_val;
13149 	}
13150 	if (dst_reg->umin_value < umax_val) {
13151 		/* Overflow possible, we know nothing */
13152 		dst_reg->umin_value = 0;
13153 		dst_reg->umax_value = U64_MAX;
13154 	} else {
13155 		/* Cannot overflow (as long as bounds are consistent) */
13156 		dst_reg->umin_value -= umax_val;
13157 		dst_reg->umax_value -= umin_val;
13158 	}
13159 }
13160 
13161 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
13162 				 struct bpf_reg_state *src_reg)
13163 {
13164 	s32 smin_val = src_reg->s32_min_value;
13165 	u32 umin_val = src_reg->u32_min_value;
13166 	u32 umax_val = src_reg->u32_max_value;
13167 
13168 	if (smin_val < 0 || dst_reg->s32_min_value < 0) {
13169 		/* Ain't nobody got time to multiply that sign */
13170 		__mark_reg32_unbounded(dst_reg);
13171 		return;
13172 	}
13173 	/* Both values are positive, so we can work with unsigned and
13174 	 * copy the result to signed (unless it exceeds S32_MAX).
13175 	 */
13176 	if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
13177 		/* Potential overflow, we know nothing */
13178 		__mark_reg32_unbounded(dst_reg);
13179 		return;
13180 	}
13181 	dst_reg->u32_min_value *= umin_val;
13182 	dst_reg->u32_max_value *= umax_val;
13183 	if (dst_reg->u32_max_value > S32_MAX) {
13184 		/* Overflow possible, we know nothing */
13185 		dst_reg->s32_min_value = S32_MIN;
13186 		dst_reg->s32_max_value = S32_MAX;
13187 	} else {
13188 		dst_reg->s32_min_value = dst_reg->u32_min_value;
13189 		dst_reg->s32_max_value = dst_reg->u32_max_value;
13190 	}
13191 }
13192 
13193 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
13194 			       struct bpf_reg_state *src_reg)
13195 {
13196 	s64 smin_val = src_reg->smin_value;
13197 	u64 umin_val = src_reg->umin_value;
13198 	u64 umax_val = src_reg->umax_value;
13199 
13200 	if (smin_val < 0 || dst_reg->smin_value < 0) {
13201 		/* Ain't nobody got time to multiply that sign */
13202 		__mark_reg64_unbounded(dst_reg);
13203 		return;
13204 	}
13205 	/* Both values are positive, so we can work with unsigned and
13206 	 * copy the result to signed (unless it exceeds S64_MAX).
13207 	 */
13208 	if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
13209 		/* Potential overflow, we know nothing */
13210 		__mark_reg64_unbounded(dst_reg);
13211 		return;
13212 	}
13213 	dst_reg->umin_value *= umin_val;
13214 	dst_reg->umax_value *= umax_val;
13215 	if (dst_reg->umax_value > S64_MAX) {
13216 		/* Overflow possible, we know nothing */
13217 		dst_reg->smin_value = S64_MIN;
13218 		dst_reg->smax_value = S64_MAX;
13219 	} else {
13220 		dst_reg->smin_value = dst_reg->umin_value;
13221 		dst_reg->smax_value = dst_reg->umax_value;
13222 	}
13223 }
13224 
13225 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
13226 				 struct bpf_reg_state *src_reg)
13227 {
13228 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
13229 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
13230 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
13231 	s32 smin_val = src_reg->s32_min_value;
13232 	u32 umax_val = src_reg->u32_max_value;
13233 
13234 	if (src_known && dst_known) {
13235 		__mark_reg32_known(dst_reg, var32_off.value);
13236 		return;
13237 	}
13238 
13239 	/* We get our minimum from the var_off, since that's inherently
13240 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
13241 	 */
13242 	dst_reg->u32_min_value = var32_off.value;
13243 	dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
13244 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
13245 		/* Lose signed bounds when ANDing negative numbers,
13246 		 * ain't nobody got time for that.
13247 		 */
13248 		dst_reg->s32_min_value = S32_MIN;
13249 		dst_reg->s32_max_value = S32_MAX;
13250 	} else {
13251 		/* ANDing two positives gives a positive, so safe to
13252 		 * cast result into s64.
13253 		 */
13254 		dst_reg->s32_min_value = dst_reg->u32_min_value;
13255 		dst_reg->s32_max_value = dst_reg->u32_max_value;
13256 	}
13257 }
13258 
13259 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
13260 			       struct bpf_reg_state *src_reg)
13261 {
13262 	bool src_known = tnum_is_const(src_reg->var_off);
13263 	bool dst_known = tnum_is_const(dst_reg->var_off);
13264 	s64 smin_val = src_reg->smin_value;
13265 	u64 umax_val = src_reg->umax_value;
13266 
13267 	if (src_known && dst_known) {
13268 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
13269 		return;
13270 	}
13271 
13272 	/* We get our minimum from the var_off, since that's inherently
13273 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
13274 	 */
13275 	dst_reg->umin_value = dst_reg->var_off.value;
13276 	dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
13277 	if (dst_reg->smin_value < 0 || smin_val < 0) {
13278 		/* Lose signed bounds when ANDing negative numbers,
13279 		 * ain't nobody got time for that.
13280 		 */
13281 		dst_reg->smin_value = S64_MIN;
13282 		dst_reg->smax_value = S64_MAX;
13283 	} else {
13284 		/* ANDing two positives gives a positive, so safe to
13285 		 * cast result into s64.
13286 		 */
13287 		dst_reg->smin_value = dst_reg->umin_value;
13288 		dst_reg->smax_value = dst_reg->umax_value;
13289 	}
13290 	/* We may learn something more from the var_off */
13291 	__update_reg_bounds(dst_reg);
13292 }
13293 
13294 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
13295 				struct bpf_reg_state *src_reg)
13296 {
13297 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
13298 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
13299 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
13300 	s32 smin_val = src_reg->s32_min_value;
13301 	u32 umin_val = src_reg->u32_min_value;
13302 
13303 	if (src_known && dst_known) {
13304 		__mark_reg32_known(dst_reg, var32_off.value);
13305 		return;
13306 	}
13307 
13308 	/* We get our maximum from the var_off, and our minimum is the
13309 	 * maximum of the operands' minima
13310 	 */
13311 	dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
13312 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
13313 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
13314 		/* Lose signed bounds when ORing negative numbers,
13315 		 * ain't nobody got time for that.
13316 		 */
13317 		dst_reg->s32_min_value = S32_MIN;
13318 		dst_reg->s32_max_value = S32_MAX;
13319 	} else {
13320 		/* ORing two positives gives a positive, so safe to
13321 		 * cast result into s64.
13322 		 */
13323 		dst_reg->s32_min_value = dst_reg->u32_min_value;
13324 		dst_reg->s32_max_value = dst_reg->u32_max_value;
13325 	}
13326 }
13327 
13328 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
13329 			      struct bpf_reg_state *src_reg)
13330 {
13331 	bool src_known = tnum_is_const(src_reg->var_off);
13332 	bool dst_known = tnum_is_const(dst_reg->var_off);
13333 	s64 smin_val = src_reg->smin_value;
13334 	u64 umin_val = src_reg->umin_value;
13335 
13336 	if (src_known && dst_known) {
13337 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
13338 		return;
13339 	}
13340 
13341 	/* We get our maximum from the var_off, and our minimum is the
13342 	 * maximum of the operands' minima
13343 	 */
13344 	dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
13345 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
13346 	if (dst_reg->smin_value < 0 || smin_val < 0) {
13347 		/* Lose signed bounds when ORing negative numbers,
13348 		 * ain't nobody got time for that.
13349 		 */
13350 		dst_reg->smin_value = S64_MIN;
13351 		dst_reg->smax_value = S64_MAX;
13352 	} else {
13353 		/* ORing two positives gives a positive, so safe to
13354 		 * cast result into s64.
13355 		 */
13356 		dst_reg->smin_value = dst_reg->umin_value;
13357 		dst_reg->smax_value = dst_reg->umax_value;
13358 	}
13359 	/* We may learn something more from the var_off */
13360 	__update_reg_bounds(dst_reg);
13361 }
13362 
13363 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
13364 				 struct bpf_reg_state *src_reg)
13365 {
13366 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
13367 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
13368 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
13369 	s32 smin_val = src_reg->s32_min_value;
13370 
13371 	if (src_known && dst_known) {
13372 		__mark_reg32_known(dst_reg, var32_off.value);
13373 		return;
13374 	}
13375 
13376 	/* We get both minimum and maximum from the var32_off. */
13377 	dst_reg->u32_min_value = var32_off.value;
13378 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
13379 
13380 	if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
13381 		/* XORing two positive sign numbers gives a positive,
13382 		 * so safe to cast u32 result into s32.
13383 		 */
13384 		dst_reg->s32_min_value = dst_reg->u32_min_value;
13385 		dst_reg->s32_max_value = dst_reg->u32_max_value;
13386 	} else {
13387 		dst_reg->s32_min_value = S32_MIN;
13388 		dst_reg->s32_max_value = S32_MAX;
13389 	}
13390 }
13391 
13392 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
13393 			       struct bpf_reg_state *src_reg)
13394 {
13395 	bool src_known = tnum_is_const(src_reg->var_off);
13396 	bool dst_known = tnum_is_const(dst_reg->var_off);
13397 	s64 smin_val = src_reg->smin_value;
13398 
13399 	if (src_known && dst_known) {
13400 		/* dst_reg->var_off.value has been updated earlier */
13401 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
13402 		return;
13403 	}
13404 
13405 	/* We get both minimum and maximum from the var_off. */
13406 	dst_reg->umin_value = dst_reg->var_off.value;
13407 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
13408 
13409 	if (dst_reg->smin_value >= 0 && smin_val >= 0) {
13410 		/* XORing two positive sign numbers gives a positive,
13411 		 * so safe to cast u64 result into s64.
13412 		 */
13413 		dst_reg->smin_value = dst_reg->umin_value;
13414 		dst_reg->smax_value = dst_reg->umax_value;
13415 	} else {
13416 		dst_reg->smin_value = S64_MIN;
13417 		dst_reg->smax_value = S64_MAX;
13418 	}
13419 
13420 	__update_reg_bounds(dst_reg);
13421 }
13422 
13423 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
13424 				   u64 umin_val, u64 umax_val)
13425 {
13426 	/* We lose all sign bit information (except what we can pick
13427 	 * up from var_off)
13428 	 */
13429 	dst_reg->s32_min_value = S32_MIN;
13430 	dst_reg->s32_max_value = S32_MAX;
13431 	/* If we might shift our top bit out, then we know nothing */
13432 	if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
13433 		dst_reg->u32_min_value = 0;
13434 		dst_reg->u32_max_value = U32_MAX;
13435 	} else {
13436 		dst_reg->u32_min_value <<= umin_val;
13437 		dst_reg->u32_max_value <<= umax_val;
13438 	}
13439 }
13440 
13441 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
13442 				 struct bpf_reg_state *src_reg)
13443 {
13444 	u32 umax_val = src_reg->u32_max_value;
13445 	u32 umin_val = src_reg->u32_min_value;
13446 	/* u32 alu operation will zext upper bits */
13447 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
13448 
13449 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
13450 	dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
13451 	/* Not required but being careful mark reg64 bounds as unknown so
13452 	 * that we are forced to pick them up from tnum and zext later and
13453 	 * if some path skips this step we are still safe.
13454 	 */
13455 	__mark_reg64_unbounded(dst_reg);
13456 	__update_reg32_bounds(dst_reg);
13457 }
13458 
13459 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
13460 				   u64 umin_val, u64 umax_val)
13461 {
13462 	/* Special case <<32 because it is a common compiler pattern to sign
13463 	 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
13464 	 * positive we know this shift will also be positive so we can track
13465 	 * bounds correctly. Otherwise we lose all sign bit information except
13466 	 * what we can pick up from var_off. Perhaps we can generalize this
13467 	 * later to shifts of any length.
13468 	 */
13469 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
13470 		dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
13471 	else
13472 		dst_reg->smax_value = S64_MAX;
13473 
13474 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
13475 		dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
13476 	else
13477 		dst_reg->smin_value = S64_MIN;
13478 
13479 	/* If we might shift our top bit out, then we know nothing */
13480 	if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
13481 		dst_reg->umin_value = 0;
13482 		dst_reg->umax_value = U64_MAX;
13483 	} else {
13484 		dst_reg->umin_value <<= umin_val;
13485 		dst_reg->umax_value <<= umax_val;
13486 	}
13487 }
13488 
13489 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
13490 			       struct bpf_reg_state *src_reg)
13491 {
13492 	u64 umax_val = src_reg->umax_value;
13493 	u64 umin_val = src_reg->umin_value;
13494 
13495 	/* scalar64 calc uses 32bit unshifted bounds so must be called first */
13496 	__scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
13497 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
13498 
13499 	dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
13500 	/* We may learn something more from the var_off */
13501 	__update_reg_bounds(dst_reg);
13502 }
13503 
13504 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
13505 				 struct bpf_reg_state *src_reg)
13506 {
13507 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
13508 	u32 umax_val = src_reg->u32_max_value;
13509 	u32 umin_val = src_reg->u32_min_value;
13510 
13511 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
13512 	 * be negative, then either:
13513 	 * 1) src_reg might be zero, so the sign bit of the result is
13514 	 *    unknown, so we lose our signed bounds
13515 	 * 2) it's known negative, thus the unsigned bounds capture the
13516 	 *    signed bounds
13517 	 * 3) the signed bounds cross zero, so they tell us nothing
13518 	 *    about the result
13519 	 * If the value in dst_reg is known nonnegative, then again the
13520 	 * unsigned bounds capture the signed bounds.
13521 	 * Thus, in all cases it suffices to blow away our signed bounds
13522 	 * and rely on inferring new ones from the unsigned bounds and
13523 	 * var_off of the result.
13524 	 */
13525 	dst_reg->s32_min_value = S32_MIN;
13526 	dst_reg->s32_max_value = S32_MAX;
13527 
13528 	dst_reg->var_off = tnum_rshift(subreg, umin_val);
13529 	dst_reg->u32_min_value >>= umax_val;
13530 	dst_reg->u32_max_value >>= umin_val;
13531 
13532 	__mark_reg64_unbounded(dst_reg);
13533 	__update_reg32_bounds(dst_reg);
13534 }
13535 
13536 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
13537 			       struct bpf_reg_state *src_reg)
13538 {
13539 	u64 umax_val = src_reg->umax_value;
13540 	u64 umin_val = src_reg->umin_value;
13541 
13542 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
13543 	 * be negative, then either:
13544 	 * 1) src_reg might be zero, so the sign bit of the result is
13545 	 *    unknown, so we lose our signed bounds
13546 	 * 2) it's known negative, thus the unsigned bounds capture the
13547 	 *    signed bounds
13548 	 * 3) the signed bounds cross zero, so they tell us nothing
13549 	 *    about the result
13550 	 * If the value in dst_reg is known nonnegative, then again the
13551 	 * unsigned bounds capture the signed bounds.
13552 	 * Thus, in all cases it suffices to blow away our signed bounds
13553 	 * and rely on inferring new ones from the unsigned bounds and
13554 	 * var_off of the result.
13555 	 */
13556 	dst_reg->smin_value = S64_MIN;
13557 	dst_reg->smax_value = S64_MAX;
13558 	dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
13559 	dst_reg->umin_value >>= umax_val;
13560 	dst_reg->umax_value >>= umin_val;
13561 
13562 	/* Its not easy to operate on alu32 bounds here because it depends
13563 	 * on bits being shifted in. Take easy way out and mark unbounded
13564 	 * so we can recalculate later from tnum.
13565 	 */
13566 	__mark_reg32_unbounded(dst_reg);
13567 	__update_reg_bounds(dst_reg);
13568 }
13569 
13570 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
13571 				  struct bpf_reg_state *src_reg)
13572 {
13573 	u64 umin_val = src_reg->u32_min_value;
13574 
13575 	/* Upon reaching here, src_known is true and
13576 	 * umax_val is equal to umin_val.
13577 	 */
13578 	dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
13579 	dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
13580 
13581 	dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
13582 
13583 	/* blow away the dst_reg umin_value/umax_value and rely on
13584 	 * dst_reg var_off to refine the result.
13585 	 */
13586 	dst_reg->u32_min_value = 0;
13587 	dst_reg->u32_max_value = U32_MAX;
13588 
13589 	__mark_reg64_unbounded(dst_reg);
13590 	__update_reg32_bounds(dst_reg);
13591 }
13592 
13593 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
13594 				struct bpf_reg_state *src_reg)
13595 {
13596 	u64 umin_val = src_reg->umin_value;
13597 
13598 	/* Upon reaching here, src_known is true and umax_val is equal
13599 	 * to umin_val.
13600 	 */
13601 	dst_reg->smin_value >>= umin_val;
13602 	dst_reg->smax_value >>= umin_val;
13603 
13604 	dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
13605 
13606 	/* blow away the dst_reg umin_value/umax_value and rely on
13607 	 * dst_reg var_off to refine the result.
13608 	 */
13609 	dst_reg->umin_value = 0;
13610 	dst_reg->umax_value = U64_MAX;
13611 
13612 	/* Its not easy to operate on alu32 bounds here because it depends
13613 	 * on bits being shifted in from upper 32-bits. Take easy way out
13614 	 * and mark unbounded so we can recalculate later from tnum.
13615 	 */
13616 	__mark_reg32_unbounded(dst_reg);
13617 	__update_reg_bounds(dst_reg);
13618 }
13619 
13620 /* WARNING: This function does calculations on 64-bit values, but the actual
13621  * execution may occur on 32-bit values. Therefore, things like bitshifts
13622  * need extra checks in the 32-bit case.
13623  */
13624 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
13625 				      struct bpf_insn *insn,
13626 				      struct bpf_reg_state *dst_reg,
13627 				      struct bpf_reg_state src_reg)
13628 {
13629 	struct bpf_reg_state *regs = cur_regs(env);
13630 	u8 opcode = BPF_OP(insn->code);
13631 	bool src_known;
13632 	s64 smin_val, smax_val;
13633 	u64 umin_val, umax_val;
13634 	s32 s32_min_val, s32_max_val;
13635 	u32 u32_min_val, u32_max_val;
13636 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
13637 	bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
13638 	int ret;
13639 
13640 	smin_val = src_reg.smin_value;
13641 	smax_val = src_reg.smax_value;
13642 	umin_val = src_reg.umin_value;
13643 	umax_val = src_reg.umax_value;
13644 
13645 	s32_min_val = src_reg.s32_min_value;
13646 	s32_max_val = src_reg.s32_max_value;
13647 	u32_min_val = src_reg.u32_min_value;
13648 	u32_max_val = src_reg.u32_max_value;
13649 
13650 	if (alu32) {
13651 		src_known = tnum_subreg_is_const(src_reg.var_off);
13652 		if ((src_known &&
13653 		     (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
13654 		    s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
13655 			/* Taint dst register if offset had invalid bounds
13656 			 * derived from e.g. dead branches.
13657 			 */
13658 			__mark_reg_unknown(env, dst_reg);
13659 			return 0;
13660 		}
13661 	} else {
13662 		src_known = tnum_is_const(src_reg.var_off);
13663 		if ((src_known &&
13664 		     (smin_val != smax_val || umin_val != umax_val)) ||
13665 		    smin_val > smax_val || umin_val > umax_val) {
13666 			/* Taint dst register if offset had invalid bounds
13667 			 * derived from e.g. dead branches.
13668 			 */
13669 			__mark_reg_unknown(env, dst_reg);
13670 			return 0;
13671 		}
13672 	}
13673 
13674 	if (!src_known &&
13675 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
13676 		__mark_reg_unknown(env, dst_reg);
13677 		return 0;
13678 	}
13679 
13680 	if (sanitize_needed(opcode)) {
13681 		ret = sanitize_val_alu(env, insn);
13682 		if (ret < 0)
13683 			return sanitize_err(env, insn, ret, NULL, NULL);
13684 	}
13685 
13686 	/* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
13687 	 * There are two classes of instructions: The first class we track both
13688 	 * alu32 and alu64 sign/unsigned bounds independently this provides the
13689 	 * greatest amount of precision when alu operations are mixed with jmp32
13690 	 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
13691 	 * and BPF_OR. This is possible because these ops have fairly easy to
13692 	 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
13693 	 * See alu32 verifier tests for examples. The second class of
13694 	 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
13695 	 * with regards to tracking sign/unsigned bounds because the bits may
13696 	 * cross subreg boundaries in the alu64 case. When this happens we mark
13697 	 * the reg unbounded in the subreg bound space and use the resulting
13698 	 * tnum to calculate an approximation of the sign/unsigned bounds.
13699 	 */
13700 	switch (opcode) {
13701 	case BPF_ADD:
13702 		scalar32_min_max_add(dst_reg, &src_reg);
13703 		scalar_min_max_add(dst_reg, &src_reg);
13704 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
13705 		break;
13706 	case BPF_SUB:
13707 		scalar32_min_max_sub(dst_reg, &src_reg);
13708 		scalar_min_max_sub(dst_reg, &src_reg);
13709 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
13710 		break;
13711 	case BPF_MUL:
13712 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
13713 		scalar32_min_max_mul(dst_reg, &src_reg);
13714 		scalar_min_max_mul(dst_reg, &src_reg);
13715 		break;
13716 	case BPF_AND:
13717 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
13718 		scalar32_min_max_and(dst_reg, &src_reg);
13719 		scalar_min_max_and(dst_reg, &src_reg);
13720 		break;
13721 	case BPF_OR:
13722 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
13723 		scalar32_min_max_or(dst_reg, &src_reg);
13724 		scalar_min_max_or(dst_reg, &src_reg);
13725 		break;
13726 	case BPF_XOR:
13727 		dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
13728 		scalar32_min_max_xor(dst_reg, &src_reg);
13729 		scalar_min_max_xor(dst_reg, &src_reg);
13730 		break;
13731 	case BPF_LSH:
13732 		if (umax_val >= insn_bitness) {
13733 			/* Shifts greater than 31 or 63 are undefined.
13734 			 * This includes shifts by a negative number.
13735 			 */
13736 			mark_reg_unknown(env, regs, insn->dst_reg);
13737 			break;
13738 		}
13739 		if (alu32)
13740 			scalar32_min_max_lsh(dst_reg, &src_reg);
13741 		else
13742 			scalar_min_max_lsh(dst_reg, &src_reg);
13743 		break;
13744 	case BPF_RSH:
13745 		if (umax_val >= insn_bitness) {
13746 			/* Shifts greater than 31 or 63 are undefined.
13747 			 * This includes shifts by a negative number.
13748 			 */
13749 			mark_reg_unknown(env, regs, insn->dst_reg);
13750 			break;
13751 		}
13752 		if (alu32)
13753 			scalar32_min_max_rsh(dst_reg, &src_reg);
13754 		else
13755 			scalar_min_max_rsh(dst_reg, &src_reg);
13756 		break;
13757 	case BPF_ARSH:
13758 		if (umax_val >= insn_bitness) {
13759 			/* Shifts greater than 31 or 63 are undefined.
13760 			 * This includes shifts by a negative number.
13761 			 */
13762 			mark_reg_unknown(env, regs, insn->dst_reg);
13763 			break;
13764 		}
13765 		if (alu32)
13766 			scalar32_min_max_arsh(dst_reg, &src_reg);
13767 		else
13768 			scalar_min_max_arsh(dst_reg, &src_reg);
13769 		break;
13770 	default:
13771 		mark_reg_unknown(env, regs, insn->dst_reg);
13772 		break;
13773 	}
13774 
13775 	/* ALU32 ops are zero extended into 64bit register */
13776 	if (alu32)
13777 		zext_32_to_64(dst_reg);
13778 	reg_bounds_sync(dst_reg);
13779 	return 0;
13780 }
13781 
13782 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
13783  * and var_off.
13784  */
13785 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
13786 				   struct bpf_insn *insn)
13787 {
13788 	struct bpf_verifier_state *vstate = env->cur_state;
13789 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
13790 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
13791 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
13792 	u8 opcode = BPF_OP(insn->code);
13793 	int err;
13794 
13795 	dst_reg = &regs[insn->dst_reg];
13796 	src_reg = NULL;
13797 	if (dst_reg->type != SCALAR_VALUE)
13798 		ptr_reg = dst_reg;
13799 	else
13800 		/* Make sure ID is cleared otherwise dst_reg min/max could be
13801 		 * incorrectly propagated into other registers by find_equal_scalars()
13802 		 */
13803 		dst_reg->id = 0;
13804 	if (BPF_SRC(insn->code) == BPF_X) {
13805 		src_reg = &regs[insn->src_reg];
13806 		if (src_reg->type != SCALAR_VALUE) {
13807 			if (dst_reg->type != SCALAR_VALUE) {
13808 				/* Combining two pointers by any ALU op yields
13809 				 * an arbitrary scalar. Disallow all math except
13810 				 * pointer subtraction
13811 				 */
13812 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
13813 					mark_reg_unknown(env, regs, insn->dst_reg);
13814 					return 0;
13815 				}
13816 				verbose(env, "R%d pointer %s pointer prohibited\n",
13817 					insn->dst_reg,
13818 					bpf_alu_string[opcode >> 4]);
13819 				return -EACCES;
13820 			} else {
13821 				/* scalar += pointer
13822 				 * This is legal, but we have to reverse our
13823 				 * src/dest handling in computing the range
13824 				 */
13825 				err = mark_chain_precision(env, insn->dst_reg);
13826 				if (err)
13827 					return err;
13828 				return adjust_ptr_min_max_vals(env, insn,
13829 							       src_reg, dst_reg);
13830 			}
13831 		} else if (ptr_reg) {
13832 			/* pointer += scalar */
13833 			err = mark_chain_precision(env, insn->src_reg);
13834 			if (err)
13835 				return err;
13836 			return adjust_ptr_min_max_vals(env, insn,
13837 						       dst_reg, src_reg);
13838 		} else if (dst_reg->precise) {
13839 			/* if dst_reg is precise, src_reg should be precise as well */
13840 			err = mark_chain_precision(env, insn->src_reg);
13841 			if (err)
13842 				return err;
13843 		}
13844 	} else {
13845 		/* Pretend the src is a reg with a known value, since we only
13846 		 * need to be able to read from this state.
13847 		 */
13848 		off_reg.type = SCALAR_VALUE;
13849 		__mark_reg_known(&off_reg, insn->imm);
13850 		src_reg = &off_reg;
13851 		if (ptr_reg) /* pointer += K */
13852 			return adjust_ptr_min_max_vals(env, insn,
13853 						       ptr_reg, src_reg);
13854 	}
13855 
13856 	/* Got here implies adding two SCALAR_VALUEs */
13857 	if (WARN_ON_ONCE(ptr_reg)) {
13858 		print_verifier_state(env, state, true);
13859 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
13860 		return -EINVAL;
13861 	}
13862 	if (WARN_ON(!src_reg)) {
13863 		print_verifier_state(env, state, true);
13864 		verbose(env, "verifier internal error: no src_reg\n");
13865 		return -EINVAL;
13866 	}
13867 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
13868 }
13869 
13870 /* check validity of 32-bit and 64-bit arithmetic operations */
13871 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
13872 {
13873 	struct bpf_reg_state *regs = cur_regs(env);
13874 	u8 opcode = BPF_OP(insn->code);
13875 	int err;
13876 
13877 	if (opcode == BPF_END || opcode == BPF_NEG) {
13878 		if (opcode == BPF_NEG) {
13879 			if (BPF_SRC(insn->code) != BPF_K ||
13880 			    insn->src_reg != BPF_REG_0 ||
13881 			    insn->off != 0 || insn->imm != 0) {
13882 				verbose(env, "BPF_NEG uses reserved fields\n");
13883 				return -EINVAL;
13884 			}
13885 		} else {
13886 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
13887 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
13888 			    (BPF_CLASS(insn->code) == BPF_ALU64 &&
13889 			     BPF_SRC(insn->code) != BPF_TO_LE)) {
13890 				verbose(env, "BPF_END uses reserved fields\n");
13891 				return -EINVAL;
13892 			}
13893 		}
13894 
13895 		/* check src operand */
13896 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
13897 		if (err)
13898 			return err;
13899 
13900 		if (is_pointer_value(env, insn->dst_reg)) {
13901 			verbose(env, "R%d pointer arithmetic prohibited\n",
13902 				insn->dst_reg);
13903 			return -EACCES;
13904 		}
13905 
13906 		/* check dest operand */
13907 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
13908 		if (err)
13909 			return err;
13910 
13911 	} else if (opcode == BPF_MOV) {
13912 
13913 		if (BPF_SRC(insn->code) == BPF_X) {
13914 			if (insn->imm != 0) {
13915 				verbose(env, "BPF_MOV uses reserved fields\n");
13916 				return -EINVAL;
13917 			}
13918 
13919 			if (BPF_CLASS(insn->code) == BPF_ALU) {
13920 				if (insn->off != 0 && insn->off != 8 && insn->off != 16) {
13921 					verbose(env, "BPF_MOV uses reserved fields\n");
13922 					return -EINVAL;
13923 				}
13924 			} else {
13925 				if (insn->off != 0 && insn->off != 8 && insn->off != 16 &&
13926 				    insn->off != 32) {
13927 					verbose(env, "BPF_MOV uses reserved fields\n");
13928 					return -EINVAL;
13929 				}
13930 			}
13931 
13932 			/* check src operand */
13933 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
13934 			if (err)
13935 				return err;
13936 		} else {
13937 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
13938 				verbose(env, "BPF_MOV uses reserved fields\n");
13939 				return -EINVAL;
13940 			}
13941 		}
13942 
13943 		/* check dest operand, mark as required later */
13944 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
13945 		if (err)
13946 			return err;
13947 
13948 		if (BPF_SRC(insn->code) == BPF_X) {
13949 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
13950 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
13951 
13952 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
13953 				if (insn->off == 0) {
13954 					/* case: R1 = R2
13955 					 * copy register state to dest reg
13956 					 */
13957 					assign_scalar_id_before_mov(env, src_reg);
13958 					copy_register_state(dst_reg, src_reg);
13959 					dst_reg->live |= REG_LIVE_WRITTEN;
13960 					dst_reg->subreg_def = DEF_NOT_SUBREG;
13961 				} else {
13962 					/* case: R1 = (s8, s16 s32)R2 */
13963 					if (is_pointer_value(env, insn->src_reg)) {
13964 						verbose(env,
13965 							"R%d sign-extension part of pointer\n",
13966 							insn->src_reg);
13967 						return -EACCES;
13968 					} else if (src_reg->type == SCALAR_VALUE) {
13969 						bool no_sext;
13970 
13971 						no_sext = src_reg->umax_value < (1ULL << (insn->off - 1));
13972 						if (no_sext)
13973 							assign_scalar_id_before_mov(env, src_reg);
13974 						copy_register_state(dst_reg, src_reg);
13975 						if (!no_sext)
13976 							dst_reg->id = 0;
13977 						coerce_reg_to_size_sx(dst_reg, insn->off >> 3);
13978 						dst_reg->live |= REG_LIVE_WRITTEN;
13979 						dst_reg->subreg_def = DEF_NOT_SUBREG;
13980 					} else {
13981 						mark_reg_unknown(env, regs, insn->dst_reg);
13982 					}
13983 				}
13984 			} else {
13985 				/* R1 = (u32) R2 */
13986 				if (is_pointer_value(env, insn->src_reg)) {
13987 					verbose(env,
13988 						"R%d partial copy of pointer\n",
13989 						insn->src_reg);
13990 					return -EACCES;
13991 				} else if (src_reg->type == SCALAR_VALUE) {
13992 					if (insn->off == 0) {
13993 						bool is_src_reg_u32 = get_reg_width(src_reg) <= 32;
13994 
13995 						if (is_src_reg_u32)
13996 							assign_scalar_id_before_mov(env, src_reg);
13997 						copy_register_state(dst_reg, src_reg);
13998 						/* Make sure ID is cleared if src_reg is not in u32
13999 						 * range otherwise dst_reg min/max could be incorrectly
14000 						 * propagated into src_reg by find_equal_scalars()
14001 						 */
14002 						if (!is_src_reg_u32)
14003 							dst_reg->id = 0;
14004 						dst_reg->live |= REG_LIVE_WRITTEN;
14005 						dst_reg->subreg_def = env->insn_idx + 1;
14006 					} else {
14007 						/* case: W1 = (s8, s16)W2 */
14008 						bool no_sext = src_reg->umax_value < (1ULL << (insn->off - 1));
14009 
14010 						if (no_sext)
14011 							assign_scalar_id_before_mov(env, src_reg);
14012 						copy_register_state(dst_reg, src_reg);
14013 						if (!no_sext)
14014 							dst_reg->id = 0;
14015 						dst_reg->live |= REG_LIVE_WRITTEN;
14016 						dst_reg->subreg_def = env->insn_idx + 1;
14017 						coerce_subreg_to_size_sx(dst_reg, insn->off >> 3);
14018 					}
14019 				} else {
14020 					mark_reg_unknown(env, regs,
14021 							 insn->dst_reg);
14022 				}
14023 				zext_32_to_64(dst_reg);
14024 				reg_bounds_sync(dst_reg);
14025 			}
14026 		} else {
14027 			/* case: R = imm
14028 			 * remember the value we stored into this reg
14029 			 */
14030 			/* clear any state __mark_reg_known doesn't set */
14031 			mark_reg_unknown(env, regs, insn->dst_reg);
14032 			regs[insn->dst_reg].type = SCALAR_VALUE;
14033 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
14034 				__mark_reg_known(regs + insn->dst_reg,
14035 						 insn->imm);
14036 			} else {
14037 				__mark_reg_known(regs + insn->dst_reg,
14038 						 (u32)insn->imm);
14039 			}
14040 		}
14041 
14042 	} else if (opcode > BPF_END) {
14043 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
14044 		return -EINVAL;
14045 
14046 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
14047 
14048 		if (BPF_SRC(insn->code) == BPF_X) {
14049 			if (insn->imm != 0 || insn->off > 1 ||
14050 			    (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) {
14051 				verbose(env, "BPF_ALU uses reserved fields\n");
14052 				return -EINVAL;
14053 			}
14054 			/* check src1 operand */
14055 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
14056 			if (err)
14057 				return err;
14058 		} else {
14059 			if (insn->src_reg != BPF_REG_0 || insn->off > 1 ||
14060 			    (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) {
14061 				verbose(env, "BPF_ALU uses reserved fields\n");
14062 				return -EINVAL;
14063 			}
14064 		}
14065 
14066 		/* check src2 operand */
14067 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
14068 		if (err)
14069 			return err;
14070 
14071 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
14072 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
14073 			verbose(env, "div by zero\n");
14074 			return -EINVAL;
14075 		}
14076 
14077 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
14078 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
14079 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
14080 
14081 			if (insn->imm < 0 || insn->imm >= size) {
14082 				verbose(env, "invalid shift %d\n", insn->imm);
14083 				return -EINVAL;
14084 			}
14085 		}
14086 
14087 		/* check dest operand */
14088 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
14089 		err = err ?: adjust_reg_min_max_vals(env, insn);
14090 		if (err)
14091 			return err;
14092 	}
14093 
14094 	return reg_bounds_sanity_check(env, &regs[insn->dst_reg], "alu");
14095 }
14096 
14097 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
14098 				   struct bpf_reg_state *dst_reg,
14099 				   enum bpf_reg_type type,
14100 				   bool range_right_open)
14101 {
14102 	struct bpf_func_state *state;
14103 	struct bpf_reg_state *reg;
14104 	int new_range;
14105 
14106 	if (dst_reg->off < 0 ||
14107 	    (dst_reg->off == 0 && range_right_open))
14108 		/* This doesn't give us any range */
14109 		return;
14110 
14111 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
14112 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
14113 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
14114 		 * than pkt_end, but that's because it's also less than pkt.
