xref: /linux/kernel/bpf/verifier.c (revision 0ddd7eaffa644baa78e247bbd220ab7195b1eed6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5  */
6 #include <uapi/linux/btf.h>
7 #include <linux/kernel.h>
8 #include <linux/types.h>
9 #include <linux/slab.h>
10 #include <linux/bpf.h>
11 #include <linux/btf.h>
12 #include <linux/bpf_verifier.h>
13 #include <linux/filter.h>
14 #include <net/netlink.h>
15 #include <linux/file.h>
16 #include <linux/vmalloc.h>
17 #include <linux/stringify.h>
18 #include <linux/bsearch.h>
19 #include <linux/sort.h>
20 #include <linux/perf_event.h>
21 #include <linux/ctype.h>
22 #include <linux/error-injection.h>
23 #include <linux/bpf_lsm.h>
24 #include <linux/btf_ids.h>
25 
26 #include "disasm.h"
27 
28 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
29 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
30 	[_id] = & _name ## _verifier_ops,
31 #define BPF_MAP_TYPE(_id, _ops)
32 #define BPF_LINK_TYPE(_id, _name)
33 #include <linux/bpf_types.h>
34 #undef BPF_PROG_TYPE
35 #undef BPF_MAP_TYPE
36 #undef BPF_LINK_TYPE
37 };
38 
39 /* bpf_check() is a static code analyzer that walks eBPF program
40  * instruction by instruction and updates register/stack state.
41  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
42  *
43  * The first pass is depth-first-search to check that the program is a DAG.
44  * It rejects the following programs:
45  * - larger than BPF_MAXINSNS insns
46  * - if loop is present (detected via back-edge)
47  * - unreachable insns exist (shouldn't be a forest. program = one function)
48  * - out of bounds or malformed jumps
49  * The second pass is all possible path descent from the 1st insn.
50  * Since it's analyzing all pathes through the program, the length of the
51  * analysis is limited to 64k insn, which may be hit even if total number of
52  * insn is less then 4K, but there are too many branches that change stack/regs.
53  * Number of 'branches to be analyzed' is limited to 1k
54  *
55  * On entry to each instruction, each register has a type, and the instruction
56  * changes the types of the registers depending on instruction semantics.
57  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
58  * copied to R1.
59  *
60  * All registers are 64-bit.
61  * R0 - return register
62  * R1-R5 argument passing registers
63  * R6-R9 callee saved registers
64  * R10 - frame pointer read-only
65  *
66  * At the start of BPF program the register R1 contains a pointer to bpf_context
67  * and has type PTR_TO_CTX.
68  *
69  * Verifier tracks arithmetic operations on pointers in case:
70  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
71  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
72  * 1st insn copies R10 (which has FRAME_PTR) type into R1
73  * and 2nd arithmetic instruction is pattern matched to recognize
74  * that it wants to construct a pointer to some element within stack.
75  * So after 2nd insn, the register R1 has type PTR_TO_STACK
76  * (and -20 constant is saved for further stack bounds checking).
77  * Meaning that this reg is a pointer to stack plus known immediate constant.
78  *
79  * Most of the time the registers have SCALAR_VALUE type, which
80  * means the register has some value, but it's not a valid pointer.
81  * (like pointer plus pointer becomes SCALAR_VALUE type)
82  *
83  * When verifier sees load or store instructions the type of base register
84  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
85  * four pointer types recognized by check_mem_access() function.
86  *
87  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
88  * and the range of [ptr, ptr + map's value_size) is accessible.
89  *
90  * registers used to pass values to function calls are checked against
91  * function argument constraints.
92  *
93  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
94  * It means that the register type passed to this function must be
95  * PTR_TO_STACK and it will be used inside the function as
96  * 'pointer to map element key'
97  *
98  * For example the argument constraints for bpf_map_lookup_elem():
99  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
100  *   .arg1_type = ARG_CONST_MAP_PTR,
101  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
102  *
103  * ret_type says that this function returns 'pointer to map elem value or null'
104  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
105  * 2nd argument should be a pointer to stack, which will be used inside
106  * the helper function as a pointer to map element key.
107  *
108  * On the kernel side the helper function looks like:
109  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
110  * {
111  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
112  *    void *key = (void *) (unsigned long) r2;
113  *    void *value;
114  *
115  *    here kernel can access 'key' and 'map' pointers safely, knowing that
116  *    [key, key + map->key_size) bytes are valid and were initialized on
117  *    the stack of eBPF program.
118  * }
119  *
120  * Corresponding eBPF program may look like:
121  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
122  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
123  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
124  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
125  * here verifier looks at prototype of map_lookup_elem() and sees:
126  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
127  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
128  *
129  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
130  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
131  * and were initialized prior to this call.
132  * If it's ok, then verifier allows this BPF_CALL insn and looks at
133  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
134  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
135  * returns ether pointer to map value or NULL.
136  *
137  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
138  * insn, the register holding that pointer in the true branch changes state to
139  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
140  * branch. See check_cond_jmp_op().
141  *
142  * After the call R0 is set to return type of the function and registers R1-R5
143  * are set to NOT_INIT to indicate that they are no longer readable.
144  *
145  * The following reference types represent a potential reference to a kernel
146  * resource which, after first being allocated, must be checked and freed by
147  * the BPF program:
148  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
149  *
150  * When the verifier sees a helper call return a reference type, it allocates a
151  * pointer id for the reference and stores it in the current function state.
152  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
153  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
154  * passes through a NULL-check conditional. For the branch wherein the state is
155  * changed to CONST_IMM, the verifier releases the reference.
156  *
157  * For each helper function that allocates a reference, such as
158  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
159  * bpf_sk_release(). When a reference type passes into the release function,
160  * the verifier also releases the reference. If any unchecked or unreleased
161  * reference remains at the end of the program, the verifier rejects it.
162  */
163 
164 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
165 struct bpf_verifier_stack_elem {
166 	/* verifer state is 'st'
167 	 * before processing instruction 'insn_idx'
168 	 * and after processing instruction 'prev_insn_idx'
169 	 */
170 	struct bpf_verifier_state st;
171 	int insn_idx;
172 	int prev_insn_idx;
173 	struct bpf_verifier_stack_elem *next;
174 	/* length of verifier log at the time this state was pushed on stack */
175 	u32 log_pos;
176 };
177 
178 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ	8192
179 #define BPF_COMPLEXITY_LIMIT_STATES	64
180 
181 #define BPF_MAP_KEY_POISON	(1ULL << 63)
182 #define BPF_MAP_KEY_SEEN	(1ULL << 62)
183 
184 #define BPF_MAP_PTR_UNPRIV	1UL
185 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
186 					  POISON_POINTER_DELTA))
187 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
188 
189 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
190 {
191 	return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
192 }
193 
194 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
195 {
196 	return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
197 }
198 
199 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
200 			      const struct bpf_map *map, bool unpriv)
201 {
202 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
203 	unpriv |= bpf_map_ptr_unpriv(aux);
204 	aux->map_ptr_state = (unsigned long)map |
205 			     (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
206 }
207 
208 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
209 {
210 	return aux->map_key_state & BPF_MAP_KEY_POISON;
211 }
212 
213 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
214 {
215 	return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
216 }
217 
218 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
219 {
220 	return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
221 }
222 
223 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
224 {
225 	bool poisoned = bpf_map_key_poisoned(aux);
226 
227 	aux->map_key_state = state | BPF_MAP_KEY_SEEN |
228 			     (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
229 }
230 
231 static bool bpf_pseudo_call(const struct bpf_insn *insn)
232 {
233 	return insn->code == (BPF_JMP | BPF_CALL) &&
234 	       insn->src_reg == BPF_PSEUDO_CALL;
235 }
236 
237 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
238 {
239 	return insn->code == (BPF_JMP | BPF_CALL) &&
240 	       insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
241 }
242 
243 static bool bpf_pseudo_func(const struct bpf_insn *insn)
244 {
245 	return insn->code == (BPF_LD | BPF_IMM | BPF_DW) &&
246 	       insn->src_reg == BPF_PSEUDO_FUNC;
247 }
248 
249 struct bpf_call_arg_meta {
250 	struct bpf_map *map_ptr;
251 	bool raw_mode;
252 	bool pkt_access;
253 	int regno;
254 	int access_size;
255 	int mem_size;
256 	u64 msize_max_value;
257 	int ref_obj_id;
258 	int func_id;
259 	struct btf *btf;
260 	u32 btf_id;
261 	struct btf *ret_btf;
262 	u32 ret_btf_id;
263 	u32 subprogno;
264 };
265 
266 struct btf *btf_vmlinux;
267 
268 static DEFINE_MUTEX(bpf_verifier_lock);
269 
270 static const struct bpf_line_info *
271 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
272 {
273 	const struct bpf_line_info *linfo;
274 	const struct bpf_prog *prog;
275 	u32 i, nr_linfo;
276 
277 	prog = env->prog;
278 	nr_linfo = prog->aux->nr_linfo;
279 
280 	if (!nr_linfo || insn_off >= prog->len)
281 		return NULL;
282 
283 	linfo = prog->aux->linfo;
284 	for (i = 1; i < nr_linfo; i++)
285 		if (insn_off < linfo[i].insn_off)
286 			break;
287 
288 	return &linfo[i - 1];
289 }
290 
291 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
292 		       va_list args)
293 {
294 	unsigned int n;
295 
296 	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
297 
298 	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
299 		  "verifier log line truncated - local buffer too short\n");
300 
301 	n = min(log->len_total - log->len_used - 1, n);
302 	log->kbuf[n] = '\0';
303 
304 	if (log->level == BPF_LOG_KERNEL) {
305 		pr_err("BPF:%s\n", log->kbuf);
306 		return;
307 	}
308 	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
309 		log->len_used += n;
310 	else
311 		log->ubuf = NULL;
312 }
313 
314 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
315 {
316 	char zero = 0;
317 
318 	if (!bpf_verifier_log_needed(log))
319 		return;
320 
321 	log->len_used = new_pos;
322 	if (put_user(zero, log->ubuf + new_pos))
323 		log->ubuf = NULL;
324 }
325 
326 /* log_level controls verbosity level of eBPF verifier.
327  * bpf_verifier_log_write() is used to dump the verification trace to the log,
328  * so the user can figure out what's wrong with the program
329  */
330 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
331 					   const char *fmt, ...)
332 {
333 	va_list args;
334 
335 	if (!bpf_verifier_log_needed(&env->log))
336 		return;
337 
338 	va_start(args, fmt);
339 	bpf_verifier_vlog(&env->log, fmt, args);
340 	va_end(args);
341 }
342 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
343 
344 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
345 {
346 	struct bpf_verifier_env *env = private_data;
347 	va_list args;
348 
349 	if (!bpf_verifier_log_needed(&env->log))
350 		return;
351 
352 	va_start(args, fmt);
353 	bpf_verifier_vlog(&env->log, fmt, args);
354 	va_end(args);
355 }
356 
357 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
358 			    const char *fmt, ...)
359 {
360 	va_list args;
361 
362 	if (!bpf_verifier_log_needed(log))
363 		return;
364 
365 	va_start(args, fmt);
366 	bpf_verifier_vlog(log, fmt, args);
367 	va_end(args);
368 }
369 
370 static const char *ltrim(const char *s)
371 {
372 	while (isspace(*s))
373 		s++;
374 
375 	return s;
376 }
377 
378 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
379 					 u32 insn_off,
380 					 const char *prefix_fmt, ...)
381 {
382 	const struct bpf_line_info *linfo;
383 
384 	if (!bpf_verifier_log_needed(&env->log))
385 		return;
386 
387 	linfo = find_linfo(env, insn_off);
388 	if (!linfo || linfo == env->prev_linfo)
389 		return;
390 
391 	if (prefix_fmt) {
392 		va_list args;
393 
394 		va_start(args, prefix_fmt);
395 		bpf_verifier_vlog(&env->log, prefix_fmt, args);
396 		va_end(args);
397 	}
398 
399 	verbose(env, "%s\n",
400 		ltrim(btf_name_by_offset(env->prog->aux->btf,
401 					 linfo->line_off)));
402 
403 	env->prev_linfo = linfo;
404 }
405 
406 static void verbose_invalid_scalar(struct bpf_verifier_env *env,
407 				   struct bpf_reg_state *reg,
408 				   struct tnum *range, const char *ctx,
409 				   const char *reg_name)
410 {
411 	char tn_buf[48];
412 
413 	verbose(env, "At %s the register %s ", ctx, reg_name);
414 	if (!tnum_is_unknown(reg->var_off)) {
415 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
416 		verbose(env, "has value %s", tn_buf);
417 	} else {
418 		verbose(env, "has unknown scalar value");
419 	}
420 	tnum_strn(tn_buf, sizeof(tn_buf), *range);
421 	verbose(env, " should have been in %s\n", tn_buf);
422 }
423 
424 static bool type_is_pkt_pointer(enum bpf_reg_type type)
425 {
426 	return type == PTR_TO_PACKET ||
427 	       type == PTR_TO_PACKET_META;
428 }
429 
430 static bool type_is_sk_pointer(enum bpf_reg_type type)
431 {
432 	return type == PTR_TO_SOCKET ||
433 		type == PTR_TO_SOCK_COMMON ||
434 		type == PTR_TO_TCP_SOCK ||
435 		type == PTR_TO_XDP_SOCK;
436 }
437 
438 static bool reg_type_not_null(enum bpf_reg_type type)
439 {
440 	return type == PTR_TO_SOCKET ||
441 		type == PTR_TO_TCP_SOCK ||
442 		type == PTR_TO_MAP_VALUE ||
443 		type == PTR_TO_MAP_KEY ||
444 		type == PTR_TO_SOCK_COMMON;
445 }
446 
447 static bool reg_type_may_be_null(enum bpf_reg_type type)
448 {
449 	return type == PTR_TO_MAP_VALUE_OR_NULL ||
450 	       type == PTR_TO_SOCKET_OR_NULL ||
451 	       type == PTR_TO_SOCK_COMMON_OR_NULL ||
452 	       type == PTR_TO_TCP_SOCK_OR_NULL ||
453 	       type == PTR_TO_BTF_ID_OR_NULL ||
454 	       type == PTR_TO_MEM_OR_NULL ||
455 	       type == PTR_TO_RDONLY_BUF_OR_NULL ||
456 	       type == PTR_TO_RDWR_BUF_OR_NULL;
457 }
458 
459 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
460 {
461 	return reg->type == PTR_TO_MAP_VALUE &&
462 		map_value_has_spin_lock(reg->map_ptr);
463 }
464 
465 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
466 {
467 	return type == PTR_TO_SOCKET ||
468 		type == PTR_TO_SOCKET_OR_NULL ||
469 		type == PTR_TO_TCP_SOCK ||
470 		type == PTR_TO_TCP_SOCK_OR_NULL ||
471 		type == PTR_TO_MEM ||
472 		type == PTR_TO_MEM_OR_NULL;
473 }
474 
475 static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
476 {
477 	return type == ARG_PTR_TO_SOCK_COMMON;
478 }
479 
480 static bool arg_type_may_be_null(enum bpf_arg_type type)
481 {
482 	return type == ARG_PTR_TO_MAP_VALUE_OR_NULL ||
483 	       type == ARG_PTR_TO_MEM_OR_NULL ||
484 	       type == ARG_PTR_TO_CTX_OR_NULL ||
485 	       type == ARG_PTR_TO_SOCKET_OR_NULL ||
486 	       type == ARG_PTR_TO_ALLOC_MEM_OR_NULL ||
487 	       type == ARG_PTR_TO_STACK_OR_NULL;
488 }
489 
490 /* Determine whether the function releases some resources allocated by another
491  * function call. The first reference type argument will be assumed to be
492  * released by release_reference().
493  */
494 static bool is_release_function(enum bpf_func_id func_id)
495 {
496 	return func_id == BPF_FUNC_sk_release ||
497 	       func_id == BPF_FUNC_ringbuf_submit ||
498 	       func_id == BPF_FUNC_ringbuf_discard;
499 }
500 
501 static bool may_be_acquire_function(enum bpf_func_id func_id)
502 {
503 	return func_id == BPF_FUNC_sk_lookup_tcp ||
504 		func_id == BPF_FUNC_sk_lookup_udp ||
505 		func_id == BPF_FUNC_skc_lookup_tcp ||
506 		func_id == BPF_FUNC_map_lookup_elem ||
507 	        func_id == BPF_FUNC_ringbuf_reserve;
508 }
509 
510 static bool is_acquire_function(enum bpf_func_id func_id,
511 				const struct bpf_map *map)
512 {
513 	enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
514 
515 	if (func_id == BPF_FUNC_sk_lookup_tcp ||
516 	    func_id == BPF_FUNC_sk_lookup_udp ||
517 	    func_id == BPF_FUNC_skc_lookup_tcp ||
518 	    func_id == BPF_FUNC_ringbuf_reserve)
519 		return true;
520 
521 	if (func_id == BPF_FUNC_map_lookup_elem &&
522 	    (map_type == BPF_MAP_TYPE_SOCKMAP ||
523 	     map_type == BPF_MAP_TYPE_SOCKHASH))
524 		return true;
525 
526 	return false;
527 }
528 
529 static bool is_ptr_cast_function(enum bpf_func_id func_id)
530 {
531 	return func_id == BPF_FUNC_tcp_sock ||
532 		func_id == BPF_FUNC_sk_fullsock ||
533 		func_id == BPF_FUNC_skc_to_tcp_sock ||
534 		func_id == BPF_FUNC_skc_to_tcp6_sock ||
535 		func_id == BPF_FUNC_skc_to_udp6_sock ||
536 		func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
537 		func_id == BPF_FUNC_skc_to_tcp_request_sock;
538 }
539 
540 static bool is_cmpxchg_insn(const struct bpf_insn *insn)
541 {
542 	return BPF_CLASS(insn->code) == BPF_STX &&
543 	       BPF_MODE(insn->code) == BPF_ATOMIC &&
544 	       insn->imm == BPF_CMPXCHG;
545 }
546 
547 /* string representation of 'enum bpf_reg_type' */
548 static const char * const reg_type_str[] = {
549 	[NOT_INIT]		= "?",
550 	[SCALAR_VALUE]		= "inv",
551 	[PTR_TO_CTX]		= "ctx",
552 	[CONST_PTR_TO_MAP]	= "map_ptr",
553 	[PTR_TO_MAP_VALUE]	= "map_value",
554 	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
555 	[PTR_TO_STACK]		= "fp",
556 	[PTR_TO_PACKET]		= "pkt",
557 	[PTR_TO_PACKET_META]	= "pkt_meta",
558 	[PTR_TO_PACKET_END]	= "pkt_end",
559 	[PTR_TO_FLOW_KEYS]	= "flow_keys",
560 	[PTR_TO_SOCKET]		= "sock",
561 	[PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
562 	[PTR_TO_SOCK_COMMON]	= "sock_common",
563 	[PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
564 	[PTR_TO_TCP_SOCK]	= "tcp_sock",
565 	[PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
566 	[PTR_TO_TP_BUFFER]	= "tp_buffer",
567 	[PTR_TO_XDP_SOCK]	= "xdp_sock",
568 	[PTR_TO_BTF_ID]		= "ptr_",
569 	[PTR_TO_BTF_ID_OR_NULL]	= "ptr_or_null_",
570 	[PTR_TO_PERCPU_BTF_ID]	= "percpu_ptr_",
571 	[PTR_TO_MEM]		= "mem",
572 	[PTR_TO_MEM_OR_NULL]	= "mem_or_null",
573 	[PTR_TO_RDONLY_BUF]	= "rdonly_buf",
574 	[PTR_TO_RDONLY_BUF_OR_NULL] = "rdonly_buf_or_null",
575 	[PTR_TO_RDWR_BUF]	= "rdwr_buf",
576 	[PTR_TO_RDWR_BUF_OR_NULL] = "rdwr_buf_or_null",
577 	[PTR_TO_FUNC]		= "func",
578 	[PTR_TO_MAP_KEY]	= "map_key",
579 };
580 
581 static char slot_type_char[] = {
582 	[STACK_INVALID]	= '?',
583 	[STACK_SPILL]	= 'r',
584 	[STACK_MISC]	= 'm',
585 	[STACK_ZERO]	= '0',
586 };
587 
588 static void print_liveness(struct bpf_verifier_env *env,
589 			   enum bpf_reg_liveness live)
590 {
591 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
592 	    verbose(env, "_");
593 	if (live & REG_LIVE_READ)
594 		verbose(env, "r");
595 	if (live & REG_LIVE_WRITTEN)
596 		verbose(env, "w");
597 	if (live & REG_LIVE_DONE)
598 		verbose(env, "D");
599 }
600 
601 static struct bpf_func_state *func(struct bpf_verifier_env *env,
602 				   const struct bpf_reg_state *reg)
603 {
604 	struct bpf_verifier_state *cur = env->cur_state;
605 
606 	return cur->frame[reg->frameno];
607 }
608 
609 static const char *kernel_type_name(const struct btf* btf, u32 id)
610 {
611 	return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
612 }
613 
614 static void print_verifier_state(struct bpf_verifier_env *env,
615 				 const struct bpf_func_state *state)
616 {
617 	const struct bpf_reg_state *reg;
618 	enum bpf_reg_type t;
619 	int i;
620 
621 	if (state->frameno)
622 		verbose(env, " frame%d:", state->frameno);
623 	for (i = 0; i < MAX_BPF_REG; i++) {
624 		reg = &state->regs[i];
625 		t = reg->type;
626 		if (t == NOT_INIT)
627 			continue;
628 		verbose(env, " R%d", i);
629 		print_liveness(env, reg->live);
630 		verbose(env, "=%s", reg_type_str[t]);
631 		if (t == SCALAR_VALUE && reg->precise)
632 			verbose(env, "P");
633 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
634 		    tnum_is_const(reg->var_off)) {
635 			/* reg->off should be 0 for SCALAR_VALUE */
636 			verbose(env, "%lld", reg->var_off.value + reg->off);
637 		} else {
638 			if (t == PTR_TO_BTF_ID ||
639 			    t == PTR_TO_BTF_ID_OR_NULL ||
640 			    t == PTR_TO_PERCPU_BTF_ID)
641 				verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id));
642 			verbose(env, "(id=%d", reg->id);
643 			if (reg_type_may_be_refcounted_or_null(t))
644 				verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
645 			if (t != SCALAR_VALUE)
646 				verbose(env, ",off=%d", reg->off);
647 			if (type_is_pkt_pointer(t))
648 				verbose(env, ",r=%d", reg->range);
649 			else if (t == CONST_PTR_TO_MAP ||
650 				 t == PTR_TO_MAP_KEY ||
651 				 t == PTR_TO_MAP_VALUE ||
652 				 t == PTR_TO_MAP_VALUE_OR_NULL)
653 				verbose(env, ",ks=%d,vs=%d",
654 					reg->map_ptr->key_size,
655 					reg->map_ptr->value_size);
656 			if (tnum_is_const(reg->var_off)) {
657 				/* Typically an immediate SCALAR_VALUE, but
658 				 * could be a pointer whose offset is too big
659 				 * for reg->off
660 				 */
661 				verbose(env, ",imm=%llx", reg->var_off.value);
662 			} else {
663 				if (reg->smin_value != reg->umin_value &&
664 				    reg->smin_value != S64_MIN)
665 					verbose(env, ",smin_value=%lld",
666 						(long long)reg->smin_value);
667 				if (reg->smax_value != reg->umax_value &&
668 				    reg->smax_value != S64_MAX)
669 					verbose(env, ",smax_value=%lld",
670 						(long long)reg->smax_value);
671 				if (reg->umin_value != 0)
672 					verbose(env, ",umin_value=%llu",
673 						(unsigned long long)reg->umin_value);
674 				if (reg->umax_value != U64_MAX)
675 					verbose(env, ",umax_value=%llu",
676 						(unsigned long long)reg->umax_value);
677 				if (!tnum_is_unknown(reg->var_off)) {
678 					char tn_buf[48];
679 
680 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
681 					verbose(env, ",var_off=%s", tn_buf);
682 				}
683 				if (reg->s32_min_value != reg->smin_value &&
684 				    reg->s32_min_value != S32_MIN)
685 					verbose(env, ",s32_min_value=%d",
686 						(int)(reg->s32_min_value));
687 				if (reg->s32_max_value != reg->smax_value &&
688 				    reg->s32_max_value != S32_MAX)
689 					verbose(env, ",s32_max_value=%d",
690 						(int)(reg->s32_max_value));
691 				if (reg->u32_min_value != reg->umin_value &&
692 				    reg->u32_min_value != U32_MIN)
693 					verbose(env, ",u32_min_value=%d",
694 						(int)(reg->u32_min_value));
695 				if (reg->u32_max_value != reg->umax_value &&
696 				    reg->u32_max_value != U32_MAX)
697 					verbose(env, ",u32_max_value=%d",
698 						(int)(reg->u32_max_value));
699 			}
700 			verbose(env, ")");
701 		}
702 	}
703 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
704 		char types_buf[BPF_REG_SIZE + 1];
705 		bool valid = false;
706 		int j;
707 
708 		for (j = 0; j < BPF_REG_SIZE; j++) {
709 			if (state->stack[i].slot_type[j] != STACK_INVALID)
710 				valid = true;
711 			types_buf[j] = slot_type_char[
712 					state->stack[i].slot_type[j]];
713 		}
714 		types_buf[BPF_REG_SIZE] = 0;
715 		if (!valid)
716 			continue;
717 		verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
718 		print_liveness(env, state->stack[i].spilled_ptr.live);
719 		if (state->stack[i].slot_type[0] == STACK_SPILL) {
720 			reg = &state->stack[i].spilled_ptr;
721 			t = reg->type;
722 			verbose(env, "=%s", reg_type_str[t]);
723 			if (t == SCALAR_VALUE && reg->precise)
724 				verbose(env, "P");
725 			if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
726 				verbose(env, "%lld", reg->var_off.value + reg->off);
727 		} else {
728 			verbose(env, "=%s", types_buf);
729 		}
730 	}
731 	if (state->acquired_refs && state->refs[0].id) {
732 		verbose(env, " refs=%d", state->refs[0].id);
733 		for (i = 1; i < state->acquired_refs; i++)
734 			if (state->refs[i].id)
735 				verbose(env, ",%d", state->refs[i].id);
736 	}
737 	verbose(env, "\n");
738 }
739 
740 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE)				\
741 static int copy_##NAME##_state(struct bpf_func_state *dst,		\
742 			       const struct bpf_func_state *src)	\
743 {									\
744 	if (!src->FIELD)						\
745 		return 0;						\
746 	if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) {			\
747 		/* internal bug, make state invalid to reject the program */ \
748 		memset(dst, 0, sizeof(*dst));				\
749 		return -EFAULT;						\
750 	}								\
751 	memcpy(dst->FIELD, src->FIELD,					\
752 	       sizeof(*src->FIELD) * (src->COUNT / SIZE));		\
753 	return 0;							\
754 }
755 /* copy_reference_state() */
756 COPY_STATE_FN(reference, acquired_refs, refs, 1)
757 /* copy_stack_state() */
758 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
759 #undef COPY_STATE_FN
760 
761 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE)			\
762 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
763 				  bool copy_old)			\
764 {									\
765 	u32 old_size = state->COUNT;					\
766 	struct bpf_##NAME##_state *new_##FIELD;				\
767 	int slot = size / SIZE;						\
768 									\
769 	if (size <= old_size || !size) {				\
770 		if (copy_old)						\
771 			return 0;					\
772 		state->COUNT = slot * SIZE;				\
773 		if (!size && old_size) {				\
774 			kfree(state->FIELD);				\
775 			state->FIELD = NULL;				\
776 		}							\
777 		return 0;						\
778 	}								\
779 	new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
780 				    GFP_KERNEL);			\
781 	if (!new_##FIELD)						\
782 		return -ENOMEM;						\
783 	if (copy_old) {							\
784 		if (state->FIELD)					\
785 			memcpy(new_##FIELD, state->FIELD,		\
786 			       sizeof(*new_##FIELD) * (old_size / SIZE)); \
787 		memset(new_##FIELD + old_size / SIZE, 0,		\
788 		       sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
789 	}								\
790 	state->COUNT = slot * SIZE;					\
791 	kfree(state->FIELD);						\
792 	state->FIELD = new_##FIELD;					\
793 	return 0;							\
794 }
795 /* realloc_reference_state() */
796 REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
797 /* realloc_stack_state() */
798 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
799 #undef REALLOC_STATE_FN
800 
801 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to
802  * make it consume minimal amount of memory. check_stack_write() access from
803  * the program calls into realloc_func_state() to grow the stack size.
804  * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
805  * which realloc_stack_state() copies over. It points to previous
806  * bpf_verifier_state which is never reallocated.
807  */
808 static int realloc_func_state(struct bpf_func_state *state, int stack_size,
809 			      int refs_size, bool copy_old)
810 {
811 	int err = realloc_reference_state(state, refs_size, copy_old);
812 	if (err)
813 		return err;
814 	return realloc_stack_state(state, stack_size, copy_old);
815 }
816 
817 /* Acquire a pointer id from the env and update the state->refs to include
818  * this new pointer reference.
819  * On success, returns a valid pointer id to associate with the register
820  * On failure, returns a negative errno.
821  */
822 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
823 {
824 	struct bpf_func_state *state = cur_func(env);
825 	int new_ofs = state->acquired_refs;
826 	int id, err;
827 
828 	err = realloc_reference_state(state, state->acquired_refs + 1, true);
829 	if (err)
830 		return err;
831 	id = ++env->id_gen;
832 	state->refs[new_ofs].id = id;
833 	state->refs[new_ofs].insn_idx = insn_idx;
834 
835 	return id;
836 }
837 
838 /* release function corresponding to acquire_reference_state(). Idempotent. */
839 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
840 {
841 	int i, last_idx;
842 
843 	last_idx = state->acquired_refs - 1;
844 	for (i = 0; i < state->acquired_refs; i++) {
845 		if (state->refs[i].id == ptr_id) {
846 			if (last_idx && i != last_idx)
847 				memcpy(&state->refs[i], &state->refs[last_idx],
848 				       sizeof(*state->refs));
849 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
850 			state->acquired_refs--;
851 			return 0;
852 		}
853 	}
854 	return -EINVAL;
855 }
856 
857 static int transfer_reference_state(struct bpf_func_state *dst,
858 				    struct bpf_func_state *src)
859 {
860 	int err = realloc_reference_state(dst, src->acquired_refs, false);
861 	if (err)
862 		return err;
863 	err = copy_reference_state(dst, src);
864 	if (err)
865 		return err;
866 	return 0;
867 }
868 
869 static void free_func_state(struct bpf_func_state *state)
870 {
871 	if (!state)
872 		return;
873 	kfree(state->refs);
874 	kfree(state->stack);
875 	kfree(state);
876 }
877 
878 static void clear_jmp_history(struct bpf_verifier_state *state)
879 {
880 	kfree(state->jmp_history);
881 	state->jmp_history = NULL;
882 	state->jmp_history_cnt = 0;
883 }
884 
885 static void free_verifier_state(struct bpf_verifier_state *state,
886 				bool free_self)
887 {
888 	int i;
889 
890 	for (i = 0; i <= state->curframe; i++) {
891 		free_func_state(state->frame[i]);
892 		state->frame[i] = NULL;
893 	}
894 	clear_jmp_history(state);
895 	if (free_self)
896 		kfree(state);
897 }
898 
899 /* copy verifier state from src to dst growing dst stack space
900  * when necessary to accommodate larger src stack
901  */
902 static int copy_func_state(struct bpf_func_state *dst,
903 			   const struct bpf_func_state *src)
904 {
905 	int err;
906 
907 	err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
908 				 false);
909 	if (err)
910 		return err;
911 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
912 	err = copy_reference_state(dst, src);
913 	if (err)
914 		return err;
915 	return copy_stack_state(dst, src);
916 }
917 
918 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
919 			       const struct bpf_verifier_state *src)
920 {
921 	struct bpf_func_state *dst;
922 	u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt;
923 	int i, err;
924 
925 	if (dst_state->jmp_history_cnt < src->jmp_history_cnt) {
926 		kfree(dst_state->jmp_history);
927 		dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER);
928 		if (!dst_state->jmp_history)
929 			return -ENOMEM;
930 	}
931 	memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz);
932 	dst_state->jmp_history_cnt = src->jmp_history_cnt;
933 
934 	/* if dst has more stack frames then src frame, free them */
935 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
936 		free_func_state(dst_state->frame[i]);
937 		dst_state->frame[i] = NULL;
938 	}
939 	dst_state->speculative = src->speculative;
940 	dst_state->curframe = src->curframe;
941 	dst_state->active_spin_lock = src->active_spin_lock;
942 	dst_state->branches = src->branches;
943 	dst_state->parent = src->parent;
944 	dst_state->first_insn_idx = src->first_insn_idx;
945 	dst_state->last_insn_idx = src->last_insn_idx;
946 	for (i = 0; i <= src->curframe; i++) {
947 		dst = dst_state->frame[i];
948 		if (!dst) {
949 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
950 			if (!dst)
951 				return -ENOMEM;
952 			dst_state->frame[i] = dst;
953 		}
954 		err = copy_func_state(dst, src->frame[i]);
955 		if (err)
956 			return err;
957 	}
958 	return 0;
959 }
960 
961 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
962 {
963 	while (st) {
964 		u32 br = --st->branches;
965 
966 		/* WARN_ON(br > 1) technically makes sense here,
967 		 * but see comment in push_stack(), hence:
968 		 */
969 		WARN_ONCE((int)br < 0,
970 			  "BUG update_branch_counts:branches_to_explore=%d\n",
971 			  br);
972 		if (br)
973 			break;
974 		st = st->parent;
975 	}
976 }
977 
978 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
979 		     int *insn_idx, bool pop_log)
980 {
981 	struct bpf_verifier_state *cur = env->cur_state;
982 	struct bpf_verifier_stack_elem *elem, *head = env->head;
983 	int err;
984 
985 	if (env->head == NULL)
986 		return -ENOENT;
987 
988 	if (cur) {
989 		err = copy_verifier_state(cur, &head->st);
990 		if (err)
991 			return err;
992 	}
993 	if (pop_log)
994 		bpf_vlog_reset(&env->log, head->log_pos);
995 	if (insn_idx)
996 		*insn_idx = head->insn_idx;
997 	if (prev_insn_idx)
998 		*prev_insn_idx = head->prev_insn_idx;
999 	elem = head->next;
1000 	free_verifier_state(&head->st, false);
1001 	kfree(head);
1002 	env->head = elem;
1003 	env->stack_size--;
1004 	return 0;
1005 }
1006 
1007 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
1008 					     int insn_idx, int prev_insn_idx,
1009 					     bool speculative)
1010 {
1011 	struct bpf_verifier_state *cur = env->cur_state;
1012 	struct bpf_verifier_stack_elem *elem;
1013 	int err;
1014 
1015 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1016 	if (!elem)
1017 		goto err;
1018 
1019 	elem->insn_idx = insn_idx;
1020 	elem->prev_insn_idx = prev_insn_idx;
1021 	elem->next = env->head;
1022 	elem->log_pos = env->log.len_used;
1023 	env->head = elem;
1024 	env->stack_size++;
1025 	err = copy_verifier_state(&elem->st, cur);
1026 	if (err)
1027 		goto err;
1028 	elem->st.speculative |= speculative;
1029 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1030 		verbose(env, "The sequence of %d jumps is too complex.\n",
1031 			env->stack_size);
1032 		goto err;
1033 	}
1034 	if (elem->st.parent) {
1035 		++elem->st.parent->branches;
1036 		/* WARN_ON(branches > 2) technically makes sense here,
1037 		 * but
1038 		 * 1. speculative states will bump 'branches' for non-branch
1039 		 * instructions
1040 		 * 2. is_state_visited() heuristics may decide not to create
1041 		 * a new state for a sequence of branches and all such current
1042 		 * and cloned states will be pointing to a single parent state
1043 		 * which might have large 'branches' count.
1044 		 */
1045 	}
1046 	return &elem->st;
1047 err:
1048 	free_verifier_state(env->cur_state, true);
1049 	env->cur_state = NULL;
1050 	/* pop all elements and return */
1051 	while (!pop_stack(env, NULL, NULL, false));
1052 	return NULL;
1053 }
1054 
1055 #define CALLER_SAVED_REGS 6
1056 static const int caller_saved[CALLER_SAVED_REGS] = {
1057 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1058 };
1059 
1060 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1061 				struct bpf_reg_state *reg);
1062 
1063 /* This helper doesn't clear reg->id */
1064 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1065 {
1066 	reg->var_off = tnum_const(imm);
1067 	reg->smin_value = (s64)imm;
1068 	reg->smax_value = (s64)imm;
1069 	reg->umin_value = imm;
1070 	reg->umax_value = imm;
1071 
1072 	reg->s32_min_value = (s32)imm;
1073 	reg->s32_max_value = (s32)imm;
1074 	reg->u32_min_value = (u32)imm;
1075 	reg->u32_max_value = (u32)imm;
1076 }
1077 
1078 /* Mark the unknown part of a register (variable offset or scalar value) as
1079  * known to have the value @imm.
1080  */
1081 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1082 {
1083 	/* Clear id, off, and union(map_ptr, range) */
1084 	memset(((u8 *)reg) + sizeof(reg->type), 0,
1085 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1086 	___mark_reg_known(reg, imm);
1087 }
1088 
1089 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1090 {
1091 	reg->var_off = tnum_const_subreg(reg->var_off, imm);
1092 	reg->s32_min_value = (s32)imm;
1093 	reg->s32_max_value = (s32)imm;
1094 	reg->u32_min_value = (u32)imm;
1095 	reg->u32_max_value = (u32)imm;
1096 }
1097 
1098 /* Mark the 'variable offset' part of a register as zero.  This should be
1099  * used only on registers holding a pointer type.
1100  */
1101 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
1102 {
1103 	__mark_reg_known(reg, 0);
1104 }
1105 
1106 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1107 {
1108 	__mark_reg_known(reg, 0);
1109 	reg->type = SCALAR_VALUE;
1110 }
1111 
1112 static void mark_reg_known_zero(struct bpf_verifier_env *env,
1113 				struct bpf_reg_state *regs, u32 regno)
1114 {
1115 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1116 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
1117 		/* Something bad happened, let's kill all regs */
1118 		for (regno = 0; regno < MAX_BPF_REG; regno++)
1119 			__mark_reg_not_init(env, regs + regno);
1120 		return;
1121 	}
1122 	__mark_reg_known_zero(regs + regno);
1123 }
1124 
1125 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
1126 {
1127 	switch (reg->type) {
1128 	case PTR_TO_MAP_VALUE_OR_NULL: {
1129 		const struct bpf_map *map = reg->map_ptr;
1130 
1131 		if (map->inner_map_meta) {
1132 			reg->type = CONST_PTR_TO_MAP;
1133 			reg->map_ptr = map->inner_map_meta;
1134 		} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
1135 			reg->type = PTR_TO_XDP_SOCK;
1136 		} else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
1137 			   map->map_type == BPF_MAP_TYPE_SOCKHASH) {
1138 			reg->type = PTR_TO_SOCKET;
1139 		} else {
1140 			reg->type = PTR_TO_MAP_VALUE;
1141 		}
1142 		break;
1143 	}
1144 	case PTR_TO_SOCKET_OR_NULL:
1145 		reg->type = PTR_TO_SOCKET;
1146 		break;
1147 	case PTR_TO_SOCK_COMMON_OR_NULL:
1148 		reg->type = PTR_TO_SOCK_COMMON;
1149 		break;
1150 	case PTR_TO_TCP_SOCK_OR_NULL:
1151 		reg->type = PTR_TO_TCP_SOCK;
1152 		break;
1153 	case PTR_TO_BTF_ID_OR_NULL:
1154 		reg->type = PTR_TO_BTF_ID;
1155 		break;
1156 	case PTR_TO_MEM_OR_NULL:
1157 		reg->type = PTR_TO_MEM;
1158 		break;
1159 	case PTR_TO_RDONLY_BUF_OR_NULL:
1160 		reg->type = PTR_TO_RDONLY_BUF;
1161 		break;
1162 	case PTR_TO_RDWR_BUF_OR_NULL:
1163 		reg->type = PTR_TO_RDWR_BUF;
1164 		break;
1165 	default:
1166 		WARN_ONCE(1, "unknown nullable register type");
1167 	}
1168 }
1169 
1170 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1171 {
1172 	return type_is_pkt_pointer(reg->type);
1173 }
1174 
1175 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1176 {
1177 	return reg_is_pkt_pointer(reg) ||
1178 	       reg->type == PTR_TO_PACKET_END;
1179 }
1180 
1181 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
1182 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1183 				    enum bpf_reg_type which)
1184 {
1185 	/* The register can already have a range from prior markings.
1186 	 * This is fine as long as it hasn't been advanced from its
1187 	 * origin.
1188 	 */
1189 	return reg->type == which &&
1190 	       reg->id == 0 &&
1191 	       reg->off == 0 &&
1192 	       tnum_equals_const(reg->var_off, 0);
1193 }
1194 
1195 /* Reset the min/max bounds of a register */
1196 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1197 {
1198 	reg->smin_value = S64_MIN;
1199 	reg->smax_value = S64_MAX;
1200 	reg->umin_value = 0;
1201 	reg->umax_value = U64_MAX;
1202 
1203 	reg->s32_min_value = S32_MIN;
1204 	reg->s32_max_value = S32_MAX;
1205 	reg->u32_min_value = 0;
1206 	reg->u32_max_value = U32_MAX;
1207 }
1208 
1209 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1210 {
1211 	reg->smin_value = S64_MIN;
1212 	reg->smax_value = S64_MAX;
1213 	reg->umin_value = 0;
1214 	reg->umax_value = U64_MAX;
1215 }
1216 
1217 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1218 {
1219 	reg->s32_min_value = S32_MIN;
1220 	reg->s32_max_value = S32_MAX;
1221 	reg->u32_min_value = 0;
1222 	reg->u32_max_value = U32_MAX;
1223 }
1224 
1225 static void __update_reg32_bounds(struct bpf_reg_state *reg)
1226 {
1227 	struct tnum var32_off = tnum_subreg(reg->var_off);
1228 
1229 	/* min signed is max(sign bit) | min(other bits) */
1230 	reg->s32_min_value = max_t(s32, reg->s32_min_value,
1231 			var32_off.value | (var32_off.mask & S32_MIN));
1232 	/* max signed is min(sign bit) | max(other bits) */
1233 	reg->s32_max_value = min_t(s32, reg->s32_max_value,
1234 			var32_off.value | (var32_off.mask & S32_MAX));
1235 	reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1236 	reg->u32_max_value = min(reg->u32_max_value,
1237 				 (u32)(var32_off.value | var32_off.mask));
1238 }
1239 
1240 static void __update_reg64_bounds(struct bpf_reg_state *reg)
1241 {
1242 	/* min signed is max(sign bit) | min(other bits) */
1243 	reg->smin_value = max_t(s64, reg->smin_value,
1244 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
1245 	/* max signed is min(sign bit) | max(other bits) */
1246 	reg->smax_value = min_t(s64, reg->smax_value,
1247 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
1248 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
1249 	reg->umax_value = min(reg->umax_value,
1250 			      reg->var_off.value | reg->var_off.mask);
1251 }
1252 
1253 static void __update_reg_bounds(struct bpf_reg_state *reg)
1254 {
1255 	__update_reg32_bounds(reg);
1256 	__update_reg64_bounds(reg);
1257 }
1258 
1259 /* Uses signed min/max values to inform unsigned, and vice-versa */
1260 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1261 {
1262 	/* Learn sign from signed bounds.
1263 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1264 	 * are the same, so combine.  This works even in the negative case, e.g.
1265 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1266 	 */
1267 	if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
1268 		reg->s32_min_value = reg->u32_min_value =
1269 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1270 		reg->s32_max_value = reg->u32_max_value =
1271 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1272 		return;
1273 	}
1274 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1275 	 * boundary, so we must be careful.
1276 	 */
1277 	if ((s32)reg->u32_max_value >= 0) {
1278 		/* Positive.  We can't learn anything from the smin, but smax
1279 		 * is positive, hence safe.
1280 		 */
1281 		reg->s32_min_value = reg->u32_min_value;
1282 		reg->s32_max_value = reg->u32_max_value =
1283 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1284 	} else if ((s32)reg->u32_min_value < 0) {
1285 		/* Negative.  We can't learn anything from the smax, but smin
1286 		 * is negative, hence safe.
1287 		 */
1288 		reg->s32_min_value = reg->u32_min_value =
1289 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1290 		reg->s32_max_value = reg->u32_max_value;
1291 	}
1292 }
1293 
1294 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
1295 {
1296 	/* Learn sign from signed bounds.
1297 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1298 	 * are the same, so combine.  This works even in the negative case, e.g.
1299 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1300 	 */
1301 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
1302 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1303 							  reg->umin_value);
1304 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1305 							  reg->umax_value);
1306 		return;
1307 	}
1308 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1309 	 * boundary, so we must be careful.
1310 	 */
1311 	if ((s64)reg->umax_value >= 0) {
1312 		/* Positive.  We can't learn anything from the smin, but smax
1313 		 * is positive, hence safe.
1314 		 */
1315 		reg->smin_value = reg->umin_value;
1316 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1317 							  reg->umax_value);
1318 	} else if ((s64)reg->umin_value < 0) {
1319 		/* Negative.  We can't learn anything from the smax, but smin
1320 		 * is negative, hence safe.
1321 		 */
1322 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1323 							  reg->umin_value);
1324 		reg->smax_value = reg->umax_value;
1325 	}
1326 }
1327 
1328 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
1329 {
1330 	__reg32_deduce_bounds(reg);
1331 	__reg64_deduce_bounds(reg);
1332 }
1333 
1334 /* Attempts to improve var_off based on unsigned min/max information */
1335 static void __reg_bound_offset(struct bpf_reg_state *reg)
1336 {
1337 	struct tnum var64_off = tnum_intersect(reg->var_off,
1338 					       tnum_range(reg->umin_value,
1339 							  reg->umax_value));
1340 	struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off),
1341 						tnum_range(reg->u32_min_value,
1342 							   reg->u32_max_value));
1343 
1344 	reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
1345 }
1346 
1347 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
1348 {
1349 	reg->umin_value = reg->u32_min_value;
1350 	reg->umax_value = reg->u32_max_value;
1351 	/* Attempt to pull 32-bit signed bounds into 64-bit bounds
1352 	 * but must be positive otherwise set to worse case bounds
1353 	 * and refine later from tnum.
1354 	 */
1355 	if (reg->s32_min_value >= 0 && reg->s32_max_value >= 0)
1356 		reg->smax_value = reg->s32_max_value;
1357 	else
1358 		reg->smax_value = U32_MAX;
1359 	if (reg->s32_min_value >= 0)
1360 		reg->smin_value = reg->s32_min_value;
1361 	else
1362 		reg->smin_value = 0;
1363 }
1364 
1365 static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
1366 {
1367 	/* special case when 64-bit register has upper 32-bit register
1368 	 * zeroed. Typically happens after zext or <<32, >>32 sequence
1369 	 * allowing us to use 32-bit bounds directly,
1370 	 */
1371 	if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
1372 		__reg_assign_32_into_64(reg);
1373 	} else {
1374 		/* Otherwise the best we can do is push lower 32bit known and
1375 		 * unknown bits into register (var_off set from jmp logic)
1376 		 * then learn as much as possible from the 64-bit tnum
1377 		 * known and unknown bits. The previous smin/smax bounds are
1378 		 * invalid here because of jmp32 compare so mark them unknown
1379 		 * so they do not impact tnum bounds calculation.
1380 		 */
1381 		__mark_reg64_unbounded(reg);
1382 		__update_reg_bounds(reg);
1383 	}
1384 
1385 	/* Intersecting with the old var_off might have improved our bounds
1386 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1387 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
1388 	 */
1389 	__reg_deduce_bounds(reg);
1390 	__reg_bound_offset(reg);
1391 	__update_reg_bounds(reg);
1392 }
1393 
1394 static bool __reg64_bound_s32(s64 a)
1395 {
1396 	return a > S32_MIN && a < S32_MAX;
1397 }
1398 
1399 static bool __reg64_bound_u32(u64 a)
1400 {
1401 	return a > U32_MIN && a < U32_MAX;
1402 }
1403 
1404 static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
1405 {
1406 	__mark_reg32_unbounded(reg);
1407 
1408 	if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
1409 		reg->s32_min_value = (s32)reg->smin_value;
1410 		reg->s32_max_value = (s32)reg->smax_value;
1411 	}
1412 	if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) {
1413 		reg->u32_min_value = (u32)reg->umin_value;
1414 		reg->u32_max_value = (u32)reg->umax_value;
1415 	}
1416 
1417 	/* Intersecting with the old var_off might have improved our bounds
1418 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1419 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
1420 	 */
1421 	__reg_deduce_bounds(reg);
1422 	__reg_bound_offset(reg);
1423 	__update_reg_bounds(reg);
1424 }
1425 
1426 /* Mark a register as having a completely unknown (scalar) value. */
1427 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1428 			       struct bpf_reg_state *reg)
1429 {
1430 	/*
1431 	 * Clear type, id, off, and union(map_ptr, range) and
1432 	 * padding between 'type' and union
1433 	 */
1434 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
1435 	reg->type = SCALAR_VALUE;
1436 	reg->var_off = tnum_unknown;
1437 	reg->frameno = 0;
1438 	reg->precise = env->subprog_cnt > 1 || !env->bpf_capable;
1439 	__mark_reg_unbounded(reg);
1440 }
1441 
1442 static void mark_reg_unknown(struct bpf_verifier_env *env,
1443 			     struct bpf_reg_state *regs, u32 regno)
1444 {
1445 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1446 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
1447 		/* Something bad happened, let's kill all regs except FP */
1448 		for (regno = 0; regno < BPF_REG_FP; regno++)
1449 			__mark_reg_not_init(env, regs + regno);
1450 		return;
1451 	}
1452 	__mark_reg_unknown(env, regs + regno);
1453 }
1454 
1455 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1456 				struct bpf_reg_state *reg)
1457 {
1458 	__mark_reg_unknown(env, reg);
1459 	reg->type = NOT_INIT;
1460 }
1461 
1462 static void mark_reg_not_init(struct bpf_verifier_env *env,
1463 			      struct bpf_reg_state *regs, u32 regno)
1464 {
1465 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1466 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
1467 		/* Something bad happened, let's kill all regs except FP */
1468 		for (regno = 0; regno < BPF_REG_FP; regno++)
1469 			__mark_reg_not_init(env, regs + regno);
1470 		return;
1471 	}
1472 	__mark_reg_not_init(env, regs + regno);
1473 }
1474 
1475 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
1476 			    struct bpf_reg_state *regs, u32 regno,
1477 			    enum bpf_reg_type reg_type,
1478 			    struct btf *btf, u32 btf_id)
1479 {
1480 	if (reg_type == SCALAR_VALUE) {
1481 		mark_reg_unknown(env, regs, regno);
1482 		return;
1483 	}
1484 	mark_reg_known_zero(env, regs, regno);
1485 	regs[regno].type = PTR_TO_BTF_ID;
1486 	regs[regno].btf = btf;
1487 	regs[regno].btf_id = btf_id;
1488 }
1489 
1490 #define DEF_NOT_SUBREG	(0)
1491 static void init_reg_state(struct bpf_verifier_env *env,
1492 			   struct bpf_func_state *state)
1493 {
1494 	struct bpf_reg_state *regs = state->regs;
1495 	int i;
1496 
1497 	for (i = 0; i < MAX_BPF_REG; i++) {
1498 		mark_reg_not_init(env, regs, i);
1499 		regs[i].live = REG_LIVE_NONE;
1500 		regs[i].parent = NULL;
1501 		regs[i].subreg_def = DEF_NOT_SUBREG;
1502 	}
1503 
1504 	/* frame pointer */
1505 	regs[BPF_REG_FP].type = PTR_TO_STACK;
1506 	mark_reg_known_zero(env, regs, BPF_REG_FP);
1507 	regs[BPF_REG_FP].frameno = state->frameno;
1508 }
1509 
1510 #define BPF_MAIN_FUNC (-1)
1511 static void init_func_state(struct bpf_verifier_env *env,
1512 			    struct bpf_func_state *state,
1513 			    int callsite, int frameno, int subprogno)
1514 {
1515 	state->callsite = callsite;
1516 	state->frameno = frameno;
1517 	state->subprogno = subprogno;
1518 	init_reg_state(env, state);
1519 }
1520 
1521 enum reg_arg_type {
1522 	SRC_OP,		/* register is used as source operand */
1523 	DST_OP,		/* register is used as destination operand */
1524 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
1525 };
1526 
1527 static int cmp_subprogs(const void *a, const void *b)
1528 {
1529 	return ((struct bpf_subprog_info *)a)->start -
1530 	       ((struct bpf_subprog_info *)b)->start;
1531 }
1532 
1533 static int find_subprog(struct bpf_verifier_env *env, int off)
1534 {
1535 	struct bpf_subprog_info *p;
1536 
1537 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1538 		    sizeof(env->subprog_info[0]), cmp_subprogs);
1539 	if (!p)
1540 		return -ENOENT;
1541 	return p - env->subprog_info;
1542 
1543 }
1544 
1545 static int add_subprog(struct bpf_verifier_env *env, int off)
1546 {
1547 	int insn_cnt = env->prog->len;
1548 	int ret;
1549 
1550 	if (off >= insn_cnt || off < 0) {
1551 		verbose(env, "call to invalid destination\n");
1552 		return -EINVAL;
1553 	}
1554 	ret = find_subprog(env, off);
1555 	if (ret >= 0)
1556 		return ret;
1557 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
1558 		verbose(env, "too many subprograms\n");
1559 		return -E2BIG;
1560 	}
1561 	/* determine subprog starts. The end is one before the next starts */
1562 	env->subprog_info[env->subprog_cnt++].start = off;
1563 	sort(env->subprog_info, env->subprog_cnt,
1564 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
1565 	return env->subprog_cnt - 1;
1566 }
1567 
1568 struct bpf_kfunc_desc {
1569 	struct btf_func_model func_model;
1570 	u32 func_id;
1571 	s32 imm;
1572 };
1573 
1574 #define MAX_KFUNC_DESCS 256
1575 struct bpf_kfunc_desc_tab {
1576 	struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
1577 	u32 nr_descs;
1578 };
1579 
1580 static int kfunc_desc_cmp_by_id(const void *a, const void *b)
1581 {
1582 	const struct bpf_kfunc_desc *d0 = a;
1583 	const struct bpf_kfunc_desc *d1 = b;
1584 
1585 	/* func_id is not greater than BTF_MAX_TYPE */
1586 	return d0->func_id - d1->func_id;
1587 }
1588 
1589 static const struct bpf_kfunc_desc *
1590 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id)
1591 {
1592 	struct bpf_kfunc_desc desc = {
1593 		.func_id = func_id,
1594 	};
1595 	struct bpf_kfunc_desc_tab *tab;
1596 
1597 	tab = prog->aux->kfunc_tab;
1598 	return bsearch(&desc, tab->descs, tab->nr_descs,
1599 		       sizeof(tab->descs[0]), kfunc_desc_cmp_by_id);
1600 }
1601 
1602 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id)
1603 {
1604 	const struct btf_type *func, *func_proto;
1605 	struct bpf_kfunc_desc_tab *tab;
1606 	struct bpf_prog_aux *prog_aux;
1607 	struct bpf_kfunc_desc *desc;
1608 	const char *func_name;
1609 	unsigned long addr;
1610 	int err;
1611 
1612 	prog_aux = env->prog->aux;
1613 	tab = prog_aux->kfunc_tab;
1614 	if (!tab) {
1615 		if (!btf_vmlinux) {
1616 			verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
1617 			return -ENOTSUPP;
1618 		}
1619 
1620 		if (!env->prog->jit_requested) {
1621 			verbose(env, "JIT is required for calling kernel function\n");
1622 			return -ENOTSUPP;
1623 		}
1624 
1625 		if (!bpf_jit_supports_kfunc_call()) {
1626 			verbose(env, "JIT does not support calling kernel function\n");
1627 			return -ENOTSUPP;
1628 		}
1629 
1630 		if (!env->prog->gpl_compatible) {
1631 			verbose(env, "cannot call kernel function from non-GPL compatible program\n");
1632 			return -EINVAL;
1633 		}
1634 
1635 		tab = kzalloc(sizeof(*tab), GFP_KERNEL);
1636 		if (!tab)
1637 			return -ENOMEM;
1638 		prog_aux->kfunc_tab = tab;
1639 	}
1640 
1641 	if (find_kfunc_desc(env->prog, func_id))
1642 		return 0;
1643 
1644 	if (tab->nr_descs == MAX_KFUNC_DESCS) {
1645 		verbose(env, "too many different kernel function calls\n");
1646 		return -E2BIG;
1647 	}
1648 
1649 	func = btf_type_by_id(btf_vmlinux, func_id);
1650 	if (!func || !btf_type_is_func(func)) {
1651 		verbose(env, "kernel btf_id %u is not a function\n",
1652 			func_id);
1653 		return -EINVAL;
1654 	}
1655 	func_proto = btf_type_by_id(btf_vmlinux, func->type);
1656 	if (!func_proto || !btf_type_is_func_proto(func_proto)) {
1657 		verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
1658 			func_id);
1659 		return -EINVAL;
1660 	}
1661 
1662 	func_name = btf_name_by_offset(btf_vmlinux, func->name_off);
1663 	addr = kallsyms_lookup_name(func_name);
1664 	if (!addr) {
1665 		verbose(env, "cannot find address for kernel function %s\n",
1666 			func_name);
1667 		return -EINVAL;
1668 	}
1669 
1670 	desc = &tab->descs[tab->nr_descs++];
1671 	desc->func_id = func_id;
1672 	desc->imm = BPF_CAST_CALL(addr) - __bpf_call_base;
1673 	err = btf_distill_func_proto(&env->log, btf_vmlinux,
1674 				     func_proto, func_name,
1675 				     &desc->func_model);
1676 	if (!err)
1677 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
1678 		     kfunc_desc_cmp_by_id, NULL);
1679 	return err;
1680 }
1681 
1682 static int kfunc_desc_cmp_by_imm(const void *a, const void *b)
1683 {
1684 	const struct bpf_kfunc_desc *d0 = a;
1685 	const struct bpf_kfunc_desc *d1 = b;
1686 
1687 	if (d0->imm > d1->imm)
1688 		return 1;
1689 	else if (d0->imm < d1->imm)
1690 		return -1;
1691 	return 0;
1692 }
1693 
1694 static void sort_kfunc_descs_by_imm(struct bpf_prog *prog)
1695 {
1696 	struct bpf_kfunc_desc_tab *tab;
1697 
1698 	tab = prog->aux->kfunc_tab;
1699 	if (!tab)
1700 		return;
1701 
1702 	sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
1703 	     kfunc_desc_cmp_by_imm, NULL);
1704 }
1705 
1706 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
1707 {
1708 	return !!prog->aux->kfunc_tab;
1709 }
1710 
1711 const struct btf_func_model *
1712 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
1713 			 const struct bpf_insn *insn)
1714 {
1715 	const struct bpf_kfunc_desc desc = {
1716 		.imm = insn->imm,
1717 	};
1718 	const struct bpf_kfunc_desc *res;
1719 	struct bpf_kfunc_desc_tab *tab;
1720 
1721 	tab = prog->aux->kfunc_tab;
1722 	res = bsearch(&desc, tab->descs, tab->nr_descs,
1723 		      sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm);
1724 
1725 	return res ? &res->func_model : NULL;
1726 }
1727 
1728 static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
1729 {
1730 	struct bpf_subprog_info *subprog = env->subprog_info;
1731 	struct bpf_insn *insn = env->prog->insnsi;
1732 	int i, ret, insn_cnt = env->prog->len;
1733 
1734 	/* Add entry function. */
1735 	ret = add_subprog(env, 0);
1736 	if (ret)
1737 		return ret;
1738 
1739 	for (i = 0; i < insn_cnt; i++, insn++) {
1740 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
1741 		    !bpf_pseudo_kfunc_call(insn))
1742 			continue;
1743 
1744 		if (!env->bpf_capable) {
1745 			verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
1746 			return -EPERM;
1747 		}
1748 
1749 		if (bpf_pseudo_func(insn)) {
1750 			ret = add_subprog(env, i + insn->imm + 1);
1751 			if (ret >= 0)
1752 				/* remember subprog */
1753 				insn[1].imm = ret;
1754 		} else if (bpf_pseudo_call(insn)) {
1755 			ret = add_subprog(env, i + insn->imm + 1);
1756 		} else {
1757 			ret = add_kfunc_call(env, insn->imm);
1758 		}
1759 
1760 		if (ret < 0)
1761 			return ret;
1762 	}
1763 
1764 	/* Add a fake 'exit' subprog which could simplify subprog iteration
1765 	 * logic. 'subprog_cnt' should not be increased.
