xref: /linux/kernel/bpf/verifier.c (revision 05a06be722896e51f65dbbb6a3610f85a8353d6b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5  */
6 #include <uapi/linux/btf.h>
7 #include <linux/bpf-cgroup.h>
8 #include <linux/kernel.h>
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/bpf.h>
12 #include <linux/btf.h>
13 #include <linux/bpf_verifier.h>
14 #include <linux/filter.h>
15 #include <net/netlink.h>
16 #include <linux/file.h>
17 #include <linux/vmalloc.h>
18 #include <linux/stringify.h>
19 #include <linux/bsearch.h>
20 #include <linux/sort.h>
21 #include <linux/perf_event.h>
22 #include <linux/ctype.h>
23 #include <linux/error-injection.h>
24 #include <linux/bpf_lsm.h>
25 #include <linux/btf_ids.h>
26 #include <linux/poison.h>
27 #include <linux/module.h>
28 
29 #include "disasm.h"
30 
31 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
32 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
33 	[_id] = & _name ## _verifier_ops,
34 #define BPF_MAP_TYPE(_id, _ops)
35 #define BPF_LINK_TYPE(_id, _name)
36 #include <linux/bpf_types.h>
37 #undef BPF_PROG_TYPE
38 #undef BPF_MAP_TYPE
39 #undef BPF_LINK_TYPE
40 };
41 
42 /* bpf_check() is a static code analyzer that walks eBPF program
43  * instruction by instruction and updates register/stack state.
44  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
45  *
46  * The first pass is depth-first-search to check that the program is a DAG.
47  * It rejects the following programs:
48  * - larger than BPF_MAXINSNS insns
49  * - if loop is present (detected via back-edge)
50  * - unreachable insns exist (shouldn't be a forest. program = one function)
51  * - out of bounds or malformed jumps
52  * The second pass is all possible path descent from the 1st insn.
53  * Since it's analyzing all paths through the program, the length of the
54  * analysis is limited to 64k insn, which may be hit even if total number of
55  * insn is less then 4K, but there are too many branches that change stack/regs.
56  * Number of 'branches to be analyzed' is limited to 1k
57  *
58  * On entry to each instruction, each register has a type, and the instruction
59  * changes the types of the registers depending on instruction semantics.
60  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
61  * copied to R1.
62  *
63  * All registers are 64-bit.
64  * R0 - return register
65  * R1-R5 argument passing registers
66  * R6-R9 callee saved registers
67  * R10 - frame pointer read-only
68  *
69  * At the start of BPF program the register R1 contains a pointer to bpf_context
70  * and has type PTR_TO_CTX.
71  *
72  * Verifier tracks arithmetic operations on pointers in case:
73  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
74  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
75  * 1st insn copies R10 (which has FRAME_PTR) type into R1
76  * and 2nd arithmetic instruction is pattern matched to recognize
77  * that it wants to construct a pointer to some element within stack.
78  * So after 2nd insn, the register R1 has type PTR_TO_STACK
79  * (and -20 constant is saved for further stack bounds checking).
80  * Meaning that this reg is a pointer to stack plus known immediate constant.
81  *
82  * Most of the time the registers have SCALAR_VALUE type, which
83  * means the register has some value, but it's not a valid pointer.
84  * (like pointer plus pointer becomes SCALAR_VALUE type)
85  *
86  * When verifier sees load or store instructions the type of base register
87  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
88  * four pointer types recognized by check_mem_access() function.
89  *
90  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
91  * and the range of [ptr, ptr + map's value_size) is accessible.
92  *
93  * registers used to pass values to function calls are checked against
94  * function argument constraints.
95  *
96  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
97  * It means that the register type passed to this function must be
98  * PTR_TO_STACK and it will be used inside the function as
99  * 'pointer to map element key'
100  *
101  * For example the argument constraints for bpf_map_lookup_elem():
102  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
103  *   .arg1_type = ARG_CONST_MAP_PTR,
104  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
105  *
106  * ret_type says that this function returns 'pointer to map elem value or null'
107  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
108  * 2nd argument should be a pointer to stack, which will be used inside
109  * the helper function as a pointer to map element key.
110  *
111  * On the kernel side the helper function looks like:
112  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
113  * {
114  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
115  *    void *key = (void *) (unsigned long) r2;
116  *    void *value;
117  *
118  *    here kernel can access 'key' and 'map' pointers safely, knowing that
119  *    [key, key + map->key_size) bytes are valid and were initialized on
120  *    the stack of eBPF program.
121  * }
122  *
123  * Corresponding eBPF program may look like:
124  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
125  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
126  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
127  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
128  * here verifier looks at prototype of map_lookup_elem() and sees:
129  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
130  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
131  *
132  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
133  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
134  * and were initialized prior to this call.
135  * If it's ok, then verifier allows this BPF_CALL insn and looks at
136  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
137  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
138  * returns either pointer to map value or NULL.
139  *
140  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
141  * insn, the register holding that pointer in the true branch changes state to
142  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
143  * branch. See check_cond_jmp_op().
144  *
145  * After the call R0 is set to return type of the function and registers R1-R5
146  * are set to NOT_INIT to indicate that they are no longer readable.
147  *
148  * The following reference types represent a potential reference to a kernel
149  * resource which, after first being allocated, must be checked and freed by
150  * the BPF program:
151  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
152  *
153  * When the verifier sees a helper call return a reference type, it allocates a
154  * pointer id for the reference and stores it in the current function state.
155  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
156  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
157  * passes through a NULL-check conditional. For the branch wherein the state is
158  * changed to CONST_IMM, the verifier releases the reference.
159  *
160  * For each helper function that allocates a reference, such as
161  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
162  * bpf_sk_release(). When a reference type passes into the release function,
163  * the verifier also releases the reference. If any unchecked or unreleased
164  * reference remains at the end of the program, the verifier rejects it.
165  */
166 
167 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
168 struct bpf_verifier_stack_elem {
169 	/* verifer state is 'st'
170 	 * before processing instruction 'insn_idx'
171 	 * and after processing instruction 'prev_insn_idx'
172 	 */
173 	struct bpf_verifier_state st;
174 	int insn_idx;
175 	int prev_insn_idx;
176 	struct bpf_verifier_stack_elem *next;
177 	/* length of verifier log at the time this state was pushed on stack */
178 	u32 log_pos;
179 };
180 
181 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ	8192
182 #define BPF_COMPLEXITY_LIMIT_STATES	64
183 
184 #define BPF_MAP_KEY_POISON	(1ULL << 63)
185 #define BPF_MAP_KEY_SEEN	(1ULL << 62)
186 
187 #define BPF_MAP_PTR_UNPRIV	1UL
188 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
189 					  POISON_POINTER_DELTA))
190 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
191 
192 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx);
193 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id);
194 static void invalidate_non_owning_refs(struct bpf_verifier_env *env);
195 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env);
196 static int ref_set_non_owning(struct bpf_verifier_env *env,
197 			      struct bpf_reg_state *reg);
198 
199 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
200 {
201 	return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
202 }
203 
204 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
205 {
206 	return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
207 }
208 
209 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
210 			      const struct bpf_map *map, bool unpriv)
211 {
212 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
213 	unpriv |= bpf_map_ptr_unpriv(aux);
214 	aux->map_ptr_state = (unsigned long)map |
215 			     (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
216 }
217 
218 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
219 {
220 	return aux->map_key_state & BPF_MAP_KEY_POISON;
221 }
222 
223 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
224 {
225 	return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
226 }
227 
228 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
229 {
230 	return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
231 }
232 
233 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
234 {
235 	bool poisoned = bpf_map_key_poisoned(aux);
236 
237 	aux->map_key_state = state | BPF_MAP_KEY_SEEN |
238 			     (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
239 }
240 
241 static bool bpf_pseudo_call(const struct bpf_insn *insn)
242 {
243 	return insn->code == (BPF_JMP | BPF_CALL) &&
244 	       insn->src_reg == BPF_PSEUDO_CALL;
245 }
246 
247 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
248 {
249 	return insn->code == (BPF_JMP | BPF_CALL) &&
250 	       insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
251 }
252 
253 struct bpf_call_arg_meta {
254 	struct bpf_map *map_ptr;
255 	bool raw_mode;
256 	bool pkt_access;
257 	u8 release_regno;
258 	int regno;
259 	int access_size;
260 	int mem_size;
261 	u64 msize_max_value;
262 	int ref_obj_id;
263 	int dynptr_id;
264 	int map_uid;
265 	int func_id;
266 	struct btf *btf;
267 	u32 btf_id;
268 	struct btf *ret_btf;
269 	u32 ret_btf_id;
270 	u32 subprogno;
271 	struct btf_field *kptr_field;
272 };
273 
274 struct bpf_kfunc_call_arg_meta {
275 	/* In parameters */
276 	struct btf *btf;
277 	u32 func_id;
278 	u32 kfunc_flags;
279 	const struct btf_type *func_proto;
280 	const char *func_name;
281 	/* Out parameters */
282 	u32 ref_obj_id;
283 	u8 release_regno;
284 	bool r0_rdonly;
285 	u32 ret_btf_id;
286 	u64 r0_size;
287 	u32 subprogno;
288 	struct {
289 		u64 value;
290 		bool found;
291 	} arg_constant;
292 	struct {
293 		struct btf *btf;
294 		u32 btf_id;
295 	} arg_obj_drop;
296 	struct {
297 		struct btf_field *field;
298 	} arg_list_head;
299 	struct {
300 		struct btf_field *field;
301 	} arg_rbtree_root;
302 	struct {
303 		enum bpf_dynptr_type type;
304 		u32 id;
305 	} initialized_dynptr;
306 	struct {
307 		u8 spi;
308 		u8 frameno;
309 	} iter;
310 	u64 mem_size;
311 };
312 
313 struct btf *btf_vmlinux;
314 
315 static DEFINE_MUTEX(bpf_verifier_lock);
316 
317 static const struct bpf_line_info *
318 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
319 {
320 	const struct bpf_line_info *linfo;
321 	const struct bpf_prog *prog;
322 	u32 i, nr_linfo;
323 
324 	prog = env->prog;
325 	nr_linfo = prog->aux->nr_linfo;
326 
327 	if (!nr_linfo || insn_off >= prog->len)
328 		return NULL;
329 
330 	linfo = prog->aux->linfo;
331 	for (i = 1; i < nr_linfo; i++)
332 		if (insn_off < linfo[i].insn_off)
333 			break;
334 
335 	return &linfo[i - 1];
336 }
337 
338 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
339 		       va_list args)
340 {
341 	unsigned int n;
342 
343 	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
344 
345 	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
346 		  "verifier log line truncated - local buffer too short\n");
347 
348 	if (log->level == BPF_LOG_KERNEL) {
349 		bool newline = n > 0 && log->kbuf[n - 1] == '\n';
350 
351 		pr_err("BPF: %s%s", log->kbuf, newline ? "" : "\n");
352 		return;
353 	}
354 
355 	n = min(log->len_total - log->len_used - 1, n);
356 	log->kbuf[n] = '\0';
357 	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
358 		log->len_used += n;
359 	else
360 		log->ubuf = NULL;
361 }
362 
363 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
364 {
365 	char zero = 0;
366 
367 	if (!bpf_verifier_log_needed(log))
368 		return;
369 
370 	log->len_used = new_pos;
371 	if (put_user(zero, log->ubuf + new_pos))
372 		log->ubuf = NULL;
373 }
374 
375 /* log_level controls verbosity level of eBPF verifier.
376  * bpf_verifier_log_write() is used to dump the verification trace to the log,
377  * so the user can figure out what's wrong with the program
378  */
379 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
380 					   const char *fmt, ...)
381 {
382 	va_list args;
383 
384 	if (!bpf_verifier_log_needed(&env->log))
385 		return;
386 
387 	va_start(args, fmt);
388 	bpf_verifier_vlog(&env->log, fmt, args);
389 	va_end(args);
390 }
391 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
392 
393 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
394 {
395 	struct bpf_verifier_env *env = private_data;
396 	va_list args;
397 
398 	if (!bpf_verifier_log_needed(&env->log))
399 		return;
400 
401 	va_start(args, fmt);
402 	bpf_verifier_vlog(&env->log, fmt, args);
403 	va_end(args);
404 }
405 
406 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
407 			    const char *fmt, ...)
408 {
409 	va_list args;
410 
411 	if (!bpf_verifier_log_needed(log))
412 		return;
413 
414 	va_start(args, fmt);
415 	bpf_verifier_vlog(log, fmt, args);
416 	va_end(args);
417 }
418 EXPORT_SYMBOL_GPL(bpf_log);
419 
420 static const char *ltrim(const char *s)
421 {
422 	while (isspace(*s))
423 		s++;
424 
425 	return s;
426 }
427 
428 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
429 					 u32 insn_off,
430 					 const char *prefix_fmt, ...)
431 {
432 	const struct bpf_line_info *linfo;
433 
434 	if (!bpf_verifier_log_needed(&env->log))
435 		return;
436 
437 	linfo = find_linfo(env, insn_off);
438 	if (!linfo || linfo == env->prev_linfo)
439 		return;
440 
441 	if (prefix_fmt) {
442 		va_list args;
443 
444 		va_start(args, prefix_fmt);
445 		bpf_verifier_vlog(&env->log, prefix_fmt, args);
446 		va_end(args);
447 	}
448 
449 	verbose(env, "%s\n",
450 		ltrim(btf_name_by_offset(env->prog->aux->btf,
451 					 linfo->line_off)));
452 
453 	env->prev_linfo = linfo;
454 }
455 
456 static void verbose_invalid_scalar(struct bpf_verifier_env *env,
457 				   struct bpf_reg_state *reg,
458 				   struct tnum *range, const char *ctx,
459 				   const char *reg_name)
460 {
461 	char tn_buf[48];
462 
463 	verbose(env, "At %s the register %s ", ctx, reg_name);
464 	if (!tnum_is_unknown(reg->var_off)) {
465 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
466 		verbose(env, "has value %s", tn_buf);
467 	} else {
468 		verbose(env, "has unknown scalar value");
469 	}
470 	tnum_strn(tn_buf, sizeof(tn_buf), *range);
471 	verbose(env, " should have been in %s\n", tn_buf);
472 }
473 
474 static bool type_is_pkt_pointer(enum bpf_reg_type type)
475 {
476 	type = base_type(type);
477 	return type == PTR_TO_PACKET ||
478 	       type == PTR_TO_PACKET_META;
479 }
480 
481 static bool type_is_sk_pointer(enum bpf_reg_type type)
482 {
483 	return type == PTR_TO_SOCKET ||
484 		type == PTR_TO_SOCK_COMMON ||
485 		type == PTR_TO_TCP_SOCK ||
486 		type == PTR_TO_XDP_SOCK;
487 }
488 
489 static bool type_may_be_null(u32 type)
490 {
491 	return type & PTR_MAYBE_NULL;
492 }
493 
494 static bool reg_type_not_null(enum bpf_reg_type type)
495 {
496 	if (type_may_be_null(type))
497 		return false;
498 
499 	type = base_type(type);
500 	return type == PTR_TO_SOCKET ||
501 		type == PTR_TO_TCP_SOCK ||
502 		type == PTR_TO_MAP_VALUE ||
503 		type == PTR_TO_MAP_KEY ||
504 		type == PTR_TO_SOCK_COMMON ||
505 		type == PTR_TO_MEM;
506 }
507 
508 static bool type_is_ptr_alloc_obj(u32 type)
509 {
510 	return base_type(type) == PTR_TO_BTF_ID && type_flag(type) & MEM_ALLOC;
511 }
512 
513 static bool type_is_non_owning_ref(u32 type)
514 {
515 	return type_is_ptr_alloc_obj(type) && type_flag(type) & NON_OWN_REF;
516 }
517 
518 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg)
519 {
520 	struct btf_record *rec = NULL;
521 	struct btf_struct_meta *meta;
522 
523 	if (reg->type == PTR_TO_MAP_VALUE) {
524 		rec = reg->map_ptr->record;
525 	} else if (type_is_ptr_alloc_obj(reg->type)) {
526 		meta = btf_find_struct_meta(reg->btf, reg->btf_id);
527 		if (meta)
528 			rec = meta->record;
529 	}
530 	return rec;
531 }
532 
533 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
534 {
535 	return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK);
536 }
537 
538 static bool type_is_rdonly_mem(u32 type)
539 {
540 	return type & MEM_RDONLY;
541 }
542 
543 static bool is_acquire_function(enum bpf_func_id func_id,
544 				const struct bpf_map *map)
545 {
546 	enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
547 
548 	if (func_id == BPF_FUNC_sk_lookup_tcp ||
549 	    func_id == BPF_FUNC_sk_lookup_udp ||
550 	    func_id == BPF_FUNC_skc_lookup_tcp ||
551 	    func_id == BPF_FUNC_ringbuf_reserve ||
552 	    func_id == BPF_FUNC_kptr_xchg)
553 		return true;
554 
555 	if (func_id == BPF_FUNC_map_lookup_elem &&
556 	    (map_type == BPF_MAP_TYPE_SOCKMAP ||
557 	     map_type == BPF_MAP_TYPE_SOCKHASH))
558 		return true;
559 
560 	return false;
561 }
562 
563 static bool is_ptr_cast_function(enum bpf_func_id func_id)
564 {
565 	return func_id == BPF_FUNC_tcp_sock ||
566 		func_id == BPF_FUNC_sk_fullsock ||
567 		func_id == BPF_FUNC_skc_to_tcp_sock ||
568 		func_id == BPF_FUNC_skc_to_tcp6_sock ||
569 		func_id == BPF_FUNC_skc_to_udp6_sock ||
570 		func_id == BPF_FUNC_skc_to_mptcp_sock ||
571 		func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
572 		func_id == BPF_FUNC_skc_to_tcp_request_sock;
573 }
574 
575 static bool is_dynptr_ref_function(enum bpf_func_id func_id)
576 {
577 	return func_id == BPF_FUNC_dynptr_data;
578 }
579 
580 static bool is_callback_calling_function(enum bpf_func_id func_id)
581 {
582 	return func_id == BPF_FUNC_for_each_map_elem ||
583 	       func_id == BPF_FUNC_timer_set_callback ||
584 	       func_id == BPF_FUNC_find_vma ||
585 	       func_id == BPF_FUNC_loop ||
586 	       func_id == BPF_FUNC_user_ringbuf_drain;
587 }
588 
589 static bool is_storage_get_function(enum bpf_func_id func_id)
590 {
591 	return func_id == BPF_FUNC_sk_storage_get ||
592 	       func_id == BPF_FUNC_inode_storage_get ||
593 	       func_id == BPF_FUNC_task_storage_get ||
594 	       func_id == BPF_FUNC_cgrp_storage_get;
595 }
596 
597 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id,
598 					const struct bpf_map *map)
599 {
600 	int ref_obj_uses = 0;
601 
602 	if (is_ptr_cast_function(func_id))
603 		ref_obj_uses++;
604 	if (is_acquire_function(func_id, map))
605 		ref_obj_uses++;
606 	if (is_dynptr_ref_function(func_id))
607 		ref_obj_uses++;
608 
609 	return ref_obj_uses > 1;
610 }
611 
612 static bool is_cmpxchg_insn(const struct bpf_insn *insn)
613 {
614 	return BPF_CLASS(insn->code) == BPF_STX &&
615 	       BPF_MODE(insn->code) == BPF_ATOMIC &&
616 	       insn->imm == BPF_CMPXCHG;
617 }
618 
619 /* string representation of 'enum bpf_reg_type'
620  *
621  * Note that reg_type_str() can not appear more than once in a single verbose()
622  * statement.
623  */
624 static const char *reg_type_str(struct bpf_verifier_env *env,
625 				enum bpf_reg_type type)
626 {
627 	char postfix[16] = {0}, prefix[64] = {0};
628 	static const char * const str[] = {
629 		[NOT_INIT]		= "?",
630 		[SCALAR_VALUE]		= "scalar",
631 		[PTR_TO_CTX]		= "ctx",
632 		[CONST_PTR_TO_MAP]	= "map_ptr",
633 		[PTR_TO_MAP_VALUE]	= "map_value",
634 		[PTR_TO_STACK]		= "fp",
635 		[PTR_TO_PACKET]		= "pkt",
636 		[PTR_TO_PACKET_META]	= "pkt_meta",
637 		[PTR_TO_PACKET_END]	= "pkt_end",
638 		[PTR_TO_FLOW_KEYS]	= "flow_keys",
639 		[PTR_TO_SOCKET]		= "sock",
640 		[PTR_TO_SOCK_COMMON]	= "sock_common",
641 		[PTR_TO_TCP_SOCK]	= "tcp_sock",
642 		[PTR_TO_TP_BUFFER]	= "tp_buffer",
643 		[PTR_TO_XDP_SOCK]	= "xdp_sock",
644 		[PTR_TO_BTF_ID]		= "ptr_",
645 		[PTR_TO_MEM]		= "mem",
646 		[PTR_TO_BUF]		= "buf",
647 		[PTR_TO_FUNC]		= "func",
648 		[PTR_TO_MAP_KEY]	= "map_key",
649 		[CONST_PTR_TO_DYNPTR]	= "dynptr_ptr",
650 	};
651 
652 	if (type & PTR_MAYBE_NULL) {
653 		if (base_type(type) == PTR_TO_BTF_ID)
654 			strncpy(postfix, "or_null_", 16);
655 		else
656 			strncpy(postfix, "_or_null", 16);
657 	}
658 
659 	snprintf(prefix, sizeof(prefix), "%s%s%s%s%s%s%s",
660 		 type & MEM_RDONLY ? "rdonly_" : "",
661 		 type & MEM_RINGBUF ? "ringbuf_" : "",
662 		 type & MEM_USER ? "user_" : "",
663 		 type & MEM_PERCPU ? "percpu_" : "",
664 		 type & MEM_RCU ? "rcu_" : "",
665 		 type & PTR_UNTRUSTED ? "untrusted_" : "",
666 		 type & PTR_TRUSTED ? "trusted_" : ""
667 	);
668 
669 	snprintf(env->type_str_buf, TYPE_STR_BUF_LEN, "%s%s%s",
670 		 prefix, str[base_type(type)], postfix);
671 	return env->type_str_buf;
672 }
673 
674 static char slot_type_char[] = {
675 	[STACK_INVALID]	= '?',
676 	[STACK_SPILL]	= 'r',
677 	[STACK_MISC]	= 'm',
678 	[STACK_ZERO]	= '0',
679 	[STACK_DYNPTR]	= 'd',
680 	[STACK_ITER]	= 'i',
681 };
682 
683 static void print_liveness(struct bpf_verifier_env *env,
684 			   enum bpf_reg_liveness live)
685 {
686 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
687 	    verbose(env, "_");
688 	if (live & REG_LIVE_READ)
689 		verbose(env, "r");
690 	if (live & REG_LIVE_WRITTEN)
691 		verbose(env, "w");
692 	if (live & REG_LIVE_DONE)
693 		verbose(env, "D");
694 }
695 
696 static int __get_spi(s32 off)
697 {
698 	return (-off - 1) / BPF_REG_SIZE;
699 }
700 
701 static struct bpf_func_state *func(struct bpf_verifier_env *env,
702 				   const struct bpf_reg_state *reg)
703 {
704 	struct bpf_verifier_state *cur = env->cur_state;
705 
706 	return cur->frame[reg->frameno];
707 }
708 
709 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots)
710 {
711        int allocated_slots = state->allocated_stack / BPF_REG_SIZE;
712 
713        /* We need to check that slots between [spi - nr_slots + 1, spi] are
714 	* within [0, allocated_stack).
715 	*
716 	* Please note that the spi grows downwards. For example, a dynptr
717 	* takes the size of two stack slots; the first slot will be at
718 	* spi and the second slot will be at spi - 1.
719 	*/
720        return spi - nr_slots + 1 >= 0 && spi < allocated_slots;
721 }
722 
723 static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
724 			          const char *obj_kind, int nr_slots)
725 {
726 	int off, spi;
727 
728 	if (!tnum_is_const(reg->var_off)) {
729 		verbose(env, "%s has to be at a constant offset\n", obj_kind);
730 		return -EINVAL;
731 	}
732 
733 	off = reg->off + reg->var_off.value;
734 	if (off % BPF_REG_SIZE) {
735 		verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
736 		return -EINVAL;
737 	}
738 
739 	spi = __get_spi(off);
740 	if (spi + 1 < nr_slots) {
741 		verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
742 		return -EINVAL;
743 	}
744 
745 	if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots))
746 		return -ERANGE;
747 	return spi;
748 }
749 
750 static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
751 {
752 	return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS);
753 }
754 
755 static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots)
756 {
757 	return stack_slot_obj_get_spi(env, reg, "iter", nr_slots);
758 }
759 
760 static const char *btf_type_name(const struct btf *btf, u32 id)
761 {
762 	return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
763 }
764 
765 static const char *dynptr_type_str(enum bpf_dynptr_type type)
766 {
767 	switch (type) {
768 	case BPF_DYNPTR_TYPE_LOCAL:
769 		return "local";
770 	case BPF_DYNPTR_TYPE_RINGBUF:
771 		return "ringbuf";
772 	case BPF_DYNPTR_TYPE_SKB:
773 		return "skb";
774 	case BPF_DYNPTR_TYPE_XDP:
775 		return "xdp";
776 	case BPF_DYNPTR_TYPE_INVALID:
777 		return "<invalid>";
778 	default:
779 		WARN_ONCE(1, "unknown dynptr type %d\n", type);
780 		return "<unknown>";
781 	}
782 }
783 
784 static const char *iter_type_str(const struct btf *btf, u32 btf_id)
785 {
786 	if (!btf || btf_id == 0)
787 		return "<invalid>";
788 
789 	/* we already validated that type is valid and has conforming name */
790 	return btf_type_name(btf, btf_id) + sizeof(ITER_PREFIX) - 1;
791 }
792 
793 static const char *iter_state_str(enum bpf_iter_state state)
794 {
795 	switch (state) {
796 	case BPF_ITER_STATE_ACTIVE:
797 		return "active";
798 	case BPF_ITER_STATE_DRAINED:
799 		return "drained";
800 	case BPF_ITER_STATE_INVALID:
801 		return "<invalid>";
802 	default:
803 		WARN_ONCE(1, "unknown iter state %d\n", state);
804 		return "<unknown>";
805 	}
806 }
807 
808 static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno)
809 {
810 	env->scratched_regs |= 1U << regno;
811 }
812 
813 static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi)
814 {
815 	env->scratched_stack_slots |= 1ULL << spi;
816 }
817 
818 static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno)
819 {
820 	return (env->scratched_regs >> regno) & 1;
821 }
822 
823 static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno)
824 {
825 	return (env->scratched_stack_slots >> regno) & 1;
826 }
827 
828 static bool verifier_state_scratched(const struct bpf_verifier_env *env)
829 {
830 	return env->scratched_regs || env->scratched_stack_slots;
831 }
832 
833 static void mark_verifier_state_clean(struct bpf_verifier_env *env)
834 {
835 	env->scratched_regs = 0U;
836 	env->scratched_stack_slots = 0ULL;
837 }
838 
839 /* Used for printing the entire verifier state. */
840 static void mark_verifier_state_scratched(struct bpf_verifier_env *env)
841 {
842 	env->scratched_regs = ~0U;
843 	env->scratched_stack_slots = ~0ULL;
844 }
845 
846 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type)
847 {
848 	switch (arg_type & DYNPTR_TYPE_FLAG_MASK) {
849 	case DYNPTR_TYPE_LOCAL:
850 		return BPF_DYNPTR_TYPE_LOCAL;
851 	case DYNPTR_TYPE_RINGBUF:
852 		return BPF_DYNPTR_TYPE_RINGBUF;
853 	case DYNPTR_TYPE_SKB:
854 		return BPF_DYNPTR_TYPE_SKB;
855 	case DYNPTR_TYPE_XDP:
856 		return BPF_DYNPTR_TYPE_XDP;
857 	default:
858 		return BPF_DYNPTR_TYPE_INVALID;
859 	}
860 }
861 
862 static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type)
863 {
864 	switch (type) {
865 	case BPF_DYNPTR_TYPE_LOCAL:
866 		return DYNPTR_TYPE_LOCAL;
867 	case BPF_DYNPTR_TYPE_RINGBUF:
868 		return DYNPTR_TYPE_RINGBUF;
869 	case BPF_DYNPTR_TYPE_SKB:
870 		return DYNPTR_TYPE_SKB;
871 	case BPF_DYNPTR_TYPE_XDP:
872 		return DYNPTR_TYPE_XDP;
873 	default:
874 		return 0;
875 	}
876 }
877 
878 static bool dynptr_type_refcounted(enum bpf_dynptr_type type)
879 {
880 	return type == BPF_DYNPTR_TYPE_RINGBUF;
881 }
882 
883 static void __mark_dynptr_reg(struct bpf_reg_state *reg,
884 			      enum bpf_dynptr_type type,
885 			      bool first_slot, int dynptr_id);
886 
887 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
888 				struct bpf_reg_state *reg);
889 
890 static void mark_dynptr_stack_regs(struct bpf_verifier_env *env,
891 				   struct bpf_reg_state *sreg1,
892 				   struct bpf_reg_state *sreg2,
893 				   enum bpf_dynptr_type type)
894 {
895 	int id = ++env->id_gen;
896 
897 	__mark_dynptr_reg(sreg1, type, true, id);
898 	__mark_dynptr_reg(sreg2, type, false, id);
899 }
900 
901 static void mark_dynptr_cb_reg(struct bpf_verifier_env *env,
902 			       struct bpf_reg_state *reg,
903 			       enum bpf_dynptr_type type)
904 {
905 	__mark_dynptr_reg(reg, type, true, ++env->id_gen);
906 }
907 
908 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
909 				        struct bpf_func_state *state, int spi);
910 
911 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
912 				   enum bpf_arg_type arg_type, int insn_idx)
913 {
914 	struct bpf_func_state *state = func(env, reg);
915 	enum bpf_dynptr_type type;
916 	int spi, i, id, err;
917 
918 	spi = dynptr_get_spi(env, reg);
919 	if (spi < 0)
920 		return spi;
921 
922 	/* We cannot assume both spi and spi - 1 belong to the same dynptr,
923 	 * hence we need to call destroy_if_dynptr_stack_slot twice for both,
924 	 * to ensure that for the following example:
925 	 *	[d1][d1][d2][d2]
926 	 * spi    3   2   1   0
927 	 * So marking spi = 2 should lead to destruction of both d1 and d2. In
928 	 * case they do belong to same dynptr, second call won't see slot_type
929 	 * as STACK_DYNPTR and will simply skip destruction.
930 	 */
931 	err = destroy_if_dynptr_stack_slot(env, state, spi);
932 	if (err)
933 		return err;
934 	err = destroy_if_dynptr_stack_slot(env, state, spi - 1);
935 	if (err)
936 		return err;
937 
938 	for (i = 0; i < BPF_REG_SIZE; i++) {
939 		state->stack[spi].slot_type[i] = STACK_DYNPTR;
940 		state->stack[spi - 1].slot_type[i] = STACK_DYNPTR;
941 	}
942 
943 	type = arg_to_dynptr_type(arg_type);
944 	if (type == BPF_DYNPTR_TYPE_INVALID)
945 		return -EINVAL;
946 
947 	mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr,
948 			       &state->stack[spi - 1].spilled_ptr, type);
949 
950 	if (dynptr_type_refcounted(type)) {
951 		/* The id is used to track proper releasing */
952 		id = acquire_reference_state(env, insn_idx);
953 		if (id < 0)
954 			return id;
955 
956 		state->stack[spi].spilled_ptr.ref_obj_id = id;
957 		state->stack[spi - 1].spilled_ptr.ref_obj_id = id;
958 	}
959 
960 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
961 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
962 
963 	return 0;
964 }
965 
966 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
967 {
968 	struct bpf_func_state *state = func(env, reg);
969 	int spi, i;
970 
971 	spi = dynptr_get_spi(env, reg);
972 	if (spi < 0)
973 		return spi;
974 
975 	for (i = 0; i < BPF_REG_SIZE; i++) {
976 		state->stack[spi].slot_type[i] = STACK_INVALID;
977 		state->stack[spi - 1].slot_type[i] = STACK_INVALID;
978 	}
979 
980 	/* Invalidate any slices associated with this dynptr */
981 	if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type))
982 		WARN_ON_ONCE(release_reference(env, state->stack[spi].spilled_ptr.ref_obj_id));
983 
984 	__mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
985 	__mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
986 
987 	/* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot?
988 	 *
989 	 * While we don't allow reading STACK_INVALID, it is still possible to
990 	 * do <8 byte writes marking some but not all slots as STACK_MISC. Then,
991 	 * helpers or insns can do partial read of that part without failing,
992 	 * but check_stack_range_initialized, check_stack_read_var_off, and
993 	 * check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of
994 	 * the slot conservatively. Hence we need to prevent those liveness
995 	 * marking walks.
996 	 *
997 	 * This was not a problem before because STACK_INVALID is only set by
998 	 * default (where the default reg state has its reg->parent as NULL), or
999 	 * in clean_live_states after REG_LIVE_DONE (at which point
1000 	 * mark_reg_read won't walk reg->parent chain), but not randomly during
1001 	 * verifier state exploration (like we did above). Hence, for our case
1002 	 * parentage chain will still be live (i.e. reg->parent may be
1003 	 * non-NULL), while earlier reg->parent was NULL, so we need
1004 	 * REG_LIVE_WRITTEN to screen off read marker propagation when it is
1005 	 * done later on reads or by mark_dynptr_read as well to unnecessary
1006 	 * mark registers in verifier state.
1007 	 */
1008 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1009 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
1010 
1011 	return 0;
1012 }
1013 
1014 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1015 			       struct bpf_reg_state *reg);
1016 
1017 static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1018 {
1019 	if (!env->allow_ptr_leaks)
1020 		__mark_reg_not_init(env, reg);
1021 	else
1022 		__mark_reg_unknown(env, reg);
1023 }
1024 
1025 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
1026 				        struct bpf_func_state *state, int spi)
1027 {
1028 	struct bpf_func_state *fstate;
1029 	struct bpf_reg_state *dreg;
1030 	int i, dynptr_id;
1031 
1032 	/* We always ensure that STACK_DYNPTR is never set partially,
1033 	 * hence just checking for slot_type[0] is enough. This is
1034 	 * different for STACK_SPILL, where it may be only set for
1035 	 * 1 byte, so code has to use is_spilled_reg.
1036 	 */
1037 	if (state->stack[spi].slot_type[0] != STACK_DYNPTR)
1038 		return 0;
1039 
1040 	/* Reposition spi to first slot */
1041 	if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
1042 		spi = spi + 1;
1043 
1044 	if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
1045 		verbose(env, "cannot overwrite referenced dynptr\n");
1046 		return -EINVAL;
1047 	}
1048 
1049 	mark_stack_slot_scratched(env, spi);
1050 	mark_stack_slot_scratched(env, spi - 1);
1051 
1052 	/* Writing partially to one dynptr stack slot destroys both. */
1053 	for (i = 0; i < BPF_REG_SIZE; i++) {
1054 		state->stack[spi].slot_type[i] = STACK_INVALID;
1055 		state->stack[spi - 1].slot_type[i] = STACK_INVALID;
1056 	}
1057 
1058 	dynptr_id = state->stack[spi].spilled_ptr.id;
1059 	/* Invalidate any slices associated with this dynptr */
1060 	bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({
1061 		/* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */
1062 		if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM)
1063 			continue;
1064 		if (dreg->dynptr_id == dynptr_id)
1065 			mark_reg_invalid(env, dreg);
1066 	}));
1067 
1068 	/* Do not release reference state, we are destroying dynptr on stack,
1069 	 * not using some helper to release it. Just reset register.
1070 	 */
1071 	__mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
1072 	__mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
1073 
1074 	/* Same reason as unmark_stack_slots_dynptr above */
1075 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1076 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
1077 
1078 	return 0;
1079 }
1080 
1081 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1082 {
1083 	int spi;
1084 
1085 	if (reg->type == CONST_PTR_TO_DYNPTR)
1086 		return false;
1087 
1088 	spi = dynptr_get_spi(env, reg);
1089 
1090 	/* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an
1091 	 * error because this just means the stack state hasn't been updated yet.
1092 	 * We will do check_mem_access to check and update stack bounds later.
1093 	 */
1094 	if (spi < 0 && spi != -ERANGE)
1095 		return false;
1096 
1097 	/* We don't need to check if the stack slots are marked by previous
1098 	 * dynptr initializations because we allow overwriting existing unreferenced
1099 	 * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls
1100 	 * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are
1101 	 * touching are completely destructed before we reinitialize them for a new
1102 	 * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early
1103 	 * instead of delaying it until the end where the user will get "Unreleased
1104 	 * reference" error.
1105 	 */
1106 	return true;
1107 }
1108 
1109 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1110 {
1111 	struct bpf_func_state *state = func(env, reg);
1112 	int i, spi;
1113 
1114 	/* This already represents first slot of initialized bpf_dynptr.
1115 	 *
1116 	 * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to
1117 	 * check_func_arg_reg_off's logic, so we don't need to check its
1118 	 * offset and alignment.
1119 	 */
1120 	if (reg->type == CONST_PTR_TO_DYNPTR)
1121 		return true;
1122 
1123 	spi = dynptr_get_spi(env, reg);
1124 	if (spi < 0)
1125 		return false;
1126 	if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
1127 		return false;
1128 
1129 	for (i = 0; i < BPF_REG_SIZE; i++) {
1130 		if (state->stack[spi].slot_type[i] != STACK_DYNPTR ||
1131 		    state->stack[spi - 1].slot_type[i] != STACK_DYNPTR)
1132 			return false;
1133 	}
1134 
1135 	return true;
1136 }
1137 
1138 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
1139 				    enum bpf_arg_type arg_type)
1140 {
1141 	struct bpf_func_state *state = func(env, reg);
1142 	enum bpf_dynptr_type dynptr_type;
1143 	int spi;
1144 
1145 	/* ARG_PTR_TO_DYNPTR takes any type of dynptr */
1146 	if (arg_type == ARG_PTR_TO_DYNPTR)
1147 		return true;
1148 
1149 	dynptr_type = arg_to_dynptr_type(arg_type);
1150 	if (reg->type == CONST_PTR_TO_DYNPTR) {
1151 		return reg->dynptr.type == dynptr_type;
1152 	} else {
1153 		spi = dynptr_get_spi(env, reg);
1154 		if (spi < 0)
1155 			return false;
1156 		return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type;
1157 	}
1158 }
1159 
1160 static void __mark_reg_known_zero(struct bpf_reg_state *reg);
1161 
1162 static int mark_stack_slots_iter(struct bpf_verifier_env *env,
1163 				 struct bpf_reg_state *reg, int insn_idx,
1164 				 struct btf *btf, u32 btf_id, int nr_slots)
1165 {
1166 	struct bpf_func_state *state = func(env, reg);
1167 	int spi, i, j, id;
1168 
1169 	spi = iter_get_spi(env, reg, nr_slots);
1170 	if (spi < 0)
1171 		return spi;
1172 
1173 	id = acquire_reference_state(env, insn_idx);
1174 	if (id < 0)
1175 		return id;
1176 
1177 	for (i = 0; i < nr_slots; i++) {
1178 		struct bpf_stack_state *slot = &state->stack[spi - i];
1179 		struct bpf_reg_state *st = &slot->spilled_ptr;
1180 
1181 		__mark_reg_known_zero(st);
1182 		st->type = PTR_TO_STACK; /* we don't have dedicated reg type */
1183 		st->live |= REG_LIVE_WRITTEN;
1184 		st->ref_obj_id = i == 0 ? id : 0;
1185 		st->iter.btf = btf;
1186 		st->iter.btf_id = btf_id;
1187 		st->iter.state = BPF_ITER_STATE_ACTIVE;
1188 		st->iter.depth = 0;
1189 
1190 		for (j = 0; j < BPF_REG_SIZE; j++)
1191 			slot->slot_type[j] = STACK_ITER;
1192 
1193 		mark_stack_slot_scratched(env, spi - i);
1194 	}
1195 
1196 	return 0;
1197 }
1198 
1199 static int unmark_stack_slots_iter(struct bpf_verifier_env *env,
1200 				   struct bpf_reg_state *reg, int nr_slots)
1201 {
1202 	struct bpf_func_state *state = func(env, reg);
1203 	int spi, i, j;
1204 
1205 	spi = iter_get_spi(env, reg, nr_slots);
1206 	if (spi < 0)
1207 		return spi;
1208 
1209 	for (i = 0; i < nr_slots; i++) {
1210 		struct bpf_stack_state *slot = &state->stack[spi - i];
1211 		struct bpf_reg_state *st = &slot->spilled_ptr;
1212 
1213 		if (i == 0)
1214 			WARN_ON_ONCE(release_reference(env, st->ref_obj_id));
1215 
1216 		__mark_reg_not_init(env, st);
1217 
1218 		/* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */
1219 		st->live |= REG_LIVE_WRITTEN;
1220 
1221 		for (j = 0; j < BPF_REG_SIZE; j++)
1222 			slot->slot_type[j] = STACK_INVALID;
1223 
1224 		mark_stack_slot_scratched(env, spi - i);
1225 	}
1226 
1227 	return 0;
1228 }
1229 
1230 static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env,
1231 				     struct bpf_reg_state *reg, int nr_slots)
1232 {
1233 	struct bpf_func_state *state = func(env, reg);
1234 	int spi, i, j;
1235 
1236 	/* For -ERANGE (i.e. spi not falling into allocated stack slots), we
1237 	 * will do check_mem_access to check and update stack bounds later, so
1238 	 * return true for that case.
1239 	 */
1240 	spi = iter_get_spi(env, reg, nr_slots);
1241 	if (spi == -ERANGE)
1242 		return true;
1243 	if (spi < 0)
1244 		return false;
1245 
1246 	for (i = 0; i < nr_slots; i++) {
1247 		struct bpf_stack_state *slot = &state->stack[spi - i];
1248 
1249 		for (j = 0; j < BPF_REG_SIZE; j++)
1250 			if (slot->slot_type[j] == STACK_ITER)
1251 				return false;
1252 	}
1253 
1254 	return true;
1255 }
1256 
1257 static bool is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
1258 				   struct btf *btf, u32 btf_id, int nr_slots)
1259 {
1260 	struct bpf_func_state *state = func(env, reg);
1261 	int spi, i, j;
1262 
1263 	spi = iter_get_spi(env, reg, nr_slots);
1264 	if (spi < 0)
1265 		return false;
1266 
1267 	for (i = 0; i < nr_slots; i++) {
1268 		struct bpf_stack_state *slot = &state->stack[spi - i];
1269 		struct bpf_reg_state *st = &slot->spilled_ptr;
1270 
1271 		/* only main (first) slot has ref_obj_id set */
1272 		if (i == 0 && !st->ref_obj_id)
1273 			return false;
1274 		if (i != 0 && st->ref_obj_id)
1275 			return false;
1276 		if (st->iter.btf != btf || st->iter.btf_id != btf_id)
1277 			return false;
1278 
1279 		for (j = 0; j < BPF_REG_SIZE; j++)
1280 			if (slot->slot_type[j] != STACK_ITER)
1281 				return false;
1282 	}
1283 
1284 	return true;
1285 }
1286 
1287 /* Check if given stack slot is "special":
1288  *   - spilled register state (STACK_SPILL);
1289  *   - dynptr state (STACK_DYNPTR);
1290  *   - iter state (STACK_ITER).
1291  */
1292 static bool is_stack_slot_special(const struct bpf_stack_state *stack)
1293 {
1294 	enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1];
1295 
1296 	switch (type) {
1297 	case STACK_SPILL:
1298 	case STACK_DYNPTR:
1299 	case STACK_ITER:
1300 		return true;
1301 	case STACK_INVALID:
1302 	case STACK_MISC:
1303 	case STACK_ZERO:
1304 		return false;
1305 	default:
1306 		WARN_ONCE(1, "unknown stack slot type %d\n", type);
1307 		return true;
1308 	}
1309 }
1310 
1311 /* The reg state of a pointer or a bounded scalar was saved when
1312  * it was spilled to the stack.
1313  */
1314 static bool is_spilled_reg(const struct bpf_stack_state *stack)
1315 {
1316 	return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL;
1317 }
1318 
1319 static void scrub_spilled_slot(u8 *stype)
1320 {
1321 	if (*stype != STACK_INVALID)
1322 		*stype = STACK_MISC;
1323 }
1324 
1325 static void print_verifier_state(struct bpf_verifier_env *env,
1326 				 const struct bpf_func_state *state,
1327 				 bool print_all)
1328 {
1329 	const struct bpf_reg_state *reg;
1330 	enum bpf_reg_type t;
1331 	int i;
1332 
1333 	if (state->frameno)
1334 		verbose(env, " frame%d:", state->frameno);
1335 	for (i = 0; i < MAX_BPF_REG; i++) {
1336 		reg = &state->regs[i];
1337 		t = reg->type;
1338 		if (t == NOT_INIT)
1339 			continue;
1340 		if (!print_all && !reg_scratched(env, i))
1341 			continue;
1342 		verbose(env, " R%d", i);
1343 		print_liveness(env, reg->live);
1344 		verbose(env, "=");
1345 		if (t == SCALAR_VALUE && reg->precise)
1346 			verbose(env, "P");
1347 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
1348 		    tnum_is_const(reg->var_off)) {
1349 			/* reg->off should be 0 for SCALAR_VALUE */
1350 			verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
1351 			verbose(env, "%lld", reg->var_off.value + reg->off);
1352 		} else {
1353 			const char *sep = "";
1354 
1355 			verbose(env, "%s", reg_type_str(env, t));
1356 			if (base_type(t) == PTR_TO_BTF_ID)
1357 				verbose(env, "%s", btf_type_name(reg->btf, reg->btf_id));
1358 			verbose(env, "(");
1359 /*
1360  * _a stands for append, was shortened to avoid multiline statements below.
1361  * This macro is used to output a comma separated list of attributes.
1362  */
1363 #define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; })
1364 
1365 			if (reg->id)
1366 				verbose_a("id=%d", reg->id);
1367 			if (reg->ref_obj_id)
1368 				verbose_a("ref_obj_id=%d", reg->ref_obj_id);
1369 			if (type_is_non_owning_ref(reg->type))
1370 				verbose_a("%s", "non_own_ref");
1371 			if (t != SCALAR_VALUE)
1372 				verbose_a("off=%d", reg->off);
1373 			if (type_is_pkt_pointer(t))
1374 				verbose_a("r=%d", reg->range);
1375 			else if (base_type(t) == CONST_PTR_TO_MAP ||
1376 				 base_type(t) == PTR_TO_MAP_KEY ||
1377 				 base_type(t) == PTR_TO_MAP_VALUE)
1378 				verbose_a("ks=%d,vs=%d",
1379 					  reg->map_ptr->key_size,
1380 					  reg->map_ptr->value_size);
1381 			if (tnum_is_const(reg->var_off)) {
1382 				/* Typically an immediate SCALAR_VALUE, but
1383 				 * could be a pointer whose offset is too big
1384 				 * for reg->off
1385 				 */
1386 				verbose_a("imm=%llx", reg->var_off.value);
1387 			} else {
1388 				if (reg->smin_value != reg->umin_value &&
1389 				    reg->smin_value != S64_MIN)
1390 					verbose_a("smin=%lld", (long long)reg->smin_value);
1391 				if (reg->smax_value != reg->umax_value &&
1392 				    reg->smax_value != S64_MAX)
1393 					verbose_a("smax=%lld", (long long)reg->smax_value);
1394 				if (reg->umin_value != 0)
1395 					verbose_a("umin=%llu", (unsigned long long)reg->umin_value);
1396 				if (reg->umax_value != U64_MAX)
1397 					verbose_a("umax=%llu", (unsigned long long)reg->umax_value);
1398 				if (!tnum_is_unknown(reg->var_off)) {
1399 					char tn_buf[48];
1400 
1401 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1402 					verbose_a("var_off=%s", tn_buf);
1403 				}
1404 				if (reg->s32_min_value != reg->smin_value &&
1405 				    reg->s32_min_value != S32_MIN)
1406 					verbose_a("s32_min=%d", (int)(reg->s32_min_value));
1407 				if (reg->s32_max_value != reg->smax_value &&
1408 				    reg->s32_max_value != S32_MAX)
1409 					verbose_a("s32_max=%d", (int)(reg->s32_max_value));
1410 				if (reg->u32_min_value != reg->umin_value &&
1411 				    reg->u32_min_value != U32_MIN)
1412 					verbose_a("u32_min=%d", (int)(reg->u32_min_value));
1413 				if (reg->u32_max_value != reg->umax_value &&
1414 				    reg->u32_max_value != U32_MAX)
1415 					verbose_a("u32_max=%d", (int)(reg->u32_max_value));
1416 			}
1417 #undef verbose_a
1418 
1419 			verbose(env, ")");
1420 		}
1421 	}
1422 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
1423 		char types_buf[BPF_REG_SIZE + 1];
1424 		bool valid = false;
1425 		int j;
1426 
1427 		for (j = 0; j < BPF_REG_SIZE; j++) {
1428 			if (state->stack[i].slot_type[j] != STACK_INVALID)
1429 				valid = true;
1430 			types_buf[j] = slot_type_char[state->stack[i].slot_type[j]];
1431 		}
1432 		types_buf[BPF_REG_SIZE] = 0;
1433 		if (!valid)
1434 			continue;
1435 		if (!print_all && !stack_slot_scratched(env, i))
1436 			continue;
1437 		switch (state->stack[i].slot_type[BPF_REG_SIZE - 1]) {
1438 		case STACK_SPILL:
1439 			reg = &state->stack[i].spilled_ptr;
1440 			t = reg->type;
1441 
1442 			verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1443 			print_liveness(env, reg->live);
1444 			verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
1445 			if (t == SCALAR_VALUE && reg->precise)
1446 				verbose(env, "P");
1447 			if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
1448 				verbose(env, "%lld", reg->var_off.value + reg->off);
1449 			break;
1450 		case STACK_DYNPTR:
1451 			i += BPF_DYNPTR_NR_SLOTS - 1;
1452 			reg = &state->stack[i].spilled_ptr;
1453 
1454 			verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1455 			print_liveness(env, reg->live);
1456 			verbose(env, "=dynptr_%s", dynptr_type_str(reg->dynptr.type));
1457 			if (reg->ref_obj_id)
1458 				verbose(env, "(ref_id=%d)", reg->ref_obj_id);
1459 			break;
1460 		case STACK_ITER:
1461 			/* only main slot has ref_obj_id set; skip others */
1462 			reg = &state->stack[i].spilled_ptr;
1463 			if (!reg->ref_obj_id)
1464 				continue;
1465 
1466 			verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1467 			print_liveness(env, reg->live);
1468 			verbose(env, "=iter_%s(ref_id=%d,state=%s,depth=%u)",
1469 				iter_type_str(reg->iter.btf, reg->iter.btf_id),
1470 				reg->ref_obj_id, iter_state_str(reg->iter.state),
1471 				reg->iter.depth);
1472 			break;
1473 		case STACK_MISC:
1474 		case STACK_ZERO:
1475 		default:
1476 			reg = &state->stack[i].spilled_ptr;
1477 
1478 			for (j = 0; j < BPF_REG_SIZE; j++)
1479 				types_buf[j] = slot_type_char[state->stack[i].slot_type[j]];
1480 			types_buf[BPF_REG_SIZE] = 0;
1481 
1482 			verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1483 			print_liveness(env, reg->live);
1484 			verbose(env, "=%s", types_buf);
1485 			break;
1486 		}
1487 	}
1488 	if (state->acquired_refs && state->refs[0].id) {
1489 		verbose(env, " refs=%d", state->refs[0].id);
1490 		for (i = 1; i < state->acquired_refs; i++)
1491 			if (state->refs[i].id)
1492 				verbose(env, ",%d", state->refs[i].id);
1493 	}
1494 	if (state->in_callback_fn)
1495 		verbose(env, " cb");
1496 	if (state->in_async_callback_fn)
1497 		verbose(env, " async_cb");
1498 	verbose(env, "\n");
1499 	mark_verifier_state_clean(env);
1500 }
1501 
1502 static inline u32 vlog_alignment(u32 pos)
1503 {
1504 	return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT),
1505 			BPF_LOG_MIN_ALIGNMENT) - pos - 1;
1506 }
1507 
1508 static void print_insn_state(struct bpf_verifier_env *env,
1509 			     const struct bpf_func_state *state)
1510 {
1511 	if (env->prev_log_len && env->prev_log_len == env->log.len_used) {
1512 		/* remove new line character */
1513 		bpf_vlog_reset(&env->log, env->prev_log_len - 1);
1514 		verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_len), ' ');
1515 	} else {
1516 		verbose(env, "%d:", env->insn_idx);
1517 	}
1518 	print_verifier_state(env, state, false);
1519 }
1520 
1521 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too
1522  * small to hold src. This is different from krealloc since we don't want to preserve
1523  * the contents of dst.
1524  *
1525  * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
1526  * not be allocated.
1527  */
1528 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
1529 {
1530 	size_t alloc_bytes;
1531 	void *orig = dst;
1532 	size_t bytes;
1533 
1534 	if (ZERO_OR_NULL_PTR(src))
1535 		goto out;
1536 
1537 	if (unlikely(check_mul_overflow(n, size, &bytes)))
1538 		return NULL;
1539 
1540 	alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes));
1541 	dst = krealloc(orig, alloc_bytes, flags);
1542 	if (!dst) {
1543 		kfree(orig);
1544 		return NULL;
1545 	}
1546 
1547 	memcpy(dst, src, bytes);
1548 out:
1549 	return dst ? dst : ZERO_SIZE_PTR;
1550 }
1551 
1552 /* resize an array from old_n items to new_n items. the array is reallocated if it's too
1553  * small to hold new_n items. new items are zeroed out if the array grows.
1554  *
1555  * Contrary to krealloc_array, does not free arr if new_n is zero.
1556  */
1557 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
1558 {
1559 	size_t alloc_size;
1560 	void *new_arr;
1561 
1562 	if (!new_n || old_n == new_n)
1563 		goto out;
1564 
1565 	alloc_size = kmalloc_size_roundup(size_mul(new_n, size));
1566 	new_arr = krealloc(arr, alloc_size, GFP_KERNEL);
1567 	if (!new_arr) {
1568 		kfree(arr);
1569 		return NULL;
1570 	}
1571 	arr = new_arr;
1572 
1573 	if (new_n > old_n)
1574 		memset(arr + old_n * size, 0, (new_n - old_n) * size);
1575 
1576 out:
1577 	return arr ? arr : ZERO_SIZE_PTR;
1578 }
1579 
1580 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1581 {
1582 	dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
1583 			       sizeof(struct bpf_reference_state), GFP_KERNEL);
1584 	if (!dst->refs)
1585 		return -ENOMEM;
1586 
1587 	dst->acquired_refs = src->acquired_refs;
1588 	return 0;
1589 }
1590 
1591 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1592 {
1593 	size_t n = src->allocated_stack / BPF_REG_SIZE;
1594 
1595 	dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
1596 				GFP_KERNEL);
1597 	if (!dst->stack)
1598 		return -ENOMEM;
1599 
1600 	dst->allocated_stack = src->allocated_stack;
1601 	return 0;
1602 }
1603 
1604 static int resize_reference_state(struct bpf_func_state *state, size_t n)
1605 {
1606 	state->refs = realloc_array(state->refs, state->acquired_refs, n,
1607 				    sizeof(struct bpf_reference_state));
1608 	if (!state->refs)
1609 		return -ENOMEM;
1610 
1611 	state->acquired_refs = n;
1612 	return 0;
1613 }
1614 
1615 static int grow_stack_state(struct bpf_func_state *state, int size)
1616 {
1617 	size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE;
1618 
1619 	if (old_n >= n)
1620 		return 0;
1621 
1622 	state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
1623 	if (!state->stack)
1624 		return -ENOMEM;
1625 
1626 	state->allocated_stack = size;
1627 	return 0;
1628 }
1629 
1630 /* Acquire a pointer id from the env and update the state->refs to include
1631  * this new pointer reference.
1632  * On success, returns a valid pointer id to associate with the register
1633  * On failure, returns a negative errno.
1634  */
1635 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
1636 {
1637 	struct bpf_func_state *state = cur_func(env);
1638 	int new_ofs = state->acquired_refs;
1639 	int id, err;
1640 
1641 	err = resize_reference_state(state, state->acquired_refs + 1);
1642 	if (err)
1643 		return err;
1644 	id = ++env->id_gen;
1645 	state->refs[new_ofs].id = id;
1646 	state->refs[new_ofs].insn_idx = insn_idx;
1647 	state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0;
1648 
1649 	return id;
1650 }
1651 
1652 /* release function corresponding to acquire_reference_state(). Idempotent. */
1653 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
1654 {
1655 	int i, last_idx;
1656 
1657 	last_idx = state->acquired_refs - 1;
1658 	for (i = 0; i < state->acquired_refs; i++) {
1659 		if (state->refs[i].id == ptr_id) {
1660 			/* Cannot release caller references in callbacks */
1661 			if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
1662 				return -EINVAL;
1663 			if (last_idx && i != last_idx)
1664 				memcpy(&state->refs[i], &state->refs[last_idx],
1665 				       sizeof(*state->refs));
1666 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
1667 			state->acquired_refs--;
1668 			return 0;
1669 		}
1670 	}
1671 	return -EINVAL;
1672 }
1673 
1674 static void free_func_state(struct bpf_func_state *state)
1675 {
1676 	if (!state)
1677 		return;
1678 	kfree(state->refs);
1679 	kfree(state->stack);
1680 	kfree(state);
1681 }
1682 
1683 static void clear_jmp_history(struct bpf_verifier_state *state)
1684 {
1685 	kfree(state->jmp_history);
1686 	state->jmp_history = NULL;
1687 	state->jmp_history_cnt = 0;
1688 }
1689 
1690 static void free_verifier_state(struct bpf_verifier_state *state,
1691 				bool free_self)
1692 {
1693 	int i;
1694 
1695 	for (i = 0; i <= state->curframe; i++) {
1696 		free_func_state(state->frame[i]);
1697 		state->frame[i] = NULL;
1698 	}
1699 	clear_jmp_history(state);
1700 	if (free_self)
1701 		kfree(state);
1702 }
1703 
1704 /* copy verifier state from src to dst growing dst stack space
1705  * when necessary to accommodate larger src stack
1706  */
1707 static int copy_func_state(struct bpf_func_state *dst,
1708 			   const struct bpf_func_state *src)
1709 {
1710 	int err;
1711 
1712 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
1713 	err = copy_reference_state(dst, src);
1714 	if (err)
1715 		return err;
1716 	return copy_stack_state(dst, src);
1717 }
1718 
1719 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
1720 			       const struct bpf_verifier_state *src)
1721 {
1722 	struct bpf_func_state *dst;
1723 	int i, err;
1724 
1725 	dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
1726 					    src->jmp_history_cnt, sizeof(struct bpf_idx_pair),
1727 					    GFP_USER);
1728 	if (!dst_state->jmp_history)
1729 		return -ENOMEM;
1730 	dst_state->jmp_history_cnt = src->jmp_history_cnt;
1731 
1732 	/* if dst has more stack frames then src frame, free them */
1733 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
1734 		free_func_state(dst_state->frame[i]);
1735 		dst_state->frame[i] = NULL;
1736 	}
1737 	dst_state->speculative = src->speculative;
1738 	dst_state->active_rcu_lock = src->active_rcu_lock;
1739 	dst_state->curframe = src->curframe;
1740 	dst_state->active_lock.ptr = src->active_lock.ptr;
1741 	dst_state->active_lock.id = src->active_lock.id;
1742 	dst_state->branches = src->branches;
1743 	dst_state->parent = src->parent;
1744 	dst_state->first_insn_idx = src->first_insn_idx;
1745 	dst_state->last_insn_idx = src->last_insn_idx;
1746 	for (i = 0; i <= src->curframe; i++) {
1747 		dst = dst_state->frame[i];
1748 		if (!dst) {
1749 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
1750 			if (!dst)
1751 				return -ENOMEM;
1752 			dst_state->frame[i] = dst;
1753 		}
1754 		err = copy_func_state(dst, src->frame[i]);
1755 		if (err)
1756 			return err;
1757 	}
1758 	return 0;
1759 }
1760 
1761 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
1762 {
1763 	while (st) {
1764 		u32 br = --st->branches;
1765 
1766 		/* WARN_ON(br > 1) technically makes sense here,
1767 		 * but see comment in push_stack(), hence:
1768 		 */
1769 		WARN_ONCE((int)br < 0,
1770 			  "BUG update_branch_counts:branches_to_explore=%d\n",
1771 			  br);
1772 		if (br)
1773 			break;
1774 		st = st->parent;
1775 	}
1776 }
1777 
1778 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
1779 		     int *insn_idx, bool pop_log)
1780 {
1781 	struct bpf_verifier_state *cur = env->cur_state;
1782 	struct bpf_verifier_stack_elem *elem, *head = env->head;
1783 	int err;
1784 
1785 	if (env->head == NULL)
1786 		return -ENOENT;
1787 
1788 	if (cur) {
1789 		err = copy_verifier_state(cur, &head->st);
1790 		if (err)
1791 			return err;
1792 	}
1793 	if (pop_log)
1794 		bpf_vlog_reset(&env->log, head->log_pos);
1795 	if (insn_idx)
1796 		*insn_idx = head->insn_idx;
1797 	if (prev_insn_idx)
1798 		*prev_insn_idx = head->prev_insn_idx;
1799 	elem = head->next;
1800 	free_verifier_state(&head->st, false);
1801 	kfree(head);
1802 	env->head = elem;
1803 	env->stack_size--;
1804 	return 0;
1805 }
1806 
1807 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
1808 					     int insn_idx, int prev_insn_idx,
1809 					     bool speculative)
1810 {
1811 	struct bpf_verifier_state *cur = env->cur_state;
1812 	struct bpf_verifier_stack_elem *elem;
1813 	int err;
1814 
1815 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1816 	if (!elem)
1817 		goto err;
1818 
1819 	elem->insn_idx = insn_idx;
1820 	elem->prev_insn_idx = prev_insn_idx;
1821 	elem->next = env->head;
1822 	elem->log_pos = env->log.len_used;
1823 	env->head = elem;
1824 	env->stack_size++;
1825 	err = copy_verifier_state(&elem->st, cur);
1826 	if (err)
1827 		goto err;
1828 	elem->st.speculative |= speculative;
1829 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1830 		verbose(env, "The sequence of %d jumps is too complex.\n",
1831 			env->stack_size);
1832 		goto err;
1833 	}
1834 	if (elem->st.parent) {
1835 		++elem->st.parent->branches;
1836 		/* WARN_ON(branches > 2) technically makes sense here,
1837 		 * but
1838 		 * 1. speculative states will bump 'branches' for non-branch
1839 		 * instructions
1840 		 * 2. is_state_visited() heuristics may decide not to create
1841 		 * a new state for a sequence of branches and all such current
1842 		 * and cloned states will be pointing to a single parent state
1843 		 * which might have large 'branches' count.
1844 		 */
1845 	}
1846 	return &elem->st;
1847 err:
1848 	free_verifier_state(env->cur_state, true);
1849 	env->cur_state = NULL;
1850 	/* pop all elements and return */
1851 	while (!pop_stack(env, NULL, NULL, false));
1852 	return NULL;
1853 }
1854 
1855 #define CALLER_SAVED_REGS 6
1856 static const int caller_saved[CALLER_SAVED_REGS] = {
1857 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1858 };
1859 
1860 /* This helper doesn't clear reg->id */
1861 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1862 {
1863 	reg->var_off = tnum_const(imm);
1864 	reg->smin_value = (s64)imm;
1865 	reg->smax_value = (s64)imm;
1866 	reg->umin_value = imm;
1867 	reg->umax_value = imm;
1868 
1869 	reg->s32_min_value = (s32)imm;
1870 	reg->s32_max_value = (s32)imm;
1871 	reg->u32_min_value = (u32)imm;
1872 	reg->u32_max_value = (u32)imm;
1873 }
1874 
1875 /* Mark the unknown part of a register (variable offset or scalar value) as
1876  * known to have the value @imm.
1877  */
1878 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1879 {
1880 	/* Clear off and union(map_ptr, range) */
1881 	memset(((u8 *)reg) + sizeof(reg->type), 0,
1882 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1883 	reg->id = 0;
1884 	reg->ref_obj_id = 0;
1885 	___mark_reg_known(reg, imm);
1886 }
1887 
1888 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1889 {
1890 	reg->var_off = tnum_const_subreg(reg->var_off, imm);
1891 	reg->s32_min_value = (s32)imm;
1892 	reg->s32_max_value = (s32)imm;
1893 	reg->u32_min_value = (u32)imm;
1894 	reg->u32_max_value = (u32)imm;
1895 }
1896 
1897 /* Mark the 'variable offset' part of a register as zero.  This should be
1898  * used only on registers holding a pointer type.
1899  */
1900 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
1901 {
1902 	__mark_reg_known(reg, 0);
1903 }
1904 
1905 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1906 {
1907 	__mark_reg_known(reg, 0);
1908 	reg->type = SCALAR_VALUE;
1909 }
1910 
1911 static void mark_reg_known_zero(struct bpf_verifier_env *env,
1912 				struct bpf_reg_state *regs, u32 regno)
1913 {
1914 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1915 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
1916 		/* Something bad happened, let's kill all regs */
1917 		for (regno = 0; regno < MAX_BPF_REG; regno++)
1918 			__mark_reg_not_init(env, regs + regno);
1919 		return;
1920 	}
1921 	__mark_reg_known_zero(regs + regno);
1922 }
1923 
1924 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type,
1925 			      bool first_slot, int dynptr_id)
1926 {
1927 	/* reg->type has no meaning for STACK_DYNPTR, but when we set reg for
1928 	 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply
1929 	 * set it unconditionally as it is ignored for STACK_DYNPTR anyway.
1930 	 */
1931 	__mark_reg_known_zero(reg);
1932 	reg->type = CONST_PTR_TO_DYNPTR;
1933 	/* Give each dynptr a unique id to uniquely associate slices to it. */
1934 	reg->id = dynptr_id;
1935 	reg->dynptr.type = type;
1936 	reg->dynptr.first_slot = first_slot;
1937 }
1938 
1939 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
1940 {
1941 	if (base_type(reg->type) == PTR_TO_MAP_VALUE) {
1942 		const struct bpf_map *map = reg->map_ptr;
1943 
1944 		if (map->inner_map_meta) {
1945 			reg->type = CONST_PTR_TO_MAP;
1946 			reg->map_ptr = map->inner_map_meta;
1947 			/* transfer reg's id which is unique for every map_lookup_elem
1948 			 * as UID of the inner map.
1949 			 */
1950 			if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER))
1951 				reg->map_uid = reg->id;
1952 		} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
1953 			reg->type = PTR_TO_XDP_SOCK;
1954 		} else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
1955 			   map->map_type == BPF_MAP_TYPE_SOCKHASH) {
1956 			reg->type = PTR_TO_SOCKET;
1957 		} else {
1958 			reg->type = PTR_TO_MAP_VALUE;
1959 		}
1960 		return;
1961 	}
1962 
1963 	reg->type &= ~PTR_MAYBE_NULL;
1964 }
1965 
1966 static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno,
1967 				struct btf_field_graph_root *ds_head)
1968 {
1969 	__mark_reg_known_zero(&regs[regno]);
1970 	regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC;
1971 	regs[regno].btf = ds_head->btf;
1972 	regs[regno].btf_id = ds_head->value_btf_id;
1973 	regs[regno].off = ds_head->node_offset;
1974 }
1975 
1976 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1977 {
1978 	return type_is_pkt_pointer(reg->type);
1979 }
1980 
1981 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1982 {
1983 	return reg_is_pkt_pointer(reg) ||
1984 	       reg->type == PTR_TO_PACKET_END;
1985 }
1986 
1987 static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg)
1988 {
1989 	return base_type(reg->type) == PTR_TO_MEM &&
1990 		(reg->type & DYNPTR_TYPE_SKB || reg->type & DYNPTR_TYPE_XDP);
1991 }
1992 
1993 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
1994 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1995 				    enum bpf_reg_type which)
1996 {
1997 	/* The register can already have a range from prior markings.
1998 	 * This is fine as long as it hasn't been advanced from its
1999 	 * origin.
2000 	 */
2001 	return reg->type == which &&
2002 	       reg->id == 0 &&
2003 	       reg->off == 0 &&
2004 	       tnum_equals_const(reg->var_off, 0);
2005 }
2006 
2007 /* Reset the min/max bounds of a register */
2008 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
2009 {
2010 	reg->smin_value = S64_MIN;
2011 	reg->smax_value = S64_MAX;
2012 	reg->umin_value = 0;
2013 	reg->umax_value = U64_MAX;
2014 
2015 	reg->s32_min_value = S32_MIN;
2016 	reg->s32_max_value = S32_MAX;
2017 	reg->u32_min_value = 0;
2018 	reg->u32_max_value = U32_MAX;
2019 }
2020 
2021 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
2022 {
2023 	reg->smin_value = S64_MIN;
2024 	reg->smax_value = S64_MAX;
2025 	reg->umin_value = 0;
2026 	reg->umax_value = U64_MAX;
2027 }
2028 
2029 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
2030 {
2031 	reg->s32_min_value = S32_MIN;
2032 	reg->s32_max_value = S32_MAX;
2033 	reg->u32_min_value = 0;
2034 	reg->u32_max_value = U32_MAX;
2035 }
2036 
2037 static void __update_reg32_bounds(struct bpf_reg_state *reg)
2038 {
2039 	struct tnum var32_off = tnum_subreg(reg->var_off);
2040 
2041 	/* min signed is max(sign bit) | min(other bits) */
2042 	reg->s32_min_value = max_t(s32, reg->s32_min_value,
2043 			var32_off.value | (var32_off.mask & S32_MIN));
2044 	/* max signed is min(sign bit) | max(other bits) */
2045 	reg->s32_max_value = min_t(s32, reg->s32_max_value,
2046 			var32_off.value | (var32_off.mask & S32_MAX));
2047 	reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
2048 	reg->u32_max_value = min(reg->u32_max_value,
2049 				 (u32)(var32_off.value | var32_off.mask));
2050 }
2051 
2052 static void __update_reg64_bounds(struct bpf_reg_state *reg)
2053 {
2054 	/* min signed is max(sign bit) | min(other bits) */
2055 	reg->smin_value = max_t(s64, reg->smin_value,
2056 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
2057 	/* max signed is min(sign bit) | max(other bits) */
2058 	reg->smax_value = min_t(s64, reg->smax_value,
2059 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
2060 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
2061 	reg->umax_value = min(reg->umax_value,
2062 			      reg->var_off.value | reg->var_off.mask);
2063 }
2064 
2065 static void __update_reg_bounds(struct bpf_reg_state *reg)
2066 {
2067 	__update_reg32_bounds(reg);
2068 	__update_reg64_bounds(reg);
2069 }
2070 
2071 /* Uses signed min/max values to inform unsigned, and vice-versa */
2072 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
2073 {
2074 	/* Learn sign from signed bounds.
2075 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
2076 	 * are the same, so combine.  This works even in the negative case, e.g.
2077 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2078 	 */
2079 	if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
2080 		reg->s32_min_value = reg->u32_min_value =
2081 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
2082 		reg->s32_max_value = reg->u32_max_value =
2083 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
2084 		return;
2085 	}
2086 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
2087 	 * boundary, so we must be careful.
2088 	 */
2089 	if ((s32)reg->u32_max_value >= 0) {
2090 		/* Positive.  We can't learn anything from the smin, but smax
2091 		 * is positive, hence safe.
2092 		 */
2093 		reg->s32_min_value = reg->u32_min_value;
2094 		reg->s32_max_value = reg->u32_max_value =
2095 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
2096 	} else if ((s32)reg->u32_min_value < 0) {
2097 		/* Negative.  We can't learn anything from the smax, but smin
2098 		 * is negative, hence safe.
2099 		 */
2100 		reg->s32_min_value = reg->u32_min_value =
2101 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
2102 		reg->s32_max_value = reg->u32_max_value;
2103 	}
2104 }
2105 
2106 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
2107 {
2108 	/* Learn sign from signed bounds.
2109 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
2110 	 * are the same, so combine.  This works even in the negative case, e.g.
2111 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2112 	 */
2113 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
2114 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
2115 							  reg->umin_value);
2116 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
2117 							  reg->umax_value);
2118 		return;
2119 	}
2120 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
2121 	 * boundary, so we must be careful.
2122 	 */
2123 	if ((s64)reg->umax_value >= 0) {
2124 		/* Positive.  We can't learn anything from the smin, but smax
2125 		 * is positive, hence safe.
2126 		 */
2127 		reg->smin_value = reg->umin_value;
2128 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
2129 							  reg->umax_value);
2130 	} else if ((s64)reg->umin_value < 0) {
2131 		/* Negative.  We can't learn anything from the smax, but smin
2132 		 * is negative, hence safe.
2133 		 */
2134 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
2135 							  reg->umin_value);
2136 		reg->smax_value = reg->umax_value;
2137 	}
2138 }
2139 
2140 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
2141 {
2142 	__reg32_deduce_bounds(reg);
2143 	__reg64_deduce_bounds(reg);
2144 }
2145 
2146 /* Attempts to improve var_off based on unsigned min/max information */
2147 static void __reg_bound_offset(struct bpf_reg_state *reg)
2148 {
2149 	struct tnum var64_off = tnum_intersect(reg->var_off,
2150 					       tnum_range(reg->umin_value,
2151 							  reg->umax_value));
2152 	struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off),
2153 					       tnum_range(reg->u32_min_value,
2154 							  reg->u32_max_value));
2155 
2156 	reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
2157 }
2158 
2159 static void reg_bounds_sync(struct bpf_reg_state *reg)
2160 {
2161 	/* We might have learned new bounds from the var_off. */
2162 	__update_reg_bounds(reg);
2163 	/* We might have learned something about the sign bit. */
2164 	__reg_deduce_bounds(reg);
2165 	/* We might have learned some bits from the bounds. */
2166 	__reg_bound_offset(reg);
2167 	/* Intersecting with the old var_off might have improved our bounds
2168 	 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2169 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
2170 	 */
2171 	__update_reg_bounds(reg);
2172 }
2173 
2174 static bool __reg32_bound_s64(s32 a)
2175 {
2176 	return a >= 0 && a <= S32_MAX;
2177 }
2178 
2179 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
2180 {
2181 	reg->umin_value = reg->u32_min_value;
2182 	reg->umax_value = reg->u32_max_value;
2183 
2184 	/* Attempt to pull 32-bit signed bounds into 64-bit bounds but must
2185 	 * be positive otherwise set to worse case bounds and refine later
2186 	 * from tnum.
2187 	 */
2188 	if (__reg32_bound_s64(reg->s32_min_value) &&
2189 	    __reg32_bound_s64(reg->s32_max_value)) {
2190 		reg->smin_value = reg->s32_min_value;
2191 		reg->smax_value = reg->s32_max_value;
2192 	} else {
2193 		reg->smin_value = 0;
2194 		reg->smax_value = U32_MAX;
2195 	}
2196 }
2197 
2198 static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
2199 {
2200 	/* special case when 64-bit register has upper 32-bit register
2201 	 * zeroed. Typically happens after zext or <<32, >>32 sequence
2202 	 * allowing us to use 32-bit bounds directly,
2203 	 */
2204 	if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
2205 		__reg_assign_32_into_64(reg);
2206 	} else {
2207 		/* Otherwise the best we can do is push lower 32bit known and
2208 		 * unknown bits into register (var_off set from jmp logic)
2209 		 * then learn as much as possible from the 64-bit tnum
2210 		 * known and unknown bits. The previous smin/smax bounds are
2211 		 * invalid here because of jmp32 compare so mark them unknown
2212 		 * so they do not impact tnum bounds calculation.
2213 		 */
2214 		__mark_reg64_unbounded(reg);
2215 	}
2216 	reg_bounds_sync(reg);
2217 }
2218 
2219 static bool __reg64_bound_s32(s64 a)
2220 {
2221 	return a >= S32_MIN && a <= S32_MAX;
2222 }
2223 
2224 static bool __reg64_bound_u32(u64 a)
2225 {
2226 	return a >= U32_MIN && a <= U32_MAX;
2227 }
2228 
2229 static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
2230 {
2231 	__mark_reg32_unbounded(reg);
2232 	if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
2233 		reg->s32_min_value = (s32)reg->smin_value;
2234 		reg->s32_max_value = (s32)reg->smax_value;
2235 	}
2236 	if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) {
2237 		reg->u32_min_value = (u32)reg->umin_value;
2238 		reg->u32_max_value = (u32)reg->umax_value;
2239 	}
2240 	reg_bounds_sync(reg);
2241 }
2242 
2243 /* Mark a register as having a completely unknown (scalar) value. */
2244 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
2245 			       struct bpf_reg_state *reg)
2246 {
2247 	/*
2248 	 * Clear type, off, and union(map_ptr, range) and
2249 	 * padding between 'type' and union
2250 	 */
2251 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
2252 	reg->type = SCALAR_VALUE;
2253 	reg->id = 0;
2254 	reg->ref_obj_id = 0;
2255 	reg->var_off = tnum_unknown;
2256 	reg->frameno = 0;
2257 	reg->precise = !env->bpf_capable;
2258 	__mark_reg_unbounded(reg);
2259 }
2260 
2261 static void mark_reg_unknown(struct bpf_verifier_env *env,
2262 			     struct bpf_reg_state *regs, u32 regno)
2263 {
2264 	if (WARN_ON(regno >= MAX_BPF_REG)) {
2265 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
2266 		/* Something bad happened, let's kill all regs except FP */
2267 		for (regno = 0; regno < BPF_REG_FP; regno++)
2268 			__mark_reg_not_init(env, regs + regno);
2269 		return;
2270 	}
2271 	__mark_reg_unknown(env, regs + regno);
2272 }
2273 
2274 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
2275 				struct bpf_reg_state *reg)
2276 {
2277 	__mark_reg_unknown(env, reg);
2278 	reg->type = NOT_INIT;
2279 }
2280 
2281 static void mark_reg_not_init(struct bpf_verifier_env *env,
2282 			      struct bpf_reg_state *regs, u32 regno)
2283 {
2284 	if (WARN_ON(regno >= MAX_BPF_REG)) {
2285 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
2286 		/* Something bad happened, let's kill all regs except FP */
2287 		for (regno = 0; regno < BPF_REG_FP; regno++)
2288 			__mark_reg_not_init(env, regs + regno);
2289 		return;
2290 	}
2291 	__mark_reg_not_init(env, regs + regno);
2292 }
2293 
2294 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
2295 			    struct bpf_reg_state *regs, u32 regno,
2296 			    enum bpf_reg_type reg_type,
2297 			    struct btf *btf, u32 btf_id,
2298 			    enum bpf_type_flag flag)
2299 {
2300 	if (reg_type == SCALAR_VALUE) {
2301 		mark_reg_unknown(env, regs, regno);
2302 		return;
2303 	}
2304 	mark_reg_known_zero(env, regs, regno);
2305 	regs[regno].type = PTR_TO_BTF_ID | flag;
2306 	regs[regno].btf = btf;
2307 	regs[regno].btf_id = btf_id;
2308 }
2309 
2310 #define DEF_NOT_SUBREG	(0)
2311 static void init_reg_state(struct bpf_verifier_env *env,
2312 			   struct bpf_func_state *state)
2313 {
2314 	struct bpf_reg_state *regs = state->regs;
2315 	int i;
2316 
2317 	for (i = 0; i < MAX_BPF_REG; i++) {
2318 		mark_reg_not_init(env, regs, i);
2319 		regs[i].live = REG_LIVE_NONE;
2320 		regs[i].parent = NULL;
2321 		regs[i].subreg_def = DEF_NOT_SUBREG;
2322 	}
2323 
2324 	/* frame pointer */
2325 	regs[BPF_REG_FP].type = PTR_TO_STACK;
2326 	mark_reg_known_zero(env, regs, BPF_REG_FP);
2327 	regs[BPF_REG_FP].frameno = state->frameno;
2328 }
2329 
2330 #define BPF_MAIN_FUNC (-1)
2331 static void init_func_state(struct bpf_verifier_env *env,
2332 			    struct bpf_func_state *state,
2333 			    int callsite, int frameno, int subprogno)
2334 {
2335 	state->callsite = callsite;
2336 	state->frameno = frameno;
2337 	state->subprogno = subprogno;
2338 	state->callback_ret_range = tnum_range(0, 0);
2339 	init_reg_state(env, state);
2340 	mark_verifier_state_scratched(env);
2341 }
2342 
2343 /* Similar to push_stack(), but for async callbacks */
2344 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
2345 						int insn_idx, int prev_insn_idx,
2346 						int subprog)
2347 {
2348 	struct bpf_verifier_stack_elem *elem;
2349 	struct bpf_func_state *frame;
2350 
2351 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
2352 	if (!elem)
2353 		goto err;
2354 
2355 	elem->insn_idx = insn_idx;
2356 	elem->prev_insn_idx = prev_insn_idx;
2357 	elem->next = env->head;
2358 	elem->log_pos = env->log.len_used;
2359 	env->head = elem;
2360 	env->stack_size++;
2361 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
2362 		verbose(env,
2363 			"The sequence of %d jumps is too complex for async cb.\n",
2364 			env->stack_size);
2365 		goto err;
2366 	}
2367 	/* Unlike push_stack() do not copy_verifier_state().
2368 	 * The caller state doesn't matter.
2369 	 * This is async callback. It starts in a fresh stack.
2370 	 * Initialize it similar to do_check_common().
