1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/kernel.h> 8 #include <linux/types.h> 9 #include <linux/slab.h> 10 #include <linux/bpf.h> 11 #include <linux/btf.h> 12 #include <linux/bpf_verifier.h> 13 #include <linux/filter.h> 14 #include <net/netlink.h> 15 #include <linux/file.h> 16 #include <linux/vmalloc.h> 17 #include <linux/stringify.h> 18 #include <linux/bsearch.h> 19 #include <linux/sort.h> 20 #include <linux/perf_event.h> 21 #include <linux/ctype.h> 22 #include <linux/error-injection.h> 23 #include <linux/bpf_lsm.h> 24 25 #include "disasm.h" 26 27 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 28 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 29 [_id] = & _name ## _verifier_ops, 30 #define BPF_MAP_TYPE(_id, _ops) 31 #define BPF_LINK_TYPE(_id, _name) 32 #include <linux/bpf_types.h> 33 #undef BPF_PROG_TYPE 34 #undef BPF_MAP_TYPE 35 #undef BPF_LINK_TYPE 36 }; 37 38 /* bpf_check() is a static code analyzer that walks eBPF program 39 * instruction by instruction and updates register/stack state. 40 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 41 * 42 * The first pass is depth-first-search to check that the program is a DAG. 43 * It rejects the following programs: 44 * - larger than BPF_MAXINSNS insns 45 * - if loop is present (detected via back-edge) 46 * - unreachable insns exist (shouldn't be a forest. program = one function) 47 * - out of bounds or malformed jumps 48 * The second pass is all possible path descent from the 1st insn. 49 * Since it's analyzing all pathes through the program, the length of the 50 * analysis is limited to 64k insn, which may be hit even if total number of 51 * insn is less then 4K, but there are too many branches that change stack/regs. 52 * Number of 'branches to be analyzed' is limited to 1k 53 * 54 * On entry to each instruction, each register has a type, and the instruction 55 * changes the types of the registers depending on instruction semantics. 56 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 57 * copied to R1. 58 * 59 * All registers are 64-bit. 60 * R0 - return register 61 * R1-R5 argument passing registers 62 * R6-R9 callee saved registers 63 * R10 - frame pointer read-only 64 * 65 * At the start of BPF program the register R1 contains a pointer to bpf_context 66 * and has type PTR_TO_CTX. 67 * 68 * Verifier tracks arithmetic operations on pointers in case: 69 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 70 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 71 * 1st insn copies R10 (which has FRAME_PTR) type into R1 72 * and 2nd arithmetic instruction is pattern matched to recognize 73 * that it wants to construct a pointer to some element within stack. 74 * So after 2nd insn, the register R1 has type PTR_TO_STACK 75 * (and -20 constant is saved for further stack bounds checking). 76 * Meaning that this reg is a pointer to stack plus known immediate constant. 77 * 78 * Most of the time the registers have SCALAR_VALUE type, which 79 * means the register has some value, but it's not a valid pointer. 80 * (like pointer plus pointer becomes SCALAR_VALUE type) 81 * 82 * When verifier sees load or store instructions the type of base register 83 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 84 * four pointer types recognized by check_mem_access() function. 85 * 86 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 87 * and the range of [ptr, ptr + map's value_size) is accessible. 88 * 89 * registers used to pass values to function calls are checked against 90 * function argument constraints. 91 * 92 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 93 * It means that the register type passed to this function must be 94 * PTR_TO_STACK and it will be used inside the function as 95 * 'pointer to map element key' 96 * 97 * For example the argument constraints for bpf_map_lookup_elem(): 98 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 99 * .arg1_type = ARG_CONST_MAP_PTR, 100 * .arg2_type = ARG_PTR_TO_MAP_KEY, 101 * 102 * ret_type says that this function returns 'pointer to map elem value or null' 103 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 104 * 2nd argument should be a pointer to stack, which will be used inside 105 * the helper function as a pointer to map element key. 106 * 107 * On the kernel side the helper function looks like: 108 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 109 * { 110 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 111 * void *key = (void *) (unsigned long) r2; 112 * void *value; 113 * 114 * here kernel can access 'key' and 'map' pointers safely, knowing that 115 * [key, key + map->key_size) bytes are valid and were initialized on 116 * the stack of eBPF program. 117 * } 118 * 119 * Corresponding eBPF program may look like: 120 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 121 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 122 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 123 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 124 * here verifier looks at prototype of map_lookup_elem() and sees: 125 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 126 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 127 * 128 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 129 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 130 * and were initialized prior to this call. 131 * If it's ok, then verifier allows this BPF_CALL insn and looks at 132 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 133 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 134 * returns ether pointer to map value or NULL. 135 * 136 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 137 * insn, the register holding that pointer in the true branch changes state to 138 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 139 * branch. See check_cond_jmp_op(). 140 * 141 * After the call R0 is set to return type of the function and registers R1-R5 142 * are set to NOT_INIT to indicate that they are no longer readable. 143 * 144 * The following reference types represent a potential reference to a kernel 145 * resource which, after first being allocated, must be checked and freed by 146 * the BPF program: 147 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 148 * 149 * When the verifier sees a helper call return a reference type, it allocates a 150 * pointer id for the reference and stores it in the current function state. 151 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 152 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 153 * passes through a NULL-check conditional. For the branch wherein the state is 154 * changed to CONST_IMM, the verifier releases the reference. 155 * 156 * For each helper function that allocates a reference, such as 157 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 158 * bpf_sk_release(). When a reference type passes into the release function, 159 * the verifier also releases the reference. If any unchecked or unreleased 160 * reference remains at the end of the program, the verifier rejects it. 161 */ 162 163 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 164 struct bpf_verifier_stack_elem { 165 /* verifer state is 'st' 166 * before processing instruction 'insn_idx' 167 * and after processing instruction 'prev_insn_idx' 168 */ 169 struct bpf_verifier_state st; 170 int insn_idx; 171 int prev_insn_idx; 172 struct bpf_verifier_stack_elem *next; 173 /* length of verifier log at the time this state was pushed on stack */ 174 u32 log_pos; 175 }; 176 177 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 178 #define BPF_COMPLEXITY_LIMIT_STATES 64 179 180 #define BPF_MAP_KEY_POISON (1ULL << 63) 181 #define BPF_MAP_KEY_SEEN (1ULL << 62) 182 183 #define BPF_MAP_PTR_UNPRIV 1UL 184 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 185 POISON_POINTER_DELTA)) 186 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 187 188 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 189 { 190 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON; 191 } 192 193 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 194 { 195 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV; 196 } 197 198 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 199 const struct bpf_map *map, bool unpriv) 200 { 201 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 202 unpriv |= bpf_map_ptr_unpriv(aux); 203 aux->map_ptr_state = (unsigned long)map | 204 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 205 } 206 207 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 208 { 209 return aux->map_key_state & BPF_MAP_KEY_POISON; 210 } 211 212 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 213 { 214 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 215 } 216 217 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 218 { 219 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 220 } 221 222 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 223 { 224 bool poisoned = bpf_map_key_poisoned(aux); 225 226 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 227 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 228 } 229 230 struct bpf_call_arg_meta { 231 struct bpf_map *map_ptr; 232 bool raw_mode; 233 bool pkt_access; 234 int regno; 235 int access_size; 236 u64 msize_max_value; 237 int ref_obj_id; 238 int func_id; 239 u32 btf_id; 240 }; 241 242 struct btf *btf_vmlinux; 243 244 static DEFINE_MUTEX(bpf_verifier_lock); 245 246 static const struct bpf_line_info * 247 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 248 { 249 const struct bpf_line_info *linfo; 250 const struct bpf_prog *prog; 251 u32 i, nr_linfo; 252 253 prog = env->prog; 254 nr_linfo = prog->aux->nr_linfo; 255 256 if (!nr_linfo || insn_off >= prog->len) 257 return NULL; 258 259 linfo = prog->aux->linfo; 260 for (i = 1; i < nr_linfo; i++) 261 if (insn_off < linfo[i].insn_off) 262 break; 263 264 return &linfo[i - 1]; 265 } 266 267 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, 268 va_list args) 269 { 270 unsigned int n; 271 272 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 273 274 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 275 "verifier log line truncated - local buffer too short\n"); 276 277 n = min(log->len_total - log->len_used - 1, n); 278 log->kbuf[n] = '\0'; 279 280 if (log->level == BPF_LOG_KERNEL) { 281 pr_err("BPF:%s\n", log->kbuf); 282 return; 283 } 284 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 285 log->len_used += n; 286 else 287 log->ubuf = NULL; 288 } 289 290 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos) 291 { 292 char zero = 0; 293 294 if (!bpf_verifier_log_needed(log)) 295 return; 296 297 log->len_used = new_pos; 298 if (put_user(zero, log->ubuf + new_pos)) 299 log->ubuf = NULL; 300 } 301 302 /* log_level controls verbosity level of eBPF verifier. 303 * bpf_verifier_log_write() is used to dump the verification trace to the log, 304 * so the user can figure out what's wrong with the program 305 */ 306 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 307 const char *fmt, ...) 308 { 309 va_list args; 310 311 if (!bpf_verifier_log_needed(&env->log)) 312 return; 313 314 va_start(args, fmt); 315 bpf_verifier_vlog(&env->log, fmt, args); 316 va_end(args); 317 } 318 EXPORT_SYMBOL_GPL(bpf_verifier_log_write); 319 320 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 321 { 322 struct bpf_verifier_env *env = private_data; 323 va_list args; 324 325 if (!bpf_verifier_log_needed(&env->log)) 326 return; 327 328 va_start(args, fmt); 329 bpf_verifier_vlog(&env->log, fmt, args); 330 va_end(args); 331 } 332 333 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log, 334 const char *fmt, ...) 335 { 336 va_list args; 337 338 if (!bpf_verifier_log_needed(log)) 339 return; 340 341 va_start(args, fmt); 342 bpf_verifier_vlog(log, fmt, args); 343 va_end(args); 344 } 345 346 static const char *ltrim(const char *s) 347 { 348 while (isspace(*s)) 349 s++; 350 351 return s; 352 } 353 354 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 355 u32 insn_off, 356 const char *prefix_fmt, ...) 357 { 358 const struct bpf_line_info *linfo; 359 360 if (!bpf_verifier_log_needed(&env->log)) 361 return; 362 363 linfo = find_linfo(env, insn_off); 364 if (!linfo || linfo == env->prev_linfo) 365 return; 366 367 if (prefix_fmt) { 368 va_list args; 369 370 va_start(args, prefix_fmt); 371 bpf_verifier_vlog(&env->log, prefix_fmt, args); 372 va_end(args); 373 } 374 375 verbose(env, "%s\n", 376 ltrim(btf_name_by_offset(env->prog->aux->btf, 377 linfo->line_off))); 378 379 env->prev_linfo = linfo; 380 } 381 382 static bool type_is_pkt_pointer(enum bpf_reg_type type) 383 { 384 return type == PTR_TO_PACKET || 385 type == PTR_TO_PACKET_META; 386 } 387 388 static bool type_is_sk_pointer(enum bpf_reg_type type) 389 { 390 return type == PTR_TO_SOCKET || 391 type == PTR_TO_SOCK_COMMON || 392 type == PTR_TO_TCP_SOCK || 393 type == PTR_TO_XDP_SOCK; 394 } 395 396 static bool reg_type_may_be_null(enum bpf_reg_type type) 397 { 398 return type == PTR_TO_MAP_VALUE_OR_NULL || 399 type == PTR_TO_SOCKET_OR_NULL || 400 type == PTR_TO_SOCK_COMMON_OR_NULL || 401 type == PTR_TO_TCP_SOCK_OR_NULL || 402 type == PTR_TO_BTF_ID_OR_NULL; 403 } 404 405 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 406 { 407 return reg->type == PTR_TO_MAP_VALUE && 408 map_value_has_spin_lock(reg->map_ptr); 409 } 410 411 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type) 412 { 413 return type == PTR_TO_SOCKET || 414 type == PTR_TO_SOCKET_OR_NULL || 415 type == PTR_TO_TCP_SOCK || 416 type == PTR_TO_TCP_SOCK_OR_NULL; 417 } 418 419 static bool arg_type_may_be_refcounted(enum bpf_arg_type type) 420 { 421 return type == ARG_PTR_TO_SOCK_COMMON; 422 } 423 424 /* Determine whether the function releases some resources allocated by another 425 * function call. The first reference type argument will be assumed to be 426 * released by release_reference(). 427 */ 428 static bool is_release_function(enum bpf_func_id func_id) 429 { 430 return func_id == BPF_FUNC_sk_release; 431 } 432 433 static bool may_be_acquire_function(enum bpf_func_id func_id) 434 { 435 return func_id == BPF_FUNC_sk_lookup_tcp || 436 func_id == BPF_FUNC_sk_lookup_udp || 437 func_id == BPF_FUNC_skc_lookup_tcp || 438 func_id == BPF_FUNC_map_lookup_elem; 439 } 440 441 static bool is_acquire_function(enum bpf_func_id func_id, 442 const struct bpf_map *map) 443 { 444 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; 445 446 if (func_id == BPF_FUNC_sk_lookup_tcp || 447 func_id == BPF_FUNC_sk_lookup_udp || 448 func_id == BPF_FUNC_skc_lookup_tcp) 449 return true; 450 451 if (func_id == BPF_FUNC_map_lookup_elem && 452 (map_type == BPF_MAP_TYPE_SOCKMAP || 453 map_type == BPF_MAP_TYPE_SOCKHASH)) 454 return true; 455 456 return false; 457 } 458 459 static bool is_ptr_cast_function(enum bpf_func_id func_id) 460 { 461 return func_id == BPF_FUNC_tcp_sock || 462 func_id == BPF_FUNC_sk_fullsock; 463 } 464 465 /* string representation of 'enum bpf_reg_type' */ 466 static const char * const reg_type_str[] = { 467 [NOT_INIT] = "?", 468 [SCALAR_VALUE] = "inv", 469 [PTR_TO_CTX] = "ctx", 470 [CONST_PTR_TO_MAP] = "map_ptr", 471 [PTR_TO_MAP_VALUE] = "map_value", 472 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null", 473 [PTR_TO_STACK] = "fp", 474 [PTR_TO_PACKET] = "pkt", 475 [PTR_TO_PACKET_META] = "pkt_meta", 476 [PTR_TO_PACKET_END] = "pkt_end", 477 [PTR_TO_FLOW_KEYS] = "flow_keys", 478 [PTR_TO_SOCKET] = "sock", 479 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null", 480 [PTR_TO_SOCK_COMMON] = "sock_common", 481 [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null", 482 [PTR_TO_TCP_SOCK] = "tcp_sock", 483 [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null", 484 [PTR_TO_TP_BUFFER] = "tp_buffer", 485 [PTR_TO_XDP_SOCK] = "xdp_sock", 486 [PTR_TO_BTF_ID] = "ptr_", 487 [PTR_TO_BTF_ID_OR_NULL] = "ptr_or_null_", 488 }; 489 490 static char slot_type_char[] = { 491 [STACK_INVALID] = '?', 492 [STACK_SPILL] = 'r', 493 [STACK_MISC] = 'm', 494 [STACK_ZERO] = '0', 495 }; 496 497 static void print_liveness(struct bpf_verifier_env *env, 498 enum bpf_reg_liveness live) 499 { 500 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 501 verbose(env, "_"); 502 if (live & REG_LIVE_READ) 503 verbose(env, "r"); 504 if (live & REG_LIVE_WRITTEN) 505 verbose(env, "w"); 506 if (live & REG_LIVE_DONE) 507 verbose(env, "D"); 508 } 509 510 static struct bpf_func_state *func(struct bpf_verifier_env *env, 511 const struct bpf_reg_state *reg) 512 { 513 struct bpf_verifier_state *cur = env->cur_state; 514 515 return cur->frame[reg->frameno]; 516 } 517 518 const char *kernel_type_name(u32 id) 519 { 520 return btf_name_by_offset(btf_vmlinux, 521 btf_type_by_id(btf_vmlinux, id)->name_off); 522 } 523 524 static void print_verifier_state(struct bpf_verifier_env *env, 525 const struct bpf_func_state *state) 526 { 527 const struct bpf_reg_state *reg; 528 enum bpf_reg_type t; 529 int i; 530 531 if (state->frameno) 532 verbose(env, " frame%d:", state->frameno); 533 for (i = 0; i < MAX_BPF_REG; i++) { 534 reg = &state->regs[i]; 535 t = reg->type; 536 if (t == NOT_INIT) 537 continue; 538 verbose(env, " R%d", i); 539 print_liveness(env, reg->live); 540 verbose(env, "=%s", reg_type_str[t]); 541 if (t == SCALAR_VALUE && reg->precise) 542 verbose(env, "P"); 543 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 544 tnum_is_const(reg->var_off)) { 545 /* reg->off should be 0 for SCALAR_VALUE */ 546 verbose(env, "%lld", reg->var_off.value + reg->off); 547 } else { 548 if (t == PTR_TO_BTF_ID || t == PTR_TO_BTF_ID_OR_NULL) 549 verbose(env, "%s", kernel_type_name(reg->btf_id)); 550 verbose(env, "(id=%d", reg->id); 551 if (reg_type_may_be_refcounted_or_null(t)) 552 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id); 553 if (t != SCALAR_VALUE) 554 verbose(env, ",off=%d", reg->off); 555 if (type_is_pkt_pointer(t)) 556 verbose(env, ",r=%d", reg->range); 557 else if (t == CONST_PTR_TO_MAP || 558 t == PTR_TO_MAP_VALUE || 559 t == PTR_TO_MAP_VALUE_OR_NULL) 560 verbose(env, ",ks=%d,vs=%d", 561 reg->map_ptr->key_size, 562 reg->map_ptr->value_size); 563 if (tnum_is_const(reg->var_off)) { 564 /* Typically an immediate SCALAR_VALUE, but 565 * could be a pointer whose offset is too big 566 * for reg->off 567 */ 568 verbose(env, ",imm=%llx", reg->var_off.value); 569 } else { 570 if (reg->smin_value != reg->umin_value && 571 reg->smin_value != S64_MIN) 572 verbose(env, ",smin_value=%lld", 573 (long long)reg->smin_value); 574 if (reg->smax_value != reg->umax_value && 575 reg->smax_value != S64_MAX) 576 verbose(env, ",smax_value=%lld", 577 (long long)reg->smax_value); 578 if (reg->umin_value != 0) 579 verbose(env, ",umin_value=%llu", 580 (unsigned long long)reg->umin_value); 581 if (reg->umax_value != U64_MAX) 582 verbose(env, ",umax_value=%llu", 583 (unsigned long long)reg->umax_value); 584 if (!tnum_is_unknown(reg->var_off)) { 585 char tn_buf[48]; 586 587 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 588 verbose(env, ",var_off=%s", tn_buf); 589 } 590 if (reg->s32_min_value != reg->smin_value && 591 reg->s32_min_value != S32_MIN) 592 verbose(env, ",s32_min_value=%d", 593 (int)(reg->s32_min_value)); 594 if (reg->s32_max_value != reg->smax_value && 595 reg->s32_max_value != S32_MAX) 596 verbose(env, ",s32_max_value=%d", 597 (int)(reg->s32_max_value)); 598 if (reg->u32_min_value != reg->umin_value && 599 reg->u32_min_value != U32_MIN) 600 verbose(env, ",u32_min_value=%d", 601 (int)(reg->u32_min_value)); 602 if (reg->u32_max_value != reg->umax_value && 603 reg->u32_max_value != U32_MAX) 604 verbose(env, ",u32_max_value=%d", 605 (int)(reg->u32_max_value)); 606 } 607 verbose(env, ")"); 608 } 609 } 610 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 611 char types_buf[BPF_REG_SIZE + 1]; 612 bool valid = false; 613 int j; 614 615 for (j = 0; j < BPF_REG_SIZE; j++) { 616 if (state->stack[i].slot_type[j] != STACK_INVALID) 617 valid = true; 618 types_buf[j] = slot_type_char[ 619 state->stack[i].slot_type[j]]; 620 } 621 types_buf[BPF_REG_SIZE] = 0; 622 if (!valid) 623 continue; 624 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 625 print_liveness(env, state->stack[i].spilled_ptr.live); 626 if (state->stack[i].slot_type[0] == STACK_SPILL) { 627 reg = &state->stack[i].spilled_ptr; 628 t = reg->type; 629 verbose(env, "=%s", reg_type_str[t]); 630 if (t == SCALAR_VALUE && reg->precise) 631 verbose(env, "P"); 632 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) 633 verbose(env, "%lld", reg->var_off.value + reg->off); 634 } else { 635 verbose(env, "=%s", types_buf); 636 } 637 } 638 if (state->acquired_refs && state->refs[0].id) { 639 verbose(env, " refs=%d", state->refs[0].id); 640 for (i = 1; i < state->acquired_refs; i++) 641 if (state->refs[i].id) 642 verbose(env, ",%d", state->refs[i].id); 643 } 644 verbose(env, "\n"); 645 } 646 647 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 648 static int copy_##NAME##_state(struct bpf_func_state *dst, \ 649 const struct bpf_func_state *src) \ 650 { \ 651 if (!src->FIELD) \ 652 return 0; \ 653 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \ 654 /* internal bug, make state invalid to reject the program */ \ 655 memset(dst, 0, sizeof(*dst)); \ 656 return -EFAULT; \ 657 } \ 658 memcpy(dst->FIELD, src->FIELD, \ 659 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \ 660 return 0; \ 661 } 662 /* copy_reference_state() */ 663 COPY_STATE_FN(reference, acquired_refs, refs, 1) 664 /* copy_stack_state() */ 665 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 666 #undef COPY_STATE_FN 667 668 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 669 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \ 670 bool copy_old) \ 671 { \ 672 u32 old_size = state->COUNT; \ 673 struct bpf_##NAME##_state *new_##FIELD; \ 674 int slot = size / SIZE; \ 675 \ 676 if (size <= old_size || !size) { \ 677 if (copy_old) \ 678 return 0; \ 679 state->COUNT = slot * SIZE; \ 680 if (!size && old_size) { \ 681 kfree(state->FIELD); \ 682 state->FIELD = NULL; \ 683 } \ 684 return 0; \ 685 } \ 686 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \ 687 GFP_KERNEL); \ 688 if (!new_##FIELD) \ 689 return -ENOMEM; \ 690 if (copy_old) { \ 691 if (state->FIELD) \ 692 memcpy(new_##FIELD, state->FIELD, \ 693 sizeof(*new_##FIELD) * (old_size / SIZE)); \ 694 memset(new_##FIELD + old_size / SIZE, 0, \ 695 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \ 696 } \ 697 state->COUNT = slot * SIZE; \ 698 kfree(state->FIELD); \ 699 state->FIELD = new_##FIELD; \ 700 return 0; \ 701 } 702 /* realloc_reference_state() */ 703 REALLOC_STATE_FN(reference, acquired_refs, refs, 1) 704 /* realloc_stack_state() */ 705 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 706 #undef REALLOC_STATE_FN 707 708 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to 709 * make it consume minimal amount of memory. check_stack_write() access from 710 * the program calls into realloc_func_state() to grow the stack size. 711 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state 712 * which realloc_stack_state() copies over. It points to previous 713 * bpf_verifier_state which is never reallocated. 714 */ 715 static int realloc_func_state(struct bpf_func_state *state, int stack_size, 716 int refs_size, bool copy_old) 717 { 718 int err = realloc_reference_state(state, refs_size, copy_old); 719 if (err) 720 return err; 721 return realloc_stack_state(state, stack_size, copy_old); 722 } 723 724 /* Acquire a pointer id from the env and update the state->refs to include 725 * this new pointer reference. 726 * On success, returns a valid pointer id to associate with the register 727 * On failure, returns a negative errno. 728 */ 729 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 730 { 731 struct bpf_func_state *state = cur_func(env); 732 int new_ofs = state->acquired_refs; 733 int id, err; 734 735 err = realloc_reference_state(state, state->acquired_refs + 1, true); 736 if (err) 737 return err; 738 id = ++env->id_gen; 739 state->refs[new_ofs].id = id; 740 state->refs[new_ofs].insn_idx = insn_idx; 741 742 return id; 743 } 744 745 /* release function corresponding to acquire_reference_state(). Idempotent. */ 746 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 747 { 748 int i, last_idx; 749 750 last_idx = state->acquired_refs - 1; 751 for (i = 0; i < state->acquired_refs; i++) { 752 if (state->refs[i].id == ptr_id) { 753 if (last_idx && i != last_idx) 754 memcpy(&state->refs[i], &state->refs[last_idx], 755 sizeof(*state->refs)); 756 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 757 state->acquired_refs--; 758 return 0; 759 } 760 } 761 return -EINVAL; 762 } 763 764 static int transfer_reference_state(struct bpf_func_state *dst, 765 struct bpf_func_state *src) 766 { 767 int err = realloc_reference_state(dst, src->acquired_refs, false); 768 if (err) 769 return err; 770 err = copy_reference_state(dst, src); 771 if (err) 772 return err; 773 return 0; 774 } 775 776 static void free_func_state(struct bpf_func_state *state) 777 { 778 if (!state) 779 return; 780 kfree(state->refs); 781 kfree(state->stack); 782 kfree(state); 783 } 784 785 static void clear_jmp_history(struct bpf_verifier_state *state) 786 { 787 kfree(state->jmp_history); 788 state->jmp_history = NULL; 789 state->jmp_history_cnt = 0; 790 } 791 792 static void free_verifier_state(struct bpf_verifier_state *state, 793 bool free_self) 794 { 795 int i; 796 797 for (i = 0; i <= state->curframe; i++) { 798 free_func_state(state->frame[i]); 799 state->frame[i] = NULL; 800 } 801 clear_jmp_history(state); 802 if (free_self) 803 kfree(state); 804 } 805 806 /* copy verifier state from src to dst growing dst stack space 807 * when necessary to accommodate larger src stack 808 */ 809 static int copy_func_state(struct bpf_func_state *dst, 810 const struct bpf_func_state *src) 811 { 812 int err; 813 814 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs, 815 false); 816 if (err) 817 return err; 818 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 819 err = copy_reference_state(dst, src); 820 if (err) 821 return err; 822 return copy_stack_state(dst, src); 823 } 824 825 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 826 const struct bpf_verifier_state *src) 827 { 828 struct bpf_func_state *dst; 829 u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt; 830 int i, err; 831 832 if (dst_state->jmp_history_cnt < src->jmp_history_cnt) { 833 kfree(dst_state->jmp_history); 834 dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER); 835 if (!dst_state->jmp_history) 836 return -ENOMEM; 837 } 838 memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz); 839 dst_state->jmp_history_cnt = src->jmp_history_cnt; 840 841 /* if dst has more stack frames then src frame, free them */ 842 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 843 free_func_state(dst_state->frame[i]); 844 dst_state->frame[i] = NULL; 845 } 846 dst_state->speculative = src->speculative; 847 dst_state->curframe = src->curframe; 848 dst_state->active_spin_lock = src->active_spin_lock; 849 dst_state->branches = src->branches; 850 dst_state->parent = src->parent; 851 dst_state->first_insn_idx = src->first_insn_idx; 852 dst_state->last_insn_idx = src->last_insn_idx; 853 for (i = 0; i <= src->curframe; i++) { 854 dst = dst_state->frame[i]; 855 if (!dst) { 856 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 857 if (!dst) 858 return -ENOMEM; 859 dst_state->frame[i] = dst; 860 } 861 err = copy_func_state(dst, src->frame[i]); 862 if (err) 863 return err; 864 } 865 return 0; 866 } 867 868 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 869 { 870 while (st) { 871 u32 br = --st->branches; 872 873 /* WARN_ON(br > 1) technically makes sense here, 874 * but see comment in push_stack(), hence: 875 */ 876 WARN_ONCE((int)br < 0, 877 "BUG update_branch_counts:branches_to_explore=%d\n", 878 br); 879 if (br) 880 break; 881 st = st->parent; 882 } 883 } 884 885 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 886 int *insn_idx, bool pop_log) 887 { 888 struct bpf_verifier_state *cur = env->cur_state; 889 struct bpf_verifier_stack_elem *elem, *head = env->head; 890 int err; 891 892 if (env->head == NULL) 893 return -ENOENT; 894 895 if (cur) { 896 err = copy_verifier_state(cur, &head->st); 897 if (err) 898 return err; 899 } 900 if (pop_log) 901 bpf_vlog_reset(&env->log, head->log_pos); 902 if (insn_idx) 903 *insn_idx = head->insn_idx; 904 if (prev_insn_idx) 905 *prev_insn_idx = head->prev_insn_idx; 906 elem = head->next; 907 free_verifier_state(&head->st, false); 908 kfree(head); 909 env->head = elem; 910 env->stack_size--; 911 return 0; 912 } 913 914 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 915 int insn_idx, int prev_insn_idx, 916 bool speculative) 917 { 918 struct bpf_verifier_state *cur = env->cur_state; 919 struct bpf_verifier_stack_elem *elem; 920 int err; 921 922 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 923 if (!elem) 924 goto err; 925 926 elem->insn_idx = insn_idx; 927 elem->prev_insn_idx = prev_insn_idx; 928 elem->next = env->head; 929 elem->log_pos = env->log.len_used; 930 env->head = elem; 931 env->stack_size++; 932 err = copy_verifier_state(&elem->st, cur); 933 if (err) 934 goto err; 935 elem->st.speculative |= speculative; 936 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 937 verbose(env, "The sequence of %d jumps is too complex.\n", 938 env->stack_size); 939 goto err; 940 } 941 if (elem->st.parent) { 942 ++elem->st.parent->branches; 943 /* WARN_ON(branches > 2) technically makes sense here, 944 * but 945 * 1. speculative states will bump 'branches' for non-branch 946 * instructions 947 * 2. is_state_visited() heuristics may decide not to create 948 * a new state for a sequence of branches and all such current 949 * and cloned states will be pointing to a single parent state 950 * which might have large 'branches' count. 951 */ 952 } 953 return &elem->st; 954 err: 955 free_verifier_state(env->cur_state, true); 956 env->cur_state = NULL; 957 /* pop all elements and return */ 958 while (!pop_stack(env, NULL, NULL, false)); 959 return NULL; 960 } 961 962 #define CALLER_SAVED_REGS 6 963 static const int caller_saved[CALLER_SAVED_REGS] = { 964 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 965 }; 966 967 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 968 struct bpf_reg_state *reg); 969 970 /* Mark the unknown part of a register (variable offset or scalar value) as 971 * known to have the value @imm. 972 */ 973 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 974 { 975 /* Clear id, off, and union(map_ptr, range) */ 976 memset(((u8 *)reg) + sizeof(reg->type), 0, 977 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 978 reg->var_off = tnum_const(imm); 979 reg->smin_value = (s64)imm; 980 reg->smax_value = (s64)imm; 981 reg->umin_value = imm; 982 reg->umax_value = imm; 983 984 reg->s32_min_value = (s32)imm; 985 reg->s32_max_value = (s32)imm; 986 reg->u32_min_value = (u32)imm; 987 reg->u32_max_value = (u32)imm; 988 } 989 990 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 991 { 992 reg->var_off = tnum_const_subreg(reg->var_off, imm); 993 reg->s32_min_value = (s32)imm; 994 reg->s32_max_value = (s32)imm; 995 reg->u32_min_value = (u32)imm; 996 reg->u32_max_value = (u32)imm; 997 } 998 999 /* Mark the 'variable offset' part of a register as zero. This should be 1000 * used only on registers holding a pointer type. 1001 */ 1002 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 1003 { 1004 __mark_reg_known(reg, 0); 1005 } 1006 1007 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 1008 { 1009 __mark_reg_known(reg, 0); 1010 reg->type = SCALAR_VALUE; 1011 } 1012 1013 static void mark_reg_known_zero(struct bpf_verifier_env *env, 1014 struct bpf_reg_state *regs, u32 regno) 1015 { 1016 if (WARN_ON(regno >= MAX_BPF_REG)) { 1017 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 1018 /* Something bad happened, let's kill all regs */ 1019 for (regno = 0; regno < MAX_BPF_REG; regno++) 1020 __mark_reg_not_init(env, regs + regno); 1021 return; 1022 } 1023 __mark_reg_known_zero(regs + regno); 1024 } 1025 1026 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 1027 { 1028 return type_is_pkt_pointer(reg->type); 1029 } 1030 1031 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 1032 { 1033 return reg_is_pkt_pointer(reg) || 1034 reg->type == PTR_TO_PACKET_END; 1035 } 1036 1037 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 1038 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 1039 enum bpf_reg_type which) 1040 { 1041 /* The register can already have a range from prior markings. 1042 * This is fine as long as it hasn't been advanced from its 1043 * origin. 1044 */ 1045 return reg->type == which && 1046 reg->id == 0 && 1047 reg->off == 0 && 1048 tnum_equals_const(reg->var_off, 0); 1049 } 1050 1051 /* Reset the min/max bounds of a register */ 1052 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 1053 { 1054 reg->smin_value = S64_MIN; 1055 reg->smax_value = S64_MAX; 1056 reg->umin_value = 0; 1057 reg->umax_value = U64_MAX; 1058 1059 reg->s32_min_value = S32_MIN; 1060 reg->s32_max_value = S32_MAX; 1061 reg->u32_min_value = 0; 1062 reg->u32_max_value = U32_MAX; 1063 } 1064 1065 static void __mark_reg64_unbounded(struct bpf_reg_state *reg) 1066 { 1067 reg->smin_value = S64_MIN; 1068 reg->smax_value = S64_MAX; 1069 reg->umin_value = 0; 1070 reg->umax_value = U64_MAX; 1071 } 1072 1073 static void __mark_reg32_unbounded(struct bpf_reg_state *reg) 1074 { 1075 reg->s32_min_value = S32_MIN; 1076 reg->s32_max_value = S32_MAX; 1077 reg->u32_min_value = 0; 1078 reg->u32_max_value = U32_MAX; 1079 } 1080 1081 static void __update_reg32_bounds(struct bpf_reg_state *reg) 1082 { 1083 struct tnum var32_off = tnum_subreg(reg->var_off); 1084 1085 /* min signed is max(sign bit) | min(other bits) */ 1086 reg->s32_min_value = max_t(s32, reg->s32_min_value, 1087 var32_off.value | (var32_off.mask & S32_MIN)); 1088 /* max signed is min(sign bit) | max(other bits) */ 1089 reg->s32_max_value = min_t(s32, reg->s32_max_value, 1090 var32_off.value | (var32_off.mask & S32_MAX)); 1091 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 1092 reg->u32_max_value = min(reg->u32_max_value, 1093 (u32)(var32_off.value | var32_off.mask)); 1094 } 1095 1096 static void __update_reg64_bounds(struct bpf_reg_state *reg) 1097 { 1098 /* min signed is max(sign bit) | min(other bits) */ 1099 reg->smin_value = max_t(s64, reg->smin_value, 1100 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 1101 /* max signed is min(sign bit) | max(other bits) */ 1102 reg->smax_value = min_t(s64, reg->smax_value, 1103 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 1104 reg->umin_value = max(reg->umin_value, reg->var_off.value); 1105 reg->umax_value = min(reg->umax_value, 1106 reg->var_off.value | reg->var_off.mask); 1107 } 1108 1109 static void __update_reg_bounds(struct bpf_reg_state *reg) 1110 { 1111 __update_reg32_bounds(reg); 1112 __update_reg64_bounds(reg); 1113 } 1114 1115 /* Uses signed min/max values to inform unsigned, and vice-versa */ 1116 static void __reg32_deduce_bounds(struct bpf_reg_state *reg) 1117 { 1118 /* Learn sign from signed bounds. 1119 * If we cannot cross the sign boundary, then signed and unsigned bounds 1120 * are the same, so combine. This works even in the negative case, e.g. 1121 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1122 */ 1123 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) { 1124 reg->s32_min_value = reg->u32_min_value = 1125 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1126 reg->s32_max_value = reg->u32_max_value = 1127 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1128 return; 1129 } 1130 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1131 * boundary, so we must be careful. 1132 */ 1133 if ((s32)reg->u32_max_value >= 0) { 1134 /* Positive. We can't learn anything from the smin, but smax 1135 * is positive, hence safe. 1136 */ 1137 reg->s32_min_value = reg->u32_min_value; 1138 reg->s32_max_value = reg->u32_max_value = 1139 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1140 } else if ((s32)reg->u32_min_value < 0) { 1141 /* Negative. We can't learn anything from the smax, but smin 1142 * is negative, hence safe. 1143 */ 1144 reg->s32_min_value = reg->u32_min_value = 1145 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1146 reg->s32_max_value = reg->u32_max_value; 1147 } 1148 } 1149 1150 static void __reg64_deduce_bounds(struct bpf_reg_state *reg) 1151 { 1152 /* Learn sign from signed bounds. 1153 * If we cannot cross the sign boundary, then signed and unsigned bounds 1154 * are the same, so combine. This works even in the negative case, e.g. 1155 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1156 */ 1157 if (reg->smin_value >= 0 || reg->smax_value < 0) { 1158 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1159 reg->umin_value); 1160 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1161 reg->umax_value); 1162 return; 1163 } 1164 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1165 * boundary, so we must be careful. 1166 */ 1167 if ((s64)reg->umax_value >= 0) { 1168 /* Positive. We can't learn anything from the smin, but smax 1169 * is positive, hence safe. 1170 */ 1171 reg->smin_value = reg->umin_value; 1172 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1173 reg->umax_value); 1174 } else if ((s64)reg->umin_value < 0) { 1175 /* Negative. We can't learn anything from the smax, but smin 1176 * is negative, hence safe. 1177 */ 1178 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1179 reg->umin_value); 1180 reg->smax_value = reg->umax_value; 1181 } 1182 } 1183 1184 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 1185 { 1186 __reg32_deduce_bounds(reg); 1187 __reg64_deduce_bounds(reg); 1188 } 1189 1190 /* Attempts to improve var_off based on unsigned min/max information */ 1191 static void __reg_bound_offset(struct bpf_reg_state *reg) 1192 { 1193 struct tnum var64_off = tnum_intersect(reg->var_off, 1194 tnum_range(reg->umin_value, 1195 reg->umax_value)); 1196 struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off), 1197 tnum_range(reg->u32_min_value, 1198 reg->u32_max_value)); 1199 1200 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 1201 } 1202 1203 static void __reg_assign_32_into_64(struct bpf_reg_state *reg) 1204 { 1205 reg->umin_value = reg->u32_min_value; 1206 reg->umax_value = reg->u32_max_value; 1207 /* Attempt to pull 32-bit signed bounds into 64-bit bounds 1208 * but must be positive otherwise set to worse case bounds 1209 * and refine later from tnum. 1210 */ 1211 if (reg->s32_min_value > 0) 1212 reg->smin_value = reg->s32_min_value; 1213 else 1214 reg->smin_value = 0; 1215 if (reg->s32_max_value > 0) 1216 reg->smax_value = reg->s32_max_value; 1217 else 1218 reg->smax_value = U32_MAX; 1219 } 1220 1221 static void __reg_combine_32_into_64(struct bpf_reg_state *reg) 1222 { 1223 /* special case when 64-bit register has upper 32-bit register 1224 * zeroed. Typically happens after zext or <<32, >>32 sequence 1225 * allowing us to use 32-bit bounds directly, 1226 */ 1227 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) { 1228 __reg_assign_32_into_64(reg); 1229 } else { 1230 /* Otherwise the best we can do is push lower 32bit known and 1231 * unknown bits into register (var_off set from jmp logic) 1232 * then learn as much as possible from the 64-bit tnum 1233 * known and unknown bits. The previous smin/smax bounds are 1234 * invalid here because of jmp32 compare so mark them unknown 1235 * so they do not impact tnum bounds calculation. 1236 */ 1237 __mark_reg64_unbounded(reg); 1238 __update_reg_bounds(reg); 1239 } 1240 1241 /* Intersecting with the old var_off might have improved our bounds 1242 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 1243 * then new var_off is (0; 0x7f...fc) which improves our umax. 1244 */ 1245 __reg_deduce_bounds(reg); 1246 __reg_bound_offset(reg); 1247 __update_reg_bounds(reg); 1248 } 1249 1250 static bool __reg64_bound_s32(s64 a) 1251 { 1252 if (a > S32_MIN && a < S32_MAX) 1253 return true; 1254 return false; 1255 } 1256 1257 static bool __reg64_bound_u32(u64 a) 1258 { 1259 if (a > U32_MIN && a < U32_MAX) 1260 return true; 1261 return false; 1262 } 1263 1264 static void __reg_combine_64_into_32(struct bpf_reg_state *reg) 1265 { 1266 __mark_reg32_unbounded(reg); 1267 1268 if (__reg64_bound_s32(reg->smin_value)) 1269 reg->s32_min_value = (s32)reg->smin_value; 1270 if (__reg64_bound_s32(reg->smax_value)) 1271 reg->s32_max_value = (s32)reg->smax_value; 1272 if (__reg64_bound_u32(reg->umin_value)) 1273 reg->u32_min_value = (u32)reg->umin_value; 1274 if (__reg64_bound_u32(reg->umax_value)) 1275 reg->u32_max_value = (u32)reg->umax_value; 1276 1277 /* Intersecting with the old var_off might have improved our bounds 1278 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 1279 * then new var_off is (0; 0x7f...fc) which improves our umax. 1280 */ 1281 __reg_deduce_bounds(reg); 1282 __reg_bound_offset(reg); 1283 __update_reg_bounds(reg); 1284 } 1285 1286 /* Mark a register as having a completely unknown (scalar) value. */ 1287 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 1288 struct bpf_reg_state *reg) 1289 { 1290 /* 1291 * Clear type, id, off, and union(map_ptr, range) and 1292 * padding between 'type' and union 1293 */ 1294 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 1295 reg->type = SCALAR_VALUE; 1296 reg->var_off = tnum_unknown; 1297 reg->frameno = 0; 1298 reg->precise = env->subprog_cnt > 1 || !env->bpf_capable; 1299 __mark_reg_unbounded(reg); 1300 } 1301 1302 static void mark_reg_unknown(struct bpf_verifier_env *env, 1303 struct bpf_reg_state *regs, u32 regno) 1304 { 1305 if (WARN_ON(regno >= MAX_BPF_REG)) { 1306 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 1307 /* Something bad happened, let's kill all regs except FP */ 1308 for (regno = 0; regno < BPF_REG_FP; regno++) 1309 __mark_reg_not_init(env, regs + regno); 1310 return; 1311 } 1312 __mark_reg_unknown(env, regs + regno); 1313 } 1314 1315 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 1316 struct bpf_reg_state *reg) 1317 { 1318 __mark_reg_unknown(env, reg); 1319 reg->type = NOT_INIT; 1320 } 1321 1322 static void mark_reg_not_init(struct bpf_verifier_env *env, 1323 struct bpf_reg_state *regs, u32 regno) 1324 { 1325 if (WARN_ON(regno >= MAX_BPF_REG)) { 1326 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 1327 /* Something bad happened, let's kill all regs except FP */ 1328 for (regno = 0; regno < BPF_REG_FP; regno++) 1329 __mark_reg_not_init(env, regs + regno); 1330 return; 1331 } 1332 __mark_reg_not_init(env, regs + regno); 1333 } 1334 1335 #define DEF_NOT_SUBREG (0) 1336 static void init_reg_state(struct bpf_verifier_env *env, 1337 struct bpf_func_state *state) 1338 { 1339 struct bpf_reg_state *regs = state->regs; 1340 int i; 1341 1342 for (i = 0; i < MAX_BPF_REG; i++) { 1343 mark_reg_not_init(env, regs, i); 1344 regs[i].live = REG_LIVE_NONE; 1345 regs[i].parent = NULL; 1346 regs[i].subreg_def = DEF_NOT_SUBREG; 1347 } 1348 1349 /* frame pointer */ 1350 regs[BPF_REG_FP].type = PTR_TO_STACK; 1351 mark_reg_known_zero(env, regs, BPF_REG_FP); 1352 regs[BPF_REG_FP].frameno = state->frameno; 1353 } 1354 1355 #define BPF_MAIN_FUNC (-1) 1356 static void init_func_state(struct bpf_verifier_env *env, 1357 struct bpf_func_state *state, 1358 int callsite, int frameno, int subprogno) 1359 { 1360 state->callsite = callsite; 1361 state->frameno = frameno; 1362 state->subprogno = subprogno; 1363 init_reg_state(env, state); 1364 } 1365 1366 enum reg_arg_type { 1367 SRC_OP, /* register is used as source operand */ 1368 DST_OP, /* register is used as destination operand */ 1369 DST_OP_NO_MARK /* same as above, check only, don't mark */ 1370 }; 1371 1372 static int cmp_subprogs(const void *a, const void *b) 1373 { 1374 return ((struct bpf_subprog_info *)a)->start - 1375 ((struct bpf_subprog_info *)b)->start; 1376 } 1377 1378 static int find_subprog(struct bpf_verifier_env *env, int off) 1379 { 1380 struct bpf_subprog_info *p; 1381 1382 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 1383 sizeof(env->subprog_info[0]), cmp_subprogs); 1384 if (!p) 1385 return -ENOENT; 1386 return p - env->subprog_info; 1387 1388 } 1389 1390 static int add_subprog(struct bpf_verifier_env *env, int off) 1391 { 1392 int insn_cnt = env->prog->len; 1393 int ret; 1394 1395 if (off >= insn_cnt || off < 0) { 1396 verbose(env, "call to invalid destination\n"); 1397 return -EINVAL; 1398 } 1399 ret = find_subprog(env, off); 1400 if (ret >= 0) 1401 return 0; 1402 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 1403 verbose(env, "too many subprograms\n"); 1404 return -E2BIG; 1405 } 1406 env->subprog_info[env->subprog_cnt++].start = off; 1407 sort(env->subprog_info, env->subprog_cnt, 1408 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 1409 return 0; 1410 } 1411 1412 static int check_subprogs(struct bpf_verifier_env *env) 1413 { 1414 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0; 1415 struct bpf_subprog_info *subprog = env->subprog_info; 1416 struct bpf_insn *insn = env->prog->insnsi; 1417 int insn_cnt = env->prog->len; 1418 1419 /* Add entry function. */ 1420 ret = add_subprog(env, 0); 1421 if (ret < 0) 1422 return ret; 1423 1424 /* determine subprog starts. The end is one before the next starts */ 1425 for (i = 0; i < insn_cnt; i++) { 1426 if (insn[i].code != (BPF_JMP | BPF_CALL)) 1427 continue; 1428 if (insn[i].src_reg != BPF_PSEUDO_CALL) 1429 continue; 1430 if (!env->bpf_capable) { 1431 verbose(env, 1432 "function calls to other bpf functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); 1433 return -EPERM; 1434 } 1435 ret = add_subprog(env, i + insn[i].imm + 1); 1436 if (ret < 0) 1437 return ret; 1438 } 1439 1440 /* Add a fake 'exit' subprog which could simplify subprog iteration 1441 * logic. 