1766 	 */
1767 	subprog[env->subprog_cnt].start = insn_cnt;
1768 
1769 	if (env->log.level & BPF_LOG_LEVEL2)
1770 		for (i = 0; i < env->subprog_cnt; i++)
1771 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
1772 
1773 	return 0;
1774 }
1775 
1776 static int check_subprogs(struct bpf_verifier_env *env)
1777 {
1778 	int i, subprog_start, subprog_end, off, cur_subprog = 0;
1779 	struct bpf_subprog_info *subprog = env->subprog_info;
1780 	struct bpf_insn *insn = env->prog->insnsi;
1781 	int insn_cnt = env->prog->len;
1782 
1783 	/* now check that all jumps are within the same subprog */
1784 	subprog_start = subprog[cur_subprog].start;
1785 	subprog_end = subprog[cur_subprog + 1].start;
1786 	for (i = 0; i < insn_cnt; i++) {
1787 		u8 code = insn[i].code;
1788 
1789 		if (code == (BPF_JMP | BPF_CALL) &&
1790 		    insn[i].imm == BPF_FUNC_tail_call &&
1791 		    insn[i].src_reg != BPF_PSEUDO_CALL)
1792 			subprog[cur_subprog].has_tail_call = true;
1793 		if (BPF_CLASS(code) == BPF_LD &&
1794 		    (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
1795 			subprog[cur_subprog].has_ld_abs = true;
1796 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
1797 			goto next;
1798 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1799 			goto next;
1800 		off = i + insn[i].off + 1;
1801 		if (off < subprog_start || off >= subprog_end) {
1802 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
1803 			return -EINVAL;
1804 		}
1805 next:
1806 		if (i == subprog_end - 1) {
1807 			/* to avoid fall-through from one subprog into another
1808 			 * the last insn of the subprog should be either exit
1809 			 * or unconditional jump back
1810 			 */
1811 			if (code != (BPF_JMP | BPF_EXIT) &&
1812 			    code != (BPF_JMP | BPF_JA)) {
1813 				verbose(env, "last insn is not an exit or jmp\n");
1814 				return -EINVAL;
1815 			}
1816 			subprog_start = subprog_end;
1817 			cur_subprog++;
1818 			if (cur_subprog < env->subprog_cnt)
1819 				subprog_end = subprog[cur_subprog + 1].start;
1820 		}
1821 	}
1822 	return 0;
1823 }
1824 
1825 /* Parentage chain of this register (or stack slot) should take care of all
1826  * issues like callee-saved registers, stack slot allocation time, etc.
1827  */
1828 static int mark_reg_read(struct bpf_verifier_env *env,
1829 			 const struct bpf_reg_state *state,
1830 			 struct bpf_reg_state *parent, u8 flag)
1831 {
1832 	bool writes = parent == state->parent; /* Observe write marks */
1833 	int cnt = 0;
1834 
1835 	while (parent) {
1836 		/* if read wasn't screened by an earlier write ... */
1837 		if (writes && state->live & REG_LIVE_WRITTEN)
1838 			break;
1839 		if (parent->live & REG_LIVE_DONE) {
1840 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1841 				reg_type_str[parent->type],
1842 				parent->var_off.value, parent->off);
1843 			return -EFAULT;
1844 		}
1845 		/* The first condition is more likely to be true than the
1846 		 * second, checked it first.
1847 		 */
1848 		if ((parent->live & REG_LIVE_READ) == flag ||
1849 		    parent->live & REG_LIVE_READ64)
1850 			/* The parentage chain never changes and
1851 			 * this parent was already marked as LIVE_READ.
1852 			 * There is no need to keep walking the chain again and
1853 			 * keep re-marking all parents as LIVE_READ.
1854 			 * This case happens when the same register is read
1855 			 * multiple times without writes into it in-between.
1856 			 * Also, if parent has the stronger REG_LIVE_READ64 set,
1857 			 * then no need to set the weak REG_LIVE_READ32.
1858 			 */
1859 			break;
1860 		/* ... then we depend on parent's value */
1861 		parent->live |= flag;
1862 		/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
1863 		if (flag == REG_LIVE_READ64)
1864 			parent->live &= ~REG_LIVE_READ32;
1865 		state = parent;
1866 		parent = state->parent;
1867 		writes = true;
1868 		cnt++;
1869 	}
1870 
1871 	if (env->longest_mark_read_walk < cnt)
1872 		env->longest_mark_read_walk = cnt;
1873 	return 0;
1874 }
1875 
1876 /* This function is supposed to be used by the following 32-bit optimization
1877  * code only. It returns TRUE if the source or destination register operates
1878  * on 64-bit, otherwise return FALSE.
1879  */
1880 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
1881 		     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
1882 {
1883 	u8 code, class, op;
1884 
1885 	code = insn->code;
1886 	class = BPF_CLASS(code);
1887 	op = BPF_OP(code);
1888 	if (class == BPF_JMP) {
1889 		/* BPF_EXIT for "main" will reach here. Return TRUE
1890 		 * conservatively.
1891 		 */
1892 		if (op == BPF_EXIT)
1893 			return true;
1894 		if (op == BPF_CALL) {
1895 			/* BPF to BPF call will reach here because of marking
1896 			 * caller saved clobber with DST_OP_NO_MARK for which we
1897 			 * don't care the register def because they are anyway
1898 			 * marked as NOT_INIT already.
1899 			 */
1900 			if (insn->src_reg == BPF_PSEUDO_CALL)
1901 				return false;
1902 			/* Helper call will reach here because of arg type
1903 			 * check, conservatively return TRUE.
1904 			 */
1905 			if (t == SRC_OP)
1906 				return true;
1907 
1908 			return false;
1909 		}
1910 	}
1911 
1912 	if (class == BPF_ALU64 || class == BPF_JMP ||
1913 	    /* BPF_END always use BPF_ALU class. */
1914 	    (class == BPF_ALU && op == BPF_END && insn->imm == 64))
1915 		return true;
1916 
1917 	if (class == BPF_ALU || class == BPF_JMP32)
1918 		return false;
1919 
1920 	if (class == BPF_LDX) {
1921 		if (t != SRC_OP)
1922 			return BPF_SIZE(code) == BPF_DW;
1923 		/* LDX source must be ptr. */
1924 		return true;
1925 	}
1926 
1927 	if (class == BPF_STX) {
1928 		/* BPF_STX (including atomic variants) has multiple source
1929 		 * operands, one of which is a ptr. Check whether the caller is
1930 		 * asking about it.
1931 		 */
1932 		if (t == SRC_OP && reg->type != SCALAR_VALUE)
1933 			return true;
1934 		return BPF_SIZE(code) == BPF_DW;
1935 	}
1936 
1937 	if (class == BPF_LD) {
1938 		u8 mode = BPF_MODE(code);
1939 
1940 		/* LD_IMM64 */
1941 		if (mode == BPF_IMM)
1942 			return true;
1943 
1944 		/* Both LD_IND and LD_ABS return 32-bit data. */
1945 		if (t != SRC_OP)
1946 			return  false;
1947 
1948 		/* Implicit ctx ptr. */
1949 		if (regno == BPF_REG_6)
1950 			return true;
1951 
1952 		/* Explicit source could be any width. */
1953 		return true;
1954 	}
1955 
1956 	if (class == BPF_ST)
1957 		/* The only source register for BPF_ST is a ptr. */
1958 		return true;
1959 
1960 	/* Conservatively return true at default. */
1961 	return true;
1962 }
1963 
1964 /* Return the regno defined by the insn, or -1. */
1965 static int insn_def_regno(const struct bpf_insn *insn)
1966 {
1967 	switch (BPF_CLASS(insn->code)) {
1968 	case BPF_JMP:
1969 	case BPF_JMP32:
1970 	case BPF_ST:
1971 		return -1;
1972 	case BPF_STX:
1973 		if (BPF_MODE(insn->code) == BPF_ATOMIC &&
1974 		    (insn->imm & BPF_FETCH)) {
1975 			if (insn->imm == BPF_CMPXCHG)
1976 				return BPF_REG_0;
1977 			else
1978 				return insn->src_reg;
1979 		} else {
1980 			return -1;
1981 		}
1982 	default:
1983 		return insn->dst_reg;
1984 	}
1985 }
1986 
1987 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
1988 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
1989 {
1990 	int dst_reg = insn_def_regno(insn);
1991 
1992 	if (dst_reg == -1)
1993 		return false;
1994 
1995 	return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
1996 }
1997 
1998 static void mark_insn_zext(struct bpf_verifier_env *env,
1999 			   struct bpf_reg_state *reg)
2000 {
2001 	s32 def_idx = reg->subreg_def;
2002 
2003 	if (def_idx == DEF_NOT_SUBREG)
2004 		return;
2005 
2006 	env->insn_aux_data[def_idx - 1].zext_dst = true;
2007 	/* The dst will be zero extended, so won't be sub-register anymore. */
2008 	reg->subreg_def = DEF_NOT_SUBREG;
2009 }
2010 
2011 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
2012 			 enum reg_arg_type t)
2013 {
2014 	struct bpf_verifier_state *vstate = env->cur_state;
2015 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2016 	struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
2017 	struct bpf_reg_state *reg, *regs = state->regs;
2018 	bool rw64;
2019 
2020 	if (regno >= MAX_BPF_REG) {
2021 		verbose(env, "R%d is invalid\n", regno);
2022 		return -EINVAL;
2023 	}
2024 
2025 	reg = &regs[regno];
2026 	rw64 = is_reg64(env, insn, regno, reg, t);
2027 	if (t == SRC_OP) {
2028 		/* check whether register used as source operand can be read */
2029 		if (reg->type == NOT_INIT) {
2030 			verbose(env, "R%d !read_ok\n", regno);
2031 			return -EACCES;
2032 		}
2033 		/* We don't need to worry about FP liveness because it's read-only */
2034 		if (regno == BPF_REG_FP)
2035 			return 0;
2036 
2037 		if (rw64)
2038 			mark_insn_zext(env, reg);
2039 
2040 		return mark_reg_read(env, reg, reg->parent,
2041 				     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
2042 	} else {
2043 		/* check whether register used as dest operand can be written to */
2044 		if (regno == BPF_REG_FP) {
2045 			verbose(env, "frame pointer is read only\n");
2046 			return -EACCES;
2047 		}
2048 		reg->live |= REG_LIVE_WRITTEN;
2049 		reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
2050 		if (t == DST_OP)
2051 			mark_reg_unknown(env, regs, regno);
2052 	}
2053 	return 0;
2054 }
2055 
2056 /* for any branch, call, exit record the history of jmps in the given state */
2057 static int push_jmp_history(struct bpf_verifier_env *env,
2058 			    struct bpf_verifier_state *cur)
2059 {
2060 	u32 cnt = cur->jmp_history_cnt;
2061 	struct bpf_idx_pair *p;
2062 
2063 	cnt++;
2064 	p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
2065 	if (!p)
2066 		return -ENOMEM;
2067 	p[cnt - 1].idx = env->insn_idx;
2068 	p[cnt - 1].prev_idx = env->prev_insn_idx;
2069 	cur->jmp_history = p;
2070 	cur->jmp_history_cnt = cnt;
2071 	return 0;
2072 }
2073 
2074 /* Backtrack one insn at a time. If idx is not at the top of recorded
2075  * history then previous instruction came from straight line execution.
2076  */
2077 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
2078 			     u32 *history)
2079 {
2080 	u32 cnt = *history;
2081 
2082 	if (cnt && st->jmp_history[cnt - 1].idx == i) {
2083 		i = st->jmp_history[cnt - 1].prev_idx;
2084 		(*history)--;
2085 	} else {
2086 		i--;
2087 	}
2088 	return i;
2089 }
2090 
2091 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
2092 {
2093 	const struct btf_type *func;
2094 
2095 	if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
2096 		return NULL;
2097 
2098 	func = btf_type_by_id(btf_vmlinux, insn->imm);
2099 	return btf_name_by_offset(btf_vmlinux, func->name_off);
2100 }
2101 
2102 /* For given verifier state backtrack_insn() is called from the last insn to
2103  * the first insn. Its purpose is to compute a bitmask of registers and
2104  * stack slots that needs precision in the parent verifier state.
2105  */
2106 static int backtrack_insn(struct bpf_verifier_env *env, int idx,
2107 			  u32 *reg_mask, u64 *stack_mask)
2108 {
2109 	const struct bpf_insn_cbs cbs = {
2110 		.cb_call	= disasm_kfunc_name,
2111 		.cb_print	= verbose,
2112 		.private_data	= env,
2113 	};
2114 	struct bpf_insn *insn = env->prog->insnsi + idx;
2115 	u8 class = BPF_CLASS(insn->code);
2116 	u8 opcode = BPF_OP(insn->code);
2117 	u8 mode = BPF_MODE(insn->code);
2118 	u32 dreg = 1u << insn->dst_reg;
2119 	u32 sreg = 1u << insn->src_reg;
2120 	u32 spi;
2121 
2122 	if (insn->code == 0)
2123 		return 0;
2124 	if (env->log.level & BPF_LOG_LEVEL) {
2125 		verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
2126 		verbose(env, "%d: ", idx);
2127 		print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
2128 	}
2129 
2130 	if (class == BPF_ALU || class == BPF_ALU64) {
2131 		if (!(*reg_mask & dreg))
2132 			return 0;
2133 		if (opcode == BPF_MOV) {
2134 			if (BPF_SRC(insn->code) == BPF_X) {
2135 				/* dreg = sreg
2136 				 * dreg needs precision after this insn
2137 				 * sreg needs precision before this insn
2138 				 */
2139 				*reg_mask &= ~dreg;
2140 				*reg_mask |= sreg;
2141 			} else {
2142 				/* dreg = K
2143 				 * dreg needs precision after this insn.
2144 				 * Corresponding register is already marked
2145 				 * as precise=true in this verifier state.
2146 				 * No further markings in parent are necessary
2147 				 */
2148 				*reg_mask &= ~dreg;
2149 			}
2150 		} else {
2151 			if (BPF_SRC(insn->code) == BPF_X) {
2152 				/* dreg += sreg
2153 				 * both dreg and sreg need precision
2154 				 * before this insn
2155 				 */
2156 				*reg_mask |= sreg;
2157 			} /* else dreg += K
2158 			   * dreg still needs precision before this insn
2159 			   */
2160 		}
2161 	} else if (class == BPF_LDX) {
2162 		if (!(*reg_mask & dreg))
2163 			return 0;
2164 		*reg_mask &= ~dreg;
2165 
2166 		/* scalars can only be spilled into stack w/o losing precision.
2167 		 * Load from any other memory can be zero extended.
2168 		 * The desire to keep that precision is already indicated
2169 		 * by 'precise' mark in corresponding register of this state.
2170 		 * No further tracking necessary.
2171 		 */
2172 		if (insn->src_reg != BPF_REG_FP)
2173 			return 0;
2174 		if (BPF_SIZE(insn->code) != BPF_DW)
2175 			return 0;
2176 
2177 		/* dreg = *(u64 *)[fp - off] was a fill from the stack.
2178 		 * that [fp - off] slot contains scalar that needs to be
2179 		 * tracked with precision
2180 		 */
2181 		spi = (-insn->off - 1) / BPF_REG_SIZE;
2182 		if (spi >= 64) {
2183 			verbose(env, "BUG spi %d\n", spi);
2184 			WARN_ONCE(1, "verifier backtracking bug");
2185 			return -EFAULT;
2186 		}
2187 		*stack_mask |= 1ull << spi;
2188 	} else if (class == BPF_STX || class == BPF_ST) {
2189 		if (*reg_mask & dreg)
2190 			/* stx & st shouldn't be using _scalar_ dst_reg
2191 			 * to access memory. It means backtracking
2192 			 * encountered a case of pointer subtraction.
2193 			 */
2194 			return -ENOTSUPP;
2195 		/* scalars can only be spilled into stack */
2196 		if (insn->dst_reg != BPF_REG_FP)
2197 			return 0;
2198 		if (BPF_SIZE(insn->code) != BPF_DW)
2199 			return 0;
2200 		spi = (-insn->off - 1) / BPF_REG_SIZE;
2201 		if (spi >= 64) {
2202 			verbose(env, "BUG spi %d\n", spi);
2203 			WARN_ONCE(1, "verifier backtracking bug");
2204 			return -EFAULT;
2205 		}
2206 		if (!(*stack_mask & (1ull << spi)))
2207 			return 0;
2208 		*stack_mask &= ~(1ull << spi);
2209 		if (class == BPF_STX)
2210 			*reg_mask |= sreg;
2211 	} else if (class == BPF_JMP || class == BPF_JMP32) {
2212 		if (opcode == BPF_CALL) {
2213 			if (insn->src_reg == BPF_PSEUDO_CALL)
2214 				return -ENOTSUPP;
2215 			/* regular helper call sets R0 */
2216 			*reg_mask &= ~1;
2217 			if (*reg_mask & 0x3f) {
2218 				/* if backtracing was looking for registers R1-R5
2219 				 * they should have been found already.
2220 				 */
2221 				verbose(env, "BUG regs %x\n", *reg_mask);
2222 				WARN_ONCE(1, "verifier backtracking bug");
2223 				return -EFAULT;
2224 			}
2225 		} else if (opcode == BPF_EXIT) {
2226 			return -ENOTSUPP;
2227 		}
2228 	} else if (class == BPF_LD) {
2229 		if (!(*reg_mask & dreg))
2230 			return 0;
2231 		*reg_mask &= ~dreg;
2232 		/* It's ld_imm64 or ld_abs or ld_ind.
2233 		 * For ld_imm64 no further tracking of precision
2234 		 * into parent is necessary
2235 		 */
2236 		if (mode == BPF_IND || mode == BPF_ABS)
2237 			/* to be analyzed */
2238 			return -ENOTSUPP;
2239 	}
2240 	return 0;
2241 }
2242 
2243 /* the scalar precision tracking algorithm:
2244  * . at the start all registers have precise=false.
2245  * . scalar ranges are tracked as normal through alu and jmp insns.
2246  * . once precise value of the scalar register is used in:
2247  *   .  ptr + scalar alu
2248  *   . if (scalar cond K|scalar)
2249  *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
2250  *   backtrack through the verifier states and mark all registers and
2251  *   stack slots with spilled constants that these scalar regisers
2252  *   should be precise.
2253  * . during state pruning two registers (or spilled stack slots)
2254  *   are equivalent if both are not precise.
2255  *
2256  * Note the verifier cannot simply walk register parentage chain,
2257  * since many different registers and stack slots could have been
2258  * used to compute single precise scalar.
2259  *
2260  * The approach of starting with precise=true for all registers and then
2261  * backtrack to mark a register as not precise when the verifier detects
2262  * that program doesn't care about specific value (e.g., when helper
2263  * takes register as ARG_ANYTHING parameter) is not safe.
2264  *
2265  * It's ok to walk single parentage chain of the verifier states.
2266  * It's possible that this backtracking will go all the way till 1st insn.
2267  * All other branches will be explored for needing precision later.
2268  *
2269  * The backtracking needs to deal with cases like:
2270  *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
2271  * r9 -= r8
2272  * r5 = r9
2273  * if r5 > 0x79f goto pc+7
2274  *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
2275  * r5 += 1
2276  * ...
2277  * call bpf_perf_event_output#25
2278  *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
2279  *
2280  * and this case:
2281  * r6 = 1
2282  * call foo // uses callee's r6 inside to compute r0
2283  * r0 += r6
2284  * if r0 == 0 goto
2285  *
2286  * to track above reg_mask/stack_mask needs to be independent for each frame.
2287  *
2288  * Also if parent's curframe > frame where backtracking started,
2289  * the verifier need to mark registers in both frames, otherwise callees
2290  * may incorrectly prune callers. This is similar to
2291  * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
2292  *
2293  * For now backtracking falls back into conservative marking.
2294  */
2295 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
2296 				     struct bpf_verifier_state *st)
2297 {
2298 	struct bpf_func_state *func;
2299 	struct bpf_reg_state *reg;
2300 	int i, j;
2301 
2302 	/* big hammer: mark all scalars precise in this path.
2303 	 * pop_stack may still get !precise scalars.
2304 	 */
2305 	for (; st; st = st->parent)
2306 		for (i = 0; i <= st->curframe; i++) {
2307 			func = st->frame[i];
2308 			for (j = 0; j < BPF_REG_FP; j++) {
2309 				reg = &func->regs[j];
2310 				if (reg->type != SCALAR_VALUE)
2311 					continue;
2312 				reg->precise = true;
2313 			}
2314 			for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
2315 				if (func->stack[j].slot_type[0] != STACK_SPILL)
2316 					continue;
2317 				reg = &func->stack[j].spilled_ptr;
2318 				if (reg->type != SCALAR_VALUE)
2319 					continue;
2320 				reg->precise = true;
2321 			}
2322 		}
2323 }
2324 
2325 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno,
2326 				  int spi)
2327 {
2328 	struct bpf_verifier_state *st = env->cur_state;
2329 	int first_idx = st->first_insn_idx;
2330 	int last_idx = env->insn_idx;
2331 	struct bpf_func_state *func;
2332 	struct bpf_reg_state *reg;
2333 	u32 reg_mask = regno >= 0 ? 1u << regno : 0;
2334 	u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
2335 	bool skip_first = true;
2336 	bool new_marks = false;
2337 	int i, err;
2338 
2339 	if (!env->bpf_capable)
2340 		return 0;
2341 
2342 	func = st->frame[st->curframe];
2343 	if (regno >= 0) {
2344 		reg = &func->regs[regno];
2345 		if (reg->type != SCALAR_VALUE) {
2346 			WARN_ONCE(1, "backtracing misuse");
2347 			return -EFAULT;
2348 		}
2349 		if (!reg->precise)
2350 			new_marks = true;
2351 		else
2352 			reg_mask = 0;
2353 		reg->precise = true;
2354 	}
2355 
2356 	while (spi >= 0) {
2357 		if (func->stack[spi].slot_type[0] != STACK_SPILL) {
2358 			stack_mask = 0;
2359 			break;
2360 		}
2361 		reg = &func->stack[spi].spilled_ptr;
2362 		if (reg->type != SCALAR_VALUE) {
2363 			stack_mask = 0;
2364 			break;
2365 		}
2366 		if (!reg->precise)
2367 			new_marks = true;
2368 		else
2369 			stack_mask = 0;
2370 		reg->precise = true;
2371 		break;
2372 	}
2373 
2374 	if (!new_marks)
2375 		return 0;
2376 	if (!reg_mask && !stack_mask)
2377 		return 0;
2378 	for (;;) {
2379 		DECLARE_BITMAP(mask, 64);
2380 		u32 history = st->jmp_history_cnt;
2381 
2382 		if (env->log.level & BPF_LOG_LEVEL)
2383 			verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
2384 		for (i = last_idx;;) {
2385 			if (skip_first) {
2386 				err = 0;
2387 				skip_first = false;
2388 			} else {
2389 				err = backtrack_insn(env, i, &reg_mask, &stack_mask);
2390 			}
2391 			if (err == -ENOTSUPP) {
2392 				mark_all_scalars_precise(env, st);
2393 				return 0;
2394 			} else if (err) {
2395 				return err;
2396 			}
2397 			if (!reg_mask && !stack_mask)
2398 				/* Found assignment(s) into tracked register in this state.
2399 				 * Since this state is already marked, just return.
2400 				 * Nothing to be tracked further in the parent state.
2401 				 */
2402 				return 0;
2403 			if (i == first_idx)
2404 				break;
2405 			i = get_prev_insn_idx(st, i, &history);
2406 			if (i >= env->prog->len) {
2407 				/* This can happen if backtracking reached insn 0
2408 				 * and there are still reg_mask or stack_mask
2409 				 * to backtrack.
2410 				 * It means the backtracking missed the spot where
2411 				 * particular register was initialized with a constant.
2412 				 */
2413 				verbose(env, "BUG backtracking idx %d\n", i);
2414 				WARN_ONCE(1, "verifier backtracking bug");
2415 				return -EFAULT;
2416 			}
2417 		}
2418 		st = st->parent;
2419 		if (!st)
2420 			break;
2421 
2422 		new_marks = false;
2423 		func = st->frame[st->curframe];
2424 		bitmap_from_u64(mask, reg_mask);
2425 		for_each_set_bit(i, mask, 32) {
2426 			reg = &func->regs[i];
2427 			if (reg->type != SCALAR_VALUE) {
2428 				reg_mask &= ~(1u << i);
2429 				continue;
2430 			}
2431 			if (!reg->precise)
2432 				new_marks = true;
2433 			reg->precise = true;
2434 		}
2435 
2436 		bitmap_from_u64(mask, stack_mask);
2437 		for_each_set_bit(i, mask, 64) {
2438 			if (i >= func->allocated_stack / BPF_REG_SIZE) {
2439 				/* the sequence of instructions:
2440 				 * 2: (bf) r3 = r10
2441 				 * 3: (7b) *(u64 *)(r3 -8) = r0
2442 				 * 4: (79) r4 = *(u64 *)(r10 -8)
2443 				 * doesn't contain jmps. It's backtracked
2444 				 * as a single block.
2445 				 * During backtracking insn 3 is not recognized as
2446 				 * stack access, so at the end of backtracking
2447 				 * stack slot fp-8 is still marked in stack_mask.
2448 				 * However the parent state may not have accessed
2449 				 * fp-8 and it's "unallocated" stack space.
2450 				 * In such case fallback to conservative.
2451 				 */
2452 				mark_all_scalars_precise(env, st);
2453 				return 0;
2454 			}
2455 
2456 			if (func->stack[i].slot_type[0] != STACK_SPILL) {
2457 				stack_mask &= ~(1ull << i);
2458 				continue;
2459 			}
2460 			reg = &func->stack[i].spilled_ptr;
2461 			if (reg->type != SCALAR_VALUE) {
2462 				stack_mask &= ~(1ull << i);
2463 				continue;
2464 			}
2465 			if (!reg->precise)
2466 				new_marks = true;
2467 			reg->precise = true;
2468 		}
2469 		if (env->log.level & BPF_LOG_LEVEL) {
2470 			print_verifier_state(env, func);
2471 			verbose(env, "parent %s regs=%x stack=%llx marks\n",
2472 				new_marks ? "didn't have" : "already had",
2473 				reg_mask, stack_mask);
2474 		}
2475 
2476 		if (!reg_mask && !stack_mask)
2477 			break;
2478 		if (!new_marks)
2479 			break;
2480 
2481 		last_idx = st->last_insn_idx;
2482 		first_idx = st->first_insn_idx;
2483 	}
2484 	return 0;
2485 }
2486 
2487 static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
2488 {
2489 	return __mark_chain_precision(env, regno, -1);
2490 }
2491 
2492 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi)
2493 {
2494 	return __mark_chain_precision(env, -1, spi);
2495 }
2496 
2497 static bool is_spillable_regtype(enum bpf_reg_type type)
2498 {
2499 	switch (type) {
2500 	case PTR_TO_MAP_VALUE:
2501 	case PTR_TO_MAP_VALUE_OR_NULL:
2502 	case PTR_TO_STACK:
2503 	case PTR_TO_CTX:
2504 	case PTR_TO_PACKET:
2505 	case PTR_TO_PACKET_META:
2506 	case PTR_TO_PACKET_END:
2507 	case PTR_TO_FLOW_KEYS:
2508 	case CONST_PTR_TO_MAP:
2509 	case PTR_TO_SOCKET:
2510 	case PTR_TO_SOCKET_OR_NULL:
2511 	case PTR_TO_SOCK_COMMON:
2512 	case PTR_TO_SOCK_COMMON_OR_NULL:
2513 	case PTR_TO_TCP_SOCK:
2514 	case PTR_TO_TCP_SOCK_OR_NULL:
2515 	case PTR_TO_XDP_SOCK:
2516 	case PTR_TO_BTF_ID:
2517 	case PTR_TO_BTF_ID_OR_NULL:
2518 	case PTR_TO_RDONLY_BUF:
2519 	case PTR_TO_RDONLY_BUF_OR_NULL:
2520 	case PTR_TO_RDWR_BUF:
2521 	case PTR_TO_RDWR_BUF_OR_NULL:
2522 	case PTR_TO_PERCPU_BTF_ID:
2523 	case PTR_TO_MEM:
2524 	case PTR_TO_MEM_OR_NULL:
2525 	case PTR_TO_FUNC:
2526 	case PTR_TO_MAP_KEY:
2527 		return true;
2528 	default:
2529 		return false;
2530 	}
2531 }
2532 
2533 /* Does this register contain a constant zero? */
2534 static bool register_is_null(struct bpf_reg_state *reg)
2535 {
2536 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
2537 }
2538 
2539 static bool register_is_const(struct bpf_reg_state *reg)
2540 {
2541 	return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
2542 }
2543 
2544 static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
2545 {
2546 	return tnum_is_unknown(reg->var_off) &&
2547 	       reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
2548 	       reg->umin_value == 0 && reg->umax_value == U64_MAX &&
2549 	       reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
2550 	       reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
2551 }
2552 
2553 static bool register_is_bounded(struct bpf_reg_state *reg)
2554 {
2555 	return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
2556 }
2557 
2558 static bool __is_pointer_value(bool allow_ptr_leaks,
2559 			       const struct bpf_reg_state *reg)
2560 {
2561 	if (allow_ptr_leaks)
2562 		return false;
2563 
2564 	return reg->type != SCALAR_VALUE;
2565 }
2566 
2567 static void save_register_state(struct bpf_func_state *state,
2568 				int spi, struct bpf_reg_state *reg)
2569 {
2570 	int i;
2571 
2572 	state->stack[spi].spilled_ptr = *reg;
2573 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2574 
2575 	for (i = 0; i < BPF_REG_SIZE; i++)
2576 		state->stack[spi].slot_type[i] = STACK_SPILL;
2577 }
2578 
2579 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
2580  * stack boundary and alignment are checked in check_mem_access()
2581  */
2582 static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
2583 				       /* stack frame we're writing to */
2584 				       struct bpf_func_state *state,
2585 				       int off, int size, int value_regno,
2586 				       int insn_idx)
2587 {
2588 	struct bpf_func_state *cur; /* state of the current function */
2589 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
2590 	u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
2591 	struct bpf_reg_state *reg = NULL;
2592 
2593 	err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
2594 				 state->acquired_refs, true);
2595 	if (err)
2596 		return err;
2597 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
2598 	 * so it's aligned access and [off, off + size) are within stack limits
2599 	 */
2600 	if (!env->allow_ptr_leaks &&
2601 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
2602 	    size != BPF_REG_SIZE) {
2603 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
2604 		return -EACCES;
2605 	}
2606 
2607 	cur = env->cur_state->frame[env->cur_state->curframe];
2608 	if (value_regno >= 0)
2609 		reg = &cur->regs[value_regno];
2610 
2611 	if (reg && size == BPF_REG_SIZE && register_is_bounded(reg) &&
2612 	    !register_is_null(reg) && env->bpf_capable) {
2613 		if (dst_reg != BPF_REG_FP) {
2614 			/* The backtracking logic can only recognize explicit
2615 			 * stack slot address like [fp - 8]. Other spill of
2616 			 * scalar via different register has to be conervative.
2617 			 * Backtrack from here and mark all registers as precise
2618 			 * that contributed into 'reg' being a constant.
2619 			 */
2620 			err = mark_chain_precision(env, value_regno);
2621 			if (err)
2622 				return err;
2623 		}
2624 		save_register_state(state, spi, reg);
2625 	} else if (reg && is_spillable_regtype(reg->type)) {
2626 		/* register containing pointer is being spilled into stack */
2627 		if (size != BPF_REG_SIZE) {
2628 			verbose_linfo(env, insn_idx, "; ");
2629 			verbose(env, "invalid size of register spill\n");
2630 			return -EACCES;
2631 		}
2632 
2633 		if (state != cur && reg->type == PTR_TO_STACK) {
2634 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
2635 			return -EINVAL;
2636 		}
2637 
2638 		if (!env->bypass_spec_v4) {
2639 			bool sanitize = false;
2640 
2641 			if (state->stack[spi].slot_type[0] == STACK_SPILL &&
2642 			    register_is_const(&state->stack[spi].spilled_ptr))
2643 				sanitize = true;
2644 			for (i = 0; i < BPF_REG_SIZE; i++)
2645 				if (state->stack[spi].slot_type[i] == STACK_MISC) {
2646 					sanitize = true;
2647 					break;
2648 				}
2649 			if (sanitize) {
2650 				int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
2651 				int soff = (-spi - 1) * BPF_REG_SIZE;
2652 
2653 				/* detected reuse of integer stack slot with a pointer
2654 				 * which means either llvm is reusing stack slot or
2655 				 * an attacker is trying to exploit CVE-2018-3639
2656 				 * (speculative store bypass)
2657 				 * Have to sanitize that slot with preemptive
2658 				 * store of zero.
2659 				 */
2660 				if (*poff && *poff != soff) {
2661 					/* disallow programs where single insn stores
2662 					 * into two different stack slots, since verifier
2663 					 * cannot sanitize them
2664 					 */
2665 					verbose(env,
2666 						"insn %d cannot access two stack slots fp%d and fp%d",
2667 						insn_idx, *poff, soff);
2668 					return -EINVAL;
2669 				}
2670 				*poff = soff;
2671 			}
2672 		}
2673 		save_register_state(state, spi, reg);
2674 	} else {
2675 		u8 type = STACK_MISC;
2676 
2677 		/* regular write of data into stack destroys any spilled ptr */
2678 		state->stack[spi].spilled_ptr.type = NOT_INIT;
2679 		/* Mark slots as STACK_MISC if they belonged to spilled ptr. */
2680 		if (state->stack[spi].slot_type[0] == STACK_SPILL)
2681 			for (i = 0; i < BPF_REG_SIZE; i++)
2682 				state->stack[spi].slot_type[i] = STACK_MISC;
2683 
2684 		/* only mark the slot as written if all 8 bytes were written
2685 		 * otherwise read propagation may incorrectly stop too soon
2686 		 * when stack slots are partially written.
2687 		 * This heuristic means that read propagation will be
2688 		 * conservative, since it will add reg_live_read marks
2689 		 * to stack slots all the way to first state when programs
2690 		 * writes+reads less than 8 bytes
2691 		 */
2692 		if (size == BPF_REG_SIZE)
2693 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2694 
2695 		/* when we zero initialize stack slots mark them as such */
2696 		if (reg && register_is_null(reg)) {
2697 			/* backtracking doesn't work for STACK_ZERO yet. */
2698 			err = mark_chain_precision(env, value_regno);
2699 			if (err)
2700 				return err;
2701 			type = STACK_ZERO;
2702 		}
2703 
2704 		/* Mark slots affected by this stack write. */
2705 		for (i = 0; i < size; i++)
2706 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
2707 				type;
2708 	}
2709 	return 0;
2710 }
2711 
2712 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
2713  * known to contain a variable offset.
2714  * This function checks whether the write is permitted and conservatively
2715  * tracks the effects of the write, considering that each stack slot in the
2716  * dynamic range is potentially written to.
2717  *
2718  * 'off' includes 'regno->off'.
2719  * 'value_regno' can be -1, meaning that an unknown value is being written to
2720  * the stack.
2721  *
2722  * Spilled pointers in range are not marked as written because we don't know
2723  * what's going to be actually written. This means that read propagation for
2724  * future reads cannot be terminated by this write.
2725  *
2726  * For privileged programs, uninitialized stack slots are considered
2727  * initialized by this write (even though we don't know exactly what offsets
2728  * are going to be written to). The idea is that we don't want the verifier to
2729  * reject future reads that access slots written to through variable offsets.
2730  */
2731 static int check_stack_write_var_off(struct bpf_verifier_env *env,
2732 				     /* func where register points to */
2733 				     struct bpf_func_state *state,
2734 				     int ptr_regno, int off, int size,
2735 				     int value_regno, int insn_idx)
2736 {
2737 	struct bpf_func_state *cur; /* state of the current function */
2738 	int min_off, max_off;
2739 	int i, err;
2740 	struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
2741 	bool writing_zero = false;
2742 	/* set if the fact that we're writing a zero is used to let any
2743 	 * stack slots remain STACK_ZERO
2744 	 */
2745 	bool zero_used = false;
2746 
2747 	cur = env->cur_state->frame[env->cur_state->curframe];
2748 	ptr_reg = &cur->regs[ptr_regno];
2749 	min_off = ptr_reg->smin_value + off;
2750 	max_off = ptr_reg->smax_value + off + size;
2751 	if (value_regno >= 0)
2752 		value_reg = &cur->regs[value_regno];
2753 	if (value_reg && register_is_null(value_reg))
2754 		writing_zero = true;
2755 
2756 	err = realloc_func_state(state, round_up(-min_off, BPF_REG_SIZE),
2757 				 state->acquired_refs, true);
2758 	if (err)
2759 		return err;
2760 
2761 
2762 	/* Variable offset writes destroy any spilled pointers in range. */
2763 	for (i = min_off; i < max_off; i++) {
2764 		u8 new_type, *stype;
2765 		int slot, spi;
2766 
2767 		slot = -i - 1;
2768 		spi = slot / BPF_REG_SIZE;
2769 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
2770 
2771 		if (!env->allow_ptr_leaks
2772 				&& *stype != NOT_INIT
2773 				&& *stype != SCALAR_VALUE) {
2774 			/* Reject the write if there's are spilled pointers in
2775 			 * range. If we didn't reject here, the ptr status
2776 			 * would be erased below (even though not all slots are
2777 			 * actually overwritten), possibly opening the door to
2778 			 * leaks.
2779 			 */
2780 			verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
2781 				insn_idx, i);
2782 			return -EINVAL;
2783 		}
2784 
2785 		/* Erase all spilled pointers. */
2786 		state->stack[spi].spilled_ptr.type = NOT_INIT;
2787 
2788 		/* Update the slot type. */
2789 		new_type = STACK_MISC;
2790 		if (writing_zero && *stype == STACK_ZERO) {
2791 			new_type = STACK_ZERO;
2792 			zero_used = true;
2793 		}
2794 		/* If the slot is STACK_INVALID, we check whether it's OK to
2795 		 * pretend that it will be initialized by this write. The slot
2796 		 * might not actually be written to, and so if we mark it as
2797 		 * initialized future reads might leak uninitialized memory.
2798 		 * For privileged programs, we will accept such reads to slots
2799 		 * that may or may not be written because, if we're reject
2800 		 * them, the error would be too confusing.
2801 		 */
2802 		if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
2803 			verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
2804 					insn_idx, i);
2805 			return -EINVAL;
2806 		}
2807 		*stype = new_type;
2808 	}
2809 	if (zero_used) {
2810 		/* backtracking doesn't work for STACK_ZERO yet. */
2811 		err = mark_chain_precision(env, value_regno);
2812 		if (err)
2813 			return err;
2814 	}
2815 	return 0;
2816 }
2817 
2818 /* When register 'dst_regno' is assigned some values from stack[min_off,
2819  * max_off), we set the register's type according to the types of the
2820  * respective stack slots. If all the stack values are known to be zeros, then
2821  * so is the destination reg. Otherwise, the register is considered to be
2822  * SCALAR. This function does not deal with register filling; the caller must
2823  * ensure that all spilled registers in the stack range have been marked as
2824  * read.
2825  */
2826 static void mark_reg_stack_read(struct bpf_verifier_env *env,
2827 				/* func where src register points to */
2828 				struct bpf_func_state *ptr_state,
2829 				int min_off, int max_off, int dst_regno)
2830 {
2831 	struct bpf_verifier_state *vstate = env->cur_state;
2832 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2833 	int i, slot, spi;
2834 	u8 *stype;
2835 	int zeros = 0;
2836 
2837 	for (i = min_off; i < max_off; i++) {
2838 		slot = -i - 1;
2839 		spi = slot / BPF_REG_SIZE;
2840 		stype = ptr_state->stack[spi].slot_type;
2841 		if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
2842 			break;
2843 		zeros++;
2844 	}
2845 	if (zeros == max_off - min_off) {
2846 		/* any access_size read into register is zero extended,
2847 		 * so the whole register == const_zero
2848 		 */
2849 		__mark_reg_const_zero(&state->regs[dst_regno]);
2850 		/* backtracking doesn't support STACK_ZERO yet,
2851 		 * so mark it precise here, so that later
2852 		 * backtracking can stop here.
2853 		 * Backtracking may not need this if this register
2854 		 * doesn't participate in pointer adjustment.
2855 		 * Forward propagation of precise flag is not
2856 		 * necessary either. This mark is only to stop
2857 		 * backtracking. Any register that contributed
2858 		 * to const 0 was marked precise before spill.
2859 		 */
2860 		state->regs[dst_regno].precise = true;
2861 	} else {
2862 		/* have read misc data from the stack */
2863 		mark_reg_unknown(env, state->regs, dst_regno);
2864 	}
2865 	state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
2866 }
2867 
2868 /* Read the stack at 'off' and put the results into the register indicated by
2869  * 'dst_regno'. It handles reg filling if the addressed stack slot is a
2870  * spilled reg.
2871  *
2872  * 'dst_regno' can be -1, meaning that the read value is not going to a
2873  * register.
2874  *
2875  * The access is assumed to be within the current stack bounds.
2876  */
2877 static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
2878 				      /* func where src register points to */
2879 				      struct bpf_func_state *reg_state,
2880 				      int off, int size, int dst_regno)
2881 {
2882 	struct bpf_verifier_state *vstate = env->cur_state;
2883 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2884 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
2885 	struct bpf_reg_state *reg;
2886 	u8 *stype;
2887 
2888 	stype = reg_state->stack[spi].slot_type;
2889 	reg = &reg_state->stack[spi].spilled_ptr;
2890 
2891 	if (stype[0] == STACK_SPILL) {
2892 		if (size != BPF_REG_SIZE) {
2893 			if (reg->type != SCALAR_VALUE) {
2894 				verbose_linfo(env, env->insn_idx, "; ");
2895 				verbose(env, "invalid size of register fill\n");
2896 				return -EACCES;
2897 			}
2898 			if (dst_regno >= 0) {
2899 				mark_reg_unknown(env, state->regs, dst_regno);
2900 				state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
2901 			}
2902 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2903 			return 0;
2904 		}
2905 		for (i = 1; i < BPF_REG_SIZE; i++) {
2906 			if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
2907 				verbose(env, "corrupted spill memory\n");
2908 				return -EACCES;
2909 			}
2910 		}
2911 
2912 		if (dst_regno >= 0) {
2913 			/* restore register state from stack */
2914 			state->regs[dst_regno] = *reg;
2915 			/* mark reg as written since spilled pointer state likely
2916 			 * has its liveness marks cleared by is_state_visited()
2917 			 * which resets stack/reg liveness for state transitions
2918 			 */
2919 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
2920 		} else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
2921 			/* If dst_regno==-1, the caller is asking us whether
2922 			 * it is acceptable to use this value as a SCALAR_VALUE
2923 			 * (e.g. for XADD).
2924 			 * We must not allow unprivileged callers to do that
2925 			 * with spilled pointers.
2926 			 */
2927 			verbose(env, "leaking pointer from stack off %d\n",
2928 				off);
2929 			return -EACCES;
2930 		}
2931 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2932 	} else {
2933 		u8 type;
2934 
2935 		for (i = 0; i < size; i++) {
2936 			type = stype[(slot - i) % BPF_REG_SIZE];
2937 			if (type == STACK_MISC)
2938 				continue;
2939 			if (type == STACK_ZERO)
2940 				continue;
2941 			verbose(env, "invalid read from stack off %d+%d size %d\n",
2942 				off, i, size);
2943 			return -EACCES;
2944 		}
2945 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2946 		if (dst_regno >= 0)
2947 			mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
2948 	}
2949 	return 0;
2950 }
2951 
2952 enum stack_access_src {
2953 	ACCESS_DIRECT = 1,  /* the access is performed by an instruction */
2954 	ACCESS_HELPER = 2,  /* the access is performed by a helper */
2955 };
2956 
2957 static int check_stack_range_initialized(struct bpf_verifier_env *env,
2958 					 int regno, int off, int access_size,
2959 					 bool zero_size_allowed,
2960 					 enum stack_access_src type,
2961 					 struct bpf_call_arg_meta *meta);
2962 
2963 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
2964 {
2965 	return cur_regs(env) + regno;
2966 }
2967 
2968 /* Read the stack at 'ptr_regno + off' and put the result into the register
2969  * 'dst_regno'.
2970  * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
2971  * but not its variable offset.
2972  * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
2973  *
2974  * As opposed to check_stack_read_fixed_off, this function doesn't deal with
2975  * filling registers (i.e. reads of spilled register cannot be detected when
2976  * the offset is not fixed). We conservatively mark 'dst_regno' as containing
2977  * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
2978  * offset; for a fixed offset check_stack_read_fixed_off should be used
2979  * instead.
2980  */
2981 static int check_stack_read_var_off(struct bpf_verifier_env *env,
2982 				    int ptr_regno, int off, int size, int dst_regno)
2983 {
2984 	/* The state of the source register. */
2985 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
2986 	struct bpf_func_state *ptr_state = func(env, reg);
2987 	int err;
2988 	int min_off, max_off;
2989 
2990 	/* Note that we pass a NULL meta, so raw access will not be permitted.
2991 	 */
2992 	err = check_stack_range_initialized(env, ptr_regno, off, size,
2993 					    false, ACCESS_DIRECT, NULL);
2994 	if (err)
2995 		return err;
2996 
2997 	min_off = reg->smin_value + off;
2998 	max_off = reg->smax_value + off;
2999 	mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
3000 	return 0;
3001 }
3002 
3003 /* check_stack_read dispatches to check_stack_read_fixed_off or
3004  * check_stack_read_var_off.
3005  *
3006  * The caller must ensure that the offset falls within the allocated stack
3007  * bounds.
3008  *
3009  * 'dst_regno' is a register which will receive the value from the stack. It
3010  * can be -1, meaning that the read value is not going to a register.
3011  */
3012 static int check_stack_read(struct bpf_verifier_env *env,
3013 			    int ptr_regno, int off, int size,
3014 			    int dst_regno)
3015 {
3016 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3017 	struct bpf_func_state *state = func(env, reg);
3018 	int err;
3019 	/* Some accesses are only permitted with a static offset. */
3020 	bool var_off = !tnum_is_const(reg->var_off);
3021 
3022 	/* The offset is required to be static when reads don't go to a
3023 	 * register, in order to not leak pointers (see
3024 	 * check_stack_read_fixed_off).
3025 	 */
3026 	if (dst_regno < 0 && var_off) {
3027 		char tn_buf[48];
3028 
3029 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3030 		verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
3031 			tn_buf, off, size);
3032 		return -EACCES;
3033 	}
3034 	/* Variable offset is prohibited for unprivileged mode for simplicity
3035 	 * since it requires corresponding support in Spectre masking for stack
3036 	 * ALU. See also retrieve_ptr_limit().
3037 	 */
3038 	if (!env->bypass_spec_v1 && var_off) {
3039 		char tn_buf[48];
3040 
3041 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3042 		verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n",
3043 				ptr_regno, tn_buf);
3044 		return -EACCES;
3045 	}
3046 
3047 	if (!var_off) {
3048 		off += reg->var_off.value;
3049 		err = check_stack_read_fixed_off(env, state, off, size,
3050 						 dst_regno);
3051 	} else {
3052 		/* Variable offset stack reads need more conservative handling
3053 		 * than fixed offset ones. Note that dst_regno >= 0 on this
3054 		 * branch.
3055 		 */
3056 		err = check_stack_read_var_off(env, ptr_regno, off, size,
3057 					       dst_regno);
3058 	}
3059 	return err;
3060 }
3061 
3062 
3063 /* check_stack_write dispatches to check_stack_write_fixed_off or
3064  * check_stack_write_var_off.
3065  *
3066  * 'ptr_regno' is the register used as a pointer into the stack.
3067  * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
3068  * 'value_regno' is the register whose value we're writing to the stack. It can
3069  * be -1, meaning that we're not writing from a register.
3070  *
3071  * The caller must ensure that the offset falls within the maximum stack size.
3072  */
3073 static int check_stack_write(struct bpf_verifier_env *env,
3074 			     int ptr_regno, int off, int size,
3075 			     int value_regno, int insn_idx)
3076 {
3077 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3078 	struct bpf_func_state *state = func(env, reg);
3079 	int err;
3080 
3081 	if (tnum_is_const(reg->var_off)) {
3082 		off += reg->var_off.value;
3083 		err = check_stack_write_fixed_off(env, state, off, size,
3084 						  value_regno, insn_idx);
3085 	} else {
3086 		/* Variable offset stack reads need more conservative handling
3087 		 * than fixed offset ones.
3088 		 */
3089 		err = check_stack_write_var_off(env, state,
3090 						ptr_regno, off, size,
3091 						value_regno, insn_idx);
3092 	}
3093 	return err;
3094 }
3095 
3096 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
3097 				 int off, int size, enum bpf_access_type type)
3098 {
3099 	struct bpf_reg_state *regs = cur_regs(env);
3100 	struct bpf_map *map = regs[regno].map_ptr;
3101 	u32 cap = bpf_map_flags_to_cap(map);
3102 
3103 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
3104 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
3105 			map->value_size, off, size);
3106 		return -EACCES;
3107 	}
3108 
3109 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
3110 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
3111 			map->value_size, off, size);
3112 		return -EACCES;
3113 	}
3114 
3115 	return 0;
3116 }
3117 
3118 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
3119 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
3120 			      int off, int size, u32 mem_size,
3121 			      bool zero_size_allowed)
3122 {
3123 	bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
3124 	struct bpf_reg_state *reg;
3125 
3126 	if (off >= 0 && size_ok && (u64)off + size <= mem_size)
3127 		return 0;
3128 
3129 	reg = &cur_regs(env)[regno];
3130 	switch (reg->type) {
3131 	case PTR_TO_MAP_KEY:
3132 		verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
3133 			mem_size, off, size);
3134 		break;
3135 	case PTR_TO_MAP_VALUE:
3136 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
3137 			mem_size, off, size);
3138 		break;
3139 	case PTR_TO_PACKET:
3140 	case PTR_TO_PACKET_META:
3141 	case PTR_TO_PACKET_END:
3142 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
3143 			off, size, regno, reg->id, off, mem_size);
3144 		break;
3145 	case PTR_TO_MEM:
3146 	default:
3147 		verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
3148 			mem_size, off, size);
3149 	}
3150 
3151 	return -EACCES;
3152 }
3153 
3154 /* check read/write into a memory region with possible variable offset */
3155 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
3156 				   int off, int size, u32 mem_size,
3157 				   bool zero_size_allowed)
3158 {
3159 	struct bpf_verifier_state *vstate = env->cur_state;
3160 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3161 	struct bpf_reg_state *reg = &state->regs[regno];
3162 	int err;
3163 
3164 	/* We may have adjusted the register pointing to memory region, so we
3165 	 * need to try adding each of min_value and max_value to off
3166 	 * to make sure our theoretical access will be safe.
3167 	 */
3168 	if (env->log.level & BPF_LOG_LEVEL)
3169 		print_verifier_state(env, state);
3170 
3171 	/* The minimum value is only important with signed
3172 	 * comparisons where we can't assume the floor of a
3173 	 * value is 0.  If we are using signed variables for our
3174 	 * index'es we need to make sure that whatever we use
3175 	 * will have a set floor within our range.
3176 	 */
3177 	if (reg->smin_value < 0 &&
3178 	    (reg->smin_value == S64_MIN ||
3179 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
3180 	      reg->smin_value + off < 0)) {
3181 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3182 			regno);
3183 		return -EACCES;
3184 	}
3185 	err = __check_mem_access(env, regno, reg->smin_value + off, size,
3186 				 mem_size, zero_size_allowed);
3187 	if (err) {
3188 		verbose(env, "R%d min value is outside of the allowed memory range\n",
3189 			regno);
3190 		return err;
3191 	}
3192 
3193 	/* If we haven't set a max value then we need to bail since we can't be
3194 	 * sure we won't do bad things.
3195 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
3196 	 */
3197 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
3198 		verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
3199 			regno);
3200 		return -EACCES;
3201 	}
3202 	err = __check_mem_access(env, regno, reg->umax_value + off, size,
3203 				 mem_size, zero_size_allowed);
3204 	if (err) {
3205 		verbose(env, "R%d max value is outside of the allowed memory range\n",
3206 			regno);
3207 		return err;
3208 	}
3209 
3210 	return 0;
3211 }
3212 
3213 /* check read/write into a map element with possible variable offset */
3214 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
3215 			    int off, int size, bool zero_size_allowed)
3216 {
3217 	struct bpf_verifier_state *vstate = env->cur_state;
3218 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3219 	struct bpf_reg_state *reg = &state->regs[regno];
3220 	struct bpf_map *map = reg->map_ptr;
3221 	int err;
3222 
3223 	err = check_mem_region_access(env, regno, off, size, map->value_size,
3224 				      zero_size_allowed);
3225 	if (err)
3226 		return err;
3227 
3228 	if (map_value_has_spin_lock(map)) {
3229 		u32 lock = map->spin_lock_off;
3230 
3231 		/* if any part of struct bpf_spin_lock can be touched by
3232 		 * load/store reject this program.
3233 		 * To check that [x1, x2) overlaps with [y1, y2)
3234 		 * it is sufficient to check x1 < y2 && y1 < x2.
3235 		 */
3236 		if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
3237 		     lock < reg->umax_value + off + size) {
3238 			verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
3239 			return -EACCES;
3240 		}
3241 	}
3242 	return err;
3243 }
3244 
3245 #define MAX_PACKET_OFF 0xffff
3246 
3247 static enum bpf_prog_type resolve_prog_type(struct bpf_prog *prog)
3248 {
3249 	return prog->aux->dst_prog ? prog->aux->dst_prog->type : prog->type;
3250 }
3251 
3252 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3253 				       const struct bpf_call_arg_meta *meta,
3254 				       enum bpf_access_type t)
3255 {
3256 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
3257 
3258 	switch (prog_type) {
3259 	/* Program types only with direct read access go here! */
3260 	case BPF_PROG_TYPE_LWT_IN:
3261 	case BPF_PROG_TYPE_LWT_OUT:
3262 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
3263 	case BPF_PROG_TYPE_SK_REUSEPORT:
3264 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
3265 	case BPF_PROG_TYPE_CGROUP_SKB:
3266 		if (t == BPF_WRITE)
3267 			return false;
3268 		fallthrough;
3269 
3270 	/* Program types with direct read + write access go here! */
3271 	case BPF_PROG_TYPE_SCHED_CLS:
3272 	case BPF_PROG_TYPE_SCHED_ACT:
3273 	case BPF_PROG_TYPE_XDP:
3274 	case BPF_PROG_TYPE_LWT_XMIT:
3275 	case BPF_PROG_TYPE_SK_SKB:
3276 	case BPF_PROG_TYPE_SK_MSG:
3277 		if (meta)
3278 			return meta->pkt_access;
3279 
3280 		env->seen_direct_write = true;
3281 		return true;
3282 
3283 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
3284 		if (t == BPF_WRITE)
3285 			env->seen_direct_write = true;
3286 
3287 		return true;
3288 
3289 	default:
3290 		return false;
3291 	}
3292 }
3293 
3294 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
3295 			       int size, bool zero_size_allowed)
3296 {
3297 	struct bpf_reg_state *regs = cur_regs(env);
3298 	struct bpf_reg_state *reg = &regs[regno];
3299 	int err;
3300 
3301 	/* We may have added a variable offset to the packet pointer; but any
3302 	 * reg->range we have comes after that.  We are only checking the fixed
3303 	 * offset.
3304 	 */
3305 
3306 	/* We don't allow negative numbers, because we aren't tracking enough
3307 	 * detail to prove they're safe.
3308 	 */
3309 	if (reg->smin_value < 0) {
3310 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3311 			regno);
3312 		return -EACCES;
3313 	}
3314 
3315 	err = reg->range < 0 ? -EINVAL :
3316 	      __check_mem_access(env, regno, off, size, reg->range,
3317 				 zero_size_allowed);
3318 	if (err) {
3319 		verbose(env, "R%d offset is outside of the packet\n", regno);
3320 		return err;
3321 	}
3322 
3323 	/* __check_mem_access has made sure "off + size - 1" is within u16.
3324 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
3325 	 * otherwise find_good_pkt_pointers would have refused to set range info
3326 	 * that __check_mem_access would have rejected this pkt access.
3327 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
3328 	 */
3329 	env->prog->aux->max_pkt_offset =
3330 		max_t(u32, env->prog->aux->max_pkt_offset,
3331 		      off + reg->umax_value + size - 1);
3332 
3333 	return err;
3334 }
3335 
3336 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
3337 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
3338 			    enum bpf_access_type t, enum bpf_reg_type *reg_type,
3339 			    struct btf **btf, u32 *btf_id)
3340 {
3341 	struct bpf_insn_access_aux info = {
3342 		.reg_type = *reg_type,
3343 		.log = &env->log,
3344 	};
3345 
3346 	if (env->ops->is_valid_access &&
3347 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
3348 		/* A non zero info.ctx_field_size indicates that this field is a
3349 		 * candidate for later verifier transformation to load the whole
3350 		 * field and then apply a mask when accessed with a narrower
3351 		 * access than actual ctx access size. A zero info.ctx_field_size
3352 		 * will only allow for whole field access and rejects any other
3353 		 * type of narrower access.
