xref: /linux/kernel/bpf/verifier.c (revision 00c94ca2b99e6610e483f92e531b319eeaed94aa)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5  */
6 #include <uapi/linux/btf.h>
7 #include <linux/bpf-cgroup.h>
8 #include <linux/kernel.h>
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/bpf.h>
12 #include <linux/btf.h>
13 #include <linux/bpf_verifier.h>
14 #include <linux/filter.h>
15 #include <net/netlink.h>
16 #include <linux/file.h>
17 #include <linux/vmalloc.h>
18 #include <linux/stringify.h>
19 #include <linux/bsearch.h>
20 #include <linux/sort.h>
21 #include <linux/perf_event.h>
22 #include <linux/ctype.h>
23 #include <linux/error-injection.h>
24 #include <linux/bpf_lsm.h>
25 #include <linux/btf_ids.h>
26 #include <linux/poison.h>
27 #include <linux/module.h>
28 #include <linux/cpumask.h>
29 #include <linux/bpf_mem_alloc.h>
30 #include <net/xdp.h>
31 #include <linux/trace_events.h>
32 #include <linux/kallsyms.h>
33 
34 #include "disasm.h"
35 
36 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
37 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
38 	[_id] = & _name ## _verifier_ops,
39 #define BPF_MAP_TYPE(_id, _ops)
40 #define BPF_LINK_TYPE(_id, _name)
41 #include <linux/bpf_types.h>
42 #undef BPF_PROG_TYPE
43 #undef BPF_MAP_TYPE
44 #undef BPF_LINK_TYPE
45 };
46 
47 enum bpf_features {
48 	BPF_FEAT_RDONLY_CAST_TO_VOID = 0,
49 	BPF_FEAT_STREAMS	     = 1,
50 	__MAX_BPF_FEAT,
51 };
52 
53 struct bpf_mem_alloc bpf_global_percpu_ma;
54 static bool bpf_global_percpu_ma_set;
55 
56 /* bpf_check() is a static code analyzer that walks eBPF program
57  * instruction by instruction and updates register/stack state.
58  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
59  *
60  * The first pass is depth-first-search to check that the program is a DAG.
61  * It rejects the following programs:
62  * - larger than BPF_MAXINSNS insns
63  * - if loop is present (detected via back-edge)
64  * - unreachable insns exist (shouldn't be a forest. program = one function)
65  * - out of bounds or malformed jumps
66  * The second pass is all possible path descent from the 1st insn.
67  * Since it's analyzing all paths through the program, the length of the
68  * analysis is limited to 64k insn, which may be hit even if total number of
69  * insn is less then 4K, but there are too many branches that change stack/regs.
70  * Number of 'branches to be analyzed' is limited to 1k
71  *
72  * On entry to each instruction, each register has a type, and the instruction
73  * changes the types of the registers depending on instruction semantics.
74  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
75  * copied to R1.
76  *
77  * All registers are 64-bit.
78  * R0 - return register
79  * R1-R5 argument passing registers
80  * R6-R9 callee saved registers
81  * R10 - frame pointer read-only
82  *
83  * At the start of BPF program the register R1 contains a pointer to bpf_context
84  * and has type PTR_TO_CTX.
85  *
86  * Verifier tracks arithmetic operations on pointers in case:
87  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
88  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
89  * 1st insn copies R10 (which has FRAME_PTR) type into R1
90  * and 2nd arithmetic instruction is pattern matched to recognize
91  * that it wants to construct a pointer to some element within stack.
92  * So after 2nd insn, the register R1 has type PTR_TO_STACK
93  * (and -20 constant is saved for further stack bounds checking).
94  * Meaning that this reg is a pointer to stack plus known immediate constant.
95  *
96  * Most of the time the registers have SCALAR_VALUE type, which
97  * means the register has some value, but it's not a valid pointer.
98  * (like pointer plus pointer becomes SCALAR_VALUE type)
99  *
100  * When verifier sees load or store instructions the type of base register
101  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
102  * four pointer types recognized by check_mem_access() function.
103  *
104  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
105  * and the range of [ptr, ptr + map's value_size) is accessible.
106  *
107  * registers used to pass values to function calls are checked against
108  * function argument constraints.
109  *
110  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
111  * It means that the register type passed to this function must be
112  * PTR_TO_STACK and it will be used inside the function as
113  * 'pointer to map element key'
114  *
115  * For example the argument constraints for bpf_map_lookup_elem():
116  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
117  *   .arg1_type = ARG_CONST_MAP_PTR,
118  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
119  *
120  * ret_type says that this function returns 'pointer to map elem value or null'
121  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
122  * 2nd argument should be a pointer to stack, which will be used inside
123  * the helper function as a pointer to map element key.
124  *
125  * On the kernel side the helper function looks like:
126  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
127  * {
128  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
129  *    void *key = (void *) (unsigned long) r2;
130  *    void *value;
131  *
132  *    here kernel can access 'key' and 'map' pointers safely, knowing that
133  *    [key, key + map->key_size) bytes are valid and were initialized on
134  *    the stack of eBPF program.
135  * }
136  *
137  * Corresponding eBPF program may look like:
138  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
139  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
140  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
141  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
142  * here verifier looks at prototype of map_lookup_elem() and sees:
143  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
144  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
145  *
146  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
147  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
148  * and were initialized prior to this call.
149  * If it's ok, then verifier allows this BPF_CALL insn and looks at
150  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
151  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
152  * returns either pointer to map value or NULL.
153  *
154  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
155  * insn, the register holding that pointer in the true branch changes state to
156  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
157  * branch. See check_cond_jmp_op().
158  *
159  * After the call R0 is set to return type of the function and registers R1-R5
160  * are set to NOT_INIT to indicate that they are no longer readable.
161  *
162  * The following reference types represent a potential reference to a kernel
163  * resource which, after first being allocated, must be checked and freed by
164  * the BPF program:
165  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
166  *
167  * When the verifier sees a helper call return a reference type, it allocates a
168  * pointer id for the reference and stores it in the current function state.
169  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
170  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
171  * passes through a NULL-check conditional. For the branch wherein the state is
172  * changed to CONST_IMM, the verifier releases the reference.
173  *
174  * For each helper function that allocates a reference, such as
175  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
176  * bpf_sk_release(). When a reference type passes into the release function,
177  * the verifier also releases the reference. If any unchecked or unreleased
178  * reference remains at the end of the program, the verifier rejects it.
179  */
180 
181 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
182 struct bpf_verifier_stack_elem {
183 	/* verifier state is 'st'
184 	 * before processing instruction 'insn_idx'
185 	 * and after processing instruction 'prev_insn_idx'
186 	 */
187 	struct bpf_verifier_state st;
188 	int insn_idx;
189 	int prev_insn_idx;
190 	struct bpf_verifier_stack_elem *next;
191 	/* length of verifier log at the time this state was pushed on stack */
192 	u32 log_pos;
193 };
194 
195 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ	8192
196 #define BPF_COMPLEXITY_LIMIT_STATES	64
197 
198 #define BPF_MAP_KEY_POISON	(1ULL << 63)
199 #define BPF_MAP_KEY_SEEN	(1ULL << 62)
200 
201 #define BPF_GLOBAL_PERCPU_MA_MAX_SIZE  512
202 
203 #define BPF_PRIV_STACK_MIN_SIZE		64
204 
205 static int acquire_reference(struct bpf_verifier_env *env, int insn_idx);
206 static int release_reference_nomark(struct bpf_verifier_state *state, int ref_obj_id);
207 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id);
208 static void invalidate_non_owning_refs(struct bpf_verifier_env *env);
209 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env);
210 static int ref_set_non_owning(struct bpf_verifier_env *env,
211 			      struct bpf_reg_state *reg);
212 static void specialize_kfunc(struct bpf_verifier_env *env,
213 			     u32 func_id, u16 offset, unsigned long *addr);
214 static bool is_trusted_reg(const struct bpf_reg_state *reg);
215 
216 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
217 {
218 	return aux->map_ptr_state.poison;
219 }
220 
221 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
222 {
223 	return aux->map_ptr_state.unpriv;
224 }
225 
226 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
227 			      struct bpf_map *map,
228 			      bool unpriv, bool poison)
229 {
230 	unpriv |= bpf_map_ptr_unpriv(aux);
231 	aux->map_ptr_state.unpriv = unpriv;
232 	aux->map_ptr_state.poison = poison;
233 	aux->map_ptr_state.map_ptr = map;
234 }
235 
236 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
237 {
238 	return aux->map_key_state & BPF_MAP_KEY_POISON;
239 }
240 
241 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
242 {
243 	return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
244 }
245 
246 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
247 {
248 	return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
249 }
250 
251 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
252 {
253 	bool poisoned = bpf_map_key_poisoned(aux);
254 
255 	aux->map_key_state = state | BPF_MAP_KEY_SEEN |
256 			     (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
257 }
258 
259 static bool bpf_helper_call(const struct bpf_insn *insn)
260 {
261 	return insn->code == (BPF_JMP | BPF_CALL) &&
262 	       insn->src_reg == 0;
263 }
264 
265 static bool bpf_pseudo_call(const struct bpf_insn *insn)
266 {
267 	return insn->code == (BPF_JMP | BPF_CALL) &&
268 	       insn->src_reg == BPF_PSEUDO_CALL;
269 }
270 
271 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
272 {
273 	return insn->code == (BPF_JMP | BPF_CALL) &&
274 	       insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
275 }
276 
277 struct bpf_call_arg_meta {
278 	struct bpf_map *map_ptr;
279 	bool raw_mode;
280 	bool pkt_access;
281 	u8 release_regno;
282 	int regno;
283 	int access_size;
284 	int mem_size;
285 	u64 msize_max_value;
286 	int ref_obj_id;
287 	int dynptr_id;
288 	int map_uid;
289 	int func_id;
290 	struct btf *btf;
291 	u32 btf_id;
292 	struct btf *ret_btf;
293 	u32 ret_btf_id;
294 	u32 subprogno;
295 	struct btf_field *kptr_field;
296 	s64 const_map_key;
297 };
298 
299 struct bpf_kfunc_call_arg_meta {
300 	/* In parameters */
301 	struct btf *btf;
302 	u32 func_id;
303 	u32 kfunc_flags;
304 	const struct btf_type *func_proto;
305 	const char *func_name;
306 	/* Out parameters */
307 	u32 ref_obj_id;
308 	u8 release_regno;
309 	bool r0_rdonly;
310 	u32 ret_btf_id;
311 	u64 r0_size;
312 	u32 subprogno;
313 	struct {
314 		u64 value;
315 		bool found;
316 	} arg_constant;
317 
318 	/* arg_{btf,btf_id,owning_ref} are used by kfunc-specific handling,
319 	 * generally to pass info about user-defined local kptr types to later
320 	 * verification logic
321 	 *   bpf_obj_drop/bpf_percpu_obj_drop
322 	 *     Record the local kptr type to be drop'd
323 	 *   bpf_refcount_acquire (via KF_ARG_PTR_TO_REFCOUNTED_KPTR arg type)
324 	 *     Record the local kptr type to be refcount_incr'd and use
325 	 *     arg_owning_ref to determine whether refcount_acquire should be
326 	 *     fallible
327 	 */
328 	struct btf *arg_btf;
329 	u32 arg_btf_id;
330 	bool arg_owning_ref;
331 	bool arg_prog;
332 
333 	struct {
334 		struct btf_field *field;
335 	} arg_list_head;
336 	struct {
337 		struct btf_field *field;
338 	} arg_rbtree_root;
339 	struct {
340 		enum bpf_dynptr_type type;
341 		u32 id;
342 		u32 ref_obj_id;
343 	} initialized_dynptr;
344 	struct {
345 		u8 spi;
346 		u8 frameno;
347 	} iter;
348 	struct {
349 		struct bpf_map *ptr;
350 		int uid;
351 	} map;
352 	u64 mem_size;
353 };
354 
355 struct btf *btf_vmlinux;
356 
357 static const char *btf_type_name(const struct btf *btf, u32 id)
358 {
359 	return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
360 }
361 
362 static DEFINE_MUTEX(bpf_verifier_lock);
363 static DEFINE_MUTEX(bpf_percpu_ma_lock);
364 
365 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
366 {
367 	struct bpf_verifier_env *env = private_data;
368 	va_list args;
369 
370 	if (!bpf_verifier_log_needed(&env->log))
371 		return;
372 
373 	va_start(args, fmt);
374 	bpf_verifier_vlog(&env->log, fmt, args);
375 	va_end(args);
376 }
377 
378 static void verbose_invalid_scalar(struct bpf_verifier_env *env,
379 				   struct bpf_reg_state *reg,
380 				   struct bpf_retval_range range, const char *ctx,
381 				   const char *reg_name)
382 {
383 	bool unknown = true;
384 
385 	verbose(env, "%s the register %s has", ctx, reg_name);
386 	if (reg->smin_value > S64_MIN) {
387 		verbose(env, " smin=%lld", reg->smin_value);
388 		unknown = false;
389 	}
390 	if (reg->smax_value < S64_MAX) {
391 		verbose(env, " smax=%lld", reg->smax_value);
392 		unknown = false;
393 	}
394 	if (unknown)
395 		verbose(env, " unknown scalar value");
396 	verbose(env, " should have been in [%d, %d]\n", range.minval, range.maxval);
397 }
398 
399 static bool reg_not_null(const struct bpf_reg_state *reg)
400 {
401 	enum bpf_reg_type type;
402 
403 	type = reg->type;
404 	if (type_may_be_null(type))
405 		return false;
406 
407 	type = base_type(type);
408 	return type == PTR_TO_SOCKET ||
409 		type == PTR_TO_TCP_SOCK ||
410 		type == PTR_TO_MAP_VALUE ||
411 		type == PTR_TO_MAP_KEY ||
412 		type == PTR_TO_SOCK_COMMON ||
413 		(type == PTR_TO_BTF_ID && is_trusted_reg(reg)) ||
414 		(type == PTR_TO_MEM && !(reg->type & PTR_UNTRUSTED)) ||
415 		type == CONST_PTR_TO_MAP;
416 }
417 
418 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg)
419 {
420 	struct btf_record *rec = NULL;
421 	struct btf_struct_meta *meta;
422 
423 	if (reg->type == PTR_TO_MAP_VALUE) {
424 		rec = reg->map_ptr->record;
425 	} else if (type_is_ptr_alloc_obj(reg->type)) {
426 		meta = btf_find_struct_meta(reg->btf, reg->btf_id);
427 		if (meta)
428 			rec = meta->record;
429 	}
430 	return rec;
431 }
432 
433 static bool subprog_is_global(const struct bpf_verifier_env *env, int subprog)
434 {
435 	struct bpf_func_info_aux *aux = env->prog->aux->func_info_aux;
436 
437 	return aux && aux[subprog].linkage == BTF_FUNC_GLOBAL;
438 }
439 
440 static const char *subprog_name(const struct bpf_verifier_env *env, int subprog)
441 {
442 	struct bpf_func_info *info;
443 
444 	if (!env->prog->aux->func_info)
445 		return "";
446 
447 	info = &env->prog->aux->func_info[subprog];
448 	return btf_type_name(env->prog->aux->btf, info->type_id);
449 }
450 
451 static void mark_subprog_exc_cb(struct bpf_verifier_env *env, int subprog)
452 {
453 	struct bpf_subprog_info *info = subprog_info(env, subprog);
454 
455 	info->is_cb = true;
456 	info->is_async_cb = true;
457 	info->is_exception_cb = true;
458 }
459 
460 static bool subprog_is_exc_cb(struct bpf_verifier_env *env, int subprog)
461 {
462 	return subprog_info(env, subprog)->is_exception_cb;
463 }
464 
465 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
466 {
467 	return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK | BPF_RES_SPIN_LOCK);
468 }
469 
470 static bool type_is_rdonly_mem(u32 type)
471 {
472 	return type & MEM_RDONLY;
473 }
474 
475 static bool is_acquire_function(enum bpf_func_id func_id,
476 				const struct bpf_map *map)
477 {
478 	enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
479 
480 	if (func_id == BPF_FUNC_sk_lookup_tcp ||
481 	    func_id == BPF_FUNC_sk_lookup_udp ||
482 	    func_id == BPF_FUNC_skc_lookup_tcp ||
483 	    func_id == BPF_FUNC_ringbuf_reserve ||
484 	    func_id == BPF_FUNC_kptr_xchg)
485 		return true;
486 
487 	if (func_id == BPF_FUNC_map_lookup_elem &&
488 	    (map_type == BPF_MAP_TYPE_SOCKMAP ||
489 	     map_type == BPF_MAP_TYPE_SOCKHASH))
490 		return true;
491 
492 	return false;
493 }
494 
495 static bool is_ptr_cast_function(enum bpf_func_id func_id)
496 {
497 	return func_id == BPF_FUNC_tcp_sock ||
498 		func_id == BPF_FUNC_sk_fullsock ||
499 		func_id == BPF_FUNC_skc_to_tcp_sock ||
500 		func_id == BPF_FUNC_skc_to_tcp6_sock ||
501 		func_id == BPF_FUNC_skc_to_udp6_sock ||
502 		func_id == BPF_FUNC_skc_to_mptcp_sock ||
503 		func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
504 		func_id == BPF_FUNC_skc_to_tcp_request_sock;
505 }
506 
507 static bool is_dynptr_ref_function(enum bpf_func_id func_id)
508 {
509 	return func_id == BPF_FUNC_dynptr_data;
510 }
511 
512 static bool is_sync_callback_calling_kfunc(u32 btf_id);
513 static bool is_async_callback_calling_kfunc(u32 btf_id);
514 static bool is_callback_calling_kfunc(u32 btf_id);
515 static bool is_bpf_throw_kfunc(struct bpf_insn *insn);
516 
517 static bool is_bpf_wq_set_callback_impl_kfunc(u32 btf_id);
518 
519 static bool is_sync_callback_calling_function(enum bpf_func_id func_id)
520 {
521 	return func_id == BPF_FUNC_for_each_map_elem ||
522 	       func_id == BPF_FUNC_find_vma ||
523 	       func_id == BPF_FUNC_loop ||
524 	       func_id == BPF_FUNC_user_ringbuf_drain;
525 }
526 
527 static bool is_async_callback_calling_function(enum bpf_func_id func_id)
528 {
529 	return func_id == BPF_FUNC_timer_set_callback;
530 }
531 
532 static bool is_callback_calling_function(enum bpf_func_id func_id)
533 {
534 	return is_sync_callback_calling_function(func_id) ||
535 	       is_async_callback_calling_function(func_id);
536 }
537 
538 static bool is_sync_callback_calling_insn(struct bpf_insn *insn)
539 {
540 	return (bpf_helper_call(insn) && is_sync_callback_calling_function(insn->imm)) ||
541 	       (bpf_pseudo_kfunc_call(insn) && is_sync_callback_calling_kfunc(insn->imm));
542 }
543 
544 static bool is_async_callback_calling_insn(struct bpf_insn *insn)
545 {
546 	return (bpf_helper_call(insn) && is_async_callback_calling_function(insn->imm)) ||
547 	       (bpf_pseudo_kfunc_call(insn) && is_async_callback_calling_kfunc(insn->imm));
548 }
549 
550 static bool is_may_goto_insn(struct bpf_insn *insn)
551 {
552 	return insn->code == (BPF_JMP | BPF_JCOND) && insn->src_reg == BPF_MAY_GOTO;
553 }
554 
555 static bool is_may_goto_insn_at(struct bpf_verifier_env *env, int insn_idx)
556 {
557 	return is_may_goto_insn(&env->prog->insnsi[insn_idx]);
558 }
559 
560 static bool is_storage_get_function(enum bpf_func_id func_id)
561 {
562 	return func_id == BPF_FUNC_sk_storage_get ||
563 	       func_id == BPF_FUNC_inode_storage_get ||
564 	       func_id == BPF_FUNC_task_storage_get ||
565 	       func_id == BPF_FUNC_cgrp_storage_get;
566 }
567 
568 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id,
569 					const struct bpf_map *map)
570 {
571 	int ref_obj_uses = 0;
572 
573 	if (is_ptr_cast_function(func_id))
574 		ref_obj_uses++;
575 	if (is_acquire_function(func_id, map))
576 		ref_obj_uses++;
577 	if (is_dynptr_ref_function(func_id))
578 		ref_obj_uses++;
579 
580 	return ref_obj_uses > 1;
581 }
582 
583 static bool is_cmpxchg_insn(const struct bpf_insn *insn)
584 {
585 	return BPF_CLASS(insn->code) == BPF_STX &&
586 	       BPF_MODE(insn->code) == BPF_ATOMIC &&
587 	       insn->imm == BPF_CMPXCHG;
588 }
589 
590 static bool is_atomic_load_insn(const struct bpf_insn *insn)
591 {
592 	return BPF_CLASS(insn->code) == BPF_STX &&
593 	       BPF_MODE(insn->code) == BPF_ATOMIC &&
594 	       insn->imm == BPF_LOAD_ACQ;
595 }
596 
597 static int __get_spi(s32 off)
598 {
599 	return (-off - 1) / BPF_REG_SIZE;
600 }
601 
602 static struct bpf_func_state *func(struct bpf_verifier_env *env,
603 				   const struct bpf_reg_state *reg)
604 {
605 	struct bpf_verifier_state *cur = env->cur_state;
606 
607 	return cur->frame[reg->frameno];
608 }
609 
610 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots)
611 {
612        int allocated_slots = state->allocated_stack / BPF_REG_SIZE;
613 
614        /* We need to check that slots between [spi - nr_slots + 1, spi] are
615 	* within [0, allocated_stack).
616 	*
617 	* Please note that the spi grows downwards. For example, a dynptr
618 	* takes the size of two stack slots; the first slot will be at
619 	* spi and the second slot will be at spi - 1.
620 	*/
621        return spi - nr_slots + 1 >= 0 && spi < allocated_slots;
622 }
623 
624 static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
625 			          const char *obj_kind, int nr_slots)
626 {
627 	int off, spi;
628 
629 	if (!tnum_is_const(reg->var_off)) {
630 		verbose(env, "%s has to be at a constant offset\n", obj_kind);
631 		return -EINVAL;
632 	}
633 
634 	off = reg->off + reg->var_off.value;
635 	if (off % BPF_REG_SIZE) {
636 		verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
637 		return -EINVAL;
638 	}
639 
640 	spi = __get_spi(off);
641 	if (spi + 1 < nr_slots) {
642 		verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
643 		return -EINVAL;
644 	}
645 
646 	if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots))
647 		return -ERANGE;
648 	return spi;
649 }
650 
651 static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
652 {
653 	return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS);
654 }
655 
656 static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots)
657 {
658 	return stack_slot_obj_get_spi(env, reg, "iter", nr_slots);
659 }
660 
661 static int irq_flag_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
662 {
663 	return stack_slot_obj_get_spi(env, reg, "irq_flag", 1);
664 }
665 
666 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type)
667 {
668 	switch (arg_type & DYNPTR_TYPE_FLAG_MASK) {
669 	case DYNPTR_TYPE_LOCAL:
670 		return BPF_DYNPTR_TYPE_LOCAL;
671 	case DYNPTR_TYPE_RINGBUF:
672 		return BPF_DYNPTR_TYPE_RINGBUF;
673 	case DYNPTR_TYPE_SKB:
674 		return BPF_DYNPTR_TYPE_SKB;
675 	case DYNPTR_TYPE_XDP:
676 		return BPF_DYNPTR_TYPE_XDP;
677 	case DYNPTR_TYPE_SKB_META:
678 		return BPF_DYNPTR_TYPE_SKB_META;
679 	default:
680 		return BPF_DYNPTR_TYPE_INVALID;
681 	}
682 }
683 
684 static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type)
685 {
686 	switch (type) {
687 	case BPF_DYNPTR_TYPE_LOCAL:
688 		return DYNPTR_TYPE_LOCAL;
689 	case BPF_DYNPTR_TYPE_RINGBUF:
690 		return DYNPTR_TYPE_RINGBUF;
691 	case BPF_DYNPTR_TYPE_SKB:
692 		return DYNPTR_TYPE_SKB;
693 	case BPF_DYNPTR_TYPE_XDP:
694 		return DYNPTR_TYPE_XDP;
695 	case BPF_DYNPTR_TYPE_SKB_META:
696 		return DYNPTR_TYPE_SKB_META;
697 	default:
698 		return 0;
699 	}
700 }
701 
702 static bool dynptr_type_refcounted(enum bpf_dynptr_type type)
703 {
704 	return type == BPF_DYNPTR_TYPE_RINGBUF;
705 }
706 
707 static void __mark_dynptr_reg(struct bpf_reg_state *reg,
708 			      enum bpf_dynptr_type type,
709 			      bool first_slot, int dynptr_id);
710 
711 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
712 				struct bpf_reg_state *reg);
713 
714 static void mark_dynptr_stack_regs(struct bpf_verifier_env *env,
715 				   struct bpf_reg_state *sreg1,
716 				   struct bpf_reg_state *sreg2,
717 				   enum bpf_dynptr_type type)
718 {
719 	int id = ++env->id_gen;
720 
721 	__mark_dynptr_reg(sreg1, type, true, id);
722 	__mark_dynptr_reg(sreg2, type, false, id);
723 }
724 
725 static void mark_dynptr_cb_reg(struct bpf_verifier_env *env,
726 			       struct bpf_reg_state *reg,
727 			       enum bpf_dynptr_type type)
728 {
729 	__mark_dynptr_reg(reg, type, true, ++env->id_gen);
730 }
731 
732 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
733 				        struct bpf_func_state *state, int spi);
734 
735 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
736 				   enum bpf_arg_type arg_type, int insn_idx, int clone_ref_obj_id)
737 {
738 	struct bpf_func_state *state = func(env, reg);
739 	enum bpf_dynptr_type type;
740 	int spi, i, err;
741 
742 	spi = dynptr_get_spi(env, reg);
743 	if (spi < 0)
744 		return spi;
745 
746 	/* We cannot assume both spi and spi - 1 belong to the same dynptr,
747 	 * hence we need to call destroy_if_dynptr_stack_slot twice for both,
748 	 * to ensure that for the following example:
749 	 *	[d1][d1][d2][d2]
750 	 * spi    3   2   1   0
751 	 * So marking spi = 2 should lead to destruction of both d1 and d2. In
752 	 * case they do belong to same dynptr, second call won't see slot_type
753 	 * as STACK_DYNPTR and will simply skip destruction.
754 	 */
755 	err = destroy_if_dynptr_stack_slot(env, state, spi);
756 	if (err)
757 		return err;
758 	err = destroy_if_dynptr_stack_slot(env, state, spi - 1);
759 	if (err)
760 		return err;
761 
762 	for (i = 0; i < BPF_REG_SIZE; i++) {
763 		state->stack[spi].slot_type[i] = STACK_DYNPTR;
764 		state->stack[spi - 1].slot_type[i] = STACK_DYNPTR;
765 	}
766 
767 	type = arg_to_dynptr_type(arg_type);
768 	if (type == BPF_DYNPTR_TYPE_INVALID)
769 		return -EINVAL;
770 
771 	mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr,
772 			       &state->stack[spi - 1].spilled_ptr, type);
773 
774 	if (dynptr_type_refcounted(type)) {
775 		/* The id is used to track proper releasing */
776 		int id;
777 
778 		if (clone_ref_obj_id)
779 			id = clone_ref_obj_id;
780 		else
781 			id = acquire_reference(env, insn_idx);
782 
783 		if (id < 0)
784 			return id;
785 
786 		state->stack[spi].spilled_ptr.ref_obj_id = id;
787 		state->stack[spi - 1].spilled_ptr.ref_obj_id = id;
788 	}
789 
790 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
791 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
792 
793 	return 0;
794 }
795 
796 static void invalidate_dynptr(struct bpf_verifier_env *env, struct bpf_func_state *state, int spi)
797 {
798 	int i;
799 
800 	for (i = 0; i < BPF_REG_SIZE; i++) {
801 		state->stack[spi].slot_type[i] = STACK_INVALID;
802 		state->stack[spi - 1].slot_type[i] = STACK_INVALID;
803 	}
804 
805 	__mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
806 	__mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
807 
808 	/* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot?
809 	 *
810 	 * While we don't allow reading STACK_INVALID, it is still possible to
811 	 * do <8 byte writes marking some but not all slots as STACK_MISC. Then,
812 	 * helpers or insns can do partial read of that part without failing,
813 	 * but check_stack_range_initialized, check_stack_read_var_off, and
814 	 * check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of
815 	 * the slot conservatively. Hence we need to prevent those liveness
816 	 * marking walks.
817 	 *
818 	 * This was not a problem before because STACK_INVALID is only set by
819 	 * default (where the default reg state has its reg->parent as NULL), or
820 	 * in clean_live_states after REG_LIVE_DONE (at which point
821 	 * mark_reg_read won't walk reg->parent chain), but not randomly during
822 	 * verifier state exploration (like we did above). Hence, for our case
823 	 * parentage chain will still be live (i.e. reg->parent may be
824 	 * non-NULL), while earlier reg->parent was NULL, so we need
825 	 * REG_LIVE_WRITTEN to screen off read marker propagation when it is
826 	 * done later on reads or by mark_dynptr_read as well to unnecessary
827 	 * mark registers in verifier state.
828 	 */
829 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
830 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
831 }
832 
833 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
834 {
835 	struct bpf_func_state *state = func(env, reg);
836 	int spi, ref_obj_id, i;
837 
838 	spi = dynptr_get_spi(env, reg);
839 	if (spi < 0)
840 		return spi;
841 
842 	if (!dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
843 		invalidate_dynptr(env, state, spi);
844 		return 0;
845 	}
846 
847 	ref_obj_id = state->stack[spi].spilled_ptr.ref_obj_id;
848 
849 	/* If the dynptr has a ref_obj_id, then we need to invalidate
850 	 * two things:
851 	 *
852 	 * 1) Any dynptrs with a matching ref_obj_id (clones)
853 	 * 2) Any slices derived from this dynptr.
854 	 */
855 
856 	/* Invalidate any slices associated with this dynptr */
857 	WARN_ON_ONCE(release_reference(env, ref_obj_id));
858 
859 	/* Invalidate any dynptr clones */
860 	for (i = 1; i < state->allocated_stack / BPF_REG_SIZE; i++) {
861 		if (state->stack[i].spilled_ptr.ref_obj_id != ref_obj_id)
862 			continue;
863 
864 		/* it should always be the case that if the ref obj id
865 		 * matches then the stack slot also belongs to a
866 		 * dynptr
867 		 */
868 		if (state->stack[i].slot_type[0] != STACK_DYNPTR) {
869 			verifier_bug(env, "misconfigured ref_obj_id");
870 			return -EFAULT;
871 		}
872 		if (state->stack[i].spilled_ptr.dynptr.first_slot)
873 			invalidate_dynptr(env, state, i);
874 	}
875 
876 	return 0;
877 }
878 
879 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
880 			       struct bpf_reg_state *reg);
881 
882 static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg)
883 {
884 	if (!env->allow_ptr_leaks)
885 		__mark_reg_not_init(env, reg);
886 	else
887 		__mark_reg_unknown(env, reg);
888 }
889 
890 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
891 				        struct bpf_func_state *state, int spi)
892 {
893 	struct bpf_func_state *fstate;
894 	struct bpf_reg_state *dreg;
895 	int i, dynptr_id;
896 
897 	/* We always ensure that STACK_DYNPTR is never set partially,
898 	 * hence just checking for slot_type[0] is enough. This is
899 	 * different for STACK_SPILL, where it may be only set for
900 	 * 1 byte, so code has to use is_spilled_reg.
901 	 */
902 	if (state->stack[spi].slot_type[0] != STACK_DYNPTR)
903 		return 0;
904 
905 	/* Reposition spi to first slot */
906 	if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
907 		spi = spi + 1;
908 
909 	if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
910 		verbose(env, "cannot overwrite referenced dynptr\n");
911 		return -EINVAL;
912 	}
913 
914 	mark_stack_slot_scratched(env, spi);
915 	mark_stack_slot_scratched(env, spi - 1);
916 
917 	/* Writing partially to one dynptr stack slot destroys both. */
918 	for (i = 0; i < BPF_REG_SIZE; i++) {
919 		state->stack[spi].slot_type[i] = STACK_INVALID;
920 		state->stack[spi - 1].slot_type[i] = STACK_INVALID;
921 	}
922 
923 	dynptr_id = state->stack[spi].spilled_ptr.id;
924 	/* Invalidate any slices associated with this dynptr */
925 	bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({
926 		/* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */
927 		if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM)
928 			continue;
929 		if (dreg->dynptr_id == dynptr_id)
930 			mark_reg_invalid(env, dreg);
931 	}));
932 
933 	/* Do not release reference state, we are destroying dynptr on stack,
934 	 * not using some helper to release it. Just reset register.
935 	 */
936 	__mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
937 	__mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
938 
939 	/* Same reason as unmark_stack_slots_dynptr above */
940 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
941 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
942 
943 	return 0;
944 }
945 
946 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
947 {
948 	int spi;
949 
950 	if (reg->type == CONST_PTR_TO_DYNPTR)
951 		return false;
952 
953 	spi = dynptr_get_spi(env, reg);
954 
955 	/* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an
956 	 * error because this just means the stack state hasn't been updated yet.
957 	 * We will do check_mem_access to check and update stack bounds later.
958 	 */
959 	if (spi < 0 && spi != -ERANGE)
960 		return false;
961 
962 	/* We don't need to check if the stack slots are marked by previous
963 	 * dynptr initializations because we allow overwriting existing unreferenced
964 	 * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls
965 	 * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are
966 	 * touching are completely destructed before we reinitialize them for a new
967 	 * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early
968 	 * instead of delaying it until the end where the user will get "Unreleased
969 	 * reference" error.
970 	 */
971 	return true;
972 }
973 
974 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
975 {
976 	struct bpf_func_state *state = func(env, reg);
977 	int i, spi;
978 
979 	/* This already represents first slot of initialized bpf_dynptr.
980 	 *
981 	 * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to
982 	 * check_func_arg_reg_off's logic, so we don't need to check its
983 	 * offset and alignment.
984 	 */
985 	if (reg->type == CONST_PTR_TO_DYNPTR)
986 		return true;
987 
988 	spi = dynptr_get_spi(env, reg);
989 	if (spi < 0)
990 		return false;
991 	if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
992 		return false;
993 
994 	for (i = 0; i < BPF_REG_SIZE; i++) {
995 		if (state->stack[spi].slot_type[i] != STACK_DYNPTR ||
996 		    state->stack[spi - 1].slot_type[i] != STACK_DYNPTR)
997 			return false;
998 	}
999 
1000 	return true;
1001 }
1002 
1003 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
1004 				    enum bpf_arg_type arg_type)
1005 {
1006 	struct bpf_func_state *state = func(env, reg);
1007 	enum bpf_dynptr_type dynptr_type;
1008 	int spi;
1009 
1010 	/* ARG_PTR_TO_DYNPTR takes any type of dynptr */
1011 	if (arg_type == ARG_PTR_TO_DYNPTR)
1012 		return true;
1013 
1014 	dynptr_type = arg_to_dynptr_type(arg_type);
1015 	if (reg->type == CONST_PTR_TO_DYNPTR) {
1016 		return reg->dynptr.type == dynptr_type;
1017 	} else {
1018 		spi = dynptr_get_spi(env, reg);
1019 		if (spi < 0)
1020 			return false;
1021 		return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type;
1022 	}
1023 }
1024 
1025 static void __mark_reg_known_zero(struct bpf_reg_state *reg);
1026 
1027 static bool in_rcu_cs(struct bpf_verifier_env *env);
1028 
1029 static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta);
1030 
1031 static int mark_stack_slots_iter(struct bpf_verifier_env *env,
1032 				 struct bpf_kfunc_call_arg_meta *meta,
1033 				 struct bpf_reg_state *reg, int insn_idx,
1034 				 struct btf *btf, u32 btf_id, int nr_slots)
1035 {
1036 	struct bpf_func_state *state = func(env, reg);
1037 	int spi, i, j, id;
1038 
1039 	spi = iter_get_spi(env, reg, nr_slots);
1040 	if (spi < 0)
1041 		return spi;
1042 
1043 	id = acquire_reference(env, insn_idx);
1044 	if (id < 0)
1045 		return id;
1046 
1047 	for (i = 0; i < nr_slots; i++) {
1048 		struct bpf_stack_state *slot = &state->stack[spi - i];
1049 		struct bpf_reg_state *st = &slot->spilled_ptr;
1050 
1051 		__mark_reg_known_zero(st);
1052 		st->type = PTR_TO_STACK; /* we don't have dedicated reg type */
1053 		if (is_kfunc_rcu_protected(meta)) {
1054 			if (in_rcu_cs(env))
1055 				st->type |= MEM_RCU;
1056 			else
1057 				st->type |= PTR_UNTRUSTED;
1058 		}
1059 		st->live |= REG_LIVE_WRITTEN;
1060 		st->ref_obj_id = i == 0 ? id : 0;
1061 		st->iter.btf = btf;
1062 		st->iter.btf_id = btf_id;
1063 		st->iter.state = BPF_ITER_STATE_ACTIVE;
1064 		st->iter.depth = 0;
1065 
1066 		for (j = 0; j < BPF_REG_SIZE; j++)
1067 			slot->slot_type[j] = STACK_ITER;
1068 
1069 		mark_stack_slot_scratched(env, spi - i);
1070 	}
1071 
1072 	return 0;
1073 }
1074 
1075 static int unmark_stack_slots_iter(struct bpf_verifier_env *env,
1076 				   struct bpf_reg_state *reg, int nr_slots)
1077 {
1078 	struct bpf_func_state *state = func(env, reg);
1079 	int spi, i, j;
1080 
1081 	spi = iter_get_spi(env, reg, nr_slots);
1082 	if (spi < 0)
1083 		return spi;
1084 
1085 	for (i = 0; i < nr_slots; i++) {
1086 		struct bpf_stack_state *slot = &state->stack[spi - i];
1087 		struct bpf_reg_state *st = &slot->spilled_ptr;
1088 
1089 		if (i == 0)
1090 			WARN_ON_ONCE(release_reference(env, st->ref_obj_id));
1091 
1092 		__mark_reg_not_init(env, st);
1093 
1094 		/* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */
1095 		st->live |= REG_LIVE_WRITTEN;
1096 
1097 		for (j = 0; j < BPF_REG_SIZE; j++)
1098 			slot->slot_type[j] = STACK_INVALID;
1099 
1100 		mark_stack_slot_scratched(env, spi - i);
1101 	}
1102 
1103 	return 0;
1104 }
1105 
1106 static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env,
1107 				     struct bpf_reg_state *reg, int nr_slots)
1108 {
1109 	struct bpf_func_state *state = func(env, reg);
1110 	int spi, i, j;
1111 
1112 	/* For -ERANGE (i.e. spi not falling into allocated stack slots), we
1113 	 * will do check_mem_access to check and update stack bounds later, so
1114 	 * return true for that case.
1115 	 */
1116 	spi = iter_get_spi(env, reg, nr_slots);
1117 	if (spi == -ERANGE)
1118 		return true;
1119 	if (spi < 0)
1120 		return false;
1121 
1122 	for (i = 0; i < nr_slots; i++) {
1123 		struct bpf_stack_state *slot = &state->stack[spi - i];
1124 
1125 		for (j = 0; j < BPF_REG_SIZE; j++)
1126 			if (slot->slot_type[j] == STACK_ITER)
1127 				return false;
1128 	}
1129 
1130 	return true;
1131 }
1132 
1133 static int is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
1134 				   struct btf *btf, u32 btf_id, int nr_slots)
1135 {
1136 	struct bpf_func_state *state = func(env, reg);
1137 	int spi, i, j;
1138 
1139 	spi = iter_get_spi(env, reg, nr_slots);
1140 	if (spi < 0)
1141 		return -EINVAL;
1142 
1143 	for (i = 0; i < nr_slots; i++) {
1144 		struct bpf_stack_state *slot = &state->stack[spi - i];
1145 		struct bpf_reg_state *st = &slot->spilled_ptr;
1146 
1147 		if (st->type & PTR_UNTRUSTED)
1148 			return -EPROTO;
1149 		/* only main (first) slot has ref_obj_id set */
1150 		if (i == 0 && !st->ref_obj_id)
1151 			return -EINVAL;
1152 		if (i != 0 && st->ref_obj_id)
1153 			return -EINVAL;
1154 		if (st->iter.btf != btf || st->iter.btf_id != btf_id)
1155 			return -EINVAL;
1156 
1157 		for (j = 0; j < BPF_REG_SIZE; j++)
1158 			if (slot->slot_type[j] != STACK_ITER)
1159 				return -EINVAL;
1160 	}
1161 
1162 	return 0;
1163 }
1164 
1165 static int acquire_irq_state(struct bpf_verifier_env *env, int insn_idx);
1166 static int release_irq_state(struct bpf_verifier_state *state, int id);
1167 
1168 static int mark_stack_slot_irq_flag(struct bpf_verifier_env *env,
1169 				     struct bpf_kfunc_call_arg_meta *meta,
1170 				     struct bpf_reg_state *reg, int insn_idx,
1171 				     int kfunc_class)
1172 {
1173 	struct bpf_func_state *state = func(env, reg);
1174 	struct bpf_stack_state *slot;
1175 	struct bpf_reg_state *st;
1176 	int spi, i, id;
1177 
1178 	spi = irq_flag_get_spi(env, reg);
1179 	if (spi < 0)
1180 		return spi;
1181 
1182 	id = acquire_irq_state(env, insn_idx);
1183 	if (id < 0)
1184 		return id;
1185 
1186 	slot = &state->stack[spi];
1187 	st = &slot->spilled_ptr;
1188 
1189 	__mark_reg_known_zero(st);
1190 	st->type = PTR_TO_STACK; /* we don't have dedicated reg type */
1191 	st->live |= REG_LIVE_WRITTEN;
1192 	st->ref_obj_id = id;
1193 	st->irq.kfunc_class = kfunc_class;
1194 
1195 	for (i = 0; i < BPF_REG_SIZE; i++)
1196 		slot->slot_type[i] = STACK_IRQ_FLAG;
1197 
1198 	mark_stack_slot_scratched(env, spi);
1199 	return 0;
1200 }
1201 
1202 static int unmark_stack_slot_irq_flag(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
1203 				      int kfunc_class)
1204 {
1205 	struct bpf_func_state *state = func(env, reg);
1206 	struct bpf_stack_state *slot;
1207 	struct bpf_reg_state *st;
1208 	int spi, i, err;
1209 
1210 	spi = irq_flag_get_spi(env, reg);
1211 	if (spi < 0)
1212 		return spi;
1213 
1214 	slot = &state->stack[spi];
1215 	st = &slot->spilled_ptr;
1216 
1217 	if (st->irq.kfunc_class != kfunc_class) {
1218 		const char *flag_kfunc = st->irq.kfunc_class == IRQ_NATIVE_KFUNC ? "native" : "lock";
1219 		const char *used_kfunc = kfunc_class == IRQ_NATIVE_KFUNC ? "native" : "lock";
1220 
1221 		verbose(env, "irq flag acquired by %s kfuncs cannot be restored with %s kfuncs\n",
1222 			flag_kfunc, used_kfunc);
1223 		return -EINVAL;
1224 	}
1225 
1226 	err = release_irq_state(env->cur_state, st->ref_obj_id);
1227 	WARN_ON_ONCE(err && err != -EACCES);
1228 	if (err) {
1229 		int insn_idx = 0;
1230 
1231 		for (int i = 0; i < env->cur_state->acquired_refs; i++) {
1232 			if (env->cur_state->refs[i].id == env->cur_state->active_irq_id) {
1233 				insn_idx = env->cur_state->refs[i].insn_idx;
1234 				break;
1235 			}
1236 		}
1237 
1238 		verbose(env, "cannot restore irq state out of order, expected id=%d acquired at insn_idx=%d\n",
1239 			env->cur_state->active_irq_id, insn_idx);
1240 		return err;
1241 	}
1242 
1243 	__mark_reg_not_init(env, st);
1244 
1245 	/* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */
1246 	st->live |= REG_LIVE_WRITTEN;
1247 
1248 	for (i = 0; i < BPF_REG_SIZE; i++)
1249 		slot->slot_type[i] = STACK_INVALID;
1250 
1251 	mark_stack_slot_scratched(env, spi);
1252 	return 0;
1253 }
1254 
1255 static bool is_irq_flag_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1256 {
1257 	struct bpf_func_state *state = func(env, reg);
1258 	struct bpf_stack_state *slot;
1259 	int spi, i;
1260 
1261 	/* For -ERANGE (i.e. spi not falling into allocated stack slots), we
1262 	 * will do check_mem_access to check and update stack bounds later, so
1263 	 * return true for that case.
1264 	 */
1265 	spi = irq_flag_get_spi(env, reg);
1266 	if (spi == -ERANGE)
1267 		return true;
1268 	if (spi < 0)
1269 		return false;
1270 
1271 	slot = &state->stack[spi];
1272 
1273 	for (i = 0; i < BPF_REG_SIZE; i++)
1274 		if (slot->slot_type[i] == STACK_IRQ_FLAG)
1275 			return false;
1276 	return true;
1277 }
1278 
1279 static int is_irq_flag_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1280 {
1281 	struct bpf_func_state *state = func(env, reg);
1282 	struct bpf_stack_state *slot;
1283 	struct bpf_reg_state *st;
1284 	int spi, i;
1285 
1286 	spi = irq_flag_get_spi(env, reg);
1287 	if (spi < 0)
1288 		return -EINVAL;
1289 
1290 	slot = &state->stack[spi];
1291 	st = &slot->spilled_ptr;
1292 
1293 	if (!st->ref_obj_id)
1294 		return -EINVAL;
1295 
1296 	for (i = 0; i < BPF_REG_SIZE; i++)
1297 		if (slot->slot_type[i] != STACK_IRQ_FLAG)
1298 			return -EINVAL;
1299 	return 0;
1300 }
1301 
1302 /* Check if given stack slot is "special":
1303  *   - spilled register state (STACK_SPILL);
1304  *   - dynptr state (STACK_DYNPTR);
1305  *   - iter state (STACK_ITER).
1306  *   - irq flag state (STACK_IRQ_FLAG)
1307  */
1308 static bool is_stack_slot_special(const struct bpf_stack_state *stack)
1309 {
1310 	enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1];
1311 
1312 	switch (type) {
1313 	case STACK_SPILL:
1314 	case STACK_DYNPTR:
1315 	case STACK_ITER:
1316 	case STACK_IRQ_FLAG:
1317 		return true;
1318 	case STACK_INVALID:
1319 	case STACK_MISC:
1320 	case STACK_ZERO:
1321 		return false;
1322 	default:
1323 		WARN_ONCE(1, "unknown stack slot type %d\n", type);
1324 		return true;
1325 	}
1326 }
1327 
1328 /* The reg state of a pointer or a bounded scalar was saved when
1329  * it was spilled to the stack.
1330  */
1331 static bool is_spilled_reg(const struct bpf_stack_state *stack)
1332 {
1333 	return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL;
1334 }
1335 
1336 static bool is_spilled_scalar_reg(const struct bpf_stack_state *stack)
1337 {
1338 	return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL &&
1339 	       stack->spilled_ptr.type == SCALAR_VALUE;
1340 }
1341 
1342 static bool is_spilled_scalar_reg64(const struct bpf_stack_state *stack)
1343 {
1344 	return stack->slot_type[0] == STACK_SPILL &&
1345 	       stack->spilled_ptr.type == SCALAR_VALUE;
1346 }
1347 
1348 /* Mark stack slot as STACK_MISC, unless it is already STACK_INVALID, in which
1349  * case they are equivalent, or it's STACK_ZERO, in which case we preserve
1350  * more precise STACK_ZERO.
1351  * Regardless of allow_ptr_leaks setting (i.e., privileged or unprivileged
1352  * mode), we won't promote STACK_INVALID to STACK_MISC. In privileged case it is
1353  * unnecessary as both are considered equivalent when loading data and pruning,
1354  * in case of unprivileged mode it will be incorrect to allow reads of invalid
1355  * slots.
1356  */
1357 static void mark_stack_slot_misc(struct bpf_verifier_env *env, u8 *stype)
1358 {
1359 	if (*stype == STACK_ZERO)
1360 		return;
1361 	if (*stype == STACK_INVALID)
1362 		return;
1363 	*stype = STACK_MISC;
1364 }
1365 
1366 static void scrub_spilled_slot(u8 *stype)
1367 {
1368 	if (*stype != STACK_INVALID)
1369 		*stype = STACK_MISC;
1370 }
1371 
1372 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too
1373  * small to hold src. This is different from krealloc since we don't want to preserve
1374  * the contents of dst.
1375  *
1376  * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
1377  * not be allocated.
1378  */
1379 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
1380 {
1381 	size_t alloc_bytes;
1382 	void *orig = dst;
1383 	size_t bytes;
1384 
1385 	if (ZERO_OR_NULL_PTR(src))
1386 		goto out;
1387 
1388 	if (unlikely(check_mul_overflow(n, size, &bytes)))
1389 		return NULL;
1390 
1391 	alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes));
1392 	dst = krealloc(orig, alloc_bytes, flags);
1393 	if (!dst) {
1394 		kfree(orig);
1395 		return NULL;
1396 	}
1397 
1398 	memcpy(dst, src, bytes);
1399 out:
1400 	return dst ? dst : ZERO_SIZE_PTR;
1401 }
1402 
1403 /* resize an array from old_n items to new_n items. the array is reallocated if it's too
1404  * small to hold new_n items. new items are zeroed out if the array grows.
1405  *
1406  * Contrary to krealloc_array, does not free arr if new_n is zero.
1407  */
1408 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
1409 {
1410 	size_t alloc_size;
1411 	void *new_arr;
1412 
1413 	if (!new_n || old_n == new_n)
1414 		goto out;
1415 
1416 	alloc_size = kmalloc_size_roundup(size_mul(new_n, size));
1417 	new_arr = krealloc(arr, alloc_size, GFP_KERNEL_ACCOUNT);
1418 	if (!new_arr) {
1419 		kfree(arr);
1420 		return NULL;
1421 	}
1422 	arr = new_arr;
1423 
1424 	if (new_n > old_n)
1425 		memset(arr + old_n * size, 0, (new_n - old_n) * size);
1426 
1427 out:
1428 	return arr ? arr : ZERO_SIZE_PTR;
1429 }
1430 
1431 static int copy_reference_state(struct bpf_verifier_state *dst, const struct bpf_verifier_state *src)
1432 {
1433 	dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
1434 			       sizeof(struct bpf_reference_state), GFP_KERNEL_ACCOUNT);
1435 	if (!dst->refs)
1436 		return -ENOMEM;
1437 
1438 	dst->acquired_refs = src->acquired_refs;
1439 	dst->active_locks = src->active_locks;
1440 	dst->active_preempt_locks = src->active_preempt_locks;
1441 	dst->active_rcu_lock = src->active_rcu_lock;
1442 	dst->active_irq_id = src->active_irq_id;
1443 	dst->active_lock_id = src->active_lock_id;
1444 	dst->active_lock_ptr = src->active_lock_ptr;
1445 	return 0;
1446 }
1447 
1448 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1449 {
1450 	size_t n = src->allocated_stack / BPF_REG_SIZE;
1451 
1452 	dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
1453 				GFP_KERNEL_ACCOUNT);
1454 	if (!dst->stack)
1455 		return -ENOMEM;
1456 
1457 	dst->allocated_stack = src->allocated_stack;
1458 	return 0;
1459 }
1460 
1461 static int resize_reference_state(struct bpf_verifier_state *state, size_t n)
1462 {
1463 	state->refs = realloc_array(state->refs, state->acquired_refs, n,
1464 				    sizeof(struct bpf_reference_state));
1465 	if (!state->refs)
1466 		return -ENOMEM;
1467 
1468 	state->acquired_refs = n;
1469 	return 0;
1470 }
1471 
1472 /* Possibly update state->allocated_stack to be at least size bytes. Also
1473  * possibly update the function's high-water mark in its bpf_subprog_info.
1474  */
1475 static int grow_stack_state(struct bpf_verifier_env *env, struct bpf_func_state *state, int size)
1476 {
1477 	size_t old_n = state->allocated_stack / BPF_REG_SIZE, n;
1478 
1479 	/* The stack size is always a multiple of BPF_REG_SIZE. */
1480 	size = round_up(size, BPF_REG_SIZE);
1481 	n = size / BPF_REG_SIZE;
1482 
1483 	if (old_n >= n)
1484 		return 0;
1485 
1486 	state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
1487 	if (!state->stack)
1488 		return -ENOMEM;
1489 
1490 	state->allocated_stack = size;
1491 
1492 	/* update known max for given subprogram */
1493 	if (env->subprog_info[state->subprogno].stack_depth < size)
1494 		env->subprog_info[state->subprogno].stack_depth = size;
1495 
1496 	return 0;
1497 }
1498 
1499 /* Acquire a pointer id from the env and update the state->refs to include
1500  * this new pointer reference.
1501  * On success, returns a valid pointer id to associate with the register
1502  * On failure, returns a negative errno.
1503  */
1504 static struct bpf_reference_state *acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
1505 {
1506 	struct bpf_verifier_state *state = env->cur_state;
1507 	int new_ofs = state->acquired_refs;
1508 	int err;
1509 
1510 	err = resize_reference_state(state, state->acquired_refs + 1);
1511 	if (err)
1512 		return NULL;
1513 	state->refs[new_ofs].insn_idx = insn_idx;
1514 
1515 	return &state->refs[new_ofs];
1516 }
1517 
1518 static int acquire_reference(struct bpf_verifier_env *env, int insn_idx)
1519 {
1520 	struct bpf_reference_state *s;
1521 
1522 	s = acquire_reference_state(env, insn_idx);
1523 	if (!s)
1524 		return -ENOMEM;
1525 	s->type = REF_TYPE_PTR;
1526 	s->id = ++env->id_gen;
1527 	return s->id;
1528 }
1529 
1530 static int acquire_lock_state(struct bpf_verifier_env *env, int insn_idx, enum ref_state_type type,
1531 			      int id, void *ptr)
1532 {
1533 	struct bpf_verifier_state *state = env->cur_state;
1534 	struct bpf_reference_state *s;
1535 
1536 	s = acquire_reference_state(env, insn_idx);
1537 	if (!s)
1538 		return -ENOMEM;
1539 	s->type = type;
1540 	s->id = id;
1541 	s->ptr = ptr;
1542 
1543 	state->active_locks++;
1544 	state->active_lock_id = id;
1545 	state->active_lock_ptr = ptr;
1546 	return 0;
1547 }
1548 
1549 static int acquire_irq_state(struct bpf_verifier_env *env, int insn_idx)
1550 {
1551 	struct bpf_verifier_state *state = env->cur_state;
1552 	struct bpf_reference_state *s;
1553 
1554 	s = acquire_reference_state(env, insn_idx);
1555 	if (!s)
1556 		return -ENOMEM;
1557 	s->type = REF_TYPE_IRQ;
1558 	s->id = ++env->id_gen;
1559 
1560 	state->active_irq_id = s->id;
1561 	return s->id;
1562 }
1563 
1564 static void release_reference_state(struct bpf_verifier_state *state, int idx)
1565 {
1566 	int last_idx;
1567 	size_t rem;
1568 
1569 	/* IRQ state requires the relative ordering of elements remaining the
1570 	 * same, since it relies on the refs array to behave as a stack, so that
1571 	 * it can detect out-of-order IRQ restore. Hence use memmove to shift
1572 	 * the array instead of swapping the final element into the deleted idx.
1573 	 */
1574 	last_idx = state->acquired_refs - 1;
1575 	rem = state->acquired_refs - idx - 1;
1576 	if (last_idx && idx != last_idx)
1577 		memmove(&state->refs[idx], &state->refs[idx + 1], sizeof(*state->refs) * rem);
1578 	memset(&state->refs[last_idx], 0, sizeof(*state->refs));
1579 	state->acquired_refs--;
1580 	return;
1581 }
1582 
1583 static bool find_reference_state(struct bpf_verifier_state *state, int ptr_id)
1584 {
1585 	int i;
1586 
1587 	for (i = 0; i < state->acquired_refs; i++)
1588 		if (state->refs[i].id == ptr_id)
1589 			return true;
1590 
1591 	return false;
1592 }
1593 
1594 static int release_lock_state(struct bpf_verifier_state *state, int type, int id, void *ptr)
1595 {
1596 	void *prev_ptr = NULL;
1597 	u32 prev_id = 0;
1598 	int i;
1599 
1600 	for (i = 0; i < state->acquired_refs; i++) {
1601 		if (state->refs[i].type == type && state->refs[i].id == id &&
1602 		    state->refs[i].ptr == ptr) {
1603 			release_reference_state(state, i);
1604 			state->active_locks--;
1605 			/* Reassign active lock (id, ptr). */
1606 			state->active_lock_id = prev_id;
1607 			state->active_lock_ptr = prev_ptr;
1608 			return 0;
1609 		}
1610 		if (state->refs[i].type & REF_TYPE_LOCK_MASK) {
1611 			prev_id = state->refs[i].id;
1612 			prev_ptr = state->refs[i].ptr;
1613 		}
1614 	}
1615 	return -EINVAL;
1616 }
1617 
1618 static int release_irq_state(struct bpf_verifier_state *state, int id)
1619 {
1620 	u32 prev_id = 0;
1621 	int i;
1622 
1623 	if (id != state->active_irq_id)
1624 		return -EACCES;
1625 
1626 	for (i = 0; i < state->acquired_refs; i++) {
1627 		if (state->refs[i].type != REF_TYPE_IRQ)
1628 			continue;
1629 		if (state->refs[i].id == id) {
1630 			release_reference_state(state, i);
1631 			state->active_irq_id = prev_id;
1632 			return 0;
1633 		} else {
1634 			prev_id = state->refs[i].id;
1635 		}
1636 	}
1637 	return -EINVAL;
1638 }
1639 
1640 static struct bpf_reference_state *find_lock_state(struct bpf_verifier_state *state, enum ref_state_type type,
1641 						   int id, void *ptr)
1642 {
1643 	int i;
1644 
1645 	for (i = 0; i < state->acquired_refs; i++) {
1646 		struct bpf_reference_state *s = &state->refs[i];
1647 
1648 		if (!(s->type & type))
1649 			continue;
1650 
1651 		if (s->id == id && s->ptr == ptr)
1652 			return s;
1653 	}
1654 	return NULL;
1655 }
1656 
1657 static void update_peak_states(struct bpf_verifier_env *env)
1658 {
1659 	u32 cur_states;
1660 
1661 	cur_states = env->explored_states_size + env->free_list_size + env->num_backedges;
1662 	env->peak_states = max(env->peak_states, cur_states);
1663 }
1664 
1665 static void free_func_state(struct bpf_func_state *state)
1666 {
1667 	if (!state)
1668 		return;
1669 	kfree(state->stack);
1670 	kfree(state);
1671 }
1672 
1673 static void clear_jmp_history(struct bpf_verifier_state *state)
1674 {
1675 	kfree(state->jmp_history);
1676 	state->jmp_history = NULL;
1677 	state->jmp_history_cnt = 0;
1678 }
1679 
1680 static void free_verifier_state(struct bpf_verifier_state *state,
1681 				bool free_self)
1682 {
1683 	int i;
1684 
1685 	for (i = 0; i <= state->curframe; i++) {
1686 		free_func_state(state->frame[i]);
1687 		state->frame[i] = NULL;
1688 	}
1689 	kfree(state->refs);
1690 	clear_jmp_history(state);
1691 	if (free_self)
1692 		kfree(state);
1693 }
1694 
1695 /* struct bpf_verifier_state->parent refers to states
1696  * that are in either of env->{expored_states,free_list}.
1697  * In both cases the state is contained in struct bpf_verifier_state_list.
1698  */
1699 static struct bpf_verifier_state_list *state_parent_as_list(struct bpf_verifier_state *st)
1700 {
1701 	if (st->parent)
1702 		return container_of(st->parent, struct bpf_verifier_state_list, state);
1703 	return NULL;
1704 }
1705 
1706 static bool incomplete_read_marks(struct bpf_verifier_env *env,
1707 				  struct bpf_verifier_state *st);
1708 
1709 /* A state can be freed if it is no longer referenced:
1710  * - is in the env->free_list;
1711  * - has no children states;
1712  */
1713 static void maybe_free_verifier_state(struct bpf_verifier_env *env,
1714 				      struct bpf_verifier_state_list *sl)
1715 {
1716 	if (!sl->in_free_list
1717 	    || sl->state.branches != 0
1718 	    || incomplete_read_marks(env, &sl->state))
1719 		return;
1720 	list_del(&sl->node);
1721 	free_verifier_state(&sl->state, false);
1722 	kfree(sl);
1723 	env->free_list_size--;
1724 }
1725 
1726 /* copy verifier state from src to dst growing dst stack space
1727  * when necessary to accommodate larger src stack
1728  */
1729 static int copy_func_state(struct bpf_func_state *dst,
1730 			   const struct bpf_func_state *src)
1731 {
1732 	memcpy(dst, src, offsetof(struct bpf_func_state, stack));
1733 	return copy_stack_state(dst, src);
1734 }
1735 
1736 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
1737 			       const struct bpf_verifier_state *src)
1738 {
1739 	struct bpf_func_state *dst;
1740 	int i, err;
1741 
1742 	dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
1743 					  src->jmp_history_cnt, sizeof(*dst_state->jmp_history),
1744 					  GFP_KERNEL_ACCOUNT);
1745 	if (!dst_state->jmp_history)
1746 		return -ENOMEM;
1747 	dst_state->jmp_history_cnt = src->jmp_history_cnt;
1748 
1749 	/* if dst has more stack frames then src frame, free them, this is also
1750 	 * necessary in case of exceptional exits using bpf_throw.
1751 	 */
1752 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
1753 		free_func_state(dst_state->frame[i]);
1754 		dst_state->frame[i] = NULL;
1755 	}
1756 	err = copy_reference_state(dst_state, src);
1757 	if (err)
1758 		return err;
1759 	dst_state->speculative = src->speculative;
1760 	dst_state->in_sleepable = src->in_sleepable;
1761 	dst_state->curframe = src->curframe;
1762 	dst_state->branches = src->branches;
1763 	dst_state->parent = src->parent;
1764 	dst_state->first_insn_idx = src->first_insn_idx;
1765 	dst_state->last_insn_idx = src->last_insn_idx;
1766 	dst_state->dfs_depth = src->dfs_depth;
1767 	dst_state->callback_unroll_depth = src->callback_unroll_depth;
1768 	dst_state->may_goto_depth = src->may_goto_depth;
1769 	dst_state->equal_state = src->equal_state;
1770 	for (i = 0; i <= src->curframe; i++) {
1771 		dst = dst_state->frame[i];
1772 		if (!dst) {
1773 			dst = kzalloc(sizeof(*dst), GFP_KERNEL_ACCOUNT);
1774 			if (!dst)
1775 				return -ENOMEM;
1776 			dst_state->frame[i] = dst;
1777 		}
1778 		err = copy_func_state(dst, src->frame[i]);
1779 		if (err)
1780 			return err;
1781 	}
1782 	return 0;
1783 }
1784 
1785 static u32 state_htab_size(struct bpf_verifier_env *env)
1786 {
1787 	return env->prog->len;
1788 }
1789 
1790 static struct list_head *explored_state(struct bpf_verifier_env *env, int idx)
1791 {
1792 	struct bpf_verifier_state *cur = env->cur_state;
1793 	struct bpf_func_state *state = cur->frame[cur->curframe];
1794 
1795 	return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
1796 }
1797 
1798 static bool same_callsites(struct bpf_verifier_state *a, struct bpf_verifier_state *b)
1799 {
1800 	int fr;
1801 
1802 	if (a->curframe != b->curframe)
1803 		return false;
1804 
1805 	for (fr = a->curframe; fr >= 0; fr--)
1806 		if (a->frame[fr]->callsite != b->frame[fr]->callsite)
1807 			return false;
1808 
1809 	return true;
1810 }
1811 
1812 /* Return IP for a given frame in a call stack */
1813 static u32 frame_insn_idx(struct bpf_verifier_state *st, u32 frame)
1814 {
1815 	return frame == st->curframe
1816 	       ? st->insn_idx
1817 	       : st->frame[frame + 1]->callsite;
1818 }
1819 
1820 /* For state @st look for a topmost frame with frame_insn_idx() in some SCC,
1821  * if such frame exists form a corresponding @callchain as an array of
1822  * call sites leading to this frame and SCC id.
1823  * E.g.:
1824  *
1825  *    void foo()  { A: loop {... SCC#1 ...}; }
1826  *    void bar()  { B: loop { C: foo(); ... SCC#2 ... }
1827  *                  D: loop { E: foo(); ... SCC#3 ... } }
1828  *    void main() { F: bar(); }
1829  *
1830  * @callchain at (A) would be either (F,SCC#2) or (F,SCC#3) depending
1831  * on @st frame call sites being (F,C,A) or (F,E,A).
1832  */
1833 static bool compute_scc_callchain(struct bpf_verifier_env *env,
1834 				  struct bpf_verifier_state *st,
1835 				  struct bpf_scc_callchain *callchain)
1836 {
1837 	u32 i, scc, insn_idx;
1838 
1839 	memset(callchain, 0, sizeof(*callchain));
1840 	for (i = 0; i <= st->curframe; i++) {
1841 		insn_idx = frame_insn_idx(st, i);
1842 		scc = env->insn_aux_data[insn_idx].scc;
1843 		if (scc) {
1844 			callchain->scc = scc;
1845 			break;
1846 		} else if (i < st->curframe) {
1847 			callchain->callsites[i] = insn_idx;
1848 		} else {
1849 			return false;
1850 		}
1851 	}
1852 	return true;
1853 }
1854 
1855 /* Check if bpf_scc_visit instance for @callchain exists. */
1856 static struct bpf_scc_visit *scc_visit_lookup(struct bpf_verifier_env *env,
1857 					      struct bpf_scc_callchain *callchain)
1858 {
1859 	struct bpf_scc_info *info = env->scc_info[callchain->scc];
1860 	struct bpf_scc_visit *visits = info->visits;
1861 	u32 i;
1862 
1863 	if (!info)
1864 		return NULL;
1865 	for (i = 0; i < info->num_visits; i++)
1866 		if (memcmp(callchain, &visits[i].callchain, sizeof(*callchain)) == 0)
1867 			return &visits[i];
1868 	return NULL;
1869 }
1870 
1871 /* Allocate a new bpf_scc_visit instance corresponding to @callchain.
1872  * Allocated instances are alive for a duration of the do_check_common()
1873  * call and are freed by free_states().
1874  */
1875 static struct bpf_scc_visit *scc_visit_alloc(struct bpf_verifier_env *env,
1876 					     struct bpf_scc_callchain *callchain)
1877 {
1878 	struct bpf_scc_visit *visit;
1879 	struct bpf_scc_info *info;
1880 	u32 scc, num_visits;
1881 	u64 new_sz;
1882 
1883 	scc = callchain->scc;
1884 	info = env->scc_info[scc];
1885 	num_visits = info ? info->num_visits : 0;
1886 	new_sz = sizeof(*info) + sizeof(struct bpf_scc_visit) * (num_visits + 1);
1887 	info = kvrealloc(env->scc_info[scc], new_sz, GFP_KERNEL_ACCOUNT);
1888 	if (!info)
1889 		return NULL;
1890 	env->scc_info[scc] = info;
1891 	info->num_visits = num_visits + 1;
1892 	visit = &info->visits[num_visits];
1893 	memset(visit, 0, sizeof(*visit));
1894 	memcpy(&visit->callchain, callchain, sizeof(*callchain));
1895 	return visit;
1896 }
1897 
1898 /* Form a string '(callsite#1,callsite#2,...,scc)' in env->tmp_str_buf */
1899 static char *format_callchain(struct bpf_verifier_env *env, struct bpf_scc_callchain *callchain)
1900 {
1901 	char *buf = env->tmp_str_buf;
1902 	int i, delta = 0;
1903 
1904 	delta += snprintf(buf + delta, TMP_STR_BUF_LEN - delta, "(");
1905 	for (i = 0; i < ARRAY_SIZE(callchain->callsites); i++) {
1906 		if (!callchain->callsites[i])
1907 			break;
1908 		delta += snprintf(buf + delta, TMP_STR_BUF_LEN - delta, "%u,",
1909 				  callchain->callsites[i]);
1910 	}
1911 	delta += snprintf(buf + delta, TMP_STR_BUF_LEN - delta, "%u)", callchain->scc);
1912 	return env->tmp_str_buf;
1913 }
1914 
1915 /* If callchain for @st exists (@st is in some SCC), ensure that
1916  * bpf_scc_visit instance for this callchain exists.
1917  * If instance does not exist or is empty, assign visit->entry_state to @st.
1918  */
1919 static int maybe_enter_scc(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
1920 {
1921 	struct bpf_scc_callchain *callchain = &env->callchain_buf;
1922 	struct bpf_scc_visit *visit;
1923 
1924 	if (!compute_scc_callchain(env, st, callchain))
1925 		return 0;
1926 	visit = scc_visit_lookup(env, callchain);
1927 	visit = visit ?: scc_visit_alloc(env, callchain);
1928 	if (!visit)
1929 		return -ENOMEM;
1930 	if (!visit->entry_state) {
1931 		visit->entry_state = st;
1932 		if (env->log.level & BPF_LOG_LEVEL2)
1933 			verbose(env, "SCC enter %s\n", format_callchain(env, callchain));
1934 	}
1935 	return 0;
1936 }
1937 
1938 static int propagate_backedges(struct bpf_verifier_env *env, struct bpf_scc_visit *visit);
1939 
1940 /* If callchain for @st exists (@st is in some SCC), make it empty:
1941  * - set visit->entry_state to NULL;
1942  * - flush accumulated backedges.
1943  */
1944 static int maybe_exit_scc(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
1945 {
1946 	struct bpf_scc_callchain *callchain = &env->callchain_buf;
1947 	struct bpf_scc_visit *visit;
1948 
1949 	if (!compute_scc_callchain(env, st, callchain))
1950 		return 0;
1951 	visit = scc_visit_lookup(env, callchain);
1952 	if (!visit) {
1953 		verifier_bug(env, "scc exit: no visit info for call chain %s",
1954 			     format_callchain(env, callchain));
1955 		return -EFAULT;
1956 	}
1957 	if (visit->entry_state != st)
1958 		return 0;
1959 	if (env->log.level & BPF_LOG_LEVEL2)
1960 		verbose(env, "SCC exit %s\n", format_callchain(env, callchain));
1961 	visit->entry_state = NULL;
1962 	env->num_backedges -= visit->num_backedges;
1963 	visit->num_backedges = 0;
1964 	update_peak_states(env);
1965 	return propagate_backedges(env, visit);
1966 }
1967 
1968 /* Lookup an bpf_scc_visit instance corresponding to @st callchain
1969  * and add @backedge to visit->backedges. @st callchain must exist.
1970  */
1971 static int add_scc_backedge(struct bpf_verifier_env *env,
1972 			    struct bpf_verifier_state *st,
1973 			    struct bpf_scc_backedge *backedge)
1974 {
1975 	struct bpf_scc_callchain *callchain = &env->callchain_buf;
1976 	struct bpf_scc_visit *visit;
1977 
1978 	if (!compute_scc_callchain(env, st, callchain)) {
1979 		verifier_bug(env, "add backedge: no SCC in verification path, insn_idx %d",
1980 			     st->insn_idx);
1981 		return -EFAULT;
1982 	}
1983 	visit = scc_visit_lookup(env, callchain);
1984 	if (!visit) {
1985 		verifier_bug(env, "add backedge: no visit info for call chain %s",
1986 			     format_callchain(env, callchain));
1987 		return -EFAULT;
1988 	}
1989 	if (env->log.level & BPF_LOG_LEVEL2)
1990 		verbose(env, "SCC backedge %s\n", format_callchain(env, callchain));
1991 	backedge->next = visit->backedges;
1992 	visit->backedges = backedge;
1993 	visit->num_backedges++;
1994 	env->num_backedges++;
1995 	update_peak_states(env);
1996 	return 0;
1997 }
1998 
1999 /* bpf_reg_state->live marks for registers in a state @st are incomplete,
2000  * if state @st is in some SCC and not all execution paths starting at this
2001  * SCC are fully explored.
2002  */
2003 static bool incomplete_read_marks(struct bpf_verifier_env *env,
2004 				  struct bpf_verifier_state *st)
2005 {
2006 	struct bpf_scc_callchain *callchain = &env->callchain_buf;
2007 	struct bpf_scc_visit *visit;
2008 
2009 	if (!compute_scc_callchain(env, st, callchain))
2010 		return false;
2011 	visit = scc_visit_lookup(env, callchain);
2012 	if (!visit)
2013 		return false;
2014 	return !!visit->backedges;
2015 }
2016 
2017 static void free_backedges(struct bpf_scc_visit *visit)
2018 {
2019 	struct bpf_scc_backedge *backedge, *next;
2020 
2021 	for (backedge = visit->backedges; backedge; backedge = next) {
2022 		free_verifier_state(&backedge->state, false);
2023 		next = backedge->next;
2024 		kvfree(backedge);
2025 	}
2026 	visit->backedges = NULL;
2027 }
2028 
2029 static int update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
2030 {
2031 	struct bpf_verifier_state_list *sl = NULL, *parent_sl;
2032 	struct bpf_verifier_state *parent;
2033 	int err;
2034 
2035 	while (st) {
2036 		u32 br = --st->branches;
2037 
2038 		/* verifier_bug_if(br > 1, ...) technically makes sense here,
2039 		 * but see comment in push_stack(), hence:
2040 		 */
2041 		verifier_bug_if((int)br < 0, env, "%s:branches_to_explore=%d", __func__, br);
2042 		if (br)
2043 			break;
2044 		err = maybe_exit_scc(env, st);
2045 		if (err)
2046 			return err;
2047 		parent = st->parent;
2048 		parent_sl = state_parent_as_list(st);
2049 		if (sl)
2050 			maybe_free_verifier_state(env, sl);
2051 		st = parent;
2052 		sl = parent_sl;
2053 	}
2054 	return 0;
2055 }
2056 
2057 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
2058 		     int *insn_idx, bool pop_log)
2059 {
2060 	struct bpf_verifier_state *cur = env->cur_state;
2061 	struct bpf_verifier_stack_elem *elem, *head = env->head;
2062 	int err;
2063 
2064 	if (env->head == NULL)
2065 		return -ENOENT;
2066 
2067 	if (cur) {
2068 		err = copy_verifier_state(cur, &head->st);
2069 		if (err)
2070 			return err;
2071 	}
2072 	if (pop_log)
2073 		bpf_vlog_reset(&env->log, head->log_pos);
2074 	if (insn_idx)
2075 		*insn_idx = head->insn_idx;
2076 	if (prev_insn_idx)
2077 		*prev_insn_idx = head->prev_insn_idx;
2078 	elem = head->next;
2079 	free_verifier_state(&head->st, false);
2080 	kfree(head);
2081 	env->head = elem;
2082 	env->stack_size--;
2083 	return 0;
2084 }
2085 
2086 static bool error_recoverable_with_nospec(int err)
2087 {
2088 	/* Should only return true for non-fatal errors that are allowed to
2089 	 * occur during speculative verification. For these we can insert a
2090 	 * nospec and the program might still be accepted. Do not include
2091 	 * something like ENOMEM because it is likely to re-occur for the next
2092 	 * architectural path once it has been recovered-from in all speculative
2093 	 * paths.
2094 	 */
2095 	return err == -EPERM || err == -EACCES || err == -EINVAL;
2096 }
2097 
2098 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
2099 					     int insn_idx, int prev_insn_idx,
2100 					     bool speculative)
2101 {
2102 	struct bpf_verifier_state *cur = env->cur_state;
2103 	struct bpf_verifier_stack_elem *elem;
2104 	int err;
2105 
2106 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL_ACCOUNT);
2107 	if (!elem)
2108 		return NULL;
2109 
2110 	elem->insn_idx = insn_idx;
2111 	elem->prev_insn_idx = prev_insn_idx;
2112 	elem->next = env->head;
2113 	elem->log_pos = env->log.end_pos;
2114 	env->head = elem;
2115 	env->stack_size++;
2116 	err = copy_verifier_state(&elem->st, cur);
2117 	if (err)
2118 		return NULL;
2119 	elem->st.speculative |= speculative;
2120 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
2121 		verbose(env, "The sequence of %d jumps is too complex.\n",
2122 			env->stack_size);
2123 		return NULL;
2124 	}
2125 	if (elem->st.parent) {
2126 		++elem->st.parent->branches;
2127 		/* WARN_ON(branches > 2) technically makes sense here,
2128 		 * but
2129 		 * 1. speculative states will bump 'branches' for non-branch
2130 		 * instructions
2131 		 * 2. is_state_visited() heuristics may decide not to create
2132 		 * a new state for a sequence of branches and all such current
2133 		 * and cloned states will be pointing to a single parent state
2134 		 * which might have large 'branches' count.
2135 		 */
2136 	}
2137 	return &elem->st;
2138 }
2139 
2140 #define CALLER_SAVED_REGS 6
2141 static const int caller_saved[CALLER_SAVED_REGS] = {
2142 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
2143 };
2144 
2145 /* This helper doesn't clear reg->id */
2146 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
2147 {
2148 	reg->var_off = tnum_const(imm);
2149 	reg->smin_value = (s64)imm;
2150 	reg->smax_value = (s64)imm;
2151 	reg->umin_value = imm;
2152 	reg->umax_value = imm;
2153 
2154 	reg->s32_min_value = (s32)imm;
2155 	reg->s32_max_value = (s32)imm;
2156 	reg->u32_min_value = (u32)imm;
2157 	reg->u32_max_value = (u32)imm;
2158 }
2159 
2160 /* Mark the unknown part of a register (variable offset or scalar value) as
2161  * known to have the value @imm.
2162  */
2163 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
2164 {
2165 	/* Clear off and union(map_ptr, range) */
2166 	memset(((u8 *)reg) + sizeof(reg->type), 0,
2167 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
2168 	reg->id = 0;
2169 	reg->ref_obj_id = 0;
2170 	___mark_reg_known(reg, imm);
2171 }
2172 
2173 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
2174 {
2175 	reg->var_off = tnum_const_subreg(reg->var_off, imm);
2176 	reg->s32_min_value = (s32)imm;
2177 	reg->s32_max_value = (s32)imm;
2178 	reg->u32_min_value = (u32)imm;
2179 	reg->u32_max_value = (u32)imm;
2180 }
2181 
2182 /* Mark the 'variable offset' part of a register as zero.  This should be
2183  * used only on registers holding a pointer type.
2184  */
2185 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
2186 {
2187 	__mark_reg_known(reg, 0);
2188 }
2189 
2190 static void __mark_reg_const_zero(const struct bpf_verifier_env *env, struct bpf_reg_state *reg)
2191 {
2192 	__mark_reg_known(reg, 0);
2193 	reg->type = SCALAR_VALUE;
2194 	/* all scalars are assumed imprecise initially (unless unprivileged,
2195 	 * in which case everything is forced to be precise)
2196 	 */
2197 	reg->precise = !env->bpf_capable;
2198 }
2199 
2200 static void mark_reg_known_zero(struct bpf_verifier_env *env,
2201 				struct bpf_reg_state *regs, u32 regno)
2202 {
2203 	if (WARN_ON(regno >= MAX_BPF_REG)) {
2204 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
2205 		/* Something bad happened, let's kill all regs */
2206 		for (regno = 0; regno < MAX_BPF_REG; regno++)
2207 			__mark_reg_not_init(env, regs + regno);
2208 		return;
2209 	}
2210 	__mark_reg_known_zero(regs + regno);
2211 }
2212 
2213 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type,
2214 			      bool first_slot, int dynptr_id)
2215 {
2216 	/* reg->type has no meaning for STACK_DYNPTR, but when we set reg for
2217 	 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply
2218 	 * set it unconditionally as it is ignored for STACK_DYNPTR anyway.
2219 	 */
2220 	__mark_reg_known_zero(reg);
2221 	reg->type = CONST_PTR_TO_DYNPTR;
2222 	/* Give each dynptr a unique id to uniquely associate slices to it. */
2223 	reg->id = dynptr_id;
2224 	reg->dynptr.type = type;
2225 	reg->dynptr.first_slot = first_slot;
2226 }
2227 
2228 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
2229 {
2230 	if (base_type(reg->type) == PTR_TO_MAP_VALUE) {
2231 		const struct bpf_map *map = reg->map_ptr;
2232 
2233 		if (map->inner_map_meta) {
2234 			reg->type = CONST_PTR_TO_MAP;
2235 			reg->map_ptr = map->inner_map_meta;
2236 			/* transfer reg's id which is unique for every map_lookup_elem
2237 			 * as UID of the inner map.
2238 			 */
2239 			if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER))
2240 				reg->map_uid = reg->id;
2241 			if (btf_record_has_field(map->inner_map_meta->record, BPF_WORKQUEUE))
2242 				reg->map_uid = reg->id;
2243 		} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
2244 			reg->type = PTR_TO_XDP_SOCK;
2245 		} else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
2246 			   map->map_type == BPF_MAP_TYPE_SOCKHASH) {
2247 			reg->type = PTR_TO_SOCKET;
2248 		} else {
2249 			reg->type = PTR_TO_MAP_VALUE;
2250 		}
2251 		return;
2252 	}
2253 
2254 	reg->type &= ~PTR_MAYBE_NULL;
2255 }
2256 
2257 static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno,
2258 				struct btf_field_graph_root *ds_head)
2259 {
2260 	__mark_reg_known_zero(&regs[regno]);
2261 	regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC;
2262 	regs[regno].btf = ds_head->btf;
2263 	regs[regno].btf_id = ds_head->value_btf_id;
2264 	regs[regno].off = ds_head->node_offset;
2265 }
2266 
2267 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
2268 {
2269 	return type_is_pkt_pointer(reg->type);
2270 }
2271 
2272 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
2273 {
2274 	return reg_is_pkt_pointer(reg) ||
2275 	       reg->type == PTR_TO_PACKET_END;
2276 }
2277 
2278 static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg)
2279 {
2280 	return base_type(reg->type) == PTR_TO_MEM &&
2281 	       (reg->type &
2282 		(DYNPTR_TYPE_SKB | DYNPTR_TYPE_XDP | DYNPTR_TYPE_SKB_META));
2283 }
2284 
2285 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
2286 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
2287 				    enum bpf_reg_type which)
2288 {
2289 	/* The register can already have a range from prior markings.
2290 	 * This is fine as long as it hasn't been advanced from its
2291 	 * origin.
2292 	 */
2293 	return reg->type == which &&
2294 	       reg->id == 0 &&
2295 	       reg->off == 0 &&
2296 	       tnum_equals_const(reg->var_off, 0);
2297 }
2298 
2299 /* Reset the min/max bounds of a register */
2300 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
2301 {
2302 	reg->smin_value = S64_MIN;
2303 	reg->smax_value = S64_MAX;
2304 	reg->umin_value = 0;
2305 	reg->umax_value = U64_MAX;
2306 
2307 	reg->s32_min_value = S32_MIN;
2308 	reg->s32_max_value = S32_MAX;
2309 	reg->u32_min_value = 0;
2310 	reg->u32_max_value = U32_MAX;
2311 }
2312 
2313 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
2314 {
2315 	reg->smin_value = S64_MIN;
2316 	reg->smax_value = S64_MAX;
2317 	reg->umin_value = 0;
2318 	reg->umax_value = U64_MAX;
2319 }
2320 
2321 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
2322 {
2323 	reg->s32_min_value = S32_MIN;
2324 	reg->s32_max_value = S32_MAX;
2325 	reg->u32_min_value = 0;
2326 	reg->u32_max_value = U32_MAX;
2327 }
2328 
2329 static void __update_reg32_bounds(struct bpf_reg_state *reg)
2330 {
2331 	struct tnum var32_off = tnum_subreg(reg->var_off);
2332 
2333 	/* min signed is max(sign bit) | min(other bits) */
2334 	reg->s32_min_value = max_t(s32, reg->s32_min_value,
2335 			var32_off.value | (var32_off.mask & S32_MIN));
2336 	/* max signed is min(sign bit) | max(other bits) */
2337 	reg->s32_max_value = min_t(s32, reg->s32_max_value,
2338 			var32_off.value | (var32_off.mask & S32_MAX));
2339 	reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
2340 	reg->u32_max_value = min(reg->u32_max_value,
2341 				 (u32)(var32_off.value | var32_off.mask));
2342 }
2343 
2344 static void __update_reg64_bounds(struct bpf_reg_state *reg)
2345 {
2346 	/* min signed is max(sign bit) | min(other bits) */
2347 	reg->smin_value = max_t(s64, reg->smin_value,
2348 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
2349 	/* max signed is min(sign bit) | max(other bits) */
2350 	reg->smax_value = min_t(s64, reg->smax_value,
2351 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
2352 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
2353 	reg->umax_value = min(reg->umax_value,
2354 			      reg->var_off.value | reg->var_off.mask);
2355 }
2356 
2357 static void __update_reg_bounds(struct bpf_reg_state *reg)
2358 {
2359 	__update_reg32_bounds(reg);
2360 	__update_reg64_bounds(reg);
2361 }
2362 
2363 /* Uses signed min/max values to inform unsigned, and vice-versa */
2364 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
2365 {
2366 	/* If upper 32 bits of u64/s64 range don't change, we can use lower 32
2367 	 * bits to improve our u32/s32 boundaries.
2368 	 *
2369 	 * E.g., the case where we have upper 32 bits as zero ([10, 20] in
2370 	 * u64) is pretty trivial, it's obvious that in u32 we'll also have
2371 	 * [10, 20] range. But this property holds for any 64-bit range as
2372 	 * long as upper 32 bits in that entire range of values stay the same.
2373 	 *
2374 	 * E.g., u64 range [0x10000000A, 0x10000000F] ([4294967306, 4294967311]
2375 	 * in decimal) has the same upper 32 bits throughout all the values in
2376 	 * that range. As such, lower 32 bits form a valid [0xA, 0xF] ([10, 15])
2377 	 * range.
2378 	 *
2379 	 * Note also, that [0xA, 0xF] is a valid range both in u32 and in s32,
2380 	 * following the rules outlined below about u64/s64 correspondence
2381 	 * (which equally applies to u32 vs s32 correspondence). In general it
2382 	 * depends on actual hexadecimal values of 32-bit range. They can form
2383 	 * only valid u32, or only valid s32 ranges in some cases.
2384 	 *
2385 	 * So we use all these insights to derive bounds for subregisters here.
2386 	 */
2387 	if ((reg->umin_value >> 32) == (reg->umax_value >> 32)) {
2388 		/* u64 to u32 casting preserves validity of low 32 bits as
2389 		 * a range, if upper 32 bits are the same
2390 		 */
2391 		reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)reg->umin_value);
2392 		reg->u32_max_value = min_t(u32, reg->u32_max_value, (u32)reg->umax_value);
2393 
2394 		if ((s32)reg->umin_value <= (s32)reg->umax_value) {
2395 			reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->umin_value);
2396 			reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->umax_value);
2397 		}
2398 	}
2399 	if ((reg->smin_value >> 32) == (reg->smax_value >> 32)) {
2400 		/* low 32 bits should form a proper u32 range */
2401 		if ((u32)reg->smin_value <= (u32)reg->smax_value) {
2402 			reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)reg->smin_value);
2403 			reg->u32_max_value = min_t(u32, reg->u32_max_value, (u32)reg->smax_value);
2404 		}
2405 		/* low 32 bits should form a proper s32 range */
2406 		if ((s32)reg->smin_value <= (s32)reg->smax_value) {
2407 			reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->smin_value);
2408 			reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->smax_value);
2409 		}
2410 	}
2411 	/* Special case where upper bits form a small sequence of two
2412 	 * sequential numbers (in 32-bit unsigned space, so 0xffffffff to
2413 	 * 0x00000000 is also valid), while lower bits form a proper s32 range
2414 	 * going from negative numbers to positive numbers. E.g., let's say we
2415 	 * have s64 range [-1, 1] ([0xffffffffffffffff, 0x0000000000000001]).
2416 	 * Possible s64 values are {-1, 0, 1} ({0xffffffffffffffff,
2417 	 * 0x0000000000000000, 0x00000000000001}). Ignoring upper 32 bits,
2418 	 * we still get a valid s32 range [-1, 1] ([0xffffffff, 0x00000001]).
2419 	 * Note that it doesn't have to be 0xffffffff going to 0x00000000 in
2420 	 * upper 32 bits. As a random example, s64 range
2421 	 * [0xfffffff0fffffff0; 0xfffffff100000010], forms a valid s32 range
2422 	 * [-16, 16] ([0xfffffff0; 0x00000010]) in its 32 bit subregister.
2423 	 */
2424 	if ((u32)(reg->umin_value >> 32) + 1 == (u32)(reg->umax_value >> 32) &&
2425 	    (s32)reg->umin_value < 0 && (s32)reg->umax_value >= 0) {
2426 		reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->umin_value);
2427 		reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->umax_value);
2428 	}
2429 	if ((u32)(reg->smin_value >> 32) + 1 == (u32)(reg->smax_value >> 32) &&
2430 	    (s32)reg->smin_value < 0 && (s32)reg->smax_value >= 0) {
2431 		reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->smin_value);
2432 		reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->smax_value);
2433 	}
2434 	/* if u32 range forms a valid s32 range (due to matching sign bit),
2435 	 * try to learn from that
2436 	 */
2437 	if ((s32)reg->u32_min_value <= (s32)reg->u32_max_value) {
2438 		reg->s32_min_value = max_t(s32, reg->s32_min_value, reg->u32_min_value);
2439 		reg->s32_max_value = min_t(s32, reg->s32_max_value, reg->u32_max_value);
2440 	}
2441 	/* If we cannot cross the sign boundary, then signed and unsigned bounds
2442 	 * are the same, so combine.  This works even in the negative case, e.g.
2443 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2444 	 */
2445 	if ((u32)reg->s32_min_value <= (u32)reg->s32_max_value) {
2446 		reg->u32_min_value = max_t(u32, reg->s32_min_value, reg->u32_min_value);
2447 		reg->u32_max_value = min_t(u32, reg->s32_max_value, reg->u32_max_value);
2448 	}
2449 }
2450 
2451 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
2452 {
2453 	/* If u64 range forms a valid s64 range (due to matching sign bit),
2454 	 * try to learn from that. Let's do a bit of ASCII art to see when
2455 	 * this is happening. Let's take u64 range first:
2456 	 *
2457 	 * 0             0x7fffffffffffffff 0x8000000000000000        U64_MAX
2458 	 * |-------------------------------|--------------------------------|
2459 	 *
2460 	 * Valid u64 range is formed when umin and umax are anywhere in the
2461 	 * range [0, U64_MAX], and umin <= umax. u64 case is simple and
2462 	 * straightforward. Let's see how s64 range maps onto the same range
2463 	 * of values, annotated below the line for comparison:
2464 	 *
2465 	 * 0             0x7fffffffffffffff 0x8000000000000000        U64_MAX
2466 	 * |-------------------------------|--------------------------------|
2467 	 * 0                        S64_MAX S64_MIN                        -1
2468 	 *
2469 	 * So s64 values basically start in the middle and they are logically
2470 	 * contiguous to the right of it, wrapping around from -1 to 0, and
2471 	 * then finishing as S64_MAX (0x7fffffffffffffff) right before
2472 	 * S64_MIN. We can try drawing the continuity of u64 vs s64 values
2473 	 * more visually as mapped to sign-agnostic range of hex values.
2474 	 *
2475 	 *  u64 start                                               u64 end
2476 	 *  _______________________________________________________________
2477 	 * /                                                               \
2478 	 * 0             0x7fffffffffffffff 0x8000000000000000        U64_MAX
2479 	 * |-------------------------------|--------------------------------|
2480 	 * 0                        S64_MAX S64_MIN                        -1
2481 	 *                                / \
2482 	 * >------------------------------   ------------------------------->
2483 	 * s64 continues...        s64 end   s64 start          s64 "midpoint"
2484 	 *
2485 	 * What this means is that, in general, we can't always derive
2486 	 * something new about u64 from any random s64 range, and vice versa.
2487 	 *
2488 	 * But we can do that in two particular cases. One is when entire
2489 	 * u64/s64 range is *entirely* contained within left half of the above
2490 	 * diagram or when it is *entirely* contained in the right half. I.e.:
2491 	 *
2492 	 * |-------------------------------|--------------------------------|
2493 	 *     ^                   ^            ^                 ^
2494 	 *     A                   B            C                 D
2495 	 *
2496 	 * [A, B] and [C, D] are contained entirely in their respective halves
2497 	 * and form valid contiguous ranges as both u64 and s64 values. [A, B]
2498 	 * will be non-negative both as u64 and s64 (and in fact it will be
2499 	 * identical ranges no matter the signedness). [C, D] treated as s64
2500 	 * will be a range of negative values, while in u64 it will be
2501 	 * non-negative range of values larger than 0x8000000000000000.
2502 	 *
2503 	 * Now, any other range here can't be represented in both u64 and s64
2504 	 * simultaneously. E.g., [A, C], [A, D], [B, C], [B, D] are valid
2505 	 * contiguous u64 ranges, but they are discontinuous in s64. [B, C]
2506 	 * in s64 would be properly presented as [S64_MIN, C] and [B, S64_MAX],
2507 	 * for example. Similarly, valid s64 range [D, A] (going from negative
2508 	 * to positive values), would be two separate [D, U64_MAX] and [0, A]
2509 	 * ranges as u64. Currently reg_state can't represent two segments per
2510 	 * numeric domain, so in such situations we can only derive maximal
2511 	 * possible range ([0, U64_MAX] for u64, and [S64_MIN, S64_MAX] for s64).
2512 	 *
2513 	 * So we use these facts to derive umin/umax from smin/smax and vice
2514 	 * versa only if they stay within the same "half". This is equivalent
2515 	 * to checking sign bit: lower half will have sign bit as zero, upper
2516 	 * half have sign bit 1. Below in code we simplify this by just
2517 	 * casting umin/umax as smin/smax and checking if they form valid
2518 	 * range, and vice versa. Those are equivalent checks.
2519 	 */
2520 	if ((s64)reg->umin_value <= (s64)reg->umax_value) {
2521 		reg->smin_value = max_t(s64, reg->smin_value, reg->umin_value);
2522 		reg->smax_value = min_t(s64, reg->smax_value, reg->umax_value);
2523 	}
2524 	/* If we cannot cross the sign boundary, then signed and unsigned bounds
2525 	 * are the same, so combine.  This works even in the negative case, e.g.
2526 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2527 	 */
2528 	if ((u64)reg->smin_value <= (u64)reg->smax_value) {
2529 		reg->umin_value = max_t(u64, reg->smin_value, reg->umin_value);
2530 		reg->umax_value = min_t(u64, reg->smax_value, reg->umax_value);
2531 	} else {
2532 		/* If the s64 range crosses the sign boundary, then it's split
2533 		 * between the beginning and end of the U64 domain. In that
2534 		 * case, we can derive new bounds if the u64 range overlaps
2535 		 * with only one end of the s64 range.
2536 		 *
2537 		 * In the following example, the u64 range overlaps only with
2538 		 * positive portion of the s64 range.
2539 		 *
2540 		 * 0                                                   U64_MAX
2541 		 * |  [xxxxxxxxxxxxxx u64 range xxxxxxxxxxxxxx]              |
2542 		 * |----------------------------|----------------------------|
2543 		 * |xxxxx s64 range xxxxxxxxx]                       [xxxxxxx|
2544 		 * 0                     S64_MAX S64_MIN                    -1
2545 		 *
2546 		 * We can thus derive the following new s64 and u64 ranges.
2547 		 *
2548 		 * 0                                                   U64_MAX
2549 		 * |  [xxxxxx u64 range xxxxx]                               |
2550 		 * |----------------------------|----------------------------|
2551 		 * |  [xxxxxx s64 range xxxxx]                               |
2552 		 * 0                     S64_MAX S64_MIN                    -1
2553 		 *
2554 		 * If they overlap in two places, we can't derive anything
2555 		 * because reg_state can't represent two ranges per numeric
2556 		 * domain.
2557 		 *
2558 		 * 0                                                   U64_MAX
2559 		 * |  [xxxxxxxxxxxxxxxxx u64 range xxxxxxxxxxxxxxxxx]        |
2560 		 * |----------------------------|----------------------------|
2561 		 * |xxxxx s64 range xxxxxxxxx]                    [xxxxxxxxxx|
2562 		 * 0                     S64_MAX S64_MIN                    -1
2563 		 *
2564 		 * The first condition below corresponds to the first diagram
2565 		 * above.
2566 		 */
2567 		if (reg->umax_value < (u64)reg->smin_value) {
2568 			reg->smin_value = (s64)reg->umin_value;
2569 			reg->umax_value = min_t(u64, reg->umax_value, reg->smax_value);
2570 		} else if ((u64)reg->smax_value < reg->umin_value) {
2571 			/* This second condition considers the case where the u64 range
2572 			 * overlaps with the negative portion of the s64 range:
2573 			 *
2574 			 * 0                                                   U64_MAX
2575 			 * |              [xxxxxxxxxxxxxx u64 range xxxxxxxxxxxxxx]  |
2576 			 * |----------------------------|----------------------------|
2577 			 * |xxxxxxxxx]                       [xxxxxxxxxxxx s64 range |
2578 			 * 0                     S64_MAX S64_MIN                    -1
2579 			 */
2580 			reg->smax_value = (s64)reg->umax_value;
2581 			reg->umin_value = max_t(u64, reg->umin_value, reg->smin_value);
2582 		}
2583 	}
2584 }
2585 
2586 static void __reg_deduce_mixed_bounds(struct bpf_reg_state *reg)
2587 {
2588 	/* Try to tighten 64-bit bounds from 32-bit knowledge, using 32-bit
2589 	 * values on both sides of 64-bit range in hope to have tighter range.
2590 	 * E.g., if r1 is [0x1'00000000, 0x3'80000000], and we learn from
2591 	 * 32-bit signed > 0 operation that s32 bounds are now [1; 0x7fffffff].
2592 	 * With this, we can substitute 1 as low 32-bits of _low_ 64-bit bound
2593 	 * (0x100000000 -> 0x100000001) and 0x7fffffff as low 32-bits of
2594 	 * _high_ 64-bit bound (0x380000000 -> 0x37fffffff) and arrive at a
2595 	 * better overall bounds for r1 as [0x1'000000001; 0x3'7fffffff].
2596 	 * We just need to make sure that derived bounds we are intersecting
2597 	 * with are well-formed ranges in respective s64 or u64 domain, just
2598 	 * like we do with similar kinds of 32-to-64 or 64-to-32 adjustments.
2599 	 */
2600 	__u64 new_umin, new_umax;
2601 	__s64 new_smin, new_smax;
2602 
2603 	/* u32 -> u64 tightening, it's always well-formed */
2604 	new_umin = (reg->umin_value & ~0xffffffffULL) | reg->u32_min_value;
2605 	new_umax = (reg->umax_value & ~0xffffffffULL) | reg->u32_max_value;
2606 	reg->umin_value = max_t(u64, reg->umin_value, new_umin);
2607 	reg->umax_value = min_t(u64, reg->umax_value, new_umax);
2608 	/* u32 -> s64 tightening, u32 range embedded into s64 preserves range validity */
2609 	new_smin = (reg->smin_value & ~0xffffffffULL) | reg->u32_min_value;
2610 	new_smax = (reg->smax_value & ~0xffffffffULL) | reg->u32_max_value;
2611 	reg->smin_value = max_t(s64, reg->smin_value, new_smin);
2612 	reg->smax_value = min_t(s64, reg->smax_value, new_smax);
2613 
2614 	/* Here we would like to handle a special case after sign extending load,
2615 	 * when upper bits for a 64-bit range are all 1s or all 0s.
2616 	 *
2617 	 * Upper bits are all 1s when register is in a range:
2618 	 *   [0xffff_ffff_0000_0000, 0xffff_ffff_ffff_ffff]
2619 	 * Upper bits are all 0s when register is in a range:
2620 	 *   [0x0000_0000_0000_0000, 0x0000_0000_ffff_ffff]
2621 	 * Together this forms are continuous range:
2622 	 *   [0xffff_ffff_0000_0000, 0x0000_0000_ffff_ffff]
2623 	 *
2624 	 * Now, suppose that register range is in fact tighter:
2625 	 *   [0xffff_ffff_8000_0000, 0x0000_0000_ffff_ffff] (R)
2626 	 * Also suppose that it's 32-bit range is positive,
2627 	 * meaning that lower 32-bits of the full 64-bit register
2628 	 * are in the range:
2629 	 *   [0x0000_0000, 0x7fff_ffff] (W)
2630 	 *
2631 	 * If this happens, then any value in a range:
2632 	 *   [0xffff_ffff_0000_0000, 0xffff_ffff_7fff_ffff]
2633 	 * is smaller than a lowest bound of the range (R):
2634 	 *   0xffff_ffff_8000_0000
2635 	 * which means that upper bits of the full 64-bit register
2636 	 * can't be all 1s, when lower bits are in range (W).
2637 	 *
2638 	 * Note that:
2639 	 *  - 0xffff_ffff_8000_0000 == (s64)S32_MIN
2640 	 *  - 0x0000_0000_7fff_ffff == (s64)S32_MAX
2641 	 * These relations are used in the conditions below.
2642 	 */
2643 	if (reg->s32_min_value >= 0 && reg->smin_value >= S32_MIN && reg->smax_value <= S32_MAX) {
2644 		reg->smin_value = reg->s32_min_value;
2645 		reg->smax_value = reg->s32_max_value;
2646 		reg->umin_value = reg->s32_min_value;
2647 		reg->umax_value = reg->s32_max_value;
2648 		reg->var_off = tnum_intersect(reg->var_off,
2649 					      tnum_range(reg->smin_value, reg->smax_value));
2650 	}
2651 }
2652 
2653 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
2654 {
2655 	__reg32_deduce_bounds(reg);
2656 	__reg64_deduce_bounds(reg);
2657 	__reg_deduce_mixed_bounds(reg);
2658 }
2659 
2660 /* Attempts to improve var_off based on unsigned min/max information */
2661 static void __reg_bound_offset(struct bpf_reg_state *reg)
2662 {
2663 	struct tnum var64_off = tnum_intersect(reg->var_off,
2664 					       tnum_range(reg->umin_value,
2665 							  reg->umax_value));
2666 	struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off),
2667 					       tnum_range(reg->u32_min_value,
2668 							  reg->u32_max_value));
2669 
2670 	reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
2671 }
2672 
2673 static void reg_bounds_sync(struct bpf_reg_state *reg)
2674 {
2675 	/* We might have learned new bounds from the var_off. */
2676 	__update_reg_bounds(reg);
2677 	/* We might have learned something about the sign bit. */
2678 	__reg_deduce_bounds(reg);
2679 	__reg_deduce_bounds(reg);
2680 	__reg_deduce_bounds(reg);
2681 	/* We might have learned some bits from the bounds. */
2682 	__reg_bound_offset(reg);
2683 	/* Intersecting with the old var_off might have improved our bounds
2684 	 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2685 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
2686 	 */
2687 	__update_reg_bounds(reg);
2688 }
2689 
2690 static int reg_bounds_sanity_check(struct bpf_verifier_env *env,
2691 				   struct bpf_reg_state *reg, const char *ctx)
2692 {
2693 	const char *msg;
2694 
2695 	if (reg->umin_value > reg->umax_value ||
2696 	    reg->smin_value > reg->smax_value ||
2697 	    reg->u32_min_value > reg->u32_max_value ||
2698 	    reg->s32_min_value > reg->s32_max_value) {
2699 		    msg = "range bounds violation";
2700 		    goto out;
2701 	}
2702 
2703 	if (tnum_is_const(reg->var_off)) {
2704 		u64 uval = reg->var_off.value;
2705 		s64 sval = (s64)uval;
2706 
2707 		if (reg->umin_value != uval || reg->umax_value != uval ||
2708 		    reg->smin_value != sval || reg->smax_value != sval) {
2709 			msg = "const tnum out of sync with range bounds";
2710 			goto out;
2711 		}
2712 	}
2713 
2714 	if (tnum_subreg_is_const(reg->var_off)) {
2715 		u32 uval32 = tnum_subreg(reg->var_off).value;
2716 		s32 sval32 = (s32)uval32;
2717 
2718 		if (reg->u32_min_value != uval32 || reg->u32_max_value != uval32 ||
2719 		    reg->s32_min_value != sval32 || reg->s32_max_value != sval32) {
2720 			msg = "const subreg tnum out of sync with range bounds";
2721 			goto out;
2722 		}
2723 	}
2724 
2725 	return 0;
2726 out:
2727 	verifier_bug(env, "REG INVARIANTS VIOLATION (%s): %s u64=[%#llx, %#llx] "
2728 		     "s64=[%#llx, %#llx] u32=[%#x, %#x] s32=[%#x, %#x] var_off=(%#llx, %#llx)",
2729 		     ctx, msg, reg->umin_value, reg->umax_value,
2730 		     reg->smin_value, reg->smax_value,
2731 		     reg->u32_min_value, reg->u32_max_value,
2732 		     reg->s32_min_value, reg->s32_max_value,
2733 		     reg->var_off.value, reg->var_off.mask);
2734 	if (env->test_reg_invariants)
2735 		return -EFAULT;
2736 	__mark_reg_unbounded(reg);
2737 	return 0;
2738 }
2739 
2740 static bool __reg32_bound_s64(s32 a)
2741 {
2742 	return a >= 0 && a <= S32_MAX;
2743 }
2744 
2745 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
2746 {
2747 	reg->umin_value = reg->u32_min_value;
2748 	reg->umax_value = reg->u32_max_value;
2749 
2750 	/* Attempt to pull 32-bit signed bounds into 64-bit bounds but must
2751 	 * be positive otherwise set to worse case bounds and refine later
2752 	 * from tnum.
2753 	 */
2754 	if (__reg32_bound_s64(reg->s32_min_value) &&
2755 	    __reg32_bound_s64(reg->s32_max_value)) {
2756 		reg->smin_value = reg->s32_min_value;
2757 		reg->smax_value = reg->s32_max_value;
2758 	} else {
2759 		reg->smin_value = 0;
2760 		reg->smax_value = U32_MAX;
2761 	}
2762 }
2763 
2764 /* Mark a register as having a completely unknown (scalar) value. */
2765 static void __mark_reg_unknown_imprecise(struct bpf_reg_state *reg)
2766 {
2767 	/*
2768 	 * Clear type, off, and union(map_ptr, range) and
2769 	 * padding between 'type' and union
2770 	 */
2771 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
2772 	reg->type = SCALAR_VALUE;
2773 	reg->id = 0;
2774 	reg->ref_obj_id = 0;
2775 	reg->var_off = tnum_unknown;
2776 	reg->frameno = 0;
2777 	reg->precise = false;
2778 	__mark_reg_unbounded(reg);
2779 }
2780 
2781 /* Mark a register as having a completely unknown (scalar) value,
2782  * initialize .precise as true when not bpf capable.
2783  */
2784 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
2785 			       struct bpf_reg_state *reg)
2786 {
2787 	__mark_reg_unknown_imprecise(reg);
2788 	reg->precise = !env->bpf_capable;
2789 }
2790 
2791 static void mark_reg_unknown(struct bpf_verifier_env *env,
2792 			     struct bpf_reg_state *regs, u32 regno)
2793 {
2794 	if (WARN_ON(regno >= MAX_BPF_REG)) {
2795 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
2796 		/* Something bad happened, let's kill all regs except FP */
2797 		for (regno = 0; regno < BPF_REG_FP; regno++)
2798 			__mark_reg_not_init(env, regs + regno);
2799 		return;
2800 	}
2801 	__mark_reg_unknown(env, regs + regno);
2802 }
2803 
2804 static int __mark_reg_s32_range(struct bpf_verifier_env *env,
2805 				struct bpf_reg_state *regs,
2806 				u32 regno,
2807 				s32 s32_min,
2808 				s32 s32_max)
2809 {
2810 	struct bpf_reg_state *reg = regs + regno;
2811 
2812 	reg->s32_min_value = max_t(s32, reg->s32_min_value, s32_min);
2813 	reg->s32_max_value = min_t(s32, reg->s32_max_value, s32_max);
2814 
2815 	reg->smin_value = max_t(s64, reg->smin_value, s32_min);
2816 	reg->smax_value = min_t(s64, reg->smax_value, s32_max);
2817 
2818 	reg_bounds_sync(reg);
2819 
2820 	return reg_bounds_sanity_check(env, reg, "s32_range");
2821 }
2822 
2823 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
2824 				struct bpf_reg_state *reg)
2825 {
2826 	__mark_reg_unknown(env, reg);
2827 	reg->type = NOT_INIT;
2828 }
2829 
2830 static void mark_reg_not_init(struct bpf_verifier_env *env,
2831 			      struct bpf_reg_state *regs, u32 regno)
2832 {
2833 	if (WARN_ON(regno >= MAX_BPF_REG)) {
2834 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
2835 		/* Something bad happened, let's kill all regs except FP */
2836 		for (regno = 0; regno < BPF_REG_FP; regno++)
2837 			__mark_reg_not_init(env, regs + regno);
2838 		return;
2839 	}
2840 	__mark_reg_not_init(env, regs + regno);
2841 }
2842 
2843 static int mark_btf_ld_reg(struct bpf_verifier_env *env,
2844 			   struct bpf_reg_state *regs, u32 regno,
2845 			   enum bpf_reg_type reg_type,
2846 			   struct btf *btf, u32 btf_id,
2847 			   enum bpf_type_flag flag)
2848 {
2849 	switch (reg_type) {
2850 	case SCALAR_VALUE:
2851 		mark_reg_unknown(env, regs, regno);
2852 		return 0;
2853 	case PTR_TO_BTF_ID:
2854 		mark_reg_known_zero(env, regs, regno);
2855 		regs[regno].type = PTR_TO_BTF_ID | flag;
2856 		regs[regno].btf = btf;
2857 		regs[regno].btf_id = btf_id;
2858 		if (type_may_be_null(flag))
2859 			regs[regno].id = ++env->id_gen;
2860 		return 0;
2861 	case PTR_TO_MEM:
2862 		mark_reg_known_zero(env, regs, regno);
2863 		regs[regno].type = PTR_TO_MEM | flag;
2864 		regs[regno].mem_size = 0;
2865 		return 0;
2866 	default:
2867 		verifier_bug(env, "unexpected reg_type %d in %s\n", reg_type, __func__);
2868 		return -EFAULT;
2869 	}
2870 }
2871 
2872 #define DEF_NOT_SUBREG	(0)
2873 static void init_reg_state(struct bpf_verifier_env *env,
2874 			   struct bpf_func_state *state)
2875 {
2876 	struct bpf_reg_state *regs = state->regs;
2877 	int i;
2878 
2879 	for (i = 0; i < MAX_BPF_REG; i++) {
2880 		mark_reg_not_init(env, regs, i);
2881 		regs[i].live = REG_LIVE_NONE;
2882 		regs[i].parent = NULL;
2883 		regs[i].subreg_def = DEF_NOT_SUBREG;
2884 	}
2885 
2886 	/* frame pointer */
2887 	regs[BPF_REG_FP].type = PTR_TO_STACK;
2888 	mark_reg_known_zero(env, regs, BPF_REG_FP);
2889 	regs[BPF_REG_FP].frameno = state->frameno;
2890 }
2891 
2892 static struct bpf_retval_range retval_range(s32 minval, s32 maxval)
2893 {
2894 	return (struct bpf_retval_range){ minval, maxval };
2895 }
2896 
2897 #define BPF_MAIN_FUNC (-1)
2898 static void init_func_state(struct bpf_verifier_env *env,
2899 			    struct bpf_func_state *state,
2900 			    int callsite, int frameno, int subprogno)
2901 {
2902 	state->callsite = callsite;
2903 	state->frameno = frameno;
2904 	state->subprogno = subprogno;
2905 	state->callback_ret_range = retval_range(0, 0);
2906 	init_reg_state(env, state);
2907 	mark_verifier_state_scratched(env);
2908 }
2909 
2910 /* Similar to push_stack(), but for async callbacks */
2911 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
2912 						int insn_idx, int prev_insn_idx,
2913 						int subprog, bool is_sleepable)
2914 {
2915 	struct bpf_verifier_stack_elem *elem;
2916 	struct bpf_func_state *frame;
2917 
2918 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL_ACCOUNT);
2919 	if (!elem)
2920 		return NULL;
2921 
2922 	elem->insn_idx = insn_idx;
2923 	elem->prev_insn_idx = prev_insn_idx;
2924 	elem->next = env->head;
2925 	elem->log_pos = env->log.end_pos;
2926 	env->head = elem;
2927 	env->stack_size++;
2928 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
2929 		verbose(env,
2930 			"The sequence of %d jumps is too complex for async cb.\n",
2931 			env->stack_size);
2932 		return NULL;
2933 	}
2934 	/* Unlike push_stack() do not copy_verifier_state().
2935 	 * The caller state doesn't matter.
2936 	 * This is async callback. It starts in a fresh stack.
2937 	 * Initialize it similar to do_check_common().
2938 	 */
2939 	elem->st.branches = 1;
2940 	elem->st.in_sleepable = is_sleepable;
2941 	frame = kzalloc(sizeof(*frame), GFP_KERNEL_ACCOUNT);
2942 	if (!frame)
2943 		return NULL;
2944 	init_func_state(env, frame,
2945 			BPF_MAIN_FUNC /* callsite */,
2946 			0 /* frameno within this callchain */,
2947 			subprog /* subprog number within this prog */);
2948 	elem->st.frame[0] = frame;
2949 	return &elem->st;
2950 }
2951 
2952 
2953 enum reg_arg_type {
2954 	SRC_OP,		/* register is used as source operand */
2955 	DST_OP,		/* register is used as destination operand */
2956 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
2957 };
2958 
2959 static int cmp_subprogs(const void *a, const void *b)
2960 {
2961 	return ((struct bpf_subprog_info *)a)->start -
2962 	       ((struct bpf_subprog_info *)b)->start;
2963 }
2964 
2965 /* Find subprogram that contains instruction at 'off' */
2966 static struct bpf_subprog_info *find_containing_subprog(struct bpf_verifier_env *env, int off)
2967 {
2968 	struct bpf_subprog_info *vals = env->subprog_info;
2969 	int l, r, m;
2970 
2971 	if (off >= env->prog->len || off < 0 || env->subprog_cnt == 0)
2972 		return NULL;
2973 
2974 	l = 0;
2975 	r = env->subprog_cnt - 1;
2976 	while (l < r) {
2977 		m = l + (r - l + 1) / 2;
2978 		if (vals[m].start <= off)
2979 			l = m;
2980 		else
2981 			r = m - 1;
2982 	}
2983 	return &vals[l];
2984 }
2985 
2986 /* Find subprogram that starts exactly at 'off' */
2987 static int find_subprog(struct bpf_verifier_env *env, int off)
2988 {
2989 	struct bpf_subprog_info *p;
2990 
2991 	p = find_containing_subprog(env, off);
2992 	if (!p || p->start != off)
2993 		return -ENOENT;
2994 	return p - env->subprog_info;
2995 }
2996 
2997 static int add_subprog(struct bpf_verifier_env *env, int off)
2998 {
2999 	int insn_cnt = env->prog->len;
3000 	int ret;
3001 
3002 	if (off >= insn_cnt || off < 0) {
3003 		verbose(env, "call to invalid destination\n");
3004 		return -EINVAL;
3005 	}
3006 	ret = find_subprog(env, off);
3007 	if (ret >= 0)
3008 		return ret;
3009 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
3010 		verbose(env, "too many subprograms\n");
3011 		return -E2BIG;
3012 	}
3013 	/* determine subprog starts. The end is one before the next starts */
3014 	env->subprog_info[env->subprog_cnt++].start = off;
3015 	sort(env->subprog_info, env->subprog_cnt,
3016 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
3017 	return env->subprog_cnt - 1;
3018 }
3019 
3020 static int bpf_find_exception_callback_insn_off(struct bpf_verifier_env *env)
3021 {
3022 	struct bpf_prog_aux *aux = env->prog->aux;
3023 	struct btf *btf = aux->btf;
3024 	const struct btf_type *t;
3025 	u32 main_btf_id, id;
3026 	const char *name;
3027 	int ret, i;
3028 
3029 	/* Non-zero func_info_cnt implies valid btf */
3030 	if (!aux->func_info_cnt)
3031 		return 0;
3032 	main_btf_id = aux->func_info[0].type_id;
3033 
3034 	t = btf_type_by_id(btf, main_btf_id);
3035 	if (!t) {
3036 		verbose(env, "invalid btf id for main subprog in func_info\n");
3037 		return -EINVAL;
3038 	}
3039 
3040 	name = btf_find_decl_tag_value(btf, t, -1, "exception_callback:");
3041 	if (IS_ERR(name)) {
3042 		ret = PTR_ERR(name);
3043 		/* If there is no tag present, there is no exception callback */
3044 		if (ret == -ENOENT)
3045 			ret = 0;
3046 		else if (ret == -EEXIST)
3047 			verbose(env, "multiple exception callback tags for main subprog\n");
3048 		return ret;
3049 	}
3050 
3051 	ret = btf_find_by_name_kind(btf, name, BTF_KIND_FUNC);
3052 	if (ret < 0) {
3053 		verbose(env, "exception callback '%s' could not be found in BTF\n", name);
3054 		return ret;
3055 	}
3056 	id = ret;
3057 	t = btf_type_by_id(btf, id);
3058 	if (btf_func_linkage(t) != BTF_FUNC_GLOBAL) {
3059 		verbose(env, "exception callback '%s' must have global linkage\n", name);
3060 		return -EINVAL;
3061 	}
3062 	ret = 0;
3063 	for (i = 0; i < aux->func_info_cnt; i++) {
3064 		if (aux->func_info[i].type_id != id)
3065 			continue;
3066 		ret = aux->func_info[i].insn_off;
3067 		/* Further func_info and subprog checks will also happen
3068 		 * later, so assume this is the right insn_off for now.
3069 		 */
3070 		if (!ret) {
3071 			verbose(env, "invalid exception callback insn_off in func_info: 0\n");
3072 			ret = -EINVAL;
3073 		}
3074 	}
3075 	if (!ret) {
3076 		verbose(env, "exception callback type id not found in func_info\n");
3077 		ret = -EINVAL;
3078 	}
3079 	return ret;
3080 }
3081 
3082 #define MAX_KFUNC_DESCS 256
3083 #define MAX_KFUNC_BTFS	256
3084 
3085 struct bpf_kfunc_desc {
3086 	struct btf_func_model func_model;
3087 	u32 func_id;
3088 	s32 imm;
3089 	u16 offset;
3090 	unsigned long addr;
3091 };
3092 
3093 struct bpf_kfunc_btf {
3094 	struct btf *btf;
3095 	struct module *module;
3096 	u16 offset;
3097 };
3098 
3099 struct bpf_kfunc_desc_tab {
3100 	/* Sorted by func_id (BTF ID) and offset (fd_array offset) during
3101 	 * verification. JITs do lookups by bpf_insn, where func_id may not be
3102 	 * available, therefore at the end of verification do_misc_fixups()
3103 	 * sorts this by imm and offset.