'subprog_cnt' should not be increased. 1442 */ 1443 subprog[env->subprog_cnt].start = insn_cnt; 1444 1445 if (env->log.level & BPF_LOG_LEVEL2) 1446 for (i = 0; i < env->subprog_cnt; i++) 1447 verbose(env, "func#%d @%d\n", i, subprog[i].start); 1448 1449 /* now check that all jumps are within the same subprog */ 1450 subprog_start = subprog[cur_subprog].start; 1451 subprog_end = subprog[cur_subprog + 1].start; 1452 for (i = 0; i < insn_cnt; i++) { 1453 u8 code = insn[i].code; 1454 1455 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 1456 goto next; 1457 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 1458 goto next; 1459 off = i + insn[i].off + 1; 1460 if (off < subprog_start || off >= subprog_end) { 1461 verbose(env, "jump out of range from insn %d to %d\n", i, off); 1462 return -EINVAL; 1463 } 1464 next: 1465 if (i == subprog_end - 1) { 1466 /* to avoid fall-through from one subprog into another 1467 * the last insn of the subprog should be either exit 1468 * or unconditional jump back 1469 */ 1470 if (code != (BPF_JMP | BPF_EXIT) && 1471 code != (BPF_JMP | BPF_JA)) { 1472 verbose(env, "last insn is not an exit or jmp\n"); 1473 return -EINVAL; 1474 } 1475 subprog_start = subprog_end; 1476 cur_subprog++; 1477 if (cur_subprog < env->subprog_cnt) 1478 subprog_end = subprog[cur_subprog + 1].start; 1479 } 1480 } 1481 return 0; 1482 } 1483 1484 /* Parentage chain of this register (or stack slot) should take care of all 1485 * issues like callee-saved registers, stack slot allocation time, etc. 1486 */ 1487 static int mark_reg_read(struct bpf_verifier_env *env, 1488 const struct bpf_reg_state *state, 1489 struct bpf_reg_state *parent, u8 flag) 1490 { 1491 bool writes = parent == state->parent; /* Observe write marks */ 1492 int cnt = 0; 1493 1494 while (parent) { 1495 /* if read wasn't screened by an earlier write ... */ 1496 if (writes && state->live & REG_LIVE_WRITTEN) 1497 break; 1498 if (parent->live & REG_LIVE_DONE) { 1499 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 1500 reg_type_str[parent->type], 1501 parent->var_off.value, parent->off); 1502 return -EFAULT; 1503 } 1504 /* The first condition is more likely to be true than the 1505 * second, checked it first. 1506 */ 1507 if ((parent->live & REG_LIVE_READ) == flag || 1508 parent->live & REG_LIVE_READ64) 1509 /* The parentage chain never changes and 1510 * this parent was already marked as LIVE_READ. 1511 * There is no need to keep walking the chain again and 1512 * keep re-marking all parents as LIVE_READ. 1513 * This case happens when the same register is read 1514 * multiple times without writes into it in-between. 1515 * Also, if parent has the stronger REG_LIVE_READ64 set, 1516 * then no need to set the weak REG_LIVE_READ32. 1517 */ 1518 break; 1519 /* ... then we depend on parent's value */ 1520 parent->live |= flag; 1521 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 1522 if (flag == REG_LIVE_READ64) 1523 parent->live &= ~REG_LIVE_READ32; 1524 state = parent; 1525 parent = state->parent; 1526 writes = true; 1527 cnt++; 1528 } 1529 1530 if (env->longest_mark_read_walk < cnt) 1531 env->longest_mark_read_walk = cnt; 1532 return 0; 1533 } 1534 1535 /* This function is supposed to be used by the following 32-bit optimization 1536 * code only. It returns TRUE if the source or destination register operates 1537 * on 64-bit, otherwise return FALSE. 1538 */ 1539 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 1540 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 1541 { 1542 u8 code, class, op; 1543 1544 code = insn->code; 1545 class = BPF_CLASS(code); 1546 op = BPF_OP(code); 1547 if (class == BPF_JMP) { 1548 /* BPF_EXIT for "main" will reach here. Return TRUE 1549 * conservatively. 1550 */ 1551 if (op == BPF_EXIT) 1552 return true; 1553 if (op == BPF_CALL) { 1554 /* BPF to BPF call will reach here because of marking 1555 * caller saved clobber with DST_OP_NO_MARK for which we 1556 * don't care the register def because they are anyway 1557 * marked as NOT_INIT already. 1558 */ 1559 if (insn->src_reg == BPF_PSEUDO_CALL) 1560 return false; 1561 /* Helper call will reach here because of arg type 1562 * check, conservatively return TRUE. 1563 */ 1564 if (t == SRC_OP) 1565 return true; 1566 1567 return false; 1568 } 1569 } 1570 1571 if (class == BPF_ALU64 || class == BPF_JMP || 1572 /* BPF_END always use BPF_ALU class. */ 1573 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 1574 return true; 1575 1576 if (class == BPF_ALU || class == BPF_JMP32) 1577 return false; 1578 1579 if (class == BPF_LDX) { 1580 if (t != SRC_OP) 1581 return BPF_SIZE(code) == BPF_DW; 1582 /* LDX source must be ptr. */ 1583 return true; 1584 } 1585 1586 if (class == BPF_STX) { 1587 if (reg->type != SCALAR_VALUE) 1588 return true; 1589 return BPF_SIZE(code) == BPF_DW; 1590 } 1591 1592 if (class == BPF_LD) { 1593 u8 mode = BPF_MODE(code); 1594 1595 /* LD_IMM64 */ 1596 if (mode == BPF_IMM) 1597 return true; 1598 1599 /* Both LD_IND and LD_ABS return 32-bit data. */ 1600 if (t != SRC_OP) 1601 return false; 1602 1603 /* Implicit ctx ptr. */ 1604 if (regno == BPF_REG_6) 1605 return true; 1606 1607 /* Explicit source could be any width. */ 1608 return true; 1609 } 1610 1611 if (class == BPF_ST) 1612 /* The only source register for BPF_ST is a ptr. */ 1613 return true; 1614 1615 /* Conservatively return true at default. */ 1616 return true; 1617 } 1618 1619 /* Return TRUE if INSN doesn't have explicit value define. */ 1620 static bool insn_no_def(struct bpf_insn *insn) 1621 { 1622 u8 class = BPF_CLASS(insn->code); 1623 1624 return (class == BPF_JMP || class == BPF_JMP32 || 1625 class == BPF_STX || class == BPF_ST); 1626 } 1627 1628 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 1629 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 1630 { 1631 if (insn_no_def(insn)) 1632 return false; 1633 1634 return !is_reg64(env, insn, insn->dst_reg, NULL, DST_OP); 1635 } 1636 1637 static void mark_insn_zext(struct bpf_verifier_env *env, 1638 struct bpf_reg_state *reg) 1639 { 1640 s32 def_idx = reg->subreg_def; 1641 1642 if (def_idx == DEF_NOT_SUBREG) 1643 return; 1644 1645 env->insn_aux_data[def_idx - 1].zext_dst = true; 1646 /* The dst will be zero extended, so won't be sub-register anymore. */ 1647 reg->subreg_def = DEF_NOT_SUBREG; 1648 } 1649 1650 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 1651 enum reg_arg_type t) 1652 { 1653 struct bpf_verifier_state *vstate = env->cur_state; 1654 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1655 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 1656 struct bpf_reg_state *reg, *regs = state->regs; 1657 bool rw64; 1658 1659 if (regno >= MAX_BPF_REG) { 1660 verbose(env, "R%d is invalid\n", regno); 1661 return -EINVAL; 1662 } 1663 1664 reg = ®s[regno]; 1665 rw64 = is_reg64(env, insn, regno, reg, t); 1666 if (t == SRC_OP) { 1667 /* check whether register used as source operand can be read */ 1668 if (reg->type == NOT_INIT) { 1669 verbose(env, "R%d !read_ok\n", regno); 1670 return -EACCES; 1671 } 1672 /* We don't need to worry about FP liveness because it's read-only */ 1673 if (regno == BPF_REG_FP) 1674 return 0; 1675 1676 if (rw64) 1677 mark_insn_zext(env, reg); 1678 1679 return mark_reg_read(env, reg, reg->parent, 1680 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 1681 } else { 1682 /* check whether register used as dest operand can be written to */ 1683 if (regno == BPF_REG_FP) { 1684 verbose(env, "frame pointer is read only\n"); 1685 return -EACCES; 1686 } 1687 reg->live |= REG_LIVE_WRITTEN; 1688 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 1689 if (t == DST_OP) 1690 mark_reg_unknown(env, regs, regno); 1691 } 1692 return 0; 1693 } 1694 1695 /* for any branch, call, exit record the history of jmps in the given state */ 1696 static int push_jmp_history(struct bpf_verifier_env *env, 1697 struct bpf_verifier_state *cur) 1698 { 1699 u32 cnt = cur->jmp_history_cnt; 1700 struct bpf_idx_pair *p; 1701 1702 cnt++; 1703 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER); 1704 if (!p) 1705 return -ENOMEM; 1706 p[cnt - 1].idx = env->insn_idx; 1707 p[cnt - 1].prev_idx = env->prev_insn_idx; 1708 cur->jmp_history = p; 1709 cur->jmp_history_cnt = cnt; 1710 return 0; 1711 } 1712 1713 /* Backtrack one insn at a time. If idx is not at the top of recorded 1714 * history then previous instruction came from straight line execution. 1715 */ 1716 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 1717 u32 *history) 1718 { 1719 u32 cnt = *history; 1720 1721 if (cnt && st->jmp_history[cnt - 1].idx == i) { 1722 i = st->jmp_history[cnt - 1].prev_idx; 1723 (*history)--; 1724 } else { 1725 i--; 1726 } 1727 return i; 1728 } 1729 1730 /* For given verifier state backtrack_insn() is called from the last insn to 1731 * the first insn. Its purpose is to compute a bitmask of registers and 1732 * stack slots that needs precision in the parent verifier state. 1733 */ 1734 static int backtrack_insn(struct bpf_verifier_env *env, int idx, 1735 u32 *reg_mask, u64 *stack_mask) 1736 { 1737 const struct bpf_insn_cbs cbs = { 1738 .cb_print = verbose, 1739 .private_data = env, 1740 }; 1741 struct bpf_insn *insn = env->prog->insnsi + idx; 1742 u8 class = BPF_CLASS(insn->code); 1743 u8 opcode = BPF_OP(insn->code); 1744 u8 mode = BPF_MODE(insn->code); 1745 u32 dreg = 1u << insn->dst_reg; 1746 u32 sreg = 1u << insn->src_reg; 1747 u32 spi; 1748 1749 if (insn->code == 0) 1750 return 0; 1751 if (env->log.level & BPF_LOG_LEVEL) { 1752 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask); 1753 verbose(env, "%d: ", idx); 1754 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 1755 } 1756 1757 if (class == BPF_ALU || class == BPF_ALU64) { 1758 if (!(*reg_mask & dreg)) 1759 return 0; 1760 if (opcode == BPF_MOV) { 1761 if (BPF_SRC(insn->code) == BPF_X) { 1762 /* dreg = sreg 1763 * dreg needs precision after this insn 1764 * sreg needs precision before this insn 1765 */ 1766 *reg_mask &= ~dreg; 1767 *reg_mask |= sreg; 1768 } else { 1769 /* dreg = K 1770 * dreg needs precision after this insn. 1771 * Corresponding register is already marked 1772 * as precise=true in this verifier state. 1773 * No further markings in parent are necessary 1774 */ 1775 *reg_mask &= ~dreg; 1776 } 1777 } else { 1778 if (BPF_SRC(insn->code) == BPF_X) { 1779 /* dreg += sreg 1780 * both dreg and sreg need precision 1781 * before this insn 1782 */ 1783 *reg_mask |= sreg; 1784 } /* else dreg += K 1785 * dreg still needs precision before this insn 1786 */ 1787 } 1788 } else if (class == BPF_LDX) { 1789 if (!(*reg_mask & dreg)) 1790 return 0; 1791 *reg_mask &= ~dreg; 1792 1793 /* scalars can only be spilled into stack w/o losing precision. 1794 * Load from any other memory can be zero extended. 1795 * The desire to keep that precision is already indicated 1796 * by 'precise' mark in corresponding register of this state. 1797 * No further tracking necessary. 1798 */ 1799 if (insn->src_reg != BPF_REG_FP) 1800 return 0; 1801 if (BPF_SIZE(insn->code) != BPF_DW) 1802 return 0; 1803 1804 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 1805 * that [fp - off] slot contains scalar that needs to be 1806 * tracked with precision 1807 */ 1808 spi = (-insn->off - 1) / BPF_REG_SIZE; 1809 if (spi >= 64) { 1810 verbose(env, "BUG spi %d\n", spi); 1811 WARN_ONCE(1, "verifier backtracking bug"); 1812 return -EFAULT; 1813 } 1814 *stack_mask |= 1ull << spi; 1815 } else if (class == BPF_STX || class == BPF_ST) { 1816 if (*reg_mask & dreg) 1817 /* stx & st shouldn't be using _scalar_ dst_reg 1818 * to access memory. It means backtracking 1819 * encountered a case of pointer subtraction. 1820 */ 1821 return -ENOTSUPP; 1822 /* scalars can only be spilled into stack */ 1823 if (insn->dst_reg != BPF_REG_FP) 1824 return 0; 1825 if (BPF_SIZE(insn->code) != BPF_DW) 1826 return 0; 1827 spi = (-insn->off - 1) / BPF_REG_SIZE; 1828 if (spi >= 64) { 1829 verbose(env, "BUG spi %d\n", spi); 1830 WARN_ONCE(1, "verifier backtracking bug"); 1831 return -EFAULT; 1832 } 1833 if (!(*stack_mask & (1ull << spi))) 1834 return 0; 1835 *stack_mask &= ~(1ull << spi); 1836 if (class == BPF_STX) 1837 *reg_mask |= sreg; 1838 } else if (class == BPF_JMP || class == BPF_JMP32) { 1839 if (opcode == BPF_CALL) { 1840 if (insn->src_reg == BPF_PSEUDO_CALL) 1841 return -ENOTSUPP; 1842 /* regular helper call sets R0 */ 1843 *reg_mask &= ~1; 1844 if (*reg_mask & 0x3f) { 1845 /* if backtracing was looking for registers R1-R5 1846 * they should have been found already. 1847 */ 1848 verbose(env, "BUG regs %x\n", *reg_mask); 1849 WARN_ONCE(1, "verifier backtracking bug"); 1850 return -EFAULT; 1851 } 1852 } else if (opcode == BPF_EXIT) { 1853 return -ENOTSUPP; 1854 } 1855 } else if (class == BPF_LD) { 1856 if (!(*reg_mask & dreg)) 1857 return 0; 1858 *reg_mask &= ~dreg; 1859 /* It's ld_imm64 or ld_abs or ld_ind. 1860 * For ld_imm64 no further tracking of precision 1861 * into parent is necessary 1862 */ 1863 if (mode == BPF_IND || mode == BPF_ABS) 1864 /* to be analyzed */ 1865 return -ENOTSUPP; 1866 } 1867 return 0; 1868 } 1869 1870 /* the scalar precision tracking algorithm: 1871 * . at the start all registers have precise=false. 1872 * . scalar ranges are tracked as normal through alu and jmp insns. 1873 * . once precise value of the scalar register is used in: 1874 * . ptr + scalar alu 1875 * . if (scalar cond K|scalar) 1876 * . helper_call(.., scalar, ...) where ARG_CONST is expected 1877 * backtrack through the verifier states and mark all registers and 1878 * stack slots with spilled constants that these scalar regisers 1879 * should be precise. 1880 * . during state pruning two registers (or spilled stack slots) 1881 * are equivalent if both are not precise. 1882 * 1883 * Note the verifier cannot simply walk register parentage chain, 1884 * since many different registers and stack slots could have been 1885 * used to compute single precise scalar. 1886 * 1887 * The approach of starting with precise=true for all registers and then 1888 * backtrack to mark a register as not precise when the verifier detects 1889 * that program doesn't care about specific value (e.g., when helper 1890 * takes register as ARG_ANYTHING parameter) is not safe. 1891 * 1892 * It's ok to walk single parentage chain of the verifier states. 1893 * It's possible that this backtracking will go all the way till 1st insn. 1894 * All other branches will be explored for needing precision later. 1895 * 1896 * The backtracking needs to deal with cases like: 1897 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 1898 * r9 -= r8 1899 * r5 = r9 1900 * if r5 > 0x79f goto pc+7 1901 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 1902 * r5 += 1 1903 * ... 1904 * call bpf_perf_event_output#25 1905 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 1906 * 1907 * and this case: 1908 * r6 = 1 1909 * call foo // uses callee's r6 inside to compute r0 1910 * r0 += r6 1911 * if r0 == 0 goto 1912 * 1913 * to track above reg_mask/stack_mask needs to be independent for each frame. 1914 * 1915 * Also if parent's curframe > frame where backtracking started, 1916 * the verifier need to mark registers in both frames, otherwise callees 1917 * may incorrectly prune callers. This is similar to 1918 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 1919 * 1920 * For now backtracking falls back into conservative marking. 1921 */ 1922 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 1923 struct bpf_verifier_state *st) 1924 { 1925 struct bpf_func_state *func; 1926 struct bpf_reg_state *reg; 1927 int i, j; 1928 1929 /* big hammer: mark all scalars precise in this path. 1930 * pop_stack may still get !precise scalars. 1931 */ 1932 for (; st; st = st->parent) 1933 for (i = 0; i <= st->curframe; i++) { 1934 func = st->frame[i]; 1935 for (j = 0; j < BPF_REG_FP; j++) { 1936 reg = &func->regs[j]; 1937 if (reg->type != SCALAR_VALUE) 1938 continue; 1939 reg->precise = true; 1940 } 1941 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 1942 if (func->stack[j].slot_type[0] != STACK_SPILL) 1943 continue; 1944 reg = &func->stack[j].spilled_ptr; 1945 if (reg->type != SCALAR_VALUE) 1946 continue; 1947 reg->precise = true; 1948 } 1949 } 1950 } 1951 1952 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno, 1953 int spi) 1954 { 1955 struct bpf_verifier_state *st = env->cur_state; 1956 int first_idx = st->first_insn_idx; 1957 int last_idx = env->insn_idx; 1958 struct bpf_func_state *func; 1959 struct bpf_reg_state *reg; 1960 u32 reg_mask = regno >= 0 ? 1u << regno : 0; 1961 u64 stack_mask = spi >= 0 ? 1ull << spi : 0; 1962 bool skip_first = true; 1963 bool new_marks = false; 1964 int i, err; 1965 1966 if (!env->bpf_capable) 1967 return 0; 1968 1969 func = st->frame[st->curframe]; 1970 if (regno >= 0) { 1971 reg = &func->regs[regno]; 1972 if (reg->type != SCALAR_VALUE) { 1973 WARN_ONCE(1, "backtracing misuse"); 1974 return -EFAULT; 1975 } 1976 if (!reg->precise) 1977 new_marks = true; 1978 else 1979 reg_mask = 0; 1980 reg->precise = true; 1981 } 1982 1983 while (spi >= 0) { 1984 if (func->stack[spi].slot_type[0] != STACK_SPILL) { 1985 stack_mask = 0; 1986 break; 1987 } 1988 reg = &func->stack[spi].spilled_ptr; 1989 if (reg->type != SCALAR_VALUE) { 1990 stack_mask = 0; 1991 break; 1992 } 1993 if (!reg->precise) 1994 new_marks = true; 1995 else 1996 stack_mask = 0; 1997 reg->precise = true; 1998 break; 1999 } 2000 2001 if (!new_marks) 2002 return 0; 2003 if (!reg_mask && !stack_mask) 2004 return 0; 2005 for (;;) { 2006 DECLARE_BITMAP(mask, 64); 2007 u32 history = st->jmp_history_cnt; 2008 2009 if (env->log.level & BPF_LOG_LEVEL) 2010 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx); 2011 for (i = last_idx;;) { 2012 if (skip_first) { 2013 err = 0; 2014 skip_first = false; 2015 } else { 2016 err = backtrack_insn(env, i, ®_mask, &stack_mask); 2017 } 2018 if (err == -ENOTSUPP) { 2019 mark_all_scalars_precise(env, st); 2020 return 0; 2021 } else if (err) { 2022 return err; 2023 } 2024 if (!reg_mask && !stack_mask) 2025 /* Found assignment(s) into tracked register in this state. 2026 * Since this state is already marked, just return. 2027 * Nothing to be tracked further in the parent state. 2028 */ 2029 return 0; 2030 if (i == first_idx) 2031 break; 2032 i = get_prev_insn_idx(st, i, &history); 2033 if (i >= env->prog->len) { 2034 /* This can happen if backtracking reached insn 0 2035 * and there are still reg_mask or stack_mask 2036 * to backtrack. 2037 * It means the backtracking missed the spot where 2038 * particular register was initialized with a constant. 2039 */ 2040 verbose(env, "BUG backtracking idx %d\n", i); 2041 WARN_ONCE(1, "verifier backtracking bug"); 2042 return -EFAULT; 2043 } 2044 } 2045 st = st->parent; 2046 if (!st) 2047 break; 2048 2049 new_marks = false; 2050 func = st->frame[st->curframe]; 2051 bitmap_from_u64(mask, reg_mask); 2052 for_each_set_bit(i, mask, 32) { 2053 reg = &func->regs[i]; 2054 if (reg->type != SCALAR_VALUE) { 2055 reg_mask &= ~(1u << i); 2056 continue; 2057 } 2058 if (!reg->precise) 2059 new_marks = true; 2060 reg->precise = true; 2061 } 2062 2063 bitmap_from_u64(mask, stack_mask); 2064 for_each_set_bit(i, mask, 64) { 2065 if (i >= func->allocated_stack / BPF_REG_SIZE) { 2066 /* the sequence of instructions: 2067 * 2: (bf) r3 = r10 2068 * 3: (7b) *(u64 *)(r3 -8) = r0 2069 * 4: (79) r4 = *(u64 *)(r10 -8) 2070 * doesn't contain jmps. It's backtracked 2071 * as a single block. 2072 * During backtracking insn 3 is not recognized as 2073 * stack access, so at the end of backtracking 2074 * stack slot fp-8 is still marked in stack_mask. 2075 * However the parent state may not have accessed 2076 * fp-8 and it's "unallocated" stack space. 2077 * In such case fallback to conservative. 2078 */ 2079 mark_all_scalars_precise(env, st); 2080 return 0; 2081 } 2082 2083 if (func->stack[i].slot_type[0] != STACK_SPILL) { 2084 stack_mask &= ~(1ull << i); 2085 continue; 2086 } 2087 reg = &func->stack[i].spilled_ptr; 2088 if (reg->type != SCALAR_VALUE) { 2089 stack_mask &= ~(1ull << i); 2090 continue; 2091 } 2092 if (!reg->precise) 2093 new_marks = true; 2094 reg->precise = true; 2095 } 2096 if (env->log.level & BPF_LOG_LEVEL) { 2097 print_verifier_state(env, func); 2098 verbose(env, "parent %s regs=%x stack=%llx marks\n", 2099 new_marks ? "didn't have" : "already had", 2100 reg_mask, stack_mask); 2101 } 2102 2103 if (!reg_mask && !stack_mask) 2104 break; 2105 if (!new_marks) 2106 break; 2107 2108 last_idx = st->last_insn_idx; 2109 first_idx = st->first_insn_idx; 2110 } 2111 return 0; 2112 } 2113 2114 static int mark_chain_precision(struct bpf_verifier_env *env, int regno) 2115 { 2116 return __mark_chain_precision(env, regno, -1); 2117 } 2118 2119 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi) 2120 { 2121 return __mark_chain_precision(env, -1, spi); 2122 } 2123 2124 static bool is_spillable_regtype(enum bpf_reg_type type) 2125 { 2126 switch (type) { 2127 case PTR_TO_MAP_VALUE: 2128 case PTR_TO_MAP_VALUE_OR_NULL: 2129 case PTR_TO_STACK: 2130 case PTR_TO_CTX: 2131 case PTR_TO_PACKET: 2132 case PTR_TO_PACKET_META: 2133 case PTR_TO_PACKET_END: 2134 case PTR_TO_FLOW_KEYS: 2135 case CONST_PTR_TO_MAP: 2136 case PTR_TO_SOCKET: 2137 case PTR_TO_SOCKET_OR_NULL: 2138 case PTR_TO_SOCK_COMMON: 2139 case PTR_TO_SOCK_COMMON_OR_NULL: 2140 case PTR_TO_TCP_SOCK: 2141 case PTR_TO_TCP_SOCK_OR_NULL: 2142 case PTR_TO_XDP_SOCK: 2143 case PTR_TO_BTF_ID: 2144 case PTR_TO_BTF_ID_OR_NULL: 2145 return true; 2146 default: 2147 return false; 2148 } 2149 } 2150 2151 /* Does this register contain a constant zero? */ 2152 static bool register_is_null(struct bpf_reg_state *reg) 2153 { 2154 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 2155 } 2156 2157 static bool register_is_const(struct bpf_reg_state *reg) 2158 { 2159 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off); 2160 } 2161 2162 static bool __is_pointer_value(bool allow_ptr_leaks, 2163 const struct bpf_reg_state *reg) 2164 { 2165 if (allow_ptr_leaks) 2166 return false; 2167 2168 return reg->type != SCALAR_VALUE; 2169 } 2170 2171 static void save_register_state(struct bpf_func_state *state, 2172 int spi, struct bpf_reg_state *reg) 2173 { 2174 int i; 2175 2176 state->stack[spi].spilled_ptr = *reg; 2177 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 2178 2179 for (i = 0; i < BPF_REG_SIZE; i++) 2180 state->stack[spi].slot_type[i] = STACK_SPILL; 2181 } 2182 2183 /* check_stack_read/write functions track spill/fill of registers, 2184 * stack boundary and alignment are checked in check_mem_access() 2185 */ 2186 static int check_stack_write(struct bpf_verifier_env *env, 2187 struct bpf_func_state *state, /* func where register points to */ 2188 int off, int size, int value_regno, int insn_idx) 2189 { 2190 struct bpf_func_state *cur; /* state of the current function */ 2191 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 2192 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg; 2193 struct bpf_reg_state *reg = NULL; 2194 2195 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE), 2196 state->acquired_refs, true); 2197 if (err) 2198 return err; 2199 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 2200 * so it's aligned access and [off, off + size) are within stack limits 2201 */ 2202 if (!env->allow_ptr_leaks && 2203 state->stack[spi].slot_type[0] == STACK_SPILL && 2204 size != BPF_REG_SIZE) { 2205 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 2206 return -EACCES; 2207 } 2208 2209 cur = env->cur_state->frame[env->cur_state->curframe]; 2210 if (value_regno >= 0) 2211 reg = &cur->regs[value_regno]; 2212 2213 if (reg && size == BPF_REG_SIZE && register_is_const(reg) && 2214 !register_is_null(reg) && env->bpf_capable) { 2215 if (dst_reg != BPF_REG_FP) { 2216 /* The backtracking logic can only recognize explicit 2217 * stack slot address like [fp - 8]. Other spill of 2218 * scalar via different register has to be conervative. 2219 * Backtrack from here and mark all registers as precise 2220 * that contributed into 'reg' being a constant. 2221 */ 2222 err = mark_chain_precision(env, value_regno); 2223 if (err) 2224 return err; 2225 } 2226 save_register_state(state, spi, reg); 2227 } else if (reg && is_spillable_regtype(reg->type)) { 2228 /* register containing pointer is being spilled into stack */ 2229 if (size != BPF_REG_SIZE) { 2230 verbose_linfo(env, insn_idx, "; "); 2231 verbose(env, "invalid size of register spill\n"); 2232 return -EACCES; 2233 } 2234 2235 if (state != cur && reg->type == PTR_TO_STACK) { 2236 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 2237 return -EINVAL; 2238 } 2239 2240 if (!env->bypass_spec_v4) { 2241 bool sanitize = false; 2242 2243 if (state->stack[spi].slot_type[0] == STACK_SPILL && 2244 register_is_const(&state->stack[spi].spilled_ptr)) 2245 sanitize = true; 2246 for (i = 0; i < BPF_REG_SIZE; i++) 2247 if (state->stack[spi].slot_type[i] == STACK_MISC) { 2248 sanitize = true; 2249 break; 2250 } 2251 if (sanitize) { 2252 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off; 2253 int soff = (-spi - 1) * BPF_REG_SIZE; 2254 2255 /* detected reuse of integer stack slot with a pointer 2256 * which means either llvm is reusing stack slot or 2257 * an attacker is trying to exploit CVE-2018-3639 2258 * (speculative store bypass) 2259 * Have to sanitize that slot with preemptive 2260 * store of zero. 2261 */ 2262 if (*poff && *poff != soff) { 2263 /* disallow programs where single insn stores 2264 * into two different stack slots, since verifier 2265 * cannot sanitize them 2266 */ 2267 verbose(env, 2268 "insn %d cannot access two stack slots fp%d and fp%d", 2269 insn_idx, *poff, soff); 2270 return -EINVAL; 2271 } 2272 *poff = soff; 2273 } 2274 } 2275 save_register_state(state, spi, reg); 2276 } else { 2277 u8 type = STACK_MISC; 2278 2279 /* regular write of data into stack destroys any spilled ptr */ 2280 state->stack[spi].spilled_ptr.type = NOT_INIT; 2281 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */ 2282 if (state->stack[spi].slot_type[0] == STACK_SPILL) 2283 for (i = 0; i < BPF_REG_SIZE; i++) 2284 state->stack[spi].slot_type[i] = STACK_MISC; 2285 2286 /* only mark the slot as written if all 8 bytes were written 2287 * otherwise read propagation may incorrectly stop too soon 2288 * when stack slots are partially written. 2289 * This heuristic means that read propagation will be 2290 * conservative, since it will add reg_live_read marks 2291 * to stack slots all the way to first state when programs 2292 * writes+reads less than 8 bytes 2293 */ 2294 if (size == BPF_REG_SIZE) 2295 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 2296 2297 /* when we zero initialize stack slots mark them as such */ 2298 if (reg && register_is_null(reg)) { 2299 /* backtracking doesn't work for STACK_ZERO yet. */ 2300 err = mark_chain_precision(env, value_regno); 2301 if (err) 2302 return err; 2303 type = STACK_ZERO; 2304 } 2305 2306 /* Mark slots affected by this stack write. */ 2307 for (i = 0; i < size; i++) 2308 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 2309 type; 2310 } 2311 return 0; 2312 } 2313 2314 static int check_stack_read(struct bpf_verifier_env *env, 2315 struct bpf_func_state *reg_state /* func where register points to */, 2316 int off, int size, int value_regno) 2317 { 2318 struct bpf_verifier_state *vstate = env->cur_state; 2319 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2320 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 2321 struct bpf_reg_state *reg; 2322 u8 *stype; 2323 2324 if (reg_state->allocated_stack <= slot) { 2325 verbose(env, "invalid read from stack off %d+0 size %d\n", 2326 off, size); 2327 return -EACCES; 2328 } 2329 stype = reg_state->stack[spi].slot_type; 2330 reg = ®_state->stack[spi].spilled_ptr; 2331 2332 if (stype[0] == STACK_SPILL) { 2333 if (size != BPF_REG_SIZE) { 2334 if (reg->type != SCALAR_VALUE) { 2335 verbose_linfo(env, env->insn_idx, "; "); 2336 verbose(env, "invalid size of register fill\n"); 2337 return -EACCES; 2338 } 2339 if (value_regno >= 0) { 2340 mark_reg_unknown(env, state->regs, value_regno); 2341 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 2342 } 2343 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2344 return 0; 2345 } 2346 for (i = 1; i < BPF_REG_SIZE; i++) { 2347 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) { 2348 verbose(env, "corrupted spill memory\n"); 2349 return -EACCES; 2350 } 2351 } 2352 2353 if (value_regno >= 0) { 2354 /* restore register state from stack */ 2355 state->regs[value_regno] = *reg; 2356 /* mark reg as written since spilled pointer state likely 2357 * has its liveness marks cleared by is_state_visited() 2358 * which resets stack/reg liveness for state transitions 2359 */ 2360 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 2361 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { 2362 /* If value_regno==-1, the caller is asking us whether 2363 * it is acceptable to use this value as a SCALAR_VALUE 2364 * (e.g. for XADD). 2365 * We must not allow unprivileged callers to do that 2366 * with spilled pointers. 2367 */ 2368 verbose(env, "leaking pointer from stack off %d\n", 2369 off); 2370 return -EACCES; 2371 } 2372 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2373 } else { 2374 int zeros = 0; 2375 2376 for (i = 0; i < size; i++) { 2377 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC) 2378 continue; 2379 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) { 2380 zeros++; 2381 continue; 2382 } 2383 verbose(env, "invalid read from stack off %d+%d size %d\n", 2384 off, i, size); 2385 return -EACCES; 2386 } 2387 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2388 if (value_regno >= 0) { 2389 if (zeros == size) { 2390 /* any size read into register is zero extended, 2391 * so the whole register == const_zero 2392 */ 2393 __mark_reg_const_zero(&state->regs[value_regno]); 2394 /* backtracking doesn't support STACK_ZERO yet, 2395 * so mark it precise here, so that later 2396 * backtracking can stop here. 2397 * Backtracking may not need this if this register 2398 * doesn't participate in pointer adjustment. 2399 * Forward propagation of precise flag is not 2400 * necessary either. This mark is only to stop 2401 * backtracking. Any register that contributed 2402 * to const 0 was marked precise before spill. 2403 */ 2404 state->regs[value_regno].precise = true; 2405 } else { 2406 /* have read misc data from the stack */ 2407 mark_reg_unknown(env, state->regs, value_regno); 2408 } 2409 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 2410 } 2411 } 2412 return 0; 2413 } 2414 2415 static int check_stack_access(struct bpf_verifier_env *env, 2416 const struct bpf_reg_state *reg, 2417 int off, int size) 2418 { 2419 /* Stack accesses must be at a fixed offset, so that we 2420 * can determine what type of data were returned. See 2421 * check_stack_read(). 2422 */ 2423 if (!tnum_is_const(reg->var_off)) { 2424 char tn_buf[48]; 2425 2426 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2427 verbose(env, "variable stack access var_off=%s off=%d size=%d\n", 2428 tn_buf, off, size); 2429 return -EACCES; 2430 } 2431 2432 if (off >= 0 || off < -MAX_BPF_STACK) { 2433 verbose(env, "invalid stack off=%d size=%d\n", off, size); 2434 return -EACCES; 2435 } 2436 2437 return 0; 2438 } 2439 2440 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 2441 int off, int size, enum bpf_access_type type) 2442 { 2443 struct bpf_reg_state *regs = cur_regs(env); 2444 struct bpf_map *map = regs[regno].map_ptr; 2445 u32 cap = bpf_map_flags_to_cap(map); 2446 2447 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 2448 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 2449 map->value_size, off, size); 2450 return -EACCES; 2451 } 2452 2453 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 2454 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 2455 map->value_size, off, size); 2456 return -EACCES; 2457 } 2458 2459 return 0; 2460 } 2461 2462 /* check read/write into map element returned by bpf_map_lookup_elem() */ 2463 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off, 2464 int size, bool zero_size_allowed) 2465 { 2466 struct bpf_reg_state *regs = cur_regs(env); 2467 struct bpf_map *map = regs[regno].map_ptr; 2468 2469 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) || 2470 off + size > map->value_size) { 2471 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 2472 map->value_size, off, size); 2473 return -EACCES; 2474 } 2475 return 0; 2476 } 2477 2478 /* check read/write into a map element with possible variable offset */ 2479 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 2480 int off, int size, bool zero_size_allowed) 2481 { 2482 struct bpf_verifier_state *vstate = env->cur_state; 2483 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2484 struct bpf_reg_state *reg = &state->regs[regno]; 2485 int err; 2486 2487 /* We may have adjusted the register to this map value, so we 2488 * need to try adding each of min_value and max_value to off 2489 * to make sure our theoretical access will be safe. 2490 */ 2491 if (env->log.level & BPF_LOG_LEVEL) 2492 print_verifier_state(env, state); 2493 2494 /* The minimum value is only important with signed 2495 * comparisons where we can't assume the floor of a 2496 * value is 0. If we are using signed variables for our 2497 * index'es we need to make sure that whatever we use 2498 * will have a set floor within our range. 2499 */ 2500 if (reg->smin_value < 0 && 2501 (reg->smin_value == S64_MIN || 2502 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 2503 reg->smin_value + off < 0)) { 2504 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 2505 regno); 2506 return -EACCES; 2507 } 2508 err = __check_map_access(env, regno, reg->smin_value + off, size, 2509 zero_size_allowed); 2510 if (err) { 2511 verbose(env, "R%d min value is outside of the array range\n", 2512 regno); 2513 return err; 2514 } 2515 2516 /* If we haven't set a max value then we need to bail since we can't be 2517 * sure we won't do bad things. 2518 * If reg->umax_value + off could overflow, treat that as unbounded too. 2519 */ 2520 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 2521 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n", 2522 regno); 2523 return -EACCES; 2524 } 2525 err = __check_map_access(env, regno, reg->umax_value + off, size, 2526 zero_size_allowed); 2527 if (err) 2528 verbose(env, "R%d max value is outside of the array range\n", 2529 regno); 2530 2531 if (map_value_has_spin_lock(reg->map_ptr)) { 2532 u32 lock = reg->map_ptr->spin_lock_off; 2533 2534 /* if any part of struct bpf_spin_lock can be touched by 2535 * load/store reject this program. 2536 * To check that [x1, x2) overlaps with [y1, y2) 2537 * it is sufficient to check x1 < y2 && y1 < x2. 2538 */ 2539 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) && 2540 lock < reg->umax_value + off + size) { 2541 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n"); 2542 return -EACCES; 2543 } 2544 } 2545 return err; 2546 } 2547 2548 #define MAX_PACKET_OFF 0xffff 2549 2550 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 2551 const struct bpf_call_arg_meta *meta, 2552 enum bpf_access_type t) 2553 { 2554 switch (env->prog->type) { 2555 /* Program types only with direct read access go here! */ 2556 case BPF_PROG_TYPE_LWT_IN: 2557 case BPF_PROG_TYPE_LWT_OUT: 2558 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 2559 case BPF_PROG_TYPE_SK_REUSEPORT: 2560 case BPF_PROG_TYPE_FLOW_DISSECTOR: 2561 case BPF_PROG_TYPE_CGROUP_SKB: 2562 if (t == BPF_WRITE) 2563 return false; 2564 /* fallthrough */ 2565 2566 /* Program types with direct read + write access go here! */ 2567 case BPF_PROG_TYPE_SCHED_CLS: 2568 case BPF_PROG_TYPE_SCHED_ACT: 2569 case BPF_PROG_TYPE_XDP: 2570 case BPF_PROG_TYPE_LWT_XMIT: 2571 case BPF_PROG_TYPE_SK_SKB: 2572 case BPF_PROG_TYPE_SK_MSG: 2573 if (meta) 2574 return meta->pkt_access; 2575 2576 env->seen_direct_write = true; 2577 return true; 2578 2579 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 2580 if (t == BPF_WRITE) 2581 env->seen_direct_write = true; 2582 2583 return true; 2584 2585 default: 2586 return false; 2587 } 2588 } 2589 2590 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno, 2591 int off, int size, bool zero_size_allowed) 2592 { 2593 struct bpf_reg_state *regs = cur_regs(env); 2594 struct bpf_reg_state *reg = ®s[regno]; 2595 2596 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) || 2597 (u64)off + size > reg->range) { 2598 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 2599 off, size, regno, reg->id, reg->off, reg->range); 2600 return -EACCES; 2601 } 2602 return 0; 2603 } 2604 2605 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 2606 int size, bool zero_size_allowed) 2607 { 2608 struct bpf_reg_state *regs = cur_regs(env); 2609 struct bpf_reg_state *reg = ®s[regno]; 2610 int err; 2611 2612 /* We may have added a variable offset to the packet pointer; but any 2613 * reg->range we have comes after that. We are only checking the fixed 2614 * offset. 2615 */ 2616 2617 /* We don't allow negative numbers, because we aren't tracking enough 2618 * detail to prove they're safe. 2619 */ 2620 if (reg->smin_value < 0) { 2621 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 2622 regno); 2623 return -EACCES; 2624 } 2625 err = __check_packet_access(env, regno, off, size, zero_size_allowed); 2626 if (err) { 2627 verbose(env, "R%d offset is outside of the packet\n", regno); 2628 return err; 2629 } 2630 2631 /* __check_packet_access has made sure "off + size - 1" is within u16. 2632 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 2633 * otherwise find_good_pkt_pointers would have refused to set range info 2634 * that __check_packet_access would have rejected this pkt access. 2635 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 2636 */ 2637 env->prog->aux->max_pkt_offset = 2638 max_t(u32, env->prog->aux->max_pkt_offset, 2639 off + reg->umax_value + size - 1); 2640 2641 return err; 2642 } 2643 2644 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 2645 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 2646 enum bpf_access_type t, enum bpf_reg_type *reg_type, 2647 u32 *btf_id) 2648 { 2649 struct bpf_insn_access_aux info = { 2650 .reg_type = *reg_type, 2651 .log = &env->log, 2652 }; 2653 2654 if (env->ops->is_valid_access && 2655 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 2656 /* A non zero info.ctx_field_size indicates that this field is a 2657 * candidate for later verifier transformation to load the whole 2658 * field and then apply a mask when accessed with a narrower 2659 * access than actual ctx access size. A zero info.ctx_field_size 2660 * will only allow for whole field access and rejects any other 2661 * type of narrower access. 2662 */ 2663 *reg_type = info.reg_type; 2664 2665 if (*reg_type == PTR_TO_BTF_ID || *reg_type == PTR_TO_BTF_ID_OR_NULL) 2666 *btf_id = info.btf_id; 2667 else 2668 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 2669 /* remember the offset of last byte accessed in ctx */ 2670 if (env->prog->aux->max_ctx_offset < off + size) 2671 env->prog->aux->max_ctx_offset = off + size; 2672 return 0; 2673 } 2674 2675 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 2676 return -EACCES; 2677 } 2678 2679 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 2680 int size) 2681 { 2682 if (size < 0 || off < 0 || 2683 (u64)off + size > sizeof(struct bpf_flow_keys)) { 2684 verbose(env, "invalid access to flow keys off=%d size=%d\n", 2685 off, size); 2686 return -EACCES; 2687 } 2688 return 0; 2689 } 2690 2691 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 2692 u32 regno, int off, int size, 2693 enum bpf_access_type t) 2694 { 2695 struct bpf_reg_state *regs = cur_regs(env); 2696 struct bpf_reg_state *reg = ®s[regno]; 2697 struct bpf_insn_access_aux info = {}; 2698 bool valid; 2699 2700 if (reg->smin_value < 0) { 2701 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 2702 regno); 2703 return -EACCES; 2704 } 2705 2706 switch (reg->type) { 2707 case PTR_TO_SOCK_COMMON: 2708 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 2709 break; 2710 case PTR_TO_SOCKET: 2711 valid = bpf_sock_is_valid_access(off, size, t, &info); 2712 break; 2713 case PTR_TO_TCP_SOCK: 2714 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 2715 break; 2716 case PTR_TO_XDP_SOCK: 2717 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 2718 break; 2719 default: 2720 valid = false; 2721 } 2722 2723 2724 if (valid) { 2725 env->insn_aux_data[insn_idx].ctx_field_size = 2726 info.ctx_field_size; 2727 return 0; 2728 } 2729 2730 verbose(env, "R%d invalid %s access off=%d size=%d\n", 2731 regno, reg_type_str[reg->type], off, size); 2732 2733 return -EACCES; 2734 } 2735 2736 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 2737 { 2738 return cur_regs(env) + regno; 2739 } 2740 2741 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 2742 { 2743 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 2744 } 2745 2746 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 2747 { 2748 const struct bpf_reg_state *reg = reg_state(env, regno); 2749 2750 return reg->type == PTR_TO_CTX; 2751 } 2752 2753 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 2754 { 2755 const struct bpf_reg_state *reg = reg_state(env, regno); 2756 2757 return type_is_sk_pointer(reg->type); 2758 } 2759 2760 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 2761 { 2762 const struct bpf_reg_state *reg = reg_state(env, regno); 2763 2764 return type_is_pkt_pointer(reg->type); 2765 } 2766 2767 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 2768 { 2769 const struct bpf_reg_state *reg = reg_state(env, regno); 2770 2771 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 2772 return reg->type == PTR_TO_FLOW_KEYS; 2773 } 2774 2775 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 2776 const struct bpf_reg_state *reg, 2777 int off, int size, bool strict) 2778 { 2779 struct tnum reg_off; 2780 int ip_align; 2781 2782 /* Byte size accesses are always allowed. */ 2783 if (!strict || size == 1) 2784 return 0; 2785 2786 /* For platforms that do not have a Kconfig enabling 2787 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 2788 * NET_IP_ALIGN is universally set to '2'. And on platforms 2789 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 2790 * to this code only in strict mode where we want to emulate 2791 * the NET_IP_ALIGN==2 checking. Therefore use an 2792 * unconditional IP align value of '2'. 