14115 		 */
14116 		return;
14117 
14118 	new_range = dst_reg->off;
14119 	if (range_right_open)
14120 		new_range++;
14121 
14122 	/* Examples for register markings:
14123 	 *
14124 	 * pkt_data in dst register:
14125 	 *
14126 	 *   r2 = r3;
14127 	 *   r2 += 8;
14128 	 *   if (r2 > pkt_end) goto <handle exception>
14129 	 *   <access okay>
14130 	 *
14131 	 *   r2 = r3;
14132 	 *   r2 += 8;
14133 	 *   if (r2 < pkt_end) goto <access okay>
14134 	 *   <handle exception>
14135 	 *
14136 	 *   Where:
14137 	 *     r2 == dst_reg, pkt_end == src_reg
14138 	 *     r2=pkt(id=n,off=8,r=0)
14139 	 *     r3=pkt(id=n,off=0,r=0)
14140 	 *
14141 	 * pkt_data in src register:
14142 	 *
14143 	 *   r2 = r3;
14144 	 *   r2 += 8;
14145 	 *   if (pkt_end >= r2) goto <access okay>
14146 	 *   <handle exception>
14147 	 *
14148 	 *   r2 = r3;
14149 	 *   r2 += 8;
14150 	 *   if (pkt_end <= r2) goto <handle exception>
14151 	 *   <access okay>
14152 	 *
14153 	 *   Where:
14154 	 *     pkt_end == dst_reg, r2 == src_reg
14155 	 *     r2=pkt(id=n,off=8,r=0)
14156 	 *     r3=pkt(id=n,off=0,r=0)
14157 	 *
14158 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
14159 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
14160 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
14161 	 * the check.
14162 	 */
14163 
14164 	/* If our ids match, then we must have the same max_value.  And we
14165 	 * don't care about the other reg's fixed offset, since if it's too big
14166 	 * the range won't allow anything.
14167 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
14168 	 */
14169 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
14170 		if (reg->type == type && reg->id == dst_reg->id)
14171 			/* keep the maximum range already checked */
14172 			reg->range = max(reg->range, new_range);
14173 	}));
14174 }
14175 
14176 /*
14177  * <reg1> <op> <reg2>, currently assuming reg2 is a constant
14178  */
14179 static int is_scalar_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2,
14180 				  u8 opcode, bool is_jmp32)
14181 {
14182 	struct tnum t1 = is_jmp32 ? tnum_subreg(reg1->var_off) : reg1->var_off;
14183 	struct tnum t2 = is_jmp32 ? tnum_subreg(reg2->var_off) : reg2->var_off;
14184 	u64 umin1 = is_jmp32 ? (u64)reg1->u32_min_value : reg1->umin_value;
14185 	u64 umax1 = is_jmp32 ? (u64)reg1->u32_max_value : reg1->umax_value;
14186 	s64 smin1 = is_jmp32 ? (s64)reg1->s32_min_value : reg1->smin_value;
14187 	s64 smax1 = is_jmp32 ? (s64)reg1->s32_max_value : reg1->smax_value;
14188 	u64 umin2 = is_jmp32 ? (u64)reg2->u32_min_value : reg2->umin_value;
14189 	u64 umax2 = is_jmp32 ? (u64)reg2->u32_max_value : reg2->umax_value;
14190 	s64 smin2 = is_jmp32 ? (s64)reg2->s32_min_value : reg2->smin_value;
14191 	s64 smax2 = is_jmp32 ? (s64)reg2->s32_max_value : reg2->smax_value;
14192 
14193 	switch (opcode) {
14194 	case BPF_JEQ:
14195 		/* constants, umin/umax and smin/smax checks would be
14196 		 * redundant in this case because they all should match
14197 		 */
14198 		if (tnum_is_const(t1) && tnum_is_const(t2))
14199 			return t1.value == t2.value;
14200 		/* non-overlapping ranges */
14201 		if (umin1 > umax2 || umax1 < umin2)
14202 			return 0;
14203 		if (smin1 > smax2 || smax1 < smin2)
14204 			return 0;
14205 		if (!is_jmp32) {
14206 			/* if 64-bit ranges are inconclusive, see if we can
14207 			 * utilize 32-bit subrange knowledge to eliminate
14208 			 * branches that can't be taken a priori
14209 			 */
14210 			if (reg1->u32_min_value > reg2->u32_max_value ||
14211 			    reg1->u32_max_value < reg2->u32_min_value)
14212 				return 0;
14213 			if (reg1->s32_min_value > reg2->s32_max_value ||
14214 			    reg1->s32_max_value < reg2->s32_min_value)
14215 				return 0;
14216 		}
14217 		break;
14218 	case BPF_JNE:
14219 		/* constants, umin/umax and smin/smax checks would be
14220 		 * redundant in this case because they all should match
14221 		 */
14222 		if (tnum_is_const(t1) && tnum_is_const(t2))
14223 			return t1.value != t2.value;
14224 		/* non-overlapping ranges */
14225 		if (umin1 > umax2 || umax1 < umin2)
14226 			return 1;
14227 		if (smin1 > smax2 || smax1 < smin2)
14228 			return 1;
14229 		if (!is_jmp32) {
14230 			/* if 64-bit ranges are inconclusive, see if we can
14231 			 * utilize 32-bit subrange knowledge to eliminate
14232 			 * branches that can't be taken a priori
14233 			 */
14234 			if (reg1->u32_min_value > reg2->u32_max_value ||
14235 			    reg1->u32_max_value < reg2->u32_min_value)
14236 				return 1;
14237 			if (reg1->s32_min_value > reg2->s32_max_value ||
14238 			    reg1->s32_max_value < reg2->s32_min_value)
14239 				return 1;
14240 		}
14241 		break;
14242 	case BPF_JSET:
14243 		if (!is_reg_const(reg2, is_jmp32)) {
14244 			swap(reg1, reg2);
14245 			swap(t1, t2);
14246 		}
14247 		if (!is_reg_const(reg2, is_jmp32))
14248 			return -1;
14249 		if ((~t1.mask & t1.value) & t2.value)
14250 			return 1;
14251 		if (!((t1.mask | t1.value) & t2.value))
14252 			return 0;
14253 		break;
14254 	case BPF_JGT:
14255 		if (umin1 > umax2)
14256 			return 1;
14257 		else if (umax1 <= umin2)
14258 			return 0;
14259 		break;
14260 	case BPF_JSGT:
14261 		if (smin1 > smax2)
14262 			return 1;
14263 		else if (smax1 <= smin2)
14264 			return 0;
14265 		break;
14266 	case BPF_JLT:
14267 		if (umax1 < umin2)
14268 			return 1;
14269 		else if (umin1 >= umax2)
14270 			return 0;
14271 		break;
14272 	case BPF_JSLT:
14273 		if (smax1 < smin2)
14274 			return 1;
14275 		else if (smin1 >= smax2)
14276 			return 0;
14277 		break;
14278 	case BPF_JGE:
14279 		if (umin1 >= umax2)
14280 			return 1;
14281 		else if (umax1 < umin2)
14282 			return 0;
14283 		break;
14284 	case BPF_JSGE:
14285 		if (smin1 >= smax2)
14286 			return 1;
14287 		else if (smax1 < smin2)
14288 			return 0;
14289 		break;
14290 	case BPF_JLE:
14291 		if (umax1 <= umin2)
14292 			return 1;
14293 		else if (umin1 > umax2)
14294 			return 0;
14295 		break;
14296 	case BPF_JSLE:
14297 		if (smax1 <= smin2)
14298 			return 1;
14299 		else if (smin1 > smax2)
14300 			return 0;
14301 		break;
14302 	}
14303 
14304 	return -1;
14305 }
14306 
14307 static int flip_opcode(u32 opcode)
14308 {
14309 	/* How can we transform "a <op> b" into "b <op> a"? */
14310 	static const u8 opcode_flip[16] = {
14311 		/* these stay the same */
14312 		[BPF_JEQ  >> 4] = BPF_JEQ,
14313 		[BPF_JNE  >> 4] = BPF_JNE,
14314 		[BPF_JSET >> 4] = BPF_JSET,
14315 		/* these swap "lesser" and "greater" (L and G in the opcodes) */
14316 		[BPF_JGE  >> 4] = BPF_JLE,
14317 		[BPF_JGT  >> 4] = BPF_JLT,
14318 		[BPF_JLE  >> 4] = BPF_JGE,
14319 		[BPF_JLT  >> 4] = BPF_JGT,
14320 		[BPF_JSGE >> 4] = BPF_JSLE,
14321 		[BPF_JSGT >> 4] = BPF_JSLT,
14322 		[BPF_JSLE >> 4] = BPF_JSGE,
14323 		[BPF_JSLT >> 4] = BPF_JSGT
14324 	};
14325 	return opcode_flip[opcode >> 4];
14326 }
14327 
14328 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
14329 				   struct bpf_reg_state *src_reg,
14330 				   u8 opcode)
14331 {
14332 	struct bpf_reg_state *pkt;
14333 
14334 	if (src_reg->type == PTR_TO_PACKET_END) {
14335 		pkt = dst_reg;
14336 	} else if (dst_reg->type == PTR_TO_PACKET_END) {
14337 		pkt = src_reg;
14338 		opcode = flip_opcode(opcode);
14339 	} else {
14340 		return -1;
14341 	}
14342 
14343 	if (pkt->range >= 0)
14344 		return -1;
14345 
14346 	switch (opcode) {
14347 	case BPF_JLE:
14348 		/* pkt <= pkt_end */
14349 		fallthrough;
14350 	case BPF_JGT:
14351 		/* pkt > pkt_end */
14352 		if (pkt->range == BEYOND_PKT_END)
14353 			/* pkt has at last one extra byte beyond pkt_end */
14354 			return opcode == BPF_JGT;
14355 		break;
14356 	case BPF_JLT:
14357 		/* pkt < pkt_end */
14358 		fallthrough;
14359 	case BPF_JGE:
14360 		/* pkt >= pkt_end */
14361 		if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
14362 			return opcode == BPF_JGE;
14363 		break;
14364 	}
14365 	return -1;
14366 }
14367 
14368 /* compute branch direction of the expression "if (<reg1> opcode <reg2>) goto target;"
14369  * and return:
14370  *  1 - branch will be taken and "goto target" will be executed
14371  *  0 - branch will not be taken and fall-through to next insn
14372  * -1 - unknown. Example: "if (reg1 < 5)" is unknown when register value
14373  *      range [0,10]
14374  */
14375 static int is_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2,
14376 			   u8 opcode, bool is_jmp32)
14377 {
14378 	if (reg_is_pkt_pointer_any(reg1) && reg_is_pkt_pointer_any(reg2) && !is_jmp32)
14379 		return is_pkt_ptr_branch_taken(reg1, reg2, opcode);
14380 
14381 	if (__is_pointer_value(false, reg1) || __is_pointer_value(false, reg2)) {
14382 		u64 val;
14383 
14384 		/* arrange that reg2 is a scalar, and reg1 is a pointer */
14385 		if (!is_reg_const(reg2, is_jmp32)) {
14386 			opcode = flip_opcode(opcode);
14387 			swap(reg1, reg2);
14388 		}
14389 		/* and ensure that reg2 is a constant */
14390 		if (!is_reg_const(reg2, is_jmp32))
14391 			return -1;
14392 
14393 		if (!reg_not_null(reg1))
14394 			return -1;
14395 
14396 		/* If pointer is valid tests against zero will fail so we can
14397 		 * use this to direct branch taken.
14398 		 */
14399 		val = reg_const_value(reg2, is_jmp32);
14400 		if (val != 0)
14401 			return -1;
14402 
14403 		switch (opcode) {
14404 		case BPF_JEQ:
14405 			return 0;
14406 		case BPF_JNE:
14407 			return 1;
14408 		default:
14409 			return -1;
14410 		}
14411 	}
14412 
14413 	/* now deal with two scalars, but not necessarily constants */
14414 	return is_scalar_branch_taken(reg1, reg2, opcode, is_jmp32);
14415 }
14416 
14417 /* Opcode that corresponds to a *false* branch condition.
14418  * E.g., if r1 < r2, then reverse (false) condition is r1 >= r2
14419  */
14420 static u8 rev_opcode(u8 opcode)
14421 {
14422 	switch (opcode) {
14423 	case BPF_JEQ:		return BPF_JNE;
14424 	case BPF_JNE:		return BPF_JEQ;
14425 	/* JSET doesn't have it's reverse opcode in BPF, so add
14426 	 * BPF_X flag to denote the reverse of that operation
14427 	 */
14428 	case BPF_JSET:		return BPF_JSET | BPF_X;
14429 	case BPF_JSET | BPF_X:	return BPF_JSET;
14430 	case BPF_JGE:		return BPF_JLT;
14431 	case BPF_JGT:		return BPF_JLE;
14432 	case BPF_JLE:		return BPF_JGT;
14433 	case BPF_JLT:		return BPF_JGE;
14434 	case BPF_JSGE:		return BPF_JSLT;
14435 	case BPF_JSGT:		return BPF_JSLE;
14436 	case BPF_JSLE:		return BPF_JSGT;
14437 	case BPF_JSLT:		return BPF_JSGE;
14438 	default:		return 0;
14439 	}
14440 }
14441 
14442 /* Refine range knowledge for <reg1> <op> <reg>2 conditional operation. */
14443 static void regs_refine_cond_op(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2,
14444 				u8 opcode, bool is_jmp32)
14445 {
14446 	struct tnum t;
14447 	u64 val;
14448 
14449 again:
14450 	switch (opcode) {
14451 	case BPF_JEQ:
14452 		if (is_jmp32) {
14453 			reg1->u32_min_value = max(reg1->u32_min_value, reg2->u32_min_value);
14454 			reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value);
14455 			reg1->s32_min_value = max(reg1->s32_min_value, reg2->s32_min_value);
14456 			reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value);
14457 			reg2->u32_min_value = reg1->u32_min_value;
14458 			reg2->u32_max_value = reg1->u32_max_value;
14459 			reg2->s32_min_value = reg1->s32_min_value;
14460 			reg2->s32_max_value = reg1->s32_max_value;
14461 
14462 			t = tnum_intersect(tnum_subreg(reg1->var_off), tnum_subreg(reg2->var_off));
14463 			reg1->var_off = tnum_with_subreg(reg1->var_off, t);
14464 			reg2->var_off = tnum_with_subreg(reg2->var_off, t);
14465 		} else {
14466 			reg1->umin_value = max(reg1->umin_value, reg2->umin_value);
14467 			reg1->umax_value = min(reg1->umax_value, reg2->umax_value);
14468 			reg1->smin_value = max(reg1->smin_value, reg2->smin_value);
14469 			reg1->smax_value = min(reg1->smax_value, reg2->smax_value);
14470 			reg2->umin_value = reg1->umin_value;
14471 			reg2->umax_value = reg1->umax_value;
14472 			reg2->smin_value = reg1->smin_value;
14473 			reg2->smax_value = reg1->smax_value;
14474 
14475 			reg1->var_off = tnum_intersect(reg1->var_off, reg2->var_off);
14476 			reg2->var_off = reg1->var_off;
14477 		}
14478 		break;
14479 	case BPF_JNE:
14480 		if (!is_reg_const(reg2, is_jmp32))
14481 			swap(reg1, reg2);
14482 		if (!is_reg_const(reg2, is_jmp32))
14483 			break;
14484 
14485 		/* try to recompute the bound of reg1 if reg2 is a const and
14486 		 * is exactly the edge of reg1.
14487 		 */
14488 		val = reg_const_value(reg2, is_jmp32);
14489 		if (is_jmp32) {
14490 			/* u32_min_value is not equal to 0xffffffff at this point,
14491 			 * because otherwise u32_max_value is 0xffffffff as well,
14492 			 * in such a case both reg1 and reg2 would be constants,
14493 			 * jump would be predicted and reg_set_min_max() won't
14494 			 * be called.
14495 			 *
14496 			 * Same reasoning works for all {u,s}{min,max}{32,64} cases
14497 			 * below.
14498 			 */
14499 			if (reg1->u32_min_value == (u32)val)
14500 				reg1->u32_min_value++;
14501 			if (reg1->u32_max_value == (u32)val)
14502 				reg1->u32_max_value--;
14503 			if (reg1->s32_min_value == (s32)val)
14504 				reg1->s32_min_value++;
14505 			if (reg1->s32_max_value == (s32)val)
14506 				reg1->s32_max_value--;
14507 		} else {
14508 			if (reg1->umin_value == (u64)val)
14509 				reg1->umin_value++;
14510 			if (reg1->umax_value == (u64)val)
14511 				reg1->umax_value--;
14512 			if (reg1->smin_value == (s64)val)
14513 				reg1->smin_value++;
14514 			if (reg1->smax_value == (s64)val)
14515 				reg1->smax_value--;
14516 		}
14517 		break;
14518 	case BPF_JSET:
14519 		if (!is_reg_const(reg2, is_jmp32))
14520 			swap(reg1, reg2);
14521 		if (!is_reg_const(reg2, is_jmp32))
14522 			break;
14523 		val = reg_const_value(reg2, is_jmp32);
14524 		/* BPF_JSET (i.e., TRUE branch, *not* BPF_JSET | BPF_X)
14525 		 * requires single bit to learn something useful. E.g., if we
14526 		 * know that `r1 & 0x3` is true, then which bits (0, 1, or both)
14527 		 * are actually set? We can learn something definite only if
14528 		 * it's a single-bit value to begin with.
14529 		 *
14530 		 * BPF_JSET | BPF_X (i.e., negation of BPF_JSET) doesn't have
14531 		 * this restriction. I.e., !(r1 & 0x3) means neither bit 0 nor
14532 		 * bit 1 is set, which we can readily use in adjustments.
14533 		 */
14534 		if (!is_power_of_2(val))
14535 			break;
14536 		if (is_jmp32) {
14537 			t = tnum_or(tnum_subreg(reg1->var_off), tnum_const(val));
14538 			reg1->var_off = tnum_with_subreg(reg1->var_off, t);
14539 		} else {
14540 			reg1->var_off = tnum_or(reg1->var_off, tnum_const(val));
14541 		}
14542 		break;
14543 	case BPF_JSET | BPF_X: /* reverse of BPF_JSET, see rev_opcode() */
14544 		if (!is_reg_const(reg2, is_jmp32))
14545 			swap(reg1, reg2);
14546 		if (!is_reg_const(reg2, is_jmp32))
14547 			break;
14548 		val = reg_const_value(reg2, is_jmp32);
14549 		if (is_jmp32) {
14550 			t = tnum_and(tnum_subreg(reg1->var_off), tnum_const(~val));
14551 			reg1->var_off = tnum_with_subreg(reg1->var_off, t);
14552 		} else {
14553 			reg1->var_off = tnum_and(reg1->var_off, tnum_const(~val));
14554 		}
14555 		break;
14556 	case BPF_JLE:
14557 		if (is_jmp32) {
14558 			reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value);
14559 			reg2->u32_min_value = max(reg1->u32_min_value, reg2->u32_min_value);
14560 		} else {
14561 			reg1->umax_value = min(reg1->umax_value, reg2->umax_value);
14562 			reg2->umin_value = max(reg1->umin_value, reg2->umin_value);
14563 		}
14564 		break;
14565 	case BPF_JLT:
14566 		if (is_jmp32) {
14567 			reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value - 1);
14568 			reg2->u32_min_value = max(reg1->u32_min_value + 1, reg2->u32_min_value);
14569 		} else {
14570 			reg1->umax_value = min(reg1->umax_value, reg2->umax_value - 1);
14571 			reg2->umin_value = max(reg1->umin_value + 1, reg2->umin_value);
14572 		}
14573 		break;
14574 	case BPF_JSLE:
14575 		if (is_jmp32) {
14576 			reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value);
14577 			reg2->s32_min_value = max(reg1->s32_min_value, reg2->s32_min_value);
14578 		} else {
14579 			reg1->smax_value = min(reg1->smax_value, reg2->smax_value);
14580 			reg2->smin_value = max(reg1->smin_value, reg2->smin_value);
14581 		}
14582 		break;
14583 	case BPF_JSLT:
14584 		if (is_jmp32) {
14585 			reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value - 1);
14586 			reg2->s32_min_value = max(reg1->s32_min_value + 1, reg2->s32_min_value);
14587 		} else {
14588 			reg1->smax_value = min(reg1->smax_value, reg2->smax_value - 1);
14589 			reg2->smin_value = max(reg1->smin_value + 1, reg2->smin_value);
14590 		}
14591 		break;
14592 	case BPF_JGE:
14593 	case BPF_JGT:
14594 	case BPF_JSGE:
14595 	case BPF_JSGT:
14596 		/* just reuse LE/LT logic above */
14597 		opcode = flip_opcode(opcode);
14598 		swap(reg1, reg2);
14599 		goto again;
14600 	default:
14601 		return;
14602 	}
14603 }
14604 
14605 /* Adjusts the register min/max values in the case that the dst_reg and
14606  * src_reg are both SCALAR_VALUE registers (or we are simply doing a BPF_K
14607  * check, in which case we havea fake SCALAR_VALUE representing insn->imm).
14608  * Technically we can do similar adjustments for pointers to the same object,
14609  * but we don't support that right now.
14610  */
14611 static int reg_set_min_max(struct bpf_verifier_env *env,
14612 			   struct bpf_reg_state *true_reg1,
14613 			   struct bpf_reg_state *true_reg2,
14614 			   struct bpf_reg_state *false_reg1,
14615 			   struct bpf_reg_state *false_reg2,
14616 			   u8 opcode, bool is_jmp32)
14617 {
14618 	int err;
14619 
14620 	/* If either register is a pointer, we can't learn anything about its
14621 	 * variable offset from the compare (unless they were a pointer into
14622 	 * the same object, but we don't bother with that).
14623 	 */
14624 	if (false_reg1->type != SCALAR_VALUE || false_reg2->type != SCALAR_VALUE)
14625 		return 0;
14626 
14627 	/* fallthrough (FALSE) branch */
14628 	regs_refine_cond_op(false_reg1, false_reg2, rev_opcode(opcode), is_jmp32);
14629 	reg_bounds_sync(false_reg1);
14630 	reg_bounds_sync(false_reg2);
14631 
14632 	/* jump (TRUE) branch */
14633 	regs_refine_cond_op(true_reg1, true_reg2, opcode, is_jmp32);
14634 	reg_bounds_sync(true_reg1);
14635 	reg_bounds_sync(true_reg2);
14636 
14637 	err = reg_bounds_sanity_check(env, true_reg1, "true_reg1");
14638 	err = err ?: reg_bounds_sanity_check(env, true_reg2, "true_reg2");
14639 	err = err ?: reg_bounds_sanity_check(env, false_reg1, "false_reg1");
14640 	err = err ?: reg_bounds_sanity_check(env, false_reg2, "false_reg2");
14641 	return err;
14642 }
14643 
14644 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
14645 				 struct bpf_reg_state *reg, u32 id,
14646 				 bool is_null)
14647 {
14648 	if (type_may_be_null(reg->type) && reg->id == id &&
14649 	    (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) {
14650 		/* Old offset (both fixed and variable parts) should have been
14651 		 * known-zero, because we don't allow pointer arithmetic on
14652 		 * pointers that might be NULL. If we see this happening, don't
14653 		 * convert the register.
14654 		 *
14655 		 * But in some cases, some helpers that return local kptrs
14656 		 * advance offset for the returned pointer. In those cases, it
14657 		 * is fine to expect to see reg->off.
14658 		 */
14659 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0)))
14660 			return;
14661 		if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) &&
14662 		    WARN_ON_ONCE(reg->off))
14663 			return;
14664 
14665 		if (is_null) {
14666 			reg->type = SCALAR_VALUE;
14667 			/* We don't need id and ref_obj_id from this point
14668 			 * onwards anymore, thus we should better reset it,
14669 			 * so that state pruning has chances to take effect.
14670 			 */
14671 			reg->id = 0;
14672 			reg->ref_obj_id = 0;
14673 
14674 			return;
14675 		}
14676 
14677 		mark_ptr_not_null_reg(reg);
14678 
14679 		if (!reg_may_point_to_spin_lock(reg)) {
14680 			/* For not-NULL ptr, reg->ref_obj_id will be reset
14681 			 * in release_reference().
14682 			 *
14683 			 * reg->id is still used by spin_lock ptr. Other
14684 			 * than spin_lock ptr type, reg->id can be reset.
14685 			 */
14686 			reg->id = 0;
14687 		}
14688 	}
14689 }
14690 
14691 /* The logic is similar to find_good_pkt_pointers(), both could eventually
14692  * be folded together at some point.
14693  */
14694 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
14695 				  bool is_null)
14696 {
14697 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
14698 	struct bpf_reg_state *regs = state->regs, *reg;
14699 	u32 ref_obj_id = regs[regno].ref_obj_id;
14700 	u32 id = regs[regno].id;
14701 
14702 	if (ref_obj_id && ref_obj_id == id && is_null)
14703 		/* regs[regno] is in the " == NULL" branch.
14704 		 * No one could have freed the reference state before
14705 		 * doing the NULL check.
14706 		 */
14707 		WARN_ON_ONCE(release_reference_state(state, id));
14708 
14709 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
14710 		mark_ptr_or_null_reg(state, reg, id, is_null);
14711 	}));
14712 }
14713 
14714 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
14715 				   struct bpf_reg_state *dst_reg,
14716 				   struct bpf_reg_state *src_reg,
14717 				   struct bpf_verifier_state *this_branch,
14718 				   struct bpf_verifier_state *other_branch)
14719 {
14720 	if (BPF_SRC(insn->code) != BPF_X)
14721 		return false;
14722 
14723 	/* Pointers are always 64-bit. */
14724 	if (BPF_CLASS(insn->code) == BPF_JMP32)
14725 		return false;
14726 
14727 	switch (BPF_OP(insn->code)) {
14728 	case BPF_JGT:
14729 		if ((dst_reg->type == PTR_TO_PACKET &&
14730 		     src_reg->type == PTR_TO_PACKET_END) ||
14731 		    (dst_reg->type == PTR_TO_PACKET_META &&
14732 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
14733 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
14734 			find_good_pkt_pointers(this_branch, dst_reg,
14735 					       dst_reg->type, false);
14736 			mark_pkt_end(other_branch, insn->dst_reg, true);
14737 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
14738 			    src_reg->type == PTR_TO_PACKET) ||
14739 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
14740 			    src_reg->type == PTR_TO_PACKET_META)) {
14741 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
14742 			find_good_pkt_pointers(other_branch, src_reg,
14743 					       src_reg->type, true);
14744 			mark_pkt_end(this_branch, insn->src_reg, false);
14745 		} else {
14746 			return false;
14747 		}
14748 		break;
14749 	case BPF_JLT:
14750 		if ((dst_reg->type == PTR_TO_PACKET &&
14751 		     src_reg->type == PTR_TO_PACKET_END) ||
14752 		    (dst_reg->type == PTR_TO_PACKET_META &&
14753 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
14754 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
14755 			find_good_pkt_pointers(other_branch, dst_reg,
14756 					       dst_reg->type, true);
14757 			mark_pkt_end(this_branch, insn->dst_reg, false);
14758 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
14759 			    src_reg->type == PTR_TO_PACKET) ||
14760 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
14761 			    src_reg->type == PTR_TO_PACKET_META)) {
14762 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
14763 			find_good_pkt_pointers(this_branch, src_reg,
14764 					       src_reg->type, false);
14765 			mark_pkt_end(other_branch, insn->src_reg, true);
14766 		} else {
14767 			return false;
14768 		}
14769 		break;
14770 	case BPF_JGE:
14771 		if ((dst_reg->type == PTR_TO_PACKET &&
14772 		     src_reg->type == PTR_TO_PACKET_END) ||
14773 		    (dst_reg->type == PTR_TO_PACKET_META &&
14774 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
14775 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
14776 			find_good_pkt_pointers(this_branch, dst_reg,
14777 					       dst_reg->type, true);
14778 			mark_pkt_end(other_branch, insn->dst_reg, false);
14779 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
14780 			    src_reg->type == PTR_TO_PACKET) ||
14781 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
14782 			    src_reg->type == PTR_TO_PACKET_META)) {
14783 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
14784 			find_good_pkt_pointers(other_branch, src_reg,
14785 					       src_reg->type, false);
14786 			mark_pkt_end(this_branch, insn->src_reg, true);
14787 		} else {
14788 			return false;
14789 		}
14790 		break;
14791 	case BPF_JLE:
14792 		if ((dst_reg->type == PTR_TO_PACKET &&
14793 		     src_reg->type == PTR_TO_PACKET_END) ||
14794 		    (dst_reg->type == PTR_TO_PACKET_META &&
14795 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
14796 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
14797 			find_good_pkt_pointers(other_branch, dst_reg,
14798 					       dst_reg->type, false);
14799 			mark_pkt_end(this_branch, insn->dst_reg, true);
14800 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
14801 			    src_reg->type == PTR_TO_PACKET) ||
14802 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
14803 			    src_reg->type == PTR_TO_PACKET_META)) {
14804 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
14805 			find_good_pkt_pointers(this_branch, src_reg,
14806 					       src_reg->type, true);
14807 			mark_pkt_end(other_branch, insn->src_reg, false);
14808 		} else {
14809 			return false;
14810 		}
14811 		break;
14812 	default:
14813 		return false;
14814 	}
14815 
14816 	return true;
14817 }
14818 
14819 static void find_equal_scalars(struct bpf_verifier_state *vstate,
14820 			       struct bpf_reg_state *known_reg)
14821 {
14822 	struct bpf_func_state *state;
14823 	struct bpf_reg_state *reg;
14824 
14825 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
14826 		if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
14827 			copy_register_state(reg, known_reg);
14828 	}));
14829 }
14830 
14831 static int check_cond_jmp_op(struct bpf_verifier_env *env,
14832 			     struct bpf_insn *insn, int *insn_idx)
14833 {
14834 	struct bpf_verifier_state *this_branch = env->cur_state;
14835 	struct bpf_verifier_state *other_branch;
14836 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
14837 	struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
14838 	struct bpf_reg_state *eq_branch_regs;
14839 	struct bpf_reg_state fake_reg = {};
14840 	u8 opcode = BPF_OP(insn->code);
14841 	bool is_jmp32;
14842 	int pred = -1;
14843 	int err;
14844 
14845 	/* Only conditional jumps are expected to reach here. */
14846 	if (opcode == BPF_JA || opcode > BPF_JSLE) {
14847 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
14848 		return -EINVAL;
14849 	}
14850 
14851 	/* check src2 operand */
14852 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
14853 	if (err)
14854 		return err;
14855 
14856 	dst_reg = &regs[insn->dst_reg];
14857 	if (BPF_SRC(insn->code) == BPF_X) {
14858 		if (insn->imm != 0) {
14859 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
14860 			return -EINVAL;
14861 		}
14862 
14863 		/* check src1 operand */
14864 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
14865 		if (err)
14866 			return err;
14867 
14868 		src_reg = &regs[insn->src_reg];
14869 		if (!(reg_is_pkt_pointer_any(dst_reg) && reg_is_pkt_pointer_any(src_reg)) &&
14870 		    is_pointer_value(env, insn->src_reg)) {
14871 			verbose(env, "R%d pointer comparison prohibited\n",
14872 				insn->src_reg);
14873 			return -EACCES;
14874 		}
14875 	} else {
14876 		if (insn->src_reg != BPF_REG_0) {
14877 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
14878 			return -EINVAL;
14879 		}
14880 		src_reg = &fake_reg;
14881 		src_reg->type = SCALAR_VALUE;
14882 		__mark_reg_known(src_reg, insn->imm);
14883 	}
14884 
14885 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
14886 	pred = is_branch_taken(dst_reg, src_reg, opcode, is_jmp32);
14887 	if (pred >= 0) {
14888 		/* If we get here with a dst_reg pointer type it is because
14889 		 * above is_branch_taken() special cased the 0 comparison.
14890 		 */
14891 		if (!__is_pointer_value(false, dst_reg))
14892 			err = mark_chain_precision(env, insn->dst_reg);
14893 		if (BPF_SRC(insn->code) == BPF_X && !err &&
14894 		    !__is_pointer_value(false, src_reg))
14895 			err = mark_chain_precision(env, insn->src_reg);
14896 		if (err)
14897 			return err;
14898 	}
14899 
14900 	if (pred == 1) {
14901 		/* Only follow the goto, ignore fall-through. If needed, push
14902 		 * the fall-through branch for simulation under speculative
14903 		 * execution.
14904 		 */
14905 		if (!env->bypass_spec_v1 &&
14906 		    !sanitize_speculative_path(env, insn, *insn_idx + 1,
14907 					       *insn_idx))
14908 			return -EFAULT;
14909 		if (env->log.level & BPF_LOG_LEVEL)
14910 			print_insn_state(env, this_branch->frame[this_branch->curframe]);
14911 		*insn_idx += insn->off;
14912 		return 0;
14913 	} else if (pred == 0) {
14914 		/* Only follow the fall-through branch, since that's where the
14915 		 * program will go. If needed, push the goto branch for
14916 		 * simulation under speculative execution.
14917 		 */
14918 		if (!env->bypass_spec_v1 &&
14919 		    !sanitize_speculative_path(env, insn,
14920 					       *insn_idx + insn->off + 1,
14921 					       *insn_idx))
14922 			return -EFAULT;
14923 		if (env->log.level & BPF_LOG_LEVEL)
14924 			print_insn_state(env, this_branch->frame[this_branch->curframe]);
14925 		return 0;
14926 	}
14927 
14928 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
14929 				  false);
14930 	if (!other_branch)
14931 		return -EFAULT;
14932 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
14933 
14934 	if (BPF_SRC(insn->code) == BPF_X) {
14935 		err = reg_set_min_max(env,
14936 				      &other_branch_regs[insn->dst_reg],
14937 				      &other_branch_regs[insn->src_reg],
14938 				      dst_reg, src_reg, opcode, is_jmp32);
14939 	} else /* BPF_SRC(insn->code) == BPF_K */ {
14940 		err = reg_set_min_max(env,
14941 				      &other_branch_regs[insn->dst_reg],
14942 				      src_reg /* fake one */,
14943 				      dst_reg, src_reg /* same fake one */,
14944 				      opcode, is_jmp32);
14945 	}
14946 	if (err)
14947 		return err;
14948 
14949 	if (BPF_SRC(insn->code) == BPF_X &&
14950 	    src_reg->type == SCALAR_VALUE && src_reg->id &&
14951 	    !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
14952 		find_equal_scalars(this_branch, src_reg);
14953 		find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
14954 	}
14955 	if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
14956 	    !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
14957 		find_equal_scalars(this_branch, dst_reg);
14958 		find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
14959 	}
14960 
14961 	/* if one pointer register is compared to another pointer
14962 	 * register check if PTR_MAYBE_NULL could be lifted.
14963 	 * E.g. register A - maybe null
14964 	 *      register B - not null
14965 	 * for JNE A, B, ... - A is not null in the false branch;
14966 	 * for JEQ A, B, ... - A is not null in the true branch.
14967 	 *
14968 	 * Since PTR_TO_BTF_ID points to a kernel struct that does
14969 	 * not need to be null checked by the BPF program, i.e.,
14970 	 * could be null even without PTR_MAYBE_NULL marking, so
14971 	 * only propagate nullness when neither reg is that type.
14972 	 */
14973 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X &&
14974 	    __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) &&
14975 	    type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) &&
14976 	    base_type(src_reg->type) != PTR_TO_BTF_ID &&
14977 	    base_type(dst_reg->type) != PTR_TO_BTF_ID) {
14978 		eq_branch_regs = NULL;
14979 		switch (opcode) {
14980 		case BPF_JEQ:
14981 			eq_branch_regs = other_branch_regs;
14982 			break;
14983 		case BPF_JNE:
14984 			eq_branch_regs = regs;
14985 			break;
14986 		default:
14987 			/* do nothing */
14988 			break;
14989 		}
14990 		if (eq_branch_regs) {
14991 			if (type_may_be_null(src_reg->type))
14992 				mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]);
14993 			else
14994 				mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]);
14995 		}
14996 	}
14997 
14998 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
14999 	 * NOTE: these optimizations below are related with pointer comparison
15000 	 *       which will never be JMP32.
15001 	 */
15002 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
15003 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
15004 	    type_may_be_null(dst_reg->type)) {
15005 		/* Mark all identical registers in each branch as either
15006 		 * safe or unknown depending R == 0 or R != 0 conditional.
15007 		 */
15008 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
15009 				      opcode == BPF_JNE);
15010 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
15011 				      opcode == BPF_JEQ);
15012 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
15013 					   this_branch, other_branch) &&
15014 		   is_pointer_value(env, insn->dst_reg)) {
15015 		verbose(env, "R%d pointer comparison prohibited\n",
15016 			insn->dst_reg);
15017 		return -EACCES;
15018 	}
15019 	if (env->log.level & BPF_LOG_LEVEL)
15020 		print_insn_state(env, this_branch->frame[this_branch->curframe]);
15021 	return 0;
15022 }
15023 
15024 /* verify BPF_LD_IMM64 instruction */
15025 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
15026 {
15027 	struct bpf_insn_aux_data *aux = cur_aux(env);
15028 	struct bpf_reg_state *regs = cur_regs(env);
15029 	struct bpf_reg_state *dst_reg;
15030 	struct bpf_map *map;
15031 	int err;
15032 
15033 	if (BPF_SIZE(insn->code) != BPF_DW) {
15034 		verbose(env, "invalid BPF_LD_IMM insn\n");
15035 		return -EINVAL;
15036 	}
15037 	if (insn->off != 0) {
15038 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
15039 		return -EINVAL;
15040 	}
15041 
15042 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
15043 	if (err)
15044 		return err;
15045 
15046 	dst_reg = &regs[insn->dst_reg];
15047 	if (insn->src_reg == 0) {
15048 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
15049 
15050 		dst_reg->type = SCALAR_VALUE;
15051 		__mark_reg_known(&regs[insn->dst_reg], imm);
15052 		return 0;
15053 	}
15054 
15055 	/* All special src_reg cases are listed below. From this point onwards
15056 	 * we either succeed and assign a corresponding dst_reg->type after
15057 	 * zeroing the offset, or fail and reject the program.