3104 	 */
3105 	struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
3106 	u32 nr_descs;
3107 };
3108 
3109 struct bpf_kfunc_btf_tab {
3110 	struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS];
3111 	u32 nr_descs;
3112 };
3113 
3114 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b)
3115 {
3116 	const struct bpf_kfunc_desc *d0 = a;
3117 	const struct bpf_kfunc_desc *d1 = b;
3118 
3119 	/* func_id is not greater than BTF_MAX_TYPE */
3120 	return d0->func_id - d1->func_id ?: d0->offset - d1->offset;
3121 }
3122 
3123 static int kfunc_btf_cmp_by_off(const void *a, const void *b)
3124 {
3125 	const struct bpf_kfunc_btf *d0 = a;
3126 	const struct bpf_kfunc_btf *d1 = b;
3127 
3128 	return d0->offset - d1->offset;
3129 }
3130 
3131 static const struct bpf_kfunc_desc *
3132 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset)
3133 {
3134 	struct bpf_kfunc_desc desc = {
3135 		.func_id = func_id,
3136 		.offset = offset,
3137 	};
3138 	struct bpf_kfunc_desc_tab *tab;
3139 
3140 	tab = prog->aux->kfunc_tab;
3141 	return bsearch(&desc, tab->descs, tab->nr_descs,
3142 		       sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off);
3143 }
3144 
3145 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
3146 		       u16 btf_fd_idx, u8 **func_addr)
3147 {
3148 	const struct bpf_kfunc_desc *desc;
3149 
3150 	desc = find_kfunc_desc(prog, func_id, btf_fd_idx);
3151 	if (!desc)
3152 		return -EFAULT;
3153 
3154 	*func_addr = (u8 *)desc->addr;
3155 	return 0;
3156 }
3157 
3158 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env,
3159 					 s16 offset)
3160 {
3161 	struct bpf_kfunc_btf kf_btf = { .offset = offset };
3162 	struct bpf_kfunc_btf_tab *tab;
3163 	struct bpf_kfunc_btf *b;
3164 	struct module *mod;
3165 	struct btf *btf;
3166 	int btf_fd;
3167 
3168 	tab = env->prog->aux->kfunc_btf_tab;
3169 	b = bsearch(&kf_btf, tab->descs, tab->nr_descs,
3170 		    sizeof(tab->descs[0]), kfunc_btf_cmp_by_off);
3171 	if (!b) {
3172 		if (tab->nr_descs == MAX_KFUNC_BTFS) {
3173 			verbose(env, "too many different module BTFs\n");
3174 			return ERR_PTR(-E2BIG);
3175 		}
3176 
3177 		if (bpfptr_is_null(env->fd_array)) {
3178 			verbose(env, "kfunc offset > 0 without fd_array is invalid\n");
3179 			return ERR_PTR(-EPROTO);
3180 		}
3181 
3182 		if (copy_from_bpfptr_offset(&btf_fd, env->fd_array,
3183 					    offset * sizeof(btf_fd),
3184 					    sizeof(btf_fd)))
3185 			return ERR_PTR(-EFAULT);
3186 
3187 		btf = btf_get_by_fd(btf_fd);
3188 		if (IS_ERR(btf)) {
3189 			verbose(env, "invalid module BTF fd specified\n");
3190 			return btf;
3191 		}
3192 
3193 		if (!btf_is_module(btf)) {
3194 			verbose(env, "BTF fd for kfunc is not a module BTF\n");
3195 			btf_put(btf);
3196 			return ERR_PTR(-EINVAL);
3197 		}
3198 
3199 		mod = btf_try_get_module(btf);
3200 		if (!mod) {
3201 			btf_put(btf);
3202 			return ERR_PTR(-ENXIO);
3203 		}
3204 
3205 		b = &tab->descs[tab->nr_descs++];
3206 		b->btf = btf;
3207 		b->module = mod;
3208 		b->offset = offset;
3209 
3210 		/* sort() reorders entries by value, so b may no longer point
3211 		 * to the right entry after this
3212 		 */
3213 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
3214 		     kfunc_btf_cmp_by_off, NULL);
3215 	} else {
3216 		btf = b->btf;
3217 	}
3218 
3219 	return btf;
3220 }
3221 
3222 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab)
3223 {
3224 	if (!tab)
3225 		return;
3226 
3227 	while (tab->nr_descs--) {
3228 		module_put(tab->descs[tab->nr_descs].module);
3229 		btf_put(tab->descs[tab->nr_descs].btf);
3230 	}
3231 	kfree(tab);
3232 }
3233 
3234 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset)
3235 {
3236 	if (offset) {
3237 		if (offset < 0) {
3238 			/* In the future, this can be allowed to increase limit
3239 			 * of fd index into fd_array, interpreted as u16.
3240 			 */
3241 			verbose(env, "negative offset disallowed for kernel module function call\n");
3242 			return ERR_PTR(-EINVAL);
3243 		}
3244 
3245 		return __find_kfunc_desc_btf(env, offset);
3246 	}
3247 	return btf_vmlinux ?: ERR_PTR(-ENOENT);
3248 }
3249 
3250 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset)
3251 {
3252 	const struct btf_type *func, *func_proto;
3253 	struct bpf_kfunc_btf_tab *btf_tab;
3254 	struct bpf_kfunc_desc_tab *tab;
3255 	struct bpf_prog_aux *prog_aux;
3256 	struct bpf_kfunc_desc *desc;
3257 	const char *func_name;
3258 	struct btf *desc_btf;
3259 	unsigned long call_imm;
3260 	unsigned long addr;
3261 	int err;
3262 
3263 	prog_aux = env->prog->aux;
3264 	tab = prog_aux->kfunc_tab;
3265 	btf_tab = prog_aux->kfunc_btf_tab;
3266 	if (!tab) {
3267 		if (!btf_vmlinux) {
3268 			verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
3269 			return -ENOTSUPP;
3270 		}
3271 
3272 		if (!env->prog->jit_requested) {
3273 			verbose(env, "JIT is required for calling kernel function\n");
3274 			return -ENOTSUPP;
3275 		}
3276 
3277 		if (!bpf_jit_supports_kfunc_call()) {
3278 			verbose(env, "JIT does not support calling kernel function\n");
3279 			return -ENOTSUPP;
3280 		}
3281 
3282 		if (!env->prog->gpl_compatible) {
3283 			verbose(env, "cannot call kernel function from non-GPL compatible program\n");
3284 			return -EINVAL;
3285 		}
3286 
3287 		tab = kzalloc(sizeof(*tab), GFP_KERNEL_ACCOUNT);
3288 		if (!tab)
3289 			return -ENOMEM;
3290 		prog_aux->kfunc_tab = tab;
3291 	}
3292 
3293 	/* func_id == 0 is always invalid, but instead of returning an error, be
3294 	 * conservative and wait until the code elimination pass before returning
3295 	 * error, so that invalid calls that get pruned out can be in BPF programs
3296 	 * loaded from userspace.  It is also required that offset be untouched
3297 	 * for such calls.
3298 	 */
3299 	if (!func_id && !offset)
3300 		return 0;
3301 
3302 	if (!btf_tab && offset) {
3303 		btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL_ACCOUNT);
3304 		if (!btf_tab)
3305 			return -ENOMEM;
3306 		prog_aux->kfunc_btf_tab = btf_tab;
3307 	}
3308 
3309 	desc_btf = find_kfunc_desc_btf(env, offset);
3310 	if (IS_ERR(desc_btf)) {
3311 		verbose(env, "failed to find BTF for kernel function\n");
3312 		return PTR_ERR(desc_btf);
3313 	}
3314 
3315 	if (find_kfunc_desc(env->prog, func_id, offset))
3316 		return 0;
3317 
3318 	if (tab->nr_descs == MAX_KFUNC_DESCS) {
3319 		verbose(env, "too many different kernel function calls\n");
3320 		return -E2BIG;
3321 	}
3322 
3323 	func = btf_type_by_id(desc_btf, func_id);
3324 	if (!func || !btf_type_is_func(func)) {
3325 		verbose(env, "kernel btf_id %u is not a function\n",
3326 			func_id);
3327 		return -EINVAL;
3328 	}
3329 	func_proto = btf_type_by_id(desc_btf, func->type);
3330 	if (!func_proto || !btf_type_is_func_proto(func_proto)) {
3331 		verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
3332 			func_id);
3333 		return -EINVAL;
3334 	}
3335 
3336 	func_name = btf_name_by_offset(desc_btf, func->name_off);
3337 	addr = kallsyms_lookup_name(func_name);
3338 	if (!addr) {
3339 		verbose(env, "cannot find address for kernel function %s\n",
3340 			func_name);
3341 		return -EINVAL;
3342 	}
3343 	specialize_kfunc(env, func_id, offset, &addr);
3344 
3345 	if (bpf_jit_supports_far_kfunc_call()) {
3346 		call_imm = func_id;
3347 	} else {
3348 		call_imm = BPF_CALL_IMM(addr);
3349 		/* Check whether the relative offset overflows desc->imm */
3350 		if ((unsigned long)(s32)call_imm != call_imm) {
3351 			verbose(env, "address of kernel function %s is out of range\n",
3352 				func_name);
3353 			return -EINVAL;
3354 		}
3355 	}
3356 
3357 	if (bpf_dev_bound_kfunc_id(func_id)) {
3358 		err = bpf_dev_bound_kfunc_check(&env->log, prog_aux);
3359 		if (err)
3360 			return err;
3361 	}
3362 
3363 	desc = &tab->descs[tab->nr_descs++];
3364 	desc->func_id = func_id;
3365 	desc->imm = call_imm;
3366 	desc->offset = offset;
3367 	desc->addr = addr;
3368 	err = btf_distill_func_proto(&env->log, desc_btf,
3369 				     func_proto, func_name,
3370 				     &desc->func_model);
3371 	if (!err)
3372 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
3373 		     kfunc_desc_cmp_by_id_off, NULL);
3374 	return err;
3375 }
3376 
3377 static int kfunc_desc_cmp_by_imm_off(const void *a, const void *b)
3378 {
3379 	const struct bpf_kfunc_desc *d0 = a;
3380 	const struct bpf_kfunc_desc *d1 = b;
3381 
3382 	if (d0->imm != d1->imm)
3383 		return d0->imm < d1->imm ? -1 : 1;
3384 	if (d0->offset != d1->offset)
3385 		return d0->offset < d1->offset ? -1 : 1;
3386 	return 0;
3387 }
3388 
3389 static void sort_kfunc_descs_by_imm_off(struct bpf_prog *prog)
3390 {
3391 	struct bpf_kfunc_desc_tab *tab;
3392 
3393 	tab = prog->aux->kfunc_tab;
3394 	if (!tab)
3395 		return;
3396 
3397 	sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
3398 	     kfunc_desc_cmp_by_imm_off, NULL);
3399 }
3400 
3401 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
3402 {
3403 	return !!prog->aux->kfunc_tab;
3404 }
3405 
3406 const struct btf_func_model *
3407 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
3408 			 const struct bpf_insn *insn)
3409 {
3410 	const struct bpf_kfunc_desc desc = {
3411 		.imm = insn->imm,
3412 		.offset = insn->off,
3413 	};
3414 	const struct bpf_kfunc_desc *res;
3415 	struct bpf_kfunc_desc_tab *tab;
3416 
3417 	tab = prog->aux->kfunc_tab;
3418 	res = bsearch(&desc, tab->descs, tab->nr_descs,
3419 		      sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm_off);
3420 
3421 	return res ? &res->func_model : NULL;
3422 }
3423 
3424 static int add_kfunc_in_insns(struct bpf_verifier_env *env,
3425 			      struct bpf_insn *insn, int cnt)
3426 {
3427 	int i, ret;
3428 
3429 	for (i = 0; i < cnt; i++, insn++) {
3430 		if (bpf_pseudo_kfunc_call(insn)) {
3431 			ret = add_kfunc_call(env, insn->imm, insn->off);
3432 			if (ret < 0)
3433 				return ret;
3434 		}
3435 	}
3436 	return 0;
3437 }
3438 
3439 static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
3440 {
3441 	struct bpf_subprog_info *subprog = env->subprog_info;
3442 	int i, ret, insn_cnt = env->prog->len, ex_cb_insn;
3443 	struct bpf_insn *insn = env->prog->insnsi;
3444 
3445 	/* Add entry function. */
3446 	ret = add_subprog(env, 0);
3447 	if (ret)
3448 		return ret;
3449 
3450 	for (i = 0; i < insn_cnt; i++, insn++) {
3451 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
3452 		    !bpf_pseudo_kfunc_call(insn))
3453 			continue;
3454 
3455 		if (!env->bpf_capable) {
3456 			verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
3457 			return -EPERM;
3458 		}
3459 
3460 		if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn))
3461 			ret = add_subprog(env, i + insn->imm + 1);
3462 		else
3463 			ret = add_kfunc_call(env, insn->imm, insn->off);
3464 
3465 		if (ret < 0)
3466 			return ret;
3467 	}
3468 
3469 	ret = bpf_find_exception_callback_insn_off(env);
3470 	if (ret < 0)
3471 		return ret;
3472 	ex_cb_insn = ret;
3473 
3474 	/* If ex_cb_insn > 0, this means that the main program has a subprog
3475 	 * marked using BTF decl tag to serve as the exception callback.
3476 	 */
3477 	if (ex_cb_insn) {
3478 		ret = add_subprog(env, ex_cb_insn);
3479 		if (ret < 0)
3480 			return ret;
3481 		for (i = 1; i < env->subprog_cnt; i++) {
3482 			if (env->subprog_info[i].start != ex_cb_insn)
3483 				continue;
3484 			env->exception_callback_subprog = i;
3485 			mark_subprog_exc_cb(env, i);
3486 			break;
3487 		}
3488 	}
3489 
3490 	/* Add a fake 'exit' subprog which could simplify subprog iteration
3491 	 * logic. 'subprog_cnt' should not be increased.
3492 	 */
3493 	subprog[env->subprog_cnt].start = insn_cnt;
3494 
3495 	if (env->log.level & BPF_LOG_LEVEL2)
3496 		for (i = 0; i < env->subprog_cnt; i++)
3497 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
3498 
3499 	return 0;
3500 }
3501 
3502 static int jmp_offset(struct bpf_insn *insn)
3503 {
3504 	u8 code = insn->code;
3505 
3506 	if (code == (BPF_JMP32 | BPF_JA))
3507 		return insn->imm;
3508 	return insn->off;
3509 }
3510 
3511 static int check_subprogs(struct bpf_verifier_env *env)
3512 {
3513 	int i, subprog_start, subprog_end, off, cur_subprog = 0;
3514 	struct bpf_subprog_info *subprog = env->subprog_info;
3515 	struct bpf_insn *insn = env->prog->insnsi;
3516 	int insn_cnt = env->prog->len;
3517 
3518 	/* now check that all jumps are within the same subprog */
3519 	subprog_start = subprog[cur_subprog].start;
3520 	subprog_end = subprog[cur_subprog + 1].start;
3521 	for (i = 0; i < insn_cnt; i++) {
3522 		u8 code = insn[i].code;
3523 
3524 		if (code == (BPF_JMP | BPF_CALL) &&
3525 		    insn[i].src_reg == 0 &&
3526 		    insn[i].imm == BPF_FUNC_tail_call) {
3527 			subprog[cur_subprog].has_tail_call = true;
3528 			subprog[cur_subprog].tail_call_reachable = true;
3529 		}
3530 		if (BPF_CLASS(code) == BPF_LD &&
3531 		    (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
3532 			subprog[cur_subprog].has_ld_abs = true;
3533 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
3534 			goto next;
3535 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
3536 			goto next;
3537 		off = i + jmp_offset(&insn[i]) + 1;
3538 		if (off < subprog_start || off >= subprog_end) {
3539 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
3540 			return -EINVAL;
3541 		}
3542 next:
3543 		if (i == subprog_end - 1) {
3544 			/* to avoid fall-through from one subprog into another
3545 			 * the last insn of the subprog should be either exit
3546 			 * or unconditional jump back or bpf_throw call
3547 			 */
3548 			if (code != (BPF_JMP | BPF_EXIT) &&
3549 			    code != (BPF_JMP32 | BPF_JA) &&
3550 			    code != (BPF_JMP | BPF_JA)) {
3551 				verbose(env, "last insn is not an exit or jmp\n");
3552 				return -EINVAL;
3553 			}
3554 			subprog_start = subprog_end;
3555 			cur_subprog++;
3556 			if (cur_subprog < env->subprog_cnt)
3557 				subprog_end = subprog[cur_subprog + 1].start;
3558 		}
3559 	}
3560 	return 0;
3561 }
3562 
3563 /* Parentage chain of this register (or stack slot) should take care of all
3564  * issues like callee-saved registers, stack slot allocation time, etc.
3565  */
3566 static int mark_reg_read(struct bpf_verifier_env *env,
3567 			 const struct bpf_reg_state *state,
3568 			 struct bpf_reg_state *parent, u8 flag)
3569 {
3570 	bool writes = parent == state->parent; /* Observe write marks */
3571 	int cnt = 0;
3572 
3573 	while (parent) {
3574 		/* if read wasn't screened by an earlier write ... */
3575 		if (writes && state->live & REG_LIVE_WRITTEN)
3576 			break;
3577 		if (verifier_bug_if(parent->live & REG_LIVE_DONE, env,
3578 				    "type %s var_off %lld off %d",
3579 				    reg_type_str(env, parent->type),
3580 				    parent->var_off.value, parent->off))
3581 			return -EFAULT;
3582 		/* The first condition is more likely to be true than the
3583 		 * second, checked it first.
3584 		 */
3585 		if ((parent->live & REG_LIVE_READ) == flag ||
3586 		    parent->live & REG_LIVE_READ64)
3587 			/* The parentage chain never changes and
3588 			 * this parent was already marked as LIVE_READ.
3589 			 * There is no need to keep walking the chain again and
3590 			 * keep re-marking all parents as LIVE_READ.
3591 			 * This case happens when the same register is read
3592 			 * multiple times without writes into it in-between.
3593 			 * Also, if parent has the stronger REG_LIVE_READ64 set,
3594 			 * then no need to set the weak REG_LIVE_READ32.
3595 			 */
3596 			break;
3597 		/* ... then we depend on parent's value */
3598 		parent->live |= flag;
3599 		/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
3600 		if (flag == REG_LIVE_READ64)
3601 			parent->live &= ~REG_LIVE_READ32;
3602 		state = parent;
3603 		parent = state->parent;
3604 		writes = true;
3605 		cnt++;
3606 	}
3607 
3608 	if (env->longest_mark_read_walk < cnt)
3609 		env->longest_mark_read_walk = cnt;
3610 	return 0;
3611 }
3612 
3613 static int mark_stack_slot_obj_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
3614 				    int spi, int nr_slots)
3615 {
3616 	struct bpf_func_state *state = func(env, reg);
3617 	int err, i;
3618 
3619 	for (i = 0; i < nr_slots; i++) {
3620 		struct bpf_reg_state *st = &state->stack[spi - i].spilled_ptr;
3621 
3622 		err = mark_reg_read(env, st, st->parent, REG_LIVE_READ64);
3623 		if (err)
3624 			return err;
3625 
3626 		mark_stack_slot_scratched(env, spi - i);
3627 	}
3628 	return 0;
3629 }
3630 
3631 static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
3632 {
3633 	int spi;
3634 
3635 	/* For CONST_PTR_TO_DYNPTR, it must have already been done by
3636 	 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in
3637 	 * check_kfunc_call.
3638 	 */
3639 	if (reg->type == CONST_PTR_TO_DYNPTR)
3640 		return 0;
3641 	spi = dynptr_get_spi(env, reg);
3642 	if (spi < 0)
3643 		return spi;
3644 	/* Caller ensures dynptr is valid and initialized, which means spi is in
3645 	 * bounds and spi is the first dynptr slot. Simply mark stack slot as
3646 	 * read.
3647 	 */
3648 	return mark_stack_slot_obj_read(env, reg, spi, BPF_DYNPTR_NR_SLOTS);
3649 }
3650 
3651 static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
3652 			  int spi, int nr_slots)
3653 {
3654 	return mark_stack_slot_obj_read(env, reg, spi, nr_slots);
3655 }
3656 
3657 static int mark_irq_flag_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
3658 {
3659 	int spi;
3660 
3661 	spi = irq_flag_get_spi(env, reg);
3662 	if (spi < 0)
3663 		return spi;
3664 	return mark_stack_slot_obj_read(env, reg, spi, 1);
3665 }
3666 
3667 /* This function is supposed to be used by the following 32-bit optimization
3668  * code only. It returns TRUE if the source or destination register operates
3669  * on 64-bit, otherwise return FALSE.
3670  */
3671 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
3672 		     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
3673 {
3674 	u8 code, class, op;
3675 
3676 	code = insn->code;
3677 	class = BPF_CLASS(code);
3678 	op = BPF_OP(code);
3679 	if (class == BPF_JMP) {
3680 		/* BPF_EXIT for "main" will reach here. Return TRUE
3681 		 * conservatively.
3682 		 */
3683 		if (op == BPF_EXIT)
3684 			return true;
3685 		if (op == BPF_CALL) {
3686 			/* BPF to BPF call will reach here because of marking
3687 			 * caller saved clobber with DST_OP_NO_MARK for which we
3688 			 * don't care the register def because they are anyway
3689 			 * marked as NOT_INIT already.
3690 			 */
3691 			if (insn->src_reg == BPF_PSEUDO_CALL)
3692 				return false;
3693 			/* Helper call will reach here because of arg type
3694 			 * check, conservatively return TRUE.
3695 			 */
3696 			if (t == SRC_OP)
3697 				return true;
3698 
3699 			return false;
3700 		}
3701 	}
3702 
3703 	if (class == BPF_ALU64 && op == BPF_END && (insn->imm == 16 || insn->imm == 32))
3704 		return false;
3705 
3706 	if (class == BPF_ALU64 || class == BPF_JMP ||
3707 	    (class == BPF_ALU && op == BPF_END && insn->imm == 64))
3708 		return true;
3709 
3710 	if (class == BPF_ALU || class == BPF_JMP32)
3711 		return false;
3712 
3713 	if (class == BPF_LDX) {
3714 		if (t != SRC_OP)
3715 			return BPF_SIZE(code) == BPF_DW || BPF_MODE(code) == BPF_MEMSX;
3716 		/* LDX source must be ptr. */
3717 		return true;
3718 	}
3719 
3720 	if (class == BPF_STX) {
3721 		/* BPF_STX (including atomic variants) has one or more source
3722 		 * operands, one of which is a ptr. Check whether the caller is
3723 		 * asking about it.
3724 		 */
3725 		if (t == SRC_OP && reg->type != SCALAR_VALUE)
3726 			return true;
3727 		return BPF_SIZE(code) == BPF_DW;
3728 	}
3729 
3730 	if (class == BPF_LD) {
3731 		u8 mode = BPF_MODE(code);
3732 
3733 		/* LD_IMM64 */
3734 		if (mode == BPF_IMM)
3735 			return true;
3736 
3737 		/* Both LD_IND and LD_ABS return 32-bit data. */
3738 		if (t != SRC_OP)
3739 			return  false;
3740 
3741 		/* Implicit ctx ptr. */
3742 		if (regno == BPF_REG_6)
3743 			return true;
3744 
3745 		/* Explicit source could be any width. */
3746 		return true;
3747 	}
3748 
3749 	if (class == BPF_ST)
3750 		/* The only source register for BPF_ST is a ptr. */
3751 		return true;
3752 
3753 	/* Conservatively return true at default. */
3754 	return true;
3755 }
3756 
3757 /* Return the regno defined by the insn, or -1. */
3758 static int insn_def_regno(const struct bpf_insn *insn)
3759 {
3760 	switch (BPF_CLASS(insn->code)) {
3761 	case BPF_JMP:
3762 	case BPF_JMP32:
3763 	case BPF_ST:
3764 		return -1;
3765 	case BPF_STX:
3766 		if (BPF_MODE(insn->code) == BPF_ATOMIC ||
3767 		    BPF_MODE(insn->code) == BPF_PROBE_ATOMIC) {
3768 			if (insn->imm == BPF_CMPXCHG)
3769 				return BPF_REG_0;
3770 			else if (insn->imm == BPF_LOAD_ACQ)
3771 				return insn->dst_reg;
3772 			else if (insn->imm & BPF_FETCH)
3773 				return insn->src_reg;
3774 		}
3775 		return -1;
3776 	default:
3777 		return insn->dst_reg;
3778 	}
3779 }
3780 
3781 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
3782 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
3783 {
3784 	int dst_reg = insn_def_regno(insn);
3785 
3786 	if (dst_reg == -1)
3787 		return false;
3788 
3789 	return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
3790 }
3791 
3792 static void mark_insn_zext(struct bpf_verifier_env *env,
3793 			   struct bpf_reg_state *reg)
3794 {
3795 	s32 def_idx = reg->subreg_def;
3796 
3797 	if (def_idx == DEF_NOT_SUBREG)
3798 		return;
3799 
3800 	env->insn_aux_data[def_idx - 1].zext_dst = true;
3801 	/* The dst will be zero extended, so won't be sub-register anymore. */
3802 	reg->subreg_def = DEF_NOT_SUBREG;
3803 }
3804 
3805 static int __check_reg_arg(struct bpf_verifier_env *env, struct bpf_reg_state *regs, u32 regno,
3806 			   enum reg_arg_type t)
3807 {
3808 	struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
3809 	struct bpf_reg_state *reg;
3810 	bool rw64;
3811 
3812 	if (regno >= MAX_BPF_REG) {
3813 		verbose(env, "R%d is invalid\n", regno);
3814 		return -EINVAL;
3815 	}
3816 
3817 	mark_reg_scratched(env, regno);
3818 
3819 	reg = &regs[regno];
3820 	rw64 = is_reg64(env, insn, regno, reg, t);
3821 	if (t == SRC_OP) {
3822 		/* check whether register used as source operand can be read */
3823 		if (reg->type == NOT_INIT) {
3824 			verbose(env, "R%d !read_ok\n", regno);
3825 			return -EACCES;
3826 		}
3827 		/* We don't need to worry about FP liveness because it's read-only */
3828 		if (regno == BPF_REG_FP)
3829 			return 0;
3830 
3831 		if (rw64)
3832 			mark_insn_zext(env, reg);
3833 
3834 		return mark_reg_read(env, reg, reg->parent,
3835 				     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
3836 	} else {
3837 		/* check whether register used as dest operand can be written to */
3838 		if (regno == BPF_REG_FP) {
3839 			verbose(env, "frame pointer is read only\n");
3840 			return -EACCES;
3841 		}
3842 		reg->live |= REG_LIVE_WRITTEN;
3843 		reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
3844 		if (t == DST_OP)
3845 			mark_reg_unknown(env, regs, regno);
3846 	}
3847 	return 0;
3848 }
3849 
3850 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
3851 			 enum reg_arg_type t)
3852 {
3853 	struct bpf_verifier_state *vstate = env->cur_state;
3854 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3855 
3856 	return __check_reg_arg(env, state->regs, regno, t);
3857 }
3858 
3859 static int insn_stack_access_flags(int frameno, int spi)
3860 {
3861 	return INSN_F_STACK_ACCESS | (spi << INSN_F_SPI_SHIFT) | frameno;
3862 }
3863 
3864 static int insn_stack_access_spi(int insn_flags)
3865 {
3866 	return (insn_flags >> INSN_F_SPI_SHIFT) & INSN_F_SPI_MASK;
3867 }
3868 
3869 static int insn_stack_access_frameno(int insn_flags)
3870 {
3871 	return insn_flags & INSN_F_FRAMENO_MASK;
3872 }
3873 
3874 static void mark_jmp_point(struct bpf_verifier_env *env, int idx)
3875 {
3876 	env->insn_aux_data[idx].jmp_point = true;
3877 }
3878 
3879 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx)
3880 {
3881 	return env->insn_aux_data[insn_idx].jmp_point;
3882 }
3883 
3884 #define LR_FRAMENO_BITS	3
3885 #define LR_SPI_BITS	6
3886 #define LR_ENTRY_BITS	(LR_SPI_BITS + LR_FRAMENO_BITS + 1)
3887 #define LR_SIZE_BITS	4
3888 #define LR_FRAMENO_MASK	((1ull << LR_FRAMENO_BITS) - 1)
3889 #define LR_SPI_MASK	((1ull << LR_SPI_BITS)     - 1)
3890 #define LR_SIZE_MASK	((1ull << LR_SIZE_BITS)    - 1)
3891 #define LR_SPI_OFF	LR_FRAMENO_BITS
3892 #define LR_IS_REG_OFF	(LR_SPI_BITS + LR_FRAMENO_BITS)
3893 #define LINKED_REGS_MAX	6
3894 
3895 struct linked_reg {
3896 	u8 frameno;
3897 	union {
3898 		u8 spi;
3899 		u8 regno;
3900 	};
3901 	bool is_reg;
3902 };
3903 
3904 struct linked_regs {
3905 	int cnt;
3906 	struct linked_reg entries[LINKED_REGS_MAX];
3907 };
3908 
3909 static struct linked_reg *linked_regs_push(struct linked_regs *s)
3910 {
3911 	if (s->cnt < LINKED_REGS_MAX)
3912 		return &s->entries[s->cnt++];
3913 
3914 	return NULL;
3915 }
3916 
3917 /* Use u64 as a vector of 6 10-bit values, use first 4-bits to track
3918  * number of elements currently in stack.
3919  * Pack one history entry for linked registers as 10 bits in the following format:
3920  * - 3-bits frameno
3921  * - 6-bits spi_or_reg
3922  * - 1-bit  is_reg
3923  */
3924 static u64 linked_regs_pack(struct linked_regs *s)
3925 {
3926 	u64 val = 0;
3927 	int i;
3928 
3929 	for (i = 0; i < s->cnt; ++i) {
3930 		struct linked_reg *e = &s->entries[i];
3931 		u64 tmp = 0;
3932 
3933 		tmp |= e->frameno;
3934 		tmp |= e->spi << LR_SPI_OFF;
3935 		tmp |= (e->is_reg ? 1 : 0) << LR_IS_REG_OFF;
3936 
3937 		val <<= LR_ENTRY_BITS;
3938 		val |= tmp;
3939 	}
3940 	val <<= LR_SIZE_BITS;
3941 	val |= s->cnt;
3942 	return val;
3943 }
3944 
3945 static void linked_regs_unpack(u64 val, struct linked_regs *s)
3946 {
3947 	int i;
3948 
3949 	s->cnt = val & LR_SIZE_MASK;
3950 	val >>= LR_SIZE_BITS;
3951 
3952 	for (i = 0; i < s->cnt; ++i) {
3953 		struct linked_reg *e = &s->entries[i];
3954 
3955 		e->frameno =  val & LR_FRAMENO_MASK;
3956 		e->spi     = (val >> LR_SPI_OFF) & LR_SPI_MASK;
3957 		e->is_reg  = (val >> LR_IS_REG_OFF) & 0x1;
3958 		val >>= LR_ENTRY_BITS;
3959 	}
3960 }
3961 
3962 /* for any branch, call, exit record the history of jmps in the given state */
3963 static int push_jmp_history(struct bpf_verifier_env *env, struct bpf_verifier_state *cur,
3964 			    int insn_flags, u64 linked_regs)
3965 {
3966 	u32 cnt = cur->jmp_history_cnt;
3967 	struct bpf_jmp_history_entry *p;
3968 	size_t alloc_size;
3969 
3970 	/* combine instruction flags if we already recorded this instruction */
3971 	if (env->cur_hist_ent) {
3972 		/* atomic instructions push insn_flags twice, for READ and
3973 		 * WRITE sides, but they should agree on stack slot
3974 		 */
3975 		verifier_bug_if((env->cur_hist_ent->flags & insn_flags) &&
3976 				(env->cur_hist_ent->flags & insn_flags) != insn_flags,
3977 				env, "insn history: insn_idx %d cur flags %x new flags %x",
3978 				env->insn_idx, env->cur_hist_ent->flags, insn_flags);
3979 		env->cur_hist_ent->flags |= insn_flags;
3980 		verifier_bug_if(env->cur_hist_ent->linked_regs != 0, env,
3981 				"insn history: insn_idx %d linked_regs: %#llx",
3982 				env->insn_idx, env->cur_hist_ent->linked_regs);
3983 		env->cur_hist_ent->linked_regs = linked_regs;
3984 		return 0;
3985 	}
3986 
3987 	cnt++;
3988 	alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p)));
3989 	p = krealloc(cur->jmp_history, alloc_size, GFP_KERNEL_ACCOUNT);
3990 	if (!p)
3991 		return -ENOMEM;
3992 	cur->jmp_history = p;
3993 
3994 	p = &cur->jmp_history[cnt - 1];
3995 	p->idx = env->insn_idx;
3996 	p->prev_idx = env->prev_insn_idx;
3997 	p->flags = insn_flags;
3998 	p->linked_regs = linked_regs;
3999 	cur->jmp_history_cnt = cnt;
4000 	env->cur_hist_ent = p;
4001 
4002 	return 0;
4003 }
4004 
4005 static struct bpf_jmp_history_entry *get_jmp_hist_entry(struct bpf_verifier_state *st,
4006 						        u32 hist_end, int insn_idx)
4007 {
4008 	if (hist_end > 0 && st->jmp_history[hist_end - 1].idx == insn_idx)
4009 		return &st->jmp_history[hist_end - 1];
4010 	return NULL;
4011 }
4012 
4013 /* Backtrack one insn at a time. If idx is not at the top of recorded
4014  * history then previous instruction came from straight line execution.
4015  * Return -ENOENT if we exhausted all instructions within given state.
4016  *
4017  * It's legal to have a bit of a looping with the same starting and ending
4018  * insn index within the same state, e.g.: 3->4->5->3, so just because current
4019  * instruction index is the same as state's first_idx doesn't mean we are
4020  * done. If there is still some jump history left, we should keep going. We
4021  * need to take into account that we might have a jump history between given
4022  * state's parent and itself, due to checkpointing. In this case, we'll have
4023  * history entry recording a jump from last instruction of parent state and
4024  * first instruction of given state.
4025  */
4026 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
4027 			     u32 *history)
4028 {
4029 	u32 cnt = *history;
4030 
4031 	if (i == st->first_insn_idx) {
4032 		if (cnt == 0)
4033 			return -ENOENT;
4034 		if (cnt == 1 && st->jmp_history[0].idx == i)
4035 			return -ENOENT;
4036 	}
4037 
4038 	if (cnt && st->jmp_history[cnt - 1].idx == i) {
4039 		i = st->jmp_history[cnt - 1].prev_idx;
4040 		(*history)--;
4041 	} else {
4042 		i--;
4043 	}
4044 	return i;
4045 }
4046 
4047 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
4048 {
4049 	const struct btf_type *func;
4050 	struct btf *desc_btf;
4051 
4052 	if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
4053 		return NULL;
4054 
4055 	desc_btf = find_kfunc_desc_btf(data, insn->off);
4056 	if (IS_ERR(desc_btf))
4057 		return "<error>";
4058 
4059 	func = btf_type_by_id(desc_btf, insn->imm);
4060 	return btf_name_by_offset(desc_btf, func->name_off);
4061 }
4062 
4063 static void verbose_insn(struct bpf_verifier_env *env, struct bpf_insn *insn)
4064 {
4065 	const struct bpf_insn_cbs cbs = {
4066 		.cb_call	= disasm_kfunc_name,
4067 		.cb_print	= verbose,
4068 		.private_data	= env,
4069 	};
4070 
4071 	print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
4072 }
4073 
4074 static inline void bt_init(struct backtrack_state *bt, u32 frame)
4075 {
4076 	bt->frame = frame;
4077 }
4078 
4079 static inline void bt_reset(struct backtrack_state *bt)
4080 {
4081 	struct bpf_verifier_env *env = bt->env;
4082 
4083 	memset(bt, 0, sizeof(*bt));
4084 	bt->env = env;
4085 }
4086 
4087 static inline u32 bt_empty(struct backtrack_state *bt)
4088 {
4089 	u64 mask = 0;
4090 	int i;
4091 
4092 	for (i = 0; i <= bt->frame; i++)
4093 		mask |= bt->reg_masks[i] | bt->stack_masks[i];
4094 
4095 	return mask == 0;
4096 }
4097 
4098 static inline int bt_subprog_enter(struct backtrack_state *bt)
4099 {
4100 	if (bt->frame == MAX_CALL_FRAMES - 1) {
4101 		verifier_bug(bt->env, "subprog enter from frame %d", bt->frame);
4102 		return -EFAULT;
4103 	}
4104 	bt->frame++;
4105 	return 0;
4106 }
4107 
4108 static inline int bt_subprog_exit(struct backtrack_state *bt)
4109 {
4110 	if (bt->frame == 0) {
4111 		verifier_bug(bt->env, "subprog exit from frame 0");
4112 		return -EFAULT;
4113 	}
4114 	bt->frame--;
4115 	return 0;
4116 }
4117 
4118 static inline void bt_set_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg)
4119 {
4120 	bt->reg_masks[frame] |= 1 << reg;
4121 }
4122 
4123 static inline void bt_clear_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg)
4124 {
4125 	bt->reg_masks[frame] &= ~(1 << reg);
4126 }
4127 
4128 static inline void bt_set_reg(struct backtrack_state *bt, u32 reg)
4129 {
4130 	bt_set_frame_reg(bt, bt->frame, reg);
4131 }
4132 
4133 static inline void bt_clear_reg(struct backtrack_state *bt, u32 reg)
4134 {
4135 	bt_clear_frame_reg(bt, bt->frame, reg);
4136 }
4137 
4138 static inline void bt_set_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot)
4139 {
4140 	bt->stack_masks[frame] |= 1ull << slot;
4141 }
4142 
4143 static inline void bt_clear_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot)
4144 {
4145 	bt->stack_masks[frame] &= ~(1ull << slot);
4146 }
4147 
4148 static inline u32 bt_frame_reg_mask(struct backtrack_state *bt, u32 frame)
4149 {
4150 	return bt->reg_masks[frame];
4151 }
4152 
4153 static inline u32 bt_reg_mask(struct backtrack_state *bt)
4154 {
4155 	return bt->reg_masks[bt->frame];
4156 }
4157 
4158 static inline u64 bt_frame_stack_mask(struct backtrack_state *bt, u32 frame)
4159 {
4160 	return bt->stack_masks[frame];
4161 }
4162 
4163 static inline u64 bt_stack_mask(struct backtrack_state *bt)
4164 {
4165 	return bt->stack_masks[bt->frame];
4166 }
4167 
4168 static inline bool bt_is_reg_set(struct backtrack_state *bt, u32 reg)
4169 {
4170 	return bt->reg_masks[bt->frame] & (1 << reg);
4171 }
4172 
4173 static inline bool bt_is_frame_reg_set(struct backtrack_state *bt, u32 frame, u32 reg)
4174 {
4175 	return bt->reg_masks[frame] & (1 << reg);
4176 }
4177 
4178 static inline bool bt_is_frame_slot_set(struct backtrack_state *bt, u32 frame, u32 slot)
4179 {
4180 	return bt->stack_masks[frame] & (1ull << slot);
4181 }
4182 
4183 /* format registers bitmask, e.g., "r0,r2,r4" for 0x15 mask */
4184 static void fmt_reg_mask(char *buf, ssize_t buf_sz, u32 reg_mask)
4185 {
4186 	DECLARE_BITMAP(mask, 64);
4187 	bool first = true;
4188 	int i, n;
4189 
4190 	buf[0] = '\0';
4191 
4192 	bitmap_from_u64(mask, reg_mask);
4193 	for_each_set_bit(i, mask, 32) {
4194 		n = snprintf(buf, buf_sz, "%sr%d", first ? "" : ",", i);
4195 		first = false;
4196 		buf += n;
4197 		buf_sz -= n;
4198 		if (buf_sz < 0)
4199 			break;
4200 	}
4201 }
4202 /* format stack slots bitmask, e.g., "-8,-24,-40" for 0x15 mask */
4203 static void fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask)
4204 {
4205 	DECLARE_BITMAP(mask, 64);
4206 	bool first = true;
4207 	int i, n;
4208 
4209 	buf[0] = '\0';
4210 
4211 	bitmap_from_u64(mask, stack_mask);
4212 	for_each_set_bit(i, mask, 64) {
4213 		n = snprintf(buf, buf_sz, "%s%d", first ? "" : ",", -(i + 1) * 8);
4214 		first = false;
4215 		buf += n;
4216 		buf_sz -= n;
4217 		if (buf_sz < 0)
4218 			break;
4219 	}
4220 }
4221 
4222 /* If any register R in hist->linked_regs is marked as precise in bt,
4223  * do bt_set_frame_{reg,slot}(bt, R) for all registers in hist->linked_regs.
4224  */
4225 static void bt_sync_linked_regs(struct backtrack_state *bt, struct bpf_jmp_history_entry *hist)
4226 {
4227 	struct linked_regs linked_regs;
4228 	bool some_precise = false;
4229 	int i;
4230 
4231 	if (!hist || hist->linked_regs == 0)
4232 		return;
4233 
4234 	linked_regs_unpack(hist->linked_regs, &linked_regs);
4235 	for (i = 0; i < linked_regs.cnt; ++i) {
4236 		struct linked_reg *e = &linked_regs.entries[i];
4237 
4238 		if ((e->is_reg && bt_is_frame_reg_set(bt, e->frameno, e->regno)) ||
4239 		    (!e->is_reg && bt_is_frame_slot_set(bt, e->frameno, e->spi))) {
4240 			some_precise = true;
4241 			break;
4242 		}
4243 	}
4244 
4245 	if (!some_precise)
4246 		return;
4247 
4248 	for (i = 0; i < linked_regs.cnt; ++i) {
4249 		struct linked_reg *e = &linked_regs.entries[i];
4250 
4251 		if (e->is_reg)
4252 			bt_set_frame_reg(bt, e->frameno, e->regno);
4253 		else
4254 			bt_set_frame_slot(bt, e->frameno, e->spi);
4255 	}
4256 }
4257 
4258 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx);
4259 
4260 /* For given verifier state backtrack_insn() is called from the last insn to
4261  * the first insn. Its purpose is to compute a bitmask of registers and
4262  * stack slots that needs precision in the parent verifier state.
4263  *
4264  * @idx is an index of the instruction we are currently processing;
4265  * @subseq_idx is an index of the subsequent instruction that:
4266  *   - *would be* executed next, if jump history is viewed in forward order;
4267  *   - *was* processed previously during backtracking.
4268  */
4269 static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx,
4270 			  struct bpf_jmp_history_entry *hist, struct backtrack_state *bt)
4271 {
4272 	struct bpf_insn *insn = env->prog->insnsi + idx;
4273 	u8 class = BPF_CLASS(insn->code);
4274 	u8 opcode = BPF_OP(insn->code);
4275 	u8 mode = BPF_MODE(insn->code);
4276 	u32 dreg = insn->dst_reg;
4277 	u32 sreg = insn->src_reg;
4278 	u32 spi, i, fr;
4279 
4280 	if (insn->code == 0)
4281 		return 0;
4282 	if (env->log.level & BPF_LOG_LEVEL2) {
4283 		fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_reg_mask(bt));
4284 		verbose(env, "mark_precise: frame%d: regs=%s ",
4285 			bt->frame, env->tmp_str_buf);
4286 		fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt));
4287 		verbose(env, "stack=%s before ", env->tmp_str_buf);
4288 		verbose(env, "%d: ", idx);
4289 		verbose_insn(env, insn);
4290 	}
4291 
4292 	/* If there is a history record that some registers gained range at this insn,
4293 	 * propagate precision marks to those registers, so that bt_is_reg_set()
4294 	 * accounts for these registers.
4295 	 */
4296 	bt_sync_linked_regs(bt, hist);
4297 
4298 	if (class == BPF_ALU || class == BPF_ALU64) {
4299 		if (!bt_is_reg_set(bt, dreg))
4300 			return 0;
4301 		if (opcode == BPF_END || opcode == BPF_NEG) {
4302 			/* sreg is reserved and unused
4303 			 * dreg still need precision before this insn
4304 			 */
4305 			return 0;
4306 		} else if (opcode == BPF_MOV) {
4307 			if (BPF_SRC(insn->code) == BPF_X) {
4308 				/* dreg = sreg or dreg = (s8, s16, s32)sreg
4309 				 * dreg needs precision after this insn
4310 				 * sreg needs precision before this insn
4311 				 */
4312 				bt_clear_reg(bt, dreg);
4313 				if (sreg != BPF_REG_FP)
4314 					bt_set_reg(bt, sreg);
4315 			} else {
4316 				/* dreg = K
4317 				 * dreg needs precision after this insn.
4318 				 * Corresponding register is already marked
4319 				 * as precise=true in this verifier state.
4320 				 * No further markings in parent are necessary
4321 				 */
4322 				bt_clear_reg(bt, dreg);
4323 			}
4324 		} else {
4325 			if (BPF_SRC(insn->code) == BPF_X) {
4326 				/* dreg += sreg
4327 				 * both dreg and sreg need precision
4328 				 * before this insn
4329 				 */
4330 				if (sreg != BPF_REG_FP)
4331 					bt_set_reg(bt, sreg);
4332 			} /* else dreg += K
4333 			   * dreg still needs precision before this insn
4334 			   */
4335 		}
4336 	} else if (class == BPF_LDX || is_atomic_load_insn(insn)) {
4337 		if (!bt_is_reg_set(bt, dreg))
4338 			return 0;
4339 		bt_clear_reg(bt, dreg);
4340 
4341 		/* scalars can only be spilled into stack w/o losing precision.
4342 		 * Load from any other memory can be zero extended.
4343 		 * The desire to keep that precision is already indicated
4344 		 * by 'precise' mark in corresponding register of this state.
4345 		 * No further tracking necessary.
4346 		 */
4347 		if (!hist || !(hist->flags & INSN_F_STACK_ACCESS))
4348 			return 0;
4349 		/* dreg = *(u64 *)[fp - off] was a fill from the stack.
4350 		 * that [fp - off] slot contains scalar that needs to be
4351 		 * tracked with precision
4352 		 */
4353 		spi = insn_stack_access_spi(hist->flags);
4354 		fr = insn_stack_access_frameno(hist->flags);
4355 		bt_set_frame_slot(bt, fr, spi);
4356 	} else if (class == BPF_STX || class == BPF_ST) {
4357 		if (bt_is_reg_set(bt, dreg))
4358 			/* stx & st shouldn't be using _scalar_ dst_reg
4359 			 * to access memory. It means backtracking
4360 			 * encountered a case of pointer subtraction.
4361 			 */
4362 			return -ENOTSUPP;
4363 		/* scalars can only be spilled into stack */
4364 		if (!hist || !(hist->flags & INSN_F_STACK_ACCESS))
4365 			return 0;
4366 		spi = insn_stack_access_spi(hist->flags);
4367 		fr = insn_stack_access_frameno(hist->flags);
4368 		if (!bt_is_frame_slot_set(bt, fr, spi))
4369 			return 0;
4370 		bt_clear_frame_slot(bt, fr, spi);
4371 		if (class == BPF_STX)
4372 			bt_set_reg(bt, sreg);
4373 	} else if (class == BPF_JMP || class == BPF_JMP32) {
4374 		if (bpf_pseudo_call(insn)) {
4375 			int subprog_insn_idx, subprog;
4376 
4377 			subprog_insn_idx = idx + insn->imm + 1;
4378 			subprog = find_subprog(env, subprog_insn_idx);
4379 			if (subprog < 0)
4380 				return -EFAULT;
4381 
4382 			if (subprog_is_global(env, subprog)) {
4383 				/* check that jump history doesn't have any
4384 				 * extra instructions from subprog; the next
4385 				 * instruction after call to global subprog
4386 				 * should be literally next instruction in
4387 				 * caller program
4388 				 */
4389 				verifier_bug_if(idx + 1 != subseq_idx, env,
4390 						"extra insn from subprog");
4391 				/* r1-r5 are invalidated after subprog call,
4392 				 * so for global func call it shouldn't be set
4393 				 * anymore
4394 				 */
4395 				if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
4396 					verifier_bug(env, "global subprog unexpected regs %x",
4397 						     bt_reg_mask(bt));
4398 					return -EFAULT;
4399 				}
4400 				/* global subprog always sets R0 */
4401 				bt_clear_reg(bt, BPF_REG_0);
4402 				return 0;
4403 			} else {
4404 				/* static subprog call instruction, which
4405 				 * means that we are exiting current subprog,
4406 				 * so only r1-r5 could be still requested as
4407 				 * precise, r0 and r6-r10 or any stack slot in
4408 				 * the current frame should be zero by now
4409 				 */
4410 				if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
4411 					verifier_bug(env, "static subprog unexpected regs %x",
4412 						     bt_reg_mask(bt));
4413 					return -EFAULT;
4414 				}
4415 				/* we are now tracking register spills correctly,
4416 				 * so any instance of leftover slots is a bug
4417 				 */
4418 				if (bt_stack_mask(bt) != 0) {
4419 					verifier_bug(env,
4420 						     "static subprog leftover stack slots %llx",
4421 						     bt_stack_mask(bt));
4422 					return -EFAULT;
4423 				}
4424 				/* propagate r1-r5 to the caller */
4425 				for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
4426 					if (bt_is_reg_set(bt, i)) {
4427 						bt_clear_reg(bt, i);
4428 						bt_set_frame_reg(bt, bt->frame - 1, i);
4429 					}
4430 				}
4431 				if (bt_subprog_exit(bt))
4432 					return -EFAULT;
4433 				return 0;
4434 			}
4435 		} else if (is_sync_callback_calling_insn(insn) && idx != subseq_idx - 1) {
4436 			/* exit from callback subprog to callback-calling helper or
4437 			 * kfunc call. Use idx/subseq_idx check to discern it from
4438 			 * straight line code backtracking.
4439 			 * Unlike the subprog call handling above, we shouldn't
4440 			 * propagate precision of r1-r5 (if any requested), as they are
4441 			 * not actually arguments passed directly to callback subprogs
4442 			 */
4443 			if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
4444 				verifier_bug(env, "callback unexpected regs %x",
4445 					     bt_reg_mask(bt));
4446 				return -EFAULT;
4447 			}
4448 			if (bt_stack_mask(bt) != 0) {
4449 				verifier_bug(env, "callback leftover stack slots %llx",
4450 					     bt_stack_mask(bt));
4451 				return -EFAULT;
4452 			}
4453 			/* clear r1-r5 in callback subprog's mask */
4454 			for (i = BPF_REG_1; i <= BPF_REG_5; i++)
4455 				bt_clear_reg(bt, i);
4456 			if (bt_subprog_exit(bt))
4457 				return -EFAULT;
4458 			return 0;
4459 		} else if (opcode == BPF_CALL) {
4460 			/* kfunc with imm==0 is invalid and fixup_kfunc_call will
4461 			 * catch this error later. Make backtracking conservative
4462 			 * with ENOTSUPP.
4463 			 */
4464 			if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0)
4465 				return -ENOTSUPP;
4466 			/* regular helper call sets R0 */
4467 			bt_clear_reg(bt, BPF_REG_0);
4468 			if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
4469 				/* if backtracking was looking for registers R1-R5
4470 				 * they should have been found already.
4471 				 */
4472 				verifier_bug(env, "backtracking call unexpected regs %x",
4473 					     bt_reg_mask(bt));
4474 				return -EFAULT;
4475 			}
4476 		} else if (opcode == BPF_EXIT) {
4477 			bool r0_precise;
4478 
4479 			/* Backtracking to a nested function call, 'idx' is a part of
4480 			 * the inner frame 'subseq_idx' is a part of the outer frame.
4481 			 * In case of a regular function call, instructions giving
4482 			 * precision to registers R1-R5 should have been found already.
4483 			 * In case of a callback, it is ok to have R1-R5 marked for
4484 			 * backtracking, as these registers are set by the function
4485 			 * invoking callback.
4486 			 */
4487 			if (subseq_idx >= 0 && calls_callback(env, subseq_idx))
4488 				for (i = BPF_REG_1; i <= BPF_REG_5; i++)
4489 					bt_clear_reg(bt, i);
4490 			if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
4491 				verifier_bug(env, "backtracking exit unexpected regs %x",
4492 					     bt_reg_mask(bt));
4493 				return -EFAULT;
4494 			}
4495 
4496 			/* BPF_EXIT in subprog or callback always returns
4497 			 * right after the call instruction, so by checking
4498 			 * whether the instruction at subseq_idx-1 is subprog
4499 			 * call or not we can distinguish actual exit from
4500 			 * *subprog* from exit from *callback*. In the former
4501 			 * case, we need to propagate r0 precision, if
4502 			 * necessary. In the former we never do that.
4503 			 */
4504 			r0_precise = subseq_idx - 1 >= 0 &&
4505 				     bpf_pseudo_call(&env->prog->insnsi[subseq_idx - 1]) &&
4506 				     bt_is_reg_set(bt, BPF_REG_0);
4507 
4508 			bt_clear_reg(bt, BPF_REG_0);
4509 			if (bt_subprog_enter(bt))
4510 				return -EFAULT;
4511 
4512 			if (r0_precise)
4513 				bt_set_reg(bt, BPF_REG_0);
4514 			/* r6-r9 and stack slots will stay set in caller frame
4515 			 * bitmasks until we return back from callee(s)
4516 			 */
4517 			return 0;
4518 		} else if (BPF_SRC(insn->code) == BPF_X) {
4519 			if (!bt_is_reg_set(bt, dreg) && !bt_is_reg_set(bt, sreg))
4520 				return 0;
4521 			/* dreg <cond> sreg
4522 			 * Both dreg and sreg need precision before
4523 			 * this insn. If only sreg was marked precise
4524 			 * before it would be equally necessary to
4525 			 * propagate it to dreg.
4526 			 */
4527 			if (!hist || !(hist->flags & INSN_F_SRC_REG_STACK))
4528 				bt_set_reg(bt, sreg);
4529 			if (!hist || !(hist->flags & INSN_F_DST_REG_STACK))
4530 				bt_set_reg(bt, dreg);
4531 		} else if (BPF_SRC(insn->code) == BPF_K) {
4532 			 /* dreg <cond> K
4533 			  * Only dreg still needs precision before
4534 			  * this insn, so for the K-based conditional
4535 			  * there is nothing new to be marked.
4536 			  */
4537 		}
4538 	} else if (class == BPF_LD) {
4539 		if (!bt_is_reg_set(bt, dreg))
4540 			return 0;
4541 		bt_clear_reg(bt, dreg);
4542 		/* It's ld_imm64 or ld_abs or ld_ind.
4543 		 * For ld_imm64 no further tracking of precision
4544 		 * into parent is necessary
4545 		 */
4546 		if (mode == BPF_IND || mode == BPF_ABS)
4547 			/* to be analyzed */
4548 			return -ENOTSUPP;
4549 	}
4550 	/* Propagate precision marks to linked registers, to account for
4551 	 * registers marked as precise in this function.
4552 	 */
4553 	bt_sync_linked_regs(bt, hist);
4554 	return 0;
4555 }
4556 
4557 /* the scalar precision tracking algorithm:
4558  * . at the start all registers have precise=false.
4559  * . scalar ranges are tracked as normal through alu and jmp insns.
4560  * . once precise value of the scalar register is used in:
4561  *   .  ptr + scalar alu
4562  *   . if (scalar cond K|scalar)
4563  *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
4564  *   backtrack through the verifier states and mark all registers and
4565  *   stack slots with spilled constants that these scalar registers
4566  *   should be precise.
4567  * . during state pruning two registers (or spilled stack slots)
4568  *   are equivalent if both are not precise.
4569  *
4570  * Note the verifier cannot simply walk register parentage chain,
4571  * since many different registers and stack slots could have been
4572  * used to compute single precise scalar.
4573  *
4574  * The approach of starting with precise=true for all registers and then
4575  * backtrack to mark a register as not precise when the verifier detects
4576  * that program doesn't care about specific value (e.g., when helper
4577  * takes register as ARG_ANYTHING parameter) is not safe.
4578  *
4579  * It's ok to walk single parentage chain of the verifier states.
4580  * It's possible that this backtracking will go all the way till 1st insn.
4581  * All other branches will be explored for needing precision later.
4582  *
4583  * The backtracking needs to deal with cases like:
4584  *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
4585  * r9 -= r8
4586  * r5 = r9
4587  * if r5 > 0x79f goto pc+7
4588  *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
4589  * r5 += 1
4590  * ...
4591  * call bpf_perf_event_output#25
4592  *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
4593  *
4594  * and this case:
4595  * r6 = 1
4596  * call foo // uses callee's r6 inside to compute r0
4597  * r0 += r6
4598  * if r0 == 0 goto
4599  *
4600  * to track above reg_mask/stack_mask needs to be independent for each frame.
4601  *
4602  * Also if parent's curframe > frame where backtracking started,
4603  * the verifier need to mark registers in both frames, otherwise callees
4604  * may incorrectly prune callers. This is similar to
4605  * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
4606  *
4607  * For now backtracking falls back into conservative marking.
4608  */
4609 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
4610 				     struct bpf_verifier_state *st)
4611 {
4612 	struct bpf_func_state *func;
4613 	struct bpf_reg_state *reg;
4614 	int i, j;
4615 
4616 	if (env->log.level & BPF_LOG_LEVEL2) {
4617 		verbose(env, "mark_precise: frame%d: falling back to forcing all scalars precise\n",
4618 			st->curframe);
4619 	}
4620 
4621 	/* big hammer: mark all scalars precise in this path.
4622 	 * pop_stack may still get !precise scalars.
4623 	 * We also skip current state and go straight to first parent state,
4624 	 * because precision markings in current non-checkpointed state are
4625 	 * not needed. See why in the comment in __mark_chain_precision below.
4626 	 */
4627 	for (st = st->parent; st; st = st->parent) {
4628 		for (i = 0; i <= st->curframe; i++) {
4629 			func = st->frame[i];
4630 			for (j = 0; j < BPF_REG_FP; j++) {
4631 				reg = &func->regs[j];
4632 				if (reg->type != SCALAR_VALUE || reg->precise)
4633 					continue;
4634 				reg->precise = true;
4635 				if (env->log.level & BPF_LOG_LEVEL2) {
4636 					verbose(env, "force_precise: frame%d: forcing r%d to be precise\n",
4637 						i, j);
4638 				}
4639 			}
4640 			for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
4641 				if (!is_spilled_reg(&func->stack[j]))
4642 					continue;
4643 				reg = &func->stack[j].spilled_ptr;
4644 				if (reg->type != SCALAR_VALUE || reg->precise)
4645 					continue;
4646 				reg->precise = true;
4647 				if (env->log.level & BPF_LOG_LEVEL2) {
4648 					verbose(env, "force_precise: frame%d: forcing fp%d to be precise\n",
4649 						i, -(j + 1) * 8);
4650 				}
4651 			}
4652 		}
4653 	}
4654 }
4655 
4656 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
4657 {
4658 	struct bpf_func_state *func;
4659 	struct bpf_reg_state *reg;
4660 	int i, j;
4661 
4662 	for (i = 0; i <= st->curframe; i++) {
4663 		func = st->frame[i];
4664 		for (j = 0; j < BPF_REG_FP; j++) {
4665 			reg = &func->regs[j];
4666 			if (reg->type != SCALAR_VALUE)
4667 				continue;
4668 			reg->precise = false;
4669 		}
4670 		for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
4671 			if (!is_spilled_reg(&func->stack[j]))
4672 				continue;
4673 			reg = &func->stack[j].spilled_ptr;
4674 			if (reg->type != SCALAR_VALUE)
4675 				continue;
4676 			reg->precise = false;
4677 		}
4678 	}
4679 }
4680 
4681 /*
4682  * __mark_chain_precision() backtracks BPF program instruction sequence and
4683  * chain of verifier states making sure that register *regno* (if regno >= 0)
4684  * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked
4685  * SCALARS, as well as any other registers and slots that contribute to
4686  * a tracked state of given registers/stack slots, depending on specific BPF
4687  * assembly instructions (see backtrack_insns() for exact instruction handling
4688  * logic). This backtracking relies on recorded jmp_history and is able to
4689  * traverse entire chain of parent states. This process ends only when all the
4690  * necessary registers/slots and their transitive dependencies are marked as
4691  * precise.
4692  *
4693  * One important and subtle aspect is that precise marks *do not matter* in
4694  * the currently verified state (current state). It is important to understand
4695  * why this is the case.
4696  *
4697  * First, note that current state is the state that is not yet "checkpointed",
4698  * i.e., it is not yet put into env->explored_states, and it has no children
4699  * states as well. It's ephemeral, and can end up either a) being discarded if
4700  * compatible explored state is found at some point or BPF_EXIT instruction is
4701  * reached or b) checkpointed and put into env->explored_states, branching out
4702  * into one or more children states.
4703  *
4704  * In the former case, precise markings in current state are completely
4705  * ignored by state comparison code (see regsafe() for details). Only
4706  * checkpointed ("old") state precise markings are important, and if old
4707  * state's register/slot is precise, regsafe() assumes current state's
4708  * register/slot as precise and checks value ranges exactly and precisely. If
4709  * states turn out to be compatible, current state's necessary precise
4710  * markings and any required parent states' precise markings are enforced
4711  * after the fact with propagate_precision() logic, after the fact. But it's
4712  * important to realize that in this case, even after marking current state
4713  * registers/slots as precise, we immediately discard current state. So what
4714  * actually matters is any of the precise markings propagated into current
4715  * state's parent states, which are always checkpointed (due to b) case above).
4716  * As such, for scenario a) it doesn't matter if current state has precise
4717  * markings set or not.
4718  *
4719  * Now, for the scenario b), checkpointing and forking into child(ren)
4720  * state(s). Note that before current state gets to checkpointing step, any
4721  * processed instruction always assumes precise SCALAR register/slot
4722  * knowledge: if precise value or range is useful to prune jump branch, BPF
4723  * verifier takes this opportunity enthusiastically. Similarly, when
4724  * register's value is used to calculate offset or memory address, exact
4725  * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to
4726  * what we mentioned above about state comparison ignoring precise markings
4727  * during state comparison, BPF verifier ignores and also assumes precise
4728  * markings *at will* during instruction verification process. But as verifier
4729  * assumes precision, it also propagates any precision dependencies across
4730  * parent states, which are not yet finalized, so can be further restricted
4731  * based on new knowledge gained from restrictions enforced by their children
4732  * states. This is so that once those parent states are finalized, i.e., when
4733  * they have no more active children state, state comparison logic in
4734  * is_state_visited() would enforce strict and precise SCALAR ranges, if
4735  * required for correctness.
4736  *
4737  * To build a bit more intuition, note also that once a state is checkpointed,
4738  * the path we took to get to that state is not important. This is crucial
4739  * property for state pruning. When state is checkpointed and finalized at
4740  * some instruction index, it can be correctly and safely used to "short
4741  * circuit" any *compatible* state that reaches exactly the same instruction
4742  * index. I.e., if we jumped to that instruction from a completely different
4743  * code path than original finalized state was derived from, it doesn't
4744  * matter, current state can be discarded because from that instruction
4745  * forward having a compatible state will ensure we will safely reach the
4746  * exit. States describe preconditions for further exploration, but completely
4747  * forget the history of how we got here.
4748  *
4749  * This also means that even if we needed precise SCALAR range to get to
4750  * finalized state, but from that point forward *that same* SCALAR register is
4751  * never used in a precise context (i.e., it's precise value is not needed for
4752  * correctness), it's correct and safe to mark such register as "imprecise"
4753  * (i.e., precise marking set to false). This is what we rely on when we do
4754  * not set precise marking in current state. If no child state requires
4755  * precision for any given SCALAR register, it's safe to dictate that it can
4756  * be imprecise. If any child state does require this register to be precise,
4757  * we'll mark it precise later retroactively during precise markings
4758  * propagation from child state to parent states.
4759  *
4760  * Skipping precise marking setting in current state is a mild version of
4761  * relying on the above observation. But we can utilize this property even
4762  * more aggressively by proactively forgetting any precise marking in the
4763  * current state (which we inherited from the parent state), right before we
4764  * checkpoint it and branch off into new child state. This is done by
4765  * mark_all_scalars_imprecise() to hopefully get more permissive and generic
4766  * finalized states which help in short circuiting more future states.
4767  */
4768 static int __mark_chain_precision(struct bpf_verifier_env *env,
4769 				  struct bpf_verifier_state *starting_state,
4770 				  int regno,
4771 				  bool *changed)
4772 {
4773 	struct bpf_verifier_state *st = starting_state;
4774 	struct backtrack_state *bt = &env->bt;
4775 	int first_idx = st->first_insn_idx;
4776 	int last_idx = starting_state->insn_idx;
4777 	int subseq_idx = -1;
4778 	struct bpf_func_state *func;
4779 	bool tmp, skip_first = true;
4780 	struct bpf_reg_state *reg;
4781 	int i, fr, err;
4782 
4783 	if (!env->bpf_capable)
4784 		return 0;
4785 
4786 	changed = changed ?: &tmp;
4787 	/* set frame number from which we are starting to backtrack */
4788 	bt_init(bt, starting_state->curframe);
4789 
4790 	/* Do sanity checks against current state of register and/or stack
4791 	 * slot, but don't set precise flag in current state, as precision
4792 	 * tracking in the current state is unnecessary.
4793 	 */
4794 	func = st->frame[bt->frame];
4795 	if (regno >= 0) {
4796 		reg = &func->regs[regno];
4797 		if (reg->type != SCALAR_VALUE) {
4798 			verifier_bug(env, "backtracking misuse");
4799 			return -EFAULT;
4800 		}
4801 		bt_set_reg(bt, regno);
4802 	}
4803 
4804 	if (bt_empty(bt))
4805 		return 0;
4806 
4807 	for (;;) {
4808 		DECLARE_BITMAP(mask, 64);
4809 		u32 history = st->jmp_history_cnt;
4810 		struct bpf_jmp_history_entry *hist;
4811 
4812 		if (env->log.level & BPF_LOG_LEVEL2) {
4813 			verbose(env, "mark_precise: frame%d: last_idx %d first_idx %d subseq_idx %d \n",
4814 				bt->frame, last_idx, first_idx, subseq_idx);
4815 		}
4816 
4817 		if (last_idx < 0) {
4818 			/* we are at the entry into subprog, which
4819 			 * is expected for global funcs, but only if
4820 			 * requested precise registers are R1-R5
4821 			 * (which are global func's input arguments)
4822 			 */
4823 			if (st->curframe == 0 &&
4824 			    st->frame[0]->subprogno > 0 &&
4825 			    st->frame[0]->callsite == BPF_MAIN_FUNC &&
4826 			    bt_stack_mask(bt) == 0 &&
4827 			    (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) == 0) {
4828 				bitmap_from_u64(mask, bt_reg_mask(bt));
4829 				for_each_set_bit(i, mask, 32) {
4830 					reg = &st->frame[0]->regs[i];
4831 					bt_clear_reg(bt, i);
4832 					if (reg->type == SCALAR_VALUE) {
4833 						reg->precise = true;
4834 						*changed = true;
4835 					}
4836 				}
4837 				return 0;
4838 			}
4839 
4840 			verifier_bug(env, "backtracking func entry subprog %d reg_mask %x stack_mask %llx",
4841 				     st->frame[0]->subprogno, bt_reg_mask(bt), bt_stack_mask(bt));
4842 			return -EFAULT;
4843 		}
4844 
4845 		for (i = last_idx;;) {
4846 			if (skip_first) {
4847 				err = 0;
4848 				skip_first = false;
4849 			} else {
4850 				hist = get_jmp_hist_entry(st, history, i);
4851 				err = backtrack_insn(env, i, subseq_idx, hist, bt);
4852 			}
4853 			if (err == -ENOTSUPP) {
4854 				mark_all_scalars_precise(env, starting_state);
4855 				bt_reset(bt);
4856 				return 0;
4857 			} else if (err) {
4858 				return err;
4859 			}
4860 			if (bt_empty(bt))
4861 				/* Found assignment(s) into tracked register in this state.
4862 				 * Since this state is already marked, just return.
4863 				 * Nothing to be tracked further in the parent state.
4864 				 */
4865 				return 0;
4866 			subseq_idx = i;
4867 			i = get_prev_insn_idx(st, i, &history);
4868 			if (i == -ENOENT)
4869 				break;
4870 			if (i >= env->prog->len) {
4871 				/* This can happen if backtracking reached insn 0
4872 				 * and there are still reg_mask or stack_mask
4873 				 * to backtrack.
4874 				 * It means the backtracking missed the spot where
4875 				 * particular register was initialized with a constant.
4876 				 */
4877 				verifier_bug(env, "backtracking idx %d", i);
4878 				return -EFAULT;
4879 			}
4880 		}
4881 		st = st->parent;
4882 		if (!st)
4883 			break;
4884 
4885 		for (fr = bt->frame; fr >= 0; fr--) {
4886 			func = st->frame[fr];
4887 			bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr));
4888 			for_each_set_bit(i, mask, 32) {
4889 				reg = &func->regs[i];
4890 				if (reg->type != SCALAR_VALUE) {
4891 					bt_clear_frame_reg(bt, fr, i);
4892 					continue;
4893 				}
4894 				if (reg->precise) {
4895 					bt_clear_frame_reg(bt, fr, i);
4896 				} else {
4897 					reg->precise = true;
4898 					*changed = true;
4899 				}
4900 			}
4901 
4902 			bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr));
4903 			for_each_set_bit(i, mask, 64) {
4904 				if (verifier_bug_if(i >= func->allocated_stack / BPF_REG_SIZE,
4905 						    env, "stack slot %d, total slots %d",
4906 						    i, func->allocated_stack / BPF_REG_SIZE))
4907 					return -EFAULT;
4908 
4909 				if (!is_spilled_scalar_reg(&func->stack[i])) {
4910 					bt_clear_frame_slot(bt, fr, i);
4911 					continue;
4912 				}
4913 				reg = &func->stack[i].spilled_ptr;
4914 				if (reg->precise) {
4915 					bt_clear_frame_slot(bt, fr, i);
4916 				} else {
4917 					reg->precise = true;
4918 					*changed = true;
4919 				}
4920 			}
4921 			if (env->log.level & BPF_LOG_LEVEL2) {
4922 				fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
4923 					     bt_frame_reg_mask(bt, fr));
4924 				verbose(env, "mark_precise: frame%d: parent state regs=%s ",
4925 					fr, env->tmp_str_buf);
4926 				fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
4927 					       bt_frame_stack_mask(bt, fr));
4928 				verbose(env, "stack=%s: ", env->tmp_str_buf);
4929 				print_verifier_state(env, st, fr, true);
4930 			}
4931 		}
4932 
4933 		if (bt_empty(bt))
4934 			return 0;
4935 
4936 		subseq_idx = first_idx;
4937 		last_idx = st->last_insn_idx;
4938 		first_idx = st->first_insn_idx;
4939 	}
4940 
4941 	/* if we still have requested precise regs or slots, we missed
4942 	 * something (e.g., stack access through non-r10 register), so
4943 	 * fallback to marking all precise
4944 	 */
4945 	if (!bt_empty(bt)) {
4946 		mark_all_scalars_precise(env, starting_state);
4947 		bt_reset(bt);
4948 	}
4949 
4950 	return 0;
4951 }
4952 
4953 int mark_chain_precision(struct bpf_verifier_env *env, int regno)
4954 {
4955 	return __mark_chain_precision(env, env->cur_state, regno, NULL);
4956 }
4957 
4958 /* mark_chain_precision_batch() assumes that env->bt is set in the caller to
4959  * desired reg and stack masks across all relevant frames
4960  */
4961 static int mark_chain_precision_batch(struct bpf_verifier_env *env,
4962 				      struct bpf_verifier_state *starting_state)
4963 {
4964 	return __mark_chain_precision(env, starting_state, -1, NULL);
4965 }
4966 
4967 static bool is_spillable_regtype(enum bpf_reg_type type)
4968 {
4969 	switch (base_type(type)) {
4970 	case PTR_TO_MAP_VALUE:
4971 	case PTR_TO_STACK:
4972 	case PTR_TO_CTX:
4973 	case PTR_TO_PACKET:
4974 	case PTR_TO_PACKET_META:
4975 	case PTR_TO_PACKET_END:
4976 	case PTR_TO_FLOW_KEYS:
4977 	case CONST_PTR_TO_MAP:
4978 	case PTR_TO_SOCKET:
4979 	case PTR_TO_SOCK_COMMON:
4980 	case PTR_TO_TCP_SOCK:
4981 	case PTR_TO_XDP_SOCK:
4982 	case PTR_TO_BTF_ID:
4983 	case PTR_TO_BUF:
4984 	case PTR_TO_MEM:
4985 	case PTR_TO_FUNC:
4986 	case PTR_TO_MAP_KEY:
4987 	case PTR_TO_ARENA:
4988 		return true;
4989 	default:
4990 		return false;
4991 	}
4992 }
4993 
4994 /* Does this register contain a constant zero? */
4995 static bool register_is_null(struct bpf_reg_state *reg)
4996 {
4997 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
4998 }
4999 
5000 /* check if register is a constant scalar value */
5001 static bool is_reg_const(struct bpf_reg_state *reg, bool subreg32)
5002 {
5003 	return reg->type == SCALAR_VALUE &&
5004 	       tnum_is_const(subreg32 ? tnum_subreg(reg->var_off) : reg->var_off);
5005 }
5006 
5007 /* assuming is_reg_const() is true, return constant value of a register */
5008 static u64 reg_const_value(struct bpf_reg_state *reg, bool subreg32)
5009 {
5010 	return subreg32 ? tnum_subreg(reg->var_off).value : reg->var_off.value;
5011 }
5012 
5013 static bool __is_pointer_value(bool allow_ptr_leaks,
5014 			       const struct bpf_reg_state *reg)
5015 {
5016 	if (allow_ptr_leaks)
5017 		return false;
5018 
5019 	return reg->type != SCALAR_VALUE;
5020 }
5021 
5022 static void assign_scalar_id_before_mov(struct bpf_verifier_env *env,
5023 					struct bpf_reg_state *src_reg)
5024 {
5025 	if (src_reg->type != SCALAR_VALUE)
5026 		return;
5027 
5028 	if (src_reg->id & BPF_ADD_CONST) {
5029 		/*
5030 		 * The verifier is processing rX = rY insn and
5031 		 * rY->id has special linked register already.
5032 		 * Cleared it, since multiple rX += const are not supported.
5033 		 */
5034 		src_reg->id = 0;
5035 		src_reg->off = 0;
5036 	}
5037 
5038 	if (!src_reg->id && !tnum_is_const(src_reg->var_off))
5039 		/* Ensure that src_reg has a valid ID that will be copied to
5040 		 * dst_reg and then will be used by sync_linked_regs() to
5041 		 * propagate min/max range.
5042 		 */
5043 		src_reg->id = ++env->id_gen;
5044 }
5045 
5046 /* Copy src state preserving dst->parent and dst->live fields */
5047 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src)
5048 {
5049 	struct bpf_reg_state *parent = dst->parent;
5050 	enum bpf_reg_liveness live = dst->live;
5051 
5052 	*dst = *src;
5053 	dst->parent = parent;
5054 	dst->live = live;
5055 }
5056 
5057 static void save_register_state(struct bpf_verifier_env *env,
5058 				struct bpf_func_state *state,
5059 				int spi, struct bpf_reg_state *reg,
5060 				int size)
5061 {
5062 	int i;
5063 
5064 	copy_register_state(&state->stack[spi].spilled_ptr, reg);
5065 	if (size == BPF_REG_SIZE)
5066 		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
5067 
5068 	for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--)
5069 		state->stack[spi].slot_type[i - 1] = STACK_SPILL;
5070 
5071 	/* size < 8 bytes spill */
5072 	for (; i; i--)
5073 		mark_stack_slot_misc(env, &state->stack[spi].slot_type[i - 1]);
5074 }
5075 
5076 static bool is_bpf_st_mem(struct bpf_insn *insn)
5077 {
5078 	return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM;
5079 }
5080 
5081 static int get_reg_width(struct bpf_reg_state *reg)
5082 {
5083 	return fls64(reg->umax_value);
5084 }
5085 
5086 /* See comment for mark_fastcall_pattern_for_call() */
5087 static void check_fastcall_stack_contract(struct bpf_verifier_env *env,
5088 					  struct bpf_func_state *state, int insn_idx, int off)
5089 {
5090 	struct bpf_subprog_info *subprog = &env->subprog_info[state->subprogno];
5091 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
5092 	int i;
5093 
5094 	if (subprog->fastcall_stack_off <= off || aux[insn_idx].fastcall_pattern)
5095 		return;
5096 	/* access to the region [max_stack_depth .. fastcall_stack_off)
5097 	 * from something that is not a part of the fastcall pattern,
5098 	 * disable fastcall rewrites for current subprogram by setting
5099 	 * fastcall_stack_off to a value smaller than any possible offset.
5100 	 */
5101 	subprog->fastcall_stack_off = S16_MIN;
5102 	/* reset fastcall aux flags within subprogram,
5103 	 * happens at most once per subprogram
5104 	 */
5105 	for (i = subprog->start; i < (subprog + 1)->start; ++i) {
5106 		aux[i].fastcall_spills_num = 0;
5107 		aux[i].fastcall_pattern = 0;
5108 	}
5109 }
5110 
5111 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
5112  * stack boundary and alignment are checked in check_mem_access()
5113  */
5114 static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
5115 				       /* stack frame we're writing to */
5116 				       struct bpf_func_state *state,
5117 				       int off, int size, int value_regno,
5118 				       int insn_idx)
5119 {
5120 	struct bpf_func_state *cur; /* state of the current function */
5121 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
5122 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
5123 	struct bpf_reg_state *reg = NULL;
5124 	int insn_flags = insn_stack_access_flags(state->frameno, spi);
5125 
5126 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
5127 	 * so it's aligned access and [off, off + size) are within stack limits
5128 	 */
5129 	if (!env->allow_ptr_leaks &&
5130 	    is_spilled_reg(&state->stack[spi]) &&
5131 	    !is_spilled_scalar_reg(&state->stack[spi]) &&
5132 	    size != BPF_REG_SIZE) {
5133 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
5134 		return -EACCES;
5135 	}
5136 
5137 	cur = env->cur_state->frame[env->cur_state->curframe];
5138 	if (value_regno >= 0)
5139 		reg = &cur->regs[value_regno];
5140 	if (!env->bypass_spec_v4) {
5141 		bool sanitize = reg && is_spillable_regtype(reg->type);
5142 
5143 		for (i = 0; i < size; i++) {
5144 			u8 type = state->stack[spi].slot_type[i];
5145 
5146 			if (type != STACK_MISC && type != STACK_ZERO) {
5147 				sanitize = true;
5148 				break;
5149 			}
5150 		}
5151 
5152 		if (sanitize)
5153 			env->insn_aux_data[insn_idx].nospec_result = true;
5154 	}
5155 
5156 	err = destroy_if_dynptr_stack_slot(env, state, spi);
5157 	if (err)
5158 		return err;
5159 
5160 	check_fastcall_stack_contract(env, state, insn_idx, off);
5161 	mark_stack_slot_scratched(env, spi);
5162 	if (reg && !(off % BPF_REG_SIZE) && reg->type == SCALAR_VALUE && env->bpf_capable) {
5163 		bool reg_value_fits;
5164 
5165 		reg_value_fits = get_reg_width(reg) <= BITS_PER_BYTE * size;
5166 		/* Make sure that reg had an ID to build a relation on spill. */
5167 		if (reg_value_fits)
5168 			assign_scalar_id_before_mov(env, reg);
5169 		save_register_state(env, state, spi, reg, size);
5170 		/* Break the relation on a narrowing spill. */
5171 		if (!reg_value_fits)
5172 			state->stack[spi].spilled_ptr.id = 0;
5173 	} else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) &&
5174 		   env->bpf_capable) {
5175 		struct bpf_reg_state *tmp_reg = &env->fake_reg[0];
5176 
5177 		memset(tmp_reg, 0, sizeof(*tmp_reg));
5178 		__mark_reg_known(tmp_reg, insn->imm);
5179 		tmp_reg->type = SCALAR_VALUE;
5180 		save_register_state(env, state, spi, tmp_reg, size);
5181 	} else if (reg && is_spillable_regtype(reg->type)) {
5182 		/* register containing pointer is being spilled into stack */
5183 		if (size != BPF_REG_SIZE) {
5184 			verbose_linfo(env, insn_idx, "; ");
5185 			verbose(env, "invalid size of register spill\n");
5186 			return -EACCES;
5187 		}
5188 		if (state != cur && reg->type == PTR_TO_STACK) {
5189 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
5190 			return -EINVAL;
5191 		}
5192 		save_register_state(env, state, spi, reg, size);
5193 	} else {
5194 		u8 type = STACK_MISC;
5195 
5196 		/* regular write of data into stack destroys any spilled ptr */
5197 		state->stack[spi].spilled_ptr.type = NOT_INIT;
5198 		/* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */
5199 		if (is_stack_slot_special(&state->stack[spi]))
5200 			for (i = 0; i < BPF_REG_SIZE; i++)
5201 				scrub_spilled_slot(&state->stack[spi].slot_type[i]);
5202 
5203 		/* only mark the slot as written if all 8 bytes were written
5204 		 * otherwise read propagation may incorrectly stop too soon
5205 		 * when stack slots are partially written.
5206 		 * This heuristic means that read propagation will be
5207 		 * conservative, since it will add reg_live_read marks
5208 		 * to stack slots all the way to first state when programs
5209 		 * writes+reads less than 8 bytes
5210 		 */
5211 		if (size == BPF_REG_SIZE)
5212 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
5213 
5214 		/* when we zero initialize stack slots mark them as such */
5215 		if ((reg && register_is_null(reg)) ||
5216 		    (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) {
5217 			/* STACK_ZERO case happened because register spill
5218 			 * wasn't properly aligned at the stack slot boundary,
5219 			 * so it's not a register spill anymore; force
5220 			 * originating register to be precise to make
5221 			 * STACK_ZERO correct for subsequent states
5222 			 */
5223 			err = mark_chain_precision(env, value_regno);
5224 			if (err)
5225 				return err;
5226 			type = STACK_ZERO;
5227 		}
5228 
5229 		/* Mark slots affected by this stack write. */
5230 		for (i = 0; i < size; i++)
5231 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = type;
5232 		insn_flags = 0; /* not a register spill */
5233 	}
5234 
5235 	if (insn_flags)
5236 		return push_jmp_history(env, env->cur_state, insn_flags, 0);
5237 	return 0;
5238 }
5239 
5240 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
5241  * known to contain a variable offset.
5242  * This function checks whether the write is permitted and conservatively
5243  * tracks the effects of the write, considering that each stack slot in the
5244  * dynamic range is potentially written to.
5245  *
5246  * 'off' includes 'regno->off'.
5247  * 'value_regno' can be -1, meaning that an unknown value is being written to
5248  * the stack.
5249  *
5250  * Spilled pointers in range are not marked as written because we don't know
5251  * what's going to be actually written. This means that read propagation for
5252  * future reads cannot be terminated by this write.
5253  *
5254  * For privileged programs, uninitialized stack slots are considered
5255  * initialized by this write (even though we don't know exactly what offsets
5256  * are going to be written to). The idea is that we don't want the verifier to
5257  * reject future reads that access slots written to through variable offsets.
5258  */
5259 static int check_stack_write_var_off(struct bpf_verifier_env *env,
5260 				     /* func where register points to */
5261 				     struct bpf_func_state *state,
5262 				     int ptr_regno, int off, int size,
5263 				     int value_regno, int insn_idx)
5264 {
5265 	struct bpf_func_state *cur; /* state of the current function */
5266 	int min_off, max_off;
5267 	int i, err;
5268 	struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
5269 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
5270 	bool writing_zero = false;
5271 	/* set if the fact that we're writing a zero is used to let any
5272 	 * stack slots remain STACK_ZERO
5273 	 */
5274 	bool zero_used = false;
5275 
5276 	cur = env->cur_state->frame[env->cur_state->curframe];
5277 	ptr_reg = &cur->regs[ptr_regno];
5278 	min_off = ptr_reg->smin_value + off;
5279 	max_off = ptr_reg->smax_value + off + size;
5280 	if (value_regno >= 0)
5281 		value_reg = &cur->regs[value_regno];
5282 	if ((value_reg && register_is_null(value_reg)) ||
5283 	    (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0))
5284 		writing_zero = true;
5285 
5286 	for (i = min_off; i < max_off; i++) {
5287 		int spi;
5288 
5289 		spi = __get_spi(i);
5290 		err = destroy_if_dynptr_stack_slot(env, state, spi);
5291 		if (err)
5292 			return err;
5293 	}
5294 
5295 	check_fastcall_stack_contract(env, state, insn_idx, min_off);
5296 	/* Variable offset writes destroy any spilled pointers in range. */
5297 	for (i = min_off; i < max_off; i++) {
5298 		u8 new_type, *stype;
5299 		int slot, spi;
5300 
5301 		slot = -i - 1;
5302 		spi = slot / BPF_REG_SIZE;
5303 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
5304 		mark_stack_slot_scratched(env, spi);
5305 
5306 		if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) {
5307 			/* Reject the write if range we may write to has not
5308 			 * been initialized beforehand. If we didn't reject
5309 			 * here, the ptr status would be erased below (even
5310 			 * though not all slots are actually overwritten),
5311 			 * possibly opening the door to leaks.
5312 			 *
5313 			 * We do however catch STACK_INVALID case below, and
5314 			 * only allow reading possibly uninitialized memory
5315 			 * later for CAP_PERFMON, as the write may not happen to
5316 			 * that slot.
5317 			 */
5318 			verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
5319 				insn_idx, i);
5320 			return -EINVAL;
5321 		}
5322 
5323 		/* If writing_zero and the spi slot contains a spill of value 0,
5324 		 * maintain the spill type.
5325 		 */
5326 		if (writing_zero && *stype == STACK_SPILL &&
5327 		    is_spilled_scalar_reg(&state->stack[spi])) {
5328 			struct bpf_reg_state *spill_reg = &state->stack[spi].spilled_ptr;
5329 
5330 			if (tnum_is_const(spill_reg->var_off) && spill_reg->var_off.value == 0) {
5331 				zero_used = true;
5332 				continue;
5333 			}
5334 		}
5335 
5336 		/* Erase all other spilled pointers. */
5337 		state->stack[spi].spilled_ptr.type = NOT_INIT;
5338 
5339 		/* Update the slot type. */
5340 		new_type = STACK_MISC;
5341 		if (writing_zero && *stype == STACK_ZERO) {
5342 			new_type = STACK_ZERO;
5343 			zero_used = true;
5344 		}
5345 		/* If the slot is STACK_INVALID, we check whether it's OK to
5346 		 * pretend that it will be initialized by this write. The slot
5347 		 * might not actually be written to, and so if we mark it as
5348 		 * initialized future reads might leak uninitialized memory.
5349 		 * For privileged programs, we will accept such reads to slots
5350 		 * that may or may not be written because, if we're reject
5351 		 * them, the error would be too confusing.
5352 		 */
5353 		if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
5354 			verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
5355 					insn_idx, i);
5356 			return -EINVAL;
5357 		}
5358 		*stype = new_type;
5359 	}
5360 	if (zero_used) {
5361 		/* backtracking doesn't work for STACK_ZERO yet. */
5362 		err = mark_chain_precision(env, value_regno);
5363 		if (err)
5364 			return err;
5365 	}
5366 	return 0;
5367 }
5368 
5369 /* When register 'dst_regno' is assigned some values from stack[min_off,
5370  * max_off), we set the register's type according to the types of the
5371  * respective stack slots. If all the stack values are known to be zeros, then
5372  * so is the destination reg. Otherwise, the register is considered to be
5373  * SCALAR. This function does not deal with register filling; the caller must
5374  * ensure that all spilled registers in the stack range have been marked as
5375  * read.
5376  */
5377 static void mark_reg_stack_read(struct bpf_verifier_env *env,
5378 				/* func where src register points to */
5379 				struct bpf_func_state *ptr_state,
5380 				int min_off, int max_off, int dst_regno)
5381 {
5382 	struct bpf_verifier_state *vstate = env->cur_state;
5383 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5384 	int i, slot, spi;
5385 	u8 *stype;
5386 	int zeros = 0;
5387 
5388 	for (i = min_off; i < max_off; i++) {
5389 		slot = -i - 1;
5390 		spi = slot / BPF_REG_SIZE;
5391 		mark_stack_slot_scratched(env, spi);
5392 		stype = ptr_state->stack[spi].slot_type;
5393 		if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
5394 			break;
5395 		zeros++;
5396 	}
5397 	if (zeros == max_off - min_off) {
5398 		/* Any access_size read into register is zero extended,
5399 		 * so the whole register == const_zero.
5400 		 */
5401 		__mark_reg_const_zero(env, &state->regs[dst_regno]);
5402 	} else {
5403 		/* have read misc data from the stack */
5404 		mark_reg_unknown(env, state->regs, dst_regno);
5405 	}
5406 	state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
5407 }
5408 
5409 /* Read the stack at 'off' and put the results into the register indicated by
5410  * 'dst_regno'. It handles reg filling if the addressed stack slot is a
5411  * spilled reg.
5412  *
5413  * 'dst_regno' can be -1, meaning that the read value is not going to a
5414  * register.
5415  *
5416  * The access is assumed to be within the current stack bounds.
5417  */
5418 static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
5419 				      /* func where src register points to */
5420 				      struct bpf_func_state *reg_state,
5421 				      int off, int size, int dst_regno)
5422 {
5423 	struct bpf_verifier_state *vstate = env->cur_state;
5424 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5425 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
5426 	struct bpf_reg_state *reg;
5427 	u8 *stype, type;
5428 	int insn_flags = insn_stack_access_flags(reg_state->frameno, spi);
5429 
5430 	stype = reg_state->stack[spi].slot_type;
5431 	reg = &reg_state->stack[spi].spilled_ptr;
5432 
5433 	mark_stack_slot_scratched(env, spi);
5434 	check_fastcall_stack_contract(env, state, env->insn_idx, off);
5435 
5436 	if (is_spilled_reg(&reg_state->stack[spi])) {
5437 		u8 spill_size = 1;
5438 
5439 		for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--)
5440 			spill_size++;
5441 
5442 		if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) {
5443 			if (reg->type != SCALAR_VALUE) {
5444 				verbose_linfo(env, env->insn_idx, "; ");
5445 				verbose(env, "invalid size of register fill\n");
5446 				return -EACCES;
5447 			}
5448 
5449 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
5450 			if (dst_regno < 0)
5451 				return 0;
5452 
5453 			if (size <= spill_size &&
5454 			    bpf_stack_narrow_access_ok(off, size, spill_size)) {
5455 				/* The earlier check_reg_arg() has decided the
5456 				 * subreg_def for this insn.  Save it first.
5457 				 */
5458 				s32 subreg_def = state->regs[dst_regno].subreg_def;
5459 
5460 				copy_register_state(&state->regs[dst_regno], reg);
5461 				state->regs[dst_regno].subreg_def = subreg_def;
5462 
5463 				/* Break the relation on a narrowing fill.
5464 				 * coerce_reg_to_size will adjust the boundaries.
5465 				 */
5466 				if (get_reg_width(reg) > size * BITS_PER_BYTE)
5467 					state->regs[dst_regno].id = 0;
5468 			} else {
5469 				int spill_cnt = 0, zero_cnt = 0;
5470 
5471 				for (i = 0; i < size; i++) {
5472 					type = stype[(slot - i) % BPF_REG_SIZE];
5473 					if (type == STACK_SPILL) {
5474 						spill_cnt++;
5475 						continue;
5476 					}
5477 					if (type == STACK_MISC)
5478 						continue;
5479 					if (type == STACK_ZERO) {
5480 						zero_cnt++;
5481 						continue;
5482 					}
5483 					if (type == STACK_INVALID && env->allow_uninit_stack)
5484 						continue;
5485 					verbose(env, "invalid read from stack off %d+%d size %d\n",
5486 						off, i, size);
5487 					return -EACCES;
5488 				}
5489 
5490 				if (spill_cnt == size &&
5491 				    tnum_is_const(reg->var_off) && reg->var_off.value == 0) {
5492 					__mark_reg_const_zero(env, &state->regs[dst_regno]);
5493 					/* this IS register fill, so keep insn_flags */
5494 				} else if (zero_cnt == size) {
5495 					/* similarly to mark_reg_stack_read(), preserve zeroes */
5496 					__mark_reg_const_zero(env, &state->regs[dst_regno]);
5497 					insn_flags = 0; /* not restoring original register state */
5498 				} else {
5499 					mark_reg_unknown(env, state->regs, dst_regno);
5500 					insn_flags = 0; /* not restoring original register state */
5501 				}
5502 			}
5503 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
5504 		} else if (dst_regno >= 0) {
5505 			/* restore register state from stack */
5506 			copy_register_state(&state->regs[dst_regno], reg);
5507 			/* mark reg as written since spilled pointer state likely
5508 			 * has its liveness marks cleared by is_state_visited()
5509 			 * which resets stack/reg liveness for state transitions
5510 			 */
5511 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
5512 		} else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
5513 			/* If dst_regno==-1, the caller is asking us whether
5514 			 * it is acceptable to use this value as a SCALAR_VALUE
5515 			 * (e.g. for XADD).
5516 			 * We must not allow unprivileged callers to do that
5517 			 * with spilled pointers.
5518 			 */
5519 			verbose(env, "leaking pointer from stack off %d\n",
5520 				off);
5521 			return -EACCES;
5522 		}
5523 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
5524 	} else {
5525 		for (i = 0; i < size; i++) {
5526 			type = stype[(slot - i) % BPF_REG_SIZE];
5527 			if (type == STACK_MISC)
5528 				continue;
5529 			if (type == STACK_ZERO)
5530 				continue;
5531 			if (type == STACK_INVALID && env->allow_uninit_stack)
5532 				continue;
5533 			verbose(env, "invalid read from stack off %d+%d size %d\n",
5534 				off, i, size);
5535 			return -EACCES;
5536 		}
5537 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
5538 		if (dst_regno >= 0)
5539 			mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
5540 		insn_flags = 0; /* we are not restoring spilled register */
5541 	}
5542 	if (insn_flags)
5543 		return push_jmp_history(env, env->cur_state, insn_flags, 0);
5544 	return 0;
5545 }
5546 
5547 enum bpf_access_src {
5548 	ACCESS_DIRECT = 1,  /* the access is performed by an instruction */
5549 	ACCESS_HELPER = 2,  /* the access is performed by a helper */
5550 };
5551 
5552 static int check_stack_range_initialized(struct bpf_verifier_env *env,
5553 					 int regno, int off, int access_size,
5554 					 bool zero_size_allowed,
5555 					 enum bpf_access_type type,
5556 					 struct bpf_call_arg_meta *meta);
5557 
5558 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
5559 {
5560 	return cur_regs(env) + regno;
5561 }
5562 
5563 /* Read the stack at 'ptr_regno + off' and put the result into the register
5564  * 'dst_regno'.
5565  * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
5566  * but not its variable offset.
5567  * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
5568  *
5569  * As opposed to check_stack_read_fixed_off, this function doesn't deal with
5570  * filling registers (i.e. reads of spilled register cannot be detected when
5571  * the offset is not fixed). We conservatively mark 'dst_regno' as containing
5572  * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
5573  * offset; for a fixed offset check_stack_read_fixed_off should be used
5574  * instead.
5575  */
5576 static int check_stack_read_var_off(struct bpf_verifier_env *env,
5577 				    int ptr_regno, int off, int size, int dst_regno)
5578 {
5579 	/* The state of the source register. */
5580 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
5581 	struct bpf_func_state *ptr_state = func(env, reg);
5582 	int err;
5583 	int min_off, max_off;
5584 
5585 	/* Note that we pass a NULL meta, so raw access will not be permitted.
5586 	 */
5587 	err = check_stack_range_initialized(env, ptr_regno, off, size,
5588 					    false, BPF_READ, NULL);
5589 	if (err)
5590 		return err;
5591 
5592 	min_off = reg->smin_value + off;
5593 	max_off = reg->smax_value + off;
5594 	mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
5595 	check_fastcall_stack_contract(env, ptr_state, env->insn_idx, min_off);
5596 	return 0;
5597 }
5598 
5599 /* check_stack_read dispatches to check_stack_read_fixed_off or
5600  * check_stack_read_var_off.
5601  *
5602  * The caller must ensure that the offset falls within the allocated stack
5603  * bounds.
5604  *
5605  * 'dst_regno' is a register which will receive the value from the stack. It
5606  * can be -1, meaning that the read value is not going to a register.
5607  */
5608 static int check_stack_read(struct bpf_verifier_env *env,
5609 			    int ptr_regno, int off, int size,
5610 			    int dst_regno)
5611 {
5612 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
5613 	struct bpf_func_state *state = func(env, reg);
5614 	int err;
5615 	/* Some accesses are only permitted with a static offset. */
5616 	bool var_off = !tnum_is_const(reg->var_off);
5617 
5618 	/* The offset is required to be static when reads don't go to a
5619 	 * register, in order to not leak pointers (see
5620 	 * check_stack_read_fixed_off).
5621 	 */
5622 	if (dst_regno < 0 && var_off) {
5623 		char tn_buf[48];
5624 
5625 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5626 		verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
5627 			tn_buf, off, size);
5628 		return -EACCES;
5629 	}
5630 	/* Variable offset is prohibited for unprivileged mode for simplicity
5631 	 * since it requires corresponding support in Spectre masking for stack
5632 	 * ALU. See also retrieve_ptr_limit(). The check in
5633 	 * check_stack_access_for_ptr_arithmetic() called by
5634 	 * adjust_ptr_min_max_vals() prevents users from creating stack pointers
5635 	 * with variable offsets, therefore no check is required here. Further,
5636 	 * just checking it here would be insufficient as speculative stack
5637 	 * writes could still lead to unsafe speculative behaviour.
5638 	 */
5639 	if (!var_off) {
5640 		off += reg->var_off.value;
5641 		err = check_stack_read_fixed_off(env, state, off, size,
5642 						 dst_regno);
5643 	} else {
5644 		/* Variable offset stack reads need more conservative handling
5645 		 * than fixed offset ones. Note that dst_regno >= 0 on this
5646 		 * branch.
5647 		 */
5648 		err = check_stack_read_var_off(env, ptr_regno, off, size,
5649 					       dst_regno);
5650 	}
5651 	return err;
5652 }
5653 
5654 
5655 /* check_stack_write dispatches to check_stack_write_fixed_off or
5656  * check_stack_write_var_off.
5657  *
5658  * 'ptr_regno' is the register used as a pointer into the stack.
5659  * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
5660  * 'value_regno' is the register whose value we're writing to the stack. It can
5661  * be -1, meaning that we're not writing from a register.
5662  *
5663  * The caller must ensure that the offset falls within the maximum stack size.
5664  */
5665 static int check_stack_write(struct bpf_verifier_env *env,
5666 			     int ptr_regno, int off, int size,
5667 			     int value_regno, int insn_idx)
5668 {
5669 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
5670 	struct bpf_func_state *state = func(env, reg);
5671 	int err;
5672 
5673 	if (tnum_is_const(reg->var_off)) {
5674 		off += reg->var_off.value;
5675 		err = check_stack_write_fixed_off(env, state, off, size,
5676 						  value_regno, insn_idx);
5677 	} else {
5678 		/* Variable offset stack reads need more conservative handling
5679 		 * than fixed offset ones.
5680 		 */
5681 		err = check_stack_write_var_off(env, state,
5682 						ptr_regno, off, size,
5683 						value_regno, insn_idx);
5684 	}
5685 	return err;
5686 }
5687 
5688 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
5689 				 int off, int size, enum bpf_access_type type)
5690 {
5691 	struct bpf_reg_state *regs = cur_regs(env);
5692 	struct bpf_map *map = regs[regno].map_ptr;
5693 	u32 cap = bpf_map_flags_to_cap(map);
5694 
5695 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
5696 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
5697 			map->value_size, off, size);
5698 		return -EACCES;
5699 	}
5700 
5701 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
5702 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
5703 			map->value_size, off, size);
5704 		return -EACCES;
5705 	}
5706 
5707 	return 0;
5708 }
5709 
5710 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
5711 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
5712 			      int off, int size, u32 mem_size,
5713 			      bool zero_size_allowed)
5714 {
5715 	bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
5716 	struct bpf_reg_state *reg;
5717 
5718 	if (off >= 0 && size_ok && (u64)off + size <= mem_size)
5719 		return 0;
5720 
5721 	reg = &cur_regs(env)[regno];
5722 	switch (reg->type) {
5723 	case PTR_TO_MAP_KEY:
5724 		verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
5725 			mem_size, off, size);
5726 		break;
5727 	case PTR_TO_MAP_VALUE:
5728 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
5729 			mem_size, off, size);
5730 		break;
5731 	case PTR_TO_PACKET:
5732 	case PTR_TO_PACKET_META:
5733 	case PTR_TO_PACKET_END:
5734 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
5735 			off, size, regno, reg->id, off, mem_size);
5736 		break;
5737 	case PTR_TO_MEM:
5738 	default:
5739 		verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
5740 			mem_size, off, size);
5741 	}
5742 
5743 	return -EACCES;
5744 }
5745 
5746 /* check read/write into a memory region with possible variable offset */
5747 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
5748 				   int off, int size, u32 mem_size,
5749 				   bool zero_size_allowed)
5750 {
5751 	struct bpf_verifier_state *vstate = env->cur_state;
5752 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5753 	struct bpf_reg_state *reg = &state->regs[regno];
5754 	int err;
5755 
5756 	/* We may have adjusted the register pointing to memory region, so we
5757 	 * need to try adding each of min_value and max_value to off
5758 	 * to make sure our theoretical access will be safe.
5759 	 *
5760 	 * The minimum value is only important with signed
5761 	 * comparisons where we can't assume the floor of a
5762 	 * value is 0.  If we are using signed variables for our
5763 	 * index'es we need to make sure that whatever we use
5764 	 * will have a set floor within our range.
5765 	 */
5766 	if (reg->smin_value < 0 &&
5767 	    (reg->smin_value == S64_MIN ||
5768 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
5769 	      reg->smin_value + off < 0)) {
5770 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5771 			regno);
5772 		return -EACCES;
5773 	}
5774 	err = __check_mem_access(env, regno, reg->smin_value + off, size,
5775 				 mem_size, zero_size_allowed);
5776 	if (err) {
5777 		verbose(env, "R%d min value is outside of the allowed memory range\n",
5778 			regno);
5779 		return err;
5780 	}
5781 
5782 	/* If we haven't set a max value then we need to bail since we can't be
5783 	 * sure we won't do bad things.
5784 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
5785 	 */
5786 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
5787 		verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
5788 			regno);
5789 		return -EACCES;
5790 	}
5791 	err = __check_mem_access(env, regno, reg->umax_value + off, size,
5792 				 mem_size, zero_size_allowed);
5793 	if (err) {
5794 		verbose(env, "R%d max value is outside of the allowed memory range\n",
5795 			regno);
5796 		return err;
5797 	}
5798 
5799 	return 0;
5800 }
5801 
5802 static int __check_ptr_off_reg(struct bpf_verifier_env *env,
5803 			       const struct bpf_reg_state *reg, int regno,
5804 			       bool fixed_off_ok)
5805 {
5806 	/* Access to this pointer-typed register or passing it to a helper
5807 	 * is only allowed in its original, unmodified form.
5808 	 */
5809 
5810 	if (reg->off < 0) {
5811 		verbose(env, "negative offset %s ptr R%d off=%d disallowed\n",
5812 			reg_type_str(env, reg->type), regno, reg->off);
5813 		return -EACCES;
5814 	}
5815 
5816 	if (!fixed_off_ok && reg->off) {
5817 		verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n",
5818 			reg_type_str(env, reg->type), regno, reg->off);
5819 		return -EACCES;
5820 	}
5821 
5822 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
5823 		char tn_buf[48];
5824 
5825 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5826 		verbose(env, "variable %s access var_off=%s disallowed\n",
5827 			reg_type_str(env, reg->type), tn_buf);
5828 		return -EACCES;
5829 	}
5830 
5831 	return 0;
5832 }
5833 
5834 static int check_ptr_off_reg(struct bpf_verifier_env *env,
5835 		             const struct bpf_reg_state *reg, int regno)
5836 {
5837 	return __check_ptr_off_reg(env, reg, regno, false);
5838 }
5839 
5840 static int map_kptr_match_type(struct bpf_verifier_env *env,
5841 			       struct btf_field *kptr_field,
5842 			       struct bpf_reg_state *reg, u32 regno)
5843 {
5844 	const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id);
5845 	int perm_flags;
5846 	const char *reg_name = "";
5847 
5848 	if (btf_is_kernel(reg->btf)) {
5849 		perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU;
5850 
5851 		/* Only unreferenced case accepts untrusted pointers */
5852 		if (kptr_field->type == BPF_KPTR_UNREF)
5853 			perm_flags |= PTR_UNTRUSTED;
5854 	} else {
5855 		perm_flags = PTR_MAYBE_NULL | MEM_ALLOC;
5856 		if (kptr_field->type == BPF_KPTR_PERCPU)
5857 			perm_flags |= MEM_PERCPU;
5858 	}
5859 
5860 	if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags))
5861 		goto bad_type;
5862 
5863 	/* We need to verify reg->type and reg->btf, before accessing reg->btf */
5864 	reg_name = btf_type_name(reg->btf, reg->btf_id);
5865 
5866 	/* For ref_ptr case, release function check should ensure we get one
5867 	 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the
5868 	 * normal store of unreferenced kptr, we must ensure var_off is zero.
5869 	 * Since ref_ptr cannot be accessed directly by BPF insns, checks for
5870 	 * reg->off and reg->ref_obj_id are not needed here.
5871 	 */
5872 	if (__check_ptr_off_reg(env, reg, regno, true))
5873 		return -EACCES;
5874 
5875 	/* A full type match is needed, as BTF can be vmlinux, module or prog BTF, and
5876 	 * we also need to take into account the reg->off.
5877 	 *
5878 	 * We want to support cases like:
5879 	 *
5880 	 * struct foo {
5881 	 *         struct bar br;
5882 	 *         struct baz bz;
5883 	 * };
5884 	 *
5885 	 * struct foo *v;
5886 	 * v = func();	      // PTR_TO_BTF_ID
5887 	 * val->foo = v;      // reg->off is zero, btf and btf_id match type
5888 	 * val->bar = &v->br; // reg->off is still zero, but we need to retry with
5889 	 *                    // first member type of struct after comparison fails
5890 	 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked
5891 	 *                    // to match type
5892 	 *
5893 	 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off
5894 	 * is zero. We must also ensure that btf_struct_ids_match does not walk
5895 	 * the struct to match type against first member of struct, i.e. reject
5896 	 * second case from above. Hence, when type is BPF_KPTR_REF, we set
5897 	 * strict mode to true for type match.
5898 	 */
5899 	if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
5900 				  kptr_field->kptr.btf, kptr_field->kptr.btf_id,
5901 				  kptr_field->type != BPF_KPTR_UNREF))
5902 		goto bad_type;
5903 	return 0;
5904 bad_type:
5905 	verbose(env, "invalid kptr access, R%d type=%s%s ", regno,
5906 		reg_type_str(env, reg->type), reg_name);
5907 	verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name);
5908 	if (kptr_field->type == BPF_KPTR_UNREF)
5909 		verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED),
5910 			targ_name);
5911 	else
5912 		verbose(env, "\n");
5913 	return -EINVAL;
5914 }
5915 
5916 static bool in_sleepable(struct bpf_verifier_env *env)
5917 {
5918 	return env->prog->sleepable ||
5919 	       (env->cur_state && env->cur_state->in_sleepable);
5920 }
5921 
5922 /* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock()
5923  * can dereference RCU protected pointers and result is PTR_TRUSTED.
5924  */
5925 static bool in_rcu_cs(struct bpf_verifier_env *env)
5926 {
5927 	return env->cur_state->active_rcu_lock ||
5928 	       env->cur_state->active_locks ||
5929 	       !in_sleepable(env);
5930 }
5931 
5932 /* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */
5933 BTF_SET_START(rcu_protected_types)
5934 #ifdef CONFIG_NET
5935 BTF_ID(struct, prog_test_ref_kfunc)
5936 #endif
5937 #ifdef CONFIG_CGROUPS
5938 BTF_ID(struct, cgroup)
5939 #endif
5940 #ifdef CONFIG_BPF_JIT
5941 BTF_ID(struct, bpf_cpumask)
5942 #endif
5943 BTF_ID(struct, task_struct)
5944 #ifdef CONFIG_CRYPTO
5945 BTF_ID(struct, bpf_crypto_ctx)
5946 #endif
5947 BTF_SET_END(rcu_protected_types)
5948 
5949 static bool rcu_protected_object(const struct btf *btf, u32 btf_id)
5950 {
5951 	if (!btf_is_kernel(btf))
5952 		return true;
5953 	return btf_id_set_contains(&rcu_protected_types, btf_id);
5954 }
5955 
5956 static struct btf_record *kptr_pointee_btf_record(struct btf_field *kptr_field)
5957 {
5958 	struct btf_struct_meta *meta;
5959 
5960 	if (btf_is_kernel(kptr_field->kptr.btf))
5961 		return NULL;
5962 
5963 	meta = btf_find_struct_meta(kptr_field->kptr.btf,
5964 				    kptr_field->kptr.btf_id);
5965 
5966 	return meta ? meta->record : NULL;
5967 }
5968 
5969 static bool rcu_safe_kptr(const struct btf_field *field)
5970 {
5971 	const struct btf_field_kptr *kptr = &field->kptr;
5972 
5973 	return field->type == BPF_KPTR_PERCPU ||
5974 	       (field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id));
5975 }
5976 
5977 static u32 btf_ld_kptr_type(struct bpf_verifier_env *env, struct btf_field *kptr_field)
5978 {
5979 	struct btf_record *rec;
5980 	u32 ret;
5981 
5982 	ret = PTR_MAYBE_NULL;
5983 	if (rcu_safe_kptr(kptr_field) && in_rcu_cs(env)) {
5984 		ret |= MEM_RCU;
5985 		if (kptr_field->type == BPF_KPTR_PERCPU)
5986 			ret |= MEM_PERCPU;
5987 		else if (!btf_is_kernel(kptr_field->kptr.btf))
5988 			ret |= MEM_ALLOC;
5989 
5990 		rec = kptr_pointee_btf_record(kptr_field);
5991 		if (rec && btf_record_has_field(rec, BPF_GRAPH_NODE))
5992 			ret |= NON_OWN_REF;
5993 	} else {
5994 		ret |= PTR_UNTRUSTED;
5995 	}
5996 
5997 	return ret;
5998 }
5999 
6000 static int mark_uptr_ld_reg(struct bpf_verifier_env *env, u32 regno,
6001 			    struct btf_field *field)
6002 {
6003 	struct bpf_reg_state *reg;
6004 	const struct btf_type *t;
6005 
6006 	t = btf_type_by_id(field->kptr.btf, field->kptr.btf_id);
6007 	mark_reg_known_zero(env, cur_regs(env), regno);
6008 	reg = reg_state(env, regno);
6009 	reg->type = PTR_TO_MEM | PTR_MAYBE_NULL;
6010 	reg->mem_size = t->size;
6011 	reg->id = ++env->id_gen;
6012 
6013 	return 0;
6014 }
6015 
6016 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno,
6017 				 int value_regno, int insn_idx,
6018 				 struct btf_field *kptr_field)
6019 {
6020 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
6021 	int class = BPF_CLASS(insn->code);
6022 	struct bpf_reg_state *val_reg;
6023 	int ret;
6024 
6025 	/* Things we already checked for in check_map_access and caller:
6026 	 *  - Reject cases where variable offset may touch kptr
6027 	 *  - size of access (must be BPF_DW)
6028 	 *  - tnum_is_const(reg->var_off)
6029 	 *  - kptr_field->offset == off + reg->var_off.value
6030 	 */
6031 	/* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */
6032 	if (BPF_MODE(insn->code) != BPF_MEM) {
6033 		verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n");
6034 		return -EACCES;
6035 	}
6036 
6037 	/* We only allow loading referenced kptr, since it will be marked as
6038 	 * untrusted, similar to unreferenced kptr.
6039 	 */
6040 	if (class != BPF_LDX &&
6041 	    (kptr_field->type == BPF_KPTR_REF || kptr_field->type == BPF_KPTR_PERCPU)) {
6042 		verbose(env, "store to referenced kptr disallowed\n");
6043 		return -EACCES;
6044 	}
6045 	if (class != BPF_LDX && kptr_field->type == BPF_UPTR) {
6046 		verbose(env, "store to uptr disallowed\n");
6047 		return -EACCES;
6048 	}
6049 
6050 	if (class == BPF_LDX) {
6051 		if (kptr_field->type == BPF_UPTR)
6052 			return mark_uptr_ld_reg(env, value_regno, kptr_field);
6053 
6054 		/* We can simply mark the value_regno receiving the pointer
6055 		 * value from map as PTR_TO_BTF_ID, with the correct type.
6056 		 */
6057 		ret = mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID,
6058 				      kptr_field->kptr.btf, kptr_field->kptr.btf_id,
6059 				      btf_ld_kptr_type(env, kptr_field));
6060 		if (ret < 0)
6061 			return ret;
6062 	} else if (class == BPF_STX) {
6063 		val_reg = reg_state(env, value_regno);
6064 		if (!register_is_null(val_reg) &&
6065 		    map_kptr_match_type(env, kptr_field, val_reg, value_regno))
6066 			return -EACCES;
6067 	} else if (class == BPF_ST) {
6068 		if (insn->imm) {
6069 			verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n",
6070 				kptr_field->offset);
6071 			return -EACCES;
6072 		}
6073 	} else {
6074 		verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n");
6075 		return -EACCES;
6076 	}
6077 	return 0;
6078 }
6079 
6080 /* check read/write into a map element with possible variable offset */
6081 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
6082 			    int off, int size, bool zero_size_allowed,
6083 			    enum bpf_access_src src)
6084 {
6085 	struct bpf_verifier_state *vstate = env->cur_state;
6086 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
6087 	struct bpf_reg_state *reg = &state->regs[regno];
6088 	struct bpf_map *map = reg->map_ptr;
6089 	struct btf_record *rec;
6090 	int err, i;
6091 
6092 	err = check_mem_region_access(env, regno, off, size, map->value_size,
6093 				      zero_size_allowed);
6094 	if (err)
6095 		return err;
6096 
6097 	if (IS_ERR_OR_NULL(map->record))
6098 		return 0;
6099 	rec = map->record;
6100 	for (i = 0; i < rec->cnt; i++) {
6101 		struct btf_field *field = &rec->fields[i];
6102 		u32 p = field->offset;
6103 
6104 		/* If any part of a field  can be touched by load/store, reject
6105 		 * this program. To check that [x1, x2) overlaps with [y1, y2),
6106 		 * it is sufficient to check x1 < y2 && y1 < x2.
6107 		 */
6108 		if (reg->smin_value + off < p + field->size &&
6109 		    p < reg->umax_value + off + size) {
6110 			switch (field->type) {
6111 			case BPF_KPTR_UNREF:
6112 			case BPF_KPTR_REF:
6113 			case BPF_KPTR_PERCPU:
6114 			case BPF_UPTR:
6115 				if (src != ACCESS_DIRECT) {
6116 					verbose(env, "%s cannot be accessed indirectly by helper\n",
6117 						btf_field_type_name(field->type));
6118 					return -EACCES;
6119 				}
6120 				if (!tnum_is_const(reg->var_off)) {
6121 					verbose(env, "%s access cannot have variable offset\n",
6122 						btf_field_type_name(field->type));
6123 					return -EACCES;
6124 				}
6125 				if (p != off + reg->var_off.value) {
6126 					verbose(env, "%s access misaligned expected=%u off=%llu\n",
6127 						btf_field_type_name(field->type),
6128 						p, off + reg->var_off.value);
6129 					return -EACCES;
6130 				}
6131 				if (size != bpf_size_to_bytes(BPF_DW)) {
6132 					verbose(env, "%s access size must be BPF_DW\n",
6133 						btf_field_type_name(field->type));
6134 					return -EACCES;
6135 				}
6136 				break;
6137 			default:
6138 				verbose(env, "%s cannot be accessed directly by load/store\n",
6139 					btf_field_type_name(field->type));
6140 				return -EACCES;
6141 			}
6142 		}
6143 	}
6144 	return 0;
6145 }
6146 
6147 #define MAX_PACKET_OFF 0xffff
6148 
6149 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
6150 				       const struct bpf_call_arg_meta *meta,
6151 				       enum bpf_access_type t)
6152 {
6153 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
6154 
6155 	switch (prog_type) {
6156 	/* Program types only with direct read access go here! */
6157 	case BPF_PROG_TYPE_LWT_IN:
6158 	case BPF_PROG_TYPE_LWT_OUT:
6159 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
6160 	case BPF_PROG_TYPE_SK_REUSEPORT:
6161 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
6162 	case BPF_PROG_TYPE_CGROUP_SKB:
6163 		if (t == BPF_WRITE)
6164 			return false;
6165 		fallthrough;
6166 
6167 	/* Program types with direct read + write access go here! */
6168 	case BPF_PROG_TYPE_SCHED_CLS:
6169 	case BPF_PROG_TYPE_SCHED_ACT:
6170 	case BPF_PROG_TYPE_XDP:
6171 	case BPF_PROG_TYPE_LWT_XMIT:
6172 	case BPF_PROG_TYPE_SK_SKB:
6173 	case BPF_PROG_TYPE_SK_MSG:
6174 		if (meta)
6175 			return meta->pkt_access;
6176 
6177 		env->seen_direct_write = true;
6178 		return true;
6179 
6180 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
6181 		if (t == BPF_WRITE)
6182 			env->seen_direct_write = true;
6183 
6184 		return true;
6185 
6186 	default:
6187 		return false;
6188 	}
6189 }
6190 
6191 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
6192 			       int size, bool zero_size_allowed)
6193 {
6194 	struct bpf_reg_state *regs = cur_regs(env);
6195 	struct bpf_reg_state *reg = &regs[regno];
6196 	int err;
6197 
6198 	/* We may have added a variable offset to the packet pointer; but any
6199 	 * reg->range we have comes after that.  We are only checking the fixed
6200 	 * offset.
6201 	 */
6202 
6203 	/* We don't allow negative numbers, because we aren't tracking enough
6204 	 * detail to prove they're safe.
6205 	 */
6206 	if (reg->smin_value < 0) {
6207 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
6208 			regno);
6209 		return -EACCES;
6210 	}
6211 
6212 	err = reg->range < 0 ? -EINVAL :
6213 	      __check_mem_access(env, regno, off, size, reg->range,
6214 				 zero_size_allowed);
6215 	if (err) {
6216 		verbose(env, "R%d offset is outside of the packet\n", regno);
6217 		return err;
6218 	}
6219 
6220 	/* __check_mem_access has made sure "off + size - 1" is within u16.
6221 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
6222 	 * otherwise find_good_pkt_pointers would have refused to set range info
6223 	 * that __check_mem_access would have rejected this pkt access.
6224 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
6225 	 */
6226 	env->prog->aux->max_pkt_offset =
6227 		max_t(u32, env->prog->aux->max_pkt_offset,
6228 		      off + reg->umax_value + size - 1);
6229 
6230 	return err;
6231 }
6232 
6233 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
6234 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
6235 			    enum bpf_access_type t, struct bpf_insn_access_aux *info)
6236 {
6237 	if (env->ops->is_valid_access &&
6238 	    env->ops->is_valid_access(off, size, t, env->prog, info)) {
6239 		/* A non zero info.ctx_field_size indicates that this field is a
6240 		 * candidate for later verifier transformation to load the whole
6241 		 * field and then apply a mask when accessed with a narrower
6242 		 * access than actual ctx access size. A zero info.ctx_field_size
6243 		 * will only allow for whole field access and rejects any other
6244 		 * type of narrower access.