2793 */ 2794 ip_align = 2; 2795 2796 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 2797 if (!tnum_is_aligned(reg_off, size)) { 2798 char tn_buf[48]; 2799 2800 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2801 verbose(env, 2802 "misaligned packet access off %d+%s+%d+%d size %d\n", 2803 ip_align, tn_buf, reg->off, off, size); 2804 return -EACCES; 2805 } 2806 2807 return 0; 2808 } 2809 2810 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 2811 const struct bpf_reg_state *reg, 2812 const char *pointer_desc, 2813 int off, int size, bool strict) 2814 { 2815 struct tnum reg_off; 2816 2817 /* Byte size accesses are always allowed. */ 2818 if (!strict || size == 1) 2819 return 0; 2820 2821 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 2822 if (!tnum_is_aligned(reg_off, size)) { 2823 char tn_buf[48]; 2824 2825 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2826 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 2827 pointer_desc, tn_buf, reg->off, off, size); 2828 return -EACCES; 2829 } 2830 2831 return 0; 2832 } 2833 2834 static int check_ptr_alignment(struct bpf_verifier_env *env, 2835 const struct bpf_reg_state *reg, int off, 2836 int size, bool strict_alignment_once) 2837 { 2838 bool strict = env->strict_alignment || strict_alignment_once; 2839 const char *pointer_desc = ""; 2840 2841 switch (reg->type) { 2842 case PTR_TO_PACKET: 2843 case PTR_TO_PACKET_META: 2844 /* Special case, because of NET_IP_ALIGN. Given metadata sits 2845 * right in front, treat it the very same way. 2846 */ 2847 return check_pkt_ptr_alignment(env, reg, off, size, strict); 2848 case PTR_TO_FLOW_KEYS: 2849 pointer_desc = "flow keys "; 2850 break; 2851 case PTR_TO_MAP_VALUE: 2852 pointer_desc = "value "; 2853 break; 2854 case PTR_TO_CTX: 2855 pointer_desc = "context "; 2856 break; 2857 case PTR_TO_STACK: 2858 pointer_desc = "stack "; 2859 /* The stack spill tracking logic in check_stack_write() 2860 * and check_stack_read() relies on stack accesses being 2861 * aligned. 2862 */ 2863 strict = true; 2864 break; 2865 case PTR_TO_SOCKET: 2866 pointer_desc = "sock "; 2867 break; 2868 case PTR_TO_SOCK_COMMON: 2869 pointer_desc = "sock_common "; 2870 break; 2871 case PTR_TO_TCP_SOCK: 2872 pointer_desc = "tcp_sock "; 2873 break; 2874 case PTR_TO_XDP_SOCK: 2875 pointer_desc = "xdp_sock "; 2876 break; 2877 default: 2878 break; 2879 } 2880 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 2881 strict); 2882 } 2883 2884 static int update_stack_depth(struct bpf_verifier_env *env, 2885 const struct bpf_func_state *func, 2886 int off) 2887 { 2888 u16 stack = env->subprog_info[func->subprogno].stack_depth; 2889 2890 if (stack >= -off) 2891 return 0; 2892 2893 /* update known max for given subprogram */ 2894 env->subprog_info[func->subprogno].stack_depth = -off; 2895 return 0; 2896 } 2897 2898 /* starting from main bpf function walk all instructions of the function 2899 * and recursively walk all callees that given function can call. 2900 * Ignore jump and exit insns. 2901 * Since recursion is prevented by check_cfg() this algorithm 2902 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 2903 */ 2904 static int check_max_stack_depth(struct bpf_verifier_env *env) 2905 { 2906 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; 2907 struct bpf_subprog_info *subprog = env->subprog_info; 2908 struct bpf_insn *insn = env->prog->insnsi; 2909 int ret_insn[MAX_CALL_FRAMES]; 2910 int ret_prog[MAX_CALL_FRAMES]; 2911 2912 process_func: 2913 /* round up to 32-bytes, since this is granularity 2914 * of interpreter stack size 2915 */ 2916 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 2917 if (depth > MAX_BPF_STACK) { 2918 verbose(env, "combined stack size of %d calls is %d. Too large\n", 2919 frame + 1, depth); 2920 return -EACCES; 2921 } 2922 continue_func: 2923 subprog_end = subprog[idx + 1].start; 2924 for (; i < subprog_end; i++) { 2925 if (insn[i].code != (BPF_JMP | BPF_CALL)) 2926 continue; 2927 if (insn[i].src_reg != BPF_PSEUDO_CALL) 2928 continue; 2929 /* remember insn and function to return to */ 2930 ret_insn[frame] = i + 1; 2931 ret_prog[frame] = idx; 2932 2933 /* find the callee */ 2934 i = i + insn[i].imm + 1; 2935 idx = find_subprog(env, i); 2936 if (idx < 0) { 2937 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 2938 i); 2939 return -EFAULT; 2940 } 2941 frame++; 2942 if (frame >= MAX_CALL_FRAMES) { 2943 verbose(env, "the call stack of %d frames is too deep !\n", 2944 frame); 2945 return -E2BIG; 2946 } 2947 goto process_func; 2948 } 2949 /* end of for() loop means the last insn of the 'subprog' 2950 * was reached. Doesn't matter whether it was JA or EXIT 2951 */ 2952 if (frame == 0) 2953 return 0; 2954 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 2955 frame--; 2956 i = ret_insn[frame]; 2957 idx = ret_prog[frame]; 2958 goto continue_func; 2959 } 2960 2961 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 2962 static int get_callee_stack_depth(struct bpf_verifier_env *env, 2963 const struct bpf_insn *insn, int idx) 2964 { 2965 int start = idx + insn->imm + 1, subprog; 2966 2967 subprog = find_subprog(env, start); 2968 if (subprog < 0) { 2969 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 2970 start); 2971 return -EFAULT; 2972 } 2973 return env->subprog_info[subprog].stack_depth; 2974 } 2975 #endif 2976 2977 int check_ctx_reg(struct bpf_verifier_env *env, 2978 const struct bpf_reg_state *reg, int regno) 2979 { 2980 /* Access to ctx or passing it to a helper is only allowed in 2981 * its original, unmodified form. 2982 */ 2983 2984 if (reg->off) { 2985 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n", 2986 regno, reg->off); 2987 return -EACCES; 2988 } 2989 2990 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 2991 char tn_buf[48]; 2992 2993 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2994 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf); 2995 return -EACCES; 2996 } 2997 2998 return 0; 2999 } 3000 3001 static int check_tp_buffer_access(struct bpf_verifier_env *env, 3002 const struct bpf_reg_state *reg, 3003 int regno, int off, int size) 3004 { 3005 if (off < 0) { 3006 verbose(env, 3007 "R%d invalid tracepoint buffer access: off=%d, size=%d", 3008 regno, off, size); 3009 return -EACCES; 3010 } 3011 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 3012 char tn_buf[48]; 3013 3014 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3015 verbose(env, 3016 "R%d invalid variable buffer offset: off=%d, var_off=%s", 3017 regno, off, tn_buf); 3018 return -EACCES; 3019 } 3020 if (off + size > env->prog->aux->max_tp_access) 3021 env->prog->aux->max_tp_access = off + size; 3022 3023 return 0; 3024 } 3025 3026 /* BPF architecture zero extends alu32 ops into 64-bit registesr */ 3027 static void zext_32_to_64(struct bpf_reg_state *reg) 3028 { 3029 reg->var_off = tnum_subreg(reg->var_off); 3030 __reg_assign_32_into_64(reg); 3031 } 3032 3033 /* truncate register to smaller size (in bytes) 3034 * must be called with size < BPF_REG_SIZE 3035 */ 3036 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 3037 { 3038 u64 mask; 3039 3040 /* clear high bits in bit representation */ 3041 reg->var_off = tnum_cast(reg->var_off, size); 3042 3043 /* fix arithmetic bounds */ 3044 mask = ((u64)1 << (size * 8)) - 1; 3045 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 3046 reg->umin_value &= mask; 3047 reg->umax_value &= mask; 3048 } else { 3049 reg->umin_value = 0; 3050 reg->umax_value = mask; 3051 } 3052 reg->smin_value = reg->umin_value; 3053 reg->smax_value = reg->umax_value; 3054 3055 /* If size is smaller than 32bit register the 32bit register 3056 * values are also truncated so we push 64-bit bounds into 3057 * 32-bit bounds. Above were truncated < 32-bits already. 3058 */ 3059 if (size >= 4) 3060 return; 3061 __reg_combine_64_into_32(reg); 3062 } 3063 3064 static bool bpf_map_is_rdonly(const struct bpf_map *map) 3065 { 3066 return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen; 3067 } 3068 3069 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val) 3070 { 3071 void *ptr; 3072 u64 addr; 3073 int err; 3074 3075 err = map->ops->map_direct_value_addr(map, &addr, off); 3076 if (err) 3077 return err; 3078 ptr = (void *)(long)addr + off; 3079 3080 switch (size) { 3081 case sizeof(u8): 3082 *val = (u64)*(u8 *)ptr; 3083 break; 3084 case sizeof(u16): 3085 *val = (u64)*(u16 *)ptr; 3086 break; 3087 case sizeof(u32): 3088 *val = (u64)*(u32 *)ptr; 3089 break; 3090 case sizeof(u64): 3091 *val = *(u64 *)ptr; 3092 break; 3093 default: 3094 return -EINVAL; 3095 } 3096 return 0; 3097 } 3098 3099 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 3100 struct bpf_reg_state *regs, 3101 int regno, int off, int size, 3102 enum bpf_access_type atype, 3103 int value_regno) 3104 { 3105 struct bpf_reg_state *reg = regs + regno; 3106 const struct btf_type *t = btf_type_by_id(btf_vmlinux, reg->btf_id); 3107 const char *tname = btf_name_by_offset(btf_vmlinux, t->name_off); 3108 u32 btf_id; 3109 int ret; 3110 3111 if (off < 0) { 3112 verbose(env, 3113 "R%d is ptr_%s invalid negative access: off=%d\n", 3114 regno, tname, off); 3115 return -EACCES; 3116 } 3117 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 3118 char tn_buf[48]; 3119 3120 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3121 verbose(env, 3122 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 3123 regno, tname, off, tn_buf); 3124 return -EACCES; 3125 } 3126 3127 if (env->ops->btf_struct_access) { 3128 ret = env->ops->btf_struct_access(&env->log, t, off, size, 3129 atype, &btf_id); 3130 } else { 3131 if (atype != BPF_READ) { 3132 verbose(env, "only read is supported\n"); 3133 return -EACCES; 3134 } 3135 3136 ret = btf_struct_access(&env->log, t, off, size, atype, 3137 &btf_id); 3138 } 3139 3140 if (ret < 0) 3141 return ret; 3142 3143 if (atype == BPF_READ && value_regno >= 0) { 3144 if (ret == SCALAR_VALUE) { 3145 mark_reg_unknown(env, regs, value_regno); 3146 return 0; 3147 } 3148 mark_reg_known_zero(env, regs, value_regno); 3149 regs[value_regno].type = PTR_TO_BTF_ID; 3150 regs[value_regno].btf_id = btf_id; 3151 } 3152 3153 return 0; 3154 } 3155 3156 /* check whether memory at (regno + off) is accessible for t = (read | write) 3157 * if t==write, value_regno is a register which value is stored into memory 3158 * if t==read, value_regno is a register which will receive the value from memory 3159 * if t==write && value_regno==-1, some unknown value is stored into memory 3160 * if t==read && value_regno==-1, don't care what we read from memory 3161 */ 3162 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 3163 int off, int bpf_size, enum bpf_access_type t, 3164 int value_regno, bool strict_alignment_once) 3165 { 3166 struct bpf_reg_state *regs = cur_regs(env); 3167 struct bpf_reg_state *reg = regs + regno; 3168 struct bpf_func_state *state; 3169 int size, err = 0; 3170 3171 size = bpf_size_to_bytes(bpf_size); 3172 if (size < 0) 3173 return size; 3174 3175 /* alignment checks will add in reg->off themselves */ 3176 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 3177 if (err) 3178 return err; 3179 3180 /* for access checks, reg->off is just part of off */ 3181 off += reg->off; 3182 3183 if (reg->type == PTR_TO_MAP_VALUE) { 3184 if (t == BPF_WRITE && value_regno >= 0 && 3185 is_pointer_value(env, value_regno)) { 3186 verbose(env, "R%d leaks addr into map\n", value_regno); 3187 return -EACCES; 3188 } 3189 err = check_map_access_type(env, regno, off, size, t); 3190 if (err) 3191 return err; 3192 err = check_map_access(env, regno, off, size, false); 3193 if (!err && t == BPF_READ && value_regno >= 0) { 3194 struct bpf_map *map = reg->map_ptr; 3195 3196 /* if map is read-only, track its contents as scalars */ 3197 if (tnum_is_const(reg->var_off) && 3198 bpf_map_is_rdonly(map) && 3199 map->ops->map_direct_value_addr) { 3200 int map_off = off + reg->var_off.value; 3201 u64 val = 0; 3202 3203 err = bpf_map_direct_read(map, map_off, size, 3204 &val); 3205 if (err) 3206 return err; 3207 3208 regs[value_regno].type = SCALAR_VALUE; 3209 __mark_reg_known(®s[value_regno], val); 3210 } else { 3211 mark_reg_unknown(env, regs, value_regno); 3212 } 3213 } 3214 } else if (reg->type == PTR_TO_CTX) { 3215 enum bpf_reg_type reg_type = SCALAR_VALUE; 3216 u32 btf_id = 0; 3217 3218 if (t == BPF_WRITE && value_regno >= 0 && 3219 is_pointer_value(env, value_regno)) { 3220 verbose(env, "R%d leaks addr into ctx\n", value_regno); 3221 return -EACCES; 3222 } 3223 3224 err = check_ctx_reg(env, reg, regno); 3225 if (err < 0) 3226 return err; 3227 3228 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf_id); 3229 if (err) 3230 verbose_linfo(env, insn_idx, "; "); 3231 if (!err && t == BPF_READ && value_regno >= 0) { 3232 /* ctx access returns either a scalar, or a 3233 * PTR_TO_PACKET[_META,_END]. In the latter 3234 * case, we know the offset is zero. 3235 */ 3236 if (reg_type == SCALAR_VALUE) { 3237 mark_reg_unknown(env, regs, value_regno); 3238 } else { 3239 mark_reg_known_zero(env, regs, 3240 value_regno); 3241 if (reg_type_may_be_null(reg_type)) 3242 regs[value_regno].id = ++env->id_gen; 3243 /* A load of ctx field could have different 3244 * actual load size with the one encoded in the 3245 * insn. When the dst is PTR, it is for sure not 3246 * a sub-register. 3247 */ 3248 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 3249 if (reg_type == PTR_TO_BTF_ID || 3250 reg_type == PTR_TO_BTF_ID_OR_NULL) 3251 regs[value_regno].btf_id = btf_id; 3252 } 3253 regs[value_regno].type = reg_type; 3254 } 3255 3256 } else if (reg->type == PTR_TO_STACK) { 3257 off += reg->var_off.value; 3258 err = check_stack_access(env, reg, off, size); 3259 if (err) 3260 return err; 3261 3262 state = func(env, reg); 3263 err = update_stack_depth(env, state, off); 3264 if (err) 3265 return err; 3266 3267 if (t == BPF_WRITE) 3268 err = check_stack_write(env, state, off, size, 3269 value_regno, insn_idx); 3270 else 3271 err = check_stack_read(env, state, off, size, 3272 value_regno); 3273 } else if (reg_is_pkt_pointer(reg)) { 3274 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 3275 verbose(env, "cannot write into packet\n"); 3276 return -EACCES; 3277 } 3278 if (t == BPF_WRITE && value_regno >= 0 && 3279 is_pointer_value(env, value_regno)) { 3280 verbose(env, "R%d leaks addr into packet\n", 3281 value_regno); 3282 return -EACCES; 3283 } 3284 err = check_packet_access(env, regno, off, size, false); 3285 if (!err && t == BPF_READ && value_regno >= 0) 3286 mark_reg_unknown(env, regs, value_regno); 3287 } else if (reg->type == PTR_TO_FLOW_KEYS) { 3288 if (t == BPF_WRITE && value_regno >= 0 && 3289 is_pointer_value(env, value_regno)) { 3290 verbose(env, "R%d leaks addr into flow keys\n", 3291 value_regno); 3292 return -EACCES; 3293 } 3294 3295 err = check_flow_keys_access(env, off, size); 3296 if (!err && t == BPF_READ && value_regno >= 0) 3297 mark_reg_unknown(env, regs, value_regno); 3298 } else if (type_is_sk_pointer(reg->type)) { 3299 if (t == BPF_WRITE) { 3300 verbose(env, "R%d cannot write into %s\n", 3301 regno, reg_type_str[reg->type]); 3302 return -EACCES; 3303 } 3304 err = check_sock_access(env, insn_idx, regno, off, size, t); 3305 if (!err && value_regno >= 0) 3306 mark_reg_unknown(env, regs, value_regno); 3307 } else if (reg->type == PTR_TO_TP_BUFFER) { 3308 err = check_tp_buffer_access(env, reg, regno, off, size); 3309 if (!err && t == BPF_READ && value_regno >= 0) 3310 mark_reg_unknown(env, regs, value_regno); 3311 } else if (reg->type == PTR_TO_BTF_ID) { 3312 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 3313 value_regno); 3314 } else { 3315 verbose(env, "R%d invalid mem access '%s'\n", regno, 3316 reg_type_str[reg->type]); 3317 return -EACCES; 3318 } 3319 3320 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 3321 regs[value_regno].type == SCALAR_VALUE) { 3322 /* b/h/w load zero-extends, mark upper bits as known 0 */ 3323 coerce_reg_to_size(®s[value_regno], size); 3324 } 3325 return err; 3326 } 3327 3328 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 3329 { 3330 int err; 3331 3332 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) || 3333 insn->imm != 0) { 3334 verbose(env, "BPF_XADD uses reserved fields\n"); 3335 return -EINVAL; 3336 } 3337 3338 /* check src1 operand */ 3339 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3340 if (err) 3341 return err; 3342 3343 /* check src2 operand */ 3344 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 3345 if (err) 3346 return err; 3347 3348 if (is_pointer_value(env, insn->src_reg)) { 3349 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 3350 return -EACCES; 3351 } 3352 3353 if (is_ctx_reg(env, insn->dst_reg) || 3354 is_pkt_reg(env, insn->dst_reg) || 3355 is_flow_key_reg(env, insn->dst_reg) || 3356 is_sk_reg(env, insn->dst_reg)) { 3357 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n", 3358 insn->dst_reg, 3359 reg_type_str[reg_state(env, insn->dst_reg)->type]); 3360 return -EACCES; 3361 } 3362 3363 /* check whether atomic_add can read the memory */ 3364 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 3365 BPF_SIZE(insn->code), BPF_READ, -1, true); 3366 if (err) 3367 return err; 3368 3369 /* check whether atomic_add can write into the same memory */ 3370 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 3371 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 3372 } 3373 3374 static int __check_stack_boundary(struct bpf_verifier_env *env, u32 regno, 3375 int off, int access_size, 3376 bool zero_size_allowed) 3377 { 3378 struct bpf_reg_state *reg = reg_state(env, regno); 3379 3380 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 || 3381 access_size < 0 || (access_size == 0 && !zero_size_allowed)) { 3382 if (tnum_is_const(reg->var_off)) { 3383 verbose(env, "invalid stack type R%d off=%d access_size=%d\n", 3384 regno, off, access_size); 3385 } else { 3386 char tn_buf[48]; 3387 3388 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3389 verbose(env, "invalid stack type R%d var_off=%s access_size=%d\n", 3390 regno, tn_buf, access_size); 3391 } 3392 return -EACCES; 3393 } 3394 return 0; 3395 } 3396 3397 /* when register 'regno' is passed into function that will read 'access_size' 3398 * bytes from that pointer, make sure that it's within stack boundary 3399 * and all elements of stack are initialized. 3400 * Unlike most pointer bounds-checking functions, this one doesn't take an 3401 * 'off' argument, so it has to add in reg->off itself. 3402 */ 3403 static int check_stack_boundary(struct bpf_verifier_env *env, int regno, 3404 int access_size, bool zero_size_allowed, 3405 struct bpf_call_arg_meta *meta) 3406 { 3407 struct bpf_reg_state *reg = reg_state(env, regno); 3408 struct bpf_func_state *state = func(env, reg); 3409 int err, min_off, max_off, i, j, slot, spi; 3410 3411 if (reg->type != PTR_TO_STACK) { 3412 /* Allow zero-byte read from NULL, regardless of pointer type */ 3413 if (zero_size_allowed && access_size == 0 && 3414 register_is_null(reg)) 3415 return 0; 3416 3417 verbose(env, "R%d type=%s expected=%s\n", regno, 3418 reg_type_str[reg->type], 3419 reg_type_str[PTR_TO_STACK]); 3420 return -EACCES; 3421 } 3422 3423 if (tnum_is_const(reg->var_off)) { 3424 min_off = max_off = reg->var_off.value + reg->off; 3425 err = __check_stack_boundary(env, regno, min_off, access_size, 3426 zero_size_allowed); 3427 if (err) 3428 return err; 3429 } else { 3430 /* Variable offset is prohibited for unprivileged mode for 3431 * simplicity since it requires corresponding support in 3432 * Spectre masking for stack ALU. 3433 * See also retrieve_ptr_limit(). 3434 */ 3435 if (!env->bypass_spec_v1) { 3436 char tn_buf[48]; 3437 3438 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3439 verbose(env, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n", 3440 regno, tn_buf); 3441 return -EACCES; 3442 } 3443 /* Only initialized buffer on stack is allowed to be accessed 3444 * with variable offset. With uninitialized buffer it's hard to 3445 * guarantee that whole memory is marked as initialized on 3446 * helper return since specific bounds are unknown what may 3447 * cause uninitialized stack leaking. 3448 */ 3449 if (meta && meta->raw_mode) 3450 meta = NULL; 3451 3452 if (reg->smax_value >= BPF_MAX_VAR_OFF || 3453 reg->smax_value <= -BPF_MAX_VAR_OFF) { 3454 verbose(env, "R%d unbounded indirect variable offset stack access\n", 3455 regno); 3456 return -EACCES; 3457 } 3458 min_off = reg->smin_value + reg->off; 3459 max_off = reg->smax_value + reg->off; 3460 err = __check_stack_boundary(env, regno, min_off, access_size, 3461 zero_size_allowed); 3462 if (err) { 3463 verbose(env, "R%d min value is outside of stack bound\n", 3464 regno); 3465 return err; 3466 } 3467 err = __check_stack_boundary(env, regno, max_off, access_size, 3468 zero_size_allowed); 3469 if (err) { 3470 verbose(env, "R%d max value is outside of stack bound\n", 3471 regno); 3472 return err; 3473 } 3474 } 3475 3476 if (meta && meta->raw_mode) { 3477 meta->access_size = access_size; 3478 meta->regno = regno; 3479 return 0; 3480 } 3481 3482 for (i = min_off; i < max_off + access_size; i++) { 3483 u8 *stype; 3484 3485 slot = -i - 1; 3486 spi = slot / BPF_REG_SIZE; 3487 if (state->allocated_stack <= slot) 3488 goto err; 3489 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 3490 if (*stype == STACK_MISC) 3491 goto mark; 3492 if (*stype == STACK_ZERO) { 3493 /* helper can write anything into the stack */ 3494 *stype = STACK_MISC; 3495 goto mark; 3496 } 3497 3498 if (state->stack[spi].slot_type[0] == STACK_SPILL && 3499 state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID) 3500 goto mark; 3501 3502 if (state->stack[spi].slot_type[0] == STACK_SPILL && 3503 state->stack[spi].spilled_ptr.type == SCALAR_VALUE) { 3504 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 3505 for (j = 0; j < BPF_REG_SIZE; j++) 3506 state->stack[spi].slot_type[j] = STACK_MISC; 3507 goto mark; 3508 } 3509 3510 err: 3511 if (tnum_is_const(reg->var_off)) { 3512 verbose(env, "invalid indirect read from stack off %d+%d size %d\n", 3513 min_off, i - min_off, access_size); 3514 } else { 3515 char tn_buf[48]; 3516 3517 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3518 verbose(env, "invalid indirect read from stack var_off %s+%d size %d\n", 3519 tn_buf, i - min_off, access_size); 3520 } 3521 return -EACCES; 3522 mark: 3523 /* reading any byte out of 8-byte 'spill_slot' will cause 3524 * the whole slot to be marked as 'read' 3525 */ 3526 mark_reg_read(env, &state->stack[spi].spilled_ptr, 3527 state->stack[spi].spilled_ptr.parent, 3528 REG_LIVE_READ64); 3529 } 3530 return update_stack_depth(env, state, min_off); 3531 } 3532 3533 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 3534 int access_size, bool zero_size_allowed, 3535 struct bpf_call_arg_meta *meta) 3536 { 3537 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 3538 3539 switch (reg->type) { 3540 case PTR_TO_PACKET: 3541 case PTR_TO_PACKET_META: 3542 return check_packet_access(env, regno, reg->off, access_size, 3543 zero_size_allowed); 3544 case PTR_TO_MAP_VALUE: 3545 if (check_map_access_type(env, regno, reg->off, access_size, 3546 meta && meta->raw_mode ? BPF_WRITE : 3547 BPF_READ)) 3548 return -EACCES; 3549 return check_map_access(env, regno, reg->off, access_size, 3550 zero_size_allowed); 3551 default: /* scalar_value|ptr_to_stack or invalid ptr */ 3552 return check_stack_boundary(env, regno, access_size, 3553 zero_size_allowed, meta); 3554 } 3555 } 3556 3557 /* Implementation details: 3558 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL 3559 * Two bpf_map_lookups (even with the same key) will have different reg->id. 3560 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after 3561 * value_or_null->value transition, since the verifier only cares about 3562 * the range of access to valid map value pointer and doesn't care about actual 3563 * address of the map element. 3564 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 3565 * reg->id > 0 after value_or_null->value transition. By doing so 3566 * two bpf_map_lookups will be considered two different pointers that 3567 * point to different bpf_spin_locks. 3568 * The verifier allows taking only one bpf_spin_lock at a time to avoid 3569 * dead-locks. 3570 * Since only one bpf_spin_lock is allowed the checks are simpler than 3571 * reg_is_refcounted() logic. The verifier needs to remember only 3572 * one spin_lock instead of array of acquired_refs. 3573 * cur_state->active_spin_lock remembers which map value element got locked 3574 * and clears it after bpf_spin_unlock. 3575 */ 3576 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 3577 bool is_lock) 3578 { 3579 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 3580 struct bpf_verifier_state *cur = env->cur_state; 3581 bool is_const = tnum_is_const(reg->var_off); 3582 struct bpf_map *map = reg->map_ptr; 3583 u64 val = reg->var_off.value; 3584 3585 if (reg->type != PTR_TO_MAP_VALUE) { 3586 verbose(env, "R%d is not a pointer to map_value\n", regno); 3587 return -EINVAL; 3588 } 3589 if (!is_const) { 3590 verbose(env, 3591 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 3592 regno); 3593 return -EINVAL; 3594 } 3595 if (!map->btf) { 3596 verbose(env, 3597 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 3598 map->name); 3599 return -EINVAL; 3600 } 3601 if (!map_value_has_spin_lock(map)) { 3602 if (map->spin_lock_off == -E2BIG) 3603 verbose(env, 3604 "map '%s' has more than one 'struct bpf_spin_lock'\n", 3605 map->name); 3606 else if (map->spin_lock_off == -ENOENT) 3607 verbose(env, 3608 "map '%s' doesn't have 'struct bpf_spin_lock'\n", 3609 map->name); 3610 else 3611 verbose(env, 3612 "map '%s' is not a struct type or bpf_spin_lock is mangled\n", 3613 map->name); 3614 return -EINVAL; 3615 } 3616 if (map->spin_lock_off != val + reg->off) { 3617 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n", 3618 val + reg->off); 3619 return -EINVAL; 3620 } 3621 if (is_lock) { 3622 if (cur->active_spin_lock) { 3623 verbose(env, 3624 "Locking two bpf_spin_locks are not allowed\n"); 3625 return -EINVAL; 3626 } 3627 cur->active_spin_lock = reg->id; 3628 } else { 3629 if (!cur->active_spin_lock) { 3630 verbose(env, "bpf_spin_unlock without taking a lock\n"); 3631 return -EINVAL; 3632 } 3633 if (cur->active_spin_lock != reg->id) { 3634 verbose(env, "bpf_spin_unlock of different lock\n"); 3635 return -EINVAL; 3636 } 3637 cur->active_spin_lock = 0; 3638 } 3639 return 0; 3640 } 3641 3642 static bool arg_type_is_mem_ptr(enum bpf_arg_type type) 3643 { 3644 return type == ARG_PTR_TO_MEM || 3645 type == ARG_PTR_TO_MEM_OR_NULL || 3646 type == ARG_PTR_TO_UNINIT_MEM; 3647 } 3648 3649 static bool arg_type_is_mem_size(enum bpf_arg_type type) 3650 { 3651 return type == ARG_CONST_SIZE || 3652 type == ARG_CONST_SIZE_OR_ZERO; 3653 } 3654 3655 static bool arg_type_is_int_ptr(enum bpf_arg_type type) 3656 { 3657 return type == ARG_PTR_TO_INT || 3658 type == ARG_PTR_TO_LONG; 3659 } 3660 3661 static int int_ptr_type_to_size(enum bpf_arg_type type) 3662 { 3663 if (type == ARG_PTR_TO_INT) 3664 return sizeof(u32); 3665 else if (type == ARG_PTR_TO_LONG) 3666 return sizeof(u64); 3667 3668 return -EINVAL; 3669 } 3670 3671 static int check_func_arg(struct bpf_verifier_env *env, u32 regno, 3672 enum bpf_arg_type arg_type, 3673 struct bpf_call_arg_meta *meta) 3674 { 3675 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 3676 enum bpf_reg_type expected_type, type = reg->type; 3677 int err = 0; 3678 3679 if (arg_type == ARG_DONTCARE) 3680 return 0; 3681 3682 err = check_reg_arg(env, regno, SRC_OP); 3683 if (err) 3684 return err; 3685 3686 if (arg_type == ARG_ANYTHING) { 3687 if (is_pointer_value(env, regno)) { 3688 verbose(env, "R%d leaks addr into helper function\n", 3689 regno); 3690 return -EACCES; 3691 } 3692 return 0; 3693 } 3694 3695 if (type_is_pkt_pointer(type) && 3696 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 3697 verbose(env, "helper access to the packet is not allowed\n"); 3698 return -EACCES; 3699 } 3700 3701 if (arg_type == ARG_PTR_TO_MAP_KEY || 3702 arg_type == ARG_PTR_TO_MAP_VALUE || 3703 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE || 3704 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) { 3705 expected_type = PTR_TO_STACK; 3706 if (register_is_null(reg) && 3707 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) 3708 /* final test in check_stack_boundary() */; 3709 else if (!type_is_pkt_pointer(type) && 3710 type != PTR_TO_MAP_VALUE && 3711 type != expected_type) 3712 goto err_type; 3713 } else if (arg_type == ARG_CONST_SIZE || 3714 arg_type == ARG_CONST_SIZE_OR_ZERO) { 3715 expected_type = SCALAR_VALUE; 3716 if (type != expected_type) 3717 goto err_type; 3718 } else if (arg_type == ARG_CONST_MAP_PTR) { 3719 expected_type = CONST_PTR_TO_MAP; 3720 if (type != expected_type) 3721 goto err_type; 3722 } else if (arg_type == ARG_PTR_TO_CTX || 3723 arg_type == ARG_PTR_TO_CTX_OR_NULL) { 3724 expected_type = PTR_TO_CTX; 3725 if (!(register_is_null(reg) && 3726 arg_type == ARG_PTR_TO_CTX_OR_NULL)) { 3727 if (type != expected_type) 3728 goto err_type; 3729 err = check_ctx_reg(env, reg, regno); 3730 if (err < 0) 3731 return err; 3732 } 3733 } else if (arg_type == ARG_PTR_TO_SOCK_COMMON) { 3734 expected_type = PTR_TO_SOCK_COMMON; 3735 /* Any sk pointer can be ARG_PTR_TO_SOCK_COMMON */ 3736 if (!type_is_sk_pointer(type)) 3737 goto err_type; 3738 if (reg->ref_obj_id) { 3739 if (meta->ref_obj_id) { 3740 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 3741 regno, reg->ref_obj_id, 3742 meta->ref_obj_id); 3743 return -EFAULT; 3744 } 3745 meta->ref_obj_id = reg->ref_obj_id; 3746 } 3747 } else if (arg_type == ARG_PTR_TO_SOCKET) { 3748 expected_type = PTR_TO_SOCKET; 3749 if (type != expected_type) 3750 goto err_type; 3751 } else if (arg_type == ARG_PTR_TO_BTF_ID) { 3752 expected_type = PTR_TO_BTF_ID; 3753 if (type != expected_type) 3754 goto err_type; 3755 if (reg->btf_id != meta->btf_id) { 3756 verbose(env, "Helper has type %s got %s in R%d\n", 3757 kernel_type_name(meta->btf_id), 3758 kernel_type_name(reg->btf_id), regno); 3759 3760 return -EACCES; 3761 } 3762 if (!tnum_is_const(reg->var_off) || reg->var_off.value || reg->off) { 3763 verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n", 3764 regno); 3765 return -EACCES; 3766 } 3767 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) { 3768 if (meta->func_id == BPF_FUNC_spin_lock) { 3769 if (process_spin_lock(env, regno, true)) 3770 return -EACCES; 3771 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 3772 if (process_spin_lock(env, regno, false)) 3773 return -EACCES; 3774 } else { 3775 verbose(env, "verifier internal error\n"); 3776 return -EFAULT; 3777 } 3778 } else if (arg_type_is_mem_ptr(arg_type)) { 3779 expected_type = PTR_TO_STACK; 3780 /* One exception here. In case function allows for NULL to be 3781 * passed in as argument, it's a SCALAR_VALUE type. Final test 3782 * happens during stack boundary checking. 3783 */ 3784 if (register_is_null(reg) && 3785 arg_type == ARG_PTR_TO_MEM_OR_NULL) 3786 /* final test in check_stack_boundary() */; 3787 else if (!type_is_pkt_pointer(type) && 3788 type != PTR_TO_MAP_VALUE && 3789 type != expected_type) 3790 goto err_type; 3791 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM; 3792 } else if (arg_type_is_int_ptr(arg_type)) { 3793 expected_type = PTR_TO_STACK; 3794 if (!type_is_pkt_pointer(type) && 3795 type != PTR_TO_MAP_VALUE && 3796 type != expected_type) 3797 goto err_type; 3798 } else { 3799 verbose(env, "unsupported arg_type %d\n", arg_type); 3800 return -EFAULT; 3801 } 3802 3803 if (arg_type == ARG_CONST_MAP_PTR) { 3804 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 3805 meta->map_ptr = reg->map_ptr; 3806 } else if (arg_type == ARG_PTR_TO_MAP_KEY) { 3807 /* bpf_map_xxx(..., map_ptr, ..., key) call: 3808 * check that [key, key + map->key_size) are within 3809 * stack limits and initialized 3810 */ 3811 if (!meta->map_ptr) { 3812 /* in function declaration map_ptr must come before 3813 * map_key, so that it's verified and known before 3814 * we have to check map_key here. Otherwise it means 3815 * that kernel subsystem misconfigured verifier 3816 */ 3817 verbose(env, "invalid map_ptr to access map->key\n"); 3818 return -EACCES; 3819 } 3820 err = check_helper_mem_access(env, regno, 3821 meta->map_ptr->key_size, false, 3822 NULL); 3823 } else if (arg_type == ARG_PTR_TO_MAP_VALUE || 3824 (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL && 3825 !register_is_null(reg)) || 3826 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) { 3827 /* bpf_map_xxx(..., map_ptr, ..., value) call: 3828 * check [value, value + map->value_size) validity 3829 */ 3830 if (!meta->map_ptr) { 3831 /* kernel subsystem misconfigured verifier */ 3832 verbose(env, "invalid map_ptr to access map->value\n"); 3833 return -EACCES; 3834 } 3835 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE); 3836 err = check_helper_mem_access(env, regno, 3837 meta->map_ptr->value_size, false, 3838 meta); 3839 } else if (arg_type_is_mem_size(arg_type)) { 3840 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO); 3841 3842 /* This is used to refine r0 return value bounds for helpers 3843 * that enforce this value as an upper bound on return values. 3844 * See do_refine_retval_range() for helpers that can refine 3845 * the return value. C type of helper is u32 so we pull register 3846 * bound from umax_value however, if negative verifier errors 3847 * out. Only upper bounds can be learned because retval is an 3848 * int type and negative retvals are allowed. 3849 */ 3850 meta->msize_max_value = reg->umax_value; 3851 3852 /* The register is SCALAR_VALUE; the access check 3853 * happens using its boundaries. 3854 */ 3855 if (!tnum_is_const(reg->var_off)) 3856 /* For unprivileged variable accesses, disable raw 3857 * mode so that the program is required to 3858 * initialize all the memory that the helper could 3859 * just partially fill up. 3860 */ 3861 meta = NULL; 3862 3863 if (reg->smin_value < 0) { 3864 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 3865 regno); 3866 return -EACCES; 3867 } 3868 3869 if (reg->umin_value == 0) { 3870 err = check_helper_mem_access(env, regno - 1, 0, 3871 zero_size_allowed, 3872 meta); 3873 if (err) 3874 return err; 3875 } 3876 3877 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 3878 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 3879 regno); 3880 return -EACCES; 3881 } 3882 err = check_helper_mem_access(env, regno - 1, 3883 reg->umax_value, 3884 zero_size_allowed, meta); 3885 if (!err) 3886 err = mark_chain_precision(env, regno); 3887 } else if (arg_type_is_int_ptr(arg_type)) { 3888 int size = int_ptr_type_to_size(arg_type); 3889 3890 err = check_helper_mem_access(env, regno, size, false, meta); 3891 if (err) 3892 return err; 3893 err = check_ptr_alignment(env, reg, 0, size, true); 3894 } 3895 3896 return err; 3897 err_type: 3898 verbose(env, "R%d type=%s expected=%s\n", regno, 3899 reg_type_str[type], reg_type_str[expected_type]); 3900 return -EACCES; 3901 } 3902 3903 static int check_map_func_compatibility(struct bpf_verifier_env *env, 3904 struct bpf_map *map, int func_id) 3905 { 3906 if (!map) 3907 return 0; 3908 3909 /* We need a two way check, first is from map perspective ... */ 3910 switch (map->map_type) { 3911 case BPF_MAP_TYPE_PROG_ARRAY: 3912 if (func_id != BPF_FUNC_tail_call) 3913 goto error; 3914 break; 3915 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 3916 if (func_id != BPF_FUNC_perf_event_read && 3917 func_id != BPF_FUNC_perf_event_output && 3918 func_id != BPF_FUNC_skb_output && 3919 func_id != BPF_FUNC_perf_event_read_value && 3920 func_id != BPF_FUNC_xdp_output) 3921 goto error; 3922 break; 3923 case BPF_MAP_TYPE_STACK_TRACE: 3924 if (func_id != BPF_FUNC_get_stackid) 3925 goto error; 3926 break; 3927 case BPF_MAP_TYPE_CGROUP_ARRAY: 3928 if (func_id != BPF_FUNC_skb_under_cgroup && 3929 func_id != BPF_FUNC_current_task_under_cgroup) 3930 goto error; 3931 break; 3932 case BPF_MAP_TYPE_CGROUP_STORAGE: 3933 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 3934 if (func_id != BPF_FUNC_get_local_storage) 3935 goto error; 3936 break; 3937 case BPF_MAP_TYPE_DEVMAP: 3938 case BPF_MAP_TYPE_DEVMAP_HASH: 3939 if (func_id != BPF_FUNC_redirect_map && 3940 func_id != BPF_FUNC_map_lookup_elem) 3941 goto error; 3942 break; 3943 /* Restrict bpf side of cpumap and xskmap, open when use-cases 3944 * appear. 3945 */ 3946 case BPF_MAP_TYPE_CPUMAP: 3947 if (func_id != BPF_FUNC_redirect_map) 3948 goto error; 3949 break; 3950 case BPF_MAP_TYPE_XSKMAP: 3951 if (func_id != BPF_FUNC_redirect_map && 3952 func_id != BPF_FUNC_map_lookup_elem) 3953 goto error; 3954 break; 3955 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 3956 case BPF_MAP_TYPE_HASH_OF_MAPS: 3957 if (func_id != BPF_FUNC_map_lookup_elem) 3958 goto error; 3959 break; 3960 case BPF_MAP_TYPE_SOCKMAP: 3961 if (func_id != BPF_FUNC_sk_redirect_map && 3962 func_id != BPF_FUNC_sock_map_update && 3963 func_id != BPF_FUNC_map_delete_elem && 3964 func_id != BPF_FUNC_msg_redirect_map && 3965 func_id != BPF_FUNC_sk_select_reuseport && 3966 func_id != BPF_FUNC_map_lookup_elem) 3967 goto error; 3968 break; 3969 case BPF_MAP_TYPE_SOCKHASH: 3970 if (func_id != BPF_FUNC_sk_redirect_hash && 3971 func_id != BPF_FUNC_sock_hash_update && 3972 func_id != BPF_FUNC_map_delete_elem && 3973 func_id != BPF_FUNC_msg_redirect_hash && 3974 func_id != BPF_FUNC_sk_select_reuseport && 3975 func_id != BPF_FUNC_map_lookup_elem) 3976 goto error; 3977 break; 3978 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 3979 if (func_id != BPF_FUNC_sk_select_reuseport) 3980 goto error; 3981 break; 3982 case BPF_MAP_TYPE_QUEUE: 3983 case BPF_MAP_TYPE_STACK: 3984 if (func_id != BPF_FUNC_map_peek_elem && 3985 func_id != BPF_FUNC_map_pop_elem && 3986 func_id != BPF_FUNC_map_push_elem) 3987 goto error; 3988 break; 3989 case BPF_MAP_TYPE_SK_STORAGE: 3990 if (func_id != BPF_FUNC_sk_storage_get && 3991 func_id != BPF_FUNC_sk_storage_delete) 3992 goto error; 3993 break; 3994 default: 3995 break; 3996 } 3997 3998 /* ... and second from the function itself. */ 3999 switch (func_id) { 4000 case BPF_FUNC_tail_call: 4001 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 4002 goto error; 4003 if (env->subprog_cnt > 1) { 4004 verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n"); 4005 return -EINVAL; 4006 } 4007 break; 4008 case BPF_FUNC_perf_event_read: 4009 case BPF_FUNC_perf_event_output: 4010 case BPF_FUNC_perf_event_read_value: 4011 case BPF_FUNC_skb_output: 4012 case BPF_FUNC_xdp_output: 4013 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 4014 goto error; 4015 break; 4016 case BPF_FUNC_get_stackid: 4017 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 4018 goto error; 4019 break; 4020 case BPF_FUNC_current_task_under_cgroup: 4021 case BPF_FUNC_skb_under_cgroup: 4022 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 4023 goto error; 4024 break; 4025 case BPF_FUNC_redirect_map: 4026 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 4027 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 4028 map->map_type != BPF_MAP_TYPE_CPUMAP && 4029 map->map_type != BPF_MAP_TYPE_XSKMAP) 4030 goto error; 4031 break; 4032 case BPF_FUNC_sk_redirect_map: 4033 case BPF_FUNC_msg_redirect_map: 4034 case BPF_FUNC_sock_map_update: 4035 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 4036 goto error; 4037 break; 4038 case BPF_FUNC_sk_redirect_hash: 4039 case BPF_FUNC_msg_redirect_hash: 4040 case BPF_FUNC_sock_hash_update: 4041 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 4042 goto error; 4043 break; 4044 case BPF_FUNC_get_local_storage: 4045 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 4046 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 4047 goto error; 4048 break; 4049 case BPF_FUNC_sk_select_reuseport: 4050 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 4051 map->map_type != BPF_MAP_TYPE_SOCKMAP && 4052 map->map_type != BPF_MAP_TYPE_SOCKHASH) 4053 goto error; 4054 break; 4055 case BPF_FUNC_map_peek_elem: 4056 case BPF_FUNC_map_pop_elem: 4057 case BPF_FUNC_map_push_elem: 4058 if (map->map_type != BPF_MAP_TYPE_QUEUE && 4059 map->map_type != BPF_MAP_TYPE_STACK) 4060 goto error; 4061 break; 4062 case BPF_FUNC_sk_storage_get: 4063 case BPF_FUNC_sk_storage_delete: 4064 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 4065 goto error; 4066 break; 4067 default: 4068 break; 4069 } 4070 4071 return 0; 4072 error: 4073 verbose(env, "cannot pass map_type %d into func %s#%d\n", 4074 map->map_type, func_id_name(func_id), func_id); 4075 return -EINVAL; 4076 } 4077 4078 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 4079 { 4080 int count = 0; 4081 4082 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 4083 count++; 4084 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 4085 count++; 4086 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 4087 count++; 4088 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 4089 count++; 4090 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 4091 count++; 4092 4093 /* We only support one arg being in raw mode at the moment, 4094 * which is sufficient for the helper functions we have 4095 * right now. 4096 */ 4097 return count <= 1; 4098 } 4099 4100 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr, 4101 enum bpf_arg_type arg_next) 4102 { 4103 return (arg_type_is_mem_ptr(arg_curr) && 4104 !arg_type_is_mem_size(arg_next)) || 4105 (!arg_type_is_mem_ptr(arg_curr) && 4106 arg_type_is_mem_size(arg_next)); 4107 } 4108 4109 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 4110 { 4111 /* bpf_xxx(..., buf, len) call will access 'len' 4112 * bytes from memory 'buf'. Both arg types need 4113 * to be paired, so make sure there's no buggy 4114 * helper function specification. 