3354 		 */
3355 		*reg_type = info.reg_type;
3356 
3357 		if (*reg_type == PTR_TO_BTF_ID || *reg_type == PTR_TO_BTF_ID_OR_NULL) {
3358 			*btf = info.btf;
3359 			*btf_id = info.btf_id;
3360 		} else {
3361 			env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
3362 		}
3363 		/* remember the offset of last byte accessed in ctx */
3364 		if (env->prog->aux->max_ctx_offset < off + size)
3365 			env->prog->aux->max_ctx_offset = off + size;
3366 		return 0;
3367 	}
3368 
3369 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
3370 	return -EACCES;
3371 }
3372 
3373 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
3374 				  int size)
3375 {
3376 	if (size < 0 || off < 0 ||
3377 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
3378 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
3379 			off, size);
3380 		return -EACCES;
3381 	}
3382 	return 0;
3383 }
3384 
3385 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
3386 			     u32 regno, int off, int size,
3387 			     enum bpf_access_type t)
3388 {
3389 	struct bpf_reg_state *regs = cur_regs(env);
3390 	struct bpf_reg_state *reg = &regs[regno];
3391 	struct bpf_insn_access_aux info = {};
3392 	bool valid;
3393 
3394 	if (reg->smin_value < 0) {
3395 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3396 			regno);
3397 		return -EACCES;
3398 	}
3399 
3400 	switch (reg->type) {
3401 	case PTR_TO_SOCK_COMMON:
3402 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
3403 		break;
3404 	case PTR_TO_SOCKET:
3405 		valid = bpf_sock_is_valid_access(off, size, t, &info);
3406 		break;
3407 	case PTR_TO_TCP_SOCK:
3408 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
3409 		break;
3410 	case PTR_TO_XDP_SOCK:
3411 		valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
3412 		break;
3413 	default:
3414 		valid = false;
3415 	}
3416 
3417 
3418 	if (valid) {
3419 		env->insn_aux_data[insn_idx].ctx_field_size =
3420 			info.ctx_field_size;
3421 		return 0;
3422 	}
3423 
3424 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
3425 		regno, reg_type_str[reg->type], off, size);
3426 
3427 	return -EACCES;
3428 }
3429 
3430 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
3431 {
3432 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
3433 }
3434 
3435 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
3436 {
3437 	const struct bpf_reg_state *reg = reg_state(env, regno);
3438 
3439 	return reg->type == PTR_TO_CTX;
3440 }
3441 
3442 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
3443 {
3444 	const struct bpf_reg_state *reg = reg_state(env, regno);
3445 
3446 	return type_is_sk_pointer(reg->type);
3447 }
3448 
3449 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
3450 {
3451 	const struct bpf_reg_state *reg = reg_state(env, regno);
3452 
3453 	return type_is_pkt_pointer(reg->type);
3454 }
3455 
3456 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
3457 {
3458 	const struct bpf_reg_state *reg = reg_state(env, regno);
3459 
3460 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
3461 	return reg->type == PTR_TO_FLOW_KEYS;
3462 }
3463 
3464 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
3465 				   const struct bpf_reg_state *reg,
3466 				   int off, int size, bool strict)
3467 {
3468 	struct tnum reg_off;
3469 	int ip_align;
3470 
3471 	/* Byte size accesses are always allowed. */
3472 	if (!strict || size == 1)
3473 		return 0;
3474 
3475 	/* For platforms that do not have a Kconfig enabling
3476 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
3477 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
3478 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
3479 	 * to this code only in strict mode where we want to emulate
3480 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
3481 	 * unconditional IP align value of '2'.
3482 	 */
3483 	ip_align = 2;
3484 
3485 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
3486 	if (!tnum_is_aligned(reg_off, size)) {
3487 		char tn_buf[48];
3488 
3489 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3490 		verbose(env,
3491 			"misaligned packet access off %d+%s+%d+%d size %d\n",
3492 			ip_align, tn_buf, reg->off, off, size);
3493 		return -EACCES;
3494 	}
3495 
3496 	return 0;
3497 }
3498 
3499 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
3500 				       const struct bpf_reg_state *reg,
3501 				       const char *pointer_desc,
3502 				       int off, int size, bool strict)
3503 {
3504 	struct tnum reg_off;
3505 
3506 	/* Byte size accesses are always allowed. */
3507 	if (!strict || size == 1)
3508 		return 0;
3509 
3510 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
3511 	if (!tnum_is_aligned(reg_off, size)) {
3512 		char tn_buf[48];
3513 
3514 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3515 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
3516 			pointer_desc, tn_buf, reg->off, off, size);
3517 		return -EACCES;
3518 	}
3519 
3520 	return 0;
3521 }
3522 
3523 static int check_ptr_alignment(struct bpf_verifier_env *env,
3524 			       const struct bpf_reg_state *reg, int off,
3525 			       int size, bool strict_alignment_once)
3526 {
3527 	bool strict = env->strict_alignment || strict_alignment_once;
3528 	const char *pointer_desc = "";
3529 
3530 	switch (reg->type) {
3531 	case PTR_TO_PACKET:
3532 	case PTR_TO_PACKET_META:
3533 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
3534 		 * right in front, treat it the very same way.
3535 		 */
3536 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
3537 	case PTR_TO_FLOW_KEYS:
3538 		pointer_desc = "flow keys ";
3539 		break;
3540 	case PTR_TO_MAP_KEY:
3541 		pointer_desc = "key ";
3542 		break;
3543 	case PTR_TO_MAP_VALUE:
3544 		pointer_desc = "value ";
3545 		break;
3546 	case PTR_TO_CTX:
3547 		pointer_desc = "context ";
3548 		break;
3549 	case PTR_TO_STACK:
3550 		pointer_desc = "stack ";
3551 		/* The stack spill tracking logic in check_stack_write_fixed_off()
3552 		 * and check_stack_read_fixed_off() relies on stack accesses being
3553 		 * aligned.
3554 		 */
3555 		strict = true;
3556 		break;
3557 	case PTR_TO_SOCKET:
3558 		pointer_desc = "sock ";
3559 		break;
3560 	case PTR_TO_SOCK_COMMON:
3561 		pointer_desc = "sock_common ";
3562 		break;
3563 	case PTR_TO_TCP_SOCK:
3564 		pointer_desc = "tcp_sock ";
3565 		break;
3566 	case PTR_TO_XDP_SOCK:
3567 		pointer_desc = "xdp_sock ";
3568 		break;
3569 	default:
3570 		break;
3571 	}
3572 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
3573 					   strict);
3574 }
3575 
3576 static int update_stack_depth(struct bpf_verifier_env *env,
3577 			      const struct bpf_func_state *func,
3578 			      int off)
3579 {
3580 	u16 stack = env->subprog_info[func->subprogno].stack_depth;
3581 
3582 	if (stack >= -off)
3583 		return 0;
3584 
3585 	/* update known max for given subprogram */
3586 	env->subprog_info[func->subprogno].stack_depth = -off;
3587 	return 0;
3588 }
3589 
3590 /* starting from main bpf function walk all instructions of the function
3591  * and recursively walk all callees that given function can call.
3592  * Ignore jump and exit insns.
3593  * Since recursion is prevented by check_cfg() this algorithm
3594  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
3595  */
3596 static int check_max_stack_depth(struct bpf_verifier_env *env)
3597 {
3598 	int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
3599 	struct bpf_subprog_info *subprog = env->subprog_info;
3600 	struct bpf_insn *insn = env->prog->insnsi;
3601 	bool tail_call_reachable = false;
3602 	int ret_insn[MAX_CALL_FRAMES];
3603 	int ret_prog[MAX_CALL_FRAMES];
3604 	int j;
3605 
3606 process_func:
3607 	/* protect against potential stack overflow that might happen when
3608 	 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
3609 	 * depth for such case down to 256 so that the worst case scenario
3610 	 * would result in 8k stack size (32 which is tailcall limit * 256 =
3611 	 * 8k).
3612 	 *
3613 	 * To get the idea what might happen, see an example:
3614 	 * func1 -> sub rsp, 128
3615 	 *  subfunc1 -> sub rsp, 256
3616 	 *  tailcall1 -> add rsp, 256
3617 	 *   func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
3618 	 *   subfunc2 -> sub rsp, 64
3619 	 *   subfunc22 -> sub rsp, 128
3620 	 *   tailcall2 -> add rsp, 128
3621 	 *    func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
3622 	 *
3623 	 * tailcall will unwind the current stack frame but it will not get rid
3624 	 * of caller's stack as shown on the example above.
3625 	 */
3626 	if (idx && subprog[idx].has_tail_call && depth >= 256) {
3627 		verbose(env,
3628 			"tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
3629 			depth);
3630 		return -EACCES;
3631 	}
3632 	/* round up to 32-bytes, since this is granularity
3633 	 * of interpreter stack size
3634 	 */
3635 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
3636 	if (depth > MAX_BPF_STACK) {
3637 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
3638 			frame + 1, depth);
3639 		return -EACCES;
3640 	}
3641 continue_func:
3642 	subprog_end = subprog[idx + 1].start;
3643 	for (; i < subprog_end; i++) {
3644 		if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
3645 			continue;
3646 		/* remember insn and function to return to */
3647 		ret_insn[frame] = i + 1;
3648 		ret_prog[frame] = idx;
3649 
3650 		/* find the callee */
3651 		i = i + insn[i].imm + 1;
3652 		idx = find_subprog(env, i);
3653 		if (idx < 0) {
3654 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3655 				  i);
3656 			return -EFAULT;
3657 		}
3658 
3659 		if (subprog[idx].has_tail_call)
3660 			tail_call_reachable = true;
3661 
3662 		frame++;
3663 		if (frame >= MAX_CALL_FRAMES) {
3664 			verbose(env, "the call stack of %d frames is too deep !\n",
3665 				frame);
3666 			return -E2BIG;
3667 		}
3668 		goto process_func;
3669 	}
3670 	/* if tail call got detected across bpf2bpf calls then mark each of the
3671 	 * currently present subprog frames as tail call reachable subprogs;
3672 	 * this info will be utilized by JIT so that we will be preserving the
3673 	 * tail call counter throughout bpf2bpf calls combined with tailcalls
3674 	 */
3675 	if (tail_call_reachable)
3676 		for (j = 0; j < frame; j++)
3677 			subprog[ret_prog[j]].tail_call_reachable = true;
3678 
3679 	/* end of for() loop means the last insn of the 'subprog'
3680 	 * was reached. Doesn't matter whether it was JA or EXIT
3681 	 */
3682 	if (frame == 0)
3683 		return 0;
3684 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
3685 	frame--;
3686 	i = ret_insn[frame];
3687 	idx = ret_prog[frame];
3688 	goto continue_func;
3689 }
3690 
3691 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
3692 static int get_callee_stack_depth(struct bpf_verifier_env *env,
3693 				  const struct bpf_insn *insn, int idx)
3694 {
3695 	int start = idx + insn->imm + 1, subprog;
3696 
3697 	subprog = find_subprog(env, start);
3698 	if (subprog < 0) {
3699 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3700 			  start);
3701 		return -EFAULT;
3702 	}
3703 	return env->subprog_info[subprog].stack_depth;
3704 }
3705 #endif
3706 
3707 int check_ctx_reg(struct bpf_verifier_env *env,
3708 		  const struct bpf_reg_state *reg, int regno)
3709 {
3710 	/* Access to ctx or passing it to a helper is only allowed in
3711 	 * its original, unmodified form.
3712 	 */
3713 
3714 	if (reg->off) {
3715 		verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
3716 			regno, reg->off);
3717 		return -EACCES;
3718 	}
3719 
3720 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3721 		char tn_buf[48];
3722 
3723 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3724 		verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
3725 		return -EACCES;
3726 	}
3727 
3728 	return 0;
3729 }
3730 
3731 static int __check_buffer_access(struct bpf_verifier_env *env,
3732 				 const char *buf_info,
3733 				 const struct bpf_reg_state *reg,
3734 				 int regno, int off, int size)
3735 {
3736 	if (off < 0) {
3737 		verbose(env,
3738 			"R%d invalid %s buffer access: off=%d, size=%d\n",
3739 			regno, buf_info, off, size);
3740 		return -EACCES;
3741 	}
3742 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3743 		char tn_buf[48];
3744 
3745 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3746 		verbose(env,
3747 			"R%d invalid variable buffer offset: off=%d, var_off=%s\n",
3748 			regno, off, tn_buf);
3749 		return -EACCES;
3750 	}
3751 
3752 	return 0;
3753 }
3754 
3755 static int check_tp_buffer_access(struct bpf_verifier_env *env,
3756 				  const struct bpf_reg_state *reg,
3757 				  int regno, int off, int size)
3758 {
3759 	int err;
3760 
3761 	err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
3762 	if (err)
3763 		return err;
3764 
3765 	if (off + size > env->prog->aux->max_tp_access)
3766 		env->prog->aux->max_tp_access = off + size;
3767 
3768 	return 0;
3769 }
3770 
3771 static int check_buffer_access(struct bpf_verifier_env *env,
3772 			       const struct bpf_reg_state *reg,
3773 			       int regno, int off, int size,
3774 			       bool zero_size_allowed,
3775 			       const char *buf_info,
3776 			       u32 *max_access)
3777 {
3778 	int err;
3779 
3780 	err = __check_buffer_access(env, buf_info, reg, regno, off, size);
3781 	if (err)
3782 		return err;
3783 
3784 	if (off + size > *max_access)
3785 		*max_access = off + size;
3786 
3787 	return 0;
3788 }
3789 
3790 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
3791 static void zext_32_to_64(struct bpf_reg_state *reg)
3792 {
3793 	reg->var_off = tnum_subreg(reg->var_off);
3794 	__reg_assign_32_into_64(reg);
3795 }
3796 
3797 /* truncate register to smaller size (in bytes)
3798  * must be called with size < BPF_REG_SIZE
3799  */
3800 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
3801 {
3802 	u64 mask;
3803 
3804 	/* clear high bits in bit representation */
3805 	reg->var_off = tnum_cast(reg->var_off, size);
3806 
3807 	/* fix arithmetic bounds */
3808 	mask = ((u64)1 << (size * 8)) - 1;
3809 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
3810 		reg->umin_value &= mask;
3811 		reg->umax_value &= mask;
3812 	} else {
3813 		reg->umin_value = 0;
3814 		reg->umax_value = mask;
3815 	}
3816 	reg->smin_value = reg->umin_value;
3817 	reg->smax_value = reg->umax_value;
3818 
3819 	/* If size is smaller than 32bit register the 32bit register
3820 	 * values are also truncated so we push 64-bit bounds into
3821 	 * 32-bit bounds. Above were truncated < 32-bits already.
3822 	 */
3823 	if (size >= 4)
3824 		return;
3825 	__reg_combine_64_into_32(reg);
3826 }
3827 
3828 static bool bpf_map_is_rdonly(const struct bpf_map *map)
3829 {
3830 	return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen;
3831 }
3832 
3833 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
3834 {
3835 	void *ptr;
3836 	u64 addr;
3837 	int err;
3838 
3839 	err = map->ops->map_direct_value_addr(map, &addr, off);
3840 	if (err)
3841 		return err;
3842 	ptr = (void *)(long)addr + off;
3843 
3844 	switch (size) {
3845 	case sizeof(u8):
3846 		*val = (u64)*(u8 *)ptr;
3847 		break;
3848 	case sizeof(u16):
3849 		*val = (u64)*(u16 *)ptr;
3850 		break;
3851 	case sizeof(u32):
3852 		*val = (u64)*(u32 *)ptr;
3853 		break;
3854 	case sizeof(u64):
3855 		*val = *(u64 *)ptr;
3856 		break;
3857 	default:
3858 		return -EINVAL;
3859 	}
3860 	return 0;
3861 }
3862 
3863 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
3864 				   struct bpf_reg_state *regs,
3865 				   int regno, int off, int size,
3866 				   enum bpf_access_type atype,
3867 				   int value_regno)
3868 {
3869 	struct bpf_reg_state *reg = regs + regno;
3870 	const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
3871 	const char *tname = btf_name_by_offset(reg->btf, t->name_off);
3872 	u32 btf_id;
3873 	int ret;
3874 
3875 	if (off < 0) {
3876 		verbose(env,
3877 			"R%d is ptr_%s invalid negative access: off=%d\n",
3878 			regno, tname, off);
3879 		return -EACCES;
3880 	}
3881 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3882 		char tn_buf[48];
3883 
3884 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3885 		verbose(env,
3886 			"R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
3887 			regno, tname, off, tn_buf);
3888 		return -EACCES;
3889 	}
3890 
3891 	if (env->ops->btf_struct_access) {
3892 		ret = env->ops->btf_struct_access(&env->log, reg->btf, t,
3893 						  off, size, atype, &btf_id);
3894 	} else {
3895 		if (atype != BPF_READ) {
3896 			verbose(env, "only read is supported\n");
3897 			return -EACCES;
3898 		}
3899 
3900 		ret = btf_struct_access(&env->log, reg->btf, t, off, size,
3901 					atype, &btf_id);
3902 	}
3903 
3904 	if (ret < 0)
3905 		return ret;
3906 
3907 	if (atype == BPF_READ && value_regno >= 0)
3908 		mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id);
3909 
3910 	return 0;
3911 }
3912 
3913 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
3914 				   struct bpf_reg_state *regs,
3915 				   int regno, int off, int size,
3916 				   enum bpf_access_type atype,
3917 				   int value_regno)
3918 {
3919 	struct bpf_reg_state *reg = regs + regno;
3920 	struct bpf_map *map = reg->map_ptr;
3921 	const struct btf_type *t;
3922 	const char *tname;
3923 	u32 btf_id;
3924 	int ret;
3925 
3926 	if (!btf_vmlinux) {
3927 		verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
3928 		return -ENOTSUPP;
3929 	}
3930 
3931 	if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
3932 		verbose(env, "map_ptr access not supported for map type %d\n",
3933 			map->map_type);
3934 		return -ENOTSUPP;
3935 	}
3936 
3937 	t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
3938 	tname = btf_name_by_offset(btf_vmlinux, t->name_off);
3939 
3940 	if (!env->allow_ptr_to_map_access) {
3941 		verbose(env,
3942 			"%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
3943 			tname);
3944 		return -EPERM;
3945 	}
3946 
3947 	if (off < 0) {
3948 		verbose(env, "R%d is %s invalid negative access: off=%d\n",
3949 			regno, tname, off);
3950 		return -EACCES;
3951 	}
3952 
3953 	if (atype != BPF_READ) {
3954 		verbose(env, "only read from %s is supported\n", tname);
3955 		return -EACCES;
3956 	}
3957 
3958 	ret = btf_struct_access(&env->log, btf_vmlinux, t, off, size, atype, &btf_id);
3959 	if (ret < 0)
3960 		return ret;
3961 
3962 	if (value_regno >= 0)
3963 		mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id);
3964 
3965 	return 0;
3966 }
3967 
3968 /* Check that the stack access at the given offset is within bounds. The
3969  * maximum valid offset is -1.
3970  *
3971  * The minimum valid offset is -MAX_BPF_STACK for writes, and
3972  * -state->allocated_stack for reads.
3973  */
3974 static int check_stack_slot_within_bounds(int off,
3975 					  struct bpf_func_state *state,
3976 					  enum bpf_access_type t)
3977 {
3978 	int min_valid_off;
3979 
3980 	if (t == BPF_WRITE)
3981 		min_valid_off = -MAX_BPF_STACK;
3982 	else
3983 		min_valid_off = -state->allocated_stack;
3984 
3985 	if (off < min_valid_off || off > -1)
3986 		return -EACCES;
3987 	return 0;
3988 }
3989 
3990 /* Check that the stack access at 'regno + off' falls within the maximum stack
3991  * bounds.
3992  *
3993  * 'off' includes `regno->offset`, but not its dynamic part (if any).
3994  */
3995 static int check_stack_access_within_bounds(
3996 		struct bpf_verifier_env *env,
3997 		int regno, int off, int access_size,
3998 		enum stack_access_src src, enum bpf_access_type type)
3999 {
4000 	struct bpf_reg_state *regs = cur_regs(env);
4001 	struct bpf_reg_state *reg = regs + regno;
4002 	struct bpf_func_state *state = func(env, reg);
4003 	int min_off, max_off;
4004 	int err;
4005 	char *err_extra;
4006 
4007 	if (src == ACCESS_HELPER)
4008 		/* We don't know if helpers are reading or writing (or both). */
4009 		err_extra = " indirect access to";
4010 	else if (type == BPF_READ)
4011 		err_extra = " read from";
4012 	else
4013 		err_extra = " write to";
4014 
4015 	if (tnum_is_const(reg->var_off)) {
4016 		min_off = reg->var_off.value + off;
4017 		if (access_size > 0)
4018 			max_off = min_off + access_size - 1;
4019 		else
4020 			max_off = min_off;
4021 	} else {
4022 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
4023 		    reg->smin_value <= -BPF_MAX_VAR_OFF) {
4024 			verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
4025 				err_extra, regno);
4026 			return -EACCES;
4027 		}
4028 		min_off = reg->smin_value + off;
4029 		if (access_size > 0)
4030 			max_off = reg->smax_value + off + access_size - 1;
4031 		else
4032 			max_off = min_off;
4033 	}
4034 
4035 	err = check_stack_slot_within_bounds(min_off, state, type);
4036 	if (!err)
4037 		err = check_stack_slot_within_bounds(max_off, state, type);
4038 
4039 	if (err) {
4040 		if (tnum_is_const(reg->var_off)) {
4041 			verbose(env, "invalid%s stack R%d off=%d size=%d\n",
4042 				err_extra, regno, off, access_size);
4043 		} else {
4044 			char tn_buf[48];
4045 
4046 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4047 			verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
4048 				err_extra, regno, tn_buf, access_size);
4049 		}
4050 	}
4051 	return err;
4052 }
4053 
4054 /* check whether memory at (regno + off) is accessible for t = (read | write)
4055  * if t==write, value_regno is a register which value is stored into memory
4056  * if t==read, value_regno is a register which will receive the value from memory
4057  * if t==write && value_regno==-1, some unknown value is stored into memory
4058  * if t==read && value_regno==-1, don't care what we read from memory
4059  */
4060 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
4061 			    int off, int bpf_size, enum bpf_access_type t,
4062 			    int value_regno, bool strict_alignment_once)
4063 {
4064 	struct bpf_reg_state *regs = cur_regs(env);
4065 	struct bpf_reg_state *reg = regs + regno;
4066 	struct bpf_func_state *state;
4067 	int size, err = 0;
4068 
4069 	size = bpf_size_to_bytes(bpf_size);
4070 	if (size < 0)
4071 		return size;
4072 
4073 	/* alignment checks will add in reg->off themselves */
4074 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
4075 	if (err)
4076 		return err;
4077 
4078 	/* for access checks, reg->off is just part of off */
4079 	off += reg->off;
4080 
4081 	if (reg->type == PTR_TO_MAP_KEY) {
4082 		if (t == BPF_WRITE) {
4083 			verbose(env, "write to change key R%d not allowed\n", regno);
4084 			return -EACCES;
4085 		}
4086 
4087 		err = check_mem_region_access(env, regno, off, size,
4088 					      reg->map_ptr->key_size, false);
4089 		if (err)
4090 			return err;
4091 		if (value_regno >= 0)
4092 			mark_reg_unknown(env, regs, value_regno);
4093 	} else if (reg->type == PTR_TO_MAP_VALUE) {
4094 		if (t == BPF_WRITE && value_regno >= 0 &&
4095 		    is_pointer_value(env, value_regno)) {
4096 			verbose(env, "R%d leaks addr into map\n", value_regno);
4097 			return -EACCES;
4098 		}
4099 		err = check_map_access_type(env, regno, off, size, t);
4100 		if (err)
4101 			return err;
4102 		err = check_map_access(env, regno, off, size, false);
4103 		if (!err && t == BPF_READ && value_regno >= 0) {
4104 			struct bpf_map *map = reg->map_ptr;
4105 
4106 			/* if map is read-only, track its contents as scalars */
4107 			if (tnum_is_const(reg->var_off) &&
4108 			    bpf_map_is_rdonly(map) &&
4109 			    map->ops->map_direct_value_addr) {
4110 				int map_off = off + reg->var_off.value;
4111 				u64 val = 0;
4112 
4113 				err = bpf_map_direct_read(map, map_off, size,
4114 							  &val);
4115 				if (err)
4116 					return err;
4117 
4118 				regs[value_regno].type = SCALAR_VALUE;
4119 				__mark_reg_known(&regs[value_regno], val);
4120 			} else {
4121 				mark_reg_unknown(env, regs, value_regno);
4122 			}
4123 		}
4124 	} else if (reg->type == PTR_TO_MEM) {
4125 		if (t == BPF_WRITE && value_regno >= 0 &&
4126 		    is_pointer_value(env, value_regno)) {
4127 			verbose(env, "R%d leaks addr into mem\n", value_regno);
4128 			return -EACCES;
4129 		}
4130 		err = check_mem_region_access(env, regno, off, size,
4131 					      reg->mem_size, false);
4132 		if (!err && t == BPF_READ && value_regno >= 0)
4133 			mark_reg_unknown(env, regs, value_regno);
4134 	} else if (reg->type == PTR_TO_CTX) {
4135 		enum bpf_reg_type reg_type = SCALAR_VALUE;
4136 		struct btf *btf = NULL;
4137 		u32 btf_id = 0;
4138 
4139 		if (t == BPF_WRITE && value_regno >= 0 &&
4140 		    is_pointer_value(env, value_regno)) {
4141 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
4142 			return -EACCES;
4143 		}
4144 
4145 		err = check_ctx_reg(env, reg, regno);
4146 		if (err < 0)
4147 			return err;
4148 
4149 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf, &btf_id);
4150 		if (err)
4151 			verbose_linfo(env, insn_idx, "; ");
4152 		if (!err && t == BPF_READ && value_regno >= 0) {
4153 			/* ctx access returns either a scalar, or a
4154 			 * PTR_TO_PACKET[_META,_END]. In the latter
4155 			 * case, we know the offset is zero.
4156 			 */
4157 			if (reg_type == SCALAR_VALUE) {
4158 				mark_reg_unknown(env, regs, value_regno);
4159 			} else {
4160 				mark_reg_known_zero(env, regs,
4161 						    value_regno);
4162 				if (reg_type_may_be_null(reg_type))
4163 					regs[value_regno].id = ++env->id_gen;
4164 				/* A load of ctx field could have different
4165 				 * actual load size with the one encoded in the
4166 				 * insn. When the dst is PTR, it is for sure not
4167 				 * a sub-register.
4168 				 */
4169 				regs[value_regno].subreg_def = DEF_NOT_SUBREG;
4170 				if (reg_type == PTR_TO_BTF_ID ||
4171 				    reg_type == PTR_TO_BTF_ID_OR_NULL) {
4172 					regs[value_regno].btf = btf;
4173 					regs[value_regno].btf_id = btf_id;
4174 				}
4175 			}
4176 			regs[value_regno].type = reg_type;
4177 		}
4178 
4179 	} else if (reg->type == PTR_TO_STACK) {
4180 		/* Basic bounds checks. */
4181 		err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
4182 		if (err)
4183 			return err;
4184 
4185 		state = func(env, reg);
4186 		err = update_stack_depth(env, state, off);
4187 		if (err)
4188 			return err;
4189 
4190 		if (t == BPF_READ)
4191 			err = check_stack_read(env, regno, off, size,
4192 					       value_regno);
4193 		else
4194 			err = check_stack_write(env, regno, off, size,
4195 						value_regno, insn_idx);
4196 	} else if (reg_is_pkt_pointer(reg)) {
4197 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
4198 			verbose(env, "cannot write into packet\n");
4199 			return -EACCES;
4200 		}
4201 		if (t == BPF_WRITE && value_regno >= 0 &&
4202 		    is_pointer_value(env, value_regno)) {
4203 			verbose(env, "R%d leaks addr into packet\n",
4204 				value_regno);
4205 			return -EACCES;
4206 		}
4207 		err = check_packet_access(env, regno, off, size, false);
4208 		if (!err && t == BPF_READ && value_regno >= 0)
4209 			mark_reg_unknown(env, regs, value_regno);
4210 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
4211 		if (t == BPF_WRITE && value_regno >= 0 &&
4212 		    is_pointer_value(env, value_regno)) {
4213 			verbose(env, "R%d leaks addr into flow keys\n",
4214 				value_regno);
4215 			return -EACCES;
4216 		}
4217 
4218 		err = check_flow_keys_access(env, off, size);
4219 		if (!err && t == BPF_READ && value_regno >= 0)
4220 			mark_reg_unknown(env, regs, value_regno);
4221 	} else if (type_is_sk_pointer(reg->type)) {
4222 		if (t == BPF_WRITE) {
4223 			verbose(env, "R%d cannot write into %s\n",
4224 				regno, reg_type_str[reg->type]);
4225 			return -EACCES;
4226 		}
4227 		err = check_sock_access(env, insn_idx, regno, off, size, t);
4228 		if (!err && value_regno >= 0)
4229 			mark_reg_unknown(env, regs, value_regno);
4230 	} else if (reg->type == PTR_TO_TP_BUFFER) {
4231 		err = check_tp_buffer_access(env, reg, regno, off, size);
4232 		if (!err && t == BPF_READ && value_regno >= 0)
4233 			mark_reg_unknown(env, regs, value_regno);
4234 	} else if (reg->type == PTR_TO_BTF_ID) {
4235 		err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
4236 					      value_regno);
4237 	} else if (reg->type == CONST_PTR_TO_MAP) {
4238 		err = check_ptr_to_map_access(env, regs, regno, off, size, t,
4239 					      value_regno);
4240 	} else if (reg->type == PTR_TO_RDONLY_BUF) {
4241 		if (t == BPF_WRITE) {
4242 			verbose(env, "R%d cannot write into %s\n",
4243 				regno, reg_type_str[reg->type]);
4244 			return -EACCES;
4245 		}
4246 		err = check_buffer_access(env, reg, regno, off, size, false,
4247 					  "rdonly",
4248 					  &env->prog->aux->max_rdonly_access);
4249 		if (!err && value_regno >= 0)
4250 			mark_reg_unknown(env, regs, value_regno);
4251 	} else if (reg->type == PTR_TO_RDWR_BUF) {
4252 		err = check_buffer_access(env, reg, regno, off, size, false,
4253 					  "rdwr",
4254 					  &env->prog->aux->max_rdwr_access);
4255 		if (!err && t == BPF_READ && value_regno >= 0)
4256 			mark_reg_unknown(env, regs, value_regno);
4257 	} else {
4258 		verbose(env, "R%d invalid mem access '%s'\n", regno,
4259 			reg_type_str[reg->type]);
4260 		return -EACCES;
4261 	}
4262 
4263 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
4264 	    regs[value_regno].type == SCALAR_VALUE) {
4265 		/* b/h/w load zero-extends, mark upper bits as known 0 */
4266 		coerce_reg_to_size(&regs[value_regno], size);
4267 	}
4268 	return err;
4269 }
4270 
4271 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
4272 {
4273 	int load_reg;
4274 	int err;
4275 
4276 	switch (insn->imm) {
4277 	case BPF_ADD:
4278 	case BPF_ADD | BPF_FETCH:
4279 	case BPF_AND:
4280 	case BPF_AND | BPF_FETCH:
4281 	case BPF_OR:
4282 	case BPF_OR | BPF_FETCH:
4283 	case BPF_XOR:
4284 	case BPF_XOR | BPF_FETCH:
4285 	case BPF_XCHG:
4286 	case BPF_CMPXCHG:
4287 		break;
4288 	default:
4289 		verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
4290 		return -EINVAL;
4291 	}
4292 
4293 	if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
4294 		verbose(env, "invalid atomic operand size\n");
4295 		return -EINVAL;
4296 	}
4297 
4298 	/* check src1 operand */
4299 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
4300 	if (err)
4301 		return err;
4302 
4303 	/* check src2 operand */
4304 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4305 	if (err)
4306 		return err;
4307 
4308 	if (insn->imm == BPF_CMPXCHG) {
4309 		/* Check comparison of R0 with memory location */
4310 		err = check_reg_arg(env, BPF_REG_0, SRC_OP);
4311 		if (err)
4312 			return err;
4313 	}
4314 
4315 	if (is_pointer_value(env, insn->src_reg)) {
4316 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
4317 		return -EACCES;
4318 	}
4319 
4320 	if (is_ctx_reg(env, insn->dst_reg) ||
4321 	    is_pkt_reg(env, insn->dst_reg) ||
4322 	    is_flow_key_reg(env, insn->dst_reg) ||
4323 	    is_sk_reg(env, insn->dst_reg)) {
4324 		verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
4325 			insn->dst_reg,
4326 			reg_type_str[reg_state(env, insn->dst_reg)->type]);
4327 		return -EACCES;
4328 	}
4329 
4330 	if (insn->imm & BPF_FETCH) {
4331 		if (insn->imm == BPF_CMPXCHG)
4332 			load_reg = BPF_REG_0;
4333 		else
4334 			load_reg = insn->src_reg;
4335 
4336 		/* check and record load of old value */
4337 		err = check_reg_arg(env, load_reg, DST_OP);
4338 		if (err)
4339 			return err;
4340 	} else {
4341 		/* This instruction accesses a memory location but doesn't
4342 		 * actually load it into a register.
4343 		 */
4344 		load_reg = -1;
4345 	}
4346 
4347 	/* check whether we can read the memory */
4348 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4349 			       BPF_SIZE(insn->code), BPF_READ, load_reg, true);
4350 	if (err)
4351 		return err;
4352 
4353 	/* check whether we can write into the same memory */
4354 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4355 			       BPF_SIZE(insn->code), BPF_WRITE, -1, true);
4356 	if (err)
4357 		return err;
4358 
4359 	return 0;
4360 }
4361 
4362 /* When register 'regno' is used to read the stack (either directly or through
4363  * a helper function) make sure that it's within stack boundary and, depending
4364  * on the access type, that all elements of the stack are initialized.
4365  *
4366  * 'off' includes 'regno->off', but not its dynamic part (if any).
4367  *
4368  * All registers that have been spilled on the stack in the slots within the
4369  * read offsets are marked as read.
4370  */
4371 static int check_stack_range_initialized(
4372 		struct bpf_verifier_env *env, int regno, int off,
4373 		int access_size, bool zero_size_allowed,
4374 		enum stack_access_src type, struct bpf_call_arg_meta *meta)
4375 {
4376 	struct bpf_reg_state *reg = reg_state(env, regno);
4377 	struct bpf_func_state *state = func(env, reg);
4378 	int err, min_off, max_off, i, j, slot, spi;
4379 	char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
4380 	enum bpf_access_type bounds_check_type;
4381 	/* Some accesses can write anything into the stack, others are
4382 	 * read-only.
4383 	 */
4384 	bool clobber = false;
4385 
4386 	if (access_size == 0 && !zero_size_allowed) {
4387 		verbose(env, "invalid zero-sized read\n");
4388 		return -EACCES;
4389 	}
4390 
4391 	if (type == ACCESS_HELPER) {
4392 		/* The bounds checks for writes are more permissive than for
4393 		 * reads. However, if raw_mode is not set, we'll do extra
4394 		 * checks below.
4395 		 */
4396 		bounds_check_type = BPF_WRITE;
4397 		clobber = true;
4398 	} else {
4399 		bounds_check_type = BPF_READ;
4400 	}
4401 	err = check_stack_access_within_bounds(env, regno, off, access_size,
4402 					       type, bounds_check_type);
4403 	if (err)
4404 		return err;
4405 
4406 
4407 	if (tnum_is_const(reg->var_off)) {
4408 		min_off = max_off = reg->var_off.value + off;
4409 	} else {
4410 		/* Variable offset is prohibited for unprivileged mode for
4411 		 * simplicity since it requires corresponding support in
4412 		 * Spectre masking for stack ALU.
4413 		 * See also retrieve_ptr_limit().
4414 		 */
4415 		if (!env->bypass_spec_v1) {
4416 			char tn_buf[48];
4417 
4418 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4419 			verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
4420 				regno, err_extra, tn_buf);
4421 			return -EACCES;
4422 		}
4423 		/* Only initialized buffer on stack is allowed to be accessed
4424 		 * with variable offset. With uninitialized buffer it's hard to
4425 		 * guarantee that whole memory is marked as initialized on
4426 		 * helper return since specific bounds are unknown what may
4427 		 * cause uninitialized stack leaking.
4428 		 */
4429 		if (meta && meta->raw_mode)
4430 			meta = NULL;
4431 
4432 		min_off = reg->smin_value + off;
4433 		max_off = reg->smax_value + off;
4434 	}
4435 
4436 	if (meta && meta->raw_mode) {
4437 		meta->access_size = access_size;
4438 		meta->regno = regno;
4439 		return 0;
4440 	}
4441 
4442 	for (i = min_off; i < max_off + access_size; i++) {
4443 		u8 *stype;
4444 
4445 		slot = -i - 1;
4446 		spi = slot / BPF_REG_SIZE;
4447 		if (state->allocated_stack <= slot)
4448 			goto err;
4449 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
4450 		if (*stype == STACK_MISC)
4451 			goto mark;
4452 		if (*stype == STACK_ZERO) {
4453 			if (clobber) {
4454 				/* helper can write anything into the stack */
4455 				*stype = STACK_MISC;
4456 			}
4457 			goto mark;
4458 		}
4459 
4460 		if (state->stack[spi].slot_type[0] == STACK_SPILL &&
4461 		    state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID)
4462 			goto mark;
4463 
4464 		if (state->stack[spi].slot_type[0] == STACK_SPILL &&
4465 		    (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
4466 		     env->allow_ptr_leaks)) {
4467 			if (clobber) {
4468 				__mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
4469 				for (j = 0; j < BPF_REG_SIZE; j++)
4470 					state->stack[spi].slot_type[j] = STACK_MISC;
4471 			}
4472 			goto mark;
4473 		}
4474 
4475 err:
4476 		if (tnum_is_const(reg->var_off)) {
4477 			verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
4478 				err_extra, regno, min_off, i - min_off, access_size);
4479 		} else {
4480 			char tn_buf[48];
4481 
4482 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4483 			verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
4484 				err_extra, regno, tn_buf, i - min_off, access_size);
4485 		}
4486 		return -EACCES;
4487 mark:
4488 		/* reading any byte out of 8-byte 'spill_slot' will cause
4489 		 * the whole slot to be marked as 'read'
4490 		 */
4491 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
4492 			      state->stack[spi].spilled_ptr.parent,
4493 			      REG_LIVE_READ64);
4494 	}
4495 	return update_stack_depth(env, state, min_off);
4496 }
4497 
4498 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
4499 				   int access_size, bool zero_size_allowed,
4500 				   struct bpf_call_arg_meta *meta)
4501 {
4502 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4503 
4504 	switch (reg->type) {
4505 	case PTR_TO_PACKET:
4506 	case PTR_TO_PACKET_META:
4507 		return check_packet_access(env, regno, reg->off, access_size,
4508 					   zero_size_allowed);
4509 	case PTR_TO_MAP_KEY:
4510 		return check_mem_region_access(env, regno, reg->off, access_size,
4511 					       reg->map_ptr->key_size, false);
4512 	case PTR_TO_MAP_VALUE:
4513 		if (check_map_access_type(env, regno, reg->off, access_size,
4514 					  meta && meta->raw_mode ? BPF_WRITE :
4515 					  BPF_READ))
4516 			return -EACCES;
4517 		return check_map_access(env, regno, reg->off, access_size,
4518 					zero_size_allowed);
4519 	case PTR_TO_MEM:
4520 		return check_mem_region_access(env, regno, reg->off,
4521 					       access_size, reg->mem_size,
4522 					       zero_size_allowed);
4523 	case PTR_TO_RDONLY_BUF:
4524 		if (meta && meta->raw_mode)
4525 			return -EACCES;
4526 		return check_buffer_access(env, reg, regno, reg->off,
4527 					   access_size, zero_size_allowed,
4528 					   "rdonly",
4529 					   &env->prog->aux->max_rdonly_access);
4530 	case PTR_TO_RDWR_BUF:
4531 		return check_buffer_access(env, reg, regno, reg->off,
4532 					   access_size, zero_size_allowed,
4533 					   "rdwr",
4534 					   &env->prog->aux->max_rdwr_access);
4535 	case PTR_TO_STACK:
4536 		return check_stack_range_initialized(
4537 				env,
4538 				regno, reg->off, access_size,
4539 				zero_size_allowed, ACCESS_HELPER, meta);
4540 	default: /* scalar_value or invalid ptr */
4541 		/* Allow zero-byte read from NULL, regardless of pointer type */
4542 		if (zero_size_allowed && access_size == 0 &&
4543 		    register_is_null(reg))
4544 			return 0;
4545 
4546 		verbose(env, "R%d type=%s expected=%s\n", regno,
4547 			reg_type_str[reg->type],
4548 			reg_type_str[PTR_TO_STACK]);
4549 		return -EACCES;
4550 	}
4551 }
4552 
4553 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
4554 		   u32 regno, u32 mem_size)
4555 {
4556 	if (register_is_null(reg))
4557 		return 0;
4558 
4559 	if (reg_type_may_be_null(reg->type)) {
4560 		/* Assuming that the register contains a value check if the memory
4561 		 * access is safe. Temporarily save and restore the register's state as
4562 		 * the conversion shouldn't be visible to a caller.
4563 		 */
4564 		const struct bpf_reg_state saved_reg = *reg;
4565 		int rv;
4566 
4567 		mark_ptr_not_null_reg(reg);
4568 		rv = check_helper_mem_access(env, regno, mem_size, true, NULL);
4569 		*reg = saved_reg;
4570 		return rv;
4571 	}
4572 
4573 	return check_helper_mem_access(env, regno, mem_size, true, NULL);
4574 }
4575 
4576 /* Implementation details:
4577  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
4578  * Two bpf_map_lookups (even with the same key) will have different reg->id.
4579  * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
4580  * value_or_null->value transition, since the verifier only cares about
4581  * the range of access to valid map value pointer and doesn't care about actual
4582  * address of the map element.
4583  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
4584  * reg->id > 0 after value_or_null->value transition. By doing so
4585  * two bpf_map_lookups will be considered two different pointers that
4586  * point to different bpf_spin_locks.
4587  * The verifier allows taking only one bpf_spin_lock at a time to avoid
4588  * dead-locks.
4589  * Since only one bpf_spin_lock is allowed the checks are simpler than
4590  * reg_is_refcounted() logic. The verifier needs to remember only
4591  * one spin_lock instead of array of acquired_refs.
4592  * cur_state->active_spin_lock remembers which map value element got locked
4593  * and clears it after bpf_spin_unlock.
4594  */
4595 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
4596 			     bool is_lock)
4597 {
4598 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4599 	struct bpf_verifier_state *cur = env->cur_state;
4600 	bool is_const = tnum_is_const(reg->var_off);
4601 	struct bpf_map *map = reg->map_ptr;
4602 	u64 val = reg->var_off.value;
4603 
4604 	if (!is_const) {
4605 		verbose(env,
4606 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
4607 			regno);
4608 		return -EINVAL;
4609 	}
4610 	if (!map->btf) {
4611 		verbose(env,
4612 			"map '%s' has to have BTF in order to use bpf_spin_lock\n",
4613 			map->name);
4614 		return -EINVAL;
4615 	}
4616 	if (!map_value_has_spin_lock(map)) {
4617 		if (map->spin_lock_off == -E2BIG)
4618 			verbose(env,
4619 				"map '%s' has more than one 'struct bpf_spin_lock'\n",
4620 				map->name);
4621 		else if (map->spin_lock_off == -ENOENT)
4622 			verbose(env,
4623 				"map '%s' doesn't have 'struct bpf_spin_lock'\n",
4624 				map->name);
4625 		else
4626 			verbose(env,
4627 				"map '%s' is not a struct type or bpf_spin_lock is mangled\n",
4628 				map->name);
4629 		return -EINVAL;
4630 	}
4631 	if (map->spin_lock_off != val + reg->off) {
4632 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
4633 			val + reg->off);
4634 		return -EINVAL;
4635 	}
4636 	if (is_lock) {
4637 		if (cur->active_spin_lock) {
4638 			verbose(env,
4639 				"Locking two bpf_spin_locks are not allowed\n");
4640 			return -EINVAL;
4641 		}
4642 		cur->active_spin_lock = reg->id;
4643 	} else {
4644 		if (!cur->active_spin_lock) {
4645 			verbose(env, "bpf_spin_unlock without taking a lock\n");
4646 			return -EINVAL;
4647 		}
4648 		if (cur->active_spin_lock != reg->id) {
4649 			verbose(env, "bpf_spin_unlock of different lock\n");
4650 			return -EINVAL;
4651 		}
4652 		cur->active_spin_lock = 0;
4653 	}
4654 	return 0;
4655 }
4656 
4657 static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
4658 {
4659 	return type == ARG_PTR_TO_MEM ||
4660 	       type == ARG_PTR_TO_MEM_OR_NULL ||
4661 	       type == ARG_PTR_TO_UNINIT_MEM;
4662 }
4663 
4664 static bool arg_type_is_mem_size(enum bpf_arg_type type)
4665 {
4666 	return type == ARG_CONST_SIZE ||
4667 	       type == ARG_CONST_SIZE_OR_ZERO;
4668 }
4669 
4670 static bool arg_type_is_alloc_size(enum bpf_arg_type type)
4671 {
4672 	return type == ARG_CONST_ALLOC_SIZE_OR_ZERO;
4673 }
4674 
4675 static bool arg_type_is_int_ptr(enum bpf_arg_type type)
4676 {
4677 	return type == ARG_PTR_TO_INT ||
4678 	       type == ARG_PTR_TO_LONG;
4679 }
4680 
4681 static int int_ptr_type_to_size(enum bpf_arg_type type)
4682 {
4683 	if (type == ARG_PTR_TO_INT)
4684 		return sizeof(u32);
4685 	else if (type == ARG_PTR_TO_LONG)
4686 		return sizeof(u64);
4687 
4688 	return -EINVAL;
4689 }
4690 
4691 static int resolve_map_arg_type(struct bpf_verifier_env *env,
4692 				 const struct bpf_call_arg_meta *meta,
4693 				 enum bpf_arg_type *arg_type)
4694 {
4695 	if (!meta->map_ptr) {
4696 		/* kernel subsystem misconfigured verifier */
4697 		verbose(env, "invalid map_ptr to access map->type\n");
4698 		return -EACCES;
4699 	}
4700 
4701 	switch (meta->map_ptr->map_type) {
4702 	case BPF_MAP_TYPE_SOCKMAP:
4703 	case BPF_MAP_TYPE_SOCKHASH:
4704 		if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
4705 			*arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
4706 		} else {
4707 			verbose(env, "invalid arg_type for sockmap/sockhash\n");
4708 			return -EINVAL;
4709 		}
4710 		break;
4711 
4712 	default:
4713 		break;
4714 	}
4715 	return 0;
4716 }
4717 
4718 struct bpf_reg_types {
4719 	const enum bpf_reg_type types[10];
4720 	u32 *btf_id;
4721 };
4722 
4723 static const struct bpf_reg_types map_key_value_types = {
4724 	.types = {
4725 		PTR_TO_STACK,
4726 		PTR_TO_PACKET,
4727 		PTR_TO_PACKET_META,
4728 		PTR_TO_MAP_KEY,
4729 		PTR_TO_MAP_VALUE,
4730 	},
4731 };
4732 
4733 static const struct bpf_reg_types sock_types = {
4734 	.types = {
4735 		PTR_TO_SOCK_COMMON,
4736 		PTR_TO_SOCKET,
4737 		PTR_TO_TCP_SOCK,
4738 		PTR_TO_XDP_SOCK,
4739 	},
4740 };
4741 
4742 #ifdef CONFIG_NET
4743 static const struct bpf_reg_types btf_id_sock_common_types = {
4744 	.types = {
4745 		PTR_TO_SOCK_COMMON,
4746 		PTR_TO_SOCKET,
4747 		PTR_TO_TCP_SOCK,
4748 		PTR_TO_XDP_SOCK,
4749 		PTR_TO_BTF_ID,
4750 	},
4751 	.btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
4752 };
4753 #endif
4754 
4755 static const struct bpf_reg_types mem_types = {
4756 	.types = {
4757 		PTR_TO_STACK,
4758 		PTR_TO_PACKET,
4759 		PTR_TO_PACKET_META,
4760 		PTR_TO_MAP_KEY,
4761 		PTR_TO_MAP_VALUE,
4762 		PTR_TO_MEM,
4763 		PTR_TO_RDONLY_BUF,
4764 		PTR_TO_RDWR_BUF,
4765 	},
4766 };
4767 
4768 static const struct bpf_reg_types int_ptr_types = {
4769 	.types = {
4770 		PTR_TO_STACK,
4771 		PTR_TO_PACKET,
4772 		PTR_TO_PACKET_META,
4773 		PTR_TO_MAP_KEY,
4774 		PTR_TO_MAP_VALUE,
4775 	},
4776 };
4777 
4778 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
4779 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
4780 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
4781 static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM } };
4782 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
4783 static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } };
4784 static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } };
4785 static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_PERCPU_BTF_ID } };
4786 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
4787 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
4788 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
4789 
4790 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
4791 	[ARG_PTR_TO_MAP_KEY]		= &map_key_value_types,
4792 	[ARG_PTR_TO_MAP_VALUE]		= &map_key_value_types,
4793 	[ARG_PTR_TO_UNINIT_MAP_VALUE]	= &map_key_value_types,
4794 	[ARG_PTR_TO_MAP_VALUE_OR_NULL]	= &map_key_value_types,
4795 	[ARG_CONST_SIZE]		= &scalar_types,
4796 	[ARG_CONST_SIZE_OR_ZERO]	= &scalar_types,
4797 	[ARG_CONST_ALLOC_SIZE_OR_ZERO]	= &scalar_types,
4798 	[ARG_CONST_MAP_PTR]		= &const_map_ptr_types,
4799 	[ARG_PTR_TO_CTX]		= &context_types,
4800 	[ARG_PTR_TO_CTX_OR_NULL]	= &context_types,
4801 	[ARG_PTR_TO_SOCK_COMMON]	= &sock_types,
4802 #ifdef CONFIG_NET
4803 	[ARG_PTR_TO_BTF_ID_SOCK_COMMON]	= &btf_id_sock_common_types,
4804 #endif
4805 	[ARG_PTR_TO_SOCKET]		= &fullsock_types,
4806 	[ARG_PTR_TO_SOCKET_OR_NULL]	= &fullsock_types,
4807 	[ARG_PTR_TO_BTF_ID]		= &btf_ptr_types,
4808 	[ARG_PTR_TO_SPIN_LOCK]		= &spin_lock_types,
4809 	[ARG_PTR_TO_MEM]		= &mem_types,
4810 	[ARG_PTR_TO_MEM_OR_NULL]	= &mem_types,
4811 	[ARG_PTR_TO_UNINIT_MEM]		= &mem_types,
4812 	[ARG_PTR_TO_ALLOC_MEM]		= &alloc_mem_types,
4813 	[ARG_PTR_TO_ALLOC_MEM_OR_NULL]	= &alloc_mem_types,
4814 	[ARG_PTR_TO_INT]		= &int_ptr_types,
4815 	[ARG_PTR_TO_LONG]		= &int_ptr_types,
4816 	[ARG_PTR_TO_PERCPU_BTF_ID]	= &percpu_btf_ptr_types,
4817 	[ARG_PTR_TO_FUNC]		= &func_ptr_types,
4818 	[ARG_PTR_TO_STACK_OR_NULL]	= &stack_ptr_types,
4819 	[ARG_PTR_TO_CONST_STR]		= &const_str_ptr_types,
4820 };
4821 
4822 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
4823 			  enum bpf_arg_type arg_type,
4824 			  const u32 *arg_btf_id)
4825 {
4826 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4827 	enum bpf_reg_type expected, type = reg->type;
4828 	const struct bpf_reg_types *compatible;
4829 	int i, j;
4830 
4831 	compatible = compatible_reg_types[arg_type];
4832 	if (!compatible) {
4833 		verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
4834 		return -EFAULT;
4835 	}
4836 
4837 	for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
4838 		expected = compatible->types[i];
4839 		if (expected == NOT_INIT)
4840 			break;
4841 
4842 		if (type == expected)
4843 			goto found;
4844 	}
4845 
4846 	verbose(env, "R%d type=%s expected=", regno, reg_type_str[type]);
4847 	for (j = 0; j + 1 < i; j++)
4848 		verbose(env, "%s, ", reg_type_str[compatible->types[j]]);
4849 	verbose(env, "%s\n", reg_type_str[compatible->types[j]]);
4850 	return -EACCES;
4851 
4852 found:
4853 	if (type == PTR_TO_BTF_ID) {
4854 		if (!arg_btf_id) {
4855 			if (!compatible->btf_id) {
4856 				verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
4857 				return -EFAULT;
4858 			}
4859 			arg_btf_id = compatible->btf_id;
4860 		}
4861 
4862 		if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
4863 					  btf_vmlinux, *arg_btf_id)) {
4864 			verbose(env, "R%d is of type %s but %s is expected\n",
4865 				regno, kernel_type_name(reg->btf, reg->btf_id),
4866 				kernel_type_name(btf_vmlinux, *arg_btf_id));
4867 			return -EACCES;
4868 		}
4869 
4870 		if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4871 			verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n",
4872 				regno);
4873 			return -EACCES;
4874 		}
4875 	}
4876 
4877 	return 0;
4878 }
4879 
4880 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
4881 			  struct bpf_call_arg_meta *meta,
4882 			  const struct bpf_func_proto *fn)
4883 {
4884 	u32 regno = BPF_REG_1 + arg;
4885 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4886 	enum bpf_arg_type arg_type = fn->arg_type[arg];
4887 	enum bpf_reg_type type = reg->type;
4888 	int err = 0;
4889 
4890 	if (arg_type == ARG_DONTCARE)
4891 		return 0;
4892 
4893 	err = check_reg_arg(env, regno, SRC_OP);
4894 	if (err)
4895 		return err;
4896 
4897 	if (arg_type == ARG_ANYTHING) {
4898 		if (is_pointer_value(env, regno)) {
4899 			verbose(env, "R%d leaks addr into helper function\n",
4900 				regno);
4901 			return -EACCES;
4902 		}
4903 		return 0;
4904 	}
4905 
4906 	if (type_is_pkt_pointer(type) &&
4907 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
4908 		verbose(env, "helper access to the packet is not allowed\n");
4909 		return -EACCES;
4910 	}
4911 
4912 	if (arg_type == ARG_PTR_TO_MAP_VALUE ||
4913 	    arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE ||
4914 	    arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) {
4915 		err = resolve_map_arg_type(env, meta, &arg_type);
4916 		if (err)
4917 			return err;
4918 	}
4919 
4920 	if (register_is_null(reg) && arg_type_may_be_null(arg_type))
4921 		/* A NULL register has a SCALAR_VALUE type, so skip
4922 		 * type checking.
4923 		 */
4924 		goto skip_type_check;
4925 
4926 	err = check_reg_type(env, regno, arg_type, fn->arg_btf_id[arg]);
4927 	if (err)
4928 		return err;
4929 
4930 	if (type == PTR_TO_CTX) {
4931 		err = check_ctx_reg(env, reg, regno);
4932 		if (err < 0)
4933 			return err;
4934 	}
4935 
4936 skip_type_check:
4937 	if (reg->ref_obj_id) {
4938 		if (meta->ref_obj_id) {
4939 			verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
4940 				regno, reg->ref_obj_id,
4941 				meta->ref_obj_id);
4942 			return -EFAULT;
4943 		}
4944 		meta->ref_obj_id = reg->ref_obj_id;
4945 	}
4946 
4947 	if (arg_type == ARG_CONST_MAP_PTR) {
4948 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
4949 		meta->map_ptr = reg->map_ptr;
4950 	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
4951 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
4952 		 * check that [key, key + map->key_size) are within
4953 		 * stack limits and initialized
4954 		 */
4955 		if (!meta->map_ptr) {
4956 			/* in function declaration map_ptr must come before
4957 			 * map_key, so that it's verified and known before
4958 			 * we have to check map_key here. Otherwise it means
4959 			 * that kernel subsystem misconfigured verifier
4960 			 */
4961 			verbose(env, "invalid map_ptr to access map->key\n");
4962 			return -EACCES;
4963 		}
4964 		err = check_helper_mem_access(env, regno,
4965 					      meta->map_ptr->key_size, false,
4966 					      NULL);
4967 	} else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
4968 		   (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL &&
4969 		    !register_is_null(reg)) ||
4970 		   arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
4971 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
4972 		 * check [value, value + map->value_size) validity
4973 		 */
4974 		if (!meta->map_ptr) {
4975 			/* kernel subsystem misconfigured verifier */
4976 			verbose(env, "invalid map_ptr to access map->value\n");
4977 			return -EACCES;
4978 		}
4979 		meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
4980 		err = check_helper_mem_access(env, regno,
4981 					      meta->map_ptr->value_size, false,
4982 					      meta);
4983 	} else if (arg_type == ARG_PTR_TO_PERCPU_BTF_ID) {
4984 		if (!reg->btf_id) {
4985 			verbose(env, "Helper has invalid btf_id in R%d\n", regno);
4986 			return -EACCES;
4987 		}
4988 		meta->ret_btf = reg->btf;
4989 		meta->ret_btf_id = reg->btf_id;
4990 	} else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
4991 		if (meta->func_id == BPF_FUNC_spin_lock) {
4992 			if (process_spin_lock(env, regno, true))
4993 				return -EACCES;
4994 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
4995 			if (process_spin_lock(env, regno, false))
4996 				return -EACCES;
4997 		} else {
4998 			verbose(env, "verifier internal error\n");
4999 			return -EFAULT;
5000 		}
5001 	} else if (arg_type == ARG_PTR_TO_FUNC) {
5002 		meta->subprogno = reg->subprogno;
5003 	} else if (arg_type_is_mem_ptr(arg_type)) {
5004 		/* The access to this pointer is only checked when we hit the
5005 		 * next is_mem_size argument below.
5006 		 */
5007 		meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MEM);
5008 	} else if (arg_type_is_mem_size(arg_type)) {
5009 		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
5010 
5011 		/* This is used to refine r0 return value bounds for helpers
5012 		 * that enforce this value as an upper bound on return values.
5013 		 * See do_refine_retval_range() for helpers that can refine
5014 		 * the return value. C type of helper is u32 so we pull register
5015 		 * bound from umax_value however, if negative verifier errors
5016 		 * out. Only upper bounds can be learned because retval is an
5017 		 * int type and negative retvals are allowed.
5018 		 */
5019 		meta->msize_max_value = reg->umax_value;
5020 
5021 		/* The register is SCALAR_VALUE; the access check
5022 		 * happens using its boundaries.
5023 		 */
5024 		if (!tnum_is_const(reg->var_off))
5025 			/* For unprivileged variable accesses, disable raw
5026 			 * mode so that the program is required to
5027 			 * initialize all the memory that the helper could
5028 			 * just partially fill up.
5029 			 */
5030 			meta = NULL;
5031 
5032 		if (reg->smin_value < 0) {
5033 			verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
5034 				regno);
5035 			return -EACCES;
5036 		}
5037 
5038 		if (reg->umin_value == 0) {
5039 			err = check_helper_mem_access(env, regno - 1, 0,
5040 						      zero_size_allowed,
5041 						      meta);
5042 			if (err)
5043 				return err;
5044 		}
5045 
5046 		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
5047 			verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
5048 				regno);
5049 			return -EACCES;
5050 		}
5051 		err = check_helper_mem_access(env, regno - 1,
5052 					      reg->umax_value,
5053 					      zero_size_allowed, meta);
5054 		if (!err)
5055 			err = mark_chain_precision(env, regno);
5056 	} else if (arg_type_is_alloc_size(arg_type)) {
5057 		if (!tnum_is_const(reg->var_off)) {
5058 			verbose(env, "R%d is not a known constant'\n",
5059 				regno);
5060 			return -EACCES;
5061 		}
5062 		meta->mem_size = reg->var_off.value;
5063 	} else if (arg_type_is_int_ptr(arg_type)) {
5064 		int size = int_ptr_type_to_size(arg_type);
5065 
5066 		err = check_helper_mem_access(env, regno, size, false, meta);
5067 		if (err)
5068 			return err;
5069 		err = check_ptr_alignment(env, reg, 0, size, true);
5070 	} else if (arg_type == ARG_PTR_TO_CONST_STR) {
5071 		struct bpf_map *map = reg->map_ptr;
5072 		int map_off;
5073 		u64 map_addr;
5074 		char *str_ptr;
5075 
5076 		if (!bpf_map_is_rdonly(map)) {
5077 			verbose(env, "R%d does not point to a readonly map'\n", regno);
5078 			return -EACCES;
5079 		}
5080 
5081 		if (!tnum_is_const(reg->var_off)) {
5082 			verbose(env, "R%d is not a constant address'\n", regno);
5083 			return -EACCES;
5084 		}
5085 
5086 		if (!map->ops->map_direct_value_addr) {
5087 			verbose(env, "no direct value access support for this map type\n");
5088 			return -EACCES;
5089 		}
5090 
5091 		err = check_map_access(env, regno, reg->off,
5092 				       map->value_size - reg->off, false);
5093 		if (err)
5094 			return err;
5095 
5096 		map_off = reg->off + reg->var_off.value;
5097 		err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
5098 		if (err) {
5099 			verbose(env, "direct value access on string failed\n");
5100 			return err;
5101 		}
5102 
5103 		str_ptr = (char *)(long)(map_addr);
5104 		if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
5105 			verbose(env, "string is not zero-terminated\n");
5106 			return -EINVAL;
5107 		}
5108 	}
5109 
5110 	return err;
5111 }
5112 
5113 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
5114 {
5115 	enum bpf_attach_type eatype = env->prog->expected_attach_type;
5116 	enum bpf_prog_type type = resolve_prog_type(env->prog);
5117 
5118 	if (func_id != BPF_FUNC_map_update_elem)
5119 		return false;
5120 
5121 	/* It's not possible to get access to a locked struct sock in these
5122 	 * contexts, so updating is safe.