6245 		 */
6246 		if (base_type(info->reg_type) == PTR_TO_BTF_ID) {
6247 			if (info->ref_obj_id &&
6248 			    !find_reference_state(env->cur_state, info->ref_obj_id)) {
6249 				verbose(env, "invalid bpf_context access off=%d. Reference may already be released\n",
6250 					off);
6251 				return -EACCES;
6252 			}
6253 		} else {
6254 			env->insn_aux_data[insn_idx].ctx_field_size = info->ctx_field_size;
6255 		}
6256 		/* remember the offset of last byte accessed in ctx */
6257 		if (env->prog->aux->max_ctx_offset < off + size)
6258 			env->prog->aux->max_ctx_offset = off + size;
6259 		return 0;
6260 	}
6261 
6262 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
6263 	return -EACCES;
6264 }
6265 
6266 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
6267 				  int size)
6268 {
6269 	if (size < 0 || off < 0 ||
6270 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
6271 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
6272 			off, size);
6273 		return -EACCES;
6274 	}
6275 	return 0;
6276 }
6277 
6278 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
6279 			     u32 regno, int off, int size,
6280 			     enum bpf_access_type t)
6281 {
6282 	struct bpf_reg_state *regs = cur_regs(env);
6283 	struct bpf_reg_state *reg = &regs[regno];
6284 	struct bpf_insn_access_aux info = {};
6285 	bool valid;
6286 
6287 	if (reg->smin_value < 0) {
6288 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
6289 			regno);
6290 		return -EACCES;
6291 	}
6292 
6293 	switch (reg->type) {
6294 	case PTR_TO_SOCK_COMMON:
6295 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
6296 		break;
6297 	case PTR_TO_SOCKET:
6298 		valid = bpf_sock_is_valid_access(off, size, t, &info);
6299 		break;
6300 	case PTR_TO_TCP_SOCK:
6301 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
6302 		break;
6303 	case PTR_TO_XDP_SOCK:
6304 		valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
6305 		break;
6306 	default:
6307 		valid = false;
6308 	}
6309 
6310 
6311 	if (valid) {
6312 		env->insn_aux_data[insn_idx].ctx_field_size =
6313 			info.ctx_field_size;
6314 		return 0;
6315 	}
6316 
6317 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
6318 		regno, reg_type_str(env, reg->type), off, size);
6319 
6320 	return -EACCES;
6321 }
6322 
6323 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
6324 {
6325 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
6326 }
6327 
6328 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
6329 {
6330 	const struct bpf_reg_state *reg = reg_state(env, regno);
6331 
6332 	return reg->type == PTR_TO_CTX;
6333 }
6334 
6335 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
6336 {
6337 	const struct bpf_reg_state *reg = reg_state(env, regno);
6338 
6339 	return type_is_sk_pointer(reg->type);
6340 }
6341 
6342 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
6343 {
6344 	const struct bpf_reg_state *reg = reg_state(env, regno);
6345 
6346 	return type_is_pkt_pointer(reg->type);
6347 }
6348 
6349 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
6350 {
6351 	const struct bpf_reg_state *reg = reg_state(env, regno);
6352 
6353 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
6354 	return reg->type == PTR_TO_FLOW_KEYS;
6355 }
6356 
6357 static bool is_arena_reg(struct bpf_verifier_env *env, int regno)
6358 {
6359 	const struct bpf_reg_state *reg = reg_state(env, regno);
6360 
6361 	return reg->type == PTR_TO_ARENA;
6362 }
6363 
6364 /* Return false if @regno contains a pointer whose type isn't supported for
6365  * atomic instruction @insn.
6366  */
6367 static bool atomic_ptr_type_ok(struct bpf_verifier_env *env, int regno,
6368 			       struct bpf_insn *insn)
6369 {
6370 	if (is_ctx_reg(env, regno))
6371 		return false;
6372 	if (is_pkt_reg(env, regno))
6373 		return false;
6374 	if (is_flow_key_reg(env, regno))
6375 		return false;
6376 	if (is_sk_reg(env, regno))
6377 		return false;
6378 	if (is_arena_reg(env, regno))
6379 		return bpf_jit_supports_insn(insn, true);
6380 
6381 	return true;
6382 }
6383 
6384 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = {
6385 #ifdef CONFIG_NET
6386 	[PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK],
6387 	[PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
6388 	[PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
6389 #endif
6390 	[CONST_PTR_TO_MAP] = btf_bpf_map_id,
6391 };
6392 
6393 static bool is_trusted_reg(const struct bpf_reg_state *reg)
6394 {
6395 	/* A referenced register is always trusted. */
6396 	if (reg->ref_obj_id)
6397 		return true;
6398 
6399 	/* Types listed in the reg2btf_ids are always trusted */
6400 	if (reg2btf_ids[base_type(reg->type)] &&
6401 	    !bpf_type_has_unsafe_modifiers(reg->type))
6402 		return true;
6403 
6404 	/* If a register is not referenced, it is trusted if it has the
6405 	 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the
6406 	 * other type modifiers may be safe, but we elect to take an opt-in
6407 	 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are
6408 	 * not.
6409 	 *
6410 	 * Eventually, we should make PTR_TRUSTED the single source of truth
6411 	 * for whether a register is trusted.
6412 	 */
6413 	return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS &&
6414 	       !bpf_type_has_unsafe_modifiers(reg->type);
6415 }
6416 
6417 static bool is_rcu_reg(const struct bpf_reg_state *reg)
6418 {
6419 	return reg->type & MEM_RCU;
6420 }
6421 
6422 static void clear_trusted_flags(enum bpf_type_flag *flag)
6423 {
6424 	*flag &= ~(BPF_REG_TRUSTED_MODIFIERS | MEM_RCU);
6425 }
6426 
6427 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
6428 				   const struct bpf_reg_state *reg,
6429 				   int off, int size, bool strict)
6430 {
6431 	struct tnum reg_off;
6432 	int ip_align;
6433 
6434 	/* Byte size accesses are always allowed. */
6435 	if (!strict || size == 1)
6436 		return 0;
6437 
6438 	/* For platforms that do not have a Kconfig enabling
6439 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
6440 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
6441 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
6442 	 * to this code only in strict mode where we want to emulate
6443 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
6444 	 * unconditional IP align value of '2'.
6445 	 */
6446 	ip_align = 2;
6447 
6448 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
6449 	if (!tnum_is_aligned(reg_off, size)) {
6450 		char tn_buf[48];
6451 
6452 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6453 		verbose(env,
6454 			"misaligned packet access off %d+%s+%d+%d size %d\n",
6455 			ip_align, tn_buf, reg->off, off, size);
6456 		return -EACCES;
6457 	}
6458 
6459 	return 0;
6460 }
6461 
6462 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
6463 				       const struct bpf_reg_state *reg,
6464 				       const char *pointer_desc,
6465 				       int off, int size, bool strict)
6466 {
6467 	struct tnum reg_off;
6468 
6469 	/* Byte size accesses are always allowed. */
6470 	if (!strict || size == 1)
6471 		return 0;
6472 
6473 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
6474 	if (!tnum_is_aligned(reg_off, size)) {
6475 		char tn_buf[48];
6476 
6477 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6478 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
6479 			pointer_desc, tn_buf, reg->off, off, size);
6480 		return -EACCES;
6481 	}
6482 
6483 	return 0;
6484 }
6485 
6486 static int check_ptr_alignment(struct bpf_verifier_env *env,
6487 			       const struct bpf_reg_state *reg, int off,
6488 			       int size, bool strict_alignment_once)
6489 {
6490 	bool strict = env->strict_alignment || strict_alignment_once;
6491 	const char *pointer_desc = "";
6492 
6493 	switch (reg->type) {
6494 	case PTR_TO_PACKET:
6495 	case PTR_TO_PACKET_META:
6496 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
6497 		 * right in front, treat it the very same way.
6498 		 */
6499 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
6500 	case PTR_TO_FLOW_KEYS:
6501 		pointer_desc = "flow keys ";
6502 		break;
6503 	case PTR_TO_MAP_KEY:
6504 		pointer_desc = "key ";
6505 		break;
6506 	case PTR_TO_MAP_VALUE:
6507 		pointer_desc = "value ";
6508 		break;
6509 	case PTR_TO_CTX:
6510 		pointer_desc = "context ";
6511 		break;
6512 	case PTR_TO_STACK:
6513 		pointer_desc = "stack ";
6514 		/* The stack spill tracking logic in check_stack_write_fixed_off()
6515 		 * and check_stack_read_fixed_off() relies on stack accesses being
6516 		 * aligned.
6517 		 */
6518 		strict = true;
6519 		break;
6520 	case PTR_TO_SOCKET:
6521 		pointer_desc = "sock ";
6522 		break;
6523 	case PTR_TO_SOCK_COMMON:
6524 		pointer_desc = "sock_common ";
6525 		break;
6526 	case PTR_TO_TCP_SOCK:
6527 		pointer_desc = "tcp_sock ";
6528 		break;
6529 	case PTR_TO_XDP_SOCK:
6530 		pointer_desc = "xdp_sock ";
6531 		break;
6532 	case PTR_TO_ARENA:
6533 		return 0;
6534 	default:
6535 		break;
6536 	}
6537 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
6538 					   strict);
6539 }
6540 
6541 static enum priv_stack_mode bpf_enable_priv_stack(struct bpf_prog *prog)
6542 {
6543 	if (!bpf_jit_supports_private_stack())
6544 		return NO_PRIV_STACK;
6545 
6546 	/* bpf_prog_check_recur() checks all prog types that use bpf trampoline
6547 	 * while kprobe/tp/perf_event/raw_tp don't use trampoline hence checked
6548 	 * explicitly.
6549 	 */
6550 	switch (prog->type) {
6551 	case BPF_PROG_TYPE_KPROBE:
6552 	case BPF_PROG_TYPE_TRACEPOINT:
6553 	case BPF_PROG_TYPE_PERF_EVENT:
6554 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
6555 		return PRIV_STACK_ADAPTIVE;
6556 	case BPF_PROG_TYPE_TRACING:
6557 	case BPF_PROG_TYPE_LSM:
6558 	case BPF_PROG_TYPE_STRUCT_OPS:
6559 		if (prog->aux->priv_stack_requested || bpf_prog_check_recur(prog))
6560 			return PRIV_STACK_ADAPTIVE;
6561 		fallthrough;
6562 	default:
6563 		break;
6564 	}
6565 
6566 	return NO_PRIV_STACK;
6567 }
6568 
6569 static int round_up_stack_depth(struct bpf_verifier_env *env, int stack_depth)
6570 {
6571 	if (env->prog->jit_requested)
6572 		return round_up(stack_depth, 16);
6573 
6574 	/* round up to 32-bytes, since this is granularity
6575 	 * of interpreter stack size
6576 	 */
6577 	return round_up(max_t(u32, stack_depth, 1), 32);
6578 }
6579 
6580 /* starting from main bpf function walk all instructions of the function
6581  * and recursively walk all callees that given function can call.
6582  * Ignore jump and exit insns.
6583  * Since recursion is prevented by check_cfg() this algorithm
6584  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
6585  */
6586 static int check_max_stack_depth_subprog(struct bpf_verifier_env *env, int idx,
6587 					 bool priv_stack_supported)
6588 {
6589 	struct bpf_subprog_info *subprog = env->subprog_info;
6590 	struct bpf_insn *insn = env->prog->insnsi;
6591 	int depth = 0, frame = 0, i, subprog_end, subprog_depth;
6592 	bool tail_call_reachable = false;
6593 	int ret_insn[MAX_CALL_FRAMES];
6594 	int ret_prog[MAX_CALL_FRAMES];
6595 	int j;
6596 
6597 	i = subprog[idx].start;
6598 	if (!priv_stack_supported)
6599 		subprog[idx].priv_stack_mode = NO_PRIV_STACK;
6600 process_func:
6601 	/* protect against potential stack overflow that might happen when
6602 	 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
6603 	 * depth for such case down to 256 so that the worst case scenario
6604 	 * would result in 8k stack size (32 which is tailcall limit * 256 =
6605 	 * 8k).
6606 	 *
6607 	 * To get the idea what might happen, see an example:
6608 	 * func1 -> sub rsp, 128
6609 	 *  subfunc1 -> sub rsp, 256
6610 	 *  tailcall1 -> add rsp, 256
6611 	 *   func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
6612 	 *   subfunc2 -> sub rsp, 64
6613 	 *   subfunc22 -> sub rsp, 128
6614 	 *   tailcall2 -> add rsp, 128
6615 	 *    func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
6616 	 *
6617 	 * tailcall will unwind the current stack frame but it will not get rid
6618 	 * of caller's stack as shown on the example above.
6619 	 */
6620 	if (idx && subprog[idx].has_tail_call && depth >= 256) {
6621 		verbose(env,
6622 			"tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
6623 			depth);
6624 		return -EACCES;
6625 	}
6626 
6627 	subprog_depth = round_up_stack_depth(env, subprog[idx].stack_depth);
6628 	if (priv_stack_supported) {
6629 		/* Request private stack support only if the subprog stack
6630 		 * depth is no less than BPF_PRIV_STACK_MIN_SIZE. This is to
6631 		 * avoid jit penalty if the stack usage is small.
6632 		 */
6633 		if (subprog[idx].priv_stack_mode == PRIV_STACK_UNKNOWN &&
6634 		    subprog_depth >= BPF_PRIV_STACK_MIN_SIZE)
6635 			subprog[idx].priv_stack_mode = PRIV_STACK_ADAPTIVE;
6636 	}
6637 
6638 	if (subprog[idx].priv_stack_mode == PRIV_STACK_ADAPTIVE) {
6639 		if (subprog_depth > MAX_BPF_STACK) {
6640 			verbose(env, "stack size of subprog %d is %d. Too large\n",
6641 				idx, subprog_depth);
6642 			return -EACCES;
6643 		}
6644 	} else {
6645 		depth += subprog_depth;
6646 		if (depth > MAX_BPF_STACK) {
6647 			verbose(env, "combined stack size of %d calls is %d. Too large\n",
6648 				frame + 1, depth);
6649 			return -EACCES;
6650 		}
6651 	}
6652 continue_func:
6653 	subprog_end = subprog[idx + 1].start;
6654 	for (; i < subprog_end; i++) {
6655 		int next_insn, sidx;
6656 
6657 		if (bpf_pseudo_kfunc_call(insn + i) && !insn[i].off) {
6658 			bool err = false;
6659 
6660 			if (!is_bpf_throw_kfunc(insn + i))
6661 				continue;
6662 			if (subprog[idx].is_cb)
6663 				err = true;
6664 			for (int c = 0; c < frame && !err; c++) {
6665 				if (subprog[ret_prog[c]].is_cb) {
6666 					err = true;
6667 					break;
6668 				}
6669 			}
6670 			if (!err)
6671 				continue;
6672 			verbose(env,
6673 				"bpf_throw kfunc (insn %d) cannot be called from callback subprog %d\n",
6674 				i, idx);
6675 			return -EINVAL;
6676 		}
6677 
6678 		if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
6679 			continue;
6680 		/* remember insn and function to return to */
6681 		ret_insn[frame] = i + 1;
6682 		ret_prog[frame] = idx;
6683 
6684 		/* find the callee */
6685 		next_insn = i + insn[i].imm + 1;
6686 		sidx = find_subprog(env, next_insn);
6687 		if (verifier_bug_if(sidx < 0, env, "callee not found at insn %d", next_insn))
6688 			return -EFAULT;
6689 		if (subprog[sidx].is_async_cb) {
6690 			if (subprog[sidx].has_tail_call) {
6691 				verifier_bug(env, "subprog has tail_call and async cb");
6692 				return -EFAULT;
6693 			}
6694 			/* async callbacks don't increase bpf prog stack size unless called directly */
6695 			if (!bpf_pseudo_call(insn + i))
6696 				continue;
6697 			if (subprog[sidx].is_exception_cb) {
6698 				verbose(env, "insn %d cannot call exception cb directly", i);
6699 				return -EINVAL;
6700 			}
6701 		}
6702 		i = next_insn;
6703 		idx = sidx;
6704 		if (!priv_stack_supported)
6705 			subprog[idx].priv_stack_mode = NO_PRIV_STACK;
6706 
6707 		if (subprog[idx].has_tail_call)
6708 			tail_call_reachable = true;
6709 
6710 		frame++;
6711 		if (frame >= MAX_CALL_FRAMES) {
6712 			verbose(env, "the call stack of %d frames is too deep !\n",
6713 				frame);
6714 			return -E2BIG;
6715 		}
6716 		goto process_func;
6717 	}
6718 	/* if tail call got detected across bpf2bpf calls then mark each of the
6719 	 * currently present subprog frames as tail call reachable subprogs;
6720 	 * this info will be utilized by JIT so that we will be preserving the
6721 	 * tail call counter throughout bpf2bpf calls combined with tailcalls
6722 	 */
6723 	if (tail_call_reachable)
6724 		for (j = 0; j < frame; j++) {
6725 			if (subprog[ret_prog[j]].is_exception_cb) {
6726 				verbose(env, "cannot tail call within exception cb\n");
6727 				return -EINVAL;
6728 			}
6729 			subprog[ret_prog[j]].tail_call_reachable = true;
6730 		}
6731 	if (subprog[0].tail_call_reachable)
6732 		env->prog->aux->tail_call_reachable = true;
6733 
6734 	/* end of for() loop means the last insn of the 'subprog'
6735 	 * was reached. Doesn't matter whether it was JA or EXIT
6736 	 */
6737 	if (frame == 0)
6738 		return 0;
6739 	if (subprog[idx].priv_stack_mode != PRIV_STACK_ADAPTIVE)
6740 		depth -= round_up_stack_depth(env, subprog[idx].stack_depth);
6741 	frame--;
6742 	i = ret_insn[frame];
6743 	idx = ret_prog[frame];
6744 	goto continue_func;
6745 }
6746 
6747 static int check_max_stack_depth(struct bpf_verifier_env *env)
6748 {
6749 	enum priv_stack_mode priv_stack_mode = PRIV_STACK_UNKNOWN;
6750 	struct bpf_subprog_info *si = env->subprog_info;
6751 	bool priv_stack_supported;
6752 	int ret;
6753 
6754 	for (int i = 0; i < env->subprog_cnt; i++) {
6755 		if (si[i].has_tail_call) {
6756 			priv_stack_mode = NO_PRIV_STACK;
6757 			break;
6758 		}
6759 	}
6760 
6761 	if (priv_stack_mode == PRIV_STACK_UNKNOWN)
6762 		priv_stack_mode = bpf_enable_priv_stack(env->prog);
6763 
6764 	/* All async_cb subprogs use normal kernel stack. If a particular
6765 	 * subprog appears in both main prog and async_cb subtree, that
6766 	 * subprog will use normal kernel stack to avoid potential nesting.
6767 	 * The reverse subprog traversal ensures when main prog subtree is
6768 	 * checked, the subprogs appearing in async_cb subtrees are already
6769 	 * marked as using normal kernel stack, so stack size checking can
6770 	 * be done properly.
6771 	 */
6772 	for (int i = env->subprog_cnt - 1; i >= 0; i--) {
6773 		if (!i || si[i].is_async_cb) {
6774 			priv_stack_supported = !i && priv_stack_mode == PRIV_STACK_ADAPTIVE;
6775 			ret = check_max_stack_depth_subprog(env, i, priv_stack_supported);
6776 			if (ret < 0)
6777 				return ret;
6778 		}
6779 	}
6780 
6781 	for (int i = 0; i < env->subprog_cnt; i++) {
6782 		if (si[i].priv_stack_mode == PRIV_STACK_ADAPTIVE) {
6783 			env->prog->aux->jits_use_priv_stack = true;
6784 			break;
6785 		}
6786 	}
6787 
6788 	return 0;
6789 }
6790 
6791 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
6792 static int get_callee_stack_depth(struct bpf_verifier_env *env,
6793 				  const struct bpf_insn *insn, int idx)
6794 {
6795 	int start = idx + insn->imm + 1, subprog;
6796 
6797 	subprog = find_subprog(env, start);
6798 	if (verifier_bug_if(subprog < 0, env, "get stack depth: no program at insn %d", start))
6799 		return -EFAULT;
6800 	return env->subprog_info[subprog].stack_depth;
6801 }
6802 #endif
6803 
6804 static int __check_buffer_access(struct bpf_verifier_env *env,
6805 				 const char *buf_info,
6806 				 const struct bpf_reg_state *reg,
6807 				 int regno, int off, int size)
6808 {
6809 	if (off < 0) {
6810 		verbose(env,
6811 			"R%d invalid %s buffer access: off=%d, size=%d\n",
6812 			regno, buf_info, off, size);
6813 		return -EACCES;
6814 	}
6815 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
6816 		char tn_buf[48];
6817 
6818 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6819 		verbose(env,
6820 			"R%d invalid variable buffer offset: off=%d, var_off=%s\n",
6821 			regno, off, tn_buf);
6822 		return -EACCES;
6823 	}
6824 
6825 	return 0;
6826 }
6827 
6828 static int check_tp_buffer_access(struct bpf_verifier_env *env,
6829 				  const struct bpf_reg_state *reg,
6830 				  int regno, int off, int size)
6831 {
6832 	int err;
6833 
6834 	err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
6835 	if (err)
6836 		return err;
6837 
6838 	if (off + size > env->prog->aux->max_tp_access)
6839 		env->prog->aux->max_tp_access = off + size;
6840 
6841 	return 0;
6842 }
6843 
6844 static int check_buffer_access(struct bpf_verifier_env *env,
6845 			       const struct bpf_reg_state *reg,
6846 			       int regno, int off, int size,
6847 			       bool zero_size_allowed,
6848 			       u32 *max_access)
6849 {
6850 	const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr";
6851 	int err;
6852 
6853 	err = __check_buffer_access(env, buf_info, reg, regno, off, size);
6854 	if (err)
6855 		return err;
6856 
6857 	if (off + size > *max_access)
6858 		*max_access = off + size;
6859 
6860 	return 0;
6861 }
6862 
6863 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
6864 static void zext_32_to_64(struct bpf_reg_state *reg)
6865 {
6866 	reg->var_off = tnum_subreg(reg->var_off);
6867 	__reg_assign_32_into_64(reg);
6868 }
6869 
6870 /* truncate register to smaller size (in bytes)
6871  * must be called with size < BPF_REG_SIZE
6872  */
6873 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
6874 {
6875 	u64 mask;
6876 
6877 	/* clear high bits in bit representation */
6878 	reg->var_off = tnum_cast(reg->var_off, size);
6879 
6880 	/* fix arithmetic bounds */
6881 	mask = ((u64)1 << (size * 8)) - 1;
6882 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
6883 		reg->umin_value &= mask;
6884 		reg->umax_value &= mask;
6885 	} else {
6886 		reg->umin_value = 0;
6887 		reg->umax_value = mask;
6888 	}
6889 	reg->smin_value = reg->umin_value;
6890 	reg->smax_value = reg->umax_value;
6891 
6892 	/* If size is smaller than 32bit register the 32bit register
6893 	 * values are also truncated so we push 64-bit bounds into
6894 	 * 32-bit bounds. Above were truncated < 32-bits already.
6895 	 */
6896 	if (size < 4)
6897 		__mark_reg32_unbounded(reg);
6898 
6899 	reg_bounds_sync(reg);
6900 }
6901 
6902 static void set_sext64_default_val(struct bpf_reg_state *reg, int size)
6903 {
6904 	if (size == 1) {
6905 		reg->smin_value = reg->s32_min_value = S8_MIN;
6906 		reg->smax_value = reg->s32_max_value = S8_MAX;
6907 	} else if (size == 2) {
6908 		reg->smin_value = reg->s32_min_value = S16_MIN;
6909 		reg->smax_value = reg->s32_max_value = S16_MAX;
6910 	} else {
6911 		/* size == 4 */
6912 		reg->smin_value = reg->s32_min_value = S32_MIN;
6913 		reg->smax_value = reg->s32_max_value = S32_MAX;
6914 	}
6915 	reg->umin_value = reg->u32_min_value = 0;
6916 	reg->umax_value = U64_MAX;
6917 	reg->u32_max_value = U32_MAX;
6918 	reg->var_off = tnum_unknown;
6919 }
6920 
6921 static void coerce_reg_to_size_sx(struct bpf_reg_state *reg, int size)
6922 {
6923 	s64 init_s64_max, init_s64_min, s64_max, s64_min, u64_cval;
6924 	u64 top_smax_value, top_smin_value;
6925 	u64 num_bits = size * 8;
6926 
6927 	if (tnum_is_const(reg->var_off)) {
6928 		u64_cval = reg->var_off.value;
6929 		if (size == 1)
6930 			reg->var_off = tnum_const((s8)u64_cval);
6931 		else if (size == 2)
6932 			reg->var_off = tnum_const((s16)u64_cval);
6933 		else
6934 			/* size == 4 */
6935 			reg->var_off = tnum_const((s32)u64_cval);
6936 
6937 		u64_cval = reg->var_off.value;
6938 		reg->smax_value = reg->smin_value = u64_cval;
6939 		reg->umax_value = reg->umin_value = u64_cval;
6940 		reg->s32_max_value = reg->s32_min_value = u64_cval;
6941 		reg->u32_max_value = reg->u32_min_value = u64_cval;
6942 		return;
6943 	}
6944 
6945 	top_smax_value = ((u64)reg->smax_value >> num_bits) << num_bits;
6946 	top_smin_value = ((u64)reg->smin_value >> num_bits) << num_bits;
6947 
6948 	if (top_smax_value != top_smin_value)
6949 		goto out;
6950 
6951 	/* find the s64_min and s64_min after sign extension */
6952 	if (size == 1) {
6953 		init_s64_max = (s8)reg->smax_value;
6954 		init_s64_min = (s8)reg->smin_value;
6955 	} else if (size == 2) {
6956 		init_s64_max = (s16)reg->smax_value;
6957 		init_s64_min = (s16)reg->smin_value;
6958 	} else {
6959 		init_s64_max = (s32)reg->smax_value;
6960 		init_s64_min = (s32)reg->smin_value;
6961 	}
6962 
6963 	s64_max = max(init_s64_max, init_s64_min);
6964 	s64_min = min(init_s64_max, init_s64_min);
6965 
6966 	/* both of s64_max/s64_min positive or negative */
6967 	if ((s64_max >= 0) == (s64_min >= 0)) {
6968 		reg->s32_min_value = reg->smin_value = s64_min;
6969 		reg->s32_max_value = reg->smax_value = s64_max;
6970 		reg->u32_min_value = reg->umin_value = s64_min;
6971 		reg->u32_max_value = reg->umax_value = s64_max;
6972 		reg->var_off = tnum_range(s64_min, s64_max);
6973 		return;
6974 	}
6975 
6976 out:
6977 	set_sext64_default_val(reg, size);
6978 }
6979 
6980 static void set_sext32_default_val(struct bpf_reg_state *reg, int size)
6981 {
6982 	if (size == 1) {
6983 		reg->s32_min_value = S8_MIN;
6984 		reg->s32_max_value = S8_MAX;
6985 	} else {
6986 		/* size == 2 */
6987 		reg->s32_min_value = S16_MIN;
6988 		reg->s32_max_value = S16_MAX;
6989 	}
6990 	reg->u32_min_value = 0;
6991 	reg->u32_max_value = U32_MAX;
6992 	reg->var_off = tnum_subreg(tnum_unknown);
6993 }
6994 
6995 static void coerce_subreg_to_size_sx(struct bpf_reg_state *reg, int size)
6996 {
6997 	s32 init_s32_max, init_s32_min, s32_max, s32_min, u32_val;
6998 	u32 top_smax_value, top_smin_value;
6999 	u32 num_bits = size * 8;
7000 
7001 	if (tnum_is_const(reg->var_off)) {
7002 		u32_val = reg->var_off.value;
7003 		if (size == 1)
7004 			reg->var_off = tnum_const((s8)u32_val);
7005 		else
7006 			reg->var_off = tnum_const((s16)u32_val);
7007 
7008 		u32_val = reg->var_off.value;
7009 		reg->s32_min_value = reg->s32_max_value = u32_val;
7010 		reg->u32_min_value = reg->u32_max_value = u32_val;
7011 		return;
7012 	}
7013 
7014 	top_smax_value = ((u32)reg->s32_max_value >> num_bits) << num_bits;
7015 	top_smin_value = ((u32)reg->s32_min_value >> num_bits) << num_bits;
7016 
7017 	if (top_smax_value != top_smin_value)
7018 		goto out;
7019 
7020 	/* find the s32_min and s32_min after sign extension */
7021 	if (size == 1) {
7022 		init_s32_max = (s8)reg->s32_max_value;
7023 		init_s32_min = (s8)reg->s32_min_value;
7024 	} else {
7025 		/* size == 2 */
7026 		init_s32_max = (s16)reg->s32_max_value;
7027 		init_s32_min = (s16)reg->s32_min_value;
7028 	}
7029 	s32_max = max(init_s32_max, init_s32_min);
7030 	s32_min = min(init_s32_max, init_s32_min);
7031 
7032 	if ((s32_min >= 0) == (s32_max >= 0)) {
7033 		reg->s32_min_value = s32_min;
7034 		reg->s32_max_value = s32_max;
7035 		reg->u32_min_value = (u32)s32_min;
7036 		reg->u32_max_value = (u32)s32_max;
7037 		reg->var_off = tnum_subreg(tnum_range(s32_min, s32_max));
7038 		return;
7039 	}
7040 
7041 out:
7042 	set_sext32_default_val(reg, size);
7043 }
7044 
7045 static bool bpf_map_is_rdonly(const struct bpf_map *map)
7046 {
7047 	/* A map is considered read-only if the following condition are true:
7048 	 *
7049 	 * 1) BPF program side cannot change any of the map content. The
7050 	 *    BPF_F_RDONLY_PROG flag is throughout the lifetime of a map
7051 	 *    and was set at map creation time.
7052 	 * 2) The map value(s) have been initialized from user space by a
7053 	 *    loader and then "frozen", such that no new map update/delete
7054 	 *    operations from syscall side are possible for the rest of
7055 	 *    the map's lifetime from that point onwards.
7056 	 * 3) Any parallel/pending map update/delete operations from syscall
7057 	 *    side have been completed. Only after that point, it's safe to
7058 	 *    assume that map value(s) are immutable.
7059 	 */
7060 	return (map->map_flags & BPF_F_RDONLY_PROG) &&
7061 	       READ_ONCE(map->frozen) &&
7062 	       !bpf_map_write_active(map);
7063 }
7064 
7065 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val,
7066 			       bool is_ldsx)
7067 {
7068 	void *ptr;
7069 	u64 addr;
7070 	int err;
7071 
7072 	err = map->ops->map_direct_value_addr(map, &addr, off);
7073 	if (err)
7074 		return err;
7075 	ptr = (void *)(long)addr + off;
7076 
7077 	switch (size) {
7078 	case sizeof(u8):
7079 		*val = is_ldsx ? (s64)*(s8 *)ptr : (u64)*(u8 *)ptr;
7080 		break;
7081 	case sizeof(u16):
7082 		*val = is_ldsx ? (s64)*(s16 *)ptr : (u64)*(u16 *)ptr;
7083 		break;
7084 	case sizeof(u32):
7085 		*val = is_ldsx ? (s64)*(s32 *)ptr : (u64)*(u32 *)ptr;
7086 		break;
7087 	case sizeof(u64):
7088 		*val = *(u64 *)ptr;
7089 		break;
7090 	default:
7091 		return -EINVAL;
7092 	}
7093 	return 0;
7094 }
7095 
7096 #define BTF_TYPE_SAFE_RCU(__type)  __PASTE(__type, __safe_rcu)
7097 #define BTF_TYPE_SAFE_RCU_OR_NULL(__type)  __PASTE(__type, __safe_rcu_or_null)
7098 #define BTF_TYPE_SAFE_TRUSTED(__type)  __PASTE(__type, __safe_trusted)
7099 #define BTF_TYPE_SAFE_TRUSTED_OR_NULL(__type)  __PASTE(__type, __safe_trusted_or_null)
7100 
7101 /*
7102  * Allow list few fields as RCU trusted or full trusted.
7103  * This logic doesn't allow mix tagging and will be removed once GCC supports
7104  * btf_type_tag.
7105  */
7106 
7107 /* RCU trusted: these fields are trusted in RCU CS and never NULL */
7108 BTF_TYPE_SAFE_RCU(struct task_struct) {
7109 	const cpumask_t *cpus_ptr;
7110 	struct css_set __rcu *cgroups;
7111 	struct task_struct __rcu *real_parent;
7112 	struct task_struct *group_leader;
7113 };
7114 
7115 BTF_TYPE_SAFE_RCU(struct cgroup) {
7116 	/* cgrp->kn is always accessible as documented in kernel/cgroup/cgroup.c */
7117 	struct kernfs_node *kn;
7118 };
7119 
7120 BTF_TYPE_SAFE_RCU(struct css_set) {
7121 	struct cgroup *dfl_cgrp;
7122 };
7123 
7124 BTF_TYPE_SAFE_RCU(struct cgroup_subsys_state) {
7125 	struct cgroup *cgroup;
7126 };
7127 
7128 /* RCU trusted: these fields are trusted in RCU CS and can be NULL */
7129 BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct) {
7130 	struct file __rcu *exe_file;
7131 };
7132 
7133 /* skb->sk, req->sk are not RCU protected, but we mark them as such
7134  * because bpf prog accessible sockets are SOCK_RCU_FREE.
7135  */
7136 BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff) {
7137 	struct sock *sk;
7138 };
7139 
7140 BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock) {
7141 	struct sock *sk;
7142 };
7143 
7144 /* full trusted: these fields are trusted even outside of RCU CS and never NULL */
7145 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) {
7146 	struct seq_file *seq;
7147 };
7148 
7149 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) {
7150 	struct bpf_iter_meta *meta;
7151 	struct task_struct *task;
7152 };
7153 
7154 BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) {
7155 	struct file *file;
7156 };
7157 
7158 BTF_TYPE_SAFE_TRUSTED(struct file) {
7159 	struct inode *f_inode;
7160 };
7161 
7162 BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct dentry) {
7163 	struct inode *d_inode;
7164 };
7165 
7166 BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket) {
7167 	struct sock *sk;
7168 };
7169 
7170 static bool type_is_rcu(struct bpf_verifier_env *env,
7171 			struct bpf_reg_state *reg,
7172 			const char *field_name, u32 btf_id)
7173 {
7174 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct));
7175 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup));
7176 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set));
7177 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup_subsys_state));
7178 
7179 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu");
7180 }
7181 
7182 static bool type_is_rcu_or_null(struct bpf_verifier_env *env,
7183 				struct bpf_reg_state *reg,
7184 				const char *field_name, u32 btf_id)
7185 {
7186 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct));
7187 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff));
7188 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock));
7189 
7190 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu_or_null");
7191 }
7192 
7193 static bool type_is_trusted(struct bpf_verifier_env *env,
7194 			    struct bpf_reg_state *reg,
7195 			    const char *field_name, u32 btf_id)
7196 {
7197 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta));
7198 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task));
7199 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm));
7200 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file));
7201 
7202 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted");
7203 }
7204 
7205 static bool type_is_trusted_or_null(struct bpf_verifier_env *env,
7206 				    struct bpf_reg_state *reg,
7207 				    const char *field_name, u32 btf_id)
7208 {
7209 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket));
7210 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct dentry));
7211 
7212 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id,
7213 					  "__safe_trusted_or_null");
7214 }
7215 
7216 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
7217 				   struct bpf_reg_state *regs,
7218 				   int regno, int off, int size,
7219 				   enum bpf_access_type atype,
7220 				   int value_regno)
7221 {
7222 	struct bpf_reg_state *reg = regs + regno;
7223 	const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
7224 	const char *tname = btf_name_by_offset(reg->btf, t->name_off);
7225 	const char *field_name = NULL;
7226 	enum bpf_type_flag flag = 0;
7227 	u32 btf_id = 0;
7228 	int ret;
7229 
7230 	if (!env->allow_ptr_leaks) {
7231 		verbose(env,
7232 			"'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
7233 			tname);
7234 		return -EPERM;
7235 	}
7236 	if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) {
7237 		verbose(env,
7238 			"Cannot access kernel 'struct %s' from non-GPL compatible program\n",
7239 			tname);
7240 		return -EINVAL;
7241 	}
7242 	if (off < 0) {
7243 		verbose(env,
7244 			"R%d is ptr_%s invalid negative access: off=%d\n",
7245 			regno, tname, off);
7246 		return -EACCES;
7247 	}
7248 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
7249 		char tn_buf[48];
7250 
7251 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7252 		verbose(env,
7253 			"R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
7254 			regno, tname, off, tn_buf);
7255 		return -EACCES;
7256 	}
7257 
7258 	if (reg->type & MEM_USER) {
7259 		verbose(env,
7260 			"R%d is ptr_%s access user memory: off=%d\n",
7261 			regno, tname, off);
7262 		return -EACCES;
7263 	}
7264 
7265 	if (reg->type & MEM_PERCPU) {
7266 		verbose(env,
7267 			"R%d is ptr_%s access percpu memory: off=%d\n",
7268 			regno, tname, off);
7269 		return -EACCES;
7270 	}
7271 
7272 	if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) {
7273 		if (!btf_is_kernel(reg->btf)) {
7274 			verifier_bug(env, "reg->btf must be kernel btf");
7275 			return -EFAULT;
7276 		}
7277 		ret = env->ops->btf_struct_access(&env->log, reg, off, size);
7278 	} else {
7279 		/* Writes are permitted with default btf_struct_access for
7280 		 * program allocated objects (which always have ref_obj_id > 0),
7281 		 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC.
7282 		 */
7283 		if (atype != BPF_READ && !type_is_ptr_alloc_obj(reg->type)) {
7284 			verbose(env, "only read is supported\n");
7285 			return -EACCES;
7286 		}
7287 
7288 		if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) &&
7289 		    !(reg->type & MEM_RCU) && !reg->ref_obj_id) {
7290 			verifier_bug(env, "ref_obj_id for allocated object must be non-zero");
7291 			return -EFAULT;
7292 		}
7293 
7294 		ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag, &field_name);
7295 	}
7296 
7297 	if (ret < 0)
7298 		return ret;
7299 
7300 	if (ret != PTR_TO_BTF_ID) {
7301 		/* just mark; */
7302 
7303 	} else if (type_flag(reg->type) & PTR_UNTRUSTED) {
7304 		/* If this is an untrusted pointer, all pointers formed by walking it
7305 		 * also inherit the untrusted flag.
7306 		 */
7307 		flag = PTR_UNTRUSTED;
7308 
7309 	} else if (is_trusted_reg(reg) || is_rcu_reg(reg)) {
7310 		/* By default any pointer obtained from walking a trusted pointer is no
7311 		 * longer trusted, unless the field being accessed has explicitly been
7312 		 * marked as inheriting its parent's state of trust (either full or RCU).
7313 		 * For example:
7314 		 * 'cgroups' pointer is untrusted if task->cgroups dereference
7315 		 * happened in a sleepable program outside of bpf_rcu_read_lock()
7316 		 * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU).
7317 		 * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED.
7318 		 *
7319 		 * A regular RCU-protected pointer with __rcu tag can also be deemed
7320 		 * trusted if we are in an RCU CS. Such pointer can be NULL.
7321 		 */
7322 		if (type_is_trusted(env, reg, field_name, btf_id)) {
7323 			flag |= PTR_TRUSTED;
7324 		} else if (type_is_trusted_or_null(env, reg, field_name, btf_id)) {
7325 			flag |= PTR_TRUSTED | PTR_MAYBE_NULL;
7326 		} else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) {
7327 			if (type_is_rcu(env, reg, field_name, btf_id)) {
7328 				/* ignore __rcu tag and mark it MEM_RCU */
7329 				flag |= MEM_RCU;
7330 			} else if (flag & MEM_RCU ||
7331 				   type_is_rcu_or_null(env, reg, field_name, btf_id)) {
7332 				/* __rcu tagged pointers can be NULL */
7333 				flag |= MEM_RCU | PTR_MAYBE_NULL;
7334 
7335 				/* We always trust them */
7336 				if (type_is_rcu_or_null(env, reg, field_name, btf_id) &&
7337 				    flag & PTR_UNTRUSTED)
7338 					flag &= ~PTR_UNTRUSTED;
7339 			} else if (flag & (MEM_PERCPU | MEM_USER)) {
7340 				/* keep as-is */
7341 			} else {
7342 				/* walking unknown pointers yields old deprecated PTR_TO_BTF_ID */
7343 				clear_trusted_flags(&flag);
7344 			}
7345 		} else {
7346 			/*
7347 			 * If not in RCU CS or MEM_RCU pointer can be NULL then
7348 			 * aggressively mark as untrusted otherwise such
7349 			 * pointers will be plain PTR_TO_BTF_ID without flags
7350 			 * and will be allowed to be passed into helpers for
7351 			 * compat reasons.
7352 			 */
7353 			flag = PTR_UNTRUSTED;
7354 		}
7355 	} else {
7356 		/* Old compat. Deprecated */
7357 		clear_trusted_flags(&flag);
7358 	}
7359 
7360 	if (atype == BPF_READ && value_regno >= 0) {
7361 		ret = mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag);
7362 		if (ret < 0)
7363 			return ret;
7364 	}
7365 
7366 	return 0;
7367 }
7368 
7369 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
7370 				   struct bpf_reg_state *regs,
7371 				   int regno, int off, int size,
7372 				   enum bpf_access_type atype,
7373 				   int value_regno)
7374 {
7375 	struct bpf_reg_state *reg = regs + regno;
7376 	struct bpf_map *map = reg->map_ptr;
7377 	struct bpf_reg_state map_reg;
7378 	enum bpf_type_flag flag = 0;
7379 	const struct btf_type *t;
7380 	const char *tname;
7381 	u32 btf_id;
7382 	int ret;
7383 
7384 	if (!btf_vmlinux) {
7385 		verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
7386 		return -ENOTSUPP;
7387 	}
7388 
7389 	if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
7390 		verbose(env, "map_ptr access not supported for map type %d\n",
7391 			map->map_type);
7392 		return -ENOTSUPP;
7393 	}
7394 
7395 	t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
7396 	tname = btf_name_by_offset(btf_vmlinux, t->name_off);
7397 
7398 	if (!env->allow_ptr_leaks) {
7399 		verbose(env,
7400 			"'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
7401 			tname);
7402 		return -EPERM;
7403 	}
7404 
7405 	if (off < 0) {
7406 		verbose(env, "R%d is %s invalid negative access: off=%d\n",
7407 			regno, tname, off);
7408 		return -EACCES;
7409 	}
7410 
7411 	if (atype != BPF_READ) {
7412 		verbose(env, "only read from %s is supported\n", tname);
7413 		return -EACCES;
7414 	}
7415 
7416 	/* Simulate access to a PTR_TO_BTF_ID */
7417 	memset(&map_reg, 0, sizeof(map_reg));
7418 	ret = mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID,
7419 			      btf_vmlinux, *map->ops->map_btf_id, 0);
7420 	if (ret < 0)
7421 		return ret;
7422 	ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag, NULL);
7423 	if (ret < 0)
7424 		return ret;
7425 
7426 	if (value_regno >= 0) {
7427 		ret = mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag);
7428 		if (ret < 0)
7429 			return ret;
7430 	}
7431 
7432 	return 0;
7433 }
7434 
7435 /* Check that the stack access at the given offset is within bounds. The
7436  * maximum valid offset is -1.
7437  *
7438  * The minimum valid offset is -MAX_BPF_STACK for writes, and
7439  * -state->allocated_stack for reads.
7440  */
7441 static int check_stack_slot_within_bounds(struct bpf_verifier_env *env,
7442                                           s64 off,
7443                                           struct bpf_func_state *state,
7444                                           enum bpf_access_type t)
7445 {
7446 	int min_valid_off;
7447 
7448 	if (t == BPF_WRITE || env->allow_uninit_stack)
7449 		min_valid_off = -MAX_BPF_STACK;
7450 	else
7451 		min_valid_off = -state->allocated_stack;
7452 
7453 	if (off < min_valid_off || off > -1)
7454 		return -EACCES;
7455 	return 0;
7456 }
7457 
7458 /* Check that the stack access at 'regno + off' falls within the maximum stack
7459  * bounds.
7460  *
7461  * 'off' includes `regno->offset`, but not its dynamic part (if any).
7462  */
7463 static int check_stack_access_within_bounds(
7464 		struct bpf_verifier_env *env,
7465 		int regno, int off, int access_size,
7466 		enum bpf_access_type type)
7467 {
7468 	struct bpf_reg_state *regs = cur_regs(env);
7469 	struct bpf_reg_state *reg = regs + regno;
7470 	struct bpf_func_state *state = func(env, reg);
7471 	s64 min_off, max_off;
7472 	int err;
7473 	char *err_extra;
7474 
7475 	if (type == BPF_READ)
7476 		err_extra = " read from";
7477 	else
7478 		err_extra = " write to";
7479 
7480 	if (tnum_is_const(reg->var_off)) {
7481 		min_off = (s64)reg->var_off.value + off;
7482 		max_off = min_off + access_size;
7483 	} else {
7484 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
7485 		    reg->smin_value <= -BPF_MAX_VAR_OFF) {
7486 			verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
7487 				err_extra, regno);
7488 			return -EACCES;
7489 		}
7490 		min_off = reg->smin_value + off;
7491 		max_off = reg->smax_value + off + access_size;
7492 	}
7493 
7494 	err = check_stack_slot_within_bounds(env, min_off, state, type);
7495 	if (!err && max_off > 0)
7496 		err = -EINVAL; /* out of stack access into non-negative offsets */
7497 	if (!err && access_size < 0)
7498 		/* access_size should not be negative (or overflow an int); others checks
7499 		 * along the way should have prevented such an access.
7500 		 */
7501 		err = -EFAULT; /* invalid negative access size; integer overflow? */
7502 
7503 	if (err) {
7504 		if (tnum_is_const(reg->var_off)) {
7505 			verbose(env, "invalid%s stack R%d off=%d size=%d\n",
7506 				err_extra, regno, off, access_size);
7507 		} else {
7508 			char tn_buf[48];
7509 
7510 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7511 			verbose(env, "invalid variable-offset%s stack R%d var_off=%s off=%d size=%d\n",
7512 				err_extra, regno, tn_buf, off, access_size);
7513 		}
7514 		return err;
7515 	}
7516 
7517 	/* Note that there is no stack access with offset zero, so the needed stack
7518 	 * size is -min_off, not -min_off+1.
7519 	 */
7520 	return grow_stack_state(env, state, -min_off /* size */);
7521 }
7522 
7523 static bool get_func_retval_range(struct bpf_prog *prog,
7524 				  struct bpf_retval_range *range)
7525 {
7526 	if (prog->type == BPF_PROG_TYPE_LSM &&
7527 		prog->expected_attach_type == BPF_LSM_MAC &&
7528 		!bpf_lsm_get_retval_range(prog, range)) {
7529 		return true;
7530 	}
7531 	return false;
7532 }
7533 
7534 /* check whether memory at (regno + off) is accessible for t = (read | write)
7535  * if t==write, value_regno is a register which value is stored into memory
7536  * if t==read, value_regno is a register which will receive the value from memory
7537  * if t==write && value_regno==-1, some unknown value is stored into memory
7538  * if t==read && value_regno==-1, don't care what we read from memory
7539  */
7540 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
7541 			    int off, int bpf_size, enum bpf_access_type t,
7542 			    int value_regno, bool strict_alignment_once, bool is_ldsx)
7543 {
7544 	struct bpf_reg_state *regs = cur_regs(env);
7545 	struct bpf_reg_state *reg = regs + regno;
7546 	int size, err = 0;
7547 
7548 	size = bpf_size_to_bytes(bpf_size);
7549 	if (size < 0)
7550 		return size;
7551 
7552 	/* alignment checks will add in reg->off themselves */
7553 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
7554 	if (err)
7555 		return err;
7556 
7557 	/* for access checks, reg->off is just part of off */
7558 	off += reg->off;
7559 
7560 	if (reg->type == PTR_TO_MAP_KEY) {
7561 		if (t == BPF_WRITE) {
7562 			verbose(env, "write to change key R%d not allowed\n", regno);
7563 			return -EACCES;
7564 		}
7565 
7566 		err = check_mem_region_access(env, regno, off, size,
7567 					      reg->map_ptr->key_size, false);
7568 		if (err)
7569 			return err;
7570 		if (value_regno >= 0)
7571 			mark_reg_unknown(env, regs, value_regno);
7572 	} else if (reg->type == PTR_TO_MAP_VALUE) {
7573 		struct btf_field *kptr_field = NULL;
7574 
7575 		if (t == BPF_WRITE && value_regno >= 0 &&
7576 		    is_pointer_value(env, value_regno)) {
7577 			verbose(env, "R%d leaks addr into map\n", value_regno);
7578 			return -EACCES;
7579 		}
7580 		err = check_map_access_type(env, regno, off, size, t);
7581 		if (err)
7582 			return err;
7583 		err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT);
7584 		if (err)
7585 			return err;
7586 		if (tnum_is_const(reg->var_off))
7587 			kptr_field = btf_record_find(reg->map_ptr->record,
7588 						     off + reg->var_off.value, BPF_KPTR | BPF_UPTR);
7589 		if (kptr_field) {
7590 			err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field);
7591 		} else if (t == BPF_READ && value_regno >= 0) {
7592 			struct bpf_map *map = reg->map_ptr;
7593 
7594 			/* if map is read-only, track its contents as scalars */
7595 			if (tnum_is_const(reg->var_off) &&
7596 			    bpf_map_is_rdonly(map) &&
7597 			    map->ops->map_direct_value_addr) {
7598 				int map_off = off + reg->var_off.value;
7599 				u64 val = 0;
7600 
7601 				err = bpf_map_direct_read(map, map_off, size,
7602 							  &val, is_ldsx);
7603 				if (err)
7604 					return err;
7605 
7606 				regs[value_regno].type = SCALAR_VALUE;
7607 				__mark_reg_known(&regs[value_regno], val);
7608 			} else {
7609 				mark_reg_unknown(env, regs, value_regno);
7610 			}
7611 		}
7612 	} else if (base_type(reg->type) == PTR_TO_MEM) {
7613 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
7614 		bool rdonly_untrusted = rdonly_mem && (reg->type & PTR_UNTRUSTED);
7615 
7616 		if (type_may_be_null(reg->type)) {
7617 			verbose(env, "R%d invalid mem access '%s'\n", regno,
7618 				reg_type_str(env, reg->type));
7619 			return -EACCES;
7620 		}
7621 
7622 		if (t == BPF_WRITE && rdonly_mem) {
7623 			verbose(env, "R%d cannot write into %s\n",
7624 				regno, reg_type_str(env, reg->type));
7625 			return -EACCES;
7626 		}
7627 
7628 		if (t == BPF_WRITE && value_regno >= 0 &&
7629 		    is_pointer_value(env, value_regno)) {
7630 			verbose(env, "R%d leaks addr into mem\n", value_regno);
7631 			return -EACCES;
7632 		}
7633 
7634 		/*
7635 		 * Accesses to untrusted PTR_TO_MEM are done through probe
7636 		 * instructions, hence no need to check bounds in that case.
7637 		 */
7638 		if (!rdonly_untrusted)
7639 			err = check_mem_region_access(env, regno, off, size,
7640 						      reg->mem_size, false);
7641 		if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem))
7642 			mark_reg_unknown(env, regs, value_regno);
7643 	} else if (reg->type == PTR_TO_CTX) {
7644 		struct bpf_retval_range range;
7645 		struct bpf_insn_access_aux info = {
7646 			.reg_type = SCALAR_VALUE,
7647 			.is_ldsx = is_ldsx,
7648 			.log = &env->log,
7649 		};
7650 
7651 		if (t == BPF_WRITE && value_regno >= 0 &&
7652 		    is_pointer_value(env, value_regno)) {
7653 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
7654 			return -EACCES;
7655 		}
7656 
7657 		err = check_ptr_off_reg(env, reg, regno);
7658 		if (err < 0)
7659 			return err;
7660 
7661 		err = check_ctx_access(env, insn_idx, off, size, t, &info);
7662 		if (err)
7663 			verbose_linfo(env, insn_idx, "; ");
7664 		if (!err && t == BPF_READ && value_regno >= 0) {
7665 			/* ctx access returns either a scalar, or a
7666 			 * PTR_TO_PACKET[_META,_END]. In the latter
7667 			 * case, we know the offset is zero.
7668 			 */
7669 			if (info.reg_type == SCALAR_VALUE) {
7670 				if (info.is_retval && get_func_retval_range(env->prog, &range)) {
7671 					err = __mark_reg_s32_range(env, regs, value_regno,
7672 								   range.minval, range.maxval);
7673 					if (err)
7674 						return err;
7675 				} else {
7676 					mark_reg_unknown(env, regs, value_regno);
7677 				}
7678 			} else {
7679 				mark_reg_known_zero(env, regs,
7680 						    value_regno);
7681 				if (type_may_be_null(info.reg_type))
7682 					regs[value_regno].id = ++env->id_gen;
7683 				/* A load of ctx field could have different
7684 				 * actual load size with the one encoded in the
7685 				 * insn. When the dst is PTR, it is for sure not
7686 				 * a sub-register.
7687 				 */
7688 				regs[value_regno].subreg_def = DEF_NOT_SUBREG;
7689 				if (base_type(info.reg_type) == PTR_TO_BTF_ID) {
7690 					regs[value_regno].btf = info.btf;
7691 					regs[value_regno].btf_id = info.btf_id;
7692 					regs[value_regno].ref_obj_id = info.ref_obj_id;
7693 				}
7694 			}
7695 			regs[value_regno].type = info.reg_type;
7696 		}
7697 
7698 	} else if (reg->type == PTR_TO_STACK) {
7699 		/* Basic bounds checks. */
7700 		err = check_stack_access_within_bounds(env, regno, off, size, t);
7701 		if (err)
7702 			return err;
7703 
7704 		if (t == BPF_READ)
7705 			err = check_stack_read(env, regno, off, size,
7706 					       value_regno);
7707 		else
7708 			err = check_stack_write(env, regno, off, size,
7709 						value_regno, insn_idx);
7710 	} else if (reg_is_pkt_pointer(reg)) {
7711 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
7712 			verbose(env, "cannot write into packet\n");
7713 			return -EACCES;
7714 		}
7715 		if (t == BPF_WRITE && value_regno >= 0 &&
7716 		    is_pointer_value(env, value_regno)) {
7717 			verbose(env, "R%d leaks addr into packet\n",
7718 				value_regno);
7719 			return -EACCES;
7720 		}
7721 		err = check_packet_access(env, regno, off, size, false);
7722 		if (!err && t == BPF_READ && value_regno >= 0)
7723 			mark_reg_unknown(env, regs, value_regno);
7724 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
7725 		if (t == BPF_WRITE && value_regno >= 0 &&
7726 		    is_pointer_value(env, value_regno)) {
7727 			verbose(env, "R%d leaks addr into flow keys\n",
7728 				value_regno);
7729 			return -EACCES;
7730 		}
7731 
7732 		err = check_flow_keys_access(env, off, size);
7733 		if (!err && t == BPF_READ && value_regno >= 0)
7734 			mark_reg_unknown(env, regs, value_regno);
7735 	} else if (type_is_sk_pointer(reg->type)) {
7736 		if (t == BPF_WRITE) {
7737 			verbose(env, "R%d cannot write into %s\n",
7738 				regno, reg_type_str(env, reg->type));
7739 			return -EACCES;
7740 		}
7741 		err = check_sock_access(env, insn_idx, regno, off, size, t);
7742 		if (!err && value_regno >= 0)
7743 			mark_reg_unknown(env, regs, value_regno);
7744 	} else if (reg->type == PTR_TO_TP_BUFFER) {
7745 		err = check_tp_buffer_access(env, reg, regno, off, size);
7746 		if (!err && t == BPF_READ && value_regno >= 0)
7747 			mark_reg_unknown(env, regs, value_regno);
7748 	} else if (base_type(reg->type) == PTR_TO_BTF_ID &&
7749 		   !type_may_be_null(reg->type)) {
7750 		err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
7751 					      value_regno);
7752 	} else if (reg->type == CONST_PTR_TO_MAP) {
7753 		err = check_ptr_to_map_access(env, regs, regno, off, size, t,
7754 					      value_regno);
7755 	} else if (base_type(reg->type) == PTR_TO_BUF) {
7756 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
7757 		u32 *max_access;
7758 
7759 		if (rdonly_mem) {
7760 			if (t == BPF_WRITE) {
7761 				verbose(env, "R%d cannot write into %s\n",
7762 					regno, reg_type_str(env, reg->type));
7763 				return -EACCES;
7764 			}
7765 			max_access = &env->prog->aux->max_rdonly_access;
7766 		} else {
7767 			max_access = &env->prog->aux->max_rdwr_access;
7768 		}
7769 
7770 		err = check_buffer_access(env, reg, regno, off, size, false,
7771 					  max_access);
7772 
7773 		if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ))
7774 			mark_reg_unknown(env, regs, value_regno);
7775 	} else if (reg->type == PTR_TO_ARENA) {
7776 		if (t == BPF_READ && value_regno >= 0)
7777 			mark_reg_unknown(env, regs, value_regno);
7778 	} else {
7779 		verbose(env, "R%d invalid mem access '%s'\n", regno,
7780 			reg_type_str(env, reg->type));
7781 		return -EACCES;
7782 	}
7783 
7784 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
7785 	    regs[value_regno].type == SCALAR_VALUE) {
7786 		if (!is_ldsx)
7787 			/* b/h/w load zero-extends, mark upper bits as known 0 */
7788 			coerce_reg_to_size(&regs[value_regno], size);
7789 		else
7790 			coerce_reg_to_size_sx(&regs[value_regno], size);
7791 	}
7792 	return err;
7793 }
7794 
7795 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type,
7796 			     bool allow_trust_mismatch);
7797 
7798 static int check_load_mem(struct bpf_verifier_env *env, struct bpf_insn *insn,
7799 			  bool strict_alignment_once, bool is_ldsx,
7800 			  bool allow_trust_mismatch, const char *ctx)
7801 {
7802 	struct bpf_reg_state *regs = cur_regs(env);
7803 	enum bpf_reg_type src_reg_type;
7804 	int err;
7805 
7806 	/* check src operand */
7807 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
7808 	if (err)
7809 		return err;
7810 
7811 	/* check dst operand */
7812 	err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
7813 	if (err)
7814 		return err;
7815 
7816 	src_reg_type = regs[insn->src_reg].type;
7817 
7818 	/* Check if (src_reg + off) is readable. The state of dst_reg will be
7819 	 * updated by this call.
7820 	 */
7821 	err = check_mem_access(env, env->insn_idx, insn->src_reg, insn->off,
7822 			       BPF_SIZE(insn->code), BPF_READ, insn->dst_reg,
7823 			       strict_alignment_once, is_ldsx);
7824 	err = err ?: save_aux_ptr_type(env, src_reg_type,
7825 				       allow_trust_mismatch);
7826 	err = err ?: reg_bounds_sanity_check(env, &regs[insn->dst_reg], ctx);
7827 
7828 	return err;
7829 }
7830 
7831 static int check_store_reg(struct bpf_verifier_env *env, struct bpf_insn *insn,
7832 			   bool strict_alignment_once)
7833 {
7834 	struct bpf_reg_state *regs = cur_regs(env);
7835 	enum bpf_reg_type dst_reg_type;
7836 	int err;
7837 
7838 	/* check src1 operand */
7839 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
7840 	if (err)
7841 		return err;
7842 
7843 	/* check src2 operand */
7844 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7845 	if (err)
7846 		return err;
7847 
7848 	dst_reg_type = regs[insn->dst_reg].type;
7849 
7850 	/* Check if (dst_reg + off) is writeable. */
7851 	err = check_mem_access(env, env->insn_idx, insn->dst_reg, insn->off,
7852 			       BPF_SIZE(insn->code), BPF_WRITE, insn->src_reg,
7853 			       strict_alignment_once, false);
7854 	err = err ?: save_aux_ptr_type(env, dst_reg_type, false);
7855 
7856 	return err;
7857 }
7858 
7859 static int check_atomic_rmw(struct bpf_verifier_env *env,
7860 			    struct bpf_insn *insn)
7861 {
7862 	int load_reg;
7863 	int err;
7864 
7865 	if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
7866 		verbose(env, "invalid atomic operand size\n");
7867 		return -EINVAL;
7868 	}
7869 
7870 	/* check src1 operand */
7871 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
7872 	if (err)
7873 		return err;
7874 
7875 	/* check src2 operand */
7876 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7877 	if (err)
7878 		return err;
7879 
7880 	if (insn->imm == BPF_CMPXCHG) {
7881 		/* Check comparison of R0 with memory location */
7882 		const u32 aux_reg = BPF_REG_0;
7883 
7884 		err = check_reg_arg(env, aux_reg, SRC_OP);
7885 		if (err)
7886 			return err;
7887 
7888 		if (is_pointer_value(env, aux_reg)) {
7889 			verbose(env, "R%d leaks addr into mem\n", aux_reg);
7890 			return -EACCES;
7891 		}
7892 	}
7893 
7894 	if (is_pointer_value(env, insn->src_reg)) {
7895 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
7896 		return -EACCES;
7897 	}
7898 
7899 	if (!atomic_ptr_type_ok(env, insn->dst_reg, insn)) {
7900 		verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
7901 			insn->dst_reg,
7902 			reg_type_str(env, reg_state(env, insn->dst_reg)->type));
7903 		return -EACCES;
7904 	}
7905 
7906 	if (insn->imm & BPF_FETCH) {
7907 		if (insn->imm == BPF_CMPXCHG)
7908 			load_reg = BPF_REG_0;
7909 		else
7910 			load_reg = insn->src_reg;
7911 
7912 		/* check and record load of old value */
7913 		err = check_reg_arg(env, load_reg, DST_OP);
7914 		if (err)
7915 			return err;
7916 	} else {
7917 		/* This instruction accesses a memory location but doesn't
7918 		 * actually load it into a register.
7919 		 */
7920 		load_reg = -1;
7921 	}
7922 
7923 	/* Check whether we can read the memory, with second call for fetch
7924 	 * case to simulate the register fill.
7925 	 */
7926 	err = check_mem_access(env, env->insn_idx, insn->dst_reg, insn->off,
7927 			       BPF_SIZE(insn->code), BPF_READ, -1, true, false);
7928 	if (!err && load_reg >= 0)
7929 		err = check_mem_access(env, env->insn_idx, insn->dst_reg,
7930 				       insn->off, BPF_SIZE(insn->code),
7931 				       BPF_READ, load_reg, true, false);
7932 	if (err)
7933 		return err;
7934 
7935 	if (is_arena_reg(env, insn->dst_reg)) {
7936 		err = save_aux_ptr_type(env, PTR_TO_ARENA, false);
7937 		if (err)
7938 			return err;
7939 	}
7940 	/* Check whether we can write into the same memory. */
7941 	err = check_mem_access(env, env->insn_idx, insn->dst_reg, insn->off,
7942 			       BPF_SIZE(insn->code), BPF_WRITE, -1, true, false);
7943 	if (err)
7944 		return err;
7945 	return 0;
7946 }
7947 
7948 static int check_atomic_load(struct bpf_verifier_env *env,
7949 			     struct bpf_insn *insn)
7950 {
7951 	int err;
7952 
7953 	err = check_load_mem(env, insn, true, false, false, "atomic_load");
7954 	if (err)
7955 		return err;
7956 
7957 	if (!atomic_ptr_type_ok(env, insn->src_reg, insn)) {
7958 		verbose(env, "BPF_ATOMIC loads from R%d %s is not allowed\n",
7959 			insn->src_reg,
7960 			reg_type_str(env, reg_state(env, insn->src_reg)->type));
7961 		return -EACCES;
7962 	}
7963 
7964 	return 0;
7965 }
7966 
7967 static int check_atomic_store(struct bpf_verifier_env *env,
7968 			      struct bpf_insn *insn)
7969 {
7970 	int err;
7971 
7972 	err = check_store_reg(env, insn, true);
7973 	if (err)
7974 		return err;
7975 
7976 	if (!atomic_ptr_type_ok(env, insn->dst_reg, insn)) {
7977 		verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
7978 			insn->dst_reg,
7979 			reg_type_str(env, reg_state(env, insn->dst_reg)->type));
7980 		return -EACCES;
7981 	}
7982 
7983 	return 0;
7984 }
7985 
7986 static int check_atomic(struct bpf_verifier_env *env, struct bpf_insn *insn)
7987 {
7988 	switch (insn->imm) {
7989 	case BPF_ADD:
7990 	case BPF_ADD | BPF_FETCH:
7991 	case BPF_AND:
7992 	case BPF_AND | BPF_FETCH:
7993 	case BPF_OR:
7994 	case BPF_OR | BPF_FETCH:
7995 	case BPF_XOR:
7996 	case BPF_XOR | BPF_FETCH:
7997 	case BPF_XCHG:
7998 	case BPF_CMPXCHG:
7999 		return check_atomic_rmw(env, insn);
8000 	case BPF_LOAD_ACQ:
8001 		if (BPF_SIZE(insn->code) == BPF_DW && BITS_PER_LONG != 64) {
8002 			verbose(env,
8003 				"64-bit load-acquires are only supported on 64-bit arches\n");
8004 			return -EOPNOTSUPP;
8005 		}
8006 		return check_atomic_load(env, insn);
8007 	case BPF_STORE_REL:
8008 		if (BPF_SIZE(insn->code) == BPF_DW && BITS_PER_LONG != 64) {
8009 			verbose(env,
8010 				"64-bit store-releases are only supported on 64-bit arches\n");
8011 			return -EOPNOTSUPP;
8012 		}
8013 		return check_atomic_store(env, insn);
8014 	default:
8015 		verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n",
8016 			insn->imm);
8017 		return -EINVAL;
8018 	}
8019 }
8020 
8021 /* When register 'regno' is used to read the stack (either directly or through
8022  * a helper function) make sure that it's within stack boundary and, depending
8023  * on the access type and privileges, that all elements of the stack are
8024  * initialized.
8025  *
8026  * 'off' includes 'regno->off', but not its dynamic part (if any).
8027  *
8028  * All registers that have been spilled on the stack in the slots within the
8029  * read offsets are marked as read.
8030  */
8031 static int check_stack_range_initialized(
8032 		struct bpf_verifier_env *env, int regno, int off,
8033 		int access_size, bool zero_size_allowed,
8034 		enum bpf_access_type type, struct bpf_call_arg_meta *meta)
8035 {
8036 	struct bpf_reg_state *reg = reg_state(env, regno);
8037 	struct bpf_func_state *state = func(env, reg);
8038 	int err, min_off, max_off, i, j, slot, spi;
8039 	/* Some accesses can write anything into the stack, others are
8040 	 * read-only.
8041 	 */
8042 	bool clobber = false;
8043 
8044 	if (access_size == 0 && !zero_size_allowed) {
8045 		verbose(env, "invalid zero-sized read\n");
8046 		return -EACCES;
8047 	}
8048 
8049 	if (type == BPF_WRITE)
8050 		clobber = true;
8051 
8052 	err = check_stack_access_within_bounds(env, regno, off, access_size, type);
8053 	if (err)
8054 		return err;
8055 
8056 
8057 	if (tnum_is_const(reg->var_off)) {
8058 		min_off = max_off = reg->var_off.value + off;
8059 	} else {
8060 		/* Variable offset is prohibited for unprivileged mode for
8061 		 * simplicity since it requires corresponding support in
8062 		 * Spectre masking for stack ALU.
8063 		 * See also retrieve_ptr_limit().
8064 		 */
8065 		if (!env->bypass_spec_v1) {
8066 			char tn_buf[48];
8067 
8068 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
8069 			verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n",
8070 				regno, tn_buf);
8071 			return -EACCES;
8072 		}
8073 		/* Only initialized buffer on stack is allowed to be accessed
8074 		 * with variable offset. With uninitialized buffer it's hard to
8075 		 * guarantee that whole memory is marked as initialized on
8076 		 * helper return since specific bounds are unknown what may
8077 		 * cause uninitialized stack leaking.
8078 		 */
8079 		if (meta && meta->raw_mode)
8080 			meta = NULL;
8081 
8082 		min_off = reg->smin_value + off;
8083 		max_off = reg->smax_value + off;
8084 	}
8085 
8086 	if (meta && meta->raw_mode) {
8087 		/* Ensure we won't be overwriting dynptrs when simulating byte
8088 		 * by byte access in check_helper_call using meta.access_size.
8089 		 * This would be a problem if we have a helper in the future
8090 		 * which takes:
8091 		 *
8092 		 *	helper(uninit_mem, len, dynptr)
8093 		 *
8094 		 * Now, uninint_mem may overlap with dynptr pointer. Hence, it
8095 		 * may end up writing to dynptr itself when touching memory from
8096 		 * arg 1. This can be relaxed on a case by case basis for known
8097 		 * safe cases, but reject due to the possibilitiy of aliasing by
8098 		 * default.
8099 		 */
8100 		for (i = min_off; i < max_off + access_size; i++) {
8101 			int stack_off = -i - 1;
8102 
8103 			spi = __get_spi(i);
8104 			/* raw_mode may write past allocated_stack */
8105 			if (state->allocated_stack <= stack_off)
8106 				continue;
8107 			if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) {
8108 				verbose(env, "potential write to dynptr at off=%d disallowed\n", i);
8109 				return -EACCES;
8110 			}
8111 		}
8112 		meta->access_size = access_size;
8113 		meta->regno = regno;
8114 		return 0;
8115 	}
8116 
8117 	for (i = min_off; i < max_off + access_size; i++) {
8118 		u8 *stype;
8119 
8120 		slot = -i - 1;
8121 		spi = slot / BPF_REG_SIZE;
8122 		if (state->allocated_stack <= slot) {
8123 			verbose(env, "allocated_stack too small\n");
8124 			return -EFAULT;
8125 		}
8126 
8127 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
8128 		if (*stype == STACK_MISC)
8129 			goto mark;
8130 		if ((*stype == STACK_ZERO) ||
8131 		    (*stype == STACK_INVALID && env->allow_uninit_stack)) {
8132 			if (clobber) {
8133 				/* helper can write anything into the stack */
8134 				*stype = STACK_MISC;
8135 			}
8136 			goto mark;
8137 		}
8138 
8139 		if (is_spilled_reg(&state->stack[spi]) &&
8140 		    (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
8141 		     env->allow_ptr_leaks)) {
8142 			if (clobber) {
8143 				__mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
8144 				for (j = 0; j < BPF_REG_SIZE; j++)
8145 					scrub_spilled_slot(&state->stack[spi].slot_type[j]);
8146 			}
8147 			goto mark;
8148 		}
8149 
8150 		if (tnum_is_const(reg->var_off)) {
8151 			verbose(env, "invalid read from stack R%d off %d+%d size %d\n",
8152 				regno, min_off, i - min_off, access_size);
8153 		} else {
8154 			char tn_buf[48];
8155 
8156 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
8157 			verbose(env, "invalid read from stack R%d var_off %s+%d size %d\n",
8158 				regno, tn_buf, i - min_off, access_size);
8159 		}
8160 		return -EACCES;
8161 mark:
8162 		/* reading any byte out of 8-byte 'spill_slot' will cause
8163 		 * the whole slot to be marked as 'read'
8164 		 */
8165 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
8166 			      state->stack[spi].spilled_ptr.parent,
8167 			      REG_LIVE_READ64);
8168 		/* We do not set REG_LIVE_WRITTEN for stack slot, as we can not
8169 		 * be sure that whether stack slot is written to or not. Hence,
8170 		 * we must still conservatively propagate reads upwards even if
8171 		 * helper may write to the entire memory range.
8172 		 */
8173 	}
8174 	return 0;
8175 }
8176 
8177 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
8178 				   int access_size, enum bpf_access_type access_type,
8179 				   bool zero_size_allowed,
8180 				   struct bpf_call_arg_meta *meta)
8181 {
8182 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
8183 	u32 *max_access;
8184 
8185 	switch (base_type(reg->type)) {
8186 	case PTR_TO_PACKET:
8187 	case PTR_TO_PACKET_META:
8188 		return check_packet_access(env, regno, reg->off, access_size,
8189 					   zero_size_allowed);
8190 	case PTR_TO_MAP_KEY:
8191 		if (access_type == BPF_WRITE) {
8192 			verbose(env, "R%d cannot write into %s\n", regno,
8193 				reg_type_str(env, reg->type));
8194 			return -EACCES;
8195 		}
8196 		return check_mem_region_access(env, regno, reg->off, access_size,
8197 					       reg->map_ptr->key_size, false);
8198 	case PTR_TO_MAP_VALUE:
8199 		if (check_map_access_type(env, regno, reg->off, access_size, access_type))
8200 			return -EACCES;
8201 		return check_map_access(env, regno, reg->off, access_size,
8202 					zero_size_allowed, ACCESS_HELPER);
8203 	case PTR_TO_MEM:
8204 		if (type_is_rdonly_mem(reg->type)) {
8205 			if (access_type == BPF_WRITE) {
8206 				verbose(env, "R%d cannot write into %s\n", regno,
8207 					reg_type_str(env, reg->type));
8208 				return -EACCES;
8209 			}
8210 		}
8211 		return check_mem_region_access(env, regno, reg->off,
8212 					       access_size, reg->mem_size,
8213 					       zero_size_allowed);
8214 	case PTR_TO_BUF:
8215 		if (type_is_rdonly_mem(reg->type)) {
8216 			if (access_type == BPF_WRITE) {
8217 				verbose(env, "R%d cannot write into %s\n", regno,
8218 					reg_type_str(env, reg->type));
8219 				return -EACCES;
8220 			}
8221 
8222 			max_access = &env->prog->aux->max_rdonly_access;
8223 		} else {
8224 			max_access = &env->prog->aux->max_rdwr_access;
8225 		}
8226 		return check_buffer_access(env, reg, regno, reg->off,
8227 					   access_size, zero_size_allowed,
8228 					   max_access);
8229 	case PTR_TO_STACK:
8230 		return check_stack_range_initialized(
8231 				env,
8232 				regno, reg->off, access_size,
8233 				zero_size_allowed, access_type, meta);
8234 	case PTR_TO_BTF_ID:
8235 		return check_ptr_to_btf_access(env, regs, regno, reg->off,
8236 					       access_size, BPF_READ, -1);
8237 	case PTR_TO_CTX:
8238 		/* in case the function doesn't know how to access the context,
8239 		 * (because we are in a program of type SYSCALL for example), we
8240 		 * can not statically check its size.
8241 		 * Dynamically check it now.
8242 		 */
8243 		if (!env->ops->convert_ctx_access) {
8244 			int offset = access_size - 1;
8245 
8246 			/* Allow zero-byte read from PTR_TO_CTX */
8247 			if (access_size == 0)
8248 				return zero_size_allowed ? 0 : -EACCES;
8249 
8250 			return check_mem_access(env, env->insn_idx, regno, offset, BPF_B,
8251 						access_type, -1, false, false);
8252 		}
8253 
8254 		fallthrough;
8255 	default: /* scalar_value or invalid ptr */
8256 		/* Allow zero-byte read from NULL, regardless of pointer type */
8257 		if (zero_size_allowed && access_size == 0 &&
8258 		    register_is_null(reg))
8259 			return 0;
8260 
8261 		verbose(env, "R%d type=%s ", regno,
8262 			reg_type_str(env, reg->type));
8263 		verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK));
8264 		return -EACCES;
8265 	}
8266 }
8267 
8268 /* verify arguments to helpers or kfuncs consisting of a pointer and an access
8269  * size.
8270  *
8271  * @regno is the register containing the access size. regno-1 is the register
8272  * containing the pointer.
8273  */
8274 static int check_mem_size_reg(struct bpf_verifier_env *env,
8275 			      struct bpf_reg_state *reg, u32 regno,
8276 			      enum bpf_access_type access_type,
8277 			      bool zero_size_allowed,
8278 			      struct bpf_call_arg_meta *meta)
8279 {
8280 	int err;
8281 
8282 	/* This is used to refine r0 return value bounds for helpers
8283 	 * that enforce this value as an upper bound on return values.
8284 	 * See do_refine_retval_range() for helpers that can refine
8285 	 * the return value. C type of helper is u32 so we pull register
8286 	 * bound from umax_value however, if negative verifier errors
8287 	 * out. Only upper bounds can be learned because retval is an
8288 	 * int type and negative retvals are allowed.
8289 	 */
8290 	meta->msize_max_value = reg->umax_value;
8291 
8292 	/* The register is SCALAR_VALUE; the access check happens using
8293 	 * its boundaries. For unprivileged variable accesses, disable
8294 	 * raw mode so that the program is required to initialize all
8295 	 * the memory that the helper could just partially fill up.
8296 	 */
8297 	if (!tnum_is_const(reg->var_off))
8298 		meta = NULL;
8299 
8300 	if (reg->smin_value < 0) {
8301 		verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
8302 			regno);
8303 		return -EACCES;
8304 	}
8305 
8306 	if (reg->umin_value == 0 && !zero_size_allowed) {
8307 		verbose(env, "R%d invalid zero-sized read: u64=[%lld,%lld]\n",
8308 			regno, reg->umin_value, reg->umax_value);
8309 		return -EACCES;
8310 	}
8311 
8312 	if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
8313 		verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
8314 			regno);
8315 		return -EACCES;
8316 	}
8317 	err = check_helper_mem_access(env, regno - 1, reg->umax_value,
8318 				      access_type, zero_size_allowed, meta);
8319 	if (!err)
8320 		err = mark_chain_precision(env, regno);
8321 	return err;
8322 }
8323 
8324 static int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
8325 			 u32 regno, u32 mem_size)
8326 {
8327 	bool may_be_null = type_may_be_null(reg->type);
8328 	struct bpf_reg_state saved_reg;
8329 	int err;
8330 
8331 	if (register_is_null(reg))
8332 		return 0;
8333 
8334 	/* Assuming that the register contains a value check if the memory
8335 	 * access is safe. Temporarily save and restore the register's state as
8336 	 * the conversion shouldn't be visible to a caller.
8337 	 */
8338 	if (may_be_null) {
8339 		saved_reg = *reg;
8340 		mark_ptr_not_null_reg(reg);
8341 	}
8342 
8343 	err = check_helper_mem_access(env, regno, mem_size, BPF_READ, true, NULL);
8344 	err = err ?: check_helper_mem_access(env, regno, mem_size, BPF_WRITE, true, NULL);
8345 
8346 	if (may_be_null)
8347 		*reg = saved_reg;
8348 
8349 	return err;
8350 }
8351 
8352 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
8353 				    u32 regno)
8354 {
8355 	struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1];
8356 	bool may_be_null = type_may_be_null(mem_reg->type);
8357 	struct bpf_reg_state saved_reg;
8358 	struct bpf_call_arg_meta meta;
8359 	int err;
8360 
8361 	WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5);
8362 
8363 	memset(&meta, 0, sizeof(meta));
8364 
8365 	if (may_be_null) {
8366 		saved_reg = *mem_reg;
8367 		mark_ptr_not_null_reg(mem_reg);
8368 	}
8369 
8370 	err = check_mem_size_reg(env, reg, regno, BPF_READ, true, &meta);
8371 	err = err ?: check_mem_size_reg(env, reg, regno, BPF_WRITE, true, &meta);
8372 
8373 	if (may_be_null)
8374 		*mem_reg = saved_reg;
8375 
8376 	return err;
8377 }
8378 
8379 enum {
8380 	PROCESS_SPIN_LOCK = (1 << 0),
8381 	PROCESS_RES_LOCK  = (1 << 1),
8382 	PROCESS_LOCK_IRQ  = (1 << 2),
8383 };
8384 
8385 /* Implementation details:
8386  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL.
8387  * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL.
8388  * Two bpf_map_lookups (even with the same key) will have different reg->id.
8389  * Two separate bpf_obj_new will also have different reg->id.
8390  * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier
8391  * clears reg->id after value_or_null->value transition, since the verifier only
8392  * cares about the range of access to valid map value pointer and doesn't care
8393  * about actual address of the map element.
8394  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
8395  * reg->id > 0 after value_or_null->value transition. By doing so
8396  * two bpf_map_lookups will be considered two different pointers that
8397  * point to different bpf_spin_locks. Likewise for pointers to allocated objects
8398  * returned from bpf_obj_new.
8399  * The verifier allows taking only one bpf_spin_lock at a time to avoid
8400  * dead-locks.
8401  * Since only one bpf_spin_lock is allowed the checks are simpler than
8402  * reg_is_refcounted() logic. The verifier needs to remember only
8403  * one spin_lock instead of array of acquired_refs.
8404  * env->cur_state->active_locks remembers which map value element or allocated
8405  * object got locked and clears it after bpf_spin_unlock.
8406  */
8407 static int process_spin_lock(struct bpf_verifier_env *env, int regno, int flags)
8408 {
8409 	bool is_lock = flags & PROCESS_SPIN_LOCK, is_res_lock = flags & PROCESS_RES_LOCK;
8410 	const char *lock_str = is_res_lock ? "bpf_res_spin" : "bpf_spin";
8411 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
8412 	struct bpf_verifier_state *cur = env->cur_state;
8413 	bool is_const = tnum_is_const(reg->var_off);
8414 	bool is_irq = flags & PROCESS_LOCK_IRQ;
8415 	u64 val = reg->var_off.value;
8416 	struct bpf_map *map = NULL;
8417 	struct btf *btf = NULL;
8418 	struct btf_record *rec;
8419 	u32 spin_lock_off;
8420 	int err;
8421 
8422 	if (!is_const) {
8423 		verbose(env,
8424 			"R%d doesn't have constant offset. %s_lock has to be at the constant offset\n",
8425 			regno, lock_str);
8426 		return -EINVAL;
8427 	}
8428 	if (reg->type == PTR_TO_MAP_VALUE) {
8429 		map = reg->map_ptr;
8430 		if (!map->btf) {
8431 			verbose(env,
8432 				"map '%s' has to have BTF in order to use %s_lock\n",
8433 				map->name, lock_str);
8434 			return -EINVAL;
8435 		}
8436 	} else {
8437 		btf = reg->btf;
8438 	}
8439 
8440 	rec = reg_btf_record(reg);
8441 	if (!btf_record_has_field(rec, is_res_lock ? BPF_RES_SPIN_LOCK : BPF_SPIN_LOCK)) {
8442 		verbose(env, "%s '%s' has no valid %s_lock\n", map ? "map" : "local",
8443 			map ? map->name : "kptr", lock_str);
8444 		return -EINVAL;
8445 	}
8446 	spin_lock_off = is_res_lock ? rec->res_spin_lock_off : rec->spin_lock_off;
8447 	if (spin_lock_off != val + reg->off) {
8448 		verbose(env, "off %lld doesn't point to 'struct %s_lock' that is at %d\n",
8449 			val + reg->off, lock_str, spin_lock_off);
8450 		return -EINVAL;
8451 	}
8452 	if (is_lock) {
8453 		void *ptr;
8454 		int type;
8455 
8456 		if (map)
8457 			ptr = map;
8458 		else
8459 			ptr = btf;
8460 
8461 		if (!is_res_lock && cur->active_locks) {
8462 			if (find_lock_state(env->cur_state, REF_TYPE_LOCK, 0, NULL)) {
8463 				verbose(env,
8464 					"Locking two bpf_spin_locks are not allowed\n");
8465 				return -EINVAL;
8466 			}
8467 		} else if (is_res_lock && cur->active_locks) {
8468 			if (find_lock_state(env->cur_state, REF_TYPE_RES_LOCK | REF_TYPE_RES_LOCK_IRQ, reg->id, ptr)) {
8469 				verbose(env, "Acquiring the same lock again, AA deadlock detected\n");
8470 				return -EINVAL;
8471 			}
8472 		}
8473 
8474 		if (is_res_lock && is_irq)
8475 			type = REF_TYPE_RES_LOCK_IRQ;
8476 		else if (is_res_lock)
8477 			type = REF_TYPE_RES_LOCK;
8478 		else
8479 			type = REF_TYPE_LOCK;
8480 		err = acquire_lock_state(env, env->insn_idx, type, reg->id, ptr);
8481 		if (err < 0) {
8482 			verbose(env, "Failed to acquire lock state\n");
8483 			return err;
8484 		}
8485 	} else {
8486 		void *ptr;
8487 		int type;
8488 
8489 		if (map)
8490 			ptr = map;
8491 		else
8492 			ptr = btf;
8493 
8494 		if (!cur->active_locks) {
8495 			verbose(env, "%s_unlock without taking a lock\n", lock_str);
8496 			return -EINVAL;
8497 		}
8498 
8499 		if (is_res_lock && is_irq)
8500 			type = REF_TYPE_RES_LOCK_IRQ;
8501 		else if (is_res_lock)
8502 			type = REF_TYPE_RES_LOCK;
8503 		else
8504 			type = REF_TYPE_LOCK;
8505 		if (!find_lock_state(cur, type, reg->id, ptr)) {
8506 			verbose(env, "%s_unlock of different lock\n", lock_str);
8507 			return -EINVAL;
8508 		}
8509 		if (reg->id != cur->active_lock_id || ptr != cur->active_lock_ptr) {
8510 			verbose(env, "%s_unlock cannot be out of order\n", lock_str);
8511 			return -EINVAL;
8512 		}
8513 		if (release_lock_state(cur, type, reg->id, ptr)) {
8514 			verbose(env, "%s_unlock of different lock\n", lock_str);
8515 			return -EINVAL;
8516 		}
8517 
8518 		invalidate_non_owning_refs(env);
8519 	}
8520 	return 0;
8521 }
8522 
8523 static int process_timer_func(struct bpf_verifier_env *env, int regno,
8524 			      struct bpf_call_arg_meta *meta)
8525 {
8526 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
8527 	bool is_const = tnum_is_const(reg->var_off);
8528 	struct bpf_map *map = reg->map_ptr;
8529 	u64 val = reg->var_off.value;
8530 
8531 	if (!is_const) {
8532 		verbose(env,
8533 			"R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n",
8534 			regno);
8535 		return -EINVAL;
8536 	}
8537 	if (!map->btf) {
8538 		verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n",
8539 			map->name);
8540 		return -EINVAL;
8541 	}
8542 	if (!btf_record_has_field(map->record, BPF_TIMER)) {
8543 		verbose(env, "map '%s' has no valid bpf_timer\n", map->name);
8544 		return -EINVAL;
8545 	}
8546 	if (map->record->timer_off != val + reg->off) {
8547 		verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n",
8548 			val + reg->off, map->record->timer_off);
8549 		return -EINVAL;
8550 	}
8551 	if (meta->map_ptr) {
8552 		verifier_bug(env, "Two map pointers in a timer helper");
8553 		return -EFAULT;
8554 	}
8555 	if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
8556 		verbose(env, "bpf_timer cannot be used for PREEMPT_RT.\n");
8557 		return -EOPNOTSUPP;
8558 	}
8559 	meta->map_uid = reg->map_uid;
8560 	meta->map_ptr = map;
8561 	return 0;
8562 }
8563 
8564 static int process_wq_func(struct bpf_verifier_env *env, int regno,
8565 			   struct bpf_kfunc_call_arg_meta *meta)
8566 {
8567 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
8568 	struct bpf_map *map = reg->map_ptr;
8569 	u64 val = reg->var_off.value;
8570 
8571 	if (map->record->wq_off != val + reg->off) {
8572 		verbose(env, "off %lld doesn't point to 'struct bpf_wq' that is at %d\n",
8573 			val + reg->off, map->record->wq_off);
8574 		return -EINVAL;
8575 	}
8576 	meta->map.uid = reg->map_uid;
8577 	meta->map.ptr = map;
8578 	return 0;
8579 }
8580 
8581 static int process_kptr_func(struct bpf_verifier_env *env, int regno,
8582 			     struct bpf_call_arg_meta *meta)
8583 {
8584 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
8585 	struct btf_field *kptr_field;
8586 	struct bpf_map *map_ptr;
8587 	struct btf_record *rec;
8588 	u32 kptr_off;
8589 
8590 	if (type_is_ptr_alloc_obj(reg->type)) {
8591 		rec = reg_btf_record(reg);
8592 	} else { /* PTR_TO_MAP_VALUE */
8593 		map_ptr = reg->map_ptr;
8594 		if (!map_ptr->btf) {
8595 			verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n",
8596 				map_ptr->name);
8597 			return -EINVAL;
8598 		}
8599 		rec = map_ptr->record;
8600 		meta->map_ptr = map_ptr;
8601 	}
8602 
8603 	if (!tnum_is_const(reg->var_off)) {
8604 		verbose(env,
8605 			"R%d doesn't have constant offset. kptr has to be at the constant offset\n",
8606 			regno);
8607 		return -EINVAL;
8608 	}
8609 
8610 	if (!btf_record_has_field(rec, BPF_KPTR)) {
8611 		verbose(env, "R%d has no valid kptr\n", regno);
8612 		return -EINVAL;
8613 	}
8614 
8615 	kptr_off = reg->off + reg->var_off.value;
8616 	kptr_field = btf_record_find(rec, kptr_off, BPF_KPTR);
8617 	if (!kptr_field) {
8618 		verbose(env, "off=%d doesn't point to kptr\n", kptr_off);
8619 		return -EACCES;
8620 	}
8621 	if (kptr_field->type != BPF_KPTR_REF && kptr_field->type != BPF_KPTR_PERCPU) {
8622 		verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off);
8623 		return -EACCES;
8624 	}
8625 	meta->kptr_field = kptr_field;
8626 	return 0;
8627 }
8628 
8629 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK
8630  * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR.
8631  *
8632  * In both cases we deal with the first 8 bytes, but need to mark the next 8
8633  * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of
8634  * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object.
8635  *
8636  * Mutability of bpf_dynptr is at two levels, one is at the level of struct
8637  * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct
8638  * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can
8639  * mutate the view of the dynptr and also possibly destroy it. In the latter
8640  * case, it cannot mutate the bpf_dynptr itself but it can still mutate the
8641  * memory that dynptr points to.
8642  *
8643  * The verifier will keep track both levels of mutation (bpf_dynptr's in
8644  * reg->type and the memory's in reg->dynptr.type), but there is no support for
8645  * readonly dynptr view yet, hence only the first case is tracked and checked.
8646  *
8647  * This is consistent with how C applies the const modifier to a struct object,
8648  * where the pointer itself inside bpf_dynptr becomes const but not what it
8649  * points to.
8650  *
8651  * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument
8652  * type, and declare it as 'const struct bpf_dynptr *' in their prototype.
8653  */
8654 static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx,
8655 			       enum bpf_arg_type arg_type, int clone_ref_obj_id)
8656 {
8657 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
8658 	int err;
8659 
8660 	if (reg->type != PTR_TO_STACK && reg->type != CONST_PTR_TO_DYNPTR) {
8661 		verbose(env,
8662 			"arg#%d expected pointer to stack or const struct bpf_dynptr\n",
8663 			regno - 1);
8664 		return -EINVAL;
8665 	}
8666 
8667 	/* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an
8668 	 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*):
8669 	 */
8670 	if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) {
8671 		verifier_bug(env, "misconfigured dynptr helper type flags");
8672 		return -EFAULT;
8673 	}
8674 
8675 	/*  MEM_UNINIT - Points to memory that is an appropriate candidate for
8676 	 *		 constructing a mutable bpf_dynptr object.
8677 	 *
8678 	 *		 Currently, this is only possible with PTR_TO_STACK
8679 	 *		 pointing to a region of at least 16 bytes which doesn't
8680 	 *		 contain an existing bpf_dynptr.
8681 	 *
8682 	 *  MEM_RDONLY - Points to a initialized bpf_dynptr that will not be
8683 	 *		 mutated or destroyed. However, the memory it points to
8684 	 *		 may be mutated.
8685 	 *
8686 	 *  None       - Points to a initialized dynptr that can be mutated and
8687 	 *		 destroyed, including mutation of the memory it points
8688 	 *		 to.
8689 	 */
8690 	if (arg_type & MEM_UNINIT) {
8691 		int i;
8692 
8693 		if (!is_dynptr_reg_valid_uninit(env, reg)) {
8694 			verbose(env, "Dynptr has to be an uninitialized dynptr\n");
8695 			return -EINVAL;
8696 		}
8697 
8698 		/* we write BPF_DW bits (8 bytes) at a time */
8699 		for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) {
8700 			err = check_mem_access(env, insn_idx, regno,
8701 					       i, BPF_DW, BPF_WRITE, -1, false, false);
8702 			if (err)
8703 				return err;
8704 		}
8705 
8706 		err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx, clone_ref_obj_id);
8707 	} else /* MEM_RDONLY and None case from above */ {
8708 		/* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */
8709 		if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) {
8710 			verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n");
8711 			return -EINVAL;
8712 		}
8713 
8714 		if (!is_dynptr_reg_valid_init(env, reg)) {
8715 			verbose(env,
8716 				"Expected an initialized dynptr as arg #%d\n",
8717 				regno - 1);
8718 			return -EINVAL;
8719 		}
8720 
8721 		/* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */
8722 		if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) {
8723 			verbose(env,
8724 				"Expected a dynptr of type %s as arg #%d\n",
8725 				dynptr_type_str(arg_to_dynptr_type(arg_type)), regno - 1);
8726 			return -EINVAL;
8727 		}
8728 
8729 		err = mark_dynptr_read(env, reg);
8730 	}
8731 	return err;
8732 }
8733 
8734 static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi)
8735 {
8736 	struct bpf_func_state *state = func(env, reg);
8737 
8738 	return state->stack[spi].spilled_ptr.ref_obj_id;
8739 }
8740 
8741 static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta)
8742 {
8743 	return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY);
8744 }
8745 
8746 static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta)
8747 {
8748 	return meta->kfunc_flags & KF_ITER_NEW;
8749 }
8750 
8751 static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta)
8752 {
8753 	return meta->kfunc_flags & KF_ITER_NEXT;
8754 }
8755 
8756 static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta)
8757 {
8758 	return meta->kfunc_flags & KF_ITER_DESTROY;
8759 }
8760 
8761 static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg_idx,
8762 			      const struct btf_param *arg)
8763 {
8764 	/* btf_check_iter_kfuncs() guarantees that first argument of any iter
8765 	 * kfunc is iter state pointer
8766 	 */
8767 	if (is_iter_kfunc(meta))
8768 		return arg_idx == 0;
8769 
8770 	/* iter passed as an argument to a generic kfunc */
8771 	return btf_param_match_suffix(meta->btf, arg, "__iter");
8772 }
8773 
8774 static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx,
8775 			    struct bpf_kfunc_call_arg_meta *meta)
8776 {
8777 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
8778 	const struct btf_type *t;
8779 	int spi, err, i, nr_slots, btf_id;
8780 
8781 	if (reg->type != PTR_TO_STACK) {
8782 		verbose(env, "arg#%d expected pointer to an iterator on stack\n", regno - 1);
8783 		return -EINVAL;
8784 	}
8785 
8786 	/* For iter_{new,next,destroy} functions, btf_check_iter_kfuncs()
8787 	 * ensures struct convention, so we wouldn't need to do any BTF
8788 	 * validation here. But given iter state can be passed as a parameter
8789 	 * to any kfunc, if arg has "__iter" suffix, we need to be a bit more
8790 	 * conservative here.
8791 	 */
8792 	btf_id = btf_check_iter_arg(meta->btf, meta->func_proto, regno - 1);
8793 	if (btf_id < 0) {
8794 		verbose(env, "expected valid iter pointer as arg #%d\n", regno - 1);
8795 		return -EINVAL;
8796 	}
8797 	t = btf_type_by_id(meta->btf, btf_id);
8798 	nr_slots = t->size / BPF_REG_SIZE;
8799 
8800 	if (is_iter_new_kfunc(meta)) {
8801 		/* bpf_iter_<type>_new() expects pointer to uninit iter state */
8802 		if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) {
8803 			verbose(env, "expected uninitialized iter_%s as arg #%d\n",
8804 				iter_type_str(meta->btf, btf_id), regno - 1);
8805 			return -EINVAL;
8806 		}
8807 
8808 		for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) {
8809 			err = check_mem_access(env, insn_idx, regno,
8810 					       i, BPF_DW, BPF_WRITE, -1, false, false);
8811 			if (err)
8812 				return err;
8813 		}
8814 
8815 		err = mark_stack_slots_iter(env, meta, reg, insn_idx, meta->btf, btf_id, nr_slots);
8816 		if (err)
8817 			return err;
8818 	} else {
8819 		/* iter_next() or iter_destroy(), as well as any kfunc
8820 		 * accepting iter argument, expect initialized iter state
8821 		 */
8822 		err = is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots);
8823 		switch (err) {
8824 		case 0:
8825 			break;
8826 		case -EINVAL:
8827 			verbose(env, "expected an initialized iter_%s as arg #%d\n",
8828 				iter_type_str(meta->btf, btf_id), regno - 1);
8829 			return err;
8830 		case -EPROTO:
8831 			verbose(env, "expected an RCU CS when using %s\n", meta->func_name);
8832 			return err;
8833 		default:
8834 			return err;
8835 		}
8836 
8837 		spi = iter_get_spi(env, reg, nr_slots);
8838 		if (spi < 0)
8839 			return spi;
8840 
8841 		err = mark_iter_read(env, reg, spi, nr_slots);
8842 		if (err)
8843 			return err;
8844 
8845 		/* remember meta->iter info for process_iter_next_call() */
8846 		meta->iter.spi = spi;
8847 		meta->iter.frameno = reg->frameno;
8848 		meta->ref_obj_id = iter_ref_obj_id(env, reg, spi);
8849 
8850 		if (is_iter_destroy_kfunc(meta)) {
8851 			err = unmark_stack_slots_iter(env, reg, nr_slots);
8852 			if (err)
8853 				return err;
8854 		}
8855 	}
8856 
8857 	return 0;
8858 }
8859 
8860 /* Look for a previous loop entry at insn_idx: nearest parent state
8861  * stopped at insn_idx with callsites matching those in cur->frame.
8862  */
8863 static struct bpf_verifier_state *find_prev_entry(struct bpf_verifier_env *env,
8864 						  struct bpf_verifier_state *cur,
8865 						  int insn_idx)
8866 {
8867 	struct bpf_verifier_state_list *sl;
8868 	struct bpf_verifier_state *st;
8869 	struct list_head *pos, *head;
8870 
8871 	/* Explored states are pushed in stack order, most recent states come first */
8872 	head = explored_state(env, insn_idx);
8873 	list_for_each(pos, head) {
8874 		sl = container_of(pos, struct bpf_verifier_state_list, node);
8875 		/* If st->branches != 0 state is a part of current DFS verification path,
8876 		 * hence cur & st for a loop.
8877 		 */
8878 		st = &sl->state;
8879 		if (st->insn_idx == insn_idx && st->branches && same_callsites(st, cur) &&
8880 		    st->dfs_depth < cur->dfs_depth)
8881 			return st;
8882 	}
8883 
8884 	return NULL;
8885 }
8886 
8887 static void reset_idmap_scratch(struct bpf_verifier_env *env);
8888 static bool regs_exact(const struct bpf_reg_state *rold,
8889 		       const struct bpf_reg_state *rcur,
8890 		       struct bpf_idmap *idmap);
8891 
8892 static void maybe_widen_reg(struct bpf_verifier_env *env,
8893 			    struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
8894 			    struct bpf_idmap *idmap)
8895 {
8896 	if (rold->type != SCALAR_VALUE)
8897 		return;
8898 	if (rold->type != rcur->type)
8899 		return;
8900 	if (rold->precise || rcur->precise || regs_exact(rold, rcur, idmap))
8901 		return;
8902 	__mark_reg_unknown(env, rcur);
8903 }
8904 
8905 static int widen_imprecise_scalars(struct bpf_verifier_env *env,
8906 				   struct bpf_verifier_state *old,
8907 				   struct bpf_verifier_state *cur)
8908 {
8909 	struct bpf_func_state *fold, *fcur;
8910 	int i, fr;
8911 
8912 	reset_idmap_scratch(env);
8913 	for (fr = old->curframe; fr >= 0; fr--) {
8914 		fold = old->frame[fr];
8915 		fcur = cur->frame[fr];
8916 
8917 		for (i = 0; i < MAX_BPF_REG; i++)
8918 			maybe_widen_reg(env,
8919 					&fold->regs[i],
8920 					&fcur->regs[i],
8921 					&env->idmap_scratch);
8922 
8923 		for (i = 0; i < fold->allocated_stack / BPF_REG_SIZE; i++) {
8924 			if (!is_spilled_reg(&fold->stack[i]) ||
8925 			    !is_spilled_reg(&fcur->stack[i]))
8926 				continue;
8927 
8928 			maybe_widen_reg(env,
8929 					&fold->stack[i].spilled_ptr,
8930 					&fcur->stack[i].spilled_ptr,
8931 					&env->idmap_scratch);
8932 		}
8933 	}
8934 	return 0;
8935 }
8936 
8937 static struct bpf_reg_state *get_iter_from_state(struct bpf_verifier_state *cur_st,
8938 						 struct bpf_kfunc_call_arg_meta *meta)
8939 {
8940 	int iter_frameno = meta->iter.frameno;
8941 	int iter_spi = meta->iter.spi;
8942 
8943 	return &cur_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr;
8944 }
8945 
8946 /* process_iter_next_call() is called when verifier gets to iterator's next
8947  * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer
8948  * to it as just "iter_next()" in comments below.
8949  *
8950  * BPF verifier relies on a crucial contract for any iter_next()
8951  * implementation: it should *eventually* return NULL, and once that happens
8952  * it should keep returning NULL. That is, once iterator exhausts elements to
8953  * iterate, it should never reset or spuriously return new elements.
8954  *
8955  * With the assumption of such contract, process_iter_next_call() simulates
8956  * a fork in the verifier state to validate loop logic correctness and safety
8957  * without having to simulate infinite amount of iterations.
8958  *
8959  * In current state, we first assume that iter_next() returned NULL and
8960  * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such
8961  * conditions we should not form an infinite loop and should eventually reach
8962  * exit.
8963  *
8964  * Besides that, we also fork current state and enqueue it for later
8965  * verification. In a forked state we keep iterator state as ACTIVE
8966  * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We
8967  * also bump iteration depth to prevent erroneous infinite loop detection
8968  * later on (see iter_active_depths_differ() comment for details). In this
8969  * state we assume that we'll eventually loop back to another iter_next()
8970  * calls (it could be in exactly same location or in some other instruction,
8971  * it doesn't matter, we don't make any unnecessary assumptions about this,
8972  * everything revolves around iterator state in a stack slot, not which
8973  * instruction is calling iter_next()). When that happens, we either will come
8974  * to iter_next() with equivalent state and can conclude that next iteration
8975  * will proceed in exactly the same way as we just verified, so it's safe to
8976  * assume that loop converges. If not, we'll go on another iteration
8977  * simulation with a different input state, until all possible starting states
8978  * are validated or we reach maximum number of instructions limit.
8979  *
8980  * This way, we will either exhaustively discover all possible input states
8981  * that iterator loop can start with and eventually will converge, or we'll
8982  * effectively regress into bounded loop simulation logic and either reach
8983  * maximum number of instructions if loop is not provably convergent, or there
8984  * is some statically known limit on number of iterations (e.g., if there is
8985  * an explicit `if n > 100 then break;` statement somewhere in the loop).
8986  *
8987  * Iteration convergence logic in is_state_visited() relies on exact
8988  * states comparison, which ignores read and precision marks.
8989  * This is necessary because read and precision marks are not finalized
8990  * while in the loop. Exact comparison might preclude convergence for
8991  * simple programs like below:
8992  *
8993  *     i = 0;
8994  *     while(iter_next(&it))
8995  *       i++;
8996  *
8997  * At each iteration step i++ would produce a new distinct state and
8998  * eventually instruction processing limit would be reached.
8999  *
9000  * To avoid such behavior speculatively forget (widen) range for
9001  * imprecise scalar registers, if those registers were not precise at the
9002  * end of the previous iteration and do not match exactly.
9003  *
9004  * This is a conservative heuristic that allows to verify wide range of programs,
9005  * however it precludes verification of programs that conjure an
9006  * imprecise value on the first loop iteration and use it as precise on a second.
9007  * For example, the following safe program would fail to verify:
9008  *
9009  *     struct bpf_num_iter it;
9010  *     int arr[10];
9011  *     int i = 0, a = 0;
9012  *     bpf_iter_num_new(&it, 0, 10);
9013  *     while (bpf_iter_num_next(&it)) {
9014  *       if (a == 0) {
9015  *         a = 1;
9016  *         i = 7; // Because i changed verifier would forget
9017  *                // it's range on second loop entry.
9018  *       } else {
9019  *         arr[i] = 42; // This would fail to verify.
9020  *       }
9021  *     }
9022  *     bpf_iter_num_destroy(&it);
9023  */
9024 static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx,
9025 				  struct bpf_kfunc_call_arg_meta *meta)
9026 {
9027 	struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st;
9028 	struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr;
9029 	struct bpf_reg_state *cur_iter, *queued_iter;
9030 
9031 	BTF_TYPE_EMIT(struct bpf_iter);
9032 
9033 	cur_iter = get_iter_from_state(cur_st, meta);
9034 
9035 	if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE &&
9036 	    cur_iter->iter.state != BPF_ITER_STATE_DRAINED) {
9037 		verifier_bug(env, "unexpected iterator state %d (%s)",
9038 			     cur_iter->iter.state, iter_state_str(cur_iter->iter.state));
9039 		return -EFAULT;
9040 	}
9041 
9042 	if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) {
9043 		/* Because iter_next() call is a checkpoint is_state_visitied()
9044 		 * should guarantee parent state with same call sites and insn_idx.
9045 		 */
9046 		if (!cur_st->parent || cur_st->parent->insn_idx != insn_idx ||
9047 		    !same_callsites(cur_st->parent, cur_st)) {
9048 			verifier_bug(env, "bad parent state for iter next call");
9049 			return -EFAULT;
9050 		}
9051 		/* Note cur_st->parent in the call below, it is necessary to skip
9052 		 * checkpoint created for cur_st by is_state_visited()
9053 		 * right at this instruction.
9054 		 */
9055 		prev_st = find_prev_entry(env, cur_st->parent, insn_idx);
9056 		/* branch out active iter state */
9057 		queued_st = push_stack(env, insn_idx + 1, insn_idx, false);
9058 		if (!queued_st)
9059 			return -ENOMEM;
9060 
9061 		queued_iter = get_iter_from_state(queued_st, meta);
9062 		queued_iter->iter.state = BPF_ITER_STATE_ACTIVE;
9063 		queued_iter->iter.depth++;
9064 		if (prev_st)
9065 			widen_imprecise_scalars(env, prev_st, queued_st);
9066 
9067 		queued_fr = queued_st->frame[queued_st->curframe];
9068 		mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]);
9069 	}
9070 
9071 	/* switch to DRAINED state, but keep the depth unchanged */
9072 	/* mark current iter state as drained and assume returned NULL */
9073 	cur_iter->iter.state = BPF_ITER_STATE_DRAINED;
9074 	__mark_reg_const_zero(env, &cur_fr->regs[BPF_REG_0]);
9075 
9076 	return 0;
9077 }
9078 
9079 static bool arg_type_is_mem_size(enum bpf_arg_type type)
9080 {
9081 	return type == ARG_CONST_SIZE ||
9082 	       type == ARG_CONST_SIZE_OR_ZERO;
9083 }
9084 
9085 static bool arg_type_is_raw_mem(enum bpf_arg_type type)
9086 {
9087 	return base_type(type) == ARG_PTR_TO_MEM &&
9088 	       type & MEM_UNINIT;
9089 }
9090 
9091 static bool arg_type_is_release(enum bpf_arg_type type)
9092 {
9093 	return type & OBJ_RELEASE;
9094 }
9095 
9096 static bool arg_type_is_dynptr(enum bpf_arg_type type)
9097 {
9098 	return base_type(type) == ARG_PTR_TO_DYNPTR;
9099 }
9100 
9101 static int resolve_map_arg_type(struct bpf_verifier_env *env,
9102 				 const struct bpf_call_arg_meta *meta,
9103 				 enum bpf_arg_type *arg_type)
9104 {
9105 	if (!meta->map_ptr) {
9106 		/* kernel subsystem misconfigured verifier */
9107 		verifier_bug(env, "invalid map_ptr to access map->type");
9108 		return -EFAULT;
9109 	}
9110 
9111 	switch (meta->map_ptr->map_type) {
9112 	case BPF_MAP_TYPE_SOCKMAP:
9113 	case BPF_MAP_TYPE_SOCKHASH:
9114 		if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
9115 			*arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
9116 		} else {
9117 			verbose(env, "invalid arg_type for sockmap/sockhash\n");
9118 			return -EINVAL;
9119 		}
9120 		break;
9121 	case BPF_MAP_TYPE_BLOOM_FILTER:
9122 		if (meta->func_id == BPF_FUNC_map_peek_elem)
9123 			*arg_type = ARG_PTR_TO_MAP_VALUE;
9124 		break;
9125 	default:
9126 		break;
9127 	}
9128 	return 0;
9129 }
9130 
9131 struct bpf_reg_types {
9132 	const enum bpf_reg_type types[10];
9133 	u32 *btf_id;
9134 };
9135 
9136 static const struct bpf_reg_types sock_types = {
9137 	.types = {
9138 		PTR_TO_SOCK_COMMON,
9139 		PTR_TO_SOCKET,
9140 		PTR_TO_TCP_SOCK,
9141 		PTR_TO_XDP_SOCK,
9142 	},
9143 };
9144 
9145 #ifdef CONFIG_NET
9146 static const struct bpf_reg_types btf_id_sock_common_types = {
9147 	.types = {
9148 		PTR_TO_SOCK_COMMON,
9149 		PTR_TO_SOCKET,
9150 		PTR_TO_TCP_SOCK,
9151 		PTR_TO_XDP_SOCK,
9152 		PTR_TO_BTF_ID,
9153 		PTR_TO_BTF_ID | PTR_TRUSTED,
9154 	},
9155 	.btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
9156 };
9157 #endif
9158 
9159 static const struct bpf_reg_types mem_types = {
9160 	.types = {
9161 		PTR_TO_STACK,
9162 		PTR_TO_PACKET,
9163 		PTR_TO_PACKET_META,
9164 		PTR_TO_MAP_KEY,
9165 		PTR_TO_MAP_VALUE,
9166 		PTR_TO_MEM,
9167 		PTR_TO_MEM | MEM_RINGBUF,
9168 		PTR_TO_BUF,
9169 		PTR_TO_BTF_ID | PTR_TRUSTED,
9170 	},
9171 };
9172 
9173 static const struct bpf_reg_types spin_lock_types = {
9174 	.types = {
9175 		PTR_TO_MAP_VALUE,
9176 		PTR_TO_BTF_ID | MEM_ALLOC,
9177 	}
9178 };
9179 
9180 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
9181 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
9182 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
9183 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } };
9184 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
9185 static const struct bpf_reg_types btf_ptr_types = {
9186 	.types = {
9187 		PTR_TO_BTF_ID,
9188 		PTR_TO_BTF_ID | PTR_TRUSTED,
9189 		PTR_TO_BTF_ID | MEM_RCU,
9190 	},
9191 };
9192 static const struct bpf_reg_types percpu_btf_ptr_types = {
9193 	.types = {
9194 		PTR_TO_BTF_ID | MEM_PERCPU,
9195 		PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU,
9196 		PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED,
9197 	}
9198 };
9199 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
9200 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
9201 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
9202 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } };
9203 static const struct bpf_reg_types kptr_xchg_dest_types = {
9204 	.types = {
9205 		PTR_TO_MAP_VALUE,
9206 		PTR_TO_BTF_ID | MEM_ALLOC
9207 	}
9208 };
9209 static const struct bpf_reg_types dynptr_types = {
9210 	.types = {
9211 		PTR_TO_STACK,
9212 		CONST_PTR_TO_DYNPTR,
9213 	}
9214 };
9215 
9216 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
9217 	[ARG_PTR_TO_MAP_KEY]		= &mem_types,
9218 	[ARG_PTR_TO_MAP_VALUE]		= &mem_types,
9219 	[ARG_CONST_SIZE]		= &scalar_types,
9220 	[ARG_CONST_SIZE_OR_ZERO]	= &scalar_types,
9221 	[ARG_CONST_ALLOC_SIZE_OR_ZERO]	= &scalar_types,
9222 	[ARG_CONST_MAP_PTR]		= &const_map_ptr_types,
9223 	[ARG_PTR_TO_CTX]		= &context_types,
9224 	[ARG_PTR_TO_SOCK_COMMON]	= &sock_types,
9225 #ifdef CONFIG_NET
9226 	[ARG_PTR_TO_BTF_ID_SOCK_COMMON]	= &btf_id_sock_common_types,
9227 #endif
9228 	[ARG_PTR_TO_SOCKET]		= &fullsock_types,
9229 	[ARG_PTR_TO_BTF_ID]		= &btf_ptr_types,
9230 	[ARG_PTR_TO_SPIN_LOCK]		= &spin_lock_types,
9231 	[ARG_PTR_TO_MEM]		= &mem_types,
9232 	[ARG_PTR_TO_RINGBUF_MEM]	= &ringbuf_mem_types,
9233 	[ARG_PTR_TO_PERCPU_BTF_ID]	= &percpu_btf_ptr_types,
9234 	[ARG_PTR_TO_FUNC]		= &func_ptr_types,
9235 	[ARG_PTR_TO_STACK]		= &stack_ptr_types,
9236 	[ARG_PTR_TO_CONST_STR]		= &const_str_ptr_types,
9237 	[ARG_PTR_TO_TIMER]		= &timer_types,
9238 	[ARG_KPTR_XCHG_DEST]		= &kptr_xchg_dest_types,
9239 	[ARG_PTR_TO_DYNPTR]		= &dynptr_types,
9240 };
9241 
9242 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
9243 			  enum bpf_arg_type arg_type,
9244 			  const u32 *arg_btf_id,
9245 			  struct bpf_call_arg_meta *meta)
9246 {
9247 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
9248 	enum bpf_reg_type expected, type = reg->type;
9249 	const struct bpf_reg_types *compatible;
9250 	int i, j;
9251 
9252 	compatible = compatible_reg_types[base_type(arg_type)];
9253 	if (!compatible) {
9254 		verifier_bug(env, "unsupported arg type %d", arg_type);
9255 		return -EFAULT;
9256 	}
9257 
9258 	/* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY,
9259 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY
9260 	 *
9261 	 * Same for MAYBE_NULL:
9262 	 *
9263 	 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL,
9264 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL
9265 	 *
9266 	 * ARG_PTR_TO_MEM is compatible with PTR_TO_MEM that is tagged with a dynptr type.
9267 	 *
9268 	 * Therefore we fold these flags depending on the arg_type before comparison.
9269 	 */
9270 	if (arg_type & MEM_RDONLY)
9271 		type &= ~MEM_RDONLY;
9272 	if (arg_type & PTR_MAYBE_NULL)
9273 		type &= ~PTR_MAYBE_NULL;
9274 	if (base_type(arg_type) == ARG_PTR_TO_MEM)
9275 		type &= ~DYNPTR_TYPE_FLAG_MASK;
9276 
9277 	/* Local kptr types are allowed as the source argument of bpf_kptr_xchg */
9278 	if (meta->func_id == BPF_FUNC_kptr_xchg && type_is_alloc(type) && regno == BPF_REG_2) {
9279 		type &= ~MEM_ALLOC;
9280 		type &= ~MEM_PERCPU;
9281 	}
9282 
9283 	for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
9284 		expected = compatible->types[i];
9285 		if (expected == NOT_INIT)
9286 			break;
9287 
9288 		if (type == expected)
9289 			goto found;
9290 	}
9291 
9292 	verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type));
9293 	for (j = 0; j + 1 < i; j++)
9294 		verbose(env, "%s, ", reg_type_str(env, compatible->types[j]));
9295 	verbose(env, "%s\n", reg_type_str(env, compatible->types[j]));
9296 	return -EACCES;
9297 
9298 found:
9299 	if (base_type(reg->type) != PTR_TO_BTF_ID)
9300 		return 0;
9301 
9302 	if (compatible == &mem_types) {
9303 		if (!(arg_type & MEM_RDONLY)) {
9304 			verbose(env,
9305 				"%s() may write into memory pointed by R%d type=%s\n",
9306 				func_id_name(meta->func_id),
9307 				regno, reg_type_str(env, reg->type));
9308 			return -EACCES;
9309 		}
9310 		return 0;
9311 	}
9312 
9313 	switch ((int)reg->type) {
9314 	case PTR_TO_BTF_ID:
9315 	case PTR_TO_BTF_ID | PTR_TRUSTED:
9316 	case PTR_TO_BTF_ID | PTR_TRUSTED | PTR_MAYBE_NULL:
9317 	case PTR_TO_BTF_ID | MEM_RCU:
9318 	case PTR_TO_BTF_ID | PTR_MAYBE_NULL:
9319 	case PTR_TO_BTF_ID | PTR_MAYBE_NULL | MEM_RCU:
9320 	{
9321 		/* For bpf_sk_release, it needs to match against first member
9322 		 * 'struct sock_common', hence make an exception for it. This
9323 		 * allows bpf_sk_release to work for multiple socket types.
9324 		 */
9325 		bool strict_type_match = arg_type_is_release(arg_type) &&
9326 					 meta->func_id != BPF_FUNC_sk_release;
9327 
9328 		if (type_may_be_null(reg->type) &&
9329 		    (!type_may_be_null(arg_type) || arg_type_is_release(arg_type))) {
9330 			verbose(env, "Possibly NULL pointer passed to helper arg%d\n", regno);
9331 			return -EACCES;
9332 		}
9333 
9334 		if (!arg_btf_id) {
9335 			if (!compatible->btf_id) {
9336 				verifier_bug(env, "missing arg compatible BTF ID");
9337 				return -EFAULT;
9338 			}
9339 			arg_btf_id = compatible->btf_id;
9340 		}
9341 
9342 		if (meta->func_id == BPF_FUNC_kptr_xchg) {
9343 			if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
9344 				return -EACCES;
9345 		} else {
9346 			if (arg_btf_id == BPF_PTR_POISON) {
9347 				verbose(env, "verifier internal error:");
9348 				verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n",
9349 					regno);
9350 				return -EACCES;
9351 			}
9352 
9353 			if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
9354 						  btf_vmlinux, *arg_btf_id,
9355 						  strict_type_match)) {
9356 				verbose(env, "R%d is of type %s but %s is expected\n",
9357 					regno, btf_type_name(reg->btf, reg->btf_id),
9358 					btf_type_name(btf_vmlinux, *arg_btf_id));
9359 				return -EACCES;
9360 			}
9361 		}
9362 		break;
9363 	}
9364 	case PTR_TO_BTF_ID | MEM_ALLOC:
9365 	case PTR_TO_BTF_ID | MEM_PERCPU | MEM_ALLOC:
9366 		if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock &&
9367 		    meta->func_id != BPF_FUNC_kptr_xchg) {
9368 			verifier_bug(env, "unimplemented handling of MEM_ALLOC");
9369 			return -EFAULT;
9370 		}
9371 		/* Check if local kptr in src arg matches kptr in dst arg */
9372 		if (meta->func_id == BPF_FUNC_kptr_xchg && regno == BPF_REG_2) {
9373 			if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
9374 				return -EACCES;
9375 		}
9376 		break;
9377 	case PTR_TO_BTF_ID | MEM_PERCPU:
9378 	case PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU:
9379 	case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED:
9380 		/* Handled by helper specific checks */
9381 		break;
9382 	default:
9383 		verifier_bug(env, "invalid PTR_TO_BTF_ID register for type match");
9384 		return -EFAULT;
9385 	}
9386 	return 0;
9387 }
9388 
9389 static struct btf_field *
9390 reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields)
9391 {
9392 	struct btf_field *field;
9393 	struct btf_record *rec;
9394 
9395 	rec = reg_btf_record(reg);
9396 	if (!rec)
9397 		return NULL;
9398 
9399 	field = btf_record_find(rec, off, fields);
9400 	if (!field)
9401 		return NULL;
9402 
9403 	return field;
9404 }
9405 
9406 static int check_func_arg_reg_off(struct bpf_verifier_env *env,
9407 				  const struct bpf_reg_state *reg, int regno,
9408 				  enum bpf_arg_type arg_type)
9409 {
9410 	u32 type = reg->type;
9411 
9412 	/* When referenced register is passed to release function, its fixed
9413 	 * offset must be 0.
9414 	 *
9415 	 * We will check arg_type_is_release reg has ref_obj_id when storing
9416 	 * meta->release_regno.