15058 	 */
15059 	mark_reg_known_zero(env, regs, insn->dst_reg);
15060 
15061 	if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
15062 		dst_reg->type = aux->btf_var.reg_type;
15063 		switch (base_type(dst_reg->type)) {
15064 		case PTR_TO_MEM:
15065 			dst_reg->mem_size = aux->btf_var.mem_size;
15066 			break;
15067 		case PTR_TO_BTF_ID:
15068 			dst_reg->btf = aux->btf_var.btf;
15069 			dst_reg->btf_id = aux->btf_var.btf_id;
15070 			break;
15071 		default:
15072 			verbose(env, "bpf verifier is misconfigured\n");
15073 			return -EFAULT;
15074 		}
15075 		return 0;
15076 	}
15077 
15078 	if (insn->src_reg == BPF_PSEUDO_FUNC) {
15079 		struct bpf_prog_aux *aux = env->prog->aux;
15080 		u32 subprogno = find_subprog(env,
15081 					     env->insn_idx + insn->imm + 1);
15082 
15083 		if (!aux->func_info) {
15084 			verbose(env, "missing btf func_info\n");
15085 			return -EINVAL;
15086 		}
15087 		if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
15088 			verbose(env, "callback function not static\n");
15089 			return -EINVAL;
15090 		}
15091 
15092 		dst_reg->type = PTR_TO_FUNC;
15093 		dst_reg->subprogno = subprogno;
15094 		return 0;
15095 	}
15096 
15097 	map = env->used_maps[aux->map_index];
15098 	dst_reg->map_ptr = map;
15099 
15100 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
15101 	    insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
15102 		dst_reg->type = PTR_TO_MAP_VALUE;
15103 		dst_reg->off = aux->map_off;
15104 		WARN_ON_ONCE(map->max_entries != 1);
15105 		/* We want reg->id to be same (0) as map_value is not distinct */
15106 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
15107 		   insn->src_reg == BPF_PSEUDO_MAP_IDX) {
15108 		dst_reg->type = CONST_PTR_TO_MAP;
15109 	} else {
15110 		verbose(env, "bpf verifier is misconfigured\n");
15111 		return -EINVAL;
15112 	}
15113 
15114 	return 0;
15115 }
15116 
15117 static bool may_access_skb(enum bpf_prog_type type)
15118 {
15119 	switch (type) {
15120 	case BPF_PROG_TYPE_SOCKET_FILTER:
15121 	case BPF_PROG_TYPE_SCHED_CLS:
15122 	case BPF_PROG_TYPE_SCHED_ACT:
15123 		return true;
15124 	default:
15125 		return false;
15126 	}
15127 }
15128 
15129 /* verify safety of LD_ABS|LD_IND instructions:
15130  * - they can only appear in the programs where ctx == skb
15131  * - since they are wrappers of function calls, they scratch R1-R5 registers,
15132  *   preserve R6-R9, and store return value into R0
15133  *
15134  * Implicit input:
15135  *   ctx == skb == R6 == CTX
15136  *
15137  * Explicit input:
15138  *   SRC == any register
15139  *   IMM == 32-bit immediate
15140  *
15141  * Output:
15142  *   R0 - 8/16/32-bit skb data converted to cpu endianness
15143  */
15144 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
15145 {
15146 	struct bpf_reg_state *regs = cur_regs(env);
15147 	static const int ctx_reg = BPF_REG_6;
15148 	u8 mode = BPF_MODE(insn->code);
15149 	int i, err;
15150 
15151 	if (!may_access_skb(resolve_prog_type(env->prog))) {
15152 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
15153 		return -EINVAL;
15154 	}
15155 
15156 	if (!env->ops->gen_ld_abs) {
15157 		verbose(env, "bpf verifier is misconfigured\n");
15158 		return -EINVAL;
15159 	}
15160 
15161 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
15162 	    BPF_SIZE(insn->code) == BPF_DW ||
15163 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
15164 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
15165 		return -EINVAL;
15166 	}
15167 
15168 	/* check whether implicit source operand (register R6) is readable */
15169 	err = check_reg_arg(env, ctx_reg, SRC_OP);
15170 	if (err)
15171 		return err;
15172 
15173 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
15174 	 * gen_ld_abs() may terminate the program at runtime, leading to
15175 	 * reference leak.
15176 	 */
15177 	err = check_reference_leak(env, false);
15178 	if (err) {
15179 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
15180 		return err;
15181 	}
15182 
15183 	if (env->cur_state->active_lock.ptr) {
15184 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
15185 		return -EINVAL;
15186 	}
15187 
15188 	if (env->cur_state->active_rcu_lock) {
15189 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_rcu_read_lock-ed region\n");
15190 		return -EINVAL;
15191 	}
15192 
15193 	if (regs[ctx_reg].type != PTR_TO_CTX) {
15194 		verbose(env,
15195 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
15196 		return -EINVAL;
15197 	}
15198 
15199 	if (mode == BPF_IND) {
15200 		/* check explicit source operand */
15201 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
15202 		if (err)
15203 			return err;
15204 	}
15205 
15206 	err = check_ptr_off_reg(env, &regs[ctx_reg], ctx_reg);
15207 	if (err < 0)
15208 		return err;
15209 
15210 	/* reset caller saved regs to unreadable */
15211 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
15212 		mark_reg_not_init(env, regs, caller_saved[i]);
15213 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
15214 	}
15215 
15216 	/* mark destination R0 register as readable, since it contains
15217 	 * the value fetched from the packet.
15218 	 * Already marked as written above.
15219 	 */
15220 	mark_reg_unknown(env, regs, BPF_REG_0);
15221 	/* ld_abs load up to 32-bit skb data. */
15222 	regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
15223 	return 0;
15224 }
15225 
15226 static int check_return_code(struct bpf_verifier_env *env, int regno, const char *reg_name)
15227 {
15228 	const char *exit_ctx = "At program exit";
15229 	struct tnum enforce_attach_type_range = tnum_unknown;
15230 	const struct bpf_prog *prog = env->prog;
15231 	struct bpf_reg_state *reg;
15232 	struct bpf_retval_range range = retval_range(0, 1);
15233 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
15234 	int err;
15235 	struct bpf_func_state *frame = env->cur_state->frame[0];
15236 	const bool is_subprog = frame->subprogno;
15237 
15238 	/* LSM and struct_ops func-ptr's return type could be "void" */
15239 	if (!is_subprog || frame->in_exception_callback_fn) {
15240 		switch (prog_type) {
15241 		case BPF_PROG_TYPE_LSM:
15242 			if (prog->expected_attach_type == BPF_LSM_CGROUP)
15243 				/* See below, can be 0 or 0-1 depending on hook. */
15244 				break;
15245 			fallthrough;
15246 		case BPF_PROG_TYPE_STRUCT_OPS:
15247 			if (!prog->aux->attach_func_proto->type)
15248 				return 0;
15249 			break;
15250 		default:
15251 			break;
15252 		}
15253 	}
15254 
15255 	/* eBPF calling convention is such that R0 is used
15256 	 * to return the value from eBPF program.
15257 	 * Make sure that it's readable at this time
15258 	 * of bpf_exit, which means that program wrote
15259 	 * something into it earlier
15260 	 */
15261 	err = check_reg_arg(env, regno, SRC_OP);
15262 	if (err)
15263 		return err;
15264 
15265 	if (is_pointer_value(env, regno)) {
15266 		verbose(env, "R%d leaks addr as return value\n", regno);
15267 		return -EACCES;
15268 	}
15269 
15270 	reg = cur_regs(env) + regno;
15271 
15272 	if (frame->in_async_callback_fn) {
15273 		/* enforce return zero from async callbacks like timer */
15274 		exit_ctx = "At async callback return";
15275 		range = retval_range(0, 0);
15276 		goto enforce_retval;
15277 	}
15278 
15279 	if (is_subprog && !frame->in_exception_callback_fn) {
15280 		if (reg->type != SCALAR_VALUE) {
15281 			verbose(env, "At subprogram exit the register R%d is not a scalar value (%s)\n",
15282 				regno, reg_type_str(env, reg->type));
15283 			return -EINVAL;
15284 		}
15285 		return 0;
15286 	}
15287 
15288 	switch (prog_type) {
15289 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
15290 		if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
15291 		    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
15292 		    env->prog->expected_attach_type == BPF_CGROUP_UNIX_RECVMSG ||
15293 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
15294 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
15295 		    env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETPEERNAME ||
15296 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
15297 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME ||
15298 		    env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETSOCKNAME)
15299 			range = retval_range(1, 1);
15300 		if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
15301 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
15302 			range = retval_range(0, 3);
15303 		break;
15304 	case BPF_PROG_TYPE_CGROUP_SKB:
15305 		if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
15306 			range = retval_range(0, 3);
15307 			enforce_attach_type_range = tnum_range(2, 3);
15308 		}
15309 		break;
15310 	case BPF_PROG_TYPE_CGROUP_SOCK:
15311 	case BPF_PROG_TYPE_SOCK_OPS:
15312 	case BPF_PROG_TYPE_CGROUP_DEVICE:
15313 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
15314 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
15315 		break;
15316 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
15317 		if (!env->prog->aux->attach_btf_id)
15318 			return 0;
15319 		range = retval_range(0, 0);
15320 		break;
15321 	case BPF_PROG_TYPE_TRACING:
15322 		switch (env->prog->expected_attach_type) {
15323 		case BPF_TRACE_FENTRY:
15324 		case BPF_TRACE_FEXIT:
15325 			range = retval_range(0, 0);
15326 			break;
15327 		case BPF_TRACE_RAW_TP:
15328 		case BPF_MODIFY_RETURN:
15329 			return 0;
15330 		case BPF_TRACE_ITER:
15331 			break;
15332 		default:
15333 			return -ENOTSUPP;
15334 		}
15335 		break;
15336 	case BPF_PROG_TYPE_SK_LOOKUP:
15337 		range = retval_range(SK_DROP, SK_PASS);
15338 		break;
15339 
15340 	case BPF_PROG_TYPE_LSM:
15341 		if (env->prog->expected_attach_type != BPF_LSM_CGROUP) {
15342 			/* Regular BPF_PROG_TYPE_LSM programs can return
15343 			 * any value.
15344 			 */
15345 			return 0;
15346 		}
15347 		if (!env->prog->aux->attach_func_proto->type) {
15348 			/* Make sure programs that attach to void
15349 			 * hooks don't try to modify return value.
15350 			 */
15351 			range = retval_range(1, 1);
15352 		}
15353 		break;
15354 
15355 	case BPF_PROG_TYPE_NETFILTER:
15356 		range = retval_range(NF_DROP, NF_ACCEPT);
15357 		break;
15358 	case BPF_PROG_TYPE_EXT:
15359 		/* freplace program can return anything as its return value
15360 		 * depends on the to-be-replaced kernel func or bpf program.
15361 		 */
15362 	default:
15363 		return 0;
15364 	}
15365 
15366 enforce_retval:
15367 	if (reg->type != SCALAR_VALUE) {
15368 		verbose(env, "%s the register R%d is not a known value (%s)\n",
15369 			exit_ctx, regno, reg_type_str(env, reg->type));
15370 		return -EINVAL;
15371 	}
15372 
15373 	err = mark_chain_precision(env, regno);
15374 	if (err)
15375 		return err;
15376 
15377 	if (!retval_range_within(range, reg)) {
15378 		verbose_invalid_scalar(env, reg, range, exit_ctx, reg_name);
15379 		if (!is_subprog &&
15380 		    prog->expected_attach_type == BPF_LSM_CGROUP &&
15381 		    prog_type == BPF_PROG_TYPE_LSM &&
15382 		    !prog->aux->attach_func_proto->type)
15383 			verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
15384 		return -EINVAL;
15385 	}
15386 
15387 	if (!tnum_is_unknown(enforce_attach_type_range) &&
15388 	    tnum_in(enforce_attach_type_range, reg->var_off))
15389 		env->prog->enforce_expected_attach_type = 1;
15390 	return 0;
15391 }
15392 
15393 /* non-recursive DFS pseudo code
15394  * 1  procedure DFS-iterative(G,v):
15395  * 2      label v as discovered
15396  * 3      let S be a stack
15397  * 4      S.push(v)
15398  * 5      while S is not empty
15399  * 6            t <- S.peek()
15400  * 7            if t is what we're looking for:
15401  * 8                return t
15402  * 9            for all edges e in G.adjacentEdges(t) do
15403  * 10               if edge e is already labelled
15404  * 11                   continue with the next edge
15405  * 12               w <- G.adjacentVertex(t,e)
15406  * 13               if vertex w is not discovered and not explored
15407  * 14                   label e as tree-edge
15408  * 15                   label w as discovered
15409  * 16                   S.push(w)
15410  * 17                   continue at 5
15411  * 18               else if vertex w is discovered
15412  * 19                   label e as back-edge
15413  * 20               else
15414  * 21                   // vertex w is explored
15415  * 22                   label e as forward- or cross-edge
15416  * 23           label t as explored
15417  * 24           S.pop()
15418  *
15419  * convention:
15420  * 0x10 - discovered
15421  * 0x11 - discovered and fall-through edge labelled
15422  * 0x12 - discovered and fall-through and branch edges labelled
15423  * 0x20 - explored
15424  */
15425 
15426 enum {
15427 	DISCOVERED = 0x10,
15428 	EXPLORED = 0x20,
15429 	FALLTHROUGH = 1,
15430 	BRANCH = 2,
15431 };
15432 
15433 static void mark_prune_point(struct bpf_verifier_env *env, int idx)
15434 {
15435 	env->insn_aux_data[idx].prune_point = true;
15436 }
15437 
15438 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx)
15439 {
15440 	return env->insn_aux_data[insn_idx].prune_point;
15441 }
15442 
15443 static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx)
15444 {
15445 	env->insn_aux_data[idx].force_checkpoint = true;
15446 }
15447 
15448 static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx)
15449 {
15450 	return env->insn_aux_data[insn_idx].force_checkpoint;
15451 }
15452 
15453 static void mark_calls_callback(struct bpf_verifier_env *env, int idx)
15454 {
15455 	env->insn_aux_data[idx].calls_callback = true;
15456 }
15457 
15458 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx)
15459 {
15460 	return env->insn_aux_data[insn_idx].calls_callback;
15461 }
15462 
15463 enum {
15464 	DONE_EXPLORING = 0,
15465 	KEEP_EXPLORING = 1,
15466 };
15467 
15468 /* t, w, e - match pseudo-code above:
15469  * t - index of current instruction
15470  * w - next instruction
15471  * e - edge
15472  */
15473 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
15474 {
15475 	int *insn_stack = env->cfg.insn_stack;
15476 	int *insn_state = env->cfg.insn_state;
15477 
15478 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
15479 		return DONE_EXPLORING;
15480 
15481 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
15482 		return DONE_EXPLORING;
15483 
15484 	if (w < 0 || w >= env->prog->len) {
15485 		verbose_linfo(env, t, "%d: ", t);
15486 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
15487 		return -EINVAL;
15488 	}
15489 
15490 	if (e == BRANCH) {
15491 		/* mark branch target for state pruning */
15492 		mark_prune_point(env, w);
15493 		mark_jmp_point(env, w);
15494 	}
15495 
15496 	if (insn_state[w] == 0) {
15497 		/* tree-edge */
15498 		insn_state[t] = DISCOVERED | e;
15499 		insn_state[w] = DISCOVERED;
15500 		if (env->cfg.cur_stack >= env->prog->len)
15501 			return -E2BIG;
15502 		insn_stack[env->cfg.cur_stack++] = w;
15503 		return KEEP_EXPLORING;
15504 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
15505 		if (env->bpf_capable)
15506 			return DONE_EXPLORING;
15507 		verbose_linfo(env, t, "%d: ", t);
15508 		verbose_linfo(env, w, "%d: ", w);
15509 		verbose(env, "back-edge from insn %d to %d\n", t, w);
15510 		return -EINVAL;
15511 	} else if (insn_state[w] == EXPLORED) {
15512 		/* forward- or cross-edge */
15513 		insn_state[t] = DISCOVERED | e;
15514 	} else {
15515 		verbose(env, "insn state internal bug\n");
15516 		return -EFAULT;
15517 	}
15518 	return DONE_EXPLORING;
15519 }
15520 
15521 static int visit_func_call_insn(int t, struct bpf_insn *insns,
15522 				struct bpf_verifier_env *env,
15523 				bool visit_callee)
15524 {
15525 	int ret, insn_sz;
15526 
15527 	insn_sz = bpf_is_ldimm64(&insns[t]) ? 2 : 1;
15528 	ret = push_insn(t, t + insn_sz, FALLTHROUGH, env);
15529 	if (ret)
15530 		return ret;
15531 
15532 	mark_prune_point(env, t + insn_sz);
15533 	/* when we exit from subprog, we need to record non-linear history */
15534 	mark_jmp_point(env, t + insn_sz);
15535 
15536 	if (visit_callee) {
15537 		mark_prune_point(env, t);
15538 		ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env);
15539 	}
15540 	return ret;
15541 }
15542 
15543 /* Visits the instruction at index t and returns one of the following:
15544  *  < 0 - an error occurred
15545  *  DONE_EXPLORING - the instruction was fully explored
15546  *  KEEP_EXPLORING - there is still work to be done before it is fully explored
15547  */
15548 static int visit_insn(int t, struct bpf_verifier_env *env)
15549 {
15550 	struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t];
15551 	int ret, off, insn_sz;
15552 
15553 	if (bpf_pseudo_func(insn))
15554 		return visit_func_call_insn(t, insns, env, true);
15555 
15556 	/* All non-branch instructions have a single fall-through edge. */
15557 	if (BPF_CLASS(insn->code) != BPF_JMP &&
15558 	    BPF_CLASS(insn->code) != BPF_JMP32) {
15559 		insn_sz = bpf_is_ldimm64(insn) ? 2 : 1;
15560 		return push_insn(t, t + insn_sz, FALLTHROUGH, env);
15561 	}
15562 
15563 	switch (BPF_OP(insn->code)) {
15564 	case BPF_EXIT:
15565 		return DONE_EXPLORING;
15566 
15567 	case BPF_CALL:
15568 		if (insn->src_reg == 0 && insn->imm == BPF_FUNC_timer_set_callback)
15569 			/* Mark this call insn as a prune point to trigger
15570 			 * is_state_visited() check before call itself is
15571 			 * processed by __check_func_call(). Otherwise new
15572 			 * async state will be pushed for further exploration.
15573 			 */
15574 			mark_prune_point(env, t);
15575 		/* For functions that invoke callbacks it is not known how many times
15576 		 * callback would be called. Verifier models callback calling functions
15577 		 * by repeatedly visiting callback bodies and returning to origin call
15578 		 * instruction.
15579 		 * In order to stop such iteration verifier needs to identify when a
15580 		 * state identical some state from a previous iteration is reached.
15581 		 * Check below forces creation of checkpoint before callback calling
15582 		 * instruction to allow search for such identical states.
15583 		 */
15584 		if (is_sync_callback_calling_insn(insn)) {
15585 			mark_calls_callback(env, t);
15586 			mark_force_checkpoint(env, t);
15587 			mark_prune_point(env, t);
15588 			mark_jmp_point(env, t);
15589 		}
15590 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
15591 			struct bpf_kfunc_call_arg_meta meta;
15592 
15593 			ret = fetch_kfunc_meta(env, insn, &meta, NULL);
15594 			if (ret == 0 && is_iter_next_kfunc(&meta)) {
15595 				mark_prune_point(env, t);
15596 				/* Checking and saving state checkpoints at iter_next() call
15597 				 * is crucial for fast convergence of open-coded iterator loop
15598 				 * logic, so we need to force it. If we don't do that,
15599 				 * is_state_visited() might skip saving a checkpoint, causing
15600 				 * unnecessarily long sequence of not checkpointed
15601 				 * instructions and jumps, leading to exhaustion of jump
15602 				 * history buffer, and potentially other undesired outcomes.
15603 				 * It is expected that with correct open-coded iterators
15604 				 * convergence will happen quickly, so we don't run a risk of
15605 				 * exhausting memory.
15606 				 */
15607 				mark_force_checkpoint(env, t);
15608 			}
15609 		}
15610 		return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL);
15611 
15612 	case BPF_JA:
15613 		if (BPF_SRC(insn->code) != BPF_K)
15614 			return -EINVAL;
15615 
15616 		if (BPF_CLASS(insn->code) == BPF_JMP)
15617 			off = insn->off;
15618 		else
15619 			off = insn->imm;
15620 
15621 		/* unconditional jump with single edge */
15622 		ret = push_insn(t, t + off + 1, FALLTHROUGH, env);
15623 		if (ret)
15624 			return ret;
15625 
15626 		mark_prune_point(env, t + off + 1);
15627 		mark_jmp_point(env, t + off + 1);
15628 
15629 		return ret;
15630 
15631 	default:
15632 		/* conditional jump with two edges */
15633 		mark_prune_point(env, t);
15634 
15635 		ret = push_insn(t, t + 1, FALLTHROUGH, env);
15636 		if (ret)
15637 			return ret;
15638 
15639 		return push_insn(t, t + insn->off + 1, BRANCH, env);
15640 	}
15641 }
15642 
15643 /* non-recursive depth-first-search to detect loops in BPF program
15644  * loop == back-edge in directed graph
15645  */
15646 static int check_cfg(struct bpf_verifier_env *env)
15647 {
15648 	int insn_cnt = env->prog->len;
15649 	int *insn_stack, *insn_state;
15650 	int ex_insn_beg, i, ret = 0;
15651 	bool ex_done = false;
15652 
15653 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
15654 	if (!insn_state)
15655 		return -ENOMEM;
15656 
15657 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
15658 	if (!insn_stack) {
15659 		kvfree(insn_state);
15660 		return -ENOMEM;
15661 	}
15662 
15663 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
15664 	insn_stack[0] = 0; /* 0 is the first instruction */
15665 	env->cfg.cur_stack = 1;
15666 
15667 walk_cfg:
15668 	while (env->cfg.cur_stack > 0) {
15669 		int t = insn_stack[env->cfg.cur_stack - 1];
15670 
15671 		ret = visit_insn(t, env);
15672 		switch (ret) {
15673 		case DONE_EXPLORING:
15674 			insn_state[t] = EXPLORED;
15675 			env->cfg.cur_stack--;
15676 			break;
15677 		case KEEP_EXPLORING:
15678 			break;
15679 		default:
15680 			if (ret > 0) {
15681 				verbose(env, "visit_insn internal bug\n");
15682 				ret = -EFAULT;
15683 			}
15684 			goto err_free;
15685 		}
15686 	}
15687 
15688 	if (env->cfg.cur_stack < 0) {
15689 		verbose(env, "pop stack internal bug\n");
15690 		ret = -EFAULT;
15691 		goto err_free;
15692 	}
15693 
15694 	if (env->exception_callback_subprog && !ex_done) {
15695 		ex_insn_beg = env->subprog_info[env->exception_callback_subprog].start;
15696 
15697 		insn_state[ex_insn_beg] = DISCOVERED;
15698 		insn_stack[0] = ex_insn_beg;
15699 		env->cfg.cur_stack = 1;
15700 		ex_done = true;
15701 		goto walk_cfg;
15702 	}
15703 
15704 	for (i = 0; i < insn_cnt; i++) {
15705 		struct bpf_insn *insn = &env->prog->insnsi[i];
15706 
15707 		if (insn_state[i] != EXPLORED) {
15708 			verbose(env, "unreachable insn %d\n", i);
15709 			ret = -EINVAL;
15710 			goto err_free;
15711 		}
15712 		if (bpf_is_ldimm64(insn)) {
15713 			if (insn_state[i + 1] != 0) {
15714 				verbose(env, "jump into the middle of ldimm64 insn %d\n", i);
15715 				ret = -EINVAL;
15716 				goto err_free;
15717 			}
15718 			i++; /* skip second half of ldimm64 */
15719 		}
15720 	}
15721 	ret = 0; /* cfg looks good */
15722 
15723 err_free:
15724 	kvfree(insn_state);
15725 	kvfree(insn_stack);
15726 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
15727 	return ret;
15728 }
15729 
15730 static int check_abnormal_return(struct bpf_verifier_env *env)
15731 {
15732 	int i;
15733 
15734 	for (i = 1; i < env->subprog_cnt; i++) {
15735 		if (env->subprog_info[i].has_ld_abs) {
15736 			verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
15737 			return -EINVAL;
15738 		}
15739 		if (env->subprog_info[i].has_tail_call) {
15740 			verbose(env, "tail_call is not allowed in subprogs without BTF\n");
15741 			return -EINVAL;
15742 		}
15743 	}
15744 	return 0;
15745 }
15746 
15747 /* The minimum supported BTF func info size */
15748 #define MIN_BPF_FUNCINFO_SIZE	8
15749 #define MAX_FUNCINFO_REC_SIZE	252
15750 
15751 static int check_btf_func_early(struct bpf_verifier_env *env,
15752 				const union bpf_attr *attr,
15753 				bpfptr_t uattr)
15754 {
15755 	u32 krec_size = sizeof(struct bpf_func_info);
15756 	const struct btf_type *type, *func_proto;
15757 	u32 i, nfuncs, urec_size, min_size;
15758 	struct bpf_func_info *krecord;
15759 	struct bpf_prog *prog;
15760 	const struct btf *btf;
15761 	u32 prev_offset = 0;
15762 	bpfptr_t urecord;
15763 	int ret = -ENOMEM;
15764 
15765 	nfuncs = attr->func_info_cnt;
15766 	if (!nfuncs) {
15767 		if (check_abnormal_return(env))
15768 			return -EINVAL;
15769 		return 0;
15770 	}
15771 
15772 	urec_size = attr->func_info_rec_size;
15773 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
15774 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
15775 	    urec_size % sizeof(u32)) {
15776 		verbose(env, "invalid func info rec size %u\n", urec_size);
15777 		return -EINVAL;
15778 	}
15779 
15780 	prog = env->prog;
15781 	btf = prog->aux->btf;
15782 
15783 	urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
15784 	min_size = min_t(u32, krec_size, urec_size);
15785 
15786 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
15787 	if (!krecord)
15788 		return -ENOMEM;
15789 
15790 	for (i = 0; i < nfuncs; i++) {
15791 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
15792 		if (ret) {
15793 			if (ret == -E2BIG) {
15794 				verbose(env, "nonzero tailing record in func info");
15795 				/* set the size kernel expects so loader can zero
15796 				 * out the rest of the record.
15797 				 */
15798 				if (copy_to_bpfptr_offset(uattr,
15799 							  offsetof(union bpf_attr, func_info_rec_size),
15800 							  &min_size, sizeof(min_size)))
15801 					ret = -EFAULT;
15802 			}
15803 			goto err_free;
15804 		}
15805 
15806 		if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
15807 			ret = -EFAULT;
15808 			goto err_free;
15809 		}
15810 
15811 		/* check insn_off */
15812 		ret = -EINVAL;
15813 		if (i == 0) {
15814 			if (krecord[i].insn_off) {
15815 				verbose(env,
15816 					"nonzero insn_off %u for the first func info record",
15817 					krecord[i].insn_off);
15818 				goto err_free;
15819 			}
15820 		} else if (krecord[i].insn_off <= prev_offset) {
15821 			verbose(env,
15822 				"same or smaller insn offset (%u) than previous func info record (%u)",
15823 				krecord[i].insn_off, prev_offset);
15824 			goto err_free;
15825 		}
15826 
15827 		/* check type_id */
15828 		type = btf_type_by_id(btf, krecord[i].type_id);
15829 		if (!type || !btf_type_is_func(type)) {
15830 			verbose(env, "invalid type id %d in func info",
15831 				krecord[i].type_id);
15832 			goto err_free;
15833 		}
15834 
15835 		func_proto = btf_type_by_id(btf, type->type);
15836 		if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
15837 			/* btf_func_check() already verified it during BTF load */
15838 			goto err_free;
15839 
15840 		prev_offset = krecord[i].insn_off;
15841 		bpfptr_add(&urecord, urec_size);
15842 	}
15843 
15844 	prog->aux->func_info = krecord;
15845 	prog->aux->func_info_cnt = nfuncs;
15846 	return 0;
15847 
15848 err_free:
15849 	kvfree(krecord);
15850 	return ret;
15851 }
15852 
15853 static int check_btf_func(struct bpf_verifier_env *env,
15854 			  const union bpf_attr *attr,
15855 			  bpfptr_t uattr)
15856 {
15857 	const struct btf_type *type, *func_proto, *ret_type;
15858 	u32 i, nfuncs, urec_size;
15859 	struct bpf_func_info *krecord;
15860 	struct bpf_func_info_aux *info_aux = NULL;
15861 	struct bpf_prog *prog;
15862 	const struct btf *btf;
15863 	bpfptr_t urecord;
15864 	bool scalar_return;
15865 	int ret = -ENOMEM;
15866 
15867 	nfuncs = attr->func_info_cnt;
15868 	if (!nfuncs) {
15869 		if (check_abnormal_return(env))
15870 			return -EINVAL;
15871 		return 0;
15872 	}
15873 	if (nfuncs != env->subprog_cnt) {
15874 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
15875 		return -EINVAL;
15876 	}
15877 
15878 	urec_size = attr->func_info_rec_size;
15879 
15880 	prog = env->prog;
15881 	btf = prog->aux->btf;
15882 
15883 	urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
15884 
15885 	krecord = prog->aux->func_info;
15886 	info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
15887 	if (!info_aux)
15888 		return -ENOMEM;
15889 
15890 	for (i = 0; i < nfuncs; i++) {
15891 		/* check insn_off */
15892 		ret = -EINVAL;
15893 
15894 		if (env->subprog_info[i].start != krecord[i].insn_off) {
15895 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
15896 			goto err_free;
15897 		}
15898 
15899 		/* Already checked type_id */
15900 		type = btf_type_by_id(btf, krecord[i].type_id);
15901 		info_aux[i].linkage = BTF_INFO_VLEN(type->info);
15902 		/* Already checked func_proto */
15903 		func_proto = btf_type_by_id(btf, type->type);
15904 
15905 		ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
15906 		scalar_return =
15907 			btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type);
15908 		if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
15909 			verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
15910 			goto err_free;
15911 		}
15912 		if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
15913 			verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
15914 			goto err_free;
15915 		}
15916 
15917 		bpfptr_add(&urecord, urec_size);
15918 	}
15919 
15920 	prog->aux->func_info_aux = info_aux;
15921 	return 0;
15922 
15923 err_free:
15924 	kfree(info_aux);
15925 	return ret;
15926 }
15927 
15928 static void adjust_btf_func(struct bpf_verifier_env *env)
15929 {
15930 	struct bpf_prog_aux *aux = env->prog->aux;
15931 	int i;
15932 
15933 	if (!aux->func_info)
15934 		return;
15935 
15936 	/* func_info is not available for hidden subprogs */
15937 	for (i = 0; i < env->subprog_cnt - env->hidden_subprog_cnt; i++)
15938 		aux->func_info[i].insn_off = env->subprog_info[i].start;
15939 }
15940 
15941 #define MIN_BPF_LINEINFO_SIZE	offsetofend(struct bpf_line_info, line_col)
15942 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
15943 
15944 static int check_btf_line(struct bpf_verifier_env *env,
15945 			  const union bpf_attr *attr,
15946 			  bpfptr_t uattr)
15947 {
15948 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
15949 	struct bpf_subprog_info *sub;
15950 	struct bpf_line_info *linfo;
15951 	struct bpf_prog *prog;
15952 	const struct btf *btf;
15953 	bpfptr_t ulinfo;
15954 	int err;
15955 
15956 	nr_linfo = attr->line_info_cnt;
15957 	if (!nr_linfo)
15958 		return 0;
15959 	if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
15960 		return -EINVAL;
15961 
15962 	rec_size = attr->line_info_rec_size;
15963 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
15964 	    rec_size > MAX_LINEINFO_REC_SIZE ||
15965 	    rec_size & (sizeof(u32) - 1))
15966 		return -EINVAL;
15967 
15968 	/* Need to zero it in case the userspace may
15969 	 * pass in a smaller bpf_line_info object.
15970 	 */
15971 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
15972 			 GFP_KERNEL | __GFP_NOWARN);
15973 	if (!linfo)
15974 		return -ENOMEM;
15975 
15976 	prog = env->prog;
15977 	btf = prog->aux->btf;
15978 
15979 	s = 0;
15980 	sub = env->subprog_info;
15981 	ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
15982 	expected_size = sizeof(struct bpf_line_info);
15983 	ncopy = min_t(u32, expected_size, rec_size);
15984 	for (i = 0; i < nr_linfo; i++) {
15985 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
15986 		if (err) {
15987 			if (err == -E2BIG) {
15988 				verbose(env, "nonzero tailing record in line_info");
15989 				if (copy_to_bpfptr_offset(uattr,
15990 							  offsetof(union bpf_attr, line_info_rec_size),
15991 							  &expected_size, sizeof(expected_size)))
15992 					err = -EFAULT;
15993 			}
15994 			goto err_free;
15995 		}
15996 
15997 		if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
15998 			err = -EFAULT;
15999 			goto err_free;
16000 		}
16001 
16002 		/*
16003 		 * Check insn_off to ensure
16004 		 * 1) strictly increasing AND
16005 		 * 2) bounded by prog->len
16006 		 *
16007 		 * The linfo[0].insn_off == 0 check logically falls into
16008 		 * the later "missing bpf_line_info for func..." case
16009 		 * because the first linfo[0].insn_off must be the
16010 		 * first sub also and the first sub must have
16011 		 * subprog_info[0].start == 0.
16012 		 */
16013 		if ((i && linfo[i].insn_off <= prev_offset) ||
16014 		    linfo[i].insn_off >= prog->len) {
16015 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
16016 				i, linfo[i].insn_off, prev_offset,
16017 				prog->len);
16018 			err = -EINVAL;
16019 			goto err_free;
16020 		}
16021 
16022 		if (!prog->insnsi[linfo[i].insn_off].code) {
16023 			verbose(env,
16024 				"Invalid insn code at line_info[%u].insn_off\n",
16025 				i);
16026 			err = -EINVAL;
16027 			goto err_free;
16028 		}
16029 
16030 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
16031 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
16032 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
16033 			err = -EINVAL;
16034 			goto err_free;
16035 		}
16036 
16037 		if (s != env->subprog_cnt) {
16038 			if (linfo[i].insn_off == sub[s].start) {
16039 				sub[s].linfo_idx = i;
16040 				s++;
16041 			} else if (sub[s].start < linfo[i].insn_off) {
16042 				verbose(env, "missing bpf_line_info for func#%u\n", s);
16043 				err = -EINVAL;
16044 				goto err_free;
16045 			}
16046 		}
16047 
16048 		prev_offset = linfo[i].insn_off;
16049 		bpfptr_add(&ulinfo, rec_size);
16050 	}
16051 
16052 	if (s != env->subprog_cnt) {
16053 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
16054 			env->subprog_cnt - s, s);
16055 		err = -EINVAL;
16056 		goto err_free;
16057 	}
16058 
16059 	prog->aux->linfo = linfo;
16060 	prog->aux->nr_linfo = nr_linfo;
16061 
16062 	return 0;
16063 
16064 err_free:
16065 	kvfree(linfo);
16066 	return err;
16067 }
16068 
16069 #define MIN_CORE_RELO_SIZE	sizeof(struct bpf_core_relo)
16070 #define MAX_CORE_RELO_SIZE	MAX_FUNCINFO_REC_SIZE
16071 
16072 static int check_core_relo(struct bpf_verifier_env *env,
16073 			   const union bpf_attr *attr,
16074 			   bpfptr_t uattr)
16075 {
16076 	u32 i, nr_core_relo, ncopy, expected_size, rec_size;
16077 	struct bpf_core_relo core_relo = {};
16078 	struct bpf_prog *prog = env->prog;
16079 	const struct btf *btf = prog->aux->btf;
16080 	struct bpf_core_ctx ctx = {
16081 		.log = &env->log,
16082 		.btf = btf,
16083 	};
16084 	bpfptr_t u_core_relo;
16085 	int err;
16086 
16087 	nr_core_relo = attr->core_relo_cnt;
16088 	if (!nr_core_relo)
16089 		return 0;
16090 	if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo))
16091 		return -EINVAL;
16092 
16093 	rec_size = attr->core_relo_rec_size;
16094 	if (rec_size < MIN_CORE_RELO_SIZE ||
16095 	    rec_size > MAX_CORE_RELO_SIZE ||
16096 	    rec_size % sizeof(u32))
16097 		return -EINVAL;
16098 
16099 	u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel);
16100 	expected_size = sizeof(struct bpf_core_relo);
16101 	ncopy = min_t(u32, expected_size, rec_size);
16102 
16103 	/* Unlike func_info and line_info, copy and apply each CO-RE
16104 	 * relocation record one at a time.