4115 */ 4116 if (arg_type_is_mem_size(fn->arg1_type) || 4117 arg_type_is_mem_ptr(fn->arg5_type) || 4118 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) || 4119 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) || 4120 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) || 4121 check_args_pair_invalid(fn->arg4_type, fn->arg5_type)) 4122 return false; 4123 4124 return true; 4125 } 4126 4127 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id) 4128 { 4129 int count = 0; 4130 4131 if (arg_type_may_be_refcounted(fn->arg1_type)) 4132 count++; 4133 if (arg_type_may_be_refcounted(fn->arg2_type)) 4134 count++; 4135 if (arg_type_may_be_refcounted(fn->arg3_type)) 4136 count++; 4137 if (arg_type_may_be_refcounted(fn->arg4_type)) 4138 count++; 4139 if (arg_type_may_be_refcounted(fn->arg5_type)) 4140 count++; 4141 4142 /* A reference acquiring function cannot acquire 4143 * another refcounted ptr. 4144 */ 4145 if (may_be_acquire_function(func_id) && count) 4146 return false; 4147 4148 /* We only support one arg being unreferenced at the moment, 4149 * which is sufficient for the helper functions we have right now. 4150 */ 4151 return count <= 1; 4152 } 4153 4154 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 4155 { 4156 return check_raw_mode_ok(fn) && 4157 check_arg_pair_ok(fn) && 4158 check_refcount_ok(fn, func_id) ? 0 : -EINVAL; 4159 } 4160 4161 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 4162 * are now invalid, so turn them into unknown SCALAR_VALUE. 4163 */ 4164 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env, 4165 struct bpf_func_state *state) 4166 { 4167 struct bpf_reg_state *regs = state->regs, *reg; 4168 int i; 4169 4170 for (i = 0; i < MAX_BPF_REG; i++) 4171 if (reg_is_pkt_pointer_any(®s[i])) 4172 mark_reg_unknown(env, regs, i); 4173 4174 bpf_for_each_spilled_reg(i, state, reg) { 4175 if (!reg) 4176 continue; 4177 if (reg_is_pkt_pointer_any(reg)) 4178 __mark_reg_unknown(env, reg); 4179 } 4180 } 4181 4182 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 4183 { 4184 struct bpf_verifier_state *vstate = env->cur_state; 4185 int i; 4186 4187 for (i = 0; i <= vstate->curframe; i++) 4188 __clear_all_pkt_pointers(env, vstate->frame[i]); 4189 } 4190 4191 static void release_reg_references(struct bpf_verifier_env *env, 4192 struct bpf_func_state *state, 4193 int ref_obj_id) 4194 { 4195 struct bpf_reg_state *regs = state->regs, *reg; 4196 int i; 4197 4198 for (i = 0; i < MAX_BPF_REG; i++) 4199 if (regs[i].ref_obj_id == ref_obj_id) 4200 mark_reg_unknown(env, regs, i); 4201 4202 bpf_for_each_spilled_reg(i, state, reg) { 4203 if (!reg) 4204 continue; 4205 if (reg->ref_obj_id == ref_obj_id) 4206 __mark_reg_unknown(env, reg); 4207 } 4208 } 4209 4210 /* The pointer with the specified id has released its reference to kernel 4211 * resources. Identify all copies of the same pointer and clear the reference. 4212 */ 4213 static int release_reference(struct bpf_verifier_env *env, 4214 int ref_obj_id) 4215 { 4216 struct bpf_verifier_state *vstate = env->cur_state; 4217 int err; 4218 int i; 4219 4220 err = release_reference_state(cur_func(env), ref_obj_id); 4221 if (err) 4222 return err; 4223 4224 for (i = 0; i <= vstate->curframe; i++) 4225 release_reg_references(env, vstate->frame[i], ref_obj_id); 4226 4227 return 0; 4228 } 4229 4230 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 4231 struct bpf_reg_state *regs) 4232 { 4233 int i; 4234 4235 /* after the call registers r0 - r5 were scratched */ 4236 for (i = 0; i < CALLER_SAVED_REGS; i++) { 4237 mark_reg_not_init(env, regs, caller_saved[i]); 4238 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 4239 } 4240 } 4241 4242 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 4243 int *insn_idx) 4244 { 4245 struct bpf_verifier_state *state = env->cur_state; 4246 struct bpf_func_info_aux *func_info_aux; 4247 struct bpf_func_state *caller, *callee; 4248 int i, err, subprog, target_insn; 4249 bool is_global = false; 4250 4251 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 4252 verbose(env, "the call stack of %d frames is too deep\n", 4253 state->curframe + 2); 4254 return -E2BIG; 4255 } 4256 4257 target_insn = *insn_idx + insn->imm; 4258 subprog = find_subprog(env, target_insn + 1); 4259 if (subprog < 0) { 4260 verbose(env, "verifier bug. No program starts at insn %d\n", 4261 target_insn + 1); 4262 return -EFAULT; 4263 } 4264 4265 caller = state->frame[state->curframe]; 4266 if (state->frame[state->curframe + 1]) { 4267 verbose(env, "verifier bug. Frame %d already allocated\n", 4268 state->curframe + 1); 4269 return -EFAULT; 4270 } 4271 4272 func_info_aux = env->prog->aux->func_info_aux; 4273 if (func_info_aux) 4274 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL; 4275 err = btf_check_func_arg_match(env, subprog, caller->regs); 4276 if (err == -EFAULT) 4277 return err; 4278 if (is_global) { 4279 if (err) { 4280 verbose(env, "Caller passes invalid args into func#%d\n", 4281 subprog); 4282 return err; 4283 } else { 4284 if (env->log.level & BPF_LOG_LEVEL) 4285 verbose(env, 4286 "Func#%d is global and valid. Skipping.\n", 4287 subprog); 4288 clear_caller_saved_regs(env, caller->regs); 4289 4290 /* All global functions return SCALAR_VALUE */ 4291 mark_reg_unknown(env, caller->regs, BPF_REG_0); 4292 4293 /* continue with next insn after call */ 4294 return 0; 4295 } 4296 } 4297 4298 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 4299 if (!callee) 4300 return -ENOMEM; 4301 state->frame[state->curframe + 1] = callee; 4302 4303 /* callee cannot access r0, r6 - r9 for reading and has to write 4304 * into its own stack before reading from it. 4305 * callee can read/write into caller's stack 4306 */ 4307 init_func_state(env, callee, 4308 /* remember the callsite, it will be used by bpf_exit */ 4309 *insn_idx /* callsite */, 4310 state->curframe + 1 /* frameno within this callchain */, 4311 subprog /* subprog number within this prog */); 4312 4313 /* Transfer references to the callee */ 4314 err = transfer_reference_state(callee, caller); 4315 if (err) 4316 return err; 4317 4318 /* copy r1 - r5 args that callee can access. The copy includes parent 4319 * pointers, which connects us up to the liveness chain 4320 */ 4321 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 4322 callee->regs[i] = caller->regs[i]; 4323 4324 clear_caller_saved_regs(env, caller->regs); 4325 4326 /* only increment it after check_reg_arg() finished */ 4327 state->curframe++; 4328 4329 /* and go analyze first insn of the callee */ 4330 *insn_idx = target_insn; 4331 4332 if (env->log.level & BPF_LOG_LEVEL) { 4333 verbose(env, "caller:\n"); 4334 print_verifier_state(env, caller); 4335 verbose(env, "callee:\n"); 4336 print_verifier_state(env, callee); 4337 } 4338 return 0; 4339 } 4340 4341 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 4342 { 4343 struct bpf_verifier_state *state = env->cur_state; 4344 struct bpf_func_state *caller, *callee; 4345 struct bpf_reg_state *r0; 4346 int err; 4347 4348 callee = state->frame[state->curframe]; 4349 r0 = &callee->regs[BPF_REG_0]; 4350 if (r0->type == PTR_TO_STACK) { 4351 /* technically it's ok to return caller's stack pointer 4352 * (or caller's caller's pointer) back to the caller, 4353 * since these pointers are valid. Only current stack 4354 * pointer will be invalid as soon as function exits, 4355 * but let's be conservative 4356 */ 4357 verbose(env, "cannot return stack pointer to the caller\n"); 4358 return -EINVAL; 4359 } 4360 4361 state->curframe--; 4362 caller = state->frame[state->curframe]; 4363 /* return to the caller whatever r0 had in the callee */ 4364 caller->regs[BPF_REG_0] = *r0; 4365 4366 /* Transfer references to the caller */ 4367 err = transfer_reference_state(caller, callee); 4368 if (err) 4369 return err; 4370 4371 *insn_idx = callee->callsite + 1; 4372 if (env->log.level & BPF_LOG_LEVEL) { 4373 verbose(env, "returning from callee:\n"); 4374 print_verifier_state(env, callee); 4375 verbose(env, "to caller at %d:\n", *insn_idx); 4376 print_verifier_state(env, caller); 4377 } 4378 /* clear everything in the callee */ 4379 free_func_state(callee); 4380 state->frame[state->curframe + 1] = NULL; 4381 return 0; 4382 } 4383 4384 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 4385 int func_id, 4386 struct bpf_call_arg_meta *meta) 4387 { 4388 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 4389 4390 if (ret_type != RET_INTEGER || 4391 (func_id != BPF_FUNC_get_stack && 4392 func_id != BPF_FUNC_probe_read_str && 4393 func_id != BPF_FUNC_probe_read_kernel_str && 4394 func_id != BPF_FUNC_probe_read_user_str)) 4395 return; 4396 4397 ret_reg->smax_value = meta->msize_max_value; 4398 ret_reg->s32_max_value = meta->msize_max_value; 4399 __reg_deduce_bounds(ret_reg); 4400 __reg_bound_offset(ret_reg); 4401 __update_reg_bounds(ret_reg); 4402 } 4403 4404 static int 4405 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 4406 int func_id, int insn_idx) 4407 { 4408 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 4409 struct bpf_map *map = meta->map_ptr; 4410 4411 if (func_id != BPF_FUNC_tail_call && 4412 func_id != BPF_FUNC_map_lookup_elem && 4413 func_id != BPF_FUNC_map_update_elem && 4414 func_id != BPF_FUNC_map_delete_elem && 4415 func_id != BPF_FUNC_map_push_elem && 4416 func_id != BPF_FUNC_map_pop_elem && 4417 func_id != BPF_FUNC_map_peek_elem) 4418 return 0; 4419 4420 if (map == NULL) { 4421 verbose(env, "kernel subsystem misconfigured verifier\n"); 4422 return -EINVAL; 4423 } 4424 4425 /* In case of read-only, some additional restrictions 4426 * need to be applied in order to prevent altering the 4427 * state of the map from program side. 4428 */ 4429 if ((map->map_flags & BPF_F_RDONLY_PROG) && 4430 (func_id == BPF_FUNC_map_delete_elem || 4431 func_id == BPF_FUNC_map_update_elem || 4432 func_id == BPF_FUNC_map_push_elem || 4433 func_id == BPF_FUNC_map_pop_elem)) { 4434 verbose(env, "write into map forbidden\n"); 4435 return -EACCES; 4436 } 4437 4438 if (!BPF_MAP_PTR(aux->map_ptr_state)) 4439 bpf_map_ptr_store(aux, meta->map_ptr, 4440 !meta->map_ptr->bypass_spec_v1); 4441 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr) 4442 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 4443 !meta->map_ptr->bypass_spec_v1); 4444 return 0; 4445 } 4446 4447 static int 4448 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 4449 int func_id, int insn_idx) 4450 { 4451 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 4452 struct bpf_reg_state *regs = cur_regs(env), *reg; 4453 struct bpf_map *map = meta->map_ptr; 4454 struct tnum range; 4455 u64 val; 4456 int err; 4457 4458 if (func_id != BPF_FUNC_tail_call) 4459 return 0; 4460 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 4461 verbose(env, "kernel subsystem misconfigured verifier\n"); 4462 return -EINVAL; 4463 } 4464 4465 range = tnum_range(0, map->max_entries - 1); 4466 reg = ®s[BPF_REG_3]; 4467 4468 if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) { 4469 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 4470 return 0; 4471 } 4472 4473 err = mark_chain_precision(env, BPF_REG_3); 4474 if (err) 4475 return err; 4476 4477 val = reg->var_off.value; 4478 if (bpf_map_key_unseen(aux)) 4479 bpf_map_key_store(aux, val); 4480 else if (!bpf_map_key_poisoned(aux) && 4481 bpf_map_key_immediate(aux) != val) 4482 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 4483 return 0; 4484 } 4485 4486 static int check_reference_leak(struct bpf_verifier_env *env) 4487 { 4488 struct bpf_func_state *state = cur_func(env); 4489 int i; 4490 4491 for (i = 0; i < state->acquired_refs; i++) { 4492 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 4493 state->refs[i].id, state->refs[i].insn_idx); 4494 } 4495 return state->acquired_refs ? -EINVAL : 0; 4496 } 4497 4498 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx) 4499 { 4500 const struct bpf_func_proto *fn = NULL; 4501 struct bpf_reg_state *regs; 4502 struct bpf_call_arg_meta meta; 4503 bool changes_data; 4504 int i, err; 4505 4506 /* find function prototype */ 4507 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 4508 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 4509 func_id); 4510 return -EINVAL; 4511 } 4512 4513 if (env->ops->get_func_proto) 4514 fn = env->ops->get_func_proto(func_id, env->prog); 4515 if (!fn) { 4516 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 4517 func_id); 4518 return -EINVAL; 4519 } 4520 4521 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 4522 if (!env->prog->gpl_compatible && fn->gpl_only) { 4523 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 4524 return -EINVAL; 4525 } 4526 4527 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 4528 changes_data = bpf_helper_changes_pkt_data(fn->func); 4529 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 4530 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 4531 func_id_name(func_id), func_id); 4532 return -EINVAL; 4533 } 4534 4535 memset(&meta, 0, sizeof(meta)); 4536 meta.pkt_access = fn->pkt_access; 4537 4538 err = check_func_proto(fn, func_id); 4539 if (err) { 4540 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 4541 func_id_name(func_id), func_id); 4542 return err; 4543 } 4544 4545 meta.func_id = func_id; 4546 /* check args */ 4547 for (i = 0; i < 5; i++) { 4548 err = btf_resolve_helper_id(&env->log, fn, i); 4549 if (err > 0) 4550 meta.btf_id = err; 4551 err = check_func_arg(env, BPF_REG_1 + i, fn->arg_type[i], &meta); 4552 if (err) 4553 return err; 4554 } 4555 4556 err = record_func_map(env, &meta, func_id, insn_idx); 4557 if (err) 4558 return err; 4559 4560 err = record_func_key(env, &meta, func_id, insn_idx); 4561 if (err) 4562 return err; 4563 4564 /* Mark slots with STACK_MISC in case of raw mode, stack offset 4565 * is inferred from register state. 4566 */ 4567 for (i = 0; i < meta.access_size; i++) { 4568 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 4569 BPF_WRITE, -1, false); 4570 if (err) 4571 return err; 4572 } 4573 4574 if (func_id == BPF_FUNC_tail_call) { 4575 err = check_reference_leak(env); 4576 if (err) { 4577 verbose(env, "tail_call would lead to reference leak\n"); 4578 return err; 4579 } 4580 } else if (is_release_function(func_id)) { 4581 err = release_reference(env, meta.ref_obj_id); 4582 if (err) { 4583 verbose(env, "func %s#%d reference has not been acquired before\n", 4584 func_id_name(func_id), func_id); 4585 return err; 4586 } 4587 } 4588 4589 regs = cur_regs(env); 4590 4591 /* check that flags argument in get_local_storage(map, flags) is 0, 4592 * this is required because get_local_storage() can't return an error. 4593 */ 4594 if (func_id == BPF_FUNC_get_local_storage && 4595 !register_is_null(®s[BPF_REG_2])) { 4596 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 4597 return -EINVAL; 4598 } 4599 4600 /* reset caller saved regs */ 4601 for (i = 0; i < CALLER_SAVED_REGS; i++) { 4602 mark_reg_not_init(env, regs, caller_saved[i]); 4603 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 4604 } 4605 4606 /* helper call returns 64-bit value. */ 4607 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 4608 4609 /* update return register (already marked as written above) */ 4610 if (fn->ret_type == RET_INTEGER) { 4611 /* sets type to SCALAR_VALUE */ 4612 mark_reg_unknown(env, regs, BPF_REG_0); 4613 } else if (fn->ret_type == RET_VOID) { 4614 regs[BPF_REG_0].type = NOT_INIT; 4615 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL || 4616 fn->ret_type == RET_PTR_TO_MAP_VALUE) { 4617 /* There is no offset yet applied, variable or fixed */ 4618 mark_reg_known_zero(env, regs, BPF_REG_0); 4619 /* remember map_ptr, so that check_map_access() 4620 * can check 'value_size' boundary of memory access 4621 * to map element returned from bpf_map_lookup_elem() 4622 */ 4623 if (meta.map_ptr == NULL) { 4624 verbose(env, 4625 "kernel subsystem misconfigured verifier\n"); 4626 return -EINVAL; 4627 } 4628 regs[BPF_REG_0].map_ptr = meta.map_ptr; 4629 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) { 4630 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE; 4631 if (map_value_has_spin_lock(meta.map_ptr)) 4632 regs[BPF_REG_0].id = ++env->id_gen; 4633 } else { 4634 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL; 4635 regs[BPF_REG_0].id = ++env->id_gen; 4636 } 4637 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) { 4638 mark_reg_known_zero(env, regs, BPF_REG_0); 4639 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL; 4640 regs[BPF_REG_0].id = ++env->id_gen; 4641 } else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) { 4642 mark_reg_known_zero(env, regs, BPF_REG_0); 4643 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL; 4644 regs[BPF_REG_0].id = ++env->id_gen; 4645 } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) { 4646 mark_reg_known_zero(env, regs, BPF_REG_0); 4647 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL; 4648 regs[BPF_REG_0].id = ++env->id_gen; 4649 } else { 4650 verbose(env, "unknown return type %d of func %s#%d\n", 4651 fn->ret_type, func_id_name(func_id), func_id); 4652 return -EINVAL; 4653 } 4654 4655 if (is_ptr_cast_function(func_id)) { 4656 /* For release_reference() */ 4657 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 4658 } else if (is_acquire_function(func_id, meta.map_ptr)) { 4659 int id = acquire_reference_state(env, insn_idx); 4660 4661 if (id < 0) 4662 return id; 4663 /* For mark_ptr_or_null_reg() */ 4664 regs[BPF_REG_0].id = id; 4665 /* For release_reference() */ 4666 regs[BPF_REG_0].ref_obj_id = id; 4667 } 4668 4669 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 4670 4671 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 4672 if (err) 4673 return err; 4674 4675 if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) { 4676 const char *err_str; 4677 4678 #ifdef CONFIG_PERF_EVENTS 4679 err = get_callchain_buffers(sysctl_perf_event_max_stack); 4680 err_str = "cannot get callchain buffer for func %s#%d\n"; 4681 #else 4682 err = -ENOTSUPP; 4683 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 4684 #endif 4685 if (err) { 4686 verbose(env, err_str, func_id_name(func_id), func_id); 4687 return err; 4688 } 4689 4690 env->prog->has_callchain_buf = true; 4691 } 4692 4693 if (changes_data) 4694 clear_all_pkt_pointers(env); 4695 return 0; 4696 } 4697 4698 static bool signed_add_overflows(s64 a, s64 b) 4699 { 4700 /* Do the add in u64, where overflow is well-defined */ 4701 s64 res = (s64)((u64)a + (u64)b); 4702 4703 if (b < 0) 4704 return res > a; 4705 return res < a; 4706 } 4707 4708 static bool signed_add32_overflows(s64 a, s64 b) 4709 { 4710 /* Do the add in u32, where overflow is well-defined */ 4711 s32 res = (s32)((u32)a + (u32)b); 4712 4713 if (b < 0) 4714 return res > a; 4715 return res < a; 4716 } 4717 4718 static bool signed_sub_overflows(s32 a, s32 b) 4719 { 4720 /* Do the sub in u64, where overflow is well-defined */ 4721 s64 res = (s64)((u64)a - (u64)b); 4722 4723 if (b < 0) 4724 return res < a; 4725 return res > a; 4726 } 4727 4728 static bool signed_sub32_overflows(s32 a, s32 b) 4729 { 4730 /* Do the sub in u64, where overflow is well-defined */ 4731 s32 res = (s32)((u32)a - (u32)b); 4732 4733 if (b < 0) 4734 return res < a; 4735 return res > a; 4736 } 4737 4738 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 4739 const struct bpf_reg_state *reg, 4740 enum bpf_reg_type type) 4741 { 4742 bool known = tnum_is_const(reg->var_off); 4743 s64 val = reg->var_off.value; 4744 s64 smin = reg->smin_value; 4745 4746 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 4747 verbose(env, "math between %s pointer and %lld is not allowed\n", 4748 reg_type_str[type], val); 4749 return false; 4750 } 4751 4752 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 4753 verbose(env, "%s pointer offset %d is not allowed\n", 4754 reg_type_str[type], reg->off); 4755 return false; 4756 } 4757 4758 if (smin == S64_MIN) { 4759 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 4760 reg_type_str[type]); 4761 return false; 4762 } 4763 4764 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 4765 verbose(env, "value %lld makes %s pointer be out of bounds\n", 4766 smin, reg_type_str[type]); 4767 return false; 4768 } 4769 4770 return true; 4771 } 4772 4773 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 4774 { 4775 return &env->insn_aux_data[env->insn_idx]; 4776 } 4777 4778 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 4779 u32 *ptr_limit, u8 opcode, bool off_is_neg) 4780 { 4781 bool mask_to_left = (opcode == BPF_ADD && off_is_neg) || 4782 (opcode == BPF_SUB && !off_is_neg); 4783 u32 off; 4784 4785 switch (ptr_reg->type) { 4786 case PTR_TO_STACK: 4787 /* Indirect variable offset stack access is prohibited in 4788 * unprivileged mode so it's not handled here. 4789 */ 4790 off = ptr_reg->off + ptr_reg->var_off.value; 4791 if (mask_to_left) 4792 *ptr_limit = MAX_BPF_STACK + off; 4793 else 4794 *ptr_limit = -off; 4795 return 0; 4796 case PTR_TO_MAP_VALUE: 4797 if (mask_to_left) { 4798 *ptr_limit = ptr_reg->umax_value + ptr_reg->off; 4799 } else { 4800 off = ptr_reg->smin_value + ptr_reg->off; 4801 *ptr_limit = ptr_reg->map_ptr->value_size - off; 4802 } 4803 return 0; 4804 default: 4805 return -EINVAL; 4806 } 4807 } 4808 4809 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 4810 const struct bpf_insn *insn) 4811 { 4812 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K; 4813 } 4814 4815 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 4816 u32 alu_state, u32 alu_limit) 4817 { 4818 /* If we arrived here from different branches with different 4819 * state or limits to sanitize, then this won't work. 4820 */ 4821 if (aux->alu_state && 4822 (aux->alu_state != alu_state || 4823 aux->alu_limit != alu_limit)) 4824 return -EACCES; 4825 4826 /* Corresponding fixup done in fixup_bpf_calls(). */ 4827 aux->alu_state = alu_state; 4828 aux->alu_limit = alu_limit; 4829 return 0; 4830 } 4831 4832 static int sanitize_val_alu(struct bpf_verifier_env *env, 4833 struct bpf_insn *insn) 4834 { 4835 struct bpf_insn_aux_data *aux = cur_aux(env); 4836 4837 if (can_skip_alu_sanitation(env, insn)) 4838 return 0; 4839 4840 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 4841 } 4842 4843 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 4844 struct bpf_insn *insn, 4845 const struct bpf_reg_state *ptr_reg, 4846 struct bpf_reg_state *dst_reg, 4847 bool off_is_neg) 4848 { 4849 struct bpf_verifier_state *vstate = env->cur_state; 4850 struct bpf_insn_aux_data *aux = cur_aux(env); 4851 bool ptr_is_dst_reg = ptr_reg == dst_reg; 4852 u8 opcode = BPF_OP(insn->code); 4853 u32 alu_state, alu_limit; 4854 struct bpf_reg_state tmp; 4855 bool ret; 4856 4857 if (can_skip_alu_sanitation(env, insn)) 4858 return 0; 4859 4860 /* We already marked aux for masking from non-speculative 4861 * paths, thus we got here in the first place. We only care 4862 * to explore bad access from here. 4863 */ 4864 if (vstate->speculative) 4865 goto do_sim; 4866 4867 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 4868 alu_state |= ptr_is_dst_reg ? 4869 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 4870 4871 if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg)) 4872 return 0; 4873 if (update_alu_sanitation_state(aux, alu_state, alu_limit)) 4874 return -EACCES; 4875 do_sim: 4876 /* Simulate and find potential out-of-bounds access under 4877 * speculative execution from truncation as a result of 4878 * masking when off was not within expected range. If off 4879 * sits in dst, then we temporarily need to move ptr there 4880 * to simulate dst (== 0) +/-= ptr. Needed, for example, 4881 * for cases where we use K-based arithmetic in one direction 4882 * and truncated reg-based in the other in order to explore 4883 * bad access. 4884 */ 4885 if (!ptr_is_dst_reg) { 4886 tmp = *dst_reg; 4887 *dst_reg = *ptr_reg; 4888 } 4889 ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true); 4890 if (!ptr_is_dst_reg && ret) 4891 *dst_reg = tmp; 4892 return !ret ? -EFAULT : 0; 4893 } 4894 4895 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 4896 * Caller should also handle BPF_MOV case separately. 4897 * If we return -EACCES, caller may want to try again treating pointer as a 4898 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 4899 */ 4900 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 4901 struct bpf_insn *insn, 4902 const struct bpf_reg_state *ptr_reg, 4903 const struct bpf_reg_state *off_reg) 4904 { 4905 struct bpf_verifier_state *vstate = env->cur_state; 4906 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4907 struct bpf_reg_state *regs = state->regs, *dst_reg; 4908 bool known = tnum_is_const(off_reg->var_off); 4909 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 4910 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 4911 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 4912 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 4913 u32 dst = insn->dst_reg, src = insn->src_reg; 4914 u8 opcode = BPF_OP(insn->code); 4915 int ret; 4916 4917 dst_reg = ®s[dst]; 4918 4919 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 4920 smin_val > smax_val || umin_val > umax_val) { 4921 /* Taint dst register if offset had invalid bounds derived from 4922 * e.g. dead branches. 4923 */ 4924 __mark_reg_unknown(env, dst_reg); 4925 return 0; 4926 } 4927 4928 if (BPF_CLASS(insn->code) != BPF_ALU64) { 4929 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 4930 verbose(env, 4931 "R%d 32-bit pointer arithmetic prohibited\n", 4932 dst); 4933 return -EACCES; 4934 } 4935 4936 switch (ptr_reg->type) { 4937 case PTR_TO_MAP_VALUE_OR_NULL: 4938 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 4939 dst, reg_type_str[ptr_reg->type]); 4940 return -EACCES; 4941 case CONST_PTR_TO_MAP: 4942 case PTR_TO_PACKET_END: 4943 case PTR_TO_SOCKET: 4944 case PTR_TO_SOCKET_OR_NULL: 4945 case PTR_TO_SOCK_COMMON: 4946 case PTR_TO_SOCK_COMMON_OR_NULL: 4947 case PTR_TO_TCP_SOCK: 4948 case PTR_TO_TCP_SOCK_OR_NULL: 4949 case PTR_TO_XDP_SOCK: 4950 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 4951 dst, reg_type_str[ptr_reg->type]); 4952 return -EACCES; 4953 case PTR_TO_MAP_VALUE: 4954 if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) { 4955 verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n", 4956 off_reg == dst_reg ? dst : src); 4957 return -EACCES; 4958 } 4959 /* fall-through */ 4960 default: 4961 break; 4962 } 4963 4964 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 4965 * The id may be overwritten later if we create a new variable offset. 4966 */ 4967 dst_reg->type = ptr_reg->type; 4968 dst_reg->id = ptr_reg->id; 4969 4970 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 4971 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 4972 return -EINVAL; 4973 4974 /* pointer types do not carry 32-bit bounds at the moment. */ 4975 __mark_reg32_unbounded(dst_reg); 4976 4977 switch (opcode) { 4978 case BPF_ADD: 4979 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0); 4980 if (ret < 0) { 4981 verbose(env, "R%d tried to add from different maps or paths\n", dst); 4982 return ret; 4983 } 4984 /* We can take a fixed offset as long as it doesn't overflow 4985 * the s32 'off' field 4986 */ 4987 if (known && (ptr_reg->off + smin_val == 4988 (s64)(s32)(ptr_reg->off + smin_val))) { 4989 /* pointer += K. Accumulate it into fixed offset */ 4990 dst_reg->smin_value = smin_ptr; 4991 dst_reg->smax_value = smax_ptr; 4992 dst_reg->umin_value = umin_ptr; 4993 dst_reg->umax_value = umax_ptr; 4994 dst_reg->var_off = ptr_reg->var_off; 4995 dst_reg->off = ptr_reg->off + smin_val; 4996 dst_reg->raw = ptr_reg->raw; 4997 break; 4998 } 4999 /* A new variable offset is created. Note that off_reg->off 5000 * == 0, since it's a scalar. 5001 * dst_reg gets the pointer type and since some positive 5002 * integer value was added to the pointer, give it a new 'id' 5003 * if it's a PTR_TO_PACKET. 5004 * this creates a new 'base' pointer, off_reg (variable) gets 5005 * added into the variable offset, and we copy the fixed offset 5006 * from ptr_reg. 5007 */ 5008 if (signed_add_overflows(smin_ptr, smin_val) || 5009 signed_add_overflows(smax_ptr, smax_val)) { 5010 dst_reg->smin_value = S64_MIN; 5011 dst_reg->smax_value = S64_MAX; 5012 } else { 5013 dst_reg->smin_value = smin_ptr + smin_val; 5014 dst_reg->smax_value = smax_ptr + smax_val; 5015 } 5016 if (umin_ptr + umin_val < umin_ptr || 5017 umax_ptr + umax_val < umax_ptr) { 5018 dst_reg->umin_value = 0; 5019 dst_reg->umax_value = U64_MAX; 5020 } else { 5021 dst_reg->umin_value = umin_ptr + umin_val; 5022 dst_reg->umax_value = umax_ptr + umax_val; 5023 } 5024 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 5025 dst_reg->off = ptr_reg->off; 5026 dst_reg->raw = ptr_reg->raw; 5027 if (reg_is_pkt_pointer(ptr_reg)) { 5028 dst_reg->id = ++env->id_gen; 5029 /* something was added to pkt_ptr, set range to zero */ 5030 dst_reg->raw = 0; 5031 } 5032 break; 5033 case BPF_SUB: 5034 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0); 5035 if (ret < 0) { 5036 verbose(env, "R%d tried to sub from different maps or paths\n", dst); 5037 return ret; 5038 } 5039 if (dst_reg == off_reg) { 5040 /* scalar -= pointer. Creates an unknown scalar */ 5041 verbose(env, "R%d tried to subtract pointer from scalar\n", 5042 dst); 5043 return -EACCES; 5044 } 5045 /* We don't allow subtraction from FP, because (according to 5046 * test_verifier.c test "invalid fp arithmetic", JITs might not 5047 * be able to deal with it. 5048 */ 5049 if (ptr_reg->type == PTR_TO_STACK) { 5050 verbose(env, "R%d subtraction from stack pointer prohibited\n", 5051 dst); 5052 return -EACCES; 5053 } 5054 if (known && (ptr_reg->off - smin_val == 5055 (s64)(s32)(ptr_reg->off - smin_val))) { 5056 /* pointer -= K. Subtract it from fixed offset */ 5057 dst_reg->smin_value = smin_ptr; 5058 dst_reg->smax_value = smax_ptr; 5059 dst_reg->umin_value = umin_ptr; 5060 dst_reg->umax_value = umax_ptr; 5061 dst_reg->var_off = ptr_reg->var_off; 5062 dst_reg->id = ptr_reg->id; 5063 dst_reg->off = ptr_reg->off - smin_val; 5064 dst_reg->raw = ptr_reg->raw; 5065 break; 5066 } 5067 /* A new variable offset is created. If the subtrahend is known 5068 * nonnegative, then any reg->range we had before is still good. 5069 */ 5070 if (signed_sub_overflows(smin_ptr, smax_val) || 5071 signed_sub_overflows(smax_ptr, smin_val)) { 5072 /* Overflow possible, we know nothing */ 5073 dst_reg->smin_value = S64_MIN; 5074 dst_reg->smax_value = S64_MAX; 5075 } else { 5076 dst_reg->smin_value = smin_ptr - smax_val; 5077 dst_reg->smax_value = smax_ptr - smin_val; 5078 } 5079 if (umin_ptr < umax_val) { 5080 /* Overflow possible, we know nothing */ 5081 dst_reg->umin_value = 0; 5082 dst_reg->umax_value = U64_MAX; 5083 } else { 5084 /* Cannot overflow (as long as bounds are consistent) */ 5085 dst_reg->umin_value = umin_ptr - umax_val; 5086 dst_reg->umax_value = umax_ptr - umin_val; 5087 } 5088 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 5089 dst_reg->off = ptr_reg->off; 5090 dst_reg->raw = ptr_reg->raw; 5091 if (reg_is_pkt_pointer(ptr_reg)) { 5092 dst_reg->id = ++env->id_gen; 5093 /* something was added to pkt_ptr, set range to zero */ 5094 if (smin_val < 0) 5095 dst_reg->raw = 0; 5096 } 5097 break; 5098 case BPF_AND: 5099 case BPF_OR: 5100 case BPF_XOR: 5101 /* bitwise ops on pointers are troublesome, prohibit. */ 5102 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 5103 dst, bpf_alu_string[opcode >> 4]); 5104 return -EACCES; 5105 default: 5106 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 5107 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 5108 dst, bpf_alu_string[opcode >> 4]); 5109 return -EACCES; 5110 } 5111 5112 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 5113 return -EINVAL; 5114 5115 __update_reg_bounds(dst_reg); 5116 __reg_deduce_bounds(dst_reg); 5117 __reg_bound_offset(dst_reg); 5118 5119 /* For unprivileged we require that resulting offset must be in bounds 5120 * in order to be able to sanitize access later on. 5121 */ 5122 if (!env->bypass_spec_v1) { 5123 if (dst_reg->type == PTR_TO_MAP_VALUE && 5124 check_map_access(env, dst, dst_reg->off, 1, false)) { 5125 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 5126 "prohibited for !root\n", dst); 5127 return -EACCES; 5128 } else if (dst_reg->type == PTR_TO_STACK && 5129 check_stack_access(env, dst_reg, dst_reg->off + 5130 dst_reg->var_off.value, 1)) { 5131 verbose(env, "R%d stack pointer arithmetic goes out of range, " 5132 "prohibited for !root\n", dst); 5133 return -EACCES; 5134 } 5135 } 5136 5137 return 0; 5138 } 5139 5140 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, 5141 struct bpf_reg_state *src_reg) 5142 { 5143 s32 smin_val = src_reg->s32_min_value; 5144 s32 smax_val = src_reg->s32_max_value; 5145 u32 umin_val = src_reg->u32_min_value; 5146 u32 umax_val = src_reg->u32_max_value; 5147 5148 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) || 5149 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) { 5150 dst_reg->s32_min_value = S32_MIN; 5151 dst_reg->s32_max_value = S32_MAX; 5152 } else { 5153 dst_reg->s32_min_value += smin_val; 5154 dst_reg->s32_max_value += smax_val; 5155 } 5156 if (dst_reg->u32_min_value + umin_val < umin_val || 5157 dst_reg->u32_max_value + umax_val < umax_val) { 5158 dst_reg->u32_min_value = 0; 5159 dst_reg->u32_max_value = U32_MAX; 5160 } else { 5161 dst_reg->u32_min_value += umin_val; 5162 dst_reg->u32_max_value += umax_val; 5163 } 5164 } 5165 5166 static void scalar_min_max_add(struct bpf_reg_state *dst_reg, 5167 struct bpf_reg_state *src_reg) 5168 { 5169 s64 smin_val = src_reg->smin_value; 5170 s64 smax_val = src_reg->smax_value; 5171 u64 umin_val = src_reg->umin_value; 5172 u64 umax_val = src_reg->umax_value; 5173 5174 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 5175 signed_add_overflows(dst_reg->smax_value, smax_val)) { 5176 dst_reg->smin_value = S64_MIN; 5177 dst_reg->smax_value = S64_MAX; 5178 } else { 5179 dst_reg->smin_value += smin_val; 5180 dst_reg->smax_value += smax_val; 5181 } 5182 if (dst_reg->umin_value + umin_val < umin_val || 5183 dst_reg->umax_value + umax_val < umax_val) { 5184 dst_reg->umin_value = 0; 5185 dst_reg->umax_value = U64_MAX; 5186 } else { 5187 dst_reg->umin_value += umin_val; 5188 dst_reg->umax_value += umax_val; 5189 } 5190 } 5191 5192 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, 5193 struct bpf_reg_state *src_reg) 5194 { 5195 s32 smin_val = src_reg->s32_min_value; 5196 s32 smax_val = src_reg->s32_max_value; 5197 u32 umin_val = src_reg->u32_min_value; 5198 u32 umax_val = src_reg->u32_max_value; 5199 5200 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) || 5201 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) { 5202 /* Overflow possible, we know nothing */ 5203 dst_reg->s32_min_value = S32_MIN; 5204 dst_reg->s32_max_value = S32_MAX; 5205 } else { 5206 dst_reg->s32_min_value -= smax_val; 5207 dst_reg->s32_max_value -= smin_val; 5208 } 5209 if (dst_reg->u32_min_value < umax_val) { 5210 /* Overflow possible, we know nothing */ 5211 dst_reg->u32_min_value = 0; 5212 dst_reg->u32_max_value = U32_MAX; 5213 } else { 5214 /* Cannot overflow (as long as bounds are consistent) */ 5215 dst_reg->u32_min_value -= umax_val; 5216 dst_reg->u32_max_value -= umin_val; 5217 } 5218 } 5219 5220 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, 5221 struct bpf_reg_state *src_reg) 5222 { 5223 s64 smin_val = src_reg->smin_value; 5224 s64 smax_val = src_reg->smax_value; 5225 u64 umin_val = src_reg->umin_value; 5226 u64 umax_val = src_reg->umax_value; 5227 5228 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 5229 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 5230 /* Overflow possible, we know nothing */ 5231 dst_reg->smin_value = S64_MIN; 5232 dst_reg->smax_value = S64_MAX; 5233 } else { 5234 dst_reg->smin_value -= smax_val; 5235 dst_reg->smax_value -= smin_val; 5236 } 5237 if (dst_reg->umin_value < umax_val) { 5238 /* Overflow possible, we know nothing */ 5239 dst_reg->umin_value = 0; 5240 dst_reg->umax_value = U64_MAX; 5241 } else { 5242 /* Cannot overflow (as long as bounds are consistent) */ 5243 dst_reg->umin_value -= umax_val; 5244 dst_reg->umax_value -= umin_val; 5245 } 5246 } 5247 5248 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, 5249 struct bpf_reg_state *src_reg) 5250 { 5251 s32 smin_val = src_reg->s32_min_value; 5252 u32 umin_val = src_reg->u32_min_value; 5253 u32 umax_val = src_reg->u32_max_value; 5254 5255 if (smin_val < 0 || dst_reg->s32_min_value < 0) { 5256 /* Ain't nobody got time to multiply that sign */ 5257 __mark_reg32_unbounded(dst_reg); 5258 return; 5259 } 5260 /* Both values are positive, so we can work with unsigned and 5261 * copy the result to signed (unless it exceeds S32_MAX). 5262 */ 5263 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) { 5264 /* Potential overflow, we know nothing */ 5265 __mark_reg32_unbounded(dst_reg); 5266 return; 5267 } 5268 dst_reg->u32_min_value *= umin_val; 5269 dst_reg->u32_max_value *= umax_val; 5270 if (dst_reg->u32_max_value > S32_MAX) { 5271 /* Overflow possible, we know nothing */ 5272 dst_reg->s32_min_value = S32_MIN; 5273 dst_reg->s32_max_value = S32_MAX; 5274 } else { 5275 dst_reg->s32_min_value = dst_reg->u32_min_value; 5276 dst_reg->s32_max_value = dst_reg->u32_max_value; 5277 } 5278 } 5279 5280 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, 5281 struct bpf_reg_state *src_reg) 5282 { 5283 s64 smin_val = src_reg->smin_value; 5284 u64 umin_val = src_reg->umin_value; 5285 u64 umax_val = src_reg->umax_value; 5286 5287 if (smin_val < 0 || dst_reg->smin_value < 0) { 5288 /* Ain't nobody got time to multiply that sign */ 5289 __mark_reg64_unbounded(dst_reg); 5290 return; 5291 } 5292 /* Both values are positive, so we can work with unsigned and 5293 * copy the result to signed (unless it exceeds S64_MAX). 5294 */ 5295 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 5296 /* Potential overflow, we know nothing */ 5297 __mark_reg64_unbounded(dst_reg); 5298 return; 5299 } 5300 dst_reg->umin_value *= umin_val; 5301 dst_reg->umax_value *= umax_val; 5302 if (dst_reg->umax_value > S64_MAX) { 5303 /* Overflow possible, we know nothing */ 5304 dst_reg->smin_value = S64_MIN; 5305 dst_reg->smax_value = S64_MAX; 5306 } else { 5307 dst_reg->smin_value = dst_reg->umin_value; 5308 dst_reg->smax_value = dst_reg->umax_value; 5309 } 5310 } 5311 5312 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, 5313 struct bpf_reg_state *src_reg) 5314 { 5315 bool src_known = tnum_subreg_is_const(src_reg->var_off); 5316 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 5317 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 5318 s32 smin_val = src_reg->s32_min_value; 5319 u32 umax_val = src_reg->u32_max_value; 5320 5321 /* Assuming scalar64_min_max_and will be called so its safe 5322 * to skip updating register for known 32-bit case. 5323 */ 5324 if (src_known && dst_known) 5325 return; 5326 5327 /* We get our minimum from the var_off, since that's inherently 5328 * bitwise. Our maximum is the minimum of the operands' maxima. 5329 */ 5330 dst_reg->u32_min_value = var32_off.value; 5331 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 5332 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 5333 /* Lose signed bounds when ANDing negative numbers, 5334 * ain't nobody got time for that. 5335 */ 5336 dst_reg->s32_min_value = S32_MIN; 5337 dst_reg->s32_max_value = S32_MAX; 5338 } else { 5339 /* ANDing two positives gives a positive, so safe to 5340 * cast result into s64. 5341 */ 5342 dst_reg->s32_min_value = dst_reg->u32_min_value; 5343 dst_reg->s32_max_value = dst_reg->u32_max_value; 5344 } 5345 5346 } 5347 5348 static void scalar_min_max_and(struct bpf_reg_state *dst_reg, 5349 struct bpf_reg_state *src_reg) 5350 { 5351 bool src_known = tnum_is_const(src_reg->var_off); 5352 bool dst_known = tnum_is_const(dst_reg->var_off); 5353 s64 smin_val = src_reg->smin_value; 5354 u64 umax_val = src_reg->umax_value; 5355 5356 if (src_known && dst_known) { 5357 __mark_reg_known(dst_reg, dst_reg->var_off.value & 5358 src_reg->var_off.value); 5359 return; 5360 } 5361 5362 /* We get our minimum from the var_off, since that's inherently 5363 * bitwise. Our maximum is the minimum of the operands' maxima. 5364 */ 5365 dst_reg->umin_value = dst_reg->var_off.value; 5366 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 5367 if (dst_reg->smin_value < 0 || smin_val < 0) { 5368 /* Lose signed bounds when ANDing negative numbers, 5369 * ain't nobody got time for that. 5370 */ 5371 dst_reg->smin_value = S64_MIN; 5372 dst_reg->smax_value = S64_MAX; 5373 } else { 5374 /* ANDing two positives gives a positive, so safe to 5375 * cast result into s64. 5376 */ 5377 dst_reg->smin_value = dst_reg->umin_value; 5378 dst_reg->smax_value = dst_reg->umax_value; 5379 } 5380 /* We may learn something more from the var_off */ 5381 __update_reg_bounds(dst_reg); 5382 } 5383 5384 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, 5385 struct bpf_reg_state *src_reg) 5386 { 5387 bool src_known = tnum_subreg_is_const(src_reg->var_off); 5388 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 5389 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 5390 s32 smin_val = src_reg->smin_value; 5391 u32 umin_val = src_reg->umin_value; 5392 5393 /* Assuming scalar64_min_max_or will be called so it is safe 5394 * to skip updating register for known case. 5395 */ 5396 if (src_known && dst_known) 5397 return; 5398 5399 /* We get our maximum from the var_off, and our minimum is the 5400 * maximum of the operands' minima 5401 */ 5402 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 5403 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 5404 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 5405 /* Lose signed bounds when ORing negative numbers, 5406 * ain't nobody got time for that. 5407 */ 5408 dst_reg->s32_min_value = S32_MIN; 5409 dst_reg->s32_max_value = S32_MAX; 5410 } else { 5411 /* ORing two positives gives a positive, so safe to 5412 * cast result into s64. 5413 */ 5414 dst_reg->s32_min_value = dst_reg->umin_value; 5415 dst_reg->s32_max_value = dst_reg->umax_value; 5416 } 5417 } 5418 5419 static void scalar_min_max_or(struct bpf_reg_state *dst_reg, 5420 struct bpf_reg_state *src_reg) 5421 { 5422 bool src_known = tnum_is_const(src_reg->var_off); 5423 bool dst_known = tnum_is_const(dst_reg->var_off); 5424 s64 smin_val = src_reg->smin_value; 5425 u64 umin_val = src_reg->umin_value; 5426 5427 if (src_known && dst_known) { 5428 __mark_reg_known(dst_reg, dst_reg->var_off.value | 5429 src_reg->var_off.value); 5430 return; 5431 } 5432 5433 /* We get our maximum from the var_off, and our minimum is the 5434 * maximum of the operands' minima 5435 */ 5436 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 5437 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 5438 if (dst_reg->smin_value < 0 || smin_val < 0) { 5439 /* Lose signed bounds when ORing negative numbers, 5440 * ain't nobody got time for that. 5441 */ 5442 dst_reg->smin_value = S64_MIN; 5443 dst_reg->smax_value = S64_MAX; 5444 } else { 5445 /* ORing two positives gives a positive, so safe to 5446 * cast result into s64. 