9417 	 */
9418 	if (arg_type_is_release(arg_type)) {
9419 		/* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it
9420 		 * may not directly point to the object being released, but to
9421 		 * dynptr pointing to such object, which might be at some offset
9422 		 * on the stack. In that case, we simply to fallback to the
9423 		 * default handling.
9424 		 */
9425 		if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK)
9426 			return 0;
9427 
9428 		/* Doing check_ptr_off_reg check for the offset will catch this
9429 		 * because fixed_off_ok is false, but checking here allows us
9430 		 * to give the user a better error message.
9431 		 */
9432 		if (reg->off) {
9433 			verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n",
9434 				regno);
9435 			return -EINVAL;
9436 		}
9437 		return __check_ptr_off_reg(env, reg, regno, false);
9438 	}
9439 
9440 	switch (type) {
9441 	/* Pointer types where both fixed and variable offset is explicitly allowed: */
9442 	case PTR_TO_STACK:
9443 	case PTR_TO_PACKET:
9444 	case PTR_TO_PACKET_META:
9445 	case PTR_TO_MAP_KEY:
9446 	case PTR_TO_MAP_VALUE:
9447 	case PTR_TO_MEM:
9448 	case PTR_TO_MEM | MEM_RDONLY:
9449 	case PTR_TO_MEM | MEM_RINGBUF:
9450 	case PTR_TO_BUF:
9451 	case PTR_TO_BUF | MEM_RDONLY:
9452 	case PTR_TO_ARENA:
9453 	case SCALAR_VALUE:
9454 		return 0;
9455 	/* All the rest must be rejected, except PTR_TO_BTF_ID which allows
9456 	 * fixed offset.
9457 	 */
9458 	case PTR_TO_BTF_ID:
9459 	case PTR_TO_BTF_ID | MEM_ALLOC:
9460 	case PTR_TO_BTF_ID | PTR_TRUSTED:
9461 	case PTR_TO_BTF_ID | MEM_RCU:
9462 	case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF:
9463 	case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF | MEM_RCU:
9464 		/* When referenced PTR_TO_BTF_ID is passed to release function,
9465 		 * its fixed offset must be 0. In the other cases, fixed offset
9466 		 * can be non-zero. This was already checked above. So pass
9467 		 * fixed_off_ok as true to allow fixed offset for all other
9468 		 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we
9469 		 * still need to do checks instead of returning.
9470 		 */
9471 		return __check_ptr_off_reg(env, reg, regno, true);
9472 	default:
9473 		return __check_ptr_off_reg(env, reg, regno, false);
9474 	}
9475 }
9476 
9477 static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env,
9478 						const struct bpf_func_proto *fn,
9479 						struct bpf_reg_state *regs)
9480 {
9481 	struct bpf_reg_state *state = NULL;
9482 	int i;
9483 
9484 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++)
9485 		if (arg_type_is_dynptr(fn->arg_type[i])) {
9486 			if (state) {
9487 				verbose(env, "verifier internal error: multiple dynptr args\n");
9488 				return NULL;
9489 			}
9490 			state = &regs[BPF_REG_1 + i];
9491 		}
9492 
9493 	if (!state)
9494 		verbose(env, "verifier internal error: no dynptr arg found\n");
9495 
9496 	return state;
9497 }
9498 
9499 static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
9500 {
9501 	struct bpf_func_state *state = func(env, reg);
9502 	int spi;
9503 
9504 	if (reg->type == CONST_PTR_TO_DYNPTR)
9505 		return reg->id;
9506 	spi = dynptr_get_spi(env, reg);
9507 	if (spi < 0)
9508 		return spi;
9509 	return state->stack[spi].spilled_ptr.id;
9510 }
9511 
9512 static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
9513 {
9514 	struct bpf_func_state *state = func(env, reg);
9515 	int spi;
9516 
9517 	if (reg->type == CONST_PTR_TO_DYNPTR)
9518 		return reg->ref_obj_id;
9519 	spi = dynptr_get_spi(env, reg);
9520 	if (spi < 0)
9521 		return spi;
9522 	return state->stack[spi].spilled_ptr.ref_obj_id;
9523 }
9524 
9525 static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env,
9526 					    struct bpf_reg_state *reg)
9527 {
9528 	struct bpf_func_state *state = func(env, reg);
9529 	int spi;
9530 
9531 	if (reg->type == CONST_PTR_TO_DYNPTR)
9532 		return reg->dynptr.type;
9533 
9534 	spi = __get_spi(reg->off);
9535 	if (spi < 0) {
9536 		verbose(env, "verifier internal error: invalid spi when querying dynptr type\n");
9537 		return BPF_DYNPTR_TYPE_INVALID;
9538 	}
9539 
9540 	return state->stack[spi].spilled_ptr.dynptr.type;
9541 }
9542 
9543 static int check_reg_const_str(struct bpf_verifier_env *env,
9544 			       struct bpf_reg_state *reg, u32 regno)
9545 {
9546 	struct bpf_map *map = reg->map_ptr;
9547 	int err;
9548 	int map_off;
9549 	u64 map_addr;
9550 	char *str_ptr;
9551 
9552 	if (reg->type != PTR_TO_MAP_VALUE)
9553 		return -EINVAL;
9554 
9555 	if (!bpf_map_is_rdonly(map)) {
9556 		verbose(env, "R%d does not point to a readonly map'\n", regno);
9557 		return -EACCES;
9558 	}
9559 
9560 	if (!tnum_is_const(reg->var_off)) {
9561 		verbose(env, "R%d is not a constant address'\n", regno);
9562 		return -EACCES;
9563 	}
9564 
9565 	if (!map->ops->map_direct_value_addr) {
9566 		verbose(env, "no direct value access support for this map type\n");
9567 		return -EACCES;
9568 	}
9569 
9570 	err = check_map_access(env, regno, reg->off,
9571 			       map->value_size - reg->off, false,
9572 			       ACCESS_HELPER);
9573 	if (err)
9574 		return err;
9575 
9576 	map_off = reg->off + reg->var_off.value;
9577 	err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
9578 	if (err) {
9579 		verbose(env, "direct value access on string failed\n");
9580 		return err;
9581 	}
9582 
9583 	str_ptr = (char *)(long)(map_addr);
9584 	if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
9585 		verbose(env, "string is not zero-terminated\n");
9586 		return -EINVAL;
9587 	}
9588 	return 0;
9589 }
9590 
9591 /* Returns constant key value in `value` if possible, else negative error */
9592 static int get_constant_map_key(struct bpf_verifier_env *env,
9593 				struct bpf_reg_state *key,
9594 				u32 key_size,
9595 				s64 *value)
9596 {
9597 	struct bpf_func_state *state = func(env, key);
9598 	struct bpf_reg_state *reg;
9599 	int slot, spi, off;
9600 	int spill_size = 0;
9601 	int zero_size = 0;
9602 	int stack_off;
9603 	int i, err;
9604 	u8 *stype;
9605 
9606 	if (!env->bpf_capable)
9607 		return -EOPNOTSUPP;
9608 	if (key->type != PTR_TO_STACK)
9609 		return -EOPNOTSUPP;
9610 	if (!tnum_is_const(key->var_off))
9611 		return -EOPNOTSUPP;
9612 
9613 	stack_off = key->off + key->var_off.value;
9614 	slot = -stack_off - 1;
9615 	spi = slot / BPF_REG_SIZE;
9616 	off = slot % BPF_REG_SIZE;
9617 	stype = state->stack[spi].slot_type;
9618 
9619 	/* First handle precisely tracked STACK_ZERO */
9620 	for (i = off; i >= 0 && stype[i] == STACK_ZERO; i--)
9621 		zero_size++;
9622 	if (zero_size >= key_size) {
9623 		*value = 0;
9624 		return 0;
9625 	}
9626 
9627 	/* Check that stack contains a scalar spill of expected size */
9628 	if (!is_spilled_scalar_reg(&state->stack[spi]))
9629 		return -EOPNOTSUPP;
9630 	for (i = off; i >= 0 && stype[i] == STACK_SPILL; i--)
9631 		spill_size++;
9632 	if (spill_size != key_size)
9633 		return -EOPNOTSUPP;
9634 
9635 	reg = &state->stack[spi].spilled_ptr;
9636 	if (!tnum_is_const(reg->var_off))
9637 		/* Stack value not statically known */
9638 		return -EOPNOTSUPP;
9639 
9640 	/* We are relying on a constant value. So mark as precise
9641 	 * to prevent pruning on it.
9642 	 */
9643 	bt_set_frame_slot(&env->bt, key->frameno, spi);
9644 	err = mark_chain_precision_batch(env, env->cur_state);
9645 	if (err < 0)
9646 		return err;
9647 
9648 	*value = reg->var_off.value;
9649 	return 0;
9650 }
9651 
9652 static bool can_elide_value_nullness(enum bpf_map_type type);
9653 
9654 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
9655 			  struct bpf_call_arg_meta *meta,
9656 			  const struct bpf_func_proto *fn,
9657 			  int insn_idx)
9658 {
9659 	u32 regno = BPF_REG_1 + arg;
9660 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
9661 	enum bpf_arg_type arg_type = fn->arg_type[arg];
9662 	enum bpf_reg_type type = reg->type;
9663 	u32 *arg_btf_id = NULL;
9664 	u32 key_size;
9665 	int err = 0;
9666 
9667 	if (arg_type == ARG_DONTCARE)
9668 		return 0;
9669 
9670 	err = check_reg_arg(env, regno, SRC_OP);
9671 	if (err)
9672 		return err;
9673 
9674 	if (arg_type == ARG_ANYTHING) {
9675 		if (is_pointer_value(env, regno)) {
9676 			verbose(env, "R%d leaks addr into helper function\n",
9677 				regno);
9678 			return -EACCES;
9679 		}
9680 		return 0;
9681 	}
9682 
9683 	if (type_is_pkt_pointer(type) &&
9684 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
9685 		verbose(env, "helper access to the packet is not allowed\n");
9686 		return -EACCES;
9687 	}
9688 
9689 	if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) {
9690 		err = resolve_map_arg_type(env, meta, &arg_type);
9691 		if (err)
9692 			return err;
9693 	}
9694 
9695 	if (register_is_null(reg) && type_may_be_null(arg_type))
9696 		/* A NULL register has a SCALAR_VALUE type, so skip
9697 		 * type checking.
9698 		 */
9699 		goto skip_type_check;
9700 
9701 	/* arg_btf_id and arg_size are in a union. */
9702 	if (base_type(arg_type) == ARG_PTR_TO_BTF_ID ||
9703 	    base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK)
9704 		arg_btf_id = fn->arg_btf_id[arg];
9705 
9706 	err = check_reg_type(env, regno, arg_type, arg_btf_id, meta);
9707 	if (err)
9708 		return err;
9709 
9710 	err = check_func_arg_reg_off(env, reg, regno, arg_type);
9711 	if (err)
9712 		return err;
9713 
9714 skip_type_check:
9715 	if (arg_type_is_release(arg_type)) {
9716 		if (arg_type_is_dynptr(arg_type)) {
9717 			struct bpf_func_state *state = func(env, reg);
9718 			int spi;
9719 
9720 			/* Only dynptr created on stack can be released, thus
9721 			 * the get_spi and stack state checks for spilled_ptr
9722 			 * should only be done before process_dynptr_func for
9723 			 * PTR_TO_STACK.
9724 			 */
9725 			if (reg->type == PTR_TO_STACK) {
9726 				spi = dynptr_get_spi(env, reg);
9727 				if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) {
9728 					verbose(env, "arg %d is an unacquired reference\n", regno);
9729 					return -EINVAL;
9730 				}
9731 			} else {
9732 				verbose(env, "cannot release unowned const bpf_dynptr\n");
9733 				return -EINVAL;
9734 			}
9735 		} else if (!reg->ref_obj_id && !register_is_null(reg)) {
9736 			verbose(env, "R%d must be referenced when passed to release function\n",
9737 				regno);
9738 			return -EINVAL;
9739 		}
9740 		if (meta->release_regno) {
9741 			verifier_bug(env, "more than one release argument");
9742 			return -EFAULT;
9743 		}
9744 		meta->release_regno = regno;
9745 	}
9746 
9747 	if (reg->ref_obj_id && base_type(arg_type) != ARG_KPTR_XCHG_DEST) {
9748 		if (meta->ref_obj_id) {
9749 			verbose(env, "more than one arg with ref_obj_id R%d %u %u",
9750 				regno, reg->ref_obj_id,
9751 				meta->ref_obj_id);
9752 			return -EACCES;
9753 		}
9754 		meta->ref_obj_id = reg->ref_obj_id;
9755 	}
9756 
9757 	switch (base_type(arg_type)) {
9758 	case ARG_CONST_MAP_PTR:
9759 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
9760 		if (meta->map_ptr) {
9761 			/* Use map_uid (which is unique id of inner map) to reject:
9762 			 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
9763 			 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
9764 			 * if (inner_map1 && inner_map2) {
9765 			 *     timer = bpf_map_lookup_elem(inner_map1);
9766 			 *     if (timer)
9767 			 *         // mismatch would have been allowed
9768 			 *         bpf_timer_init(timer, inner_map2);
9769 			 * }
9770 			 *
9771 			 * Comparing map_ptr is enough to distinguish normal and outer maps.
9772 			 */
9773 			if (meta->map_ptr != reg->map_ptr ||
9774 			    meta->map_uid != reg->map_uid) {
9775 				verbose(env,
9776 					"timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
9777 					meta->map_uid, reg->map_uid);
9778 				return -EINVAL;
9779 			}
9780 		}
9781 		meta->map_ptr = reg->map_ptr;
9782 		meta->map_uid = reg->map_uid;
9783 		break;
9784 	case ARG_PTR_TO_MAP_KEY:
9785 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
9786 		 * check that [key, key + map->key_size) are within
9787 		 * stack limits and initialized
9788 		 */
9789 		if (!meta->map_ptr) {
9790 			/* in function declaration map_ptr must come before
9791 			 * map_key, so that it's verified and known before
9792 			 * we have to check map_key here. Otherwise it means
9793 			 * that kernel subsystem misconfigured verifier
9794 			 */
9795 			verifier_bug(env, "invalid map_ptr to access map->key");
9796 			return -EFAULT;
9797 		}
9798 		key_size = meta->map_ptr->key_size;
9799 		err = check_helper_mem_access(env, regno, key_size, BPF_READ, false, NULL);
9800 		if (err)
9801 			return err;
9802 		if (can_elide_value_nullness(meta->map_ptr->map_type)) {
9803 			err = get_constant_map_key(env, reg, key_size, &meta->const_map_key);
9804 			if (err < 0) {
9805 				meta->const_map_key = -1;
9806 				if (err == -EOPNOTSUPP)
9807 					err = 0;
9808 				else
9809 					return err;
9810 			}
9811 		}
9812 		break;
9813 	case ARG_PTR_TO_MAP_VALUE:
9814 		if (type_may_be_null(arg_type) && register_is_null(reg))
9815 			return 0;
9816 
9817 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
9818 		 * check [value, value + map->value_size) validity
9819 		 */
9820 		if (!meta->map_ptr) {
9821 			/* kernel subsystem misconfigured verifier */
9822 			verifier_bug(env, "invalid map_ptr to access map->value");
9823 			return -EFAULT;
9824 		}
9825 		meta->raw_mode = arg_type & MEM_UNINIT;
9826 		err = check_helper_mem_access(env, regno, meta->map_ptr->value_size,
9827 					      arg_type & MEM_WRITE ? BPF_WRITE : BPF_READ,
9828 					      false, meta);
9829 		break;
9830 	case ARG_PTR_TO_PERCPU_BTF_ID:
9831 		if (!reg->btf_id) {
9832 			verbose(env, "Helper has invalid btf_id in R%d\n", regno);
9833 			return -EACCES;
9834 		}
9835 		meta->ret_btf = reg->btf;
9836 		meta->ret_btf_id = reg->btf_id;
9837 		break;
9838 	case ARG_PTR_TO_SPIN_LOCK:
9839 		if (in_rbtree_lock_required_cb(env)) {
9840 			verbose(env, "can't spin_{lock,unlock} in rbtree cb\n");
9841 			return -EACCES;
9842 		}
9843 		if (meta->func_id == BPF_FUNC_spin_lock) {
9844 			err = process_spin_lock(env, regno, PROCESS_SPIN_LOCK);
9845 			if (err)
9846 				return err;
9847 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
9848 			err = process_spin_lock(env, regno, 0);
9849 			if (err)
9850 				return err;
9851 		} else {
9852 			verifier_bug(env, "spin lock arg on unexpected helper");
9853 			return -EFAULT;
9854 		}
9855 		break;
9856 	case ARG_PTR_TO_TIMER:
9857 		err = process_timer_func(env, regno, meta);
9858 		if (err)
9859 			return err;
9860 		break;
9861 	case ARG_PTR_TO_FUNC:
9862 		meta->subprogno = reg->subprogno;
9863 		break;
9864 	case ARG_PTR_TO_MEM:
9865 		/* The access to this pointer is only checked when we hit the
9866 		 * next is_mem_size argument below.
9867 		 */
9868 		meta->raw_mode = arg_type & MEM_UNINIT;
9869 		if (arg_type & MEM_FIXED_SIZE) {
9870 			err = check_helper_mem_access(env, regno, fn->arg_size[arg],
9871 						      arg_type & MEM_WRITE ? BPF_WRITE : BPF_READ,
9872 						      false, meta);
9873 			if (err)
9874 				return err;
9875 			if (arg_type & MEM_ALIGNED)
9876 				err = check_ptr_alignment(env, reg, 0, fn->arg_size[arg], true);
9877 		}
9878 		break;
9879 	case ARG_CONST_SIZE:
9880 		err = check_mem_size_reg(env, reg, regno,
9881 					 fn->arg_type[arg - 1] & MEM_WRITE ?
9882 					 BPF_WRITE : BPF_READ,
9883 					 false, meta);
9884 		break;
9885 	case ARG_CONST_SIZE_OR_ZERO:
9886 		err = check_mem_size_reg(env, reg, regno,
9887 					 fn->arg_type[arg - 1] & MEM_WRITE ?
9888 					 BPF_WRITE : BPF_READ,
9889 					 true, meta);
9890 		break;
9891 	case ARG_PTR_TO_DYNPTR:
9892 		err = process_dynptr_func(env, regno, insn_idx, arg_type, 0);
9893 		if (err)
9894 			return err;
9895 		break;
9896 	case ARG_CONST_ALLOC_SIZE_OR_ZERO:
9897 		if (!tnum_is_const(reg->var_off)) {
9898 			verbose(env, "R%d is not a known constant'\n",
9899 				regno);
9900 			return -EACCES;
9901 		}
9902 		meta->mem_size = reg->var_off.value;
9903 		err = mark_chain_precision(env, regno);
9904 		if (err)
9905 			return err;
9906 		break;
9907 	case ARG_PTR_TO_CONST_STR:
9908 	{
9909 		err = check_reg_const_str(env, reg, regno);
9910 		if (err)
9911 			return err;
9912 		break;
9913 	}
9914 	case ARG_KPTR_XCHG_DEST:
9915 		err = process_kptr_func(env, regno, meta);
9916 		if (err)
9917 			return err;
9918 		break;
9919 	}
9920 
9921 	return err;
9922 }
9923 
9924 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
9925 {
9926 	enum bpf_attach_type eatype = env->prog->expected_attach_type;
9927 	enum bpf_prog_type type = resolve_prog_type(env->prog);
9928 
9929 	if (func_id != BPF_FUNC_map_update_elem &&
9930 	    func_id != BPF_FUNC_map_delete_elem)
9931 		return false;
9932 
9933 	/* It's not possible to get access to a locked struct sock in these
9934 	 * contexts, so updating is safe.
9935 	 */
9936 	switch (type) {
9937 	case BPF_PROG_TYPE_TRACING:
9938 		if (eatype == BPF_TRACE_ITER)
9939 			return true;
9940 		break;
9941 	case BPF_PROG_TYPE_SOCK_OPS:
9942 		/* map_update allowed only via dedicated helpers with event type checks */
9943 		if (func_id == BPF_FUNC_map_delete_elem)
9944 			return true;
9945 		break;
9946 	case BPF_PROG_TYPE_SOCKET_FILTER:
9947 	case BPF_PROG_TYPE_SCHED_CLS:
9948 	case BPF_PROG_TYPE_SCHED_ACT:
9949 	case BPF_PROG_TYPE_XDP:
9950 	case BPF_PROG_TYPE_SK_REUSEPORT:
9951 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
9952 	case BPF_PROG_TYPE_SK_LOOKUP:
9953 		return true;
9954 	default:
9955 		break;
9956 	}
9957 
9958 	verbose(env, "cannot update sockmap in this context\n");
9959 	return false;
9960 }
9961 
9962 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
9963 {
9964 	return env->prog->jit_requested &&
9965 	       bpf_jit_supports_subprog_tailcalls();
9966 }
9967 
9968 static int check_map_func_compatibility(struct bpf_verifier_env *env,
9969 					struct bpf_map *map, int func_id)
9970 {
9971 	if (!map)
9972 		return 0;
9973 
9974 	/* We need a two way check, first is from map perspective ... */
9975 	switch (map->map_type) {
9976 	case BPF_MAP_TYPE_PROG_ARRAY:
9977 		if (func_id != BPF_FUNC_tail_call)
9978 			goto error;
9979 		break;
9980 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
9981 		if (func_id != BPF_FUNC_perf_event_read &&
9982 		    func_id != BPF_FUNC_perf_event_output &&
9983 		    func_id != BPF_FUNC_skb_output &&
9984 		    func_id != BPF_FUNC_perf_event_read_value &&
9985 		    func_id != BPF_FUNC_xdp_output)
9986 			goto error;
9987 		break;
9988 	case BPF_MAP_TYPE_RINGBUF:
9989 		if (func_id != BPF_FUNC_ringbuf_output &&
9990 		    func_id != BPF_FUNC_ringbuf_reserve &&
9991 		    func_id != BPF_FUNC_ringbuf_query &&
9992 		    func_id != BPF_FUNC_ringbuf_reserve_dynptr &&
9993 		    func_id != BPF_FUNC_ringbuf_submit_dynptr &&
9994 		    func_id != BPF_FUNC_ringbuf_discard_dynptr)
9995 			goto error;
9996 		break;
9997 	case BPF_MAP_TYPE_USER_RINGBUF:
9998 		if (func_id != BPF_FUNC_user_ringbuf_drain)
9999 			goto error;
10000 		break;
10001 	case BPF_MAP_TYPE_STACK_TRACE:
10002 		if (func_id != BPF_FUNC_get_stackid)
10003 			goto error;
10004 		break;
10005 	case BPF_MAP_TYPE_CGROUP_ARRAY:
10006 		if (func_id != BPF_FUNC_skb_under_cgroup &&
10007 		    func_id != BPF_FUNC_current_task_under_cgroup)
10008 			goto error;
10009 		break;
10010 	case BPF_MAP_TYPE_CGROUP_STORAGE:
10011 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
10012 		if (func_id != BPF_FUNC_get_local_storage)
10013 			goto error;
10014 		break;
10015 	case BPF_MAP_TYPE_DEVMAP:
10016 	case BPF_MAP_TYPE_DEVMAP_HASH:
10017 		if (func_id != BPF_FUNC_redirect_map &&
10018 		    func_id != BPF_FUNC_map_lookup_elem)
10019 			goto error;
10020 		break;
10021 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
10022 	 * appear.
10023 	 */
10024 	case BPF_MAP_TYPE_CPUMAP:
10025 		if (func_id != BPF_FUNC_redirect_map)
10026 			goto error;
10027 		break;
10028 	case BPF_MAP_TYPE_XSKMAP:
10029 		if (func_id != BPF_FUNC_redirect_map &&
10030 		    func_id != BPF_FUNC_map_lookup_elem)
10031 			goto error;
10032 		break;
10033 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
10034 	case BPF_MAP_TYPE_HASH_OF_MAPS:
10035 		if (func_id != BPF_FUNC_map_lookup_elem)
10036 			goto error;
10037 		break;
10038 	case BPF_MAP_TYPE_SOCKMAP:
10039 		if (func_id != BPF_FUNC_sk_redirect_map &&
10040 		    func_id != BPF_FUNC_sock_map_update &&
10041 		    func_id != BPF_FUNC_msg_redirect_map &&
10042 		    func_id != BPF_FUNC_sk_select_reuseport &&
10043 		    func_id != BPF_FUNC_map_lookup_elem &&
10044 		    !may_update_sockmap(env, func_id))
10045 			goto error;
10046 		break;
10047 	case BPF_MAP_TYPE_SOCKHASH:
10048 		if (func_id != BPF_FUNC_sk_redirect_hash &&
10049 		    func_id != BPF_FUNC_sock_hash_update &&
10050 		    func_id != BPF_FUNC_msg_redirect_hash &&
10051 		    func_id != BPF_FUNC_sk_select_reuseport &&
10052 		    func_id != BPF_FUNC_map_lookup_elem &&
10053 		    !may_update_sockmap(env, func_id))
10054 			goto error;
10055 		break;
10056 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
10057 		if (func_id != BPF_FUNC_sk_select_reuseport)
10058 			goto error;
10059 		break;
10060 	case BPF_MAP_TYPE_QUEUE:
10061 	case BPF_MAP_TYPE_STACK:
10062 		if (func_id != BPF_FUNC_map_peek_elem &&
10063 		    func_id != BPF_FUNC_map_pop_elem &&
10064 		    func_id != BPF_FUNC_map_push_elem)
10065 			goto error;
10066 		break;
10067 	case BPF_MAP_TYPE_SK_STORAGE:
10068 		if (func_id != BPF_FUNC_sk_storage_get &&
10069 		    func_id != BPF_FUNC_sk_storage_delete &&
10070 		    func_id != BPF_FUNC_kptr_xchg)
10071 			goto error;
10072 		break;
10073 	case BPF_MAP_TYPE_INODE_STORAGE:
10074 		if (func_id != BPF_FUNC_inode_storage_get &&
10075 		    func_id != BPF_FUNC_inode_storage_delete &&
10076 		    func_id != BPF_FUNC_kptr_xchg)
10077 			goto error;
10078 		break;
10079 	case BPF_MAP_TYPE_TASK_STORAGE:
10080 		if (func_id != BPF_FUNC_task_storage_get &&
10081 		    func_id != BPF_FUNC_task_storage_delete &&
10082 		    func_id != BPF_FUNC_kptr_xchg)
10083 			goto error;
10084 		break;
10085 	case BPF_MAP_TYPE_CGRP_STORAGE:
10086 		if (func_id != BPF_FUNC_cgrp_storage_get &&
10087 		    func_id != BPF_FUNC_cgrp_storage_delete &&
10088 		    func_id != BPF_FUNC_kptr_xchg)
10089 			goto error;
10090 		break;
10091 	case BPF_MAP_TYPE_BLOOM_FILTER:
10092 		if (func_id != BPF_FUNC_map_peek_elem &&
10093 		    func_id != BPF_FUNC_map_push_elem)
10094 			goto error;
10095 		break;
10096 	default:
10097 		break;
10098 	}
10099 
10100 	/* ... and second from the function itself. */
10101 	switch (func_id) {
10102 	case BPF_FUNC_tail_call:
10103 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
10104 			goto error;
10105 		if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
10106 			verbose(env, "mixing of tail_calls and bpf-to-bpf calls is not supported\n");
10107 			return -EINVAL;
10108 		}
10109 		break;
10110 	case BPF_FUNC_perf_event_read:
10111 	case BPF_FUNC_perf_event_output:
10112 	case BPF_FUNC_perf_event_read_value:
10113 	case BPF_FUNC_skb_output:
10114 	case BPF_FUNC_xdp_output:
10115 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
10116 			goto error;
10117 		break;
10118 	case BPF_FUNC_ringbuf_output:
10119 	case BPF_FUNC_ringbuf_reserve:
10120 	case BPF_FUNC_ringbuf_query:
10121 	case BPF_FUNC_ringbuf_reserve_dynptr:
10122 	case BPF_FUNC_ringbuf_submit_dynptr:
10123 	case BPF_FUNC_ringbuf_discard_dynptr:
10124 		if (map->map_type != BPF_MAP_TYPE_RINGBUF)
10125 			goto error;
10126 		break;
10127 	case BPF_FUNC_user_ringbuf_drain:
10128 		if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF)
10129 			goto error;
10130 		break;
10131 	case BPF_FUNC_get_stackid:
10132 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
10133 			goto error;
10134 		break;
10135 	case BPF_FUNC_current_task_under_cgroup:
10136 	case BPF_FUNC_skb_under_cgroup:
10137 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
10138 			goto error;
10139 		break;
10140 	case BPF_FUNC_redirect_map:
10141 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
10142 		    map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
10143 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
10144 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
10145 			goto error;
10146 		break;
10147 	case BPF_FUNC_sk_redirect_map:
10148 	case BPF_FUNC_msg_redirect_map:
10149 	case BPF_FUNC_sock_map_update:
10150 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
10151 			goto error;
10152 		break;
10153 	case BPF_FUNC_sk_redirect_hash:
10154 	case BPF_FUNC_msg_redirect_hash:
10155 	case BPF_FUNC_sock_hash_update:
10156 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
10157 			goto error;
10158 		break;
10159 	case BPF_FUNC_get_local_storage:
10160 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
10161 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
10162 			goto error;
10163 		break;
10164 	case BPF_FUNC_sk_select_reuseport:
10165 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
10166 		    map->map_type != BPF_MAP_TYPE_SOCKMAP &&
10167 		    map->map_type != BPF_MAP_TYPE_SOCKHASH)
10168 			goto error;
10169 		break;
10170 	case BPF_FUNC_map_pop_elem:
10171 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
10172 		    map->map_type != BPF_MAP_TYPE_STACK)
10173 			goto error;
10174 		break;
10175 	case BPF_FUNC_map_peek_elem:
10176 	case BPF_FUNC_map_push_elem:
10177 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
10178 		    map->map_type != BPF_MAP_TYPE_STACK &&
10179 		    map->map_type != BPF_MAP_TYPE_BLOOM_FILTER)
10180 			goto error;
10181 		break;
10182 	case BPF_FUNC_map_lookup_percpu_elem:
10183 		if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY &&
10184 		    map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
10185 		    map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH)
10186 			goto error;
10187 		break;
10188 	case BPF_FUNC_sk_storage_get:
10189 	case BPF_FUNC_sk_storage_delete:
10190 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
10191 			goto error;
10192 		break;
10193 	case BPF_FUNC_inode_storage_get:
10194 	case BPF_FUNC_inode_storage_delete:
10195 		if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
10196 			goto error;
10197 		break;
10198 	case BPF_FUNC_task_storage_get:
10199 	case BPF_FUNC_task_storage_delete:
10200 		if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
10201 			goto error;
10202 		break;
10203 	case BPF_FUNC_cgrp_storage_get:
10204 	case BPF_FUNC_cgrp_storage_delete:
10205 		if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE)
10206 			goto error;
10207 		break;
10208 	default:
10209 		break;
10210 	}
10211 
10212 	return 0;
10213 error:
10214 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
10215 		map->map_type, func_id_name(func_id), func_id);
10216 	return -EINVAL;
10217 }
10218 
10219 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
10220 {
10221 	int count = 0;
10222 
10223 	if (arg_type_is_raw_mem(fn->arg1_type))
10224 		count++;
10225 	if (arg_type_is_raw_mem(fn->arg2_type))
10226 		count++;
10227 	if (arg_type_is_raw_mem(fn->arg3_type))
10228 		count++;
10229 	if (arg_type_is_raw_mem(fn->arg4_type))
10230 		count++;
10231 	if (arg_type_is_raw_mem(fn->arg5_type))
10232 		count++;
10233 
10234 	/* We only support one arg being in raw mode at the moment,
10235 	 * which is sufficient for the helper functions we have
10236 	 * right now.
10237 	 */
10238 	return count <= 1;
10239 }
10240 
10241 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg)
10242 {
10243 	bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE;
10244 	bool has_size = fn->arg_size[arg] != 0;
10245 	bool is_next_size = false;
10246 
10247 	if (arg + 1 < ARRAY_SIZE(fn->arg_type))
10248 		is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]);
10249 
10250 	if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM)
10251 		return is_next_size;
10252 
10253 	return has_size == is_next_size || is_next_size == is_fixed;
10254 }
10255 
10256 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
10257 {
10258 	/* bpf_xxx(..., buf, len) call will access 'len'
10259 	 * bytes from memory 'buf'. Both arg types need
10260 	 * to be paired, so make sure there's no buggy
10261 	 * helper function specification.
10262 	 */
10263 	if (arg_type_is_mem_size(fn->arg1_type) ||
10264 	    check_args_pair_invalid(fn, 0) ||
10265 	    check_args_pair_invalid(fn, 1) ||
10266 	    check_args_pair_invalid(fn, 2) ||
10267 	    check_args_pair_invalid(fn, 3) ||
10268 	    check_args_pair_invalid(fn, 4))
10269 		return false;
10270 
10271 	return true;
10272 }
10273 
10274 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
10275 {
10276 	int i;
10277 
10278 	for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
10279 		if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID)
10280 			return !!fn->arg_btf_id[i];
10281 		if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK)
10282 			return fn->arg_btf_id[i] == BPF_PTR_POISON;
10283 		if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] &&
10284 		    /* arg_btf_id and arg_size are in a union. */
10285 		    (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM ||
10286 		     !(fn->arg_type[i] & MEM_FIXED_SIZE)))
10287 			return false;
10288 	}
10289 
10290 	return true;
10291 }
10292 
10293 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
10294 {
10295 	return check_raw_mode_ok(fn) &&
10296 	       check_arg_pair_ok(fn) &&
10297 	       check_btf_id_ok(fn) ? 0 : -EINVAL;
10298 }
10299 
10300 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
10301  * are now invalid, so turn them into unknown SCALAR_VALUE.
10302  *
10303  * This also applies to dynptr slices belonging to skb and xdp dynptrs,
10304  * since these slices point to packet data.
10305  */
10306 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
10307 {
10308 	struct bpf_func_state *state;
10309 	struct bpf_reg_state *reg;
10310 
10311 	bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
10312 		if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg))
10313 			mark_reg_invalid(env, reg);
10314 	}));
10315 }
10316 
10317 enum {
10318 	AT_PKT_END = -1,
10319 	BEYOND_PKT_END = -2,
10320 };
10321 
10322 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
10323 {
10324 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
10325 	struct bpf_reg_state *reg = &state->regs[regn];
10326 
10327 	if (reg->type != PTR_TO_PACKET)
10328 		/* PTR_TO_PACKET_META is not supported yet */
10329 		return;
10330 
10331 	/* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
10332 	 * How far beyond pkt_end it goes is unknown.
10333 	 * if (!range_open) it's the case of pkt >= pkt_end
10334 	 * if (range_open) it's the case of pkt > pkt_end
10335 	 * hence this pointer is at least 1 byte bigger than pkt_end
10336 	 */
10337 	if (range_open)
10338 		reg->range = BEYOND_PKT_END;
10339 	else
10340 		reg->range = AT_PKT_END;
10341 }
10342 
10343 static int release_reference_nomark(struct bpf_verifier_state *state, int ref_obj_id)
10344 {
10345 	int i;
10346 
10347 	for (i = 0; i < state->acquired_refs; i++) {
10348 		if (state->refs[i].type != REF_TYPE_PTR)
10349 			continue;
10350 		if (state->refs[i].id == ref_obj_id) {
10351 			release_reference_state(state, i);
10352 			return 0;
10353 		}
10354 	}
10355 	return -EINVAL;
10356 }
10357 
10358 /* The pointer with the specified id has released its reference to kernel
10359  * resources. Identify all copies of the same pointer and clear the reference.
10360  *
10361  * This is the release function corresponding to acquire_reference(). Idempotent.
10362  */
10363 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id)
10364 {
10365 	struct bpf_verifier_state *vstate = env->cur_state;
10366 	struct bpf_func_state *state;
10367 	struct bpf_reg_state *reg;
10368 	int err;
10369 
10370 	err = release_reference_nomark(vstate, ref_obj_id);
10371 	if (err)
10372 		return err;
10373 
10374 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
10375 		if (reg->ref_obj_id == ref_obj_id)
10376 			mark_reg_invalid(env, reg);
10377 	}));
10378 
10379 	return 0;
10380 }
10381 
10382 static void invalidate_non_owning_refs(struct bpf_verifier_env *env)
10383 {
10384 	struct bpf_func_state *unused;
10385 	struct bpf_reg_state *reg;
10386 
10387 	bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
10388 		if (type_is_non_owning_ref(reg->type))
10389 			mark_reg_invalid(env, reg);
10390 	}));
10391 }
10392 
10393 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
10394 				    struct bpf_reg_state *regs)
10395 {
10396 	int i;
10397 
10398 	/* after the call registers r0 - r5 were scratched */
10399 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
10400 		mark_reg_not_init(env, regs, caller_saved[i]);
10401 		__check_reg_arg(env, regs, caller_saved[i], DST_OP_NO_MARK);
10402 	}
10403 }
10404 
10405 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
10406 				   struct bpf_func_state *caller,
10407 				   struct bpf_func_state *callee,
10408 				   int insn_idx);
10409 
10410 static int set_callee_state(struct bpf_verifier_env *env,
10411 			    struct bpf_func_state *caller,
10412 			    struct bpf_func_state *callee, int insn_idx);
10413 
10414 static int setup_func_entry(struct bpf_verifier_env *env, int subprog, int callsite,
10415 			    set_callee_state_fn set_callee_state_cb,
10416 			    struct bpf_verifier_state *state)
10417 {
10418 	struct bpf_func_state *caller, *callee;
10419 	int err;
10420 
10421 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
10422 		verbose(env, "the call stack of %d frames is too deep\n",
10423 			state->curframe + 2);
10424 		return -E2BIG;
10425 	}
10426 
10427 	if (state->frame[state->curframe + 1]) {
10428 		verifier_bug(env, "Frame %d already allocated", state->curframe + 1);
10429 		return -EFAULT;
10430 	}
10431 
10432 	caller = state->frame[state->curframe];
10433 	callee = kzalloc(sizeof(*callee), GFP_KERNEL_ACCOUNT);
10434 	if (!callee)
10435 		return -ENOMEM;
10436 	state->frame[state->curframe + 1] = callee;
10437 
10438 	/* callee cannot access r0, r6 - r9 for reading and has to write
10439 	 * into its own stack before reading from it.
10440 	 * callee can read/write into caller's stack
10441 	 */
10442 	init_func_state(env, callee,
10443 			/* remember the callsite, it will be used by bpf_exit */
10444 			callsite,
10445 			state->curframe + 1 /* frameno within this callchain */,
10446 			subprog /* subprog number within this prog */);
10447 	err = set_callee_state_cb(env, caller, callee, callsite);
10448 	if (err)
10449 		goto err_out;
10450 
10451 	/* only increment it after check_reg_arg() finished */
10452 	state->curframe++;
10453 
10454 	return 0;
10455 
10456 err_out:
10457 	free_func_state(callee);
10458 	state->frame[state->curframe + 1] = NULL;
10459 	return err;
10460 }
10461 
10462 static int btf_check_func_arg_match(struct bpf_verifier_env *env, int subprog,
10463 				    const struct btf *btf,
10464 				    struct bpf_reg_state *regs)
10465 {
10466 	struct bpf_subprog_info *sub = subprog_info(env, subprog);
10467 	struct bpf_verifier_log *log = &env->log;
10468 	u32 i;
10469 	int ret;
10470 
10471 	ret = btf_prepare_func_args(env, subprog);
10472 	if (ret)
10473 		return ret;
10474 
10475 	/* check that BTF function arguments match actual types that the
10476 	 * verifier sees.
10477 	 */
10478 	for (i = 0; i < sub->arg_cnt; i++) {
10479 		u32 regno = i + 1;
10480 		struct bpf_reg_state *reg = &regs[regno];
10481 		struct bpf_subprog_arg_info *arg = &sub->args[i];
10482 
10483 		if (arg->arg_type == ARG_ANYTHING) {
10484 			if (reg->type != SCALAR_VALUE) {
10485 				bpf_log(log, "R%d is not a scalar\n", regno);
10486 				return -EINVAL;
10487 			}
10488 		} else if (arg->arg_type & PTR_UNTRUSTED) {
10489 			/*
10490 			 * Anything is allowed for untrusted arguments, as these are
10491 			 * read-only and probe read instructions would protect against
10492 			 * invalid memory access.
10493 			 */
10494 		} else if (arg->arg_type == ARG_PTR_TO_CTX) {
10495 			ret = check_func_arg_reg_off(env, reg, regno, ARG_DONTCARE);
10496 			if (ret < 0)
10497 				return ret;
10498 			/* If function expects ctx type in BTF check that caller
10499 			 * is passing PTR_TO_CTX.
10500 			 */
10501 			if (reg->type != PTR_TO_CTX) {
10502 				bpf_log(log, "arg#%d expects pointer to ctx\n", i);
10503 				return -EINVAL;
10504 			}
10505 		} else if (base_type(arg->arg_type) == ARG_PTR_TO_MEM) {
10506 			ret = check_func_arg_reg_off(env, reg, regno, ARG_DONTCARE);
10507 			if (ret < 0)
10508 				return ret;
10509 			if (check_mem_reg(env, reg, regno, arg->mem_size))
10510 				return -EINVAL;
10511 			if (!(arg->arg_type & PTR_MAYBE_NULL) && (reg->type & PTR_MAYBE_NULL)) {
10512 				bpf_log(log, "arg#%d is expected to be non-NULL\n", i);
10513 				return -EINVAL;
10514 			}
10515 		} else if (base_type(arg->arg_type) == ARG_PTR_TO_ARENA) {
10516 			/*
10517 			 * Can pass any value and the kernel won't crash, but
10518 			 * only PTR_TO_ARENA or SCALAR make sense. Everything
10519 			 * else is a bug in the bpf program. Point it out to
10520 			 * the user at the verification time instead of
10521 			 * run-time debug nightmare.
10522 			 */
10523 			if (reg->type != PTR_TO_ARENA && reg->type != SCALAR_VALUE) {
10524 				bpf_log(log, "R%d is not a pointer to arena or scalar.\n", regno);
10525 				return -EINVAL;
10526 			}
10527 		} else if (arg->arg_type == (ARG_PTR_TO_DYNPTR | MEM_RDONLY)) {
10528 			ret = check_func_arg_reg_off(env, reg, regno, ARG_PTR_TO_DYNPTR);
10529 			if (ret)
10530 				return ret;
10531 
10532 			ret = process_dynptr_func(env, regno, -1, arg->arg_type, 0);
10533 			if (ret)
10534 				return ret;
10535 		} else if (base_type(arg->arg_type) == ARG_PTR_TO_BTF_ID) {
10536 			struct bpf_call_arg_meta meta;
10537 			int err;
10538 
10539 			if (register_is_null(reg) && type_may_be_null(arg->arg_type))
10540 				continue;
10541 
10542 			memset(&meta, 0, sizeof(meta)); /* leave func_id as zero */
10543 			err = check_reg_type(env, regno, arg->arg_type, &arg->btf_id, &meta);
10544 			err = err ?: check_func_arg_reg_off(env, reg, regno, arg->arg_type);
10545 			if (err)
10546 				return err;
10547 		} else {
10548 			verifier_bug(env, "unrecognized arg#%d type %d", i, arg->arg_type);
10549 			return -EFAULT;
10550 		}
10551 	}
10552 
10553 	return 0;
10554 }
10555 
10556 /* Compare BTF of a function call with given bpf_reg_state.
10557  * Returns:
10558  * EFAULT - there is a verifier bug. Abort verification.
10559  * EINVAL - there is a type mismatch or BTF is not available.
10560  * 0 - BTF matches with what bpf_reg_state expects.
10561  * Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
10562  */
10563 static int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog,
10564 				  struct bpf_reg_state *regs)
10565 {
10566 	struct bpf_prog *prog = env->prog;
10567 	struct btf *btf = prog->aux->btf;
10568 	u32 btf_id;
10569 	int err;
10570 
10571 	if (!prog->aux->func_info)
10572 		return -EINVAL;
10573 
10574 	btf_id = prog->aux->func_info[subprog].type_id;
10575 	if (!btf_id)
10576 		return -EFAULT;
10577 
10578 	if (prog->aux->func_info_aux[subprog].unreliable)
10579 		return -EINVAL;
10580 
10581 	err = btf_check_func_arg_match(env, subprog, btf, regs);
10582 	/* Compiler optimizations can remove arguments from static functions
10583 	 * or mismatched type can be passed into a global function.
10584 	 * In such cases mark the function as unreliable from BTF point of view.
10585 	 */
10586 	if (err)
10587 		prog->aux->func_info_aux[subprog].unreliable = true;
10588 	return err;
10589 }
10590 
10591 static int push_callback_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
10592 			      int insn_idx, int subprog,
10593 			      set_callee_state_fn set_callee_state_cb)
10594 {
10595 	struct bpf_verifier_state *state = env->cur_state, *callback_state;
10596 	struct bpf_func_state *caller, *callee;
10597 	int err;
10598 
10599 	caller = state->frame[state->curframe];
10600 	err = btf_check_subprog_call(env, subprog, caller->regs);
10601 	if (err == -EFAULT)
10602 		return err;
10603 
10604 	/* set_callee_state is used for direct subprog calls, but we are
10605 	 * interested in validating only BPF helpers that can call subprogs as
10606 	 * callbacks
10607 	 */
10608 	env->subprog_info[subprog].is_cb = true;
10609 	if (bpf_pseudo_kfunc_call(insn) &&
10610 	    !is_callback_calling_kfunc(insn->imm)) {
10611 		verifier_bug(env, "kfunc %s#%d not marked as callback-calling",
10612 			     func_id_name(insn->imm), insn->imm);
10613 		return -EFAULT;
10614 	} else if (!bpf_pseudo_kfunc_call(insn) &&
10615 		   !is_callback_calling_function(insn->imm)) { /* helper */
10616 		verifier_bug(env, "helper %s#%d not marked as callback-calling",
10617 			     func_id_name(insn->imm), insn->imm);
10618 		return -EFAULT;
10619 	}
10620 
10621 	if (is_async_callback_calling_insn(insn)) {
10622 		struct bpf_verifier_state *async_cb;
10623 
10624 		/* there is no real recursion here. timer and workqueue callbacks are async */
10625 		env->subprog_info[subprog].is_async_cb = true;
10626 		async_cb = push_async_cb(env, env->subprog_info[subprog].start,
10627 					 insn_idx, subprog,
10628 					 is_bpf_wq_set_callback_impl_kfunc(insn->imm));
10629 		if (!async_cb)
10630 			return -EFAULT;
10631 		callee = async_cb->frame[0];
10632 		callee->async_entry_cnt = caller->async_entry_cnt + 1;
10633 
10634 		/* Convert bpf_timer_set_callback() args into timer callback args */
10635 		err = set_callee_state_cb(env, caller, callee, insn_idx);
10636 		if (err)
10637 			return err;
10638 
10639 		return 0;
10640 	}
10641 
10642 	/* for callback functions enqueue entry to callback and
10643 	 * proceed with next instruction within current frame.
10644 	 */
10645 	callback_state = push_stack(env, env->subprog_info[subprog].start, insn_idx, false);
10646 	if (!callback_state)
10647 		return -ENOMEM;
10648 
10649 	err = setup_func_entry(env, subprog, insn_idx, set_callee_state_cb,
10650 			       callback_state);
10651 	if (err)
10652 		return err;
10653 
10654 	callback_state->callback_unroll_depth++;
10655 	callback_state->frame[callback_state->curframe - 1]->callback_depth++;
10656 	caller->callback_depth = 0;
10657 	return 0;
10658 }
10659 
10660 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
10661 			   int *insn_idx)
10662 {
10663 	struct bpf_verifier_state *state = env->cur_state;
10664 	struct bpf_func_state *caller;
10665 	int err, subprog, target_insn;
10666 
10667 	target_insn = *insn_idx + insn->imm + 1;
10668 	subprog = find_subprog(env, target_insn);
10669 	if (verifier_bug_if(subprog < 0, env, "target of func call at insn %d is not a program",
10670 			    target_insn))
10671 		return -EFAULT;
10672 
10673 	caller = state->frame[state->curframe];
10674 	err = btf_check_subprog_call(env, subprog, caller->regs);
10675 	if (err == -EFAULT)
10676 		return err;
10677 	if (subprog_is_global(env, subprog)) {
10678 		const char *sub_name = subprog_name(env, subprog);
10679 
10680 		if (env->cur_state->active_locks) {
10681 			verbose(env, "global function calls are not allowed while holding a lock,\n"
10682 				     "use static function instead\n");
10683 			return -EINVAL;
10684 		}
10685 
10686 		if (env->subprog_info[subprog].might_sleep &&
10687 		    (env->cur_state->active_rcu_lock || env->cur_state->active_preempt_locks ||
10688 		     env->cur_state->active_irq_id || !in_sleepable(env))) {
10689 			verbose(env, "global functions that may sleep are not allowed in non-sleepable context,\n"
10690 				     "i.e., in a RCU/IRQ/preempt-disabled section, or in\n"
10691 				     "a non-sleepable BPF program context\n");
10692 			return -EINVAL;
10693 		}
10694 
10695 		if (err) {
10696 			verbose(env, "Caller passes invalid args into func#%d ('%s')\n",
10697 				subprog, sub_name);
10698 			return err;
10699 		}
10700 
10701 		verbose(env, "Func#%d ('%s') is global and assumed valid.\n",
10702 			subprog, sub_name);
10703 		if (env->subprog_info[subprog].changes_pkt_data)
10704 			clear_all_pkt_pointers(env);
10705 		/* mark global subprog for verifying after main prog */
10706 		subprog_aux(env, subprog)->called = true;
10707 		clear_caller_saved_regs(env, caller->regs);
10708 
10709 		/* All global functions return a 64-bit SCALAR_VALUE */
10710 		mark_reg_unknown(env, caller->regs, BPF_REG_0);
10711 		caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
10712 
10713 		/* continue with next insn after call */
10714 		return 0;
10715 	}
10716 
10717 	/* for regular function entry setup new frame and continue
10718 	 * from that frame.
10719 	 */
10720 	err = setup_func_entry(env, subprog, *insn_idx, set_callee_state, state);
10721 	if (err)
10722 		return err;
10723 
10724 	clear_caller_saved_regs(env, caller->regs);
10725 
10726 	/* and go analyze first insn of the callee */
10727 	*insn_idx = env->subprog_info[subprog].start - 1;
10728 
10729 	if (env->log.level & BPF_LOG_LEVEL) {
10730 		verbose(env, "caller:\n");
10731 		print_verifier_state(env, state, caller->frameno, true);
10732 		verbose(env, "callee:\n");
10733 		print_verifier_state(env, state, state->curframe, true);
10734 	}
10735 
10736 	return 0;
10737 }
10738 
10739 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
10740 				   struct bpf_func_state *caller,
10741 				   struct bpf_func_state *callee)
10742 {
10743 	/* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
10744 	 *      void *callback_ctx, u64 flags);
10745 	 * callback_fn(struct bpf_map *map, void *key, void *value,
10746 	 *      void *callback_ctx);
10747 	 */
10748 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
10749 
10750 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
10751 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
10752 	callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
10753 
10754 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
10755 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
10756 	callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
10757 
10758 	/* pointer to stack or null */
10759 	callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
10760 
10761 	/* unused */
10762 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
10763 	return 0;
10764 }
10765 
10766 static int set_callee_state(struct bpf_verifier_env *env,
10767 			    struct bpf_func_state *caller,
10768 			    struct bpf_func_state *callee, int insn_idx)
10769 {
10770 	int i;
10771 
10772 	/* copy r1 - r5 args that callee can access.  The copy includes parent
10773 	 * pointers, which connects us up to the liveness chain
10774 	 */
10775 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
10776 		callee->regs[i] = caller->regs[i];
10777 	return 0;
10778 }
10779 
10780 static int set_map_elem_callback_state(struct bpf_verifier_env *env,
10781 				       struct bpf_func_state *caller,
10782 				       struct bpf_func_state *callee,
10783 				       int insn_idx)
10784 {
10785 	struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
10786 	struct bpf_map *map;
10787 	int err;
10788 
10789 	/* valid map_ptr and poison value does not matter */
10790 	map = insn_aux->map_ptr_state.map_ptr;
10791 	if (!map->ops->map_set_for_each_callback_args ||
10792 	    !map->ops->map_for_each_callback) {
10793 		verbose(env, "callback function not allowed for map\n");
10794 		return -ENOTSUPP;
10795 	}
10796 
10797 	err = map->ops->map_set_for_each_callback_args(env, caller, callee);
10798 	if (err)
10799 		return err;
10800 
10801 	callee->in_callback_fn = true;
10802 	callee->callback_ret_range = retval_range(0, 1);
10803 	return 0;
10804 }
10805 
10806 static int set_loop_callback_state(struct bpf_verifier_env *env,
10807 				   struct bpf_func_state *caller,
10808 				   struct bpf_func_state *callee,
10809 				   int insn_idx)
10810 {
10811 	/* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx,
10812 	 *	    u64 flags);
10813 	 * callback_fn(u64 index, void *callback_ctx);
10814 	 */
10815 	callee->regs[BPF_REG_1].type = SCALAR_VALUE;
10816 	callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
10817 
10818 	/* unused */
10819 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
10820 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
10821 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
10822 
10823 	callee->in_callback_fn = true;
10824 	callee->callback_ret_range = retval_range(0, 1);
10825 	return 0;
10826 }
10827 
10828 static int set_timer_callback_state(struct bpf_verifier_env *env,
10829 				    struct bpf_func_state *caller,
10830 				    struct bpf_func_state *callee,
10831 				    int insn_idx)
10832 {
10833 	struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr;
10834 
10835 	/* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
10836 	 * callback_fn(struct bpf_map *map, void *key, void *value);
10837 	 */
10838 	callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP;
10839 	__mark_reg_known_zero(&callee->regs[BPF_REG_1]);
10840 	callee->regs[BPF_REG_1].map_ptr = map_ptr;
10841 
10842 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
10843 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
10844 	callee->regs[BPF_REG_2].map_ptr = map_ptr;
10845 
10846 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
10847 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
10848 	callee->regs[BPF_REG_3].map_ptr = map_ptr;
10849 
10850 	/* unused */
10851 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
10852 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
10853 	callee->in_async_callback_fn = true;
10854 	callee->callback_ret_range = retval_range(0, 1);
10855 	return 0;
10856 }
10857 
10858 static int set_find_vma_callback_state(struct bpf_verifier_env *env,
10859 				       struct bpf_func_state *caller,
10860 				       struct bpf_func_state *callee,
10861 				       int insn_idx)
10862 {
10863 	/* bpf_find_vma(struct task_struct *task, u64 addr,
10864 	 *               void *callback_fn, void *callback_ctx, u64 flags)
10865 	 * (callback_fn)(struct task_struct *task,
10866 	 *               struct vm_area_struct *vma, void *callback_ctx);
10867 	 */
10868 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
10869 
10870 	callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID;
10871 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
10872 	callee->regs[BPF_REG_2].btf =  btf_vmlinux;
10873 	callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA];
10874 
10875 	/* pointer to stack or null */
10876 	callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4];
10877 
10878 	/* unused */
10879 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
10880 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
10881 	callee->in_callback_fn = true;
10882 	callee->callback_ret_range = retval_range(0, 1);
10883 	return 0;
10884 }
10885 
10886 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env,
10887 					   struct bpf_func_state *caller,
10888 					   struct bpf_func_state *callee,
10889 					   int insn_idx)
10890 {
10891 	/* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void
10892 	 *			  callback_ctx, u64 flags);
10893 	 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx);
10894 	 */
10895 	__mark_reg_not_init(env, &callee->regs[BPF_REG_0]);
10896 	mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL);
10897 	callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
10898 
10899 	/* unused */
10900 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
10901 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
10902 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
10903 
10904 	callee->in_callback_fn = true;
10905 	callee->callback_ret_range = retval_range(0, 1);
10906 	return 0;
10907 }
10908 
10909 static int set_rbtree_add_callback_state(struct bpf_verifier_env *env,
10910 					 struct bpf_func_state *caller,
10911 					 struct bpf_func_state *callee,
10912 					 int insn_idx)
10913 {
10914 	/* void bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node,
10915 	 *                     bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b));
10916 	 *
10917 	 * 'struct bpf_rb_node *node' arg to bpf_rbtree_add_impl is the same PTR_TO_BTF_ID w/ offset
10918 	 * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd
10919 	 * by this point, so look at 'root'
10920 	 */
10921 	struct btf_field *field;
10922 
10923 	field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off,
10924 				      BPF_RB_ROOT);
10925 	if (!field || !field->graph_root.value_btf_id)
10926 		return -EFAULT;
10927 
10928 	mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root);
10929 	ref_set_non_owning(env, &callee->regs[BPF_REG_1]);
10930 	mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root);
10931 	ref_set_non_owning(env, &callee->regs[BPF_REG_2]);
10932 
10933 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
10934 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
10935 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
10936 	callee->in_callback_fn = true;
10937 	callee->callback_ret_range = retval_range(0, 1);
10938 	return 0;
10939 }
10940 
10941 static bool is_rbtree_lock_required_kfunc(u32 btf_id);
10942 
10943 /* Are we currently verifying the callback for a rbtree helper that must
10944  * be called with lock held? If so, no need to complain about unreleased
10945  * lock
10946  */
10947 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env)
10948 {
10949 	struct bpf_verifier_state *state = env->cur_state;
10950 	struct bpf_insn *insn = env->prog->insnsi;
10951 	struct bpf_func_state *callee;
10952 	int kfunc_btf_id;
10953 
10954 	if (!state->curframe)
10955 		return false;
10956 
10957 	callee = state->frame[state->curframe];
10958 
10959 	if (!callee->in_callback_fn)
10960 		return false;
10961 
10962 	kfunc_btf_id = insn[callee->callsite].imm;
10963 	return is_rbtree_lock_required_kfunc(kfunc_btf_id);
10964 }
10965 
10966 static bool retval_range_within(struct bpf_retval_range range, const struct bpf_reg_state *reg,
10967 				bool return_32bit)
10968 {
10969 	if (return_32bit)
10970 		return range.minval <= reg->s32_min_value && reg->s32_max_value <= range.maxval;
10971 	else
10972 		return range.minval <= reg->smin_value && reg->smax_value <= range.maxval;
10973 }
10974 
10975 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
10976 {
10977 	struct bpf_verifier_state *state = env->cur_state, *prev_st;
10978 	struct bpf_func_state *caller, *callee;
10979 	struct bpf_reg_state *r0;
10980 	bool in_callback_fn;
10981 	int err;
10982 
10983 	callee = state->frame[state->curframe];
10984 	r0 = &callee->regs[BPF_REG_0];
10985 	if (r0->type == PTR_TO_STACK) {
10986 		/* technically it's ok to return caller's stack pointer
10987 		 * (or caller's caller's pointer) back to the caller,
10988 		 * since these pointers are valid. Only current stack
10989 		 * pointer will be invalid as soon as function exits,
10990 		 * but let's be conservative
10991 		 */
10992 		verbose(env, "cannot return stack pointer to the caller\n");
10993 		return -EINVAL;
10994 	}
10995 
10996 	caller = state->frame[state->curframe - 1];
10997 	if (callee->in_callback_fn) {
10998 		if (r0->type != SCALAR_VALUE) {
10999 			verbose(env, "R0 not a scalar value\n");
11000 			return -EACCES;
11001 		}
11002 
11003 		/* we are going to rely on register's precise value */
11004 		err = mark_reg_read(env, r0, r0->parent, REG_LIVE_READ64);
11005 		err = err ?: mark_chain_precision(env, BPF_REG_0);
11006 		if (err)
11007 			return err;
11008 
11009 		/* enforce R0 return value range, and bpf_callback_t returns 64bit */
11010 		if (!retval_range_within(callee->callback_ret_range, r0, false)) {
11011 			verbose_invalid_scalar(env, r0, callee->callback_ret_range,
11012 					       "At callback return", "R0");
11013 			return -EINVAL;
11014 		}
11015 		if (!calls_callback(env, callee->callsite)) {
11016 			verifier_bug(env, "in callback at %d, callsite %d !calls_callback",
11017 				     *insn_idx, callee->callsite);
11018 			return -EFAULT;
11019 		}
11020 	} else {
11021 		/* return to the caller whatever r0 had in the callee */
11022 		caller->regs[BPF_REG_0] = *r0;
11023 	}
11024 
11025 	/* for callbacks like bpf_loop or bpf_for_each_map_elem go back to callsite,
11026 	 * there function call logic would reschedule callback visit. If iteration
11027 	 * converges is_state_visited() would prune that visit eventually.
11028 	 */
11029 	in_callback_fn = callee->in_callback_fn;
11030 	if (in_callback_fn)
11031 		*insn_idx = callee->callsite;
11032 	else
11033 		*insn_idx = callee->callsite + 1;
11034 
11035 	if (env->log.level & BPF_LOG_LEVEL) {
11036 		verbose(env, "returning from callee:\n");
11037 		print_verifier_state(env, state, callee->frameno, true);
11038 		verbose(env, "to caller at %d:\n", *insn_idx);
11039 		print_verifier_state(env, state, caller->frameno, true);
11040 	}
11041 	/* clear everything in the callee. In case of exceptional exits using
11042 	 * bpf_throw, this will be done by copy_verifier_state for extra frames. */
11043 	free_func_state(callee);
11044 	state->frame[state->curframe--] = NULL;
11045 
11046 	/* for callbacks widen imprecise scalars to make programs like below verify:
11047 	 *
11048 	 *   struct ctx { int i; }
11049 	 *   void cb(int idx, struct ctx *ctx) { ctx->i++; ... }
11050 	 *   ...
11051 	 *   struct ctx = { .i = 0; }
11052 	 *   bpf_loop(100, cb, &ctx, 0);
11053 	 *
11054 	 * This is similar to what is done in process_iter_next_call() for open
11055 	 * coded iterators.
11056 	 */
11057 	prev_st = in_callback_fn ? find_prev_entry(env, state, *insn_idx) : NULL;
11058 	if (prev_st) {
11059 		err = widen_imprecise_scalars(env, prev_st, state);
11060 		if (err)
11061 			return err;
11062 	}
11063 	return 0;
11064 }
11065 
11066 static int do_refine_retval_range(struct bpf_verifier_env *env,
11067 				  struct bpf_reg_state *regs, int ret_type,
11068 				  int func_id,
11069 				  struct bpf_call_arg_meta *meta)
11070 {
11071 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
11072 
11073 	if (ret_type != RET_INTEGER)
11074 		return 0;
11075 
11076 	switch (func_id) {
11077 	case BPF_FUNC_get_stack:
11078 	case BPF_FUNC_get_task_stack:
11079 	case BPF_FUNC_probe_read_str:
11080 	case BPF_FUNC_probe_read_kernel_str:
11081 	case BPF_FUNC_probe_read_user_str:
11082 		ret_reg->smax_value = meta->msize_max_value;
11083 		ret_reg->s32_max_value = meta->msize_max_value;
11084 		ret_reg->smin_value = -MAX_ERRNO;
11085 		ret_reg->s32_min_value = -MAX_ERRNO;
11086 		reg_bounds_sync(ret_reg);
11087 		break;
11088 	case BPF_FUNC_get_smp_processor_id:
11089 		ret_reg->umax_value = nr_cpu_ids - 1;
11090 		ret_reg->u32_max_value = nr_cpu_ids - 1;
11091 		ret_reg->smax_value = nr_cpu_ids - 1;
11092 		ret_reg->s32_max_value = nr_cpu_ids - 1;
11093 		ret_reg->umin_value = 0;
11094 		ret_reg->u32_min_value = 0;
11095 		ret_reg->smin_value = 0;
11096 		ret_reg->s32_min_value = 0;
11097 		reg_bounds_sync(ret_reg);
11098 		break;
11099 	}
11100 
11101 	return reg_bounds_sanity_check(env, ret_reg, "retval");
11102 }
11103 
11104 static int
11105 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
11106 		int func_id, int insn_idx)
11107 {
11108 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
11109 	struct bpf_map *map = meta->map_ptr;
11110 
11111 	if (func_id != BPF_FUNC_tail_call &&
11112 	    func_id != BPF_FUNC_map_lookup_elem &&
11113 	    func_id != BPF_FUNC_map_update_elem &&
11114 	    func_id != BPF_FUNC_map_delete_elem &&
11115 	    func_id != BPF_FUNC_map_push_elem &&
11116 	    func_id != BPF_FUNC_map_pop_elem &&
11117 	    func_id != BPF_FUNC_map_peek_elem &&
11118 	    func_id != BPF_FUNC_for_each_map_elem &&
11119 	    func_id != BPF_FUNC_redirect_map &&
11120 	    func_id != BPF_FUNC_map_lookup_percpu_elem)
11121 		return 0;
11122 
11123 	if (map == NULL) {
11124 		verifier_bug(env, "expected map for helper call");
11125 		return -EFAULT;
11126 	}
11127 
11128 	/* In case of read-only, some additional restrictions
11129 	 * need to be applied in order to prevent altering the
11130 	 * state of the map from program side.
11131 	 */
11132 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
11133 	    (func_id == BPF_FUNC_map_delete_elem ||
11134 	     func_id == BPF_FUNC_map_update_elem ||
11135 	     func_id == BPF_FUNC_map_push_elem ||
11136 	     func_id == BPF_FUNC_map_pop_elem)) {
11137 		verbose(env, "write into map forbidden\n");
11138 		return -EACCES;
11139 	}
11140 
11141 	if (!aux->map_ptr_state.map_ptr)
11142 		bpf_map_ptr_store(aux, meta->map_ptr,
11143 				  !meta->map_ptr->bypass_spec_v1, false);
11144 	else if (aux->map_ptr_state.map_ptr != meta->map_ptr)
11145 		bpf_map_ptr_store(aux, meta->map_ptr,
11146 				  !meta->map_ptr->bypass_spec_v1, true);
11147 	return 0;
11148 }
11149 
11150 static int
11151 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
11152 		int func_id, int insn_idx)
11153 {
11154 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
11155 	struct bpf_reg_state *regs = cur_regs(env), *reg;
11156 	struct bpf_map *map = meta->map_ptr;
11157 	u64 val, max;
11158 	int err;
11159 
11160 	if (func_id != BPF_FUNC_tail_call)
11161 		return 0;
11162 	if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
11163 		verbose(env, "expected prog array map for tail call");
11164 		return -EINVAL;
11165 	}
11166 
11167 	reg = &regs[BPF_REG_3];
11168 	val = reg->var_off.value;
11169 	max = map->max_entries;
11170 
11171 	if (!(is_reg_const(reg, false) && val < max)) {
11172 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
11173 		return 0;
11174 	}
11175 
11176 	err = mark_chain_precision(env, BPF_REG_3);
11177 	if (err)
11178 		return err;
11179 	if (bpf_map_key_unseen(aux))
11180 		bpf_map_key_store(aux, val);
11181 	else if (!bpf_map_key_poisoned(aux) &&
11182 		  bpf_map_key_immediate(aux) != val)
11183 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
11184 	return 0;
11185 }
11186 
11187 static int check_reference_leak(struct bpf_verifier_env *env, bool exception_exit)
11188 {
11189 	struct bpf_verifier_state *state = env->cur_state;
11190 	enum bpf_prog_type type = resolve_prog_type(env->prog);
11191 	struct bpf_reg_state *reg = reg_state(env, BPF_REG_0);
11192 	bool refs_lingering = false;
11193 	int i;
11194 
11195 	if (!exception_exit && cur_func(env)->frameno)
11196 		return 0;
11197 
11198 	for (i = 0; i < state->acquired_refs; i++) {
11199 		if (state->refs[i].type != REF_TYPE_PTR)
11200 			continue;
11201 		/* Allow struct_ops programs to return a referenced kptr back to
11202 		 * kernel. Type checks are performed later in check_return_code.
11203 		 */
11204 		if (type == BPF_PROG_TYPE_STRUCT_OPS && !exception_exit &&
11205 		    reg->ref_obj_id == state->refs[i].id)
11206 			continue;
11207 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
11208 			state->refs[i].id, state->refs[i].insn_idx);
11209 		refs_lingering = true;
11210 	}
11211 	return refs_lingering ? -EINVAL : 0;
11212 }
11213 
11214 static int check_resource_leak(struct bpf_verifier_env *env, bool exception_exit, bool check_lock, const char *prefix)
11215 {
11216 	int err;
11217 
11218 	if (check_lock && env->cur_state->active_locks) {
11219 		verbose(env, "%s cannot be used inside bpf_spin_lock-ed region\n", prefix);
11220 		return -EINVAL;
11221 	}
11222 
11223 	err = check_reference_leak(env, exception_exit);
11224 	if (err) {
11225 		verbose(env, "%s would lead to reference leak\n", prefix);
11226 		return err;
11227 	}
11228 
11229 	if (check_lock && env->cur_state->active_irq_id) {
11230 		verbose(env, "%s cannot be used inside bpf_local_irq_save-ed region\n", prefix);
11231 		return -EINVAL;
11232 	}
11233 
11234 	if (check_lock && env->cur_state->active_rcu_lock) {
11235 		verbose(env, "%s cannot be used inside bpf_rcu_read_lock-ed region\n", prefix);
11236 		return -EINVAL;
11237 	}
11238 
11239 	if (check_lock && env->cur_state->active_preempt_locks) {
11240 		verbose(env, "%s cannot be used inside bpf_preempt_disable-ed region\n", prefix);
11241 		return -EINVAL;
11242 	}
11243 
11244 	return 0;
11245 }
11246 
11247 static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
11248 				   struct bpf_reg_state *regs)
11249 {
11250 	struct bpf_reg_state *fmt_reg = &regs[BPF_REG_3];
11251 	struct bpf_reg_state *data_len_reg = &regs[BPF_REG_5];
11252 	struct bpf_map *fmt_map = fmt_reg->map_ptr;
11253 	struct bpf_bprintf_data data = {};
11254 	int err, fmt_map_off, num_args;
11255 	u64 fmt_addr;
11256 	char *fmt;
11257 
11258 	/* data must be an array of u64 */
11259 	if (data_len_reg->var_off.value % 8)
11260 		return -EINVAL;
11261 	num_args = data_len_reg->var_off.value / 8;
11262 
11263 	/* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
11264 	 * and map_direct_value_addr is set.
11265 	 */
11266 	fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
11267 	err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
11268 						  fmt_map_off);
11269 	if (err) {
11270 		verbose(env, "failed to retrieve map value address\n");
11271 		return -EFAULT;
11272 	}
11273 	fmt = (char *)(long)fmt_addr + fmt_map_off;
11274 
11275 	/* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
11276 	 * can focus on validating the format specifiers.
11277 	 */
11278 	err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data);
11279 	if (err < 0)
11280 		verbose(env, "Invalid format string\n");
11281 
11282 	return err;
11283 }
11284 
11285 static int check_get_func_ip(struct bpf_verifier_env *env)
11286 {
11287 	enum bpf_prog_type type = resolve_prog_type(env->prog);
11288 	int func_id = BPF_FUNC_get_func_ip;
11289 
11290 	if (type == BPF_PROG_TYPE_TRACING) {
11291 		if (!bpf_prog_has_trampoline(env->prog)) {
11292 			verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n",
11293 				func_id_name(func_id), func_id);
11294 			return -ENOTSUPP;
11295 		}
11296 		return 0;
11297 	} else if (type == BPF_PROG_TYPE_KPROBE) {
11298 		return 0;
11299 	}
11300 
11301 	verbose(env, "func %s#%d not supported for program type %d\n",
11302 		func_id_name(func_id), func_id, type);
11303 	return -ENOTSUPP;
11304 }
11305 
11306 static struct bpf_insn_aux_data *cur_aux(const struct bpf_verifier_env *env)
11307 {
11308 	return &env->insn_aux_data[env->insn_idx];
11309 }
11310 
11311 static bool loop_flag_is_zero(struct bpf_verifier_env *env)
11312 {
11313 	struct bpf_reg_state *regs = cur_regs(env);
11314 	struct bpf_reg_state *reg = &regs[BPF_REG_4];
11315 	bool reg_is_null = register_is_null(reg);
11316 
11317 	if (reg_is_null)
11318 		mark_chain_precision(env, BPF_REG_4);
11319 
11320 	return reg_is_null;
11321 }
11322 
11323 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno)
11324 {
11325 	struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state;
11326 
11327 	if (!state->initialized) {
11328 		state->initialized = 1;
11329 		state->fit_for_inline = loop_flag_is_zero(env);
11330 		state->callback_subprogno = subprogno;
11331 		return;
11332 	}
11333 
11334 	if (!state->fit_for_inline)
11335 		return;
11336 
11337 	state->fit_for_inline = (loop_flag_is_zero(env) &&
11338 				 state->callback_subprogno == subprogno);
11339 }
11340 
11341 /* Returns whether or not the given map type can potentially elide
11342  * lookup return value nullness check. This is possible if the key
11343  * is statically known.
11344  */
11345 static bool can_elide_value_nullness(enum bpf_map_type type)
11346 {
11347 	switch (type) {
11348 	case BPF_MAP_TYPE_ARRAY:
11349 	case BPF_MAP_TYPE_PERCPU_ARRAY:
11350 		return true;
11351 	default:
11352 		return false;
11353 	}
11354 }
11355 
11356 static int get_helper_proto(struct bpf_verifier_env *env, int func_id,
11357 			    const struct bpf_func_proto **ptr)
11358 {
11359 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID)
11360 		return -ERANGE;
11361 
11362 	if (!env->ops->get_func_proto)
11363 		return -EINVAL;
11364 
11365 	*ptr = env->ops->get_func_proto(func_id, env->prog);
11366 	return *ptr && (*ptr)->func ? 0 : -EINVAL;
11367 }
11368 
11369 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
11370 			     int *insn_idx_p)
11371 {
11372 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
11373 	bool returns_cpu_specific_alloc_ptr = false;
11374 	const struct bpf_func_proto *fn = NULL;
11375 	enum bpf_return_type ret_type;
11376 	enum bpf_type_flag ret_flag;
11377 	struct bpf_reg_state *regs;
11378 	struct bpf_call_arg_meta meta;
11379 	int insn_idx = *insn_idx_p;
11380 	bool changes_data;
11381 	int i, err, func_id;
11382 
11383 	/* find function prototype */
11384 	func_id = insn->imm;
11385 	err = get_helper_proto(env, insn->imm, &fn);
11386 	if (err == -ERANGE) {
11387 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id), func_id);
11388 		return -EINVAL;
11389 	}
11390 
11391 	if (err) {
11392 		verbose(env, "program of this type cannot use helper %s#%d\n",
11393 			func_id_name(func_id), func_id);
11394 		return err;
11395 	}
11396 
11397 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
11398 	if (!env->prog->gpl_compatible && fn->gpl_only) {
11399 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
11400 		return -EINVAL;
11401 	}
11402 
11403 	if (fn->allowed && !fn->allowed(env->prog)) {
11404 		verbose(env, "helper call is not allowed in probe\n");
11405 		return -EINVAL;
11406 	}
11407 
11408 	if (!in_sleepable(env) && fn->might_sleep) {
11409 		verbose(env, "helper call might sleep in a non-sleepable prog\n");
11410 		return -EINVAL;
11411 	}
11412 
11413 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
11414 	changes_data = bpf_helper_changes_pkt_data(func_id);
11415 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
11416 		verifier_bug(env, "func %s#%d: r1 != ctx", func_id_name(func_id), func_id);
11417 		return -EFAULT;
11418 	}
11419 
11420 	memset(&meta, 0, sizeof(meta));
11421 	meta.pkt_access = fn->pkt_access;
11422 
11423 	err = check_func_proto(fn, func_id);
11424 	if (err) {
11425 		verifier_bug(env, "incorrect func proto %s#%d", func_id_name(func_id), func_id);
11426 		return err;
11427 	}
11428 
11429 	if (env->cur_state->active_rcu_lock) {
11430 		if (fn->might_sleep) {
11431 			verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n",
11432 				func_id_name(func_id), func_id);
11433 			return -EINVAL;
11434 		}
11435 
11436 		if (in_sleepable(env) && is_storage_get_function(func_id))
11437 			env->insn_aux_data[insn_idx].storage_get_func_atomic = true;
11438 	}
11439 
11440 	if (env->cur_state->active_preempt_locks) {
11441 		if (fn->might_sleep) {
11442 			verbose(env, "sleepable helper %s#%d in non-preemptible region\n",
11443 				func_id_name(func_id), func_id);
11444 			return -EINVAL;
11445 		}
11446 
11447 		if (in_sleepable(env) && is_storage_get_function(func_id))
11448 			env->insn_aux_data[insn_idx].storage_get_func_atomic = true;
11449 	}
11450 
11451 	if (env->cur_state->active_irq_id) {
11452 		if (fn->might_sleep) {
11453 			verbose(env, "sleepable helper %s#%d in IRQ-disabled region\n",
11454 				func_id_name(func_id), func_id);
11455 			return -EINVAL;
11456 		}
11457 
11458 		if (in_sleepable(env) && is_storage_get_function(func_id))
11459 			env->insn_aux_data[insn_idx].storage_get_func_atomic = true;
11460 	}
11461 
11462 	meta.func_id = func_id;
11463 	/* check args */
11464 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
11465 		err = check_func_arg(env, i, &meta, fn, insn_idx);
11466 		if (err)
11467 			return err;
11468 	}
11469 
11470 	err = record_func_map(env, &meta, func_id, insn_idx);
11471 	if (err)
11472 		return err;
11473 
11474 	err = record_func_key(env, &meta, func_id, insn_idx);
11475 	if (err)
11476 		return err;
11477 
11478 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
11479 	 * is inferred from register state.
11480 	 */
11481 	for (i = 0; i < meta.access_size; i++) {
11482 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
11483 				       BPF_WRITE, -1, false, false);
11484 		if (err)
11485 			return err;
11486 	}
11487 
11488 	regs = cur_regs(env);
11489 
11490 	if (meta.release_regno) {
11491 		err = -EINVAL;
11492 		/* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot
11493 		 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr
11494 		 * is safe to do directly.
11495 		 */
11496 		if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) {
11497 			if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) {
11498 				verifier_bug(env, "CONST_PTR_TO_DYNPTR cannot be released");
11499 				return -EFAULT;
11500 			}
11501 			err = unmark_stack_slots_dynptr(env, &regs[meta.release_regno]);
11502 		} else if (func_id == BPF_FUNC_kptr_xchg && meta.ref_obj_id) {
11503 			u32 ref_obj_id = meta.ref_obj_id;
11504 			bool in_rcu = in_rcu_cs(env);
11505 			struct bpf_func_state *state;
11506 			struct bpf_reg_state *reg;
11507 
11508 			err = release_reference_nomark(env->cur_state, ref_obj_id);
11509 			if (!err) {
11510 				bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
11511 					if (reg->ref_obj_id == ref_obj_id) {
11512 						if (in_rcu && (reg->type & MEM_ALLOC) && (reg->type & MEM_PERCPU)) {
11513 							reg->ref_obj_id = 0;
11514 							reg->type &= ~MEM_ALLOC;
11515 							reg->type |= MEM_RCU;
11516 						} else {
11517 							mark_reg_invalid(env, reg);
11518 						}
11519 					}
11520 				}));
11521 			}
11522 		} else if (meta.ref_obj_id) {
11523 			err = release_reference(env, meta.ref_obj_id);
11524 		} else if (register_is_null(&regs[meta.release_regno])) {
11525 			/* meta.ref_obj_id can only be 0 if register that is meant to be
11526 			 * released is NULL, which must be > R0.
11527 			 */
11528 			err = 0;
11529 		}
11530 		if (err) {
11531 			verbose(env, "func %s#%d reference has not been acquired before\n",
11532 				func_id_name(func_id), func_id);
11533 			return err;
11534 		}
11535 	}
11536 
11537 	switch (func_id) {
11538 	case BPF_FUNC_tail_call:
11539 		err = check_resource_leak(env, false, true, "tail_call");
11540 		if (err)
11541 			return err;
11542 		break;
11543 	case BPF_FUNC_get_local_storage:
11544 		/* check that flags argument in get_local_storage(map, flags) is 0,
11545 		 * this is required because get_local_storage() can't return an error.
11546 		 */
11547 		if (!register_is_null(&regs[BPF_REG_2])) {
11548 			verbose(env, "get_local_storage() doesn't support non-zero flags\n");
11549 			return -EINVAL;
11550 		}
11551 		break;
11552 	case BPF_FUNC_for_each_map_elem:
11553 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
11554 					 set_map_elem_callback_state);
11555 		break;
11556 	case BPF_FUNC_timer_set_callback:
11557 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
11558 					 set_timer_callback_state);
11559 		break;
11560 	case BPF_FUNC_find_vma:
11561 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
11562 					 set_find_vma_callback_state);
11563 		break;
11564 	case BPF_FUNC_snprintf:
11565 		err = check_bpf_snprintf_call(env, regs);
11566 		break;
11567 	case BPF_FUNC_loop:
11568 		update_loop_inline_state(env, meta.subprogno);
11569 		/* Verifier relies on R1 value to determine if bpf_loop() iteration
11570 		 * is finished, thus mark it precise.
11571 		 */
11572 		err = mark_chain_precision(env, BPF_REG_1);
11573 		if (err)
11574 			return err;
11575 		if (cur_func(env)->callback_depth < regs[BPF_REG_1].umax_value) {
11576 			err = push_callback_call(env, insn, insn_idx, meta.subprogno,
11577 						 set_loop_callback_state);
11578 		} else {
11579 			cur_func(env)->callback_depth = 0;
11580 			if (env->log.level & BPF_LOG_LEVEL2)
11581 				verbose(env, "frame%d bpf_loop iteration limit reached\n",
11582 					env->cur_state->curframe);
11583 		}
11584 		break;
11585 	case BPF_FUNC_dynptr_from_mem:
11586 		if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) {
11587 			verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n",
11588 				reg_type_str(env, regs[BPF_REG_1].type));
11589 			return -EACCES;
11590 		}
11591 		break;
11592 	case BPF_FUNC_set_retval:
11593 		if (prog_type == BPF_PROG_TYPE_LSM &&
11594 		    env->prog->expected_attach_type == BPF_LSM_CGROUP) {
11595 			if (!env->prog->aux->attach_func_proto->type) {
11596 				/* Make sure programs that attach to void
11597 				 * hooks don't try to modify return value.
11598 				 */
11599 				verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
11600 				return -EINVAL;
11601 			}
11602 		}
11603 		break;
11604 	case BPF_FUNC_dynptr_data:
11605 	{
11606 		struct bpf_reg_state *reg;
11607 		int id, ref_obj_id;
11608 
11609 		reg = get_dynptr_arg_reg(env, fn, regs);
11610 		if (!reg)
11611 			return -EFAULT;
11612 
11613 
11614 		if (meta.dynptr_id) {
11615 			verifier_bug(env, "meta.dynptr_id already set");
11616 			return -EFAULT;
11617 		}
11618 		if (meta.ref_obj_id) {
11619 			verifier_bug(env, "meta.ref_obj_id already set");
11620 			return -EFAULT;
11621 		}
11622 
11623 		id = dynptr_id(env, reg);
11624 		if (id < 0) {
11625 			verifier_bug(env, "failed to obtain dynptr id");
11626 			return id;
11627 		}
11628 
11629 		ref_obj_id = dynptr_ref_obj_id(env, reg);
11630 		if (ref_obj_id < 0) {
11631 			verifier_bug(env, "failed to obtain dynptr ref_obj_id");
11632 			return ref_obj_id;
11633 		}
11634 
11635 		meta.dynptr_id = id;
11636 		meta.ref_obj_id = ref_obj_id;
11637 
11638 		break;
11639 	}
11640 	case BPF_FUNC_dynptr_write:
11641 	{
11642 		enum bpf_dynptr_type dynptr_type;
11643 		struct bpf_reg_state *reg;
11644 
11645 		reg = get_dynptr_arg_reg(env, fn, regs);
11646 		if (!reg)
11647 			return -EFAULT;
11648 
11649 		dynptr_type = dynptr_get_type(env, reg);
11650 		if (dynptr_type == BPF_DYNPTR_TYPE_INVALID)
11651 			return -EFAULT;
11652 
11653 		if (dynptr_type == BPF_DYNPTR_TYPE_SKB ||
11654 		    dynptr_type == BPF_DYNPTR_TYPE_SKB_META)
11655 			/* this will trigger clear_all_pkt_pointers(), which will
11656 			 * invalidate all dynptr slices associated with the skb
11657 			 */
11658 			changes_data = true;
11659 
11660 		break;
11661 	}
11662 	case BPF_FUNC_per_cpu_ptr:
11663 	case BPF_FUNC_this_cpu_ptr:
11664 	{
11665 		struct bpf_reg_state *reg = &regs[BPF_REG_1];
11666 		const struct btf_type *type;
11667 
11668 		if (reg->type & MEM_RCU) {
11669 			type = btf_type_by_id(reg->btf, reg->btf_id);
11670 			if (!type || !btf_type_is_struct(type)) {
11671 				verbose(env, "Helper has invalid btf/btf_id in R1\n");
11672 				return -EFAULT;
11673 			}
11674 			returns_cpu_specific_alloc_ptr = true;
11675 			env->insn_aux_data[insn_idx].call_with_percpu_alloc_ptr = true;
11676 		}
11677 		break;
11678 	}
11679 	case BPF_FUNC_user_ringbuf_drain:
11680 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
11681 					 set_user_ringbuf_callback_state);
11682 		break;
11683 	}
11684 
11685 	if (err)
11686 		return err;
11687 
11688 	/* reset caller saved regs */
11689 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
11690 		mark_reg_not_init(env, regs, caller_saved[i]);
11691 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
11692 	}
11693 
11694 	/* helper call returns 64-bit value. */
11695 	regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
11696 
11697 	/* update return register (already marked as written above) */
11698 	ret_type = fn->ret_type;
11699 	ret_flag = type_flag(ret_type);
11700 
11701 	switch (base_type(ret_type)) {
11702 	case RET_INTEGER:
11703 		/* sets type to SCALAR_VALUE */
11704 		mark_reg_unknown(env, regs, BPF_REG_0);
11705 		break;
11706 	case RET_VOID:
11707 		regs[BPF_REG_0].type = NOT_INIT;
11708 		break;
11709 	case RET_PTR_TO_MAP_VALUE:
11710 		/* There is no offset yet applied, variable or fixed */
11711 		mark_reg_known_zero(env, regs, BPF_REG_0);
11712 		/* remember map_ptr, so that check_map_access()
11713 		 * can check 'value_size' boundary of memory access
11714 		 * to map element returned from bpf_map_lookup_elem()
11715 		 */
11716 		if (meta.map_ptr == NULL) {
11717 			verifier_bug(env, "unexpected null map_ptr");
11718 			return -EFAULT;
11719 		}
11720 
11721 		if (func_id == BPF_FUNC_map_lookup_elem &&
11722 		    can_elide_value_nullness(meta.map_ptr->map_type) &&
11723 		    meta.const_map_key >= 0 &&
11724 		    meta.const_map_key < meta.map_ptr->max_entries)
11725 			ret_flag &= ~PTR_MAYBE_NULL;
11726 
11727 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
11728 		regs[BPF_REG_0].map_uid = meta.map_uid;
11729 		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag;
11730 		if (!type_may_be_null(ret_flag) &&
11731 		    btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK | BPF_RES_SPIN_LOCK)) {
11732 			regs[BPF_REG_0].id = ++env->id_gen;
11733 		}
11734 		break;
11735 	case RET_PTR_TO_SOCKET:
11736 		mark_reg_known_zero(env, regs, BPF_REG_0);
11737 		regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag;
11738 		break;
11739 	case RET_PTR_TO_SOCK_COMMON:
11740 		mark_reg_known_zero(env, regs, BPF_REG_0);
11741 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag;
11742 		break;
11743 	case RET_PTR_TO_TCP_SOCK:
11744 		mark_reg_known_zero(env, regs, BPF_REG_0);
11745 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag;
11746 		break;
11747 	case RET_PTR_TO_MEM:
11748 		mark_reg_known_zero(env, regs, BPF_REG_0);
11749 		regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
11750 		regs[BPF_REG_0].mem_size = meta.mem_size;
11751 		break;
11752 	case RET_PTR_TO_MEM_OR_BTF_ID:
11753 	{
11754 		const struct btf_type *t;
11755 
11756 		mark_reg_known_zero(env, regs, BPF_REG_0);
11757 		t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
11758 		if (!btf_type_is_struct(t)) {
11759 			u32 tsize;
11760 			const struct btf_type *ret;
11761 			const char *tname;
11762 
11763 			/* resolve the type size of ksym. */
11764 			ret = btf_resolve_size(meta.ret_btf, t, &tsize);
11765 			if (IS_ERR(ret)) {
11766 				tname = btf_name_by_offset(meta.ret_btf, t->name_off);
11767 				verbose(env, "unable to resolve the size of type '%s': %ld\n",
11768 					tname, PTR_ERR(ret));
11769 				return -EINVAL;
11770 			}
11771 			regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
11772 			regs[BPF_REG_0].mem_size = tsize;
11773 		} else {
11774 			if (returns_cpu_specific_alloc_ptr) {
11775 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC | MEM_RCU;
11776 			} else {
11777 				/* MEM_RDONLY may be carried from ret_flag, but it
11778 				 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise
11779 				 * it will confuse the check of PTR_TO_BTF_ID in
11780 				 * check_mem_access().
11781 				 */
11782 				ret_flag &= ~MEM_RDONLY;
11783 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
11784 			}
11785 
11786 			regs[BPF_REG_0].btf = meta.ret_btf;
11787 			regs[BPF_REG_0].btf_id = meta.ret_btf_id;
11788 		}
11789 		break;
11790 	}
11791 	case RET_PTR_TO_BTF_ID:
11792 	{
11793 		struct btf *ret_btf;
11794 		int ret_btf_id;
11795 
11796 		mark_reg_known_zero(env, regs, BPF_REG_0);
11797 		regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
11798 		if (func_id == BPF_FUNC_kptr_xchg) {
11799 			ret_btf = meta.kptr_field->kptr.btf;
11800 			ret_btf_id = meta.kptr_field->kptr.btf_id;
11801 			if (!btf_is_kernel(ret_btf)) {
11802 				regs[BPF_REG_0].type |= MEM_ALLOC;
11803 				if (meta.kptr_field->type == BPF_KPTR_PERCPU)
11804 					regs[BPF_REG_0].type |= MEM_PERCPU;
11805 			}
11806 		} else {
11807 			if (fn->ret_btf_id == BPF_PTR_POISON) {
11808 				verifier_bug(env, "func %s has non-overwritten BPF_PTR_POISON return type",
11809 					     func_id_name(func_id));
11810 				return -EFAULT;
11811 			}
11812 			ret_btf = btf_vmlinux;
11813 			ret_btf_id = *fn->ret_btf_id;
11814 		}
11815 		if (ret_btf_id == 0) {
11816 			verbose(env, "invalid return type %u of func %s#%d\n",
11817 				base_type(ret_type), func_id_name(func_id),
11818 				func_id);
11819 			return -EINVAL;
11820 		}
11821 		regs[BPF_REG_0].btf = ret_btf;
11822 		regs[BPF_REG_0].btf_id = ret_btf_id;
11823 		break;
11824 	}
11825 	default:
11826 		verbose(env, "unknown return type %u of func %s#%d\n",
11827 			base_type(ret_type), func_id_name(func_id), func_id);
11828 		return -EINVAL;
11829 	}
11830 
11831 	if (type_may_be_null(regs[BPF_REG_0].type))
11832 		regs[BPF_REG_0].id = ++env->id_gen;
11833 
11834 	if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) {
11835 		verifier_bug(env, "func %s#%d sets ref_obj_id more than once",
11836 			     func_id_name(func_id), func_id);
11837 		return -EFAULT;
11838 	}
11839 
11840 	if (is_dynptr_ref_function(func_id))
11841 		regs[BPF_REG_0].dynptr_id = meta.dynptr_id;
11842 
11843 	if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) {
11844 		/* For release_reference() */
11845 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
11846 	} else if (is_acquire_function(func_id, meta.map_ptr)) {
11847 		int id = acquire_reference(env, insn_idx);
11848 
11849 		if (id < 0)
11850 			return id;
11851 		/* For mark_ptr_or_null_reg() */
11852 		regs[BPF_REG_0].id = id;
11853 		/* For release_reference() */
11854 		regs[BPF_REG_0].ref_obj_id = id;
11855 	}
11856 
11857 	err = do_refine_retval_range(env, regs, fn->ret_type, func_id, &meta);
11858 	if (err)
11859 		return err;
11860 
11861 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
11862 	if (err)
11863 		return err;
11864 
11865 	if ((func_id == BPF_FUNC_get_stack ||
11866 	     func_id == BPF_FUNC_get_task_stack) &&
11867 	    !env->prog->has_callchain_buf) {
11868 		const char *err_str;
11869 
11870 #ifdef CONFIG_PERF_EVENTS
11871 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
11872 		err_str = "cannot get callchain buffer for func %s#%d\n";
11873 #else
11874 		err = -ENOTSUPP;
11875 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
11876 #endif
11877 		if (err) {
11878 			verbose(env, err_str, func_id_name(func_id), func_id);
11879 			return err;
11880 		}
11881 
11882 		env->prog->has_callchain_buf = true;
11883 	}
11884 
11885 	if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
11886 		env->prog->call_get_stack = true;
11887 
11888 	if (func_id == BPF_FUNC_get_func_ip) {
11889 		if (check_get_func_ip(env))
11890 			return -ENOTSUPP;
11891 		env->prog->call_get_func_ip = true;
11892 	}
11893 
11894 	if (changes_data)
11895 		clear_all_pkt_pointers(env);
11896 	return 0;
11897 }
11898 
11899 /* mark_btf_func_reg_size() is used when the reg size is determined by
11900  * the BTF func_proto's return value size and argument.
11901  */
11902 static void __mark_btf_func_reg_size(struct bpf_verifier_env *env, struct bpf_reg_state *regs,
11903 				     u32 regno, size_t reg_size)
11904 {
11905 	struct bpf_reg_state *reg = &regs[regno];
11906 
11907 	if (regno == BPF_REG_0) {
11908 		/* Function return value */
11909 		reg->live |= REG_LIVE_WRITTEN;
11910 		reg->subreg_def = reg_size == sizeof(u64) ?
11911 			DEF_NOT_SUBREG : env->insn_idx + 1;
11912 	} else {
11913 		/* Function argument */
11914 		if (reg_size == sizeof(u64)) {
11915 			mark_insn_zext(env, reg);
11916 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
11917 		} else {
11918 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
11919 		}
11920 	}
11921 }
11922 
11923 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
11924 				   size_t reg_size)
11925 {
11926 	return __mark_btf_func_reg_size(env, cur_regs(env), regno, reg_size);
11927 }
11928 
11929 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta)
11930 {
11931 	return meta->kfunc_flags & KF_ACQUIRE;
11932 }
11933 
11934 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta)
11935 {
11936 	return meta->kfunc_flags & KF_RELEASE;
11937 }
11938 
11939 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta)
11940 {
11941 	return (meta->kfunc_flags & KF_TRUSTED_ARGS) || is_kfunc_release(meta);
11942 }
11943 
11944 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta)
11945 {
11946 	return meta->kfunc_flags & KF_SLEEPABLE;
11947 }
11948 
11949 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta)
11950 {
11951 	return meta->kfunc_flags & KF_DESTRUCTIVE;
11952 }
11953 
11954 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta)
11955 {
11956 	return meta->kfunc_flags & KF_RCU;
11957 }
11958 
11959 static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta)
11960 {
11961 	return meta->kfunc_flags & KF_RCU_PROTECTED;
11962 }
11963 
11964 static bool is_kfunc_arg_mem_size(const struct btf *btf,
11965 				  const struct btf_param *arg,
11966 				  const struct bpf_reg_state *reg)
11967 {
11968 	const struct btf_type *t;
11969 
11970 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
11971 	if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
11972 		return false;
11973 
11974 	return btf_param_match_suffix(btf, arg, "__sz");
11975 }
11976 
11977 static bool is_kfunc_arg_const_mem_size(const struct btf *btf,
11978 					const struct btf_param *arg,
11979 					const struct bpf_reg_state *reg)
11980 {
11981 	const struct btf_type *t;
11982 
11983 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
11984 	if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
11985 		return false;
11986 
11987 	return btf_param_match_suffix(btf, arg, "__szk");
11988 }
11989 
11990 static bool is_kfunc_arg_optional(const struct btf *btf, const struct btf_param *arg)
11991 {
11992 	return btf_param_match_suffix(btf, arg, "__opt");
11993 }
11994 
11995 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg)
11996 {
11997 	return btf_param_match_suffix(btf, arg, "__k");
11998 }
11999 
12000 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg)
12001 {
12002 	return btf_param_match_suffix(btf, arg, "__ign");
12003 }
12004 
12005 static bool is_kfunc_arg_map(const struct btf *btf, const struct btf_param *arg)
12006 {
12007 	return btf_param_match_suffix(btf, arg, "__map");
12008 }
12009 
12010 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg)
12011 {
12012 	return btf_param_match_suffix(btf, arg, "__alloc");
12013 }
12014 
12015 static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg)
12016 {
12017 	return btf_param_match_suffix(btf, arg, "__uninit");
12018 }
12019 
12020 static bool is_kfunc_arg_refcounted_kptr(const struct btf *btf, const struct btf_param *arg)
12021 {
12022 	return btf_param_match_suffix(btf, arg, "__refcounted_kptr");
12023 }
12024 
12025 static bool is_kfunc_arg_nullable(const struct btf *btf, const struct btf_param *arg)
12026 {
12027 	return btf_param_match_suffix(btf, arg, "__nullable");
12028 }
12029 
12030 static bool is_kfunc_arg_const_str(const struct btf *btf, const struct btf_param *arg)
12031 {
12032 	return btf_param_match_suffix(btf, arg, "__str");
12033 }
12034 
12035 static bool is_kfunc_arg_irq_flag(const struct btf *btf, const struct btf_param *arg)
12036 {
12037 	return btf_param_match_suffix(btf, arg, "__irq_flag");
12038 }
12039 
12040 static bool is_kfunc_arg_prog(const struct btf *btf, const struct btf_param *arg)
12041 {
12042 	return btf_param_match_suffix(btf, arg, "__prog");
12043 }
12044 
12045 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf,
12046 					  const struct btf_param *arg,
12047 					  const char *name)
12048 {
12049 	int len, target_len = strlen(name);
12050 	const char *param_name;
12051 
12052 	param_name = btf_name_by_offset(btf, arg->name_off);
12053 	if (str_is_empty(param_name))
12054 		return false;
12055 	len = strlen(param_name);
12056 	if (len != target_len)
12057 		return false;
12058 	if (strcmp(param_name, name))
12059 		return false;
12060 
12061 	return true;
12062 }
12063 
12064 enum {
12065 	KF_ARG_DYNPTR_ID,
12066 	KF_ARG_LIST_HEAD_ID,
12067 	KF_ARG_LIST_NODE_ID,
12068 	KF_ARG_RB_ROOT_ID,
12069 	KF_ARG_RB_NODE_ID,
12070 	KF_ARG_WORKQUEUE_ID,
12071 	KF_ARG_RES_SPIN_LOCK_ID,
12072 };
12073 
12074 BTF_ID_LIST(kf_arg_btf_ids)
12075 BTF_ID(struct, bpf_dynptr)
12076 BTF_ID(struct, bpf_list_head)
12077 BTF_ID(struct, bpf_list_node)
12078 BTF_ID(struct, bpf_rb_root)
12079 BTF_ID(struct, bpf_rb_node)
12080 BTF_ID(struct, bpf_wq)
12081 BTF_ID(struct, bpf_res_spin_lock)
12082 
12083 static bool __is_kfunc_ptr_arg_type(const struct btf *btf,
12084 				    const struct btf_param *arg, int type)
12085 {
12086 	const struct btf_type *t;
12087 	u32 res_id;
12088 
12089 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
12090 	if (!t)
12091 		return false;
12092 	if (!btf_type_is_ptr(t))
12093 		return false;
12094 	t = btf_type_skip_modifiers(btf, t->type, &res_id);
12095 	if (!t)
12096 		return false;
12097 	return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]);
12098 }
12099 
12100 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg)
12101 {
12102 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID);
12103 }
12104 
12105 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg)
12106 {
12107 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID);
12108 }
12109 
12110 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg)
12111 {
12112 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID);
12113 }
12114 
12115 static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg)
12116 {
12117 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID);
12118 }
12119 
12120 static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg)
12121 {
12122 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID);
12123 }
12124 
12125 static bool is_kfunc_arg_wq(const struct btf *btf, const struct btf_param *arg)
12126 {
12127 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_WORKQUEUE_ID);
12128 }
12129 
12130 static bool is_kfunc_arg_res_spin_lock(const struct btf *btf, const struct btf_param *arg)
12131 {
12132 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RES_SPIN_LOCK_ID);
12133 }
12134 
12135 static bool is_rbtree_node_type(const struct btf_type *t)
12136 {
12137 	return t == btf_type_by_id(btf_vmlinux, kf_arg_btf_ids[KF_ARG_RB_NODE_ID]);
12138 }
12139 
12140 static bool is_list_node_type(const struct btf_type *t)
12141 {
12142 	return t == btf_type_by_id(btf_vmlinux, kf_arg_btf_ids[KF_ARG_LIST_NODE_ID]);
12143 }
12144 
12145 static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf,
12146 				  const struct btf_param *arg)
12147 {
12148 	const struct btf_type *t;
12149 
12150 	t = btf_type_resolve_func_ptr(btf, arg->type, NULL);
12151 	if (!t)
12152 		return false;
12153 
12154 	return true;
12155 }
12156 
12157 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */
12158 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env,
12159 					const struct btf *btf,
12160 					const struct btf_type *t, int rec)
12161 {
12162 	const struct btf_type *member_type;
12163 	const struct btf_member *member;
12164 	u32 i;
12165 
12166 	if (!btf_type_is_struct(t))
12167 		return false;
12168 
12169 	for_each_member(i, t, member) {
12170 		const struct btf_array *array;
12171 
12172 		member_type = btf_type_skip_modifiers(btf, member->type, NULL);
12173 		if (btf_type_is_struct(member_type)) {
12174 			if (rec >= 3) {
12175 				verbose(env, "max struct nesting depth exceeded\n");
12176 				return false;
12177 			}
12178 			if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1))
12179 				return false;
12180 			continue;
12181 		}
12182 		if (btf_type_is_array(member_type)) {
12183 			array = btf_array(member_type);
12184 			if (!array->nelems)
12185 				return false;
12186 			member_type = btf_type_skip_modifiers(btf, array->type, NULL);
12187 			if (!btf_type_is_scalar(member_type))
12188 				return false;
12189 			continue;
12190 		}
12191 		if (!btf_type_is_scalar(member_type))
12192 			return false;
12193 	}
12194 	return true;
12195 }
12196 
12197 enum kfunc_ptr_arg_type {
12198 	KF_ARG_PTR_TO_CTX,
12199 	KF_ARG_PTR_TO_ALLOC_BTF_ID,    /* Allocated object */
12200 	KF_ARG_PTR_TO_REFCOUNTED_KPTR, /* Refcounted local kptr */
12201 	KF_ARG_PTR_TO_DYNPTR,
12202 	KF_ARG_PTR_TO_ITER,
12203 	KF_ARG_PTR_TO_LIST_HEAD,
12204 	KF_ARG_PTR_TO_LIST_NODE,
12205 	KF_ARG_PTR_TO_BTF_ID,	       /* Also covers reg2btf_ids conversions */
12206 	KF_ARG_PTR_TO_MEM,
12207 	KF_ARG_PTR_TO_MEM_SIZE,	       /* Size derived from next argument, skip it */
12208 	KF_ARG_PTR_TO_CALLBACK,
12209 	KF_ARG_PTR_TO_RB_ROOT,
12210 	KF_ARG_PTR_TO_RB_NODE,
12211 	KF_ARG_PTR_TO_NULL,
12212 	KF_ARG_PTR_TO_CONST_STR,
12213 	KF_ARG_PTR_TO_MAP,
12214 	KF_ARG_PTR_TO_WORKQUEUE,
12215 	KF_ARG_PTR_TO_IRQ_FLAG,
12216 	KF_ARG_PTR_TO_RES_SPIN_LOCK,
12217 };
12218 
12219 enum special_kfunc_type {
12220 	KF_bpf_obj_new_impl,
12221 	KF_bpf_obj_drop_impl,
12222 	KF_bpf_refcount_acquire_impl,
12223 	KF_bpf_list_push_front_impl,
12224 	KF_bpf_list_push_back_impl,
12225 	KF_bpf_list_pop_front,
12226 	KF_bpf_list_pop_back,
12227 	KF_bpf_list_front,
12228 	KF_bpf_list_back,
12229 	KF_bpf_cast_to_kern_ctx,
12230 	KF_bpf_rdonly_cast,
12231 	KF_bpf_rcu_read_lock,
12232 	KF_bpf_rcu_read_unlock,
12233 	KF_bpf_rbtree_remove,
12234 	KF_bpf_rbtree_add_impl,
12235 	KF_bpf_rbtree_first,
12236 	KF_bpf_rbtree_root,
12237 	KF_bpf_rbtree_left,
12238 	KF_bpf_rbtree_right,
12239 	KF_bpf_dynptr_from_skb,
12240 	KF_bpf_dynptr_from_xdp,
12241 	KF_bpf_dynptr_from_skb_meta,
12242 	KF_bpf_dynptr_slice,
12243 	KF_bpf_dynptr_slice_rdwr,
12244 	KF_bpf_dynptr_clone,
12245 	KF_bpf_percpu_obj_new_impl,
12246 	KF_bpf_percpu_obj_drop_impl,
12247 	KF_bpf_throw,
12248 	KF_bpf_wq_set_callback_impl,
12249 	KF_bpf_preempt_disable,
12250 	KF_bpf_preempt_enable,
12251 	KF_bpf_iter_css_task_new,
12252 	KF_bpf_session_cookie,
12253 	KF_bpf_get_kmem_cache,
12254 	KF_bpf_local_irq_save,
12255 	KF_bpf_local_irq_restore,
12256 	KF_bpf_iter_num_new,
12257 	KF_bpf_iter_num_next,
12258 	KF_bpf_iter_num_destroy,
12259 	KF_bpf_set_dentry_xattr,
12260 	KF_bpf_remove_dentry_xattr,
12261 	KF_bpf_res_spin_lock,
12262 	KF_bpf_res_spin_unlock,
12263 	KF_bpf_res_spin_lock_irqsave,
12264 	KF_bpf_res_spin_unlock_irqrestore,
12265 	KF___bpf_trap,
12266 };
12267 
12268 BTF_ID_LIST(special_kfunc_list)
12269 BTF_ID(func, bpf_obj_new_impl)
12270 BTF_ID(func, bpf_obj_drop_impl)
12271 BTF_ID(func, bpf_refcount_acquire_impl)
12272 BTF_ID(func, bpf_list_push_front_impl)
12273 BTF_ID(func, bpf_list_push_back_impl)
12274 BTF_ID(func, bpf_list_pop_front)
12275 BTF_ID(func, bpf_list_pop_back)
12276 BTF_ID(func, bpf_list_front)
12277 BTF_ID(func, bpf_list_back)
12278 BTF_ID(func, bpf_cast_to_kern_ctx)
12279 BTF_ID(func, bpf_rdonly_cast)
12280 BTF_ID(func, bpf_rcu_read_lock)
12281 BTF_ID(func, bpf_rcu_read_unlock)
12282 BTF_ID(func, bpf_rbtree_remove)
12283 BTF_ID(func, bpf_rbtree_add_impl)
12284 BTF_ID(func, bpf_rbtree_first)
12285 BTF_ID(func, bpf_rbtree_root)
12286 BTF_ID(func, bpf_rbtree_left)
12287 BTF_ID(func, bpf_rbtree_right)
12288 #ifdef CONFIG_NET
12289 BTF_ID(func, bpf_dynptr_from_skb)
12290 BTF_ID(func, bpf_dynptr_from_xdp)
12291 BTF_ID(func, bpf_dynptr_from_skb_meta)
12292 #else
12293 BTF_ID_UNUSED
12294 BTF_ID_UNUSED
12295 BTF_ID_UNUSED
12296 #endif
12297 BTF_ID(func, bpf_dynptr_slice)
12298 BTF_ID(func, bpf_dynptr_slice_rdwr)
12299 BTF_ID(func, bpf_dynptr_clone)
12300 BTF_ID(func, bpf_percpu_obj_new_impl)
12301 BTF_ID(func, bpf_percpu_obj_drop_impl)
12302 BTF_ID(func, bpf_throw)
12303 BTF_ID(func, bpf_wq_set_callback_impl)
12304 BTF_ID(func, bpf_preempt_disable)
12305 BTF_ID(func, bpf_preempt_enable)
12306 #ifdef CONFIG_CGROUPS
12307 BTF_ID(func, bpf_iter_css_task_new)
12308 #else
12309 BTF_ID_UNUSED
12310 #endif
12311 #ifdef CONFIG_BPF_EVENTS
12312 BTF_ID(func, bpf_session_cookie)
12313 #else
12314 BTF_ID_UNUSED
12315 #endif
12316 BTF_ID(func, bpf_get_kmem_cache)
12317 BTF_ID(func, bpf_local_irq_save)
12318 BTF_ID(func, bpf_local_irq_restore)
12319 BTF_ID(func, bpf_iter_num_new)
12320 BTF_ID(func, bpf_iter_num_next)
12321 BTF_ID(func, bpf_iter_num_destroy)
12322 #ifdef CONFIG_BPF_LSM
12323 BTF_ID(func, bpf_set_dentry_xattr)
12324 BTF_ID(func, bpf_remove_dentry_xattr)
12325 #else
12326 BTF_ID_UNUSED
12327 BTF_ID_UNUSED
12328 #endif
12329 BTF_ID(func, bpf_res_spin_lock)
12330 BTF_ID(func, bpf_res_spin_unlock)
12331 BTF_ID(func, bpf_res_spin_lock_irqsave)
12332 BTF_ID(func, bpf_res_spin_unlock_irqrestore)
12333 BTF_ID(func, __bpf_trap)
12334 
12335 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta)
12336 {
12337 	if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] &&
12338 	    meta->arg_owning_ref) {
12339 		return false;
12340 	}
12341 
12342 	return meta->kfunc_flags & KF_RET_NULL;
12343 }
12344 
12345 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta)
12346 {
12347 	return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock];
12348 }
12349 
12350 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta)
12351 {
12352 	return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock];
12353 }
12354 
12355 static bool is_kfunc_bpf_preempt_disable(struct bpf_kfunc_call_arg_meta *meta)
12356 {
12357 	return meta->func_id == special_kfunc_list[KF_bpf_preempt_disable];
12358 }
12359 
12360 static bool is_kfunc_bpf_preempt_enable(struct bpf_kfunc_call_arg_meta *meta)
12361 {
12362 	return meta->func_id == special_kfunc_list[KF_bpf_preempt_enable];
12363 }
12364 
12365 static enum kfunc_ptr_arg_type
12366 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env,
12367 		       struct bpf_kfunc_call_arg_meta *meta,
12368 		       const struct btf_type *t, const struct btf_type *ref_t,
12369 		       const char *ref_tname, const struct btf_param *args,
12370 		       int argno, int nargs)
12371 {
12372 	u32 regno = argno + 1;
12373 	struct bpf_reg_state *regs = cur_regs(env);
12374 	struct bpf_reg_state *reg = &regs[regno];
12375 	bool arg_mem_size = false;
12376 
12377 	if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx])
12378 		return KF_ARG_PTR_TO_CTX;
12379 
12380 	/* In this function, we verify the kfunc's BTF as per the argument type,
12381 	 * leaving the rest of the verification with respect to the register
12382 	 * type to our caller. When a set of conditions hold in the BTF type of
12383 	 * arguments, we resolve it to a known kfunc_ptr_arg_type.
12384 	 */
12385 	if (btf_is_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno))
12386 		return KF_ARG_PTR_TO_CTX;
12387 
12388 	if (is_kfunc_arg_nullable(meta->btf, &args[argno]) && register_is_null(reg))
12389 		return KF_ARG_PTR_TO_NULL;
12390 
12391 	if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno]))
12392 		return KF_ARG_PTR_TO_ALLOC_BTF_ID;
12393 
12394 	if (is_kfunc_arg_refcounted_kptr(meta->btf, &args[argno]))
12395 		return KF_ARG_PTR_TO_REFCOUNTED_KPTR;
12396 
12397 	if (is_kfunc_arg_dynptr(meta->btf, &args[argno]))
12398 		return KF_ARG_PTR_TO_DYNPTR;
12399 
12400 	if (is_kfunc_arg_iter(meta, argno, &args[argno]))
12401 		return KF_ARG_PTR_TO_ITER;
12402 
12403 	if (is_kfunc_arg_list_head(meta->btf, &args[argno]))
12404 		return KF_ARG_PTR_TO_LIST_HEAD;
12405 
12406 	if (is_kfunc_arg_list_node(meta->btf, &args[argno]))
12407 		return KF_ARG_PTR_TO_LIST_NODE;
12408 
12409 	if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno]))
12410 		return KF_ARG_PTR_TO_RB_ROOT;
12411 
12412 	if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno]))
12413 		return KF_ARG_PTR_TO_RB_NODE;
12414 
12415 	if (is_kfunc_arg_const_str(meta->btf, &args[argno]))
12416 		return KF_ARG_PTR_TO_CONST_STR;
12417 
12418 	if (is_kfunc_arg_map(meta->btf, &args[argno]))
12419 		return KF_ARG_PTR_TO_MAP;
12420 
12421 	if (is_kfunc_arg_wq(meta->btf, &args[argno]))
12422 		return KF_ARG_PTR_TO_WORKQUEUE;
12423 
12424 	if (is_kfunc_arg_irq_flag(meta->btf, &args[argno]))
12425 		return KF_ARG_PTR_TO_IRQ_FLAG;
12426 
12427 	if (is_kfunc_arg_res_spin_lock(meta->btf, &args[argno]))
12428 		return KF_ARG_PTR_TO_RES_SPIN_LOCK;
12429 
12430 	if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) {
12431 		if (!btf_type_is_struct(ref_t)) {
12432 			verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n",
12433 				meta->func_name, argno, btf_type_str(ref_t), ref_tname);
12434 			return -EINVAL;
12435 		}
12436 		return KF_ARG_PTR_TO_BTF_ID;
12437 	}
12438 
12439 	if (is_kfunc_arg_callback(env, meta->btf, &args[argno]))
12440 		return KF_ARG_PTR_TO_CALLBACK;
12441 
12442 	if (argno + 1 < nargs &&
12443 	    (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], &regs[regno + 1]) ||
12444 	     is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], &regs[regno + 1])))
12445 		arg_mem_size = true;
12446 
12447 	/* This is the catch all argument type of register types supported by
12448 	 * check_helper_mem_access. However, we only allow when argument type is
12449 	 * pointer to scalar, or struct composed (recursively) of scalars. When
12450 	 * arg_mem_size is true, the pointer can be void *.
12451 	 */
12452 	if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) &&
12453 	    (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) {
12454 		verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n",
12455 			argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : "");
12456 		return -EINVAL;
12457 	}
12458 	return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM;
12459 }
12460 
12461 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env,
12462 					struct bpf_reg_state *reg,
12463 					const struct btf_type *ref_t,
12464 					const char *ref_tname, u32 ref_id,
12465 					struct bpf_kfunc_call_arg_meta *meta,
12466 					int argno)
12467 {
12468 	const struct btf_type *reg_ref_t;
12469 	bool strict_type_match = false;
12470 	const struct btf *reg_btf;
12471 	const char *reg_ref_tname;
12472 	bool taking_projection;
12473 	bool struct_same;
12474 	u32 reg_ref_id;
12475 
12476 	if (base_type(reg->type) == PTR_TO_BTF_ID) {
12477 		reg_btf = reg->btf;
12478 		reg_ref_id = reg->btf_id;
12479 	} else {
12480 		reg_btf = btf_vmlinux;
12481 		reg_ref_id = *reg2btf_ids[base_type(reg->type)];
12482 	}
12483 
12484 	/* Enforce strict type matching for calls to kfuncs that are acquiring
12485 	 * or releasing a reference, or are no-cast aliases. We do _not_
12486 	 * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default,
12487 	 * as we want to enable BPF programs to pass types that are bitwise
12488 	 * equivalent without forcing them to explicitly cast with something
12489 	 * like bpf_cast_to_kern_ctx().
12490 	 *
12491 	 * For example, say we had a type like the following:
12492 	 *
12493 	 * struct bpf_cpumask {
12494 	 *	cpumask_t cpumask;
12495 	 *	refcount_t usage;
12496 	 * };
12497 	 *
12498 	 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed
12499 	 * to a struct cpumask, so it would be safe to pass a struct
12500 	 * bpf_cpumask * to a kfunc expecting a struct cpumask *.
12501 	 *
12502 	 * The philosophy here is similar to how we allow scalars of different
12503 	 * types to be passed to kfuncs as long as the size is the same. The
12504 	 * only difference here is that we're simply allowing
12505 	 * btf_struct_ids_match() to walk the struct at the 0th offset, and
12506 	 * resolve types.
12507 	 */
12508 	if ((is_kfunc_release(meta) && reg->ref_obj_id) ||
12509 	    btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id))
12510 		strict_type_match = true;
12511 
12512 	WARN_ON_ONCE(is_kfunc_release(meta) &&
12513 		     (reg->off || !tnum_is_const(reg->var_off) ||
12514 		      reg->var_off.value));
12515 
12516 	reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, &reg_ref_id);
12517 	reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off);
12518 	struct_same = btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match);
12519 	/* If kfunc is accepting a projection type (ie. __sk_buff), it cannot
12520 	 * actually use it -- it must cast to the underlying type. So we allow
12521 	 * caller to pass in the underlying type.