5123 	 */
5124 	switch (type) {
5125 	case BPF_PROG_TYPE_TRACING:
5126 		if (eatype == BPF_TRACE_ITER)
5127 			return true;
5128 		break;
5129 	case BPF_PROG_TYPE_SOCKET_FILTER:
5130 	case BPF_PROG_TYPE_SCHED_CLS:
5131 	case BPF_PROG_TYPE_SCHED_ACT:
5132 	case BPF_PROG_TYPE_XDP:
5133 	case BPF_PROG_TYPE_SK_REUSEPORT:
5134 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
5135 	case BPF_PROG_TYPE_SK_LOOKUP:
5136 		return true;
5137 	default:
5138 		break;
5139 	}
5140 
5141 	verbose(env, "cannot update sockmap in this context\n");
5142 	return false;
5143 }
5144 
5145 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
5146 {
5147 	return env->prog->jit_requested && IS_ENABLED(CONFIG_X86_64);
5148 }
5149 
5150 static int check_map_func_compatibility(struct bpf_verifier_env *env,
5151 					struct bpf_map *map, int func_id)
5152 {
5153 	if (!map)
5154 		return 0;
5155 
5156 	/* We need a two way check, first is from map perspective ... */
5157 	switch (map->map_type) {
5158 	case BPF_MAP_TYPE_PROG_ARRAY:
5159 		if (func_id != BPF_FUNC_tail_call)
5160 			goto error;
5161 		break;
5162 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
5163 		if (func_id != BPF_FUNC_perf_event_read &&
5164 		    func_id != BPF_FUNC_perf_event_output &&
5165 		    func_id != BPF_FUNC_skb_output &&
5166 		    func_id != BPF_FUNC_perf_event_read_value &&
5167 		    func_id != BPF_FUNC_xdp_output)
5168 			goto error;
5169 		break;
5170 	case BPF_MAP_TYPE_RINGBUF:
5171 		if (func_id != BPF_FUNC_ringbuf_output &&
5172 		    func_id != BPF_FUNC_ringbuf_reserve &&
5173 		    func_id != BPF_FUNC_ringbuf_submit &&
5174 		    func_id != BPF_FUNC_ringbuf_discard &&
5175 		    func_id != BPF_FUNC_ringbuf_query)
5176 			goto error;
5177 		break;
5178 	case BPF_MAP_TYPE_STACK_TRACE:
5179 		if (func_id != BPF_FUNC_get_stackid)
5180 			goto error;
5181 		break;
5182 	case BPF_MAP_TYPE_CGROUP_ARRAY:
5183 		if (func_id != BPF_FUNC_skb_under_cgroup &&
5184 		    func_id != BPF_FUNC_current_task_under_cgroup)
5185 			goto error;
5186 		break;
5187 	case BPF_MAP_TYPE_CGROUP_STORAGE:
5188 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
5189 		if (func_id != BPF_FUNC_get_local_storage)
5190 			goto error;
5191 		break;
5192 	case BPF_MAP_TYPE_DEVMAP:
5193 	case BPF_MAP_TYPE_DEVMAP_HASH:
5194 		if (func_id != BPF_FUNC_redirect_map &&
5195 		    func_id != BPF_FUNC_map_lookup_elem)
5196 			goto error;
5197 		break;
5198 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
5199 	 * appear.
5200 	 */
5201 	case BPF_MAP_TYPE_CPUMAP:
5202 		if (func_id != BPF_FUNC_redirect_map)
5203 			goto error;
5204 		break;
5205 	case BPF_MAP_TYPE_XSKMAP:
5206 		if (func_id != BPF_FUNC_redirect_map &&
5207 		    func_id != BPF_FUNC_map_lookup_elem)
5208 			goto error;
5209 		break;
5210 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
5211 	case BPF_MAP_TYPE_HASH_OF_MAPS:
5212 		if (func_id != BPF_FUNC_map_lookup_elem)
5213 			goto error;
5214 		break;
5215 	case BPF_MAP_TYPE_SOCKMAP:
5216 		if (func_id != BPF_FUNC_sk_redirect_map &&
5217 		    func_id != BPF_FUNC_sock_map_update &&
5218 		    func_id != BPF_FUNC_map_delete_elem &&
5219 		    func_id != BPF_FUNC_msg_redirect_map &&
5220 		    func_id != BPF_FUNC_sk_select_reuseport &&
5221 		    func_id != BPF_FUNC_map_lookup_elem &&
5222 		    !may_update_sockmap(env, func_id))
5223 			goto error;
5224 		break;
5225 	case BPF_MAP_TYPE_SOCKHASH:
5226 		if (func_id != BPF_FUNC_sk_redirect_hash &&
5227 		    func_id != BPF_FUNC_sock_hash_update &&
5228 		    func_id != BPF_FUNC_map_delete_elem &&
5229 		    func_id != BPF_FUNC_msg_redirect_hash &&
5230 		    func_id != BPF_FUNC_sk_select_reuseport &&
5231 		    func_id != BPF_FUNC_map_lookup_elem &&
5232 		    !may_update_sockmap(env, func_id))
5233 			goto error;
5234 		break;
5235 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
5236 		if (func_id != BPF_FUNC_sk_select_reuseport)
5237 			goto error;
5238 		break;
5239 	case BPF_MAP_TYPE_QUEUE:
5240 	case BPF_MAP_TYPE_STACK:
5241 		if (func_id != BPF_FUNC_map_peek_elem &&
5242 		    func_id != BPF_FUNC_map_pop_elem &&
5243 		    func_id != BPF_FUNC_map_push_elem)
5244 			goto error;
5245 		break;
5246 	case BPF_MAP_TYPE_SK_STORAGE:
5247 		if (func_id != BPF_FUNC_sk_storage_get &&
5248 		    func_id != BPF_FUNC_sk_storage_delete)
5249 			goto error;
5250 		break;
5251 	case BPF_MAP_TYPE_INODE_STORAGE:
5252 		if (func_id != BPF_FUNC_inode_storage_get &&
5253 		    func_id != BPF_FUNC_inode_storage_delete)
5254 			goto error;
5255 		break;
5256 	case BPF_MAP_TYPE_TASK_STORAGE:
5257 		if (func_id != BPF_FUNC_task_storage_get &&
5258 		    func_id != BPF_FUNC_task_storage_delete)
5259 			goto error;
5260 		break;
5261 	default:
5262 		break;
5263 	}
5264 
5265 	/* ... and second from the function itself. */
5266 	switch (func_id) {
5267 	case BPF_FUNC_tail_call:
5268 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
5269 			goto error;
5270 		if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
5271 			verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
5272 			return -EINVAL;
5273 		}
5274 		break;
5275 	case BPF_FUNC_perf_event_read:
5276 	case BPF_FUNC_perf_event_output:
5277 	case BPF_FUNC_perf_event_read_value:
5278 	case BPF_FUNC_skb_output:
5279 	case BPF_FUNC_xdp_output:
5280 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
5281 			goto error;
5282 		break;
5283 	case BPF_FUNC_get_stackid:
5284 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
5285 			goto error;
5286 		break;
5287 	case BPF_FUNC_current_task_under_cgroup:
5288 	case BPF_FUNC_skb_under_cgroup:
5289 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
5290 			goto error;
5291 		break;
5292 	case BPF_FUNC_redirect_map:
5293 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
5294 		    map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
5295 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
5296 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
5297 			goto error;
5298 		break;
5299 	case BPF_FUNC_sk_redirect_map:
5300 	case BPF_FUNC_msg_redirect_map:
5301 	case BPF_FUNC_sock_map_update:
5302 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
5303 			goto error;
5304 		break;
5305 	case BPF_FUNC_sk_redirect_hash:
5306 	case BPF_FUNC_msg_redirect_hash:
5307 	case BPF_FUNC_sock_hash_update:
5308 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
5309 			goto error;
5310 		break;
5311 	case BPF_FUNC_get_local_storage:
5312 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
5313 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
5314 			goto error;
5315 		break;
5316 	case BPF_FUNC_sk_select_reuseport:
5317 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
5318 		    map->map_type != BPF_MAP_TYPE_SOCKMAP &&
5319 		    map->map_type != BPF_MAP_TYPE_SOCKHASH)
5320 			goto error;
5321 		break;
5322 	case BPF_FUNC_map_peek_elem:
5323 	case BPF_FUNC_map_pop_elem:
5324 	case BPF_FUNC_map_push_elem:
5325 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
5326 		    map->map_type != BPF_MAP_TYPE_STACK)
5327 			goto error;
5328 		break;
5329 	case BPF_FUNC_sk_storage_get:
5330 	case BPF_FUNC_sk_storage_delete:
5331 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
5332 			goto error;
5333 		break;
5334 	case BPF_FUNC_inode_storage_get:
5335 	case BPF_FUNC_inode_storage_delete:
5336 		if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
5337 			goto error;
5338 		break;
5339 	case BPF_FUNC_task_storage_get:
5340 	case BPF_FUNC_task_storage_delete:
5341 		if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
5342 			goto error;
5343 		break;
5344 	default:
5345 		break;
5346 	}
5347 
5348 	return 0;
5349 error:
5350 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
5351 		map->map_type, func_id_name(func_id), func_id);
5352 	return -EINVAL;
5353 }
5354 
5355 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
5356 {
5357 	int count = 0;
5358 
5359 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
5360 		count++;
5361 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
5362 		count++;
5363 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
5364 		count++;
5365 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
5366 		count++;
5367 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
5368 		count++;
5369 
5370 	/* We only support one arg being in raw mode at the moment,
5371 	 * which is sufficient for the helper functions we have
5372 	 * right now.
5373 	 */
5374 	return count <= 1;
5375 }
5376 
5377 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
5378 				    enum bpf_arg_type arg_next)
5379 {
5380 	return (arg_type_is_mem_ptr(arg_curr) &&
5381 	        !arg_type_is_mem_size(arg_next)) ||
5382 	       (!arg_type_is_mem_ptr(arg_curr) &&
5383 		arg_type_is_mem_size(arg_next));
5384 }
5385 
5386 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
5387 {
5388 	/* bpf_xxx(..., buf, len) call will access 'len'
5389 	 * bytes from memory 'buf'. Both arg types need
5390 	 * to be paired, so make sure there's no buggy
5391 	 * helper function specification.
5392 	 */
5393 	if (arg_type_is_mem_size(fn->arg1_type) ||
5394 	    arg_type_is_mem_ptr(fn->arg5_type)  ||
5395 	    check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
5396 	    check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
5397 	    check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
5398 	    check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
5399 		return false;
5400 
5401 	return true;
5402 }
5403 
5404 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
5405 {
5406 	int count = 0;
5407 
5408 	if (arg_type_may_be_refcounted(fn->arg1_type))
5409 		count++;
5410 	if (arg_type_may_be_refcounted(fn->arg2_type))
5411 		count++;
5412 	if (arg_type_may_be_refcounted(fn->arg3_type))
5413 		count++;
5414 	if (arg_type_may_be_refcounted(fn->arg4_type))
5415 		count++;
5416 	if (arg_type_may_be_refcounted(fn->arg5_type))
5417 		count++;
5418 
5419 	/* A reference acquiring function cannot acquire
5420 	 * another refcounted ptr.
5421 	 */
5422 	if (may_be_acquire_function(func_id) && count)
5423 		return false;
5424 
5425 	/* We only support one arg being unreferenced at the moment,
5426 	 * which is sufficient for the helper functions we have right now.
5427 	 */
5428 	return count <= 1;
5429 }
5430 
5431 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
5432 {
5433 	int i;
5434 
5435 	for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
5436 		if (fn->arg_type[i] == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i])
5437 			return false;
5438 
5439 		if (fn->arg_type[i] != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i])
5440 			return false;
5441 	}
5442 
5443 	return true;
5444 }
5445 
5446 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
5447 {
5448 	return check_raw_mode_ok(fn) &&
5449 	       check_arg_pair_ok(fn) &&
5450 	       check_btf_id_ok(fn) &&
5451 	       check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
5452 }
5453 
5454 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
5455  * are now invalid, so turn them into unknown SCALAR_VALUE.
5456  */
5457 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
5458 				     struct bpf_func_state *state)
5459 {
5460 	struct bpf_reg_state *regs = state->regs, *reg;
5461 	int i;
5462 
5463 	for (i = 0; i < MAX_BPF_REG; i++)
5464 		if (reg_is_pkt_pointer_any(&regs[i]))
5465 			mark_reg_unknown(env, regs, i);
5466 
5467 	bpf_for_each_spilled_reg(i, state, reg) {
5468 		if (!reg)
5469 			continue;
5470 		if (reg_is_pkt_pointer_any(reg))
5471 			__mark_reg_unknown(env, reg);
5472 	}
5473 }
5474 
5475 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
5476 {
5477 	struct bpf_verifier_state *vstate = env->cur_state;
5478 	int i;
5479 
5480 	for (i = 0; i <= vstate->curframe; i++)
5481 		__clear_all_pkt_pointers(env, vstate->frame[i]);
5482 }
5483 
5484 enum {
5485 	AT_PKT_END = -1,
5486 	BEYOND_PKT_END = -2,
5487 };
5488 
5489 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
5490 {
5491 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5492 	struct bpf_reg_state *reg = &state->regs[regn];
5493 
5494 	if (reg->type != PTR_TO_PACKET)
5495 		/* PTR_TO_PACKET_META is not supported yet */
5496 		return;
5497 
5498 	/* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
5499 	 * How far beyond pkt_end it goes is unknown.
5500 	 * if (!range_open) it's the case of pkt >= pkt_end
5501 	 * if (range_open) it's the case of pkt > pkt_end
5502 	 * hence this pointer is at least 1 byte bigger than pkt_end
5503 	 */
5504 	if (range_open)
5505 		reg->range = BEYOND_PKT_END;
5506 	else
5507 		reg->range = AT_PKT_END;
5508 }
5509 
5510 static void release_reg_references(struct bpf_verifier_env *env,
5511 				   struct bpf_func_state *state,
5512 				   int ref_obj_id)
5513 {
5514 	struct bpf_reg_state *regs = state->regs, *reg;
5515 	int i;
5516 
5517 	for (i = 0; i < MAX_BPF_REG; i++)
5518 		if (regs[i].ref_obj_id == ref_obj_id)
5519 			mark_reg_unknown(env, regs, i);
5520 
5521 	bpf_for_each_spilled_reg(i, state, reg) {
5522 		if (!reg)
5523 			continue;
5524 		if (reg->ref_obj_id == ref_obj_id)
5525 			__mark_reg_unknown(env, reg);
5526 	}
5527 }
5528 
5529 /* The pointer with the specified id has released its reference to kernel
5530  * resources. Identify all copies of the same pointer and clear the reference.
5531  */
5532 static int release_reference(struct bpf_verifier_env *env,
5533 			     int ref_obj_id)
5534 {
5535 	struct bpf_verifier_state *vstate = env->cur_state;
5536 	int err;
5537 	int i;
5538 
5539 	err = release_reference_state(cur_func(env), ref_obj_id);
5540 	if (err)
5541 		return err;
5542 
5543 	for (i = 0; i <= vstate->curframe; i++)
5544 		release_reg_references(env, vstate->frame[i], ref_obj_id);
5545 
5546 	return 0;
5547 }
5548 
5549 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
5550 				    struct bpf_reg_state *regs)
5551 {
5552 	int i;
5553 
5554 	/* after the call registers r0 - r5 were scratched */
5555 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
5556 		mark_reg_not_init(env, regs, caller_saved[i]);
5557 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
5558 	}
5559 }
5560 
5561 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
5562 				   struct bpf_func_state *caller,
5563 				   struct bpf_func_state *callee,
5564 				   int insn_idx);
5565 
5566 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
5567 			     int *insn_idx, int subprog,
5568 			     set_callee_state_fn set_callee_state_cb)
5569 {
5570 	struct bpf_verifier_state *state = env->cur_state;
5571 	struct bpf_func_info_aux *func_info_aux;
5572 	struct bpf_func_state *caller, *callee;
5573 	int err;
5574 	bool is_global = false;
5575 
5576 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
5577 		verbose(env, "the call stack of %d frames is too deep\n",
5578 			state->curframe + 2);
5579 		return -E2BIG;
5580 	}
5581 
5582 	caller = state->frame[state->curframe];
5583 	if (state->frame[state->curframe + 1]) {
5584 		verbose(env, "verifier bug. Frame %d already allocated\n",
5585 			state->curframe + 1);
5586 		return -EFAULT;
5587 	}
5588 
5589 	func_info_aux = env->prog->aux->func_info_aux;
5590 	if (func_info_aux)
5591 		is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
5592 	err = btf_check_subprog_arg_match(env, subprog, caller->regs);
5593 	if (err == -EFAULT)
5594 		return err;
5595 	if (is_global) {
5596 		if (err) {
5597 			verbose(env, "Caller passes invalid args into func#%d\n",
5598 				subprog);
5599 			return err;
5600 		} else {
5601 			if (env->log.level & BPF_LOG_LEVEL)
5602 				verbose(env,
5603 					"Func#%d is global and valid. Skipping.\n",
5604 					subprog);
5605 			clear_caller_saved_regs(env, caller->regs);
5606 
5607 			/* All global functions return a 64-bit SCALAR_VALUE */
5608 			mark_reg_unknown(env, caller->regs, BPF_REG_0);
5609 			caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
5610 
5611 			/* continue with next insn after call */
5612 			return 0;
5613 		}
5614 	}
5615 
5616 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
5617 	if (!callee)
5618 		return -ENOMEM;
5619 	state->frame[state->curframe + 1] = callee;
5620 
5621 	/* callee cannot access r0, r6 - r9 for reading and has to write
5622 	 * into its own stack before reading from it.
5623 	 * callee can read/write into caller's stack
5624 	 */
5625 	init_func_state(env, callee,
5626 			/* remember the callsite, it will be used by bpf_exit */
5627 			*insn_idx /* callsite */,
5628 			state->curframe + 1 /* frameno within this callchain */,
5629 			subprog /* subprog number within this prog */);
5630 
5631 	/* Transfer references to the callee */
5632 	err = transfer_reference_state(callee, caller);
5633 	if (err)
5634 		return err;
5635 
5636 	err = set_callee_state_cb(env, caller, callee, *insn_idx);
5637 	if (err)
5638 		return err;
5639 
5640 	clear_caller_saved_regs(env, caller->regs);
5641 
5642 	/* only increment it after check_reg_arg() finished */
5643 	state->curframe++;
5644 
5645 	/* and go analyze first insn of the callee */
5646 	*insn_idx = env->subprog_info[subprog].start - 1;
5647 
5648 	if (env->log.level & BPF_LOG_LEVEL) {
5649 		verbose(env, "caller:\n");
5650 		print_verifier_state(env, caller);
5651 		verbose(env, "callee:\n");
5652 		print_verifier_state(env, callee);
5653 	}
5654 	return 0;
5655 }
5656 
5657 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
5658 				   struct bpf_func_state *caller,
5659 				   struct bpf_func_state *callee)
5660 {
5661 	/* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
5662 	 *      void *callback_ctx, u64 flags);
5663 	 * callback_fn(struct bpf_map *map, void *key, void *value,
5664 	 *      void *callback_ctx);
5665 	 */
5666 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
5667 
5668 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
5669 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
5670 	callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
5671 
5672 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
5673 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
5674 	callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
5675 
5676 	/* pointer to stack or null */
5677 	callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
5678 
5679 	/* unused */
5680 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
5681 	return 0;
5682 }
5683 
5684 static int set_callee_state(struct bpf_verifier_env *env,
5685 			    struct bpf_func_state *caller,
5686 			    struct bpf_func_state *callee, int insn_idx)
5687 {
5688 	int i;
5689 
5690 	/* copy r1 - r5 args that callee can access.  The copy includes parent
5691 	 * pointers, which connects us up to the liveness chain
5692 	 */
5693 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
5694 		callee->regs[i] = caller->regs[i];
5695 	return 0;
5696 }
5697 
5698 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
5699 			   int *insn_idx)
5700 {
5701 	int subprog, target_insn;
5702 
5703 	target_insn = *insn_idx + insn->imm + 1;
5704 	subprog = find_subprog(env, target_insn);
5705 	if (subprog < 0) {
5706 		verbose(env, "verifier bug. No program starts at insn %d\n",
5707 			target_insn);
5708 		return -EFAULT;
5709 	}
5710 
5711 	return __check_func_call(env, insn, insn_idx, subprog, set_callee_state);
5712 }
5713 
5714 static int set_map_elem_callback_state(struct bpf_verifier_env *env,
5715 				       struct bpf_func_state *caller,
5716 				       struct bpf_func_state *callee,
5717 				       int insn_idx)
5718 {
5719 	struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
5720 	struct bpf_map *map;
5721 	int err;
5722 
5723 	if (bpf_map_ptr_poisoned(insn_aux)) {
5724 		verbose(env, "tail_call abusing map_ptr\n");
5725 		return -EINVAL;
5726 	}
5727 
5728 	map = BPF_MAP_PTR(insn_aux->map_ptr_state);
5729 	if (!map->ops->map_set_for_each_callback_args ||
5730 	    !map->ops->map_for_each_callback) {
5731 		verbose(env, "callback function not allowed for map\n");
5732 		return -ENOTSUPP;
5733 	}
5734 
5735 	err = map->ops->map_set_for_each_callback_args(env, caller, callee);
5736 	if (err)
5737 		return err;
5738 
5739 	callee->in_callback_fn = true;
5740 	return 0;
5741 }
5742 
5743 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
5744 {
5745 	struct bpf_verifier_state *state = env->cur_state;
5746 	struct bpf_func_state *caller, *callee;
5747 	struct bpf_reg_state *r0;
5748 	int err;
5749 
5750 	callee = state->frame[state->curframe];
5751 	r0 = &callee->regs[BPF_REG_0];
5752 	if (r0->type == PTR_TO_STACK) {
5753 		/* technically it's ok to return caller's stack pointer
5754 		 * (or caller's caller's pointer) back to the caller,
5755 		 * since these pointers are valid. Only current stack
5756 		 * pointer will be invalid as soon as function exits,
5757 		 * but let's be conservative
5758 		 */
5759 		verbose(env, "cannot return stack pointer to the caller\n");
5760 		return -EINVAL;
5761 	}
5762 
5763 	state->curframe--;
5764 	caller = state->frame[state->curframe];
5765 	if (callee->in_callback_fn) {
5766 		/* enforce R0 return value range [0, 1]. */
5767 		struct tnum range = tnum_range(0, 1);
5768 
5769 		if (r0->type != SCALAR_VALUE) {
5770 			verbose(env, "R0 not a scalar value\n");
5771 			return -EACCES;
5772 		}
5773 		if (!tnum_in(range, r0->var_off)) {
5774 			verbose_invalid_scalar(env, r0, &range, "callback return", "R0");
5775 			return -EINVAL;
5776 		}
5777 	} else {
5778 		/* return to the caller whatever r0 had in the callee */
5779 		caller->regs[BPF_REG_0] = *r0;
5780 	}
5781 
5782 	/* Transfer references to the caller */
5783 	err = transfer_reference_state(caller, callee);
5784 	if (err)
5785 		return err;
5786 
5787 	*insn_idx = callee->callsite + 1;
5788 	if (env->log.level & BPF_LOG_LEVEL) {
5789 		verbose(env, "returning from callee:\n");
5790 		print_verifier_state(env, callee);
5791 		verbose(env, "to caller at %d:\n", *insn_idx);
5792 		print_verifier_state(env, caller);
5793 	}
5794 	/* clear everything in the callee */
5795 	free_func_state(callee);
5796 	state->frame[state->curframe + 1] = NULL;
5797 	return 0;
5798 }
5799 
5800 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
5801 				   int func_id,
5802 				   struct bpf_call_arg_meta *meta)
5803 {
5804 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
5805 
5806 	if (ret_type != RET_INTEGER ||
5807 	    (func_id != BPF_FUNC_get_stack &&
5808 	     func_id != BPF_FUNC_get_task_stack &&
5809 	     func_id != BPF_FUNC_probe_read_str &&
5810 	     func_id != BPF_FUNC_probe_read_kernel_str &&
5811 	     func_id != BPF_FUNC_probe_read_user_str))
5812 		return;
5813 
5814 	ret_reg->smax_value = meta->msize_max_value;
5815 	ret_reg->s32_max_value = meta->msize_max_value;
5816 	ret_reg->smin_value = -MAX_ERRNO;
5817 	ret_reg->s32_min_value = -MAX_ERRNO;
5818 	__reg_deduce_bounds(ret_reg);
5819 	__reg_bound_offset(ret_reg);
5820 	__update_reg_bounds(ret_reg);
5821 }
5822 
5823 static int
5824 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
5825 		int func_id, int insn_idx)
5826 {
5827 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
5828 	struct bpf_map *map = meta->map_ptr;
5829 
5830 	if (func_id != BPF_FUNC_tail_call &&
5831 	    func_id != BPF_FUNC_map_lookup_elem &&
5832 	    func_id != BPF_FUNC_map_update_elem &&
5833 	    func_id != BPF_FUNC_map_delete_elem &&
5834 	    func_id != BPF_FUNC_map_push_elem &&
5835 	    func_id != BPF_FUNC_map_pop_elem &&
5836 	    func_id != BPF_FUNC_map_peek_elem &&
5837 	    func_id != BPF_FUNC_for_each_map_elem &&
5838 	    func_id != BPF_FUNC_redirect_map)
5839 		return 0;
5840 
5841 	if (map == NULL) {
5842 		verbose(env, "kernel subsystem misconfigured verifier\n");
5843 		return -EINVAL;
5844 	}
5845 
5846 	/* In case of read-only, some additional restrictions
5847 	 * need to be applied in order to prevent altering the
5848 	 * state of the map from program side.
5849 	 */
5850 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
5851 	    (func_id == BPF_FUNC_map_delete_elem ||
5852 	     func_id == BPF_FUNC_map_update_elem ||
5853 	     func_id == BPF_FUNC_map_push_elem ||
5854 	     func_id == BPF_FUNC_map_pop_elem)) {
5855 		verbose(env, "write into map forbidden\n");
5856 		return -EACCES;
5857 	}
5858 
5859 	if (!BPF_MAP_PTR(aux->map_ptr_state))
5860 		bpf_map_ptr_store(aux, meta->map_ptr,
5861 				  !meta->map_ptr->bypass_spec_v1);
5862 	else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
5863 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
5864 				  !meta->map_ptr->bypass_spec_v1);
5865 	return 0;
5866 }
5867 
5868 static int
5869 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
5870 		int func_id, int insn_idx)
5871 {
5872 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
5873 	struct bpf_reg_state *regs = cur_regs(env), *reg;
5874 	struct bpf_map *map = meta->map_ptr;
5875 	struct tnum range;
5876 	u64 val;
5877 	int err;
5878 
5879 	if (func_id != BPF_FUNC_tail_call)
5880 		return 0;
5881 	if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
5882 		verbose(env, "kernel subsystem misconfigured verifier\n");
5883 		return -EINVAL;
5884 	}
5885 
5886 	range = tnum_range(0, map->max_entries - 1);
5887 	reg = &regs[BPF_REG_3];
5888 
5889 	if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) {
5890 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
5891 		return 0;
5892 	}
5893 
5894 	err = mark_chain_precision(env, BPF_REG_3);
5895 	if (err)
5896 		return err;
5897 
5898 	val = reg->var_off.value;
5899 	if (bpf_map_key_unseen(aux))
5900 		bpf_map_key_store(aux, val);
5901 	else if (!bpf_map_key_poisoned(aux) &&
5902 		  bpf_map_key_immediate(aux) != val)
5903 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
5904 	return 0;
5905 }
5906 
5907 static int check_reference_leak(struct bpf_verifier_env *env)
5908 {
5909 	struct bpf_func_state *state = cur_func(env);
5910 	int i;
5911 
5912 	for (i = 0; i < state->acquired_refs; i++) {
5913 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
5914 			state->refs[i].id, state->refs[i].insn_idx);
5915 	}
5916 	return state->acquired_refs ? -EINVAL : 0;
5917 }
5918 
5919 static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
5920 				   struct bpf_reg_state *regs)
5921 {
5922 	struct bpf_reg_state *fmt_reg = &regs[BPF_REG_3];
5923 	struct bpf_reg_state *data_len_reg = &regs[BPF_REG_5];
5924 	struct bpf_map *fmt_map = fmt_reg->map_ptr;
5925 	int err, fmt_map_off, num_args;
5926 	u64 fmt_addr;
5927 	char *fmt;
5928 
5929 	/* data must be an array of u64 */
5930 	if (data_len_reg->var_off.value % 8)
5931 		return -EINVAL;
5932 	num_args = data_len_reg->var_off.value / 8;
5933 
5934 	/* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
5935 	 * and map_direct_value_addr is set.
5936 	 */
5937 	fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
5938 	err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
5939 						  fmt_map_off);
5940 	if (err) {
5941 		verbose(env, "verifier bug\n");
5942 		return -EFAULT;
5943 	}
5944 	fmt = (char *)(long)fmt_addr + fmt_map_off;
5945 
5946 	/* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
5947 	 * can focus on validating the format specifiers.
5948 	 */
5949 	err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, NULL, num_args);
5950 	if (err < 0)
5951 		verbose(env, "Invalid format string\n");
5952 
5953 	return err;
5954 }
5955 
5956 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
5957 			     int *insn_idx_p)
5958 {
5959 	const struct bpf_func_proto *fn = NULL;
5960 	struct bpf_reg_state *regs;
5961 	struct bpf_call_arg_meta meta;
5962 	int insn_idx = *insn_idx_p;
5963 	bool changes_data;
5964 	int i, err, func_id;
5965 
5966 	/* find function prototype */
5967 	func_id = insn->imm;
5968 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
5969 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
5970 			func_id);
5971 		return -EINVAL;
5972 	}
5973 
5974 	if (env->ops->get_func_proto)
5975 		fn = env->ops->get_func_proto(func_id, env->prog);
5976 	if (!fn) {
5977 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
5978 			func_id);
5979 		return -EINVAL;
5980 	}
5981 
5982 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
5983 	if (!env->prog->gpl_compatible && fn->gpl_only) {
5984 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
5985 		return -EINVAL;
5986 	}
5987 
5988 	if (fn->allowed && !fn->allowed(env->prog)) {
5989 		verbose(env, "helper call is not allowed in probe\n");
5990 		return -EINVAL;
5991 	}
5992 
5993 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
5994 	changes_data = bpf_helper_changes_pkt_data(fn->func);
5995 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
5996 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
5997 			func_id_name(func_id), func_id);
5998 		return -EINVAL;
5999 	}
6000 
6001 	memset(&meta, 0, sizeof(meta));
6002 	meta.pkt_access = fn->pkt_access;
6003 
6004 	err = check_func_proto(fn, func_id);
6005 	if (err) {
6006 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
6007 			func_id_name(func_id), func_id);
6008 		return err;
6009 	}
6010 
6011 	meta.func_id = func_id;
6012 	/* check args */
6013 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
6014 		err = check_func_arg(env, i, &meta, fn);
6015 		if (err)
6016 			return err;
6017 	}
6018 
6019 	err = record_func_map(env, &meta, func_id, insn_idx);
6020 	if (err)
6021 		return err;
6022 
6023 	err = record_func_key(env, &meta, func_id, insn_idx);
6024 	if (err)
6025 		return err;
6026 
6027 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
6028 	 * is inferred from register state.
6029 	 */
6030 	for (i = 0; i < meta.access_size; i++) {
6031 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
6032 				       BPF_WRITE, -1, false);
6033 		if (err)
6034 			return err;
6035 	}
6036 
6037 	if (func_id == BPF_FUNC_tail_call) {
6038 		err = check_reference_leak(env);
6039 		if (err) {
6040 			verbose(env, "tail_call would lead to reference leak\n");
6041 			return err;
6042 		}
6043 	} else if (is_release_function(func_id)) {
6044 		err = release_reference(env, meta.ref_obj_id);
6045 		if (err) {
6046 			verbose(env, "func %s#%d reference has not been acquired before\n",
6047 				func_id_name(func_id), func_id);
6048 			return err;
6049 		}
6050 	}
6051 
6052 	regs = cur_regs(env);
6053 
6054 	/* check that flags argument in get_local_storage(map, flags) is 0,
6055 	 * this is required because get_local_storage() can't return an error.
6056 	 */
6057 	if (func_id == BPF_FUNC_get_local_storage &&
6058 	    !register_is_null(&regs[BPF_REG_2])) {
6059 		verbose(env, "get_local_storage() doesn't support non-zero flags\n");
6060 		return -EINVAL;
6061 	}
6062 
6063 	if (func_id == BPF_FUNC_for_each_map_elem) {
6064 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
6065 					set_map_elem_callback_state);
6066 		if (err < 0)
6067 			return -EINVAL;
6068 	}
6069 
6070 	if (func_id == BPF_FUNC_snprintf) {
6071 		err = check_bpf_snprintf_call(env, regs);
6072 		if (err < 0)
6073 			return err;
6074 	}
6075 
6076 	/* reset caller saved regs */
6077 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
6078 		mark_reg_not_init(env, regs, caller_saved[i]);
6079 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
6080 	}
6081 
6082 	/* helper call returns 64-bit value. */
6083 	regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
6084 
6085 	/* update return register (already marked as written above) */
6086 	if (fn->ret_type == RET_INTEGER) {
6087 		/* sets type to SCALAR_VALUE */
6088 		mark_reg_unknown(env, regs, BPF_REG_0);
6089 	} else if (fn->ret_type == RET_VOID) {
6090 		regs[BPF_REG_0].type = NOT_INIT;
6091 	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
6092 		   fn->ret_type == RET_PTR_TO_MAP_VALUE) {
6093 		/* There is no offset yet applied, variable or fixed */
6094 		mark_reg_known_zero(env, regs, BPF_REG_0);
6095 		/* remember map_ptr, so that check_map_access()
6096 		 * can check 'value_size' boundary of memory access
6097 		 * to map element returned from bpf_map_lookup_elem()
6098 		 */
6099 		if (meta.map_ptr == NULL) {
6100 			verbose(env,
6101 				"kernel subsystem misconfigured verifier\n");
6102 			return -EINVAL;
6103 		}
6104 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
6105 		if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
6106 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
6107 			if (map_value_has_spin_lock(meta.map_ptr))
6108 				regs[BPF_REG_0].id = ++env->id_gen;
6109 		} else {
6110 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
6111 		}
6112 	} else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
6113 		mark_reg_known_zero(env, regs, BPF_REG_0);
6114 		regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
6115 	} else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) {
6116 		mark_reg_known_zero(env, regs, BPF_REG_0);
6117 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL;
6118 	} else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
6119 		mark_reg_known_zero(env, regs, BPF_REG_0);
6120 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
6121 	} else if (fn->ret_type == RET_PTR_TO_ALLOC_MEM_OR_NULL) {
6122 		mark_reg_known_zero(env, regs, BPF_REG_0);
6123 		regs[BPF_REG_0].type = PTR_TO_MEM_OR_NULL;
6124 		regs[BPF_REG_0].mem_size = meta.mem_size;
6125 	} else if (fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID_OR_NULL ||
6126 		   fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID) {
6127 		const struct btf_type *t;
6128 
6129 		mark_reg_known_zero(env, regs, BPF_REG_0);
6130 		t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
6131 		if (!btf_type_is_struct(t)) {
6132 			u32 tsize;
6133 			const struct btf_type *ret;
6134 			const char *tname;
6135 
6136 			/* resolve the type size of ksym. */
6137 			ret = btf_resolve_size(meta.ret_btf, t, &tsize);
6138 			if (IS_ERR(ret)) {
6139 				tname = btf_name_by_offset(meta.ret_btf, t->name_off);
6140 				verbose(env, "unable to resolve the size of type '%s': %ld\n",
6141 					tname, PTR_ERR(ret));
6142 				return -EINVAL;
6143 			}
6144 			regs[BPF_REG_0].type =
6145 				fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ?
6146 				PTR_TO_MEM : PTR_TO_MEM_OR_NULL;
6147 			regs[BPF_REG_0].mem_size = tsize;
6148 		} else {
6149 			regs[BPF_REG_0].type =
6150 				fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ?
6151 				PTR_TO_BTF_ID : PTR_TO_BTF_ID_OR_NULL;
6152 			regs[BPF_REG_0].btf = meta.ret_btf;
6153 			regs[BPF_REG_0].btf_id = meta.ret_btf_id;
6154 		}
6155 	} else if (fn->ret_type == RET_PTR_TO_BTF_ID_OR_NULL ||
6156 		   fn->ret_type == RET_PTR_TO_BTF_ID) {
6157 		int ret_btf_id;
6158 
6159 		mark_reg_known_zero(env, regs, BPF_REG_0);
6160 		regs[BPF_REG_0].type = fn->ret_type == RET_PTR_TO_BTF_ID ?
6161 						     PTR_TO_BTF_ID :
6162 						     PTR_TO_BTF_ID_OR_NULL;
6163 		ret_btf_id = *fn->ret_btf_id;
6164 		if (ret_btf_id == 0) {
6165 			verbose(env, "invalid return type %d of func %s#%d\n",
6166 				fn->ret_type, func_id_name(func_id), func_id);
6167 			return -EINVAL;
6168 		}
6169 		/* current BPF helper definitions are only coming from
6170 		 * built-in code with type IDs from  vmlinux BTF
6171 		 */
6172 		regs[BPF_REG_0].btf = btf_vmlinux;
6173 		regs[BPF_REG_0].btf_id = ret_btf_id;
6174 	} else {
6175 		verbose(env, "unknown return type %d of func %s#%d\n",
6176 			fn->ret_type, func_id_name(func_id), func_id);
6177 		return -EINVAL;
6178 	}
6179 
6180 	if (reg_type_may_be_null(regs[BPF_REG_0].type))
6181 		regs[BPF_REG_0].id = ++env->id_gen;
6182 
6183 	if (is_ptr_cast_function(func_id)) {
6184 		/* For release_reference() */
6185 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
6186 	} else if (is_acquire_function(func_id, meta.map_ptr)) {
6187 		int id = acquire_reference_state(env, insn_idx);
6188 
6189 		if (id < 0)
6190 			return id;
6191 		/* For mark_ptr_or_null_reg() */
6192 		regs[BPF_REG_0].id = id;
6193 		/* For release_reference() */
6194 		regs[BPF_REG_0].ref_obj_id = id;
6195 	}
6196 
6197 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
6198 
6199 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
6200 	if (err)
6201 		return err;
6202 
6203 	if ((func_id == BPF_FUNC_get_stack ||
6204 	     func_id == BPF_FUNC_get_task_stack) &&
6205 	    !env->prog->has_callchain_buf) {
6206 		const char *err_str;
6207 
6208 #ifdef CONFIG_PERF_EVENTS
6209 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
6210 		err_str = "cannot get callchain buffer for func %s#%d\n";
6211 #else
6212 		err = -ENOTSUPP;
6213 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
6214 #endif
6215 		if (err) {
6216 			verbose(env, err_str, func_id_name(func_id), func_id);
6217 			return err;
6218 		}
6219 
6220 		env->prog->has_callchain_buf = true;
6221 	}
6222 
6223 	if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
6224 		env->prog->call_get_stack = true;
6225 
6226 	if (changes_data)
6227 		clear_all_pkt_pointers(env);
6228 	return 0;
6229 }
6230 
6231 /* mark_btf_func_reg_size() is used when the reg size is determined by
6232  * the BTF func_proto's return value size and argument.
6233  */
6234 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
6235 				   size_t reg_size)
6236 {
6237 	struct bpf_reg_state *reg = &cur_regs(env)[regno];
6238 
6239 	if (regno == BPF_REG_0) {
6240 		/* Function return value */
6241 		reg->live |= REG_LIVE_WRITTEN;
6242 		reg->subreg_def = reg_size == sizeof(u64) ?
6243 			DEF_NOT_SUBREG : env->insn_idx + 1;
6244 	} else {
6245 		/* Function argument */
6246 		if (reg_size == sizeof(u64)) {
6247 			mark_insn_zext(env, reg);
6248 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
6249 		} else {
6250 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
6251 		}
6252 	}
6253 }
6254 
6255 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn)
6256 {
6257 	const struct btf_type *t, *func, *func_proto, *ptr_type;
6258 	struct bpf_reg_state *regs = cur_regs(env);
6259 	const char *func_name, *ptr_type_name;
6260 	u32 i, nargs, func_id, ptr_type_id;
6261 	const struct btf_param *args;
6262 	int err;
6263 
6264 	func_id = insn->imm;
6265 	func = btf_type_by_id(btf_vmlinux, func_id);
6266 	func_name = btf_name_by_offset(btf_vmlinux, func->name_off);
6267 	func_proto = btf_type_by_id(btf_vmlinux, func->type);
6268 
6269 	if (!env->ops->check_kfunc_call ||
6270 	    !env->ops->check_kfunc_call(func_id)) {
6271 		verbose(env, "calling kernel function %s is not allowed\n",
6272 			func_name);
6273 		return -EACCES;
6274 	}
6275 
6276 	/* Check the arguments */
6277 	err = btf_check_kfunc_arg_match(env, btf_vmlinux, func_id, regs);
6278 	if (err)
6279 		return err;
6280 
6281 	for (i = 0; i < CALLER_SAVED_REGS; i++)
6282 		mark_reg_not_init(env, regs, caller_saved[i]);
6283 
6284 	/* Check return type */
6285 	t = btf_type_skip_modifiers(btf_vmlinux, func_proto->type, NULL);
6286 	if (btf_type_is_scalar(t)) {
6287 		mark_reg_unknown(env, regs, BPF_REG_0);
6288 		mark_btf_func_reg_size(env, BPF_REG_0, t->size);
6289 	} else if (btf_type_is_ptr(t)) {
6290 		ptr_type = btf_type_skip_modifiers(btf_vmlinux, t->type,
6291 						   &ptr_type_id);
6292 		if (!btf_type_is_struct(ptr_type)) {
6293 			ptr_type_name = btf_name_by_offset(btf_vmlinux,
6294 							   ptr_type->name_off);
6295 			verbose(env, "kernel function %s returns pointer type %s %s is not supported\n",
6296 				func_name, btf_type_str(ptr_type),
6297 				ptr_type_name);
6298 			return -EINVAL;
6299 		}
6300 		mark_reg_known_zero(env, regs, BPF_REG_0);
6301 		regs[BPF_REG_0].btf = btf_vmlinux;
6302 		regs[BPF_REG_0].type = PTR_TO_BTF_ID;
6303 		regs[BPF_REG_0].btf_id = ptr_type_id;
6304 		mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
6305 	} /* else { add_kfunc_call() ensures it is btf_type_is_void(t) } */
6306 
6307 	nargs = btf_type_vlen(func_proto);
6308 	args = (const struct btf_param *)(func_proto + 1);
6309 	for (i = 0; i < nargs; i++) {
6310 		u32 regno = i + 1;
6311 
6312 		t = btf_type_skip_modifiers(btf_vmlinux, args[i].type, NULL);
6313 		if (btf_type_is_ptr(t))
6314 			mark_btf_func_reg_size(env, regno, sizeof(void *));
6315 		else
6316 			/* scalar. ensured by btf_check_kfunc_arg_match() */
6317 			mark_btf_func_reg_size(env, regno, t->size);
6318 	}
6319 
6320 	return 0;
6321 }
6322 
6323 static bool signed_add_overflows(s64 a, s64 b)
6324 {
6325 	/* Do the add in u64, where overflow is well-defined */
6326 	s64 res = (s64)((u64)a + (u64)b);
6327 
6328 	if (b < 0)
6329 		return res > a;
6330 	return res < a;
6331 }
6332 
6333 static bool signed_add32_overflows(s32 a, s32 b)
6334 {
6335 	/* Do the add in u32, where overflow is well-defined */
6336 	s32 res = (s32)((u32)a + (u32)b);
6337 
6338 	if (b < 0)
6339 		return res > a;
6340 	return res < a;
6341 }
6342 
6343 static bool signed_sub_overflows(s64 a, s64 b)
6344 {
6345 	/* Do the sub in u64, where overflow is well-defined */
6346 	s64 res = (s64)((u64)a - (u64)b);
6347 
6348 	if (b < 0)
6349 		return res < a;
6350 	return res > a;
6351 }
6352 
6353 static bool signed_sub32_overflows(s32 a, s32 b)
6354 {
6355 	/* Do the sub in u32, where overflow is well-defined */
6356 	s32 res = (s32)((u32)a - (u32)b);
6357 
6358 	if (b < 0)
6359 		return res < a;
6360 	return res > a;
6361 }
6362 
6363 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
6364 				  const struct bpf_reg_state *reg,
6365 				  enum bpf_reg_type type)
6366 {
6367 	bool known = tnum_is_const(reg->var_off);
6368 	s64 val = reg->var_off.value;
6369 	s64 smin = reg->smin_value;
6370 
6371 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
6372 		verbose(env, "math between %s pointer and %lld is not allowed\n",
6373 			reg_type_str[type], val);
6374 		return false;
6375 	}
6376 
6377 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
6378 		verbose(env, "%s pointer offset %d is not allowed\n",
6379 			reg_type_str[type], reg->off);
6380 		return false;
6381 	}
6382 
6383 	if (smin == S64_MIN) {
6384 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
6385 			reg_type_str[type]);
6386 		return false;
6387 	}
6388 
6389 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
6390 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
6391 			smin, reg_type_str[type]);
6392 		return false;
6393 	}
6394 
6395 	return true;
6396 }
6397 
6398 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
6399 {
6400 	return &env->insn_aux_data[env->insn_idx];
6401 }
6402 
6403 enum {
6404 	REASON_BOUNDS	= -1,
6405 	REASON_TYPE	= -2,
6406 	REASON_PATHS	= -3,
6407 	REASON_LIMIT	= -4,
6408 	REASON_STACK	= -5,
6409 };
6410 
6411 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
6412 			      const struct bpf_reg_state *off_reg,
6413 			      u32 *alu_limit, u8 opcode)
6414 {
6415 	bool off_is_neg = off_reg->smin_value < 0;
6416 	bool mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
6417 			    (opcode == BPF_SUB && !off_is_neg);
6418 	u32 max = 0, ptr_limit = 0;
6419 
6420 	if (!tnum_is_const(off_reg->var_off) &&
6421 	    (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
6422 		return REASON_BOUNDS;
6423 
6424 	switch (ptr_reg->type) {
6425 	case PTR_TO_STACK:
6426 		/* Offset 0 is out-of-bounds, but acceptable start for the
6427 		 * left direction, see BPF_REG_FP. Also, unknown scalar
6428 		 * offset where we would need to deal with min/max bounds is
6429 		 * currently prohibited for unprivileged.
6430 		 */
6431 		max = MAX_BPF_STACK + mask_to_left;
6432 		ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
6433 		break;
6434 	case PTR_TO_MAP_VALUE:
6435 		max = ptr_reg->map_ptr->value_size;
6436 		ptr_limit = (mask_to_left ?
6437 			     ptr_reg->smin_value :
6438 			     ptr_reg->umax_value) + ptr_reg->off;
6439 		break;
6440 	default:
6441 		return REASON_TYPE;
6442 	}
6443 
6444 	if (ptr_limit >= max)
6445 		return REASON_LIMIT;
6446 	*alu_limit = ptr_limit;
6447 	return 0;
6448 }
6449 
6450 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
6451 				    const struct bpf_insn *insn)
6452 {
6453 	return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
6454 }
6455 
6456 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
6457 				       u32 alu_state, u32 alu_limit)
6458 {
6459 	/* If we arrived here from different branches with different
6460 	 * state or limits to sanitize, then this won't work.
6461 	 */
6462 	if (aux->alu_state &&
6463 	    (aux->alu_state != alu_state ||
6464 	     aux->alu_limit != alu_limit))
6465 		return REASON_PATHS;
6466 
6467 	/* Corresponding fixup done in do_misc_fixups(). */
6468 	aux->alu_state = alu_state;
6469 	aux->alu_limit = alu_limit;
6470 	return 0;
6471 }
6472 
6473 static int sanitize_val_alu(struct bpf_verifier_env *env,
6474 			    struct bpf_insn *insn)
6475 {
6476 	struct bpf_insn_aux_data *aux = cur_aux(env);
6477 
6478 	if (can_skip_alu_sanitation(env, insn))
6479 		return 0;
6480 
6481 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
6482 }
6483 
6484 static bool sanitize_needed(u8 opcode)
6485 {
6486 	return opcode == BPF_ADD || opcode == BPF_SUB;
6487 }
6488 
6489 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
6490 			    struct bpf_insn *insn,
6491 			    const struct bpf_reg_state *ptr_reg,
6492 			    const struct bpf_reg_state *off_reg,
6493 			    struct bpf_reg_state *dst_reg,
6494 			    struct bpf_insn_aux_data *tmp_aux,
6495 			    const bool commit_window)
6496 {
6497 	struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : tmp_aux;
6498 	struct bpf_verifier_state *vstate = env->cur_state;
6499 	bool off_is_imm = tnum_is_const(off_reg->var_off);
6500 	bool off_is_neg = off_reg->smin_value < 0;
6501 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
6502 	u8 opcode = BPF_OP(insn->code);
6503 	u32 alu_state, alu_limit;
6504 	struct bpf_reg_state tmp;
6505 	bool ret;
6506 	int err;
6507 
6508 	if (can_skip_alu_sanitation(env, insn))
6509 		return 0;
6510 
6511 	/* We already marked aux for masking from non-speculative
6512 	 * paths, thus we got here in the first place. We only care
6513 	 * to explore bad access from here.
6514 	 */
6515 	if (vstate->speculative)
6516 		goto do_sim;
6517 
6518 	err = retrieve_ptr_limit(ptr_reg, off_reg, &alu_limit, opcode);
6519 	if (err < 0)
6520 		return err;
6521 
6522 	if (commit_window) {
6523 		/* In commit phase we narrow the masking window based on
6524 		 * the observed pointer move after the simulated operation.
6525 		 */
6526 		alu_state = tmp_aux->alu_state;
6527 		alu_limit = abs(tmp_aux->alu_limit - alu_limit);
6528 	} else {
6529 		alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
6530 		alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
6531 		alu_state |= ptr_is_dst_reg ?
6532 			     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
6533 	}
6534 
6535 	err = update_alu_sanitation_state(aux, alu_state, alu_limit);
6536 	if (err < 0)
6537 		return err;
6538 do_sim:
6539 	/* If we're in commit phase, we're done here given we already
6540 	 * pushed the truncated dst_reg into the speculative verification
6541 	 * stack.
6542 	 */
6543 	if (commit_window)
6544 		return 0;
6545 
6546 	/* Simulate and find potential out-of-bounds access under
6547 	 * speculative execution from truncation as a result of
6548 	 * masking when off was not within expected range. If off
6549 	 * sits in dst, then we temporarily need to move ptr there
6550 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
6551 	 * for cases where we use K-based arithmetic in one direction
6552 	 * and truncated reg-based in the other in order to explore
6553 	 * bad access.
6554 	 */
6555 	if (!ptr_is_dst_reg) {
6556 		tmp = *dst_reg;
6557 		*dst_reg = *ptr_reg;
6558 	}
6559 	ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true);
6560 	if (!ptr_is_dst_reg && ret)
6561 		*dst_reg = tmp;
6562 	return !ret ? REASON_STACK : 0;
6563 }
6564 
6565 static int sanitize_err(struct bpf_verifier_env *env,
6566 			const struct bpf_insn *insn, int reason,
6567 			const struct bpf_reg_state *off_reg,
6568 			const struct bpf_reg_state *dst_reg)
6569 {
6570 	static const char *err = "pointer arithmetic with it prohibited for !root";
6571 	const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
6572 	u32 dst = insn->dst_reg, src = insn->src_reg;
6573 
6574 	switch (reason) {
6575 	case REASON_BOUNDS:
6576 		verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
6577 			off_reg == dst_reg ? dst : src, err);
6578 		break;
6579 	case REASON_TYPE:
6580 		verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
6581 			off_reg == dst_reg ? src : dst, err);
6582 		break;
6583 	case REASON_PATHS:
6584 		verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
6585 			dst, op, err);
6586 		break;
6587 	case REASON_LIMIT:
6588 		verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
6589 			dst, op, err);
6590 		break;
6591 	case REASON_STACK:
6592 		verbose(env, "R%d could not be pushed for speculative verification, %s\n",
6593 			dst, err);
6594 		break;
6595 	default:
6596 		verbose(env, "verifier internal error: unknown reason (%d)\n",
6597 			reason);
6598 		break;
6599 	}
6600 
6601 	return -EACCES;
6602 }
6603 
6604 /* check that stack access falls within stack limits and that 'reg' doesn't
6605  * have a variable offset.
6606  *
6607  * Variable offset is prohibited for unprivileged mode for simplicity since it
6608  * requires corresponding support in Spectre masking for stack ALU.  See also
6609  * retrieve_ptr_limit().
6610  *
6611  *
6612  * 'off' includes 'reg->off'.
6613  */
6614 static int check_stack_access_for_ptr_arithmetic(
6615 				struct bpf_verifier_env *env,
6616 				int regno,
6617 				const struct bpf_reg_state *reg,
6618 				int off)
6619 {
6620 	if (!tnum_is_const(reg->var_off)) {
6621 		char tn_buf[48];
6622 
6623 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6624 		verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
6625 			regno, tn_buf, off);
6626 		return -EACCES;
6627 	}
6628 
6629 	if (off >= 0 || off < -MAX_BPF_STACK) {
6630 		verbose(env, "R%d stack pointer arithmetic goes out of range, "
6631 			"prohibited for !root; off=%d\n", regno, off);
6632 		return -EACCES;
6633 	}
6634 
6635 	return 0;
6636 }
6637 
6638 static int sanitize_check_bounds(struct bpf_verifier_env *env,
6639 				 const struct bpf_insn *insn,
6640 				 const struct bpf_reg_state *dst_reg)
6641 {
6642 	u32 dst = insn->dst_reg;
6643 
6644 	/* For unprivileged we require that resulting offset must be in bounds
6645 	 * in order to be able to sanitize access later on.
6646 	 */
6647 	if (env->bypass_spec_v1)
6648 		return 0;
6649 
6650 	switch (dst_reg->type) {
6651 	case PTR_TO_STACK:
6652 		if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
6653 					dst_reg->off + dst_reg->var_off.value))
6654 			return -EACCES;
6655 		break;
6656 	case PTR_TO_MAP_VALUE:
6657 		if (check_map_access(env, dst, dst_reg->off, 1, false)) {
6658 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
6659 				"prohibited for !root\n", dst);
6660 			return -EACCES;
6661 		}
6662 		break;
6663 	default:
6664 		break;
6665 	}
6666 
6667 	return 0;
6668 }
6669 
6670 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
6671  * Caller should also handle BPF_MOV case separately.
6672  * If we return -EACCES, caller may want to try again treating pointer as a
6673  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
6674  */
6675 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
6676 				   struct bpf_insn *insn,
6677 				   const struct bpf_reg_state *ptr_reg,
6678 				   const struct bpf_reg_state *off_reg)
6679 {
6680 	struct bpf_verifier_state *vstate = env->cur_state;
6681 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
6682 	struct bpf_reg_state *regs = state->regs, *dst_reg;
6683 	bool known = tnum_is_const(off_reg->var_off);
6684 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
6685 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
6686 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
6687 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
6688 	struct bpf_insn_aux_data tmp_aux = {};
6689 	u8 opcode = BPF_OP(insn->code);
6690 	u32 dst = insn->dst_reg;
6691 	int ret;
6692 
6693 	dst_reg = &regs[dst];
6694 
6695 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
6696 	    smin_val > smax_val || umin_val > umax_val) {
6697 		/* Taint dst register if offset had invalid bounds derived from
6698 		 * e.g. dead branches.
6699 		 */
6700 		__mark_reg_unknown(env, dst_reg);
6701 		return 0;
6702 	}
6703 
6704 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
6705 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
6706 		if (opcode == BPF_SUB && env->allow_ptr_leaks) {
6707 			__mark_reg_unknown(env, dst_reg);
6708 			return 0;
6709 		}
6710 
6711 		verbose(env,
6712 			"R%d 32-bit pointer arithmetic prohibited\n",
6713 			dst);
6714 		return -EACCES;
6715 	}
6716 
6717 	switch (ptr_reg->type) {
6718 	case PTR_TO_MAP_VALUE_OR_NULL:
6719 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
6720 			dst, reg_type_str[ptr_reg->type]);
6721 		return -EACCES;
6722 	case CONST_PTR_TO_MAP:
6723 		/* smin_val represents the known value */
6724 		if (known && smin_val == 0 && opcode == BPF_ADD)
6725 			break;
6726 		fallthrough;
6727 	case PTR_TO_PACKET_END:
6728 	case PTR_TO_SOCKET:
6729 	case PTR_TO_SOCKET_OR_NULL:
6730 	case PTR_TO_SOCK_COMMON:
6731 	case PTR_TO_SOCK_COMMON_OR_NULL:
6732 	case PTR_TO_TCP_SOCK:
6733 	case PTR_TO_TCP_SOCK_OR_NULL:
6734 	case PTR_TO_XDP_SOCK:
6735 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
6736 			dst, reg_type_str[ptr_reg->type]);
6737 		return -EACCES;
6738 	default:
6739 		break;
6740 	}
6741 
6742 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
6743 	 * The id may be overwritten later if we create a new variable offset.
6744 	 */
6745 	dst_reg->type = ptr_reg->type;
6746 	dst_reg->id = ptr_reg->id;
6747 
6748 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
6749 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
6750 		return -EINVAL;
6751 
6752 	/* pointer types do not carry 32-bit bounds at the moment. */
6753 	__mark_reg32_unbounded(dst_reg);
6754 
6755 	if (sanitize_needed(opcode)) {
6756 		ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
6757 				       &tmp_aux, false);
6758 		if (ret < 0)
6759 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
6760 	}
6761 
6762 	switch (opcode) {
6763 	case BPF_ADD:
6764 		/* We can take a fixed offset as long as it doesn't overflow
6765 		 * the s32 'off' field
6766 		 */
6767 		if (known && (ptr_reg->off + smin_val ==
6768 			      (s64)(s32)(ptr_reg->off + smin_val))) {
6769 			/* pointer += K.  Accumulate it into fixed offset */
6770 			dst_reg->smin_value = smin_ptr;
6771 			dst_reg->smax_value = smax_ptr;
6772 			dst_reg->umin_value = umin_ptr;
6773 			dst_reg->umax_value = umax_ptr;
6774 			dst_reg->var_off = ptr_reg->var_off;
6775 			dst_reg->off = ptr_reg->off + smin_val;
6776 			dst_reg->raw = ptr_reg->raw;
6777 			break;
6778 		}
6779 		/* A new variable offset is created.  Note that off_reg->off
6780 		 * == 0, since it's a scalar.