2371 	 */
2372 	elem->st.branches = 1;
2373 	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
2374 	if (!frame)
2375 		goto err;
2376 	init_func_state(env, frame,
2377 			BPF_MAIN_FUNC /* callsite */,
2378 			0 /* frameno within this callchain */,
2379 			subprog /* subprog number within this prog */);
2380 	elem->st.frame[0] = frame;
2381 	return &elem->st;
2382 err:
2383 	free_verifier_state(env->cur_state, true);
2384 	env->cur_state = NULL;
2385 	/* pop all elements and return */
2386 	while (!pop_stack(env, NULL, NULL, false));
2387 	return NULL;
2388 }
2389 
2390 
2391 enum reg_arg_type {
2392 	SRC_OP,		/* register is used as source operand */
2393 	DST_OP,		/* register is used as destination operand */
2394 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
2395 };
2396 
2397 static int cmp_subprogs(const void *a, const void *b)
2398 {
2399 	return ((struct bpf_subprog_info *)a)->start -
2400 	       ((struct bpf_subprog_info *)b)->start;
2401 }
2402 
2403 static int find_subprog(struct bpf_verifier_env *env, int off)
2404 {
2405 	struct bpf_subprog_info *p;
2406 
2407 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
2408 		    sizeof(env->subprog_info[0]), cmp_subprogs);
2409 	if (!p)
2410 		return -ENOENT;
2411 	return p - env->subprog_info;
2412 
2413 }
2414 
2415 static int add_subprog(struct bpf_verifier_env *env, int off)
2416 {
2417 	int insn_cnt = env->prog->len;
2418 	int ret;
2419 
2420 	if (off >= insn_cnt || off < 0) {
2421 		verbose(env, "call to invalid destination\n");
2422 		return -EINVAL;
2423 	}
2424 	ret = find_subprog(env, off);
2425 	if (ret >= 0)
2426 		return ret;
2427 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
2428 		verbose(env, "too many subprograms\n");
2429 		return -E2BIG;
2430 	}
2431 	/* determine subprog starts. The end is one before the next starts */
2432 	env->subprog_info[env->subprog_cnt++].start = off;
2433 	sort(env->subprog_info, env->subprog_cnt,
2434 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
2435 	return env->subprog_cnt - 1;
2436 }
2437 
2438 #define MAX_KFUNC_DESCS 256
2439 #define MAX_KFUNC_BTFS	256
2440 
2441 struct bpf_kfunc_desc {
2442 	struct btf_func_model func_model;
2443 	u32 func_id;
2444 	s32 imm;
2445 	u16 offset;
2446 };
2447 
2448 struct bpf_kfunc_btf {
2449 	struct btf *btf;
2450 	struct module *module;
2451 	u16 offset;
2452 };
2453 
2454 struct bpf_kfunc_desc_tab {
2455 	struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
2456 	u32 nr_descs;
2457 };
2458 
2459 struct bpf_kfunc_btf_tab {
2460 	struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS];
2461 	u32 nr_descs;
2462 };
2463 
2464 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b)
2465 {
2466 	const struct bpf_kfunc_desc *d0 = a;
2467 	const struct bpf_kfunc_desc *d1 = b;
2468 
2469 	/* func_id is not greater than BTF_MAX_TYPE */
2470 	return d0->func_id - d1->func_id ?: d0->offset - d1->offset;
2471 }
2472 
2473 static int kfunc_btf_cmp_by_off(const void *a, const void *b)
2474 {
2475 	const struct bpf_kfunc_btf *d0 = a;
2476 	const struct bpf_kfunc_btf *d1 = b;
2477 
2478 	return d0->offset - d1->offset;
2479 }
2480 
2481 static const struct bpf_kfunc_desc *
2482 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset)
2483 {
2484 	struct bpf_kfunc_desc desc = {
2485 		.func_id = func_id,
2486 		.offset = offset,
2487 	};
2488 	struct bpf_kfunc_desc_tab *tab;
2489 
2490 	tab = prog->aux->kfunc_tab;
2491 	return bsearch(&desc, tab->descs, tab->nr_descs,
2492 		       sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off);
2493 }
2494 
2495 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env,
2496 					 s16 offset)
2497 {
2498 	struct bpf_kfunc_btf kf_btf = { .offset = offset };
2499 	struct bpf_kfunc_btf_tab *tab;
2500 	struct bpf_kfunc_btf *b;
2501 	struct module *mod;
2502 	struct btf *btf;
2503 	int btf_fd;
2504 
2505 	tab = env->prog->aux->kfunc_btf_tab;
2506 	b = bsearch(&kf_btf, tab->descs, tab->nr_descs,
2507 		    sizeof(tab->descs[0]), kfunc_btf_cmp_by_off);
2508 	if (!b) {
2509 		if (tab->nr_descs == MAX_KFUNC_BTFS) {
2510 			verbose(env, "too many different module BTFs\n");
2511 			return ERR_PTR(-E2BIG);
2512 		}
2513 
2514 		if (bpfptr_is_null(env->fd_array)) {
2515 			verbose(env, "kfunc offset > 0 without fd_array is invalid\n");
2516 			return ERR_PTR(-EPROTO);
2517 		}
2518 
2519 		if (copy_from_bpfptr_offset(&btf_fd, env->fd_array,
2520 					    offset * sizeof(btf_fd),
2521 					    sizeof(btf_fd)))
2522 			return ERR_PTR(-EFAULT);
2523 
2524 		btf = btf_get_by_fd(btf_fd);
2525 		if (IS_ERR(btf)) {
2526 			verbose(env, "invalid module BTF fd specified\n");
2527 			return btf;
2528 		}
2529 
2530 		if (!btf_is_module(btf)) {
2531 			verbose(env, "BTF fd for kfunc is not a module BTF\n");
2532 			btf_put(btf);
2533 			return ERR_PTR(-EINVAL);
2534 		}
2535 
2536 		mod = btf_try_get_module(btf);
2537 		if (!mod) {
2538 			btf_put(btf);
2539 			return ERR_PTR(-ENXIO);
2540 		}
2541 
2542 		b = &tab->descs[tab->nr_descs++];
2543 		b->btf = btf;
2544 		b->module = mod;
2545 		b->offset = offset;
2546 
2547 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2548 		     kfunc_btf_cmp_by_off, NULL);
2549 	}
2550 	return b->btf;
2551 }
2552 
2553 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab)
2554 {
2555 	if (!tab)
2556 		return;
2557 
2558 	while (tab->nr_descs--) {
2559 		module_put(tab->descs[tab->nr_descs].module);
2560 		btf_put(tab->descs[tab->nr_descs].btf);
2561 	}
2562 	kfree(tab);
2563 }
2564 
2565 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset)
2566 {
2567 	if (offset) {
2568 		if (offset < 0) {
2569 			/* In the future, this can be allowed to increase limit
2570 			 * of fd index into fd_array, interpreted as u16.
2571 			 */
2572 			verbose(env, "negative offset disallowed for kernel module function call\n");
2573 			return ERR_PTR(-EINVAL);
2574 		}
2575 
2576 		return __find_kfunc_desc_btf(env, offset);
2577 	}
2578 	return btf_vmlinux ?: ERR_PTR(-ENOENT);
2579 }
2580 
2581 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset)
2582 {
2583 	const struct btf_type *func, *func_proto;
2584 	struct bpf_kfunc_btf_tab *btf_tab;
2585 	struct bpf_kfunc_desc_tab *tab;
2586 	struct bpf_prog_aux *prog_aux;
2587 	struct bpf_kfunc_desc *desc;
2588 	const char *func_name;
2589 	struct btf *desc_btf;
2590 	unsigned long call_imm;
2591 	unsigned long addr;
2592 	int err;
2593 
2594 	prog_aux = env->prog->aux;
2595 	tab = prog_aux->kfunc_tab;
2596 	btf_tab = prog_aux->kfunc_btf_tab;
2597 	if (!tab) {
2598 		if (!btf_vmlinux) {
2599 			verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
2600 			return -ENOTSUPP;
2601 		}
2602 
2603 		if (!env->prog->jit_requested) {
2604 			verbose(env, "JIT is required for calling kernel function\n");
2605 			return -ENOTSUPP;
2606 		}
2607 
2608 		if (!bpf_jit_supports_kfunc_call()) {
2609 			verbose(env, "JIT does not support calling kernel function\n");
2610 			return -ENOTSUPP;
2611 		}
2612 
2613 		if (!env->prog->gpl_compatible) {
2614 			verbose(env, "cannot call kernel function from non-GPL compatible program\n");
2615 			return -EINVAL;
2616 		}
2617 
2618 		tab = kzalloc(sizeof(*tab), GFP_KERNEL);
2619 		if (!tab)
2620 			return -ENOMEM;
2621 		prog_aux->kfunc_tab = tab;
2622 	}
2623 
2624 	/* func_id == 0 is always invalid, but instead of returning an error, be
2625 	 * conservative and wait until the code elimination pass before returning
2626 	 * error, so that invalid calls that get pruned out can be in BPF programs
2627 	 * loaded from userspace.  It is also required that offset be untouched
2628 	 * for such calls.
2629 	 */
2630 	if (!func_id && !offset)
2631 		return 0;
2632 
2633 	if (!btf_tab && offset) {
2634 		btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL);
2635 		if (!btf_tab)
2636 			return -ENOMEM;
2637 		prog_aux->kfunc_btf_tab = btf_tab;
2638 	}
2639 
2640 	desc_btf = find_kfunc_desc_btf(env, offset);
2641 	if (IS_ERR(desc_btf)) {
2642 		verbose(env, "failed to find BTF for kernel function\n");
2643 		return PTR_ERR(desc_btf);
2644 	}
2645 
2646 	if (find_kfunc_desc(env->prog, func_id, offset))
2647 		return 0;
2648 
2649 	if (tab->nr_descs == MAX_KFUNC_DESCS) {
2650 		verbose(env, "too many different kernel function calls\n");
2651 		return -E2BIG;
2652 	}
2653 
2654 	func = btf_type_by_id(desc_btf, func_id);
2655 	if (!func || !btf_type_is_func(func)) {
2656 		verbose(env, "kernel btf_id %u is not a function\n",
2657 			func_id);
2658 		return -EINVAL;
2659 	}
2660 	func_proto = btf_type_by_id(desc_btf, func->type);
2661 	if (!func_proto || !btf_type_is_func_proto(func_proto)) {
2662 		verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
2663 			func_id);
2664 		return -EINVAL;
2665 	}
2666 
2667 	func_name = btf_name_by_offset(desc_btf, func->name_off);
2668 	addr = kallsyms_lookup_name(func_name);
2669 	if (!addr) {
2670 		verbose(env, "cannot find address for kernel function %s\n",
2671 			func_name);
2672 		return -EINVAL;
2673 	}
2674 
2675 	call_imm = BPF_CALL_IMM(addr);
2676 	/* Check whether or not the relative offset overflows desc->imm */
2677 	if ((unsigned long)(s32)call_imm != call_imm) {
2678 		verbose(env, "address of kernel function %s is out of range\n",
2679 			func_name);
2680 		return -EINVAL;
2681 	}
2682 
2683 	if (bpf_dev_bound_kfunc_id(func_id)) {
2684 		err = bpf_dev_bound_kfunc_check(&env->log, prog_aux);
2685 		if (err)
2686 			return err;
2687 	}
2688 
2689 	desc = &tab->descs[tab->nr_descs++];
2690 	desc->func_id = func_id;
2691 	desc->imm = call_imm;
2692 	desc->offset = offset;
2693 	err = btf_distill_func_proto(&env->log, desc_btf,
2694 				     func_proto, func_name,
2695 				     &desc->func_model);
2696 	if (!err)
2697 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2698 		     kfunc_desc_cmp_by_id_off, NULL);
2699 	return err;
2700 }
2701 
2702 static int kfunc_desc_cmp_by_imm(const void *a, const void *b)
2703 {
2704 	const struct bpf_kfunc_desc *d0 = a;
2705 	const struct bpf_kfunc_desc *d1 = b;
2706 
2707 	if (d0->imm > d1->imm)
2708 		return 1;
2709 	else if (d0->imm < d1->imm)
2710 		return -1;
2711 	return 0;
2712 }
2713 
2714 static void sort_kfunc_descs_by_imm(struct bpf_prog *prog)
2715 {
2716 	struct bpf_kfunc_desc_tab *tab;
2717 
2718 	tab = prog->aux->kfunc_tab;
2719 	if (!tab)
2720 		return;
2721 
2722 	sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2723 	     kfunc_desc_cmp_by_imm, NULL);
2724 }
2725 
2726 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
2727 {
2728 	return !!prog->aux->kfunc_tab;
2729 }
2730 
2731 const struct btf_func_model *
2732 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2733 			 const struct bpf_insn *insn)
2734 {
2735 	const struct bpf_kfunc_desc desc = {
2736 		.imm = insn->imm,
2737 	};
2738 	const struct bpf_kfunc_desc *res;
2739 	struct bpf_kfunc_desc_tab *tab;
2740 
2741 	tab = prog->aux->kfunc_tab;
2742 	res = bsearch(&desc, tab->descs, tab->nr_descs,
2743 		      sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm);
2744 
2745 	return res ? &res->func_model : NULL;
2746 }
2747 
2748 static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
2749 {
2750 	struct bpf_subprog_info *subprog = env->subprog_info;
2751 	struct bpf_insn *insn = env->prog->insnsi;
2752 	int i, ret, insn_cnt = env->prog->len;
2753 
2754 	/* Add entry function. */
2755 	ret = add_subprog(env, 0);
2756 	if (ret)
2757 		return ret;
2758 
2759 	for (i = 0; i < insn_cnt; i++, insn++) {
2760 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
2761 		    !bpf_pseudo_kfunc_call(insn))
2762 			continue;
2763 
2764 		if (!env->bpf_capable) {
2765 			verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
2766 			return -EPERM;
2767 		}
2768 
2769 		if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn))
2770 			ret = add_subprog(env, i + insn->imm + 1);
2771 		else
2772 			ret = add_kfunc_call(env, insn->imm, insn->off);
2773 
2774 		if (ret < 0)
2775 			return ret;
2776 	}
2777 
2778 	/* Add a fake 'exit' subprog which could simplify subprog iteration
2779 	 * logic. 'subprog_cnt' should not be increased.
2780 	 */
2781 	subprog[env->subprog_cnt].start = insn_cnt;
2782 
2783 	if (env->log.level & BPF_LOG_LEVEL2)
2784 		for (i = 0; i < env->subprog_cnt; i++)
2785 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
2786 
2787 	return 0;
2788 }
2789 
2790 static int check_subprogs(struct bpf_verifier_env *env)
2791 {
2792 	int i, subprog_start, subprog_end, off, cur_subprog = 0;
2793 	struct bpf_subprog_info *subprog = env->subprog_info;
2794 	struct bpf_insn *insn = env->prog->insnsi;
2795 	int insn_cnt = env->prog->len;
2796 
2797 	/* now check that all jumps are within the same subprog */
2798 	subprog_start = subprog[cur_subprog].start;
2799 	subprog_end = subprog[cur_subprog + 1].start;
2800 	for (i = 0; i < insn_cnt; i++) {
2801 		u8 code = insn[i].code;
2802 
2803 		if (code == (BPF_JMP | BPF_CALL) &&
2804 		    insn[i].src_reg == 0 &&
2805 		    insn[i].imm == BPF_FUNC_tail_call)
2806 			subprog[cur_subprog].has_tail_call = true;
2807 		if (BPF_CLASS(code) == BPF_LD &&
2808 		    (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
2809 			subprog[cur_subprog].has_ld_abs = true;
2810 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
2811 			goto next;
2812 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
2813 			goto next;
2814 		off = i + insn[i].off + 1;
2815 		if (off < subprog_start || off >= subprog_end) {
2816 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
2817 			return -EINVAL;
2818 		}
2819 next:
2820 		if (i == subprog_end - 1) {
2821 			/* to avoid fall-through from one subprog into another
2822 			 * the last insn of the subprog should be either exit
2823 			 * or unconditional jump back
2824 			 */
2825 			if (code != (BPF_JMP | BPF_EXIT) &&
2826 			    code != (BPF_JMP | BPF_JA)) {
2827 				verbose(env, "last insn is not an exit or jmp\n");
2828 				return -EINVAL;
2829 			}
2830 			subprog_start = subprog_end;
2831 			cur_subprog++;
2832 			if (cur_subprog < env->subprog_cnt)
2833 				subprog_end = subprog[cur_subprog + 1].start;
2834 		}
2835 	}
2836 	return 0;
2837 }
2838 
2839 /* Parentage chain of this register (or stack slot) should take care of all
2840  * issues like callee-saved registers, stack slot allocation time, etc.
2841  */
2842 static int mark_reg_read(struct bpf_verifier_env *env,
2843 			 const struct bpf_reg_state *state,
2844 			 struct bpf_reg_state *parent, u8 flag)
2845 {
2846 	bool writes = parent == state->parent; /* Observe write marks */
2847 	int cnt = 0;
2848 
2849 	while (parent) {
2850 		/* if read wasn't screened by an earlier write ... */
2851 		if (writes && state->live & REG_LIVE_WRITTEN)
2852 			break;
2853 		if (parent->live & REG_LIVE_DONE) {
2854 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
2855 				reg_type_str(env, parent->type),
2856 				parent->var_off.value, parent->off);
2857 			return -EFAULT;
2858 		}
2859 		/* The first condition is more likely to be true than the
2860 		 * second, checked it first.
2861 		 */
2862 		if ((parent->live & REG_LIVE_READ) == flag ||
2863 		    parent->live & REG_LIVE_READ64)
2864 			/* The parentage chain never changes and
2865 			 * this parent was already marked as LIVE_READ.
2866 			 * There is no need to keep walking the chain again and
2867 			 * keep re-marking all parents as LIVE_READ.
2868 			 * This case happens when the same register is read
2869 			 * multiple times without writes into it in-between.
2870 			 * Also, if parent has the stronger REG_LIVE_READ64 set,
2871 			 * then no need to set the weak REG_LIVE_READ32.
2872 			 */
2873 			break;
2874 		/* ... then we depend on parent's value */
2875 		parent->live |= flag;
2876 		/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
2877 		if (flag == REG_LIVE_READ64)
2878 			parent->live &= ~REG_LIVE_READ32;
2879 		state = parent;
2880 		parent = state->parent;
2881 		writes = true;
2882 		cnt++;
2883 	}
2884 
2885 	if (env->longest_mark_read_walk < cnt)
2886 		env->longest_mark_read_walk = cnt;
2887 	return 0;
2888 }
2889 
2890 static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
2891 {
2892 	struct bpf_func_state *state = func(env, reg);
2893 	int spi, ret;
2894 
2895 	/* For CONST_PTR_TO_DYNPTR, it must have already been done by
2896 	 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in
2897 	 * check_kfunc_call.
2898 	 */
2899 	if (reg->type == CONST_PTR_TO_DYNPTR)
2900 		return 0;
2901 	spi = dynptr_get_spi(env, reg);
2902 	if (spi < 0)
2903 		return spi;
2904 	/* Caller ensures dynptr is valid and initialized, which means spi is in
2905 	 * bounds and spi is the first dynptr slot. Simply mark stack slot as
2906 	 * read.
2907 	 */
2908 	ret = mark_reg_read(env, &state->stack[spi].spilled_ptr,
2909 			    state->stack[spi].spilled_ptr.parent, REG_LIVE_READ64);
2910 	if (ret)
2911 		return ret;
2912 	return mark_reg_read(env, &state->stack[spi - 1].spilled_ptr,
2913 			     state->stack[spi - 1].spilled_ptr.parent, REG_LIVE_READ64);
2914 }
2915 
2916 static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
2917 			  int spi, int nr_slots)
2918 {
2919 	struct bpf_func_state *state = func(env, reg);
2920 	int err, i;
2921 
2922 	for (i = 0; i < nr_slots; i++) {
2923 		struct bpf_reg_state *st = &state->stack[spi - i].spilled_ptr;
2924 
2925 		err = mark_reg_read(env, st, st->parent, REG_LIVE_READ64);
2926 		if (err)
2927 			return err;
2928 
2929 		mark_stack_slot_scratched(env, spi - i);
2930 	}
2931 
2932 	return 0;
2933 }
2934 
2935 /* This function is supposed to be used by the following 32-bit optimization
2936  * code only. It returns TRUE if the source or destination register operates
2937  * on 64-bit, otherwise return FALSE.
2938  */
2939 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
2940 		     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
2941 {
2942 	u8 code, class, op;
2943 
2944 	code = insn->code;
2945 	class = BPF_CLASS(code);
2946 	op = BPF_OP(code);
2947 	if (class == BPF_JMP) {
2948 		/* BPF_EXIT for "main" will reach here. Return TRUE
2949 		 * conservatively.
2950 		 */
2951 		if (op == BPF_EXIT)
2952 			return true;
2953 		if (op == BPF_CALL) {
2954 			/* BPF to BPF call will reach here because of marking
2955 			 * caller saved clobber with DST_OP_NO_MARK for which we
2956 			 * don't care the register def because they are anyway
2957 			 * marked as NOT_INIT already.
2958 			 */
2959 			if (insn->src_reg == BPF_PSEUDO_CALL)
2960 				return false;
2961 			/* Helper call will reach here because of arg type
2962 			 * check, conservatively return TRUE.
2963 			 */
2964 			if (t == SRC_OP)
2965 				return true;
2966 
2967 			return false;
2968 		}
2969 	}
2970 
2971 	if (class == BPF_ALU64 || class == BPF_JMP ||
2972 	    /* BPF_END always use BPF_ALU class. */
2973 	    (class == BPF_ALU && op == BPF_END && insn->imm == 64))
2974 		return true;
2975 
2976 	if (class == BPF_ALU || class == BPF_JMP32)
2977 		return false;
2978 
2979 	if (class == BPF_LDX) {
2980 		if (t != SRC_OP)
2981 			return BPF_SIZE(code) == BPF_DW;
2982 		/* LDX source must be ptr. */
2983 		return true;
2984 	}
2985 
2986 	if (class == BPF_STX) {
2987 		/* BPF_STX (including atomic variants) has multiple source
2988 		 * operands, one of which is a ptr. Check whether the caller is
2989 		 * asking about it.
2990 		 */
2991 		if (t == SRC_OP && reg->type != SCALAR_VALUE)
2992 			return true;
2993 		return BPF_SIZE(code) == BPF_DW;
2994 	}
2995 
2996 	if (class == BPF_LD) {
2997 		u8 mode = BPF_MODE(code);
2998 
2999 		/* LD_IMM64 */
3000 		if (mode == BPF_IMM)
3001 			return true;
3002 
3003 		/* Both LD_IND and LD_ABS return 32-bit data. */
3004 		if (t != SRC_OP)
3005 			return  false;
3006 
3007 		/* Implicit ctx ptr. */
3008 		if (regno == BPF_REG_6)
3009 			return true;
3010 
3011 		/* Explicit source could be any width. */
3012 		return true;
3013 	}
3014 
3015 	if (class == BPF_ST)
3016 		/* The only source register for BPF_ST is a ptr. */
3017 		return true;
3018 
3019 	/* Conservatively return true at default. */
3020 	return true;
3021 }
3022 
3023 /* Return the regno defined by the insn, or -1. */
3024 static int insn_def_regno(const struct bpf_insn *insn)
3025 {
3026 	switch (BPF_CLASS(insn->code)) {
3027 	case BPF_JMP:
3028 	case BPF_JMP32:
3029 	case BPF_ST:
3030 		return -1;
3031 	case BPF_STX:
3032 		if (BPF_MODE(insn->code) == BPF_ATOMIC &&
3033 		    (insn->imm & BPF_FETCH)) {
3034 			if (insn->imm == BPF_CMPXCHG)
3035 				return BPF_REG_0;
3036 			else
3037 				return insn->src_reg;
3038 		} else {
3039 			return -1;
3040 		}
3041 	default:
3042 		return insn->dst_reg;
3043 	}
3044 }
3045 
3046 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
3047 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
3048 {
3049 	int dst_reg = insn_def_regno(insn);
3050 
3051 	if (dst_reg == -1)
3052 		return false;
3053 
3054 	return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
3055 }
3056 
3057 static void mark_insn_zext(struct bpf_verifier_env *env,
3058 			   struct bpf_reg_state *reg)
3059 {
3060 	s32 def_idx = reg->subreg_def;
3061 
3062 	if (def_idx == DEF_NOT_SUBREG)
3063 		return;
3064 
3065 	env->insn_aux_data[def_idx - 1].zext_dst = true;
3066 	/* The dst will be zero extended, so won't be sub-register anymore. */
3067 	reg->subreg_def = DEF_NOT_SUBREG;
3068 }
3069 
3070 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
3071 			 enum reg_arg_type t)
3072 {
3073 	struct bpf_verifier_state *vstate = env->cur_state;
3074 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3075 	struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
3076 	struct bpf_reg_state *reg, *regs = state->regs;
3077 	bool rw64;
3078 
3079 	if (regno >= MAX_BPF_REG) {
3080 		verbose(env, "R%d is invalid\n", regno);
3081 		return -EINVAL;
3082 	}
3083 
3084 	mark_reg_scratched(env, regno);
3085 
3086 	reg = &regs[regno];
3087 	rw64 = is_reg64(env, insn, regno, reg, t);
3088 	if (t == SRC_OP) {
3089 		/* check whether register used as source operand can be read */
3090 		if (reg->type == NOT_INIT) {
3091 			verbose(env, "R%d !read_ok\n", regno);
3092 			return -EACCES;
3093 		}
3094 		/* We don't need to worry about FP liveness because it's read-only */
3095 		if (regno == BPF_REG_FP)
3096 			return 0;
3097 
3098 		if (rw64)
3099 			mark_insn_zext(env, reg);
3100 
3101 		return mark_reg_read(env, reg, reg->parent,
3102 				     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
3103 	} else {
3104 		/* check whether register used as dest operand can be written to */
3105 		if (regno == BPF_REG_FP) {
3106 			verbose(env, "frame pointer is read only\n");
3107 			return -EACCES;
3108 		}
3109 		reg->live |= REG_LIVE_WRITTEN;
3110 		reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
3111 		if (t == DST_OP)
3112 			mark_reg_unknown(env, regs, regno);
3113 	}
3114 	return 0;
3115 }
3116 
3117 static void mark_jmp_point(struct bpf_verifier_env *env, int idx)
3118 {
3119 	env->insn_aux_data[idx].jmp_point = true;
3120 }
3121 
3122 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx)
3123 {
3124 	return env->insn_aux_data[insn_idx].jmp_point;
3125 }
3126 
3127 /* for any branch, call, exit record the history of jmps in the given state */
3128 static int push_jmp_history(struct bpf_verifier_env *env,
3129 			    struct bpf_verifier_state *cur)
3130 {
3131 	u32 cnt = cur->jmp_history_cnt;
3132 	struct bpf_idx_pair *p;
3133 	size_t alloc_size;
3134 
3135 	if (!is_jmp_point(env, env->insn_idx))
3136 		return 0;
3137 
3138 	cnt++;
3139 	alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p)));
3140 	p = krealloc(cur->jmp_history, alloc_size, GFP_USER);
3141 	if (!p)
3142 		return -ENOMEM;
3143 	p[cnt - 1].idx = env->insn_idx;
3144 	p[cnt - 1].prev_idx = env->prev_insn_idx;
3145 	cur->jmp_history = p;
3146 	cur->jmp_history_cnt = cnt;
3147 	return 0;
3148 }
3149 
3150 /* Backtrack one insn at a time. If idx is not at the top of recorded
3151  * history then previous instruction came from straight line execution.
3152  */
3153 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
3154 			     u32 *history)
3155 {
3156 	u32 cnt = *history;
3157 
3158 	if (cnt && st->jmp_history[cnt - 1].idx == i) {
3159 		i = st->jmp_history[cnt - 1].prev_idx;
3160 		(*history)--;
3161 	} else {
3162 		i--;
3163 	}
3164 	return i;
3165 }
3166 
3167 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
3168 {
3169 	const struct btf_type *func;
3170 	struct btf *desc_btf;
3171 
3172 	if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
3173 		return NULL;
3174 
3175 	desc_btf = find_kfunc_desc_btf(data, insn->off);
3176 	if (IS_ERR(desc_btf))
3177 		return "<error>";
3178 
3179 	func = btf_type_by_id(desc_btf, insn->imm);
3180 	return btf_name_by_offset(desc_btf, func->name_off);
3181 }
3182 
3183 /* For given verifier state backtrack_insn() is called from the last insn to
3184  * the first insn. Its purpose is to compute a bitmask of registers and
3185  * stack slots that needs precision in the parent verifier state.
3186  */
3187 static int backtrack_insn(struct bpf_verifier_env *env, int idx,
3188 			  u32 *reg_mask, u64 *stack_mask)
3189 {
3190 	const struct bpf_insn_cbs cbs = {
3191 		.cb_call	= disasm_kfunc_name,
3192 		.cb_print	= verbose,
3193 		.private_data	= env,
3194 	};
3195 	struct bpf_insn *insn = env->prog->insnsi + idx;
3196 	u8 class = BPF_CLASS(insn->code);
3197 	u8 opcode = BPF_OP(insn->code);
3198 	u8 mode = BPF_MODE(insn->code);
3199 	u32 dreg = 1u << insn->dst_reg;
3200 	u32 sreg = 1u << insn->src_reg;
3201 	u32 spi;
3202 
3203 	if (insn->code == 0)
3204 		return 0;
3205 	if (env->log.level & BPF_LOG_LEVEL2) {
3206 		verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
3207 		verbose(env, "%d: ", idx);
3208 		print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
3209 	}
3210 
3211 	if (class == BPF_ALU || class == BPF_ALU64) {
3212 		if (!(*reg_mask & dreg))
3213 			return 0;
3214 		if (opcode == BPF_MOV) {
3215 			if (BPF_SRC(insn->code) == BPF_X) {
3216 				/* dreg = sreg
3217 				 * dreg needs precision after this insn
3218 				 * sreg needs precision before this insn
3219 				 */
3220 				*reg_mask &= ~dreg;
3221 				*reg_mask |= sreg;
3222 			} else {
3223 				/* dreg = K
3224 				 * dreg needs precision after this insn.
3225 				 * Corresponding register is already marked
3226 				 * as precise=true in this verifier state.
3227 				 * No further markings in parent are necessary
3228 				 */
3229 				*reg_mask &= ~dreg;
3230 			}
3231 		} else {
3232 			if (BPF_SRC(insn->code) == BPF_X) {
3233 				/* dreg += sreg
3234 				 * both dreg and sreg need precision
3235 				 * before this insn
3236 				 */
3237 				*reg_mask |= sreg;
3238 			} /* else dreg += K
3239 			   * dreg still needs precision before this insn
3240 			   */
3241 		}
3242 	} else if (class == BPF_LDX) {
3243 		if (!(*reg_mask & dreg))
3244 			return 0;
3245 		*reg_mask &= ~dreg;
3246 
3247 		/* scalars can only be spilled into stack w/o losing precision.
3248 		 * Load from any other memory can be zero extended.
3249 		 * The desire to keep that precision is already indicated
3250 		 * by 'precise' mark in corresponding register of this state.
3251 		 * No further tracking necessary.
3252 		 */
3253 		if (insn->src_reg != BPF_REG_FP)
3254 			return 0;
3255 
3256 		/* dreg = *(u64 *)[fp - off] was a fill from the stack.
3257 		 * that [fp - off] slot contains scalar that needs to be
3258 		 * tracked with precision
3259 		 */
3260 		spi = (-insn->off - 1) / BPF_REG_SIZE;
3261 		if (spi >= 64) {
3262 			verbose(env, "BUG spi %d\n", spi);
3263 			WARN_ONCE(1, "verifier backtracking bug");
3264 			return -EFAULT;
3265 		}
3266 		*stack_mask |= 1ull << spi;
3267 	} else if (class == BPF_STX || class == BPF_ST) {
3268 		if (*reg_mask & dreg)
3269 			/* stx & st shouldn't be using _scalar_ dst_reg
3270 			 * to access memory. It means backtracking
3271 			 * encountered a case of pointer subtraction.
3272 			 */
3273 			return -ENOTSUPP;
3274 		/* scalars can only be spilled into stack */
3275 		if (insn->dst_reg != BPF_REG_FP)
3276 			return 0;
3277 		spi = (-insn->off - 1) / BPF_REG_SIZE;
3278 		if (spi >= 64) {
3279 			verbose(env, "BUG spi %d\n", spi);
3280 			WARN_ONCE(1, "verifier backtracking bug");
3281 			return -EFAULT;
3282 		}
3283 		if (!(*stack_mask & (1ull << spi)))
3284 			return 0;
3285 		*stack_mask &= ~(1ull << spi);
3286 		if (class == BPF_STX)
3287 			*reg_mask |= sreg;
3288 	} else if (class == BPF_JMP || class == BPF_JMP32) {
3289 		if (opcode == BPF_CALL) {
3290 			if (insn->src_reg == BPF_PSEUDO_CALL)
3291 				return -ENOTSUPP;
3292 			/* BPF helpers that invoke callback subprogs are
3293 			 * equivalent to BPF_PSEUDO_CALL above
3294 			 */
3295 			if (insn->src_reg == 0 && is_callback_calling_function(insn->imm))
3296 				return -ENOTSUPP;
3297 			/* kfunc with imm==0 is invalid and fixup_kfunc_call will
3298 			 * catch this error later. Make backtracking conservative
3299 			 * with ENOTSUPP.
3300 			 */
3301 			if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0)
3302 				return -ENOTSUPP;
3303 			/* regular helper call sets R0 */
3304 			*reg_mask &= ~1;
3305 			if (*reg_mask & 0x3f) {
3306 				/* if backtracing was looking for registers R1-R5
3307 				 * they should have been found already.
3308 				 */
3309 				verbose(env, "BUG regs %x\n", *reg_mask);
3310 				WARN_ONCE(1, "verifier backtracking bug");
3311 				return -EFAULT;
3312 			}
3313 		} else if (opcode == BPF_EXIT) {
3314 			return -ENOTSUPP;
3315 		}
3316 	} else if (class == BPF_LD) {
3317 		if (!(*reg_mask & dreg))
3318 			return 0;
3319 		*reg_mask &= ~dreg;
3320 		/* It's ld_imm64 or ld_abs or ld_ind.
3321 		 * For ld_imm64 no further tracking of precision
3322 		 * into parent is necessary
3323 		 */
3324 		if (mode == BPF_IND || mode == BPF_ABS)
3325 			/* to be analyzed */
3326 			return -ENOTSUPP;
3327 	}
3328 	return 0;
3329 }
3330 
3331 /* the scalar precision tracking algorithm:
3332  * . at the start all registers have precise=false.
3333  * . scalar ranges are tracked as normal through alu and jmp insns.
3334  * . once precise value of the scalar register is used in:
3335  *   .  ptr + scalar alu
3336  *   . if (scalar cond K|scalar)
3337  *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
3338  *   backtrack through the verifier states and mark all registers and
3339  *   stack slots with spilled constants that these scalar regisers
3340  *   should be precise.
3341  * . during state pruning two registers (or spilled stack slots)
3342  *   are equivalent if both are not precise.
3343  *
3344  * Note the verifier cannot simply walk register parentage chain,
3345  * since many different registers and stack slots could have been
3346  * used to compute single precise scalar.
3347  *
3348  * The approach of starting with precise=true for all registers and then
3349  * backtrack to mark a register as not precise when the verifier detects
3350  * that program doesn't care about specific value (e.g., when helper
3351  * takes register as ARG_ANYTHING parameter) is not safe.
3352  *
3353  * It's ok to walk single parentage chain of the verifier states.
3354  * It's possible that this backtracking will go all the way till 1st insn.
3355  * All other branches will be explored for needing precision later.
3356  *
3357  * The backtracking needs to deal with cases like:
3358  *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
3359  * r9 -= r8
3360  * r5 = r9
3361  * if r5 > 0x79f goto pc+7
3362  *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
3363  * r5 += 1
3364  * ...
3365  * call bpf_perf_event_output#25
3366  *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
3367  *
3368  * and this case:
3369  * r6 = 1
3370  * call foo // uses callee's r6 inside to compute r0
3371  * r0 += r6
3372  * if r0 == 0 goto
3373  *
3374  * to track above reg_mask/stack_mask needs to be independent for each frame.
3375  *
3376  * Also if parent's curframe > frame where backtracking started,
3377  * the verifier need to mark registers in both frames, otherwise callees
3378  * may incorrectly prune callers. This is similar to
3379  * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
3380  *
3381  * For now backtracking falls back into conservative marking.
3382  */
3383 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
3384 				     struct bpf_verifier_state *st)
3385 {
3386 	struct bpf_func_state *func;
3387 	struct bpf_reg_state *reg;
3388 	int i, j;
3389 
3390 	/* big hammer: mark all scalars precise in this path.
3391 	 * pop_stack may still get !precise scalars.
3392 	 * We also skip current state and go straight to first parent state,
3393 	 * because precision markings in current non-checkpointed state are
3394 	 * not needed. See why in the comment in __mark_chain_precision below.
3395 	 */
3396 	for (st = st->parent; st; st = st->parent) {
3397 		for (i = 0; i <= st->curframe; i++) {
3398 			func = st->frame[i];
3399 			for (j = 0; j < BPF_REG_FP; j++) {
3400 				reg = &func->regs[j];
3401 				if (reg->type != SCALAR_VALUE)
3402 					continue;
3403 				reg->precise = true;
3404 			}
3405 			for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
3406 				if (!is_spilled_reg(&func->stack[j]))
3407 					continue;
3408 				reg = &func->stack[j].spilled_ptr;
3409 				if (reg->type != SCALAR_VALUE)
3410 					continue;
3411 				reg->precise = true;
3412 			}
3413 		}
3414 	}
3415 }
3416 
3417 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
3418 {
3419 	struct bpf_func_state *func;
3420 	struct bpf_reg_state *reg;
3421 	int i, j;
3422 
3423 	for (i = 0; i <= st->curframe; i++) {
3424 		func = st->frame[i];
3425 		for (j = 0; j < BPF_REG_FP; j++) {
3426 			reg = &func->regs[j];
3427 			if (reg->type != SCALAR_VALUE)
3428 				continue;
3429 			reg->precise = false;
3430 		}
3431 		for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
3432 			if (!is_spilled_reg(&func->stack[j]))
3433 				continue;
3434 			reg = &func->stack[j].spilled_ptr;
3435 			if (reg->type != SCALAR_VALUE)
3436 				continue;
3437 			reg->precise = false;
3438 		}
3439 	}
3440 }
3441 
3442 /*
3443  * __mark_chain_precision() backtracks BPF program instruction sequence and
3444  * chain of verifier states making sure that register *regno* (if regno >= 0)
3445  * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked
3446  * SCALARS, as well as any other registers and slots that contribute to
3447  * a tracked state of given registers/stack slots, depending on specific BPF
3448  * assembly instructions (see backtrack_insns() for exact instruction handling
3449  * logic). This backtracking relies on recorded jmp_history and is able to
3450  * traverse entire chain of parent states. This process ends only when all the
3451  * necessary registers/slots and their transitive dependencies are marked as
3452  * precise.
3453  *
3454  * One important and subtle aspect is that precise marks *do not matter* in
3455  * the currently verified state (current state). It is important to understand
3456  * why this is the case.
3457  *
3458  * First, note that current state is the state that is not yet "checkpointed",
3459  * i.e., it is not yet put into env->explored_states, and it has no children
3460  * states as well. It's ephemeral, and can end up either a) being discarded if
3461  * compatible explored state is found at some point or BPF_EXIT instruction is
3462  * reached or b) checkpointed and put into env->explored_states, branching out
3463  * into one or more children states.
3464  *
3465  * In the former case, precise markings in current state are completely
3466  * ignored by state comparison code (see regsafe() for details). Only
3467  * checkpointed ("old") state precise markings are important, and if old
3468  * state's register/slot is precise, regsafe() assumes current state's
3469  * register/slot as precise and checks value ranges exactly and precisely. If
3470  * states turn out to be compatible, current state's necessary precise
3471  * markings and any required parent states' precise markings are enforced
3472  * after the fact with propagate_precision() logic, after the fact. But it's
3473  * important to realize that in this case, even after marking current state
3474  * registers/slots as precise, we immediately discard current state. So what
3475  * actually matters is any of the precise markings propagated into current
3476  * state's parent states, which are always checkpointed (due to b) case above).
3477  * As such, for scenario a) it doesn't matter if current state has precise
3478  * markings set or not.
3479  *
3480  * Now, for the scenario b), checkpointing and forking into child(ren)
3481  * state(s). Note that before current state gets to checkpointing step, any
3482  * processed instruction always assumes precise SCALAR register/slot
3483  * knowledge: if precise value or range is useful to prune jump branch, BPF
3484  * verifier takes this opportunity enthusiastically. Similarly, when
3485  * register's value is used to calculate offset or memory address, exact
3486  * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to
3487  * what we mentioned above about state comparison ignoring precise markings
3488  * during state comparison, BPF verifier ignores and also assumes precise
3489  * markings *at will* during instruction verification process. But as verifier
3490  * assumes precision, it also propagates any precision dependencies across
3491  * parent states, which are not yet finalized, so can be further restricted
3492  * based on new knowledge gained from restrictions enforced by their children
3493  * states. This is so that once those parent states are finalized, i.e., when
3494  * they have no more active children state, state comparison logic in
3495  * is_state_visited() would enforce strict and precise SCALAR ranges, if
3496  * required for correctness.
3497  *
3498  * To build a bit more intuition, note also that once a state is checkpointed,
3499  * the path we took to get to that state is not important. This is crucial
3500  * property for state pruning. When state is checkpointed and finalized at
3501  * some instruction index, it can be correctly and safely used to "short
3502  * circuit" any *compatible* state that reaches exactly the same instruction
3503  * index. I.e., if we jumped to that instruction from a completely different
3504  * code path than original finalized state was derived from, it doesn't
3505  * matter, current state can be discarded because from that instruction
3506  * forward having a compatible state will ensure we will safely reach the
3507  * exit. States describe preconditions for further exploration, but completely
3508  * forget the history of how we got here.
3509  *
3510  * This also means that even if we needed precise SCALAR range to get to
3511  * finalized state, but from that point forward *that same* SCALAR register is
3512  * never used in a precise context (i.e., it's precise value is not needed for
3513  * correctness), it's correct and safe to mark such register as "imprecise"
3514  * (i.e., precise marking set to false). This is what we rely on when we do
3515  * not set precise marking in current state. If no child state requires
3516  * precision for any given SCALAR register, it's safe to dictate that it can
3517  * be imprecise. If any child state does require this register to be precise,
3518  * we'll mark it precise later retroactively during precise markings
3519  * propagation from child state to parent states.
3520  *
3521  * Skipping precise marking setting in current state is a mild version of
3522  * relying on the above observation. But we can utilize this property even
3523  * more aggressively by proactively forgetting any precise marking in the
3524  * current state (which we inherited from the parent state), right before we
3525  * checkpoint it and branch off into new child state. This is done by
3526  * mark_all_scalars_imprecise() to hopefully get more permissive and generic
3527  * finalized states which help in short circuiting more future states.
3528  */
3529 static int __mark_chain_precision(struct bpf_verifier_env *env, int frame, int regno,
3530 				  int spi)
3531 {
3532 	struct bpf_verifier_state *st = env->cur_state;
3533 	int first_idx = st->first_insn_idx;
3534 	int last_idx = env->insn_idx;
3535 	struct bpf_func_state *func;
3536 	struct bpf_reg_state *reg;
3537 	u32 reg_mask = regno >= 0 ? 1u << regno : 0;
3538 	u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
3539 	bool skip_first = true;
3540 	bool new_marks = false;
3541 	int i, err;
3542 
3543 	if (!env->bpf_capable)
3544 		return 0;
3545 
3546 	/* Do sanity checks against current state of register and/or stack
3547 	 * slot, but don't set precise flag in current state, as precision
3548 	 * tracking in the current state is unnecessary.
3549 	 */
3550 	func = st->frame[frame];
3551 	if (regno >= 0) {
3552 		reg = &func->regs[regno];
3553 		if (reg->type != SCALAR_VALUE) {
3554 			WARN_ONCE(1, "backtracing misuse");
3555 			return -EFAULT;
3556 		}
3557 		new_marks = true;
3558 	}
3559 
3560 	while (spi >= 0) {
3561 		if (!is_spilled_reg(&func->stack[spi])) {
3562 			stack_mask = 0;
3563 			break;
3564 		}
3565 		reg = &func->stack[spi].spilled_ptr;
3566 		if (reg->type != SCALAR_VALUE) {
3567 			stack_mask = 0;
3568 			break;
3569 		}
3570 		new_marks = true;
3571 		break;
3572 	}
3573 
3574 	if (!new_marks)
3575 		return 0;
3576 	if (!reg_mask && !stack_mask)
3577 		return 0;
3578 
3579 	for (;;) {
3580 		DECLARE_BITMAP(mask, 64);
3581 		u32 history = st->jmp_history_cnt;
3582 
3583 		if (env->log.level & BPF_LOG_LEVEL2)
3584 			verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
3585 
3586 		if (last_idx < 0) {
3587 			/* we are at the entry into subprog, which
3588 			 * is expected for global funcs, but only if
3589 			 * requested precise registers are R1-R5
3590 			 * (which are global func's input arguments)
3591 			 */
3592 			if (st->curframe == 0 &&
3593 			    st->frame[0]->subprogno > 0 &&
3594 			    st->frame[0]->callsite == BPF_MAIN_FUNC &&
3595 			    stack_mask == 0 && (reg_mask & ~0x3e) == 0) {
3596 				bitmap_from_u64(mask, reg_mask);
3597 				for_each_set_bit(i, mask, 32) {
3598 					reg = &st->frame[0]->regs[i];
3599 					if (reg->type != SCALAR_VALUE) {
3600 						reg_mask &= ~(1u << i);
3601 						continue;
3602 					}
3603 					reg->precise = true;
3604 				}
3605 				return 0;
3606 			}
3607 
3608 			verbose(env, "BUG backtracing func entry subprog %d reg_mask %x stack_mask %llx\n",
3609 				st->frame[0]->subprogno, reg_mask, stack_mask);
3610 			WARN_ONCE(1, "verifier backtracking bug");
3611 			return -EFAULT;
3612 		}
3613 
3614 		for (i = last_idx;;) {
3615 			if (skip_first) {
3616 				err = 0;
3617 				skip_first = false;
3618 			} else {
3619 				err = backtrack_insn(env, i, &reg_mask, &stack_mask);
3620 			}
3621 			if (err == -ENOTSUPP) {
3622 				mark_all_scalars_precise(env, st);
3623 				return 0;
3624 			} else if (err) {
3625 				return err;
3626 			}
3627 			if (!reg_mask && !stack_mask)
3628 				/* Found assignment(s) into tracked register in this state.
3629 				 * Since this state is already marked, just return.
3630 				 * Nothing to be tracked further in the parent state.
3631 				 */
3632 				return 0;
3633 			if (i == first_idx)
3634 				break;
3635 			i = get_prev_insn_idx(st, i, &history);
3636 			if (i >= env->prog->len) {
3637 				/* This can happen if backtracking reached insn 0
3638 				 * and there are still reg_mask or stack_mask
3639 				 * to backtrack.
3640 				 * It means the backtracking missed the spot where
3641 				 * particular register was initialized with a constant.
3642 				 */
3643 				verbose(env, "BUG backtracking idx %d\n", i);
3644 				WARN_ONCE(1, "verifier backtracking bug");
3645 				return -EFAULT;
3646 			}
3647 		}
3648 		st = st->parent;
3649 		if (!st)
3650 			break;
3651 
3652 		new_marks = false;
3653 		func = st->frame[frame];
3654 		bitmap_from_u64(mask, reg_mask);
3655 		for_each_set_bit(i, mask, 32) {
3656 			reg = &func->regs[i];
3657 			if (reg->type != SCALAR_VALUE) {
3658 				reg_mask &= ~(1u << i);
3659 				continue;
3660 			}
3661 			if (!reg->precise)
3662 				new_marks = true;
3663 			reg->precise = true;
3664 		}
3665 
3666 		bitmap_from_u64(mask, stack_mask);
3667 		for_each_set_bit(i, mask, 64) {
3668 			if (i >= func->allocated_stack / BPF_REG_SIZE) {
3669 				/* the sequence of instructions:
3670 				 * 2: (bf) r3 = r10
3671 				 * 3: (7b) *(u64 *)(r3 -8) = r0
3672 				 * 4: (79) r4 = *(u64 *)(r10 -8)
3673 				 * doesn't contain jmps. It's backtracked
3674 				 * as a single block.
3675 				 * During backtracking insn 3 is not recognized as
3676 				 * stack access, so at the end of backtracking
3677 				 * stack slot fp-8 is still marked in stack_mask.
3678 				 * However the parent state may not have accessed
3679 				 * fp-8 and it's "unallocated" stack space.
3680 				 * In such case fallback to conservative.
3681 				 */
3682 				mark_all_scalars_precise(env, st);
3683 				return 0;
3684 			}
3685 
3686 			if (!is_spilled_reg(&func->stack[i])) {
3687 				stack_mask &= ~(1ull << i);
3688 				continue;
3689 			}
3690 			reg = &func->stack[i].spilled_ptr;
3691 			if (reg->type != SCALAR_VALUE) {
3692 				stack_mask &= ~(1ull << i);
3693 				continue;
3694 			}
3695 			if (!reg->precise)
3696 				new_marks = true;
3697 			reg->precise = true;
3698 		}
3699 		if (env->log.level & BPF_LOG_LEVEL2) {
3700 			verbose(env, "parent %s regs=%x stack=%llx marks:",
3701 				new_marks ? "didn't have" : "already had",
3702 				reg_mask, stack_mask);
3703 			print_verifier_state(env, func, true);
3704 		}
3705 
3706 		if (!reg_mask && !stack_mask)
3707 			break;
3708 		if (!new_marks)
3709 			break;
3710 
3711 		last_idx = st->last_insn_idx;
3712 		first_idx = st->first_insn_idx;
3713 	}
3714 	return 0;
3715 }
3716 
3717 int mark_chain_precision(struct bpf_verifier_env *env, int regno)
3718 {
3719 	return __mark_chain_precision(env, env->cur_state->curframe, regno, -1);
3720 }
3721 
3722 static int mark_chain_precision_frame(struct bpf_verifier_env *env, int frame, int regno)
3723 {
3724 	return __mark_chain_precision(env, frame, regno, -1);
3725 }
3726 
3727 static int mark_chain_precision_stack_frame(struct bpf_verifier_env *env, int frame, int spi)
3728 {
3729 	return __mark_chain_precision(env, frame, -1, spi);
3730 }
3731 
3732 static bool is_spillable_regtype(enum bpf_reg_type type)
3733 {
3734 	switch (base_type(type)) {
3735 	case PTR_TO_MAP_VALUE:
3736 	case PTR_TO_STACK:
3737 	case PTR_TO_CTX:
3738 	case PTR_TO_PACKET:
3739 	case PTR_TO_PACKET_META:
3740 	case PTR_TO_PACKET_END:
3741 	case PTR_TO_FLOW_KEYS:
3742 	case CONST_PTR_TO_MAP:
3743 	case PTR_TO_SOCKET:
3744 	case PTR_TO_SOCK_COMMON:
3745 	case PTR_TO_TCP_SOCK:
3746 	case PTR_TO_XDP_SOCK:
3747 	case PTR_TO_BTF_ID:
3748 	case PTR_TO_BUF:
3749 	case PTR_TO_MEM:
3750 	case PTR_TO_FUNC:
3751 	case PTR_TO_MAP_KEY:
3752 		return true;
3753 	default:
3754 		return false;
3755 	}
3756 }
3757 
3758 /* Does this register contain a constant zero? */
3759 static bool register_is_null(struct bpf_reg_state *reg)
3760 {
3761 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
3762 }
3763 
3764 static bool register_is_const(struct bpf_reg_state *reg)
3765 {
3766 	return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
3767 }
3768 
3769 static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
3770 {
3771 	return tnum_is_unknown(reg->var_off) &&
3772 	       reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
3773 	       reg->umin_value == 0 && reg->umax_value == U64_MAX &&
3774 	       reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
3775 	       reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
3776 }
3777 
3778 static bool register_is_bounded(struct bpf_reg_state *reg)
3779 {
3780 	return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
3781 }
3782 
3783 static bool __is_pointer_value(bool allow_ptr_leaks,
3784 			       const struct bpf_reg_state *reg)
3785 {
3786 	if (allow_ptr_leaks)
3787 		return false;
3788 
3789 	return reg->type != SCALAR_VALUE;
3790 }
3791 
3792 /* Copy src state preserving dst->parent and dst->live fields */
3793 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src)
3794 {
3795 	struct bpf_reg_state *parent = dst->parent;
3796 	enum bpf_reg_liveness live = dst->live;
3797 
3798 	*dst = *src;
3799 	dst->parent = parent;
3800 	dst->live = live;
3801 }
3802 
3803 static void save_register_state(struct bpf_func_state *state,
3804 				int spi, struct bpf_reg_state *reg,
3805 				int size)
3806 {
3807 	int i;
3808 
3809 	copy_register_state(&state->stack[spi].spilled_ptr, reg);
3810 	if (size == BPF_REG_SIZE)
3811 		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
3812 
3813 	for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--)
3814 		state->stack[spi].slot_type[i - 1] = STACK_SPILL;
3815 
3816 	/* size < 8 bytes spill */
3817 	for (; i; i--)
3818 		scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]);
3819 }
3820 
3821 static bool is_bpf_st_mem(struct bpf_insn *insn)
3822 {
3823 	return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM;
3824 }
3825 
3826 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
3827  * stack boundary and alignment are checked in check_mem_access()
3828  */
3829 static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
3830 				       /* stack frame we're writing to */
3831 				       struct bpf_func_state *state,
3832 				       int off, int size, int value_regno,
3833 				       int insn_idx)
3834 {
3835 	struct bpf_func_state *cur; /* state of the current function */
3836 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
3837 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
3838 	struct bpf_reg_state *reg = NULL;
3839 	u32 dst_reg = insn->dst_reg;
3840 
3841 	err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE));
3842 	if (err)
3843 		return err;
3844 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
3845 	 * so it's aligned access and [off, off + size) are within stack limits
3846 	 */
3847 	if (!env->allow_ptr_leaks &&
3848 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
3849 	    size != BPF_REG_SIZE) {
3850 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
3851 		return -EACCES;
3852 	}
3853 
3854 	cur = env->cur_state->frame[env->cur_state->curframe];
3855 	if (value_regno >= 0)
3856 		reg = &cur->regs[value_regno];
3857 	if (!env->bypass_spec_v4) {
3858 		bool sanitize = reg && is_spillable_regtype(reg->type);
3859 
3860 		for (i = 0; i < size; i++) {
3861 			u8 type = state->stack[spi].slot_type[i];
3862 
3863 			if (type != STACK_MISC && type != STACK_ZERO) {
3864 				sanitize = true;
3865 				break;
3866 			}
3867 		}
3868 
3869 		if (sanitize)
3870 			env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
3871 	}
3872 
3873 	err = destroy_if_dynptr_stack_slot(env, state, spi);
3874 	if (err)
3875 		return err;
3876 
3877 	mark_stack_slot_scratched(env, spi);
3878 	if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) &&
3879 	    !register_is_null(reg) && env->bpf_capable) {
3880 		if (dst_reg != BPF_REG_FP) {
3881 			/* The backtracking logic can only recognize explicit
3882 			 * stack slot address like [fp - 8]. Other spill of
3883 			 * scalar via different register has to be conservative.
3884 			 * Backtrack from here and mark all registers as precise
3885 			 * that contributed into 'reg' being a constant.
3886 			 */
3887 			err = mark_chain_precision(env, value_regno);
3888 			if (err)
3889 				return err;
3890 		}
3891 		save_register_state(state, spi, reg, size);
3892 	} else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) &&
3893 		   insn->imm != 0 && env->bpf_capable) {
3894 		struct bpf_reg_state fake_reg = {};
3895 
3896 		__mark_reg_known(&fake_reg, (u32)insn->imm);
3897 		fake_reg.type = SCALAR_VALUE;
3898 		save_register_state(state, spi, &fake_reg, size);
3899 	} else if (reg && is_spillable_regtype(reg->type)) {
3900 		/* register containing pointer is being spilled into stack */
3901 		if (size != BPF_REG_SIZE) {
3902 			verbose_linfo(env, insn_idx, "; ");
3903 			verbose(env, "invalid size of register spill\n");
3904 			return -EACCES;
3905 		}
3906 		if (state != cur && reg->type == PTR_TO_STACK) {
3907 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
3908 			return -EINVAL;
3909 		}
3910 		save_register_state(state, spi, reg, size);
3911 	} else {
3912 		u8 type = STACK_MISC;
3913 
3914 		/* regular write of data into stack destroys any spilled ptr */
3915 		state->stack[spi].spilled_ptr.type = NOT_INIT;
3916 		/* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */
3917 		if (is_stack_slot_special(&state->stack[spi]))
3918 			for (i = 0; i < BPF_REG_SIZE; i++)
3919 				scrub_spilled_slot(&state->stack[spi].slot_type[i]);
3920 
3921 		/* only mark the slot as written if all 8 bytes were written
3922 		 * otherwise read propagation may incorrectly stop too soon
3923 		 * when stack slots are partially written.
3924 		 * This heuristic means that read propagation will be
3925 		 * conservative, since it will add reg_live_read marks
3926 		 * to stack slots all the way to first state when programs
3927 		 * writes+reads less than 8 bytes
3928 		 */
3929 		if (size == BPF_REG_SIZE)
3930 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
3931 
3932 		/* when we zero initialize stack slots mark them as such */
3933 		if ((reg && register_is_null(reg)) ||
3934 		    (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) {
3935 			/* backtracking doesn't work for STACK_ZERO yet. */
3936 			err = mark_chain_precision(env, value_regno);
3937 			if (err)
3938 				return err;
3939 			type = STACK_ZERO;
3940 		}
3941 
3942 		/* Mark slots affected by this stack write. */
3943 		for (i = 0; i < size; i++)
3944 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
3945 				type;
3946 	}
3947 	return 0;
3948 }
3949 
3950 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
3951  * known to contain a variable offset.
3952  * This function checks whether the write is permitted and conservatively
3953  * tracks the effects of the write, considering that each stack slot in the
3954  * dynamic range is potentially written to.
3955  *
3956  * 'off' includes 'regno->off'.
3957  * 'value_regno' can be -1, meaning that an unknown value is being written to
3958  * the stack.
3959  *
3960  * Spilled pointers in range are not marked as written because we don't know
3961  * what's going to be actually written. This means that read propagation for
3962  * future reads cannot be terminated by this write.
3963  *
3964  * For privileged programs, uninitialized stack slots are considered
3965  * initialized by this write (even though we don't know exactly what offsets
3966  * are going to be written to). The idea is that we don't want the verifier to
3967  * reject future reads that access slots written to through variable offsets.
3968  */
3969 static int check_stack_write_var_off(struct bpf_verifier_env *env,
3970 				     /* func where register points to */
3971 				     struct bpf_func_state *state,
3972 				     int ptr_regno, int off, int size,
3973 				     int value_regno, int insn_idx)
3974 {
3975 	struct bpf_func_state *cur; /* state of the current function */
3976 	int min_off, max_off;
3977 	int i, err;
3978 	struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
3979 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
3980 	bool writing_zero = false;
3981 	/* set if the fact that we're writing a zero is used to let any
3982 	 * stack slots remain STACK_ZERO
3983 	 */
3984 	bool zero_used = false;
3985 
3986 	cur = env->cur_state->frame[env->cur_state->curframe];
3987 	ptr_reg = &cur->regs[ptr_regno];
3988 	min_off = ptr_reg->smin_value + off;
3989 	max_off = ptr_reg->smax_value + off + size;
3990 	if (value_regno >= 0)
3991 		value_reg = &cur->regs[value_regno];
3992 	if ((value_reg && register_is_null(value_reg)) ||
3993 	    (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0))
3994 		writing_zero = true;
3995 
3996 	err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE));
3997 	if (err)
3998 		return err;
3999 
4000 	for (i = min_off; i < max_off; i++) {
4001 		int spi;
4002 
4003 		spi = __get_spi(i);
4004 		err = destroy_if_dynptr_stack_slot(env, state, spi);
4005 		if (err)
4006 			return err;
4007 	}
4008 
4009 	/* Variable offset writes destroy any spilled pointers in range. */
4010 	for (i = min_off; i < max_off; i++) {
4011 		u8 new_type, *stype;
4012 		int slot, spi;
4013 
4014 		slot = -i - 1;
4015 		spi = slot / BPF_REG_SIZE;
4016 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
4017 		mark_stack_slot_scratched(env, spi);
4018 
4019 		if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) {
4020 			/* Reject the write if range we may write to has not
4021 			 * been initialized beforehand. If we didn't reject
4022 			 * here, the ptr status would be erased below (even
4023 			 * though not all slots are actually overwritten),
4024 			 * possibly opening the door to leaks.
4025 			 *
4026 			 * We do however catch STACK_INVALID case below, and
4027 			 * only allow reading possibly uninitialized memory
4028 			 * later for CAP_PERFMON, as the write may not happen to
4029 			 * that slot.
4030 			 */
4031 			verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
4032 				insn_idx, i);
4033 			return -EINVAL;
4034 		}
4035 
4036 		/* Erase all spilled pointers. */
4037 		state->stack[spi].spilled_ptr.type = NOT_INIT;
4038 
4039 		/* Update the slot type. */
4040 		new_type = STACK_MISC;
4041 		if (writing_zero && *stype == STACK_ZERO) {
4042 			new_type = STACK_ZERO;
4043 			zero_used = true;
4044 		}
4045 		/* If the slot is STACK_INVALID, we check whether it's OK to
4046 		 * pretend that it will be initialized by this write. The slot
4047 		 * might not actually be written to, and so if we mark it as
4048 		 * initialized future reads might leak uninitialized memory.
4049 		 * For privileged programs, we will accept such reads to slots
4050 		 * that may or may not be written because, if we're reject
4051 		 * them, the error would be too confusing.
4052 		 */
4053 		if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
4054 			verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
4055 					insn_idx, i);
4056 			return -EINVAL;
4057 		}
4058 		*stype = new_type;
4059 	}
4060 	if (zero_used) {
4061 		/* backtracking doesn't work for STACK_ZERO yet. */
4062 		err = mark_chain_precision(env, value_regno);
4063 		if (err)
4064 			return err;
4065 	}
4066 	return 0;
4067 }
4068 
4069 /* When register 'dst_regno' is assigned some values from stack[min_off,
4070  * max_off), we set the register's type according to the types of the
4071  * respective stack slots. If all the stack values are known to be zeros, then
4072  * so is the destination reg. Otherwise, the register is considered to be
4073  * SCALAR. This function does not deal with register filling; the caller must
4074  * ensure that all spilled registers in the stack range have been marked as
4075  * read.
4076  */
4077 static void mark_reg_stack_read(struct bpf_verifier_env *env,
4078 				/* func where src register points to */
4079 				struct bpf_func_state *ptr_state,
4080 				int min_off, int max_off, int dst_regno)
4081 {
4082 	struct bpf_verifier_state *vstate = env->cur_state;
4083 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4084 	int i, slot, spi;
4085 	u8 *stype;
4086 	int zeros = 0;
4087 
4088 	for (i = min_off; i < max_off; i++) {
4089 		slot = -i - 1;
4090 		spi = slot / BPF_REG_SIZE;
4091 		stype = ptr_state->stack[spi].slot_type;
4092 		if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
4093 			break;
4094 		zeros++;
4095 	}
4096 	if (zeros == max_off - min_off) {
4097 		/* any access_size read into register is zero extended,
4098 		 * so the whole register == const_zero
4099 		 */
4100 		__mark_reg_const_zero(&state->regs[dst_regno]);
4101 		/* backtracking doesn't support STACK_ZERO yet,
4102 		 * so mark it precise here, so that later
4103 		 * backtracking can stop here.
4104 		 * Backtracking may not need this if this register
4105 		 * doesn't participate in pointer adjustment.
4106 		 * Forward propagation of precise flag is not
4107 		 * necessary either. This mark is only to stop
4108 		 * backtracking. Any register that contributed
4109 		 * to const 0 was marked precise before spill.
4110 		 */
4111 		state->regs[dst_regno].precise = true;
4112 	} else {
4113 		/* have read misc data from the stack */
4114 		mark_reg_unknown(env, state->regs, dst_regno);
4115 	}
4116 	state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4117 }
4118 
4119 /* Read the stack at 'off' and put the results into the register indicated by
4120  * 'dst_regno'. It handles reg filling if the addressed stack slot is a
4121  * spilled reg.
4122  *
4123  * 'dst_regno' can be -1, meaning that the read value is not going to a
4124  * register.
4125  *
4126  * The access is assumed to be within the current stack bounds.
4127  */
4128 static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
4129 				      /* func where src register points to */
4130 				      struct bpf_func_state *reg_state,
4131 				      int off, int size, int dst_regno)
4132 {
4133 	struct bpf_verifier_state *vstate = env->cur_state;
4134 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4135 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
4136 	struct bpf_reg_state *reg;
4137 	u8 *stype, type;
4138 
4139 	stype = reg_state->stack[spi].slot_type;
4140 	reg = &reg_state->stack[spi].spilled_ptr;
4141 
4142 	if (is_spilled_reg(&reg_state->stack[spi])) {
4143 		u8 spill_size = 1;
4144 
4145 		for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--)
4146 			spill_size++;
4147 
4148 		if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) {
4149 			if (reg->type != SCALAR_VALUE) {
4150 				verbose_linfo(env, env->insn_idx, "; ");
4151 				verbose(env, "invalid size of register fill\n");
4152 				return -EACCES;
4153 			}
4154 
4155 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4156 			if (dst_regno < 0)
4157 				return 0;
4158 
4159 			if (!(off % BPF_REG_SIZE) && size == spill_size) {
4160 				/* The earlier check_reg_arg() has decided the
4161 				 * subreg_def for this insn.  Save it first.
4162 				 */
4163 				s32 subreg_def = state->regs[dst_regno].subreg_def;
4164 
4165 				copy_register_state(&state->regs[dst_regno], reg);
4166 				state->regs[dst_regno].subreg_def = subreg_def;
4167 			} else {
4168 				for (i = 0; i < size; i++) {
4169 					type = stype[(slot - i) % BPF_REG_SIZE];
4170 					if (type == STACK_SPILL)
4171 						continue;
4172 					if (type == STACK_MISC)
4173 						continue;
4174 					if (type == STACK_INVALID && env->allow_uninit_stack)
4175 						continue;
4176 					verbose(env, "invalid read from stack off %d+%d size %d\n",
4177 						off, i, size);
4178 					return -EACCES;
4179 				}
4180 				mark_reg_unknown(env, state->regs, dst_regno);
4181 			}
4182 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4183 			return 0;
4184 		}
4185 
4186 		if (dst_regno >= 0) {
4187 			/* restore register state from stack */
4188 			copy_register_state(&state->regs[dst_regno], reg);
4189 			/* mark reg as written since spilled pointer state likely
4190 			 * has its liveness marks cleared by is_state_visited()
4191 			 * which resets stack/reg liveness for state transitions
4192 			 */
4193 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4194 		} else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
4195 			/* If dst_regno==-1, the caller is asking us whether
4196 			 * it is acceptable to use this value as a SCALAR_VALUE
4197 			 * (e.g. for XADD).
4198 			 * We must not allow unprivileged callers to do that
4199 			 * with spilled pointers.
4200 			 */
4201 			verbose(env, "leaking pointer from stack off %d\n",
4202 				off);
4203 			return -EACCES;
4204 		}
4205 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4206 	} else {
4207 		for (i = 0; i < size; i++) {
4208 			type = stype[(slot - i) % BPF_REG_SIZE];
4209 			if (type == STACK_MISC)
4210 				continue;
4211 			if (type == STACK_ZERO)
4212 				continue;
4213 			if (type == STACK_INVALID && env->allow_uninit_stack)
4214 				continue;
4215 			verbose(env, "invalid read from stack off %d+%d size %d\n",
4216 				off, i, size);
4217 			return -EACCES;
4218 		}
4219 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4220 		if (dst_regno >= 0)
4221 			mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
4222 	}
4223 	return 0;
4224 }
4225 
4226 enum bpf_access_src {
4227 	ACCESS_DIRECT = 1,  /* the access is performed by an instruction */
4228 	ACCESS_HELPER = 2,  /* the access is performed by a helper */
4229 };
4230 
4231 static int check_stack_range_initialized(struct bpf_verifier_env *env,
4232 					 int regno, int off, int access_size,
4233 					 bool zero_size_allowed,
4234 					 enum bpf_access_src type,
4235 					 struct bpf_call_arg_meta *meta);
4236 
4237 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
4238 {
4239 	return cur_regs(env) + regno;
4240 }
4241 
4242 /* Read the stack at 'ptr_regno + off' and put the result into the register
4243  * 'dst_regno'.
4244  * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
4245  * but not its variable offset.
4246  * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
4247  *
4248  * As opposed to check_stack_read_fixed_off, this function doesn't deal with
4249  * filling registers (i.e. reads of spilled register cannot be detected when
4250  * the offset is not fixed). We conservatively mark 'dst_regno' as containing
4251  * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
4252  * offset; for a fixed offset check_stack_read_fixed_off should be used
4253  * instead.
4254  */
4255 static int check_stack_read_var_off(struct bpf_verifier_env *env,
4256 				    int ptr_regno, int off, int size, int dst_regno)
4257 {
4258 	/* The state of the source register. */
4259 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
4260 	struct bpf_func_state *ptr_state = func(env, reg);
4261 	int err;
4262 	int min_off, max_off;
4263 
4264 	/* Note that we pass a NULL meta, so raw access will not be permitted.
4265 	 */
4266 	err = check_stack_range_initialized(env, ptr_regno, off, size,
4267 					    false, ACCESS_DIRECT, NULL);
4268 	if (err)
4269 		return err;
4270 
4271 	min_off = reg->smin_value + off;
4272 	max_off = reg->smax_value + off;
4273 	mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
4274 	return 0;
4275 }
4276 
4277 /* check_stack_read dispatches to check_stack_read_fixed_off or
4278  * check_stack_read_var_off.
4279  *
4280  * The caller must ensure that the offset falls within the allocated stack
4281  * bounds.
4282  *
4283  * 'dst_regno' is a register which will receive the value from the stack. It
4284  * can be -1, meaning that the read value is not going to a register.
4285  */
4286 static int check_stack_read(struct bpf_verifier_env *env,
4287 			    int ptr_regno, int off, int size,
4288 			    int dst_regno)
4289 {
4290 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
4291 	struct bpf_func_state *state = func(env, reg);
4292 	int err;
4293 	/* Some accesses are only permitted with a static offset. */
4294 	bool var_off = !tnum_is_const(reg->var_off);
4295 
4296 	/* The offset is required to be static when reads don't go to a
4297 	 * register, in order to not leak pointers (see
4298 	 * check_stack_read_fixed_off).
4299 	 */
4300 	if (dst_regno < 0 && var_off) {
4301 		char tn_buf[48];
4302 
4303 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4304 		verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
4305 			tn_buf, off, size);
4306 		return -EACCES;
4307 	}
4308 	/* Variable offset is prohibited for unprivileged mode for simplicity
4309 	 * since it requires corresponding support in Spectre masking for stack
4310 	 * ALU. See also retrieve_ptr_limit(). The check in
4311 	 * check_stack_access_for_ptr_arithmetic() called by
4312 	 * adjust_ptr_min_max_vals() prevents users from creating stack pointers
4313 	 * with variable offsets, therefore no check is required here. Further,
4314 	 * just checking it here would be insufficient as speculative stack
4315 	 * writes could still lead to unsafe speculative behaviour.
4316 	 */
4317 	if (!var_off) {
4318 		off += reg->var_off.value;
4319 		err = check_stack_read_fixed_off(env, state, off, size,
4320 						 dst_regno);
4321 	} else {
4322 		/* Variable offset stack reads need more conservative handling
4323 		 * than fixed offset ones. Note that dst_regno >= 0 on this
4324 		 * branch.
4325 		 */
4326 		err = check_stack_read_var_off(env, ptr_regno, off, size,
4327 					       dst_regno);
4328 	}
4329 	return err;
4330 }
4331 
4332 
4333 /* check_stack_write dispatches to check_stack_write_fixed_off or
4334  * check_stack_write_var_off.
4335  *
4336  * 'ptr_regno' is the register used as a pointer into the stack.
4337  * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
4338  * 'value_regno' is the register whose value we're writing to the stack. It can
4339  * be -1, meaning that we're not writing from a register.
4340  *
4341  * The caller must ensure that the offset falls within the maximum stack size.
4342  */
4343 static int check_stack_write(struct bpf_verifier_env *env,
4344 			     int ptr_regno, int off, int size,
4345 			     int value_regno, int insn_idx)
4346 {
4347 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
4348 	struct bpf_func_state *state = func(env, reg);
4349 	int err;
4350 
4351 	if (tnum_is_const(reg->var_off)) {
4352 		off += reg->var_off.value;
4353 		err = check_stack_write_fixed_off(env, state, off, size,
4354 						  value_regno, insn_idx);
4355 	} else {
4356 		/* Variable offset stack reads need more conservative handling
4357 		 * than fixed offset ones.
4358 		 */
4359 		err = check_stack_write_var_off(env, state,
4360 						ptr_regno, off, size,
4361 						value_regno, insn_idx);
4362 	}
4363 	return err;
4364 }
4365 
4366 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
4367 				 int off, int size, enum bpf_access_type type)
4368 {
4369 	struct bpf_reg_state *regs = cur_regs(env);
4370 	struct bpf_map *map = regs[regno].map_ptr;
4371 	u32 cap = bpf_map_flags_to_cap(map);
4372 
4373 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
4374 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
4375 			map->value_size, off, size);
4376 		return -EACCES;
4377 	}
4378 
4379 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
4380 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
4381 			map->value_size, off, size);
4382 		return -EACCES;
4383 	}
4384 
4385 	return 0;
4386 }
4387 
4388 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
4389 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
4390 			      int off, int size, u32 mem_size,
4391 			      bool zero_size_allowed)
4392 {
4393 	bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
4394 	struct bpf_reg_state *reg;
4395 
4396 	if (off >= 0 && size_ok && (u64)off + size <= mem_size)
4397 		return 0;
4398 
4399 	reg = &cur_regs(env)[regno];
4400 	switch (reg->type) {
4401 	case PTR_TO_MAP_KEY:
4402 		verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
4403 			mem_size, off, size);
4404 		break;
4405 	case PTR_TO_MAP_VALUE:
4406 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
4407 			mem_size, off, size);
4408 		break;
4409 	case PTR_TO_PACKET:
4410 	case PTR_TO_PACKET_META:
4411 	case PTR_TO_PACKET_END:
4412 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
4413 			off, size, regno, reg->id, off, mem_size);
4414 		break;
4415 	case PTR_TO_MEM:
4416 	default:
4417 		verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
4418 			mem_size, off, size);
4419 	}
4420 
4421 	return -EACCES;
4422 }
4423 
4424 /* check read/write into a memory region with possible variable offset */
4425 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
4426 				   int off, int size, u32 mem_size,
4427 				   bool zero_size_allowed)
4428 {
4429 	struct bpf_verifier_state *vstate = env->cur_state;
4430 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4431 	struct bpf_reg_state *reg = &state->regs[regno];
4432 	int err;
4433 
4434 	/* We may have adjusted the register pointing to memory region, so we
4435 	 * need to try adding each of min_value and max_value to off
4436 	 * to make sure our theoretical access will be safe.
4437 	 *
4438 	 * The minimum value is only important with signed
4439 	 * comparisons where we can't assume the floor of a
4440 	 * value is 0.  If we are using signed variables for our
4441 	 * index'es we need to make sure that whatever we use
4442 	 * will have a set floor within our range.
4443 	 */
4444 	if (reg->smin_value < 0 &&
4445 	    (reg->smin_value == S64_MIN ||
4446 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
4447 	      reg->smin_value + off < 0)) {
4448 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
4449 			regno);
4450 		return -EACCES;
4451 	}
4452 	err = __check_mem_access(env, regno, reg->smin_value + off, size,
4453 				 mem_size, zero_size_allowed);
4454 	if (err) {
4455 		verbose(env, "R%d min value is outside of the allowed memory range\n",
4456 			regno);
4457 		return err;
4458 	}
4459 
4460 	/* If we haven't set a max value then we need to bail since we can't be
4461 	 * sure we won't do bad things.
4462 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
4463 	 */
4464 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
4465 		verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
4466 			regno);
4467 		return -EACCES;
4468 	}
4469 	err = __check_mem_access(env, regno, reg->umax_value + off, size,
4470 				 mem_size, zero_size_allowed);
4471 	if (err) {
4472 		verbose(env, "R%d max value is outside of the allowed memory range\n",
4473 			regno);
4474 		return err;
4475 	}
4476 
4477 	return 0;
4478 }
4479 
4480 static int __check_ptr_off_reg(struct bpf_verifier_env *env,
4481 			       const struct bpf_reg_state *reg, int regno,
4482 			       bool fixed_off_ok)
4483 {
4484 	/* Access to this pointer-typed register or passing it to a helper
4485 	 * is only allowed in its original, unmodified form.
4486 	 */
4487 
4488 	if (reg->off < 0) {
4489 		verbose(env, "negative offset %s ptr R%d off=%d disallowed\n",
4490 			reg_type_str(env, reg->type), regno, reg->off);
4491 		return -EACCES;
4492 	}
4493 
4494 	if (!fixed_off_ok && reg->off) {
4495 		verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n",
4496 			reg_type_str(env, reg->type), regno, reg->off);
4497 		return -EACCES;
4498 	}
4499 
4500 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4501 		char tn_buf[48];
4502 
4503 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4504 		verbose(env, "variable %s access var_off=%s disallowed\n",
4505 			reg_type_str(env, reg->type), tn_buf);
4506 		return -EACCES;
4507 	}
4508 
4509 	return 0;
4510 }
4511 
4512 int check_ptr_off_reg(struct bpf_verifier_env *env,
4513 		      const struct bpf_reg_state *reg, int regno)
4514 {
4515 	return __check_ptr_off_reg(env, reg, regno, false);
4516 }
4517 
4518 static int map_kptr_match_type(struct bpf_verifier_env *env,
4519 			       struct btf_field *kptr_field,
4520 			       struct bpf_reg_state *reg, u32 regno)
4521 {
4522 	const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id);
4523 	int perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU;
4524 	const char *reg_name = "";
4525 
4526 	/* Only unreferenced case accepts untrusted pointers */
4527 	if (kptr_field->type == BPF_KPTR_UNREF)
4528 		perm_flags |= PTR_UNTRUSTED;
4529 
4530 	if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags))
4531 		goto bad_type;
4532 
4533 	if (!btf_is_kernel(reg->btf)) {
4534 		verbose(env, "R%d must point to kernel BTF\n", regno);
4535 		return -EINVAL;
4536 	}
4537 	/* We need to verify reg->type and reg->btf, before accessing reg->btf */
4538 	reg_name = btf_type_name(reg->btf, reg->btf_id);
4539 
4540 	/* For ref_ptr case, release function check should ensure we get one
4541 	 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the
4542 	 * normal store of unreferenced kptr, we must ensure var_off is zero.
4543 	 * Since ref_ptr cannot be accessed directly by BPF insns, checks for
4544 	 * reg->off and reg->ref_obj_id are not needed here.
4545 	 */
4546 	if (__check_ptr_off_reg(env, reg, regno, true))
4547 		return -EACCES;
4548 
4549 	/* A full type match is needed, as BTF can be vmlinux or module BTF, and
4550 	 * we also need to take into account the reg->off.
4551 	 *
4552 	 * We want to support cases like:
4553 	 *
4554 	 * struct foo {
4555 	 *         struct bar br;
4556 	 *         struct baz bz;
4557 	 * };
4558 	 *
4559 	 * struct foo *v;
4560 	 * v = func();	      // PTR_TO_BTF_ID
4561 	 * val->foo = v;      // reg->off is zero, btf and btf_id match type
4562 	 * val->bar = &v->br; // reg->off is still zero, but we need to retry with
4563 	 *                    // first member type of struct after comparison fails
4564 	 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked
4565 	 *                    // to match type
4566 	 *
4567 	 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off
4568 	 * is zero. We must also ensure that btf_struct_ids_match does not walk
4569 	 * the struct to match type against first member of struct, i.e. reject
4570 	 * second case from above. Hence, when type is BPF_KPTR_REF, we set
4571 	 * strict mode to true for type match.
4572 	 */
4573 	if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
4574 				  kptr_field->kptr.btf, kptr_field->kptr.btf_id,
4575 				  kptr_field->type == BPF_KPTR_REF))
4576 		goto bad_type;
4577 	return 0;
4578 bad_type:
4579 	verbose(env, "invalid kptr access, R%d type=%s%s ", regno,
4580 		reg_type_str(env, reg->type), reg_name);
4581 	verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name);
4582 	if (kptr_field->type == BPF_KPTR_UNREF)
4583 		verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED),
4584 			targ_name);
4585 	else
4586 		verbose(env, "\n");
4587 	return -EINVAL;
4588 }
4589 
4590 /* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock()
4591  * can dereference RCU protected pointers and result is PTR_TRUSTED.
4592  */
4593 static bool in_rcu_cs(struct bpf_verifier_env *env)
4594 {
4595 	return env->cur_state->active_rcu_lock || !env->prog->aux->sleepable;
4596 }
4597 
4598 /* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */
4599 BTF_SET_START(rcu_protected_types)
4600 BTF_ID(struct, prog_test_ref_kfunc)
4601 BTF_ID(struct, cgroup)
4602 BTF_ID(struct, bpf_cpumask)
4603 BTF_ID(struct, task_struct)
4604 BTF_SET_END(rcu_protected_types)
4605 
4606 static bool rcu_protected_object(const struct btf *btf, u32 btf_id)
4607 {
4608 	if (!btf_is_kernel(btf))
4609 		return false;
4610 	return btf_id_set_contains(&rcu_protected_types, btf_id);
4611 }
4612 
4613 static bool rcu_safe_kptr(const struct btf_field *field)
4614 {
4615 	const struct btf_field_kptr *kptr = &field->kptr;
4616 
4617 	return field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id);
4618 }
4619 
4620 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno,
4621 				 int value_regno, int insn_idx,
4622 				 struct btf_field *kptr_field)
4623 {
4624 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
4625 	int class = BPF_CLASS(insn->code);
4626 	struct bpf_reg_state *val_reg;
4627 
4628 	/* Things we already checked for in check_map_access and caller:
4629 	 *  - Reject cases where variable offset may touch kptr
4630 	 *  - size of access (must be BPF_DW)
4631 	 *  - tnum_is_const(reg->var_off)
4632 	 *  - kptr_field->offset == off + reg->var_off.value
4633 	 */
4634 	/* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */
4635 	if (BPF_MODE(insn->code) != BPF_MEM) {
4636 		verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n");
4637 		return -EACCES;
4638 	}
4639 
4640 	/* We only allow loading referenced kptr, since it will be marked as
4641 	 * untrusted, similar to unreferenced kptr.
4642 	 */
4643 	if (class != BPF_LDX && kptr_field->type == BPF_KPTR_REF) {
4644 		verbose(env, "store to referenced kptr disallowed\n");
4645 		return -EACCES;
4646 	}
4647 
4648 	if (class == BPF_LDX) {
4649 		val_reg = reg_state(env, value_regno);
4650 		/* We can simply mark the value_regno receiving the pointer
4651 		 * value from map as PTR_TO_BTF_ID, with the correct type.
4652 		 */
4653 		mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf,
4654 				kptr_field->kptr.btf_id,
4655 				rcu_safe_kptr(kptr_field) && in_rcu_cs(env) ?
4656 				PTR_MAYBE_NULL | MEM_RCU :
4657 				PTR_MAYBE_NULL | PTR_UNTRUSTED);
4658 		/* For mark_ptr_or_null_reg */
4659 		val_reg->id = ++env->id_gen;
4660 	} else if (class == BPF_STX) {
4661 		val_reg = reg_state(env, value_regno);
4662 		if (!register_is_null(val_reg) &&
4663 		    map_kptr_match_type(env, kptr_field, val_reg, value_regno))
4664 			return -EACCES;
4665 	} else if (class == BPF_ST) {
4666 		if (insn->imm) {
4667 			verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n",
4668 				kptr_field->offset);
4669 			return -EACCES;
4670 		}
4671 	} else {
4672 		verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n");
4673 		return -EACCES;
4674 	}
4675 	return 0;
4676 }
4677 
4678 /* check read/write into a map element with possible variable offset */
4679 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
4680 			    int off, int size, bool zero_size_allowed,
4681 			    enum bpf_access_src src)
4682 {
4683 	struct bpf_verifier_state *vstate = env->cur_state;
4684 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4685 	struct bpf_reg_state *reg = &state->regs[regno];
4686 	struct bpf_map *map = reg->map_ptr;
4687 	struct btf_record *rec;
4688 	int err, i;
4689 
4690 	err = check_mem_region_access(env, regno, off, size, map->value_size,
4691 				      zero_size_allowed);
4692 	if (err)
4693 		return err;
4694 
4695 	if (IS_ERR_OR_NULL(map->record))
4696 		return 0;
4697 	rec = map->record;
4698 	for (i = 0; i < rec->cnt; i++) {
4699 		struct btf_field *field = &rec->fields[i];
4700 		u32 p = field->offset;
4701 
4702 		/* If any part of a field  can be touched by load/store, reject
4703 		 * this program. To check that [x1, x2) overlaps with [y1, y2),
4704 		 * it is sufficient to check x1 < y2 && y1 < x2.
4705 		 */
4706 		if (reg->smin_value + off < p + btf_field_type_size(field->type) &&
4707 		    p < reg->umax_value + off + size) {
4708 			switch (field->type) {
4709 			case BPF_KPTR_UNREF:
4710 			case BPF_KPTR_REF:
4711 				if (src != ACCESS_DIRECT) {
4712 					verbose(env, "kptr cannot be accessed indirectly by helper\n");
4713 					return -EACCES;
4714 				}
4715 				if (!tnum_is_const(reg->var_off)) {
4716 					verbose(env, "kptr access cannot have variable offset\n");
4717 					return -EACCES;
4718 				}
4719 				if (p != off + reg->var_off.value) {
4720 					verbose(env, "kptr access misaligned expected=%u off=%llu\n",
4721 						p, off + reg->var_off.value);
4722 					return -EACCES;
4723 				}
4724 				if (size != bpf_size_to_bytes(BPF_DW)) {
4725 					verbose(env, "kptr access size must be BPF_DW\n");
4726 					return -EACCES;
4727 				}
4728 				break;
4729 			default:
4730 				verbose(env, "%s cannot be accessed directly by load/store\n",
4731 					btf_field_type_name(field->type));
4732 				return -EACCES;
4733 			}
4734 		}
4735 	}
4736 	return 0;
4737 }
4738 
4739 #define MAX_PACKET_OFF 0xffff
4740 
4741 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
4742 				       const struct bpf_call_arg_meta *meta,
4743 				       enum bpf_access_type t)
4744 {
4745 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
4746 
4747 	switch (prog_type) {
4748 	/* Program types only with direct read access go here! */
4749 	case BPF_PROG_TYPE_LWT_IN:
4750 	case BPF_PROG_TYPE_LWT_OUT:
4751 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
4752 	case BPF_PROG_TYPE_SK_REUSEPORT:
4753 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
4754 	case BPF_PROG_TYPE_CGROUP_SKB:
4755 		if (t == BPF_WRITE)
4756 			return false;
4757 		fallthrough;
4758 
4759 	/* Program types with direct read + write access go here! */
4760 	case BPF_PROG_TYPE_SCHED_CLS:
4761 	case BPF_PROG_TYPE_SCHED_ACT:
4762 	case BPF_PROG_TYPE_XDP:
4763 	case BPF_PROG_TYPE_LWT_XMIT:
4764 	case BPF_PROG_TYPE_SK_SKB:
4765 	case BPF_PROG_TYPE_SK_MSG:
4766 		if (meta)
4767 			return meta->pkt_access;
4768 
4769 		env->seen_direct_write = true;
4770 		return true;
4771 
4772 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
4773 		if (t == BPF_WRITE)
4774 			env->seen_direct_write = true;
4775 
4776 		return true;
4777 
4778 	default:
4779 		return false;
4780 	}
4781 }
4782 
4783 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
4784 			       int size, bool zero_size_allowed)
4785 {
4786 	struct bpf_reg_state *regs = cur_regs(env);
4787 	struct bpf_reg_state *reg = &regs[regno];
4788 	int err;
4789 
4790 	/* We may have added a variable offset to the packet pointer; but any
4791 	 * reg->range we have comes after that.  We are only checking the fixed
4792 	 * offset.