12522 	 */
12523 	taking_projection = btf_is_projection_of(ref_tname, reg_ref_tname);
12524 	if (!taking_projection && !struct_same) {
12525 		verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n",
12526 			meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1,
12527 			btf_type_str(reg_ref_t), reg_ref_tname);
12528 		return -EINVAL;
12529 	}
12530 	return 0;
12531 }
12532 
12533 static int process_irq_flag(struct bpf_verifier_env *env, int regno,
12534 			     struct bpf_kfunc_call_arg_meta *meta)
12535 {
12536 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
12537 	int err, kfunc_class = IRQ_NATIVE_KFUNC;
12538 	bool irq_save;
12539 
12540 	if (meta->func_id == special_kfunc_list[KF_bpf_local_irq_save] ||
12541 	    meta->func_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave]) {
12542 		irq_save = true;
12543 		if (meta->func_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave])
12544 			kfunc_class = IRQ_LOCK_KFUNC;
12545 	} else if (meta->func_id == special_kfunc_list[KF_bpf_local_irq_restore] ||
12546 		   meta->func_id == special_kfunc_list[KF_bpf_res_spin_unlock_irqrestore]) {
12547 		irq_save = false;
12548 		if (meta->func_id == special_kfunc_list[KF_bpf_res_spin_unlock_irqrestore])
12549 			kfunc_class = IRQ_LOCK_KFUNC;
12550 	} else {
12551 		verifier_bug(env, "unknown irq flags kfunc");
12552 		return -EFAULT;
12553 	}
12554 
12555 	if (irq_save) {
12556 		if (!is_irq_flag_reg_valid_uninit(env, reg)) {
12557 			verbose(env, "expected uninitialized irq flag as arg#%d\n", regno - 1);
12558 			return -EINVAL;
12559 		}
12560 
12561 		err = check_mem_access(env, env->insn_idx, regno, 0, BPF_DW, BPF_WRITE, -1, false, false);
12562 		if (err)
12563 			return err;
12564 
12565 		err = mark_stack_slot_irq_flag(env, meta, reg, env->insn_idx, kfunc_class);
12566 		if (err)
12567 			return err;
12568 	} else {
12569 		err = is_irq_flag_reg_valid_init(env, reg);
12570 		if (err) {
12571 			verbose(env, "expected an initialized irq flag as arg#%d\n", regno - 1);
12572 			return err;
12573 		}
12574 
12575 		err = mark_irq_flag_read(env, reg);
12576 		if (err)
12577 			return err;
12578 
12579 		err = unmark_stack_slot_irq_flag(env, reg, kfunc_class);
12580 		if (err)
12581 			return err;
12582 	}
12583 	return 0;
12584 }
12585 
12586 
12587 static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
12588 {
12589 	struct btf_record *rec = reg_btf_record(reg);
12590 
12591 	if (!env->cur_state->active_locks) {
12592 		verifier_bug(env, "%s w/o active lock", __func__);
12593 		return -EFAULT;
12594 	}
12595 
12596 	if (type_flag(reg->type) & NON_OWN_REF) {
12597 		verifier_bug(env, "NON_OWN_REF already set");
12598 		return -EFAULT;
12599 	}
12600 
12601 	reg->type |= NON_OWN_REF;
12602 	if (rec->refcount_off >= 0)
12603 		reg->type |= MEM_RCU;
12604 
12605 	return 0;
12606 }
12607 
12608 static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id)
12609 {
12610 	struct bpf_verifier_state *state = env->cur_state;
12611 	struct bpf_func_state *unused;
12612 	struct bpf_reg_state *reg;
12613 	int i;
12614 
12615 	if (!ref_obj_id) {
12616 		verifier_bug(env, "ref_obj_id is zero for owning -> non-owning conversion");
12617 		return -EFAULT;
12618 	}
12619 
12620 	for (i = 0; i < state->acquired_refs; i++) {
12621 		if (state->refs[i].id != ref_obj_id)
12622 			continue;
12623 
12624 		/* Clear ref_obj_id here so release_reference doesn't clobber
12625 		 * the whole reg
12626 		 */
12627 		bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
12628 			if (reg->ref_obj_id == ref_obj_id) {
12629 				reg->ref_obj_id = 0;
12630 				ref_set_non_owning(env, reg);
12631 			}
12632 		}));
12633 		return 0;
12634 	}
12635 
12636 	verifier_bug(env, "ref state missing for ref_obj_id");
12637 	return -EFAULT;
12638 }
12639 
12640 /* Implementation details:
12641  *
12642  * Each register points to some region of memory, which we define as an
12643  * allocation. Each allocation may embed a bpf_spin_lock which protects any
12644  * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same
12645  * allocation. The lock and the data it protects are colocated in the same
12646  * memory region.
12647  *
12648  * Hence, everytime a register holds a pointer value pointing to such
12649  * allocation, the verifier preserves a unique reg->id for it.
12650  *
12651  * The verifier remembers the lock 'ptr' and the lock 'id' whenever
12652  * bpf_spin_lock is called.
12653  *
12654  * To enable this, lock state in the verifier captures two values:
12655  *	active_lock.ptr = Register's type specific pointer
12656  *	active_lock.id  = A unique ID for each register pointer value
12657  *
12658  * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two
12659  * supported register types.
12660  *
12661  * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of
12662  * allocated objects is the reg->btf pointer.
12663  *
12664  * The active_lock.id is non-unique for maps supporting direct_value_addr, as we
12665  * can establish the provenance of the map value statically for each distinct
12666  * lookup into such maps. They always contain a single map value hence unique
12667  * IDs for each pseudo load pessimizes the algorithm and rejects valid programs.
12668  *
12669  * So, in case of global variables, they use array maps with max_entries = 1,
12670  * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point
12671  * into the same map value as max_entries is 1, as described above).
12672  *
12673  * In case of inner map lookups, the inner map pointer has same map_ptr as the
12674  * outer map pointer (in verifier context), but each lookup into an inner map
12675  * assigns a fresh reg->id to the lookup, so while lookups into distinct inner
12676  * maps from the same outer map share the same map_ptr as active_lock.ptr, they
12677  * will get different reg->id assigned to each lookup, hence different
12678  * active_lock.id.
12679  *
12680  * In case of allocated objects, active_lock.ptr is the reg->btf, and the
12681  * reg->id is a unique ID preserved after the NULL pointer check on the pointer
12682  * returned from bpf_obj_new. Each allocation receives a new reg->id.
12683  */
12684 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
12685 {
12686 	struct bpf_reference_state *s;
12687 	void *ptr;
12688 	u32 id;
12689 
12690 	switch ((int)reg->type) {
12691 	case PTR_TO_MAP_VALUE:
12692 		ptr = reg->map_ptr;
12693 		break;
12694 	case PTR_TO_BTF_ID | MEM_ALLOC:
12695 		ptr = reg->btf;
12696 		break;
12697 	default:
12698 		verifier_bug(env, "unknown reg type for lock check");
12699 		return -EFAULT;
12700 	}
12701 	id = reg->id;
12702 
12703 	if (!env->cur_state->active_locks)
12704 		return -EINVAL;
12705 	s = find_lock_state(env->cur_state, REF_TYPE_LOCK_MASK, id, ptr);
12706 	if (!s) {
12707 		verbose(env, "held lock and object are not in the same allocation\n");
12708 		return -EINVAL;
12709 	}
12710 	return 0;
12711 }
12712 
12713 static bool is_bpf_list_api_kfunc(u32 btf_id)
12714 {
12715 	return btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
12716 	       btf_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
12717 	       btf_id == special_kfunc_list[KF_bpf_list_pop_front] ||
12718 	       btf_id == special_kfunc_list[KF_bpf_list_pop_back] ||
12719 	       btf_id == special_kfunc_list[KF_bpf_list_front] ||
12720 	       btf_id == special_kfunc_list[KF_bpf_list_back];
12721 }
12722 
12723 static bool is_bpf_rbtree_api_kfunc(u32 btf_id)
12724 {
12725 	return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] ||
12726 	       btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
12727 	       btf_id == special_kfunc_list[KF_bpf_rbtree_first] ||
12728 	       btf_id == special_kfunc_list[KF_bpf_rbtree_root] ||
12729 	       btf_id == special_kfunc_list[KF_bpf_rbtree_left] ||
12730 	       btf_id == special_kfunc_list[KF_bpf_rbtree_right];
12731 }
12732 
12733 static bool is_bpf_iter_num_api_kfunc(u32 btf_id)
12734 {
12735 	return btf_id == special_kfunc_list[KF_bpf_iter_num_new] ||
12736 	       btf_id == special_kfunc_list[KF_bpf_iter_num_next] ||
12737 	       btf_id == special_kfunc_list[KF_bpf_iter_num_destroy];
12738 }
12739 
12740 static bool is_bpf_graph_api_kfunc(u32 btf_id)
12741 {
12742 	return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id) ||
12743 	       btf_id == special_kfunc_list[KF_bpf_refcount_acquire_impl];
12744 }
12745 
12746 static bool is_bpf_res_spin_lock_kfunc(u32 btf_id)
12747 {
12748 	return btf_id == special_kfunc_list[KF_bpf_res_spin_lock] ||
12749 	       btf_id == special_kfunc_list[KF_bpf_res_spin_unlock] ||
12750 	       btf_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave] ||
12751 	       btf_id == special_kfunc_list[KF_bpf_res_spin_unlock_irqrestore];
12752 }
12753 
12754 static bool kfunc_spin_allowed(u32 btf_id)
12755 {
12756 	return is_bpf_graph_api_kfunc(btf_id) || is_bpf_iter_num_api_kfunc(btf_id) ||
12757 	       is_bpf_res_spin_lock_kfunc(btf_id);
12758 }
12759 
12760 static bool is_sync_callback_calling_kfunc(u32 btf_id)
12761 {
12762 	return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl];
12763 }
12764 
12765 static bool is_async_callback_calling_kfunc(u32 btf_id)
12766 {
12767 	return btf_id == special_kfunc_list[KF_bpf_wq_set_callback_impl];
12768 }
12769 
12770 static bool is_bpf_throw_kfunc(struct bpf_insn *insn)
12771 {
12772 	return bpf_pseudo_kfunc_call(insn) && insn->off == 0 &&
12773 	       insn->imm == special_kfunc_list[KF_bpf_throw];
12774 }
12775 
12776 static bool is_bpf_wq_set_callback_impl_kfunc(u32 btf_id)
12777 {
12778 	return btf_id == special_kfunc_list[KF_bpf_wq_set_callback_impl];
12779 }
12780 
12781 static bool is_callback_calling_kfunc(u32 btf_id)
12782 {
12783 	return is_sync_callback_calling_kfunc(btf_id) ||
12784 	       is_async_callback_calling_kfunc(btf_id);
12785 }
12786 
12787 static bool is_rbtree_lock_required_kfunc(u32 btf_id)
12788 {
12789 	return is_bpf_rbtree_api_kfunc(btf_id);
12790 }
12791 
12792 static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env,
12793 					  enum btf_field_type head_field_type,
12794 					  u32 kfunc_btf_id)
12795 {
12796 	bool ret;
12797 
12798 	switch (head_field_type) {
12799 	case BPF_LIST_HEAD:
12800 		ret = is_bpf_list_api_kfunc(kfunc_btf_id);
12801 		break;
12802 	case BPF_RB_ROOT:
12803 		ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id);
12804 		break;
12805 	default:
12806 		verbose(env, "verifier internal error: unexpected graph root argument type %s\n",
12807 			btf_field_type_name(head_field_type));
12808 		return false;
12809 	}
12810 
12811 	if (!ret)
12812 		verbose(env, "verifier internal error: %s head arg for unknown kfunc\n",
12813 			btf_field_type_name(head_field_type));
12814 	return ret;
12815 }
12816 
12817 static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env,
12818 					  enum btf_field_type node_field_type,
12819 					  u32 kfunc_btf_id)
12820 {
12821 	bool ret;
12822 
12823 	switch (node_field_type) {
12824 	case BPF_LIST_NODE:
12825 		ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
12826 		       kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back_impl]);
12827 		break;
12828 	case BPF_RB_NODE:
12829 		ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
12830 		       kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] ||
12831 		       kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_left] ||
12832 		       kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_right]);
12833 		break;
12834 	default:
12835 		verbose(env, "verifier internal error: unexpected graph node argument type %s\n",
12836 			btf_field_type_name(node_field_type));
12837 		return false;
12838 	}
12839 
12840 	if (!ret)
12841 		verbose(env, "verifier internal error: %s node arg for unknown kfunc\n",
12842 			btf_field_type_name(node_field_type));
12843 	return ret;
12844 }
12845 
12846 static int
12847 __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env,
12848 				   struct bpf_reg_state *reg, u32 regno,
12849 				   struct bpf_kfunc_call_arg_meta *meta,
12850 				   enum btf_field_type head_field_type,
12851 				   struct btf_field **head_field)
12852 {
12853 	const char *head_type_name;
12854 	struct btf_field *field;
12855 	struct btf_record *rec;
12856 	u32 head_off;
12857 
12858 	if (meta->btf != btf_vmlinux) {
12859 		verifier_bug(env, "unexpected btf mismatch in kfunc call");
12860 		return -EFAULT;
12861 	}
12862 
12863 	if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id))
12864 		return -EFAULT;
12865 
12866 	head_type_name = btf_field_type_name(head_field_type);
12867 	if (!tnum_is_const(reg->var_off)) {
12868 		verbose(env,
12869 			"R%d doesn't have constant offset. %s has to be at the constant offset\n",
12870 			regno, head_type_name);
12871 		return -EINVAL;
12872 	}
12873 
12874 	rec = reg_btf_record(reg);
12875 	head_off = reg->off + reg->var_off.value;
12876 	field = btf_record_find(rec, head_off, head_field_type);
12877 	if (!field) {
12878 		verbose(env, "%s not found at offset=%u\n", head_type_name, head_off);
12879 		return -EINVAL;
12880 	}
12881 
12882 	/* All functions require bpf_list_head to be protected using a bpf_spin_lock */
12883 	if (check_reg_allocation_locked(env, reg)) {
12884 		verbose(env, "bpf_spin_lock at off=%d must be held for %s\n",
12885 			rec->spin_lock_off, head_type_name);
12886 		return -EINVAL;
12887 	}
12888 
12889 	if (*head_field) {
12890 		verifier_bug(env, "repeating %s arg", head_type_name);
12891 		return -EFAULT;
12892 	}
12893 	*head_field = field;
12894 	return 0;
12895 }
12896 
12897 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env,
12898 					   struct bpf_reg_state *reg, u32 regno,
12899 					   struct bpf_kfunc_call_arg_meta *meta)
12900 {
12901 	return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD,
12902 							  &meta->arg_list_head.field);
12903 }
12904 
12905 static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env,
12906 					     struct bpf_reg_state *reg, u32 regno,
12907 					     struct bpf_kfunc_call_arg_meta *meta)
12908 {
12909 	return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT,
12910 							  &meta->arg_rbtree_root.field);
12911 }
12912 
12913 static int
12914 __process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env,
12915 				   struct bpf_reg_state *reg, u32 regno,
12916 				   struct bpf_kfunc_call_arg_meta *meta,
12917 				   enum btf_field_type head_field_type,
12918 				   enum btf_field_type node_field_type,
12919 				   struct btf_field **node_field)
12920 {
12921 	const char *node_type_name;
12922 	const struct btf_type *et, *t;
12923 	struct btf_field *field;
12924 	u32 node_off;
12925 
12926 	if (meta->btf != btf_vmlinux) {
12927 		verifier_bug(env, "unexpected btf mismatch in kfunc call");
12928 		return -EFAULT;
12929 	}
12930 
12931 	if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id))
12932 		return -EFAULT;
12933 
12934 	node_type_name = btf_field_type_name(node_field_type);
12935 	if (!tnum_is_const(reg->var_off)) {
12936 		verbose(env,
12937 			"R%d doesn't have constant offset. %s has to be at the constant offset\n",
12938 			regno, node_type_name);
12939 		return -EINVAL;
12940 	}
12941 
12942 	node_off = reg->off + reg->var_off.value;
12943 	field = reg_find_field_offset(reg, node_off, node_field_type);
12944 	if (!field) {
12945 		verbose(env, "%s not found at offset=%u\n", node_type_name, node_off);
12946 		return -EINVAL;
12947 	}
12948 
12949 	field = *node_field;
12950 
12951 	et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id);
12952 	t = btf_type_by_id(reg->btf, reg->btf_id);
12953 	if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf,
12954 				  field->graph_root.value_btf_id, true)) {
12955 		verbose(env, "operation on %s expects arg#1 %s at offset=%d "
12956 			"in struct %s, but arg is at offset=%d in struct %s\n",
12957 			btf_field_type_name(head_field_type),
12958 			btf_field_type_name(node_field_type),
12959 			field->graph_root.node_offset,
12960 			btf_name_by_offset(field->graph_root.btf, et->name_off),
12961 			node_off, btf_name_by_offset(reg->btf, t->name_off));
12962 		return -EINVAL;
12963 	}
12964 	meta->arg_btf = reg->btf;
12965 	meta->arg_btf_id = reg->btf_id;
12966 
12967 	if (node_off != field->graph_root.node_offset) {
12968 		verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n",
12969 			node_off, btf_field_type_name(node_field_type),
12970 			field->graph_root.node_offset,
12971 			btf_name_by_offset(field->graph_root.btf, et->name_off));
12972 		return -EINVAL;
12973 	}
12974 
12975 	return 0;
12976 }
12977 
12978 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env,
12979 					   struct bpf_reg_state *reg, u32 regno,
12980 					   struct bpf_kfunc_call_arg_meta *meta)
12981 {
12982 	return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
12983 						  BPF_LIST_HEAD, BPF_LIST_NODE,
12984 						  &meta->arg_list_head.field);
12985 }
12986 
12987 static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env,
12988 					     struct bpf_reg_state *reg, u32 regno,
12989 					     struct bpf_kfunc_call_arg_meta *meta)
12990 {
12991 	return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
12992 						  BPF_RB_ROOT, BPF_RB_NODE,
12993 						  &meta->arg_rbtree_root.field);
12994 }
12995 
12996 /*
12997  * css_task iter allowlist is needed to avoid dead locking on css_set_lock.
12998  * LSM hooks and iters (both sleepable and non-sleepable) are safe.
12999  * Any sleepable progs are also safe since bpf_check_attach_target() enforce
13000  * them can only be attached to some specific hook points.
13001  */
13002 static bool check_css_task_iter_allowlist(struct bpf_verifier_env *env)
13003 {
13004 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
13005 
13006 	switch (prog_type) {
13007 	case BPF_PROG_TYPE_LSM:
13008 		return true;
13009 	case BPF_PROG_TYPE_TRACING:
13010 		if (env->prog->expected_attach_type == BPF_TRACE_ITER)
13011 			return true;
13012 		fallthrough;
13013 	default:
13014 		return in_sleepable(env);
13015 	}
13016 }
13017 
13018 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta,
13019 			    int insn_idx)
13020 {
13021 	const char *func_name = meta->func_name, *ref_tname;
13022 	const struct btf *btf = meta->btf;
13023 	const struct btf_param *args;
13024 	struct btf_record *rec;
13025 	u32 i, nargs;
13026 	int ret;
13027 
13028 	args = (const struct btf_param *)(meta->func_proto + 1);
13029 	nargs = btf_type_vlen(meta->func_proto);
13030 	if (nargs > MAX_BPF_FUNC_REG_ARGS) {
13031 		verbose(env, "Function %s has %d > %d args\n", func_name, nargs,
13032 			MAX_BPF_FUNC_REG_ARGS);
13033 		return -EINVAL;
13034 	}
13035 
13036 	/* Check that BTF function arguments match actual types that the
13037 	 * verifier sees.
13038 	 */
13039 	for (i = 0; i < nargs; i++) {
13040 		struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[i + 1];
13041 		const struct btf_type *t, *ref_t, *resolve_ret;
13042 		enum bpf_arg_type arg_type = ARG_DONTCARE;
13043 		u32 regno = i + 1, ref_id, type_size;
13044 		bool is_ret_buf_sz = false;
13045 		int kf_arg_type;
13046 
13047 		t = btf_type_skip_modifiers(btf, args[i].type, NULL);
13048 
13049 		if (is_kfunc_arg_ignore(btf, &args[i]))
13050 			continue;
13051 
13052 		if (is_kfunc_arg_prog(btf, &args[i])) {
13053 			/* Used to reject repeated use of __prog. */
13054 			if (meta->arg_prog) {
13055 				verifier_bug(env, "Only 1 prog->aux argument supported per-kfunc");
13056 				return -EFAULT;
13057 			}
13058 			meta->arg_prog = true;
13059 			cur_aux(env)->arg_prog = regno;
13060 			continue;
13061 		}
13062 
13063 		if (btf_type_is_scalar(t)) {
13064 			if (reg->type != SCALAR_VALUE) {
13065 				verbose(env, "R%d is not a scalar\n", regno);
13066 				return -EINVAL;
13067 			}
13068 
13069 			if (is_kfunc_arg_constant(meta->btf, &args[i])) {
13070 				if (meta->arg_constant.found) {
13071 					verifier_bug(env, "only one constant argument permitted");
13072 					return -EFAULT;
13073 				}
13074 				if (!tnum_is_const(reg->var_off)) {
13075 					verbose(env, "R%d must be a known constant\n", regno);
13076 					return -EINVAL;
13077 				}
13078 				ret = mark_chain_precision(env, regno);
13079 				if (ret < 0)
13080 					return ret;
13081 				meta->arg_constant.found = true;
13082 				meta->arg_constant.value = reg->var_off.value;
13083 			} else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) {
13084 				meta->r0_rdonly = true;
13085 				is_ret_buf_sz = true;
13086 			} else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) {
13087 				is_ret_buf_sz = true;
13088 			}
13089 
13090 			if (is_ret_buf_sz) {
13091 				if (meta->r0_size) {
13092 					verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc");
13093 					return -EINVAL;
13094 				}
13095 
13096 				if (!tnum_is_const(reg->var_off)) {
13097 					verbose(env, "R%d is not a const\n", regno);
13098 					return -EINVAL;
13099 				}
13100 
13101 				meta->r0_size = reg->var_off.value;
13102 				ret = mark_chain_precision(env, regno);
13103 				if (ret)
13104 					return ret;
13105 			}
13106 			continue;
13107 		}
13108 
13109 		if (!btf_type_is_ptr(t)) {
13110 			verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t));
13111 			return -EINVAL;
13112 		}
13113 
13114 		if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) &&
13115 		    (register_is_null(reg) || type_may_be_null(reg->type)) &&
13116 			!is_kfunc_arg_nullable(meta->btf, &args[i])) {
13117 			verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i);
13118 			return -EACCES;
13119 		}
13120 
13121 		if (reg->ref_obj_id) {
13122 			if (is_kfunc_release(meta) && meta->ref_obj_id) {
13123 				verifier_bug(env, "more than one arg with ref_obj_id R%d %u %u",
13124 					     regno, reg->ref_obj_id,
13125 					     meta->ref_obj_id);
13126 				return -EFAULT;
13127 			}
13128 			meta->ref_obj_id = reg->ref_obj_id;
13129 			if (is_kfunc_release(meta))
13130 				meta->release_regno = regno;
13131 		}
13132 
13133 		ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
13134 		ref_tname = btf_name_by_offset(btf, ref_t->name_off);
13135 
13136 		kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs);
13137 		if (kf_arg_type < 0)
13138 			return kf_arg_type;
13139 
13140 		switch (kf_arg_type) {
13141 		case KF_ARG_PTR_TO_NULL:
13142 			continue;
13143 		case KF_ARG_PTR_TO_MAP:
13144 			if (!reg->map_ptr) {
13145 				verbose(env, "pointer in R%d isn't map pointer\n", regno);
13146 				return -EINVAL;
13147 			}
13148 			if (meta->map.ptr && reg->map_ptr->record->wq_off >= 0) {
13149 				/* Use map_uid (which is unique id of inner map) to reject:
13150 				 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
13151 				 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
13152 				 * if (inner_map1 && inner_map2) {
13153 				 *     wq = bpf_map_lookup_elem(inner_map1);
13154 				 *     if (wq)
13155 				 *         // mismatch would have been allowed
13156 				 *         bpf_wq_init(wq, inner_map2);
13157 				 * }
13158 				 *
13159 				 * Comparing map_ptr is enough to distinguish normal and outer maps.
13160 				 */
13161 				if (meta->map.ptr != reg->map_ptr ||
13162 				    meta->map.uid != reg->map_uid) {
13163 					verbose(env,
13164 						"workqueue pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
13165 						meta->map.uid, reg->map_uid);
13166 					return -EINVAL;
13167 				}
13168 			}
13169 			meta->map.ptr = reg->map_ptr;
13170 			meta->map.uid = reg->map_uid;
13171 			fallthrough;
13172 		case KF_ARG_PTR_TO_ALLOC_BTF_ID:
13173 		case KF_ARG_PTR_TO_BTF_ID:
13174 			if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta))
13175 				break;
13176 
13177 			if (!is_trusted_reg(reg)) {
13178 				if (!is_kfunc_rcu(meta)) {
13179 					verbose(env, "R%d must be referenced or trusted\n", regno);
13180 					return -EINVAL;
13181 				}
13182 				if (!is_rcu_reg(reg)) {
13183 					verbose(env, "R%d must be a rcu pointer\n", regno);
13184 					return -EINVAL;
13185 				}
13186 			}
13187 			fallthrough;
13188 		case KF_ARG_PTR_TO_CTX:
13189 		case KF_ARG_PTR_TO_DYNPTR:
13190 		case KF_ARG_PTR_TO_ITER:
13191 		case KF_ARG_PTR_TO_LIST_HEAD:
13192 		case KF_ARG_PTR_TO_LIST_NODE:
13193 		case KF_ARG_PTR_TO_RB_ROOT:
13194 		case KF_ARG_PTR_TO_RB_NODE:
13195 		case KF_ARG_PTR_TO_MEM:
13196 		case KF_ARG_PTR_TO_MEM_SIZE:
13197 		case KF_ARG_PTR_TO_CALLBACK:
13198 		case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
13199 		case KF_ARG_PTR_TO_CONST_STR:
13200 		case KF_ARG_PTR_TO_WORKQUEUE:
13201 		case KF_ARG_PTR_TO_IRQ_FLAG:
13202 		case KF_ARG_PTR_TO_RES_SPIN_LOCK:
13203 			break;
13204 		default:
13205 			verifier_bug(env, "unknown kfunc arg type %d", kf_arg_type);
13206 			return -EFAULT;
13207 		}
13208 
13209 		if (is_kfunc_release(meta) && reg->ref_obj_id)
13210 			arg_type |= OBJ_RELEASE;
13211 		ret = check_func_arg_reg_off(env, reg, regno, arg_type);
13212 		if (ret < 0)
13213 			return ret;
13214 
13215 		switch (kf_arg_type) {
13216 		case KF_ARG_PTR_TO_CTX:
13217 			if (reg->type != PTR_TO_CTX) {
13218 				verbose(env, "arg#%d expected pointer to ctx, but got %s\n",
13219 					i, reg_type_str(env, reg->type));
13220 				return -EINVAL;
13221 			}
13222 
13223 			if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
13224 				ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog));
13225 				if (ret < 0)
13226 					return -EINVAL;
13227 				meta->ret_btf_id  = ret;
13228 			}
13229 			break;
13230 		case KF_ARG_PTR_TO_ALLOC_BTF_ID:
13231 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC)) {
13232 				if (meta->func_id != special_kfunc_list[KF_bpf_obj_drop_impl]) {
13233 					verbose(env, "arg#%d expected for bpf_obj_drop_impl()\n", i);
13234 					return -EINVAL;
13235 				}
13236 			} else if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC | MEM_PERCPU)) {
13237 				if (meta->func_id != special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) {
13238 					verbose(env, "arg#%d expected for bpf_percpu_obj_drop_impl()\n", i);
13239 					return -EINVAL;
13240 				}
13241 			} else {
13242 				verbose(env, "arg#%d expected pointer to allocated object\n", i);
13243 				return -EINVAL;
13244 			}
13245 			if (!reg->ref_obj_id) {
13246 				verbose(env, "allocated object must be referenced\n");
13247 				return -EINVAL;
13248 			}
13249 			if (meta->btf == btf_vmlinux) {
13250 				meta->arg_btf = reg->btf;
13251 				meta->arg_btf_id = reg->btf_id;
13252 			}
13253 			break;
13254 		case KF_ARG_PTR_TO_DYNPTR:
13255 		{
13256 			enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR;
13257 			int clone_ref_obj_id = 0;
13258 
13259 			if (reg->type == CONST_PTR_TO_DYNPTR)
13260 				dynptr_arg_type |= MEM_RDONLY;
13261 
13262 			if (is_kfunc_arg_uninit(btf, &args[i]))
13263 				dynptr_arg_type |= MEM_UNINIT;
13264 
13265 			if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
13266 				dynptr_arg_type |= DYNPTR_TYPE_SKB;
13267 			} else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp]) {
13268 				dynptr_arg_type |= DYNPTR_TYPE_XDP;
13269 			} else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb_meta]) {
13270 				dynptr_arg_type |= DYNPTR_TYPE_SKB_META;
13271 			} else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_clone] &&
13272 				   (dynptr_arg_type & MEM_UNINIT)) {
13273 				enum bpf_dynptr_type parent_type = meta->initialized_dynptr.type;
13274 
13275 				if (parent_type == BPF_DYNPTR_TYPE_INVALID) {
13276 					verifier_bug(env, "no dynptr type for parent of clone");
13277 					return -EFAULT;
13278 				}
13279 
13280 				dynptr_arg_type |= (unsigned int)get_dynptr_type_flag(parent_type);
13281 				clone_ref_obj_id = meta->initialized_dynptr.ref_obj_id;
13282 				if (dynptr_type_refcounted(parent_type) && !clone_ref_obj_id) {
13283 					verifier_bug(env, "missing ref obj id for parent of clone");
13284 					return -EFAULT;
13285 				}
13286 			}
13287 
13288 			ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type, clone_ref_obj_id);
13289 			if (ret < 0)
13290 				return ret;
13291 
13292 			if (!(dynptr_arg_type & MEM_UNINIT)) {
13293 				int id = dynptr_id(env, reg);
13294 
13295 				if (id < 0) {
13296 					verifier_bug(env, "failed to obtain dynptr id");
13297 					return id;
13298 				}
13299 				meta->initialized_dynptr.id = id;
13300 				meta->initialized_dynptr.type = dynptr_get_type(env, reg);
13301 				meta->initialized_dynptr.ref_obj_id = dynptr_ref_obj_id(env, reg);
13302 			}
13303 
13304 			break;
13305 		}
13306 		case KF_ARG_PTR_TO_ITER:
13307 			if (meta->func_id == special_kfunc_list[KF_bpf_iter_css_task_new]) {
13308 				if (!check_css_task_iter_allowlist(env)) {
13309 					verbose(env, "css_task_iter is only allowed in bpf_lsm, bpf_iter and sleepable progs\n");
13310 					return -EINVAL;
13311 				}
13312 			}
13313 			ret = process_iter_arg(env, regno, insn_idx, meta);
13314 			if (ret < 0)
13315 				return ret;
13316 			break;
13317 		case KF_ARG_PTR_TO_LIST_HEAD:
13318 			if (reg->type != PTR_TO_MAP_VALUE &&
13319 			    reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
13320 				verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
13321 				return -EINVAL;
13322 			}
13323 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
13324 				verbose(env, "allocated object must be referenced\n");
13325 				return -EINVAL;
13326 			}
13327 			ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta);
13328 			if (ret < 0)
13329 				return ret;
13330 			break;
13331 		case KF_ARG_PTR_TO_RB_ROOT:
13332 			if (reg->type != PTR_TO_MAP_VALUE &&
13333 			    reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
13334 				verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
13335 				return -EINVAL;
13336 			}
13337 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
13338 				verbose(env, "allocated object must be referenced\n");
13339 				return -EINVAL;
13340 			}
13341 			ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta);
13342 			if (ret < 0)
13343 				return ret;
13344 			break;
13345 		case KF_ARG_PTR_TO_LIST_NODE:
13346 			if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
13347 				verbose(env, "arg#%d expected pointer to allocated object\n", i);
13348 				return -EINVAL;
13349 			}
13350 			if (!reg->ref_obj_id) {
13351 				verbose(env, "allocated object must be referenced\n");
13352 				return -EINVAL;
13353 			}
13354 			ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta);
13355 			if (ret < 0)
13356 				return ret;
13357 			break;
13358 		case KF_ARG_PTR_TO_RB_NODE:
13359 			if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
13360 				if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
13361 					verbose(env, "arg#%d expected pointer to allocated object\n", i);
13362 					return -EINVAL;
13363 				}
13364 				if (!reg->ref_obj_id) {
13365 					verbose(env, "allocated object must be referenced\n");
13366 					return -EINVAL;
13367 				}
13368 			} else {
13369 				if (!type_is_non_owning_ref(reg->type) && !reg->ref_obj_id) {
13370 					verbose(env, "%s can only take non-owning or refcounted bpf_rb_node pointer\n", func_name);
13371 					return -EINVAL;
13372 				}
13373 				if (in_rbtree_lock_required_cb(env)) {
13374 					verbose(env, "%s not allowed in rbtree cb\n", func_name);
13375 					return -EINVAL;
13376 				}
13377 			}
13378 
13379 			ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta);
13380 			if (ret < 0)
13381 				return ret;
13382 			break;
13383 		case KF_ARG_PTR_TO_MAP:
13384 			/* If argument has '__map' suffix expect 'struct bpf_map *' */
13385 			ref_id = *reg2btf_ids[CONST_PTR_TO_MAP];
13386 			ref_t = btf_type_by_id(btf_vmlinux, ref_id);
13387 			ref_tname = btf_name_by_offset(btf, ref_t->name_off);
13388 			fallthrough;
13389 		case KF_ARG_PTR_TO_BTF_ID:
13390 			/* Only base_type is checked, further checks are done here */
13391 			if ((base_type(reg->type) != PTR_TO_BTF_ID ||
13392 			     (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) &&
13393 			    !reg2btf_ids[base_type(reg->type)]) {
13394 				verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type));
13395 				verbose(env, "expected %s or socket\n",
13396 					reg_type_str(env, base_type(reg->type) |
13397 							  (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS)));
13398 				return -EINVAL;
13399 			}
13400 			ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i);
13401 			if (ret < 0)
13402 				return ret;
13403 			break;
13404 		case KF_ARG_PTR_TO_MEM:
13405 			resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
13406 			if (IS_ERR(resolve_ret)) {
13407 				verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
13408 					i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret));
13409 				return -EINVAL;
13410 			}
13411 			ret = check_mem_reg(env, reg, regno, type_size);
13412 			if (ret < 0)
13413 				return ret;
13414 			break;
13415 		case KF_ARG_PTR_TO_MEM_SIZE:
13416 		{
13417 			struct bpf_reg_state *buff_reg = &regs[regno];
13418 			const struct btf_param *buff_arg = &args[i];
13419 			struct bpf_reg_state *size_reg = &regs[regno + 1];
13420 			const struct btf_param *size_arg = &args[i + 1];
13421 
13422 			if (!register_is_null(buff_reg) || !is_kfunc_arg_optional(meta->btf, buff_arg)) {
13423 				ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1);
13424 				if (ret < 0) {
13425 					verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1);
13426 					return ret;
13427 				}
13428 			}
13429 
13430 			if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) {
13431 				if (meta->arg_constant.found) {
13432 					verifier_bug(env, "only one constant argument permitted");
13433 					return -EFAULT;
13434 				}
13435 				if (!tnum_is_const(size_reg->var_off)) {
13436 					verbose(env, "R%d must be a known constant\n", regno + 1);
13437 					return -EINVAL;
13438 				}
13439 				meta->arg_constant.found = true;
13440 				meta->arg_constant.value = size_reg->var_off.value;
13441 			}
13442 
13443 			/* Skip next '__sz' or '__szk' argument */
13444 			i++;
13445 			break;
13446 		}
13447 		case KF_ARG_PTR_TO_CALLBACK:
13448 			if (reg->type != PTR_TO_FUNC) {
13449 				verbose(env, "arg%d expected pointer to func\n", i);
13450 				return -EINVAL;
13451 			}
13452 			meta->subprogno = reg->subprogno;
13453 			break;
13454 		case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
13455 			if (!type_is_ptr_alloc_obj(reg->type)) {
13456 				verbose(env, "arg#%d is neither owning or non-owning ref\n", i);
13457 				return -EINVAL;
13458 			}
13459 			if (!type_is_non_owning_ref(reg->type))
13460 				meta->arg_owning_ref = true;
13461 
13462 			rec = reg_btf_record(reg);
13463 			if (!rec) {
13464 				verifier_bug(env, "Couldn't find btf_record");
13465 				return -EFAULT;
13466 			}
13467 
13468 			if (rec->refcount_off < 0) {
13469 				verbose(env, "arg#%d doesn't point to a type with bpf_refcount field\n", i);
13470 				return -EINVAL;
13471 			}
13472 
13473 			meta->arg_btf = reg->btf;
13474 			meta->arg_btf_id = reg->btf_id;
13475 			break;
13476 		case KF_ARG_PTR_TO_CONST_STR:
13477 			if (reg->type != PTR_TO_MAP_VALUE) {
13478 				verbose(env, "arg#%d doesn't point to a const string\n", i);
13479 				return -EINVAL;
13480 			}
13481 			ret = check_reg_const_str(env, reg, regno);
13482 			if (ret)
13483 				return ret;
13484 			break;
13485 		case KF_ARG_PTR_TO_WORKQUEUE:
13486 			if (reg->type != PTR_TO_MAP_VALUE) {
13487 				verbose(env, "arg#%d doesn't point to a map value\n", i);
13488 				return -EINVAL;
13489 			}
13490 			ret = process_wq_func(env, regno, meta);
13491 			if (ret < 0)
13492 				return ret;
13493 			break;
13494 		case KF_ARG_PTR_TO_IRQ_FLAG:
13495 			if (reg->type != PTR_TO_STACK) {
13496 				verbose(env, "arg#%d doesn't point to an irq flag on stack\n", i);
13497 				return -EINVAL;
13498 			}
13499 			ret = process_irq_flag(env, regno, meta);
13500 			if (ret < 0)
13501 				return ret;
13502 			break;
13503 		case KF_ARG_PTR_TO_RES_SPIN_LOCK:
13504 		{
13505 			int flags = PROCESS_RES_LOCK;
13506 
13507 			if (reg->type != PTR_TO_MAP_VALUE && reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
13508 				verbose(env, "arg#%d doesn't point to map value or allocated object\n", i);
13509 				return -EINVAL;
13510 			}
13511 
13512 			if (!is_bpf_res_spin_lock_kfunc(meta->func_id))
13513 				return -EFAULT;
13514 			if (meta->func_id == special_kfunc_list[KF_bpf_res_spin_lock] ||
13515 			    meta->func_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave])
13516 				flags |= PROCESS_SPIN_LOCK;
13517 			if (meta->func_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave] ||
13518 			    meta->func_id == special_kfunc_list[KF_bpf_res_spin_unlock_irqrestore])
13519 				flags |= PROCESS_LOCK_IRQ;
13520 			ret = process_spin_lock(env, regno, flags);
13521 			if (ret < 0)
13522 				return ret;
13523 			break;
13524 		}
13525 		}
13526 	}
13527 
13528 	if (is_kfunc_release(meta) && !meta->release_regno) {
13529 		verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n",
13530 			func_name);
13531 		return -EINVAL;
13532 	}
13533 
13534 	return 0;
13535 }
13536 
13537 static int fetch_kfunc_meta(struct bpf_verifier_env *env,
13538 			    struct bpf_insn *insn,
13539 			    struct bpf_kfunc_call_arg_meta *meta,
13540 			    const char **kfunc_name)
13541 {
13542 	const struct btf_type *func, *func_proto;
13543 	u32 func_id, *kfunc_flags;
13544 	const char *func_name;
13545 	struct btf *desc_btf;
13546 
13547 	if (kfunc_name)
13548 		*kfunc_name = NULL;
13549 
13550 	if (!insn->imm)
13551 		return -EINVAL;
13552 
13553 	desc_btf = find_kfunc_desc_btf(env, insn->off);
13554 	if (IS_ERR(desc_btf))
13555 		return PTR_ERR(desc_btf);
13556 
13557 	func_id = insn->imm;
13558 	func = btf_type_by_id(desc_btf, func_id);
13559 	func_name = btf_name_by_offset(desc_btf, func->name_off);
13560 	if (kfunc_name)
13561 		*kfunc_name = func_name;
13562 	func_proto = btf_type_by_id(desc_btf, func->type);
13563 
13564 	kfunc_flags = btf_kfunc_id_set_contains(desc_btf, func_id, env->prog);
13565 	if (!kfunc_flags) {
13566 		return -EACCES;
13567 	}
13568 
13569 	memset(meta, 0, sizeof(*meta));
13570 	meta->btf = desc_btf;
13571 	meta->func_id = func_id;
13572 	meta->kfunc_flags = *kfunc_flags;
13573 	meta->func_proto = func_proto;
13574 	meta->func_name = func_name;
13575 
13576 	return 0;
13577 }
13578 
13579 /* check special kfuncs and return:
13580  *  1  - not fall-through to 'else' branch, continue verification
13581  *  0  - fall-through to 'else' branch
13582  * < 0 - not fall-through to 'else' branch, return error
13583  */
13584 static int check_special_kfunc(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta,
13585 			       struct bpf_reg_state *regs, struct bpf_insn_aux_data *insn_aux,
13586 			       const struct btf_type *ptr_type, struct btf *desc_btf)
13587 {
13588 	const struct btf_type *ret_t;
13589 	int err = 0;
13590 
13591 	if (meta->btf != btf_vmlinux)
13592 		return 0;
13593 
13594 	if (meta->func_id == special_kfunc_list[KF_bpf_obj_new_impl] ||
13595 	    meta->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
13596 		struct btf_struct_meta *struct_meta;
13597 		struct btf *ret_btf;
13598 		u32 ret_btf_id;
13599 
13600 		if (meta->func_id == special_kfunc_list[KF_bpf_obj_new_impl] && !bpf_global_ma_set)
13601 			return -ENOMEM;
13602 
13603 		if (((u64)(u32)meta->arg_constant.value) != meta->arg_constant.value) {
13604 			verbose(env, "local type ID argument must be in range [0, U32_MAX]\n");
13605 			return -EINVAL;
13606 		}
13607 
13608 		ret_btf = env->prog->aux->btf;
13609 		ret_btf_id = meta->arg_constant.value;
13610 
13611 		/* This may be NULL due to user not supplying a BTF */
13612 		if (!ret_btf) {
13613 			verbose(env, "bpf_obj_new/bpf_percpu_obj_new requires prog BTF\n");
13614 			return -EINVAL;
13615 		}
13616 
13617 		ret_t = btf_type_by_id(ret_btf, ret_btf_id);
13618 		if (!ret_t || !__btf_type_is_struct(ret_t)) {
13619 			verbose(env, "bpf_obj_new/bpf_percpu_obj_new type ID argument must be of a struct\n");
13620 			return -EINVAL;
13621 		}
13622 
13623 		if (meta->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
13624 			if (ret_t->size > BPF_GLOBAL_PERCPU_MA_MAX_SIZE) {
13625 				verbose(env, "bpf_percpu_obj_new type size (%d) is greater than %d\n",
13626 					ret_t->size, BPF_GLOBAL_PERCPU_MA_MAX_SIZE);
13627 				return -EINVAL;
13628 			}
13629 
13630 			if (!bpf_global_percpu_ma_set) {
13631 				mutex_lock(&bpf_percpu_ma_lock);
13632 				if (!bpf_global_percpu_ma_set) {
13633 					/* Charge memory allocated with bpf_global_percpu_ma to
13634 					 * root memcg. The obj_cgroup for root memcg is NULL.
13635 					 */
13636 					err = bpf_mem_alloc_percpu_init(&bpf_global_percpu_ma, NULL);
13637 					if (!err)
13638 						bpf_global_percpu_ma_set = true;
13639 				}
13640 				mutex_unlock(&bpf_percpu_ma_lock);
13641 				if (err)
13642 					return err;
13643 			}
13644 
13645 			mutex_lock(&bpf_percpu_ma_lock);
13646 			err = bpf_mem_alloc_percpu_unit_init(&bpf_global_percpu_ma, ret_t->size);
13647 			mutex_unlock(&bpf_percpu_ma_lock);
13648 			if (err)
13649 				return err;
13650 		}
13651 
13652 		struct_meta = btf_find_struct_meta(ret_btf, ret_btf_id);
13653 		if (meta->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
13654 			if (!__btf_type_is_scalar_struct(env, ret_btf, ret_t, 0)) {
13655 				verbose(env, "bpf_percpu_obj_new type ID argument must be of a struct of scalars\n");
13656 				return -EINVAL;
13657 			}
13658 
13659 			if (struct_meta) {
13660 				verbose(env, "bpf_percpu_obj_new type ID argument must not contain special fields\n");
13661 				return -EINVAL;
13662 			}
13663 		}
13664 
13665 		mark_reg_known_zero(env, regs, BPF_REG_0);
13666 		regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
13667 		regs[BPF_REG_0].btf = ret_btf;
13668 		regs[BPF_REG_0].btf_id = ret_btf_id;
13669 		if (meta->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl])
13670 			regs[BPF_REG_0].type |= MEM_PERCPU;
13671 
13672 		insn_aux->obj_new_size = ret_t->size;
13673 		insn_aux->kptr_struct_meta = struct_meta;
13674 	} else if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
13675 		mark_reg_known_zero(env, regs, BPF_REG_0);
13676 		regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
13677 		regs[BPF_REG_0].btf = meta->arg_btf;
13678 		regs[BPF_REG_0].btf_id = meta->arg_btf_id;
13679 
13680 		insn_aux->kptr_struct_meta =
13681 			btf_find_struct_meta(meta->arg_btf,
13682 					     meta->arg_btf_id);
13683 	} else if (is_list_node_type(ptr_type)) {
13684 		struct btf_field *field = meta->arg_list_head.field;
13685 
13686 		mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
13687 	} else if (is_rbtree_node_type(ptr_type)) {
13688 		struct btf_field *field = meta->arg_rbtree_root.field;
13689 
13690 		mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
13691 	} else if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
13692 		mark_reg_known_zero(env, regs, BPF_REG_0);
13693 		regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED;
13694 		regs[BPF_REG_0].btf = desc_btf;
13695 		regs[BPF_REG_0].btf_id = meta->ret_btf_id;
13696 	} else if (meta->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
13697 		ret_t = btf_type_by_id(desc_btf, meta->arg_constant.value);
13698 		if (!ret_t) {
13699 			verbose(env, "Unknown type ID %lld passed to kfunc bpf_rdonly_cast\n",
13700 				meta->arg_constant.value);
13701 			return -EINVAL;
13702 		} else if (btf_type_is_struct(ret_t)) {
13703 			mark_reg_known_zero(env, regs, BPF_REG_0);
13704 			regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
13705 			regs[BPF_REG_0].btf = desc_btf;
13706 			regs[BPF_REG_0].btf_id = meta->arg_constant.value;
13707 		} else if (btf_type_is_void(ret_t)) {
13708 			mark_reg_known_zero(env, regs, BPF_REG_0);
13709 			regs[BPF_REG_0].type = PTR_TO_MEM | MEM_RDONLY | PTR_UNTRUSTED;
13710 			regs[BPF_REG_0].mem_size = 0;
13711 		} else {
13712 			verbose(env,
13713 				"kfunc bpf_rdonly_cast type ID argument must be of a struct or void\n");
13714 			return -EINVAL;
13715 		}
13716 	} else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_slice] ||
13717 		   meta->func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) {
13718 		enum bpf_type_flag type_flag = get_dynptr_type_flag(meta->initialized_dynptr.type);
13719 
13720 		mark_reg_known_zero(env, regs, BPF_REG_0);
13721 
13722 		if (!meta->arg_constant.found) {
13723 			verifier_bug(env, "bpf_dynptr_slice(_rdwr) no constant size");
13724 			return -EFAULT;
13725 		}
13726 
13727 		regs[BPF_REG_0].mem_size = meta->arg_constant.value;
13728 
13729 		/* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */
13730 		regs[BPF_REG_0].type = PTR_TO_MEM | type_flag;
13731 
13732 		if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_slice]) {
13733 			regs[BPF_REG_0].type |= MEM_RDONLY;
13734 		} else {
13735 			/* this will set env->seen_direct_write to true */
13736 			if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) {
13737 				verbose(env, "the prog does not allow writes to packet data\n");
13738 				return -EINVAL;
13739 			}
13740 		}
13741 
13742 		if (!meta->initialized_dynptr.id) {
13743 			verifier_bug(env, "no dynptr id");
13744 			return -EFAULT;
13745 		}
13746 		regs[BPF_REG_0].dynptr_id = meta->initialized_dynptr.id;
13747 
13748 		/* we don't need to set BPF_REG_0's ref obj id
13749 		 * because packet slices are not refcounted (see
13750 		 * dynptr_type_refcounted)
13751 		 */
13752 	} else {
13753 		return 0;
13754 	}
13755 
13756 	return 1;
13757 }
13758 
13759 static int check_return_code(struct bpf_verifier_env *env, int regno, const char *reg_name);
13760 
13761 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
13762 			    int *insn_idx_p)
13763 {
13764 	bool sleepable, rcu_lock, rcu_unlock, preempt_disable, preempt_enable;
13765 	u32 i, nargs, ptr_type_id, release_ref_obj_id;
13766 	struct bpf_reg_state *regs = cur_regs(env);
13767 	const char *func_name, *ptr_type_name;
13768 	const struct btf_type *t, *ptr_type;
13769 	struct bpf_kfunc_call_arg_meta meta;
13770 	struct bpf_insn_aux_data *insn_aux;
13771 	int err, insn_idx = *insn_idx_p;
13772 	const struct btf_param *args;
13773 	struct btf *desc_btf;
13774 
13775 	/* skip for now, but return error when we find this in fixup_kfunc_call */
13776 	if (!insn->imm)
13777 		return 0;
13778 
13779 	err = fetch_kfunc_meta(env, insn, &meta, &func_name);
13780 	if (err == -EACCES && func_name)
13781 		verbose(env, "calling kernel function %s is not allowed\n", func_name);
13782 	if (err)
13783 		return err;
13784 	desc_btf = meta.btf;
13785 	insn_aux = &env->insn_aux_data[insn_idx];
13786 
13787 	insn_aux->is_iter_next = is_iter_next_kfunc(&meta);
13788 
13789 	if (!insn->off &&
13790 	    (insn->imm == special_kfunc_list[KF_bpf_res_spin_lock] ||
13791 	     insn->imm == special_kfunc_list[KF_bpf_res_spin_lock_irqsave])) {
13792 		struct bpf_verifier_state *branch;
13793 		struct bpf_reg_state *regs;
13794 
13795 		branch = push_stack(env, env->insn_idx + 1, env->insn_idx, false);
13796 		if (!branch) {
13797 			verbose(env, "failed to push state for failed lock acquisition\n");
13798 			return -ENOMEM;
13799 		}
13800 
13801 		regs = branch->frame[branch->curframe]->regs;
13802 
13803 		/* Clear r0-r5 registers in forked state */
13804 		for (i = 0; i < CALLER_SAVED_REGS; i++)
13805 			mark_reg_not_init(env, regs, caller_saved[i]);
13806 
13807 		mark_reg_unknown(env, regs, BPF_REG_0);
13808 		err = __mark_reg_s32_range(env, regs, BPF_REG_0, -MAX_ERRNO, -1);
13809 		if (err) {
13810 			verbose(env, "failed to mark s32 range for retval in forked state for lock\n");
13811 			return err;
13812 		}
13813 		__mark_btf_func_reg_size(env, regs, BPF_REG_0, sizeof(u32));
13814 	} else if (!insn->off && insn->imm == special_kfunc_list[KF___bpf_trap]) {
13815 		verbose(env, "unexpected __bpf_trap() due to uninitialized variable?\n");
13816 		return -EFAULT;
13817 	}
13818 
13819 	if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) {
13820 		verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n");
13821 		return -EACCES;
13822 	}
13823 
13824 	sleepable = is_kfunc_sleepable(&meta);
13825 	if (sleepable && !in_sleepable(env)) {
13826 		verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name);
13827 		return -EACCES;
13828 	}
13829 
13830 	/* Check the arguments */
13831 	err = check_kfunc_args(env, &meta, insn_idx);
13832 	if (err < 0)
13833 		return err;
13834 
13835 	if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
13836 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
13837 					 set_rbtree_add_callback_state);
13838 		if (err) {
13839 			verbose(env, "kfunc %s#%d failed callback verification\n",
13840 				func_name, meta.func_id);
13841 			return err;
13842 		}
13843 	}
13844 
13845 	if (meta.func_id == special_kfunc_list[KF_bpf_session_cookie]) {
13846 		meta.r0_size = sizeof(u64);
13847 		meta.r0_rdonly = false;
13848 	}
13849 
13850 	if (is_bpf_wq_set_callback_impl_kfunc(meta.func_id)) {
13851 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
13852 					 set_timer_callback_state);
13853 		if (err) {
13854 			verbose(env, "kfunc %s#%d failed callback verification\n",
13855 				func_name, meta.func_id);
13856 			return err;
13857 		}
13858 	}
13859 
13860 	rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta);
13861 	rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta);
13862 
13863 	preempt_disable = is_kfunc_bpf_preempt_disable(&meta);
13864 	preempt_enable = is_kfunc_bpf_preempt_enable(&meta);
13865 
13866 	if (env->cur_state->active_rcu_lock) {
13867 		struct bpf_func_state *state;
13868 		struct bpf_reg_state *reg;
13869 		u32 clear_mask = (1 << STACK_SPILL) | (1 << STACK_ITER);
13870 
13871 		if (in_rbtree_lock_required_cb(env) && (rcu_lock || rcu_unlock)) {
13872 			verbose(env, "Calling bpf_rcu_read_{lock,unlock} in unnecessary rbtree callback\n");
13873 			return -EACCES;
13874 		}
13875 
13876 		if (rcu_lock) {
13877 			verbose(env, "nested rcu read lock (kernel function %s)\n", func_name);
13878 			return -EINVAL;
13879 		} else if (rcu_unlock) {
13880 			bpf_for_each_reg_in_vstate_mask(env->cur_state, state, reg, clear_mask, ({
13881 				if (reg->type & MEM_RCU) {
13882 					reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL);
13883 					reg->type |= PTR_UNTRUSTED;
13884 				}
13885 			}));
13886 			env->cur_state->active_rcu_lock = false;
13887 		} else if (sleepable) {
13888 			verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name);
13889 			return -EACCES;
13890 		}
13891 	} else if (rcu_lock) {
13892 		env->cur_state->active_rcu_lock = true;
13893 	} else if (rcu_unlock) {
13894 		verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name);
13895 		return -EINVAL;
13896 	}
13897 
13898 	if (env->cur_state->active_preempt_locks) {
13899 		if (preempt_disable) {
13900 			env->cur_state->active_preempt_locks++;
13901 		} else if (preempt_enable) {
13902 			env->cur_state->active_preempt_locks--;
13903 		} else if (sleepable) {
13904 			verbose(env, "kernel func %s is sleepable within non-preemptible region\n", func_name);
13905 			return -EACCES;
13906 		}
13907 	} else if (preempt_disable) {
13908 		env->cur_state->active_preempt_locks++;
13909 	} else if (preempt_enable) {
13910 		verbose(env, "unmatched attempt to enable preemption (kernel function %s)\n", func_name);
13911 		return -EINVAL;
13912 	}
13913 
13914 	if (env->cur_state->active_irq_id && sleepable) {
13915 		verbose(env, "kernel func %s is sleepable within IRQ-disabled region\n", func_name);
13916 		return -EACCES;
13917 	}
13918 
13919 	/* In case of release function, we get register number of refcounted
13920 	 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now.
13921 	 */
13922 	if (meta.release_regno) {
13923 		err = release_reference(env, regs[meta.release_regno].ref_obj_id);
13924 		if (err) {
13925 			verbose(env, "kfunc %s#%d reference has not been acquired before\n",
13926 				func_name, meta.func_id);
13927 			return err;
13928 		}
13929 	}
13930 
13931 	if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
13932 	    meta.func_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
13933 	    meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
13934 		release_ref_obj_id = regs[BPF_REG_2].ref_obj_id;
13935 		insn_aux->insert_off = regs[BPF_REG_2].off;
13936 		insn_aux->kptr_struct_meta = btf_find_struct_meta(meta.arg_btf, meta.arg_btf_id);
13937 		err = ref_convert_owning_non_owning(env, release_ref_obj_id);
13938 		if (err) {
13939 			verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n",
13940 				func_name, meta.func_id);
13941 			return err;
13942 		}
13943 
13944 		err = release_reference(env, release_ref_obj_id);
13945 		if (err) {
13946 			verbose(env, "kfunc %s#%d reference has not been acquired before\n",
13947 				func_name, meta.func_id);
13948 			return err;
13949 		}
13950 	}
13951 
13952 	if (meta.func_id == special_kfunc_list[KF_bpf_throw]) {
13953 		if (!bpf_jit_supports_exceptions()) {
13954 			verbose(env, "JIT does not support calling kfunc %s#%d\n",
13955 				func_name, meta.func_id);
13956 			return -ENOTSUPP;
13957 		}
13958 		env->seen_exception = true;
13959 
13960 		/* In the case of the default callback, the cookie value passed
13961 		 * to bpf_throw becomes the return value of the program.
13962 		 */
13963 		if (!env->exception_callback_subprog) {
13964 			err = check_return_code(env, BPF_REG_1, "R1");
13965 			if (err < 0)
13966 				return err;
13967 		}
13968 	}
13969 
13970 	for (i = 0; i < CALLER_SAVED_REGS; i++)
13971 		mark_reg_not_init(env, regs, caller_saved[i]);
13972 
13973 	/* Check return type */
13974 	t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL);
13975 
13976 	if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) {
13977 		/* Only exception is bpf_obj_new_impl */
13978 		if (meta.btf != btf_vmlinux ||
13979 		    (meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl] &&
13980 		     meta.func_id != special_kfunc_list[KF_bpf_percpu_obj_new_impl] &&
13981 		     meta.func_id != special_kfunc_list[KF_bpf_refcount_acquire_impl])) {
13982 			verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n");
13983 			return -EINVAL;
13984 		}
13985 	}
13986 
13987 	if (btf_type_is_scalar(t)) {
13988 		mark_reg_unknown(env, regs, BPF_REG_0);
13989 		if (meta.btf == btf_vmlinux && (meta.func_id == special_kfunc_list[KF_bpf_res_spin_lock] ||
13990 		    meta.func_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave]))
13991 			__mark_reg_const_zero(env, &regs[BPF_REG_0]);
13992 		mark_btf_func_reg_size(env, BPF_REG_0, t->size);
13993 	} else if (btf_type_is_ptr(t)) {
13994 		ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id);
13995 		err = check_special_kfunc(env, &meta, regs, insn_aux, ptr_type, desc_btf);
13996 		if (err) {
13997 			if (err < 0)
13998 				return err;
13999 		} else if (btf_type_is_void(ptr_type)) {
14000 			/* kfunc returning 'void *' is equivalent to returning scalar */
14001 			mark_reg_unknown(env, regs, BPF_REG_0);
14002 		} else if (!__btf_type_is_struct(ptr_type)) {
14003 			if (!meta.r0_size) {
14004 				__u32 sz;
14005 
14006 				if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) {
14007 					meta.r0_size = sz;
14008 					meta.r0_rdonly = true;
14009 				}
14010 			}
14011 			if (!meta.r0_size) {
14012 				ptr_type_name = btf_name_by_offset(desc_btf,
14013 								   ptr_type->name_off);
14014 				verbose(env,
14015 					"kernel function %s returns pointer type %s %s is not supported\n",
14016 					func_name,
14017 					btf_type_str(ptr_type),
14018 					ptr_type_name);
14019 				return -EINVAL;
14020 			}
14021 
14022 			mark_reg_known_zero(env, regs, BPF_REG_0);
14023 			regs[BPF_REG_0].type = PTR_TO_MEM;
14024 			regs[BPF_REG_0].mem_size = meta.r0_size;
14025 
14026 			if (meta.r0_rdonly)
14027 				regs[BPF_REG_0].type |= MEM_RDONLY;
14028 
14029 			/* Ensures we don't access the memory after a release_reference() */
14030 			if (meta.ref_obj_id)
14031 				regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
14032 		} else {
14033 			mark_reg_known_zero(env, regs, BPF_REG_0);
14034 			regs[BPF_REG_0].btf = desc_btf;
14035 			regs[BPF_REG_0].type = PTR_TO_BTF_ID;
14036 			regs[BPF_REG_0].btf_id = ptr_type_id;
14037 
14038 			if (meta.func_id == special_kfunc_list[KF_bpf_get_kmem_cache])
14039 				regs[BPF_REG_0].type |= PTR_UNTRUSTED;
14040 
14041 			if (is_iter_next_kfunc(&meta)) {
14042 				struct bpf_reg_state *cur_iter;
14043 
14044 				cur_iter = get_iter_from_state(env->cur_state, &meta);
14045 
14046 				if (cur_iter->type & MEM_RCU) /* KF_RCU_PROTECTED */
14047 					regs[BPF_REG_0].type |= MEM_RCU;
14048 				else
14049 					regs[BPF_REG_0].type |= PTR_TRUSTED;
14050 			}
14051 		}
14052 
14053 		if (is_kfunc_ret_null(&meta)) {
14054 			regs[BPF_REG_0].type |= PTR_MAYBE_NULL;
14055 			/* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */
14056 			regs[BPF_REG_0].id = ++env->id_gen;
14057 		}
14058 		mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
14059 		if (is_kfunc_acquire(&meta)) {
14060 			int id = acquire_reference(env, insn_idx);
14061 
14062 			if (id < 0)
14063 				return id;
14064 			if (is_kfunc_ret_null(&meta))
14065 				regs[BPF_REG_0].id = id;
14066 			regs[BPF_REG_0].ref_obj_id = id;
14067 		} else if (is_rbtree_node_type(ptr_type) || is_list_node_type(ptr_type)) {
14068 			ref_set_non_owning(env, &regs[BPF_REG_0]);
14069 		}
14070 
14071 		if (reg_may_point_to_spin_lock(&regs[BPF_REG_0]) && !regs[BPF_REG_0].id)
14072 			regs[BPF_REG_0].id = ++env->id_gen;
14073 	} else if (btf_type_is_void(t)) {
14074 		if (meta.btf == btf_vmlinux) {
14075 			if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl] ||
14076 			    meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) {
14077 				insn_aux->kptr_struct_meta =
14078 					btf_find_struct_meta(meta.arg_btf,
14079 							     meta.arg_btf_id);
14080 			}
14081 		}
14082 	}
14083 
14084 	nargs = btf_type_vlen(meta.func_proto);
14085 	args = (const struct btf_param *)(meta.func_proto + 1);
14086 	for (i = 0; i < nargs; i++) {
14087 		u32 regno = i + 1;
14088 
14089 		t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL);
14090 		if (btf_type_is_ptr(t))
14091 			mark_btf_func_reg_size(env, regno, sizeof(void *));
14092 		else
14093 			/* scalar. ensured by btf_check_kfunc_arg_match() */
14094 			mark_btf_func_reg_size(env, regno, t->size);
14095 	}
14096 
14097 	if (is_iter_next_kfunc(&meta)) {
14098 		err = process_iter_next_call(env, insn_idx, &meta);
14099 		if (err)
14100 			return err;
14101 	}
14102 
14103 	return 0;
14104 }
14105 
14106 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
14107 				  const struct bpf_reg_state *reg,
14108 				  enum bpf_reg_type type)
14109 {
14110 	bool known = tnum_is_const(reg->var_off);
14111 	s64 val = reg->var_off.value;
14112 	s64 smin = reg->smin_value;
14113 
14114 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
14115 		verbose(env, "math between %s pointer and %lld is not allowed\n",
14116 			reg_type_str(env, type), val);
14117 		return false;
14118 	}
14119 
14120 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
14121 		verbose(env, "%s pointer offset %d is not allowed\n",
14122 			reg_type_str(env, type), reg->off);
14123 		return false;
14124 	}
14125 
14126 	if (smin == S64_MIN) {
14127 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
14128 			reg_type_str(env, type));
14129 		return false;
14130 	}
14131 
14132 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
14133 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
14134 			smin, reg_type_str(env, type));
14135 		return false;
14136 	}
14137 
14138 	return true;
14139 }
14140 
14141 enum {
14142 	REASON_BOUNDS	= -1,
14143 	REASON_TYPE	= -2,
14144 	REASON_PATHS	= -3,
14145 	REASON_LIMIT	= -4,
14146 	REASON_STACK	= -5,
14147 };
14148 
14149 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
14150 			      u32 *alu_limit, bool mask_to_left)
14151 {
14152 	u32 max = 0, ptr_limit = 0;
14153 
14154 	switch (ptr_reg->type) {
14155 	case PTR_TO_STACK:
14156 		/* Offset 0 is out-of-bounds, but acceptable start for the
14157 		 * left direction, see BPF_REG_FP. Also, unknown scalar
14158 		 * offset where we would need to deal with min/max bounds is
14159 		 * currently prohibited for unprivileged.
14160 		 */
14161 		max = MAX_BPF_STACK + mask_to_left;
14162 		ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
14163 		break;
14164 	case PTR_TO_MAP_VALUE:
14165 		max = ptr_reg->map_ptr->value_size;
14166 		ptr_limit = (mask_to_left ?
14167 			     ptr_reg->smin_value :
14168 			     ptr_reg->umax_value) + ptr_reg->off;
14169 		break;
14170 	default:
14171 		return REASON_TYPE;
14172 	}
14173 
14174 	if (ptr_limit >= max)
14175 		return REASON_LIMIT;
14176 	*alu_limit = ptr_limit;
14177 	return 0;
14178 }
14179 
14180 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
14181 				    const struct bpf_insn *insn)
14182 {
14183 	return env->bypass_spec_v1 ||
14184 		BPF_SRC(insn->code) == BPF_K ||
14185 		cur_aux(env)->nospec;
14186 }
14187 
14188 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
14189 				       u32 alu_state, u32 alu_limit)
14190 {
14191 	/* If we arrived here from different branches with different
14192 	 * state or limits to sanitize, then this won't work.
14193 	 */
14194 	if (aux->alu_state &&
14195 	    (aux->alu_state != alu_state ||
14196 	     aux->alu_limit != alu_limit))
14197 		return REASON_PATHS;
14198 
14199 	/* Corresponding fixup done in do_misc_fixups(). */
14200 	aux->alu_state = alu_state;
14201 	aux->alu_limit = alu_limit;
14202 	return 0;
14203 }
14204 
14205 static int sanitize_val_alu(struct bpf_verifier_env *env,
14206 			    struct bpf_insn *insn)
14207 {
14208 	struct bpf_insn_aux_data *aux = cur_aux(env);
14209 
14210 	if (can_skip_alu_sanitation(env, insn))
14211 		return 0;
14212 
14213 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
14214 }
14215 
14216 static bool sanitize_needed(u8 opcode)
14217 {
14218 	return opcode == BPF_ADD || opcode == BPF_SUB;
14219 }
14220 
14221 struct bpf_sanitize_info {
14222 	struct bpf_insn_aux_data aux;
14223 	bool mask_to_left;
14224 };
14225 
14226 static struct bpf_verifier_state *
14227 sanitize_speculative_path(struct bpf_verifier_env *env,
14228 			  const struct bpf_insn *insn,
14229 			  u32 next_idx, u32 curr_idx)
14230 {
14231 	struct bpf_verifier_state *branch;
14232 	struct bpf_reg_state *regs;
14233 
14234 	branch = push_stack(env, next_idx, curr_idx, true);
14235 	if (branch && insn) {
14236 		regs = branch->frame[branch->curframe]->regs;
14237 		if (BPF_SRC(insn->code) == BPF_K) {
14238 			mark_reg_unknown(env, regs, insn->dst_reg);
14239 		} else if (BPF_SRC(insn->code) == BPF_X) {
14240 			mark_reg_unknown(env, regs, insn->dst_reg);
14241 			mark_reg_unknown(env, regs, insn->src_reg);
14242 		}
14243 	}
14244 	return branch;
14245 }
14246 
14247 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
14248 			    struct bpf_insn *insn,
14249 			    const struct bpf_reg_state *ptr_reg,
14250 			    const struct bpf_reg_state *off_reg,
14251 			    struct bpf_reg_state *dst_reg,
14252 			    struct bpf_sanitize_info *info,
14253 			    const bool commit_window)
14254 {
14255 	struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
14256 	struct bpf_verifier_state *vstate = env->cur_state;
14257 	bool off_is_imm = tnum_is_const(off_reg->var_off);
14258 	bool off_is_neg = off_reg->smin_value < 0;
14259 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
14260 	u8 opcode = BPF_OP(insn->code);
14261 	u32 alu_state, alu_limit;
14262 	struct bpf_reg_state tmp;
14263 	bool ret;
14264 	int err;
14265 
14266 	if (can_skip_alu_sanitation(env, insn))
14267 		return 0;
14268 
14269 	/* We already marked aux for masking from non-speculative
14270 	 * paths, thus we got here in the first place. We only care
14271 	 * to explore bad access from here.
14272 	 */
14273 	if (vstate->speculative)
14274 		goto do_sim;
14275 
14276 	if (!commit_window) {
14277 		if (!tnum_is_const(off_reg->var_off) &&
14278 		    (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
14279 			return REASON_BOUNDS;
14280 
14281 		info->mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
14282 				     (opcode == BPF_SUB && !off_is_neg);
14283 	}
14284 
14285 	err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
14286 	if (err < 0)
14287 		return err;
14288 
14289 	if (commit_window) {
14290 		/* In commit phase we narrow the masking window based on
14291 		 * the observed pointer move after the simulated operation.
14292 		 */
14293 		alu_state = info->aux.alu_state;
14294 		alu_limit = abs(info->aux.alu_limit - alu_limit);
14295 	} else {
14296 		alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
14297 		alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
14298 		alu_state |= ptr_is_dst_reg ?
14299 			     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
14300 
14301 		/* Limit pruning on unknown scalars to enable deep search for
14302 		 * potential masking differences from other program paths.
14303 		 */
14304 		if (!off_is_imm)
14305 			env->explore_alu_limits = true;
14306 	}
14307 
14308 	err = update_alu_sanitation_state(aux, alu_state, alu_limit);
14309 	if (err < 0)
14310 		return err;
14311 do_sim:
14312 	/* If we're in commit phase, we're done here given we already
14313 	 * pushed the truncated dst_reg into the speculative verification
14314 	 * stack.
14315 	 *
14316 	 * Also, when register is a known constant, we rewrite register-based
14317 	 * operation to immediate-based, and thus do not need masking (and as
14318 	 * a consequence, do not need to simulate the zero-truncation either).
14319 	 */
14320 	if (commit_window || off_is_imm)
14321 		return 0;
14322 
14323 	/* Simulate and find potential out-of-bounds access under
14324 	 * speculative execution from truncation as a result of
14325 	 * masking when off was not within expected range. If off
14326 	 * sits in dst, then we temporarily need to move ptr there
14327 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
14328 	 * for cases where we use K-based arithmetic in one direction
14329 	 * and truncated reg-based in the other in order to explore
14330 	 * bad access.
14331 	 */
14332 	if (!ptr_is_dst_reg) {
14333 		tmp = *dst_reg;
14334 		copy_register_state(dst_reg, ptr_reg);
14335 	}
14336 	ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
14337 					env->insn_idx);
14338 	if (!ptr_is_dst_reg && ret)
14339 		*dst_reg = tmp;
14340 	return !ret ? REASON_STACK : 0;
14341 }
14342 
14343 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
14344 {
14345 	struct bpf_verifier_state *vstate = env->cur_state;
14346 
14347 	/* If we simulate paths under speculation, we don't update the
14348 	 * insn as 'seen' such that when we verify unreachable paths in
14349 	 * the non-speculative domain, sanitize_dead_code() can still
14350 	 * rewrite/sanitize them.
14351 	 */
14352 	if (!vstate->speculative)
14353 		env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
14354 }
14355 
14356 static int sanitize_err(struct bpf_verifier_env *env,
14357 			const struct bpf_insn *insn, int reason,
14358 			const struct bpf_reg_state *off_reg,
14359 			const struct bpf_reg_state *dst_reg)
14360 {
14361 	static const char *err = "pointer arithmetic with it prohibited for !root";
14362 	const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
14363 	u32 dst = insn->dst_reg, src = insn->src_reg;
14364 
14365 	switch (reason) {
14366 	case REASON_BOUNDS:
14367 		verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
14368 			off_reg == dst_reg ? dst : src, err);
14369 		break;
14370 	case REASON_TYPE:
14371 		verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
14372 			off_reg == dst_reg ? src : dst, err);
14373 		break;
14374 	case REASON_PATHS:
14375 		verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
14376 			dst, op, err);
14377 		break;
14378 	case REASON_LIMIT:
14379 		verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
14380 			dst, op, err);
14381 		break;
14382 	case REASON_STACK:
14383 		verbose(env, "R%d could not be pushed for speculative verification, %s\n",
14384 			dst, err);
14385 		return -ENOMEM;
14386 	default:
14387 		verifier_bug(env, "unknown reason (%d)", reason);
14388 		break;
14389 	}
14390 
14391 	return -EACCES;
14392 }
14393 
14394 /* check that stack access falls within stack limits and that 'reg' doesn't
14395  * have a variable offset.
14396  *
14397  * Variable offset is prohibited for unprivileged mode for simplicity since it
14398  * requires corresponding support in Spectre masking for stack ALU.  See also
14399  * retrieve_ptr_limit().
14400  *
14401  *
14402  * 'off' includes 'reg->off'.
14403  */
14404 static int check_stack_access_for_ptr_arithmetic(
14405 				struct bpf_verifier_env *env,
14406 				int regno,
14407 				const struct bpf_reg_state *reg,
14408 				int off)
14409 {
14410 	if (!tnum_is_const(reg->var_off)) {
14411 		char tn_buf[48];
14412 
14413 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
14414 		verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
14415 			regno, tn_buf, off);
14416 		return -EACCES;
14417 	}
14418 
14419 	if (off >= 0 || off < -MAX_BPF_STACK) {
14420 		verbose(env, "R%d stack pointer arithmetic goes out of range, "
14421 			"prohibited for !root; off=%d\n", regno, off);
14422 		return -EACCES;
14423 	}
14424 
14425 	return 0;
14426 }
14427 
14428 static int sanitize_check_bounds(struct bpf_verifier_env *env,
14429 				 const struct bpf_insn *insn,
14430 				 const struct bpf_reg_state *dst_reg)
14431 {
14432 	u32 dst = insn->dst_reg;
14433 
14434 	/* For unprivileged we require that resulting offset must be in bounds
14435 	 * in order to be able to sanitize access later on.
14436 	 */
14437 	if (env->bypass_spec_v1)
14438 		return 0;
14439 
14440 	switch (dst_reg->type) {
14441 	case PTR_TO_STACK:
14442 		if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
14443 					dst_reg->off + dst_reg->var_off.value))
14444 			return -EACCES;
14445 		break;
14446 	case PTR_TO_MAP_VALUE:
14447 		if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) {
14448 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
14449 				"prohibited for !root\n", dst);
14450 			return -EACCES;
14451 		}
14452 		break;
14453 	default:
14454 		return -EOPNOTSUPP;
14455 	}
14456 
14457 	return 0;
14458 }
14459 
14460 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
14461  * Caller should also handle BPF_MOV case separately.
14462  * If we return -EACCES, caller may want to try again treating pointer as a
14463  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
14464  */
14465 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
14466 				   struct bpf_insn *insn,
14467 				   const struct bpf_reg_state *ptr_reg,
14468 				   const struct bpf_reg_state *off_reg)
14469 {
14470 	struct bpf_verifier_state *vstate = env->cur_state;
14471 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
14472 	struct bpf_reg_state *regs = state->regs, *dst_reg;
14473 	bool known = tnum_is_const(off_reg->var_off);
14474 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
14475 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
14476 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
14477 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
14478 	struct bpf_sanitize_info info = {};
14479 	u8 opcode = BPF_OP(insn->code);
14480 	u32 dst = insn->dst_reg;
14481 	int ret, bounds_ret;
14482 
14483 	dst_reg = &regs[dst];
14484 
14485 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
14486 	    smin_val > smax_val || umin_val > umax_val) {
14487 		/* Taint dst register if offset had invalid bounds derived from
14488 		 * e.g. dead branches.
14489 		 */
14490 		__mark_reg_unknown(env, dst_reg);
14491 		return 0;
14492 	}
14493 
14494 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
14495 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
14496 		if (opcode == BPF_SUB && env->allow_ptr_leaks) {
14497 			__mark_reg_unknown(env, dst_reg);
14498 			return 0;
14499 		}
14500 
14501 		verbose(env,
14502 			"R%d 32-bit pointer arithmetic prohibited\n",
14503 			dst);
14504 		return -EACCES;
14505 	}
14506 
14507 	if (ptr_reg->type & PTR_MAYBE_NULL) {
14508 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
14509 			dst, reg_type_str(env, ptr_reg->type));
14510 		return -EACCES;
14511 	}
14512 
14513 	/*
14514 	 * Accesses to untrusted PTR_TO_MEM are done through probe
14515 	 * instructions, hence no need to track offsets.
14516 	 */
14517 	if (base_type(ptr_reg->type) == PTR_TO_MEM && (ptr_reg->type & PTR_UNTRUSTED))
14518 		return 0;
14519 
14520 	switch (base_type(ptr_reg->type)) {
14521 	case PTR_TO_CTX:
14522 	case PTR_TO_MAP_VALUE:
14523 	case PTR_TO_MAP_KEY:
14524 	case PTR_TO_STACK:
14525 	case PTR_TO_PACKET_META:
14526 	case PTR_TO_PACKET:
14527 	case PTR_TO_TP_BUFFER:
14528 	case PTR_TO_BTF_ID:
14529 	case PTR_TO_MEM:
14530 	case PTR_TO_BUF:
14531 	case PTR_TO_FUNC:
14532 	case CONST_PTR_TO_DYNPTR:
14533 		break;
14534 	case PTR_TO_FLOW_KEYS:
14535 		if (known)
14536 			break;
14537 		fallthrough;
14538 	case CONST_PTR_TO_MAP:
14539 		/* smin_val represents the known value */
14540 		if (known && smin_val == 0 && opcode == BPF_ADD)
14541 			break;
14542 		fallthrough;
14543 	default:
14544 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
14545 			dst, reg_type_str(env, ptr_reg->type));
14546 		return -EACCES;
14547 	}
14548 
14549 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
14550 	 * The id may be overwritten later if we create a new variable offset.
14551 	 */
14552 	dst_reg->type = ptr_reg->type;
14553 	dst_reg->id = ptr_reg->id;
14554 
14555 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
14556 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
14557 		return -EINVAL;
14558 
14559 	/* pointer types do not carry 32-bit bounds at the moment. */
14560 	__mark_reg32_unbounded(dst_reg);
14561 
14562 	if (sanitize_needed(opcode)) {
14563 		ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
14564 				       &info, false);
14565 		if (ret < 0)
14566 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
14567 	}
14568 
14569 	switch (opcode) {
14570 	case BPF_ADD:
14571 		/* We can take a fixed offset as long as it doesn't overflow
14572 		 * the s32 'off' field
14573 		 */
14574 		if (known && (ptr_reg->off + smin_val ==
14575 			      (s64)(s32)(ptr_reg->off + smin_val))) {
14576 			/* pointer += K.  Accumulate it into fixed offset */
14577 			dst_reg->smin_value = smin_ptr;
14578 			dst_reg->smax_value = smax_ptr;
14579 			dst_reg->umin_value = umin_ptr;
14580 			dst_reg->umax_value = umax_ptr;
14581 			dst_reg->var_off = ptr_reg->var_off;
14582 			dst_reg->off = ptr_reg->off + smin_val;
14583 			dst_reg->raw = ptr_reg->raw;
14584 			break;
14585 		}
14586 		/* A new variable offset is created.  Note that off_reg->off
14587 		 * == 0, since it's a scalar.
14588 		 * dst_reg gets the pointer type and since some positive
14589 		 * integer value was added to the pointer, give it a new 'id'
14590 		 * if it's a PTR_TO_PACKET.
14591 		 * this creates a new 'base' pointer, off_reg (variable) gets
14592 		 * added into the variable offset, and we copy the fixed offset
14593 		 * from ptr_reg.
14594 		 */
14595 		if (check_add_overflow(smin_ptr, smin_val, &dst_reg->smin_value) ||
14596 		    check_add_overflow(smax_ptr, smax_val, &dst_reg->smax_value)) {
14597 			dst_reg->smin_value = S64_MIN;
14598 			dst_reg->smax_value = S64_MAX;
14599 		}
14600 		if (check_add_overflow(umin_ptr, umin_val, &dst_reg->umin_value) ||
14601 		    check_add_overflow(umax_ptr, umax_val, &dst_reg->umax_value)) {
14602 			dst_reg->umin_value = 0;
14603 			dst_reg->umax_value = U64_MAX;
14604 		}
14605 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
14606 		dst_reg->off = ptr_reg->off;
14607 		dst_reg->raw = ptr_reg->raw;
14608 		if (reg_is_pkt_pointer(ptr_reg)) {
14609 			dst_reg->id = ++env->id_gen;
14610 			/* something was added to pkt_ptr, set range to zero */
14611 			memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
14612 		}
14613 		break;
14614 	case BPF_SUB:
14615 		if (dst_reg == off_reg) {
14616 			/* scalar -= pointer.  Creates an unknown scalar */
14617 			verbose(env, "R%d tried to subtract pointer from scalar\n",
14618 				dst);
14619 			return -EACCES;
14620 		}
14621 		/* We don't allow subtraction from FP, because (according to
14622 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
14623 		 * be able to deal with it.
14624 		 */
14625 		if (ptr_reg->type == PTR_TO_STACK) {
14626 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
14627 				dst);
14628 			return -EACCES;
14629 		}
14630 		if (known && (ptr_reg->off - smin_val ==
14631 			      (s64)(s32)(ptr_reg->off - smin_val))) {
14632 			/* pointer -= K.  Subtract it from fixed offset */
14633 			dst_reg->smin_value = smin_ptr;
14634 			dst_reg->smax_value = smax_ptr;
14635 			dst_reg->umin_value = umin_ptr;
14636 			dst_reg->umax_value = umax_ptr;
14637 			dst_reg->var_off = ptr_reg->var_off;
14638 			dst_reg->id = ptr_reg->id;
14639 			dst_reg->off = ptr_reg->off - smin_val;
14640 			dst_reg->raw = ptr_reg->raw;
14641 			break;
14642 		}
14643 		/* A new variable offset is created.  If the subtrahend is known
14644 		 * nonnegative, then any reg->range we had before is still good.
14645 		 */
14646 		if (check_sub_overflow(smin_ptr, smax_val, &dst_reg->smin_value) ||
14647 		    check_sub_overflow(smax_ptr, smin_val, &dst_reg->smax_value)) {
14648 			/* Overflow possible, we know nothing */
14649 			dst_reg->smin_value = S64_MIN;
14650 			dst_reg->smax_value = S64_MAX;
14651 		}
14652 		if (umin_ptr < umax_val) {
14653 			/* Overflow possible, we know nothing */
14654 			dst_reg->umin_value = 0;
14655 			dst_reg->umax_value = U64_MAX;
14656 		} else {
14657 			/* Cannot overflow (as long as bounds are consistent) */
14658 			dst_reg->umin_value = umin_ptr - umax_val;
14659 			dst_reg->umax_value = umax_ptr - umin_val;
14660 		}
14661 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
14662 		dst_reg->off = ptr_reg->off;
14663 		dst_reg->raw = ptr_reg->raw;
14664 		if (reg_is_pkt_pointer(ptr_reg)) {
14665 			dst_reg->id = ++env->id_gen;
14666 			/* something was added to pkt_ptr, set range to zero */
14667 			if (smin_val < 0)
14668 				memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
14669 		}
14670 		break;
14671 	case BPF_AND:
14672 	case BPF_OR:
14673 	case BPF_XOR:
14674 		/* bitwise ops on pointers are troublesome, prohibit. */
14675 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
14676 			dst, bpf_alu_string[opcode >> 4]);
14677 		return -EACCES;
14678 	default:
14679 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
14680 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
14681 			dst, bpf_alu_string[opcode >> 4]);
14682 		return -EACCES;
14683 	}
14684 
14685 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
14686 		return -EINVAL;
14687 	reg_bounds_sync(dst_reg);
14688 	bounds_ret = sanitize_check_bounds(env, insn, dst_reg);
14689 	if (bounds_ret == -EACCES)
14690 		return bounds_ret;
14691 	if (sanitize_needed(opcode)) {
14692 		ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
14693 				       &info, true);
14694 		if (verifier_bug_if(!can_skip_alu_sanitation(env, insn)
14695 				    && !env->cur_state->speculative
14696 				    && bounds_ret
14697 				    && !ret,
14698 				    env, "Pointer type unsupported by sanitize_check_bounds() not rejected by retrieve_ptr_limit() as required")) {
14699 			return -EFAULT;
14700 		}
14701 		if (ret < 0)
14702 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
14703 	}
14704 
14705 	return 0;
14706 }
14707 
14708 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
14709 				 struct bpf_reg_state *src_reg)
14710 {
14711 	s32 *dst_smin = &dst_reg->s32_min_value;
14712 	s32 *dst_smax = &dst_reg->s32_max_value;
14713 	u32 *dst_umin = &dst_reg->u32_min_value;
14714 	u32 *dst_umax = &dst_reg->u32_max_value;
14715 	u32 umin_val = src_reg->u32_min_value;
14716 	u32 umax_val = src_reg->u32_max_value;
14717 	bool min_overflow, max_overflow;
14718 
14719 	if (check_add_overflow(*dst_smin, src_reg->s32_min_value, dst_smin) ||
14720 	    check_add_overflow(*dst_smax, src_reg->s32_max_value, dst_smax)) {
14721 		*dst_smin = S32_MIN;
14722 		*dst_smax = S32_MAX;
14723 	}
14724 
14725 	/* If either all additions overflow or no additions overflow, then
14726 	 * it is okay to set: dst_umin = dst_umin + src_umin, dst_umax =
14727 	 * dst_umax + src_umax. Otherwise (some additions overflow), set
14728 	 * the output bounds to unbounded.
14729 	 */
14730 	min_overflow = check_add_overflow(*dst_umin, umin_val, dst_umin);
14731 	max_overflow = check_add_overflow(*dst_umax, umax_val, dst_umax);
14732 
14733 	if (!min_overflow && max_overflow) {
14734 		*dst_umin = 0;
14735 		*dst_umax = U32_MAX;
14736 	}
14737 }
14738 
14739 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
14740 			       struct bpf_reg_state *src_reg)
14741 {
14742 	s64 *dst_smin = &dst_reg->smin_value;
14743 	s64 *dst_smax = &dst_reg->smax_value;
14744 	u64 *dst_umin = &dst_reg->umin_value;
14745 	u64 *dst_umax = &dst_reg->umax_value;
14746 	u64 umin_val = src_reg->umin_value;
14747 	u64 umax_val = src_reg->umax_value;
14748 	bool min_overflow, max_overflow;
14749 
14750 	if (check_add_overflow(*dst_smin, src_reg->smin_value, dst_smin) ||
14751 	    check_add_overflow(*dst_smax, src_reg->smax_value, dst_smax)) {
14752 		*dst_smin = S64_MIN;
14753 		*dst_smax = S64_MAX;
14754 	}
14755 
14756 	/* If either all additions overflow or no additions overflow, then
14757 	 * it is okay to set: dst_umin = dst_umin + src_umin, dst_umax =
14758 	 * dst_umax + src_umax. Otherwise (some additions overflow), set
14759 	 * the output bounds to unbounded.
14760 	 */
14761 	min_overflow = check_add_overflow(*dst_umin, umin_val, dst_umin);
14762 	max_overflow = check_add_overflow(*dst_umax, umax_val, dst_umax);
14763 
14764 	if (!min_overflow && max_overflow) {
14765 		*dst_umin = 0;
14766 		*dst_umax = U64_MAX;
14767 	}
14768 }
14769 
14770 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
14771 				 struct bpf_reg_state *src_reg)
14772 {
14773 	s32 *dst_smin = &dst_reg->s32_min_value;
14774 	s32 *dst_smax = &dst_reg->s32_max_value;
14775 	u32 *dst_umin = &dst_reg->u32_min_value;
14776 	u32 *dst_umax = &dst_reg->u32_max_value;
14777 	u32 umin_val = src_reg->u32_min_value;
14778 	u32 umax_val = src_reg->u32_max_value;
14779 	bool min_underflow, max_underflow;
14780 
14781 	if (check_sub_overflow(*dst_smin, src_reg->s32_max_value, dst_smin) ||
14782 	    check_sub_overflow(*dst_smax, src_reg->s32_min_value, dst_smax)) {
14783 		/* Overflow possible, we know nothing */
14784 		*dst_smin = S32_MIN;
14785 		*dst_smax = S32_MAX;
14786 	}
14787 
14788 	/* If either all subtractions underflow or no subtractions
14789 	 * underflow, it is okay to set: dst_umin = dst_umin - src_umax,
14790 	 * dst_umax = dst_umax - src_umin. Otherwise (some subtractions
14791 	 * underflow), set the output bounds to unbounded.
14792 	 */
14793 	min_underflow = check_sub_overflow(*dst_umin, umax_val, dst_umin);
14794 	max_underflow = check_sub_overflow(*dst_umax, umin_val, dst_umax);
14795 
14796 	if (min_underflow && !max_underflow) {
14797 		*dst_umin = 0;
14798 		*dst_umax = U32_MAX;
14799 	}
14800 }
14801 
14802 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
14803 			       struct bpf_reg_state *src_reg)
14804 {
14805 	s64 *dst_smin = &dst_reg->smin_value;
14806 	s64 *dst_smax = &dst_reg->smax_value;
14807 	u64 *dst_umin = &dst_reg->umin_value;
14808 	u64 *dst_umax = &dst_reg->umax_value;
14809 	u64 umin_val = src_reg->umin_value;
14810 	u64 umax_val = src_reg->umax_value;
14811 	bool min_underflow, max_underflow;
14812 
14813 	if (check_sub_overflow(*dst_smin, src_reg->smax_value, dst_smin) ||
14814 	    check_sub_overflow(*dst_smax, src_reg->smin_value, dst_smax)) {
14815 		/* Overflow possible, we know nothing */
14816 		*dst_smin = S64_MIN;
14817 		*dst_smax = S64_MAX;
14818 	}
14819 
14820 	/* If either all subtractions underflow or no subtractions
14821 	 * underflow, it is okay to set: dst_umin = dst_umin - src_umax,
14822 	 * dst_umax = dst_umax - src_umin. Otherwise (some subtractions
14823 	 * underflow), set the output bounds to unbounded.
14824 	 */
14825 	min_underflow = check_sub_overflow(*dst_umin, umax_val, dst_umin);
14826 	max_underflow = check_sub_overflow(*dst_umax, umin_val, dst_umax);
14827 
14828 	if (min_underflow && !max_underflow) {
14829 		*dst_umin = 0;
14830 		*dst_umax = U64_MAX;
14831 	}
14832 }
14833 
14834 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
14835 				 struct bpf_reg_state *src_reg)
14836 {
14837 	s32 *dst_smin = &dst_reg->s32_min_value;
14838 	s32 *dst_smax = &dst_reg->s32_max_value;
14839 	u32 *dst_umin = &dst_reg->u32_min_value;
14840 	u32 *dst_umax = &dst_reg->u32_max_value;
14841 	s32 tmp_prod[4];
14842 
14843 	if (check_mul_overflow(*dst_umax, src_reg->u32_max_value, dst_umax) ||
14844 	    check_mul_overflow(*dst_umin, src_reg->u32_min_value, dst_umin)) {
14845 		/* Overflow possible, we know nothing */
14846 		*dst_umin = 0;
14847 		*dst_umax = U32_MAX;
14848 	}
14849 	if (check_mul_overflow(*dst_smin, src_reg->s32_min_value, &tmp_prod[0]) ||
14850 	    check_mul_overflow(*dst_smin, src_reg->s32_max_value, &tmp_prod[1]) ||
14851 	    check_mul_overflow(*dst_smax, src_reg->s32_min_value, &tmp_prod[2]) ||
14852 	    check_mul_overflow(*dst_smax, src_reg->s32_max_value, &tmp_prod[3])) {
14853 		/* Overflow possible, we know nothing */
14854 		*dst_smin = S32_MIN;
14855 		*dst_smax = S32_MAX;
14856 	} else {
14857 		*dst_smin = min_array(tmp_prod, 4);
14858 		*dst_smax = max_array(tmp_prod, 4);
14859 	}
14860 }
14861 
14862 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
14863 			       struct bpf_reg_state *src_reg)
14864 {
14865 	s64 *dst_smin = &dst_reg->smin_value;
14866 	s64 *dst_smax = &dst_reg->smax_value;
14867 	u64 *dst_umin = &dst_reg->umin_value;
14868 	u64 *dst_umax = &dst_reg->umax_value;
14869 	s64 tmp_prod[4];
14870 
14871 	if (check_mul_overflow(*dst_umax, src_reg->umax_value, dst_umax) ||
14872 	    check_mul_overflow(*dst_umin, src_reg->umin_value, dst_umin)) {
14873 		/* Overflow possible, we know nothing */
14874 		*dst_umin = 0;
14875 		*dst_umax = U64_MAX;
14876 	}
14877 	if (check_mul_overflow(*dst_smin, src_reg->smin_value, &tmp_prod[0]) ||
14878 	    check_mul_overflow(*dst_smin, src_reg->smax_value, &tmp_prod[1]) ||
14879 	    check_mul_overflow(*dst_smax, src_reg->smin_value, &tmp_prod[2]) ||
14880 	    check_mul_overflow(*dst_smax, src_reg->smax_value, &tmp_prod[3])) {
14881 		/* Overflow possible, we know nothing */
14882 		*dst_smin = S64_MIN;
14883 		*dst_smax = S64_MAX;
14884 	} else {
14885 		*dst_smin = min_array(tmp_prod, 4);
14886 		*dst_smax = max_array(tmp_prod, 4);
14887 	}
14888 }
14889 
14890 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
14891 				 struct bpf_reg_state *src_reg)
14892 {
14893 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
14894 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
14895 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
14896 	u32 umax_val = src_reg->u32_max_value;
14897 
14898 	if (src_known && dst_known) {
14899 		__mark_reg32_known(dst_reg, var32_off.value);
14900 		return;
14901 	}
14902 
14903 	/* We get our minimum from the var_off, since that's inherently
14904 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
14905 	 */
14906 	dst_reg->u32_min_value = var32_off.value;
14907 	dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
14908 
14909 	/* Safe to set s32 bounds by casting u32 result into s32 when u32
14910 	 * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded.
14911 	 */
14912 	if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) {
14913 		dst_reg->s32_min_value = dst_reg->u32_min_value;
14914 		dst_reg->s32_max_value = dst_reg->u32_max_value;
14915 	} else {
14916 		dst_reg->s32_min_value = S32_MIN;
14917 		dst_reg->s32_max_value = S32_MAX;
14918 	}
14919 }
14920 
14921 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
14922 			       struct bpf_reg_state *src_reg)
14923 {
14924 	bool src_known = tnum_is_const(src_reg->var_off);
14925 	bool dst_known = tnum_is_const(dst_reg->var_off);
14926 	u64 umax_val = src_reg->umax_value;
14927 
14928 	if (src_known && dst_known) {
14929 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
14930 		return;
14931 	}
14932 
14933 	/* We get our minimum from the var_off, since that's inherently
14934 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
14935 	 */
14936 	dst_reg->umin_value = dst_reg->var_off.value;
14937 	dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
14938 
14939 	/* Safe to set s64 bounds by casting u64 result into s64 when u64
14940 	 * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded.
14941 	 */
14942 	if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) {
14943 		dst_reg->smin_value = dst_reg->umin_value;
14944 		dst_reg->smax_value = dst_reg->umax_value;
14945 	} else {
14946 		dst_reg->smin_value = S64_MIN;
14947 		dst_reg->smax_value = S64_MAX;
14948 	}
14949 	/* We may learn something more from the var_off */
14950 	__update_reg_bounds(dst_reg);
14951 }
14952 
14953 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
14954 				struct bpf_reg_state *src_reg)
14955 {
14956 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
14957 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
14958 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
14959 	u32 umin_val = src_reg->u32_min_value;
14960 
14961 	if (src_known && dst_known) {
14962 		__mark_reg32_known(dst_reg, var32_off.value);
14963 		return;
14964 	}
14965 
14966 	/* We get our maximum from the var_off, and our minimum is the
14967 	 * maximum of the operands' minima
14968 	 */
14969 	dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
14970 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
14971 
14972 	/* Safe to set s32 bounds by casting u32 result into s32 when u32
14973 	 * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded.
14974 	 */
14975 	if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) {
14976 		dst_reg->s32_min_value = dst_reg->u32_min_value;
14977 		dst_reg->s32_max_value = dst_reg->u32_max_value;
14978 	} else {
14979 		dst_reg->s32_min_value = S32_MIN;
14980 		dst_reg->s32_max_value = S32_MAX;
14981 	}
14982 }
14983 
14984 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
14985 			      struct bpf_reg_state *src_reg)
14986 {
14987 	bool src_known = tnum_is_const(src_reg->var_off);
14988 	bool dst_known = tnum_is_const(dst_reg->var_off);
14989 	u64 umin_val = src_reg->umin_value;
14990 
14991 	if (src_known && dst_known) {
14992 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
14993 		return;
14994 	}
14995 
14996 	/* We get our maximum from the var_off, and our minimum is the
14997 	 * maximum of the operands' minima
14998 	 */
14999 	dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
15000 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
15001 
15002 	/* Safe to set s64 bounds by casting u64 result into s64 when u64
15003 	 * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded.
15004 	 */
15005 	if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) {
15006 		dst_reg->smin_value = dst_reg->umin_value;
15007 		dst_reg->smax_value = dst_reg->umax_value;
15008 	} else {
15009 		dst_reg->smin_value = S64_MIN;
15010 		dst_reg->smax_value = S64_MAX;
15011 	}
15012 	/* We may learn something more from the var_off */
15013 	__update_reg_bounds(dst_reg);
15014 }
15015 
15016 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
15017 				 struct bpf_reg_state *src_reg)
15018 {
15019 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
15020 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
15021 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
15022 
15023 	if (src_known && dst_known) {
15024 		__mark_reg32_known(dst_reg, var32_off.value);
15025 		return;
15026 	}
15027 
15028 	/* We get both minimum and maximum from the var32_off. */
15029 	dst_reg->u32_min_value = var32_off.value;
15030 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
15031 
15032 	/* Safe to set s32 bounds by casting u32 result into s32 when u32
15033 	 * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded.
15034 	 */
15035 	if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) {
15036 		dst_reg->s32_min_value = dst_reg->u32_min_value;
15037 		dst_reg->s32_max_value = dst_reg->u32_max_value;
15038 	} else {
15039 		dst_reg->s32_min_value = S32_MIN;
15040 		dst_reg->s32_max_value = S32_MAX;
15041 	}
15042 }
15043 
15044 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
15045 			       struct bpf_reg_state *src_reg)
15046 {
15047 	bool src_known = tnum_is_const(src_reg->var_off);
15048 	bool dst_known = tnum_is_const(dst_reg->var_off);
15049 
15050 	if (src_known && dst_known) {
15051 		/* dst_reg->var_off.value has been updated earlier */
15052 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
15053 		return;
15054 	}
15055 
15056 	/* We get both minimum and maximum from the var_off. */
15057 	dst_reg->umin_value = dst_reg->var_off.value;
15058 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
15059 
15060 	/* Safe to set s64 bounds by casting u64 result into s64 when u64
15061 	 * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded.
15062 	 */
15063 	if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) {
15064 		dst_reg->smin_value = dst_reg->umin_value;
15065 		dst_reg->smax_value = dst_reg->umax_value;
15066 	} else {
15067 		dst_reg->smin_value = S64_MIN;
15068 		dst_reg->smax_value = S64_MAX;
15069 	}
15070 
15071 	__update_reg_bounds(dst_reg);
15072 }
15073 
15074 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
15075 				   u64 umin_val, u64 umax_val)
15076 {
15077 	/* We lose all sign bit information (except what we can pick
15078 	 * up from var_off)
15079 	 */
15080 	dst_reg->s32_min_value = S32_MIN;
15081 	dst_reg->s32_max_value = S32_MAX;
15082 	/* If we might shift our top bit out, then we know nothing */
15083 	if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
15084 		dst_reg->u32_min_value = 0;
15085 		dst_reg->u32_max_value = U32_MAX;
15086 	} else {
15087 		dst_reg->u32_min_value <<= umin_val;
15088 		dst_reg->u32_max_value <<= umax_val;
15089 	}
15090 }
15091 
15092 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
15093 				 struct bpf_reg_state *src_reg)
15094 {
15095 	u32 umax_val = src_reg->u32_max_value;
15096 	u32 umin_val = src_reg->u32_min_value;
15097 	/* u32 alu operation will zext upper bits */
15098 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
15099 
15100 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
15101 	dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
15102 	/* Not required but being careful mark reg64 bounds as unknown so
15103 	 * that we are forced to pick them up from tnum and zext later and
15104 	 * if some path skips this step we are still safe.
15105 	 */
15106 	__mark_reg64_unbounded(dst_reg);
15107 	__update_reg32_bounds(dst_reg);
15108 }
15109 
15110 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
15111 				   u64 umin_val, u64 umax_val)
15112 {
15113 	/* Special case <<32 because it is a common compiler pattern to sign
15114 	 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
15115 	 * positive we know this shift will also be positive so we can track
15116 	 * bounds correctly. Otherwise we lose all sign bit information except
15117 	 * what we can pick up from var_off. Perhaps we can generalize this
15118 	 * later to shifts of any length.
15119 	 */
15120 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
15121 		dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
15122 	else
15123 		dst_reg->smax_value = S64_MAX;
15124 
15125 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
15126 		dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
15127 	else
15128 		dst_reg->smin_value = S64_MIN;
15129 
15130 	/* If we might shift our top bit out, then we know nothing */
15131 	if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
15132 		dst_reg->umin_value = 0;
15133 		dst_reg->umax_value = U64_MAX;
15134 	} else {
15135 		dst_reg->umin_value <<= umin_val;
15136 		dst_reg->umax_value <<= umax_val;
15137 	}
15138 }
15139 
15140 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
15141 			       struct bpf_reg_state *src_reg)
15142 {
15143 	u64 umax_val = src_reg->umax_value;
15144 	u64 umin_val = src_reg->umin_value;
15145 
15146 	/* scalar64 calc uses 32bit unshifted bounds so must be called first */
15147 	__scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
15148 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
15149 
15150 	dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
15151 	/* We may learn something more from the var_off */
15152 	__update_reg_bounds(dst_reg);
15153 }
15154 
15155 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
15156 				 struct bpf_reg_state *src_reg)
15157 {
15158 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
15159 	u32 umax_val = src_reg->u32_max_value;
15160 	u32 umin_val = src_reg->u32_min_value;
15161 
15162 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
15163 	 * be negative, then either:
15164 	 * 1) src_reg might be zero, so the sign bit of the result is
15165 	 *    unknown, so we lose our signed bounds
15166 	 * 2) it's known negative, thus the unsigned bounds capture the
15167 	 *    signed bounds
15168 	 * 3) the signed bounds cross zero, so they tell us nothing
15169 	 *    about the result
15170 	 * If the value in dst_reg is known nonnegative, then again the
15171 	 * unsigned bounds capture the signed bounds.
15172 	 * Thus, in all cases it suffices to blow away our signed bounds
15173 	 * and rely on inferring new ones from the unsigned bounds and
15174 	 * var_off of the result.
15175 	 */
15176 	dst_reg->s32_min_value = S32_MIN;
15177 	dst_reg->s32_max_value = S32_MAX;
15178 
15179 	dst_reg->var_off = tnum_rshift(subreg, umin_val);
15180 	dst_reg->u32_min_value >>= umax_val;
15181 	dst_reg->u32_max_value >>= umin_val;
15182 
15183 	__mark_reg64_unbounded(dst_reg);
15184 	__update_reg32_bounds(dst_reg);
15185 }
15186 
15187 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
15188 			       struct bpf_reg_state *src_reg)
15189 {
15190 	u64 umax_val = src_reg->umax_value;
15191 	u64 umin_val = src_reg->umin_value;
15192 
15193 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
15194 	 * be negative, then either:
15195 	 * 1) src_reg might be zero, so the sign bit of the result is
15196 	 *    unknown, so we lose our signed bounds
15197 	 * 2) it's known negative, thus the unsigned bounds capture the
15198 	 *    signed bounds
15199 	 * 3) the signed bounds cross zero, so they tell us nothing
15200 	 *    about the result
15201 	 * If the value in dst_reg is known nonnegative, then again the
15202 	 * unsigned bounds capture the signed bounds.
15203 	 * Thus, in all cases it suffices to blow away our signed bounds
15204 	 * and rely on inferring new ones from the unsigned bounds and
15205 	 * var_off of the result.
15206 	 */
15207 	dst_reg->smin_value = S64_MIN;
15208 	dst_reg->smax_value = S64_MAX;
15209 	dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
15210 	dst_reg->umin_value >>= umax_val;
15211 	dst_reg->umax_value >>= umin_val;
15212 
15213 	/* Its not easy to operate on alu32 bounds here because it depends
15214 	 * on bits being shifted in. Take easy way out and mark unbounded
15215 	 * so we can recalculate later from tnum.
15216 	 */
15217 	__mark_reg32_unbounded(dst_reg);
15218 	__update_reg_bounds(dst_reg);
15219 }
15220 
15221 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
15222 				  struct bpf_reg_state *src_reg)
15223 {
15224 	u64 umin_val = src_reg->u32_min_value;
15225 
15226 	/* Upon reaching here, src_known is true and
15227 	 * umax_val is equal to umin_val.
15228 	 */
15229 	dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
15230 	dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
15231 
15232 	dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
15233 
15234 	/* blow away the dst_reg umin_value/umax_value and rely on
15235 	 * dst_reg var_off to refine the result.
15236 	 */
15237 	dst_reg->u32_min_value = 0;
15238 	dst_reg->u32_max_value = U32_MAX;
15239 
15240 	__mark_reg64_unbounded(dst_reg);
15241 	__update_reg32_bounds(dst_reg);
15242 }
15243 
15244 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
15245 				struct bpf_reg_state *src_reg)
15246 {
15247 	u64 umin_val = src_reg->umin_value;
15248 
15249 	/* Upon reaching here, src_known is true and umax_val is equal
15250 	 * to umin_val.
15251 	 */
15252 	dst_reg->smin_value >>= umin_val;
15253 	dst_reg->smax_value >>= umin_val;
15254 
15255 	dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
15256 
15257 	/* blow away the dst_reg umin_value/umax_value and rely on
15258 	 * dst_reg var_off to refine the result.
15259 	 */
15260 	dst_reg->umin_value = 0;
15261 	dst_reg->umax_value = U64_MAX;
15262 
15263 	/* Its not easy to operate on alu32 bounds here because it depends
15264 	 * on bits being shifted in from upper 32-bits. Take easy way out
15265 	 * and mark unbounded so we can recalculate later from tnum.
15266 	 */
15267 	__mark_reg32_unbounded(dst_reg);
15268 	__update_reg_bounds(dst_reg);
15269 }
15270 
15271 static bool is_safe_to_compute_dst_reg_range(struct bpf_insn *insn,
15272 					     const struct bpf_reg_state *src_reg)
15273 {
15274 	bool src_is_const = false;
15275 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
15276 
15277 	if (insn_bitness == 32) {
15278 		if (tnum_subreg_is_const(src_reg->var_off)
15279 		    && src_reg->s32_min_value == src_reg->s32_max_value
15280 		    && src_reg->u32_min_value == src_reg->u32_max_value)
15281 			src_is_const = true;
15282 	} else {
15283 		if (tnum_is_const(src_reg->var_off)
15284 		    && src_reg->smin_value == src_reg->smax_value
15285 		    && src_reg->umin_value == src_reg->umax_value)
15286 			src_is_const = true;
15287 	}
15288 
15289 	switch (BPF_OP(insn->code)) {
15290 	case BPF_ADD:
15291 	case BPF_SUB:
15292 	case BPF_NEG:
15293 	case BPF_AND:
15294 	case BPF_XOR:
15295 	case BPF_OR:
15296 	case BPF_MUL:
15297 		return true;
15298 
15299 	/* Shift operators range is only computable if shift dimension operand
15300 	 * is a constant. Shifts greater than 31 or 63 are undefined. This
15301 	 * includes shifts by a negative number.
15302 	 */
15303 	case BPF_LSH:
15304 	case BPF_RSH:
15305 	case BPF_ARSH:
15306 		return (src_is_const && src_reg->umax_value < insn_bitness);
15307 	default:
15308 		return false;
15309 	}
15310 }
15311 
15312 /* WARNING: This function does calculations on 64-bit values, but the actual
15313  * execution may occur on 32-bit values. Therefore, things like bitshifts
15314  * need extra checks in the 32-bit case.
15315  */
15316 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
15317 				      struct bpf_insn *insn,
15318 				      struct bpf_reg_state *dst_reg,
15319 				      struct bpf_reg_state src_reg)
15320 {
15321 	u8 opcode = BPF_OP(insn->code);
15322 	bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
15323 	int ret;
15324 
15325 	if (!is_safe_to_compute_dst_reg_range(insn, &src_reg)) {
15326 		__mark_reg_unknown(env, dst_reg);
15327 		return 0;
15328 	}
15329 
15330 	if (sanitize_needed(opcode)) {
15331 		ret = sanitize_val_alu(env, insn);
15332 		if (ret < 0)
15333 			return sanitize_err(env, insn, ret, NULL, NULL);
15334 	}
15335 
15336 	/* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
15337 	 * There are two classes of instructions: The first class we track both
15338 	 * alu32 and alu64 sign/unsigned bounds independently this provides the
15339 	 * greatest amount of precision when alu operations are mixed with jmp32
15340 	 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
15341 	 * and BPF_OR. This is possible because these ops have fairly easy to
15342 	 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
15343 	 * See alu32 verifier tests for examples. The second class of
15344 	 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
15345 	 * with regards to tracking sign/unsigned bounds because the bits may
15346 	 * cross subreg boundaries in the alu64 case. When this happens we mark
15347 	 * the reg unbounded in the subreg bound space and use the resulting
15348 	 * tnum to calculate an approximation of the sign/unsigned bounds.
15349 	 */
15350 	switch (opcode) {
15351 	case BPF_ADD:
15352 		scalar32_min_max_add(dst_reg, &src_reg);
15353 		scalar_min_max_add(dst_reg, &src_reg);
15354 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
15355 		break;
15356 	case BPF_SUB:
15357 		scalar32_min_max_sub(dst_reg, &src_reg);
15358 		scalar_min_max_sub(dst_reg, &src_reg);
15359 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
15360 		break;
15361 	case BPF_NEG:
15362 		env->fake_reg[0] = *dst_reg;
15363 		__mark_reg_known(dst_reg, 0);
15364 		scalar32_min_max_sub(dst_reg, &env->fake_reg[0]);
15365 		scalar_min_max_sub(dst_reg, &env->fake_reg[0]);
15366 		dst_reg->var_off = tnum_neg(env->fake_reg[0].var_off);
15367 		break;
15368 	case BPF_MUL:
15369 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
15370 		scalar32_min_max_mul(dst_reg, &src_reg);
15371 		scalar_min_max_mul(dst_reg, &src_reg);
15372 		break;
15373 	case BPF_AND:
15374 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
15375 		scalar32_min_max_and(dst_reg, &src_reg);
15376 		scalar_min_max_and(dst_reg, &src_reg);
15377 		break;
15378 	case BPF_OR:
15379 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
15380 		scalar32_min_max_or(dst_reg, &src_reg);
15381 		scalar_min_max_or(dst_reg, &src_reg);
15382 		break;
15383 	case BPF_XOR:
15384 		dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
15385 		scalar32_min_max_xor(dst_reg, &src_reg);
15386 		scalar_min_max_xor(dst_reg, &src_reg);
15387 		break;
15388 	case BPF_LSH:
15389 		if (alu32)
15390 			scalar32_min_max_lsh(dst_reg, &src_reg);
15391 		else
15392 			scalar_min_max_lsh(dst_reg, &src_reg);
15393 		break;
15394 	case BPF_RSH:
15395 		if (alu32)
15396 			scalar32_min_max_rsh(dst_reg, &src_reg);
15397 		else
15398 			scalar_min_max_rsh(dst_reg, &src_reg);
15399 		break;
15400 	case BPF_ARSH:
15401 		if (alu32)
15402 			scalar32_min_max_arsh(dst_reg, &src_reg);
15403 		else
15404 			scalar_min_max_arsh(dst_reg, &src_reg);
15405 		break;
15406 	default:
15407 		break;
15408 	}
15409 
15410 	/* ALU32 ops are zero extended into 64bit register */
15411 	if (alu32)
15412 		zext_32_to_64(dst_reg);
15413 	reg_bounds_sync(dst_reg);
15414 	return 0;
15415 }
15416 
15417 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
15418  * and var_off.
15419  */
15420 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
15421 				   struct bpf_insn *insn)
15422 {
15423 	struct bpf_verifier_state *vstate = env->cur_state;
15424 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
15425 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
15426 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
15427 	bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
15428 	u8 opcode = BPF_OP(insn->code);
15429 	int err;
15430 
15431 	dst_reg = &regs[insn->dst_reg];
15432 	src_reg = NULL;
15433 
15434 	if (dst_reg->type == PTR_TO_ARENA) {
15435 		struct bpf_insn_aux_data *aux = cur_aux(env);
15436 
15437 		if (BPF_CLASS(insn->code) == BPF_ALU64)
15438 			/*
15439 			 * 32-bit operations zero upper bits automatically.
15440 			 * 64-bit operations need to be converted to 32.
15441 			 */
15442 			aux->needs_zext = true;
15443 
15444 		/* Any arithmetic operations are allowed on arena pointers */
15445 		return 0;
15446 	}
15447 
15448 	if (dst_reg->type != SCALAR_VALUE)
15449 		ptr_reg = dst_reg;
15450 
15451 	if (BPF_SRC(insn->code) == BPF_X) {
15452 		src_reg = &regs[insn->src_reg];
15453 		if (src_reg->type != SCALAR_VALUE) {
15454 			if (dst_reg->type != SCALAR_VALUE) {
15455 				/* Combining two pointers by any ALU op yields
15456 				 * an arbitrary scalar. Disallow all math except
15457 				 * pointer subtraction
15458 				 */
15459 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
15460 					mark_reg_unknown(env, regs, insn->dst_reg);
15461 					return 0;
15462 				}
15463 				verbose(env, "R%d pointer %s pointer prohibited\n",
15464 					insn->dst_reg,
15465 					bpf_alu_string[opcode >> 4]);
15466 				return -EACCES;
15467 			} else {
15468 				/* scalar += pointer
15469 				 * This is legal, but we have to reverse our
15470 				 * src/dest handling in computing the range
15471 				 */
15472 				err = mark_chain_precision(env, insn->dst_reg);
15473 				if (err)
15474 					return err;
15475 				return adjust_ptr_min_max_vals(env, insn,
15476 							       src_reg, dst_reg);
15477 			}
15478 		} else if (ptr_reg) {
15479 			/* pointer += scalar */
15480 			err = mark_chain_precision(env, insn->src_reg);
15481 			if (err)
15482 				return err;
15483 			return adjust_ptr_min_max_vals(env, insn,
15484 						       dst_reg, src_reg);
15485 		} else if (dst_reg->precise) {
15486 			/* if dst_reg is precise, src_reg should be precise as well */
15487 			err = mark_chain_precision(env, insn->src_reg);
15488 			if (err)
15489 				return err;
15490 		}
15491 	} else {
15492 		/* Pretend the src is a reg with a known value, since we only
15493 		 * need to be able to read from this state.
15494 		 */
15495 		off_reg.type = SCALAR_VALUE;
15496 		__mark_reg_known(&off_reg, insn->imm);
15497 		src_reg = &off_reg;
15498 		if (ptr_reg) /* pointer += K */
15499 			return adjust_ptr_min_max_vals(env, insn,
15500 						       ptr_reg, src_reg);
15501 	}
15502 
15503 	/* Got here implies adding two SCALAR_VALUEs */
15504 	if (WARN_ON_ONCE(ptr_reg)) {
15505 		print_verifier_state(env, vstate, vstate->curframe, true);
15506 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
15507 		return -EFAULT;
15508 	}
15509 	if (WARN_ON(!src_reg)) {
15510 		print_verifier_state(env, vstate, vstate->curframe, true);
15511 		verbose(env, "verifier internal error: no src_reg\n");
15512 		return -EFAULT;
15513 	}
15514 	err = adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
15515 	if (err)
15516 		return err;
15517 	/*
15518 	 * Compilers can generate the code
15519 	 * r1 = r2
15520 	 * r1 += 0x1
15521 	 * if r2 < 1000 goto ...
15522 	 * use r1 in memory access
15523 	 * So for 64-bit alu remember constant delta between r2 and r1 and
15524 	 * update r1 after 'if' condition.
15525 	 */
15526 	if (env->bpf_capable &&
15527 	    BPF_OP(insn->code) == BPF_ADD && !alu32 &&
15528 	    dst_reg->id && is_reg_const(src_reg, false)) {
15529 		u64 val = reg_const_value(src_reg, false);
15530 
15531 		if ((dst_reg->id & BPF_ADD_CONST) ||
15532 		    /* prevent overflow in sync_linked_regs() later */
15533 		    val > (u32)S32_MAX) {
15534 			/*
15535 			 * If the register already went through rX += val
15536 			 * we cannot accumulate another val into rx->off.