16105 	 */
16106 	for (i = 0; i < nr_core_relo; i++) {
16107 		/* future proofing when sizeof(bpf_core_relo) changes */
16108 		err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size);
16109 		if (err) {
16110 			if (err == -E2BIG) {
16111 				verbose(env, "nonzero tailing record in core_relo");
16112 				if (copy_to_bpfptr_offset(uattr,
16113 							  offsetof(union bpf_attr, core_relo_rec_size),
16114 							  &expected_size, sizeof(expected_size)))
16115 					err = -EFAULT;
16116 			}
16117 			break;
16118 		}
16119 
16120 		if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) {
16121 			err = -EFAULT;
16122 			break;
16123 		}
16124 
16125 		if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) {
16126 			verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n",
16127 				i, core_relo.insn_off, prog->len);
16128 			err = -EINVAL;
16129 			break;
16130 		}
16131 
16132 		err = bpf_core_apply(&ctx, &core_relo, i,
16133 				     &prog->insnsi[core_relo.insn_off / 8]);
16134 		if (err)
16135 			break;
16136 		bpfptr_add(&u_core_relo, rec_size);
16137 	}
16138 	return err;
16139 }
16140 
16141 static int check_btf_info_early(struct bpf_verifier_env *env,
16142 				const union bpf_attr *attr,
16143 				bpfptr_t uattr)
16144 {
16145 	struct btf *btf;
16146 	int err;
16147 
16148 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
16149 		if (check_abnormal_return(env))
16150 			return -EINVAL;
16151 		return 0;
16152 	}
16153 
16154 	btf = btf_get_by_fd(attr->prog_btf_fd);
16155 	if (IS_ERR(btf))
16156 		return PTR_ERR(btf);
16157 	if (btf_is_kernel(btf)) {
16158 		btf_put(btf);
16159 		return -EACCES;
16160 	}
16161 	env->prog->aux->btf = btf;
16162 
16163 	err = check_btf_func_early(env, attr, uattr);
16164 	if (err)
16165 		return err;
16166 	return 0;
16167 }
16168 
16169 static int check_btf_info(struct bpf_verifier_env *env,
16170 			  const union bpf_attr *attr,
16171 			  bpfptr_t uattr)
16172 {
16173 	int err;
16174 
16175 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
16176 		if (check_abnormal_return(env))
16177 			return -EINVAL;
16178 		return 0;
16179 	}
16180 
16181 	err = check_btf_func(env, attr, uattr);
16182 	if (err)
16183 		return err;
16184 
16185 	err = check_btf_line(env, attr, uattr);
16186 	if (err)
16187 		return err;
16188 
16189 	err = check_core_relo(env, attr, uattr);
16190 	if (err)
16191 		return err;
16192 
16193 	return 0;
16194 }
16195 
16196 /* check %cur's range satisfies %old's */
16197 static bool range_within(struct bpf_reg_state *old,
16198 			 struct bpf_reg_state *cur)
16199 {
16200 	return old->umin_value <= cur->umin_value &&
16201 	       old->umax_value >= cur->umax_value &&
16202 	       old->smin_value <= cur->smin_value &&
16203 	       old->smax_value >= cur->smax_value &&
16204 	       old->u32_min_value <= cur->u32_min_value &&
16205 	       old->u32_max_value >= cur->u32_max_value &&
16206 	       old->s32_min_value <= cur->s32_min_value &&
16207 	       old->s32_max_value >= cur->s32_max_value;
16208 }
16209 
16210 /* If in the old state two registers had the same id, then they need to have
16211  * the same id in the new state as well.  But that id could be different from
16212  * the old state, so we need to track the mapping from old to new ids.
16213  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
16214  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
16215  * regs with a different old id could still have new id 9, we don't care about
16216  * that.
16217  * So we look through our idmap to see if this old id has been seen before.  If
16218  * so, we require the new id to match; otherwise, we add the id pair to the map.
16219  */
16220 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap)
16221 {
16222 	struct bpf_id_pair *map = idmap->map;
16223 	unsigned int i;
16224 
16225 	/* either both IDs should be set or both should be zero */
16226 	if (!!old_id != !!cur_id)
16227 		return false;
16228 
16229 	if (old_id == 0) /* cur_id == 0 as well */
16230 		return true;
16231 
16232 	for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
16233 		if (!map[i].old) {
16234 			/* Reached an empty slot; haven't seen this id before */
16235 			map[i].old = old_id;
16236 			map[i].cur = cur_id;
16237 			return true;
16238 		}
16239 		if (map[i].old == old_id)
16240 			return map[i].cur == cur_id;
16241 		if (map[i].cur == cur_id)
16242 			return false;
16243 	}
16244 	/* We ran out of idmap slots, which should be impossible */
16245 	WARN_ON_ONCE(1);
16246 	return false;
16247 }
16248 
16249 /* Similar to check_ids(), but allocate a unique temporary ID
16250  * for 'old_id' or 'cur_id' of zero.
16251  * This makes pairs like '0 vs unique ID', 'unique ID vs 0' valid.
16252  */
16253 static bool check_scalar_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap)
16254 {
16255 	old_id = old_id ? old_id : ++idmap->tmp_id_gen;
16256 	cur_id = cur_id ? cur_id : ++idmap->tmp_id_gen;
16257 
16258 	return check_ids(old_id, cur_id, idmap);
16259 }
16260 
16261 static void clean_func_state(struct bpf_verifier_env *env,
16262 			     struct bpf_func_state *st)
16263 {
16264 	enum bpf_reg_liveness live;
16265 	int i, j;
16266 
16267 	for (i = 0; i < BPF_REG_FP; i++) {
16268 		live = st->regs[i].live;
16269 		/* liveness must not touch this register anymore */
16270 		st->regs[i].live |= REG_LIVE_DONE;
16271 		if (!(live & REG_LIVE_READ))
16272 			/* since the register is unused, clear its state
16273 			 * to make further comparison simpler
16274 			 */
16275 			__mark_reg_not_init(env, &st->regs[i]);
16276 	}
16277 
16278 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
16279 		live = st->stack[i].spilled_ptr.live;
16280 		/* liveness must not touch this stack slot anymore */
16281 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
16282 		if (!(live & REG_LIVE_READ)) {
16283 			__mark_reg_not_init(env, &st->stack[i].spilled_ptr);
16284 			for (j = 0; j < BPF_REG_SIZE; j++)
16285 				st->stack[i].slot_type[j] = STACK_INVALID;
16286 		}
16287 	}
16288 }
16289 
16290 static void clean_verifier_state(struct bpf_verifier_env *env,
16291 				 struct bpf_verifier_state *st)
16292 {
16293 	int i;
16294 
16295 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
16296 		/* all regs in this state in all frames were already marked */
16297 		return;
16298 
16299 	for (i = 0; i <= st->curframe; i++)
16300 		clean_func_state(env, st->frame[i]);
16301 }
16302 
16303 /* the parentage chains form a tree.
16304  * the verifier states are added to state lists at given insn and
16305  * pushed into state stack for future exploration.
16306  * when the verifier reaches bpf_exit insn some of the verifer states
16307  * stored in the state lists have their final liveness state already,
16308  * but a lot of states will get revised from liveness point of view when
16309  * the verifier explores other branches.
16310  * Example:
16311  * 1: r0 = 1
16312  * 2: if r1 == 100 goto pc+1
16313  * 3: r0 = 2
16314  * 4: exit
16315  * when the verifier reaches exit insn the register r0 in the state list of
16316  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
16317  * of insn 2 and goes exploring further. At the insn 4 it will walk the
16318  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
16319  *
16320  * Since the verifier pushes the branch states as it sees them while exploring
16321  * the program the condition of walking the branch instruction for the second
16322  * time means that all states below this branch were already explored and
16323  * their final liveness marks are already propagated.
16324  * Hence when the verifier completes the search of state list in is_state_visited()
16325  * we can call this clean_live_states() function to mark all liveness states
16326  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
16327  * will not be used.
16328  * This function also clears the registers and stack for states that !READ
16329  * to simplify state merging.
16330  *
16331  * Important note here that walking the same branch instruction in the callee
16332  * doesn't meant that the states are DONE. The verifier has to compare
16333  * the callsites
16334  */
16335 static void clean_live_states(struct bpf_verifier_env *env, int insn,
16336 			      struct bpf_verifier_state *cur)
16337 {
16338 	struct bpf_verifier_state_list *sl;
16339 
16340 	sl = *explored_state(env, insn);
16341 	while (sl) {
16342 		if (sl->state.branches)
16343 			goto next;
16344 		if (sl->state.insn_idx != insn ||
16345 		    !same_callsites(&sl->state, cur))
16346 			goto next;
16347 		clean_verifier_state(env, &sl->state);
16348 next:
16349 		sl = sl->next;
16350 	}
16351 }
16352 
16353 static bool regs_exact(const struct bpf_reg_state *rold,
16354 		       const struct bpf_reg_state *rcur,
16355 		       struct bpf_idmap *idmap)
16356 {
16357 	return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
16358 	       check_ids(rold->id, rcur->id, idmap) &&
16359 	       check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
16360 }
16361 
16362 /* Returns true if (rold safe implies rcur safe) */
16363 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
16364 		    struct bpf_reg_state *rcur, struct bpf_idmap *idmap, bool exact)
16365 {
16366 	if (exact)
16367 		return regs_exact(rold, rcur, idmap);
16368 
16369 	if (!(rold->live & REG_LIVE_READ))
16370 		/* explored state didn't use this */
16371 		return true;
16372 	if (rold->type == NOT_INIT)
16373 		/* explored state can't have used this */
16374 		return true;
16375 	if (rcur->type == NOT_INIT)
16376 		return false;
16377 
16378 	/* Enforce that register types have to match exactly, including their
16379 	 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general
16380 	 * rule.
16381 	 *
16382 	 * One can make a point that using a pointer register as unbounded
16383 	 * SCALAR would be technically acceptable, but this could lead to
16384 	 * pointer leaks because scalars are allowed to leak while pointers
16385 	 * are not. We could make this safe in special cases if root is
16386 	 * calling us, but it's probably not worth the hassle.
16387 	 *
16388 	 * Also, register types that are *not* MAYBE_NULL could technically be
16389 	 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE
16390 	 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point
16391 	 * to the same map).
16392 	 * However, if the old MAYBE_NULL register then got NULL checked,
16393 	 * doing so could have affected others with the same id, and we can't
16394 	 * check for that because we lost the id when we converted to
16395 	 * a non-MAYBE_NULL variant.
16396 	 * So, as a general rule we don't allow mixing MAYBE_NULL and
16397 	 * non-MAYBE_NULL registers as well.
16398 	 */
16399 	if (rold->type != rcur->type)
16400 		return false;
16401 
16402 	switch (base_type(rold->type)) {
16403 	case SCALAR_VALUE:
16404 		if (env->explore_alu_limits) {
16405 			/* explore_alu_limits disables tnum_in() and range_within()
16406 			 * logic and requires everything to be strict
16407 			 */
16408 			return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
16409 			       check_scalar_ids(rold->id, rcur->id, idmap);
16410 		}
16411 		if (!rold->precise)
16412 			return true;
16413 		/* Why check_ids() for scalar registers?
16414 		 *
16415 		 * Consider the following BPF code:
16416 		 *   1: r6 = ... unbound scalar, ID=a ...
16417 		 *   2: r7 = ... unbound scalar, ID=b ...
16418 		 *   3: if (r6 > r7) goto +1
16419 		 *   4: r6 = r7
16420 		 *   5: if (r6 > X) goto ...
16421 		 *   6: ... memory operation using r7 ...
16422 		 *
16423 		 * First verification path is [1-6]:
16424 		 * - at (4) same bpf_reg_state::id (b) would be assigned to r6 and r7;
16425 		 * - at (5) r6 would be marked <= X, find_equal_scalars() would also mark
16426 		 *   r7 <= X, because r6 and r7 share same id.
16427 		 * Next verification path is [1-4, 6].
16428 		 *
16429 		 * Instruction (6) would be reached in two states:
16430 		 *   I.  r6{.id=b}, r7{.id=b} via path 1-6;
16431 		 *   II. r6{.id=a}, r7{.id=b} via path 1-4, 6.
16432 		 *
16433 		 * Use check_ids() to distinguish these states.
16434 		 * ---
16435 		 * Also verify that new value satisfies old value range knowledge.
16436 		 */
16437 		return range_within(rold, rcur) &&
16438 		       tnum_in(rold->var_off, rcur->var_off) &&
16439 		       check_scalar_ids(rold->id, rcur->id, idmap);
16440 	case PTR_TO_MAP_KEY:
16441 	case PTR_TO_MAP_VALUE:
16442 	case PTR_TO_MEM:
16443 	case PTR_TO_BUF:
16444 	case PTR_TO_TP_BUFFER:
16445 		/* If the new min/max/var_off satisfy the old ones and
16446 		 * everything else matches, we are OK.
16447 		 */
16448 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 &&
16449 		       range_within(rold, rcur) &&
16450 		       tnum_in(rold->var_off, rcur->var_off) &&
16451 		       check_ids(rold->id, rcur->id, idmap) &&
16452 		       check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
16453 	case PTR_TO_PACKET_META:
16454 	case PTR_TO_PACKET:
16455 		/* We must have at least as much range as the old ptr
16456 		 * did, so that any accesses which were safe before are
16457 		 * still safe.  This is true even if old range < old off,
16458 		 * since someone could have accessed through (ptr - k), or
16459 		 * even done ptr -= k in a register, to get a safe access.
16460 		 */
16461 		if (rold->range > rcur->range)
16462 			return false;
16463 		/* If the offsets don't match, we can't trust our alignment;
16464 		 * nor can we be sure that we won't fall out of range.
16465 		 */
16466 		if (rold->off != rcur->off)
16467 			return false;
16468 		/* id relations must be preserved */
16469 		if (!check_ids(rold->id, rcur->id, idmap))
16470 			return false;
16471 		/* new val must satisfy old val knowledge */
16472 		return range_within(rold, rcur) &&
16473 		       tnum_in(rold->var_off, rcur->var_off);
16474 	case PTR_TO_STACK:
16475 		/* two stack pointers are equal only if they're pointing to
16476 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
16477 		 */
16478 		return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno;
16479 	default:
16480 		return regs_exact(rold, rcur, idmap);
16481 	}
16482 }
16483 
16484 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
16485 		      struct bpf_func_state *cur, struct bpf_idmap *idmap, bool exact)
16486 {
16487 	int i, spi;
16488 
16489 	/* walk slots of the explored stack and ignore any additional
16490 	 * slots in the current stack, since explored(safe) state
16491 	 * didn't use them
16492 	 */
16493 	for (i = 0; i < old->allocated_stack; i++) {
16494 		struct bpf_reg_state *old_reg, *cur_reg;
16495 
16496 		spi = i / BPF_REG_SIZE;
16497 
16498 		if (exact &&
16499 		    old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
16500 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
16501 			return false;
16502 
16503 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ) && !exact) {
16504 			i += BPF_REG_SIZE - 1;
16505 			/* explored state didn't use this */
16506 			continue;
16507 		}
16508 
16509 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
16510 			continue;
16511 
16512 		if (env->allow_uninit_stack &&
16513 		    old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC)
16514 			continue;
16515 
16516 		/* explored stack has more populated slots than current stack
16517 		 * and these slots were used
16518 		 */
16519 		if (i >= cur->allocated_stack)
16520 			return false;
16521 
16522 		/* if old state was safe with misc data in the stack
16523 		 * it will be safe with zero-initialized stack.
16524 		 * The opposite is not true
16525 		 */
16526 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
16527 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
16528 			continue;
16529 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
16530 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
16531 			/* Ex: old explored (safe) state has STACK_SPILL in
16532 			 * this stack slot, but current has STACK_MISC ->
16533 			 * this verifier states are not equivalent,
16534 			 * return false to continue verification of this path
16535 			 */
16536 			return false;
16537 		if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1)
16538 			continue;
16539 		/* Both old and cur are having same slot_type */
16540 		switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) {
16541 		case STACK_SPILL:
16542 			/* when explored and current stack slot are both storing
16543 			 * spilled registers, check that stored pointers types
16544 			 * are the same as well.
16545 			 * Ex: explored safe path could have stored
16546 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
16547 			 * but current path has stored:
16548 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
16549 			 * such verifier states are not equivalent.
16550 			 * return false to continue verification of this path
16551 			 */
16552 			if (!regsafe(env, &old->stack[spi].spilled_ptr,
16553 				     &cur->stack[spi].spilled_ptr, idmap, exact))
16554 				return false;
16555 			break;
16556 		case STACK_DYNPTR:
16557 			old_reg = &old->stack[spi].spilled_ptr;
16558 			cur_reg = &cur->stack[spi].spilled_ptr;
16559 			if (old_reg->dynptr.type != cur_reg->dynptr.type ||
16560 			    old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot ||
16561 			    !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
16562 				return false;
16563 			break;
16564 		case STACK_ITER:
16565 			old_reg = &old->stack[spi].spilled_ptr;
16566 			cur_reg = &cur->stack[spi].spilled_ptr;
16567 			/* iter.depth is not compared between states as it
16568 			 * doesn't matter for correctness and would otherwise
16569 			 * prevent convergence; we maintain it only to prevent
16570 			 * infinite loop check triggering, see
16571 			 * iter_active_depths_differ()
16572 			 */
16573 			if (old_reg->iter.btf != cur_reg->iter.btf ||
16574 			    old_reg->iter.btf_id != cur_reg->iter.btf_id ||
16575 			    old_reg->iter.state != cur_reg->iter.state ||
16576 			    /* ignore {old_reg,cur_reg}->iter.depth, see above */
16577 			    !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
16578 				return false;
16579 			break;
16580 		case STACK_MISC:
16581 		case STACK_ZERO:
16582 		case STACK_INVALID:
16583 			continue;
16584 		/* Ensure that new unhandled slot types return false by default */
16585 		default:
16586 			return false;
16587 		}
16588 	}
16589 	return true;
16590 }
16591 
16592 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur,
16593 		    struct bpf_idmap *idmap)
16594 {
16595 	int i;
16596 
16597 	if (old->acquired_refs != cur->acquired_refs)
16598 		return false;
16599 
16600 	for (i = 0; i < old->acquired_refs; i++) {
16601 		if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap))
16602 			return false;
16603 	}
16604 
16605 	return true;
16606 }
16607 
16608 /* compare two verifier states
16609  *
16610  * all states stored in state_list are known to be valid, since
16611  * verifier reached 'bpf_exit' instruction through them
16612  *
16613  * this function is called when verifier exploring different branches of
16614  * execution popped from the state stack. If it sees an old state that has
16615  * more strict register state and more strict stack state then this execution
16616  * branch doesn't need to be explored further, since verifier already
16617  * concluded that more strict state leads to valid finish.
16618  *
16619  * Therefore two states are equivalent if register state is more conservative
16620  * and explored stack state is more conservative than the current one.
16621  * Example:
16622  *       explored                   current
16623  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
16624  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
16625  *
16626  * In other words if current stack state (one being explored) has more
16627  * valid slots than old one that already passed validation, it means
16628  * the verifier can stop exploring and conclude that current state is valid too
16629  *
16630  * Similarly with registers. If explored state has register type as invalid
16631  * whereas register type in current state is meaningful, it means that
16632  * the current state will reach 'bpf_exit' instruction safely
16633  */
16634 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
16635 			      struct bpf_func_state *cur, bool exact)
16636 {
16637 	int i;
16638 
16639 	for (i = 0; i < MAX_BPF_REG; i++)
16640 		if (!regsafe(env, &old->regs[i], &cur->regs[i],
16641 			     &env->idmap_scratch, exact))
16642 			return false;
16643 
16644 	if (!stacksafe(env, old, cur, &env->idmap_scratch, exact))
16645 		return false;
16646 
16647 	if (!refsafe(old, cur, &env->idmap_scratch))
16648 		return false;
16649 
16650 	return true;
16651 }
16652 
16653 static void reset_idmap_scratch(struct bpf_verifier_env *env)
16654 {
16655 	env->idmap_scratch.tmp_id_gen = env->id_gen;
16656 	memset(&env->idmap_scratch.map, 0, sizeof(env->idmap_scratch.map));
16657 }
16658 
16659 static bool states_equal(struct bpf_verifier_env *env,
16660 			 struct bpf_verifier_state *old,
16661 			 struct bpf_verifier_state *cur,
16662 			 bool exact)
16663 {
16664 	int i;
16665 
16666 	if (old->curframe != cur->curframe)
16667 		return false;
16668 
16669 	reset_idmap_scratch(env);
16670 
16671 	/* Verification state from speculative execution simulation
16672 	 * must never prune a non-speculative execution one.
16673 	 */
16674 	if (old->speculative && !cur->speculative)
16675 		return false;
16676 
16677 	if (old->active_lock.ptr != cur->active_lock.ptr)
16678 		return false;
16679 
16680 	/* Old and cur active_lock's have to be either both present
16681 	 * or both absent.
16682 	 */
16683 	if (!!old->active_lock.id != !!cur->active_lock.id)
16684 		return false;
16685 
16686 	if (old->active_lock.id &&
16687 	    !check_ids(old->active_lock.id, cur->active_lock.id, &env->idmap_scratch))
16688 		return false;
16689 
16690 	if (old->active_rcu_lock != cur->active_rcu_lock)
16691 		return false;
16692 
16693 	/* for states to be equal callsites have to be the same
16694 	 * and all frame states need to be equivalent
16695 	 */
16696 	for (i = 0; i <= old->curframe; i++) {
16697 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
16698 			return false;
16699 		if (!func_states_equal(env, old->frame[i], cur->frame[i], exact))
16700 			return false;
16701 	}
16702 	return true;
16703 }
16704 
16705 /* Return 0 if no propagation happened. Return negative error code if error
16706  * happened. Otherwise, return the propagated bit.
16707  */
16708 static int propagate_liveness_reg(struct bpf_verifier_env *env,
16709 				  struct bpf_reg_state *reg,
16710 				  struct bpf_reg_state *parent_reg)
16711 {
16712 	u8 parent_flag = parent_reg->live & REG_LIVE_READ;
16713 	u8 flag = reg->live & REG_LIVE_READ;
16714 	int err;
16715 
16716 	/* When comes here, read flags of PARENT_REG or REG could be any of
16717 	 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
16718 	 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
16719 	 */
16720 	if (parent_flag == REG_LIVE_READ64 ||
16721 	    /* Or if there is no read flag from REG. */
16722 	    !flag ||
16723 	    /* Or if the read flag from REG is the same as PARENT_REG. */
16724 	    parent_flag == flag)
16725 		return 0;
16726 
16727 	err = mark_reg_read(env, reg, parent_reg, flag);
16728 	if (err)
16729 		return err;
16730 
16731 	return flag;
16732 }
16733 
16734 /* A write screens off any subsequent reads; but write marks come from the
16735  * straight-line code between a state and its parent.  When we arrive at an
16736  * equivalent state (jump target or such) we didn't arrive by the straight-line
16737  * code, so read marks in the state must propagate to the parent regardless
16738  * of the state's write marks. That's what 'parent == state->parent' comparison
16739  * in mark_reg_read() is for.
16740  */
16741 static int propagate_liveness(struct bpf_verifier_env *env,
16742 			      const struct bpf_verifier_state *vstate,
16743 			      struct bpf_verifier_state *vparent)
16744 {
16745 	struct bpf_reg_state *state_reg, *parent_reg;
16746 	struct bpf_func_state *state, *parent;
16747 	int i, frame, err = 0;
16748 
16749 	if (vparent->curframe != vstate->curframe) {
16750 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
16751 		     vparent->curframe, vstate->curframe);
16752 		return -EFAULT;
16753 	}
16754 	/* Propagate read liveness of registers... */
16755 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
16756 	for (frame = 0; frame <= vstate->curframe; frame++) {
16757 		parent = vparent->frame[frame];
16758 		state = vstate->frame[frame];
16759 		parent_reg = parent->regs;
16760 		state_reg = state->regs;
16761 		/* We don't need to worry about FP liveness, it's read-only */
16762 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
16763 			err = propagate_liveness_reg(env, &state_reg[i],
16764 						     &parent_reg[i]);
16765 			if (err < 0)
16766 				return err;
16767 			if (err == REG_LIVE_READ64)
16768 				mark_insn_zext(env, &parent_reg[i]);
16769 		}
16770 
16771 		/* Propagate stack slots. */
16772 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
16773 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
16774 			parent_reg = &parent->stack[i].spilled_ptr;
16775 			state_reg = &state->stack[i].spilled_ptr;
16776 			err = propagate_liveness_reg(env, state_reg,
16777 						     parent_reg);
16778 			if (err < 0)
16779 				return err;
16780 		}
16781 	}
16782 	return 0;
16783 }
16784 
16785 /* find precise scalars in the previous equivalent state and
16786  * propagate them into the current state
16787  */
16788 static int propagate_precision(struct bpf_verifier_env *env,
16789 			       const struct bpf_verifier_state *old)
16790 {
16791 	struct bpf_reg_state *state_reg;
16792 	struct bpf_func_state *state;
16793 	int i, err = 0, fr;
16794 	bool first;
16795 
16796 	for (fr = old->curframe; fr >= 0; fr--) {
16797 		state = old->frame[fr];
16798 		state_reg = state->regs;
16799 		first = true;
16800 		for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
16801 			if (state_reg->type != SCALAR_VALUE ||
16802 			    !state_reg->precise ||
16803 			    !(state_reg->live & REG_LIVE_READ))
16804 				continue;
16805 			if (env->log.level & BPF_LOG_LEVEL2) {
16806 				if (first)
16807 					verbose(env, "frame %d: propagating r%d", fr, i);
16808 				else
16809 					verbose(env, ",r%d", i);
16810 			}
16811 			bt_set_frame_reg(&env->bt, fr, i);
16812 			first = false;
16813 		}
16814 
16815 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
16816 			if (!is_spilled_reg(&state->stack[i]))
16817 				continue;
16818 			state_reg = &state->stack[i].spilled_ptr;
16819 			if (state_reg->type != SCALAR_VALUE ||
16820 			    !state_reg->precise ||
16821 			    !(state_reg->live & REG_LIVE_READ))
16822 				continue;
16823 			if (env->log.level & BPF_LOG_LEVEL2) {
16824 				if (first)
16825 					verbose(env, "frame %d: propagating fp%d",
16826 						fr, (-i - 1) * BPF_REG_SIZE);
16827 				else
16828 					verbose(env, ",fp%d", (-i - 1) * BPF_REG_SIZE);
16829 			}
16830 			bt_set_frame_slot(&env->bt, fr, i);
16831 			first = false;
16832 		}
16833 		if (!first)
16834 			verbose(env, "\n");
16835 	}
16836 
16837 	err = mark_chain_precision_batch(env);
16838 	if (err < 0)
16839 		return err;
16840 
16841 	return 0;
16842 }
16843 
16844 static bool states_maybe_looping(struct bpf_verifier_state *old,
16845 				 struct bpf_verifier_state *cur)
16846 {
16847 	struct bpf_func_state *fold, *fcur;
16848 	int i, fr = cur->curframe;
16849 
16850 	if (old->curframe != fr)
16851 		return false;
16852 
16853 	fold = old->frame[fr];
16854 	fcur = cur->frame[fr];
16855 	for (i = 0; i < MAX_BPF_REG; i++)
16856 		if (memcmp(&fold->regs[i], &fcur->regs[i],
16857 			   offsetof(struct bpf_reg_state, parent)))
16858 			return false;
16859 	return true;
16860 }
16861 
16862 static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx)
16863 {
16864 	return env->insn_aux_data[insn_idx].is_iter_next;
16865 }
16866 
16867 /* is_state_visited() handles iter_next() (see process_iter_next_call() for
16868  * terminology) calls specially: as opposed to bounded BPF loops, it *expects*
16869  * states to match, which otherwise would look like an infinite loop. So while
16870  * iter_next() calls are taken care of, we still need to be careful and
16871  * prevent erroneous and too eager declaration of "ininite loop", when
16872  * iterators are involved.
16873  *
16874  * Here's a situation in pseudo-BPF assembly form:
16875  *
16876  *   0: again:                          ; set up iter_next() call args
16877  *   1:   r1 = &it                      ; <CHECKPOINT HERE>
16878  *   2:   call bpf_iter_num_next        ; this is iter_next() call
16879  *   3:   if r0 == 0 goto done
16880  *   4:   ... something useful here ...
16881  *   5:   goto again                    ; another iteration
16882  *   6: done:
16883  *   7:   r1 = &it
16884  *   8:   call bpf_iter_num_destroy     ; clean up iter state
16885  *   9:   exit
16886  *
16887  * This is a typical loop. Let's assume that we have a prune point at 1:,
16888  * before we get to `call bpf_iter_num_next` (e.g., because of that `goto
16889  * again`, assuming other heuristics don't get in a way).
16890  *
16891  * When we first time come to 1:, let's say we have some state X. We proceed
16892  * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit.
16893  * Now we come back to validate that forked ACTIVE state. We proceed through
16894  * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we
16895  * are converging. But the problem is that we don't know that yet, as this
16896  * convergence has to happen at iter_next() call site only. So if nothing is
16897  * done, at 1: verifier will use bounded loop logic and declare infinite
16898  * looping (and would be *technically* correct, if not for iterator's
16899  * "eventual sticky NULL" contract, see process_iter_next_call()). But we
16900  * don't want that. So what we do in process_iter_next_call() when we go on
16901  * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's
16902  * a different iteration. So when we suspect an infinite loop, we additionally
16903  * check if any of the *ACTIVE* iterator states depths differ. If yes, we
16904  * pretend we are not looping and wait for next iter_next() call.
16905  *
16906  * This only applies to ACTIVE state. In DRAINED state we don't expect to
16907  * loop, because that would actually mean infinite loop, as DRAINED state is
16908  * "sticky", and so we'll keep returning into the same instruction with the
16909  * same state (at least in one of possible code paths).
16910  *
16911  * This approach allows to keep infinite loop heuristic even in the face of
16912  * active iterator. E.g., C snippet below is and will be detected as
16913  * inifintely looping:
16914  *
16915  *   struct bpf_iter_num it;
16916  *   int *p, x;
16917  *
16918  *   bpf_iter_num_new(&it, 0, 10);
16919  *   while ((p = bpf_iter_num_next(&t))) {
16920  *       x = p;
16921  *       while (x--) {} // <<-- infinite loop here
16922  *   }
16923  *
16924  */
16925 static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur)
16926 {
16927 	struct bpf_reg_state *slot, *cur_slot;
16928 	struct bpf_func_state *state;
16929 	int i, fr;
16930 
16931 	for (fr = old->curframe; fr >= 0; fr--) {
16932 		state = old->frame[fr];
16933 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
16934 			if (state->stack[i].slot_type[0] != STACK_ITER)
16935 				continue;
16936 
16937 			slot = &state->stack[i].spilled_ptr;
16938 			if (slot->iter.state != BPF_ITER_STATE_ACTIVE)
16939 				continue;
16940 
16941 			cur_slot = &cur->frame[fr]->stack[i].spilled_ptr;
16942 			if (cur_slot->iter.depth != slot->iter.depth)
16943 				return true;
16944 		}
16945 	}
16946 	return false;
16947 }
16948 
16949 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
16950 {
16951 	struct bpf_verifier_state_list *new_sl;
16952 	struct bpf_verifier_state_list *sl, **pprev;
16953 	struct bpf_verifier_state *cur = env->cur_state, *new, *loop_entry;
16954 	int i, j, n, err, states_cnt = 0;
16955 	bool force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx);
16956 	bool add_new_state = force_new_state;
16957 	bool force_exact;
16958 
16959 	/* bpf progs typically have pruning point every 4 instructions
16960 	 * http://vger.kernel.org/bpfconf2019.html#session-1
16961 	 * Do not add new state for future pruning if the verifier hasn't seen
16962 	 * at least 2 jumps and at least 8 instructions.
16963 	 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
16964 	 * In tests that amounts to up to 50% reduction into total verifier
16965 	 * memory consumption and 20% verifier time speedup.
16966 	 */
16967 	if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
16968 	    env->insn_processed - env->prev_insn_processed >= 8)
16969 		add_new_state = true;
16970 
16971 	pprev = explored_state(env, insn_idx);
16972 	sl = *pprev;
16973 
16974 	clean_live_states(env, insn_idx, cur);
16975 
16976 	while (sl) {
16977 		states_cnt++;
16978 		if (sl->state.insn_idx != insn_idx)
16979 			goto next;
16980 
16981 		if (sl->state.branches) {
16982 			struct bpf_func_state *frame = sl->state.frame[sl->state.curframe];
16983 
16984 			if (frame->in_async_callback_fn &&
16985 			    frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) {
16986 				/* Different async_entry_cnt means that the verifier is
16987 				 * processing another entry into async callback.
16988 				 * Seeing the same state is not an indication of infinite
16989 				 * loop or infinite recursion.
16990 				 * But finding the same state doesn't mean that it's safe
16991 				 * to stop processing the current state. The previous state
16992 				 * hasn't yet reached bpf_exit, since state.branches > 0.
16993 				 * Checking in_async_callback_fn alone is not enough either.
16994 				 * Since the verifier still needs to catch infinite loops
16995 				 * inside async callbacks.
16996 				 */
16997 				goto skip_inf_loop_check;
16998 			}
16999 			/* BPF open-coded iterators loop detection is special.
17000 			 * states_maybe_looping() logic is too simplistic in detecting
17001 			 * states that *might* be equivalent, because it doesn't know
17002 			 * about ID remapping, so don't even perform it.
17003 			 * See process_iter_next_call() and iter_active_depths_differ()
17004 			 * for overview of the logic. When current and one of parent
17005 			 * states are detected as equivalent, it's a good thing: we prove
17006 			 * convergence and can stop simulating further iterations.
17007 			 * It's safe to assume that iterator loop will finish, taking into
17008 			 * account iter_next() contract of eventually returning
17009 			 * sticky NULL result.
17010 			 *
17011 			 * Note, that states have to be compared exactly in this case because
17012 			 * read and precision marks might not be finalized inside the loop.
17013 			 * E.g. as in the program below:
17014 			 *
17015 			 *     1. r7 = -16
17016 			 *     2. r6 = bpf_get_prandom_u32()
17017 			 *     3. while (bpf_iter_num_next(&fp[-8])) {
17018 			 *     4.   if (r6 != 42) {
17019 			 *     5.     r7 = -32
17020 			 *     6.     r6 = bpf_get_prandom_u32()
17021 			 *     7.     continue
17022 			 *     8.   }
17023 			 *     9.   r0 = r10
17024 			 *    10.   r0 += r7
17025 			 *    11.   r8 = *(u64 *)(r0 + 0)
17026 			 *    12.   r6 = bpf_get_prandom_u32()
17027 			 *    13. }
17028 			 *
17029 			 * Here verifier would first visit path 1-3, create a checkpoint at 3
17030 			 * with r7=-16, continue to 4-7,3. Existing checkpoint at 3 does
17031 			 * not have read or precision mark for r7 yet, thus inexact states
17032 			 * comparison would discard current state with r7=-32
17033 			 * => unsafe memory access at 11 would not be caught.