4793 	 */
4794 
4795 	/* We don't allow negative numbers, because we aren't tracking enough
4796 	 * detail to prove they're safe.
4797 	 */
4798 	if (reg->smin_value < 0) {
4799 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
4800 			regno);
4801 		return -EACCES;
4802 	}
4803 
4804 	err = reg->range < 0 ? -EINVAL :
4805 	      __check_mem_access(env, regno, off, size, reg->range,
4806 				 zero_size_allowed);
4807 	if (err) {
4808 		verbose(env, "R%d offset is outside of the packet\n", regno);
4809 		return err;
4810 	}
4811 
4812 	/* __check_mem_access has made sure "off + size - 1" is within u16.
4813 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
4814 	 * otherwise find_good_pkt_pointers would have refused to set range info
4815 	 * that __check_mem_access would have rejected this pkt access.
4816 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
4817 	 */
4818 	env->prog->aux->max_pkt_offset =
4819 		max_t(u32, env->prog->aux->max_pkt_offset,
4820 		      off + reg->umax_value + size - 1);
4821 
4822 	return err;
4823 }
4824 
4825 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
4826 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
4827 			    enum bpf_access_type t, enum bpf_reg_type *reg_type,
4828 			    struct btf **btf, u32 *btf_id)
4829 {
4830 	struct bpf_insn_access_aux info = {
4831 		.reg_type = *reg_type,
4832 		.log = &env->log,
4833 	};
4834 
4835 	if (env->ops->is_valid_access &&
4836 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
4837 		/* A non zero info.ctx_field_size indicates that this field is a
4838 		 * candidate for later verifier transformation to load the whole
4839 		 * field and then apply a mask when accessed with a narrower
4840 		 * access than actual ctx access size. A zero info.ctx_field_size
4841 		 * will only allow for whole field access and rejects any other
4842 		 * type of narrower access.
4843 		 */
4844 		*reg_type = info.reg_type;
4845 
4846 		if (base_type(*reg_type) == PTR_TO_BTF_ID) {
4847 			*btf = info.btf;
4848 			*btf_id = info.btf_id;
4849 		} else {
4850 			env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
4851 		}
4852 		/* remember the offset of last byte accessed in ctx */
4853 		if (env->prog->aux->max_ctx_offset < off + size)
4854 			env->prog->aux->max_ctx_offset = off + size;
4855 		return 0;
4856 	}
4857 
4858 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
4859 	return -EACCES;
4860 }
4861 
4862 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
4863 				  int size)
4864 {
4865 	if (size < 0 || off < 0 ||
4866 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
4867 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
4868 			off, size);
4869 		return -EACCES;
4870 	}
4871 	return 0;
4872 }
4873 
4874 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
4875 			     u32 regno, int off, int size,
4876 			     enum bpf_access_type t)
4877 {
4878 	struct bpf_reg_state *regs = cur_regs(env);
4879 	struct bpf_reg_state *reg = &regs[regno];
4880 	struct bpf_insn_access_aux info = {};
4881 	bool valid;
4882 
4883 	if (reg->smin_value < 0) {
4884 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
4885 			regno);
4886 		return -EACCES;
4887 	}
4888 
4889 	switch (reg->type) {
4890 	case PTR_TO_SOCK_COMMON:
4891 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
4892 		break;
4893 	case PTR_TO_SOCKET:
4894 		valid = bpf_sock_is_valid_access(off, size, t, &info);
4895 		break;
4896 	case PTR_TO_TCP_SOCK:
4897 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
4898 		break;
4899 	case PTR_TO_XDP_SOCK:
4900 		valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
4901 		break;
4902 	default:
4903 		valid = false;
4904 	}
4905 
4906 
4907 	if (valid) {
4908 		env->insn_aux_data[insn_idx].ctx_field_size =
4909 			info.ctx_field_size;
4910 		return 0;
4911 	}
4912 
4913 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
4914 		regno, reg_type_str(env, reg->type), off, size);
4915 
4916 	return -EACCES;
4917 }
4918 
4919 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
4920 {
4921 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
4922 }
4923 
4924 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
4925 {
4926 	const struct bpf_reg_state *reg = reg_state(env, regno);
4927 
4928 	return reg->type == PTR_TO_CTX;
4929 }
4930 
4931 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
4932 {
4933 	const struct bpf_reg_state *reg = reg_state(env, regno);
4934 
4935 	return type_is_sk_pointer(reg->type);
4936 }
4937 
4938 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
4939 {
4940 	const struct bpf_reg_state *reg = reg_state(env, regno);
4941 
4942 	return type_is_pkt_pointer(reg->type);
4943 }
4944 
4945 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
4946 {
4947 	const struct bpf_reg_state *reg = reg_state(env, regno);
4948 
4949 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
4950 	return reg->type == PTR_TO_FLOW_KEYS;
4951 }
4952 
4953 static bool is_trusted_reg(const struct bpf_reg_state *reg)
4954 {
4955 	/* A referenced register is always trusted. */
4956 	if (reg->ref_obj_id)
4957 		return true;
4958 
4959 	/* If a register is not referenced, it is trusted if it has the
4960 	 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the
4961 	 * other type modifiers may be safe, but we elect to take an opt-in
4962 	 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are
4963 	 * not.
4964 	 *
4965 	 * Eventually, we should make PTR_TRUSTED the single source of truth
4966 	 * for whether a register is trusted.
4967 	 */
4968 	return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS &&
4969 	       !bpf_type_has_unsafe_modifiers(reg->type);
4970 }
4971 
4972 static bool is_rcu_reg(const struct bpf_reg_state *reg)
4973 {
4974 	return reg->type & MEM_RCU;
4975 }
4976 
4977 static void clear_trusted_flags(enum bpf_type_flag *flag)
4978 {
4979 	*flag &= ~(BPF_REG_TRUSTED_MODIFIERS | MEM_RCU);
4980 }
4981 
4982 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
4983 				   const struct bpf_reg_state *reg,
4984 				   int off, int size, bool strict)
4985 {
4986 	struct tnum reg_off;
4987 	int ip_align;
4988 
4989 	/* Byte size accesses are always allowed. */
4990 	if (!strict || size == 1)
4991 		return 0;
4992 
4993 	/* For platforms that do not have a Kconfig enabling
4994 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
4995 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
4996 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
4997 	 * to this code only in strict mode where we want to emulate
4998 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
4999 	 * unconditional IP align value of '2'.
5000 	 */
5001 	ip_align = 2;
5002 
5003 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
5004 	if (!tnum_is_aligned(reg_off, size)) {
5005 		char tn_buf[48];
5006 
5007 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5008 		verbose(env,
5009 			"misaligned packet access off %d+%s+%d+%d size %d\n",
5010 			ip_align, tn_buf, reg->off, off, size);
5011 		return -EACCES;
5012 	}
5013 
5014 	return 0;
5015 }
5016 
5017 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
5018 				       const struct bpf_reg_state *reg,
5019 				       const char *pointer_desc,
5020 				       int off, int size, bool strict)
5021 {
5022 	struct tnum reg_off;
5023 
5024 	/* Byte size accesses are always allowed. */
5025 	if (!strict || size == 1)
5026 		return 0;
5027 
5028 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
5029 	if (!tnum_is_aligned(reg_off, size)) {
5030 		char tn_buf[48];
5031 
5032 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5033 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
5034 			pointer_desc, tn_buf, reg->off, off, size);
5035 		return -EACCES;
5036 	}
5037 
5038 	return 0;
5039 }
5040 
5041 static int check_ptr_alignment(struct bpf_verifier_env *env,
5042 			       const struct bpf_reg_state *reg, int off,
5043 			       int size, bool strict_alignment_once)
5044 {
5045 	bool strict = env->strict_alignment || strict_alignment_once;
5046 	const char *pointer_desc = "";
5047 
5048 	switch (reg->type) {
5049 	case PTR_TO_PACKET:
5050 	case PTR_TO_PACKET_META:
5051 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
5052 		 * right in front, treat it the very same way.
5053 		 */
5054 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
5055 	case PTR_TO_FLOW_KEYS:
5056 		pointer_desc = "flow keys ";
5057 		break;
5058 	case PTR_TO_MAP_KEY:
5059 		pointer_desc = "key ";
5060 		break;
5061 	case PTR_TO_MAP_VALUE:
5062 		pointer_desc = "value ";
5063 		break;
5064 	case PTR_TO_CTX:
5065 		pointer_desc = "context ";
5066 		break;
5067 	case PTR_TO_STACK:
5068 		pointer_desc = "stack ";
5069 		/* The stack spill tracking logic in check_stack_write_fixed_off()
5070 		 * and check_stack_read_fixed_off() relies on stack accesses being
5071 		 * aligned.
5072 		 */
5073 		strict = true;
5074 		break;
5075 	case PTR_TO_SOCKET:
5076 		pointer_desc = "sock ";
5077 		break;
5078 	case PTR_TO_SOCK_COMMON:
5079 		pointer_desc = "sock_common ";
5080 		break;
5081 	case PTR_TO_TCP_SOCK:
5082 		pointer_desc = "tcp_sock ";
5083 		break;
5084 	case PTR_TO_XDP_SOCK:
5085 		pointer_desc = "xdp_sock ";
5086 		break;
5087 	default:
5088 		break;
5089 	}
5090 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
5091 					   strict);
5092 }
5093 
5094 static int update_stack_depth(struct bpf_verifier_env *env,
5095 			      const struct bpf_func_state *func,
5096 			      int off)
5097 {
5098 	u16 stack = env->subprog_info[func->subprogno].stack_depth;
5099 
5100 	if (stack >= -off)
5101 		return 0;
5102 
5103 	/* update known max for given subprogram */
5104 	env->subprog_info[func->subprogno].stack_depth = -off;
5105 	return 0;
5106 }
5107 
5108 /* starting from main bpf function walk all instructions of the function
5109  * and recursively walk all callees that given function can call.
5110  * Ignore jump and exit insns.
5111  * Since recursion is prevented by check_cfg() this algorithm
5112  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
5113  */
5114 static int check_max_stack_depth(struct bpf_verifier_env *env)
5115 {
5116 	int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
5117 	struct bpf_subprog_info *subprog = env->subprog_info;
5118 	struct bpf_insn *insn = env->prog->insnsi;
5119 	bool tail_call_reachable = false;
5120 	int ret_insn[MAX_CALL_FRAMES];
5121 	int ret_prog[MAX_CALL_FRAMES];
5122 	int j;
5123 
5124 process_func:
5125 	/* protect against potential stack overflow that might happen when
5126 	 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
5127 	 * depth for such case down to 256 so that the worst case scenario
5128 	 * would result in 8k stack size (32 which is tailcall limit * 256 =
5129 	 * 8k).
5130 	 *
5131 	 * To get the idea what might happen, see an example:
5132 	 * func1 -> sub rsp, 128
5133 	 *  subfunc1 -> sub rsp, 256
5134 	 *  tailcall1 -> add rsp, 256
5135 	 *   func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
5136 	 *   subfunc2 -> sub rsp, 64
5137 	 *   subfunc22 -> sub rsp, 128
5138 	 *   tailcall2 -> add rsp, 128
5139 	 *    func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
5140 	 *
5141 	 * tailcall will unwind the current stack frame but it will not get rid
5142 	 * of caller's stack as shown on the example above.
5143 	 */
5144 	if (idx && subprog[idx].has_tail_call && depth >= 256) {
5145 		verbose(env,
5146 			"tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
5147 			depth);
5148 		return -EACCES;
5149 	}
5150 	/* round up to 32-bytes, since this is granularity
5151 	 * of interpreter stack size
5152 	 */
5153 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
5154 	if (depth > MAX_BPF_STACK) {
5155 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
5156 			frame + 1, depth);
5157 		return -EACCES;
5158 	}
5159 continue_func:
5160 	subprog_end = subprog[idx + 1].start;
5161 	for (; i < subprog_end; i++) {
5162 		int next_insn;
5163 
5164 		if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
5165 			continue;
5166 		/* remember insn and function to return to */
5167 		ret_insn[frame] = i + 1;
5168 		ret_prog[frame] = idx;
5169 
5170 		/* find the callee */
5171 		next_insn = i + insn[i].imm + 1;
5172 		idx = find_subprog(env, next_insn);
5173 		if (idx < 0) {
5174 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
5175 				  next_insn);
5176 			return -EFAULT;
5177 		}
5178 		if (subprog[idx].is_async_cb) {
5179 			if (subprog[idx].has_tail_call) {
5180 				verbose(env, "verifier bug. subprog has tail_call and async cb\n");
5181 				return -EFAULT;
5182 			}
5183 			 /* async callbacks don't increase bpf prog stack size */
5184 			continue;
5185 		}
5186 		i = next_insn;
5187 
5188 		if (subprog[idx].has_tail_call)
5189 			tail_call_reachable = true;
5190 
5191 		frame++;
5192 		if (frame >= MAX_CALL_FRAMES) {
5193 			verbose(env, "the call stack of %d frames is too deep !\n",
5194 				frame);
5195 			return -E2BIG;
5196 		}
5197 		goto process_func;
5198 	}
5199 	/* if tail call got detected across bpf2bpf calls then mark each of the
5200 	 * currently present subprog frames as tail call reachable subprogs;
5201 	 * this info will be utilized by JIT so that we will be preserving the
5202 	 * tail call counter throughout bpf2bpf calls combined with tailcalls
5203 	 */
5204 	if (tail_call_reachable)
5205 		for (j = 0; j < frame; j++)
5206 			subprog[ret_prog[j]].tail_call_reachable = true;
5207 	if (subprog[0].tail_call_reachable)
5208 		env->prog->aux->tail_call_reachable = true;
5209 
5210 	/* end of for() loop means the last insn of the 'subprog'
5211 	 * was reached. Doesn't matter whether it was JA or EXIT
5212 	 */
5213 	if (frame == 0)
5214 		return 0;
5215 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
5216 	frame--;
5217 	i = ret_insn[frame];
5218 	idx = ret_prog[frame];
5219 	goto continue_func;
5220 }
5221 
5222 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
5223 static int get_callee_stack_depth(struct bpf_verifier_env *env,
5224 				  const struct bpf_insn *insn, int idx)
5225 {
5226 	int start = idx + insn->imm + 1, subprog;
5227 
5228 	subprog = find_subprog(env, start);
5229 	if (subprog < 0) {
5230 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
5231 			  start);
5232 		return -EFAULT;
5233 	}
5234 	return env->subprog_info[subprog].stack_depth;
5235 }
5236 #endif
5237 
5238 static int __check_buffer_access(struct bpf_verifier_env *env,
5239 				 const char *buf_info,
5240 				 const struct bpf_reg_state *reg,
5241 				 int regno, int off, int size)
5242 {
5243 	if (off < 0) {
5244 		verbose(env,
5245 			"R%d invalid %s buffer access: off=%d, size=%d\n",
5246 			regno, buf_info, off, size);
5247 		return -EACCES;
5248 	}
5249 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
5250 		char tn_buf[48];
5251 
5252 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5253 		verbose(env,
5254 			"R%d invalid variable buffer offset: off=%d, var_off=%s\n",
5255 			regno, off, tn_buf);
5256 		return -EACCES;
5257 	}
5258 
5259 	return 0;
5260 }
5261 
5262 static int check_tp_buffer_access(struct bpf_verifier_env *env,
5263 				  const struct bpf_reg_state *reg,
5264 				  int regno, int off, int size)
5265 {
5266 	int err;
5267 
5268 	err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
5269 	if (err)
5270 		return err;
5271 
5272 	if (off + size > env->prog->aux->max_tp_access)
5273 		env->prog->aux->max_tp_access = off + size;
5274 
5275 	return 0;
5276 }
5277 
5278 static int check_buffer_access(struct bpf_verifier_env *env,
5279 			       const struct bpf_reg_state *reg,
5280 			       int regno, int off, int size,
5281 			       bool zero_size_allowed,
5282 			       u32 *max_access)
5283 {
5284 	const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr";
5285 	int err;
5286 
5287 	err = __check_buffer_access(env, buf_info, reg, regno, off, size);
5288 	if (err)
5289 		return err;
5290 
5291 	if (off + size > *max_access)
5292 		*max_access = off + size;
5293 
5294 	return 0;
5295 }
5296 
5297 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
5298 static void zext_32_to_64(struct bpf_reg_state *reg)
5299 {
5300 	reg->var_off = tnum_subreg(reg->var_off);
5301 	__reg_assign_32_into_64(reg);
5302 }
5303 
5304 /* truncate register to smaller size (in bytes)
5305  * must be called with size < BPF_REG_SIZE
5306  */
5307 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
5308 {
5309 	u64 mask;
5310 
5311 	/* clear high bits in bit representation */
5312 	reg->var_off = tnum_cast(reg->var_off, size);
5313 
5314 	/* fix arithmetic bounds */
5315 	mask = ((u64)1 << (size * 8)) - 1;
5316 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
5317 		reg->umin_value &= mask;
5318 		reg->umax_value &= mask;
5319 	} else {
5320 		reg->umin_value = 0;
5321 		reg->umax_value = mask;
5322 	}
5323 	reg->smin_value = reg->umin_value;
5324 	reg->smax_value = reg->umax_value;
5325 
5326 	/* If size is smaller than 32bit register the 32bit register
5327 	 * values are also truncated so we push 64-bit bounds into
5328 	 * 32-bit bounds. Above were truncated < 32-bits already.
5329 	 */
5330 	if (size >= 4)
5331 		return;
5332 	__reg_combine_64_into_32(reg);
5333 }
5334 
5335 static bool bpf_map_is_rdonly(const struct bpf_map *map)
5336 {
5337 	/* A map is considered read-only if the following condition are true:
5338 	 *
5339 	 * 1) BPF program side cannot change any of the map content. The
5340 	 *    BPF_F_RDONLY_PROG flag is throughout the lifetime of a map
5341 	 *    and was set at map creation time.
5342 	 * 2) The map value(s) have been initialized from user space by a
5343 	 *    loader and then "frozen", such that no new map update/delete
5344 	 *    operations from syscall side are possible for the rest of
5345 	 *    the map's lifetime from that point onwards.
5346 	 * 3) Any parallel/pending map update/delete operations from syscall
5347 	 *    side have been completed. Only after that point, it's safe to
5348 	 *    assume that map value(s) are immutable.
5349 	 */
5350 	return (map->map_flags & BPF_F_RDONLY_PROG) &&
5351 	       READ_ONCE(map->frozen) &&
5352 	       !bpf_map_write_active(map);
5353 }
5354 
5355 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
5356 {
5357 	void *ptr;
5358 	u64 addr;
5359 	int err;
5360 
5361 	err = map->ops->map_direct_value_addr(map, &addr, off);
5362 	if (err)
5363 		return err;
5364 	ptr = (void *)(long)addr + off;
5365 
5366 	switch (size) {
5367 	case sizeof(u8):
5368 		*val = (u64)*(u8 *)ptr;
5369 		break;
5370 	case sizeof(u16):
5371 		*val = (u64)*(u16 *)ptr;
5372 		break;
5373 	case sizeof(u32):
5374 		*val = (u64)*(u32 *)ptr;
5375 		break;
5376 	case sizeof(u64):
5377 		*val = *(u64 *)ptr;
5378 		break;
5379 	default:
5380 		return -EINVAL;
5381 	}
5382 	return 0;
5383 }
5384 
5385 #define BTF_TYPE_SAFE_RCU(__type)  __PASTE(__type, __safe_rcu)
5386 #define BTF_TYPE_SAFE_RCU_OR_NULL(__type)  __PASTE(__type, __safe_rcu_or_null)
5387 #define BTF_TYPE_SAFE_TRUSTED(__type)  __PASTE(__type, __safe_trusted)
5388 
5389 /*
5390  * Allow list few fields as RCU trusted or full trusted.
5391  * This logic doesn't allow mix tagging and will be removed once GCC supports
5392  * btf_type_tag.
5393  */
5394 
5395 /* RCU trusted: these fields are trusted in RCU CS and never NULL */
5396 BTF_TYPE_SAFE_RCU(struct task_struct) {
5397 	const cpumask_t *cpus_ptr;
5398 	struct css_set __rcu *cgroups;
5399 	struct task_struct __rcu *real_parent;
5400 	struct task_struct *group_leader;
5401 };
5402 
5403 BTF_TYPE_SAFE_RCU(struct cgroup) {
5404 	/* cgrp->kn is always accessible as documented in kernel/cgroup/cgroup.c */
5405 	struct kernfs_node *kn;
5406 };
5407 
5408 BTF_TYPE_SAFE_RCU(struct css_set) {
5409 	struct cgroup *dfl_cgrp;
5410 };
5411 
5412 /* RCU trusted: these fields are trusted in RCU CS and can be NULL */
5413 BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct) {
5414 	struct file __rcu *exe_file;
5415 };
5416 
5417 /* skb->sk, req->sk are not RCU protected, but we mark them as such
5418  * because bpf prog accessible sockets are SOCK_RCU_FREE.
5419  */
5420 BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff) {
5421 	struct sock *sk;
5422 };
5423 
5424 BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock) {
5425 	struct sock *sk;
5426 };
5427 
5428 /* full trusted: these fields are trusted even outside of RCU CS and never NULL */
5429 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) {
5430 	struct seq_file *seq;
5431 };
5432 
5433 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) {
5434 	struct bpf_iter_meta *meta;
5435 	struct task_struct *task;
5436 };
5437 
5438 BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) {
5439 	struct file *file;
5440 };
5441 
5442 BTF_TYPE_SAFE_TRUSTED(struct file) {
5443 	struct inode *f_inode;
5444 };
5445 
5446 BTF_TYPE_SAFE_TRUSTED(struct dentry) {
5447 	/* no negative dentry-s in places where bpf can see it */
5448 	struct inode *d_inode;
5449 };
5450 
5451 BTF_TYPE_SAFE_TRUSTED(struct socket) {
5452 	struct sock *sk;
5453 };
5454 
5455 static bool type_is_rcu(struct bpf_verifier_env *env,
5456 			struct bpf_reg_state *reg,
5457 			const char *field_name, u32 btf_id)
5458 {
5459 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct));
5460 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup));
5461 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set));
5462 
5463 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu");
5464 }
5465 
5466 static bool type_is_rcu_or_null(struct bpf_verifier_env *env,
5467 				struct bpf_reg_state *reg,
5468 				const char *field_name, u32 btf_id)
5469 {
5470 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct));
5471 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff));
5472 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock));
5473 
5474 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu_or_null");
5475 }
5476 
5477 static bool type_is_trusted(struct bpf_verifier_env *env,
5478 			    struct bpf_reg_state *reg,
5479 			    const char *field_name, u32 btf_id)
5480 {
5481 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta));
5482 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task));
5483 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm));
5484 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file));
5485 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct dentry));
5486 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct socket));
5487 
5488 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted");
5489 }
5490 
5491 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
5492 				   struct bpf_reg_state *regs,
5493 				   int regno, int off, int size,
5494 				   enum bpf_access_type atype,
5495 				   int value_regno)
5496 {
5497 	struct bpf_reg_state *reg = regs + regno;
5498 	const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
5499 	const char *tname = btf_name_by_offset(reg->btf, t->name_off);
5500 	const char *field_name = NULL;
5501 	enum bpf_type_flag flag = 0;
5502 	u32 btf_id = 0;
5503 	int ret;
5504 
5505 	if (!env->allow_ptr_leaks) {
5506 		verbose(env,
5507 			"'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
5508 			tname);
5509 		return -EPERM;
5510 	}
5511 	if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) {
5512 		verbose(env,
5513 			"Cannot access kernel 'struct %s' from non-GPL compatible program\n",
5514 			tname);
5515 		return -EINVAL;
5516 	}
5517 	if (off < 0) {
5518 		verbose(env,
5519 			"R%d is ptr_%s invalid negative access: off=%d\n",
5520 			regno, tname, off);
5521 		return -EACCES;
5522 	}
5523 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
5524 		char tn_buf[48];
5525 
5526 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5527 		verbose(env,
5528 			"R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
5529 			regno, tname, off, tn_buf);
5530 		return -EACCES;
5531 	}
5532 
5533 	if (reg->type & MEM_USER) {
5534 		verbose(env,
5535 			"R%d is ptr_%s access user memory: off=%d\n",
5536 			regno, tname, off);
5537 		return -EACCES;
5538 	}
5539 
5540 	if (reg->type & MEM_PERCPU) {
5541 		verbose(env,
5542 			"R%d is ptr_%s access percpu memory: off=%d\n",
5543 			regno, tname, off);
5544 		return -EACCES;
5545 	}
5546 
5547 	if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) {
5548 		if (!btf_is_kernel(reg->btf)) {
5549 			verbose(env, "verifier internal error: reg->btf must be kernel btf\n");
5550 			return -EFAULT;
5551 		}
5552 		ret = env->ops->btf_struct_access(&env->log, reg, off, size);
5553 	} else {
5554 		/* Writes are permitted with default btf_struct_access for
5555 		 * program allocated objects (which always have ref_obj_id > 0),
5556 		 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC.
5557 		 */
5558 		if (atype != BPF_READ && reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
5559 			verbose(env, "only read is supported\n");
5560 			return -EACCES;
5561 		}
5562 
5563 		if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) &&
5564 		    !reg->ref_obj_id) {
5565 			verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n");
5566 			return -EFAULT;
5567 		}
5568 
5569 		ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag, &field_name);
5570 	}
5571 
5572 	if (ret < 0)
5573 		return ret;
5574 
5575 	if (ret != PTR_TO_BTF_ID) {
5576 		/* just mark; */
5577 
5578 	} else if (type_flag(reg->type) & PTR_UNTRUSTED) {
5579 		/* If this is an untrusted pointer, all pointers formed by walking it
5580 		 * also inherit the untrusted flag.
5581 		 */
5582 		flag = PTR_UNTRUSTED;
5583 
5584 	} else if (is_trusted_reg(reg) || is_rcu_reg(reg)) {
5585 		/* By default any pointer obtained from walking a trusted pointer is no
5586 		 * longer trusted, unless the field being accessed has explicitly been
5587 		 * marked as inheriting its parent's state of trust (either full or RCU).
5588 		 * For example:
5589 		 * 'cgroups' pointer is untrusted if task->cgroups dereference
5590 		 * happened in a sleepable program outside of bpf_rcu_read_lock()
5591 		 * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU).
5592 		 * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED.
5593 		 *
5594 		 * A regular RCU-protected pointer with __rcu tag can also be deemed
5595 		 * trusted if we are in an RCU CS. Such pointer can be NULL.
5596 		 */
5597 		if (type_is_trusted(env, reg, field_name, btf_id)) {
5598 			flag |= PTR_TRUSTED;
5599 		} else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) {
5600 			if (type_is_rcu(env, reg, field_name, btf_id)) {
5601 				/* ignore __rcu tag and mark it MEM_RCU */
5602 				flag |= MEM_RCU;
5603 			} else if (flag & MEM_RCU ||
5604 				   type_is_rcu_or_null(env, reg, field_name, btf_id)) {
5605 				/* __rcu tagged pointers can be NULL */
5606 				flag |= MEM_RCU | PTR_MAYBE_NULL;
5607 			} else if (flag & (MEM_PERCPU | MEM_USER)) {
5608 				/* keep as-is */
5609 			} else {
5610 				/* walking unknown pointers yields old deprecated PTR_TO_BTF_ID */
5611 				clear_trusted_flags(&flag);
5612 			}
5613 		} else {
5614 			/*
5615 			 * If not in RCU CS or MEM_RCU pointer can be NULL then
5616 			 * aggressively mark as untrusted otherwise such
5617 			 * pointers will be plain PTR_TO_BTF_ID without flags
5618 			 * and will be allowed to be passed into helpers for
5619 			 * compat reasons.
5620 			 */
5621 			flag = PTR_UNTRUSTED;
5622 		}
5623 	} else {
5624 		/* Old compat. Deprecated */
5625 		clear_trusted_flags(&flag);
5626 	}
5627 
5628 	if (atype == BPF_READ && value_regno >= 0)
5629 		mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag);
5630 
5631 	return 0;
5632 }
5633 
5634 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
5635 				   struct bpf_reg_state *regs,
5636 				   int regno, int off, int size,
5637 				   enum bpf_access_type atype,
5638 				   int value_regno)
5639 {
5640 	struct bpf_reg_state *reg = regs + regno;
5641 	struct bpf_map *map = reg->map_ptr;
5642 	struct bpf_reg_state map_reg;
5643 	enum bpf_type_flag flag = 0;
5644 	const struct btf_type *t;
5645 	const char *tname;
5646 	u32 btf_id;
5647 	int ret;
5648 
5649 	if (!btf_vmlinux) {
5650 		verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
5651 		return -ENOTSUPP;
5652 	}
5653 
5654 	if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
5655 		verbose(env, "map_ptr access not supported for map type %d\n",
5656 			map->map_type);
5657 		return -ENOTSUPP;
5658 	}
5659 
5660 	t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
5661 	tname = btf_name_by_offset(btf_vmlinux, t->name_off);
5662 
5663 	if (!env->allow_ptr_leaks) {
5664 		verbose(env,
5665 			"'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
5666 			tname);
5667 		return -EPERM;
5668 	}
5669 
5670 	if (off < 0) {
5671 		verbose(env, "R%d is %s invalid negative access: off=%d\n",
5672 			regno, tname, off);
5673 		return -EACCES;
5674 	}
5675 
5676 	if (atype != BPF_READ) {
5677 		verbose(env, "only read from %s is supported\n", tname);
5678 		return -EACCES;
5679 	}
5680 
5681 	/* Simulate access to a PTR_TO_BTF_ID */
5682 	memset(&map_reg, 0, sizeof(map_reg));
5683 	mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0);
5684 	ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag, NULL);
5685 	if (ret < 0)
5686 		return ret;
5687 
5688 	if (value_regno >= 0)
5689 		mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag);
5690 
5691 	return 0;
5692 }
5693 
5694 /* Check that the stack access at the given offset is within bounds. The
5695  * maximum valid offset is -1.
5696  *
5697  * The minimum valid offset is -MAX_BPF_STACK for writes, and
5698  * -state->allocated_stack for reads.
5699  */
5700 static int check_stack_slot_within_bounds(int off,
5701 					  struct bpf_func_state *state,
5702 					  enum bpf_access_type t)
5703 {
5704 	int min_valid_off;
5705 
5706 	if (t == BPF_WRITE)
5707 		min_valid_off = -MAX_BPF_STACK;
5708 	else
5709 		min_valid_off = -state->allocated_stack;
5710 
5711 	if (off < min_valid_off || off > -1)
5712 		return -EACCES;
5713 	return 0;
5714 }
5715 
5716 /* Check that the stack access at 'regno + off' falls within the maximum stack
5717  * bounds.
5718  *
5719  * 'off' includes `regno->offset`, but not its dynamic part (if any).
5720  */
5721 static int check_stack_access_within_bounds(
5722 		struct bpf_verifier_env *env,
5723 		int regno, int off, int access_size,
5724 		enum bpf_access_src src, enum bpf_access_type type)
5725 {
5726 	struct bpf_reg_state *regs = cur_regs(env);
5727 	struct bpf_reg_state *reg = regs + regno;
5728 	struct bpf_func_state *state = func(env, reg);
5729 	int min_off, max_off;
5730 	int err;
5731 	char *err_extra;
5732 
5733 	if (src == ACCESS_HELPER)
5734 		/* We don't know if helpers are reading or writing (or both). */
5735 		err_extra = " indirect access to";
5736 	else if (type == BPF_READ)
5737 		err_extra = " read from";
5738 	else
5739 		err_extra = " write to";
5740 
5741 	if (tnum_is_const(reg->var_off)) {
5742 		min_off = reg->var_off.value + off;
5743 		if (access_size > 0)
5744 			max_off = min_off + access_size - 1;
5745 		else
5746 			max_off = min_off;
5747 	} else {
5748 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
5749 		    reg->smin_value <= -BPF_MAX_VAR_OFF) {
5750 			verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
5751 				err_extra, regno);
5752 			return -EACCES;
5753 		}
5754 		min_off = reg->smin_value + off;
5755 		if (access_size > 0)
5756 			max_off = reg->smax_value + off + access_size - 1;
5757 		else
5758 			max_off = min_off;
5759 	}
5760 
5761 	err = check_stack_slot_within_bounds(min_off, state, type);
5762 	if (!err)
5763 		err = check_stack_slot_within_bounds(max_off, state, type);
5764 
5765 	if (err) {
5766 		if (tnum_is_const(reg->var_off)) {
5767 			verbose(env, "invalid%s stack R%d off=%d size=%d\n",
5768 				err_extra, regno, off, access_size);
5769 		} else {
5770 			char tn_buf[48];
5771 
5772 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5773 			verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
5774 				err_extra, regno, tn_buf, access_size);
5775 		}
5776 	}
5777 	return err;
5778 }
5779 
5780 /* check whether memory at (regno + off) is accessible for t = (read | write)
5781  * if t==write, value_regno is a register which value is stored into memory
5782  * if t==read, value_regno is a register which will receive the value from memory
5783  * if t==write && value_regno==-1, some unknown value is stored into memory
5784  * if t==read && value_regno==-1, don't care what we read from memory
5785  */
5786 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
5787 			    int off, int bpf_size, enum bpf_access_type t,
5788 			    int value_regno, bool strict_alignment_once)
5789 {
5790 	struct bpf_reg_state *regs = cur_regs(env);
5791 	struct bpf_reg_state *reg = regs + regno;
5792 	struct bpf_func_state *state;
5793 	int size, err = 0;
5794 
5795 	size = bpf_size_to_bytes(bpf_size);
5796 	if (size < 0)
5797 		return size;
5798 
5799 	/* alignment checks will add in reg->off themselves */
5800 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
5801 	if (err)
5802 		return err;
5803 
5804 	/* for access checks, reg->off is just part of off */
5805 	off += reg->off;
5806 
5807 	if (reg->type == PTR_TO_MAP_KEY) {
5808 		if (t == BPF_WRITE) {
5809 			verbose(env, "write to change key R%d not allowed\n", regno);
5810 			return -EACCES;
5811 		}
5812 
5813 		err = check_mem_region_access(env, regno, off, size,
5814 					      reg->map_ptr->key_size, false);
5815 		if (err)
5816 			return err;
5817 		if (value_regno >= 0)
5818 			mark_reg_unknown(env, regs, value_regno);
5819 	} else if (reg->type == PTR_TO_MAP_VALUE) {
5820 		struct btf_field *kptr_field = NULL;
5821 
5822 		if (t == BPF_WRITE && value_regno >= 0 &&
5823 		    is_pointer_value(env, value_regno)) {
5824 			verbose(env, "R%d leaks addr into map\n", value_regno);
5825 			return -EACCES;
5826 		}
5827 		err = check_map_access_type(env, regno, off, size, t);
5828 		if (err)
5829 			return err;
5830 		err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT);
5831 		if (err)
5832 			return err;
5833 		if (tnum_is_const(reg->var_off))
5834 			kptr_field = btf_record_find(reg->map_ptr->record,
5835 						     off + reg->var_off.value, BPF_KPTR);
5836 		if (kptr_field) {
5837 			err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field);
5838 		} else if (t == BPF_READ && value_regno >= 0) {
5839 			struct bpf_map *map = reg->map_ptr;
5840 
5841 			/* if map is read-only, track its contents as scalars */
5842 			if (tnum_is_const(reg->var_off) &&
5843 			    bpf_map_is_rdonly(map) &&
5844 			    map->ops->map_direct_value_addr) {
5845 				int map_off = off + reg->var_off.value;
5846 				u64 val = 0;
5847 
5848 				err = bpf_map_direct_read(map, map_off, size,
5849 							  &val);
5850 				if (err)
5851 					return err;
5852 
5853 				regs[value_regno].type = SCALAR_VALUE;
5854 				__mark_reg_known(&regs[value_regno], val);
5855 			} else {
5856 				mark_reg_unknown(env, regs, value_regno);
5857 			}
5858 		}
5859 	} else if (base_type(reg->type) == PTR_TO_MEM) {
5860 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
5861 
5862 		if (type_may_be_null(reg->type)) {
5863 			verbose(env, "R%d invalid mem access '%s'\n", regno,
5864 				reg_type_str(env, reg->type));
5865 			return -EACCES;
5866 		}
5867 
5868 		if (t == BPF_WRITE && rdonly_mem) {
5869 			verbose(env, "R%d cannot write into %s\n",
5870 				regno, reg_type_str(env, reg->type));
5871 			return -EACCES;
5872 		}
5873 
5874 		if (t == BPF_WRITE && value_regno >= 0 &&
5875 		    is_pointer_value(env, value_regno)) {
5876 			verbose(env, "R%d leaks addr into mem\n", value_regno);
5877 			return -EACCES;
5878 		}
5879 
5880 		err = check_mem_region_access(env, regno, off, size,
5881 					      reg->mem_size, false);
5882 		if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem))
5883 			mark_reg_unknown(env, regs, value_regno);
5884 	} else if (reg->type == PTR_TO_CTX) {
5885 		enum bpf_reg_type reg_type = SCALAR_VALUE;
5886 		struct btf *btf = NULL;
5887 		u32 btf_id = 0;
5888 
5889 		if (t == BPF_WRITE && value_regno >= 0 &&
5890 		    is_pointer_value(env, value_regno)) {
5891 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
5892 			return -EACCES;
5893 		}
5894 
5895 		err = check_ptr_off_reg(env, reg, regno);
5896 		if (err < 0)
5897 			return err;
5898 
5899 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf,
5900 				       &btf_id);
5901 		if (err)
5902 			verbose_linfo(env, insn_idx, "; ");
5903 		if (!err && t == BPF_READ && value_regno >= 0) {
5904 			/* ctx access returns either a scalar, or a
5905 			 * PTR_TO_PACKET[_META,_END]. In the latter
5906 			 * case, we know the offset is zero.
5907 			 */
5908 			if (reg_type == SCALAR_VALUE) {
5909 				mark_reg_unknown(env, regs, value_regno);
5910 			} else {
5911 				mark_reg_known_zero(env, regs,
5912 						    value_regno);
5913 				if (type_may_be_null(reg_type))
5914 					regs[value_regno].id = ++env->id_gen;
5915 				/* A load of ctx field could have different
5916 				 * actual load size with the one encoded in the
5917 				 * insn. When the dst is PTR, it is for sure not
5918 				 * a sub-register.
5919 				 */
5920 				regs[value_regno].subreg_def = DEF_NOT_SUBREG;
5921 				if (base_type(reg_type) == PTR_TO_BTF_ID) {
5922 					regs[value_regno].btf = btf;
5923 					regs[value_regno].btf_id = btf_id;
5924 				}
5925 			}
5926 			regs[value_regno].type = reg_type;
5927 		}
5928 
5929 	} else if (reg->type == PTR_TO_STACK) {
5930 		/* Basic bounds checks. */
5931 		err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
5932 		if (err)
5933 			return err;
5934 
5935 		state = func(env, reg);
5936 		err = update_stack_depth(env, state, off);
5937 		if (err)
5938 			return err;
5939 
5940 		if (t == BPF_READ)
5941 			err = check_stack_read(env, regno, off, size,
5942 					       value_regno);
5943 		else
5944 			err = check_stack_write(env, regno, off, size,
5945 						value_regno, insn_idx);
5946 	} else if (reg_is_pkt_pointer(reg)) {
5947 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
5948 			verbose(env, "cannot write into packet\n");
5949 			return -EACCES;
5950 		}
5951 		if (t == BPF_WRITE && value_regno >= 0 &&
5952 		    is_pointer_value(env, value_regno)) {
5953 			verbose(env, "R%d leaks addr into packet\n",
5954 				value_regno);
5955 			return -EACCES;
5956 		}
5957 		err = check_packet_access(env, regno, off, size, false);
5958 		if (!err && t == BPF_READ && value_regno >= 0)
5959 			mark_reg_unknown(env, regs, value_regno);
5960 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
5961 		if (t == BPF_WRITE && value_regno >= 0 &&
5962 		    is_pointer_value(env, value_regno)) {
5963 			verbose(env, "R%d leaks addr into flow keys\n",
5964 				value_regno);
5965 			return -EACCES;
5966 		}
5967 
5968 		err = check_flow_keys_access(env, off, size);
5969 		if (!err && t == BPF_READ && value_regno >= 0)
5970 			mark_reg_unknown(env, regs, value_regno);
5971 	} else if (type_is_sk_pointer(reg->type)) {
5972 		if (t == BPF_WRITE) {
5973 			verbose(env, "R%d cannot write into %s\n",
5974 				regno, reg_type_str(env, reg->type));
5975 			return -EACCES;
5976 		}
5977 		err = check_sock_access(env, insn_idx, regno, off, size, t);
5978 		if (!err && value_regno >= 0)
5979 			mark_reg_unknown(env, regs, value_regno);
5980 	} else if (reg->type == PTR_TO_TP_BUFFER) {
5981 		err = check_tp_buffer_access(env, reg, regno, off, size);
5982 		if (!err && t == BPF_READ && value_regno >= 0)
5983 			mark_reg_unknown(env, regs, value_regno);
5984 	} else if (base_type(reg->type) == PTR_TO_BTF_ID &&
5985 		   !type_may_be_null(reg->type)) {
5986 		err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
5987 					      value_regno);
5988 	} else if (reg->type == CONST_PTR_TO_MAP) {
5989 		err = check_ptr_to_map_access(env, regs, regno, off, size, t,
5990 					      value_regno);
5991 	} else if (base_type(reg->type) == PTR_TO_BUF) {
5992 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
5993 		u32 *max_access;
5994 
5995 		if (rdonly_mem) {
5996 			if (t == BPF_WRITE) {
5997 				verbose(env, "R%d cannot write into %s\n",
5998 					regno, reg_type_str(env, reg->type));
5999 				return -EACCES;
6000 			}
6001 			max_access = &env->prog->aux->max_rdonly_access;
6002 		} else {
6003 			max_access = &env->prog->aux->max_rdwr_access;
6004 		}
6005 
6006 		err = check_buffer_access(env, reg, regno, off, size, false,
6007 					  max_access);
6008 
6009 		if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ))
6010 			mark_reg_unknown(env, regs, value_regno);
6011 	} else {
6012 		verbose(env, "R%d invalid mem access '%s'\n", regno,
6013 			reg_type_str(env, reg->type));
6014 		return -EACCES;
6015 	}
6016 
6017 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
6018 	    regs[value_regno].type == SCALAR_VALUE) {
6019 		/* b/h/w load zero-extends, mark upper bits as known 0 */
6020 		coerce_reg_to_size(&regs[value_regno], size);
6021 	}
6022 	return err;
6023 }
6024 
6025 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
6026 {
6027 	int load_reg;
6028 	int err;
6029 
6030 	switch (insn->imm) {
6031 	case BPF_ADD:
6032 	case BPF_ADD | BPF_FETCH:
6033 	case BPF_AND:
6034 	case BPF_AND | BPF_FETCH:
6035 	case BPF_OR:
6036 	case BPF_OR | BPF_FETCH:
6037 	case BPF_XOR:
6038 	case BPF_XOR | BPF_FETCH:
6039 	case BPF_XCHG:
6040 	case BPF_CMPXCHG:
6041 		break;
6042 	default:
6043 		verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
6044 		return -EINVAL;
6045 	}
6046 
6047 	if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
6048 		verbose(env, "invalid atomic operand size\n");
6049 		return -EINVAL;
6050 	}
6051 
6052 	/* check src1 operand */
6053 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
6054 	if (err)
6055 		return err;
6056 
6057 	/* check src2 operand */
6058 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
6059 	if (err)
6060 		return err;
6061 
6062 	if (insn->imm == BPF_CMPXCHG) {
6063 		/* Check comparison of R0 with memory location */
6064 		const u32 aux_reg = BPF_REG_0;
6065 
6066 		err = check_reg_arg(env, aux_reg, SRC_OP);
6067 		if (err)
6068 			return err;
6069 
6070 		if (is_pointer_value(env, aux_reg)) {
6071 			verbose(env, "R%d leaks addr into mem\n", aux_reg);
6072 			return -EACCES;
6073 		}
6074 	}
6075 
6076 	if (is_pointer_value(env, insn->src_reg)) {
6077 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
6078 		return -EACCES;
6079 	}
6080 
6081 	if (is_ctx_reg(env, insn->dst_reg) ||
6082 	    is_pkt_reg(env, insn->dst_reg) ||
6083 	    is_flow_key_reg(env, insn->dst_reg) ||
6084 	    is_sk_reg(env, insn->dst_reg)) {
6085 		verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
6086 			insn->dst_reg,
6087 			reg_type_str(env, reg_state(env, insn->dst_reg)->type));
6088 		return -EACCES;
6089 	}
6090 
6091 	if (insn->imm & BPF_FETCH) {
6092 		if (insn->imm == BPF_CMPXCHG)
6093 			load_reg = BPF_REG_0;
6094 		else
6095 			load_reg = insn->src_reg;
6096 
6097 		/* check and record load of old value */
6098 		err = check_reg_arg(env, load_reg, DST_OP);
6099 		if (err)
6100 			return err;
6101 	} else {
6102 		/* This instruction accesses a memory location but doesn't
6103 		 * actually load it into a register.
6104 		 */
6105 		load_reg = -1;
6106 	}
6107 
6108 	/* Check whether we can read the memory, with second call for fetch
6109 	 * case to simulate the register fill.
6110 	 */
6111 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
6112 			       BPF_SIZE(insn->code), BPF_READ, -1, true);
6113 	if (!err && load_reg >= 0)
6114 		err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
6115 				       BPF_SIZE(insn->code), BPF_READ, load_reg,
6116 				       true);
6117 	if (err)
6118 		return err;
6119 
6120 	/* Check whether we can write into the same memory. */
6121 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
6122 			       BPF_SIZE(insn->code), BPF_WRITE, -1, true);
6123 	if (err)
6124 		return err;
6125 
6126 	return 0;
6127 }
6128 
6129 /* When register 'regno' is used to read the stack (either directly or through
6130  * a helper function) make sure that it's within stack boundary and, depending
6131  * on the access type, that all elements of the stack are initialized.
6132  *
6133  * 'off' includes 'regno->off', but not its dynamic part (if any).
6134  *
6135  * All registers that have been spilled on the stack in the slots within the
6136  * read offsets are marked as read.
6137  */
6138 static int check_stack_range_initialized(
6139 		struct bpf_verifier_env *env, int regno, int off,
6140 		int access_size, bool zero_size_allowed,
6141 		enum bpf_access_src type, struct bpf_call_arg_meta *meta)
6142 {
6143 	struct bpf_reg_state *reg = reg_state(env, regno);
6144 	struct bpf_func_state *state = func(env, reg);
6145 	int err, min_off, max_off, i, j, slot, spi;
6146 	char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
6147 	enum bpf_access_type bounds_check_type;
6148 	/* Some accesses can write anything into the stack, others are
6149 	 * read-only.
6150 	 */
6151 	bool clobber = false;
6152 
6153 	if (access_size == 0 && !zero_size_allowed) {
6154 		verbose(env, "invalid zero-sized read\n");
6155 		return -EACCES;
6156 	}
6157 
6158 	if (type == ACCESS_HELPER) {
6159 		/* The bounds checks for writes are more permissive than for
6160 		 * reads. However, if raw_mode is not set, we'll do extra
6161 		 * checks below.
6162 		 */
6163 		bounds_check_type = BPF_WRITE;
6164 		clobber = true;
6165 	} else {
6166 		bounds_check_type = BPF_READ;
6167 	}
6168 	err = check_stack_access_within_bounds(env, regno, off, access_size,
6169 					       type, bounds_check_type);
6170 	if (err)
6171 		return err;
6172 
6173 
6174 	if (tnum_is_const(reg->var_off)) {
6175 		min_off = max_off = reg->var_off.value + off;
6176 	} else {
6177 		/* Variable offset is prohibited for unprivileged mode for
6178 		 * simplicity since it requires corresponding support in
6179 		 * Spectre masking for stack ALU.
6180 		 * See also retrieve_ptr_limit().
6181 		 */
6182 		if (!env->bypass_spec_v1) {
6183 			char tn_buf[48];
6184 
6185 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6186 			verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
6187 				regno, err_extra, tn_buf);
6188 			return -EACCES;
6189 		}
6190 		/* Only initialized buffer on stack is allowed to be accessed
6191 		 * with variable offset. With uninitialized buffer it's hard to
6192 		 * guarantee that whole memory is marked as initialized on
6193 		 * helper return since specific bounds are unknown what may
6194 		 * cause uninitialized stack leaking.
6195 		 */
6196 		if (meta && meta->raw_mode)
6197 			meta = NULL;
6198 
6199 		min_off = reg->smin_value + off;
6200 		max_off = reg->smax_value + off;
6201 	}
6202 
6203 	if (meta && meta->raw_mode) {
6204 		/* Ensure we won't be overwriting dynptrs when simulating byte
6205 		 * by byte access in check_helper_call using meta.access_size.
6206 		 * This would be a problem if we have a helper in the future
6207 		 * which takes:
6208 		 *
6209 		 *	helper(uninit_mem, len, dynptr)
6210 		 *
6211 		 * Now, uninint_mem may overlap with dynptr pointer. Hence, it
6212 		 * may end up writing to dynptr itself when touching memory from
6213 		 * arg 1. This can be relaxed on a case by case basis for known
6214 		 * safe cases, but reject due to the possibilitiy of aliasing by
6215 		 * default.
6216 		 */
6217 		for (i = min_off; i < max_off + access_size; i++) {
6218 			int stack_off = -i - 1;
6219 
6220 			spi = __get_spi(i);
6221 			/* raw_mode may write past allocated_stack */
6222 			if (state->allocated_stack <= stack_off)
6223 				continue;
6224 			if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) {
6225 				verbose(env, "potential write to dynptr at off=%d disallowed\n", i);
6226 				return -EACCES;
6227 			}
6228 		}
6229 		meta->access_size = access_size;
6230 		meta->regno = regno;
6231 		return 0;
6232 	}
6233 
6234 	for (i = min_off; i < max_off + access_size; i++) {
6235 		u8 *stype;
6236 
6237 		slot = -i - 1;
6238 		spi = slot / BPF_REG_SIZE;
6239 		if (state->allocated_stack <= slot)
6240 			goto err;
6241 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
6242 		if (*stype == STACK_MISC)
6243 			goto mark;
6244 		if ((*stype == STACK_ZERO) ||
6245 		    (*stype == STACK_INVALID && env->allow_uninit_stack)) {
6246 			if (clobber) {
6247 				/* helper can write anything into the stack */
6248 				*stype = STACK_MISC;
6249 			}
6250 			goto mark;
6251 		}
6252 
6253 		if (is_spilled_reg(&state->stack[spi]) &&
6254 		    (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
6255 		     env->allow_ptr_leaks)) {
6256 			if (clobber) {
6257 				__mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
6258 				for (j = 0; j < BPF_REG_SIZE; j++)
6259 					scrub_spilled_slot(&state->stack[spi].slot_type[j]);
6260 			}
6261 			goto mark;
6262 		}
6263 
6264 err:
6265 		if (tnum_is_const(reg->var_off)) {
6266 			verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
6267 				err_extra, regno, min_off, i - min_off, access_size);
6268 		} else {
6269 			char tn_buf[48];
6270 
6271 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6272 			verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
6273 				err_extra, regno, tn_buf, i - min_off, access_size);
6274 		}
6275 		return -EACCES;
6276 mark:
6277 		/* reading any byte out of 8-byte 'spill_slot' will cause
6278 		 * the whole slot to be marked as 'read'
6279 		 */
6280 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
6281 			      state->stack[spi].spilled_ptr.parent,
6282 			      REG_LIVE_READ64);
6283 		/* We do not set REG_LIVE_WRITTEN for stack slot, as we can not
6284 		 * be sure that whether stack slot is written to or not. Hence,
6285 		 * we must still conservatively propagate reads upwards even if
6286 		 * helper may write to the entire memory range.
6287 		 */
6288 	}
6289 	return update_stack_depth(env, state, min_off);
6290 }
6291 
6292 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
6293 				   int access_size, bool zero_size_allowed,
6294 				   struct bpf_call_arg_meta *meta)
6295 {
6296 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
6297 	u32 *max_access;
6298 
6299 	switch (base_type(reg->type)) {
6300 	case PTR_TO_PACKET:
6301 	case PTR_TO_PACKET_META:
6302 		return check_packet_access(env, regno, reg->off, access_size,
6303 					   zero_size_allowed);
6304 	case PTR_TO_MAP_KEY:
6305 		if (meta && meta->raw_mode) {
6306 			verbose(env, "R%d cannot write into %s\n", regno,
6307 				reg_type_str(env, reg->type));
6308 			return -EACCES;
6309 		}
6310 		return check_mem_region_access(env, regno, reg->off, access_size,
6311 					       reg->map_ptr->key_size, false);
6312 	case PTR_TO_MAP_VALUE:
6313 		if (check_map_access_type(env, regno, reg->off, access_size,
6314 					  meta && meta->raw_mode ? BPF_WRITE :
6315 					  BPF_READ))
6316 			return -EACCES;
6317 		return check_map_access(env, regno, reg->off, access_size,
6318 					zero_size_allowed, ACCESS_HELPER);
6319 	case PTR_TO_MEM:
6320 		if (type_is_rdonly_mem(reg->type)) {
6321 			if (meta && meta->raw_mode) {
6322 				verbose(env, "R%d cannot write into %s\n", regno,
6323 					reg_type_str(env, reg->type));
6324 				return -EACCES;
6325 			}
6326 		}
6327 		return check_mem_region_access(env, regno, reg->off,
6328 					       access_size, reg->mem_size,
6329 					       zero_size_allowed);
6330 	case PTR_TO_BUF:
6331 		if (type_is_rdonly_mem(reg->type)) {
6332 			if (meta && meta->raw_mode) {
6333 				verbose(env, "R%d cannot write into %s\n", regno,
6334 					reg_type_str(env, reg->type));
6335 				return -EACCES;
6336 			}
6337 
6338 			max_access = &env->prog->aux->max_rdonly_access;
6339 		} else {
6340 			max_access = &env->prog->aux->max_rdwr_access;
6341 		}
6342 		return check_buffer_access(env, reg, regno, reg->off,
6343 					   access_size, zero_size_allowed,
6344 					   max_access);
6345 	case PTR_TO_STACK:
6346 		return check_stack_range_initialized(
6347 				env,
6348 				regno, reg->off, access_size,
6349 				zero_size_allowed, ACCESS_HELPER, meta);
6350 	case PTR_TO_BTF_ID:
6351 		return check_ptr_to_btf_access(env, regs, regno, reg->off,
6352 					       access_size, BPF_READ, -1);
6353 	case PTR_TO_CTX:
6354 		/* in case the function doesn't know how to access the context,
6355 		 * (because we are in a program of type SYSCALL for example), we
6356 		 * can not statically check its size.
6357 		 * Dynamically check it now.
6358 		 */
6359 		if (!env->ops->convert_ctx_access) {
6360 			enum bpf_access_type atype = meta && meta->raw_mode ? BPF_WRITE : BPF_READ;
6361 			int offset = access_size - 1;
6362 
6363 			/* Allow zero-byte read from PTR_TO_CTX */
6364 			if (access_size == 0)
6365 				return zero_size_allowed ? 0 : -EACCES;
6366 
6367 			return check_mem_access(env, env->insn_idx, regno, offset, BPF_B,
6368 						atype, -1, false);
6369 		}
6370 
6371 		fallthrough;
6372 	default: /* scalar_value or invalid ptr */
6373 		/* Allow zero-byte read from NULL, regardless of pointer type */
6374 		if (zero_size_allowed && access_size == 0 &&
6375 		    register_is_null(reg))
6376 			return 0;
6377 
6378 		verbose(env, "R%d type=%s ", regno,
6379 			reg_type_str(env, reg->type));
6380 		verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK));
6381 		return -EACCES;
6382 	}
6383 }
6384 
6385 static int check_mem_size_reg(struct bpf_verifier_env *env,
6386 			      struct bpf_reg_state *reg, u32 regno,
6387 			      bool zero_size_allowed,
6388 			      struct bpf_call_arg_meta *meta)
6389 {
6390 	int err;
6391 
6392 	/* This is used to refine r0 return value bounds for helpers
6393 	 * that enforce this value as an upper bound on return values.
6394 	 * See do_refine_retval_range() for helpers that can refine
6395 	 * the return value. C type of helper is u32 so we pull register
6396 	 * bound from umax_value however, if negative verifier errors
6397 	 * out. Only upper bounds can be learned because retval is an
6398 	 * int type and negative retvals are allowed.
6399 	 */
6400 	meta->msize_max_value = reg->umax_value;
6401 
6402 	/* The register is SCALAR_VALUE; the access check
6403 	 * happens using its boundaries.
6404 	 */
6405 	if (!tnum_is_const(reg->var_off))
6406 		/* For unprivileged variable accesses, disable raw
6407 		 * mode so that the program is required to
6408 		 * initialize all the memory that the helper could
6409 		 * just partially fill up.
6410 		 */
6411 		meta = NULL;
6412 
6413 	if (reg->smin_value < 0) {
6414 		verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
6415 			regno);
6416 		return -EACCES;
6417 	}
6418 
6419 	if (reg->umin_value == 0) {
6420 		err = check_helper_mem_access(env, regno - 1, 0,
6421 					      zero_size_allowed,
6422 					      meta);
6423 		if (err)
6424 			return err;
6425 	}
6426 
6427 	if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
6428 		verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
6429 			regno);
6430 		return -EACCES;
6431 	}
6432 	err = check_helper_mem_access(env, regno - 1,
6433 				      reg->umax_value,
6434 				      zero_size_allowed, meta);
6435 	if (!err)
6436 		err = mark_chain_precision(env, regno);
6437 	return err;
6438 }
6439 
6440 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
6441 		   u32 regno, u32 mem_size)
6442 {
6443 	bool may_be_null = type_may_be_null(reg->type);
6444 	struct bpf_reg_state saved_reg;
6445 	struct bpf_call_arg_meta meta;
6446 	int err;
6447 
6448 	if (register_is_null(reg))
6449 		return 0;
6450 
6451 	memset(&meta, 0, sizeof(meta));
6452 	/* Assuming that the register contains a value check if the memory
6453 	 * access is safe. Temporarily save and restore the register's state as
6454 	 * the conversion shouldn't be visible to a caller.
6455 	 */
6456 	if (may_be_null) {
6457 		saved_reg = *reg;
6458 		mark_ptr_not_null_reg(reg);
6459 	}
6460 
6461 	err = check_helper_mem_access(env, regno, mem_size, true, &meta);
6462 	/* Check access for BPF_WRITE */
6463 	meta.raw_mode = true;
6464 	err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta);
6465 
6466 	if (may_be_null)
6467 		*reg = saved_reg;
6468 
6469 	return err;
6470 }
6471 
6472 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
6473 				    u32 regno)
6474 {
6475 	struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1];
6476 	bool may_be_null = type_may_be_null(mem_reg->type);
6477 	struct bpf_reg_state saved_reg;
6478 	struct bpf_call_arg_meta meta;
6479 	int err;
6480 
6481 	WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5);
6482 
6483 	memset(&meta, 0, sizeof(meta));
6484 
6485 	if (may_be_null) {
6486 		saved_reg = *mem_reg;
6487 		mark_ptr_not_null_reg(mem_reg);
6488 	}
6489 
6490 	err = check_mem_size_reg(env, reg, regno, true, &meta);
6491 	/* Check access for BPF_WRITE */
6492 	meta.raw_mode = true;
6493 	err = err ?: check_mem_size_reg(env, reg, regno, true, &meta);
6494 
6495 	if (may_be_null)
6496 		*mem_reg = saved_reg;
6497 	return err;
6498 }
6499 
6500 /* Implementation details:
6501  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL.
6502  * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL.
6503  * Two bpf_map_lookups (even with the same key) will have different reg->id.
6504  * Two separate bpf_obj_new will also have different reg->id.
6505  * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier
6506  * clears reg->id after value_or_null->value transition, since the verifier only
6507  * cares about the range of access to valid map value pointer and doesn't care
6508  * about actual address of the map element.
6509  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
6510  * reg->id > 0 after value_or_null->value transition. By doing so
6511  * two bpf_map_lookups will be considered two different pointers that
6512  * point to different bpf_spin_locks. Likewise for pointers to allocated objects
6513  * returned from bpf_obj_new.
6514  * The verifier allows taking only one bpf_spin_lock at a time to avoid
6515  * dead-locks.
6516  * Since only one bpf_spin_lock is allowed the checks are simpler than
6517  * reg_is_refcounted() logic. The verifier needs to remember only
6518  * one spin_lock instead of array of acquired_refs.
6519  * cur_state->active_lock remembers which map value element or allocated
6520  * object got locked and clears it after bpf_spin_unlock.
6521  */
6522 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
6523 			     bool is_lock)
6524 {
6525 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
6526 	struct bpf_verifier_state *cur = env->cur_state;
6527 	bool is_const = tnum_is_const(reg->var_off);
6528 	u64 val = reg->var_off.value;
6529 	struct bpf_map *map = NULL;
6530 	struct btf *btf = NULL;
6531 	struct btf_record *rec;
6532 
6533 	if (!is_const) {
6534 		verbose(env,
6535 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
6536 			regno);
6537 		return -EINVAL;
6538 	}
6539 	if (reg->type == PTR_TO_MAP_VALUE) {
6540 		map = reg->map_ptr;
6541 		if (!map->btf) {
6542 			verbose(env,
6543 				"map '%s' has to have BTF in order to use bpf_spin_lock\n",
6544 				map->name);
6545 			return -EINVAL;
6546 		}
6547 	} else {
6548 		btf = reg->btf;
6549 	}
6550 
6551 	rec = reg_btf_record(reg);
6552 	if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) {
6553 		verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local",
6554 			map ? map->name : "kptr");
6555 		return -EINVAL;
6556 	}
6557 	if (rec->spin_lock_off != val + reg->off) {
6558 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n",
6559 			val + reg->off, rec->spin_lock_off);
6560 		return -EINVAL;
6561 	}
6562 	if (is_lock) {
6563 		if (cur->active_lock.ptr) {
6564 			verbose(env,
6565 				"Locking two bpf_spin_locks are not allowed\n");
6566 			return -EINVAL;
6567 		}
6568 		if (map)
6569 			cur->active_lock.ptr = map;
6570 		else
6571 			cur->active_lock.ptr = btf;
6572 		cur->active_lock.id = reg->id;
6573 	} else {
6574 		void *ptr;
6575 
6576 		if (map)
6577 			ptr = map;
6578 		else
6579 			ptr = btf;
6580 
6581 		if (!cur->active_lock.ptr) {
6582 			verbose(env, "bpf_spin_unlock without taking a lock\n");
6583 			return -EINVAL;
6584 		}
6585 		if (cur->active_lock.ptr != ptr ||
6586 		    cur->active_lock.id != reg->id) {
6587 			verbose(env, "bpf_spin_unlock of different lock\n");
6588 			return -EINVAL;
6589 		}
6590 
6591 		invalidate_non_owning_refs(env);
6592 
6593 		cur->active_lock.ptr = NULL;
6594 		cur->active_lock.id = 0;
6595 	}
6596 	return 0;
6597 }
6598 
6599 static int process_timer_func(struct bpf_verifier_env *env, int regno,
6600 			      struct bpf_call_arg_meta *meta)
6601 {
6602 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
6603 	bool is_const = tnum_is_const(reg->var_off);
6604 	struct bpf_map *map = reg->map_ptr;
6605 	u64 val = reg->var_off.value;
6606 
6607 	if (!is_const) {
6608 		verbose(env,
6609 			"R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n",
6610 			regno);
6611 		return -EINVAL;
6612 	}
6613 	if (!map->btf) {
6614 		verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n",
6615 			map->name);
6616 		return -EINVAL;
6617 	}
6618 	if (!btf_record_has_field(map->record, BPF_TIMER)) {
6619 		verbose(env, "map '%s' has no valid bpf_timer\n", map->name);
6620 		return -EINVAL;
6621 	}
6622 	if (map->record->timer_off != val + reg->off) {
6623 		verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n",
6624 			val + reg->off, map->record->timer_off);
6625 		return -EINVAL;
6626 	}
6627 	if (meta->map_ptr) {
6628 		verbose(env, "verifier bug. Two map pointers in a timer helper\n");
6629 		return -EFAULT;
6630 	}
6631 	meta->map_uid = reg->map_uid;
6632 	meta->map_ptr = map;
6633 	return 0;
6634 }
6635 
6636 static int process_kptr_func(struct bpf_verifier_env *env, int regno,
6637 			     struct bpf_call_arg_meta *meta)
6638 {
6639 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
6640 	struct bpf_map *map_ptr = reg->map_ptr;
6641 	struct btf_field *kptr_field;
6642 	u32 kptr_off;
6643 
6644 	if (!tnum_is_const(reg->var_off)) {
6645 		verbose(env,
6646 			"R%d doesn't have constant offset. kptr has to be at the constant offset\n",
6647 			regno);
6648 		return -EINVAL;
6649 	}
6650 	if (!map_ptr->btf) {
6651 		verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n",
6652 			map_ptr->name);
6653 		return -EINVAL;
6654 	}
6655 	if (!btf_record_has_field(map_ptr->record, BPF_KPTR)) {
6656 		verbose(env, "map '%s' has no valid kptr\n", map_ptr->name);
6657 		return -EINVAL;
6658 	}
6659 
6660 	meta->map_ptr = map_ptr;
6661 	kptr_off = reg->off + reg->var_off.value;
6662 	kptr_field = btf_record_find(map_ptr->record, kptr_off, BPF_KPTR);
6663 	if (!kptr_field) {
6664 		verbose(env, "off=%d doesn't point to kptr\n", kptr_off);
6665 		return -EACCES;
6666 	}
6667 	if (kptr_field->type != BPF_KPTR_REF) {
6668 		verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off);
6669 		return -EACCES;
6670 	}
6671 	meta->kptr_field = kptr_field;
6672 	return 0;
6673 }
6674 
6675 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK
6676  * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR.
6677  *
6678  * In both cases we deal with the first 8 bytes, but need to mark the next 8
6679  * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of
6680  * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object.
6681  *
6682  * Mutability of bpf_dynptr is at two levels, one is at the level of struct
6683  * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct
6684  * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can
6685  * mutate the view of the dynptr and also possibly destroy it. In the latter
6686  * case, it cannot mutate the bpf_dynptr itself but it can still mutate the
6687  * memory that dynptr points to.
6688  *
6689  * The verifier will keep track both levels of mutation (bpf_dynptr's in
6690  * reg->type and the memory's in reg->dynptr.type), but there is no support for
6691  * readonly dynptr view yet, hence only the first case is tracked and checked.
6692  *
6693  * This is consistent with how C applies the const modifier to a struct object,
6694  * where the pointer itself inside bpf_dynptr becomes const but not what it
6695  * points to.
6696  *
6697  * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument
6698  * type, and declare it as 'const struct bpf_dynptr *' in their prototype.
6699  */
6700 static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx,
6701 			       enum bpf_arg_type arg_type)
6702 {
6703 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
6704 	int err;
6705 
6706 	/* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an
6707 	 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*):
6708 	 */
6709 	if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) {
6710 		verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n");
6711 		return -EFAULT;
6712 	}
6713 
6714 	/*  MEM_UNINIT - Points to memory that is an appropriate candidate for
6715 	 *		 constructing a mutable bpf_dynptr object.
6716 	 *
6717 	 *		 Currently, this is only possible with PTR_TO_STACK
6718 	 *		 pointing to a region of at least 16 bytes which doesn't
6719 	 *		 contain an existing bpf_dynptr.
6720 	 *
6721 	 *  MEM_RDONLY - Points to a initialized bpf_dynptr that will not be
6722 	 *		 mutated or destroyed. However, the memory it points to
6723 	 *		 may be mutated.
6724 	 *
6725 	 *  None       - Points to a initialized dynptr that can be mutated and
6726 	 *		 destroyed, including mutation of the memory it points
6727 	 *		 to.
6728 	 */
6729 	if (arg_type & MEM_UNINIT) {
6730 		int i;
6731 
6732 		if (!is_dynptr_reg_valid_uninit(env, reg)) {
6733 			verbose(env, "Dynptr has to be an uninitialized dynptr\n");
6734 			return -EINVAL;
6735 		}
6736 
6737 		/* we write BPF_DW bits (8 bytes) at a time */
6738 		for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) {
6739 			err = check_mem_access(env, insn_idx, regno,
6740 					       i, BPF_DW, BPF_WRITE, -1, false);
6741 			if (err)
6742 				return err;
6743 		}
6744 
6745 		err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx);
6746 	} else /* MEM_RDONLY and None case from above */ {
6747 		/* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */
6748 		if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) {
6749 			verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n");
6750 			return -EINVAL;
6751 		}
6752 
6753 		if (!is_dynptr_reg_valid_init(env, reg)) {
6754 			verbose(env,
6755 				"Expected an initialized dynptr as arg #%d\n",
6756 				regno);
6757 			return -EINVAL;
6758 		}
6759 
6760 		/* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */
6761 		if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) {
6762 			verbose(env,
6763 				"Expected a dynptr of type %s as arg #%d\n",
6764 				dynptr_type_str(arg_to_dynptr_type(arg_type)), regno);
6765 			return -EINVAL;
6766 		}
6767 
6768 		err = mark_dynptr_read(env, reg);
6769 	}
6770 	return err;
6771 }
6772 
6773 static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi)
6774 {
6775 	struct bpf_func_state *state = func(env, reg);
6776 
6777 	return state->stack[spi].spilled_ptr.ref_obj_id;
6778 }
6779 
6780 static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta)
6781 {
6782 	return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY);
6783 }
6784 
6785 static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta)
6786 {
6787 	return meta->kfunc_flags & KF_ITER_NEW;
6788 }
6789 
6790 static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta)
6791 {
6792 	return meta->kfunc_flags & KF_ITER_NEXT;
6793 }
6794 
6795 static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta)
6796 {
6797 	return meta->kfunc_flags & KF_ITER_DESTROY;
6798 }
6799 
6800 static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg)
6801 {
6802 	/* btf_check_iter_kfuncs() guarantees that first argument of any iter
6803 	 * kfunc is iter state pointer
6804 	 */
6805 	return arg == 0 && is_iter_kfunc(meta);
6806 }
6807 
6808 static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx,
6809 			    struct bpf_kfunc_call_arg_meta *meta)
6810 {
6811 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
6812 	const struct btf_type *t;
6813 	const struct btf_param *arg;
6814 	int spi, err, i, nr_slots;
6815 	u32 btf_id;
6816 
6817 	/* btf_check_iter_kfuncs() ensures we don't need to validate anything here */
6818 	arg = &btf_params(meta->func_proto)[0];
6819 	t = btf_type_skip_modifiers(meta->btf, arg->type, NULL);	/* PTR */
6820 	t = btf_type_skip_modifiers(meta->btf, t->type, &btf_id);	/* STRUCT */
6821 	nr_slots = t->size / BPF_REG_SIZE;
6822 
6823 	if (is_iter_new_kfunc(meta)) {
6824 		/* bpf_iter_<type>_new() expects pointer to uninit iter state */
6825 		if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) {
6826 			verbose(env, "expected uninitialized iter_%s as arg #%d\n",
6827 				iter_type_str(meta->btf, btf_id), regno);
6828 			return -EINVAL;
6829 		}
6830 
6831 		for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) {
6832 			err = check_mem_access(env, insn_idx, regno,
6833 					       i, BPF_DW, BPF_WRITE, -1, false);
6834 			if (err)
6835 				return err;
6836 		}
6837 
6838 		err = mark_stack_slots_iter(env, reg, insn_idx, meta->btf, btf_id, nr_slots);
6839 		if (err)
6840 			return err;
6841 	} else {
6842 		/* iter_next() or iter_destroy() expect initialized iter state*/
6843 		if (!is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots)) {
6844 			verbose(env, "expected an initialized iter_%s as arg #%d\n",
6845 				iter_type_str(meta->btf, btf_id), regno);
6846 			return -EINVAL;
6847 		}
6848 
6849 		spi = iter_get_spi(env, reg, nr_slots);
6850 		if (spi < 0)
6851 			return spi;
6852 
6853 		err = mark_iter_read(env, reg, spi, nr_slots);
6854 		if (err)
6855 			return err;
6856 
6857 		/* remember meta->iter info for process_iter_next_call() */
6858 		meta->iter.spi = spi;
6859 		meta->iter.frameno = reg->frameno;
6860 		meta->ref_obj_id = iter_ref_obj_id(env, reg, spi);
6861 
6862 		if (is_iter_destroy_kfunc(meta)) {
6863 			err = unmark_stack_slots_iter(env, reg, nr_slots);
6864 			if (err)
6865 				return err;
6866 		}
6867 	}
6868 
6869 	return 0;
6870 }
6871 
6872 /* process_iter_next_call() is called when verifier gets to iterator's next
6873  * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer
6874  * to it as just "iter_next()" in comments below.
6875  *
6876  * BPF verifier relies on a crucial contract for any iter_next()
6877  * implementation: it should *eventually* return NULL, and once that happens
6878  * it should keep returning NULL. That is, once iterator exhausts elements to
6879  * iterate, it should never reset or spuriously return new elements.
6880  *
6881  * With the assumption of such contract, process_iter_next_call() simulates
6882  * a fork in the verifier state to validate loop logic correctness and safety
6883  * without having to simulate infinite amount of iterations.
6884  *
6885  * In current state, we first assume that iter_next() returned NULL and
6886  * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such
6887  * conditions we should not form an infinite loop and should eventually reach
6888  * exit.
6889  *
6890  * Besides that, we also fork current state and enqueue it for later
6891  * verification. In a forked state we keep iterator state as ACTIVE
6892  * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We
6893  * also bump iteration depth to prevent erroneous infinite loop detection
6894  * later on (see iter_active_depths_differ() comment for details). In this
6895  * state we assume that we'll eventually loop back to another iter_next()
6896  * calls (it could be in exactly same location or in some other instruction,
6897  * it doesn't matter, we don't make any unnecessary assumptions about this,
6898  * everything revolves around iterator state in a stack slot, not which
6899  * instruction is calling iter_next()). When that happens, we either will come
6900  * to iter_next() with equivalent state and can conclude that next iteration
6901  * will proceed in exactly the same way as we just verified, so it's safe to
6902  * assume that loop converges. If not, we'll go on another iteration
6903  * simulation with a different input state, until all possible starting states
6904  * are validated or we reach maximum number of instructions limit.
6905  *
6906  * This way, we will either exhaustively discover all possible input states
6907  * that iterator loop can start with and eventually will converge, or we'll
6908  * effectively regress into bounded loop simulation logic and either reach
6909  * maximum number of instructions if loop is not provably convergent, or there
6910  * is some statically known limit on number of iterations (e.g., if there is
6911  * an explicit `if n > 100 then break;` statement somewhere in the loop).
6912  *
6913  * One very subtle but very important aspect is that we *always* simulate NULL
6914  * condition first (as the current state) before we simulate non-NULL case.
6915  * This has to do with intricacies of scalar precision tracking. By simulating
6916  * "exit condition" of iter_next() returning NULL first, we make sure all the
6917  * relevant precision marks *that will be set **after** we exit iterator loop*
6918  * are propagated backwards to common parent state of NULL and non-NULL
6919  * branches. Thanks to that, state equivalence checks done later in forked
6920  * state, when reaching iter_next() for ACTIVE iterator, can assume that
6921  * precision marks are finalized and won't change. Because simulating another
6922  * ACTIVE iterator iteration won't change them (because given same input
6923  * states we'll end up with exactly same output states which we are currently
6924  * comparing; and verification after the loop already propagated back what
6925  * needs to be **additionally** tracked as precise). It's subtle, grok
6926  * precision tracking for more intuitive understanding.
6927  */
6928 static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx,
6929 				  struct bpf_kfunc_call_arg_meta *meta)
6930 {
6931 	struct bpf_verifier_state *cur_st = env->cur_state, *queued_st;
6932 	struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr;
6933 	struct bpf_reg_state *cur_iter, *queued_iter;
6934 	int iter_frameno = meta->iter.frameno;
6935 	int iter_spi = meta->iter.spi;
6936 
6937 	BTF_TYPE_EMIT(struct bpf_iter);
6938 
6939 	cur_iter = &env->cur_state->frame[iter_frameno]->stack[iter_spi].spilled_ptr;
6940 
6941 	if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE &&
6942 	    cur_iter->iter.state != BPF_ITER_STATE_DRAINED) {
6943 		verbose(env, "verifier internal error: unexpected iterator state %d (%s)\n",
6944 			cur_iter->iter.state, iter_state_str(cur_iter->iter.state));
6945 		return -EFAULT;
6946 	}
6947 
6948 	if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) {
6949 		/* branch out active iter state */
6950 		queued_st = push_stack(env, insn_idx + 1, insn_idx, false);
6951 		if (!queued_st)
6952 			return -ENOMEM;
6953 
6954 		queued_iter = &queued_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr;
6955 		queued_iter->iter.state = BPF_ITER_STATE_ACTIVE;
6956 		queued_iter->iter.depth++;
6957 
6958 		queued_fr = queued_st->frame[queued_st->curframe];
6959 		mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]);
6960 	}
6961 
6962 	/* switch to DRAINED state, but keep the depth unchanged */
6963 	/* mark current iter state as drained and assume returned NULL */
6964 	cur_iter->iter.state = BPF_ITER_STATE_DRAINED;
6965 	__mark_reg_const_zero(&cur_fr->regs[BPF_REG_0]);
6966 
6967 	return 0;
6968 }
6969 
6970 static bool arg_type_is_mem_size(enum bpf_arg_type type)
6971 {
6972 	return type == ARG_CONST_SIZE ||
6973 	       type == ARG_CONST_SIZE_OR_ZERO;
6974 }
6975 
6976 static bool arg_type_is_release(enum bpf_arg_type type)
6977 {
6978 	return type & OBJ_RELEASE;
6979 }
6980 
6981 static bool arg_type_is_dynptr(enum bpf_arg_type type)
6982 {
6983 	return base_type(type) == ARG_PTR_TO_DYNPTR;
6984 }
6985 
6986 static int int_ptr_type_to_size(enum bpf_arg_type type)
6987 {
6988 	if (type == ARG_PTR_TO_INT)
6989 		return sizeof(u32);
6990 	else if (type == ARG_PTR_TO_LONG)
6991 		return sizeof(u64);
6992 
6993 	return -EINVAL;
6994 }
6995 
6996 static int resolve_map_arg_type(struct bpf_verifier_env *env,
6997 				 const struct bpf_call_arg_meta *meta,
6998 				 enum bpf_arg_type *arg_type)
6999 {
7000 	if (!meta->map_ptr) {
7001 		/* kernel subsystem misconfigured verifier */
7002 		verbose(env, "invalid map_ptr to access map->type\n");
7003 		return -EACCES;
7004 	}
7005 
7006 	switch (meta->map_ptr->map_type) {
7007 	case BPF_MAP_TYPE_SOCKMAP:
7008 	case BPF_MAP_TYPE_SOCKHASH:
7009 		if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
7010 			*arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
7011 		} else {
7012 			verbose(env, "invalid arg_type for sockmap/sockhash\n");
7013 			return -EINVAL;
7014 		}
7015 		break;
7016 	case BPF_MAP_TYPE_BLOOM_FILTER:
7017 		if (meta->func_id == BPF_FUNC_map_peek_elem)
7018 			*arg_type = ARG_PTR_TO_MAP_VALUE;
7019 		break;
7020 	default:
7021 		break;
7022 	}
7023 	return 0;
7024 }
7025 
7026 struct bpf_reg_types {
7027 	const enum bpf_reg_type types[10];
7028 	u32 *btf_id;
7029 };
7030 
7031 static const struct bpf_reg_types sock_types = {
7032 	.types = {
7033 		PTR_TO_SOCK_COMMON,
7034 		PTR_TO_SOCKET,
7035 		PTR_TO_TCP_SOCK,
7036 		PTR_TO_XDP_SOCK,
7037 	},
7038 };
7039 
7040 #ifdef CONFIG_NET
7041 static const struct bpf_reg_types btf_id_sock_common_types = {
7042 	.types = {
7043 		PTR_TO_SOCK_COMMON,
7044 		PTR_TO_SOCKET,
7045 		PTR_TO_TCP_SOCK,
7046 		PTR_TO_XDP_SOCK,
7047 		PTR_TO_BTF_ID,
7048 		PTR_TO_BTF_ID | PTR_TRUSTED,
7049 	},
7050 	.btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
7051 };
7052 #endif
7053 
7054 static const struct bpf_reg_types mem_types = {
7055 	.types = {
7056 		PTR_TO_STACK,
7057 		PTR_TO_PACKET,
7058 		PTR_TO_PACKET_META,
7059 		PTR_TO_MAP_KEY,
7060 		PTR_TO_MAP_VALUE,
7061 		PTR_TO_MEM,
7062 		PTR_TO_MEM | MEM_RINGBUF,
7063 		PTR_TO_BUF,
7064 		PTR_TO_BTF_ID | PTR_TRUSTED,
7065 	},
7066 };
7067 
7068 static const struct bpf_reg_types int_ptr_types = {
7069 	.types = {
7070 		PTR_TO_STACK,
7071 		PTR_TO_PACKET,
7072 		PTR_TO_PACKET_META,
7073 		PTR_TO_MAP_KEY,
7074 		PTR_TO_MAP_VALUE,
7075 	},
7076 };
7077 
7078 static const struct bpf_reg_types spin_lock_types = {
7079 	.types = {
7080 		PTR_TO_MAP_VALUE,
7081 		PTR_TO_BTF_ID | MEM_ALLOC,
7082 	}
7083 };
7084 
7085 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
7086 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
7087 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
7088 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } };
7089 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
7090 static const struct bpf_reg_types btf_ptr_types = {
7091 	.types = {
7092 		PTR_TO_BTF_ID,
7093 		PTR_TO_BTF_ID | PTR_TRUSTED,
7094 		PTR_TO_BTF_ID | MEM_RCU,
7095 	},
7096 };
7097 static const struct bpf_reg_types percpu_btf_ptr_types = {
7098 	.types = {
7099 		PTR_TO_BTF_ID | MEM_PERCPU,
7100 		PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED,
7101 	}
7102 };
7103 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
7104 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
7105 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
7106 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } };
7107 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } };
7108 static const struct bpf_reg_types dynptr_types = {
7109 	.types = {
7110 		PTR_TO_STACK,
7111 		CONST_PTR_TO_DYNPTR,
7112 	}
7113 };
7114 
7115 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
7116 	[ARG_PTR_TO_MAP_KEY]		= &mem_types,
7117 	[ARG_PTR_TO_MAP_VALUE]		= &mem_types,
7118 	[ARG_CONST_SIZE]		= &scalar_types,
7119 	[ARG_CONST_SIZE_OR_ZERO]	= &scalar_types,
7120 	[ARG_CONST_ALLOC_SIZE_OR_ZERO]	= &scalar_types,
7121 	[ARG_CONST_MAP_PTR]		= &const_map_ptr_types,
7122 	[ARG_PTR_TO_CTX]		= &context_types,
7123 	[ARG_PTR_TO_SOCK_COMMON]	= &sock_types,
7124 #ifdef CONFIG_NET
7125 	[ARG_PTR_TO_BTF_ID_SOCK_COMMON]	= &btf_id_sock_common_types,
7126 #endif
7127 	[ARG_PTR_TO_SOCKET]		= &fullsock_types,
7128 	[ARG_PTR_TO_BTF_ID]		= &btf_ptr_types,
7129 	[ARG_PTR_TO_SPIN_LOCK]		= &spin_lock_types,
7130 	[ARG_PTR_TO_MEM]		= &mem_types,
7131 	[ARG_PTR_TO_RINGBUF_MEM]	= &ringbuf_mem_types,
7132 	[ARG_PTR_TO_INT]		= &int_ptr_types,
7133 	[ARG_PTR_TO_LONG]		= &int_ptr_types,
7134 	[ARG_PTR_TO_PERCPU_BTF_ID]	= &percpu_btf_ptr_types,
7135 	[ARG_PTR_TO_FUNC]		= &func_ptr_types,
7136 	[ARG_PTR_TO_STACK]		= &stack_ptr_types,
7137 	[ARG_PTR_TO_CONST_STR]		= &const_str_ptr_types,
7138 	[ARG_PTR_TO_TIMER]		= &timer_types,
7139 	[ARG_PTR_TO_KPTR]		= &kptr_types,
7140 	[ARG_PTR_TO_DYNPTR]		= &dynptr_types,
7141 };
7142 
7143 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
7144 			  enum bpf_arg_type arg_type,
7145 			  const u32 *arg_btf_id,
7146 			  struct bpf_call_arg_meta *meta)
7147 {
7148 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7149 	enum bpf_reg_type expected, type = reg->type;
7150 	const struct bpf_reg_types *compatible;
7151 	int i, j;
7152 
7153 	compatible = compatible_reg_types[base_type(arg_type)];
7154 	if (!compatible) {
7155 		verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
7156 		return -EFAULT;
7157 	}
7158 
7159 	/* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY,
7160 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY
7161 	 *
7162 	 * Same for MAYBE_NULL:
7163 	 *
7164 	 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL,
7165 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL
7166 	 *
7167 	 * Therefore we fold these flags depending on the arg_type before comparison.