15537 			 */
15538 			dst_reg->off = 0;
15539 			dst_reg->id = 0;
15540 		} else {
15541 			dst_reg->id |= BPF_ADD_CONST;
15542 			dst_reg->off = val;
15543 		}
15544 	} else {
15545 		/*
15546 		 * Make sure ID is cleared otherwise dst_reg min/max could be
15547 		 * incorrectly propagated into other registers by sync_linked_regs()
15548 		 */
15549 		dst_reg->id = 0;
15550 	}
15551 	return 0;
15552 }
15553 
15554 /* check validity of 32-bit and 64-bit arithmetic operations */
15555 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
15556 {
15557 	struct bpf_reg_state *regs = cur_regs(env);
15558 	u8 opcode = BPF_OP(insn->code);
15559 	int err;
15560 
15561 	if (opcode == BPF_END || opcode == BPF_NEG) {
15562 		if (opcode == BPF_NEG) {
15563 			if (BPF_SRC(insn->code) != BPF_K ||
15564 			    insn->src_reg != BPF_REG_0 ||
15565 			    insn->off != 0 || insn->imm != 0) {
15566 				verbose(env, "BPF_NEG uses reserved fields\n");
15567 				return -EINVAL;
15568 			}
15569 		} else {
15570 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
15571 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
15572 			    (BPF_CLASS(insn->code) == BPF_ALU64 &&
15573 			     BPF_SRC(insn->code) != BPF_TO_LE)) {
15574 				verbose(env, "BPF_END uses reserved fields\n");
15575 				return -EINVAL;
15576 			}
15577 		}
15578 
15579 		/* check src operand */
15580 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
15581 		if (err)
15582 			return err;
15583 
15584 		if (is_pointer_value(env, insn->dst_reg)) {
15585 			verbose(env, "R%d pointer arithmetic prohibited\n",
15586 				insn->dst_reg);
15587 			return -EACCES;
15588 		}
15589 
15590 		/* check dest operand */
15591 		if (opcode == BPF_NEG) {
15592 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
15593 			err = err ?: adjust_scalar_min_max_vals(env, insn,
15594 							 &regs[insn->dst_reg],
15595 							 regs[insn->dst_reg]);
15596 		} else {
15597 			err = check_reg_arg(env, insn->dst_reg, DST_OP);
15598 		}
15599 		if (err)
15600 			return err;
15601 
15602 	} else if (opcode == BPF_MOV) {
15603 
15604 		if (BPF_SRC(insn->code) == BPF_X) {
15605 			if (BPF_CLASS(insn->code) == BPF_ALU) {
15606 				if ((insn->off != 0 && insn->off != 8 && insn->off != 16) ||
15607 				    insn->imm) {
15608 					verbose(env, "BPF_MOV uses reserved fields\n");
15609 					return -EINVAL;
15610 				}
15611 			} else if (insn->off == BPF_ADDR_SPACE_CAST) {
15612 				if (insn->imm != 1 && insn->imm != 1u << 16) {
15613 					verbose(env, "addr_space_cast insn can only convert between address space 1 and 0\n");
15614 					return -EINVAL;
15615 				}
15616 				if (!env->prog->aux->arena) {
15617 					verbose(env, "addr_space_cast insn can only be used in a program that has an associated arena\n");
15618 					return -EINVAL;
15619 				}
15620 			} else {
15621 				if ((insn->off != 0 && insn->off != 8 && insn->off != 16 &&
15622 				     insn->off != 32) || insn->imm) {
15623 					verbose(env, "BPF_MOV uses reserved fields\n");
15624 					return -EINVAL;
15625 				}
15626 			}
15627 
15628 			/* check src operand */
15629 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
15630 			if (err)
15631 				return err;
15632 		} else {
15633 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
15634 				verbose(env, "BPF_MOV uses reserved fields\n");
15635 				return -EINVAL;
15636 			}
15637 		}
15638 
15639 		/* check dest operand, mark as required later */
15640 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
15641 		if (err)
15642 			return err;
15643 
15644 		if (BPF_SRC(insn->code) == BPF_X) {
15645 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
15646 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
15647 
15648 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
15649 				if (insn->imm) {
15650 					/* off == BPF_ADDR_SPACE_CAST */
15651 					mark_reg_unknown(env, regs, insn->dst_reg);
15652 					if (insn->imm == 1) { /* cast from as(1) to as(0) */
15653 						dst_reg->type = PTR_TO_ARENA;
15654 						/* PTR_TO_ARENA is 32-bit */
15655 						dst_reg->subreg_def = env->insn_idx + 1;
15656 					}
15657 				} else if (insn->off == 0) {
15658 					/* case: R1 = R2
15659 					 * copy register state to dest reg
15660 					 */
15661 					assign_scalar_id_before_mov(env, src_reg);
15662 					copy_register_state(dst_reg, src_reg);
15663 					dst_reg->live |= REG_LIVE_WRITTEN;
15664 					dst_reg->subreg_def = DEF_NOT_SUBREG;
15665 				} else {
15666 					/* case: R1 = (s8, s16 s32)R2 */
15667 					if (is_pointer_value(env, insn->src_reg)) {
15668 						verbose(env,
15669 							"R%d sign-extension part of pointer\n",
15670 							insn->src_reg);
15671 						return -EACCES;
15672 					} else if (src_reg->type == SCALAR_VALUE) {
15673 						bool no_sext;
15674 
15675 						no_sext = src_reg->umax_value < (1ULL << (insn->off - 1));
15676 						if (no_sext)
15677 							assign_scalar_id_before_mov(env, src_reg);
15678 						copy_register_state(dst_reg, src_reg);
15679 						if (!no_sext)
15680 							dst_reg->id = 0;
15681 						coerce_reg_to_size_sx(dst_reg, insn->off >> 3);
15682 						dst_reg->live |= REG_LIVE_WRITTEN;
15683 						dst_reg->subreg_def = DEF_NOT_SUBREG;
15684 					} else {
15685 						mark_reg_unknown(env, regs, insn->dst_reg);
15686 					}
15687 				}
15688 			} else {
15689 				/* R1 = (u32) R2 */
15690 				if (is_pointer_value(env, insn->src_reg)) {
15691 					verbose(env,
15692 						"R%d partial copy of pointer\n",
15693 						insn->src_reg);
15694 					return -EACCES;
15695 				} else if (src_reg->type == SCALAR_VALUE) {
15696 					if (insn->off == 0) {
15697 						bool is_src_reg_u32 = get_reg_width(src_reg) <= 32;
15698 
15699 						if (is_src_reg_u32)
15700 							assign_scalar_id_before_mov(env, src_reg);
15701 						copy_register_state(dst_reg, src_reg);
15702 						/* Make sure ID is cleared if src_reg is not in u32
15703 						 * range otherwise dst_reg min/max could be incorrectly
15704 						 * propagated into src_reg by sync_linked_regs()
15705 						 */
15706 						if (!is_src_reg_u32)
15707 							dst_reg->id = 0;
15708 						dst_reg->live |= REG_LIVE_WRITTEN;
15709 						dst_reg->subreg_def = env->insn_idx + 1;
15710 					} else {
15711 						/* case: W1 = (s8, s16)W2 */
15712 						bool no_sext = src_reg->umax_value < (1ULL << (insn->off - 1));
15713 
15714 						if (no_sext)
15715 							assign_scalar_id_before_mov(env, src_reg);
15716 						copy_register_state(dst_reg, src_reg);
15717 						if (!no_sext)
15718 							dst_reg->id = 0;
15719 						dst_reg->live |= REG_LIVE_WRITTEN;
15720 						dst_reg->subreg_def = env->insn_idx + 1;
15721 						coerce_subreg_to_size_sx(dst_reg, insn->off >> 3);
15722 					}
15723 				} else {
15724 					mark_reg_unknown(env, regs,
15725 							 insn->dst_reg);
15726 				}
15727 				zext_32_to_64(dst_reg);
15728 				reg_bounds_sync(dst_reg);
15729 			}
15730 		} else {
15731 			/* case: R = imm
15732 			 * remember the value we stored into this reg
15733 			 */
15734 			/* clear any state __mark_reg_known doesn't set */
15735 			mark_reg_unknown(env, regs, insn->dst_reg);
15736 			regs[insn->dst_reg].type = SCALAR_VALUE;
15737 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
15738 				__mark_reg_known(regs + insn->dst_reg,
15739 						 insn->imm);
15740 			} else {
15741 				__mark_reg_known(regs + insn->dst_reg,
15742 						 (u32)insn->imm);
15743 			}
15744 		}
15745 
15746 	} else if (opcode > BPF_END) {
15747 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
15748 		return -EINVAL;
15749 
15750 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
15751 
15752 		if (BPF_SRC(insn->code) == BPF_X) {
15753 			if (insn->imm != 0 || insn->off > 1 ||
15754 			    (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) {
15755 				verbose(env, "BPF_ALU uses reserved fields\n");
15756 				return -EINVAL;
15757 			}
15758 			/* check src1 operand */
15759 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
15760 			if (err)
15761 				return err;
15762 		} else {
15763 			if (insn->src_reg != BPF_REG_0 || insn->off > 1 ||
15764 			    (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) {
15765 				verbose(env, "BPF_ALU uses reserved fields\n");
15766 				return -EINVAL;
15767 			}
15768 		}
15769 
15770 		/* check src2 operand */
15771 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
15772 		if (err)
15773 			return err;
15774 
15775 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
15776 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
15777 			verbose(env, "div by zero\n");
15778 			return -EINVAL;
15779 		}
15780 
15781 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
15782 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
15783 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
15784 
15785 			if (insn->imm < 0 || insn->imm >= size) {
15786 				verbose(env, "invalid shift %d\n", insn->imm);
15787 				return -EINVAL;
15788 			}
15789 		}
15790 
15791 		/* check dest operand */
15792 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
15793 		err = err ?: adjust_reg_min_max_vals(env, insn);
15794 		if (err)
15795 			return err;
15796 	}
15797 
15798 	return reg_bounds_sanity_check(env, &regs[insn->dst_reg], "alu");
15799 }
15800 
15801 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
15802 				   struct bpf_reg_state *dst_reg,
15803 				   enum bpf_reg_type type,
15804 				   bool range_right_open)
15805 {
15806 	struct bpf_func_state *state;
15807 	struct bpf_reg_state *reg;
15808 	int new_range;
15809 
15810 	if (dst_reg->off < 0 ||
15811 	    (dst_reg->off == 0 && range_right_open))
15812 		/* This doesn't give us any range */
15813 		return;
15814 
15815 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
15816 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
15817 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
15818 		 * than pkt_end, but that's because it's also less than pkt.
15819 		 */
15820 		return;
15821 
15822 	new_range = dst_reg->off;
15823 	if (range_right_open)
15824 		new_range++;
15825 
15826 	/* Examples for register markings:
15827 	 *
15828 	 * pkt_data in dst register:
15829 	 *
15830 	 *   r2 = r3;
15831 	 *   r2 += 8;
15832 	 *   if (r2 > pkt_end) goto <handle exception>
15833 	 *   <access okay>
15834 	 *
15835 	 *   r2 = r3;
15836 	 *   r2 += 8;
15837 	 *   if (r2 < pkt_end) goto <access okay>
15838 	 *   <handle exception>
15839 	 *
15840 	 *   Where:
15841 	 *     r2 == dst_reg, pkt_end == src_reg
15842 	 *     r2=pkt(id=n,off=8,r=0)
15843 	 *     r3=pkt(id=n,off=0,r=0)
15844 	 *
15845 	 * pkt_data in src register:
15846 	 *
15847 	 *   r2 = r3;
15848 	 *   r2 += 8;
15849 	 *   if (pkt_end >= r2) goto <access okay>
15850 	 *   <handle exception>
15851 	 *
15852 	 *   r2 = r3;
15853 	 *   r2 += 8;
15854 	 *   if (pkt_end <= r2) goto <handle exception>
15855 	 *   <access okay>
15856 	 *
15857 	 *   Where:
15858 	 *     pkt_end == dst_reg, r2 == src_reg
15859 	 *     r2=pkt(id=n,off=8,r=0)
15860 	 *     r3=pkt(id=n,off=0,r=0)
15861 	 *
15862 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
15863 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
15864 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
15865 	 * the check.
15866 	 */
15867 
15868 	/* If our ids match, then we must have the same max_value.  And we
15869 	 * don't care about the other reg's fixed offset, since if it's too big
15870 	 * the range won't allow anything.
15871 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
15872 	 */
15873 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
15874 		if (reg->type == type && reg->id == dst_reg->id)
15875 			/* keep the maximum range already checked */
15876 			reg->range = max(reg->range, new_range);
15877 	}));
15878 }
15879 
15880 /*
15881  * <reg1> <op> <reg2>, currently assuming reg2 is a constant
15882  */
15883 static int is_scalar_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2,
15884 				  u8 opcode, bool is_jmp32)
15885 {
15886 	struct tnum t1 = is_jmp32 ? tnum_subreg(reg1->var_off) : reg1->var_off;
15887 	struct tnum t2 = is_jmp32 ? tnum_subreg(reg2->var_off) : reg2->var_off;
15888 	u64 umin1 = is_jmp32 ? (u64)reg1->u32_min_value : reg1->umin_value;
15889 	u64 umax1 = is_jmp32 ? (u64)reg1->u32_max_value : reg1->umax_value;
15890 	s64 smin1 = is_jmp32 ? (s64)reg1->s32_min_value : reg1->smin_value;
15891 	s64 smax1 = is_jmp32 ? (s64)reg1->s32_max_value : reg1->smax_value;
15892 	u64 umin2 = is_jmp32 ? (u64)reg2->u32_min_value : reg2->umin_value;
15893 	u64 umax2 = is_jmp32 ? (u64)reg2->u32_max_value : reg2->umax_value;
15894 	s64 smin2 = is_jmp32 ? (s64)reg2->s32_min_value : reg2->smin_value;
15895 	s64 smax2 = is_jmp32 ? (s64)reg2->s32_max_value : reg2->smax_value;
15896 
15897 	switch (opcode) {
15898 	case BPF_JEQ:
15899 		/* constants, umin/umax and smin/smax checks would be
15900 		 * redundant in this case because they all should match
15901 		 */
15902 		if (tnum_is_const(t1) && tnum_is_const(t2))
15903 			return t1.value == t2.value;
15904 		/* non-overlapping ranges */
15905 		if (umin1 > umax2 || umax1 < umin2)
15906 			return 0;
15907 		if (smin1 > smax2 || smax1 < smin2)
15908 			return 0;
15909 		if (!is_jmp32) {
15910 			/* if 64-bit ranges are inconclusive, see if we can
15911 			 * utilize 32-bit subrange knowledge to eliminate
15912 			 * branches that can't be taken a priori
15913 			 */
15914 			if (reg1->u32_min_value > reg2->u32_max_value ||
15915 			    reg1->u32_max_value < reg2->u32_min_value)
15916 				return 0;
15917 			if (reg1->s32_min_value > reg2->s32_max_value ||
15918 			    reg1->s32_max_value < reg2->s32_min_value)
15919 				return 0;
15920 		}
15921 		break;
15922 	case BPF_JNE:
15923 		/* constants, umin/umax and smin/smax checks would be
15924 		 * redundant in this case because they all should match
15925 		 */
15926 		if (tnum_is_const(t1) && tnum_is_const(t2))
15927 			return t1.value != t2.value;
15928 		/* non-overlapping ranges */
15929 		if (umin1 > umax2 || umax1 < umin2)
15930 			return 1;
15931 		if (smin1 > smax2 || smax1 < smin2)
15932 			return 1;
15933 		if (!is_jmp32) {
15934 			/* if 64-bit ranges are inconclusive, see if we can
15935 			 * utilize 32-bit subrange knowledge to eliminate
15936 			 * branches that can't be taken a priori
15937 			 */
15938 			if (reg1->u32_min_value > reg2->u32_max_value ||
15939 			    reg1->u32_max_value < reg2->u32_min_value)
15940 				return 1;
15941 			if (reg1->s32_min_value > reg2->s32_max_value ||
15942 			    reg1->s32_max_value < reg2->s32_min_value)
15943 				return 1;
15944 		}
15945 		break;
15946 	case BPF_JSET:
15947 		if (!is_reg_const(reg2, is_jmp32)) {
15948 			swap(reg1, reg2);
15949 			swap(t1, t2);
15950 		}
15951 		if (!is_reg_const(reg2, is_jmp32))
15952 			return -1;
15953 		if ((~t1.mask & t1.value) & t2.value)
15954 			return 1;
15955 		if (!((t1.mask | t1.value) & t2.value))
15956 			return 0;
15957 		break;
15958 	case BPF_JGT:
15959 		if (umin1 > umax2)
15960 			return 1;
15961 		else if (umax1 <= umin2)
15962 			return 0;
15963 		break;
15964 	case BPF_JSGT:
15965 		if (smin1 > smax2)
15966 			return 1;
15967 		else if (smax1 <= smin2)
15968 			return 0;
15969 		break;
15970 	case BPF_JLT:
15971 		if (umax1 < umin2)
15972 			return 1;
15973 		else if (umin1 >= umax2)
15974 			return 0;
15975 		break;
15976 	case BPF_JSLT:
15977 		if (smax1 < smin2)
15978 			return 1;
15979 		else if (smin1 >= smax2)
15980 			return 0;
15981 		break;
15982 	case BPF_JGE:
15983 		if (umin1 >= umax2)
15984 			return 1;
15985 		else if (umax1 < umin2)
15986 			return 0;
15987 		break;
15988 	case BPF_JSGE:
15989 		if (smin1 >= smax2)
15990 			return 1;
15991 		else if (smax1 < smin2)
15992 			return 0;
15993 		break;
15994 	case BPF_JLE:
15995 		if (umax1 <= umin2)
15996 			return 1;
15997 		else if (umin1 > umax2)
15998 			return 0;
15999 		break;
16000 	case BPF_JSLE:
16001 		if (smax1 <= smin2)
16002 			return 1;
16003 		else if (smin1 > smax2)
16004 			return 0;
16005 		break;
16006 	}
16007 
16008 	return -1;
16009 }
16010 
16011 static int flip_opcode(u32 opcode)
16012 {
16013 	/* How can we transform "a <op> b" into "b <op> a"? */
16014 	static const u8 opcode_flip[16] = {
16015 		/* these stay the same */
16016 		[BPF_JEQ  >> 4] = BPF_JEQ,
16017 		[BPF_JNE  >> 4] = BPF_JNE,
16018 		[BPF_JSET >> 4] = BPF_JSET,
16019 		/* these swap "lesser" and "greater" (L and G in the opcodes) */
16020 		[BPF_JGE  >> 4] = BPF_JLE,
16021 		[BPF_JGT  >> 4] = BPF_JLT,
16022 		[BPF_JLE  >> 4] = BPF_JGE,
16023 		[BPF_JLT  >> 4] = BPF_JGT,
16024 		[BPF_JSGE >> 4] = BPF_JSLE,
16025 		[BPF_JSGT >> 4] = BPF_JSLT,
16026 		[BPF_JSLE >> 4] = BPF_JSGE,
16027 		[BPF_JSLT >> 4] = BPF_JSGT
16028 	};
16029 	return opcode_flip[opcode >> 4];
16030 }
16031 
16032 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
16033 				   struct bpf_reg_state *src_reg,
16034 				   u8 opcode)
16035 {
16036 	struct bpf_reg_state *pkt;
16037 
16038 	if (src_reg->type == PTR_TO_PACKET_END) {
16039 		pkt = dst_reg;
16040 	} else if (dst_reg->type == PTR_TO_PACKET_END) {
16041 		pkt = src_reg;
16042 		opcode = flip_opcode(opcode);
16043 	} else {
16044 		return -1;
16045 	}
16046 
16047 	if (pkt->range >= 0)
16048 		return -1;
16049 
16050 	switch (opcode) {
16051 	case BPF_JLE:
16052 		/* pkt <= pkt_end */
16053 		fallthrough;
16054 	case BPF_JGT:
16055 		/* pkt > pkt_end */
16056 		if (pkt->range == BEYOND_PKT_END)
16057 			/* pkt has at last one extra byte beyond pkt_end */
16058 			return opcode == BPF_JGT;
16059 		break;
16060 	case BPF_JLT:
16061 		/* pkt < pkt_end */
16062 		fallthrough;
16063 	case BPF_JGE:
16064 		/* pkt >= pkt_end */
16065 		if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
16066 			return opcode == BPF_JGE;
16067 		break;
16068 	}
16069 	return -1;
16070 }
16071 
16072 /* compute branch direction of the expression "if (<reg1> opcode <reg2>) goto target;"
16073  * and return:
16074  *  1 - branch will be taken and "goto target" will be executed
16075  *  0 - branch will not be taken and fall-through to next insn
16076  * -1 - unknown. Example: "if (reg1 < 5)" is unknown when register value
16077  *      range [0,10]
16078  */
16079 static int is_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2,
16080 			   u8 opcode, bool is_jmp32)
16081 {
16082 	if (reg_is_pkt_pointer_any(reg1) && reg_is_pkt_pointer_any(reg2) && !is_jmp32)
16083 		return is_pkt_ptr_branch_taken(reg1, reg2, opcode);
16084 
16085 	if (__is_pointer_value(false, reg1) || __is_pointer_value(false, reg2)) {
16086 		u64 val;
16087 
16088 		/* arrange that reg2 is a scalar, and reg1 is a pointer */
16089 		if (!is_reg_const(reg2, is_jmp32)) {
16090 			opcode = flip_opcode(opcode);
16091 			swap(reg1, reg2);
16092 		}
16093 		/* and ensure that reg2 is a constant */
16094 		if (!is_reg_const(reg2, is_jmp32))
16095 			return -1;
16096 
16097 		if (!reg_not_null(reg1))
16098 			return -1;
16099 
16100 		/* If pointer is valid tests against zero will fail so we can
16101 		 * use this to direct branch taken.
16102 		 */
16103 		val = reg_const_value(reg2, is_jmp32);
16104 		if (val != 0)
16105 			return -1;
16106 
16107 		switch (opcode) {
16108 		case BPF_JEQ:
16109 			return 0;
16110 		case BPF_JNE:
16111 			return 1;
16112 		default:
16113 			return -1;
16114 		}
16115 	}
16116 
16117 	/* now deal with two scalars, but not necessarily constants */
16118 	return is_scalar_branch_taken(reg1, reg2, opcode, is_jmp32);
16119 }
16120 
16121 /* Opcode that corresponds to a *false* branch condition.
16122  * E.g., if r1 < r2, then reverse (false) condition is r1 >= r2
16123  */
16124 static u8 rev_opcode(u8 opcode)
16125 {
16126 	switch (opcode) {
16127 	case BPF_JEQ:		return BPF_JNE;
16128 	case BPF_JNE:		return BPF_JEQ;
16129 	/* JSET doesn't have it's reverse opcode in BPF, so add
16130 	 * BPF_X flag to denote the reverse of that operation
16131 	 */
16132 	case BPF_JSET:		return BPF_JSET | BPF_X;
16133 	case BPF_JSET | BPF_X:	return BPF_JSET;
16134 	case BPF_JGE:		return BPF_JLT;
16135 	case BPF_JGT:		return BPF_JLE;
16136 	case BPF_JLE:		return BPF_JGT;
16137 	case BPF_JLT:		return BPF_JGE;
16138 	case BPF_JSGE:		return BPF_JSLT;
16139 	case BPF_JSGT:		return BPF_JSLE;
16140 	case BPF_JSLE:		return BPF_JSGT;
16141 	case BPF_JSLT:		return BPF_JSGE;
16142 	default:		return 0;
16143 	}
16144 }
16145 
16146 /* Refine range knowledge for <reg1> <op> <reg>2 conditional operation. */
16147 static void regs_refine_cond_op(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2,
16148 				u8 opcode, bool is_jmp32)
16149 {
16150 	struct tnum t;
16151 	u64 val;
16152 
16153 	/* In case of GE/GT/SGE/JST, reuse LE/LT/SLE/SLT logic from below */
16154 	switch (opcode) {
16155 	case BPF_JGE:
16156 	case BPF_JGT:
16157 	case BPF_JSGE:
16158 	case BPF_JSGT:
16159 		opcode = flip_opcode(opcode);
16160 		swap(reg1, reg2);
16161 		break;
16162 	default:
16163 		break;
16164 	}
16165 
16166 	switch (opcode) {
16167 	case BPF_JEQ:
16168 		if (is_jmp32) {
16169 			reg1->u32_min_value = max(reg1->u32_min_value, reg2->u32_min_value);
16170 			reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value);
16171 			reg1->s32_min_value = max(reg1->s32_min_value, reg2->s32_min_value);
16172 			reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value);
16173 			reg2->u32_min_value = reg1->u32_min_value;
16174 			reg2->u32_max_value = reg1->u32_max_value;
16175 			reg2->s32_min_value = reg1->s32_min_value;
16176 			reg2->s32_max_value = reg1->s32_max_value;
16177 
16178 			t = tnum_intersect(tnum_subreg(reg1->var_off), tnum_subreg(reg2->var_off));
16179 			reg1->var_off = tnum_with_subreg(reg1->var_off, t);
16180 			reg2->var_off = tnum_with_subreg(reg2->var_off, t);
16181 		} else {
16182 			reg1->umin_value = max(reg1->umin_value, reg2->umin_value);
16183 			reg1->umax_value = min(reg1->umax_value, reg2->umax_value);
16184 			reg1->smin_value = max(reg1->smin_value, reg2->smin_value);
16185 			reg1->smax_value = min(reg1->smax_value, reg2->smax_value);
16186 			reg2->umin_value = reg1->umin_value;
16187 			reg2->umax_value = reg1->umax_value;
16188 			reg2->smin_value = reg1->smin_value;
16189 			reg2->smax_value = reg1->smax_value;
16190 
16191 			reg1->var_off = tnum_intersect(reg1->var_off, reg2->var_off);
16192 			reg2->var_off = reg1->var_off;
16193 		}
16194 		break;
16195 	case BPF_JNE:
16196 		if (!is_reg_const(reg2, is_jmp32))
16197 			swap(reg1, reg2);
16198 		if (!is_reg_const(reg2, is_jmp32))
16199 			break;
16200 
16201 		/* try to recompute the bound of reg1 if reg2 is a const and
16202 		 * is exactly the edge of reg1.
16203 		 */
16204 		val = reg_const_value(reg2, is_jmp32);
16205 		if (is_jmp32) {
16206 			/* u32_min_value is not equal to 0xffffffff at this point,
16207 			 * because otherwise u32_max_value is 0xffffffff as well,
16208 			 * in such a case both reg1 and reg2 would be constants,
16209 			 * jump would be predicted and reg_set_min_max() won't
16210 			 * be called.
16211 			 *
16212 			 * Same reasoning works for all {u,s}{min,max}{32,64} cases
16213 			 * below.
16214 			 */
16215 			if (reg1->u32_min_value == (u32)val)
16216 				reg1->u32_min_value++;
16217 			if (reg1->u32_max_value == (u32)val)
16218 				reg1->u32_max_value--;
16219 			if (reg1->s32_min_value == (s32)val)
16220 				reg1->s32_min_value++;
16221 			if (reg1->s32_max_value == (s32)val)
16222 				reg1->s32_max_value--;
16223 		} else {
16224 			if (reg1->umin_value == (u64)val)
16225 				reg1->umin_value++;
16226 			if (reg1->umax_value == (u64)val)
16227 				reg1->umax_value--;
16228 			if (reg1->smin_value == (s64)val)
16229 				reg1->smin_value++;
16230 			if (reg1->smax_value == (s64)val)
16231 				reg1->smax_value--;
16232 		}
16233 		break;
16234 	case BPF_JSET:
16235 		if (!is_reg_const(reg2, is_jmp32))
16236 			swap(reg1, reg2);
16237 		if (!is_reg_const(reg2, is_jmp32))
16238 			break;
16239 		val = reg_const_value(reg2, is_jmp32);
16240 		/* BPF_JSET (i.e., TRUE branch, *not* BPF_JSET | BPF_X)
16241 		 * requires single bit to learn something useful. E.g., if we
16242 		 * know that `r1 & 0x3` is true, then which bits (0, 1, or both)
16243 		 * are actually set? We can learn something definite only if
16244 		 * it's a single-bit value to begin with.
16245 		 *
16246 		 * BPF_JSET | BPF_X (i.e., negation of BPF_JSET) doesn't have
16247 		 * this restriction. I.e., !(r1 & 0x3) means neither bit 0 nor
16248 		 * bit 1 is set, which we can readily use in adjustments.
16249 		 */
16250 		if (!is_power_of_2(val))
16251 			break;
16252 		if (is_jmp32) {
16253 			t = tnum_or(tnum_subreg(reg1->var_off), tnum_const(val));
16254 			reg1->var_off = tnum_with_subreg(reg1->var_off, t);
16255 		} else {
16256 			reg1->var_off = tnum_or(reg1->var_off, tnum_const(val));
16257 		}
16258 		break;
16259 	case BPF_JSET | BPF_X: /* reverse of BPF_JSET, see rev_opcode() */
16260 		if (!is_reg_const(reg2, is_jmp32))
16261 			swap(reg1, reg2);
16262 		if (!is_reg_const(reg2, is_jmp32))
16263 			break;
16264 		val = reg_const_value(reg2, is_jmp32);
16265 		/* Forget the ranges before narrowing tnums, to avoid invariant
16266 		 * violations if we're on a dead branch.
16267 		 */
16268 		__mark_reg_unbounded(reg1);
16269 		if (is_jmp32) {
16270 			t = tnum_and(tnum_subreg(reg1->var_off), tnum_const(~val));
16271 			reg1->var_off = tnum_with_subreg(reg1->var_off, t);
16272 		} else {
16273 			reg1->var_off = tnum_and(reg1->var_off, tnum_const(~val));
16274 		}
16275 		break;
16276 	case BPF_JLE:
16277 		if (is_jmp32) {
16278 			reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value);
16279 			reg2->u32_min_value = max(reg1->u32_min_value, reg2->u32_min_value);
16280 		} else {
16281 			reg1->umax_value = min(reg1->umax_value, reg2->umax_value);
16282 			reg2->umin_value = max(reg1->umin_value, reg2->umin_value);
16283 		}
16284 		break;
16285 	case BPF_JLT:
16286 		if (is_jmp32) {
16287 			reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value - 1);
16288 			reg2->u32_min_value = max(reg1->u32_min_value + 1, reg2->u32_min_value);
16289 		} else {
16290 			reg1->umax_value = min(reg1->umax_value, reg2->umax_value - 1);
16291 			reg2->umin_value = max(reg1->umin_value + 1, reg2->umin_value);
16292 		}
16293 		break;
16294 	case BPF_JSLE:
16295 		if (is_jmp32) {
16296 			reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value);
16297 			reg2->s32_min_value = max(reg1->s32_min_value, reg2->s32_min_value);
16298 		} else {
16299 			reg1->smax_value = min(reg1->smax_value, reg2->smax_value);
16300 			reg2->smin_value = max(reg1->smin_value, reg2->smin_value);
16301 		}
16302 		break;
16303 	case BPF_JSLT:
16304 		if (is_jmp32) {
16305 			reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value - 1);
16306 			reg2->s32_min_value = max(reg1->s32_min_value + 1, reg2->s32_min_value);
16307 		} else {
16308 			reg1->smax_value = min(reg1->smax_value, reg2->smax_value - 1);
16309 			reg2->smin_value = max(reg1->smin_value + 1, reg2->smin_value);
16310 		}
16311 		break;
16312 	default:
16313 		return;
16314 	}
16315 }
16316 
16317 /* Adjusts the register min/max values in the case that the dst_reg and
16318  * src_reg are both SCALAR_VALUE registers (or we are simply doing a BPF_K
16319  * check, in which case we have a fake SCALAR_VALUE representing insn->imm).
16320  * Technically we can do similar adjustments for pointers to the same object,
16321  * but we don't support that right now.
16322  */
16323 static int reg_set_min_max(struct bpf_verifier_env *env,
16324 			   struct bpf_reg_state *true_reg1,
16325 			   struct bpf_reg_state *true_reg2,
16326 			   struct bpf_reg_state *false_reg1,
16327 			   struct bpf_reg_state *false_reg2,
16328 			   u8 opcode, bool is_jmp32)
16329 {
16330 	int err;
16331 
16332 	/* If either register is a pointer, we can't learn anything about its
16333 	 * variable offset from the compare (unless they were a pointer into
16334 	 * the same object, but we don't bother with that).
16335 	 */
16336 	if (false_reg1->type != SCALAR_VALUE || false_reg2->type != SCALAR_VALUE)
16337 		return 0;
16338 
16339 	/* fallthrough (FALSE) branch */
16340 	regs_refine_cond_op(false_reg1, false_reg2, rev_opcode(opcode), is_jmp32);
16341 	reg_bounds_sync(false_reg1);
16342 	reg_bounds_sync(false_reg2);
16343 
16344 	/* jump (TRUE) branch */
16345 	regs_refine_cond_op(true_reg1, true_reg2, opcode, is_jmp32);
16346 	reg_bounds_sync(true_reg1);
16347 	reg_bounds_sync(true_reg2);
16348 
16349 	err = reg_bounds_sanity_check(env, true_reg1, "true_reg1");
16350 	err = err ?: reg_bounds_sanity_check(env, true_reg2, "true_reg2");
16351 	err = err ?: reg_bounds_sanity_check(env, false_reg1, "false_reg1");
16352 	err = err ?: reg_bounds_sanity_check(env, false_reg2, "false_reg2");
16353 	return err;
16354 }
16355 
16356 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
16357 				 struct bpf_reg_state *reg, u32 id,
16358 				 bool is_null)
16359 {
16360 	if (type_may_be_null(reg->type) && reg->id == id &&
16361 	    (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) {
16362 		/* Old offset (both fixed and variable parts) should have been
16363 		 * known-zero, because we don't allow pointer arithmetic on
16364 		 * pointers that might be NULL. If we see this happening, don't
16365 		 * convert the register.
16366 		 *
16367 		 * But in some cases, some helpers that return local kptrs
16368 		 * advance offset for the returned pointer. In those cases, it
16369 		 * is fine to expect to see reg->off.
16370 		 */
16371 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0)))
16372 			return;
16373 		if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) &&
16374 		    WARN_ON_ONCE(reg->off))
16375 			return;
16376 
16377 		if (is_null) {
16378 			reg->type = SCALAR_VALUE;
16379 			/* We don't need id and ref_obj_id from this point
16380 			 * onwards anymore, thus we should better reset it,
16381 			 * so that state pruning has chances to take effect.
16382 			 */
16383 			reg->id = 0;
16384 			reg->ref_obj_id = 0;
16385 
16386 			return;
16387 		}
16388 
16389 		mark_ptr_not_null_reg(reg);
16390 
16391 		if (!reg_may_point_to_spin_lock(reg)) {
16392 			/* For not-NULL ptr, reg->ref_obj_id will be reset
16393 			 * in release_reference().
16394 			 *
16395 			 * reg->id is still used by spin_lock ptr. Other
16396 			 * than spin_lock ptr type, reg->id can be reset.
16397 			 */
16398 			reg->id = 0;
16399 		}
16400 	}
16401 }
16402 
16403 /* The logic is similar to find_good_pkt_pointers(), both could eventually
16404  * be folded together at some point.
16405  */
16406 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
16407 				  bool is_null)
16408 {
16409 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
16410 	struct bpf_reg_state *regs = state->regs, *reg;
16411 	u32 ref_obj_id = regs[regno].ref_obj_id;
16412 	u32 id = regs[regno].id;
16413 
16414 	if (ref_obj_id && ref_obj_id == id && is_null)
16415 		/* regs[regno] is in the " == NULL" branch.
16416 		 * No one could have freed the reference state before
16417 		 * doing the NULL check.
16418 		 */
16419 		WARN_ON_ONCE(release_reference_nomark(vstate, id));
16420 
16421 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
16422 		mark_ptr_or_null_reg(state, reg, id, is_null);
16423 	}));
16424 }
16425 
16426 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
16427 				   struct bpf_reg_state *dst_reg,
16428 				   struct bpf_reg_state *src_reg,
16429 				   struct bpf_verifier_state *this_branch,
16430 				   struct bpf_verifier_state *other_branch)
16431 {
16432 	if (BPF_SRC(insn->code) != BPF_X)
16433 		return false;
16434 
16435 	/* Pointers are always 64-bit. */
16436 	if (BPF_CLASS(insn->code) == BPF_JMP32)
16437 		return false;
16438 
16439 	switch (BPF_OP(insn->code)) {
16440 	case BPF_JGT:
16441 		if ((dst_reg->type == PTR_TO_PACKET &&
16442 		     src_reg->type == PTR_TO_PACKET_END) ||
16443 		    (dst_reg->type == PTR_TO_PACKET_META &&
16444 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
16445 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
16446 			find_good_pkt_pointers(this_branch, dst_reg,
16447 					       dst_reg->type, false);
16448 			mark_pkt_end(other_branch, insn->dst_reg, true);
16449 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
16450 			    src_reg->type == PTR_TO_PACKET) ||
16451 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
16452 			    src_reg->type == PTR_TO_PACKET_META)) {
16453 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
16454 			find_good_pkt_pointers(other_branch, src_reg,
16455 					       src_reg->type, true);
16456 			mark_pkt_end(this_branch, insn->src_reg, false);
16457 		} else {
16458 			return false;
16459 		}
16460 		break;
16461 	case BPF_JLT:
16462 		if ((dst_reg->type == PTR_TO_PACKET &&
16463 		     src_reg->type == PTR_TO_PACKET_END) ||
16464 		    (dst_reg->type == PTR_TO_PACKET_META &&
16465 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
16466 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
16467 			find_good_pkt_pointers(other_branch, dst_reg,
16468 					       dst_reg->type, true);
16469 			mark_pkt_end(this_branch, insn->dst_reg, false);
16470 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
16471 			    src_reg->type == PTR_TO_PACKET) ||
16472 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
16473 			    src_reg->type == PTR_TO_PACKET_META)) {
16474 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
16475 			find_good_pkt_pointers(this_branch, src_reg,
16476 					       src_reg->type, false);
16477 			mark_pkt_end(other_branch, insn->src_reg, true);
16478 		} else {
16479 			return false;
16480 		}
16481 		break;
16482 	case BPF_JGE:
16483 		if ((dst_reg->type == PTR_TO_PACKET &&
16484 		     src_reg->type == PTR_TO_PACKET_END) ||
16485 		    (dst_reg->type == PTR_TO_PACKET_META &&
16486 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
16487 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
16488 			find_good_pkt_pointers(this_branch, dst_reg,
16489 					       dst_reg->type, true);
16490 			mark_pkt_end(other_branch, insn->dst_reg, false);
16491 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
16492 			    src_reg->type == PTR_TO_PACKET) ||
16493 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
16494 			    src_reg->type == PTR_TO_PACKET_META)) {
16495 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
16496 			find_good_pkt_pointers(other_branch, src_reg,
16497 					       src_reg->type, false);
16498 			mark_pkt_end(this_branch, insn->src_reg, true);
16499 		} else {
16500 			return false;
16501 		}
16502 		break;
16503 	case BPF_JLE:
16504 		if ((dst_reg->type == PTR_TO_PACKET &&
16505 		     src_reg->type == PTR_TO_PACKET_END) ||
16506 		    (dst_reg->type == PTR_TO_PACKET_META &&
16507 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
16508 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
16509 			find_good_pkt_pointers(other_branch, dst_reg,
16510 					       dst_reg->type, false);
16511 			mark_pkt_end(this_branch, insn->dst_reg, true);
16512 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
16513 			    src_reg->type == PTR_TO_PACKET) ||
16514 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
16515 			    src_reg->type == PTR_TO_PACKET_META)) {
16516 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
16517 			find_good_pkt_pointers(this_branch, src_reg,
16518 					       src_reg->type, true);
16519 			mark_pkt_end(other_branch, insn->src_reg, false);
16520 		} else {
16521 			return false;
16522 		}
16523 		break;
16524 	default:
16525 		return false;
16526 	}
16527 
16528 	return true;
16529 }
16530 
16531 static void __collect_linked_regs(struct linked_regs *reg_set, struct bpf_reg_state *reg,
16532 				  u32 id, u32 frameno, u32 spi_or_reg, bool is_reg)
16533 {
16534 	struct linked_reg *e;
16535 
16536 	if (reg->type != SCALAR_VALUE || (reg->id & ~BPF_ADD_CONST) != id)
16537 		return;
16538 
16539 	e = linked_regs_push(reg_set);
16540 	if (e) {
16541 		e->frameno = frameno;
16542 		e->is_reg = is_reg;
16543 		e->regno = spi_or_reg;
16544 	} else {
16545 		reg->id = 0;
16546 	}
16547 }
16548 
16549 /* For all R being scalar registers or spilled scalar registers
16550  * in verifier state, save R in linked_regs if R->id == id.
16551  * If there are too many Rs sharing same id, reset id for leftover Rs.
16552  */
16553 static void collect_linked_regs(struct bpf_verifier_state *vstate, u32 id,
16554 				struct linked_regs *linked_regs)
16555 {
16556 	struct bpf_func_state *func;
16557 	struct bpf_reg_state *reg;
16558 	int i, j;
16559 
16560 	id = id & ~BPF_ADD_CONST;
16561 	for (i = vstate->curframe; i >= 0; i--) {
16562 		func = vstate->frame[i];
16563 		for (j = 0; j < BPF_REG_FP; j++) {
16564 			reg = &func->regs[j];
16565 			__collect_linked_regs(linked_regs, reg, id, i, j, true);
16566 		}
16567 		for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
16568 			if (!is_spilled_reg(&func->stack[j]))
16569 				continue;
16570 			reg = &func->stack[j].spilled_ptr;
16571 			__collect_linked_regs(linked_regs, reg, id, i, j, false);
16572 		}
16573 	}
16574 }
16575 
16576 /* For all R in linked_regs, copy known_reg range into R
16577  * if R->id == known_reg->id.
16578  */
16579 static void sync_linked_regs(struct bpf_verifier_state *vstate, struct bpf_reg_state *known_reg,
16580 			     struct linked_regs *linked_regs)
16581 {
16582 	struct bpf_reg_state fake_reg;
16583 	struct bpf_reg_state *reg;
16584 	struct linked_reg *e;
16585 	int i;
16586 
16587 	for (i = 0; i < linked_regs->cnt; ++i) {
16588 		e = &linked_regs->entries[i];
16589 		reg = e->is_reg ? &vstate->frame[e->frameno]->regs[e->regno]
16590 				: &vstate->frame[e->frameno]->stack[e->spi].spilled_ptr;
16591 		if (reg->type != SCALAR_VALUE || reg == known_reg)
16592 			continue;
16593 		if ((reg->id & ~BPF_ADD_CONST) != (known_reg->id & ~BPF_ADD_CONST))
16594 			continue;
16595 		if ((!(reg->id & BPF_ADD_CONST) && !(known_reg->id & BPF_ADD_CONST)) ||
16596 		    reg->off == known_reg->off) {
16597 			s32 saved_subreg_def = reg->subreg_def;
16598 
16599 			copy_register_state(reg, known_reg);
16600 			reg->subreg_def = saved_subreg_def;
16601 		} else {
16602 			s32 saved_subreg_def = reg->subreg_def;
16603 			s32 saved_off = reg->off;
16604 
16605 			fake_reg.type = SCALAR_VALUE;
16606 			__mark_reg_known(&fake_reg, (s32)reg->off - (s32)known_reg->off);
16607 
16608 			/* reg = known_reg; reg += delta */
16609 			copy_register_state(reg, known_reg);
16610 			/*
16611 			 * Must preserve off, id and add_const flag,
16612 			 * otherwise another sync_linked_regs() will be incorrect.
16613 			 */
16614 			reg->off = saved_off;
16615 			reg->subreg_def = saved_subreg_def;
16616 
16617 			scalar32_min_max_add(reg, &fake_reg);
16618 			scalar_min_max_add(reg, &fake_reg);
16619 			reg->var_off = tnum_add(reg->var_off, fake_reg.var_off);
16620 		}
16621 	}
16622 }
16623 
16624 static int check_cond_jmp_op(struct bpf_verifier_env *env,
16625 			     struct bpf_insn *insn, int *insn_idx)
16626 {
16627 	struct bpf_verifier_state *this_branch = env->cur_state;
16628 	struct bpf_verifier_state *other_branch;
16629 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
16630 	struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
16631 	struct bpf_reg_state *eq_branch_regs;
16632 	struct linked_regs linked_regs = {};
16633 	u8 opcode = BPF_OP(insn->code);
16634 	int insn_flags = 0;
16635 	bool is_jmp32;
16636 	int pred = -1;
16637 	int err;
16638 
16639 	/* Only conditional jumps are expected to reach here. */
16640 	if (opcode == BPF_JA || opcode > BPF_JCOND) {
16641 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
16642 		return -EINVAL;
16643 	}
16644 
16645 	if (opcode == BPF_JCOND) {
16646 		struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st;
16647 		int idx = *insn_idx;
16648 
16649 		if (insn->code != (BPF_JMP | BPF_JCOND) ||
16650 		    insn->src_reg != BPF_MAY_GOTO ||
16651 		    insn->dst_reg || insn->imm) {
16652 			verbose(env, "invalid may_goto imm %d\n", insn->imm);
16653 			return -EINVAL;
16654 		}
16655 		prev_st = find_prev_entry(env, cur_st->parent, idx);
16656 
16657 		/* branch out 'fallthrough' insn as a new state to explore */
16658 		queued_st = push_stack(env, idx + 1, idx, false);
16659 		if (!queued_st)
16660 			return -ENOMEM;
16661 
16662 		queued_st->may_goto_depth++;
16663 		if (prev_st)
16664 			widen_imprecise_scalars(env, prev_st, queued_st);
16665 		*insn_idx += insn->off;
16666 		return 0;
16667 	}
16668 
16669 	/* check src2 operand */
16670 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
16671 	if (err)
16672 		return err;
16673 
16674 	dst_reg = &regs[insn->dst_reg];
16675 	if (BPF_SRC(insn->code) == BPF_X) {
16676 		if (insn->imm != 0) {
16677 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
16678 			return -EINVAL;
16679 		}
16680 
16681 		/* check src1 operand */
16682 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
16683 		if (err)
16684 			return err;
16685 
16686 		src_reg = &regs[insn->src_reg];
16687 		if (!(reg_is_pkt_pointer_any(dst_reg) && reg_is_pkt_pointer_any(src_reg)) &&
16688 		    is_pointer_value(env, insn->src_reg)) {
16689 			verbose(env, "R%d pointer comparison prohibited\n",
16690 				insn->src_reg);
16691 			return -EACCES;
16692 		}
16693 
16694 		if (src_reg->type == PTR_TO_STACK)
16695 			insn_flags |= INSN_F_SRC_REG_STACK;
16696 		if (dst_reg->type == PTR_TO_STACK)
16697 			insn_flags |= INSN_F_DST_REG_STACK;
16698 	} else {
16699 		if (insn->src_reg != BPF_REG_0) {
16700 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
16701 			return -EINVAL;
16702 		}
16703 		src_reg = &env->fake_reg[0];
16704 		memset(src_reg, 0, sizeof(*src_reg));
16705 		src_reg->type = SCALAR_VALUE;
16706 		__mark_reg_known(src_reg, insn->imm);
16707 
16708 		if (dst_reg->type == PTR_TO_STACK)
16709 			insn_flags |= INSN_F_DST_REG_STACK;
16710 	}
16711 
16712 	if (insn_flags) {
16713 		err = push_jmp_history(env, this_branch, insn_flags, 0);
16714 		if (err)
16715 			return err;
16716 	}
16717 
16718 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
16719 	pred = is_branch_taken(dst_reg, src_reg, opcode, is_jmp32);
16720 	if (pred >= 0) {
16721 		/* If we get here with a dst_reg pointer type it is because
16722 		 * above is_branch_taken() special cased the 0 comparison.
16723 		 */
16724 		if (!__is_pointer_value(false, dst_reg))
16725 			err = mark_chain_precision(env, insn->dst_reg);
16726 		if (BPF_SRC(insn->code) == BPF_X && !err &&
16727 		    !__is_pointer_value(false, src_reg))
16728 			err = mark_chain_precision(env, insn->src_reg);
16729 		if (err)
16730 			return err;
16731 	}
16732 
16733 	if (pred == 1) {
16734 		/* Only follow the goto, ignore fall-through. If needed, push
16735 		 * the fall-through branch for simulation under speculative
16736 		 * execution.
16737 		 */
16738 		if (!env->bypass_spec_v1 &&
16739 		    !sanitize_speculative_path(env, insn, *insn_idx + 1,
16740 					       *insn_idx))
16741 			return -EFAULT;
16742 		if (env->log.level & BPF_LOG_LEVEL)
16743 			print_insn_state(env, this_branch, this_branch->curframe);
16744 		*insn_idx += insn->off;
16745 		return 0;
16746 	} else if (pred == 0) {
16747 		/* Only follow the fall-through branch, since that's where the
16748 		 * program will go. If needed, push the goto branch for
16749 		 * simulation under speculative execution.
16750 		 */
16751 		if (!env->bypass_spec_v1 &&
16752 		    !sanitize_speculative_path(env, insn,
16753 					       *insn_idx + insn->off + 1,
16754 					       *insn_idx))
16755 			return -EFAULT;
16756 		if (env->log.level & BPF_LOG_LEVEL)
16757 			print_insn_state(env, this_branch, this_branch->curframe);
16758 		return 0;
16759 	}
16760 
16761 	/* Push scalar registers sharing same ID to jump history,
16762 	 * do this before creating 'other_branch', so that both
16763 	 * 'this_branch' and 'other_branch' share this history
16764 	 * if parent state is created.
16765 	 */
16766 	if (BPF_SRC(insn->code) == BPF_X && src_reg->type == SCALAR_VALUE && src_reg->id)
16767 		collect_linked_regs(this_branch, src_reg->id, &linked_regs);
16768 	if (dst_reg->type == SCALAR_VALUE && dst_reg->id)
16769 		collect_linked_regs(this_branch, dst_reg->id, &linked_regs);
16770 	if (linked_regs.cnt > 1) {
16771 		err = push_jmp_history(env, this_branch, 0, linked_regs_pack(&linked_regs));
16772 		if (err)
16773 			return err;
16774 	}
16775 
16776 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
16777 				  false);
16778 	if (!other_branch)
16779 		return -EFAULT;
16780 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
16781 
16782 	if (BPF_SRC(insn->code) == BPF_X) {
16783 		err = reg_set_min_max(env,
16784 				      &other_branch_regs[insn->dst_reg],
16785 				      &other_branch_regs[insn->src_reg],
16786 				      dst_reg, src_reg, opcode, is_jmp32);
16787 	} else /* BPF_SRC(insn->code) == BPF_K */ {
16788 		/* reg_set_min_max() can mangle the fake_reg. Make a copy
16789 		 * so that these are two different memory locations. The
16790 		 * src_reg is not used beyond here in context of K.
16791 		 */
16792 		memcpy(&env->fake_reg[1], &env->fake_reg[0],
16793 		       sizeof(env->fake_reg[0]));
16794 		err = reg_set_min_max(env,
16795 				      &other_branch_regs[insn->dst_reg],
16796 				      &env->fake_reg[0],
16797 				      dst_reg, &env->fake_reg[1],
16798 				      opcode, is_jmp32);
16799 	}
16800 	if (err)
16801 		return err;
16802 
16803 	if (BPF_SRC(insn->code) == BPF_X &&
16804 	    src_reg->type == SCALAR_VALUE && src_reg->id &&
16805 	    !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
16806 		sync_linked_regs(this_branch, src_reg, &linked_regs);
16807 		sync_linked_regs(other_branch, &other_branch_regs[insn->src_reg], &linked_regs);
16808 	}
16809 	if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
16810 	    !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
16811 		sync_linked_regs(this_branch, dst_reg, &linked_regs);
16812 		sync_linked_regs(other_branch, &other_branch_regs[insn->dst_reg], &linked_regs);
16813 	}
16814 
16815 	/* if one pointer register is compared to another pointer
16816 	 * register check if PTR_MAYBE_NULL could be lifted.
16817 	 * E.g. register A - maybe null
16818 	 *      register B - not null
16819 	 * for JNE A, B, ... - A is not null in the false branch;
16820 	 * for JEQ A, B, ... - A is not null in the true branch.
16821 	 *
16822 	 * Since PTR_TO_BTF_ID points to a kernel struct that does
16823 	 * not need to be null checked by the BPF program, i.e.,
16824 	 * could be null even without PTR_MAYBE_NULL marking, so
16825 	 * only propagate nullness when neither reg is that type.
16826 	 */
16827 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X &&
16828 	    __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) &&
16829 	    type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) &&
16830 	    base_type(src_reg->type) != PTR_TO_BTF_ID &&
16831 	    base_type(dst_reg->type) != PTR_TO_BTF_ID) {
16832 		eq_branch_regs = NULL;
16833 		switch (opcode) {
16834 		case BPF_JEQ:
16835 			eq_branch_regs = other_branch_regs;
16836 			break;
16837 		case BPF_JNE:
16838 			eq_branch_regs = regs;
16839 			break;
16840 		default:
16841 			/* do nothing */
16842 			break;
16843 		}
16844 		if (eq_branch_regs) {
16845 			if (type_may_be_null(src_reg->type))
16846 				mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]);
16847 			else
16848 				mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]);
16849 		}
16850 	}
16851 
16852 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
16853 	 * NOTE: these optimizations below are related with pointer comparison
16854 	 *       which will never be JMP32.
16855 	 */
16856 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
16857 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
16858 	    type_may_be_null(dst_reg->type)) {
16859 		/* Mark all identical registers in each branch as either
16860 		 * safe or unknown depending R == 0 or R != 0 conditional.
16861 		 */
16862 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
16863 				      opcode == BPF_JNE);
16864 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
16865 				      opcode == BPF_JEQ);
16866 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
16867 					   this_branch, other_branch) &&
16868 		   is_pointer_value(env, insn->dst_reg)) {
16869 		verbose(env, "R%d pointer comparison prohibited\n",
16870 			insn->dst_reg);
16871 		return -EACCES;
16872 	}
16873 	if (env->log.level & BPF_LOG_LEVEL)
16874 		print_insn_state(env, this_branch, this_branch->curframe);
16875 	return 0;
16876 }
16877 
16878 /* verify BPF_LD_IMM64 instruction */
16879 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
16880 {
16881 	struct bpf_insn_aux_data *aux = cur_aux(env);
16882 	struct bpf_reg_state *regs = cur_regs(env);
16883 	struct bpf_reg_state *dst_reg;
16884 	struct bpf_map *map;
16885 	int err;
16886 
16887 	if (BPF_SIZE(insn->code) != BPF_DW) {
16888 		verbose(env, "invalid BPF_LD_IMM insn\n");
16889 		return -EINVAL;
16890 	}
16891 	if (insn->off != 0) {
16892 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
16893 		return -EINVAL;
16894 	}
16895 
16896 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
16897 	if (err)
16898 		return err;
16899 
16900 	dst_reg = &regs[insn->dst_reg];
16901 	if (insn->src_reg == 0) {
16902 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
16903 
16904 		dst_reg->type = SCALAR_VALUE;
16905 		__mark_reg_known(&regs[insn->dst_reg], imm);
16906 		return 0;
16907 	}
16908 
16909 	/* All special src_reg cases are listed below. From this point onwards
16910 	 * we either succeed and assign a corresponding dst_reg->type after
16911 	 * zeroing the offset, or fail and reject the program.
16912 	 */
16913 	mark_reg_known_zero(env, regs, insn->dst_reg);
16914 
16915 	if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
16916 		dst_reg->type = aux->btf_var.reg_type;
16917 		switch (base_type(dst_reg->type)) {
16918 		case PTR_TO_MEM:
16919 			dst_reg->mem_size = aux->btf_var.mem_size;
16920 			break;
16921 		case PTR_TO_BTF_ID:
16922 			dst_reg->btf = aux->btf_var.btf;
16923 			dst_reg->btf_id = aux->btf_var.btf_id;
16924 			break;
16925 		default:
16926 			verifier_bug(env, "pseudo btf id: unexpected dst reg type");
16927 			return -EFAULT;
16928 		}
16929 		return 0;
16930 	}
16931 
16932 	if (insn->src_reg == BPF_PSEUDO_FUNC) {
16933 		struct bpf_prog_aux *aux = env->prog->aux;
16934 		u32 subprogno = find_subprog(env,
16935 					     env->insn_idx + insn->imm + 1);
16936 
16937 		if (!aux->func_info) {
16938 			verbose(env, "missing btf func_info\n");
16939 			return -EINVAL;
16940 		}
16941 		if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
16942 			verbose(env, "callback function not static\n");
16943 			return -EINVAL;
16944 		}
16945 
16946 		dst_reg->type = PTR_TO_FUNC;
16947 		dst_reg->subprogno = subprogno;
16948 		return 0;
16949 	}
16950 
16951 	map = env->used_maps[aux->map_index];
16952 	dst_reg->map_ptr = map;
16953 
16954 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
16955 	    insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
16956 		if (map->map_type == BPF_MAP_TYPE_ARENA) {
16957 			__mark_reg_unknown(env, dst_reg);
16958 			return 0;
16959 		}
16960 		dst_reg->type = PTR_TO_MAP_VALUE;
16961 		dst_reg->off = aux->map_off;
16962 		WARN_ON_ONCE(map->max_entries != 1);
16963 		/* We want reg->id to be same (0) as map_value is not distinct */
16964 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
16965 		   insn->src_reg == BPF_PSEUDO_MAP_IDX) {
16966 		dst_reg->type = CONST_PTR_TO_MAP;
16967 	} else {
16968 		verifier_bug(env, "unexpected src reg value for ldimm64");
16969 		return -EFAULT;
16970 	}
16971 
16972 	return 0;
16973 }
16974 
16975 static bool may_access_skb(enum bpf_prog_type type)
16976 {
16977 	switch (type) {
16978 	case BPF_PROG_TYPE_SOCKET_FILTER:
16979 	case BPF_PROG_TYPE_SCHED_CLS:
16980 	case BPF_PROG_TYPE_SCHED_ACT:
16981 		return true;
16982 	default:
16983 		return false;
16984 	}
16985 }
16986 
16987 /* verify safety of LD_ABS|LD_IND instructions:
16988  * - they can only appear in the programs where ctx == skb
16989  * - since they are wrappers of function calls, they scratch R1-R5 registers,
16990  *   preserve R6-R9, and store return value into R0
16991  *
16992  * Implicit input:
16993  *   ctx == skb == R6 == CTX
16994  *
16995  * Explicit input:
16996  *   SRC == any register
16997  *   IMM == 32-bit immediate
16998  *
16999  * Output:
17000  *   R0 - 8/16/32-bit skb data converted to cpu endianness
17001  */
17002 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
17003 {
17004 	struct bpf_reg_state *regs = cur_regs(env);
17005 	static const int ctx_reg = BPF_REG_6;
17006 	u8 mode = BPF_MODE(insn->code);
17007 	int i, err;
17008 
17009 	if (!may_access_skb(resolve_prog_type(env->prog))) {
17010 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
17011 		return -EINVAL;
17012 	}
17013 
17014 	if (!env->ops->gen_ld_abs) {
17015 		verifier_bug(env, "gen_ld_abs is null");
17016 		return -EFAULT;
17017 	}
17018 
17019 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
17020 	    BPF_SIZE(insn->code) == BPF_DW ||
17021 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
17022 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
17023 		return -EINVAL;
17024 	}
17025 
17026 	/* check whether implicit source operand (register R6) is readable */
17027 	err = check_reg_arg(env, ctx_reg, SRC_OP);
17028 	if (err)
17029 		return err;
17030 
17031 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
17032 	 * gen_ld_abs() may terminate the program at runtime, leading to
17033 	 * reference leak.
17034 	 */
17035 	err = check_resource_leak(env, false, true, "BPF_LD_[ABS|IND]");
17036 	if (err)
17037 		return err;
17038 
17039 	if (regs[ctx_reg].type != PTR_TO_CTX) {
17040 		verbose(env,
17041 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
17042 		return -EINVAL;
17043 	}
17044 
17045 	if (mode == BPF_IND) {
17046 		/* check explicit source operand */
17047 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
17048 		if (err)
17049 			return err;
17050 	}
17051 
17052 	err = check_ptr_off_reg(env, &regs[ctx_reg], ctx_reg);
17053 	if (err < 0)
17054 		return err;
17055 
17056 	/* reset caller saved regs to unreadable */
17057 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
17058 		mark_reg_not_init(env, regs, caller_saved[i]);
17059 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
17060 	}
17061 
17062 	/* mark destination R0 register as readable, since it contains
17063 	 * the value fetched from the packet.
17064 	 * Already marked as written above.
17065 	 */
17066 	mark_reg_unknown(env, regs, BPF_REG_0);
17067 	/* ld_abs load up to 32-bit skb data. */
17068 	regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
17069 	return 0;
17070 }
17071 
17072 static int check_return_code(struct bpf_verifier_env *env, int regno, const char *reg_name)
17073 {
17074 	const char *exit_ctx = "At program exit";
17075 	struct tnum enforce_attach_type_range = tnum_unknown;
17076 	const struct bpf_prog *prog = env->prog;
17077 	struct bpf_reg_state *reg = reg_state(env, regno);
17078 	struct bpf_retval_range range = retval_range(0, 1);
17079 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
17080 	int err;
17081 	struct bpf_func_state *frame = env->cur_state->frame[0];
17082 	const bool is_subprog = frame->subprogno;
17083 	bool return_32bit = false;
17084 	const struct btf_type *reg_type, *ret_type = NULL;
17085 
17086 	/* LSM and struct_ops func-ptr's return type could be "void" */
17087 	if (!is_subprog || frame->in_exception_callback_fn) {
17088 		switch (prog_type) {
17089 		case BPF_PROG_TYPE_LSM:
17090 			if (prog->expected_attach_type == BPF_LSM_CGROUP)
17091 				/* See below, can be 0 or 0-1 depending on hook. */
17092 				break;
17093 			if (!prog->aux->attach_func_proto->type)
17094 				return 0;
17095 			break;
17096 		case BPF_PROG_TYPE_STRUCT_OPS:
17097 			if (!prog->aux->attach_func_proto->type)
17098 				return 0;
17099 
17100 			if (frame->in_exception_callback_fn)
17101 				break;
17102 
17103 			/* Allow a struct_ops program to return a referenced kptr if it
17104 			 * matches the operator's return type and is in its unmodified
17105 			 * form. A scalar zero (i.e., a null pointer) is also allowed.
17106 			 */
17107 			reg_type = reg->btf ? btf_type_by_id(reg->btf, reg->btf_id) : NULL;
17108 			ret_type = btf_type_resolve_ptr(prog->aux->attach_btf,
17109 							prog->aux->attach_func_proto->type,
17110 							NULL);
17111 			if (ret_type && ret_type == reg_type && reg->ref_obj_id)
17112 				return __check_ptr_off_reg(env, reg, regno, false);
17113 			break;
17114 		default:
17115 			break;
17116 		}
17117 	}
17118 
17119 	/* eBPF calling convention is such that R0 is used
17120 	 * to return the value from eBPF program.
17121 	 * Make sure that it's readable at this time
17122 	 * of bpf_exit, which means that program wrote
17123 	 * something into it earlier
17124 	 */
17125 	err = check_reg_arg(env, regno, SRC_OP);
17126 	if (err)
17127 		return err;
17128 
17129 	if (is_pointer_value(env, regno)) {
17130 		verbose(env, "R%d leaks addr as return value\n", regno);
17131 		return -EACCES;
17132 	}
17133 
17134 	if (frame->in_async_callback_fn) {
17135 		/* enforce return zero from async callbacks like timer */
17136 		exit_ctx = "At async callback return";
17137 		range = retval_range(0, 0);
17138 		goto enforce_retval;
17139 	}
17140 
17141 	if (is_subprog && !frame->in_exception_callback_fn) {
17142 		if (reg->type != SCALAR_VALUE) {
17143 			verbose(env, "At subprogram exit the register R%d is not a scalar value (%s)\n",
17144 				regno, reg_type_str(env, reg->type));
17145 			return -EINVAL;
17146 		}
17147 		return 0;
17148 	}
17149 
17150 	switch (prog_type) {
17151 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
17152 		if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
17153 		    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
17154 		    env->prog->expected_attach_type == BPF_CGROUP_UNIX_RECVMSG ||
17155 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
17156 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
17157 		    env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETPEERNAME ||
17158 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
17159 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME ||
17160 		    env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETSOCKNAME)
17161 			range = retval_range(1, 1);
17162 		if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
17163 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
17164 			range = retval_range(0, 3);
17165 		break;
17166 	case BPF_PROG_TYPE_CGROUP_SKB:
17167 		if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
17168 			range = retval_range(0, 3);
17169 			enforce_attach_type_range = tnum_range(2, 3);
17170 		}
17171 		break;
17172 	case BPF_PROG_TYPE_CGROUP_SOCK:
17173 	case BPF_PROG_TYPE_SOCK_OPS:
17174 	case BPF_PROG_TYPE_CGROUP_DEVICE:
17175 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
17176 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
17177 		break;
17178 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
17179 		if (!env->prog->aux->attach_btf_id)
17180 			return 0;
17181 		range = retval_range(0, 0);
17182 		break;
17183 	case BPF_PROG_TYPE_TRACING:
17184 		switch (env->prog->expected_attach_type) {
17185 		case BPF_TRACE_FENTRY:
17186 		case BPF_TRACE_FEXIT:
17187 			range = retval_range(0, 0);
17188 			break;
17189 		case BPF_TRACE_RAW_TP:
17190 		case BPF_MODIFY_RETURN:
17191 			return 0;
17192 		case BPF_TRACE_ITER:
17193 			break;
17194 		default:
17195 			return -ENOTSUPP;
17196 		}
17197 		break;
17198 	case BPF_PROG_TYPE_KPROBE:
17199 		switch (env->prog->expected_attach_type) {
17200 		case BPF_TRACE_KPROBE_SESSION:
17201 		case BPF_TRACE_UPROBE_SESSION:
17202 			range = retval_range(0, 1);
17203 			break;
17204 		default:
17205 			return 0;
17206 		}
17207 		break;
17208 	case BPF_PROG_TYPE_SK_LOOKUP:
17209 		range = retval_range(SK_DROP, SK_PASS);
17210 		break;
17211 
17212 	case BPF_PROG_TYPE_LSM:
17213 		if (env->prog->expected_attach_type != BPF_LSM_CGROUP) {
17214 			/* no range found, any return value is allowed */
17215 			if (!get_func_retval_range(env->prog, &range))
17216 				return 0;
17217 			/* no restricted range, any return value is allowed */
17218 			if (range.minval == S32_MIN && range.maxval == S32_MAX)
17219 				return 0;
17220 			return_32bit = true;
17221 		} else if (!env->prog->aux->attach_func_proto->type) {
17222 			/* Make sure programs that attach to void
17223 			 * hooks don't try to modify return value.
17224 			 */
17225 			range = retval_range(1, 1);
17226 		}
17227 		break;
17228 
17229 	case BPF_PROG_TYPE_NETFILTER:
17230 		range = retval_range(NF_DROP, NF_ACCEPT);
17231 		break;
17232 	case BPF_PROG_TYPE_STRUCT_OPS:
17233 		if (!ret_type)
17234 			return 0;
17235 		range = retval_range(0, 0);
17236 		break;
17237 	case BPF_PROG_TYPE_EXT:
17238 		/* freplace program can return anything as its return value
17239 		 * depends on the to-be-replaced kernel func or bpf program.
17240 		 */
17241 	default:
17242 		return 0;
17243 	}
17244 
17245 enforce_retval:
17246 	if (reg->type != SCALAR_VALUE) {
17247 		verbose(env, "%s the register R%d is not a known value (%s)\n",
17248 			exit_ctx, regno, reg_type_str(env, reg->type));
17249 		return -EINVAL;
17250 	}
17251 
17252 	err = mark_chain_precision(env, regno);
17253 	if (err)
17254 		return err;
17255 
17256 	if (!retval_range_within(range, reg, return_32bit)) {
17257 		verbose_invalid_scalar(env, reg, range, exit_ctx, reg_name);
17258 		if (!is_subprog &&
17259 		    prog->expected_attach_type == BPF_LSM_CGROUP &&
17260 		    prog_type == BPF_PROG_TYPE_LSM &&
17261 		    !prog->aux->attach_func_proto->type)
17262 			verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
17263 		return -EINVAL;
17264 	}
17265 
17266 	if (!tnum_is_unknown(enforce_attach_type_range) &&
17267 	    tnum_in(enforce_attach_type_range, reg->var_off))
17268 		env->prog->enforce_expected_attach_type = 1;
17269 	return 0;
17270 }
17271 
17272 static void mark_subprog_changes_pkt_data(struct bpf_verifier_env *env, int off)
17273 {
17274 	struct bpf_subprog_info *subprog;
17275 
17276 	subprog = find_containing_subprog(env, off);
17277 	subprog->changes_pkt_data = true;
17278 }
17279 
17280 static void mark_subprog_might_sleep(struct bpf_verifier_env *env, int off)
17281 {
17282 	struct bpf_subprog_info *subprog;
17283 
17284 	subprog = find_containing_subprog(env, off);
17285 	subprog->might_sleep = true;
17286 }
17287 
17288 /* 't' is an index of a call-site.
17289  * 'w' is a callee entry point.
17290  * Eventually this function would be called when env->cfg.insn_state[w] == EXPLORED.
17291  * Rely on DFS traversal order and absence of recursive calls to guarantee that
17292  * callee's change_pkt_data marks would be correct at that moment.
17293  */
17294 static void merge_callee_effects(struct bpf_verifier_env *env, int t, int w)
17295 {
17296 	struct bpf_subprog_info *caller, *callee;
17297 
17298 	caller = find_containing_subprog(env, t);
17299 	callee = find_containing_subprog(env, w);
17300 	caller->changes_pkt_data |= callee->changes_pkt_data;
17301 	caller->might_sleep |= callee->might_sleep;
17302 }
17303 
17304 /* non-recursive DFS pseudo code
17305  * 1  procedure DFS-iterative(G,v):
17306  * 2      label v as discovered
17307  * 3      let S be a stack
17308  * 4      S.push(v)
17309  * 5      while S is not empty
17310  * 6            t <- S.peek()
17311  * 7            if t is what we're looking for:
17312  * 8                return t
17313  * 9            for all edges e in G.adjacentEdges(t) do
17314  * 10               if edge e is already labelled
17315  * 11                   continue with the next edge
17316  * 12               w <- G.adjacentVertex(t,e)
17317  * 13               if vertex w is not discovered and not explored
17318  * 14                   label e as tree-edge
17319  * 15                   label w as discovered
17320  * 16                   S.push(w)
17321  * 17                   continue at 5
17322  * 18               else if vertex w is discovered
17323  * 19                   label e as back-edge
17324  * 20               else
17325  * 21                   // vertex w is explored
17326  * 22                   label e as forward- or cross-edge
17327  * 23           label t as explored
17328  * 24           S.pop()
17329  *
17330  * convention:
17331  * 0x10 - discovered
17332  * 0x11 - discovered and fall-through edge labelled
17333  * 0x12 - discovered and fall-through and branch edges labelled
17334  * 0x20 - explored
17335  */
17336 
17337 enum {
17338 	DISCOVERED = 0x10,
17339 	EXPLORED = 0x20,
17340 	FALLTHROUGH = 1,
17341 	BRANCH = 2,
17342 };
17343 
17344 static void mark_prune_point(struct bpf_verifier_env *env, int idx)
17345 {
17346 	env->insn_aux_data[idx].prune_point = true;
17347 }
17348 
17349 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx)
17350 {
17351 	return env->insn_aux_data[insn_idx].prune_point;
17352 }
17353 
17354 static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx)
17355 {
17356 	env->insn_aux_data[idx].force_checkpoint = true;
17357 }
17358 
17359 static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx)
17360 {
17361 	return env->insn_aux_data[insn_idx].force_checkpoint;
17362 }
17363 
17364 static void mark_calls_callback(struct bpf_verifier_env *env, int idx)
17365 {
17366 	env->insn_aux_data[idx].calls_callback = true;
17367 }
17368 
17369 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx)
17370 {
17371 	return env->insn_aux_data[insn_idx].calls_callback;
17372 }
17373 
17374 enum {
17375 	DONE_EXPLORING = 0,
17376 	KEEP_EXPLORING = 1,
17377 };
17378 
17379 /* t, w, e - match pseudo-code above:
17380  * t - index of current instruction
17381  * w - next instruction
17382  * e - edge
17383  */
17384 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
17385 {
17386 	int *insn_stack = env->cfg.insn_stack;
17387 	int *insn_state = env->cfg.insn_state;
17388 
17389 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
17390 		return DONE_EXPLORING;
17391 
17392 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
17393 		return DONE_EXPLORING;
17394 
17395 	if (w < 0 || w >= env->prog->len) {
17396 		verbose_linfo(env, t, "%d: ", t);
17397 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
17398 		return -EINVAL;
17399 	}
17400 
17401 	if (e == BRANCH) {
17402 		/* mark branch target for state pruning */
17403 		mark_prune_point(env, w);
17404 		mark_jmp_point(env, w);
17405 	}
17406 
17407 	if (insn_state[w] == 0) {
17408 		/* tree-edge */
17409 		insn_state[t] = DISCOVERED | e;
17410 		insn_state[w] = DISCOVERED;
17411 		if (env->cfg.cur_stack >= env->prog->len)
17412 			return -E2BIG;
17413 		insn_stack[env->cfg.cur_stack++] = w;
17414 		return KEEP_EXPLORING;
17415 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
17416 		if (env->bpf_capable)
17417 			return DONE_EXPLORING;
17418 		verbose_linfo(env, t, "%d: ", t);
17419 		verbose_linfo(env, w, "%d: ", w);
17420 		verbose(env, "back-edge from insn %d to %d\n", t, w);
17421 		return -EINVAL;
17422 	} else if (insn_state[w] == EXPLORED) {
17423 		/* forward- or cross-edge */
17424 		insn_state[t] = DISCOVERED | e;
17425 	} else {
17426 		verifier_bug(env, "insn state internal bug");
17427 		return -EFAULT;
17428 	}
17429 	return DONE_EXPLORING;
17430 }
17431 
17432 static int visit_func_call_insn(int t, struct bpf_insn *insns,
17433 				struct bpf_verifier_env *env,
17434 				bool visit_callee)
17435 {
17436 	int ret, insn_sz;
17437 	int w;
17438 
17439 	insn_sz = bpf_is_ldimm64(&insns[t]) ? 2 : 1;
17440 	ret = push_insn(t, t + insn_sz, FALLTHROUGH, env);
17441 	if (ret)
17442 		return ret;
17443 
17444 	mark_prune_point(env, t + insn_sz);
17445 	/* when we exit from subprog, we need to record non-linear history */
17446 	mark_jmp_point(env, t + insn_sz);
17447 
17448 	if (visit_callee) {
17449 		w = t + insns[t].imm + 1;
17450 		mark_prune_point(env, t);
17451 		merge_callee_effects(env, t, w);
17452 		ret = push_insn(t, w, BRANCH, env);
17453 	}
17454 	return ret;
17455 }
17456 
17457 /* Bitmask with 1s for all caller saved registers */
17458 #define ALL_CALLER_SAVED_REGS ((1u << CALLER_SAVED_REGS) - 1)
17459 
17460 /* True if do_misc_fixups() replaces calls to helper number 'imm',
17461  * replacement patch is presumed to follow bpf_fastcall contract
17462  * (see mark_fastcall_pattern_for_call() below).
17463  */
17464 static bool verifier_inlines_helper_call(struct bpf_verifier_env *env, s32 imm)
17465 {
17466 	switch (imm) {
17467 #ifdef CONFIG_X86_64
17468 	case BPF_FUNC_get_smp_processor_id:
17469 		return env->prog->jit_requested && bpf_jit_supports_percpu_insn();
17470 #endif
17471 	default:
17472 		return false;
17473 	}
17474 }
17475 
17476 struct call_summary {
17477 	u8 num_params;
17478 	bool is_void;
17479 	bool fastcall;
17480 };
17481 
17482 /* If @call is a kfunc or helper call, fills @cs and returns true,
17483  * otherwise returns false.
17484  */
17485 static bool get_call_summary(struct bpf_verifier_env *env, struct bpf_insn *call,
17486 			     struct call_summary *cs)
17487 {
17488 	struct bpf_kfunc_call_arg_meta meta;
17489 	const struct bpf_func_proto *fn;
17490 	int i;
17491 
17492 	if (bpf_helper_call(call)) {
17493 
17494 		if (get_helper_proto(env, call->imm, &fn) < 0)
17495 			/* error would be reported later */
17496 			return false;
17497 		cs->fastcall = fn->allow_fastcall &&
17498 			       (verifier_inlines_helper_call(env, call->imm) ||
17499 				bpf_jit_inlines_helper_call(call->imm));
17500 		cs->is_void = fn->ret_type == RET_VOID;
17501 		cs->num_params = 0;
17502 		for (i = 0; i < ARRAY_SIZE(fn->arg_type); ++i) {
17503 			if (fn->arg_type[i] == ARG_DONTCARE)
17504 				break;
17505 			cs->num_params++;
17506 		}
17507 		return true;
17508 	}
17509 
17510 	if (bpf_pseudo_kfunc_call(call)) {
17511 		int err;
17512 
17513 		err = fetch_kfunc_meta(env, call, &meta, NULL);
17514 		if (err < 0)
17515 			/* error would be reported later */
17516 			return false;
17517 		cs->num_params = btf_type_vlen(meta.func_proto);
17518 		cs->fastcall = meta.kfunc_flags & KF_FASTCALL;
17519 		cs->is_void = btf_type_is_void(btf_type_by_id(meta.btf, meta.func_proto->type));
17520 		return true;
17521 	}
17522 
17523 	return false;
17524 }
17525 
17526 /* LLVM define a bpf_fastcall function attribute.
17527  * This attribute means that function scratches only some of
17528  * the caller saved registers defined by ABI.
17529  * For BPF the set of such registers could be defined as follows:
17530  * - R0 is scratched only if function is non-void;
17531  * - R1-R5 are scratched only if corresponding parameter type is defined
17532  *   in the function prototype.
17533  *
17534  * The contract between kernel and clang allows to simultaneously use
17535  * such functions and maintain backwards compatibility with old
17536  * kernels that don't understand bpf_fastcall calls:
17537  *
17538  * - for bpf_fastcall calls clang allocates registers as-if relevant r0-r5
17539  *   registers are not scratched by the call;
17540  *
17541  * - as a post-processing step, clang visits each bpf_fastcall call and adds
17542  *   spill/fill for every live r0-r5;
17543  *
17544  * - stack offsets used for the spill/fill are allocated as lowest
17545  *   stack offsets in whole function and are not used for any other
17546  *   purposes;
17547  *
17548  * - when kernel loads a program, it looks for such patterns
17549  *   (bpf_fastcall function surrounded by spills/fills) and checks if
17550  *   spill/fill stack offsets are used exclusively in fastcall patterns;
17551  *
17552  * - if so, and if verifier or current JIT inlines the call to the
17553  *   bpf_fastcall function (e.g. a helper call), kernel removes unnecessary
17554  *   spill/fill pairs;
17555  *
17556  * - when old kernel loads a program, presence of spill/fill pairs
17557  *   keeps BPF program valid, albeit slightly less efficient.
17558  *
17559  * For example:
17560  *
17561  *   r1 = 1;
17562  *   r2 = 2;
17563  *   *(u64 *)(r10 - 8)  = r1;            r1 = 1;
17564  *   *(u64 *)(r10 - 16) = r2;            r2 = 2;
17565  *   call %[to_be_inlined]         -->   call %[to_be_inlined]
17566  *   r2 = *(u64 *)(r10 - 16);            r0 = r1;
17567  *   r1 = *(u64 *)(r10 - 8);             r0 += r2;
17568  *   r0 = r1;                            exit;
17569  *   r0 += r2;
17570  *   exit;
17571  *
17572  * The purpose of mark_fastcall_pattern_for_call is to:
17573  * - look for such patterns;
17574  * - mark spill and fill instructions in env->insn_aux_data[*].fastcall_pattern;
17575  * - mark set env->insn_aux_data[*].fastcall_spills_num for call instruction;
17576  * - update env->subprog_info[*]->fastcall_stack_off to find an offset
17577  *   at which bpf_fastcall spill/fill stack slots start;
17578  * - update env->subprog_info[*]->keep_fastcall_stack.
17579  *
17580  * The .fastcall_pattern and .fastcall_stack_off are used by
17581  * check_fastcall_stack_contract() to check if every stack access to
17582  * fastcall spill/fill stack slot originates from spill/fill
17583  * instructions, members of fastcall patterns.
17584  *
17585  * If such condition holds true for a subprogram, fastcall patterns could
17586  * be rewritten by remove_fastcall_spills_fills().
17587  * Otherwise bpf_fastcall patterns are not changed in the subprogram
17588  * (code, presumably, generated by an older clang version).
17589  *
17590  * For example, it is *not* safe to remove spill/fill below:
17591  *
17592  *   r1 = 1;
17593  *   *(u64 *)(r10 - 8)  = r1;            r1 = 1;
17594  *   call %[to_be_inlined]         -->   call %[to_be_inlined]
17595  *   r1 = *(u64 *)(r10 - 8);             r0 = *(u64 *)(r10 - 8);  <---- wrong !!!
17596  *   r0 = *(u64 *)(r10 - 8);             r0 += r1;
17597  *   r0 += r1;                           exit;
17598  *   exit;
17599  */
17600 static void mark_fastcall_pattern_for_call(struct bpf_verifier_env *env,
17601 					   struct bpf_subprog_info *subprog,
17602 					   int insn_idx, s16 lowest_off)
17603 {
17604 	struct bpf_insn *insns = env->prog->insnsi, *stx, *ldx;
17605 	struct bpf_insn *call = &env->prog->insnsi[insn_idx];
17606 	u32 clobbered_regs_mask;
17607 	struct call_summary cs;
17608 	u32 expected_regs_mask;
17609 	s16 off;
17610 	int i;
17611 
17612 	if (!get_call_summary(env, call, &cs))
17613 		return;
17614 
17615 	/* A bitmask specifying which caller saved registers are clobbered
17616 	 * by a call to a helper/kfunc *as if* this helper/kfunc follows
17617 	 * bpf_fastcall contract:
17618 	 * - includes R0 if function is non-void;
17619 	 * - includes R1-R5 if corresponding parameter has is described
17620 	 *   in the function prototype.
17621 	 */
17622 	clobbered_regs_mask = GENMASK(cs.num_params, cs.is_void ? 1 : 0);
17623 	/* e.g. if helper call clobbers r{0,1}, expect r{2,3,4,5} in the pattern */
17624 	expected_regs_mask = ~clobbered_regs_mask & ALL_CALLER_SAVED_REGS;
17625 
17626 	/* match pairs of form:
17627 	 *
17628 	 * *(u64 *)(r10 - Y) = rX   (where Y % 8 == 0)
17629 	 * ...
17630 	 * call %[to_be_inlined]
17631 	 * ...
17632 	 * rX = *(u64 *)(r10 - Y)
17633 	 */
17634 	for (i = 1, off = lowest_off; i <= ARRAY_SIZE(caller_saved); ++i, off += BPF_REG_SIZE) {
17635 		if (insn_idx - i < 0 || insn_idx + i >= env->prog->len)
17636 			break;
17637 		stx = &insns[insn_idx - i];
17638 		ldx = &insns[insn_idx + i];
17639 		/* must be a stack spill/fill pair */
17640 		if (stx->code != (BPF_STX | BPF_MEM | BPF_DW) ||
17641 		    ldx->code != (BPF_LDX | BPF_MEM | BPF_DW) ||
17642 		    stx->dst_reg != BPF_REG_10 ||
17643 		    ldx->src_reg != BPF_REG_10)
17644 			break;
17645 		/* must be a spill/fill for the same reg */
17646 		if (stx->src_reg != ldx->dst_reg)
17647 			break;
17648 		/* must be one of the previously unseen registers */
17649 		if ((BIT(stx->src_reg) & expected_regs_mask) == 0)
17650 			break;
17651 		/* must be a spill/fill for the same expected offset,
17652 		 * no need to check offset alignment, BPF_DW stack access
17653 		 * is always 8-byte aligned.
17654 		 */
17655 		if (stx->off != off || ldx->off != off)
17656 			break;
17657 		expected_regs_mask &= ~BIT(stx->src_reg);
17658 		env->insn_aux_data[insn_idx - i].fastcall_pattern = 1;
17659 		env->insn_aux_data[insn_idx + i].fastcall_pattern = 1;
17660 	}
17661 	if (i == 1)
17662 		return;
17663 
17664 	/* Conditionally set 'fastcall_spills_num' to allow forward
17665 	 * compatibility when more helper functions are marked as
17666 	 * bpf_fastcall at compile time than current kernel supports, e.g:
17667 	 *
17668 	 *   1: *(u64 *)(r10 - 8) = r1
17669 	 *   2: call A                  ;; assume A is bpf_fastcall for current kernel
17670 	 *   3: r1 = *(u64 *)(r10 - 8)
17671 	 *   4: *(u64 *)(r10 - 8) = r1
17672 	 *   5: call B                  ;; assume B is not bpf_fastcall for current kernel
17673 	 *   6: r1 = *(u64 *)(r10 - 8)
17674 	 *
17675 	 * There is no need to block bpf_fastcall rewrite for such program.
17676 	 * Set 'fastcall_pattern' for both calls to keep check_fastcall_stack_contract() happy,
17677 	 * don't set 'fastcall_spills_num' for call B so that remove_fastcall_spills_fills()
17678 	 * does not remove spill/fill pair {4,6}.
17679 	 */
17680 	if (cs.fastcall)
17681 		env->insn_aux_data[insn_idx].fastcall_spills_num = i - 1;
17682 	else
17683 		subprog->keep_fastcall_stack = 1;
17684 	subprog->fastcall_stack_off = min(subprog->fastcall_stack_off, off);
17685 }
17686 
17687 static int mark_fastcall_patterns(struct bpf_verifier_env *env)
17688 {
17689 	struct bpf_subprog_info *subprog = env->subprog_info;
17690 	struct bpf_insn *insn;
17691 	s16 lowest_off;
17692 	int s, i;
17693 
17694 	for (s = 0; s < env->subprog_cnt; ++s, ++subprog) {
17695 		/* find lowest stack spill offset used in this subprog */
17696 		lowest_off = 0;
17697 		for (i = subprog->start; i < (subprog + 1)->start; ++i) {
17698 			insn = env->prog->insnsi + i;
17699 			if (insn->code != (BPF_STX | BPF_MEM | BPF_DW) ||
17700 			    insn->dst_reg != BPF_REG_10)
17701 				continue;
17702 			lowest_off = min(lowest_off, insn->off);
17703 		}
17704 		/* use this offset to find fastcall patterns */
17705 		for (i = subprog->start; i < (subprog + 1)->start; ++i) {
17706 			insn = env->prog->insnsi + i;
17707 			if (insn->code != (BPF_JMP | BPF_CALL))
17708 				continue;
17709 			mark_fastcall_pattern_for_call(env, subprog, i, lowest_off);
17710 		}
17711 	}
17712 	return 0;
17713 }
17714 
17715 /* Visits the instruction at index t and returns one of the following:
17716  *  < 0 - an error occurred
17717  *  DONE_EXPLORING - the instruction was fully explored
17718  *  KEEP_EXPLORING - there is still work to be done before it is fully explored
17719  */
17720 static int visit_insn(int t, struct bpf_verifier_env *env)
17721 {
17722 	struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t];
17723 	int ret, off, insn_sz;
17724 
17725 	if (bpf_pseudo_func(insn))
17726 		return visit_func_call_insn(t, insns, env, true);
17727 
17728 	/* All non-branch instructions have a single fall-through edge. */
17729 	if (BPF_CLASS(insn->code) != BPF_JMP &&
17730 	    BPF_CLASS(insn->code) != BPF_JMP32) {
17731 		insn_sz = bpf_is_ldimm64(insn) ? 2 : 1;
17732 		return push_insn(t, t + insn_sz, FALLTHROUGH, env);
17733 	}
17734 
17735 	switch (BPF_OP(insn->code)) {
17736 	case BPF_EXIT:
17737 		return DONE_EXPLORING;
17738 
17739 	case BPF_CALL:
17740 		if (is_async_callback_calling_insn(insn))
17741 			/* Mark this call insn as a prune point to trigger
17742 			 * is_state_visited() check before call itself is
17743 			 * processed by __check_func_call(). Otherwise new
17744 			 * async state will be pushed for further exploration.
17745 			 */
17746 			mark_prune_point(env, t);
17747 		/* For functions that invoke callbacks it is not known how many times
17748 		 * callback would be called. Verifier models callback calling functions
17749 		 * by repeatedly visiting callback bodies and returning to origin call
17750 		 * instruction.
17751 		 * In order to stop such iteration verifier needs to identify when a
17752 		 * state identical some state from a previous iteration is reached.
17753 		 * Check below forces creation of checkpoint before callback calling
17754 		 * instruction to allow search for such identical states.
17755 		 */
17756 		if (is_sync_callback_calling_insn(insn)) {
17757 			mark_calls_callback(env, t);
17758 			mark_force_checkpoint(env, t);
17759 			mark_prune_point(env, t);
17760 			mark_jmp_point(env, t);
17761 		}
17762 		if (bpf_helper_call(insn)) {
17763 			const struct bpf_func_proto *fp;
17764 
17765 			ret = get_helper_proto(env, insn->imm, &fp);
17766 			/* If called in a non-sleepable context program will be
17767 			 * rejected anyway, so we should end up with precise
17768 			 * sleepable marks on subprogs, except for dead code
17769 			 * elimination.
17770 			 */
17771 			if (ret == 0 && fp->might_sleep)
17772 				mark_subprog_might_sleep(env, t);
17773 			if (bpf_helper_changes_pkt_data(insn->imm))
17774 				mark_subprog_changes_pkt_data(env, t);
17775 		} else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
17776 			struct bpf_kfunc_call_arg_meta meta;
17777 
17778 			ret = fetch_kfunc_meta(env, insn, &meta, NULL);
17779 			if (ret == 0 && is_iter_next_kfunc(&meta)) {
17780 				mark_prune_point(env, t);
17781 				/* Checking and saving state checkpoints at iter_next() call
17782 				 * is crucial for fast convergence of open-coded iterator loop
17783 				 * logic, so we need to force it. If we don't do that,
17784 				 * is_state_visited() might skip saving a checkpoint, causing
17785 				 * unnecessarily long sequence of not checkpointed
17786 				 * instructions and jumps, leading to exhaustion of jump
17787 				 * history buffer, and potentially other undesired outcomes.
17788 				 * It is expected that with correct open-coded iterators
17789 				 * convergence will happen quickly, so we don't run a risk of
17790 				 * exhausting memory.
17791 				 */
17792 				mark_force_checkpoint(env, t);
17793 			}
17794 			/* Same as helpers, if called in a non-sleepable context
17795 			 * program will be rejected anyway, so we should end up
17796 			 * with precise sleepable marks on subprogs, except for
17797 			 * dead code elimination.
17798 			 */
17799 			if (ret == 0 && is_kfunc_sleepable(&meta))
17800 				mark_subprog_might_sleep(env, t);
17801 		}
17802 		return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL);
17803 
17804 	case BPF_JA:
17805 		if (BPF_SRC(insn->code) != BPF_K)
17806 			return -EINVAL;
17807 
17808 		if (BPF_CLASS(insn->code) == BPF_JMP)
17809 			off = insn->off;
17810 		else
17811 			off = insn->imm;
17812 
17813 		/* unconditional jump with single edge */
17814 		ret = push_insn(t, t + off + 1, FALLTHROUGH, env);
17815 		if (ret)
17816 			return ret;
17817 
17818 		mark_prune_point(env, t + off + 1);
17819 		mark_jmp_point(env, t + off + 1);
17820 
17821 		return ret;
17822 
17823 	default:
17824 		/* conditional jump with two edges */
17825 		mark_prune_point(env, t);
17826 		if (is_may_goto_insn(insn))
17827 			mark_force_checkpoint(env, t);
17828 
17829 		ret = push_insn(t, t + 1, FALLTHROUGH, env);
17830 		if (ret)
17831 			return ret;
17832 
17833 		return push_insn(t, t + insn->off + 1, BRANCH, env);
17834 	}
17835 }
17836 
17837 /* non-recursive depth-first-search to detect loops in BPF program
17838  * loop == back-edge in directed graph
17839  */
17840 static int check_cfg(struct bpf_verifier_env *env)
17841 {
17842 	int insn_cnt = env->prog->len;
17843 	int *insn_stack, *insn_state, *insn_postorder;
17844 	int ex_insn_beg, i, ret = 0;
17845 
17846 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL_ACCOUNT);
17847 	if (!insn_state)
17848 		return -ENOMEM;
17849 
17850 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL_ACCOUNT);
17851 	if (!insn_stack) {
17852 		kvfree(insn_state);
17853 		return -ENOMEM;
17854 	}
17855 
17856 	insn_postorder = env->cfg.insn_postorder =
17857 		kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL_ACCOUNT);
17858 	if (!insn_postorder) {
17859 		kvfree(insn_state);
17860 		kvfree(insn_stack);
17861 		return -ENOMEM;
17862 	}
17863 
17864 	ex_insn_beg = env->exception_callback_subprog
17865 		      ? env->subprog_info[env->exception_callback_subprog].start
17866 		      : 0;
17867 
17868 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
17869 	insn_stack[0] = 0; /* 0 is the first instruction */
17870 	env->cfg.cur_stack = 1;
17871 
17872 walk_cfg:
17873 	while (env->cfg.cur_stack > 0) {
17874 		int t = insn_stack[env->cfg.cur_stack - 1];
17875 
17876 		ret = visit_insn(t, env);
17877 		switch (ret) {
17878 		case DONE_EXPLORING:
17879 			insn_state[t] = EXPLORED;
17880 			env->cfg.cur_stack--;
17881 			insn_postorder[env->cfg.cur_postorder++] = t;
17882 			break;
17883 		case KEEP_EXPLORING:
17884 			break;
17885 		default:
17886 			if (ret > 0) {
17887 				verifier_bug(env, "visit_insn internal bug");
17888 				ret = -EFAULT;
17889 			}
17890 			goto err_free;
17891 		}
17892 	}
17893 
17894 	if (env->cfg.cur_stack < 0) {
17895 		verifier_bug(env, "pop stack internal bug");
17896 		ret = -EFAULT;
17897 		goto err_free;
17898 	}
17899 
17900 	if (ex_insn_beg && insn_state[ex_insn_beg] != EXPLORED) {
17901 		insn_state[ex_insn_beg] = DISCOVERED;
17902 		insn_stack[0] = ex_insn_beg;
17903 		env->cfg.cur_stack = 1;
17904 		goto walk_cfg;
17905 	}
17906 
17907 	for (i = 0; i < insn_cnt; i++) {
17908 		struct bpf_insn *insn = &env->prog->insnsi[i];
17909 
17910 		if (insn_state[i] != EXPLORED) {
17911 			verbose(env, "unreachable insn %d\n", i);
17912 			ret = -EINVAL;
17913 			goto err_free;
17914 		}
17915 		if (bpf_is_ldimm64(insn)) {
17916 			if (insn_state[i + 1] != 0) {
17917 				verbose(env, "jump into the middle of ldimm64 insn %d\n", i);
17918 				ret = -EINVAL;
17919 				goto err_free;
17920 			}
17921 			i++; /* skip second half of ldimm64 */
17922 		}
17923 	}
17924 	ret = 0; /* cfg looks good */
17925 	env->prog->aux->changes_pkt_data = env->subprog_info[0].changes_pkt_data;
17926 	env->prog->aux->might_sleep = env->subprog_info[0].might_sleep;
17927 
17928 err_free:
17929 	kvfree(insn_state);
17930 	kvfree(insn_stack);
17931 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
17932 	return ret;
17933 }
17934 
17935 static int check_abnormal_return(struct bpf_verifier_env *env)
17936 {
17937 	int i;
17938 
17939 	for (i = 1; i < env->subprog_cnt; i++) {
17940 		if (env->subprog_info[i].has_ld_abs) {
17941 			verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
17942 			return -EINVAL;
17943 		}
17944 		if (env->subprog_info[i].has_tail_call) {
17945 			verbose(env, "tail_call is not allowed in subprogs without BTF\n");
17946 			return -EINVAL;
17947 		}
17948 	}
17949 	return 0;
17950 }
17951 
17952 /* The minimum supported BTF func info size */
17953 #define MIN_BPF_FUNCINFO_SIZE	8
17954 #define MAX_FUNCINFO_REC_SIZE	252
17955 
17956 static int check_btf_func_early(struct bpf_verifier_env *env,
17957 				const union bpf_attr *attr,
17958 				bpfptr_t uattr)
17959 {
17960 	u32 krec_size = sizeof(struct bpf_func_info);
17961 	const struct btf_type *type, *func_proto;
17962 	u32 i, nfuncs, urec_size, min_size;
17963 	struct bpf_func_info *krecord;
17964 	struct bpf_prog *prog;
17965 	const struct btf *btf;
17966 	u32 prev_offset = 0;
17967 	bpfptr_t urecord;
17968 	int ret = -ENOMEM;
17969 
17970 	nfuncs = attr->func_info_cnt;
17971 	if (!nfuncs) {
17972 		if (check_abnormal_return(env))
17973 			return -EINVAL;
17974 		return 0;
17975 	}
17976 
17977 	urec_size = attr->func_info_rec_size;
17978 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
17979 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
17980 	    urec_size % sizeof(u32)) {
17981 		verbose(env, "invalid func info rec size %u\n", urec_size);
17982 		return -EINVAL;
17983 	}
17984 
17985 	prog = env->prog;
17986 	btf = prog->aux->btf;
17987 
17988 	urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
17989 	min_size = min_t(u32, krec_size, urec_size);
17990 
17991 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
17992 	if (!krecord)
17993 		return -ENOMEM;
17994 
17995 	for (i = 0; i < nfuncs; i++) {
17996 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
17997 		if (ret) {
17998 			if (ret == -E2BIG) {
17999 				verbose(env, "nonzero tailing record in func info");
18000 				/* set the size kernel expects so loader can zero
18001 				 * out the rest of the record.
18002 				 */
18003 				if (copy_to_bpfptr_offset(uattr,
18004 							  offsetof(union bpf_attr, func_info_rec_size),
18005 							  &min_size, sizeof(min_size)))
18006 					ret = -EFAULT;
18007 			}
18008 			goto err_free;
18009 		}
18010 
18011 		if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
18012 			ret = -EFAULT;
18013 			goto err_free;
18014 		}
18015 
18016 		/* check insn_off */
18017 		ret = -EINVAL;
18018 		if (i == 0) {
18019 			if (krecord[i].insn_off) {
18020 				verbose(env,
18021 					"nonzero insn_off %u for the first func info record",
18022 					krecord[i].insn_off);
18023 				goto err_free;
18024 			}
18025 		} else if (krecord[i].insn_off <= prev_offset) {
18026 			verbose(env,
18027 				"same or smaller insn offset (%u) than previous func info record (%u)",
18028 				krecord[i].insn_off, prev_offset);
18029 			goto err_free;
18030 		}
18031 
18032 		/* check type_id */
18033 		type = btf_type_by_id(btf, krecord[i].type_id);
18034 		if (!type || !btf_type_is_func(type)) {
18035 			verbose(env, "invalid type id %d in func info",
18036 				krecord[i].type_id);
18037 			goto err_free;
18038 		}
18039 
18040 		func_proto = btf_type_by_id(btf, type->type);
18041 		if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
18042 			/* btf_func_check() already verified it during BTF load */
18043 			goto err_free;
18044 
18045 		prev_offset = krecord[i].insn_off;
18046 		bpfptr_add(&urecord, urec_size);
18047 	}
18048 
18049 	prog->aux->func_info = krecord;
18050 	prog->aux->func_info_cnt = nfuncs;
18051 	return 0;
18052 
18053 err_free:
18054 	kvfree(krecord);
18055 	return ret;
18056 }
18057 
18058 static int check_btf_func(struct bpf_verifier_env *env,
18059 			  const union bpf_attr *attr,
18060 			  bpfptr_t uattr)
18061 {
18062 	const struct btf_type *type, *func_proto, *ret_type;
18063 	u32 i, nfuncs, urec_size;
18064 	struct bpf_func_info *krecord;
18065 	struct bpf_func_info_aux *info_aux = NULL;
18066 	struct bpf_prog *prog;
18067 	const struct btf *btf;
18068 	bpfptr_t urecord;
18069 	bool scalar_return;
18070 	int ret = -ENOMEM;
18071 
18072 	nfuncs = attr->func_info_cnt;
18073 	if (!nfuncs) {
18074 		if (check_abnormal_return(env))
18075 			return -EINVAL;
18076 		return 0;
18077 	}
18078 	if (nfuncs != env->subprog_cnt) {
18079 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
18080 		return -EINVAL;
18081 	}
18082 
18083 	urec_size = attr->func_info_rec_size;
18084 
18085 	prog = env->prog;
18086 	btf = prog->aux->btf;
18087 
18088 	urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
18089 
18090 	krecord = prog->aux->func_info;
18091 	info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
18092 	if (!info_aux)
18093 		return -ENOMEM;
18094 
18095 	for (i = 0; i < nfuncs; i++) {
18096 		/* check insn_off */
18097 		ret = -EINVAL;
18098 
18099 		if (env->subprog_info[i].start != krecord[i].insn_off) {
18100 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
18101 			goto err_free;
18102 		}
18103 
18104 		/* Already checked type_id */
18105 		type = btf_type_by_id(btf, krecord[i].type_id);
18106 		info_aux[i].linkage = BTF_INFO_VLEN(type->info);
18107 		/* Already checked func_proto */
18108 		func_proto = btf_type_by_id(btf, type->type);
18109 
18110 		ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
18111 		scalar_return =
18112 			btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type);
18113 		if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
18114 			verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
18115 			goto err_free;
18116 		}
18117 		if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
18118 			verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
18119 			goto err_free;
18120 		}
18121 
18122 		bpfptr_add(&urecord, urec_size);
18123 	}
18124 
18125 	prog->aux->func_info_aux = info_aux;
18126 	return 0;
18127 
18128 err_free:
18129 	kfree(info_aux);
18130 	return ret;
18131 }
18132 
18133 static void adjust_btf_func(struct bpf_verifier_env *env)
18134 {
18135 	struct bpf_prog_aux *aux = env->prog->aux;
18136 	int i;
18137 
18138 	if (!aux->func_info)
18139 		return;
18140 
18141 	/* func_info is not available for hidden subprogs */
18142 	for (i = 0; i < env->subprog_cnt - env->hidden_subprog_cnt; i++)
18143 		aux->func_info[i].insn_off = env->subprog_info[i].start;
18144 }
18145 
18146 #define MIN_BPF_LINEINFO_SIZE	offsetofend(struct bpf_line_info, line_col)
18147 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
18148 
18149 static int check_btf_line(struct bpf_verifier_env *env,
18150 			  const union bpf_attr *attr,
18151 			  bpfptr_t uattr)
18152 {
18153 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
18154 	struct bpf_subprog_info *sub;
18155 	struct bpf_line_info *linfo;
18156 	struct bpf_prog *prog;
18157 	const struct btf *btf;
18158 	bpfptr_t ulinfo;
18159 	int err;
18160 
18161 	nr_linfo = attr->line_info_cnt;
18162 	if (!nr_linfo)
18163 		return 0;
18164 	if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
18165 		return -EINVAL;
18166 
18167 	rec_size = attr->line_info_rec_size;
18168 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
18169 	    rec_size > MAX_LINEINFO_REC_SIZE ||
18170 	    rec_size & (sizeof(u32) - 1))
18171 		return -EINVAL;
18172 
18173 	/* Need to zero it in case the userspace may
18174 	 * pass in a smaller bpf_line_info object.
18175 	 */
18176 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
18177 			 GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
18178 	if (!linfo)
18179 		return -ENOMEM;
18180 
18181 	prog = env->prog;
18182 	btf = prog->aux->btf;
18183 
18184 	s = 0;
18185 	sub = env->subprog_info;
18186 	ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
18187 	expected_size = sizeof(struct bpf_line_info);
18188 	ncopy = min_t(u32, expected_size, rec_size);
18189 	for (i = 0; i < nr_linfo; i++) {
18190 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
18191 		if (err) {
18192 			if (err == -E2BIG) {
18193 				verbose(env, "nonzero tailing record in line_info");
18194 				if (copy_to_bpfptr_offset(uattr,
18195 							  offsetof(union bpf_attr, line_info_rec_size),
18196 							  &expected_size, sizeof(expected_size)))
18197 					err = -EFAULT;
18198 			}
18199 			goto err_free;
18200 		}
18201 
18202 		if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
18203 			err = -EFAULT;
18204 			goto err_free;
18205 		}
18206 
18207 		/*
18208 		 * Check insn_off to ensure
18209 		 * 1) strictly increasing AND
18210 		 * 2) bounded by prog->len
18211 		 *
18212 		 * The linfo[0].insn_off == 0 check logically falls into
18213 		 * the later "missing bpf_line_info for func..." case
18214 		 * because the first linfo[0].insn_off must be the
18215 		 * first sub also and the first sub must have
18216 		 * subprog_info[0].start == 0.
18217 		 */
18218 		if ((i && linfo[i].insn_off <= prev_offset) ||
18219 		    linfo[i].insn_off >= prog->len) {
18220 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
18221 				i, linfo[i].insn_off, prev_offset,
18222 				prog->len);
18223 			err = -EINVAL;
18224 			goto err_free;
18225 		}
18226 
18227 		if (!prog->insnsi[linfo[i].insn_off].code) {
18228 			verbose(env,
18229 				"Invalid insn code at line_info[%u].insn_off\n",
18230 				i);
18231 			err = -EINVAL;
18232 			goto err_free;
18233 		}
18234 
18235 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
18236 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
18237 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
18238 			err = -EINVAL;
18239 			goto err_free;
18240 		}
18241 
18242 		if (s != env->subprog_cnt) {
18243 			if (linfo[i].insn_off == sub[s].start) {
18244 				sub[s].linfo_idx = i;
18245 				s++;
18246 			} else if (sub[s].start < linfo[i].insn_off) {
18247 				verbose(env, "missing bpf_line_info for func#%u\n", s);
18248 				err = -EINVAL;
18249 				goto err_free;
18250 			}
18251 		}
18252 
18253 		prev_offset = linfo[i].insn_off;
18254 		bpfptr_add(&ulinfo, rec_size);
18255 	}
18256 
18257 	if (s != env->subprog_cnt) {
18258 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
18259 			env->subprog_cnt - s, s);
18260 		err = -EINVAL;
18261 		goto err_free;
18262 	}
18263 
18264 	prog->aux->linfo = linfo;
18265 	prog->aux->nr_linfo = nr_linfo;
18266 
18267 	return 0;
18268 
18269 err_free:
18270 	kvfree(linfo);
18271 	return err;
18272 }
18273 
18274 #define MIN_CORE_RELO_SIZE	sizeof(struct bpf_core_relo)
18275 #define MAX_CORE_RELO_SIZE	MAX_FUNCINFO_REC_SIZE
18276 
18277 static int check_core_relo(struct bpf_verifier_env *env,
18278 			   const union bpf_attr *attr,
18279 			   bpfptr_t uattr)
18280 {
18281 	u32 i, nr_core_relo, ncopy, expected_size, rec_size;
18282 	struct bpf_core_relo core_relo = {};
18283 	struct bpf_prog *prog = env->prog;
18284 	const struct btf *btf = prog->aux->btf;
18285 	struct bpf_core_ctx ctx = {
18286 		.log = &env->log,
18287 		.btf = btf,
18288 	};
18289 	bpfptr_t u_core_relo;
18290 	int err;
18291 
18292 	nr_core_relo = attr->core_relo_cnt;
18293 	if (!nr_core_relo)
18294 		return 0;
18295 	if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo))
18296 		return -EINVAL;
18297 
18298 	rec_size = attr->core_relo_rec_size;
18299 	if (rec_size < MIN_CORE_RELO_SIZE ||
18300 	    rec_size > MAX_CORE_RELO_SIZE ||
18301 	    rec_size % sizeof(u32))
18302 		return -EINVAL;
18303 
18304 	u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel);
18305 	expected_size = sizeof(struct bpf_core_relo);
18306 	ncopy = min_t(u32, expected_size, rec_size);
18307 
18308 	/* Unlike func_info and line_info, copy and apply each CO-RE
18309 	 * relocation record one at a time.
18310 	 */
18311 	for (i = 0; i < nr_core_relo; i++) {
18312 		/* future proofing when sizeof(bpf_core_relo) changes */
18313 		err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size);
18314 		if (err) {
18315 			if (err == -E2BIG) {
18316 				verbose(env, "nonzero tailing record in core_relo");
18317 				if (copy_to_bpfptr_offset(uattr,
18318 							  offsetof(union bpf_attr, core_relo_rec_size),
18319 							  &expected_size, sizeof(expected_size)))
18320 					err = -EFAULT;
18321 			}
18322 			break;
18323 		}
18324 
18325 		if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) {
18326 			err = -EFAULT;
18327 			break;
18328 		}
18329 
18330 		if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) {
18331 			verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n",
18332 				i, core_relo.insn_off, prog->len);
18333 			err = -EINVAL;
18334 			break;
18335 		}
18336 
18337 		err = bpf_core_apply(&ctx, &core_relo, i,
18338 				     &prog->insnsi[core_relo.insn_off / 8]);
18339 		if (err)
18340 			break;
18341 		bpfptr_add(&u_core_relo, rec_size);
18342 	}
18343 	return err;
18344 }
18345 
18346 static int check_btf_info_early(struct bpf_verifier_env *env,
18347 				const union bpf_attr *attr,
18348 				bpfptr_t uattr)
18349 {
18350 	struct btf *btf;
18351 	int err;
18352 
18353 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
18354 		if (check_abnormal_return(env))
18355 			return -EINVAL;
18356 		return 0;
18357 	}
18358 
18359 	btf = btf_get_by_fd(attr->prog_btf_fd);
18360 	if (IS_ERR(btf))
18361 		return PTR_ERR(btf);
18362 	if (btf_is_kernel(btf)) {
18363 		btf_put(btf);
18364 		return -EACCES;
18365 	}
18366 	env->prog->aux->btf = btf;
18367 
18368 	err = check_btf_func_early(env, attr, uattr);
18369 	if (err)
18370 		return err;
18371 	return 0;
18372 }
18373 
18374 static int check_btf_info(struct bpf_verifier_env *env,
18375 			  const union bpf_attr *attr,
18376 			  bpfptr_t uattr)
18377 {
18378 	int err;
18379 
18380 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
18381 		if (check_abnormal_return(env))
18382 			return -EINVAL;
18383 		return 0;
18384 	}
18385 
18386 	err = check_btf_func(env, attr, uattr);
18387 	if (err)
18388 		return err;
18389 
18390 	err = check_btf_line(env, attr, uattr);
18391 	if (err)
18392 		return err;
18393 
18394 	err = check_core_relo(env, attr, uattr);
18395 	if (err)
18396 		return err;
18397 
18398 	return 0;
18399 }
18400 
18401 /* check %cur's range satisfies %old's */
18402 static bool range_within(const struct bpf_reg_state *old,
18403 			 const struct bpf_reg_state *cur)
18404 {
18405 	return old->umin_value <= cur->umin_value &&
18406 	       old->umax_value >= cur->umax_value &&
18407 	       old->smin_value <= cur->smin_value &&
18408 	       old->smax_value >= cur->smax_value &&
18409 	       old->u32_min_value <= cur->u32_min_value &&
18410 	       old->u32_max_value >= cur->u32_max_value &&
18411 	       old->s32_min_value <= cur->s32_min_value &&
18412 	       old->s32_max_value >= cur->s32_max_value;
18413 }
18414 
18415 /* If in the old state two registers had the same id, then they need to have
18416  * the same id in the new state as well.  But that id could be different from
18417  * the old state, so we need to track the mapping from old to new ids.
18418  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
18419  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
18420  * regs with a different old id could still have new id 9, we don't care about
18421  * that.
18422  * So we look through our idmap to see if this old id has been seen before.  If
18423  * so, we require the new id to match; otherwise, we add the id pair to the map.
18424  */
18425 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap)
18426 {
18427 	struct bpf_id_pair *map = idmap->map;
18428 	unsigned int i;
18429 
18430 	/* either both IDs should be set or both should be zero */
18431 	if (!!old_id != !!cur_id)
18432 		return false;
18433 
18434 	if (old_id == 0) /* cur_id == 0 as well */
18435 		return true;
18436 
18437 	for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
18438 		if (!map[i].old) {
18439 			/* Reached an empty slot; haven't seen this id before */
18440 			map[i].old = old_id;
18441 			map[i].cur = cur_id;
18442 			return true;
18443 		}
18444 		if (map[i].old == old_id)
18445 			return map[i].cur == cur_id;
18446 		if (map[i].cur == cur_id)
18447 			return false;
18448 	}
18449 	/* We ran out of idmap slots, which should be impossible */
18450 	WARN_ON_ONCE(1);
18451 	return false;
18452 }
18453 
18454 /* Similar to check_ids(), but allocate a unique temporary ID
18455  * for 'old_id' or 'cur_id' of zero.
18456  * This makes pairs like '0 vs unique ID', 'unique ID vs 0' valid.
18457  */
18458 static bool check_scalar_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap)
18459 {
18460 	old_id = old_id ? old_id : ++idmap->tmp_id_gen;
18461 	cur_id = cur_id ? cur_id : ++idmap->tmp_id_gen;
18462 
18463 	return check_ids(old_id, cur_id, idmap);
18464 }
18465 
18466 static void clean_func_state(struct bpf_verifier_env *env,
18467 			     struct bpf_func_state *st)
18468 {
18469 	enum bpf_reg_liveness live;
18470 	int i, j;
18471 
18472 	for (i = 0; i < BPF_REG_FP; i++) {
18473 		live = st->regs[i].live;
18474 		/* liveness must not touch this register anymore */
18475 		st->regs[i].live |= REG_LIVE_DONE;
18476 		if (!(live & REG_LIVE_READ))
18477 			/* since the register is unused, clear its state
18478 			 * to make further comparison simpler
18479 			 */
18480 			__mark_reg_not_init(env, &st->regs[i]);
18481 	}
18482 
18483 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
18484 		live = st->stack[i].spilled_ptr.live;
18485 		/* liveness must not touch this stack slot anymore */
18486 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
18487 		if (!(live & REG_LIVE_READ)) {
18488 			__mark_reg_not_init(env, &st->stack[i].spilled_ptr);
18489 			for (j = 0; j < BPF_REG_SIZE; j++)
18490 				st->stack[i].slot_type[j] = STACK_INVALID;
18491 		}
18492 	}
18493 }
18494 
18495 static void clean_verifier_state(struct bpf_verifier_env *env,
18496 				 struct bpf_verifier_state *st)
18497 {
18498 	int i;
18499 
18500 	for (i = 0; i <= st->curframe; i++)
18501 		clean_func_state(env, st->frame[i]);
18502 }
18503 
18504 /* the parentage chains form a tree.
18505  * the verifier states are added to state lists at given insn and
18506  * pushed into state stack for future exploration.
18507  * when the verifier reaches bpf_exit insn some of the verifier states
18508  * stored in the state lists have their final liveness state already,
18509  * but a lot of states will get revised from liveness point of view when
18510  * the verifier explores other branches.
18511  * Example:
18512  * 1: r0 = 1
18513  * 2: if r1 == 100 goto pc+1
18514  * 3: r0 = 2
18515  * 4: exit
18516  * when the verifier reaches exit insn the register r0 in the state list of
18517  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
18518  * of insn 2 and goes exploring further. At the insn 4 it will walk the
18519  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
18520  *
18521  * Since the verifier pushes the branch states as it sees them while exploring
18522  * the program the condition of walking the branch instruction for the second
18523  * time means that all states below this branch were already explored and
18524  * their final liveness marks are already propagated.
18525  * Hence when the verifier completes the search of state list in is_state_visited()
18526  * we can call this clean_live_states() function to mark all liveness states
18527  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
18528  * will not be used.
18529  * This function also clears the registers and stack for states that !READ
18530  * to simplify state merging.
18531  *
18532  * Important note here that walking the same branch instruction in the callee
18533  * doesn't meant that the states are DONE. The verifier has to compare
18534  * the callsites
18535  */
18536 static void clean_live_states(struct bpf_verifier_env *env, int insn,
18537 			      struct bpf_verifier_state *cur)
18538 {
18539 	struct bpf_verifier_state_list *sl;
18540 	struct list_head *pos, *head;
18541 
18542 	head = explored_state(env, insn);
18543 	list_for_each(pos, head) {
18544 		sl = container_of(pos, struct bpf_verifier_state_list, node);
18545 		if (sl->state.branches)
18546 			continue;
18547 		if (sl->state.insn_idx != insn ||
18548 		    !same_callsites(&sl->state, cur))
18549 			continue;
18550 		if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE)
18551 			/* all regs in this state in all frames were already marked */
18552 			continue;
18553 		if (incomplete_read_marks(env, &sl->state))
18554 			continue;
18555 		clean_verifier_state(env, &sl->state);
18556 	}
18557 }
18558 
18559 static bool regs_exact(const struct bpf_reg_state *rold,
18560 		       const struct bpf_reg_state *rcur,
18561 		       struct bpf_idmap *idmap)
18562 {
18563 	return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
18564 	       check_ids(rold->id, rcur->id, idmap) &&
18565 	       check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
18566 }
18567 
18568 enum exact_level {
18569 	NOT_EXACT,
18570 	EXACT,
18571 	RANGE_WITHIN
18572 };
18573 
18574 /* Returns true if (rold safe implies rcur safe) */
18575 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
18576 		    struct bpf_reg_state *rcur, struct bpf_idmap *idmap,
18577 		    enum exact_level exact)
18578 {
18579 	if (exact == EXACT)
18580 		return regs_exact(rold, rcur, idmap);
18581 
18582 	if (!(rold->live & REG_LIVE_READ) && exact == NOT_EXACT)
18583 		/* explored state didn't use this */
18584 		return true;
18585 	if (rold->type == NOT_INIT) {
18586 		if (exact == NOT_EXACT || rcur->type == NOT_INIT)
18587 			/* explored state can't have used this */
18588 			return true;
18589 	}
18590 
18591 	/* Enforce that register types have to match exactly, including their
18592 	 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general
18593 	 * rule.
18594 	 *
18595 	 * One can make a point that using a pointer register as unbounded
18596 	 * SCALAR would be technically acceptable, but this could lead to
18597 	 * pointer leaks because scalars are allowed to leak while pointers
18598 	 * are not. We could make this safe in special cases if root is
18599 	 * calling us, but it's probably not worth the hassle.
18600 	 *
18601 	 * Also, register types that are *not* MAYBE_NULL could technically be
18602 	 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE
18603 	 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point
18604 	 * to the same map).
18605 	 * However, if the old MAYBE_NULL register then got NULL checked,
18606 	 * doing so could have affected others with the same id, and we can't
18607 	 * check for that because we lost the id when we converted to
18608 	 * a non-MAYBE_NULL variant.
18609 	 * So, as a general rule we don't allow mixing MAYBE_NULL and
18610 	 * non-MAYBE_NULL registers as well.
18611 	 */
18612 	if (rold->type != rcur->type)
18613 		return false;
18614 
18615 	switch (base_type(rold->type)) {
18616 	case SCALAR_VALUE:
18617 		if (env->explore_alu_limits) {
18618 			/* explore_alu_limits disables tnum_in() and range_within()
18619 			 * logic and requires everything to be strict
18620 			 */
18621 			return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
18622 			       check_scalar_ids(rold->id, rcur->id, idmap);
18623 		}
18624 		if (!rold->precise && exact == NOT_EXACT)
18625 			return true;
18626 		if ((rold->id & BPF_ADD_CONST) != (rcur->id & BPF_ADD_CONST))
18627 			return false;
18628 		if ((rold->id & BPF_ADD_CONST) && (rold->off != rcur->off))
18629 			return false;
18630 		/* Why check_ids() for scalar registers?
18631 		 *
18632 		 * Consider the following BPF code:
18633 		 *   1: r6 = ... unbound scalar, ID=a ...
18634 		 *   2: r7 = ... unbound scalar, ID=b ...
18635 		 *   3: if (r6 > r7) goto +1
18636 		 *   4: r6 = r7
18637 		 *   5: if (r6 > X) goto ...
18638 		 *   6: ... memory operation using r7 ...
18639 		 *
18640 		 * First verification path is [1-6]:
18641 		 * - at (4) same bpf_reg_state::id (b) would be assigned to r6 and r7;
18642 		 * - at (5) r6 would be marked <= X, sync_linked_regs() would also mark
18643 		 *   r7 <= X, because r6 and r7 share same id.
18644 		 * Next verification path is [1-4, 6].
18645 		 *
18646 		 * Instruction (6) would be reached in two states:
18647 		 *   I.  r6{.id=b}, r7{.id=b} via path 1-6;
18648 		 *   II. r6{.id=a}, r7{.id=b} via path 1-4, 6.
18649 		 *
18650 		 * Use check_ids() to distinguish these states.
18651 		 * ---
18652 		 * Also verify that new value satisfies old value range knowledge.
18653 		 */
18654 		return range_within(rold, rcur) &&
18655 		       tnum_in(rold->var_off, rcur->var_off) &&
18656 		       check_scalar_ids(rold->id, rcur->id, idmap);
18657 	case PTR_TO_MAP_KEY:
18658 	case PTR_TO_MAP_VALUE:
18659 	case PTR_TO_MEM:
18660 	case PTR_TO_BUF:
18661 	case PTR_TO_TP_BUFFER:
18662 		/* If the new min/max/var_off satisfy the old ones and
18663 		 * everything else matches, we are OK.
18664 		 */
18665 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 &&
18666 		       range_within(rold, rcur) &&
18667 		       tnum_in(rold->var_off, rcur->var_off) &&
18668 		       check_ids(rold->id, rcur->id, idmap) &&
18669 		       check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
18670 	case PTR_TO_PACKET_META:
18671 	case PTR_TO_PACKET:
18672 		/* We must have at least as much range as the old ptr
18673 		 * did, so that any accesses which were safe before are
18674 		 * still safe.  This is true even if old range < old off,
18675 		 * since someone could have accessed through (ptr - k), or
18676 		 * even done ptr -= k in a register, to get a safe access.
18677 		 */
18678 		if (rold->range > rcur->range)
18679 			return false;
18680 		/* If the offsets don't match, we can't trust our alignment;
18681 		 * nor can we be sure that we won't fall out of range.