6781 		 * dst_reg gets the pointer type and since some positive
6782 		 * integer value was added to the pointer, give it a new 'id'
6783 		 * if it's a PTR_TO_PACKET.
6784 		 * this creates a new 'base' pointer, off_reg (variable) gets
6785 		 * added into the variable offset, and we copy the fixed offset
6786 		 * from ptr_reg.
6787 		 */
6788 		if (signed_add_overflows(smin_ptr, smin_val) ||
6789 		    signed_add_overflows(smax_ptr, smax_val)) {
6790 			dst_reg->smin_value = S64_MIN;
6791 			dst_reg->smax_value = S64_MAX;
6792 		} else {
6793 			dst_reg->smin_value = smin_ptr + smin_val;
6794 			dst_reg->smax_value = smax_ptr + smax_val;
6795 		}
6796 		if (umin_ptr + umin_val < umin_ptr ||
6797 		    umax_ptr + umax_val < umax_ptr) {
6798 			dst_reg->umin_value = 0;
6799 			dst_reg->umax_value = U64_MAX;
6800 		} else {
6801 			dst_reg->umin_value = umin_ptr + umin_val;
6802 			dst_reg->umax_value = umax_ptr + umax_val;
6803 		}
6804 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
6805 		dst_reg->off = ptr_reg->off;
6806 		dst_reg->raw = ptr_reg->raw;
6807 		if (reg_is_pkt_pointer(ptr_reg)) {
6808 			dst_reg->id = ++env->id_gen;
6809 			/* something was added to pkt_ptr, set range to zero */
6810 			memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
6811 		}
6812 		break;
6813 	case BPF_SUB:
6814 		if (dst_reg == off_reg) {
6815 			/* scalar -= pointer.  Creates an unknown scalar */
6816 			verbose(env, "R%d tried to subtract pointer from scalar\n",
6817 				dst);
6818 			return -EACCES;
6819 		}
6820 		/* We don't allow subtraction from FP, because (according to
6821 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
6822 		 * be able to deal with it.
6823 		 */
6824 		if (ptr_reg->type == PTR_TO_STACK) {
6825 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
6826 				dst);
6827 			return -EACCES;
6828 		}
6829 		if (known && (ptr_reg->off - smin_val ==
6830 			      (s64)(s32)(ptr_reg->off - smin_val))) {
6831 			/* pointer -= K.  Subtract it from fixed offset */
6832 			dst_reg->smin_value = smin_ptr;
6833 			dst_reg->smax_value = smax_ptr;
6834 			dst_reg->umin_value = umin_ptr;
6835 			dst_reg->umax_value = umax_ptr;
6836 			dst_reg->var_off = ptr_reg->var_off;
6837 			dst_reg->id = ptr_reg->id;
6838 			dst_reg->off = ptr_reg->off - smin_val;
6839 			dst_reg->raw = ptr_reg->raw;
6840 			break;
6841 		}
6842 		/* A new variable offset is created.  If the subtrahend is known
6843 		 * nonnegative, then any reg->range we had before is still good.
6844 		 */
6845 		if (signed_sub_overflows(smin_ptr, smax_val) ||
6846 		    signed_sub_overflows(smax_ptr, smin_val)) {
6847 			/* Overflow possible, we know nothing */
6848 			dst_reg->smin_value = S64_MIN;
6849 			dst_reg->smax_value = S64_MAX;
6850 		} else {
6851 			dst_reg->smin_value = smin_ptr - smax_val;
6852 			dst_reg->smax_value = smax_ptr - smin_val;
6853 		}
6854 		if (umin_ptr < umax_val) {
6855 			/* Overflow possible, we know nothing */
6856 			dst_reg->umin_value = 0;
6857 			dst_reg->umax_value = U64_MAX;
6858 		} else {
6859 			/* Cannot overflow (as long as bounds are consistent) */
6860 			dst_reg->umin_value = umin_ptr - umax_val;
6861 			dst_reg->umax_value = umax_ptr - umin_val;
6862 		}
6863 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
6864 		dst_reg->off = ptr_reg->off;
6865 		dst_reg->raw = ptr_reg->raw;
6866 		if (reg_is_pkt_pointer(ptr_reg)) {
6867 			dst_reg->id = ++env->id_gen;
6868 			/* something was added to pkt_ptr, set range to zero */
6869 			if (smin_val < 0)
6870 				memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
6871 		}
6872 		break;
6873 	case BPF_AND:
6874 	case BPF_OR:
6875 	case BPF_XOR:
6876 		/* bitwise ops on pointers are troublesome, prohibit. */
6877 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
6878 			dst, bpf_alu_string[opcode >> 4]);
6879 		return -EACCES;
6880 	default:
6881 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
6882 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
6883 			dst, bpf_alu_string[opcode >> 4]);
6884 		return -EACCES;
6885 	}
6886 
6887 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
6888 		return -EINVAL;
6889 
6890 	__update_reg_bounds(dst_reg);
6891 	__reg_deduce_bounds(dst_reg);
6892 	__reg_bound_offset(dst_reg);
6893 
6894 	if (sanitize_check_bounds(env, insn, dst_reg) < 0)
6895 		return -EACCES;
6896 	if (sanitize_needed(opcode)) {
6897 		ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
6898 				       &tmp_aux, true);
6899 		if (ret < 0)
6900 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
6901 	}
6902 
6903 	return 0;
6904 }
6905 
6906 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
6907 				 struct bpf_reg_state *src_reg)
6908 {
6909 	s32 smin_val = src_reg->s32_min_value;
6910 	s32 smax_val = src_reg->s32_max_value;
6911 	u32 umin_val = src_reg->u32_min_value;
6912 	u32 umax_val = src_reg->u32_max_value;
6913 
6914 	if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
6915 	    signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
6916 		dst_reg->s32_min_value = S32_MIN;
6917 		dst_reg->s32_max_value = S32_MAX;
6918 	} else {
6919 		dst_reg->s32_min_value += smin_val;
6920 		dst_reg->s32_max_value += smax_val;
6921 	}
6922 	if (dst_reg->u32_min_value + umin_val < umin_val ||
6923 	    dst_reg->u32_max_value + umax_val < umax_val) {
6924 		dst_reg->u32_min_value = 0;
6925 		dst_reg->u32_max_value = U32_MAX;
6926 	} else {
6927 		dst_reg->u32_min_value += umin_val;
6928 		dst_reg->u32_max_value += umax_val;
6929 	}
6930 }
6931 
6932 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
6933 			       struct bpf_reg_state *src_reg)
6934 {
6935 	s64 smin_val = src_reg->smin_value;
6936 	s64 smax_val = src_reg->smax_value;
6937 	u64 umin_val = src_reg->umin_value;
6938 	u64 umax_val = src_reg->umax_value;
6939 
6940 	if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
6941 	    signed_add_overflows(dst_reg->smax_value, smax_val)) {
6942 		dst_reg->smin_value = S64_MIN;
6943 		dst_reg->smax_value = S64_MAX;
6944 	} else {
6945 		dst_reg->smin_value += smin_val;
6946 		dst_reg->smax_value += smax_val;
6947 	}
6948 	if (dst_reg->umin_value + umin_val < umin_val ||
6949 	    dst_reg->umax_value + umax_val < umax_val) {
6950 		dst_reg->umin_value = 0;
6951 		dst_reg->umax_value = U64_MAX;
6952 	} else {
6953 		dst_reg->umin_value += umin_val;
6954 		dst_reg->umax_value += umax_val;
6955 	}
6956 }
6957 
6958 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
6959 				 struct bpf_reg_state *src_reg)
6960 {
6961 	s32 smin_val = src_reg->s32_min_value;
6962 	s32 smax_val = src_reg->s32_max_value;
6963 	u32 umin_val = src_reg->u32_min_value;
6964 	u32 umax_val = src_reg->u32_max_value;
6965 
6966 	if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
6967 	    signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
6968 		/* Overflow possible, we know nothing */
6969 		dst_reg->s32_min_value = S32_MIN;
6970 		dst_reg->s32_max_value = S32_MAX;
6971 	} else {
6972 		dst_reg->s32_min_value -= smax_val;
6973 		dst_reg->s32_max_value -= smin_val;
6974 	}
6975 	if (dst_reg->u32_min_value < umax_val) {
6976 		/* Overflow possible, we know nothing */
6977 		dst_reg->u32_min_value = 0;
6978 		dst_reg->u32_max_value = U32_MAX;
6979 	} else {
6980 		/* Cannot overflow (as long as bounds are consistent) */
6981 		dst_reg->u32_min_value -= umax_val;
6982 		dst_reg->u32_max_value -= umin_val;
6983 	}
6984 }
6985 
6986 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
6987 			       struct bpf_reg_state *src_reg)
6988 {
6989 	s64 smin_val = src_reg->smin_value;
6990 	s64 smax_val = src_reg->smax_value;
6991 	u64 umin_val = src_reg->umin_value;
6992 	u64 umax_val = src_reg->umax_value;
6993 
6994 	if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
6995 	    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
6996 		/* Overflow possible, we know nothing */
6997 		dst_reg->smin_value = S64_MIN;
6998 		dst_reg->smax_value = S64_MAX;
6999 	} else {
7000 		dst_reg->smin_value -= smax_val;
7001 		dst_reg->smax_value -= smin_val;
7002 	}
7003 	if (dst_reg->umin_value < umax_val) {
7004 		/* Overflow possible, we know nothing */
7005 		dst_reg->umin_value = 0;
7006 		dst_reg->umax_value = U64_MAX;
7007 	} else {
7008 		/* Cannot overflow (as long as bounds are consistent) */
7009 		dst_reg->umin_value -= umax_val;
7010 		dst_reg->umax_value -= umin_val;
7011 	}
7012 }
7013 
7014 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
7015 				 struct bpf_reg_state *src_reg)
7016 {
7017 	s32 smin_val = src_reg->s32_min_value;
7018 	u32 umin_val = src_reg->u32_min_value;
7019 	u32 umax_val = src_reg->u32_max_value;
7020 
7021 	if (smin_val < 0 || dst_reg->s32_min_value < 0) {
7022 		/* Ain't nobody got time to multiply that sign */
7023 		__mark_reg32_unbounded(dst_reg);
7024 		return;
7025 	}
7026 	/* Both values are positive, so we can work with unsigned and
7027 	 * copy the result to signed (unless it exceeds S32_MAX).
7028 	 */
7029 	if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
7030 		/* Potential overflow, we know nothing */
7031 		__mark_reg32_unbounded(dst_reg);
7032 		return;
7033 	}
7034 	dst_reg->u32_min_value *= umin_val;
7035 	dst_reg->u32_max_value *= umax_val;
7036 	if (dst_reg->u32_max_value > S32_MAX) {
7037 		/* Overflow possible, we know nothing */
7038 		dst_reg->s32_min_value = S32_MIN;
7039 		dst_reg->s32_max_value = S32_MAX;
7040 	} else {
7041 		dst_reg->s32_min_value = dst_reg->u32_min_value;
7042 		dst_reg->s32_max_value = dst_reg->u32_max_value;
7043 	}
7044 }
7045 
7046 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
7047 			       struct bpf_reg_state *src_reg)
7048 {
7049 	s64 smin_val = src_reg->smin_value;
7050 	u64 umin_val = src_reg->umin_value;
7051 	u64 umax_val = src_reg->umax_value;
7052 
7053 	if (smin_val < 0 || dst_reg->smin_value < 0) {
7054 		/* Ain't nobody got time to multiply that sign */
7055 		__mark_reg64_unbounded(dst_reg);
7056 		return;
7057 	}
7058 	/* Both values are positive, so we can work with unsigned and
7059 	 * copy the result to signed (unless it exceeds S64_MAX).
7060 	 */
7061 	if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
7062 		/* Potential overflow, we know nothing */
7063 		__mark_reg64_unbounded(dst_reg);
7064 		return;
7065 	}
7066 	dst_reg->umin_value *= umin_val;
7067 	dst_reg->umax_value *= umax_val;
7068 	if (dst_reg->umax_value > S64_MAX) {
7069 		/* Overflow possible, we know nothing */
7070 		dst_reg->smin_value = S64_MIN;
7071 		dst_reg->smax_value = S64_MAX;
7072 	} else {
7073 		dst_reg->smin_value = dst_reg->umin_value;
7074 		dst_reg->smax_value = dst_reg->umax_value;
7075 	}
7076 }
7077 
7078 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
7079 				 struct bpf_reg_state *src_reg)
7080 {
7081 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
7082 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
7083 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
7084 	s32 smin_val = src_reg->s32_min_value;
7085 	u32 umax_val = src_reg->u32_max_value;
7086 
7087 	/* Assuming scalar64_min_max_and will be called so its safe
7088 	 * to skip updating register for known 32-bit case.
7089 	 */
7090 	if (src_known && dst_known)
7091 		return;
7092 
7093 	/* We get our minimum from the var_off, since that's inherently
7094 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
7095 	 */
7096 	dst_reg->u32_min_value = var32_off.value;
7097 	dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
7098 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
7099 		/* Lose signed bounds when ANDing negative numbers,
7100 		 * ain't nobody got time for that.
7101 		 */
7102 		dst_reg->s32_min_value = S32_MIN;
7103 		dst_reg->s32_max_value = S32_MAX;
7104 	} else {
7105 		/* ANDing two positives gives a positive, so safe to
7106 		 * cast result into s64.
7107 		 */
7108 		dst_reg->s32_min_value = dst_reg->u32_min_value;
7109 		dst_reg->s32_max_value = dst_reg->u32_max_value;
7110 	}
7111 
7112 }
7113 
7114 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
7115 			       struct bpf_reg_state *src_reg)
7116 {
7117 	bool src_known = tnum_is_const(src_reg->var_off);
7118 	bool dst_known = tnum_is_const(dst_reg->var_off);
7119 	s64 smin_val = src_reg->smin_value;
7120 	u64 umax_val = src_reg->umax_value;
7121 
7122 	if (src_known && dst_known) {
7123 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
7124 		return;
7125 	}
7126 
7127 	/* We get our minimum from the var_off, since that's inherently
7128 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
7129 	 */
7130 	dst_reg->umin_value = dst_reg->var_off.value;
7131 	dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
7132 	if (dst_reg->smin_value < 0 || smin_val < 0) {
7133 		/* Lose signed bounds when ANDing negative numbers,
7134 		 * ain't nobody got time for that.
7135 		 */
7136 		dst_reg->smin_value = S64_MIN;
7137 		dst_reg->smax_value = S64_MAX;
7138 	} else {
7139 		/* ANDing two positives gives a positive, so safe to
7140 		 * cast result into s64.
7141 		 */
7142 		dst_reg->smin_value = dst_reg->umin_value;
7143 		dst_reg->smax_value = dst_reg->umax_value;
7144 	}
7145 	/* We may learn something more from the var_off */
7146 	__update_reg_bounds(dst_reg);
7147 }
7148 
7149 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
7150 				struct bpf_reg_state *src_reg)
7151 {
7152 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
7153 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
7154 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
7155 	s32 smin_val = src_reg->s32_min_value;
7156 	u32 umin_val = src_reg->u32_min_value;
7157 
7158 	/* Assuming scalar64_min_max_or will be called so it is safe
7159 	 * to skip updating register for known case.
7160 	 */
7161 	if (src_known && dst_known)
7162 		return;
7163 
7164 	/* We get our maximum from the var_off, and our minimum is the
7165 	 * maximum of the operands' minima
7166 	 */
7167 	dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
7168 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
7169 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
7170 		/* Lose signed bounds when ORing negative numbers,
7171 		 * ain't nobody got time for that.
7172 		 */
7173 		dst_reg->s32_min_value = S32_MIN;
7174 		dst_reg->s32_max_value = S32_MAX;
7175 	} else {
7176 		/* ORing two positives gives a positive, so safe to
7177 		 * cast result into s64.
7178 		 */
7179 		dst_reg->s32_min_value = dst_reg->u32_min_value;
7180 		dst_reg->s32_max_value = dst_reg->u32_max_value;
7181 	}
7182 }
7183 
7184 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
7185 			      struct bpf_reg_state *src_reg)
7186 {
7187 	bool src_known = tnum_is_const(src_reg->var_off);
7188 	bool dst_known = tnum_is_const(dst_reg->var_off);
7189 	s64 smin_val = src_reg->smin_value;
7190 	u64 umin_val = src_reg->umin_value;
7191 
7192 	if (src_known && dst_known) {
7193 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
7194 		return;
7195 	}
7196 
7197 	/* We get our maximum from the var_off, and our minimum is the
7198 	 * maximum of the operands' minima
7199 	 */
7200 	dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
7201 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
7202 	if (dst_reg->smin_value < 0 || smin_val < 0) {
7203 		/* Lose signed bounds when ORing negative numbers,
7204 		 * ain't nobody got time for that.
7205 		 */
7206 		dst_reg->smin_value = S64_MIN;
7207 		dst_reg->smax_value = S64_MAX;
7208 	} else {
7209 		/* ORing two positives gives a positive, so safe to
7210 		 * cast result into s64.
7211 		 */
7212 		dst_reg->smin_value = dst_reg->umin_value;
7213 		dst_reg->smax_value = dst_reg->umax_value;
7214 	}
7215 	/* We may learn something more from the var_off */
7216 	__update_reg_bounds(dst_reg);
7217 }
7218 
7219 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
7220 				 struct bpf_reg_state *src_reg)
7221 {
7222 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
7223 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
7224 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
7225 	s32 smin_val = src_reg->s32_min_value;
7226 
7227 	/* Assuming scalar64_min_max_xor will be called so it is safe
7228 	 * to skip updating register for known case.
7229 	 */
7230 	if (src_known && dst_known)
7231 		return;
7232 
7233 	/* We get both minimum and maximum from the var32_off. */
7234 	dst_reg->u32_min_value = var32_off.value;
7235 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
7236 
7237 	if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
7238 		/* XORing two positive sign numbers gives a positive,
7239 		 * so safe to cast u32 result into s32.
7240 		 */
7241 		dst_reg->s32_min_value = dst_reg->u32_min_value;
7242 		dst_reg->s32_max_value = dst_reg->u32_max_value;
7243 	} else {
7244 		dst_reg->s32_min_value = S32_MIN;
7245 		dst_reg->s32_max_value = S32_MAX;
7246 	}
7247 }
7248 
7249 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
7250 			       struct bpf_reg_state *src_reg)
7251 {
7252 	bool src_known = tnum_is_const(src_reg->var_off);
7253 	bool dst_known = tnum_is_const(dst_reg->var_off);
7254 	s64 smin_val = src_reg->smin_value;
7255 
7256 	if (src_known && dst_known) {
7257 		/* dst_reg->var_off.value has been updated earlier */
7258 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
7259 		return;
7260 	}
7261 
7262 	/* We get both minimum and maximum from the var_off. */
7263 	dst_reg->umin_value = dst_reg->var_off.value;
7264 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
7265 
7266 	if (dst_reg->smin_value >= 0 && smin_val >= 0) {
7267 		/* XORing two positive sign numbers gives a positive,
7268 		 * so safe to cast u64 result into s64.
7269 		 */
7270 		dst_reg->smin_value = dst_reg->umin_value;
7271 		dst_reg->smax_value = dst_reg->umax_value;
7272 	} else {
7273 		dst_reg->smin_value = S64_MIN;
7274 		dst_reg->smax_value = S64_MAX;
7275 	}
7276 
7277 	__update_reg_bounds(dst_reg);
7278 }
7279 
7280 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
7281 				   u64 umin_val, u64 umax_val)
7282 {
7283 	/* We lose all sign bit information (except what we can pick
7284 	 * up from var_off)
7285 	 */
7286 	dst_reg->s32_min_value = S32_MIN;
7287 	dst_reg->s32_max_value = S32_MAX;
7288 	/* If we might shift our top bit out, then we know nothing */
7289 	if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
7290 		dst_reg->u32_min_value = 0;
7291 		dst_reg->u32_max_value = U32_MAX;
7292 	} else {
7293 		dst_reg->u32_min_value <<= umin_val;
7294 		dst_reg->u32_max_value <<= umax_val;
7295 	}
7296 }
7297 
7298 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
7299 				 struct bpf_reg_state *src_reg)
7300 {
7301 	u32 umax_val = src_reg->u32_max_value;
7302 	u32 umin_val = src_reg->u32_min_value;
7303 	/* u32 alu operation will zext upper bits */
7304 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
7305 
7306 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
7307 	dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
7308 	/* Not required but being careful mark reg64 bounds as unknown so
7309 	 * that we are forced to pick them up from tnum and zext later and
7310 	 * if some path skips this step we are still safe.
7311 	 */
7312 	__mark_reg64_unbounded(dst_reg);
7313 	__update_reg32_bounds(dst_reg);
7314 }
7315 
7316 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
7317 				   u64 umin_val, u64 umax_val)
7318 {
7319 	/* Special case <<32 because it is a common compiler pattern to sign
7320 	 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
7321 	 * positive we know this shift will also be positive so we can track
7322 	 * bounds correctly. Otherwise we lose all sign bit information except
7323 	 * what we can pick up from var_off. Perhaps we can generalize this
7324 	 * later to shifts of any length.
7325 	 */
7326 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
7327 		dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
7328 	else
7329 		dst_reg->smax_value = S64_MAX;
7330 
7331 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
7332 		dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
7333 	else
7334 		dst_reg->smin_value = S64_MIN;
7335 
7336 	/* If we might shift our top bit out, then we know nothing */
7337 	if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
7338 		dst_reg->umin_value = 0;
7339 		dst_reg->umax_value = U64_MAX;
7340 	} else {
7341 		dst_reg->umin_value <<= umin_val;
7342 		dst_reg->umax_value <<= umax_val;
7343 	}
7344 }
7345 
7346 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
7347 			       struct bpf_reg_state *src_reg)
7348 {
7349 	u64 umax_val = src_reg->umax_value;
7350 	u64 umin_val = src_reg->umin_value;
7351 
7352 	/* scalar64 calc uses 32bit unshifted bounds so must be called first */
7353 	__scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
7354 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
7355 
7356 	dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
7357 	/* We may learn something more from the var_off */
7358 	__update_reg_bounds(dst_reg);
7359 }
7360 
7361 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
7362 				 struct bpf_reg_state *src_reg)
7363 {
7364 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
7365 	u32 umax_val = src_reg->u32_max_value;
7366 	u32 umin_val = src_reg->u32_min_value;
7367 
7368 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
7369 	 * be negative, then either:
7370 	 * 1) src_reg might be zero, so the sign bit of the result is
7371 	 *    unknown, so we lose our signed bounds
7372 	 * 2) it's known negative, thus the unsigned bounds capture the
7373 	 *    signed bounds
7374 	 * 3) the signed bounds cross zero, so they tell us nothing
7375 	 *    about the result
7376 	 * If the value in dst_reg is known nonnegative, then again the
7377 	 * unsigned bounds capture the signed bounds.
7378 	 * Thus, in all cases it suffices to blow away our signed bounds
7379 	 * and rely on inferring new ones from the unsigned bounds and
7380 	 * var_off of the result.
7381 	 */
7382 	dst_reg->s32_min_value = S32_MIN;
7383 	dst_reg->s32_max_value = S32_MAX;
7384 
7385 	dst_reg->var_off = tnum_rshift(subreg, umin_val);
7386 	dst_reg->u32_min_value >>= umax_val;
7387 	dst_reg->u32_max_value >>= umin_val;
7388 
7389 	__mark_reg64_unbounded(dst_reg);
7390 	__update_reg32_bounds(dst_reg);
7391 }
7392 
7393 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
7394 			       struct bpf_reg_state *src_reg)
7395 {
7396 	u64 umax_val = src_reg->umax_value;
7397 	u64 umin_val = src_reg->umin_value;
7398 
7399 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
7400 	 * be negative, then either:
7401 	 * 1) src_reg might be zero, so the sign bit of the result is
7402 	 *    unknown, so we lose our signed bounds
7403 	 * 2) it's known negative, thus the unsigned bounds capture the
7404 	 *    signed bounds
7405 	 * 3) the signed bounds cross zero, so they tell us nothing
7406 	 *    about the result
7407 	 * If the value in dst_reg is known nonnegative, then again the
7408 	 * unsigned bounds capture the signed bounds.
7409 	 * Thus, in all cases it suffices to blow away our signed bounds
7410 	 * and rely on inferring new ones from the unsigned bounds and
7411 	 * var_off of the result.
7412 	 */
7413 	dst_reg->smin_value = S64_MIN;
7414 	dst_reg->smax_value = S64_MAX;
7415 	dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
7416 	dst_reg->umin_value >>= umax_val;
7417 	dst_reg->umax_value >>= umin_val;
7418 
7419 	/* Its not easy to operate on alu32 bounds here because it depends
7420 	 * on bits being shifted in. Take easy way out and mark unbounded
7421 	 * so we can recalculate later from tnum.
7422 	 */
7423 	__mark_reg32_unbounded(dst_reg);
7424 	__update_reg_bounds(dst_reg);
7425 }
7426 
7427 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
7428 				  struct bpf_reg_state *src_reg)
7429 {
7430 	u64 umin_val = src_reg->u32_min_value;
7431 
7432 	/* Upon reaching here, src_known is true and
7433 	 * umax_val is equal to umin_val.
7434 	 */
7435 	dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
7436 	dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
7437 
7438 	dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
7439 
7440 	/* blow away the dst_reg umin_value/umax_value and rely on
7441 	 * dst_reg var_off to refine the result.
7442 	 */
7443 	dst_reg->u32_min_value = 0;
7444 	dst_reg->u32_max_value = U32_MAX;
7445 
7446 	__mark_reg64_unbounded(dst_reg);
7447 	__update_reg32_bounds(dst_reg);
7448 }
7449 
7450 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
7451 				struct bpf_reg_state *src_reg)
7452 {
7453 	u64 umin_val = src_reg->umin_value;
7454 
7455 	/* Upon reaching here, src_known is true and umax_val is equal
7456 	 * to umin_val.
7457 	 */
7458 	dst_reg->smin_value >>= umin_val;
7459 	dst_reg->smax_value >>= umin_val;
7460 
7461 	dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
7462 
7463 	/* blow away the dst_reg umin_value/umax_value and rely on
7464 	 * dst_reg var_off to refine the result.
7465 	 */
7466 	dst_reg->umin_value = 0;
7467 	dst_reg->umax_value = U64_MAX;
7468 
7469 	/* Its not easy to operate on alu32 bounds here because it depends
7470 	 * on bits being shifted in from upper 32-bits. Take easy way out
7471 	 * and mark unbounded so we can recalculate later from tnum.
7472 	 */
7473 	__mark_reg32_unbounded(dst_reg);
7474 	__update_reg_bounds(dst_reg);
7475 }
7476 
7477 /* WARNING: This function does calculations on 64-bit values, but the actual
7478  * execution may occur on 32-bit values. Therefore, things like bitshifts
7479  * need extra checks in the 32-bit case.
7480  */
7481 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
7482 				      struct bpf_insn *insn,
7483 				      struct bpf_reg_state *dst_reg,
7484 				      struct bpf_reg_state src_reg)
7485 {
7486 	struct bpf_reg_state *regs = cur_regs(env);
7487 	u8 opcode = BPF_OP(insn->code);
7488 	bool src_known;
7489 	s64 smin_val, smax_val;
7490 	u64 umin_val, umax_val;
7491 	s32 s32_min_val, s32_max_val;
7492 	u32 u32_min_val, u32_max_val;
7493 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
7494 	bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
7495 	int ret;
7496 
7497 	smin_val = src_reg.smin_value;
7498 	smax_val = src_reg.smax_value;
7499 	umin_val = src_reg.umin_value;
7500 	umax_val = src_reg.umax_value;
7501 
7502 	s32_min_val = src_reg.s32_min_value;
7503 	s32_max_val = src_reg.s32_max_value;
7504 	u32_min_val = src_reg.u32_min_value;
7505 	u32_max_val = src_reg.u32_max_value;
7506 
7507 	if (alu32) {
7508 		src_known = tnum_subreg_is_const(src_reg.var_off);
7509 		if ((src_known &&
7510 		     (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
7511 		    s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
7512 			/* Taint dst register if offset had invalid bounds
7513 			 * derived from e.g. dead branches.
7514 			 */
7515 			__mark_reg_unknown(env, dst_reg);
7516 			return 0;
7517 		}
7518 	} else {
7519 		src_known = tnum_is_const(src_reg.var_off);
7520 		if ((src_known &&
7521 		     (smin_val != smax_val || umin_val != umax_val)) ||
7522 		    smin_val > smax_val || umin_val > umax_val) {
7523 			/* Taint dst register if offset had invalid bounds
7524 			 * derived from e.g. dead branches.
7525 			 */
7526 			__mark_reg_unknown(env, dst_reg);
7527 			return 0;
7528 		}
7529 	}
7530 
7531 	if (!src_known &&
7532 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
7533 		__mark_reg_unknown(env, dst_reg);
7534 		return 0;
7535 	}
7536 
7537 	if (sanitize_needed(opcode)) {
7538 		ret = sanitize_val_alu(env, insn);
7539 		if (ret < 0)
7540 			return sanitize_err(env, insn, ret, NULL, NULL);
7541 	}
7542 
7543 	/* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
7544 	 * There are two classes of instructions: The first class we track both
7545 	 * alu32 and alu64 sign/unsigned bounds independently this provides the
7546 	 * greatest amount of precision when alu operations are mixed with jmp32
7547 	 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
7548 	 * and BPF_OR. This is possible because these ops have fairly easy to
7549 	 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
7550 	 * See alu32 verifier tests for examples. The second class of
7551 	 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
7552 	 * with regards to tracking sign/unsigned bounds because the bits may
7553 	 * cross subreg boundaries in the alu64 case. When this happens we mark
7554 	 * the reg unbounded in the subreg bound space and use the resulting
7555 	 * tnum to calculate an approximation of the sign/unsigned bounds.
7556 	 */
7557 	switch (opcode) {
7558 	case BPF_ADD:
7559 		scalar32_min_max_add(dst_reg, &src_reg);
7560 		scalar_min_max_add(dst_reg, &src_reg);
7561 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
7562 		break;
7563 	case BPF_SUB:
7564 		scalar32_min_max_sub(dst_reg, &src_reg);
7565 		scalar_min_max_sub(dst_reg, &src_reg);
7566 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
7567 		break;
7568 	case BPF_MUL:
7569 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
7570 		scalar32_min_max_mul(dst_reg, &src_reg);
7571 		scalar_min_max_mul(dst_reg, &src_reg);
7572 		break;
7573 	case BPF_AND:
7574 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
7575 		scalar32_min_max_and(dst_reg, &src_reg);
7576 		scalar_min_max_and(dst_reg, &src_reg);
7577 		break;
7578 	case BPF_OR:
7579 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
7580 		scalar32_min_max_or(dst_reg, &src_reg);
7581 		scalar_min_max_or(dst_reg, &src_reg);
7582 		break;
7583 	case BPF_XOR:
7584 		dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
7585 		scalar32_min_max_xor(dst_reg, &src_reg);
7586 		scalar_min_max_xor(dst_reg, &src_reg);
7587 		break;
7588 	case BPF_LSH:
7589 		if (umax_val >= insn_bitness) {
7590 			/* Shifts greater than 31 or 63 are undefined.
7591 			 * This includes shifts by a negative number.
7592 			 */
7593 			mark_reg_unknown(env, regs, insn->dst_reg);
7594 			break;
7595 		}
7596 		if (alu32)
7597 			scalar32_min_max_lsh(dst_reg, &src_reg);
7598 		else
7599 			scalar_min_max_lsh(dst_reg, &src_reg);
7600 		break;
7601 	case BPF_RSH:
7602 		if (umax_val >= insn_bitness) {
7603 			/* Shifts greater than 31 or 63 are undefined.
7604 			 * This includes shifts by a negative number.
7605 			 */
7606 			mark_reg_unknown(env, regs, insn->dst_reg);
7607 			break;
7608 		}
7609 		if (alu32)
7610 			scalar32_min_max_rsh(dst_reg, &src_reg);
7611 		else
7612 			scalar_min_max_rsh(dst_reg, &src_reg);
7613 		break;
7614 	case BPF_ARSH:
7615 		if (umax_val >= insn_bitness) {
7616 			/* Shifts greater than 31 or 63 are undefined.
7617 			 * This includes shifts by a negative number.
7618 			 */
7619 			mark_reg_unknown(env, regs, insn->dst_reg);
7620 			break;
7621 		}
7622 		if (alu32)
7623 			scalar32_min_max_arsh(dst_reg, &src_reg);
7624 		else
7625 			scalar_min_max_arsh(dst_reg, &src_reg);
7626 		break;
7627 	default:
7628 		mark_reg_unknown(env, regs, insn->dst_reg);
7629 		break;
7630 	}
7631 
7632 	/* ALU32 ops are zero extended into 64bit register */
7633 	if (alu32)
7634 		zext_32_to_64(dst_reg);
7635 
7636 	__update_reg_bounds(dst_reg);
7637 	__reg_deduce_bounds(dst_reg);
7638 	__reg_bound_offset(dst_reg);
7639 	return 0;
7640 }
7641 
7642 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
7643  * and var_off.
7644  */
7645 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
7646 				   struct bpf_insn *insn)
7647 {
7648 	struct bpf_verifier_state *vstate = env->cur_state;
7649 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
7650 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
7651 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
7652 	u8 opcode = BPF_OP(insn->code);
7653 	int err;
7654 
7655 	dst_reg = &regs[insn->dst_reg];
7656 	src_reg = NULL;
7657 	if (dst_reg->type != SCALAR_VALUE)
7658 		ptr_reg = dst_reg;
7659 	else
7660 		/* Make sure ID is cleared otherwise dst_reg min/max could be
7661 		 * incorrectly propagated into other registers by find_equal_scalars()
7662 		 */
7663 		dst_reg->id = 0;
7664 	if (BPF_SRC(insn->code) == BPF_X) {
7665 		src_reg = &regs[insn->src_reg];
7666 		if (src_reg->type != SCALAR_VALUE) {
7667 			if (dst_reg->type != SCALAR_VALUE) {
7668 				/* Combining two pointers by any ALU op yields
7669 				 * an arbitrary scalar. Disallow all math except
7670 				 * pointer subtraction
7671 				 */
7672 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
7673 					mark_reg_unknown(env, regs, insn->dst_reg);
7674 					return 0;
7675 				}
7676 				verbose(env, "R%d pointer %s pointer prohibited\n",
7677 					insn->dst_reg,
7678 					bpf_alu_string[opcode >> 4]);
7679 				return -EACCES;
7680 			} else {
7681 				/* scalar += pointer
7682 				 * This is legal, but we have to reverse our
7683 				 * src/dest handling in computing the range
7684 				 */
7685 				err = mark_chain_precision(env, insn->dst_reg);
7686 				if (err)
7687 					return err;
7688 				return adjust_ptr_min_max_vals(env, insn,
7689 							       src_reg, dst_reg);
7690 			}
7691 		} else if (ptr_reg) {
7692 			/* pointer += scalar */
7693 			err = mark_chain_precision(env, insn->src_reg);
7694 			if (err)
7695 				return err;
7696 			return adjust_ptr_min_max_vals(env, insn,
7697 						       dst_reg, src_reg);
7698 		}
7699 	} else {
7700 		/* Pretend the src is a reg with a known value, since we only
7701 		 * need to be able to read from this state.
7702 		 */
7703 		off_reg.type = SCALAR_VALUE;
7704 		__mark_reg_known(&off_reg, insn->imm);
7705 		src_reg = &off_reg;
7706 		if (ptr_reg) /* pointer += K */
7707 			return adjust_ptr_min_max_vals(env, insn,
7708 						       ptr_reg, src_reg);
7709 	}
7710 
7711 	/* Got here implies adding two SCALAR_VALUEs */
7712 	if (WARN_ON_ONCE(ptr_reg)) {
7713 		print_verifier_state(env, state);
7714 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
7715 		return -EINVAL;
7716 	}
7717 	if (WARN_ON(!src_reg)) {
7718 		print_verifier_state(env, state);
7719 		verbose(env, "verifier internal error: no src_reg\n");
7720 		return -EINVAL;
7721 	}
7722 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
7723 }
7724 
7725 /* check validity of 32-bit and 64-bit arithmetic operations */
7726 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
7727 {
7728 	struct bpf_reg_state *regs = cur_regs(env);
7729 	u8 opcode = BPF_OP(insn->code);
7730 	int err;
7731 
7732 	if (opcode == BPF_END || opcode == BPF_NEG) {
7733 		if (opcode == BPF_NEG) {
7734 			if (BPF_SRC(insn->code) != 0 ||
7735 			    insn->src_reg != BPF_REG_0 ||
7736 			    insn->off != 0 || insn->imm != 0) {
7737 				verbose(env, "BPF_NEG uses reserved fields\n");
7738 				return -EINVAL;
7739 			}
7740 		} else {
7741 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
7742 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
7743 			    BPF_CLASS(insn->code) == BPF_ALU64) {
7744 				verbose(env, "BPF_END uses reserved fields\n");
7745 				return -EINVAL;
7746 			}
7747 		}
7748 
7749 		/* check src operand */
7750 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7751 		if (err)
7752 			return err;
7753 
7754 		if (is_pointer_value(env, insn->dst_reg)) {
7755 			verbose(env, "R%d pointer arithmetic prohibited\n",
7756 				insn->dst_reg);
7757 			return -EACCES;
7758 		}
7759 
7760 		/* check dest operand */
7761 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
7762 		if (err)
7763 			return err;
7764 
7765 	} else if (opcode == BPF_MOV) {
7766 
7767 		if (BPF_SRC(insn->code) == BPF_X) {
7768 			if (insn->imm != 0 || insn->off != 0) {
7769 				verbose(env, "BPF_MOV uses reserved fields\n");
7770 				return -EINVAL;
7771 			}
7772 
7773 			/* check src operand */
7774 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
7775 			if (err)
7776 				return err;
7777 		} else {
7778 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
7779 				verbose(env, "BPF_MOV uses reserved fields\n");
7780 				return -EINVAL;
7781 			}
7782 		}
7783 
7784 		/* check dest operand, mark as required later */
7785 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
7786 		if (err)
7787 			return err;
7788 
7789 		if (BPF_SRC(insn->code) == BPF_X) {
7790 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
7791 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
7792 
7793 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
7794 				/* case: R1 = R2
7795 				 * copy register state to dest reg
7796 				 */
7797 				if (src_reg->type == SCALAR_VALUE && !src_reg->id)
7798 					/* Assign src and dst registers the same ID
7799 					 * that will be used by find_equal_scalars()
7800 					 * to propagate min/max range.
7801 					 */
7802 					src_reg->id = ++env->id_gen;
7803 				*dst_reg = *src_reg;
7804 				dst_reg->live |= REG_LIVE_WRITTEN;
7805 				dst_reg->subreg_def = DEF_NOT_SUBREG;
7806 			} else {
7807 				/* R1 = (u32) R2 */
7808 				if (is_pointer_value(env, insn->src_reg)) {
7809 					verbose(env,
7810 						"R%d partial copy of pointer\n",
7811 						insn->src_reg);
7812 					return -EACCES;
7813 				} else if (src_reg->type == SCALAR_VALUE) {
7814 					*dst_reg = *src_reg;
7815 					/* Make sure ID is cleared otherwise
7816 					 * dst_reg min/max could be incorrectly
7817 					 * propagated into src_reg by find_equal_scalars()
7818 					 */
7819 					dst_reg->id = 0;
7820 					dst_reg->live |= REG_LIVE_WRITTEN;
7821 					dst_reg->subreg_def = env->insn_idx + 1;
7822 				} else {
7823 					mark_reg_unknown(env, regs,
7824 							 insn->dst_reg);
7825 				}
7826 				zext_32_to_64(dst_reg);
7827 			}
7828 		} else {
7829 			/* case: R = imm
7830 			 * remember the value we stored into this reg
7831 			 */
7832 			/* clear any state __mark_reg_known doesn't set */
7833 			mark_reg_unknown(env, regs, insn->dst_reg);
7834 			regs[insn->dst_reg].type = SCALAR_VALUE;
7835 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
7836 				__mark_reg_known(regs + insn->dst_reg,
7837 						 insn->imm);
7838 			} else {
7839 				__mark_reg_known(regs + insn->dst_reg,
7840 						 (u32)insn->imm);
7841 			}
7842 		}
7843 
7844 	} else if (opcode > BPF_END) {
7845 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
7846 		return -EINVAL;
7847 
7848 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
7849 
7850 		if (BPF_SRC(insn->code) == BPF_X) {
7851 			if (insn->imm != 0 || insn->off != 0) {
7852 				verbose(env, "BPF_ALU uses reserved fields\n");
7853 				return -EINVAL;
7854 			}
7855 			/* check src1 operand */
7856 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
7857 			if (err)
7858 				return err;
7859 		} else {
7860 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
7861 				verbose(env, "BPF_ALU uses reserved fields\n");
7862 				return -EINVAL;
7863 			}
7864 		}
7865 
7866 		/* check src2 operand */
7867 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7868 		if (err)
7869 			return err;
7870 
7871 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
7872 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
7873 			verbose(env, "div by zero\n");
7874 			return -EINVAL;
7875 		}
7876 
7877 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
7878 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
7879 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
7880 
7881 			if (insn->imm < 0 || insn->imm >= size) {
7882 				verbose(env, "invalid shift %d\n", insn->imm);
7883 				return -EINVAL;
7884 			}
7885 		}
7886 
7887 		/* check dest operand */
7888 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
7889 		if (err)
7890 			return err;
7891 
7892 		return adjust_reg_min_max_vals(env, insn);
7893 	}
7894 
7895 	return 0;
7896 }
7897 
7898 static void __find_good_pkt_pointers(struct bpf_func_state *state,
7899 				     struct bpf_reg_state *dst_reg,
7900 				     enum bpf_reg_type type, int new_range)
7901 {
7902 	struct bpf_reg_state *reg;
7903 	int i;
7904 
7905 	for (i = 0; i < MAX_BPF_REG; i++) {
7906 		reg = &state->regs[i];
7907 		if (reg->type == type && reg->id == dst_reg->id)
7908 			/* keep the maximum range already checked */
7909 			reg->range = max(reg->range, new_range);
7910 	}
7911 
7912 	bpf_for_each_spilled_reg(i, state, reg) {
7913 		if (!reg)
7914 			continue;
7915 		if (reg->type == type && reg->id == dst_reg->id)
7916 			reg->range = max(reg->range, new_range);
7917 	}
7918 }
7919 
7920 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
7921 				   struct bpf_reg_state *dst_reg,
7922 				   enum bpf_reg_type type,
7923 				   bool range_right_open)
7924 {
7925 	int new_range, i;
7926 
7927 	if (dst_reg->off < 0 ||
7928 	    (dst_reg->off == 0 && range_right_open))
7929 		/* This doesn't give us any range */
7930 		return;
7931 
7932 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
7933 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
7934 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
7935 		 * than pkt_end, but that's because it's also less than pkt.
7936 		 */
7937 		return;
7938 
7939 	new_range = dst_reg->off;
7940 	if (range_right_open)
7941 		new_range--;
7942 
7943 	/* Examples for register markings:
7944 	 *
7945 	 * pkt_data in dst register:
7946 	 *
7947 	 *   r2 = r3;
7948 	 *   r2 += 8;
7949 	 *   if (r2 > pkt_end) goto <handle exception>
7950 	 *   <access okay>
7951 	 *
7952 	 *   r2 = r3;
7953 	 *   r2 += 8;
7954 	 *   if (r2 < pkt_end) goto <access okay>
7955 	 *   <handle exception>
7956 	 *
7957 	 *   Where:
7958 	 *     r2 == dst_reg, pkt_end == src_reg
7959 	 *     r2=pkt(id=n,off=8,r=0)
7960 	 *     r3=pkt(id=n,off=0,r=0)
7961 	 *
7962 	 * pkt_data in src register:
7963 	 *
7964 	 *   r2 = r3;
7965 	 *   r2 += 8;
7966 	 *   if (pkt_end >= r2) goto <access okay>
7967 	 *   <handle exception>
7968 	 *
7969 	 *   r2 = r3;
7970 	 *   r2 += 8;
7971 	 *   if (pkt_end <= r2) goto <handle exception>
7972 	 *   <access okay>
7973 	 *
7974 	 *   Where:
7975 	 *     pkt_end == dst_reg, r2 == src_reg
7976 	 *     r2=pkt(id=n,off=8,r=0)
7977 	 *     r3=pkt(id=n,off=0,r=0)
7978 	 *
7979 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
7980 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
7981 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
7982 	 * the check.
7983 	 */
7984 
7985 	/* If our ids match, then we must have the same max_value.  And we
7986 	 * don't care about the other reg's fixed offset, since if it's too big
7987 	 * the range won't allow anything.
7988 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
7989 	 */
7990 	for (i = 0; i <= vstate->curframe; i++)
7991 		__find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
7992 					 new_range);
7993 }
7994 
7995 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
7996 {
7997 	struct tnum subreg = tnum_subreg(reg->var_off);
7998 	s32 sval = (s32)val;
7999 
8000 	switch (opcode) {
8001 	case BPF_JEQ:
8002 		if (tnum_is_const(subreg))
8003 			return !!tnum_equals_const(subreg, val);
8004 		break;
8005 	case BPF_JNE:
8006 		if (tnum_is_const(subreg))
8007 			return !tnum_equals_const(subreg, val);
8008 		break;
8009 	case BPF_JSET:
8010 		if ((~subreg.mask & subreg.value) & val)
8011 			return 1;
8012 		if (!((subreg.mask | subreg.value) & val))
8013 			return 0;
8014 		break;
8015 	case BPF_JGT:
8016 		if (reg->u32_min_value > val)
8017 			return 1;
8018 		else if (reg->u32_max_value <= val)
8019 			return 0;
8020 		break;
8021 	case BPF_JSGT:
8022 		if (reg->s32_min_value > sval)
8023 			return 1;
8024 		else if (reg->s32_max_value <= sval)
8025 			return 0;
8026 		break;
8027 	case BPF_JLT:
8028 		if (reg->u32_max_value < val)
8029 			return 1;
8030 		else if (reg->u32_min_value >= val)
8031 			return 0;
8032 		break;
8033 	case BPF_JSLT:
8034 		if (reg->s32_max_value < sval)
8035 			return 1;
8036 		else if (reg->s32_min_value >= sval)
8037 			return 0;
8038 		break;
8039 	case BPF_JGE:
8040 		if (reg->u32_min_value >= val)
8041 			return 1;
8042 		else if (reg->u32_max_value < val)
8043 			return 0;
8044 		break;
8045 	case BPF_JSGE:
8046 		if (reg->s32_min_value >= sval)
8047 			return 1;
8048 		else if (reg->s32_max_value < sval)
8049 			return 0;
8050 		break;
8051 	case BPF_JLE:
8052 		if (reg->u32_max_value <= val)
8053 			return 1;
8054 		else if (reg->u32_min_value > val)
8055 			return 0;
8056 		break;
8057 	case BPF_JSLE:
8058 		if (reg->s32_max_value <= sval)
8059 			return 1;
8060 		else if (reg->s32_min_value > sval)
8061 			return 0;
8062 		break;
8063 	}
8064 
8065 	return -1;
8066 }
8067 
8068 
8069 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
8070 {
8071 	s64 sval = (s64)val;
8072 
8073 	switch (opcode) {
8074 	case BPF_JEQ:
8075 		if (tnum_is_const(reg->var_off))
8076 			return !!tnum_equals_const(reg->var_off, val);
8077 		break;
8078 	case BPF_JNE:
8079 		if (tnum_is_const(reg->var_off))
8080 			return !tnum_equals_const(reg->var_off, val);
8081 		break;
8082 	case BPF_JSET:
8083 		if ((~reg->var_off.mask & reg->var_off.value) & val)
8084 			return 1;
8085 		if (!((reg->var_off.mask | reg->var_off.value) & val))
8086 			return 0;
8087 		break;
8088 	case BPF_JGT:
8089 		if (reg->umin_value > val)
8090 			return 1;
8091 		else if (reg->umax_value <= val)
8092 			return 0;
8093 		break;
8094 	case BPF_JSGT:
8095 		if (reg->smin_value > sval)
8096 			return 1;
8097 		else if (reg->smax_value <= sval)
8098 			return 0;
8099 		break;
8100 	case BPF_JLT:
8101 		if (reg->umax_value < val)
8102 			return 1;
8103 		else if (reg->umin_value >= val)
8104 			return 0;
8105 		break;
8106 	case BPF_JSLT:
8107 		if (reg->smax_value < sval)
8108 			return 1;
8109 		else if (reg->smin_value >= sval)
8110 			return 0;
8111 		break;
8112 	case BPF_JGE:
8113 		if (reg->umin_value >= val)
8114 			return 1;
8115 		else if (reg->umax_value < val)
8116 			return 0;
8117 		break;
8118 	case BPF_JSGE:
8119 		if (reg->smin_value >= sval)
8120 			return 1;
8121 		else if (reg->smax_value < sval)
8122 			return 0;
8123 		break;
8124 	case BPF_JLE:
8125 		if (reg->umax_value <= val)
8126 			return 1;
8127 		else if (reg->umin_value > val)
8128 			return 0;
8129 		break;
8130 	case BPF_JSLE:
8131 		if (reg->smax_value <= sval)
8132 			return 1;
8133 		else if (reg->smin_value > sval)
8134 			return 0;
8135 		break;
8136 	}
8137 
8138 	return -1;
8139 }
8140 
8141 /* compute branch direction of the expression "if (reg opcode val) goto target;"
8142  * and return:
8143  *  1 - branch will be taken and "goto target" will be executed
8144  *  0 - branch will not be taken and fall-through to next insn
8145  * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
8146  *      range [0,10]
8147  */
8148 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
8149 			   bool is_jmp32)
8150 {
8151 	if (__is_pointer_value(false, reg)) {
8152 		if (!reg_type_not_null(reg->type))
8153 			return -1;
8154 
8155 		/* If pointer is valid tests against zero will fail so we can
8156 		 * use this to direct branch taken.
8157 		 */
8158 		if (val != 0)
8159 			return -1;
8160 
8161 		switch (opcode) {
8162 		case BPF_JEQ:
8163 			return 0;
8164 		case BPF_JNE:
8165 			return 1;
8166 		default:
8167 			return -1;
8168 		}
8169 	}
8170 
8171 	if (is_jmp32)
8172 		return is_branch32_taken(reg, val, opcode);
8173 	return is_branch64_taken(reg, val, opcode);
8174 }
8175 
8176 static int flip_opcode(u32 opcode)
8177 {
8178 	/* How can we transform "a <op> b" into "b <op> a"? */
8179 	static const u8 opcode_flip[16] = {
8180 		/* these stay the same */
8181 		[BPF_JEQ  >> 4] = BPF_JEQ,
8182 		[BPF_JNE  >> 4] = BPF_JNE,
8183 		[BPF_JSET >> 4] = BPF_JSET,
8184 		/* these swap "lesser" and "greater" (L and G in the opcodes) */
8185 		[BPF_JGE  >> 4] = BPF_JLE,
8186 		[BPF_JGT  >> 4] = BPF_JLT,
8187 		[BPF_JLE  >> 4] = BPF_JGE,
8188 		[BPF_JLT  >> 4] = BPF_JGT,
8189 		[BPF_JSGE >> 4] = BPF_JSLE,
8190 		[BPF_JSGT >> 4] = BPF_JSLT,
8191 		[BPF_JSLE >> 4] = BPF_JSGE,
8192 		[BPF_JSLT >> 4] = BPF_JSGT
8193 	};
8194 	return opcode_flip[opcode >> 4];
8195 }
8196 
8197 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
8198 				   struct bpf_reg_state *src_reg,
8199 				   u8 opcode)
8200 {
8201 	struct bpf_reg_state *pkt;
8202 
8203 	if (src_reg->type == PTR_TO_PACKET_END) {
8204 		pkt = dst_reg;
8205 	} else if (dst_reg->type == PTR_TO_PACKET_END) {
8206 		pkt = src_reg;
8207 		opcode = flip_opcode(opcode);
8208 	} else {
8209 		return -1;
8210 	}
8211 
8212 	if (pkt->range >= 0)
8213 		return -1;
8214 
8215 	switch (opcode) {
8216 	case BPF_JLE:
8217 		/* pkt <= pkt_end */
8218 		fallthrough;
8219 	case BPF_JGT:
8220 		/* pkt > pkt_end */
8221 		if (pkt->range == BEYOND_PKT_END)
8222 			/* pkt has at last one extra byte beyond pkt_end */
8223 			return opcode == BPF_JGT;
8224 		break;
8225 	case BPF_JLT:
8226 		/* pkt < pkt_end */
8227 		fallthrough;
8228 	case BPF_JGE:
8229 		/* pkt >= pkt_end */
8230 		if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
8231 			return opcode == BPF_JGE;
8232 		break;
8233 	}
8234 	return -1;
8235 }
8236 
8237 /* Adjusts the register min/max values in the case that the dst_reg is the
8238  * variable register that we are working on, and src_reg is a constant or we're
8239  * simply doing a BPF_K check.
8240  * In JEQ/JNE cases we also adjust the var_off values.
8241  */
8242 static void reg_set_min_max(struct bpf_reg_state *true_reg,
8243 			    struct bpf_reg_state *false_reg,
8244 			    u64 val, u32 val32,
8245 			    u8 opcode, bool is_jmp32)
8246 {
8247 	struct tnum false_32off = tnum_subreg(false_reg->var_off);
8248 	struct tnum false_64off = false_reg->var_off;
8249 	struct tnum true_32off = tnum_subreg(true_reg->var_off);
8250 	struct tnum true_64off = true_reg->var_off;
8251 	s64 sval = (s64)val;
8252 	s32 sval32 = (s32)val32;
8253 
8254 	/* If the dst_reg is a pointer, we can't learn anything about its
8255 	 * variable offset from the compare (unless src_reg were a pointer into
8256 	 * the same object, but we don't bother with that.
8257 	 * Since false_reg and true_reg have the same type by construction, we
8258 	 * only need to check one of them for pointerness.
8259 	 */
8260 	if (__is_pointer_value(false, false_reg))
8261 		return;
8262 
8263 	switch (opcode) {
8264 	case BPF_JEQ:
8265 	case BPF_JNE:
8266 	{
8267 		struct bpf_reg_state *reg =
8268 			opcode == BPF_JEQ ? true_reg : false_reg;
8269 
8270 		/* JEQ/JNE comparison doesn't change the register equivalence.
8271 		 * r1 = r2;
8272 		 * if (r1 == 42) goto label;
8273 		 * ...
8274 		 * label: // here both r1 and r2 are known to be 42.
8275 		 *
8276 		 * Hence when marking register as known preserve it's ID.
8277 		 */
8278 		if (is_jmp32)
8279 			__mark_reg32_known(reg, val32);
8280 		else
8281 			___mark_reg_known(reg, val);
8282 		break;
8283 	}
8284 	case BPF_JSET:
8285 		if (is_jmp32) {
8286 			false_32off = tnum_and(false_32off, tnum_const(~val32));
8287 			if (is_power_of_2(val32))
8288 				true_32off = tnum_or(true_32off,
8289 						     tnum_const(val32));
8290 		} else {
8291 			false_64off = tnum_and(false_64off, tnum_const(~val));
8292 			if (is_power_of_2(val))
8293 				true_64off = tnum_or(true_64off,
8294 						     tnum_const(val));
8295 		}
8296 		break;
8297 	case BPF_JGE:
8298 	case BPF_JGT:
8299 	{
8300 		if (is_jmp32) {
8301 			u32 false_umax = opcode == BPF_JGT ? val32  : val32 - 1;
8302 			u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
8303 
8304 			false_reg->u32_max_value = min(false_reg->u32_max_value,
8305 						       false_umax);
8306 			true_reg->u32_min_value = max(true_reg->u32_min_value,
8307 						      true_umin);
8308 		} else {
8309 			u64 false_umax = opcode == BPF_JGT ? val    : val - 1;
8310 			u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
8311 
8312 			false_reg->umax_value = min(false_reg->umax_value, false_umax);
8313 			true_reg->umin_value = max(true_reg->umin_value, true_umin);
8314 		}
8315 		break;
8316 	}
8317 	case BPF_JSGE:
8318 	case BPF_JSGT:
8319 	{
8320 		if (is_jmp32) {
8321 			s32 false_smax = opcode == BPF_JSGT ? sval32    : sval32 - 1;
8322 			s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
8323 
8324 			false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
8325 			true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
8326 		} else {
8327 			s64 false_smax = opcode == BPF_JSGT ? sval    : sval - 1;
8328 			s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
8329 
8330 			false_reg->smax_value = min(false_reg->smax_value, false_smax);
8331 			true_reg->smin_value = max(true_reg->smin_value, true_smin);
8332 		}
8333 		break;
8334 	}
8335 	case BPF_JLE:
8336 	case BPF_JLT:
8337 	{
8338 		if (is_jmp32) {
8339 			u32 false_umin = opcode == BPF_JLT ? val32  : val32 + 1;
8340 			u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
8341 
8342 			false_reg->u32_min_value = max(false_reg->u32_min_value,
8343 						       false_umin);
8344 			true_reg->u32_max_value = min(true_reg->u32_max_value,
8345 						      true_umax);
8346 		} else {
8347 			u64 false_umin = opcode == BPF_JLT ? val    : val + 1;
8348 			u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
8349 
8350 			false_reg->umin_value = max(false_reg->umin_value, false_umin);
8351 			true_reg->umax_value = min(true_reg->umax_value, true_umax);
8352 		}
8353 		break;
8354 	}
8355 	case BPF_JSLE:
8356 	case BPF_JSLT:
8357 	{
8358 		if (is_jmp32) {
8359 			s32 false_smin = opcode == BPF_JSLT ? sval32    : sval32 + 1;
8360 			s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
8361 
8362 			false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
8363 			true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
8364 		} else {
8365 			s64 false_smin = opcode == BPF_JSLT ? sval    : sval + 1;
8366 			s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
8367 
8368 			false_reg->smin_value = max(false_reg->smin_value, false_smin);
8369 			true_reg->smax_value = min(true_reg->smax_value, true_smax);
8370 		}
8371 		break;
8372 	}
8373 	default:
8374 		return;
8375 	}
8376 
8377 	if (is_jmp32) {
8378 		false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
8379 					     tnum_subreg(false_32off));
8380 		true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
8381 					    tnum_subreg(true_32off));
8382 		__reg_combine_32_into_64(false_reg);
8383 		__reg_combine_32_into_64(true_reg);
8384 	} else {
8385 		false_reg->var_off = false_64off;
8386 		true_reg->var_off = true_64off;
8387 		__reg_combine_64_into_32(false_reg);
8388 		__reg_combine_64_into_32(true_reg);
8389 	}
8390 }
8391 
8392 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
8393  * the variable reg.