7168 	 */
7169 	if (arg_type & MEM_RDONLY)
7170 		type &= ~MEM_RDONLY;
7171 	if (arg_type & PTR_MAYBE_NULL)
7172 		type &= ~PTR_MAYBE_NULL;
7173 
7174 	if (meta->func_id == BPF_FUNC_kptr_xchg && type & MEM_ALLOC)
7175 		type &= ~MEM_ALLOC;
7176 
7177 	for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
7178 		expected = compatible->types[i];
7179 		if (expected == NOT_INIT)
7180 			break;
7181 
7182 		if (type == expected)
7183 			goto found;
7184 	}
7185 
7186 	verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type));
7187 	for (j = 0; j + 1 < i; j++)
7188 		verbose(env, "%s, ", reg_type_str(env, compatible->types[j]));
7189 	verbose(env, "%s\n", reg_type_str(env, compatible->types[j]));
7190 	return -EACCES;
7191 
7192 found:
7193 	if (base_type(reg->type) != PTR_TO_BTF_ID)
7194 		return 0;
7195 
7196 	if (compatible == &mem_types) {
7197 		if (!(arg_type & MEM_RDONLY)) {
7198 			verbose(env,
7199 				"%s() may write into memory pointed by R%d type=%s\n",
7200 				func_id_name(meta->func_id),
7201 				regno, reg_type_str(env, reg->type));
7202 			return -EACCES;
7203 		}
7204 		return 0;
7205 	}
7206 
7207 	switch ((int)reg->type) {
7208 	case PTR_TO_BTF_ID:
7209 	case PTR_TO_BTF_ID | PTR_TRUSTED:
7210 	case PTR_TO_BTF_ID | MEM_RCU:
7211 	case PTR_TO_BTF_ID | PTR_MAYBE_NULL:
7212 	case PTR_TO_BTF_ID | PTR_MAYBE_NULL | MEM_RCU:
7213 	{
7214 		/* For bpf_sk_release, it needs to match against first member
7215 		 * 'struct sock_common', hence make an exception for it. This
7216 		 * allows bpf_sk_release to work for multiple socket types.
7217 		 */
7218 		bool strict_type_match = arg_type_is_release(arg_type) &&
7219 					 meta->func_id != BPF_FUNC_sk_release;
7220 
7221 		if (type_may_be_null(reg->type) &&
7222 		    (!type_may_be_null(arg_type) || arg_type_is_release(arg_type))) {
7223 			verbose(env, "Possibly NULL pointer passed to helper arg%d\n", regno);
7224 			return -EACCES;
7225 		}
7226 
7227 		if (!arg_btf_id) {
7228 			if (!compatible->btf_id) {
7229 				verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
7230 				return -EFAULT;
7231 			}
7232 			arg_btf_id = compatible->btf_id;
7233 		}
7234 
7235 		if (meta->func_id == BPF_FUNC_kptr_xchg) {
7236 			if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
7237 				return -EACCES;
7238 		} else {
7239 			if (arg_btf_id == BPF_PTR_POISON) {
7240 				verbose(env, "verifier internal error:");
7241 				verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n",
7242 					regno);
7243 				return -EACCES;
7244 			}
7245 
7246 			if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
7247 						  btf_vmlinux, *arg_btf_id,
7248 						  strict_type_match)) {
7249 				verbose(env, "R%d is of type %s but %s is expected\n",
7250 					regno, btf_type_name(reg->btf, reg->btf_id),
7251 					btf_type_name(btf_vmlinux, *arg_btf_id));
7252 				return -EACCES;
7253 			}
7254 		}
7255 		break;
7256 	}
7257 	case PTR_TO_BTF_ID | MEM_ALLOC:
7258 		if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock &&
7259 		    meta->func_id != BPF_FUNC_kptr_xchg) {
7260 			verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n");
7261 			return -EFAULT;
7262 		}
7263 		/* Handled by helper specific checks */
7264 		break;
7265 	case PTR_TO_BTF_ID | MEM_PERCPU:
7266 	case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED:
7267 		/* Handled by helper specific checks */
7268 		break;
7269 	default:
7270 		verbose(env, "verifier internal error: invalid PTR_TO_BTF_ID register for type match\n");
7271 		return -EFAULT;
7272 	}
7273 	return 0;
7274 }
7275 
7276 static struct btf_field *
7277 reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields)
7278 {
7279 	struct btf_field *field;
7280 	struct btf_record *rec;
7281 
7282 	rec = reg_btf_record(reg);
7283 	if (!rec)
7284 		return NULL;
7285 
7286 	field = btf_record_find(rec, off, fields);
7287 	if (!field)
7288 		return NULL;
7289 
7290 	return field;
7291 }
7292 
7293 int check_func_arg_reg_off(struct bpf_verifier_env *env,
7294 			   const struct bpf_reg_state *reg, int regno,
7295 			   enum bpf_arg_type arg_type)
7296 {
7297 	u32 type = reg->type;
7298 
7299 	/* When referenced register is passed to release function, its fixed
7300 	 * offset must be 0.
7301 	 *
7302 	 * We will check arg_type_is_release reg has ref_obj_id when storing
7303 	 * meta->release_regno.
7304 	 */
7305 	if (arg_type_is_release(arg_type)) {
7306 		/* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it
7307 		 * may not directly point to the object being released, but to
7308 		 * dynptr pointing to such object, which might be at some offset
7309 		 * on the stack. In that case, we simply to fallback to the
7310 		 * default handling.
7311 		 */
7312 		if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK)
7313 			return 0;
7314 
7315 		if ((type_is_ptr_alloc_obj(type) || type_is_non_owning_ref(type)) && reg->off) {
7316 			if (reg_find_field_offset(reg, reg->off, BPF_GRAPH_NODE_OR_ROOT))
7317 				return __check_ptr_off_reg(env, reg, regno, true);
7318 
7319 			verbose(env, "R%d must have zero offset when passed to release func\n",
7320 				regno);
7321 			verbose(env, "No graph node or root found at R%d type:%s off:%d\n", regno,
7322 				btf_type_name(reg->btf, reg->btf_id), reg->off);
7323 			return -EINVAL;
7324 		}
7325 
7326 		/* Doing check_ptr_off_reg check for the offset will catch this
7327 		 * because fixed_off_ok is false, but checking here allows us
7328 		 * to give the user a better error message.
7329 		 */
7330 		if (reg->off) {
7331 			verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n",
7332 				regno);
7333 			return -EINVAL;
7334 		}
7335 		return __check_ptr_off_reg(env, reg, regno, false);
7336 	}
7337 
7338 	switch (type) {
7339 	/* Pointer types where both fixed and variable offset is explicitly allowed: */
7340 	case PTR_TO_STACK:
7341 	case PTR_TO_PACKET:
7342 	case PTR_TO_PACKET_META:
7343 	case PTR_TO_MAP_KEY:
7344 	case PTR_TO_MAP_VALUE:
7345 	case PTR_TO_MEM:
7346 	case PTR_TO_MEM | MEM_RDONLY:
7347 	case PTR_TO_MEM | MEM_RINGBUF:
7348 	case PTR_TO_BUF:
7349 	case PTR_TO_BUF | MEM_RDONLY:
7350 	case SCALAR_VALUE:
7351 		return 0;
7352 	/* All the rest must be rejected, except PTR_TO_BTF_ID which allows
7353 	 * fixed offset.
7354 	 */
7355 	case PTR_TO_BTF_ID:
7356 	case PTR_TO_BTF_ID | MEM_ALLOC:
7357 	case PTR_TO_BTF_ID | PTR_TRUSTED:
7358 	case PTR_TO_BTF_ID | MEM_RCU:
7359 	case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF:
7360 		/* When referenced PTR_TO_BTF_ID is passed to release function,
7361 		 * its fixed offset must be 0. In the other cases, fixed offset
7362 		 * can be non-zero. This was already checked above. So pass
7363 		 * fixed_off_ok as true to allow fixed offset for all other
7364 		 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we
7365 		 * still need to do checks instead of returning.
7366 		 */
7367 		return __check_ptr_off_reg(env, reg, regno, true);
7368 	default:
7369 		return __check_ptr_off_reg(env, reg, regno, false);
7370 	}
7371 }
7372 
7373 static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env,
7374 						const struct bpf_func_proto *fn,
7375 						struct bpf_reg_state *regs)
7376 {
7377 	struct bpf_reg_state *state = NULL;
7378 	int i;
7379 
7380 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++)
7381 		if (arg_type_is_dynptr(fn->arg_type[i])) {
7382 			if (state) {
7383 				verbose(env, "verifier internal error: multiple dynptr args\n");
7384 				return NULL;
7385 			}
7386 			state = &regs[BPF_REG_1 + i];
7387 		}
7388 
7389 	if (!state)
7390 		verbose(env, "verifier internal error: no dynptr arg found\n");
7391 
7392 	return state;
7393 }
7394 
7395 static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
7396 {
7397 	struct bpf_func_state *state = func(env, reg);
7398 	int spi;
7399 
7400 	if (reg->type == CONST_PTR_TO_DYNPTR)
7401 		return reg->id;
7402 	spi = dynptr_get_spi(env, reg);
7403 	if (spi < 0)
7404 		return spi;
7405 	return state->stack[spi].spilled_ptr.id;
7406 }
7407 
7408 static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
7409 {
7410 	struct bpf_func_state *state = func(env, reg);
7411 	int spi;
7412 
7413 	if (reg->type == CONST_PTR_TO_DYNPTR)
7414 		return reg->ref_obj_id;
7415 	spi = dynptr_get_spi(env, reg);
7416 	if (spi < 0)
7417 		return spi;
7418 	return state->stack[spi].spilled_ptr.ref_obj_id;
7419 }
7420 
7421 static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env,
7422 					    struct bpf_reg_state *reg)
7423 {
7424 	struct bpf_func_state *state = func(env, reg);
7425 	int spi;
7426 
7427 	if (reg->type == CONST_PTR_TO_DYNPTR)
7428 		return reg->dynptr.type;
7429 
7430 	spi = __get_spi(reg->off);
7431 	if (spi < 0) {
7432 		verbose(env, "verifier internal error: invalid spi when querying dynptr type\n");
7433 		return BPF_DYNPTR_TYPE_INVALID;
7434 	}
7435 
7436 	return state->stack[spi].spilled_ptr.dynptr.type;
7437 }
7438 
7439 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
7440 			  struct bpf_call_arg_meta *meta,
7441 			  const struct bpf_func_proto *fn,
7442 			  int insn_idx)
7443 {
7444 	u32 regno = BPF_REG_1 + arg;
7445 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7446 	enum bpf_arg_type arg_type = fn->arg_type[arg];
7447 	enum bpf_reg_type type = reg->type;
7448 	u32 *arg_btf_id = NULL;
7449 	int err = 0;
7450 
7451 	if (arg_type == ARG_DONTCARE)
7452 		return 0;
7453 
7454 	err = check_reg_arg(env, regno, SRC_OP);
7455 	if (err)
7456 		return err;
7457 
7458 	if (arg_type == ARG_ANYTHING) {
7459 		if (is_pointer_value(env, regno)) {
7460 			verbose(env, "R%d leaks addr into helper function\n",
7461 				regno);
7462 			return -EACCES;
7463 		}
7464 		return 0;
7465 	}
7466 
7467 	if (type_is_pkt_pointer(type) &&
7468 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
7469 		verbose(env, "helper access to the packet is not allowed\n");
7470 		return -EACCES;
7471 	}
7472 
7473 	if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) {
7474 		err = resolve_map_arg_type(env, meta, &arg_type);
7475 		if (err)
7476 			return err;
7477 	}
7478 
7479 	if (register_is_null(reg) && type_may_be_null(arg_type))
7480 		/* A NULL register has a SCALAR_VALUE type, so skip
7481 		 * type checking.
7482 		 */
7483 		goto skip_type_check;
7484 
7485 	/* arg_btf_id and arg_size are in a union. */
7486 	if (base_type(arg_type) == ARG_PTR_TO_BTF_ID ||
7487 	    base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK)
7488 		arg_btf_id = fn->arg_btf_id[arg];
7489 
7490 	err = check_reg_type(env, regno, arg_type, arg_btf_id, meta);
7491 	if (err)
7492 		return err;
7493 
7494 	err = check_func_arg_reg_off(env, reg, regno, arg_type);
7495 	if (err)
7496 		return err;
7497 
7498 skip_type_check:
7499 	if (arg_type_is_release(arg_type)) {
7500 		if (arg_type_is_dynptr(arg_type)) {
7501 			struct bpf_func_state *state = func(env, reg);
7502 			int spi;
7503 
7504 			/* Only dynptr created on stack can be released, thus
7505 			 * the get_spi and stack state checks for spilled_ptr
7506 			 * should only be done before process_dynptr_func for
7507 			 * PTR_TO_STACK.
7508 			 */
7509 			if (reg->type == PTR_TO_STACK) {
7510 				spi = dynptr_get_spi(env, reg);
7511 				if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) {
7512 					verbose(env, "arg %d is an unacquired reference\n", regno);
7513 					return -EINVAL;
7514 				}
7515 			} else {
7516 				verbose(env, "cannot release unowned const bpf_dynptr\n");
7517 				return -EINVAL;
7518 			}
7519 		} else if (!reg->ref_obj_id && !register_is_null(reg)) {
7520 			verbose(env, "R%d must be referenced when passed to release function\n",
7521 				regno);
7522 			return -EINVAL;
7523 		}
7524 		if (meta->release_regno) {
7525 			verbose(env, "verifier internal error: more than one release argument\n");
7526 			return -EFAULT;
7527 		}
7528 		meta->release_regno = regno;
7529 	}
7530 
7531 	if (reg->ref_obj_id) {
7532 		if (meta->ref_obj_id) {
7533 			verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
7534 				regno, reg->ref_obj_id,
7535 				meta->ref_obj_id);
7536 			return -EFAULT;
7537 		}
7538 		meta->ref_obj_id = reg->ref_obj_id;
7539 	}
7540 
7541 	switch (base_type(arg_type)) {
7542 	case ARG_CONST_MAP_PTR:
7543 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
7544 		if (meta->map_ptr) {
7545 			/* Use map_uid (which is unique id of inner map) to reject:
7546 			 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
7547 			 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
7548 			 * if (inner_map1 && inner_map2) {
7549 			 *     timer = bpf_map_lookup_elem(inner_map1);
7550 			 *     if (timer)
7551 			 *         // mismatch would have been allowed
7552 			 *         bpf_timer_init(timer, inner_map2);
7553 			 * }
7554 			 *
7555 			 * Comparing map_ptr is enough to distinguish normal and outer maps.
7556 			 */
7557 			if (meta->map_ptr != reg->map_ptr ||
7558 			    meta->map_uid != reg->map_uid) {
7559 				verbose(env,
7560 					"timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
7561 					meta->map_uid, reg->map_uid);
7562 				return -EINVAL;
7563 			}
7564 		}
7565 		meta->map_ptr = reg->map_ptr;
7566 		meta->map_uid = reg->map_uid;
7567 		break;
7568 	case ARG_PTR_TO_MAP_KEY:
7569 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
7570 		 * check that [key, key + map->key_size) are within
7571 		 * stack limits and initialized
7572 		 */
7573 		if (!meta->map_ptr) {
7574 			/* in function declaration map_ptr must come before
7575 			 * map_key, so that it's verified and known before
7576 			 * we have to check map_key here. Otherwise it means
7577 			 * that kernel subsystem misconfigured verifier
7578 			 */
7579 			verbose(env, "invalid map_ptr to access map->key\n");
7580 			return -EACCES;
7581 		}
7582 		err = check_helper_mem_access(env, regno,
7583 					      meta->map_ptr->key_size, false,
7584 					      NULL);
7585 		break;
7586 	case ARG_PTR_TO_MAP_VALUE:
7587 		if (type_may_be_null(arg_type) && register_is_null(reg))
7588 			return 0;
7589 
7590 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
7591 		 * check [value, value + map->value_size) validity
7592 		 */
7593 		if (!meta->map_ptr) {
7594 			/* kernel subsystem misconfigured verifier */
7595 			verbose(env, "invalid map_ptr to access map->value\n");
7596 			return -EACCES;
7597 		}
7598 		meta->raw_mode = arg_type & MEM_UNINIT;
7599 		err = check_helper_mem_access(env, regno,
7600 					      meta->map_ptr->value_size, false,
7601 					      meta);
7602 		break;
7603 	case ARG_PTR_TO_PERCPU_BTF_ID:
7604 		if (!reg->btf_id) {
7605 			verbose(env, "Helper has invalid btf_id in R%d\n", regno);
7606 			return -EACCES;
7607 		}
7608 		meta->ret_btf = reg->btf;
7609 		meta->ret_btf_id = reg->btf_id;
7610 		break;
7611 	case ARG_PTR_TO_SPIN_LOCK:
7612 		if (in_rbtree_lock_required_cb(env)) {
7613 			verbose(env, "can't spin_{lock,unlock} in rbtree cb\n");
7614 			return -EACCES;
7615 		}
7616 		if (meta->func_id == BPF_FUNC_spin_lock) {
7617 			err = process_spin_lock(env, regno, true);
7618 			if (err)
7619 				return err;
7620 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
7621 			err = process_spin_lock(env, regno, false);
7622 			if (err)
7623 				return err;
7624 		} else {
7625 			verbose(env, "verifier internal error\n");
7626 			return -EFAULT;
7627 		}
7628 		break;
7629 	case ARG_PTR_TO_TIMER:
7630 		err = process_timer_func(env, regno, meta);
7631 		if (err)
7632 			return err;
7633 		break;
7634 	case ARG_PTR_TO_FUNC:
7635 		meta->subprogno = reg->subprogno;
7636 		break;
7637 	case ARG_PTR_TO_MEM:
7638 		/* The access to this pointer is only checked when we hit the
7639 		 * next is_mem_size argument below.
7640 		 */
7641 		meta->raw_mode = arg_type & MEM_UNINIT;
7642 		if (arg_type & MEM_FIXED_SIZE) {
7643 			err = check_helper_mem_access(env, regno,
7644 						      fn->arg_size[arg], false,
7645 						      meta);
7646 		}
7647 		break;
7648 	case ARG_CONST_SIZE:
7649 		err = check_mem_size_reg(env, reg, regno, false, meta);
7650 		break;
7651 	case ARG_CONST_SIZE_OR_ZERO:
7652 		err = check_mem_size_reg(env, reg, regno, true, meta);
7653 		break;
7654 	case ARG_PTR_TO_DYNPTR:
7655 		err = process_dynptr_func(env, regno, insn_idx, arg_type);
7656 		if (err)
7657 			return err;
7658 		break;
7659 	case ARG_CONST_ALLOC_SIZE_OR_ZERO:
7660 		if (!tnum_is_const(reg->var_off)) {
7661 			verbose(env, "R%d is not a known constant'\n",
7662 				regno);
7663 			return -EACCES;
7664 		}
7665 		meta->mem_size = reg->var_off.value;
7666 		err = mark_chain_precision(env, regno);
7667 		if (err)
7668 			return err;
7669 		break;
7670 	case ARG_PTR_TO_INT:
7671 	case ARG_PTR_TO_LONG:
7672 	{
7673 		int size = int_ptr_type_to_size(arg_type);
7674 
7675 		err = check_helper_mem_access(env, regno, size, false, meta);
7676 		if (err)
7677 			return err;
7678 		err = check_ptr_alignment(env, reg, 0, size, true);
7679 		break;
7680 	}
7681 	case ARG_PTR_TO_CONST_STR:
7682 	{
7683 		struct bpf_map *map = reg->map_ptr;
7684 		int map_off;
7685 		u64 map_addr;
7686 		char *str_ptr;
7687 
7688 		if (!bpf_map_is_rdonly(map)) {
7689 			verbose(env, "R%d does not point to a readonly map'\n", regno);
7690 			return -EACCES;
7691 		}
7692 
7693 		if (!tnum_is_const(reg->var_off)) {
7694 			verbose(env, "R%d is not a constant address'\n", regno);
7695 			return -EACCES;
7696 		}
7697 
7698 		if (!map->ops->map_direct_value_addr) {
7699 			verbose(env, "no direct value access support for this map type\n");
7700 			return -EACCES;
7701 		}
7702 
7703 		err = check_map_access(env, regno, reg->off,
7704 				       map->value_size - reg->off, false,
7705 				       ACCESS_HELPER);
7706 		if (err)
7707 			return err;
7708 
7709 		map_off = reg->off + reg->var_off.value;
7710 		err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
7711 		if (err) {
7712 			verbose(env, "direct value access on string failed\n");
7713 			return err;
7714 		}
7715 
7716 		str_ptr = (char *)(long)(map_addr);
7717 		if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
7718 			verbose(env, "string is not zero-terminated\n");
7719 			return -EINVAL;
7720 		}
7721 		break;
7722 	}
7723 	case ARG_PTR_TO_KPTR:
7724 		err = process_kptr_func(env, regno, meta);
7725 		if (err)
7726 			return err;
7727 		break;
7728 	}
7729 
7730 	return err;
7731 }
7732 
7733 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
7734 {
7735 	enum bpf_attach_type eatype = env->prog->expected_attach_type;
7736 	enum bpf_prog_type type = resolve_prog_type(env->prog);
7737 
7738 	if (func_id != BPF_FUNC_map_update_elem)
7739 		return false;
7740 
7741 	/* It's not possible to get access to a locked struct sock in these
7742 	 * contexts, so updating is safe.
7743 	 */
7744 	switch (type) {
7745 	case BPF_PROG_TYPE_TRACING:
7746 		if (eatype == BPF_TRACE_ITER)
7747 			return true;
7748 		break;
7749 	case BPF_PROG_TYPE_SOCKET_FILTER:
7750 	case BPF_PROG_TYPE_SCHED_CLS:
7751 	case BPF_PROG_TYPE_SCHED_ACT:
7752 	case BPF_PROG_TYPE_XDP:
7753 	case BPF_PROG_TYPE_SK_REUSEPORT:
7754 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
7755 	case BPF_PROG_TYPE_SK_LOOKUP:
7756 		return true;
7757 	default:
7758 		break;
7759 	}
7760 
7761 	verbose(env, "cannot update sockmap in this context\n");
7762 	return false;
7763 }
7764 
7765 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
7766 {
7767 	return env->prog->jit_requested &&
7768 	       bpf_jit_supports_subprog_tailcalls();
7769 }
7770 
7771 static int check_map_func_compatibility(struct bpf_verifier_env *env,
7772 					struct bpf_map *map, int func_id)
7773 {
7774 	if (!map)
7775 		return 0;
7776 
7777 	/* We need a two way check, first is from map perspective ... */
7778 	switch (map->map_type) {
7779 	case BPF_MAP_TYPE_PROG_ARRAY:
7780 		if (func_id != BPF_FUNC_tail_call)
7781 			goto error;
7782 		break;
7783 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
7784 		if (func_id != BPF_FUNC_perf_event_read &&
7785 		    func_id != BPF_FUNC_perf_event_output &&
7786 		    func_id != BPF_FUNC_skb_output &&
7787 		    func_id != BPF_FUNC_perf_event_read_value &&
7788 		    func_id != BPF_FUNC_xdp_output)
7789 			goto error;
7790 		break;
7791 	case BPF_MAP_TYPE_RINGBUF:
7792 		if (func_id != BPF_FUNC_ringbuf_output &&
7793 		    func_id != BPF_FUNC_ringbuf_reserve &&
7794 		    func_id != BPF_FUNC_ringbuf_query &&
7795 		    func_id != BPF_FUNC_ringbuf_reserve_dynptr &&
7796 		    func_id != BPF_FUNC_ringbuf_submit_dynptr &&
7797 		    func_id != BPF_FUNC_ringbuf_discard_dynptr)
7798 			goto error;
7799 		break;
7800 	case BPF_MAP_TYPE_USER_RINGBUF:
7801 		if (func_id != BPF_FUNC_user_ringbuf_drain)
7802 			goto error;
7803 		break;
7804 	case BPF_MAP_TYPE_STACK_TRACE:
7805 		if (func_id != BPF_FUNC_get_stackid)
7806 			goto error;
7807 		break;
7808 	case BPF_MAP_TYPE_CGROUP_ARRAY:
7809 		if (func_id != BPF_FUNC_skb_under_cgroup &&
7810 		    func_id != BPF_FUNC_current_task_under_cgroup)
7811 			goto error;
7812 		break;
7813 	case BPF_MAP_TYPE_CGROUP_STORAGE:
7814 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
7815 		if (func_id != BPF_FUNC_get_local_storage)
7816 			goto error;
7817 		break;
7818 	case BPF_MAP_TYPE_DEVMAP:
7819 	case BPF_MAP_TYPE_DEVMAP_HASH:
7820 		if (func_id != BPF_FUNC_redirect_map &&
7821 		    func_id != BPF_FUNC_map_lookup_elem)
7822 			goto error;
7823 		break;
7824 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
7825 	 * appear.
7826 	 */
7827 	case BPF_MAP_TYPE_CPUMAP:
7828 		if (func_id != BPF_FUNC_redirect_map)
7829 			goto error;
7830 		break;
7831 	case BPF_MAP_TYPE_XSKMAP:
7832 		if (func_id != BPF_FUNC_redirect_map &&
7833 		    func_id != BPF_FUNC_map_lookup_elem)
7834 			goto error;
7835 		break;
7836 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
7837 	case BPF_MAP_TYPE_HASH_OF_MAPS:
7838 		if (func_id != BPF_FUNC_map_lookup_elem)
7839 			goto error;
7840 		break;
7841 	case BPF_MAP_TYPE_SOCKMAP:
7842 		if (func_id != BPF_FUNC_sk_redirect_map &&
7843 		    func_id != BPF_FUNC_sock_map_update &&
7844 		    func_id != BPF_FUNC_map_delete_elem &&
7845 		    func_id != BPF_FUNC_msg_redirect_map &&
7846 		    func_id != BPF_FUNC_sk_select_reuseport &&
7847 		    func_id != BPF_FUNC_map_lookup_elem &&
7848 		    !may_update_sockmap(env, func_id))
7849 			goto error;
7850 		break;
7851 	case BPF_MAP_TYPE_SOCKHASH:
7852 		if (func_id != BPF_FUNC_sk_redirect_hash &&
7853 		    func_id != BPF_FUNC_sock_hash_update &&
7854 		    func_id != BPF_FUNC_map_delete_elem &&
7855 		    func_id != BPF_FUNC_msg_redirect_hash &&
7856 		    func_id != BPF_FUNC_sk_select_reuseport &&
7857 		    func_id != BPF_FUNC_map_lookup_elem &&
7858 		    !may_update_sockmap(env, func_id))
7859 			goto error;
7860 		break;
7861 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
7862 		if (func_id != BPF_FUNC_sk_select_reuseport)
7863 			goto error;
7864 		break;
7865 	case BPF_MAP_TYPE_QUEUE:
7866 	case BPF_MAP_TYPE_STACK:
7867 		if (func_id != BPF_FUNC_map_peek_elem &&
7868 		    func_id != BPF_FUNC_map_pop_elem &&
7869 		    func_id != BPF_FUNC_map_push_elem)
7870 			goto error;
7871 		break;
7872 	case BPF_MAP_TYPE_SK_STORAGE:
7873 		if (func_id != BPF_FUNC_sk_storage_get &&
7874 		    func_id != BPF_FUNC_sk_storage_delete &&
7875 		    func_id != BPF_FUNC_kptr_xchg)
7876 			goto error;
7877 		break;
7878 	case BPF_MAP_TYPE_INODE_STORAGE:
7879 		if (func_id != BPF_FUNC_inode_storage_get &&
7880 		    func_id != BPF_FUNC_inode_storage_delete &&
7881 		    func_id != BPF_FUNC_kptr_xchg)
7882 			goto error;
7883 		break;
7884 	case BPF_MAP_TYPE_TASK_STORAGE:
7885 		if (func_id != BPF_FUNC_task_storage_get &&
7886 		    func_id != BPF_FUNC_task_storage_delete &&
7887 		    func_id != BPF_FUNC_kptr_xchg)
7888 			goto error;
7889 		break;
7890 	case BPF_MAP_TYPE_CGRP_STORAGE:
7891 		if (func_id != BPF_FUNC_cgrp_storage_get &&
7892 		    func_id != BPF_FUNC_cgrp_storage_delete &&
7893 		    func_id != BPF_FUNC_kptr_xchg)
7894 			goto error;
7895 		break;
7896 	case BPF_MAP_TYPE_BLOOM_FILTER:
7897 		if (func_id != BPF_FUNC_map_peek_elem &&
7898 		    func_id != BPF_FUNC_map_push_elem)
7899 			goto error;
7900 		break;
7901 	default:
7902 		break;
7903 	}
7904 
7905 	/* ... and second from the function itself. */
7906 	switch (func_id) {
7907 	case BPF_FUNC_tail_call:
7908 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
7909 			goto error;
7910 		if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
7911 			verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
7912 			return -EINVAL;
7913 		}
7914 		break;
7915 	case BPF_FUNC_perf_event_read:
7916 	case BPF_FUNC_perf_event_output:
7917 	case BPF_FUNC_perf_event_read_value:
7918 	case BPF_FUNC_skb_output:
7919 	case BPF_FUNC_xdp_output:
7920 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
7921 			goto error;
7922 		break;
7923 	case BPF_FUNC_ringbuf_output:
7924 	case BPF_FUNC_ringbuf_reserve:
7925 	case BPF_FUNC_ringbuf_query:
7926 	case BPF_FUNC_ringbuf_reserve_dynptr:
7927 	case BPF_FUNC_ringbuf_submit_dynptr:
7928 	case BPF_FUNC_ringbuf_discard_dynptr:
7929 		if (map->map_type != BPF_MAP_TYPE_RINGBUF)
7930 			goto error;
7931 		break;
7932 	case BPF_FUNC_user_ringbuf_drain:
7933 		if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF)
7934 			goto error;
7935 		break;
7936 	case BPF_FUNC_get_stackid:
7937 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
7938 			goto error;
7939 		break;
7940 	case BPF_FUNC_current_task_under_cgroup:
7941 	case BPF_FUNC_skb_under_cgroup:
7942 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
7943 			goto error;
7944 		break;
7945 	case BPF_FUNC_redirect_map:
7946 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
7947 		    map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
7948 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
7949 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
7950 			goto error;
7951 		break;
7952 	case BPF_FUNC_sk_redirect_map:
7953 	case BPF_FUNC_msg_redirect_map:
7954 	case BPF_FUNC_sock_map_update:
7955 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
7956 			goto error;
7957 		break;
7958 	case BPF_FUNC_sk_redirect_hash:
7959 	case BPF_FUNC_msg_redirect_hash:
7960 	case BPF_FUNC_sock_hash_update:
7961 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
7962 			goto error;
7963 		break;
7964 	case BPF_FUNC_get_local_storage:
7965 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
7966 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
7967 			goto error;
7968 		break;
7969 	case BPF_FUNC_sk_select_reuseport:
7970 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
7971 		    map->map_type != BPF_MAP_TYPE_SOCKMAP &&
7972 		    map->map_type != BPF_MAP_TYPE_SOCKHASH)
7973 			goto error;
7974 		break;
7975 	case BPF_FUNC_map_pop_elem:
7976 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
7977 		    map->map_type != BPF_MAP_TYPE_STACK)
7978 			goto error;
7979 		break;
7980 	case BPF_FUNC_map_peek_elem:
7981 	case BPF_FUNC_map_push_elem:
7982 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
7983 		    map->map_type != BPF_MAP_TYPE_STACK &&
7984 		    map->map_type != BPF_MAP_TYPE_BLOOM_FILTER)
7985 			goto error;
7986 		break;
7987 	case BPF_FUNC_map_lookup_percpu_elem:
7988 		if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY &&
7989 		    map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
7990 		    map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH)
7991 			goto error;
7992 		break;
7993 	case BPF_FUNC_sk_storage_get:
7994 	case BPF_FUNC_sk_storage_delete:
7995 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
7996 			goto error;
7997 		break;
7998 	case BPF_FUNC_inode_storage_get:
7999 	case BPF_FUNC_inode_storage_delete:
8000 		if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
8001 			goto error;
8002 		break;
8003 	case BPF_FUNC_task_storage_get:
8004 	case BPF_FUNC_task_storage_delete:
8005 		if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
8006 			goto error;
8007 		break;
8008 	case BPF_FUNC_cgrp_storage_get:
8009 	case BPF_FUNC_cgrp_storage_delete:
8010 		if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE)
8011 			goto error;
8012 		break;
8013 	default:
8014 		break;
8015 	}
8016 
8017 	return 0;
8018 error:
8019 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
8020 		map->map_type, func_id_name(func_id), func_id);
8021 	return -EINVAL;
8022 }
8023 
8024 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
8025 {
8026 	int count = 0;
8027 
8028 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
8029 		count++;
8030 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
8031 		count++;
8032 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
8033 		count++;
8034 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
8035 		count++;
8036 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
8037 		count++;
8038 
8039 	/* We only support one arg being in raw mode at the moment,
8040 	 * which is sufficient for the helper functions we have
8041 	 * right now.
8042 	 */
8043 	return count <= 1;
8044 }
8045 
8046 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg)
8047 {
8048 	bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE;
8049 	bool has_size = fn->arg_size[arg] != 0;
8050 	bool is_next_size = false;
8051 
8052 	if (arg + 1 < ARRAY_SIZE(fn->arg_type))
8053 		is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]);
8054 
8055 	if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM)
8056 		return is_next_size;
8057 
8058 	return has_size == is_next_size || is_next_size == is_fixed;
8059 }
8060 
8061 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
8062 {
8063 	/* bpf_xxx(..., buf, len) call will access 'len'
8064 	 * bytes from memory 'buf'. Both arg types need
8065 	 * to be paired, so make sure there's no buggy
8066 	 * helper function specification.
8067 	 */
8068 	if (arg_type_is_mem_size(fn->arg1_type) ||
8069 	    check_args_pair_invalid(fn, 0) ||
8070 	    check_args_pair_invalid(fn, 1) ||
8071 	    check_args_pair_invalid(fn, 2) ||
8072 	    check_args_pair_invalid(fn, 3) ||
8073 	    check_args_pair_invalid(fn, 4))
8074 		return false;
8075 
8076 	return true;
8077 }
8078 
8079 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
8080 {
8081 	int i;
8082 
8083 	for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
8084 		if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID)
8085 			return !!fn->arg_btf_id[i];
8086 		if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK)
8087 			return fn->arg_btf_id[i] == BPF_PTR_POISON;
8088 		if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] &&
8089 		    /* arg_btf_id and arg_size are in a union. */
8090 		    (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM ||
8091 		     !(fn->arg_type[i] & MEM_FIXED_SIZE)))
8092 			return false;
8093 	}
8094 
8095 	return true;
8096 }
8097 
8098 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
8099 {
8100 	return check_raw_mode_ok(fn) &&
8101 	       check_arg_pair_ok(fn) &&
8102 	       check_btf_id_ok(fn) ? 0 : -EINVAL;
8103 }
8104 
8105 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
8106  * are now invalid, so turn them into unknown SCALAR_VALUE.
8107  *
8108  * This also applies to dynptr slices belonging to skb and xdp dynptrs,
8109  * since these slices point to packet data.
8110  */
8111 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
8112 {
8113 	struct bpf_func_state *state;
8114 	struct bpf_reg_state *reg;
8115 
8116 	bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
8117 		if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg))
8118 			mark_reg_invalid(env, reg);
8119 	}));
8120 }
8121 
8122 enum {
8123 	AT_PKT_END = -1,
8124 	BEYOND_PKT_END = -2,
8125 };
8126 
8127 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
8128 {
8129 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
8130 	struct bpf_reg_state *reg = &state->regs[regn];
8131 
8132 	if (reg->type != PTR_TO_PACKET)
8133 		/* PTR_TO_PACKET_META is not supported yet */
8134 		return;
8135 
8136 	/* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
8137 	 * How far beyond pkt_end it goes is unknown.
8138 	 * if (!range_open) it's the case of pkt >= pkt_end
8139 	 * if (range_open) it's the case of pkt > pkt_end
8140 	 * hence this pointer is at least 1 byte bigger than pkt_end
8141 	 */
8142 	if (range_open)
8143 		reg->range = BEYOND_PKT_END;
8144 	else
8145 		reg->range = AT_PKT_END;
8146 }
8147 
8148 /* The pointer with the specified id has released its reference to kernel
8149  * resources. Identify all copies of the same pointer and clear the reference.
8150  */
8151 static int release_reference(struct bpf_verifier_env *env,
8152 			     int ref_obj_id)
8153 {
8154 	struct bpf_func_state *state;
8155 	struct bpf_reg_state *reg;
8156 	int err;
8157 
8158 	err = release_reference_state(cur_func(env), ref_obj_id);
8159 	if (err)
8160 		return err;
8161 
8162 	bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
8163 		if (reg->ref_obj_id == ref_obj_id)
8164 			mark_reg_invalid(env, reg);
8165 	}));
8166 
8167 	return 0;
8168 }
8169 
8170 static void invalidate_non_owning_refs(struct bpf_verifier_env *env)
8171 {
8172 	struct bpf_func_state *unused;
8173 	struct bpf_reg_state *reg;
8174 
8175 	bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
8176 		if (type_is_non_owning_ref(reg->type))
8177 			mark_reg_invalid(env, reg);
8178 	}));
8179 }
8180 
8181 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
8182 				    struct bpf_reg_state *regs)
8183 {
8184 	int i;
8185 
8186 	/* after the call registers r0 - r5 were scratched */
8187 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
8188 		mark_reg_not_init(env, regs, caller_saved[i]);
8189 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
8190 	}
8191 }
8192 
8193 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
8194 				   struct bpf_func_state *caller,
8195 				   struct bpf_func_state *callee,
8196 				   int insn_idx);
8197 
8198 static int set_callee_state(struct bpf_verifier_env *env,
8199 			    struct bpf_func_state *caller,
8200 			    struct bpf_func_state *callee, int insn_idx);
8201 
8202 static bool is_callback_calling_kfunc(u32 btf_id);
8203 
8204 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
8205 			     int *insn_idx, int subprog,
8206 			     set_callee_state_fn set_callee_state_cb)
8207 {
8208 	struct bpf_verifier_state *state = env->cur_state;
8209 	struct bpf_func_info_aux *func_info_aux;
8210 	struct bpf_func_state *caller, *callee;
8211 	int err;
8212 	bool is_global = false;
8213 
8214 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
8215 		verbose(env, "the call stack of %d frames is too deep\n",
8216 			state->curframe + 2);
8217 		return -E2BIG;
8218 	}
8219 
8220 	caller = state->frame[state->curframe];
8221 	if (state->frame[state->curframe + 1]) {
8222 		verbose(env, "verifier bug. Frame %d already allocated\n",
8223 			state->curframe + 1);
8224 		return -EFAULT;
8225 	}
8226 
8227 	func_info_aux = env->prog->aux->func_info_aux;
8228 	if (func_info_aux)
8229 		is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
8230 	err = btf_check_subprog_call(env, subprog, caller->regs);
8231 	if (err == -EFAULT)
8232 		return err;
8233 	if (is_global) {
8234 		if (err) {
8235 			verbose(env, "Caller passes invalid args into func#%d\n",
8236 				subprog);
8237 			return err;
8238 		} else {
8239 			if (env->log.level & BPF_LOG_LEVEL)
8240 				verbose(env,
8241 					"Func#%d is global and valid. Skipping.\n",
8242 					subprog);
8243 			clear_caller_saved_regs(env, caller->regs);
8244 
8245 			/* All global functions return a 64-bit SCALAR_VALUE */
8246 			mark_reg_unknown(env, caller->regs, BPF_REG_0);
8247 			caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
8248 
8249 			/* continue with next insn after call */
8250 			return 0;
8251 		}
8252 	}
8253 
8254 	/* set_callee_state is used for direct subprog calls, but we are
8255 	 * interested in validating only BPF helpers that can call subprogs as
8256 	 * callbacks
8257 	 */
8258 	if (set_callee_state_cb != set_callee_state) {
8259 		if (bpf_pseudo_kfunc_call(insn) &&
8260 		    !is_callback_calling_kfunc(insn->imm)) {
8261 			verbose(env, "verifier bug: kfunc %s#%d not marked as callback-calling\n",
8262 				func_id_name(insn->imm), insn->imm);
8263 			return -EFAULT;
8264 		} else if (!bpf_pseudo_kfunc_call(insn) &&
8265 			   !is_callback_calling_function(insn->imm)) { /* helper */
8266 			verbose(env, "verifier bug: helper %s#%d not marked as callback-calling\n",
8267 				func_id_name(insn->imm), insn->imm);
8268 			return -EFAULT;
8269 		}
8270 	}
8271 
8272 	if (insn->code == (BPF_JMP | BPF_CALL) &&
8273 	    insn->src_reg == 0 &&
8274 	    insn->imm == BPF_FUNC_timer_set_callback) {
8275 		struct bpf_verifier_state *async_cb;
8276 
8277 		/* there is no real recursion here. timer callbacks are async */
8278 		env->subprog_info[subprog].is_async_cb = true;
8279 		async_cb = push_async_cb(env, env->subprog_info[subprog].start,
8280 					 *insn_idx, subprog);
8281 		if (!async_cb)
8282 			return -EFAULT;
8283 		callee = async_cb->frame[0];
8284 		callee->async_entry_cnt = caller->async_entry_cnt + 1;
8285 
8286 		/* Convert bpf_timer_set_callback() args into timer callback args */
8287 		err = set_callee_state_cb(env, caller, callee, *insn_idx);
8288 		if (err)
8289 			return err;
8290 
8291 		clear_caller_saved_regs(env, caller->regs);
8292 		mark_reg_unknown(env, caller->regs, BPF_REG_0);
8293 		caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
8294 		/* continue with next insn after call */
8295 		return 0;
8296 	}
8297 
8298 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
8299 	if (!callee)
8300 		return -ENOMEM;
8301 	state->frame[state->curframe + 1] = callee;
8302 
8303 	/* callee cannot access r0, r6 - r9 for reading and has to write
8304 	 * into its own stack before reading from it.
8305 	 * callee can read/write into caller's stack
8306 	 */
8307 	init_func_state(env, callee,
8308 			/* remember the callsite, it will be used by bpf_exit */
8309 			*insn_idx /* callsite */,
8310 			state->curframe + 1 /* frameno within this callchain */,
8311 			subprog /* subprog number within this prog */);
8312 
8313 	/* Transfer references to the callee */
8314 	err = copy_reference_state(callee, caller);
8315 	if (err)
8316 		goto err_out;
8317 
8318 	err = set_callee_state_cb(env, caller, callee, *insn_idx);
8319 	if (err)
8320 		goto err_out;
8321 
8322 	clear_caller_saved_regs(env, caller->regs);
8323 
8324 	/* only increment it after check_reg_arg() finished */
8325 	state->curframe++;
8326 
8327 	/* and go analyze first insn of the callee */
8328 	*insn_idx = env->subprog_info[subprog].start - 1;
8329 
8330 	if (env->log.level & BPF_LOG_LEVEL) {
8331 		verbose(env, "caller:\n");
8332 		print_verifier_state(env, caller, true);
8333 		verbose(env, "callee:\n");
8334 		print_verifier_state(env, callee, true);
8335 	}
8336 	return 0;
8337 
8338 err_out:
8339 	free_func_state(callee);
8340 	state->frame[state->curframe + 1] = NULL;
8341 	return err;
8342 }
8343 
8344 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
8345 				   struct bpf_func_state *caller,
8346 				   struct bpf_func_state *callee)
8347 {
8348 	/* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
8349 	 *      void *callback_ctx, u64 flags);
8350 	 * callback_fn(struct bpf_map *map, void *key, void *value,
8351 	 *      void *callback_ctx);
8352 	 */
8353 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
8354 
8355 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
8356 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
8357 	callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
8358 
8359 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
8360 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
8361 	callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
8362 
8363 	/* pointer to stack or null */
8364 	callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
8365 
8366 	/* unused */
8367 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
8368 	return 0;
8369 }
8370 
8371 static int set_callee_state(struct bpf_verifier_env *env,
8372 			    struct bpf_func_state *caller,
8373 			    struct bpf_func_state *callee, int insn_idx)
8374 {
8375 	int i;
8376 
8377 	/* copy r1 - r5 args that callee can access.  The copy includes parent
8378 	 * pointers, which connects us up to the liveness chain
8379 	 */
8380 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
8381 		callee->regs[i] = caller->regs[i];
8382 	return 0;
8383 }
8384 
8385 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
8386 			   int *insn_idx)
8387 {
8388 	int subprog, target_insn;
8389 
8390 	target_insn = *insn_idx + insn->imm + 1;
8391 	subprog = find_subprog(env, target_insn);
8392 	if (subprog < 0) {
8393 		verbose(env, "verifier bug. No program starts at insn %d\n",
8394 			target_insn);
8395 		return -EFAULT;
8396 	}
8397 
8398 	return __check_func_call(env, insn, insn_idx, subprog, set_callee_state);
8399 }
8400 
8401 static int set_map_elem_callback_state(struct bpf_verifier_env *env,
8402 				       struct bpf_func_state *caller,
8403 				       struct bpf_func_state *callee,
8404 				       int insn_idx)
8405 {
8406 	struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
8407 	struct bpf_map *map;
8408 	int err;
8409 
8410 	if (bpf_map_ptr_poisoned(insn_aux)) {
8411 		verbose(env, "tail_call abusing map_ptr\n");
8412 		return -EINVAL;
8413 	}
8414 
8415 	map = BPF_MAP_PTR(insn_aux->map_ptr_state);
8416 	if (!map->ops->map_set_for_each_callback_args ||
8417 	    !map->ops->map_for_each_callback) {
8418 		verbose(env, "callback function not allowed for map\n");
8419 		return -ENOTSUPP;
8420 	}
8421 
8422 	err = map->ops->map_set_for_each_callback_args(env, caller, callee);
8423 	if (err)
8424 		return err;
8425 
8426 	callee->in_callback_fn = true;
8427 	callee->callback_ret_range = tnum_range(0, 1);
8428 	return 0;
8429 }
8430 
8431 static int set_loop_callback_state(struct bpf_verifier_env *env,
8432 				   struct bpf_func_state *caller,
8433 				   struct bpf_func_state *callee,
8434 				   int insn_idx)
8435 {
8436 	/* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx,
8437 	 *	    u64 flags);
8438 	 * callback_fn(u32 index, void *callback_ctx);
8439 	 */
8440 	callee->regs[BPF_REG_1].type = SCALAR_VALUE;
8441 	callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
8442 
8443 	/* unused */
8444 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
8445 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
8446 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
8447 
8448 	callee->in_callback_fn = true;
8449 	callee->callback_ret_range = tnum_range(0, 1);
8450 	return 0;
8451 }
8452 
8453 static int set_timer_callback_state(struct bpf_verifier_env *env,
8454 				    struct bpf_func_state *caller,
8455 				    struct bpf_func_state *callee,
8456 				    int insn_idx)
8457 {
8458 	struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr;
8459 
8460 	/* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
8461 	 * callback_fn(struct bpf_map *map, void *key, void *value);
8462 	 */
8463 	callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP;
8464 	__mark_reg_known_zero(&callee->regs[BPF_REG_1]);
8465 	callee->regs[BPF_REG_1].map_ptr = map_ptr;
8466 
8467 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
8468 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
8469 	callee->regs[BPF_REG_2].map_ptr = map_ptr;
8470 
8471 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
8472 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
8473 	callee->regs[BPF_REG_3].map_ptr = map_ptr;
8474 
8475 	/* unused */
8476 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
8477 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
8478 	callee->in_async_callback_fn = true;
8479 	callee->callback_ret_range = tnum_range(0, 1);
8480 	return 0;
8481 }
8482 
8483 static int set_find_vma_callback_state(struct bpf_verifier_env *env,
8484 				       struct bpf_func_state *caller,
8485 				       struct bpf_func_state *callee,
8486 				       int insn_idx)
8487 {
8488 	/* bpf_find_vma(struct task_struct *task, u64 addr,
8489 	 *               void *callback_fn, void *callback_ctx, u64 flags)
8490 	 * (callback_fn)(struct task_struct *task,
8491 	 *               struct vm_area_struct *vma, void *callback_ctx);
8492 	 */
8493 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
8494 
8495 	callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID;
8496 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
8497 	callee->regs[BPF_REG_2].btf =  btf_vmlinux;
8498 	callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA],
8499 
8500 	/* pointer to stack or null */
8501 	callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4];
8502 
8503 	/* unused */
8504 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
8505 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
8506 	callee->in_callback_fn = true;
8507 	callee->callback_ret_range = tnum_range(0, 1);
8508 	return 0;
8509 }
8510 
8511 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env,
8512 					   struct bpf_func_state *caller,
8513 					   struct bpf_func_state *callee,
8514 					   int insn_idx)
8515 {
8516 	/* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void
8517 	 *			  callback_ctx, u64 flags);
8518 	 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx);
8519 	 */
8520 	__mark_reg_not_init(env, &callee->regs[BPF_REG_0]);
8521 	mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL);
8522 	callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
8523 
8524 	/* unused */
8525 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
8526 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
8527 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
8528 
8529 	callee->in_callback_fn = true;
8530 	callee->callback_ret_range = tnum_range(0, 1);
8531 	return 0;
8532 }
8533 
8534 static int set_rbtree_add_callback_state(struct bpf_verifier_env *env,
8535 					 struct bpf_func_state *caller,
8536 					 struct bpf_func_state *callee,
8537 					 int insn_idx)
8538 {
8539 	/* void bpf_rbtree_add(struct bpf_rb_root *root, struct bpf_rb_node *node,
8540 	 *                     bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b));
8541 	 *
8542 	 * 'struct bpf_rb_node *node' arg to bpf_rbtree_add is the same PTR_TO_BTF_ID w/ offset
8543 	 * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd
8544 	 * by this point, so look at 'root'
8545 	 */
8546 	struct btf_field *field;
8547 
8548 	field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off,
8549 				      BPF_RB_ROOT);
8550 	if (!field || !field->graph_root.value_btf_id)
8551 		return -EFAULT;
8552 
8553 	mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root);
8554 	ref_set_non_owning(env, &callee->regs[BPF_REG_1]);
8555 	mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root);
8556 	ref_set_non_owning(env, &callee->regs[BPF_REG_2]);
8557 
8558 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
8559 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
8560 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
8561 	callee->in_callback_fn = true;
8562 	callee->callback_ret_range = tnum_range(0, 1);
8563 	return 0;
8564 }
8565 
8566 static bool is_rbtree_lock_required_kfunc(u32 btf_id);
8567 
8568 /* Are we currently verifying the callback for a rbtree helper that must
8569  * be called with lock held? If so, no need to complain about unreleased
8570  * lock
8571  */
8572 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env)
8573 {
8574 	struct bpf_verifier_state *state = env->cur_state;
8575 	struct bpf_insn *insn = env->prog->insnsi;
8576 	struct bpf_func_state *callee;
8577 	int kfunc_btf_id;
8578 
8579 	if (!state->curframe)
8580 		return false;
8581 
8582 	callee = state->frame[state->curframe];
8583 
8584 	if (!callee->in_callback_fn)
8585 		return false;
8586 
8587 	kfunc_btf_id = insn[callee->callsite].imm;
8588 	return is_rbtree_lock_required_kfunc(kfunc_btf_id);
8589 }
8590 
8591 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
8592 {
8593 	struct bpf_verifier_state *state = env->cur_state;
8594 	struct bpf_func_state *caller, *callee;
8595 	struct bpf_reg_state *r0;
8596 	int err;
8597 
8598 	callee = state->frame[state->curframe];
8599 	r0 = &callee->regs[BPF_REG_0];
8600 	if (r0->type == PTR_TO_STACK) {
8601 		/* technically it's ok to return caller's stack pointer
8602 		 * (or caller's caller's pointer) back to the caller,
8603 		 * since these pointers are valid. Only current stack
8604 		 * pointer will be invalid as soon as function exits,
8605 		 * but let's be conservative
8606 		 */
8607 		verbose(env, "cannot return stack pointer to the caller\n");
8608 		return -EINVAL;
8609 	}
8610 
8611 	caller = state->frame[state->curframe - 1];
8612 	if (callee->in_callback_fn) {
8613 		/* enforce R0 return value range [0, 1]. */
8614 		struct tnum range = callee->callback_ret_range;
8615 
8616 		if (r0->type != SCALAR_VALUE) {
8617 			verbose(env, "R0 not a scalar value\n");
8618 			return -EACCES;
8619 		}
8620 		if (!tnum_in(range, r0->var_off)) {
8621 			verbose_invalid_scalar(env, r0, &range, "callback return", "R0");
8622 			return -EINVAL;
8623 		}
8624 	} else {
8625 		/* return to the caller whatever r0 had in the callee */
8626 		caller->regs[BPF_REG_0] = *r0;
8627 	}
8628 
8629 	/* callback_fn frame should have released its own additions to parent's
8630 	 * reference state at this point, or check_reference_leak would
8631 	 * complain, hence it must be the same as the caller. There is no need
8632 	 * to copy it back.
8633 	 */
8634 	if (!callee->in_callback_fn) {
8635 		/* Transfer references to the caller */
8636 		err = copy_reference_state(caller, callee);
8637 		if (err)
8638 			return err;
8639 	}
8640 
8641 	*insn_idx = callee->callsite + 1;
8642 	if (env->log.level & BPF_LOG_LEVEL) {
8643 		verbose(env, "returning from callee:\n");
8644 		print_verifier_state(env, callee, true);
8645 		verbose(env, "to caller at %d:\n", *insn_idx);
8646 		print_verifier_state(env, caller, true);
8647 	}
8648 	/* clear everything in the callee */
8649 	free_func_state(callee);
8650 	state->frame[state->curframe--] = NULL;
8651 	return 0;
8652 }
8653 
8654 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
8655 				   int func_id,
8656 				   struct bpf_call_arg_meta *meta)
8657 {
8658 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
8659 
8660 	if (ret_type != RET_INTEGER ||
8661 	    (func_id != BPF_FUNC_get_stack &&
8662 	     func_id != BPF_FUNC_get_task_stack &&
8663 	     func_id != BPF_FUNC_probe_read_str &&
8664 	     func_id != BPF_FUNC_probe_read_kernel_str &&
8665 	     func_id != BPF_FUNC_probe_read_user_str))
8666 		return;
8667 
8668 	ret_reg->smax_value = meta->msize_max_value;
8669 	ret_reg->s32_max_value = meta->msize_max_value;
8670 	ret_reg->smin_value = -MAX_ERRNO;
8671 	ret_reg->s32_min_value = -MAX_ERRNO;
8672 	reg_bounds_sync(ret_reg);
8673 }
8674 
8675 static int
8676 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
8677 		int func_id, int insn_idx)
8678 {
8679 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
8680 	struct bpf_map *map = meta->map_ptr;
8681 
8682 	if (func_id != BPF_FUNC_tail_call &&
8683 	    func_id != BPF_FUNC_map_lookup_elem &&
8684 	    func_id != BPF_FUNC_map_update_elem &&
8685 	    func_id != BPF_FUNC_map_delete_elem &&
8686 	    func_id != BPF_FUNC_map_push_elem &&
8687 	    func_id != BPF_FUNC_map_pop_elem &&
8688 	    func_id != BPF_FUNC_map_peek_elem &&
8689 	    func_id != BPF_FUNC_for_each_map_elem &&
8690 	    func_id != BPF_FUNC_redirect_map &&
8691 	    func_id != BPF_FUNC_map_lookup_percpu_elem)
8692 		return 0;
8693 
8694 	if (map == NULL) {
8695 		verbose(env, "kernel subsystem misconfigured verifier\n");
8696 		return -EINVAL;
8697 	}
8698 
8699 	/* In case of read-only, some additional restrictions
8700 	 * need to be applied in order to prevent altering the
8701 	 * state of the map from program side.
8702 	 */
8703 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
8704 	    (func_id == BPF_FUNC_map_delete_elem ||
8705 	     func_id == BPF_FUNC_map_update_elem ||
8706 	     func_id == BPF_FUNC_map_push_elem ||
8707 	     func_id == BPF_FUNC_map_pop_elem)) {
8708 		verbose(env, "write into map forbidden\n");
8709 		return -EACCES;
8710 	}
8711 
8712 	if (!BPF_MAP_PTR(aux->map_ptr_state))
8713 		bpf_map_ptr_store(aux, meta->map_ptr,
8714 				  !meta->map_ptr->bypass_spec_v1);
8715 	else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
8716 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
8717 				  !meta->map_ptr->bypass_spec_v1);
8718 	return 0;
8719 }
8720 
8721 static int
8722 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
8723 		int func_id, int insn_idx)
8724 {
8725 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
8726 	struct bpf_reg_state *regs = cur_regs(env), *reg;
8727 	struct bpf_map *map = meta->map_ptr;
8728 	u64 val, max;
8729 	int err;
8730 
8731 	if (func_id != BPF_FUNC_tail_call)
8732 		return 0;
8733 	if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
8734 		verbose(env, "kernel subsystem misconfigured verifier\n");
8735 		return -EINVAL;
8736 	}
8737 
8738 	reg = &regs[BPF_REG_3];
8739 	val = reg->var_off.value;
8740 	max = map->max_entries;
8741 
8742 	if (!(register_is_const(reg) && val < max)) {
8743 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
8744 		return 0;
8745 	}
8746 
8747 	err = mark_chain_precision(env, BPF_REG_3);
8748 	if (err)
8749 		return err;
8750 	if (bpf_map_key_unseen(aux))
8751 		bpf_map_key_store(aux, val);
8752 	else if (!bpf_map_key_poisoned(aux) &&
8753 		  bpf_map_key_immediate(aux) != val)
8754 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
8755 	return 0;
8756 }
8757 
8758 static int check_reference_leak(struct bpf_verifier_env *env)
8759 {
8760 	struct bpf_func_state *state = cur_func(env);
8761 	bool refs_lingering = false;
8762 	int i;
8763 
8764 	if (state->frameno && !state->in_callback_fn)
8765 		return 0;
8766 
8767 	for (i = 0; i < state->acquired_refs; i++) {
8768 		if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
8769 			continue;
8770 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
8771 			state->refs[i].id, state->refs[i].insn_idx);
8772 		refs_lingering = true;
8773 	}
8774 	return refs_lingering ? -EINVAL : 0;
8775 }
8776 
8777 static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
8778 				   struct bpf_reg_state *regs)
8779 {
8780 	struct bpf_reg_state *fmt_reg = &regs[BPF_REG_3];
8781 	struct bpf_reg_state *data_len_reg = &regs[BPF_REG_5];
8782 	struct bpf_map *fmt_map = fmt_reg->map_ptr;
8783 	struct bpf_bprintf_data data = {};
8784 	int err, fmt_map_off, num_args;
8785 	u64 fmt_addr;
8786 	char *fmt;
8787 
8788 	/* data must be an array of u64 */
8789 	if (data_len_reg->var_off.value % 8)
8790 		return -EINVAL;
8791 	num_args = data_len_reg->var_off.value / 8;
8792 
8793 	/* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
8794 	 * and map_direct_value_addr is set.
8795 	 */
8796 	fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
8797 	err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
8798 						  fmt_map_off);
8799 	if (err) {
8800 		verbose(env, "verifier bug\n");
8801 		return -EFAULT;
8802 	}
8803 	fmt = (char *)(long)fmt_addr + fmt_map_off;
8804 
8805 	/* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
8806 	 * can focus on validating the format specifiers.
8807 	 */
8808 	err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data);
8809 	if (err < 0)
8810 		verbose(env, "Invalid format string\n");
8811 
8812 	return err;
8813 }
8814 
8815 static int check_get_func_ip(struct bpf_verifier_env *env)
8816 {
8817 	enum bpf_prog_type type = resolve_prog_type(env->prog);
8818 	int func_id = BPF_FUNC_get_func_ip;
8819 
8820 	if (type == BPF_PROG_TYPE_TRACING) {
8821 		if (!bpf_prog_has_trampoline(env->prog)) {
8822 			verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n",
8823 				func_id_name(func_id), func_id);
8824 			return -ENOTSUPP;
8825 		}
8826 		return 0;
8827 	} else if (type == BPF_PROG_TYPE_KPROBE) {
8828 		return 0;
8829 	}
8830 
8831 	verbose(env, "func %s#%d not supported for program type %d\n",
8832 		func_id_name(func_id), func_id, type);
8833 	return -ENOTSUPP;
8834 }
8835 
8836 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
8837 {
8838 	return &env->insn_aux_data[env->insn_idx];
8839 }
8840 
8841 static bool loop_flag_is_zero(struct bpf_verifier_env *env)
8842 {
8843 	struct bpf_reg_state *regs = cur_regs(env);
8844 	struct bpf_reg_state *reg = &regs[BPF_REG_4];
8845 	bool reg_is_null = register_is_null(reg);
8846 
8847 	if (reg_is_null)
8848 		mark_chain_precision(env, BPF_REG_4);
8849 
8850 	return reg_is_null;
8851 }
8852 
8853 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno)
8854 {
8855 	struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state;
8856 
8857 	if (!state->initialized) {
8858 		state->initialized = 1;
8859 		state->fit_for_inline = loop_flag_is_zero(env);
8860 		state->callback_subprogno = subprogno;
8861 		return;
8862 	}
8863 
8864 	if (!state->fit_for_inline)
8865 		return;
8866 
8867 	state->fit_for_inline = (loop_flag_is_zero(env) &&
8868 				 state->callback_subprogno == subprogno);
8869 }
8870 
8871 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
8872 			     int *insn_idx_p)
8873 {
8874 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
8875 	const struct bpf_func_proto *fn = NULL;
8876 	enum bpf_return_type ret_type;
8877 	enum bpf_type_flag ret_flag;
8878 	struct bpf_reg_state *regs;
8879 	struct bpf_call_arg_meta meta;
8880 	int insn_idx = *insn_idx_p;
8881 	bool changes_data;
8882 	int i, err, func_id;
8883 
8884 	/* find function prototype */
8885 	func_id = insn->imm;
8886 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
8887 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
8888 			func_id);
8889 		return -EINVAL;
8890 	}
8891 
8892 	if (env->ops->get_func_proto)
8893 		fn = env->ops->get_func_proto(func_id, env->prog);
8894 	if (!fn) {
8895 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
8896 			func_id);
8897 		return -EINVAL;
8898 	}
8899 
8900 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
8901 	if (!env->prog->gpl_compatible && fn->gpl_only) {
8902 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
8903 		return -EINVAL;
8904 	}
8905 
8906 	if (fn->allowed && !fn->allowed(env->prog)) {
8907 		verbose(env, "helper call is not allowed in probe\n");
8908 		return -EINVAL;
8909 	}
8910 
8911 	if (!env->prog->aux->sleepable && fn->might_sleep) {
8912 		verbose(env, "helper call might sleep in a non-sleepable prog\n");
8913 		return -EINVAL;
8914 	}
8915 
8916 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
8917 	changes_data = bpf_helper_changes_pkt_data(fn->func);
8918 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
8919 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
8920 			func_id_name(func_id), func_id);
8921 		return -EINVAL;
8922 	}
8923 
8924 	memset(&meta, 0, sizeof(meta));
8925 	meta.pkt_access = fn->pkt_access;
8926 
8927 	err = check_func_proto(fn, func_id);
8928 	if (err) {
8929 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
8930 			func_id_name(func_id), func_id);
8931 		return err;
8932 	}
8933 
8934 	if (env->cur_state->active_rcu_lock) {
8935 		if (fn->might_sleep) {
8936 			verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n",
8937 				func_id_name(func_id), func_id);
8938 			return -EINVAL;
8939 		}
8940 
8941 		if (env->prog->aux->sleepable && is_storage_get_function(func_id))
8942 			env->insn_aux_data[insn_idx].storage_get_func_atomic = true;
8943 	}
8944 
8945 	meta.func_id = func_id;
8946 	/* check args */
8947 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
8948 		err = check_func_arg(env, i, &meta, fn, insn_idx);
8949 		if (err)
8950 			return err;
8951 	}
8952 
8953 	err = record_func_map(env, &meta, func_id, insn_idx);
8954 	if (err)
8955 		return err;
8956 
8957 	err = record_func_key(env, &meta, func_id, insn_idx);
8958 	if (err)
8959 		return err;
8960 
8961 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
8962 	 * is inferred from register state.
8963 	 */
8964 	for (i = 0; i < meta.access_size; i++) {
8965 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
8966 				       BPF_WRITE, -1, false);
8967 		if (err)
8968 			return err;
8969 	}
8970 
8971 	regs = cur_regs(env);
8972 
8973 	if (meta.release_regno) {
8974 		err = -EINVAL;
8975 		/* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot
8976 		 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr
8977 		 * is safe to do directly.
8978 		 */
8979 		if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) {
8980 			if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) {
8981 				verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n");
8982 				return -EFAULT;
8983 			}
8984 			err = unmark_stack_slots_dynptr(env, &regs[meta.release_regno]);
8985 		} else if (meta.ref_obj_id) {
8986 			err = release_reference(env, meta.ref_obj_id);
8987 		} else if (register_is_null(&regs[meta.release_regno])) {
8988 			/* meta.ref_obj_id can only be 0 if register that is meant to be
8989 			 * released is NULL, which must be > R0.
8990 			 */
8991 			err = 0;
8992 		}
8993 		if (err) {
8994 			verbose(env, "func %s#%d reference has not been acquired before\n",
8995 				func_id_name(func_id), func_id);
8996 			return err;
8997 		}
8998 	}
8999 
9000 	switch (func_id) {
9001 	case BPF_FUNC_tail_call:
9002 		err = check_reference_leak(env);
9003 		if (err) {
9004 			verbose(env, "tail_call would lead to reference leak\n");
9005 			return err;
9006 		}
9007 		break;
9008 	case BPF_FUNC_get_local_storage:
9009 		/* check that flags argument in get_local_storage(map, flags) is 0,
9010 		 * this is required because get_local_storage() can't return an error.
9011 		 */
9012 		if (!register_is_null(&regs[BPF_REG_2])) {
9013 			verbose(env, "get_local_storage() doesn't support non-zero flags\n");
9014 			return -EINVAL;
9015 		}
9016 		break;
9017 	case BPF_FUNC_for_each_map_elem:
9018 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
9019 					set_map_elem_callback_state);
9020 		break;
9021 	case BPF_FUNC_timer_set_callback:
9022 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
9023 					set_timer_callback_state);
9024 		break;
9025 	case BPF_FUNC_find_vma:
9026 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
9027 					set_find_vma_callback_state);
9028 		break;
9029 	case BPF_FUNC_snprintf:
9030 		err = check_bpf_snprintf_call(env, regs);
9031 		break;
9032 	case BPF_FUNC_loop:
9033 		update_loop_inline_state(env, meta.subprogno);
9034 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
9035 					set_loop_callback_state);
9036 		break;
9037 	case BPF_FUNC_dynptr_from_mem:
9038 		if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) {
9039 			verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n",
9040 				reg_type_str(env, regs[BPF_REG_1].type));
9041 			return -EACCES;
9042 		}
9043 		break;
9044 	case BPF_FUNC_set_retval:
9045 		if (prog_type == BPF_PROG_TYPE_LSM &&
9046 		    env->prog->expected_attach_type == BPF_LSM_CGROUP) {
9047 			if (!env->prog->aux->attach_func_proto->type) {
9048 				/* Make sure programs that attach to void
9049 				 * hooks don't try to modify return value.
9050 				 */
9051 				verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
9052 				return -EINVAL;
9053 			}
9054 		}
9055 		break;
9056 	case BPF_FUNC_dynptr_data:
9057 	{
9058 		struct bpf_reg_state *reg;
9059 		int id, ref_obj_id;
9060 
9061 		reg = get_dynptr_arg_reg(env, fn, regs);
9062 		if (!reg)
9063 			return -EFAULT;
9064 
9065 
9066 		if (meta.dynptr_id) {
9067 			verbose(env, "verifier internal error: meta.dynptr_id already set\n");
9068 			return -EFAULT;
9069 		}
9070 		if (meta.ref_obj_id) {
9071 			verbose(env, "verifier internal error: meta.ref_obj_id already set\n");
9072 			return -EFAULT;
9073 		}
9074 
9075 		id = dynptr_id(env, reg);
9076 		if (id < 0) {
9077 			verbose(env, "verifier internal error: failed to obtain dynptr id\n");
9078 			return id;
9079 		}
9080 
9081 		ref_obj_id = dynptr_ref_obj_id(env, reg);
9082 		if (ref_obj_id < 0) {
9083 			verbose(env, "verifier internal error: failed to obtain dynptr ref_obj_id\n");
9084 			return ref_obj_id;
9085 		}
9086 
9087 		meta.dynptr_id = id;
9088 		meta.ref_obj_id = ref_obj_id;
9089 
9090 		break;
9091 	}
9092 	case BPF_FUNC_dynptr_write:
9093 	{
9094 		enum bpf_dynptr_type dynptr_type;
9095 		struct bpf_reg_state *reg;
9096 
9097 		reg = get_dynptr_arg_reg(env, fn, regs);
9098 		if (!reg)
9099 			return -EFAULT;
9100 
9101 		dynptr_type = dynptr_get_type(env, reg);
9102 		if (dynptr_type == BPF_DYNPTR_TYPE_INVALID)
9103 			return -EFAULT;
9104 
9105 		if (dynptr_type == BPF_DYNPTR_TYPE_SKB)
9106 			/* this will trigger clear_all_pkt_pointers(), which will
9107 			 * invalidate all dynptr slices associated with the skb
9108 			 */
9109 			changes_data = true;
9110 
9111 		break;
9112 	}
9113 	case BPF_FUNC_user_ringbuf_drain:
9114 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
9115 					set_user_ringbuf_callback_state);
9116 		break;
9117 	}
9118 
9119 	if (err)
9120 		return err;
9121 
9122 	/* reset caller saved regs */
9123 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
9124 		mark_reg_not_init(env, regs, caller_saved[i]);
9125 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
9126 	}
9127 
9128 	/* helper call returns 64-bit value. */
9129 	regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
9130 
9131 	/* update return register (already marked as written above) */
9132 	ret_type = fn->ret_type;
9133 	ret_flag = type_flag(ret_type);
9134 
9135 	switch (base_type(ret_type)) {
9136 	case RET_INTEGER:
9137 		/* sets type to SCALAR_VALUE */
9138 		mark_reg_unknown(env, regs, BPF_REG_0);
9139 		break;
9140 	case RET_VOID:
9141 		regs[BPF_REG_0].type = NOT_INIT;
9142 		break;
9143 	case RET_PTR_TO_MAP_VALUE:
9144 		/* There is no offset yet applied, variable or fixed */
9145 		mark_reg_known_zero(env, regs, BPF_REG_0);
9146 		/* remember map_ptr, so that check_map_access()
9147 		 * can check 'value_size' boundary of memory access
9148 		 * to map element returned from bpf_map_lookup_elem()
9149 		 */
9150 		if (meta.map_ptr == NULL) {
9151 			verbose(env,
9152 				"kernel subsystem misconfigured verifier\n");
9153 			return -EINVAL;
9154 		}
9155 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
9156 		regs[BPF_REG_0].map_uid = meta.map_uid;
9157 		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag;
9158 		if (!type_may_be_null(ret_type) &&
9159 		    btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) {
9160 			regs[BPF_REG_0].id = ++env->id_gen;
9161 		}
9162 		break;
9163 	case RET_PTR_TO_SOCKET:
9164 		mark_reg_known_zero(env, regs, BPF_REG_0);
9165 		regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag;
9166 		break;
9167 	case RET_PTR_TO_SOCK_COMMON:
9168 		mark_reg_known_zero(env, regs, BPF_REG_0);
9169 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag;
9170 		break;
9171 	case RET_PTR_TO_TCP_SOCK:
9172 		mark_reg_known_zero(env, regs, BPF_REG_0);
9173 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag;
9174 		break;
9175 	case RET_PTR_TO_MEM:
9176 		mark_reg_known_zero(env, regs, BPF_REG_0);
9177 		regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
9178 		regs[BPF_REG_0].mem_size = meta.mem_size;
9179 		break;
9180 	case RET_PTR_TO_MEM_OR_BTF_ID:
9181 	{
9182 		const struct btf_type *t;
9183 
9184 		mark_reg_known_zero(env, regs, BPF_REG_0);
9185 		t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
9186 		if (!btf_type_is_struct(t)) {
9187 			u32 tsize;
9188 			const struct btf_type *ret;
9189 			const char *tname;
9190 
9191 			/* resolve the type size of ksym. */
9192 			ret = btf_resolve_size(meta.ret_btf, t, &tsize);
9193 			if (IS_ERR(ret)) {
9194 				tname = btf_name_by_offset(meta.ret_btf, t->name_off);
9195 				verbose(env, "unable to resolve the size of type '%s': %ld\n",
9196 					tname, PTR_ERR(ret));
9197 				return -EINVAL;
9198 			}
9199 			regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
9200 			regs[BPF_REG_0].mem_size = tsize;
9201 		} else {
9202 			/* MEM_RDONLY may be carried from ret_flag, but it
9203 			 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise
9204 			 * it will confuse the check of PTR_TO_BTF_ID in
9205 			 * check_mem_access().
9206 			 */
9207 			ret_flag &= ~MEM_RDONLY;
9208 
9209 			regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
9210 			regs[BPF_REG_0].btf = meta.ret_btf;
9211 			regs[BPF_REG_0].btf_id = meta.ret_btf_id;
9212 		}
9213 		break;
9214 	}
9215 	case RET_PTR_TO_BTF_ID:
9216 	{
9217 		struct btf *ret_btf;
9218 		int ret_btf_id;
9219 
9220 		mark_reg_known_zero(env, regs, BPF_REG_0);
9221 		regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
9222 		if (func_id == BPF_FUNC_kptr_xchg) {
9223 			ret_btf = meta.kptr_field->kptr.btf;
9224 			ret_btf_id = meta.kptr_field->kptr.btf_id;
9225 			if (!btf_is_kernel(ret_btf))
9226 				regs[BPF_REG_0].type |= MEM_ALLOC;
9227 		} else {
9228 			if (fn->ret_btf_id == BPF_PTR_POISON) {
9229 				verbose(env, "verifier internal error:");
9230 				verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n",
9231 					func_id_name(func_id));
9232 				return -EINVAL;
9233 			}
9234 			ret_btf = btf_vmlinux;
9235 			ret_btf_id = *fn->ret_btf_id;
9236 		}
9237 		if (ret_btf_id == 0) {
9238 			verbose(env, "invalid return type %u of func %s#%d\n",
9239 				base_type(ret_type), func_id_name(func_id),
9240 				func_id);
9241 			return -EINVAL;
9242 		}
9243 		regs[BPF_REG_0].btf = ret_btf;
9244 		regs[BPF_REG_0].btf_id = ret_btf_id;
9245 		break;
9246 	}
9247 	default:
9248 		verbose(env, "unknown return type %u of func %s#%d\n",
9249 			base_type(ret_type), func_id_name(func_id), func_id);
9250 		return -EINVAL;
9251 	}
9252 
9253 	if (type_may_be_null(regs[BPF_REG_0].type))
9254 		regs[BPF_REG_0].id = ++env->id_gen;
9255 
9256 	if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) {
9257 		verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n",
9258 			func_id_name(func_id), func_id);
9259 		return -EFAULT;
9260 	}
9261 
9262 	if (is_dynptr_ref_function(func_id))
9263 		regs[BPF_REG_0].dynptr_id = meta.dynptr_id;
9264 
9265 	if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) {
9266 		/* For release_reference() */
9267 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
9268 	} else if (is_acquire_function(func_id, meta.map_ptr)) {
9269 		int id = acquire_reference_state(env, insn_idx);
9270 
9271 		if (id < 0)
9272 			return id;
9273 		/* For mark_ptr_or_null_reg() */
9274 		regs[BPF_REG_0].id = id;
9275 		/* For release_reference() */
9276 		regs[BPF_REG_0].ref_obj_id = id;
9277 	}
9278 
9279 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
9280 
9281 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
9282 	if (err)
9283 		return err;
9284 
9285 	if ((func_id == BPF_FUNC_get_stack ||
9286 	     func_id == BPF_FUNC_get_task_stack) &&
9287 	    !env->prog->has_callchain_buf) {
9288 		const char *err_str;
9289 
9290 #ifdef CONFIG_PERF_EVENTS
9291 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
9292 		err_str = "cannot get callchain buffer for func %s#%d\n";
9293 #else
9294 		err = -ENOTSUPP;
9295 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
9296 #endif
9297 		if (err) {
9298 			verbose(env, err_str, func_id_name(func_id), func_id);
9299 			return err;
9300 		}
9301 
9302 		env->prog->has_callchain_buf = true;
9303 	}
9304 
9305 	if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
9306 		env->prog->call_get_stack = true;
9307 
9308 	if (func_id == BPF_FUNC_get_func_ip) {
9309 		if (check_get_func_ip(env))
9310 			return -ENOTSUPP;
9311 		env->prog->call_get_func_ip = true;
9312 	}
9313 
9314 	if (changes_data)
9315 		clear_all_pkt_pointers(env);
9316 	return 0;
9317 }
9318 
9319 /* mark_btf_func_reg_size() is used when the reg size is determined by
9320  * the BTF func_proto's return value size and argument.
9321  */
9322 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
9323 				   size_t reg_size)
9324 {
9325 	struct bpf_reg_state *reg = &cur_regs(env)[regno];
9326 
9327 	if (regno == BPF_REG_0) {
9328 		/* Function return value */
9329 		reg->live |= REG_LIVE_WRITTEN;
9330 		reg->subreg_def = reg_size == sizeof(u64) ?