5447 */ 5448 dst_reg->smin_value = dst_reg->umin_value; 5449 dst_reg->smax_value = dst_reg->umax_value; 5450 } 5451 /* We may learn something more from the var_off */ 5452 __update_reg_bounds(dst_reg); 5453 } 5454 5455 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 5456 u64 umin_val, u64 umax_val) 5457 { 5458 /* We lose all sign bit information (except what we can pick 5459 * up from var_off) 5460 */ 5461 dst_reg->s32_min_value = S32_MIN; 5462 dst_reg->s32_max_value = S32_MAX; 5463 /* If we might shift our top bit out, then we know nothing */ 5464 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { 5465 dst_reg->u32_min_value = 0; 5466 dst_reg->u32_max_value = U32_MAX; 5467 } else { 5468 dst_reg->u32_min_value <<= umin_val; 5469 dst_reg->u32_max_value <<= umax_val; 5470 } 5471 } 5472 5473 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 5474 struct bpf_reg_state *src_reg) 5475 { 5476 u32 umax_val = src_reg->u32_max_value; 5477 u32 umin_val = src_reg->u32_min_value; 5478 /* u32 alu operation will zext upper bits */ 5479 struct tnum subreg = tnum_subreg(dst_reg->var_off); 5480 5481 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 5482 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 5483 /* Not required but being careful mark reg64 bounds as unknown so 5484 * that we are forced to pick them up from tnum and zext later and 5485 * if some path skips this step we are still safe. 5486 */ 5487 __mark_reg64_unbounded(dst_reg); 5488 __update_reg32_bounds(dst_reg); 5489 } 5490 5491 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, 5492 u64 umin_val, u64 umax_val) 5493 { 5494 /* Special case <<32 because it is a common compiler pattern to sign 5495 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are 5496 * positive we know this shift will also be positive so we can track 5497 * bounds correctly. Otherwise we lose all sign bit information except 5498 * what we can pick up from var_off. Perhaps we can generalize this 5499 * later to shifts of any length. 5500 */ 5501 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) 5502 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; 5503 else 5504 dst_reg->smax_value = S64_MAX; 5505 5506 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) 5507 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; 5508 else 5509 dst_reg->smin_value = S64_MIN; 5510 5511 /* If we might shift our top bit out, then we know nothing */ 5512 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 5513 dst_reg->umin_value = 0; 5514 dst_reg->umax_value = U64_MAX; 5515 } else { 5516 dst_reg->umin_value <<= umin_val; 5517 dst_reg->umax_value <<= umax_val; 5518 } 5519 } 5520 5521 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, 5522 struct bpf_reg_state *src_reg) 5523 { 5524 u64 umax_val = src_reg->umax_value; 5525 u64 umin_val = src_reg->umin_value; 5526 5527 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 5528 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 5529 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 5530 5531 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 5532 /* We may learn something more from the var_off */ 5533 __update_reg_bounds(dst_reg); 5534 } 5535 5536 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, 5537 struct bpf_reg_state *src_reg) 5538 { 5539 struct tnum subreg = tnum_subreg(dst_reg->var_off); 5540 u32 umax_val = src_reg->u32_max_value; 5541 u32 umin_val = src_reg->u32_min_value; 5542 5543 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 5544 * be negative, then either: 5545 * 1) src_reg might be zero, so the sign bit of the result is 5546 * unknown, so we lose our signed bounds 5547 * 2) it's known negative, thus the unsigned bounds capture the 5548 * signed bounds 5549 * 3) the signed bounds cross zero, so they tell us nothing 5550 * about the result 5551 * If the value in dst_reg is known nonnegative, then again the 5552 * unsigned bounts capture the signed bounds. 5553 * Thus, in all cases it suffices to blow away our signed bounds 5554 * and rely on inferring new ones from the unsigned bounds and 5555 * var_off of the result. 5556 */ 5557 dst_reg->s32_min_value = S32_MIN; 5558 dst_reg->s32_max_value = S32_MAX; 5559 5560 dst_reg->var_off = tnum_rshift(subreg, umin_val); 5561 dst_reg->u32_min_value >>= umax_val; 5562 dst_reg->u32_max_value >>= umin_val; 5563 5564 __mark_reg64_unbounded(dst_reg); 5565 __update_reg32_bounds(dst_reg); 5566 } 5567 5568 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, 5569 struct bpf_reg_state *src_reg) 5570 { 5571 u64 umax_val = src_reg->umax_value; 5572 u64 umin_val = src_reg->umin_value; 5573 5574 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 5575 * be negative, then either: 5576 * 1) src_reg might be zero, so the sign bit of the result is 5577 * unknown, so we lose our signed bounds 5578 * 2) it's known negative, thus the unsigned bounds capture the 5579 * signed bounds 5580 * 3) the signed bounds cross zero, so they tell us nothing 5581 * about the result 5582 * If the value in dst_reg is known nonnegative, then again the 5583 * unsigned bounts capture the signed bounds. 5584 * Thus, in all cases it suffices to blow away our signed bounds 5585 * and rely on inferring new ones from the unsigned bounds and 5586 * var_off of the result. 5587 */ 5588 dst_reg->smin_value = S64_MIN; 5589 dst_reg->smax_value = S64_MAX; 5590 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 5591 dst_reg->umin_value >>= umax_val; 5592 dst_reg->umax_value >>= umin_val; 5593 5594 /* Its not easy to operate on alu32 bounds here because it depends 5595 * on bits being shifted in. Take easy way out and mark unbounded 5596 * so we can recalculate later from tnum. 5597 */ 5598 __mark_reg32_unbounded(dst_reg); 5599 __update_reg_bounds(dst_reg); 5600 } 5601 5602 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, 5603 struct bpf_reg_state *src_reg) 5604 { 5605 u64 umin_val = src_reg->u32_min_value; 5606 5607 /* Upon reaching here, src_known is true and 5608 * umax_val is equal to umin_val. 5609 */ 5610 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 5611 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 5612 5613 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); 5614 5615 /* blow away the dst_reg umin_value/umax_value and rely on 5616 * dst_reg var_off to refine the result. 5617 */ 5618 dst_reg->u32_min_value = 0; 5619 dst_reg->u32_max_value = U32_MAX; 5620 5621 __mark_reg64_unbounded(dst_reg); 5622 __update_reg32_bounds(dst_reg); 5623 } 5624 5625 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, 5626 struct bpf_reg_state *src_reg) 5627 { 5628 u64 umin_val = src_reg->umin_value; 5629 5630 /* Upon reaching here, src_known is true and umax_val is equal 5631 * to umin_val. 5632 */ 5633 dst_reg->smin_value >>= umin_val; 5634 dst_reg->smax_value >>= umin_val; 5635 5636 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); 5637 5638 /* blow away the dst_reg umin_value/umax_value and rely on 5639 * dst_reg var_off to refine the result. 5640 */ 5641 dst_reg->umin_value = 0; 5642 dst_reg->umax_value = U64_MAX; 5643 5644 /* Its not easy to operate on alu32 bounds here because it depends 5645 * on bits being shifted in from upper 32-bits. Take easy way out 5646 * and mark unbounded so we can recalculate later from tnum. 5647 */ 5648 __mark_reg32_unbounded(dst_reg); 5649 __update_reg_bounds(dst_reg); 5650 } 5651 5652 /* WARNING: This function does calculations on 64-bit values, but the actual 5653 * execution may occur on 32-bit values. Therefore, things like bitshifts 5654 * need extra checks in the 32-bit case. 5655 */ 5656 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 5657 struct bpf_insn *insn, 5658 struct bpf_reg_state *dst_reg, 5659 struct bpf_reg_state src_reg) 5660 { 5661 struct bpf_reg_state *regs = cur_regs(env); 5662 u8 opcode = BPF_OP(insn->code); 5663 bool src_known; 5664 s64 smin_val, smax_val; 5665 u64 umin_val, umax_val; 5666 s32 s32_min_val, s32_max_val; 5667 u32 u32_min_val, u32_max_val; 5668 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 5669 u32 dst = insn->dst_reg; 5670 int ret; 5671 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 5672 5673 smin_val = src_reg.smin_value; 5674 smax_val = src_reg.smax_value; 5675 umin_val = src_reg.umin_value; 5676 umax_val = src_reg.umax_value; 5677 5678 s32_min_val = src_reg.s32_min_value; 5679 s32_max_val = src_reg.s32_max_value; 5680 u32_min_val = src_reg.u32_min_value; 5681 u32_max_val = src_reg.u32_max_value; 5682 5683 if (alu32) { 5684 src_known = tnum_subreg_is_const(src_reg.var_off); 5685 if ((src_known && 5686 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) || 5687 s32_min_val > s32_max_val || u32_min_val > u32_max_val) { 5688 /* Taint dst register if offset had invalid bounds 5689 * derived from e.g. dead branches. 5690 */ 5691 __mark_reg_unknown(env, dst_reg); 5692 return 0; 5693 } 5694 } else { 5695 src_known = tnum_is_const(src_reg.var_off); 5696 if ((src_known && 5697 (smin_val != smax_val || umin_val != umax_val)) || 5698 smin_val > smax_val || umin_val > umax_val) { 5699 /* Taint dst register if offset had invalid bounds 5700 * derived from e.g. dead branches. 5701 */ 5702 __mark_reg_unknown(env, dst_reg); 5703 return 0; 5704 } 5705 } 5706 5707 if (!src_known && 5708 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 5709 __mark_reg_unknown(env, dst_reg); 5710 return 0; 5711 } 5712 5713 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 5714 * There are two classes of instructions: The first class we track both 5715 * alu32 and alu64 sign/unsigned bounds independently this provides the 5716 * greatest amount of precision when alu operations are mixed with jmp32 5717 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 5718 * and BPF_OR. This is possible because these ops have fairly easy to 5719 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 5720 * See alu32 verifier tests for examples. The second class of 5721 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 5722 * with regards to tracking sign/unsigned bounds because the bits may 5723 * cross subreg boundaries in the alu64 case. When this happens we mark 5724 * the reg unbounded in the subreg bound space and use the resulting 5725 * tnum to calculate an approximation of the sign/unsigned bounds. 5726 */ 5727 switch (opcode) { 5728 case BPF_ADD: 5729 ret = sanitize_val_alu(env, insn); 5730 if (ret < 0) { 5731 verbose(env, "R%d tried to add from different pointers or scalars\n", dst); 5732 return ret; 5733 } 5734 scalar32_min_max_add(dst_reg, &src_reg); 5735 scalar_min_max_add(dst_reg, &src_reg); 5736 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 5737 break; 5738 case BPF_SUB: 5739 ret = sanitize_val_alu(env, insn); 5740 if (ret < 0) { 5741 verbose(env, "R%d tried to sub from different pointers or scalars\n", dst); 5742 return ret; 5743 } 5744 scalar32_min_max_sub(dst_reg, &src_reg); 5745 scalar_min_max_sub(dst_reg, &src_reg); 5746 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 5747 break; 5748 case BPF_MUL: 5749 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 5750 scalar32_min_max_mul(dst_reg, &src_reg); 5751 scalar_min_max_mul(dst_reg, &src_reg); 5752 break; 5753 case BPF_AND: 5754 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 5755 scalar32_min_max_and(dst_reg, &src_reg); 5756 scalar_min_max_and(dst_reg, &src_reg); 5757 break; 5758 case BPF_OR: 5759 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 5760 scalar32_min_max_or(dst_reg, &src_reg); 5761 scalar_min_max_or(dst_reg, &src_reg); 5762 break; 5763 case BPF_LSH: 5764 if (umax_val >= insn_bitness) { 5765 /* Shifts greater than 31 or 63 are undefined. 5766 * This includes shifts by a negative number. 5767 */ 5768 mark_reg_unknown(env, regs, insn->dst_reg); 5769 break; 5770 } 5771 if (alu32) 5772 scalar32_min_max_lsh(dst_reg, &src_reg); 5773 else 5774 scalar_min_max_lsh(dst_reg, &src_reg); 5775 break; 5776 case BPF_RSH: 5777 if (umax_val >= insn_bitness) { 5778 /* Shifts greater than 31 or 63 are undefined. 5779 * This includes shifts by a negative number. 5780 */ 5781 mark_reg_unknown(env, regs, insn->dst_reg); 5782 break; 5783 } 5784 if (alu32) 5785 scalar32_min_max_rsh(dst_reg, &src_reg); 5786 else 5787 scalar_min_max_rsh(dst_reg, &src_reg); 5788 break; 5789 case BPF_ARSH: 5790 if (umax_val >= insn_bitness) { 5791 /* Shifts greater than 31 or 63 are undefined. 5792 * This includes shifts by a negative number. 5793 */ 5794 mark_reg_unknown(env, regs, insn->dst_reg); 5795 break; 5796 } 5797 if (alu32) 5798 scalar32_min_max_arsh(dst_reg, &src_reg); 5799 else 5800 scalar_min_max_arsh(dst_reg, &src_reg); 5801 break; 5802 default: 5803 mark_reg_unknown(env, regs, insn->dst_reg); 5804 break; 5805 } 5806 5807 /* ALU32 ops are zero extended into 64bit register */ 5808 if (alu32) 5809 zext_32_to_64(dst_reg); 5810 5811 __update_reg_bounds(dst_reg); 5812 __reg_deduce_bounds(dst_reg); 5813 __reg_bound_offset(dst_reg); 5814 return 0; 5815 } 5816 5817 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 5818 * and var_off. 5819 */ 5820 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 5821 struct bpf_insn *insn) 5822 { 5823 struct bpf_verifier_state *vstate = env->cur_state; 5824 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5825 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 5826 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 5827 u8 opcode = BPF_OP(insn->code); 5828 int err; 5829 5830 dst_reg = ®s[insn->dst_reg]; 5831 src_reg = NULL; 5832 if (dst_reg->type != SCALAR_VALUE) 5833 ptr_reg = dst_reg; 5834 if (BPF_SRC(insn->code) == BPF_X) { 5835 src_reg = ®s[insn->src_reg]; 5836 if (src_reg->type != SCALAR_VALUE) { 5837 if (dst_reg->type != SCALAR_VALUE) { 5838 /* Combining two pointers by any ALU op yields 5839 * an arbitrary scalar. Disallow all math except 5840 * pointer subtraction 5841 */ 5842 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 5843 mark_reg_unknown(env, regs, insn->dst_reg); 5844 return 0; 5845 } 5846 verbose(env, "R%d pointer %s pointer prohibited\n", 5847 insn->dst_reg, 5848 bpf_alu_string[opcode >> 4]); 5849 return -EACCES; 5850 } else { 5851 /* scalar += pointer 5852 * This is legal, but we have to reverse our 5853 * src/dest handling in computing the range 5854 */ 5855 err = mark_chain_precision(env, insn->dst_reg); 5856 if (err) 5857 return err; 5858 return adjust_ptr_min_max_vals(env, insn, 5859 src_reg, dst_reg); 5860 } 5861 } else if (ptr_reg) { 5862 /* pointer += scalar */ 5863 err = mark_chain_precision(env, insn->src_reg); 5864 if (err) 5865 return err; 5866 return adjust_ptr_min_max_vals(env, insn, 5867 dst_reg, src_reg); 5868 } 5869 } else { 5870 /* Pretend the src is a reg with a known value, since we only 5871 * need to be able to read from this state. 5872 */ 5873 off_reg.type = SCALAR_VALUE; 5874 __mark_reg_known(&off_reg, insn->imm); 5875 src_reg = &off_reg; 5876 if (ptr_reg) /* pointer += K */ 5877 return adjust_ptr_min_max_vals(env, insn, 5878 ptr_reg, src_reg); 5879 } 5880 5881 /* Got here implies adding two SCALAR_VALUEs */ 5882 if (WARN_ON_ONCE(ptr_reg)) { 5883 print_verifier_state(env, state); 5884 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 5885 return -EINVAL; 5886 } 5887 if (WARN_ON(!src_reg)) { 5888 print_verifier_state(env, state); 5889 verbose(env, "verifier internal error: no src_reg\n"); 5890 return -EINVAL; 5891 } 5892 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 5893 } 5894 5895 /* check validity of 32-bit and 64-bit arithmetic operations */ 5896 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 5897 { 5898 struct bpf_reg_state *regs = cur_regs(env); 5899 u8 opcode = BPF_OP(insn->code); 5900 int err; 5901 5902 if (opcode == BPF_END || opcode == BPF_NEG) { 5903 if (opcode == BPF_NEG) { 5904 if (BPF_SRC(insn->code) != 0 || 5905 insn->src_reg != BPF_REG_0 || 5906 insn->off != 0 || insn->imm != 0) { 5907 verbose(env, "BPF_NEG uses reserved fields\n"); 5908 return -EINVAL; 5909 } 5910 } else { 5911 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 5912 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 5913 BPF_CLASS(insn->code) == BPF_ALU64) { 5914 verbose(env, "BPF_END uses reserved fields\n"); 5915 return -EINVAL; 5916 } 5917 } 5918 5919 /* check src operand */ 5920 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 5921 if (err) 5922 return err; 5923 5924 if (is_pointer_value(env, insn->dst_reg)) { 5925 verbose(env, "R%d pointer arithmetic prohibited\n", 5926 insn->dst_reg); 5927 return -EACCES; 5928 } 5929 5930 /* check dest operand */ 5931 err = check_reg_arg(env, insn->dst_reg, DST_OP); 5932 if (err) 5933 return err; 5934 5935 } else if (opcode == BPF_MOV) { 5936 5937 if (BPF_SRC(insn->code) == BPF_X) { 5938 if (insn->imm != 0 || insn->off != 0) { 5939 verbose(env, "BPF_MOV uses reserved fields\n"); 5940 return -EINVAL; 5941 } 5942 5943 /* check src operand */ 5944 err = check_reg_arg(env, insn->src_reg, SRC_OP); 5945 if (err) 5946 return err; 5947 } else { 5948 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 5949 verbose(env, "BPF_MOV uses reserved fields\n"); 5950 return -EINVAL; 5951 } 5952 } 5953 5954 /* check dest operand, mark as required later */ 5955 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 5956 if (err) 5957 return err; 5958 5959 if (BPF_SRC(insn->code) == BPF_X) { 5960 struct bpf_reg_state *src_reg = regs + insn->src_reg; 5961 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 5962 5963 if (BPF_CLASS(insn->code) == BPF_ALU64) { 5964 /* case: R1 = R2 5965 * copy register state to dest reg 5966 */ 5967 *dst_reg = *src_reg; 5968 dst_reg->live |= REG_LIVE_WRITTEN; 5969 dst_reg->subreg_def = DEF_NOT_SUBREG; 5970 } else { 5971 /* R1 = (u32) R2 */ 5972 if (is_pointer_value(env, insn->src_reg)) { 5973 verbose(env, 5974 "R%d partial copy of pointer\n", 5975 insn->src_reg); 5976 return -EACCES; 5977 } else if (src_reg->type == SCALAR_VALUE) { 5978 *dst_reg = *src_reg; 5979 dst_reg->live |= REG_LIVE_WRITTEN; 5980 dst_reg->subreg_def = env->insn_idx + 1; 5981 } else { 5982 mark_reg_unknown(env, regs, 5983 insn->dst_reg); 5984 } 5985 zext_32_to_64(dst_reg); 5986 } 5987 } else { 5988 /* case: R = imm 5989 * remember the value we stored into this reg 5990 */ 5991 /* clear any state __mark_reg_known doesn't set */ 5992 mark_reg_unknown(env, regs, insn->dst_reg); 5993 regs[insn->dst_reg].type = SCALAR_VALUE; 5994 if (BPF_CLASS(insn->code) == BPF_ALU64) { 5995 __mark_reg_known(regs + insn->dst_reg, 5996 insn->imm); 5997 } else { 5998 __mark_reg_known(regs + insn->dst_reg, 5999 (u32)insn->imm); 6000 } 6001 } 6002 6003 } else if (opcode > BPF_END) { 6004 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 6005 return -EINVAL; 6006 6007 } else { /* all other ALU ops: and, sub, xor, add, ... */ 6008 6009 if (BPF_SRC(insn->code) == BPF_X) { 6010 if (insn->imm != 0 || insn->off != 0) { 6011 verbose(env, "BPF_ALU uses reserved fields\n"); 6012 return -EINVAL; 6013 } 6014 /* check src1 operand */ 6015 err = check_reg_arg(env, insn->src_reg, SRC_OP); 6016 if (err) 6017 return err; 6018 } else { 6019 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 6020 verbose(env, "BPF_ALU uses reserved fields\n"); 6021 return -EINVAL; 6022 } 6023 } 6024 6025 /* check src2 operand */ 6026 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 6027 if (err) 6028 return err; 6029 6030 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 6031 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 6032 verbose(env, "div by zero\n"); 6033 return -EINVAL; 6034 } 6035 6036 if ((opcode == BPF_LSH || opcode == BPF_RSH || 6037 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 6038 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 6039 6040 if (insn->imm < 0 || insn->imm >= size) { 6041 verbose(env, "invalid shift %d\n", insn->imm); 6042 return -EINVAL; 6043 } 6044 } 6045 6046 /* check dest operand */ 6047 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 6048 if (err) 6049 return err; 6050 6051 return adjust_reg_min_max_vals(env, insn); 6052 } 6053 6054 return 0; 6055 } 6056 6057 static void __find_good_pkt_pointers(struct bpf_func_state *state, 6058 struct bpf_reg_state *dst_reg, 6059 enum bpf_reg_type type, u16 new_range) 6060 { 6061 struct bpf_reg_state *reg; 6062 int i; 6063 6064 for (i = 0; i < MAX_BPF_REG; i++) { 6065 reg = &state->regs[i]; 6066 if (reg->type == type && reg->id == dst_reg->id) 6067 /* keep the maximum range already checked */ 6068 reg->range = max(reg->range, new_range); 6069 } 6070 6071 bpf_for_each_spilled_reg(i, state, reg) { 6072 if (!reg) 6073 continue; 6074 if (reg->type == type && reg->id == dst_reg->id) 6075 reg->range = max(reg->range, new_range); 6076 } 6077 } 6078 6079 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 6080 struct bpf_reg_state *dst_reg, 6081 enum bpf_reg_type type, 6082 bool range_right_open) 6083 { 6084 u16 new_range; 6085 int i; 6086 6087 if (dst_reg->off < 0 || 6088 (dst_reg->off == 0 && range_right_open)) 6089 /* This doesn't give us any range */ 6090 return; 6091 6092 if (dst_reg->umax_value > MAX_PACKET_OFF || 6093 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 6094 /* Risk of overflow. For instance, ptr + (1<<63) may be less 6095 * than pkt_end, but that's because it's also less than pkt. 6096 */ 6097 return; 6098 6099 new_range = dst_reg->off; 6100 if (range_right_open) 6101 new_range--; 6102 6103 /* Examples for register markings: 6104 * 6105 * pkt_data in dst register: 6106 * 6107 * r2 = r3; 6108 * r2 += 8; 6109 * if (r2 > pkt_end) goto <handle exception> 6110 * <access okay> 6111 * 6112 * r2 = r3; 6113 * r2 += 8; 6114 * if (r2 < pkt_end) goto <access okay> 6115 * <handle exception> 6116 * 6117 * Where: 6118 * r2 == dst_reg, pkt_end == src_reg 6119 * r2=pkt(id=n,off=8,r=0) 6120 * r3=pkt(id=n,off=0,r=0) 6121 * 6122 * pkt_data in src register: 6123 * 6124 * r2 = r3; 6125 * r2 += 8; 6126 * if (pkt_end >= r2) goto <access okay> 6127 * <handle exception> 6128 * 6129 * r2 = r3; 6130 * r2 += 8; 6131 * if (pkt_end <= r2) goto <handle exception> 6132 * <access okay> 6133 * 6134 * Where: 6135 * pkt_end == dst_reg, r2 == src_reg 6136 * r2=pkt(id=n,off=8,r=0) 6137 * r3=pkt(id=n,off=0,r=0) 6138 * 6139 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 6140 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 6141 * and [r3, r3 + 8-1) respectively is safe to access depending on 6142 * the check. 6143 */ 6144 6145 /* If our ids match, then we must have the same max_value. And we 6146 * don't care about the other reg's fixed offset, since if it's too big 6147 * the range won't allow anything. 6148 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 6149 */ 6150 for (i = 0; i <= vstate->curframe; i++) 6151 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type, 6152 new_range); 6153 } 6154 6155 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode) 6156 { 6157 struct tnum subreg = tnum_subreg(reg->var_off); 6158 s32 sval = (s32)val; 6159 6160 switch (opcode) { 6161 case BPF_JEQ: 6162 if (tnum_is_const(subreg)) 6163 return !!tnum_equals_const(subreg, val); 6164 break; 6165 case BPF_JNE: 6166 if (tnum_is_const(subreg)) 6167 return !tnum_equals_const(subreg, val); 6168 break; 6169 case BPF_JSET: 6170 if ((~subreg.mask & subreg.value) & val) 6171 return 1; 6172 if (!((subreg.mask | subreg.value) & val)) 6173 return 0; 6174 break; 6175 case BPF_JGT: 6176 if (reg->u32_min_value > val) 6177 return 1; 6178 else if (reg->u32_max_value <= val) 6179 return 0; 6180 break; 6181 case BPF_JSGT: 6182 if (reg->s32_min_value > sval) 6183 return 1; 6184 else if (reg->s32_max_value < sval) 6185 return 0; 6186 break; 6187 case BPF_JLT: 6188 if (reg->u32_max_value < val) 6189 return 1; 6190 else if (reg->u32_min_value >= val) 6191 return 0; 6192 break; 6193 case BPF_JSLT: 6194 if (reg->s32_max_value < sval) 6195 return 1; 6196 else if (reg->s32_min_value >= sval) 6197 return 0; 6198 break; 6199 case BPF_JGE: 6200 if (reg->u32_min_value >= val) 6201 return 1; 6202 else if (reg->u32_max_value < val) 6203 return 0; 6204 break; 6205 case BPF_JSGE: 6206 if (reg->s32_min_value >= sval) 6207 return 1; 6208 else if (reg->s32_max_value < sval) 6209 return 0; 6210 break; 6211 case BPF_JLE: 6212 if (reg->u32_max_value <= val) 6213 return 1; 6214 else if (reg->u32_min_value > val) 6215 return 0; 6216 break; 6217 case BPF_JSLE: 6218 if (reg->s32_max_value <= sval) 6219 return 1; 6220 else if (reg->s32_min_value > sval) 6221 return 0; 6222 break; 6223 } 6224 6225 return -1; 6226 } 6227 6228 6229 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode) 6230 { 6231 s64 sval = (s64)val; 6232 6233 switch (opcode) { 6234 case BPF_JEQ: 6235 if (tnum_is_const(reg->var_off)) 6236 return !!tnum_equals_const(reg->var_off, val); 6237 break; 6238 case BPF_JNE: 6239 if (tnum_is_const(reg->var_off)) 6240 return !tnum_equals_const(reg->var_off, val); 6241 break; 6242 case BPF_JSET: 6243 if ((~reg->var_off.mask & reg->var_off.value) & val) 6244 return 1; 6245 if (!((reg->var_off.mask | reg->var_off.value) & val)) 6246 return 0; 6247 break; 6248 case BPF_JGT: 6249 if (reg->umin_value > val) 6250 return 1; 6251 else if (reg->umax_value <= val) 6252 return 0; 6253 break; 6254 case BPF_JSGT: 6255 if (reg->smin_value > sval) 6256 return 1; 6257 else if (reg->smax_value < sval) 6258 return 0; 6259 break; 6260 case BPF_JLT: 6261 if (reg->umax_value < val) 6262 return 1; 6263 else if (reg->umin_value >= val) 6264 return 0; 6265 break; 6266 case BPF_JSLT: 6267 if (reg->smax_value < sval) 6268 return 1; 6269 else if (reg->smin_value >= sval) 6270 return 0; 6271 break; 6272 case BPF_JGE: 6273 if (reg->umin_value >= val) 6274 return 1; 6275 else if (reg->umax_value < val) 6276 return 0; 6277 break; 6278 case BPF_JSGE: 6279 if (reg->smin_value >= sval) 6280 return 1; 6281 else if (reg->smax_value < sval) 6282 return 0; 6283 break; 6284 case BPF_JLE: 6285 if (reg->umax_value <= val) 6286 return 1; 6287 else if (reg->umin_value > val) 6288 return 0; 6289 break; 6290 case BPF_JSLE: 6291 if (reg->smax_value <= sval) 6292 return 1; 6293 else if (reg->smin_value > sval) 6294 return 0; 6295 break; 6296 } 6297 6298 return -1; 6299 } 6300 6301 /* compute branch direction of the expression "if (reg opcode val) goto target;" 6302 * and return: 6303 * 1 - branch will be taken and "goto target" will be executed 6304 * 0 - branch will not be taken and fall-through to next insn 6305 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value 6306 * range [0,10] 6307 */ 6308 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, 6309 bool is_jmp32) 6310 { 6311 if (__is_pointer_value(false, reg)) 6312 return -1; 6313 6314 if (is_jmp32) 6315 return is_branch32_taken(reg, val, opcode); 6316 return is_branch64_taken(reg, val, opcode); 6317 } 6318 6319 /* Adjusts the register min/max values in the case that the dst_reg is the 6320 * variable register that we are working on, and src_reg is a constant or we're 6321 * simply doing a BPF_K check. 6322 * In JEQ/JNE cases we also adjust the var_off values. 6323 */ 6324 static void reg_set_min_max(struct bpf_reg_state *true_reg, 6325 struct bpf_reg_state *false_reg, 6326 u64 val, u32 val32, 6327 u8 opcode, bool is_jmp32) 6328 { 6329 struct tnum false_32off = tnum_subreg(false_reg->var_off); 6330 struct tnum false_64off = false_reg->var_off; 6331 struct tnum true_32off = tnum_subreg(true_reg->var_off); 6332 struct tnum true_64off = true_reg->var_off; 6333 s64 sval = (s64)val; 6334 s32 sval32 = (s32)val32; 6335 6336 /* If the dst_reg is a pointer, we can't learn anything about its 6337 * variable offset from the compare (unless src_reg were a pointer into 6338 * the same object, but we don't bother with that. 6339 * Since false_reg and true_reg have the same type by construction, we 6340 * only need to check one of them for pointerness. 6341 */ 6342 if (__is_pointer_value(false, false_reg)) 6343 return; 6344 6345 switch (opcode) { 6346 case BPF_JEQ: 6347 case BPF_JNE: 6348 { 6349 struct bpf_reg_state *reg = 6350 opcode == BPF_JEQ ? true_reg : false_reg; 6351 6352 /* For BPF_JEQ, if this is false we know nothing Jon Snow, but 6353 * if it is true we know the value for sure. Likewise for 6354 * BPF_JNE. 6355 */ 6356 if (is_jmp32) 6357 __mark_reg32_known(reg, val32); 6358 else 6359 __mark_reg_known(reg, val); 6360 break; 6361 } 6362 case BPF_JSET: 6363 if (is_jmp32) { 6364 false_32off = tnum_and(false_32off, tnum_const(~val32)); 6365 if (is_power_of_2(val32)) 6366 true_32off = tnum_or(true_32off, 6367 tnum_const(val32)); 6368 } else { 6369 false_64off = tnum_and(false_64off, tnum_const(~val)); 6370 if (is_power_of_2(val)) 6371 true_64off = tnum_or(true_64off, 6372 tnum_const(val)); 6373 } 6374 break; 6375 case BPF_JGE: 6376 case BPF_JGT: 6377 { 6378 if (is_jmp32) { 6379 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1; 6380 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32; 6381 6382 false_reg->u32_max_value = min(false_reg->u32_max_value, 6383 false_umax); 6384 true_reg->u32_min_value = max(true_reg->u32_min_value, 6385 true_umin); 6386 } else { 6387 u64 false_umax = opcode == BPF_JGT ? val : val - 1; 6388 u64 true_umin = opcode == BPF_JGT ? val + 1 : val; 6389 6390 false_reg->umax_value = min(false_reg->umax_value, false_umax); 6391 true_reg->umin_value = max(true_reg->umin_value, true_umin); 6392 } 6393 break; 6394 } 6395 case BPF_JSGE: 6396 case BPF_JSGT: 6397 { 6398 if (is_jmp32) { 6399 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1; 6400 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32; 6401 6402 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax); 6403 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin); 6404 } else { 6405 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; 6406 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; 6407 6408 false_reg->smax_value = min(false_reg->smax_value, false_smax); 6409 true_reg->smin_value = max(true_reg->smin_value, true_smin); 6410 } 6411 break; 6412 } 6413 case BPF_JLE: 6414 case BPF_JLT: 6415 { 6416 if (is_jmp32) { 6417 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1; 6418 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32; 6419 6420 false_reg->u32_min_value = max(false_reg->u32_min_value, 6421 false_umin); 6422 true_reg->u32_max_value = min(true_reg->u32_max_value, 6423 true_umax); 6424 } else { 6425 u64 false_umin = opcode == BPF_JLT ? val : val + 1; 6426 u64 true_umax = opcode == BPF_JLT ? val - 1 : val; 6427 6428 false_reg->umin_value = max(false_reg->umin_value, false_umin); 6429 true_reg->umax_value = min(true_reg->umax_value, true_umax); 6430 } 6431 break; 6432 } 6433 case BPF_JSLE: 6434 case BPF_JSLT: 6435 { 6436 if (is_jmp32) { 6437 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1; 6438 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32; 6439 6440 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin); 6441 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax); 6442 } else { 6443 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; 6444 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; 6445 6446 false_reg->smin_value = max(false_reg->smin_value, false_smin); 6447 true_reg->smax_value = min(true_reg->smax_value, true_smax); 6448 } 6449 break; 6450 } 6451 default: 6452 return; 6453 } 6454 6455 if (is_jmp32) { 6456 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off), 6457 tnum_subreg(false_32off)); 6458 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off), 6459 tnum_subreg(true_32off)); 6460 __reg_combine_32_into_64(false_reg); 6461 __reg_combine_32_into_64(true_reg); 6462 } else { 6463 false_reg->var_off = false_64off; 6464 true_reg->var_off = true_64off; 6465 __reg_combine_64_into_32(false_reg); 6466 __reg_combine_64_into_32(true_reg); 6467 } 6468 } 6469 6470 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 6471 * the variable reg. 6472 */ 6473 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 6474 struct bpf_reg_state *false_reg, 6475 u64 val, u32 val32, 6476 u8 opcode, bool is_jmp32) 6477 { 6478 /* How can we transform "a <op> b" into "b <op> a"? */ 6479 static const u8 opcode_flip[16] = { 6480 /* these stay the same */ 6481 [BPF_JEQ >> 4] = BPF_JEQ, 6482 [BPF_JNE >> 4] = BPF_JNE, 6483 [BPF_JSET >> 4] = BPF_JSET, 6484 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 6485 [BPF_JGE >> 4] = BPF_JLE, 6486 [BPF_JGT >> 4] = BPF_JLT, 6487 [BPF_JLE >> 4] = BPF_JGE, 6488 [BPF_JLT >> 4] = BPF_JGT, 6489 [BPF_JSGE >> 4] = BPF_JSLE, 6490 [BPF_JSGT >> 4] = BPF_JSLT, 6491 [BPF_JSLE >> 4] = BPF_JSGE, 6492 [BPF_JSLT >> 4] = BPF_JSGT 6493 }; 6494 opcode = opcode_flip[opcode >> 4]; 6495 /* This uses zero as "not present in table"; luckily the zero opcode, 6496 * BPF_JA, can't get here. 6497 */ 6498 if (opcode) 6499 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32); 6500 } 6501 6502 /* Regs are known to be equal, so intersect their min/max/var_off */ 6503 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 6504 struct bpf_reg_state *dst_reg) 6505 { 6506 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 6507 dst_reg->umin_value); 6508 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 6509 dst_reg->umax_value); 6510 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 6511 dst_reg->smin_value); 6512 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 6513 dst_reg->smax_value); 6514 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 6515 dst_reg->var_off); 6516 /* We might have learned new bounds from the var_off. */ 6517 __update_reg_bounds(src_reg); 6518 __update_reg_bounds(dst_reg); 6519 /* We might have learned something about the sign bit. */ 6520 __reg_deduce_bounds(src_reg); 6521 __reg_deduce_bounds(dst_reg); 6522 /* We might have learned some bits from the bounds. */ 6523 __reg_bound_offset(src_reg); 6524 __reg_bound_offset(dst_reg); 6525 /* Intersecting with the old var_off might have improved our bounds 6526 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 6527 * then new var_off is (0; 0x7f...fc) which improves our umax. 6528 */ 6529 __update_reg_bounds(src_reg); 6530 __update_reg_bounds(dst_reg); 6531 } 6532 6533 static void reg_combine_min_max(struct bpf_reg_state *true_src, 6534 struct bpf_reg_state *true_dst, 6535 struct bpf_reg_state *false_src, 6536 struct bpf_reg_state *false_dst, 6537 u8 opcode) 6538 { 6539 switch (opcode) { 6540 case BPF_JEQ: 6541 __reg_combine_min_max(true_src, true_dst); 6542 break; 6543 case BPF_JNE: 6544 __reg_combine_min_max(false_src, false_dst); 6545 break; 6546 } 6547 } 6548 6549 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 6550 struct bpf_reg_state *reg, u32 id, 6551 bool is_null) 6552 { 6553 if (reg_type_may_be_null(reg->type) && reg->id == id) { 6554 /* Old offset (both fixed and variable parts) should 6555 * have been known-zero, because we don't allow pointer 6556 * arithmetic on pointers that might be NULL. 6557 */ 6558 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || 6559 !tnum_equals_const(reg->var_off, 0) || 6560 reg->off)) { 6561 __mark_reg_known_zero(reg); 6562 reg->off = 0; 6563 } 6564 if (is_null) { 6565 reg->type = SCALAR_VALUE; 6566 } else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) { 6567 const struct bpf_map *map = reg->map_ptr; 6568 6569 if (map->inner_map_meta) { 6570 reg->type = CONST_PTR_TO_MAP; 6571 reg->map_ptr = map->inner_map_meta; 6572 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { 6573 reg->type = PTR_TO_XDP_SOCK; 6574 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || 6575 map->map_type == BPF_MAP_TYPE_SOCKHASH) { 6576 reg->type = PTR_TO_SOCKET; 6577 } else { 6578 reg->type = PTR_TO_MAP_VALUE; 6579 } 6580 } else if (reg->type == PTR_TO_SOCKET_OR_NULL) { 6581 reg->type = PTR_TO_SOCKET; 6582 } else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) { 6583 reg->type = PTR_TO_SOCK_COMMON; 6584 } else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) { 6585 reg->type = PTR_TO_TCP_SOCK; 6586 } else if (reg->type == PTR_TO_BTF_ID_OR_NULL) { 6587 reg->type = PTR_TO_BTF_ID; 6588 } 6589 if (is_null) { 6590 /* We don't need id and ref_obj_id from this point 6591 * onwards anymore, thus we should better reset it, 6592 * so that state pruning has chances to take effect. 6593 */ 6594 reg->id = 0; 6595 reg->ref_obj_id = 0; 6596 } else if (!reg_may_point_to_spin_lock(reg)) { 6597 /* For not-NULL ptr, reg->ref_obj_id will be reset 6598 * in release_reg_references(). 6599 * 6600 * reg->id is still used by spin_lock ptr. Other 6601 * than spin_lock ptr type, reg->id can be reset. 6602 */ 6603 reg->id = 0; 6604 } 6605 } 6606 } 6607 6608 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id, 6609 bool is_null) 6610 { 6611 struct bpf_reg_state *reg; 6612 int i; 6613 6614 for (i = 0; i < MAX_BPF_REG; i++) 6615 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null); 6616 6617 bpf_for_each_spilled_reg(i, state, reg) { 6618 if (!reg) 6619 continue; 6620 mark_ptr_or_null_reg(state, reg, id, is_null); 6621 } 6622 } 6623 6624 /* The logic is similar to find_good_pkt_pointers(), both could eventually 6625 * be folded together at some point. 6626 */ 6627 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 6628 bool is_null) 6629 { 6630 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 6631 struct bpf_reg_state *regs = state->regs; 6632 u32 ref_obj_id = regs[regno].ref_obj_id; 6633 u32 id = regs[regno].id; 6634 int i; 6635 6636 if (ref_obj_id && ref_obj_id == id && is_null) 6637 /* regs[regno] is in the " == NULL" branch. 6638 * No one could have freed the reference state before 6639 * doing the NULL check. 6640 */ 6641 WARN_ON_ONCE(release_reference_state(state, id)); 6642 6643 for (i = 0; i <= vstate->curframe; i++) 6644 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null); 6645 } 6646 6647 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 6648 struct bpf_reg_state *dst_reg, 6649 struct bpf_reg_state *src_reg, 6650 struct bpf_verifier_state *this_branch, 6651 struct bpf_verifier_state *other_branch) 6652 { 6653 if (BPF_SRC(insn->code) != BPF_X) 6654 return false; 6655 6656 /* Pointers are always 64-bit. */ 6657 if (BPF_CLASS(insn->code) == BPF_JMP32) 6658 return false; 6659 6660 switch (BPF_OP(insn->code)) { 6661 case BPF_JGT: 6662 if ((dst_reg->type == PTR_TO_PACKET && 6663 src_reg->type == PTR_TO_PACKET_END) || 6664 (dst_reg->type == PTR_TO_PACKET_META && 6665 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 6666 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 6667 find_good_pkt_pointers(this_branch, dst_reg, 6668 dst_reg->type, false); 6669 } else if ((dst_reg->type == PTR_TO_PACKET_END && 6670 src_reg->type == PTR_TO_PACKET) || 6671 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 6672 src_reg->type == PTR_TO_PACKET_META)) { 6673 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 6674 find_good_pkt_pointers(other_branch, src_reg, 6675 src_reg->type, true); 6676 } else { 6677 return false; 6678 } 6679 break; 6680 case BPF_JLT: 6681 if ((dst_reg->type == PTR_TO_PACKET && 6682 src_reg->type == PTR_TO_PACKET_END) || 6683 (dst_reg->type == PTR_TO_PACKET_META && 6684 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 6685 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 6686 find_good_pkt_pointers(other_branch, dst_reg, 6687 dst_reg->type, true); 6688 } else if ((dst_reg->type == PTR_TO_PACKET_END && 6689 src_reg->type == PTR_TO_PACKET) || 6690 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 6691 src_reg->type == PTR_TO_PACKET_META)) { 6692 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 6693 find_good_pkt_pointers(this_branch, src_reg, 6694 src_reg->type, false); 6695 } else { 6696 return false; 6697 } 6698 break; 6699 case BPF_JGE: 6700 if ((dst_reg->type == PTR_TO_PACKET && 6701 src_reg->type == PTR_TO_PACKET_END) || 6702 (dst_reg->type == PTR_TO_PACKET_META && 6703 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 6704 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 6705 find_good_pkt_pointers(this_branch, dst_reg, 6706 dst_reg->type, true); 6707 } else if ((dst_reg->type == PTR_TO_PACKET_END && 6708 src_reg->type == PTR_TO_PACKET) || 6709 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 6710 src_reg->type == PTR_TO_PACKET_META)) { 6711 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 6712 find_good_pkt_pointers(other_branch, src_reg, 6713 src_reg->type, false); 6714 } else { 6715 return false; 6716 } 6717 break; 6718 case BPF_JLE: 6719 if ((dst_reg->type == PTR_TO_PACKET && 6720 src_reg->type == PTR_TO_PACKET_END) || 6721 (dst_reg->type == PTR_TO_PACKET_META && 6722 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 6723 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 6724 find_good_pkt_pointers(other_branch, dst_reg, 6725 dst_reg->type, false); 6726 } else if ((dst_reg->type == PTR_TO_PACKET_END && 6727 src_reg->type == PTR_TO_PACKET) || 6728 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 6729 src_reg->type == PTR_TO_PACKET_META)) { 6730 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 6731 find_good_pkt_pointers(this_branch, src_reg, 6732 src_reg->type, true); 6733 } else { 6734 return false; 6735 } 6736 break; 6737 default: 6738 return false; 6739 } 6740 6741 return true; 6742 } 6743 6744 static int check_cond_jmp_op(struct bpf_verifier_env *env, 6745 struct bpf_insn *insn, int *insn_idx) 6746 { 6747 struct bpf_verifier_state *this_branch = env->cur_state; 6748 struct bpf_verifier_state *other_branch; 6749 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 6750 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 6751 u8 opcode = BPF_OP(insn->code); 6752 bool is_jmp32; 6753 int pred = -1; 6754 int err; 6755 6756 /* Only conditional jumps are expected to reach here. */ 6757 if (opcode == BPF_JA || opcode > BPF_JSLE) { 6758 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 6759 return -EINVAL; 6760 } 6761 6762 if (BPF_SRC(insn->code) == BPF_X) { 6763 if (insn->imm != 0) { 6764 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 6765 return -EINVAL; 6766 } 6767 6768 /* check src1 operand */ 6769 err = check_reg_arg(env, insn->src_reg, SRC_OP); 6770 if (err) 6771 return err; 6772 6773 if (is_pointer_value(env, insn->src_reg)) { 6774 verbose(env, "R%d pointer comparison prohibited\n", 6775 insn->src_reg); 6776 return -EACCES; 6777 } 6778 src_reg = ®s[insn->src_reg]; 6779 } else { 6780 if (insn->src_reg != BPF_REG_0) { 6781 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 6782 return -EINVAL; 6783 } 6784 } 6785 6786 /* check src2 operand */ 6787 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 6788 if (err) 6789 return err; 6790 6791 dst_reg = ®s[insn->dst_reg]; 6792 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 6793 6794 if (BPF_SRC(insn->code) == BPF_K) { 6795 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32); 6796 } else if (src_reg->type == SCALAR_VALUE && 6797 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) { 6798 pred = is_branch_taken(dst_reg, 6799 tnum_subreg(src_reg->var_off).value, 6800 opcode, 6801 is_jmp32); 6802 } else if (src_reg->type == SCALAR_VALUE && 6803 !is_jmp32 && tnum_is_const(src_reg->var_off)) { 6804 pred = is_branch_taken(dst_reg, 6805 src_reg->var_off.value, 6806 opcode, 6807 is_jmp32); 6808 } 6809 6810 if (pred >= 0) { 6811 err = mark_chain_precision(env, insn->dst_reg); 6812 if (BPF_SRC(insn->code) == BPF_X && !err) 6813 err = mark_chain_precision(env, insn->src_reg); 6814 if (err) 6815 return err; 6816 } 6817 if (pred == 1) { 6818 /* only follow the goto, ignore fall-through */ 6819 *insn_idx += insn->off; 6820 return 0; 6821 } else if (pred == 0) { 6822 /* only follow fall-through branch, since 6823 * that's where the program will go 6824 */ 6825 return 0; 6826 } 6827 6828 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 6829 false); 6830 if (!other_branch) 6831 return -EFAULT; 6832 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 6833 6834 /* detect if we are comparing against a constant value so we can adjust 6835 * our min/max values for our dst register. 