17034 			 */
17035 			if (is_iter_next_insn(env, insn_idx)) {
17036 				if (states_equal(env, &sl->state, cur, true)) {
17037 					struct bpf_func_state *cur_frame;
17038 					struct bpf_reg_state *iter_state, *iter_reg;
17039 					int spi;
17040 
17041 					cur_frame = cur->frame[cur->curframe];
17042 					/* btf_check_iter_kfuncs() enforces that
17043 					 * iter state pointer is always the first arg
17044 					 */
17045 					iter_reg = &cur_frame->regs[BPF_REG_1];
17046 					/* current state is valid due to states_equal(),
17047 					 * so we can assume valid iter and reg state,
17048 					 * no need for extra (re-)validations
17049 					 */
17050 					spi = __get_spi(iter_reg->off + iter_reg->var_off.value);
17051 					iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr;
17052 					if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE) {
17053 						update_loop_entry(cur, &sl->state);
17054 						goto hit;
17055 					}
17056 				}
17057 				goto skip_inf_loop_check;
17058 			}
17059 			if (calls_callback(env, insn_idx)) {
17060 				if (states_equal(env, &sl->state, cur, true))
17061 					goto hit;
17062 				goto skip_inf_loop_check;
17063 			}
17064 			/* attempt to detect infinite loop to avoid unnecessary doomed work */
17065 			if (states_maybe_looping(&sl->state, cur) &&
17066 			    states_equal(env, &sl->state, cur, true) &&
17067 			    !iter_active_depths_differ(&sl->state, cur) &&
17068 			    sl->state.callback_unroll_depth == cur->callback_unroll_depth) {
17069 				verbose_linfo(env, insn_idx, "; ");
17070 				verbose(env, "infinite loop detected at insn %d\n", insn_idx);
17071 				verbose(env, "cur state:");
17072 				print_verifier_state(env, cur->frame[cur->curframe], true);
17073 				verbose(env, "old state:");
17074 				print_verifier_state(env, sl->state.frame[cur->curframe], true);
17075 				return -EINVAL;
17076 			}
17077 			/* if the verifier is processing a loop, avoid adding new state
17078 			 * too often, since different loop iterations have distinct
17079 			 * states and may not help future pruning.
17080 			 * This threshold shouldn't be too low to make sure that
17081 			 * a loop with large bound will be rejected quickly.
17082 			 * The most abusive loop will be:
17083 			 * r1 += 1
17084 			 * if r1 < 1000000 goto pc-2
17085 			 * 1M insn_procssed limit / 100 == 10k peak states.
17086 			 * This threshold shouldn't be too high either, since states
17087 			 * at the end of the loop are likely to be useful in pruning.
17088 			 */
17089 skip_inf_loop_check:
17090 			if (!force_new_state &&
17091 			    env->jmps_processed - env->prev_jmps_processed < 20 &&
17092 			    env->insn_processed - env->prev_insn_processed < 100)
17093 				add_new_state = false;
17094 			goto miss;
17095 		}
17096 		/* If sl->state is a part of a loop and this loop's entry is a part of
17097 		 * current verification path then states have to be compared exactly.
17098 		 * 'force_exact' is needed to catch the following case:
17099 		 *
17100 		 *                initial     Here state 'succ' was processed first,
17101 		 *                  |         it was eventually tracked to produce a
17102 		 *                  V         state identical to 'hdr'.
17103 		 *     .---------> hdr        All branches from 'succ' had been explored
17104 		 *     |            |         and thus 'succ' has its .branches == 0.
17105 		 *     |            V
17106 		 *     |    .------...        Suppose states 'cur' and 'succ' correspond
17107 		 *     |    |       |         to the same instruction + callsites.
17108 		 *     |    V       V         In such case it is necessary to check
17109 		 *     |   ...     ...        if 'succ' and 'cur' are states_equal().
17110 		 *     |    |       |         If 'succ' and 'cur' are a part of the
17111 		 *     |    V       V         same loop exact flag has to be set.
17112 		 *     |   succ <- cur        To check if that is the case, verify
17113 		 *     |    |                 if loop entry of 'succ' is in current
17114 		 *     |    V                 DFS path.
17115 		 *     |   ...
17116 		 *     |    |
17117 		 *     '----'
17118 		 *
17119 		 * Additional details are in the comment before get_loop_entry().
17120 		 */
17121 		loop_entry = get_loop_entry(&sl->state);
17122 		force_exact = loop_entry && loop_entry->branches > 0;
17123 		if (states_equal(env, &sl->state, cur, force_exact)) {
17124 			if (force_exact)
17125 				update_loop_entry(cur, loop_entry);
17126 hit:
17127 			sl->hit_cnt++;
17128 			/* reached equivalent register/stack state,
17129 			 * prune the search.
17130 			 * Registers read by the continuation are read by us.
17131 			 * If we have any write marks in env->cur_state, they
17132 			 * will prevent corresponding reads in the continuation
17133 			 * from reaching our parent (an explored_state).  Our
17134 			 * own state will get the read marks recorded, but
17135 			 * they'll be immediately forgotten as we're pruning
17136 			 * this state and will pop a new one.
17137 			 */
17138 			err = propagate_liveness(env, &sl->state, cur);
17139 
17140 			/* if previous state reached the exit with precision and
17141 			 * current state is equivalent to it (except precsion marks)
17142 			 * the precision needs to be propagated back in
17143 			 * the current state.
17144 			 */
17145 			if (is_jmp_point(env, env->insn_idx))
17146 				err = err ? : push_jmp_history(env, cur, 0);
17147 			err = err ? : propagate_precision(env, &sl->state);
17148 			if (err)
17149 				return err;
17150 			return 1;
17151 		}
17152 miss:
17153 		/* when new state is not going to be added do not increase miss count.
17154 		 * Otherwise several loop iterations will remove the state
17155 		 * recorded earlier. The goal of these heuristics is to have
17156 		 * states from some iterations of the loop (some in the beginning
17157 		 * and some at the end) to help pruning.
17158 		 */
17159 		if (add_new_state)
17160 			sl->miss_cnt++;
17161 		/* heuristic to determine whether this state is beneficial
17162 		 * to keep checking from state equivalence point of view.
17163 		 * Higher numbers increase max_states_per_insn and verification time,
17164 		 * but do not meaningfully decrease insn_processed.
17165 		 * 'n' controls how many times state could miss before eviction.
17166 		 * Use bigger 'n' for checkpoints because evicting checkpoint states
17167 		 * too early would hinder iterator convergence.
17168 		 */
17169 		n = is_force_checkpoint(env, insn_idx) && sl->state.branches > 0 ? 64 : 3;
17170 		if (sl->miss_cnt > sl->hit_cnt * n + n) {
17171 			/* the state is unlikely to be useful. Remove it to
17172 			 * speed up verification
17173 			 */
17174 			*pprev = sl->next;
17175 			if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE &&
17176 			    !sl->state.used_as_loop_entry) {
17177 				u32 br = sl->state.branches;
17178 
17179 				WARN_ONCE(br,
17180 					  "BUG live_done but branches_to_explore %d\n",
17181 					  br);
17182 				free_verifier_state(&sl->state, false);
17183 				kfree(sl);
17184 				env->peak_states--;
17185 			} else {
17186 				/* cannot free this state, since parentage chain may
17187 				 * walk it later. Add it for free_list instead to
17188 				 * be freed at the end of verification
17189 				 */
17190 				sl->next = env->free_list;
17191 				env->free_list = sl;
17192 			}
17193 			sl = *pprev;
17194 			continue;
17195 		}
17196 next:
17197 		pprev = &sl->next;
17198 		sl = *pprev;
17199 	}
17200 
17201 	if (env->max_states_per_insn < states_cnt)
17202 		env->max_states_per_insn = states_cnt;
17203 
17204 	if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
17205 		return 0;
17206 
17207 	if (!add_new_state)
17208 		return 0;
17209 
17210 	/* There were no equivalent states, remember the current one.
17211 	 * Technically the current state is not proven to be safe yet,
17212 	 * but it will either reach outer most bpf_exit (which means it's safe)
17213 	 * or it will be rejected. When there are no loops the verifier won't be
17214 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
17215 	 * again on the way to bpf_exit.
17216 	 * When looping the sl->state.branches will be > 0 and this state
17217 	 * will not be considered for equivalence until branches == 0.
17218 	 */
17219 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
17220 	if (!new_sl)
17221 		return -ENOMEM;
17222 	env->total_states++;
17223 	env->peak_states++;
17224 	env->prev_jmps_processed = env->jmps_processed;
17225 	env->prev_insn_processed = env->insn_processed;
17226 
17227 	/* forget precise markings we inherited, see __mark_chain_precision */
17228 	if (env->bpf_capable)
17229 		mark_all_scalars_imprecise(env, cur);
17230 
17231 	/* add new state to the head of linked list */
17232 	new = &new_sl->state;
17233 	err = copy_verifier_state(new, cur);
17234 	if (err) {
17235 		free_verifier_state(new, false);
17236 		kfree(new_sl);
17237 		return err;
17238 	}
17239 	new->insn_idx = insn_idx;
17240 	WARN_ONCE(new->branches != 1,
17241 		  "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
17242 
17243 	cur->parent = new;
17244 	cur->first_insn_idx = insn_idx;
17245 	cur->dfs_depth = new->dfs_depth + 1;
17246 	clear_jmp_history(cur);
17247 	new_sl->next = *explored_state(env, insn_idx);
17248 	*explored_state(env, insn_idx) = new_sl;
17249 	/* connect new state to parentage chain. Current frame needs all
17250 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
17251 	 * to the stack implicitly by JITs) so in callers' frames connect just
17252 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
17253 	 * the state of the call instruction (with WRITTEN set), and r0 comes
17254 	 * from callee with its full parentage chain, anyway.
17255 	 */
17256 	/* clear write marks in current state: the writes we did are not writes
17257 	 * our child did, so they don't screen off its reads from us.
17258 	 * (There are no read marks in current state, because reads always mark
17259 	 * their parent and current state never has children yet.  Only
17260 	 * explored_states can get read marks.)
17261 	 */
17262 	for (j = 0; j <= cur->curframe; j++) {
17263 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
17264 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
17265 		for (i = 0; i < BPF_REG_FP; i++)
17266 			cur->frame[j]->regs[i].live = REG_LIVE_NONE;
17267 	}
17268 
17269 	/* all stack frames are accessible from callee, clear them all */
17270 	for (j = 0; j <= cur->curframe; j++) {
17271 		struct bpf_func_state *frame = cur->frame[j];
17272 		struct bpf_func_state *newframe = new->frame[j];
17273 
17274 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
17275 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
17276 			frame->stack[i].spilled_ptr.parent =
17277 						&newframe->stack[i].spilled_ptr;
17278 		}
17279 	}
17280 	return 0;
17281 }
17282 
17283 /* Return true if it's OK to have the same insn return a different type. */
17284 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
17285 {
17286 	switch (base_type(type)) {
17287 	case PTR_TO_CTX:
17288 	case PTR_TO_SOCKET:
17289 	case PTR_TO_SOCK_COMMON:
17290 	case PTR_TO_TCP_SOCK:
17291 	case PTR_TO_XDP_SOCK:
17292 	case PTR_TO_BTF_ID:
17293 		return false;
17294 	default:
17295 		return true;
17296 	}
17297 }
17298 
17299 /* If an instruction was previously used with particular pointer types, then we
17300  * need to be careful to avoid cases such as the below, where it may be ok
17301  * for one branch accessing the pointer, but not ok for the other branch:
17302  *
17303  * R1 = sock_ptr
17304  * goto X;
17305  * ...
17306  * R1 = some_other_valid_ptr;
17307  * goto X;
17308  * ...
17309  * R2 = *(u32 *)(R1 + 0);
17310  */
17311 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
17312 {
17313 	return src != prev && (!reg_type_mismatch_ok(src) ||
17314 			       !reg_type_mismatch_ok(prev));
17315 }
17316 
17317 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type,
17318 			     bool allow_trust_missmatch)
17319 {
17320 	enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type;
17321 
17322 	if (*prev_type == NOT_INIT) {
17323 		/* Saw a valid insn
17324 		 * dst_reg = *(u32 *)(src_reg + off)
17325 		 * save type to validate intersecting paths
17326 		 */
17327 		*prev_type = type;
17328 	} else if (reg_type_mismatch(type, *prev_type)) {
17329 		/* Abuser program is trying to use the same insn
17330 		 * dst_reg = *(u32*) (src_reg + off)
17331 		 * with different pointer types:
17332 		 * src_reg == ctx in one branch and
17333 		 * src_reg == stack|map in some other branch.
17334 		 * Reject it.
17335 		 */
17336 		if (allow_trust_missmatch &&
17337 		    base_type(type) == PTR_TO_BTF_ID &&
17338 		    base_type(*prev_type) == PTR_TO_BTF_ID) {
17339 			/*
17340 			 * Have to support a use case when one path through
17341 			 * the program yields TRUSTED pointer while another
17342 			 * is UNTRUSTED. Fallback to UNTRUSTED to generate
17343 			 * BPF_PROBE_MEM/BPF_PROBE_MEMSX.
17344 			 */
17345 			*prev_type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
17346 		} else {
17347 			verbose(env, "same insn cannot be used with different pointers\n");
17348 			return -EINVAL;
17349 		}
17350 	}
17351 
17352 	return 0;
17353 }
17354 
17355 static int do_check(struct bpf_verifier_env *env)
17356 {
17357 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
17358 	struct bpf_verifier_state *state = env->cur_state;
17359 	struct bpf_insn *insns = env->prog->insnsi;
17360 	struct bpf_reg_state *regs;
17361 	int insn_cnt = env->prog->len;
17362 	bool do_print_state = false;
17363 	int prev_insn_idx = -1;
17364 
17365 	for (;;) {
17366 		bool exception_exit = false;
17367 		struct bpf_insn *insn;
17368 		u8 class;
17369 		int err;
17370 
17371 		/* reset current history entry on each new instruction */
17372 		env->cur_hist_ent = NULL;
17373 
17374 		env->prev_insn_idx = prev_insn_idx;
17375 		if (env->insn_idx >= insn_cnt) {
17376 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
17377 				env->insn_idx, insn_cnt);
17378 			return -EFAULT;
17379 		}
17380 
17381 		insn = &insns[env->insn_idx];
17382 		class = BPF_CLASS(insn->code);
17383 
17384 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
17385 			verbose(env,
17386 				"BPF program is too large. Processed %d insn\n",
17387 				env->insn_processed);
17388 			return -E2BIG;
17389 		}
17390 
17391 		state->last_insn_idx = env->prev_insn_idx;
17392 
17393 		if (is_prune_point(env, env->insn_idx)) {
17394 			err = is_state_visited(env, env->insn_idx);
17395 			if (err < 0)
17396 				return err;
17397 			if (err == 1) {
17398 				/* found equivalent state, can prune the search */
17399 				if (env->log.level & BPF_LOG_LEVEL) {
17400 					if (do_print_state)
17401 						verbose(env, "\nfrom %d to %d%s: safe\n",
17402 							env->prev_insn_idx, env->insn_idx,
17403 							env->cur_state->speculative ?
17404 							" (speculative execution)" : "");
17405 					else
17406 						verbose(env, "%d: safe\n", env->insn_idx);
17407 				}
17408 				goto process_bpf_exit;
17409 			}
17410 		}
17411 
17412 		if (is_jmp_point(env, env->insn_idx)) {
17413 			err = push_jmp_history(env, state, 0);
17414 			if (err)
17415 				return err;
17416 		}
17417 
17418 		if (signal_pending(current))
17419 			return -EAGAIN;
17420 
17421 		if (need_resched())
17422 			cond_resched();
17423 
17424 		if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) {
17425 			verbose(env, "\nfrom %d to %d%s:",
17426 				env->prev_insn_idx, env->insn_idx,
17427 				env->cur_state->speculative ?
17428 				" (speculative execution)" : "");
17429 			print_verifier_state(env, state->frame[state->curframe], true);
17430 			do_print_state = false;
17431 		}
17432 
17433 		if (env->log.level & BPF_LOG_LEVEL) {
17434 			const struct bpf_insn_cbs cbs = {
17435 				.cb_call	= disasm_kfunc_name,
17436 				.cb_print	= verbose,
17437 				.private_data	= env,
17438 			};
17439 
17440 			if (verifier_state_scratched(env))
17441 				print_insn_state(env, state->frame[state->curframe]);
17442 
17443 			verbose_linfo(env, env->insn_idx, "; ");
17444 			env->prev_log_pos = env->log.end_pos;
17445 			verbose(env, "%d: ", env->insn_idx);
17446 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
17447 			env->prev_insn_print_pos = env->log.end_pos - env->prev_log_pos;
17448 			env->prev_log_pos = env->log.end_pos;
17449 		}
17450 
17451 		if (bpf_prog_is_offloaded(env->prog->aux)) {
17452 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
17453 							   env->prev_insn_idx);
17454 			if (err)
17455 				return err;
17456 		}
17457 
17458 		regs = cur_regs(env);
17459 		sanitize_mark_insn_seen(env);
17460 		prev_insn_idx = env->insn_idx;
17461 
17462 		if (class == BPF_ALU || class == BPF_ALU64) {
17463 			err = check_alu_op(env, insn);
17464 			if (err)
17465 				return err;
17466 
17467 		} else if (class == BPF_LDX) {
17468 			enum bpf_reg_type src_reg_type;
17469 
17470 			/* check for reserved fields is already done */
17471 
17472 			/* check src operand */
17473 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
17474 			if (err)
17475 				return err;
17476 
17477 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17478 			if (err)
17479 				return err;
17480 
17481 			src_reg_type = regs[insn->src_reg].type;
17482 
17483 			/* check that memory (src_reg + off) is readable,
17484 			 * the state of dst_reg will be updated by this func
17485 			 */
17486 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
17487 					       insn->off, BPF_SIZE(insn->code),
17488 					       BPF_READ, insn->dst_reg, false,
17489 					       BPF_MODE(insn->code) == BPF_MEMSX);
17490 			err = err ?: save_aux_ptr_type(env, src_reg_type, true);
17491 			err = err ?: reg_bounds_sanity_check(env, &regs[insn->dst_reg], "ldx");
17492 			if (err)
17493 				return err;
17494 		} else if (class == BPF_STX) {
17495 			enum bpf_reg_type dst_reg_type;
17496 
17497 			if (BPF_MODE(insn->code) == BPF_ATOMIC) {
17498 				err = check_atomic(env, env->insn_idx, insn);
17499 				if (err)
17500 					return err;
17501 				env->insn_idx++;
17502 				continue;
17503 			}
17504 
17505 			if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
17506 				verbose(env, "BPF_STX uses reserved fields\n");
17507 				return -EINVAL;
17508 			}
17509 
17510 			/* check src1 operand */
17511 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
17512 			if (err)
17513 				return err;
17514 			/* check src2 operand */
17515 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17516 			if (err)
17517 				return err;
17518 
17519 			dst_reg_type = regs[insn->dst_reg].type;
17520 
17521 			/* check that memory (dst_reg + off) is writeable */
17522 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
17523 					       insn->off, BPF_SIZE(insn->code),
17524 					       BPF_WRITE, insn->src_reg, false, false);
17525 			if (err)
17526 				return err;
17527 
17528 			err = save_aux_ptr_type(env, dst_reg_type, false);
17529 			if (err)
17530 				return err;
17531 		} else if (class == BPF_ST) {
17532 			enum bpf_reg_type dst_reg_type;
17533 
17534 			if (BPF_MODE(insn->code) != BPF_MEM ||
17535 			    insn->src_reg != BPF_REG_0) {
17536 				verbose(env, "BPF_ST uses reserved fields\n");
17537 				return -EINVAL;
17538 			}
17539 			/* check src operand */
17540 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17541 			if (err)
17542 				return err;
17543 
17544 			dst_reg_type = regs[insn->dst_reg].type;
17545 
17546 			/* check that memory (dst_reg + off) is writeable */
17547 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
17548 					       insn->off, BPF_SIZE(insn->code),
17549 					       BPF_WRITE, -1, false, false);
17550 			if (err)
17551 				return err;
17552 
17553 			err = save_aux_ptr_type(env, dst_reg_type, false);
17554 			if (err)
17555 				return err;
17556 		} else if (class == BPF_JMP || class == BPF_JMP32) {
17557 			u8 opcode = BPF_OP(insn->code);
17558 
17559 			env->jmps_processed++;
17560 			if (opcode == BPF_CALL) {
17561 				if (BPF_SRC(insn->code) != BPF_K ||
17562 				    (insn->src_reg != BPF_PSEUDO_KFUNC_CALL
17563 				     && insn->off != 0) ||
17564 				    (insn->src_reg != BPF_REG_0 &&
17565 				     insn->src_reg != BPF_PSEUDO_CALL &&
17566 				     insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
17567 				    insn->dst_reg != BPF_REG_0 ||
17568 				    class == BPF_JMP32) {
17569 					verbose(env, "BPF_CALL uses reserved fields\n");
17570 					return -EINVAL;
17571 				}
17572 
17573 				if (env->cur_state->active_lock.ptr) {
17574 					if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) ||
17575 					    (insn->src_reg == BPF_PSEUDO_CALL) ||
17576 					    (insn->src_reg == BPF_PSEUDO_KFUNC_CALL &&
17577 					     (insn->off != 0 || !is_bpf_graph_api_kfunc(insn->imm)))) {
17578 						verbose(env, "function calls are not allowed while holding a lock\n");
17579 						return -EINVAL;
17580 					}
17581 				}
17582 				if (insn->src_reg == BPF_PSEUDO_CALL) {
17583 					err = check_func_call(env, insn, &env->insn_idx);
17584 				} else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
17585 					err = check_kfunc_call(env, insn, &env->insn_idx);
17586 					if (!err && is_bpf_throw_kfunc(insn)) {
17587 						exception_exit = true;
17588 						goto process_bpf_exit_full;
17589 					}
17590 				} else {
17591 					err = check_helper_call(env, insn, &env->insn_idx);
17592 				}
17593 				if (err)
17594 					return err;
17595 
17596 				mark_reg_scratched(env, BPF_REG_0);
17597 			} else if (opcode == BPF_JA) {
17598 				if (BPF_SRC(insn->code) != BPF_K ||
17599 				    insn->src_reg != BPF_REG_0 ||
17600 				    insn->dst_reg != BPF_REG_0 ||
17601 				    (class == BPF_JMP && insn->imm != 0) ||
17602 				    (class == BPF_JMP32 && insn->off != 0)) {
17603 					verbose(env, "BPF_JA uses reserved fields\n");
17604 					return -EINVAL;
17605 				}
17606 
17607 				if (class == BPF_JMP)
17608 					env->insn_idx += insn->off + 1;
17609 				else
17610 					env->insn_idx += insn->imm + 1;
17611 				continue;
17612 
17613 			} else if (opcode == BPF_EXIT) {
17614 				if (BPF_SRC(insn->code) != BPF_K ||
17615 				    insn->imm != 0 ||
17616 				    insn->src_reg != BPF_REG_0 ||
17617 				    insn->dst_reg != BPF_REG_0 ||
17618 				    class == BPF_JMP32) {
17619 					verbose(env, "BPF_EXIT uses reserved fields\n");
17620 					return -EINVAL;
17621 				}
17622 process_bpf_exit_full:
17623 				if (env->cur_state->active_lock.ptr &&
17624 				    !in_rbtree_lock_required_cb(env)) {
17625 					verbose(env, "bpf_spin_unlock is missing\n");
17626 					return -EINVAL;
17627 				}
17628 
17629 				if (env->cur_state->active_rcu_lock &&
17630 				    !in_rbtree_lock_required_cb(env)) {
17631 					verbose(env, "bpf_rcu_read_unlock is missing\n");
17632 					return -EINVAL;
17633 				}
17634 
17635 				/* We must do check_reference_leak here before
17636 				 * prepare_func_exit to handle the case when
17637 				 * state->curframe > 0, it may be a callback
17638 				 * function, for which reference_state must
17639 				 * match caller reference state when it exits.
17640 				 */
17641 				err = check_reference_leak(env, exception_exit);
17642 				if (err)
17643 					return err;
17644 
17645 				/* The side effect of the prepare_func_exit
17646 				 * which is being skipped is that it frees
17647 				 * bpf_func_state. Typically, process_bpf_exit
17648 				 * will only be hit with outermost exit.
17649 				 * copy_verifier_state in pop_stack will handle
17650 				 * freeing of any extra bpf_func_state left over
17651 				 * from not processing all nested function
17652 				 * exits. We also skip return code checks as
17653 				 * they are not needed for exceptional exits.
17654 				 */
17655 				if (exception_exit)
17656 					goto process_bpf_exit;
17657 
17658 				if (state->curframe) {
17659 					/* exit from nested function */
17660 					err = prepare_func_exit(env, &env->insn_idx);
17661 					if (err)
17662 						return err;
17663 					do_print_state = true;
17664 					continue;
17665 				}
17666 
17667 				err = check_return_code(env, BPF_REG_0, "R0");
17668 				if (err)
17669 					return err;
17670 process_bpf_exit:
17671 				mark_verifier_state_scratched(env);
17672 				update_branch_counts(env, env->cur_state);
17673 				err = pop_stack(env, &prev_insn_idx,
17674 						&env->insn_idx, pop_log);
17675 				if (err < 0) {
17676 					if (err != -ENOENT)
17677 						return err;
17678 					break;
17679 				} else {
17680 					do_print_state = true;
17681 					continue;
17682 				}
17683 			} else {
17684 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
17685 				if (err)
17686 					return err;
17687 			}
17688 		} else if (class == BPF_LD) {
17689 			u8 mode = BPF_MODE(insn->code);
17690 
17691 			if (mode == BPF_ABS || mode == BPF_IND) {
17692 				err = check_ld_abs(env, insn);
17693 				if (err)
17694 					return err;
17695 
17696 			} else if (mode == BPF_IMM) {
17697 				err = check_ld_imm(env, insn);
17698 				if (err)
17699 					return err;
17700 
17701 				env->insn_idx++;
17702 				sanitize_mark_insn_seen(env);
17703 			} else {
17704 				verbose(env, "invalid BPF_LD mode\n");
17705 				return -EINVAL;
17706 			}
17707 		} else {
17708 			verbose(env, "unknown insn class %d\n", class);
17709 			return -EINVAL;
17710 		}
17711 
17712 		env->insn_idx++;
17713 	}
17714 
17715 	return 0;
17716 }
17717 
17718 static int find_btf_percpu_datasec(struct btf *btf)
17719 {
17720 	const struct btf_type *t;
17721 	const char *tname;
17722 	int i, n;
17723 
17724 	/*
17725 	 * Both vmlinux and module each have their own ".data..percpu"
17726 	 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
17727 	 * types to look at only module's own BTF types.
17728 	 */
17729 	n = btf_nr_types(btf);
17730 	if (btf_is_module(btf))
17731 		i = btf_nr_types(btf_vmlinux);
17732 	else
17733 		i = 1;
17734 
17735 	for(; i < n; i++) {
17736 		t = btf_type_by_id(btf, i);
17737 		if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
17738 			continue;
17739 
17740 		tname = btf_name_by_offset(btf, t->name_off);
17741 		if (!strcmp(tname, ".data..percpu"))
17742 			return i;
17743 	}
17744 
17745 	return -ENOENT;
17746 }
17747 
17748 /* replace pseudo btf_id with kernel symbol address */
17749 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
17750 			       struct bpf_insn *insn,
17751 			       struct bpf_insn_aux_data *aux)
17752 {
17753 	const struct btf_var_secinfo *vsi;
17754 	const struct btf_type *datasec;
17755 	struct btf_mod_pair *btf_mod;
17756 	const struct btf_type *t;
17757 	const char *sym_name;
17758 	bool percpu = false;
17759 	u32 type, id = insn->imm;
17760 	struct btf *btf;
17761 	s32 datasec_id;
17762 	u64 addr;
17763 	int i, btf_fd, err;
17764 
17765 	btf_fd = insn[1].imm;
17766 	if (btf_fd) {
17767 		btf = btf_get_by_fd(btf_fd);
17768 		if (IS_ERR(btf)) {
17769 			verbose(env, "invalid module BTF object FD specified.\n");
17770 			return -EINVAL;
17771 		}
17772 	} else {
17773 		if (!btf_vmlinux) {
17774 			verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
17775 			return -EINVAL;
17776 		}
17777 		btf = btf_vmlinux;
17778 		btf_get(btf);
17779 	}
17780 
17781 	t = btf_type_by_id(btf, id);
17782 	if (!t) {
17783 		verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
17784 		err = -ENOENT;
17785 		goto err_put;
17786 	}
17787 
17788 	if (!btf_type_is_var(t) && !btf_type_is_func(t)) {
17789 		verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id);
17790 		err = -EINVAL;
17791 		goto err_put;
17792 	}
17793 
17794 	sym_name = btf_name_by_offset(btf, t->name_off);
17795 	addr = kallsyms_lookup_name(sym_name);
17796 	if (!addr) {
17797 		verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
17798 			sym_name);
17799 		err = -ENOENT;
17800 		goto err_put;
17801 	}
17802 	insn[0].imm = (u32)addr;
17803 	insn[1].imm = addr >> 32;
17804 
17805 	if (btf_type_is_func(t)) {
17806 		aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
17807 		aux->btf_var.mem_size = 0;
17808 		goto check_btf;
17809 	}
17810 
17811 	datasec_id = find_btf_percpu_datasec(btf);
17812 	if (datasec_id > 0) {
17813 		datasec = btf_type_by_id(btf, datasec_id);
17814 		for_each_vsi(i, datasec, vsi) {
17815 			if (vsi->type == id) {
17816 				percpu = true;
17817 				break;
17818 			}
17819 		}
17820 	}
17821 
17822 	type = t->type;
17823 	t = btf_type_skip_modifiers(btf, type, NULL);
17824 	if (percpu) {
17825 		aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU;
17826 		aux->btf_var.btf = btf;
17827 		aux->btf_var.btf_id = type;
17828 	} else if (!btf_type_is_struct(t)) {
17829 		const struct btf_type *ret;
17830 		const char *tname;
17831 		u32 tsize;
17832 
17833 		/* resolve the type size of ksym. */
17834 		ret = btf_resolve_size(btf, t, &tsize);
17835 		if (IS_ERR(ret)) {
17836 			tname = btf_name_by_offset(btf, t->name_off);
17837 			verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
17838 				tname, PTR_ERR(ret));
17839 			err = -EINVAL;
17840 			goto err_put;
17841 		}
17842 		aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
17843 		aux->btf_var.mem_size = tsize;
17844 	} else {
17845 		aux->btf_var.reg_type = PTR_TO_BTF_ID;
17846 		aux->btf_var.btf = btf;
17847 		aux->btf_var.btf_id = type;
17848 	}
17849 check_btf:
17850 	/* check whether we recorded this BTF (and maybe module) already */
17851 	for (i = 0; i < env->used_btf_cnt; i++) {
17852 		if (env->used_btfs[i].btf == btf) {
17853 			btf_put(btf);
17854 			return 0;
17855 		}
17856 	}
17857 
17858 	if (env->used_btf_cnt >= MAX_USED_BTFS) {
17859 		err = -E2BIG;
17860 		goto err_put;
17861 	}
17862 
17863 	btf_mod = &env->used_btfs[env->used_btf_cnt];
17864 	btf_mod->btf = btf;
17865 	btf_mod->module = NULL;
17866 
17867 	/* if we reference variables from kernel module, bump its refcount */
17868 	if (btf_is_module(btf)) {
17869 		btf_mod->module = btf_try_get_module(btf);
17870 		if (!btf_mod->module) {
17871 			err = -ENXIO;
17872 			goto err_put;
17873 		}
17874 	}
17875 
17876 	env->used_btf_cnt++;
17877 
17878 	return 0;
17879 err_put:
17880 	btf_put(btf);
17881 	return err;
17882 }
17883 
17884 static bool is_tracing_prog_type(enum bpf_prog_type type)
17885 {
17886 	switch (type) {
17887 	case BPF_PROG_TYPE_KPROBE:
17888 	case BPF_PROG_TYPE_TRACEPOINT:
17889 	case BPF_PROG_TYPE_PERF_EVENT:
17890 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
17891 	case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
17892 		return true;
17893 	default:
17894 		return false;
17895 	}
17896 }
17897 
17898 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
17899 					struct bpf_map *map,
17900 					struct bpf_prog *prog)
17901 
17902 {
17903 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
17904 
17905 	if (btf_record_has_field(map->record, BPF_LIST_HEAD) ||
17906 	    btf_record_has_field(map->record, BPF_RB_ROOT)) {
17907 		if (is_tracing_prog_type(prog_type)) {
17908 			verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n");
17909 			return -EINVAL;
17910 		}
17911 	}
17912 
17913 	if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) {
17914 		if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
17915 			verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
17916 			return -EINVAL;
17917 		}
17918 
17919 		if (is_tracing_prog_type(prog_type)) {
17920 			verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
17921 			return -EINVAL;
17922 		}
17923 	}
17924 
17925 	if (btf_record_has_field(map->record, BPF_TIMER)) {
17926 		if (is_tracing_prog_type(prog_type)) {
17927 			verbose(env, "tracing progs cannot use bpf_timer yet\n");
17928 			return -EINVAL;
17929 		}
17930 	}
17931 
17932 	if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) &&
17933 	    !bpf_offload_prog_map_match(prog, map)) {
17934 		verbose(env, "offload device mismatch between prog and map\n");
17935 		return -EINVAL;
17936 	}
17937 
17938 	if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
17939 		verbose(env, "bpf_struct_ops map cannot be used in prog\n");
17940 		return -EINVAL;
17941 	}
17942 
17943 	if (prog->aux->sleepable)
17944 		switch (map->map_type) {
17945 		case BPF_MAP_TYPE_HASH:
17946 		case BPF_MAP_TYPE_LRU_HASH:
17947 		case BPF_MAP_TYPE_ARRAY:
17948 		case BPF_MAP_TYPE_PERCPU_HASH:
17949 		case BPF_MAP_TYPE_PERCPU_ARRAY:
17950 		case BPF_MAP_TYPE_LRU_PERCPU_HASH:
17951 		case BPF_MAP_TYPE_ARRAY_OF_MAPS:
17952 		case BPF_MAP_TYPE_HASH_OF_MAPS:
17953 		case BPF_MAP_TYPE_RINGBUF:
17954 		case BPF_MAP_TYPE_USER_RINGBUF:
17955 		case BPF_MAP_TYPE_INODE_STORAGE:
17956 		case BPF_MAP_TYPE_SK_STORAGE:
17957 		case BPF_MAP_TYPE_TASK_STORAGE:
17958 		case BPF_MAP_TYPE_CGRP_STORAGE:
17959 			break;
17960 		default:
17961 			verbose(env,
17962 				"Sleepable programs can only use array, hash, ringbuf and local storage maps\n");
17963 			return -EINVAL;
17964 		}
17965 
17966 	return 0;
17967 }
17968 
17969 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
17970 {
17971 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
17972 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
17973 }
17974 
17975 /* find and rewrite pseudo imm in ld_imm64 instructions:
17976  *
17977  * 1. if it accesses map FD, replace it with actual map pointer.
17978  * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
17979  *
17980  * NOTE: btf_vmlinux is required for converting pseudo btf_id.
17981  */
17982 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
17983 {
17984 	struct bpf_insn *insn = env->prog->insnsi;
17985 	int insn_cnt = env->prog->len;
17986 	int i, j, err;
17987 
17988 	err = bpf_prog_calc_tag(env->prog);
17989 	if (err)
17990 		return err;
17991 
17992 	for (i = 0; i < insn_cnt; i++, insn++) {
17993 		if (BPF_CLASS(insn->code) == BPF_LDX &&
17994 		    ((BPF_MODE(insn->code) != BPF_MEM && BPF_MODE(insn->code) != BPF_MEMSX) ||
17995 		    insn->imm != 0)) {
17996 			verbose(env, "BPF_LDX uses reserved fields\n");
17997 			return -EINVAL;
17998 		}
17999 
18000 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
18001 			struct bpf_insn_aux_data *aux;
18002 			struct bpf_map *map;
18003 			struct fd f;
18004 			u64 addr;
18005 			u32 fd;
18006 
18007 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
18008 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
18009 			    insn[1].off != 0) {
18010 				verbose(env, "invalid bpf_ld_imm64 insn\n");
18011 				return -EINVAL;
18012 			}
18013 
18014 			if (insn[0].src_reg == 0)
18015 				/* valid generic load 64-bit imm */
18016 				goto next_insn;
18017 
18018 			if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
18019 				aux = &env->insn_aux_data[i];
18020 				err = check_pseudo_btf_id(env, insn, aux);
18021 				if (err)
18022 					return err;
18023 				goto next_insn;
18024 			}
18025 
18026 			if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
18027 				aux = &env->insn_aux_data[i];
18028 				aux->ptr_type = PTR_TO_FUNC;
18029 				goto next_insn;
18030 			}
18031 
18032 			/* In final convert_pseudo_ld_imm64() step, this is
18033 			 * converted into regular 64-bit imm load insn.