8394  */
8395 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
8396 				struct bpf_reg_state *false_reg,
8397 				u64 val, u32 val32,
8398 				u8 opcode, bool is_jmp32)
8399 {
8400 	opcode = flip_opcode(opcode);
8401 	/* This uses zero as "not present in table"; luckily the zero opcode,
8402 	 * BPF_JA, can't get here.
8403 	 */
8404 	if (opcode)
8405 		reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
8406 }
8407 
8408 /* Regs are known to be equal, so intersect their min/max/var_off */
8409 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
8410 				  struct bpf_reg_state *dst_reg)
8411 {
8412 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
8413 							dst_reg->umin_value);
8414 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
8415 							dst_reg->umax_value);
8416 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
8417 							dst_reg->smin_value);
8418 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
8419 							dst_reg->smax_value);
8420 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
8421 							     dst_reg->var_off);
8422 	/* We might have learned new bounds from the var_off. */
8423 	__update_reg_bounds(src_reg);
8424 	__update_reg_bounds(dst_reg);
8425 	/* We might have learned something about the sign bit. */
8426 	__reg_deduce_bounds(src_reg);
8427 	__reg_deduce_bounds(dst_reg);
8428 	/* We might have learned some bits from the bounds. */
8429 	__reg_bound_offset(src_reg);
8430 	__reg_bound_offset(dst_reg);
8431 	/* Intersecting with the old var_off might have improved our bounds
8432 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
8433 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
8434 	 */
8435 	__update_reg_bounds(src_reg);
8436 	__update_reg_bounds(dst_reg);
8437 }
8438 
8439 static void reg_combine_min_max(struct bpf_reg_state *true_src,
8440 				struct bpf_reg_state *true_dst,
8441 				struct bpf_reg_state *false_src,
8442 				struct bpf_reg_state *false_dst,
8443 				u8 opcode)
8444 {
8445 	switch (opcode) {
8446 	case BPF_JEQ:
8447 		__reg_combine_min_max(true_src, true_dst);
8448 		break;
8449 	case BPF_JNE:
8450 		__reg_combine_min_max(false_src, false_dst);
8451 		break;
8452 	}
8453 }
8454 
8455 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
8456 				 struct bpf_reg_state *reg, u32 id,
8457 				 bool is_null)
8458 {
8459 	if (reg_type_may_be_null(reg->type) && reg->id == id &&
8460 	    !WARN_ON_ONCE(!reg->id)) {
8461 		/* Old offset (both fixed and variable parts) should
8462 		 * have been known-zero, because we don't allow pointer
8463 		 * arithmetic on pointers that might be NULL.
8464 		 */
8465 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
8466 				 !tnum_equals_const(reg->var_off, 0) ||
8467 				 reg->off)) {
8468 			__mark_reg_known_zero(reg);
8469 			reg->off = 0;
8470 		}
8471 		if (is_null) {
8472 			reg->type = SCALAR_VALUE;
8473 			/* We don't need id and ref_obj_id from this point
8474 			 * onwards anymore, thus we should better reset it,
8475 			 * so that state pruning has chances to take effect.
8476 			 */
8477 			reg->id = 0;
8478 			reg->ref_obj_id = 0;
8479 
8480 			return;
8481 		}
8482 
8483 		mark_ptr_not_null_reg(reg);
8484 
8485 		if (!reg_may_point_to_spin_lock(reg)) {
8486 			/* For not-NULL ptr, reg->ref_obj_id will be reset
8487 			 * in release_reg_references().
8488 			 *
8489 			 * reg->id is still used by spin_lock ptr. Other
8490 			 * than spin_lock ptr type, reg->id can be reset.
8491 			 */
8492 			reg->id = 0;
8493 		}
8494 	}
8495 }
8496 
8497 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
8498 				    bool is_null)
8499 {
8500 	struct bpf_reg_state *reg;
8501 	int i;
8502 
8503 	for (i = 0; i < MAX_BPF_REG; i++)
8504 		mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
8505 
8506 	bpf_for_each_spilled_reg(i, state, reg) {
8507 		if (!reg)
8508 			continue;
8509 		mark_ptr_or_null_reg(state, reg, id, is_null);
8510 	}
8511 }
8512 
8513 /* The logic is similar to find_good_pkt_pointers(), both could eventually
8514  * be folded together at some point.
8515  */
8516 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
8517 				  bool is_null)
8518 {
8519 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
8520 	struct bpf_reg_state *regs = state->regs;
8521 	u32 ref_obj_id = regs[regno].ref_obj_id;
8522 	u32 id = regs[regno].id;
8523 	int i;
8524 
8525 	if (ref_obj_id && ref_obj_id == id && is_null)
8526 		/* regs[regno] is in the " == NULL" branch.
8527 		 * No one could have freed the reference state before
8528 		 * doing the NULL check.
8529 		 */
8530 		WARN_ON_ONCE(release_reference_state(state, id));
8531 
8532 	for (i = 0; i <= vstate->curframe; i++)
8533 		__mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
8534 }
8535 
8536 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
8537 				   struct bpf_reg_state *dst_reg,
8538 				   struct bpf_reg_state *src_reg,
8539 				   struct bpf_verifier_state *this_branch,
8540 				   struct bpf_verifier_state *other_branch)
8541 {
8542 	if (BPF_SRC(insn->code) != BPF_X)
8543 		return false;
8544 
8545 	/* Pointers are always 64-bit. */
8546 	if (BPF_CLASS(insn->code) == BPF_JMP32)
8547 		return false;
8548 
8549 	switch (BPF_OP(insn->code)) {
8550 	case BPF_JGT:
8551 		if ((dst_reg->type == PTR_TO_PACKET &&
8552 		     src_reg->type == PTR_TO_PACKET_END) ||
8553 		    (dst_reg->type == PTR_TO_PACKET_META &&
8554 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
8555 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
8556 			find_good_pkt_pointers(this_branch, dst_reg,
8557 					       dst_reg->type, false);
8558 			mark_pkt_end(other_branch, insn->dst_reg, true);
8559 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
8560 			    src_reg->type == PTR_TO_PACKET) ||
8561 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
8562 			    src_reg->type == PTR_TO_PACKET_META)) {
8563 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
8564 			find_good_pkt_pointers(other_branch, src_reg,
8565 					       src_reg->type, true);
8566 			mark_pkt_end(this_branch, insn->src_reg, false);
8567 		} else {
8568 			return false;
8569 		}
8570 		break;
8571 	case BPF_JLT:
8572 		if ((dst_reg->type == PTR_TO_PACKET &&
8573 		     src_reg->type == PTR_TO_PACKET_END) ||
8574 		    (dst_reg->type == PTR_TO_PACKET_META &&
8575 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
8576 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
8577 			find_good_pkt_pointers(other_branch, dst_reg,
8578 					       dst_reg->type, true);
8579 			mark_pkt_end(this_branch, insn->dst_reg, false);
8580 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
8581 			    src_reg->type == PTR_TO_PACKET) ||
8582 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
8583 			    src_reg->type == PTR_TO_PACKET_META)) {
8584 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
8585 			find_good_pkt_pointers(this_branch, src_reg,
8586 					       src_reg->type, false);
8587 			mark_pkt_end(other_branch, insn->src_reg, true);
8588 		} else {
8589 			return false;
8590 		}
8591 		break;
8592 	case BPF_JGE:
8593 		if ((dst_reg->type == PTR_TO_PACKET &&
8594 		     src_reg->type == PTR_TO_PACKET_END) ||
8595 		    (dst_reg->type == PTR_TO_PACKET_META &&
8596 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
8597 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
8598 			find_good_pkt_pointers(this_branch, dst_reg,
8599 					       dst_reg->type, true);
8600 			mark_pkt_end(other_branch, insn->dst_reg, false);
8601 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
8602 			    src_reg->type == PTR_TO_PACKET) ||
8603 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
8604 			    src_reg->type == PTR_TO_PACKET_META)) {
8605 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
8606 			find_good_pkt_pointers(other_branch, src_reg,
8607 					       src_reg->type, false);
8608 			mark_pkt_end(this_branch, insn->src_reg, true);
8609 		} else {
8610 			return false;
8611 		}
8612 		break;
8613 	case BPF_JLE:
8614 		if ((dst_reg->type == PTR_TO_PACKET &&
8615 		     src_reg->type == PTR_TO_PACKET_END) ||
8616 		    (dst_reg->type == PTR_TO_PACKET_META &&
8617 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
8618 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
8619 			find_good_pkt_pointers(other_branch, dst_reg,
8620 					       dst_reg->type, false);
8621 			mark_pkt_end(this_branch, insn->dst_reg, true);
8622 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
8623 			    src_reg->type == PTR_TO_PACKET) ||
8624 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
8625 			    src_reg->type == PTR_TO_PACKET_META)) {
8626 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
8627 			find_good_pkt_pointers(this_branch, src_reg,
8628 					       src_reg->type, true);
8629 			mark_pkt_end(other_branch, insn->src_reg, false);
8630 		} else {
8631 			return false;
8632 		}
8633 		break;
8634 	default:
8635 		return false;
8636 	}
8637 
8638 	return true;
8639 }
8640 
8641 static void find_equal_scalars(struct bpf_verifier_state *vstate,
8642 			       struct bpf_reg_state *known_reg)
8643 {
8644 	struct bpf_func_state *state;
8645 	struct bpf_reg_state *reg;
8646 	int i, j;
8647 
8648 	for (i = 0; i <= vstate->curframe; i++) {
8649 		state = vstate->frame[i];
8650 		for (j = 0; j < MAX_BPF_REG; j++) {
8651 			reg = &state->regs[j];
8652 			if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
8653 				*reg = *known_reg;
8654 		}
8655 
8656 		bpf_for_each_spilled_reg(j, state, reg) {
8657 			if (!reg)
8658 				continue;
8659 			if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
8660 				*reg = *known_reg;
8661 		}
8662 	}
8663 }
8664 
8665 static int check_cond_jmp_op(struct bpf_verifier_env *env,
8666 			     struct bpf_insn *insn, int *insn_idx)
8667 {
8668 	struct bpf_verifier_state *this_branch = env->cur_state;
8669 	struct bpf_verifier_state *other_branch;
8670 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
8671 	struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
8672 	u8 opcode = BPF_OP(insn->code);
8673 	bool is_jmp32;
8674 	int pred = -1;
8675 	int err;
8676 
8677 	/* Only conditional jumps are expected to reach here. */
8678 	if (opcode == BPF_JA || opcode > BPF_JSLE) {
8679 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
8680 		return -EINVAL;
8681 	}
8682 
8683 	if (BPF_SRC(insn->code) == BPF_X) {
8684 		if (insn->imm != 0) {
8685 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
8686 			return -EINVAL;
8687 		}
8688 
8689 		/* check src1 operand */
8690 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
8691 		if (err)
8692 			return err;
8693 
8694 		if (is_pointer_value(env, insn->src_reg)) {
8695 			verbose(env, "R%d pointer comparison prohibited\n",
8696 				insn->src_reg);
8697 			return -EACCES;
8698 		}
8699 		src_reg = &regs[insn->src_reg];
8700 	} else {
8701 		if (insn->src_reg != BPF_REG_0) {
8702 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
8703 			return -EINVAL;
8704 		}
8705 	}
8706 
8707 	/* check src2 operand */
8708 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
8709 	if (err)
8710 		return err;
8711 
8712 	dst_reg = &regs[insn->dst_reg];
8713 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
8714 
8715 	if (BPF_SRC(insn->code) == BPF_K) {
8716 		pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
8717 	} else if (src_reg->type == SCALAR_VALUE &&
8718 		   is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
8719 		pred = is_branch_taken(dst_reg,
8720 				       tnum_subreg(src_reg->var_off).value,
8721 				       opcode,
8722 				       is_jmp32);
8723 	} else if (src_reg->type == SCALAR_VALUE &&
8724 		   !is_jmp32 && tnum_is_const(src_reg->var_off)) {
8725 		pred = is_branch_taken(dst_reg,
8726 				       src_reg->var_off.value,
8727 				       opcode,
8728 				       is_jmp32);
8729 	} else if (reg_is_pkt_pointer_any(dst_reg) &&
8730 		   reg_is_pkt_pointer_any(src_reg) &&
8731 		   !is_jmp32) {
8732 		pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
8733 	}
8734 
8735 	if (pred >= 0) {
8736 		/* If we get here with a dst_reg pointer type it is because
8737 		 * above is_branch_taken() special cased the 0 comparison.
8738 		 */
8739 		if (!__is_pointer_value(false, dst_reg))
8740 			err = mark_chain_precision(env, insn->dst_reg);
8741 		if (BPF_SRC(insn->code) == BPF_X && !err &&
8742 		    !__is_pointer_value(false, src_reg))
8743 			err = mark_chain_precision(env, insn->src_reg);
8744 		if (err)
8745 			return err;
8746 	}
8747 	if (pred == 1) {
8748 		/* only follow the goto, ignore fall-through */
8749 		*insn_idx += insn->off;
8750 		return 0;
8751 	} else if (pred == 0) {
8752 		/* only follow fall-through branch, since
8753 		 * that's where the program will go
8754 		 */
8755 		return 0;
8756 	}
8757 
8758 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
8759 				  false);
8760 	if (!other_branch)
8761 		return -EFAULT;
8762 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
8763 
8764 	/* detect if we are comparing against a constant value so we can adjust
8765 	 * our min/max values for our dst register.
8766 	 * this is only legit if both are scalars (or pointers to the same
8767 	 * object, I suppose, but we don't support that right now), because
8768 	 * otherwise the different base pointers mean the offsets aren't
8769 	 * comparable.
8770 	 */
8771 	if (BPF_SRC(insn->code) == BPF_X) {
8772 		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
8773 
8774 		if (dst_reg->type == SCALAR_VALUE &&
8775 		    src_reg->type == SCALAR_VALUE) {
8776 			if (tnum_is_const(src_reg->var_off) ||
8777 			    (is_jmp32 &&
8778 			     tnum_is_const(tnum_subreg(src_reg->var_off))))
8779 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
8780 						dst_reg,
8781 						src_reg->var_off.value,
8782 						tnum_subreg(src_reg->var_off).value,
8783 						opcode, is_jmp32);
8784 			else if (tnum_is_const(dst_reg->var_off) ||
8785 				 (is_jmp32 &&
8786 				  tnum_is_const(tnum_subreg(dst_reg->var_off))))
8787 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
8788 						    src_reg,
8789 						    dst_reg->var_off.value,
8790 						    tnum_subreg(dst_reg->var_off).value,
8791 						    opcode, is_jmp32);
8792 			else if (!is_jmp32 &&
8793 				 (opcode == BPF_JEQ || opcode == BPF_JNE))
8794 				/* Comparing for equality, we can combine knowledge */
8795 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
8796 						    &other_branch_regs[insn->dst_reg],
8797 						    src_reg, dst_reg, opcode);
8798 			if (src_reg->id &&
8799 			    !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
8800 				find_equal_scalars(this_branch, src_reg);
8801 				find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
8802 			}
8803 
8804 		}
8805 	} else if (dst_reg->type == SCALAR_VALUE) {
8806 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
8807 					dst_reg, insn->imm, (u32)insn->imm,
8808 					opcode, is_jmp32);
8809 	}
8810 
8811 	if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
8812 	    !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
8813 		find_equal_scalars(this_branch, dst_reg);
8814 		find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
8815 	}
8816 
8817 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
8818 	 * NOTE: these optimizations below are related with pointer comparison
8819 	 *       which will never be JMP32.
8820 	 */
8821 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
8822 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
8823 	    reg_type_may_be_null(dst_reg->type)) {
8824 		/* Mark all identical registers in each branch as either
8825 		 * safe or unknown depending R == 0 or R != 0 conditional.
8826 		 */
8827 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
8828 				      opcode == BPF_JNE);
8829 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
8830 				      opcode == BPF_JEQ);
8831 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
8832 					   this_branch, other_branch) &&
8833 		   is_pointer_value(env, insn->dst_reg)) {
8834 		verbose(env, "R%d pointer comparison prohibited\n",
8835 			insn->dst_reg);
8836 		return -EACCES;
8837 	}
8838 	if (env->log.level & BPF_LOG_LEVEL)
8839 		print_verifier_state(env, this_branch->frame[this_branch->curframe]);
8840 	return 0;
8841 }
8842 
8843 /* verify BPF_LD_IMM64 instruction */
8844 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
8845 {
8846 	struct bpf_insn_aux_data *aux = cur_aux(env);
8847 	struct bpf_reg_state *regs = cur_regs(env);
8848 	struct bpf_reg_state *dst_reg;
8849 	struct bpf_map *map;
8850 	int err;
8851 
8852 	if (BPF_SIZE(insn->code) != BPF_DW) {
8853 		verbose(env, "invalid BPF_LD_IMM insn\n");
8854 		return -EINVAL;
8855 	}
8856 	if (insn->off != 0) {
8857 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
8858 		return -EINVAL;
8859 	}
8860 
8861 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
8862 	if (err)
8863 		return err;
8864 
8865 	dst_reg = &regs[insn->dst_reg];
8866 	if (insn->src_reg == 0) {
8867 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
8868 
8869 		dst_reg->type = SCALAR_VALUE;
8870 		__mark_reg_known(&regs[insn->dst_reg], imm);
8871 		return 0;
8872 	}
8873 
8874 	if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
8875 		mark_reg_known_zero(env, regs, insn->dst_reg);
8876 
8877 		dst_reg->type = aux->btf_var.reg_type;
8878 		switch (dst_reg->type) {
8879 		case PTR_TO_MEM:
8880 			dst_reg->mem_size = aux->btf_var.mem_size;
8881 			break;
8882 		case PTR_TO_BTF_ID:
8883 		case PTR_TO_PERCPU_BTF_ID:
8884 			dst_reg->btf = aux->btf_var.btf;
8885 			dst_reg->btf_id = aux->btf_var.btf_id;
8886 			break;
8887 		default:
8888 			verbose(env, "bpf verifier is misconfigured\n");
8889 			return -EFAULT;
8890 		}
8891 		return 0;
8892 	}
8893 
8894 	if (insn->src_reg == BPF_PSEUDO_FUNC) {
8895 		struct bpf_prog_aux *aux = env->prog->aux;
8896 		u32 subprogno = insn[1].imm;
8897 
8898 		if (!aux->func_info) {
8899 			verbose(env, "missing btf func_info\n");
8900 			return -EINVAL;
8901 		}
8902 		if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
8903 			verbose(env, "callback function not static\n");
8904 			return -EINVAL;
8905 		}
8906 
8907 		dst_reg->type = PTR_TO_FUNC;
8908 		dst_reg->subprogno = subprogno;
8909 		return 0;
8910 	}
8911 
8912 	map = env->used_maps[aux->map_index];
8913 	mark_reg_known_zero(env, regs, insn->dst_reg);
8914 	dst_reg->map_ptr = map;
8915 
8916 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) {
8917 		dst_reg->type = PTR_TO_MAP_VALUE;
8918 		dst_reg->off = aux->map_off;
8919 		if (map_value_has_spin_lock(map))
8920 			dst_reg->id = ++env->id_gen;
8921 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
8922 		dst_reg->type = CONST_PTR_TO_MAP;
8923 	} else {
8924 		verbose(env, "bpf verifier is misconfigured\n");
8925 		return -EINVAL;
8926 	}
8927 
8928 	return 0;
8929 }
8930 
8931 static bool may_access_skb(enum bpf_prog_type type)
8932 {
8933 	switch (type) {
8934 	case BPF_PROG_TYPE_SOCKET_FILTER:
8935 	case BPF_PROG_TYPE_SCHED_CLS:
8936 	case BPF_PROG_TYPE_SCHED_ACT:
8937 		return true;
8938 	default:
8939 		return false;
8940 	}
8941 }
8942 
8943 /* verify safety of LD_ABS|LD_IND instructions:
8944  * - they can only appear in the programs where ctx == skb
8945  * - since they are wrappers of function calls, they scratch R1-R5 registers,
8946  *   preserve R6-R9, and store return value into R0
8947  *
8948  * Implicit input:
8949  *   ctx == skb == R6 == CTX
8950  *
8951  * Explicit input:
8952  *   SRC == any register
8953  *   IMM == 32-bit immediate
8954  *
8955  * Output:
8956  *   R0 - 8/16/32-bit skb data converted to cpu endianness
8957  */
8958 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
8959 {
8960 	struct bpf_reg_state *regs = cur_regs(env);
8961 	static const int ctx_reg = BPF_REG_6;
8962 	u8 mode = BPF_MODE(insn->code);
8963 	int i, err;
8964 
8965 	if (!may_access_skb(resolve_prog_type(env->prog))) {
8966 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
8967 		return -EINVAL;
8968 	}
8969 
8970 	if (!env->ops->gen_ld_abs) {
8971 		verbose(env, "bpf verifier is misconfigured\n");
8972 		return -EINVAL;
8973 	}
8974 
8975 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
8976 	    BPF_SIZE(insn->code) == BPF_DW ||
8977 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
8978 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
8979 		return -EINVAL;
8980 	}
8981 
8982 	/* check whether implicit source operand (register R6) is readable */
8983 	err = check_reg_arg(env, ctx_reg, SRC_OP);
8984 	if (err)
8985 		return err;
8986 
8987 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
8988 	 * gen_ld_abs() may terminate the program at runtime, leading to
8989 	 * reference leak.
8990 	 */
8991 	err = check_reference_leak(env);
8992 	if (err) {
8993 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
8994 		return err;
8995 	}
8996 
8997 	if (env->cur_state->active_spin_lock) {
8998 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
8999 		return -EINVAL;
9000 	}
9001 
9002 	if (regs[ctx_reg].type != PTR_TO_CTX) {
9003 		verbose(env,
9004 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
9005 		return -EINVAL;
9006 	}
9007 
9008 	if (mode == BPF_IND) {
9009 		/* check explicit source operand */
9010 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
9011 		if (err)
9012 			return err;
9013 	}
9014 
9015 	err = check_ctx_reg(env, &regs[ctx_reg], ctx_reg);
9016 	if (err < 0)
9017 		return err;
9018 
9019 	/* reset caller saved regs to unreadable */
9020 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
9021 		mark_reg_not_init(env, regs, caller_saved[i]);
9022 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
9023 	}
9024 
9025 	/* mark destination R0 register as readable, since it contains
9026 	 * the value fetched from the packet.
9027 	 * Already marked as written above.
9028 	 */
9029 	mark_reg_unknown(env, regs, BPF_REG_0);
9030 	/* ld_abs load up to 32-bit skb data. */
9031 	regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
9032 	return 0;
9033 }
9034 
9035 static int check_return_code(struct bpf_verifier_env *env)
9036 {
9037 	struct tnum enforce_attach_type_range = tnum_unknown;
9038 	const struct bpf_prog *prog = env->prog;
9039 	struct bpf_reg_state *reg;
9040 	struct tnum range = tnum_range(0, 1);
9041 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
9042 	int err;
9043 	const bool is_subprog = env->cur_state->frame[0]->subprogno;
9044 
9045 	/* LSM and struct_ops func-ptr's return type could be "void" */
9046 	if (!is_subprog &&
9047 	    (prog_type == BPF_PROG_TYPE_STRUCT_OPS ||
9048 	     prog_type == BPF_PROG_TYPE_LSM) &&
9049 	    !prog->aux->attach_func_proto->type)
9050 		return 0;
9051 
9052 	/* eBPF calling convetion is such that R0 is used
9053 	 * to return the value from eBPF program.
9054 	 * Make sure that it's readable at this time
9055 	 * of bpf_exit, which means that program wrote
9056 	 * something into it earlier
9057 	 */
9058 	err = check_reg_arg(env, BPF_REG_0, SRC_OP);
9059 	if (err)
9060 		return err;
9061 
9062 	if (is_pointer_value(env, BPF_REG_0)) {
9063 		verbose(env, "R0 leaks addr as return value\n");
9064 		return -EACCES;
9065 	}
9066 
9067 	reg = cur_regs(env) + BPF_REG_0;
9068 	if (is_subprog) {
9069 		if (reg->type != SCALAR_VALUE) {
9070 			verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
9071 				reg_type_str[reg->type]);
9072 			return -EINVAL;
9073 		}
9074 		return 0;
9075 	}
9076 
9077 	switch (prog_type) {
9078 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
9079 		if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
9080 		    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
9081 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
9082 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
9083 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
9084 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
9085 			range = tnum_range(1, 1);
9086 		if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
9087 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
9088 			range = tnum_range(0, 3);
9089 		break;
9090 	case BPF_PROG_TYPE_CGROUP_SKB:
9091 		if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
9092 			range = tnum_range(0, 3);
9093 			enforce_attach_type_range = tnum_range(2, 3);
9094 		}
9095 		break;
9096 	case BPF_PROG_TYPE_CGROUP_SOCK:
9097 	case BPF_PROG_TYPE_SOCK_OPS:
9098 	case BPF_PROG_TYPE_CGROUP_DEVICE:
9099 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
9100 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
9101 		break;
9102 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
9103 		if (!env->prog->aux->attach_btf_id)
9104 			return 0;
9105 		range = tnum_const(0);
9106 		break;
9107 	case BPF_PROG_TYPE_TRACING:
9108 		switch (env->prog->expected_attach_type) {
9109 		case BPF_TRACE_FENTRY:
9110 		case BPF_TRACE_FEXIT:
9111 			range = tnum_const(0);
9112 			break;
9113 		case BPF_TRACE_RAW_TP:
9114 		case BPF_MODIFY_RETURN:
9115 			return 0;
9116 		case BPF_TRACE_ITER:
9117 			break;
9118 		default:
9119 			return -ENOTSUPP;
9120 		}
9121 		break;
9122 	case BPF_PROG_TYPE_SK_LOOKUP:
9123 		range = tnum_range(SK_DROP, SK_PASS);
9124 		break;
9125 	case BPF_PROG_TYPE_EXT:
9126 		/* freplace program can return anything as its return value
9127 		 * depends on the to-be-replaced kernel func or bpf program.
9128 		 */
9129 	default:
9130 		return 0;
9131 	}
9132 
9133 	if (reg->type != SCALAR_VALUE) {
9134 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
9135 			reg_type_str[reg->type]);
9136 		return -EINVAL;
9137 	}
9138 
9139 	if (!tnum_in(range, reg->var_off)) {
9140 		verbose_invalid_scalar(env, reg, &range, "program exit", "R0");
9141 		return -EINVAL;
9142 	}
9143 
9144 	if (!tnum_is_unknown(enforce_attach_type_range) &&
9145 	    tnum_in(enforce_attach_type_range, reg->var_off))
9146 		env->prog->enforce_expected_attach_type = 1;
9147 	return 0;
9148 }
9149 
9150 /* non-recursive DFS pseudo code
9151  * 1  procedure DFS-iterative(G,v):
9152  * 2      label v as discovered
9153  * 3      let S be a stack
9154  * 4      S.push(v)
9155  * 5      while S is not empty
9156  * 6            t <- S.pop()
9157  * 7            if t is what we're looking for:
9158  * 8                return t
9159  * 9            for all edges e in G.adjacentEdges(t) do
9160  * 10               if edge e is already labelled
9161  * 11                   continue with the next edge
9162  * 12               w <- G.adjacentVertex(t,e)
9163  * 13               if vertex w is not discovered and not explored
9164  * 14                   label e as tree-edge
9165  * 15                   label w as discovered
9166  * 16                   S.push(w)
9167  * 17                   continue at 5
9168  * 18               else if vertex w is discovered
9169  * 19                   label e as back-edge
9170  * 20               else
9171  * 21                   // vertex w is explored
9172  * 22                   label e as forward- or cross-edge
9173  * 23           label t as explored
9174  * 24           S.pop()
9175  *
9176  * convention:
9177  * 0x10 - discovered
9178  * 0x11 - discovered and fall-through edge labelled
9179  * 0x12 - discovered and fall-through and branch edges labelled
9180  * 0x20 - explored
9181  */
9182 
9183 enum {
9184 	DISCOVERED = 0x10,
9185 	EXPLORED = 0x20,
9186 	FALLTHROUGH = 1,
9187 	BRANCH = 2,
9188 };
9189 
9190 static u32 state_htab_size(struct bpf_verifier_env *env)
9191 {
9192 	return env->prog->len;
9193 }
9194 
9195 static struct bpf_verifier_state_list **explored_state(
9196 					struct bpf_verifier_env *env,
9197 					int idx)
9198 {
9199 	struct bpf_verifier_state *cur = env->cur_state;
9200 	struct bpf_func_state *state = cur->frame[cur->curframe];
9201 
9202 	return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
9203 }
9204 
9205 static void init_explored_state(struct bpf_verifier_env *env, int idx)
9206 {
9207 	env->insn_aux_data[idx].prune_point = true;
9208 }
9209 
9210 enum {
9211 	DONE_EXPLORING = 0,
9212 	KEEP_EXPLORING = 1,
9213 };
9214 
9215 /* t, w, e - match pseudo-code above:
9216  * t - index of current instruction
9217  * w - next instruction
9218  * e - edge
9219  */
9220 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
9221 		     bool loop_ok)
9222 {
9223 	int *insn_stack = env->cfg.insn_stack;
9224 	int *insn_state = env->cfg.insn_state;
9225 
9226 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
9227 		return DONE_EXPLORING;
9228 
9229 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
9230 		return DONE_EXPLORING;
9231 
9232 	if (w < 0 || w >= env->prog->len) {
9233 		verbose_linfo(env, t, "%d: ", t);
9234 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
9235 		return -EINVAL;
9236 	}
9237 
9238 	if (e == BRANCH)
9239 		/* mark branch target for state pruning */
9240 		init_explored_state(env, w);
9241 
9242 	if (insn_state[w] == 0) {
9243 		/* tree-edge */
9244 		insn_state[t] = DISCOVERED | e;
9245 		insn_state[w] = DISCOVERED;
9246 		if (env->cfg.cur_stack >= env->prog->len)
9247 			return -E2BIG;
9248 		insn_stack[env->cfg.cur_stack++] = w;
9249 		return KEEP_EXPLORING;
9250 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
9251 		if (loop_ok && env->bpf_capable)
9252 			return DONE_EXPLORING;
9253 		verbose_linfo(env, t, "%d: ", t);
9254 		verbose_linfo(env, w, "%d: ", w);
9255 		verbose(env, "back-edge from insn %d to %d\n", t, w);
9256 		return -EINVAL;
9257 	} else if (insn_state[w] == EXPLORED) {
9258 		/* forward- or cross-edge */
9259 		insn_state[t] = DISCOVERED | e;
9260 	} else {
9261 		verbose(env, "insn state internal bug\n");
9262 		return -EFAULT;
9263 	}
9264 	return DONE_EXPLORING;
9265 }
9266 
9267 static int visit_func_call_insn(int t, int insn_cnt,
9268 				struct bpf_insn *insns,
9269 				struct bpf_verifier_env *env,
9270 				bool visit_callee)
9271 {
9272 	int ret;
9273 
9274 	ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
9275 	if (ret)
9276 		return ret;
9277 
9278 	if (t + 1 < insn_cnt)
9279 		init_explored_state(env, t + 1);
9280 	if (visit_callee) {
9281 		init_explored_state(env, t);
9282 		ret = push_insn(t, t + insns[t].imm + 1, BRANCH,
9283 				env, false);
9284 	}
9285 	return ret;
9286 }
9287 
9288 /* Visits the instruction at index t and returns one of the following:
9289  *  < 0 - an error occurred
9290  *  DONE_EXPLORING - the instruction was fully explored
9291  *  KEEP_EXPLORING - there is still work to be done before it is fully explored
9292  */
9293 static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env)
9294 {
9295 	struct bpf_insn *insns = env->prog->insnsi;
9296 	int ret;
9297 
9298 	if (bpf_pseudo_func(insns + t))
9299 		return visit_func_call_insn(t, insn_cnt, insns, env, true);
9300 
9301 	/* All non-branch instructions have a single fall-through edge. */
9302 	if (BPF_CLASS(insns[t].code) != BPF_JMP &&
9303 	    BPF_CLASS(insns[t].code) != BPF_JMP32)
9304 		return push_insn(t, t + 1, FALLTHROUGH, env, false);
9305 
9306 	switch (BPF_OP(insns[t].code)) {
9307 	case BPF_EXIT:
9308 		return DONE_EXPLORING;
9309 
9310 	case BPF_CALL:
9311 		return visit_func_call_insn(t, insn_cnt, insns, env,
9312 					    insns[t].src_reg == BPF_PSEUDO_CALL);
9313 
9314 	case BPF_JA:
9315 		if (BPF_SRC(insns[t].code) != BPF_K)
9316 			return -EINVAL;
9317 
9318 		/* unconditional jump with single edge */
9319 		ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env,
9320 				true);
9321 		if (ret)
9322 			return ret;
9323 
9324 		/* unconditional jmp is not a good pruning point,
9325 		 * but it's marked, since backtracking needs
9326 		 * to record jmp history in is_state_visited().
9327 		 */
9328 		init_explored_state(env, t + insns[t].off + 1);
9329 		/* tell verifier to check for equivalent states
9330 		 * after every call and jump
9331 		 */
9332 		if (t + 1 < insn_cnt)
9333 			init_explored_state(env, t + 1);
9334 
9335 		return ret;
9336 
9337 	default:
9338 		/* conditional jump with two edges */
9339 		init_explored_state(env, t);
9340 		ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
9341 		if (ret)
9342 			return ret;
9343 
9344 		return push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
9345 	}
9346 }
9347 
9348 /* non-recursive depth-first-search to detect loops in BPF program
9349  * loop == back-edge in directed graph
9350  */
9351 static int check_cfg(struct bpf_verifier_env *env)
9352 {
9353 	int insn_cnt = env->prog->len;
9354 	int *insn_stack, *insn_state;
9355 	int ret = 0;
9356 	int i;
9357 
9358 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
9359 	if (!insn_state)
9360 		return -ENOMEM;
9361 
9362 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
9363 	if (!insn_stack) {
9364 		kvfree(insn_state);
9365 		return -ENOMEM;
9366 	}
9367 
9368 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
9369 	insn_stack[0] = 0; /* 0 is the first instruction */
9370 	env->cfg.cur_stack = 1;
9371 
9372 	while (env->cfg.cur_stack > 0) {
9373 		int t = insn_stack[env->cfg.cur_stack - 1];
9374 
9375 		ret = visit_insn(t, insn_cnt, env);
9376 		switch (ret) {
9377 		case DONE_EXPLORING:
9378 			insn_state[t] = EXPLORED;
9379 			env->cfg.cur_stack--;
9380 			break;
9381 		case KEEP_EXPLORING:
9382 			break;
9383 		default:
9384 			if (ret > 0) {
9385 				verbose(env, "visit_insn internal bug\n");
9386 				ret = -EFAULT;
9387 			}
9388 			goto err_free;
9389 		}
9390 	}
9391 
9392 	if (env->cfg.cur_stack < 0) {
9393 		verbose(env, "pop stack internal bug\n");
9394 		ret = -EFAULT;
9395 		goto err_free;
9396 	}
9397 
9398 	for (i = 0; i < insn_cnt; i++) {
9399 		if (insn_state[i] != EXPLORED) {
9400 			verbose(env, "unreachable insn %d\n", i);
9401 			ret = -EINVAL;
9402 			goto err_free;
9403 		}
9404 	}
9405 	ret = 0; /* cfg looks good */
9406 
9407 err_free:
9408 	kvfree(insn_state);
9409 	kvfree(insn_stack);
9410 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
9411 	return ret;
9412 }
9413 
9414 static int check_abnormal_return(struct bpf_verifier_env *env)
9415 {
9416 	int i;
9417 
9418 	for (i = 1; i < env->subprog_cnt; i++) {
9419 		if (env->subprog_info[i].has_ld_abs) {
9420 			verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
9421 			return -EINVAL;
9422 		}
9423 		if (env->subprog_info[i].has_tail_call) {
9424 			verbose(env, "tail_call is not allowed in subprogs without BTF\n");
9425 			return -EINVAL;
9426 		}
9427 	}
9428 	return 0;
9429 }
9430 
9431 /* The minimum supported BTF func info size */
9432 #define MIN_BPF_FUNCINFO_SIZE	8
9433 #define MAX_FUNCINFO_REC_SIZE	252
9434 
9435 static int check_btf_func(struct bpf_verifier_env *env,
9436 			  const union bpf_attr *attr,
9437 			  union bpf_attr __user *uattr)
9438 {
9439 	const struct btf_type *type, *func_proto, *ret_type;
9440 	u32 i, nfuncs, urec_size, min_size;
9441 	u32 krec_size = sizeof(struct bpf_func_info);
9442 	struct bpf_func_info *krecord;
9443 	struct bpf_func_info_aux *info_aux = NULL;
9444 	struct bpf_prog *prog;
9445 	const struct btf *btf;
9446 	void __user *urecord;
9447 	u32 prev_offset = 0;
9448 	bool scalar_return;
9449 	int ret = -ENOMEM;
9450 
9451 	nfuncs = attr->func_info_cnt;
9452 	if (!nfuncs) {
9453 		if (check_abnormal_return(env))
9454 			return -EINVAL;
9455 		return 0;
9456 	}
9457 
9458 	if (nfuncs != env->subprog_cnt) {
9459 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
9460 		return -EINVAL;
9461 	}
9462 
9463 	urec_size = attr->func_info_rec_size;
9464 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
9465 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
9466 	    urec_size % sizeof(u32)) {
9467 		verbose(env, "invalid func info rec size %u\n", urec_size);
9468 		return -EINVAL;
9469 	}
9470 
9471 	prog = env->prog;
9472 	btf = prog->aux->btf;
9473 
9474 	urecord = u64_to_user_ptr(attr->func_info);
9475 	min_size = min_t(u32, krec_size, urec_size);
9476 
9477 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
9478 	if (!krecord)
9479 		return -ENOMEM;
9480 	info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
9481 	if (!info_aux)
9482 		goto err_free;
9483 
9484 	for (i = 0; i < nfuncs; i++) {
9485 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
9486 		if (ret) {
9487 			if (ret == -E2BIG) {
9488 				verbose(env, "nonzero tailing record in func info");
9489 				/* set the size kernel expects so loader can zero
9490 				 * out the rest of the record.
9491 				 */
9492 				if (put_user(min_size, &uattr->func_info_rec_size))
9493 					ret = -EFAULT;
9494 			}
9495 			goto err_free;
9496 		}
9497 
9498 		if (copy_from_user(&krecord[i], urecord, min_size)) {
9499 			ret = -EFAULT;
9500 			goto err_free;
9501 		}
9502 
9503 		/* check insn_off */
9504 		ret = -EINVAL;
9505 		if (i == 0) {
9506 			if (krecord[i].insn_off) {
9507 				verbose(env,
9508 					"nonzero insn_off %u for the first func info record",
9509 					krecord[i].insn_off);
9510 				goto err_free;
9511 			}
9512 		} else if (krecord[i].insn_off <= prev_offset) {
9513 			verbose(env,
9514 				"same or smaller insn offset (%u) than previous func info record (%u)",
9515 				krecord[i].insn_off, prev_offset);
9516 			goto err_free;
9517 		}
9518 
9519 		if (env->subprog_info[i].start != krecord[i].insn_off) {
9520 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
9521 			goto err_free;
9522 		}
9523 
9524 		/* check type_id */
9525 		type = btf_type_by_id(btf, krecord[i].type_id);
9526 		if (!type || !btf_type_is_func(type)) {
9527 			verbose(env, "invalid type id %d in func info",
9528 				krecord[i].type_id);
9529 			goto err_free;
9530 		}
9531 		info_aux[i].linkage = BTF_INFO_VLEN(type->info);
9532 
9533 		func_proto = btf_type_by_id(btf, type->type);
9534 		if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
9535 			/* btf_func_check() already verified it during BTF load */
9536 			goto err_free;
9537 		ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
9538 		scalar_return =
9539 			btf_type_is_small_int(ret_type) || btf_type_is_enum(ret_type);
9540 		if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
9541 			verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
9542 			goto err_free;
9543 		}
9544 		if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
9545 			verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
9546 			goto err_free;
9547 		}
9548 
9549 		prev_offset = krecord[i].insn_off;
9550 		urecord += urec_size;
9551 	}
9552 
9553 	prog->aux->func_info = krecord;
9554 	prog->aux->func_info_cnt = nfuncs;
9555 	prog->aux->func_info_aux = info_aux;
9556 	return 0;
9557 
9558 err_free:
9559 	kvfree(krecord);
9560 	kfree(info_aux);
9561 	return ret;
9562 }
9563 
9564 static void adjust_btf_func(struct bpf_verifier_env *env)
9565 {
9566 	struct bpf_prog_aux *aux = env->prog->aux;
9567 	int i;
9568 
9569 	if (!aux->func_info)
9570 		return;
9571 
9572 	for (i = 0; i < env->subprog_cnt; i++)
9573 		aux->func_info[i].insn_off = env->subprog_info[i].start;
9574 }
9575 
9576 #define MIN_BPF_LINEINFO_SIZE	(offsetof(struct bpf_line_info, line_col) + \
9577 		sizeof(((struct bpf_line_info *)(0))->line_col))
9578 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
9579 
9580 static int check_btf_line(struct bpf_verifier_env *env,
9581 			  const union bpf_attr *attr,
9582 			  union bpf_attr __user *uattr)
9583 {
9584 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
9585 	struct bpf_subprog_info *sub;
9586 	struct bpf_line_info *linfo;
9587 	struct bpf_prog *prog;
9588 	const struct btf *btf;
9589 	void __user *ulinfo;
9590 	int err;
9591 
9592 	nr_linfo = attr->line_info_cnt;
9593 	if (!nr_linfo)
9594 		return 0;
9595 
9596 	rec_size = attr->line_info_rec_size;
9597 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
9598 	    rec_size > MAX_LINEINFO_REC_SIZE ||
9599 	    rec_size & (sizeof(u32) - 1))
9600 		return -EINVAL;
9601 
9602 	/* Need to zero it in case the userspace may
9603 	 * pass in a smaller bpf_line_info object.
9604 	 */
9605 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
9606 			 GFP_KERNEL | __GFP_NOWARN);
9607 	if (!linfo)
9608 		return -ENOMEM;
9609 
9610 	prog = env->prog;
9611 	btf = prog->aux->btf;
9612 
9613 	s = 0;
9614 	sub = env->subprog_info;
9615 	ulinfo = u64_to_user_ptr(attr->line_info);
9616 	expected_size = sizeof(struct bpf_line_info);
9617 	ncopy = min_t(u32, expected_size, rec_size);
9618 	for (i = 0; i < nr_linfo; i++) {
9619 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
9620 		if (err) {
9621 			if (err == -E2BIG) {
9622 				verbose(env, "nonzero tailing record in line_info");
9623 				if (put_user(expected_size,
9624 					     &uattr->line_info_rec_size))
9625 					err = -EFAULT;
9626 			}
9627 			goto err_free;
9628 		}
9629 
9630 		if (copy_from_user(&linfo[i], ulinfo, ncopy)) {
9631 			err = -EFAULT;
9632 			goto err_free;
9633 		}
9634 
9635 		/*
9636 		 * Check insn_off to ensure
9637 		 * 1) strictly increasing AND
9638 		 * 2) bounded by prog->len
9639 		 *
9640 		 * The linfo[0].insn_off == 0 check logically falls into
9641 		 * the later "missing bpf_line_info for func..." case
9642 		 * because the first linfo[0].insn_off must be the
9643 		 * first sub also and the first sub must have
9644 		 * subprog_info[0].start == 0.
9645 		 */
9646 		if ((i && linfo[i].insn_off <= prev_offset) ||
9647 		    linfo[i].insn_off >= prog->len) {
9648 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
9649 				i, linfo[i].insn_off, prev_offset,
9650 				prog->len);
9651 			err = -EINVAL;
9652 			goto err_free;
9653 		}
9654 
9655 		if (!prog->insnsi[linfo[i].insn_off].code) {
9656 			verbose(env,
9657 				"Invalid insn code at line_info[%u].insn_off\n",
9658 				i);
9659 			err = -EINVAL;
9660 			goto err_free;
9661 		}
9662 
9663 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
9664 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
9665 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
9666 			err = -EINVAL;
9667 			goto err_free;
9668 		}
9669 
9670 		if (s != env->subprog_cnt) {
9671 			if (linfo[i].insn_off == sub[s].start) {
9672 				sub[s].linfo_idx = i;
9673 				s++;
9674 			} else if (sub[s].start < linfo[i].insn_off) {
9675 				verbose(env, "missing bpf_line_info for func#%u\n", s);
9676 				err = -EINVAL;
9677 				goto err_free;
9678 			}
9679 		}
9680 
9681 		prev_offset = linfo[i].insn_off;
9682 		ulinfo += rec_size;
9683 	}
9684 
9685 	if (s != env->subprog_cnt) {
9686 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
9687 			env->subprog_cnt - s, s);
9688 		err = -EINVAL;
9689 		goto err_free;
9690 	}
9691 
9692 	prog->aux->linfo = linfo;
9693 	prog->aux->nr_linfo = nr_linfo;
9694 
9695 	return 0;
9696 
9697 err_free:
9698 	kvfree(linfo);
9699 	return err;
9700 }
9701 
9702 static int check_btf_info(struct bpf_verifier_env *env,
9703 			  const union bpf_attr *attr,
9704 			  union bpf_attr __user *uattr)
9705 {
9706 	struct btf *btf;
9707 	int err;
9708 
9709 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
9710 		if (check_abnormal_return(env))
9711 			return -EINVAL;
9712 		return 0;
9713 	}
9714 
9715 	btf = btf_get_by_fd(attr->prog_btf_fd);
9716 	if (IS_ERR(btf))
9717 		return PTR_ERR(btf);
9718 	if (btf_is_kernel(btf)) {
9719 		btf_put(btf);
9720 		return -EACCES;
9721 	}
9722 	env->prog->aux->btf = btf;
9723 
9724 	err = check_btf_func(env, attr, uattr);
9725 	if (err)
9726 		return err;
9727 
9728 	err = check_btf_line(env, attr, uattr);
9729 	if (err)
9730 		return err;
9731 
9732 	return 0;
9733 }
9734 
9735 /* check %cur's range satisfies %old's */
9736 static bool range_within(struct bpf_reg_state *old,
9737 			 struct bpf_reg_state *cur)
9738 {
9739 	return old->umin_value <= cur->umin_value &&
9740 	       old->umax_value >= cur->umax_value &&
9741 	       old->smin_value <= cur->smin_value &&
9742 	       old->smax_value >= cur->smax_value &&
9743 	       old->u32_min_value <= cur->u32_min_value &&
9744 	       old->u32_max_value >= cur->u32_max_value &&
9745 	       old->s32_min_value <= cur->s32_min_value &&
9746 	       old->s32_max_value >= cur->s32_max_value;
9747 }
9748 
9749 /* Maximum number of register states that can exist at once */
9750 #define ID_MAP_SIZE	(MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
9751 struct idpair {
9752 	u32 old;
9753 	u32 cur;
9754 };
9755 
9756 /* If in the old state two registers had the same id, then they need to have
9757  * the same id in the new state as well.  But that id could be different from
9758  * the old state, so we need to track the mapping from old to new ids.
9759  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
9760  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
9761  * regs with a different old id could still have new id 9, we don't care about
9762  * that.
9763  * So we look through our idmap to see if this old id has been seen before.  If
9764  * so, we require the new id to match; otherwise, we add the id pair to the map.
9765  */
9766 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
9767 {
9768 	unsigned int i;
9769 
9770 	for (i = 0; i < ID_MAP_SIZE; i++) {
9771 		if (!idmap[i].old) {
9772 			/* Reached an empty slot; haven't seen this id before */
9773 			idmap[i].old = old_id;
9774 			idmap[i].cur = cur_id;
9775 			return true;
9776 		}
9777 		if (idmap[i].old == old_id)
9778 			return idmap[i].cur == cur_id;
9779 	}
9780 	/* We ran out of idmap slots, which should be impossible */
9781 	WARN_ON_ONCE(1);
9782 	return false;
9783 }
9784 
9785 static void clean_func_state(struct bpf_verifier_env *env,
9786 			     struct bpf_func_state *st)
9787 {
9788 	enum bpf_reg_liveness live;
9789 	int i, j;
9790 
9791 	for (i = 0; i < BPF_REG_FP; i++) {
9792 		live = st->regs[i].live;
9793 		/* liveness must not touch this register anymore */
9794 		st->regs[i].live |= REG_LIVE_DONE;
9795 		if (!(live & REG_LIVE_READ))
9796 			/* since the register is unused, clear its state
9797 			 * to make further comparison simpler
9798 			 */
9799 			__mark_reg_not_init(env, &st->regs[i]);
9800 	}
9801 
9802 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
9803 		live = st->stack[i].spilled_ptr.live;
9804 		/* liveness must not touch this stack slot anymore */
9805 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
9806 		if (!(live & REG_LIVE_READ)) {
9807 			__mark_reg_not_init(env, &st->stack[i].spilled_ptr);
9808 			for (j = 0; j < BPF_REG_SIZE; j++)
9809 				st->stack[i].slot_type[j] = STACK_INVALID;
9810 		}
9811 	}
9812 }
9813 
9814 static void clean_verifier_state(struct bpf_verifier_env *env,
9815 				 struct bpf_verifier_state *st)
9816 {
9817 	int i;
9818 
9819 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
9820 		/* all regs in this state in all frames were already marked */
9821 		return;
9822 
9823 	for (i = 0; i <= st->curframe; i++)
9824 		clean_func_state(env, st->frame[i]);
9825 }
9826 
9827 /* the parentage chains form a tree.
9828  * the verifier states are added to state lists at given insn and
9829  * pushed into state stack for future exploration.
9830  * when the verifier reaches bpf_exit insn some of the verifer states
9831  * stored in the state lists have their final liveness state already,
9832  * but a lot of states will get revised from liveness point of view when
9833  * the verifier explores other branches.
9834  * Example:
9835  * 1: r0 = 1
9836  * 2: if r1 == 100 goto pc+1
9837  * 3: r0 = 2
9838  * 4: exit
9839  * when the verifier reaches exit insn the register r0 in the state list of
9840  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
9841  * of insn 2 and goes exploring further. At the insn 4 it will walk the
9842  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
9843  *
9844  * Since the verifier pushes the branch states as it sees them while exploring
9845  * the program the condition of walking the branch instruction for the second
9846  * time means that all states below this branch were already explored and
9847  * their final liveness markes are already propagated.
9848  * Hence when the verifier completes the search of state list in is_state_visited()
9849  * we can call this clean_live_states() function to mark all liveness states
9850  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
9851  * will not be used.
9852  * This function also clears the registers and stack for states that !READ
9853  * to simplify state merging.
9854  *
9855  * Important note here that walking the same branch instruction in the callee
9856  * doesn't meant that the states are DONE. The verifier has to compare
9857  * the callsites
9858  */
9859 static void clean_live_states(struct bpf_verifier_env *env, int insn,
9860 			      struct bpf_verifier_state *cur)
9861 {
9862 	struct bpf_verifier_state_list *sl;
9863 	int i;
9864 
9865 	sl = *explored_state(env, insn);
9866 	while (sl) {
9867 		if (sl->state.branches)
9868 			goto next;
9869 		if (sl->state.insn_idx != insn ||
9870 		    sl->state.curframe != cur->curframe)
9871 			goto next;
9872 		for (i = 0; i <= cur->curframe; i++)
9873 			if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
9874 				goto next;
9875 		clean_verifier_state(env, &sl->state);
9876 next:
9877 		sl = sl->next;
9878 	}
9879 }
9880 
9881 /* Returns true if (rold safe implies rcur safe) */
9882 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
9883 		    struct idpair *idmap)
9884 {
9885 	bool equal;
9886 
9887 	if (!(rold->live & REG_LIVE_READ))
9888 		/* explored state didn't use this */
9889 		return true;
9890 
9891 	equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
9892 
9893 	if (rold->type == PTR_TO_STACK)
9894 		/* two stack pointers are equal only if they're pointing to
9895 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
9896 		 */
9897 		return equal && rold->frameno == rcur->frameno;
9898 
9899 	if (equal)
9900 		return true;
9901 
9902 	if (rold->type == NOT_INIT)
9903 		/* explored state can't have used this */
9904 		return true;
9905 	if (rcur->type == NOT_INIT)
9906 		return false;
9907 	switch (rold->type) {
9908 	case SCALAR_VALUE:
9909 		if (rcur->type == SCALAR_VALUE) {
9910 			if (!rold->precise && !rcur->precise)
9911 				return true;
9912 			/* new val must satisfy old val knowledge */
9913 			return range_within(rold, rcur) &&
9914 			       tnum_in(rold->var_off, rcur->var_off);
9915 		} else {
9916 			/* We're trying to use a pointer in place of a scalar.
9917 			 * Even if the scalar was unbounded, this could lead to
9918 			 * pointer leaks because scalars are allowed to leak
9919 			 * while pointers are not. We could make this safe in
9920 			 * special cases if root is calling us, but it's
9921 			 * probably not worth the hassle.
9922 			 */
9923 			return false;
9924 		}
9925 	case PTR_TO_MAP_KEY:
9926 	case PTR_TO_MAP_VALUE:
9927 		/* If the new min/max/var_off satisfy the old ones and
9928 		 * everything else matches, we are OK.
9929 		 * 'id' is not compared, since it's only used for maps with
9930 		 * bpf_spin_lock inside map element and in such cases if
9931 		 * the rest of the prog is valid for one map element then
9932 		 * it's valid for all map elements regardless of the key
9933 		 * used in bpf_map_lookup()
9934 		 */
9935 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
9936 		       range_within(rold, rcur) &&
9937 		       tnum_in(rold->var_off, rcur->var_off);
9938 	case PTR_TO_MAP_VALUE_OR_NULL:
9939 		/* a PTR_TO_MAP_VALUE could be safe to use as a
9940 		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
9941 		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
9942 		 * checked, doing so could have affected others with the same
9943 		 * id, and we can't check for that because we lost the id when
9944 		 * we converted to a PTR_TO_MAP_VALUE.
9945 		 */
9946 		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
9947 			return false;
9948 		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
9949 			return false;
9950 		/* Check our ids match any regs they're supposed to */
9951 		return check_ids(rold->id, rcur->id, idmap);
9952 	case PTR_TO_PACKET_META:
9953 	case PTR_TO_PACKET:
9954 		if (rcur->type != rold->type)
9955 			return false;
9956 		/* We must have at least as much range as the old ptr
9957 		 * did, so that any accesses which were safe before are
9958 		 * still safe.  This is true even if old range < old off,
9959 		 * since someone could have accessed through (ptr - k), or
9960 		 * even done ptr -= k in a register, to get a safe access.
9961 		 */
9962 		if (rold->range > rcur->range)
9963 			return false;
9964 		/* If the offsets don't match, we can't trust our alignment;
9965 		 * nor can we be sure that we won't fall out of range.
9966 		 */
9967 		if (rold->off != rcur->off)
9968 			return false;
9969 		/* id relations must be preserved */
9970 		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
9971 			return false;
9972 		/* new val must satisfy old val knowledge */
9973 		return range_within(rold, rcur) &&
9974 		       tnum_in(rold->var_off, rcur->var_off);
9975 	case PTR_TO_CTX:
9976 	case CONST_PTR_TO_MAP:
9977 	case PTR_TO_PACKET_END:
9978 	case PTR_TO_FLOW_KEYS:
9979 	case PTR_TO_SOCKET:
9980 	case PTR_TO_SOCKET_OR_NULL:
9981 	case PTR_TO_SOCK_COMMON:
9982 	case PTR_TO_SOCK_COMMON_OR_NULL:
9983 	case PTR_TO_TCP_SOCK:
9984 	case PTR_TO_TCP_SOCK_OR_NULL:
9985 	case PTR_TO_XDP_SOCK:
9986 		/* Only valid matches are exact, which memcmp() above
9987 		 * would have accepted
9988 		 */
9989 	default:
9990 		/* Don't know what's going on, just say it's not safe */
9991 		return false;
9992 	}
9993 
9994 	/* Shouldn't get here; if we do, say it's not safe */
9995 	WARN_ON_ONCE(1);
9996 	return false;
9997 }
9998 
9999 static bool stacksafe(struct bpf_func_state *old,
10000 		      struct bpf_func_state *cur,
10001 		      struct idpair *idmap)
10002 {
10003 	int i, spi;
10004 
10005 	/* walk slots of the explored stack and ignore any additional
10006 	 * slots in the current stack, since explored(safe) state
10007 	 * didn't use them
10008 	 */
10009 	for (i = 0; i < old->allocated_stack; i++) {
10010 		spi = i / BPF_REG_SIZE;
10011 
10012 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
10013 			i += BPF_REG_SIZE - 1;
10014 			/* explored state didn't use this */
10015 			continue;
10016 		}
10017 
10018 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
10019 			continue;
10020 
10021 		/* explored stack has more populated slots than current stack
10022 		 * and these slots were used
10023 		 */
10024 		if (i >= cur->allocated_stack)
10025 			return false;
10026 
10027 		/* if old state was safe with misc data in the stack
10028 		 * it will be safe with zero-initialized stack.
10029 		 * The opposite is not true
10030 		 */
10031 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
10032 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
10033 			continue;
10034 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
10035 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
10036 			/* Ex: old explored (safe) state has STACK_SPILL in
10037 			 * this stack slot, but current has STACK_MISC ->
10038 			 * this verifier states are not equivalent,
10039 			 * return false to continue verification of this path
10040 			 */
10041 			return false;
10042 		if (i % BPF_REG_SIZE)
10043 			continue;
10044 		if (old->stack[spi].slot_type[0] != STACK_SPILL)
10045 			continue;
10046 		if (!regsafe(&old->stack[spi].spilled_ptr,
10047 			     &cur->stack[spi].spilled_ptr,
10048 			     idmap))
10049 			/* when explored and current stack slot are both storing
10050 			 * spilled registers, check that stored pointers types
10051 			 * are the same as well.
10052 			 * Ex: explored safe path could have stored
10053 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
10054 			 * but current path has stored:
10055 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
10056 			 * such verifier states are not equivalent.
10057 			 * return false to continue verification of this path
10058 			 */
10059 			return false;
10060 	}
10061 	return true;
10062 }
10063 
10064 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
10065 {
10066 	if (old->acquired_refs != cur->acquired_refs)
10067 		return false;
10068 	return !memcmp(old->refs, cur->refs,
10069 		       sizeof(*old->refs) * old->acquired_refs);
10070 }
10071 
10072 /* compare two verifier states
10073  *
10074  * all states stored in state_list are known to be valid, since
10075  * verifier reached 'bpf_exit' instruction through them
10076  *
10077  * this function is called when verifier exploring different branches of
10078  * execution popped from the state stack. If it sees an old state that has
10079  * more strict register state and more strict stack state then this execution
10080  * branch doesn't need to be explored further, since verifier already
10081  * concluded that more strict state leads to valid finish.
10082  *
10083  * Therefore two states are equivalent if register state is more conservative
10084  * and explored stack state is more conservative than the current one.