6836 * this is only legit if both are scalars (or pointers to the same 6837 * object, I suppose, but we don't support that right now), because 6838 * otherwise the different base pointers mean the offsets aren't 6839 * comparable. 6840 */ 6841 if (BPF_SRC(insn->code) == BPF_X) { 6842 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 6843 6844 if (dst_reg->type == SCALAR_VALUE && 6845 src_reg->type == SCALAR_VALUE) { 6846 if (tnum_is_const(src_reg->var_off) || 6847 (is_jmp32 && 6848 tnum_is_const(tnum_subreg(src_reg->var_off)))) 6849 reg_set_min_max(&other_branch_regs[insn->dst_reg], 6850 dst_reg, 6851 src_reg->var_off.value, 6852 tnum_subreg(src_reg->var_off).value, 6853 opcode, is_jmp32); 6854 else if (tnum_is_const(dst_reg->var_off) || 6855 (is_jmp32 && 6856 tnum_is_const(tnum_subreg(dst_reg->var_off)))) 6857 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 6858 src_reg, 6859 dst_reg->var_off.value, 6860 tnum_subreg(dst_reg->var_off).value, 6861 opcode, is_jmp32); 6862 else if (!is_jmp32 && 6863 (opcode == BPF_JEQ || opcode == BPF_JNE)) 6864 /* Comparing for equality, we can combine knowledge */ 6865 reg_combine_min_max(&other_branch_regs[insn->src_reg], 6866 &other_branch_regs[insn->dst_reg], 6867 src_reg, dst_reg, opcode); 6868 } 6869 } else if (dst_reg->type == SCALAR_VALUE) { 6870 reg_set_min_max(&other_branch_regs[insn->dst_reg], 6871 dst_reg, insn->imm, (u32)insn->imm, 6872 opcode, is_jmp32); 6873 } 6874 6875 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 6876 * NOTE: these optimizations below are related with pointer comparison 6877 * which will never be JMP32. 6878 */ 6879 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 6880 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 6881 reg_type_may_be_null(dst_reg->type)) { 6882 /* Mark all identical registers in each branch as either 6883 * safe or unknown depending R == 0 or R != 0 conditional. 6884 */ 6885 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 6886 opcode == BPF_JNE); 6887 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 6888 opcode == BPF_JEQ); 6889 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 6890 this_branch, other_branch) && 6891 is_pointer_value(env, insn->dst_reg)) { 6892 verbose(env, "R%d pointer comparison prohibited\n", 6893 insn->dst_reg); 6894 return -EACCES; 6895 } 6896 if (env->log.level & BPF_LOG_LEVEL) 6897 print_verifier_state(env, this_branch->frame[this_branch->curframe]); 6898 return 0; 6899 } 6900 6901 /* verify BPF_LD_IMM64 instruction */ 6902 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 6903 { 6904 struct bpf_insn_aux_data *aux = cur_aux(env); 6905 struct bpf_reg_state *regs = cur_regs(env); 6906 struct bpf_map *map; 6907 int err; 6908 6909 if (BPF_SIZE(insn->code) != BPF_DW) { 6910 verbose(env, "invalid BPF_LD_IMM insn\n"); 6911 return -EINVAL; 6912 } 6913 if (insn->off != 0) { 6914 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 6915 return -EINVAL; 6916 } 6917 6918 err = check_reg_arg(env, insn->dst_reg, DST_OP); 6919 if (err) 6920 return err; 6921 6922 if (insn->src_reg == 0) { 6923 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 6924 6925 regs[insn->dst_reg].type = SCALAR_VALUE; 6926 __mark_reg_known(®s[insn->dst_reg], imm); 6927 return 0; 6928 } 6929 6930 map = env->used_maps[aux->map_index]; 6931 mark_reg_known_zero(env, regs, insn->dst_reg); 6932 regs[insn->dst_reg].map_ptr = map; 6933 6934 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) { 6935 regs[insn->dst_reg].type = PTR_TO_MAP_VALUE; 6936 regs[insn->dst_reg].off = aux->map_off; 6937 if (map_value_has_spin_lock(map)) 6938 regs[insn->dst_reg].id = ++env->id_gen; 6939 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD) { 6940 regs[insn->dst_reg].type = CONST_PTR_TO_MAP; 6941 } else { 6942 verbose(env, "bpf verifier is misconfigured\n"); 6943 return -EINVAL; 6944 } 6945 6946 return 0; 6947 } 6948 6949 static bool may_access_skb(enum bpf_prog_type type) 6950 { 6951 switch (type) { 6952 case BPF_PROG_TYPE_SOCKET_FILTER: 6953 case BPF_PROG_TYPE_SCHED_CLS: 6954 case BPF_PROG_TYPE_SCHED_ACT: 6955 return true; 6956 default: 6957 return false; 6958 } 6959 } 6960 6961 /* verify safety of LD_ABS|LD_IND instructions: 6962 * - they can only appear in the programs where ctx == skb 6963 * - since they are wrappers of function calls, they scratch R1-R5 registers, 6964 * preserve R6-R9, and store return value into R0 6965 * 6966 * Implicit input: 6967 * ctx == skb == R6 == CTX 6968 * 6969 * Explicit input: 6970 * SRC == any register 6971 * IMM == 32-bit immediate 6972 * 6973 * Output: 6974 * R0 - 8/16/32-bit skb data converted to cpu endianness 6975 */ 6976 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 6977 { 6978 struct bpf_reg_state *regs = cur_regs(env); 6979 static const int ctx_reg = BPF_REG_6; 6980 u8 mode = BPF_MODE(insn->code); 6981 int i, err; 6982 6983 if (!may_access_skb(env->prog->type)) { 6984 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 6985 return -EINVAL; 6986 } 6987 6988 if (!env->ops->gen_ld_abs) { 6989 verbose(env, "bpf verifier is misconfigured\n"); 6990 return -EINVAL; 6991 } 6992 6993 if (env->subprog_cnt > 1) { 6994 /* when program has LD_ABS insn JITs and interpreter assume 6995 * that r1 == ctx == skb which is not the case for callees 6996 * that can have arbitrary arguments. It's problematic 6997 * for main prog as well since JITs would need to analyze 6998 * all functions in order to make proper register save/restore 6999 * decisions in the main prog. Hence disallow LD_ABS with calls 7000 */ 7001 verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n"); 7002 return -EINVAL; 7003 } 7004 7005 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 7006 BPF_SIZE(insn->code) == BPF_DW || 7007 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 7008 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 7009 return -EINVAL; 7010 } 7011 7012 /* check whether implicit source operand (register R6) is readable */ 7013 err = check_reg_arg(env, ctx_reg, SRC_OP); 7014 if (err) 7015 return err; 7016 7017 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 7018 * gen_ld_abs() may terminate the program at runtime, leading to 7019 * reference leak. 7020 */ 7021 err = check_reference_leak(env); 7022 if (err) { 7023 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 7024 return err; 7025 } 7026 7027 if (env->cur_state->active_spin_lock) { 7028 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 7029 return -EINVAL; 7030 } 7031 7032 if (regs[ctx_reg].type != PTR_TO_CTX) { 7033 verbose(env, 7034 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 7035 return -EINVAL; 7036 } 7037 7038 if (mode == BPF_IND) { 7039 /* check explicit source operand */ 7040 err = check_reg_arg(env, insn->src_reg, SRC_OP); 7041 if (err) 7042 return err; 7043 } 7044 7045 err = check_ctx_reg(env, ®s[ctx_reg], ctx_reg); 7046 if (err < 0) 7047 return err; 7048 7049 /* reset caller saved regs to unreadable */ 7050 for (i = 0; i < CALLER_SAVED_REGS; i++) { 7051 mark_reg_not_init(env, regs, caller_saved[i]); 7052 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 7053 } 7054 7055 /* mark destination R0 register as readable, since it contains 7056 * the value fetched from the packet. 7057 * Already marked as written above. 7058 */ 7059 mark_reg_unknown(env, regs, BPF_REG_0); 7060 /* ld_abs load up to 32-bit skb data. */ 7061 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 7062 return 0; 7063 } 7064 7065 static int check_return_code(struct bpf_verifier_env *env) 7066 { 7067 struct tnum enforce_attach_type_range = tnum_unknown; 7068 const struct bpf_prog *prog = env->prog; 7069 struct bpf_reg_state *reg; 7070 struct tnum range = tnum_range(0, 1); 7071 int err; 7072 7073 /* LSM and struct_ops func-ptr's return type could be "void" */ 7074 if ((env->prog->type == BPF_PROG_TYPE_STRUCT_OPS || 7075 env->prog->type == BPF_PROG_TYPE_LSM) && 7076 !prog->aux->attach_func_proto->type) 7077 return 0; 7078 7079 /* eBPF calling convetion is such that R0 is used 7080 * to return the value from eBPF program. 7081 * Make sure that it's readable at this time 7082 * of bpf_exit, which means that program wrote 7083 * something into it earlier 7084 */ 7085 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 7086 if (err) 7087 return err; 7088 7089 if (is_pointer_value(env, BPF_REG_0)) { 7090 verbose(env, "R0 leaks addr as return value\n"); 7091 return -EACCES; 7092 } 7093 7094 switch (env->prog->type) { 7095 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 7096 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 7097 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || 7098 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || 7099 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || 7100 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || 7101 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME) 7102 range = tnum_range(1, 1); 7103 break; 7104 case BPF_PROG_TYPE_CGROUP_SKB: 7105 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 7106 range = tnum_range(0, 3); 7107 enforce_attach_type_range = tnum_range(2, 3); 7108 } 7109 break; 7110 case BPF_PROG_TYPE_CGROUP_SOCK: 7111 case BPF_PROG_TYPE_SOCK_OPS: 7112 case BPF_PROG_TYPE_CGROUP_DEVICE: 7113 case BPF_PROG_TYPE_CGROUP_SYSCTL: 7114 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 7115 break; 7116 case BPF_PROG_TYPE_RAW_TRACEPOINT: 7117 if (!env->prog->aux->attach_btf_id) 7118 return 0; 7119 range = tnum_const(0); 7120 break; 7121 case BPF_PROG_TYPE_TRACING: 7122 switch (env->prog->expected_attach_type) { 7123 case BPF_TRACE_FENTRY: 7124 case BPF_TRACE_FEXIT: 7125 range = tnum_const(0); 7126 break; 7127 case BPF_TRACE_RAW_TP: 7128 case BPF_MODIFY_RETURN: 7129 return 0; 7130 case BPF_TRACE_ITER: 7131 break; 7132 default: 7133 return -ENOTSUPP; 7134 } 7135 break; 7136 case BPF_PROG_TYPE_EXT: 7137 /* freplace program can return anything as its return value 7138 * depends on the to-be-replaced kernel func or bpf program. 7139 */ 7140 default: 7141 return 0; 7142 } 7143 7144 reg = cur_regs(env) + BPF_REG_0; 7145 if (reg->type != SCALAR_VALUE) { 7146 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 7147 reg_type_str[reg->type]); 7148 return -EINVAL; 7149 } 7150 7151 if (!tnum_in(range, reg->var_off)) { 7152 char tn_buf[48]; 7153 7154 verbose(env, "At program exit the register R0 "); 7155 if (!tnum_is_unknown(reg->var_off)) { 7156 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 7157 verbose(env, "has value %s", tn_buf); 7158 } else { 7159 verbose(env, "has unknown scalar value"); 7160 } 7161 tnum_strn(tn_buf, sizeof(tn_buf), range); 7162 verbose(env, " should have been in %s\n", tn_buf); 7163 return -EINVAL; 7164 } 7165 7166 if (!tnum_is_unknown(enforce_attach_type_range) && 7167 tnum_in(enforce_attach_type_range, reg->var_off)) 7168 env->prog->enforce_expected_attach_type = 1; 7169 return 0; 7170 } 7171 7172 /* non-recursive DFS pseudo code 7173 * 1 procedure DFS-iterative(G,v): 7174 * 2 label v as discovered 7175 * 3 let S be a stack 7176 * 4 S.push(v) 7177 * 5 while S is not empty 7178 * 6 t <- S.pop() 7179 * 7 if t is what we're looking for: 7180 * 8 return t 7181 * 9 for all edges e in G.adjacentEdges(t) do 7182 * 10 if edge e is already labelled 7183 * 11 continue with the next edge 7184 * 12 w <- G.adjacentVertex(t,e) 7185 * 13 if vertex w is not discovered and not explored 7186 * 14 label e as tree-edge 7187 * 15 label w as discovered 7188 * 16 S.push(w) 7189 * 17 continue at 5 7190 * 18 else if vertex w is discovered 7191 * 19 label e as back-edge 7192 * 20 else 7193 * 21 // vertex w is explored 7194 * 22 label e as forward- or cross-edge 7195 * 23 label t as explored 7196 * 24 S.pop() 7197 * 7198 * convention: 7199 * 0x10 - discovered 7200 * 0x11 - discovered and fall-through edge labelled 7201 * 0x12 - discovered and fall-through and branch edges labelled 7202 * 0x20 - explored 7203 */ 7204 7205 enum { 7206 DISCOVERED = 0x10, 7207 EXPLORED = 0x20, 7208 FALLTHROUGH = 1, 7209 BRANCH = 2, 7210 }; 7211 7212 static u32 state_htab_size(struct bpf_verifier_env *env) 7213 { 7214 return env->prog->len; 7215 } 7216 7217 static struct bpf_verifier_state_list **explored_state( 7218 struct bpf_verifier_env *env, 7219 int idx) 7220 { 7221 struct bpf_verifier_state *cur = env->cur_state; 7222 struct bpf_func_state *state = cur->frame[cur->curframe]; 7223 7224 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 7225 } 7226 7227 static void init_explored_state(struct bpf_verifier_env *env, int idx) 7228 { 7229 env->insn_aux_data[idx].prune_point = true; 7230 } 7231 7232 /* t, w, e - match pseudo-code above: 7233 * t - index of current instruction 7234 * w - next instruction 7235 * e - edge 7236 */ 7237 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env, 7238 bool loop_ok) 7239 { 7240 int *insn_stack = env->cfg.insn_stack; 7241 int *insn_state = env->cfg.insn_state; 7242 7243 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 7244 return 0; 7245 7246 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 7247 return 0; 7248 7249 if (w < 0 || w >= env->prog->len) { 7250 verbose_linfo(env, t, "%d: ", t); 7251 verbose(env, "jump out of range from insn %d to %d\n", t, w); 7252 return -EINVAL; 7253 } 7254 7255 if (e == BRANCH) 7256 /* mark branch target for state pruning */ 7257 init_explored_state(env, w); 7258 7259 if (insn_state[w] == 0) { 7260 /* tree-edge */ 7261 insn_state[t] = DISCOVERED | e; 7262 insn_state[w] = DISCOVERED; 7263 if (env->cfg.cur_stack >= env->prog->len) 7264 return -E2BIG; 7265 insn_stack[env->cfg.cur_stack++] = w; 7266 return 1; 7267 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 7268 if (loop_ok && env->bpf_capable) 7269 return 0; 7270 verbose_linfo(env, t, "%d: ", t); 7271 verbose_linfo(env, w, "%d: ", w); 7272 verbose(env, "back-edge from insn %d to %d\n", t, w); 7273 return -EINVAL; 7274 } else if (insn_state[w] == EXPLORED) { 7275 /* forward- or cross-edge */ 7276 insn_state[t] = DISCOVERED | e; 7277 } else { 7278 verbose(env, "insn state internal bug\n"); 7279 return -EFAULT; 7280 } 7281 return 0; 7282 } 7283 7284 /* non-recursive depth-first-search to detect loops in BPF program 7285 * loop == back-edge in directed graph 7286 */ 7287 static int check_cfg(struct bpf_verifier_env *env) 7288 { 7289 struct bpf_insn *insns = env->prog->insnsi; 7290 int insn_cnt = env->prog->len; 7291 int *insn_stack, *insn_state; 7292 int ret = 0; 7293 int i, t; 7294 7295 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 7296 if (!insn_state) 7297 return -ENOMEM; 7298 7299 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 7300 if (!insn_stack) { 7301 kvfree(insn_state); 7302 return -ENOMEM; 7303 } 7304 7305 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 7306 insn_stack[0] = 0; /* 0 is the first instruction */ 7307 env->cfg.cur_stack = 1; 7308 7309 peek_stack: 7310 if (env->cfg.cur_stack == 0) 7311 goto check_state; 7312 t = insn_stack[env->cfg.cur_stack - 1]; 7313 7314 if (BPF_CLASS(insns[t].code) == BPF_JMP || 7315 BPF_CLASS(insns[t].code) == BPF_JMP32) { 7316 u8 opcode = BPF_OP(insns[t].code); 7317 7318 if (opcode == BPF_EXIT) { 7319 goto mark_explored; 7320 } else if (opcode == BPF_CALL) { 7321 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 7322 if (ret == 1) 7323 goto peek_stack; 7324 else if (ret < 0) 7325 goto err_free; 7326 if (t + 1 < insn_cnt) 7327 init_explored_state(env, t + 1); 7328 if (insns[t].src_reg == BPF_PSEUDO_CALL) { 7329 init_explored_state(env, t); 7330 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, 7331 env, false); 7332 if (ret == 1) 7333 goto peek_stack; 7334 else if (ret < 0) 7335 goto err_free; 7336 } 7337 } else if (opcode == BPF_JA) { 7338 if (BPF_SRC(insns[t].code) != BPF_K) { 7339 ret = -EINVAL; 7340 goto err_free; 7341 } 7342 /* unconditional jump with single edge */ 7343 ret = push_insn(t, t + insns[t].off + 1, 7344 FALLTHROUGH, env, true); 7345 if (ret == 1) 7346 goto peek_stack; 7347 else if (ret < 0) 7348 goto err_free; 7349 /* unconditional jmp is not a good pruning point, 7350 * but it's marked, since backtracking needs 7351 * to record jmp history in is_state_visited(). 7352 */ 7353 init_explored_state(env, t + insns[t].off + 1); 7354 /* tell verifier to check for equivalent states 7355 * after every call and jump 7356 */ 7357 if (t + 1 < insn_cnt) 7358 init_explored_state(env, t + 1); 7359 } else { 7360 /* conditional jump with two edges */ 7361 init_explored_state(env, t); 7362 ret = push_insn(t, t + 1, FALLTHROUGH, env, true); 7363 if (ret == 1) 7364 goto peek_stack; 7365 else if (ret < 0) 7366 goto err_free; 7367 7368 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env, true); 7369 if (ret == 1) 7370 goto peek_stack; 7371 else if (ret < 0) 7372 goto err_free; 7373 } 7374 } else { 7375 /* all other non-branch instructions with single 7376 * fall-through edge 7377 */ 7378 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 7379 if (ret == 1) 7380 goto peek_stack; 7381 else if (ret < 0) 7382 goto err_free; 7383 } 7384 7385 mark_explored: 7386 insn_state[t] = EXPLORED; 7387 if (env->cfg.cur_stack-- <= 0) { 7388 verbose(env, "pop stack internal bug\n"); 7389 ret = -EFAULT; 7390 goto err_free; 7391 } 7392 goto peek_stack; 7393 7394 check_state: 7395 for (i = 0; i < insn_cnt; i++) { 7396 if (insn_state[i] != EXPLORED) { 7397 verbose(env, "unreachable insn %d\n", i); 7398 ret = -EINVAL; 7399 goto err_free; 7400 } 7401 } 7402 ret = 0; /* cfg looks good */ 7403 7404 err_free: 7405 kvfree(insn_state); 7406 kvfree(insn_stack); 7407 env->cfg.insn_state = env->cfg.insn_stack = NULL; 7408 return ret; 7409 } 7410 7411 /* The minimum supported BTF func info size */ 7412 #define MIN_BPF_FUNCINFO_SIZE 8 7413 #define MAX_FUNCINFO_REC_SIZE 252 7414 7415 static int check_btf_func(struct bpf_verifier_env *env, 7416 const union bpf_attr *attr, 7417 union bpf_attr __user *uattr) 7418 { 7419 u32 i, nfuncs, urec_size, min_size; 7420 u32 krec_size = sizeof(struct bpf_func_info); 7421 struct bpf_func_info *krecord; 7422 struct bpf_func_info_aux *info_aux = NULL; 7423 const struct btf_type *type; 7424 struct bpf_prog *prog; 7425 const struct btf *btf; 7426 void __user *urecord; 7427 u32 prev_offset = 0; 7428 int ret = 0; 7429 7430 nfuncs = attr->func_info_cnt; 7431 if (!nfuncs) 7432 return 0; 7433 7434 if (nfuncs != env->subprog_cnt) { 7435 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 7436 return -EINVAL; 7437 } 7438 7439 urec_size = attr->func_info_rec_size; 7440 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 7441 urec_size > MAX_FUNCINFO_REC_SIZE || 7442 urec_size % sizeof(u32)) { 7443 verbose(env, "invalid func info rec size %u\n", urec_size); 7444 return -EINVAL; 7445 } 7446 7447 prog = env->prog; 7448 btf = prog->aux->btf; 7449 7450 urecord = u64_to_user_ptr(attr->func_info); 7451 min_size = min_t(u32, krec_size, urec_size); 7452 7453 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 7454 if (!krecord) 7455 return -ENOMEM; 7456 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); 7457 if (!info_aux) 7458 goto err_free; 7459 7460 for (i = 0; i < nfuncs; i++) { 7461 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 7462 if (ret) { 7463 if (ret == -E2BIG) { 7464 verbose(env, "nonzero tailing record in func info"); 7465 /* set the size kernel expects so loader can zero 7466 * out the rest of the record. 7467 */ 7468 if (put_user(min_size, &uattr->func_info_rec_size)) 7469 ret = -EFAULT; 7470 } 7471 goto err_free; 7472 } 7473 7474 if (copy_from_user(&krecord[i], urecord, min_size)) { 7475 ret = -EFAULT; 7476 goto err_free; 7477 } 7478 7479 /* check insn_off */ 7480 if (i == 0) { 7481 if (krecord[i].insn_off) { 7482 verbose(env, 7483 "nonzero insn_off %u for the first func info record", 7484 krecord[i].insn_off); 7485 ret = -EINVAL; 7486 goto err_free; 7487 } 7488 } else if (krecord[i].insn_off <= prev_offset) { 7489 verbose(env, 7490 "same or smaller insn offset (%u) than previous func info record (%u)", 7491 krecord[i].insn_off, prev_offset); 7492 ret = -EINVAL; 7493 goto err_free; 7494 } 7495 7496 if (env->subprog_info[i].start != krecord[i].insn_off) { 7497 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 7498 ret = -EINVAL; 7499 goto err_free; 7500 } 7501 7502 /* check type_id */ 7503 type = btf_type_by_id(btf, krecord[i].type_id); 7504 if (!type || !btf_type_is_func(type)) { 7505 verbose(env, "invalid type id %d in func info", 7506 krecord[i].type_id); 7507 ret = -EINVAL; 7508 goto err_free; 7509 } 7510 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 7511 prev_offset = krecord[i].insn_off; 7512 urecord += urec_size; 7513 } 7514 7515 prog->aux->func_info = krecord; 7516 prog->aux->func_info_cnt = nfuncs; 7517 prog->aux->func_info_aux = info_aux; 7518 return 0; 7519 7520 err_free: 7521 kvfree(krecord); 7522 kfree(info_aux); 7523 return ret; 7524 } 7525 7526 static void adjust_btf_func(struct bpf_verifier_env *env) 7527 { 7528 struct bpf_prog_aux *aux = env->prog->aux; 7529 int i; 7530 7531 if (!aux->func_info) 7532 return; 7533 7534 for (i = 0; i < env->subprog_cnt; i++) 7535 aux->func_info[i].insn_off = env->subprog_info[i].start; 7536 } 7537 7538 #define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \ 7539 sizeof(((struct bpf_line_info *)(0))->line_col)) 7540 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 7541 7542 static int check_btf_line(struct bpf_verifier_env *env, 7543 const union bpf_attr *attr, 7544 union bpf_attr __user *uattr) 7545 { 7546 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 7547 struct bpf_subprog_info *sub; 7548 struct bpf_line_info *linfo; 7549 struct bpf_prog *prog; 7550 const struct btf *btf; 7551 void __user *ulinfo; 7552 int err; 7553 7554 nr_linfo = attr->line_info_cnt; 7555 if (!nr_linfo) 7556 return 0; 7557 7558 rec_size = attr->line_info_rec_size; 7559 if (rec_size < MIN_BPF_LINEINFO_SIZE || 7560 rec_size > MAX_LINEINFO_REC_SIZE || 7561 rec_size & (sizeof(u32) - 1)) 7562 return -EINVAL; 7563 7564 /* Need to zero it in case the userspace may 7565 * pass in a smaller bpf_line_info object. 7566 */ 7567 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 7568 GFP_KERNEL | __GFP_NOWARN); 7569 if (!linfo) 7570 return -ENOMEM; 7571 7572 prog = env->prog; 7573 btf = prog->aux->btf; 7574 7575 s = 0; 7576 sub = env->subprog_info; 7577 ulinfo = u64_to_user_ptr(attr->line_info); 7578 expected_size = sizeof(struct bpf_line_info); 7579 ncopy = min_t(u32, expected_size, rec_size); 7580 for (i = 0; i < nr_linfo; i++) { 7581 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 7582 if (err) { 7583 if (err == -E2BIG) { 7584 verbose(env, "nonzero tailing record in line_info"); 7585 if (put_user(expected_size, 7586 &uattr->line_info_rec_size)) 7587 err = -EFAULT; 7588 } 7589 goto err_free; 7590 } 7591 7592 if (copy_from_user(&linfo[i], ulinfo, ncopy)) { 7593 err = -EFAULT; 7594 goto err_free; 7595 } 7596 7597 /* 7598 * Check insn_off to ensure 7599 * 1) strictly increasing AND 7600 * 2) bounded by prog->len 7601 * 7602 * The linfo[0].insn_off == 0 check logically falls into 7603 * the later "missing bpf_line_info for func..." case 7604 * because the first linfo[0].insn_off must be the 7605 * first sub also and the first sub must have 7606 * subprog_info[0].start == 0. 7607 */ 7608 if ((i && linfo[i].insn_off <= prev_offset) || 7609 linfo[i].insn_off >= prog->len) { 7610 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 7611 i, linfo[i].insn_off, prev_offset, 7612 prog->len); 7613 err = -EINVAL; 7614 goto err_free; 7615 } 7616 7617 if (!prog->insnsi[linfo[i].insn_off].code) { 7618 verbose(env, 7619 "Invalid insn code at line_info[%u].insn_off\n", 7620 i); 7621 err = -EINVAL; 7622 goto err_free; 7623 } 7624 7625 if (!btf_name_by_offset(btf, linfo[i].line_off) || 7626 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 7627 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 7628 err = -EINVAL; 7629 goto err_free; 7630 } 7631 7632 if (s != env->subprog_cnt) { 7633 if (linfo[i].insn_off == sub[s].start) { 7634 sub[s].linfo_idx = i; 7635 s++; 7636 } else if (sub[s].start < linfo[i].insn_off) { 7637 verbose(env, "missing bpf_line_info for func#%u\n", s); 7638 err = -EINVAL; 7639 goto err_free; 7640 } 7641 } 7642 7643 prev_offset = linfo[i].insn_off; 7644 ulinfo += rec_size; 7645 } 7646 7647 if (s != env->subprog_cnt) { 7648 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 7649 env->subprog_cnt - s, s); 7650 err = -EINVAL; 7651 goto err_free; 7652 } 7653 7654 prog->aux->linfo = linfo; 7655 prog->aux->nr_linfo = nr_linfo; 7656 7657 return 0; 7658 7659 err_free: 7660 kvfree(linfo); 7661 return err; 7662 } 7663 7664 static int check_btf_info(struct bpf_verifier_env *env, 7665 const union bpf_attr *attr, 7666 union bpf_attr __user *uattr) 7667 { 7668 struct btf *btf; 7669 int err; 7670 7671 if (!attr->func_info_cnt && !attr->line_info_cnt) 7672 return 0; 7673 7674 btf = btf_get_by_fd(attr->prog_btf_fd); 7675 if (IS_ERR(btf)) 7676 return PTR_ERR(btf); 7677 env->prog->aux->btf = btf; 7678 7679 err = check_btf_func(env, attr, uattr); 7680 if (err) 7681 return err; 7682 7683 err = check_btf_line(env, attr, uattr); 7684 if (err) 7685 return err; 7686 7687 return 0; 7688 } 7689 7690 /* check %cur's range satisfies %old's */ 7691 static bool range_within(struct bpf_reg_state *old, 7692 struct bpf_reg_state *cur) 7693 { 7694 return old->umin_value <= cur->umin_value && 7695 old->umax_value >= cur->umax_value && 7696 old->smin_value <= cur->smin_value && 7697 old->smax_value >= cur->smax_value; 7698 } 7699 7700 /* Maximum number of register states that can exist at once */ 7701 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE) 7702 struct idpair { 7703 u32 old; 7704 u32 cur; 7705 }; 7706 7707 /* If in the old state two registers had the same id, then they need to have 7708 * the same id in the new state as well. But that id could be different from 7709 * the old state, so we need to track the mapping from old to new ids. 7710 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 7711 * regs with old id 5 must also have new id 9 for the new state to be safe. But 7712 * regs with a different old id could still have new id 9, we don't care about 7713 * that. 7714 * So we look through our idmap to see if this old id has been seen before. If 7715 * so, we require the new id to match; otherwise, we add the id pair to the map. 7716 */ 7717 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap) 7718 { 7719 unsigned int i; 7720 7721 for (i = 0; i < ID_MAP_SIZE; i++) { 7722 if (!idmap[i].old) { 7723 /* Reached an empty slot; haven't seen this id before */ 7724 idmap[i].old = old_id; 7725 idmap[i].cur = cur_id; 7726 return true; 7727 } 7728 if (idmap[i].old == old_id) 7729 return idmap[i].cur == cur_id; 7730 } 7731 /* We ran out of idmap slots, which should be impossible */ 7732 WARN_ON_ONCE(1); 7733 return false; 7734 } 7735 7736 static void clean_func_state(struct bpf_verifier_env *env, 7737 struct bpf_func_state *st) 7738 { 7739 enum bpf_reg_liveness live; 7740 int i, j; 7741 7742 for (i = 0; i < BPF_REG_FP; i++) { 7743 live = st->regs[i].live; 7744 /* liveness must not touch this register anymore */ 7745 st->regs[i].live |= REG_LIVE_DONE; 7746 if (!(live & REG_LIVE_READ)) 7747 /* since the register is unused, clear its state 7748 * to make further comparison simpler 7749 */ 7750 __mark_reg_not_init(env, &st->regs[i]); 7751 } 7752 7753 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 7754 live = st->stack[i].spilled_ptr.live; 7755 /* liveness must not touch this stack slot anymore */ 7756 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 7757 if (!(live & REG_LIVE_READ)) { 7758 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 7759 for (j = 0; j < BPF_REG_SIZE; j++) 7760 st->stack[i].slot_type[j] = STACK_INVALID; 7761 } 7762 } 7763 } 7764 7765 static void clean_verifier_state(struct bpf_verifier_env *env, 7766 struct bpf_verifier_state *st) 7767 { 7768 int i; 7769 7770 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 7771 /* all regs in this state in all frames were already marked */ 7772 return; 7773 7774 for (i = 0; i <= st->curframe; i++) 7775 clean_func_state(env, st->frame[i]); 7776 } 7777 7778 /* the parentage chains form a tree. 7779 * the verifier states are added to state lists at given insn and 7780 * pushed into state stack for future exploration. 7781 * when the verifier reaches bpf_exit insn some of the verifer states 7782 * stored in the state lists have their final liveness state already, 7783 * but a lot of states will get revised from liveness point of view when 7784 * the verifier explores other branches. 7785 * Example: 7786 * 1: r0 = 1 7787 * 2: if r1 == 100 goto pc+1 7788 * 3: r0 = 2 7789 * 4: exit 7790 * when the verifier reaches exit insn the register r0 in the state list of 7791 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 7792 * of insn 2 and goes exploring further. At the insn 4 it will walk the 7793 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 7794 * 7795 * Since the verifier pushes the branch states as it sees them while exploring 7796 * the program the condition of walking the branch instruction for the second 7797 * time means that all states below this branch were already explored and 7798 * their final liveness markes are already propagated. 7799 * Hence when the verifier completes the search of state list in is_state_visited() 7800 * we can call this clean_live_states() function to mark all liveness states 7801 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 7802 * will not be used. 7803 * This function also clears the registers and stack for states that !READ 7804 * to simplify state merging. 7805 * 7806 * Important note here that walking the same branch instruction in the callee 7807 * doesn't meant that the states are DONE. The verifier has to compare 7808 * the callsites 7809 */ 7810 static void clean_live_states(struct bpf_verifier_env *env, int insn, 7811 struct bpf_verifier_state *cur) 7812 { 7813 struct bpf_verifier_state_list *sl; 7814 int i; 7815 7816 sl = *explored_state(env, insn); 7817 while (sl) { 7818 if (sl->state.branches) 7819 goto next; 7820 if (sl->state.insn_idx != insn || 7821 sl->state.curframe != cur->curframe) 7822 goto next; 7823 for (i = 0; i <= cur->curframe; i++) 7824 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite) 7825 goto next; 7826 clean_verifier_state(env, &sl->state); 7827 next: 7828 sl = sl->next; 7829 } 7830 } 7831 7832 /* Returns true if (rold safe implies rcur safe) */ 7833 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur, 7834 struct idpair *idmap) 7835 { 7836 bool equal; 7837 7838 if (!(rold->live & REG_LIVE_READ)) 7839 /* explored state didn't use this */ 7840 return true; 7841 7842 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0; 7843 7844 if (rold->type == PTR_TO_STACK) 7845 /* two stack pointers are equal only if they're pointing to 7846 * the same stack frame, since fp-8 in foo != fp-8 in bar 7847 */ 7848 return equal && rold->frameno == rcur->frameno; 7849 7850 if (equal) 7851 return true; 7852 7853 if (rold->type == NOT_INIT) 7854 /* explored state can't have used this */ 7855 return true; 7856 if (rcur->type == NOT_INIT) 7857 return false; 7858 switch (rold->type) { 7859 case SCALAR_VALUE: 7860 if (rcur->type == SCALAR_VALUE) { 7861 if (!rold->precise && !rcur->precise) 7862 return true; 7863 /* new val must satisfy old val knowledge */ 7864 return range_within(rold, rcur) && 7865 tnum_in(rold->var_off, rcur->var_off); 7866 } else { 7867 /* We're trying to use a pointer in place of a scalar. 7868 * Even if the scalar was unbounded, this could lead to 7869 * pointer leaks because scalars are allowed to leak 7870 * while pointers are not. We could make this safe in 7871 * special cases if root is calling us, but it's 7872 * probably not worth the hassle. 7873 */ 7874 return false; 7875 } 7876 case PTR_TO_MAP_VALUE: 7877 /* If the new min/max/var_off satisfy the old ones and 7878 * everything else matches, we are OK. 7879 * 'id' is not compared, since it's only used for maps with 7880 * bpf_spin_lock inside map element and in such cases if 7881 * the rest of the prog is valid for one map element then 7882 * it's valid for all map elements regardless of the key 7883 * used in bpf_map_lookup() 7884 */ 7885 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 7886 range_within(rold, rcur) && 7887 tnum_in(rold->var_off, rcur->var_off); 7888 case PTR_TO_MAP_VALUE_OR_NULL: 7889 /* a PTR_TO_MAP_VALUE could be safe to use as a 7890 * PTR_TO_MAP_VALUE_OR_NULL into the same map. 7891 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- 7892 * checked, doing so could have affected others with the same 7893 * id, and we can't check for that because we lost the id when 7894 * we converted to a PTR_TO_MAP_VALUE. 7895 */ 7896 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL) 7897 return false; 7898 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) 7899 return false; 7900 /* Check our ids match any regs they're supposed to */ 7901 return check_ids(rold->id, rcur->id, idmap); 7902 case PTR_TO_PACKET_META: 7903 case PTR_TO_PACKET: 7904 if (rcur->type != rold->type) 7905 return false; 7906 /* We must have at least as much range as the old ptr 7907 * did, so that any accesses which were safe before are 7908 * still safe. This is true even if old range < old off, 7909 * since someone could have accessed through (ptr - k), or 7910 * even done ptr -= k in a register, to get a safe access. 7911 */ 7912 if (rold->range > rcur->range) 7913 return false; 7914 /* If the offsets don't match, we can't trust our alignment; 7915 * nor can we be sure that we won't fall out of range. 7916 */ 7917 if (rold->off != rcur->off) 7918 return false; 7919 /* id relations must be preserved */ 7920 if (rold->id && !check_ids(rold->id, rcur->id, idmap)) 7921 return false; 7922 /* new val must satisfy old val knowledge */ 7923 return range_within(rold, rcur) && 7924 tnum_in(rold->var_off, rcur->var_off); 7925 case PTR_TO_CTX: 7926 case CONST_PTR_TO_MAP: 7927 case PTR_TO_PACKET_END: 7928 case PTR_TO_FLOW_KEYS: 7929 case PTR_TO_SOCKET: 7930 case PTR_TO_SOCKET_OR_NULL: 7931 case PTR_TO_SOCK_COMMON: 7932 case PTR_TO_SOCK_COMMON_OR_NULL: 7933 case PTR_TO_TCP_SOCK: 7934 case PTR_TO_TCP_SOCK_OR_NULL: 7935 case PTR_TO_XDP_SOCK: 7936 /* Only valid matches are exact, which memcmp() above 7937 * would have accepted 7938 */ 7939 default: 7940 /* Don't know what's going on, just say it's not safe */ 7941 return false; 7942 } 7943 7944 /* Shouldn't get here; if we do, say it's not safe */ 7945 WARN_ON_ONCE(1); 7946 return false; 7947 } 7948 7949 static bool stacksafe(struct bpf_func_state *old, 7950 struct bpf_func_state *cur, 7951 struct idpair *idmap) 7952 { 7953 int i, spi; 7954 7955 /* walk slots of the explored stack and ignore any additional 7956 * slots in the current stack, since explored(safe) state 7957 * didn't use them 7958 */ 7959 for (i = 0; i < old->allocated_stack; i++) { 7960 spi = i / BPF_REG_SIZE; 7961 7962 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) { 7963 i += BPF_REG_SIZE - 1; 7964 /* explored state didn't use this */ 7965 continue; 7966 } 7967 7968 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 7969 continue; 7970 7971 /* explored stack has more populated slots than current stack 7972 * and these slots were used 7973 */ 7974 if (i >= cur->allocated_stack) 7975 return false; 7976 7977 /* if old state was safe with misc data in the stack 7978 * it will be safe with zero-initialized stack. 7979 * The opposite is not true 7980 */ 7981 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 7982 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 7983 continue; 7984 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 7985 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 7986 /* Ex: old explored (safe) state has STACK_SPILL in 7987 * this stack slot, but current has has STACK_MISC -> 7988 * this verifier states are not equivalent, 7989 * return false to continue verification of this path 7990 */ 7991 return false; 7992 if (i % BPF_REG_SIZE) 7993 continue; 7994 if (old->stack[spi].slot_type[0] != STACK_SPILL) 7995 continue; 7996 if (!regsafe(&old->stack[spi].spilled_ptr, 7997 &cur->stack[spi].spilled_ptr, 7998 idmap)) 7999 /* when explored and current stack slot are both storing 8000 * spilled registers, check that stored pointers types 8001 * are the same as well. 8002 * Ex: explored safe path could have stored 8003 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 8004 * but current path has stored: 8005 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 8006 * such verifier states are not equivalent. 8007 * return false to continue verification of this path 8008 */ 8009 return false; 8010 } 8011 return true; 8012 } 8013 8014 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur) 8015 { 8016 if (old->acquired_refs != cur->acquired_refs) 8017 return false; 8018 return !memcmp(old->refs, cur->refs, 8019 sizeof(*old->refs) * old->acquired_refs); 8020 } 8021 8022 /* compare two verifier states 8023 * 8024 * all states stored in state_list are known to be valid, since 8025 * verifier reached 'bpf_exit' instruction through them 8026 * 8027 * this function is called when verifier exploring different branches of 8028 * execution popped from the state stack. If it sees an old state that has 8029 * more strict register state and more strict stack state then this execution 8030 * branch doesn't need to be explored further, since verifier already 8031 * concluded that more strict state leads to valid finish. 8032 * 8033 * Therefore two states are equivalent if register state is more conservative 8034 * and explored stack state is more conservative than the current one. 8035 * Example: 8036 * explored current 8037 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 8038 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 8039 * 8040 * In other words if current stack state (one being explored) has more 8041 * valid slots than old one that already passed validation, it means 8042 * the verifier can stop exploring and conclude that current state is valid too 8043 * 8044 * Similarly with registers. If explored state has register type as invalid 8045 * whereas register type in current state is meaningful, it means that 8046 * the current state will reach 'bpf_exit' instruction safely 8047 */ 8048 static bool func_states_equal(struct bpf_func_state *old, 8049 struct bpf_func_state *cur) 8050 { 8051 struct idpair *idmap; 8052 bool ret = false; 8053 int i; 8054 8055 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL); 8056 /* If we failed to allocate the idmap, just say it's not safe */ 8057 if (!idmap) 8058 return false; 8059 8060 for (i = 0; i < MAX_BPF_REG; i++) { 8061 if (!regsafe(&old->regs[i], &cur->regs[i], idmap)) 8062 goto out_free; 8063 } 8064 8065 if (!stacksafe(old, cur, idmap)) 8066 goto out_free; 8067 8068 if (!refsafe(old, cur)) 8069 goto out_free; 8070 ret = true; 8071 out_free: 8072 kfree(idmap); 8073 return ret; 8074 } 8075 8076 static bool states_equal(struct bpf_verifier_env *env, 8077 struct bpf_verifier_state *old, 8078 struct bpf_verifier_state *cur) 8079 { 8080 int i; 8081 8082 if (old->curframe != cur->curframe) 8083 return false; 8084 8085 /* Verification state from speculative execution simulation 8086 * must never prune a non-speculative execution one. 8087 */ 8088 if (old->speculative && !cur->speculative) 8089 return false; 8090 8091 if (old->active_spin_lock != cur->active_spin_lock) 8092 return false; 8093 8094 /* for states to be equal callsites have to be the same 8095 * and all frame states need to be equivalent 8096 */ 8097 for (i = 0; i <= old->curframe; i++) { 8098 if (old->frame[i]->callsite != cur->frame[i]->callsite) 8099 return false; 8100 if (!func_states_equal(old->frame[i], cur->frame[i])) 8101 return false; 8102 } 8103 return true; 8104 } 8105 8106 /* Return 0 if no propagation happened. Return negative error code if error 8107 * happened. Otherwise, return the propagated bit. 8108 */ 8109 static int propagate_liveness_reg(struct bpf_verifier_env *env, 8110 struct bpf_reg_state *reg, 8111 struct bpf_reg_state *parent_reg) 8112 { 8113 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 8114 u8 flag = reg->live & REG_LIVE_READ; 8115 int err; 8116 8117 /* When comes here, read flags of PARENT_REG or REG could be any of 8118 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 8119 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 8120 */ 8121 if (parent_flag == REG_LIVE_READ64 || 8122 /* Or if there is no read flag from REG. */ 8123 !flag || 8124 /* Or if the read flag from REG is the same as PARENT_REG. */ 8125 parent_flag == flag) 8126 return 0; 8127 8128 err = mark_reg_read(env, reg, parent_reg, flag); 8129 if (err) 8130 return err; 8131 8132 return flag; 8133 } 8134 8135 /* A write screens off any subsequent reads; but write marks come from the 8136 * straight-line code between a state and its parent. When we arrive at an 8137 * equivalent state (jump target or such) we didn't arrive by the straight-line 8138 * code, so read marks in the state must propagate to the parent regardless 8139 * of the state's write marks. That's what 'parent == state->parent' comparison 8140 * in mark_reg_read() is for. 8141 */ 8142 static int propagate_liveness(struct bpf_verifier_env *env, 8143 const struct bpf_verifier_state *vstate, 8144 struct bpf_verifier_state *vparent) 8145 { 8146 struct bpf_reg_state *state_reg, *parent_reg; 8147 struct bpf_func_state *state, *parent; 8148 int i, frame, err = 0; 8149 8150 if (vparent->curframe != vstate->curframe) { 8151 WARN(1, "propagate_live: parent frame %d current frame %d\n", 8152 vparent->curframe, vstate->curframe); 8153 return -EFAULT; 8154 } 8155 /* Propagate read liveness of registers... */ 8156 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 8157 for (frame = 0; frame <= vstate->curframe; frame++) { 8158 parent = vparent->frame[frame]; 8159 state = vstate->frame[frame]; 8160 parent_reg = parent->regs; 8161 state_reg = state->regs; 8162 /* We don't need to worry about FP liveness, it's read-only */ 8163 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 8164 err = propagate_liveness_reg(env, &state_reg[i], 8165 &parent_reg[i]); 8166 if (err < 0) 8167 return err; 8168 if (err == REG_LIVE_READ64) 8169 mark_insn_zext(env, &parent_reg[i]); 8170 } 8171 8172 /* Propagate stack slots. */ 8173 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 8174 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 8175 parent_reg = &parent->stack[i].spilled_ptr; 8176 state_reg = &state->stack[i].spilled_ptr; 8177 err = propagate_liveness_reg(env, state_reg, 8178 parent_reg); 8179 if (err < 0) 8180 return err; 8181 } 8182 } 8183 return 0; 8184 } 8185 8186 /* find precise scalars in the previous equivalent state and 8187 * propagate them into the current state 8188 */ 8189 static int propagate_precision(struct bpf_verifier_env *env, 8190 const struct bpf_verifier_state *old) 8191 { 8192 struct bpf_reg_state *state_reg; 8193 struct bpf_func_state *state; 8194 int i, err = 0; 8195 8196 state = old->frame[old->curframe]; 8197 state_reg = state->regs; 8198 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 8199 if (state_reg->type != SCALAR_VALUE || 8200 !state_reg->precise) 8201 continue; 8202 if (env->log.level & BPF_LOG_LEVEL2) 8203 verbose(env, "propagating r%d\n", i); 8204 err = mark_chain_precision(env, i); 8205 if (err < 0) 8206 return err; 8207 } 8208 8209 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 8210 if (state->stack[i].slot_type[0] != STACK_SPILL) 8211 continue; 8212 state_reg = &state->stack[i].spilled_ptr; 8213 if (state_reg->type != SCALAR_VALUE || 8214 !state_reg->precise) 8215 continue; 8216 if (env->log.level & BPF_LOG_LEVEL2) 8217 verbose(env, "propagating fp%d\n", 8218 (-i - 1) * BPF_REG_SIZE); 8219 err = mark_chain_precision_stack(env, i); 8220 if (err < 0) 8221 return err; 8222 } 8223 return 0; 8224 } 8225 8226 static bool states_maybe_looping(struct bpf_verifier_state *old, 8227 struct bpf_verifier_state *cur) 8228 { 8229 struct bpf_func_state *fold, *fcur; 8230 int i, fr = cur->curframe; 8231 8232 if (old->curframe != fr) 8233 return false; 8234 8235 fold = old->frame[fr]; 8236 fcur = cur->frame[fr]; 8237 for (i = 0; i < MAX_BPF_REG; i++) 8238 if (memcmp(&fold->regs[i], &fcur->regs[i], 8239 offsetof(struct bpf_reg_state, parent))) 8240 return false; 8241 return true; 8242 } 8243 8244 8245 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 8246 { 8247 struct bpf_verifier_state_list *new_sl; 8248 struct bpf_verifier_state_list *sl, **pprev; 8249 struct bpf_verifier_state *cur = env->cur_state, *new; 8250 int i, j, err, states_cnt = 0; 8251 bool add_new_state = env->test_state_freq ? true : false; 8252 8253 cur->last_insn_idx = env->prev_insn_idx; 8254 if (!env->insn_aux_data[insn_idx].prune_point) 8255 /* this 'insn_idx' instruction wasn't marked, so we will not 8256 * be doing state search here 8257 */ 8258 return 0; 8259 8260 /* bpf progs typically have pruning point every 4 instructions 8261 * http://vger.kernel.org/bpfconf2019.html#session-1 8262 * Do not add new state for future pruning if the verifier hasn't seen 8263 * at least 2 jumps and at least 8 instructions. 