18034 			 */
18035 			switch (insn[0].src_reg) {
18036 			case BPF_PSEUDO_MAP_VALUE:
18037 			case BPF_PSEUDO_MAP_IDX_VALUE:
18038 				break;
18039 			case BPF_PSEUDO_MAP_FD:
18040 			case BPF_PSEUDO_MAP_IDX:
18041 				if (insn[1].imm == 0)
18042 					break;
18043 				fallthrough;
18044 			default:
18045 				verbose(env, "unrecognized bpf_ld_imm64 insn\n");
18046 				return -EINVAL;
18047 			}
18048 
18049 			switch (insn[0].src_reg) {
18050 			case BPF_PSEUDO_MAP_IDX_VALUE:
18051 			case BPF_PSEUDO_MAP_IDX:
18052 				if (bpfptr_is_null(env->fd_array)) {
18053 					verbose(env, "fd_idx without fd_array is invalid\n");
18054 					return -EPROTO;
18055 				}
18056 				if (copy_from_bpfptr_offset(&fd, env->fd_array,
18057 							    insn[0].imm * sizeof(fd),
18058 							    sizeof(fd)))
18059 					return -EFAULT;
18060 				break;
18061 			default:
18062 				fd = insn[0].imm;
18063 				break;
18064 			}
18065 
18066 			f = fdget(fd);
18067 			map = __bpf_map_get(f);
18068 			if (IS_ERR(map)) {
18069 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
18070 					insn[0].imm);
18071 				return PTR_ERR(map);
18072 			}
18073 
18074 			err = check_map_prog_compatibility(env, map, env->prog);
18075 			if (err) {
18076 				fdput(f);
18077 				return err;
18078 			}
18079 
18080 			aux = &env->insn_aux_data[i];
18081 			if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
18082 			    insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
18083 				addr = (unsigned long)map;
18084 			} else {
18085 				u32 off = insn[1].imm;
18086 
18087 				if (off >= BPF_MAX_VAR_OFF) {
18088 					verbose(env, "direct value offset of %u is not allowed\n", off);
18089 					fdput(f);
18090 					return -EINVAL;
18091 				}
18092 
18093 				if (!map->ops->map_direct_value_addr) {
18094 					verbose(env, "no direct value access support for this map type\n");
18095 					fdput(f);
18096 					return -EINVAL;
18097 				}
18098 
18099 				err = map->ops->map_direct_value_addr(map, &addr, off);
18100 				if (err) {
18101 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
18102 						map->value_size, off);
18103 					fdput(f);
18104 					return err;
18105 				}
18106 
18107 				aux->map_off = off;
18108 				addr += off;
18109 			}
18110 
18111 			insn[0].imm = (u32)addr;
18112 			insn[1].imm = addr >> 32;
18113 
18114 			/* check whether we recorded this map already */
18115 			for (j = 0; j < env->used_map_cnt; j++) {
18116 				if (env->used_maps[j] == map) {
18117 					aux->map_index = j;
18118 					fdput(f);
18119 					goto next_insn;
18120 				}
18121 			}
18122 
18123 			if (env->used_map_cnt >= MAX_USED_MAPS) {
18124 				fdput(f);
18125 				return -E2BIG;
18126 			}
18127 
18128 			if (env->prog->aux->sleepable)
18129 				atomic64_inc(&map->sleepable_refcnt);
18130 			/* hold the map. If the program is rejected by verifier,
18131 			 * the map will be released by release_maps() or it
18132 			 * will be used by the valid program until it's unloaded
18133 			 * and all maps are released in bpf_free_used_maps()
18134 			 */
18135 			bpf_map_inc(map);
18136 
18137 			aux->map_index = env->used_map_cnt;
18138 			env->used_maps[env->used_map_cnt++] = map;
18139 
18140 			if (bpf_map_is_cgroup_storage(map) &&
18141 			    bpf_cgroup_storage_assign(env->prog->aux, map)) {
18142 				verbose(env, "only one cgroup storage of each type is allowed\n");
18143 				fdput(f);
18144 				return -EBUSY;
18145 			}
18146 
18147 			fdput(f);
18148 next_insn:
18149 			insn++;
18150 			i++;
18151 			continue;
18152 		}
18153 
18154 		/* Basic sanity check before we invest more work here. */
18155 		if (!bpf_opcode_in_insntable(insn->code)) {
18156 			verbose(env, "unknown opcode %02x\n", insn->code);
18157 			return -EINVAL;
18158 		}
18159 	}
18160 
18161 	/* now all pseudo BPF_LD_IMM64 instructions load valid
18162 	 * 'struct bpf_map *' into a register instead of user map_fd.
18163 	 * These pointers will be used later by verifier to validate map access.
18164 	 */
18165 	return 0;
18166 }
18167 
18168 /* drop refcnt of maps used by the rejected program */
18169 static void release_maps(struct bpf_verifier_env *env)
18170 {
18171 	__bpf_free_used_maps(env->prog->aux, env->used_maps,
18172 			     env->used_map_cnt);
18173 }
18174 
18175 /* drop refcnt of maps used by the rejected program */
18176 static void release_btfs(struct bpf_verifier_env *env)
18177 {
18178 	__bpf_free_used_btfs(env->prog->aux, env->used_btfs,
18179 			     env->used_btf_cnt);
18180 }
18181 
18182 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
18183 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
18184 {
18185 	struct bpf_insn *insn = env->prog->insnsi;
18186 	int insn_cnt = env->prog->len;
18187 	int i;
18188 
18189 	for (i = 0; i < insn_cnt; i++, insn++) {
18190 		if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
18191 			continue;
18192 		if (insn->src_reg == BPF_PSEUDO_FUNC)
18193 			continue;
18194 		insn->src_reg = 0;
18195 	}
18196 }
18197 
18198 /* single env->prog->insni[off] instruction was replaced with the range
18199  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
18200  * [0, off) and [off, end) to new locations, so the patched range stays zero
18201  */
18202 static void adjust_insn_aux_data(struct bpf_verifier_env *env,
18203 				 struct bpf_insn_aux_data *new_data,
18204 				 struct bpf_prog *new_prog, u32 off, u32 cnt)
18205 {
18206 	struct bpf_insn_aux_data *old_data = env->insn_aux_data;
18207 	struct bpf_insn *insn = new_prog->insnsi;
18208 	u32 old_seen = old_data[off].seen;
18209 	u32 prog_len;
18210 	int i;
18211 
18212 	/* aux info at OFF always needs adjustment, no matter fast path
18213 	 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
18214 	 * original insn at old prog.
18215 	 */
18216 	old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
18217 
18218 	if (cnt == 1)
18219 		return;
18220 	prog_len = new_prog->len;
18221 
18222 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
18223 	memcpy(new_data + off + cnt - 1, old_data + off,
18224 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
18225 	for (i = off; i < off + cnt - 1; i++) {
18226 		/* Expand insni[off]'s seen count to the patched range. */
18227 		new_data[i].seen = old_seen;
18228 		new_data[i].zext_dst = insn_has_def32(env, insn + i);
18229 	}
18230 	env->insn_aux_data = new_data;
18231 	vfree(old_data);
18232 }
18233 
18234 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
18235 {
18236 	int i;
18237 
18238 	if (len == 1)
18239 		return;
18240 	/* NOTE: fake 'exit' subprog should be updated as well. */
18241 	for (i = 0; i <= env->subprog_cnt; i++) {
18242 		if (env->subprog_info[i].start <= off)
18243 			continue;
18244 		env->subprog_info[i].start += len - 1;
18245 	}
18246 }
18247 
18248 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
18249 {
18250 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
18251 	int i, sz = prog->aux->size_poke_tab;
18252 	struct bpf_jit_poke_descriptor *desc;
18253 
18254 	for (i = 0; i < sz; i++) {
18255 		desc = &tab[i];
18256 		if (desc->insn_idx <= off)
18257 			continue;
18258 		desc->insn_idx += len - 1;
18259 	}
18260 }
18261 
18262 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
18263 					    const struct bpf_insn *patch, u32 len)
18264 {
18265 	struct bpf_prog *new_prog;
18266 	struct bpf_insn_aux_data *new_data = NULL;
18267 
18268 	if (len > 1) {
18269 		new_data = vzalloc(array_size(env->prog->len + len - 1,
18270 					      sizeof(struct bpf_insn_aux_data)));
18271 		if (!new_data)
18272 			return NULL;
18273 	}
18274 
18275 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
18276 	if (IS_ERR(new_prog)) {
18277 		if (PTR_ERR(new_prog) == -ERANGE)
18278 			verbose(env,
18279 				"insn %d cannot be patched due to 16-bit range\n",
18280 				env->insn_aux_data[off].orig_idx);
18281 		vfree(new_data);
18282 		return NULL;
18283 	}
18284 	adjust_insn_aux_data(env, new_data, new_prog, off, len);
18285 	adjust_subprog_starts(env, off, len);
18286 	adjust_poke_descs(new_prog, off, len);
18287 	return new_prog;
18288 }
18289 
18290 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
18291 					      u32 off, u32 cnt)
18292 {
18293 	int i, j;
18294 
18295 	/* find first prog starting at or after off (first to remove) */
18296 	for (i = 0; i < env->subprog_cnt; i++)
18297 		if (env->subprog_info[i].start >= off)
18298 			break;
18299 	/* find first prog starting at or after off + cnt (first to stay) */
18300 	for (j = i; j < env->subprog_cnt; j++)
18301 		if (env->subprog_info[j].start >= off + cnt)
18302 			break;
18303 	/* if j doesn't start exactly at off + cnt, we are just removing
18304 	 * the front of previous prog
18305 	 */
18306 	if (env->subprog_info[j].start != off + cnt)
18307 		j--;
18308 
18309 	if (j > i) {
18310 		struct bpf_prog_aux *aux = env->prog->aux;
18311 		int move;
18312 
18313 		/* move fake 'exit' subprog as well */
18314 		move = env->subprog_cnt + 1 - j;
18315 
18316 		memmove(env->subprog_info + i,
18317 			env->subprog_info + j,
18318 			sizeof(*env->subprog_info) * move);
18319 		env->subprog_cnt -= j - i;
18320 
18321 		/* remove func_info */
18322 		if (aux->func_info) {
18323 			move = aux->func_info_cnt - j;
18324 
18325 			memmove(aux->func_info + i,
18326 				aux->func_info + j,
18327 				sizeof(*aux->func_info) * move);
18328 			aux->func_info_cnt -= j - i;
18329 			/* func_info->insn_off is set after all code rewrites,
18330 			 * in adjust_btf_func() - no need to adjust
18331 			 */
18332 		}
18333 	} else {
18334 		/* convert i from "first prog to remove" to "first to adjust" */
18335 		if (env->subprog_info[i].start == off)
18336 			i++;
18337 	}
18338 
18339 	/* update fake 'exit' subprog as well */
18340 	for (; i <= env->subprog_cnt; i++)
18341 		env->subprog_info[i].start -= cnt;
18342 
18343 	return 0;
18344 }
18345 
18346 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
18347 				      u32 cnt)
18348 {
18349 	struct bpf_prog *prog = env->prog;
18350 	u32 i, l_off, l_cnt, nr_linfo;
18351 	struct bpf_line_info *linfo;
18352 
18353 	nr_linfo = prog->aux->nr_linfo;
18354 	if (!nr_linfo)
18355 		return 0;
18356 
18357 	linfo = prog->aux->linfo;
18358 
18359 	/* find first line info to remove, count lines to be removed */
18360 	for (i = 0; i < nr_linfo; i++)
18361 		if (linfo[i].insn_off >= off)
18362 			break;
18363 
18364 	l_off = i;
18365 	l_cnt = 0;
18366 	for (; i < nr_linfo; i++)
18367 		if (linfo[i].insn_off < off + cnt)
18368 			l_cnt++;
18369 		else
18370 			break;
18371 
18372 	/* First live insn doesn't match first live linfo, it needs to "inherit"
18373 	 * last removed linfo.  prog is already modified, so prog->len == off
18374 	 * means no live instructions after (tail of the program was removed).
18375 	 */
18376 	if (prog->len != off && l_cnt &&
18377 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
18378 		l_cnt--;
18379 		linfo[--i].insn_off = off + cnt;
18380 	}
18381 
18382 	/* remove the line info which refer to the removed instructions */
18383 	if (l_cnt) {
18384 		memmove(linfo + l_off, linfo + i,
18385 			sizeof(*linfo) * (nr_linfo - i));
18386 
18387 		prog->aux->nr_linfo -= l_cnt;
18388 		nr_linfo = prog->aux->nr_linfo;
18389 	}
18390 
18391 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
18392 	for (i = l_off; i < nr_linfo; i++)
18393 		linfo[i].insn_off -= cnt;
18394 
18395 	/* fix up all subprogs (incl. 'exit') which start >= off */
18396 	for (i = 0; i <= env->subprog_cnt; i++)
18397 		if (env->subprog_info[i].linfo_idx > l_off) {
18398 			/* program may have started in the removed region but
18399 			 * may not be fully removed
18400 			 */
18401 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
18402 				env->subprog_info[i].linfo_idx -= l_cnt;
18403 			else
18404 				env->subprog_info[i].linfo_idx = l_off;
18405 		}
18406 
18407 	return 0;
18408 }
18409 
18410 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
18411 {
18412 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
18413 	unsigned int orig_prog_len = env->prog->len;
18414 	int err;
18415 
18416 	if (bpf_prog_is_offloaded(env->prog->aux))
18417 		bpf_prog_offload_remove_insns(env, off, cnt);
18418 
18419 	err = bpf_remove_insns(env->prog, off, cnt);
18420 	if (err)
18421 		return err;
18422 
18423 	err = adjust_subprog_starts_after_remove(env, off, cnt);
18424 	if (err)
18425 		return err;
18426 
18427 	err = bpf_adj_linfo_after_remove(env, off, cnt);
18428 	if (err)
18429 		return err;
18430 
18431 	memmove(aux_data + off,	aux_data + off + cnt,
18432 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
18433 
18434 	return 0;
18435 }
18436 
18437 /* The verifier does more data flow analysis than llvm and will not
18438  * explore branches that are dead at run time. Malicious programs can
18439  * have dead code too. Therefore replace all dead at-run-time code
18440  * with 'ja -1'.
18441  *
18442  * Just nops are not optimal, e.g. if they would sit at the end of the
18443  * program and through another bug we would manage to jump there, then
18444  * we'd execute beyond program memory otherwise. Returning exception
18445  * code also wouldn't work since we can have subprogs where the dead
18446  * code could be located.
18447  */
18448 static void sanitize_dead_code(struct bpf_verifier_env *env)
18449 {
18450 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
18451 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
18452 	struct bpf_insn *insn = env->prog->insnsi;
18453 	const int insn_cnt = env->prog->len;
18454 	int i;
18455 
18456 	for (i = 0; i < insn_cnt; i++) {
18457 		if (aux_data[i].seen)
18458 			continue;
18459 		memcpy(insn + i, &trap, sizeof(trap));
18460 		aux_data[i].zext_dst = false;
18461 	}
18462 }
18463 
18464 static bool insn_is_cond_jump(u8 code)
18465 {
18466 	u8 op;
18467 
18468 	op = BPF_OP(code);
18469 	if (BPF_CLASS(code) == BPF_JMP32)
18470 		return op != BPF_JA;
18471 
18472 	if (BPF_CLASS(code) != BPF_JMP)
18473 		return false;
18474 
18475 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
18476 }
18477 
18478 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
18479 {
18480 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
18481 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
18482 	struct bpf_insn *insn = env->prog->insnsi;
18483 	const int insn_cnt = env->prog->len;
18484 	int i;
18485 
18486 	for (i = 0; i < insn_cnt; i++, insn++) {
18487 		if (!insn_is_cond_jump(insn->code))
18488 			continue;
18489 
18490 		if (!aux_data[i + 1].seen)
18491 			ja.off = insn->off;
18492 		else if (!aux_data[i + 1 + insn->off].seen)
18493 			ja.off = 0;
18494 		else
18495 			continue;
18496 
18497 		if (bpf_prog_is_offloaded(env->prog->aux))
18498 			bpf_prog_offload_replace_insn(env, i, &ja);
18499 
18500 		memcpy(insn, &ja, sizeof(ja));
18501 	}
18502 }
18503 
18504 static int opt_remove_dead_code(struct bpf_verifier_env *env)
18505 {
18506 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
18507 	int insn_cnt = env->prog->len;
18508 	int i, err;
18509 
18510 	for (i = 0; i < insn_cnt; i++) {
18511 		int j;
18512 
18513 		j = 0;
18514 		while (i + j < insn_cnt && !aux_data[i + j].seen)
18515 			j++;
18516 		if (!j)
18517 			continue;
18518 
18519 		err = verifier_remove_insns(env, i, j);
18520 		if (err)
18521 			return err;
18522 		insn_cnt = env->prog->len;
18523 	}
18524 
18525 	return 0;
18526 }
18527 
18528 static int opt_remove_nops(struct bpf_verifier_env *env)
18529 {
18530 	const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
18531 	struct bpf_insn *insn = env->prog->insnsi;
18532 	int insn_cnt = env->prog->len;
18533 	int i, err;
18534 
18535 	for (i = 0; i < insn_cnt; i++) {
18536 		if (memcmp(&insn[i], &ja, sizeof(ja)))
18537 			continue;
18538 
18539 		err = verifier_remove_insns(env, i, 1);
18540 		if (err)
18541 			return err;
18542 		insn_cnt--;
18543 		i--;
18544 	}
18545 
18546 	return 0;
18547 }
18548 
18549 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
18550 					 const union bpf_attr *attr)
18551 {
18552 	struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
18553 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
18554 	int i, patch_len, delta = 0, len = env->prog->len;
18555 	struct bpf_insn *insns = env->prog->insnsi;
18556 	struct bpf_prog *new_prog;
18557 	bool rnd_hi32;
18558 
18559 	rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
18560 	zext_patch[1] = BPF_ZEXT_REG(0);
18561 	rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
18562 	rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
18563 	rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
18564 	for (i = 0; i < len; i++) {
18565 		int adj_idx = i + delta;
18566 		struct bpf_insn insn;
18567 		int load_reg;
18568 
18569 		insn = insns[adj_idx];
18570 		load_reg = insn_def_regno(&insn);
18571 		if (!aux[adj_idx].zext_dst) {
18572 			u8 code, class;
18573 			u32 imm_rnd;
18574 
18575 			if (!rnd_hi32)
18576 				continue;
18577 
18578 			code = insn.code;
18579 			class = BPF_CLASS(code);
18580 			if (load_reg == -1)
18581 				continue;
18582 
18583 			/* NOTE: arg "reg" (the fourth one) is only used for
18584 			 *       BPF_STX + SRC_OP, so it is safe to pass NULL
18585 			 *       here.
18586 			 */
18587 			if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
18588 				if (class == BPF_LD &&
18589 				    BPF_MODE(code) == BPF_IMM)
18590 					i++;
18591 				continue;
18592 			}
18593 
18594 			/* ctx load could be transformed into wider load. */
18595 			if (class == BPF_LDX &&
18596 			    aux[adj_idx].ptr_type == PTR_TO_CTX)
18597 				continue;
18598 
18599 			imm_rnd = get_random_u32();
18600 			rnd_hi32_patch[0] = insn;
18601 			rnd_hi32_patch[1].imm = imm_rnd;
18602 			rnd_hi32_patch[3].dst_reg = load_reg;
18603 			patch = rnd_hi32_patch;
18604 			patch_len = 4;
18605 			goto apply_patch_buffer;
18606 		}
18607 
18608 		/* Add in an zero-extend instruction if a) the JIT has requested
18609 		 * it or b) it's a CMPXCHG.
18610 		 *
18611 		 * The latter is because: BPF_CMPXCHG always loads a value into
18612 		 * R0, therefore always zero-extends. However some archs'
18613 		 * equivalent instruction only does this load when the
18614 		 * comparison is successful. This detail of CMPXCHG is
18615 		 * orthogonal to the general zero-extension behaviour of the
18616 		 * CPU, so it's treated independently of bpf_jit_needs_zext.
18617 		 */
18618 		if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
18619 			continue;
18620 
18621 		/* Zero-extension is done by the caller. */
18622 		if (bpf_pseudo_kfunc_call(&insn))
18623 			continue;
18624 
18625 		if (WARN_ON(load_reg == -1)) {
18626 			verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
18627 			return -EFAULT;
18628 		}
18629 
18630 		zext_patch[0] = insn;
18631 		zext_patch[1].dst_reg = load_reg;
18632 		zext_patch[1].src_reg = load_reg;
18633 		patch = zext_patch;
18634 		patch_len = 2;
18635 apply_patch_buffer:
18636 		new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
18637 		if (!new_prog)
18638 			return -ENOMEM;
18639 		env->prog = new_prog;
18640 		insns = new_prog->insnsi;
18641 		aux = env->insn_aux_data;
18642 		delta += patch_len - 1;
18643 	}
18644 
18645 	return 0;
18646 }
18647 
18648 /* convert load instructions that access fields of a context type into a
18649  * sequence of instructions that access fields of the underlying structure:
18650  *     struct __sk_buff    -> struct sk_buff
18651  *     struct bpf_sock_ops -> struct sock
18652  */
18653 static int convert_ctx_accesses(struct bpf_verifier_env *env)
18654 {
18655 	const struct bpf_verifier_ops *ops = env->ops;
18656 	int i, cnt, size, ctx_field_size, delta = 0;
18657 	const int insn_cnt = env->prog->len;
18658 	struct bpf_insn insn_buf[16], *insn;
18659 	u32 target_size, size_default, off;
18660 	struct bpf_prog *new_prog;
18661 	enum bpf_access_type type;
18662 	bool is_narrower_load;
18663 
18664 	if (ops->gen_prologue || env->seen_direct_write) {
18665 		if (!ops->gen_prologue) {
18666 			verbose(env, "bpf verifier is misconfigured\n");
18667 			return -EINVAL;
18668 		}
18669 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
18670 					env->prog);
18671 		if (cnt >= ARRAY_SIZE(insn_buf)) {
18672 			verbose(env, "bpf verifier is misconfigured\n");
18673 			return -EINVAL;
18674 		} else if (cnt) {
18675 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
18676 			if (!new_prog)
18677 				return -ENOMEM;
18678 
18679 			env->prog = new_prog;
18680 			delta += cnt - 1;
18681 		}
18682 	}
18683 
18684 	if (bpf_prog_is_offloaded(env->prog->aux))
18685 		return 0;
18686 
18687 	insn = env->prog->insnsi + delta;
18688 
18689 	for (i = 0; i < insn_cnt; i++, insn++) {
18690 		bpf_convert_ctx_access_t convert_ctx_access;
18691 		u8 mode;
18692 
18693 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
18694 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
18695 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
18696 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW) ||
18697 		    insn->code == (BPF_LDX | BPF_MEMSX | BPF_B) ||
18698 		    insn->code == (BPF_LDX | BPF_MEMSX | BPF_H) ||
18699 		    insn->code == (BPF_LDX | BPF_MEMSX | BPF_W)) {
18700 			type = BPF_READ;
18701 		} else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
18702 			   insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
18703 			   insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
18704 			   insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
18705 			   insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
18706 			   insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
18707 			   insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
18708 			   insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
18709 			type = BPF_WRITE;
18710 		} else {
18711 			continue;
18712 		}
18713 
18714 		if (type == BPF_WRITE &&
18715 		    env->insn_aux_data[i + delta].sanitize_stack_spill) {
18716 			struct bpf_insn patch[] = {
18717 				*insn,
18718 				BPF_ST_NOSPEC(),
18719 			};
18720 
18721 			cnt = ARRAY_SIZE(patch);
18722 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
18723 			if (!new_prog)
18724 				return -ENOMEM;
18725 
18726 			delta    += cnt - 1;
18727 			env->prog = new_prog;
18728 			insn      = new_prog->insnsi + i + delta;
18729 			continue;
18730 		}
18731 
18732 		switch ((int)env->insn_aux_data[i + delta].ptr_type) {
18733 		case PTR_TO_CTX:
18734 			if (!ops->convert_ctx_access)
18735 				continue;
18736 			convert_ctx_access = ops->convert_ctx_access;
18737 			break;
18738 		case PTR_TO_SOCKET:
18739 		case PTR_TO_SOCK_COMMON:
18740 			convert_ctx_access = bpf_sock_convert_ctx_access;
18741 			break;
18742 		case PTR_TO_TCP_SOCK:
18743 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
18744 			break;
18745 		case PTR_TO_XDP_SOCK:
18746 			convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
18747 			break;
18748 		case PTR_TO_BTF_ID:
18749 		case PTR_TO_BTF_ID | PTR_UNTRUSTED:
18750 		/* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike
18751 		 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot
18752 		 * be said once it is marked PTR_UNTRUSTED, hence we must handle
18753 		 * any faults for loads into such types. BPF_WRITE is disallowed
18754 		 * for this case.
18755 		 */
18756 		case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED:
18757 			if (type == BPF_READ) {
18758 				if (BPF_MODE(insn->code) == BPF_MEM)
18759 					insn->code = BPF_LDX | BPF_PROBE_MEM |
18760 						     BPF_SIZE((insn)->code);
18761 				else
18762 					insn->code = BPF_LDX | BPF_PROBE_MEMSX |
18763 						     BPF_SIZE((insn)->code);
18764 				env->prog->aux->num_exentries++;
18765 			}
18766 			continue;
18767 		default:
18768 			continue;
18769 		}
18770 
18771 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
18772 		size = BPF_LDST_BYTES(insn);
18773 		mode = BPF_MODE(insn->code);
18774 
18775 		/* If the read access is a narrower load of the field,
18776 		 * convert to a 4/8-byte load, to minimum program type specific
18777 		 * convert_ctx_access changes. If conversion is successful,
18778 		 * we will apply proper mask to the result.
18779 		 */
18780 		is_narrower_load = size < ctx_field_size;
18781 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
18782 		off = insn->off;
18783 		if (is_narrower_load) {
18784 			u8 size_code;
18785 
18786 			if (type == BPF_WRITE) {
18787 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
18788 				return -EINVAL;
18789 			}
18790 
18791 			size_code = BPF_H;
18792 			if (ctx_field_size == 4)
18793 				size_code = BPF_W;
18794 			else if (ctx_field_size == 8)
18795 				size_code = BPF_DW;
18796 
18797 			insn->off = off & ~(size_default - 1);
18798 			insn->code = BPF_LDX | BPF_MEM | size_code;
18799 		}
18800 
18801 		target_size = 0;
18802 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
18803 					 &target_size);
18804 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
18805 		    (ctx_field_size && !target_size)) {
18806 			verbose(env, "bpf verifier is misconfigured\n");
18807 			return -EINVAL;
18808 		}
18809 
18810 		if (is_narrower_load && size < target_size) {
18811 			u8 shift = bpf_ctx_narrow_access_offset(
18812 				off, size, size_default) * 8;
18813 			if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) {
18814 				verbose(env, "bpf verifier narrow ctx load misconfigured\n");
18815 				return -EINVAL;
18816 			}
18817 			if (ctx_field_size <= 4) {
18818 				if (shift)
18819 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
18820 									insn->dst_reg,
18821 									shift);
18822 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
18823 								(1 << size * 8) - 1);
18824 			} else {
18825 				if (shift)
18826 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
18827 									insn->dst_reg,
18828 									shift);
18829 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
18830 								(1ULL << size * 8) - 1);
18831 			}
18832 		}
18833 		if (mode == BPF_MEMSX)
18834 			insn_buf[cnt++] = BPF_RAW_INSN(BPF_ALU64 | BPF_MOV | BPF_X,
18835 						       insn->dst_reg, insn->dst_reg,
18836 						       size * 8, 0);
18837 
18838 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18839 		if (!new_prog)
18840 			return -ENOMEM;
18841 
18842 		delta += cnt - 1;
18843 
18844 		/* keep walking new program and skip insns we just inserted */
18845 		env->prog = new_prog;
18846 		insn      = new_prog->insnsi + i + delta;
18847 	}
18848 
18849 	return 0;
18850 }
18851 
18852 static int jit_subprogs(struct bpf_verifier_env *env)
18853 {
18854 	struct bpf_prog *prog = env->prog, **func, *tmp;
18855 	int i, j, subprog_start, subprog_end = 0, len, subprog;
18856 	struct bpf_map *map_ptr;
18857 	struct bpf_insn *insn;
18858 	void *old_bpf_func;
18859 	int err, num_exentries;
18860 
18861 	if (env->subprog_cnt <= 1)
18862 		return 0;
18863 
18864 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
18865 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn))
18866 			continue;
18867 
18868 		/* Upon error here we cannot fall back to interpreter but
18869 		 * need a hard reject of the program. Thus -EFAULT is
18870 		 * propagated in any case.
18871 		 */
18872 		subprog = find_subprog(env, i + insn->imm + 1);
18873 		if (subprog < 0) {
18874 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
18875 				  i + insn->imm + 1);
18876 			return -EFAULT;
18877 		}
18878 		/* temporarily remember subprog id inside insn instead of
18879 		 * aux_data, since next loop will split up all insns into funcs
18880 		 */
18881 		insn->off = subprog;
18882 		/* remember original imm in case JIT fails and fallback
18883 		 * to interpreter will be needed
18884 		 */
18885 		env->insn_aux_data[i].call_imm = insn->imm;
18886 		/* point imm to __bpf_call_base+1 from JITs point of view */
18887 		insn->imm = 1;
18888 		if (bpf_pseudo_func(insn))
18889 			/* jit (e.g. x86_64) may emit fewer instructions
18890 			 * if it learns a u32 imm is the same as a u64 imm.
18891 			 * Force a non zero here.
18892 			 */
18893 			insn[1].imm = 1;
18894 	}
18895 
18896 	err = bpf_prog_alloc_jited_linfo(prog);
18897 	if (err)
18898 		goto out_undo_insn;
18899 
18900 	err = -ENOMEM;
18901 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
18902 	if (!func)
18903 		goto out_undo_insn;
18904 
18905 	for (i = 0; i < env->subprog_cnt; i++) {
18906 		subprog_start = subprog_end;
18907 		subprog_end = env->subprog_info[i + 1].start;
18908 
18909 		len = subprog_end - subprog_start;
18910 		/* bpf_prog_run() doesn't call subprogs directly,
18911 		 * hence main prog stats include the runtime of subprogs.
18912 		 * subprogs don't have IDs and not reachable via prog_get_next_id
18913 		 * func[i]->stats will never be accessed and stays NULL
18914 		 */
18915 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
18916 		if (!func[i])
18917 			goto out_free;
18918 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
18919 		       len * sizeof(struct bpf_insn));
18920 		func[i]->type = prog->type;
18921 		func[i]->len = len;
18922 		if (bpf_prog_calc_tag(func[i]))
18923 			goto out_free;
18924 		func[i]->is_func = 1;
18925 		func[i]->aux->func_idx = i;
18926 		/* Below members will be freed only at prog->aux */
18927 		func[i]->aux->btf = prog->aux->btf;
18928 		func[i]->aux->func_info = prog->aux->func_info;
18929 		func[i]->aux->func_info_cnt = prog->aux->func_info_cnt;
18930 		func[i]->aux->poke_tab = prog->aux->poke_tab;
18931 		func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
18932 
18933 		for (j = 0; j < prog->aux->size_poke_tab; j++) {
18934 			struct bpf_jit_poke_descriptor *poke;
18935 
18936 			poke = &prog->aux->poke_tab[j];
18937 			if (poke->insn_idx < subprog_end &&
18938 			    poke->insn_idx >= subprog_start)
18939 				poke->aux = func[i]->aux;
18940 		}
18941 
18942 		func[i]->aux->name[0] = 'F';
18943 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
18944 		func[i]->jit_requested = 1;
18945 		func[i]->blinding_requested = prog->blinding_requested;
18946 		func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
18947 		func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab;
18948 		func[i]->aux->linfo = prog->aux->linfo;
18949 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
18950 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
18951 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
18952 		num_exentries = 0;
18953 		insn = func[i]->insnsi;
18954 		for (j = 0; j < func[i]->len; j++, insn++) {
18955 			if (BPF_CLASS(insn->code) == BPF_LDX &&
18956 			    (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
18957 			     BPF_MODE(insn->code) == BPF_PROBE_MEMSX))
18958 				num_exentries++;
18959 		}
18960 		func[i]->aux->num_exentries = num_exentries;
18961 		func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
18962 		func[i]->aux->exception_cb = env->subprog_info[i].is_exception_cb;
18963 		if (!i)
18964 			func[i]->aux->exception_boundary = env->seen_exception;
18965 		func[i] = bpf_int_jit_compile(func[i]);
18966 		if (!func[i]->jited) {
18967 			err = -ENOTSUPP;
18968 			goto out_free;
18969 		}
18970 		cond_resched();
18971 	}
18972 
18973 	/* at this point all bpf functions were successfully JITed
18974 	 * now populate all bpf_calls with correct addresses and
18975 	 * run last pass of JIT
18976 	 */
18977 	for (i = 0; i < env->subprog_cnt; i++) {
18978 		insn = func[i]->insnsi;
18979 		for (j = 0; j < func[i]->len; j++, insn++) {
18980 			if (bpf_pseudo_func(insn)) {
18981 				subprog = insn->off;
18982 				insn[0].imm = (u32)(long)func[subprog]->bpf_func;
18983 				insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
18984 				continue;
18985 			}
18986 			if (!bpf_pseudo_call(insn))
18987 				continue;
18988 			subprog = insn->off;
18989 			insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func);
18990 		}
18991 
18992 		/* we use the aux data to keep a list of the start addresses
18993 		 * of the JITed images for each function in the program
18994 		 *
18995 		 * for some architectures, such as powerpc64, the imm field
18996 		 * might not be large enough to hold the offset of the start
18997 		 * address of the callee's JITed image from __bpf_call_base
18998 		 *
18999 		 * in such cases, we can lookup the start address of a callee
19000 		 * by using its subprog id, available from the off field of
19001 		 * the call instruction, as an index for this list
19002 		 */
19003 		func[i]->aux->func = func;
19004 		func[i]->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt;
19005 		func[i]->aux->real_func_cnt = env->subprog_cnt;
19006 	}
19007 	for (i = 0; i < env->subprog_cnt; i++) {
19008 		old_bpf_func = func[i]->bpf_func;
19009 		tmp = bpf_int_jit_compile(func[i]);
19010 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
19011 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
19012 			err = -ENOTSUPP;
19013 			goto out_free;
19014 		}
19015 		cond_resched();
19016 	}
19017 
19018 	/* finally lock prog and jit images for all functions and
19019 	 * populate kallsysm. Begin at the first subprogram, since
19020 	 * bpf_prog_load will add the kallsyms for the main program.
19021 	 */
19022 	for (i = 1; i < env->subprog_cnt; i++) {
19023 		bpf_prog_lock_ro(func[i]);
19024 		bpf_prog_kallsyms_add(func[i]);
19025 	}
19026 
19027 	/* Last step: make now unused interpreter insns from main
19028 	 * prog consistent for later dump requests, so they can
19029 	 * later look the same as if they were interpreted only.
19030 	 */
19031 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
19032 		if (bpf_pseudo_func(insn)) {
19033 			insn[0].imm = env->insn_aux_data[i].call_imm;
19034 			insn[1].imm = insn->off;
19035 			insn->off = 0;
19036 			continue;
19037 		}
19038 		if (!bpf_pseudo_call(insn))
19039 			continue;
19040 		insn->off = env->insn_aux_data[i].call_imm;
19041 		subprog = find_subprog(env, i + insn->off + 1);
19042 		insn->imm = subprog;
19043 	}
19044 
19045 	prog->jited = 1;
19046 	prog->bpf_func = func[0]->bpf_func;
19047 	prog->jited_len = func[0]->jited_len;
19048 	prog->aux->extable = func[0]->aux->extable;
19049 	prog->aux->num_exentries = func[0]->aux->num_exentries;
19050 	prog->aux->func = func;
19051 	prog->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt;
19052 	prog->aux->real_func_cnt = env->subprog_cnt;
19053 	prog->aux->bpf_exception_cb = (void *)func[env->exception_callback_subprog]->bpf_func;
19054 	prog->aux->exception_boundary = func[0]->aux->exception_boundary;
19055 	bpf_prog_jit_attempt_done(prog);
19056 	return 0;
19057 out_free:
19058 	/* We failed JIT'ing, so at this point we need to unregister poke
19059 	 * descriptors from subprogs, so that kernel is not attempting to
19060 	 * patch it anymore as we're freeing the subprog JIT memory.