10085  * Example:
10086  *       explored                   current
10087  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
10088  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
10089  *
10090  * In other words if current stack state (one being explored) has more
10091  * valid slots than old one that already passed validation, it means
10092  * the verifier can stop exploring and conclude that current state is valid too
10093  *
10094  * Similarly with registers. If explored state has register type as invalid
10095  * whereas register type in current state is meaningful, it means that
10096  * the current state will reach 'bpf_exit' instruction safely
10097  */
10098 static bool func_states_equal(struct bpf_func_state *old,
10099 			      struct bpf_func_state *cur)
10100 {
10101 	struct idpair *idmap;
10102 	bool ret = false;
10103 	int i;
10104 
10105 	idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
10106 	/* If we failed to allocate the idmap, just say it's not safe */
10107 	if (!idmap)
10108 		return false;
10109 
10110 	for (i = 0; i < MAX_BPF_REG; i++) {
10111 		if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
10112 			goto out_free;
10113 	}
10114 
10115 	if (!stacksafe(old, cur, idmap))
10116 		goto out_free;
10117 
10118 	if (!refsafe(old, cur))
10119 		goto out_free;
10120 	ret = true;
10121 out_free:
10122 	kfree(idmap);
10123 	return ret;
10124 }
10125 
10126 static bool states_equal(struct bpf_verifier_env *env,
10127 			 struct bpf_verifier_state *old,
10128 			 struct bpf_verifier_state *cur)
10129 {
10130 	int i;
10131 
10132 	if (old->curframe != cur->curframe)
10133 		return false;
10134 
10135 	/* Verification state from speculative execution simulation
10136 	 * must never prune a non-speculative execution one.
10137 	 */
10138 	if (old->speculative && !cur->speculative)
10139 		return false;
10140 
10141 	if (old->active_spin_lock != cur->active_spin_lock)
10142 		return false;
10143 
10144 	/* for states to be equal callsites have to be the same
10145 	 * and all frame states need to be equivalent
10146 	 */
10147 	for (i = 0; i <= old->curframe; i++) {
10148 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
10149 			return false;
10150 		if (!func_states_equal(old->frame[i], cur->frame[i]))
10151 			return false;
10152 	}
10153 	return true;
10154 }
10155 
10156 /* Return 0 if no propagation happened. Return negative error code if error
10157  * happened. Otherwise, return the propagated bit.
10158  */
10159 static int propagate_liveness_reg(struct bpf_verifier_env *env,
10160 				  struct bpf_reg_state *reg,
10161 				  struct bpf_reg_state *parent_reg)
10162 {
10163 	u8 parent_flag = parent_reg->live & REG_LIVE_READ;
10164 	u8 flag = reg->live & REG_LIVE_READ;
10165 	int err;
10166 
10167 	/* When comes here, read flags of PARENT_REG or REG could be any of
10168 	 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
10169 	 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
10170 	 */
10171 	if (parent_flag == REG_LIVE_READ64 ||
10172 	    /* Or if there is no read flag from REG. */
10173 	    !flag ||
10174 	    /* Or if the read flag from REG is the same as PARENT_REG. */
10175 	    parent_flag == flag)
10176 		return 0;
10177 
10178 	err = mark_reg_read(env, reg, parent_reg, flag);
10179 	if (err)
10180 		return err;
10181 
10182 	return flag;
10183 }
10184 
10185 /* A write screens off any subsequent reads; but write marks come from the
10186  * straight-line code between a state and its parent.  When we arrive at an
10187  * equivalent state (jump target or such) we didn't arrive by the straight-line
10188  * code, so read marks in the state must propagate to the parent regardless
10189  * of the state's write marks. That's what 'parent == state->parent' comparison
10190  * in mark_reg_read() is for.
10191  */
10192 static int propagate_liveness(struct bpf_verifier_env *env,
10193 			      const struct bpf_verifier_state *vstate,
10194 			      struct bpf_verifier_state *vparent)
10195 {
10196 	struct bpf_reg_state *state_reg, *parent_reg;
10197 	struct bpf_func_state *state, *parent;
10198 	int i, frame, err = 0;
10199 
10200 	if (vparent->curframe != vstate->curframe) {
10201 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
10202 		     vparent->curframe, vstate->curframe);
10203 		return -EFAULT;
10204 	}
10205 	/* Propagate read liveness of registers... */
10206 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
10207 	for (frame = 0; frame <= vstate->curframe; frame++) {
10208 		parent = vparent->frame[frame];
10209 		state = vstate->frame[frame];
10210 		parent_reg = parent->regs;
10211 		state_reg = state->regs;
10212 		/* We don't need to worry about FP liveness, it's read-only */
10213 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
10214 			err = propagate_liveness_reg(env, &state_reg[i],
10215 						     &parent_reg[i]);
10216 			if (err < 0)
10217 				return err;
10218 			if (err == REG_LIVE_READ64)
10219 				mark_insn_zext(env, &parent_reg[i]);
10220 		}
10221 
10222 		/* Propagate stack slots. */
10223 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
10224 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
10225 			parent_reg = &parent->stack[i].spilled_ptr;
10226 			state_reg = &state->stack[i].spilled_ptr;
10227 			err = propagate_liveness_reg(env, state_reg,
10228 						     parent_reg);
10229 			if (err < 0)
10230 				return err;
10231 		}
10232 	}
10233 	return 0;
10234 }
10235 
10236 /* find precise scalars in the previous equivalent state and
10237  * propagate them into the current state
10238  */
10239 static int propagate_precision(struct bpf_verifier_env *env,
10240 			       const struct bpf_verifier_state *old)
10241 {
10242 	struct bpf_reg_state *state_reg;
10243 	struct bpf_func_state *state;
10244 	int i, err = 0;
10245 
10246 	state = old->frame[old->curframe];
10247 	state_reg = state->regs;
10248 	for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
10249 		if (state_reg->type != SCALAR_VALUE ||
10250 		    !state_reg->precise)
10251 			continue;
10252 		if (env->log.level & BPF_LOG_LEVEL2)
10253 			verbose(env, "propagating r%d\n", i);
10254 		err = mark_chain_precision(env, i);
10255 		if (err < 0)
10256 			return err;
10257 	}
10258 
10259 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
10260 		if (state->stack[i].slot_type[0] != STACK_SPILL)
10261 			continue;
10262 		state_reg = &state->stack[i].spilled_ptr;
10263 		if (state_reg->type != SCALAR_VALUE ||
10264 		    !state_reg->precise)
10265 			continue;
10266 		if (env->log.level & BPF_LOG_LEVEL2)
10267 			verbose(env, "propagating fp%d\n",
10268 				(-i - 1) * BPF_REG_SIZE);
10269 		err = mark_chain_precision_stack(env, i);
10270 		if (err < 0)
10271 			return err;
10272 	}
10273 	return 0;
10274 }
10275 
10276 static bool states_maybe_looping(struct bpf_verifier_state *old,
10277 				 struct bpf_verifier_state *cur)
10278 {
10279 	struct bpf_func_state *fold, *fcur;
10280 	int i, fr = cur->curframe;
10281 
10282 	if (old->curframe != fr)
10283 		return false;
10284 
10285 	fold = old->frame[fr];
10286 	fcur = cur->frame[fr];
10287 	for (i = 0; i < MAX_BPF_REG; i++)
10288 		if (memcmp(&fold->regs[i], &fcur->regs[i],
10289 			   offsetof(struct bpf_reg_state, parent)))
10290 			return false;
10291 	return true;
10292 }
10293 
10294 
10295 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
10296 {
10297 	struct bpf_verifier_state_list *new_sl;
10298 	struct bpf_verifier_state_list *sl, **pprev;
10299 	struct bpf_verifier_state *cur = env->cur_state, *new;
10300 	int i, j, err, states_cnt = 0;
10301 	bool add_new_state = env->test_state_freq ? true : false;
10302 
10303 	cur->last_insn_idx = env->prev_insn_idx;
10304 	if (!env->insn_aux_data[insn_idx].prune_point)
10305 		/* this 'insn_idx' instruction wasn't marked, so we will not
10306 		 * be doing state search here
10307 		 */
10308 		return 0;
10309 
10310 	/* bpf progs typically have pruning point every 4 instructions
10311 	 * http://vger.kernel.org/bpfconf2019.html#session-1
10312 	 * Do not add new state for future pruning if the verifier hasn't seen
10313 	 * at least 2 jumps and at least 8 instructions.
10314 	 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
10315 	 * In tests that amounts to up to 50% reduction into total verifier
10316 	 * memory consumption and 20% verifier time speedup.
10317 	 */
10318 	if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
10319 	    env->insn_processed - env->prev_insn_processed >= 8)
10320 		add_new_state = true;
10321 
10322 	pprev = explored_state(env, insn_idx);
10323 	sl = *pprev;
10324 
10325 	clean_live_states(env, insn_idx, cur);
10326 
10327 	while (sl) {
10328 		states_cnt++;
10329 		if (sl->state.insn_idx != insn_idx)
10330 			goto next;
10331 		if (sl->state.branches) {
10332 			if (states_maybe_looping(&sl->state, cur) &&
10333 			    states_equal(env, &sl->state, cur)) {
10334 				verbose_linfo(env, insn_idx, "; ");
10335 				verbose(env, "infinite loop detected at insn %d\n", insn_idx);
10336 				return -EINVAL;
10337 			}
10338 			/* if the verifier is processing a loop, avoid adding new state
10339 			 * too often, since different loop iterations have distinct
10340 			 * states and may not help future pruning.
10341 			 * This threshold shouldn't be too low to make sure that
10342 			 * a loop with large bound will be rejected quickly.
10343 			 * The most abusive loop will be:
10344 			 * r1 += 1
10345 			 * if r1 < 1000000 goto pc-2
10346 			 * 1M insn_procssed limit / 100 == 10k peak states.
10347 			 * This threshold shouldn't be too high either, since states
10348 			 * at the end of the loop are likely to be useful in pruning.
10349 			 */
10350 			if (env->jmps_processed - env->prev_jmps_processed < 20 &&
10351 			    env->insn_processed - env->prev_insn_processed < 100)
10352 				add_new_state = false;
10353 			goto miss;
10354 		}
10355 		if (states_equal(env, &sl->state, cur)) {
10356 			sl->hit_cnt++;
10357 			/* reached equivalent register/stack state,
10358 			 * prune the search.
10359 			 * Registers read by the continuation are read by us.
10360 			 * If we have any write marks in env->cur_state, they
10361 			 * will prevent corresponding reads in the continuation
10362 			 * from reaching our parent (an explored_state).  Our
10363 			 * own state will get the read marks recorded, but
10364 			 * they'll be immediately forgotten as we're pruning
10365 			 * this state and will pop a new one.
10366 			 */
10367 			err = propagate_liveness(env, &sl->state, cur);
10368 
10369 			/* if previous state reached the exit with precision and
10370 			 * current state is equivalent to it (except precsion marks)
10371 			 * the precision needs to be propagated back in
10372 			 * the current state.
10373 			 */
10374 			err = err ? : push_jmp_history(env, cur);
10375 			err = err ? : propagate_precision(env, &sl->state);
10376 			if (err)
10377 				return err;
10378 			return 1;
10379 		}
10380 miss:
10381 		/* when new state is not going to be added do not increase miss count.
10382 		 * Otherwise several loop iterations will remove the state
10383 		 * recorded earlier. The goal of these heuristics is to have
10384 		 * states from some iterations of the loop (some in the beginning
10385 		 * and some at the end) to help pruning.
10386 		 */
10387 		if (add_new_state)
10388 			sl->miss_cnt++;
10389 		/* heuristic to determine whether this state is beneficial
10390 		 * to keep checking from state equivalence point of view.
10391 		 * Higher numbers increase max_states_per_insn and verification time,
10392 		 * but do not meaningfully decrease insn_processed.
10393 		 */
10394 		if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
10395 			/* the state is unlikely to be useful. Remove it to
10396 			 * speed up verification
10397 			 */
10398 			*pprev = sl->next;
10399 			if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
10400 				u32 br = sl->state.branches;
10401 
10402 				WARN_ONCE(br,
10403 					  "BUG live_done but branches_to_explore %d\n",
10404 					  br);
10405 				free_verifier_state(&sl->state, false);
10406 				kfree(sl);
10407 				env->peak_states--;
10408 			} else {
10409 				/* cannot free this state, since parentage chain may
10410 				 * walk it later. Add it for free_list instead to
10411 				 * be freed at the end of verification
10412 				 */
10413 				sl->next = env->free_list;
10414 				env->free_list = sl;
10415 			}
10416 			sl = *pprev;
10417 			continue;
10418 		}
10419 next:
10420 		pprev = &sl->next;
10421 		sl = *pprev;
10422 	}
10423 
10424 	if (env->max_states_per_insn < states_cnt)
10425 		env->max_states_per_insn = states_cnt;
10426 
10427 	if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
10428 		return push_jmp_history(env, cur);
10429 
10430 	if (!add_new_state)
10431 		return push_jmp_history(env, cur);
10432 
10433 	/* There were no equivalent states, remember the current one.
10434 	 * Technically the current state is not proven to be safe yet,
10435 	 * but it will either reach outer most bpf_exit (which means it's safe)
10436 	 * or it will be rejected. When there are no loops the verifier won't be
10437 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
10438 	 * again on the way to bpf_exit.
10439 	 * When looping the sl->state.branches will be > 0 and this state
10440 	 * will not be considered for equivalence until branches == 0.
10441 	 */
10442 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
10443 	if (!new_sl)
10444 		return -ENOMEM;
10445 	env->total_states++;
10446 	env->peak_states++;
10447 	env->prev_jmps_processed = env->jmps_processed;
10448 	env->prev_insn_processed = env->insn_processed;
10449 
10450 	/* add new state to the head of linked list */
10451 	new = &new_sl->state;
10452 	err = copy_verifier_state(new, cur);
10453 	if (err) {
10454 		free_verifier_state(new, false);
10455 		kfree(new_sl);
10456 		return err;
10457 	}
10458 	new->insn_idx = insn_idx;
10459 	WARN_ONCE(new->branches != 1,
10460 		  "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
10461 
10462 	cur->parent = new;
10463 	cur->first_insn_idx = insn_idx;
10464 	clear_jmp_history(cur);
10465 	new_sl->next = *explored_state(env, insn_idx);
10466 	*explored_state(env, insn_idx) = new_sl;
10467 	/* connect new state to parentage chain. Current frame needs all
10468 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
10469 	 * to the stack implicitly by JITs) so in callers' frames connect just
10470 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
10471 	 * the state of the call instruction (with WRITTEN set), and r0 comes
10472 	 * from callee with its full parentage chain, anyway.
10473 	 */
10474 	/* clear write marks in current state: the writes we did are not writes
10475 	 * our child did, so they don't screen off its reads from us.
10476 	 * (There are no read marks in current state, because reads always mark
10477 	 * their parent and current state never has children yet.  Only
10478 	 * explored_states can get read marks.)
10479 	 */
10480 	for (j = 0; j <= cur->curframe; j++) {
10481 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
10482 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
10483 		for (i = 0; i < BPF_REG_FP; i++)
10484 			cur->frame[j]->regs[i].live = REG_LIVE_NONE;
10485 	}
10486 
10487 	/* all stack frames are accessible from callee, clear them all */
10488 	for (j = 0; j <= cur->curframe; j++) {
10489 		struct bpf_func_state *frame = cur->frame[j];
10490 		struct bpf_func_state *newframe = new->frame[j];
10491 
10492 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
10493 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
10494 			frame->stack[i].spilled_ptr.parent =
10495 						&newframe->stack[i].spilled_ptr;
10496 		}
10497 	}
10498 	return 0;
10499 }
10500 
10501 /* Return true if it's OK to have the same insn return a different type. */
10502 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
10503 {
10504 	switch (type) {
10505 	case PTR_TO_CTX:
10506 	case PTR_TO_SOCKET:
10507 	case PTR_TO_SOCKET_OR_NULL:
10508 	case PTR_TO_SOCK_COMMON:
10509 	case PTR_TO_SOCK_COMMON_OR_NULL:
10510 	case PTR_TO_TCP_SOCK:
10511 	case PTR_TO_TCP_SOCK_OR_NULL:
10512 	case PTR_TO_XDP_SOCK:
10513 	case PTR_TO_BTF_ID:
10514 	case PTR_TO_BTF_ID_OR_NULL:
10515 		return false;
10516 	default:
10517 		return true;
10518 	}
10519 }
10520 
10521 /* If an instruction was previously used with particular pointer types, then we
10522  * need to be careful to avoid cases such as the below, where it may be ok
10523  * for one branch accessing the pointer, but not ok for the other branch:
10524  *
10525  * R1 = sock_ptr
10526  * goto X;
10527  * ...
10528  * R1 = some_other_valid_ptr;
10529  * goto X;
10530  * ...
10531  * R2 = *(u32 *)(R1 + 0);
10532  */
10533 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
10534 {
10535 	return src != prev && (!reg_type_mismatch_ok(src) ||
10536 			       !reg_type_mismatch_ok(prev));
10537 }
10538 
10539 static int do_check(struct bpf_verifier_env *env)
10540 {
10541 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
10542 	struct bpf_verifier_state *state = env->cur_state;
10543 	struct bpf_insn *insns = env->prog->insnsi;
10544 	struct bpf_reg_state *regs;
10545 	int insn_cnt = env->prog->len;
10546 	bool do_print_state = false;
10547 	int prev_insn_idx = -1;
10548 
10549 	for (;;) {
10550 		struct bpf_insn *insn;
10551 		u8 class;
10552 		int err;
10553 
10554 		env->prev_insn_idx = prev_insn_idx;
10555 		if (env->insn_idx >= insn_cnt) {
10556 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
10557 				env->insn_idx, insn_cnt);
10558 			return -EFAULT;
10559 		}
10560 
10561 		insn = &insns[env->insn_idx];
10562 		class = BPF_CLASS(insn->code);
10563 
10564 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
10565 			verbose(env,
10566 				"BPF program is too large. Processed %d insn\n",
10567 				env->insn_processed);
10568 			return -E2BIG;
10569 		}
10570 
10571 		err = is_state_visited(env, env->insn_idx);
10572 		if (err < 0)
10573 			return err;
10574 		if (err == 1) {
10575 			/* found equivalent state, can prune the search */
10576 			if (env->log.level & BPF_LOG_LEVEL) {
10577 				if (do_print_state)
10578 					verbose(env, "\nfrom %d to %d%s: safe\n",
10579 						env->prev_insn_idx, env->insn_idx,
10580 						env->cur_state->speculative ?
10581 						" (speculative execution)" : "");
10582 				else
10583 					verbose(env, "%d: safe\n", env->insn_idx);
10584 			}
10585 			goto process_bpf_exit;
10586 		}
10587 
10588 		if (signal_pending(current))
10589 			return -EAGAIN;
10590 
10591 		if (need_resched())
10592 			cond_resched();
10593 
10594 		if (env->log.level & BPF_LOG_LEVEL2 ||
10595 		    (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
10596 			if (env->log.level & BPF_LOG_LEVEL2)
10597 				verbose(env, "%d:", env->insn_idx);
10598 			else
10599 				verbose(env, "\nfrom %d to %d%s:",
10600 					env->prev_insn_idx, env->insn_idx,
10601 					env->cur_state->speculative ?
10602 					" (speculative execution)" : "");
10603 			print_verifier_state(env, state->frame[state->curframe]);
10604 			do_print_state = false;
10605 		}
10606 
10607 		if (env->log.level & BPF_LOG_LEVEL) {
10608 			const struct bpf_insn_cbs cbs = {
10609 				.cb_call	= disasm_kfunc_name,
10610 				.cb_print	= verbose,
10611 				.private_data	= env,
10612 			};
10613 
10614 			verbose_linfo(env, env->insn_idx, "; ");
10615 			verbose(env, "%d: ", env->insn_idx);
10616 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
10617 		}
10618 
10619 		if (bpf_prog_is_dev_bound(env->prog->aux)) {
10620 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
10621 							   env->prev_insn_idx);
10622 			if (err)
10623 				return err;
10624 		}
10625 
10626 		regs = cur_regs(env);
10627 		env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
10628 		prev_insn_idx = env->insn_idx;
10629 
10630 		if (class == BPF_ALU || class == BPF_ALU64) {
10631 			err = check_alu_op(env, insn);
10632 			if (err)
10633 				return err;
10634 
10635 		} else if (class == BPF_LDX) {
10636 			enum bpf_reg_type *prev_src_type, src_reg_type;
10637 
10638 			/* check for reserved fields is already done */
10639 
10640 			/* check src operand */
10641 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
10642 			if (err)
10643 				return err;
10644 
10645 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
10646 			if (err)
10647 				return err;
10648 
10649 			src_reg_type = regs[insn->src_reg].type;
10650 
10651 			/* check that memory (src_reg + off) is readable,
10652 			 * the state of dst_reg will be updated by this func
10653 			 */
10654 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
10655 					       insn->off, BPF_SIZE(insn->code),
10656 					       BPF_READ, insn->dst_reg, false);
10657 			if (err)
10658 				return err;
10659 
10660 			prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
10661 
10662 			if (*prev_src_type == NOT_INIT) {
10663 				/* saw a valid insn
10664 				 * dst_reg = *(u32 *)(src_reg + off)
10665 				 * save type to validate intersecting paths
10666 				 */
10667 				*prev_src_type = src_reg_type;
10668 
10669 			} else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
10670 				/* ABuser program is trying to use the same insn
10671 				 * dst_reg = *(u32*) (src_reg + off)
10672 				 * with different pointer types:
10673 				 * src_reg == ctx in one branch and
10674 				 * src_reg == stack|map in some other branch.
10675 				 * Reject it.
10676 				 */
10677 				verbose(env, "same insn cannot be used with different pointers\n");
10678 				return -EINVAL;
10679 			}
10680 
10681 		} else if (class == BPF_STX) {
10682 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
10683 
10684 			if (BPF_MODE(insn->code) == BPF_ATOMIC) {
10685 				err = check_atomic(env, env->insn_idx, insn);
10686 				if (err)
10687 					return err;
10688 				env->insn_idx++;
10689 				continue;
10690 			}
10691 
10692 			if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
10693 				verbose(env, "BPF_STX uses reserved fields\n");
10694 				return -EINVAL;
10695 			}
10696 
10697 			/* check src1 operand */
10698 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
10699 			if (err)
10700 				return err;
10701 			/* check src2 operand */
10702 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
10703 			if (err)
10704 				return err;
10705 
10706 			dst_reg_type = regs[insn->dst_reg].type;
10707 
10708 			/* check that memory (dst_reg + off) is writeable */
10709 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
10710 					       insn->off, BPF_SIZE(insn->code),
10711 					       BPF_WRITE, insn->src_reg, false);
10712 			if (err)
10713 				return err;
10714 
10715 			prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
10716 
10717 			if (*prev_dst_type == NOT_INIT) {
10718 				*prev_dst_type = dst_reg_type;
10719 			} else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
10720 				verbose(env, "same insn cannot be used with different pointers\n");
10721 				return -EINVAL;
10722 			}
10723 
10724 		} else if (class == BPF_ST) {
10725 			if (BPF_MODE(insn->code) != BPF_MEM ||
10726 			    insn->src_reg != BPF_REG_0) {
10727 				verbose(env, "BPF_ST uses reserved fields\n");
10728 				return -EINVAL;
10729 			}
10730 			/* check src operand */
10731 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
10732 			if (err)
10733 				return err;
10734 
10735 			if (is_ctx_reg(env, insn->dst_reg)) {
10736 				verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
10737 					insn->dst_reg,
10738 					reg_type_str[reg_state(env, insn->dst_reg)->type]);
10739 				return -EACCES;
10740 			}
10741 
10742 			/* check that memory (dst_reg + off) is writeable */
10743 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
10744 					       insn->off, BPF_SIZE(insn->code),
10745 					       BPF_WRITE, -1, false);
10746 			if (err)
10747 				return err;
10748 
10749 		} else if (class == BPF_JMP || class == BPF_JMP32) {
10750 			u8 opcode = BPF_OP(insn->code);
10751 
10752 			env->jmps_processed++;
10753 			if (opcode == BPF_CALL) {
10754 				if (BPF_SRC(insn->code) != BPF_K ||
10755 				    insn->off != 0 ||
10756 				    (insn->src_reg != BPF_REG_0 &&
10757 				     insn->src_reg != BPF_PSEUDO_CALL &&
10758 				     insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
10759 				    insn->dst_reg != BPF_REG_0 ||
10760 				    class == BPF_JMP32) {
10761 					verbose(env, "BPF_CALL uses reserved fields\n");
10762 					return -EINVAL;
10763 				}
10764 
10765 				if (env->cur_state->active_spin_lock &&
10766 				    (insn->src_reg == BPF_PSEUDO_CALL ||
10767 				     insn->imm != BPF_FUNC_spin_unlock)) {
10768 					verbose(env, "function calls are not allowed while holding a lock\n");
10769 					return -EINVAL;
10770 				}
10771 				if (insn->src_reg == BPF_PSEUDO_CALL)
10772 					err = check_func_call(env, insn, &env->insn_idx);
10773 				else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL)
10774 					err = check_kfunc_call(env, insn);
10775 				else
10776 					err = check_helper_call(env, insn, &env->insn_idx);
10777 				if (err)
10778 					return err;
10779 			} else if (opcode == BPF_JA) {
10780 				if (BPF_SRC(insn->code) != BPF_K ||
10781 				    insn->imm != 0 ||
10782 				    insn->src_reg != BPF_REG_0 ||
10783 				    insn->dst_reg != BPF_REG_0 ||
10784 				    class == BPF_JMP32) {
10785 					verbose(env, "BPF_JA uses reserved fields\n");
10786 					return -EINVAL;
10787 				}
10788 
10789 				env->insn_idx += insn->off + 1;
10790 				continue;
10791 
10792 			} else if (opcode == BPF_EXIT) {
10793 				if (BPF_SRC(insn->code) != BPF_K ||
10794 				    insn->imm != 0 ||
10795 				    insn->src_reg != BPF_REG_0 ||
10796 				    insn->dst_reg != BPF_REG_0 ||
10797 				    class == BPF_JMP32) {
10798 					verbose(env, "BPF_EXIT uses reserved fields\n");
10799 					return -EINVAL;
10800 				}
10801 
10802 				if (env->cur_state->active_spin_lock) {
10803 					verbose(env, "bpf_spin_unlock is missing\n");
10804 					return -EINVAL;
10805 				}
10806 
10807 				if (state->curframe) {
10808 					/* exit from nested function */
10809 					err = prepare_func_exit(env, &env->insn_idx);
10810 					if (err)
10811 						return err;
10812 					do_print_state = true;
10813 					continue;
10814 				}
10815 
10816 				err = check_reference_leak(env);
10817 				if (err)
10818 					return err;
10819 
10820 				err = check_return_code(env);
10821 				if (err)
10822 					return err;
10823 process_bpf_exit:
10824 				update_branch_counts(env, env->cur_state);
10825 				err = pop_stack(env, &prev_insn_idx,
10826 						&env->insn_idx, pop_log);
10827 				if (err < 0) {
10828 					if (err != -ENOENT)
10829 						return err;
10830 					break;
10831 				} else {
10832 					do_print_state = true;
10833 					continue;
10834 				}
10835 			} else {
10836 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
10837 				if (err)
10838 					return err;
10839 			}
10840 		} else if (class == BPF_LD) {
10841 			u8 mode = BPF_MODE(insn->code);
10842 
10843 			if (mode == BPF_ABS || mode == BPF_IND) {
10844 				err = check_ld_abs(env, insn);
10845 				if (err)
10846 					return err;
10847 
10848 			} else if (mode == BPF_IMM) {
10849 				err = check_ld_imm(env, insn);
10850 				if (err)
10851 					return err;
10852 
10853 				env->insn_idx++;
10854 				env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
10855 			} else {
10856 				verbose(env, "invalid BPF_LD mode\n");
10857 				return -EINVAL;
10858 			}
10859 		} else {
10860 			verbose(env, "unknown insn class %d\n", class);
10861 			return -EINVAL;
10862 		}
10863 
10864 		env->insn_idx++;
10865 	}
10866 
10867 	return 0;
10868 }
10869 
10870 static int find_btf_percpu_datasec(struct btf *btf)
10871 {
10872 	const struct btf_type *t;
10873 	const char *tname;
10874 	int i, n;
10875 
10876 	/*
10877 	 * Both vmlinux and module each have their own ".data..percpu"
10878 	 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
10879 	 * types to look at only module's own BTF types.
10880 	 */
10881 	n = btf_nr_types(btf);
10882 	if (btf_is_module(btf))
10883 		i = btf_nr_types(btf_vmlinux);
10884 	else
10885 		i = 1;
10886 
10887 	for(; i < n; i++) {
10888 		t = btf_type_by_id(btf, i);
10889 		if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
10890 			continue;
10891 
10892 		tname = btf_name_by_offset(btf, t->name_off);
10893 		if (!strcmp(tname, ".data..percpu"))
10894 			return i;
10895 	}
10896 
10897 	return -ENOENT;
10898 }
10899 
10900 /* replace pseudo btf_id with kernel symbol address */
10901 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
10902 			       struct bpf_insn *insn,
10903 			       struct bpf_insn_aux_data *aux)
10904 {
10905 	const struct btf_var_secinfo *vsi;
10906 	const struct btf_type *datasec;
10907 	struct btf_mod_pair *btf_mod;
10908 	const struct btf_type *t;
10909 	const char *sym_name;
10910 	bool percpu = false;
10911 	u32 type, id = insn->imm;
10912 	struct btf *btf;
10913 	s32 datasec_id;
10914 	u64 addr;
10915 	int i, btf_fd, err;
10916 
10917 	btf_fd = insn[1].imm;
10918 	if (btf_fd) {
10919 		btf = btf_get_by_fd(btf_fd);
10920 		if (IS_ERR(btf)) {
10921 			verbose(env, "invalid module BTF object FD specified.\n");
10922 			return -EINVAL;
10923 		}
10924 	} else {
10925 		if (!btf_vmlinux) {
10926 			verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
10927 			return -EINVAL;
10928 		}
10929 		btf = btf_vmlinux;
10930 		btf_get(btf);
10931 	}
10932 
10933 	t = btf_type_by_id(btf, id);
10934 	if (!t) {
10935 		verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
10936 		err = -ENOENT;
10937 		goto err_put;
10938 	}
10939 
10940 	if (!btf_type_is_var(t)) {
10941 		verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id);
10942 		err = -EINVAL;
10943 		goto err_put;
10944 	}
10945 
10946 	sym_name = btf_name_by_offset(btf, t->name_off);
10947 	addr = kallsyms_lookup_name(sym_name);
10948 	if (!addr) {
10949 		verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
10950 			sym_name);
10951 		err = -ENOENT;
10952 		goto err_put;
10953 	}
10954 
10955 	datasec_id = find_btf_percpu_datasec(btf);
10956 	if (datasec_id > 0) {
10957 		datasec = btf_type_by_id(btf, datasec_id);
10958 		for_each_vsi(i, datasec, vsi) {
10959 			if (vsi->type == id) {
10960 				percpu = true;
10961 				break;
10962 			}
10963 		}
10964 	}
10965 
10966 	insn[0].imm = (u32)addr;
10967 	insn[1].imm = addr >> 32;
10968 
10969 	type = t->type;
10970 	t = btf_type_skip_modifiers(btf, type, NULL);
10971 	if (percpu) {
10972 		aux->btf_var.reg_type = PTR_TO_PERCPU_BTF_ID;
10973 		aux->btf_var.btf = btf;
10974 		aux->btf_var.btf_id = type;
10975 	} else if (!btf_type_is_struct(t)) {
10976 		const struct btf_type *ret;
10977 		const char *tname;
10978 		u32 tsize;
10979 
10980 		/* resolve the type size of ksym. */
10981 		ret = btf_resolve_size(btf, t, &tsize);
10982 		if (IS_ERR(ret)) {
10983 			tname = btf_name_by_offset(btf, t->name_off);
10984 			verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
10985 				tname, PTR_ERR(ret));
10986 			err = -EINVAL;
10987 			goto err_put;
10988 		}
10989 		aux->btf_var.reg_type = PTR_TO_MEM;
10990 		aux->btf_var.mem_size = tsize;
10991 	} else {
10992 		aux->btf_var.reg_type = PTR_TO_BTF_ID;
10993 		aux->btf_var.btf = btf;
10994 		aux->btf_var.btf_id = type;
10995 	}
10996 
10997 	/* check whether we recorded this BTF (and maybe module) already */
10998 	for (i = 0; i < env->used_btf_cnt; i++) {
10999 		if (env->used_btfs[i].btf == btf) {
11000 			btf_put(btf);
11001 			return 0;
11002 		}
11003 	}
11004 
11005 	if (env->used_btf_cnt >= MAX_USED_BTFS) {
11006 		err = -E2BIG;
11007 		goto err_put;
11008 	}
11009 
11010 	btf_mod = &env->used_btfs[env->used_btf_cnt];
11011 	btf_mod->btf = btf;
11012 	btf_mod->module = NULL;
11013 
11014 	/* if we reference variables from kernel module, bump its refcount */
11015 	if (btf_is_module(btf)) {
11016 		btf_mod->module = btf_try_get_module(btf);
11017 		if (!btf_mod->module) {
11018 			err = -ENXIO;
11019 			goto err_put;
11020 		}
11021 	}
11022 
11023 	env->used_btf_cnt++;
11024 
11025 	return 0;
11026 err_put:
11027 	btf_put(btf);
11028 	return err;
11029 }
11030 
11031 static int check_map_prealloc(struct bpf_map *map)
11032 {
11033 	return (map->map_type != BPF_MAP_TYPE_HASH &&
11034 		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
11035 		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
11036 		!(map->map_flags & BPF_F_NO_PREALLOC);
11037 }
11038 
11039 static bool is_tracing_prog_type(enum bpf_prog_type type)
11040 {
11041 	switch (type) {
11042 	case BPF_PROG_TYPE_KPROBE:
11043 	case BPF_PROG_TYPE_TRACEPOINT:
11044 	case BPF_PROG_TYPE_PERF_EVENT:
11045 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
11046 		return true;
11047 	default:
11048 		return false;
11049 	}
11050 }
11051 
11052 static bool is_preallocated_map(struct bpf_map *map)
11053 {
11054 	if (!check_map_prealloc(map))
11055 		return false;
11056 	if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta))
11057 		return false;
11058 	return true;
11059 }
11060 
11061 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
11062 					struct bpf_map *map,
11063 					struct bpf_prog *prog)
11064 
11065 {
11066 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
11067 	/*
11068 	 * Validate that trace type programs use preallocated hash maps.
11069 	 *
11070 	 * For programs attached to PERF events this is mandatory as the
11071 	 * perf NMI can hit any arbitrary code sequence.
11072 	 *
11073 	 * All other trace types using preallocated hash maps are unsafe as
11074 	 * well because tracepoint or kprobes can be inside locked regions
11075 	 * of the memory allocator or at a place where a recursion into the
11076 	 * memory allocator would see inconsistent state.
11077 	 *
11078 	 * On RT enabled kernels run-time allocation of all trace type
11079 	 * programs is strictly prohibited due to lock type constraints. On
11080 	 * !RT kernels it is allowed for backwards compatibility reasons for
11081 	 * now, but warnings are emitted so developers are made aware of
11082 	 * the unsafety and can fix their programs before this is enforced.
11083 	 */
11084 	if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) {
11085 		if (prog_type == BPF_PROG_TYPE_PERF_EVENT) {
11086 			verbose(env, "perf_event programs can only use preallocated hash map\n");
11087 			return -EINVAL;
11088 		}
11089 		if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
11090 			verbose(env, "trace type programs can only use preallocated hash map\n");
11091 			return -EINVAL;
11092 		}
11093 		WARN_ONCE(1, "trace type BPF program uses run-time allocation\n");
11094 		verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n");
11095 	}
11096 
11097 	if (map_value_has_spin_lock(map)) {
11098 		if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
11099 			verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
11100 			return -EINVAL;
11101 		}
11102 
11103 		if (is_tracing_prog_type(prog_type)) {
11104 			verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
11105 			return -EINVAL;
11106 		}
11107 
11108 		if (prog->aux->sleepable) {
11109 			verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n");
11110 			return -EINVAL;
11111 		}
11112 	}
11113 
11114 	if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
11115 	    !bpf_offload_prog_map_match(prog, map)) {
11116 		verbose(env, "offload device mismatch between prog and map\n");
11117 		return -EINVAL;
11118 	}
11119 
11120 	if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
11121 		verbose(env, "bpf_struct_ops map cannot be used in prog\n");
11122 		return -EINVAL;
11123 	}
11124 
11125 	if (prog->aux->sleepable)
11126 		switch (map->map_type) {
11127 		case BPF_MAP_TYPE_HASH:
11128 		case BPF_MAP_TYPE_LRU_HASH:
11129 		case BPF_MAP_TYPE_ARRAY:
11130 		case BPF_MAP_TYPE_PERCPU_HASH:
11131 		case BPF_MAP_TYPE_PERCPU_ARRAY:
11132 		case BPF_MAP_TYPE_LRU_PERCPU_HASH:
11133 		case BPF_MAP_TYPE_ARRAY_OF_MAPS:
11134 		case BPF_MAP_TYPE_HASH_OF_MAPS:
11135 			if (!is_preallocated_map(map)) {
11136 				verbose(env,
11137 					"Sleepable programs can only use preallocated maps\n");
11138 				return -EINVAL;
11139 			}
11140 			break;
11141 		case BPF_MAP_TYPE_RINGBUF:
11142 			break;
11143 		default:
11144 			verbose(env,
11145 				"Sleepable programs can only use array, hash, and ringbuf maps\n");
11146 			return -EINVAL;
11147 		}
11148 
11149 	return 0;
11150 }
11151 
11152 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
11153 {
11154 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
11155 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
11156 }
11157 
11158 /* find and rewrite pseudo imm in ld_imm64 instructions:
11159  *
11160  * 1. if it accesses map FD, replace it with actual map pointer.
11161  * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
11162  *
11163  * NOTE: btf_vmlinux is required for converting pseudo btf_id.
11164  */
11165 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
11166 {
11167 	struct bpf_insn *insn = env->prog->insnsi;
11168 	int insn_cnt = env->prog->len;
11169 	int i, j, err;
11170 
11171 	err = bpf_prog_calc_tag(env->prog);
11172 	if (err)
11173 		return err;
11174 
11175 	for (i = 0; i < insn_cnt; i++, insn++) {
11176 		if (BPF_CLASS(insn->code) == BPF_LDX &&
11177 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
11178 			verbose(env, "BPF_LDX uses reserved fields\n");
11179 			return -EINVAL;
11180 		}
11181 
11182 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
11183 			struct bpf_insn_aux_data *aux;
11184 			struct bpf_map *map;
11185 			struct fd f;
11186 			u64 addr;
11187 
11188 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
11189 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
11190 			    insn[1].off != 0) {
11191 				verbose(env, "invalid bpf_ld_imm64 insn\n");
11192 				return -EINVAL;
11193 			}
11194 
11195 			if (insn[0].src_reg == 0)
11196 				/* valid generic load 64-bit imm */
11197 				goto next_insn;
11198 
11199 			if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
11200 				aux = &env->insn_aux_data[i];
11201 				err = check_pseudo_btf_id(env, insn, aux);
11202 				if (err)
11203 					return err;
11204 				goto next_insn;
11205 			}
11206 
11207 			if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
11208 				aux = &env->insn_aux_data[i];
11209 				aux->ptr_type = PTR_TO_FUNC;
11210 				goto next_insn;
11211 			}
11212 
11213 			/* In final convert_pseudo_ld_imm64() step, this is
11214 			 * converted into regular 64-bit imm load insn.
11215 			 */
11216 			if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD &&
11217 			     insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) ||
11218 			    (insn[0].src_reg == BPF_PSEUDO_MAP_FD &&
11219 			     insn[1].imm != 0)) {
11220 				verbose(env,
11221 					"unrecognized bpf_ld_imm64 insn\n");
11222 				return -EINVAL;
11223 			}
11224 
11225 			f = fdget(insn[0].imm);
11226 			map = __bpf_map_get(f);
11227 			if (IS_ERR(map)) {
11228 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
11229 					insn[0].imm);
11230 				return PTR_ERR(map);
11231 			}
11232 
11233 			err = check_map_prog_compatibility(env, map, env->prog);
11234 			if (err) {
11235 				fdput(f);
11236 				return err;
11237 			}
11238 
11239 			aux = &env->insn_aux_data[i];
11240 			if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
11241 				addr = (unsigned long)map;
11242 			} else {
11243 				u32 off = insn[1].imm;
11244 
11245 				if (off >= BPF_MAX_VAR_OFF) {
11246 					verbose(env, "direct value offset of %u is not allowed\n", off);
11247 					fdput(f);
11248 					return -EINVAL;
11249 				}
11250 
11251 				if (!map->ops->map_direct_value_addr) {
11252 					verbose(env, "no direct value access support for this map type\n");
11253 					fdput(f);
11254 					return -EINVAL;
11255 				}
11256 
11257 				err = map->ops->map_direct_value_addr(map, &addr, off);
11258 				if (err) {
11259 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
11260 						map->value_size, off);
11261 					fdput(f);
11262 					return err;
11263 				}
11264 
11265 				aux->map_off = off;
11266 				addr += off;
11267 			}
11268 
11269 			insn[0].imm = (u32)addr;
11270 			insn[1].imm = addr >> 32;
11271 
11272 			/* check whether we recorded this map already */
11273 			for (j = 0; j < env->used_map_cnt; j++) {
11274 				if (env->used_maps[j] == map) {
11275 					aux->map_index = j;
11276 					fdput(f);
11277 					goto next_insn;
11278 				}
11279 			}
11280 
11281 			if (env->used_map_cnt >= MAX_USED_MAPS) {
11282 				fdput(f);
11283 				return -E2BIG;
11284 			}
11285 
11286 			/* hold the map. If the program is rejected by verifier,
11287 			 * the map will be released by release_maps() or it
11288 			 * will be used by the valid program until it's unloaded
11289 			 * and all maps are released in free_used_maps()
11290 			 */
11291 			bpf_map_inc(map);
11292 
11293 			aux->map_index = env->used_map_cnt;
11294 			env->used_maps[env->used_map_cnt++] = map;
11295 
11296 			if (bpf_map_is_cgroup_storage(map) &&
11297 			    bpf_cgroup_storage_assign(env->prog->aux, map)) {
11298 				verbose(env, "only one cgroup storage of each type is allowed\n");
11299 				fdput(f);
11300 				return -EBUSY;
11301 			}
11302 
11303 			fdput(f);
11304 next_insn:
11305 			insn++;
11306 			i++;
11307 			continue;
11308 		}
11309 
11310 		/* Basic sanity check before we invest more work here. */
11311 		if (!bpf_opcode_in_insntable(insn->code)) {
11312 			verbose(env, "unknown opcode %02x\n", insn->code);
11313 			return -EINVAL;
11314 		}
11315 	}
11316 
11317 	/* now all pseudo BPF_LD_IMM64 instructions load valid
11318 	 * 'struct bpf_map *' into a register instead of user map_fd.
11319 	 * These pointers will be used later by verifier to validate map access.
11320 	 */
11321 	return 0;
11322 }
11323 
11324 /* drop refcnt of maps used by the rejected program */
11325 static void release_maps(struct bpf_verifier_env *env)
11326 {
11327 	__bpf_free_used_maps(env->prog->aux, env->used_maps,
11328 			     env->used_map_cnt);
11329 }
11330 
11331 /* drop refcnt of maps used by the rejected program */
11332 static void release_btfs(struct bpf_verifier_env *env)
11333 {
11334 	__bpf_free_used_btfs(env->prog->aux, env->used_btfs,
11335 			     env->used_btf_cnt);
11336 }
11337 
11338 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
11339 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
11340 {
11341 	struct bpf_insn *insn = env->prog->insnsi;
11342 	int insn_cnt = env->prog->len;
11343 	int i;
11344 
11345 	for (i = 0; i < insn_cnt; i++, insn++) {
11346 		if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
11347 			continue;
11348 		if (insn->src_reg == BPF_PSEUDO_FUNC)
11349 			continue;
11350 		insn->src_reg = 0;
11351 	}
11352 }
11353 
11354 /* single env->prog->insni[off] instruction was replaced with the range
11355  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
11356  * [0, off) and [off, end) to new locations, so the patched range stays zero
11357  */
11358 static int adjust_insn_aux_data(struct bpf_verifier_env *env,
11359 				struct bpf_prog *new_prog, u32 off, u32 cnt)
11360 {
11361 	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
11362 	struct bpf_insn *insn = new_prog->insnsi;
11363 	u32 prog_len;
11364 	int i;
11365 
11366 	/* aux info at OFF always needs adjustment, no matter fast path
11367 	 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
11368 	 * original insn at old prog.
11369 	 */
11370 	old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
11371 
11372 	if (cnt == 1)
11373 		return 0;
11374 	prog_len = new_prog->len;
11375 	new_data = vzalloc(array_size(prog_len,
11376 				      sizeof(struct bpf_insn_aux_data)));
11377 	if (!new_data)
11378 		return -ENOMEM;
11379 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
11380 	memcpy(new_data + off + cnt - 1, old_data + off,
11381 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
11382 	for (i = off; i < off + cnt - 1; i++) {
11383 		new_data[i].seen = env->pass_cnt;
11384 		new_data[i].zext_dst = insn_has_def32(env, insn + i);
11385 	}
11386 	env->insn_aux_data = new_data;
11387 	vfree(old_data);
11388 	return 0;
11389 }
11390 
11391 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
11392 {
11393 	int i;
11394 
11395 	if (len == 1)
11396 		return;
11397 	/* NOTE: fake 'exit' subprog should be updated as well. */
11398 	for (i = 0; i <= env->subprog_cnt; i++) {
11399 		if (env->subprog_info[i].start <= off)
11400 			continue;
11401 		env->subprog_info[i].start += len - 1;
11402 	}
11403 }
11404 
11405 static void adjust_poke_descs(struct bpf_prog *prog, u32 len)
11406 {
11407 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
11408 	int i, sz = prog->aux->size_poke_tab;
11409 	struct bpf_jit_poke_descriptor *desc;
11410 
11411 	for (i = 0; i < sz; i++) {
11412 		desc = &tab[i];
11413 		desc->insn_idx += len - 1;
11414 	}
11415 }
11416 
11417 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
11418 					    const struct bpf_insn *patch, u32 len)
11419 {
11420 	struct bpf_prog *new_prog;
11421 
11422 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
11423 	if (IS_ERR(new_prog)) {
11424 		if (PTR_ERR(new_prog) == -ERANGE)
11425 			verbose(env,
11426 				"insn %d cannot be patched due to 16-bit range\n",
11427 				env->insn_aux_data[off].orig_idx);
11428 		return NULL;
11429 	}
11430 	if (adjust_insn_aux_data(env, new_prog, off, len))
11431 		return NULL;
11432 	adjust_subprog_starts(env, off, len);
11433 	adjust_poke_descs(new_prog, len);
11434 	return new_prog;
11435 }
11436 
11437 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
11438 					      u32 off, u32 cnt)
11439 {
11440 	int i, j;
11441 
11442 	/* find first prog starting at or after off (first to remove) */
11443 	for (i = 0; i < env->subprog_cnt; i++)
11444 		if (env->subprog_info[i].start >= off)
11445 			break;
11446 	/* find first prog starting at or after off + cnt (first to stay) */
11447 	for (j = i; j < env->subprog_cnt; j++)
11448 		if (env->subprog_info[j].start >= off + cnt)
11449 			break;
11450 	/* if j doesn't start exactly at off + cnt, we are just removing
11451 	 * the front of previous prog
11452 	 */
11453 	if (env->subprog_info[j].start != off + cnt)
11454 		j--;
11455 
11456 	if (j > i) {
11457 		struct bpf_prog_aux *aux = env->prog->aux;
11458 		int move;
11459 
11460 		/* move fake 'exit' subprog as well */
11461 		move = env->subprog_cnt + 1 - j;
11462 
11463 		memmove(env->subprog_info + i,
11464 			env->subprog_info + j,
11465 			sizeof(*env->subprog_info) * move);
11466 		env->subprog_cnt -= j - i;
11467 
11468 		/* remove func_info */
11469 		if (aux->func_info) {
11470 			move = aux->func_info_cnt - j;
11471 
11472 			memmove(aux->func_info + i,
11473 				aux->func_info + j,
11474 				sizeof(*aux->func_info) * move);
11475 			aux->func_info_cnt -= j - i;
11476 			/* func_info->insn_off is set after all code rewrites,
11477 			 * in adjust_btf_func() - no need to adjust
11478 			 */
11479 		}
11480 	} else {
11481 		/* convert i from "first prog to remove" to "first to adjust" */
11482 		if (env->subprog_info[i].start == off)
11483 			i++;
11484 	}
11485 
11486 	/* update fake 'exit' subprog as well */
11487 	for (; i <= env->subprog_cnt; i++)
11488 		env->subprog_info[i].start -= cnt;
11489 
11490 	return 0;
11491 }
11492 
11493 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
11494 				      u32 cnt)
11495 {
11496 	struct bpf_prog *prog = env->prog;
11497 	u32 i, l_off, l_cnt, nr_linfo;
11498 	struct bpf_line_info *linfo;
11499 
11500 	nr_linfo = prog->aux->nr_linfo;
11501 	if (!nr_linfo)
11502 		return 0;
11503 
11504 	linfo = prog->aux->linfo;
11505 
11506 	/* find first line info to remove, count lines to be removed */
11507 	for (i = 0; i < nr_linfo; i++)
11508 		if (linfo[i].insn_off >= off)
11509 			break;
11510 
11511 	l_off = i;
11512 	l_cnt = 0;
11513 	for (; i < nr_linfo; i++)
11514 		if (linfo[i].insn_off < off + cnt)
11515 			l_cnt++;
11516 		else
11517 			break;
11518 
11519 	/* First live insn doesn't match first live linfo, it needs to "inherit"
11520 	 * last removed linfo.  prog is already modified, so prog->len == off
11521 	 * means no live instructions after (tail of the program was removed).
11522 	 */
11523 	if (prog->len != off && l_cnt &&
11524 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
11525 		l_cnt--;
11526 		linfo[--i].insn_off = off + cnt;
11527 	}
11528 
11529 	/* remove the line info which refer to the removed instructions */
11530 	if (l_cnt) {
11531 		memmove(linfo + l_off, linfo + i,
11532 			sizeof(*linfo) * (nr_linfo - i));
11533 
11534 		prog->aux->nr_linfo -= l_cnt;
11535 		nr_linfo = prog->aux->nr_linfo;
11536 	}
11537 
11538 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
11539 	for (i = l_off; i < nr_linfo; i++)
11540 		linfo[i].insn_off -= cnt;
11541 
11542 	/* fix up all subprogs (incl. 'exit') which start >= off */
11543 	for (i = 0; i <= env->subprog_cnt; i++)
11544 		if (env->subprog_info[i].linfo_idx > l_off) {
11545 			/* program may have started in the removed region but
11546 			 * may not be fully removed
11547 			 */
11548 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
11549 				env->subprog_info[i].linfo_idx -= l_cnt;
11550 			else
11551 				env->subprog_info[i].linfo_idx = l_off;
11552 		}
11553 
11554 	return 0;
11555 }
11556 
11557 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
11558 {
11559 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
11560 	unsigned int orig_prog_len = env->prog->len;
11561 	int err;
11562 
11563 	if (bpf_prog_is_dev_bound(env->prog->aux))
11564 		bpf_prog_offload_remove_insns(env, off, cnt);
11565 
11566 	err = bpf_remove_insns(env->prog, off, cnt);
11567 	if (err)
11568 		return err;
11569 
11570 	err = adjust_subprog_starts_after_remove(env, off, cnt);
11571 	if (err)
11572 		return err;
11573 
11574 	err = bpf_adj_linfo_after_remove(env, off, cnt);
11575 	if (err)
11576 		return err;
11577 
11578 	memmove(aux_data + off,	aux_data + off + cnt,
11579 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
11580 
11581 	return 0;
11582 }
11583 
11584 /* The verifier does more data flow analysis than llvm and will not
11585  * explore branches that are dead at run time. Malicious programs can
11586  * have dead code too. Therefore replace all dead at-run-time code
11587  * with 'ja -1'.
11588  *
11589  * Just nops are not optimal, e.g. if they would sit at the end of the
11590  * program and through another bug we would manage to jump there, then
11591  * we'd execute beyond program memory otherwise. Returning exception
11592  * code also wouldn't work since we can have subprogs where the dead
11593  * code could be located.
11594  */
11595 static void sanitize_dead_code(struct bpf_verifier_env *env)
11596 {
11597 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
11598 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
11599 	struct bpf_insn *insn = env->prog->insnsi;
11600 	const int insn_cnt = env->prog->len;
11601 	int i;
11602 
11603 	for (i = 0; i < insn_cnt; i++) {
11604 		if (aux_data[i].seen)
11605 			continue;
11606 		memcpy(insn + i, &trap, sizeof(trap));
11607 	}
11608 }
11609 
11610 static bool insn_is_cond_jump(u8 code)
11611 {
11612 	u8 op;
11613 
11614 	if (BPF_CLASS(code) == BPF_JMP32)
11615 		return true;
11616 
11617 	if (BPF_CLASS(code) != BPF_JMP)
11618 		return false;
11619 
11620 	op = BPF_OP(code);
11621 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
11622 }
11623 
11624 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
11625 {
11626 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
11627 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
11628 	struct bpf_insn *insn = env->prog->insnsi;
11629 	const int insn_cnt = env->prog->len;
11630 	int i;
11631 
11632 	for (i = 0; i < insn_cnt; i++, insn++) {
11633 		if (!insn_is_cond_jump(insn->code))
11634 			continue;
11635 
11636 		if (!aux_data[i + 1].seen)
11637 			ja.off = insn->off;
11638 		else if (!aux_data[i + 1 + insn->off].seen)
11639 			ja.off = 0;
11640 		else
11641 			continue;
11642 
11643 		if (bpf_prog_is_dev_bound(env->prog->aux))
11644 			bpf_prog_offload_replace_insn(env, i, &ja);
11645 
11646 		memcpy(insn, &ja, sizeof(ja));
11647 	}
11648 }
11649 
11650 static int opt_remove_dead_code(struct bpf_verifier_env *env)
11651 {
11652 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
11653 	int insn_cnt = env->prog->len;
11654 	int i, err;
11655 
11656 	for (i = 0; i < insn_cnt; i++) {
11657 		int j;
11658 
11659 		j = 0;
11660 		while (i + j < insn_cnt && !aux_data[i + j].seen)
11661 			j++;
11662 		if (!j)
11663 			continue;
11664 
11665 		err = verifier_remove_insns(env, i, j);
11666 		if (err)
11667 			return err;
11668 		insn_cnt = env->prog->len;
11669 	}
11670 
11671 	return 0;
11672 }
11673 
11674 static int opt_remove_nops(struct bpf_verifier_env *env)
11675 {
11676 	const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
11677 	struct bpf_insn *insn = env->prog->insnsi;
11678 	int insn_cnt = env->prog->len;
11679 	int i, err;
11680 
11681 	for (i = 0; i < insn_cnt; i++) {
11682 		if (memcmp(&insn[i], &ja, sizeof(ja)))
11683 			continue;
11684 
11685 		err = verifier_remove_insns(env, i, 1);
11686 		if (err)
11687 			return err;
11688 		insn_cnt--;
11689 		i--;
11690 	}
11691 
11692 	return 0;
11693 }
11694 
11695 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
11696 					 const union bpf_attr *attr)
11697 {
11698 	struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
11699 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
11700 	int i, patch_len, delta = 0, len = env->prog->len;
11701 	struct bpf_insn *insns = env->prog->insnsi;
11702 	struct bpf_prog *new_prog;
11703 	bool rnd_hi32;
11704 
11705 	rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
11706 	zext_patch[1] = BPF_ZEXT_REG(0);
11707 	rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
11708 	rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
11709 	rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
11710 	for (i = 0; i < len; i++) {
11711 		int adj_idx = i + delta;
11712 		struct bpf_insn insn;
11713 		int load_reg;
11714 
11715 		insn = insns[adj_idx];
11716 		load_reg = insn_def_regno(&insn);
11717 		if (!aux[adj_idx].zext_dst) {
11718 			u8 code, class;
11719 			u32 imm_rnd;
11720 
11721 			if (!rnd_hi32)
11722 				continue;
11723 
11724 			code = insn.code;
11725 			class = BPF_CLASS(code);
11726 			if (load_reg == -1)
11727 				continue;
11728 
11729 			/* NOTE: arg "reg" (the fourth one) is only used for
11730 			 *       BPF_STX + SRC_OP, so it is safe to pass NULL
11731 			 *       here.
11732 			 */
11733 			if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
11734 				if (class == BPF_LD &&
11735 				    BPF_MODE(code) == BPF_IMM)
11736 					i++;
11737 				continue;
11738 			}
11739 
11740 			/* ctx load could be transformed into wider load. */
11741 			if (class == BPF_LDX &&
11742 			    aux[adj_idx].ptr_type == PTR_TO_CTX)
11743 				continue;
11744 
11745 			imm_rnd = get_random_int();
11746 			rnd_hi32_patch[0] = insn;
11747 			rnd_hi32_patch[1].imm = imm_rnd;
11748 			rnd_hi32_patch[3].dst_reg = load_reg;
11749 			patch = rnd_hi32_patch;
11750 			patch_len = 4;
11751 			goto apply_patch_buffer;
11752 		}
11753 
11754 		/* Add in an zero-extend instruction if a) the JIT has requested
11755 		 * it or b) it's a CMPXCHG.
11756 		 *
11757 		 * The latter is because: BPF_CMPXCHG always loads a value into
11758 		 * R0, therefore always zero-extends. However some archs'
11759 		 * equivalent instruction only does this load when the
11760 		 * comparison is successful. This detail of CMPXCHG is
11761 		 * orthogonal to the general zero-extension behaviour of the
11762 		 * CPU, so it's treated independently of bpf_jit_needs_zext.
11763 		 */
11764 		if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
11765 			continue;
11766 
11767 		if (WARN_ON(load_reg == -1)) {
11768 			verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
11769 			return -EFAULT;
11770 		}
11771 
11772 		zext_patch[0] = insn;
11773 		zext_patch[1].dst_reg = load_reg;
11774 		zext_patch[1].src_reg = load_reg;
11775 		patch = zext_patch;
11776 		patch_len = 2;
11777 apply_patch_buffer:
11778 		new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
11779 		if (!new_prog)
11780 			return -ENOMEM;
11781 		env->prog = new_prog;
11782 		insns = new_prog->insnsi;
11783 		aux = env->insn_aux_data;
11784 		delta += patch_len - 1;
11785 	}
11786 
11787 	return 0;
11788 }
11789 
11790 /* convert load instructions that access fields of a context type into a
11791  * sequence of instructions that access fields of the underlying structure:
11792  *     struct __sk_buff    -> struct sk_buff
11793  *     struct bpf_sock_ops -> struct sock
11794  */
11795 static int convert_ctx_accesses(struct bpf_verifier_env *env)
11796 {
11797 	const struct bpf_verifier_ops *ops = env->ops;
11798 	int i, cnt, size, ctx_field_size, delta = 0;
11799 	const int insn_cnt = env->prog->len;
11800 	struct bpf_insn insn_buf[16], *insn;
11801 	u32 target_size, size_default, off;
11802 	struct bpf_prog *new_prog;
11803 	enum bpf_access_type type;
11804 	bool is_narrower_load;
11805 
11806 	if (ops->gen_prologue || env->seen_direct_write) {
11807 		if (!ops->gen_prologue) {
11808 			verbose(env, "bpf verifier is misconfigured\n");
11809 			return -EINVAL;
11810 		}
11811 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
11812 					env->prog);
11813 		if (cnt >= ARRAY_SIZE(insn_buf)) {
11814 			verbose(env, "bpf verifier is misconfigured\n");
11815 			return -EINVAL;
11816 		} else if (cnt) {
11817 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
11818 			if (!new_prog)
11819 				return -ENOMEM;
11820 
11821 			env->prog = new_prog;
11822 			delta += cnt - 1;
11823 		}
11824 	}
11825 
11826 	if (bpf_prog_is_dev_bound(env->prog->aux))
11827 		return 0;
11828 
11829 	insn = env->prog->insnsi + delta;
11830 
11831 	for (i = 0; i < insn_cnt; i++, insn++) {
11832 		bpf_convert_ctx_access_t convert_ctx_access;
11833 
11834 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
11835 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
11836 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
11837 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
11838 			type = BPF_READ;
11839 		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
11840 			 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
11841 			 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
11842 			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
11843 			type = BPF_WRITE;
11844 		else
11845 			continue;
11846 
11847 		if (type == BPF_WRITE &&
11848 		    env->insn_aux_data[i + delta].sanitize_stack_off) {
11849 			struct bpf_insn patch[] = {
11850 				/* Sanitize suspicious stack slot with zero.