8264 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 8265 * In tests that amounts to up to 50% reduction into total verifier 8266 * memory consumption and 20% verifier time speedup. 8267 */ 8268 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 8269 env->insn_processed - env->prev_insn_processed >= 8) 8270 add_new_state = true; 8271 8272 pprev = explored_state(env, insn_idx); 8273 sl = *pprev; 8274 8275 clean_live_states(env, insn_idx, cur); 8276 8277 while (sl) { 8278 states_cnt++; 8279 if (sl->state.insn_idx != insn_idx) 8280 goto next; 8281 if (sl->state.branches) { 8282 if (states_maybe_looping(&sl->state, cur) && 8283 states_equal(env, &sl->state, cur)) { 8284 verbose_linfo(env, insn_idx, "; "); 8285 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 8286 return -EINVAL; 8287 } 8288 /* if the verifier is processing a loop, avoid adding new state 8289 * too often, since different loop iterations have distinct 8290 * states and may not help future pruning. 8291 * This threshold shouldn't be too low to make sure that 8292 * a loop with large bound will be rejected quickly. 8293 * The most abusive loop will be: 8294 * r1 += 1 8295 * if r1 < 1000000 goto pc-2 8296 * 1M insn_procssed limit / 100 == 10k peak states. 8297 * This threshold shouldn't be too high either, since states 8298 * at the end of the loop are likely to be useful in pruning. 8299 */ 8300 if (env->jmps_processed - env->prev_jmps_processed < 20 && 8301 env->insn_processed - env->prev_insn_processed < 100) 8302 add_new_state = false; 8303 goto miss; 8304 } 8305 if (states_equal(env, &sl->state, cur)) { 8306 sl->hit_cnt++; 8307 /* reached equivalent register/stack state, 8308 * prune the search. 8309 * Registers read by the continuation are read by us. 8310 * If we have any write marks in env->cur_state, they 8311 * will prevent corresponding reads in the continuation 8312 * from reaching our parent (an explored_state). Our 8313 * own state will get the read marks recorded, but 8314 * they'll be immediately forgotten as we're pruning 8315 * this state and will pop a new one. 8316 */ 8317 err = propagate_liveness(env, &sl->state, cur); 8318 8319 /* if previous state reached the exit with precision and 8320 * current state is equivalent to it (except precsion marks) 8321 * the precision needs to be propagated back in 8322 * the current state. 8323 */ 8324 err = err ? : push_jmp_history(env, cur); 8325 err = err ? : propagate_precision(env, &sl->state); 8326 if (err) 8327 return err; 8328 return 1; 8329 } 8330 miss: 8331 /* when new state is not going to be added do not increase miss count. 8332 * Otherwise several loop iterations will remove the state 8333 * recorded earlier. The goal of these heuristics is to have 8334 * states from some iterations of the loop (some in the beginning 8335 * and some at the end) to help pruning. 8336 */ 8337 if (add_new_state) 8338 sl->miss_cnt++; 8339 /* heuristic to determine whether this state is beneficial 8340 * to keep checking from state equivalence point of view. 8341 * Higher numbers increase max_states_per_insn and verification time, 8342 * but do not meaningfully decrease insn_processed. 8343 */ 8344 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) { 8345 /* the state is unlikely to be useful. Remove it to 8346 * speed up verification 8347 */ 8348 *pprev = sl->next; 8349 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) { 8350 u32 br = sl->state.branches; 8351 8352 WARN_ONCE(br, 8353 "BUG live_done but branches_to_explore %d\n", 8354 br); 8355 free_verifier_state(&sl->state, false); 8356 kfree(sl); 8357 env->peak_states--; 8358 } else { 8359 /* cannot free this state, since parentage chain may 8360 * walk it later. Add it for free_list instead to 8361 * be freed at the end of verification 8362 */ 8363 sl->next = env->free_list; 8364 env->free_list = sl; 8365 } 8366 sl = *pprev; 8367 continue; 8368 } 8369 next: 8370 pprev = &sl->next; 8371 sl = *pprev; 8372 } 8373 8374 if (env->max_states_per_insn < states_cnt) 8375 env->max_states_per_insn = states_cnt; 8376 8377 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 8378 return push_jmp_history(env, cur); 8379 8380 if (!add_new_state) 8381 return push_jmp_history(env, cur); 8382 8383 /* There were no equivalent states, remember the current one. 8384 * Technically the current state is not proven to be safe yet, 8385 * but it will either reach outer most bpf_exit (which means it's safe) 8386 * or it will be rejected. When there are no loops the verifier won't be 8387 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 8388 * again on the way to bpf_exit. 8389 * When looping the sl->state.branches will be > 0 and this state 8390 * will not be considered for equivalence until branches == 0. 8391 */ 8392 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 8393 if (!new_sl) 8394 return -ENOMEM; 8395 env->total_states++; 8396 env->peak_states++; 8397 env->prev_jmps_processed = env->jmps_processed; 8398 env->prev_insn_processed = env->insn_processed; 8399 8400 /* add new state to the head of linked list */ 8401 new = &new_sl->state; 8402 err = copy_verifier_state(new, cur); 8403 if (err) { 8404 free_verifier_state(new, false); 8405 kfree(new_sl); 8406 return err; 8407 } 8408 new->insn_idx = insn_idx; 8409 WARN_ONCE(new->branches != 1, 8410 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 8411 8412 cur->parent = new; 8413 cur->first_insn_idx = insn_idx; 8414 clear_jmp_history(cur); 8415 new_sl->next = *explored_state(env, insn_idx); 8416 *explored_state(env, insn_idx) = new_sl; 8417 /* connect new state to parentage chain. Current frame needs all 8418 * registers connected. Only r6 - r9 of the callers are alive (pushed 8419 * to the stack implicitly by JITs) so in callers' frames connect just 8420 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 8421 * the state of the call instruction (with WRITTEN set), and r0 comes 8422 * from callee with its full parentage chain, anyway. 8423 */ 8424 /* clear write marks in current state: the writes we did are not writes 8425 * our child did, so they don't screen off its reads from us. 8426 * (There are no read marks in current state, because reads always mark 8427 * their parent and current state never has children yet. Only 8428 * explored_states can get read marks.) 8429 */ 8430 for (j = 0; j <= cur->curframe; j++) { 8431 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 8432 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 8433 for (i = 0; i < BPF_REG_FP; i++) 8434 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 8435 } 8436 8437 /* all stack frames are accessible from callee, clear them all */ 8438 for (j = 0; j <= cur->curframe; j++) { 8439 struct bpf_func_state *frame = cur->frame[j]; 8440 struct bpf_func_state *newframe = new->frame[j]; 8441 8442 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 8443 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 8444 frame->stack[i].spilled_ptr.parent = 8445 &newframe->stack[i].spilled_ptr; 8446 } 8447 } 8448 return 0; 8449 } 8450 8451 /* Return true if it's OK to have the same insn return a different type. */ 8452 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 8453 { 8454 switch (type) { 8455 case PTR_TO_CTX: 8456 case PTR_TO_SOCKET: 8457 case PTR_TO_SOCKET_OR_NULL: 8458 case PTR_TO_SOCK_COMMON: 8459 case PTR_TO_SOCK_COMMON_OR_NULL: 8460 case PTR_TO_TCP_SOCK: 8461 case PTR_TO_TCP_SOCK_OR_NULL: 8462 case PTR_TO_XDP_SOCK: 8463 case PTR_TO_BTF_ID: 8464 case PTR_TO_BTF_ID_OR_NULL: 8465 return false; 8466 default: 8467 return true; 8468 } 8469 } 8470 8471 /* If an instruction was previously used with particular pointer types, then we 8472 * need to be careful to avoid cases such as the below, where it may be ok 8473 * for one branch accessing the pointer, but not ok for the other branch: 8474 * 8475 * R1 = sock_ptr 8476 * goto X; 8477 * ... 8478 * R1 = some_other_valid_ptr; 8479 * goto X; 8480 * ... 8481 * R2 = *(u32 *)(R1 + 0); 8482 */ 8483 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 8484 { 8485 return src != prev && (!reg_type_mismatch_ok(src) || 8486 !reg_type_mismatch_ok(prev)); 8487 } 8488 8489 static int do_check(struct bpf_verifier_env *env) 8490 { 8491 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 8492 struct bpf_verifier_state *state = env->cur_state; 8493 struct bpf_insn *insns = env->prog->insnsi; 8494 struct bpf_reg_state *regs; 8495 int insn_cnt = env->prog->len; 8496 bool do_print_state = false; 8497 int prev_insn_idx = -1; 8498 8499 for (;;) { 8500 struct bpf_insn *insn; 8501 u8 class; 8502 int err; 8503 8504 env->prev_insn_idx = prev_insn_idx; 8505 if (env->insn_idx >= insn_cnt) { 8506 verbose(env, "invalid insn idx %d insn_cnt %d\n", 8507 env->insn_idx, insn_cnt); 8508 return -EFAULT; 8509 } 8510 8511 insn = &insns[env->insn_idx]; 8512 class = BPF_CLASS(insn->code); 8513 8514 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 8515 verbose(env, 8516 "BPF program is too large. Processed %d insn\n", 8517 env->insn_processed); 8518 return -E2BIG; 8519 } 8520 8521 err = is_state_visited(env, env->insn_idx); 8522 if (err < 0) 8523 return err; 8524 if (err == 1) { 8525 /* found equivalent state, can prune the search */ 8526 if (env->log.level & BPF_LOG_LEVEL) { 8527 if (do_print_state) 8528 verbose(env, "\nfrom %d to %d%s: safe\n", 8529 env->prev_insn_idx, env->insn_idx, 8530 env->cur_state->speculative ? 8531 " (speculative execution)" : ""); 8532 else 8533 verbose(env, "%d: safe\n", env->insn_idx); 8534 } 8535 goto process_bpf_exit; 8536 } 8537 8538 if (signal_pending(current)) 8539 return -EAGAIN; 8540 8541 if (need_resched()) 8542 cond_resched(); 8543 8544 if (env->log.level & BPF_LOG_LEVEL2 || 8545 (env->log.level & BPF_LOG_LEVEL && do_print_state)) { 8546 if (env->log.level & BPF_LOG_LEVEL2) 8547 verbose(env, "%d:", env->insn_idx); 8548 else 8549 verbose(env, "\nfrom %d to %d%s:", 8550 env->prev_insn_idx, env->insn_idx, 8551 env->cur_state->speculative ? 8552 " (speculative execution)" : ""); 8553 print_verifier_state(env, state->frame[state->curframe]); 8554 do_print_state = false; 8555 } 8556 8557 if (env->log.level & BPF_LOG_LEVEL) { 8558 const struct bpf_insn_cbs cbs = { 8559 .cb_print = verbose, 8560 .private_data = env, 8561 }; 8562 8563 verbose_linfo(env, env->insn_idx, "; "); 8564 verbose(env, "%d: ", env->insn_idx); 8565 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 8566 } 8567 8568 if (bpf_prog_is_dev_bound(env->prog->aux)) { 8569 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 8570 env->prev_insn_idx); 8571 if (err) 8572 return err; 8573 } 8574 8575 regs = cur_regs(env); 8576 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 8577 prev_insn_idx = env->insn_idx; 8578 8579 if (class == BPF_ALU || class == BPF_ALU64) { 8580 err = check_alu_op(env, insn); 8581 if (err) 8582 return err; 8583 8584 } else if (class == BPF_LDX) { 8585 enum bpf_reg_type *prev_src_type, src_reg_type; 8586 8587 /* check for reserved fields is already done */ 8588 8589 /* check src operand */ 8590 err = check_reg_arg(env, insn->src_reg, SRC_OP); 8591 if (err) 8592 return err; 8593 8594 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 8595 if (err) 8596 return err; 8597 8598 src_reg_type = regs[insn->src_reg].type; 8599 8600 /* check that memory (src_reg + off) is readable, 8601 * the state of dst_reg will be updated by this func 8602 */ 8603 err = check_mem_access(env, env->insn_idx, insn->src_reg, 8604 insn->off, BPF_SIZE(insn->code), 8605 BPF_READ, insn->dst_reg, false); 8606 if (err) 8607 return err; 8608 8609 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type; 8610 8611 if (*prev_src_type == NOT_INIT) { 8612 /* saw a valid insn 8613 * dst_reg = *(u32 *)(src_reg + off) 8614 * save type to validate intersecting paths 8615 */ 8616 *prev_src_type = src_reg_type; 8617 8618 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) { 8619 /* ABuser program is trying to use the same insn 8620 * dst_reg = *(u32*) (src_reg + off) 8621 * with different pointer types: 8622 * src_reg == ctx in one branch and 8623 * src_reg == stack|map in some other branch. 8624 * Reject it. 8625 */ 8626 verbose(env, "same insn cannot be used with different pointers\n"); 8627 return -EINVAL; 8628 } 8629 8630 } else if (class == BPF_STX) { 8631 enum bpf_reg_type *prev_dst_type, dst_reg_type; 8632 8633 if (BPF_MODE(insn->code) == BPF_XADD) { 8634 err = check_xadd(env, env->insn_idx, insn); 8635 if (err) 8636 return err; 8637 env->insn_idx++; 8638 continue; 8639 } 8640 8641 /* check src1 operand */ 8642 err = check_reg_arg(env, insn->src_reg, SRC_OP); 8643 if (err) 8644 return err; 8645 /* check src2 operand */ 8646 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 8647 if (err) 8648 return err; 8649 8650 dst_reg_type = regs[insn->dst_reg].type; 8651 8652 /* check that memory (dst_reg + off) is writeable */ 8653 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 8654 insn->off, BPF_SIZE(insn->code), 8655 BPF_WRITE, insn->src_reg, false); 8656 if (err) 8657 return err; 8658 8659 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type; 8660 8661 if (*prev_dst_type == NOT_INIT) { 8662 *prev_dst_type = dst_reg_type; 8663 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) { 8664 verbose(env, "same insn cannot be used with different pointers\n"); 8665 return -EINVAL; 8666 } 8667 8668 } else if (class == BPF_ST) { 8669 if (BPF_MODE(insn->code) != BPF_MEM || 8670 insn->src_reg != BPF_REG_0) { 8671 verbose(env, "BPF_ST uses reserved fields\n"); 8672 return -EINVAL; 8673 } 8674 /* check src operand */ 8675 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 8676 if (err) 8677 return err; 8678 8679 if (is_ctx_reg(env, insn->dst_reg)) { 8680 verbose(env, "BPF_ST stores into R%d %s is not allowed\n", 8681 insn->dst_reg, 8682 reg_type_str[reg_state(env, insn->dst_reg)->type]); 8683 return -EACCES; 8684 } 8685 8686 /* check that memory (dst_reg + off) is writeable */ 8687 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 8688 insn->off, BPF_SIZE(insn->code), 8689 BPF_WRITE, -1, false); 8690 if (err) 8691 return err; 8692 8693 } else if (class == BPF_JMP || class == BPF_JMP32) { 8694 u8 opcode = BPF_OP(insn->code); 8695 8696 env->jmps_processed++; 8697 if (opcode == BPF_CALL) { 8698 if (BPF_SRC(insn->code) != BPF_K || 8699 insn->off != 0 || 8700 (insn->src_reg != BPF_REG_0 && 8701 insn->src_reg != BPF_PSEUDO_CALL) || 8702 insn->dst_reg != BPF_REG_0 || 8703 class == BPF_JMP32) { 8704 verbose(env, "BPF_CALL uses reserved fields\n"); 8705 return -EINVAL; 8706 } 8707 8708 if (env->cur_state->active_spin_lock && 8709 (insn->src_reg == BPF_PSEUDO_CALL || 8710 insn->imm != BPF_FUNC_spin_unlock)) { 8711 verbose(env, "function calls are not allowed while holding a lock\n"); 8712 return -EINVAL; 8713 } 8714 if (insn->src_reg == BPF_PSEUDO_CALL) 8715 err = check_func_call(env, insn, &env->insn_idx); 8716 else 8717 err = check_helper_call(env, insn->imm, env->insn_idx); 8718 if (err) 8719 return err; 8720 8721 } else if (opcode == BPF_JA) { 8722 if (BPF_SRC(insn->code) != BPF_K || 8723 insn->imm != 0 || 8724 insn->src_reg != BPF_REG_0 || 8725 insn->dst_reg != BPF_REG_0 || 8726 class == BPF_JMP32) { 8727 verbose(env, "BPF_JA uses reserved fields\n"); 8728 return -EINVAL; 8729 } 8730 8731 env->insn_idx += insn->off + 1; 8732 continue; 8733 8734 } else if (opcode == BPF_EXIT) { 8735 if (BPF_SRC(insn->code) != BPF_K || 8736 insn->imm != 0 || 8737 insn->src_reg != BPF_REG_0 || 8738 insn->dst_reg != BPF_REG_0 || 8739 class == BPF_JMP32) { 8740 verbose(env, "BPF_EXIT uses reserved fields\n"); 8741 return -EINVAL; 8742 } 8743 8744 if (env->cur_state->active_spin_lock) { 8745 verbose(env, "bpf_spin_unlock is missing\n"); 8746 return -EINVAL; 8747 } 8748 8749 if (state->curframe) { 8750 /* exit from nested function */ 8751 err = prepare_func_exit(env, &env->insn_idx); 8752 if (err) 8753 return err; 8754 do_print_state = true; 8755 continue; 8756 } 8757 8758 err = check_reference_leak(env); 8759 if (err) 8760 return err; 8761 8762 err = check_return_code(env); 8763 if (err) 8764 return err; 8765 process_bpf_exit: 8766 update_branch_counts(env, env->cur_state); 8767 err = pop_stack(env, &prev_insn_idx, 8768 &env->insn_idx, pop_log); 8769 if (err < 0) { 8770 if (err != -ENOENT) 8771 return err; 8772 break; 8773 } else { 8774 do_print_state = true; 8775 continue; 8776 } 8777 } else { 8778 err = check_cond_jmp_op(env, insn, &env->insn_idx); 8779 if (err) 8780 return err; 8781 } 8782 } else if (class == BPF_LD) { 8783 u8 mode = BPF_MODE(insn->code); 8784 8785 if (mode == BPF_ABS || mode == BPF_IND) { 8786 err = check_ld_abs(env, insn); 8787 if (err) 8788 return err; 8789 8790 } else if (mode == BPF_IMM) { 8791 err = check_ld_imm(env, insn); 8792 if (err) 8793 return err; 8794 8795 env->insn_idx++; 8796 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 8797 } else { 8798 verbose(env, "invalid BPF_LD mode\n"); 8799 return -EINVAL; 8800 } 8801 } else { 8802 verbose(env, "unknown insn class %d\n", class); 8803 return -EINVAL; 8804 } 8805 8806 env->insn_idx++; 8807 } 8808 8809 return 0; 8810 } 8811 8812 static int check_map_prealloc(struct bpf_map *map) 8813 { 8814 return (map->map_type != BPF_MAP_TYPE_HASH && 8815 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 8816 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) || 8817 !(map->map_flags & BPF_F_NO_PREALLOC); 8818 } 8819 8820 static bool is_tracing_prog_type(enum bpf_prog_type type) 8821 { 8822 switch (type) { 8823 case BPF_PROG_TYPE_KPROBE: 8824 case BPF_PROG_TYPE_TRACEPOINT: 8825 case BPF_PROG_TYPE_PERF_EVENT: 8826 case BPF_PROG_TYPE_RAW_TRACEPOINT: 8827 return true; 8828 default: 8829 return false; 8830 } 8831 } 8832 8833 static bool is_preallocated_map(struct bpf_map *map) 8834 { 8835 if (!check_map_prealloc(map)) 8836 return false; 8837 if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta)) 8838 return false; 8839 return true; 8840 } 8841 8842 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 8843 struct bpf_map *map, 8844 struct bpf_prog *prog) 8845 8846 { 8847 /* 8848 * Validate that trace type programs use preallocated hash maps. 8849 * 8850 * For programs attached to PERF events this is mandatory as the 8851 * perf NMI can hit any arbitrary code sequence. 8852 * 8853 * All other trace types using preallocated hash maps are unsafe as 8854 * well because tracepoint or kprobes can be inside locked regions 8855 * of the memory allocator or at a place where a recursion into the 8856 * memory allocator would see inconsistent state. 8857 * 8858 * On RT enabled kernels run-time allocation of all trace type 8859 * programs is strictly prohibited due to lock type constraints. On 8860 * !RT kernels it is allowed for backwards compatibility reasons for 8861 * now, but warnings are emitted so developers are made aware of 8862 * the unsafety and can fix their programs before this is enforced. 8863 */ 8864 if (is_tracing_prog_type(prog->type) && !is_preallocated_map(map)) { 8865 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) { 8866 verbose(env, "perf_event programs can only use preallocated hash map\n"); 8867 return -EINVAL; 8868 } 8869 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 8870 verbose(env, "trace type programs can only use preallocated hash map\n"); 8871 return -EINVAL; 8872 } 8873 WARN_ONCE(1, "trace type BPF program uses run-time allocation\n"); 8874 verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n"); 8875 } 8876 8877 if ((is_tracing_prog_type(prog->type) || 8878 prog->type == BPF_PROG_TYPE_SOCKET_FILTER) && 8879 map_value_has_spin_lock(map)) { 8880 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 8881 return -EINVAL; 8882 } 8883 8884 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) && 8885 !bpf_offload_prog_map_match(prog, map)) { 8886 verbose(env, "offload device mismatch between prog and map\n"); 8887 return -EINVAL; 8888 } 8889 8890 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 8891 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 8892 return -EINVAL; 8893 } 8894 8895 return 0; 8896 } 8897 8898 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 8899 { 8900 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 8901 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 8902 } 8903 8904 /* look for pseudo eBPF instructions that access map FDs and 8905 * replace them with actual map pointers 8906 */ 8907 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env) 8908 { 8909 struct bpf_insn *insn = env->prog->insnsi; 8910 int insn_cnt = env->prog->len; 8911 int i, j, err; 8912 8913 err = bpf_prog_calc_tag(env->prog); 8914 if (err) 8915 return err; 8916 8917 for (i = 0; i < insn_cnt; i++, insn++) { 8918 if (BPF_CLASS(insn->code) == BPF_LDX && 8919 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 8920 verbose(env, "BPF_LDX uses reserved fields\n"); 8921 return -EINVAL; 8922 } 8923 8924 if (BPF_CLASS(insn->code) == BPF_STX && 8925 ((BPF_MODE(insn->code) != BPF_MEM && 8926 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) { 8927 verbose(env, "BPF_STX uses reserved fields\n"); 8928 return -EINVAL; 8929 } 8930 8931 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 8932 struct bpf_insn_aux_data *aux; 8933 struct bpf_map *map; 8934 struct fd f; 8935 u64 addr; 8936 8937 if (i == insn_cnt - 1 || insn[1].code != 0 || 8938 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 8939 insn[1].off != 0) { 8940 verbose(env, "invalid bpf_ld_imm64 insn\n"); 8941 return -EINVAL; 8942 } 8943 8944 if (insn[0].src_reg == 0) 8945 /* valid generic load 64-bit imm */ 8946 goto next_insn; 8947 8948 /* In final convert_pseudo_ld_imm64() step, this is 8949 * converted into regular 64-bit imm load insn. 8950 */ 8951 if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD && 8952 insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) || 8953 (insn[0].src_reg == BPF_PSEUDO_MAP_FD && 8954 insn[1].imm != 0)) { 8955 verbose(env, 8956 "unrecognized bpf_ld_imm64 insn\n"); 8957 return -EINVAL; 8958 } 8959 8960 f = fdget(insn[0].imm); 8961 map = __bpf_map_get(f); 8962 if (IS_ERR(map)) { 8963 verbose(env, "fd %d is not pointing to valid bpf_map\n", 8964 insn[0].imm); 8965 return PTR_ERR(map); 8966 } 8967 8968 err = check_map_prog_compatibility(env, map, env->prog); 8969 if (err) { 8970 fdput(f); 8971 return err; 8972 } 8973 8974 aux = &env->insn_aux_data[i]; 8975 if (insn->src_reg == BPF_PSEUDO_MAP_FD) { 8976 addr = (unsigned long)map; 8977 } else { 8978 u32 off = insn[1].imm; 8979 8980 if (off >= BPF_MAX_VAR_OFF) { 8981 verbose(env, "direct value offset of %u is not allowed\n", off); 8982 fdput(f); 8983 return -EINVAL; 8984 } 8985 8986 if (!map->ops->map_direct_value_addr) { 8987 verbose(env, "no direct value access support for this map type\n"); 8988 fdput(f); 8989 return -EINVAL; 8990 } 8991 8992 err = map->ops->map_direct_value_addr(map, &addr, off); 8993 if (err) { 8994 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 8995 map->value_size, off); 8996 fdput(f); 8997 return err; 8998 } 8999 9000 aux->map_off = off; 9001 addr += off; 9002 } 9003 9004 insn[0].imm = (u32)addr; 9005 insn[1].imm = addr >> 32; 9006 9007 /* check whether we recorded this map already */ 9008 for (j = 0; j < env->used_map_cnt; j++) { 9009 if (env->used_maps[j] == map) { 9010 aux->map_index = j; 9011 fdput(f); 9012 goto next_insn; 9013 } 9014 } 9015 9016 if (env->used_map_cnt >= MAX_USED_MAPS) { 9017 fdput(f); 9018 return -E2BIG; 9019 } 9020 9021 /* hold the map. If the program is rejected by verifier, 9022 * the map will be released by release_maps() or it 9023 * will be used by the valid program until it's unloaded 9024 * and all maps are released in free_used_maps() 9025 */ 9026 bpf_map_inc(map); 9027 9028 aux->map_index = env->used_map_cnt; 9029 env->used_maps[env->used_map_cnt++] = map; 9030 9031 if (bpf_map_is_cgroup_storage(map) && 9032 bpf_cgroup_storage_assign(env->prog->aux, map)) { 9033 verbose(env, "only one cgroup storage of each type is allowed\n"); 9034 fdput(f); 9035 return -EBUSY; 9036 } 9037 9038 fdput(f); 9039 next_insn: 9040 insn++; 9041 i++; 9042 continue; 9043 } 9044 9045 /* Basic sanity check before we invest more work here. */ 9046 if (!bpf_opcode_in_insntable(insn->code)) { 9047 verbose(env, "unknown opcode %02x\n", insn->code); 9048 return -EINVAL; 9049 } 9050 } 9051 9052 /* now all pseudo BPF_LD_IMM64 instructions load valid 9053 * 'struct bpf_map *' into a register instead of user map_fd. 9054 * These pointers will be used later by verifier to validate map access. 9055 */ 9056 return 0; 9057 } 9058 9059 /* drop refcnt of maps used by the rejected program */ 9060 static void release_maps(struct bpf_verifier_env *env) 9061 { 9062 __bpf_free_used_maps(env->prog->aux, env->used_maps, 9063 env->used_map_cnt); 9064 } 9065 9066 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 9067 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 9068 { 9069 struct bpf_insn *insn = env->prog->insnsi; 9070 int insn_cnt = env->prog->len; 9071 int i; 9072 9073 for (i = 0; i < insn_cnt; i++, insn++) 9074 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW)) 9075 insn->src_reg = 0; 9076 } 9077 9078 /* single env->prog->insni[off] instruction was replaced with the range 9079 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 9080 * [0, off) and [off, end) to new locations, so the patched range stays zero 9081 */ 9082 static int adjust_insn_aux_data(struct bpf_verifier_env *env, 9083 struct bpf_prog *new_prog, u32 off, u32 cnt) 9084 { 9085 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data; 9086 struct bpf_insn *insn = new_prog->insnsi; 9087 u32 prog_len; 9088 int i; 9089 9090 /* aux info at OFF always needs adjustment, no matter fast path 9091 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 9092 * original insn at old prog. 9093 */ 9094 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 9095 9096 if (cnt == 1) 9097 return 0; 9098 prog_len = new_prog->len; 9099 new_data = vzalloc(array_size(prog_len, 9100 sizeof(struct bpf_insn_aux_data))); 9101 if (!new_data) 9102 return -ENOMEM; 9103 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 9104 memcpy(new_data + off + cnt - 1, old_data + off, 9105 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 9106 for (i = off; i < off + cnt - 1; i++) { 9107 new_data[i].seen = env->pass_cnt; 9108 new_data[i].zext_dst = insn_has_def32(env, insn + i); 9109 } 9110 env->insn_aux_data = new_data; 9111 vfree(old_data); 9112 return 0; 9113 } 9114 9115 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 9116 { 9117 int i; 9118 9119 if (len == 1) 9120 return; 9121 /* NOTE: fake 'exit' subprog should be updated as well. */ 9122 for (i = 0; i <= env->subprog_cnt; i++) { 9123 if (env->subprog_info[i].start <= off) 9124 continue; 9125 env->subprog_info[i].start += len - 1; 9126 } 9127 } 9128 9129 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 9130 const struct bpf_insn *patch, u32 len) 9131 { 9132 struct bpf_prog *new_prog; 9133 9134 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 9135 if (IS_ERR(new_prog)) { 9136 if (PTR_ERR(new_prog) == -ERANGE) 9137 verbose(env, 9138 "insn %d cannot be patched due to 16-bit range\n", 9139 env->insn_aux_data[off].orig_idx); 9140 return NULL; 9141 } 9142 if (adjust_insn_aux_data(env, new_prog, off, len)) 9143 return NULL; 9144 adjust_subprog_starts(env, off, len); 9145 return new_prog; 9146 } 9147 9148 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 9149 u32 off, u32 cnt) 9150 { 9151 int i, j; 9152 9153 /* find first prog starting at or after off (first to remove) */ 9154 for (i = 0; i < env->subprog_cnt; i++) 9155 if (env->subprog_info[i].start >= off) 9156 break; 9157 /* find first prog starting at or after off + cnt (first to stay) */ 9158 for (j = i; j < env->subprog_cnt; j++) 9159 if (env->subprog_info[j].start >= off + cnt) 9160 break; 9161 /* if j doesn't start exactly at off + cnt, we are just removing 9162 * the front of previous prog 9163 */ 9164 if (env->subprog_info[j].start != off + cnt) 9165 j--; 9166 9167 if (j > i) { 9168 struct bpf_prog_aux *aux = env->prog->aux; 9169 int move; 9170 9171 /* move fake 'exit' subprog as well */ 9172 move = env->subprog_cnt + 1 - j; 9173 9174 memmove(env->subprog_info + i, 9175 env->subprog_info + j, 9176 sizeof(*env->subprog_info) * move); 9177 env->subprog_cnt -= j - i; 9178 9179 /* remove func_info */ 9180 if (aux->func_info) { 9181 move = aux->func_info_cnt - j; 9182 9183 memmove(aux->func_info + i, 9184 aux->func_info + j, 9185 sizeof(*aux->func_info) * move); 9186 aux->func_info_cnt -= j - i; 9187 /* func_info->insn_off is set after all code rewrites, 9188 * in adjust_btf_func() - no need to adjust 9189 */ 9190 } 9191 } else { 9192 /* convert i from "first prog to remove" to "first to adjust" */ 9193 if (env->subprog_info[i].start == off) 9194 i++; 9195 } 9196 9197 /* update fake 'exit' subprog as well */ 9198 for (; i <= env->subprog_cnt; i++) 9199 env->subprog_info[i].start -= cnt; 9200 9201 return 0; 9202 } 9203 9204 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 9205 u32 cnt) 9206 { 9207 struct bpf_prog *prog = env->prog; 9208 u32 i, l_off, l_cnt, nr_linfo; 9209 struct bpf_line_info *linfo; 9210 9211 nr_linfo = prog->aux->nr_linfo; 9212 if (!nr_linfo) 9213 return 0; 9214 9215 linfo = prog->aux->linfo; 9216 9217 /* find first line info to remove, count lines to be removed */ 9218 for (i = 0; i < nr_linfo; i++) 9219 if (linfo[i].insn_off >= off) 9220 break; 9221 9222 l_off = i; 9223 l_cnt = 0; 9224 for (; i < nr_linfo; i++) 9225 if (linfo[i].insn_off < off + cnt) 9226 l_cnt++; 9227 else 9228 break; 9229 9230 /* First live insn doesn't match first live linfo, it needs to "inherit" 9231 * last removed linfo. prog is already modified, so prog->len == off 9232 * means no live instructions after (tail of the program was removed). 9233 */ 9234 if (prog->len != off && l_cnt && 9235 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 9236 l_cnt--; 9237 linfo[--i].insn_off = off + cnt; 9238 } 9239 9240 /* remove the line info which refer to the removed instructions */ 9241 if (l_cnt) { 9242 memmove(linfo + l_off, linfo + i, 9243 sizeof(*linfo) * (nr_linfo - i)); 9244 9245 prog->aux->nr_linfo -= l_cnt; 9246 nr_linfo = prog->aux->nr_linfo; 9247 } 9248 9249 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 9250 for (i = l_off; i < nr_linfo; i++) 9251 linfo[i].insn_off -= cnt; 9252 9253 /* fix up all subprogs (incl. 'exit') which start >= off */ 9254 for (i = 0; i <= env->subprog_cnt; i++) 9255 if (env->subprog_info[i].linfo_idx > l_off) { 9256 /* program may have started in the removed region but 9257 * may not be fully removed 9258 */ 9259 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 9260 env->subprog_info[i].linfo_idx -= l_cnt; 9261 else 9262 env->subprog_info[i].linfo_idx = l_off; 9263 } 9264 9265 return 0; 9266 } 9267 9268 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 9269 { 9270 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 9271 unsigned int orig_prog_len = env->prog->len; 9272 int err; 9273 9274 if (bpf_prog_is_dev_bound(env->prog->aux)) 9275 bpf_prog_offload_remove_insns(env, off, cnt); 9276 9277 err = bpf_remove_insns(env->prog, off, cnt); 9278 if (err) 9279 return err; 9280 9281 err = adjust_subprog_starts_after_remove(env, off, cnt); 9282 if (err) 9283 return err; 9284 9285 err = bpf_adj_linfo_after_remove(env, off, cnt); 9286 if (err) 9287 return err; 9288 9289 memmove(aux_data + off, aux_data + off + cnt, 9290 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 9291 9292 return 0; 9293 } 9294 9295 /* The verifier does more data flow analysis than llvm and will not 9296 * explore branches that are dead at run time. Malicious programs can 9297 * have dead code too. Therefore replace all dead at-run-time code 9298 * with 'ja -1'. 9299 * 9300 * Just nops are not optimal, e.g. if they would sit at the end of the 9301 * program and through another bug we would manage to jump there, then 9302 * we'd execute beyond program memory otherwise. Returning exception 9303 * code also wouldn't work since we can have subprogs where the dead 9304 * code could be located. 9305 */ 9306 static void sanitize_dead_code(struct bpf_verifier_env *env) 9307 { 9308 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 9309 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 9310 struct bpf_insn *insn = env->prog->insnsi; 9311 const int insn_cnt = env->prog->len; 9312 int i; 9313 9314 for (i = 0; i < insn_cnt; i++) { 9315 if (aux_data[i].seen) 9316 continue; 9317 memcpy(insn + i, &trap, sizeof(trap)); 9318 } 9319 } 9320 9321 static bool insn_is_cond_jump(u8 code) 9322 { 9323 u8 op; 9324 9325 if (BPF_CLASS(code) == BPF_JMP32) 9326 return true; 9327 9328 if (BPF_CLASS(code) != BPF_JMP) 9329 return false; 9330 9331 op = BPF_OP(code); 9332 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 9333 } 9334 9335 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 9336 { 9337 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 9338 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 9339 struct bpf_insn *insn = env->prog->insnsi; 9340 const int insn_cnt = env->prog->len; 9341 int i; 9342 9343 for (i = 0; i < insn_cnt; i++, insn++) { 9344 if (!insn_is_cond_jump(insn->code)) 9345 continue; 9346 9347 if (!aux_data[i + 1].seen) 9348 ja.off = insn->off; 9349 else if (!aux_data[i + 1 + insn->off].seen) 9350 ja.off = 0; 9351 else 9352 continue; 9353 9354 if (bpf_prog_is_dev_bound(env->prog->aux)) 9355 bpf_prog_offload_replace_insn(env, i, &ja); 9356 9357 memcpy(insn, &ja, sizeof(ja)); 9358 } 9359 } 9360 9361 static int opt_remove_dead_code(struct bpf_verifier_env *env) 9362 { 9363 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 9364 int insn_cnt = env->prog->len; 9365 int i, err; 9366 9367 for (i = 0; i < insn_cnt; i++) { 9368 int j; 9369 9370 j = 0; 9371 while (i + j < insn_cnt && !aux_data[i + j].seen) 9372 j++; 9373 if (!j) 9374 continue; 9375 9376 err = verifier_remove_insns(env, i, j); 9377 if (err) 9378 return err; 9379 insn_cnt = env->prog->len; 9380 } 9381 9382 return 0; 9383 } 9384 9385 static int opt_remove_nops(struct bpf_verifier_env *env) 9386 { 9387 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 9388 struct bpf_insn *insn = env->prog->insnsi; 9389 int insn_cnt = env->prog->len; 9390 int i, err; 9391 9392 for (i = 0; i < insn_cnt; i++) { 9393 if (memcmp(&insn[i], &ja, sizeof(ja))) 9394 continue; 9395 9396 err = verifier_remove_insns(env, i, 1); 9397 if (err) 9398 return err; 9399 insn_cnt--; 9400 i--; 9401 } 9402 9403 return 0; 9404 } 9405 9406 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 9407 const union bpf_attr *attr) 9408 { 9409 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 9410 struct bpf_insn_aux_data *aux = env->insn_aux_data; 9411 int i, patch_len, delta = 0, len = env->prog->len; 9412 struct bpf_insn *insns = env->prog->insnsi; 9413 struct bpf_prog *new_prog; 9414 bool rnd_hi32; 9415 9416 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 9417 zext_patch[1] = BPF_ZEXT_REG(0); 9418 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 9419 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 9420 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 9421 for (i = 0; i < len; i++) { 9422 int adj_idx = i + delta; 9423 struct bpf_insn insn; 9424 9425 insn = insns[adj_idx]; 9426 if (!aux[adj_idx].zext_dst) { 9427 u8 code, class; 9428 u32 imm_rnd; 9429 9430 if (!rnd_hi32) 9431 continue; 9432 9433 code = insn.code; 9434 class = BPF_CLASS(code); 9435 if (insn_no_def(&insn)) 9436 continue; 9437 9438 /* NOTE: arg "reg" (the fourth one) is only used for 9439 * BPF_STX which has been ruled out in above 9440 * check, it is safe to pass NULL here. 9441 */ 9442 if (is_reg64(env, &insn, insn.dst_reg, NULL, DST_OP)) { 9443 if (class == BPF_LD && 9444 BPF_MODE(code) == BPF_IMM) 9445 i++; 9446 continue; 9447 } 9448 9449 /* ctx load could be transformed into wider load. */ 9450 if (class == BPF_LDX && 9451 aux[adj_idx].ptr_type == PTR_TO_CTX) 9452 continue; 9453 9454 imm_rnd = get_random_int(); 9455 rnd_hi32_patch[0] = insn; 9456 rnd_hi32_patch[1].imm = imm_rnd; 9457 rnd_hi32_patch[3].dst_reg = insn.dst_reg; 9458 patch = rnd_hi32_patch; 9459 patch_len = 4; 9460 goto apply_patch_buffer; 9461 } 9462 9463 if (!bpf_jit_needs_zext()) 9464 continue; 9465 9466 zext_patch[0] = insn; 9467 zext_patch[1].dst_reg = insn.dst_reg; 9468 zext_patch[1].src_reg = insn.dst_reg; 9469 patch = zext_patch; 9470 patch_len = 2; 9471 apply_patch_buffer: 9472 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 9473 if (!new_prog) 9474 return -ENOMEM; 9475 env->prog = new_prog; 9476 insns = new_prog->insnsi; 9477 aux = env->insn_aux_data; 9478 delta += patch_len - 1; 9479 } 9480 9481 return 0; 9482 } 9483 9484 /* convert load instructions that access fields of a context type into a 9485 * sequence of instructions that access fields of the underlying structure: 9486 * struct __sk_buff -> struct sk_buff 9487 * struct bpf_sock_ops -> struct sock 9488 */ 9489 static int convert_ctx_accesses(struct bpf_verifier_env *env) 9490 { 9491 const struct bpf_verifier_ops *ops = env->ops; 9492 int i, cnt, size, ctx_field_size, delta = 0; 9493 const int insn_cnt = env->prog->len; 9494 struct bpf_insn insn_buf[16], *insn; 9495 u32 target_size, size_default, off; 9496 struct bpf_prog *new_prog; 9497 enum bpf_access_type type; 9498 bool is_narrower_load; 9499 9500 if (ops->gen_prologue || env->seen_direct_write) { 9501 if (!ops->gen_prologue) { 9502 verbose(env, "bpf verifier is misconfigured\n"); 9503 return -EINVAL; 9504 } 9505 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 9506 env->prog); 9507 if (cnt >= ARRAY_SIZE(insn_buf)) { 9508 verbose(env, "bpf verifier is misconfigured\n"); 9509 return -EINVAL; 9510 } else if (cnt) { 9511 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 9512 if (!new_prog) 9513 return -ENOMEM; 9514 9515 env->prog = new_prog; 9516 delta += cnt - 1; 9517 } 9518 } 9519 9520 if (bpf_prog_is_dev_bound(env->prog->aux)) 9521 return 0; 9522 9523 insn = env->prog->insnsi + delta; 9524 9525 for (i = 0; i < insn_cnt; i++, insn++) { 9526 bpf_convert_ctx_access_t convert_ctx_access; 9527 9528 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 9529 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 9530 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 9531 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) 9532 type = BPF_READ; 9533 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 9534 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 9535 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 9536 insn->code == (BPF_STX | BPF_MEM | BPF_DW)) 9537 type = BPF_WRITE; 9538 else 9539 continue; 9540 9541 if (type == BPF_WRITE && 9542 env->insn_aux_data[i + delta].sanitize_stack_off) { 9543 struct bpf_insn patch[] = { 9544 /* Sanitize suspicious stack slot with zero. 9545 * There are no memory dependencies for this store, 9546 * since it's only using frame pointer and immediate 9547 * constant of zero 9548 */ 9549 BPF_ST_MEM(BPF_DW, BPF_REG_FP, 9550 env->insn_aux_data[i + delta].sanitize_stack_off, 9551 0), 9552 /* the original STX instruction will immediately 9553 * overwrite the same stack slot with appropriate value 9554 */ 9555 *insn, 9556 }; 9557 9558 cnt = ARRAY_SIZE(patch); 9559 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 9560 if (!new_prog) 9561 return -ENOMEM; 9562 9563 delta += cnt - 1; 9564 env->prog = new_prog; 9565 insn = new_prog->insnsi + i + delta; 9566 continue; 9567 } 9568 9569 switch (env->insn_aux_data[i + delta].ptr_type) { 9570 case PTR_TO_CTX: 9571 if (!ops->convert_ctx_access) 9572 continue; 9573 convert_ctx_access = ops->convert_ctx_access; 9574 break; 9575 case PTR_TO_SOCKET: 9576 case PTR_TO_SOCK_COMMON: 9577 convert_ctx_access = bpf_sock_convert_ctx_access; 9578 break; 9579 case PTR_TO_TCP_SOCK: 9580 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 9581 break; 9582 case PTR_TO_XDP_SOCK: 9583 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 9584 break; 9585 case PTR_TO_BTF_ID: 9586 if (type == BPF_READ) { 9587 insn->code = BPF_LDX | BPF_PROBE_MEM | 9588 BPF_SIZE((insn)->code); 9589 env->prog->aux->num_exentries++; 9590 } else if (env->prog->type != BPF_PROG_TYPE_STRUCT_OPS) { 9591 verbose(env, "Writes through BTF pointers are not allowed\n"); 9592 return -EINVAL; 9593 } 9594 continue; 9595 default: 9596 continue; 9597 } 9598 9599 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 9600 size = BPF_LDST_BYTES(insn); 9601 9602 /* If the read access is a narrower load of the field, 9603 * convert to a 4/8-byte load, to minimum program type specific 9604 * convert_ctx_access changes. If conversion is successful, 9605 * we will apply proper mask to the result. 