19061 	 */
19062 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
19063 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
19064 		map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
19065 	}
19066 	/* At this point we're guaranteed that poke descriptors are not
19067 	 * live anymore. We can just unlink its descriptor table as it's
19068 	 * released with the main prog.
19069 	 */
19070 	for (i = 0; i < env->subprog_cnt; i++) {
19071 		if (!func[i])
19072 			continue;
19073 		func[i]->aux->poke_tab = NULL;
19074 		bpf_jit_free(func[i]);
19075 	}
19076 	kfree(func);
19077 out_undo_insn:
19078 	/* cleanup main prog to be interpreted */
19079 	prog->jit_requested = 0;
19080 	prog->blinding_requested = 0;
19081 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
19082 		if (!bpf_pseudo_call(insn))
19083 			continue;
19084 		insn->off = 0;
19085 		insn->imm = env->insn_aux_data[i].call_imm;
19086 	}
19087 	bpf_prog_jit_attempt_done(prog);
19088 	return err;
19089 }
19090 
19091 static int fixup_call_args(struct bpf_verifier_env *env)
19092 {
19093 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
19094 	struct bpf_prog *prog = env->prog;
19095 	struct bpf_insn *insn = prog->insnsi;
19096 	bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
19097 	int i, depth;
19098 #endif
19099 	int err = 0;
19100 
19101 	if (env->prog->jit_requested &&
19102 	    !bpf_prog_is_offloaded(env->prog->aux)) {
19103 		err = jit_subprogs(env);
19104 		if (err == 0)
19105 			return 0;
19106 		if (err == -EFAULT)
19107 			return err;
19108 	}
19109 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
19110 	if (has_kfunc_call) {
19111 		verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
19112 		return -EINVAL;
19113 	}
19114 	if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
19115 		/* When JIT fails the progs with bpf2bpf calls and tail_calls
19116 		 * have to be rejected, since interpreter doesn't support them yet.
19117 		 */
19118 		verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
19119 		return -EINVAL;
19120 	}
19121 	for (i = 0; i < prog->len; i++, insn++) {
19122 		if (bpf_pseudo_func(insn)) {
19123 			/* When JIT fails the progs with callback calls
19124 			 * have to be rejected, since interpreter doesn't support them yet.
19125 			 */
19126 			verbose(env, "callbacks are not allowed in non-JITed programs\n");
19127 			return -EINVAL;
19128 		}
19129 
19130 		if (!bpf_pseudo_call(insn))
19131 			continue;
19132 		depth = get_callee_stack_depth(env, insn, i);
19133 		if (depth < 0)
19134 			return depth;
19135 		bpf_patch_call_args(insn, depth);
19136 	}
19137 	err = 0;
19138 #endif
19139 	return err;
19140 }
19141 
19142 /* replace a generic kfunc with a specialized version if necessary */
19143 static void specialize_kfunc(struct bpf_verifier_env *env,
19144 			     u32 func_id, u16 offset, unsigned long *addr)
19145 {
19146 	struct bpf_prog *prog = env->prog;
19147 	bool seen_direct_write;
19148 	void *xdp_kfunc;
19149 	bool is_rdonly;
19150 
19151 	if (bpf_dev_bound_kfunc_id(func_id)) {
19152 		xdp_kfunc = bpf_dev_bound_resolve_kfunc(prog, func_id);
19153 		if (xdp_kfunc) {
19154 			*addr = (unsigned long)xdp_kfunc;
19155 			return;
19156 		}
19157 		/* fallback to default kfunc when not supported by netdev */
19158 	}
19159 
19160 	if (offset)
19161 		return;
19162 
19163 	if (func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
19164 		seen_direct_write = env->seen_direct_write;
19165 		is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE);
19166 
19167 		if (is_rdonly)
19168 			*addr = (unsigned long)bpf_dynptr_from_skb_rdonly;
19169 
19170 		/* restore env->seen_direct_write to its original value, since
19171 		 * may_access_direct_pkt_data mutates it
19172 		 */
19173 		env->seen_direct_write = seen_direct_write;
19174 	}
19175 }
19176 
19177 static void __fixup_collection_insert_kfunc(struct bpf_insn_aux_data *insn_aux,
19178 					    u16 struct_meta_reg,
19179 					    u16 node_offset_reg,
19180 					    struct bpf_insn *insn,
19181 					    struct bpf_insn *insn_buf,
19182 					    int *cnt)
19183 {
19184 	struct btf_struct_meta *kptr_struct_meta = insn_aux->kptr_struct_meta;
19185 	struct bpf_insn addr[2] = { BPF_LD_IMM64(struct_meta_reg, (long)kptr_struct_meta) };
19186 
19187 	insn_buf[0] = addr[0];
19188 	insn_buf[1] = addr[1];
19189 	insn_buf[2] = BPF_MOV64_IMM(node_offset_reg, insn_aux->insert_off);
19190 	insn_buf[3] = *insn;
19191 	*cnt = 4;
19192 }
19193 
19194 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
19195 			    struct bpf_insn *insn_buf, int insn_idx, int *cnt)
19196 {
19197 	const struct bpf_kfunc_desc *desc;
19198 
19199 	if (!insn->imm) {
19200 		verbose(env, "invalid kernel function call not eliminated in verifier pass\n");
19201 		return -EINVAL;
19202 	}
19203 
19204 	*cnt = 0;
19205 
19206 	/* insn->imm has the btf func_id. Replace it with an offset relative to
19207 	 * __bpf_call_base, unless the JIT needs to call functions that are
19208 	 * further than 32 bits away (bpf_jit_supports_far_kfunc_call()).
19209 	 */
19210 	desc = find_kfunc_desc(env->prog, insn->imm, insn->off);
19211 	if (!desc) {
19212 		verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
19213 			insn->imm);
19214 		return -EFAULT;
19215 	}
19216 
19217 	if (!bpf_jit_supports_far_kfunc_call())
19218 		insn->imm = BPF_CALL_IMM(desc->addr);
19219 	if (insn->off)
19220 		return 0;
19221 	if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl] ||
19222 	    desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
19223 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
19224 		struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
19225 		u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size;
19226 
19227 		if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl] && kptr_struct_meta) {
19228 			verbose(env, "verifier internal error: NULL kptr_struct_meta expected at insn_idx %d\n",
19229 				insn_idx);
19230 			return -EFAULT;
19231 		}
19232 
19233 		insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size);
19234 		insn_buf[1] = addr[0];
19235 		insn_buf[2] = addr[1];
19236 		insn_buf[3] = *insn;
19237 		*cnt = 4;
19238 	} else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl] ||
19239 		   desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] ||
19240 		   desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
19241 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
19242 		struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
19243 
19244 		if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] && kptr_struct_meta) {
19245 			verbose(env, "verifier internal error: NULL kptr_struct_meta expected at insn_idx %d\n",
19246 				insn_idx);
19247 			return -EFAULT;
19248 		}
19249 
19250 		if (desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] &&
19251 		    !kptr_struct_meta) {
19252 			verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n",
19253 				insn_idx);
19254 			return -EFAULT;
19255 		}
19256 
19257 		insn_buf[0] = addr[0];
19258 		insn_buf[1] = addr[1];
19259 		insn_buf[2] = *insn;
19260 		*cnt = 3;
19261 	} else if (desc->func_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
19262 		   desc->func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
19263 		   desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
19264 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
19265 		int struct_meta_reg = BPF_REG_3;
19266 		int node_offset_reg = BPF_REG_4;
19267 
19268 		/* rbtree_add has extra 'less' arg, so args-to-fixup are in diff regs */
19269 		if (desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
19270 			struct_meta_reg = BPF_REG_4;
19271 			node_offset_reg = BPF_REG_5;
19272 		}
19273 
19274 		if (!kptr_struct_meta) {
19275 			verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n",
19276 				insn_idx);
19277 			return -EFAULT;
19278 		}
19279 
19280 		__fixup_collection_insert_kfunc(&env->insn_aux_data[insn_idx], struct_meta_reg,
19281 						node_offset_reg, insn, insn_buf, cnt);
19282 	} else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] ||
19283 		   desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
19284 		insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1);
19285 		*cnt = 1;
19286 	}
19287 	return 0;
19288 }
19289 
19290 /* The function requires that first instruction in 'patch' is insnsi[prog->len - 1] */
19291 static int add_hidden_subprog(struct bpf_verifier_env *env, struct bpf_insn *patch, int len)
19292 {
19293 	struct bpf_subprog_info *info = env->subprog_info;
19294 	int cnt = env->subprog_cnt;
19295 	struct bpf_prog *prog;
19296 
19297 	/* We only reserve one slot for hidden subprogs in subprog_info. */
19298 	if (env->hidden_subprog_cnt) {
19299 		verbose(env, "verifier internal error: only one hidden subprog supported\n");
19300 		return -EFAULT;
19301 	}
19302 	/* We're not patching any existing instruction, just appending the new
19303 	 * ones for the hidden subprog. Hence all of the adjustment operations
19304 	 * in bpf_patch_insn_data are no-ops.
19305 	 */
19306 	prog = bpf_patch_insn_data(env, env->prog->len - 1, patch, len);
19307 	if (!prog)
19308 		return -ENOMEM;
19309 	env->prog = prog;
19310 	info[cnt + 1].start = info[cnt].start;
19311 	info[cnt].start = prog->len - len + 1;
19312 	env->subprog_cnt++;
19313 	env->hidden_subprog_cnt++;
19314 	return 0;
19315 }
19316 
19317 /* Do various post-verification rewrites in a single program pass.
19318  * These rewrites simplify JIT and interpreter implementations.
19319  */
19320 static int do_misc_fixups(struct bpf_verifier_env *env)
19321 {
19322 	struct bpf_prog *prog = env->prog;
19323 	enum bpf_attach_type eatype = prog->expected_attach_type;
19324 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
19325 	struct bpf_insn *insn = prog->insnsi;
19326 	const struct bpf_func_proto *fn;
19327 	const int insn_cnt = prog->len;
19328 	const struct bpf_map_ops *ops;
19329 	struct bpf_insn_aux_data *aux;
19330 	struct bpf_insn insn_buf[16];
19331 	struct bpf_prog *new_prog;
19332 	struct bpf_map *map_ptr;
19333 	int i, ret, cnt, delta = 0;
19334 
19335 	if (env->seen_exception && !env->exception_callback_subprog) {
19336 		struct bpf_insn patch[] = {
19337 			env->prog->insnsi[insn_cnt - 1],
19338 			BPF_MOV64_REG(BPF_REG_0, BPF_REG_1),
19339 			BPF_EXIT_INSN(),
19340 		};
19341 
19342 		ret = add_hidden_subprog(env, patch, ARRAY_SIZE(patch));
19343 		if (ret < 0)
19344 			return ret;
19345 		prog = env->prog;
19346 		insn = prog->insnsi;
19347 
19348 		env->exception_callback_subprog = env->subprog_cnt - 1;
19349 		/* Don't update insn_cnt, as add_hidden_subprog always appends insns */
19350 		mark_subprog_exc_cb(env, env->exception_callback_subprog);
19351 	}
19352 
19353 	for (i = 0; i < insn_cnt; i++, insn++) {
19354 		/* Make divide-by-zero exceptions impossible. */
19355 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
19356 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
19357 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
19358 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
19359 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
19360 			bool isdiv = BPF_OP(insn->code) == BPF_DIV;
19361 			struct bpf_insn *patchlet;
19362 			struct bpf_insn chk_and_div[] = {
19363 				/* [R,W]x div 0 -> 0 */
19364 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
19365 					     BPF_JNE | BPF_K, insn->src_reg,
19366 					     0, 2, 0),
19367 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
19368 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
19369 				*insn,
19370 			};
19371 			struct bpf_insn chk_and_mod[] = {
19372 				/* [R,W]x mod 0 -> [R,W]x */
19373 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
19374 					     BPF_JEQ | BPF_K, insn->src_reg,
19375 					     0, 1 + (is64 ? 0 : 1), 0),
19376 				*insn,
19377 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
19378 				BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
19379 			};
19380 
19381 			patchlet = isdiv ? chk_and_div : chk_and_mod;
19382 			cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
19383 				      ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
19384 
19385 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
19386 			if (!new_prog)
19387 				return -ENOMEM;
19388 
19389 			delta    += cnt - 1;
19390 			env->prog = prog = new_prog;
19391 			insn      = new_prog->insnsi + i + delta;
19392 			continue;
19393 		}
19394 
19395 		/* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
19396 		if (BPF_CLASS(insn->code) == BPF_LD &&
19397 		    (BPF_MODE(insn->code) == BPF_ABS ||
19398 		     BPF_MODE(insn->code) == BPF_IND)) {
19399 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
19400 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
19401 				verbose(env, "bpf verifier is misconfigured\n");
19402 				return -EINVAL;
19403 			}
19404 
19405 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19406 			if (!new_prog)
19407 				return -ENOMEM;
19408 
19409 			delta    += cnt - 1;
19410 			env->prog = prog = new_prog;
19411 			insn      = new_prog->insnsi + i + delta;
19412 			continue;
19413 		}
19414 
19415 		/* Rewrite pointer arithmetic to mitigate speculation attacks. */
19416 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
19417 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
19418 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
19419 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
19420 			struct bpf_insn *patch = &insn_buf[0];
19421 			bool issrc, isneg, isimm;
19422 			u32 off_reg;
19423 
19424 			aux = &env->insn_aux_data[i + delta];
19425 			if (!aux->alu_state ||
19426 			    aux->alu_state == BPF_ALU_NON_POINTER)
19427 				continue;
19428 
19429 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
19430 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
19431 				BPF_ALU_SANITIZE_SRC;
19432 			isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
19433 
19434 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
19435 			if (isimm) {
19436 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
19437 			} else {
19438 				if (isneg)
19439 					*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
19440 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
19441 				*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
19442 				*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
19443 				*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
19444 				*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
19445 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
19446 			}
19447 			if (!issrc)
19448 				*patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
19449 			insn->src_reg = BPF_REG_AX;
19450 			if (isneg)
19451 				insn->code = insn->code == code_add ?
19452 					     code_sub : code_add;
19453 			*patch++ = *insn;
19454 			if (issrc && isneg && !isimm)
19455 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
19456 			cnt = patch - insn_buf;
19457 
19458 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19459 			if (!new_prog)
19460 				return -ENOMEM;
19461 
19462 			delta    += cnt - 1;
19463 			env->prog = prog = new_prog;
19464 			insn      = new_prog->insnsi + i + delta;
19465 			continue;
19466 		}
19467 
19468 		if (insn->code != (BPF_JMP | BPF_CALL))
19469 			continue;
19470 		if (insn->src_reg == BPF_PSEUDO_CALL)
19471 			continue;
19472 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
19473 			ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt);
19474 			if (ret)
19475 				return ret;
19476 			if (cnt == 0)
19477 				continue;
19478 
19479 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19480 			if (!new_prog)
19481 				return -ENOMEM;
19482 
19483 			delta	 += cnt - 1;
19484 			env->prog = prog = new_prog;
19485 			insn	  = new_prog->insnsi + i + delta;
19486 			continue;
19487 		}
19488 
19489 		if (insn->imm == BPF_FUNC_get_route_realm)
19490 			prog->dst_needed = 1;
19491 		if (insn->imm == BPF_FUNC_get_prandom_u32)
19492 			bpf_user_rnd_init_once();
19493 		if (insn->imm == BPF_FUNC_override_return)
19494 			prog->kprobe_override = 1;
19495 		if (insn->imm == BPF_FUNC_tail_call) {
19496 			/* If we tail call into other programs, we
19497 			 * cannot make any assumptions since they can
19498 			 * be replaced dynamically during runtime in
19499 			 * the program array.
19500 			 */
19501 			prog->cb_access = 1;
19502 			if (!allow_tail_call_in_subprogs(env))
19503 				prog->aux->stack_depth = MAX_BPF_STACK;
19504 			prog->aux->max_pkt_offset = MAX_PACKET_OFF;
19505 
19506 			/* mark bpf_tail_call as different opcode to avoid
19507 			 * conditional branch in the interpreter for every normal
19508 			 * call and to prevent accidental JITing by JIT compiler
19509 			 * that doesn't support bpf_tail_call yet
19510 			 */
19511 			insn->imm = 0;
19512 			insn->code = BPF_JMP | BPF_TAIL_CALL;
19513 
19514 			aux = &env->insn_aux_data[i + delta];
19515 			if (env->bpf_capable && !prog->blinding_requested &&
19516 			    prog->jit_requested &&
19517 			    !bpf_map_key_poisoned(aux) &&
19518 			    !bpf_map_ptr_poisoned(aux) &&
19519 			    !bpf_map_ptr_unpriv(aux)) {
19520 				struct bpf_jit_poke_descriptor desc = {
19521 					.reason = BPF_POKE_REASON_TAIL_CALL,
19522 					.tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
19523 					.tail_call.key = bpf_map_key_immediate(aux),
19524 					.insn_idx = i + delta,
19525 				};
19526 
19527 				ret = bpf_jit_add_poke_descriptor(prog, &desc);
19528 				if (ret < 0) {
19529 					verbose(env, "adding tail call poke descriptor failed\n");
19530 					return ret;
19531 				}
19532 
19533 				insn->imm = ret + 1;
19534 				continue;
19535 			}
19536 
19537 			if (!bpf_map_ptr_unpriv(aux))
19538 				continue;
19539 
19540 			/* instead of changing every JIT dealing with tail_call
19541 			 * emit two extra insns:
19542 			 * if (index >= max_entries) goto out;
19543 			 * index &= array->index_mask;
19544 			 * to avoid out-of-bounds cpu speculation
19545 			 */
19546 			if (bpf_map_ptr_poisoned(aux)) {
19547 				verbose(env, "tail_call abusing map_ptr\n");
19548 				return -EINVAL;
19549 			}
19550 
19551 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
19552 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
19553 						  map_ptr->max_entries, 2);
19554 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
19555 						    container_of(map_ptr,
19556 								 struct bpf_array,
19557 								 map)->index_mask);
19558 			insn_buf[2] = *insn;
19559 			cnt = 3;
19560 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19561 			if (!new_prog)
19562 				return -ENOMEM;
19563 
19564 			delta    += cnt - 1;
19565 			env->prog = prog = new_prog;
19566 			insn      = new_prog->insnsi + i + delta;
19567 			continue;
19568 		}
19569 
19570 		if (insn->imm == BPF_FUNC_timer_set_callback) {
19571 			/* The verifier will process callback_fn as many times as necessary
19572 			 * with different maps and the register states prepared by
19573 			 * set_timer_callback_state will be accurate.
19574 			 *
19575 			 * The following use case is valid:
19576 			 *   map1 is shared by prog1, prog2, prog3.
19577 			 *   prog1 calls bpf_timer_init for some map1 elements
19578 			 *   prog2 calls bpf_timer_set_callback for some map1 elements.
19579 			 *     Those that were not bpf_timer_init-ed will return -EINVAL.
19580 			 *   prog3 calls bpf_timer_start for some map1 elements.
19581 			 *     Those that were not both bpf_timer_init-ed and
19582 			 *     bpf_timer_set_callback-ed will return -EINVAL.
19583 			 */
19584 			struct bpf_insn ld_addrs[2] = {
19585 				BPF_LD_IMM64(BPF_REG_3, (long)prog->aux),
19586 			};
19587 
19588 			insn_buf[0] = ld_addrs[0];
19589 			insn_buf[1] = ld_addrs[1];
19590 			insn_buf[2] = *insn;
19591 			cnt = 3;
19592 
19593 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19594 			if (!new_prog)
19595 				return -ENOMEM;
19596 
19597 			delta    += cnt - 1;
19598 			env->prog = prog = new_prog;
19599 			insn      = new_prog->insnsi + i + delta;
19600 			goto patch_call_imm;
19601 		}
19602 
19603 		if (is_storage_get_function(insn->imm)) {
19604 			if (!env->prog->aux->sleepable ||
19605 			    env->insn_aux_data[i + delta].storage_get_func_atomic)
19606 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC);
19607 			else
19608 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL);
19609 			insn_buf[1] = *insn;
19610 			cnt = 2;
19611 
19612 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19613 			if (!new_prog)
19614 				return -ENOMEM;
19615 
19616 			delta += cnt - 1;
19617 			env->prog = prog = new_prog;
19618 			insn = new_prog->insnsi + i + delta;
19619 			goto patch_call_imm;
19620 		}
19621 
19622 		/* bpf_per_cpu_ptr() and bpf_this_cpu_ptr() */
19623 		if (env->insn_aux_data[i + delta].call_with_percpu_alloc_ptr) {
19624 			/* patch with 'r1 = *(u64 *)(r1 + 0)' since for percpu data,
19625 			 * bpf_mem_alloc() returns a ptr to the percpu data ptr.
19626 			 */
19627 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_1, 0);
19628 			insn_buf[1] = *insn;
19629 			cnt = 2;
19630 
19631 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19632 			if (!new_prog)
19633 				return -ENOMEM;
19634 
19635 			delta += cnt - 1;
19636 			env->prog = prog = new_prog;
19637 			insn = new_prog->insnsi + i + delta;
19638 			goto patch_call_imm;
19639 		}
19640 
19641 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
19642 		 * and other inlining handlers are currently limited to 64 bit
19643 		 * only.
19644 		 */
19645 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
19646 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
19647 		     insn->imm == BPF_FUNC_map_update_elem ||
19648 		     insn->imm == BPF_FUNC_map_delete_elem ||
19649 		     insn->imm == BPF_FUNC_map_push_elem   ||
19650 		     insn->imm == BPF_FUNC_map_pop_elem    ||
19651 		     insn->imm == BPF_FUNC_map_peek_elem   ||
19652 		     insn->imm == BPF_FUNC_redirect_map    ||
19653 		     insn->imm == BPF_FUNC_for_each_map_elem ||
19654 		     insn->imm == BPF_FUNC_map_lookup_percpu_elem)) {
19655 			aux = &env->insn_aux_data[i + delta];
19656 			if (bpf_map_ptr_poisoned(aux))
19657 				goto patch_call_imm;
19658 
19659 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
19660 			ops = map_ptr->ops;
19661 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
19662 			    ops->map_gen_lookup) {
19663 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
19664 				if (cnt == -EOPNOTSUPP)
19665 					goto patch_map_ops_generic;
19666 				if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
19667 					verbose(env, "bpf verifier is misconfigured\n");
19668 					return -EINVAL;
19669 				}
19670 
19671 				new_prog = bpf_patch_insn_data(env, i + delta,
19672 							       insn_buf, cnt);
19673 				if (!new_prog)
19674 					return -ENOMEM;
19675 
19676 				delta    += cnt - 1;
19677 				env->prog = prog = new_prog;
19678 				insn      = new_prog->insnsi + i + delta;
19679 				continue;
19680 			}
19681 
19682 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
19683 				     (void *(*)(struct bpf_map *map, void *key))NULL));
19684 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
19685 				     (long (*)(struct bpf_map *map, void *key))NULL));
19686 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
19687 				     (long (*)(struct bpf_map *map, void *key, void *value,
19688 					      u64 flags))NULL));
19689 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
19690 				     (long (*)(struct bpf_map *map, void *value,
19691 					      u64 flags))NULL));
19692 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
19693 				     (long (*)(struct bpf_map *map, void *value))NULL));
19694 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
19695 				     (long (*)(struct bpf_map *map, void *value))NULL));
19696 			BUILD_BUG_ON(!__same_type(ops->map_redirect,
19697 				     (long (*)(struct bpf_map *map, u64 index, u64 flags))NULL));
19698 			BUILD_BUG_ON(!__same_type(ops->map_for_each_callback,
19699 				     (long (*)(struct bpf_map *map,
19700 					      bpf_callback_t callback_fn,
19701 					      void *callback_ctx,
19702 					      u64 flags))NULL));
19703 			BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem,
19704 				     (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL));
19705 
19706 patch_map_ops_generic:
19707 			switch (insn->imm) {
19708 			case BPF_FUNC_map_lookup_elem:
19709 				insn->imm = BPF_CALL_IMM(ops->map_lookup_elem);
19710 				continue;
19711 			case BPF_FUNC_map_update_elem:
19712 				insn->imm = BPF_CALL_IMM(ops->map_update_elem);
19713 				continue;
19714 			case BPF_FUNC_map_delete_elem:
19715 				insn->imm = BPF_CALL_IMM(ops->map_delete_elem);
19716 				continue;
19717 			case BPF_FUNC_map_push_elem:
19718 				insn->imm = BPF_CALL_IMM(ops->map_push_elem);
19719 				continue;
19720 			case BPF_FUNC_map_pop_elem:
19721 				insn->imm = BPF_CALL_IMM(ops->map_pop_elem);
19722 				continue;
19723 			case BPF_FUNC_map_peek_elem:
19724 				insn->imm = BPF_CALL_IMM(ops->map_peek_elem);
19725 				continue;
19726 			case BPF_FUNC_redirect_map:
19727 				insn->imm = BPF_CALL_IMM(ops->map_redirect);
19728 				continue;
19729 			case BPF_FUNC_for_each_map_elem:
19730 				insn->imm = BPF_CALL_IMM(ops->map_for_each_callback);
19731 				continue;
19732 			case BPF_FUNC_map_lookup_percpu_elem:
19733 				insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem);
19734 				continue;
19735 			}
19736 
19737 			goto patch_call_imm;
19738 		}
19739 
19740 		/* Implement bpf_jiffies64 inline. */
19741 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
19742 		    insn->imm == BPF_FUNC_jiffies64) {
19743 			struct bpf_insn ld_jiffies_addr[2] = {
19744 				BPF_LD_IMM64(BPF_REG_0,
19745 					     (unsigned long)&jiffies),
19746 			};
19747 
19748 			insn_buf[0] = ld_jiffies_addr[0];
19749 			insn_buf[1] = ld_jiffies_addr[1];
19750 			insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
19751 						  BPF_REG_0, 0);
19752 			cnt = 3;
19753 
19754 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
19755 						       cnt);
19756 			if (!new_prog)
19757 				return -ENOMEM;
19758 
19759 			delta    += cnt - 1;
19760 			env->prog = prog = new_prog;
19761 			insn      = new_prog->insnsi + i + delta;
19762 			continue;
19763 		}
19764 
19765 		/* Implement bpf_get_func_arg inline. */
19766 		if (prog_type == BPF_PROG_TYPE_TRACING &&
19767 		    insn->imm == BPF_FUNC_get_func_arg) {
19768 			/* Load nr_args from ctx - 8 */
19769 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
19770 			insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6);
19771 			insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3);
19772 			insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1);
19773 			insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0);
19774 			insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
19775 			insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0);
19776 			insn_buf[7] = BPF_JMP_A(1);
19777 			insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL);
19778 			cnt = 9;
19779 
19780 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19781 			if (!new_prog)
19782 				return -ENOMEM;
19783 
19784 			delta    += cnt - 1;
19785 			env->prog = prog = new_prog;
19786 			insn      = new_prog->insnsi + i + delta;
19787 			continue;
19788 		}
19789 
19790 		/* Implement bpf_get_func_ret inline. */
19791 		if (prog_type == BPF_PROG_TYPE_TRACING &&
19792 		    insn->imm == BPF_FUNC_get_func_ret) {
19793 			if (eatype == BPF_TRACE_FEXIT ||
19794 			    eatype == BPF_MODIFY_RETURN) {
19795 				/* Load nr_args from ctx - 8 */
19796 				insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
19797 				insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3);
19798 				insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1);
19799 				insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
19800 				insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0);
19801 				insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0);
19802 				cnt = 6;
19803 			} else {
19804 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP);
19805 				cnt = 1;
19806 			}
19807 
19808 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19809 			if (!new_prog)
19810 				return -ENOMEM;
19811 
19812 			delta    += cnt - 1;
19813 			env->prog = prog = new_prog;
19814 			insn      = new_prog->insnsi + i + delta;
19815 			continue;
19816 		}
19817 
19818 		/* Implement get_func_arg_cnt inline. */
19819 		if (prog_type == BPF_PROG_TYPE_TRACING &&
19820 		    insn->imm == BPF_FUNC_get_func_arg_cnt) {
19821 			/* Load nr_args from ctx - 8 */
19822 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
19823 
19824 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
19825 			if (!new_prog)
19826 				return -ENOMEM;
19827 
19828 			env->prog = prog = new_prog;
19829 			insn      = new_prog->insnsi + i + delta;
19830 			continue;
19831 		}
19832 
19833 		/* Implement bpf_get_func_ip inline. */
19834 		if (prog_type == BPF_PROG_TYPE_TRACING &&
19835 		    insn->imm == BPF_FUNC_get_func_ip) {
19836 			/* Load IP address from ctx - 16 */
19837 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16);
19838 
19839 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
19840 			if (!new_prog)
19841 				return -ENOMEM;
19842 
19843 			env->prog = prog = new_prog;
19844 			insn      = new_prog->insnsi + i + delta;
19845 			continue;
19846 		}
19847 
19848 		/* Implement bpf_kptr_xchg inline */
19849 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
19850 		    insn->imm == BPF_FUNC_kptr_xchg &&
19851 		    bpf_jit_supports_ptr_xchg()) {
19852 			insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_2);
19853 			insn_buf[1] = BPF_ATOMIC_OP(BPF_DW, BPF_XCHG, BPF_REG_1, BPF_REG_0, 0);
19854 			cnt = 2;
19855 
19856 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19857 			if (!new_prog)
19858 				return -ENOMEM;
19859 
19860 			delta    += cnt - 1;
19861 			env->prog = prog = new_prog;
19862 			insn      = new_prog->insnsi + i + delta;
19863 			continue;
19864 		}
19865 patch_call_imm:
19866 		fn = env->ops->get_func_proto(insn->imm, env->prog);
19867 		/* all functions that have prototype and verifier allowed
19868 		 * programs to call them, must be real in-kernel functions
19869 		 */
19870 		if (!fn->func) {
19871 			verbose(env,
19872 				"kernel subsystem misconfigured func %s#%d\n",
19873 				func_id_name(insn->imm), insn->imm);
19874 			return -EFAULT;
19875 		}
19876 		insn->imm = fn->func - __bpf_call_base;
19877 	}
19878 
19879 	/* Since poke tab is now finalized, publish aux to tracker. */
19880 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
19881 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
19882 		if (!map_ptr->ops->map_poke_track ||
19883 		    !map_ptr->ops->map_poke_untrack ||
19884 		    !map_ptr->ops->map_poke_run) {
19885 			verbose(env, "bpf verifier is misconfigured\n");
19886 			return -EINVAL;
19887 		}
19888 
19889 		ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
19890 		if (ret < 0) {
19891 			verbose(env, "tracking tail call prog failed\n");
19892 			return ret;
19893 		}
19894 	}
19895 
19896 	sort_kfunc_descs_by_imm_off(env->prog);
19897 
19898 	return 0;
19899 }
19900 
19901 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env,
19902 					int position,
19903 					s32 stack_base,
19904 					u32 callback_subprogno,
19905 					u32 *cnt)
19906 {
19907 	s32 r6_offset = stack_base + 0 * BPF_REG_SIZE;
19908 	s32 r7_offset = stack_base + 1 * BPF_REG_SIZE;
19909 	s32 r8_offset = stack_base + 2 * BPF_REG_SIZE;
19910 	int reg_loop_max = BPF_REG_6;
19911 	int reg_loop_cnt = BPF_REG_7;
19912 	int reg_loop_ctx = BPF_REG_8;
19913 
19914 	struct bpf_prog *new_prog;
19915 	u32 callback_start;
19916 	u32 call_insn_offset;
19917 	s32 callback_offset;
19918 
19919 	/* This represents an inlined version of bpf_iter.c:bpf_loop,
19920 	 * be careful to modify this code in sync.
19921 	 */
19922 	struct bpf_insn insn_buf[] = {
19923 		/* Return error and jump to the end of the patch if
19924 		 * expected number of iterations is too big.
19925 		 */
19926 		BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2),
19927 		BPF_MOV32_IMM(BPF_REG_0, -E2BIG),
19928 		BPF_JMP_IMM(BPF_JA, 0, 0, 16),
19929 		/* spill R6, R7, R8 to use these as loop vars */
19930 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset),
19931 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset),
19932 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset),
19933 		/* initialize loop vars */
19934 		BPF_MOV64_REG(reg_loop_max, BPF_REG_1),
19935 		BPF_MOV32_IMM(reg_loop_cnt, 0),
19936 		BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3),
19937 		/* loop header,
19938 		 * if reg_loop_cnt >= reg_loop_max skip the loop body
19939 		 */
19940 		BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5),
19941 		/* callback call,
19942 		 * correct callback offset would be set after patching
19943 		 */
19944 		BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt),
19945 		BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx),
19946 		BPF_CALL_REL(0),
19947 		/* increment loop counter */
19948 		BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1),
19949 		/* jump to loop header if callback returned 0 */
19950 		BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6),
19951 		/* return value of bpf_loop,
19952 		 * set R0 to the number of iterations
19953 		 */
19954 		BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt),
19955 		/* restore original values of R6, R7, R8 */
19956 		BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset),
19957 		BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset),
19958 		BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset),
19959 	};
19960 
19961 	*cnt = ARRAY_SIZE(insn_buf);
19962 	new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt);
19963 	if (!new_prog)
19964 		return new_prog;
19965 
19966 	/* callback start is known only after patching */
19967 	callback_start = env->subprog_info[callback_subprogno].start;
19968 	/* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */
19969 	call_insn_offset = position + 12;
19970 	callback_offset = callback_start - call_insn_offset - 1;
19971 	new_prog->insnsi[call_insn_offset].imm = callback_offset;
19972 
19973 	return new_prog;
19974 }
19975 
19976 static bool is_bpf_loop_call(struct bpf_insn *insn)
19977 {
19978 	return insn->code == (BPF_JMP | BPF_CALL) &&
19979 		insn->src_reg == 0 &&
19980 		insn->imm == BPF_FUNC_loop;
19981 }
19982 
19983 /* For all sub-programs in the program (including main) check
19984  * insn_aux_data to see if there are bpf_loop calls that require
19985  * inlining. If such calls are found the calls are replaced with a
19986  * sequence of instructions produced by `inline_bpf_loop` function and
19987  * subprog stack_depth is increased by the size of 3 registers.
19988  * This stack space is used to spill values of the R6, R7, R8.  These
19989  * registers are used to store the loop bound, counter and context
19990  * variables.
19991  */
19992 static int optimize_bpf_loop(struct bpf_verifier_env *env)
19993 {
19994 	struct bpf_subprog_info *subprogs = env->subprog_info;
19995 	int i, cur_subprog = 0, cnt, delta = 0;
19996 	struct bpf_insn *insn = env->prog->insnsi;
19997 	int insn_cnt = env->prog->len;
19998 	u16 stack_depth = subprogs[cur_subprog].stack_depth;
19999 	u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
20000 	u16 stack_depth_extra = 0;
20001 
20002 	for (i = 0; i < insn_cnt; i++, insn++) {
20003 		struct bpf_loop_inline_state *inline_state =
20004 			&env->insn_aux_data[i + delta].loop_inline_state;
20005 
20006 		if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) {
20007 			struct bpf_prog *new_prog;
20008 
20009 			stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup;
20010 			new_prog = inline_bpf_loop(env,
20011 						   i + delta,
20012 						   -(stack_depth + stack_depth_extra),
20013 						   inline_state->callback_subprogno,
20014 						   &cnt);
20015 			if (!new_prog)
20016 				return -ENOMEM;
20017 
20018 			delta     += cnt - 1;
20019 			env->prog  = new_prog;
20020 			insn       = new_prog->insnsi + i + delta;
20021 		}
20022 
20023 		if (subprogs[cur_subprog + 1].start == i + delta + 1) {
20024 			subprogs[cur_subprog].stack_depth += stack_depth_extra;
20025 			cur_subprog++;
20026 			stack_depth = subprogs[cur_subprog].stack_depth;
20027 			stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
20028 			stack_depth_extra = 0;
20029 		}
20030 	}
20031 
20032 	env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
20033 
20034 	return 0;
20035 }
20036 
20037 static void free_states(struct bpf_verifier_env *env)
20038 {
20039 	struct bpf_verifier_state_list *sl, *sln;
20040 	int i;
20041 
20042 	sl = env->free_list;
20043 	while (sl) {
20044 		sln = sl->next;
20045 		free_verifier_state(&sl->state, false);
20046 		kfree(sl);
20047 		sl = sln;
20048 	}
20049 	env->free_list = NULL;
20050 
20051 	if (!env->explored_states)
20052 		return;
20053 
20054 	for (i = 0; i < state_htab_size(env); i++) {
20055 		sl = env->explored_states[i];
20056 
20057 		while (sl) {
20058 			sln = sl->next;
20059 			free_verifier_state(&sl->state, false);
20060 			kfree(sl);
20061 			sl = sln;
20062 		}
20063 		env->explored_states[i] = NULL;
20064 	}
20065 }
20066 
20067 static int do_check_common(struct bpf_verifier_env *env, int subprog)
20068 {
20069 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
20070 	struct bpf_subprog_info *sub = subprog_info(env, subprog);
20071 	struct bpf_verifier_state *state;
20072 	struct bpf_reg_state *regs;
20073 	int ret, i;
20074 
20075 	env->prev_linfo = NULL;
20076 	env->pass_cnt++;
20077 
20078 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
20079 	if (!state)
20080 		return -ENOMEM;
20081 	state->curframe = 0;
20082 	state->speculative = false;
20083 	state->branches = 1;
20084 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
20085 	if (!state->frame[0]) {
20086 		kfree(state);
20087 		return -ENOMEM;
20088 	}
20089 	env->cur_state = state;
20090 	init_func_state(env, state->frame[0],
20091 			BPF_MAIN_FUNC /* callsite */,
20092 			0 /* frameno */,
20093 			subprog);
20094 	state->first_insn_idx = env->subprog_info[subprog].start;
20095 	state->last_insn_idx = -1;
20096 
20097 	regs = state->frame[state->curframe]->regs;
20098 	if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
20099 		const char *sub_name = subprog_name(env, subprog);
20100 		struct bpf_subprog_arg_info *arg;
20101 		struct bpf_reg_state *reg;
20102 
20103 		verbose(env, "Validating %s() func#%d...\n", sub_name, subprog);
20104 		ret = btf_prepare_func_args(env, subprog);
20105 		if (ret)
20106 			goto out;
20107 
20108 		if (subprog_is_exc_cb(env, subprog)) {
20109 			state->frame[0]->in_exception_callback_fn = true;
20110 			/* We have already ensured that the callback returns an integer, just
20111 			 * like all global subprogs. We need to determine it only has a single
20112 			 * scalar argument.