18682 		 */
18683 		if (rold->off != rcur->off)
18684 			return false;
18685 		/* id relations must be preserved */
18686 		if (!check_ids(rold->id, rcur->id, idmap))
18687 			return false;
18688 		/* new val must satisfy old val knowledge */
18689 		return range_within(rold, rcur) &&
18690 		       tnum_in(rold->var_off, rcur->var_off);
18691 	case PTR_TO_STACK:
18692 		/* two stack pointers are equal only if they're pointing to
18693 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
18694 		 */
18695 		return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno;
18696 	case PTR_TO_ARENA:
18697 		return true;
18698 	default:
18699 		return regs_exact(rold, rcur, idmap);
18700 	}
18701 }
18702 
18703 static struct bpf_reg_state unbound_reg;
18704 
18705 static __init int unbound_reg_init(void)
18706 {
18707 	__mark_reg_unknown_imprecise(&unbound_reg);
18708 	unbound_reg.live |= REG_LIVE_READ;
18709 	return 0;
18710 }
18711 late_initcall(unbound_reg_init);
18712 
18713 static bool is_stack_all_misc(struct bpf_verifier_env *env,
18714 			      struct bpf_stack_state *stack)
18715 {
18716 	u32 i;
18717 
18718 	for (i = 0; i < ARRAY_SIZE(stack->slot_type); ++i) {
18719 		if ((stack->slot_type[i] == STACK_MISC) ||
18720 		    (stack->slot_type[i] == STACK_INVALID && env->allow_uninit_stack))
18721 			continue;
18722 		return false;
18723 	}
18724 
18725 	return true;
18726 }
18727 
18728 static struct bpf_reg_state *scalar_reg_for_stack(struct bpf_verifier_env *env,
18729 						  struct bpf_stack_state *stack)
18730 {
18731 	if (is_spilled_scalar_reg64(stack))
18732 		return &stack->spilled_ptr;
18733 
18734 	if (is_stack_all_misc(env, stack))
18735 		return &unbound_reg;
18736 
18737 	return NULL;
18738 }
18739 
18740 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
18741 		      struct bpf_func_state *cur, struct bpf_idmap *idmap,
18742 		      enum exact_level exact)
18743 {
18744 	int i, spi;
18745 
18746 	/* walk slots of the explored stack and ignore any additional
18747 	 * slots in the current stack, since explored(safe) state
18748 	 * didn't use them
18749 	 */
18750 	for (i = 0; i < old->allocated_stack; i++) {
18751 		struct bpf_reg_state *old_reg, *cur_reg;
18752 
18753 		spi = i / BPF_REG_SIZE;
18754 
18755 		if (exact != NOT_EXACT &&
18756 		    (i >= cur->allocated_stack ||
18757 		     old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
18758 		     cur->stack[spi].slot_type[i % BPF_REG_SIZE]))
18759 			return false;
18760 
18761 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)
18762 		    && exact == NOT_EXACT) {
18763 			i += BPF_REG_SIZE - 1;
18764 			/* explored state didn't use this */
18765 			continue;
18766 		}
18767 
18768 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
18769 			continue;
18770 
18771 		if (env->allow_uninit_stack &&
18772 		    old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC)
18773 			continue;
18774 
18775 		/* explored stack has more populated slots than current stack
18776 		 * and these slots were used
18777 		 */
18778 		if (i >= cur->allocated_stack)
18779 			return false;
18780 
18781 		/* 64-bit scalar spill vs all slots MISC and vice versa.
18782 		 * Load from all slots MISC produces unbound scalar.
18783 		 * Construct a fake register for such stack and call
18784 		 * regsafe() to ensure scalar ids are compared.
18785 		 */
18786 		old_reg = scalar_reg_for_stack(env, &old->stack[spi]);
18787 		cur_reg = scalar_reg_for_stack(env, &cur->stack[spi]);
18788 		if (old_reg && cur_reg) {
18789 			if (!regsafe(env, old_reg, cur_reg, idmap, exact))
18790 				return false;
18791 			i += BPF_REG_SIZE - 1;
18792 			continue;
18793 		}
18794 
18795 		/* if old state was safe with misc data in the stack
18796 		 * it will be safe with zero-initialized stack.
18797 		 * The opposite is not true
18798 		 */
18799 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
18800 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
18801 			continue;
18802 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
18803 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
18804 			/* Ex: old explored (safe) state has STACK_SPILL in
18805 			 * this stack slot, but current has STACK_MISC ->
18806 			 * this verifier states are not equivalent,
18807 			 * return false to continue verification of this path
18808 			 */
18809 			return false;
18810 		if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1)
18811 			continue;
18812 		/* Both old and cur are having same slot_type */
18813 		switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) {
18814 		case STACK_SPILL:
18815 			/* when explored and current stack slot are both storing
18816 			 * spilled registers, check that stored pointers types
18817 			 * are the same as well.
18818 			 * Ex: explored safe path could have stored
18819 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
18820 			 * but current path has stored:
18821 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
18822 			 * such verifier states are not equivalent.
18823 			 * return false to continue verification of this path
18824 			 */
18825 			if (!regsafe(env, &old->stack[spi].spilled_ptr,
18826 				     &cur->stack[spi].spilled_ptr, idmap, exact))
18827 				return false;
18828 			break;
18829 		case STACK_DYNPTR:
18830 			old_reg = &old->stack[spi].spilled_ptr;
18831 			cur_reg = &cur->stack[spi].spilled_ptr;
18832 			if (old_reg->dynptr.type != cur_reg->dynptr.type ||
18833 			    old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot ||
18834 			    !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
18835 				return false;
18836 			break;
18837 		case STACK_ITER:
18838 			old_reg = &old->stack[spi].spilled_ptr;
18839 			cur_reg = &cur->stack[spi].spilled_ptr;
18840 			/* iter.depth is not compared between states as it
18841 			 * doesn't matter for correctness and would otherwise
18842 			 * prevent convergence; we maintain it only to prevent
18843 			 * infinite loop check triggering, see
18844 			 * iter_active_depths_differ()
18845 			 */
18846 			if (old_reg->iter.btf != cur_reg->iter.btf ||
18847 			    old_reg->iter.btf_id != cur_reg->iter.btf_id ||
18848 			    old_reg->iter.state != cur_reg->iter.state ||
18849 			    /* ignore {old_reg,cur_reg}->iter.depth, see above */
18850 			    !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
18851 				return false;
18852 			break;
18853 		case STACK_IRQ_FLAG:
18854 			old_reg = &old->stack[spi].spilled_ptr;
18855 			cur_reg = &cur->stack[spi].spilled_ptr;
18856 			if (!check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap) ||
18857 			    old_reg->irq.kfunc_class != cur_reg->irq.kfunc_class)
18858 				return false;
18859 			break;
18860 		case STACK_MISC:
18861 		case STACK_ZERO:
18862 		case STACK_INVALID:
18863 			continue;
18864 		/* Ensure that new unhandled slot types return false by default */
18865 		default:
18866 			return false;
18867 		}
18868 	}
18869 	return true;
18870 }
18871 
18872 static bool refsafe(struct bpf_verifier_state *old, struct bpf_verifier_state *cur,
18873 		    struct bpf_idmap *idmap)
18874 {
18875 	int i;
18876 
18877 	if (old->acquired_refs != cur->acquired_refs)
18878 		return false;
18879 
18880 	if (old->active_locks != cur->active_locks)
18881 		return false;
18882 
18883 	if (old->active_preempt_locks != cur->active_preempt_locks)
18884 		return false;
18885 
18886 	if (old->active_rcu_lock != cur->active_rcu_lock)
18887 		return false;
18888 
18889 	if (!check_ids(old->active_irq_id, cur->active_irq_id, idmap))
18890 		return false;
18891 
18892 	if (!check_ids(old->active_lock_id, cur->active_lock_id, idmap) ||
18893 	    old->active_lock_ptr != cur->active_lock_ptr)
18894 		return false;
18895 
18896 	for (i = 0; i < old->acquired_refs; i++) {
18897 		if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap) ||
18898 		    old->refs[i].type != cur->refs[i].type)
18899 			return false;
18900 		switch (old->refs[i].type) {
18901 		case REF_TYPE_PTR:
18902 		case REF_TYPE_IRQ:
18903 			break;
18904 		case REF_TYPE_LOCK:
18905 		case REF_TYPE_RES_LOCK:
18906 		case REF_TYPE_RES_LOCK_IRQ:
18907 			if (old->refs[i].ptr != cur->refs[i].ptr)
18908 				return false;
18909 			break;
18910 		default:
18911 			WARN_ONCE(1, "Unhandled enum type for reference state: %d\n", old->refs[i].type);
18912 			return false;
18913 		}
18914 	}
18915 
18916 	return true;
18917 }
18918 
18919 /* compare two verifier states
18920  *
18921  * all states stored in state_list are known to be valid, since
18922  * verifier reached 'bpf_exit' instruction through them
18923  *
18924  * this function is called when verifier exploring different branches of
18925  * execution popped from the state stack. If it sees an old state that has
18926  * more strict register state and more strict stack state then this execution
18927  * branch doesn't need to be explored further, since verifier already
18928  * concluded that more strict state leads to valid finish.
18929  *
18930  * Therefore two states are equivalent if register state is more conservative
18931  * and explored stack state is more conservative than the current one.
18932  * Example:
18933  *       explored                   current
18934  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
18935  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
18936  *
18937  * In other words if current stack state (one being explored) has more
18938  * valid slots than old one that already passed validation, it means
18939  * the verifier can stop exploring and conclude that current state is valid too
18940  *
18941  * Similarly with registers. If explored state has register type as invalid
18942  * whereas register type in current state is meaningful, it means that
18943  * the current state will reach 'bpf_exit' instruction safely
18944  */
18945 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
18946 			      struct bpf_func_state *cur, u32 insn_idx, enum exact_level exact)
18947 {
18948 	u16 live_regs = env->insn_aux_data[insn_idx].live_regs_before;
18949 	u16 i;
18950 
18951 	if (old->callback_depth > cur->callback_depth)
18952 		return false;
18953 
18954 	for (i = 0; i < MAX_BPF_REG; i++)
18955 		if (((1 << i) & live_regs) &&
18956 		    !regsafe(env, &old->regs[i], &cur->regs[i],
18957 			     &env->idmap_scratch, exact))
18958 			return false;
18959 
18960 	if (!stacksafe(env, old, cur, &env->idmap_scratch, exact))
18961 		return false;
18962 
18963 	return true;
18964 }
18965 
18966 static void reset_idmap_scratch(struct bpf_verifier_env *env)
18967 {
18968 	env->idmap_scratch.tmp_id_gen = env->id_gen;
18969 	memset(&env->idmap_scratch.map, 0, sizeof(env->idmap_scratch.map));
18970 }
18971 
18972 static bool states_equal(struct bpf_verifier_env *env,
18973 			 struct bpf_verifier_state *old,
18974 			 struct bpf_verifier_state *cur,
18975 			 enum exact_level exact)
18976 {
18977 	u32 insn_idx;
18978 	int i;
18979 
18980 	if (old->curframe != cur->curframe)
18981 		return false;
18982 
18983 	reset_idmap_scratch(env);
18984 
18985 	/* Verification state from speculative execution simulation
18986 	 * must never prune a non-speculative execution one.
18987 	 */
18988 	if (old->speculative && !cur->speculative)
18989 		return false;
18990 
18991 	if (old->in_sleepable != cur->in_sleepable)
18992 		return false;
18993 
18994 	if (!refsafe(old, cur, &env->idmap_scratch))
18995 		return false;
18996 
18997 	/* for states to be equal callsites have to be the same
18998 	 * and all frame states need to be equivalent
18999 	 */
19000 	for (i = 0; i <= old->curframe; i++) {
19001 		insn_idx = frame_insn_idx(old, i);
19002 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
19003 			return false;
19004 		if (!func_states_equal(env, old->frame[i], cur->frame[i], insn_idx, exact))
19005 			return false;
19006 	}
19007 	return true;
19008 }
19009 
19010 /* Return 0 if no propagation happened. Return negative error code if error
19011  * happened. Otherwise, return the propagated bit.
19012  */
19013 static int propagate_liveness_reg(struct bpf_verifier_env *env,
19014 				  struct bpf_reg_state *reg,
19015 				  struct bpf_reg_state *parent_reg)
19016 {
19017 	u8 parent_flag = parent_reg->live & REG_LIVE_READ;
19018 	u8 flag = reg->live & REG_LIVE_READ;
19019 	int err;
19020 
19021 	/* When comes here, read flags of PARENT_REG or REG could be any of
19022 	 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
19023 	 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
19024 	 */
19025 	if (parent_flag == REG_LIVE_READ64 ||
19026 	    /* Or if there is no read flag from REG. */
19027 	    !flag ||
19028 	    /* Or if the read flag from REG is the same as PARENT_REG. */
19029 	    parent_flag == flag)
19030 		return 0;
19031 
19032 	err = mark_reg_read(env, reg, parent_reg, flag);
19033 	if (err)
19034 		return err;
19035 
19036 	return flag;
19037 }
19038 
19039 /* A write screens off any subsequent reads; but write marks come from the
19040  * straight-line code between a state and its parent.  When we arrive at an
19041  * equivalent state (jump target or such) we didn't arrive by the straight-line
19042  * code, so read marks in the state must propagate to the parent regardless
19043  * of the state's write marks. That's what 'parent == state->parent' comparison
19044  * in mark_reg_read() is for.
19045  */
19046 static int propagate_liveness(struct bpf_verifier_env *env,
19047 			      const struct bpf_verifier_state *vstate,
19048 			      struct bpf_verifier_state *vparent,
19049 			      bool *changed)
19050 {
19051 	struct bpf_reg_state *state_reg, *parent_reg;
19052 	struct bpf_func_state *state, *parent;
19053 	int i, frame, err = 0;
19054 	bool tmp = false;
19055 
19056 	changed = changed ?: &tmp;
19057 	if (vparent->curframe != vstate->curframe) {
19058 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
19059 		     vparent->curframe, vstate->curframe);
19060 		return -EFAULT;
19061 	}
19062 	/* Propagate read liveness of registers... */
19063 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
19064 	for (frame = 0; frame <= vstate->curframe; frame++) {
19065 		parent = vparent->frame[frame];
19066 		state = vstate->frame[frame];
19067 		parent_reg = parent->regs;
19068 		state_reg = state->regs;
19069 		/* We don't need to worry about FP liveness, it's read-only */
19070 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
19071 			err = propagate_liveness_reg(env, &state_reg[i],
19072 						     &parent_reg[i]);
19073 			if (err < 0)
19074 				return err;
19075 			*changed |= err > 0;
19076 			if (err == REG_LIVE_READ64)
19077 				mark_insn_zext(env, &parent_reg[i]);
19078 		}
19079 
19080 		/* Propagate stack slots. */
19081 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
19082 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
19083 			parent_reg = &parent->stack[i].spilled_ptr;
19084 			state_reg = &state->stack[i].spilled_ptr;
19085 			err = propagate_liveness_reg(env, state_reg,
19086 						     parent_reg);
19087 			*changed |= err > 0;
19088 			if (err < 0)
19089 				return err;
19090 		}
19091 	}
19092 	return 0;
19093 }
19094 
19095 /* find precise scalars in the previous equivalent state and
19096  * propagate them into the current state
19097  */
19098 static int propagate_precision(struct bpf_verifier_env *env,
19099 			       const struct bpf_verifier_state *old,
19100 			       struct bpf_verifier_state *cur,
19101 			       bool *changed)
19102 {
19103 	struct bpf_reg_state *state_reg;
19104 	struct bpf_func_state *state;
19105 	int i, err = 0, fr;
19106 	bool first;
19107 
19108 	for (fr = old->curframe; fr >= 0; fr--) {
19109 		state = old->frame[fr];
19110 		state_reg = state->regs;
19111 		first = true;
19112 		for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
19113 			if (state_reg->type != SCALAR_VALUE ||
19114 			    !state_reg->precise ||
19115 			    !(state_reg->live & REG_LIVE_READ))
19116 				continue;
19117 			if (env->log.level & BPF_LOG_LEVEL2) {
19118 				if (first)
19119 					verbose(env, "frame %d: propagating r%d", fr, i);
19120 				else
19121 					verbose(env, ",r%d", i);
19122 			}
19123 			bt_set_frame_reg(&env->bt, fr, i);
19124 			first = false;
19125 		}
19126 
19127 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
19128 			if (!is_spilled_reg(&state->stack[i]))
19129 				continue;
19130 			state_reg = &state->stack[i].spilled_ptr;
19131 			if (state_reg->type != SCALAR_VALUE ||
19132 			    !state_reg->precise ||
19133 			    !(state_reg->live & REG_LIVE_READ))
19134 				continue;
19135 			if (env->log.level & BPF_LOG_LEVEL2) {
19136 				if (first)
19137 					verbose(env, "frame %d: propagating fp%d",
19138 						fr, (-i - 1) * BPF_REG_SIZE);
19139 				else
19140 					verbose(env, ",fp%d", (-i - 1) * BPF_REG_SIZE);
19141 			}
19142 			bt_set_frame_slot(&env->bt, fr, i);
19143 			first = false;
19144 		}
19145 		if (!first)
19146 			verbose(env, "\n");
19147 	}
19148 
19149 	err = __mark_chain_precision(env, cur, -1, changed);
19150 	if (err < 0)
19151 		return err;
19152 
19153 	return 0;
19154 }
19155 
19156 #define MAX_BACKEDGE_ITERS 64
19157 
19158 /* Propagate read and precision marks from visit->backedges[*].state->equal_state
19159  * to corresponding parent states of visit->backedges[*].state until fixed point is reached,
19160  * then free visit->backedges.
19161  * After execution of this function incomplete_read_marks() will return false
19162  * for all states corresponding to @visit->callchain.
19163  */
19164 static int propagate_backedges(struct bpf_verifier_env *env, struct bpf_scc_visit *visit)
19165 {
19166 	struct bpf_scc_backedge *backedge;
19167 	struct bpf_verifier_state *st;
19168 	bool changed;
19169 	int i, err;
19170 
19171 	i = 0;
19172 	do {
19173 		if (i++ > MAX_BACKEDGE_ITERS) {
19174 			if (env->log.level & BPF_LOG_LEVEL2)
19175 				verbose(env, "%s: too many iterations\n", __func__);
19176 			for (backedge = visit->backedges; backedge; backedge = backedge->next)
19177 				mark_all_scalars_precise(env, &backedge->state);
19178 			break;
19179 		}
19180 		changed = false;
19181 		for (backedge = visit->backedges; backedge; backedge = backedge->next) {
19182 			st = &backedge->state;
19183 			err = propagate_liveness(env, st->equal_state, st, &changed);
19184 			if (err)
19185 				return err;
19186 			err = propagate_precision(env, st->equal_state, st, &changed);
19187 			if (err)
19188 				return err;
19189 		}
19190 	} while (changed);
19191 
19192 	free_backedges(visit);
19193 	return 0;
19194 }
19195 
19196 static bool states_maybe_looping(struct bpf_verifier_state *old,
19197 				 struct bpf_verifier_state *cur)
19198 {
19199 	struct bpf_func_state *fold, *fcur;
19200 	int i, fr = cur->curframe;
19201 
19202 	if (old->curframe != fr)
19203 		return false;
19204 
19205 	fold = old->frame[fr];
19206 	fcur = cur->frame[fr];
19207 	for (i = 0; i < MAX_BPF_REG; i++)
19208 		if (memcmp(&fold->regs[i], &fcur->regs[i],
19209 			   offsetof(struct bpf_reg_state, parent)))
19210 			return false;
19211 	return true;
19212 }
19213 
19214 static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx)
19215 {
19216 	return env->insn_aux_data[insn_idx].is_iter_next;
19217 }
19218 
19219 /* is_state_visited() handles iter_next() (see process_iter_next_call() for
19220  * terminology) calls specially: as opposed to bounded BPF loops, it *expects*
19221  * states to match, which otherwise would look like an infinite loop. So while
19222  * iter_next() calls are taken care of, we still need to be careful and
19223  * prevent erroneous and too eager declaration of "infinite loop", when
19224  * iterators are involved.
19225  *
19226  * Here's a situation in pseudo-BPF assembly form:
19227  *
19228  *   0: again:                          ; set up iter_next() call args
19229  *   1:   r1 = &it                      ; <CHECKPOINT HERE>
19230  *   2:   call bpf_iter_num_next        ; this is iter_next() call
19231  *   3:   if r0 == 0 goto done
19232  *   4:   ... something useful here ...
19233  *   5:   goto again                    ; another iteration
19234  *   6: done:
19235  *   7:   r1 = &it
19236  *   8:   call bpf_iter_num_destroy     ; clean up iter state
19237  *   9:   exit
19238  *
19239  * This is a typical loop. Let's assume that we have a prune point at 1:,
19240  * before we get to `call bpf_iter_num_next` (e.g., because of that `goto
19241  * again`, assuming other heuristics don't get in a way).
19242  *
19243  * When we first time come to 1:, let's say we have some state X. We proceed
19244  * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit.
19245  * Now we come back to validate that forked ACTIVE state. We proceed through
19246  * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we
19247  * are converging. But the problem is that we don't know that yet, as this
19248  * convergence has to happen at iter_next() call site only. So if nothing is
19249  * done, at 1: verifier will use bounded loop logic and declare infinite
19250  * looping (and would be *technically* correct, if not for iterator's
19251  * "eventual sticky NULL" contract, see process_iter_next_call()). But we
19252  * don't want that. So what we do in process_iter_next_call() when we go on
19253  * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's
19254  * a different iteration. So when we suspect an infinite loop, we additionally
19255  * check if any of the *ACTIVE* iterator states depths differ. If yes, we
19256  * pretend we are not looping and wait for next iter_next() call.
19257  *
19258  * This only applies to ACTIVE state. In DRAINED state we don't expect to
19259  * loop, because that would actually mean infinite loop, as DRAINED state is
19260  * "sticky", and so we'll keep returning into the same instruction with the
19261  * same state (at least in one of possible code paths).
19262  *
19263  * This approach allows to keep infinite loop heuristic even in the face of
19264  * active iterator. E.g., C snippet below is and will be detected as
19265  * infinitely looping:
19266  *
19267  *   struct bpf_iter_num it;
19268  *   int *p, x;
19269  *
19270  *   bpf_iter_num_new(&it, 0, 10);
19271  *   while ((p = bpf_iter_num_next(&t))) {
19272  *       x = p;
19273  *       while (x--) {} // <<-- infinite loop here
19274  *   }
19275  *
19276  */
19277 static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur)
19278 {
19279 	struct bpf_reg_state *slot, *cur_slot;
19280 	struct bpf_func_state *state;
19281 	int i, fr;
19282 
19283 	for (fr = old->curframe; fr >= 0; fr--) {
19284 		state = old->frame[fr];
19285 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
19286 			if (state->stack[i].slot_type[0] != STACK_ITER)
19287 				continue;
19288 
19289 			slot = &state->stack[i].spilled_ptr;
19290 			if (slot->iter.state != BPF_ITER_STATE_ACTIVE)
19291 				continue;
19292 
19293 			cur_slot = &cur->frame[fr]->stack[i].spilled_ptr;
19294 			if (cur_slot->iter.depth != slot->iter.depth)
19295 				return true;
19296 		}
19297 	}
19298 	return false;
19299 }
19300 
19301 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
19302 {
19303 	struct bpf_verifier_state_list *new_sl;
19304 	struct bpf_verifier_state_list *sl;
19305 	struct bpf_verifier_state *cur = env->cur_state, *new;
19306 	bool force_new_state, add_new_state, loop;
19307 	int i, j, n, err, states_cnt = 0;
19308 	struct list_head *pos, *tmp, *head;
19309 
19310 	force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx) ||
19311 			  /* Avoid accumulating infinitely long jmp history */
19312 			  cur->jmp_history_cnt > 40;
19313 
19314 	/* bpf progs typically have pruning point every 4 instructions
19315 	 * http://vger.kernel.org/bpfconf2019.html#session-1
19316 	 * Do not add new state for future pruning if the verifier hasn't seen
19317 	 * at least 2 jumps and at least 8 instructions.
19318 	 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
19319 	 * In tests that amounts to up to 50% reduction into total verifier
19320 	 * memory consumption and 20% verifier time speedup.
19321 	 */
19322 	add_new_state = force_new_state;
19323 	if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
19324 	    env->insn_processed - env->prev_insn_processed >= 8)
19325 		add_new_state = true;
19326 
19327 	clean_live_states(env, insn_idx, cur);
19328 
19329 	loop = false;
19330 	head = explored_state(env, insn_idx);
19331 	list_for_each_safe(pos, tmp, head) {
19332 		sl = container_of(pos, struct bpf_verifier_state_list, node);
19333 		states_cnt++;
19334 		if (sl->state.insn_idx != insn_idx)
19335 			continue;
19336 
19337 		if (sl->state.branches) {
19338 			struct bpf_func_state *frame = sl->state.frame[sl->state.curframe];
19339 
19340 			if (frame->in_async_callback_fn &&
19341 			    frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) {
19342 				/* Different async_entry_cnt means that the verifier is
19343 				 * processing another entry into async callback.
19344 				 * Seeing the same state is not an indication of infinite
19345 				 * loop or infinite recursion.
19346 				 * But finding the same state doesn't mean that it's safe
19347 				 * to stop processing the current state. The previous state
19348 				 * hasn't yet reached bpf_exit, since state.branches > 0.
19349 				 * Checking in_async_callback_fn alone is not enough either.
19350 				 * Since the verifier still needs to catch infinite loops
19351 				 * inside async callbacks.
19352 				 */
19353 				goto skip_inf_loop_check;
19354 			}
19355 			/* BPF open-coded iterators loop detection is special.
19356 			 * states_maybe_looping() logic is too simplistic in detecting
19357 			 * states that *might* be equivalent, because it doesn't know
19358 			 * about ID remapping, so don't even perform it.
19359 			 * See process_iter_next_call() and iter_active_depths_differ()
19360 			 * for overview of the logic. When current and one of parent
19361 			 * states are detected as equivalent, it's a good thing: we prove
19362 			 * convergence and can stop simulating further iterations.
19363 			 * It's safe to assume that iterator loop will finish, taking into
19364 			 * account iter_next() contract of eventually returning
19365 			 * sticky NULL result.
19366 			 *
19367 			 * Note, that states have to be compared exactly in this case because
19368 			 * read and precision marks might not be finalized inside the loop.
19369 			 * E.g. as in the program below:
19370 			 *
19371 			 *     1. r7 = -16
19372 			 *     2. r6 = bpf_get_prandom_u32()
19373 			 *     3. while (bpf_iter_num_next(&fp[-8])) {
19374 			 *     4.   if (r6 != 42) {
19375 			 *     5.     r7 = -32
19376 			 *     6.     r6 = bpf_get_prandom_u32()
19377 			 *     7.     continue
19378 			 *     8.   }
19379 			 *     9.   r0 = r10
19380 			 *    10.   r0 += r7
19381 			 *    11.   r8 = *(u64 *)(r0 + 0)
19382 			 *    12.   r6 = bpf_get_prandom_u32()
19383 			 *    13. }
19384 			 *
19385 			 * Here verifier would first visit path 1-3, create a checkpoint at 3
19386 			 * with r7=-16, continue to 4-7,3. Existing checkpoint at 3 does
19387 			 * not have read or precision mark for r7 yet, thus inexact states
19388 			 * comparison would discard current state with r7=-32
19389 			 * => unsafe memory access at 11 would not be caught.
19390 			 */
19391 			if (is_iter_next_insn(env, insn_idx)) {
19392 				if (states_equal(env, &sl->state, cur, RANGE_WITHIN)) {
19393 					struct bpf_func_state *cur_frame;
19394 					struct bpf_reg_state *iter_state, *iter_reg;
19395 					int spi;
19396 
19397 					cur_frame = cur->frame[cur->curframe];
19398 					/* btf_check_iter_kfuncs() enforces that
19399 					 * iter state pointer is always the first arg
19400 					 */
19401 					iter_reg = &cur_frame->regs[BPF_REG_1];
19402 					/* current state is valid due to states_equal(),
19403 					 * so we can assume valid iter and reg state,
19404 					 * no need for extra (re-)validations
19405 					 */
19406 					spi = __get_spi(iter_reg->off + iter_reg->var_off.value);
19407 					iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr;
19408 					if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE) {
19409 						loop = true;
19410 						goto hit;
19411 					}
19412 				}
19413 				goto skip_inf_loop_check;
19414 			}
19415 			if (is_may_goto_insn_at(env, insn_idx)) {
19416 				if (sl->state.may_goto_depth != cur->may_goto_depth &&
19417 				    states_equal(env, &sl->state, cur, RANGE_WITHIN)) {
19418 					loop = true;
19419 					goto hit;
19420 				}
19421 			}
19422 			if (calls_callback(env, insn_idx)) {
19423 				if (states_equal(env, &sl->state, cur, RANGE_WITHIN))
19424 					goto hit;
19425 				goto skip_inf_loop_check;
19426 			}
19427 			/* attempt to detect infinite loop to avoid unnecessary doomed work */
19428 			if (states_maybe_looping(&sl->state, cur) &&
19429 			    states_equal(env, &sl->state, cur, EXACT) &&
19430 			    !iter_active_depths_differ(&sl->state, cur) &&
19431 			    sl->state.may_goto_depth == cur->may_goto_depth &&
19432 			    sl->state.callback_unroll_depth == cur->callback_unroll_depth) {
19433 				verbose_linfo(env, insn_idx, "; ");
19434 				verbose(env, "infinite loop detected at insn %d\n", insn_idx);
19435 				verbose(env, "cur state:");
19436 				print_verifier_state(env, cur, cur->curframe, true);
19437 				verbose(env, "old state:");
19438 				print_verifier_state(env, &sl->state, cur->curframe, true);
19439 				return -EINVAL;
19440 			}
19441 			/* if the verifier is processing a loop, avoid adding new state
19442 			 * too often, since different loop iterations have distinct
19443 			 * states and may not help future pruning.
19444 			 * This threshold shouldn't be too low to make sure that
19445 			 * a loop with large bound will be rejected quickly.
19446 			 * The most abusive loop will be:
19447 			 * r1 += 1
19448 			 * if r1 < 1000000 goto pc-2
19449 			 * 1M insn_procssed limit / 100 == 10k peak states.
19450 			 * This threshold shouldn't be too high either, since states
19451 			 * at the end of the loop are likely to be useful in pruning.
19452 			 */
19453 skip_inf_loop_check:
19454 			if (!force_new_state &&
19455 			    env->jmps_processed - env->prev_jmps_processed < 20 &&
19456 			    env->insn_processed - env->prev_insn_processed < 100)
19457 				add_new_state = false;
19458 			goto miss;
19459 		}
19460 		/* See comments for mark_all_regs_read_and_precise() */
19461 		loop = incomplete_read_marks(env, &sl->state);
19462 		if (states_equal(env, &sl->state, cur, loop ? RANGE_WITHIN : NOT_EXACT)) {
19463 hit:
19464 			sl->hit_cnt++;
19465 			/* reached equivalent register/stack state,
19466 			 * prune the search.
19467 			 * Registers read by the continuation are read by us.
19468 			 * If we have any write marks in env->cur_state, they
19469 			 * will prevent corresponding reads in the continuation
19470 			 * from reaching our parent (an explored_state).  Our
19471 			 * own state will get the read marks recorded, but
19472 			 * they'll be immediately forgotten as we're pruning
19473 			 * this state and will pop a new one.
19474 			 */
19475 			err = propagate_liveness(env, &sl->state, cur, NULL);
19476 
19477 			/* if previous state reached the exit with precision and
19478 			 * current state is equivalent to it (except precision marks)
19479 			 * the precision needs to be propagated back in
19480 			 * the current state.
19481 			 */
19482 			if (is_jmp_point(env, env->insn_idx))
19483 				err = err ? : push_jmp_history(env, cur, 0, 0);
19484 			err = err ? : propagate_precision(env, &sl->state, cur, NULL);
19485 			if (err)
19486 				return err;
19487 			/* When processing iterator based loops above propagate_liveness and
19488 			 * propagate_precision calls are not sufficient to transfer all relevant
19489 			 * read and precision marks. E.g. consider the following case:
19490 			 *
19491 			 *  .-> A --.  Assume the states are visited in the order A, B, C.
19492 			 *  |   |   |  Assume that state B reaches a state equivalent to state A.
19493 			 *  |   v   v  At this point, state C is not processed yet, so state A
19494 			 *  '-- B   C  has not received any read or precision marks from C.
19495 			 *             Thus, marks propagated from A to B are incomplete.
19496 			 *
19497 			 * The verifier mitigates this by performing the following steps:
19498 			 *
19499 			 * - Prior to the main verification pass, strongly connected components
19500 			 *   (SCCs) are computed over the program's control flow graph,
19501 			 *   intraprocedurally.
19502 			 *
19503 			 * - During the main verification pass, `maybe_enter_scc()` checks
19504 			 *   whether the current verifier state is entering an SCC. If so, an
19505 			 *   instance of a `bpf_scc_visit` object is created, and the state
19506 			 *   entering the SCC is recorded as the entry state.
19507 			 *
19508 			 * - This instance is associated not with the SCC itself, but with a
19509 			 *   `bpf_scc_callchain`: a tuple consisting of the call sites leading to
19510 			 *   the SCC and the SCC id. See `compute_scc_callchain()`.
19511 			 *
19512 			 * - When a verification path encounters a `states_equal(...,
19513 			 *   RANGE_WITHIN)` condition, there exists a call chain describing the
19514 			 *   current state and a corresponding `bpf_scc_visit` instance. A copy
19515 			 *   of the current state is created and added to
19516 			 *   `bpf_scc_visit->backedges`.
19517 			 *
19518 			 * - When a verification path terminates, `maybe_exit_scc()` is called
19519 			 *   from `update_branch_counts()`. For states with `branches == 0`, it
19520 			 *   checks whether the state is the entry state of any `bpf_scc_visit`
19521 			 *   instance. If it is, this indicates that all paths originating from
19522 			 *   this SCC visit have been explored. `propagate_backedges()` is then
19523 			 *   called, which propagates read and precision marks through the
19524 			 *   backedges until a fixed point is reached.
19525 			 *   (In the earlier example, this would propagate marks from A to B,
19526 			 *    from C to A, and then again from A to B.)
19527 			 *
19528 			 * A note on callchains
19529 			 * --------------------
19530 			 *
19531 			 * Consider the following example:
19532 			 *
19533 			 *     void foo() { loop { ... SCC#1 ... } }
19534 			 *     void main() {
19535 			 *       A: foo();
19536 			 *       B: ...
19537 			 *       C: foo();
19538 			 *     }
19539 			 *
19540 			 * Here, there are two distinct callchains leading to SCC#1:
19541 			 * - (A, SCC#1)
19542 			 * - (C, SCC#1)
19543 			 *
19544 			 * Each callchain identifies a separate `bpf_scc_visit` instance that
19545 			 * accumulates backedge states. The `propagate_{liveness,precision}()`
19546 			 * functions traverse the parent state of each backedge state, which
19547 			 * means these parent states must remain valid (i.e., not freed) while
19548 			 * the corresponding `bpf_scc_visit` instance exists.
19549 			 *
19550 			 * Associating `bpf_scc_visit` instances directly with SCCs instead of
19551 			 * callchains would break this invariant:
19552 			 * - States explored during `C: foo()` would contribute backedges to
19553 			 *   SCC#1, but SCC#1 would only be exited once the exploration of
19554 			 *   `A: foo()` completes.
19555 			 * - By that time, the states explored between `A: foo()` and `C: foo()`
19556 			 *   (i.e., `B: ...`) may have already been freed, causing the parent
19557 			 *   links for states from `C: foo()` to become invalid.
19558 			 */
19559 			if (loop) {
19560 				struct bpf_scc_backedge *backedge;
19561 
19562 				backedge = kzalloc(sizeof(*backedge), GFP_KERNEL_ACCOUNT);
19563 				if (!backedge)
19564 					return -ENOMEM;
19565 				err = copy_verifier_state(&backedge->state, cur);
19566 				backedge->state.equal_state = &sl->state;
19567 				backedge->state.insn_idx = insn_idx;
19568 				err = err ?: add_scc_backedge(env, &sl->state, backedge);
19569 				if (err) {
19570 					free_verifier_state(&backedge->state, false);
19571 					kvfree(backedge);
19572 					return err;
19573 				}
19574 			}
19575 			return 1;
19576 		}
19577 miss:
19578 		/* when new state is not going to be added do not increase miss count.
19579 		 * Otherwise several loop iterations will remove the state
19580 		 * recorded earlier. The goal of these heuristics is to have
19581 		 * states from some iterations of the loop (some in the beginning
19582 		 * and some at the end) to help pruning.
19583 		 */
19584 		if (add_new_state)
19585 			sl->miss_cnt++;
19586 		/* heuristic to determine whether this state is beneficial
19587 		 * to keep checking from state equivalence point of view.
19588 		 * Higher numbers increase max_states_per_insn and verification time,
19589 		 * but do not meaningfully decrease insn_processed.
19590 		 * 'n' controls how many times state could miss before eviction.
19591 		 * Use bigger 'n' for checkpoints because evicting checkpoint states
19592 		 * too early would hinder iterator convergence.
19593 		 */
19594 		n = is_force_checkpoint(env, insn_idx) && sl->state.branches > 0 ? 64 : 3;
19595 		if (sl->miss_cnt > sl->hit_cnt * n + n) {
19596 			/* the state is unlikely to be useful. Remove it to
19597 			 * speed up verification
19598 			 */
19599 			sl->in_free_list = true;
19600 			list_del(&sl->node);
19601 			list_add(&sl->node, &env->free_list);
19602 			env->free_list_size++;
19603 			env->explored_states_size--;
19604 			maybe_free_verifier_state(env, sl);
19605 		}
19606 	}
19607 
19608 	if (env->max_states_per_insn < states_cnt)
19609 		env->max_states_per_insn = states_cnt;
19610 
19611 	if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
19612 		return 0;
19613 
19614 	if (!add_new_state)
19615 		return 0;
19616 
19617 	/* There were no equivalent states, remember the current one.
19618 	 * Technically the current state is not proven to be safe yet,
19619 	 * but it will either reach outer most bpf_exit (which means it's safe)
19620 	 * or it will be rejected. When there are no loops the verifier won't be
19621 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
19622 	 * again on the way to bpf_exit.
19623 	 * When looping the sl->state.branches will be > 0 and this state
19624 	 * will not be considered for equivalence until branches == 0.
19625 	 */
19626 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL_ACCOUNT);
19627 	if (!new_sl)
19628 		return -ENOMEM;
19629 	env->total_states++;
19630 	env->explored_states_size++;
19631 	update_peak_states(env);
19632 	env->prev_jmps_processed = env->jmps_processed;
19633 	env->prev_insn_processed = env->insn_processed;
19634 
19635 	/* forget precise markings we inherited, see __mark_chain_precision */
19636 	if (env->bpf_capable)
19637 		mark_all_scalars_imprecise(env, cur);
19638 
19639 	/* add new state to the head of linked list */
19640 	new = &new_sl->state;
19641 	err = copy_verifier_state(new, cur);
19642 	if (err) {
19643 		free_verifier_state(new, false);
19644 		kfree(new_sl);
19645 		return err;
19646 	}
19647 	new->insn_idx = insn_idx;
19648 	verifier_bug_if(new->branches != 1, env,
19649 			"%s:branches_to_explore=%d insn %d",
19650 			__func__, new->branches, insn_idx);
19651 	err = maybe_enter_scc(env, new);
19652 	if (err) {
19653 		free_verifier_state(new, false);
19654 		kvfree(new_sl);
19655 		return err;
19656 	}
19657 
19658 	cur->parent = new;
19659 	cur->first_insn_idx = insn_idx;
19660 	cur->dfs_depth = new->dfs_depth + 1;
19661 	clear_jmp_history(cur);
19662 	list_add(&new_sl->node, head);
19663 
19664 	/* connect new state to parentage chain. Current frame needs all
19665 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
19666 	 * to the stack implicitly by JITs) so in callers' frames connect just
19667 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
19668 	 * the state of the call instruction (with WRITTEN set), and r0 comes
19669 	 * from callee with its full parentage chain, anyway.
19670 	 */
19671 	/* clear write marks in current state: the writes we did are not writes
19672 	 * our child did, so they don't screen off its reads from us.
19673 	 * (There are no read marks in current state, because reads always mark
19674 	 * their parent and current state never has children yet.  Only
19675 	 * explored_states can get read marks.)
19676 	 */
19677 	for (j = 0; j <= cur->curframe; j++) {
19678 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
19679 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
19680 		for (i = 0; i < BPF_REG_FP; i++)
19681 			cur->frame[j]->regs[i].live = REG_LIVE_NONE;
19682 	}
19683 
19684 	/* all stack frames are accessible from callee, clear them all */
19685 	for (j = 0; j <= cur->curframe; j++) {
19686 		struct bpf_func_state *frame = cur->frame[j];
19687 		struct bpf_func_state *newframe = new->frame[j];
19688 
19689 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
19690 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
19691 			frame->stack[i].spilled_ptr.parent =
19692 						&newframe->stack[i].spilled_ptr;
19693 		}
19694 	}
19695 	return 0;
19696 }
19697 
19698 /* Return true if it's OK to have the same insn return a different type. */
19699 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
19700 {
19701 	switch (base_type(type)) {
19702 	case PTR_TO_CTX:
19703 	case PTR_TO_SOCKET:
19704 	case PTR_TO_SOCK_COMMON:
19705 	case PTR_TO_TCP_SOCK:
19706 	case PTR_TO_XDP_SOCK:
19707 	case PTR_TO_BTF_ID:
19708 	case PTR_TO_ARENA:
19709 		return false;
19710 	default:
19711 		return true;
19712 	}
19713 }
19714 
19715 /* If an instruction was previously used with particular pointer types, then we
19716  * need to be careful to avoid cases such as the below, where it may be ok
19717  * for one branch accessing the pointer, but not ok for the other branch:
19718  *
19719  * R1 = sock_ptr
19720  * goto X;
19721  * ...
19722  * R1 = some_other_valid_ptr;
19723  * goto X;
19724  * ...
19725  * R2 = *(u32 *)(R1 + 0);
19726  */
19727 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
19728 {
19729 	return src != prev && (!reg_type_mismatch_ok(src) ||
19730 			       !reg_type_mismatch_ok(prev));
19731 }
19732 
19733 static bool is_ptr_to_mem_or_btf_id(enum bpf_reg_type type)
19734 {
19735 	switch (base_type(type)) {
19736 	case PTR_TO_MEM:
19737 	case PTR_TO_BTF_ID:
19738 		return true;
19739 	default:
19740 		return false;
19741 	}
19742 }
19743 
19744 static bool is_ptr_to_mem(enum bpf_reg_type type)
19745 {
19746 	return base_type(type) == PTR_TO_MEM;
19747 }
19748 
19749 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type,
19750 			     bool allow_trust_mismatch)
19751 {
19752 	enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type;
19753 	enum bpf_reg_type merged_type;
19754 
19755 	if (*prev_type == NOT_INIT) {
19756 		/* Saw a valid insn
19757 		 * dst_reg = *(u32 *)(src_reg + off)
19758 		 * save type to validate intersecting paths
19759 		 */
19760 		*prev_type = type;
19761 	} else if (reg_type_mismatch(type, *prev_type)) {
19762 		/* Abuser program is trying to use the same insn
19763 		 * dst_reg = *(u32*) (src_reg + off)
19764 		 * with different pointer types:
19765 		 * src_reg == ctx in one branch and
19766 		 * src_reg == stack|map in some other branch.
19767 		 * Reject it.
19768 		 */
19769 		if (allow_trust_mismatch &&
19770 		    is_ptr_to_mem_or_btf_id(type) &&
19771 		    is_ptr_to_mem_or_btf_id(*prev_type)) {
19772 			/*
19773 			 * Have to support a use case when one path through
19774 			 * the program yields TRUSTED pointer while another
19775 			 * is UNTRUSTED. Fallback to UNTRUSTED to generate
19776 			 * BPF_PROBE_MEM/BPF_PROBE_MEMSX.
19777 			 * Same behavior of MEM_RDONLY flag.
19778 			 */
19779 			if (is_ptr_to_mem(type) || is_ptr_to_mem(*prev_type))
19780 				merged_type = PTR_TO_MEM;
19781 			else
19782 				merged_type = PTR_TO_BTF_ID;
19783 			if ((type & PTR_UNTRUSTED) || (*prev_type & PTR_UNTRUSTED))
19784 				merged_type |= PTR_UNTRUSTED;
19785 			if ((type & MEM_RDONLY) || (*prev_type & MEM_RDONLY))
19786 				merged_type |= MEM_RDONLY;
19787 			*prev_type = merged_type;
19788 		} else {
19789 			verbose(env, "same insn cannot be used with different pointers\n");
19790 			return -EINVAL;
19791 		}
19792 	}
19793 
19794 	return 0;
19795 }
19796 
19797 enum {
19798 	PROCESS_BPF_EXIT = 1
19799 };
19800 
19801 static int process_bpf_exit_full(struct bpf_verifier_env *env,
19802 				 bool *do_print_state,
19803 				 bool exception_exit)
19804 {
19805 	/* We must do check_reference_leak here before
19806 	 * prepare_func_exit to handle the case when
19807 	 * state->curframe > 0, it may be a callback function,
19808 	 * for which reference_state must match caller reference
19809 	 * state when it exits.
19810 	 */
19811 	int err = check_resource_leak(env, exception_exit,
19812 				      !env->cur_state->curframe,
19813 				      "BPF_EXIT instruction in main prog");
19814 	if (err)
19815 		return err;
19816 
19817 	/* The side effect of the prepare_func_exit which is
19818 	 * being skipped is that it frees bpf_func_state.
19819 	 * Typically, process_bpf_exit will only be hit with
19820 	 * outermost exit. copy_verifier_state in pop_stack will
19821 	 * handle freeing of any extra bpf_func_state left over
19822 	 * from not processing all nested function exits. We
19823 	 * also skip return code checks as they are not needed
19824 	 * for exceptional exits.
19825 	 */
19826 	if (exception_exit)
19827 		return PROCESS_BPF_EXIT;
19828 
19829 	if (env->cur_state->curframe) {
19830 		/* exit from nested function */
19831 		err = prepare_func_exit(env, &env->insn_idx);
19832 		if (err)
19833 			return err;
19834 		*do_print_state = true;
19835 		return 0;
19836 	}
19837 
19838 	err = check_return_code(env, BPF_REG_0, "R0");
19839 	if (err)
19840 		return err;
19841 	return PROCESS_BPF_EXIT;
19842 }
19843 
19844 static int do_check_insn(struct bpf_verifier_env *env, bool *do_print_state)
19845 {
19846 	int err;
19847 	struct bpf_insn *insn = &env->prog->insnsi[env->insn_idx];
19848 	u8 class = BPF_CLASS(insn->code);
19849 
19850 	if (class == BPF_ALU || class == BPF_ALU64) {
19851 		err = check_alu_op(env, insn);
19852 		if (err)
19853 			return err;
19854 
19855 	} else if (class == BPF_LDX) {
19856 		bool is_ldsx = BPF_MODE(insn->code) == BPF_MEMSX;
19857 
19858 		/* Check for reserved fields is already done in
19859 		 * resolve_pseudo_ldimm64().
19860 		 */
19861 		err = check_load_mem(env, insn, false, is_ldsx, true, "ldx");
19862 		if (err)
19863 			return err;
19864 	} else if (class == BPF_STX) {
19865 		if (BPF_MODE(insn->code) == BPF_ATOMIC) {
19866 			err = check_atomic(env, insn);
19867 			if (err)
19868 				return err;
19869 			env->insn_idx++;
19870 			return 0;
19871 		}
19872 
19873 		if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
19874 			verbose(env, "BPF_STX uses reserved fields\n");
19875 			return -EINVAL;
19876 		}
19877 
19878 		err = check_store_reg(env, insn, false);
19879 		if (err)
19880 			return err;
19881 	} else if (class == BPF_ST) {
19882 		enum bpf_reg_type dst_reg_type;
19883 
19884 		if (BPF_MODE(insn->code) != BPF_MEM ||
19885 		    insn->src_reg != BPF_REG_0) {
19886 			verbose(env, "BPF_ST uses reserved fields\n");
19887 			return -EINVAL;
19888 		}
19889 		/* check src operand */
19890 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
19891 		if (err)
19892 			return err;
19893 
19894 		dst_reg_type = cur_regs(env)[insn->dst_reg].type;
19895 
19896 		/* check that memory (dst_reg + off) is writeable */
19897 		err = check_mem_access(env, env->insn_idx, insn->dst_reg,
19898 				       insn->off, BPF_SIZE(insn->code),
19899 				       BPF_WRITE, -1, false, false);
19900 		if (err)
19901 			return err;
19902 
19903 		err = save_aux_ptr_type(env, dst_reg_type, false);
19904 		if (err)
19905 			return err;
19906 	} else if (class == BPF_JMP || class == BPF_JMP32) {
19907 		u8 opcode = BPF_OP(insn->code);
19908 
19909 		env->jmps_processed++;
19910 		if (opcode == BPF_CALL) {
19911 			if (BPF_SRC(insn->code) != BPF_K ||
19912 			    (insn->src_reg != BPF_PSEUDO_KFUNC_CALL &&
19913 			     insn->off != 0) ||
19914 			    (insn->src_reg != BPF_REG_0 &&
19915 			     insn->src_reg != BPF_PSEUDO_CALL &&
19916 			     insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
19917 			    insn->dst_reg != BPF_REG_0 || class == BPF_JMP32) {
19918 				verbose(env, "BPF_CALL uses reserved fields\n");
19919 				return -EINVAL;
19920 			}
19921 
19922 			if (env->cur_state->active_locks) {
19923 				if ((insn->src_reg == BPF_REG_0 &&
19924 				     insn->imm != BPF_FUNC_spin_unlock) ||
19925 				    (insn->src_reg == BPF_PSEUDO_KFUNC_CALL &&
19926 				     (insn->off != 0 || !kfunc_spin_allowed(insn->imm)))) {
19927 					verbose(env,
19928 						"function calls are not allowed while holding a lock\n");
19929 					return -EINVAL;
19930 				}
19931 			}
19932 			if (insn->src_reg == BPF_PSEUDO_CALL) {
19933 				err = check_func_call(env, insn, &env->insn_idx);
19934 			} else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
19935 				err = check_kfunc_call(env, insn, &env->insn_idx);
19936 				if (!err && is_bpf_throw_kfunc(insn))
19937 					return process_bpf_exit_full(env, do_print_state, true);
19938 			} else {
19939 				err = check_helper_call(env, insn, &env->insn_idx);
19940 			}
19941 			if (err)
19942 				return err;
19943 
19944 			mark_reg_scratched(env, BPF_REG_0);
19945 		} else if (opcode == BPF_JA) {
19946 			if (BPF_SRC(insn->code) != BPF_K ||
19947 			    insn->src_reg != BPF_REG_0 ||
19948 			    insn->dst_reg != BPF_REG_0 ||
19949 			    (class == BPF_JMP && insn->imm != 0) ||
19950 			    (class == BPF_JMP32 && insn->off != 0)) {
19951 				verbose(env, "BPF_JA uses reserved fields\n");
19952 				return -EINVAL;
19953 			}
19954 
19955 			if (class == BPF_JMP)
19956 				env->insn_idx += insn->off + 1;
19957 			else
19958 				env->insn_idx += insn->imm + 1;
19959 			return 0;
19960 		} else if (opcode == BPF_EXIT) {
19961 			if (BPF_SRC(insn->code) != BPF_K ||
19962 			    insn->imm != 0 ||
19963 			    insn->src_reg != BPF_REG_0 ||
19964 			    insn->dst_reg != BPF_REG_0 ||
19965 			    class == BPF_JMP32) {
19966 				verbose(env, "BPF_EXIT uses reserved fields\n");
19967 				return -EINVAL;
19968 			}
19969 			return process_bpf_exit_full(env, do_print_state, false);
19970 		} else {
19971 			err = check_cond_jmp_op(env, insn, &env->insn_idx);
19972 			if (err)
19973 				return err;
19974 		}
19975 	} else if (class == BPF_LD) {
19976 		u8 mode = BPF_MODE(insn->code);
19977 
19978 		if (mode == BPF_ABS || mode == BPF_IND) {
19979 			err = check_ld_abs(env, insn);
19980 			if (err)
19981 				return err;
19982 
19983 		} else if (mode == BPF_IMM) {
19984 			err = check_ld_imm(env, insn);
19985 			if (err)
19986 				return err;
19987 
19988 			env->insn_idx++;
19989 			sanitize_mark_insn_seen(env);
19990 		} else {
19991 			verbose(env, "invalid BPF_LD mode\n");
19992 			return -EINVAL;
19993 		}
19994 	} else {
19995 		verbose(env, "unknown insn class %d\n", class);
19996 		return -EINVAL;
19997 	}
19998 
19999 	env->insn_idx++;
20000 	return 0;
20001 }
20002 
20003 static int do_check(struct bpf_verifier_env *env)
20004 {
20005 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
20006 	struct bpf_verifier_state *state = env->cur_state;
20007 	struct bpf_insn *insns = env->prog->insnsi;
20008 	int insn_cnt = env->prog->len;
20009 	bool do_print_state = false;
20010 	int prev_insn_idx = -1;
20011 
20012 	for (;;) {
20013 		struct bpf_insn *insn;
20014 		struct bpf_insn_aux_data *insn_aux;
20015 		int err;
20016 
20017 		/* reset current history entry on each new instruction */
20018 		env->cur_hist_ent = NULL;
20019 
20020 		env->prev_insn_idx = prev_insn_idx;
20021 		if (env->insn_idx >= insn_cnt) {
20022 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
20023 				env->insn_idx, insn_cnt);
20024 			return -EFAULT;
20025 		}
20026 
20027 		insn = &insns[env->insn_idx];
20028 		insn_aux = &env->insn_aux_data[env->insn_idx];
20029 
20030 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
20031 			verbose(env,
20032 				"BPF program is too large. Processed %d insn\n",
20033 				env->insn_processed);
20034 			return -E2BIG;
20035 		}
20036 
20037 		state->last_insn_idx = env->prev_insn_idx;
20038 		state->insn_idx = env->insn_idx;
20039 
20040 		if (is_prune_point(env, env->insn_idx)) {
20041 			err = is_state_visited(env, env->insn_idx);
20042 			if (err < 0)
20043 				return err;
20044 			if (err == 1) {
20045 				/* found equivalent state, can prune the search */
20046 				if (env->log.level & BPF_LOG_LEVEL) {
20047 					if (do_print_state)
20048 						verbose(env, "\nfrom %d to %d%s: safe\n",
20049 							env->prev_insn_idx, env->insn_idx,
20050 							env->cur_state->speculative ?
20051 							" (speculative execution)" : "");
20052 					else
20053 						verbose(env, "%d: safe\n", env->insn_idx);
20054 				}
20055 				goto process_bpf_exit;
20056 			}
20057 		}
20058 
20059 		if (is_jmp_point(env, env->insn_idx)) {
20060 			err = push_jmp_history(env, state, 0, 0);
20061 			if (err)
20062 				return err;
20063 		}
20064 
20065 		if (signal_pending(current))
20066 			return -EAGAIN;
20067 
20068 		if (need_resched())
20069 			cond_resched();
20070 
20071 		if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) {
20072 			verbose(env, "\nfrom %d to %d%s:",
20073 				env->prev_insn_idx, env->insn_idx,
20074 				env->cur_state->speculative ?
20075 				" (speculative execution)" : "");
20076 			print_verifier_state(env, state, state->curframe, true);
20077 			do_print_state = false;
20078 		}
20079 
20080 		if (env->log.level & BPF_LOG_LEVEL) {
20081 			if (verifier_state_scratched(env))
20082 				print_insn_state(env, state, state->curframe);
20083 
20084 			verbose_linfo(env, env->insn_idx, "; ");
20085 			env->prev_log_pos = env->log.end_pos;
20086 			verbose(env, "%d: ", env->insn_idx);
20087 			verbose_insn(env, insn);
20088 			env->prev_insn_print_pos = env->log.end_pos - env->prev_log_pos;
20089 			env->prev_log_pos = env->log.end_pos;
20090 		}
20091 
20092 		if (bpf_prog_is_offloaded(env->prog->aux)) {
20093 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
20094 							   env->prev_insn_idx);
20095 			if (err)
20096 				return err;
20097 		}
20098 
20099 		sanitize_mark_insn_seen(env);
20100 		prev_insn_idx = env->insn_idx;
20101 
20102 		/* Reduce verification complexity by stopping speculative path
20103 		 * verification when a nospec is encountered.
20104 		 */
20105 		if (state->speculative && insn_aux->nospec)
20106 			goto process_bpf_exit;
20107 
20108 		err = do_check_insn(env, &do_print_state);
20109 		if (error_recoverable_with_nospec(err) && state->speculative) {
20110 			/* Prevent this speculative path from ever reaching the
20111 			 * insn that would have been unsafe to execute.
20112 			 */
20113 			insn_aux->nospec = true;
20114 			/* If it was an ADD/SUB insn, potentially remove any
20115 			 * markings for alu sanitization.
20116 			 */
20117 			insn_aux->alu_state = 0;
20118 			goto process_bpf_exit;
20119 		} else if (err < 0) {
20120 			return err;
20121 		} else if (err == PROCESS_BPF_EXIT) {
20122 			goto process_bpf_exit;
20123 		}
20124 		WARN_ON_ONCE(err);
20125 
20126 		if (state->speculative && insn_aux->nospec_result) {
20127 			/* If we are on a path that performed a jump-op, this
20128 			 * may skip a nospec patched-in after the jump. This can
20129 			 * currently never happen because nospec_result is only
20130 			 * used for the write-ops
20131 			 * `*(size*)(dst_reg+off)=src_reg|imm32` which must
20132 			 * never skip the following insn. Still, add a warning
20133 			 * to document this in case nospec_result is used
20134 			 * elsewhere in the future.
20135 			 *
20136 			 * All non-branch instructions have a single
20137 			 * fall-through edge. For these, nospec_result should
20138 			 * already work.
20139 			 */
20140 			if (verifier_bug_if(BPF_CLASS(insn->code) == BPF_JMP ||
20141 					    BPF_CLASS(insn->code) == BPF_JMP32, env,
20142 					    "speculation barrier after jump instruction may not have the desired effect"))
20143 				return -EFAULT;
20144 process_bpf_exit:
20145 			mark_verifier_state_scratched(env);
20146 			err = update_branch_counts(env, env->cur_state);
20147 			if (err)
20148 				return err;
20149 			err = pop_stack(env, &prev_insn_idx, &env->insn_idx,
20150 					pop_log);
20151 			if (err < 0) {
20152 				if (err != -ENOENT)
20153 					return err;
20154 				break;
20155 			} else {
20156 				do_print_state = true;
20157 				continue;
20158 			}
20159 		}
20160 	}
20161 
20162 	return 0;
20163 }
20164 
20165 static int find_btf_percpu_datasec(struct btf *btf)
20166 {
20167 	const struct btf_type *t;
20168 	const char *tname;
20169 	int i, n;
20170 
20171 	/*
20172 	 * Both vmlinux and module each have their own ".data..percpu"
20173 	 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
20174 	 * types to look at only module's own BTF types.
20175 	 */
20176 	n = btf_nr_types(btf);
20177 	if (btf_is_module(btf))
20178 		i = btf_nr_types(btf_vmlinux);
20179 	else
20180 		i = 1;
20181 
20182 	for(; i < n; i++) {
20183 		t = btf_type_by_id(btf, i);
20184 		if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
20185 			continue;
20186 
20187 		tname = btf_name_by_offset(btf, t->name_off);
20188 		if (!strcmp(tname, ".data..percpu"))
20189 			return i;
20190 	}
20191 
20192 	return -ENOENT;
20193 }
20194 
20195 /*
20196  * Add btf to the used_btfs array and return the index. (If the btf was
20197  * already added, then just return the index.) Upon successful insertion
20198  * increase btf refcnt, and, if present, also refcount the corresponding
20199  * kernel module.
20200  */
20201 static int __add_used_btf(struct bpf_verifier_env *env, struct btf *btf)
20202 {
20203 	struct btf_mod_pair *btf_mod;
20204 	int i;
20205 
20206 	/* check whether we recorded this BTF (and maybe module) already */
20207 	for (i = 0; i < env->used_btf_cnt; i++)
20208 		if (env->used_btfs[i].btf == btf)
20209 			return i;
20210 
20211 	if (env->used_btf_cnt >= MAX_USED_BTFS)
20212 		return -E2BIG;
20213 
20214 	btf_get(btf);
20215 
20216 	btf_mod = &env->used_btfs[env->used_btf_cnt];
20217 	btf_mod->btf = btf;
20218 	btf_mod->module = NULL;
20219 
20220 	/* if we reference variables from kernel module, bump its refcount */
20221 	if (btf_is_module(btf)) {
20222 		btf_mod->module = btf_try_get_module(btf);
20223 		if (!btf_mod->module) {
20224 			btf_put(btf);
20225 			return -ENXIO;
20226 		}
20227 	}
20228 
20229 	return env->used_btf_cnt++;
20230 }
20231 
20232 /* replace pseudo btf_id with kernel symbol address */
20233 static int __check_pseudo_btf_id(struct bpf_verifier_env *env,
20234 				 struct bpf_insn *insn,
20235 				 struct bpf_insn_aux_data *aux,
20236 				 struct btf *btf)
20237 {
20238 	const struct btf_var_secinfo *vsi;
20239 	const struct btf_type *datasec;
20240 	const struct btf_type *t;
20241 	const char *sym_name;
20242 	bool percpu = false;
20243 	u32 type, id = insn->imm;
20244 	s32 datasec_id;
20245 	u64 addr;
20246 	int i;
20247 
20248 	t = btf_type_by_id(btf, id);
20249 	if (!t) {
20250 		verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
20251 		return -ENOENT;
20252 	}
20253 
20254 	if (!btf_type_is_var(t) && !btf_type_is_func(t)) {
20255 		verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id);
20256 		return -EINVAL;
20257 	}
20258 
20259 	sym_name = btf_name_by_offset(btf, t->name_off);
20260 	addr = kallsyms_lookup_name(sym_name);
20261 	if (!addr) {
20262 		verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
20263 			sym_name);
20264 		return -ENOENT;
20265 	}
20266 	insn[0].imm = (u32)addr;
20267 	insn[1].imm = addr >> 32;
20268 
20269 	if (btf_type_is_func(t)) {
20270 		aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
20271 		aux->btf_var.mem_size = 0;
20272 		return 0;
20273 	}
20274 
20275 	datasec_id = find_btf_percpu_datasec(btf);
20276 	if (datasec_id > 0) {
20277 		datasec = btf_type_by_id(btf, datasec_id);
20278 		for_each_vsi(i, datasec, vsi) {
20279 			if (vsi->type == id) {
20280 				percpu = true;
20281 				break;
20282 			}
20283 		}
20284 	}
20285 
20286 	type = t->type;
20287 	t = btf_type_skip_modifiers(btf, type, NULL);
20288 	if (percpu) {
20289 		aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU;
20290 		aux->btf_var.btf = btf;
20291 		aux->btf_var.btf_id = type;
20292 	} else if (!btf_type_is_struct(t)) {
20293 		const struct btf_type *ret;
20294 		const char *tname;
20295 		u32 tsize;
20296 
20297 		/* resolve the type size of ksym. */
20298 		ret = btf_resolve_size(btf, t, &tsize);
20299 		if (IS_ERR(ret)) {
20300 			tname = btf_name_by_offset(btf, t->name_off);
20301 			verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
20302 				tname, PTR_ERR(ret));
20303 			return -EINVAL;
20304 		}
20305 		aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
20306 		aux->btf_var.mem_size = tsize;
20307 	} else {
20308 		aux->btf_var.reg_type = PTR_TO_BTF_ID;
20309 		aux->btf_var.btf = btf;
20310 		aux->btf_var.btf_id = type;
20311 	}
20312 
20313 	return 0;
20314 }
20315 
20316 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
20317 			       struct bpf_insn *insn,
20318 			       struct bpf_insn_aux_data *aux)
20319 {
20320 	struct btf *btf;
20321 	int btf_fd;
20322 	int err;
20323 
20324 	btf_fd = insn[1].imm;
20325 	if (btf_fd) {
20326 		CLASS(fd, f)(btf_fd);
20327 
20328 		btf = __btf_get_by_fd(f);
20329 		if (IS_ERR(btf)) {
20330 			verbose(env, "invalid module BTF object FD specified.\n");
20331 			return -EINVAL;
20332 		}
20333 	} else {
20334 		if (!btf_vmlinux) {
20335 			verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
20336 			return -EINVAL;
20337 		}
20338 		btf = btf_vmlinux;
20339 	}
20340 
20341 	err = __check_pseudo_btf_id(env, insn, aux, btf);
20342 	if (err)
20343 		return err;
20344 
20345 	err = __add_used_btf(env, btf);
20346 	if (err < 0)
20347 		return err;
20348 	return 0;
20349 }
20350 
20351 static bool is_tracing_prog_type(enum bpf_prog_type type)
20352 {
20353 	switch (type) {
20354 	case BPF_PROG_TYPE_KPROBE:
20355 	case BPF_PROG_TYPE_TRACEPOINT:
20356 	case BPF_PROG_TYPE_PERF_EVENT:
20357 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
20358 	case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
20359 		return true;
20360 	default:
20361 		return false;
20362 	}
20363 }
20364 
20365 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
20366 {
20367 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
20368 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
20369 }
20370 
20371 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
20372 					struct bpf_map *map,
20373 					struct bpf_prog *prog)
20374 
20375 {
20376 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
20377 
20378 	if (btf_record_has_field(map->record, BPF_LIST_HEAD) ||
20379 	    btf_record_has_field(map->record, BPF_RB_ROOT)) {
20380 		if (is_tracing_prog_type(prog_type)) {
20381 			verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n");
20382 			return -EINVAL;
20383 		}
20384 	}
20385 
20386 	if (btf_record_has_field(map->record, BPF_SPIN_LOCK | BPF_RES_SPIN_LOCK)) {
20387 		if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
20388 			verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
20389 			return -EINVAL;
20390 		}
20391 
20392 		if (is_tracing_prog_type(prog_type)) {
20393 			verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
20394 			return -EINVAL;
20395 		}
20396 	}
20397 
20398 	if (btf_record_has_field(map->record, BPF_TIMER)) {
20399 		if (is_tracing_prog_type(prog_type)) {
20400 			verbose(env, "tracing progs cannot use bpf_timer yet\n");
20401 			return -EINVAL;
20402 		}
20403 	}
20404 
20405 	if (btf_record_has_field(map->record, BPF_WORKQUEUE)) {
20406 		if (is_tracing_prog_type(prog_type)) {
20407 			verbose(env, "tracing progs cannot use bpf_wq yet\n");
20408 			return -EINVAL;
20409 		}
20410 	}
20411 
20412 	if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) &&
20413 	    !bpf_offload_prog_map_match(prog, map)) {
20414 		verbose(env, "offload device mismatch between prog and map\n");
20415 		return -EINVAL;
20416 	}
20417 
20418 	if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
20419 		verbose(env, "bpf_struct_ops map cannot be used in prog\n");
20420 		return -EINVAL;
20421 	}
20422 
20423 	if (prog->sleepable)
20424 		switch (map->map_type) {
20425 		case BPF_MAP_TYPE_HASH:
20426 		case BPF_MAP_TYPE_LRU_HASH:
20427 		case BPF_MAP_TYPE_ARRAY:
20428 		case BPF_MAP_TYPE_PERCPU_HASH:
20429 		case BPF_MAP_TYPE_PERCPU_ARRAY:
20430 		case BPF_MAP_TYPE_LRU_PERCPU_HASH:
20431 		case BPF_MAP_TYPE_ARRAY_OF_MAPS:
20432 		case BPF_MAP_TYPE_HASH_OF_MAPS:
20433 		case BPF_MAP_TYPE_RINGBUF:
20434 		case BPF_MAP_TYPE_USER_RINGBUF:
20435 		case BPF_MAP_TYPE_INODE_STORAGE:
20436 		case BPF_MAP_TYPE_SK_STORAGE:
20437 		case BPF_MAP_TYPE_TASK_STORAGE:
20438 		case BPF_MAP_TYPE_CGRP_STORAGE:
20439 		case BPF_MAP_TYPE_QUEUE:
20440 		case BPF_MAP_TYPE_STACK:
20441 		case BPF_MAP_TYPE_ARENA:
20442 			break;
20443 		default:
20444 			verbose(env,
20445 				"Sleepable programs can only use array, hash, ringbuf and local storage maps\n");
20446 			return -EINVAL;
20447 		}
20448 
20449 	if (bpf_map_is_cgroup_storage(map) &&
20450 	    bpf_cgroup_storage_assign(env->prog->aux, map)) {
20451 		verbose(env, "only one cgroup storage of each type is allowed\n");
20452 		return -EBUSY;
20453 	}
20454 
20455 	if (map->map_type == BPF_MAP_TYPE_ARENA) {
20456 		if (env->prog->aux->arena) {
20457 			verbose(env, "Only one arena per program\n");
20458 			return -EBUSY;
20459 		}
20460 		if (!env->allow_ptr_leaks || !env->bpf_capable) {
20461 			verbose(env, "CAP_BPF and CAP_PERFMON are required to use arena\n");
20462 			return -EPERM;
20463 		}
20464 		if (!env->prog->jit_requested) {
20465 			verbose(env, "JIT is required to use arena\n");
20466 			return -EOPNOTSUPP;
20467 		}
20468 		if (!bpf_jit_supports_arena()) {
20469 			verbose(env, "JIT doesn't support arena\n");
20470 			return -EOPNOTSUPP;
20471 		}
20472 		env->prog->aux->arena = (void *)map;
20473 		if (!bpf_arena_get_user_vm_start(env->prog->aux->arena)) {
20474 			verbose(env, "arena's user address must be set via map_extra or mmap()\n");
20475 			return -EINVAL;
20476 		}
20477 	}
20478 
20479 	return 0;
20480 }
20481 
20482 static int __add_used_map(struct bpf_verifier_env *env, struct bpf_map *map)
20483 {
20484 	int i, err;
20485 
20486 	/* check whether we recorded this map already */
20487 	for (i = 0; i < env->used_map_cnt; i++)
20488 		if (env->used_maps[i] == map)
20489 			return i;
20490 
20491 	if (env->used_map_cnt >= MAX_USED_MAPS) {
20492 		verbose(env, "The total number of maps per program has reached the limit of %u\n",
20493 			MAX_USED_MAPS);
20494 		return -E2BIG;
20495 	}
20496 
20497 	err = check_map_prog_compatibility(env, map, env->prog);
20498 	if (err)
20499 		return err;
20500 
20501 	if (env->prog->sleepable)
20502 		atomic64_inc(&map->sleepable_refcnt);
20503 
20504 	/* hold the map. If the program is rejected by verifier,
20505 	 * the map will be released by release_maps() or it
20506 	 * will be used by the valid program until it's unloaded
20507 	 * and all maps are released in bpf_free_used_maps()
20508 	 */
20509 	bpf_map_inc(map);
20510 
20511 	env->used_maps[env->used_map_cnt++] = map;
20512 
20513 	return env->used_map_cnt - 1;
20514 }
20515 
20516 /* Add map behind fd to used maps list, if it's not already there, and return
20517  * its index.
20518  * Returns <0 on error, or >= 0 index, on success.
20519  */
20520 static int add_used_map(struct bpf_verifier_env *env, int fd)
20521 {
20522 	struct bpf_map *map;
20523 	CLASS(fd, f)(fd);
20524 
20525 	map = __bpf_map_get(f);
20526 	if (IS_ERR(map)) {
20527 		verbose(env, "fd %d is not pointing to valid bpf_map\n", fd);
20528 		return PTR_ERR(map);
20529 	}
20530 
20531 	return __add_used_map(env, map);
20532 }
20533 
20534 /* find and rewrite pseudo imm in ld_imm64 instructions:
20535  *
20536  * 1. if it accesses map FD, replace it with actual map pointer.
20537  * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
20538  *
20539  * NOTE: btf_vmlinux is required for converting pseudo btf_id.
20540  */
20541 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
20542 {
20543 	struct bpf_insn *insn = env->prog->insnsi;
20544 	int insn_cnt = env->prog->len;
20545 	int i, err;
20546 
20547 	err = bpf_prog_calc_tag(env->prog);
20548 	if (err)
20549 		return err;
20550 
20551 	for (i = 0; i < insn_cnt; i++, insn++) {
20552 		if (BPF_CLASS(insn->code) == BPF_LDX &&
20553 		    ((BPF_MODE(insn->code) != BPF_MEM && BPF_MODE(insn->code) != BPF_MEMSX) ||
20554 		    insn->imm != 0)) {
20555 			verbose(env, "BPF_LDX uses reserved fields\n");
20556 			return -EINVAL;
20557 		}
20558 
20559 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
20560 			struct bpf_insn_aux_data *aux;
20561 			struct bpf_map *map;
20562 			int map_idx;
20563 			u64 addr;
20564 			u32 fd;
20565 
20566 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
20567 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
20568 			    insn[1].off != 0) {
20569 				verbose(env, "invalid bpf_ld_imm64 insn\n");
20570 				return -EINVAL;
20571 			}
20572 
20573 			if (insn[0].src_reg == 0)
20574 				/* valid generic load 64-bit imm */
20575 				goto next_insn;
20576 
20577 			if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
20578 				aux = &env->insn_aux_data[i];
20579 				err = check_pseudo_btf_id(env, insn, aux);
20580 				if (err)
20581 					return err;
20582 				goto next_insn;
20583 			}
20584 
20585 			if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
20586 				aux = &env->insn_aux_data[i];
20587 				aux->ptr_type = PTR_TO_FUNC;
20588 				goto next_insn;
20589 			}
20590 
20591 			/* In final convert_pseudo_ld_imm64() step, this is
20592 			 * converted into regular 64-bit imm load insn.
20593 			 */
20594 			switch (insn[0].src_reg) {
20595 			case BPF_PSEUDO_MAP_VALUE:
20596 			case BPF_PSEUDO_MAP_IDX_VALUE:
20597 				break;
20598 			case BPF_PSEUDO_MAP_FD:
20599 			case BPF_PSEUDO_MAP_IDX:
20600 				if (insn[1].imm == 0)
20601 					break;
20602 				fallthrough;
20603 			default:
20604 				verbose(env, "unrecognized bpf_ld_imm64 insn\n");
20605 				return -EINVAL;
20606 			}
20607 
20608 			switch (insn[0].src_reg) {
20609 			case BPF_PSEUDO_MAP_IDX_VALUE:
20610 			case BPF_PSEUDO_MAP_IDX:
20611 				if (bpfptr_is_null(env->fd_array)) {
20612 					verbose(env, "fd_idx without fd_array is invalid\n");
20613 					return -EPROTO;
20614 				}
20615 				if (copy_from_bpfptr_offset(&fd, env->fd_array,
20616 							    insn[0].imm * sizeof(fd),
20617 							    sizeof(fd)))
20618 					return -EFAULT;
20619 				break;
20620 			default:
20621 				fd = insn[0].imm;
20622 				break;
20623 			}
20624 
20625 			map_idx = add_used_map(env, fd);
20626 			if (map_idx < 0)
20627 				return map_idx;
20628 			map = env->used_maps[map_idx];
20629 
20630 			aux = &env->insn_aux_data[i];
20631 			aux->map_index = map_idx;
20632 
20633 			if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
20634 			    insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
20635 				addr = (unsigned long)map;
20636 			} else {
20637 				u32 off = insn[1].imm;
20638 
20639 				if (off >= BPF_MAX_VAR_OFF) {
20640 					verbose(env, "direct value offset of %u is not allowed\n", off);
20641 					return -EINVAL;
20642 				}
20643 
20644 				if (!map->ops->map_direct_value_addr) {
20645 					verbose(env, "no direct value access support for this map type\n");
20646 					return -EINVAL;
20647 				}
20648 
20649 				err = map->ops->map_direct_value_addr(map, &addr, off);
20650 				if (err) {
20651 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
20652 						map->value_size, off);
20653 					return err;
20654 				}
20655 
20656 				aux->map_off = off;
20657 				addr += off;
20658 			}
20659 
20660 			insn[0].imm = (u32)addr;
20661 			insn[1].imm = addr >> 32;
20662 
20663 next_insn:
20664 			insn++;
20665 			i++;
20666 			continue;
20667 		}
20668 
20669 		/* Basic sanity check before we invest more work here. */
20670 		if (!bpf_opcode_in_insntable(insn->code)) {
20671 			verbose(env, "unknown opcode %02x\n", insn->code);
20672 			return -EINVAL;
20673 		}
20674 	}
20675 
20676 	/* now all pseudo BPF_LD_IMM64 instructions load valid
20677 	 * 'struct bpf_map *' into a register instead of user map_fd.
20678 	 * These pointers will be used later by verifier to validate map access.
20679 	 */
20680 	return 0;
20681 }
20682 
20683 /* drop refcnt of maps used by the rejected program */
20684 static void release_maps(struct bpf_verifier_env *env)
20685 {
20686 	__bpf_free_used_maps(env->prog->aux, env->used_maps,
20687 			     env->used_map_cnt);
20688 }
20689 
20690 /* drop refcnt of maps used by the rejected program */
20691 static void release_btfs(struct bpf_verifier_env *env)
20692 {
20693 	__bpf_free_used_btfs(env->used_btfs, env->used_btf_cnt);
20694 }
20695 
20696 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
20697 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
20698 {
20699 	struct bpf_insn *insn = env->prog->insnsi;
20700 	int insn_cnt = env->prog->len;
20701 	int i;
20702 
20703 	for (i = 0; i < insn_cnt; i++, insn++) {
20704 		if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
20705 			continue;
20706 		if (insn->src_reg == BPF_PSEUDO_FUNC)
20707 			continue;
20708 		insn->src_reg = 0;
20709 	}
20710 }
20711 
20712 /* single env->prog->insni[off] instruction was replaced with the range
20713  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
20714  * [0, off) and [off, end) to new locations, so the patched range stays zero
20715  */
20716 static void adjust_insn_aux_data(struct bpf_verifier_env *env,
20717 				 struct bpf_insn_aux_data *new_data,
20718 				 struct bpf_prog *new_prog, u32 off, u32 cnt)
20719 {
20720 	struct bpf_insn_aux_data *old_data = env->insn_aux_data;
20721 	struct bpf_insn *insn = new_prog->insnsi;
20722 	u32 old_seen = old_data[off].seen;
20723 	u32 prog_len;
20724 	int i;
20725 
20726 	/* aux info at OFF always needs adjustment, no matter fast path
20727 	 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
20728 	 * original insn at old prog.
20729 	 */
20730 	old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
20731 
20732 	if (cnt == 1)
20733 		return;
20734 	prog_len = new_prog->len;
20735 
20736 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
20737 	memcpy(new_data + off + cnt - 1, old_data + off,
20738 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
20739 	for (i = off; i < off + cnt - 1; i++) {
20740 		/* Expand insni[off]'s seen count to the patched range. */
20741 		new_data[i].seen = old_seen;
20742 		new_data[i].zext_dst = insn_has_def32(env, insn + i);
20743 	}
20744 	env->insn_aux_data = new_data;
20745 	vfree(old_data);
20746 }
20747 
20748 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
20749 {
20750 	int i;
20751 
20752 	if (len == 1)
20753 		return;
20754 	/* NOTE: fake 'exit' subprog should be updated as well. */
20755 	for (i = 0; i <= env->subprog_cnt; i++) {
20756 		if (env->subprog_info[i].start <= off)
20757 			continue;
20758 		env->subprog_info[i].start += len - 1;
20759 	}
20760 }
20761 
20762 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
20763 {
20764 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
20765 	int i, sz = prog->aux->size_poke_tab;
20766 	struct bpf_jit_poke_descriptor *desc;
20767 
20768 	for (i = 0; i < sz; i++) {
20769 		desc = &tab[i];
20770 		if (desc->insn_idx <= off)
20771 			continue;
20772 		desc->insn_idx += len - 1;
20773 	}
20774 }
20775 
20776 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
20777 					    const struct bpf_insn *patch, u32 len)
20778 {
20779 	struct bpf_prog *new_prog;
20780 	struct bpf_insn_aux_data *new_data = NULL;
20781 
20782 	if (len > 1) {
20783 		new_data = vzalloc(array_size(env->prog->len + len - 1,
20784 					      sizeof(struct bpf_insn_aux_data)));
20785 		if (!new_data)
20786 			return NULL;
20787 	}
20788 
20789 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
20790 	if (IS_ERR(new_prog)) {
20791 		if (PTR_ERR(new_prog) == -ERANGE)
20792 			verbose(env,
20793 				"insn %d cannot be patched due to 16-bit range\n",
20794 				env->insn_aux_data[off].orig_idx);
20795 		vfree(new_data);
20796 		return NULL;
20797 	}
20798 	adjust_insn_aux_data(env, new_data, new_prog, off, len);
20799 	adjust_subprog_starts(env, off, len);
20800 	adjust_poke_descs(new_prog, off, len);
20801 	return new_prog;
20802 }
20803 
20804 /*
20805  * For all jmp insns in a given 'prog' that point to 'tgt_idx' insn adjust the
20806  * jump offset by 'delta'.
20807  */
20808 static int adjust_jmp_off(struct bpf_prog *prog, u32 tgt_idx, u32 delta)
20809 {
20810 	struct bpf_insn *insn = prog->insnsi;
20811 	u32 insn_cnt = prog->len, i;
20812 	s32 imm;
20813 	s16 off;
20814 
20815 	for (i = 0; i < insn_cnt; i++, insn++) {
20816 		u8 code = insn->code;
20817 
20818 		if (tgt_idx <= i && i < tgt_idx + delta)
20819 			continue;
20820 
20821 		if ((BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) ||
20822 		    BPF_OP(code) == BPF_CALL || BPF_OP(code) == BPF_EXIT)
20823 			continue;
20824 
20825 		if (insn->code == (BPF_JMP32 | BPF_JA)) {
20826 			if (i + 1 + insn->imm != tgt_idx)
20827 				continue;
20828 			if (check_add_overflow(insn->imm, delta, &imm))
20829 				return -ERANGE;
20830 			insn->imm = imm;
20831 		} else {
20832 			if (i + 1 + insn->off != tgt_idx)
20833 				continue;
20834 			if (check_add_overflow(insn->off, delta, &off))
20835 				return -ERANGE;
20836 			insn->off = off;
20837 		}
20838 	}
20839 	return 0;
20840 }
20841 
20842 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
20843 					      u32 off, u32 cnt)
20844 {
20845 	int i, j;
20846 
20847 	/* find first prog starting at or after off (first to remove) */
20848 	for (i = 0; i < env->subprog_cnt; i++)
20849 		if (env->subprog_info[i].start >= off)
20850 			break;
20851 	/* find first prog starting at or after off + cnt (first to stay) */
20852 	for (j = i; j < env->subprog_cnt; j++)
20853 		if (env->subprog_info[j].start >= off + cnt)
20854 			break;
20855 	/* if j doesn't start exactly at off + cnt, we are just removing
20856 	 * the front of previous prog
20857 	 */
20858 	if (env->subprog_info[j].start != off + cnt)
20859 		j--;
20860 
20861 	if (j > i) {
20862 		struct bpf_prog_aux *aux = env->prog->aux;
20863 		int move;
20864 
20865 		/* move fake 'exit' subprog as well */
20866 		move = env->subprog_cnt + 1 - j;
20867 
20868 		memmove(env->subprog_info + i,
20869 			env->subprog_info + j,
20870 			sizeof(*env->subprog_info) * move);
20871 		env->subprog_cnt -= j - i;
20872 
20873 		/* remove func_info */
20874 		if (aux->func_info) {
20875 			move = aux->func_info_cnt - j;
20876 
20877 			memmove(aux->func_info + i,
20878 				aux->func_info + j,
20879 				sizeof(*aux->func_info) * move);
20880 			aux->func_info_cnt -= j - i;
20881 			/* func_info->insn_off is set after all code rewrites,
20882 			 * in adjust_btf_func() - no need to adjust
20883 			 */
20884 		}
20885 	} else {
20886 		/* convert i from "first prog to remove" to "first to adjust" */
20887 		if (env->subprog_info[i].start == off)
20888 			i++;
20889 	}
20890 
20891 	/* update fake 'exit' subprog as well */
20892 	for (; i <= env->subprog_cnt; i++)
20893 		env->subprog_info[i].start -= cnt;
20894 
20895 	return 0;
20896 }
20897 
20898 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
20899 				      u32 cnt)
20900 {
20901 	struct bpf_prog *prog = env->prog;
20902 	u32 i, l_off, l_cnt, nr_linfo;
20903 	struct bpf_line_info *linfo;
20904 
20905 	nr_linfo = prog->aux->nr_linfo;
20906 	if (!nr_linfo)
20907 		return 0;
20908 
20909 	linfo = prog->aux->linfo;
20910 
20911 	/* find first line info to remove, count lines to be removed */
20912 	for (i = 0; i < nr_linfo; i++)
20913 		if (linfo[i].insn_off >= off)
20914 			break;
20915 
20916 	l_off = i;
20917 	l_cnt = 0;
20918 	for (; i < nr_linfo; i++)
20919 		if (linfo[i].insn_off < off + cnt)
20920 			l_cnt++;
20921 		else
20922 			break;
20923 
20924 	/* First live insn doesn't match first live linfo, it needs to "inherit"
20925 	 * last removed linfo.  prog is already modified, so prog->len == off
20926 	 * means no live instructions after (tail of the program was removed).
20927 	 */
20928 	if (prog->len != off && l_cnt &&
20929 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
20930 		l_cnt--;
20931 		linfo[--i].insn_off = off + cnt;
20932 	}
20933 
20934 	/* remove the line info which refer to the removed instructions */
20935 	if (l_cnt) {
20936 		memmove(linfo + l_off, linfo + i,
20937 			sizeof(*linfo) * (nr_linfo - i));
20938 
20939 		prog->aux->nr_linfo -= l_cnt;
20940 		nr_linfo = prog->aux->nr_linfo;
20941 	}
20942 
20943 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
20944 	for (i = l_off; i < nr_linfo; i++)
20945 		linfo[i].insn_off -= cnt;
20946 
20947 	/* fix up all subprogs (incl. 'exit') which start >= off */
20948 	for (i = 0; i <= env->subprog_cnt; i++)
20949 		if (env->subprog_info[i].linfo_idx > l_off) {
20950 			/* program may have started in the removed region but
20951 			 * may not be fully removed
20952 			 */
20953 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
20954 				env->subprog_info[i].linfo_idx -= l_cnt;
20955 			else
20956 				env->subprog_info[i].linfo_idx = l_off;
20957 		}
20958 
20959 	return 0;
20960 }
20961 
20962 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
20963 {
20964 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
20965 	unsigned int orig_prog_len = env->prog->len;
20966 	int err;
20967 
20968 	if (bpf_prog_is_offloaded(env->prog->aux))
20969 		bpf_prog_offload_remove_insns(env, off, cnt);
20970 
20971 	err = bpf_remove_insns(env->prog, off, cnt);
20972 	if (err)
20973 		return err;
20974 
20975 	err = adjust_subprog_starts_after_remove(env, off, cnt);
20976 	if (err)
20977 		return err;
20978 
20979 	err = bpf_adj_linfo_after_remove(env, off, cnt);
20980 	if (err)
20981 		return err;
20982 
20983 	memmove(aux_data + off,	aux_data + off + cnt,
20984 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
20985 
20986 	return 0;
20987 }
20988 
20989 /* The verifier does more data flow analysis than llvm and will not
20990  * explore branches that are dead at run time. Malicious programs can
20991  * have dead code too. Therefore replace all dead at-run-time code
20992  * with 'ja -1'.
20993  *
20994  * Just nops are not optimal, e.g. if they would sit at the end of the
20995  * program and through another bug we would manage to jump there, then
20996  * we'd execute beyond program memory otherwise. Returning exception
20997  * code also wouldn't work since we can have subprogs where the dead
20998  * code could be located.
20999  */
21000 static void sanitize_dead_code(struct bpf_verifier_env *env)
21001 {
21002 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
21003 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
21004 	struct bpf_insn *insn = env->prog->insnsi;
21005 	const int insn_cnt = env->prog->len;
21006 	int i;
21007 
21008 	for (i = 0; i < insn_cnt; i++) {
21009 		if (aux_data[i].seen)
21010 			continue;
21011 		memcpy(insn + i, &trap, sizeof(trap));
21012 		aux_data[i].zext_dst = false;
21013 	}
21014 }
21015 
21016 static bool insn_is_cond_jump(u8 code)
21017 {
21018 	u8 op;
21019 
21020 	op = BPF_OP(code);
21021 	if (BPF_CLASS(code) == BPF_JMP32)
21022 		return op != BPF_JA;
21023 
21024 	if (BPF_CLASS(code) != BPF_JMP)
21025 		return false;
21026 
21027 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
21028 }
21029 
21030 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
21031 {
21032 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
21033 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
21034 	struct bpf_insn *insn = env->prog->insnsi;
21035 	const int insn_cnt = env->prog->len;
21036 	int i;
21037 
21038 	for (i = 0; i < insn_cnt; i++, insn++) {
21039 		if (!insn_is_cond_jump(insn->code))
21040 			continue;
21041 
21042 		if (!aux_data[i + 1].seen)
21043 			ja.off = insn->off;
21044 		else if (!aux_data[i + 1 + insn->off].seen)
21045 			ja.off = 0;
21046 		else
21047 			continue;
21048 
21049 		if (bpf_prog_is_offloaded(env->prog->aux))
21050 			bpf_prog_offload_replace_insn(env, i, &ja);
21051 
21052 		memcpy(insn, &ja, sizeof(ja));
21053 	}
21054 }
21055 
21056 static int opt_remove_dead_code(struct bpf_verifier_env *env)
21057 {
21058 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
21059 	int insn_cnt = env->prog->len;
21060 	int i, err;
21061 
21062 	for (i = 0; i < insn_cnt; i++) {
21063 		int j;
21064 
21065 		j = 0;
21066 		while (i + j < insn_cnt && !aux_data[i + j].seen)
21067 			j++;
21068 		if (!j)
21069 			continue;
21070 
21071 		err = verifier_remove_insns(env, i, j);
21072 		if (err)
21073 			return err;
21074 		insn_cnt = env->prog->len;
21075 	}
21076 
21077 	return 0;
21078 }
21079 
21080 static const struct bpf_insn NOP = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
21081 static const struct bpf_insn MAY_GOTO_0 = BPF_RAW_INSN(BPF_JMP | BPF_JCOND, 0, 0, 0, 0);
21082 
21083 static int opt_remove_nops(struct bpf_verifier_env *env)
21084 {
21085 	struct bpf_insn *insn = env->prog->insnsi;
21086 	int insn_cnt = env->prog->len;
21087 	bool is_may_goto_0, is_ja;
21088 	int i, err;
21089 
21090 	for (i = 0; i < insn_cnt; i++) {
21091 		is_may_goto_0 = !memcmp(&insn[i], &MAY_GOTO_0, sizeof(MAY_GOTO_0));
21092 		is_ja = !memcmp(&insn[i], &NOP, sizeof(NOP));
21093 
21094 		if (!is_may_goto_0 && !is_ja)
21095 			continue;
21096 
21097 		err = verifier_remove_insns(env, i, 1);
21098 		if (err)
21099 			return err;
21100 		insn_cnt--;
21101 		/* Go back one insn to catch may_goto +1; may_goto +0 sequence */
21102 		i -= (is_may_goto_0 && i > 0) ? 2 : 1;
21103 	}
21104 
21105 	return 0;
21106 }
21107 
21108 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
21109 					 const union bpf_attr *attr)
21110 {
21111 	struct bpf_insn *patch;
21112 	/* use env->insn_buf as two independent buffers */
21113 	struct bpf_insn *zext_patch = env->insn_buf;
21114 	struct bpf_insn *rnd_hi32_patch = &env->insn_buf[2];
21115 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
21116 	int i, patch_len, delta = 0, len = env->prog->len;
21117 	struct bpf_insn *insns = env->prog->insnsi;
21118 	struct bpf_prog *new_prog;
21119 	bool rnd_hi32;
21120 
21121 	rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
21122 	zext_patch[1] = BPF_ZEXT_REG(0);
21123 	rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
21124 	rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
21125 	rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
21126 	for (i = 0; i < len; i++) {
21127 		int adj_idx = i + delta;
21128 		struct bpf_insn insn;
21129 		int load_reg;
21130 
21131 		insn = insns[adj_idx];
21132 		load_reg = insn_def_regno(&insn);
21133 		if (!aux[adj_idx].zext_dst) {
21134 			u8 code, class;
21135 			u32 imm_rnd;
21136 
21137 			if (!rnd_hi32)
21138 				continue;
21139 
21140 			code = insn.code;
21141 			class = BPF_CLASS(code);
21142 			if (load_reg == -1)
21143 				continue;
21144 
21145 			/* NOTE: arg "reg" (the fourth one) is only used for
21146 			 *       BPF_STX + SRC_OP, so it is safe to pass NULL
21147 			 *       here.
21148 			 */
21149 			if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
21150 				if (class == BPF_LD &&
21151 				    BPF_MODE(code) == BPF_IMM)
21152 					i++;
21153 				continue;
21154 			}
21155 
21156 			/* ctx load could be transformed into wider load. */
21157 			if (class == BPF_LDX &&
21158 			    aux[adj_idx].ptr_type == PTR_TO_CTX)
21159 				continue;
21160 
21161 			imm_rnd = get_random_u32();
21162 			rnd_hi32_patch[0] = insn;
21163 			rnd_hi32_patch[1].imm = imm_rnd;
21164 			rnd_hi32_patch[3].dst_reg = load_reg;
21165 			patch = rnd_hi32_patch;
21166 			patch_len = 4;
21167 			goto apply_patch_buffer;
21168 		}
21169 
21170 		/* Add in an zero-extend instruction if a) the JIT has requested
21171 		 * it or b) it's a CMPXCHG.
21172 		 *
21173 		 * The latter is because: BPF_CMPXCHG always loads a value into
21174 		 * R0, therefore always zero-extends. However some archs'
21175 		 * equivalent instruction only does this load when the
21176 		 * comparison is successful. This detail of CMPXCHG is
21177 		 * orthogonal to the general zero-extension behaviour of the
21178 		 * CPU, so it's treated independently of bpf_jit_needs_zext.
21179 		 */
21180 		if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
21181 			continue;
21182 
21183 		/* Zero-extension is done by the caller. */
21184 		if (bpf_pseudo_kfunc_call(&insn))
21185 			continue;
21186 
21187 		if (verifier_bug_if(load_reg == -1, env,
21188 				    "zext_dst is set, but no reg is defined"))
21189 			return -EFAULT;
21190 
21191 		zext_patch[0] = insn;
21192 		zext_patch[1].dst_reg = load_reg;
21193 		zext_patch[1].src_reg = load_reg;
21194 		patch = zext_patch;
21195 		patch_len = 2;
21196 apply_patch_buffer:
21197 		new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
21198 		if (!new_prog)
21199 			return -ENOMEM;
21200 		env->prog = new_prog;
21201 		insns = new_prog->insnsi;
21202 		aux = env->insn_aux_data;
21203 		delta += patch_len - 1;
21204 	}
21205 
21206 	return 0;
21207 }
21208 
21209 /* convert load instructions that access fields of a context type into a
21210  * sequence of instructions that access fields of the underlying structure:
21211  *     struct __sk_buff    -> struct sk_buff
21212  *     struct bpf_sock_ops -> struct sock
21213  */
21214 static int convert_ctx_accesses(struct bpf_verifier_env *env)
21215 {
21216 	struct bpf_subprog_info *subprogs = env->subprog_info;
21217 	const struct bpf_verifier_ops *ops = env->ops;
21218 	int i, cnt, size, ctx_field_size, ret, delta = 0, epilogue_cnt = 0;
21219 	const int insn_cnt = env->prog->len;
21220 	struct bpf_insn *epilogue_buf = env->epilogue_buf;
21221 	struct bpf_insn *insn_buf = env->insn_buf;
21222 	struct bpf_insn *insn;
21223 	u32 target_size, size_default, off;
21224 	struct bpf_prog *new_prog;
21225 	enum bpf_access_type type;
21226 	bool is_narrower_load;
21227 	int epilogue_idx = 0;
21228 
21229 	if (ops->gen_epilogue) {
21230 		epilogue_cnt = ops->gen_epilogue(epilogue_buf, env->prog,
21231 						 -(subprogs[0].stack_depth + 8));
21232 		if (epilogue_cnt >= INSN_BUF_SIZE) {
21233 			verifier_bug(env, "epilogue is too long");
21234 			return -EFAULT;
21235 		} else if (epilogue_cnt) {
21236 			/* Save the ARG_PTR_TO_CTX for the epilogue to use */
21237 			cnt = 0;
21238 			subprogs[0].stack_depth += 8;
21239 			insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_FP, BPF_REG_1,
21240 						      -subprogs[0].stack_depth);
21241 			insn_buf[cnt++] = env->prog->insnsi[0];
21242 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
21243 			if (!new_prog)
21244 				return -ENOMEM;
21245 			env->prog = new_prog;
21246 			delta += cnt - 1;
21247 
21248 			ret = add_kfunc_in_insns(env, epilogue_buf, epilogue_cnt - 1);
21249 			if (ret < 0)
21250 				return ret;
21251 		}
21252 	}
21253 
21254 	if (ops->gen_prologue || env->seen_direct_write) {
21255 		if (!ops->gen_prologue) {
21256 			verifier_bug(env, "gen_prologue is null");
21257 			return -EFAULT;
21258 		}
21259 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
21260 					env->prog);
21261 		if (cnt >= INSN_BUF_SIZE) {
21262 			verifier_bug(env, "prologue is too long");
21263 			return -EFAULT;
21264 		} else if (cnt) {
21265 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
21266 			if (!new_prog)
21267 				return -ENOMEM;
21268 
21269 			env->prog = new_prog;
21270 			delta += cnt - 1;
21271 
21272 			ret = add_kfunc_in_insns(env, insn_buf, cnt - 1);
21273 			if (ret < 0)
21274 				return ret;
21275 		}
21276 	}
21277 
21278 	if (delta)
21279 		WARN_ON(adjust_jmp_off(env->prog, 0, delta));
21280 
21281 	if (bpf_prog_is_offloaded(env->prog->aux))
21282 		return 0;
21283 
21284 	insn = env->prog->insnsi + delta;
21285 
21286 	for (i = 0; i < insn_cnt; i++, insn++) {
21287 		bpf_convert_ctx_access_t convert_ctx_access;
21288 		u8 mode;
21289 
21290 		if (env->insn_aux_data[i + delta].nospec) {
21291 			WARN_ON_ONCE(env->insn_aux_data[i + delta].alu_state);
21292 			struct bpf_insn *patch = insn_buf;
21293 
21294 			*patch++ = BPF_ST_NOSPEC();
21295 			*patch++ = *insn;
21296 			cnt = patch - insn_buf;
21297 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
21298 			if (!new_prog)
21299 				return -ENOMEM;
21300 
21301 			delta    += cnt - 1;
21302 			env->prog = new_prog;
21303 			insn      = new_prog->insnsi + i + delta;
21304 			/* This can not be easily merged with the
21305 			 * nospec_result-case, because an insn may require a
21306 			 * nospec before and after itself. Therefore also do not
21307 			 * 'continue' here but potentially apply further
21308 			 * patching to insn. *insn should equal patch[1] now.
21309 			 */
21310 		}
21311 
21312 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
21313 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
21314 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
21315 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW) ||
21316 		    insn->code == (BPF_LDX | BPF_MEMSX | BPF_B) ||
21317 		    insn->code == (BPF_LDX | BPF_MEMSX | BPF_H) ||
21318 		    insn->code == (BPF_LDX | BPF_MEMSX | BPF_W)) {
21319 			type = BPF_READ;
21320 		} else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
21321 			   insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
21322 			   insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
21323 			   insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
21324 			   insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
21325 			   insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
21326 			   insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
21327 			   insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
21328 			type = BPF_WRITE;
21329 		} else if ((insn->code == (BPF_STX | BPF_ATOMIC | BPF_B) ||
21330 			    insn->code == (BPF_STX | BPF_ATOMIC | BPF_H) ||
21331 			    insn->code == (BPF_STX | BPF_ATOMIC | BPF_W) ||
21332 			    insn->code == (BPF_STX | BPF_ATOMIC | BPF_DW)) &&
21333 			   env->insn_aux_data[i + delta].ptr_type == PTR_TO_ARENA) {
21334 			insn->code = BPF_STX | BPF_PROBE_ATOMIC | BPF_SIZE(insn->code);
21335 			env->prog->aux->num_exentries++;
21336 			continue;
21337 		} else if (insn->code == (BPF_JMP | BPF_EXIT) &&
21338 			   epilogue_cnt &&
21339 			   i + delta < subprogs[1].start) {
21340 			/* Generate epilogue for the main prog */
21341 			if (epilogue_idx) {
21342 				/* jump back to the earlier generated epilogue */
21343 				insn_buf[0] = BPF_JMP32_A(epilogue_idx - i - delta - 1);
21344 				cnt = 1;
21345 			} else {
21346 				memcpy(insn_buf, epilogue_buf,
21347 				       epilogue_cnt * sizeof(*epilogue_buf));
21348 				cnt = epilogue_cnt;
21349 				/* epilogue_idx cannot be 0. It must have at
21350 				 * least one ctx ptr saving insn before the
21351 				 * epilogue.
21352 				 */
21353 				epilogue_idx = i + delta;
21354 			}
21355 			goto patch_insn_buf;
21356 		} else {
21357 			continue;
21358 		}
21359 
21360 		if (type == BPF_WRITE &&
21361 		    env->insn_aux_data[i + delta].nospec_result) {
21362 			/* nospec_result is only used to mitigate Spectre v4 and
21363 			 * to limit verification-time for Spectre v1.
21364 			 */
21365 			struct bpf_insn *patch = insn_buf;
21366 
21367 			*patch++ = *insn;
21368 			*patch++ = BPF_ST_NOSPEC();
21369 			cnt = patch - insn_buf;
21370 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
21371 			if (!new_prog)
21372 				return -ENOMEM;
21373 
21374 			delta    += cnt - 1;
21375 			env->prog = new_prog;
21376 			insn      = new_prog->insnsi + i + delta;
21377 			continue;
21378 		}
21379 
21380 		switch ((int)env->insn_aux_data[i + delta].ptr_type) {
21381 		case PTR_TO_CTX:
21382 			if (!ops->convert_ctx_access)
21383 				continue;
21384 			convert_ctx_access = ops->convert_ctx_access;
21385 			break;
21386 		case PTR_TO_SOCKET:
21387 		case PTR_TO_SOCK_COMMON:
21388 			convert_ctx_access = bpf_sock_convert_ctx_access;
21389 			break;
21390 		case PTR_TO_TCP_SOCK:
21391 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
21392 			break;
21393 		case PTR_TO_XDP_SOCK:
21394 			convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
21395 			break;
21396 		case PTR_TO_BTF_ID:
21397 		case PTR_TO_BTF_ID | PTR_UNTRUSTED:
21398 		/* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike
21399 		 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot
21400 		 * be said once it is marked PTR_UNTRUSTED, hence we must handle
21401 		 * any faults for loads into such types. BPF_WRITE is disallowed
21402 		 * for this case.
21403 		 */
21404 		case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED:
21405 		case PTR_TO_MEM | MEM_RDONLY | PTR_UNTRUSTED:
21406 			if (type == BPF_READ) {
21407 				if (BPF_MODE(insn->code) == BPF_MEM)
21408 					insn->code = BPF_LDX | BPF_PROBE_MEM |
21409 						     BPF_SIZE((insn)->code);
21410 				else
21411 					insn->code = BPF_LDX | BPF_PROBE_MEMSX |
21412 						     BPF_SIZE((insn)->code);
21413 				env->prog->aux->num_exentries++;
21414 			}
21415 			continue;
21416 		case PTR_TO_ARENA:
21417 			if (BPF_MODE(insn->code) == BPF_MEMSX) {
21418 				verbose(env, "sign extending loads from arena are not supported yet\n");
21419 				return -EOPNOTSUPP;
21420 			}
21421 			insn->code = BPF_CLASS(insn->code) | BPF_PROBE_MEM32 | BPF_SIZE(insn->code);
21422 			env->prog->aux->num_exentries++;
21423 			continue;
21424 		default:
21425 			continue;
21426 		}
21427 
21428 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
21429 		size = BPF_LDST_BYTES(insn);
21430 		mode = BPF_MODE(insn->code);
21431 
21432 		/* If the read access is a narrower load of the field,
21433 		 * convert to a 4/8-byte load, to minimum program type specific
21434 		 * convert_ctx_access changes. If conversion is successful,
21435 		 * we will apply proper mask to the result.
21436 		 */
21437 		is_narrower_load = size < ctx_field_size;
21438 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
21439 		off = insn->off;
21440 		if (is_narrower_load) {
21441 			u8 size_code;
21442 
21443 			if (type == BPF_WRITE) {
21444 				verifier_bug(env, "narrow ctx access misconfigured");
21445 				return -EFAULT;
21446 			}
21447 
21448 			size_code = BPF_H;
21449 			if (ctx_field_size == 4)
21450 				size_code = BPF_W;
21451 			else if (ctx_field_size == 8)
21452 				size_code = BPF_DW;
21453 
21454 			insn->off = off & ~(size_default - 1);
21455 			insn->code = BPF_LDX | BPF_MEM | size_code;
21456 		}
21457 
21458 		target_size = 0;
21459 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
21460 					 &target_size);
21461 		if (cnt == 0 || cnt >= INSN_BUF_SIZE ||
21462 		    (ctx_field_size && !target_size)) {
21463 			verifier_bug(env, "error during ctx access conversion (%d)", cnt);
21464 			return -EFAULT;
21465 		}
21466 
21467 		if (is_narrower_load && size < target_size) {
21468 			u8 shift = bpf_ctx_narrow_access_offset(
21469 				off, size, size_default) * 8;
21470 			if (shift && cnt + 1 >= INSN_BUF_SIZE) {
21471 				verifier_bug(env, "narrow ctx load misconfigured");
21472 				return -EFAULT;
21473 			}
21474 			if (ctx_field_size <= 4) {
21475 				if (shift)
21476 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
21477 									insn->dst_reg,
21478 									shift);
21479 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
21480 								(1 << size * 8) - 1);
21481 			} else {
21482 				if (shift)
21483 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
21484 									insn->dst_reg,
21485 									shift);
21486 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
21487 								(1ULL << size * 8) - 1);
21488 			}
21489 		}
21490 		if (mode == BPF_MEMSX)
21491 			insn_buf[cnt++] = BPF_RAW_INSN(BPF_ALU64 | BPF_MOV | BPF_X,
21492 						       insn->dst_reg, insn->dst_reg,
21493 						       size * 8, 0);
21494 
21495 patch_insn_buf:
21496 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
21497 		if (!new_prog)
21498 			return -ENOMEM;
21499 
21500 		delta += cnt - 1;
21501 
21502 		/* keep walking new program and skip insns we just inserted */
21503 		env->prog = new_prog;
21504 		insn      = new_prog->insnsi + i + delta;
21505 	}
21506 
21507 	return 0;
21508 }
21509 
21510 static int jit_subprogs(struct bpf_verifier_env *env)
21511 {
21512 	struct bpf_prog *prog = env->prog, **func, *tmp;
21513 	int i, j, subprog_start, subprog_end = 0, len, subprog;
21514 	struct bpf_map *map_ptr;
21515 	struct bpf_insn *insn;
21516 	void *old_bpf_func;
21517 	int err, num_exentries;
21518 
21519 	if (env->subprog_cnt <= 1)
21520 		return 0;
21521 
21522 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
21523 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn))
21524 			continue;
21525 
21526 		/* Upon error here we cannot fall back to interpreter but
21527 		 * need a hard reject of the program. Thus -EFAULT is
21528 		 * propagated in any case.
21529 		 */
21530 		subprog = find_subprog(env, i + insn->imm + 1);
21531 		if (verifier_bug_if(subprog < 0, env, "No program to jit at insn %d",
21532 				    i + insn->imm + 1))
21533 			return -EFAULT;
21534 		/* temporarily remember subprog id inside insn instead of
21535 		 * aux_data, since next loop will split up all insns into funcs
21536 		 */
21537 		insn->off = subprog;
21538 		/* remember original imm in case JIT fails and fallback
21539 		 * to interpreter will be needed
21540 		 */
21541 		env->insn_aux_data[i].call_imm = insn->imm;
21542 		/* point imm to __bpf_call_base+1 from JITs point of view */
21543 		insn->imm = 1;
21544 		if (bpf_pseudo_func(insn)) {
21545 #if defined(MODULES_VADDR)
21546 			u64 addr = MODULES_VADDR;
21547 #else
21548 			u64 addr = VMALLOC_START;
21549 #endif
21550 			/* jit (e.g. x86_64) may emit fewer instructions
21551 			 * if it learns a u32 imm is the same as a u64 imm.
21552 			 * Set close enough to possible prog address.
21553 			 */
21554 			insn[0].imm = (u32)addr;
21555 			insn[1].imm = addr >> 32;
21556 		}
21557 	}
21558 
21559 	err = bpf_prog_alloc_jited_linfo(prog);
21560 	if (err)
21561 		goto out_undo_insn;
21562 
21563 	err = -ENOMEM;
21564 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
21565 	if (!func)
21566 		goto out_undo_insn;
21567 
21568 	for (i = 0; i < env->subprog_cnt; i++) {
21569 		subprog_start = subprog_end;
21570 		subprog_end = env->subprog_info[i + 1].start;
21571 
21572 		len = subprog_end - subprog_start;
21573 		/* bpf_prog_run() doesn't call subprogs directly,
21574 		 * hence main prog stats include the runtime of subprogs.
21575 		 * subprogs don't have IDs and not reachable via prog_get_next_id
21576 		 * func[i]->stats will never be accessed and stays NULL
21577 		 */
21578 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
21579 		if (!func[i])
21580 			goto out_free;
21581 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
21582 		       len * sizeof(struct bpf_insn));
21583 		func[i]->type = prog->type;
21584 		func[i]->len = len;
21585 		if (bpf_prog_calc_tag(func[i]))
21586 			goto out_free;
21587 		func[i]->is_func = 1;
21588 		func[i]->sleepable = prog->sleepable;
21589 		func[i]->aux->func_idx = i;
21590 		/* Below members will be freed only at prog->aux */
21591 		func[i]->aux->btf = prog->aux->btf;
21592 		func[i]->aux->func_info = prog->aux->func_info;
21593 		func[i]->aux->func_info_cnt = prog->aux->func_info_cnt;
21594 		func[i]->aux->poke_tab = prog->aux->poke_tab;
21595 		func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
21596 
21597 		for (j = 0; j < prog->aux->size_poke_tab; j++) {
21598 			struct bpf_jit_poke_descriptor *poke;
21599 
21600 			poke = &prog->aux->poke_tab[j];
21601 			if (poke->insn_idx < subprog_end &&
21602 			    poke->insn_idx >= subprog_start)
21603 				poke->aux = func[i]->aux;
21604 		}
21605 
21606 		func[i]->aux->name[0] = 'F';
21607 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
21608 		if (env->subprog_info[i].priv_stack_mode == PRIV_STACK_ADAPTIVE)
21609 			func[i]->aux->jits_use_priv_stack = true;
21610 
21611 		func[i]->jit_requested = 1;
21612 		func[i]->blinding_requested = prog->blinding_requested;
21613 		func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
21614 		func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab;
21615 		func[i]->aux->linfo = prog->aux->linfo;
21616 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
21617 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
21618 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
21619 		func[i]->aux->arena = prog->aux->arena;
21620 		num_exentries = 0;
21621 		insn = func[i]->insnsi;
21622 		for (j = 0; j < func[i]->len; j++, insn++) {
21623 			if (BPF_CLASS(insn->code) == BPF_LDX &&
21624 			    (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
21625 			     BPF_MODE(insn->code) == BPF_PROBE_MEM32 ||
21626 			     BPF_MODE(insn->code) == BPF_PROBE_MEMSX))
21627 				num_exentries++;
21628 			if ((BPF_CLASS(insn->code) == BPF_STX ||
21629 			     BPF_CLASS(insn->code) == BPF_ST) &&
21630 			     BPF_MODE(insn->code) == BPF_PROBE_MEM32)
21631 				num_exentries++;
21632 			if (BPF_CLASS(insn->code) == BPF_STX &&
21633 			     BPF_MODE(insn->code) == BPF_PROBE_ATOMIC)
21634 				num_exentries++;
21635 		}
21636 		func[i]->aux->num_exentries = num_exentries;
21637 		func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
21638 		func[i]->aux->exception_cb = env->subprog_info[i].is_exception_cb;
21639 		func[i]->aux->changes_pkt_data = env->subprog_info[i].changes_pkt_data;
21640 		func[i]->aux->might_sleep = env->subprog_info[i].might_sleep;
21641 		if (!i)
21642 			func[i]->aux->exception_boundary = env->seen_exception;
21643 		func[i] = bpf_int_jit_compile(func[i]);
21644 		if (!func[i]->jited) {
21645 			err = -ENOTSUPP;
21646 			goto out_free;
21647 		}
21648 		cond_resched();
21649 	}
21650 
21651 	/* at this point all bpf functions were successfully JITed
21652 	 * now populate all bpf_calls with correct addresses and
21653 	 * run last pass of JIT
21654 	 */
21655 	for (i = 0; i < env->subprog_cnt; i++) {
21656 		insn = func[i]->insnsi;
21657 		for (j = 0; j < func[i]->len; j++, insn++) {
21658 			if (bpf_pseudo_func(insn)) {
21659 				subprog = insn->off;
21660 				insn[0].imm = (u32)(long)func[subprog]->bpf_func;
21661 				insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
21662 				continue;
21663 			}
21664 			if (!bpf_pseudo_call(insn))
21665 				continue;
21666 			subprog = insn->off;
21667 			insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func);
21668 		}
21669 
21670 		/* we use the aux data to keep a list of the start addresses
21671 		 * of the JITed images for each function in the program
21672 		 *
21673 		 * for some architectures, such as powerpc64, the imm field
21674 		 * might not be large enough to hold the offset of the start
21675 		 * address of the callee's JITed image from __bpf_call_base
21676 		 *
21677 		 * in such cases, we can lookup the start address of a callee
21678 		 * by using its subprog id, available from the off field of
21679 		 * the call instruction, as an index for this list
21680 		 */
21681 		func[i]->aux->func = func;
21682 		func[i]->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt;
21683 		func[i]->aux->real_func_cnt = env->subprog_cnt;
21684 	}
21685 	for (i = 0; i < env->subprog_cnt; i++) {
21686 		old_bpf_func = func[i]->bpf_func;
21687 		tmp = bpf_int_jit_compile(func[i]);
21688 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
21689 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
21690 			err = -ENOTSUPP;
21691 			goto out_free;
21692 		}
21693 		cond_resched();
21694 	}
21695 
21696 	/* finally lock prog and jit images for all functions and
21697 	 * populate kallsysm. Begin at the first subprogram, since
21698 	 * bpf_prog_load will add the kallsyms for the main program.
21699 	 */
21700 	for (i = 1; i < env->subprog_cnt; i++) {
21701 		err = bpf_prog_lock_ro(func[i]);
21702 		if (err)
21703 			goto out_free;
21704 	}
21705 
21706 	for (i = 1; i < env->subprog_cnt; i++)
21707 		bpf_prog_kallsyms_add(func[i]);
21708 
21709 	/* Last step: make now unused interpreter insns from main
21710 	 * prog consistent for later dump requests, so they can
21711 	 * later look the same as if they were interpreted only.
21712 	 */
21713 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
21714 		if (bpf_pseudo_func(insn)) {
21715 			insn[0].imm = env->insn_aux_data[i].call_imm;
21716 			insn[1].imm = insn->off;
21717 			insn->off = 0;
21718 			continue;
21719 		}
21720 		if (!bpf_pseudo_call(insn))
21721 			continue;
21722 		insn->off = env->insn_aux_data[i].call_imm;
21723 		subprog = find_subprog(env, i + insn->off + 1);
21724 		insn->imm = subprog;
21725 	}
21726 
21727 	prog->jited = 1;
21728 	prog->bpf_func = func[0]->bpf_func;
21729 	prog->jited_len = func[0]->jited_len;
21730 	prog->aux->extable = func[0]->aux->extable;
21731 	prog->aux->num_exentries = func[0]->aux->num_exentries;
21732 	prog->aux->func = func;
21733 	prog->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt;
21734 	prog->aux->real_func_cnt = env->subprog_cnt;
21735 	prog->aux->bpf_exception_cb = (void *)func[env->exception_callback_subprog]->bpf_func;
21736 	prog->aux->exception_boundary = func[0]->aux->exception_boundary;
21737 	bpf_prog_jit_attempt_done(prog);
21738 	return 0;
21739 out_free:
21740 	/* We failed JIT'ing, so at this point we need to unregister poke
21741 	 * descriptors from subprogs, so that kernel is not attempting to
21742 	 * patch it anymore as we're freeing the subprog JIT memory.
21743 	 */
21744 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
21745 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
21746 		map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
21747 	}
21748 	/* At this point we're guaranteed that poke descriptors are not
21749 	 * live anymore. We can just unlink its descriptor table as it's
21750 	 * released with the main prog.
21751 	 */
21752 	for (i = 0; i < env->subprog_cnt; i++) {
21753 		if (!func[i])
21754 			continue;
21755 		func[i]->aux->poke_tab = NULL;
21756 		bpf_jit_free(func[i]);
21757 	}
21758 	kfree(func);
21759 out_undo_insn:
21760 	/* cleanup main prog to be interpreted */
21761 	prog->jit_requested = 0;
21762 	prog->blinding_requested = 0;
21763 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
21764 		if (!bpf_pseudo_call(insn))
21765 			continue;
21766 		insn->off = 0;
21767 		insn->imm = env->insn_aux_data[i].call_imm;
21768 	}
21769 	bpf_prog_jit_attempt_done(prog);
21770 	return err;
21771 }
21772 
21773 static int fixup_call_args(struct bpf_verifier_env *env)
21774 {
21775 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
21776 	struct bpf_prog *prog = env->prog;
21777 	struct bpf_insn *insn = prog->insnsi;
21778 	bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
21779 	int i, depth;
21780 #endif
21781 	int err = 0;
21782 
21783 	if (env->prog->jit_requested &&
21784 	    !bpf_prog_is_offloaded(env->prog->aux)) {
21785 		err = jit_subprogs(env);
21786 		if (err == 0)
21787 			return 0;
21788 		if (err == -EFAULT)
21789 			return err;
21790 	}
21791 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
21792 	if (has_kfunc_call) {
21793 		verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
21794 		return -EINVAL;
21795 	}
21796 	if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
21797 		/* When JIT fails the progs with bpf2bpf calls and tail_calls
21798 		 * have to be rejected, since interpreter doesn't support them yet.
21799 		 */
21800 		verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
21801 		return -EINVAL;
21802 	}
21803 	for (i = 0; i < prog->len; i++, insn++) {
21804 		if (bpf_pseudo_func(insn)) {
21805 			/* When JIT fails the progs with callback calls
21806 			 * have to be rejected, since interpreter doesn't support them yet.