9331 			DEF_NOT_SUBREG : env->insn_idx + 1;
9332 	} else {
9333 		/* Function argument */
9334 		if (reg_size == sizeof(u64)) {
9335 			mark_insn_zext(env, reg);
9336 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
9337 		} else {
9338 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
9339 		}
9340 	}
9341 }
9342 
9343 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta)
9344 {
9345 	return meta->kfunc_flags & KF_ACQUIRE;
9346 }
9347 
9348 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta)
9349 {
9350 	return meta->kfunc_flags & KF_RET_NULL;
9351 }
9352 
9353 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta)
9354 {
9355 	return meta->kfunc_flags & KF_RELEASE;
9356 }
9357 
9358 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta)
9359 {
9360 	return (meta->kfunc_flags & KF_TRUSTED_ARGS) || is_kfunc_release(meta);
9361 }
9362 
9363 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta)
9364 {
9365 	return meta->kfunc_flags & KF_SLEEPABLE;
9366 }
9367 
9368 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta)
9369 {
9370 	return meta->kfunc_flags & KF_DESTRUCTIVE;
9371 }
9372 
9373 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta)
9374 {
9375 	return meta->kfunc_flags & KF_RCU;
9376 }
9377 
9378 static bool is_kfunc_arg_kptr_get(struct bpf_kfunc_call_arg_meta *meta, int arg)
9379 {
9380 	return arg == 0 && (meta->kfunc_flags & KF_KPTR_GET);
9381 }
9382 
9383 static bool __kfunc_param_match_suffix(const struct btf *btf,
9384 				       const struct btf_param *arg,
9385 				       const char *suffix)
9386 {
9387 	int suffix_len = strlen(suffix), len;
9388 	const char *param_name;
9389 
9390 	/* In the future, this can be ported to use BTF tagging */
9391 	param_name = btf_name_by_offset(btf, arg->name_off);
9392 	if (str_is_empty(param_name))
9393 		return false;
9394 	len = strlen(param_name);
9395 	if (len < suffix_len)
9396 		return false;
9397 	param_name += len - suffix_len;
9398 	return !strncmp(param_name, suffix, suffix_len);
9399 }
9400 
9401 static bool is_kfunc_arg_mem_size(const struct btf *btf,
9402 				  const struct btf_param *arg,
9403 				  const struct bpf_reg_state *reg)
9404 {
9405 	const struct btf_type *t;
9406 
9407 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
9408 	if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
9409 		return false;
9410 
9411 	return __kfunc_param_match_suffix(btf, arg, "__sz");
9412 }
9413 
9414 static bool is_kfunc_arg_const_mem_size(const struct btf *btf,
9415 					const struct btf_param *arg,
9416 					const struct bpf_reg_state *reg)
9417 {
9418 	const struct btf_type *t;
9419 
9420 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
9421 	if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
9422 		return false;
9423 
9424 	return __kfunc_param_match_suffix(btf, arg, "__szk");
9425 }
9426 
9427 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg)
9428 {
9429 	return __kfunc_param_match_suffix(btf, arg, "__k");
9430 }
9431 
9432 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg)
9433 {
9434 	return __kfunc_param_match_suffix(btf, arg, "__ign");
9435 }
9436 
9437 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg)
9438 {
9439 	return __kfunc_param_match_suffix(btf, arg, "__alloc");
9440 }
9441 
9442 static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg)
9443 {
9444 	return __kfunc_param_match_suffix(btf, arg, "__uninit");
9445 }
9446 
9447 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf,
9448 					  const struct btf_param *arg,
9449 					  const char *name)
9450 {
9451 	int len, target_len = strlen(name);
9452 	const char *param_name;
9453 
9454 	param_name = btf_name_by_offset(btf, arg->name_off);
9455 	if (str_is_empty(param_name))
9456 		return false;
9457 	len = strlen(param_name);
9458 	if (len != target_len)
9459 		return false;
9460 	if (strcmp(param_name, name))
9461 		return false;
9462 
9463 	return true;
9464 }
9465 
9466 enum {
9467 	KF_ARG_DYNPTR_ID,
9468 	KF_ARG_LIST_HEAD_ID,
9469 	KF_ARG_LIST_NODE_ID,
9470 	KF_ARG_RB_ROOT_ID,
9471 	KF_ARG_RB_NODE_ID,
9472 };
9473 
9474 BTF_ID_LIST(kf_arg_btf_ids)
9475 BTF_ID(struct, bpf_dynptr_kern)
9476 BTF_ID(struct, bpf_list_head)
9477 BTF_ID(struct, bpf_list_node)
9478 BTF_ID(struct, bpf_rb_root)
9479 BTF_ID(struct, bpf_rb_node)
9480 
9481 static bool __is_kfunc_ptr_arg_type(const struct btf *btf,
9482 				    const struct btf_param *arg, int type)
9483 {
9484 	const struct btf_type *t;
9485 	u32 res_id;
9486 
9487 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
9488 	if (!t)
9489 		return false;
9490 	if (!btf_type_is_ptr(t))
9491 		return false;
9492 	t = btf_type_skip_modifiers(btf, t->type, &res_id);
9493 	if (!t)
9494 		return false;
9495 	return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]);
9496 }
9497 
9498 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg)
9499 {
9500 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID);
9501 }
9502 
9503 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg)
9504 {
9505 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID);
9506 }
9507 
9508 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg)
9509 {
9510 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID);
9511 }
9512 
9513 static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg)
9514 {
9515 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID);
9516 }
9517 
9518 static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg)
9519 {
9520 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID);
9521 }
9522 
9523 static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf,
9524 				  const struct btf_param *arg)
9525 {
9526 	const struct btf_type *t;
9527 
9528 	t = btf_type_resolve_func_ptr(btf, arg->type, NULL);
9529 	if (!t)
9530 		return false;
9531 
9532 	return true;
9533 }
9534 
9535 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */
9536 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env,
9537 					const struct btf *btf,
9538 					const struct btf_type *t, int rec)
9539 {
9540 	const struct btf_type *member_type;
9541 	const struct btf_member *member;
9542 	u32 i;
9543 
9544 	if (!btf_type_is_struct(t))
9545 		return false;
9546 
9547 	for_each_member(i, t, member) {
9548 		const struct btf_array *array;
9549 
9550 		member_type = btf_type_skip_modifiers(btf, member->type, NULL);
9551 		if (btf_type_is_struct(member_type)) {
9552 			if (rec >= 3) {
9553 				verbose(env, "max struct nesting depth exceeded\n");
9554 				return false;
9555 			}
9556 			if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1))
9557 				return false;
9558 			continue;
9559 		}
9560 		if (btf_type_is_array(member_type)) {
9561 			array = btf_array(member_type);
9562 			if (!array->nelems)
9563 				return false;
9564 			member_type = btf_type_skip_modifiers(btf, array->type, NULL);
9565 			if (!btf_type_is_scalar(member_type))
9566 				return false;
9567 			continue;
9568 		}
9569 		if (!btf_type_is_scalar(member_type))
9570 			return false;
9571 	}
9572 	return true;
9573 }
9574 
9575 
9576 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = {
9577 #ifdef CONFIG_NET
9578 	[PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK],
9579 	[PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
9580 	[PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
9581 #endif
9582 };
9583 
9584 enum kfunc_ptr_arg_type {
9585 	KF_ARG_PTR_TO_CTX,
9586 	KF_ARG_PTR_TO_ALLOC_BTF_ID,  /* Allocated object */
9587 	KF_ARG_PTR_TO_KPTR,	     /* PTR_TO_KPTR but type specific */
9588 	KF_ARG_PTR_TO_DYNPTR,
9589 	KF_ARG_PTR_TO_ITER,
9590 	KF_ARG_PTR_TO_LIST_HEAD,
9591 	KF_ARG_PTR_TO_LIST_NODE,
9592 	KF_ARG_PTR_TO_BTF_ID,	     /* Also covers reg2btf_ids conversions */
9593 	KF_ARG_PTR_TO_MEM,
9594 	KF_ARG_PTR_TO_MEM_SIZE,	     /* Size derived from next argument, skip it */
9595 	KF_ARG_PTR_TO_CALLBACK,
9596 	KF_ARG_PTR_TO_RB_ROOT,
9597 	KF_ARG_PTR_TO_RB_NODE,
9598 };
9599 
9600 enum special_kfunc_type {
9601 	KF_bpf_obj_new_impl,
9602 	KF_bpf_obj_drop_impl,
9603 	KF_bpf_list_push_front,
9604 	KF_bpf_list_push_back,
9605 	KF_bpf_list_pop_front,
9606 	KF_bpf_list_pop_back,
9607 	KF_bpf_cast_to_kern_ctx,
9608 	KF_bpf_rdonly_cast,
9609 	KF_bpf_rcu_read_lock,
9610 	KF_bpf_rcu_read_unlock,
9611 	KF_bpf_rbtree_remove,
9612 	KF_bpf_rbtree_add,
9613 	KF_bpf_rbtree_first,
9614 	KF_bpf_dynptr_from_skb,
9615 	KF_bpf_dynptr_from_xdp,
9616 	KF_bpf_dynptr_slice,
9617 	KF_bpf_dynptr_slice_rdwr,
9618 };
9619 
9620 BTF_SET_START(special_kfunc_set)
9621 BTF_ID(func, bpf_obj_new_impl)
9622 BTF_ID(func, bpf_obj_drop_impl)
9623 BTF_ID(func, bpf_list_push_front)
9624 BTF_ID(func, bpf_list_push_back)
9625 BTF_ID(func, bpf_list_pop_front)
9626 BTF_ID(func, bpf_list_pop_back)
9627 BTF_ID(func, bpf_cast_to_kern_ctx)
9628 BTF_ID(func, bpf_rdonly_cast)
9629 BTF_ID(func, bpf_rbtree_remove)
9630 BTF_ID(func, bpf_rbtree_add)
9631 BTF_ID(func, bpf_rbtree_first)
9632 BTF_ID(func, bpf_dynptr_from_skb)
9633 BTF_ID(func, bpf_dynptr_from_xdp)
9634 BTF_ID(func, bpf_dynptr_slice)
9635 BTF_ID(func, bpf_dynptr_slice_rdwr)
9636 BTF_SET_END(special_kfunc_set)
9637 
9638 BTF_ID_LIST(special_kfunc_list)
9639 BTF_ID(func, bpf_obj_new_impl)
9640 BTF_ID(func, bpf_obj_drop_impl)
9641 BTF_ID(func, bpf_list_push_front)
9642 BTF_ID(func, bpf_list_push_back)
9643 BTF_ID(func, bpf_list_pop_front)
9644 BTF_ID(func, bpf_list_pop_back)
9645 BTF_ID(func, bpf_cast_to_kern_ctx)
9646 BTF_ID(func, bpf_rdonly_cast)
9647 BTF_ID(func, bpf_rcu_read_lock)
9648 BTF_ID(func, bpf_rcu_read_unlock)
9649 BTF_ID(func, bpf_rbtree_remove)
9650 BTF_ID(func, bpf_rbtree_add)
9651 BTF_ID(func, bpf_rbtree_first)
9652 BTF_ID(func, bpf_dynptr_from_skb)
9653 BTF_ID(func, bpf_dynptr_from_xdp)
9654 BTF_ID(func, bpf_dynptr_slice)
9655 BTF_ID(func, bpf_dynptr_slice_rdwr)
9656 
9657 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta)
9658 {
9659 	return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock];
9660 }
9661 
9662 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta)
9663 {
9664 	return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock];
9665 }
9666 
9667 static enum kfunc_ptr_arg_type
9668 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env,
9669 		       struct bpf_kfunc_call_arg_meta *meta,
9670 		       const struct btf_type *t, const struct btf_type *ref_t,
9671 		       const char *ref_tname, const struct btf_param *args,
9672 		       int argno, int nargs)
9673 {
9674 	u32 regno = argno + 1;
9675 	struct bpf_reg_state *regs = cur_regs(env);
9676 	struct bpf_reg_state *reg = &regs[regno];
9677 	bool arg_mem_size = false;
9678 
9679 	if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx])
9680 		return KF_ARG_PTR_TO_CTX;
9681 
9682 	/* In this function, we verify the kfunc's BTF as per the argument type,
9683 	 * leaving the rest of the verification with respect to the register
9684 	 * type to our caller. When a set of conditions hold in the BTF type of
9685 	 * arguments, we resolve it to a known kfunc_ptr_arg_type.
9686 	 */
9687 	if (btf_get_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno))
9688 		return KF_ARG_PTR_TO_CTX;
9689 
9690 	if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno]))
9691 		return KF_ARG_PTR_TO_ALLOC_BTF_ID;
9692 
9693 	if (is_kfunc_arg_kptr_get(meta, argno)) {
9694 		if (!btf_type_is_ptr(ref_t)) {
9695 			verbose(env, "arg#0 BTF type must be a double pointer for kptr_get kfunc\n");
9696 			return -EINVAL;
9697 		}
9698 		ref_t = btf_type_by_id(meta->btf, ref_t->type);
9699 		ref_tname = btf_name_by_offset(meta->btf, ref_t->name_off);
9700 		if (!btf_type_is_struct(ref_t)) {
9701 			verbose(env, "kernel function %s args#0 pointer type %s %s is not supported\n",
9702 				meta->func_name, btf_type_str(ref_t), ref_tname);
9703 			return -EINVAL;
9704 		}
9705 		return KF_ARG_PTR_TO_KPTR;
9706 	}
9707 
9708 	if (is_kfunc_arg_dynptr(meta->btf, &args[argno]))
9709 		return KF_ARG_PTR_TO_DYNPTR;
9710 
9711 	if (is_kfunc_arg_iter(meta, argno))
9712 		return KF_ARG_PTR_TO_ITER;
9713 
9714 	if (is_kfunc_arg_list_head(meta->btf, &args[argno]))
9715 		return KF_ARG_PTR_TO_LIST_HEAD;
9716 
9717 	if (is_kfunc_arg_list_node(meta->btf, &args[argno]))
9718 		return KF_ARG_PTR_TO_LIST_NODE;
9719 
9720 	if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno]))
9721 		return KF_ARG_PTR_TO_RB_ROOT;
9722 
9723 	if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno]))
9724 		return KF_ARG_PTR_TO_RB_NODE;
9725 
9726 	if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) {
9727 		if (!btf_type_is_struct(ref_t)) {
9728 			verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n",
9729 				meta->func_name, argno, btf_type_str(ref_t), ref_tname);
9730 			return -EINVAL;
9731 		}
9732 		return KF_ARG_PTR_TO_BTF_ID;
9733 	}
9734 
9735 	if (is_kfunc_arg_callback(env, meta->btf, &args[argno]))
9736 		return KF_ARG_PTR_TO_CALLBACK;
9737 
9738 
9739 	if (argno + 1 < nargs &&
9740 	    (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], &regs[regno + 1]) ||
9741 	     is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], &regs[regno + 1])))
9742 		arg_mem_size = true;
9743 
9744 	/* This is the catch all argument type of register types supported by
9745 	 * check_helper_mem_access. However, we only allow when argument type is
9746 	 * pointer to scalar, or struct composed (recursively) of scalars. When
9747 	 * arg_mem_size is true, the pointer can be void *.
9748 	 */
9749 	if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) &&
9750 	    (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) {
9751 		verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n",
9752 			argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : "");
9753 		return -EINVAL;
9754 	}
9755 	return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM;
9756 }
9757 
9758 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env,
9759 					struct bpf_reg_state *reg,
9760 					const struct btf_type *ref_t,
9761 					const char *ref_tname, u32 ref_id,
9762 					struct bpf_kfunc_call_arg_meta *meta,
9763 					int argno)
9764 {
9765 	const struct btf_type *reg_ref_t;
9766 	bool strict_type_match = false;
9767 	const struct btf *reg_btf;
9768 	const char *reg_ref_tname;
9769 	u32 reg_ref_id;
9770 
9771 	if (base_type(reg->type) == PTR_TO_BTF_ID) {
9772 		reg_btf = reg->btf;
9773 		reg_ref_id = reg->btf_id;
9774 	} else {
9775 		reg_btf = btf_vmlinux;
9776 		reg_ref_id = *reg2btf_ids[base_type(reg->type)];
9777 	}
9778 
9779 	/* Enforce strict type matching for calls to kfuncs that are acquiring
9780 	 * or releasing a reference, or are no-cast aliases. We do _not_
9781 	 * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default,
9782 	 * as we want to enable BPF programs to pass types that are bitwise
9783 	 * equivalent without forcing them to explicitly cast with something
9784 	 * like bpf_cast_to_kern_ctx().
9785 	 *
9786 	 * For example, say we had a type like the following:
9787 	 *
9788 	 * struct bpf_cpumask {
9789 	 *	cpumask_t cpumask;
9790 	 *	refcount_t usage;
9791 	 * };
9792 	 *
9793 	 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed
9794 	 * to a struct cpumask, so it would be safe to pass a struct
9795 	 * bpf_cpumask * to a kfunc expecting a struct cpumask *.
9796 	 *
9797 	 * The philosophy here is similar to how we allow scalars of different
9798 	 * types to be passed to kfuncs as long as the size is the same. The
9799 	 * only difference here is that we're simply allowing
9800 	 * btf_struct_ids_match() to walk the struct at the 0th offset, and
9801 	 * resolve types.
9802 	 */
9803 	if (is_kfunc_acquire(meta) ||
9804 	    (is_kfunc_release(meta) && reg->ref_obj_id) ||
9805 	    btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id))
9806 		strict_type_match = true;
9807 
9808 	WARN_ON_ONCE(is_kfunc_trusted_args(meta) && reg->off);
9809 
9810 	reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, &reg_ref_id);
9811 	reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off);
9812 	if (!btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match)) {
9813 		verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n",
9814 			meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1,
9815 			btf_type_str(reg_ref_t), reg_ref_tname);
9816 		return -EINVAL;
9817 	}
9818 	return 0;
9819 }
9820 
9821 static int process_kf_arg_ptr_to_kptr(struct bpf_verifier_env *env,
9822 				      struct bpf_reg_state *reg,
9823 				      const struct btf_type *ref_t,
9824 				      const char *ref_tname,
9825 				      struct bpf_kfunc_call_arg_meta *meta,
9826 				      int argno)
9827 {
9828 	struct btf_field *kptr_field;
9829 
9830 	/* check_func_arg_reg_off allows var_off for
9831 	 * PTR_TO_MAP_VALUE, but we need fixed offset to find
9832 	 * off_desc.
9833 	 */
9834 	if (!tnum_is_const(reg->var_off)) {
9835 		verbose(env, "arg#0 must have constant offset\n");
9836 		return -EINVAL;
9837 	}
9838 
9839 	kptr_field = btf_record_find(reg->map_ptr->record, reg->off + reg->var_off.value, BPF_KPTR);
9840 	if (!kptr_field || kptr_field->type != BPF_KPTR_REF) {
9841 		verbose(env, "arg#0 no referenced kptr at map value offset=%llu\n",
9842 			reg->off + reg->var_off.value);
9843 		return -EINVAL;
9844 	}
9845 
9846 	if (!btf_struct_ids_match(&env->log, meta->btf, ref_t->type, 0, kptr_field->kptr.btf,
9847 				  kptr_field->kptr.btf_id, true)) {
9848 		verbose(env, "kernel function %s args#%d expected pointer to %s %s\n",
9849 			meta->func_name, argno, btf_type_str(ref_t), ref_tname);
9850 		return -EINVAL;
9851 	}
9852 	return 0;
9853 }
9854 
9855 static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
9856 {
9857 	struct bpf_verifier_state *state = env->cur_state;
9858 
9859 	if (!state->active_lock.ptr) {
9860 		verbose(env, "verifier internal error: ref_set_non_owning w/o active lock\n");
9861 		return -EFAULT;
9862 	}
9863 
9864 	if (type_flag(reg->type) & NON_OWN_REF) {
9865 		verbose(env, "verifier internal error: NON_OWN_REF already set\n");
9866 		return -EFAULT;
9867 	}
9868 
9869 	reg->type |= NON_OWN_REF;
9870 	return 0;
9871 }
9872 
9873 static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id)
9874 {
9875 	struct bpf_func_state *state, *unused;
9876 	struct bpf_reg_state *reg;
9877 	int i;
9878 
9879 	state = cur_func(env);
9880 
9881 	if (!ref_obj_id) {
9882 		verbose(env, "verifier internal error: ref_obj_id is zero for "
9883 			     "owning -> non-owning conversion\n");
9884 		return -EFAULT;
9885 	}
9886 
9887 	for (i = 0; i < state->acquired_refs; i++) {
9888 		if (state->refs[i].id != ref_obj_id)
9889 			continue;
9890 
9891 		/* Clear ref_obj_id here so release_reference doesn't clobber
9892 		 * the whole reg
9893 		 */
9894 		bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
9895 			if (reg->ref_obj_id == ref_obj_id) {
9896 				reg->ref_obj_id = 0;
9897 				ref_set_non_owning(env, reg);
9898 			}
9899 		}));
9900 		return 0;
9901 	}
9902 
9903 	verbose(env, "verifier internal error: ref state missing for ref_obj_id\n");
9904 	return -EFAULT;
9905 }
9906 
9907 /* Implementation details:
9908  *
9909  * Each register points to some region of memory, which we define as an
9910  * allocation. Each allocation may embed a bpf_spin_lock which protects any
9911  * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same
9912  * allocation. The lock and the data it protects are colocated in the same
9913  * memory region.
9914  *
9915  * Hence, everytime a register holds a pointer value pointing to such
9916  * allocation, the verifier preserves a unique reg->id for it.
9917  *
9918  * The verifier remembers the lock 'ptr' and the lock 'id' whenever
9919  * bpf_spin_lock is called.
9920  *
9921  * To enable this, lock state in the verifier captures two values:
9922  *	active_lock.ptr = Register's type specific pointer
9923  *	active_lock.id  = A unique ID for each register pointer value
9924  *
9925  * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two
9926  * supported register types.
9927  *
9928  * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of
9929  * allocated objects is the reg->btf pointer.
9930  *
9931  * The active_lock.id is non-unique for maps supporting direct_value_addr, as we
9932  * can establish the provenance of the map value statically for each distinct
9933  * lookup into such maps. They always contain a single map value hence unique
9934  * IDs for each pseudo load pessimizes the algorithm and rejects valid programs.
9935  *
9936  * So, in case of global variables, they use array maps with max_entries = 1,
9937  * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point
9938  * into the same map value as max_entries is 1, as described above).
9939  *
9940  * In case of inner map lookups, the inner map pointer has same map_ptr as the
9941  * outer map pointer (in verifier context), but each lookup into an inner map
9942  * assigns a fresh reg->id to the lookup, so while lookups into distinct inner
9943  * maps from the same outer map share the same map_ptr as active_lock.ptr, they
9944  * will get different reg->id assigned to each lookup, hence different
9945  * active_lock.id.
9946  *
9947  * In case of allocated objects, active_lock.ptr is the reg->btf, and the
9948  * reg->id is a unique ID preserved after the NULL pointer check on the pointer
9949  * returned from bpf_obj_new. Each allocation receives a new reg->id.
9950  */
9951 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
9952 {
9953 	void *ptr;
9954 	u32 id;
9955 
9956 	switch ((int)reg->type) {
9957 	case PTR_TO_MAP_VALUE:
9958 		ptr = reg->map_ptr;
9959 		break;
9960 	case PTR_TO_BTF_ID | MEM_ALLOC:
9961 		ptr = reg->btf;
9962 		break;
9963 	default:
9964 		verbose(env, "verifier internal error: unknown reg type for lock check\n");
9965 		return -EFAULT;
9966 	}
9967 	id = reg->id;
9968 
9969 	if (!env->cur_state->active_lock.ptr)
9970 		return -EINVAL;
9971 	if (env->cur_state->active_lock.ptr != ptr ||
9972 	    env->cur_state->active_lock.id != id) {
9973 		verbose(env, "held lock and object are not in the same allocation\n");
9974 		return -EINVAL;
9975 	}
9976 	return 0;
9977 }
9978 
9979 static bool is_bpf_list_api_kfunc(u32 btf_id)
9980 {
9981 	return btf_id == special_kfunc_list[KF_bpf_list_push_front] ||
9982 	       btf_id == special_kfunc_list[KF_bpf_list_push_back] ||
9983 	       btf_id == special_kfunc_list[KF_bpf_list_pop_front] ||
9984 	       btf_id == special_kfunc_list[KF_bpf_list_pop_back];
9985 }
9986 
9987 static bool is_bpf_rbtree_api_kfunc(u32 btf_id)
9988 {
9989 	return btf_id == special_kfunc_list[KF_bpf_rbtree_add] ||
9990 	       btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
9991 	       btf_id == special_kfunc_list[KF_bpf_rbtree_first];
9992 }
9993 
9994 static bool is_bpf_graph_api_kfunc(u32 btf_id)
9995 {
9996 	return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id);
9997 }
9998 
9999 static bool is_callback_calling_kfunc(u32 btf_id)
10000 {
10001 	return btf_id == special_kfunc_list[KF_bpf_rbtree_add];
10002 }
10003 
10004 static bool is_rbtree_lock_required_kfunc(u32 btf_id)
10005 {
10006 	return is_bpf_rbtree_api_kfunc(btf_id);
10007 }
10008 
10009 static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env,
10010 					  enum btf_field_type head_field_type,
10011 					  u32 kfunc_btf_id)
10012 {
10013 	bool ret;
10014 
10015 	switch (head_field_type) {
10016 	case BPF_LIST_HEAD:
10017 		ret = is_bpf_list_api_kfunc(kfunc_btf_id);
10018 		break;
10019 	case BPF_RB_ROOT:
10020 		ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id);
10021 		break;
10022 	default:
10023 		verbose(env, "verifier internal error: unexpected graph root argument type %s\n",
10024 			btf_field_type_name(head_field_type));
10025 		return false;
10026 	}
10027 
10028 	if (!ret)
10029 		verbose(env, "verifier internal error: %s head arg for unknown kfunc\n",
10030 			btf_field_type_name(head_field_type));
10031 	return ret;
10032 }
10033 
10034 static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env,
10035 					  enum btf_field_type node_field_type,
10036 					  u32 kfunc_btf_id)
10037 {
10038 	bool ret;
10039 
10040 	switch (node_field_type) {
10041 	case BPF_LIST_NODE:
10042 		ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front] ||
10043 		       kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back]);
10044 		break;
10045 	case BPF_RB_NODE:
10046 		ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
10047 		       kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add]);
10048 		break;
10049 	default:
10050 		verbose(env, "verifier internal error: unexpected graph node argument type %s\n",
10051 			btf_field_type_name(node_field_type));
10052 		return false;
10053 	}
10054 
10055 	if (!ret)
10056 		verbose(env, "verifier internal error: %s node arg for unknown kfunc\n",
10057 			btf_field_type_name(node_field_type));
10058 	return ret;
10059 }
10060 
10061 static int
10062 __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env,
10063 				   struct bpf_reg_state *reg, u32 regno,
10064 				   struct bpf_kfunc_call_arg_meta *meta,
10065 				   enum btf_field_type head_field_type,
10066 				   struct btf_field **head_field)
10067 {
10068 	const char *head_type_name;
10069 	struct btf_field *field;
10070 	struct btf_record *rec;
10071 	u32 head_off;
10072 
10073 	if (meta->btf != btf_vmlinux) {
10074 		verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n");
10075 		return -EFAULT;
10076 	}
10077 
10078 	if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id))
10079 		return -EFAULT;
10080 
10081 	head_type_name = btf_field_type_name(head_field_type);
10082 	if (!tnum_is_const(reg->var_off)) {
10083 		verbose(env,
10084 			"R%d doesn't have constant offset. %s has to be at the constant offset\n",
10085 			regno, head_type_name);
10086 		return -EINVAL;
10087 	}
10088 
10089 	rec = reg_btf_record(reg);
10090 	head_off = reg->off + reg->var_off.value;
10091 	field = btf_record_find(rec, head_off, head_field_type);
10092 	if (!field) {
10093 		verbose(env, "%s not found at offset=%u\n", head_type_name, head_off);
10094 		return -EINVAL;
10095 	}
10096 
10097 	/* All functions require bpf_list_head to be protected using a bpf_spin_lock */
10098 	if (check_reg_allocation_locked(env, reg)) {
10099 		verbose(env, "bpf_spin_lock at off=%d must be held for %s\n",
10100 			rec->spin_lock_off, head_type_name);
10101 		return -EINVAL;
10102 	}
10103 
10104 	if (*head_field) {
10105 		verbose(env, "verifier internal error: repeating %s arg\n", head_type_name);
10106 		return -EFAULT;
10107 	}
10108 	*head_field = field;
10109 	return 0;
10110 }
10111 
10112 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env,
10113 					   struct bpf_reg_state *reg, u32 regno,
10114 					   struct bpf_kfunc_call_arg_meta *meta)
10115 {
10116 	return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD,
10117 							  &meta->arg_list_head.field);
10118 }
10119 
10120 static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env,
10121 					     struct bpf_reg_state *reg, u32 regno,
10122 					     struct bpf_kfunc_call_arg_meta *meta)
10123 {
10124 	return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT,
10125 							  &meta->arg_rbtree_root.field);
10126 }
10127 
10128 static int
10129 __process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env,
10130 				   struct bpf_reg_state *reg, u32 regno,
10131 				   struct bpf_kfunc_call_arg_meta *meta,
10132 				   enum btf_field_type head_field_type,
10133 				   enum btf_field_type node_field_type,
10134 				   struct btf_field **node_field)
10135 {
10136 	const char *node_type_name;
10137 	const struct btf_type *et, *t;
10138 	struct btf_field *field;
10139 	u32 node_off;
10140 
10141 	if (meta->btf != btf_vmlinux) {
10142 		verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n");
10143 		return -EFAULT;
10144 	}
10145 
10146 	if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id))
10147 		return -EFAULT;
10148 
10149 	node_type_name = btf_field_type_name(node_field_type);
10150 	if (!tnum_is_const(reg->var_off)) {
10151 		verbose(env,
10152 			"R%d doesn't have constant offset. %s has to be at the constant offset\n",
10153 			regno, node_type_name);
10154 		return -EINVAL;
10155 	}
10156 
10157 	node_off = reg->off + reg->var_off.value;
10158 	field = reg_find_field_offset(reg, node_off, node_field_type);
10159 	if (!field || field->offset != node_off) {
10160 		verbose(env, "%s not found at offset=%u\n", node_type_name, node_off);
10161 		return -EINVAL;
10162 	}
10163 
10164 	field = *node_field;
10165 
10166 	et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id);
10167 	t = btf_type_by_id(reg->btf, reg->btf_id);
10168 	if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf,
10169 				  field->graph_root.value_btf_id, true)) {
10170 		verbose(env, "operation on %s expects arg#1 %s at offset=%d "
10171 			"in struct %s, but arg is at offset=%d in struct %s\n",
10172 			btf_field_type_name(head_field_type),
10173 			btf_field_type_name(node_field_type),
10174 			field->graph_root.node_offset,
10175 			btf_name_by_offset(field->graph_root.btf, et->name_off),
10176 			node_off, btf_name_by_offset(reg->btf, t->name_off));
10177 		return -EINVAL;
10178 	}
10179 
10180 	if (node_off != field->graph_root.node_offset) {
10181 		verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n",
10182 			node_off, btf_field_type_name(node_field_type),
10183 			field->graph_root.node_offset,
10184 			btf_name_by_offset(field->graph_root.btf, et->name_off));
10185 		return -EINVAL;
10186 	}
10187 
10188 	return 0;
10189 }
10190 
10191 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env,
10192 					   struct bpf_reg_state *reg, u32 regno,
10193 					   struct bpf_kfunc_call_arg_meta *meta)
10194 {
10195 	return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
10196 						  BPF_LIST_HEAD, BPF_LIST_NODE,
10197 						  &meta->arg_list_head.field);
10198 }
10199 
10200 static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env,
10201 					     struct bpf_reg_state *reg, u32 regno,
10202 					     struct bpf_kfunc_call_arg_meta *meta)
10203 {
10204 	return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
10205 						  BPF_RB_ROOT, BPF_RB_NODE,
10206 						  &meta->arg_rbtree_root.field);
10207 }
10208 
10209 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta,
10210 			    int insn_idx)
10211 {
10212 	const char *func_name = meta->func_name, *ref_tname;
10213 	const struct btf *btf = meta->btf;
10214 	const struct btf_param *args;
10215 	u32 i, nargs;
10216 	int ret;
10217 
10218 	args = (const struct btf_param *)(meta->func_proto + 1);
10219 	nargs = btf_type_vlen(meta->func_proto);
10220 	if (nargs > MAX_BPF_FUNC_REG_ARGS) {
10221 		verbose(env, "Function %s has %d > %d args\n", func_name, nargs,
10222 			MAX_BPF_FUNC_REG_ARGS);
10223 		return -EINVAL;
10224 	}
10225 
10226 	/* Check that BTF function arguments match actual types that the
10227 	 * verifier sees.
10228 	 */
10229 	for (i = 0; i < nargs; i++) {
10230 		struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[i + 1];
10231 		const struct btf_type *t, *ref_t, *resolve_ret;
10232 		enum bpf_arg_type arg_type = ARG_DONTCARE;
10233 		u32 regno = i + 1, ref_id, type_size;
10234 		bool is_ret_buf_sz = false;
10235 		int kf_arg_type;
10236 
10237 		t = btf_type_skip_modifiers(btf, args[i].type, NULL);
10238 
10239 		if (is_kfunc_arg_ignore(btf, &args[i]))
10240 			continue;
10241 
10242 		if (btf_type_is_scalar(t)) {
10243 			if (reg->type != SCALAR_VALUE) {
10244 				verbose(env, "R%d is not a scalar\n", regno);
10245 				return -EINVAL;
10246 			}
10247 
10248 			if (is_kfunc_arg_constant(meta->btf, &args[i])) {
10249 				if (meta->arg_constant.found) {
10250 					verbose(env, "verifier internal error: only one constant argument permitted\n");
10251 					return -EFAULT;
10252 				}
10253 				if (!tnum_is_const(reg->var_off)) {
10254 					verbose(env, "R%d must be a known constant\n", regno);
10255 					return -EINVAL;
10256 				}
10257 				ret = mark_chain_precision(env, regno);
10258 				if (ret < 0)
10259 					return ret;
10260 				meta->arg_constant.found = true;
10261 				meta->arg_constant.value = reg->var_off.value;
10262 			} else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) {
10263 				meta->r0_rdonly = true;
10264 				is_ret_buf_sz = true;
10265 			} else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) {
10266 				is_ret_buf_sz = true;
10267 			}
10268 
10269 			if (is_ret_buf_sz) {
10270 				if (meta->r0_size) {
10271 					verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc");
10272 					return -EINVAL;
10273 				}
10274 
10275 				if (!tnum_is_const(reg->var_off)) {
10276 					verbose(env, "R%d is not a const\n", regno);
10277 					return -EINVAL;
10278 				}
10279 
10280 				meta->r0_size = reg->var_off.value;
10281 				ret = mark_chain_precision(env, regno);
10282 				if (ret)
10283 					return ret;
10284 			}
10285 			continue;
10286 		}
10287 
10288 		if (!btf_type_is_ptr(t)) {
10289 			verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t));
10290 			return -EINVAL;
10291 		}
10292 
10293 		if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) &&
10294 		    (register_is_null(reg) || type_may_be_null(reg->type))) {
10295 			verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i);
10296 			return -EACCES;
10297 		}
10298 
10299 		if (reg->ref_obj_id) {
10300 			if (is_kfunc_release(meta) && meta->ref_obj_id) {
10301 				verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
10302 					regno, reg->ref_obj_id,
10303 					meta->ref_obj_id);
10304 				return -EFAULT;
10305 			}
10306 			meta->ref_obj_id = reg->ref_obj_id;
10307 			if (is_kfunc_release(meta))
10308 				meta->release_regno = regno;
10309 		}
10310 
10311 		ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
10312 		ref_tname = btf_name_by_offset(btf, ref_t->name_off);
10313 
10314 		kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs);
10315 		if (kf_arg_type < 0)
10316 			return kf_arg_type;
10317 
10318 		switch (kf_arg_type) {
10319 		case KF_ARG_PTR_TO_ALLOC_BTF_ID:
10320 		case KF_ARG_PTR_TO_BTF_ID:
10321 			if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta))
10322 				break;
10323 
10324 			if (!is_trusted_reg(reg)) {
10325 				if (!is_kfunc_rcu(meta)) {
10326 					verbose(env, "R%d must be referenced or trusted\n", regno);
10327 					return -EINVAL;
10328 				}
10329 				if (!is_rcu_reg(reg)) {
10330 					verbose(env, "R%d must be a rcu pointer\n", regno);
10331 					return -EINVAL;
10332 				}
10333 			}
10334 
10335 			fallthrough;
10336 		case KF_ARG_PTR_TO_CTX:
10337 			/* Trusted arguments have the same offset checks as release arguments */
10338 			arg_type |= OBJ_RELEASE;
10339 			break;
10340 		case KF_ARG_PTR_TO_KPTR:
10341 		case KF_ARG_PTR_TO_DYNPTR:
10342 		case KF_ARG_PTR_TO_ITER:
10343 		case KF_ARG_PTR_TO_LIST_HEAD:
10344 		case KF_ARG_PTR_TO_LIST_NODE:
10345 		case KF_ARG_PTR_TO_RB_ROOT:
10346 		case KF_ARG_PTR_TO_RB_NODE:
10347 		case KF_ARG_PTR_TO_MEM:
10348 		case KF_ARG_PTR_TO_MEM_SIZE:
10349 		case KF_ARG_PTR_TO_CALLBACK:
10350 			/* Trusted by default */
10351 			break;
10352 		default:
10353 			WARN_ON_ONCE(1);
10354 			return -EFAULT;
10355 		}
10356 
10357 		if (is_kfunc_release(meta) && reg->ref_obj_id)
10358 			arg_type |= OBJ_RELEASE;
10359 		ret = check_func_arg_reg_off(env, reg, regno, arg_type);
10360 		if (ret < 0)
10361 			return ret;
10362 
10363 		switch (kf_arg_type) {
10364 		case KF_ARG_PTR_TO_CTX:
10365 			if (reg->type != PTR_TO_CTX) {
10366 				verbose(env, "arg#%d expected pointer to ctx, but got %s\n", i, btf_type_str(t));
10367 				return -EINVAL;
10368 			}
10369 
10370 			if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
10371 				ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog));
10372 				if (ret < 0)
10373 					return -EINVAL;
10374 				meta->ret_btf_id  = ret;
10375 			}
10376 			break;
10377 		case KF_ARG_PTR_TO_ALLOC_BTF_ID:
10378 			if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
10379 				verbose(env, "arg#%d expected pointer to allocated object\n", i);
10380 				return -EINVAL;
10381 			}
10382 			if (!reg->ref_obj_id) {
10383 				verbose(env, "allocated object must be referenced\n");
10384 				return -EINVAL;
10385 			}
10386 			if (meta->btf == btf_vmlinux &&
10387 			    meta->func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) {
10388 				meta->arg_obj_drop.btf = reg->btf;
10389 				meta->arg_obj_drop.btf_id = reg->btf_id;
10390 			}
10391 			break;
10392 		case KF_ARG_PTR_TO_KPTR:
10393 			if (reg->type != PTR_TO_MAP_VALUE) {
10394 				verbose(env, "arg#0 expected pointer to map value\n");
10395 				return -EINVAL;
10396 			}
10397 			ret = process_kf_arg_ptr_to_kptr(env, reg, ref_t, ref_tname, meta, i);
10398 			if (ret < 0)
10399 				return ret;
10400 			break;
10401 		case KF_ARG_PTR_TO_DYNPTR:
10402 		{
10403 			enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR;
10404 
10405 			if (reg->type != PTR_TO_STACK &&
10406 			    reg->type != CONST_PTR_TO_DYNPTR) {
10407 				verbose(env, "arg#%d expected pointer to stack or dynptr_ptr\n", i);
10408 				return -EINVAL;
10409 			}
10410 
10411 			if (reg->type == CONST_PTR_TO_DYNPTR)
10412 				dynptr_arg_type |= MEM_RDONLY;
10413 
10414 			if (is_kfunc_arg_uninit(btf, &args[i]))
10415 				dynptr_arg_type |= MEM_UNINIT;
10416 
10417 			if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb])
10418 				dynptr_arg_type |= DYNPTR_TYPE_SKB;
10419 			else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp])
10420 				dynptr_arg_type |= DYNPTR_TYPE_XDP;
10421 
10422 			ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type);
10423 			if (ret < 0)
10424 				return ret;
10425 
10426 			if (!(dynptr_arg_type & MEM_UNINIT)) {
10427 				int id = dynptr_id(env, reg);
10428 
10429 				if (id < 0) {
10430 					verbose(env, "verifier internal error: failed to obtain dynptr id\n");
10431 					return id;
10432 				}
10433 				meta->initialized_dynptr.id = id;
10434 				meta->initialized_dynptr.type = dynptr_get_type(env, reg);
10435 			}
10436 
10437 			break;
10438 		}
10439 		case KF_ARG_PTR_TO_ITER:
10440 			ret = process_iter_arg(env, regno, insn_idx, meta);
10441 			if (ret < 0)
10442 				return ret;
10443 			break;
10444 		case KF_ARG_PTR_TO_LIST_HEAD:
10445 			if (reg->type != PTR_TO_MAP_VALUE &&
10446 			    reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
10447 				verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
10448 				return -EINVAL;
10449 			}
10450 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
10451 				verbose(env, "allocated object must be referenced\n");
10452 				return -EINVAL;
10453 			}
10454 			ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta);
10455 			if (ret < 0)
10456 				return ret;
10457 			break;
10458 		case KF_ARG_PTR_TO_RB_ROOT:
10459 			if (reg->type != PTR_TO_MAP_VALUE &&
10460 			    reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
10461 				verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
10462 				return -EINVAL;
10463 			}
10464 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
10465 				verbose(env, "allocated object must be referenced\n");
10466 				return -EINVAL;
10467 			}
10468 			ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta);
10469 			if (ret < 0)
10470 				return ret;
10471 			break;
10472 		case KF_ARG_PTR_TO_LIST_NODE:
10473 			if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
10474 				verbose(env, "arg#%d expected pointer to allocated object\n", i);
10475 				return -EINVAL;
10476 			}
10477 			if (!reg->ref_obj_id) {
10478 				verbose(env, "allocated object must be referenced\n");
10479 				return -EINVAL;
10480 			}
10481 			ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta);
10482 			if (ret < 0)
10483 				return ret;
10484 			break;
10485 		case KF_ARG_PTR_TO_RB_NODE:
10486 			if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_remove]) {
10487 				if (!type_is_non_owning_ref(reg->type) || reg->ref_obj_id) {
10488 					verbose(env, "rbtree_remove node input must be non-owning ref\n");
10489 					return -EINVAL;
10490 				}
10491 				if (in_rbtree_lock_required_cb(env)) {
10492 					verbose(env, "rbtree_remove not allowed in rbtree cb\n");
10493 					return -EINVAL;
10494 				}
10495 			} else {
10496 				if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
10497 					verbose(env, "arg#%d expected pointer to allocated object\n", i);
10498 					return -EINVAL;
10499 				}
10500 				if (!reg->ref_obj_id) {
10501 					verbose(env, "allocated object must be referenced\n");
10502 					return -EINVAL;
10503 				}
10504 			}
10505 
10506 			ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta);
10507 			if (ret < 0)
10508 				return ret;
10509 			break;
10510 		case KF_ARG_PTR_TO_BTF_ID:
10511 			/* Only base_type is checked, further checks are done here */
10512 			if ((base_type(reg->type) != PTR_TO_BTF_ID ||
10513 			     (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) &&
10514 			    !reg2btf_ids[base_type(reg->type)]) {
10515 				verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type));
10516 				verbose(env, "expected %s or socket\n",
10517 					reg_type_str(env, base_type(reg->type) |
10518 							  (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS)));
10519 				return -EINVAL;
10520 			}
10521 			ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i);
10522 			if (ret < 0)
10523 				return ret;
10524 			break;
10525 		case KF_ARG_PTR_TO_MEM:
10526 			resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
10527 			if (IS_ERR(resolve_ret)) {
10528 				verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
10529 					i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret));
10530 				return -EINVAL;
10531 			}
10532 			ret = check_mem_reg(env, reg, regno, type_size);
10533 			if (ret < 0)
10534 				return ret;
10535 			break;
10536 		case KF_ARG_PTR_TO_MEM_SIZE:
10537 		{
10538 			struct bpf_reg_state *size_reg = &regs[regno + 1];
10539 			const struct btf_param *size_arg = &args[i + 1];
10540 
10541 			ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1);
10542 			if (ret < 0) {
10543 				verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1);
10544 				return ret;
10545 			}
10546 
10547 			if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) {
10548 				if (meta->arg_constant.found) {
10549 					verbose(env, "verifier internal error: only one constant argument permitted\n");
10550 					return -EFAULT;
10551 				}
10552 				if (!tnum_is_const(size_reg->var_off)) {
10553 					verbose(env, "R%d must be a known constant\n", regno + 1);
10554 					return -EINVAL;
10555 				}
10556 				meta->arg_constant.found = true;
10557 				meta->arg_constant.value = size_reg->var_off.value;
10558 			}
10559 
10560 			/* Skip next '__sz' or '__szk' argument */
10561 			i++;
10562 			break;
10563 		}
10564 		case KF_ARG_PTR_TO_CALLBACK:
10565 			meta->subprogno = reg->subprogno;
10566 			break;
10567 		}
10568 	}
10569 
10570 	if (is_kfunc_release(meta) && !meta->release_regno) {
10571 		verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n",
10572 			func_name);
10573 		return -EINVAL;
10574 	}
10575 
10576 	return 0;
10577 }
10578 
10579 static int fetch_kfunc_meta(struct bpf_verifier_env *env,
10580 			    struct bpf_insn *insn,
10581 			    struct bpf_kfunc_call_arg_meta *meta,
10582 			    const char **kfunc_name)
10583 {
10584 	const struct btf_type *func, *func_proto;
10585 	u32 func_id, *kfunc_flags;
10586 	const char *func_name;
10587 	struct btf *desc_btf;
10588 
10589 	if (kfunc_name)
10590 		*kfunc_name = NULL;
10591 
10592 	if (!insn->imm)
10593 		return -EINVAL;
10594 
10595 	desc_btf = find_kfunc_desc_btf(env, insn->off);
10596 	if (IS_ERR(desc_btf))
10597 		return PTR_ERR(desc_btf);
10598 
10599 	func_id = insn->imm;
10600 	func = btf_type_by_id(desc_btf, func_id);
10601 	func_name = btf_name_by_offset(desc_btf, func->name_off);
10602 	if (kfunc_name)
10603 		*kfunc_name = func_name;
10604 	func_proto = btf_type_by_id(desc_btf, func->type);
10605 
10606 	kfunc_flags = btf_kfunc_id_set_contains(desc_btf, resolve_prog_type(env->prog), func_id);
10607 	if (!kfunc_flags) {
10608 		return -EACCES;
10609 	}
10610 
10611 	memset(meta, 0, sizeof(*meta));
10612 	meta->btf = desc_btf;
10613 	meta->func_id = func_id;
10614 	meta->kfunc_flags = *kfunc_flags;
10615 	meta->func_proto = func_proto;
10616 	meta->func_name = func_name;
10617 
10618 	return 0;
10619 }
10620 
10621 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
10622 			    int *insn_idx_p)
10623 {
10624 	const struct btf_type *t, *ptr_type;
10625 	u32 i, nargs, ptr_type_id, release_ref_obj_id;
10626 	struct bpf_reg_state *regs = cur_regs(env);
10627 	const char *func_name, *ptr_type_name;
10628 	bool sleepable, rcu_lock, rcu_unlock;
10629 	struct bpf_kfunc_call_arg_meta meta;
10630 	struct bpf_insn_aux_data *insn_aux;
10631 	int err, insn_idx = *insn_idx_p;
10632 	const struct btf_param *args;
10633 	const struct btf_type *ret_t;
10634 	struct btf *desc_btf;
10635 
10636 	/* skip for now, but return error when we find this in fixup_kfunc_call */
10637 	if (!insn->imm)
10638 		return 0;
10639 
10640 	err = fetch_kfunc_meta(env, insn, &meta, &func_name);
10641 	if (err == -EACCES && func_name)
10642 		verbose(env, "calling kernel function %s is not allowed\n", func_name);
10643 	if (err)
10644 		return err;
10645 	desc_btf = meta.btf;
10646 	insn_aux = &env->insn_aux_data[insn_idx];
10647 
10648 	insn_aux->is_iter_next = is_iter_next_kfunc(&meta);
10649 
10650 	if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) {
10651 		verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n");
10652 		return -EACCES;
10653 	}
10654 
10655 	sleepable = is_kfunc_sleepable(&meta);
10656 	if (sleepable && !env->prog->aux->sleepable) {
10657 		verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name);
10658 		return -EACCES;
10659 	}
10660 
10661 	rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta);
10662 	rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta);
10663 
10664 	if (env->cur_state->active_rcu_lock) {
10665 		struct bpf_func_state *state;
10666 		struct bpf_reg_state *reg;
10667 
10668 		if (rcu_lock) {
10669 			verbose(env, "nested rcu read lock (kernel function %s)\n", func_name);
10670 			return -EINVAL;
10671 		} else if (rcu_unlock) {
10672 			bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
10673 				if (reg->type & MEM_RCU) {
10674 					reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL);
10675 					reg->type |= PTR_UNTRUSTED;
10676 				}
10677 			}));
10678 			env->cur_state->active_rcu_lock = false;
10679 		} else if (sleepable) {
10680 			verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name);
10681 			return -EACCES;
10682 		}
10683 	} else if (rcu_lock) {
10684 		env->cur_state->active_rcu_lock = true;
10685 	} else if (rcu_unlock) {
10686 		verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name);
10687 		return -EINVAL;
10688 	}
10689 
10690 	/* Check the arguments */
10691 	err = check_kfunc_args(env, &meta, insn_idx);
10692 	if (err < 0)
10693 		return err;
10694 	/* In case of release function, we get register number of refcounted
10695 	 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now.
10696 	 */
10697 	if (meta.release_regno) {
10698 		err = release_reference(env, regs[meta.release_regno].ref_obj_id);
10699 		if (err) {
10700 			verbose(env, "kfunc %s#%d reference has not been acquired before\n",
10701 				func_name, meta.func_id);
10702 			return err;
10703 		}
10704 	}
10705 
10706 	if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front] ||
10707 	    meta.func_id == special_kfunc_list[KF_bpf_list_push_back] ||
10708 	    meta.func_id == special_kfunc_list[KF_bpf_rbtree_add]) {
10709 		release_ref_obj_id = regs[BPF_REG_2].ref_obj_id;
10710 		err = ref_convert_owning_non_owning(env, release_ref_obj_id);
10711 		if (err) {
10712 			verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n",
10713 				func_name, meta.func_id);
10714 			return err;
10715 		}
10716 
10717 		err = release_reference(env, release_ref_obj_id);
10718 		if (err) {
10719 			verbose(env, "kfunc %s#%d reference has not been acquired before\n",
10720 				func_name, meta.func_id);
10721 			return err;
10722 		}
10723 	}
10724 
10725 	if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add]) {
10726 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
10727 					set_rbtree_add_callback_state);
10728 		if (err) {
10729 			verbose(env, "kfunc %s#%d failed callback verification\n",
10730 				func_name, meta.func_id);
10731 			return err;
10732 		}
10733 	}
10734 
10735 	for (i = 0; i < CALLER_SAVED_REGS; i++)
10736 		mark_reg_not_init(env, regs, caller_saved[i]);
10737 
10738 	/* Check return type */
10739 	t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL);
10740 
10741 	if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) {
10742 		/* Only exception is bpf_obj_new_impl */
10743 		if (meta.btf != btf_vmlinux || meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl]) {
10744 			verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n");
10745 			return -EINVAL;
10746 		}
10747 	}
10748 
10749 	if (btf_type_is_scalar(t)) {
10750 		mark_reg_unknown(env, regs, BPF_REG_0);
10751 		mark_btf_func_reg_size(env, BPF_REG_0, t->size);
10752 	} else if (btf_type_is_ptr(t)) {
10753 		ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id);
10754 
10755 		if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
10756 			if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl]) {
10757 				struct btf *ret_btf;
10758 				u32 ret_btf_id;
10759 
10760 				if (unlikely(!bpf_global_ma_set))
10761 					return -ENOMEM;
10762 
10763 				if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) {
10764 					verbose(env, "local type ID argument must be in range [0, U32_MAX]\n");
10765 					return -EINVAL;
10766 				}
10767 
10768 				ret_btf = env->prog->aux->btf;
10769 				ret_btf_id = meta.arg_constant.value;
10770 
10771 				/* This may be NULL due to user not supplying a BTF */
10772 				if (!ret_btf) {
10773 					verbose(env, "bpf_obj_new requires prog BTF\n");
10774 					return -EINVAL;
10775 				}
10776 
10777 				ret_t = btf_type_by_id(ret_btf, ret_btf_id);
10778 				if (!ret_t || !__btf_type_is_struct(ret_t)) {
10779 					verbose(env, "bpf_obj_new type ID argument must be of a struct\n");
10780 					return -EINVAL;
10781 				}
10782 
10783 				mark_reg_known_zero(env, regs, BPF_REG_0);
10784 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
10785 				regs[BPF_REG_0].btf = ret_btf;
10786 				regs[BPF_REG_0].btf_id = ret_btf_id;
10787 
10788 				insn_aux->obj_new_size = ret_t->size;
10789 				insn_aux->kptr_struct_meta =
10790 					btf_find_struct_meta(ret_btf, ret_btf_id);
10791 			} else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] ||
10792 				   meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) {
10793 				struct btf_field *field = meta.arg_list_head.field;
10794 
10795 				mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
10796 			} else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
10797 				   meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) {
10798 				struct btf_field *field = meta.arg_rbtree_root.field;
10799 
10800 				mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
10801 			} else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
10802 				mark_reg_known_zero(env, regs, BPF_REG_0);
10803 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED;
10804 				regs[BPF_REG_0].btf = desc_btf;
10805 				regs[BPF_REG_0].btf_id = meta.ret_btf_id;
10806 			} else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
10807 				ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value);
10808 				if (!ret_t || !btf_type_is_struct(ret_t)) {
10809 					verbose(env,
10810 						"kfunc bpf_rdonly_cast type ID argument must be of a struct\n");
10811 					return -EINVAL;
10812 				}
10813 
10814 				mark_reg_known_zero(env, regs, BPF_REG_0);
10815 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
10816 				regs[BPF_REG_0].btf = desc_btf;
10817 				regs[BPF_REG_0].btf_id = meta.arg_constant.value;
10818 			} else if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice] ||
10819 				   meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) {
10820 				enum bpf_type_flag type_flag = get_dynptr_type_flag(meta.initialized_dynptr.type);
10821 
10822 				mark_reg_known_zero(env, regs, BPF_REG_0);
10823 
10824 				if (!meta.arg_constant.found) {
10825 					verbose(env, "verifier internal error: bpf_dynptr_slice(_rdwr) no constant size\n");
10826 					return -EFAULT;
10827 				}
10828 
10829 				regs[BPF_REG_0].mem_size = meta.arg_constant.value;
10830 
10831 				/* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */
10832 				regs[BPF_REG_0].type = PTR_TO_MEM | type_flag;
10833 
10834 				if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice]) {
10835 					regs[BPF_REG_0].type |= MEM_RDONLY;
10836 				} else {
10837 					/* this will set env->seen_direct_write to true */
10838 					if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) {
10839 						verbose(env, "the prog does not allow writes to packet data\n");
10840 						return -EINVAL;
10841 					}
10842 				}
10843 
10844 				if (!meta.initialized_dynptr.id) {
10845 					verbose(env, "verifier internal error: no dynptr id\n");
10846 					return -EFAULT;
10847 				}
10848 				regs[BPF_REG_0].dynptr_id = meta.initialized_dynptr.id;
10849 
10850 				/* we don't need to set BPF_REG_0's ref obj id
10851 				 * because packet slices are not refcounted (see
10852 				 * dynptr_type_refcounted)
10853 				 */
10854 			} else {
10855 				verbose(env, "kernel function %s unhandled dynamic return type\n",
10856 					meta.func_name);
10857 				return -EFAULT;
10858 			}
10859 		} else if (!__btf_type_is_struct(ptr_type)) {
10860 			if (!meta.r0_size) {
10861 				__u32 sz;
10862 
10863 				if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) {
10864 					meta.r0_size = sz;
10865 					meta.r0_rdonly = true;
10866 				}
10867 			}
10868 			if (!meta.r0_size) {
10869 				ptr_type_name = btf_name_by_offset(desc_btf,
10870 								   ptr_type->name_off);
10871 				verbose(env,
10872 					"kernel function %s returns pointer type %s %s is not supported\n",
10873 					func_name,
10874 					btf_type_str(ptr_type),
10875 					ptr_type_name);
10876 				return -EINVAL;
10877 			}
10878 
10879 			mark_reg_known_zero(env, regs, BPF_REG_0);
10880 			regs[BPF_REG_0].type = PTR_TO_MEM;
10881 			regs[BPF_REG_0].mem_size = meta.r0_size;
10882 
10883 			if (meta.r0_rdonly)
10884 				regs[BPF_REG_0].type |= MEM_RDONLY;
10885 
10886 			/* Ensures we don't access the memory after a release_reference() */
10887 			if (meta.ref_obj_id)
10888 				regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
10889 		} else {
10890 			mark_reg_known_zero(env, regs, BPF_REG_0);
10891 			regs[BPF_REG_0].btf = desc_btf;
10892 			regs[BPF_REG_0].type = PTR_TO_BTF_ID;
10893 			regs[BPF_REG_0].btf_id = ptr_type_id;
10894 		}
10895 
10896 		if (is_kfunc_ret_null(&meta)) {
10897 			regs[BPF_REG_0].type |= PTR_MAYBE_NULL;
10898 			/* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */
10899 			regs[BPF_REG_0].id = ++env->id_gen;
10900 		}
10901 		mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
10902 		if (is_kfunc_acquire(&meta)) {
10903 			int id = acquire_reference_state(env, insn_idx);
10904 
10905 			if (id < 0)
10906 				return id;
10907 			if (is_kfunc_ret_null(&meta))
10908 				regs[BPF_REG_0].id = id;
10909 			regs[BPF_REG_0].ref_obj_id = id;
10910 		} else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) {
10911 			ref_set_non_owning(env, &regs[BPF_REG_0]);
10912 		}
10913 
10914 		if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove])
10915 			invalidate_non_owning_refs(env);
10916 
10917 		if (reg_may_point_to_spin_lock(&regs[BPF_REG_0]) && !regs[BPF_REG_0].id)
10918 			regs[BPF_REG_0].id = ++env->id_gen;
10919 	} else if (btf_type_is_void(t)) {
10920 		if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
10921 			if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) {
10922 				insn_aux->kptr_struct_meta =
10923 					btf_find_struct_meta(meta.arg_obj_drop.btf,
10924 							     meta.arg_obj_drop.btf_id);
10925 			}
10926 		}
10927 	}
10928 
10929 	nargs = btf_type_vlen(meta.func_proto);
10930 	args = (const struct btf_param *)(meta.func_proto + 1);
10931 	for (i = 0; i < nargs; i++) {
10932 		u32 regno = i + 1;
10933 
10934 		t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL);
10935 		if (btf_type_is_ptr(t))
10936 			mark_btf_func_reg_size(env, regno, sizeof(void *));
10937 		else
10938 			/* scalar. ensured by btf_check_kfunc_arg_match() */
10939 			mark_btf_func_reg_size(env, regno, t->size);
10940 	}
10941 
10942 	if (is_iter_next_kfunc(&meta)) {
10943 		err = process_iter_next_call(env, insn_idx, &meta);
10944 		if (err)
10945 			return err;
10946 	}
10947 
10948 	return 0;
10949 }
10950 
10951 static bool signed_add_overflows(s64 a, s64 b)
10952 {
10953 	/* Do the add in u64, where overflow is well-defined */
10954 	s64 res = (s64)((u64)a + (u64)b);
10955 
10956 	if (b < 0)
10957 		return res > a;
10958 	return res < a;
10959 }
10960 
10961 static bool signed_add32_overflows(s32 a, s32 b)
10962 {
10963 	/* Do the add in u32, where overflow is well-defined */
10964 	s32 res = (s32)((u32)a + (u32)b);
10965 
10966 	if (b < 0)
10967 		return res > a;
10968 	return res < a;
10969 }
10970 
10971 static bool signed_sub_overflows(s64 a, s64 b)
10972 {
10973 	/* Do the sub in u64, where overflow is well-defined */
10974 	s64 res = (s64)((u64)a - (u64)b);
10975 
10976 	if (b < 0)
10977 		return res < a;
10978 	return res > a;
10979 }
10980 
10981 static bool signed_sub32_overflows(s32 a, s32 b)
10982 {
10983 	/* Do the sub in u32, where overflow is well-defined */
10984 	s32 res = (s32)((u32)a - (u32)b);
10985 
10986 	if (b < 0)
10987 		return res < a;
10988 	return res > a;
10989 }
10990 
10991 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
10992 				  const struct bpf_reg_state *reg,
10993 				  enum bpf_reg_type type)
10994 {
10995 	bool known = tnum_is_const(reg->var_off);
10996 	s64 val = reg->var_off.value;
10997 	s64 smin = reg->smin_value;
10998 
10999 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
11000 		verbose(env, "math between %s pointer and %lld is not allowed\n",
11001 			reg_type_str(env, type), val);
11002 		return false;
11003 	}
11004 
11005 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
11006 		verbose(env, "%s pointer offset %d is not allowed\n",
11007 			reg_type_str(env, type), reg->off);
11008 		return false;
11009 	}
11010 
11011 	if (smin == S64_MIN) {
11012 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
11013 			reg_type_str(env, type));
11014 		return false;
11015 	}
11016 
11017 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
11018 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
11019 			smin, reg_type_str(env, type));
11020 		return false;
11021 	}
11022 
11023 	return true;
11024 }
11025 
11026 enum {
11027 	REASON_BOUNDS	= -1,
11028 	REASON_TYPE	= -2,
11029 	REASON_PATHS	= -3,
11030 	REASON_LIMIT	= -4,
11031 	REASON_STACK	= -5,
11032 };
11033 
11034 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
11035 			      u32 *alu_limit, bool mask_to_left)
11036 {
11037 	u32 max = 0, ptr_limit = 0;
11038 
11039 	switch (ptr_reg->type) {
11040 	case PTR_TO_STACK:
11041 		/* Offset 0 is out-of-bounds, but acceptable start for the
11042 		 * left direction, see BPF_REG_FP. Also, unknown scalar
11043 		 * offset where we would need to deal with min/max bounds is
11044 		 * currently prohibited for unprivileged.
11045 		 */
11046 		max = MAX_BPF_STACK + mask_to_left;
11047 		ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
11048 		break;
11049 	case PTR_TO_MAP_VALUE:
11050 		max = ptr_reg->map_ptr->value_size;
11051 		ptr_limit = (mask_to_left ?
11052 			     ptr_reg->smin_value :
11053 			     ptr_reg->umax_value) + ptr_reg->off;
11054 		break;
11055 	default:
11056 		return REASON_TYPE;
11057 	}
11058 
11059 	if (ptr_limit >= max)
11060 		return REASON_LIMIT;
11061 	*alu_limit = ptr_limit;
11062 	return 0;
11063 }
11064 
11065 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
11066 				    const struct bpf_insn *insn)
11067 {
11068 	return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
11069 }
11070 
11071 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
11072 				       u32 alu_state, u32 alu_limit)
11073 {
11074 	/* If we arrived here from different branches with different
11075 	 * state or limits to sanitize, then this won't work.
11076 	 */
11077 	if (aux->alu_state &&
11078 	    (aux->alu_state != alu_state ||
11079 	     aux->alu_limit != alu_limit))
11080 		return REASON_PATHS;
11081 
11082 	/* Corresponding fixup done in do_misc_fixups(). */
11083 	aux->alu_state = alu_state;
11084 	aux->alu_limit = alu_limit;
11085 	return 0;
11086 }
11087 
11088 static int sanitize_val_alu(struct bpf_verifier_env *env,
11089 			    struct bpf_insn *insn)
11090 {
11091 	struct bpf_insn_aux_data *aux = cur_aux(env);
11092 
11093 	if (can_skip_alu_sanitation(env, insn))
11094 		return 0;
11095 
11096 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
11097 }
11098 
11099 static bool sanitize_needed(u8 opcode)
11100 {
11101 	return opcode == BPF_ADD || opcode == BPF_SUB;
11102 }
11103 
11104 struct bpf_sanitize_info {
11105 	struct bpf_insn_aux_data aux;
11106 	bool mask_to_left;
11107 };
11108 
11109 static struct bpf_verifier_state *
11110 sanitize_speculative_path(struct bpf_verifier_env *env,
11111 			  const struct bpf_insn *insn,
11112 			  u32 next_idx, u32 curr_idx)
11113 {
11114 	struct bpf_verifier_state *branch;
11115 	struct bpf_reg_state *regs;
11116 
11117 	branch = push_stack(env, next_idx, curr_idx, true);
11118 	if (branch && insn) {
11119 		regs = branch->frame[branch->curframe]->regs;
11120 		if (BPF_SRC(insn->code) == BPF_K) {
11121 			mark_reg_unknown(env, regs, insn->dst_reg);
11122 		} else if (BPF_SRC(insn->code) == BPF_X) {
11123 			mark_reg_unknown(env, regs, insn->dst_reg);
11124 			mark_reg_unknown(env, regs, insn->src_reg);
11125 		}
11126 	}
11127 	return branch;
11128 }
11129 
11130 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
11131 			    struct bpf_insn *insn,
11132 			    const struct bpf_reg_state *ptr_reg,
11133 			    const struct bpf_reg_state *off_reg,
11134 			    struct bpf_reg_state *dst_reg,
11135 			    struct bpf_sanitize_info *info,
11136 			    const bool commit_window)
11137 {
11138 	struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
11139 	struct bpf_verifier_state *vstate = env->cur_state;
11140 	bool off_is_imm = tnum_is_const(off_reg->var_off);
11141 	bool off_is_neg = off_reg->smin_value < 0;
11142 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
11143 	u8 opcode = BPF_OP(insn->code);
11144 	u32 alu_state, alu_limit;
11145 	struct bpf_reg_state tmp;
11146 	bool ret;
11147 	int err;
11148 
11149 	if (can_skip_alu_sanitation(env, insn))
11150 		return 0;
11151 
11152 	/* We already marked aux for masking from non-speculative
11153 	 * paths, thus we got here in the first place. We only care
11154 	 * to explore bad access from here.
11155 	 */
11156 	if (vstate->speculative)
11157 		goto do_sim;
11158 
11159 	if (!commit_window) {
11160 		if (!tnum_is_const(off_reg->var_off) &&
11161 		    (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
11162 			return REASON_BOUNDS;
11163 
11164 		info->mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
11165 				     (opcode == BPF_SUB && !off_is_neg);
11166 	}
11167 
11168 	err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
11169 	if (err < 0)
11170 		return err;
11171 
11172 	if (commit_window) {
11173 		/* In commit phase we narrow the masking window based on
11174 		 * the observed pointer move after the simulated operation.
11175 		 */
11176 		alu_state = info->aux.alu_state;
11177 		alu_limit = abs(info->aux.alu_limit - alu_limit);
11178 	} else {
11179 		alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
11180 		alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
11181 		alu_state |= ptr_is_dst_reg ?
11182 			     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
11183 
11184 		/* Limit pruning on unknown scalars to enable deep search for
11185 		 * potential masking differences from other program paths.
11186 		 */
11187 		if (!off_is_imm)
11188 			env->explore_alu_limits = true;
11189 	}
11190 
11191 	err = update_alu_sanitation_state(aux, alu_state, alu_limit);
11192 	if (err < 0)
11193 		return err;
11194 do_sim:
11195 	/* If we're in commit phase, we're done here given we already
11196 	 * pushed the truncated dst_reg into the speculative verification
11197 	 * stack.
11198 	 *
11199 	 * Also, when register is a known constant, we rewrite register-based
11200 	 * operation to immediate-based, and thus do not need masking (and as
11201 	 * a consequence, do not need to simulate the zero-truncation either).
11202 	 */
11203 	if (commit_window || off_is_imm)
11204 		return 0;
11205 
11206 	/* Simulate and find potential out-of-bounds access under
11207 	 * speculative execution from truncation as a result of
11208 	 * masking when off was not within expected range. If off
11209 	 * sits in dst, then we temporarily need to move ptr there
11210 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
11211 	 * for cases where we use K-based arithmetic in one direction
11212 	 * and truncated reg-based in the other in order to explore
11213 	 * bad access.
11214 	 */
11215 	if (!ptr_is_dst_reg) {
11216 		tmp = *dst_reg;
11217 		copy_register_state(dst_reg, ptr_reg);
11218 	}
11219 	ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
11220 					env->insn_idx);
11221 	if (!ptr_is_dst_reg && ret)
11222 		*dst_reg = tmp;
11223 	return !ret ? REASON_STACK : 0;
11224 }
11225 
11226 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
11227 {
11228 	struct bpf_verifier_state *vstate = env->cur_state;
11229 
11230 	/* If we simulate paths under speculation, we don't update the
11231 	 * insn as 'seen' such that when we verify unreachable paths in
11232 	 * the non-speculative domain, sanitize_dead_code() can still
11233 	 * rewrite/sanitize them.
11234 	 */
11235 	if (!vstate->speculative)
11236 		env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
11237 }
11238 
11239 static int sanitize_err(struct bpf_verifier_env *env,
11240 			const struct bpf_insn *insn, int reason,
11241 			const struct bpf_reg_state *off_reg,
11242 			const struct bpf_reg_state *dst_reg)
11243 {
11244 	static const char *err = "pointer arithmetic with it prohibited for !root";
11245 	const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
11246 	u32 dst = insn->dst_reg, src = insn->src_reg;
11247 
11248 	switch (reason) {
11249 	case REASON_BOUNDS:
11250 		verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
11251 			off_reg == dst_reg ? dst : src, err);
11252 		break;
11253 	case REASON_TYPE:
11254 		verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
11255 			off_reg == dst_reg ? src : dst, err);
11256 		break;
11257 	case REASON_PATHS:
11258 		verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
11259 			dst, op, err);
11260 		break;
11261 	case REASON_LIMIT:
11262 		verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
11263 			dst, op, err);
11264 		break;
11265 	case REASON_STACK:
11266 		verbose(env, "R%d could not be pushed for speculative verification, %s\n",
11267 			dst, err);
11268 		break;
11269 	default:
11270 		verbose(env, "verifier internal error: unknown reason (%d)\n",
11271 			reason);
11272 		break;
11273 	}
11274 
11275 	return -EACCES;
11276 }
11277 
11278 /* check that stack access falls within stack limits and that 'reg' doesn't
11279  * have a variable offset.
11280  *
11281  * Variable offset is prohibited for unprivileged mode for simplicity since it
11282  * requires corresponding support in Spectre masking for stack ALU.  See also
11283  * retrieve_ptr_limit().
11284  *
11285  *
11286  * 'off' includes 'reg->off'.
11287  */
11288 static int check_stack_access_for_ptr_arithmetic(
11289 				struct bpf_verifier_env *env,
11290 				int regno,
11291 				const struct bpf_reg_state *reg,
11292 				int off)
11293 {
11294 	if (!tnum_is_const(reg->var_off)) {
11295 		char tn_buf[48];
11296 
11297 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
11298 		verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
11299 			regno, tn_buf, off);
11300 		return -EACCES;
11301 	}
11302 
11303 	if (off >= 0 || off < -MAX_BPF_STACK) {
11304 		verbose(env, "R%d stack pointer arithmetic goes out of range, "
11305 			"prohibited for !root; off=%d\n", regno, off);
11306 		return -EACCES;
11307 	}
11308 
11309 	return 0;
11310 }
11311 
11312 static int sanitize_check_bounds(struct bpf_verifier_env *env,
11313 				 const struct bpf_insn *insn,
11314 				 const struct bpf_reg_state *dst_reg)
11315 {
11316 	u32 dst = insn->dst_reg;
11317 
11318 	/* For unprivileged we require that resulting offset must be in bounds
11319 	 * in order to be able to sanitize access later on.
11320 	 */
11321 	if (env->bypass_spec_v1)
11322 		return 0;
11323 
11324 	switch (dst_reg->type) {
11325 	case PTR_TO_STACK:
11326 		if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
11327 					dst_reg->off + dst_reg->var_off.value))
11328 			return -EACCES;
11329 		break;
11330 	case PTR_TO_MAP_VALUE:
11331 		if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) {
11332 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
11333 				"prohibited for !root\n", dst);
11334 			return -EACCES;
11335 		}
11336 		break;
11337 	default:
11338 		break;
11339 	}
11340 
11341 	return 0;
11342 }
11343 
11344 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
11345  * Caller should also handle BPF_MOV case separately.
11346  * If we return -EACCES, caller may want to try again treating pointer as a
11347  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
11348  */
11349 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
11350 				   struct bpf_insn *insn,
11351 				   const struct bpf_reg_state *ptr_reg,
11352 				   const struct bpf_reg_state *off_reg)
11353 {
11354 	struct bpf_verifier_state *vstate = env->cur_state;
11355 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
11356 	struct bpf_reg_state *regs = state->regs, *dst_reg;
11357 	bool known = tnum_is_const(off_reg->var_off);
11358 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
11359 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
11360 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
11361 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
11362 	struct bpf_sanitize_info info = {};
11363 	u8 opcode = BPF_OP(insn->code);
11364 	u32 dst = insn->dst_reg;
11365 	int ret;
11366 
11367 	dst_reg = &regs[dst];
11368 
11369 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
11370 	    smin_val > smax_val || umin_val > umax_val) {
11371 		/* Taint dst register if offset had invalid bounds derived from
11372 		 * e.g. dead branches.
11373 		 */
11374 		__mark_reg_unknown(env, dst_reg);
11375 		return 0;
11376 	}
11377 
11378 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
11379 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
11380 		if (opcode == BPF_SUB && env->allow_ptr_leaks) {
11381 			__mark_reg_unknown(env, dst_reg);
11382 			return 0;
11383 		}
11384 
11385 		verbose(env,
11386 			"R%d 32-bit pointer arithmetic prohibited\n",
11387 			dst);
11388 		return -EACCES;
11389 	}
11390 
11391 	if (ptr_reg->type & PTR_MAYBE_NULL) {
11392 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
11393 			dst, reg_type_str(env, ptr_reg->type));
11394 		return -EACCES;
11395 	}
11396 
11397 	switch (base_type(ptr_reg->type)) {
11398 	case CONST_PTR_TO_MAP:
11399 		/* smin_val represents the known value */
11400 		if (known && smin_val == 0 && opcode == BPF_ADD)
11401 			break;
11402 		fallthrough;
11403 	case PTR_TO_PACKET_END:
11404 	case PTR_TO_SOCKET:
11405 	case PTR_TO_SOCK_COMMON:
11406 	case PTR_TO_TCP_SOCK:
11407 	case PTR_TO_XDP_SOCK:
11408 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
11409 			dst, reg_type_str(env, ptr_reg->type));
11410 		return -EACCES;
11411 	default:
11412 		break;
11413 	}
11414 
11415 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
11416 	 * The id may be overwritten later if we create a new variable offset.
11417 	 */
11418 	dst_reg->type = ptr_reg->type;
11419 	dst_reg->id = ptr_reg->id;
11420 
11421 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
11422 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
11423 		return -EINVAL;
11424 
11425 	/* pointer types do not carry 32-bit bounds at the moment. */
11426 	__mark_reg32_unbounded(dst_reg);
11427 
11428 	if (sanitize_needed(opcode)) {
11429 		ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
11430 				       &info, false);
11431 		if (ret < 0)
11432 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
11433 	}
11434 
11435 	switch (opcode) {
11436 	case BPF_ADD:
11437 		/* We can take a fixed offset as long as it doesn't overflow
11438 		 * the s32 'off' field
11439 		 */
11440 		if (known && (ptr_reg->off + smin_val ==
11441 			      (s64)(s32)(ptr_reg->off + smin_val))) {
11442 			/* pointer += K.  Accumulate it into fixed offset */
11443 			dst_reg->smin_value = smin_ptr;
11444 			dst_reg->smax_value = smax_ptr;
11445 			dst_reg->umin_value = umin_ptr;
11446 			dst_reg->umax_value = umax_ptr;
11447 			dst_reg->var_off = ptr_reg->var_off;
11448 			dst_reg->off = ptr_reg->off + smin_val;
11449 			dst_reg->raw = ptr_reg->raw;
11450 			break;
11451 		}
11452 		/* A new variable offset is created.  Note that off_reg->off
11453 		 * == 0, since it's a scalar.
11454 		 * dst_reg gets the pointer type and since some positive
11455 		 * integer value was added to the pointer, give it a new 'id'
11456 		 * if it's a PTR_TO_PACKET.
11457 		 * this creates a new 'base' pointer, off_reg (variable) gets
11458 		 * added into the variable offset, and we copy the fixed offset
11459 		 * from ptr_reg.
11460 		 */
11461 		if (signed_add_overflows(smin_ptr, smin_val) ||
11462 		    signed_add_overflows(smax_ptr, smax_val)) {
11463 			dst_reg->smin_value = S64_MIN;
11464 			dst_reg->smax_value = S64_MAX;
11465 		} else {
11466 			dst_reg->smin_value = smin_ptr + smin_val;
11467 			dst_reg->smax_value = smax_ptr + smax_val;
11468 		}
11469 		if (umin_ptr + umin_val < umin_ptr ||
11470 		    umax_ptr + umax_val < umax_ptr) {
11471 			dst_reg->umin_value = 0;
11472 			dst_reg->umax_value = U64_MAX;
11473 		} else {
11474 			dst_reg->umin_value = umin_ptr + umin_val;
11475 			dst_reg->umax_value = umax_ptr + umax_val;
11476 		}
11477 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
11478 		dst_reg->off = ptr_reg->off;
11479 		dst_reg->raw = ptr_reg->raw;
11480 		if (reg_is_pkt_pointer(ptr_reg)) {
11481 			dst_reg->id = ++env->id_gen;
11482 			/* something was added to pkt_ptr, set range to zero */
11483 			memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
11484 		}
11485 		break;
11486 	case BPF_SUB:
11487 		if (dst_reg == off_reg) {
11488 			/* scalar -= pointer.  Creates an unknown scalar */
11489 			verbose(env, "R%d tried to subtract pointer from scalar\n",
11490 				dst);
11491 			return -EACCES;
11492 		}
11493 		/* We don't allow subtraction from FP, because (according to
11494 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
11495 		 * be able to deal with it.
11496 		 */
11497 		if (ptr_reg->type == PTR_TO_STACK) {
11498 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
11499 				dst);
11500 			return -EACCES;
11501 		}
11502 		if (known && (ptr_reg->off - smin_val ==
11503 			      (s64)(s32)(ptr_reg->off - smin_val))) {
11504 			/* pointer -= K.  Subtract it from fixed offset */
11505 			dst_reg->smin_value = smin_ptr;
11506 			dst_reg->smax_value = smax_ptr;
11507 			dst_reg->umin_value = umin_ptr;
11508 			dst_reg->umax_value = umax_ptr;
11509 			dst_reg->var_off = ptr_reg->var_off;
11510 			dst_reg->id = ptr_reg->id;
11511 			dst_reg->off = ptr_reg->off - smin_val;
11512 			dst_reg->raw = ptr_reg->raw;
11513 			break;
11514 		}
11515 		/* A new variable offset is created.  If the subtrahend is known
11516 		 * nonnegative, then any reg->range we had before is still good.
11517 		 */
11518 		if (signed_sub_overflows(smin_ptr, smax_val) ||
11519 		    signed_sub_overflows(smax_ptr, smin_val)) {
11520 			/* Overflow possible, we know nothing */
11521 			dst_reg->smin_value = S64_MIN;
11522 			dst_reg->smax_value = S64_MAX;
11523 		} else {
11524 			dst_reg->smin_value = smin_ptr - smax_val;
11525 			dst_reg->smax_value = smax_ptr - smin_val;
11526 		}
11527 		if (umin_ptr < umax_val) {
11528 			/* Overflow possible, we know nothing */
11529 			dst_reg->umin_value = 0;
11530 			dst_reg->umax_value = U64_MAX;
11531 		} else {
11532 			/* Cannot overflow (as long as bounds are consistent) */
11533 			dst_reg->umin_value = umin_ptr - umax_val;
11534 			dst_reg->umax_value = umax_ptr - umin_val;
11535 		}
11536 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
11537 		dst_reg->off = ptr_reg->off;
11538 		dst_reg->raw = ptr_reg->raw;
11539 		if (reg_is_pkt_pointer(ptr_reg)) {
11540 			dst_reg->id = ++env->id_gen;
11541 			/* something was added to pkt_ptr, set range to zero */
11542 			if (smin_val < 0)
11543 				memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
11544 		}
11545 		break;
11546 	case BPF_AND:
11547 	case BPF_OR:
11548 	case BPF_XOR:
11549 		/* bitwise ops on pointers are troublesome, prohibit. */
11550 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
11551 			dst, bpf_alu_string[opcode >> 4]);
11552 		return -EACCES;
11553 	default:
11554 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
11555 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
11556 			dst, bpf_alu_string[opcode >> 4]);
11557 		return -EACCES;
11558 	}
11559 
11560 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
11561 		return -EINVAL;
11562 	reg_bounds_sync(dst_reg);
11563 	if (sanitize_check_bounds(env, insn, dst_reg) < 0)
11564 		return -EACCES;
11565 	if (sanitize_needed(opcode)) {
11566 		ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
11567 				       &info, true);
11568 		if (ret < 0)
11569 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
11570 	}
11571 
11572 	return 0;
11573 }
11574 
11575 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
11576 				 struct bpf_reg_state *src_reg)
11577 {
11578 	s32 smin_val = src_reg->s32_min_value;
11579 	s32 smax_val = src_reg->s32_max_value;
11580 	u32 umin_val = src_reg->u32_min_value;
11581 	u32 umax_val = src_reg->u32_max_value;
11582 
11583 	if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
11584 	    signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
11585 		dst_reg->s32_min_value = S32_MIN;
11586 		dst_reg->s32_max_value = S32_MAX;
11587 	} else {
11588 		dst_reg->s32_min_value += smin_val;
11589 		dst_reg->s32_max_value += smax_val;
11590 	}
11591 	if (dst_reg->u32_min_value + umin_val < umin_val ||
11592 	    dst_reg->u32_max_value + umax_val < umax_val) {
11593 		dst_reg->u32_min_value = 0;
11594 		dst_reg->u32_max_value = U32_MAX;
11595 	} else {
11596 		dst_reg->u32_min_value += umin_val;
11597 		dst_reg->u32_max_value += umax_val;
11598 	}
11599 }
11600 
11601 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
11602 			       struct bpf_reg_state *src_reg)
11603 {
11604 	s64 smin_val = src_reg->smin_value;
11605 	s64 smax_val = src_reg->smax_value;
11606 	u64 umin_val = src_reg->umin_value;
11607 	u64 umax_val = src_reg->umax_value;
11608 
11609 	if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
11610 	    signed_add_overflows(dst_reg->smax_value, smax_val)) {
11611 		dst_reg->smin_value = S64_MIN;
11612 		dst_reg->smax_value = S64_MAX;
11613 	} else {
11614 		dst_reg->smin_value += smin_val;
11615 		dst_reg->smax_value += smax_val;
11616 	}
11617 	if (dst_reg->umin_value + umin_val < umin_val ||
11618 	    dst_reg->umax_value + umax_val < umax_val) {
11619 		dst_reg->umin_value = 0;
11620 		dst_reg->umax_value = U64_MAX;
11621 	} else {
11622 		dst_reg->umin_value += umin_val;
11623 		dst_reg->umax_value += umax_val;
11624 	}
11625 }
11626 
11627 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
11628 				 struct bpf_reg_state *src_reg)
11629 {
11630 	s32 smin_val = src_reg->s32_min_value;
11631 	s32 smax_val = src_reg->s32_max_value;
11632 	u32 umin_val = src_reg->u32_min_value;
11633 	u32 umax_val = src_reg->u32_max_value;
11634 
11635 	if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
11636 	    signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
11637 		/* Overflow possible, we know nothing */
11638 		dst_reg->s32_min_value = S32_MIN;
11639 		dst_reg->s32_max_value = S32_MAX;
11640 	} else {
11641 		dst_reg->s32_min_value -= smax_val;
11642 		dst_reg->s32_max_value -= smin_val;
11643 	}
11644 	if (dst_reg->u32_min_value < umax_val) {
11645 		/* Overflow possible, we know nothing */
11646 		dst_reg->u32_min_value = 0;
11647 		dst_reg->u32_max_value = U32_MAX;
11648 	} else {
11649 		/* Cannot overflow (as long as bounds are consistent) */
11650 		dst_reg->u32_min_value -= umax_val;
11651 		dst_reg->u32_max_value -= umin_val;
11652 	}
11653 }
11654 
11655 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
11656 			       struct bpf_reg_state *src_reg)
11657 {
11658 	s64 smin_val = src_reg->smin_value;
11659 	s64 smax_val = src_reg->smax_value;
11660 	u64 umin_val = src_reg->umin_value;
11661 	u64 umax_val = src_reg->umax_value;
11662 
11663 	if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
11664 	    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
11665 		/* Overflow possible, we know nothing */
11666 		dst_reg->smin_value = S64_MIN;
11667 		dst_reg->smax_value = S64_MAX;
11668 	} else {
11669 		dst_reg->smin_value -= smax_val;
11670 		dst_reg->smax_value -= smin_val;
11671 	}
11672 	if (dst_reg->umin_value < umax_val) {
11673 		/* Overflow possible, we know nothing */
11674 		dst_reg->umin_value = 0;
11675 		dst_reg->umax_value = U64_MAX;
11676 	} else {
11677 		/* Cannot overflow (as long as bounds are consistent) */
11678 		dst_reg->umin_value -= umax_val;
11679 		dst_reg->umax_value -= umin_val;
11680 	}
11681 }
11682 
11683 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
11684 				 struct bpf_reg_state *src_reg)
11685 {
11686 	s32 smin_val = src_reg->s32_min_value;
11687 	u32 umin_val = src_reg->u32_min_value;
11688 	u32 umax_val = src_reg->u32_max_value;
11689 
11690 	if (smin_val < 0 || dst_reg->s32_min_value < 0) {
11691 		/* Ain't nobody got time to multiply that sign */
11692 		__mark_reg32_unbounded(dst_reg);
11693 		return;
11694 	}
11695 	/* Both values are positive, so we can work with unsigned and
11696 	 * copy the result to signed (unless it exceeds S32_MAX).
11697 	 */
11698 	if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
11699 		/* Potential overflow, we know nothing */
11700 		__mark_reg32_unbounded(dst_reg);
11701 		return;
11702 	}
11703 	dst_reg->u32_min_value *= umin_val;
11704 	dst_reg->u32_max_value *= umax_val;
11705 	if (dst_reg->u32_max_value > S32_MAX) {
11706 		/* Overflow possible, we know nothing */
11707 		dst_reg->s32_min_value = S32_MIN;
11708 		dst_reg->s32_max_value = S32_MAX;
11709 	} else {
11710 		dst_reg->s32_min_value = dst_reg->u32_min_value;
11711 		dst_reg->s32_max_value = dst_reg->u32_max_value;
11712 	}
11713 }
11714 
11715 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
11716 			       struct bpf_reg_state *src_reg)
11717 {
11718 	s64 smin_val = src_reg->smin_value;
11719 	u64 umin_val = src_reg->umin_value;
11720 	u64 umax_val = src_reg->umax_value;
11721 
11722 	if (smin_val < 0 || dst_reg->smin_value < 0) {
11723 		/* Ain't nobody got time to multiply that sign */
11724 		__mark_reg64_unbounded(dst_reg);
11725 		return;
11726 	}
11727 	/* Both values are positive, so we can work with unsigned and
11728 	 * copy the result to signed (unless it exceeds S64_MAX).
11729 	 */
11730 	if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
11731 		/* Potential overflow, we know nothing */
11732 		__mark_reg64_unbounded(dst_reg);
11733 		return;
11734 	}
11735 	dst_reg->umin_value *= umin_val;
11736 	dst_reg->umax_value *= umax_val;
11737 	if (dst_reg->umax_value > S64_MAX) {
11738 		/* Overflow possible, we know nothing */
11739 		dst_reg->smin_value = S64_MIN;
11740 		dst_reg->smax_value = S64_MAX;
11741 	} else {
11742 		dst_reg->smin_value = dst_reg->umin_value;
11743 		dst_reg->smax_value = dst_reg->umax_value;
11744 	}
11745 }
11746 
11747 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
11748 				 struct bpf_reg_state *src_reg)
11749 {
11750 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
11751 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
11752 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
11753 	s32 smin_val = src_reg->s32_min_value;
11754 	u32 umax_val = src_reg->u32_max_value;
11755 
11756 	if (src_known && dst_known) {
11757 		__mark_reg32_known(dst_reg, var32_off.value);
11758 		return;
11759 	}
11760 
11761 	/* We get our minimum from the var_off, since that's inherently
11762 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
11763 	 */
11764 	dst_reg->u32_min_value = var32_off.value;
11765 	dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
11766 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
11767 		/* Lose signed bounds when ANDing negative numbers,
11768 		 * ain't nobody got time for that.
11769 		 */
11770 		dst_reg->s32_min_value = S32_MIN;
11771 		dst_reg->s32_max_value = S32_MAX;
11772 	} else {
11773 		/* ANDing two positives gives a positive, so safe to
11774 		 * cast result into s64.
11775 		 */
11776 		dst_reg->s32_min_value = dst_reg->u32_min_value;
11777 		dst_reg->s32_max_value = dst_reg->u32_max_value;
11778 	}
11779 }
11780 
11781 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
11782 			       struct bpf_reg_state *src_reg)
11783 {
11784 	bool src_known = tnum_is_const(src_reg->var_off);
11785 	bool dst_known = tnum_is_const(dst_reg->var_off);
11786 	s64 smin_val = src_reg->smin_value;
11787 	u64 umax_val = src_reg->umax_value;
11788 
11789 	if (src_known && dst_known) {
11790 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
11791 		return;
11792 	}
11793 
11794 	/* We get our minimum from the var_off, since that's inherently
11795 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
11796 	 */
11797 	dst_reg->umin_value = dst_reg->var_off.value;
11798 	dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
11799 	if (dst_reg->smin_value < 0 || smin_val < 0) {
11800 		/* Lose signed bounds when ANDing negative numbers,
11801 		 * ain't nobody got time for that.