20113 			 */
20114 			if (sub->arg_cnt != 1 || sub->args[0].arg_type != ARG_ANYTHING) {
20115 				verbose(env, "exception cb only supports single integer argument\n");
20116 				ret = -EINVAL;
20117 				goto out;
20118 			}
20119 		}
20120 		for (i = BPF_REG_1; i <= sub->arg_cnt; i++) {
20121 			arg = &sub->args[i - BPF_REG_1];
20122 			reg = &regs[i];
20123 
20124 			if (arg->arg_type == ARG_PTR_TO_CTX) {
20125 				reg->type = PTR_TO_CTX;
20126 				mark_reg_known_zero(env, regs, i);
20127 			} else if (arg->arg_type == ARG_ANYTHING) {
20128 				reg->type = SCALAR_VALUE;
20129 				mark_reg_unknown(env, regs, i);
20130 			} else if (arg->arg_type == (ARG_PTR_TO_DYNPTR | MEM_RDONLY)) {
20131 				/* assume unspecial LOCAL dynptr type */
20132 				__mark_dynptr_reg(reg, BPF_DYNPTR_TYPE_LOCAL, true, ++env->id_gen);
20133 			} else if (base_type(arg->arg_type) == ARG_PTR_TO_MEM) {
20134 				reg->type = PTR_TO_MEM;
20135 				if (arg->arg_type & PTR_MAYBE_NULL)
20136 					reg->type |= PTR_MAYBE_NULL;
20137 				mark_reg_known_zero(env, regs, i);
20138 				reg->mem_size = arg->mem_size;
20139 				reg->id = ++env->id_gen;
20140 			} else {
20141 				WARN_ONCE(1, "BUG: unhandled arg#%d type %d\n",
20142 					  i - BPF_REG_1, arg->arg_type);
20143 				ret = -EFAULT;
20144 				goto out;
20145 			}
20146 		}
20147 	} else {
20148 		/* if main BPF program has associated BTF info, validate that
20149 		 * it's matching expected signature, and otherwise mark BTF
20150 		 * info for main program as unreliable
20151 		 */
20152 		if (env->prog->aux->func_info_aux) {
20153 			ret = btf_prepare_func_args(env, 0);
20154 			if (ret || sub->arg_cnt != 1 || sub->args[0].arg_type != ARG_PTR_TO_CTX)
20155 				env->prog->aux->func_info_aux[0].unreliable = true;
20156 		}
20157 
20158 		/* 1st arg to a function */
20159 		regs[BPF_REG_1].type = PTR_TO_CTX;
20160 		mark_reg_known_zero(env, regs, BPF_REG_1);
20161 	}
20162 
20163 	ret = do_check(env);
20164 out:
20165 	/* check for NULL is necessary, since cur_state can be freed inside
20166 	 * do_check() under memory pressure.
20167 	 */
20168 	if (env->cur_state) {
20169 		free_verifier_state(env->cur_state, true);
20170 		env->cur_state = NULL;
20171 	}
20172 	while (!pop_stack(env, NULL, NULL, false));
20173 	if (!ret && pop_log)
20174 		bpf_vlog_reset(&env->log, 0);
20175 	free_states(env);
20176 	return ret;
20177 }
20178 
20179 /* Lazily verify all global functions based on their BTF, if they are called
20180  * from main BPF program or any of subprograms transitively.
20181  * BPF global subprogs called from dead code are not validated.
20182  * All callable global functions must pass verification.
20183  * Otherwise the whole program is rejected.
20184  * Consider:
20185  * int bar(int);
20186  * int foo(int f)
20187  * {
20188  *    return bar(f);
20189  * }
20190  * int bar(int b)
20191  * {
20192  *    ...
20193  * }
20194  * foo() will be verified first for R1=any_scalar_value. During verification it
20195  * will be assumed that bar() already verified successfully and call to bar()
20196  * from foo() will be checked for type match only. Later bar() will be verified
20197  * independently to check that it's safe for R1=any_scalar_value.
20198  */
20199 static int do_check_subprogs(struct bpf_verifier_env *env)
20200 {
20201 	struct bpf_prog_aux *aux = env->prog->aux;
20202 	struct bpf_func_info_aux *sub_aux;
20203 	int i, ret, new_cnt;
20204 
20205 	if (!aux->func_info)
20206 		return 0;
20207 
20208 	/* exception callback is presumed to be always called */
20209 	if (env->exception_callback_subprog)
20210 		subprog_aux(env, env->exception_callback_subprog)->called = true;
20211 
20212 again:
20213 	new_cnt = 0;
20214 	for (i = 1; i < env->subprog_cnt; i++) {
20215 		if (!subprog_is_global(env, i))
20216 			continue;
20217 
20218 		sub_aux = subprog_aux(env, i);
20219 		if (!sub_aux->called || sub_aux->verified)
20220 			continue;
20221 
20222 		env->insn_idx = env->subprog_info[i].start;
20223 		WARN_ON_ONCE(env->insn_idx == 0);
20224 		ret = do_check_common(env, i);
20225 		if (ret) {
20226 			return ret;
20227 		} else if (env->log.level & BPF_LOG_LEVEL) {
20228 			verbose(env, "Func#%d ('%s') is safe for any args that match its prototype\n",
20229 				i, subprog_name(env, i));
20230 		}
20231 
20232 		/* We verified new global subprog, it might have called some
20233 		 * more global subprogs that we haven't verified yet, so we
20234 		 * need to do another pass over subprogs to verify those.
20235 		 */
20236 		sub_aux->verified = true;
20237 		new_cnt++;
20238 	}
20239 
20240 	/* We can't loop forever as we verify at least one global subprog on
20241 	 * each pass.
20242 	 */
20243 	if (new_cnt)
20244 		goto again;
20245 
20246 	return 0;
20247 }
20248 
20249 static int do_check_main(struct bpf_verifier_env *env)
20250 {
20251 	int ret;
20252 
20253 	env->insn_idx = 0;
20254 	ret = do_check_common(env, 0);
20255 	if (!ret)
20256 		env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
20257 	return ret;
20258 }
20259 
20260 
20261 static void print_verification_stats(struct bpf_verifier_env *env)
20262 {
20263 	int i;
20264 
20265 	if (env->log.level & BPF_LOG_STATS) {
20266 		verbose(env, "verification time %lld usec\n",
20267 			div_u64(env->verification_time, 1000));
20268 		verbose(env, "stack depth ");
20269 		for (i = 0; i < env->subprog_cnt; i++) {
20270 			u32 depth = env->subprog_info[i].stack_depth;
20271 
20272 			verbose(env, "%d", depth);
20273 			if (i + 1 < env->subprog_cnt)
20274 				verbose(env, "+");
20275 		}
20276 		verbose(env, "\n");
20277 	}
20278 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
20279 		"total_states %d peak_states %d mark_read %d\n",
20280 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
20281 		env->max_states_per_insn, env->total_states,
20282 		env->peak_states, env->longest_mark_read_walk);
20283 }
20284 
20285 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
20286 {
20287 	const struct btf_type *t, *func_proto;
20288 	const struct bpf_struct_ops_desc *st_ops_desc;
20289 	const struct bpf_struct_ops *st_ops;
20290 	const struct btf_member *member;
20291 	struct bpf_prog *prog = env->prog;
20292 	u32 btf_id, member_idx;
20293 	struct btf *btf;
20294 	const char *mname;
20295 
20296 	if (!prog->gpl_compatible) {
20297 		verbose(env, "struct ops programs must have a GPL compatible license\n");
20298 		return -EINVAL;
20299 	}
20300 
20301 	if (!prog->aux->attach_btf_id)
20302 		return -ENOTSUPP;
20303 
20304 	btf = prog->aux->attach_btf;
20305 	if (btf_is_module(btf)) {
20306 		/* Make sure st_ops is valid through the lifetime of env */
20307 		env->attach_btf_mod = btf_try_get_module(btf);
20308 		if (!env->attach_btf_mod) {
20309 			verbose(env, "struct_ops module %s is not found\n",
20310 				btf_get_name(btf));
20311 			return -ENOTSUPP;
20312 		}
20313 	}
20314 
20315 	btf_id = prog->aux->attach_btf_id;
20316 	st_ops_desc = bpf_struct_ops_find(btf, btf_id);
20317 	if (!st_ops_desc) {
20318 		verbose(env, "attach_btf_id %u is not a supported struct\n",
20319 			btf_id);
20320 		return -ENOTSUPP;
20321 	}
20322 	st_ops = st_ops_desc->st_ops;
20323 
20324 	t = st_ops_desc->type;
20325 	member_idx = prog->expected_attach_type;
20326 	if (member_idx >= btf_type_vlen(t)) {
20327 		verbose(env, "attach to invalid member idx %u of struct %s\n",
20328 			member_idx, st_ops->name);
20329 		return -EINVAL;
20330 	}
20331 
20332 	member = &btf_type_member(t)[member_idx];
20333 	mname = btf_name_by_offset(btf, member->name_off);
20334 	func_proto = btf_type_resolve_func_ptr(btf, member->type,
20335 					       NULL);
20336 	if (!func_proto) {
20337 		verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
20338 			mname, member_idx, st_ops->name);
20339 		return -EINVAL;
20340 	}
20341 
20342 	if (st_ops->check_member) {
20343 		int err = st_ops->check_member(t, member, prog);
20344 
20345 		if (err) {
20346 			verbose(env, "attach to unsupported member %s of struct %s\n",
20347 				mname, st_ops->name);
20348 			return err;
20349 		}
20350 	}
20351 
20352 	prog->aux->attach_func_proto = func_proto;
20353 	prog->aux->attach_func_name = mname;
20354 	env->ops = st_ops->verifier_ops;
20355 
20356 	return 0;
20357 }
20358 #define SECURITY_PREFIX "security_"
20359 
20360 static int check_attach_modify_return(unsigned long addr, const char *func_name)
20361 {
20362 	if (within_error_injection_list(addr) ||
20363 	    !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
20364 		return 0;
20365 
20366 	return -EINVAL;
20367 }
20368 
20369 /* list of non-sleepable functions that are otherwise on
20370  * ALLOW_ERROR_INJECTION list
20371  */
20372 BTF_SET_START(btf_non_sleepable_error_inject)
20373 /* Three functions below can be called from sleepable and non-sleepable context.
20374  * Assume non-sleepable from bpf safety point of view.
20375  */
20376 BTF_ID(func, __filemap_add_folio)
20377 BTF_ID(func, should_fail_alloc_page)
20378 BTF_ID(func, should_failslab)
20379 BTF_SET_END(btf_non_sleepable_error_inject)
20380 
20381 static int check_non_sleepable_error_inject(u32 btf_id)
20382 {
20383 	return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
20384 }
20385 
20386 int bpf_check_attach_target(struct bpf_verifier_log *log,
20387 			    const struct bpf_prog *prog,
20388 			    const struct bpf_prog *tgt_prog,
20389 			    u32 btf_id,
20390 			    struct bpf_attach_target_info *tgt_info)
20391 {
20392 	bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
20393 	bool prog_tracing = prog->type == BPF_PROG_TYPE_TRACING;
20394 	const char prefix[] = "btf_trace_";
20395 	int ret = 0, subprog = -1, i;
20396 	const struct btf_type *t;
20397 	bool conservative = true;
20398 	const char *tname;
20399 	struct btf *btf;
20400 	long addr = 0;
20401 	struct module *mod = NULL;
20402 
20403 	if (!btf_id) {
20404 		bpf_log(log, "Tracing programs must provide btf_id\n");
20405 		return -EINVAL;
20406 	}
20407 	btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
20408 	if (!btf) {
20409 		bpf_log(log,
20410 			"FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
20411 		return -EINVAL;
20412 	}
20413 	t = btf_type_by_id(btf, btf_id);
20414 	if (!t) {
20415 		bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
20416 		return -EINVAL;
20417 	}
20418 	tname = btf_name_by_offset(btf, t->name_off);
20419 	if (!tname) {
20420 		bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
20421 		return -EINVAL;
20422 	}
20423 	if (tgt_prog) {
20424 		struct bpf_prog_aux *aux = tgt_prog->aux;
20425 
20426 		if (bpf_prog_is_dev_bound(prog->aux) &&
20427 		    !bpf_prog_dev_bound_match(prog, tgt_prog)) {
20428 			bpf_log(log, "Target program bound device mismatch");
20429 			return -EINVAL;
20430 		}
20431 
20432 		for (i = 0; i < aux->func_info_cnt; i++)
20433 			if (aux->func_info[i].type_id == btf_id) {
20434 				subprog = i;
20435 				break;
20436 			}
20437 		if (subprog == -1) {
20438 			bpf_log(log, "Subprog %s doesn't exist\n", tname);
20439 			return -EINVAL;
20440 		}
20441 		if (aux->func && aux->func[subprog]->aux->exception_cb) {
20442 			bpf_log(log,
20443 				"%s programs cannot attach to exception callback\n",
20444 				prog_extension ? "Extension" : "FENTRY/FEXIT");
20445 			return -EINVAL;
20446 		}
20447 		conservative = aux->func_info_aux[subprog].unreliable;
20448 		if (prog_extension) {
20449 			if (conservative) {
20450 				bpf_log(log,
20451 					"Cannot replace static functions\n");
20452 				return -EINVAL;
20453 			}
20454 			if (!prog->jit_requested) {
20455 				bpf_log(log,
20456 					"Extension programs should be JITed\n");
20457 				return -EINVAL;
20458 			}
20459 		}
20460 		if (!tgt_prog->jited) {
20461 			bpf_log(log, "Can attach to only JITed progs\n");
20462 			return -EINVAL;
20463 		}
20464 		if (prog_tracing) {
20465 			if (aux->attach_tracing_prog) {
20466 				/*
20467 				 * Target program is an fentry/fexit which is already attached
20468 				 * to another tracing program. More levels of nesting
20469 				 * attachment are not allowed.
20470 				 */
20471 				bpf_log(log, "Cannot nest tracing program attach more than once\n");
20472 				return -EINVAL;
20473 			}
20474 		} else if (tgt_prog->type == prog->type) {
20475 			/*
20476 			 * To avoid potential call chain cycles, prevent attaching of a
20477 			 * program extension to another extension. It's ok to attach
20478 			 * fentry/fexit to extension program.
20479 			 */
20480 			bpf_log(log, "Cannot recursively attach\n");
20481 			return -EINVAL;
20482 		}
20483 		if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
20484 		    prog_extension &&
20485 		    (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
20486 		     tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
20487 			/* Program extensions can extend all program types
20488 			 * except fentry/fexit. The reason is the following.
20489 			 * The fentry/fexit programs are used for performance
20490 			 * analysis, stats and can be attached to any program
20491 			 * type. When extension program is replacing XDP function
20492 			 * it is necessary to allow performance analysis of all
20493 			 * functions. Both original XDP program and its program
20494 			 * extension. Hence attaching fentry/fexit to
20495 			 * BPF_PROG_TYPE_EXT is allowed. If extending of
20496 			 * fentry/fexit was allowed it would be possible to create
20497 			 * long call chain fentry->extension->fentry->extension
20498 			 * beyond reasonable stack size. Hence extending fentry
20499 			 * is not allowed.
20500 			 */
20501 			bpf_log(log, "Cannot extend fentry/fexit\n");
20502 			return -EINVAL;
20503 		}
20504 	} else {
20505 		if (prog_extension) {
20506 			bpf_log(log, "Cannot replace kernel functions\n");
20507 			return -EINVAL;
20508 		}
20509 	}
20510 
20511 	switch (prog->expected_attach_type) {
20512 	case BPF_TRACE_RAW_TP:
20513 		if (tgt_prog) {
20514 			bpf_log(log,
20515 				"Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
20516 			return -EINVAL;
20517 		}
20518 		if (!btf_type_is_typedef(t)) {
20519 			bpf_log(log, "attach_btf_id %u is not a typedef\n",
20520 				btf_id);
20521 			return -EINVAL;
20522 		}
20523 		if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
20524 			bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
20525 				btf_id, tname);
20526 			return -EINVAL;
20527 		}
20528 		tname += sizeof(prefix) - 1;
20529 		t = btf_type_by_id(btf, t->type);
20530 		if (!btf_type_is_ptr(t))
20531 			/* should never happen in valid vmlinux build */
20532 			return -EINVAL;
20533 		t = btf_type_by_id(btf, t->type);
20534 		if (!btf_type_is_func_proto(t))
20535 			/* should never happen in valid vmlinux build */
20536 			return -EINVAL;
20537 
20538 		break;
20539 	case BPF_TRACE_ITER:
20540 		if (!btf_type_is_func(t)) {
20541 			bpf_log(log, "attach_btf_id %u is not a function\n",
20542 				btf_id);
20543 			return -EINVAL;
20544 		}
20545 		t = btf_type_by_id(btf, t->type);
20546 		if (!btf_type_is_func_proto(t))
20547 			return -EINVAL;
20548 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
20549 		if (ret)
20550 			return ret;
20551 		break;
20552 	default:
20553 		if (!prog_extension)
20554 			return -EINVAL;
20555 		fallthrough;
20556 	case BPF_MODIFY_RETURN:
20557 	case BPF_LSM_MAC:
20558 	case BPF_LSM_CGROUP:
20559 	case BPF_TRACE_FENTRY:
20560 	case BPF_TRACE_FEXIT:
20561 		if (!btf_type_is_func(t)) {
20562 			bpf_log(log, "attach_btf_id %u is not a function\n",
20563 				btf_id);
20564 			return -EINVAL;
20565 		}
20566 		if (prog_extension &&
20567 		    btf_check_type_match(log, prog, btf, t))
20568 			return -EINVAL;
20569 		t = btf_type_by_id(btf, t->type);
20570 		if (!btf_type_is_func_proto(t))
20571 			return -EINVAL;
20572 
20573 		if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
20574 		    (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
20575 		     prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
20576 			return -EINVAL;
20577 
20578 		if (tgt_prog && conservative)
20579 			t = NULL;
20580 
20581 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
20582 		if (ret < 0)
20583 			return ret;
20584 
20585 		if (tgt_prog) {
20586 			if (subprog == 0)
20587 				addr = (long) tgt_prog->bpf_func;
20588 			else
20589 				addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
20590 		} else {
20591 			if (btf_is_module(btf)) {
20592 				mod = btf_try_get_module(btf);
20593 				if (mod)
20594 					addr = find_kallsyms_symbol_value(mod, tname);
20595 				else
20596 					addr = 0;
20597 			} else {
20598 				addr = kallsyms_lookup_name(tname);
20599 			}
20600 			if (!addr) {
20601 				module_put(mod);
20602 				bpf_log(log,
20603 					"The address of function %s cannot be found\n",
20604 					tname);
20605 				return -ENOENT;
20606 			}
20607 		}
20608 
20609 		if (prog->aux->sleepable) {
20610 			ret = -EINVAL;
20611 			switch (prog->type) {
20612 			case BPF_PROG_TYPE_TRACING:
20613 
20614 				/* fentry/fexit/fmod_ret progs can be sleepable if they are
20615 				 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
20616 				 */
20617 				if (!check_non_sleepable_error_inject(btf_id) &&
20618 				    within_error_injection_list(addr))
20619 					ret = 0;
20620 				/* fentry/fexit/fmod_ret progs can also be sleepable if they are
20621 				 * in the fmodret id set with the KF_SLEEPABLE flag.
20622 				 */
20623 				else {
20624 					u32 *flags = btf_kfunc_is_modify_return(btf, btf_id,
20625 										prog);
20626 
20627 					if (flags && (*flags & KF_SLEEPABLE))
20628 						ret = 0;
20629 				}
20630 				break;
20631 			case BPF_PROG_TYPE_LSM:
20632 				/* LSM progs check that they are attached to bpf_lsm_*() funcs.
20633 				 * Only some of them are sleepable.
20634 				 */
20635 				if (bpf_lsm_is_sleepable_hook(btf_id))
20636 					ret = 0;
20637 				break;
20638 			default:
20639 				break;
20640 			}
20641 			if (ret) {
20642 				module_put(mod);
20643 				bpf_log(log, "%s is not sleepable\n", tname);
20644 				return ret;
20645 			}
20646 		} else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
20647 			if (tgt_prog) {
20648 				module_put(mod);
20649 				bpf_log(log, "can't modify return codes of BPF programs\n");
20650 				return -EINVAL;
20651 			}
20652 			ret = -EINVAL;
20653 			if (btf_kfunc_is_modify_return(btf, btf_id, prog) ||
20654 			    !check_attach_modify_return(addr, tname))
20655 				ret = 0;
20656 			if (ret) {
20657 				module_put(mod);
20658 				bpf_log(log, "%s() is not modifiable\n", tname);
20659 				return ret;
20660 			}
20661 		}
20662 
20663 		break;
20664 	}
20665 	tgt_info->tgt_addr = addr;
20666 	tgt_info->tgt_name = tname;
20667 	tgt_info->tgt_type = t;
20668 	tgt_info->tgt_mod = mod;
20669 	return 0;
20670 }
20671 
20672 BTF_SET_START(btf_id_deny)
20673 BTF_ID_UNUSED
20674 #ifdef CONFIG_SMP
20675 BTF_ID(func, migrate_disable)
20676 BTF_ID(func, migrate_enable)
20677 #endif
20678 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
20679 BTF_ID(func, rcu_read_unlock_strict)
20680 #endif
20681 #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE)
20682 BTF_ID(func, preempt_count_add)
20683 BTF_ID(func, preempt_count_sub)
20684 #endif
20685 #ifdef CONFIG_PREEMPT_RCU
20686 BTF_ID(func, __rcu_read_lock)
20687 BTF_ID(func, __rcu_read_unlock)
20688 #endif
20689 BTF_SET_END(btf_id_deny)
20690 
20691 static bool can_be_sleepable(struct bpf_prog *prog)
20692 {
20693 	if (prog->type == BPF_PROG_TYPE_TRACING) {
20694 		switch (prog->expected_attach_type) {
20695 		case BPF_TRACE_FENTRY:
20696 		case BPF_TRACE_FEXIT:
20697 		case BPF_MODIFY_RETURN:
20698 		case BPF_TRACE_ITER:
20699 			return true;
20700 		default:
20701 			return false;
20702 		}
20703 	}
20704 	return prog->type == BPF_PROG_TYPE_LSM ||
20705 	       prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ ||
20706 	       prog->type == BPF_PROG_TYPE_STRUCT_OPS;
20707 }
20708 
20709 static int check_attach_btf_id(struct bpf_verifier_env *env)
20710 {
20711 	struct bpf_prog *prog = env->prog;
20712 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
20713 	struct bpf_attach_target_info tgt_info = {};
20714 	u32 btf_id = prog->aux->attach_btf_id;
20715 	struct bpf_trampoline *tr;
20716 	int ret;
20717 	u64 key;
20718 
20719 	if (prog->type == BPF_PROG_TYPE_SYSCALL) {
20720 		if (prog->aux->sleepable)
20721 			/* attach_btf_id checked to be zero already */
20722 			return 0;
20723 		verbose(env, "Syscall programs can only be sleepable\n");
20724 		return -EINVAL;
20725 	}
20726 
20727 	if (prog->aux->sleepable && !can_be_sleepable(prog)) {
20728 		verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n");
20729 		return -EINVAL;
20730 	}
20731 
20732 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
20733 		return check_struct_ops_btf_id(env);
20734 
20735 	if (prog->type != BPF_PROG_TYPE_TRACING &&
20736 	    prog->type != BPF_PROG_TYPE_LSM &&
20737 	    prog->type != BPF_PROG_TYPE_EXT)
20738 		return 0;
20739 
20740 	ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
20741 	if (ret)
20742 		return ret;
20743 
20744 	if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
20745 		/* to make freplace equivalent to their targets, they need to
20746 		 * inherit env->ops and expected_attach_type for the rest of the
20747 		 * verification
20748 		 */
20749 		env->ops = bpf_verifier_ops[tgt_prog->type];
20750 		prog->expected_attach_type = tgt_prog->expected_attach_type;
20751 	}
20752 
20753 	/* store info about the attachment target that will be used later */
20754 	prog->aux->attach_func_proto = tgt_info.tgt_type;
20755 	prog->aux->attach_func_name = tgt_info.tgt_name;
20756 	prog->aux->mod = tgt_info.tgt_mod;
20757 
20758 	if (tgt_prog) {
20759 		prog->aux->saved_dst_prog_type = tgt_prog->type;
20760 		prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
20761 	}
20762 
20763 	if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
20764 		prog->aux->attach_btf_trace = true;
20765 		return 0;
20766 	} else if (prog->expected_attach_type == BPF_TRACE_ITER) {
20767 		if (!bpf_iter_prog_supported(prog))
20768 			return -EINVAL;
20769 		return 0;
20770 	}
20771 
20772 	if (prog->type == BPF_PROG_TYPE_LSM) {
20773 		ret = bpf_lsm_verify_prog(&env->log, prog);
20774 		if (ret < 0)
20775 			return ret;
20776 	} else if (prog->type == BPF_PROG_TYPE_TRACING &&
20777 		   btf_id_set_contains(&btf_id_deny, btf_id)) {
20778 		return -EINVAL;
20779 	}
20780 
20781 	key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
20782 	tr = bpf_trampoline_get(key, &tgt_info);
20783 	if (!tr)
20784 		return -ENOMEM;
20785 
20786 	if (tgt_prog && tgt_prog->aux->tail_call_reachable)
20787 		tr->flags = BPF_TRAMP_F_TAIL_CALL_CTX;
20788 
20789 	prog->aux->dst_trampoline = tr;
20790 	return 0;
20791 }
20792 
20793 struct btf *bpf_get_btf_vmlinux(void)
20794 {
20795 	if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
20796 		mutex_lock(&bpf_verifier_lock);
20797 		if (!btf_vmlinux)
20798 			btf_vmlinux = btf_parse_vmlinux();
20799 		mutex_unlock(&bpf_verifier_lock);
20800 	}
20801 	return btf_vmlinux;
20802 }
20803 
20804 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size)
20805 {
20806 	u64 start_time = ktime_get_ns();
20807 	struct bpf_verifier_env *env;
20808 	int i, len, ret = -EINVAL, err;
20809 	u32 log_true_size;
20810 	bool is_priv;
20811 
20812 	/* no program is valid */
20813 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
20814 		return -EINVAL;
20815 
20816 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
20817 	 * allocate/free it every time bpf_check() is called
20818 	 */
20819 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
20820 	if (!env)
20821 		return -ENOMEM;
20822 
20823 	env->bt.env = env;
20824 
20825 	len = (*prog)->len;
20826 	env->insn_aux_data =
20827 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
20828 	ret = -ENOMEM;
20829 	if (!env->insn_aux_data)
20830 		goto err_free_env;
20831 	for (i = 0; i < len; i++)
20832 		env->insn_aux_data[i].orig_idx = i;
20833 	env->prog = *prog;
20834 	env->ops = bpf_verifier_ops[env->prog->type];
20835 	env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
20836 
20837 	env->allow_ptr_leaks = bpf_allow_ptr_leaks(env->prog->aux->token);
20838 	env->allow_uninit_stack = bpf_allow_uninit_stack(env->prog->aux->token);
20839 	env->bypass_spec_v1 = bpf_bypass_spec_v1(env->prog->aux->token);
20840 	env->bypass_spec_v4 = bpf_bypass_spec_v4(env->prog->aux->token);
20841 	env->bpf_capable = is_priv = bpf_token_capable(env->prog->aux->token, CAP_BPF);
20842 
20843 	bpf_get_btf_vmlinux();
20844 
20845 	/* grab the mutex to protect few globals used by verifier */
20846 	if (!is_priv)
20847 		mutex_lock(&bpf_verifier_lock);
20848 
20849 	/* user could have requested verbose verifier output
20850 	 * and supplied buffer to store the verification trace
20851 	 */
20852 	ret = bpf_vlog_init(&env->log, attr->log_level,
20853 			    (char __user *) (unsigned long) attr->log_buf,
20854 			    attr->log_size);
20855 	if (ret)
20856 		goto err_unlock;
20857 
20858 	mark_verifier_state_clean(env);
20859 
20860 	if (IS_ERR(btf_vmlinux)) {
20861 		/* Either gcc or pahole or kernel are broken. */
20862 		verbose(env, "in-kernel BTF is malformed\n");
20863 		ret = PTR_ERR(btf_vmlinux);
20864 		goto skip_full_check;
20865 	}
20866 
20867 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
20868 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
20869 		env->strict_alignment = true;
20870 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
20871 		env->strict_alignment = false;
20872 
20873 	if (is_priv)
20874 		env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
20875 	env->test_reg_invariants = attr->prog_flags & BPF_F_TEST_REG_INVARIANTS;
20876 
20877 	env->explored_states = kvcalloc(state_htab_size(env),
20878 				       sizeof(struct bpf_verifier_state_list *),
20879 				       GFP_USER);
20880 	ret = -ENOMEM;
20881 	if (!env->explored_states)
20882 		goto skip_full_check;
20883 
20884 	ret = check_btf_info_early(env, attr, uattr);
20885 	if (ret < 0)
20886 		goto skip_full_check;
20887 
20888 	ret = add_subprog_and_kfunc(env);
20889 	if (ret < 0)
20890 		goto skip_full_check;
20891 
20892 	ret = check_subprogs(env);
20893 	if (ret < 0)
20894 		goto skip_full_check;
20895 
20896 	ret = check_btf_info(env, attr, uattr);
20897 	if (ret < 0)
20898 		goto skip_full_check;
20899 
20900 	ret = check_attach_btf_id(env);
20901 	if (ret)
20902 		goto skip_full_check;
20903 
20904 	ret = resolve_pseudo_ldimm64(env);
20905 	if (ret < 0)
20906 		goto skip_full_check;
20907 
20908 	if (bpf_prog_is_offloaded(env->prog->aux)) {
20909 		ret = bpf_prog_offload_verifier_prep(env->prog);
20910 		if (ret)
20911 			goto skip_full_check;
20912 	}
20913 
20914 	ret = check_cfg(env);
20915 	if (ret < 0)
20916 		goto skip_full_check;
20917 
20918 	ret = do_check_main(env);
20919 	ret = ret ?: do_check_subprogs(env);
20920 
20921 	if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux))
20922 		ret = bpf_prog_offload_finalize(env);
20923 
20924 skip_full_check:
20925 	kvfree(env->explored_states);
20926 
20927 	if (ret == 0)
20928 		ret = check_max_stack_depth(env);
20929 
20930 	/* instruction rewrites happen after this point */
20931 	if (ret == 0)
20932 		ret = optimize_bpf_loop(env);
20933 
20934 	if (is_priv) {
20935 		if (ret == 0)
20936 			opt_hard_wire_dead_code_branches(env);
20937 		if (ret == 0)
20938 			ret = opt_remove_dead_code(env);
20939 		if (ret == 0)
20940 			ret = opt_remove_nops(env);
20941 	} else {
20942 		if (ret == 0)
20943 			sanitize_dead_code(env);
20944 	}
20945 
20946 	if (ret == 0)
20947 		/* program is valid, convert *(u32*)(ctx + off) accesses */
20948 		ret = convert_ctx_accesses(env);
20949 
20950 	if (ret == 0)
20951 		ret = do_misc_fixups(env);
20952 
20953 	/* do 32-bit optimization after insn patching has done so those patched
20954 	 * insns could be handled correctly.
20955 	 */
20956 	if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) {
20957 		ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
20958 		env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
20959 								     : false;
20960 	}
20961 
20962 	if (ret == 0)
20963 		ret = fixup_call_args(env);
20964 
20965 	env->verification_time = ktime_get_ns() - start_time;
20966 	print_verification_stats(env);
20967 	env->prog->aux->verified_insns = env->insn_processed;
20968 
20969 	/* preserve original error even if log finalization is successful */
20970 	err = bpf_vlog_finalize(&env->log, &log_true_size);
20971 	if (err)
20972 		ret = err;
20973 
20974 	if (uattr_size >= offsetofend(union bpf_attr, log_true_size) &&
20975 	    copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, log_true_size),
20976 				  &log_true_size, sizeof(log_true_size))) {
20977 		ret = -EFAULT;
20978 		goto err_release_maps;
20979 	}
20980 
20981 	if (ret)
20982 		goto err_release_maps;
20983 
20984 	if (env->used_map_cnt) {
20985 		/* if program passed verifier, update used_maps in bpf_prog_info */
20986 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
20987 							  sizeof(env->used_maps[0]),
20988 							  GFP_KERNEL);
20989 
20990 		if (!env->prog->aux->used_maps) {
20991 			ret = -ENOMEM;
20992 			goto err_release_maps;
20993 		}
20994 
20995 		memcpy(env->prog->aux->used_maps, env->used_maps,
20996 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
20997 		env->prog->aux->used_map_cnt = env->used_map_cnt;
20998 	}
20999 	if (env->used_btf_cnt) {
21000 		/* if program passed verifier, update used_btfs in bpf_prog_aux */
21001 		env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
21002 							  sizeof(env->used_btfs[0]),
21003 							  GFP_KERNEL);
21004 		if (!env->prog->aux->used_btfs) {
21005 			ret = -ENOMEM;
21006 			goto err_release_maps;
21007 		}
21008 
21009 		memcpy(env->prog->aux->used_btfs, env->used_btfs,
21010 		       sizeof(env->used_btfs[0]) * env->used_btf_cnt);
21011 		env->prog->aux->used_btf_cnt = env->used_btf_cnt;
21012 	}
21013 	if (env->used_map_cnt || env->used_btf_cnt) {
21014 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
21015 		 * bpf_ld_imm64 instructions
21016 		 */
21017 		convert_pseudo_ld_imm64(env);
21018 	}
21019 
21020 	adjust_btf_func(env);
21021 
21022 err_release_maps:
21023 	if (!env->prog->aux->used_maps)
21024 		/* if we didn't copy map pointers into bpf_prog_info, release
21025 		 * them now. Otherwise free_used_maps() will release them.
21026 		 */
21027 		release_maps(env);
21028 	if (!env->prog->aux->used_btfs)
21029 		release_btfs(env);
21030 
21031 	/* extension progs temporarily inherit the attach_type of their targets
21032 	   for verification purposes, so set it back to zero before returning
21033 	 */
21034 	if (env->prog->type == BPF_PROG_TYPE_EXT)
21035 		env->prog->expected_attach_type = 0;
21036 
21037 	*prog = env->prog;
21038 
21039 	module_put(env->attach_btf_mod);
21040 err_unlock:
21041 	if (!is_priv)
21042 		mutex_unlock(&bpf_verifier_lock);
21043 	vfree(env->insn_aux_data);
21044 err_free_env:
21045 	kfree(env);
21046 	return ret;
21047 }
21048