9606 */ 9607 is_narrower_load = size < ctx_field_size; 9608 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 9609 off = insn->off; 9610 if (is_narrower_load) { 9611 u8 size_code; 9612 9613 if (type == BPF_WRITE) { 9614 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 9615 return -EINVAL; 9616 } 9617 9618 size_code = BPF_H; 9619 if (ctx_field_size == 4) 9620 size_code = BPF_W; 9621 else if (ctx_field_size == 8) 9622 size_code = BPF_DW; 9623 9624 insn->off = off & ~(size_default - 1); 9625 insn->code = BPF_LDX | BPF_MEM | size_code; 9626 } 9627 9628 target_size = 0; 9629 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 9630 &target_size); 9631 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 9632 (ctx_field_size && !target_size)) { 9633 verbose(env, "bpf verifier is misconfigured\n"); 9634 return -EINVAL; 9635 } 9636 9637 if (is_narrower_load && size < target_size) { 9638 u8 shift = bpf_ctx_narrow_access_offset( 9639 off, size, size_default) * 8; 9640 if (ctx_field_size <= 4) { 9641 if (shift) 9642 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 9643 insn->dst_reg, 9644 shift); 9645 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 9646 (1 << size * 8) - 1); 9647 } else { 9648 if (shift) 9649 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 9650 insn->dst_reg, 9651 shift); 9652 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 9653 (1ULL << size * 8) - 1); 9654 } 9655 } 9656 9657 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 9658 if (!new_prog) 9659 return -ENOMEM; 9660 9661 delta += cnt - 1; 9662 9663 /* keep walking new program and skip insns we just inserted */ 9664 env->prog = new_prog; 9665 insn = new_prog->insnsi + i + delta; 9666 } 9667 9668 return 0; 9669 } 9670 9671 static int jit_subprogs(struct bpf_verifier_env *env) 9672 { 9673 struct bpf_prog *prog = env->prog, **func, *tmp; 9674 int i, j, subprog_start, subprog_end = 0, len, subprog; 9675 struct bpf_insn *insn; 9676 void *old_bpf_func; 9677 int err; 9678 9679 if (env->subprog_cnt <= 1) 9680 return 0; 9681 9682 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 9683 if (insn->code != (BPF_JMP | BPF_CALL) || 9684 insn->src_reg != BPF_PSEUDO_CALL) 9685 continue; 9686 /* Upon error here we cannot fall back to interpreter but 9687 * need a hard reject of the program. Thus -EFAULT is 9688 * propagated in any case. 9689 */ 9690 subprog = find_subprog(env, i + insn->imm + 1); 9691 if (subprog < 0) { 9692 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 9693 i + insn->imm + 1); 9694 return -EFAULT; 9695 } 9696 /* temporarily remember subprog id inside insn instead of 9697 * aux_data, since next loop will split up all insns into funcs 9698 */ 9699 insn->off = subprog; 9700 /* remember original imm in case JIT fails and fallback 9701 * to interpreter will be needed 9702 */ 9703 env->insn_aux_data[i].call_imm = insn->imm; 9704 /* point imm to __bpf_call_base+1 from JITs point of view */ 9705 insn->imm = 1; 9706 } 9707 9708 err = bpf_prog_alloc_jited_linfo(prog); 9709 if (err) 9710 goto out_undo_insn; 9711 9712 err = -ENOMEM; 9713 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 9714 if (!func) 9715 goto out_undo_insn; 9716 9717 for (i = 0; i < env->subprog_cnt; i++) { 9718 subprog_start = subprog_end; 9719 subprog_end = env->subprog_info[i + 1].start; 9720 9721 len = subprog_end - subprog_start; 9722 /* BPF_PROG_RUN doesn't call subprogs directly, 9723 * hence main prog stats include the runtime of subprogs. 9724 * subprogs don't have IDs and not reachable via prog_get_next_id 9725 * func[i]->aux->stats will never be accessed and stays NULL 9726 */ 9727 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 9728 if (!func[i]) 9729 goto out_free; 9730 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 9731 len * sizeof(struct bpf_insn)); 9732 func[i]->type = prog->type; 9733 func[i]->len = len; 9734 if (bpf_prog_calc_tag(func[i])) 9735 goto out_free; 9736 func[i]->is_func = 1; 9737 func[i]->aux->func_idx = i; 9738 /* the btf and func_info will be freed only at prog->aux */ 9739 func[i]->aux->btf = prog->aux->btf; 9740 func[i]->aux->func_info = prog->aux->func_info; 9741 9742 /* Use bpf_prog_F_tag to indicate functions in stack traces. 9743 * Long term would need debug info to populate names 9744 */ 9745 func[i]->aux->name[0] = 'F'; 9746 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 9747 func[i]->jit_requested = 1; 9748 func[i]->aux->linfo = prog->aux->linfo; 9749 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 9750 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 9751 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 9752 func[i] = bpf_int_jit_compile(func[i]); 9753 if (!func[i]->jited) { 9754 err = -ENOTSUPP; 9755 goto out_free; 9756 } 9757 cond_resched(); 9758 } 9759 /* at this point all bpf functions were successfully JITed 9760 * now populate all bpf_calls with correct addresses and 9761 * run last pass of JIT 9762 */ 9763 for (i = 0; i < env->subprog_cnt; i++) { 9764 insn = func[i]->insnsi; 9765 for (j = 0; j < func[i]->len; j++, insn++) { 9766 if (insn->code != (BPF_JMP | BPF_CALL) || 9767 insn->src_reg != BPF_PSEUDO_CALL) 9768 continue; 9769 subprog = insn->off; 9770 insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) - 9771 __bpf_call_base; 9772 } 9773 9774 /* we use the aux data to keep a list of the start addresses 9775 * of the JITed images for each function in the program 9776 * 9777 * for some architectures, such as powerpc64, the imm field 9778 * might not be large enough to hold the offset of the start 9779 * address of the callee's JITed image from __bpf_call_base 9780 * 9781 * in such cases, we can lookup the start address of a callee 9782 * by using its subprog id, available from the off field of 9783 * the call instruction, as an index for this list 9784 */ 9785 func[i]->aux->func = func; 9786 func[i]->aux->func_cnt = env->subprog_cnt; 9787 } 9788 for (i = 0; i < env->subprog_cnt; i++) { 9789 old_bpf_func = func[i]->bpf_func; 9790 tmp = bpf_int_jit_compile(func[i]); 9791 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 9792 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 9793 err = -ENOTSUPP; 9794 goto out_free; 9795 } 9796 cond_resched(); 9797 } 9798 9799 /* finally lock prog and jit images for all functions and 9800 * populate kallsysm 9801 */ 9802 for (i = 0; i < env->subprog_cnt; i++) { 9803 bpf_prog_lock_ro(func[i]); 9804 bpf_prog_kallsyms_add(func[i]); 9805 } 9806 9807 /* Last step: make now unused interpreter insns from main 9808 * prog consistent for later dump requests, so they can 9809 * later look the same as if they were interpreted only. 9810 */ 9811 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 9812 if (insn->code != (BPF_JMP | BPF_CALL) || 9813 insn->src_reg != BPF_PSEUDO_CALL) 9814 continue; 9815 insn->off = env->insn_aux_data[i].call_imm; 9816 subprog = find_subprog(env, i + insn->off + 1); 9817 insn->imm = subprog; 9818 } 9819 9820 prog->jited = 1; 9821 prog->bpf_func = func[0]->bpf_func; 9822 prog->aux->func = func; 9823 prog->aux->func_cnt = env->subprog_cnt; 9824 bpf_prog_free_unused_jited_linfo(prog); 9825 return 0; 9826 out_free: 9827 for (i = 0; i < env->subprog_cnt; i++) 9828 if (func[i]) 9829 bpf_jit_free(func[i]); 9830 kfree(func); 9831 out_undo_insn: 9832 /* cleanup main prog to be interpreted */ 9833 prog->jit_requested = 0; 9834 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 9835 if (insn->code != (BPF_JMP | BPF_CALL) || 9836 insn->src_reg != BPF_PSEUDO_CALL) 9837 continue; 9838 insn->off = 0; 9839 insn->imm = env->insn_aux_data[i].call_imm; 9840 } 9841 bpf_prog_free_jited_linfo(prog); 9842 return err; 9843 } 9844 9845 static int fixup_call_args(struct bpf_verifier_env *env) 9846 { 9847 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 9848 struct bpf_prog *prog = env->prog; 9849 struct bpf_insn *insn = prog->insnsi; 9850 int i, depth; 9851 #endif 9852 int err = 0; 9853 9854 if (env->prog->jit_requested && 9855 !bpf_prog_is_dev_bound(env->prog->aux)) { 9856 err = jit_subprogs(env); 9857 if (err == 0) 9858 return 0; 9859 if (err == -EFAULT) 9860 return err; 9861 } 9862 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 9863 for (i = 0; i < prog->len; i++, insn++) { 9864 if (insn->code != (BPF_JMP | BPF_CALL) || 9865 insn->src_reg != BPF_PSEUDO_CALL) 9866 continue; 9867 depth = get_callee_stack_depth(env, insn, i); 9868 if (depth < 0) 9869 return depth; 9870 bpf_patch_call_args(insn, depth); 9871 } 9872 err = 0; 9873 #endif 9874 return err; 9875 } 9876 9877 /* fixup insn->imm field of bpf_call instructions 9878 * and inline eligible helpers as explicit sequence of BPF instructions 9879 * 9880 * this function is called after eBPF program passed verification 9881 */ 9882 static int fixup_bpf_calls(struct bpf_verifier_env *env) 9883 { 9884 struct bpf_prog *prog = env->prog; 9885 bool expect_blinding = bpf_jit_blinding_enabled(prog); 9886 struct bpf_insn *insn = prog->insnsi; 9887 const struct bpf_func_proto *fn; 9888 const int insn_cnt = prog->len; 9889 const struct bpf_map_ops *ops; 9890 struct bpf_insn_aux_data *aux; 9891 struct bpf_insn insn_buf[16]; 9892 struct bpf_prog *new_prog; 9893 struct bpf_map *map_ptr; 9894 int i, ret, cnt, delta = 0; 9895 9896 for (i = 0; i < insn_cnt; i++, insn++) { 9897 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 9898 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 9899 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 9900 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 9901 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 9902 struct bpf_insn mask_and_div[] = { 9903 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 9904 /* Rx div 0 -> 0 */ 9905 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2), 9906 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 9907 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 9908 *insn, 9909 }; 9910 struct bpf_insn mask_and_mod[] = { 9911 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 9912 /* Rx mod 0 -> Rx */ 9913 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1), 9914 *insn, 9915 }; 9916 struct bpf_insn *patchlet; 9917 9918 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 9919 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 9920 patchlet = mask_and_div + (is64 ? 1 : 0); 9921 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0); 9922 } else { 9923 patchlet = mask_and_mod + (is64 ? 1 : 0); 9924 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0); 9925 } 9926 9927 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 9928 if (!new_prog) 9929 return -ENOMEM; 9930 9931 delta += cnt - 1; 9932 env->prog = prog = new_prog; 9933 insn = new_prog->insnsi + i + delta; 9934 continue; 9935 } 9936 9937 if (BPF_CLASS(insn->code) == BPF_LD && 9938 (BPF_MODE(insn->code) == BPF_ABS || 9939 BPF_MODE(insn->code) == BPF_IND)) { 9940 cnt = env->ops->gen_ld_abs(insn, insn_buf); 9941 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 9942 verbose(env, "bpf verifier is misconfigured\n"); 9943 return -EINVAL; 9944 } 9945 9946 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 9947 if (!new_prog) 9948 return -ENOMEM; 9949 9950 delta += cnt - 1; 9951 env->prog = prog = new_prog; 9952 insn = new_prog->insnsi + i + delta; 9953 continue; 9954 } 9955 9956 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 9957 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 9958 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 9959 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 9960 struct bpf_insn insn_buf[16]; 9961 struct bpf_insn *patch = &insn_buf[0]; 9962 bool issrc, isneg; 9963 u32 off_reg; 9964 9965 aux = &env->insn_aux_data[i + delta]; 9966 if (!aux->alu_state || 9967 aux->alu_state == BPF_ALU_NON_POINTER) 9968 continue; 9969 9970 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 9971 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 9972 BPF_ALU_SANITIZE_SRC; 9973 9974 off_reg = issrc ? insn->src_reg : insn->dst_reg; 9975 if (isneg) 9976 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 9977 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1); 9978 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 9979 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 9980 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 9981 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 9982 if (issrc) { 9983 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, 9984 off_reg); 9985 insn->src_reg = BPF_REG_AX; 9986 } else { 9987 *patch++ = BPF_ALU64_REG(BPF_AND, off_reg, 9988 BPF_REG_AX); 9989 } 9990 if (isneg) 9991 insn->code = insn->code == code_add ? 9992 code_sub : code_add; 9993 *patch++ = *insn; 9994 if (issrc && isneg) 9995 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 9996 cnt = patch - insn_buf; 9997 9998 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 9999 if (!new_prog) 10000 return -ENOMEM; 10001 10002 delta += cnt - 1; 10003 env->prog = prog = new_prog; 10004 insn = new_prog->insnsi + i + delta; 10005 continue; 10006 } 10007 10008 if (insn->code != (BPF_JMP | BPF_CALL)) 10009 continue; 10010 if (insn->src_reg == BPF_PSEUDO_CALL) 10011 continue; 10012 10013 if (insn->imm == BPF_FUNC_get_route_realm) 10014 prog->dst_needed = 1; 10015 if (insn->imm == BPF_FUNC_get_prandom_u32) 10016 bpf_user_rnd_init_once(); 10017 if (insn->imm == BPF_FUNC_override_return) 10018 prog->kprobe_override = 1; 10019 if (insn->imm == BPF_FUNC_tail_call) { 10020 /* If we tail call into other programs, we 10021 * cannot make any assumptions since they can 10022 * be replaced dynamically during runtime in 10023 * the program array. 10024 */ 10025 prog->cb_access = 1; 10026 env->prog->aux->stack_depth = MAX_BPF_STACK; 10027 env->prog->aux->max_pkt_offset = MAX_PACKET_OFF; 10028 10029 /* mark bpf_tail_call as different opcode to avoid 10030 * conditional branch in the interpeter for every normal 10031 * call and to prevent accidental JITing by JIT compiler 10032 * that doesn't support bpf_tail_call yet 10033 */ 10034 insn->imm = 0; 10035 insn->code = BPF_JMP | BPF_TAIL_CALL; 10036 10037 aux = &env->insn_aux_data[i + delta]; 10038 if (env->bpf_capable && !expect_blinding && 10039 prog->jit_requested && 10040 !bpf_map_key_poisoned(aux) && 10041 !bpf_map_ptr_poisoned(aux) && 10042 !bpf_map_ptr_unpriv(aux)) { 10043 struct bpf_jit_poke_descriptor desc = { 10044 .reason = BPF_POKE_REASON_TAIL_CALL, 10045 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state), 10046 .tail_call.key = bpf_map_key_immediate(aux), 10047 }; 10048 10049 ret = bpf_jit_add_poke_descriptor(prog, &desc); 10050 if (ret < 0) { 10051 verbose(env, "adding tail call poke descriptor failed\n"); 10052 return ret; 10053 } 10054 10055 insn->imm = ret + 1; 10056 continue; 10057 } 10058 10059 if (!bpf_map_ptr_unpriv(aux)) 10060 continue; 10061 10062 /* instead of changing every JIT dealing with tail_call 10063 * emit two extra insns: 10064 * if (index >= max_entries) goto out; 10065 * index &= array->index_mask; 10066 * to avoid out-of-bounds cpu speculation 10067 */ 10068 if (bpf_map_ptr_poisoned(aux)) { 10069 verbose(env, "tail_call abusing map_ptr\n"); 10070 return -EINVAL; 10071 } 10072 10073 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 10074 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 10075 map_ptr->max_entries, 2); 10076 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 10077 container_of(map_ptr, 10078 struct bpf_array, 10079 map)->index_mask); 10080 insn_buf[2] = *insn; 10081 cnt = 3; 10082 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 10083 if (!new_prog) 10084 return -ENOMEM; 10085 10086 delta += cnt - 1; 10087 env->prog = prog = new_prog; 10088 insn = new_prog->insnsi + i + delta; 10089 continue; 10090 } 10091 10092 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 10093 * and other inlining handlers are currently limited to 64 bit 10094 * only. 10095 */ 10096 if (prog->jit_requested && BITS_PER_LONG == 64 && 10097 (insn->imm == BPF_FUNC_map_lookup_elem || 10098 insn->imm == BPF_FUNC_map_update_elem || 10099 insn->imm == BPF_FUNC_map_delete_elem || 10100 insn->imm == BPF_FUNC_map_push_elem || 10101 insn->imm == BPF_FUNC_map_pop_elem || 10102 insn->imm == BPF_FUNC_map_peek_elem)) { 10103 aux = &env->insn_aux_data[i + delta]; 10104 if (bpf_map_ptr_poisoned(aux)) 10105 goto patch_call_imm; 10106 10107 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 10108 ops = map_ptr->ops; 10109 if (insn->imm == BPF_FUNC_map_lookup_elem && 10110 ops->map_gen_lookup) { 10111 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 10112 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 10113 verbose(env, "bpf verifier is misconfigured\n"); 10114 return -EINVAL; 10115 } 10116 10117 new_prog = bpf_patch_insn_data(env, i + delta, 10118 insn_buf, cnt); 10119 if (!new_prog) 10120 return -ENOMEM; 10121 10122 delta += cnt - 1; 10123 env->prog = prog = new_prog; 10124 insn = new_prog->insnsi + i + delta; 10125 continue; 10126 } 10127 10128 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 10129 (void *(*)(struct bpf_map *map, void *key))NULL)); 10130 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 10131 (int (*)(struct bpf_map *map, void *key))NULL)); 10132 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 10133 (int (*)(struct bpf_map *map, void *key, void *value, 10134 u64 flags))NULL)); 10135 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 10136 (int (*)(struct bpf_map *map, void *value, 10137 u64 flags))NULL)); 10138 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 10139 (int (*)(struct bpf_map *map, void *value))NULL)); 10140 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 10141 (int (*)(struct bpf_map *map, void *value))NULL)); 10142 10143 switch (insn->imm) { 10144 case BPF_FUNC_map_lookup_elem: 10145 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) - 10146 __bpf_call_base; 10147 continue; 10148 case BPF_FUNC_map_update_elem: 10149 insn->imm = BPF_CAST_CALL(ops->map_update_elem) - 10150 __bpf_call_base; 10151 continue; 10152 case BPF_FUNC_map_delete_elem: 10153 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) - 10154 __bpf_call_base; 10155 continue; 10156 case BPF_FUNC_map_push_elem: 10157 insn->imm = BPF_CAST_CALL(ops->map_push_elem) - 10158 __bpf_call_base; 10159 continue; 10160 case BPF_FUNC_map_pop_elem: 10161 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) - 10162 __bpf_call_base; 10163 continue; 10164 case BPF_FUNC_map_peek_elem: 10165 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) - 10166 __bpf_call_base; 10167 continue; 10168 } 10169 10170 goto patch_call_imm; 10171 } 10172 10173 if (prog->jit_requested && BITS_PER_LONG == 64 && 10174 insn->imm == BPF_FUNC_jiffies64) { 10175 struct bpf_insn ld_jiffies_addr[2] = { 10176 BPF_LD_IMM64(BPF_REG_0, 10177 (unsigned long)&jiffies), 10178 }; 10179 10180 insn_buf[0] = ld_jiffies_addr[0]; 10181 insn_buf[1] = ld_jiffies_addr[1]; 10182 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 10183 BPF_REG_0, 0); 10184 cnt = 3; 10185 10186 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 10187 cnt); 10188 if (!new_prog) 10189 return -ENOMEM; 10190 10191 delta += cnt - 1; 10192 env->prog = prog = new_prog; 10193 insn = new_prog->insnsi + i + delta; 10194 continue; 10195 } 10196 10197 patch_call_imm: 10198 fn = env->ops->get_func_proto(insn->imm, env->prog); 10199 /* all functions that have prototype and verifier allowed 10200 * programs to call them, must be real in-kernel functions 10201 */ 10202 if (!fn->func) { 10203 verbose(env, 10204 "kernel subsystem misconfigured func %s#%d\n", 10205 func_id_name(insn->imm), insn->imm); 10206 return -EFAULT; 10207 } 10208 insn->imm = fn->func - __bpf_call_base; 10209 } 10210 10211 /* Since poke tab is now finalized, publish aux to tracker. */ 10212 for (i = 0; i < prog->aux->size_poke_tab; i++) { 10213 map_ptr = prog->aux->poke_tab[i].tail_call.map; 10214 if (!map_ptr->ops->map_poke_track || 10215 !map_ptr->ops->map_poke_untrack || 10216 !map_ptr->ops->map_poke_run) { 10217 verbose(env, "bpf verifier is misconfigured\n"); 10218 return -EINVAL; 10219 } 10220 10221 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 10222 if (ret < 0) { 10223 verbose(env, "tracking tail call prog failed\n"); 10224 return ret; 10225 } 10226 } 10227 10228 return 0; 10229 } 10230 10231 static void free_states(struct bpf_verifier_env *env) 10232 { 10233 struct bpf_verifier_state_list *sl, *sln; 10234 int i; 10235 10236 sl = env->free_list; 10237 while (sl) { 10238 sln = sl->next; 10239 free_verifier_state(&sl->state, false); 10240 kfree(sl); 10241 sl = sln; 10242 } 10243 env->free_list = NULL; 10244 10245 if (!env->explored_states) 10246 return; 10247 10248 for (i = 0; i < state_htab_size(env); i++) { 10249 sl = env->explored_states[i]; 10250 10251 while (sl) { 10252 sln = sl->next; 10253 free_verifier_state(&sl->state, false); 10254 kfree(sl); 10255 sl = sln; 10256 } 10257 env->explored_states[i] = NULL; 10258 } 10259 } 10260 10261 /* The verifier is using insn_aux_data[] to store temporary data during 10262 * verification and to store information for passes that run after the 10263 * verification like dead code sanitization. do_check_common() for subprogram N 10264 * may analyze many other subprograms. sanitize_insn_aux_data() clears all 10265 * temporary data after do_check_common() finds that subprogram N cannot be 10266 * verified independently. pass_cnt counts the number of times 10267 * do_check_common() was run and insn->aux->seen tells the pass number 10268 * insn_aux_data was touched. These variables are compared to clear temporary 10269 * data from failed pass. For testing and experiments do_check_common() can be 10270 * run multiple times even when prior attempt to verify is unsuccessful. 10271 */ 10272 static void sanitize_insn_aux_data(struct bpf_verifier_env *env) 10273 { 10274 struct bpf_insn *insn = env->prog->insnsi; 10275 struct bpf_insn_aux_data *aux; 10276 int i, class; 10277 10278 for (i = 0; i < env->prog->len; i++) { 10279 class = BPF_CLASS(insn[i].code); 10280 if (class != BPF_LDX && class != BPF_STX) 10281 continue; 10282 aux = &env->insn_aux_data[i]; 10283 if (aux->seen != env->pass_cnt) 10284 continue; 10285 memset(aux, 0, offsetof(typeof(*aux), orig_idx)); 10286 } 10287 } 10288 10289 static int do_check_common(struct bpf_verifier_env *env, int subprog) 10290 { 10291 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 10292 struct bpf_verifier_state *state; 10293 struct bpf_reg_state *regs; 10294 int ret, i; 10295 10296 env->prev_linfo = NULL; 10297 env->pass_cnt++; 10298 10299 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 10300 if (!state) 10301 return -ENOMEM; 10302 state->curframe = 0; 10303 state->speculative = false; 10304 state->branches = 1; 10305 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 10306 if (!state->frame[0]) { 10307 kfree(state); 10308 return -ENOMEM; 10309 } 10310 env->cur_state = state; 10311 init_func_state(env, state->frame[0], 10312 BPF_MAIN_FUNC /* callsite */, 10313 0 /* frameno */, 10314 subprog); 10315 10316 regs = state->frame[state->curframe]->regs; 10317 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 10318 ret = btf_prepare_func_args(env, subprog, regs); 10319 if (ret) 10320 goto out; 10321 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 10322 if (regs[i].type == PTR_TO_CTX) 10323 mark_reg_known_zero(env, regs, i); 10324 else if (regs[i].type == SCALAR_VALUE) 10325 mark_reg_unknown(env, regs, i); 10326 } 10327 } else { 10328 /* 1st arg to a function */ 10329 regs[BPF_REG_1].type = PTR_TO_CTX; 10330 mark_reg_known_zero(env, regs, BPF_REG_1); 10331 ret = btf_check_func_arg_match(env, subprog, regs); 10332 if (ret == -EFAULT) 10333 /* unlikely verifier bug. abort. 10334 * ret == 0 and ret < 0 are sadly acceptable for 10335 * main() function due to backward compatibility. 10336 * Like socket filter program may be written as: 10337 * int bpf_prog(struct pt_regs *ctx) 10338 * and never dereference that ctx in the program. 10339 * 'struct pt_regs' is a type mismatch for socket 10340 * filter that should be using 'struct __sk_buff'. 10341 */ 10342 goto out; 10343 } 10344 10345 ret = do_check(env); 10346 out: 10347 /* check for NULL is necessary, since cur_state can be freed inside 10348 * do_check() under memory pressure. 10349 */ 10350 if (env->cur_state) { 10351 free_verifier_state(env->cur_state, true); 10352 env->cur_state = NULL; 10353 } 10354 while (!pop_stack(env, NULL, NULL, false)); 10355 if (!ret && pop_log) 10356 bpf_vlog_reset(&env->log, 0); 10357 free_states(env); 10358 if (ret) 10359 /* clean aux data in case subprog was rejected */ 10360 sanitize_insn_aux_data(env); 10361 return ret; 10362 } 10363 10364 /* Verify all global functions in a BPF program one by one based on their BTF. 10365 * All global functions must pass verification. Otherwise the whole program is rejected. 10366 * Consider: 10367 * int bar(int); 10368 * int foo(int f) 10369 * { 10370 * return bar(f); 10371 * } 10372 * int bar(int b) 10373 * { 10374 * ... 10375 * } 10376 * foo() will be verified first for R1=any_scalar_value. During verification it 10377 * will be assumed that bar() already verified successfully and call to bar() 10378 * from foo() will be checked for type match only. Later bar() will be verified 10379 * independently to check that it's safe for R1=any_scalar_value. 10380 */ 10381 static int do_check_subprogs(struct bpf_verifier_env *env) 10382 { 10383 struct bpf_prog_aux *aux = env->prog->aux; 10384 int i, ret; 10385 10386 if (!aux->func_info) 10387 return 0; 10388 10389 for (i = 1; i < env->subprog_cnt; i++) { 10390 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL) 10391 continue; 10392 env->insn_idx = env->subprog_info[i].start; 10393 WARN_ON_ONCE(env->insn_idx == 0); 10394 ret = do_check_common(env, i); 10395 if (ret) { 10396 return ret; 10397 } else if (env->log.level & BPF_LOG_LEVEL) { 10398 verbose(env, 10399 "Func#%d is safe for any args that match its prototype\n", 10400 i); 10401 } 10402 } 10403 return 0; 10404 } 10405 10406 static int do_check_main(struct bpf_verifier_env *env) 10407 { 10408 int ret; 10409 10410 env->insn_idx = 0; 10411 ret = do_check_common(env, 0); 10412 if (!ret) 10413 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 10414 return ret; 10415 } 10416 10417 10418 static void print_verification_stats(struct bpf_verifier_env *env) 10419 { 10420 int i; 10421 10422 if (env->log.level & BPF_LOG_STATS) { 10423 verbose(env, "verification time %lld usec\n", 10424 div_u64(env->verification_time, 1000)); 10425 verbose(env, "stack depth "); 10426 for (i = 0; i < env->subprog_cnt; i++) { 10427 u32 depth = env->subprog_info[i].stack_depth; 10428 10429 verbose(env, "%d", depth); 10430 if (i + 1 < env->subprog_cnt) 10431 verbose(env, "+"); 10432 } 10433 verbose(env, "\n"); 10434 } 10435 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 10436 "total_states %d peak_states %d mark_read %d\n", 10437 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 10438 env->max_states_per_insn, env->total_states, 10439 env->peak_states, env->longest_mark_read_walk); 10440 } 10441 10442 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 10443 { 10444 const struct btf_type *t, *func_proto; 10445 const struct bpf_struct_ops *st_ops; 10446 const struct btf_member *member; 10447 struct bpf_prog *prog = env->prog; 10448 u32 btf_id, member_idx; 10449 const char *mname; 10450 10451 btf_id = prog->aux->attach_btf_id; 10452 st_ops = bpf_struct_ops_find(btf_id); 10453 if (!st_ops) { 10454 verbose(env, "attach_btf_id %u is not a supported struct\n", 10455 btf_id); 10456 return -ENOTSUPP; 10457 } 10458 10459 t = st_ops->type; 10460 member_idx = prog->expected_attach_type; 10461 if (member_idx >= btf_type_vlen(t)) { 10462 verbose(env, "attach to invalid member idx %u of struct %s\n", 10463 member_idx, st_ops->name); 10464 return -EINVAL; 10465 } 10466 10467 member = &btf_type_member(t)[member_idx]; 10468 mname = btf_name_by_offset(btf_vmlinux, member->name_off); 10469 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type, 10470 NULL); 10471 if (!func_proto) { 10472 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 10473 mname, member_idx, st_ops->name); 10474 return -EINVAL; 10475 } 10476 10477 if (st_ops->check_member) { 10478 int err = st_ops->check_member(t, member); 10479 10480 if (err) { 10481 verbose(env, "attach to unsupported member %s of struct %s\n", 10482 mname, st_ops->name); 10483 return err; 10484 } 10485 } 10486 10487 prog->aux->attach_func_proto = func_proto; 10488 prog->aux->attach_func_name = mname; 10489 env->ops = st_ops->verifier_ops; 10490 10491 return 0; 10492 } 10493 #define SECURITY_PREFIX "security_" 10494 10495 static int check_attach_modify_return(struct bpf_verifier_env *env) 10496 { 10497 struct bpf_prog *prog = env->prog; 10498 unsigned long addr = (unsigned long) prog->aux->trampoline->func.addr; 10499 10500 /* This is expected to be cleaned up in the future with the KRSI effort 10501 * introducing the LSM_HOOK macro for cleaning up lsm_hooks.h. 10502 */ 10503 if (within_error_injection_list(addr) || 10504 !strncmp(SECURITY_PREFIX, prog->aux->attach_func_name, 10505 sizeof(SECURITY_PREFIX) - 1)) 10506 return 0; 10507 10508 verbose(env, "fmod_ret attach_btf_id %u (%s) is not modifiable\n", 10509 prog->aux->attach_btf_id, prog->aux->attach_func_name); 10510 10511 return -EINVAL; 10512 } 10513 10514 static int check_attach_btf_id(struct bpf_verifier_env *env) 10515 { 10516 struct bpf_prog *prog = env->prog; 10517 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 10518 struct bpf_prog *tgt_prog = prog->aux->linked_prog; 10519 u32 btf_id = prog->aux->attach_btf_id; 10520 const char prefix[] = "btf_trace_"; 10521 struct btf_func_model fmodel; 10522 int ret = 0, subprog = -1, i; 10523 struct bpf_trampoline *tr; 10524 const struct btf_type *t; 10525 bool conservative = true; 10526 const char *tname; 10527 struct btf *btf; 10528 long addr; 10529 u64 key; 10530 10531 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 10532 return check_struct_ops_btf_id(env); 10533 10534 if (prog->type != BPF_PROG_TYPE_TRACING && 10535 prog->type != BPF_PROG_TYPE_LSM && 10536 !prog_extension) 10537 return 0; 10538 10539 if (!btf_id) { 10540 verbose(env, "Tracing programs must provide btf_id\n"); 10541 return -EINVAL; 10542 } 10543 btf = bpf_prog_get_target_btf(prog); 10544 if (!btf) { 10545 verbose(env, 10546 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 10547 return -EINVAL; 10548 } 10549 t = btf_type_by_id(btf, btf_id); 10550 if (!t) { 10551 verbose(env, "attach_btf_id %u is invalid\n", btf_id); 10552 return -EINVAL; 10553 } 10554 tname = btf_name_by_offset(btf, t->name_off); 10555 if (!tname) { 10556 verbose(env, "attach_btf_id %u doesn't have a name\n", btf_id); 10557 return -EINVAL; 10558 } 10559 if (tgt_prog) { 10560 struct bpf_prog_aux *aux = tgt_prog->aux; 10561 10562 for (i = 0; i < aux->func_info_cnt; i++) 10563 if (aux->func_info[i].type_id == btf_id) { 10564 subprog = i; 10565 break; 10566 } 10567 if (subprog == -1) { 10568 verbose(env, "Subprog %s doesn't exist\n", tname); 10569 return -EINVAL; 10570 } 10571 conservative = aux->func_info_aux[subprog].unreliable; 10572 if (prog_extension) { 10573 if (conservative) { 10574 verbose(env, 10575 "Cannot replace static functions\n"); 10576 return -EINVAL; 10577 } 10578 if (!prog->jit_requested) { 10579 verbose(env, 10580 "Extension programs should be JITed\n"); 10581 return -EINVAL; 10582 } 10583 env->ops = bpf_verifier_ops[tgt_prog->type]; 10584 prog->expected_attach_type = tgt_prog->expected_attach_type; 10585 } 10586 if (!tgt_prog->jited) { 10587 verbose(env, "Can attach to only JITed progs\n"); 10588 return -EINVAL; 10589 } 10590 if (tgt_prog->type == prog->type) { 10591 /* Cannot fentry/fexit another fentry/fexit program. 10592 * Cannot attach program extension to another extension. 10593 * It's ok to attach fentry/fexit to extension program. 10594 */ 10595 verbose(env, "Cannot recursively attach\n"); 10596 return -EINVAL; 10597 } 10598 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 10599 prog_extension && 10600 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 10601 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 10602 /* Program extensions can extend all program types 10603 * except fentry/fexit. The reason is the following. 10604 * The fentry/fexit programs are used for performance 10605 * analysis, stats and can be attached to any program 10606 * type except themselves. When extension program is 10607 * replacing XDP function it is necessary to allow 10608 * performance analysis of all functions. Both original 10609 * XDP program and its program extension. Hence 10610 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is 10611 * allowed. If extending of fentry/fexit was allowed it 10612 * would be possible to create long call chain 10613 * fentry->extension->fentry->extension beyond 10614 * reasonable stack size. Hence extending fentry is not 10615 * allowed. 10616 */ 10617 verbose(env, "Cannot extend fentry/fexit\n"); 10618 return -EINVAL; 10619 } 10620 key = ((u64)aux->id) << 32 | btf_id; 10621 } else { 10622 if (prog_extension) { 10623 verbose(env, "Cannot replace kernel functions\n"); 10624 return -EINVAL; 10625 } 10626 key = btf_id; 10627 } 10628 10629 switch (prog->expected_attach_type) { 10630 case BPF_TRACE_RAW_TP: 10631 if (tgt_prog) { 10632 verbose(env, 10633 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 10634 return -EINVAL; 10635 } 10636 if (!btf_type_is_typedef(t)) { 10637 verbose(env, "attach_btf_id %u is not a typedef\n", 10638 btf_id); 10639 return -EINVAL; 10640 } 10641 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 10642 verbose(env, "attach_btf_id %u points to wrong type name %s\n", 10643 btf_id, tname); 10644 return -EINVAL; 10645 } 10646 tname += sizeof(prefix) - 1; 10647 t = btf_type_by_id(btf, t->type); 10648 if (!btf_type_is_ptr(t)) 10649 /* should never happen in valid vmlinux build */ 10650 return -EINVAL; 10651 t = btf_type_by_id(btf, t->type); 10652 if (!btf_type_is_func_proto(t)) 10653 /* should never happen in valid vmlinux build */ 10654 return -EINVAL; 10655 10656 /* remember two read only pointers that are valid for 10657 * the life time of the kernel 10658 */ 10659 prog->aux->attach_func_name = tname; 10660 prog->aux->attach_func_proto = t; 10661 prog->aux->attach_btf_trace = true; 10662 return 0; 10663 case BPF_TRACE_ITER: 10664 if (!btf_type_is_func(t)) { 10665 verbose(env, "attach_btf_id %u is not a function\n", 10666 btf_id); 10667 return -EINVAL; 10668 } 10669 t = btf_type_by_id(btf, t->type); 10670 if (!btf_type_is_func_proto(t)) 10671 return -EINVAL; 10672 prog->aux->attach_func_name = tname; 10673 prog->aux->attach_func_proto = t; 10674 if (!bpf_iter_prog_supported(prog)) 10675 return -EINVAL; 10676 ret = btf_distill_func_proto(&env->log, btf, t, 10677 tname, &fmodel); 10678 return ret; 10679 default: 10680 if (!prog_extension) 10681 return -EINVAL; 10682 /* fallthrough */ 10683 case BPF_MODIFY_RETURN: 10684 case BPF_LSM_MAC: 10685 case BPF_TRACE_FENTRY: 10686 case BPF_TRACE_FEXIT: 10687 prog->aux->attach_func_name = tname; 10688 if (prog->type == BPF_PROG_TYPE_LSM) { 10689 ret = bpf_lsm_verify_prog(&env->log, prog); 10690 if (ret < 0) 10691 return ret; 10692 } 10693 10694 if (!btf_type_is_func(t)) { 10695 verbose(env, "attach_btf_id %u is not a function\n", 10696 btf_id); 10697 return -EINVAL; 10698 } 10699 if (prog_extension && 10700 btf_check_type_match(env, prog, btf, t)) 10701 return -EINVAL; 10702 t = btf_type_by_id(btf, t->type); 10703 if (!btf_type_is_func_proto(t)) 10704 return -EINVAL; 10705 tr = bpf_trampoline_lookup(key); 10706 if (!tr) 10707 return -ENOMEM; 10708 /* t is either vmlinux type or another program's type */ 10709 prog->aux->attach_func_proto = t; 10710 mutex_lock(&tr->mutex); 10711 if (tr->func.addr) { 10712 prog->aux->trampoline = tr; 10713 goto out; 10714 } 10715 if (tgt_prog && conservative) { 10716 prog->aux->attach_func_proto = NULL; 10717 t = NULL; 10718 } 10719 ret = btf_distill_func_proto(&env->log, btf, t, 10720 tname, &tr->func.model); 10721 if (ret < 0) 10722 goto out; 10723 if (tgt_prog) { 10724 if (subprog == 0) 10725 addr = (long) tgt_prog->bpf_func; 10726 else 10727 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 10728 } else { 10729 addr = kallsyms_lookup_name(tname); 10730 if (!addr) { 10731 verbose(env, 10732 "The address of function %s cannot be found\n", 10733 tname); 10734 ret = -ENOENT; 10735 goto out; 10736 } 10737 } 10738 tr->func.addr = (void *)addr; 10739 prog->aux->trampoline = tr; 10740 10741 if (prog->expected_attach_type == BPF_MODIFY_RETURN) 10742 ret = check_attach_modify_return(env); 10743 out: 10744 mutex_unlock(&tr->mutex); 10745 if (ret) 10746 bpf_trampoline_put(tr); 10747 return ret; 10748 } 10749 } 10750 10751 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, 10752 union bpf_attr __user *uattr) 10753 { 10754 u64 start_time = ktime_get_ns(); 10755 struct bpf_verifier_env *env; 10756 struct bpf_verifier_log *log; 10757 int i, len, ret = -EINVAL; 10758 bool is_priv; 10759 10760 /* no program is valid */ 10761 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 10762 return -EINVAL; 10763 10764 /* 'struct bpf_verifier_env' can be global, but since it's not small, 10765 * allocate/free it every time bpf_check() is called 10766 */ 10767 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 10768 if (!env) 10769 return -ENOMEM; 10770 log = &env->log; 10771 10772 len = (*prog)->len; 10773 env->insn_aux_data = 10774 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 10775 ret = -ENOMEM; 10776 if (!env->insn_aux_data) 10777 goto err_free_env; 10778 for (i = 0; i < len; i++) 10779 env->insn_aux_data[i].orig_idx = i; 10780 env->prog = *prog; 10781 env->ops = bpf_verifier_ops[env->prog->type]; 10782 is_priv = bpf_capable(); 10783 10784 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 10785 mutex_lock(&bpf_verifier_lock); 10786 if (!btf_vmlinux) 10787 btf_vmlinux = btf_parse_vmlinux(); 10788 mutex_unlock(&bpf_verifier_lock); 10789 } 10790 10791 /* grab the mutex to protect few globals used by verifier */ 10792 if (!is_priv) 10793 mutex_lock(&bpf_verifier_lock); 10794 10795 if (attr->log_level || attr->log_buf || attr->log_size) { 10796 /* user requested verbose verifier output 10797 * and supplied buffer to store the verification trace 10798 */ 10799 log->level = attr->log_level; 10800 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 10801 log->len_total = attr->log_size; 10802 10803 ret = -EINVAL; 10804 /* log attributes have to be sane */ 10805 if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 || 10806 !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK) 10807 goto err_unlock; 10808 } 10809 10810 if (IS_ERR(btf_vmlinux)) { 10811 /* Either gcc or pahole or kernel are broken. */ 10812 verbose(env, "in-kernel BTF is malformed\n"); 10813 ret = PTR_ERR(btf_vmlinux); 10814 goto skip_full_check; 10815 } 10816 10817 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 10818 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 10819 env->strict_alignment = true; 10820 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 10821 env->strict_alignment = false; 10822 10823 env->allow_ptr_leaks = bpf_allow_ptr_leaks(); 10824 env->bypass_spec_v1 = bpf_bypass_spec_v1(); 10825 env->bypass_spec_v4 = bpf_bypass_spec_v4(); 10826 env->bpf_capable = bpf_capable(); 10827 10828 if (is_priv) 10829 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 10830 10831 ret = replace_map_fd_with_map_ptr(env); 10832 if (ret < 0) 10833 goto skip_full_check; 10834 10835 if (bpf_prog_is_dev_bound(env->prog->aux)) { 10836 ret = bpf_prog_offload_verifier_prep(env->prog); 10837 if (ret) 10838 goto skip_full_check; 10839 } 10840 10841 env->explored_states = kvcalloc(state_htab_size(env), 10842 sizeof(struct bpf_verifier_state_list *), 10843 GFP_USER); 10844 ret = -ENOMEM; 10845 if (!env->explored_states) 10846 goto skip_full_check; 10847 10848 ret = check_subprogs(env); 10849 if (ret < 0) 10850 goto skip_full_check; 10851 10852 ret = check_btf_info(env, attr, uattr); 10853 if (ret < 0) 10854 goto skip_full_check; 10855 10856 ret = check_attach_btf_id(env); 10857 if (ret) 10858 goto skip_full_check; 10859 10860 ret = check_cfg(env); 10861 if (ret < 0) 10862 goto skip_full_check; 10863 10864 ret = do_check_subprogs(env); 10865 ret = ret ?: do_check_main(env); 10866 10867 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux)) 10868 ret = bpf_prog_offload_finalize(env); 10869 10870 skip_full_check: 10871 kvfree(env->explored_states); 10872 10873 if (ret == 0) 10874 ret = check_max_stack_depth(env); 10875 10876 /* instruction rewrites happen after this point */ 10877 if (is_priv) { 10878 if (ret == 0) 10879 opt_hard_wire_dead_code_branches(env); 10880 if (ret == 0) 10881 ret = opt_remove_dead_code(env); 10882 if (ret == 0) 10883 ret = opt_remove_nops(env); 10884 } else { 10885 if (ret == 0) 10886 sanitize_dead_code(env); 10887 } 10888 10889 if (ret == 0) 10890 /* program is valid, convert *(u32*)(ctx + off) accesses */ 10891 ret = convert_ctx_accesses(env); 10892 10893 if (ret == 0) 10894 ret = fixup_bpf_calls(env); 10895 10896 /* do 32-bit optimization after insn patching has done so those patched 10897 * insns could be handled correctly. 10898 */ 10899 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) { 10900 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 10901 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 10902 : false; 10903 } 10904 10905 if (ret == 0) 10906 ret = fixup_call_args(env); 10907 10908 env->verification_time = ktime_get_ns() - start_time; 10909 print_verification_stats(env); 10910 10911 if (log->level && bpf_verifier_log_full(log)) 10912 ret = -ENOSPC; 10913 if (log->level && !log->ubuf) { 10914 ret = -EFAULT; 10915 goto err_release_maps; 10916 } 10917 10918 if (ret == 0 && env->used_map_cnt) { 10919 /* if program passed verifier, update used_maps in bpf_prog_info */ 10920 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 10921 sizeof(env->used_maps[0]), 10922 GFP_KERNEL); 10923 10924 if (!env->prog->aux->used_maps) { 10925 ret = -ENOMEM; 10926 goto err_release_maps; 10927 } 10928 10929 memcpy(env->prog->aux->used_maps, env->used_maps, 10930 sizeof(env->used_maps[0]) * env->used_map_cnt); 10931 env->prog->aux->used_map_cnt = env->used_map_cnt; 10932 10933 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 10934 * bpf_ld_imm64 instructions 10935 */ 10936 convert_pseudo_ld_imm64(env); 10937 } 10938 10939 if (ret == 0) 10940 adjust_btf_func(env); 10941 10942 err_release_maps: 10943 if (!env->prog->aux->used_maps) 10944 /* if we didn't copy map pointers into bpf_prog_info, release 10945 * them now. Otherwise free_used_maps() will release them. 10946 */ 10947 release_maps(env); 10948 10949 /* extension progs temporarily inherit the attach_type of their targets 10950 for verification purposes, so set it back to zero before returning 10951 */ 10952 if (env->prog->type == BPF_PROG_TYPE_EXT) 10953 env->prog->expected_attach_type = 0; 10954 10955 *prog = env->prog; 10956 err_unlock: 10957 if (!is_priv) 10958 mutex_unlock(&bpf_verifier_lock); 10959 vfree(env->insn_aux_data); 10960 err_free_env: 10961 kfree(env); 10962 return ret; 10963 } 10964