11802 		 */
11803 		dst_reg->smin_value = S64_MIN;
11804 		dst_reg->smax_value = S64_MAX;
11805 	} else {
11806 		/* ANDing two positives gives a positive, so safe to
11807 		 * cast result into s64.
11808 		 */
11809 		dst_reg->smin_value = dst_reg->umin_value;
11810 		dst_reg->smax_value = dst_reg->umax_value;
11811 	}
11812 	/* We may learn something more from the var_off */
11813 	__update_reg_bounds(dst_reg);
11814 }
11815 
11816 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
11817 				struct bpf_reg_state *src_reg)
11818 {
11819 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
11820 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
11821 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
11822 	s32 smin_val = src_reg->s32_min_value;
11823 	u32 umin_val = src_reg->u32_min_value;
11824 
11825 	if (src_known && dst_known) {
11826 		__mark_reg32_known(dst_reg, var32_off.value);
11827 		return;
11828 	}
11829 
11830 	/* We get our maximum from the var_off, and our minimum is the
11831 	 * maximum of the operands' minima
11832 	 */
11833 	dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
11834 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
11835 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
11836 		/* Lose signed bounds when ORing negative numbers,
11837 		 * ain't nobody got time for that.
11838 		 */
11839 		dst_reg->s32_min_value = S32_MIN;
11840 		dst_reg->s32_max_value = S32_MAX;
11841 	} else {
11842 		/* ORing two positives gives a positive, so safe to
11843 		 * cast result into s64.
11844 		 */
11845 		dst_reg->s32_min_value = dst_reg->u32_min_value;
11846 		dst_reg->s32_max_value = dst_reg->u32_max_value;
11847 	}
11848 }
11849 
11850 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
11851 			      struct bpf_reg_state *src_reg)
11852 {
11853 	bool src_known = tnum_is_const(src_reg->var_off);
11854 	bool dst_known = tnum_is_const(dst_reg->var_off);
11855 	s64 smin_val = src_reg->smin_value;
11856 	u64 umin_val = src_reg->umin_value;
11857 
11858 	if (src_known && dst_known) {
11859 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
11860 		return;
11861 	}
11862 
11863 	/* We get our maximum from the var_off, and our minimum is the
11864 	 * maximum of the operands' minima
11865 	 */
11866 	dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
11867 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
11868 	if (dst_reg->smin_value < 0 || smin_val < 0) {
11869 		/* Lose signed bounds when ORing negative numbers,
11870 		 * ain't nobody got time for that.
11871 		 */
11872 		dst_reg->smin_value = S64_MIN;
11873 		dst_reg->smax_value = S64_MAX;
11874 	} else {
11875 		/* ORing two positives gives a positive, so safe to
11876 		 * cast result into s64.
11877 		 */
11878 		dst_reg->smin_value = dst_reg->umin_value;
11879 		dst_reg->smax_value = dst_reg->umax_value;
11880 	}
11881 	/* We may learn something more from the var_off */
11882 	__update_reg_bounds(dst_reg);
11883 }
11884 
11885 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
11886 				 struct bpf_reg_state *src_reg)
11887 {
11888 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
11889 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
11890 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
11891 	s32 smin_val = src_reg->s32_min_value;
11892 
11893 	if (src_known && dst_known) {
11894 		__mark_reg32_known(dst_reg, var32_off.value);
11895 		return;
11896 	}
11897 
11898 	/* We get both minimum and maximum from the var32_off. */
11899 	dst_reg->u32_min_value = var32_off.value;
11900 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
11901 
11902 	if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
11903 		/* XORing two positive sign numbers gives a positive,
11904 		 * so safe to cast u32 result into s32.
11905 		 */
11906 		dst_reg->s32_min_value = dst_reg->u32_min_value;
11907 		dst_reg->s32_max_value = dst_reg->u32_max_value;
11908 	} else {
11909 		dst_reg->s32_min_value = S32_MIN;
11910 		dst_reg->s32_max_value = S32_MAX;
11911 	}
11912 }
11913 
11914 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
11915 			       struct bpf_reg_state *src_reg)
11916 {
11917 	bool src_known = tnum_is_const(src_reg->var_off);
11918 	bool dst_known = tnum_is_const(dst_reg->var_off);
11919 	s64 smin_val = src_reg->smin_value;
11920 
11921 	if (src_known && dst_known) {
11922 		/* dst_reg->var_off.value has been updated earlier */
11923 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
11924 		return;
11925 	}
11926 
11927 	/* We get both minimum and maximum from the var_off. */
11928 	dst_reg->umin_value = dst_reg->var_off.value;
11929 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
11930 
11931 	if (dst_reg->smin_value >= 0 && smin_val >= 0) {
11932 		/* XORing two positive sign numbers gives a positive,
11933 		 * so safe to cast u64 result into s64.
11934 		 */
11935 		dst_reg->smin_value = dst_reg->umin_value;
11936 		dst_reg->smax_value = dst_reg->umax_value;
11937 	} else {
11938 		dst_reg->smin_value = S64_MIN;
11939 		dst_reg->smax_value = S64_MAX;
11940 	}
11941 
11942 	__update_reg_bounds(dst_reg);
11943 }
11944 
11945 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
11946 				   u64 umin_val, u64 umax_val)
11947 {
11948 	/* We lose all sign bit information (except what we can pick
11949 	 * up from var_off)
11950 	 */
11951 	dst_reg->s32_min_value = S32_MIN;
11952 	dst_reg->s32_max_value = S32_MAX;
11953 	/* If we might shift our top bit out, then we know nothing */
11954 	if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
11955 		dst_reg->u32_min_value = 0;
11956 		dst_reg->u32_max_value = U32_MAX;
11957 	} else {
11958 		dst_reg->u32_min_value <<= umin_val;
11959 		dst_reg->u32_max_value <<= umax_val;
11960 	}
11961 }
11962 
11963 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
11964 				 struct bpf_reg_state *src_reg)
11965 {
11966 	u32 umax_val = src_reg->u32_max_value;
11967 	u32 umin_val = src_reg->u32_min_value;
11968 	/* u32 alu operation will zext upper bits */
11969 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
11970 
11971 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
11972 	dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
11973 	/* Not required but being careful mark reg64 bounds as unknown so
11974 	 * that we are forced to pick them up from tnum and zext later and
11975 	 * if some path skips this step we are still safe.
11976 	 */
11977 	__mark_reg64_unbounded(dst_reg);
11978 	__update_reg32_bounds(dst_reg);
11979 }
11980 
11981 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
11982 				   u64 umin_val, u64 umax_val)
11983 {
11984 	/* Special case <<32 because it is a common compiler pattern to sign
11985 	 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
11986 	 * positive we know this shift will also be positive so we can track
11987 	 * bounds correctly. Otherwise we lose all sign bit information except
11988 	 * what we can pick up from var_off. Perhaps we can generalize this
11989 	 * later to shifts of any length.
11990 	 */
11991 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
11992 		dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
11993 	else
11994 		dst_reg->smax_value = S64_MAX;
11995 
11996 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
11997 		dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
11998 	else
11999 		dst_reg->smin_value = S64_MIN;
12000 
12001 	/* If we might shift our top bit out, then we know nothing */
12002 	if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
12003 		dst_reg->umin_value = 0;
12004 		dst_reg->umax_value = U64_MAX;
12005 	} else {
12006 		dst_reg->umin_value <<= umin_val;
12007 		dst_reg->umax_value <<= umax_val;
12008 	}
12009 }
12010 
12011 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
12012 			       struct bpf_reg_state *src_reg)
12013 {
12014 	u64 umax_val = src_reg->umax_value;
12015 	u64 umin_val = src_reg->umin_value;
12016 
12017 	/* scalar64 calc uses 32bit unshifted bounds so must be called first */
12018 	__scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
12019 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
12020 
12021 	dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
12022 	/* We may learn something more from the var_off */
12023 	__update_reg_bounds(dst_reg);
12024 }
12025 
12026 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
12027 				 struct bpf_reg_state *src_reg)
12028 {
12029 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
12030 	u32 umax_val = src_reg->u32_max_value;
12031 	u32 umin_val = src_reg->u32_min_value;
12032 
12033 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
12034 	 * be negative, then either:
12035 	 * 1) src_reg might be zero, so the sign bit of the result is
12036 	 *    unknown, so we lose our signed bounds
12037 	 * 2) it's known negative, thus the unsigned bounds capture the
12038 	 *    signed bounds
12039 	 * 3) the signed bounds cross zero, so they tell us nothing
12040 	 *    about the result
12041 	 * If the value in dst_reg is known nonnegative, then again the
12042 	 * unsigned bounds capture the signed bounds.
12043 	 * Thus, in all cases it suffices to blow away our signed bounds
12044 	 * and rely on inferring new ones from the unsigned bounds and
12045 	 * var_off of the result.
12046 	 */
12047 	dst_reg->s32_min_value = S32_MIN;
12048 	dst_reg->s32_max_value = S32_MAX;
12049 
12050 	dst_reg->var_off = tnum_rshift(subreg, umin_val);
12051 	dst_reg->u32_min_value >>= umax_val;
12052 	dst_reg->u32_max_value >>= umin_val;
12053 
12054 	__mark_reg64_unbounded(dst_reg);
12055 	__update_reg32_bounds(dst_reg);
12056 }
12057 
12058 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
12059 			       struct bpf_reg_state *src_reg)
12060 {
12061 	u64 umax_val = src_reg->umax_value;
12062 	u64 umin_val = src_reg->umin_value;
12063 
12064 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
12065 	 * be negative, then either:
12066 	 * 1) src_reg might be zero, so the sign bit of the result is
12067 	 *    unknown, so we lose our signed bounds
12068 	 * 2) it's known negative, thus the unsigned bounds capture the
12069 	 *    signed bounds
12070 	 * 3) the signed bounds cross zero, so they tell us nothing
12071 	 *    about the result
12072 	 * If the value in dst_reg is known nonnegative, then again the
12073 	 * unsigned bounds capture the signed bounds.
12074 	 * Thus, in all cases it suffices to blow away our signed bounds
12075 	 * and rely on inferring new ones from the unsigned bounds and
12076 	 * var_off of the result.
12077 	 */
12078 	dst_reg->smin_value = S64_MIN;
12079 	dst_reg->smax_value = S64_MAX;
12080 	dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
12081 	dst_reg->umin_value >>= umax_val;
12082 	dst_reg->umax_value >>= umin_val;
12083 
12084 	/* Its not easy to operate on alu32 bounds here because it depends
12085 	 * on bits being shifted in. Take easy way out and mark unbounded
12086 	 * so we can recalculate later from tnum.
12087 	 */
12088 	__mark_reg32_unbounded(dst_reg);
12089 	__update_reg_bounds(dst_reg);
12090 }
12091 
12092 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
12093 				  struct bpf_reg_state *src_reg)
12094 {
12095 	u64 umin_val = src_reg->u32_min_value;
12096 
12097 	/* Upon reaching here, src_known is true and
12098 	 * umax_val is equal to umin_val.
12099 	 */
12100 	dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
12101 	dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
12102 
12103 	dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
12104 
12105 	/* blow away the dst_reg umin_value/umax_value and rely on
12106 	 * dst_reg var_off to refine the result.
12107 	 */
12108 	dst_reg->u32_min_value = 0;
12109 	dst_reg->u32_max_value = U32_MAX;
12110 
12111 	__mark_reg64_unbounded(dst_reg);
12112 	__update_reg32_bounds(dst_reg);
12113 }
12114 
12115 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
12116 				struct bpf_reg_state *src_reg)
12117 {
12118 	u64 umin_val = src_reg->umin_value;
12119 
12120 	/* Upon reaching here, src_known is true and umax_val is equal
12121 	 * to umin_val.
12122 	 */
12123 	dst_reg->smin_value >>= umin_val;
12124 	dst_reg->smax_value >>= umin_val;
12125 
12126 	dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
12127 
12128 	/* blow away the dst_reg umin_value/umax_value and rely on
12129 	 * dst_reg var_off to refine the result.
12130 	 */
12131 	dst_reg->umin_value = 0;
12132 	dst_reg->umax_value = U64_MAX;
12133 
12134 	/* Its not easy to operate on alu32 bounds here because it depends
12135 	 * on bits being shifted in from upper 32-bits. Take easy way out
12136 	 * and mark unbounded so we can recalculate later from tnum.
12137 	 */
12138 	__mark_reg32_unbounded(dst_reg);
12139 	__update_reg_bounds(dst_reg);
12140 }
12141 
12142 /* WARNING: This function does calculations on 64-bit values, but the actual
12143  * execution may occur on 32-bit values. Therefore, things like bitshifts
12144  * need extra checks in the 32-bit case.
12145  */
12146 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
12147 				      struct bpf_insn *insn,
12148 				      struct bpf_reg_state *dst_reg,
12149 				      struct bpf_reg_state src_reg)
12150 {
12151 	struct bpf_reg_state *regs = cur_regs(env);
12152 	u8 opcode = BPF_OP(insn->code);
12153 	bool src_known;
12154 	s64 smin_val, smax_val;
12155 	u64 umin_val, umax_val;
12156 	s32 s32_min_val, s32_max_val;
12157 	u32 u32_min_val, u32_max_val;
12158 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
12159 	bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
12160 	int ret;
12161 
12162 	smin_val = src_reg.smin_value;
12163 	smax_val = src_reg.smax_value;
12164 	umin_val = src_reg.umin_value;
12165 	umax_val = src_reg.umax_value;
12166 
12167 	s32_min_val = src_reg.s32_min_value;
12168 	s32_max_val = src_reg.s32_max_value;
12169 	u32_min_val = src_reg.u32_min_value;
12170 	u32_max_val = src_reg.u32_max_value;
12171 
12172 	if (alu32) {
12173 		src_known = tnum_subreg_is_const(src_reg.var_off);
12174 		if ((src_known &&
12175 		     (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
12176 		    s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
12177 			/* Taint dst register if offset had invalid bounds
12178 			 * derived from e.g. dead branches.
12179 			 */
12180 			__mark_reg_unknown(env, dst_reg);
12181 			return 0;
12182 		}
12183 	} else {
12184 		src_known = tnum_is_const(src_reg.var_off);
12185 		if ((src_known &&
12186 		     (smin_val != smax_val || umin_val != umax_val)) ||
12187 		    smin_val > smax_val || umin_val > umax_val) {
12188 			/* Taint dst register if offset had invalid bounds
12189 			 * derived from e.g. dead branches.
12190 			 */
12191 			__mark_reg_unknown(env, dst_reg);
12192 			return 0;
12193 		}
12194 	}
12195 
12196 	if (!src_known &&
12197 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
12198 		__mark_reg_unknown(env, dst_reg);
12199 		return 0;
12200 	}
12201 
12202 	if (sanitize_needed(opcode)) {
12203 		ret = sanitize_val_alu(env, insn);
12204 		if (ret < 0)
12205 			return sanitize_err(env, insn, ret, NULL, NULL);
12206 	}
12207 
12208 	/* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
12209 	 * There are two classes of instructions: The first class we track both
12210 	 * alu32 and alu64 sign/unsigned bounds independently this provides the
12211 	 * greatest amount of precision when alu operations are mixed with jmp32
12212 	 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
12213 	 * and BPF_OR. This is possible because these ops have fairly easy to
12214 	 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
12215 	 * See alu32 verifier tests for examples. The second class of
12216 	 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
12217 	 * with regards to tracking sign/unsigned bounds because the bits may
12218 	 * cross subreg boundaries in the alu64 case. When this happens we mark
12219 	 * the reg unbounded in the subreg bound space and use the resulting
12220 	 * tnum to calculate an approximation of the sign/unsigned bounds.
12221 	 */
12222 	switch (opcode) {
12223 	case BPF_ADD:
12224 		scalar32_min_max_add(dst_reg, &src_reg);
12225 		scalar_min_max_add(dst_reg, &src_reg);
12226 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
12227 		break;
12228 	case BPF_SUB:
12229 		scalar32_min_max_sub(dst_reg, &src_reg);
12230 		scalar_min_max_sub(dst_reg, &src_reg);
12231 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
12232 		break;
12233 	case BPF_MUL:
12234 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
12235 		scalar32_min_max_mul(dst_reg, &src_reg);
12236 		scalar_min_max_mul(dst_reg, &src_reg);
12237 		break;
12238 	case BPF_AND:
12239 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
12240 		scalar32_min_max_and(dst_reg, &src_reg);
12241 		scalar_min_max_and(dst_reg, &src_reg);
12242 		break;
12243 	case BPF_OR:
12244 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
12245 		scalar32_min_max_or(dst_reg, &src_reg);
12246 		scalar_min_max_or(dst_reg, &src_reg);
12247 		break;
12248 	case BPF_XOR:
12249 		dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
12250 		scalar32_min_max_xor(dst_reg, &src_reg);
12251 		scalar_min_max_xor(dst_reg, &src_reg);
12252 		break;
12253 	case BPF_LSH:
12254 		if (umax_val >= insn_bitness) {
12255 			/* Shifts greater than 31 or 63 are undefined.
12256 			 * This includes shifts by a negative number.
12257 			 */
12258 			mark_reg_unknown(env, regs, insn->dst_reg);
12259 			break;
12260 		}
12261 		if (alu32)
12262 			scalar32_min_max_lsh(dst_reg, &src_reg);
12263 		else
12264 			scalar_min_max_lsh(dst_reg, &src_reg);
12265 		break;
12266 	case BPF_RSH:
12267 		if (umax_val >= insn_bitness) {
12268 			/* Shifts greater than 31 or 63 are undefined.
12269 			 * This includes shifts by a negative number.
12270 			 */
12271 			mark_reg_unknown(env, regs, insn->dst_reg);
12272 			break;
12273 		}
12274 		if (alu32)
12275 			scalar32_min_max_rsh(dst_reg, &src_reg);
12276 		else
12277 			scalar_min_max_rsh(dst_reg, &src_reg);
12278 		break;
12279 	case BPF_ARSH:
12280 		if (umax_val >= insn_bitness) {
12281 			/* Shifts greater than 31 or 63 are undefined.
12282 			 * This includes shifts by a negative number.
12283 			 */
12284 			mark_reg_unknown(env, regs, insn->dst_reg);
12285 			break;
12286 		}
12287 		if (alu32)
12288 			scalar32_min_max_arsh(dst_reg, &src_reg);
12289 		else
12290 			scalar_min_max_arsh(dst_reg, &src_reg);
12291 		break;
12292 	default:
12293 		mark_reg_unknown(env, regs, insn->dst_reg);
12294 		break;
12295 	}
12296 
12297 	/* ALU32 ops are zero extended into 64bit register */
12298 	if (alu32)
12299 		zext_32_to_64(dst_reg);
12300 	reg_bounds_sync(dst_reg);
12301 	return 0;
12302 }
12303 
12304 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
12305  * and var_off.
12306  */
12307 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
12308 				   struct bpf_insn *insn)
12309 {
12310 	struct bpf_verifier_state *vstate = env->cur_state;
12311 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
12312 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
12313 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
12314 	u8 opcode = BPF_OP(insn->code);
12315 	int err;
12316 
12317 	dst_reg = &regs[insn->dst_reg];
12318 	src_reg = NULL;
12319 	if (dst_reg->type != SCALAR_VALUE)
12320 		ptr_reg = dst_reg;
12321 	else
12322 		/* Make sure ID is cleared otherwise dst_reg min/max could be
12323 		 * incorrectly propagated into other registers by find_equal_scalars()
12324 		 */
12325 		dst_reg->id = 0;
12326 	if (BPF_SRC(insn->code) == BPF_X) {
12327 		src_reg = &regs[insn->src_reg];
12328 		if (src_reg->type != SCALAR_VALUE) {
12329 			if (dst_reg->type != SCALAR_VALUE) {
12330 				/* Combining two pointers by any ALU op yields
12331 				 * an arbitrary scalar. Disallow all math except
12332 				 * pointer subtraction
12333 				 */
12334 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
12335 					mark_reg_unknown(env, regs, insn->dst_reg);
12336 					return 0;
12337 				}
12338 				verbose(env, "R%d pointer %s pointer prohibited\n",
12339 					insn->dst_reg,
12340 					bpf_alu_string[opcode >> 4]);
12341 				return -EACCES;
12342 			} else {
12343 				/* scalar += pointer
12344 				 * This is legal, but we have to reverse our
12345 				 * src/dest handling in computing the range
12346 				 */
12347 				err = mark_chain_precision(env, insn->dst_reg);
12348 				if (err)
12349 					return err;
12350 				return adjust_ptr_min_max_vals(env, insn,
12351 							       src_reg, dst_reg);
12352 			}
12353 		} else if (ptr_reg) {
12354 			/* pointer += scalar */
12355 			err = mark_chain_precision(env, insn->src_reg);
12356 			if (err)
12357 				return err;
12358 			return adjust_ptr_min_max_vals(env, insn,
12359 						       dst_reg, src_reg);
12360 		} else if (dst_reg->precise) {
12361 			/* if dst_reg is precise, src_reg should be precise as well */
12362 			err = mark_chain_precision(env, insn->src_reg);
12363 			if (err)
12364 				return err;
12365 		}
12366 	} else {
12367 		/* Pretend the src is a reg with a known value, since we only
12368 		 * need to be able to read from this state.
12369 		 */
12370 		off_reg.type = SCALAR_VALUE;
12371 		__mark_reg_known(&off_reg, insn->imm);
12372 		src_reg = &off_reg;
12373 		if (ptr_reg) /* pointer += K */
12374 			return adjust_ptr_min_max_vals(env, insn,
12375 						       ptr_reg, src_reg);
12376 	}
12377 
12378 	/* Got here implies adding two SCALAR_VALUEs */
12379 	if (WARN_ON_ONCE(ptr_reg)) {
12380 		print_verifier_state(env, state, true);
12381 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
12382 		return -EINVAL;
12383 	}
12384 	if (WARN_ON(!src_reg)) {
12385 		print_verifier_state(env, state, true);
12386 		verbose(env, "verifier internal error: no src_reg\n");
12387 		return -EINVAL;
12388 	}
12389 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
12390 }
12391 
12392 /* check validity of 32-bit and 64-bit arithmetic operations */
12393 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
12394 {
12395 	struct bpf_reg_state *regs = cur_regs(env);
12396 	u8 opcode = BPF_OP(insn->code);
12397 	int err;
12398 
12399 	if (opcode == BPF_END || opcode == BPF_NEG) {
12400 		if (opcode == BPF_NEG) {
12401 			if (BPF_SRC(insn->code) != BPF_K ||
12402 			    insn->src_reg != BPF_REG_0 ||
12403 			    insn->off != 0 || insn->imm != 0) {
12404 				verbose(env, "BPF_NEG uses reserved fields\n");
12405 				return -EINVAL;
12406 			}
12407 		} else {
12408 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
12409 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
12410 			    BPF_CLASS(insn->code) == BPF_ALU64) {
12411 				verbose(env, "BPF_END uses reserved fields\n");
12412 				return -EINVAL;
12413 			}
12414 		}
12415 
12416 		/* check src operand */
12417 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
12418 		if (err)
12419 			return err;
12420 
12421 		if (is_pointer_value(env, insn->dst_reg)) {
12422 			verbose(env, "R%d pointer arithmetic prohibited\n",
12423 				insn->dst_reg);
12424 			return -EACCES;
12425 		}
12426 
12427 		/* check dest operand */
12428 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
12429 		if (err)
12430 			return err;
12431 
12432 	} else if (opcode == BPF_MOV) {
12433 
12434 		if (BPF_SRC(insn->code) == BPF_X) {
12435 			if (insn->imm != 0 || insn->off != 0) {
12436 				verbose(env, "BPF_MOV uses reserved fields\n");
12437 				return -EINVAL;
12438 			}
12439 
12440 			/* check src operand */
12441 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
12442 			if (err)
12443 				return err;
12444 		} else {
12445 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
12446 				verbose(env, "BPF_MOV uses reserved fields\n");
12447 				return -EINVAL;
12448 			}
12449 		}
12450 
12451 		/* check dest operand, mark as required later */
12452 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
12453 		if (err)
12454 			return err;
12455 
12456 		if (BPF_SRC(insn->code) == BPF_X) {
12457 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
12458 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
12459 
12460 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
12461 				/* case: R1 = R2
12462 				 * copy register state to dest reg
12463 				 */
12464 				if (src_reg->type == SCALAR_VALUE && !src_reg->id)
12465 					/* Assign src and dst registers the same ID
12466 					 * that will be used by find_equal_scalars()
12467 					 * to propagate min/max range.
12468 					 */
12469 					src_reg->id = ++env->id_gen;
12470 				copy_register_state(dst_reg, src_reg);
12471 				dst_reg->live |= REG_LIVE_WRITTEN;
12472 				dst_reg->subreg_def = DEF_NOT_SUBREG;
12473 			} else {
12474 				/* R1 = (u32) R2 */
12475 				if (is_pointer_value(env, insn->src_reg)) {
12476 					verbose(env,
12477 						"R%d partial copy of pointer\n",
12478 						insn->src_reg);
12479 					return -EACCES;
12480 				} else if (src_reg->type == SCALAR_VALUE) {
12481 					copy_register_state(dst_reg, src_reg);
12482 					/* Make sure ID is cleared otherwise
12483 					 * dst_reg min/max could be incorrectly
12484 					 * propagated into src_reg by find_equal_scalars()
12485 					 */
12486 					dst_reg->id = 0;
12487 					dst_reg->live |= REG_LIVE_WRITTEN;
12488 					dst_reg->subreg_def = env->insn_idx + 1;
12489 				} else {
12490 					mark_reg_unknown(env, regs,
12491 							 insn->dst_reg);
12492 				}
12493 				zext_32_to_64(dst_reg);
12494 				reg_bounds_sync(dst_reg);
12495 			}
12496 		} else {
12497 			/* case: R = imm
12498 			 * remember the value we stored into this reg
12499 			 */
12500 			/* clear any state __mark_reg_known doesn't set */
12501 			mark_reg_unknown(env, regs, insn->dst_reg);
12502 			regs[insn->dst_reg].type = SCALAR_VALUE;
12503 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
12504 				__mark_reg_known(regs + insn->dst_reg,
12505 						 insn->imm);
12506 			} else {
12507 				__mark_reg_known(regs + insn->dst_reg,
12508 						 (u32)insn->imm);
12509 			}
12510 		}
12511 
12512 	} else if (opcode > BPF_END) {
12513 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
12514 		return -EINVAL;
12515 
12516 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
12517 
12518 		if (BPF_SRC(insn->code) == BPF_X) {
12519 			if (insn->imm != 0 || insn->off != 0) {
12520 				verbose(env, "BPF_ALU uses reserved fields\n");
12521 				return -EINVAL;
12522 			}
12523 			/* check src1 operand */
12524 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
12525 			if (err)
12526 				return err;
12527 		} else {
12528 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
12529 				verbose(env, "BPF_ALU uses reserved fields\n");
12530 				return -EINVAL;
12531 			}
12532 		}
12533 
12534 		/* check src2 operand */
12535 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
12536 		if (err)
12537 			return err;
12538 
12539 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
12540 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
12541 			verbose(env, "div by zero\n");
12542 			return -EINVAL;
12543 		}
12544 
12545 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
12546 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
12547 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
12548 
12549 			if (insn->imm < 0 || insn->imm >= size) {
12550 				verbose(env, "invalid shift %d\n", insn->imm);
12551 				return -EINVAL;
12552 			}
12553 		}
12554 
12555 		/* check dest operand */
12556 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
12557 		if (err)
12558 			return err;
12559 
12560 		return adjust_reg_min_max_vals(env, insn);
12561 	}
12562 
12563 	return 0;
12564 }
12565 
12566 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
12567 				   struct bpf_reg_state *dst_reg,
12568 				   enum bpf_reg_type type,
12569 				   bool range_right_open)
12570 {
12571 	struct bpf_func_state *state;
12572 	struct bpf_reg_state *reg;
12573 	int new_range;
12574 
12575 	if (dst_reg->off < 0 ||
12576 	    (dst_reg->off == 0 && range_right_open))
12577 		/* This doesn't give us any range */
12578 		return;
12579 
12580 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
12581 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
12582 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
12583 		 * than pkt_end, but that's because it's also less than pkt.
12584 		 */
12585 		return;
12586 
12587 	new_range = dst_reg->off;
12588 	if (range_right_open)
12589 		new_range++;
12590 
12591 	/* Examples for register markings:
12592 	 *
12593 	 * pkt_data in dst register:
12594 	 *
12595 	 *   r2 = r3;
12596 	 *   r2 += 8;
12597 	 *   if (r2 > pkt_end) goto <handle exception>
12598 	 *   <access okay>
12599 	 *
12600 	 *   r2 = r3;
12601 	 *   r2 += 8;
12602 	 *   if (r2 < pkt_end) goto <access okay>
12603 	 *   <handle exception>
12604 	 *
12605 	 *   Where:
12606 	 *     r2 == dst_reg, pkt_end == src_reg
12607 	 *     r2=pkt(id=n,off=8,r=0)
12608 	 *     r3=pkt(id=n,off=0,r=0)
12609 	 *
12610 	 * pkt_data in src register:
12611 	 *
12612 	 *   r2 = r3;
12613 	 *   r2 += 8;
12614 	 *   if (pkt_end >= r2) goto <access okay>
12615 	 *   <handle exception>
12616 	 *
12617 	 *   r2 = r3;
12618 	 *   r2 += 8;
12619 	 *   if (pkt_end <= r2) goto <handle exception>
12620 	 *   <access okay>
12621 	 *
12622 	 *   Where:
12623 	 *     pkt_end == dst_reg, r2 == src_reg
12624 	 *     r2=pkt(id=n,off=8,r=0)
12625 	 *     r3=pkt(id=n,off=0,r=0)
12626 	 *
12627 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
12628 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
12629 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
12630 	 * the check.
12631 	 */
12632 
12633 	/* If our ids match, then we must have the same max_value.  And we
12634 	 * don't care about the other reg's fixed offset, since if it's too big
12635 	 * the range won't allow anything.
12636 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
12637 	 */
12638 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
12639 		if (reg->type == type && reg->id == dst_reg->id)
12640 			/* keep the maximum range already checked */
12641 			reg->range = max(reg->range, new_range);
12642 	}));
12643 }
12644 
12645 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
12646 {
12647 	struct tnum subreg = tnum_subreg(reg->var_off);
12648 	s32 sval = (s32)val;
12649 
12650 	switch (opcode) {
12651 	case BPF_JEQ:
12652 		if (tnum_is_const(subreg))
12653 			return !!tnum_equals_const(subreg, val);
12654 		break;
12655 	case BPF_JNE:
12656 		if (tnum_is_const(subreg))
12657 			return !tnum_equals_const(subreg, val);
12658 		break;
12659 	case BPF_JSET:
12660 		if ((~subreg.mask & subreg.value) & val)
12661 			return 1;
12662 		if (!((subreg.mask | subreg.value) & val))
12663 			return 0;
12664 		break;
12665 	case BPF_JGT:
12666 		if (reg->u32_min_value > val)
12667 			return 1;
12668 		else if (reg->u32_max_value <= val)
12669 			return 0;
12670 		break;
12671 	case BPF_JSGT:
12672 		if (reg->s32_min_value > sval)
12673 			return 1;
12674 		else if (reg->s32_max_value <= sval)
12675 			return 0;
12676 		break;
12677 	case BPF_JLT:
12678 		if (reg->u32_max_value < val)
12679 			return 1;
12680 		else if (reg->u32_min_value >= val)
12681 			return 0;
12682 		break;
12683 	case BPF_JSLT:
12684 		if (reg->s32_max_value < sval)
12685 			return 1;
12686 		else if (reg->s32_min_value >= sval)
12687 			return 0;
12688 		break;
12689 	case BPF_JGE:
12690 		if (reg->u32_min_value >= val)
12691 			return 1;
12692 		else if (reg->u32_max_value < val)
12693 			return 0;
12694 		break;
12695 	case BPF_JSGE:
12696 		if (reg->s32_min_value >= sval)
12697 			return 1;
12698 		else if (reg->s32_max_value < sval)
12699 			return 0;
12700 		break;
12701 	case BPF_JLE:
12702 		if (reg->u32_max_value <= val)
12703 			return 1;
12704 		else if (reg->u32_min_value > val)
12705 			return 0;
12706 		break;
12707 	case BPF_JSLE:
12708 		if (reg->s32_max_value <= sval)
12709 			return 1;
12710 		else if (reg->s32_min_value > sval)
12711 			return 0;
12712 		break;
12713 	}
12714 
12715 	return -1;
12716 }
12717 
12718 
12719 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
12720 {
12721 	s64 sval = (s64)val;
12722 
12723 	switch (opcode) {
12724 	case BPF_JEQ:
12725 		if (tnum_is_const(reg->var_off))
12726 			return !!tnum_equals_const(reg->var_off, val);
12727 		break;
12728 	case BPF_JNE:
12729 		if (tnum_is_const(reg->var_off))
12730 			return !tnum_equals_const(reg->var_off, val);
12731 		break;
12732 	case BPF_JSET:
12733 		if ((~reg->var_off.mask & reg->var_off.value) & val)
12734 			return 1;
12735 		if (!((reg->var_off.mask | reg->var_off.value) & val))
12736 			return 0;
12737 		break;
12738 	case BPF_JGT:
12739 		if (reg->umin_value > val)
12740 			return 1;
12741 		else if (reg->umax_value <= val)
12742 			return 0;
12743 		break;
12744 	case BPF_JSGT:
12745 		if (reg->smin_value > sval)
12746 			return 1;
12747 		else if (reg->smax_value <= sval)
12748 			return 0;
12749 		break;
12750 	case BPF_JLT:
12751 		if (reg->umax_value < val)
12752 			return 1;
12753 		else if (reg->umin_value >= val)
12754 			return 0;
12755 		break;
12756 	case BPF_JSLT:
12757 		if (reg->smax_value < sval)
12758 			return 1;
12759 		else if (reg->smin_value >= sval)
12760 			return 0;
12761 		break;
12762 	case BPF_JGE:
12763 		if (reg->umin_value >= val)
12764 			return 1;
12765 		else if (reg->umax_value < val)
12766 			return 0;
12767 		break;
12768 	case BPF_JSGE:
12769 		if (reg->smin_value >= sval)
12770 			return 1;
12771 		else if (reg->smax_value < sval)
12772 			return 0;
12773 		break;
12774 	case BPF_JLE:
12775 		if (reg->umax_value <= val)
12776 			return 1;
12777 		else if (reg->umin_value > val)
12778 			return 0;
12779 		break;
12780 	case BPF_JSLE:
12781 		if (reg->smax_value <= sval)
12782 			return 1;
12783 		else if (reg->smin_value > sval)
12784 			return 0;
12785 		break;
12786 	}
12787 
12788 	return -1;
12789 }
12790 
12791 /* compute branch direction of the expression "if (reg opcode val) goto target;"
12792  * and return:
12793  *  1 - branch will be taken and "goto target" will be executed
12794  *  0 - branch will not be taken and fall-through to next insn
12795  * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
12796  *      range [0,10]
12797  */
12798 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
12799 			   bool is_jmp32)
12800 {
12801 	if (__is_pointer_value(false, reg)) {
12802 		if (!reg_type_not_null(reg->type))
12803 			return -1;
12804 
12805 		/* If pointer is valid tests against zero will fail so we can
12806 		 * use this to direct branch taken.
12807 		 */
12808 		if (val != 0)
12809 			return -1;
12810 
12811 		switch (opcode) {
12812 		case BPF_JEQ:
12813 			return 0;
12814 		case BPF_JNE:
12815 			return 1;
12816 		default:
12817 			return -1;
12818 		}
12819 	}
12820 
12821 	if (is_jmp32)
12822 		return is_branch32_taken(reg, val, opcode);
12823 	return is_branch64_taken(reg, val, opcode);
12824 }
12825 
12826 static int flip_opcode(u32 opcode)
12827 {
12828 	/* How can we transform "a <op> b" into "b <op> a"? */
12829 	static const u8 opcode_flip[16] = {
12830 		/* these stay the same */
12831 		[BPF_JEQ  >> 4] = BPF_JEQ,
12832 		[BPF_JNE  >> 4] = BPF_JNE,
12833 		[BPF_JSET >> 4] = BPF_JSET,
12834 		/* these swap "lesser" and "greater" (L and G in the opcodes) */
12835 		[BPF_JGE  >> 4] = BPF_JLE,
12836 		[BPF_JGT  >> 4] = BPF_JLT,
12837 		[BPF_JLE  >> 4] = BPF_JGE,
12838 		[BPF_JLT  >> 4] = BPF_JGT,
12839 		[BPF_JSGE >> 4] = BPF_JSLE,
12840 		[BPF_JSGT >> 4] = BPF_JSLT,
12841 		[BPF_JSLE >> 4] = BPF_JSGE,
12842 		[BPF_JSLT >> 4] = BPF_JSGT
12843 	};
12844 	return opcode_flip[opcode >> 4];
12845 }
12846 
12847 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
12848 				   struct bpf_reg_state *src_reg,
12849 				   u8 opcode)
12850 {
12851 	struct bpf_reg_state *pkt;
12852 
12853 	if (src_reg->type == PTR_TO_PACKET_END) {
12854 		pkt = dst_reg;
12855 	} else if (dst_reg->type == PTR_TO_PACKET_END) {
12856 		pkt = src_reg;
12857 		opcode = flip_opcode(opcode);
12858 	} else {
12859 		return -1;
12860 	}
12861 
12862 	if (pkt->range >= 0)
12863 		return -1;
12864 
12865 	switch (opcode) {
12866 	case BPF_JLE:
12867 		/* pkt <= pkt_end */
12868 		fallthrough;
12869 	case BPF_JGT:
12870 		/* pkt > pkt_end */
12871 		if (pkt->range == BEYOND_PKT_END)
12872 			/* pkt has at last one extra byte beyond pkt_end */
12873 			return opcode == BPF_JGT;
12874 		break;
12875 	case BPF_JLT:
12876 		/* pkt < pkt_end */
12877 		fallthrough;
12878 	case BPF_JGE:
12879 		/* pkt >= pkt_end */
12880 		if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
12881 			return opcode == BPF_JGE;
12882 		break;
12883 	}
12884 	return -1;
12885 }
12886 
12887 /* Adjusts the register min/max values in the case that the dst_reg is the
12888  * variable register that we are working on, and src_reg is a constant or we're
12889  * simply doing a BPF_K check.
12890  * In JEQ/JNE cases we also adjust the var_off values.
12891  */
12892 static void reg_set_min_max(struct bpf_reg_state *true_reg,
12893 			    struct bpf_reg_state *false_reg,
12894 			    u64 val, u32 val32,
12895 			    u8 opcode, bool is_jmp32)
12896 {
12897 	struct tnum false_32off = tnum_subreg(false_reg->var_off);
12898 	struct tnum false_64off = false_reg->var_off;
12899 	struct tnum true_32off = tnum_subreg(true_reg->var_off);
12900 	struct tnum true_64off = true_reg->var_off;
12901 	s64 sval = (s64)val;
12902 	s32 sval32 = (s32)val32;
12903 
12904 	/* If the dst_reg is a pointer, we can't learn anything about its
12905 	 * variable offset from the compare (unless src_reg were a pointer into
12906 	 * the same object, but we don't bother with that.
12907 	 * Since false_reg and true_reg have the same type by construction, we
12908 	 * only need to check one of them for pointerness.
12909 	 */
12910 	if (__is_pointer_value(false, false_reg))
12911 		return;
12912 
12913 	switch (opcode) {
12914 	/* JEQ/JNE comparison doesn't change the register equivalence.
12915 	 *
12916 	 * r1 = r2;
12917 	 * if (r1 == 42) goto label;
12918 	 * ...
12919 	 * label: // here both r1 and r2 are known to be 42.
12920 	 *
12921 	 * Hence when marking register as known preserve it's ID.
12922 	 */
12923 	case BPF_JEQ:
12924 		if (is_jmp32) {
12925 			__mark_reg32_known(true_reg, val32);
12926 			true_32off = tnum_subreg(true_reg->var_off);
12927 		} else {
12928 			___mark_reg_known(true_reg, val);
12929 			true_64off = true_reg->var_off;
12930 		}
12931 		break;
12932 	case BPF_JNE:
12933 		if (is_jmp32) {
12934 			__mark_reg32_known(false_reg, val32);
12935 			false_32off = tnum_subreg(false_reg->var_off);
12936 		} else {
12937 			___mark_reg_known(false_reg, val);
12938 			false_64off = false_reg->var_off;
12939 		}
12940 		break;
12941 	case BPF_JSET:
12942 		if (is_jmp32) {
12943 			false_32off = tnum_and(false_32off, tnum_const(~val32));
12944 			if (is_power_of_2(val32))
12945 				true_32off = tnum_or(true_32off,
12946 						     tnum_const(val32));
12947 		} else {
12948 			false_64off = tnum_and(false_64off, tnum_const(~val));
12949 			if (is_power_of_2(val))
12950 				true_64off = tnum_or(true_64off,
12951 						     tnum_const(val));
12952 		}
12953 		break;
12954 	case BPF_JGE:
12955 	case BPF_JGT:
12956 	{
12957 		if (is_jmp32) {
12958 			u32 false_umax = opcode == BPF_JGT ? val32  : val32 - 1;
12959 			u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
12960 
12961 			false_reg->u32_max_value = min(false_reg->u32_max_value,
12962 						       false_umax);
12963 			true_reg->u32_min_value = max(true_reg->u32_min_value,
12964 						      true_umin);
12965 		} else {
12966 			u64 false_umax = opcode == BPF_JGT ? val    : val - 1;
12967 			u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
12968 
12969 			false_reg->umax_value = min(false_reg->umax_value, false_umax);
12970 			true_reg->umin_value = max(true_reg->umin_value, true_umin);
12971 		}
12972 		break;
12973 	}
12974 	case BPF_JSGE:
12975 	case BPF_JSGT:
12976 	{
12977 		if (is_jmp32) {
12978 			s32 false_smax = opcode == BPF_JSGT ? sval32    : sval32 - 1;
12979 			s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
12980 
12981 			false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
12982 			true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
12983 		} else {
12984 			s64 false_smax = opcode == BPF_JSGT ? sval    : sval - 1;
12985 			s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
12986 
12987 			false_reg->smax_value = min(false_reg->smax_value, false_smax);
12988 			true_reg->smin_value = max(true_reg->smin_value, true_smin);
12989 		}
12990 		break;
12991 	}
12992 	case BPF_JLE:
12993 	case BPF_JLT:
12994 	{
12995 		if (is_jmp32) {
12996 			u32 false_umin = opcode == BPF_JLT ? val32  : val32 + 1;
12997 			u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
12998 
12999 			false_reg->u32_min_value = max(false_reg->u32_min_value,
13000 						       false_umin);
13001 			true_reg->u32_max_value = min(true_reg->u32_max_value,
13002 						      true_umax);
13003 		} else {
13004 			u64 false_umin = opcode == BPF_JLT ? val    : val + 1;
13005 			u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
13006 
13007 			false_reg->umin_value = max(false_reg->umin_value, false_umin);
13008 			true_reg->umax_value = min(true_reg->umax_value, true_umax);
13009 		}
13010 		break;
13011 	}
13012 	case BPF_JSLE:
13013 	case BPF_JSLT:
13014 	{
13015 		if (is_jmp32) {
13016 			s32 false_smin = opcode == BPF_JSLT ? sval32    : sval32 + 1;
13017 			s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
13018 
13019 			false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
13020 			true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
13021 		} else {
13022 			s64 false_smin = opcode == BPF_JSLT ? sval    : sval + 1;
13023 			s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
13024 
13025 			false_reg->smin_value = max(false_reg->smin_value, false_smin);
13026 			true_reg->smax_value = min(true_reg->smax_value, true_smax);
13027 		}
13028 		break;
13029 	}
13030 	default:
13031 		return;
13032 	}
13033 
13034 	if (is_jmp32) {
13035 		false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
13036 					     tnum_subreg(false_32off));
13037 		true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
13038 					    tnum_subreg(true_32off));
13039 		__reg_combine_32_into_64(false_reg);
13040 		__reg_combine_32_into_64(true_reg);
13041 	} else {
13042 		false_reg->var_off = false_64off;
13043 		true_reg->var_off = true_64off;
13044 		__reg_combine_64_into_32(false_reg);
13045 		__reg_combine_64_into_32(true_reg);
13046 	}
13047 }
13048 
13049 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
13050  * the variable reg.
13051  */
13052 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
13053 				struct bpf_reg_state *false_reg,
13054 				u64 val, u32 val32,
13055 				u8 opcode, bool is_jmp32)
13056 {
13057 	opcode = flip_opcode(opcode);
13058 	/* This uses zero as "not present in table"; luckily the zero opcode,
13059 	 * BPF_JA, can't get here.
13060 	 */
13061 	if (opcode)
13062 		reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
13063 }
13064 
13065 /* Regs are known to be equal, so intersect their min/max/var_off */
13066 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
13067 				  struct bpf_reg_state *dst_reg)
13068 {
13069 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
13070 							dst_reg->umin_value);
13071 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
13072 							dst_reg->umax_value);
13073 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
13074 							dst_reg->smin_value);
13075 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
13076 							dst_reg->smax_value);
13077 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
13078 							     dst_reg->var_off);
13079 	reg_bounds_sync(src_reg);
13080 	reg_bounds_sync(dst_reg);
13081 }
13082 
13083 static void reg_combine_min_max(struct bpf_reg_state *true_src,
13084 				struct bpf_reg_state *true_dst,
13085 				struct bpf_reg_state *false_src,
13086 				struct bpf_reg_state *false_dst,
13087 				u8 opcode)
13088 {
13089 	switch (opcode) {
13090 	case BPF_JEQ:
13091 		__reg_combine_min_max(true_src, true_dst);
13092 		break;
13093 	case BPF_JNE:
13094 		__reg_combine_min_max(false_src, false_dst);
13095 		break;
13096 	}
13097 }
13098 
13099 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
13100 				 struct bpf_reg_state *reg, u32 id,
13101 				 bool is_null)
13102 {
13103 	if (type_may_be_null(reg->type) && reg->id == id &&
13104 	    (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) {
13105 		/* Old offset (both fixed and variable parts) should have been
13106 		 * known-zero, because we don't allow pointer arithmetic on
13107 		 * pointers that might be NULL. If we see this happening, don't
13108 		 * convert the register.
13109 		 *
13110 		 * But in some cases, some helpers that return local kptrs
13111 		 * advance offset for the returned pointer. In those cases, it
13112 		 * is fine to expect to see reg->off.
13113 		 */
13114 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0)))
13115 			return;
13116 		if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) &&
13117 		    WARN_ON_ONCE(reg->off))
13118 			return;
13119 
13120 		if (is_null) {
13121 			reg->type = SCALAR_VALUE;
13122 			/* We don't need id and ref_obj_id from this point
13123 			 * onwards anymore, thus we should better reset it,
13124 			 * so that state pruning has chances to take effect.
13125 			 */
13126 			reg->id = 0;
13127 			reg->ref_obj_id = 0;
13128 
13129 			return;
13130 		}
13131 
13132 		mark_ptr_not_null_reg(reg);
13133 
13134 		if (!reg_may_point_to_spin_lock(reg)) {
13135 			/* For not-NULL ptr, reg->ref_obj_id will be reset
13136 			 * in release_reference().
13137 			 *
13138 			 * reg->id is still used by spin_lock ptr. Other
13139 			 * than spin_lock ptr type, reg->id can be reset.
13140 			 */
13141 			reg->id = 0;
13142 		}
13143 	}
13144 }
13145 
13146 /* The logic is similar to find_good_pkt_pointers(), both could eventually
13147  * be folded together at some point.
13148  */
13149 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
13150 				  bool is_null)
13151 {
13152 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
13153 	struct bpf_reg_state *regs = state->regs, *reg;
13154 	u32 ref_obj_id = regs[regno].ref_obj_id;
13155 	u32 id = regs[regno].id;
13156 
13157 	if (ref_obj_id && ref_obj_id == id && is_null)
13158 		/* regs[regno] is in the " == NULL" branch.
13159 		 * No one could have freed the reference state before
13160 		 * doing the NULL check.
13161 		 */
13162 		WARN_ON_ONCE(release_reference_state(state, id));
13163 
13164 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
13165 		mark_ptr_or_null_reg(state, reg, id, is_null);
13166 	}));
13167 }
13168 
13169 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
13170 				   struct bpf_reg_state *dst_reg,
13171 				   struct bpf_reg_state *src_reg,
13172 				   struct bpf_verifier_state *this_branch,
13173 				   struct bpf_verifier_state *other_branch)
13174 {
13175 	if (BPF_SRC(insn->code) != BPF_X)
13176 		return false;
13177 
13178 	/* Pointers are always 64-bit. */
13179 	if (BPF_CLASS(insn->code) == BPF_JMP32)
13180 		return false;
13181 
13182 	switch (BPF_OP(insn->code)) {
13183 	case BPF_JGT:
13184 		if ((dst_reg->type == PTR_TO_PACKET &&
13185 		     src_reg->type == PTR_TO_PACKET_END) ||
13186 		    (dst_reg->type == PTR_TO_PACKET_META &&
13187 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
13188 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
13189 			find_good_pkt_pointers(this_branch, dst_reg,
13190 					       dst_reg->type, false);
13191 			mark_pkt_end(other_branch, insn->dst_reg, true);
13192 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
13193 			    src_reg->type == PTR_TO_PACKET) ||
13194 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
13195 			    src_reg->type == PTR_TO_PACKET_META)) {
13196 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
13197 			find_good_pkt_pointers(other_branch, src_reg,
13198 					       src_reg->type, true);
13199 			mark_pkt_end(this_branch, insn->src_reg, false);
13200 		} else {
13201 			return false;
13202 		}
13203 		break;
13204 	case BPF_JLT:
13205 		if ((dst_reg->type == PTR_TO_PACKET &&
13206 		     src_reg->type == PTR_TO_PACKET_END) ||
13207 		    (dst_reg->type == PTR_TO_PACKET_META &&
13208 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
13209 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
13210 			find_good_pkt_pointers(other_branch, dst_reg,
13211 					       dst_reg->type, true);
13212 			mark_pkt_end(this_branch, insn->dst_reg, false);
13213 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
13214 			    src_reg->type == PTR_TO_PACKET) ||
13215 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
13216 			    src_reg->type == PTR_TO_PACKET_META)) {
13217 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
13218 			find_good_pkt_pointers(this_branch, src_reg,
13219 					       src_reg->type, false);
13220 			mark_pkt_end(other_branch, insn->src_reg, true);
13221 		} else {
13222 			return false;
13223 		}
13224 		break;
13225 	case BPF_JGE:
13226 		if ((dst_reg->type == PTR_TO_PACKET &&
13227 		     src_reg->type == PTR_TO_PACKET_END) ||
13228 		    (dst_reg->type == PTR_TO_PACKET_META &&
13229 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
13230 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
13231 			find_good_pkt_pointers(this_branch, dst_reg,
13232 					       dst_reg->type, true);
13233 			mark_pkt_end(other_branch, insn->dst_reg, false);
13234 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
13235 			    src_reg->type == PTR_TO_PACKET) ||
13236 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
13237 			    src_reg->type == PTR_TO_PACKET_META)) {
13238 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
13239 			find_good_pkt_pointers(other_branch, src_reg,
13240 					       src_reg->type, false);
13241 			mark_pkt_end(this_branch, insn->src_reg, true);
13242 		} else {
13243 			return false;
13244 		}
13245 		break;
13246 	case BPF_JLE:
13247 		if ((dst_reg->type == PTR_TO_PACKET &&
13248 		     src_reg->type == PTR_TO_PACKET_END) ||
13249 		    (dst_reg->type == PTR_TO_PACKET_META &&
13250 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
13251 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
13252 			find_good_pkt_pointers(other_branch, dst_reg,
13253 					       dst_reg->type, false);
13254 			mark_pkt_end(this_branch, insn->dst_reg, true);
13255 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
13256 			    src_reg->type == PTR_TO_PACKET) ||
13257 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
13258 			    src_reg->type == PTR_TO_PACKET_META)) {
13259 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
13260 			find_good_pkt_pointers(this_branch, src_reg,
13261 					       src_reg->type, true);
13262 			mark_pkt_end(other_branch, insn->src_reg, false);
13263 		} else {
13264 			return false;
13265 		}
13266 		break;
13267 	default:
13268 		return false;
13269 	}
13270 
13271 	return true;
13272 }
13273 
13274 static void find_equal_scalars(struct bpf_verifier_state *vstate,
13275 			       struct bpf_reg_state *known_reg)
13276 {
13277 	struct bpf_func_state *state;
13278 	struct bpf_reg_state *reg;
13279 
13280 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
13281 		if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
13282 			copy_register_state(reg, known_reg);
13283 	}));
13284 }
13285 
13286 static int check_cond_jmp_op(struct bpf_verifier_env *env,
13287 			     struct bpf_insn *insn, int *insn_idx)
13288 {
13289 	struct bpf_verifier_state *this_branch = env->cur_state;
13290 	struct bpf_verifier_state *other_branch;
13291 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
13292 	struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
13293 	struct bpf_reg_state *eq_branch_regs;
13294 	u8 opcode = BPF_OP(insn->code);
13295 	bool is_jmp32;
13296 	int pred = -1;
13297 	int err;
13298 
13299 	/* Only conditional jumps are expected to reach here. */
13300 	if (opcode == BPF_JA || opcode > BPF_JSLE) {
13301 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
13302 		return -EINVAL;
13303 	}
13304 
13305 	if (BPF_SRC(insn->code) == BPF_X) {
13306 		if (insn->imm != 0) {
13307 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
13308 			return -EINVAL;
13309 		}
13310 
13311 		/* check src1 operand */
13312 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
13313 		if (err)
13314 			return err;
13315 
13316 		if (is_pointer_value(env, insn->src_reg)) {
13317 			verbose(env, "R%d pointer comparison prohibited\n",
13318 				insn->src_reg);
13319 			return -EACCES;
13320 		}
13321 		src_reg = &regs[insn->src_reg];
13322 	} else {
13323 		if (insn->src_reg != BPF_REG_0) {
13324 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
13325 			return -EINVAL;
13326 		}
13327 	}
13328 
13329 	/* check src2 operand */
13330 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
13331 	if (err)
13332 		return err;
13333 
13334 	dst_reg = &regs[insn->dst_reg];
13335 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
13336 
13337 	if (BPF_SRC(insn->code) == BPF_K) {
13338 		pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
13339 	} else if (src_reg->type == SCALAR_VALUE &&
13340 		   is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
13341 		pred = is_branch_taken(dst_reg,
13342 				       tnum_subreg(src_reg->var_off).value,
13343 				       opcode,
13344 				       is_jmp32);
13345 	} else if (src_reg->type == SCALAR_VALUE &&
13346 		   !is_jmp32 && tnum_is_const(src_reg->var_off)) {
13347 		pred = is_branch_taken(dst_reg,
13348 				       src_reg->var_off.value,
13349 				       opcode,
13350 				       is_jmp32);
13351 	} else if (reg_is_pkt_pointer_any(dst_reg) &&
13352 		   reg_is_pkt_pointer_any(src_reg) &&
13353 		   !is_jmp32) {
13354 		pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
13355 	}
13356 
13357 	if (pred >= 0) {
13358 		/* If we get here with a dst_reg pointer type it is because
13359 		 * above is_branch_taken() special cased the 0 comparison.
13360 		 */
13361 		if (!__is_pointer_value(false, dst_reg))
13362 			err = mark_chain_precision(env, insn->dst_reg);
13363 		if (BPF_SRC(insn->code) == BPF_X && !err &&
13364 		    !__is_pointer_value(false, src_reg))
13365 			err = mark_chain_precision(env, insn->src_reg);
13366 		if (err)
13367 			return err;
13368 	}
13369 
13370 	if (pred == 1) {
13371 		/* Only follow the goto, ignore fall-through. If needed, push
13372 		 * the fall-through branch for simulation under speculative
13373 		 * execution.
13374 		 */
13375 		if (!env->bypass_spec_v1 &&
13376 		    !sanitize_speculative_path(env, insn, *insn_idx + 1,
13377 					       *insn_idx))
13378 			return -EFAULT;
13379 		*insn_idx += insn->off;
13380 		return 0;
13381 	} else if (pred == 0) {
13382 		/* Only follow the fall-through branch, since that's where the
13383 		 * program will go. If needed, push the goto branch for
13384 		 * simulation under speculative execution.
13385 		 */
13386 		if (!env->bypass_spec_v1 &&
13387 		    !sanitize_speculative_path(env, insn,
13388 					       *insn_idx + insn->off + 1,
13389 					       *insn_idx))
13390 			return -EFAULT;
13391 		return 0;
13392 	}
13393 
13394 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
13395 				  false);
13396 	if (!other_branch)
13397 		return -EFAULT;
13398 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
13399 
13400 	/* detect if we are comparing against a constant value so we can adjust
13401 	 * our min/max values for our dst register.
13402 	 * this is only legit if both are scalars (or pointers to the same
13403 	 * object, I suppose, see the PTR_MAYBE_NULL related if block below),
13404 	 * because otherwise the different base pointers mean the offsets aren't
13405 	 * comparable.
13406 	 */
13407 	if (BPF_SRC(insn->code) == BPF_X) {
13408 		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
13409 
13410 		if (dst_reg->type == SCALAR_VALUE &&
13411 		    src_reg->type == SCALAR_VALUE) {
13412 			if (tnum_is_const(src_reg->var_off) ||
13413 			    (is_jmp32 &&
13414 			     tnum_is_const(tnum_subreg(src_reg->var_off))))
13415 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
13416 						dst_reg,
13417 						src_reg->var_off.value,
13418 						tnum_subreg(src_reg->var_off).value,
13419 						opcode, is_jmp32);
13420 			else if (tnum_is_const(dst_reg->var_off) ||
13421 				 (is_jmp32 &&
13422 				  tnum_is_const(tnum_subreg(dst_reg->var_off))))
13423 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
13424 						    src_reg,
13425 						    dst_reg->var_off.value,
13426 						    tnum_subreg(dst_reg->var_off).value,
13427 						    opcode, is_jmp32);
13428 			else if (!is_jmp32 &&
13429 				 (opcode == BPF_JEQ || opcode == BPF_JNE))
13430 				/* Comparing for equality, we can combine knowledge */
13431 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
13432 						    &other_branch_regs[insn->dst_reg],
13433 						    src_reg, dst_reg, opcode);
13434 			if (src_reg->id &&
13435 			    !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
13436 				find_equal_scalars(this_branch, src_reg);
13437 				find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
13438 			}
13439 
13440 		}
13441 	} else if (dst_reg->type == SCALAR_VALUE) {
13442 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
13443 					dst_reg, insn->imm, (u32)insn->imm,
13444 					opcode, is_jmp32);
13445 	}
13446 
13447 	if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
13448 	    !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
13449 		find_equal_scalars(this_branch, dst_reg);
13450 		find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
13451 	}
13452 
13453 	/* if one pointer register is compared to another pointer
13454 	 * register check if PTR_MAYBE_NULL could be lifted.
13455 	 * E.g. register A - maybe null
13456 	 *      register B - not null
13457 	 * for JNE A, B, ... - A is not null in the false branch;
13458 	 * for JEQ A, B, ... - A is not null in the true branch.
13459 	 *
13460 	 * Since PTR_TO_BTF_ID points to a kernel struct that does
13461 	 * not need to be null checked by the BPF program, i.e.,
13462 	 * could be null even without PTR_MAYBE_NULL marking, so
13463 	 * only propagate nullness when neither reg is that type.
13464 	 */
13465 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X &&
13466 	    __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) &&
13467 	    type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) &&
13468 	    base_type(src_reg->type) != PTR_TO_BTF_ID &&
13469 	    base_type(dst_reg->type) != PTR_TO_BTF_ID) {
13470 		eq_branch_regs = NULL;
13471 		switch (opcode) {
13472 		case BPF_JEQ:
13473 			eq_branch_regs = other_branch_regs;
13474 			break;
13475 		case BPF_JNE:
13476 			eq_branch_regs = regs;
13477 			break;
13478 		default:
13479 			/* do nothing */
13480 			break;
13481 		}
13482 		if (eq_branch_regs) {
13483 			if (type_may_be_null(src_reg->type))
13484 				mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]);
13485 			else
13486 				mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]);
13487 		}
13488 	}
13489 
13490 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
13491 	 * NOTE: these optimizations below are related with pointer comparison
13492 	 *       which will never be JMP32.
13493 	 */
13494 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
13495 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
13496 	    type_may_be_null(dst_reg->type)) {
13497 		/* Mark all identical registers in each branch as either
13498 		 * safe or unknown depending R == 0 or R != 0 conditional.
13499 		 */
13500 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
13501 				      opcode == BPF_JNE);
13502 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
13503 				      opcode == BPF_JEQ);
13504 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
13505 					   this_branch, other_branch) &&
13506 		   is_pointer_value(env, insn->dst_reg)) {
13507 		verbose(env, "R%d pointer comparison prohibited\n",
13508 			insn->dst_reg);
13509 		return -EACCES;
13510 	}
13511 	if (env->log.level & BPF_LOG_LEVEL)
13512 		print_insn_state(env, this_branch->frame[this_branch->curframe]);
13513 	return 0;
13514 }
13515 
13516 /* verify BPF_LD_IMM64 instruction */
13517 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
13518 {
13519 	struct bpf_insn_aux_data *aux = cur_aux(env);
13520 	struct bpf_reg_state *regs = cur_regs(env);
13521 	struct bpf_reg_state *dst_reg;
13522 	struct bpf_map *map;
13523 	int err;
13524 
13525 	if (BPF_SIZE(insn->code) != BPF_DW) {
13526 		verbose(env, "invalid BPF_LD_IMM insn\n");
13527 		return -EINVAL;
13528 	}
13529 	if (insn->off != 0) {
13530 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
13531 		return -EINVAL;
13532 	}
13533 
13534 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
13535 	if (err)
13536 		return err;
13537 
13538 	dst_reg = &regs[insn->dst_reg];
13539 	if (insn->src_reg == 0) {
13540 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
13541 
13542 		dst_reg->type = SCALAR_VALUE;
13543 		__mark_reg_known(&regs[insn->dst_reg], imm);
13544 		return 0;
13545 	}
13546 
13547 	/* All special src_reg cases are listed below. From this point onwards
13548 	 * we either succeed and assign a corresponding dst_reg->type after
13549 	 * zeroing the offset, or fail and reject the program.
13550 	 */
13551 	mark_reg_known_zero(env, regs, insn->dst_reg);
13552 
13553 	if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
13554 		dst_reg->type = aux->btf_var.reg_type;
13555 		switch (base_type(dst_reg->type)) {
13556 		case PTR_TO_MEM:
13557 			dst_reg->mem_size = aux->btf_var.mem_size;
13558 			break;
13559 		case PTR_TO_BTF_ID:
13560 			dst_reg->btf = aux->btf_var.btf;
13561 			dst_reg->btf_id = aux->btf_var.btf_id;
13562 			break;
13563 		default:
13564 			verbose(env, "bpf verifier is misconfigured\n");
13565 			return -EFAULT;
13566 		}
13567 		return 0;
13568 	}
13569 
13570 	if (insn->src_reg == BPF_PSEUDO_FUNC) {
13571 		struct bpf_prog_aux *aux = env->prog->aux;
13572 		u32 subprogno = find_subprog(env,
13573 					     env->insn_idx + insn->imm + 1);
13574 
13575 		if (!aux->func_info) {
13576 			verbose(env, "missing btf func_info\n");
13577 			return -EINVAL;
13578 		}
13579 		if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
13580 			verbose(env, "callback function not static\n");
13581 			return -EINVAL;
13582 		}
13583 
13584 		dst_reg->type = PTR_TO_FUNC;
13585 		dst_reg->subprogno = subprogno;
13586 		return 0;
13587 	}
13588 
13589 	map = env->used_maps[aux->map_index];
13590 	dst_reg->map_ptr = map;
13591 
13592 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
13593 	    insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
13594 		dst_reg->type = PTR_TO_MAP_VALUE;
13595 		dst_reg->off = aux->map_off;
13596 		WARN_ON_ONCE(map->max_entries != 1);
13597 		/* We want reg->id to be same (0) as map_value is not distinct */
13598 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
13599 		   insn->src_reg == BPF_PSEUDO_MAP_IDX) {
13600 		dst_reg->type = CONST_PTR_TO_MAP;
13601 	} else {
13602 		verbose(env, "bpf verifier is misconfigured\n");
13603 		return -EINVAL;
13604 	}
13605 
13606 	return 0;
13607 }
13608 
13609 static bool may_access_skb(enum bpf_prog_type type)
13610 {
13611 	switch (type) {
13612 	case BPF_PROG_TYPE_SOCKET_FILTER:
13613 	case BPF_PROG_TYPE_SCHED_CLS:
13614 	case BPF_PROG_TYPE_SCHED_ACT:
13615 		return true;
13616 	default:
13617 		return false;
13618 	}
13619 }
13620 
13621 /* verify safety of LD_ABS|LD_IND instructions:
13622  * - they can only appear in the programs where ctx == skb
13623  * - since they are wrappers of function calls, they scratch R1-R5 registers,
13624  *   preserve R6-R9, and store return value into R0
13625  *
13626  * Implicit input:
13627  *   ctx == skb == R6 == CTX
13628  *
13629  * Explicit input:
13630  *   SRC == any register
13631  *   IMM == 32-bit immediate
13632  *
13633  * Output:
13634  *   R0 - 8/16/32-bit skb data converted to cpu endianness
13635  */
13636 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
13637 {
13638 	struct bpf_reg_state *regs = cur_regs(env);
13639 	static const int ctx_reg = BPF_REG_6;
13640 	u8 mode = BPF_MODE(insn->code);
13641 	int i, err;
13642 
13643 	if (!may_access_skb(resolve_prog_type(env->prog))) {
13644 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
13645 		return -EINVAL;
13646 	}
13647 
13648 	if (!env->ops->gen_ld_abs) {
13649 		verbose(env, "bpf verifier is misconfigured\n");
13650 		return -EINVAL;
13651 	}
13652 
13653 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
13654 	    BPF_SIZE(insn->code) == BPF_DW ||
13655 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
13656 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
13657 		return -EINVAL;
13658 	}
13659 
13660 	/* check whether implicit source operand (register R6) is readable */
13661 	err = check_reg_arg(env, ctx_reg, SRC_OP);
13662 	if (err)
13663 		return err;
13664 
13665 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
13666 	 * gen_ld_abs() may terminate the program at runtime, leading to
13667 	 * reference leak.
13668 	 */
13669 	err = check_reference_leak(env);
13670 	if (err) {
13671 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
13672 		return err;
13673 	}
13674 
13675 	if (env->cur_state->active_lock.ptr) {
13676 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
13677 		return -EINVAL;
13678 	}
13679 
13680 	if (env->cur_state->active_rcu_lock) {
13681 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_rcu_read_lock-ed region\n");
13682 		return -EINVAL;
13683 	}
13684 
13685 	if (regs[ctx_reg].type != PTR_TO_CTX) {
13686 		verbose(env,
13687 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
13688 		return -EINVAL;
13689 	}
13690 
13691 	if (mode == BPF_IND) {
13692 		/* check explicit source operand */
13693 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
13694 		if (err)
13695 			return err;
13696 	}
13697 
13698 	err = check_ptr_off_reg(env, &regs[ctx_reg], ctx_reg);
13699 	if (err < 0)
13700 		return err;
13701 
13702 	/* reset caller saved regs to unreadable */
13703 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
13704 		mark_reg_not_init(env, regs, caller_saved[i]);
13705 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
13706 	}
13707 
13708 	/* mark destination R0 register as readable, since it contains
13709 	 * the value fetched from the packet.
13710 	 * Already marked as written above.
13711 	 */
13712 	mark_reg_unknown(env, regs, BPF_REG_0);
13713 	/* ld_abs load up to 32-bit skb data. */
13714 	regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
13715 	return 0;
13716 }
13717 
13718 static int check_return_code(struct bpf_verifier_env *env)
13719 {
13720 	struct tnum enforce_attach_type_range = tnum_unknown;
13721 	const struct bpf_prog *prog = env->prog;
13722 	struct bpf_reg_state *reg;
13723 	struct tnum range = tnum_range(0, 1);
13724 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
13725 	int err;
13726 	struct bpf_func_state *frame = env->cur_state->frame[0];
13727 	const bool is_subprog = frame->subprogno;
13728 
13729 	/* LSM and struct_ops func-ptr's return type could be "void" */
13730 	if (!is_subprog) {
13731 		switch (prog_type) {
13732 		case BPF_PROG_TYPE_LSM:
13733 			if (prog->expected_attach_type == BPF_LSM_CGROUP)
13734 				/* See below, can be 0 or 0-1 depending on hook. */
13735 				break;
13736 			fallthrough;
13737 		case BPF_PROG_TYPE_STRUCT_OPS:
13738 			if (!prog->aux->attach_func_proto->type)
13739 				return 0;
13740 			break;
13741 		default:
13742 			break;
13743 		}
13744 	}
13745 
13746 	/* eBPF calling convention is such that R0 is used
13747 	 * to return the value from eBPF program.
13748 	 * Make sure that it's readable at this time
13749 	 * of bpf_exit, which means that program wrote
13750 	 * something into it earlier
13751 	 */
13752 	err = check_reg_arg(env, BPF_REG_0, SRC_OP);
13753 	if (err)
13754 		return err;
13755 
13756 	if (is_pointer_value(env, BPF_REG_0)) {
13757 		verbose(env, "R0 leaks addr as return value\n");
13758 		return -EACCES;
13759 	}
13760 
13761 	reg = cur_regs(env) + BPF_REG_0;
13762 
13763 	if (frame->in_async_callback_fn) {
13764 		/* enforce return zero from async callbacks like timer */
13765 		if (reg->type != SCALAR_VALUE) {
13766 			verbose(env, "In async callback the register R0 is not a known value (%s)\n",
13767 				reg_type_str(env, reg->type));
13768 			return -EINVAL;
13769 		}
13770 
13771 		if (!tnum_in(tnum_const(0), reg->var_off)) {
13772 			verbose_invalid_scalar(env, reg, &range, "async callback", "R0");
13773 			return -EINVAL;
13774 		}
13775 		return 0;
13776 	}
13777 
13778 	if (is_subprog) {
13779 		if (reg->type != SCALAR_VALUE) {
13780 			verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
13781 				reg_type_str(env, reg->type));
13782 			return -EINVAL;
13783 		}
13784 		return 0;
13785 	}
13786 
13787 	switch (prog_type) {
13788 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
13789 		if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
13790 		    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
13791 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
13792 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
13793 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
13794 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
13795 			range = tnum_range(1, 1);
13796 		if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
13797 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
13798 			range = tnum_range(0, 3);
13799 		break;
13800 	case BPF_PROG_TYPE_CGROUP_SKB:
13801 		if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
13802 			range = tnum_range(0, 3);
13803 			enforce_attach_type_range = tnum_range(2, 3);
13804 		}
13805 		break;
13806 	case BPF_PROG_TYPE_CGROUP_SOCK:
13807 	case BPF_PROG_TYPE_SOCK_OPS:
13808 	case BPF_PROG_TYPE_CGROUP_DEVICE:
13809 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
13810 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
13811 		break;
13812 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
13813 		if (!env->prog->aux->attach_btf_id)
13814 			return 0;
13815 		range = tnum_const(0);
13816 		break;
13817 	case BPF_PROG_TYPE_TRACING:
13818 		switch (env->prog->expected_attach_type) {
13819 		case BPF_TRACE_FENTRY:
13820 		case BPF_TRACE_FEXIT:
13821 			range = tnum_const(0);
13822 			break;
13823 		case BPF_TRACE_RAW_TP:
13824 		case BPF_MODIFY_RETURN:
13825 			return 0;
13826 		case BPF_TRACE_ITER:
13827 			break;
13828 		default:
13829 			return -ENOTSUPP;
13830 		}
13831 		break;
13832 	case BPF_PROG_TYPE_SK_LOOKUP:
13833 		range = tnum_range(SK_DROP, SK_PASS);
13834 		break;
13835 
13836 	case BPF_PROG_TYPE_LSM:
13837 		if (env->prog->expected_attach_type != BPF_LSM_CGROUP) {
13838 			/* Regular BPF_PROG_TYPE_LSM programs can return
13839 			 * any value.
13840 			 */
13841 			return 0;
13842 		}
13843 		if (!env->prog->aux->attach_func_proto->type) {
13844 			/* Make sure programs that attach to void
13845 			 * hooks don't try to modify return value.
13846 			 */
13847 			range = tnum_range(1, 1);
13848 		}
13849 		break;
13850 
13851 	case BPF_PROG_TYPE_EXT:
13852 		/* freplace program can return anything as its return value
13853 		 * depends on the to-be-replaced kernel func or bpf program.
13854 		 */
13855 	default:
13856 		return 0;
13857 	}
13858 
13859 	if (reg->type != SCALAR_VALUE) {
13860 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
13861 			reg_type_str(env, reg->type));
13862 		return -EINVAL;
13863 	}
13864 
13865 	if (!tnum_in(range, reg->var_off)) {
13866 		verbose_invalid_scalar(env, reg, &range, "program exit", "R0");
13867 		if (prog->expected_attach_type == BPF_LSM_CGROUP &&
13868 		    prog_type == BPF_PROG_TYPE_LSM &&
13869 		    !prog->aux->attach_func_proto->type)
13870 			verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
13871 		return -EINVAL;
13872 	}
13873 
13874 	if (!tnum_is_unknown(enforce_attach_type_range) &&
13875 	    tnum_in(enforce_attach_type_range, reg->var_off))
13876 		env->prog->enforce_expected_attach_type = 1;
13877 	return 0;
13878 }
13879 
13880 /* non-recursive DFS pseudo code
13881  * 1  procedure DFS-iterative(G,v):
13882  * 2      label v as discovered
13883  * 3      let S be a stack
13884  * 4      S.push(v)
13885  * 5      while S is not empty
13886  * 6            t <- S.peek()
13887  * 7            if t is what we're looking for:
13888  * 8                return t
13889  * 9            for all edges e in G.adjacentEdges(t) do
13890  * 10               if edge e is already labelled
13891  * 11                   continue with the next edge
13892  * 12               w <- G.adjacentVertex(t,e)
13893  * 13               if vertex w is not discovered and not explored
13894  * 14                   label e as tree-edge
13895  * 15                   label w as discovered
13896  * 16                   S.push(w)
13897  * 17                   continue at 5
13898  * 18               else if vertex w is discovered
13899  * 19                   label e as back-edge
13900  * 20               else
13901  * 21                   // vertex w is explored
13902  * 22                   label e as forward- or cross-edge
13903  * 23           label t as explored
13904  * 24           S.pop()
13905  *
13906  * convention:
13907  * 0x10 - discovered
13908  * 0x11 - discovered and fall-through edge labelled
13909  * 0x12 - discovered and fall-through and branch edges labelled
13910  * 0x20 - explored
13911  */
13912 
13913 enum {
13914 	DISCOVERED = 0x10,
13915 	EXPLORED = 0x20,
13916 	FALLTHROUGH = 1,
13917 	BRANCH = 2,
13918 };
13919 
13920 static u32 state_htab_size(struct bpf_verifier_env *env)
13921 {
13922 	return env->prog->len;
13923 }
13924 
13925 static struct bpf_verifier_state_list **explored_state(
13926 					struct bpf_verifier_env *env,
13927 					int idx)
13928 {
13929 	struct bpf_verifier_state *cur = env->cur_state;
13930 	struct bpf_func_state *state = cur->frame[cur->curframe];
13931 
13932 	return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
13933 }
13934 
13935 static void mark_prune_point(struct bpf_verifier_env *env, int idx)
13936 {
13937 	env->insn_aux_data[idx].prune_point = true;
13938 }
13939 
13940 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx)
13941 {
13942 	return env->insn_aux_data[insn_idx].prune_point;
13943 }
13944 
13945 static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx)
13946 {
13947 	env->insn_aux_data[idx].force_checkpoint = true;
13948 }
13949 
13950 static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx)
13951 {
13952 	return env->insn_aux_data[insn_idx].force_checkpoint;
13953 }
13954 
13955 
13956 enum {
13957 	DONE_EXPLORING = 0,
13958 	KEEP_EXPLORING = 1,
13959 };
13960 
13961 /* t, w, e - match pseudo-code above:
13962  * t - index of current instruction
13963  * w - next instruction
13964  * e - edge
13965  */
13966 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
13967 		     bool loop_ok)
13968 {
13969 	int *insn_stack = env->cfg.insn_stack;
13970 	int *insn_state = env->cfg.insn_state;
13971 
13972 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
13973 		return DONE_EXPLORING;
13974 
13975 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
13976 		return DONE_EXPLORING;
13977 
13978 	if (w < 0 || w >= env->prog->len) {
13979 		verbose_linfo(env, t, "%d: ", t);
13980 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
13981 		return -EINVAL;
13982 	}
13983 
13984 	if (e == BRANCH) {
13985 		/* mark branch target for state pruning */
13986 		mark_prune_point(env, w);
13987 		mark_jmp_point(env, w);
13988 	}
13989 
13990 	if (insn_state[w] == 0) {
13991 		/* tree-edge */
13992 		insn_state[t] = DISCOVERED | e;
13993 		insn_state[w] = DISCOVERED;
13994 		if (env->cfg.cur_stack >= env->prog->len)
13995 			return -E2BIG;
13996 		insn_stack[env->cfg.cur_stack++] = w;
13997 		return KEEP_EXPLORING;
13998 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
13999 		if (loop_ok && env->bpf_capable)
14000 			return DONE_EXPLORING;
14001 		verbose_linfo(env, t, "%d: ", t);
14002 		verbose_linfo(env, w, "%d: ", w);
14003 		verbose(env, "back-edge from insn %d to %d\n", t, w);
14004 		return -EINVAL;
14005 	} else if (insn_state[w] == EXPLORED) {
14006 		/* forward- or cross-edge */
14007 		insn_state[t] = DISCOVERED | e;
14008 	} else {
14009 		verbose(env, "insn state internal bug\n");
14010 		return -EFAULT;
14011 	}
14012 	return DONE_EXPLORING;
14013 }
14014 
14015 static int visit_func_call_insn(int t, struct bpf_insn *insns,
14016 				struct bpf_verifier_env *env,
14017 				bool visit_callee)
14018 {
14019 	int ret;
14020 
14021 	ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
14022 	if (ret)
14023 		return ret;
14024 
14025 	mark_prune_point(env, t + 1);
14026 	/* when we exit from subprog, we need to record non-linear history */
14027 	mark_jmp_point(env, t + 1);
14028 
14029 	if (visit_callee) {
14030 		mark_prune_point(env, t);
14031 		ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env,
14032 				/* It's ok to allow recursion from CFG point of
14033 				 * view. __check_func_call() will do the actual
14034 				 * check.
14035 				 */
14036 				bpf_pseudo_func(insns + t));
14037 	}
14038 	return ret;
14039 }
14040 
14041 /* Visits the instruction at index t and returns one of the following:
14042  *  < 0 - an error occurred
14043  *  DONE_EXPLORING - the instruction was fully explored
14044  *  KEEP_EXPLORING - there is still work to be done before it is fully explored
14045  */
14046 static int visit_insn(int t, struct bpf_verifier_env *env)
14047 {
14048 	struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t];
14049 	int ret;
14050 
14051 	if (bpf_pseudo_func(insn))
14052 		return visit_func_call_insn(t, insns, env, true);
14053 
14054 	/* All non-branch instructions have a single fall-through edge. */
14055 	if (BPF_CLASS(insn->code) != BPF_JMP &&
14056 	    BPF_CLASS(insn->code) != BPF_JMP32)
14057 		return push_insn(t, t + 1, FALLTHROUGH, env, false);
14058 
14059 	switch (BPF_OP(insn->code)) {
14060 	case BPF_EXIT:
14061 		return DONE_EXPLORING;
14062 
14063 	case BPF_CALL:
14064 		if (insn->src_reg == 0 && insn->imm == BPF_FUNC_timer_set_callback)
14065 			/* Mark this call insn as a prune point to trigger
14066 			 * is_state_visited() check before call itself is
14067 			 * processed by __check_func_call(). Otherwise new
14068 			 * async state will be pushed for further exploration.
14069 			 */
14070 			mark_prune_point(env, t);
14071 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
14072 			struct bpf_kfunc_call_arg_meta meta;
14073 
14074 			ret = fetch_kfunc_meta(env, insn, &meta, NULL);
14075 			if (ret == 0 && is_iter_next_kfunc(&meta)) {
14076 				mark_prune_point(env, t);
14077 				/* Checking and saving state checkpoints at iter_next() call
14078 				 * is crucial for fast convergence of open-coded iterator loop
14079 				 * logic, so we need to force it. If we don't do that,
14080 				 * is_state_visited() might skip saving a checkpoint, causing
14081 				 * unnecessarily long sequence of not checkpointed
14082 				 * instructions and jumps, leading to exhaustion of jump
14083 				 * history buffer, and potentially other undesired outcomes.
14084 				 * It is expected that with correct open-coded iterators
14085 				 * convergence will happen quickly, so we don't run a risk of
14086 				 * exhausting memory.
14087 				 */
14088 				mark_force_checkpoint(env, t);
14089 			}
14090 		}
14091 		return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL);
14092 
14093 	case BPF_JA:
14094 		if (BPF_SRC(insn->code) != BPF_K)
14095 			return -EINVAL;
14096 
14097 		/* unconditional jump with single edge */
14098 		ret = push_insn(t, t + insn->off + 1, FALLTHROUGH, env,
14099 				true);
14100 		if (ret)
14101 			return ret;
14102 
14103 		mark_prune_point(env, t + insn->off + 1);
14104 		mark_jmp_point(env, t + insn->off + 1);
14105 
14106 		return ret;
14107 
14108 	default:
14109 		/* conditional jump with two edges */
14110 		mark_prune_point(env, t);
14111 
14112 		ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
14113 		if (ret)
14114 			return ret;
14115 
14116 		return push_insn(t, t + insn->off + 1, BRANCH, env, true);
14117 	}
14118 }
14119 
14120 /* non-recursive depth-first-search to detect loops in BPF program
14121  * loop == back-edge in directed graph
14122  */
14123 static int check_cfg(struct bpf_verifier_env *env)
14124 {
14125 	int insn_cnt = env->prog->len;
14126 	int *insn_stack, *insn_state;
14127 	int ret = 0;
14128 	int i;
14129 
14130 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
14131 	if (!insn_state)
14132 		return -ENOMEM;
14133 
14134 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
14135 	if (!insn_stack) {
14136 		kvfree(insn_state);
14137 		return -ENOMEM;
14138 	}
14139 
14140 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
14141 	insn_stack[0] = 0; /* 0 is the first instruction */
14142 	env->cfg.cur_stack = 1;
14143 
14144 	while (env->cfg.cur_stack > 0) {
14145 		int t = insn_stack[env->cfg.cur_stack - 1];
14146 
14147 		ret = visit_insn(t, env);
14148 		switch (ret) {
14149 		case DONE_EXPLORING:
14150 			insn_state[t] = EXPLORED;
14151 			env->cfg.cur_stack--;
14152 			break;
14153 		case KEEP_EXPLORING:
14154 			break;
14155 		default:
14156 			if (ret > 0) {
14157 				verbose(env, "visit_insn internal bug\n");
14158 				ret = -EFAULT;
14159 			}
14160 			goto err_free;
14161 		}
14162 	}
14163 
14164 	if (env->cfg.cur_stack < 0) {
14165 		verbose(env, "pop stack internal bug\n");
14166 		ret = -EFAULT;
14167 		goto err_free;
14168 	}
14169 
14170 	for (i = 0; i < insn_cnt; i++) {
14171 		if (insn_state[i] != EXPLORED) {
14172 			verbose(env, "unreachable insn %d\n", i);
14173 			ret = -EINVAL;
14174 			goto err_free;
14175 		}
14176 	}
14177 	ret = 0; /* cfg looks good */
14178 
14179 err_free:
14180 	kvfree(insn_state);
14181 	kvfree(insn_stack);
14182 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
14183 	return ret;
14184 }
14185 
14186 static int check_abnormal_return(struct bpf_verifier_env *env)
14187 {
14188 	int i;
14189 
14190 	for (i = 1; i < env->subprog_cnt; i++) {
14191 		if (env->subprog_info[i].has_ld_abs) {
14192 			verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
14193 			return -EINVAL;
14194 		}
14195 		if (env->subprog_info[i].has_tail_call) {
14196 			verbose(env, "tail_call is not allowed in subprogs without BTF\n");
14197 			return -EINVAL;
14198 		}
14199 	}
14200 	return 0;
14201 }
14202 
14203 /* The minimum supported BTF func info size */
14204 #define MIN_BPF_FUNCINFO_SIZE	8
14205 #define MAX_FUNCINFO_REC_SIZE	252
14206 
14207 static int check_btf_func(struct bpf_verifier_env *env,
14208 			  const union bpf_attr *attr,
14209 			  bpfptr_t uattr)
14210 {
14211 	const struct btf_type *type, *func_proto, *ret_type;
14212 	u32 i, nfuncs, urec_size, min_size;
14213 	u32 krec_size = sizeof(struct bpf_func_info);
14214 	struct bpf_func_info *krecord;
14215 	struct bpf_func_info_aux *info_aux = NULL;
14216 	struct bpf_prog *prog;
14217 	const struct btf *btf;
14218 	bpfptr_t urecord;
14219 	u32 prev_offset = 0;
14220 	bool scalar_return;
14221 	int ret = -ENOMEM;
14222 
14223 	nfuncs = attr->func_info_cnt;
14224 	if (!nfuncs) {
14225 		if (check_abnormal_return(env))
14226 			return -EINVAL;
14227 		return 0;
14228 	}
14229 
14230 	if (nfuncs != env->subprog_cnt) {
14231 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
14232 		return -EINVAL;
14233 	}
14234 
14235 	urec_size = attr->func_info_rec_size;
14236 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
14237 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
14238 	    urec_size % sizeof(u32)) {
14239 		verbose(env, "invalid func info rec size %u\n", urec_size);
14240 		return -EINVAL;
14241 	}
14242 
14243 	prog = env->prog;
14244 	btf = prog->aux->btf;
14245 
14246 	urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
14247 	min_size = min_t(u32, krec_size, urec_size);
14248 
14249 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
14250 	if (!krecord)
14251 		return -ENOMEM;
14252 	info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
14253 	if (!info_aux)
14254 		goto err_free;
14255 
14256 	for (i = 0; i < nfuncs; i++) {
14257 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
14258 		if (ret) {
14259 			if (ret == -E2BIG) {
14260 				verbose(env, "nonzero tailing record in func info");
14261 				/* set the size kernel expects so loader can zero
14262 				 * out the rest of the record.