21807 			 */
21808 			verbose(env, "callbacks are not allowed in non-JITed programs\n");
21809 			return -EINVAL;
21810 		}
21811 
21812 		if (!bpf_pseudo_call(insn))
21813 			continue;
21814 		depth = get_callee_stack_depth(env, insn, i);
21815 		if (depth < 0)
21816 			return depth;
21817 		bpf_patch_call_args(insn, depth);
21818 	}
21819 	err = 0;
21820 #endif
21821 	return err;
21822 }
21823 
21824 /* replace a generic kfunc with a specialized version if necessary */
21825 static void specialize_kfunc(struct bpf_verifier_env *env,
21826 			     u32 func_id, u16 offset, unsigned long *addr)
21827 {
21828 	struct bpf_prog *prog = env->prog;
21829 	bool seen_direct_write;
21830 	void *xdp_kfunc;
21831 	bool is_rdonly;
21832 
21833 	if (bpf_dev_bound_kfunc_id(func_id)) {
21834 		xdp_kfunc = bpf_dev_bound_resolve_kfunc(prog, func_id);
21835 		if (xdp_kfunc) {
21836 			*addr = (unsigned long)xdp_kfunc;
21837 			return;
21838 		}
21839 		/* fallback to default kfunc when not supported by netdev */
21840 	}
21841 
21842 	if (offset)
21843 		return;
21844 
21845 	if (func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
21846 		seen_direct_write = env->seen_direct_write;
21847 		is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE);
21848 
21849 		if (is_rdonly)
21850 			*addr = (unsigned long)bpf_dynptr_from_skb_rdonly;
21851 
21852 		/* restore env->seen_direct_write to its original value, since
21853 		 * may_access_direct_pkt_data mutates it
21854 		 */
21855 		env->seen_direct_write = seen_direct_write;
21856 	}
21857 
21858 	if (func_id == special_kfunc_list[KF_bpf_set_dentry_xattr] &&
21859 	    bpf_lsm_has_d_inode_locked(prog))
21860 		*addr = (unsigned long)bpf_set_dentry_xattr_locked;
21861 
21862 	if (func_id == special_kfunc_list[KF_bpf_remove_dentry_xattr] &&
21863 	    bpf_lsm_has_d_inode_locked(prog))
21864 		*addr = (unsigned long)bpf_remove_dentry_xattr_locked;
21865 }
21866 
21867 static void __fixup_collection_insert_kfunc(struct bpf_insn_aux_data *insn_aux,
21868 					    u16 struct_meta_reg,
21869 					    u16 node_offset_reg,
21870 					    struct bpf_insn *insn,
21871 					    struct bpf_insn *insn_buf,
21872 					    int *cnt)
21873 {
21874 	struct btf_struct_meta *kptr_struct_meta = insn_aux->kptr_struct_meta;
21875 	struct bpf_insn addr[2] = { BPF_LD_IMM64(struct_meta_reg, (long)kptr_struct_meta) };
21876 
21877 	insn_buf[0] = addr[0];
21878 	insn_buf[1] = addr[1];
21879 	insn_buf[2] = BPF_MOV64_IMM(node_offset_reg, insn_aux->insert_off);
21880 	insn_buf[3] = *insn;
21881 	*cnt = 4;
21882 }
21883 
21884 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
21885 			    struct bpf_insn *insn_buf, int insn_idx, int *cnt)
21886 {
21887 	const struct bpf_kfunc_desc *desc;
21888 
21889 	if (!insn->imm) {
21890 		verbose(env, "invalid kernel function call not eliminated in verifier pass\n");
21891 		return -EINVAL;
21892 	}
21893 
21894 	*cnt = 0;
21895 
21896 	/* insn->imm has the btf func_id. Replace it with an offset relative to
21897 	 * __bpf_call_base, unless the JIT needs to call functions that are
21898 	 * further than 32 bits away (bpf_jit_supports_far_kfunc_call()).
21899 	 */
21900 	desc = find_kfunc_desc(env->prog, insn->imm, insn->off);
21901 	if (!desc) {
21902 		verifier_bug(env, "kernel function descriptor not found for func_id %u",
21903 			     insn->imm);
21904 		return -EFAULT;
21905 	}
21906 
21907 	if (!bpf_jit_supports_far_kfunc_call())
21908 		insn->imm = BPF_CALL_IMM(desc->addr);
21909 	if (insn->off)
21910 		return 0;
21911 	if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl] ||
21912 	    desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
21913 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
21914 		struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
21915 		u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size;
21916 
21917 		if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl] && kptr_struct_meta) {
21918 			verifier_bug(env, "NULL kptr_struct_meta expected at insn_idx %d",
21919 				     insn_idx);
21920 			return -EFAULT;
21921 		}
21922 
21923 		insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size);
21924 		insn_buf[1] = addr[0];
21925 		insn_buf[2] = addr[1];
21926 		insn_buf[3] = *insn;
21927 		*cnt = 4;
21928 	} else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl] ||
21929 		   desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] ||
21930 		   desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
21931 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
21932 		struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
21933 
21934 		if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] && kptr_struct_meta) {
21935 			verifier_bug(env, "NULL kptr_struct_meta expected at insn_idx %d",
21936 				     insn_idx);
21937 			return -EFAULT;
21938 		}
21939 
21940 		if (desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] &&
21941 		    !kptr_struct_meta) {
21942 			verifier_bug(env, "kptr_struct_meta expected at insn_idx %d",
21943 				     insn_idx);
21944 			return -EFAULT;
21945 		}
21946 
21947 		insn_buf[0] = addr[0];
21948 		insn_buf[1] = addr[1];
21949 		insn_buf[2] = *insn;
21950 		*cnt = 3;
21951 	} else if (desc->func_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
21952 		   desc->func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
21953 		   desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
21954 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
21955 		int struct_meta_reg = BPF_REG_3;
21956 		int node_offset_reg = BPF_REG_4;
21957 
21958 		/* rbtree_add has extra 'less' arg, so args-to-fixup are in diff regs */
21959 		if (desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
21960 			struct_meta_reg = BPF_REG_4;
21961 			node_offset_reg = BPF_REG_5;
21962 		}
21963 
21964 		if (!kptr_struct_meta) {
21965 			verifier_bug(env, "kptr_struct_meta expected at insn_idx %d",
21966 				     insn_idx);
21967 			return -EFAULT;
21968 		}
21969 
21970 		__fixup_collection_insert_kfunc(&env->insn_aux_data[insn_idx], struct_meta_reg,
21971 						node_offset_reg, insn, insn_buf, cnt);
21972 	} else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] ||
21973 		   desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
21974 		insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1);
21975 		*cnt = 1;
21976 	}
21977 
21978 	if (env->insn_aux_data[insn_idx].arg_prog) {
21979 		u32 regno = env->insn_aux_data[insn_idx].arg_prog;
21980 		struct bpf_insn ld_addrs[2] = { BPF_LD_IMM64(regno, (long)env->prog->aux) };
21981 		int idx = *cnt;
21982 
21983 		insn_buf[idx++] = ld_addrs[0];
21984 		insn_buf[idx++] = ld_addrs[1];
21985 		insn_buf[idx++] = *insn;
21986 		*cnt = idx;
21987 	}
21988 	return 0;
21989 }
21990 
21991 /* The function requires that first instruction in 'patch' is insnsi[prog->len - 1] */
21992 static int add_hidden_subprog(struct bpf_verifier_env *env, struct bpf_insn *patch, int len)
21993 {
21994 	struct bpf_subprog_info *info = env->subprog_info;
21995 	int cnt = env->subprog_cnt;
21996 	struct bpf_prog *prog;
21997 
21998 	/* We only reserve one slot for hidden subprogs in subprog_info. */
21999 	if (env->hidden_subprog_cnt) {
22000 		verifier_bug(env, "only one hidden subprog supported");
22001 		return -EFAULT;
22002 	}
22003 	/* We're not patching any existing instruction, just appending the new
22004 	 * ones for the hidden subprog. Hence all of the adjustment operations
22005 	 * in bpf_patch_insn_data are no-ops.
22006 	 */
22007 	prog = bpf_patch_insn_data(env, env->prog->len - 1, patch, len);
22008 	if (!prog)
22009 		return -ENOMEM;
22010 	env->prog = prog;
22011 	info[cnt + 1].start = info[cnt].start;
22012 	info[cnt].start = prog->len - len + 1;
22013 	env->subprog_cnt++;
22014 	env->hidden_subprog_cnt++;
22015 	return 0;
22016 }
22017 
22018 /* Do various post-verification rewrites in a single program pass.
22019  * These rewrites simplify JIT and interpreter implementations.
22020  */
22021 static int do_misc_fixups(struct bpf_verifier_env *env)
22022 {
22023 	struct bpf_prog *prog = env->prog;
22024 	enum bpf_attach_type eatype = prog->expected_attach_type;
22025 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
22026 	struct bpf_insn *insn = prog->insnsi;
22027 	const struct bpf_func_proto *fn;
22028 	const int insn_cnt = prog->len;
22029 	const struct bpf_map_ops *ops;
22030 	struct bpf_insn_aux_data *aux;
22031 	struct bpf_insn *insn_buf = env->insn_buf;
22032 	struct bpf_prog *new_prog;
22033 	struct bpf_map *map_ptr;
22034 	int i, ret, cnt, delta = 0, cur_subprog = 0;
22035 	struct bpf_subprog_info *subprogs = env->subprog_info;
22036 	u16 stack_depth = subprogs[cur_subprog].stack_depth;
22037 	u16 stack_depth_extra = 0;
22038 
22039 	if (env->seen_exception && !env->exception_callback_subprog) {
22040 		struct bpf_insn *patch = insn_buf;
22041 
22042 		*patch++ = env->prog->insnsi[insn_cnt - 1];
22043 		*patch++ = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1);
22044 		*patch++ = BPF_EXIT_INSN();
22045 		ret = add_hidden_subprog(env, insn_buf, patch - insn_buf);
22046 		if (ret < 0)
22047 			return ret;
22048 		prog = env->prog;
22049 		insn = prog->insnsi;
22050 
22051 		env->exception_callback_subprog = env->subprog_cnt - 1;
22052 		/* Don't update insn_cnt, as add_hidden_subprog always appends insns */
22053 		mark_subprog_exc_cb(env, env->exception_callback_subprog);
22054 	}
22055 
22056 	for (i = 0; i < insn_cnt;) {
22057 		if (insn->code == (BPF_ALU64 | BPF_MOV | BPF_X) && insn->imm) {
22058 			if ((insn->off == BPF_ADDR_SPACE_CAST && insn->imm == 1) ||
22059 			    (((struct bpf_map *)env->prog->aux->arena)->map_flags & BPF_F_NO_USER_CONV)) {
22060 				/* convert to 32-bit mov that clears upper 32-bit */
22061 				insn->code = BPF_ALU | BPF_MOV | BPF_X;
22062 				/* clear off and imm, so it's a normal 'wX = wY' from JIT pov */
22063 				insn->off = 0;
22064 				insn->imm = 0;
22065 			} /* cast from as(0) to as(1) should be handled by JIT */
22066 			goto next_insn;
22067 		}
22068 
22069 		if (env->insn_aux_data[i + delta].needs_zext)
22070 			/* Convert BPF_CLASS(insn->code) == BPF_ALU64 to 32-bit ALU */
22071 			insn->code = BPF_ALU | BPF_OP(insn->code) | BPF_SRC(insn->code);
22072 
22073 		/* Make sdiv/smod divide-by-minus-one exceptions impossible. */
22074 		if ((insn->code == (BPF_ALU64 | BPF_MOD | BPF_K) ||
22075 		     insn->code == (BPF_ALU64 | BPF_DIV | BPF_K) ||
22076 		     insn->code == (BPF_ALU | BPF_MOD | BPF_K) ||
22077 		     insn->code == (BPF_ALU | BPF_DIV | BPF_K)) &&
22078 		    insn->off == 1 && insn->imm == -1) {
22079 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
22080 			bool isdiv = BPF_OP(insn->code) == BPF_DIV;
22081 			struct bpf_insn *patch = insn_buf;
22082 
22083 			if (isdiv)
22084 				*patch++ = BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) |
22085 							BPF_NEG | BPF_K, insn->dst_reg,
22086 							0, 0, 0);
22087 			else
22088 				*patch++ = BPF_MOV32_IMM(insn->dst_reg, 0);
22089 
22090 			cnt = patch - insn_buf;
22091 
22092 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
22093 			if (!new_prog)
22094 				return -ENOMEM;
22095 
22096 			delta    += cnt - 1;
22097 			env->prog = prog = new_prog;
22098 			insn      = new_prog->insnsi + i + delta;
22099 			goto next_insn;
22100 		}
22101 
22102 		/* Make divide-by-zero and divide-by-minus-one exceptions impossible. */
22103 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
22104 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
22105 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
22106 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
22107 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
22108 			bool isdiv = BPF_OP(insn->code) == BPF_DIV;
22109 			bool is_sdiv = isdiv && insn->off == 1;
22110 			bool is_smod = !isdiv && insn->off == 1;
22111 			struct bpf_insn *patch = insn_buf;
22112 
22113 			if (is_sdiv) {
22114 				/* [R,W]x sdiv 0 -> 0
22115 				 * LLONG_MIN sdiv -1 -> LLONG_MIN
22116 				 * INT_MIN sdiv -1 -> INT_MIN
22117 				 */
22118 				*patch++ = BPF_MOV64_REG(BPF_REG_AX, insn->src_reg);
22119 				*patch++ = BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) |
22120 							BPF_ADD | BPF_K, BPF_REG_AX,
22121 							0, 0, 1);
22122 				*patch++ = BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
22123 							BPF_JGT | BPF_K, BPF_REG_AX,
22124 							0, 4, 1);
22125 				*patch++ = BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
22126 							BPF_JEQ | BPF_K, BPF_REG_AX,
22127 							0, 1, 0);
22128 				*patch++ = BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) |
22129 							BPF_MOV | BPF_K, insn->dst_reg,
22130 							0, 0, 0);
22131 				/* BPF_NEG(LLONG_MIN) == -LLONG_MIN == LLONG_MIN */
22132 				*patch++ = BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) |
22133 							BPF_NEG | BPF_K, insn->dst_reg,
22134 							0, 0, 0);
22135 				*patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1);
22136 				*patch++ = *insn;
22137 				cnt = patch - insn_buf;
22138 			} else if (is_smod) {
22139 				/* [R,W]x mod 0 -> [R,W]x */
22140 				/* [R,W]x mod -1 -> 0 */
22141 				*patch++ = BPF_MOV64_REG(BPF_REG_AX, insn->src_reg);
22142 				*patch++ = BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) |
22143 							BPF_ADD | BPF_K, BPF_REG_AX,
22144 							0, 0, 1);
22145 				*patch++ = BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
22146 							BPF_JGT | BPF_K, BPF_REG_AX,
22147 							0, 3, 1);
22148 				*patch++ = BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
22149 							BPF_JEQ | BPF_K, BPF_REG_AX,
22150 							0, 3 + (is64 ? 0 : 1), 1);
22151 				*patch++ = BPF_MOV32_IMM(insn->dst_reg, 0);
22152 				*patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1);
22153 				*patch++ = *insn;
22154 
22155 				if (!is64) {
22156 					*patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1);
22157 					*patch++ = BPF_MOV32_REG(insn->dst_reg, insn->dst_reg);
22158 				}
22159 				cnt = patch - insn_buf;
22160 			} else if (isdiv) {
22161 				/* [R,W]x div 0 -> 0 */
22162 				*patch++ = BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
22163 							BPF_JNE | BPF_K, insn->src_reg,
22164 							0, 2, 0);
22165 				*patch++ = BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg);
22166 				*patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1);
22167 				*patch++ = *insn;
22168 				cnt = patch - insn_buf;
22169 			} else {
22170 				/* [R,W]x mod 0 -> [R,W]x */
22171 				*patch++ = BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
22172 							BPF_JEQ | BPF_K, insn->src_reg,
22173 							0, 1 + (is64 ? 0 : 1), 0);
22174 				*patch++ = *insn;
22175 
22176 				if (!is64) {
22177 					*patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1);
22178 					*patch++ = BPF_MOV32_REG(insn->dst_reg, insn->dst_reg);
22179 				}
22180 				cnt = patch - insn_buf;
22181 			}
22182 
22183 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
22184 			if (!new_prog)
22185 				return -ENOMEM;
22186 
22187 			delta    += cnt - 1;
22188 			env->prog = prog = new_prog;
22189 			insn      = new_prog->insnsi + i + delta;
22190 			goto next_insn;
22191 		}
22192 
22193 		/* Make it impossible to de-reference a userspace address */
22194 		if (BPF_CLASS(insn->code) == BPF_LDX &&
22195 		    (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
22196 		     BPF_MODE(insn->code) == BPF_PROBE_MEMSX)) {
22197 			struct bpf_insn *patch = insn_buf;
22198 			u64 uaddress_limit = bpf_arch_uaddress_limit();
22199 
22200 			if (!uaddress_limit)
22201 				goto next_insn;
22202 
22203 			*patch++ = BPF_MOV64_REG(BPF_REG_AX, insn->src_reg);
22204 			if (insn->off)
22205 				*patch++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_AX, insn->off);
22206 			*patch++ = BPF_ALU64_IMM(BPF_RSH, BPF_REG_AX, 32);
22207 			*patch++ = BPF_JMP_IMM(BPF_JLE, BPF_REG_AX, uaddress_limit >> 32, 2);
22208 			*patch++ = *insn;
22209 			*patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1);
22210 			*patch++ = BPF_MOV64_IMM(insn->dst_reg, 0);
22211 
22212 			cnt = patch - insn_buf;
22213 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
22214 			if (!new_prog)
22215 				return -ENOMEM;
22216 
22217 			delta    += cnt - 1;
22218 			env->prog = prog = new_prog;
22219 			insn      = new_prog->insnsi + i + delta;
22220 			goto next_insn;
22221 		}
22222 
22223 		/* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
22224 		if (BPF_CLASS(insn->code) == BPF_LD &&
22225 		    (BPF_MODE(insn->code) == BPF_ABS ||
22226 		     BPF_MODE(insn->code) == BPF_IND)) {
22227 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
22228 			if (cnt == 0 || cnt >= INSN_BUF_SIZE) {
22229 				verifier_bug(env, "%d insns generated for ld_abs", cnt);
22230 				return -EFAULT;
22231 			}
22232 
22233 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
22234 			if (!new_prog)
22235 				return -ENOMEM;
22236 
22237 			delta    += cnt - 1;
22238 			env->prog = prog = new_prog;
22239 			insn      = new_prog->insnsi + i + delta;
22240 			goto next_insn;
22241 		}
22242 
22243 		/* Rewrite pointer arithmetic to mitigate speculation attacks. */
22244 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
22245 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
22246 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
22247 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
22248 			struct bpf_insn *patch = insn_buf;
22249 			bool issrc, isneg, isimm;
22250 			u32 off_reg;
22251 
22252 			aux = &env->insn_aux_data[i + delta];
22253 			if (!aux->alu_state ||
22254 			    aux->alu_state == BPF_ALU_NON_POINTER)
22255 				goto next_insn;
22256 
22257 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
22258 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
22259 				BPF_ALU_SANITIZE_SRC;
22260 			isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
22261 
22262 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
22263 			if (isimm) {
22264 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
22265 			} else {
22266 				if (isneg)
22267 					*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
22268 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
22269 				*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
22270 				*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
22271 				*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
22272 				*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
22273 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
22274 			}
22275 			if (!issrc)
22276 				*patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
22277 			insn->src_reg = BPF_REG_AX;
22278 			if (isneg)
22279 				insn->code = insn->code == code_add ?
22280 					     code_sub : code_add;
22281 			*patch++ = *insn;
22282 			if (issrc && isneg && !isimm)
22283 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
22284 			cnt = patch - insn_buf;
22285 
22286 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
22287 			if (!new_prog)
22288 				return -ENOMEM;
22289 
22290 			delta    += cnt - 1;
22291 			env->prog = prog = new_prog;
22292 			insn      = new_prog->insnsi + i + delta;
22293 			goto next_insn;
22294 		}
22295 
22296 		if (is_may_goto_insn(insn) && bpf_jit_supports_timed_may_goto()) {
22297 			int stack_off_cnt = -stack_depth - 16;
22298 
22299 			/*
22300 			 * Two 8 byte slots, depth-16 stores the count, and
22301 			 * depth-8 stores the start timestamp of the loop.
22302 			 *
22303 			 * The starting value of count is BPF_MAX_TIMED_LOOPS
22304 			 * (0xffff).  Every iteration loads it and subs it by 1,
22305 			 * until the value becomes 0 in AX (thus, 1 in stack),
22306 			 * after which we call arch_bpf_timed_may_goto, which
22307 			 * either sets AX to 0xffff to keep looping, or to 0
22308 			 * upon timeout. AX is then stored into the stack. In
22309 			 * the next iteration, we either see 0 and break out, or
22310 			 * continue iterating until the next time value is 0
22311 			 * after subtraction, rinse and repeat.
22312 			 */
22313 			stack_depth_extra = 16;
22314 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_AX, BPF_REG_10, stack_off_cnt);
22315 			if (insn->off >= 0)
22316 				insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off + 5);
22317 			else
22318 				insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off - 1);
22319 			insn_buf[2] = BPF_ALU64_IMM(BPF_SUB, BPF_REG_AX, 1);
22320 			insn_buf[3] = BPF_JMP_IMM(BPF_JNE, BPF_REG_AX, 0, 2);
22321 			/*
22322 			 * AX is used as an argument to pass in stack_off_cnt
22323 			 * (to add to r10/fp), and also as the return value of
22324 			 * the call to arch_bpf_timed_may_goto.
22325 			 */
22326 			insn_buf[4] = BPF_MOV64_IMM(BPF_REG_AX, stack_off_cnt);
22327 			insn_buf[5] = BPF_EMIT_CALL(arch_bpf_timed_may_goto);
22328 			insn_buf[6] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_AX, stack_off_cnt);
22329 			cnt = 7;
22330 
22331 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
22332 			if (!new_prog)
22333 				return -ENOMEM;
22334 
22335 			delta += cnt - 1;
22336 			env->prog = prog = new_prog;
22337 			insn = new_prog->insnsi + i + delta;
22338 			goto next_insn;
22339 		} else if (is_may_goto_insn(insn)) {
22340 			int stack_off = -stack_depth - 8;
22341 
22342 			stack_depth_extra = 8;
22343 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_AX, BPF_REG_10, stack_off);
22344 			if (insn->off >= 0)
22345 				insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off + 2);
22346 			else
22347 				insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off - 1);
22348 			insn_buf[2] = BPF_ALU64_IMM(BPF_SUB, BPF_REG_AX, 1);
22349 			insn_buf[3] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_AX, stack_off);
22350 			cnt = 4;
22351 
22352 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
22353 			if (!new_prog)
22354 				return -ENOMEM;
22355 
22356 			delta += cnt - 1;
22357 			env->prog = prog = new_prog;
22358 			insn = new_prog->insnsi + i + delta;
22359 			goto next_insn;
22360 		}
22361 
22362 		if (insn->code != (BPF_JMP | BPF_CALL))
22363 			goto next_insn;
22364 		if (insn->src_reg == BPF_PSEUDO_CALL)
22365 			goto next_insn;
22366 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
22367 			ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt);
22368 			if (ret)
22369 				return ret;
22370 			if (cnt == 0)
22371 				goto next_insn;
22372 
22373 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
22374 			if (!new_prog)
22375 				return -ENOMEM;
22376 
22377 			delta	 += cnt - 1;
22378 			env->prog = prog = new_prog;
22379 			insn	  = new_prog->insnsi + i + delta;
22380 			goto next_insn;
22381 		}
22382 
22383 		/* Skip inlining the helper call if the JIT does it. */
22384 		if (bpf_jit_inlines_helper_call(insn->imm))
22385 			goto next_insn;
22386 
22387 		if (insn->imm == BPF_FUNC_get_route_realm)
22388 			prog->dst_needed = 1;
22389 		if (insn->imm == BPF_FUNC_get_prandom_u32)
22390 			bpf_user_rnd_init_once();
22391 		if (insn->imm == BPF_FUNC_override_return)
22392 			prog->kprobe_override = 1;
22393 		if (insn->imm == BPF_FUNC_tail_call) {
22394 			/* If we tail call into other programs, we
22395 			 * cannot make any assumptions since they can
22396 			 * be replaced dynamically during runtime in
22397 			 * the program array.
22398 			 */
22399 			prog->cb_access = 1;
22400 			if (!allow_tail_call_in_subprogs(env))
22401 				prog->aux->stack_depth = MAX_BPF_STACK;
22402 			prog->aux->max_pkt_offset = MAX_PACKET_OFF;
22403 
22404 			/* mark bpf_tail_call as different opcode to avoid
22405 			 * conditional branch in the interpreter for every normal
22406 			 * call and to prevent accidental JITing by JIT compiler
22407 			 * that doesn't support bpf_tail_call yet
22408 			 */
22409 			insn->imm = 0;
22410 			insn->code = BPF_JMP | BPF_TAIL_CALL;
22411 
22412 			aux = &env->insn_aux_data[i + delta];
22413 			if (env->bpf_capable && !prog->blinding_requested &&
22414 			    prog->jit_requested &&
22415 			    !bpf_map_key_poisoned(aux) &&
22416 			    !bpf_map_ptr_poisoned(aux) &&
22417 			    !bpf_map_ptr_unpriv(aux)) {
22418 				struct bpf_jit_poke_descriptor desc = {
22419 					.reason = BPF_POKE_REASON_TAIL_CALL,
22420 					.tail_call.map = aux->map_ptr_state.map_ptr,
22421 					.tail_call.key = bpf_map_key_immediate(aux),
22422 					.insn_idx = i + delta,
22423 				};
22424 
22425 				ret = bpf_jit_add_poke_descriptor(prog, &desc);
22426 				if (ret < 0) {
22427 					verbose(env, "adding tail call poke descriptor failed\n");
22428 					return ret;
22429 				}
22430 
22431 				insn->imm = ret + 1;
22432 				goto next_insn;
22433 			}
22434 
22435 			if (!bpf_map_ptr_unpriv(aux))
22436 				goto next_insn;
22437 
22438 			/* instead of changing every JIT dealing with tail_call
22439 			 * emit two extra insns:
22440 			 * if (index >= max_entries) goto out;
22441 			 * index &= array->index_mask;
22442 			 * to avoid out-of-bounds cpu speculation
22443 			 */
22444 			if (bpf_map_ptr_poisoned(aux)) {
22445 				verbose(env, "tail_call abusing map_ptr\n");
22446 				return -EINVAL;
22447 			}
22448 
22449 			map_ptr = aux->map_ptr_state.map_ptr;
22450 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
22451 						  map_ptr->max_entries, 2);
22452 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
22453 						    container_of(map_ptr,
22454 								 struct bpf_array,
22455 								 map)->index_mask);
22456 			insn_buf[2] = *insn;
22457 			cnt = 3;
22458 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
22459 			if (!new_prog)
22460 				return -ENOMEM;
22461 
22462 			delta    += cnt - 1;
22463 			env->prog = prog = new_prog;
22464 			insn      = new_prog->insnsi + i + delta;
22465 			goto next_insn;
22466 		}
22467 
22468 		if (insn->imm == BPF_FUNC_timer_set_callback) {
22469 			/* The verifier will process callback_fn as many times as necessary
22470 			 * with different maps and the register states prepared by
22471 			 * set_timer_callback_state will be accurate.
22472 			 *
22473 			 * The following use case is valid:
22474 			 *   map1 is shared by prog1, prog2, prog3.
22475 			 *   prog1 calls bpf_timer_init for some map1 elements
22476 			 *   prog2 calls bpf_timer_set_callback for some map1 elements.
22477 			 *     Those that were not bpf_timer_init-ed will return -EINVAL.
22478 			 *   prog3 calls bpf_timer_start for some map1 elements.
22479 			 *     Those that were not both bpf_timer_init-ed and
22480 			 *     bpf_timer_set_callback-ed will return -EINVAL.
22481 			 */
22482 			struct bpf_insn ld_addrs[2] = {
22483 				BPF_LD_IMM64(BPF_REG_3, (long)prog->aux),
22484 			};
22485 
22486 			insn_buf[0] = ld_addrs[0];
22487 			insn_buf[1] = ld_addrs[1];
22488 			insn_buf[2] = *insn;
22489 			cnt = 3;
22490 
22491 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
22492 			if (!new_prog)
22493 				return -ENOMEM;
22494 
22495 			delta    += cnt - 1;
22496 			env->prog = prog = new_prog;
22497 			insn      = new_prog->insnsi + i + delta;
22498 			goto patch_call_imm;
22499 		}
22500 
22501 		if (is_storage_get_function(insn->imm)) {
22502 			if (!in_sleepable(env) ||
22503 			    env->insn_aux_data[i + delta].storage_get_func_atomic)
22504 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC);
22505 			else
22506 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL);
22507 			insn_buf[1] = *insn;
22508 			cnt = 2;
22509 
22510 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
22511 			if (!new_prog)
22512 				return -ENOMEM;
22513 
22514 			delta += cnt - 1;
22515 			env->prog = prog = new_prog;
22516 			insn = new_prog->insnsi + i + delta;
22517 			goto patch_call_imm;
22518 		}
22519 
22520 		/* bpf_per_cpu_ptr() and bpf_this_cpu_ptr() */
22521 		if (env->insn_aux_data[i + delta].call_with_percpu_alloc_ptr) {
22522 			/* patch with 'r1 = *(u64 *)(r1 + 0)' since for percpu data,
22523 			 * bpf_mem_alloc() returns a ptr to the percpu data ptr.
22524 			 */
22525 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_1, 0);
22526 			insn_buf[1] = *insn;
22527 			cnt = 2;
22528 
22529 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
22530 			if (!new_prog)
22531 				return -ENOMEM;
22532 
22533 			delta += cnt - 1;
22534 			env->prog = prog = new_prog;
22535 			insn = new_prog->insnsi + i + delta;
22536 			goto patch_call_imm;
22537 		}
22538 
22539 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
22540 		 * and other inlining handlers are currently limited to 64 bit
22541 		 * only.
22542 		 */
22543 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
22544 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
22545 		     insn->imm == BPF_FUNC_map_update_elem ||
22546 		     insn->imm == BPF_FUNC_map_delete_elem ||
22547 		     insn->imm == BPF_FUNC_map_push_elem   ||
22548 		     insn->imm == BPF_FUNC_map_pop_elem    ||
22549 		     insn->imm == BPF_FUNC_map_peek_elem   ||
22550 		     insn->imm == BPF_FUNC_redirect_map    ||
22551 		     insn->imm == BPF_FUNC_for_each_map_elem ||
22552 		     insn->imm == BPF_FUNC_map_lookup_percpu_elem)) {
22553 			aux = &env->insn_aux_data[i + delta];
22554 			if (bpf_map_ptr_poisoned(aux))
22555 				goto patch_call_imm;
22556 
22557 			map_ptr = aux->map_ptr_state.map_ptr;
22558 			ops = map_ptr->ops;
22559 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
22560 			    ops->map_gen_lookup) {
22561 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
22562 				if (cnt == -EOPNOTSUPP)
22563 					goto patch_map_ops_generic;
22564 				if (cnt <= 0 || cnt >= INSN_BUF_SIZE) {
22565 					verifier_bug(env, "%d insns generated for map lookup", cnt);
22566 					return -EFAULT;
22567 				}
22568 
22569 				new_prog = bpf_patch_insn_data(env, i + delta,
22570 							       insn_buf, cnt);
22571 				if (!new_prog)
22572 					return -ENOMEM;
22573 
22574 				delta    += cnt - 1;
22575 				env->prog = prog = new_prog;
22576 				insn      = new_prog->insnsi + i + delta;
22577 				goto next_insn;
22578 			}
22579 
22580 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
22581 				     (void *(*)(struct bpf_map *map, void *key))NULL));
22582 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
22583 				     (long (*)(struct bpf_map *map, void *key))NULL));
22584 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
22585 				     (long (*)(struct bpf_map *map, void *key, void *value,
22586 					      u64 flags))NULL));
22587 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
22588 				     (long (*)(struct bpf_map *map, void *value,
22589 					      u64 flags))NULL));
22590 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
22591 				     (long (*)(struct bpf_map *map, void *value))NULL));
22592 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
22593 				     (long (*)(struct bpf_map *map, void *value))NULL));
22594 			BUILD_BUG_ON(!__same_type(ops->map_redirect,
22595 				     (long (*)(struct bpf_map *map, u64 index, u64 flags))NULL));
22596 			BUILD_BUG_ON(!__same_type(ops->map_for_each_callback,
22597 				     (long (*)(struct bpf_map *map,
22598 					      bpf_callback_t callback_fn,
22599 					      void *callback_ctx,
22600 					      u64 flags))NULL));
22601 			BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem,
22602 				     (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL));
22603 
22604 patch_map_ops_generic:
22605 			switch (insn->imm) {
22606 			case BPF_FUNC_map_lookup_elem:
22607 				insn->imm = BPF_CALL_IMM(ops->map_lookup_elem);
22608 				goto next_insn;
22609 			case BPF_FUNC_map_update_elem:
22610 				insn->imm = BPF_CALL_IMM(ops->map_update_elem);
22611 				goto next_insn;
22612 			case BPF_FUNC_map_delete_elem:
22613 				insn->imm = BPF_CALL_IMM(ops->map_delete_elem);
22614 				goto next_insn;
22615 			case BPF_FUNC_map_push_elem:
22616 				insn->imm = BPF_CALL_IMM(ops->map_push_elem);
22617 				goto next_insn;
22618 			case BPF_FUNC_map_pop_elem:
22619 				insn->imm = BPF_CALL_IMM(ops->map_pop_elem);
22620 				goto next_insn;
22621 			case BPF_FUNC_map_peek_elem:
22622 				insn->imm = BPF_CALL_IMM(ops->map_peek_elem);
22623 				goto next_insn;
22624 			case BPF_FUNC_redirect_map:
22625 				insn->imm = BPF_CALL_IMM(ops->map_redirect);
22626 				goto next_insn;
22627 			case BPF_FUNC_for_each_map_elem:
22628 				insn->imm = BPF_CALL_IMM(ops->map_for_each_callback);
22629 				goto next_insn;
22630 			case BPF_FUNC_map_lookup_percpu_elem:
22631 				insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem);
22632 				goto next_insn;
22633 			}
22634 
22635 			goto patch_call_imm;
22636 		}
22637 
22638 		/* Implement bpf_jiffies64 inline. */
22639 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
22640 		    insn->imm == BPF_FUNC_jiffies64) {
22641 			struct bpf_insn ld_jiffies_addr[2] = {
22642 				BPF_LD_IMM64(BPF_REG_0,
22643 					     (unsigned long)&jiffies),
22644 			};
22645 
22646 			insn_buf[0] = ld_jiffies_addr[0];
22647 			insn_buf[1] = ld_jiffies_addr[1];
22648 			insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
22649 						  BPF_REG_0, 0);
22650 			cnt = 3;
22651 
22652 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
22653 						       cnt);
22654 			if (!new_prog)
22655 				return -ENOMEM;
22656 
22657 			delta    += cnt - 1;
22658 			env->prog = prog = new_prog;
22659 			insn      = new_prog->insnsi + i + delta;
22660 			goto next_insn;
22661 		}
22662 
22663 #if defined(CONFIG_X86_64) && !defined(CONFIG_UML)
22664 		/* Implement bpf_get_smp_processor_id() inline. */
22665 		if (insn->imm == BPF_FUNC_get_smp_processor_id &&
22666 		    verifier_inlines_helper_call(env, insn->imm)) {
22667 			/* BPF_FUNC_get_smp_processor_id inlining is an
22668 			 * optimization, so if cpu_number is ever
22669 			 * changed in some incompatible and hard to support
22670 			 * way, it's fine to back out this inlining logic
22671 			 */
22672 #ifdef CONFIG_SMP
22673 			insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, (u32)(unsigned long)&cpu_number);
22674 			insn_buf[1] = BPF_MOV64_PERCPU_REG(BPF_REG_0, BPF_REG_0);
22675 			insn_buf[2] = BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_0, 0);
22676 			cnt = 3;
22677 #else
22678 			insn_buf[0] = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
22679 			cnt = 1;
22680 #endif
22681 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
22682 			if (!new_prog)
22683 				return -ENOMEM;
22684 
22685 			delta    += cnt - 1;
22686 			env->prog = prog = new_prog;
22687 			insn      = new_prog->insnsi + i + delta;
22688 			goto next_insn;
22689 		}
22690 #endif
22691 		/* Implement bpf_get_func_arg inline. */
22692 		if (prog_type == BPF_PROG_TYPE_TRACING &&
22693 		    insn->imm == BPF_FUNC_get_func_arg) {
22694 			/* Load nr_args from ctx - 8 */
22695 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
22696 			insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6);
22697 			insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3);
22698 			insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1);
22699 			insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0);
22700 			insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
22701 			insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0);
22702 			insn_buf[7] = BPF_JMP_A(1);
22703 			insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL);
22704 			cnt = 9;
22705 
22706 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
22707 			if (!new_prog)
22708 				return -ENOMEM;
22709 
22710 			delta    += cnt - 1;
22711 			env->prog = prog = new_prog;
22712 			insn      = new_prog->insnsi + i + delta;
22713 			goto next_insn;
22714 		}
22715 
22716 		/* Implement bpf_get_func_ret inline. */
22717 		if (prog_type == BPF_PROG_TYPE_TRACING &&
22718 		    insn->imm == BPF_FUNC_get_func_ret) {
22719 			if (eatype == BPF_TRACE_FEXIT ||
22720 			    eatype == BPF_MODIFY_RETURN) {
22721 				/* Load nr_args from ctx - 8 */
22722 				insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
22723 				insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3);
22724 				insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1);
22725 				insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
22726 				insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0);
22727 				insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0);
22728 				cnt = 6;
22729 			} else {
22730 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP);
22731 				cnt = 1;
22732 			}
22733 
22734 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
22735 			if (!new_prog)
22736 				return -ENOMEM;
22737 
22738 			delta    += cnt - 1;
22739 			env->prog = prog = new_prog;
22740 			insn      = new_prog->insnsi + i + delta;
22741 			goto next_insn;
22742 		}
22743 
22744 		/* Implement get_func_arg_cnt inline. */
22745 		if (prog_type == BPF_PROG_TYPE_TRACING &&
22746 		    insn->imm == BPF_FUNC_get_func_arg_cnt) {
22747 			/* Load nr_args from ctx - 8 */
22748 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
22749 
22750 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
22751 			if (!new_prog)
22752 				return -ENOMEM;
22753 
22754 			env->prog = prog = new_prog;
22755 			insn      = new_prog->insnsi + i + delta;
22756 			goto next_insn;
22757 		}
22758 
22759 		/* Implement bpf_get_func_ip inline. */
22760 		if (prog_type == BPF_PROG_TYPE_TRACING &&
22761 		    insn->imm == BPF_FUNC_get_func_ip) {
22762 			/* Load IP address from ctx - 16 */
22763 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16);
22764 
22765 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
22766 			if (!new_prog)
22767 				return -ENOMEM;
22768 
22769 			env->prog = prog = new_prog;
22770 			insn      = new_prog->insnsi + i + delta;
22771 			goto next_insn;
22772 		}
22773 
22774 		/* Implement bpf_get_branch_snapshot inline. */
22775 		if (IS_ENABLED(CONFIG_PERF_EVENTS) &&
22776 		    prog->jit_requested && BITS_PER_LONG == 64 &&
22777 		    insn->imm == BPF_FUNC_get_branch_snapshot) {
22778 			/* We are dealing with the following func protos:
22779 			 * u64 bpf_get_branch_snapshot(void *buf, u32 size, u64 flags);
22780 			 * int perf_snapshot_branch_stack(struct perf_branch_entry *entries, u32 cnt);
22781 			 */
22782 			const u32 br_entry_size = sizeof(struct perf_branch_entry);
22783 
22784 			/* struct perf_branch_entry is part of UAPI and is
22785 			 * used as an array element, so extremely unlikely to
22786 			 * ever grow or shrink
22787 			 */
22788 			BUILD_BUG_ON(br_entry_size != 24);
22789 
22790 			/* if (unlikely(flags)) return -EINVAL */
22791 			insn_buf[0] = BPF_JMP_IMM(BPF_JNE, BPF_REG_3, 0, 7);
22792 
22793 			/* Transform size (bytes) into number of entries (cnt = size / 24).
22794 			 * But to avoid expensive division instruction, we implement
22795 			 * divide-by-3 through multiplication, followed by further
22796 			 * division by 8 through 3-bit right shift.
22797 			 * Refer to book "Hacker's Delight, 2nd ed." by Henry S. Warren, Jr.,
22798 			 * p. 227, chapter "Unsigned Division by 3" for details and proofs.
22799 			 *
22800 			 * N / 3 <=> M * N / 2^33, where M = (2^33 + 1) / 3 = 0xaaaaaaab.
22801 			 */
22802 			insn_buf[1] = BPF_MOV32_IMM(BPF_REG_0, 0xaaaaaaab);
22803 			insn_buf[2] = BPF_ALU64_REG(BPF_MUL, BPF_REG_2, BPF_REG_0);
22804 			insn_buf[3] = BPF_ALU64_IMM(BPF_RSH, BPF_REG_2, 36);
22805 
22806 			/* call perf_snapshot_branch_stack implementation */
22807 			insn_buf[4] = BPF_EMIT_CALL(static_call_query(perf_snapshot_branch_stack));
22808 			/* if (entry_cnt == 0) return -ENOENT */
22809 			insn_buf[5] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4);
22810 			/* return entry_cnt * sizeof(struct perf_branch_entry) */
22811 			insn_buf[6] = BPF_ALU32_IMM(BPF_MUL, BPF_REG_0, br_entry_size);
22812 			insn_buf[7] = BPF_JMP_A(3);
22813 			/* return -EINVAL; */
22814 			insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL);
22815 			insn_buf[9] = BPF_JMP_A(1);
22816 			/* return -ENOENT; */
22817 			insn_buf[10] = BPF_MOV64_IMM(BPF_REG_0, -ENOENT);
22818 			cnt = 11;
22819 
22820 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
22821 			if (!new_prog)
22822 				return -ENOMEM;
22823 
22824 			delta    += cnt - 1;
22825 			env->prog = prog = new_prog;
22826 			insn      = new_prog->insnsi + i + delta;
22827 			goto next_insn;
22828 		}
22829 
22830 		/* Implement bpf_kptr_xchg inline */
22831 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
22832 		    insn->imm == BPF_FUNC_kptr_xchg &&
22833 		    bpf_jit_supports_ptr_xchg()) {
22834 			insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_2);
22835 			insn_buf[1] = BPF_ATOMIC_OP(BPF_DW, BPF_XCHG, BPF_REG_1, BPF_REG_0, 0);
22836 			cnt = 2;
22837 
22838 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
22839 			if (!new_prog)
22840 				return -ENOMEM;
22841 
22842 			delta    += cnt - 1;
22843 			env->prog = prog = new_prog;
22844 			insn      = new_prog->insnsi + i + delta;
22845 			goto next_insn;
22846 		}
22847 patch_call_imm:
22848 		fn = env->ops->get_func_proto(insn->imm, env->prog);
22849 		/* all functions that have prototype and verifier allowed
22850 		 * programs to call them, must be real in-kernel functions
22851 		 */
22852 		if (!fn->func) {
22853 			verifier_bug(env,
22854 				     "not inlined functions %s#%d is missing func",
22855 				     func_id_name(insn->imm), insn->imm);
22856 			return -EFAULT;
22857 		}
22858 		insn->imm = fn->func - __bpf_call_base;
22859 next_insn:
22860 		if (subprogs[cur_subprog + 1].start == i + delta + 1) {
22861 			subprogs[cur_subprog].stack_depth += stack_depth_extra;
22862 			subprogs[cur_subprog].stack_extra = stack_depth_extra;
22863 
22864 			stack_depth = subprogs[cur_subprog].stack_depth;
22865 			if (stack_depth > MAX_BPF_STACK && !prog->jit_requested) {
22866 				verbose(env, "stack size %d(extra %d) is too large\n",
22867 					stack_depth, stack_depth_extra);
22868 				return -EINVAL;
22869 			}
22870 			cur_subprog++;
22871 			stack_depth = subprogs[cur_subprog].stack_depth;
22872 			stack_depth_extra = 0;
22873 		}
22874 		i++;
22875 		insn++;
22876 	}
22877 
22878 	env->prog->aux->stack_depth = subprogs[0].stack_depth;
22879 	for (i = 0; i < env->subprog_cnt; i++) {
22880 		int delta = bpf_jit_supports_timed_may_goto() ? 2 : 1;
22881 		int subprog_start = subprogs[i].start;
22882 		int stack_slots = subprogs[i].stack_extra / 8;
22883 		int slots = delta, cnt = 0;
22884 
22885 		if (!stack_slots)
22886 			continue;
22887 		/* We need two slots in case timed may_goto is supported. */
22888 		if (stack_slots > slots) {
22889 			verifier_bug(env, "stack_slots supports may_goto only");
22890 			return -EFAULT;
22891 		}
22892 
22893 		stack_depth = subprogs[i].stack_depth;
22894 		if (bpf_jit_supports_timed_may_goto()) {
22895 			insn_buf[cnt++] = BPF_ST_MEM(BPF_DW, BPF_REG_FP, -stack_depth,
22896 						     BPF_MAX_TIMED_LOOPS);
22897 			insn_buf[cnt++] = BPF_ST_MEM(BPF_DW, BPF_REG_FP, -stack_depth + 8, 0);
22898 		} else {
22899 			/* Add ST insn to subprog prologue to init extra stack */
22900 			insn_buf[cnt++] = BPF_ST_MEM(BPF_DW, BPF_REG_FP, -stack_depth,
22901 						     BPF_MAX_LOOPS);
22902 		}
22903 		/* Copy first actual insn to preserve it */
22904 		insn_buf[cnt++] = env->prog->insnsi[subprog_start];
22905 
22906 		new_prog = bpf_patch_insn_data(env, subprog_start, insn_buf, cnt);
22907 		if (!new_prog)
22908 			return -ENOMEM;
22909 		env->prog = prog = new_prog;
22910 		/*
22911 		 * If may_goto is a first insn of a prog there could be a jmp
22912 		 * insn that points to it, hence adjust all such jmps to point
22913 		 * to insn after BPF_ST that inits may_goto count.
22914 		 * Adjustment will succeed because bpf_patch_insn_data() didn't fail.
22915 		 */
22916 		WARN_ON(adjust_jmp_off(env->prog, subprog_start, delta));
22917 	}
22918 
22919 	/* Since poke tab is now finalized, publish aux to tracker. */
22920 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
22921 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
22922 		if (!map_ptr->ops->map_poke_track ||
22923 		    !map_ptr->ops->map_poke_untrack ||
22924 		    !map_ptr->ops->map_poke_run) {
22925 			verifier_bug(env, "poke tab is misconfigured");
22926 			return -EFAULT;
22927 		}
22928 
22929 		ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
22930 		if (ret < 0) {
22931 			verbose(env, "tracking tail call prog failed\n");
22932 			return ret;
22933 		}
22934 	}
22935 
22936 	sort_kfunc_descs_by_imm_off(env->prog);
22937 
22938 	return 0;
22939 }
22940 
22941 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env,
22942 					int position,
22943 					s32 stack_base,
22944 					u32 callback_subprogno,
22945 					u32 *total_cnt)
22946 {
22947 	s32 r6_offset = stack_base + 0 * BPF_REG_SIZE;
22948 	s32 r7_offset = stack_base + 1 * BPF_REG_SIZE;
22949 	s32 r8_offset = stack_base + 2 * BPF_REG_SIZE;
22950 	int reg_loop_max = BPF_REG_6;
22951 	int reg_loop_cnt = BPF_REG_7;
22952 	int reg_loop_ctx = BPF_REG_8;
22953 
22954 	struct bpf_insn *insn_buf = env->insn_buf;
22955 	struct bpf_prog *new_prog;
22956 	u32 callback_start;
22957 	u32 call_insn_offset;
22958 	s32 callback_offset;
22959 	u32 cnt = 0;
22960 
22961 	/* This represents an inlined version of bpf_iter.c:bpf_loop,
22962 	 * be careful to modify this code in sync.
22963 	 */
22964 
22965 	/* Return error and jump to the end of the patch if
22966 	 * expected number of iterations is too big.
22967 	 */
22968 	insn_buf[cnt++] = BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2);
22969 	insn_buf[cnt++] = BPF_MOV32_IMM(BPF_REG_0, -E2BIG);
22970 	insn_buf[cnt++] = BPF_JMP_IMM(BPF_JA, 0, 0, 16);
22971 	/* spill R6, R7, R8 to use these as loop vars */
22972 	insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset);
22973 	insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset);
22974 	insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset);
22975 	/* initialize loop vars */
22976 	insn_buf[cnt++] = BPF_MOV64_REG(reg_loop_max, BPF_REG_1);
22977 	insn_buf[cnt++] = BPF_MOV32_IMM(reg_loop_cnt, 0);
22978 	insn_buf[cnt++] = BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3);
22979 	/* loop header,
22980 	 * if reg_loop_cnt >= reg_loop_max skip the loop body
22981 	 */
22982 	insn_buf[cnt++] = BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5);
22983 	/* callback call,
22984 	 * correct callback offset would be set after patching
22985 	 */
22986 	insn_buf[cnt++] = BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt);
22987 	insn_buf[cnt++] = BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx);
22988 	insn_buf[cnt++] = BPF_CALL_REL(0);
22989 	/* increment loop counter */
22990 	insn_buf[cnt++] = BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1);
22991 	/* jump to loop header if callback returned 0 */
22992 	insn_buf[cnt++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6);
22993 	/* return value of bpf_loop,
22994 	 * set R0 to the number of iterations
22995 	 */
22996 	insn_buf[cnt++] = BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt);
22997 	/* restore original values of R6, R7, R8 */
22998 	insn_buf[cnt++] = BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset);
22999 	insn_buf[cnt++] = BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset);
23000 	insn_buf[cnt++] = BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset);
23001 
23002 	*total_cnt = cnt;
23003 	new_prog = bpf_patch_insn_data(env, position, insn_buf, cnt);
23004 	if (!new_prog)
23005 		return new_prog;
23006 
23007 	/* callback start is known only after patching */
23008 	callback_start = env->subprog_info[callback_subprogno].start;
23009 	/* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */
23010 	call_insn_offset = position + 12;
23011 	callback_offset = callback_start - call_insn_offset - 1;
23012 	new_prog->insnsi[call_insn_offset].imm = callback_offset;
23013 
23014 	return new_prog;
23015 }
23016 
23017 static bool is_bpf_loop_call(struct bpf_insn *insn)
23018 {
23019 	return insn->code == (BPF_JMP | BPF_CALL) &&
23020 		insn->src_reg == 0 &&
23021 		insn->imm == BPF_FUNC_loop;
23022 }
23023 
23024 /* For all sub-programs in the program (including main) check
23025  * insn_aux_data to see if there are bpf_loop calls that require
23026  * inlining. If such calls are found the calls are replaced with a
23027  * sequence of instructions produced by `inline_bpf_loop` function and
23028  * subprog stack_depth is increased by the size of 3 registers.
23029  * This stack space is used to spill values of the R6, R7, R8.  These
23030  * registers are used to store the loop bound, counter and context
23031  * variables.
23032  */
23033 static int optimize_bpf_loop(struct bpf_verifier_env *env)
23034 {
23035 	struct bpf_subprog_info *subprogs = env->subprog_info;
23036 	int i, cur_subprog = 0, cnt, delta = 0;
23037 	struct bpf_insn *insn = env->prog->insnsi;
23038 	int insn_cnt = env->prog->len;
23039 	u16 stack_depth = subprogs[cur_subprog].stack_depth;
23040 	u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
23041 	u16 stack_depth_extra = 0;
23042 
23043 	for (i = 0; i < insn_cnt; i++, insn++) {
23044 		struct bpf_loop_inline_state *inline_state =
23045 			&env->insn_aux_data[i + delta].loop_inline_state;
23046 
23047 		if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) {
23048 			struct bpf_prog *new_prog;
23049 
23050 			stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup;
23051 			new_prog = inline_bpf_loop(env,
23052 						   i + delta,
23053 						   -(stack_depth + stack_depth_extra),
23054 						   inline_state->callback_subprogno,
23055 						   &cnt);
23056 			if (!new_prog)
23057 				return -ENOMEM;
23058 
23059 			delta     += cnt - 1;
23060 			env->prog  = new_prog;
23061 			insn       = new_prog->insnsi + i + delta;
23062 		}
23063 
23064 		if (subprogs[cur_subprog + 1].start == i + delta + 1) {
23065 			subprogs[cur_subprog].stack_depth += stack_depth_extra;
23066 			cur_subprog++;
23067 			stack_depth = subprogs[cur_subprog].stack_depth;
23068 			stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
23069 			stack_depth_extra = 0;
23070 		}
23071 	}
23072 
23073 	env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
23074 
23075 	return 0;
23076 }
23077 
23078 /* Remove unnecessary spill/fill pairs, members of fastcall pattern,
23079  * adjust subprograms stack depth when possible.
23080  */
23081 static int remove_fastcall_spills_fills(struct bpf_verifier_env *env)
23082 {
23083 	struct bpf_subprog_info *subprog = env->subprog_info;
23084 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
23085 	struct bpf_insn *insn = env->prog->insnsi;
23086 	int insn_cnt = env->prog->len;
23087 	u32 spills_num;
23088 	bool modified = false;
23089 	int i, j;
23090 
23091 	for (i = 0; i < insn_cnt; i++, insn++) {
23092 		if (aux[i].fastcall_spills_num > 0) {
23093 			spills_num = aux[i].fastcall_spills_num;
23094 			/* NOPs would be removed by opt_remove_nops() */
23095 			for (j = 1; j <= spills_num; ++j) {
23096 				*(insn - j) = NOP;
23097 				*(insn + j) = NOP;
23098 			}
23099 			modified = true;
23100 		}
23101 		if ((subprog + 1)->start == i + 1) {
23102 			if (modified && !subprog->keep_fastcall_stack)
23103 				subprog->stack_depth = -subprog->fastcall_stack_off;
23104 			subprog++;
23105 			modified = false;
23106 		}
23107 	}
23108 
23109 	return 0;
23110 }
23111 
23112 static void free_states(struct bpf_verifier_env *env)
23113 {
23114 	struct bpf_verifier_state_list *sl;
23115 	struct list_head *head, *pos, *tmp;
23116 	struct bpf_scc_info *info;
23117 	int i, j;
23118 
23119 	free_verifier_state(env->cur_state, true);
23120 	env->cur_state = NULL;
23121 	while (!pop_stack(env, NULL, NULL, false));
23122 
23123 	list_for_each_safe(pos, tmp, &env->free_list) {
23124 		sl = container_of(pos, struct bpf_verifier_state_list, node);
23125 		free_verifier_state(&sl->state, false);
23126 		kfree(sl);
23127 	}
23128 	INIT_LIST_HEAD(&env->free_list);
23129 
23130 	for (i = 0; i < env->scc_cnt; ++i) {
23131 		info = env->scc_info[i];
23132 		if (!info)
23133 			continue;
23134 		for (j = 0; j < info->num_visits; j++)
23135 			free_backedges(&info->visits[j]);
23136 		kvfree(info);
23137 		env->scc_info[i] = NULL;
23138 	}
23139 
23140 	if (!env->explored_states)
23141 		return;
23142 
23143 	for (i = 0; i < state_htab_size(env); i++) {
23144 		head = &env->explored_states[i];
23145 
23146 		list_for_each_safe(pos, tmp, head) {
23147 			sl = container_of(pos, struct bpf_verifier_state_list, node);
23148 			free_verifier_state(&sl->state, false);
23149 			kfree(sl);
23150 		}
23151 		INIT_LIST_HEAD(&env->explored_states[i]);
23152 	}
23153 }
23154 
23155 static int do_check_common(struct bpf_verifier_env *env, int subprog)
23156 {
23157 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
23158 	struct bpf_subprog_info *sub = subprog_info(env, subprog);
23159 	struct bpf_prog_aux *aux = env->prog->aux;
23160 	struct bpf_verifier_state *state;
23161 	struct bpf_reg_state *regs;
23162 	int ret, i;
23163 
23164 	env->prev_linfo = NULL;
23165 	env->pass_cnt++;
23166 
23167 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL_ACCOUNT);
23168 	if (!state)
23169 		return -ENOMEM;
23170 	state->curframe = 0;
23171 	state->speculative = false;
23172 	state->branches = 1;
23173 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL_ACCOUNT);
23174 	if (!state->frame[0]) {
23175 		kfree(state);
23176 		return -ENOMEM;
23177 	}
23178 	env->cur_state = state;
23179 	init_func_state(env, state->frame[0],
23180 			BPF_MAIN_FUNC /* callsite */,
23181 			0 /* frameno */,
23182 			subprog);
23183 	state->first_insn_idx = env->subprog_info[subprog].start;
23184 	state->last_insn_idx = -1;
23185 
23186 	regs = state->frame[state->curframe]->regs;
23187 	if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
23188 		const char *sub_name = subprog_name(env, subprog);
23189 		struct bpf_subprog_arg_info *arg;
23190 		struct bpf_reg_state *reg;
23191 
23192 		verbose(env, "Validating %s() func#%d...\n", sub_name, subprog);
23193 		ret = btf_prepare_func_args(env, subprog);
23194 		if (ret)
23195 			goto out;
23196 
23197 		if (subprog_is_exc_cb(env, subprog)) {
23198 			state->frame[0]->in_exception_callback_fn = true;
23199 			/* We have already ensured that the callback returns an integer, just
23200 			 * like all global subprogs. We need to determine it only has a single
23201 			 * scalar argument.
23202 			 */
23203 			if (sub->arg_cnt != 1 || sub->args[0].arg_type != ARG_ANYTHING) {
23204 				verbose(env, "exception cb only supports single integer argument\n");
23205 				ret = -EINVAL;
23206 				goto out;
23207 			}
23208 		}
23209 		for (i = BPF_REG_1; i <= sub->arg_cnt; i++) {
23210 			arg = &sub->args[i - BPF_REG_1];
23211 			reg = &regs[i];
23212 
23213 			if (arg->arg_type == ARG_PTR_TO_CTX) {
23214 				reg->type = PTR_TO_CTX;
23215 				mark_reg_known_zero(env, regs, i);
23216 			} else if (arg->arg_type == ARG_ANYTHING) {
23217 				reg->type = SCALAR_VALUE;
23218 				mark_reg_unknown(env, regs, i);
23219 			} else if (arg->arg_type == (ARG_PTR_TO_DYNPTR | MEM_RDONLY)) {
23220 				/* assume unspecial LOCAL dynptr type */
23221 				__mark_dynptr_reg(reg, BPF_DYNPTR_TYPE_LOCAL, true, ++env->id_gen);
23222 			} else if (base_type(arg->arg_type) == ARG_PTR_TO_MEM) {
23223 				reg->type = PTR_TO_MEM;
23224 				reg->type |= arg->arg_type &
23225 					     (PTR_MAYBE_NULL | PTR_UNTRUSTED | MEM_RDONLY);
23226 				mark_reg_known_zero(env, regs, i);
23227 				reg->mem_size = arg->mem_size;
23228 				if (arg->arg_type & PTR_MAYBE_NULL)
23229 					reg->id = ++env->id_gen;
23230 			} else if (base_type(arg->arg_type) == ARG_PTR_TO_BTF_ID) {
23231 				reg->type = PTR_TO_BTF_ID;
23232 				if (arg->arg_type & PTR_MAYBE_NULL)
23233 					reg->type |= PTR_MAYBE_NULL;
23234 				if (arg->arg_type & PTR_UNTRUSTED)
23235 					reg->type |= PTR_UNTRUSTED;
23236 				if (arg->arg_type & PTR_TRUSTED)
23237 					reg->type |= PTR_TRUSTED;
23238 				mark_reg_known_zero(env, regs, i);
23239 				reg->btf = bpf_get_btf_vmlinux(); /* can't fail at this point */
23240 				reg->btf_id = arg->btf_id;
23241 				reg->id = ++env->id_gen;
23242 			} else if (base_type(arg->arg_type) == ARG_PTR_TO_ARENA) {
23243 				/* caller can pass either PTR_TO_ARENA or SCALAR */
23244 				mark_reg_unknown(env, regs, i);
23245 			} else {
23246 				verifier_bug(env, "unhandled arg#%d type %d",
23247 					     i - BPF_REG_1, arg->arg_type);
23248 				ret = -EFAULT;
23249 				goto out;
23250 			}
23251 		}
23252 	} else {
23253 		/* if main BPF program has associated BTF info, validate that
23254 		 * it's matching expected signature, and otherwise mark BTF
23255 		 * info for main program as unreliable
23256 		 */
23257 		if (env->prog->aux->func_info_aux) {
23258 			ret = btf_prepare_func_args(env, 0);
23259 			if (ret || sub->arg_cnt != 1 || sub->args[0].arg_type != ARG_PTR_TO_CTX)
23260 				env->prog->aux->func_info_aux[0].unreliable = true;
23261 		}
23262 
23263 		/* 1st arg to a function */
23264 		regs[BPF_REG_1].type = PTR_TO_CTX;
23265 		mark_reg_known_zero(env, regs, BPF_REG_1);
23266 	}
23267 
23268 	/* Acquire references for struct_ops program arguments tagged with "__ref" */
23269 	if (!subprog && env->prog->type == BPF_PROG_TYPE_STRUCT_OPS) {
23270 		for (i = 0; i < aux->ctx_arg_info_size; i++)
23271 			aux->ctx_arg_info[i].ref_obj_id = aux->ctx_arg_info[i].refcounted ?
23272 							  acquire_reference(env, 0) : 0;
23273 	}
23274 
23275 	ret = do_check(env);
23276 out:
23277 	if (!ret && pop_log)
23278 		bpf_vlog_reset(&env->log, 0);
23279 	free_states(env);
23280 	return ret;
23281 }
23282 
23283 /* Lazily verify all global functions based on their BTF, if they are called
23284  * from main BPF program or any of subprograms transitively.
23285  * BPF global subprogs called from dead code are not validated.
23286  * All callable global functions must pass verification.
23287  * Otherwise the whole program is rejected.
23288  * Consider:
23289  * int bar(int);
23290  * int foo(int f)
23291  * {
23292  *    return bar(f);
23293  * }
23294  * int bar(int b)
23295  * {
23296  *    ...
23297  * }
23298  * foo() will be verified first for R1=any_scalar_value. During verification it
23299  * will be assumed that bar() already verified successfully and call to bar()
23300  * from foo() will be checked for type match only. Later bar() will be verified
23301  * independently to check that it's safe for R1=any_scalar_value.
23302  */
23303 static int do_check_subprogs(struct bpf_verifier_env *env)
23304 {
23305 	struct bpf_prog_aux *aux = env->prog->aux;
23306 	struct bpf_func_info_aux *sub_aux;
23307 	int i, ret, new_cnt;
23308 
23309 	if (!aux->func_info)
23310 		return 0;
23311 
23312 	/* exception callback is presumed to be always called */
23313 	if (env->exception_callback_subprog)
23314 		subprog_aux(env, env->exception_callback_subprog)->called = true;
23315 
23316 again:
23317 	new_cnt = 0;
23318 	for (i = 1; i < env->subprog_cnt; i++) {
23319 		if (!subprog_is_global(env, i))
23320 			continue;
23321 
23322 		sub_aux = subprog_aux(env, i);
23323 		if (!sub_aux->called || sub_aux->verified)
23324 			continue;
23325 
23326 		env->insn_idx = env->subprog_info[i].start;
23327 		WARN_ON_ONCE(env->insn_idx == 0);
23328 		ret = do_check_common(env, i);
23329 		if (ret) {
23330 			return ret;
23331 		} else if (env->log.level & BPF_LOG_LEVEL) {
23332 			verbose(env, "Func#%d ('%s') is safe for any args that match its prototype\n",
23333 				i, subprog_name(env, i));
23334 		}
23335 
23336 		/* We verified new global subprog, it might have called some
23337 		 * more global subprogs that we haven't verified yet, so we
23338 		 * need to do another pass over subprogs to verify those.
23339 		 */
23340 		sub_aux->verified = true;
23341 		new_cnt++;
23342 	}
23343 
23344 	/* We can't loop forever as we verify at least one global subprog on
23345 	 * each pass.
23346 	 */
23347 	if (new_cnt)
23348 		goto again;
23349 
23350 	return 0;
23351 }
23352 
23353 static int do_check_main(struct bpf_verifier_env *env)
23354 {
23355 	int ret;
23356 
23357 	env->insn_idx = 0;
23358 	ret = do_check_common(env, 0);
23359 	if (!ret)
23360 		env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
23361 	return ret;
23362 }
23363 
23364 
23365 static void print_verification_stats(struct bpf_verifier_env *env)
23366 {
23367 	int i;
23368 
23369 	if (env->log.level & BPF_LOG_STATS) {
23370 		verbose(env, "verification time %lld usec\n",
23371 			div_u64(env->verification_time, 1000));
23372 		verbose(env, "stack depth ");
23373 		for (i = 0; i < env->subprog_cnt; i++) {
23374 			u32 depth = env->subprog_info[i].stack_depth;
23375 
23376 			verbose(env, "%d", depth);
23377 			if (i + 1 < env->subprog_cnt)
23378 				verbose(env, "+");
23379 		}
23380 		verbose(env, "\n");
23381 	}
23382 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
23383 		"total_states %d peak_states %d mark_read %d\n",
23384 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
23385 		env->max_states_per_insn, env->total_states,
23386 		env->peak_states, env->longest_mark_read_walk);
23387 }
23388 
23389 int bpf_prog_ctx_arg_info_init(struct bpf_prog *prog,
23390 			       const struct bpf_ctx_arg_aux *info, u32 cnt)
23391 {
23392 	prog->aux->ctx_arg_info = kmemdup_array(info, cnt, sizeof(*info), GFP_KERNEL_ACCOUNT);
23393 	prog->aux->ctx_arg_info_size = cnt;
23394 
23395 	return prog->aux->ctx_arg_info ? 0 : -ENOMEM;
23396 }
23397 
23398 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
23399 {
23400 	const struct btf_type *t, *func_proto;
23401 	const struct bpf_struct_ops_desc *st_ops_desc;
23402 	const struct bpf_struct_ops *st_ops;
23403 	const struct btf_member *member;
23404 	struct bpf_prog *prog = env->prog;
23405 	bool has_refcounted_arg = false;
23406 	u32 btf_id, member_idx, member_off;
23407 	struct btf *btf;
23408 	const char *mname;
23409 	int i, err;
23410 
23411 	if (!prog->gpl_compatible) {
23412 		verbose(env, "struct ops programs must have a GPL compatible license\n");
23413 		return -EINVAL;
23414 	}
23415 
23416 	if (!prog->aux->attach_btf_id)
23417 		return -ENOTSUPP;
23418 
23419 	btf = prog->aux->attach_btf;
23420 	if (btf_is_module(btf)) {
23421 		/* Make sure st_ops is valid through the lifetime of env */
23422 		env->attach_btf_mod = btf_try_get_module(btf);
23423 		if (!env->attach_btf_mod) {
23424 			verbose(env, "struct_ops module %s is not found\n",
23425 				btf_get_name(btf));
23426 			return -ENOTSUPP;
23427 		}
23428 	}
23429 
23430 	btf_id = prog->aux->attach_btf_id;
23431 	st_ops_desc = bpf_struct_ops_find(btf, btf_id);
23432 	if (!st_ops_desc) {
23433 		verbose(env, "attach_btf_id %u is not a supported struct\n",
23434 			btf_id);
23435 		return -ENOTSUPP;
23436 	}
23437 	st_ops = st_ops_desc->st_ops;
23438 
23439 	t = st_ops_desc->type;
23440 	member_idx = prog->expected_attach_type;
23441 	if (member_idx >= btf_type_vlen(t)) {
23442 		verbose(env, "attach to invalid member idx %u of struct %s\n",
23443 			member_idx, st_ops->name);
23444 		return -EINVAL;
23445 	}
23446 
23447 	member = &btf_type_member(t)[member_idx];
23448 	mname = btf_name_by_offset(btf, member->name_off);
23449 	func_proto = btf_type_resolve_func_ptr(btf, member->type,
23450 					       NULL);
23451 	if (!func_proto) {
23452 		verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
23453 			mname, member_idx, st_ops->name);
23454 		return -EINVAL;
23455 	}
23456 
23457 	member_off = __btf_member_bit_offset(t, member) / 8;
23458 	err = bpf_struct_ops_supported(st_ops, member_off);
23459 	if (err) {
23460 		verbose(env, "attach to unsupported member %s of struct %s\n",
23461 			mname, st_ops->name);
23462 		return err;
23463 	}
23464 
23465 	if (st_ops->check_member) {
23466 		err = st_ops->check_member(t, member, prog);
23467 
23468 		if (err) {
23469 			verbose(env, "attach to unsupported member %s of struct %s\n",
23470 				mname, st_ops->name);
23471 			return err;
23472 		}
23473 	}
23474 
23475 	if (prog->aux->priv_stack_requested && !bpf_jit_supports_private_stack()) {
23476 		verbose(env, "Private stack not supported by jit\n");
23477 		return -EACCES;
23478 	}
23479 
23480 	for (i = 0; i < st_ops_desc->arg_info[member_idx].cnt; i++) {
23481 		if (st_ops_desc->arg_info[member_idx].info->refcounted) {
23482 			has_refcounted_arg = true;
23483 			break;
23484 		}
23485 	}
23486 
23487 	/* Tail call is not allowed for programs with refcounted arguments since we
23488 	 * cannot guarantee that valid refcounted kptrs will be passed to the callee.
23489 	 */
23490 	for (i = 0; i < env->subprog_cnt; i++) {
23491 		if (has_refcounted_arg && env->subprog_info[i].has_tail_call) {
23492 			verbose(env, "program with __ref argument cannot tail call\n");
23493 			return -EINVAL;
23494 		}
23495 	}
23496 
23497 	prog->aux->st_ops = st_ops;
23498 	prog->aux->attach_st_ops_member_off = member_off;
23499 
23500 	prog->aux->attach_func_proto = func_proto;
23501 	prog->aux->attach_func_name = mname;
23502 	env->ops = st_ops->verifier_ops;
23503 
23504 	return bpf_prog_ctx_arg_info_init(prog, st_ops_desc->arg_info[member_idx].info,
23505 					  st_ops_desc->arg_info[member_idx].cnt);
23506 }
23507 #define SECURITY_PREFIX "security_"
23508 
23509 static int check_attach_modify_return(unsigned long addr, const char *func_name)
23510 {
23511 	if (within_error_injection_list(addr) ||
23512 	    !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
23513 		return 0;
23514 
23515 	return -EINVAL;
23516 }
23517 
23518 /* list of non-sleepable functions that are otherwise on
23519  * ALLOW_ERROR_INJECTION list
23520  */
23521 BTF_SET_START(btf_non_sleepable_error_inject)
23522 /* Three functions below can be called from sleepable and non-sleepable context.
23523  * Assume non-sleepable from bpf safety point of view.
23524  */
23525 BTF_ID(func, __filemap_add_folio)
23526 #ifdef CONFIG_FAIL_PAGE_ALLOC
23527 BTF_ID(func, should_fail_alloc_page)
23528 #endif
23529 #ifdef CONFIG_FAILSLAB
23530 BTF_ID(func, should_failslab)
23531 #endif
23532 BTF_SET_END(btf_non_sleepable_error_inject)
23533 
23534 static int check_non_sleepable_error_inject(u32 btf_id)
23535 {
23536 	return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
23537 }
23538 
23539 int bpf_check_attach_target(struct bpf_verifier_log *log,
23540 			    const struct bpf_prog *prog,
23541 			    const struct bpf_prog *tgt_prog,
23542 			    u32 btf_id,
23543 			    struct bpf_attach_target_info *tgt_info)
23544 {
23545 	bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
23546 	bool prog_tracing = prog->type == BPF_PROG_TYPE_TRACING;
23547 	char trace_symbol[KSYM_SYMBOL_LEN];
23548 	const char prefix[] = "btf_trace_";
23549 	struct bpf_raw_event_map *btp;
23550 	int ret = 0, subprog = -1, i;
23551 	const struct btf_type *t;
23552 	bool conservative = true;
23553 	const char *tname, *fname;
23554 	struct btf *btf;
23555 	long addr = 0;
23556 	struct module *mod = NULL;
23557 
23558 	if (!btf_id) {
23559 		bpf_log(log, "Tracing programs must provide btf_id\n");
23560 		return -EINVAL;
23561 	}
23562 	btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
23563 	if (!btf) {
23564 		bpf_log(log,
23565 			"FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
23566 		return -EINVAL;
23567 	}
23568 	t = btf_type_by_id(btf, btf_id);
23569 	if (!t) {
23570 		bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
23571 		return -EINVAL;
23572 	}
23573 	tname = btf_name_by_offset(btf, t->name_off);
23574 	if (!tname) {
23575 		bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
23576 		return -EINVAL;
23577 	}
23578 	if (tgt_prog) {
23579 		struct bpf_prog_aux *aux = tgt_prog->aux;
23580 		bool tgt_changes_pkt_data;
23581 		bool tgt_might_sleep;
23582 
23583 		if (bpf_prog_is_dev_bound(prog->aux) &&
23584 		    !bpf_prog_dev_bound_match(prog, tgt_prog)) {
23585 			bpf_log(log, "Target program bound device mismatch");
23586 			return -EINVAL;
23587 		}
23588 
23589 		for (i = 0; i < aux->func_info_cnt; i++)
23590 			if (aux->func_info[i].type_id == btf_id) {
23591 				subprog = i;
23592 				break;
23593 			}
23594 		if (subprog == -1) {
23595 			bpf_log(log, "Subprog %s doesn't exist\n", tname);
23596 			return -EINVAL;
23597 		}
23598 		if (aux->func && aux->func[subprog]->aux->exception_cb) {
23599 			bpf_log(log,
23600 				"%s programs cannot attach to exception callback\n",
23601 				prog_extension ? "Extension" : "FENTRY/FEXIT");
23602 			return -EINVAL;
23603 		}
23604 		conservative = aux->func_info_aux[subprog].unreliable;
23605 		if (prog_extension) {
23606 			if (conservative) {
23607 				bpf_log(log,
23608 					"Cannot replace static functions\n");
23609 				return -EINVAL;
23610 			}
23611 			if (!prog->jit_requested) {
23612 				bpf_log(log,
23613 					"Extension programs should be JITed\n");
23614 				return -EINVAL;
23615 			}
23616 			tgt_changes_pkt_data = aux->func
23617 					       ? aux->func[subprog]->aux->changes_pkt_data
23618 					       : aux->changes_pkt_data;
23619 			if (prog->aux->changes_pkt_data && !tgt_changes_pkt_data) {
23620 				bpf_log(log,
23621 					"Extension program changes packet data, while original does not\n");
23622 				return -EINVAL;
23623 			}
23624 
23625 			tgt_might_sleep = aux->func
23626 					  ? aux->func[subprog]->aux->might_sleep
23627 					  : aux->might_sleep;
23628 			if (prog->aux->might_sleep && !tgt_might_sleep) {
23629 				bpf_log(log,
23630 					"Extension program may sleep, while original does not\n");
23631 				return -EINVAL;
23632 			}
23633 		}
23634 		if (!tgt_prog->jited) {
23635 			bpf_log(log, "Can attach to only JITed progs\n");
23636 			return -EINVAL;
23637 		}
23638 		if (prog_tracing) {
23639 			if (aux->attach_tracing_prog) {
23640 				/*
23641 				 * Target program is an fentry/fexit which is already attached
23642 				 * to another tracing program. More levels of nesting
23643 				 * attachment are not allowed.
23644 				 */
23645 				bpf_log(log, "Cannot nest tracing program attach more than once\n");
23646 				return -EINVAL;
23647 			}
23648 		} else if (tgt_prog->type == prog->type) {
23649 			/*
23650 			 * To avoid potential call chain cycles, prevent attaching of a
23651 			 * program extension to another extension. It's ok to attach
23652 			 * fentry/fexit to extension program.
23653 			 */
23654 			bpf_log(log, "Cannot recursively attach\n");
23655 			return -EINVAL;
23656 		}
23657 		if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
23658 		    prog_extension &&
23659 		    (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
23660 		     tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
23661 			/* Program extensions can extend all program types
23662 			 * except fentry/fexit. The reason is the following.
23663 			 * The fentry/fexit programs are used for performance
23664 			 * analysis, stats and can be attached to any program
23665 			 * type. When extension program is replacing XDP function
23666 			 * it is necessary to allow performance analysis of all
23667 			 * functions. Both original XDP program and its program
23668 			 * extension. Hence attaching fentry/fexit to
23669 			 * BPF_PROG_TYPE_EXT is allowed. If extending of
23670 			 * fentry/fexit was allowed it would be possible to create
23671 			 * long call chain fentry->extension->fentry->extension
23672 			 * beyond reasonable stack size. Hence extending fentry
23673 			 * is not allowed.
23674 			 */
23675 			bpf_log(log, "Cannot extend fentry/fexit\n");
23676 			return -EINVAL;
23677 		}
23678 	} else {
23679 		if (prog_extension) {
23680 			bpf_log(log, "Cannot replace kernel functions\n");
23681 			return -EINVAL;
23682 		}
23683 	}
23684 
23685 	switch (prog->expected_attach_type) {
23686 	case BPF_TRACE_RAW_TP:
23687 		if (tgt_prog) {
23688 			bpf_log(log,
23689 				"Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
23690 			return -EINVAL;
23691 		}
23692 		if (!btf_type_is_typedef(t)) {
23693 			bpf_log(log, "attach_btf_id %u is not a typedef\n",
23694 				btf_id);
23695 			return -EINVAL;
23696 		}
23697 		if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
23698 			bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
23699 				btf_id, tname);
23700 			return -EINVAL;
23701 		}
23702 		tname += sizeof(prefix) - 1;
23703 
23704 		/* The func_proto of "btf_trace_##tname" is generated from typedef without argument
23705 		 * names. Thus using bpf_raw_event_map to get argument names.
23706 		 */
23707 		btp = bpf_get_raw_tracepoint(tname);
23708 		if (!btp)
23709 			return -EINVAL;
23710 		fname = kallsyms_lookup((unsigned long)btp->bpf_func, NULL, NULL, NULL,
23711 					trace_symbol);
23712 		bpf_put_raw_tracepoint(btp);
23713 
23714 		if (fname)
23715 			ret = btf_find_by_name_kind(btf, fname, BTF_KIND_FUNC);
23716 
23717 		if (!fname || ret < 0) {
23718 			bpf_log(log, "Cannot find btf of tracepoint template, fall back to %s%s.\n",
23719 				prefix, tname);
23720 			t = btf_type_by_id(btf, t->type);
23721 			if (!btf_type_is_ptr(t))
23722 				/* should never happen in valid vmlinux build */
23723 				return -EINVAL;
23724 		} else {
23725 			t = btf_type_by_id(btf, ret);
23726 			if (!btf_type_is_func(t))
23727 				/* should never happen in valid vmlinux build */
23728 				return -EINVAL;
23729 		}
23730 
23731 		t = btf_type_by_id(btf, t->type);
23732 		if (!btf_type_is_func_proto(t))
23733 			/* should never happen in valid vmlinux build */
23734 			return -EINVAL;
23735 
23736 		break;
23737 	case BPF_TRACE_ITER:
23738 		if (!btf_type_is_func(t)) {
23739 			bpf_log(log, "attach_btf_id %u is not a function\n",
23740 				btf_id);
23741 			return -EINVAL;
23742 		}
23743 		t = btf_type_by_id(btf, t->type);
23744 		if (!btf_type_is_func_proto(t))
23745 			return -EINVAL;
23746 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
23747 		if (ret)
23748 			return ret;
23749 		break;
23750 	default:
23751 		if (!prog_extension)
23752 			return -EINVAL;
23753 		fallthrough;
23754 	case BPF_MODIFY_RETURN:
23755 	case BPF_LSM_MAC:
23756 	case BPF_LSM_CGROUP:
23757 	case BPF_TRACE_FENTRY:
23758 	case BPF_TRACE_FEXIT:
23759 		if (!btf_type_is_func(t)) {
23760 			bpf_log(log, "attach_btf_id %u is not a function\n",
23761 				btf_id);
23762 			return -EINVAL;
23763 		}
23764 		if (prog_extension &&
23765 		    btf_check_type_match(log, prog, btf, t))
23766 			return -EINVAL;
23767 		t = btf_type_by_id(btf, t->type);
23768 		if (!btf_type_is_func_proto(t))
23769 			return -EINVAL;
23770 
23771 		if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
23772 		    (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
23773 		     prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
23774 			return -EINVAL;
23775 
23776 		if (tgt_prog && conservative)
23777 			t = NULL;
23778 
23779 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
23780 		if (ret < 0)
23781 			return ret;
23782 
23783 		if (tgt_prog) {
23784 			if (subprog == 0)
23785 				addr = (long) tgt_prog->bpf_func;
23786 			else
23787 				addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
23788 		} else {
23789 			if (btf_is_module(btf)) {
23790 				mod = btf_try_get_module(btf);
23791 				if (mod)
23792 					addr = find_kallsyms_symbol_value(mod, tname);
23793 				else
23794 					addr = 0;
23795 			} else {
23796 				addr = kallsyms_lookup_name(tname);
23797 			}
23798 			if (!addr) {
23799 				module_put(mod);
23800 				bpf_log(log,
23801 					"The address of function %s cannot be found\n",
23802 					tname);
23803 				return -ENOENT;
23804 			}
23805 		}
23806 
23807 		if (prog->sleepable) {
23808 			ret = -EINVAL;
23809 			switch (prog->type) {
23810 			case BPF_PROG_TYPE_TRACING:
23811 
23812 				/* fentry/fexit/fmod_ret progs can be sleepable if they are
23813 				 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
23814 				 */
23815 				if (!check_non_sleepable_error_inject(btf_id) &&
23816 				    within_error_injection_list(addr))
23817 					ret = 0;
23818 				/* fentry/fexit/fmod_ret progs can also be sleepable if they are
23819 				 * in the fmodret id set with the KF_SLEEPABLE flag.
23820 				 */
23821 				else {
23822 					u32 *flags = btf_kfunc_is_modify_return(btf, btf_id,
23823 										prog);
23824 
23825 					if (flags && (*flags & KF_SLEEPABLE))
23826 						ret = 0;
23827 				}
23828 				break;
23829 			case BPF_PROG_TYPE_LSM:
23830 				/* LSM progs check that they are attached to bpf_lsm_*() funcs.
23831 				 * Only some of them are sleepable.
23832 				 */
23833 				if (bpf_lsm_is_sleepable_hook(btf_id))
23834 					ret = 0;
23835 				break;
23836 			default:
23837 				break;
23838 			}
23839 			if (ret) {
23840 				module_put(mod);
23841 				bpf_log(log, "%s is not sleepable\n", tname);
23842 				return ret;
23843 			}
23844 		} else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
23845 			if (tgt_prog) {
23846 				module_put(mod);
23847 				bpf_log(log, "can't modify return codes of BPF programs\n");
23848 				return -EINVAL;
23849 			}
23850 			ret = -EINVAL;
23851 			if (btf_kfunc_is_modify_return(btf, btf_id, prog) ||
23852 			    !check_attach_modify_return(addr, tname))
23853 				ret = 0;
23854 			if (ret) {
23855 				module_put(mod);
23856 				bpf_log(log, "%s() is not modifiable\n", tname);
23857 				return ret;
23858 			}
23859 		}
23860 
23861 		break;
23862 	}
23863 	tgt_info->tgt_addr = addr;
23864 	tgt_info->tgt_name = tname;
23865 	tgt_info->tgt_type = t;
23866 	tgt_info->tgt_mod = mod;
23867 	return 0;
23868 }
23869 
23870 BTF_SET_START(btf_id_deny)
23871 BTF_ID_UNUSED
23872 #ifdef CONFIG_SMP
23873 BTF_ID(func, migrate_disable)
23874 BTF_ID(func, migrate_enable)
23875 #endif
23876 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
23877 BTF_ID(func, rcu_read_unlock_strict)
23878 #endif
23879 #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE)
23880 BTF_ID(func, preempt_count_add)
23881 BTF_ID(func, preempt_count_sub)
23882 #endif
23883 #ifdef CONFIG_PREEMPT_RCU
23884 BTF_ID(func, __rcu_read_lock)
23885 BTF_ID(func, __rcu_read_unlock)
23886 #endif
23887 BTF_SET_END(btf_id_deny)
23888 
23889 /* fexit and fmod_ret can't be used to attach to __noreturn functions.
23890  * Currently, we must manually list all __noreturn functions here. Once a more
23891  * robust solution is implemented, this workaround can be removed.
23892  */
23893 BTF_SET_START(noreturn_deny)
23894 #ifdef CONFIG_IA32_EMULATION
23895 BTF_ID(func, __ia32_sys_exit)
23896 BTF_ID(func, __ia32_sys_exit_group)
23897 #endif
23898 #ifdef CONFIG_KUNIT
23899 BTF_ID(func, __kunit_abort)
23900 BTF_ID(func, kunit_try_catch_throw)
23901 #endif
23902 #ifdef CONFIG_MODULES
23903 BTF_ID(func, __module_put_and_kthread_exit)
23904 #endif
23905 #ifdef CONFIG_X86_64
23906 BTF_ID(func, __x64_sys_exit)
23907 BTF_ID(func, __x64_sys_exit_group)
23908 #endif
23909 BTF_ID(func, do_exit)
23910 BTF_ID(func, do_group_exit)
23911 BTF_ID(func, kthread_complete_and_exit)
23912 BTF_ID(func, kthread_exit)
23913 BTF_ID(func, make_task_dead)
23914 BTF_SET_END(noreturn_deny)
23915 
23916 static bool can_be_sleepable(struct bpf_prog *prog)
23917 {
23918 	if (prog->type == BPF_PROG_TYPE_TRACING) {
23919 		switch (prog->expected_attach_type) {
23920 		case BPF_TRACE_FENTRY:
23921 		case BPF_TRACE_FEXIT:
23922 		case BPF_MODIFY_RETURN:
23923 		case BPF_TRACE_ITER:
23924 			return true;
23925 		default:
23926 			return false;
23927 		}
23928 	}
23929 	return prog->type == BPF_PROG_TYPE_LSM ||
23930 	       prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ ||
23931 	       prog->type == BPF_PROG_TYPE_STRUCT_OPS;
23932 }
23933 
23934 static int check_attach_btf_id(struct bpf_verifier_env *env)
23935 {
23936 	struct bpf_prog *prog = env->prog;
23937 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
23938 	struct bpf_attach_target_info tgt_info = {};
23939 	u32 btf_id = prog->aux->attach_btf_id;
23940 	struct bpf_trampoline *tr;
23941 	int ret;
23942 	u64 key;
23943 
23944 	if (prog->type == BPF_PROG_TYPE_SYSCALL) {
23945 		if (prog->sleepable)
23946 			/* attach_btf_id checked to be zero already */
23947 			return 0;
23948 		verbose(env, "Syscall programs can only be sleepable\n");
23949 		return -EINVAL;
23950 	}
23951 
23952 	if (prog->sleepable && !can_be_sleepable(prog)) {
23953 		verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n");
23954 		return -EINVAL;
23955 	}
23956 
23957 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
23958 		return check_struct_ops_btf_id(env);
23959 
23960 	if (prog->type != BPF_PROG_TYPE_TRACING &&
23961 	    prog->type != BPF_PROG_TYPE_LSM &&
23962 	    prog->type != BPF_PROG_TYPE_EXT)
23963 		return 0;
23964 
23965 	ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
23966 	if (ret)
23967 		return ret;
23968 
23969 	if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
23970 		/* to make freplace equivalent to their targets, they need to
23971 		 * inherit env->ops and expected_attach_type for the rest of the
23972 		 * verification
23973 		 */
23974 		env->ops = bpf_verifier_ops[tgt_prog->type];
23975 		prog->expected_attach_type = tgt_prog->expected_attach_type;
23976 	}
23977 
23978 	/* store info about the attachment target that will be used later */
23979 	prog->aux->attach_func_proto = tgt_info.tgt_type;
23980 	prog->aux->attach_func_name = tgt_info.tgt_name;
23981 	prog->aux->mod = tgt_info.tgt_mod;
23982 
23983 	if (tgt_prog) {
23984 		prog->aux->saved_dst_prog_type = tgt_prog->type;
23985 		prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
23986 	}
23987 
23988 	if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
23989 		prog->aux->attach_btf_trace = true;
23990 		return 0;
23991 	} else if (prog->expected_attach_type == BPF_TRACE_ITER) {
23992 		return bpf_iter_prog_supported(prog);
23993 	}
23994 
23995 	if (prog->type == BPF_PROG_TYPE_LSM) {
23996 		ret = bpf_lsm_verify_prog(&env->log, prog);
23997 		if (ret < 0)
23998 			return ret;
23999 	} else if (prog->type == BPF_PROG_TYPE_TRACING &&
24000 		   btf_id_set_contains(&btf_id_deny, btf_id)) {
24001 		verbose(env, "Attaching tracing programs to function '%s' is rejected.\n",
24002 			tgt_info.tgt_name);
24003 		return -EINVAL;
24004 	} else if ((prog->expected_attach_type == BPF_TRACE_FEXIT ||
24005 		   prog->expected_attach_type == BPF_MODIFY_RETURN) &&
24006 		   btf_id_set_contains(&noreturn_deny, btf_id)) {
24007 		verbose(env, "Attaching fexit/fmod_ret to __noreturn function '%s' is rejected.\n",
24008 			tgt_info.tgt_name);
24009 		return -EINVAL;
24010 	}
24011 
24012 	key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
24013 	tr = bpf_trampoline_get(key, &tgt_info);
24014 	if (!tr)
24015 		return -ENOMEM;
24016 
24017 	if (tgt_prog && tgt_prog->aux->tail_call_reachable)
24018 		tr->flags = BPF_TRAMP_F_TAIL_CALL_CTX;
24019 
24020 	prog->aux->dst_trampoline = tr;
24021 	return 0;
24022 }
24023 
24024 struct btf *bpf_get_btf_vmlinux(void)
24025 {
24026 	if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
24027 		mutex_lock(&bpf_verifier_lock);
24028 		if (!btf_vmlinux)
24029 			btf_vmlinux = btf_parse_vmlinux();
24030 		mutex_unlock(&bpf_verifier_lock);
24031 	}
24032 	return btf_vmlinux;
24033 }
24034 
24035 /*
24036  * The add_fd_from_fd_array() is executed only if fd_array_cnt is non-zero. In
24037  * this case expect that every file descriptor in the array is either a map or
24038  * a BTF. Everything else is considered to be trash.
24039  */
24040 static int add_fd_from_fd_array(struct bpf_verifier_env *env, int fd)
24041 {
24042 	struct bpf_map *map;
24043 	struct btf *btf;
24044 	CLASS(fd, f)(fd);
24045 	int err;
24046 
24047 	map = __bpf_map_get(f);
24048 	if (!IS_ERR(map)) {
24049 		err = __add_used_map(env, map);
24050 		if (err < 0)
24051 			return err;
24052 		return 0;
24053 	}
24054 
24055 	btf = __btf_get_by_fd(f);
24056 	if (!IS_ERR(btf)) {
24057 		err = __add_used_btf(env, btf);
24058 		if (err < 0)
24059 			return err;
24060 		return 0;
24061 	}
24062 
24063 	verbose(env, "fd %d is not pointing to valid bpf_map or btf\n", fd);
24064 	return PTR_ERR(map);
24065 }
24066 
24067 static int process_fd_array(struct bpf_verifier_env *env, union bpf_attr *attr, bpfptr_t uattr)
24068 {
24069 	size_t size = sizeof(int);
24070 	int ret;
24071 	int fd;
24072 	u32 i;
24073 
24074 	env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
24075 
24076 	/*
24077 	 * The only difference between old (no fd_array_cnt is given) and new
24078 	 * APIs is that in the latter case the fd_array is expected to be
24079 	 * continuous and is scanned for map fds right away
24080 	 */
24081 	if (!attr->fd_array_cnt)
24082 		return 0;
24083 
24084 	/* Check for integer overflow */
24085 	if (attr->fd_array_cnt >= (U32_MAX / size)) {
24086 		verbose(env, "fd_array_cnt is too big (%u)\n", attr->fd_array_cnt);
24087 		return -EINVAL;
24088 	}
24089 
24090 	for (i = 0; i < attr->fd_array_cnt; i++) {
24091 		if (copy_from_bpfptr_offset(&fd, env->fd_array, i * size, size))
24092 			return -EFAULT;
24093 
24094 		ret = add_fd_from_fd_array(env, fd);
24095 		if (ret)
24096 			return ret;
24097 	}
24098 
24099 	return 0;
24100 }
24101 
24102 static bool can_fallthrough(struct bpf_insn *insn)
24103 {
24104 	u8 class = BPF_CLASS(insn->code);
24105 	u8 opcode = BPF_OP(insn->code);
24106 
24107 	if (class != BPF_JMP && class != BPF_JMP32)
24108 		return true;
24109 
24110 	if (opcode == BPF_EXIT || opcode == BPF_JA)
24111 		return false;
24112 
24113 	return true;
24114 }
24115 
24116 static bool can_jump(struct bpf_insn *insn)
24117 {
24118 	u8 class = BPF_CLASS(insn->code);
24119 	u8 opcode = BPF_OP(insn->code);
24120 
24121 	if (class != BPF_JMP && class != BPF_JMP32)
24122 		return false;
24123 
24124 	switch (opcode) {
24125 	case BPF_JA:
24126 	case BPF_JEQ:
24127 	case BPF_JNE:
24128 	case BPF_JLT:
24129 	case BPF_JLE:
24130 	case BPF_JGT:
24131 	case BPF_JGE:
24132 	case BPF_JSGT:
24133 	case BPF_JSGE:
24134 	case BPF_JSLT:
24135 	case BPF_JSLE:
24136 	case BPF_JCOND:
24137 	case BPF_JSET:
24138 		return true;
24139 	}
24140 
24141 	return false;
24142 }
24143 
24144 static int insn_successors(struct bpf_prog *prog, u32 idx, u32 succ[2])
24145 {
24146 	struct bpf_insn *insn = &prog->insnsi[idx];
24147 	int i = 0, insn_sz;
24148 	u32 dst;
24149 
24150 	insn_sz = bpf_is_ldimm64(insn) ? 2 : 1;
24151 	if (can_fallthrough(insn) && idx + 1 < prog->len)
24152 		succ[i++] = idx + insn_sz;
24153 
24154 	if (can_jump(insn)) {
24155 		dst = idx + jmp_offset(insn) + 1;
24156 		if (i == 0 || succ[0] != dst)
24157 			succ[i++] = dst;
24158 	}
24159 
24160 	return i;
24161 }
24162 
24163 /* Each field is a register bitmask */
24164 struct insn_live_regs {
24165 	u16 use;	/* registers read by instruction */
24166 	u16 def;	/* registers written by instruction */
24167 	u16 in;		/* registers that may be alive before instruction */
24168 	u16 out;	/* registers that may be alive after instruction */
24169 };
24170 
24171 /* Bitmask with 1s for all caller saved registers */
24172 #define ALL_CALLER_SAVED_REGS ((1u << CALLER_SAVED_REGS) - 1)
24173 
24174 /* Compute info->{use,def} fields for the instruction */
24175 static void compute_insn_live_regs(struct bpf_verifier_env *env,
24176 				   struct bpf_insn *insn,
24177 				   struct insn_live_regs *info)
24178 {
24179 	struct call_summary cs;
24180 	u8 class = BPF_CLASS(insn->code);
24181 	u8 code = BPF_OP(insn->code);
24182 	u8 mode = BPF_MODE(insn->code);
24183 	u16 src = BIT(insn->src_reg);
24184 	u16 dst = BIT(insn->dst_reg);
24185 	u16 r0  = BIT(0);
24186 	u16 def = 0;
24187 	u16 use = 0xffff;
24188 
24189 	switch (class) {
24190 	case BPF_LD:
24191 		switch (mode) {
24192 		case BPF_IMM:
24193 			if (BPF_SIZE(insn->code) == BPF_DW) {
24194 				def = dst;
24195 				use = 0;
24196 			}
24197 			break;
24198 		case BPF_LD | BPF_ABS:
24199 		case BPF_LD | BPF_IND:
24200 			/* stick with defaults */
24201 			break;
24202 		}
24203 		break;
24204 	case BPF_LDX:
24205 		switch (mode) {
24206 		case BPF_MEM:
24207 		case BPF_MEMSX:
24208 			def = dst;
24209 			use = src;
24210 			break;
24211 		}
24212 		break;
24213 	case BPF_ST:
24214 		switch (mode) {
24215 		case BPF_MEM:
24216 			def = 0;
24217 			use = dst;
24218 			break;
24219 		}
24220 		break;
24221 	case BPF_STX:
24222 		switch (mode) {
24223 		case BPF_MEM:
24224 			def = 0;
24225 			use = dst | src;
24226 			break;
24227 		case BPF_ATOMIC:
24228 			switch (insn->imm) {
24229 			case BPF_CMPXCHG:
24230 				use = r0 | dst | src;
24231 				def = r0;
24232 				break;
24233 			case BPF_LOAD_ACQ:
24234 				def = dst;
24235 				use = src;
24236 				break;
24237 			case BPF_STORE_REL:
24238 				def = 0;
24239 				use = dst | src;
24240 				break;
24241 			default:
24242 				use = dst | src;
24243 				if (insn->imm & BPF_FETCH)
24244 					def = src;
24245 				else
24246 					def = 0;
24247 			}
24248 			break;
24249 		}
24250 		break;
24251 	case BPF_ALU:
24252 	case BPF_ALU64:
24253 		switch (code) {
24254 		case BPF_END:
24255 			use = dst;
24256 			def = dst;
24257 			break;
24258 		case BPF_MOV:
24259 			def = dst;
24260 			if (BPF_SRC(insn->code) == BPF_K)
24261 				use = 0;
24262 			else
24263 				use = src;
24264 			break;
24265 		default:
24266 			def = dst;
24267 			if (BPF_SRC(insn->code) == BPF_K)
24268 				use = dst;
24269 			else
24270 				use = dst | src;
24271 		}
24272 		break;
24273 	case BPF_JMP:
24274 	case BPF_JMP32:
24275 		switch (code) {
24276 		case BPF_JA:
24277 		case BPF_JCOND:
24278 			def = 0;
24279 			use = 0;
24280 			break;
24281 		case BPF_EXIT:
24282 			def = 0;
24283 			use = r0;
24284 			break;
24285 		case BPF_CALL:
24286 			def = ALL_CALLER_SAVED_REGS;
24287 			use = def & ~BIT(BPF_REG_0);
24288 			if (get_call_summary(env, insn, &cs))
24289 				use = GENMASK(cs.num_params, 1);
24290 			break;
24291 		default:
24292 			def = 0;
24293 			if (BPF_SRC(insn->code) == BPF_K)
24294 				use = dst;
24295 			else
24296 				use = dst | src;
24297 		}
24298 		break;
24299 	}
24300 
24301 	info->def = def;
24302 	info->use = use;
24303 }
24304 
24305 /* Compute may-live registers after each instruction in the program.
24306  * The register is live after the instruction I if it is read by some
24307  * instruction S following I during program execution and is not
24308  * overwritten between I and S.
24309  *
24310  * Store result in env->insn_aux_data[i].live_regs.
24311  */
24312 static int compute_live_registers(struct bpf_verifier_env *env)
24313 {
24314 	struct bpf_insn_aux_data *insn_aux = env->insn_aux_data;
24315 	struct bpf_insn *insns = env->prog->insnsi;
24316 	struct insn_live_regs *state;
24317 	int insn_cnt = env->prog->len;
24318 	int err = 0, i, j;
24319 	bool changed;
24320 
24321 	/* Use the following algorithm:
24322 	 * - define the following:
24323 	 *   - I.use : a set of all registers read by instruction I;
24324 	 *   - I.def : a set of all registers written by instruction I;
24325 	 *   - I.in  : a set of all registers that may be alive before I execution;
24326 	 *   - I.out : a set of all registers that may be alive after I execution;
24327 	 *   - insn_successors(I): a set of instructions S that might immediately
24328 	 *                         follow I for some program execution;
24329 	 * - associate separate empty sets 'I.in' and 'I.out' with each instruction;
24330 	 * - visit each instruction in a postorder and update
24331 	 *   state[i].in, state[i].out as follows:
24332 	 *
24333 	 *       state[i].out = U [state[s].in for S in insn_successors(i)]
24334 	 *       state[i].in  = (state[i].out / state[i].def) U state[i].use
24335 	 *
24336 	 *   (where U stands for set union, / stands for set difference)
24337 	 * - repeat the computation while {in,out} fields changes for
24338 	 *   any instruction.
24339 	 */
24340 	state = kvcalloc(insn_cnt, sizeof(*state), GFP_KERNEL_ACCOUNT);
24341 	if (!state) {
24342 		err = -ENOMEM;
24343 		goto out;
24344 	}
24345 
24346 	for (i = 0; i < insn_cnt; ++i)
24347 		compute_insn_live_regs(env, &insns[i], &state[i]);
24348 
24349 	changed = true;
24350 	while (changed) {
24351 		changed = false;
24352 		for (i = 0; i < env->cfg.cur_postorder; ++i) {
24353 			int insn_idx = env->cfg.insn_postorder[i];
24354 			struct insn_live_regs *live = &state[insn_idx];
24355 			int succ_num;
24356 			u32 succ[2];
24357 			u16 new_out = 0;
24358 			u16 new_in = 0;
24359 
24360 			succ_num = insn_successors(env->prog, insn_idx, succ);
24361 			for (int s = 0; s < succ_num; ++s)
24362 				new_out |= state[succ[s]].in;
24363 			new_in = (new_out & ~live->def) | live->use;
24364 			if (new_out != live->out || new_in != live->in) {
24365 				live->in = new_in;
24366 				live->out = new_out;
24367 				changed = true;
24368 			}
24369 		}
24370 	}
24371 
24372 	for (i = 0; i < insn_cnt; ++i)
24373 		insn_aux[i].live_regs_before = state[i].in;
24374 
24375 	if (env->log.level & BPF_LOG_LEVEL2) {
24376 		verbose(env, "Live regs before insn:\n");
24377 		for (i = 0; i < insn_cnt; ++i) {
24378 			if (env->insn_aux_data[i].scc)
24379 				verbose(env, "%3d ", env->insn_aux_data[i].scc);
24380 			else
24381 				verbose(env, "    ");
24382 			verbose(env, "%3d: ", i);
24383 			for (j = BPF_REG_0; j < BPF_REG_10; ++j)
24384 				if (insn_aux[i].live_regs_before & BIT(j))
24385 					verbose(env, "%d", j);
24386 				else
24387 					verbose(env, ".");
24388 			verbose(env, " ");
24389 			verbose_insn(env, &insns[i]);
24390 			if (bpf_is_ldimm64(&insns[i]))
24391 				i++;
24392 		}
24393 	}
24394 
24395 out:
24396 	kvfree(state);
24397 	kvfree(env->cfg.insn_postorder);
24398 	env->cfg.insn_postorder = NULL;
24399 	env->cfg.cur_postorder = 0;
24400 	return err;
24401 }
24402 
24403 /*
24404  * Compute strongly connected components (SCCs) on the CFG.
24405  * Assign an SCC number to each instruction, recorded in env->insn_aux[*].scc.
24406  * If instruction is a sole member of its SCC and there are no self edges,
24407  * assign it SCC number of zero.
24408  * Uses a non-recursive adaptation of Tarjan's algorithm for SCC computation.
24409  */
24410 static int compute_scc(struct bpf_verifier_env *env)
24411 {
24412 	const u32 NOT_ON_STACK = U32_MAX;
24413 
24414 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
24415 	const u32 insn_cnt = env->prog->len;
24416 	int stack_sz, dfs_sz, err = 0;
24417 	u32 *stack, *pre, *low, *dfs;
24418 	u32 succ_cnt, i, j, t, w;
24419 	u32 next_preorder_num;
24420 	u32 next_scc_id;
24421 	bool assign_scc;
24422 	u32 succ[2];
24423 
24424 	next_preorder_num = 1;
24425 	next_scc_id = 1;
24426 	/*
24427 	 * - 'stack' accumulates vertices in DFS order, see invariant comment below;
24428 	 * - 'pre[t] == p' => preorder number of vertex 't' is 'p';
24429 	 * - 'low[t] == n' => smallest preorder number of the vertex reachable from 't' is 'n';
24430 	 * - 'dfs' DFS traversal stack, used to emulate explicit recursion.
24431 	 */
24432 	stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL_ACCOUNT);
24433 	pre = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL_ACCOUNT);
24434 	low = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL_ACCOUNT);
24435 	dfs = kvcalloc(insn_cnt, sizeof(*dfs), GFP_KERNEL_ACCOUNT);
24436 	if (!stack || !pre || !low || !dfs) {
24437 		err = -ENOMEM;
24438 		goto exit;
24439 	}
24440 	/*
24441 	 * References:
24442 	 * [1] R. Tarjan "Depth-First Search and Linear Graph Algorithms"
24443 	 * [2] D. J. Pearce "A Space-Efficient Algorithm for Finding Strongly Connected Components"
24444 	 *
24445 	 * The algorithm maintains the following invariant:
24446 	 * - suppose there is a path 'u' ~> 'v', such that 'pre[v] < pre[u]';
24447 	 * - then, vertex 'u' remains on stack while vertex 'v' is on stack.
24448 	 *
24449 	 * Consequently:
24450 	 * - If 'low[v] < pre[v]', there is a path from 'v' to some vertex 'u',
24451 	 *   such that 'pre[u] == low[v]'; vertex 'u' is currently on the stack,
24452 	 *   and thus there is an SCC (loop) containing both 'u' and 'v'.
24453 	 * - If 'low[v] == pre[v]', loops containing 'v' have been explored,
24454 	 *   and 'v' can be considered the root of some SCC.
24455 	 *
24456 	 * Here is a pseudo-code for an explicitly recursive version of the algorithm:
24457 	 *
24458 	 *    NOT_ON_STACK = insn_cnt + 1
24459 	 *    pre = [0] * insn_cnt
24460 	 *    low = [0] * insn_cnt
24461 	 *    scc = [0] * insn_cnt
24462 	 *    stack = []
24463 	 *
24464 	 *    next_preorder_num = 1
24465 	 *    next_scc_id = 1
24466 	 *
24467 	 *    def recur(w):
24468 	 *        nonlocal next_preorder_num
24469 	 *        nonlocal next_scc_id
24470 	 *
24471 	 *        pre[w] = next_preorder_num
24472 	 *        low[w] = next_preorder_num
24473 	 *        next_preorder_num += 1
24474 	 *        stack.append(w)
24475 	 *        for s in successors(w):
24476 	 *            # Note: for classic algorithm the block below should look as:
24477 	 *            #
24478 	 *            # if pre[s] == 0:
24479 	 *            #     recur(s)
24480 	 *            #	    low[w] = min(low[w], low[s])
24481 	 *            # elif low[s] != NOT_ON_STACK:
24482 	 *            #     low[w] = min(low[w], pre[s])
24483 	 *            #
24484 	 *            # But replacing both 'min' instructions with 'low[w] = min(low[w], low[s])'
24485 	 *            # does not break the invariant and makes itartive version of the algorithm
24486 	 *            # simpler. See 'Algorithm #3' from [2].
24487 	 *
24488 	 *            # 's' not yet visited
24489 	 *            if pre[s] == 0:
24490 	 *                recur(s)
24491 	 *            # if 's' is on stack, pick lowest reachable preorder number from it;
24492 	 *            # if 's' is not on stack 'low[s] == NOT_ON_STACK > low[w]',
24493 	 *            # so 'min' would be a noop.
24494 	 *            low[w] = min(low[w], low[s])
24495 	 *
24496 	 *        if low[w] == pre[w]:
24497 	 *            # 'w' is the root of an SCC, pop all vertices
24498 	 *            # below 'w' on stack and assign same SCC to them.
24499 	 *            while True:
24500 	 *                t = stack.pop()
24501 	 *                low[t] = NOT_ON_STACK
24502 	 *                scc[t] = next_scc_id
24503 	 *                if t == w:
24504 	 *                    break
24505 	 *            next_scc_id += 1
24506 	 *
24507 	 *    for i in range(0, insn_cnt):
24508 	 *        if pre[i] == 0:
24509 	 *            recur(i)
24510 	 *
24511 	 * Below implementation replaces explicit recursion with array 'dfs'.
24512 	 */
24513 	for (i = 0; i < insn_cnt; i++) {
24514 		if (pre[i])
24515 			continue;
24516 		stack_sz = 0;
24517 		dfs_sz = 1;
24518 		dfs[0] = i;
24519 dfs_continue:
24520 		while (dfs_sz) {
24521 			w = dfs[dfs_sz - 1];
24522 			if (pre[w] == 0) {
24523 				low[w] = next_preorder_num;
24524 				pre[w] = next_preorder_num;
24525 				next_preorder_num++;
24526 				stack[stack_sz++] = w;
24527 			}
24528 			/* Visit 'w' successors */
24529 			succ_cnt = insn_successors(env->prog, w, succ);
24530 			for (j = 0; j < succ_cnt; ++j) {
24531 				if (pre[succ[j]]) {
24532 					low[w] = min(low[w], low[succ[j]]);
24533 				} else {
24534 					dfs[dfs_sz++] = succ[j];
24535 					goto dfs_continue;
24536 				}
24537 			}
24538 			/*
24539 			 * Preserve the invariant: if some vertex above in the stack
24540 			 * is reachable from 'w', keep 'w' on the stack.
24541 			 */
24542 			if (low[w] < pre[w]) {
24543 				dfs_sz--;
24544 				goto dfs_continue;
24545 			}
24546 			/*
24547 			 * Assign SCC number only if component has two or more elements,
24548 			 * or if component has a self reference.
24549 			 */
24550 			assign_scc = stack[stack_sz - 1] != w;
24551 			for (j = 0; j < succ_cnt; ++j) {
24552 				if (succ[j] == w) {
24553 					assign_scc = true;
24554 					break;
24555 				}
24556 			}
24557 			/* Pop component elements from stack */
24558 			do {
24559 				t = stack[--stack_sz];
24560 				low[t] = NOT_ON_STACK;
24561 				if (assign_scc)
24562 					aux[t].scc = next_scc_id;
24563 			} while (t != w);
24564 			if (assign_scc)
24565 				next_scc_id++;
24566 			dfs_sz--;
24567 		}
24568 	}
24569 	env->scc_info = kvcalloc(next_scc_id, sizeof(*env->scc_info), GFP_KERNEL_ACCOUNT);
24570 	if (!env->scc_info) {
24571 		err = -ENOMEM;
24572 		goto exit;
24573 	}
24574 	env->scc_cnt = next_scc_id;
24575 exit:
24576 	kvfree(stack);
24577 	kvfree(pre);
24578 	kvfree(low);
24579 	kvfree(dfs);
24580 	return err;
24581 }
24582 
24583 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size)
24584 {
24585 	u64 start_time = ktime_get_ns();
24586 	struct bpf_verifier_env *env;
24587 	int i, len, ret = -EINVAL, err;
24588 	u32 log_true_size;
24589 	bool is_priv;
24590 
24591 	BTF_TYPE_EMIT(enum bpf_features);
24592 
24593 	/* no program is valid */
24594 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
24595 		return -EINVAL;
24596 
24597 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
24598 	 * allocate/free it every time bpf_check() is called
24599 	 */
24600 	env = kvzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL_ACCOUNT);
24601 	if (!env)
24602 		return -ENOMEM;
24603 
24604 	env->bt.env = env;
24605 
24606 	len = (*prog)->len;
24607 	env->insn_aux_data =
24608 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
24609 	ret = -ENOMEM;
24610 	if (!env->insn_aux_data)
24611 		goto err_free_env;
24612 	for (i = 0; i < len; i++)
24613 		env->insn_aux_data[i].orig_idx = i;
24614 	env->prog = *prog;
24615 	env->ops = bpf_verifier_ops[env->prog->type];
24616 
24617 	env->allow_ptr_leaks = bpf_allow_ptr_leaks(env->prog->aux->token);
24618 	env->allow_uninit_stack = bpf_allow_uninit_stack(env->prog->aux->token);
24619 	env->bypass_spec_v1 = bpf_bypass_spec_v1(env->prog->aux->token);
24620 	env->bypass_spec_v4 = bpf_bypass_spec_v4(env->prog->aux->token);
24621 	env->bpf_capable = is_priv = bpf_token_capable(env->prog->aux->token, CAP_BPF);
24622 
24623 	bpf_get_btf_vmlinux();
24624 
24625 	/* grab the mutex to protect few globals used by verifier */
24626 	if (!is_priv)
24627 		mutex_lock(&bpf_verifier_lock);
24628 
24629 	/* user could have requested verbose verifier output
24630 	 * and supplied buffer to store the verification trace
24631 	 */
24632 	ret = bpf_vlog_init(&env->log, attr->log_level,
24633 			    (char __user *) (unsigned long) attr->log_buf,
24634 			    attr->log_size);
24635 	if (ret)
24636 		goto err_unlock;
24637 
24638 	ret = process_fd_array(env, attr, uattr);
24639 	if (ret)
24640 		goto skip_full_check;
24641 
24642 	mark_verifier_state_clean(env);
24643 
24644 	if (IS_ERR(btf_vmlinux)) {
24645 		/* Either gcc or pahole or kernel are broken. */
24646 		verbose(env, "in-kernel BTF is malformed\n");
24647 		ret = PTR_ERR(btf_vmlinux);
24648 		goto skip_full_check;
24649 	}
24650 
24651 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
24652 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
24653 		env->strict_alignment = true;
24654 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
24655 		env->strict_alignment = false;
24656 
24657 	if (is_priv)
24658 		env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
24659 	env->test_reg_invariants = attr->prog_flags & BPF_F_TEST_REG_INVARIANTS;
24660 
24661 	env->explored_states = kvcalloc(state_htab_size(env),
24662 				       sizeof(struct list_head),
24663 				       GFP_KERNEL_ACCOUNT);
24664 	ret = -ENOMEM;
24665 	if (!env->explored_states)
24666 		goto skip_full_check;
24667 
24668 	for (i = 0; i < state_htab_size(env); i++)
24669 		INIT_LIST_HEAD(&env->explored_states[i]);
24670 	INIT_LIST_HEAD(&env->free_list);
24671 
24672 	ret = check_btf_info_early(env, attr, uattr);
24673 	if (ret < 0)
24674 		goto skip_full_check;
24675 
24676 	ret = add_subprog_and_kfunc(env);
24677 	if (ret < 0)
24678 		goto skip_full_check;
24679 
24680 	ret = check_subprogs(env);
24681 	if (ret < 0)
24682 		goto skip_full_check;
24683 
24684 	ret = check_btf_info(env, attr, uattr);
24685 	if (ret < 0)
24686 		goto skip_full_check;
24687 
24688 	ret = resolve_pseudo_ldimm64(env);
24689 	if (ret < 0)
24690 		goto skip_full_check;
24691 
24692 	if (bpf_prog_is_offloaded(env->prog->aux)) {
24693 		ret = bpf_prog_offload_verifier_prep(env->prog);
24694 		if (ret)
24695 			goto skip_full_check;
24696 	}
24697 
24698 	ret = check_cfg(env);
24699 	if (ret < 0)
24700 		goto skip_full_check;
24701 
24702 	ret = check_attach_btf_id(env);
24703 	if (ret)
24704 		goto skip_full_check;
24705 
24706 	ret = compute_scc(env);
24707 	if (ret < 0)
24708 		goto skip_full_check;
24709 
24710 	ret = compute_live_registers(env);
24711 	if (ret < 0)
24712 		goto skip_full_check;
24713 
24714 	ret = mark_fastcall_patterns(env);
24715 	if (ret < 0)
24716 		goto skip_full_check;
24717 
24718 	ret = do_check_main(env);
24719 	ret = ret ?: do_check_subprogs(env);
24720 
24721 	if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux))
24722 		ret = bpf_prog_offload_finalize(env);
24723 
24724 skip_full_check:
24725 	kvfree(env->explored_states);
24726 
24727 	/* might decrease stack depth, keep it before passes that
24728 	 * allocate additional slots.
24729 	 */
24730 	if (ret == 0)
24731 		ret = remove_fastcall_spills_fills(env);
24732 
24733 	if (ret == 0)
24734 		ret = check_max_stack_depth(env);
24735 
24736 	/* instruction rewrites happen after this point */
24737 	if (ret == 0)
24738 		ret = optimize_bpf_loop(env);
24739 
24740 	if (is_priv) {
24741 		if (ret == 0)
24742 			opt_hard_wire_dead_code_branches(env);
24743 		if (ret == 0)
24744 			ret = opt_remove_dead_code(env);
24745 		if (ret == 0)
24746 			ret = opt_remove_nops(env);
24747 	} else {
24748 		if (ret == 0)
24749 			sanitize_dead_code(env);
24750 	}
24751 
24752 	if (ret == 0)
24753 		/* program is valid, convert *(u32*)(ctx + off) accesses */
24754 		ret = convert_ctx_accesses(env);
24755 
24756 	if (ret == 0)
24757 		ret = do_misc_fixups(env);
24758 
24759 	/* do 32-bit optimization after insn patching has done so those patched
24760 	 * insns could be handled correctly.
24761 	 */
24762 	if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) {
24763 		ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
24764 		env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
24765 								     : false;
24766 	}
24767 
24768 	if (ret == 0)
24769 		ret = fixup_call_args(env);
24770 
24771 	env->verification_time = ktime_get_ns() - start_time;
24772 	print_verification_stats(env);
24773 	env->prog->aux->verified_insns = env->insn_processed;
24774 
24775 	/* preserve original error even if log finalization is successful */
24776 	err = bpf_vlog_finalize(&env->log, &log_true_size);
24777 	if (err)
24778 		ret = err;
24779 
24780 	if (uattr_size >= offsetofend(union bpf_attr, log_true_size) &&
24781 	    copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, log_true_size),
24782 				  &log_true_size, sizeof(log_true_size))) {
24783 		ret = -EFAULT;
24784 		goto err_release_maps;
24785 	}
24786 
24787 	if (ret)
24788 		goto err_release_maps;
24789 
24790 	if (env->used_map_cnt) {
24791 		/* if program passed verifier, update used_maps in bpf_prog_info */
24792 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
24793 							  sizeof(env->used_maps[0]),
24794 							  GFP_KERNEL_ACCOUNT);
24795 
24796 		if (!env->prog->aux->used_maps) {
24797 			ret = -ENOMEM;
24798 			goto err_release_maps;
24799 		}
24800 
24801 		memcpy(env->prog->aux->used_maps, env->used_maps,
24802 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
24803 		env->prog->aux->used_map_cnt = env->used_map_cnt;
24804 	}
24805 	if (env->used_btf_cnt) {
24806 		/* if program passed verifier, update used_btfs in bpf_prog_aux */
24807 		env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
24808 							  sizeof(env->used_btfs[0]),
24809 							  GFP_KERNEL_ACCOUNT);
24810 		if (!env->prog->aux->used_btfs) {
24811 			ret = -ENOMEM;
24812 			goto err_release_maps;
24813 		}
24814 
24815 		memcpy(env->prog->aux->used_btfs, env->used_btfs,
24816 		       sizeof(env->used_btfs[0]) * env->used_btf_cnt);
24817 		env->prog->aux->used_btf_cnt = env->used_btf_cnt;
24818 	}
24819 	if (env->used_map_cnt || env->used_btf_cnt) {
24820 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
24821 		 * bpf_ld_imm64 instructions
24822 		 */
24823 		convert_pseudo_ld_imm64(env);
24824 	}
24825 
24826 	adjust_btf_func(env);
24827 
24828 err_release_maps:
24829 	if (!env->prog->aux->used_maps)
24830 		/* if we didn't copy map pointers into bpf_prog_info, release
24831 		 * them now. Otherwise free_used_maps() will release them.
24832 		 */
24833 		release_maps(env);
24834 	if (!env->prog->aux->used_btfs)
24835 		release_btfs(env);
24836 
24837 	/* extension progs temporarily inherit the attach_type of their targets
24838 	   for verification purposes, so set it back to zero before returning
24839 	 */
24840 	if (env->prog->type == BPF_PROG_TYPE_EXT)
24841 		env->prog->expected_attach_type = 0;
24842 
24843 	*prog = env->prog;
24844 
24845 	module_put(env->attach_btf_mod);
24846 err_unlock:
24847 	if (!is_priv)
24848 		mutex_unlock(&bpf_verifier_lock);
24849 	vfree(env->insn_aux_data);
24850 err_free_env:
24851 	kvfree(env->cfg.insn_postorder);
24852 	kvfree(env->scc_info);
24853 	kvfree(env);
24854 	return ret;
24855 }
24856