11851 				 * There are no memory dependencies for this store,
11852 				 * since it's only using frame pointer and immediate
11853 				 * constant of zero
11854 				 */
11855 				BPF_ST_MEM(BPF_DW, BPF_REG_FP,
11856 					   env->insn_aux_data[i + delta].sanitize_stack_off,
11857 					   0),
11858 				/* the original STX instruction will immediately
11859 				 * overwrite the same stack slot with appropriate value
11860 				 */
11861 				*insn,
11862 			};
11863 
11864 			cnt = ARRAY_SIZE(patch);
11865 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
11866 			if (!new_prog)
11867 				return -ENOMEM;
11868 
11869 			delta    += cnt - 1;
11870 			env->prog = new_prog;
11871 			insn      = new_prog->insnsi + i + delta;
11872 			continue;
11873 		}
11874 
11875 		switch (env->insn_aux_data[i + delta].ptr_type) {
11876 		case PTR_TO_CTX:
11877 			if (!ops->convert_ctx_access)
11878 				continue;
11879 			convert_ctx_access = ops->convert_ctx_access;
11880 			break;
11881 		case PTR_TO_SOCKET:
11882 		case PTR_TO_SOCK_COMMON:
11883 			convert_ctx_access = bpf_sock_convert_ctx_access;
11884 			break;
11885 		case PTR_TO_TCP_SOCK:
11886 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
11887 			break;
11888 		case PTR_TO_XDP_SOCK:
11889 			convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
11890 			break;
11891 		case PTR_TO_BTF_ID:
11892 			if (type == BPF_READ) {
11893 				insn->code = BPF_LDX | BPF_PROBE_MEM |
11894 					BPF_SIZE((insn)->code);
11895 				env->prog->aux->num_exentries++;
11896 			} else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) {
11897 				verbose(env, "Writes through BTF pointers are not allowed\n");
11898 				return -EINVAL;
11899 			}
11900 			continue;
11901 		default:
11902 			continue;
11903 		}
11904 
11905 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
11906 		size = BPF_LDST_BYTES(insn);
11907 
11908 		/* If the read access is a narrower load of the field,
11909 		 * convert to a 4/8-byte load, to minimum program type specific
11910 		 * convert_ctx_access changes. If conversion is successful,
11911 		 * we will apply proper mask to the result.
11912 		 */
11913 		is_narrower_load = size < ctx_field_size;
11914 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
11915 		off = insn->off;
11916 		if (is_narrower_load) {
11917 			u8 size_code;
11918 
11919 			if (type == BPF_WRITE) {
11920 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
11921 				return -EINVAL;
11922 			}
11923 
11924 			size_code = BPF_H;
11925 			if (ctx_field_size == 4)
11926 				size_code = BPF_W;
11927 			else if (ctx_field_size == 8)
11928 				size_code = BPF_DW;
11929 
11930 			insn->off = off & ~(size_default - 1);
11931 			insn->code = BPF_LDX | BPF_MEM | size_code;
11932 		}
11933 
11934 		target_size = 0;
11935 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
11936 					 &target_size);
11937 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
11938 		    (ctx_field_size && !target_size)) {
11939 			verbose(env, "bpf verifier is misconfigured\n");
11940 			return -EINVAL;
11941 		}
11942 
11943 		if (is_narrower_load && size < target_size) {
11944 			u8 shift = bpf_ctx_narrow_access_offset(
11945 				off, size, size_default) * 8;
11946 			if (ctx_field_size <= 4) {
11947 				if (shift)
11948 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
11949 									insn->dst_reg,
11950 									shift);
11951 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
11952 								(1 << size * 8) - 1);
11953 			} else {
11954 				if (shift)
11955 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
11956 									insn->dst_reg,
11957 									shift);
11958 				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
11959 								(1ULL << size * 8) - 1);
11960 			}
11961 		}
11962 
11963 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
11964 		if (!new_prog)
11965 			return -ENOMEM;
11966 
11967 		delta += cnt - 1;
11968 
11969 		/* keep walking new program and skip insns we just inserted */
11970 		env->prog = new_prog;
11971 		insn      = new_prog->insnsi + i + delta;
11972 	}
11973 
11974 	return 0;
11975 }
11976 
11977 static int jit_subprogs(struct bpf_verifier_env *env)
11978 {
11979 	struct bpf_prog *prog = env->prog, **func, *tmp;
11980 	int i, j, subprog_start, subprog_end = 0, len, subprog;
11981 	struct bpf_map *map_ptr;
11982 	struct bpf_insn *insn;
11983 	void *old_bpf_func;
11984 	int err, num_exentries;
11985 
11986 	if (env->subprog_cnt <= 1)
11987 		return 0;
11988 
11989 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
11990 		if (bpf_pseudo_func(insn)) {
11991 			env->insn_aux_data[i].call_imm = insn->imm;
11992 			/* subprog is encoded in insn[1].imm */
11993 			continue;
11994 		}
11995 
11996 		if (!bpf_pseudo_call(insn))
11997 			continue;
11998 		/* Upon error here we cannot fall back to interpreter but
11999 		 * need a hard reject of the program. Thus -EFAULT is
12000 		 * propagated in any case.
12001 		 */
12002 		subprog = find_subprog(env, i + insn->imm + 1);
12003 		if (subprog < 0) {
12004 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
12005 				  i + insn->imm + 1);
12006 			return -EFAULT;
12007 		}
12008 		/* temporarily remember subprog id inside insn instead of
12009 		 * aux_data, since next loop will split up all insns into funcs
12010 		 */
12011 		insn->off = subprog;
12012 		/* remember original imm in case JIT fails and fallback
12013 		 * to interpreter will be needed
12014 		 */
12015 		env->insn_aux_data[i].call_imm = insn->imm;
12016 		/* point imm to __bpf_call_base+1 from JITs point of view */
12017 		insn->imm = 1;
12018 	}
12019 
12020 	err = bpf_prog_alloc_jited_linfo(prog);
12021 	if (err)
12022 		goto out_undo_insn;
12023 
12024 	err = -ENOMEM;
12025 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
12026 	if (!func)
12027 		goto out_undo_insn;
12028 
12029 	for (i = 0; i < env->subprog_cnt; i++) {
12030 		subprog_start = subprog_end;
12031 		subprog_end = env->subprog_info[i + 1].start;
12032 
12033 		len = subprog_end - subprog_start;
12034 		/* BPF_PROG_RUN doesn't call subprogs directly,
12035 		 * hence main prog stats include the runtime of subprogs.
12036 		 * subprogs don't have IDs and not reachable via prog_get_next_id
12037 		 * func[i]->stats will never be accessed and stays NULL
12038 		 */
12039 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
12040 		if (!func[i])
12041 			goto out_free;
12042 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
12043 		       len * sizeof(struct bpf_insn));
12044 		func[i]->type = prog->type;
12045 		func[i]->len = len;
12046 		if (bpf_prog_calc_tag(func[i]))
12047 			goto out_free;
12048 		func[i]->is_func = 1;
12049 		func[i]->aux->func_idx = i;
12050 		/* the btf and func_info will be freed only at prog->aux */
12051 		func[i]->aux->btf = prog->aux->btf;
12052 		func[i]->aux->func_info = prog->aux->func_info;
12053 
12054 		for (j = 0; j < prog->aux->size_poke_tab; j++) {
12055 			u32 insn_idx = prog->aux->poke_tab[j].insn_idx;
12056 			int ret;
12057 
12058 			if (!(insn_idx >= subprog_start &&
12059 			      insn_idx <= subprog_end))
12060 				continue;
12061 
12062 			ret = bpf_jit_add_poke_descriptor(func[i],
12063 							  &prog->aux->poke_tab[j]);
12064 			if (ret < 0) {
12065 				verbose(env, "adding tail call poke descriptor failed\n");
12066 				goto out_free;
12067 			}
12068 
12069 			func[i]->insnsi[insn_idx - subprog_start].imm = ret + 1;
12070 
12071 			map_ptr = func[i]->aux->poke_tab[ret].tail_call.map;
12072 			ret = map_ptr->ops->map_poke_track(map_ptr, func[i]->aux);
12073 			if (ret < 0) {
12074 				verbose(env, "tracking tail call prog failed\n");
12075 				goto out_free;
12076 			}
12077 		}
12078 
12079 		/* Use bpf_prog_F_tag to indicate functions in stack traces.
12080 		 * Long term would need debug info to populate names
12081 		 */
12082 		func[i]->aux->name[0] = 'F';
12083 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
12084 		func[i]->jit_requested = 1;
12085 		func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
12086 		func[i]->aux->linfo = prog->aux->linfo;
12087 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
12088 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
12089 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
12090 		num_exentries = 0;
12091 		insn = func[i]->insnsi;
12092 		for (j = 0; j < func[i]->len; j++, insn++) {
12093 			if (BPF_CLASS(insn->code) == BPF_LDX &&
12094 			    BPF_MODE(insn->code) == BPF_PROBE_MEM)
12095 				num_exentries++;
12096 		}
12097 		func[i]->aux->num_exentries = num_exentries;
12098 		func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
12099 		func[i] = bpf_int_jit_compile(func[i]);
12100 		if (!func[i]->jited) {
12101 			err = -ENOTSUPP;
12102 			goto out_free;
12103 		}
12104 		cond_resched();
12105 	}
12106 
12107 	/* Untrack main program's aux structs so that during map_poke_run()
12108 	 * we will not stumble upon the unfilled poke descriptors; each
12109 	 * of the main program's poke descs got distributed across subprogs
12110 	 * and got tracked onto map, so we are sure that none of them will
12111 	 * be missed after the operation below
12112 	 */
12113 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
12114 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
12115 
12116 		map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
12117 	}
12118 
12119 	/* at this point all bpf functions were successfully JITed
12120 	 * now populate all bpf_calls with correct addresses and
12121 	 * run last pass of JIT
12122 	 */
12123 	for (i = 0; i < env->subprog_cnt; i++) {
12124 		insn = func[i]->insnsi;
12125 		for (j = 0; j < func[i]->len; j++, insn++) {
12126 			if (bpf_pseudo_func(insn)) {
12127 				subprog = insn[1].imm;
12128 				insn[0].imm = (u32)(long)func[subprog]->bpf_func;
12129 				insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
12130 				continue;
12131 			}
12132 			if (!bpf_pseudo_call(insn))
12133 				continue;
12134 			subprog = insn->off;
12135 			insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) -
12136 				    __bpf_call_base;
12137 		}
12138 
12139 		/* we use the aux data to keep a list of the start addresses
12140 		 * of the JITed images for each function in the program
12141 		 *
12142 		 * for some architectures, such as powerpc64, the imm field
12143 		 * might not be large enough to hold the offset of the start
12144 		 * address of the callee's JITed image from __bpf_call_base
12145 		 *
12146 		 * in such cases, we can lookup the start address of a callee
12147 		 * by using its subprog id, available from the off field of
12148 		 * the call instruction, as an index for this list
12149 		 */
12150 		func[i]->aux->func = func;
12151 		func[i]->aux->func_cnt = env->subprog_cnt;
12152 	}
12153 	for (i = 0; i < env->subprog_cnt; i++) {
12154 		old_bpf_func = func[i]->bpf_func;
12155 		tmp = bpf_int_jit_compile(func[i]);
12156 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
12157 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
12158 			err = -ENOTSUPP;
12159 			goto out_free;
12160 		}
12161 		cond_resched();
12162 	}
12163 
12164 	/* finally lock prog and jit images for all functions and
12165 	 * populate kallsysm
12166 	 */
12167 	for (i = 0; i < env->subprog_cnt; i++) {
12168 		bpf_prog_lock_ro(func[i]);
12169 		bpf_prog_kallsyms_add(func[i]);
12170 	}
12171 
12172 	/* Last step: make now unused interpreter insns from main
12173 	 * prog consistent for later dump requests, so they can
12174 	 * later look the same as if they were interpreted only.
12175 	 */
12176 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
12177 		if (bpf_pseudo_func(insn)) {
12178 			insn[0].imm = env->insn_aux_data[i].call_imm;
12179 			insn[1].imm = find_subprog(env, i + insn[0].imm + 1);
12180 			continue;
12181 		}
12182 		if (!bpf_pseudo_call(insn))
12183 			continue;
12184 		insn->off = env->insn_aux_data[i].call_imm;
12185 		subprog = find_subprog(env, i + insn->off + 1);
12186 		insn->imm = subprog;
12187 	}
12188 
12189 	prog->jited = 1;
12190 	prog->bpf_func = func[0]->bpf_func;
12191 	prog->aux->func = func;
12192 	prog->aux->func_cnt = env->subprog_cnt;
12193 	bpf_prog_jit_attempt_done(prog);
12194 	return 0;
12195 out_free:
12196 	for (i = 0; i < env->subprog_cnt; i++) {
12197 		if (!func[i])
12198 			continue;
12199 
12200 		for (j = 0; j < func[i]->aux->size_poke_tab; j++) {
12201 			map_ptr = func[i]->aux->poke_tab[j].tail_call.map;
12202 			map_ptr->ops->map_poke_untrack(map_ptr, func[i]->aux);
12203 		}
12204 		bpf_jit_free(func[i]);
12205 	}
12206 	kfree(func);
12207 out_undo_insn:
12208 	/* cleanup main prog to be interpreted */
12209 	prog->jit_requested = 0;
12210 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
12211 		if (!bpf_pseudo_call(insn))
12212 			continue;
12213 		insn->off = 0;
12214 		insn->imm = env->insn_aux_data[i].call_imm;
12215 	}
12216 	bpf_prog_jit_attempt_done(prog);
12217 	return err;
12218 }
12219 
12220 static int fixup_call_args(struct bpf_verifier_env *env)
12221 {
12222 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
12223 	struct bpf_prog *prog = env->prog;
12224 	struct bpf_insn *insn = prog->insnsi;
12225 	bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
12226 	int i, depth;
12227 #endif
12228 	int err = 0;
12229 
12230 	if (env->prog->jit_requested &&
12231 	    !bpf_prog_is_dev_bound(env->prog->aux)) {
12232 		err = jit_subprogs(env);
12233 		if (err == 0)
12234 			return 0;
12235 		if (err == -EFAULT)
12236 			return err;
12237 	}
12238 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
12239 	if (has_kfunc_call) {
12240 		verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
12241 		return -EINVAL;
12242 	}
12243 	if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
12244 		/* When JIT fails the progs with bpf2bpf calls and tail_calls
12245 		 * have to be rejected, since interpreter doesn't support them yet.
12246 		 */
12247 		verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
12248 		return -EINVAL;
12249 	}
12250 	for (i = 0; i < prog->len; i++, insn++) {
12251 		if (bpf_pseudo_func(insn)) {
12252 			/* When JIT fails the progs with callback calls
12253 			 * have to be rejected, since interpreter doesn't support them yet.
12254 			 */
12255 			verbose(env, "callbacks are not allowed in non-JITed programs\n");
12256 			return -EINVAL;
12257 		}
12258 
12259 		if (!bpf_pseudo_call(insn))
12260 			continue;
12261 		depth = get_callee_stack_depth(env, insn, i);
12262 		if (depth < 0)
12263 			return depth;
12264 		bpf_patch_call_args(insn, depth);
12265 	}
12266 	err = 0;
12267 #endif
12268 	return err;
12269 }
12270 
12271 static int fixup_kfunc_call(struct bpf_verifier_env *env,
12272 			    struct bpf_insn *insn)
12273 {
12274 	const struct bpf_kfunc_desc *desc;
12275 
12276 	/* insn->imm has the btf func_id. Replace it with
12277 	 * an address (relative to __bpf_base_call).
12278 	 */
12279 	desc = find_kfunc_desc(env->prog, insn->imm);
12280 	if (!desc) {
12281 		verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
12282 			insn->imm);
12283 		return -EFAULT;
12284 	}
12285 
12286 	insn->imm = desc->imm;
12287 
12288 	return 0;
12289 }
12290 
12291 /* Do various post-verification rewrites in a single program pass.
12292  * These rewrites simplify JIT and interpreter implementations.
12293  */
12294 static int do_misc_fixups(struct bpf_verifier_env *env)
12295 {
12296 	struct bpf_prog *prog = env->prog;
12297 	bool expect_blinding = bpf_jit_blinding_enabled(prog);
12298 	struct bpf_insn *insn = prog->insnsi;
12299 	const struct bpf_func_proto *fn;
12300 	const int insn_cnt = prog->len;
12301 	const struct bpf_map_ops *ops;
12302 	struct bpf_insn_aux_data *aux;
12303 	struct bpf_insn insn_buf[16];
12304 	struct bpf_prog *new_prog;
12305 	struct bpf_map *map_ptr;
12306 	int i, ret, cnt, delta = 0;
12307 
12308 	for (i = 0; i < insn_cnt; i++, insn++) {
12309 		/* Make divide-by-zero exceptions impossible. */
12310 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
12311 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
12312 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
12313 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
12314 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
12315 			bool isdiv = BPF_OP(insn->code) == BPF_DIV;
12316 			struct bpf_insn *patchlet;
12317 			struct bpf_insn chk_and_div[] = {
12318 				/* [R,W]x div 0 -> 0 */
12319 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
12320 					     BPF_JNE | BPF_K, insn->src_reg,
12321 					     0, 2, 0),
12322 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
12323 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
12324 				*insn,
12325 			};
12326 			struct bpf_insn chk_and_mod[] = {
12327 				/* [R,W]x mod 0 -> [R,W]x */
12328 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
12329 					     BPF_JEQ | BPF_K, insn->src_reg,
12330 					     0, 1 + (is64 ? 0 : 1), 0),
12331 				*insn,
12332 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
12333 				BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
12334 			};
12335 
12336 			patchlet = isdiv ? chk_and_div : chk_and_mod;
12337 			cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
12338 				      ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
12339 
12340 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
12341 			if (!new_prog)
12342 				return -ENOMEM;
12343 
12344 			delta    += cnt - 1;
12345 			env->prog = prog = new_prog;
12346 			insn      = new_prog->insnsi + i + delta;
12347 			continue;
12348 		}
12349 
12350 		/* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
12351 		if (BPF_CLASS(insn->code) == BPF_LD &&
12352 		    (BPF_MODE(insn->code) == BPF_ABS ||
12353 		     BPF_MODE(insn->code) == BPF_IND)) {
12354 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
12355 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
12356 				verbose(env, "bpf verifier is misconfigured\n");
12357 				return -EINVAL;
12358 			}
12359 
12360 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
12361 			if (!new_prog)
12362 				return -ENOMEM;
12363 
12364 			delta    += cnt - 1;
12365 			env->prog = prog = new_prog;
12366 			insn      = new_prog->insnsi + i + delta;
12367 			continue;
12368 		}
12369 
12370 		/* Rewrite pointer arithmetic to mitigate speculation attacks. */
12371 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
12372 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
12373 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
12374 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
12375 			struct bpf_insn *patch = &insn_buf[0];
12376 			bool issrc, isneg, isimm;
12377 			u32 off_reg;
12378 
12379 			aux = &env->insn_aux_data[i + delta];
12380 			if (!aux->alu_state ||
12381 			    aux->alu_state == BPF_ALU_NON_POINTER)
12382 				continue;
12383 
12384 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
12385 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
12386 				BPF_ALU_SANITIZE_SRC;
12387 			isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
12388 
12389 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
12390 			if (isimm) {
12391 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
12392 			} else {
12393 				if (isneg)
12394 					*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
12395 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
12396 				*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
12397 				*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
12398 				*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
12399 				*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
12400 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
12401 			}
12402 			if (!issrc)
12403 				*patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
12404 			insn->src_reg = BPF_REG_AX;
12405 			if (isneg)
12406 				insn->code = insn->code == code_add ?
12407 					     code_sub : code_add;
12408 			*patch++ = *insn;
12409 			if (issrc && isneg && !isimm)
12410 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
12411 			cnt = patch - insn_buf;
12412 
12413 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
12414 			if (!new_prog)
12415 				return -ENOMEM;
12416 
12417 			delta    += cnt - 1;
12418 			env->prog = prog = new_prog;
12419 			insn      = new_prog->insnsi + i + delta;
12420 			continue;
12421 		}
12422 
12423 		if (insn->code != (BPF_JMP | BPF_CALL))
12424 			continue;
12425 		if (insn->src_reg == BPF_PSEUDO_CALL)
12426 			continue;
12427 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
12428 			ret = fixup_kfunc_call(env, insn);
12429 			if (ret)
12430 				return ret;
12431 			continue;
12432 		}
12433 
12434 		if (insn->imm == BPF_FUNC_get_route_realm)
12435 			prog->dst_needed = 1;
12436 		if (insn->imm == BPF_FUNC_get_prandom_u32)
12437 			bpf_user_rnd_init_once();
12438 		if (insn->imm == BPF_FUNC_override_return)
12439 			prog->kprobe_override = 1;
12440 		if (insn->imm == BPF_FUNC_tail_call) {
12441 			/* If we tail call into other programs, we
12442 			 * cannot make any assumptions since they can
12443 			 * be replaced dynamically during runtime in
12444 			 * the program array.
12445 			 */
12446 			prog->cb_access = 1;
12447 			if (!allow_tail_call_in_subprogs(env))
12448 				prog->aux->stack_depth = MAX_BPF_STACK;
12449 			prog->aux->max_pkt_offset = MAX_PACKET_OFF;
12450 
12451 			/* mark bpf_tail_call as different opcode to avoid
12452 			 * conditional branch in the interpeter for every normal
12453 			 * call and to prevent accidental JITing by JIT compiler
12454 			 * that doesn't support bpf_tail_call yet
12455 			 */
12456 			insn->imm = 0;
12457 			insn->code = BPF_JMP | BPF_TAIL_CALL;
12458 
12459 			aux = &env->insn_aux_data[i + delta];
12460 			if (env->bpf_capable && !expect_blinding &&
12461 			    prog->jit_requested &&
12462 			    !bpf_map_key_poisoned(aux) &&
12463 			    !bpf_map_ptr_poisoned(aux) &&
12464 			    !bpf_map_ptr_unpriv(aux)) {
12465 				struct bpf_jit_poke_descriptor desc = {
12466 					.reason = BPF_POKE_REASON_TAIL_CALL,
12467 					.tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
12468 					.tail_call.key = bpf_map_key_immediate(aux),
12469 					.insn_idx = i + delta,
12470 				};
12471 
12472 				ret = bpf_jit_add_poke_descriptor(prog, &desc);
12473 				if (ret < 0) {
12474 					verbose(env, "adding tail call poke descriptor failed\n");
12475 					return ret;
12476 				}
12477 
12478 				insn->imm = ret + 1;
12479 				continue;
12480 			}
12481 
12482 			if (!bpf_map_ptr_unpriv(aux))
12483 				continue;
12484 
12485 			/* instead of changing every JIT dealing with tail_call
12486 			 * emit two extra insns:
12487 			 * if (index >= max_entries) goto out;
12488 			 * index &= array->index_mask;
12489 			 * to avoid out-of-bounds cpu speculation
12490 			 */
12491 			if (bpf_map_ptr_poisoned(aux)) {
12492 				verbose(env, "tail_call abusing map_ptr\n");
12493 				return -EINVAL;
12494 			}
12495 
12496 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
12497 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
12498 						  map_ptr->max_entries, 2);
12499 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
12500 						    container_of(map_ptr,
12501 								 struct bpf_array,
12502 								 map)->index_mask);
12503 			insn_buf[2] = *insn;
12504 			cnt = 3;
12505 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
12506 			if (!new_prog)
12507 				return -ENOMEM;
12508 
12509 			delta    += cnt - 1;
12510 			env->prog = prog = new_prog;
12511 			insn      = new_prog->insnsi + i + delta;
12512 			continue;
12513 		}
12514 
12515 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
12516 		 * and other inlining handlers are currently limited to 64 bit
12517 		 * only.
12518 		 */
12519 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
12520 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
12521 		     insn->imm == BPF_FUNC_map_update_elem ||
12522 		     insn->imm == BPF_FUNC_map_delete_elem ||
12523 		     insn->imm == BPF_FUNC_map_push_elem   ||
12524 		     insn->imm == BPF_FUNC_map_pop_elem    ||
12525 		     insn->imm == BPF_FUNC_map_peek_elem   ||
12526 		     insn->imm == BPF_FUNC_redirect_map)) {
12527 			aux = &env->insn_aux_data[i + delta];
12528 			if (bpf_map_ptr_poisoned(aux))
12529 				goto patch_call_imm;
12530 
12531 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
12532 			ops = map_ptr->ops;
12533 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
12534 			    ops->map_gen_lookup) {
12535 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
12536 				if (cnt == -EOPNOTSUPP)
12537 					goto patch_map_ops_generic;
12538 				if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
12539 					verbose(env, "bpf verifier is misconfigured\n");
12540 					return -EINVAL;
12541 				}
12542 
12543 				new_prog = bpf_patch_insn_data(env, i + delta,
12544 							       insn_buf, cnt);
12545 				if (!new_prog)
12546 					return -ENOMEM;
12547 
12548 				delta    += cnt - 1;
12549 				env->prog = prog = new_prog;
12550 				insn      = new_prog->insnsi + i + delta;
12551 				continue;
12552 			}
12553 
12554 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
12555 				     (void *(*)(struct bpf_map *map, void *key))NULL));
12556 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
12557 				     (int (*)(struct bpf_map *map, void *key))NULL));
12558 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
12559 				     (int (*)(struct bpf_map *map, void *key, void *value,
12560 					      u64 flags))NULL));
12561 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
12562 				     (int (*)(struct bpf_map *map, void *value,
12563 					      u64 flags))NULL));
12564 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
12565 				     (int (*)(struct bpf_map *map, void *value))NULL));
12566 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
12567 				     (int (*)(struct bpf_map *map, void *value))NULL));
12568 			BUILD_BUG_ON(!__same_type(ops->map_redirect,
12569 				     (int (*)(struct bpf_map *map, u32 ifindex, u64 flags))NULL));
12570 
12571 patch_map_ops_generic:
12572 			switch (insn->imm) {
12573 			case BPF_FUNC_map_lookup_elem:
12574 				insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
12575 					    __bpf_call_base;
12576 				continue;
12577 			case BPF_FUNC_map_update_elem:
12578 				insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
12579 					    __bpf_call_base;
12580 				continue;
12581 			case BPF_FUNC_map_delete_elem:
12582 				insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
12583 					    __bpf_call_base;
12584 				continue;
12585 			case BPF_FUNC_map_push_elem:
12586 				insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
12587 					    __bpf_call_base;
12588 				continue;
12589 			case BPF_FUNC_map_pop_elem:
12590 				insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
12591 					    __bpf_call_base;
12592 				continue;
12593 			case BPF_FUNC_map_peek_elem:
12594 				insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
12595 					    __bpf_call_base;
12596 				continue;
12597 			case BPF_FUNC_redirect_map:
12598 				insn->imm = BPF_CAST_CALL(ops->map_redirect) -
12599 					    __bpf_call_base;
12600 				continue;
12601 			}
12602 
12603 			goto patch_call_imm;
12604 		}
12605 
12606 		/* Implement bpf_jiffies64 inline. */
12607 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
12608 		    insn->imm == BPF_FUNC_jiffies64) {
12609 			struct bpf_insn ld_jiffies_addr[2] = {
12610 				BPF_LD_IMM64(BPF_REG_0,
12611 					     (unsigned long)&jiffies),
12612 			};
12613 
12614 			insn_buf[0] = ld_jiffies_addr[0];
12615 			insn_buf[1] = ld_jiffies_addr[1];
12616 			insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
12617 						  BPF_REG_0, 0);
12618 			cnt = 3;
12619 
12620 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
12621 						       cnt);
12622 			if (!new_prog)
12623 				return -ENOMEM;
12624 
12625 			delta    += cnt - 1;
12626 			env->prog = prog = new_prog;
12627 			insn      = new_prog->insnsi + i + delta;
12628 			continue;
12629 		}
12630 
12631 patch_call_imm:
12632 		fn = env->ops->get_func_proto(insn->imm, env->prog);
12633 		/* all functions that have prototype and verifier allowed
12634 		 * programs to call them, must be real in-kernel functions
12635 		 */
12636 		if (!fn->func) {
12637 			verbose(env,
12638 				"kernel subsystem misconfigured func %s#%d\n",
12639 				func_id_name(insn->imm), insn->imm);
12640 			return -EFAULT;
12641 		}
12642 		insn->imm = fn->func - __bpf_call_base;
12643 	}
12644 
12645 	/* Since poke tab is now finalized, publish aux to tracker. */
12646 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
12647 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
12648 		if (!map_ptr->ops->map_poke_track ||
12649 		    !map_ptr->ops->map_poke_untrack ||
12650 		    !map_ptr->ops->map_poke_run) {
12651 			verbose(env, "bpf verifier is misconfigured\n");
12652 			return -EINVAL;
12653 		}
12654 
12655 		ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
12656 		if (ret < 0) {
12657 			verbose(env, "tracking tail call prog failed\n");
12658 			return ret;
12659 		}
12660 	}
12661 
12662 	sort_kfunc_descs_by_imm(env->prog);
12663 
12664 	return 0;
12665 }
12666 
12667 static void free_states(struct bpf_verifier_env *env)
12668 {
12669 	struct bpf_verifier_state_list *sl, *sln;
12670 	int i;
12671 
12672 	sl = env->free_list;
12673 	while (sl) {
12674 		sln = sl->next;
12675 		free_verifier_state(&sl->state, false);
12676 		kfree(sl);
12677 		sl = sln;
12678 	}
12679 	env->free_list = NULL;
12680 
12681 	if (!env->explored_states)
12682 		return;
12683 
12684 	for (i = 0; i < state_htab_size(env); i++) {
12685 		sl = env->explored_states[i];
12686 
12687 		while (sl) {
12688 			sln = sl->next;
12689 			free_verifier_state(&sl->state, false);
12690 			kfree(sl);
12691 			sl = sln;
12692 		}
12693 		env->explored_states[i] = NULL;
12694 	}
12695 }
12696 
12697 /* The verifier is using insn_aux_data[] to store temporary data during
12698  * verification and to store information for passes that run after the
12699  * verification like dead code sanitization. do_check_common() for subprogram N
12700  * may analyze many other subprograms. sanitize_insn_aux_data() clears all
12701  * temporary data after do_check_common() finds that subprogram N cannot be
12702  * verified independently. pass_cnt counts the number of times
12703  * do_check_common() was run and insn->aux->seen tells the pass number
12704  * insn_aux_data was touched. These variables are compared to clear temporary
12705  * data from failed pass. For testing and experiments do_check_common() can be
12706  * run multiple times even when prior attempt to verify is unsuccessful.
12707  */
12708 static void sanitize_insn_aux_data(struct bpf_verifier_env *env)
12709 {
12710 	struct bpf_insn *insn = env->prog->insnsi;
12711 	struct bpf_insn_aux_data *aux;
12712 	int i, class;
12713 
12714 	for (i = 0; i < env->prog->len; i++) {
12715 		class = BPF_CLASS(insn[i].code);
12716 		if (class != BPF_LDX && class != BPF_STX)
12717 			continue;
12718 		aux = &env->insn_aux_data[i];
12719 		if (aux->seen != env->pass_cnt)
12720 			continue;
12721 		memset(aux, 0, offsetof(typeof(*aux), orig_idx));
12722 	}
12723 }
12724 
12725 static int do_check_common(struct bpf_verifier_env *env, int subprog)
12726 {
12727 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
12728 	struct bpf_verifier_state *state;
12729 	struct bpf_reg_state *regs;
12730 	int ret, i;
12731 
12732 	env->prev_linfo = NULL;
12733 	env->pass_cnt++;
12734 
12735 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
12736 	if (!state)
12737 		return -ENOMEM;
12738 	state->curframe = 0;
12739 	state->speculative = false;
12740 	state->branches = 1;
12741 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
12742 	if (!state->frame[0]) {
12743 		kfree(state);
12744 		return -ENOMEM;
12745 	}
12746 	env->cur_state = state;
12747 	init_func_state(env, state->frame[0],
12748 			BPF_MAIN_FUNC /* callsite */,
12749 			0 /* frameno */,
12750 			subprog);
12751 
12752 	regs = state->frame[state->curframe]->regs;
12753 	if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
12754 		ret = btf_prepare_func_args(env, subprog, regs);
12755 		if (ret)
12756 			goto out;
12757 		for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
12758 			if (regs[i].type == PTR_TO_CTX)
12759 				mark_reg_known_zero(env, regs, i);
12760 			else if (regs[i].type == SCALAR_VALUE)
12761 				mark_reg_unknown(env, regs, i);
12762 			else if (regs[i].type == PTR_TO_MEM_OR_NULL) {
12763 				const u32 mem_size = regs[i].mem_size;
12764 
12765 				mark_reg_known_zero(env, regs, i);
12766 				regs[i].mem_size = mem_size;
12767 				regs[i].id = ++env->id_gen;
12768 			}
12769 		}
12770 	} else {
12771 		/* 1st arg to a function */
12772 		regs[BPF_REG_1].type = PTR_TO_CTX;
12773 		mark_reg_known_zero(env, regs, BPF_REG_1);
12774 		ret = btf_check_subprog_arg_match(env, subprog, regs);
12775 		if (ret == -EFAULT)
12776 			/* unlikely verifier bug. abort.
12777 			 * ret == 0 and ret < 0 are sadly acceptable for
12778 			 * main() function due to backward compatibility.
12779 			 * Like socket filter program may be written as:
12780 			 * int bpf_prog(struct pt_regs *ctx)
12781 			 * and never dereference that ctx in the program.
12782 			 * 'struct pt_regs' is a type mismatch for socket
12783 			 * filter that should be using 'struct __sk_buff'.
12784 			 */
12785 			goto out;
12786 	}
12787 
12788 	ret = do_check(env);
12789 out:
12790 	/* check for NULL is necessary, since cur_state can be freed inside
12791 	 * do_check() under memory pressure.
12792 	 */
12793 	if (env->cur_state) {
12794 		free_verifier_state(env->cur_state, true);
12795 		env->cur_state = NULL;
12796 	}
12797 	while (!pop_stack(env, NULL, NULL, false));
12798 	if (!ret && pop_log)
12799 		bpf_vlog_reset(&env->log, 0);
12800 	free_states(env);
12801 	if (ret)
12802 		/* clean aux data in case subprog was rejected */
12803 		sanitize_insn_aux_data(env);
12804 	return ret;
12805 }
12806 
12807 /* Verify all global functions in a BPF program one by one based on their BTF.
12808  * All global functions must pass verification. Otherwise the whole program is rejected.
12809  * Consider:
12810  * int bar(int);
12811  * int foo(int f)
12812  * {
12813  *    return bar(f);
12814  * }
12815  * int bar(int b)
12816  * {
12817  *    ...
12818  * }
12819  * foo() will be verified first for R1=any_scalar_value. During verification it
12820  * will be assumed that bar() already verified successfully and call to bar()
12821  * from foo() will be checked for type match only. Later bar() will be verified
12822  * independently to check that it's safe for R1=any_scalar_value.
12823  */
12824 static int do_check_subprogs(struct bpf_verifier_env *env)
12825 {
12826 	struct bpf_prog_aux *aux = env->prog->aux;
12827 	int i, ret;
12828 
12829 	if (!aux->func_info)
12830 		return 0;
12831 
12832 	for (i = 1; i < env->subprog_cnt; i++) {
12833 		if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
12834 			continue;
12835 		env->insn_idx = env->subprog_info[i].start;
12836 		WARN_ON_ONCE(env->insn_idx == 0);
12837 		ret = do_check_common(env, i);
12838 		if (ret) {
12839 			return ret;
12840 		} else if (env->log.level & BPF_LOG_LEVEL) {
12841 			verbose(env,
12842 				"Func#%d is safe for any args that match its prototype\n",
12843 				i);
12844 		}
12845 	}
12846 	return 0;
12847 }
12848 
12849 static int do_check_main(struct bpf_verifier_env *env)
12850 {
12851 	int ret;
12852 
12853 	env->insn_idx = 0;
12854 	ret = do_check_common(env, 0);
12855 	if (!ret)
12856 		env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
12857 	return ret;
12858 }
12859 
12860 
12861 static void print_verification_stats(struct bpf_verifier_env *env)
12862 {
12863 	int i;
12864 
12865 	if (env->log.level & BPF_LOG_STATS) {
12866 		verbose(env, "verification time %lld usec\n",
12867 			div_u64(env->verification_time, 1000));
12868 		verbose(env, "stack depth ");
12869 		for (i = 0; i < env->subprog_cnt; i++) {
12870 			u32 depth = env->subprog_info[i].stack_depth;
12871 
12872 			verbose(env, "%d", depth);
12873 			if (i + 1 < env->subprog_cnt)
12874 				verbose(env, "+");
12875 		}
12876 		verbose(env, "\n");
12877 	}
12878 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
12879 		"total_states %d peak_states %d mark_read %d\n",
12880 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
12881 		env->max_states_per_insn, env->total_states,
12882 		env->peak_states, env->longest_mark_read_walk);
12883 }
12884 
12885 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
12886 {
12887 	const struct btf_type *t, *func_proto;
12888 	const struct bpf_struct_ops *st_ops;
12889 	const struct btf_member *member;
12890 	struct bpf_prog *prog = env->prog;
12891 	u32 btf_id, member_idx;
12892 	const char *mname;
12893 
12894 	if (!prog->gpl_compatible) {
12895 		verbose(env, "struct ops programs must have a GPL compatible license\n");
12896 		return -EINVAL;
12897 	}
12898 
12899 	btf_id = prog->aux->attach_btf_id;
12900 	st_ops = bpf_struct_ops_find(btf_id);
12901 	if (!st_ops) {
12902 		verbose(env, "attach_btf_id %u is not a supported struct\n",
12903 			btf_id);
12904 		return -ENOTSUPP;
12905 	}
12906 
12907 	t = st_ops->type;
12908 	member_idx = prog->expected_attach_type;
12909 	if (member_idx >= btf_type_vlen(t)) {
12910 		verbose(env, "attach to invalid member idx %u of struct %s\n",
12911 			member_idx, st_ops->name);
12912 		return -EINVAL;
12913 	}
12914 
12915 	member = &btf_type_member(t)[member_idx];
12916 	mname = btf_name_by_offset(btf_vmlinux, member->name_off);
12917 	func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
12918 					       NULL);
12919 	if (!func_proto) {
12920 		verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
12921 			mname, member_idx, st_ops->name);
12922 		return -EINVAL;
12923 	}
12924 
12925 	if (st_ops->check_member) {
12926 		int err = st_ops->check_member(t, member);
12927 
12928 		if (err) {
12929 			verbose(env, "attach to unsupported member %s of struct %s\n",
12930 				mname, st_ops->name);
12931 			return err;
12932 		}
12933 	}
12934 
12935 	prog->aux->attach_func_proto = func_proto;
12936 	prog->aux->attach_func_name = mname;
12937 	env->ops = st_ops->verifier_ops;
12938 
12939 	return 0;
12940 }
12941 #define SECURITY_PREFIX "security_"
12942 
12943 static int check_attach_modify_return(unsigned long addr, const char *func_name)
12944 {
12945 	if (within_error_injection_list(addr) ||
12946 	    !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
12947 		return 0;
12948 
12949 	return -EINVAL;
12950 }
12951 
12952 /* list of non-sleepable functions that are otherwise on
12953  * ALLOW_ERROR_INJECTION list
12954  */
12955 BTF_SET_START(btf_non_sleepable_error_inject)
12956 /* Three functions below can be called from sleepable and non-sleepable context.
12957  * Assume non-sleepable from bpf safety point of view.
12958  */
12959 BTF_ID(func, __add_to_page_cache_locked)
12960 BTF_ID(func, should_fail_alloc_page)
12961 BTF_ID(func, should_failslab)
12962 BTF_SET_END(btf_non_sleepable_error_inject)
12963 
12964 static int check_non_sleepable_error_inject(u32 btf_id)
12965 {
12966 	return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
12967 }
12968 
12969 int bpf_check_attach_target(struct bpf_verifier_log *log,
12970 			    const struct bpf_prog *prog,
12971 			    const struct bpf_prog *tgt_prog,
12972 			    u32 btf_id,
12973 			    struct bpf_attach_target_info *tgt_info)
12974 {
12975 	bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
12976 	const char prefix[] = "btf_trace_";
12977 	int ret = 0, subprog = -1, i;
12978 	const struct btf_type *t;
12979 	bool conservative = true;
12980 	const char *tname;
12981 	struct btf *btf;
12982 	long addr = 0;
12983 
12984 	if (!btf_id) {
12985 		bpf_log(log, "Tracing programs must provide btf_id\n");
12986 		return -EINVAL;
12987 	}
12988 	btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
12989 	if (!btf) {
12990 		bpf_log(log,
12991 			"FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
12992 		return -EINVAL;
12993 	}
12994 	t = btf_type_by_id(btf, btf_id);
12995 	if (!t) {
12996 		bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
12997 		return -EINVAL;
12998 	}
12999 	tname = btf_name_by_offset(btf, t->name_off);
13000 	if (!tname) {
13001 		bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
13002 		return -EINVAL;
13003 	}
13004 	if (tgt_prog) {
13005 		struct bpf_prog_aux *aux = tgt_prog->aux;
13006 
13007 		for (i = 0; i < aux->func_info_cnt; i++)
13008 			if (aux->func_info[i].type_id == btf_id) {
13009 				subprog = i;
13010 				break;
13011 			}
13012 		if (subprog == -1) {
13013 			bpf_log(log, "Subprog %s doesn't exist\n", tname);
13014 			return -EINVAL;
13015 		}
13016 		conservative = aux->func_info_aux[subprog].unreliable;
13017 		if (prog_extension) {
13018 			if (conservative) {
13019 				bpf_log(log,
13020 					"Cannot replace static functions\n");
13021 				return -EINVAL;
13022 			}
13023 			if (!prog->jit_requested) {
13024 				bpf_log(log,
13025 					"Extension programs should be JITed\n");
13026 				return -EINVAL;
13027 			}
13028 		}
13029 		if (!tgt_prog->jited) {
13030 			bpf_log(log, "Can attach to only JITed progs\n");
13031 			return -EINVAL;
13032 		}
13033 		if (tgt_prog->type == prog->type) {
13034 			/* Cannot fentry/fexit another fentry/fexit program.
13035 			 * Cannot attach program extension to another extension.
13036 			 * It's ok to attach fentry/fexit to extension program.
13037 			 */
13038 			bpf_log(log, "Cannot recursively attach\n");
13039 			return -EINVAL;
13040 		}
13041 		if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
13042 		    prog_extension &&
13043 		    (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
13044 		     tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
13045 			/* Program extensions can extend all program types
13046 			 * except fentry/fexit. The reason is the following.
13047 			 * The fentry/fexit programs are used for performance
13048 			 * analysis, stats and can be attached to any program
13049 			 * type except themselves. When extension program is
13050 			 * replacing XDP function it is necessary to allow
13051 			 * performance analysis of all functions. Both original
13052 			 * XDP program and its program extension. Hence
13053 			 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
13054 			 * allowed. If extending of fentry/fexit was allowed it
13055 			 * would be possible to create long call chain
13056 			 * fentry->extension->fentry->extension beyond
13057 			 * reasonable stack size. Hence extending fentry is not
13058 			 * allowed.
13059 			 */
13060 			bpf_log(log, "Cannot extend fentry/fexit\n");
13061 			return -EINVAL;
13062 		}
13063 	} else {
13064 		if (prog_extension) {
13065 			bpf_log(log, "Cannot replace kernel functions\n");
13066 			return -EINVAL;
13067 		}
13068 	}
13069 
13070 	switch (prog->expected_attach_type) {
13071 	case BPF_TRACE_RAW_TP:
13072 		if (tgt_prog) {
13073 			bpf_log(log,
13074 				"Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
13075 			return -EINVAL;
13076 		}
13077 		if (!btf_type_is_typedef(t)) {
13078 			bpf_log(log, "attach_btf_id %u is not a typedef\n",
13079 				btf_id);
13080 			return -EINVAL;
13081 		}
13082 		if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
13083 			bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
13084 				btf_id, tname);
13085 			return -EINVAL;
13086 		}
13087 		tname += sizeof(prefix) - 1;
13088 		t = btf_type_by_id(btf, t->type);
13089 		if (!btf_type_is_ptr(t))
13090 			/* should never happen in valid vmlinux build */
13091 			return -EINVAL;
13092 		t = btf_type_by_id(btf, t->type);
13093 		if (!btf_type_is_func_proto(t))
13094 			/* should never happen in valid vmlinux build */
13095 			return -EINVAL;
13096 
13097 		break;
13098 	case BPF_TRACE_ITER:
13099 		if (!btf_type_is_func(t)) {
13100 			bpf_log(log, "attach_btf_id %u is not a function\n",
13101 				btf_id);
13102 			return -EINVAL;
13103 		}
13104 		t = btf_type_by_id(btf, t->type);
13105 		if (!btf_type_is_func_proto(t))
13106 			return -EINVAL;
13107 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
13108 		if (ret)
13109 			return ret;
13110 		break;
13111 	default:
13112 		if (!prog_extension)
13113 			return -EINVAL;
13114 		fallthrough;
13115 	case BPF_MODIFY_RETURN:
13116 	case BPF_LSM_MAC:
13117 	case BPF_TRACE_FENTRY:
13118 	case BPF_TRACE_FEXIT:
13119 		if (!btf_type_is_func(t)) {
13120 			bpf_log(log, "attach_btf_id %u is not a function\n",
13121 				btf_id);
13122 			return -EINVAL;
13123 		}
13124 		if (prog_extension &&
13125 		    btf_check_type_match(log, prog, btf, t))
13126 			return -EINVAL;
13127 		t = btf_type_by_id(btf, t->type);
13128 		if (!btf_type_is_func_proto(t))
13129 			return -EINVAL;
13130 
13131 		if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
13132 		    (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
13133 		     prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
13134 			return -EINVAL;
13135 
13136 		if (tgt_prog && conservative)
13137 			t = NULL;
13138 
13139 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
13140 		if (ret < 0)
13141 			return ret;
13142 
13143 		if (tgt_prog) {
13144 			if (subprog == 0)
13145 				addr = (long) tgt_prog->bpf_func;
13146 			else
13147 				addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
13148 		} else {
13149 			addr = kallsyms_lookup_name(tname);
13150 			if (!addr) {
13151 				bpf_log(log,
13152 					"The address of function %s cannot be found\n",
13153 					tname);
13154 				return -ENOENT;
13155 			}
13156 		}
13157 
13158 		if (prog->aux->sleepable) {
13159 			ret = -EINVAL;
13160 			switch (prog->type) {
13161 			case BPF_PROG_TYPE_TRACING:
13162 				/* fentry/fexit/fmod_ret progs can be sleepable only if they are
13163 				 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
13164 				 */
13165 				if (!check_non_sleepable_error_inject(btf_id) &&
13166 				    within_error_injection_list(addr))
13167 					ret = 0;
13168 				break;
13169 			case BPF_PROG_TYPE_LSM:
13170 				/* LSM progs check that they are attached to bpf_lsm_*() funcs.
13171 				 * Only some of them are sleepable.
13172 				 */
13173 				if (bpf_lsm_is_sleepable_hook(btf_id))
13174 					ret = 0;
13175 				break;
13176 			default:
13177 				break;
13178 			}
13179 			if (ret) {
13180 				bpf_log(log, "%s is not sleepable\n", tname);
13181 				return ret;
13182 			}
13183 		} else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
13184 			if (tgt_prog) {
13185 				bpf_log(log, "can't modify return codes of BPF programs\n");
13186 				return -EINVAL;
13187 			}
13188 			ret = check_attach_modify_return(addr, tname);
13189 			if (ret) {
13190 				bpf_log(log, "%s() is not modifiable\n", tname);
13191 				return ret;
13192 			}
13193 		}
13194 
13195 		break;
13196 	}
13197 	tgt_info->tgt_addr = addr;
13198 	tgt_info->tgt_name = tname;
13199 	tgt_info->tgt_type = t;
13200 	return 0;
13201 }
13202 
13203 static int check_attach_btf_id(struct bpf_verifier_env *env)
13204 {
13205 	struct bpf_prog *prog = env->prog;
13206 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
13207 	struct bpf_attach_target_info tgt_info = {};
13208 	u32 btf_id = prog->aux->attach_btf_id;
13209 	struct bpf_trampoline *tr;
13210 	int ret;
13211 	u64 key;
13212 
13213 	if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING &&
13214 	    prog->type != BPF_PROG_TYPE_LSM) {
13215 		verbose(env, "Only fentry/fexit/fmod_ret and lsm programs can be sleepable\n");
13216 		return -EINVAL;
13217 	}
13218 
13219 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
13220 		return check_struct_ops_btf_id(env);
13221 
13222 	if (prog->type != BPF_PROG_TYPE_TRACING &&
13223 	    prog->type != BPF_PROG_TYPE_LSM &&
13224 	    prog->type != BPF_PROG_TYPE_EXT)
13225 		return 0;
13226 
13227 	ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
13228 	if (ret)
13229 		return ret;
13230 
13231 	if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
13232 		/* to make freplace equivalent to their targets, they need to
13233 		 * inherit env->ops and expected_attach_type for the rest of the
13234 		 * verification
13235 		 */
13236 		env->ops = bpf_verifier_ops[tgt_prog->type];
13237 		prog->expected_attach_type = tgt_prog->expected_attach_type;
13238 	}
13239 
13240 	/* store info about the attachment target that will be used later */
13241 	prog->aux->attach_func_proto = tgt_info.tgt_type;
13242 	prog->aux->attach_func_name = tgt_info.tgt_name;
13243 
13244 	if (tgt_prog) {
13245 		prog->aux->saved_dst_prog_type = tgt_prog->type;
13246 		prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
13247 	}
13248 
13249 	if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
13250 		prog->aux->attach_btf_trace = true;
13251 		return 0;
13252 	} else if (prog->expected_attach_type == BPF_TRACE_ITER) {
13253 		if (!bpf_iter_prog_supported(prog))
13254 			return -EINVAL;
13255 		return 0;
13256 	}
13257 
13258 	if (prog->type == BPF_PROG_TYPE_LSM) {
13259 		ret = bpf_lsm_verify_prog(&env->log, prog);
13260 		if (ret < 0)
13261 			return ret;
13262 	}
13263 
13264 	key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
13265 	tr = bpf_trampoline_get(key, &tgt_info);
13266 	if (!tr)
13267 		return -ENOMEM;
13268 
13269 	prog->aux->dst_trampoline = tr;
13270 	return 0;
13271 }
13272 
13273 struct btf *bpf_get_btf_vmlinux(void)
13274 {
13275 	if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
13276 		mutex_lock(&bpf_verifier_lock);
13277 		if (!btf_vmlinux)
13278 			btf_vmlinux = btf_parse_vmlinux();
13279 		mutex_unlock(&bpf_verifier_lock);
13280 	}
13281 	return btf_vmlinux;
13282 }
13283 
13284 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr,
13285 	      union bpf_attr __user *uattr)
13286 {
13287 	u64 start_time = ktime_get_ns();
13288 	struct bpf_verifier_env *env;
13289 	struct bpf_verifier_log *log;
13290 	int i, len, ret = -EINVAL;
13291 	bool is_priv;
13292 
13293 	/* no program is valid */
13294 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
13295 		return -EINVAL;
13296 
13297 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
13298 	 * allocate/free it every time bpf_check() is called
13299 	 */
13300 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
13301 	if (!env)
13302 		return -ENOMEM;
13303 	log = &env->log;
13304 
13305 	len = (*prog)->len;
13306 	env->insn_aux_data =
13307 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
13308 	ret = -ENOMEM;
13309 	if (!env->insn_aux_data)
13310 		goto err_free_env;
13311 	for (i = 0; i < len; i++)
13312 		env->insn_aux_data[i].orig_idx = i;
13313 	env->prog = *prog;
13314 	env->ops = bpf_verifier_ops[env->prog->type];
13315 	is_priv = bpf_capable();
13316 
13317 	bpf_get_btf_vmlinux();
13318 
13319 	/* grab the mutex to protect few globals used by verifier */
13320 	if (!is_priv)
13321 		mutex_lock(&bpf_verifier_lock);
13322 
13323 	if (attr->log_level || attr->log_buf || attr->log_size) {
13324 		/* user requested verbose verifier output
13325 		 * and supplied buffer to store the verification trace
13326 		 */
13327 		log->level = attr->log_level;
13328 		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
13329 		log->len_total = attr->log_size;
13330 
13331 		ret = -EINVAL;
13332 		/* log attributes have to be sane */
13333 		if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 ||
13334 		    !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK)
13335 			goto err_unlock;
13336 	}
13337 
13338 	if (IS_ERR(btf_vmlinux)) {
13339 		/* Either gcc or pahole or kernel are broken. */
13340 		verbose(env, "in-kernel BTF is malformed\n");
13341 		ret = PTR_ERR(btf_vmlinux);
13342 		goto skip_full_check;
13343 	}
13344 
13345 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
13346 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
13347 		env->strict_alignment = true;
13348 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
13349 		env->strict_alignment = false;
13350 
13351 	env->allow_ptr_leaks = bpf_allow_ptr_leaks();
13352 	env->allow_uninit_stack = bpf_allow_uninit_stack();
13353 	env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access();
13354 	env->bypass_spec_v1 = bpf_bypass_spec_v1();
13355 	env->bypass_spec_v4 = bpf_bypass_spec_v4();
13356 	env->bpf_capable = bpf_capable();
13357 
13358 	if (is_priv)
13359 		env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
13360 
13361 	if (bpf_prog_is_dev_bound(env->prog->aux)) {
13362 		ret = bpf_prog_offload_verifier_prep(env->prog);
13363 		if (ret)
13364 			goto skip_full_check;
13365 	}
13366 
13367 	env->explored_states = kvcalloc(state_htab_size(env),
13368 				       sizeof(struct bpf_verifier_state_list *),
13369 				       GFP_USER);
13370 	ret = -ENOMEM;
13371 	if (!env->explored_states)
13372 		goto skip_full_check;
13373 
13374 	ret = add_subprog_and_kfunc(env);
13375 	if (ret < 0)
13376 		goto skip_full_check;
13377 
13378 	ret = check_subprogs(env);
13379 	if (ret < 0)
13380 		goto skip_full_check;
13381 
13382 	ret = check_btf_info(env, attr, uattr);
13383 	if (ret < 0)
13384 		goto skip_full_check;
13385 
13386 	ret = check_attach_btf_id(env);
13387 	if (ret)
13388 		goto skip_full_check;
13389 
13390 	ret = resolve_pseudo_ldimm64(env);
13391 	if (ret < 0)
13392 		goto skip_full_check;
13393 
13394 	ret = check_cfg(env);
13395 	if (ret < 0)
13396 		goto skip_full_check;
13397 
13398 	ret = do_check_subprogs(env);
13399 	ret = ret ?: do_check_main(env);
13400 
13401 	if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
13402 		ret = bpf_prog_offload_finalize(env);
13403 
13404 skip_full_check:
13405 	kvfree(env->explored_states);
13406 
13407 	if (ret == 0)
13408 		ret = check_max_stack_depth(env);
13409 
13410 	/* instruction rewrites happen after this point */
13411 	if (is_priv) {
13412 		if (ret == 0)
13413 			opt_hard_wire_dead_code_branches(env);
13414 		if (ret == 0)
13415 			ret = opt_remove_dead_code(env);
13416 		if (ret == 0)
13417 			ret = opt_remove_nops(env);
13418 	} else {
13419 		if (ret == 0)
13420 			sanitize_dead_code(env);
13421 	}
13422 
13423 	if (ret == 0)
13424 		/* program is valid, convert *(u32*)(ctx + off) accesses */
13425 		ret = convert_ctx_accesses(env);
13426 
13427 	if (ret == 0)
13428 		ret = do_misc_fixups(env);
13429 
13430 	/* do 32-bit optimization after insn patching has done so those patched
13431 	 * insns could be handled correctly.
13432 	 */
13433 	if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
13434 		ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
13435 		env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
13436 								     : false;
13437 	}
13438 
13439 	if (ret == 0)
13440 		ret = fixup_call_args(env);
13441 
13442 	env->verification_time = ktime_get_ns() - start_time;
13443 	print_verification_stats(env);
13444 
13445 	if (log->level && bpf_verifier_log_full(log))
13446 		ret = -ENOSPC;
13447 	if (log->level && !log->ubuf) {
13448 		ret = -EFAULT;
13449 		goto err_release_maps;
13450 	}
13451 
13452 	if (ret)
13453 		goto err_release_maps;
13454 
13455 	if (env->used_map_cnt) {
13456 		/* if program passed verifier, update used_maps in bpf_prog_info */
13457 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
13458 							  sizeof(env->used_maps[0]),
13459 							  GFP_KERNEL);
13460 
13461 		if (!env->prog->aux->used_maps) {
13462 			ret = -ENOMEM;
13463 			goto err_release_maps;
13464 		}
13465 
13466 		memcpy(env->prog->aux->used_maps, env->used_maps,
13467 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
13468 		env->prog->aux->used_map_cnt = env->used_map_cnt;
13469 	}
13470 	if (env->used_btf_cnt) {
13471 		/* if program passed verifier, update used_btfs in bpf_prog_aux */
13472 		env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
13473 							  sizeof(env->used_btfs[0]),
13474 							  GFP_KERNEL);
13475 		if (!env->prog->aux->used_btfs) {
13476 			ret = -ENOMEM;
13477 			goto err_release_maps;
13478 		}
13479 
13480 		memcpy(env->prog->aux->used_btfs, env->used_btfs,
13481 		       sizeof(env->used_btfs[0]) * env->used_btf_cnt);
13482 		env->prog->aux->used_btf_cnt = env->used_btf_cnt;
13483 	}
13484 	if (env->used_map_cnt || env->used_btf_cnt) {
13485 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
13486 		 * bpf_ld_imm64 instructions
13487 		 */
13488 		convert_pseudo_ld_imm64(env);
13489 	}
13490 
13491 	adjust_btf_func(env);
13492 
13493 err_release_maps:
13494 	if (!env->prog->aux->used_maps)
13495 		/* if we didn't copy map pointers into bpf_prog_info, release
13496 		 * them now. Otherwise free_used_maps() will release them.
13497 		 */
13498 		release_maps(env);
13499 	if (!env->prog->aux->used_btfs)
13500 		release_btfs(env);
13501 
13502 	/* extension progs temporarily inherit the attach_type of their targets
13503 	   for verification purposes, so set it back to zero before returning
13504 	 */
13505 	if (env->prog->type == BPF_PROG_TYPE_EXT)
13506 		env->prog->expected_attach_type = 0;
13507 
13508 	*prog = env->prog;
13509 err_unlock:
13510 	if (!is_priv)
13511 		mutex_unlock(&bpf_verifier_lock);
13512 	vfree(env->insn_aux_data);
13513 err_free_env:
13514 	kfree(env);
13515 	return ret;
13516 }
13517