14263 				 */
14264 				if (copy_to_bpfptr_offset(uattr,
14265 							  offsetof(union bpf_attr, func_info_rec_size),
14266 							  &min_size, sizeof(min_size)))
14267 					ret = -EFAULT;
14268 			}
14269 			goto err_free;
14270 		}
14271 
14272 		if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
14273 			ret = -EFAULT;
14274 			goto err_free;
14275 		}
14276 
14277 		/* check insn_off */
14278 		ret = -EINVAL;
14279 		if (i == 0) {
14280 			if (krecord[i].insn_off) {
14281 				verbose(env,
14282 					"nonzero insn_off %u for the first func info record",
14283 					krecord[i].insn_off);
14284 				goto err_free;
14285 			}
14286 		} else if (krecord[i].insn_off <= prev_offset) {
14287 			verbose(env,
14288 				"same or smaller insn offset (%u) than previous func info record (%u)",
14289 				krecord[i].insn_off, prev_offset);
14290 			goto err_free;
14291 		}
14292 
14293 		if (env->subprog_info[i].start != krecord[i].insn_off) {
14294 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
14295 			goto err_free;
14296 		}
14297 
14298 		/* check type_id */
14299 		type = btf_type_by_id(btf, krecord[i].type_id);
14300 		if (!type || !btf_type_is_func(type)) {
14301 			verbose(env, "invalid type id %d in func info",
14302 				krecord[i].type_id);
14303 			goto err_free;
14304 		}
14305 		info_aux[i].linkage = BTF_INFO_VLEN(type->info);
14306 
14307 		func_proto = btf_type_by_id(btf, type->type);
14308 		if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
14309 			/* btf_func_check() already verified it during BTF load */
14310 			goto err_free;
14311 		ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
14312 		scalar_return =
14313 			btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type);
14314 		if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
14315 			verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
14316 			goto err_free;
14317 		}
14318 		if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
14319 			verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
14320 			goto err_free;
14321 		}
14322 
14323 		prev_offset = krecord[i].insn_off;
14324 		bpfptr_add(&urecord, urec_size);
14325 	}
14326 
14327 	prog->aux->func_info = krecord;
14328 	prog->aux->func_info_cnt = nfuncs;
14329 	prog->aux->func_info_aux = info_aux;
14330 	return 0;
14331 
14332 err_free:
14333 	kvfree(krecord);
14334 	kfree(info_aux);
14335 	return ret;
14336 }
14337 
14338 static void adjust_btf_func(struct bpf_verifier_env *env)
14339 {
14340 	struct bpf_prog_aux *aux = env->prog->aux;
14341 	int i;
14342 
14343 	if (!aux->func_info)
14344 		return;
14345 
14346 	for (i = 0; i < env->subprog_cnt; i++)
14347 		aux->func_info[i].insn_off = env->subprog_info[i].start;
14348 }
14349 
14350 #define MIN_BPF_LINEINFO_SIZE	offsetofend(struct bpf_line_info, line_col)
14351 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
14352 
14353 static int check_btf_line(struct bpf_verifier_env *env,
14354 			  const union bpf_attr *attr,
14355 			  bpfptr_t uattr)
14356 {
14357 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
14358 	struct bpf_subprog_info *sub;
14359 	struct bpf_line_info *linfo;
14360 	struct bpf_prog *prog;
14361 	const struct btf *btf;
14362 	bpfptr_t ulinfo;
14363 	int err;
14364 
14365 	nr_linfo = attr->line_info_cnt;
14366 	if (!nr_linfo)
14367 		return 0;
14368 	if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
14369 		return -EINVAL;
14370 
14371 	rec_size = attr->line_info_rec_size;
14372 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
14373 	    rec_size > MAX_LINEINFO_REC_SIZE ||
14374 	    rec_size & (sizeof(u32) - 1))
14375 		return -EINVAL;
14376 
14377 	/* Need to zero it in case the userspace may
14378 	 * pass in a smaller bpf_line_info object.
14379 	 */
14380 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
14381 			 GFP_KERNEL | __GFP_NOWARN);
14382 	if (!linfo)
14383 		return -ENOMEM;
14384 
14385 	prog = env->prog;
14386 	btf = prog->aux->btf;
14387 
14388 	s = 0;
14389 	sub = env->subprog_info;
14390 	ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
14391 	expected_size = sizeof(struct bpf_line_info);
14392 	ncopy = min_t(u32, expected_size, rec_size);
14393 	for (i = 0; i < nr_linfo; i++) {
14394 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
14395 		if (err) {
14396 			if (err == -E2BIG) {
14397 				verbose(env, "nonzero tailing record in line_info");
14398 				if (copy_to_bpfptr_offset(uattr,
14399 							  offsetof(union bpf_attr, line_info_rec_size),
14400 							  &expected_size, sizeof(expected_size)))
14401 					err = -EFAULT;
14402 			}
14403 			goto err_free;
14404 		}
14405 
14406 		if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
14407 			err = -EFAULT;
14408 			goto err_free;
14409 		}
14410 
14411 		/*
14412 		 * Check insn_off to ensure
14413 		 * 1) strictly increasing AND
14414 		 * 2) bounded by prog->len
14415 		 *
14416 		 * The linfo[0].insn_off == 0 check logically falls into
14417 		 * the later "missing bpf_line_info for func..." case
14418 		 * because the first linfo[0].insn_off must be the
14419 		 * first sub also and the first sub must have
14420 		 * subprog_info[0].start == 0.
14421 		 */
14422 		if ((i && linfo[i].insn_off <= prev_offset) ||
14423 		    linfo[i].insn_off >= prog->len) {
14424 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
14425 				i, linfo[i].insn_off, prev_offset,
14426 				prog->len);
14427 			err = -EINVAL;
14428 			goto err_free;
14429 		}
14430 
14431 		if (!prog->insnsi[linfo[i].insn_off].code) {
14432 			verbose(env,
14433 				"Invalid insn code at line_info[%u].insn_off\n",
14434 				i);
14435 			err = -EINVAL;
14436 			goto err_free;
14437 		}
14438 
14439 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
14440 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
14441 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
14442 			err = -EINVAL;
14443 			goto err_free;
14444 		}
14445 
14446 		if (s != env->subprog_cnt) {
14447 			if (linfo[i].insn_off == sub[s].start) {
14448 				sub[s].linfo_idx = i;
14449 				s++;
14450 			} else if (sub[s].start < linfo[i].insn_off) {
14451 				verbose(env, "missing bpf_line_info for func#%u\n", s);
14452 				err = -EINVAL;
14453 				goto err_free;
14454 			}
14455 		}
14456 
14457 		prev_offset = linfo[i].insn_off;
14458 		bpfptr_add(&ulinfo, rec_size);
14459 	}
14460 
14461 	if (s != env->subprog_cnt) {
14462 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
14463 			env->subprog_cnt - s, s);
14464 		err = -EINVAL;
14465 		goto err_free;
14466 	}
14467 
14468 	prog->aux->linfo = linfo;
14469 	prog->aux->nr_linfo = nr_linfo;
14470 
14471 	return 0;
14472 
14473 err_free:
14474 	kvfree(linfo);
14475 	return err;
14476 }
14477 
14478 #define MIN_CORE_RELO_SIZE	sizeof(struct bpf_core_relo)
14479 #define MAX_CORE_RELO_SIZE	MAX_FUNCINFO_REC_SIZE
14480 
14481 static int check_core_relo(struct bpf_verifier_env *env,
14482 			   const union bpf_attr *attr,
14483 			   bpfptr_t uattr)
14484 {
14485 	u32 i, nr_core_relo, ncopy, expected_size, rec_size;
14486 	struct bpf_core_relo core_relo = {};
14487 	struct bpf_prog *prog = env->prog;
14488 	const struct btf *btf = prog->aux->btf;
14489 	struct bpf_core_ctx ctx = {
14490 		.log = &env->log,
14491 		.btf = btf,
14492 	};
14493 	bpfptr_t u_core_relo;
14494 	int err;
14495 
14496 	nr_core_relo = attr->core_relo_cnt;
14497 	if (!nr_core_relo)
14498 		return 0;
14499 	if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo))
14500 		return -EINVAL;
14501 
14502 	rec_size = attr->core_relo_rec_size;
14503 	if (rec_size < MIN_CORE_RELO_SIZE ||
14504 	    rec_size > MAX_CORE_RELO_SIZE ||
14505 	    rec_size % sizeof(u32))
14506 		return -EINVAL;
14507 
14508 	u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel);
14509 	expected_size = sizeof(struct bpf_core_relo);
14510 	ncopy = min_t(u32, expected_size, rec_size);
14511 
14512 	/* Unlike func_info and line_info, copy and apply each CO-RE
14513 	 * relocation record one at a time.
14514 	 */
14515 	for (i = 0; i < nr_core_relo; i++) {
14516 		/* future proofing when sizeof(bpf_core_relo) changes */
14517 		err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size);
14518 		if (err) {
14519 			if (err == -E2BIG) {
14520 				verbose(env, "nonzero tailing record in core_relo");
14521 				if (copy_to_bpfptr_offset(uattr,
14522 							  offsetof(union bpf_attr, core_relo_rec_size),
14523 							  &expected_size, sizeof(expected_size)))
14524 					err = -EFAULT;
14525 			}
14526 			break;
14527 		}
14528 
14529 		if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) {
14530 			err = -EFAULT;
14531 			break;
14532 		}
14533 
14534 		if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) {
14535 			verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n",
14536 				i, core_relo.insn_off, prog->len);
14537 			err = -EINVAL;
14538 			break;
14539 		}
14540 
14541 		err = bpf_core_apply(&ctx, &core_relo, i,
14542 				     &prog->insnsi[core_relo.insn_off / 8]);
14543 		if (err)
14544 			break;
14545 		bpfptr_add(&u_core_relo, rec_size);
14546 	}
14547 	return err;
14548 }
14549 
14550 static int check_btf_info(struct bpf_verifier_env *env,
14551 			  const union bpf_attr *attr,
14552 			  bpfptr_t uattr)
14553 {
14554 	struct btf *btf;
14555 	int err;
14556 
14557 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
14558 		if (check_abnormal_return(env))
14559 			return -EINVAL;
14560 		return 0;
14561 	}
14562 
14563 	btf = btf_get_by_fd(attr->prog_btf_fd);
14564 	if (IS_ERR(btf))
14565 		return PTR_ERR(btf);
14566 	if (btf_is_kernel(btf)) {
14567 		btf_put(btf);
14568 		return -EACCES;
14569 	}
14570 	env->prog->aux->btf = btf;
14571 
14572 	err = check_btf_func(env, attr, uattr);
14573 	if (err)
14574 		return err;
14575 
14576 	err = check_btf_line(env, attr, uattr);
14577 	if (err)
14578 		return err;
14579 
14580 	err = check_core_relo(env, attr, uattr);
14581 	if (err)
14582 		return err;
14583 
14584 	return 0;
14585 }
14586 
14587 /* check %cur's range satisfies %old's */
14588 static bool range_within(struct bpf_reg_state *old,
14589 			 struct bpf_reg_state *cur)
14590 {
14591 	return old->umin_value <= cur->umin_value &&
14592 	       old->umax_value >= cur->umax_value &&
14593 	       old->smin_value <= cur->smin_value &&
14594 	       old->smax_value >= cur->smax_value &&
14595 	       old->u32_min_value <= cur->u32_min_value &&
14596 	       old->u32_max_value >= cur->u32_max_value &&
14597 	       old->s32_min_value <= cur->s32_min_value &&
14598 	       old->s32_max_value >= cur->s32_max_value;
14599 }
14600 
14601 /* If in the old state two registers had the same id, then they need to have
14602  * the same id in the new state as well.  But that id could be different from
14603  * the old state, so we need to track the mapping from old to new ids.
14604  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
14605  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
14606  * regs with a different old id could still have new id 9, we don't care about
14607  * that.
14608  * So we look through our idmap to see if this old id has been seen before.  If
14609  * so, we require the new id to match; otherwise, we add the id pair to the map.
14610  */
14611 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap)
14612 {
14613 	unsigned int i;
14614 
14615 	/* either both IDs should be set or both should be zero */
14616 	if (!!old_id != !!cur_id)
14617 		return false;
14618 
14619 	if (old_id == 0) /* cur_id == 0 as well */
14620 		return true;
14621 
14622 	for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
14623 		if (!idmap[i].old) {
14624 			/* Reached an empty slot; haven't seen this id before */
14625 			idmap[i].old = old_id;
14626 			idmap[i].cur = cur_id;
14627 			return true;
14628 		}
14629 		if (idmap[i].old == old_id)
14630 			return idmap[i].cur == cur_id;
14631 	}
14632 	/* We ran out of idmap slots, which should be impossible */
14633 	WARN_ON_ONCE(1);
14634 	return false;
14635 }
14636 
14637 static void clean_func_state(struct bpf_verifier_env *env,
14638 			     struct bpf_func_state *st)
14639 {
14640 	enum bpf_reg_liveness live;
14641 	int i, j;
14642 
14643 	for (i = 0; i < BPF_REG_FP; i++) {
14644 		live = st->regs[i].live;
14645 		/* liveness must not touch this register anymore */
14646 		st->regs[i].live |= REG_LIVE_DONE;
14647 		if (!(live & REG_LIVE_READ))
14648 			/* since the register is unused, clear its state
14649 			 * to make further comparison simpler
14650 			 */
14651 			__mark_reg_not_init(env, &st->regs[i]);
14652 	}
14653 
14654 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
14655 		live = st->stack[i].spilled_ptr.live;
14656 		/* liveness must not touch this stack slot anymore */
14657 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
14658 		if (!(live & REG_LIVE_READ)) {
14659 			__mark_reg_not_init(env, &st->stack[i].spilled_ptr);
14660 			for (j = 0; j < BPF_REG_SIZE; j++)
14661 				st->stack[i].slot_type[j] = STACK_INVALID;
14662 		}
14663 	}
14664 }
14665 
14666 static void clean_verifier_state(struct bpf_verifier_env *env,
14667 				 struct bpf_verifier_state *st)
14668 {
14669 	int i;
14670 
14671 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
14672 		/* all regs in this state in all frames were already marked */
14673 		return;
14674 
14675 	for (i = 0; i <= st->curframe; i++)
14676 		clean_func_state(env, st->frame[i]);
14677 }
14678 
14679 /* the parentage chains form a tree.
14680  * the verifier states are added to state lists at given insn and
14681  * pushed into state stack for future exploration.
14682  * when the verifier reaches bpf_exit insn some of the verifer states
14683  * stored in the state lists have their final liveness state already,
14684  * but a lot of states will get revised from liveness point of view when
14685  * the verifier explores other branches.
14686  * Example:
14687  * 1: r0 = 1
14688  * 2: if r1 == 100 goto pc+1
14689  * 3: r0 = 2
14690  * 4: exit
14691  * when the verifier reaches exit insn the register r0 in the state list of
14692  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
14693  * of insn 2 and goes exploring further. At the insn 4 it will walk the
14694  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
14695  *
14696  * Since the verifier pushes the branch states as it sees them while exploring
14697  * the program the condition of walking the branch instruction for the second
14698  * time means that all states below this branch were already explored and
14699  * their final liveness marks are already propagated.
14700  * Hence when the verifier completes the search of state list in is_state_visited()
14701  * we can call this clean_live_states() function to mark all liveness states
14702  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
14703  * will not be used.
14704  * This function also clears the registers and stack for states that !READ
14705  * to simplify state merging.
14706  *
14707  * Important note here that walking the same branch instruction in the callee
14708  * doesn't meant that the states are DONE. The verifier has to compare
14709  * the callsites
14710  */
14711 static void clean_live_states(struct bpf_verifier_env *env, int insn,
14712 			      struct bpf_verifier_state *cur)
14713 {
14714 	struct bpf_verifier_state_list *sl;
14715 	int i;
14716 
14717 	sl = *explored_state(env, insn);
14718 	while (sl) {
14719 		if (sl->state.branches)
14720 			goto next;
14721 		if (sl->state.insn_idx != insn ||
14722 		    sl->state.curframe != cur->curframe)
14723 			goto next;
14724 		for (i = 0; i <= cur->curframe; i++)
14725 			if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
14726 				goto next;
14727 		clean_verifier_state(env, &sl->state);
14728 next:
14729 		sl = sl->next;
14730 	}
14731 }
14732 
14733 static bool regs_exact(const struct bpf_reg_state *rold,
14734 		       const struct bpf_reg_state *rcur,
14735 		       struct bpf_id_pair *idmap)
14736 {
14737 	return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
14738 	       check_ids(rold->id, rcur->id, idmap) &&
14739 	       check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
14740 }
14741 
14742 /* Returns true if (rold safe implies rcur safe) */
14743 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
14744 		    struct bpf_reg_state *rcur, struct bpf_id_pair *idmap)
14745 {
14746 	if (!(rold->live & REG_LIVE_READ))
14747 		/* explored state didn't use this */
14748 		return true;
14749 	if (rold->type == NOT_INIT)
14750 		/* explored state can't have used this */
14751 		return true;
14752 	if (rcur->type == NOT_INIT)
14753 		return false;
14754 
14755 	/* Enforce that register types have to match exactly, including their
14756 	 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general
14757 	 * rule.
14758 	 *
14759 	 * One can make a point that using a pointer register as unbounded
14760 	 * SCALAR would be technically acceptable, but this could lead to
14761 	 * pointer leaks because scalars are allowed to leak while pointers
14762 	 * are not. We could make this safe in special cases if root is
14763 	 * calling us, but it's probably not worth the hassle.
14764 	 *
14765 	 * Also, register types that are *not* MAYBE_NULL could technically be
14766 	 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE
14767 	 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point
14768 	 * to the same map).
14769 	 * However, if the old MAYBE_NULL register then got NULL checked,
14770 	 * doing so could have affected others with the same id, and we can't
14771 	 * check for that because we lost the id when we converted to
14772 	 * a non-MAYBE_NULL variant.
14773 	 * So, as a general rule we don't allow mixing MAYBE_NULL and
14774 	 * non-MAYBE_NULL registers as well.
14775 	 */
14776 	if (rold->type != rcur->type)
14777 		return false;
14778 
14779 	switch (base_type(rold->type)) {
14780 	case SCALAR_VALUE:
14781 		if (regs_exact(rold, rcur, idmap))
14782 			return true;
14783 		if (env->explore_alu_limits)
14784 			return false;
14785 		if (!rold->precise)
14786 			return true;
14787 		/* new val must satisfy old val knowledge */
14788 		return range_within(rold, rcur) &&
14789 		       tnum_in(rold->var_off, rcur->var_off);
14790 	case PTR_TO_MAP_KEY:
14791 	case PTR_TO_MAP_VALUE:
14792 	case PTR_TO_MEM:
14793 	case PTR_TO_BUF:
14794 	case PTR_TO_TP_BUFFER:
14795 		/* If the new min/max/var_off satisfy the old ones and
14796 		 * everything else matches, we are OK.
14797 		 */
14798 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 &&
14799 		       range_within(rold, rcur) &&
14800 		       tnum_in(rold->var_off, rcur->var_off) &&
14801 		       check_ids(rold->id, rcur->id, idmap) &&
14802 		       check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
14803 	case PTR_TO_PACKET_META:
14804 	case PTR_TO_PACKET:
14805 		/* We must have at least as much range as the old ptr
14806 		 * did, so that any accesses which were safe before are
14807 		 * still safe.  This is true even if old range < old off,
14808 		 * since someone could have accessed through (ptr - k), or
14809 		 * even done ptr -= k in a register, to get a safe access.
14810 		 */
14811 		if (rold->range > rcur->range)
14812 			return false;
14813 		/* If the offsets don't match, we can't trust our alignment;
14814 		 * nor can we be sure that we won't fall out of range.
14815 		 */
14816 		if (rold->off != rcur->off)
14817 			return false;
14818 		/* id relations must be preserved */
14819 		if (!check_ids(rold->id, rcur->id, idmap))
14820 			return false;
14821 		/* new val must satisfy old val knowledge */
14822 		return range_within(rold, rcur) &&
14823 		       tnum_in(rold->var_off, rcur->var_off);
14824 	case PTR_TO_STACK:
14825 		/* two stack pointers are equal only if they're pointing to
14826 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
14827 		 */
14828 		return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno;
14829 	default:
14830 		return regs_exact(rold, rcur, idmap);
14831 	}
14832 }
14833 
14834 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
14835 		      struct bpf_func_state *cur, struct bpf_id_pair *idmap)
14836 {
14837 	int i, spi;
14838 
14839 	/* walk slots of the explored stack and ignore any additional
14840 	 * slots in the current stack, since explored(safe) state
14841 	 * didn't use them
14842 	 */
14843 	for (i = 0; i < old->allocated_stack; i++) {
14844 		struct bpf_reg_state *old_reg, *cur_reg;
14845 
14846 		spi = i / BPF_REG_SIZE;
14847 
14848 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
14849 			i += BPF_REG_SIZE - 1;
14850 			/* explored state didn't use this */
14851 			continue;
14852 		}
14853 
14854 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
14855 			continue;
14856 
14857 		if (env->allow_uninit_stack &&
14858 		    old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC)
14859 			continue;
14860 
14861 		/* explored stack has more populated slots than current stack
14862 		 * and these slots were used
14863 		 */
14864 		if (i >= cur->allocated_stack)
14865 			return false;
14866 
14867 		/* if old state was safe with misc data in the stack
14868 		 * it will be safe with zero-initialized stack.
14869 		 * The opposite is not true
14870 		 */
14871 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
14872 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
14873 			continue;
14874 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
14875 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
14876 			/* Ex: old explored (safe) state has STACK_SPILL in
14877 			 * this stack slot, but current has STACK_MISC ->
14878 			 * this verifier states are not equivalent,
14879 			 * return false to continue verification of this path
14880 			 */
14881 			return false;
14882 		if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1)
14883 			continue;
14884 		/* Both old and cur are having same slot_type */
14885 		switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) {
14886 		case STACK_SPILL:
14887 			/* when explored and current stack slot are both storing
14888 			 * spilled registers, check that stored pointers types
14889 			 * are the same as well.
14890 			 * Ex: explored safe path could have stored
14891 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
14892 			 * but current path has stored:
14893 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
14894 			 * such verifier states are not equivalent.
14895 			 * return false to continue verification of this path
14896 			 */
14897 			if (!regsafe(env, &old->stack[spi].spilled_ptr,
14898 				     &cur->stack[spi].spilled_ptr, idmap))
14899 				return false;
14900 			break;
14901 		case STACK_DYNPTR:
14902 			old_reg = &old->stack[spi].spilled_ptr;
14903 			cur_reg = &cur->stack[spi].spilled_ptr;
14904 			if (old_reg->dynptr.type != cur_reg->dynptr.type ||
14905 			    old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot ||
14906 			    !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
14907 				return false;
14908 			break;
14909 		case STACK_ITER:
14910 			old_reg = &old->stack[spi].spilled_ptr;
14911 			cur_reg = &cur->stack[spi].spilled_ptr;
14912 			/* iter.depth is not compared between states as it
14913 			 * doesn't matter for correctness and would otherwise
14914 			 * prevent convergence; we maintain it only to prevent
14915 			 * infinite loop check triggering, see
14916 			 * iter_active_depths_differ()
14917 			 */
14918 			if (old_reg->iter.btf != cur_reg->iter.btf ||
14919 			    old_reg->iter.btf_id != cur_reg->iter.btf_id ||
14920 			    old_reg->iter.state != cur_reg->iter.state ||
14921 			    /* ignore {old_reg,cur_reg}->iter.depth, see above */
14922 			    !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
14923 				return false;
14924 			break;
14925 		case STACK_MISC:
14926 		case STACK_ZERO:
14927 		case STACK_INVALID:
14928 			continue;
14929 		/* Ensure that new unhandled slot types return false by default */
14930 		default:
14931 			return false;
14932 		}
14933 	}
14934 	return true;
14935 }
14936 
14937 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur,
14938 		    struct bpf_id_pair *idmap)
14939 {
14940 	int i;
14941 
14942 	if (old->acquired_refs != cur->acquired_refs)
14943 		return false;
14944 
14945 	for (i = 0; i < old->acquired_refs; i++) {
14946 		if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap))
14947 			return false;
14948 	}
14949 
14950 	return true;
14951 }
14952 
14953 /* compare two verifier states
14954  *
14955  * all states stored in state_list are known to be valid, since
14956  * verifier reached 'bpf_exit' instruction through them
14957  *
14958  * this function is called when verifier exploring different branches of
14959  * execution popped from the state stack. If it sees an old state that has
14960  * more strict register state and more strict stack state then this execution
14961  * branch doesn't need to be explored further, since verifier already
14962  * concluded that more strict state leads to valid finish.
14963  *
14964  * Therefore two states are equivalent if register state is more conservative
14965  * and explored stack state is more conservative than the current one.
14966  * Example:
14967  *       explored                   current
14968  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
14969  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
14970  *
14971  * In other words if current stack state (one being explored) has more
14972  * valid slots than old one that already passed validation, it means
14973  * the verifier can stop exploring and conclude that current state is valid too
14974  *
14975  * Similarly with registers. If explored state has register type as invalid
14976  * whereas register type in current state is meaningful, it means that
14977  * the current state will reach 'bpf_exit' instruction safely
14978  */
14979 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
14980 			      struct bpf_func_state *cur)
14981 {
14982 	int i;
14983 
14984 	for (i = 0; i < MAX_BPF_REG; i++)
14985 		if (!regsafe(env, &old->regs[i], &cur->regs[i],
14986 			     env->idmap_scratch))
14987 			return false;
14988 
14989 	if (!stacksafe(env, old, cur, env->idmap_scratch))
14990 		return false;
14991 
14992 	if (!refsafe(old, cur, env->idmap_scratch))
14993 		return false;
14994 
14995 	return true;
14996 }
14997 
14998 static bool states_equal(struct bpf_verifier_env *env,
14999 			 struct bpf_verifier_state *old,
15000 			 struct bpf_verifier_state *cur)
15001 {
15002 	int i;
15003 
15004 	if (old->curframe != cur->curframe)
15005 		return false;
15006 
15007 	memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch));
15008 
15009 	/* Verification state from speculative execution simulation
15010 	 * must never prune a non-speculative execution one.
15011 	 */
15012 	if (old->speculative && !cur->speculative)
15013 		return false;
15014 
15015 	if (old->active_lock.ptr != cur->active_lock.ptr)
15016 		return false;
15017 
15018 	/* Old and cur active_lock's have to be either both present
15019 	 * or both absent.
15020 	 */
15021 	if (!!old->active_lock.id != !!cur->active_lock.id)
15022 		return false;
15023 
15024 	if (old->active_lock.id &&
15025 	    !check_ids(old->active_lock.id, cur->active_lock.id, env->idmap_scratch))
15026 		return false;
15027 
15028 	if (old->active_rcu_lock != cur->active_rcu_lock)
15029 		return false;
15030 
15031 	/* for states to be equal callsites have to be the same
15032 	 * and all frame states need to be equivalent
15033 	 */
15034 	for (i = 0; i <= old->curframe; i++) {
15035 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
15036 			return false;
15037 		if (!func_states_equal(env, old->frame[i], cur->frame[i]))
15038 			return false;
15039 	}
15040 	return true;
15041 }
15042 
15043 /* Return 0 if no propagation happened. Return negative error code if error
15044  * happened. Otherwise, return the propagated bit.
15045  */
15046 static int propagate_liveness_reg(struct bpf_verifier_env *env,
15047 				  struct bpf_reg_state *reg,
15048 				  struct bpf_reg_state *parent_reg)
15049 {
15050 	u8 parent_flag = parent_reg->live & REG_LIVE_READ;
15051 	u8 flag = reg->live & REG_LIVE_READ;
15052 	int err;
15053 
15054 	/* When comes here, read flags of PARENT_REG or REG could be any of
15055 	 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
15056 	 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
15057 	 */
15058 	if (parent_flag == REG_LIVE_READ64 ||
15059 	    /* Or if there is no read flag from REG. */
15060 	    !flag ||
15061 	    /* Or if the read flag from REG is the same as PARENT_REG. */
15062 	    parent_flag == flag)
15063 		return 0;
15064 
15065 	err = mark_reg_read(env, reg, parent_reg, flag);
15066 	if (err)
15067 		return err;
15068 
15069 	return flag;
15070 }
15071 
15072 /* A write screens off any subsequent reads; but write marks come from the
15073  * straight-line code between a state and its parent.  When we arrive at an
15074  * equivalent state (jump target or such) we didn't arrive by the straight-line
15075  * code, so read marks in the state must propagate to the parent regardless
15076  * of the state's write marks. That's what 'parent == state->parent' comparison
15077  * in mark_reg_read() is for.
15078  */
15079 static int propagate_liveness(struct bpf_verifier_env *env,
15080 			      const struct bpf_verifier_state *vstate,
15081 			      struct bpf_verifier_state *vparent)
15082 {
15083 	struct bpf_reg_state *state_reg, *parent_reg;
15084 	struct bpf_func_state *state, *parent;
15085 	int i, frame, err = 0;
15086 
15087 	if (vparent->curframe != vstate->curframe) {
15088 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
15089 		     vparent->curframe, vstate->curframe);
15090 		return -EFAULT;
15091 	}
15092 	/* Propagate read liveness of registers... */
15093 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
15094 	for (frame = 0; frame <= vstate->curframe; frame++) {
15095 		parent = vparent->frame[frame];
15096 		state = vstate->frame[frame];
15097 		parent_reg = parent->regs;
15098 		state_reg = state->regs;
15099 		/* We don't need to worry about FP liveness, it's read-only */
15100 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
15101 			err = propagate_liveness_reg(env, &state_reg[i],
15102 						     &parent_reg[i]);
15103 			if (err < 0)
15104 				return err;
15105 			if (err == REG_LIVE_READ64)
15106 				mark_insn_zext(env, &parent_reg[i]);
15107 		}
15108 
15109 		/* Propagate stack slots. */
15110 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
15111 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
15112 			parent_reg = &parent->stack[i].spilled_ptr;
15113 			state_reg = &state->stack[i].spilled_ptr;
15114 			err = propagate_liveness_reg(env, state_reg,
15115 						     parent_reg);
15116 			if (err < 0)
15117 				return err;
15118 		}
15119 	}
15120 	return 0;
15121 }
15122 
15123 /* find precise scalars in the previous equivalent state and
15124  * propagate them into the current state
15125  */
15126 static int propagate_precision(struct bpf_verifier_env *env,
15127 			       const struct bpf_verifier_state *old)
15128 {
15129 	struct bpf_reg_state *state_reg;
15130 	struct bpf_func_state *state;
15131 	int i, err = 0, fr;
15132 
15133 	for (fr = old->curframe; fr >= 0; fr--) {
15134 		state = old->frame[fr];
15135 		state_reg = state->regs;
15136 		for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
15137 			if (state_reg->type != SCALAR_VALUE ||
15138 			    !state_reg->precise ||
15139 			    !(state_reg->live & REG_LIVE_READ))
15140 				continue;
15141 			if (env->log.level & BPF_LOG_LEVEL2)
15142 				verbose(env, "frame %d: propagating r%d\n", fr, i);
15143 			err = mark_chain_precision_frame(env, fr, i);
15144 			if (err < 0)
15145 				return err;
15146 		}
15147 
15148 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
15149 			if (!is_spilled_reg(&state->stack[i]))
15150 				continue;
15151 			state_reg = &state->stack[i].spilled_ptr;
15152 			if (state_reg->type != SCALAR_VALUE ||
15153 			    !state_reg->precise ||
15154 			    !(state_reg->live & REG_LIVE_READ))
15155 				continue;
15156 			if (env->log.level & BPF_LOG_LEVEL2)
15157 				verbose(env, "frame %d: propagating fp%d\n",
15158 					fr, (-i - 1) * BPF_REG_SIZE);
15159 			err = mark_chain_precision_stack_frame(env, fr, i);
15160 			if (err < 0)
15161 				return err;
15162 		}
15163 	}
15164 	return 0;
15165 }
15166 
15167 static bool states_maybe_looping(struct bpf_verifier_state *old,
15168 				 struct bpf_verifier_state *cur)
15169 {
15170 	struct bpf_func_state *fold, *fcur;
15171 	int i, fr = cur->curframe;
15172 
15173 	if (old->curframe != fr)
15174 		return false;
15175 
15176 	fold = old->frame[fr];
15177 	fcur = cur->frame[fr];
15178 	for (i = 0; i < MAX_BPF_REG; i++)
15179 		if (memcmp(&fold->regs[i], &fcur->regs[i],
15180 			   offsetof(struct bpf_reg_state, parent)))
15181 			return false;
15182 	return true;
15183 }
15184 
15185 static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx)
15186 {
15187 	return env->insn_aux_data[insn_idx].is_iter_next;
15188 }
15189 
15190 /* is_state_visited() handles iter_next() (see process_iter_next_call() for
15191  * terminology) calls specially: as opposed to bounded BPF loops, it *expects*
15192  * states to match, which otherwise would look like an infinite loop. So while
15193  * iter_next() calls are taken care of, we still need to be careful and
15194  * prevent erroneous and too eager declaration of "ininite loop", when
15195  * iterators are involved.
15196  *
15197  * Here's a situation in pseudo-BPF assembly form:
15198  *
15199  *   0: again:                          ; set up iter_next() call args
15200  *   1:   r1 = &it                      ; <CHECKPOINT HERE>
15201  *   2:   call bpf_iter_num_next        ; this is iter_next() call
15202  *   3:   if r0 == 0 goto done
15203  *   4:   ... something useful here ...
15204  *   5:   goto again                    ; another iteration
15205  *   6: done:
15206  *   7:   r1 = &it
15207  *   8:   call bpf_iter_num_destroy     ; clean up iter state
15208  *   9:   exit
15209  *
15210  * This is a typical loop. Let's assume that we have a prune point at 1:,
15211  * before we get to `call bpf_iter_num_next` (e.g., because of that `goto
15212  * again`, assuming other heuristics don't get in a way).
15213  *
15214  * When we first time come to 1:, let's say we have some state X. We proceed
15215  * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit.
15216  * Now we come back to validate that forked ACTIVE state. We proceed through
15217  * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we
15218  * are converging. But the problem is that we don't know that yet, as this
15219  * convergence has to happen at iter_next() call site only. So if nothing is
15220  * done, at 1: verifier will use bounded loop logic and declare infinite
15221  * looping (and would be *technically* correct, if not for iterator's
15222  * "eventual sticky NULL" contract, see process_iter_next_call()). But we
15223  * don't want that. So what we do in process_iter_next_call() when we go on
15224  * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's
15225  * a different iteration. So when we suspect an infinite loop, we additionally
15226  * check if any of the *ACTIVE* iterator states depths differ. If yes, we
15227  * pretend we are not looping and wait for next iter_next() call.
15228  *
15229  * This only applies to ACTIVE state. In DRAINED state we don't expect to
15230  * loop, because that would actually mean infinite loop, as DRAINED state is
15231  * "sticky", and so we'll keep returning into the same instruction with the
15232  * same state (at least in one of possible code paths).
15233  *
15234  * This approach allows to keep infinite loop heuristic even in the face of
15235  * active iterator. E.g., C snippet below is and will be detected as
15236  * inifintely looping:
15237  *
15238  *   struct bpf_iter_num it;
15239  *   int *p, x;
15240  *
15241  *   bpf_iter_num_new(&it, 0, 10);
15242  *   while ((p = bpf_iter_num_next(&t))) {
15243  *       x = p;
15244  *       while (x--) {} // <<-- infinite loop here
15245  *   }
15246  *
15247  */
15248 static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur)
15249 {
15250 	struct bpf_reg_state *slot, *cur_slot;
15251 	struct bpf_func_state *state;
15252 	int i, fr;
15253 
15254 	for (fr = old->curframe; fr >= 0; fr--) {
15255 		state = old->frame[fr];
15256 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
15257 			if (state->stack[i].slot_type[0] != STACK_ITER)
15258 				continue;
15259 
15260 			slot = &state->stack[i].spilled_ptr;
15261 			if (slot->iter.state != BPF_ITER_STATE_ACTIVE)
15262 				continue;
15263 
15264 			cur_slot = &cur->frame[fr]->stack[i].spilled_ptr;
15265 			if (cur_slot->iter.depth != slot->iter.depth)
15266 				return true;
15267 		}
15268 	}
15269 	return false;
15270 }
15271 
15272 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
15273 {
15274 	struct bpf_verifier_state_list *new_sl;
15275 	struct bpf_verifier_state_list *sl, **pprev;
15276 	struct bpf_verifier_state *cur = env->cur_state, *new;
15277 	int i, j, err, states_cnt = 0;
15278 	bool force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx);
15279 	bool add_new_state = force_new_state;
15280 
15281 	/* bpf progs typically have pruning point every 4 instructions
15282 	 * http://vger.kernel.org/bpfconf2019.html#session-1
15283 	 * Do not add new state for future pruning if the verifier hasn't seen
15284 	 * at least 2 jumps and at least 8 instructions.
15285 	 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
15286 	 * In tests that amounts to up to 50% reduction into total verifier
15287 	 * memory consumption and 20% verifier time speedup.
15288 	 */
15289 	if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
15290 	    env->insn_processed - env->prev_insn_processed >= 8)
15291 		add_new_state = true;
15292 
15293 	pprev = explored_state(env, insn_idx);
15294 	sl = *pprev;
15295 
15296 	clean_live_states(env, insn_idx, cur);
15297 
15298 	while (sl) {
15299 		states_cnt++;
15300 		if (sl->state.insn_idx != insn_idx)
15301 			goto next;
15302 
15303 		if (sl->state.branches) {
15304 			struct bpf_func_state *frame = sl->state.frame[sl->state.curframe];
15305 
15306 			if (frame->in_async_callback_fn &&
15307 			    frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) {
15308 				/* Different async_entry_cnt means that the verifier is
15309 				 * processing another entry into async callback.
15310 				 * Seeing the same state is not an indication of infinite
15311 				 * loop or infinite recursion.
15312 				 * But finding the same state doesn't mean that it's safe
15313 				 * to stop processing the current state. The previous state
15314 				 * hasn't yet reached bpf_exit, since state.branches > 0.
15315 				 * Checking in_async_callback_fn alone is not enough either.
15316 				 * Since the verifier still needs to catch infinite loops
15317 				 * inside async callbacks.
15318 				 */
15319 				goto skip_inf_loop_check;
15320 			}
15321 			/* BPF open-coded iterators loop detection is special.
15322 			 * states_maybe_looping() logic is too simplistic in detecting
15323 			 * states that *might* be equivalent, because it doesn't know
15324 			 * about ID remapping, so don't even perform it.
15325 			 * See process_iter_next_call() and iter_active_depths_differ()
15326 			 * for overview of the logic. When current and one of parent
15327 			 * states are detected as equivalent, it's a good thing: we prove
15328 			 * convergence and can stop simulating further iterations.
15329 			 * It's safe to assume that iterator loop will finish, taking into
15330 			 * account iter_next() contract of eventually returning
15331 			 * sticky NULL result.
15332 			 */
15333 			if (is_iter_next_insn(env, insn_idx)) {
15334 				if (states_equal(env, &sl->state, cur)) {
15335 					struct bpf_func_state *cur_frame;
15336 					struct bpf_reg_state *iter_state, *iter_reg;
15337 					int spi;
15338 
15339 					cur_frame = cur->frame[cur->curframe];
15340 					/* btf_check_iter_kfuncs() enforces that
15341 					 * iter state pointer is always the first arg
15342 					 */
15343 					iter_reg = &cur_frame->regs[BPF_REG_1];
15344 					/* current state is valid due to states_equal(),
15345 					 * so we can assume valid iter and reg state,
15346 					 * no need for extra (re-)validations
15347 					 */
15348 					spi = __get_spi(iter_reg->off + iter_reg->var_off.value);
15349 					iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr;
15350 					if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE)
15351 						goto hit;
15352 				}
15353 				goto skip_inf_loop_check;
15354 			}
15355 			/* attempt to detect infinite loop to avoid unnecessary doomed work */
15356 			if (states_maybe_looping(&sl->state, cur) &&
15357 			    states_equal(env, &sl->state, cur) &&
15358 			    !iter_active_depths_differ(&sl->state, cur)) {
15359 				verbose_linfo(env, insn_idx, "; ");
15360 				verbose(env, "infinite loop detected at insn %d\n", insn_idx);
15361 				return -EINVAL;
15362 			}
15363 			/* if the verifier is processing a loop, avoid adding new state
15364 			 * too often, since different loop iterations have distinct
15365 			 * states and may not help future pruning.
15366 			 * This threshold shouldn't be too low to make sure that
15367 			 * a loop with large bound will be rejected quickly.
15368 			 * The most abusive loop will be:
15369 			 * r1 += 1
15370 			 * if r1 < 1000000 goto pc-2
15371 			 * 1M insn_procssed limit / 100 == 10k peak states.
15372 			 * This threshold shouldn't be too high either, since states
15373 			 * at the end of the loop are likely to be useful in pruning.
15374 			 */
15375 skip_inf_loop_check:
15376 			if (!force_new_state &&
15377 			    env->jmps_processed - env->prev_jmps_processed < 20 &&
15378 			    env->insn_processed - env->prev_insn_processed < 100)
15379 				add_new_state = false;
15380 			goto miss;
15381 		}
15382 		if (states_equal(env, &sl->state, cur)) {
15383 hit:
15384 			sl->hit_cnt++;
15385 			/* reached equivalent register/stack state,
15386 			 * prune the search.
15387 			 * Registers read by the continuation are read by us.
15388 			 * If we have any write marks in env->cur_state, they
15389 			 * will prevent corresponding reads in the continuation
15390 			 * from reaching our parent (an explored_state).  Our
15391 			 * own state will get the read marks recorded, but
15392 			 * they'll be immediately forgotten as we're pruning
15393 			 * this state and will pop a new one.
15394 			 */
15395 			err = propagate_liveness(env, &sl->state, cur);
15396 
15397 			/* if previous state reached the exit with precision and
15398 			 * current state is equivalent to it (except precsion marks)
15399 			 * the precision needs to be propagated back in
15400 			 * the current state.
15401 			 */
15402 			err = err ? : push_jmp_history(env, cur);
15403 			err = err ? : propagate_precision(env, &sl->state);
15404 			if (err)
15405 				return err;
15406 			return 1;
15407 		}
15408 miss:
15409 		/* when new state is not going to be added do not increase miss count.
15410 		 * Otherwise several loop iterations will remove the state
15411 		 * recorded earlier. The goal of these heuristics is to have
15412 		 * states from some iterations of the loop (some in the beginning
15413 		 * and some at the end) to help pruning.
15414 		 */
15415 		if (add_new_state)
15416 			sl->miss_cnt++;
15417 		/* heuristic to determine whether this state is beneficial
15418 		 * to keep checking from state equivalence point of view.
15419 		 * Higher numbers increase max_states_per_insn and verification time,
15420 		 * but do not meaningfully decrease insn_processed.
15421 		 */
15422 		if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
15423 			/* the state is unlikely to be useful. Remove it to
15424 			 * speed up verification
15425 			 */
15426 			*pprev = sl->next;
15427 			if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
15428 				u32 br = sl->state.branches;
15429 
15430 				WARN_ONCE(br,
15431 					  "BUG live_done but branches_to_explore %d\n",
15432 					  br);
15433 				free_verifier_state(&sl->state, false);
15434 				kfree(sl);
15435 				env->peak_states--;
15436 			} else {
15437 				/* cannot free this state, since parentage chain may
15438 				 * walk it later. Add it for free_list instead to
15439 				 * be freed at the end of verification
15440 				 */
15441 				sl->next = env->free_list;
15442 				env->free_list = sl;
15443 			}
15444 			sl = *pprev;
15445 			continue;
15446 		}
15447 next:
15448 		pprev = &sl->next;
15449 		sl = *pprev;
15450 	}
15451 
15452 	if (env->max_states_per_insn < states_cnt)
15453 		env->max_states_per_insn = states_cnt;
15454 
15455 	if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
15456 		return 0;
15457 
15458 	if (!add_new_state)
15459 		return 0;
15460 
15461 	/* There were no equivalent states, remember the current one.
15462 	 * Technically the current state is not proven to be safe yet,
15463 	 * but it will either reach outer most bpf_exit (which means it's safe)
15464 	 * or it will be rejected. When there are no loops the verifier won't be
15465 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
15466 	 * again on the way to bpf_exit.
15467 	 * When looping the sl->state.branches will be > 0 and this state
15468 	 * will not be considered for equivalence until branches == 0.
15469 	 */
15470 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
15471 	if (!new_sl)
15472 		return -ENOMEM;
15473 	env->total_states++;
15474 	env->peak_states++;
15475 	env->prev_jmps_processed = env->jmps_processed;
15476 	env->prev_insn_processed = env->insn_processed;
15477 
15478 	/* forget precise markings we inherited, see __mark_chain_precision */
15479 	if (env->bpf_capable)
15480 		mark_all_scalars_imprecise(env, cur);
15481 
15482 	/* add new state to the head of linked list */
15483 	new = &new_sl->state;
15484 	err = copy_verifier_state(new, cur);
15485 	if (err) {
15486 		free_verifier_state(new, false);
15487 		kfree(new_sl);
15488 		return err;
15489 	}
15490 	new->insn_idx = insn_idx;
15491 	WARN_ONCE(new->branches != 1,
15492 		  "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
15493 
15494 	cur->parent = new;
15495 	cur->first_insn_idx = insn_idx;
15496 	clear_jmp_history(cur);
15497 	new_sl->next = *explored_state(env, insn_idx);
15498 	*explored_state(env, insn_idx) = new_sl;
15499 	/* connect new state to parentage chain. Current frame needs all
15500 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
15501 	 * to the stack implicitly by JITs) so in callers' frames connect just
15502 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
15503 	 * the state of the call instruction (with WRITTEN set), and r0 comes
15504 	 * from callee with its full parentage chain, anyway.
15505 	 */
15506 	/* clear write marks in current state: the writes we did are not writes
15507 	 * our child did, so they don't screen off its reads from us.
15508 	 * (There are no read marks in current state, because reads always mark
15509 	 * their parent and current state never has children yet.  Only
15510 	 * explored_states can get read marks.)
15511 	 */
15512 	for (j = 0; j <= cur->curframe; j++) {
15513 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
15514 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
15515 		for (i = 0; i < BPF_REG_FP; i++)
15516 			cur->frame[j]->regs[i].live = REG_LIVE_NONE;
15517 	}
15518 
15519 	/* all stack frames are accessible from callee, clear them all */
15520 	for (j = 0; j <= cur->curframe; j++) {
15521 		struct bpf_func_state *frame = cur->frame[j];
15522 		struct bpf_func_state *newframe = new->frame[j];
15523 
15524 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
15525 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
15526 			frame->stack[i].spilled_ptr.parent =
15527 						&newframe->stack[i].spilled_ptr;
15528 		}
15529 	}
15530 	return 0;
15531 }
15532 
15533 /* Return true if it's OK to have the same insn return a different type. */
15534 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
15535 {
15536 	switch (base_type(type)) {
15537 	case PTR_TO_CTX:
15538 	case PTR_TO_SOCKET:
15539 	case PTR_TO_SOCK_COMMON:
15540 	case PTR_TO_TCP_SOCK:
15541 	case PTR_TO_XDP_SOCK:
15542 	case PTR_TO_BTF_ID:
15543 		return false;
15544 	default:
15545 		return true;
15546 	}
15547 }
15548 
15549 /* If an instruction was previously used with particular pointer types, then we
15550  * need to be careful to avoid cases such as the below, where it may be ok
15551  * for one branch accessing the pointer, but not ok for the other branch:
15552  *
15553  * R1 = sock_ptr
15554  * goto X;
15555  * ...
15556  * R1 = some_other_valid_ptr;
15557  * goto X;
15558  * ...
15559  * R2 = *(u32 *)(R1 + 0);
15560  */
15561 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
15562 {
15563 	return src != prev && (!reg_type_mismatch_ok(src) ||
15564 			       !reg_type_mismatch_ok(prev));
15565 }
15566 
15567 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type,
15568 			     bool allow_trust_missmatch)
15569 {
15570 	enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type;
15571 
15572 	if (*prev_type == NOT_INIT) {
15573 		/* Saw a valid insn
15574 		 * dst_reg = *(u32 *)(src_reg + off)
15575 		 * save type to validate intersecting paths
15576 		 */
15577 		*prev_type = type;
15578 	} else if (reg_type_mismatch(type, *prev_type)) {
15579 		/* Abuser program is trying to use the same insn
15580 		 * dst_reg = *(u32*) (src_reg + off)
15581 		 * with different pointer types:
15582 		 * src_reg == ctx in one branch and
15583 		 * src_reg == stack|map in some other branch.
15584 		 * Reject it.
15585 		 */
15586 		if (allow_trust_missmatch &&
15587 		    base_type(type) == PTR_TO_BTF_ID &&
15588 		    base_type(*prev_type) == PTR_TO_BTF_ID) {
15589 			/*
15590 			 * Have to support a use case when one path through
15591 			 * the program yields TRUSTED pointer while another
15592 			 * is UNTRUSTED. Fallback to UNTRUSTED to generate
15593 			 * BPF_PROBE_MEM.
15594 			 */
15595 			*prev_type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
15596 		} else {
15597 			verbose(env, "same insn cannot be used with different pointers\n");
15598 			return -EINVAL;
15599 		}
15600 	}
15601 
15602 	return 0;
15603 }
15604 
15605 static int do_check(struct bpf_verifier_env *env)
15606 {
15607 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
15608 	struct bpf_verifier_state *state = env->cur_state;
15609 	struct bpf_insn *insns = env->prog->insnsi;
15610 	struct bpf_reg_state *regs;
15611 	int insn_cnt = env->prog->len;
15612 	bool do_print_state = false;
15613 	int prev_insn_idx = -1;
15614 
15615 	for (;;) {
15616 		struct bpf_insn *insn;
15617 		u8 class;
15618 		int err;
15619 
15620 		env->prev_insn_idx = prev_insn_idx;
15621 		if (env->insn_idx >= insn_cnt) {
15622 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
15623 				env->insn_idx, insn_cnt);
15624 			return -EFAULT;
15625 		}
15626 
15627 		insn = &insns[env->insn_idx];
15628 		class = BPF_CLASS(insn->code);
15629 
15630 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
15631 			verbose(env,
15632 				"BPF program is too large. Processed %d insn\n",
15633 				env->insn_processed);
15634 			return -E2BIG;
15635 		}
15636 
15637 		state->last_insn_idx = env->prev_insn_idx;
15638 
15639 		if (is_prune_point(env, env->insn_idx)) {
15640 			err = is_state_visited(env, env->insn_idx);
15641 			if (err < 0)
15642 				return err;
15643 			if (err == 1) {
15644 				/* found equivalent state, can prune the search */
15645 				if (env->log.level & BPF_LOG_LEVEL) {
15646 					if (do_print_state)
15647 						verbose(env, "\nfrom %d to %d%s: safe\n",
15648 							env->prev_insn_idx, env->insn_idx,
15649 							env->cur_state->speculative ?
15650 							" (speculative execution)" : "");
15651 					else
15652 						verbose(env, "%d: safe\n", env->insn_idx);
15653 				}
15654 				goto process_bpf_exit;
15655 			}
15656 		}
15657 
15658 		if (is_jmp_point(env, env->insn_idx)) {
15659 			err = push_jmp_history(env, state);
15660 			if (err)
15661 				return err;
15662 		}
15663 
15664 		if (signal_pending(current))
15665 			return -EAGAIN;
15666 
15667 		if (need_resched())
15668 			cond_resched();
15669 
15670 		if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) {
15671 			verbose(env, "\nfrom %d to %d%s:",
15672 				env->prev_insn_idx, env->insn_idx,
15673 				env->cur_state->speculative ?
15674 				" (speculative execution)" : "");
15675 			print_verifier_state(env, state->frame[state->curframe], true);
15676 			do_print_state = false;
15677 		}
15678 
15679 		if (env->log.level & BPF_LOG_LEVEL) {
15680 			const struct bpf_insn_cbs cbs = {
15681 				.cb_call	= disasm_kfunc_name,
15682 				.cb_print	= verbose,
15683 				.private_data	= env,
15684 			};
15685 
15686 			if (verifier_state_scratched(env))
15687 				print_insn_state(env, state->frame[state->curframe]);
15688 
15689 			verbose_linfo(env, env->insn_idx, "; ");
15690 			env->prev_log_len = env->log.len_used;
15691 			verbose(env, "%d: ", env->insn_idx);
15692 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
15693 			env->prev_insn_print_len = env->log.len_used - env->prev_log_len;
15694 			env->prev_log_len = env->log.len_used;
15695 		}
15696 
15697 		if (bpf_prog_is_offloaded(env->prog->aux)) {
15698 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
15699 							   env->prev_insn_idx);
15700 			if (err)
15701 				return err;
15702 		}
15703 
15704 		regs = cur_regs(env);
15705 		sanitize_mark_insn_seen(env);
15706 		prev_insn_idx = env->insn_idx;
15707 
15708 		if (class == BPF_ALU || class == BPF_ALU64) {
15709 			err = check_alu_op(env, insn);
15710 			if (err)
15711 				return err;
15712 
15713 		} else if (class == BPF_LDX) {
15714 			enum bpf_reg_type src_reg_type;
15715 
15716 			/* check for reserved fields is already done */
15717 
15718 			/* check src operand */
15719 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
15720 			if (err)
15721 				return err;
15722 
15723 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
15724 			if (err)
15725 				return err;
15726 
15727 			src_reg_type = regs[insn->src_reg].type;
15728 
15729 			/* check that memory (src_reg + off) is readable,
15730 			 * the state of dst_reg will be updated by this func
15731 			 */
15732 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
15733 					       insn->off, BPF_SIZE(insn->code),
15734 					       BPF_READ, insn->dst_reg, false);
15735 			if (err)
15736 				return err;
15737 
15738 			err = save_aux_ptr_type(env, src_reg_type, true);
15739 			if (err)
15740 				return err;
15741 		} else if (class == BPF_STX) {
15742 			enum bpf_reg_type dst_reg_type;
15743 
15744 			if (BPF_MODE(insn->code) == BPF_ATOMIC) {
15745 				err = check_atomic(env, env->insn_idx, insn);
15746 				if (err)
15747 					return err;
15748 				env->insn_idx++;
15749 				continue;
15750 			}
15751 
15752 			if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
15753 				verbose(env, "BPF_STX uses reserved fields\n");
15754 				return -EINVAL;
15755 			}
15756 
15757 			/* check src1 operand */
15758 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
15759 			if (err)
15760 				return err;
15761 			/* check src2 operand */
15762 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
15763 			if (err)
15764 				return err;
15765 
15766 			dst_reg_type = regs[insn->dst_reg].type;
15767 
15768 			/* check that memory (dst_reg + off) is writeable */
15769 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
15770 					       insn->off, BPF_SIZE(insn->code),
15771 					       BPF_WRITE, insn->src_reg, false);
15772 			if (err)
15773 				return err;
15774 
15775 			err = save_aux_ptr_type(env, dst_reg_type, false);
15776 			if (err)
15777 				return err;
15778 		} else if (class == BPF_ST) {
15779 			enum bpf_reg_type dst_reg_type;
15780 
15781 			if (BPF_MODE(insn->code) != BPF_MEM ||
15782 			    insn->src_reg != BPF_REG_0) {
15783 				verbose(env, "BPF_ST uses reserved fields\n");
15784 				return -EINVAL;
15785 			}
15786 			/* check src operand */
15787 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
15788 			if (err)
15789 				return err;
15790 
15791 			dst_reg_type = regs[insn->dst_reg].type;
15792 
15793 			/* check that memory (dst_reg + off) is writeable */
15794 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
15795 					       insn->off, BPF_SIZE(insn->code),
15796 					       BPF_WRITE, -1, false);
15797 			if (err)
15798 				return err;
15799 
15800 			err = save_aux_ptr_type(env, dst_reg_type, false);
15801 			if (err)
15802 				return err;
15803 		} else if (class == BPF_JMP || class == BPF_JMP32) {
15804 			u8 opcode = BPF_OP(insn->code);
15805 
15806 			env->jmps_processed++;
15807 			if (opcode == BPF_CALL) {
15808 				if (BPF_SRC(insn->code) != BPF_K ||
15809 				    (insn->src_reg != BPF_PSEUDO_KFUNC_CALL
15810 				     && insn->off != 0) ||
15811 				    (insn->src_reg != BPF_REG_0 &&
15812 				     insn->src_reg != BPF_PSEUDO_CALL &&
15813 				     insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
15814 				    insn->dst_reg != BPF_REG_0 ||
15815 				    class == BPF_JMP32) {
15816 					verbose(env, "BPF_CALL uses reserved fields\n");
15817 					return -EINVAL;
15818 				}
15819 
15820 				if (env->cur_state->active_lock.ptr) {
15821 					if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) ||
15822 					    (insn->src_reg == BPF_PSEUDO_CALL) ||
15823 					    (insn->src_reg == BPF_PSEUDO_KFUNC_CALL &&
15824 					     (insn->off != 0 || !is_bpf_graph_api_kfunc(insn->imm)))) {
15825 						verbose(env, "function calls are not allowed while holding a lock\n");
15826 						return -EINVAL;
15827 					}
15828 				}
15829 				if (insn->src_reg == BPF_PSEUDO_CALL)
15830 					err = check_func_call(env, insn, &env->insn_idx);
15831 				else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL)
15832 					err = check_kfunc_call(env, insn, &env->insn_idx);
15833 				else
15834 					err = check_helper_call(env, insn, &env->insn_idx);
15835 				if (err)
15836 					return err;
15837 
15838 				mark_reg_scratched(env, BPF_REG_0);
15839 			} else if (opcode == BPF_JA) {
15840 				if (BPF_SRC(insn->code) != BPF_K ||
15841 				    insn->imm != 0 ||
15842 				    insn->src_reg != BPF_REG_0 ||
15843 				    insn->dst_reg != BPF_REG_0 ||
15844 				    class == BPF_JMP32) {
15845 					verbose(env, "BPF_JA uses reserved fields\n");
15846 					return -EINVAL;
15847 				}
15848 
15849 				env->insn_idx += insn->off + 1;
15850 				continue;
15851 
15852 			} else if (opcode == BPF_EXIT) {
15853 				if (BPF_SRC(insn->code) != BPF_K ||
15854 				    insn->imm != 0 ||
15855 				    insn->src_reg != BPF_REG_0 ||
15856 				    insn->dst_reg != BPF_REG_0 ||
15857 				    class == BPF_JMP32) {
15858 					verbose(env, "BPF_EXIT uses reserved fields\n");
15859 					return -EINVAL;
15860 				}
15861 
15862 				if (env->cur_state->active_lock.ptr &&
15863 				    !in_rbtree_lock_required_cb(env)) {
15864 					verbose(env, "bpf_spin_unlock is missing\n");
15865 					return -EINVAL;
15866 				}
15867 
15868 				if (env->cur_state->active_rcu_lock) {
15869 					verbose(env, "bpf_rcu_read_unlock is missing\n");
15870 					return -EINVAL;
15871 				}
15872 
15873 				/* We must do check_reference_leak here before
15874 				 * prepare_func_exit to handle the case when
15875 				 * state->curframe > 0, it may be a callback
15876 				 * function, for which reference_state must
15877 				 * match caller reference state when it exits.
15878 				 */
15879 				err = check_reference_leak(env);
15880 				if (err)
15881 					return err;
15882 
15883 				if (state->curframe) {
15884 					/* exit from nested function */
15885 					err = prepare_func_exit(env, &env->insn_idx);
15886 					if (err)
15887 						return err;
15888 					do_print_state = true;
15889 					continue;
15890 				}
15891 
15892 				err = check_return_code(env);
15893 				if (err)
15894 					return err;
15895 process_bpf_exit:
15896 				mark_verifier_state_scratched(env);
15897 				update_branch_counts(env, env->cur_state);
15898 				err = pop_stack(env, &prev_insn_idx,
15899 						&env->insn_idx, pop_log);
15900 				if (err < 0) {
15901 					if (err != -ENOENT)
15902 						return err;
15903 					break;
15904 				} else {
15905 					do_print_state = true;
15906 					continue;
15907 				}
15908 			} else {
15909 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
15910 				if (err)
15911 					return err;
15912 			}
15913 		} else if (class == BPF_LD) {
15914 			u8 mode = BPF_MODE(insn->code);
15915 
15916 			if (mode == BPF_ABS || mode == BPF_IND) {
15917 				err = check_ld_abs(env, insn);
15918 				if (err)
15919 					return err;
15920 
15921 			} else if (mode == BPF_IMM) {
15922 				err = check_ld_imm(env, insn);
15923 				if (err)
15924 					return err;
15925 
15926 				env->insn_idx++;
15927 				sanitize_mark_insn_seen(env);
15928 			} else {
15929 				verbose(env, "invalid BPF_LD mode\n");
15930 				return -EINVAL;
15931 			}
15932 		} else {
15933 			verbose(env, "unknown insn class %d\n", class);
15934 			return -EINVAL;
15935 		}
15936 
15937 		env->insn_idx++;
15938 	}
15939 
15940 	return 0;
15941 }
15942 
15943 static int find_btf_percpu_datasec(struct btf *btf)
15944 {
15945 	const struct btf_type *t;
15946 	const char *tname;
15947 	int i, n;
15948 
15949 	/*
15950 	 * Both vmlinux and module each have their own ".data..percpu"
15951 	 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
15952 	 * types to look at only module's own BTF types.
15953 	 */
15954 	n = btf_nr_types(btf);
15955 	if (btf_is_module(btf))
15956 		i = btf_nr_types(btf_vmlinux);
15957 	else
15958 		i = 1;
15959 
15960 	for(; i < n; i++) {
15961 		t = btf_type_by_id(btf, i);
15962 		if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
15963 			continue;
15964 
15965 		tname = btf_name_by_offset(btf, t->name_off);
15966 		if (!strcmp(tname, ".data..percpu"))
15967 			return i;
15968 	}
15969 
15970 	return -ENOENT;
15971 }
15972 
15973 /* replace pseudo btf_id with kernel symbol address */
15974 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
15975 			       struct bpf_insn *insn,
15976 			       struct bpf_insn_aux_data *aux)
15977 {
15978 	const struct btf_var_secinfo *vsi;
15979 	const struct btf_type *datasec;
15980 	struct btf_mod_pair *btf_mod;
15981 	const struct btf_type *t;
15982 	const char *sym_name;
15983 	bool percpu = false;
15984 	u32 type, id = insn->imm;
15985 	struct btf *btf;
15986 	s32 datasec_id;
15987 	u64 addr;
15988 	int i, btf_fd, err;
15989 
15990 	btf_fd = insn[1].imm;
15991 	if (btf_fd) {
15992 		btf = btf_get_by_fd(btf_fd);
15993 		if (IS_ERR(btf)) {
15994 			verbose(env, "invalid module BTF object FD specified.\n");
15995 			return -EINVAL;
15996 		}
15997 	} else {
15998 		if (!btf_vmlinux) {
15999 			verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
16000 			return -EINVAL;
16001 		}
16002 		btf = btf_vmlinux;
16003 		btf_get(btf);
16004 	}
16005 
16006 	t = btf_type_by_id(btf, id);
16007 	if (!t) {
16008 		verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
16009 		err = -ENOENT;
16010 		goto err_put;
16011 	}
16012 
16013 	if (!btf_type_is_var(t) && !btf_type_is_func(t)) {
16014 		verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id);
16015 		err = -EINVAL;
16016 		goto err_put;
16017 	}
16018 
16019 	sym_name = btf_name_by_offset(btf, t->name_off);
16020 	addr = kallsyms_lookup_name(sym_name);
16021 	if (!addr) {
16022 		verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
16023 			sym_name);
16024 		err = -ENOENT;
16025 		goto err_put;
16026 	}
16027 	insn[0].imm = (u32)addr;
16028 	insn[1].imm = addr >> 32;
16029 
16030 	if (btf_type_is_func(t)) {
16031 		aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
16032 		aux->btf_var.mem_size = 0;
16033 		goto check_btf;
16034 	}
16035 
16036 	datasec_id = find_btf_percpu_datasec(btf);
16037 	if (datasec_id > 0) {
16038 		datasec = btf_type_by_id(btf, datasec_id);
16039 		for_each_vsi(i, datasec, vsi) {
16040 			if (vsi->type == id) {
16041 				percpu = true;
16042 				break;
16043 			}
16044 		}
16045 	}
16046 
16047 	type = t->type;
16048 	t = btf_type_skip_modifiers(btf, type, NULL);
16049 	if (percpu) {
16050 		aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU;
16051 		aux->btf_var.btf = btf;
16052 		aux->btf_var.btf_id = type;
16053 	} else if (!btf_type_is_struct(t)) {
16054 		const struct btf_type *ret;
16055 		const char *tname;
16056 		u32 tsize;
16057 
16058 		/* resolve the type size of ksym. */
16059 		ret = btf_resolve_size(btf, t, &tsize);
16060 		if (IS_ERR(ret)) {
16061 			tname = btf_name_by_offset(btf, t->name_off);
16062 			verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
16063 				tname, PTR_ERR(ret));
16064 			err = -EINVAL;
16065 			goto err_put;
16066 		}
16067 		aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
16068 		aux->btf_var.mem_size = tsize;
16069 	} else {
16070 		aux->btf_var.reg_type = PTR_TO_BTF_ID;
16071 		aux->btf_var.btf = btf;
16072 		aux->btf_var.btf_id = type;
16073 	}
16074 check_btf:
16075 	/* check whether we recorded this BTF (and maybe module) already */
16076 	for (i = 0; i < env->used_btf_cnt; i++) {
16077 		if (env->used_btfs[i].btf == btf) {
16078 			btf_put(btf);
16079 			return 0;
16080 		}
16081 	}
16082 
16083 	if (env->used_btf_cnt >= MAX_USED_BTFS) {
16084 		err = -E2BIG;
16085 		goto err_put;
16086 	}
16087 
16088 	btf_mod = &env->used_btfs[env->used_btf_cnt];
16089 	btf_mod->btf = btf;
16090 	btf_mod->module = NULL;
16091 
16092 	/* if we reference variables from kernel module, bump its refcount */
16093 	if (btf_is_module(btf)) {
16094 		btf_mod->module = btf_try_get_module(btf);
16095 		if (!btf_mod->module) {
16096 			err = -ENXIO;
16097 			goto err_put;
16098 		}
16099 	}
16100 
16101 	env->used_btf_cnt++;
16102 
16103 	return 0;
16104 err_put:
16105 	btf_put(btf);
16106 	return err;
16107 }
16108 
16109 static bool is_tracing_prog_type(enum bpf_prog_type type)
16110 {
16111 	switch (type) {
16112 	case BPF_PROG_TYPE_KPROBE:
16113 	case BPF_PROG_TYPE_TRACEPOINT:
16114 	case BPF_PROG_TYPE_PERF_EVENT:
16115 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
16116 	case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
16117 		return true;
16118 	default:
16119 		return false;
16120 	}
16121 }
16122 
16123 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
16124 					struct bpf_map *map,
16125 					struct bpf_prog *prog)
16126 
16127 {
16128 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
16129 
16130 	if (btf_record_has_field(map->record, BPF_LIST_HEAD) ||
16131 	    btf_record_has_field(map->record, BPF_RB_ROOT)) {
16132 		if (is_tracing_prog_type(prog_type)) {
16133 			verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n");
16134 			return -EINVAL;
16135 		}
16136 	}
16137 
16138 	if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) {
16139 		if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
16140 			verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
16141 			return -EINVAL;
16142 		}
16143 
16144 		if (is_tracing_prog_type(prog_type)) {
16145 			verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
16146 			return -EINVAL;
16147 		}
16148 
16149 		if (prog->aux->sleepable) {
16150 			verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n");
16151 			return -EINVAL;
16152 		}
16153 	}
16154 
16155 	if (btf_record_has_field(map->record, BPF_TIMER)) {
16156 		if (is_tracing_prog_type(prog_type)) {
16157 			verbose(env, "tracing progs cannot use bpf_timer yet\n");
16158 			return -EINVAL;
16159 		}
16160 	}
16161 
16162 	if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) &&
16163 	    !bpf_offload_prog_map_match(prog, map)) {
16164 		verbose(env, "offload device mismatch between prog and map\n");
16165 		return -EINVAL;
16166 	}
16167 
16168 	if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
16169 		verbose(env, "bpf_struct_ops map cannot be used in prog\n");
16170 		return -EINVAL;
16171 	}
16172 
16173 	if (prog->aux->sleepable)
16174 		switch (map->map_type) {
16175 		case BPF_MAP_TYPE_HASH:
16176 		case BPF_MAP_TYPE_LRU_HASH:
16177 		case BPF_MAP_TYPE_ARRAY:
16178 		case BPF_MAP_TYPE_PERCPU_HASH:
16179 		case BPF_MAP_TYPE_PERCPU_ARRAY:
16180 		case BPF_MAP_TYPE_LRU_PERCPU_HASH:
16181 		case BPF_MAP_TYPE_ARRAY_OF_MAPS:
16182 		case BPF_MAP_TYPE_HASH_OF_MAPS:
16183 		case BPF_MAP_TYPE_RINGBUF:
16184 		case BPF_MAP_TYPE_USER_RINGBUF:
16185 		case BPF_MAP_TYPE_INODE_STORAGE:
16186 		case BPF_MAP_TYPE_SK_STORAGE:
16187 		case BPF_MAP_TYPE_TASK_STORAGE:
16188 		case BPF_MAP_TYPE_CGRP_STORAGE:
16189 			break;
16190 		default:
16191 			verbose(env,
16192 				"Sleepable programs can only use array, hash, ringbuf and local storage maps\n");
16193 			return -EINVAL;
16194 		}
16195 
16196 	return 0;
16197 }
16198 
16199 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
16200 {
16201 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
16202 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
16203 }
16204 
16205 /* find and rewrite pseudo imm in ld_imm64 instructions:
16206  *
16207  * 1. if it accesses map FD, replace it with actual map pointer.
16208  * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
16209  *
16210  * NOTE: btf_vmlinux is required for converting pseudo btf_id.
16211  */
16212 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
16213 {
16214 	struct bpf_insn *insn = env->prog->insnsi;
16215 	int insn_cnt = env->prog->len;
16216 	int i, j, err;
16217 
16218 	err = bpf_prog_calc_tag(env->prog);
16219 	if (err)
16220 		return err;
16221 
16222 	for (i = 0; i < insn_cnt; i++, insn++) {
16223 		if (BPF_CLASS(insn->code) == BPF_LDX &&
16224 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
16225 			verbose(env, "BPF_LDX uses reserved fields\n");
16226 			return -EINVAL;
16227 		}
16228 
16229 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
16230 			struct bpf_insn_aux_data *aux;
16231 			struct bpf_map *map;
16232 			struct fd f;
16233 			u64 addr;
16234 			u32 fd;
16235 
16236 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
16237 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
16238 			    insn[1].off != 0) {
16239 				verbose(env, "invalid bpf_ld_imm64 insn\n");
16240 				return -EINVAL;
16241 			}
16242 
16243 			if (insn[0].src_reg == 0)
16244 				/* valid generic load 64-bit imm */
16245 				goto next_insn;
16246 
16247 			if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
16248 				aux = &env->insn_aux_data[i];
16249 				err = check_pseudo_btf_id(env, insn, aux);
16250 				if (err)
16251 					return err;
16252 				goto next_insn;
16253 			}
16254 
16255 			if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
16256 				aux = &env->insn_aux_data[i];
16257 				aux->ptr_type = PTR_TO_FUNC;
16258 				goto next_insn;
16259 			}
16260 
16261 			/* In final convert_pseudo_ld_imm64() step, this is
16262 			 * converted into regular 64-bit imm load insn.
16263 			 */
16264 			switch (insn[0].src_reg) {
16265 			case BPF_PSEUDO_MAP_VALUE:
16266 			case BPF_PSEUDO_MAP_IDX_VALUE:
16267 				break;
16268 			case BPF_PSEUDO_MAP_FD:
16269 			case BPF_PSEUDO_MAP_IDX:
16270 				if (insn[1].imm == 0)
16271 					break;
16272 				fallthrough;
16273 			default:
16274 				verbose(env, "unrecognized bpf_ld_imm64 insn\n");
16275 				return -EINVAL;
16276 			}
16277 
16278 			switch (insn[0].src_reg) {
16279 			case BPF_PSEUDO_MAP_IDX_VALUE:
16280 			case BPF_PSEUDO_MAP_IDX:
16281 				if (bpfptr_is_null(env->fd_array)) {
16282 					verbose(env, "fd_idx without fd_array is invalid\n");
16283 					return -EPROTO;
16284 				}
16285 				if (copy_from_bpfptr_offset(&fd, env->fd_array,
16286 							    insn[0].imm * sizeof(fd),
16287 							    sizeof(fd)))
16288 					return -EFAULT;
16289 				break;
16290 			default:
16291 				fd = insn[0].imm;
16292 				break;
16293 			}
16294 
16295 			f = fdget(fd);
16296 			map = __bpf_map_get(f);
16297 			if (IS_ERR(map)) {
16298 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
16299 					insn[0].imm);
16300 				return PTR_ERR(map);
16301 			}
16302 
16303 			err = check_map_prog_compatibility(env, map, env->prog);
16304 			if (err) {
16305 				fdput(f);
16306 				return err;
16307 			}
16308 
16309 			aux = &env->insn_aux_data[i];
16310 			if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
16311 			    insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
16312 				addr = (unsigned long)map;
16313 			} else {
16314 				u32 off = insn[1].imm;
16315 
16316 				if (off >= BPF_MAX_VAR_OFF) {
16317 					verbose(env, "direct value offset of %u is not allowed\n", off);
16318 					fdput(f);
16319 					return -EINVAL;
16320 				}
16321 
16322 				if (!map->ops->map_direct_value_addr) {
16323 					verbose(env, "no direct value access support for this map type\n");
16324 					fdput(f);
16325 					return -EINVAL;
16326 				}
16327 
16328 				err = map->ops->map_direct_value_addr(map, &addr, off);
16329 				if (err) {
16330 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
16331 						map->value_size, off);
16332 					fdput(f);
16333 					return err;
16334 				}
16335 
16336 				aux->map_off = off;
16337 				addr += off;
16338 			}
16339 
16340 			insn[0].imm = (u32)addr;
16341 			insn[1].imm = addr >> 32;
16342 
16343 			/* check whether we recorded this map already */
16344 			for (j = 0; j < env->used_map_cnt; j++) {
16345 				if (env->used_maps[j] == map) {
16346 					aux->map_index = j;
16347 					fdput(f);
16348 					goto next_insn;
16349 				}
16350 			}
16351 
16352 			if (env->used_map_cnt >= MAX_USED_MAPS) {
16353 				fdput(f);
16354 				return -E2BIG;
16355 			}
16356 
16357 			/* hold the map. If the program is rejected by verifier,
16358 			 * the map will be released by release_maps() or it
16359 			 * will be used by the valid program until it's unloaded
16360 			 * and all maps are released in free_used_maps()
16361 			 */
16362 			bpf_map_inc(map);
16363 
16364 			aux->map_index = env->used_map_cnt;
16365 			env->used_maps[env->used_map_cnt++] = map;
16366 
16367 			if (bpf_map_is_cgroup_storage(map) &&
16368 			    bpf_cgroup_storage_assign(env->prog->aux, map)) {
16369 				verbose(env, "only one cgroup storage of each type is allowed\n");
16370 				fdput(f);
16371 				return -EBUSY;
16372 			}
16373 
16374 			fdput(f);
16375 next_insn:
16376 			insn++;
16377 			i++;
16378 			continue;
16379 		}
16380 
16381 		/* Basic sanity check before we invest more work here. */
16382 		if (!bpf_opcode_in_insntable(insn->code)) {
16383 			verbose(env, "unknown opcode %02x\n", insn->code);
16384 			return -EINVAL;
16385 		}
16386 	}
16387 
16388 	/* now all pseudo BPF_LD_IMM64 instructions load valid
16389 	 * 'struct bpf_map *' into a register instead of user map_fd.
16390 	 * These pointers will be used later by verifier to validate map access.
16391 	 */
16392 	return 0;
16393 }
16394 
16395 /* drop refcnt of maps used by the rejected program */
16396 static void release_maps(struct bpf_verifier_env *env)
16397 {
16398 	__bpf_free_used_maps(env->prog->aux, env->used_maps,
16399 			     env->used_map_cnt);
16400 }
16401 
16402 /* drop refcnt of maps used by the rejected program */
16403 static void release_btfs(struct bpf_verifier_env *env)
16404 {
16405 	__bpf_free_used_btfs(env->prog->aux, env->used_btfs,
16406 			     env->used_btf_cnt);
16407 }
16408 
16409 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
16410 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
16411 {
16412 	struct bpf_insn *insn = env->prog->insnsi;
16413 	int insn_cnt = env->prog->len;
16414 	int i;
16415 
16416 	for (i = 0; i < insn_cnt; i++, insn++) {
16417 		if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
16418 			continue;
16419 		if (insn->src_reg == BPF_PSEUDO_FUNC)
16420 			continue;
16421 		insn->src_reg = 0;
16422 	}
16423 }
16424 
16425 /* single env->prog->insni[off] instruction was replaced with the range
16426  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
16427  * [0, off) and [off, end) to new locations, so the patched range stays zero
16428  */
16429 static void adjust_insn_aux_data(struct bpf_verifier_env *env,
16430 				 struct bpf_insn_aux_data *new_data,
16431 				 struct bpf_prog *new_prog, u32 off, u32 cnt)
16432 {
16433 	struct bpf_insn_aux_data *old_data = env->insn_aux_data;
16434 	struct bpf_insn *insn = new_prog->insnsi;
16435 	u32 old_seen = old_data[off].seen;
16436 	u32 prog_len;
16437 	int i;
16438 
16439 	/* aux info at OFF always needs adjustment, no matter fast path
16440 	 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
16441 	 * original insn at old prog.
16442 	 */
16443 	old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
16444 
16445 	if (cnt == 1)
16446 		return;
16447 	prog_len = new_prog->len;
16448 
16449 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
16450 	memcpy(new_data + off + cnt - 1, old_data + off,
16451 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
16452 	for (i = off; i < off + cnt - 1; i++) {
16453 		/* Expand insni[off]'s seen count to the patched range. */
16454 		new_data[i].seen = old_seen;
16455 		new_data[i].zext_dst = insn_has_def32(env, insn + i);
16456 	}
16457 	env->insn_aux_data = new_data;
16458 	vfree(old_data);
16459 }
16460 
16461 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
16462 {
16463 	int i;
16464 
16465 	if (len == 1)
16466 		return;
16467 	/* NOTE: fake 'exit' subprog should be updated as well. */
16468 	for (i = 0; i <= env->subprog_cnt; i++) {
16469 		if (env->subprog_info[i].start <= off)
16470 			continue;
16471 		env->subprog_info[i].start += len - 1;
16472 	}
16473 }
16474 
16475 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
16476 {
16477 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
16478 	int i, sz = prog->aux->size_poke_tab;
16479 	struct bpf_jit_poke_descriptor *desc;
16480 
16481 	for (i = 0; i < sz; i++) {
16482 		desc = &tab[i];
16483 		if (desc->insn_idx <= off)
16484 			continue;
16485 		desc->insn_idx += len - 1;
16486 	}
16487 }
16488 
16489 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
16490 					    const struct bpf_insn *patch, u32 len)
16491 {
16492 	struct bpf_prog *new_prog;
16493 	struct bpf_insn_aux_data *new_data = NULL;
16494 
16495 	if (len > 1) {
16496 		new_data = vzalloc(array_size(env->prog->len + len - 1,
16497 					      sizeof(struct bpf_insn_aux_data)));
16498 		if (!new_data)
16499 			return NULL;
16500 	}
16501 
16502 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
16503 	if (IS_ERR(new_prog)) {
16504 		if (PTR_ERR(new_prog) == -ERANGE)
16505 			verbose(env,
16506 				"insn %d cannot be patched due to 16-bit range\n",
16507 				env->insn_aux_data[off].orig_idx);
16508 		vfree(new_data);
16509 		return NULL;
16510 	}
16511 	adjust_insn_aux_data(env, new_data, new_prog, off, len);
16512 	adjust_subprog_starts(env, off, len);
16513 	adjust_poke_descs(new_prog, off, len);
16514 	return new_prog;
16515 }
16516 
16517 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
16518 					      u32 off, u32 cnt)
16519 {
16520 	int i, j;
16521 
16522 	/* find first prog starting at or after off (first to remove) */
16523 	for (i = 0; i < env->subprog_cnt; i++)
16524 		if (env->subprog_info[i].start >= off)
16525 			break;
16526 	/* find first prog starting at or after off + cnt (first to stay) */
16527 	for (j = i; j < env->subprog_cnt; j++)
16528 		if (env->subprog_info[j].start >= off + cnt)
16529 			break;
16530 	/* if j doesn't start exactly at off + cnt, we are just removing
16531 	 * the front of previous prog
16532 	 */
16533 	if (env->subprog_info[j].start != off + cnt)
16534 		j--;
16535 
16536 	if (j > i) {
16537 		struct bpf_prog_aux *aux = env->prog->aux;
16538 		int move;
16539 
16540 		/* move fake 'exit' subprog as well */
16541 		move = env->subprog_cnt + 1 - j;
16542 
16543 		memmove(env->subprog_info + i,
16544 			env->subprog_info + j,
16545 			sizeof(*env->subprog_info) * move);
16546 		env->subprog_cnt -= j - i;
16547 
16548 		/* remove func_info */
16549 		if (aux->func_info) {
16550 			move = aux->func_info_cnt - j;
16551 
16552 			memmove(aux->func_info + i,
16553 				aux->func_info + j,
16554 				sizeof(*aux->func_info) * move);
16555 			aux->func_info_cnt -= j - i;
16556 			/* func_info->insn_off is set after all code rewrites,
16557 			 * in adjust_btf_func() - no need to adjust
16558 			 */
16559 		}
16560 	} else {
16561 		/* convert i from "first prog to remove" to "first to adjust" */
16562 		if (env->subprog_info[i].start == off)
16563 			i++;
16564 	}
16565 
16566 	/* update fake 'exit' subprog as well */
16567 	for (; i <= env->subprog_cnt; i++)
16568 		env->subprog_info[i].start -= cnt;
16569 
16570 	return 0;
16571 }
16572 
16573 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
16574 				      u32 cnt)
16575 {
16576 	struct bpf_prog *prog = env->prog;
16577 	u32 i, l_off, l_cnt, nr_linfo;
16578 	struct bpf_line_info *linfo;
16579 
16580 	nr_linfo = prog->aux->nr_linfo;
16581 	if (!nr_linfo)
16582 		return 0;
16583 
16584 	linfo = prog->aux->linfo;
16585 
16586 	/* find first line info to remove, count lines to be removed */
16587 	for (i = 0; i < nr_linfo; i++)
16588 		if (linfo[i].insn_off >= off)
16589 			break;
16590 
16591 	l_off = i;
16592 	l_cnt = 0;
16593 	for (; i < nr_linfo; i++)
16594 		if (linfo[i].insn_off < off + cnt)
16595 			l_cnt++;
16596 		else
16597 			break;
16598 
16599 	/* First live insn doesn't match first live linfo, it needs to "inherit"
16600 	 * last removed linfo.  prog is already modified, so prog->len == off
16601 	 * means no live instructions after (tail of the program was removed).
16602 	 */
16603 	if (prog->len != off && l_cnt &&
16604 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
16605 		l_cnt--;
16606 		linfo[--i].insn_off = off + cnt;
16607 	}
16608 
16609 	/* remove the line info which refer to the removed instructions */
16610 	if (l_cnt) {
16611 		memmove(linfo + l_off, linfo + i,
16612 			sizeof(*linfo) * (nr_linfo - i));
16613 
16614 		prog->aux->nr_linfo -= l_cnt;
16615 		nr_linfo = prog->aux->nr_linfo;
16616 	}
16617 
16618 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
16619 	for (i = l_off; i < nr_linfo; i++)
16620 		linfo[i].insn_off -= cnt;
16621 
16622 	/* fix up all subprogs (incl. 'exit') which start >= off */
16623 	for (i = 0; i <= env->subprog_cnt; i++)
16624 		if (env->subprog_info[i].linfo_idx > l_off) {
16625 			/* program may have started in the removed region but
16626 			 * may not be fully removed
16627 			 */
16628 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
16629 				env->subprog_info[i].linfo_idx -= l_cnt;
16630 			else
16631 				env->subprog_info[i].linfo_idx = l_off;
16632 		}
16633 
16634 	return 0;
16635 }
16636 
16637 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
16638 {
16639 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
16640 	unsigned int orig_prog_len = env->prog->len;
16641 	int err;
16642 
16643 	if (bpf_prog_is_offloaded(env->prog->aux))
16644 		bpf_prog_offload_remove_insns(env, off, cnt);
16645 
16646 	err = bpf_remove_insns(env->prog, off, cnt);
16647 	if (err)
16648 		return err;
16649 
16650 	err = adjust_subprog_starts_after_remove(env, off, cnt);
16651 	if (err)
16652 		return err;
16653 
16654 	err = bpf_adj_linfo_after_remove(env, off, cnt);
16655 	if (err)
16656 		return err;
16657 
16658 	memmove(aux_data + off,	aux_data + off + cnt,
16659 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
16660 
16661 	return 0;
16662 }
16663 
16664 /* The verifier does more data flow analysis than llvm and will not
16665  * explore branches that are dead at run time. Malicious programs can
16666  * have dead code too. Therefore replace all dead at-run-time code
16667  * with 'ja -1'.
16668  *
16669  * Just nops are not optimal, e.g. if they would sit at the end of the
16670  * program and through another bug we would manage to jump there, then
16671  * we'd execute beyond program memory otherwise. Returning exception
16672  * code also wouldn't work since we can have subprogs where the dead
16673  * code could be located.
16674  */
16675 static void sanitize_dead_code(struct bpf_verifier_env *env)
16676 {
16677 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
16678 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
16679 	struct bpf_insn *insn = env->prog->insnsi;
16680 	const int insn_cnt = env->prog->len;
16681 	int i;
16682 
16683 	for (i = 0; i < insn_cnt; i++) {
16684 		if (aux_data[i].seen)
16685 			continue;
16686 		memcpy(insn + i, &trap, sizeof(trap));
16687 		aux_data[i].zext_dst = false;
16688 	}
16689 }
16690 
16691 static bool insn_is_cond_jump(u8 code)
16692 {
16693 	u8 op;
16694 
16695 	if (BPF_CLASS(code) == BPF_JMP32)
16696 		return true;
16697 
16698 	if (BPF_CLASS(code) != BPF_JMP)
16699 		return false;
16700 
16701 	op = BPF_OP(code);
16702 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
16703 }
16704 
16705 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
16706 {
16707 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
16708 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
16709 	struct bpf_insn *insn = env->prog->insnsi;
16710 	const int insn_cnt = env->prog->len;
16711 	int i;
16712 
16713 	for (i = 0; i < insn_cnt; i++, insn++) {
16714 		if (!insn_is_cond_jump(insn->code))
16715 			continue;
16716 
16717 		if (!aux_data[i + 1].seen)
16718 			ja.off = insn->off;
16719 		else if (!aux_data[i + 1 + insn->off].seen)
16720 			ja.off = 0;
16721 		else
16722 			continue;
16723 
16724 		if (bpf_prog_is_offloaded(env->prog->aux))
16725 			bpf_prog_offload_replace_insn(env, i, &ja);
16726 
16727 		memcpy(insn, &ja, sizeof(ja));
16728 	}
16729 }
16730 
16731 static int opt_remove_dead_code(struct bpf_verifier_env *env)
16732 {
16733 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
16734 	int insn_cnt = env->prog->len;
16735 	int i, err;
16736 
16737 	for (i = 0; i < insn_cnt; i++) {
16738 		int j;
16739 
16740 		j = 0;
16741 		while (i + j < insn_cnt && !aux_data[i + j].seen)
16742 			j++;
16743 		if (!j)
16744 			continue;
16745 
16746 		err = verifier_remove_insns(env, i, j);
16747 		if (err)
16748 			return err;
16749 		insn_cnt = env->prog->len;
16750 	}
16751 
16752 	return 0;
16753 }
16754 
16755 static int opt_remove_nops(struct bpf_verifier_env *env)
16756 {
16757 	const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
16758 	struct bpf_insn *insn = env->prog->insnsi;
16759 	int insn_cnt = env->prog->len;
16760 	int i, err;
16761 
16762 	for (i = 0; i < insn_cnt; i++) {
16763 		if (memcmp(&insn[i], &ja, sizeof(ja)))
16764 			continue;
16765 
16766 		err = verifier_remove_insns(env, i, 1);
16767 		if (err)
16768 			return err;
16769 		insn_cnt--;
16770 		i--;
16771 	}
16772 
16773 	return 0;
16774 }
16775 
16776 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
16777 					 const union bpf_attr *attr)
16778 {
16779 	struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
16780 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
16781 	int i, patch_len, delta = 0, len = env->prog->len;
16782 	struct bpf_insn *insns = env->prog->insnsi;
16783 	struct bpf_prog *new_prog;
16784 	bool rnd_hi32;
16785 
16786 	rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
16787 	zext_patch[1] = BPF_ZEXT_REG(0);
16788 	rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
16789 	rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
16790 	rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
16791 	for (i = 0; i < len; i++) {
16792 		int adj_idx = i + delta;
16793 		struct bpf_insn insn;
16794 		int load_reg;
16795 
16796 		insn = insns[adj_idx];
16797 		load_reg = insn_def_regno(&insn);
16798 		if (!aux[adj_idx].zext_dst) {
16799 			u8 code, class;
16800 			u32 imm_rnd;
16801 
16802 			if (!rnd_hi32)
16803 				continue;
16804 
16805 			code = insn.code;
16806 			class = BPF_CLASS(code);
16807 			if (load_reg == -1)
16808 				continue;
16809 
16810 			/* NOTE: arg "reg" (the fourth one) is only used for
16811 			 *       BPF_STX + SRC_OP, so it is safe to pass NULL
16812 			 *       here.
16813 			 */
16814 			if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
16815 				if (class == BPF_LD &&
16816 				    BPF_MODE(code) == BPF_IMM)
16817 					i++;
16818 				continue;
16819 			}
16820 
16821 			/* ctx load could be transformed into wider load. */
16822 			if (class == BPF_LDX &&
16823 			    aux[adj_idx].ptr_type == PTR_TO_CTX)
16824 				continue;
16825 
16826 			imm_rnd = get_random_u32();
16827 			rnd_hi32_patch[0] = insn;
16828 			rnd_hi32_patch[1].imm = imm_rnd;
16829 			rnd_hi32_patch[3].dst_reg = load_reg;
16830 			patch = rnd_hi32_patch;
16831 			patch_len = 4;
16832 			goto apply_patch_buffer;
16833 		}
16834 
16835 		/* Add in an zero-extend instruction if a) the JIT has requested
16836 		 * it or b) it's a CMPXCHG.
16837 		 *
16838 		 * The latter is because: BPF_CMPXCHG always loads a value into
16839 		 * R0, therefore always zero-extends. However some archs'
16840 		 * equivalent instruction only does this load when the
16841 		 * comparison is successful. This detail of CMPXCHG is
16842 		 * orthogonal to the general zero-extension behaviour of the
16843 		 * CPU, so it's treated independently of bpf_jit_needs_zext.
16844 		 */
16845 		if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
16846 			continue;
16847 
16848 		/* Zero-extension is done by the caller. */
16849 		if (bpf_pseudo_kfunc_call(&insn))
16850 			continue;
16851 
16852 		if (WARN_ON(load_reg == -1)) {
16853 			verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
16854 			return -EFAULT;
16855 		}
16856 
16857 		zext_patch[0] = insn;
16858 		zext_patch[1].dst_reg = load_reg;
16859 		zext_patch[1].src_reg = load_reg;
16860 		patch = zext_patch;
16861 		patch_len = 2;
16862 apply_patch_buffer:
16863 		new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
16864 		if (!new_prog)
16865 			return -ENOMEM;
16866 		env->prog = new_prog;
16867 		insns = new_prog->insnsi;
16868 		aux = env->insn_aux_data;
16869 		delta += patch_len - 1;
16870 	}
16871 
16872 	return 0;
16873 }
16874 
16875 /* convert load instructions that access fields of a context type into a
16876  * sequence of instructions that access fields of the underlying structure:
16877  *     struct __sk_buff    -> struct sk_buff
16878  *     struct bpf_sock_ops -> struct sock
16879  */
16880 static int convert_ctx_accesses(struct bpf_verifier_env *env)
16881 {
16882 	const struct bpf_verifier_ops *ops = env->ops;
16883 	int i, cnt, size, ctx_field_size, delta = 0;
16884 	const int insn_cnt = env->prog->len;
16885 	struct bpf_insn insn_buf[16], *insn;
16886 	u32 target_size, size_default, off;
16887 	struct bpf_prog *new_prog;
16888 	enum bpf_access_type type;
16889 	bool is_narrower_load;
16890 
16891 	if (ops->gen_prologue || env->seen_direct_write) {
16892 		if (!ops->gen_prologue) {
16893 			verbose(env, "bpf verifier is misconfigured\n");
16894 			return -EINVAL;
16895 		}
16896 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
16897 					env->prog);
16898 		if (cnt >= ARRAY_SIZE(insn_buf)) {
16899 			verbose(env, "bpf verifier is misconfigured\n");
16900 			return -EINVAL;
16901 		} else if (cnt) {
16902 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
16903 			if (!new_prog)
16904 				return -ENOMEM;
16905 
16906 			env->prog = new_prog;
16907 			delta += cnt - 1;
16908 		}
16909 	}
16910 
16911 	if (bpf_prog_is_offloaded(env->prog->aux))
16912 		return 0;
16913 
16914 	insn = env->prog->insnsi + delta;
16915 
16916 	for (i = 0; i < insn_cnt; i++, insn++) {
16917 		bpf_convert_ctx_access_t convert_ctx_access;
16918 
16919 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
16920 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
16921 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
16922 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) {
16923 			type = BPF_READ;
16924 		} else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
16925 			   insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
16926 			   insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
16927 			   insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
16928 			   insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
16929 			   insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
16930 			   insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
16931 			   insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
16932 			type = BPF_WRITE;
16933 		} else {
16934 			continue;
16935 		}
16936 
16937 		if (type == BPF_WRITE &&
16938 		    env->insn_aux_data[i + delta].sanitize_stack_spill) {
16939 			struct bpf_insn patch[] = {
16940 				*insn,
16941 				BPF_ST_NOSPEC(),
16942 			};
16943 
16944 			cnt = ARRAY_SIZE(patch);
16945 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
16946 			if (!new_prog)
16947 				return -ENOMEM;
16948 
16949 			delta    += cnt - 1;
16950 			env->prog = new_prog;
16951 			insn      = new_prog->insnsi + i + delta;
16952 			continue;
16953 		}
16954 
16955 		switch ((int)env->insn_aux_data[i + delta].ptr_type) {
16956 		case PTR_TO_CTX:
16957 			if (!ops->convert_ctx_access)
16958 				continue;
16959 			convert_ctx_access = ops->convert_ctx_access;
16960 			break;
16961 		case PTR_TO_SOCKET:
16962 		case PTR_TO_SOCK_COMMON:
16963 			convert_ctx_access = bpf_sock_convert_ctx_access;
16964 			break;
16965 		case PTR_TO_TCP_SOCK:
16966 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
16967 			break;
16968 		case PTR_TO_XDP_SOCK:
16969 			convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
16970 			break;
16971 		case PTR_TO_BTF_ID:
16972 		case PTR_TO_BTF_ID | PTR_UNTRUSTED:
16973 		/* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike
16974 		 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot
16975 		 * be said once it is marked PTR_UNTRUSTED, hence we must handle
16976 		 * any faults for loads into such types. BPF_WRITE is disallowed
16977 		 * for this case.
16978 		 */
16979 		case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED:
16980 			if (type == BPF_READ) {
16981 				insn->code = BPF_LDX | BPF_PROBE_MEM |
16982 					BPF_SIZE((insn)->code);
16983 				env->prog->aux->num_exentries++;
16984 			}
16985 			continue;
16986 		default:
16987 			continue;
16988 		}
16989 
16990 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
16991 		size = BPF_LDST_BYTES(insn);
16992 
16993 		/* If the read access is a narrower load of the field,
16994 		 * convert to a 4/8-byte load, to minimum program type specific
16995 		 * convert_ctx_access changes. If conversion is successful,
16996 		 * we will apply proper mask to the result.
16997 		 */
16998 		is_narrower_load = size < ctx_field_size;
16999 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
17000 		off = insn->off;
17001 		if (is_narrower_load) {
17002 			u8 size_code;
17003 
17004 			if (type == BPF_WRITE) {
17005 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
17006 				return -EINVAL;
17007 			}
17008 
17009 			size_code = BPF_H;
17010 			if (ctx_field_size == 4)
17011 				size_code = BPF_W;
17012 			else if (ctx_field_size == 8)
17013 				size_code = BPF_DW;
17014 
17015 			insn->off = off & ~(size_default - 1);
17016 			insn->code = BPF_LDX | BPF_MEM | size_code;
17017 		}
17018 
17019 		target_size = 0;
17020 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
17021 					 &target_size);
17022 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
17023 		    (ctx_field_size && !target_size)) {
17024 			verbose(env, "bpf verifier is misconfigured\n");
17025 			return -EINVAL;
17026 		}
17027 
17028 		if (is_narrower_load && size < target_size) {
17029 			u8 shift = bpf_ctx_narrow_access_offset(
17030 				off, size, size_default) * 8;
17031 			if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) {
17032 				verbose(env, "bpf verifier narrow ctx load misconfigured\n");
17033 				return -EINVAL;
17034 			}
17035 			if (ctx_field_size <= 4) {
17036 				if (shift)
17037 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
17038 									insn->dst_reg,
17039 									shift);
17040 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
17041 								(1 << size * 8) - 1);
17042 			} else {
17043 				if (shift)
17044 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
17045 									insn->dst_reg,
17046 									shift);
17047 				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
17048 								(1ULL << size * 8) - 1);
17049 			}
17050 		}
17051 
17052 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
17053 		if (!new_prog)
17054 			return -ENOMEM;
17055 
17056 		delta += cnt - 1;
17057 
17058 		/* keep walking new program and skip insns we just inserted */
17059 		env->prog = new_prog;
17060 		insn      = new_prog->insnsi + i + delta;
17061 	}
17062 
17063 	return 0;
17064 }
17065 
17066 static int jit_subprogs(struct bpf_verifier_env *env)
17067 {
17068 	struct bpf_prog *prog = env->prog, **func, *tmp;
17069 	int i, j, subprog_start, subprog_end = 0, len, subprog;
17070 	struct bpf_map *map_ptr;
17071 	struct bpf_insn *insn;
17072 	void *old_bpf_func;
17073 	int err, num_exentries;
17074 
17075 	if (env->subprog_cnt <= 1)
17076 		return 0;
17077 
17078 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
17079 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn))
17080 			continue;
17081 
17082 		/* Upon error here we cannot fall back to interpreter but
17083 		 * need a hard reject of the program. Thus -EFAULT is
17084 		 * propagated in any case.
17085 		 */
17086 		subprog = find_subprog(env, i + insn->imm + 1);
17087 		if (subprog < 0) {
17088 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
17089 				  i + insn->imm + 1);
17090 			return -EFAULT;
17091 		}
17092 		/* temporarily remember subprog id inside insn instead of
17093 		 * aux_data, since next loop will split up all insns into funcs
17094 		 */
17095 		insn->off = subprog;
17096 		/* remember original imm in case JIT fails and fallback
17097 		 * to interpreter will be needed
17098 		 */
17099 		env->insn_aux_data[i].call_imm = insn->imm;
17100 		/* point imm to __bpf_call_base+1 from JITs point of view */
17101 		insn->imm = 1;
17102 		if (bpf_pseudo_func(insn))
17103 			/* jit (e.g. x86_64) may emit fewer instructions
17104 			 * if it learns a u32 imm is the same as a u64 imm.
17105 			 * Force a non zero here.
17106 			 */
17107 			insn[1].imm = 1;
17108 	}
17109 
17110 	err = bpf_prog_alloc_jited_linfo(prog);
17111 	if (err)
17112 		goto out_undo_insn;
17113 
17114 	err = -ENOMEM;
17115 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
17116 	if (!func)
17117 		goto out_undo_insn;
17118 
17119 	for (i = 0; i < env->subprog_cnt; i++) {
17120 		subprog_start = subprog_end;
17121 		subprog_end = env->subprog_info[i + 1].start;
17122 
17123 		len = subprog_end - subprog_start;
17124 		/* bpf_prog_run() doesn't call subprogs directly,
17125 		 * hence main prog stats include the runtime of subprogs.
17126 		 * subprogs don't have IDs and not reachable via prog_get_next_id
17127 		 * func[i]->stats will never be accessed and stays NULL
17128 		 */
17129 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
17130 		if (!func[i])
17131 			goto out_free;
17132 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
17133 		       len * sizeof(struct bpf_insn));
17134 		func[i]->type = prog->type;
17135 		func[i]->len = len;
17136 		if (bpf_prog_calc_tag(func[i]))
17137 			goto out_free;
17138 		func[i]->is_func = 1;
17139 		func[i]->aux->func_idx = i;
17140 		/* Below members will be freed only at prog->aux */
17141 		func[i]->aux->btf = prog->aux->btf;
17142 		func[i]->aux->func_info = prog->aux->func_info;
17143 		func[i]->aux->func_info_cnt = prog->aux->func_info_cnt;
17144 		func[i]->aux->poke_tab = prog->aux->poke_tab;
17145 		func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
17146 
17147 		for (j = 0; j < prog->aux->size_poke_tab; j++) {
17148 			struct bpf_jit_poke_descriptor *poke;
17149 
17150 			poke = &prog->aux->poke_tab[j];
17151 			if (poke->insn_idx < subprog_end &&
17152 			    poke->insn_idx >= subprog_start)
17153 				poke->aux = func[i]->aux;
17154 		}
17155 
17156 		func[i]->aux->name[0] = 'F';
17157 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
17158 		func[i]->jit_requested = 1;
17159 		func[i]->blinding_requested = prog->blinding_requested;
17160 		func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
17161 		func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab;
17162 		func[i]->aux->linfo = prog->aux->linfo;
17163 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
17164 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
17165 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
17166 		num_exentries = 0;
17167 		insn = func[i]->insnsi;
17168 		for (j = 0; j < func[i]->len; j++, insn++) {
17169 			if (BPF_CLASS(insn->code) == BPF_LDX &&
17170 			    BPF_MODE(insn->code) == BPF_PROBE_MEM)
17171 				num_exentries++;
17172 		}
17173 		func[i]->aux->num_exentries = num_exentries;
17174 		func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
17175 		func[i] = bpf_int_jit_compile(func[i]);
17176 		if (!func[i]->jited) {
17177 			err = -ENOTSUPP;
17178 			goto out_free;
17179 		}
17180 		cond_resched();
17181 	}
17182 
17183 	/* at this point all bpf functions were successfully JITed
17184 	 * now populate all bpf_calls with correct addresses and
17185 	 * run last pass of JIT
17186 	 */
17187 	for (i = 0; i < env->subprog_cnt; i++) {
17188 		insn = func[i]->insnsi;
17189 		for (j = 0; j < func[i]->len; j++, insn++) {
17190 			if (bpf_pseudo_func(insn)) {
17191 				subprog = insn->off;
17192 				insn[0].imm = (u32)(long)func[subprog]->bpf_func;
17193 				insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
17194 				continue;
17195 			}
17196 			if (!bpf_pseudo_call(insn))
17197 				continue;
17198 			subprog = insn->off;
17199 			insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func);
17200 		}
17201 
17202 		/* we use the aux data to keep a list of the start addresses
17203 		 * of the JITed images for each function in the program
17204 		 *
17205 		 * for some architectures, such as powerpc64, the imm field
17206 		 * might not be large enough to hold the offset of the start
17207 		 * address of the callee's JITed image from __bpf_call_base
17208 		 *
17209 		 * in such cases, we can lookup the start address of a callee
17210 		 * by using its subprog id, available from the off field of
17211 		 * the call instruction, as an index for this list
17212 		 */
17213 		func[i]->aux->func = func;
17214 		func[i]->aux->func_cnt = env->subprog_cnt;
17215 	}
17216 	for (i = 0; i < env->subprog_cnt; i++) {
17217 		old_bpf_func = func[i]->bpf_func;
17218 		tmp = bpf_int_jit_compile(func[i]);
17219 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
17220 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
17221 			err = -ENOTSUPP;
17222 			goto out_free;
17223 		}
17224 		cond_resched();
17225 	}
17226 
17227 	/* finally lock prog and jit images for all functions and
17228 	 * populate kallsysm
17229 	 */
17230 	for (i = 0; i < env->subprog_cnt; i++) {
17231 		bpf_prog_lock_ro(func[i]);
17232 		bpf_prog_kallsyms_add(func[i]);
17233 	}
17234 
17235 	/* Last step: make now unused interpreter insns from main
17236 	 * prog consistent for later dump requests, so they can
17237 	 * later look the same as if they were interpreted only.
17238 	 */
17239 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
17240 		if (bpf_pseudo_func(insn)) {
17241 			insn[0].imm = env->insn_aux_data[i].call_imm;
17242 			insn[1].imm = insn->off;
17243 			insn->off = 0;
17244 			continue;
17245 		}
17246 		if (!bpf_pseudo_call(insn))
17247 			continue;
17248 		insn->off = env->insn_aux_data[i].call_imm;
17249 		subprog = find_subprog(env, i + insn->off + 1);
17250 		insn->imm = subprog;
17251 	}
17252 
17253 	prog->jited = 1;
17254 	prog->bpf_func = func[0]->bpf_func;
17255 	prog->jited_len = func[0]->jited_len;
17256 	prog->aux->func = func;
17257 	prog->aux->func_cnt = env->subprog_cnt;
17258 	bpf_prog_jit_attempt_done(prog);
17259 	return 0;
17260 out_free:
17261 	/* We failed JIT'ing, so at this point we need to unregister poke
17262 	 * descriptors from subprogs, so that kernel is not attempting to
17263 	 * patch it anymore as we're freeing the subprog JIT memory.
17264 	 */
17265 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
17266 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
17267 		map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
17268 	}
17269 	/* At this point we're guaranteed that poke descriptors are not
17270 	 * live anymore. We can just unlink its descriptor table as it's
17271 	 * released with the main prog.
17272 	 */
17273 	for (i = 0; i < env->subprog_cnt; i++) {
17274 		if (!func[i])
17275 			continue;
17276 		func[i]->aux->poke_tab = NULL;
17277 		bpf_jit_free(func[i]);
17278 	}
17279 	kfree(func);
17280 out_undo_insn:
17281 	/* cleanup main prog to be interpreted */
17282 	prog->jit_requested = 0;
17283 	prog->blinding_requested = 0;
17284 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
17285 		if (!bpf_pseudo_call(insn))
17286 			continue;
17287 		insn->off = 0;
17288 		insn->imm = env->insn_aux_data[i].call_imm;
17289 	}
17290 	bpf_prog_jit_attempt_done(prog);
17291 	return err;
17292 }
17293 
17294 static int fixup_call_args(struct bpf_verifier_env *env)
17295 {
17296 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
17297 	struct bpf_prog *prog = env->prog;
17298 	struct bpf_insn *insn = prog->insnsi;
17299 	bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
17300 	int i, depth;
17301 #endif
17302 	int err = 0;
17303 
17304 	if (env->prog->jit_requested &&
17305 	    !bpf_prog_is_offloaded(env->prog->aux)) {
17306 		err = jit_subprogs(env);
17307 		if (err == 0)
17308 			return 0;
17309 		if (err == -EFAULT)
17310 			return err;
17311 	}
17312 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
17313 	if (has_kfunc_call) {
17314 		verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
17315 		return -EINVAL;
17316 	}
17317 	if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
17318 		/* When JIT fails the progs with bpf2bpf calls and tail_calls
17319 		 * have to be rejected, since interpreter doesn't support them yet.
17320 		 */
17321 		verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
17322 		return -EINVAL;
17323 	}
17324 	for (i = 0; i < prog->len; i++, insn++) {
17325 		if (bpf_pseudo_func(insn)) {
17326 			/* When JIT fails the progs with callback calls
17327 			 * have to be rejected, since interpreter doesn't support them yet.
17328 			 */
17329 			verbose(env, "callbacks are not allowed in non-JITed programs\n");
17330 			return -EINVAL;
17331 		}
17332 
17333 		if (!bpf_pseudo_call(insn))
17334 			continue;
17335 		depth = get_callee_stack_depth(env, insn, i);
17336 		if (depth < 0)
17337 			return depth;
17338 		bpf_patch_call_args(insn, depth);
17339 	}
17340 	err = 0;
17341 #endif
17342 	return err;
17343 }
17344 
17345 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
17346 			    struct bpf_insn *insn_buf, int insn_idx, int *cnt)
17347 {
17348 	const struct bpf_kfunc_desc *desc;
17349 	void *xdp_kfunc;
17350 
17351 	if (!insn->imm) {
17352 		verbose(env, "invalid kernel function call not eliminated in verifier pass\n");
17353 		return -EINVAL;
17354 	}
17355 
17356 	*cnt = 0;
17357 
17358 	if (bpf_dev_bound_kfunc_id(insn->imm)) {
17359 		xdp_kfunc = bpf_dev_bound_resolve_kfunc(env->prog, insn->imm);
17360 		if (xdp_kfunc) {
17361 			insn->imm = BPF_CALL_IMM(xdp_kfunc);
17362 			return 0;
17363 		}
17364 
17365 		/* fallback to default kfunc when not supported by netdev */
17366 	}
17367 
17368 	/* insn->imm has the btf func_id. Replace it with
17369 	 * an address (relative to __bpf_call_base).
17370 	 */
17371 	desc = find_kfunc_desc(env->prog, insn->imm, insn->off);
17372 	if (!desc) {
17373 		verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
17374 			insn->imm);
17375 		return -EFAULT;
17376 	}
17377 
17378 	insn->imm = desc->imm;
17379 	if (insn->off)
17380 		return 0;
17381 	if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl]) {
17382 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
17383 		struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
17384 		u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size;
17385 
17386 		insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size);
17387 		insn_buf[1] = addr[0];
17388 		insn_buf[2] = addr[1];
17389 		insn_buf[3] = *insn;
17390 		*cnt = 4;
17391 	} else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) {
17392 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
17393 		struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
17394 
17395 		insn_buf[0] = addr[0];
17396 		insn_buf[1] = addr[1];
17397 		insn_buf[2] = *insn;
17398 		*cnt = 3;
17399 	} else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] ||
17400 		   desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
17401 		insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1);
17402 		*cnt = 1;
17403 	} else if (desc->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
17404 		bool seen_direct_write = env->seen_direct_write;
17405 		bool is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE);
17406 
17407 		if (is_rdonly)
17408 			insn->imm = BPF_CALL_IMM(bpf_dynptr_from_skb_rdonly);
17409 
17410 		/* restore env->seen_direct_write to its original value, since
17411 		 * may_access_direct_pkt_data mutates it
17412 		 */
17413 		env->seen_direct_write = seen_direct_write;
17414 	}
17415 	return 0;
17416 }
17417 
17418 /* Do various post-verification rewrites in a single program pass.
17419  * These rewrites simplify JIT and interpreter implementations.
17420  */
17421 static int do_misc_fixups(struct bpf_verifier_env *env)
17422 {
17423 	struct bpf_prog *prog = env->prog;
17424 	enum bpf_attach_type eatype = prog->expected_attach_type;
17425 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
17426 	struct bpf_insn *insn = prog->insnsi;
17427 	const struct bpf_func_proto *fn;
17428 	const int insn_cnt = prog->len;
17429 	const struct bpf_map_ops *ops;
17430 	struct bpf_insn_aux_data *aux;
17431 	struct bpf_insn insn_buf[16];
17432 	struct bpf_prog *new_prog;
17433 	struct bpf_map *map_ptr;
17434 	int i, ret, cnt, delta = 0;
17435 
17436 	for (i = 0; i < insn_cnt; i++, insn++) {
17437 		/* Make divide-by-zero exceptions impossible. */
17438 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
17439 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
17440 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
17441 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
17442 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
17443 			bool isdiv = BPF_OP(insn->code) == BPF_DIV;
17444 			struct bpf_insn *patchlet;
17445 			struct bpf_insn chk_and_div[] = {
17446 				/* [R,W]x div 0 -> 0 */
17447 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
17448 					     BPF_JNE | BPF_K, insn->src_reg,
17449 					     0, 2, 0),
17450 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
17451 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
17452 				*insn,
17453 			};
17454 			struct bpf_insn chk_and_mod[] = {
17455 				/* [R,W]x mod 0 -> [R,W]x */
17456 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
17457 					     BPF_JEQ | BPF_K, insn->src_reg,
17458 					     0, 1 + (is64 ? 0 : 1), 0),
17459 				*insn,
17460 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
17461 				BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
17462 			};
17463 
17464 			patchlet = isdiv ? chk_and_div : chk_and_mod;
17465 			cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
17466 				      ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
17467 
17468 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
17469 			if (!new_prog)
17470 				return -ENOMEM;
17471 
17472 			delta    += cnt - 1;
17473 			env->prog = prog = new_prog;
17474 			insn      = new_prog->insnsi + i + delta;
17475 			continue;
17476 		}
17477 
17478 		/* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
17479 		if (BPF_CLASS(insn->code) == BPF_LD &&
17480 		    (BPF_MODE(insn->code) == BPF_ABS ||
17481 		     BPF_MODE(insn->code) == BPF_IND)) {
17482 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
17483 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
17484 				verbose(env, "bpf verifier is misconfigured\n");
17485 				return -EINVAL;
17486 			}
17487 
17488 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
17489 			if (!new_prog)
17490 				return -ENOMEM;
17491 
17492 			delta    += cnt - 1;
17493 			env->prog = prog = new_prog;
17494 			insn      = new_prog->insnsi + i + delta;
17495 			continue;
17496 		}
17497 
17498 		/* Rewrite pointer arithmetic to mitigate speculation attacks. */
17499 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
17500 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
17501 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
17502 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
17503 			struct bpf_insn *patch = &insn_buf[0];
17504 			bool issrc, isneg, isimm;
17505 			u32 off_reg;
17506 
17507 			aux = &env->insn_aux_data[i + delta];
17508 			if (!aux->alu_state ||
17509 			    aux->alu_state == BPF_ALU_NON_POINTER)
17510 				continue;
17511 
17512 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
17513 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
17514 				BPF_ALU_SANITIZE_SRC;
17515 			isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
17516 
17517 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
17518 			if (isimm) {
17519 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
17520 			} else {
17521 				if (isneg)
17522 					*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
17523 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
17524 				*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
17525 				*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
17526 				*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
17527 				*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
17528 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
17529 			}
17530 			if (!issrc)
17531 				*patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
17532 			insn->src_reg = BPF_REG_AX;
17533 			if (isneg)
17534 				insn->code = insn->code == code_add ?
17535 					     code_sub : code_add;
17536 			*patch++ = *insn;
17537 			if (issrc && isneg && !isimm)
17538 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
17539 			cnt = patch - insn_buf;
17540 
17541 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
17542 			if (!new_prog)
17543 				return -ENOMEM;
17544 
17545 			delta    += cnt - 1;
17546 			env->prog = prog = new_prog;
17547 			insn      = new_prog->insnsi + i + delta;
17548 			continue;
17549 		}
17550 
17551 		if (insn->code != (BPF_JMP | BPF_CALL))
17552 			continue;
17553 		if (insn->src_reg == BPF_PSEUDO_CALL)
17554 			continue;
17555 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
17556 			ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt);
17557 			if (ret)
17558 				return ret;
17559 			if (cnt == 0)
17560 				continue;
17561 
17562 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
17563 			if (!new_prog)
17564 				return -ENOMEM;
17565 
17566 			delta	 += cnt - 1;
17567 			env->prog = prog = new_prog;
17568 			insn	  = new_prog->insnsi + i + delta;
17569 			continue;
17570 		}
17571 
17572 		if (insn->imm == BPF_FUNC_get_route_realm)
17573 			prog->dst_needed = 1;
17574 		if (insn->imm == BPF_FUNC_get_prandom_u32)
17575 			bpf_user_rnd_init_once();
17576 		if (insn->imm == BPF_FUNC_override_return)
17577 			prog->kprobe_override = 1;
17578 		if (insn->imm == BPF_FUNC_tail_call) {
17579 			/* If we tail call into other programs, we
17580 			 * cannot make any assumptions since they can
17581 			 * be replaced dynamically during runtime in
17582 			 * the program array.
17583 			 */
17584 			prog->cb_access = 1;
17585 			if (!allow_tail_call_in_subprogs(env))
17586 				prog->aux->stack_depth = MAX_BPF_STACK;
17587 			prog->aux->max_pkt_offset = MAX_PACKET_OFF;
17588 
17589 			/* mark bpf_tail_call as different opcode to avoid
17590 			 * conditional branch in the interpreter for every normal
17591 			 * call and to prevent accidental JITing by JIT compiler
17592 			 * that doesn't support bpf_tail_call yet
17593 			 */
17594 			insn->imm = 0;
17595 			insn->code = BPF_JMP | BPF_TAIL_CALL;
17596 
17597 			aux = &env->insn_aux_data[i + delta];
17598 			if (env->bpf_capable && !prog->blinding_requested &&
17599 			    prog->jit_requested &&
17600 			    !bpf_map_key_poisoned(aux) &&
17601 			    !bpf_map_ptr_poisoned(aux) &&
17602 			    !bpf_map_ptr_unpriv(aux)) {
17603 				struct bpf_jit_poke_descriptor desc = {
17604 					.reason = BPF_POKE_REASON_TAIL_CALL,
17605 					.tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
17606 					.tail_call.key = bpf_map_key_immediate(aux),
17607 					.insn_idx = i + delta,
17608 				};
17609 
17610 				ret = bpf_jit_add_poke_descriptor(prog, &desc);
17611 				if (ret < 0) {
17612 					verbose(env, "adding tail call poke descriptor failed\n");
17613 					return ret;
17614 				}
17615 
17616 				insn->imm = ret + 1;
17617 				continue;
17618 			}
17619 
17620 			if (!bpf_map_ptr_unpriv(aux))
17621 				continue;
17622 
17623 			/* instead of changing every JIT dealing with tail_call
17624 			 * emit two extra insns:
17625 			 * if (index >= max_entries) goto out;
17626 			 * index &= array->index_mask;
17627 			 * to avoid out-of-bounds cpu speculation
17628 			 */
17629 			if (bpf_map_ptr_poisoned(aux)) {
17630 				verbose(env, "tail_call abusing map_ptr\n");
17631 				return -EINVAL;
17632 			}
17633 
17634 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
17635 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
17636 						  map_ptr->max_entries, 2);
17637 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
17638 						    container_of(map_ptr,
17639 								 struct bpf_array,
17640 								 map)->index_mask);
17641 			insn_buf[2] = *insn;
17642 			cnt = 3;
17643 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
17644 			if (!new_prog)
17645 				return -ENOMEM;
17646 
17647 			delta    += cnt - 1;
17648 			env->prog = prog = new_prog;
17649 			insn      = new_prog->insnsi + i + delta;
17650 			continue;
17651 		}
17652 
17653 		if (insn->imm == BPF_FUNC_timer_set_callback) {
17654 			/* The verifier will process callback_fn as many times as necessary
17655 			 * with different maps and the register states prepared by
17656 			 * set_timer_callback_state will be accurate.
17657 			 *
17658 			 * The following use case is valid:
17659 			 *   map1 is shared by prog1, prog2, prog3.
17660 			 *   prog1 calls bpf_timer_init for some map1 elements
17661 			 *   prog2 calls bpf_timer_set_callback for some map1 elements.
17662 			 *     Those that were not bpf_timer_init-ed will return -EINVAL.
17663 			 *   prog3 calls bpf_timer_start for some map1 elements.
17664 			 *     Those that were not both bpf_timer_init-ed and
17665 			 *     bpf_timer_set_callback-ed will return -EINVAL.
17666 			 */
17667 			struct bpf_insn ld_addrs[2] = {
17668 				BPF_LD_IMM64(BPF_REG_3, (long)prog->aux),
17669 			};
17670 
17671 			insn_buf[0] = ld_addrs[0];
17672 			insn_buf[1] = ld_addrs[1];
17673 			insn_buf[2] = *insn;
17674 			cnt = 3;
17675 
17676 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
17677 			if (!new_prog)
17678 				return -ENOMEM;
17679 
17680 			delta    += cnt - 1;
17681 			env->prog = prog = new_prog;
17682 			insn      = new_prog->insnsi + i + delta;
17683 			goto patch_call_imm;
17684 		}
17685 
17686 		if (is_storage_get_function(insn->imm)) {
17687 			if (!env->prog->aux->sleepable ||
17688 			    env->insn_aux_data[i + delta].storage_get_func_atomic)
17689 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC);
17690 			else
17691 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL);
17692 			insn_buf[1] = *insn;
17693 			cnt = 2;
17694 
17695 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
17696 			if (!new_prog)
17697 				return -ENOMEM;
17698 
17699 			delta += cnt - 1;
17700 			env->prog = prog = new_prog;
17701 			insn = new_prog->insnsi + i + delta;
17702 			goto patch_call_imm;
17703 		}
17704 
17705 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
17706 		 * and other inlining handlers are currently limited to 64 bit
17707 		 * only.
17708 		 */
17709 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
17710 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
17711 		     insn->imm == BPF_FUNC_map_update_elem ||
17712 		     insn->imm == BPF_FUNC_map_delete_elem ||
17713 		     insn->imm == BPF_FUNC_map_push_elem   ||
17714 		     insn->imm == BPF_FUNC_map_pop_elem    ||
17715 		     insn->imm == BPF_FUNC_map_peek_elem   ||
17716 		     insn->imm == BPF_FUNC_redirect_map    ||
17717 		     insn->imm == BPF_FUNC_for_each_map_elem ||
17718 		     insn->imm == BPF_FUNC_map_lookup_percpu_elem)) {
17719 			aux = &env->insn_aux_data[i + delta];
17720 			if (bpf_map_ptr_poisoned(aux))
17721 				goto patch_call_imm;
17722 
17723 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
17724 			ops = map_ptr->ops;
17725 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
17726 			    ops->map_gen_lookup) {
17727 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
17728 				if (cnt == -EOPNOTSUPP)
17729 					goto patch_map_ops_generic;
17730 				if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
17731 					verbose(env, "bpf verifier is misconfigured\n");
17732 					return -EINVAL;
17733 				}
17734 
17735 				new_prog = bpf_patch_insn_data(env, i + delta,
17736 							       insn_buf, cnt);
17737 				if (!new_prog)
17738 					return -ENOMEM;
17739 
17740 				delta    += cnt - 1;
17741 				env->prog = prog = new_prog;
17742 				insn      = new_prog->insnsi + i + delta;
17743 				continue;
17744 			}
17745 
17746 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
17747 				     (void *(*)(struct bpf_map *map, void *key))NULL));
17748 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
17749 				     (long (*)(struct bpf_map *map, void *key))NULL));
17750 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
17751 				     (long (*)(struct bpf_map *map, void *key, void *value,
17752 					      u64 flags))NULL));
17753 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
17754 				     (long (*)(struct bpf_map *map, void *value,
17755 					      u64 flags))NULL));
17756 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
17757 				     (long (*)(struct bpf_map *map, void *value))NULL));
17758 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
17759 				     (long (*)(struct bpf_map *map, void *value))NULL));
17760 			BUILD_BUG_ON(!__same_type(ops->map_redirect,
17761 				     (long (*)(struct bpf_map *map, u64 index, u64 flags))NULL));
17762 			BUILD_BUG_ON(!__same_type(ops->map_for_each_callback,
17763 				     (long (*)(struct bpf_map *map,
17764 					      bpf_callback_t callback_fn,
17765 					      void *callback_ctx,
17766 					      u64 flags))NULL));
17767 			BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem,
17768 				     (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL));
17769 
17770 patch_map_ops_generic:
17771 			switch (insn->imm) {
17772 			case BPF_FUNC_map_lookup_elem:
17773 				insn->imm = BPF_CALL_IMM(ops->map_lookup_elem);
17774 				continue;
17775 			case BPF_FUNC_map_update_elem:
17776 				insn->imm = BPF_CALL_IMM(ops->map_update_elem);
17777 				continue;
17778 			case BPF_FUNC_map_delete_elem:
17779 				insn->imm = BPF_CALL_IMM(ops->map_delete_elem);
17780 				continue;
17781 			case BPF_FUNC_map_push_elem:
17782 				insn->imm = BPF_CALL_IMM(ops->map_push_elem);
17783 				continue;
17784 			case BPF_FUNC_map_pop_elem:
17785 				insn->imm = BPF_CALL_IMM(ops->map_pop_elem);
17786 				continue;
17787 			case BPF_FUNC_map_peek_elem:
17788 				insn->imm = BPF_CALL_IMM(ops->map_peek_elem);
17789 				continue;
17790 			case BPF_FUNC_redirect_map:
17791 				insn->imm = BPF_CALL_IMM(ops->map_redirect);
17792 				continue;
17793 			case BPF_FUNC_for_each_map_elem:
17794 				insn->imm = BPF_CALL_IMM(ops->map_for_each_callback);
17795 				continue;
17796 			case BPF_FUNC_map_lookup_percpu_elem:
17797 				insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem);
17798 				continue;
17799 			}
17800 
17801 			goto patch_call_imm;
17802 		}
17803 
17804 		/* Implement bpf_jiffies64 inline. */
17805 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
17806 		    insn->imm == BPF_FUNC_jiffies64) {
17807 			struct bpf_insn ld_jiffies_addr[2] = {
17808 				BPF_LD_IMM64(BPF_REG_0,
17809 					     (unsigned long)&jiffies),
17810 			};
17811 
17812 			insn_buf[0] = ld_jiffies_addr[0];
17813 			insn_buf[1] = ld_jiffies_addr[1];
17814 			insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
17815 						  BPF_REG_0, 0);
17816 			cnt = 3;
17817 
17818 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
17819 						       cnt);
17820 			if (!new_prog)
17821 				return -ENOMEM;
17822 
17823 			delta    += cnt - 1;
17824 			env->prog = prog = new_prog;
17825 			insn      = new_prog->insnsi + i + delta;
17826 			continue;
17827 		}
17828 
17829 		/* Implement bpf_get_func_arg inline. */
17830 		if (prog_type == BPF_PROG_TYPE_TRACING &&
17831 		    insn->imm == BPF_FUNC_get_func_arg) {
17832 			/* Load nr_args from ctx - 8 */
17833 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
17834 			insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6);
17835 			insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3);
17836 			insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1);
17837 			insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0);
17838 			insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
17839 			insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0);
17840 			insn_buf[7] = BPF_JMP_A(1);
17841 			insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL);
17842 			cnt = 9;
17843 
17844 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
17845 			if (!new_prog)
17846 				return -ENOMEM;
17847 
17848 			delta    += cnt - 1;
17849 			env->prog = prog = new_prog;
17850 			insn      = new_prog->insnsi + i + delta;
17851 			continue;
17852 		}
17853 
17854 		/* Implement bpf_get_func_ret inline. */
17855 		if (prog_type == BPF_PROG_TYPE_TRACING &&
17856 		    insn->imm == BPF_FUNC_get_func_ret) {
17857 			if (eatype == BPF_TRACE_FEXIT ||
17858 			    eatype == BPF_MODIFY_RETURN) {
17859 				/* Load nr_args from ctx - 8 */
17860 				insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
17861 				insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3);
17862 				insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1);
17863 				insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
17864 				insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0);
17865 				insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0);
17866 				cnt = 6;
17867 			} else {
17868 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP);
17869 				cnt = 1;
17870 			}
17871 
17872 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
17873 			if (!new_prog)
17874 				return -ENOMEM;
17875 
17876 			delta    += cnt - 1;
17877 			env->prog = prog = new_prog;
17878 			insn      = new_prog->insnsi + i + delta;
17879 			continue;
17880 		}
17881 
17882 		/* Implement get_func_arg_cnt inline. */
17883 		if (prog_type == BPF_PROG_TYPE_TRACING &&
17884 		    insn->imm == BPF_FUNC_get_func_arg_cnt) {
17885 			/* Load nr_args from ctx - 8 */
17886 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
17887 
17888 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
17889 			if (!new_prog)
17890 				return -ENOMEM;
17891 
17892 			env->prog = prog = new_prog;
17893 			insn      = new_prog->insnsi + i + delta;
17894 			continue;
17895 		}
17896 
17897 		/* Implement bpf_get_func_ip inline. */
17898 		if (prog_type == BPF_PROG_TYPE_TRACING &&
17899 		    insn->imm == BPF_FUNC_get_func_ip) {
17900 			/* Load IP address from ctx - 16 */
17901 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16);
17902 
17903 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
17904 			if (!new_prog)
17905 				return -ENOMEM;
17906 
17907 			env->prog = prog = new_prog;
17908 			insn      = new_prog->insnsi + i + delta;
17909 			continue;
17910 		}
17911 
17912 patch_call_imm:
17913 		fn = env->ops->get_func_proto(insn->imm, env->prog);
17914 		/* all functions that have prototype and verifier allowed
17915 		 * programs to call them, must be real in-kernel functions
17916 		 */
17917 		if (!fn->func) {
17918 			verbose(env,
17919 				"kernel subsystem misconfigured func %s#%d\n",
17920 				func_id_name(insn->imm), insn->imm);
17921 			return -EFAULT;
17922 		}
17923 		insn->imm = fn->func - __bpf_call_base;
17924 	}
17925 
17926 	/* Since poke tab is now finalized, publish aux to tracker. */
17927 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
17928 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
17929 		if (!map_ptr->ops->map_poke_track ||
17930 		    !map_ptr->ops->map_poke_untrack ||
17931 		    !map_ptr->ops->map_poke_run) {
17932 			verbose(env, "bpf verifier is misconfigured\n");
17933 			return -EINVAL;
17934 		}
17935 
17936 		ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
17937 		if (ret < 0) {
17938 			verbose(env, "tracking tail call prog failed\n");
17939 			return ret;
17940 		}
17941 	}
17942 
17943 	sort_kfunc_descs_by_imm(env->prog);
17944 
17945 	return 0;
17946 }
17947 
17948 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env,
17949 					int position,
17950 					s32 stack_base,
17951 					u32 callback_subprogno,
17952 					u32 *cnt)
17953 {
17954 	s32 r6_offset = stack_base + 0 * BPF_REG_SIZE;
17955 	s32 r7_offset = stack_base + 1 * BPF_REG_SIZE;
17956 	s32 r8_offset = stack_base + 2 * BPF_REG_SIZE;
17957 	int reg_loop_max = BPF_REG_6;
17958 	int reg_loop_cnt = BPF_REG_7;
17959 	int reg_loop_ctx = BPF_REG_8;
17960 
17961 	struct bpf_prog *new_prog;
17962 	u32 callback_start;
17963 	u32 call_insn_offset;
17964 	s32 callback_offset;
17965 
17966 	/* This represents an inlined version of bpf_iter.c:bpf_loop,
17967 	 * be careful to modify this code in sync.
17968 	 */
17969 	struct bpf_insn insn_buf[] = {
17970 		/* Return error and jump to the end of the patch if
17971 		 * expected number of iterations is too big.
17972 		 */
17973 		BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2),
17974 		BPF_MOV32_IMM(BPF_REG_0, -E2BIG),
17975 		BPF_JMP_IMM(BPF_JA, 0, 0, 16),
17976 		/* spill R6, R7, R8 to use these as loop vars */
17977 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset),
17978 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset),
17979 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset),
17980 		/* initialize loop vars */
17981 		BPF_MOV64_REG(reg_loop_max, BPF_REG_1),
17982 		BPF_MOV32_IMM(reg_loop_cnt, 0),
17983 		BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3),
17984 		/* loop header,
17985 		 * if reg_loop_cnt >= reg_loop_max skip the loop body
17986 		 */
17987 		BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5),
17988 		/* callback call,
17989 		 * correct callback offset would be set after patching
17990 		 */
17991 		BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt),
17992 		BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx),
17993 		BPF_CALL_REL(0),
17994 		/* increment loop counter */
17995 		BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1),
17996 		/* jump to loop header if callback returned 0 */
17997 		BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6),
17998 		/* return value of bpf_loop,
17999 		 * set R0 to the number of iterations
18000 		 */
18001 		BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt),
18002 		/* restore original values of R6, R7, R8 */
18003 		BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset),
18004 		BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset),
18005 		BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset),
18006 	};
18007 
18008 	*cnt = ARRAY_SIZE(insn_buf);
18009 	new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt);
18010 	if (!new_prog)
18011 		return new_prog;
18012 
18013 	/* callback start is known only after patching */
18014 	callback_start = env->subprog_info[callback_subprogno].start;
18015 	/* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */
18016 	call_insn_offset = position + 12;
18017 	callback_offset = callback_start - call_insn_offset - 1;
18018 	new_prog->insnsi[call_insn_offset].imm = callback_offset;
18019 
18020 	return new_prog;
18021 }
18022 
18023 static bool is_bpf_loop_call(struct bpf_insn *insn)
18024 {
18025 	return insn->code == (BPF_JMP | BPF_CALL) &&
18026 		insn->src_reg == 0 &&
18027 		insn->imm == BPF_FUNC_loop;
18028 }
18029 
18030 /* For all sub-programs in the program (including main) check
18031  * insn_aux_data to see if there are bpf_loop calls that require
18032  * inlining. If such calls are found the calls are replaced with a
18033  * sequence of instructions produced by `inline_bpf_loop` function and
18034  * subprog stack_depth is increased by the size of 3 registers.
18035  * This stack space is used to spill values of the R6, R7, R8.  These
18036  * registers are used to store the loop bound, counter and context
18037  * variables.
18038  */
18039 static int optimize_bpf_loop(struct bpf_verifier_env *env)
18040 {
18041 	struct bpf_subprog_info *subprogs = env->subprog_info;
18042 	int i, cur_subprog = 0, cnt, delta = 0;
18043 	struct bpf_insn *insn = env->prog->insnsi;
18044 	int insn_cnt = env->prog->len;
18045 	u16 stack_depth = subprogs[cur_subprog].stack_depth;
18046 	u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
18047 	u16 stack_depth_extra = 0;
18048 
18049 	for (i = 0; i < insn_cnt; i++, insn++) {
18050 		struct bpf_loop_inline_state *inline_state =
18051 			&env->insn_aux_data[i + delta].loop_inline_state;
18052 
18053 		if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) {
18054 			struct bpf_prog *new_prog;
18055 
18056 			stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup;
18057 			new_prog = inline_bpf_loop(env,
18058 						   i + delta,
18059 						   -(stack_depth + stack_depth_extra),
18060 						   inline_state->callback_subprogno,
18061 						   &cnt);
18062 			if (!new_prog)
18063 				return -ENOMEM;
18064 
18065 			delta     += cnt - 1;
18066 			env->prog  = new_prog;
18067 			insn       = new_prog->insnsi + i + delta;
18068 		}
18069 
18070 		if (subprogs[cur_subprog + 1].start == i + delta + 1) {
18071 			subprogs[cur_subprog].stack_depth += stack_depth_extra;
18072 			cur_subprog++;
18073 			stack_depth = subprogs[cur_subprog].stack_depth;
18074 			stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
18075 			stack_depth_extra = 0;
18076 		}
18077 	}
18078 
18079 	env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
18080 
18081 	return 0;
18082 }
18083 
18084 static void free_states(struct bpf_verifier_env *env)
18085 {
18086 	struct bpf_verifier_state_list *sl, *sln;
18087 	int i;
18088 
18089 	sl = env->free_list;
18090 	while (sl) {
18091 		sln = sl->next;
18092 		free_verifier_state(&sl->state, false);
18093 		kfree(sl);
18094 		sl = sln;
18095 	}
18096 	env->free_list = NULL;
18097 
18098 	if (!env->explored_states)
18099 		return;
18100 
18101 	for (i = 0; i < state_htab_size(env); i++) {
18102 		sl = env->explored_states[i];
18103 
18104 		while (sl) {
18105 			sln = sl->next;
18106 			free_verifier_state(&sl->state, false);
18107 			kfree(sl);
18108 			sl = sln;
18109 		}
18110 		env->explored_states[i] = NULL;
18111 	}
18112 }
18113 
18114 static int do_check_common(struct bpf_verifier_env *env, int subprog)
18115 {
18116 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
18117 	struct bpf_verifier_state *state;
18118 	struct bpf_reg_state *regs;
18119 	int ret, i;
18120 
18121 	env->prev_linfo = NULL;
18122 	env->pass_cnt++;
18123 
18124 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
18125 	if (!state)
18126 		return -ENOMEM;
18127 	state->curframe = 0;
18128 	state->speculative = false;
18129 	state->branches = 1;
18130 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
18131 	if (!state->frame[0]) {
18132 		kfree(state);
18133 		return -ENOMEM;
18134 	}
18135 	env->cur_state = state;
18136 	init_func_state(env, state->frame[0],
18137 			BPF_MAIN_FUNC /* callsite */,
18138 			0 /* frameno */,
18139 			subprog);
18140 	state->first_insn_idx = env->subprog_info[subprog].start;
18141 	state->last_insn_idx = -1;
18142 
18143 	regs = state->frame[state->curframe]->regs;
18144 	if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
18145 		ret = btf_prepare_func_args(env, subprog, regs);
18146 		if (ret)
18147 			goto out;
18148 		for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
18149 			if (regs[i].type == PTR_TO_CTX)
18150 				mark_reg_known_zero(env, regs, i);
18151 			else if (regs[i].type == SCALAR_VALUE)
18152 				mark_reg_unknown(env, regs, i);
18153 			else if (base_type(regs[i].type) == PTR_TO_MEM) {
18154 				const u32 mem_size = regs[i].mem_size;
18155 
18156 				mark_reg_known_zero(env, regs, i);
18157 				regs[i].mem_size = mem_size;
18158 				regs[i].id = ++env->id_gen;
18159 			}
18160 		}
18161 	} else {
18162 		/* 1st arg to a function */
18163 		regs[BPF_REG_1].type = PTR_TO_CTX;
18164 		mark_reg_known_zero(env, regs, BPF_REG_1);
18165 		ret = btf_check_subprog_arg_match(env, subprog, regs);
18166 		if (ret == -EFAULT)
18167 			/* unlikely verifier bug. abort.
18168 			 * ret == 0 and ret < 0 are sadly acceptable for
18169 			 * main() function due to backward compatibility.
18170 			 * Like socket filter program may be written as:
18171 			 * int bpf_prog(struct pt_regs *ctx)
18172 			 * and never dereference that ctx in the program.
18173 			 * 'struct pt_regs' is a type mismatch for socket
18174 			 * filter that should be using 'struct __sk_buff'.
18175 			 */
18176 			goto out;
18177 	}
18178 
18179 	ret = do_check(env);
18180 out:
18181 	/* check for NULL is necessary, since cur_state can be freed inside
18182 	 * do_check() under memory pressure.
18183 	 */
18184 	if (env->cur_state) {
18185 		free_verifier_state(env->cur_state, true);
18186 		env->cur_state = NULL;
18187 	}
18188 	while (!pop_stack(env, NULL, NULL, false));
18189 	if (!ret && pop_log)
18190 		bpf_vlog_reset(&env->log, 0);
18191 	free_states(env);
18192 	return ret;
18193 }
18194 
18195 /* Verify all global functions in a BPF program one by one based on their BTF.
18196  * All global functions must pass verification. Otherwise the whole program is rejected.
18197  * Consider:
18198  * int bar(int);
18199  * int foo(int f)
18200  * {
18201  *    return bar(f);
18202  * }
18203  * int bar(int b)
18204  * {
18205  *    ...
18206  * }
18207  * foo() will be verified first for R1=any_scalar_value. During verification it
18208  * will be assumed that bar() already verified successfully and call to bar()
18209  * from foo() will be checked for type match only. Later bar() will be verified
18210  * independently to check that it's safe for R1=any_scalar_value.
18211  */
18212 static int do_check_subprogs(struct bpf_verifier_env *env)
18213 {
18214 	struct bpf_prog_aux *aux = env->prog->aux;
18215 	int i, ret;
18216 
18217 	if (!aux->func_info)
18218 		return 0;
18219 
18220 	for (i = 1; i < env->subprog_cnt; i++) {
18221 		if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
18222 			continue;
18223 		env->insn_idx = env->subprog_info[i].start;
18224 		WARN_ON_ONCE(env->insn_idx == 0);
18225 		ret = do_check_common(env, i);
18226 		if (ret) {
18227 			return ret;
18228 		} else if (env->log.level & BPF_LOG_LEVEL) {
18229 			verbose(env,
18230 				"Func#%d is safe for any args that match its prototype\n",
18231 				i);
18232 		}
18233 	}
18234 	return 0;
18235 }
18236 
18237 static int do_check_main(struct bpf_verifier_env *env)
18238 {
18239 	int ret;
18240 
18241 	env->insn_idx = 0;
18242 	ret = do_check_common(env, 0);
18243 	if (!ret)
18244 		env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
18245 	return ret;
18246 }
18247 
18248 
18249 static void print_verification_stats(struct bpf_verifier_env *env)
18250 {
18251 	int i;
18252 
18253 	if (env->log.level & BPF_LOG_STATS) {
18254 		verbose(env, "verification time %lld usec\n",
18255 			div_u64(env->verification_time, 1000));
18256 		verbose(env, "stack depth ");
18257 		for (i = 0; i < env->subprog_cnt; i++) {
18258 			u32 depth = env->subprog_info[i].stack_depth;
18259 
18260 			verbose(env, "%d", depth);
18261 			if (i + 1 < env->subprog_cnt)
18262 				verbose(env, "+");
18263 		}
18264 		verbose(env, "\n");
18265 	}
18266 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
18267 		"total_states %d peak_states %d mark_read %d\n",
18268 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
18269 		env->max_states_per_insn, env->total_states,
18270 		env->peak_states, env->longest_mark_read_walk);
18271 }
18272 
18273 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
18274 {
18275 	const struct btf_type *t, *func_proto;
18276 	const struct bpf_struct_ops *st_ops;
18277 	const struct btf_member *member;
18278 	struct bpf_prog *prog = env->prog;
18279 	u32 btf_id, member_idx;
18280 	const char *mname;
18281 
18282 	if (!prog->gpl_compatible) {
18283 		verbose(env, "struct ops programs must have a GPL compatible license\n");
18284 		return -EINVAL;
18285 	}
18286 
18287 	btf_id = prog->aux->attach_btf_id;
18288 	st_ops = bpf_struct_ops_find(btf_id);
18289 	if (!st_ops) {
18290 		verbose(env, "attach_btf_id %u is not a supported struct\n",
18291 			btf_id);
18292 		return -ENOTSUPP;
18293 	}
18294 
18295 	t = st_ops->type;
18296 	member_idx = prog->expected_attach_type;
18297 	if (member_idx >= btf_type_vlen(t)) {
18298 		verbose(env, "attach to invalid member idx %u of struct %s\n",
18299 			member_idx, st_ops->name);
18300 		return -EINVAL;
18301 	}
18302 
18303 	member = &btf_type_member(t)[member_idx];
18304 	mname = btf_name_by_offset(btf_vmlinux, member->name_off);
18305 	func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
18306 					       NULL);
18307 	if (!func_proto) {
18308 		verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
18309 			mname, member_idx, st_ops->name);
18310 		return -EINVAL;
18311 	}
18312 
18313 	if (st_ops->check_member) {
18314 		int err = st_ops->check_member(t, member, prog);
18315 
18316 		if (err) {
18317 			verbose(env, "attach to unsupported member %s of struct %s\n",
18318 				mname, st_ops->name);
18319 			return err;
18320 		}
18321 	}
18322 
18323 	prog->aux->attach_func_proto = func_proto;
18324 	prog->aux->attach_func_name = mname;
18325 	env->ops = st_ops->verifier_ops;
18326 
18327 	return 0;
18328 }
18329 #define SECURITY_PREFIX "security_"
18330 
18331 static int check_attach_modify_return(unsigned long addr, const char *func_name)
18332 {
18333 	if (within_error_injection_list(addr) ||
18334 	    !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
18335 		return 0;
18336 
18337 	return -EINVAL;
18338 }
18339 
18340 /* list of non-sleepable functions that are otherwise on
18341  * ALLOW_ERROR_INJECTION list
18342  */
18343 BTF_SET_START(btf_non_sleepable_error_inject)
18344 /* Three functions below can be called from sleepable and non-sleepable context.
18345  * Assume non-sleepable from bpf safety point of view.
18346  */
18347 BTF_ID(func, __filemap_add_folio)
18348 BTF_ID(func, should_fail_alloc_page)
18349 BTF_ID(func, should_failslab)
18350 BTF_SET_END(btf_non_sleepable_error_inject)
18351 
18352 static int check_non_sleepable_error_inject(u32 btf_id)
18353 {
18354 	return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
18355 }
18356 
18357 int bpf_check_attach_target(struct bpf_verifier_log *log,
18358 			    const struct bpf_prog *prog,
18359 			    const struct bpf_prog *tgt_prog,
18360 			    u32 btf_id,
18361 			    struct bpf_attach_target_info *tgt_info)
18362 {
18363 	bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
18364 	const char prefix[] = "btf_trace_";
18365 	int ret = 0, subprog = -1, i;
18366 	const struct btf_type *t;
18367 	bool conservative = true;
18368 	const char *tname;
18369 	struct btf *btf;
18370 	long addr = 0;
18371 	struct module *mod = NULL;
18372 
18373 	if (!btf_id) {
18374 		bpf_log(log, "Tracing programs must provide btf_id\n");
18375 		return -EINVAL;
18376 	}
18377 	btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
18378 	if (!btf) {
18379 		bpf_log(log,
18380 			"FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
18381 		return -EINVAL;
18382 	}
18383 	t = btf_type_by_id(btf, btf_id);
18384 	if (!t) {
18385 		bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
18386 		return -EINVAL;
18387 	}
18388 	tname = btf_name_by_offset(btf, t->name_off);
18389 	if (!tname) {
18390 		bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
18391 		return -EINVAL;
18392 	}
18393 	if (tgt_prog) {
18394 		struct bpf_prog_aux *aux = tgt_prog->aux;
18395 
18396 		if (bpf_prog_is_dev_bound(prog->aux) &&
18397 		    !bpf_prog_dev_bound_match(prog, tgt_prog)) {
18398 			bpf_log(log, "Target program bound device mismatch");
18399 			return -EINVAL;
18400 		}
18401 
18402 		for (i = 0; i < aux->func_info_cnt; i++)
18403 			if (aux->func_info[i].type_id == btf_id) {
18404 				subprog = i;
18405 				break;
18406 			}
18407 		if (subprog == -1) {
18408 			bpf_log(log, "Subprog %s doesn't exist\n", tname);
18409 			return -EINVAL;
18410 		}
18411 		conservative = aux->func_info_aux[subprog].unreliable;
18412 		if (prog_extension) {
18413 			if (conservative) {
18414 				bpf_log(log,
18415 					"Cannot replace static functions\n");
18416 				return -EINVAL;
18417 			}
18418 			if (!prog->jit_requested) {
18419 				bpf_log(log,
18420 					"Extension programs should be JITed\n");
18421 				return -EINVAL;
18422 			}
18423 		}
18424 		if (!tgt_prog->jited) {
18425 			bpf_log(log, "Can attach to only JITed progs\n");
18426 			return -EINVAL;
18427 		}
18428 		if (tgt_prog->type == prog->type) {
18429 			/* Cannot fentry/fexit another fentry/fexit program.
18430 			 * Cannot attach program extension to another extension.
18431 			 * It's ok to attach fentry/fexit to extension program.
18432 			 */
18433 			bpf_log(log, "Cannot recursively attach\n");
18434 			return -EINVAL;
18435 		}
18436 		if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
18437 		    prog_extension &&
18438 		    (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
18439 		     tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
18440 			/* Program extensions can extend all program types
18441 			 * except fentry/fexit. The reason is the following.
18442 			 * The fentry/fexit programs are used for performance
18443 			 * analysis, stats and can be attached to any program
18444 			 * type except themselves. When extension program is
18445 			 * replacing XDP function it is necessary to allow
18446 			 * performance analysis of all functions. Both original
18447 			 * XDP program and its program extension. Hence
18448 			 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
18449 			 * allowed. If extending of fentry/fexit was allowed it
18450 			 * would be possible to create long call chain
18451 			 * fentry->extension->fentry->extension beyond
18452 			 * reasonable stack size. Hence extending fentry is not
18453 			 * allowed.
18454 			 */
18455 			bpf_log(log, "Cannot extend fentry/fexit\n");
18456 			return -EINVAL;
18457 		}
18458 	} else {
18459 		if (prog_extension) {
18460 			bpf_log(log, "Cannot replace kernel functions\n");
18461 			return -EINVAL;
18462 		}
18463 	}
18464 
18465 	switch (prog->expected_attach_type) {
18466 	case BPF_TRACE_RAW_TP:
18467 		if (tgt_prog) {
18468 			bpf_log(log,
18469 				"Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
18470 			return -EINVAL;
18471 		}
18472 		if (!btf_type_is_typedef(t)) {
18473 			bpf_log(log, "attach_btf_id %u is not a typedef\n",
18474 				btf_id);
18475 			return -EINVAL;
18476 		}
18477 		if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
18478 			bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
18479 				btf_id, tname);
18480 			return -EINVAL;
18481 		}
18482 		tname += sizeof(prefix) - 1;
18483 		t = btf_type_by_id(btf, t->type);
18484 		if (!btf_type_is_ptr(t))
18485 			/* should never happen in valid vmlinux build */
18486 			return -EINVAL;
18487 		t = btf_type_by_id(btf, t->type);
18488 		if (!btf_type_is_func_proto(t))
18489 			/* should never happen in valid vmlinux build */
18490 			return -EINVAL;
18491 
18492 		break;
18493 	case BPF_TRACE_ITER:
18494 		if (!btf_type_is_func(t)) {
18495 			bpf_log(log, "attach_btf_id %u is not a function\n",
18496 				btf_id);
18497 			return -EINVAL;
18498 		}
18499 		t = btf_type_by_id(btf, t->type);
18500 		if (!btf_type_is_func_proto(t))
18501 			return -EINVAL;
18502 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
18503 		if (ret)
18504 			return ret;
18505 		break;
18506 	default:
18507 		if (!prog_extension)
18508 			return -EINVAL;
18509 		fallthrough;
18510 	case BPF_MODIFY_RETURN:
18511 	case BPF_LSM_MAC:
18512 	case BPF_LSM_CGROUP:
18513 	case BPF_TRACE_FENTRY:
18514 	case BPF_TRACE_FEXIT:
18515 		if (!btf_type_is_func(t)) {
18516 			bpf_log(log, "attach_btf_id %u is not a function\n",
18517 				btf_id);
18518 			return -EINVAL;
18519 		}
18520 		if (prog_extension &&
18521 		    btf_check_type_match(log, prog, btf, t))
18522 			return -EINVAL;
18523 		t = btf_type_by_id(btf, t->type);
18524 		if (!btf_type_is_func_proto(t))
18525 			return -EINVAL;
18526 
18527 		if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
18528 		    (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
18529 		     prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
18530 			return -EINVAL;
18531 
18532 		if (tgt_prog && conservative)
18533 			t = NULL;
18534 
18535 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
18536 		if (ret < 0)
18537 			return ret;
18538 
18539 		if (tgt_prog) {
18540 			if (subprog == 0)
18541 				addr = (long) tgt_prog->bpf_func;
18542 			else
18543 				addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
18544 		} else {
18545 			if (btf_is_module(btf)) {
18546 				mod = btf_try_get_module(btf);
18547 				if (mod)
18548 					addr = find_kallsyms_symbol_value(mod, tname);
18549 				else
18550 					addr = 0;
18551 			} else {
18552 				addr = kallsyms_lookup_name(tname);
18553 			}
18554 			if (!addr) {
18555 				module_put(mod);
18556 				bpf_log(log,
18557 					"The address of function %s cannot be found\n",
18558 					tname);
18559 				return -ENOENT;
18560 			}
18561 		}
18562 
18563 		if (prog->aux->sleepable) {
18564 			ret = -EINVAL;
18565 			switch (prog->type) {
18566 			case BPF_PROG_TYPE_TRACING:
18567 
18568 				/* fentry/fexit/fmod_ret progs can be sleepable if they are
18569 				 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
18570 				 */
18571 				if (!check_non_sleepable_error_inject(btf_id) &&
18572 				    within_error_injection_list(addr))
18573 					ret = 0;
18574 				/* fentry/fexit/fmod_ret progs can also be sleepable if they are
18575 				 * in the fmodret id set with the KF_SLEEPABLE flag.
18576 				 */
18577 				else {
18578 					u32 *flags = btf_kfunc_is_modify_return(btf, btf_id);
18579 
18580 					if (flags && (*flags & KF_SLEEPABLE))
18581 						ret = 0;
18582 				}
18583 				break;
18584 			case BPF_PROG_TYPE_LSM:
18585 				/* LSM progs check that they are attached to bpf_lsm_*() funcs.
18586 				 * Only some of them are sleepable.
18587 				 */
18588 				if (bpf_lsm_is_sleepable_hook(btf_id))
18589 					ret = 0;
18590 				break;
18591 			default:
18592 				break;
18593 			}
18594 			if (ret) {
18595 				module_put(mod);
18596 				bpf_log(log, "%s is not sleepable\n", tname);
18597 				return ret;
18598 			}
18599 		} else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
18600 			if (tgt_prog) {
18601 				module_put(mod);
18602 				bpf_log(log, "can't modify return codes of BPF programs\n");
18603 				return -EINVAL;
18604 			}
18605 			ret = -EINVAL;
18606 			if (btf_kfunc_is_modify_return(btf, btf_id) ||
18607 			    !check_attach_modify_return(addr, tname))
18608 				ret = 0;
18609 			if (ret) {
18610 				module_put(mod);
18611 				bpf_log(log, "%s() is not modifiable\n", tname);
18612 				return ret;
18613 			}
18614 		}
18615 
18616 		break;
18617 	}
18618 	tgt_info->tgt_addr = addr;
18619 	tgt_info->tgt_name = tname;
18620 	tgt_info->tgt_type = t;
18621 	tgt_info->tgt_mod = mod;
18622 	return 0;
18623 }
18624 
18625 BTF_SET_START(btf_id_deny)
18626 BTF_ID_UNUSED
18627 #ifdef CONFIG_SMP
18628 BTF_ID(func, migrate_disable)
18629 BTF_ID(func, migrate_enable)
18630 #endif
18631 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
18632 BTF_ID(func, rcu_read_unlock_strict)
18633 #endif
18634 BTF_SET_END(btf_id_deny)
18635 
18636 static bool can_be_sleepable(struct bpf_prog *prog)
18637 {
18638 	if (prog->type == BPF_PROG_TYPE_TRACING) {
18639 		switch (prog->expected_attach_type) {
18640 		case BPF_TRACE_FENTRY:
18641 		case BPF_TRACE_FEXIT:
18642 		case BPF_MODIFY_RETURN:
18643 		case BPF_TRACE_ITER:
18644 			return true;
18645 		default:
18646 			return false;
18647 		}
18648 	}
18649 	return prog->type == BPF_PROG_TYPE_LSM ||
18650 	       prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ ||
18651 	       prog->type == BPF_PROG_TYPE_STRUCT_OPS;
18652 }
18653 
18654 static int check_attach_btf_id(struct bpf_verifier_env *env)
18655 {
18656 	struct bpf_prog *prog = env->prog;
18657 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
18658 	struct bpf_attach_target_info tgt_info = {};
18659 	u32 btf_id = prog->aux->attach_btf_id;
18660 	struct bpf_trampoline *tr;
18661 	int ret;
18662 	u64 key;
18663 
18664 	if (prog->type == BPF_PROG_TYPE_SYSCALL) {
18665 		if (prog->aux->sleepable)
18666 			/* attach_btf_id checked to be zero already */
18667 			return 0;
18668 		verbose(env, "Syscall programs can only be sleepable\n");
18669 		return -EINVAL;
18670 	}
18671 
18672 	if (prog->aux->sleepable && !can_be_sleepable(prog)) {
18673 		verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n");
18674 		return -EINVAL;
18675 	}
18676 
18677 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
18678 		return check_struct_ops_btf_id(env);
18679 
18680 	if (prog->type != BPF_PROG_TYPE_TRACING &&
18681 	    prog->type != BPF_PROG_TYPE_LSM &&
18682 	    prog->type != BPF_PROG_TYPE_EXT)
18683 		return 0;
18684 
18685 	ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
18686 	if (ret)
18687 		return ret;
18688 
18689 	if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
18690 		/* to make freplace equivalent to their targets, they need to
18691 		 * inherit env->ops and expected_attach_type for the rest of the
18692 		 * verification
18693 		 */
18694 		env->ops = bpf_verifier_ops[tgt_prog->type];
18695 		prog->expected_attach_type = tgt_prog->expected_attach_type;
18696 	}
18697 
18698 	/* store info about the attachment target that will be used later */
18699 	prog->aux->attach_func_proto = tgt_info.tgt_type;
18700 	prog->aux->attach_func_name = tgt_info.tgt_name;
18701 	prog->aux->mod = tgt_info.tgt_mod;
18702 
18703 	if (tgt_prog) {
18704 		prog->aux->saved_dst_prog_type = tgt_prog->type;
18705 		prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
18706 	}
18707 
18708 	if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
18709 		prog->aux->attach_btf_trace = true;
18710 		return 0;
18711 	} else if (prog->expected_attach_type == BPF_TRACE_ITER) {
18712 		if (!bpf_iter_prog_supported(prog))
18713 			return -EINVAL;
18714 		return 0;
18715 	}
18716 
18717 	if (prog->type == BPF_PROG_TYPE_LSM) {
18718 		ret = bpf_lsm_verify_prog(&env->log, prog);
18719 		if (ret < 0)
18720 			return ret;
18721 	} else if (prog->type == BPF_PROG_TYPE_TRACING &&
18722 		   btf_id_set_contains(&btf_id_deny, btf_id)) {
18723 		return -EINVAL;
18724 	}
18725 
18726 	key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
18727 	tr = bpf_trampoline_get(key, &tgt_info);
18728 	if (!tr)
18729 		return -ENOMEM;
18730 
18731 	prog->aux->dst_trampoline = tr;
18732 	return 0;
18733 }
18734 
18735 struct btf *bpf_get_btf_vmlinux(void)
18736 {
18737 	if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
18738 		mutex_lock(&bpf_verifier_lock);
18739 		if (!btf_vmlinux)
18740 			btf_vmlinux = btf_parse_vmlinux();
18741 		mutex_unlock(&bpf_verifier_lock);
18742 	}
18743 	return btf_vmlinux;
18744 }
18745 
18746 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr)
18747 {
18748 	u64 start_time = ktime_get_ns();
18749 	struct bpf_verifier_env *env;
18750 	struct bpf_verifier_log *log;
18751 	int i, len, ret = -EINVAL;
18752 	bool is_priv;
18753 
18754 	/* no program is valid */
18755 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
18756 		return -EINVAL;
18757 
18758 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
18759 	 * allocate/free it every time bpf_check() is called
18760 	 */
18761 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
18762 	if (!env)
18763 		return -ENOMEM;
18764 	log = &env->log;
18765 
18766 	len = (*prog)->len;
18767 	env->insn_aux_data =
18768 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
18769 	ret = -ENOMEM;
18770 	if (!env->insn_aux_data)
18771 		goto err_free_env;
18772 	for (i = 0; i < len; i++)
18773 		env->insn_aux_data[i].orig_idx = i;
18774 	env->prog = *prog;
18775 	env->ops = bpf_verifier_ops[env->prog->type];
18776 	env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
18777 	is_priv = bpf_capable();
18778 
18779 	bpf_get_btf_vmlinux();
18780 
18781 	/* grab the mutex to protect few globals used by verifier */
18782 	if (!is_priv)
18783 		mutex_lock(&bpf_verifier_lock);
18784 
18785 	if (attr->log_level || attr->log_buf || attr->log_size) {
18786 		/* user requested verbose verifier output
18787 		 * and supplied buffer to store the verification trace
18788 		 */
18789 		log->level = attr->log_level;
18790 		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
18791 		log->len_total = attr->log_size;
18792 
18793 		/* log attributes have to be sane */
18794 		if (!bpf_verifier_log_attr_valid(log)) {
18795 			ret = -EINVAL;
18796 			goto err_unlock;
18797 		}
18798 	}
18799 
18800 	mark_verifier_state_clean(env);
18801 
18802 	if (IS_ERR(btf_vmlinux)) {
18803 		/* Either gcc or pahole or kernel are broken. */
18804 		verbose(env, "in-kernel BTF is malformed\n");
18805 		ret = PTR_ERR(btf_vmlinux);
18806 		goto skip_full_check;
18807 	}
18808 
18809 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
18810 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
18811 		env->strict_alignment = true;
18812 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
18813 		env->strict_alignment = false;
18814 
18815 	env->allow_ptr_leaks = bpf_allow_ptr_leaks();
18816 	env->allow_uninit_stack = bpf_allow_uninit_stack();
18817 	env->bypass_spec_v1 = bpf_bypass_spec_v1();
18818 	env->bypass_spec_v4 = bpf_bypass_spec_v4();
18819 	env->bpf_capable = bpf_capable();
18820 
18821 	if (is_priv)
18822 		env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
18823 
18824 	env->explored_states = kvcalloc(state_htab_size(env),
18825 				       sizeof(struct bpf_verifier_state_list *),
18826 				       GFP_USER);
18827 	ret = -ENOMEM;
18828 	if (!env->explored_states)
18829 		goto skip_full_check;
18830 
18831 	ret = add_subprog_and_kfunc(env);
18832 	if (ret < 0)
18833 		goto skip_full_check;
18834 
18835 	ret = check_subprogs(env);
18836 	if (ret < 0)
18837 		goto skip_full_check;
18838 
18839 	ret = check_btf_info(env, attr, uattr);
18840 	if (ret < 0)
18841 		goto skip_full_check;
18842 
18843 	ret = check_attach_btf_id(env);
18844 	if (ret)
18845 		goto skip_full_check;
18846 
18847 	ret = resolve_pseudo_ldimm64(env);
18848 	if (ret < 0)
18849 		goto skip_full_check;
18850 
18851 	if (bpf_prog_is_offloaded(env->prog->aux)) {
18852 		ret = bpf_prog_offload_verifier_prep(env->prog);
18853 		if (ret)
18854 			goto skip_full_check;
18855 	}
18856 
18857 	ret = check_cfg(env);
18858 	if (ret < 0)
18859 		goto skip_full_check;
18860 
18861 	ret = do_check_subprogs(env);
18862 	ret = ret ?: do_check_main(env);
18863 
18864 	if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux))
18865 		ret = bpf_prog_offload_finalize(env);
18866 
18867 skip_full_check:
18868 	kvfree(env->explored_states);
18869 
18870 	if (ret == 0)
18871 		ret = check_max_stack_depth(env);
18872 
18873 	/* instruction rewrites happen after this point */
18874 	if (ret == 0)
18875 		ret = optimize_bpf_loop(env);
18876 
18877 	if (is_priv) {
18878 		if (ret == 0)
18879 			opt_hard_wire_dead_code_branches(env);
18880 		if (ret == 0)
18881 			ret = opt_remove_dead_code(env);
18882 		if (ret == 0)
18883 			ret = opt_remove_nops(env);
18884 	} else {
18885 		if (ret == 0)
18886 			sanitize_dead_code(env);
18887 	}
18888 
18889 	if (ret == 0)
18890 		/* program is valid, convert *(u32*)(ctx + off) accesses */
18891 		ret = convert_ctx_accesses(env);
18892 
18893 	if (ret == 0)
18894 		ret = do_misc_fixups(env);
18895 
18896 	/* do 32-bit optimization after insn patching has done so those patched
18897 	 * insns could be handled correctly.
18898 	 */
18899 	if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) {
18900 		ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
18901 		env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
18902 								     : false;
18903 	}
18904 
18905 	if (ret == 0)
18906 		ret = fixup_call_args(env);
18907 
18908 	env->verification_time = ktime_get_ns() - start_time;
18909 	print_verification_stats(env);
18910 	env->prog->aux->verified_insns = env->insn_processed;
18911 
18912 	if (log->level && bpf_verifier_log_full(log))
18913 		ret = -ENOSPC;
18914 	if (log->level && !log->ubuf) {
18915 		ret = -EFAULT;
18916 		goto err_release_maps;
18917 	}
18918 
18919 	if (ret)
18920 		goto err_release_maps;
18921 
18922 	if (env->used_map_cnt) {
18923 		/* if program passed verifier, update used_maps in bpf_prog_info */
18924 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
18925 							  sizeof(env->used_maps[0]),
18926 							  GFP_KERNEL);
18927 
18928 		if (!env->prog->aux->used_maps) {
18929 			ret = -ENOMEM;
18930 			goto err_release_maps;
18931 		}
18932 
18933 		memcpy(env->prog->aux->used_maps, env->used_maps,
18934 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
18935 		env->prog->aux->used_map_cnt = env->used_map_cnt;
18936 	}
18937 	if (env->used_btf_cnt) {
18938 		/* if program passed verifier, update used_btfs in bpf_prog_aux */
18939 		env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
18940 							  sizeof(env->used_btfs[0]),
18941 							  GFP_KERNEL);
18942 		if (!env->prog->aux->used_btfs) {
18943 			ret = -ENOMEM;
18944 			goto err_release_maps;
18945 		}
18946 
18947 		memcpy(env->prog->aux->used_btfs, env->used_btfs,
18948 		       sizeof(env->used_btfs[0]) * env->used_btf_cnt);
18949 		env->prog->aux->used_btf_cnt = env->used_btf_cnt;
18950 	}
18951 	if (env->used_map_cnt || env->used_btf_cnt) {
18952 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
18953 		 * bpf_ld_imm64 instructions
18954 		 */
18955 		convert_pseudo_ld_imm64(env);
18956 	}
18957 
18958 	adjust_btf_func(env);
18959 
18960 err_release_maps:
18961 	if (!env->prog->aux->used_maps)
18962 		/* if we didn't copy map pointers into bpf_prog_info, release
18963 		 * them now. Otherwise free_used_maps() will release them.
18964 		 */
18965 		release_maps(env);
18966 	if (!env->prog->aux->used_btfs)
18967 		release_btfs(env);
18968 
18969 	/* extension progs temporarily inherit the attach_type of their targets
18970 	   for verification purposes, so set it back to zero before returning
18971 	 */
18972 	if (env->prog->type == BPF_PROG_TYPE_EXT)
18973 		env->prog->expected_attach_type = 0;
18974 
18975 	*prog = env->prog;
18976 err_unlock:
18977 	if (!is_priv)
18978 		mutex_unlock(&bpf_verifier_lock);
18979 	vfree(env->insn_aux_data);
18980 err_free_env:
18981 	kfree(env);
18982 	return ret;
18983 }
18984